Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/1339
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rao, K. Lakshmana | - |
dc.date.accessioned | 2024-10-30T10:46:45Z | - |
dc.date.available | 2024-10-30T10:46:45Z | - |
dc.date.issued | 1964 | - |
dc.identifier.citation | 10.1002/zamm.19640440107 | en_US |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/1339 | - |
dc.description | NITW | en_US |
dc.description.abstract | In his classical work on vortex motion H. HELM- HOLTZ dealt with the irrotational motion of inviscid fluids and established three basic theorems. Lord KEI,VIX added another basic theorem concerning the constancy of circulation around a vortex core. Ho- wever, to be able to explain the decay of vortices thc Viscosity of the fluid must be taken into account. The solution of C. W. OSEEN viz | en_US |
dc.language.iso | en | en_US |
dc.publisher | ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik | en_US |
dc.subject | Stagnation Point | en_US |
dc.subject | Line Vortex Flow | en_US |
dc.title | Stagnation Point ‐ Line Vortex Flow of Non‐Linear Viscous Liquids | en_US |
dc.type | Article | en_US |
Appears in Collections: | Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
zamm.19640440107.pdf | 206.14 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.