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Abstract

Attribute-Based Group Signature (ABGS) scheme is a kind of group sig-
nature scheme where the group members possessing certain privileges
(characterized by attributes) only are eligible for signing the document.
In a dynamic ABGS scheme the number of members and attributes are
not fixed or known in the setup phase. In this thesis, we address vari-
ous issues that arise in the design of efficient and secure dynamic ABGS
schemes.

There are ABGS schemes proposed in the literature which do not
provide attribute anonymity feature - the verifier should be able to verify
whether the signer possess a valid set of attributes without learning which
set of attributes he used in signing the document. We propose ABGS
schemes with attribute anonymity in the random oracle model as well as in
the standard model. These schemes also achieve constant size signature.
We then propose an enhanced ABGS scheme by adding a new feature
called attribute tracing - which reveals with what privilege the signer has
produced the signature.

A prominent issue is membership revocation which is needed when
there is a key loss, a member leaves or a member is expelled from the
group. After revocation no more group signatures be allowed to pro-
duce with that revoked member’s private key. This makes the ABGS
scheme practical as the users can join or leave the group at any time. In
Verifier-Local Revocation (VLR) schemes, only verifiers are involved in
the revocation of a member, while the signers are not. Backward unlink-
ability ensures that even after a member is revoked, the signatures pro-
duced by the member before the revocation remain anonymous. There
is an ABGS scheme with VLR feature in the literature but it neither



supports backward unlinkability nor attribute anonymity and moreover
its signature size is not constant. We propose ABGS schemes with VLR
and backward unlinkability feature in the random oracle as well as in
the standard models. Further, we add one more security feature namely,
attribute unforgeability. The attribute unforgeability is a special case of
collusion resistance security feature which means that it should be impos-
sible for any individual member to satisfy the predicate with invalid set of
attributes. Moreover, these schemes have signatures of constant size. We
prove security of all the proposed schemes under well known complexity
assumptions.
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Chapter 1

Introduction

Integrity of the data communicated over the Internet is ensured with the help of
digital signature. A digital signature is a block of data sent along with the message
that attests the origin of the message and the integrity of the message. User executes
the signing algorithm with his private key to produce a digital signature. The verifier
verifies the signature by executing the verification algorithm with the signer’s public
key. The first digital signature scheme was proposed by Rivest, Shamir and Adleman
[95] in 1978. Group Signature allows a member of a group to anonymously make a
digital signature on a message on behalf of the whole group. However, later in case of
any dispute the designated opener or the group manager can reveal the identity of the
signer. This we call as signer tracing. Chaum and van Heyst have first introduced the
group signature [43] in 1991. The group signature has applications like keycard access
to restricted areas, where it is necessary to secure the areas to only the employees of
the group without tracking individual employee’s movements. Other applications are
company authenticating pricelist, press releases, digital contracts [40], anonymous
credit cards, access control [75], e-cash [71], e-voting, e-auction [100]. The basic
security requirements of group signature scheme according to [43] are anonymity -
the group signature should not reveal the identity of the signer, and traceability - with
the help of group opening key it should be possible to extract the identity of the signer
of the group signature. Since the publication of [43], many schemes were proposed
[6; 7; 16; 28; 40; 44] and more security requirements were added viz. unlinkability,
unforgeability, collision resistance [9], exculpability [9] and framing resistance [44].



Bellare et al. [16] have given the formal definitions of the security properties of the
group signature scheme by combining all the above security requirements into two,
namely full-anonymity and full traceability. Later, Bellare et al. [20] have extended
the formal definitions to dynamic group setting, where the number of group members
are not fixed or known in the setup phase. The basic security requirements of a
group signature scheme in the dynamic group setting are anonymity, traceability and
non-frameability. Non-frameability means that even if two or more members collude
including group manager, they should not be able to generate a signature which trace
back to a non-colluded member.

Group signature schemes with membership revocation feature are proposed to
make the scheme practical [8; 31; 90]. The membership revocation feature is needed
when there is a key loss, a member leaves or a member is expelled from the group.
After revocation no more group signatures are allowed to produce with that revoked
member’s secret key. Boneh and Shacham [31] have suggested that the best method
of revocation is where a revocation messages are only sent to signature verifiers, so
that there is no need to communicate to signers. This is known as Verifier-Local
Revocation (VLR).

A well-known feature which combined with VLR is backward unlinkability. The
backward unlinkability means that even after a member is revoked the signatures
produced by the member before the revocation remain anonymous. This property
was first introduced by Song in [100]. It also allows a user to come back into the
group after having been revoked and use the same keys as before while remaining
anonymous, i.e. there is a provision to suspend a group member for a certain period.
The VLR feature is useful where signers are often offline or are computationally weak
devices (mobile devices, smart cards, etc.). Some applications of VLR schemes are
Direct Anonymous Attestation (DAA) in the context of Trusted Computing [35; 36],
Vehicular Ad-hoc NETworks (VANETs) [101] and anonymous authentication [37].
Many group signature schemes are proposed with VLR feature either in random
oracle model [31; 38; 90] or in the standard model [82].

Maji et al. [85] in 2011 have introduced an Attribute-Based Signatures (ABS),
where a signer can sign a message with any predicate that is satisfied by his attributes.
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Here, the signature reveals no information about the signer’s identity or the attributes
he holds but guarantees that the signer possesses the required attributes. There
are many applications of ABS such as attribute-based messaging, trust-negotiation,
attribute-based authentication and leaking secrets [84; 85]. Many ABS schemes in
the standard model have been proposed [53; 70; 85; 92] among which the scheme
presented by Herranz et al. [70] has constant length signature but for the threshold
predicates. For monotone predicate Escala et al. have given the ABS scheme whose
signature size is linear in terms of the size of the predicate and also it has an additional
property of revocability which revoke the anonymity of the signer. [53]. For non-
monotone predicate Okamoto et al. have proposed an ABS scheme but its signature
length is not constant [92].

Attribute-Based Group Signature (ABGS) scheme is a kind of group signature
scheme where the group members possessing certain privileges, characterized by at-
tributes, only are eligible for signing the document. In ABGS scheme, each member
is assigned a subset of attributes. Verifier accepts the signed document only if the
associated signature proves that it is signed by the member who possess sufficient at-
tributes that satisfy the given predicate. The security requirements of group signature
scheme is also applicable to ABGS scheme.

The predicate, in terms of attribute relationships (the access structures), is repre-
sented by an access tree. For example, consider the predicate Υ for the document M :
is (Institute = Univ. A) AND (TH2((Department = Biology), (Gender = Female),
(Age = 50’s)) OR (Position = Professor)), TH2 means the threshold gate with thresh-
old value 2 and OR gate implies the TH1 - a threshold gate with threshold value 1.
Attribute A1 of Alice is ((Institute := Univ. A), (Department := Biology), (Position
:= Postdoc), (Age := 30), (Gender := Female)), and attribute A2 of Bob is ((Insti-
tute := Univ. A), (Department := Mathematics), (Position := Professor), (Age :=
45), (Gender := Male)). Although their attributes, A1 and A2, are quite different,
it is clear that Υ(A1) and Υ(A2) hold, and that there are many other attributes
that satisfy Υ. Hence Alice and Bob can generate a signature on this predicate,
and according to anonymity requirement of ABGS, a signature should not reveal any
information except that the attributes of the signer satisfy the given predicate Υ.

3



1.1 Problem Description

Figure 1.1: Predicate example in Tree Structure.

Thus the ABGS scheme is a kind of group signature scheme where a user with a
set of attributes can prove anonymously whether he possess these attributes or not
[51]. The first ABGS scheme was proposed by Dalia Khader [73] in 2007. Khader has
listed attribute anonymity - the verifier should be able to verify whether the signer
has required attributes without learning which set of attributes he used for signing,
as a desirable feature to achieve. Later Khader proposed an ABGS scheme [72] with
membership revocation feature without addressing attribute anonymity. Thereafter,
Emura et al. in [52] have proposed a dynamic ABGS scheme, which is efficient when
there is a frequent change in attribute relationships, achieved non-frameability over
the Khader’s schemes but it does not address the attribute anonymity issue.

1.1 Problem Description

Attribute anonymity is as necessary as anonymity property and in certain cases it is
mandatory. Consider the case where there is a unique attribute which belongs to only
one group member along with other attributes and whenever the verifier finds that
attribute in the signature then he can conclude that the signature is signed by that
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1.1 Problem Description

particular group member who alone owns that attribute. Thus anonymity itself is
not preserved which is the basic security requirement in any group signature scheme.

Suppose Alice wants a document to be signed by an employee in Bob’s company.
Alice requires that the employee should have certain properties such as being part
of the IT staff and at least a junior manager in the cryptography team or a senior
manager in the biometrics team [73]. Now if group member with attributes IT staff,
biometric team, senior manager sign the document and if there is only one senior
manager in biometric team then the signature implies his identity. Many similar
cases exist. Thus attribute anonymity is as important as anonymity property and we
name anonymity property as a user anonymity property.

Attribute tracing feature allows a user to know with what privilege (an attribute
set) the signer has signed the document regardless of who did it. A user has choice to
query either to reveal the signer identity or the attributes of the signature. Consider
the scenario where a user has multiple ways to satisfy the predicate from his attribute
set. Then in some cases it is necessary to know with what attributes (privileges) the
user has produced the signature and this cannot be known if the scheme possess
attribute anonymity feature. We emphasize that with attribute anonymity feature
the attribute tracing feature is also needed to avoid any denial by the signer. This
scenario is illustrated with the following example.

Suppose there is a group member Carol with the attribute A3 as ((Institute :=
Univ. A), (Department := Biology), (Position := Professor), (Age := 55), (Gender
:= Male)). Obviously the Υ(A3) holds and moreover Carol can satisfy the predicate
Υ either with the attribute ((Institute := Univ. A), (Position := Professor)) or with
attribute ((Institute := Univ. A), (Department := Biology), (Age := 55)). In ABGS
scheme with attribute anonymity, it is difficult to know with what attribute set the
Carol has produced the signature and therefore there is a need for attribute tracing
feature as well. This requirement is needed for the applications like keycard access
to the restricted areas, where it may be necessary to know with what authority the
employee has visited the area. Similarly in an educational institute the Director can
also be a Professor in some department. He may sign a document as Director or as
a Professor. Thus the attribute tracing feature should also be included along with

5



1.2 Related Work

attribute anonymity feature in the ABGS scheme. Surely this will be a good feature
for many applications. There is no ABGS or ABS scheme with this feature in the
literature.

All the security requirements of group signature scheme are also applicable to
ABGS scheme. Apart from these, collusion resistance of attributes [52] is needed.
Collusion resistance of attributes means that a group of users with each possessing
a invalid set of attributes should not be able to collude with each other to pool
a valid attribute set for producing a valid group signature. This is similar to the
non-frameability feature with respect to attributes. We add two more necessary
security features namely, attribute anonymity and attribute unforgeability. Attribute
unforgeability is the special case of collusion resistance of attributes security feature
of [52], here attribute unforgeability means that it should be impossible for any
individual member to satisfy the predicate with invalid set of attributes, which is
similar to traceability feature in terms of attributes. Thus the attribute unforgeability
in ABGS scheme is as important as traceability in group signature scheme. With
these an ABGS scheme with attribute anonymity can be apply to applications of
ABS scheme with an addon feature of revealing the signer’s identity [53].

1.2 Related Work

Khader has proposed two ABGS schemes in random oracle model, one is without
revocation [73] and another is with VLR feature [72]. In both the schemes the author
makes use of Goyal’s Attribute-Based Encryption (ABE) [66] and Boneh’s group
signature [28]. Emura et al. [52] have proposed the dynamic ABGS scheme with
CCA-user anonymity in which they introduce the bottom-up approach for the con-
struction of access tree in contrast to top-down approach of Goyal et al. [66]. All
these schemes does not provide attribute anonymity and therefore no attribute trac-
ing feature were introduced. Moreover, their signature length is not constant, it is
linear in terms of the number of attributes, and are proven secure in the random or-
acle model. We note that one can design an ABGS scheme with attribute anonymity
by combining an ABS scheme [70] with any group signature scheme [34; 79; 82], but
it incurs cost of both the schemes. For example, to get an VLR-ABGS scheme in

6



1.3 Contributions

standard model one can combine Herranz et al. ABS scheme [70] with Libert et al.
VLR-GS scheme [82].

Following are some research questions that arise based on the above related work:

• Can we design an ABGS scheme with attribute anonymity and attribute tracing
feature?

• Can we devise an ABGS scheme with VLR feature and backward unlinkability
to handle the problem of key loss or a member leaves?

• Can we design a constant signature length ABGS scheme?

• Can we design an ABGS scheme which is provable secure in the standard model
with the above features?

• Is it possible to add attribute revocation feature to an ABGS scheme?

1.3 Contributions

In this thesis, we address various issues in attribute-based group signatures in dy-
namic setting where the number of members and attributes are not fixed or known
in the setup phase. The highlights of the contributions are given below:

• Introduced formal definitions of the security features viz. attribute anonymity,
attribute unforgeability and collision-resistance of attributes.

• Proposed an ABGS scheme with attribute anonymity and attribute tracing in
the random oracle model.

• Proposed a VLR-ABGS scheme with attribute anonymity and backward un-
linkability in the random oracle model.

• Proposed an ABGS scheme with attribute anonymity in the standard model
without non-frameability.

7
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• Proposed an ABGS scheme with attribute anonymity and attribute tracing in
the standard model.

• Proposed a VLR-ABGS scheme with attribute anonymity and backward un-
linkability in the standard model.

The details of each scheme is given below:

1.3.1 An ABGS Scheme with Attribute Anonymity and At-

tribute Tracing in the Random Oracle Model

There is no ABGS scheme in which signature hides the attribute details. We propose
a constant size ABGS scheme with attribute anonymity [2] by using the Emura
et al.’s [51] ABGS scheme as a base scheme. We prove that the proposed ABGS
scheme is secure under random oracle model with DL, q-SDH, DLDH and XDH
assumptions. We use the membership certificate format of [48] that makes the scheme
non-frameable (unforgeable even when the group manager colludes with the members)
and thus the proof of traceability and non-frameability are similar to one presented
in [48]. For generating the public values of the access tree we use the bottom-up
approach technique introduced by Emura et al. [51]. We make use of Lagranges
interpolation property to achieve the attribute anonymity. We consider the knowledge
of corresponding attribute certificates combinely instead of separately as in [51]. The
proposed ABGS scheme’s signature length is independent of the number of attributes.
We have also provided independent opening of the signer’s identity known as signer
tracing feature and opening of the attribute set identity from the signature known
as attribute tracing feature. Thus these tasks can be assigned to two independent
authorities and it is also useful when anyone wants to know the privileges of the signer
rather than its identity. We adapt membership revocation mechanism from [48] and
it allows group manager to revoke multiple members from the group at anytime.
We have also given a short ABGS scheme whose signature length is extremely short
irrespective of the number of attributes. Further, the verification cost of the proposed
scheme construction is constant when compared to other ABGS schemes [51; 72] in the
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random oracle model. Also the user’s secret key length is shorter, achieves attribute
anonymity, has attribute tracing feature and the signature length is constant.

1.3.2 A VLR-ABGS Scheme with Backward Unlinkability

and Attribute Anonymity in the Random Oracle Model

To the best of our knowledge there is only one ABGS scheme with VLR feature
proposed by Khader [72] but this is not dynamic and does not address backward
unlinkability feature nor attribute anonymity. Moreover, in this scheme the signature
length is linear in terms of the number of attributes and it is proven secure in the
random oracle model. We propose a VLR ABGS scheme with backward unlinkability
and attribute anonymity. We prove that the proposed scheme is secure under random
oracle model with DL, q-SDH, DLIN and KEA1 assumptions. To build our scheme
we use VLR-GS scheme of Nakanishi et al. [91] as the base scheme. We use the
membership certificate format of [48] to make the scheme non-frameable i.e. even
the group manager cannot forge signature of a trusted member. We use the bottom-
up approach technique, introduced by Emura et al. in [52], for generating the public
values of the access tree representing a predicate. We device an BuildTree-Validity
algorithm which enables to verify publicly the correctness of the generated public
values of the predicate and with this we reduce the trust on the group manager
in producing public keys of the predicates. We device an idea to achieve attribute
anonymity and we formally define the security definitions of attribute anonymity
and attribute unforgeability. The proposed VLR-ABGS scheme achieves the better
efficiency than the other schemes [52; 72] in terms of signing cost, verification cost,
secret key length and signature length. Under special case with a single attribute
the proposed scheme can be used as VLR-GS scheme. Further, when compare to
VLR-GS scheme in standard model by Libert et al. [82] we observe that our scheme
achieves additional features viz. non-frameability and has shorter signature length.
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1.3.3 ABGS Schemes with Attribute Anonymity without Non-

frameability in the Standard Model

An ABGS scheme in the standard model can be constructed with the combination
of ABS [70] and group signature scheme [34; 79] in the standard model but it incurs
cost of both the schemes. We propose a constant size ABGS scheme with attribute
anonymity and proven that it is secure in the standard model [4]. Our construction
is based on the two-level signature scheme from [34] and the technique to build the
access trees from [51]. We use non-interactive proof system technique of Groth and
Sahai [68] to generate the NIWI proofs for the relations in the group signature which
helps to preserve the user anonymity. We prove that our scheme preserves attribute
anonymity unconditionally, user anonymity in CPA attacks under subgroup decision
assumption, traceability under `-HSDH assumption and attribute unforgeability un-
der DL and KEA1 assumptions, in the standard model. In contrast to other existing
ABGS schemes [51; 72; 73] our scheme is built in the standard model with attribute
anonymity and achieves a constant size signature independent of the number of at-
tributes.

We also propose a constant size ABGS scheme with attribute anonymity in the
standard model as above but its signature length is shorter [3]. This construction
is based on the two-level signature scheme from [79] and the technique to build the
access trees from [51]. We use non-interactive proof system technique [68] to hide
the values in the group signature. We prove that our scheme preserves attribute
anonymity unconditionally, user anonymity in CPA attacks under subgroup decision
assumption, traceability under `-MOMSDH and attribute unforgeability under DL
and KEA1 assumptions, in the standard model.

We compare both the proposed schemes [3; 4] with the other ABGS schemes in
the standard model (the combination of ABS scheme with group signature scheme in
the standard model). We observe that the signing cost and verification cost is lesser.
Also the size of the signature length and user’s secret key length is reduced. Further,
note that the efficient ABS scheme in the literature supports threshold predicates
whereas our proposed schemes supports monotone predicates.
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1.3 Contributions

1.3.4 An ABGS Scheme with Attribute Anonymity and At-

tribute Tracing in the Standard Model

In the literature, there is no ABGS scheme in the standard model. However, one
can get it with the combination of ABS [70] and group signature scheme [34] in
the standard model. We propose an ABGS scheme with attribute anonymity and
attribute tracing feature with constant size signature [61]. For our construction we
use the membership certificate format of [24; 48] to achieve non-frameability and
the technique to build the access trees from [51]. We use Groth-Sahai non-interactive
proof system [68] to generate the NIWI proofs for the relations in the group signature.
We use existing constructions [24; 51] as a base to build our scheme which addresses
the said issues and proven that the construction is secure in the standard model. We
observe that in contrast to other existing ABGS schemes [51; 72; 73], our scheme
[61] is built in the standard model with attribute anonymity, achieves a constant size
signature i.e., independent of the number of attributes, and has constant verification
cost. One can also use our scheme as a group signature scheme in the standard model
by distributing single attribute to all the members. When compared to other group
signature schemes [80; 81], our scheme is efficient in terms of signature length and
user’s secret key length, but does not have revocation feature. One can also use our
ABGS scheme as a ABS scheme in the standard model with the addon feature called
signer tracing and attribute tracing. When compared to other ABS schemes [70; 85],
our scheme achieves constant signature and it is for monotone predicates.

1.3.5 A VLR-ABGS Scheme with Backward Unlinkability

and Attribute Anonymity in the Standard Model

There is no VLR-ABGS scheme in standard model in the literature. However, one
can construct such a scheme with the combination of ABS [70] and VLR-GS scheme
[82] in the standard model but it will not preserves non-frameability and incurs cost
of both the schemes. We propose a VLR-ABGS scheme with attribute anonymity
and backward unlinkability [5] which achieves constant signature size, and prove that

11



1.4 Organisation of Thesis

it is secure in the standard model. We give formal definition of VLR-ABGS scheme
with attribute anonymity and extends the security definitions to include attribute
anonymity and attribute unforgeability. For our construction we use the membership
certificate format of [24; 48] to achieve non-frameability and the technique to build
the access trees from [51]. We use Groth-Sahai non-interactive proof system [68] to
generate the NIWI and NIZK proofs under SXDH settings for the relations in the
group signature. We make use of VLR-GS scheme of [82] as a base construction. Sim-
ilar to [51] we generate the public values of the access tree representing a predicate.
We device an BuildTree-Validity algorithm which enables to verify publicly the
correctness of the generated public values of the predicate and with this we reduce the
trust on the group manager in producing public keys of the predicates. We observe
that when compared to other existing ABGS schemes [51; 72; 73], our scheme [5] is
built in the standard model with attribute anonymity, achieves a constant size signa-
ture i.e., independent of the number of attributes and has constant verification cost.
This scheme can also be used as VLR-GS scheme since it preserve non-frameability
when compared to Libert et al.’s VLR-GS scheme [82].

1.4 Organisation of Thesis

Chapter 2 gives the preliminary details regarding complexity assumptions and cryp-
tographic primitives. In Chapter 3, we describe an ABGS scheme with attribute
anonymity and attribute tracing in the random oracle model. Chapter 4 contains
a VLR-ABGS scheme with backward unlinkability and attribute anonymity in the
random oracle model. In Chapter 5, first we describe an ABGS scheme with attribute
anonymity. Next we describe another ABGS scheme with attribute anonymity but
having shorter signature length. Both the schemes are in standard model. Chapter
6 describes an ABGS scheme with attribute anonymity and attribute tracing in the
standard model. Chapter 7 contains the ABGS scheme with VLR feature in the
standard model. We conclude the thesis in Chapter 8.

12



Chapter 2

Preliminaries

In this chapter, we explain the complexity assumptions and cryptographic primitives
used in the construction of the proposed schemes.

2.1 Groups

A group is set G of elements with operation * defined on it. A group has the following
properties:

• If a, b ∈ G then a ∗ b ∈ G.

• The operation is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c).

• There is an identity element I such that I ∗ a = a ∗ I = a for all a ∈ G.

• For every a ∈ G there exists an inverse, denoted a−1, such that a ∗ a−1 =
a−1 ∗ a = I.

If ∗ is commutative i.e., a∗ b = b∗a, then the group is called abelian or commutative.
The number of elements of a group, |G|, is called its order. A group is cyclic group
if there exists an element a ∈ G such that every element b ∈ G can be written in the
form ax for some x ∈ Z. Then the element a is called the generator of G.



2.2 Bilinear Pairings

2.2 Bilinear Pairings

Let k be the security parameter. Let G1,G2 and GT be cyclic groups of prime order
p, where |p| = k. Let g1 and g2 be generators of G1 and G2, respectively.

Definition 2.2.1 (Bilinear Map) A bilinear map or pairing e is an efficiently com-
putable function, e : G1 ×G2 → GT with the following properties.

• Bilinearity : ∀u, u′ ∈ G1 and ∀v, v′ ∈ G2, e(uu′, v) = e(u, v)e(u′, v) and
e(u, vv′) = e(u, v)e(u, v′).

• Non-degeneracy: e(g1, g2) 6= 1GT (1GT is the G′T s identity element).

We assume the existence of an efficient randomized procedure G that, on input the se-
curity parameter k, outputs a bilinear instance G= 〈p,G1,G2,GT , g1, g2, e〉

$← G(k),
such that |p| = k. In practice, bilinear instances may be realized on certain alge-
braic varieties or curves over finite fields [14; 21; 58], by computing Weil, Tate, or a
related pairing using Miller’s efficient algorithm [87] or variants [13; 83]. Additional
information can be found in [22; 45].

There are 3 types of bilinear maps depending on whether the group isomorphism
ψ : G2 → G1 and its inverse ψ−1 : G1 → G2 are efficiently computable. Using the
terminology from [59], we say that 〈G1,G2〉 is of:
“type 1” - if both ψ and ψ−1 are efficiently computable (this includes the case where
G1 = G2);
“type 2” - if ψ is efficiently computable, but not ψ−1;
“type 3” - if neither ψ nor ψ−1 is efficiently computable.

2.3 Complexity Assumptions

Let k be the security parameter. Unless otherwise indicated let (p,G1,G2,GT , g1, g2, e)
be a bilinear instance of “type 2” as defined above. Let x ∈R X denote randomly
picking an element x from X.
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2.3 Complexity Assumptions

Definition 2.3.1 (Discrete Logarithm (DL) Assumption) For all Probabilistic
Polynomial Time (PPT ) algorithm A, the probability

Pr[A(g, gξ) = ξ]

is negligible function in k, where g ∈R G1 and ξ ∈R Z∗p.

Definition 2.3.2 (Decision Diffie-Hellman (DDH) Assumption) For all PPT
algorithm A, the probability

|Pr[A(u, h, ua′ , ha′) = 0]− Pr[A(u, h, ua′ , hb′) = 0]|

is negligible function in k, where u, h ∈R G1 and a′, b′ ∈R Z∗p.

Definition 2.3.3 (eXternal Diffie-Hellman (XDH) Assumption [28]) The XDH
assumption states that the DDH assumption holds in G1 even if DDH assumption does
not hold in G2.

Definition 2.3.4 (Symmetric eXternal Diffie-Hellman (SXDH) Assumption
[28]) The SXDH assumption states that the DDH assumption holds in both G1 and
G2. Here the bilinear instance is of “type 3”.

Definition 2.3.5 (q-Strong Diffie-Hellman (q-SDH) Assumption [27]) For all
PPT algorithm A, the probability

Pr[A(g, g′, g′1 = (g′)ξ, ..., g′q = (g′)ξq) = (g1/(ξ+x), x) ∧ x ∈R Zp]

is negligible, where g′ ∈R G2, g = ψ(g′) and ξ ∈R Z∗p.

Definition 2.3.6 (Subgroup Decision Assumption [29]) Let G ′ be a random-
ized procedure which on input a security parameter k outputs a tuple 〈p, q,G,GT , e〉

$←

15



2.3 Complexity Assumptions

G ′(k), such that |p| = |q| = k, G,GT are groups of order n = pq and e : G×G→ GT is
a bilinear map. Then Subgroup Decision Assumption says that for all PPT algorithm
A, the probability

∣∣∣∣∣Pr
[
A(n,G,GT , e, w) = 1 : (p, q,G,GT , e)←G ′(k)

n = pq, w ← G

]

− Pr
[
A(n,G,GT , e, w

p) = 1 : (p, q,G,GT , e)←G ′(k)
n = pq, w ← G

]∣∣∣∣∣
is negligible function in k.

Definition 2.3.7 (`-Hidden Strong Diffie Hellman Assumption (`-HSDH) [34])
For all PPT algorithm A, the probability

Pr[A(g̃, u, g̃ω, g̃
1

ω+c1 , g̃c1 , uc1 , ..., g̃
1

ω+c`−1 , g̃c`−1 , uc`−1) = (g̃
1

ω+c , g̃c, uc) ∧ c 6= ci,

for i = 1, ..., `− 1]

is negligible function in k, where g̃, u are the generators of prime order group Gp,
ω ∈R Z∗p and c, ci ∈R Zp for i = 1, ..., `− 1.

Definition 2.3.8 (`-Modified One More Strong Diffie-Hellman Assumption
(`-MOMSDH) [79]) Let Gp be the prime order group. Let p and q be primes, and
n = pq. Then the `-MOMSDH assumption says that for all PPT algorithm A, the
probability

Pr[A(v, vx, u, c1, v
1

x+c1 , c2, v
1

x+c2 , ..., c`′ , v
1

x+c` ) = (vc, v
1
x+c , u

1
c+m ,m) ∧ c 6= ci,

for i = 1, ..., `]

is negligible function in k, where u, v are the generators of Gp, x ∈ Z∗p, ci ∈ Zn and
m ∈ Zn.

Definition 2.3.9 (`-Decisional Diffie-Hellman Inverse (`-DDHI) in G1) For all
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2.3 Complexity Assumptions

PPT algorithm A, the advantage of adversary A

|Pr[A(g, gy, ..., gy` , g1/y) = 0]− Pr[A(g, gy, ..., gy` , D) = 0]|

is negligible function in k, where g is the generator of G1, D ∈R G1 and y ∈R Z∗p.

Definition 2.3.10 (Decisional Tripartite Diffie-Hellman (DTDH) Assump-
tion [78]) For all PPT algorithm A, the advantage of adversary A

|Pr[A(Z1 = gz11 , Z
′
1 = gz12 , Z2 = gz21 , Z

′
2 = gz22 , Z3 = gz31 , η = gz1z2z32 ) = 0]

− Pr[A(Z1, Z
′
1, Z2, Z

′
2, Z3, g

u
2 ) = 0]|

is negligible function in k, where z1, z2, z3, u ∈R Z∗p.

This assumption perfectly holds similar to [78] under generic group model, as it is
not having efficiently computable isomorphism, ψ : G2 → G1.

Definition 2.3.11 (Decisional Bilinear Diffie-Hellman (D-BDH) Assump-
tion [32]) For all PPT algorithm A, the advantage of adversary A

|Pr[A(g1, g
γ
1 , g2, g

α
2 , g

β
2 , e(g1, g2)αβγ) = 0]− Pr[A(g1, g

γ
1 , g2, g

α
2 , g

β
2 , v) = 0]|

is negligible function in k, where v ∈ GT and α, β, γ ∈R Z∗p.

Definition 2.3.12 (q-Hybrid Hidden Strong Diffie-Hellman (q-HHSDH) As-
sumption in G1,G2 [24]) For all PPT algorithm A, the probability

Pr[A(g1, h, g2, g
γ
2 , (gxi1 , g

xi
2 , yi, (hgyi1 )1/(γ+xi))i∈[1,q]) = (gx1 , gx2 , g

y
1 , g

y
2 , (hgy1)1/(γ+x))

∧(x, y) 6= (xi, yi)i∈[1,q]]

is negligible, where h is the generator of G1 and γ, x, y, xi, yi ∈ Z∗p for i = 1, ..., q.
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2.4 Cryptographic Primitives

Definition 2.3.13 (Advanced Computational Diffie-Hellman (CDH+) As-
sumption [23]) For all PPT algorithm A, the probability

Pr[A(g1, g2, g
a
1 , g

a
2 , g

b
1) = gab1 ]

is negligible function in k, where a, b ∈R Zp.

Definition 2.3.14 (Decision Linear (DLIN) Assumption [28]) For all PPT
algorithm A, the advantage of adversary A

|Pr[A(u, v, h, ua, vb, ha+b) = 0]− Pr[A(u, v, h, ua, vb, hc) = 0]|

is negligible function in k, where u, v, h ∈R G2 and a, b, c ∈R Z∗p.

Definition 2.3.15 (Knowledge of Exponent Assumption - 1 (KEA1) [17; 69])
For any adversary A that takes an input p, g, ga where g is a generator of a cyclic
group G1 and returns a pair of elements g′, g′a from G1, there exists an extractor Ā,
which given the same inputs as A returns ξ such that gξ = g′.

2.4 Cryptographic Primitives

In this section, we describe the cryptographic primitives which are used in the con-
struction of the proposed schemes.

2.4.1 Digital Signature

A digital signature is a block of data sent along with the message that attests to
the origin of the message and to the integrity of the message. User produces the
signature on the message with his secret key and anyone can verify the signature
using the corresponding public key. It is required that it should be infeasible to
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2.4 Cryptographic Primitives

produce a signature for any message without the knowledge of signer’s secret key.
The first digital signature scheme was proposed by Rivest, Shamir and Adleman [95]
in 1978.

Adversary attacks the digital signature scheme by producing a signature of a
message without knowing the secret key. Following are some attacks on the digital
signatures:[64]:

• Key-Only Attack: Adversary knows only the public key of the signer and there-
fore she can only check the validity of signatures of messages given to him.

• Known Signature Attack: Adversary knows public key and has seen message-
signature pairs chosen and produced by the legal signer.

• Chosen Message Attack: The adversary is allowed to ask the signer to sign
messages of her choice.

After providing one of the above mentioned facility the adversary has several
levels of success in forging a signature.

• Existential Forgery: The adversary succeeds in forging the signature of a mes-
sage, not necessarily of her choice.

• Selective Forgery: The adversary succeeds in forging the signature of some
message of her choice.

• Universal Forgery: The adversary is able to forge the signature of any message,
even though she is unable find the secret key.

• Total Break: The adversary can compute the signer’s secret key.

Clearly, the best digital signature scheme is that which is secure against existential
forgery under chosen message attack.
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2.4.2 Public Key Encryption

In public key encryption scheme, a secret message is sent to the receiver by encrypting
it with the public key of the receiver and the encrypted message can only be decrypt
by the corresponding secret key which will be with receiver. A public key encryption
scheme is secure if it satisfies polynomial indistinguishability - given two plain text
messages and one cipher text which is the random encryption of one of the plain text
it should be impossible to relate the cipher text with its plain text without having
the knowledge of secret key, known as polynomial indistinguishability [64]. There
are different types of attacks on public key encryption scheme viz. Chosen-Plaintext
Attack (CPA), Chosen-Ciphertext Attack (CCA) and Adaptive Chosen-Ciphertext
Attack (CCA2) [86].

In CPA, adversary knows public key, has access to encryption oracle (through
which she can get encryption of messages of her choice) and allowed to choose two
challenge messages, after which she is given a challenge ciphertext (which is the
encryption of one of the challenge messages). We say public key encryption scheme
is secure under CPA if it is hard for an adversary to relate the challenge ciphertext
to its plaintext.

In CCA, in addition to the above facilities an adversary is given access to decryp-
tion oracle (through which she can get the decryption of ciphertext of her choice)
before the challenge ciphertext is produced. As in case of CPA, we say public key
encryption scheme is secure under CCA.

In CCA2, adversary has access to decryption oracle even after the challenge
ciphertext is given to her, but with the restriction that she cannot query challenge
ciphertext to the decryption oracle. As in case of CPA, we say that the public key
encryption scheme is CCA2 secure.

2.4.3 Interactive Proof System

Traditionally, a proof of a (target-) statement is a sequence of statements. When
interpreted, this sequence eventually leads to the validity of the target-statement.
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Anyone who is able to interpret the sequence can verify the proof. Such a proof is a
fixed object that, once obtained, can be passed on to other people to convince them
of the validity of the statement. For instance, to prove that a graph is Hamiltonian
it is suffices to exhibit a Hamiltonian cycle in it. And once that cycle is generated
by a prover then anyone who gets it can pass onto other verifier as a prover to prove
the same.

In contrast, an interactive proof of a statement is an interactive protocol between
two entities, a prover P and a verifier V . After the execution of the protocol, the
verifier is convinced of the validity of the statement. Interactive proof systems were
proposed by Babai et al. [11; 12] and by Goldwasser et at. [65] who also introduced
the notion of zero-knowledge. Zero-knowledge proofs are those interactive proofs that
convey no additional information other than the correctness of the target-statement.
Moreover, the proof system is considered to be zero-knowledge if whatever the verifier
can compute while interacting with the prover, the same can be computed by itself
without any such interaction.

2.4.3.1 Interactive Proofs of Knowledge

Let R ⊆ {0, 1}∗×{0, 1}∗ be a binary relation. We say that R is polynomially bounded
if there exists a polynomial p such that |y| <= p(|x|) for all (x, y) ∈ R. We let
LR = {x : ∃y such that (x, y) ∈ R} the language defined by R. The definition of
interactive proof of knowledge [15] is as below:

Definition 2.4.1 Let R ⊆ {0, 1}∗×{0, 1}∗ be a polynomially bounded binary relation
and let LR be the language defined by R. An interactive proof of knowledge is a
protocol (P,V ), an interactive turning machine, that has the following two properties:

• Completeness: If (x,w) ∈ R then [V,P(w)](x) = accept.

• Validity: There exists a probabilistic expected polynomial-time machine K (knowl-
edge extractor) such that for every P̃ , for all polynomials p(.) and all sufficiently
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large x ∈ LR,

Prob((x,K P̃ (x)) ∈ R) ≥ Prob([V, P̃ ](x) = accept)− 1
p(|x|) .

The probabilities are taken over all random choices of V, P, P̃ and K respectively.

Here (x,w) ∈ R means w is a witness for x, P̃ denotes any prover who does not know
the witness, K P̃ (x) means that the knowledge extractor is given oracle access to P̃ on
input x.

2.4.3.2 Indistinguishability of Families of Random Variables

We define the indistinguishability of families of random variables which is needed in
subsequent sections.

Definition 2.4.2 Let L ⊂ {0, 1}∗ be a language and let A = {A(x)}x∈L and B =
{B(x)}x∈L be two families of random variables. We say that the families A and B
are

• perfectly indistinguishable if for all x ∈ L the random variables A(x) and B(x)
are identically distributed.

• statistically indistinguishable if their statistical difference is negligible or more
technically, if for every polynomial p(.) and for all sufficiently large x ∈ L it
holds that

∑
α∈{0,1}∗

|Prob(A(x) = α)− Prob(B(x) = α)| < 1
p(|x|) .

• computationally indistinguishable if no efficient algorithm exists that can distin-
guish them, i.e., for every probabilistic polynomial-time algorithm D, for every
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polynomial p(.) and for all sufficiently large x ∈ L it holds that

|Prob(D(x,A(x)) = 1)− Prob(D(x,B(x)) = 1)| < 1
p(|x|) .

2.4.3.3 Zero-knowledge Protocols

According to the above defined three kinds of indistinguishability, there are three
different degrees of zero-knowledgeness of an interactive protocol.

Definition 2.4.3 [65] An interactive protocol (P,V) is said to be perfect/statistical/
computational zero-knowledge, if for every probabilistic polynomial-time verifier Ṽ

there exists a probabilistic expected polynomial-time simulator SṼ so that the two
families

{[Ṽ , P ](x)}x∈L and {SṼ (x)}x∈L

are perfectly/statistically/computationally indistinguishable.

When a protocol is simply said to be “zero-knowledge”, it means that it is com-
putational zero-knowledge. The parallel composition of zero-knowledge protocols is
in general no longer zero-knowledge, sequential compositions can be shown to be
zero-knowledge, when the definition is slightly modified [63], i.e., the verifier and
the simulator are allowed an extra input z (which stores the history of interaction)
the size of which is polynomially bounded in the size of x. This definition is called
auxiliary input zero knowledge.

To prove that a protocol is zero-knowledge according to Definition 2.4.3, one
would have to construct a simulator for every possible verifier. In practice, this is
often done by constructing a single simulator that works for all verifiers. To match this
situation, a third definition of zero-knowledge was proposed, black-box zero-knowledge.
Here, it is required that there exists a single simulator that works for all verifiers.
This single simulator is allowed to use a verifier as a black-box, i.e., the simulator
can choose the input and the coin tosses of the verifier. It has been shown [63] that
all protocols that are black-box zero-knowledge are a subset of all protocols that are
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auxiliary-input zero-knowledge, which in turn are a proper subset of the protocols
that are zero-knowledge according to Definition 2.4.3.

2.4.4 Signature Proof of Knowledge

Signature proof of knowledge (SPK) is basically a signature which proves the knowl-
edge of the secret keys (which also obeys some relation). It is obtained by converting
zero knowledge proofs of knowledge (PK) into a signature scheme by replacing the
verifier by a hash function. This approach of conversion is introduced in [55] and
formalised by Bellare and Rogaway in [18], called as Random Oracle Model where
the hash function is replaced by an oracle. Camenisch et al. [40] gave the technique
for constructing a signature of the knowledge of a discrete logarithm which can be
used to build a signature that involves more complex statements. We denote it as,
SPK{(x1, ..., xn) : R(x1, ..., xn)}(M), which means a signature on message M by a
signer who knows secret values x1, ..., xn satisfying a relation R(x1, ..., xn). As an
example we define the signature of the knowledge of the discrete logarithm of y to
the base g. This is basically the Schnorr signature scheme [97].

Definition 2.4.4 (SPK {(x) : y = gx}(M)) A pair (c, s) ∈ {0, 1}` × Zp satisfying
c = H(S||R||M) with S = g||y and R = gsyc, is an SPK of the discrete logarithm of
a group element y to the base g of the message M ∈ {0, 1}∗.

Such a signature can be computed if the secret value x = loggy is known, by choosing
a random integer r ∈ Zp and computing R = gr and then c = H(g||y||R||M) and
s = r − cx mod p. Here c is challenge, s is response and R is called commitment,

2.4.5 Commitment Schemes

Commitment scheme is a basic ingredient in many cryptographic protocols that are
used to enable a party to commit itself to a value while keeping it secret. In a latter
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stage, the commitment is “opened” and it is guaranteed that the “opening” can yield
only a single value determined in the commit phase. Commitment schemes are the
digital analogue of non-transparent sealed envelopes. By keeping the note in such an
envelope a party commits itself to the contents of the note while keeping it secret.

A commitment scheme is an efficient two-phase two-party protocol. The first
phase is called the commit phase and the second phase is called the reveal phase, by
which one party, called the sender, can commit itself to a value so that the following
requirements hold [62].

(i) Secrecy (or hiding): At the end of the first phase, the other party, called the
receiver, does not gain any knowledge of the sender’s value. This requirement
has to be satisfied even if the receiver tries to cheat.

(ii) Unambiguity (or binding): Given the transcript of the interaction in the first
phase, there exists at most one value that the receiver can later (i.e., in the
second phase) accept as a legal “opening” of the commitment. This requirement
has to be satisfied even if the sender tries to cheat.

It is required that the commit phase yields no knowledge (at least no knowledge of
the sender’s value) to the receiver, whereas the commit phase does “bind” the sender
to a unique value (which is accepted by the receiver in the reveal phase).

2.4.5.1 Single Bit Commitment - Construction Based on any One-Way
Permutation

Let f : {0, 1}∗ → {0, 1}∗ be a function, and let b : {0, 1}∗ → {0, 1} be a predicate.

(i) Commit Phase: To commit to value v ∈ {0, 1} (let k be a security parameter),
the sender uniformly selects s ∈ {0, 1}k and sends the pair (f(s), b(s) ⊕ v) to
the receiver.
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(ii) Reveal phase: In the reveal phase, the sender reveals the bit v and the string
s used in the commit phase. The receiver accepts the value v if f(s) = α and
b(s)⊕ v = σ, where (α, σ) is the receiver’s view of the commit phase.

Commitment schemes are designed using Common Reference String (CRS) model
[1]. Informally, the CRS model assumes that the parties executing the protocol have
access to a common string that is guaranteed to be taken from some pre-defined
distribution. A commitment is extractable if there exists an efficient algorithm, called
an extractor, capable of generating a new set of common parameters (i.e., a new
CRS) whose distribution is equivalent to that of an honestly generated CRS and
such that it can extract the committed value x from any commitment C. This
is possible for computationally hiding commitments, such as encryption schemes:
the decryption is the extraction trapdoor. We called such commitment schemes as
extractable commitment schemes (Ext-Commit).

A commitment is equivocable if there exists an efficient algorithm, called an equiv-
ocator, capable of generating a new CRS and a commitment with similar distribution
to those of the actual scheme such that the commitment can be opened in different
ways. This is possible for computationally binding commitments only, such as the
Pedersen commitment: the knowledge of the discrete logarithm is a trapdoor that
allows the opening of a commitment in more than one way.

2.4.6 Non-Interactive Proof System

Non-Interactive Zero-Knowledge (NIZK) proofs were introduced by Blum et al. [25].
Their paper and subsequent work [47; 54; 74; 96] shows that NIZK proofs exist
for all of NP. But, unfortunately all these NIZK proofs are very inefficient. Later,
Groth and Sahai [68] have developed an efficient techniques for proving statements
involving bilinear maps. We call it as Groth-Sahai proof system. They first give an
efficient non-interactive witness-indistinguishable (NIWI) proofs for the simultaneous
satisfiability of a set of equations involving bilinear groups. Then they show how to,
under certain conditions, transform these into zero-knowledge proof systems.
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2.4.6.1 Witness-indistinguishability and Zero-Knowledge

A statement may have many possible witnesses. A non-interactive proof is witness-
indistinguishable if the proof does not reveal which of those witnesses the prover
has used. The standard definition of witness-indistinguishability requires that proofs
using different witnesses for the same statement are computationally indistinguish-
able. In contrast, zero-knowledge proof is a proof that shows the statement is true,
but does not reveal anything else. Traditionally, zero-knowledge proof is defined by
having a simulator (S1, S2) that can simulate respectively the Common Reference
String (CRS) and a simulation trapdoor τ , and the second part of the simulation
uses the simulation trapdoor to simulate proofs for statements without knowing the
corresponding witnesses. The standard definition of zero-knowledge then says that
real proofs on a real CRS should be computationally indistinguishable from simulated
proofs on a simulated CRS [68].

