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ABSTRACT

Viscoelastic materials are gaining importance for the control of vibrations in aerospace
and automotive industry. Viscoelastic layers are sandwiched in the parent structure either in
unconstrained or constrained layer configuration to attenuate the vibration levels and enhance
the damping of a structure. The effectiveness of the viscoelastic layer in attenuating vibrations
can be found from the dynamic behaviour of sandwich structure with unconstrained and
constrained viscoelastic layers. The present work is focused on theoretical and experimental
investigations of dynamic responses of sandwich beam and plate structures with viscoelastic
layers.

Two viscoelastic materials developed by Naval Material Research Laboratory, NMRL
(DRDO laboratory) for Defence applications are studied by sandwiching them with the parent
structure. The frequency dependent Young’s Modulus, shear modulus and loss factors of both
the viscoelastic materials is obtained from Dynamic Mechanical Analyzer (DMA). The
experimental data obtained from DMA are expressed in mathematical form using power fit for
further use in dynamic models of sandwich structures.

Finite element based dynamic models are developed for sandwich beam and plate
structures. The sandwich structure is discretized into finite elements and dynamic equations of
motion are developed using Lagrangian method. The sandwich beam structure is modelled using
Euler-Bernoulli beam theory for base and constraining layer and shear deformation is considered
for constrained layer. For two dimensional structures, Mindlin-Reissner first order shear
deformation theory is considered for all three layers. The frequency dependent material
properties and loss factors of the viscoelastic materials are introduced into the dynamic models.
An iterative computational scheme is developed to solve the dynamic equations of motion of the
sandwich structures and frequency response functions (FRF’s) are computed. The FRFs and loss
factors obtained from the finite element model with and without considering the variation of
frequency dependent material properties of the viscoelastic layer are compared. These results are
validated with experiments for sandwich beam and plate structures in unconstrained and
constrained layer configurations. The Finite element model considering the frequency dependent
material properties of viscoelastic layers are in close agreement with experiments compared to

FE model considering constant material properties of viscoelastic layer.



The validated finite element model is further used in simulation studies of sandwich plate
structure with different layer thicknesses and boundary conditions. The optimum layer thickness
ratios of sandwich plate for high loss factors are identified. The high loss factors are obtained
when the thickness ratio of constraining layer to total thickness of sandwich plate (t./t) lies
between 0.41 to 0.46 and it is independent of mode and boundary condition. The loss factor
increases for higher mode number for all the boundary conditions. The loss factor increases with

increase in thickness of viscoelastic layer.

Keywords:- Unconstrained layer, Constrained layer, sandwich structure, viscoelastic layer,

frequency dependent material properties, frequency response function (FRF), and loss factor.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

All structures having elasticity and inertia undergo vibrations. Dynamic systems
convert kinetic energy to strain energy and vice versa. The conservation of energy from one
form to another causes vibration in the structure. When the excitation frequency coincides or
gets close to any of the natural frequencies of the structure, resonance occurs and results in
large amplitude vibrations. These resonant vibrations severely influence the dynamic
characteristics of the structures and produce discomfort and noise. These vibrations can be
minimized through the dissipation of vibrational energy present in the system. The dissipation
mechanism of vibrational energy from the system is known as damping. The mere presence of
damping brings down the resonant amplitude to finite values which are infinite otherwise.
Due to the influence of resonant vibrations on the life of the structure, damping has become
one of the major design considerations. Hence, the need to improve damping in a structure is
undisputed. Enhancing damping of structure is very important in aerospace, mechanical and

civil engineering.

Enhancement of damping in the structures can be achieved by passive or active means.
In active damping, vibrations are controlled by external source of energy using sensors and

actuators. Use of sensors and actuators increases the complexity of the system in active



damping. In passive damping, the vibrations are minimised by using the material’s inherent
ability in dissipating the energy. Hence, material selection plays a significant role in deciding
the damping capability of a structure. In recent times, the sandwich structures are employed in

place of conventional structures due to their ability in providing higher damping.

The current research is motivated by the organization goal of reducing the vibration
levels of electronic packages when they are subjected to severe dynamic loads. The electronic
packages are mounted on brackets that are attached inside the missile at designated locations.
In general the electronic packages have very low material damping. So, there is a need to
enhance the damping in the supporting structure of electronic packages to suppress the
vibrations. The focus of the proposed research is on enhancing the damping by sandwiching
viscoelastic layer in parent structure. Two viscoelastic materials developed by Naval Material
Research Laboratory (NMRL, DRDO) are characterized to understand their damping

properties when sandwiched between the base and constraining layers.

1.2 OBJECTIVES

The objective of the present research work is to minimize the vibrations of structures
at resonance using viscoelastic materials. Two viscoelastic materials developed for defence

application are chosen for this study.

(a) The first step to achieve this objective is to understand the behaviour of viscoelastic layer
by sandwiching them between base and constraining layers. Since electronics packages
do not experience high temperatures, the effect of temperature variation on the
viscoelastic materials are not considered in the present study and the main focus is on the
frequency dependent material properties. These frequency dependent material properties
of viscoelastic layer viz; Young’s modulus, shear modulus and loss factors (in tension
and shear mode) are obtained experimentally using Dynamic Mechanical Analyzer
(DMA) and expressed in a mathematical form using curve fit for further use in the FE
model. The complex Young’s modulus and shear modulus for both the viscoelastic
materials are derived using the above properties. The frequency dependent Poisson’s ratio

is obtained from the complex Young’s modulus and shear modulus data.



(b) The second step is to develop a FE Based dynamic model for sandwich beams and plate

(©)

structures considering the frequency dependent material properties of viscoelastic layer.
The stiffness matrix of the sandwich structure is complex quantity and depends on the
frequency of excitation. The element matrices are assembled and dynamic equations of
motion are developed. An iterative computational scheme is necessary to solve the
dynamic equations of motion due to the frequency dependent complex stiffness matrix.
The equations of motion are derived for base excitation. The experiments are performed
on sandwich beam and plate structures with base excitation to minimise the contribution
of armature dynamics of the shaker. The developed dynamic models are validated by
comparing frequency response functions (FRF’s) and loss factors calculated from the
analytical results with experiments. Assuming constant material properties of the
viscoelastic layer, FRFs and loss factors are also calculated and compared with the results
obtained from the dynamic model considering frequency dependent material properties of
the VE layer.

The third step is to carry out simulation studies with the validated dynamic model to
identify the optimum thickness ratios of sandwich layers for better vibration attenuation.

The simulation studies are also carried out for three different boundary conditions.

Thus, the scope of this research is to:

>

Characterize two viscoelastic materials for frequency dependent Young’s Modulus, shear
modulus and loss factors using Dynamic Mechanical Analyzer (DMA) and expressing the
measured frequency dependent material properties in a mathematical form using power fit
for further use in dynamic models of sandwich structures.

Develop a finite element based dynamic models for sandwich beam and plate structures
with viscoelastic materials considering the frequency dependent Young’s modulus, shear
modulus and loss factors of the viscoelastic material.

Develop an iterative computational scheme to solve the dynamic equations of motion.
Validate the dynamic model with experimental results on sandwich beam and plate
structures.

Carryout simulation studies on sandwich plate structures using dynamic model and
computational scheme under different boundary condition for identifying optimum

thickness ratios for higher damping.



1.3 ORGANISATION OF THESIS

The thesis is organized as follows.

Chapter 1 introduces the need for enhancing the damping of a structure. This chapter also

brings out the motivation and objectives of the present work.

Chapter 2 brings out the research work presented by various investigators for modelling the
viscoelastic materials, finite element models of sandwich beams and plate structures and the

scope of the present research work.

Chapter 3 gives a brief review on the constitutive relations of viscoelastic materials,
experiments for determining the frequency dependent material constants. It also includes the
mathematical representation of the frequency dependent material constants. Two viscoelastic
materials (EAP-2 and EAP-43) are characterised for their frequency dependent material
properties.

Chapter 4 deals with the formulation of finite element based dynamic model of sandwich
beam and plate structures. The dynamic model incorporates the frequency dependent Young’s
modulus, shear modulus and loss factors of the viscoelastic material. Dynamic equations of

motion are developed using Lagrangian method.

Chapter 5 deals with an iterative computational scheme to solve the dynamic equations of

motion with base excitation.

Chapter 6 deals with the details of instrumentation, preparation of test specimens, test setup
and experimental procedure. Frequency response functions (FRFs) are obtained from the

experimental data. Loss factors are calculated from the FRF’s.

Chapter 7 deals with the validation of the dynamic models of sandwich beam and plate
structures with experimental results. Eight case studies are considered to validate the dynamic
models. Four of these cases are sandwich beam structures and four are sandwich plate

structures.

Chapter 8 deals with the simulation studies of the sandwich plate structures using developed

dynamic model. The objective of these simulation studies is to enhance the damping in



sandwich plate structures. Damping loss factors are obtained for different thickness

proportions under various boundary conditions to identify optimal parameters.

Chapter 9 presents the summary and conclusions. It also includes the scope for further

research in this field.



CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

Minimisation of resonant vibrations is a major design consideration for structures
subjected to cyclic loading. This makes damping an important parameter in the study of
dynamic behaviour of structures. Damping is the phenomenon by which mechanical energy is
dissipated in a dynamic system thereby reducing the vibration amplitudes. Hence,
improvement of damping in the structures through various techniques has been attracting
researchers for the past several years. The mechanism of damping is complex and sometimes
difficult to comprehend. There are many ways of energy dissipation in a vibrating system and
often more than one mechanism may be present simultaneously. The energy dissipation in a
vibrating structure is mainly due to the material damping, structural damping and viscous
damping. Among the available techniques, sandwiching viscoelastic layers in the parent
structures is one technique to enhance damping. In this chapter, the published literature in the
area of viscoelastic damping and the research work carried out by various investigators on

finite element models of sandwich structures using viscoelastic layers is presented.



2.2 STATE OF THE ART

From the literature, it is understood that there are two types of damping treatment.

They are unconstrained or free layer treatment and constrained layer treatment.
(A) UNCONSTRAINED LAYER DAMPING TREATMENT

In unconstrained layer damping treatment, the viscoelastic layer is glued to the surface
of base structure as shown in Fig. 2.1. The mechanism of energy dissipation in unconstrained
layer damping treatment is through cyclic extension or compression deformation of the

damping layer during each cycle of flexural vibration of the base structure.

Damping layer Constraining layer
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Base layer Base layer Damping
B - material
— [Extension —~— /
Panel bending due %
to vibration Region of maximum shear

Figure 2.1 Unconstrained layer damping [48] Figure 2.2 Constrained layer damping [48]

(B) CONSTRAINED LAYER DAMPING TREATMENT

In constrained layer damping treatment, a viscoelastic layer is constrained between
base structure and a constraining layer as shown in Figure 2.2. The mechanism of energy
dissipation in a constrained layer damping treatment is through shear deformation in the
viscoelastic layer during each cycle of flexural vibration of the structure. Proper damping
treatment requires the selection of appropriate damping material, location of the treatment and

choice of configuration.

