Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1457
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJatoth, Ravi Kumar-
dc.contributor.authorAnudeep Reddy, Gogulamudi-
dc.date.accessioned2024-11-12T10:21:22Z-
dc.date.available2024-11-12T10:21:22Z-
dc.date.issued2010-
dc.identifier.citation10.1007/978-3-642-17563-3_46en_US
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1457-
dc.descriptionNITWen_US
dc.description.abstractThis paper proposes Hybrid Genetic Algorithm (GA)-Adaptive Particle Swarm Optimization (APSO) aided Unscented Kalman Filter (UKF) to estimate the harmonic components present in power system voltage/current waveforms. The initial choice of the process and measurement error covariance matrices Q and R (called tuning of the filter) plays a vital role in removal of noise. Hence, hybrid GA-APSO algorithm is used to estimate the error covariance matrices by minimizing the Root Mean Square Error(RMSE) of the UKF. Simulation results are presented to demonstrate the estimation accuracy is significantly improved in comparison with that of conventional UKF.en_US
dc.language.isoenen_US
dc.subjectUnscented Kalman Filteren_US
dc.subjectGenetic Algorithmen_US
dc.subjectHybrid GA-APSOen_US
dc.subjectHarmonic Estimationen_US
dc.titleA Hybrid GA-Adaptive Particle Swarm Optimization Based Tuning of Unscented Kalman Filter for Harmonic Estimationen_US
dc.typeOtheren_US
Appears in Collections:Electronics and Communication Engineering

Files in This Item:
File Description SizeFormat 
978-3-642-17563-3_46.pdf297.04 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.