2.4.7 Groth-Sahai Non-interactive Proof Systems under Sub-

group Decision Assumption

Groth and Sahai gave an instantiation of their proof system under Subgroup Decision
assumption, Symmetric External Diffie-Hellman (SXDH) assumption and Decisional
Linear (DLIN) assumption. Here we describe the Groth-Sahai proof system under
Subgroup Decision assumption.

In [68], Groth and Sahai have given a non-interactive witness-indistinguishable
(NIWI) proof system for the pairing product equation of the form,

n̂∏
i=1

e(Ai,Xi)
n̂∏
i=1

n̂∏
j=1

e(Xi,Xj)γij = tT (2.1)

for the variables X1, ...,Xn̂ ∈ G and constants tT ∈ GT ,A1, ...,An̂ ∈ G, γij ∈ Zn, for
i, j ∈ {1, ..., n̂}.
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The prover in a Groth-Sahai proof system knows secret values {Xi}n̂i=1 and wants
to prove that these values satisfy the above pairing product equation. In the instantia-
tion based on the Subgroup Decision Assumption under the setup (n,G,GT , e, g), (p, q)
where n = pq, p and q are primes, the common reference string (CRS) is h where for
soundness setting h = grp and for witness-indistinguishable setting h = gr, for ran-
dom r ∈ Z∗n. The commitments to the group elements X1, ...,Xn̂ ∈ G are made as
follows

Ci = Xihti

for randomly chosen
→
t∈ Zn̂n.

The proof for the pairing product equation (2.1) is

π =
n̂∏
i=1
Atii

n̂∏
i=1

n̂∏
j=1
X ti(γij+γji)
j

n̂∏
i=1

n̂∏
j=1

htitjγij

Upon receiving ~C = {C1, ..., Cn̂}, {π`}Np`=1 where Np is the total number of pairing
product equations, for each pairing product equation with proof π` the verifier checks
that

n̂∏
i=1

e(Ai, Ci)
n̂∏
i=1

n̂∏
j=1

e(Ci, Cj)γij ?= tT e(h, π`).

In [68], Groth and Sahai have shown that the above NIWI proof has perfect complete-
ness, perfect Lco-soundness and composable witness-indistinguishability. compos-
able witness-indistinguishability is the stronger notion of witness-indistinguishability,
which means that the adversary cannot distinguish a real CRS from a simulated
CRS. Here, the subgroup decision assumption implies that soundness and witness-
indistinguishability CRS’s are indistinguishable.

The size of the proof is n̂ + Np group elements in G, where n̂ is the number of
variables in ~X = {X1, ...,Xn̂} and Np is the total number of pairing product equations.

2.4.7.1 Groth-Sahai Non-interactive Proof Systems under SXDH settings

Here we show under SXDH settings how Groth-Sahai proof system [68] commit the
signature elements. The commitment key consists of ~u = ( ~u1, ~u2 = ~u1

t) ∈ G2×2
1
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and ~v = (~v1, ~v2 = ~v1
t′) ∈ G2×2

2 , where ~u1 = (g1, g
α
1 ) and ~v1 = (g2, g

α′
2 ) for some

g1 ∈ G1, g2 ∈ G2 and t, t′, α, α′ ∈ Z∗p. There exist two initializations of the parameters
either in the perfectly binding setting, or in the perfectly hiding one. And these
initializations are indistinguishable under SXDH assumption which will be used in the
simulation. We note that for equal dimension vectors or matrices A and B containing
group elements, A � B denotes their entry-wise product. We note C(X) = (1, X) �
~u1
r� ~u2

s ∈ G2
1 is a commitment of a group element X ∈ G1 with a random r, s ∈ Z∗p.

Similarly a group element of G2 is committed using ~v1 and ~v2 with r′, s′ ∈R Z∗p. An
element is always committed in the group (G1 or G2) it belongs to. If one knows
the commitment key in the perfectly binding setting, one can extract the value of X,
else it is perfectly hidden. We note C(1)(x) = ~ϕx � ~ur1 ∈ G2

1 is a commitment of a
scalar embedded in G1 as gx1 , where ~ϕ = ~u2 � (1, g1) and r ∈R Z∗p. If one knows the
commitment key in the perfectly binding setting, one can extract the value of gx1 else
x is perfectly hidden. The same things can be done in G2, if we want to commit a
scalar, embedding it in G2, we denote it as C(2)(x) and ~ϕ′ = ~v2 � (1, g2).

Using Groth-Sahai technique one can have Non-interactive Witness-Indistinguishable
(NIWI) proofs for the committed variables that satisfy the set of equations (either
pairing-product equation or multi-exponentiation equation or quadratic equation).
The whole proof consists of one commitment per variable and two proof elements
Θ = (~π, ~θ) (each contains a constant number of group elements) per equation.

For the variables X1, ...,Xm ∈ G1,Y1, ...,Yn ∈ G2, x1, ..., xm′ , y1, ..., yn′ ∈ Zp.

• The pairing-product equations are of the form

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xi,Bi)
n∏
i=1

m∏
j=1

e(Xi,Yj)γij = tT , (2.2)

for the constants Ai ∈ G1,Bi ∈ G2, tT ∈ GT and γij ∈ Zp. The proof cost 4
elements in each group. Linear pairing-product equation (when γij = 0 for all
i, j) proof cost 2 elements of respective group.
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• The multi-exponentiation equations in G1 are of the form

n′∏
i=1
Ayii .

m∏
i=1
X bi
i .

n′∏
i=1

m∏
i=1
X yiγij
i = T1, (2.3)

for the constants Ai, T1 ∈ G1 and bi, γijZp. The proof cost 2 elements in G1 and
4 elements in G2. Linear multi-exponentiation equations of the type ∏n′

i=1A
yi
i =

T1 (resp. ∏m
i=1X

bi
i = T1) demand 1 element in G1 (resp. 2 elements in Zp) .

• Similarly for multi-exponentiation equations in G2.

• And the quadratic equations in Zp are of the form

n′∑
i=1

aiyi +
m′∑
i=1

xibi +
m′∑
i=1

n′∑
j=1

γijxiyi = t mod p, (2.4)

for the constants ai, bi, γij, t ∈ Zp. The proof requires 2 elements in each group.
Linear equation proof requires 1 element in Zp.

The details on construction of proofs is given in [68]. Multi-exponentiation equation
allows zero-knowledge proofs with no additional cost. A trapdoor in the simulated
Common Reference String (as in WI setting) makes it possible to simulate the proofs
without knowing witness and the distribution of simulated proofs are indistinguish-
able to real proofs.

But for the pairing-product equations it is not known to always have zero-
knowledge proofs. To prove the equations of the form (2.2) in Non-interactive Zero-
knowledge (NIZK) needs auxiliary variables and the proof size is not independent
of the number of variables. If tT = 1GT in equation (2.2), the NIZK simulator can
always use Xi = 1G1 ,Yi = 1G2 as witnesses. If tT = ∏n′

j=1 e(gj, hj) for known group
elements g1, ..., gn′ ∈ G1, h1, ..., hn′ ∈ G2, the simulator can prove that

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xi,Bi)
n∏
i=1

m∏
j=1

e(Xi,Yj)γij =
n′∏
j=1

e(gj,Zj), (2.5)

and that introduced variables Zj satisfy the linear equations Zj = hj for j ∈
{1, ..., n′}. Since NIZK proofs exist for linear equations and the proof of equation
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(2.5) can be simulated using witnesses Xi = 1G1 ,Yi = Zi = 1G2 . When tT is an
arbitrary element of GT , the NIZK proofs for pairing-product equations are currently
not known to exist.

2.4.8 Group Signatures

A Group Signature scheme allows a member of a group to sign anonymously on
behalf of the group. However, later in case of any dispute the designated opener or
the group manager reveals the identity of the signer. This is called signer tracing
feature. Chaum and van Heyst first introduced the group signature [43] in 1991.
Bellare et al. [16] in 2003 have formalized the definitions of the group signature
scheme and categorized the security requirements into two core requirements, namely
Full-Anonymity and Full Traceability.

Full-Anonymity: Adversary should have negligible probability in determining un-
der which of the two identities (which she knows) the target signature was produced.
Additionally the adversary may corrupt all the members of group, including the sus-
pected signers. Also, the adversary has privilege to query to get the signer’s identity
of the signatures (an analogy to the definition of the encryption scheme against CCA)
of her choice (except the challenge signature).

Full-Traceability: A group of colluding members should not be able to produce
a valid group signature such that the opening algorithm fails to trace a member
belonging to a colluding group, and this should hold even if the colluding group
knows the opening key, which is used to open the signatures.

Bellare et al. [20] have extended the definitions to dynamic group settings, where
the number of group members are not fixed or known in the setup phase, i.e. user
can join the group at any time. The basic security requirements of group signature
scheme in dynamic group settings are anonymity, traceability and non-frameability
[20].

Anonymity means that the signature should not reveal the identity of the signer.
Traceability means that the valid signature should always trace back to the valid

31



2.4 Cryptographic Primitives

Table 2.1: Notations for group signature scheme

Symbol Meaning
k security parameter
params system parameter
GM group manager
Ui user i
gpk group public key used to verify the validity of the group signature
ik issuing key used for issuing private keys to the users
okuser opening key used for opening the signer’s identity from the group signature
(upki, uski) verification/signing key of a signature scheme DSig for user Ui (i = 1, 2, ..., n),

n = O(k)
ski group private key for the member Ui

~reg registration table maintained by the group manager where the current group members
information are stored

φ null set

identity with the help of the group opening key. Non-frameability means that even if
two or more members including group manager collude, they should not be able to
generate a signature which trace back to a non-colluded member.

The formal definition of group signature scheme under dynamic group setting is
as follows. We assume that each user Ui owns a pair (uski, upki) of secret and public
keys certified by the PKI.

Definition 2.4.5 (Group Signature) An group signature scheme consists of fol-
lowing algorithms. Unless otherwise mentioned, algorithms are randomized.

• params ← Setup(1k) : This algorithm takes the security parameter k as an
input and returns the system parameter params.

• (gpk, ik, okuser) ← KeyGen(params) : This algorithm takes the system parame-
ter params, and returns a group public key gpk, an issuing key ik and a user
opening key okuser.

• ski ← Join(〈params, gpk, ik, upki,Ai〉 , 〈params, gpk, upki, uski〉) : This is an
interactive group joining protocol between a user Ui (using his secret key uski)
and the GM (using the issuing key ik). In the protocol Ui ends with a member
private key ski and GM ends with an updated registration table ~reg.
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• σ ← Sign(params, gpk, ski,M) : This algorithm takes params, gpk, ski and a
message M as an input and returns a group signature σ on M .

• 0/1 ← Verify(params, gpk,M, σ) : This is a deterministic algorithm verifies
the validity of the group signature σ against gpk and returns 1 (a valid signature)
otherwise 0(invalid signature).

• i/⊥ ← Open(params, gpk, okuser, σ,M, ~reg): This is a deterministic algorithm
which takes as input params, gpk, okuser,σ,M and ~reg, and returns either i ≥ 1
or ⊥. If i, specifies that the group member with identity i has produced σ, and
if ⊥, then no group member produced σ on M .

Entities: There are several entities in group signature scheme:

• The group manager GM, also known as Issuer, has issuing key ik using which he
enrolls a user Ui into the group by issuing a user’s private key ski, after running
interactive Join algorithm with the user.

• The Opener has user opening key okuser by which he is able to open the signature
and reveal the user identity through OpenUser algorithm.

• Group members or signers who are having their private keys ski. They run
Sign algorithm to produce a group signature on a document M .

• Outsider or verifier who can only verify the group signature using the group
public key gpk.

Remark Setup and KeyGen algorithms are run by some trusted party and he will
distribute the appropriate keys to the concerned entities.

Definition 2.4.6 (Correctness) Correctness requires that for all params← Setup(1k),
all (gpk, ik, okuser)← KeyGen(params), ski ← Join(〈params, gpk, ik, upki〉 , 〈params,
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gpk, upki, uski〉) and all M ∈ {0, 1}∗,
if Ui ∈ ~reg and σ = Sign(params, gpk, ski,M) then

1← Verify(params, gpk,M)
∧
i← OpenUser(params, gpk, okuser, σ,M, ~reg)

holds.

The adversary can run the following versions of Join protocol (similar to [24]):

• Either through the joinP-oracle (passive join), which means that it creates an
honest user for whom it does not know the private keys: the index i is added
to the HU (Honest Users) list;

• or through the joinA-oracle (active join), which means that it interacts with the
group manager to create a user under its control: the index i is added to the
CU (Corrupted Users) list.

Note that when the adversary is given the issuing key (the group manager is cor-
rupted) then the adversary does not need access to the joinA oracle since it can
simulate it by itself, to create corrupted users (that are not necessarily in CU). After
a user is created, the adversary plays the role of corrupted users, and can interact
with honest users, granted some oracles:

• corrupt(i), if i ∈ HU, provides the specific private key of this user. The adversary
can now control it during the whole simulation. Therefore i is moved from HU
to CU;

• sign(i,M), if i ∈ HU, plays as the honest user i to generate a signature on
message M;

• openusr(M,σ), if (M,σ) is valid, returns the identity i of the signer.

Definition 2.4.7 (User anonymity) We say that the group signature scheme pre-
serves user anonymity if for all PPT A, the probability that A wins the following
game is negligible.
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• Setup: The challenger C runs (gpk, ik, okuser) ← KeyGen(params). C gives
gpk, ik to A.

• Phase1 : A is given access to the oracles: joinP, corrupt, sign and openusr.

• Challenge : A outputs M∗ and an uncorrupted users Ui0 ,Ui1 (i.e. i0, i1 /∈ CU).
C randomly selects κ ∈R {0, 1} and responds with a group signature σ∗ ←
Sign(params, gpk, skiκ ,M∗).

• Phase 2 : A can make queries similar to Phase 1. However A cannot make
query to corrupt on i0 and i1 at any time.

Output: Finally, A outputs a bit κ′, and wins if κ′ = κ.

The advantage of A is defined as Advuser−anon(A) = |Pr(κ = κ′)− 1
2 |.

Thus there should not exists any PPT adversary to link a group signature to a signer
with non-negligible probability.

Definition 2.4.8 (Traceability) We say that the group signature scheme preserves
traceability if for all PPT A, the probability that A wins the following game is negli-
gible.

• Setup: The challenger C runs (gpk, ik, okuser) ← KeyGen(params). C gives
gpk and okuser to A.

• Queries: A is given access to the oracles: joinP, joinA, corrupt and sign.

• Output: A outputs a message M∗ and a group signature σ∗.

A wins if
(1) Verify(params, gpk,M∗, σ∗) = 1 and
(2) OpenUser(params, gpk, okuser, σ∗,M∗, ~reg) = ⊥.
The advantage of A is defined as the probability that A wins.
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Thus it should be impossible to produce an untraceable valid group signature by any
PPT adversary.

Definition 2.4.9 (Non-frameability) We say that the group signature scheme pre-
serves non-frameability if for all PPT A, the probability that A wins the following
game is negligible.

• Setup: The challenger C runs (gpk, ik, okuser, tkatt)← KeyGen(params). C gives
gpk, ik and okuser to A.

• Queries: A is given access to the oracles: joinP, corrupt and sign.

• Output: Finally, A outputs a message M∗ and a group signature σ∗.

A wins if
(1) Verify(params, gpk,M∗, σ∗) = 1,
(2) OpenUser(params, gpk, okuser, σ∗,M∗, ~reg) = i∗,

(3) i ∈ HU.
The advantage of A is defined as the probability that A wins.

Thus even the group manager should not be able to forge a group signature which
trace back to a honest member.

2.4.8.1 Revocation

To make the scheme practical a membership revocation [8; 31; 90] feature need to
be incorporated, which is needed when there is a key loss, a member leaves or a
member is expelled from the group. After revocation no more group signatures are
allowed to produce with that revoked member’s secret key. The best known method of
revocation, among the methods listed by Boneh et al. [31] is Verifier-Local Revocation
(VLR) which require to sends a revocation message only to the signature verifiers, so
that there is no need to communicate with other members.
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Another well-known feature which is combined with VLR is backward unlinka-
bility. The backward unlinkability means that even after a member is revoked the
signatures produced by the member before the revocation remain anonymous. This
property was first introduced by Song in [100]. It also allows a user to come back into
the group after having been revoked and use the same keys as before while remaining
anonymous, i.e. there is provision to suspend a group member for a certain period.
There are group signature schemes proposed with VLR feature either in random
oracle model [31; 38; 90] or in the standard model [82].

2.4.9 Access Structure

Let Att = {att1, att2, ..., attm} be a set of attributes. For Γ ⊆ 2Att\{Ø}, Γ satisfies
the monotone property if ∀B,C ⊆ Att, B ∈ Γ and B ⊆ C, then C ∈ Γ holds. An
access structure (respectively, monotone access structure) is a collection (respectively,
monotone collection) Γ of non-empty subsets of Att, i.e., Γ ⊆ 2Att\{Ø} [66; 72].

A predicate Υ is a boolean function with literals as attributes. The notation
Υ(ζ) = 1, ζ ⊂ Att expresses the fact that a set of attributes ζ satisfies the predicate
Υ. The access structure Γ of a predicate Υ is a collection of non-empty subset of
attributes ζ ⊂ Att such that Υ(ζ) = 1.

In threshold predicate, atleast a threshold number of attributes are needed to
satisfy the predicate. It is expressed using a Threshold gate. A monotone predicate
is a predicate which is expressed using AND, OR and Threshold gates, an example
is given in Chapter 1. It covers the threshold predicate as a special case. A non-
monotone predicate is expressed using NOT, AND, OR and Threshold gates. It
covers monotone predicate as a special case. We restrict our attention to monotone
predicates.

2.4.10 Access Tree

An access tree is used for expressing an access structure of a predicate Υ by using a
tree structure. An access tree TΥ consists of threshold gates as non-leaf nodes and
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attributes as leaves. Let lx be the number of children of node x, and kx (0 < kx ≤ lx)
be the threshold value on the threshold gate of node x. A threshold gate x is satisfied
if the number kx of lx children branching from the node x are satisfied. Note that if
the number of children of a node is equal to the threshold value then it is an AND
gate and if the threshold value is one then it is an OR gate. Satisfying a leaf means
owning an attribute. The notation Leaves |= TΥ expresses the fact that a set of
attributes Leaves satisfies the predicate Υ.

2.4.11 Assignment of Secret Values to Access Tree Using

Bottom-Up Approach

To build an access tree for our ABGS schemes we use bottom-up approach introduced
by Emura et al. [51]. Here we give the description of the approach. Let index be
a function which returns the unique identity number of a node. Let p be a prime
number. Let x represent any node in the access tree, then lx represents the number
of children of x and kx denotes the threshold value of the node x. Let T be an access
tree of a predicate.

AddDummyNode(T ): This algorithm takes as input an access tree T, and returns the
extended access tree T ext with dummy nodes on T.

(i) For an interior node x of T , the number of dummy nodes (leaves) lx − kx is
added to x’s children.

(ii) Change the threshold value of x from kx to lx.

(iii) All nodes are assigned unique index numbers from Z∗p.

(iv) The resulting tree, called T ext, is output.

Let DT be a set of dummy nodes determined by AddDummyNode. Let sj ∈ Z∗p be
a secret value for an attribute attj ∈ Att. Let S = {sj}attj∈Att.
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AssignedValue(p, S, T ext): This algorithm takes as input p, S and T ext and returns
a secret value sx ∈ Z∗p for each dummy node x ∈ DT and a secret value of the root
node of T ext. Let {child}x be the set of node x’s children except the dummy nodes,
and {d}x be the set of node x’s dummy nodes.

(i) For the interior node x of T ext, a polynomial qx of degree lx − 1 is assigned as
follows:

(a) qx is the polynomial of degree lx−1 passing through (index(x′), sx′), where
x′ ∈ {child}x. Note that |{child}x| = lx, so we can easily construct the
unique polynomial.

(b) For the dummy node dj ∈ {d}x, the secret value sdj = qx(index(dj)) is
assigned.

(c) For x, sx = qx(0) is assigned.

(ii) Repeat the above procedure up to the root node, sT = qroot(0) is the secret
value of T.

(iii) Output {sdj}dj∈DT and sT .

MakeSimplifiedTree(Leaves, T ext): This algorithm takes as input the set Leaves ⊆
Att satisfying Leaves |= T, where T is the original access tress of T ext and returns
the product of Lagrange coefficients ∆leaf .

(i) The set of attributes {attj}attj∈Att\Leaves are deleted from T ext.

(ii) Interior nodes x having children less than the threshold value (namely, lx) are
deleted from T ext along with x’s descendants.

(iii) Let DLeaves
T be the set of dummy nodes which have remained after the steps 1

and 2, and TLeaves be the access tree after 1 and 2.

(iv) We assume that the leaves are at depth 0. For each node x of TLeaves except
root, define Lx as follows:

39



2.4 Cryptographic Primitives

(a) Define the depth 1 subtree of TLeaves with x as leaf node. Let cx be the
set of indices of leaves of the subtree.

(b) Compute Lx = ∏
k∈cx\{index(x)}

−k
index(x)−k .

(v) Let leaf ∈ Leaves ∪DLeaves
T be a leaf node of TLeaves.

For leaf , we define ∆leaf as follows:

(a) Let Pathleaf = {leaf, parent1, ..., parentnleaf = root} be the set of nodes
that appears in the path from leaf to root node.

(b) Compute ∆leaf = ∏
node∈Pathleaf\{root} Lnode.

Output ∆leaf (∀leaf ∈ Leaves ∪DLeaves
T ).

Clearly, ∑
attj∈Leaves

∆attjsj +
∑

dj∈DLeavesT

∆djsdj = sT (2.6)

holds. An example is given in [51].

2.4.12 Linear Encryption

Linear Encryption (LE) scheme is the natural extension of ElGamal encryption
scheme whose security depends on the DLIN assumption. In this scheme, a user’s
public key is a triple of generators u, v, h ∈ G1; private key is the exponents x, y ∈ Zp
such that ux = vy = h.

To encrypt a message M ∈ G1, choose a random values a, b ∈ Zp, and output the
triple (ua, vb,M.ha+b).

To recover the message from an encryption (T1, T2, T3), the user computes T3/(T x1 .T
y
2 ).

By a natural extension of the proof of security of ElGamal, LE is semantically
secure against a CPA, assuming DLIN holds [28].
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2.4.13 Boyen et al.’s Two-level Signature Scheme

We use the two level hierarchical signature scheme proposed by Boyen and Waters
in [34] which is existential unforgeable against chosen message attacks. In the first
level the certificate is signed by the group manager and in the second level a short
signature on message M is produced. This signature is based on the short signature
proposed by Boneh et al. in [26].

2.4.13.1 Scheme

Let k be the security parameter. The user identities id ∈ {0, 1}k and the message M
are taken as binary strings of fixed length m′ = O(k).

Setup(1k): Let G and GT be the groups of order n = pq for which there exists a
bilinear map e from G × G to GT , where p and q are primes of size k. Choose a
generator g ∈ Gp, where Gp is a subgroup of G with order p. Thus all group elements
in the two-level signature scheme will have prime order p in G and GT . Select secret
integers α, z ∈ Z∗p at random. Compute Z = gz and A = e(g, g)α. Next, select two
integers y, z′ ∈ Zp and a vector →z= (z1, ..., zm′) ∈ Zm′p at random. Output the public
parameters PP and the master key MK as,

PP = {g, Z = gz, u = gy, v′ = gz
′
, v1 = gz1 , ..., vm′ = gzm′ , A = e(g, g)α} ∈ Gm′+4×GT

MK = (z, gα)

The public parameters, PP , also implicitly include k,m′, and a description of (p,G,GT , e).
Extract(PP,MK, id): It outputs the private key for a user with identity id. Choose
a secret value sid ∈ Zp. Output user private key,

kid = (kid,1, kid,2, kid,3) = ((gα)
1

z+sid , gsid , usid) ∈ G3

Sign(PP, kid,M): To sign a message represented as a bit string M = (µ1, ..., µm′) ∈
{0, 1}m′ , using a private key kid, select a random s ∈ Zp and compute F(M) =
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v′Πm′
j=1v

µj
j , and output

σ = (σ1, σ2, σ3, σ4) = (kid,1, kid,2, kid,3.F(M)s, g−s) ∈ G4

Verify(PP,M, σ): The signature σ is valid for a message M if the following equations
holds,

e(σ1, σ2Z) ?= A

e(σ2, u) ?= e(σ3, g).e(σ4,F(M))

Theorem 2.4.10 Consider an adversary A that existentially forges the hybrid two-
level signature scheme in an adaptive chosen message attack. Assume that A makes
no more than ` − 1 � p signature queries and produces a successful forgery with
probability ε in time t. Then there exists an algorithm B that solves the `-HSDH
problem with probability ε̃ ≈ ε/(4m′`2) in time t̃ ≈ t where m′ is the length of the
message.

Proof The proof is given in the paper [34].

2.4.14 Liang et al.’s Two-level Signature Scheme

We use the two level signature scheme proposed by Liang et al. in [79] which is exis-
tential unforgeable against chosen message attacks. In the first level, the certificate
is signed by the group manager and in the second level a short signature on message
M is produced. This signature is based on the short signature proposed by Boneh et
al. in [26] and improvement over Boyen et al.’s two-level signature scheme [34].

2.4.14.1 Scheme

Let k be the security parameter. User’s identity id and the message M are chosen
from {0, 1}k.
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Setup(1k): Select the primes p and q of size k. Define the groups G and GT of
order n = pq, for which there exists a bilinear map e from G × G to GT . Choose
generators g, u ∈ Gp, where Gp is a subgroup of G of order p. Generate master
key MK = z ∈ Z∗p. Compute Z = gz. Define collision-resistant hash function
H : {0, 1}k → Zp. Output the system parameters params, the public parameter PP
and the master key MK as,

params = {p, q, n,G,GT ,Gp, e,H}, PP = {g, u, Z},MK = z

Extract(PP,MK, id): It outputs the private key for a user with identity id. Choose
a secret value sid ∈R Zp. Output user private key,

kid = (kid,1, kid,2) = (sid, g
1

z+sid ) ∈ Zp ×Gp

Sign(PP, kid,M): The signature of message M with private key kid is,

σ = (σ1, σ2, σ3) = (gsid , g
1

z+sid , u
1

sid+H(M) )

Verify(PP,M, σ): The signature σ is valid if the following equations hold, else it is
invalid.

e(Zσ1, σ2) ?= e(g, g)

e(gH(M)σ1, σ3) ?= e(g, u)

Theorem 2.4.11 The Two-level signature scheme is (t, qe, qs, ε)− secure against ex-
istential forgery under a chosen message attack provided that (t′, q, εqSDH)−SDH
assumption and (t′′, `, εMOMSDH)−MOMSDH assumption hold in Gp, where ε ≤
2qsεqSDH + 2εMOMSDH and t ≈ max(t′, t′′), q ≥ qs + 1 and ` ≥ qe + qs.

Here, t is the time taken to forge the two-level signature, qs is the total number of
signature queries, qe is the total number of extraction queries, t′ is the time take to
solve q-SDH problem, εqSDH is the advantage of solving q-SDH problem, t′′ is the
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time required to solve `-MOMSDH problem and εMOMSDH is the advantage of solving
`-MOMSDH problem.

Proof The proof is given in the paper [79].

2.4.15 Waters Signature

We use a slight variant of Waters signature [23; 102], in the SXDH setting: Given
three generators (g1, h, g2) ∈ G2

1 × G2, a public key pk = (gt1, gt2), the secret key t

to sign a message M , a user simply needs to pick a random scalar s and compute
σ = (ht.F(M)s, gs2). Here, F is the waters function defined as F(M) = v′Πvmij , where
(v′, vj) are independent generators of G1 and M = (mi). The verification simply
consists in checking if e(σ1, g2) = e(h, pk2).e(F(M), σ2). This scheme is proven to be
existentially unforgeable under CDH+ assumption.

2.4.16 Attribute-Based Signature

Maji et al. [85] introduced an Attribute-Based Signatures (ABS), where a signer
can sign a message with a predicate that is satisfied by his attributes. Here, the
signature reveals no information about the signer’s identity or the attributes he holds
and guarantees that the signer possesses the required attributes. Many ABS schemes
in standard model have been proposed [53; 70; 85; 92], among which the scheme
presented by Herranz et al. [70] has constant length signature but for the threshold
predicates. For monotone predicates Escala et al. have given the ABS scheme whose
signature size is linear in terms of the size of the predicate and with an additional
property of revocability, which revokes the anonymity of the signer [53]. For non-
monotone predicates Okamoto et al. have proposed an ABS scheme but its signature
length is not constant [92]. The revocability feature of ABS is same as signer trac-
ing feature of group signature scheme which reveals the signer’s identity from the
signature.

We give the formal definition of ABS scheme [85].
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Definition 2.4.12 (ABS) An ABS scheme consists of the following algorithms.
Unless otherwise indicated, algorithms are randomized.

• params ← Setup(1k) : This algorithm is run by signature trustee which takes
the security parameter k as an input and returns the public reference informa-
tion params.

• (APK,ASK)← KeyGen(params) : This algorithm is run by an attribute issu-
ing authority which takes the public reference information params, and returns
a attribute public key APK and an attribute secret key ASK.

• SKA ← AttrGen(ASK,A ⊆ Att) : This is takes the ASK and attribute set A
as an input and returns the attribute keys SKA.

• σ ← Sign(params,APK, SKA,M,Υ) : This algorithm takes params,APK, SKA,
message M and the predicate Υ as an input, where Υ(A) = 1, and returns a
signature σ on M .

• 0/1← Verify(params,APK,M,Υ, σ) : This is a deterministic algorithm ver-
ifies the validity of the signature σ against APK and returns 1/0. If 1 then the
algorithm claims that the σ is a valid signature, otherwise, σ is invalid.

Entities: Following are the entities in ABS scheme:

• The signature trustee who setups the ABS scheme by generating the public
reference information params.

• The attribute issuing authority with attribute secret keys ASK issue an at-
tribute keys for the attribute setA to the user by running an algorithm AtrrGen.

• A signers who are having their attribute private keys SKA. They run Sign
algorithm to produce a signature on a document M with predicate Υ if they
possess valid attribute set A which satisfies the predicate.
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• Outsider or verifier can verify the signature using the public key, params and
APK.

Definition 2.4.13 (Correctness) Correctness requires that for all params← Setup(1k),
all (APK,ASK) ← KeyGen(params), all A ⊆ Att, SKA ← AttrGen(ASK,A ⊆
Att), all Υ and all M ∈ {0, 1}∗, all claim-predicate Υ such that Υ(ζ) = 1 and all sig-
natures σ = Sign(params,APK, SKA,M,Υ), we have Verify(params,APK,M,Υ, σ) =
1.

Perfect Privacy: The signer privacy is only relies on the signature trustee and not
the attribute-issuing authority. Even a malicious and computationally unbounded
attribute-issuing authority cannot link a signature to a set of attributes or the signing
key used to generate it.

Unforgeability: Any signature which could not have been legitimately made by a
single one of the adversary’s signing keys is considered a forgery [85].

2.4.17 Attribute-Based Group Signature

ABGS scheme is a group signature scheme where the group members possessing cer-
tain privileges, characterized by attributes, are only eligible for signing the document
[51; 72; 73]. In ABGS, each member is assigned some subset of attributes. The
predicates in terms of attribute relationships (the access structures) are represented
by an access tree and it is associated to the document. The group members whose
attributes satisfy the access tree can sign the associated document.

Attribute anonymity means the verifier should be able to verify whether the signer
has required attributes without learning which set of attributes he used for signing.
Attribute tracing feature allows a user to know with what privilege (an attribute set)
the signer has signed the document regardless of who did it. A user has choice to
query either to reveal the signer identity or the attributes of the signature. A VLR
ABGS scheme is an ABGS scheme where the revocation process does not influence
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Table 2.2: Notations for ABGS scheme

Symbol Meaning
k security parameter
params system parameter
GM group manager
Ui user i
Att universal set of attributes
Υ predicate
TΥ access tree representing the predicate Υ
TΥ public values associated with TΥ
gpk group public key used to verify the validity of the group signature
ik issuing key used for issuing private keys to the users
okuser opening key used for opening the signer’s identity from the given group signature
tkatt attribute tracing key used to trace the attributes of the group signature
(upki, uski) verification/signing key of a signature scheme DSig for user Ui

Ai ⊆ Att set of attributes assigned to the user Ui

ski group private key for the member Ui

~reg registration table with the group manager where the current group members
information are stored

φ null set
Υ(ζ) = 1 denotes that the attribute set ζ satisfies the predicate Υ

the activity of the signers. In VLR scheme, members are revoked by publishing the
relative part of the secret value of the members, namely revocation token.

We give the formal definition of ABGS scheme.

Definition 2.4.14 (ABGS) An ABGS scheme consists of the following algorithms.
Unless otherwise indicated, algorithms are randomized.

• params ← Setup(1k) : This algorithm takes the security parameter k as an
input and returns the system parameter params.

• (gpk, ik, okuser, tkatt)← KeyGen(params) : This algorithm takes the system pa-
rameter params, and returns a group public key gpk, an issuing key ik, a user
opening key okuser and an attribute tracing key tkatt.

• ski ← Join(〈params, gpk, ik, upki,Ai〉 , 〈params, gpk, upki, uski〉) : This is an
interactive group joining protocol between a user Ui (using his secret key uski)
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and the GM (using the issuing key ik and the attributes Ai ⊆ Att for Ui). In the
protocol Ui ends with a member private key ski and GM ends with an updated
registration table ~reg.

• σ ← Sign(params, gpk, ski, ζ,M,Υ) : This algorithm takes params, gpk, ski,
an attribute set ζ ⊆ Ai, message M, and the predicate Υ as an input and
returns a group signature σ on M .

• 0/1← Verify(params, gpk,M,Υ, σ) : This is a deterministic algorithm verifies
the validity of the group signature σ against gpk and returns 1/0. If 1 then the
algorithm claims that the σ is a valid group signature, otherwise, σ is invalid.

• i/⊥ ← OpenUser(params, gpk, okuser, σ,M,Υ, ~reg): This is a deterministic al-
gorithm which takes as input params, gpk, okuser,σ,Υ,M and ~reg, and returns
either i ≥ 1 or ⊥. If i, the algorithm claims that the group member with identity
i has produced σ, and if ⊥, then no group member produced σ.

• ζ/⊥ ← TraceAtt(params, gpk, tkatt, σ,M,Υ): This is a deterministic algo-
rithm which takes as input params, gpk, tkatt, σ,M and Υ, and outputs either
the attribute set ζ ⊆ Att or ⊥. Here it claims that ζ is the attribute set that
is used to satisfy Υ in producing σ. If ⊥, then the algorithm claims that no
attribute set is used to produce σ.

Entities: There are several entities in ABGS scheme:

• The group manager GM, also known as Issuer, has issuing key ik using which he
enrolls a user into the group by allotting some privileges (in terms of attributes)
say Ai ⊆ Att and issuing a user’s private key ski, by running interactive Join
algorithm with the user.

• The opener has user opening key okuser by which he is able to open the signature
and reveal the user identity through OpenUser algorithm.
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Figure 2.1: Attribute-Based Group Signature

• The attribute tracer has the attribute tracing key tkatt by which he can trace the
attribute set ζ from the group signature, which is used to satisfy the predicate
Υ, by running the TraceAtt algorithm.

• Group members, or signers, who are having their private keys ski. They run
Sign algorithm to produce a group signature on a document M with predicate
Υ; if they possess valid attribute set Aiwhich satisfies the predicate.

• Outsider or verifier who can seek a group signature for a document M with
predicate Υ from group manager GM. He can also verify the group signature
using the group public key, gpk.

Note: Normally the Setup and KeyGen algorithms are run by some trusted party
and he will distribute the appropriate keys to the concerned entities.
System model: Intuitively, a user (with a pair of keys (uski, upki)) engage with

the group manager GM (with issuing key ik) in Join protocol to join the group and
get the group member secret key ski. An outsider or verifier approaches the group
manager GM with message M along with the predicate Υ for group signature on M .
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A group member who satisfy the predicate Υ will generate the group signature σ on
M and verifier verifies the σ using group public key gpk. Later in case of any dispute
or upon requirement, the opener reveals the signer’s identity from the signature σ by
using user opening key okuser. The attribute tracer using attribute tracing key tkatt
can reveal the set of attributes that the signer has used in generating σ.
Remarks:

• ABGS scheme can be used as group signature scheme with |Att| = 1, say
Att = {att}, and allotting att to every member in the group. Thus the predicate
contains only one literal att, which can be satisfied by any member in the group.

• ABGS scheme with attribute anonymity can be used as ABS. The ABGS scheme
possesses an extra feature of revealing the signer’s identity from the signature.

• One can design an ABGS scheme with attribute anonymity by using an ABS
scheme and a group signature scheme. The group signature scheme provides a
signer tracing feature. Therefore an ABGS scheme can be built by cascading
ABS with group signature scheme. A user of ABS is also a group member in
the group signature scheme. Each user holds two secret keys viz. attribute keys
from the ABS and group private key from the group signature scheme. First
the user signs the document associated with a predicate with his attribute keys
and then he signs using his group private key. The cost of building this ABGS
scheme is the combined cost of both the schemes.

2.5 Provable Security

In the early years after the invention of public key cryptography by Diffie and Hell-
man in 1976 [49], design and evaluation of public key cryptosystems has been done
merely in an ad-hoc manner. But due to various successful attacks on the cryptosys-
tems, the cryptographic community understood that this ad-hoc approach might not
be good enough. Moreover, in the early days of public key cryptography, security
considerations only dealt with the most basic attacks, i. e., cryptanalytic research
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concentrated on inverting the scheme’s underlying one-way functions. However, the
cryptosystems succumbed to attacks due to different reasons. The paradigm of prov-
able security is an attempt to address this. The goals of provable security are to
define appropriate models of security on the one hand, and to develop cryptographic
designs that can be proven to be secure within particular models on the other. There
are two general approaches for structuring the security proof.

2.5.1 Game-based Approach or Sequence-of-games Approach

This approach is simple to understand and easy to analyze security of any complex
cryptosystem. This approach was separately introduced by Shoup [99] and by Bellare
et al. [19]. The notion of security for a scheme is defined as a game between an
adversary and a challenger. If the adversary wins the game, the security of the scheme
is compromised. Both the adversary and the challenger are modeled as probabilistic
processes, so that the whole game is modeled as a probability space. The fact that
the game is won by the adversary corresponds to a specific event S and the scheme
is secure when Pr [S] is close to some target probability. Usually, providing such a
bound given the sole description of the initial game is hard. One thus constructs a
sequence of games Game 0, Game 1,. . . , Game n, where Game 0 is the original game
between the adversary and the challenger. Just as Game 0 defines an event S0 = S,
each Game i defines an event Si such that Pr[Si] is negligibly close to Pr[Si−1] for
i = 1, ..., n. Provided that Pr[Sn] is easy to compute and negligibly close to the target
probability, we are done. The game-based approach is used in several cryptosystems
to prove its security, including [24; 39; 46; 82] and many more. We use this approach
for proving the security of ABGS scheme in Chapter 6 and Chapter 7.

2.5.2 Simulation-based Approach or Reductionist Approach

In this approach, a cryptosystem is called provably secure if there exists a polynomial
reduction from an attack against the security of the cryptosystem to a well-established
hard problem (such as the integer factorization problem) . Informally, this means that
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if there is a polynomially bounded adversary breaking the scheme, then the problem
assumed to be hard can also be solved in polynomial time. As this contradicts our
assumption towards hard problem, no such adversary exists and hence the system
is secure. Here breaking the scheme is related to the hardness of the complexity
assumptions described in the Section 2.3. This technique is used in many cryptosys-
tems to analyse the security, and the first scheme which uses this technique is Rabin’s
public key cryptosystem [94].

To analyze the security of the cryptographic system some idealized models are
introduced viz. random oracle model, generic group model and standard model.

2.5.3 Random Oracle Model

In the random oracle model, introduced by Bellare and Rogaway [18], all parties - the
legitimate ones as well as the adversary - have black-box access to functions which
behave like truly random functions. Under this idealized assumption, it is possible
to develop cryptosystems that are both efficient and provably secure. In concrete
implementations, however, truly random functions are replaced by concrete objects
like cryptographic hash functions. Thus, even a rigorously analyzed security proof in
the random oracle model does not guaranty security in the real world.

A hash function H is a keyless algorithm that takes arbitrary-length inputs and
outputs a fixed-length hash value, H : {0, 1}∗ → {0, 1}`. A hash function should
exhibit several properties, including pre-image resistance (given a random element
of the output set, it should be computationally infeasible to find a pre-image of
that element) and collision resistance (it should be computationally infeasible to find
two elements that have the same hash value), correlation intractability (it should be
infeasible to find an input-output pairs that follows some particular relation).

It is widely believed that if the cryptosystem is secure in random oracle model
then there is no “structural flaws” in it. And if any attack is possible against the
cryptosystem which is proven secure in random oracle model then it must have taken
advantage of implementation flaws of the cryptosystem.
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2.5.4 Generic Group Model

This model was introduced by Victor Shoup [98]. The idea of the generic group model
is to give a precise definition of what it means to have an algorithm that does not
make use of any special features of the group.

For simplicity suppose that the multiplicative group G is cyclic of prime order
q. In the generic group model one supposes that instead of formulas for the group
operation we have an “oracle” that for any i will give us an “encoding” σ(i). In
addition, if we have two encodings σ(i) and σ(j) (but we do not necessarily know
i or j), then the oracle will give us σ(i ± j) = σ(i)σ(j)±1. By repeatedly querying
the oracle, we can also efficiently determine σ(ri+ sj) = σ(i)rσ(j)s for any integers
0 ≤ r, s < q. Without loss of generality we may suppose that we are allowed to ask
for the value σ(ri + sj) in a single query. Thus, the oracle will tell us either the
encoding of an integer i, 0 ≤ i < q, or else the element σ(i)rσ(j)s for 0 ≤ r, s < q of
our choice. However, the oracle reveals no other information. The way to ensure this
is to stipulate that the oracle’s encodings are randomly selected elements from some
set of bitstrings. The only condition on the oracle’s responses is that if the same
group element is queried a second time, it must respond with the same encoding [76].
Boneh et al. provide the lower bound on the computational complexity of solving the
q-SDH problem in generic group model [27]. Maji et al. have proved the security of
their Attribute-Based Signature in generic group model [85].

2.5.5 Standard Model

In standard model, unlike in random oracle model, no cryptographic primitive is
replaced by any idealized version. Cramer-Shoup encryption scheme [46] is the first
encryption scheme which is proven secure in standard model.

It is observed that the cryptosystems which are proven secure in standard model
are less efficient and more complex when compared to the cryptosystems proven secure
in random oracle model. Therefore unless we succeed to design a cryptosystem that is
secure in standard model and is as efficient as cryptosystem secure in random oracle
model, the random oracle model will never cease to disappear. Currently there are
many schemes which are proven secure in standard model [53; 82; 92].
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2.6 Summary

In this chapter, we listed out the complexity assumptions and described briefly the
cryptographic primitives which are used in construction of the proposed schemes.
We described two instantiations of Groth-Sahai proof systems. We introduced group
signature, ABS and ABGS schemes. We also described the security notions of these
schemes. We described different methods to prove the security of a cryptosystem
under various models viz. random oracle model, generic group model and standard
model. In the next chapter, we propose an ABGS scheme with attribute anonymity
in the random oracle model.
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Chapter 3

An ABGS Scheme with Attribute
Anonymity and Attribute Tracing
in the Random Oracle Model

In this chapter, we present an ABGS scheme with attribute anonymity and prove
that it is secure under random oracle model with DL, q-SDH, DLDH and XDH as-
sumptions. Moreover, the scheme provides revocation feature which allows to revoke
multiple group members at anytime.

3.1 Introduction

Khader in [73] has suggested that the attribute anonymity - the verifier should be
able to verify whether the signer has required attributes without learning which set
of attributes he used for signing, is a desirable feature to achieve. Later Khader
proposed an ABGS scheme [72] with member revocation feature without addressing
attribute anonymity. We propose first ABGS scheme [2] with attribute anonymity
feature. The proposed scheme’s signature length is constant and also has membership
revocation facility. We use the scheme proposed by Emura et al.’s ABGS scheme [51]
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as a base scheme [2]. We prove that the proposed ABGS scheme is secure under
random oracle model with DL, q-SDH, DLDH and XDH assumptions. We use the
membership certificate format of [48] that makes the scheme non-frameable. We have
also provided independent opening of the signer’s identity and opening of the attribute
set identity from the signature, thus these tasks can be assigned to two independent
authorities and it is also useful when anyone wants to know the privileges of the
signer rather than its identity. It allows group manager to revoke multiple members
from the group at anytime. We also given a short ABGS scheme whose signature
length is extremely short irrespective of number of attributes.