The published literature on sandwich structures is classified into three sub groups. It
consists of modelling of viscoelastic materials, modelling of sandwich beam structures and
modelling of sandwich plate structures with viscoelastic layers. The work carried out in each

group is presented below.



2.2.1 VISCOELASTIC MATERIAL MODELS

The fundamental concepts and methods to characterize viscoelastic materials are
presented by Nashif et al (1985). The detail of test setup and procedures for measurement of
complex modulus of the viscoelastic materials is discussed by the author. When a viscoelastic
sample is subjected to harmonic force, the steady state response around resonance is used to
determine the damping. The complex modulus of the viscoelastic material depends on steady

state harmonic excitation and temperature.

The temperature nomogram presented by Jones (2001) is considered as a standard
temperature nomogram for representing complex modulus data. Using this nomogram,
complex elastic modulus is obtained for a certain frequency and temperature. Nashif et al

have shown such nomogram for various viscoelastic materials in this book.

Classical damping like Maxwell, Kelvin and Zener models available in the literature
are reviewed by Sun and Yu (1995). Fractional derivative model for describing viscoelastic
material behaviour is presented by Bagley and Torvik (1983). The author expressed the

complex modulus of the viscoelastic material in Laplace domain as follows.
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Five parameters E,, E;, a, §, b are used to curve fit the experimental data. This model is good
only in the frequency domain. The drawback in their model is that it is difficult to transform

frequency domain complex modulus into time domain using fractional derivative.

Some of the damping models that are developed by fitting a curve using the
experimental data of viscoelastic materials are, Augmented Thermodynamic Field (ATF),
An-elastic displacement field (ADF) and Golla Hughes & McTavish (GHM) models. These
three models use an additional dissipation coordinate to account for the frequency dependent
complex modulus. The ATF and ADF models are developed by Lesieutre et al (1990, 1995).
These are time domain models representing viscoelastic material behaviour, which also
preserves the characteristics of frequency dependent modulus of the viscoelastic material.
According to Vasques et al (2010), the limitations in using ATF and ADF are that they are
first order damping models and only state space forms can be used to combine with structural

analytical models.



Golla et al (1985) developed GHM model. It is a second order Laplace equation to
represent variation of complex elastic modulus with frequency. Mini oscillators are used to
represent the behaviour of viscoelastic material. The parameters used in the mini oscillators to
curve fit the experimental data are, the storage modulus and the loss factor that vary with
frequency and temperature. Once these parameters are obtained from the curve fit, the GHM
model can be used in the conventional dynamic structural analysis of sandwich structures.
According to Vasques et al (2010), the limitation of GHM model is increase in the size of the
element stiffness matrix due to the additional dissipation coordinate. In their review paper on
viscoelastic damping technologies, Vasques et al (2010) discussed about the constitutive
model including the historical developments of viscoelasticity. According to the authors, it is
difficult to develop a mathematical model considering the effects of frequency, temperature,
amplitude and type of excitation simultaneously. Many researchers have overlooked the
effects of amplitude and type of excitation. For practical considerations, isothermal conditions
are assumed and they focused on developing frequency dependent constitutive models. The
modelling of storage modulus proposed by Fernando Cortes et al (2006) is constant with

frequency and loss factor is the representative peak damping of the material.

Martinez et al (2010) considered two mathematical models for viscoelastic materials
using homogenized and multi layered approaches. The frequency dependent complex shear
modulus is represented as a function of polynomial involving many coefficients. These are
complicated models where many coefficients have to be determined by fitting a curve to the

experimental data and are also difficult to be transformed into time domain.

From the above literature on viscoelastic material models, it is found that most of the
authors used the commercially available data sheets of viscoelastic materials. The viscoelastic
models mentioned in the literature are complex and many parameters are required to fit a
curve for representing the viscoelastic behaviour. The proposed work provides a simple

relation between storage modulus, loss factors and frequency with few parameters.

2.2.2 SANDWICH BEAM STRUCTURES

A sandwich beam comprises of base layer, constrained layer and constraining layer.

The constrained layer is usually a viscoelastic layer. The modelling of sandwich structures is a



challenging task due to frequency dependent properties of viscoelastic materials. A summary
of the analytical models of sandwich beams developed by various investigators is discussed

below.

Kerwin et al (1959) proposed the analysis of the sandwich beam with viscoelastic
layer using a complex modulus approach. The simply support boundary condition is
considered during modelling of sandwich structure. A theory has been developed to calculate
the loss factor of sandwich beam. Also relationship between the shear strains of the damping
layer to the transverse motion of the structure has been presented in this paper. This theory is
accurate only for thin constrained layer sandwich beams and for small loss factors of the

viscoelastic layer.

DiTaranto et al (1965) modified Kerwin et al (1959) model by considering the
extensional deformation of viscoelastic layer. A sixth order linear differential equation of
motion for freely vibrating sandwich beams is developed in terms of longitudinal
displacements. The assumptions introduced by this model are that both the elastic layers
undergo same lateral displacement and only transverse inertia is considered neglecting the
longitudinal inertia. Shear deformation is considered only for the viscoelastic layer and shear
strain is assumed to be constant through the thickness of viscoelastic layer. From this model,
natural frequencies and composite loss factors are obtained for a three layer sandwich beam.
The authors have concluded that for a given thickness of viscoelastic layer, the variation of
composite loss factors with frequency does not change appreciably by changing the thickness
of the elastic layer. The authors have also concluded that the relationship between the modal
loss factors of the sandwich beam and the corresponding modal frequency is independent of

boundary conditions.

Mead and Markus (1969, 1970) modified DiTaranto’s model and developed a sixth
order differential equation considering the transverse motion of a harmonically excited
sandwich beam. Natural frequencies and loss factors are estimated for sandwich beam using

these equations.

Di Taranto (1965) and Mead et al (1969, 1970) used Kerwin’s assumptions, which
account for the complex modulus for the viscoelastic layer. They concluded that the

dissipation of energy is through shear deformation of the viscoelastic layer. The authors have
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examined the developed model for various possible boundary conditions encountered in

practice.

Nakra (1976, 1981 and 1984) and Mead (1982) reviewed the work carried out by

previous investigators and discussed the similarities and differences between various theories.

Douglas and Yang (1978) studied the passive constrained layer damping (PCLD)
treatment for beam structures. Experiments were conducted to obtain the dynamic responses
and compared them with theory. They considered two types of damping mechanisms in a
sandwich beam structure. The first mechanism is due to shear deformation and is called shear
damping. The other type of mechanism is due to relative transverse motion of base and
constraining layer and is called as compression damping in the viscoelastic layer. They
concluded that shear damping is a broad band mechanism useful in most engineering
applications, whereas the compression damping must be considered only within a certain
spectral band. The damping of transverse dynamics of the thin sandwich beam is outside the
spectral influence of compression damping. Therefore, the shear damping mechanism was
mainly considered in thin sandwich structures. The authors also presented the comparison of
experiment results with the model developed by Mead and Markus model (1969). From the
results, it is understood that Mead and Markus model deviates from the experimental results

at higher modes.

Johnson et al (1982) proposed finite element model to predict the characteristics of
constrained layer damped structures. The authors considered solid element (Hexa8) for the
viscoelastic layer and quadrilateral thick shell element with offsets for the base and
constraining layer structure. Nastran software is used for the analysis of constrained layer
damped structure. They derived an expression for the modal loss factor from purely elastic
analysis by suppressing the imaginary part of complex stiffness. The Modal Strain Energy
(MSE) method is used to predict the loss factors. The MSE method overestimates the loss

factors at high modes.

Soni et al (1982) presented isoparametric thin shell elements for the base and
constraining layer and solid element (Hexa8) for the viscoelastic layer. However Mace (1994)
has criticized both Johnson et al and Soni et al work. The author has mentioned that the above

two approaches are complex and costly to use.
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Mace (1994) has modelled the constrained layer sandwich beam structure using finite
element technique. A layer wise displacement field is considered to study the dynamic
behaviour of sandwich beams. The author developed FE model for very thin viscoelastic layer
and five degrees of freedom per node is considered. However, it is found to be less accurate

compared with FE models developed by Jonson et al (1982) and Soni (1982).

Bai et al (1995) proposed a finite element model for harmonically excited viscoelastic
sandwich beam. A three layer sandwich beam is considered in which base and constraining
layer are elastic and isotropic. Non linear longitudinal and transverse displacement fields are
considered for the viscoelastic layer. The author has considered adhesive effect in the FE
model. The stiffness at the interface between viscoelastic layer and base beam and
constraining layer possesses finite value. Due to this, discontinuity in the longitudinal

displacements is observed which is proportional to the shear stress.

Baber et al (1998) extended the FE model presented by Bai and Sun. The adhesive is
considered as stiff layer and neglected during formulation of FE model. Twelve degrees of
freedom per node is considered during FE formulation. Both Bai et al and Baber et al
models found to be complex and computationally expensive. The author’s have neglected

frequency dependent loss factors in their FE model.

Tso-Liang et al (2001) investigated the damping characteristics of the sandwich beam
with viscoelastic layer. The constrained layer damping structures are modelled using Ross-
Kerwin-Ungar (RKU) equations. The effect of various parameters like frequency,
temperature, length and thickness of damped structure on the vibration characteristics are
presented in this paper. The author has not presented experimental work to validate the
theoretical model. DiTanto and Mead et al improved the Kerwin (1959), where as the author

used Kerwin (1959) model without considering these improvements.

Wang et al (2002) proposed a sandwich beam with viscoelastic layer using spectral
finite element method (SFEM). The displacement fields considered in the model are
exponential (higher order polynomials) in nature compared to lower order polynomials in
conventional finite element model (CFEM). GHM method is used to model the viscoelastic
layer which considers the complex storage modulus. To account for the frequency dependent
complex modulus, an internal dissipation coordinate is added which increases the size of the

stiffness matrix and also increase computational time.
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Barbosa and Farage (2008) presented a GHM based finite element model for
sandwich viscoelastic beam. Experiments are carried out to evaluate the GHM parameters.
The model is validated with experiments by comparing frequency domain response curves. To
account for the frequency dependent complex modulus, an internal dissipation coordinate is

added which increases the size of the stiffness matrix and also increase computational time.

Zapfe et al (1999), Trindade (2001), Sainsbury and Zhang (1999) and Galucio
(2004) developed FE models of sandwich beams using viscoelastic layers. The authors have
not considered frequency dependency of loss factors in their model.

Fernando Cortes and Maria Jesus Elejabarrieta (2008) analyzed the dynamic
behaviour of free layer damping beams with a thick viscoelastic layer. The viscoelastic
material is characterized by a fractional derivative model, which takes into consideration the
variation of complex modulus with frequency. The complex modulus is represented in
Laplace domain and it is difficult to transform this into time domain using fractional

derivative.

