Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnjaneyulu, L.-
dc.contributor.authorMurthy, N.S.-
dc.contributor.authorSarma, N.V.S.N.-
dc.date.accessioned2024-12-02T06:06:20Z-
dc.date.available2024-12-02T06:06:20Z-
dc.date.issued2008-
dc.identifier.citation10.1109/AMTA.2008.4763033en_US
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1865-
dc.descriptionNITWen_US
dc.description.abstractThis paper presents a Radar Emitter Identification and Classification technique based on Fuzzy ART and ARTMAP Neural Networks. The radar emitter's parameters of RF, PW, PRJ, Direction of Arrival(DOA) etc., are taken as inputs for the networks. The network is trained with the available data of the emitter types. After training, the network is used to identify the emitter type by applying the parameters of the emitter as inputs to the neural network. A number of simulations are carried out and the simulated results show that the network quickly and accurately identify and classify the emitter types.en_US
dc.language.isoenen_US
dc.publisher2008 International Conference of Recent Advances in Microwave Theory and Applications, MICROWAVE 2008en_US
dc.subjectArtificial Neural Networksen_US
dc.subjectRadar Emitteren_US
dc.titleRadar Emitter Classification Using Self-Organising Neural Network Modelsen_US
dc.typeOtheren_US
Appears in Collections:Electronics and Communication Engineering

Files in This Item:
File Description SizeFormat 
Radar_emitter_classification_using_self-organising_Neural_Network_models.pdf645.64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.