In Section 3.2, we present the proposed ABGS scheme with attribute anonymity
and the related security definitions. The construction of the proposed ABGS scheme
is described in Section 3.3. Its security analysis is given in Section 3.4. The short
ABGS is given in Section 3.5 followed by comparison with previous schemes in Section
3.6. Finally we summarize in Section 3.7.

3.2 Proposed Scheme

In this section, we propose an ABGS scheme with attribute anonymity. Let U1,U2, ...,Un

be the members of a group. Let k be the security parameter, params the system pa-
rameters, Att the universal set of attributes, Υ used to denote a predicate, Υ(ζ) = 1
denotes that the attribute set ζ ⊆ Att satisfies the predicate Υ, gpk the group pub-
lic key, ik the issuing key used for issuing private keys to the users, okuser the user
opening key used to open the user identity of the group signature, tkatt the attribute
tracing key used to trace the attributes of the group signature, Ai ⊆ Att the set of
attributes assigned to the user Ui, Ai represents the membership certificate of Ui, ski
denotes the private key for the member Ui implicitly includes Ai and ~reg be the regis-
tration table with the group manager where the current group members membership
certificates {Ai}ni=1 are stored.

Each document M is associated with some attribute relationships satisfying a
predicate Υ whose access tree is denoted by TΥ. The user Ui can make a group
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signature on the document M if there exists a set of attributes ζ ⊆ Ai with the user
such that Υ(ζ) = 1.

Definition 3.2.1 (ABGS) An ABGS scheme consists of following algorithms. Un-
less otherwise indicated, algorithms are randomized.

• params ← Setup(1k) : This algorithm takes the security parameter k as an
input and returns the system parameter params.

• (gpk, ik, okuser, tkatt)← KeyGen(params) : This algorithm takes the system pa-
rameter params, and returns a group public key gpk, an issuing key ik, a user
opening key okuser and an attribute tracing key tkatt.

• ski ← Join(〈params, gpk, ik, upki,Ai〉 , 〈params, gpk, upki, uski〉) : This is an
interactive group joining protocol between a user Ui (using his secret key uski)
and the GM (using the issuing key ik and the attributes Ai ⊆ Att for Ui). In the
protocol Ui ends with a member private key ski and GM ends with an updated
registration table ~reg.

• σ ← Sign(params, gpk, ski, ζ,M,Υ) : This algorithm takes params, gpk, ski,
an attribute set ζ ⊆ Ai, message M, and the predicate Υ as an input and
returns a group signature σ on M .

• 0/1← Verify(params, gpk,M,Υ, σ) : This is a deterministic algorithm verifies
the validity of the group signature σ against gpk and returns 1/0. If 1 then the
algorithm claims that the σ is a valid group signature, otherwise, σ is invalid.

• i/⊥ ← OpenUser(params, gpk, okuser, σ,M,Υ, ~reg): This is a deterministic al-
gorithm which takes as input params, gpk, okuser,σ,Υ,M and ~reg, and returns
either i ≥ 1 or ⊥. If i, the algorithm claims that the group member with identity
i has produced σ, and if ⊥, then no group member produced σ.

• ζ/⊥ ← TraceAtt(params, gpk, tkatt, σ,M,Υ): This is a deterministic algo-
rithm which takes as input params, gpk, tkatt, σ,M and Υ, and outputs either
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the attribute set ζ ⊆ Att or ⊥. Here it claims that ζ is the attribute set that
is used to satisfy Υ in producing σ. If ⊥, then the algorithm claims that no
attribute set is used to produce σ.

• Revoke(params, gpk, ik, i) : This algorithm takes params, gpk, ik and i as an
input and revokes the group member with identity i.

Entities: There are several entities in ABGS scheme:

• The group manager GM, also known as issuer, has issuing key ik using which he
enrolls a user into the group by allotting some privileges (in terms of attributes)
say Ai ⊆ Att and issuing a user’s private key ski, by running interactive Join
algorithm with the user.

• The opener has user opening key okuser by which he is able to open the signature
and reveal the user identity through OpenUser algorithm.

• The attribute tracer has the attribute tracing key tkatt by which he can trace the
attribute set ζ from the group signature, which is used to satisfy the predicate
Υ, by running the TraceAtt algorithm.

• Group members or signers who are having their private keys ski. They run
Sign algorithm to produce a group signature on a document M with predicate
Υ if they possess valid attribute set Ai which satisfies the predicate.

• Outsider or verifier who can seek a group signature for a document M with
predicate Υ from group manager GM. He can also verify the group signature
using the group public key, gpk.

Note Normally the Setup and KeyGen algorithms are run by some trusted party and
he will distribute the keys to the concerned entities.

ABGS scheme is correct if each group member produces his signature using his signing
key and his attributes.
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Definition 3.2.2 (Correctness) We say an ABGS scheme is correct if and only if
honestly-generated signatures verify correctly. That is,

Verify(params, gpk,M, Sign(params, gpk, ski, ζ,M,Υ),Υ) → 1

such that Ui ∈ ~reg, ζ ⊆ Ai and Υ(ζ) = 1.

In ABGS scheme a group member may have multiple attribute sets to satisfy the
predicate and he can produce a group signature using one of them. An ABGS scheme
preserves attribute anonymity if it is computationally difficult to identify with what
attribute set he produces the signature.

Definition 3.2.3 (Attribute anonymity) We say that the ABGS scheme preserves
attribute anonymity if for all PPT A, the probability that A wins the following game
is negligible.

• Setup : The challenger runs KeyGen(params), and obtains gpk, ik, okuser and
tkatt. Challenger gives params, gpk, okuser and ik to A.

• Phase1 : A can send following queries to the challenger,

– Join : A can request the challenger (to run), the Join procedure for any
honest member of her choice. A plays the role of corrupt GM on these
queries.

– Signing : A can request a group signature σ on any, message M , predicate
Υi, Ui and a set of attributes ζi ⊆ Υi such that Υ(ζi) = 1, of her choice.

– Corruption : A can request the secret key ski of the members Ui of her
choice.

– TraceAtt : A can request the attribute set of some valid group signatures
σ.
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• Challenge : A outputs M∗,Υ∗, a non-corrupted user Ui (which is not queried
in Corruption queries) such that there exists two attribute sets ζi0 , ζi1 ⊆ Ai and
Υ(ζi0) = 1,Υ(ζi1) = 1 holds. Then the challenger uniformly selects b ∈R {0, 1},
uses ζib to make a group signature σ∗ on M∗ and returns σ∗ to A.

• Phase2 : A can make the Signing, Corruption, Join and TraceAtt queries.
Note that Corruption query includes Ui and TraceAtt query does not include
σ∗.

• Output : A outputs a bit b′, and wins if b′ = b.

The advantage of A is defined as Advatt−anon(A) = |Pr(b = b′)− 1
2 |.

In Join queries, A can play the role of corrupted GM (same as SndToU oracle in [20]).

ABGS scheme preserves user anonymity if there are at least two group members
possessing valid attribute sets and one of them produces the group signature then it
should be computationally hard to identify who produced the group signature among
them, even if their secret keys are revealed afterwards.

Definition 3.2.4 (User anonymity) We say that the ABGS scheme preserves user
anonymity if for all PPT A, the probability that A wins the following game is negli-
gible.

• Setup : The challenger runs KeyGen(params), and obtains gpk, ik, okuser and
tkatt. Challenger gives params, gpk, tkatt and ik to A.

• Phase1 : A can issue the Signing, Corruption, Join and OpenUser queries.
All queries are the same as in attribute anonymity game. Instead of TraceAtt

queries in the previous game, A requests OpenUser queries as follows,

– OpenUser : A can request the signer’s identity of some valid group signa-
tures σ.
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• Challenge : A outputs M∗,Υ∗, and non-corrupted users Ui0 ,Ui1 and ζ1. Note
that ζ ⊆ Ai0 , ζ ⊆ Ai1 and Υ∗(ζ) = 1. The challenger randomly selects b ∈R
{0, 1} and responds with a group signature σ∗ on M∗ of group member Uib.

• Phase2 : A can make the Signing, Corruption, Join and OpenUser queries.
Note that Corruption query includes both Ui0 ,Ui1 and OpenUser query does
not include σ∗.

• Output : A outputs a bit b′, and wins if b′ = b.

The advantage of A is defined as Advusr−anon(A) = |Pr(b = b′)− 1
2 |.

Following definitions of traceability, non-frameability and collusion
resistance of attribute certificates are similar to the one given in [51].

ABGS scheme preserves traceability if it is possible to trace the valid group signature
to its signer with the help of group opening key.

Definition 3.2.5 (Traceability) We say that the ABGS scheme preserves trace-
ability if for all PPT A, the probability that A wins the following game is negligible.

• Setup : The challenger runs KeyGen(params), and obtains gpk, ik, okuser and
tkatt. Challenger gives params, gpk, okuser and tkatt to A.

• Queries : A can issue the Signing, Corruption and Join queries. All queries
are the same as in the attribute anonymity game, except the Join queries.

– Join : Here A requests the challenger the Join procedure for corrupted
member Ui.

• Output : A outputs a message M∗, and a group signature σ∗. Υ∗ is the predicate
in this phase.

1Here ζ is common to both users since we are only concerned about user anonymity as attribute
anonymity is separately considered in attribute anonymity definition.
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A wins if (1) Verify(params, gpk,M∗, σ∗,Υ∗) = 1, (2) OpenUser(params, gpk, okuser,
σ∗,M∗,Υ∗, ~reg) = 0. The advantage of A is defined as the probability that A wins.

In Join queries, A can play the role of corrupted user (same as SndToI oracle in [20]).

ABGS scheme preserves non-frameability if it is difficult to produce a valid group
signature which traces back to a group member who has not produce it, even with
the help of group manager’s secret key.

Definition 3.2.6 (Non-frameability) We say that the ABGS scheme preserves
non-frameability if for all PPT A, the probability that A wins the following game
is negligible.

• Setup : The challenger runs KeyGen(params), and obtains gpk, ik, okuser and
tkatt. Challenger gives params, gpk, ik, okuser and tkatt to A.

• Queries : A can issue the Signing, Corruption and Join queries. All queries
are the same as in the attribute anonymity game.

• Output : Finally, A outputs a message M∗, an honest member Ui∗ and a group
signature σ∗. Υ∗ is the predicate in this phase.

A wins if (1) Verify(params, gpk,M∗, σ∗,Υ∗) = 1,
(2) OpenUser(params, gpk, okuser, σ∗,M∗,Υ∗, ~reg) = i∗, a honest member Ui∗ ,

(3 ) A has not obtained σ∗ in Signing queries on M∗,Ui∗ and with Υ∗, and
(4 ) A has not obtained ski∗ in Corruption queries on Ui∗.
The advantage of A is defined as the probability that A wins.

ABGS scheme preserves collusion resistance of attribute certificates if it is computa-
tionally hard for group members to collude by pooling their attribute certificates to
satisfy the predicate and to produce a valid group signature.
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Definition 3.2.7 (Collusion resistance of attribute certificates) We say
that the ABGS schemes preserve collusion resistance of attribute certificates if for all
PPT A, the probability that A wins the following game is negligible.

• Setup : The challenger runs KeyGen(params), and obtains gpk, ik, okuser and
tkatt. Challenger gives params and gpk to A.

• Queries : A can issue the Signing, Corruption and Join queries. All queries
are the same as in the attribute anonymity game, except the Join queries.

– Join : Here A requests the challenger the Join procedure for corrupted
member Ui.

• Output: Finally, A outputs a message M∗, and a group signature σ∗. Υ∗ is the
predicate in this phase.

A wins if (1) Verify(params, gpk,M∗, σ∗,Υ∗) = 1, and (2) A has not obtained
attribute certificates associated with any ζ∗, such that Υ(ζ∗) = 1, corresponding to a
single user.

This property can be better explained by an example. Let the two users Ui0 and Ui1

be having attributes Ai0 and Ai1 , respectively. We assume that ζ∗ * Ai0 , ζ∗ * Ai1 ,
but ζ∗ ⊆ Ai0 ∪ Ai1 . Then Ui0 and Ui1 cannot make a valid group signature with ζ∗

even if they both collude with each other.

3.3 Construction

Construction of an ABGS scheme with attribute anonymity having constant size
signature is presented in this section. Our construction is based on the [51]’s ABGS
scheme. We prove that the proposed construction is secure under random oracle
model with DL, q-SDH, DLDH and XDH assumptions. We use the membership
certificate format of [48] that makes the scheme non-frameable i.e. even colluded
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group manager cannot forge the signature. Thus the proof of traceability and non-
frameability are similar to one presented in [48]. For generating the public values
of the access tree we use the bottom-up approach technique introduced by [51]. We
achieve the attribute anonymity by proving the knowledge of corresponding attribute
certificates combinedly instead of separately as in [51]. The proposed ABGS scheme
achieves the constant size signature i.e. signature length is independent of the number
of attributes involved. We have also provided independent opening of the signer’s
identity and opening of the attribute set from the signature. Thus these tasks can
be assigned to two independent authorities and it is also useful when anyone wants
to know the privileges of the signer rather than its identity. We adopt membership
revocation mechanism from [51] and make it suitable to our scheme. This allows the
group manager to revoke multiple members from the group at anytime. We also give a
short ABGS scheme whose signature length is extremely short irrespective of number
of attributes. For XDH assumption to hold, we assume that the instantiation of the
bilinear groups are done using the Weil or Tate pairing over MNT curves, since in the
supersingular curves the DDH problem is known to be easy on all cyclic subgroups
[28; 60].

Let NIZK be a Non-Interactive Zero-Knowledge proof, SPK be the Signature Proof
of Knowledge, and Ext-Commit be an extractable commitment scheme which uses
the Pailler’s encryption scheme [93], which is required in the security proof of the
traceability. Let {Ti,j}attj∈Ai the attribute certificates of Ui, it is implicitly include
in ski.

• Setup(1k):

(i) Define the cyclic groups G1,G2,G3 of prime order p, where |p| = O(k), an
one-way isomorphism ψ : G2 → G1, a bilinear maps e : G1 × G2 → G3,

and a hash function H : {0, 1}∗ → Z∗p.

(ii) Define the attributes Att = {att1, att2, ..., attm}, m ≤ |Z∗p|.

(iii) Outputs the system parameters, params = (G1,G2,G3, e, ψ,H, Att).

• KeyGen(params):
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(i) Select the generators g1 ∈ G1, and g2 ∈ G2 : g1 = ψ(g2).

(ii) Selects γ ∈R Z∗p, and computes w = gγ2 .

(iii) Selects µ ∈R Z∗p, and computes U = g
1
µ

2 .

(iv) Selects u1, u2 ∈R G1, x
′
1, x
′
2 ∈R Z∗p, and computes h1 = u

x′1
1 and h2 = u

x′2
2 .

Also selects a random generator ĥ3 ∈R G2 and exponents x′3, y′3 ∈R Z∗p,
and set û3 = ĥ

1/x′3
3 and v̂3 = ĥ

1/y′3
3 .

(v) For each attj ∈ Att, selects sj ∈R Z∗p, sets S = {sj}attj∈Att, and computes
gattj = g

sj
2 (∀attj ∈ Att).

(vi) Outputs the user opening key, okuser = x′1, the attribute opening key,
tkatt = (x′3, y′3), the issuing key, ik = (γ, µ, S), and the group public key,

gpk = (g1, g2, u1, h1, u2, h2, û3, v̂3, ĥ3, w,U , {gattj}attj∈Att).

• BuildTree(params, gpk, ik,Υ):

(i) Let TΥ be the tree that represents the predicate Υ.

(ii) GM runs T ext ← AddDummyNode(TΥ) and AssignedValue(p, S, T ext) and
gets ({sdj}dj∈DTΥ

, sT ).

(iii) GM computes vT = gsT2 .

(iv) Outputs TΥ = ({sdj}dj∈DTΥ
, vT , T

ext).

Normally the verifier with his predicate approaches the GM for a group signature
and GM runs BuildTree algorithm to generate the public values of the predicate
Υ and stores it in a public repository. Then anyone among the group members
who are eligible will generate a group signature by using the predicate public
value.

• Join(< params, gpk, ik, upki,Ai >,< params, gpk, upki, uski >):
Ui gets ski1 = ((Ai, xi, yi), {Ti,j}attj∈Ai), where (Ai, xi, yi) is a membership cer-
tificate, {Ti,j}attj∈Ai is the set of attribute certificates and Ai is the set of Ui’s
attributes.

1Note that xi, Ti,j values can be stored in a public repository, so the size of sk′
is can be reduced

to two elements, i.e. ski = (Ai, yi).
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(i) Ui picks yi ∈R Z∗p and computes ci = Ext-Commit(yi),
Fi = hyi1 and
π1 = NIZK{yi : Fi = hyi1 ∧ ci = Ext-Commit(yi)}.

(ii) Ui sends Fi, ci and π1 to GM.

(iii) GM checks π1. If π1 is not valid, then abort.

(iv) GM selects xi ∈R Z∗p and computes

Ai = (g1Fi)1/(γ+xi),

Bi = e(g1Fi, g2)/e(Ai, w),

Di = e(Ai, g2),

Ti,j = A
sjµ
i (∀attj ∈ Ai); and

π2 = NIZK{xi, {sjµ, sj}(attj∈Ai) : Bi = Dxi
i ∧ Ti,j = A

sjµ
i (∀attj ∈ Ai) ∧

gattj = g
sj
2 (∀attj ∈ Ai) ∧ e(Ti,j,U) = e(Ai, gattj)(∀attj ∈ Ai)}.

(v) GM sends Ai, Bi, Di, {Ti,j}attj∈Ai and π2 to Ui.

(vi) Ui checks π2. If π2 is not valid, then abort.

(vii) Ui signs Ai with signature scheme DSig producing signature Si,Ai =
DSiguski(Ai) and sends to GM.

(viii) GM verifies Si,Ai with respect to upki and Ai. If Si,Ai is valid, then GM sends
xi to Ui and adds (Ui, Ai) to ~reg.

(ix) Ui checks the relation e(Ai, g2)xie(Ai, w)e(h1, g2)−yi ?= e(g1, g2) to verify
whether A(xi+γ)

i = g1h
yi
1 .

GM chooses sm+1 ∈ Z∗p, and computes gattm+1 = g
sm+1
2 when a new attribute

attm+1 is added. Then GM computes Ti,m+1 = A
sm+1µ
i and π3 = NIZK{sm+1 :

Ti,m+1 = A
sm+1µ
i ∧ gattm+1 = g

sm+1
2 ∧ e(Ti,m+1,U) = e(Ai, gattm+1)}, sends Ti,m+1

and π3 to Ui, and publish gattm+1 .

• Sign(params, gpk, ski, ζ,M,Υ):

A signer Ui signs a message M ∈ {0, 1}∗ as follows:
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(i) Get the public values of Υ, TΥ = ({sdj}dj∈DTΥ
, vT , T

ext), from the public
repository1.

(ii) Ui chooses ζ ⊆ Ai as an input such that Υ(ζ) = 1.

(iii) Ui runs MakeSimplifiedTree(ζ, T ext) and gets the corresponding ∆attj(∀attj ∈
ζ), and ∆dj(∀dj ∈ D

ζ
TΥ

).

(iv) Note that Σattj∈ζ∆attjsj + Σdj∈DζT
∆djsdj = sT . Let sT1 = Σattj∈ζ∆attjsj

and sT2 = Σdj∈DζT
∆djsdj . Thus, sT1 + sT2 = sT .

(v) Ui selects α1, α2, α3, β3 ∈R Z∗p, and computes C1 = Aih
α1
1 ,

C2 = uα1
1 , C3 = Πattj∈ζT

∆attj
i,j hα2

2 = A
µsT1
i hα2

2 , C4 = uα2
2 ,

C5 = Πdj∈DζT
g
sdj∆dj

2 ĥα3+β3
3 = g

sT2
2 ĥα3+β3

3 ,

C6 = ûα3
3 , C7 = v̂β3

3 .

(vi) Ui sets τ = α1xi + yi, δ = α1sT2 , and computes

V = SPK{(α1, α2, α3, xi, τ, δ) : e(C1, w)
e(g1, g2) = e(h1, g2)τe(h1, w)α1

e(C1, g2)xi (3.1)∧
C2 = uα1

1
∧
C4 = uα2

2
∧
C6 = ûα3

3
∧
C7 = v̂β3

3
∧

(3.2)
e(C3,U)e(C1, C5)

e(C1, vT ) = e(h2,U)α2e(C1, ĥ3)α3+β3e(h1, g2)δ
e(h1, vT )α1

}(M) (3.3)

(a) Ui chooses blinding values rα1 , rα2 , rα3 , rβ3 , rxi , rτ , rδ ∈R Z∗p.
(b) Ui computes R1 = e(h1,g2)rτ e(h1,w)rα1

e(C1,g2)rxi ,

R2 = u
rα1
1 , R3 = u

rα2
2 , R4 = û

rα3
3 , R5 = v̂

rβ3
3 ,

RAtt = e(h2,U)rα2 e(C1,ĥ3)rα3+rβ3 e(h1,g2)rδ
e(h1,vT )rα1 .

(c) Ui computes c = H(gpk,M, {Ci}7
i=1, {Ri}5

i=1, RAtt).
(d) Ui computes sα1 = rα1 + cα1, sα2 = rα2 + cα2, sα3 = rα3 + cα3, sβ3 =

rβ3 + cβ3, sδ = rδ + cδ, sxi = rxi + cxi, sτ = rτ + cτ,.
Thus, V = (c, sα1 , sα2 , sα3 , sβ3 , sxi , sτ , sδ).

(vii) Outputs σ = ({Ci}7
i=1, V ) ∈ G4

1 ×G3
2 × Z∗8p .

1GM runs BuildTree algorithm to generate the public values of the predicate Υ and stores it in
a public repository. Note that if the public values of the required predicate is present in the public
repository then the user will not approach GM.
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A signer Ui proves the knowledge of (α1, α2, α3, β3, xi, τ, δ) which satisfies the
above 6 relations 3.1 - 3.3 described in SPK. The first relation 3.1 captures
whether a signer has a valid membership certificate issued by the Join algo-
rithm or not. The last relation 3.3 captures whether a signer has valid at-
tribute certificates or not. Note that the signature includes the 2 modules of
ElGamal encryption scheme (in encrypting membership certificate - (C1, C2)
and attribute certificates - (C3, C4)) and one module of Linear Encryption (LE)
scheme [28] (in encrypting dummy nodes - (C5, C6, C7)). Note that the first
and the last relations collectively proves that the first 2 ElGamal encryption
modules include the same membership certificate and last 2 ElGamal and LE
encryption module encrypts the related plaintext which makes the scheme CCA2
secure under random oracle model [56] and it helps to achieve full anonymity
property. Also note that the signature is independent of number of attributes,
thus its length is constant.

• Verify(params, gpk,M, σ,Υ) :
A verifier verifies the group signature σ as follows,

(i) The verifier computes R̃1 = e(h1,g2)sτ e(h1,w)sα1

e(C1,g2)sxi

(
e(g1,g2)
e(C1,w)

)c
,

R̃2 = u
sα1
1

(
1
C2

)c
, R̃3 = u

sα2
2

(
1
C4

)c
,

R̃4 = û
sα3
3

(
1
C6

)c
, R̃5 = v̂

sβ3
3

(
1
C7

)c
,

R̃Att =
(
e(h2,U)sα2 e(C1,ĥ3)sα3+β3 e(h1,g2)sδ

e(h1,vT )sα1

) (
e(C1,vT )

e(C3,U)e(C1,C5)

)c
.

(ii) The verifier checks whether
c

?= H(gpk,M, {Ci}7
i=1, {R̃i}5

i=1, R̃Att).

• OpenUser(params, gpk, okuser, σ,M,Υ, ~reg) :

(i) GM verifies the validity of σ by using Verify(param, gpk,M, σ,Υ). If σ is
not a valid signature, then GM outputs ⊥.

(ii) GM computes Ai = C1

C
x′1
2

.

(iii) GM searches Ai in ~reg, and outputs identity i. If there is no entry in ~reg,

then GM outputs 0.
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• TraceAtt(params, gpk, tkatt, σ,M,Υ) :

(i) GM verifies the validity of σ by using Verify(param, gpk,M, σ,Υ). If σ is
not a valid signature, then GM outputs ⊥.

(ii) GM computes ĝ = C5

C6
x′3C7

y′3
.

(iii) For all ζk : Υ(ζk) = 1, GM checks ĝ ?= g
skT2
2 , where skT2 = Σ

dj∈D
ζk
T

∆djsdj . If
any such ζk exists then GM outputs it else outputs φ.

• Revoke(params, gpk, ik, {kj}rj=1) :
Here GM revokes the users, {Uk1 , ...,Ukr}. First we show how GM revokes a single
user Uk:

(i) GM computes g̃2 = g
1

γ+xk
2 , g̃1 = ψ(g̃2), ũ1 = u

1
γ+xk
1 , h̃1 = h

1
γ+xk
1 , w̃ = g̃γ2 , Ũ =

g̃
1
µ

2 and g̃attj = g̃
sj
2 (∀attj ∈ Att).

(ii) GM sets new group public key, g̃pk = (g̃1, g̃2, ũ1, h̃1, u2, h2, û3, v̂3, ĥ3, w̃, Ũ ,
{g̃attj}attj∈Att) and adds it to the public repository.

(iii) GM also computes ˜̃gattj = g̃
µsj
2 (∀attj ∈ Att) and ˜̃h1 = h̃1

µ
.

(iv) GM set auxiliary values, Aux = (Ak, xk, g̃1, h̃1,
˜̃h1, {˜̃gattj}attj∈Att) and send

it to all group members.

(v) GM outputs g̃pk, Aux.

To revoke multiple users at a time, GM computes g̃2 = g
Πrj=1

1
γ+xkj

2 , i.e. first com-
pute the exponent value then perform exponentiation operation, and similarly
other values, where {kj}rj=1 are the user ids to be revoked.

• Update(g̃pk, Aux, ski) :
Unrevoked user Ui updates his member certificate and attribute certificates,
when user Uk is revoked, as follows:

(i)

Ãi =
(
g̃1h̃1

yi

Ai

) 1
xi−xk
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=

g
1

γ+xk
1 h

1
γ+xk

yi

1

(g1h
yi
1 )

1
γ+xi


1

xi−xk

=
g 1

γ+xk
− 1
γ+xi

1 h

(
1

γ+xk
− 1
γ+xi

)
yi

1


1

xi−xk

=
(
g

xi−xk
(γ+xk)(γ+xi)
1 h

xi−xk
(γ+xk)(γ+xi)
1

) 1
xi−xk

= (g̃1h̃1
yi)

1
γ+xi .

This is a valid member certificate.

(ii) Similarly for each attj ∈ Ai compute T̃i,j =
(

˜̃g1
˜̃hyi1

Ti,j

) 1
xi−xk

= (g̃1h̃1
yi)

sjµ

γ+xi , a valid attribute certificate.

(iii) Outputs s̃ki = (Ãi, xi, yi, {T̃i,j}attj∈Ai).

This revocation technique is adopted from [48] and made it suitable to the
proposed scheme. If multiple users have been revoked, say revoked user ids are
{kj}rj=1, then user Ui repeats this process r times each with xkj , for j ∈ [1, r].
Thus this scheme supports concurrent join and revocation, which makes it more
suitable for dynamic groups. In this revocation mechanism the user is revoked
by the publishing the value Aux and consequently all the unrevoked users need
to get these updates to update their secrets and verifiers need to use the updated
group public key to verify the signature from there on.

3.4 Security Analysis

In this section, we show that our scheme satisfies attribute anonymity, user anonymity,
traceability, non-frameability and collision resistance of attribute certificates. Let
p, qH and qS be the order of bilinear groups, the number of hash queries and the
number of signature queries, respectively.
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Theorem 3.4.1 The proposed ABGS scheme is correct.

Proof SPK ensures that the scheme is correct. For this, we need to show that Ri = R̃i,

for i = {1, ..., 5} and RAtt = R̃Att. If all these equalities hold then
H(gpk,M, {Ci}7

i=1, {Ri}5
i=1, RAtt)

= H(gpk,M, {Ci}7
i=1, {R̃i}5

i=1, R̃Att) holds and signature should be correctly verified.

R̃1 = e(h1, g2)sτ e(h1, w)sα1

e(C1, g2)sxi

(
e(g1, g2)
e(C1, w)

)c

= e(h1, g2)rτ e(h1, w)rα1

e(C1, g2)rxi

(
e(h1, g2)τe(h1, w)α1

e(C1, g2)xi
e(g1, g2)
e(C1, w)

)c

= R1

(
e(h1, g2)α1xi+yie(h1, g

γ
2 )α1

e(Aihα1
1 , g2)xi

e(g1, g2)
e(C1, w)

)c

= R1

 e(h1, g2)α1xi+yi+γα1

e((g1h
yi
1 )

1
xi+γ , g2)xie(h1, g2)α1xi

e(g1, g2)
e(C1, w)

c

= R1

 e(h1, g2)α1xi+yi+γα1−α1xi

e(g1, g2)
xi

xi+γ e(h1, g2)
yixi
xi+γ

e(g1, g2)
e(C1, w)

c

= R1

e(h1, g2)γα1+yi−
yixi
xi+γ

e(g1, g2)1− xi
xi+γ

e(C1, w)

c

= R1

e(h1, g2)γα1+ yiγ

xi+γ e(g1, g2)
γ

xi+γ

e(C1, w)

c

= R1

e(h1, w)α1+ yi
xi+γ e(g1, w)

1
xi+γ

e(C1, w)

c

= R1

e(h1, w)α1e(hyi1 , w)
1

xi+γ e(g1, w)
1

xi+γ

e(C1, w)

c

= R1

(
e(hα1

1 , w)e(Ai, w)
e(C1, w)

)c

= e(h1, g2)rτ e(h1, w)rα1

e(C1, g2)rxi (1)c

= R1,

R̃2 = u
sα1
1

(
1
C2

)c
= u

rα1
1

(
uα1

1
1
C2

)c
= R2,
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R̃3 = u
sα2
2

(
1
C4

)c
= u

rα2
2

(
uα2

2
1
C4

)c
= R3,

R̃4 = û
sα3
3

(
1
C6

)c
= û

rα3
3

(
ûα3

3
1
C6

)c
= R4,

R̃5 = v̂
sβ3
3

(
1
C7

)c
= v̂

rβ3
3

(
v̂β3

3
1
C7

)c
= R5,

R̃Att =
e(h2,U)sα2e(C1, ĥ3)sα3+sβ3e(h1, g2)sδ

e(h1, vT )sα1

( e(C1, vT )
e(C3,U)e(C1, C5)

)c

=
e(h2,U)rα2e(C1, ĥ3)rα3+rβ3e(h1, g2)rδ

e(h1, vT )rα1


e(h2,U)α2e(C1, ĥ3)α3+β3e(h1, g2)δ

e(h1, vT )α1

c ( e(C1, vT )
e(C3,U)e(C1, C5)

)c

= RAtt

e(h2,U)α2e(C1, ĥ3)α3+β3e(h1, g2)δ
e(h1, vT )α1

e(C1, vT )
e(AµsT1

i hα2
2 ,U)e(C1, g

sT2
2 ĥα3+β3

3 )

c

= RAtt

 e(h2,U)α2e(C1, ĥ3)α3+β3e(h1, g2)δ × e(C1, vT )
e(h1, vT )α1 × e(AµsT1

i , g
1/µ
2 )e(hα2

2 ,U)e(C1, g
sT2
2 )e(C1, ĥ

α3+β3
3 )

c

= RAtt

(
e(h1, g2)δ
e(h1, vT )α1

e(C1, vT )
e(AsT1

i , g2)e(Aihα1
1 , g

sT2
2 )

)c

= RAtt

(
e(h1, g2)δe(C1, vT )

e(hα1
1 , vT )e(AsT1

i , g2)e(Ai, g
sT2
2 )e(hα1

1 , g
sT2
2 )

)c

= RAtt

(
e(h1, g2)δe(C1, vT )

e(hα1
1 , vT )e(Ai, g

sT1+sT2
2 )e(h1, g2)δ

)c

= RAtt

(
e(h1, g2)δe(C1, vT )
e(Aihα1

1 , vT )

)c
= RAtt(1)c = RAtt.

�

Theorem 3.4.2 The proposed ABGS scheme satisfies the attribute anonymity with
CCA2 secure in the random oracle model under DLDH and DDH assumption.

Proof The following Lemma implies the Theorem 3.4.2. �
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3.4 Security Analysis

Lemma 3.4.3 Suppose an adversary A breaks the attribute anonymity of the pro-
posed scheme with the advantage ε. Then, we can construct an algorithm B that breaks
the DLDH assumption on G2 with the advantage 1

2

(
ε
4 −

qS+qH
p

)
and breaks the XDH

assumption (namely DDH assumption over G1) with the advantage 1
2

(
ε
4 −

qS+qH
p

)
.

Proof The input of B is a tuple (ũ, ṽ, h̃, Ũ = ũa, Ṽ = ṽb, H̃ = h̃c) ∈ G6
2, where a, b, c ∈

Z∗p and either c = a+ b (DLDH tuple) or c ∈R Z∗p(random tuple) and (u, h, U =
ua
′
, H = hb

′) ∈ G4
1, where a′, b′ ∈ Z∗p and either b′ = a′(DDH tuple) or b′ is ran-

dom (random tuple). From such a tuple, using the classical random self-reducibility,
one can derive many independent tuples: (ũ, ṽ, h̃, Ũi = Ũaiũbi , Ṽi = Ṽ ai ṽci , H̃i =
H̃aih̃bih̃ci), where ai, bi, ci ∈R Z∗p and (u, h, Ui = Ua′iub

′
i , Hi = Ha′ihb

′
i), where a′i, b′i ∈R

Z∗p. Let the challenged group signature be denoted by σ∗ = ({C∗i }7
i=1, V

∗).

Setup. Algorithm B simulates the proposed ABGS scheme as follows:

(i) B generates system parameters, params = (G1,G2,G3, e, ψ,H, Att).

(ii) B selects d ∈R {0, 1}. The value of d decides which type of adversary A is.

(iii) If d = 0, B sets u2 = u, h2 = h, thus x′2 is unknown for B, and selects x′3, y′3 ∈R
Z∗p, ĥ3 ∈R G2 and computes û3 = ĥ

1/x′3
3 and v̂3 = ĥ

1/y′3
3 .

If d = 1, B sets û3 = ũ, v̂3 = ṽ, ĥ3 = h̃, thus (x′3, y′3) is unknown for B, and
selects x′2 ∈R Z∗p, u2 ∈R G1 and sets h2 = u

x′2
2 .

(iv) B selects γ, µ, x′1, {sj}attj∈Att ∈R Z∗p, g2 ∈R G2 and computes g1 = ψ(g2), w =

gγ2 ,U = g
1
µ

2 , gatt1 = gs12 , ..., gattm = gsm2 , where m = |Att|, selects u1 ∈R G1 and
computes h1 = u

x′1
1 .

(v) B sets a group public key, gpk = (g1, g2, u1, h1, u2, h2, û3, v̂3, ĥ3, w,U , {gattj}attj∈Att),
user opening key, okuser = x′1, and an issuing key, ik = (γ, µ, S).

(vi) B gives gpk, ik, okuser to A.
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3.4 Security Analysis

Hash queries. At any time, A can query the hash function H. B responds with
random values with consistency.

Phase 1. A requests the queries as given in attribute anonymity game. B answers
to these queries as the real settings of ABGS scheme, since B knows all the values. For
d = 1, (x′3, y′3) is unknown, B uses the following procedure to answer the TraceAtt
query on any given σ; B computes Ai by following the procedure in OpenUser algo-
rithm and finds AµsT1

i = C3

C
x′2
4

. For all ζk : Υ(ζk) = 1, ζk ⊆ Ai, B gets ĝk = Π
dj∈D

ζk
T

g
∆dj

dj

and checks e(AµsT1
i ,U) ?= e(Ai, vT/ĝk). If any such ζk exists then B outputs it, else

outputs φ. This makes the scheme CCA2 secure, since opening oracle TraceAtt is
provided to A.

Challenge. A outputs M∗,Υ∗ and non-corrupted user Ui such that there exists
two attribute sets ζ0, ζ1 ⊆ Ai which satisfies the predicate Υ∗, i.e. Υ∗(ζ0) = 1
and Υ∗(ζ1) = 1 holds to be challenged. TΥ∗ is a public value of the predicate Υ∗

and vT ∗ = gsT∗2 . B picks ρ ∈R {0, 1}. B tries to simulate the challenged signature
σ∗ ←−Sign(params, gpk, ski, ζρ,M∗,Υ∗) from Ui as follows,

• the encryption: according to d, by choosing an additional random bit d′.

– if d = 0, C∗3 = Πattj∈ζρT
∆attj
i,j Hi = A

µsT1
i Hi, C

∗
4 = Ui,

C∗5 = Π
dj∈D

ζd′
T

g
∆dj

sdj
2 ĥα3+β3

3 = g
sT2
2 ĥα3+β3

3 , C∗6 = ûα3
3 and C∗7 = v̂β3

3 , for a
random α3, β3, and the other values are computed as the real settings;

– if d = 1, C∗3 = Πattj∈ζd′T
∆attj
i,j hα2

2 = A
µsT1
i hα2

2 , C
∗
4 = uα2

1 ,

C∗5 = Π
dj∈D

ζd′
T

g
∆dj

sdj
2 H̃i = g

sT2
2 H̃i, C

∗
6 = Ũi and C∗7 = Ṽi, for a random α2

and the other values are computed as the real settings.

• the proof of validity SPK V ∗ is simulated by selecting a random c∗, s∗α1 , s
∗
α2 , s

∗
α3 ,

s∗β3 , s
∗
xi
, s∗τ , s

∗
δ ∈R Z∗p and computing the corresponding ({R∗i }5

i=1, R
∗
Att) by fol-

lowing the procedure given in Verify algorithm and patching the hash oracle at
H(gpk,M∗, {C∗i }7

i=1, {R∗i }5
i=1, R

∗
Att) to c∗. If this backpatch fails then B outputs

a random bit and aborts. This probability of failure is (qS + qH)/p.
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3.4 Security Analysis

In case of failure, B outputs a random bit and aborts, otherwise, ({C∗i }7
i=1, V

∗) is the
signature on M∗ given back to A.

Phase 2. A requests the queries as given in attribute anonymity game and
B answers it similar to phase 1.

Output. A outputs its guess ρ′ ∈ {0, 1} with advantage ε. Our algorithm B outputs
0 if ρ = ρ′ (for d = 0 indicating that H = ha

′ , DDH tuple, for d = 1 indicating that
H̃ = h̃a+b, DLDH tuple); otherwise B outputs 1 (indicating that is a random tuple).
If it is a DLDH tuple, and d′ = ρ, then for d = {1} the ElGamal encryption
component(C∗3 , C∗4) as well as LE encryption component(C∗5 , C∗6 , C∗7) always uses ζρ
for encryption and this is a valid signature (the advantage of A in guessing ρ is ε).
However, if d′ 6= ρ, both ζ’s are encrypted, A has thus no advantage in guessing ρ. If
this is a random tuple then the signature is independent of ρ and then the adversary’s
advantage is 0. As a consequence, it has an advantage ε/4 in distinguishing DLDH
tuples.
Similarly, if it is a DDH tuple, for d = 0, it has an advantage ε/4 in distinguishing
DDH tuples.
Therefore the advantage of B in breaking DLDH assumption when there is no failure
and when B guesses correctly which type of adversary A is, is at least 1

2

(
ε
4 −

qS+qH
p

)
.

And the advantage of B in breaking DDH assumption when there is no failure and
when B guesses correctly which type of adversary A is, is at least 1

2

(
ε
4 −

qS+qH
p

)
. �

Theorem 3.4.4 The proposed ABGS scheme satisfies the user anonymity with CCA2
secure in the random oracle model under DDH assumption.

Proof The following Lemma implies the Theorem 3.4.4. �

Lemma 3.4.5 Suppose an adversary A breaks the user anonymity of the proposed
scheme with the advantage ε. Then, we can construct an algorithm B that breaks the
XDH assumption (namely DDH assumption over G1) with the advantage ε

4 −
qS+qH

p
.
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Proof The input of B is a tuple (u, h, U = ua
′
, H = hb

′) ∈ G4
1, where a′, b′ ∈ Z∗p

and either b′ = a′(DDH tuple) or b′ is random (random tuple). From such a tuple,
using the classical random self-reducibility, one can derive many independent tuples:
(u, h, Ui = Ua′iub

′
i , Hi = Ha′ihb

′
i), where a′i, b′i ∈R Z∗p. Let the challenged group signa-

ture be denoted by σ∗ = ({C∗i }7
i=1, V

∗).

Setup. Algorithm B simulates the proposed ABGS scheme as follows,

(i) B generates system parameters, params = (G1,G2,G3, e, ψ,H, Att).

(ii) B selects d ∈R {0, 1}. The value of d decides which type of adversary A is.

(iii) If d = 0, B sets u1 = u, h1 = h, thus x′1 is unknown for B, and selects x′2 ∈R
Z∗p, u2 ∈R G1 and computes h2 = u

x′2
2 .

If d = 1, Bsets u2 = u, h2 = h, thus x′2 is unknown for B, and selects x′1 ∈R
Z∗p, u1 ∈R G1 and computes h1 = u

x′1
1 .

(iv) B selects γ, µ, x′3, y′3, {sj}attj∈Att ∈R Z∗p, g2 ∈R G2 and computes g1 = ψ(g2), w =

gγ2 ,U = g
1
µ

2 , gatt1 = gs12 , ..., gattm = gsm2 , where m = |Att|, selects ĥ3 ∈R G2, and
computes û3 = ĥ

1/x′3
3 and v̂3 = ĥ

1/y′3
3 .

(v) B sets a group public key, gpk = (g1, g2, u1, h1, u2, h2, û3, v̂3, ĥ3, w,U , {gattj}attj∈Att),
Attribute opening key, tkatt = (x′3, y′3), and an issuing key, ik = (γ, µ, S).

(vi) B gives gpk, ik, tkatt to A.

Hash queries. At any time, A can query the hash function H. B responds with
random values with consistency.

Phase 1. A requests the queries as given in user anonymity game. B answers to
these queries as the real settings of ABGS scheme, since B knows all the values. For
d = 0, x′1 is unknown, B uses the following procedure to answer the OpenUser query on
any given σ; B gets ĝ = g

sT2
2 by following the procedure in TraceAtt algorithm, com-

putes AµsT1
i = C3

C
x′2
4

, computes gsT1
2 = vT/ĝ and compare e(AµsT1

i ,U) ?= e(Aj, g
sT1
2 ),∀Aj

in ~reg and responds to A with j. This makes the scheme CCA2 secure, since opening
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3.4 Security Analysis

oracle OpenUser is provided to A.

Challenge. A outputs a message M∗, a predicate Υ∗, an attribute set ζ and two
uncorrupted members i0, i1, such that Υ∗(ζ) = 1, ζ ⊆ Ai0 and ζ ⊆ Ai1 , to be chal-
lenged. TΥ∗ is a public values of the predicate Υ∗. B picks ρ ∈R {0, 1}. B try to
simulate the challenged signatures σ∗ from Aiρ as follows,

• the encryption: according to d, by choosing an additional random bit d′.

– if d = 0, B computes C∗1 = AiρHi, C
∗
2 = Ui, C

∗
3 = Πattj∈ζT

∆attj
id′ ,j

hα2
2 =

A
µsT1
id′

hα2
2 , C

∗
4 = uα2

2 , for a random α2 and computes the other values as the
real settings;

– if d = 1, B computes C∗1 = Aid′h
α1
1 , C

∗
2 = uα1

1 , C
∗
3 = Πattj∈ζT

∆attj
iρ,j Hi =

A
µsT1
iρ Hi, C

∗
7 = Ui, for a random α1 and computes the other values as the

real settings.

• the proof of validity SPK V ∗ is simulated by selecting a random c∗, s∗α1 , s
∗
α2 , s

∗
α3 ,

s∗β3 , s
∗
xi
, s∗τ , s

∗
δ ∈R Z∗p and computing the corresponding ({R∗i }5

i=1, R
∗
Att) by fol-

lowing the procedure given in Verify algorithm and patching the hash oracle
at H(gpk,M∗, {C∗i }7

i=1,

{R∗i }5
i=1, R

∗
Att) to c∗. If this backpatch fails then B outputs a random bit and

aborts. This probability of failure is (qS + qH)/p.

In case of failure, B outputs a random bit and abort, otherwise, ({C∗i }7
i=1, V

∗) is
the signature on M∗ given back to A.

Phase 2. A requests the queries as given in user anonymity game and B answers
it similar to phase 1.

Output. A outputs its guess ρ′ ∈ {0, 1} with advantage ε. Our algorithm B outputs
0 if ρ = ρ′ (indicating that H = ha

′ ,DDH tuple); otherwise B outputs 1 (indicating
that is a random tuple).
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If it is a DDH tuple, and d′ = ρ, then for d = {0, 1} the ElGamal encryption
components(C∗1 , C∗2) and (C∗3 , C∗4) always encrypts Aρ, this is a valid signature (the
advantage of A in guessing ρ is ε). However, if d′ 6= ρ, both certificates are encrypted,
A has thus no advantage in guessing ρ. If this is a random tuple then the signature
is independent of ρ and then the adversary’s advantage is 0. As a consequence, it has
an advantage ε/4 in distinguishing DDH tuples.