Kamel A et al (2009) proposed a sandwich finite element for laminated steels. It is
based on discrete displacement approach and allows for both symmetrical and unsymmetrical
configurations. The three layer sandwich beam is modelled considering Timoshenko
hypothesis for viscoelastic layer and Euler-Bernoulli hypothesis for base and constraining
layer. The model accounts for the rotational influence of the transverse shear in the
viscoelastic layer. The results obtained using this model is validated with analytical, finite
element model for various boundary conditions. Frequency dependent loss factors are not

considered in the FE model and they validated the model with previous published literature.

Martinez et al (2011) have carried out dynamic characterization of high damping
viscoelastic material from vibration test data. In this paper, an inverse method is developed to
characterize high damping and strong frequency dependent viscoelastic material. This method
minimizes the difference between the theoretical and experimental transfer functions obtained
by the forced vibration test with resonance at certain discrete frequencies selected by the user.
In this method, the parameters of the material constitutive model are identified and the
properties are determined in the whole bandwidth. In this paper, the constrained layer
damping (CLD) structure is completely characterized. The elastic properties of the metallic

layers and the viscoelastic material properties are identified from the dynamic response.
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Grewalet al (2013) presented sandwich beam structure using finite element method.
Linear and non linear displacement fields are considered for viscoelastic layer. Results
obtained by both the methods are compared with experimental data available in the literature.
The results obtained by linear and non linear finite element models for the natural frequency
and loss factors at the first mode of clamped-free sandwich beam model do not show
considerable difference. However, the results differ at higher modes for clamped-clamped
boundary condition. Non-liner finite element model show lower natural frequencies and
higher loss factors compared to the results obtained from linear finite element model. The
author validated the model with published literature. From the results it is observed that, the

loss factors obtained from his models are over estimated compared to experimental results.

Won et al (2013) proposed a sandwich beam element using virtual work principle.
The virtual strain energy and potential energies of the sandwich beam element are expressed
in terms of the lateral displacements and the transverse shear strain of the viscoelastic layer.
The forced vibration equations of constrained layer sandwich required three pairs of boundary
of conditions. So, the rotation of the mid surface derived from the lateral displacements is
added for the sandwich beam element to have three degrees of freedom per node. The shape
functions are analytically derived using the compatibility relation between the lateral
displacement and the transverse shear strain. The developed beam element is validated with
Nastran-3 D element. This developed sandwich beam is valid only for symmetric structure
and further refinement is required for the forced vibration analysis of asymmetric sandwich

beam structures. The author has validated the developed beam element with experiments.

From the above literature, it is understood that most of the authors did not consider the
variation of loss factors with frequency in their model and not validated with experimental
results. Most of the author validated their model with those of previous investigators. Many
authors have validated their models using the data of viscoelastic material scotchdamp, 3M
(1993) that is readily available in the open literature. It is also found that very few authors
have validated their model with experimental results. Most of the authors consider force

excitation for computing the frequency responses on the sandwich beam structure.
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2.2.3 SANDWICH PLATE STRUCTURES

The analytical models based on FE formulation of sandwich plates developed by various
investigators are presented below.

Ross et al (1959) investigated simply supported plates and assumed a perfect interface
and compatibility of transverse displacement in each layer. The simply support boundary
condition is considered during FE modelling of sandwich plate. A theory has been developed
to calculate the loss factor of sandwich plate. Also relationship between the shear strains of
the damping layer to the transverse motion of the structure has been presented in this paper.
This theory is accurate only for thin constrained layer sandwich plates and for small loss
factors of the viscoelastic layer. The authors have not considered the variation of loss factor
with frequency and used same loss factor in tension and shear.

DiTaranto and McGraw (1969) studied three layer asymmetric sandwich plate
structures. Only transverse inertia effect of the sandwich plate is considered during the
analysis. Simple support at the four edges is considered as boundary condition. The author has
presented relationship between modal frequencies and loss factors similar to one presented for
the sandwich beam results (1965).

Sadasiva Rao et al (1974) studied unsymmetrical sandwich plate with viscoelastic
layer. Previous work in this area is reviewed and it is found that only transverse inertia of the
sandwich plate is considered during analysis of sandwich plate neglecting longitudinal inertia.
In addition to transverse inertia, longitudinal transverse inertia and rotary inertia is also
considered during analysis of sandwich plate. The base plate and constraining layer chosen
for this work are isotropic and elastic and the constrained layer is considered as viscoelastic
layer. The influence on the longitudinal inertia on the response of sandwich plate is presented.
The longitudinal stress of the sandwich plate is considerably affected by the inclusion of these
inertias.

Ioannides et al (1979) presented a Finite element analysis of damped three layer plate
under harmonic excitation. The base and constraining layer are isotropic and viscoelastic layer
is used as constrained layer. Damping has been introduced by replacing the real modulus of
viscoelastic material by a complex modulus. Triangular elements are considered during FE
formulation and the dynamic stiffness for the sandwich plate is computed. The FE results are

validated with experiments.
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Lu et al (1979) presented analysis of damped plate structure for free-free boundary
condition using NASTRAN. Experiments are also carried out in free-free boundary conditions
to validate the FE model. They assumed constant Poisson’s ratio of 0.48 for viscoelastic layer.
The Young’s modulus is derived from the shear modulus using constitutive relationship. The
author has considered same loss factors in tension and shear mode.

Asnani et al (1984) investigated dynamic analysis of multi-layered rectangular plates
with constrained viscoelastic layer. A Multi-layered plate is considered with arbitrary number
of stiff and soft layer. Extension, bending and shear deformation is considered for stiff layers
and only transverse shear deformation is considered for viscoelastic layers. The authors have
presented results for three, five and seven layer sandwich structure. The results show that, the
loss factors increases with increase in number of layers. The longitudinal, transverse and
rotary inertias along with the transverse inertia are considered in the analytical model. Both
symmetric and asymmetric sandwich structures are presented in this paper. Symmetric
sandwich structures provide slightly higher loss factors compared to asymmetric sandwich
structure.

Ganeshan et al (1986) carried out analysis of unconstrained layer plate. The
unconstrained layer plate results are compared with base plate. Different layer thicknesses are
considered and the variation of loss factor with thickness is presented. The author concluded
that loss factors increases with increase in layer thickness.

Ha K.H (1990) has presented an overview of finite element analysis of sandwich
plates till 1990. Finite element models presented by various investigators are analyzed by the
author and classified them into two categories based on the type of finite element used. The
first type of finite element is based on the assumed displacement approach and the second
type is based on the assumed stress hybrid approach. Within each element, the characteristics
vary in terms of the formulation, complexity, accuracy and applicability.

Lee et al (1996) investigated finite element analysis of composite sandwich plate. The
base plate and constraining layer are composite (orthotropic) and viscoelastic layer is used as
constrained layer. The sandwich plate is modelled using Reissner -Mindlin plate theory. The
displacement fields of the viscoelastic layer are linearly interpolated in terms of the
displacement of the base and constraining layer. The authors presented the effect of transverse
normal deformation of the viscoelastic core on the sandwich plate when it is subjected to
static load and free vibrations. From the analytical studies, it is concluded that transverse

normal deformation of the viscoelastic core should not be neglected and natural frequencies
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decreases when the viscoelastic layer is considered to be flexible. The limitation of this model
is that the viscoelastic layer is considered as homogenous and its properties do not vary with
frequency.

Cupial et al (1995) analysed the natural frequencies and loss factors for a rectangular
three layered plate. The base and constraining layers are composite plates and viscoelastic
layer is chosen as the constrained layer. First order shear deformation theory is considered
during modelling of sandwich plate. Results of numerical analysis are presented for simple
supported boundary condition. The results are compared with and without considering shear
deformation of the base and constraining layers. Young’s modulus, shear modulus and loss
factors are considered as constant during numerical simulations.

Wang et al (2003) studied sandwich plate structure using viscoelastic layer as a
constrained layer. The base and constraining layer are elastic and isotropic material where as
viscoelastic layer is used as a constrained layer. GHM method is used to account for the
frequency dependent complex shear modulus of the viscoelastic layer. For the base plate
CFCF boundary condition and for the constraining and constrained layers FFFF boundary
conditions are considered in the model. The numerical results are validated with experiments.
The errors in the loss factors are found to be high.

Hammami et al (2005) presented sandwich plates using viscoelastic layer. The author
has considered quadrilateral plate element with seven degrees of freedom per node during
modelling of the sandwich plate. In this work, main focus is on characterization of modal
damping sandwich plate coefficients and their assessment. The numerical results shows that
eigen modes are not orthogonal to the damping matrix but are only weakly coupled. The
modal damping matrix coefficient vary according to the ratio of the core thickness to the total
thickness of sandwich plate and follow a second order polynomial function of this ratio. The
author has not validated the model with the experimental results.

Torvik and Runyon (2007) investigated the loss factor of rectangular sandwich plates
with CLD treatment for various boundary conditions. A method is developed and validated
predicting loss factors for different boundary conditions for asymmetric sandwich plate. The
method is referred as equivalent lengths. This method is used in predicting the loss factors of
sandwich plate using the loss factors and natural frequencies obtained from RKU analysis of
sandwich beams. Application of this method requires storage modulus, thickness and density
of the base plate, constraining and constrained layer as well as natural frequency of the plate

and boundary condition to which the constrained layer treatment is to be applied. This method
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is validated with finite element method for various boundary conditions. The Young’s
modulus, shear modulus and loss factors are considered as constant and do not vary with the
frequency.

Saeed et al (2012) presented transverse response of sandwich plate with viscoelastic
core under random excitation. Quadratic displacement field is adopted for core to capture
higher modes under random excitation. The Love-Kirchhoff plate theory is considered for
base and constraining layers. GHM is used to model the viscoelastic layer taking care of
complex storage modulus. To account for the frequency dependent complex modulus, an
internal dissipation coordinate is added which increases the size of the stiffness matrix.

Zhicheng et al (2014) investigated vibration and damping characteristics of sandwich
plates with viscoelastic layer. The sandwich plate element is modelled as a four node
rectangular element with seven degrees of freedom at each node. First order shear
deformation theory is used for all the layers. The finite element equations of motion are
derived using the Hamilton principle in variational form. Numerical examples are given to
validate the developed model. The influence of layer thickness, loss factors of the viscoelastic
layer on the natural frequency are presented. The author has not accounted for the frequency
dependent material properties of viscoelastic layer and not validated the model with
experiments.

From the above literature, it is understood that most of the authors did not consider the
variation of loss factors with frequency in their model and not validated with experimental
results. Most of the authors considered forced excitation for computing the frequency
responses on the sandwich plate structure. The exciter dynamics also contributes to the
estimation of the loss factors of sandwich plate structure. This research gap can be filled with
the proposed base excitation method which can accurately predict the loss factors of the

sandwich structures.

