Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1076
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChayanika Sharma, Vijay Kumar-
dc.date.accessioned2024-10-10T05:08:57Z-
dc.date.available2024-10-10T05:08:57Z-
dc.date.issued2023-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1076-
dc.description.abstractSpeckle-based deep learning approach for the classification of partially coherent vortex beams is presented. Remarkably, this approach achieved 100% classification accuracy. © 2023 The Author(s)en_US
dc.description.sponsorshipNITWen_US
dc.language.isoenen_US
dc.publisherFrontiers in Optics + Laser Science © 2023 Optica Publishing Groupen_US
dc.subjectSpeckled-learned Classificationen_US
dc.subjectPartially Coherent Vortex Beamsen_US
dc.titleSpeckled-learned Classification of Partially Coherent Vortex Beamsen_US
dc.typeOtheren_US
Appears in Collections:Physics

Files in This Item:
File Description SizeFormat 
FIO-2023-JTu4A.29.pdf1.36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.