Therefore the advantage of B in breaking DDH assumption when there is no
failure and when B guesses correctly which type of adversary A is, is at least
1
2

((
ε
4 −

qS+qH
p

)
+
(
ε
4 −

qS+qH
p

))
≤ ε

4 −
qS+qH

p
. �

Theorem 3.4.6 We suppose an adversary A breaks the traceability of the proposed
scheme with the advantage ε. Then, in the random oracle model, we can construct
an algorithm B that breaks the q-SDH assumption with the advantage 1

6ε.

Proof Since the membership certificate format is similar to the one proposed in
[48], the proof is similar to the proof given in [48; 51]. The input of simulator B is
(g, g′, g′1, ..., g′q) ∈ G1×Gq+1

2 , where g = ψ(g′), g′i = (g′)ξi(for i ∈ [1, q]) and let g′0 = g′.
Let q − 1 be the total number of members. B simulates KeyGen as follows:

(i) B selects ν, µ, {xi}q−1
i=1 , {yi}

q−1
i=1 , x

′
1, x
′
2, x
′
3, y
′
3, {sj}(∀attj∈Att) ∈R Z∗p, u2 ∈R G1, and

set h2 = u
x′2
2 , and selects ĥ3 ∈R G2, and set û3 = ĥ

1/x′3
3 and v̂3 = ĥ

1/y′3
3 .

(ii) B selects a target user Ui? ∈ {U1, ...,Uq−1}, and sets γ = ξ − xi? . B computes
g1, g2, h1 and w as follows:

• Let f(y) = ∏q−1
i=1 (y + xi). Therefore, f(γ) = f(ξ−xi?) = ∏q−1

i=1 (ξ − xi? + xi) =∑q−1
i=0 (αiξi), where α0, ..., αq−1 ∈ Zp are the coefficients of the polynomial

f(γ), are computable.

• Let fi(y) = f(y)/(y + xi) = ∏q−1
j=1,j 6=i (y + xj). Thus, fi(γ) = fi(ξ − xi?) =∏q−1

j=1,j 6=i (ξ − xi? + xj) = ∑q−2
j=0 (βjξj), where β0, ..., βq−2 are the coefficients

of the polynomial fi(γ), are computable.

78



3.4 Security Analysis

• Note that, gfi(γ) = (gf(γ))
1

xi+γ and fi?(γ) = f(γ)/(ξ − xi? + xi?) = f(γ)/ξ.

• Set g2 = (g′)νf(γ)/(g′)x′1yi?fi? (γ) = ∏q−1
i=0 (g′i)ναi/

∏q−2
j=0 (g′j)x

′
1yi?βj

• u1 = gfi? (γ) = ∏q−2
j=0 ψ(g′j)βj

• g1 = ψ(g2) = uνξ1 /h
yi?
1

• w =
{∏q−1

i=0 (g′i+1)αiν/∏q−2
j=0(g′j+1)βjx′1yi?

}
/gxi?2

=
{

(g′)νξf(γ)/(g′)x′1yi?ξfi? (γ)
}
/gxi?2

= gξ−xi?2 = gγ2

Thus B can compute these values by using the q−SDH input instances.

(iii) B computes h1 = u
x′1
1 and other parameters as the real settings.

(iv) B makes params = (G1,G2,G3, e, ψ,H, Att), okuser = x′1, tkatt = (x′3, y′3), ik =
(γ, µ, {sj}attj∈Att) and gpk = (g1, g2, u1, h1, u2, h2, û3, v̂3, ĥ3, w,U , {gattj}attj∈Att).
params, gpk, okuser and tkatt are given to A.

In the Join queries, B can get a secret value yi of a corrupted user by extracting the
commitment value. B computes a group membership certificate as follows:
In the case of i = i? : Ai? = uν1 = (uνξ1 )

1
ξ = (g1h

yi?
1 )

1
γ+xi? .

In the case of i 6= i? :Compute Ai as follows:
Ai =

(
gx
′
1
∏q−1
j=1,j 6=i,i? (ξ−xi?+xj)

)yi−yi?
gνfi(γ)

= g
x′1yi

ξ+xi−xi?

∏q−1
j=1,j 6=i? (ξ−xi?+xj) ×

{
gνf(γ)/gzyi?

∏q−1
j=1,j 6=i? (ξ−xi?+xj)

} 1
ξ+xi−xi?

= (g1h
yi
1 )

1
γ+xi

B can compute {Ti,j}attj∈Ai = {Asjµi }attj∈Ai . Now B can answer all the queries made
by an adversary. Finally, A outputs a forged signature σ∗ = ({C∗i }7

i=1, c
∗, s∗x,

s∗α1 , s
∗
α2 , s

∗
α3 , s

∗
β3 , s

∗
τ , s
∗
δ) with ε advantage.

By using the Forking Lemma, B can get the two valid signatures ({C∗i }7
i=1, c

∗, s∗x,

s∗α1 , s
∗
α2 , s

∗
α3 , s

∗
β3 , s

∗
τ , s
∗
δ) and ({C∗i }7

i=1, c
′, s′x, s

′
α1 , s

′
α2 , s

′
α3 , s

′
β3 , s

′
τ , s
′
δ) with probability ε′ ≥

1
5 −

8qh
η2k , η >

240qH
2k [48]. Let c′′ = c∗− c′, s′′x = s∗x− s′x, {s′′αi = s∗αi − s

′
αi
}3
i=1, s

′′
β3 = s∗β3 −

s′β3 , s
′′
δ = s∗δ−s′δ and s′′τ = s∗τ −s′τ . Let x̃ = s′′x/c

′′, α̃1 = s′′α1/c
′′, τ̃ = s′′τ/c

′′, Ã = C∗1/h
α̃1
1 ,

and ỹ = τ̃ − α̃1x̃.
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Now (Ã, x̃, ỹ) is a valid member certificate because e(C∗1 ,w)
e(g1,g2) = e(h1,g2)τ̃ e(h1,w)α̃

e(C∗1 ,g2)x̃ holds.
From the success of the adversary in the attack game, we know that Ã does not
belong to {Ai}q−1

i=1 . We assume that x̃ 6= xi? .
Consider,

Ã = (g1h
ỹ
1)

1
x̃+γ

= (uνξ1 h
ỹ−yi?
1 )

1
x̃+γ

= u
νξ+x′1(ỹ−yi? )

x̃+γ
1

=
(
g(νξ+x′1(ỹ−yi? ))

∏q−1
i=1,i 6=i? (ξ+xi−xi? )

) 1
x̃+ξ−xi?

=
(
g
∑q−1

i=0 ziξ
i
) 1
x̃+ξ−xi? (can be written in this form)

= g
z̃0

x̃+ξ−xi?
+
∑q−1

i=1 z̃iξ
i

(can be written in this form)

The polynomial coefficients z0, ..., zq−1, z̃0, z̃1, ..., z̃q−1 are computable. Let x = x̃−xi? ,
then (Ã/g

∑q−1
i=1 z̃iξ

i)
1
z̃0 = g

1
x+ξ holds. Therefore (x, g

1
x+ξ ) is the new SDH tuple. If

x̃ = xi? then (0, g
1
ξ ) will be the new SDH tuple. The advantage of B is (1

5−
8qH
η2k )ε ≥ 1

6ε,

since η > 240qH
2k . �

Theorem 3.4.7 We suppose an adversary A breaks the non-frameability of the pro-
posed scheme with the advantage ε. Then, we can construct an algorithm B that
breaks the DL assumption with the advantage 1

12(1 + 1
n
)ε, where n is the number of

honest members.

Proof The proof is similar to the one given in [48; 51]. The input of simulator B
is (g, g′) ∈ G2 × G2, let ξ = loggg

′. We consider the two types of adversaries by
the results of the OpenUser algorithm. We explain the details of classification of the
adversary in the proof. Let q be the number of all members, n be the number of
honest members, and q1 = q−n be the number of corrupt members. We assume that
all initial members {U1, ..., Un} are honest. B simulates KeyGen as follows:
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3.4 Security Analysis

(i) B selects d ∈R {0, 1}. If d = 1, then B selects a target user Ui? ∈ {U1, ...,Un}.
Note that d = 0 means B guesses that A is Type 1 Adversary, and d = 1 means
B guesses that A is Type 2 Adversary.

(ii) B computes the group public key and member certificates as follows:

(a) B selects γ, x′1, {sj}(∀attj∈Att), {xi, yi}
q
i=1 ∈R Z∗p. If d = 1, then set yi? = ξ.

(b) If d = 0, then B sets g1 = ψ(g), g2 = g and u1 = ψ(g′).

(c) If d = 1, then B selects g2 ∈R G2 and sets g1 = ψ(g2), u1 = ψ(g) and
yi? = ξ.

(d) B computes w = gγ2 , h1 = u
x′1
1 .

(e) B computes member certificates {(Ai, xi, yi)}qi=1 by using γ. If d = 1, then
Ai? = (g1ψ(g′)x′1)

1
xi?+γ = (g1u

yi?x
′
1

1 )
1

xi?+γ = (g1h
yi?
1 )

1
xi?+γ .

(f) B computes other public values, and gets params = (G1,G2,G3, e, ψ,H, Att),
okuser = x′1, tkatt = (x′3, y′3), ik = (γ, µ, S), and gpk = (g1, g2, u1, h1,

u2, h2, û3, v̂3, ĥ3, w,U , {gattj}attj∈Att).

(iii) B gives params, gpk, ik, okuser and tkatt to A.

In Join queries, A knows (Ai, xi), for i ∈ [1, q], because A plays the role of corrupted
GM. However, A cannot know secret key of a target user y?i . For Signing queries, B
makes a group signature by using (Ai, xi, yi), and return its signature, if d = 1 and
i = i?, then B aborts. For Corruption queries, B answers yi, if d = 1 and i = i?,
then B aborts. Finally, A outputs the valid group signature for honest user, say
Uk. We can get the member certificate (Ã, x̃, ỹ) by using the same technique as for
traceability. We define a Type 1 adversary A, which is the case of Ã = Ak ∈ {Ai}ni=1

and x̃ 6= xk. We define a Type 2 adversary A, which is the case of (Ã, x̃) = (Ak, xk).

• In the case of Type 1 : If d 6= 0, then B aborts. Otherwise Ã = (g1h
ỹ
1)

1
x̃+γ =

(g1+x′1ξỹ
1 )

1
x̃+γ holds. As Ã = Ak = (g1h

yk
1 )

1
xk+γ = (g1+x′1ξyk

1 )
1

xk+γ holds. Therefore,
B can compute ξ = x̃−xk

x′1{ỹ(xk+γ)−yk(x̃+γ))} .
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3.4 Security Analysis

• In the case of Type 2 : If d 6= 1, then B aborts. If k 6= i?, then B aborts.
Otherwise, Ã = (g1h

ỹ
1)

1
x̃+γ = (g1ψ(g)x′1ỹ)

1
x̃+γ holds. Moreover, Ã = Ai? =

(g1h
yi?
1 )

1
xi?+γ = (g1ψ(g)x′1yi? )

1
xi?+γ holds. Therefore B can get ξ = ỹ.

The advantage of B is (1
2(1

5 −
8qH
η2k )ε+ 1

2
1
n
(1

5 −
8qH
η2k )ε) > 1

12(1 + 1
n
)ε, since η > 240qH

2k .�

Theorem 3.4.8 The proposed scheme preserves collusion resistance of attribute cer-
tificates.

Proof We prove the theorem using two lemmas. In lemma 3.4.9, we show that
it is negligible to produce a group signature using forged attribute certificates. In
Lemma 3.4.10, we show that it is impossible to produce a group signature by using
appropriately the valid attribute certificates of colluding group members. �

Lemma 3.4.9 The probability that a signature by forged attribute certificates passes
the verification, Pr(Verify(params, gpk,M, σ,Υ) = 1 ∧Υ(ζ) 6= 1), is at most 1/p.

Proof We assume that ζi = {att1, att2, ..., attm̂}, such that Υ(ζi) = 1, without lim-
iting the generality of the forging. The equations used in the scheme to prove the
knowledge of (α1, α2, α3, β3, xi, τ, δ) are as follows:

e(C1, w)
e(g1, g2) = e(h1, g2)τe(h1, w)α1+β1

e(C1, g2)xi (3.4)

C2 = uα1
1 (3.5)

C4 = uα2
2 (3.6)

C6 = ûα3
3 (3.7)

C7 = v̂β3
3 (3.8)
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3.4 Security Analysis

e(C3,U)e(C1, C5)
e(C1, vT ) = e(h2,U)α2e(C1, ĥ3)α3+β3e(h1, g2)δ

e(h1, vT )α1
(3.9)

In (3.4) , a signer proves that C1 = Aih
α1
1 , where Ai is a valid membership certificate.

Equation (3.5) to (3.8) obviously holds. We can change (3.9) into e(C3,g
1
µ
2 )e(Aih

α1
1 ,C5)

e(Aih
α1
1 ,g

sT
2 ) =

e(h2,g
1
µ
2 )α2e(Aih

α1
1 ,ĥ3)α3+β3e(h1,g2)δ

e(h1,g
sT
2 )α1 , since the validity of SPK C1 has already been proven

(namely (3.4)). C3 = A
µsT1
i hα2

2 , C5 = g
sT2
2 ĥα3+β3

3 and δ = α1sT2 : sT1 + sT2 = sT holds
and sT2 6= sT since sT1 6= φ because atleast one Ti,j is needed to get ride of 1

µ
in U

in the equation, i.e. A
sjµ
i is needed. Let sT2 = ∑

dj∈DζT
∆djsdj and we assume that

C3 = A
sT1µ
i hα2

2 = Πattj∈ζA
tj∆jµ
i hα2

2 , where tj ∈ Z∗p. Then

∑
attj∈ζ

∆attj tj +
∑

dj∈DζT

∆djsdj = sT (3.10)

should holds. If tj = sj(attj ∈ ζ), then (3.10) obviously holds. On the con-
trary, we assume that tj(attj ∈ ζ) satisfies (3.10). We set the values of sT1 ,∆j

as constants. We randomly choose tj ∈ Z∗p(for j = 1, 2, ..., m̂ − 1), and set tm̂ =
(sT1−Σattj∈ζ\{attm̂}∆jtj)/∆m̂. Then (t1, t2, ..., tm̂) obviously satisfies (3.10). Therefore,
the total number of solution vectors (t1, t2, ..., tm̂) is pm̂−1. Therefore, the probability
that the randomly chosen vector (t1, t2, ..., tm̂) satisfying (3.10) is pm̂−1/pm̂ = 1/p.
This implies that, the probability that a signature made by forged attribute certifi-
cates (except the genuine certificates) satisfying (3.10) is pm̂−1−1

pm̂
= 1

p
(1− 1

pm̂−1 ). Next,
we consider tj = sj(for j = 1, 2, ..., l), where l < m̂. Let l = m̂ − 1, this means a
signer has valid attribute certificates of ζ\{attm̂}. We assume that a signature satis-
fies (3.9). Then tm̂ = (sT1 − Σattj∈ζ\{attm̂}∆jtj)/∆m̂ = sm̂ hold. This means that the
signer has valid attribute certificates of ζ, and the signature is not a forged signature.
Therefore, we set l < m̂ − 1. This means a signer has valid attribute certificates
of ζ\{attl+1, ..., attm̂}. Then there exist the number of pm̂−l−1 − 1 pairs (tl+1, ..., tm̂)
such that (s1, ..., sl, tl+1, ..., tm̂) satisfies (3.10) and (tl+1, ..., tm̂) 6= (sl+1, ..., sm̂). The
total number of vectors (tl+1, ..., tm̂) is pm̂−l. Therefore, the probability that a signa-
ture made by valid attribute certificates of ζ\{attl+1, ..., attm̂} and forged attribute
certificates of {attl+1, ..., attm̂} satisfying (3.10) is pm̂−l−1−1

pm̂−l
= 1

p
(1− 1

pm̂−l−1 ) ≤ 1
p
.
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3.5 Short ABGS

So, a verifier can decide whether an anonymous signer has valid attribute certifi-
cates when a verifier is given a signature which satisfies (3.9). �

Lemma 3.4.10 Even if some malicious participants Ui1 , ...,Uik(k > 1) with the set
of attributes ζi1 , ..., ζik collude, they cannot make a valid signature associated with an
predicate Υ, where (∪kj=1Υ(ζij) = 1) and Υ(ζij) 6== 1(j = 1, ..., k) with non-negligible
probability.

Proof. Without loss of generality, we assume that U0 with ζ0 and U1 with ζ1 represent
malicious participants. U0 and U1 attempt to make a valid signature associated with
Υ which satisfies Υ(ζ0 ∪ ζ1) = 1,Υ(ζ0) 6= 1 and Υ(ζ1) 6= 1. They can make the SPK
of (α, x0, τ, δ) satisfy (3.4) to (3.8) because they have a valid membership certificate
A0. We assume that At0 = A1, where t ∈ Z∗p. Note that the probability of t = 1 is
negligible. Then, from (3.10), Σattj∈ζ0∆jsj + Σattj∈ζ1t∆jsj 6= sT1 holds since t 6= 1.
This means that they cannot use {Ti0,j}attj∈ζ0 and {Ti1,j}attj∈ζ1 simultaneously. �

3.5 Short ABGS

In this section, we present a scheme with shorter signature than the previous one
but opening of user anonymity and attribute anonymity are not independent. In this
scheme the key tkatt can reveal the user identity of the signature. Except this the
scheme preserves all the security features of the previous scheme. All the algorithms
are same as the previous scheme except Sign algorithm and a few modifications to
KeyGen algorithm.
Sign(params, gpk, ski, ζ,M,Υ):

A signer Ui signs a message M ∈ {0, 1}∗ as follows:

(i) Get the public values of Υ, TΥ = ({sdj}dj∈DTΥ
, vT , T

ext), from the public repos-
itory.

(ii) Ui chooses ζ ⊆ Ai as an input such that Υ(ζ) = 1.
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3.5 Short ABGS

(iii) Ui runs MakeSimplifiedTree(ζ, T ext) and gets the corresponding ∆attj(∀attj ∈
ζ), and ∆dj(∀dj ∈ D

ζ
T ).

(iv) Note that Σattj∈ζ∆attjsj + Σdj∈DζT
∆djsdj = sT . Let sT1 = Σattj∈ζ∆attjsj and

sT2 = Σdj∈DζT
∆djsdj . Thus, sT1 + sT2 = sT .

(v) Ui selects α1, α2, α3 ∈R Z∗p, and computes C1 = Aih
α1
1 ,

C2 = uα1
1 , C3 = Πattj∈ζT

∆attj
i,j hα2

2 = A
µsT1
i hα2

2 , C4 = uα2
2 ,

C5 = Πdj∈DζT
A

∆dj
sdj

i hα3
3 = A

sT2
i hα3

3 , C6 = uα3
3 .

(vi) Ui sets τ = α1xi + yi, and computes
V = SPK{(α1, α2, α3, xi, τ) : e(C1,w)

e(g1,g2) = e(h1,g2)τ e(h1,w)α1

e(C1,g2)xi
∧
C2 = uα1

1∧
C4 = uα2

2
∧
C6 = uα3

3
∧ e(C3,U)e(C5,g2)

e(C1,vT ) = e(h2,U)α2e(h3,g2)α3

e(h1,vT )α1 }(M).

(a) Ui chooses blinding values rα1 , rα2 , rα3 , rxi , rτ ∈R Z∗p.

(b) Ui computes R1 = e(h1,g2)rτ e(h1,w)rα1

e(C1,g2)rxi ,

R2 = u
rα1
1 , R3 = u

rα2
2 ,

R4 = u
rα3
3 , RAtt = e(h2,U)rα2 e(h3,g2)rα3

e(h1,vT )rα1 .

(c) Ui computes c = H(gpk,M, {Ci}6
i=1, {Ri}4

i=1, RAtt).

(d) Ui computes sα1 = rα1 + cα1, sα2 = rα2 + cα2, sα3 = rα3 + cα3, sxi =
rxi + cxi, sτ = rτ + cτ,.
Thus, V = (c, sα1 , sα2 , sα3 , sxi , sτ ).

(vii) Outputs σ = ({Ci}6
i=1, V ).

Here we can see that the signature algorithm contains 3 modules of ElGamal encryp-
tion scheme and signature contains 6 elements from G1 and 6 elements from Z∗p. One
can derive the security analysis of this scheme similar to the previous scheme. Thus
this scheme can be used where there is one authority for opening both user anonymity
and attribute anonymity.
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Table 3.1: Comparison of ABGS scheme with other schemes
Reference [72] Reference [51] Our Scheme

Non-frameability no yes yes
CCA - user anonymity no yes yes
Attribute anonymity no no yes
User revocation yes no yes
Signature Length O(Φ) O(Φ) O(1)
User’s signing key length (m̂ + 1)|G1| + |Z∗p| (m̂ + 1)|G1| + 2|Z∗p| |G1| + |Z∗p|
Assumption DLDH, q-SDH DDH, q-SDH, DL DDH,DLDH, q-SDH, DL
Model RO RO RO
Signing

(
(7+2Φ)G1+(5+Φ)G3

+(Φ+1)e

) (
(9+3Φ)G1+(1+Φ)G2

+8G3+3e

)
(8 + Φ)G1 + 7G2 + 12G3 + 7e

Verification
(

(6+2r)G1+(8+2Φ)G3
+(Φ+2r+1)e

) (
(11+2Φ)G1+(Φ+1)G2

+14G3+6e

)
6G1 + 6G2 + 19G3 + 12e

3.6 Comparison

The group signature of the proposed scheme contains 4 elements from G1, 3 elements
from G2 and 8 elements from Z∗p. Using the MNT family of curves [88], as described
in [30], one can take p to be a 170-bit prime and use groups G1 and G2 where each
element is 171-bits. Thus, the total group signature length is 2558 bits (= 320 bytes).
Similarly for Short ABGS it is 256 bytes.
Let Φ = |ζ|, where ζ be the set of attributes which is associated with a signature and
m = |Att|. Let m̂ be the average number of attributes assigned to any user. In Table
3.1, we compare the efficiency of our scheme with the other schemes proposed in [72]
and [51]. In this table, RO means Random oracle model, e represents the paring
operation and r is the number of revoked members. Note that the verification cost
of the proposed scheme is constant.

3.7 Summary

We have proposed an ABGS scheme with attribute anonymity and the constant size
signature, and proven that it is secure under random oracle model. We have also
included the revocation mechanism which makes the scheme attractive and practical.
In our scheme the signature length is shorter and it is CCA2 secure. Moreover it is
having independent opening of attribute anonymity and user anonymity.
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Chapter 4

A VLR-ABGS Scheme with
Backward Unlinkability and
Attribute Anonymity in the
Random Oracle Model

In the last chapter, we proposed an ABGS scheme with attribute anonymity. In this
chapter, we propose an ABGS scheme with Verifier-Local Revocation (VLR) and
backward unlinkability. In VLR schemes, only verifiers are involved in the revocation
of a member, while signers are not. We prove that the scheme is secure under random
oracle model with DL, q-SDH, DLIN and KEA1 assumptions.

4.1 Introduction

Khader proposed an ABGS scheme with VLR feature but does not address attribute
anonymity [72]. Afterwards Emura et al. in [52] have proposed an ABGS scheme,
but this scheme neither addresses the attribute anonymity issue nor provides the
revocation feature. To the best of our knowledge there is only one ABGS scheme



4.2 Proposed Scheme

with VLR feature proposed by Khader in [72] but the scheme does not have backward
unlinkability feature nor addressed attribute anonymity. Moreover, in this scheme
the signature length is linear in terms of the number of attributes. The backward
unlinkability feature gives provision to suspend a group member for a certain period.

We propose an ABGS scheme with attribute anonymity and VLR feature. Fur-
thermore, we add one more security feature namely, attribute unforgeability. At-
tribute unforgeability is the special case of collusion resistance security feature of [52],
which means that it should be impossible for any individual member to satisfy the
predicate with invalid set of attributes. Apart from ABGS schemes many VLR group
signature (VLR-GS) schemes are proposed either in random oracle model [31; 38; 91]
or in the standard model [82]. We note that to build a VLR-ABGS scheme with
attribute anonymity in the standard model one can also combine an ABS scheme [70]
with a VLR-GS scheme [82], but it incurs combined cost of both the schemes.

In Section 4.2, we present the proposed VLR-ABGS scheme with attribute anonymity
and the related security definitions. The construction of the proposed VLR-ABGS
scheme is given in Section 4.3. Its security analysis is given in Section 4.4. followed
by comparison with previous schemes in Section 4.5. Finally we summarize in Section
4.6.

4.2 Proposed Scheme

In this section, we propose a VLR-ABGS scheme with backward unlinkability and at-
tribute anonymity secure under the random oracle model. In verifier-local revocation
group signatures (VLR-GS), originally suggested by Chaum in [42] and formalized by
Boneh et al. in [31], the group manager maintains a periodically updated revocation
list (RL) which is used by all verifiers to perform the revocation test and it makes
sure that the signatures are not produced by a revoked member. Let k be the security
parameter, T be the number of time intervals (it is polynomially bounded by k), Ai
the membership certificate for Ui, {Ti,j}attj∈Ai the attribute certificates of Ui, the Ti,j
is the attribute certificate of attj ∈ Att to Ui, ski denotes the group private key for the
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member Ui which includes both Ai and {Ti,j}attj∈Ai . The signature verification algo-
rithm is provided with an additional argument called the Revocation List (RL). The
RL contains a token for each revoked user. The verification algorithm accepts all sig-
natures issued by unrevoked users and reveals no information about which unrevoked
user issued the signature. However, if a user is ever revoked by having his revocation
token added to the RL, signatures from that user are no longer accepted. Let RLt
be a set, which contains the revocation tokens of the revoked users at the interval t,
RL = {RLt}Tt=1 be the public revocation list, n be the number of group members and
~grt be the (n× T)-vector of revocation tokens, ~grt = {grt[1][1], ..., grt[n][T]}, where
grt[i][t] denotes the token of member Ui at interval t. Thus, RLt = {grt[i][t]}i∈{1,...,n}
it contains only revoked user tokens at the interval t. Note that ~grt is not publicly
accessible.

The user Ui can make a group signature on a document M with the predicate Υ
during the interval t if there exists a set of attributes ζ ⊆ Ai with the user such that
Υ(ζ) = 1 and grt[i][t] /∈ RLt.

Definition 4.2.1 (VLR-ABGS) A VLR-ABGS scheme consists of the following
algorithms. Unless otherwise indicated, algorithms are randomized.

• params ← Setup(1k) : This algorithm takes the security parameter k as an
input and returns the system parameter params.

• (gpk, ik, ~grt) ← KeyGen(params) : This algorithm takes the system parameter
params, and returns a group public key gpk, an issuing key ik and the revocation
token vector, ~grt.

• ski ← Join(〈params, gpk, t, ik, upki,Ai〉 , 〈params, gpk, t, upki, uski〉) : This is
the interactive group joining protocol. It takes as input params, gpk, the current
time interval t, the issuing key ik, upki and Ui

′s attributes Ai ⊆ Att from GM,
and params, gpk, t, upki, and uski from Ui. In the protocol Ui ends with a
member secret key ski and GM ends with updated revocation token vector ~grt

and registration table ~reg.
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• σ ← Sign(params, gpk, t, ski, ζ,M,Υ) : This algorithm takes params, gpk, the
current time interval t, ski, an attributes set ζ ⊆ Ai, message M, and the
predicate Υ as an input and returns a group signature σ on M .

• 0/1← Verify(params, gpk, t, RLt,M,Υ, σ) : This is a deterministic algorithm
which takes params, gpk, the interval value t,M, σ,Υ and a set of revocation
tokens RLt for the period t as an input and returns 1/0. If 1 then the algorithm
claims that the σ is a valid signature, otherwise, σ is invalid.

Trace: As mentioned in [31], any such group signature scheme has an associated
implicit tracing algorithm that traces a signature to the group member who generate it
using the vector ~grt: on input a valid message-predicate-signature tuple (M,Υ, σ) for
period t, the opener can determine who was the author of σ by successively executing
the verification algorithm on (M,Υ, σ) using the vector of revocation tokens (i.e.,
with RLt = {grt[i][t]}i∈{1,...,n}) and outputting the identity i ∈ {1, ..., n} for which
the verification algorithm returns 1.

Revoke: When the member Ui is revoked in the interval t, the GM publishes (or
adds) the secret tokens grt[i][t], ..., grt[i][T] into the public lists RLt, RLt+1, ..., RLT,
respectively.

Remark When a new attribute attm+1 is added, then an attribute certificate corre-
sponding to that attribute attm+1 needs to be issued for the eligible user(s) only.

Entities: Following are the entities in VLR-ABGS scheme:

• The group manager GM, also known as issuer, has issuing key ik using which he
enrolls a user into the group by allotting some privileges (in terms of attributes)
say Ai ⊆ Att and issuing a user’s private key ski, by running interactive Join
algorithm with the user. Issuer revokes a group member by publishing the
revocation token of the member and also can reveal the signer’s identity from
the group signature by using ~grt.
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• Group members or signers with their private keys sk run Sign algorithm to
produce a group signature on a document M with predicate Υ if they possess
valid attribute set which satisfies the predicate.

• Outsider or verifier who can seek a group signature for a document M with
predicate Υ from group manager GM. He can also verify the group signature
using the group public key, gpk.

Note Normally the Setup and KeyGen algorithms are run by some trusted party and
he will distribute the keys to the concerned entities.

ABGS scheme is correct if a group signature is produced by the unrevoked group
member using his signing key and his attribute set.

Definition 4.2.2 (Correctness) Correctness requires that for all params← Setup(1k),
all (gpk, ik, ~grt)← KeyGen(params), all t ∈ [1,T], all Υ, all RLt ∈ RL, all ζ ⊆ Att

and all M ∈ {0, 1}∗,

Verify(params, gpk, t, RLt,M, Sign(params, gpk, t, ski, ζ,M,Υ),Υ) = 1

⇐⇒ grt[i][t] /∈ RLt

In ABGS scheme a group member may have multiple attribute sets to satisfy the
predicate and he can produce a group signature using one of them. An ABGS scheme
preserves attribute anonymity if it is computationally difficult to identify with what
attribute set he produces the signature.

Definition 4.2.3 (Attribute anonymity) We say that the VLR-ABGS scheme pre-
serves attribute anonymity if, for all honestly generated (gpk, ik, ~grt)← KeyGen(params),
for all t ∈ [1,T], for all predicates Υ, for all attribute sets Ai ⊆ Att such that there ex-
ist ζ1, ζ2 ⊆ Ai and Υ(ζ1) = Υ(ζ2) = 1, for all ski ← Join(〈params, gpk, t, ik, upki,Ai〉 ,
〈params, gpk, t, upki, uski〉) and all messages M , the distributions Sign(params, gpk, t,
ski, ζ1,M,Υ) and Sign(params,gpk, t, ski, ζ2,M,Υ) are equal.
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In other words, even the computationally unbounded adversary cannot link a signa-
ture to a set of attributes used to generate it.

ABGS scheme preserves backward unlinkability - user anonymity if there are at least
two unrevoked group members possessing valid attribute sets and one of them pro-
duces the group signature then it should be computationally hard to identify who
produced the group signature among them, even if they are revoked afterwards.

Definition 4.2.4 (BU-user anonymity) We say that the VLR-ABGS scheme pre-
serves BU-user anonymity if for all PPT A, the probability that A wins the following
game is negligible.

• Setup: The challenger C runs (gpk, ik, ~grt) ← KeyGen(params). C gives gpk
to A.

• Queries: At the beginning of each period, C increments a counter t and notifies
A about it. During the current interval t, A can send the following queries to
C,

– Phase 1 : A can send following queries to the challenger,

∗ Join1: A can request C (to run), the Join procedure for any hon-
est member of her choice. A plays the role of corrupted GM on these
queries.

∗ Signing : A can request a group signature σ on any, message M , pred-
icate Υ, Ui and set of attributes ζi ⊆ A such that Υ(ζi) = 1, at the
current interval t, of her choice.

∗ Corruption : A can request the secret key ski of the honest member
Ui of her choice.

∗ Revocation : A can request the revocation of arbitrary member Ui of
her choice. C responds with the updated revocation list RLt.

1Similar to SndToU [20] oracle.
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– Challenge : At some period t∗ ∈ {1, ...,T}, A outputs M∗,Υ∗, and uncor-
rupted users Ui0 ,Ui1 (not queried in Corruption, Join and Revocation

queries so far) and, ζ : ζ ⊆ Ai0 , ζ ⊆ Ai1 and Υ(ζ)1= 1. C randomly
selects κ ∈R {0, 1} and responds with a group signature σ∗ on M∗ of group
member Uiκ.

– Phase 2 : A can make queries similar to Phase 1. However A cannot make
Corruption query on Ui0 and Ui1 at any time but can make Revocation

query after the time interval t∗.

• Output: Finally, A outputs a bit κ′, and wins if κ′ = κ.

The advantage of A is defined as AdvBU−user−anon(A) = |Pr(κ = κ′)− 1
2 |.

Thus there should not exist any PPT adversary to link a group signature to a user
with non negligible probability.

ABGS scheme preserves traceability if it is possible to trace the valid group signature
to its signer with the help of group opening key.

Definition 4.2.5 (Traceability) We say that the VLR-ABGS scheme preserves
traceability if for all PPT A, the probability that A wins the following game is neg-
ligible.

• Setup: The challenger C runs (gpk, ik, ~grt) ← KeyGen(params). C gives
gpk and ~grt to A.

• Queries: A can issue the Signing, Corruption and Join queries. All queries
are the same as in the BU-user anonymity game, except the Join query.

– Join2: Here A requests C (to run), the Join procedure for corrupted mem-
ber Ui.

1Here ζ can be different for Ui0 ,Ui1 but we are concerned about user anonymity rather than
attribute anonymity

2similar to SndToI oracle in [20]
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• Output: A outputs a message M∗, a predicate Υ∗, a group signature σ∗, a
interval number t∗ and a set of revocation tokens RL∗t∗.

A wins if
(1) Verify(params, gpk, t∗, RL∗t∗ ,M∗,Υ∗, σ∗) = 1
(2) σ∗ traces (using the tracing algorithm above) to wrong user outside RL∗t∗.
The advantage of A is defined as the probability that A wins.

Thus it should be impossible to produce an untraceable valid group signature by any
PPT adversary.

ABGS scheme preserves non-frameability if it is difficult to produce a valid group
signature which traces back to a group member who has not produce it, even with
the help of group manager’s secret key.

Definition 4.2.6 (Non-frameability) We say that the VLR-ABGS scheme pre-
serves non-frameability if for all PPT A, the probability that A wins the following
game is negligible.

• Setup: The challenger C runs (gpk, ik, ~grt) ← KeyGen(params). C gives
gpk, ik and ~grt to A.

• Queries: A can issue the Join, Signing and Corruption queries. All queries
are the same as in the BU-user anonymity game.

• Output: Finally, A outputs a message M∗, an honest member Ui∗, a predicate
Υ∗, a group signature σ∗, a period number t∗ and a set of revocation tokens
RL∗t∗.

A wins if
(1) Verify(params, gpk, t∗, RL∗t∗ ,M∗,Υ∗, σ∗) = 1,
(2) σ∗ traces to an honest member Ui∗ ,

(3) A has not obtained ski∗ in Corruption queries on Ui∗.
The advantage of A is defined as the probability that A wins.
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Thus even the group manager should not be able to forge a group signature which
trace back to a honest member.

ABGS scheme preserves collusion resistance of attribute certificates if it is computa-
tionally hard to combine attribute certificates of different group members to satisfy
the predicate and produce a valid group signature.

Definition 4.2.7 (Attribute unforgeability) We say that the VLR-ABGS scheme
preserves attribute unforgeability if for all PPT A, the probability that A wins the
following game is negligible.

• Setup: The challenger C runs (gpk, ik, ~grt) ← KeyGen(params). C gives gpk
to A.

• Queries: A can issue the Join, Signing, Corruption and Revocation queries.
All queries are the same as in the BU-user anonymity game, except the Join

query.

– Join: Here A requests C (to run), the Join procedure for corrupted member
Ui.

• Output: A outputs a message M∗, a predicate Υ∗, a group signature σ∗, a
period number t∗ and a set of revocation tokens RL∗t∗.

A wins if
(1) Verify(params, gpk, t, RLt,M∗,Υ∗, σ∗) = 1,
(2) traces to i and
(3) @ζ ∈ Ai : Υ(ζ) = 1.
The advantage of A is defined as the probability that A wins.

Thus it should be impossible for any PPT adversary to satisfy the predicate with
invalid set of attributes.
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ABGS scheme preserves collusion resistance of attribute certificates if it is computa-
tionally hard for group members to collude by pooling their attribute certificates to
satisfy the predicate and to produce a valid group signature.

Definition 4.2.8 (Collusion resistance of attributes) We say that the ABGS
scheme preserves collusion resistance of attributes if for all PPT A, the probability
that A wins the following game is negligible.

• Setup: The challenger C runs (gpk, ik, ~grt) ← KeyGen(params). C gives gpk
to A.

• Queries: A can issue the Join, Signing, Corruption and Revocation queries.
All queries are the same as in the BU-user anonymity game, except the Join

query.

– Join: Here A requests C (to run), the Join procedure for corrupted member
Ui.

• Output: A outputs a message M∗, a predicate Υ∗, a group signature σ∗, a
period number t∗ and a set of revocation tokens RL∗t∗.

A wins if
(1) Verify(params, gpk, t, RLt,M∗,Υ∗, σ∗) = 1, and
(2) A has obtained ski1 , ..., skik : Υ∗(∪kj=1Aij) = 1 and Υ∗(Aij) 6= 1 for j = 1, ..., k.
The advantage of A is defined as the probability that A wins.

Thus the users with invalid set of attributes each, cannot collude with each other to
pool a valid attribute set for producing a valid group signature.

4.3 Construction

A construction of VLR-ABGS scheme with backward unlinkability and attribute
anonymity features is presented in this section. We prove that the proposed scheme
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is secure under random oracle model with DL, q-SDH, DLIN and KEA1 assump-
tions. To build our scheme we use VLR-GS scheme of Nakanishi et al. [91] as the
base scheme. We use the membership certificate format of [48] to make the scheme
non-frameable i.e. even the group manager cannot forge signature of a trusted mem-
ber. We use the bottom-up approach technique, introduced by Emura et al. in [52],
for generating the public values of the access tree representing a predicate. We de-
vice an BuildTree-Validity algorithm which gives provision to publicly verify the
correctness of the generated public values of the predicate and with this we reduce
the trust on group manager in producing public keys of the predicates. We device
an idea to achieve attribute anonymity. The proposed ABGS scheme achieves the
better efficiency than the other schemes [52; 72] in terms of signing cost, verification
cost , secret key length and signature length. When compare to VLR-GS scheme
in standard model by Libert et al. [82] our scheme achieves an additional feature
namely, non-frameability, and has shorter signature length. We emphasize that our
scheme achieves constant signature size, independent of the number of attributes,
when compare to other ABGS scheme in the literature.

• Setup(1k): It generates the system parameters : params = (G1,G2,GT , e, ψ,T,
H0,H, Att); where

(i) G1,G2,GT are the cyclic groups of prime order p, where 2k−1 < p < 2k,
ψ : G2 → G1 is an isomorphism, e : G1 ×G2 → GT is a bilinear map.

(ii) H0 : {0, 1}∗ → G2 and H : {0, 1}∗ → Z∗p are the hash functions.

(iii) T = O(k) is the total number of time periods.

(iv) Att = {att1, ..., attm}, for m = O(k)1 is the universal set of attributes.

• KeyGen(params): It takes an input system parameters params and outputs a
group public key gpk, an issuing key ik and the vector ~grt of revocation tokens.

(i) Select the generators g1, h ∈ G1 and g2, ĥ ∈ G2 : g1 = ψ(g2) and h = ψ(ĥ).

(ii) Select γ ∈R Z∗p, and computes w = gγ2 .
1For m = 1 it becomes a group signature scheme.
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(iii) For each attj ∈ Att, choose sj ∈R Z∗p, sets S = {sj}attj∈Att, and computes
ĥattj = ĥsj , ∀attj ∈ Att.

(iv) Select the vector of group elements, (ĥ1, ..., ĥT)1∈R GT
2 .

(v) Initialize the vector of revocation tokens, ~grt, registration table, ~reg and
the revocation lists, {RLt}Tt=1 as empty.

(vi) Outputs an issuing key ik and a group public key gpk.

gpk = (g1, h, g2, ĥ, w, (ĥ1, ..., ĥT), {ĥattj}attj∈Att), ik = (γ, S), ~grt

• BuildTree(params, gpk, ik,Υ): It generates a public values for the predicate
Υ.

(i) Let TΥ be the tree that represents the predicate Υ.

(ii) Get extension tree T ext ← AddDummyNode(TΥ).

(iii) Get secret values for each dummy node and the secret value of root of T ext

using ({sdj}dj∈DTΥ
, sT )← AssignedVaule(S, T ext).

(iv) Output the predicate public values, TΥ = ({sdj}dj∈DTΥ
, ĥT = ĥsT , T ext).

Here we relax the trust on the group manager in computing public values for
the predicate. We give another algorithm, BuildTree-Validity, which allows
a user to verify the validity of the public values of the predicate with the help
of group public key gpk.

• BuildTree-Validity(params, gpk, TΥ):

(i) Randomly choose an attribute set, Leaves ⊆ Att : Υ(Leaves) = 1 And
gets the corresponding ∆attj(∀attj ∈ Leaves), and ∆dj(∀dj ∈ DLeaves

TΥ
) by

running MakeSimplifiedTree(Leaves, T ext).

(ii) Compute ĥroot = ∏
attj∈Leaves ĥ

∆attj
attj ×

∏
dj∈DLeavesTΥ

ĥ
∆dj

dj

= ∏
attj∈Leaves ĥ

sj∆attj ×∏dj∈DLeavesTΥ
ĥsdj∆dj

= ĥ

∑
attj∈Leaves

∆attj sj+
∑

dj∈DLeavesTΥ
∆dj

sdj = ĥsT from (2.6).
1It has provision to increase the time intervals by adding new group elements ĥT+1, ... ∈R G2

and update the gpk without altering the other keys.
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(iii) Verify whether ĥroot ?= ĥT . If not then TΥ is the invalid public values of
the predicate Υ.

• Join(< params, gpk, t, ik, upki,Ai >,< params, gpk, t, upki, uski >):
This is the modified version of the Join protocol in [48; 52], which also includes
revocation tokens. Let NIZK be a non-interactive zero-knowledge proof, SPK be
the Signature Proof of Knowledge, and Ext-Commit be an extractable commit-
ment scheme, the trapdoor of the commitment will not be known to anybody
except to our simulator in the traceability proof. As a result of this protocol,
Ui gets ski1 = ((Ai, xi, yi), {Ti,j}attj∈Ai), where (Ai, xi, yi) is a membership cer-
tificate, {Ti,j}attj∈Ai is the set of attribute certificates and Ai ⊆ Att is the set
of Ui’s attributes. And GM ends with the updated ~grt and ~reg. The protocol
begins as follows,

(i) Ui picks yi ∈R Z∗p, computes ci = Ext-Commit(yi), Fi = hyi ,
π1 = NIZK{yi : Fi = hyi ∧ ci = Ext-Commit(yi)} and, sends Fi, ci and π1 to
GM.

(ii) GM checks π1 using the NIZK method. If π1 is not valid, then abort. GM se-
lects xi ∈R Z∗p and computes Ai = (g1Fi)1/(γ+xi), Bi = e(g1Fi, g2)/e(Ai, w),
Di = e(Ai, g2), Ti,j = A

sj
i (∀attj ∈ Ai) and π2 = NIZK{xi, {sj}(attj∈Ai) :

Bi = Dxi
i ∧ Ti,j = A

sj
i (∀attj ∈ Ai) ∧ ĥattj = ĥsj(∀attj ∈ Ai) ∧ e(Ti,j, ĥ) =

e(Ai, ĥattj)(∀attj ∈ Ai)} and, sends Ai, Bi, Di, {Ti,j}attj∈Ai and π2 to Ui.

(iii) Ui checks π2. If π2 is not valid, then abort. Ui makes Si,Ai = DSiguski(Ai)
and sends to GM.

(iv) GM verifies Si,Ai with respect to upki and Ai. If Si,Ai is valid, then GM
appends the tuple (i, upki, Ai, xi, Fi, Si,Ai) to ~reg and sends xi to Ui. GM
computes the revocation tokens, {Bij = ψ(ĥj)xi}Tj=t and it is added to the
vector of revocation tokens ~grt but not to the {RLj}Tj=t lists.

(v) Ui checks the relation e(Ai, g2)xie(Ai, w)e(h, g2)−yi ?= e(g1, g2) to verify
whether A(xi+γ)

i = g1h
yi .

