Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJadhav, S.A.-
dc.contributor.authorSomayajulu, D.V.L.N.-
dc.contributor.authorBhattu, S.N.-
dc.contributor.authorSubramanyam, R.B.V.-
dc.contributor.authorSuresh, P.-
dc.date.accessioned2024-12-27T07:09:43Z-
dc.date.available2024-12-27T07:09:43Z-
dc.date.issued2013-
dc.identifier.citation10.1109/ICACCI.2013.6637329en_US
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2150-
dc.descriptionNITWen_US
dc.description.abstractSpelling Correction is a crucial component in modern text mining systems such as Web Sentiment Analysis systems where spelling errors may affect the sentiment scores. Many existing spelling correction methods generally deal with in-word spelling errors. Major drawback with such methods is that they are unable to handle cross-words spelling errors such as splitting and concatenation. In this paper we address this limitation by our discriminative approach that handles splitting and concatenation errors over a particular topic. It also handles the cases where these errors occur over in-word spelling errors.en_US
dc.language.isoenen_US
dc.publisher2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)en_US
dc.subjectWeb Sentiment analysisen_US
dc.subjectspelling correctionen_US
dc.subjecttext miningen_US
dc.subjectsplitting-concatenation errorsen_US
dc.titleTopic dependent cross-word Spelling Corrections for Web Sentiment Analysisen_US
dc.typeOtheren_US
Appears in Collections:Computer Science & Engineering

Files in This Item:
File Description SizeFormat 
Topic_dependent_cross-word_Spelling_Corrections_for_Web_Sentiment_Analysis.pdf216.85 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.