Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1339
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRao, K. Lakshmana-
dc.date.accessioned2024-10-30T10:46:45Z-
dc.date.available2024-10-30T10:46:45Z-
dc.date.issued1964-
dc.identifier.citation10.1002/zamm.19640440107en_US
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1339-
dc.descriptionNITWen_US
dc.description.abstractIn his classical work on vortex motion H. HELM- HOLTZ dealt with the irrotational motion of inviscid fluids and established three basic theorems. Lord KEI,VIX added another basic theorem concerning the constancy of circulation around a vortex core. Ho- wever, to be able to explain the decay of vortices thc Viscosity of the fluid must be taken into account. The solution of C. W. OSEEN vizen_US
dc.language.isoenen_US
dc.publisherZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechaniken_US
dc.subjectStagnation Pointen_US
dc.subjectLine Vortex Flowen_US
dc.titleStagnation Point ‐ Line Vortex Flow of Non‐Linear Viscous Liquidsen_US
dc.typeArticleen_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
zamm.19640440107.pdf206.14 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.