1Note that Ti,j values can be stored in a public repository, so the size of sk′
is can be reduced to

three elements, i.e. ski = (Ai, xi, yi).
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GM chooses sm+1 ∈ Z∗p, and computes gattm+1 = g
sm+1
2 when a new attribute

attm+1 is added. Let Ui be issued Ti,m+1. Then GM computes Ti,m+1 = A
sm+1
i

and π3 = NIZK{sm+1 : Ti,m+1 = A
sm+1
i ∧ ĥattm+1 = ĥsm+1 ∧ e(Ti,m+1, ĥ) =

e(Ai, ĥattm+1)}, sends Ti,m+1 and π3 to Ui, and opens ĥattm+1 .

• Sign(params, gpk, t, ski, ζ,M,Υ): It generates a group signature σ on message
M ∈ {0, 1}∗ for the time interval t with the user private key ski who satisfy the
predicate Υ with his subset of attributes ζ ⊆ Aid : Υ(ζ) = 1.

(i) Get the public values of Υ from the public repository1.

(ii) Runs MakeSimplifiedTree(ζ, T ext) and get the corresponding ∆attj(∀attj ∈
ζ), and ∆dj(∀dj ∈ D

ζ
TΥ

).

(iii) Compute sT2 = Σdj∈DζTΥ
∆djsdj . Let sT1 = Σattj∈ζ∆attjsj. Note that from

(2.6) sT1 + sT2 = sT .

(iv) Select r ∈R Z∗p, and computes f̂ = H0(gpk||M ||r) ∈ G2.

Then compute f = ψ(f̂).

(v) Select α, β ∈R Z∗p, and compute

C1 = Aih
α, C2 = fβ+xi , C3 = ψ(ĥt)β,

C4 = Πattj∈ζT
∆attj
i,j A

sT2
i ψ(ĥT )α = A

sT1+sT2
i hsTα = CsT

1

(vi) Set τ = αxi + yi and compute
V = SPK{(α, β, xi, τ) : e(C1,w)

e(g1,g2) = e(h,g2)τ e(h,w)α
e(C1,g2)xi

∧
C2 = fβ+xi ∧C3 = ψ(ĥt)β}

(M) = (c, sα, sβ, sxi , sτ ).
The computation of SPK is given in subsequent section.

(vii) Outputs σ = ({Ci}4
i=1, V, r) ∈ G4

1 × Z∗6p .

A signer proves the knowledge of (α, β, xi, τ) which satisfies the above 3 rela-
tions described in SPK. The first relation captures whether a signer has a valid

1GM runs BuildTree algorithm to generate the public values of the predicate Υ and stores it in
a public repository. Note that if the public values of the required predicate is present in the public
repository then the user will not approach GM.
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membership certificate issued by the Join algorithm or not. The relation (4.1)
in the verification algorithm captures whether a signer has valid attribute cer-
tificates or not and also proves the association of the membership certificate
with attribute certificates. The second and third relations are needed for re-
vocation check in verification. Note that the signature is independent of the
number of attributes, thus its length is constant.

• Verify(params, gpk, t, RLt,M, σ,Υ) :
A verifier verifies the group signature σ as follows,

(i) Signature check: Checks that the σ is valid, by verifying the SPK V and
the relation

e(C1, ĥT ) = e(C4, ĥ) (4.1)

The verification of SPK V is given in subsequent section.

(ii) Revocation check: Check that the signer is not revoked at the interval t by
checking

e(C2, ĥt) 6= e(BitC3, f̂),∀grt[i][t] ∈ RLt. (4.2)

Consider e(C2, ĥt) = e(fβ+xi , ĥt) = e(f, ĥt)β+xi . On the other hand,
e(BitC3, f̂) = e(ψ(ĥt)xiψ(ĥt)β, f̂) = e(ψ(ĥt), f̂)β+xi . Thus, the revoked
user’s signature can be detected.

Note that a user can be revoked for a certain time period, after which again he can
join the group and generate the valid group signatures with same key. That is, if GM
wants to revoke a user for a period from time interval t to time interval t′,then he
will add t′ − t+ 1 revocation tokens from interval t to t′ to the respective revocation
lists RLt, RLt+1, ..., RLt′ . Thus suspension of a member is possible.

4.3.1 Computation of SPK

In the signature algorithm Ui computes V as follows,
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(i) Ui chooses blinding values rα, rβ, rxi , rτ ∈R Z∗p.

(ii) Ui computes R1 = e(h,g2)rτ e(h,w)rα
e(C1,g2)rxi , R2 = f rβ+rxi , R3 = ψ(ĥt)rβ .

(iii) Ui computes c = H(gpk, t,M, {Ci}4
i=1, {Ri}3

i=1).

(iv) Ui computes sα = rα + cα, sβ = rβ + cβ, sxi = rxi + cxi and sτ = rτ + cτ .

Thus, V = (c, sα, sβ, sxi , sτ ).

4.3.2 Verification of SPK

In verification algorithm the verifier verifies SPK V for the group signature σ =
({Ci}4

i=1, V, r) as follows,

(i) The verifier computes
f̂ = H0(gpk||M ||r), f = ψ(f̂),
R̃1 = e(h,g2)sτ e(h,w)sα

e(C1,g2)sxi

(
e(g1,g2)
e(C1,w)

)c
,

R̃2 = f sβ+sxi
(

1
C2

)c
,

R̃3 = ψ(ĥt)sβ
(

1
C3

)c
.

(ii) The verifier checks whether
c

?= H(gpk, t,M, {Ci}4
i=1, {R̃i}3

i=1).

4.4 Security Analysis

Theorem 4.4.1 The proposed ABGS scheme is correct.

Proof SPK ensures that the scheme is correct. �

Theorem 4.4.2 The proposed ABGS scheme preserves attribute anonymity.
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Proof According to the definition of attribute anonymity it is sufficient to show that
for any predicate Υ and for any subset of attributes Ai : ∃ζ1, ζ2 ⊆ Ai that satisfy the
predicate i.e., Υ(ζ1) = Υ(ζ2) = 1, the output of Sign(params, gpk, t, ski, ζ1,M, TΥ)
is indistinguishable from the output of Sign(params, gpk, t, ski, ζ2,M, TΥ), subject
to the constraint that they passes verification algorithm.

For any group signature σ = ({Ci}4
i=1, V, r), the attribute certificates are hidden

and used in C4 computation and it is easy to observe that for any two given group
signatures the value C4 = (C1)sT will not distinguish among themselves, since both
are identical because of same sT value. Thus it will not reveal the underlying subset
of attributes, but only it proves that it satisfies the predicate. Thus the proposed
scheme preserve attribute anonymity. �

Theorem 4.4.3 The proposed ABGS scheme satisfies the BU-user anonymity in the
random oracle model under DLIN assumption.

Proof Lemma 4.4.4 implies the Theorem 4.4.3. �

Lemma 4.4.4 Suppose an adversary A breaks the BU-user anonymity of the pro-
posed scheme with the advantage ε. Then, we can construct an algorithm B that
breaks the DLIN assumption on G2 with the advantage

(
1
nT −

qS+qH
p

)
ε, where n is the

total number of members, T is the number of time intervals, qS is the total number
of signature queries, qH is the total number of hash queries and p is large prime.

Proof The input of B is an instance of DLIN problem, (û, v̂, ĥ, Û = ûa, V̂ = v̂b, Ẑ) ∈
G6

2, where a, b ∈R Z∗p and either Ẑ = ĥa+b or Ẑ = ĥc for c ∈R Z∗p. B decides which
Ẑ it is given by communicating with A . Let the challenged group signature be
σ∗ = ({C∗i }4

i=1, V
∗, r∗).

Setup. Algorithm B simulates an VLR-ABGS scheme as follows,

(i) B generates system parameters, params and set H0 and H as hash oracles.

(ii) B selects i? ∈R [1, n] and t? ∈R [1,T]. B sets g2 = û, and g1 = ψ(g2).
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(iii) B selects ĥ ∈R G2 and computes h = ψ(ĥ). Also chooses γ, s1, ..., sm, r1, ..., rT ∈R
Z∗p. And computes w = gγ2 , {ĥatti = ĥsi}mi=1 and ĥt = grt2 for all t ∈ [1,T] except
t?. B sets ĥt? = v̂.

(iv) B sets a group public key, gpk = (g1, h, g2, ĥ, w, {ĥt}Tt=1, {ĥattj}attj∈Att).

(v) For the user Ui? , B define xi? = a and Ai? = (g1h
yi? )1/(γ+a), which are unknown

for B. B sets Bi?,j = ψ((ûa)rj) = ψ(garj2 ) = ψ(ĥaj ) except for j = t?. Bi?,t? =
ψ(v̂a) = ψ(ĥt?)a) is also unknown to B.

(vi) B gives gpk to A .

Hash queries. At any time, A can query the hash functionH0 orH. B responds
with random values with consistency.

Phase 1 A requests the queries as given in BU-user anonymity game. B answers
to these queries as the real settings of VLR-ABGS scheme, since B knows all the
values. If i = i?, then B responds the queries as follows.

• Signing queries: B computes a simulated group signature of i?, depending on
t as follows,
Case of t 6= t?:

(i) B selects r, β, δ ∈R Z∗p and sets f̂ = ĥδt , f = ψ(f̂).

(ii) B computes C2 = fβBδ
i?t = fβψ(ĥxi?t )δ = fβ+xi? , and C3 = ψ(ĥt)β.

(iii) B selects C1 ∈R G1 and set C4 = CsT
1 . B gets sT from the BuildTree

procedure.

(iv) B computes a simulated SPK V by selecting a random c, sα, sβ, sxi , sτ ∈R Z∗p
and computing the corresponding (R1, R2, R3) by following the procedure,
Verification of SPK, given in appendix B, and patching the hash oracle at
H(gpk, t,M, {Ci}4

i=1, {Ri}3
i=1) to c. If this backpatch fails then B outputs

a random guess and aborts. Furthermore, B defines H0(gpk,M, r) = f̂ . If
this backpatch fails then B outputs a random guess and aborts.

Case of t = t?:
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(i) B selects r, β, δ ∈R Z∗p and sets f̂ = ûδ, f = ψ(f̂).

(ii) B computes C2 = ψ(ûβÛ)δ = ψ(f̂β+xi? ), and C3 = ψ(ĥt?)β.

(iii) From here it is the same as in case of t 6= t?.

Then B responds signature σ = ({Ci}4
i=1, V, r) to A . Note that it has the same

distribution as the real due to the perfect zero-knowledge-ness of SPK.

• Corruption queries: B outputs a random guess and aborts.

• Join queries: B outputs a random guess and aborts.

• Revocation queries: If t 6= t?, B responds Bi?t. Otherwise outputs a random
guess and aborts.

Challenge A outputs a message M∗, the current time interval t∗, a predicate
Υ∗, an attribute set ζ and two uncorrupted members Ui0 ,Ui1 , such that Υ∗(ζ) =
1, ζ ⊆ Ai0 and ζ ⊆ Ai1 , to be challenged. TΥ∗ is a public values of the predicate Υ.
If t∗ 6= t? then B outputs a random guess and aborts, its probability is 1/T. B picks
κ ∈R {0, 1}. Then, if iκ 6= i?, B outputs a random guess and aborts, its probability is
1/n. Otherwise B try to simulate the challenged signature σ∗ from Aiκ as follows,

• B selects r∗ ∈R Z∗p, regards b as β which is unknown, and sets f̂ = ĥ, f = ψ(f̂).
B gets corresponding sT from the BuildTree procedure.

• B selects C1 ∈R G1, and sets C2 = ψ(Ẑ), C3 = ψ(V̂ ) = ψ(ĥt∗)β) and C4 = CsT
1 .

Note that if Ẑ = ĥa+b then C2 = ψ(ĥa+b) = fβ+xiκ .

• B computes a simulated SPK V by selecting a random c∗, s∗α, s
∗
β, s
∗
xi
, s∗τ ∈R

Z∗p and computing the corresponding (R1, R2, R3) by following the procedure,
verification of SPK, given in appendix B, and patching the hash oracle at
H(gpk, t∗,M∗, {C∗i }4

i=1, {Ri}3
i=1) to c∗. If this backpatch fails then B outputs

a random guess and aborts. Furthermore, B defines H0(gpk||M∗||r∗) = f̂ . If
this backpatch fails then B outputs a random guess and aborts. The simulation
failure probability is less than (qH + qS)/p.
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In case of failure, B outputs a random bit and aborts, otherwise, ({C∗i }4
i=1, V

∗, r∗) is
the signature on M∗ given back to A .
Phase 2. A requests the queries as given in BU-user anonymity game and B answers
it similar to the phase 1.
Output. A outputs its guess κ′ ∈ {0, 1} with advantage ε. Our algorithm B outputs
0 if κ = κ′ (indicating that Ẑ = ĥa+b); otherwise B outputs 1 (indicating that Ẑ
is random in G2). Thus it has advantage of

(
1
nT −

qS+qH
p

)
ε in distinguishing DLIN

tuples. �

Theorem 4.4.5 The proposed scheme preserves the attribute unforgeability under
KEA1 and DL assumptions.

Proof Lemma 4.4.6 implies the Theorem 4.4.5. �

Lemma 4.4.6 Under the DL and KEA1 assumptions there exists no PPT adversary
A which passes verification with forged attributes with non negligible probability.

Proof The input to the simulator B is an instance of the DL problem, (g, g′) ∈ G2
2.

Let ξ = loggg
′.

Setup: According to the VLR-ABGS scheme setup B generates the system pa-
rameters, params and sets g2 = g′, ĥ = g, g1 = ψ(g2) and h = ψ(ĥ), and gen-
erate the remaining parameters, gpk = (g1, h, g2, ĥ, w, {ĥt}Tt=1, {ĥattj}attj∈Att), ik =
(γ, S) and ~grt.

Queries: As B knows all the keys, it can answer all the queries generated by an
adversary A according to definition of attribute unforgeability .
Output: Finally, A outputs a signature σ∗ with forged attribute certificates on
message M∗, a predicate Υ∗ whose public values are TΥ∗ = ({sdj}dj∈DTΥ∗

, ĥT , T
ext),

and signer’s secret key ski∗ such that Υ(Ai∗) 6= 1. As it is a valid signature which
passes verification algorithm and from (4.1) C∗4 = (C∗1)sT . This can be viewed as
C∗4 = AsTi∗ h

sTα = (g1h
yi∗ )

sT
γ+xi∗ hsTα = (gsT1 )

1
γ+xi∗X and gsT1 can be extracted by raising

the power γ + xi∗ , where
X = (hyi∗ )

sT
γ+xi∗ hsTα
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It is like B is giving input (h = ψ(g), hT = ψ(g)sT ) to A and A implicitly returns
(ψ(g′), ψ(g′)sT ). Then by KEA1 assumption, B can utilize the extractor Ā to extract
a value ξ. Under DL assumption it can be done with negligible probability. Thus
the signature produced by the forged attribute certificates can pass verification with
negligible probability.

To be more particular, we can assume that the A is missing atleast one attribute
certificate, say Ti∗,j = A

sj
i∗ , i.e. (ψ(g′)hyi∗ )

sj
γ+xi∗ is unknown to A, but he knows

ĥsj = gsj . And A is producing it in forged group signature σ∗. Then similar to above
from KEA1 and DL assumptions it is negligible to produce such signatures. �

Theorem 4.4.7 The proposed scheme preserves the collusion resistance of attribute.

Proof Lemma 4.4.8 implies the Theorem 4.4.7. �

Lemma 4.4.8 Even if some malicious participants Ui1 , ...,Uik(k > 1) with the set
of attributes ζi1 , ..., ζik collude, they cannot make a valid signature associated with a
predicate Υ, where (∪kj=1Υ(ζij) = 1) and Υ(ζij) 6= 1 for j = 1, ..., k with non-negligible
probability.

Proof Without loss of generality, we assume that Ui1 with ζi1 and Ui2 with ζi2

represent malicious participants. Ui1 and Ui2 attempt to make a valid signature
associated with Υ which satisfies Υ(ζi1 ∪ ζi2) = 1,Υ(ζi1) 6= 1 and Υ(ζi2) 6= 1.
They can make the SPK of (α, β, x0, τ) satisfy the SPK relations because they have
a valid membership certificate Ai1 . We assume that Ati1 = Ai2 , where t ∈ Z∗p. Note
that the probability of t = 1 is negligible. Then, from equation (4.1) C∗4 = C∗sT1 ,
Σattj∈ζi1 ∆jtj + Σattj∈ζi2 t∆jsj + Σdj∈DζTΥ

∆djsdj 6= sT holds since t 6= 1. This means
that they cannot use {Ti1,j}attj∈ζi1 and {Ti2,j}attj∈ζi2 simultaneously. i.e. they cannot
collude the attribute certificates. �

Theorem 4.4.9 Suppose an adversary A breaks the traceability of the proposed scheme
with the advantage ε. Then, in the random oracle model,an algorithm B can be con-
structed that breaks the q-SDH assumption with the advantage 1

6ε.
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Proof Since the membership certificate format is similar to the one proposed in
[48], the proof is similar to the proof given in [48; 52]. The input of simulator B is
(g, g′, g′1, ..., g′q) ∈ G1×Gq+1

2 , where g = ψ(g′), g′i = (g′)ξi(for i ∈ [1, q]) and let g′0 = g′.
Let q − 1 be the total number of members.
Setup: B simulates KeyGen as follows:

(i) B selects ν, {xi}q−1
i=1 , {yi}

q−1
i=1 , {sj}(∀attj∈Att), {rt}Tt=1 ∈R Z∗p, where T is the number

of time intervals.

(ii) B selects a target user Ui? ∈ {U1, ...,Uq−1}, and sets γ = ξ − xi? . B computes
g1, h, g2, ĥ and w as follows:

• Let f(y) = ∏q−1
i=1 (y + xi). Therefore, f(γ) = f(ξ−xi?) = ∏q−1

i=1 (ξ − xi? + xi) =∑q−1
i=0 (αiξi), where α0, ..., αq−1 ∈ Zp are the coefficients of the polynomial

f(γ), are computable.

• Let fi(y) = f(y)/(y + xi) = ∏q−1
j=1,j 6=i (y + xj). Thus, fi(γ) = fi(ξ − xi?) =∏q−1

j=1,j 6=i (ξ − xi? + xj) = ∑q−2
j=0 (βjξj), where β0, ..., βq−2 are the coefficients

of the polynomial fi(γ), are computable.

• Note that, gfi(γ) = (gf(γ))
1

xi+γ and fi?(γ) = f(γ)/(ξ − xi? + xi?) = f(γ)/ξ.

• Set g2 = (g′)νf(γ)/(g′)yi?fi? (γ) = ∏q−1
i=0 (g′i)ναi/

∏q−2
j=0 (g′j)yi?βj

• ĥ = g′fi? (γ) = ∏q−2
j=0(g′j)βj

• h = ψ(ĥ).

• g1 = ψ(g2) = hνξ/hyi?

• w =
{∏q−1

i=0 (g′i+1)αiν/∏q−2
j=0(g′j+1)βjyi?

}
/gxi?2

=
{

(g′)νξf(γ)/(g′)yi?ξfi? (γ)
}
/gxi?2

= gξ−xi?2 = gγ2

Thus B can compute these values by using the q−SDH input instances.

(iii) B computes {ĥt = ĥrt}Tt=1, grt[i][t] = ĥxit ,∀i ∈ {1, ..., n}, t ∈ {1, ...,T} and other
parameters as the real settings.

(iv) B makes params = (G1,G2,GT , e, ψ,H0,H, Att), ~grt, ik = (γ, {sj}attj∈Att), gpk =
(g1, h, g2, ĥ, w, {ĥt}Tt=1, {ĥattj}attj∈Att). params, gpk and ~grt are given to A .
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Queries: In the Join queries, B can get a secret value yi of a corrupted user by
extracting the commitment value. B computes a group membership certificate as
follows:
In the case of i = i? : Ai? = hν = (hνξ)

1
ξ = (g1h

yi? )
1

γ+xi? .
In the case of i 6= i? :Compute Ai as follows:

Ai =
(
g
∏q−1
j=1,j 6=i,i? (ξ−xi?+xj)

)yi−yi?
gνfi(γ)

= g
yi

ξ+xi−xi?

∏q−1
j=1,j 6=i? (ξ−xi?+xj) ×{

gνf(γ)/gyi?
∏q−1
j=1,j 6=i? (ξ−xi?+xj)

} 1
ξ+xi−xi?

= (g1h
yi)

1
γ+xi

B computes {Ti,j}attj∈Ai = {Asji }attj∈Ai . Thus B can answer all the queries made by
an adversary according to traceability game.
Output: Finally, A outputs a forged signature σ∗ = ({C∗i }4

i=1, c
∗, s∗α, s

∗
β, s
∗
τ , s
∗
x, r
∗)

with ε advantage.
By using the forking lemma, B can get the two valid signatures ({C∗i }4

i=1, c
∗, s∗α, s

∗
β, s
∗
τ

, s∗x, r
∗) and ({C∗i }4

i=1, c
′, s′α, s

′
β, s
′
τ , s
′
x, r
∗) with probability ε′ ≥ 1

5 −
8qh
η2k , η >

240qH
2k [48].

Let c′′ = c∗ − c′, s′′α = s∗α − s′α, s
′′
β = s∗β − s′β, s

′′
x = s∗x − s′x and s′′τ = s∗τ − s′τ . Let

x̃ = s′′x/c
′′, α̃ = s′′α/c

′′, τ̃ = s′′τ/c
′′, Ã = C∗1/h

α̃, and ỹ = τ̃ − α̃x̃.
Now (Ã, x̃, ỹ) is a valid member certificate because e(C∗1 ,w)

e(g1,g2) = e(h,g2)τ̃ e(h,w)α̃
e(C∗1 ,g2)x̃ holds. From

the success of the adversary in the attack game, we know that Ã does not belong to
{Ai}q−1

i=1 . We assume that x̃ 6= xi? .
Consider,

Ã = (g1h
ỹ)

1
x̃+γ

= (hνξhỹ−yi? )
1

x̃+γ

= h
νξ+(ỹ−yi? )

x̃+γ

=
(
g(νξ+(ỹ−yi? ))

∏q−1
i=1,i 6=i? (ξ+xi−xi? )

) 1
x̃+ξ−xi?

=
(
g
∑q−1

i=0 ziξ
i
) 1
x̃+ξ−xi? (can be written in this form)
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= g
z̃0

x̃+ξ−xi?
+
∑q−1

i=1 z̃iξ
i

(can be written in this form)

The polynomial coefficients z0, ..., zq−1, z̃0, z̃1, ..., z̃q−1 are computable. Let x = x̃−xi? ,
then (Ã/g

∑q−1
i=1 z̃iξ

i)
1
z̃0 = g

1
x+ξ holds. Therefore (x, g

1
x+ξ ) is the new SDH tuple. If

x̃ = xi? then (0, g
1
ξ ) will be the new SDH tuple. The advantage of B is (1

5−
8qH
η2k )ε ≥ 1

6ε,

since η > 240qH
2k . �

Theorem 4.4.10 Suppose an adversary A breaks the non-frameability of the pro-
posed scheme with the advantage ε. Then, an algorithm B can be constructed that
breaks the DL assumption with the advantage 1

12(1 + 1
n
)ε, where n is the number of

honest members.

Proof Since the membership certificate format is similar to the one proposed in
[48], the proof is similar to the proof given in [48; 52]. The input of simulator B is
(g, g′) ∈ G2 × G2, let ξ = loggg

′. We consider the two types of adversaries by the
results of the OpenUser algorithm. We explain the details of classification of the
adversary in the proof. Let q be the number of all members, n be the number of
honest members, and q1 = q−n be the number of corrupt members. We assume that
all initial members {U1, ..., Un} are honest.
Setup: B simulates KeyGen as follows:

(i) B selects d ∈R {0, 1}. If d = 1, then B selects a target user Ui? ∈ {U1, ..., Un}.
Note that d = 0 means B guesses that A is Type 1 adversary, and d = 1 means
B guesses that A is Type 2 adversary.

(ii) B computes the group public key and member certificates as follows:

(a) B selects γ, {sj}(∀attj∈Att), {xi, yi}
q
i=1 ∈R Z∗p. If d = 1, then set yi? = ξ.

(b) If d = 0, then B sets g1 = ψ(g), g2 = g, ĥ = g′ and h = ψ(g′).

(c) If d = 1, then B selects g2 ∈R G2 and sets g1 = ψ(g2), ĥ = g, h = ψ(g) and
yi? = ξ.

(d) B computes w = gγ2 .
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(e) B computes member certificates {(Ai, xi, yi)}qi=1 by using γ. If d = 1, then
Ai? = (g1ψ(g′))

1
xi?+γ = (g1h

yi? )
1

xi?+γ .

(f) B computes other values as the real settings, and gets params = (G1,G2,GT ,

e, ψ,H0,H, Att), ~grt, ik = (γ, S), and gpk = (g1, h, g2, ĥ, w, {ĥt}Tt=1,

{gattj}attj∈Att).

(iii) B gives params, gpk, ik and ~grt to A .

Queries: In Join queries, A knows (Ai, xi), for i ∈ [1, q], because A plays the role
of corrupted GM. However, A cannot know secret key of a target user y?i . For Signing
queries, B makes a group signature by using (Ai, xi, yi), and return its signature, if
d = 1 and i = i?, then B aborts. For Corruption queries, B answers yi, if d = 1 and
i = i?, then B aborts.
Output: Finally, A outputs the valid group signature for honest user, say Uk. We
can get the member certificate (Ã, x̃, ỹ) by using the same technique as for traceability.
We define a Type 1 adversary A, which is the case of Ã = Ak ∈ {Ai}ni=1 and x̃ 6= xk.

We define a Type 2 adversary A, which is the case of (Ã, x̃) = (Ak, xk).

• In the case of Type 1 : If d 6= 0, then B aborts. Otherwise Ã = (g1h
ỹ)

1
x̃+γ =

(g1+ξỹ
1 )

1
x̃+γ holds. As Ã = Ak = (g1h

yk)
1

xk+γ = (g1+ξyk
1 )

1
xk+γ holds. Therefore, B

can compute ξ = x̃−xk
{ỹ(xk+γ)−yk(x̃+γ))} .

• In the case of Type 2 : If d 6= 1, then B aborts. If k 6= i?, then B aborts.
Otherwise, Ã = (g1h

ỹ)
1

x̃+γ = (g1ψ(g)ỹ)
1

x̃+γ holds. Moreover, Ã = Ai? =
(g1h

yi? )
1

xi?+γ = (g1ψ(g)yi? )
1

xi?+γ holds. Therefore B can get ξ = ỹ.

The advantage of B is (1
2(1

5 −
8qH
η2k )ε+ 1

2
1
n
(1

5 −
8qH
η2k )ε) > 1

12(1 + 1
n
)ε, since η > 240qH

2k . �

4.5 Comparison

In the proposed scheme, a group signature contains 4 elements from G1 and 6 elements
from Z∗p. The use of MNT family of curves [89] can make the representation of
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elements in G1 short, one can take p to be a 170-bit prime, and the represent of G1

and GT can be expressed in 171 and 1020 bits, respectively [26; 28]. Thus, the total
group signature length is 1704 bits(= 213 bytes).

Let Φ = |ζ|, where ζ be the set of attributes which is associated with a signature
and m = |Att|. Let m̂ be the average number of attributes assigned to any user. RO
means Random oracle model, e represents the paring operation and r represents the
number of revoked members. In Table 4.1, we compare the efficiency of our scheme
with other schemes. Note that the parings values e(h, g2), e(h,w) and e(g1, g2) can
be precomputed and use in the algorithms to reduce the number of paring operations
in each invocation of algorithm. Also note that the verification cost of the proposed
scheme is independent of the number of attributes, where as in other schemes the
verification cost is linear in terms of the number of attributes. From the table it can
be noticed that the combined scheme of Herranz et al. [70] and Libert et al. [82]
in the standard model neither achieves non-frameability nor its verification cost is
independent of the number of attributes and also all the key lengths are large.
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4.6 Summary

4.6 Summary

We have proposed a VLR-ABGS scheme which achieves attribute anonymity and has
backward unlinkability feature with constant signature length, and proven that it is
secure under random oracle model with well known assumptions. We note that our
scheme is efficient than the other ABGS schemes in terms of signing cost, verification
cost and signature length. Furthermore, suspension of group member is possible for
a prescribed time interval.
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Chapter 5

ABGS Schemes with Attribute
Anonymity without
Non-frameability in the Standard
Model

In the previous chapters, we proposed ABGS schemes with attribute anonymity secure
in the random oracle model. In this chapter, we propose an ABGS scheme with
attribute anonymity and constant length signature which is secure in the standard
model. Further, we propose another scheme having same features but with shorter
signature length.

5.1 Introduction

Khader’s ABGS schemes are secure in the random oracle model [72; 73]. Emura et
al. proposed an ABGS scheme in the random oracle model [51]. All these scheme’s
signature length is variable with the number of attributes and does not have attribute
anonymity. We propose an ABGS scheme with attribute anonymity in the standard



5.2 Proposed Scheme

model [4]. Our construction achieves constant length signature which is independent
of the number of attributes. We also device another construction for short ABGS
scheme with attribute anonymity with the similar features as above but with the
shorter signature length [3]. We prove that our schemes, in the standard model,
preserve attribute anonymity unconditionally, user anonymity in CPA attacks under
Subgroup Decision assumption, preserves traceability and attribute unforgeability
under DL and KEA1 assumptions. Our schemes do not preserve non-frameability.

In Section 5.2, we present the proposed ABGS scheme with attribute anonymity
and the related security definitions. The construction of the proposed ABGS scheme
is described in Section 5.3 along with the security analysis and comparison with
previous schemes. In Section 5.4 we give another construction of the proposed ABGS
scheme with shorter signature length along with the security analysis and comparison
with previous schemes. Finally we summarize in Section 5.5.

5.2 Proposed Scheme

In this section, we give some definitions which are similar to the one given in papers
[33; 52; 73] but altered to add attribute anonymity.

Let k be the security parameter, Att be the universal set of attributes, Υ used
to denote the predicate, TΥ be an access tree representing the predicate Υ, TΥ the
public values associated with TΥ, gpk the group public key used to verify the validity
of the group signature, ik the issuing key used for issuing private keys to users, okUser
the opening key used for opening the signer’s identity from the given group signature,
id ∈ {0, 1}k represents the user identity, kid be the user’s private key, Aid ⊆ Att the
attributes of the user with identity id and Υ(ζ) = 1 denotes that the attribute set ζ
satisfies the predicate Υ.

Definition 5.2.1 (ABGS) An ABGS scheme consists of the following five algo-
rithms. Unless specified all the algorithms are probabilistic.
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5.2 Proposed Scheme

• (params, gpk, ik, okuser) ← Setup(1k): It takes the security parameter k as
an input and generates system parameters params, a group public key gpk,
an issuing key ik for enrolling group members and an opening key okuser for
identifying the signers.

• kid ← Join(gpk, ik, id,Aid): This algorithm generates the private key for the
user with identity id. It takes ik, user identity id and subset of attributes
Aid ⊆ Att, and outputs a user private key kid which is to be given to the user.

• σ ← Sign(gpk, kid, ζ,M,Υ): It takes gpk, kid, an attribute set ζ ⊆ Aid, a mes-
sage M and a predicate Υ, and outputs a group signature σ.

• 0/1 ← Verify(gpk,M,Υ, σ): This is a deterministic algorithm which outputs
a boolean value. If it is 1 it claims that σ is a valid group signature on M with
respect to Υ, otherwise invalid.

• id/⊥ ← Open(gpk, okuser, σ) : This is a deterministic algorithm which takes
an opening key okuser and a group signature σ, and outputs either id or ⊥.
If id then the algorithm claims that the group member with an identity id has
produced σ, and if ⊥, it claims that no group member produced σ.

Following are the entities in ABGS scheme:

• Group manager GM has issuing key ik and opening key okuser. Using issuing
key GM enrolls a user into the group by allotting some privilege (in terms of
attributes) say Aid ⊆ Att and issuing a user’s private key kid, by running the
Join algorithm. GM runs Open algorithm to reveal the signer’s identity from the
group signature.

• Group members or signers who are having their private keys kid’s. They run
Sign algorithm to produce a group signature on a document M with predicate
Υ if they possess valid attribute set which satisfies the predicate.

117



5.2 Proposed Scheme

• Outsider or verifier who can seek a group signature for a document M with
predicate Υ from group manager GM. He can also verify the group signature
using the group public key, gpk.

ABGS scheme is correct if the group signatures produced by an honest group member
are verified and reveals the identity of the signer.

Definition 5.2.2 (Correctness) We call an ABGS scheme is correct if for all hon-
estly generated (params, gpk, ik, okuser)← Setup(1k), for all kid ← Join(gpk, ik, id,
Aid) the following equations hold.

1← Verify(gpk,M,Υ, Sign(gpk, kid, ζ,M,Υ))

: ζ ⊆ Aid and Υ(ζ) = 1

id← Open(gpk, okuser, Sign(gpk, kid, ζ,M,Υ))

We write Sign(gpk, ik, id, ζ,M,Υ) (i.e. in place of user private key kid, we use issuing
key ik and user identity id) to denote the following task: pick the corresponding
kid from the list (we assume that a list {(id, kid)} is maintained) and returns the
group signature σ ← Sign(gpk, kid, ζ,M,Υ), and if the related kid is not present in
the list (i.e. kid is not generated yet) then choose Aid ⊆ Att randomly such that
∃ζ ∈ Aid,Υ(ζ) = 1 and get kid ← Join(gpk, ik, id,Aid), store it in a list and finally
return the intended group signature σ ← Sign(gpk, kid, ζ,M,Υ).
For convenience, in the definitions below we denote sign oracle as Sign(gpk, ik, ., ., ., .)
to generate the group signature requested by an adversary with the query that in-
cludes user identity id, a message M and a predicate Υ. And we denote join oracle
as Join(gpk, ik, ., .) to generate a user private key kid ← Join(gpk, ik, id,Aid) upon
input id and an attribute set Aid ⊆ Att queried by the adversary.

In ABGS scheme a group member may have multiple attribute sets to satisfy the
predicate and he can produce a group signature using one of them. An ABGS scheme
preserves attribute anonymity if it is computationally difficult to identify with what
attribute set he produces the signature.
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Definition 5.2.3 (Attribute anonymity) We say that the ABGS scheme preserves
attribute anonymity if, for all honestly generated (params, gpk, ik, okuser)← Setup(1k),
for all predicates Υ, for all attribute sets Aid ⊆ Att such that there exist ζ1, ζ2 ⊆ Aid

and Υ(ζ1) = Υ(ζ2) = 1, for all kid ← Join(gpk, ik, id,Aid) and all messages M , the
distributions Sign(gpk, kid, ζ1,M,Υ) and Sign(gpk, kid, ζ2,M,Υ) are identical.

In other words, even the computationally unbounded adversary cannot link a signa-
ture to a set of attributes used to generate it.

ABGS scheme preserves user anonymity if there are at least two group members
possessing valid attribute sets and one of them produces the group signature then it
should be computationally hard to identify who produced the group signature among
them.

Definition 5.2.4 (User anonymity (CPA)) We say that the ABGS scheme preserves
user anonymity under CPA1 if for all PPT A, the probability that A wins the follow-
ing game is negligible.

• Setup : The simulator B generates (params, gpk, ik, okuser) ← Setup(1k). B
gives gpk to A.

• Phase1 : A is given access to the oracles Join(gpk, ik, ., .) and Sign(gpk, ik, ., ., .).

• Challenge : A outputs M∗,Υ∗ and two identities ID1, ID2 : ∃ζ1 ⊆ AID1 , ζ2
2⊆

AID2 and Υ∗(ζ1) = Υ∗(ζ2) = 1 to be challenged. The simulator B randomly se-
lects x ∈R {1, 2} and responds with a group signature σ∗ ← Sign(gpk, kIDx , ζx,M∗,

Υ∗). The constraints are the private keys of ID1 and ID2 to the join oracle,
and group signatures on (M∗,Υ∗, ID1) and (M∗,Υ∗, ID2) to the sign oracle
should not be queried before.

1Note: If we provide Open oracle to the adversary then the user anonymity will be enhanced to
CCA - security notion

2ζ2 can be equal to ζ1. Since we are concerned only about the user anonymity the attribute
anonymity is separately considered in attribute anonymity definition.
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5.2 Proposed Scheme

• Phase2 : A can make all queries similar to Phase1 under the constraints men-
tioned above.

• Output : A outputs a bit x′, and wins if x = x′.

The advantage of A is defined as AdvA = |Pr(x = x′)− 1
2 |.

Thus there should not exist any PPT adversary to link a group signature to a user
with non-negligible probability.

ABGS scheme preserves traceability if it is possible to trace the valid group signature
to its signer with the help of group opening key.

Definition 5.2.5 (Traceability) We say that the ABGS scheme is traceable if for
all PPT A, the probability that A wins the following game is negligible.

• Setup : The simulator B generates (params, gpk, ik, okuser) ← Setup(1k). B
gives (gpk, okuser) to A.

• Queries : A is given access to the oracles Join(gpk, ik, ., .) and Sign(gpk, ik, ., ., .).

• Output : A outputs a message M∗, a predicate Υ∗ and a group signature σ∗.

A wins if
(1 ) Verify(gpk,M∗,Υ∗, σ∗) = 1 and (2 ) Open(gpk, okuser, σ∗) = ⊥.

Thus it should be impossible to produce an untraceable valid group signature by any
PPT adversary.

ABGS scheme preserves attribute unforgeability if it is hard for a group member
to forge an attribute certificate in order to produce a valid group signature.
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Definition 5.2.6 (Attribute unforgeability) We say that the ABGS scheme pre-
serves attribute unforgeability if for all PPT A, the probability that A wins the fol-
lowing game is negligible.

• Setup : The simulator B generates (params, gpk, ik, okuser) ← Setup(1k). B
gives gpk to A.

• Queries : A is given access to the oracles Join(gpk, ik, ., .) and Sign(gpk, ik, ., ., .).

• Output : A outputs a message M∗, a predicate Υ∗ and a group signature σ∗.

A wins if
(1 ) Verify(gpk,M∗,Υ∗, σ∗) = 1,
(2 ) Open(gpk, okuser, σ∗) = id and
(3 ) @ζ ∈ Aid : Υ(ζ) = 1.

Thus it should be impossible for any PPT adversary to satisfy the predicate with
invalid set of attributes.

ABGS scheme preserves collusion resistance of attribute certificates if it is computa-
tionally hard for group members to collude by pooling their attribute certificates to
satisfy the predicate and to produce a valid group signature.

Definition 5.2.7 (Collusion resistance of attributes) We say that the ABGS
scheme preserves collusion resistance of attributes if for all PPT A, the probability
that A wins the following game is negligible.

• Setup : The simulator B generates (params, gpk, ik, okuser) ← Setup(1k). B
gives gpk to A.

• Queries : A is given access to the oracles Join(gpk, ik, ., .) and Sign(gpk, ik, ., ., .).

• Output : A outputs a message M∗, a predicate Υ∗ and a group signature σ∗.
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A wins if (1) Verify(gpk,M∗,Υ∗, σ∗) = 1, and (2) A has obtained kid1 , ..., kidk :
Υ∗(∪kj=1Aidj) = 1 and Υ∗(Aidj) 6= 1 for j = 1, ..., k.

Thus the users with invalid set of attributes each, cannot collude with each other to
pool a valid attribute set for producing a valid group signature.

Definition 5.2.8 (Full anonymity) We say that the ABGS scheme preserves full
anonymity if it preserves both attribute anonymity and user anonymity. That is,
signature should not reveal the signer’s identity and also the attributes he holds.

Definition 5.2.9 (Full traceability) We say that the ABGS scheme preserves full
traceability if it preserves traceability, attribute unforgeability and collusion resistance
of attributes. That is, even if there exists a coalition of users, it is impossible to forge
signatures and attributes.

5.3 Construction - 1

In this section, we describe our first construction of ABGS scheme with attribute
anonymity [4]. Our construction is based on the Boyen et al.’s two-level signature
scheme from [34] and the technique to build the access trees is from [51]. We use
non-interactive proof system technique of Groth and Sahai under subgroup decision
assumption (see Sec. 2.4.7) to generate the NIWI proofs for the relations in the group
signature, which helps to preserve the user anonymity of the proposed scheme. We
prove that our scheme, in the standard model, preserves attribute anonymity un-
conditionally, user anonymity in CPA attacks under Subgroup Decision assumption,
traceability under `-HSDH assumption and attribute unforgeability under DL and
KEA1 assumptions. In contrast to other existing ABGS schemes [51; 72; 73] our
scheme is built in standard model with attribute anonymity and achieves a constant
size signature independent of the number of attributes.
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• Setup(1k): It takes the security parameter k as an input and outputs the system
parameters params, group public key gpk, issuing key ik and the opening key
okuser.

(i) Select the primes p and q of size k. Let the groups G and GT be of order
n = pq for which there exists a bilinear map e from G×G to GT . Let Gp

and Gq be the subgroups of G of order p and q, respectively.

(ii) Define the universal set of attributes, Att = {att1, ..., attm},m = O(k).

(iii) Select the generators g, u ∈ G and h ∈ Gq.

(iv) For each attribute atti ∈ Att select the attribute secrets si ∈ Z∗q. Let
S = {si}atti∈Att.

(v) Compute the public values of the attributes {hatti = hsi}atti∈Att.

(vi) Select the exponents α, z ∈R Z∗n and compute Z = gz.

(vii) Select the generators v′, v1, ..., vm′ ∈ G and define the Waters function,
F : {0, 1}m′ → G, for M = (µ1, ..., µm′) ∈ {0, 1}m

′ such that F(M) =
v′Πm′

j=1v
µj
j , where m′ = O(k).

(viii) Output the system parameters,

params = (n,G,GT , e, Att)

The group public key,

gpk = (g, u, Z, h,F , {hatti}atti∈Att) ∈ G3 ×Gq ×Gm′+1 ×Gm
q

The issuing key ik and the opening key okuser,

ik = (gα, z, S) ∈ G× Z∗n × Z∗mq , okuser = q ∈ Z

The description of F includes the generators v′, v1, ..., vm′ .

• Join(gpk, ik, id,Aid): It takes group public key, issuing key, user identity id
and subset of attributes Aid ⊆ Att, and outputs user private key kid.
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(i) Select the unique identifier sid ∈ Z∗n.

(ii) Compute the membership certificate gid = (gα)
1

z+sid .

(iii) Compute the attribute certificates {gid,i = gsiid}atti∈Aid .

(iv) Output the user private key,

kid = (kid,1, kid,2, kid,3, kid,4) = (gid, g
sid , usid , {gid,i}atti∈Aid) ∈ G3+|Aid|

• BuildTree(gpk, ik,Υ): It generates a public values for the predicate Υ.

(i) Let TΥ be the tree that represents the predicate Υ.

(ii) Get extension tree T ext ← AddDummyNode(TΥ).

(iii) Get secret values for each dummy node and the secret value of root of T ext

using ({sdj}dj∈DT , sT )← AssignedVaule(S, T ext).

(iv) Output the public values of tree T ext,

TΥ = ({sdj}dj∈DT , AT = e(gα, gsT ), T ext)

• Sign(gpk, kid, ζ,M,Υ): It generates a group signature σ on message M ∈
{0, 1}m′ with user private key kid who satisfy the predicate Υ with his sub-
set of attributes ζ ⊆ Aid : Υ(ζ) = 1.

(i) Get the public values of Υ from the public repository1.

(ii) Select a random s ∈ Z∗n. Compute ρ = (ρ1, ρ2, ρ3, ρ4) = (ksTid,1, kid,2,

kid,3.F(M)s, g−s) where ρ1 = ksTid,1 is computed as follows:

– Select ζ ⊆ Aid : Υ(ζ) = 1.
– Get ({∆attj}(∀attj∈ζ), {∆dj}(∀dj∈DζT ))← MakeSimplifiedTree(ζ, T ext).

– Compute ρ1 = Πatti∈ζg
∆atti
id,i g

(Σ
dj∈D

ζ
T

∆dj
sdj )

id = g
Σatti∈ζ∆attisj
id g

Σ
dj∈D

ζ
T

∆dj
sdj

id =
gsTid .

1GM runs BuildTree algorithm to generate the public values of the predicate Υ and stores it in
a public repository. Note that if the public values of the required predicate is present in the public
repository then the user will not approach GM.
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(iii) Commit the group elements ρi, for i ∈ {1, ..., 4}. Choose t1, t2, t3, t4 ∈ Zn,
and compute σ1 = ρ1h

t1 , σ2 = ρ2h
t2 , σ3 = ρ3h

t3 and σ4 = ρ4h
t4 .