2.3 SCOPE OF THE PRESENT RESEARCH

The literature review on modelling of sandwich beam and plate structures with
viscoelastic layers is well reported. However, improving the effectiveness and accuracy of
solutions for those sandwich structures is still an important goal. In the present work, two
viscoelastic materials developed for defence applications have been characterized and used in

the dynamic models of sandwich beam and plate structures. Further, a better dynamic model
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for sandwich beam and plate structures along with a computational scheme to solve the
dynamic equations of motion is presented. This dynamic model considers the frequency
dependent materials properties of the viscoelastic material that is ignored by the previous
investigators. The results with and without considering the viscoelastic material properties

are validated with experimental results.

2.3.1 VISCOELASTIC MATERIALS AND MODELLING

In the present work, two viscoelastic materials have been characterized using Dynamic
Mechanical Analyzer (DMA). The frequency dependent material properties like: Young’s
modulus, shear modulus and loss factors are obtained by testing the viscoelastic samples in
tension and shear mode. The obtained experimental data from DMA is expressed in
mathematical form using power fit. These mathematical expressions are used during the

development of dynamic models of sandwich beam and plate structures.

2.3.2 SANDWICH BEAM STRUCTURES

In the present work, a sandwich finite element is developed considering the frequency
dependent material properties of the viscoelastic material. The model is based on the discrete
displacement approach and curvature effect is taken into account. It is a beam element with
four degrees of freedom per node. The primary field variables are longitudinal displacements
of base and constraining layer and transverse displacement and rotation of sandwich beam.
The element uses linear and cubic polynomial to interpolate longitudinal and transverse
displacements. The rotational influence of the shear in the viscoelastic layer on the base and
constraining layer ensures displacement consistency over the interface between the
viscoelastic layer, base layer and constraining layer. Experiments have been carried out to
validate the developed sandwich beam element to estimate frequency response functions,

natural frequencies, amplifications and loss factors.
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2.3.3 SANDWICH PLATE STRUCTURES

In the present work, a sandwich plate element is developed considering the frequency
dependent storage modulus of viscoelastic material. The primary displacement field variables
in the sandwich plate element are in-plane displacement of base and constraining layer,
rotation of base and constraining layer and transverse displacement of sandwich plate. It is a
quadrilateral plate element with nine degrees of freedom. The model is based on the discrete
displacement approach and also account for the curvature effect. The transverse shear
deformation of viscoelastic layer is obtained from the in-plane displacements and rotations of
the base and constraining layer. The rotational influence of the transversal shear in the
viscoelastic layer on the base plate and constraining layer ensures displacement consistency
over the interface between the viscoelastic layer, base plate and constraining layer.
Experiments have to be carried out to validate the developed sandwich plate element to
estimate frequency response function, natural frequencies, amplification factors and loss

factors.

2.3.4 SIMULATION STUDIES

In the present work, simulation studies are carried out to identify optimal layer
thicknesses for a given sandwich plate thickness to achieve high loss factors. Damping loss
factors are obtained for different thickness proportions under various boundary conditions to

identify these optimal parameters.

2.4 SUMMARY

The published literature on viscoelastic material models and FE model of sandwich
beam and plate structures by various investigators are presented in this chapter. From the
literature it is understood that the frequency dependent material properties like Young’s
modulus, shear modulus, loss factors and Poisson’s ratio of the viscoelastic materials are not
considered during modelling of sandwich structures. Based on this literature, the research

problem is identified and scope of the work is presented.
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CHAPTER 33

VISCOELASTIC MATERIALS AND THEIR
CHARACTERIZATION

3.1 INTRODUCTION

The objective of this chapter is to describe the behaviour of viscoelastic materials and
their characterization through DMA tests. The viscoelastic material plays a significant role in
enhancing the damping of a sandwich structures. Hence, it is necessary to understand their
behaviour in detail. Two viscoelastic materials developed for Defence application are chosen

for this study.

Viscoelasticity is defined as material response that exhibits characteristics of both
viscous fluid and an elastic solid. An elastic material regains its original shape when stretched
and released, whereas viscous fluid retains its deformed shape. Viscoelastic material (VEM)
combines these two properties. It returns to its original shape after being stressed, but does it
slowly enough to oppose the next load cycle. The degree to which a material behaves either
viscously or elastically under cyclic loading depends on temperature and frequency. The
material properties namely Young’s modulus, shear modulus and loss factors of viscoelastic
material are generally represented in complex modulus form. The complex modulus brings in

lot of convenience in understanding the behaviour of viscoelastic materials. The properties of
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viscoelastic material depend significantly on environmental and loading conditions such as

temperature, frequency, pre-load and humidity etc.,

3.2 BEHAVIOUR OF VISCOELASTIC MATERIALS

Viscoelastic material exhibits both elastic and viscous behaviour. The time responses
of stress and strain behaviour under cyclic loading for an ideal elastic and viscous material are
shown in Figures 3.1and 3.2. For an ideal elastic material, dynamic stress o(t) is linearly
proportional to dynamic strain €(t), where the proportionality constant is Young’s modulus

‘E’ related by the standard expression as follows.

a(t) = Ee(t) (3.1

From the stress strain behaviour as shown in Figure 3.1, it can be observed that the
stress and strain for elastic materials are completely in phase. In this process, energy is
completely conserved i.e. during loading the work done by external force is stored in the form
of strain energy and this entire energy is released during unloading cycle. The stress-strain
behaviour of ideal viscous material is shown in Figure 3.2. Under cyclic loading, the strain
lags the stress by a quarter time period indicating that the stress is proportional to rate of
strain. The proportionality constant is the coefficient of viscosity (u,). This is a non
conservative process and the work done by the applied force is dissipated due to phase lag
between stress and strain. The constitutive relation for this ideal viscous material is given as

follows.

a(t) = pye(t) (3.2)
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Figure 3.2 Response under cyclic loading for purely viscous material [22]
The viscoelastic material exhibits both elastic and viscous properties. The variation of

stress and strain under cyclic loading for viscoelastic material is shown in Figure 3.3, where it
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can be observed that strain lags the stress by less than a quarter period unlike ideal viscous
fluid. When this time responses are seen in frequency domain, usually the phase is
represented as an angular quantity(§)expressed in radians. For viscoelastic materials, this
phase angle (&) is between 0 and n/2. Justifying their name, viscoelastic materials exhibit
partly elastic and partly viscous behaviour. During a loading cycle, the energy associated with
elasticity is conserved while the energy associated with viscosity is dissipated. The
viscoelastic materials are characterized by the ratio of the energy dissipated to the total energy
in a cycle. This energy dissipation is vital in vibration control as it deals with dissipation of
energy which is causing vibration. This dissipation is referred as damping in the vibration
terminology. The phase angle (&) is a measure of the material damping. The larger the angle

the greater is the damping.
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Figure 3.3 Response under cyclic loading for viscoelastic material [22]

For viscoelastic material, the stress is proportional to strain and strain rate. The

constitutive relation for the time dependent stress and strain can be expressed as follows.

o(t) = Ee(t) + uye(t) (3.3)
The dynamic stress and strain induced in viscoelastic material under harmonic force can be

expressed as,
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o(t) = gpsin (wt) 3.4
E(t) = &ysin (wt — 6) (3.5)
Where, g, is the stress amplitude, & is the strain amplitude, o is the frequency of excitation
force and o is the phase angle between stress and strain. By manipulating equation 3.4, it

can be written as,

o (t) = gpsin [(wt — §) + 5] (3.6)

By expanding the above equation, it can be expressed as follows.

a(t) = gy[sin(wt — §)cosé + cos(wt — §) sind] (3.7)
Equation 3.5 can be re-written as follows.
E(t 3.8
Sin(wt — 6) = Q (3-8)
€o

By differentiating the above equation with respect to time and suitable manipulation, it can

be expressed as,

1 dE(t) (3.9)
t—29) = —
cos(w ) W&, dt
By substituting equation 3.8 and 3.9 in equation 3.7, it can expressed as follows,
_ 0 oy dE(t) .
o(t) = g—og(t)COS5 + wE, dt sind (3.10)

The term corresponds to ? cosé and :—2 sind in the above equation are replaced with E’
0 0

and E", it can be expressed as follows,

E'=:—°cosc$ - E'=2sins; (3.11)

0 w&
By substituting E’ and E"” of the equation in equation (3.10), it can be expressed as follows,
dE(t) (3.12)

O'(t):EE(t)‘f'E T

Where, E' is known as storage modulus and E£" is known as loss modulus and it depends on
frequency of loading and unloading cycle.
By introducing 7 = tand and manipulating equation (3.11), it can be expressed as

E' tand 1 (3.13)

E o o
By substituting the above equation in equation (3.12), it can be expressed as follows,

. E'ndE(t) (3.14)
O'(t) =F g(t) +j7
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The stress-strain relationship can also be expressed in terms of complex exponential

function. The dynamic stress and strain can be expressed as follows

E(t) = Epexp (jwt) and %(tt) = jw&(t) (3.15)
where, j = V-1

By introducing equation 3.15 in equation 3.12, it can be expressed as follows
o(t) = E'€(0) + 22 jwE () = E'(1 + jmE(®) (3.16)
a(t) ,
——=E"=E(1+jn)
£(®) (3.17)

where E” is the complex Young’s modulus of viscoelastic material.
Similarly, the dynamic stress and strain induced in viscoelastic material under harmonic

shear force can be expressed as

G'nd 3.18
{0) = o) + 20 e

(t) = poexp (jwt) and 2= jwg(t) (3.19)
() = G'(1+ jme(®) (3.20)
0) |

——=G"=G(1+

2@ 1 +jm )

where, G is the complex shear modulus of viscoelastic modulus
Equations (3.17) and (3.21) give the complex modulus relationship for Young’s modulus and
shear modulus respectively. From these equations it is clearly evident that Young’s and shear

modulus also called as storage modulus are dependent on frequency.

3.3 EFFECT OF FREQUENCY

The frequency is one of the important factors affecting the dynamic properties of
viscoelastic materials. Figure 3.4 shows the effect of frequency on storage modulus and loss
factor [22]. Experiments have shown that vibration frequency or the rate of loading has
significant effect on the loss factor and storage modulus of viscoelastic materials. In the
rubbery region, the storage modulus and loss factor increase slowly with frequency. In the

transition region, the storage modulus increases rapidly with frequency, whereas the loss
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factor increases for some portion of frequency and then decreases rapidly with frequency. In
glassy region, the storage modulus increases slowly whereas the loss factors decreases rapidly

with frequency.

