Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/1668
Title: | Robust Prediction of Stock Indices using PSO based Adaptive Linear Combiner |
Authors: | Majhi, Ritanjali Panda, G. Majhi, Babita |
Keywords: | Robust Stock |
Issue Date: | 2009 |
Publisher: | 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings |
Citation: | 10.1109/NABIC.2009.5393728 |
Abstract: | The present paper employs a particle swarm optimization (PSO) based adaptive linear combiner for efficient prediction of various stock indices in presence of strong outliers in the training data. The connecting weights of the model are updated by minimizing the Wilcoxon norm of the error vector by PSO. The short and long term prediction performance of the new model is evaluated with test data and the results obtained are compared with those obtained from the conventional PSO based model. It is in general observed that the proposed model is computationally more efficient, prediction wise more accurate and more robust against outliers in training set compared to those obtained by standard PSO based model. |
Description: | NITW |
URI: | http://localhost:8080/xmlui/handle/123456789/1668 |
Appears in Collections: | Humanities and Social Sciences |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Robust_prediction_of_stock_indices_using_PSO_based_adaptive_linear_combiner.pdf | 187.15 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.