(iv) Compute the NIWI proofs for the committed variables ρ1, ..., ρ4 satisfying
the following pairing-product equations

e(Z, ρ1)e(ρ2, ρ1) = AT (5.1)

e(g, ρ3)e(F(M), ρ4)e(u−1, ρ2) = 1 (5.2)

From (2.1) for the relation (5.1), according to Groth-Sahai NIWI proof
system under subgroup decision assumption we haveA1 = Z,A2 = 1,X1 =
ρ1,X2 = ρ2, tT = AT , γ11 = 0, γ12 = 0, γ21 = 1 and γ22 = 0. Then the proof

π1 = Π2
i=1A

ti
i .Π2

i=1(Π2
j=1(X ti(γij+γji)

j )).Π2
i=1(Π2

j=1(htitjγij))

= Zt1ρt12 ρ
t2
1 h

t2t1.

And for the relation (5.2), we have A1 = g,A2 = F(M),A3 = u−1X1 =
ρ3,X2 = ρ4,X3 = ρ2, tT = 1 and γij = 0 for i, j ∈ {1, 2, 3}. Then the proof

π2 = Π3
i=1A

ti
i .Π3

i=1(Π3
j=1(X ti(γij+γji)

j )).Π3
i=1(Π3

j=1(htitjγij))

= gt3F(M)t4(u−1)t2.

(v) Output a group signature:

σ = ({σi}4
i=1, π1, π2) ∈ G6

Notice that the attribute certificates are only used in computing ρ1 value. Also
notice that the signature size is independent of number of attributes |ζ|.

• Verify(gpk,M,Υ, σ): It verifies the group signature’s validity as follows,

e(Z, σ1)e(σ2, σ1) = AT e(h, π1) (5.3)
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e(g, σ3)e(F(M), σ4)e(u−1, σ2) = e(h, π2) (5.4)

Returns 1 if the above equations holds, else return 0.

Equation (5.3) establishes that the signer is a valid member holding required
attributes that satisfies the predicate Υ and equation (5.4) establishes that the
group signature is on message M .

• Open(gpk, okuser, σ): Parse the signature and get σ2. Calculate (σ2)q and tests:

(σ2)q = (gsidht1)q ?= (gsid)q

All the (gsid)q can be pre-computed and stored as a list by the opener. It returns
the corresponding id if it matches any such value from the list, else returns 0.
Time to find the identity id is linearly dependent on the number of initial users.

5.3.1 Security Analysis

Theorem 5.3.1 The proposed ABGS scheme is correct.

Proof The correctness follows from the Groth-Sahai proof system correctness.

Theorem 5.3.2 The proposed ABGS scheme preserves attribute anonymity.

Proof According to the definition of attribute anonymity it is sufficient to show
that for any predicate Υ and for any subset of attributes Aid : ∃ζ1, ζ2 ⊆ Aid that
satisfies predicate i.e., Υ(ζ1) = Υ(ζ2) = 1, the output of Sign(gpk, kid, ζ1,M,Υ) is
indistinguishable from the output of Sign(gpk, kid, ζ2,M,Υ), subject to the constraint
that they pass the verification algorithm.
For any group signature σ = ({σi}4

i=1, π1, π2), the attribute certificates are hidden
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and used in σ1 computation and it is easy to observe that for any two given group
signatures by the same user the value σ1 = (gidh

t1)sT will not distinguish among
themselves, since both are identical because of same sT value. Thus it will not reveal
the underlying subset of attributes, but only it proves that it satisfies the predicate.
Thus the proposed scheme preserves attribute anonymity.

Theorem 5.3.3 The proposed ABGS scheme preserves user anonymity under sub-
group decision assumption.

Proof The user anonymity definition says that any PPT adversary should not be
able to link a group signature to the user and the witness-indistinguishable feature
of Groth-Sahai proof system ensures that the proof will not reveal which of the
witnesses the prover has used. Thus the proof follows from the proof of composable
witness-indistinguishability of Groth-Sahai proof system [68].

Thus the Construction - 1 preserves full anonymity.

Theorem 5.3.4 The proposed ABGS scheme satisfies traceability under the chosen
message existential unforgeability of the two-level signature scheme.

Proof We note that our ABGS scheme is an extension form of a two-level signature
scheme and the proof is similar to that of [34]. Intuitively, we prove that our ABGS
is secure against chosen message attack by using two-level signature’s unforgeability.
Suppose there exists a simulator B who interacts with the adversary A and wants to
break the two-level signature scheme. Then, B executes the following algorithms and
plays a game with A.

Setup: The simulator B is given the factorization n = pq of the group order |G| = n.

As usual, Gp and Gq denotes the subgroups of G of order p and q, respectively, and by
analogy let GTp and GTq denotes the subgroups of GT of order p and q, respectively.
B is given the two-level signatures scheme public parameters,

P̃P = {g̃, Z̃ = g̃z, ũ = g̃y, ṽ′ = g̃z
′
, ṽ1 = g̃z1 , ..., ṽm′ = g̃zm′ , Ã = e(g̃, g̃)α} ∈ Gm′+4

p ×GTp
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Using this B simulates ABGS scheme. The parameters of ABGS scheme is generated
as follows,

• Select the generators (h, f, γ, ν ′, ν1, ..., νm′) ∈ Gm′+4
q and two random exponents

β, ψ ∈ Zq.

• Define the attribute set Att = {att1, ..., attm}.

• Choose secret value for attributes S = {sj}mj=1 ∈ Z∗q. Compute the public values
as {hattj = hsj}mj=1.

B publishes the group public key, gpk = (g = g̃f, u = ũγ, Z = Z̃.fψ, h,F = {v′ =
ṽ′ν ′, v1 = ṽ1ν1, ..., vm′ = ṽm′νm′}, {hattj}mj=1).
B knows all the values except z and B has access to the two-level signature scheme’s
oracles namely, key extraction oracle and signing oracle. The distribution of the pub-
lic key is the same as in the real scheme. A is given okuser = q.

Queries: A is given access to the oracles Join(gpk, ik, ., .) and Sign(gpk, ik, ., ., .).
The implementation of oracles is as follows,

• Join(gpk, ik, ., .): To answer the query to this oracle upon receiving id,Aid ⊆
Att. B queries the key extraction oracle of two-level signature scheme and
obtain the user’s private key k̃id = (k̃id,1, k̃id,2, k̃id,3) ∈ G3

p. Next, the simula-
tor B internally associates a persistent random rid ∈ Zq to id, recalling the
value previously associated to id from storage as needed. Then B computes
the requested key as, kid = (kid,1 = k̃id,1.(fβ)

1
ψ+rid , kid,2 = k̃id,2.f

rid , kid,3 =
k̃id,3.γ

rid , kid,4 = {ksjid,1}∀attj∈Aid).
Notice that this is a well formed key in our scheme. Indeed, since g̃ ∈ Gp and
h ∈ Gq, it follows that e(g̃, h) = 1 in GT , and hence,

e(Zkid,2, kid,1) = e(g̃z+sidfψ+rid , g̃
α

z+sid f
β

ψ+rid ) = e(g̃, g̃)αe(f, f)β = e(g, g)α,

and similarly, e(kid,2, u) = e(kid,3, g).
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• Sign(gpk, ik, ., ., .): To answer the query to this oracle upon receiving user iden-
tity id, a message M = (µ1, ..., µm′) ∈ {0, 1}m

′ and a predicate Υ. B queries
to the signing oracle of two-level signature scheme and obtains σ = (σ?1, σ?2, σ?3)
corresponding with (id,M). Next, the simulator B creates or recalls the per-
sistent random value rid ∈ Zq associated to id, as described above. B chooses
a random exponent r0 ∈ Zq and let TΥ = ({sdj}dj∈DT , AT = AsT , T ext) be the
public values of the queried predicate Υ and note that B knows the value sT .
B then creates an unblined signature,

ρ =
(
ρ1 = (σ?1)sT .(fβ)

sT
ψ+rid , ρ2 = σ?2.f

rid , ρ3 = σ?3.γ
rid .(ν ′Πm′

i=1ν
µi
i )r0 , ρ4 = σ?4.f

−r0
)
.

Notice that this is a valid unblind signature in our scheme. The simulator B can
next simply commit the variables and constructs the NIWI proof of it as given
in the signature procedure, and then give the resulting signature. We could see
that this is a valid group signature. A could check its validity by using gpk and
opens its identity by using okuser = q.

Output: At some point, A outputs its forged signature σ∗ = (σ∗1, σ∗2, σ∗3, σ∗4, π∗1, π∗2)
with (id∗,M∗,Υ∗). According to the traceability game constraint, id∗ should be
excluded from key extraction queries and (id∗,M∗,Υ∗) should not be queried from
signing oracle before.
Then B generates λ : λ ≡ 1(mod p) and λ ≡ 0(mod q). Then, from π∗1, π

∗
2 and the

two verification equations, we obtain:

e(Z, σ∗1)e(σ∗2, σ∗1) = AT e(h, π∗1)

e(g, σ∗3)e(F(M), σ∗4)e(u−1, σ∗2) = e(h, π∗2)

And we use λ and sT to obtain:

e(Zσ∗λ2 , σ
∗ λ
sT

1 ) = A

e(σ∗λ2 , u) ?= e(σ∗λ3 , g).e(σ∗λ4 ,F(M))
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Since (σ
∗ λ
sT

1 , σ∗λ2 , σ
∗λ
3 , σ

∗λ
4 ) pass the verification equation of two-level signature scheme,

it is a forged two-level signature, which means B successfully breaks the unforgeability
of two-level signature scheme. Hence the theorem is proved.

Theorem 5.3.5 The proposed scheme preserves attribute unforgeability.

Proof Lemma 5.3.6 implies this theorem.

Lemma 5.3.6 Under the DL and KEA1 assumptions there exists no PPT adversary
A which passes verification with forged attributes with non negligible probability.

Proof The input to the simulator B is an instance of the DL problem, (v, v′) ∈ G2
q,

where q is prime. Let ξ = logvv
′.

Setup: According to scheme setup define the groups Gp,G and GT , of order p, n and
n, respectively, where n = pq. Define the universal set of attribute Att. Simulate the
ABGS scheme and generate the parameters by setting h = v and g = v′g′, where
g′ ∈R Gp

gpk = (g, u, Z, h,F , {hatti}atti∈Att) , ik = (gα, z, S) and okuser = q ∈ Z

Queries: As B knows all the keys, it can answer all the queries generated by
an adversary A. That is, A is given access to the oracles Join(gpk, ik, ., .) and
Sign(gpk, ik, ., ., .).

Output: Finally, A outputs a signature σ∗ with forged attributes on message M∗, a
predicate Υ∗ whose public values are TΥ∗ = ({sdj}, AT , T ext), and user’s private key
kID∗ such that Υ(AID∗) 6= 1. As it is a valid signature and from (5.3) σ∗1 = (gsTID∗h

t1).
This can be viewed as σ∗1 = (v′g′)

sT
z+sID∗ ht1 = (v′)

sT
z+sID∗X and v′sT can be extracted

by raising the power z + sID∗ , where

X = (ht1)(g′)
sT

sID∗+z

130



5.3 Construction - 1

It is like B is giving input (h = v, hT = vsT ) to A and A implicitly returns (v′, (v′)sT ).
Then by KEA1 assumption, B can utilize the extractor Ā to extract a value ξ.

Under DL assumption it can be done with negligible probability. Thus the signature
produced by the forged attributes can pass verification with negligible probability.
To be more particular, we can assume that the A is missing one attribute certificate
to satisfy the predicate, say gsjID∗ , i.e. (v′)sj is unknown to A, but he knows hsj = vsj .
And A is producing it in forged group signature σ∗. Then similar to above from
KEA1 and DL assumption it is negligible to produce such signatures.

Theorem 5.3.7 The proposed scheme preserves collusion resistance of attributes.

Proof Lemma 5.3.8 implies this theorem.

Lemma 5.3.8 Even if some malicious participants Uid1 , ...,Uidk(k > 1) with the set
of attributes Aid1 , ...,Aidk collude, they cannot make a valid signature associated with
predicate Υ, where Υ(∪kj=1Aidj) = 1 and Υ(Aidj) 6= 1 for j = 1, ..., k with non
negligible probability.

Proof Without loss of generality we assume that Uid0 with Aid0 and Uid1 with Aid1

represent malicious participants. Uid0 and Uid1 attempt to make a valid signature
associated with predicate Υ such that Υ(Aid0∪Aid1) = 1 and Υ(Aid0) 6= 1,Υ(Aid1) 6=
1. They can satisfy verification equation (5.4) since they have valid membership
certificates. We assume that gtid0 = gid1 , where t ∈ Z∗n. Note that the probability of
t = 1 is negligible. And they try to compute

ρ1 = g
Σattj∈Aid0

∆attj sj

id0 + g
Σattj∈Aid1

∆attj sj

id1 + g
Σ
dj∈D

ζ
T

∆dj
sdj

id0

= g
Σattj∈Aid0

∆attj sj+tΣattj∈Aid1
∆attj sj+Σ

dj∈D
ζ
T

∆dj
sdj

id0

Then from (2.6)

Σattj∈Aid0
∆attjsj + tΣattj∈Aid1

∆attjsj + Σdj∈DζT
∆djsdj 6= sT

holds. Since t 6= 1 this means that they cannot collude.
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Table 5.1: Comparison of ABGS scheme without non-frameability in standard model
with other schemes

Khader [72] Emura et al. [51] Herranz et al.[70]+
Boyen et al.[34] Our Scheme

User anonymity CPA CCA2 CPA CPA
Attribute anonymity no no yes yes
Non-frameability no yes no no
Signature length O(Φ) O(Φ) 15|Gp| + 6|Gn| = O(1) 6|Gp|=O(1)
User′s Private Key

Length (m′ + 1)|Gp| + |Z∗p| (m′ + 1)|Gp| + 2|Z∗p| (m + m̂ + 3)|Gp| (3 + m̂)|G|

Assumptions DLDH, `-SDH DDH, `-SDH, DL DLin, (`,m, t)-aMSE-CDH
(

SGD, `−HSDH,
DL, KEA1

)
Model RO RO Standard Standard

Signing
(

(7+2Φ)Gp+(5+Φ)GT
+(Φ+1)e

) (
(9+3Φ)Gp+(1+Φ)Gp

+8GT+3e

) (
(6m+6m′+Φ(Φ−1)

+14)Gp

)
(18 +m′ + 2Φ)G

Verification
(

(6+2r)Gp+(8+2Φ)GT
+(Φ+2r+1)e

) (
(11+2Φ)Gp+(Φ+1)G2

+14G3+6e

) (
(4m+6m′)Gp
+33e+21GT

)
(2 +m′)G + 3GT + 6e

Thus the Construction - 1 preserves full traceability.

5.3.2 Comparison

In the construction - 1, the group signature contains 6 elements from G. In Table
5.1 we compare our proposed construction - 1 with the existing ABGS schemes. Let
Φ = |ζ|, where ζ be the set of attributes associated with a signature and m = |Att|.
Let m̂ ≤ m be the maximum number of attributes assigned to a user, r be the number
of revoked members and m′ is the message length. Let RO denotes the Random oracle
model, SGD denotes the Subgroup Decision assumption, (`,m, t)-aMSE-CDH denotes
the (`,m, t)- augmented multi-sequence of exponents computational Diffie-Hellman
and let e represents the bilinear operation. We note that the verification cost of
the proposed scheme is independent of the number of attributes, where as in other
schemes the verification cost is linear in terms of the number of attributes. Also the
scheme is in standard model and has comparatively short signature length.

5.4 Construction - 2

In this section, we describe our second construction for ABGS scheme with attribute
anonymity having shorter signature length [3]. But here our construction is based on
the two-level signature scheme by Liang et al. [79]. We prove that our scheme, in the
standard model, preserves attribute anonymity unconditionally, user anonymity in
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CPA attacks under Subgroup Decision assumption, traceability under `-MOMSDH
assumption and attribute unforgeability under DL and KEA1 assumptions. When
compared to the Construction - 1 the signature length in this construction is shorter.

• Setup(1k): It takes the security parameter k as an input and outputs the system
parameters params, the group public key gpk, issuing key ik and the opening
key okuser.

(i) Select the primes p and q of size k. Let the groups G and GT be of order
n = pq for which there exists a bilinear map e from G×G to GT . Let Gp

and Gq be the subgroups of G of order p and q, respectively.

(ii) Define the universal set of attributes, Att = {att1, ..., attm},m = O(k).

(iii) Define the collision resistant hash function, H : {0, 1}m′ → Zn, m
′ = O(k).

(iv) Select the generators g, u ∈ G and h ∈ Gq.

(v) For each attribute atti select the attribute secret si ∈ Z∗q. Let S =
{si}atti∈Att.

(vi) Compute the public values of the attributes
{hatti = hsi}atti∈Att.

(vii) Select the secret z ∈R Z∗n and compute Z = gz.

(viii) Output the system parameters,

params = (n,G,GT , e, Att,H)

The group public key,

gpk = (g, u, h, Z, {hatti}atti∈Att)

The issuing key ik = (z, S), the opening key okuser = q and the size = `.

The gpk also include the description of (n,G,GT , e), Att,H.

• Join(gpk, ik, id, Aid): It takes group public key, issuing key, user identity id and
subset of attributes Aid ⊆ Att, and outputs user private key kid.

133



5.4 Construction - 2

(i) Select the secret unique identifier sid ∈ Z∗n.

(ii) Compute gid = g
1

sid+z .

(iii) Compute the attribute certificates {gid,i = gsiid}atti∈Aid .

(iv) Output the user private key,

kid = (k(1)
id , k

(2)
id , k

(3)
id ) = (sid, gid, {gid,i}atti∈Aid)

• BuildTree(gpk, ik,Υ): It generates a public values for the predicate Υ.

(i) Let TΥ be the tree that represents the predicate Υ.

(ii) Get extension tree T ext ← AddDummyNode(TΥ).

(iii) Get secret values for each dummy node and the secret value of root of T ext

using ({sdj}dj∈DT , sT )← AssignedVaule(S, T ext).

(iv) Output the public values of tree TΥ.

TΥ = ({sdj}dj∈DT , hT = hsT , gT = gsT , T ext)

• Sign(gpk, kid, ζ,M,Υ): It generates a group signature σ on message M ∈
{0, 1}m′ with user private key kid who satisfy the predicate Υ with his sub-
set of attributes ζ ⊆ Aid : Υ(ζ) = 1.

(i) Get the public values of Υ from the public repository1.

(ii) Compute ρ = (ρ1, ρ2, ρ3) = (gsid , gsTid , u
1

sid+H(M) )
where ρ2 = gsTid is computed as follows,

– Select ζ ⊆ Aid : Υ(ζ) = 1.
– Get ({∆attj}(∀attj∈ζ), {∆dj}(∀dj∈DζT ))← MakeSimplifiedTree(ζ, T ext).

– Compute ρ2 = Πatti∈ζg
∆atti
id,i g

(Σ
dj∈D

ζ
T

∆dj
sdj )

id = g
Σatti∈ζ∆attisi
id g

Σ
dj∈D

ζ
T

∆dj
sdj

id =
gsTid .

1GM runs BuildTree algorithm to generate the public values of the predicate Υ and stores it in
a public repository. Note that if the public values of the required predicate is present in the public
repository then the user will not approach GM.
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We hide the ρ values as follows:

(iii) Choose t1, t2, t3 ∈R Zn, and compute σ1 = ρ1h
t1 , σ2 = ρ2h

t2 and σ3 = ρ3h
t3 .

(iv) Compute π1 = ρt12 (Zρ1)t2ht1t2 , π2 = ρt13 (gH(M)ρ1)t3ht1t3 .

(v) Output a group signature:

σ = ({σi}3
i=1, π1, π2) ∈ G5

Notice that the attribute certificates are used only in computing ρ2. Also notice
that the signature size is independent of number of attributes |ζ|.

• Verify(gpk,M,Υ, σ):

(i) Compute T1 = e(σ1Z, σ2)e(g, gT )−1 and
T2 = e(σ1g

H(M), σ3)e(g, u)−1

(ii) Verify the following equations:

T1
?= e(π1, h) (5.5)

T2
?= e(π2, h) (5.6)

Returns 1 if the above equations holds, else return 0.
Equation (5.5) establishes that the signer is a valid member holding the required
attributes that satisfies the predicate Υ and equation (5.6) establishes that the
group signature is on the message M

• Open(gpk, okuser, σ): Parse the signature and get σ1. Calculate (σ1)q and test:

(σ1)q = (gsidht1)q ?= (gsid)q

All the (gsid)q can be pre-computed and stored as a list by the opener. It returns
the corresponding id if it matches any such value from the list, else returns 0.
Time to find the identity id is linearly dependent on the number of initial users.
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5.4.1 Security Analysis

Theorem 5.4.1 The proposed ABGS scheme is correct.

Proof The correctness is followed from the scheme.

Theorem 5.4.2 The proposed ABGS scheme satisfies traceability under the chosen
message existential unforgeability of the Liang et al.’s two-level signature scheme.

Proof We note that our ABGS scheme is an extension form of a two-level signature
scheme and the proof is similar to that of [79]. Intuitively, our ABGS is secure against
chosen message attack by using two-level signature’s unforgeability.
Suppose there exists a simulator B who interacts with the adversary A and wants to
break the two-level signature scheme. Then, B executes the following algorithms and
plays a game with A.

Setup: B is given the public parameters of two-level signature scheme:

params = {p, q, n,G,GT ,Gp, e,H}, PP = {g, u, Z = gz}

Using this B simulates ABGS scheme. The parameters of ABGS scheme is generated
as follows,

• Select the generator h ∈ Gq, where Gq is a subgroup of G and of order q.

• Define the attribute set Att = {att1, ..., attm}.

• Choose secret value for attributes S = {sj}mj=1 ∈ Z∗q. Compute the public values
as {hattj = hsj}mj=1.

B publishes the group public key, gpk = (g, u, h, Z, {hattj}mj=1).
B knows all the values except z, for which it queries the two-level signature scheme’s
oracles namely, key extraction oracle and signing oracle. A is given okuser = q.
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Queries: A is given access to the oracles Join(gpk, ik, ., .) and Sign(gpk, ik, ., ., .).
The implementation of oracles is as follows,

• Join(gpk, ik, ., .): To answer the query to this oracle upon receiving id,Aid ⊆
Att. B queries the key extraction oracle of two-level signature scheme and
obtain the user’s private key kid = (kid,1, kid,2) = (sid, gid = g

1
z+sid ). Then

B computes k(3)
id = {gid,j = g

sj
id}∀attj∈Aid and replies with kid = (k(1)

id , k
(2)
id , k

(3)
id ) =

(sid, gid, {gid,i}atti∈Aid). Notice that A can make valid group signatures with this
key.

• Sign(gpk, ik, ., ., .): To answer the query to this oracle upon receiving user
identity id, a message M and a predicate Υ. B queries to the signing or-
acle of two-level signature scheme and obtains σ = (σ?1, σ?2, σ?3) correspond-
ing with (id,M). Let TΥ = ({sdj}dj∈DT , hT = hsT , gT = gsT , T ext) be the
public values of the queried predicate Υ and note that B knows the value
sT . Then, B randomly choose t1, t2, t3, and generates the group signature,
σ = (σ?1ht1 , (σ?2)sTht2 , σ?3ht3 , (σ?2)sT t1(Zσ?1)t2ht1t2 , (σ?3)t1(gH(M)σ?1)t3ht1t3).
We could see that this a valid group signature. A could check its validity by
using gpk and opens its identity by using okuser = q.

Output: At some point, A outputs its forged signature σ∗ = (σ∗1, σ∗2, σ∗3, π∗1, π∗2) with
(id∗,M∗,Υ∗). According to the traceability game constraint, id∗ should be excluded
from key extraction queries and (id∗,M∗,Υ∗) should not be queried from signing
oracle before.
Then B generates λ : λ ≡ 1(mod p) and λ ≡ 0(mod q). Then, from π∗1, π

∗
2 and the

first two verification equations, we obtain:

e(σ∗1Z, σ∗2)e(g, gT )−1 = e(π∗1, hT )

e(σ∗1gH(M∗), σ∗3)e(g, g)−1 = e(π∗2, h)

And we use λ to obtain:
e(σ∗λ1 Z, σ

∗ λ
sT

2 ) = e(g, g)
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e(σ∗λ1 g
H(M∗), σ∗λ3 ) = e(g, g)

Since (σ∗λ1 , σ
∗ λ
sT

2 , σ∗λ3 ) pass the verification equation of two-level signature scheme, it
is a forged two-level signature, which means B successfully breaks the unforgeability
of two-level signature scheme. Hence the theorem is proved.

Theorem 5.4.3 The proposed scheme preserves attribute unforgeability.

Proof Lemma 5.4.4 implies this theorem.

Lemma 5.4.4 Under the DL and KEA1 assumptions there exists no PPT adversary
A which passes verification with forged attributes with non negligible probability.

Proof The input to the simulator B is an instance of the DL problem, (v, v′) ∈ G2
q,

where q is prime. Let ξ = logvv
′.

Setup: According to scheme setup define the groups Gp,G and GT , of order p, n and
n, respectively, where n = pq. Define the universal set of attribute Att. Simulate the
ABGS scheme and generate the parameters by setting h = v and g = v′g′, where
g′ ∈R Gp

gpk = (g, u, h, Z, {hatti}atti∈Att), ik = (z, S) and okuser = q

Queries: As B knows all the keys, it can answer all the queries generated by
an adversary A. That is, A is given access to the oracles Join(gpk, ik, ., .) and
Sign(gpk, ik, ., ., .).

Output: Finally, A outputs a signature σ∗ with forged attributes on message M∗, a
predicate Υ∗ whose public values are TΥ∗ = ({sdj}, hT , gT , T ext), and user’s private key
kID∗ such that Υ(AID∗) 6= 1. As it is a valid signature and from (5.5) σ∗2 = (gID∗h

t2)sT .
This can be viewed as σ∗2 = (v′g′)

sT
z+sID∗ ht2 = (v′)

sT
z+sID∗X and v′sT can be extracted

by raising the power z + sID∗ , where

X = ht2(g′)
sT

sID∗+z , ht2 = σ∗2
gID∗
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Note that B knows gID∗ . It is like B is giving input (h = v, hT = vsT ) to A and
A implicitly returns (v′, (v′)sT ). Then by KEA1 assumption, B can utilize the ex-
tractor Ā to extract a value ξ. Under DL assumption it can be done with negligible
probability. Thus the signature produced by the forged attributes can pass verifica-
tion with negligible probability.
To be more particular, we can assume that the A is missing one attribute certificate
to satisfy the predicate, say gsjID∗ , i.e. (v′)sj is unknown to A, but he knows hsj = vsj .
And A is producing it in forged group signature σ∗. Then similar to above from
KEA1 and DL assumption it is negligible to produce such signatures.

Theorem 5.4.5 The proposed scheme preserves collusion resistance of attributes.

Proof Lemma 5.4.6 implies this theorem.

Lemma 5.4.6 Even if some malicious participants Uid1 , ...,Uidk(k > 1) with the set
of attributes Aid1 , ...,Aidk collude, they cannot make a valid signature associated with
predicate Υ, where Υ(∪kj=1Aidj) = 1 and Υ(Aidj) 6= 1 for j = 1, ..., k with non
negligible probability.

Proof Without loss of generality we assume that Uid0 with Aid0 and Uid1 with Aid1

represent malicious participants. Uid0 and Uid1 attempt to make a valid signature
associated with predicate Υ such that Υ(Aid0∪Aid1) = 1 and Υ(Aid0) 6= 1,Υ(Aid1) 6=
1. They can satisfy verification equation (5.6) since they have valid sid. We assume
that gtid0 = gid1 , where t ∈ Z∗n. Note that the probability of t = 1 is negligible. And
they tries to compute

ρ2 = g
Σattj∈Aid0

∆attj sj

id0 + g
Σattj∈Aid1

∆attj sj

id1 + g
Σ
dj∈D

ζ
T

∆dj
sdj

id0

= g
Σattj∈Aid0

∆attj sj+tΣattj∈Aid1
∆attj sj+Σ

dj∈D
ζ
T

∆dj
sdj

id0

Then from (2.6)

Σattj∈Aid0
∆attjsj + tΣattj∈Aid1

∆attjsj + Σdj∈DζT
∆djsdj 6= sT
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holds. Since t 6= 1 this means that they cannot collude.

Thus the Construction - 2 preserves full traceability.

Theorem 5.4.7 The proposed ABGS scheme preserves attribute anonymity.

Proof According to the definition of attribute anonymity it is sufficient to show
that for any predicate Υ and for any subset of attributes Aid : ∃ζ1, ζ2 ⊆ Aid that
satisfies predicate i.e., Υ(ζ1) = Υ(ζ2) = 1, the output of Sign(gpk, kid, ζ1,M,Υ) is
indistinguishable from the output of Sign(gpk, kid, ζ2,M,Υ), subject to the constraint
that they pass the verification algorithm.

For any group signature σ = ({σi}3
i=1, π1, π2), the attribute certificates are hidden

and used in σ2 computation and it is easy to observe that for any two given group
signatures by the same user the value σ2 = (gidh

t2)sT will not distinguish among
themselves, since both are identical because of same sT value. Thus it will not reveal
the underlying subset of attributes, but only it proves that it satisfies the predicate.
Thus the proposed scheme preserves attribute anonymity.

Theorem 5.4.8 Suppose no t-time adversary can solve the subgroup decision prob-
lem with advantage at least εsub. Then every t′-time adversary A which breaks the
user anonymity, we have that AdvA < 2εsub, where t ≈ t′.

Proof We use a game technique where G0 is the real ABGS user anonymity game,
and G1 is a game in which the public parameters are the same as in the original
game except that h is chosen randomly from G instead of Gq. Let the adversary’s
advantage in the original game be AdvA, and in the modified game be AdvA,G1 .
First, in Lemma 5.4.9, we show that the two games are indistinguishable, unless
the subgroup decision assumption is easy. Second, in Lemma 5.4.10, we use an
information-theoretic argument to prove that in the game G1 the adversary’s advan-
tage is zero. Then the theorem follows from these results. The proofs of these two
lemmas are similar to that of [67; 79] and [34].
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Lemma 5.4.9 For all t′-time adversaries as above, AdvA − AdvA,G1 < 2εsub.

Proof Suppose there is a simulator B trying to solve subgroup decision problem.
Upon receiving a subgroup decision challenge (n,G,GT , e, w) the simulator B first
creates public parameters for the ABGS scheme by setting h = w and then choosing
the remaining public parameters exactly as in the ABGS scheme. It then sends the
public information to A and plays the user anonymity game with it. If w ∈R Gq then
the game being played is the normal user anonymity game; otherwise, if w ∈R G,
then the game played is a different game we call G1. In either case, the algorithm
B will be able to answer all queries, since it knows the issuing key.
At some point the adversary will choose a message M and two identities ID1 and
ID2 it wishes to be challenged upon, under the usual constraints that it had not
previously made a signing key query on IDx or a signature query on (IDx,M). The
simulator B will create the requisite challenge signature on M and A will guess the
identity of the signer. If A answers correctly, then B outputs b = 1, to signify that
w ∈ Gq; otherwise it outputs b = 0, to signify that w ∈ G.
Let AdvB be the advantage of the simulator B in the subgroup decision game. As we
know that,

Pr[w ∈ G] = Pr[w ∈ Gq] = 1
2

we deduce that,

AdvA − AdvA,G1 = Pr[b = 1|w ∈ Gq]− Pr[b = 1|w ∈ G]

= 2Pr[b = 1, w ∈ Gq]− 2Pr[b = 1, w ∈ G]

= 2AdvB < 2εsub

Under the hardness of subgroup decision assumption AdvB must be lesser than εsub,
given that B runs in time t ≈ t′.

Lemma 5.4.10 For any algorithm A, we have AdvA,G1 = 0.

Proof We prove that when h is chosen uniformly from G at random, instead of Gq,

the adversary A can not sense the identity from the challenge signature. Although
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the tracing value sIDx may have been used to answer previous signing queries on
(IDx,M), the challenge signature is statistically independent of the real identity.
Let the challenge group signature is σ = (σ1, σ2, σ3, π1, π2). Since the signature
values σ1, σ2, σ3 are blinded with random number ht1 , ht2 , ht3 ∈ G, they reveal nothing
about the identity. Then, we give two signatures: σ with (ID1,M,Υ) and σ′ with
(ID2,M,Υ) and analyze two tuples π = (π1, π2), π′ = (π′1, π′2).
If σ1 = σ′1, σ2 = σ′2 and σ3 = σ′3, we show that π and π′ do not reveal the identity
either.

gsID1ht1 = gsID2ht
′
1

g
sT

z+sID1 ht2 = g
sT

z+sID2 ht
′
2

u
1

sID1+H(M)ht3 = u
1

sID2+H(M)ht
′
3

Suppose h = gη, h = uξ, ε = z+sID1
z+sID2

, τ = sID1+H(M)
sID2+H(M) , we obtain that

t
′
1 = t1 +

sID1 − sID2
η

t
′
2 = t2 +

sT

η

(
1

z + sID1
−

1
z + sID2

)
= t2 +

sT (1− ε)
η(z + sID1 )

t
′
3 = t3 +

1
ξ

(
1

sID1 +H(M)
−

1
sID2 +H(M)

)
= t3 +

1− τ
ξ(sID1 +H(M))

Now, we need to show that π1, π2 do not reveal any information about the user’s
identity. From the adversary’s point of view, we see that π1, π2, π

′
1, π

′
2 satisfy,

π
′
1 = g

sT t
′
1

z+sID2 g
(z+sID2 )t′2ht

′
1t
′
2

logg π
′
1 =

sT t1 + sT
sID1−sID2

η

z + sID2
+ (z + sID2 )(t2 +

sT (1− ε)
η(z + sID1 )

) +

η(t1 +
sID1 − sID2

η
)(t2 +

sT (1− ε)
η(z + sID1 )

)

=
sT t1

z + sID2
+
sT (sID1 − sID2 )

η(z + sID2 )
+ zt2 + sID2 t2 +

sT (1− ε)(z + sID2 )

η(z + sID1 )
+ ηt1t2 + sID1 t2 − sID2 t2 +

sT t1(1− ε)
z + sID1

+

sT (1− ε)(sID1 − sID2 )

η(z + sID1 )

=
sT t1

z + sID1
+ (z + sID1 )t2 + ηt1t2

π
′
1 = g

sT t1
z+sID1

+(z+sID1 )t2+ηt1t2

= g

sT t1
z+sID1 g

(z+sID1 )t2ht1t2
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= π1

π
′
2 = u

t′1
sID2+H(M)

g
(sID2+H(M))t′3ht

′
1t
′
3

logg π
′
2 =

t1 +
sID1−sID2

η

sID2 +H(M)
.
η

ξ
+ (sID2 +H(M))(t3 +

1− τ
ξ(sID1 +H(M))

) +

η(t1 +
sID1 − sID2

η
)(t3 +

1− τ
ξ(sID1 +H(M))

)

=
t1

sID2 +H(M)
.
η

ξ
+

sID1 − sID2
ξ(sID2 +H(M))

+H(M)t3 + sID2 t3 +

(1− τ)(sID2 +H(M))

ξ(sID1 +H(M))
+ ηt1t3 + sID1 t3 − sID2 t3 +

t1(1− τ)
sID1 +H(M)

.
η

ξ
+

(1− τ)(sID1 − sID2 )

ξ(sID1 +H(M))

=
t1

sID1 +H(M)
.
η

ξ
+ (sID1 +H(M))t3 + ξt1t3

π
′
2 = g

t1
sID1+H(M) .

η
ξ

+(sID1+H(M))t3+ηt1t3

= u

t1
sID1H(M)

g
(sID1+H(M))t3ht1t3

= π2

Therefore, (π1, π2) is identical to (π′1, π′2). The challenge signature σ does not reveal
the identity id, though the simulator uses sid to generate it. Hence the advantage of
any adversary in the anonymity game G1 is zero.

Thus the Construction - 2 preserves full anonymity.

5.4.2 Comparison

In the Construction - 2, the group signature contains 5 elements from Gn. In Table
5.2 we compare our constructions with the existing ABGS schemes [72], [51] and
[70]+[79]. Let Φ = |ζ|, where ζ be the set of attributes associated with a signature
and m = |Att|. Let m′ ≤ m be the number of attributes assigned to any user and
r be the number of revoked members. Let RO denotes the Random oracle model,
SGD denotes the Subgroup Decision assumption, (`,m, t)-aMSE-CDH denotes the
(`,m, t)- augmented multi-sequence of exponents computational Diffie-Hellman and
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let e represents the bilinear operation. We note that the verification cost of the
proposed scheme is constant, where as other schemes verification cost is linear in
terms of the number of attributes. The signature length of Construction - 2 is shorter
than the Construction - 1 by one group element.
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5.5 Summary

5.5 Summary

We have proposed two ABGS schemes having attribute anonymity with the constant
size signature, and proven that they are secure under the standard model. Also the
schemes achieve the constant computational cost at the verifier side. We observed
that our schemes in the standard model are better than the existing ABGS schemes
in terms of efficiency along with additional features viz. attribute anonymity and
constant size signature.
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Chapter 6

An ABGS Scheme with Attribute
Anonymity and Attribute Tracing
in the Standard Model

In the last chapter, we presented an ABGS scheme with attribute anonymity in
the standard model which does not preserves non-frameability. In this chapter, we
present an ABGS scheme not only having attribute anonymity feature but also with
attribute tracing feature in the standard model. Moreover the scheme preserves non-
frameability, i.e., even colluding group manager cannot forge the signature.

6.1 Introduction

The ABGS schemes proposed by Khader [72; 73] and by Emura et al. [51] do not have
attribute anonymity and are secure under non-standard model. Moreover the Khader
schemes are not non-frameable. We address attribute anonymity issue in the standard
model which preserve non-frameability. We add a new feature called attribute tracing
feature, which allows a user to know with what privilege (an attribute set) the signer
has signed the document regardless of who did it. Notice that to build an ABGS



6.2 Proposed Scheme

scheme with attribute anonymity in the standard model one can also combine an
ABS scheme [70] with a group signature scheme [34], but it incurs combined cost of
both the schemes.

In Section 6.2, a model of the proposed scheme and security definitions are given.
The construction of the proposed ABGS scheme is described in Section 6.3. Its
security analysis is given in Section 6.4. The comparison with the previous schemes
is given in the Section 6.5. Finally we summarize in Section 6.6.

6.2 Proposed Scheme

In this section, we present the model and security definitions of ABGS scheme which
is similar to the one given in [20; 51; 72] but with the added attribute anonymity and
tracing features. Let k be the security parameter, params the system parameters,
Att the universal set of attributes, Υ used to denote a predicate, Υ(ζ) = 1 denotes
that the attribute set ζ ⊆ Att satisfies the predicate Υ, gpk the group public key, ik
the issuing key used for issuing private keys to the users, okuser the user opening key
used to open the user identity of the group signature, tkatt the attribute tracing key
used to trace the attributes of the group signature, Ai ⊆ Att the set of attributes
assigned to the user Ui, ski denotes the private key for the member Ui and ~reg be
the registration table with the group manager where the current group members
information are stored.

A user Ui can make a group signature on a document M with the predicate Υ if
there exists a set of attributes ζ ⊆ Ai with the user such that Υ(ζ) = 1.

Definition 6.2.1 (ABGS) An ABGS scheme consists of following algorithms. Un-
less otherwise indicated, algorithms are randomized.

• params ← Setup(1k) : This algorithm takes the security parameter k as an
input and returns the system parameter params.
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6.2 Proposed Scheme

• (gpk, ik, okuser, tkatt)← KeyGen(params) : This algorithm takes the system pa-
rameter params, and returns a group public key gpk, an issuing key ik, a user
opening key okuser and an attribute tracing key tkatt.

• ski ← Join(〈params, gpk, ik, upki,Ai〉 , 〈params, gpk, upki, uski〉) : This is an
interactive group joining protocol between a user Ui (using his secret key uski)
and the GM (using the issuing key ik and the attributes Ai ⊆ Att for Ui). In the
protocol Ui ends with a member private key ski and GM ends with an updated
registration table ~reg.

• σ ← Sign(params, gpk, ski, ζ,M,Υ) : This algorithm takes params, gpk, ski,
an attribute set ζ ⊆ Ai, message M, and the predicate Υ as an input and
returns a group signature σ on M .

• 0/1← Verify(params, gpk,M,Υ, σ) : This is a deterministic algorithm verifies
the validity of the group signature σ against gpk and returns 1/0. If 1 then the
algorithm claims that the σ is a valid group signature, otherwise, σ is invalid.

• i/⊥ ← OpenUser(params, gpk, okuser, σ,M,Υ, ~reg): This is a deterministic al-
gorithm which takes as input params, gpk, okuser,σ,Υ,M and ~reg, and returns
either i ≥ 1 or ⊥. If i, the algorithm claims that the group member with identity
i has produced σ, and if ⊥, then no group member produced σ.

• ζ/⊥ ← TraceAtt(params, gpk, tkatt, σ,M,Υ): This is a deterministic algo-
rithm which takes as input params, gpk, tkatt, σ,M and Υ, and outputs either
the attribute set ζ ⊆ Att or ⊥. Here it claims that ζ is the attribute set that
is used to satisfy Υ in producing σ. If ⊥, then the algorithm claims that no
attribute set is used to produce σ.

Entities: Following are the entities in ABGS scheme:

• The group manager GM, also known as issuer, has issuing key ik using which he
enrolls a user into the group by allotting some privileges (in terms of attributes)
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6.2 Proposed Scheme

say Ai ⊆ Att and issuing a user’s private key ski, by running interactive Join
algorithm with the user.

• The opener has user opening key okuser by which he is able to open the signature
and reveal the user identity through OpenUser algorithm.

• The attribute tracer has the attribute tracing key tkatt by which he can trace the
attribute set ζ from the group signature, which is used to satisfy the predicate
Υ, by running the TraceAtt algorithm.

• Group members or signers who are having their private keys ski. They run
Sign algorithm to produce a group signature on a document M with predicate
Υ if they possess valid attribute set Ai which satisfies the predicate.

• Outsider or verifier who can seek a group signature for a document M with
predicate Υ from group manager GM. He can also verify the group signature
using the group public key, gpk.

Note Normally the Setup and KeyGen algorithms are run by some trusted party and
he will distribute the appropriate keys to the concerned entities.

ABGS scheme is correct if the group signatures produced by an honest group member
are verified, and reveals the identity of the signer and the attribute set used.

Definition 6.2.2 (Correctness) Correctness requires that for all params← Setup(1k),
all (gpk, ik, okuser, tkatt)← KeyGen(params), ski ← Join(〈params, gpk, ik, upki,Ai〉 ,
〈params, gpk, upki, uski〉), all Υ, all ζ ⊆ Att and all M ∈ {0, 1}∗, if Ui ∈ ~reg,
ζ ⊆ Ai,Υ(ζ) = 1 and σ = Sign(params, gpk, ski, ζ,M,Υ) then

1 ← Verify(params, gpk,M,Υ, σ)∧
i ← OpenUser(params, gpk, okuser, σ,M,Υ, ~reg)∧
ζ ← TraceAtt(params, gpk, tkatt, σ,M,Υ)

holds.
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6.2 Proposed Scheme

In the following definitions the adversary can run the Join protocol (similar to
[24]):

• either through the joinP-oracle (passive join), which means that it creates an
honest user for whom it does not know the private keys: the index i is added
to the HU (Honest Users) list;

• or through the joinA-oracle (active join), which means that it interacts with the
group manager to create a user whom it will control: the index i is added to
the CU (Corrupted Users) list.

Note that when the adversary is given the issuing key (the group manager is cor-
rupted) then the adversary does not need access to the joinA oracle since it can
simulate it by itself, to create corrupted users (that are not necessarily in CU). After
a user is created, the adversary plays the role of corrupted users, and can interact
with honest users, granted some oracles:

• corrupt(i), if i ∈ HU, provides the specific private key of this user. The adversary
can now control it during the whole simulation. Therefore i is moved from HU
to CU;

• sign(i,M,Υ), if i ∈ HU, plays as the honest user i would do in the signature
process to generate a signature on message M with predicate Υ;

• openusr(M,σ,Υ), if (M,Υ, σ) is valid, returns the identity i of the signer;

• tratt(M,σ,Υ), if (M,Υ, σ) is valid, returns the attribute set ζ which used to
satisfy Υ in producing σ.

In ABGS scheme a group member may have multiple attribute sets to satisfy the
predicate and he can produce a group signature using one of them. An ABGS scheme
preserves attribute anonymity if it is computationally difficult to identify with what
attribute set he produces the signature.
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Definition 6.2.3 (Attribute Anonymity) We say that the ABGS scheme preserves
attribute anonymity if for all PPT A, the probability that A wins the following game
is negligible.

• Setup: The challenger C runs (gpk, ik, okuser, tkatt)← KeyGen(params). C gives
gpk, ik, okuser to A.

• Phase1 : A is given access to the oracles: joinP, corrupt, sign and tratt.

• Challenge : A outputs M∗,Υ∗, and an uncorrupted users Ui (i.e. i /∈ CU) such
that ∃ζi0 , ζi1 ⊆ Ai and Υ(ζi0) = 1,Υ(ζi1) = 1 holds. C randomly selects κ ∈R
{0, 1} and responds with a group signature σ∗ ← Sign(params, gpk, ski, ζiκ ,M,Υ).