Rubbery region Transition region Glassy region

Storage modulus and loss factor

Frequency (Hz)

Figure 3.4 Effect of frequency on storage modulus and loss factor [22]

3.4 EFFECT OF TEMPERATURE

The temperature is also an important environmental factor affecting the dynamic
properties of viscoelastic materials. The typical variation of storage modulus and loss factor
[22] with temperature for a viscoelastic material is shown in Figure 3.5. It has four distinct
regions. The first region is glassy state where the material has very large storage modulus
(dynamic stiffness) but very low loss factor. The storage modulus in this region changes
slowly with temperature, while the loss factor changes significantly with increasing
temperature. In the transition region where the material changes from a glassy state to a
rubbery state, the material modulus decreases rapidly with increasing temperature. Due to

increase in temperature, the viscoelastic material softens and this is the reason for increase in
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loss factor in this region. The loss factor usually peaks around the glass transition region. In
rubbery stage, both modulus and loss factor decreases slowly with temperature. The flow
region is typical for a few damping material such as vitreous enamels and thermoplastics,
where the material continue to soften as temperature increases while the loss factor reach very

high value.

1
.
]
]
.
1
1
1
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Glassy region
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Figure 3.5 Effect of temperature on storage modulus and loss factor [22]

3.5 CHARACTERIZATION OF VISCOELASTIC MATERIALS

Two viscoelastic materials namely EAP-2 and EAP-43 developed for Defence
applications are chosen in the present work and characterized using Dynamic Mechanical
Analyzer (DMA). The properties of these viscoelastic materials namely Young’s modulus,
shear modulus and loss factors are frequency and temperature dependent. These properties are
obtained at discrete frequencies from 10~ Hz to 10° Hz at room temperature. The frequency
dependent data is expressed in a mathematical form using power fit to incorporate into the
dynamic model. The polymers used in EAP-2 and EAP-43 are Nitrile Butadiene Rubber
(NBR) and Polyvinyl Chloride (PVC) blend. The two materials differ in terms of type of filler

used. EAP-2 has titanium dioxide as a pigment and semi reinforced filler, while EAP-43 has
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carbon black as reinforced filler. The sample details of viscoelastic material are discussed in

next section

3.5.1 SAMPLE DETAILS

The viscoelastic samples are prepared as per ASTM D4065 for tension and shear
mode. The size of the sample for tensile mode is 50 mm X 10 mm X 2 mm and the size of the
sample for shear mode is 15 mm X 15 mm X 2 mm. The photograph of samples holders for

tensile and shear mode are shown in Figure 3.6.

Energy
absorbing
polymer

Energy

; absorbing
Fixture - 2 polymer
for 1 :

tensile

Fixture
for
double

shear

(a) Tension (b). Double Shear

Figure 3.6 Photograph of Energy Absorbing Polymer (EAP-2) with fixtures in DMA

3.5.2 DYNAMIC MECHANICAL ANALYZER (DMA)

Dynamic Mechanical Analyzer examines variation in viscoelastic material properties
under thermal and dynamic loading. The DMA tests are carried out as per standard ASTM
D4440-15. The instrument applies a sinusoidal stress and measures the resulting strain. The

applied force is well within the linear viscoelastic range. The material properties of
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viscoelastic materials are evaluated for a frequency range from 102 Hz to 10° Hz at room
temperature. Viscoelastic samples are placed in the holders either in tension mode or shear

mode. The photograph of DMA is shown in Figure. 3.7.

Liquid Thermal

chambery

nitrogen
cylinder

Figure 3.7 Dynamic Mechanical Analyzer (EPLEXOR 150 N)

DMA test allows the estimation of the Young’s modulus (E), loss modulus (E") and
loss factor (tan o) by positioning the viscoelastic sample in tension mode. Similarly, for
estimation of the shear modulus (G, loss modulus (G") and loss factor (tan 8) the viscoelastic
sample is positioned in shear mode. These moduli are defined as the ratio of dynamic stress to
dynamic strain developed in the viscoelastic material. Therefore, by measuring stress, strain
and phase angle during the experiment, complex moduli of viscoelastic materials are

calculated.

3.5.3 RESULTS OF DMA TEST FOR EAP-2 AND EAP-43

The two viscoelastic materials, EAP-2 and EAP-43 are characterized for their
frequency dependent material properties. These materials are tested in tension and shear mode
for discrete frequencies ranging from 102 Hz to 10° Hz at room temperature. The

experimentally obtained material data for EAP-2 along with curve fit are shown in Figures
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3.8-3.11. The comparison of material properties of EAP-2 and EAP-43 with curve fit up to
1000 Hz are shown in Figures 3.12 to 3.15.
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Figure 3.8 Variation of Young’s modulus with frequency (EAP-2)
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Figure 3.9 Variation of shear modulus with frequency (EAP-2)

31



10

[Loss factor

N b, )

+ DMA data

== Curvelit data

Frequency (Hz)

10

4]

10

Figure 3.10 Variation of Loss factor with frequency in tensile mode (EAP-2)

g
2
= DI 3
& ]
Ak
|« DMA data
i—Curve['lt data
U.Ol {' 2 M T ] 2 22 2 a2 : R 3 2222 -1 M :_,
10 10 10 10 10 10 10

Frequency (Hz)

Figure 3.11 Variation of Loss factor with frequency in shear mode (EAP-2)
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Figure 3.13 Variation of shear modulus with frequency for EAP-2 and EAP-43
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The material properties as a function of frequency are mathematically using a power

fit available in MATLAB and are given in the following equations:

E,(f) = ay1f" + ¢y (3.22)
Gy(f) = a;pf"2 + ¢y (3.23)
nL(f) = a;3f°13 + c;5(Tensile mode) (3.24)
n3(f) = a;af?* + ¢4 (Shear mode) (3.25)

where E, and G, are the real part of Young’s modulus and shear modulus of the viscoelastic
material. n5(f) and n3(f) are the loss factors in tension and shear mode of viscoelastic
material.

The complex Young’s modulus and shear modulus are expressed in complex form using

equations (3.22 to 3.25) as follows.
E; = E,(H{1 + jn(H)} (3.26)

Gy = G, ({1 +jn5 ()} (3.27)

where, E; and G, are the complex Young’s modulus and shear modulus of viscoelastic

material.

The constants in the equations 3.22 to 3.25 for EAP-2 and EAP-43 are given in Table 3.1.

Table 3.1 Constants of EAP-43 and EAP-2 obtained from Curve fit of DMA data

Viscoelastic materials
Tension mode Shear mode

Constants EAP-43 EAP-2 Constants EAP-43 EAP-2
ar| 1.6x10° 1.24x 10° ar 0.16x 10° 0.18x 10°
b 0.4330 0.4179 b1z 0.430 0.4069
ci 4x10° 3.00x 10° ci2 0.25x10° 0.278x 10’
ans 0.29 03112 a4 0.2781 0.1977
bis 0.1189 0.124 bis 0.1692 0.2026
Ci3 0.0629 0.0678 Cla 0.08141 0.007035
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3.6 SUMMARY

In this chapter, two viscoelastic materials, EAP-2 and EAP-43 are characterized using
Dynamic Mechanical Analyzer (DMA) for their frequency dependent material properties:
Young’s modulus, Shear Modulus, Poisson’s ratio and loss factors. The sample details, test
setup and procedure for characterising viscoelastic material are explained. The frequency
dependent material properties obtained from experiments at a reference temperature of 25°
Centigrade for both the viscoelastic materials are presented in this chapter. The experimental
data obtained from DMA is expressed in mathematical form using power fit as a continuous
function of frequency in the range 10 Hz to 10° Hz. Through these equations, frequency
dependent material properties of the viscoelastic layers are introduced in the dynamic models

of sandwich structures.
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CHAPTER 4

MODELLING OF SANDWICH STRUCTURES WITH
VISCOELASTIC LAYERS

4.1 INTRODUCTION

In the previous chapter, viscoelastic materials and their characterization have been
discussed. This chapter deals with dynamic modelling of sandwich beam containing beams
and plates with viscoelastic damping layer. In this dynamic model, frequency dependent
Young’s modulus, shear modulus and loss factors of viscoelastic materials are considered. A
curve fit is developed with the experimental data to express elastic moduli and loss factor as a
function of frequency. In the sandwich beams and plate structures, the base and constrained
layers are elastic and the material properties are independent of frequency, whereas the
constrained layer is viscoelastic layers and the material properties are frequency dependent.
Generally, the Young’s modulus and shear modulus of viscoelastic materials are represented
as complex quantities in which the real and imaginary parts denote the elastic modulus and
loss modulus respectively. Hence, the the stiffness matrix is also complex. This chapter deals
with finite element based dynamic modelling of sandwich beam and plate structures with

viscoelastic layers.
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4.2 DYNAMIC MODELLING OF SANDWICH STRUCTURES

The sandwich structure is discretized into finite elements and dynamic equations of
motion of the structure are developed using Lagrangian method. The Lagrangian £ is defined
as

L=T-P @.1)
Where T is the kinetic energy and P is the potential energy of the element.
The equations of motion can be derived using the following Lagrangian
d (61:) oL ow
ot\du;/ Ju; Juy
fori=1,2,3 ----- ,n

(4.2)

where, n is the number of degrees of freedom (DOF), u; is the i generalized displacement,;
is the i"™ generalized velocity and ‘W’ is the work potential.

The above equation can be expressed in vectors form as follows.
0 ( oL > oL  ow

ot\o{u}) o{u} od{u}

where {1} is the generalized velocity vector and {u} is the generalized displacement vector

(4.3)

and ‘W’ is the work potential. In the present case, the kinetic energy is a function of velocity
and potential energy is a function of displacement. The equations are solved for base
excitation. So, work potential is not present in the above equation. Hence, the above equation
can be written as
d (0T apP
o (o) ~ 750 = (44)
These equations are used to derive the dynamic equations of motion for sandwich
beam and plate structures. The elemental equations of motions are obtained by introducing the
expression for potential energy and kinetic energy in the above equation. The work potential
term is not included in the present chapter and it is dealt separately through base excitation in
next chapter. The elemental equations are assembled by imposing the connectivity and
compatibility across the element boundaries. The sandwich beam and plate structures with
viscoelastic layers are generally used either in unconstrained layer or constrained layer
configuration. The detailed process of formulation of these equations of motion for sandwich

beams and plates are presented in the following sections.
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4.2.1 SANDWICH BEAM STRUCTURES

The sandwich beam considered in this study consists of three layers namely base
beam, constrained layer and constraining layer. The base and constraining layers are elastic
materials whereas constrained layer is a viscoelastic material. The viscoelastic layer is
sandwiched between base and constraining layer using an epoxy adhesive. Perfect bonding is
ensured between all the glued surfaces of the sandwich beam. Linear theories of elasticity and
viscoelasticity are used. A finite element based dynamic model is developed for constrained

layer sandwich beam structure considering the shear effect of the viscoelastic layer.

