Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1031
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVenugopal Raskatla, Purnesh Singh Badavath-
dc.contributor.authorVijay Kumar-
dc.date.accessioned2024-10-03T09:48:06Z-
dc.date.available2024-10-03T09:48:06Z-
dc.date.issued2023-03-08-
dc.identifier.citationDOI: 10.1117/ 1.OE.62.3.036104en_US
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1031-
dc.description.abstractIntensity degenerate orbital angular momentum (OAM) modes are impossible to recognize by direct visual inspection even using available machine learning techniques. We are reporting speckle-learned convolutional neural network (CNN) for the recognition of intensity degenerate Laguerre–Gaussian (LGp;l) modes, intensity degenerate LG superposition modes, and intensity degenerate perfect optical vortices. The CNN is trained on the simulated one-dimensional far-field intensity speckle patterns of the corresponding intensity degenerate OAM modes. The trained CNN recognizes intensity degenerate OAM modes with an accuracy >99%. Speckle-learned CNNs are also capable of recognizing intensity degenerate OAM modes even under the presence of high Gaussian white noise and atmospheric turbulence with an accuracy >97%.en_US
dc.language.isoenen_US
dc.publisherSociety of Photo-Optical Instrumentation Engineersen_US
dc.subjectorbital angular momentum beamsen_US
dc.subjectperfect optical vorticesen_US
dc.subjectspeckleen_US
dc.subjectdeep learningen_US
dc.titleSpeckle-learned convolutional neural network for the recognition of intensity degenerate orbital angular momentum modesen_US
dc.typeArticleen_US
Appears in Collections:Physics

Files in This Item:
File Description SizeFormat 
4-OE_62_036104.pdf3.19 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.