• Phase 2 : A can make queries similar to Phase 1. However A cannot make
query to corrupt on i.

Output: Finally, A outputs a bit κ′, and wins if κ′ = κ.

The advantage of A is defined as Advatt−anon(A) = |Pr(κ = κ′)− 1
2 |.

Thus there should not exists any PPT adversary to link a group signature to a set of
attributes used to generate it.

ABGS scheme preserves user anonymity if there are at least two group members
possessing valid attribute sets and one of them produces the group signature then it
should be computationally hard to identify who produced the group signature among
them.

Definition 6.2.4 (User Anonymity) We say that the ABGS scheme preserves user
anonymity if for all PPT A, the probability that A wins the following game is negli-
gible.

• Setup: The challenger C runs (gpk, ik, okuser, tkatt)← KeyGen(params). C gives
gpk, ik, tkatt to A.
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6.2 Proposed Scheme

• Phase1 : A is given access to the oracles: joinP, corrupt, sign and openusr.

• Challenge : A outputs M∗,Υ∗, and an uncorrupted users Ui0 ,Ui1 (i.e. i0, i1 /∈
CU) and, ζ : ζ ⊆ Ai0 , ζ ⊆ Ai1 and Υ(ζ1) = 1. C randomly selects κ ∈R {0, 1}
and responds with a group signature σ∗ ← Sign(params, gpk, skiκ , ζ,M,Υ).

• Phase 2 : A can make queries similar to Phase 1. However A cannot make
query to corrupt on i0 and i1 at any time.

Output: Finally, A outputs a bit κ′, and wins if κ′ = κ.

The advantage of A is defined as Advuser−anon(A) = |Pr(κ = κ′)− 1
2 |.

Thus there should not exist any PPT adversary to link a group signature to a signer
with non-negligible probability.

ABGS scheme preserves traceability if it is possible to trace the valid group signature
to its signer with the help of group opening key.

Definition 6.2.5 (Traceability) We say that the ABGS scheme preserve trace-
ability if for all PPT A, the probability that A wins the following game is negligible.

• Setup: The challenger C runs (gpk, ik, okuser, tkatt)← KeyGen(params). C gives
gpk, okuser and tkatt to A.

• Queries: A is given access to the oracles: joinP, joinA, corrupt and sign.

• Output: A outputs a message M∗, a predicate Υ∗ and a group signature σ∗.

A wins if
(1) Verify(params, gpk,M∗,Υ∗, σ∗) = 1 and
(2) OpenUser(params, gpk, okuser, σ∗,M∗,Υ∗, ~reg) = ⊥.
The advantage of A is defined as the probability that A wins.

1Here ζ can be different for Ui0 ,Ui1 but we are concerned about user anonymity rather than
attribute anonymity
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Thus it should be impossible to produce an untraceable valid group signature by any
PPT adversary.

ABGS scheme preserves non-frameability if it is difficult to produce a valid group
signature which trace back to a group member who does not produce it, even with
the help of group manager’s secret key.

Definition 6.2.6 (Non-frameability) We say that the ABGS scheme preserves
non-frameability if for all PPT A, the probability that A wins the following game
is negligible.

• Setup: The challenger C runs (gpk, ik, okuser, tkatt)← KeyGen(params). C gives
gpk, ik, okuser and tkatt to A.

• Queries: A is given access to the oracles: joinP, corrupt and sign.

• Output: Finally, A outputs a message M∗, a predicate Υ∗ and a group signa-
ture σ∗.

A wins if
(1) Verify(params, gpk,M∗,Υ∗, σ∗) = 1,
(2) OpenUser(params, gpk, okuser, σ∗,M∗,Υ∗, ~reg) = i∗,

(3) i ∈ HU.
The advantage of A is defined as the probability that A wins.

Thus even the group manager should not be able to forge a group signature which
trace back to a honest member.

ABGS scheme preserves attribute unforgeability if it is hard for a group member
to forge an attribute certificate in order to produce a valid group signature.

Definition 6.2.7 (Attribute Unforgeability) We say that the ABGS scheme pre-
serves attribute unforgeability if for all PPT A, the probability that A wins the fol-
lowing game is negligible.
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• Setup: The challenger C runs (gpk, ik, okuser, tkatt)← KeyGen(params). C gives
gpk, okuser and tkatt to A.

• Queries: A is given access to the oracles: joinP, joinA, corrupt and sign.

• Output: A outputs a message M∗, a predicate Υ∗ and a group signature σ∗.

A wins if
(1) Verify(params, gpk,M∗,Υ∗, σ∗) = 1,
(2) OpenUser(params, gpk, okuser, σ∗,M∗,Υ∗, ~reg) = i∗ and
(3) @ζ ∈ Ai∗ : Υ(ζ) = 1.
The advantage of A is defined as the probability that A wins.

Thus it should be impossible for any PPT adversary to satisfy the predicate with
invalid set of attributes.

ABGS scheme preserves collusion resistance of attribute certificates if it is computa-
tionally hard for group members to collude by pooling their attribute certificates to
satisfy the predicate and to produce a valid group signature.

Definition 6.2.8 (Collusion resistance of Attributes) We say that the ABGS
scheme preserves collusion resistance of attributes if for all PPT A, the probability
that A wins the following game is negligible.

• Setup: The challenger C runs (gpk, ik, okuser, tkatt)← KeyGen(params). C gives
gpk, okuser and tkatt to A.

• Queries: A is given access to the oracles: joinP, joinA, corrupt and sign.

• Output: A outputs a message M∗, a predicate Υ∗ and a group signature σ∗.

A wins if
(1) Verify(params, gpk,M∗,Υ∗, σ∗) = 1, and
(2) A has obtained ski1 , ..., skik : Υ∗(∪kj=1Aij) = 1 and Υ∗(Aij) 6= 1 for j = 1, ..., k.
The advantage of A is defined as the probability that A wins.
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Thus the users with valid set of attributes each, cannot collude with each other to
pool a valid attribute set for producing a valid group signature.

6.3 Construction

A construction of an ABGS scheme with attribute anonymity and attribute tracing
features is presented in this section. For our construction we use the membership
certificate format of [24; 48] to achieve non-frameability and the technique to build
the access trees from [51]. We use Groth-Sahai non-interactive proof system under
SXDH assumption (see Sec. 2.4.7.1) to generate the NIWI proofs for the relations
in the group signature. We use existing constructions [24; 51] as a base to build our
scheme which addresses the said issues and we prove that the construction is secure
under standard model. In contrast to other existing ABGS schemes [51; 72; 73],
our scheme is built in the standard model with attribute anonymity and achieves a
constant size signature, independent of the number of attributes.

Let TΥ be an access tree representing the predicate Υ, TΥ the public values
associated with TΥ, (upki, uski) the verification/signing key of a signature scheme
DSig for user Ui, Ai the membership certificate for Ui, {Ti,j}attj∈Ai denotes the
attribute certificates of Ui and the Ti,j is the attribute certificate of the attribute
attj ∈ Att of user Ui.

For a polynomial number of scalars zi ∈ Z∗p, and a pair (g, gy) ∈ G2
1, the values

g1/(y+zi) looks to be random and independent [50]. This is used to build our identifier,
ID(y, zi)= g1/(y+zi), in the group signature. In the proof of user anonymity, the
simulator will be able to choose a zi prior to any interaction with the adversary and
we depend on q-DDHI assumption [50].

• Setup(1k): It generates the system parameters, params = (p,G1,G2,GT , e, g1, g2, Att);
where

(i) G1,G2,GT are the cyclic groups of prime order p, where 2k−1 < p < 2k.

(ii) e : G1 ×G2 → GT is a bilinear map.
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(iii) g1 and g2 are the generators of the groups G1 and G2, respectively.

(iv) Att = {att1, ..., attm}, for m = O(k) is the universal set of attributes1.

• KeyGen(params): It takes an input system parameters params and outputs
a group public key gpk, an issuing key ik, a user opening key okuser and an
attribute tracing key tkatt.

(i) Select the generators h, v′, v1, ..., vm′ ∈ G1 and define the Waters function,
F : {0, 1}m′ → G1, for M = (µ1, ..., µm′) ∈ {0, 1}m

′F(M) = v′Πm′
j=1v

µj
j ,

where m′ = O(k).

(ii) Select γ ∈R Z∗p, and computes ω = gγ2 .

(iii) For each attj ∈ Att, choose a secret sj ∈R Z∗p, sets S = {sj}attj∈Att, and
computes gattj = g

sj
1 ,∀attj ∈ Att.

(iv) For the Groth-Sahai proof under the instantiation based on SXDH as-
sumption, choose a vectors ~u = (~u1, ~u2 = ~ut11 ), ~u′ = (~u′1, ~u′2 = ~u

′t1
1 ) and

~v = (~v1, ~v2 = ~vt21 ), where ~u1 = (g1, g
α1
1 ) ∈ G2

1, ~u′1 = (g1, g
α′1
1 ) ∈ G2

1 and
~v1 = (g2, g

α2
2 ) ∈ G2

2 for t1, t2, α1, α
′
1, α2 ∈R Z∗p. α1 and α2 are commitment

keys.

(v) Outputs

gpk = (h, ω,F , {gattj}attj∈Att, ~u, ~u
′, ~v), ik = (γ, S), okuser = α1, tkatt = α′1.

The description of F includes the generators v′, v1, ..., vm′ .
Here ~u′ is needed apart from ~u to make independent commitment in the signa-
ture algorithm. With this we make attribute tracing key independent of user
opening key. Otherwise if both the authorities are same we can remove ~u′ from
the gpk and has common key for okuser and tkatt.

• Join(< params, gpk, ik, upki,Ai >,< params, gpk, upki, uski >): A user Ui with
the pair of keys (upki, uski) in the PKI, interacts with the group manager
and the set of attributes Ai, to join the group. This is similar to the Join
protocol in [24; 48]. As a result of this protocol, Ui gets private key ski =

1For m = 1 it becomes a group signature scheme.
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((Ai, Xi, yi), {Ti,j}attj∈Ai), where (Ai, Xi, yi) is a membership certificate, {Ti,j}attj∈Ai

is the set of attribute certificates and Ai ⊆ Att is the set of Ui’s attributes. And
GM ends with the updated ~reg. The protocol begins as follows,

(i) Ui picks y′i ∈R Z∗p, computes and sends Y ′i = g
y′i
1 , an extractable commit-

ment of y′i. Note that the trapdoor of the commitment will not be known
to anybody except to the simulator in the security proof to be able to
extract y′i.

(ii) GM selects new xi ∈ Z∗p and a random y′′i ∈R Z∗p, computesAi = (hY ′i Y ′′i )1/(γ+xi),

Xi,2 = gxi2 and Ti,j = h
sj

γ+xi (∀attj ∈ Ai), where Y ′′i = g
y′′i
1 and sends

y′′i , Ai, Xi,2, {Ti,j}∀attj∈Ai .

(iii) Ui checks whether e(Ai, ωgxi2 ) = e(h, g2)e(g1, g2)y′i+y′′i . Then Ui computes
yi = y′i + y′′i and makes a signature σi = DSiguski(Ai, Xi,2, Yi = gyi1 ).

(iv) GM verifies σi under upki and appends the tuple (i, upki, Ai, Xi = (Xi,1 =
gxi1 , Xi,2), Yi, si) to ~reg. Then GM sends Xi,1.

(v) Ui checks the relation e(Xi,1, g2) = e(g1, Xi,2). Ui owns an valid member-
ship certificate (Ai, Xi, yi) and attribute certificates {Ti,j}∀attj∈Ai , where
yi is known to him only. Thus, ski = (Ai, Xi, yi, {Ti,j}attj∈Ai) ∈ G2

1×G2×
Z∗p ×G|Ai|1 .

GM chooses sm+1 ∈ Z∗p, and computes gattm+1 = g
sm+1
1 when a new attribute

attm+1 is added. Let Ui be issued Ti,m+1. Then GM computes and sends Ti,m+1 =
h
sm+1
γ+xi to Ui and also publish gattm+1 into gpk.

• BuildTree(p, S,Υ):

(i) Let TΥ be the tree that represents the predicate Υ.

(ii) Get extension tree T ext ← AddDummyNode(TΥ).

(iii) Get secret value for each dummy node and the secret value of the root of
T ext using ({sdj}dj∈DT , sT )← AssignedValue(S, T ext).

(iv) Output the public values of Υ,

TΥ = ({sdj}dj∈DTΥ
, vT = gsT2 , T ext).
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Normally the verifier with his predicate approaches the GM for a group signature
and GM runs BuildTree algorithm to generate the public values of the predicate
Υ and stores it in a public repository. Then anyone among the group members
who are eligible will generate a group signature by using the predicate public
value. And in order to verify whether the published values of the predicate are
correct one (specially the verifier) can use the BuildTree-Validity algorithm.
By this the verifiers (outsiders) need not trust the GM as far as the predicate
public values are concerned.

• BuildTree-Validity(params, gpk, TΥ):

(i) Randomly choose an attribute set, Leaves ⊆ Att : Υ(Leaves) = 1 And
gets the corresponding ∆attj(∀attj ∈ Leaves), and ∆dj(∀dj ∈ DLeaves

TΥ
) by

running MakeSimplifiedTree(Leaves,
T ext).

(ii) Compute groot = ∏
attj∈Leaves g

∆attj
attj ×

∏
dj∈DLeavesTΥ

g
sdj∆dj

1

= ∏
attj∈Leaves g

sj∆attj
1 ×∏dj∈DLeavesTΥ

g
sdj∆dj

2

= g

∑
attj∈Leaves

∆attj sj+
∑

dj∈DLeavesTΥ
∆dj

sdj

1 = gsT1 from (2.6).

(iii) Verify whether e(groot, g2) ?= e(g1, vT ). If not then TΥ is the invalid public
values of the predicate Υ.

• Sign(params, gpk, ski, ζ,M,Υ): It generates a group signature σ on message
M ∈ {0, 1}m′ with the user private key ski who satisfy the predicate Υ with his
subset of attributes ζ ⊆ Ai : Υ(ζ) = 1.

(i) Get the public values of Υ, TΥ = ({sdj}dj∈DTΥ
, vT , T

ext), from the public
repository.

(ii) Let sT1 = Σattj∈ζ∆attjsj and sT2 = Σdj∈DζT
∆djsdj . Then from (2.6), sT1 +

sT2 = sT .

(iii) Get ({∆attj}(∀attj∈ζ), {∆dj}(∀dj∈DζTΥ
))← MakeSimplifiedTree(ζ, T ext) and

compute sT2 .

(iv) Creates an ephemeral ID, ID(yi, z) = g
1/(z+yi)
1 , with a random z ∈ Z∗p.
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(v) Select r ∈R Z∗p and set ρ1 = Ai, ρ2 = yi, ρ3 = Xi = (gxi1 , g
xi
2 ), ρ4 =

Πattj∈ζT
∆attj
i,j = h

sT1
γ+xi , ρ5 = hsT2 , ρ6 = ID(yi, z), ρ7 = (gz1, gz2), ρ8 = hzF(M)r

and ρ9 = gr2,.

(vi) Commit the group elements σi = C(ρi), for i = {1, 3, 4, 5} and σ2 =
(C(1)(ρ2), C(2)(ρ2)). Note that for committing the ρ4 and ρ5 one has to use
~u′. This is to separate the opening of user with the tracing of attributes.

(vii) Compute the NIWI Groth-Sahai proofs for the committed variables ρ1, ρ2, ρ3,

ρ4, ρ5 satisfy the following equations

e(ρ1, ωρ3,2) = e(h, g2)× e(g1, g
ρ2
2 ) (6.1)

e(ρ4, ωρ3,2)× e(ρ5, g2) = e(h, vT ) (6.2)

e(ρ6, g
ρ2
2 ρ7,2) = e(g1, g2) (6.3)

e(ρ8, g2) = e(h, ρ7,2)× e(F(M), ρ9) (6.4)

e(gρ2
1 , g2) = e(g1, g

ρ2
2 ) (6.5)

e(ρ3,1, g2) = e(g1, ρ3,2) (6.6)

e(ρ7,1, g2) = e(g1, ρ7,2) (6.7)

(viii) Output the signature

σ = ({σi}5
i=1, {ρ}9

i=6) ∈ G13
1 ×G6

2

We add the corresponding Groth-Sahai proofs to the signature to prove the
validity of the above pairing equations. Equation (6.1) is a pairing product
equation, establishes that the signer has a valid membership certificate issued
through the Join algorithm (i.e. Ai is well-formed), and the Groth-Sahai proof
requires 4 elements in each group. Equation (6.2) is a paring product equation,
establishes that the signer possess the required attributes (attribute certificates)
that satisfy the predicate Υ and also proves the association of the membership
certificates with the attribute certificates, and the proof requires 4 elements
in each group. Equation (6.3) is a linear pairing product, establishes that
ρ6 is a well formed ID, and the proof requires only 2 extra elements in G1.
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Equation (6.4) does not use any committed data so it can be directly checked, it
establishes that (ρ8, ρ9) is a Waters signature of M under the key ρ7. Equation
(6.5) is a quadratic equation, establishes that same yi is committed in both
groups which is needed for traceability adversary modeling, and it can prove
with 2 elements in each group. Equation (6.6) is a pairing product equation,
establishes that Xi is well-formed which is needed for traceability adversary
modeling, and the proof requires 4 elements in each group. Equation (6.7) does
not use any committed data so it can be checked directly and this equation is
needed for non-frameability adversary modeling. Overall we will need 29 group
elements in G1 and 20 in G2. Note that the signature is independent of the
number of attributes |ζ|.

• Verify(params, gpk,M, σ,Υ) :It verifies to see whether all the paring equations
hold according to Groth-Sahai proof system.

• OpenUser(params, gpk, okuser, σ,M,Υ, ~reg) : For the valid group signature the
Opener just opens the commitment of Ai in σ1, and outputs the corresponding
identity i from the ~reg with respect to Ai, if it is present, otherwise outputs ⊥.

• TraceAtt(params, gpk, tkatt, σ,M,Υ) : For the valid group signature the At-
tribute Tracer opens the commitment of ρ5 = hsT2 from σ5. Then for all
ζk : Υ(ζk) = 1, it checks ρ5

?= hs
k
T2 , where skT2 = Σ

dj∈D
ζk
TΥ

∆djsdj . If any such ζk

exists then outputs it else outputs ⊥. We note that for each unique ζ there is
unique sT2 value, it is from Lagrange interpolation.

6.4 Security Analysis

Theorem 6.4.1 The proposed ABGS scheme is correct.

Proof The correctness follows from the Groth-Sahai proof system. �

Theorem 6.4.2 The proposed ABGS scheme preserves attribute anonymity under
SXDH assumption.
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Proof The proof follows from the Groth-Sahai proof system. Namely the attribute
details are hidden in the components ρ4 and ρ5 which are committed with Groth-
Sahai proof technique to σ4 and σ5, therefore under SXDH assumption it is perfectly
hiding. �

Theorem 6.4.3 If there exists an adversary A that can break the user anonymity of
the scheme, then there exists an adversary B that can break the `-DDHI problem in
G1 or the SXDH assumption, where ` is the maximal number of signing queries for
a user. And we have

Advuser−anon ≤ 1/n.(2.AdvSXDH + Adv`−DDHI) (6.8)

where n is the maximal number of join queries and ` is the maximal number of signing
queries for a user.

Proof The proof follows the approach of anonymity adversary in [24]. The proof
is organized as a sequence of games such that adversary has no advantage in final
game where as the first game is the real attack game as given in definition (6.2.4).
Let Si denote the event that the adversary wins in the game Gi with advantage
Advi = |Pr[Si]− 1/2|.

G1: This is the real game as define in the definition (6.2.4). Challenger B sets up the
scheme and defines the parameters as in the real scheme,

params = (p,G1,G2,GT , e, g1, g2, Att)

gpk = (h, ω,F , {gattj}attj∈Att, ~u, ~u
′, ~v)

ik = (γ, S)

okuser = α1

tkatt = α′1

B gives gpk, ik and tratt to A. With this B answers all the queries made by adversary.
At challenge phase A chooses 2 unrevoked and uncorrupted users Ui0 , Ui1 and is given
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6.4 Security Analysis

a challenge signature σ∗ on behalf of Uiκ , κ ∈R {0, 1}. In the output phase, adversary
outputs her guess κ′ ∈ {0, 1} and the advantage is Adv1 = |Pr[S1]− 1/2|.

G2: Let n be the total number of passive join queries, joinP queries. In this game
we modify the simulation G1, B picks a challenge user id i?. In the challenge phase,
B aborts if iκ 6= i?. B also aborts if i? is queried to corrupt or revoke oracle before or
during challenge phase period. The probability that B succeed in picking correct i?

is 1/n. Therefore, Adv2 = Adv1/n.

G3: We modify the simulation of G2. B chooses y ∈R Z∗p and define the `−DDHI
like tuple A = (g, gy, ..., gy`) ∈ G`+1

1 , D = g1/y ∈ G1 . B chooses different ran-
dom values z∗, z1, ..., z`−1 ∈ Z`p, and define the polynomial f(X) = Π`−1

i=1(X − zi),
of degree ` − 1. From the above tuple, B can compute g1 = gf(X). The future
challenge user i? will virtually have yi? = y − z∗ and xi? ∈R Z∗p. B compute
gyi? = gy1/g

z∗
1 from the above tuple. The membership certificate for the challenge

user is (gxi?1 , gxi?2 , gy1/g
z∗
1 , Ai? = (hgy1/gz

∗
1 )β/(γ+xi? ), {Ti?,j = h

sj
γ+xi? }attj∈Ai? ). The setup

is indistinguishable from G2, since all keys are having same distribution.
B answers all queries according to definition (6.2.4) and for the challenge user Ui? ,
the j-th signing queries, he computes ρ6 = g

1/(yi?+zj)
1 = gΠi 6=j(y+zi), that can be done

from the defined tuple, the rest is done as in the real scheme using zj as random.
B can also answer any corruption query, that should not happen for the challenge
user, even if we know y in this game.
For the challenge signing query, he does the same as above with the ephemeral
value z∗, and the expected ID, ρ6 = g

1/(yi?+z∗)
1 = gf(y)/y = gf

′(y)gΠ(zi)/y, where
f ′(X) = (Π`

i=1(X + zi)−Π(zi))/X is a polynomial of degree `− 1 and thus gf ′(y) can
be computable from the tuple. B thus compute ρ6 = gf

′(y).DΠ(zi) and returns the
challenge signature σ∗. Therefore, Adv3 = Adv2.

G4: We modify the game G3. Here we initialize Groth-Sahai commitment keys in
a perfectly hiding setting with the trapdoor, to allow the simulator to cheat in the
proofs. Then all the proofs are simulated. This game is indistinguishable from the
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previous one under the SXDH. Thus |Pr[S4]− Pr[S3]| = 2.AdvSXDH.

G5: In this game, we do not know anymore y, that we did not use anymore any-
way, and thus this game is perfectly indistinguishable from previous one. Thus
Pr[S5] = Pr[S4].

G6: In this game, we replaces the defined `−DDHI tuple with the actual `−DDHI
challenge instance, where y is unknown to B and D is a random value. Thus this game
is indistinguishable from the previous one under the `−DDHI assumption. Therefore,
|Pr[S6]− Pr[S5]| ≤ Adv`−DDHI.
Note that the challenger signature does not depend anymore on the challenge user.
When we combine all the probabilities we obtain the upper bound (6.8) on A’s
advantage in game G1. �

Theorem 6.4.4 The proposed scheme preserves the attribute unforgeability under
KEA1 and DL assumptions.

Proof Lemma 6.4.5 implies the Theorem 6.4.4. �

Lemma 6.4.5 Under the DL and KEA1 assumptions there exists no PPT adversary
A which passes verification with forged attributes with non negligible probability.

Proof The input to the simulator B is an instance of the DL problem, (g, g′) ∈ G2
1.

Let ξ = loggg
′.

Setup: According to the ABGS scheme setup B generates the system parame-
ters, params. B sets g1 = g and h = g′, and generate the remaining parameters,
gpk, ik, okuser, tkatt. B gives gpk, okuser and tkatt to A.
Queries: As B knows all the keys, it can answer all the queries generated by an
adversary A according to the definition of Attribute Unforgeability .
Output: Finally, A outputs a signature σ∗ with forged attribute certificates on mes-
sage M∗, a predicate Υ∗ whose public values are TΥ∗ = ({sdj}dj∈DTΥ∗

, vT = gsT2 , T ext),
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and signer’s secret key ski∗ such that Υ(Ai∗) 6= 1 and Υ(Ai∗ ∪ attj) = 1. As it is a
valid signature which passes verification algorithm and from (6.2) ρ∗4 = h

sT1
γ+xi∗ and

ρ∗5 = hsT2 such that sT1 + sT2 = sT . This can be viewed as ρ∗4 = h
s′
T1

γ+xi∗ h
sj

γ+xi∗ , where
sT1 = s′T1 + sj and h

sj
γ+xi∗ is unknown to A but she is producing it in signature.

It is like B is giving input (g1 = g, g
sj
1 = gattj = gsj) to A and A implicitly returns

(h = g′, hsj = g′sj). Then by KEA1 assumption, B can utilize the extractor Ā to
extract a value ξ. Under DL assumption it can be done with negligible probability.
Thus the signature produced by the forged attribute certificates can pass verification
with negligible probability. Note that the A can also produce the missing attribute
in the value ρ∗5 to satisfy the relation (6.2) but similarly its probability is negligible
under KEA1 and DL assumption. �

Theorem 6.4.6 The proposed scheme preserves the collusion resistance of attribute.

Proof Lemma 6.4.7 implies the Theorem 6.4.6.

Lemma 6.4.7 Even if some malicious participants Ui1 , ...,Uik(k > 1) with the set
of attributes ζi1 , ..., ζik collude, they cannot make a valid signature associated with a
predicate Υ, where (∪kj=1Υ(ζij) = 1) and Υ(ζij) 6= 1 for j = 1, ..., k with non-negligible
probability.

Proof Without loss of generality, we assume that Ui1 with ζi1 and Ui2 with ζi2

represent malicious participants. Ui1 and Ui2 attempt to make a valid signature
associated with Υ which satisfies Υ(ζi1∪ζi2) = 1,Υ(ζi1) 6= 1 and Υ(ζi2) 6= 1. They can
satisfy the relations (6.1) and (6.2) because they have a valid membership certificate
(Ai1 , X, yi1). We assume that T ti1,j = Ti2,j, where t ∈ Z∗p. Note that the probability of
t = 1 is negligible. And they tries to compute

ρ6 = h
1

γ+xi1
(Σattj∈Ai1

∆attj sj) × h
1

γ+xi2
(Σattj∈Ai2

∆attj sj)

= h
1

γ+xi1
(Σattj∈Ai1

∆attj sj+tΣattj∈Ai2
∆attj sj)
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Then from (2.6)

Σattj∈Ai1
∆attjsj + tΣattj∈Ai2

∆attjsj + Σdj∈DζT
∆djsdj 6= sT

holds. Since t 6= 1 this means that they cannot collude. �

Theorem 6.4.8 If there exists an adversary A that breaks the traceability of the
scheme, then we can build an adversary B that can break the q-HHSDH assumption,
where q is the maximal number of users.

Proof Since the membership certificate format is similar to the one proposed in
[24; 48], the proof directly reduces to the q-HHSDH assumption. The simulator B
receives q-HHSDH challenge (g1, h, g2, ω = gγ2 , (gxi1 , g

xi
2 , yi, Ai = (hgyi1 )1/(γ+xi))i∈[1,q])

and tries to solve it, from A that breaks the traceability of our scheme.
Setup: B generates the commitment keys, attribute secret and public values, and
other parameters as in the ABGS scheme by using the q-HHSDH challenge values.
B gives gpk, okuser and tkatt to A.
Queries: To answer the i-th join queries, if this is an active join, B extracts y′i
chooses his y′′i so that y′i + y′′i = yi, if it is a passive join, B directly chooses yi. Thus
B can answer all the queries according to traceability definition.
Output: After atmost q join quires, A outputs a new signature with a new certificate
tuple with non-negligible probability. As B knows the trapdoor of the commitment
scheme, he can obtain (gx1 , gx2 , g

y
1 , g

y
2 , A = (hgy1)1/(γ+x)). Thus B answers the challenge

q-HHSDH instance with the same advantage of A. �

Theorem 6.4.9 If there exists an adversary A that breaks the non-frameability of
the scheme, then we can build an adversary B that can either break the q-HSDH or
the CDH+ computational problems, or the 1-DDHI or the SXDH decisional problems,
where q is the maximal number of signing queries for a user.

Proof The proof is similar to the proof of non-frameability in the Blazy and Pointcheval
[24] traceable signature. There exist two types of adversary, one breaks the non-
frameability by forging the new ID, ρ6, on an uncorrupted user and another breaks
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the non-frameability by reusing an existing ID with the corresponding certificate but
on a new message. With 1/2 probability B decides which type of adversary it is.
Type 1: The simulator B receives q-HSDH challenge ((g1, g2, g

y
1 , g

y
2), (gti1 , gti2 , g

1/(y+ti)
1 )i∈[1,q])

and tries to solve it, from an adversary A that breaks the non-frameability of our
scheme by forging a new ID, ρ6, on an uncorrupted user.

Setup: B generates the gpk, ik, okuser and tkatt as the real settings and gives it to A.
B selects the target user on which he expects the attack and sets his membership
certificate corresponding to one with y as a secret key.

Queries: B can answer any joinP query as he knows ik and can answer corrupt query
on any user except the target user, otherwise the simulation fails. B can answer the
sign queries and can answer to atmost q sign queries for the target user with the help
of challenge q-HSDH tuple.

Output: After all the queries and the atmost q signing queries for target user,
A succeeds in breaking the non-frameability with non-negligible probability by gener-
ating a new tuple (ρ6 = g

1/(y+t)
1 , ρ7 = (gt1, gt2)), on an uncorrupted user. Thus B solves

the q-HSDH challenge with non-negligible probability.

Type 2: The simulator B is given an asymmetric Waters public key (pk = (gt1, gt2)
for the global parameters (g1, g2, h,F)). B tries to break this signature, and thus the
CDH+ problem, from an adversary A breaking the non-frameability of our scheme
by reusing an existing tuple ρ6, ρ7 on a new message.
In the first game, G1, B knows the discrete logarithm value t, generates a new
ik, okuser, tkatt and gives ik, okuser, tkatt to A together with the public key gpk =
(h, ω,F , {gattj}attj∈Att). B can answer any joinP query as he knows ik and extract the
secret keys from the extraction key of the commitment scheme, one of those uncor-
rupted user is expected to be a challenge user, with the secret key y, the one A has
to frame.
B can answer any signing queries. On one of them for the challenge user, say on M ,

167



6.5 Comparison

he will use the above ξ as ephemeral Waters public key (for the z), and thus computes
a ρ6 = g

1/(y+t)
1 with the corresponding Groth-Sahai proof. This way A possesses a

valid signature on M , with ρ7 = (gt1, gt2), ρ8 = htF(M)s, ρ9 = gs2. With non-negligible
probability A breaks the non-frameability of our scheme, by hypothesis A does it by
reusing an existing ρ1, ..., ρ7, as uncorrupted users are indistinguishable, A frames our
challenge user with non-negligible probability, and as the signing queries are finite, he
will use ρ7 = (gt1, gt2) with non-negligible probability. Therefore, with non-negligible
probability A outputs a new valid signature on M ′ with ρ7 = (gt1, gt2), this means we
have (ρ7, ρ8, ρ9) such that e(ρ7,1, g2) = e(g1, ρ7,2), e(ρ8, g2) = e(h, ρ7,2)×e(F(M′), ρ9),
and thus B can output a valid forgery on the Waters challenge for the public key
(gt1, gt2). But in this game, we know t.

In a second game, G2, the Groth-Sahai setup is used as hiding one, so that the proofs
can be simulated, and namely without using t. This is indistinguishable from the
previous game under the SXDH assumption.
In the third game, G3, replace ρ6 by a random value, still simulating the proofs. A
random ρ6 is indistinguishable from the real one under the DDHI problem as seen
in user anonymity proof. Furthermore, here there is only one elements, hence the
1−DDHI assumption. In the last game, one does not need to know t anymore, and
thus the signature forgery reduces to breaking the asymmetric CDH+. �

6.5 Comparison

Let Φ = |ζ|, where ζ be the set of attributes associated with a signature and m =
|Att|. Let m̂ be the average number of attributes assigned to any user and m′ is the
length of the message, a constant. e represents the paring operation and r represents
the number of revoked members. In Table 6.1, we compare the efficiency of our
scheme with other schemes. Note that the verification cost of the proposed scheme is
independent of the number of attributes, where as in other schemes the verification
cost is linear in terms of the number of attributes. From the table it can be noticed
that non-frameability is not achieved by combined scheme of Herranz et al. [70] and
Boyen et al. [34]. Further, the combined scheme has verification cost that is not
independent of the number of attributes and also the key lengths are large.
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6.6 Summary

6.6 Summary

In this chapter, we proposed an ABGS scheme which achieves attribute anonymity
with constant signature size. We proved that it is secure under the standard model.
In this scheme, the user opening (or the signer tracing) and the attribute tracing
methods are independent. Our scheme is dynamic with respect to both user and
attribute i.e. anytime a user can join or attributes can be added without changing
the keys. We note that our scheme is efficient than the other ABGS schemes in
terms of verification cost and signature length. Moreover, the proposed scheme is
non-frameable. In the next chapter, we propose an ABGS scheme with VRL and
backward unlinkability in the standard model.
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Chapter 7

A VLR-ABGS Scheme with
Backward Unlinkability and
Attribute Anonymity in the
Standard Model

In the previous chapters, we proposed an ABGS schemes with attribute anonymity
secure under random oracle model and standard model. We also proposed a VLR-
ABGS scheme with attribute anonymity in the random oracle model. In this chapter,
we propose an enhanced ABGS scheme with verifier-local revocation (VLR) in the
standard model.

7.1 Introduction

Khader proposed an ABGS scheme with VLR feature but does not address attribute
anonymity [72]. Afterwards Emura et al. in [52] have proposed an ABGS scheme,
but this scheme neither addresses the attribute anonymity issue nor provides the
revocation feature. To the best of our knowledge there is only one ABGS scheme



7.2 Proposed Scheme

with VLR feature proposed by Khader in [72] but the scheme does not have backward
unlinkability feature nor addressed attribute anonymity nor it is in standard model.
Moreover, in this scheme the signature length is linear in terms of the number of
attributes.

We propose an ABGS scheme with VLR feature (VLR-ABGS) with attribute
anonymity having backward unlinkability in the standard model [5]. Further, our
scheme has constant signature length and is non-frameable. We note that to build
a VLR-ABGS scheme with attribute anonymity in the standard model one can also
combine an ABS scheme [70] with a VLR-GS scheme [82], but it incurs combined
cost of both the schemes.

In Section 7.2, we present the proposed VLR-ABGS scheme with attribute anonymity
and the related security definitions. The construction of the proposed VLR-ABGS
scheme is given in Section 7.3. Its security analysis is given in Section 7.4. followed
by comparison with other schemes in Section 7.5. Finally we summarize in Section
7.6.

7.2 Proposed Scheme

In this section, we present our proposed VLR-ABGS scheme with the security defini-
tions which are similar to [20; 51; 72; 82] but with the added attribute anonymity and
backward unlinkability feature. In verifier-local revocation group signatures (VLR-
GS)[31], the group manager maintains a periodically updated revocation list (RL)
which is used by all verifiers to perform the revocation test and it makes sure that
the signatures are not produced by a revoked member.

Let GM be the group manager, k the security parameter, params the system pa-
rameters, T denotes the number of time intervals (it is bounded with k), Att the
universal set of attributes, Υ used to denote a predicate, Υ(ζ) = 1 denotes that the
attribute set ζ ⊆ Att satisfies the predicate Υ, gpk the group public key, ik the issuing
key used for issuing private keys to the members, okuser the user opening key used to
open the user identity of the group signature, Ai ⊆ Att the set of attributes assigned
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to the user Ui, ski denotes the private key for the member Ui, ~reg be the registration
table with the GM where the current group members information are stored, RLt be
the set of revocation tokens of interval t, which contains the revocation tokens of the
revoked users at the interval t and ~grt be the (n × T)-vector of revocation tokens,
~grt = {grt[1][1], ..., grt[n][T]}, where grt[i][t] denotes the token of member i at inter-

val t and n = O(k) is the maximal number of users. Note that ik includes ~grt and is
private with GM.
A user Ui can make a group signature on a document M with the predicate Υ dur-
ing the interval t if there exists a set of attributes ζ ⊆ Ai with the user such that
Υ(ζ) = 1 and grt[i][t] /∈ RLt.

Definition 7.2.1 (VLR-ABGS) An VLR-ABGS scheme consists of following al-
gorithms. Unless otherwise indicated, algorithms are randomized.

• params ← Setup(1k) : This algorithm takes the security parameter k as an
input and returns the system parameter params.

• (gpk, ik, okuser) ← KeyGen(params) : This algorithm takes the system parame-
ter params, and returns a group public key gpk, an issuing key ik and a user
opening key okuser.

• ski ← Join(〈params, gpk, ik, t, upki,Ai〉 , 〈params, gpk, t, upki, uski〉) : This is
an interactive group joining protocol between a user Ui (using his secret key
uski and the current interval t) and the GM (using the issuing key ik and the
attributes Ai ⊆ Att for Ui). In this protocol Ui ends with a member private key
ski and GM ends with an updated, registration table ~reg and vector of revocation
tokens ~grt.

• σ ← Sign(params, gpk, ski, t, ζ,M,Υ) : This algorithm takes params, gpk, t, ski,
an attribute set ζ ⊆ Ai, message M, and the predicate Υ as an input and returns
a group signature σ on M at the interval t.
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• 0/1← Verify(params, gpk, t,M,Υ, σ, RLt) : This is a deterministic algorithm
verifies the validity of the group signature σ against gpk and returns 1/0. If 1
then the algorithm claims that the σ is a valid group signature, otherwise, σ is
invalid.

• i/⊥ ← Open(params, gpk, okuser, t, σ,M,Υ, ~reg): This is a deterministic algo-
rithm which takes as input params, gpk, okuser,σ,Υ,M and ~reg, and returns
either i ≥ 1 or ⊥. If i, the algorithm claims that the group member with iden-
tity i has produced σ during the time interval t, and if ⊥, then no group member
produced σ.

Revoke: When the member Ui is need to be revoke in the interval t, the GM publishes
(or adds) the secret tokens grt[i][t], ..., grt[i][T] into the public listsRLt, RLt+1, ..., RLT,
respectively.

Entities: Following are the entities in ABGS scheme:

• The group manager GM, also known as issuer, has issuing key ik using which he
enrolls a user into the group by allotting some privileges (in terms of attributes)
say Ai ⊆ Att and issuing a user’s private key ski, by running interactive Join
algorithm with the user. Issuer revoke a group member by publishing the
revocation token of the member and also can reveal the signer’s identity from
the group signature by using ~grt.

• The opener has user opening key okuser by which he is able to opens the signa-
ture and reveals the user identity through Open algorithm.

• Group members, or signers, who are having their private keys ski. They run
Sign algorithm to produce a group signature on a document M with predicate
Υ;if they possess valid attribute set Aiwhich satisfies the predicate.

• Outsider or verifier who can seek a group signature for a document M with
predicate Υ from group manager GM. He can also verify the group signature
using the group public key, gpk.

174



7.2 Proposed Scheme

ABGS scheme is correct if the group signatures produced by an honest group member
are verified and reveals the identity of the signer.

Definition 7.2.2 (Correctness) Correctness requires that for all params← Setup(1k),
all (gpk, ik, okuser)← KeyGen(params), ski ← Join(〈params, gpk, ik, t, upki,Ai〉 ,
〈params, gpk, t, upki, uski〉), , all t ∈ {1, ...,T}, all Υ, all ζ ⊆ Att and all M ∈
{0, 1}∗, if Uj ∈ ~reg, ζ ⊆ Aj,Υ(ζ) = 1, grt[j][t̃] /∈ RLt̃ and σ = Sign(params, gpk, skj, t̃,
ζ,M,Υ) then

1 ← Verify(params, gpk, t̃,M,Υ, σ, RLt)∧
j ← Open(params, gpk, okuser, t̃, σ,M,Υ, ~reg)

holds.

In the following definitions the adversary can run the Join protocol (similarly to [24]):

• either through the joinP-oracle (passive join), which means that it creates an
honest user for whom it does not know the private keys: the index i is added
to the HU (Honest Users) list;

• or through the joinA-oracle (active join), which means that it interacts with the
group manager to create a user it will control: the index i is added to the CU
(Corrupted Users) list.

Note that when the adversary is given the issuing key (the group manager is cor-
rupted) then the adversary does not need access to the joinA oracle since it can
simulate it by itself, to create corrupted users (that are not necessarily in CU). After
a user is created, the adversary plays the role of corrupted users, and can interact
with honest users, granted some oracles:

• sign(i,M,Υ), if i ∈ HU, plays as the honest user i would do in the signature
process to generate a signature on message M with predicate Υ;
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• open(M,σ,Υ), if (M,Υ, σ) is valid, returns the identity i of the signer;

• corrupt(i), if i ∈ HU, provides the specific private key of this user. The adversary
can now control it during the whole simulation. Therefore i is moved from HU
to CU;

• revoke(i, t), if i ∈ HU, returns the member i’s revocation token for the current
period t.

In ABGS scheme a group member may have multiple attribute sets to satisfy the
predicate and he can produce a group signature using one of them. An ABGS scheme
preserves attribute anonymity if it is computationally difficult to identify with what
attribute set he produces the signature.

Definition 7.2.3 (Attribute anonymity) We say that the VLR-ABGS scheme pre-
serves attribute anonymity if, for all honestly generated (gpk, ik, okuser)← KeyGen(
params), for all predicates Υ, for all attribute sets Ai ⊆ Att such that there exist
ζ1, ζ2 ⊆ Ai and Υ(ζ1) = Υ(ζ2) = 1, for all ski ← Join(〈params, gpk, ik, t, upki,Ai〉 ,
〈params, gpk, t, upki, uski〉) and all messages M , the distributions Sign(params, gpk, ski,
t, ζ1,M,Υ) and Sign(params, gpk, ski, t, ζ2,M,Υ) are identical.

In other words, even the computationally unbounded adversary cannot link a signa-
ture to a set of attributes used to generate it (similar to [85]).

ABGS scheme preserves backward unlinkability - user anonymity if there are at least
two unrevoked group members possessing valid attribute sets and one of them pro-
duces the group signature then it should be computationally hard to identify who
produced the group signature among them, even if they are revoked afterwards.

Definition 7.2.4 (BU-user anonymity) We say that the VLR-ABGS scheme pre-
serves BU-user anonymity if for all PPT A, the probability that A wins the following
game is negligible.
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• Setup: The challenger C runs (gpk, ik, okuser) ← KeyGen(params). C gives
gpk to A.

• Queries:

– Phase1 : A is given access to the oracles: joinP, joinA, corrupt, sign, revoke
and open.

– Challenge : At some period t∗ ∈ {1, ...,T}, A outputs M∗,Υ∗ and an
uncorrupted unrevoked users Ui0 ,Ui1 (i.e. i0, i1 /∈ CU and not queried to
revoke before or during t∗) and, ζ : ζ ⊆ Ai0 , ζ ⊆ Ai1 and Υ(ζ1) = 1.
C randomly selects κ ∈R {0, 1} and responds with a group signature σ∗ ←
Sign(params, gpk, t∗, skiκ , ζ,M,Υ).

– Phase 2 : A can make queries similar to Phase 1. However A cannot
make query to corrupt on i0 and i1 at any time but can query to revoke for
the intervals after t∗.

• Output: Finally, A outputs a bit κ′, and wins if κ′ = κ.

The advantage of A is defined as AdvBU−user−anon(A) = |Pr(κ = κ′)− 1
2 |.

Thus there should not exist any PPT adversary to link a group signature to a signer
with non-negligible probability.

ABGS scheme preserves traceability if it is possible to trace the valid group signature
to its signer with the help of group opening key.

Definition 7.2.5 (Traceability) We say that the VLR-ABGS scheme preserves
traceability if for all PPT A, the probability that A wins the following game is neg-
ligible.

1Here ζ can be different for Ui0 ,Ui1 but we are concerned about user anonymity rather than
attribute anonymity
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• Setup: The challenger C runs (gpk, ik, okuser) ← KeyGen(params). C gives
gpk, okuser to A.

• Queries: A is given access to the oracles: joinP, joinA, corrupt, revoke and sign.

• Output: At some period t∗ ∈ {1, ...,T}, A outputs a group signature σ∗, a
message M∗, a predicate Υ∗ and a set of revocation tokens RLt∗.