The formulation is based on the following assumptions [24]

i.  The longitudinal displacement of base and constrained layer are independent primary
field variables.

ii.  Neutral axis is computed for the sandwich beam and transverse displacement is
considered about neutral layer and is assumed to be same for all three layers. The
transverse displacement is another primary variable.

iii.  Perfect bonding is assumed among the glued surfaces.

iv.  The longitudinal displacement of the viscoelastic layer can be expressed as a function
of base and constraining layer displacements assuming continuity across the glued
surfaces.

v.  Linear theories of elasticity and viscoelasticity are used.

vi.  The inertia effects in both longitudinal and transverse direction are considered for the
base beam and constraining layer. The inertia effect is considered only in transverse
direction for viscoelastic layer. The rotary inertia effects are neglected for all three
layers.

The configuration of sandwich beam with viscoelastic layer is shown in Figure 4.1.
The un-deformed configuration of sandwich beam is shown in Figure 4.1(a). The lengths of
base beam, constrained and constraining layers are given by L, L, and L. respectively. The
viscoelastic and constrained layers are free at both ends. The thicknesses of the base beam,
viscoelastic layer and constraining layer are t,, t, and t. respectively. The deformed
configuration of sandwich beam is shown in Figure 4.1(b). The section AA’ BB’ of the
deformed configuration is shown in Figure 4.1(c) indicating the displacement and rotations of

individual layers. The nodal displacements of constrained layer sandwich beam are shown in
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Figure 4.2. The longitudinal displacement of base beam (u;) and constraining layer (u3), the

. . ) . . .
transverse displacement (w) and rotatlon(w = %) are considered as primary variables. The

. . aw\.
transverse displacement (w) and rotation (w’ = %)13 assumed to be same for all the three

layers. Linear and cubic polynomials are employed to interpolate longitudinal and transverse

displacement fields respectively.
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Figure 4.1 (a) Cantilever sandwich beam with viscoelastic layer
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Figure 4.1 (b) Deformed configuration of sandwich beam
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Figure 4.1 (c¢) Deformed configuration of section AA'BB'

The shear strain of the viscoelastic layer can be expressed as,
(U3 - ul) + tb + Ztv + tC

' 45
t, 2t, " (4.5)

(A) INTERPOLATION OF DISPLACEMENT FIELDS

The sandwich beam element considered is a two noded element with four degrees of
freedom per node as described in Figure 4.2. The nodal degrees of freedom are the
longitudinal displacement of base beam (u;), longitudinal displacement of the constraining
layer (us), the transverse displacement (w) and rotation (w'). Assuming Euler-Bernoulli beam
theory, the transverse rotation (w’) is the gradient of the transverse displacement (w).

The chosen primary field variables within the element are interpolated in terms of the
corresponding nodal displacements and they are mapped to the sandwich beam element nodal
displacements. Assuming no coupling between longitudinal and transverse displacement, the

field variables are interpolated in terms of corresponding discrete nodal displacements.
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Figure 4.2 Nodal displacements of sandwich beam element

The longitudinal displacement of base beam “u;’ is purely a function of the nodal longitudinal
displacements ‘u;;” and ‘uj;’. Similarly, the longitudinal displacement of constraining layer
‘u3’ is purely a function of the nodal longitudinal displacements ‘u3;” and “us,’. The transverse
displacement ‘w’ is assumed to be same for all the three layers and they are interpolated in
terms of nodal transverse displacements and rotations w;,w;, wy,and w,. The derived
displacements and rotations of the viscoelastic layer are functions of the primary variables of
base and constraining layer. Hence, interpolation functions of all the primary variables are
mapped to the entire nodal displacement vector of the sandwich beam element.
For convenience, the nodal displacements of the sandwich beam are expressed in a column
vector as given below.

{Ue} = [ g1, Uz, Uzq, Uz, Wi, Wi, Wp, W3 ]T (4.6)
Where {U,} is referred as the nodal displacement vector of sandwich beam element
The interpolation functions for the element displacements can be expressed in the polynomial
form as follows.

Uy = ay +axx

Uz = A3 + aux (4.7)

W = as + agx + a;x? + agx3

w' = ag + 2a;x + 3agx?
By replacing the polynomial coefficients {a, as, as,.......... ,ag} with the nodal displacement
variables, the following interpolations can be obtained.

The longitudinal displacement ‘u;’ of base beam can be expressed as,

-6 B
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The chosen primary field variable ‘u;’within the element is interpolated in terms of the
corresponding nodal displacements and they are mapped to the sandwich beam element
nodal displacements as follows.

uy = {NpHU,}" (4.9)
where {Ny,} is the interpolation function for longitudinal displacement of base beam and it
can be expressed as follows.

{Nb}={<1_i> E 00000 o} (4.10)

The strain due to longitudinal displacement of base beam can be expressed as,

€ = {ByHU}" (4.11)
where {B,,} is the row vector relating strain due to longitudinal displacement of base beam
and nodal displacements of sandwich beam element
By differentiating longitudinal displacement of equation (4.9) with respect to time, the
velocity vector (1;) of the base beam can be expressed as,

iy = (Np}{U )" (4.12)
where, 11 is the velocity of the base beam in longitudinal direction and {U,} is the nodal
velocity vector of sandwich beam.

The longitudinal displacement ‘us’ of the constraining layer can be expressed as,

w={0-D) B

The chosen primary field variable ‘u;’within the element is interpolated in terms of the
corresponding nodal displacements and they are mapped to the sandwich beam element
nodal displacements as follows.

us = {NJHU,}" (4.14)
where {N_} is the interpolation function for longitudinal displacement of constraining layer

and it can be expressed as

{NC}={0 0 (1—%) E 0 0 0 o}{ue}T (4.15)

The strain due to longitudinal displacement of the constraining layer can be expressed as,

Ec = {Bc}{Ue}T (4.16)

where {B_} is the row vector relating strain due to longitudinal displacement of the

constraining layer and nodal displacements of sandwich beam.

43



By differentiating longitudinal displacement in equation (4.14) with respect to time, the
velocity vector (113) of the constraining layer can be expressed as,
Uz = {N U} (4.17)

The transverse displacement ‘w’ of sandwich beam can be expressed as,

Wy
- (2x3 —3x2%1, +13) (x31, — 2x%12 + x13) (—2x3 +3x%1,) (lx3 —x212)) | wy
13 13 13 13 W2
0
(4.18)

The chosen primary field variable ‘w’ within the element is interpolated in terms of the
corresponding nodal displacements and rotations and they are mapped to the sandwich
beam element nodal displacements as follows.

W = {N, }{U.}" (4.19)
Where {N,,} is the interpolation function for transverse displacement of sandwich beam
and it can be expressed as:
{Nw}

(2x3 = 3x%, +13) (X3, —2x%12 +x13) (—2x3 +3x%l,) (I.x3 —x?12)
13 13 13 13

={0000

} (4.20)

By differentiating the transverse displacement of equation (4.19) twice with respect to ‘x’,

the beam curvature ‘’ can be obtained as follows
02w
=—_—={B WyT
=gz = B (4.21)
where {B,,} is the row vector relating beam curvature and nodal displacements of sandwich
beam element.
The transverse rotation (w') of the sandwich beam can be derived by differentiating

equation (4.18) with respect to time and can be expressed as,

W1
;o (ex(x—1.) (3x*—4xle +12) 6x(le —x) x(3x—2l)) |w;y
W =
12 12 12 12 W2 (4.22)
w2
The above equation can also be expressed as,
w' = {N,,/ H{U}" (4.23)

Where {N,,} is the interpolation function for transverse rotation of sandwich beam and it

can be expressed as,
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(4.24)

— 2_ 2 _ _
{wa}={0 0 0 0 6x(x—1lg) (3x%—-4xle+13) 6x(le—x) x(3x 216)}

12 13 12 13
From equations (4.5), the shear strain in the constrained layer (y) can be expressed in terms
of nodal displacements as follows:

y = {By}{Ue}" (4.25)
Where {B,} is the row vector relating shear strain of viscoelastic layer and nodal
displacement of sandwich plate and it can be expressed as given below:

(ty, + 2t, +to)
2t,

(B} = (NS — (VD) + ( ) N (4.26)

(B) STRAIN ENERGY OF SANDWICH BEAM

The strains due to longitudinal displacements and transverse displacement of sandwich
beam are assumed to be uncoupled and they are expressed separately. The strain energy of
sandwich beam has contributions from the longitudinal displacement of base and constraining
layer, transverse displacement of the three layers and transverse shear deformation of
viscoelastic layer. These contributions of individual strain energies of the sandwich beam are
derived as below.

The contribution of strain energy due to longitudinal displacement of the base beam (Pb.) can

be expressed as follows:

le

1
Ppe :EAb . {Ep}T Ep {Ep}dx 4.27)

By introducing equation (4.11) for {£,} in the above equation, it can be expressed as,
1 le
Py = EEbAb {Ue}T{Bb}T {Bp}{U.}dx (4.28)
0
The strain energy due to longitudinal displacement of the constraining layer (Pc.) can be

expressed as follows.

1 le
P = EAC . {SC}T Ec{gc}dx (4.29)
By introducing equation (4.16) for {E.}in the above equation, it can be expressed as,
1 le
P, = EECAC . {Ue}T{Bc}T {Bc}{Ue}dx (4.30)

The strain energy due to longitudinal displacement of base beam and constraining layer can

be combined and it can be expressed as follows.
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Pee = Ppe + Fee (4.31)

By substituting equations (4.28) and (4.30) for (P,.) and (P..) in the above equation, it
can be expressed as follows.

le

1 le
P, = E{Ue}T lEbAb {B,}T {Bp}dx + E,A. | {B.}' {Bc}Xm U} (432
0 0

The above equation can also be expressed as follows.

1
Pee ZE{Ue}T[Kee]{Ue} (4.33)
Where, [K..] is the element stiffness matrix due to the longitudinal deformation of base

beam and constraining layer and can be expressed as follows.

le

le
{Bp}T {Bp}dx + EcA. | {B}" {Bc}Xm (4.34)

[Keel = lEbAb
0 0

The strain energy due to transverse displacement of the sandwich beam can be expressed as,

1 fe
P, = E (El)eq . (K)T (k) dx (4.35)

where, (ET)q is the equivalent rigidity of sandwich beam [46].

Where, (k) is the curvature of sandwich beam. By introducing equation (4.21) for k in the

above equation, it can be expressed as follows.

1 le
Py = E (El)eq{Ue}T l . {BW}T {Bw}l {Uc}dx (4.36)
The above equation can also be expressed as follows.
1 T
Pep = E{Ue} [Kep]{Ue} (4.37)

where, [K.5] is the element stiffness matrix of the sandwich beam due to transverse

displacement of the sandwich beam and it can be expressed as follows.

le
[Ken] = (EDeq [ . {B,}" {Bw}l (4.38)

The viscoelastic layer is sandwiched between base beam and constraining layer which
undergoes shear deformation. The shear strain energy for this shear deformation can be

expressed as

1 le
P =5 Go Ay fo yTydx (4.39)
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where, G is the complex shear modulus of viscoelastic material. The shear modulus is
frequency dependent and equation (3.27 of chapter 3) is introduced in the above equation. So,
the above equation is also frequency dependent. An iterative computational scheme is
developed for solving these equations which will be explained in next chapter.