A wins if
(1) Verify(params, gpk, t∗,M∗,Υ∗, RLt, σ∗) = 1 and
(2) Open(params, gpk, okuser, t∗, σ∗,M∗,Υ∗, ~reg) = ⊥.
The advantage of A is defined as the probability that A wins.

Thus it should be impossible to produce an untraceable valid group signature by any
PPT adversary.

ABGS scheme preserves non-frameability if it is difficult to produce a valid group
signature which traces back to a group member who has not produce it, even with
the help of group manager’s secret key.

Definition 7.2.6 (Non-frameability) We say that the VLR-ABGS scheme pre-
serves non-frameability if for all PPT A, the probability that A wins the following
game is negligible.

• Setup: The challenger C runs (gpk, ik, okuser) ← KeyGen(params). C gives
gpk, ik and okuser to A.

• Queries: A is given access to the oracles: joinP, corrupt and sign.

• Output: Finally, at some period t∗ ∈ {1, ...,T}, A outputs a group signature
σ∗, a message M∗, a predicate Υ∗ and a set of revocation tokens RLt∗.
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A wins if
(1) Verify(params, gpk, t∗,M∗,Υ∗, σ∗, RLt) = 1,
(2) Open(params, gpk, okuser, t∗, σ∗,M∗,Υ∗, ~reg) = i∗,

(3) i∗ ∈ HU.
The advantage of A is defined as the probability that A wins.

Thus even the group manager should not be able to forge a group signature which
trace back to a honest member.

ABGS scheme preserves attribute unforgeability if it is hard for a group member
to forge an attribute certificate in order to produce a valid group signature.

Definition 7.2.7 (Attribute unforgeability) We say that the VLR-ABGS scheme
preserves attribute unforgeability if for all PPT A, the probability that A wins the
following game is negligible.

• Setup: The challenger C runs (gpk, ik, okuser) ← KeyGen(params). C gives
gpk, okuser to A.

• Queries: A is given access to the oracles: joinP, joinA, corrupt, revoke and sign.

• Output: At some period t∗ ∈ {1, ...,T}, A outputs a message M∗, a predicate
Υ∗ and a group signature σ∗.

A wins if
(1) Verify(params, gpk, t∗,M∗,Υ∗, σ∗, RLt) = 1,
(2) Open(params, gpk, okuser, t∗, σ∗,M∗,Υ∗, ~reg) = i∗ and
(3) @ζ ∈ Ai∗ : Υ(ζ) = 1.
The advantage of A is defined as the probability that A wins.

Thus it should be impossible for any PPT adversary to satisfy the predicate with
invalid set of attributes.
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ABGS scheme preserves collusion resistance of attribute certificates if it is computa-
tionally hard for group members to collude by pooling their attribute certificates to
satisfy the predicate and to produce a valid group signature.

Definition 7.2.8 (Collusion resistance of attributes) We say that the VLR-
ABGS scheme preserves collusion resistance of attributes if for all PPT A, the prob-
ability that A wins the following game is negligible.

• Setup: The challenger C runs (gpk, ik, okuser) ← KeyGen(params). C gives
gpk, okuser to A.

• Queries: A is given access to the oracles: joinP, joinA, corrupt, revoke and sign.

• Output: At some period t∗ A outputs a message M∗, a predicate Υ∗ and a
group signature σ∗.

A wins if
(1) Verify(params, gpk, t∗,M∗,Υ∗, σ∗, RLt) = 1, and
(2) A has obtained ski1 , ..., skik : Υ∗(∪kj=1Aij) = 1 and Υ∗(Aij) 6= 1 for j = 1, ..., k.
The advantage of A is defined as the probability that A wins.

Thus the users with valid set of attributes each, cannot collude with each other to
pool a valid attribute set for producing a valid group signature.

7.3 Construction

A construction of a VLR-ABGS scheme with attribute anonymity and backward
unlinkability features is presented in this section. For our construction we use the
membership certificate format of [24; 48] to achieve non-frameability. We use Groth-
Sahai non-interactive proof system under SXDH assumption (see Sec. 2.4.7.1) to
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generate the NIWI and NIZK proofs for the relations in the group signature. We
make use of VLR-GS scheme of [82] as a base construction. Similar to [51] we gen-
erate the public values of the access tree representing a predicate. We device an
BuildTree-Validity algorithm which gives provision to publicly verify the correct-
ness of the generated public values of the predicate and with this we reduce the trust
on group manager in producing public keys of the predicates. We device an idea to
achieve attribute anonymity. In contrast to other existing ABGS schemes [51; 72; 73],
our scheme is built in the standard model with attribute anonymity and achieves a
constant size signature, i.e. independent of the number of attributes. To highlight
the merits of the proposed scheme, we compare our scheme with other schemes in
terms of efficiency, features and assumptions.

Let TΥ be an access tree representing the predicate Υ, TΥ the public values
associated with TΥ, (upki, uski) the verification/signing key of a signature scheme
DSig for user Ui

1, Ai the membership certificate for Ui, {Ti,j}attj∈Ai denotes the
attribute certificates of Ui and Ti,j is the attribute certificate of the attribute attj ∈
Att of user Ui.
Let E : G1 × G2

2 → G2
T be a coordinate-wise pairing such that, for any h ∈ G1 and

any vector ~v = (g, f) ∈ G2
2, E(h,~v) = (e(h, g), e(h, f)). As in [68], we make use of

asymmetric bilinear map F : G2
1 × G2

2 → G4
T which is defined as, for any vectors

~X = (X1, X2) ∈ G2
1 and ~Y = (Y1, Y2) ∈ G2

2, F ( ~X, ~Y ) is the matrix of entry-wise
pairings (i.e. containing e(Xi, Yj) in its entry (i, j)).
Also, for any z ∈ GT , ιT (z) denotes the 2 × 2 matrix containing z in position (2, 2)
and 1 elsewhere. For group elements X ∈ G1, the notation ι1(X) will denote the
vector (1, X) ∈ G2

1 and for Y ∈ G2, ι2(Y ) = (1, Y ) ∈ G2
2.

For a polynomial number of scalars zi ∈ Z∗p, and a pair (g, gy) ∈ G2
1, the values

g1/(y+zi) looks to be random and independent [50]. We used this to build our identifier,
ID(y, zi)= g1/(y+zi), in the group signature. In the proof of user anonymity, the
simulator will be able to choose the zi prior to any interaction with the adversary
and we depend on q-DDHI assumption [50].

1we assume that each group member has a personal public key upki, established and certified
by a PKI, independently of any group authority, so that it has a means to sign a message, using a
matching personal private key uski with him.
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• Setup(1k): It generates the system parameters, params = (p,G1,G2,GT , e, g1, g2,

H,T, Att); where

(i) G1,G2,GT are the cyclic groups of prime order p, where 2k−1 < p < 2k.

(ii) e : G1 ×G2 → GT is a bilinear map.

(iii) g1 and g2 are the generators of the groups G1 and G2, respectively.

(iv) H : {0, 1}∗ → {0, 1}m′ is a collision-resistant hash function, where m′ =
O(k).

(v) T is the number of time periods.

(vi) Att = {att1, ..., attm}, for m = O(k) is the universal set of attributes1.

• KeyGen(params): It takes an input system parameters params and outputs a
group public key gpk, an issuing key ik and a user opening key okuser.

(i) Select the independent generators k1, v
′, v1, ..., vm′ ∈ G1, h1, ..., hT ∈ G2

and define the Waters function, F : {0, 1}m′ → G1, forM = (µ1, ..., µm′) ∈
{0, 1}m′F(M) = v′Πm′

j=1v
µj
j .

(ii) Select γ ∈R Z∗p, and computes ω = gγ2 .

(iii) For each attj ∈ Att, choose a secret sj ∈R Z∗p, sets S = {sj}attj∈Att, and
computes gattj = g

sj
1 ,∀attj ∈ Att.

(iv) For the Groth-Sahai proof under the instantiation based on SXDH as-
sumption, choose a vectors ~u = (~u1, ~u2 = ~ut1) and ~v = (~v1, ~v2 = ~vt

′
1 ), where

~u1 = (g1, g
α
1 ) ∈ G2

1 and ~v1 = (g2, g
α′
2 ) ∈ G2

2 for t, t′, α, α′ ∈R Z∗p. α and α′

are trapdoor keys.

(v) Outputs

gpk = (k1, h1, ..., hT, ω,F , {gattj}attj∈Att, ~u,~v), ik = (γ, S), okuser = (α, α′).

The description of F includes the generators v′, v1, ..., vm′ .

• BuildTree(p, S,Υ):
1For m = 1 it becomes a group signature scheme, where all members possess that attribute.
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(i) Let TΥ be the tree that represents the predicate Υ.

(ii) Get extension tree T ext ← AddDummyNode(TΥ).

(iii) Get secret value for each dummy node and the secret value of the root of
T ext using ({sdj}dj∈DT , sT )← AssignedVaule(S, T ext).

(iv) Output the public values of Υ,

TΥ = ({sdj}dj∈DTΥ
, vT = gsT2 , T ext).

The predicate public values TΥ are verifiable through BuildTree-Validity
algorithm.
A verifier with the predicate approaches the GM for a group signature. GM runs
BuildTree algorithm to generate the public values of the predicate Υ and stores
it in a public repository. Then anyone among the group members who are
eligible will generate a group signature by using the predicate public values.
If predicate public values are already present in the public repository then GM
need not invoke BuildTree algorithm.

• BuildTree-Validity(params, gpk, TΥ):

(i) Randomly choose an attribute set, Leaves ⊆ Att : Υ(Leaves) = 1 And
gets the corresponding ∆attj(∀attj ∈ Leaves), and ∆dj(∀dj ∈ DLeaves

TΥ
) by

running MakeSimplifiedTree(Leaves,
T ext).

(ii) Compute groot = ∏
attj∈Leaves g

∆attj
attj ×

∏
dj∈DLeavesTΥ

g
sdj∆dj

1

= ∏
attj∈Leaves g

sj∆attj
1 ×∏dj∈DLeavesTΥ

g
sdj∆dj

1

= g

∑
attj∈Leaves

∆attj sj+
∑

dj∈DLeavesTΥ
∆dj

sdj

1 = gsT1 from (2.6).

(iii) Verify whether e(groot, g2) ?= e(g1, vT ). If not then TΥ is the invalid public
values of the predicate Υ.

• Join(< params, gpk, t, ik, upki,Ai >,< params, gpk, t, upki, uski >): A user
Ui with the pair of keys (upki, uski) in the PKI, interacts with the group man-
ager, with the issuing key ik and the set of attributes Ai, to join the group.
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This is similar to the Join protocol in [24; 48]. At the completion of this
protocol, Ui gets private key ski = ((Ai, Xi, yi), {Ti,j}attj∈Ai), where (Ai, Xi, yi)
is a membership certificate, {Ti,j}attj∈Ai is the set of attribute certificates and
Ai ⊆ Att is the set of Ui’s attributes. And GM ends with the updated ~reg and
~grt. The protocol begins as follows,

(i) Ui picks y′i ∈R Z∗p, computes and sends Y ′i = g
y′i
1 , an extractable commit-

ment of y′i. Note that the trapdoor of the commitment will not be known
to anybody except to the simulator in the security proof to be able to
extract y′i.

(ii) GM selects new xi ∈ Z∗p and a random y′′i ∈R Z∗p, computesAi = (k1Y
′
i Y
′′
i )β/(γ+xi),

Xi,2 = gxi2 and Ti,j = A
sj
i (∀attj ∈ Ai), where Y ′′i = g

y′′i
1 and sends

y′′i , Ai, Xi,2, {Ti,j}∀attj∈Ai .

(iii) Ui checks whether e(Ai, ωgxi2 ) = e(k1, g2)e(g1, g2)y′i+y′′i . Then Ui computes
yi = y′i + y′′i and makes a signature si = DSiguski(Ai, Xi,2, Yi).

(iv) GM verifies si under upki, appends the tuple (i, upki, Ai, Xi = (Xi,1 =
gxi1 , Xi,2), Yi, si) to ~reg and add {grt[i][j] = hxij }Tj=t to ~grt. Then GM sends
Xi,1.

(v) Ui checks the relation e(Xi,1, g2) = e(g1, Xi,2). Ui owns an valid member-
ship certificate (Ai, Xi, yi) and attribute certificates {Ti,j}∀attj∈Ai , where
yi is known to him only.

– GM chooses sm+1 ∈ Z∗p, and computes gattm+1 = g
sm+1
1 when a new attribute

attm+1 is added. Let Ui be issued Ti,m+1. Then GM computes and sends
Ti,m+1 = A

sm+1
i to Ui and also publish gattm+1 into gpk. Thus attributes

can be added anytime.

– When user Ui is to be revoked at time interval t, GM needs to simply add
grt[i][t] to the revocation list RLt for the interval t.

– For the group members to verify the validity of their issued attribute cer-
tificates {Ti,j}, GM builds one general access tree such that it is satisfied
by each individual attribute. GM will publish its public values and every

184



7.3 Construction

member Ui can verify their individual certificates by using the following
equation

e(T∆attj
i,j .A

∆dj
sdj

i , g2)=e(Ai, vT ) (7.1)

where (∆attj ,∆dj) ← MakeSimplifiedTree(sj, T ext) and sdj is the corre-
sponding dummy node of sj, such that e(g∆attj

attj .g
∆dj

sdj
1 , k2) ?= e(g1, vT ).

• Sign(params, gpk, ski, t, ζ, j,M,Υ): It generates a group signature σ on mes-
sage M ∈ {0, 1}∗ during the period t with the user private key ski who satisfy
the predicate Υ with his subset of attributes ζ ⊆ Ai : Υ(ζ) = 1.

(i) Get the public values of Υ, TΥ = ({sdj}dj∈DTΥ
, vT , T

ext), from the public
repository.

(ii) Let sT1 = Σattj∈ζ∆attjsj and sT2 = Σdj∈DζT
∆djsdj . Then from (2.6), sT1 +

sT2 = sT .

(iii) Get ({∆attj}(∀attj∈ζ), {∆dj}(∀dj∈DζTΥ
))← MakeSimplifiedTree(ζ, T ext) and

compute sT2 = Σdj∈DζT
∆djsdj .

(iv) Compute the hash value M = µ1, ..., µm′ = H(t||M) ∈ {0, 1}m′ .

(v) Creates an ephemeral ID, ID(yi, z) = g
1/(z+yi)
1 , with a random z ∈ Z∗p.

(vi) Select r, δ ∈R Z∗p and set ρ1 = Πattj∈ζT
∆attj
i,j .A

sT2
i = AsTi , ρ2 = yi, ρ3 =

Xi = (gxi1 , g
xi
2 ), ρ4 = ID(yi, z), ρ5 = (gz1, gz2), ρ6 = kz1F(M)r, ρ7 = gr2, ρ8 =

hδt , ρ9 = ht, T1 = gδ1 and T2 = e(gxi1 , ht)δ.

(vii) Commit the group elements σi = C(ρi), for i = {1, 3, 8, 9} and σ2 =
(C(1)(ρ2), C(2)(ρ2)).

(viii) Compute the NIWI Groth-Sahai proofs for the committed variables ρ1, ρ2, ρ3
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satisfy the following equations

e(ρ1, ωρ3,2) = e(k1, vT )× e(gρ2
1 , vT ) (7.2)

e(ρ4, g
ρ2
2 ρ5,2) = e(g1, g2) (7.3)

e(ρ6, g2) = e(k1, ρ5,2)× e(F(M), ρ7) (7.4)

e(gρ2
1 , g2) = e(g1, g

ρ2
2 ) (7.5)

e(ρ3,1, g2) = e(g1, ρ3,2) (7.6)

e(ρ5,1, g2) = e(g1, ρ5,2) (7.7)

(ix) Compute the NIZK Groth-Sahai proofs for the committed variables ρ3,1, ρ8, ρ9

satisfy the following equations

T2 = e(ρ3,1, ρ8) (7.8)

e(T1, ρ9) = e(g1, ρ8) (7.9)

e(g1, ρ9) = e(g1, ht) (7.10)

(x) Output the signature

σ = ({σi}3
i=1, {ρ}7

i=4, σ8, σ9, T1, T2) ∈ G4
1×G2

2×G2
1×G2

2×G2
1×G2×G1×G5

2

×G1 ×GT

We add the corresponding Groth-Sahai proofs {Θi}9
i=1 to the signature to prove

the validity of the above pairing equations. Equation (7.2) is a pairing-product
equation, establishes that the signer has a valid membership certificate issued
through the Join algorithm (i.e. Ai is well-formed) as well as establishes that he
possess the required attributes (attribute certificates) that satisfy the predicate
Υ, and the Groth-Sahai proof requires 4 elements in each group, Θ1 = ( ~π1, ~θ1).
Equation (7.3) is a linear pairing-product, establishes that ρ4 is a well formed
ID, and the proof requires only 2 extra elements in G1, Θ2 = (~θ2). Equation
(7.4) does not use any committed data so it can be directly checked, it estab-
lishes that (ρ6, ρ7) is a Waters signature of M under the public key ρ5, thus
Θ3 = φ. Equation (7.5) is a quadratic equation, establishes that same yi is
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committed in both groups, and it can prove with 2 elements in each group,
Θ4 = ( ~π4, ~θ4). Equation (7.6) is a pairing-product equation, establishes that Xi

is well-formed, and the proof requires 4 elements in each group, Θ5 = ( ~π5, ~θ5).
Equation (7.7) does not use any committed data so it can be checked directly,
thus Θ6 = φ. Equation (7.8) is a pairing-product equation and the proof re-
quires 4 elements in each group, Θ7 = ( ~π7, ~θ7). Equation (7.9)-(7.10) are linear
and requires 2 elements of G1 each, Θ8 = (~θ8) and Θ9 = (~θ9). Equation (7.8)-
(7.10) establish that the signer has produced the signature during the time
interval t. Overall we need 30 group elements in G1, 24 in G2 and 1 element of
GT . The axillary variable ρ9 is needed to prove the equations in NIZK. Note
that the signature is independent of number of attributes |ζ|.

• Verify(params, gpk, t,M, σ,Υ, RLt) :
It parses σ = ({σi}3

i=1, {ρ}7
i=4, σ8, σ9, T1, T2,Θ1,Θ2,Θ4,Θ5, {Θi}9

i=7) and returns
1 if and only if all proofs are valid and σ passes revocation test:

(i) It verifies to see whether all the pairing equations hold according to Groth-
Sahai proof system. Here we give the abstract construction of proof el-
ements for clarity which is useful in the proof of anonymity. Following
equations must satisfy with the proof elements Θ1,Θ2,Θ4,Θ5,Θ7,Θ8,Θ9

(a) F ( ~σ1, ι2(ω). ~σ3,2) = F (ι1(k1), ι2(vT )) � F ( ~σ2,1, ι2(vT )) � F ( ~u1, ~π1,1) �
F ( ~u2, ~π1,2)� F ( ~θ1,1, ~v1)� F ( ~θ1,2, ~v2)

(b) E(ρ4, ~σ2,2ι2(ρ5,2)) = E(g1, ι2(g2))� E(θ2,1, ~v1)� E(θ2,2, ~v2)
(c) e(ρ6, g2) = e(k1, ρ5,2)× e(F(M), ρ7)
(d) F ( ~σ2,1, ~ϕ

′) = F (~ϕ, ~σ2,2)� F ( ~u1, ~π4)� F (~θ4, ~v1)
(e) F ( ~σ3,1, ι2(g2)) = F (ι1(g1), ~σ3,2)�F ( ~u1, ~π5,1)�F ( ~u2, ~π5,2)�F ( ~θ5,1, ~v1)�

F ( ~θ5,2, ~v2)
(f) e(ρ5,1, g2) = e(g1, ρ5,2)
(g) F ( ~σ3,1, ~σ8) = ιT (T2)�F ( ~u1, ~π7,1)�F ( ~u2, ~π7,2)�F ( ~θ7,1, ~v1)�F ( ~θ7,2, ~v2)
(h) E(T1, ~σ9) = E(g1, ~σ8)� E(θ8,1, ~v1)� E(θ8,2, ~v2)
(i) E(g1, ~σ9) = E(g1, ι2(ht))� E(θ9,1, ~v1)� E(θ9,2, ~v2)

187



7.4 Security Analysis

(ii) Revocation check: for all Bit = hxit ∈ RLt,

T2 6= e(T1, Bit) (7.11)

• Open(params, gpk, okuser, t, σ,M,Υ, ~reg) : For the valid group signature the
Opener just opens the commitment of ρ1 = AsTi in σ1, and outputs the cor-
responding identity i from the ~reg with respect to Ai, if e(ρ1, g2) ?= e(Ai, vT ),
otherwise outputs ⊥. If issuer and opener are the same entity then he can
open the signature in O(1) time complexity, as he knows sT value, he simply
computes Ai = ρ

1/sT
1 .

7.4 Security Analysis

Theorem 7.4.1 The proposed VLR-ABGS scheme is correct.

Proof The correctness follows from the Groth-Sahai proof system. �

Theorem 7.4.2 The proposed VLR-ABGS scheme preserves attribute anonymity
under SXDH assumption.

Proof According to the definition (7.2.3) it is sufficient to show that for any predi-
cate Υ and for any subset of attributes Ai : ∃ζ1, ζ2 ⊆ Ai that satisfies predicate i.e.,
Υ(ζ1) = Υ(ζ2) = 1, the output of Sign(gpk, ski, t, ζ1,M,Υ) is indistinguishable from
the output of Sign(gpk, ski, t, ζ2,M,Υ), subject to the constraint that they pass the
verification algorithm.
For any signature, σ = ({σi}3

i=1, {ρ}7
i=4, σ8, σ9, T1, T2,Θ1,Θ2,Θ4,Θ5, {Θi}9

i=7), the at-
tribute certificates are hidden and used in σ1 computation and it is easy to observe
that for any two given group signatures of the same user Ui the uncommitted values
ρ1 = AsTi of both signature are indistinguishable among themselves, since both are
identical because of same sT value. Thus it will not reveal the underlying subset
of attributes, but only it proves that it satisfies the predicate. Thus the proposed
scheme preserves attribute anonymity unconditionally. �
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Theorem 7.4.3 If there exists an adversary A that can break the user anonymity of
the scheme, then there exists an adversary B that can break either `-DDHI problem
in G1, DTDH problem or SXDH assumption. And we have

AdvBU−user−anon ≤ 1/n.(2.AdvSXDH +Adv`−DDHI) + 1/(T.n).(2.AdvSXDH +AdvDTDH)
(7.12)

where n is the maximal number of join queries, ` is the maximal number of signing
queries for a user and T is the number of time periods.

Proof A part of the proof is similar to [24] and other part follows the approach of
[82] under SXDH assumption. The proof is organized as a sequence of games such
that adversary has no advantage in final game where as the first game is the real
attack game as given in definition (7.2.4). Let Si denote the event that the adversary
wins in the game Gi with advantage Advi = |Pr[Si]− 1/2|.

G1: This is the real game as define in the definition (7.2.4). Challenger B sets up the
scheme and defines the parameters as in the real scheme,

params = (p,G1,G2,GT , e, g1, g2,H,T, Att)

gpk = (k1, h1, ..., hT, ω,F , {gattj}attj∈Att, ~u,~v)

ik = (γ, S)

okuser = (α, α′)

B gives gpk to A. With this B answers all the queries made by adversary. At chal-
lenge phase A chooses 2 unrevoked and uncorrupted users Ui0 , Ui1 and is given a
challenge signature σ∗ on behalf of Uiκ , κ ∈R {0, 1}. In the output phase, adversary
outputs her guess κ′ ∈ {0, 1} and the advantage is Adv1 = |Pr[S1]− 1/2|.

G2: Let n be the total number of passive join queries, joinP queries. In this game
we modify the simulation G1, B picks a challenge user id i?. In the challenge phase,
B aborts if iκ 6= i?. B also aborts if i? is queried to corrupt or revoke oracle before or
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during challenge phase period. The probability that B succeed in picking correct i?

is 1/n. Therefore, Adv2 = Adv1/n.

G3: In this game, we modify the simulation of G2 where B randomly picks the chal-
lenge phase period t?. In the challenge phase, B aborts if t∗ 6= t?. The probability
that B picks correct t? is 1/T. Therefore we can write Adv3 = Adv2/T.

G2a: We modify the simulation of G2. B chooses y ∈R Z∗p and define the `−DDHI like
tuple A = (g, gy, ..., gy`) ∈ G`+1

1 , D = g1/y ∈ G1 . B chooses different random values
z∗, z1, ..., z`−1 ∈ Z`p, and define the polynomial f(X) = Π`−1

i=1(X − zi), of degree `− 1.
From the above tuple, B can compute g1 = gf(X). B chooses νt ∈ Z∗p and defines
ht = gνt2 for t ∈ {1, ...,T}. The future challenge user i? will virtually have yi? = y−z∗.
B compute gyi? = gy1/g

z∗
1 from the above tuple. The membership certificate for the

challenge user is (gxi?1 , gxi?2 , gy1/g
z∗
1 , Ai? = (k1g

y
1/g

z∗
1 )β/(γ+xi? ), {Ti?,j = A

sj
i?}attj∈Ai? ).

The setup is indistinguishable from G2, since all keys are having same distribution.
B answers all queries according to definition (7.2.4) and for the challenge user Ui? ,
the j-th signing queries, he computes ρ4 = g

1/(yi?+zj)
1 = gΠi 6=j(y+zi), that can be done

from the defined tuple, the rest is done as in the real scheme using zj as random.
B can also answer any corruption query, that should not happen for the challenge
user, even if we know y in this game.
For the challenge signing query, he does the same as above with the ephemeral
value z∗, and the expected ID, ρ4 = g

1/(yi?+z∗)
1 = gf(y)/y = gf

′(y)gΠ(zi)/y, where
f ′(X) = (Π`

i=1(X + zi)−Π(zi))/X is a polynomial of degree `− 1 and thus gf ′(y) can
be computable from the tuple. B thus compute ρ4 = gf

′(y).DΠ(zi) and returns the
challenge signature σ∗. Therefore, Adv2a = Adv2.

G2b: We modify the game G2a. Here we initialize Groth-Sahai commitment keys in
a perfectly hiding setting with the trapdoor, to allow the simulator to cheat in the
proofs. Then all the proofs are simulated. This game is indistinguishable from the
previous one under the SXDH. Thus |Pr[S2b]− Pr[S2a]| = 2.AdvSXDH.
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G2c: In this game, we do not know anymore y, that we did not use anymore any-
way, and thus this game is perfectly indistinguishable from previous one. Thus
Pr[S2c] = Pr[S2b].

G2d: In this game, we replace the defined `−DDHI tuple with the actual `−DDHI
challenge instance, where y is unknown to B. Thus this game is indistinguishable from
the previous one under the `−DDHI assumption. Therefore, |Pr[S2d] − Pr[S2c]| ≤
Adv`−DDHI.

G3a: We modify the game G3. In the setup phase we consider the group elements
Z1 = gz11 , Z

′
1 = gz12 , Z2 = gz21 , Z

′
2 = gz22 in constructing gpk and membership cer-

tificates. B chooses νt ∈ Z∗p and defines ht = gνt2 for t ∈ {1, ...,T}\{t?}, where
as ht? = Z ′2. B chooses u ∈R Z∗p, set k1 = gu1 . For the appropriate computed
value sT , corresponding to the predicate, B set vT = (Z ′1ω)βsT = g

sT β(z1+γ)
2 for a

random β ∈ Z∗p (so that implicitly we are setting sT = sTβ(z1 + γ), therefore we
assume that adversary wont invoke BuildTree-Validity algorithm to check the
validity of public values of the predicate). Then all the join queries (except for
i = i?) will answer by setting membership certificate Ai = (Zu

1Z
yi
1 k

γ
1g

yiγ
1 )β/(γ+xi) and

other values are same as define in the game G3. For the target user Ui? , B set
ski? = (Z1, Z

′
1, yi, Ai? = (k1g

yi
1 )β, {Ti?,j = A

sj
i?}attj∈Ai? ), which implicitly defines

xi? = z1. We note that, for periods t 6= t?, the revocation tokens hxi?t are com-
putable as Z ′νt2 . The revocation token hxi?t? , for the period t?, for the user Ui? , is not
computable and it is not needed, since A will not query for it unless the abortion
rule of G2 occurs. With this B can answer all the queries made by A even he does
not explicitly use z1, z2, the discrete log of Z1, Z2 respectively. A will not notice the
changes in the game. Therefore, Pr[S3a] = Pr[S3].

G3b: We modify the game G3a. Here we initialize Groth-Sahai commitment keys in
a perfectly hiding setting with the trapdoor, (t, t′). Then all the proofs are simu-
lated. This game is indistinguishable from the previous one under the SXDH. Thus
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|Pr[S3b]− Pr[S3a]| = 2.AdvSXDH.

G3c: In this game, we modify the generation of challenge signature σ∗ and uses
trapdoor (t, t′) to simulate NIZK proofs. We assume that B known’s the values
(Z1 = gz11 , Z

′
1 = gz12 , Z2 = gz21 , Z

′
2 = gz22 , Z3 = gz31 , η = gz1z2z32 ), which is like DTDH

tuple but with fix η. B use Z1, Z
′
1, Z2 = gz21 , Z

′
2 as in game G3a and uses Z3 to

create the challenge signature. B implicitly defines δ = z3 by setting T1 = Z3 and
T2 = e(g1, η). B calculate the commitments σ1, σ2, σ3 as specified by the scheme and
similarly computes the proofs (Θ1,Θ2,Θ4,Θ5). Here we calculate σ8 as a commitment
to 1G2 : namely, σ8 = ~v1

r8 � ~v2
s8 , where r8, s8 ∈R Z∗p. Then, B generates a proof

Θ7 = ( ~π7, ~θ7), where

~π7,1 = ι2(η)−t, ~π7,2 = ι2(η), ~θ7,1 = σr83,1,
~θ7,2 = σs83,1.

Note that for generating this proof the value ρ8 = hδt∗ = gz2z32 is not used instead
it takes the advantage of η. The proof Θ8 is generated as the real proof using the
variable assignment ρ8 = ρ9 = 1G2 that satisfies the relation e(T1, ρ9) = e(g1, ρ8)
and the committed value σ9 = ~v1

r9 � ~v2
s9 , a commitment to 1G2 . The Θ9 = (~θ9) is

computed as,
θ9,1 = gr91 .Z

−t′
2 , θ9,2 = gs91 .Z2.

This satisfy the last verification equation

E(g1, ~σ9) = E(g1, ι2(ht))� E(θ9,1, ~v1)� E(θ9,2, ~v2)

since ~v2 = (gt′2 , gα
′t′−1

2 ). As in [68] the simulated proofs are randomized, uniform in
the space of valid proofs, and achieve perfect witness indistinguishability. This game
is perfectly indistinguishable from the previous game and Pr[S3c] = Pr[S3b].

G3d: This is same as previous game but η is random from G2. This modification is not
noticeable to A under DTDH assumption. Thus |Pr[S3d]− Pr[S3c]| = 2.AdvDTDH.
Also it is easy to observe that Pr[S3d] = 1/2. The elements T1 and T2 are completely
independent of xi∗ = z1 (and thus of Ui∗). In game G3d under WI setting, the values
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{σi}3
i=1, {ρ}7

i=5, σ8, σ9 and the proofs Θ1,Θ2,Θ4,Θ5, {Θi}9
i=7 reveals no information of

the user Ui∗ .

When we combine all the probabilities we obtain the upper bound (7.12) on A’s
advantage in game G1.

Theorem 7.4.4 The proposed scheme preserves the attribute unforgeability under
KEA1 and DL assumptions.

Proof Lemma 7.4.5 implies the Theorem 7.4.4. �

Lemma 7.4.5 Under the DL and KEA1 assumptions there exists no PPT adversary
A which passes verification with forged attributes with non negligible probability.

Proof The input to the simulator B is an instance of the DL problem, (g, g′) ∈ G2
1.

Let ξ = loggg
′.

Setup: According to the VLR-ABGS scheme setup B generates the system param-
eters, params. B sets g1 = g and k1 = g′, and generate the remaining parameters,
gpk, ik, okuser. B gives gpk and okuser to A.
Queries: As B knows all the keys, it can answer all the queries generated by an
adversary A according to the definition of attribute unforgeability .
Output: Finally, A outputs a signature σ∗ with forged attribute certificates on mes-
sage M∗, a predicate Υ∗ whose public values are TΥ∗ = ({sdj}dj∈DTΥ∗

, vT = gsT2 , T ext),
and signer’s secret key ski∗ such that Υ(Ai∗) 6= 1 and Υ(Ai∗ ∪ attj) = 1. As it is a

valid signature which passes verification algorithm and from (7.2) ρ∗1 = A
sT

γ+xi∗
i∗ . This

can be viewed as ρ∗1 = (k1g
yi∗
1 )

sT
γ+xi∗ = k

sT
γ+xi∗
1 X and ksT1 can be extracted by raising

the power γ + xi∗ , where X = g
yi∗sT
γ+xi∗
1 . Note that ksT1 is unknown to A but she is

producing it in signature.
It is like B is giving input (g1 = g, gsT1 = g

∆attj

attj ×g
sT2
1 = gsT ) to A and A implicitly re-

turns (k1 = g′, ksT1 = g′sT ). Then by KEA1 assumption, B can utilize the extractor Ā
to extract a value ξ. Under DL assumption it can be done with negligible probability.
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Thus the signature produced by the forged attribute certificates can pass verification
with negligible probability.
To be more particular, we can assume that the A is missing one attribute certificate,
say Ti∗,j = A

sj
i∗ = (k1g

yi∗
1 )

sj
γ+xi∗ , to satisfy the predicate, but he knows gattj = g

sj
1 . And

A is producing it in forged group signature σ∗. Then similar to above from KEA1
and DL assumptions it is negligible to produce such signatures. �

Theorem 7.4.6 The proposed scheme preserves the collusion resistance of attribute.

Proof Lemma 7.4.7 implies the Theorem 7.4.6. �

Lemma 7.4.7 Even if some malicious participants Ui1 , ...,Uik(k > 1) with the set
of attributes ζi1 , ..., ζik collude, they cannot make a valid signature associated with a
predicate Υ, where (∪kj=1Υ(ζij) = 1) and Υ(ζij) 6= 1 for j = 1, ..., k with non-negligible
probability.

Proof Without loss of generality, we assume that Ui1 with ζi1 and Ui2 with ζi2 repre-
sent malicious participants. Ui1 and Ui2 attempt to make a valid signature associated
with Υ which satisfies Υ(ζi1 ∪ ζi2) = 1,Υ(ζi1) 6= 1 and Υ(ζi2) 6= 1. They can satisfy
the relations (7.2) because they have a valid membership certificate (Ai1 , Xi1 , yi1).
We assume that T ti1,j = Ti2,j, where t ∈ Z∗p. Note that the probability of t = 1 is
negligible. And they tries to compute

ρ1 = Πattj∈Ai1
T

∆attj
i1,j × Πattj∈Ai2

T
∆attj
i2,j × A

sT2
i1

= A
(Σattj∈Ai1

∆attj sj+tΣattj∈Ai2
∆attj sj+sT2 )

i1

Then from (2.6)

Σattj∈Ai1
∆attjsj + tΣattj∈Ai2

∆attjsj + sT2 6= sT

holds. But t 6= 1 means that they cannot collude. �
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Theorem 7.4.8 If there exists an adversary A that breaks the traceability of the
scheme, then we can build an adversary B that can break the q-HHSDH assumption,
where q is the maximal number of users.

Proof Since the membership certificate format is similar to the one proposed in
[24; 48], the proof directly reduces to the q-HHSDH assumption. The simulator B
receives q-HHSDH challenge (g1, k1, g2, ω = gγ2 , (gxi1 , g

xi
2 , yi, Ai = (k1g

yi
1 )1/(γ+xi))i∈[1,q])

and tries to solve it, from A that breaks the traceability of our scheme.
Setup: B generates the commitment keys, attribute secret and public values, and
other parameters as in the ABGS scheme by using the q-HHSDH challenge values.
B gives gpk and okuser to A.
Queries: To answer the i-th join queries, if this is an active join, B extracts y′i
chooses his y′′i so that y′i + y′′i = yi, if it is a passive join, B directly chooses yi. Thus
B can answer all the queries according to traceability definition.
Output: After atmost q join queries, A outputs a new signature with a new certifi-
cate tuple with non-negligible probability. As B knows the trapdoor of the commit-
ment scheme, he can obtain (gx1 , gx2 , g

y
1 , g

y
2 , A = (k1g

y
1)1/(γ+x)). Thus B answers the

challenge q-HHSDH instance with the same advantage of A. �

Theorem 7.4.9 If there exists an adversary A that breaks the non-frameability of
the scheme, then we can build an adversary B that can either break the q-HSDH or
the CDH+ computational problems, or the 1-DDHI or the SXDH decisional problems,
where q is the maximal number of signing queries for a user.

Proof The proof is similar to the proof of non-frameability in the Blazy and Pointcheval
[24] traceable signature. There exists two types of adversary, one breaks the non-
frameability by forging the new ID, ρ4, on an uncorrupted user and another breaks
the non-frameability by reusing an existing ID with the corresponding certificate but
on a new message. With 1/2 probability B decides which type of adversary it is.
Type 1: The simulator B receives q-HSDH challenge ((g1, g2, g

y
1 , g

y
2), (gti1 , gti2 ,

g
1/(y+ti)
1 )i∈[1,q]) and tries to solve it, from an adversary A that breaks the non-

frameability of our scheme by forging a new ID, ρ4, on an uncorrupted user.
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Setup: B generates the gpk, ik and okuser as the real settings and gives it to A.
B selects the target user on which he expects the attack and sets his membership
certificate corresponding to one with y as a secret key.

Queries: B can answer any joinP query as he knows ik and can answer corrupt query
on any user except the target user, otherwise the simulation fails. B can answer the
sign queries and can answer to atmost q sign queries for the target user with the help
of challenge q-HSDH tuple.

Output: After all the queries and atmost q signing queries for target user, A succeeds
in breaking the non-frameability with non-negligible probability by generating a new
tuple (ρ4 = g

1/(y+t)
1 , ρ5 = (gt1, gt2)), on an uncorrupted user. Thus B solves the q-

HSDH challenge with non-negligible probability.

Type 2: The simulator B is given an asymmetric Waters public key (pk = (gξ1, gξ2)
for the global parameters (g1, g2, k1,F)). B tries to break this signature, and thus the
CDH+ problem, from an adversary A breaking the non-frameability of our scheme
by reusing an existing tuple ρ4, ρ5 on a new message.
In the first game, G1, B knows the discrete logarithm value ξ, generates a new
ik, okuser and gives ik, okuser to A together with the public key gpk = (k1, ω,F ,
{gattj}attj∈Att). B can answer any joinP query as he knows ik and extract the secret
keys from the extraction key of the commitment scheme, one of those uncorrupted
user is expected to be a challenge user, with the secret key y, the one A has to frame.
B can answer any signing queries. On one of them for the challenge user, say on M ,
he will use the above ξ as ephemeral Waters public key (for the z), and thus computes
a ρ4 = g

1/(y+ξ)
1 with the corresponding Groth-Sahai proof. This way A possesses a

valid signature on M , M = H(t||M), with ρ5 = (gξ1, gξ2), ρ6 = kξ1F(M)s, ρ7 = gs2.

With non-negligible probability A breaks the non-frameability of our scheme, by
hypothesis A does it by reusing an existing ρ1, ..., ρ5, as uncorrupted users are in-
distinguishable, A frames our challenge user with non-negligible probability, and as
the signing queries are finite, he will use ρ5 = (gξ1, gξ2) with non-negligible probability.
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Therefore, with non-negligible probability at some period t∗ A outputs a new valid
signature on M′ = H(t||M ′) with ρ5 = (gξ1, gξ2), this means we have (ρ5, ρ6, ρ7) such
that e(ρ5,1, g2) = e(g1, ρ5,2), e(ρ6, g2) = e(k1, ρ5,2) × e(F(M′), ρ7), and thus B can
output a valid forgery on the Waters challenge for the public key (gξ1, gξ2). But in this
game, we know ξ.

In a second game, G2, the Groth-Sahai setup is used as hiding one, so that the proofs
can be simulated, and namely without using ξ. This is indistinguishable from the
previous game under the SXDH assumption.
In the third game, G3, replace ρ4 by a random value, still simulating the proofs. A
random ρ4 is indistinguishable from the real one under the DDHI problem as seen
in user anonymity proof. Furthermore, here there is only one elements, hence the
1−DDHI assumption. In the last game, one does not need to know ξ anymore, and
thus the signature forgery reduces to breaking the asymmetric CDH+. �

7.5 Comparison

In the construction, the group signature contains 30 elements from G1, 24 elements
from G2 and 1 element of GT . Let Φ = |ζ|, where ζ is the set of attributes associated
with a signature and m = |Att|. Let m̂ be the average number of attributes assigned
to any user and m′ the size of the message. RO means Random oracle model, e
represents the paring operation and r represents the number of revoked members.
In Table 7.1, we compare the efficiency of our scheme with other schemes. Note
that the verification cost of the proposed scheme is independent of the number of
attributes, where as in other schemes the verification cost is linear in terms of number
of attributes. From the table it can be noticed that non-frameability is not achieved
by standard model combined scheme of Herranz et al. [70] and Libert et al. [82].
Further, the combined scheme has verification cost that is not independent of the
number of attributes and all the key lengths are large.
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7.6 Summary

7.6 Summary

In this chapter, we have proposed a VLR-ABGS scheme which achieves attribute
anonymity and backward unlinkability with constant signature length and proven
that it is secure under the standard model. Our scheme is dynamic with respect to
both users and attributes i.e. anytime a user can join and attributes can be added
without regenerating the keys. We note that our scheme is efficient compared to the
other ABGS schemes in terms of verification cost and signature length. We also note
that our scheme has non-frameability as an added feature compared to the recently
proposed VLR-GS scheme by Libert et al. [82]. Further, our scheme can also be used
as VLR-GS scheme. In the next chapter, we conclude our thesis.
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Chapter 8

Conclusion

In this thesis we addressed all the research questions listed in Section 1.2 except
the last one, i.e. attribute revocation. In chapter 2, we formalized the definition
of ABGS scheme with the new security definitions viz. attribute anonymity and
attribute unforgeability. In chapter 3, we proposed an ABGS scheme with attribute
anonymity and proven that it is secure under random oracle model. We also gave a
revocation mechanism for the scheme. The signature size is around 15 group elements.
In chapter 4, we proposed an ABGS scheme with VLR feature having attribute
anonymity and backward unlinkability. We proved that the scheme is secure under
random oracle model. The signature size is around 10 group elements. In chapter
5, we proposed two ABGS schemes with attribute anonymity having short signature
length. We proved that the schemes are secure under the standard model but does
not preserve non-frameability. The signature size of the first construction is 6 group
elements, and for the second construction is 5 group elements. In chapter 6, we
proposed an ABGS scheme which preserves non-frameability and proven that it is
secure under the standard model. The signature size is around 19 group elements.
In chapter 7, we proposed an ABGS scheme with VLR feature also which preserves
non-frameability and proven that it is secure under standard model. The signature
size is around 21 group elements.

Our schemes are dynamic with respect to the users and attributes, i.e. anytime a
user can join and attributes can be added without reissuing the keys. We compared



the proposed schemes with the other schemes in the literature and found that the
schemes are efficient in terms of verification cost, user’s secret key length, constant
signature length and signing cost with extra added features. This is tabulated in
Table 8.1. We observe that the schemes with random oracle model are efficient than
the schemes with standard model. All the proposed schemes can be used as group
signature schemes under special setting. The VLR-ABGS scheme preserves non-
frameability in contrast to VLR-GS scheme of Libert et al.. All the ABGS schemes
without VLR feature can be used as ABS scheme with an extra feature of signer
tracing. Our ABGS schemes supports monotone predicates in contrast to the short
ABS scheme of Herranz et al. which supports threshold predicates and has the
signature size of 15 group elements. Moreover the verification cost in our scheme is
constant where as the verification cost of Herranz et al.’s ABS scheme is linear in
terms of the number of attributes. In the proposed ABGS schemes, signer has to
contact group manager if the predicate public values are not present in the public
repository whereas in ABS scheme no such communication is required.

We use Boneh’s membership certificate format [28], Ai = (g1Fi)1/(γ+xi), where
the user’s and group manager’s secrets, xi and γ respectively, appear in the exponent
of Ai in the form 1

γ+xi . This allows us to revoke the membership certificate using the
method given in [48]. But in attribute certificate the user’s attribute secret, sj, does
not appear in the required form. Therefore, we cannot use the method given in [48].
We have also tried to include user’s attribute secret in the attribute certificate as a
third component in the exponent of Ai as 1

γ+xi+sj , but still we cannot use the method
given in [48]. Further, we have tried to have attribute certificate without binding
with the group manager’s secret, 1

xi+sj , but we cannot use Lagrange’s interpolation
property to achieve attribute anonymity. Therefore, we leave attribute revocation for
future work.

It is challenging to device an Build-Tree algorithm which runs without group
secret key. This allows the group manager to remain off-line.
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