By substituting equation (4.25) for the shear strain of viscoelastic layer, it can be expressed as

_1 T * te T l
P =307 |63, [ &Y (B )ax] w0 (@.40)

The above equation can also written as,
1 .
Po,= E{Ue}T[st]{Ue} (4.41)
where [Kg, ] is the element complex stiffness matrix due to shear deformation of the

viscoelastic layer and can be expressed as,
le
[Kew] = G5 Ay {BV}T {By}dx (4.42)
0

The total strain energy (P,) of the sandwich beam element can be expressed as
P,=P,+ P, + Py (4.43)
By substituting equations (4.33), (4.37) and (4.41) for P,, , P,;, and P, in the above

equation, it can be expressed as follows.
1
P = E{Ue}T[K;]{Ue} (4.44)
where [K,] is the stiffness matrix of sandwich beam element and can be expressed as follows.
[Ke*] = [Kee] + [Keb] + [Ks*v] (4.45)
Due to the complex nature of the shear modulus, the element stiffness matrix [K;] is also

complex in nature. The above element stiffness matrix of the sandwich beam can be

partitioned for convenience as follows;

1= [0 (K] (4:46)
[K72]  [K3,]
[ EbAb G;Avle EbAb G;Avle G;Avle G;Avle
L, 3tz 1, 6t2 - 3¢2  6t2
EbAb G;Avle EbAb G;Avle G;Avle G;Avle
K] = L 6t2 L, 3t2 - 6t2 - 3¢2
H Gy Ayle Gy Ayle EA.  GyAl EA.  GyA,l,
32 6t2 1, 3tz 1, 612
Gy Ayle Gy Ayle EA.  GyA,le EA.  GyAl
6t2 3¢z L e L T3
(4.47)
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( G,A,d G,A,d G,A,d 3 G,A,d]
2t2 12t2 2t2 12t2
G:A,d  GA,d GiA,d  GiA,d
K] = 2t2 12t 2tz 12t2
12 G:A,d G:A,d  GrA,d G:A,d (4.48)
2tz 1262 2t2 122
GiA,d  GrA,d GiA,d  GrA,d
| "2tz 12¢2 2tz 122 |
[ 12(EDoq  6GiA,d2  6(EDy  GiAyd? 12(EDyq  6GyA,d2  6(EDeq  GiA,d?
13 51,t2 12 101,t2 13 51,t2 12 101,t2
6(EDoq GyA,d>  4(ED,, 2G;A,d? 6(EDeq GiAyd>  2(EDy  GA,d?
Kz, = 12 10[,t2 l, 15[,t2 12 10[,t2 l, 301,t2
12(EDoq  6GiA,d2  6(EDy GiAyd?  12(ED,, 6GA,d2  6(ED., GyA,d?
B slL,ez 12 10L,t2 13 51,t2 2 101,t2
6(EDeq  GyA,d? 2(EDeq  GyA,d? 6(EDoq GiA,d>  4(ED,, 2GiA,d?
12 101,t2 l, 3002 12 10l¢? L, 150,t2 |
(4.49)

(C) KINETIC ENERGY OF SANDWICH BEAM

The assumptions made in the formulation of potential energy are considered in the
formulation of kinetic energy also. The longitudinal and transverse motions of the sandwich
beam structure are uncoupled and they are expressed separately. The individual contribution
of kinetic energy associated with longitudinal motion of base beam (T,;) and constraining
layer (T,.) can be expressed as follows:

1

Tep = 5 PpAs (4.50)

le
()" (y)dx
0
By introducing equation (4.12) for velocity of base beam in the above equation, it can be

expressed as,

1 e .
Tep = prAbJO (Ue)T{Nb}T {N,}(U,)dx (4.51)

The kinetic energy associated with longitudinal motion of constraining layer (T,.) can be

written as,

1 e .
Tec = EPCAC (uS)T (uS)dx (4.52)

0

By introducing equation (4.15) for velocity of constraining layer in the above equation, it

can be expressed as,
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1 le . .
Tec = EPCACL {NC}T(Ue)T {NC}(Ue)dX (4.53)

where, p,, py and p.are the densities of base layer, viscoelastic layer and constraining layer
respectively.
The kinetic energy due to longitudinal motion of base beam and constraining layer can be

combined and can be expressed as,

le le

1 . :
Tee = E{Ue}T lpbAb o {Nb}T{Nb} + pcAc o {Nc}T{Nc}] {UE}dx (4.54)

The above equation can also be expressed as
1 . .
Tee:E{Ue}T[Mee]{Ue} (4.55)
where, [M..] is the element mass matrix due to longitudinal motion of base beam and

constraining layer and it can be expressed as

le

(N,)T(N,} dx + poA. f (NJTNS dx (4.56)

le

[Me] = pbAbf

0

The kinetic energy due to transverse motion of the base beam, viscoelastic and constraining

layer can be expressed as

1 le /gw\>
T =3 pheq | (57) d (457)

where, pAeq = ppAp + priy + pcAc
The kinetic energy due to transverse motion of sandwich beam in terms of nodal velocities

can be expressed as

le

1 . )
Tep = E{Ue}T[ [pA]eq . {NW}T{NW}l {Ue}dx (4.58)

The above equation can also be expressed as
1 . .
Tep=>{Ue}" [Mep]{U.} (4.59)

Where, [M,] is the element mass matrix due to transverse motion of base beam and

constraining layer and it can be expressed as follows

le
[Mep] = fO {NW}T{NW}dX (4.60)
The total kinetic energy of sandwich beam can be written as
Te = Tee + Tep (4.61)

using equation (4.49) and (4.52), the above equation can be expressed as

49



1.
Te =5 {Ue} [Mel{Ue} (4.62)

where [M,] is the element mass matrix of sandwich beam and it can be expressed

as
[Me] = [Mee] + [Meb] (4.63)

The above element mass matrix can be partitioned in terms of [m,;] and [m,,]

[M11]  [O4xal
M =[ 4.64
el = 1[04esl ~ [Mz2] oo
Where,

l 2pp4p  PrAp 0 0

el Prlp  2pp4p 0 0
== 4.65
[Mll] 6 0 0 chAc pcAc ( )

0 0 pAc 2pcA.

156 221, 54 -131,

[pAleqle| 221, 412 131, -3, (4.66)

M2 = =250 | 54 131, 156 —220,
131, 31, —221, 4P

By introducing the total potential energy of equation (4.43) and total kinetic energy of
equation (4.61) in Lagrangian equation (4.4), the element dynamic equation of motion can be
obtained as

[M1{U.} + [K:1{U.} = 0 (4.67)
By assembling the elemental equations by ensuring continuity across the element boundaries,
the equations of motion for the sandwich beam can be obtain in the following form

MI{U} + [K*)1{U} =0 (4.68)

The same formulation is used for unconstrained layer sandwich structures by degrading the

material constants of the constraining layer to near zero value.
(D) FE MODEL

The sandwich beam is modelled considering Euler — Bernoulli assumptions for base
and constraining layer and transverse shear for constrained layer to evaluate the dynamic
properties. The sandwich beam is discretized using two noded beam elements, with four

degrees of freedom (DOF) at each node. The FE mesh of sandwich beam is shown in Fig.4.3.
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Figure 4.3 Finite element mesh of sandwich beam

The constrained and constraining layer length is 290 mm compared to base beam length of
300 mm. The sandwich beam is discretized into 30 elements with each element of 10 mm
length. During FE model constraining and constrained layer are modelled up to fixed end. The
material properties of constrained and constraining layer for the first element are degraded to
low value to represent the absence of this layer in the sandwich element. The dotted line in the
above Figure 4.3 indicates these details. i.e. only the base layer is clamped to simulate
cantilever boundary condition. The element mass matrix and complex stiffness matrix are
assembled using standard assembly procedure to ensure continuity and compatibility across
the boundaries. The assembled dynamic equation of motion of sandwich beam is expressed by
equation (4.68). All DOF’s corresponding to clamped edge is constrained to simulate
clamped-free (cantilever) boundary condition. The detailed procedure of solving dynamic
equations of motion is described in chapter 5. The same FE code is used to model the

unconstrained layer by setting the material properties of the constraining layer to zero.

4.2.2 SANDWICH PLATE STRUCTURES

This section deals with the dynamic modelling of sandwich plates. The three layer
plate structure consists of a viscoelastic layer sandwiched between the base plate and
constraining layer with an adhesive. The base and constraining layer are made of elastic and
isotropic material. Perfect bonding is ensured between all the glued surfaces of sandwich
plate. The actual challenge lies in introducing the complex elastic moduli and loss factors of

the viscoelastic layer in the dynamic model.
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Figure 4.4 Sandwich plate
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(a) (b)
Figure 4.5 Deformed configuration of transverse section of sandwich plate [7]
pp. X-Z Plane (b) Y-Z Plane

The sandwich plate under consideration is shown in Figure 4.4. The deformed
configuration of a section of sandwich plate along with the displacements and rotations in
both the transverse planes are shown in Figures 4.5 (a) and (b) respectively. During
formulation, it is assumed that no coupling exist between the longitudinal and transverse
displacement of each layer. The shear deformation is considered for all the three layers. From
Figure 4.5, the transverse displacement (w) is assumed to be same for the sandwich plate. The
longitudinal displacements of the base layer are (1#;and v;) and transverse rotations are (a; and

f1). In a similar way, the field variables of the constraining layer are u; v; azand p;.
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Transverse displacement (w) of the sandwich plate, longitudinal displacements and transverse
rotations of base and constraining layer plate are chosen as the primary field variables. The
longitudinal displacement and transverse rotation of the viscoelastic layer (u,, v,, a; and £)
are related to the primary variables to ensure the continuity of displacement field at the

interfaces between the base plate, constrained (viscoelastic) layer and constraining layer.

The continuity requirement for displacement field at the interfaces between the base

layer, constrained layer and constraining layer leads to the following constraint equations.

u; + %bal =uU; — %’az; (4.69)
U, + %vaz =uz— tz—cag,; (4.70)
U1+%b,31 :Uz_%}ﬁz (4.71)
vy + %vﬁz =U3— t2_6.33 (4.72)

From these equations the longitudinal displacements and rotations of the viscoelastic core are
expressed in terms of the longitudinal displacements and rotations of the base and

constraining layer as given below:

1 1

U =5 (ug +us) + 7 (tpoty — teotz) (4.73)
1 1

vz =3 (vi +v3) + " (tpB1 — tcB3), 4.74)
1 1

oy = o (uz —uy) — e (tpa; + teas) (4.75)
A% A%
1 1

B = — (w3 —v1) —5— (tpf1 + tcf3) (4.76)
t, 2t,

The strains corresponding to the longitudinal loading are expressed as follows

Jduy v, Jdu; 0Jv;

€ =2 & =% =5, Yo 4.77)
Jus dvs dus 0dv,

€% =5 €5 = B Yay = By t 3 (4.78)

The shear strains corresponds to bending of sandwich plate and rotations of base and
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constraining layer are expressed as,

L Ow L 0w

Yxz = a — Uy, Yyz = a_y - Bl! (479)
. Ow . Ow

Yxz = a — Uz, Yyz = a_y - 83 (480)

The curvatures corresponds to bending of base plate and constraining layer can be expressed
as,

da ap da, B
b _ 1 _ 1 b _ 1 1
=2 =1 bo=—24+—1 (48l
= 5 Ky dy Ky dy + 0x (4.81)
Ja 0 da; 0
5=k “9=a£y3' K3y=a—;+% (482)

(A) FINITE ELEMENT DISCRETIZATION

The displacement field of the sandwich plate is discretized by assigning nine degrees
of freedom (DOF) at each node. These are longitudinal displacements and transverse rotations
of base and constraining layer and transverse displacement of the sandwich plate.

In a vector form the nodal displacement vector {U;} can be represented as follows:

{Uj} = [uy,v1,u3,v3, W, ‘1’1’.31;“3'.33]T (4.83)
By combining the displacements of all the four nodes, the element displacement vector of the

sandwich plate element can be obtained and it can be expressed as

{U1}

_ U3}
Wed =1 w3 (4.84)

{U,}

The size of each nodal displacement vector of sandwich plate {U;} is 1 x 9 and the size of

element nodal displacement is 1 x 36.

The interpolation of the longitudinal displacements of base and constraining layer, u;
and v;, transverse displacement w, transverse rotations o; and P; over an element of the

sandwich plate, are approximated with second order polynomials in the natural coordinates

space (§,77)
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Figure 4.6 Quadrilateral sandwich plate element in (a) Cartesian (b) Natural co-ordinates

Figure 4.6 depicts the quadrilateral sandwich element in Cartesian co-ordinate space
and natural co-ordinates space. In the present case a rectangular element is being used.
Isoparametric formulation is employed by choosing same interpolation polynomials for the
geometry as well as field variables. The natural and Cartesian coordinates are related by the

following interpolation functions

(X1

X2

X3

uy [ny ny, ng ng, 0 0 0 07)%x
{v}_ 0 0 0 0 ny n, ng ny }'1> (4.85)

Y2

Y3

\ Y4/

Where (x;,y;) are the Cartesian co-ordinates of node i
1

n=g (1 +&5) +nmy) (4.86)

where i=1, 2, 3 and 4
Where &; and n; are the natural coordinate values at the node I as given in Fig. 4.5(b) and

are also given below for the respective nodes of the element

En) = (1-1), (€n2) = (1,-1), (Gmz) = (1, 1), (Gama) = (-1,1) (4.87)
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The gradients of any field variable ‘¢’ within the element in Cartesian co-ordinate space and

natural co-ordinate space are related through the Jacobian as shown below [47].

(0 0x 0y (0
o | _[of { o
3 b F =lox ay @ (4.88)
\onJ on 0n kay
(0 o
9 ox
< =
oo~ VHae (4.89)
\on/ dy
where the Jacobian [J] can be expressed as
— 4_ a 4 a -
a_x a_y Z &ni,fxi Z a_fni,fyi
U] — aE af —|i=1 i=1
6_x a_y LI LI (4.90)
on On Z %ni,nxi Z %ni,nyi
-1=1 =1 -
Equation (4.88) can also be expressed as
6(1)1 ¢
x| _ o1 ) 96
og (=l 99 (4.91)
ayJ on
Where the inverse of Jacobian matrix can be expressed as,
117 =/ ]
=) 22 12 4.92
Ul JIl=J21  Jua ( )

Where |]|is the determinant of the Jacobian matrix.

For the rectangular element under consideration, the Jacobean reduces to a simplified form as

given below.

1 l
Dt -2 2
=% 2] (494

Where / and b are the length and width of the element in Cartesian coordinate space.
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The relation between the differential areas in Cartesian co-ordinate space to natural co-
ordinate space is given below. The following relation is useful during the integration of
element characteristic matrices.

dA =dx dy = |]|dédy (4.95)

(B) INTERPOLATION

The chosen primary field variables within the element are interpolated in terms of the
corresponding nodal displacements and they are mapped to the sandwich element nodal
displacement. For example, u;, the longitudinal displacement of the base plate is purely a
function of the nodal axial displacement of the base plate in X-direction and has only four
interpolation functions. Similarly every primary field variable is interpolated in terms of
corresponding four nodal variables. The derived displacements and rotations of the
viscoelastic layer are functions of all the primary variables. Hence, interpolation functions of
all the primary variables are mapped to the entire nodal displacement vector of the sandwich
plate element. The detailed formulations of all the interpolation functions are given in
Appendix-'T.

The longitudinal displacement of the base plate in x-direction are interpolated and
expressed as

{us} = [N ]{U}" (4.96)
where [N, ] is the interpolation for longitudinal displacement of base plate in x-direction.
The longitudinal displacement of the base plate in y-direction can be interpolated and
expressed as

{v1} = [N J{U.}" (4.97)
where [N,] is the interpolation for longitudinal displacement of base layer in y-direction.
The longitudinal displacement of the constraining layer in x-direction can be written as

{us} = [N3]J{U}" (4.98)
where, [N3] is the interpolation for longitudinal displacement of constraining layer in x-
direction.
The longitudinal displacement of the constraining layer in y-direction can be written as

{vs} = [N,J{U}" (4.99)
where, [N,] is the interpolation for longitudinal displacement of constraining layer in y-

direction.
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The transverse displacement of all the three layer in z- direction can be written as
{w} = [Ns]{U}"
Where, [Ng] is the interpolation for transverse displacement of all the three layers.

The rotation of the base layer in x-direction can be written as

{a1} = [Ngl{U}"

Where,[N,] is the interpolation for transverse rotation of base layer in x- direction.

The rotation of the base layer in y-direction can be written as
B = [N7]{Ue}T

Where, [N-] is the interpolation for rotation of base layer in y-direction.

The rotation of the constraining layer in x-direction can be written as
as = [Ng]{U.}"

Where, [Ng] is the interpolation for rotation of constraining layer in x-direction.
Bs = [Nol{U.}"

Where, [No] is the interpolation for rotation of constraining layer in y-direction.

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

The strains components and curvatures in different layers are functions of gradients of

displacements in Cartesian space, whereas the displacements within the sandwich plate

element are in natural co-ordinate space. Hence, inverse Jacobian relation mentioned in

equation (4.91) is used to express the strain components as functions of gradient of

displacements in natural co-ordinate space.

The strain vector corresponds to longitudinal displacements of base plate{€;,} can be

expressed as,

(0w )
0x

dav,

{Ebp} =1 By >
ou ov

L_l + 2t
dy  0x/

(4.105)

The gradients of displacement field mentioned in the above equation are in Cartesian co-

ordinate space. To express the above gradients in natural co-ordinates space, the inverse

Jacobean relation expressed in equation (4.90)is used by introducing primary field variables

u; and v; in place of ¢ as given below,
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ouy Ouy
axl 3

ouy (= U177 a4, (4.106)
o) o

Similarly,
v, %
6651 =[] 6051 (4.107)
dy on

For the rectangular element of length / and b, the inverse Jacobian can be expressed as,

L 2/l 0
U =% 2/b]

Introducing appropriate terms of equations (4.106), (4.107) and (4.108) in equation (4.105),

(4.108)

the strain due to longitudinal displacement of base plate can be expressed in natural co-

ordinates as given below.

(2w )
[ 9¢
20v; (4.109)

{Ebp} = 1 ban >

20u, N 20v,
(I on " b o)

Substituting interpolation functions as given in equations (4.96) and (4.97) for u; and v,in

the above equation, it can be expressed as follows.
( 20

7§[N1]{Ue}T
20
_ 290 r 4.110)
{pr} - < b 677 [NZ]{Ue}
2 0 .20 .
LT%[Nl]{Ue} +Ea_€[N2]{Ue} )

Now the strain vector corresponds to longitudinal displacements of the base plate can be

expressed as,
{8bp} = [Bbp]{Ue}T (4.111)
Where, [Bbp] is the coupling matrix between the strain between longitudinal displacement

of the base plate and nodal displacements of the sandwich plate and it can be expressed as :
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( 20[N,] )
1 ¢
20[N,]

b on

20[N;] 20[N,]

\ an b 0¢ )

{Byp} =4 > (4.112)

The strain vector{€.,} due to longitudinal displacements of constraining layer can be

expressed as,

(- Ouz )
d0x
dvg
{Ecp} = 5 By (4.113)
ous | ov,
\dy  0Jx )

As it was considered in the previous case, the gradients of field variables of constraining
layer in the above equation are transformed to the natural co-ordinate space using inverse
Jacobian relationship as given below
( 20u;
Log
2 0vy

b on (4.114)
20u; 20v;

13y b

{gcp} =9

Substituting interpolation functions as given in equations(4.98) and (4.99) for ‘u;’ and

‘v3'inthe above equation, it can be expressed as
( 20

7§[N3]{Ue}T

(€} = 29 Ny
b on (4.115)

20 20
{7& [NB]{Ue}T + Ea_f [N4]{U9}T)

Now the strain vector corresponds to longitudinal displacements of the constraining layer

can be expressed as,
{Ecp} = [Bepl{Ue}" (4.116)

Where, [B is the coupling matrix between strain due to longitudinal displacement of

o]
constraining layer and nodal displacements of sandwich plate and it can be expressed as

given below.
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[Bcp] = 9

2 0[Ns]

2 0[Ns]
1 0¢
20[N,]
b on

20[Ny)

([ an

b

FID

(4.117)

The curvature due to transverse rotations of base plate can be represented as follows

(4.118)

The gradients in the above equation are transformed to the natural co-ordinate space using

inverse Jacobian relationship and can be expressed as given below

( 20,

1 9%

{xpp} =1 208,

(4.119)

Substituting interpolation functions as given in equation (4.101) and (4.102) for @4 and S;in

the above equation, it can be expressed as

"

(4.120)

( 20 \
—Tg[Ns]{Ue}T
20
{Kpp} = 1 “bhon [N, [{U.}"
a T a T
L_T%[NA{UB} _Ea_f[N7]{Ue}J

The curvature due to transverse rotations of base plate can also be written as,

{kpb} = [Bpp]{Uc}"
Where, [Byp]

(4.121)

is the coupling matrix between curvature of base plate and nodal

displacement of sandwich plate and it can be expressed as follows
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[Bpp] = 1

2

T

{

{
{

0[Ne]
on

0

oI — N

[Ne]
98
[N]
on

2

}
}

d[N;]
&

-~

b

!

(4.122)

The curvature due to transverse rotations of constraining layer can be represented as follows

dy  0xJ

(4.123)

The gradients in the above equation are transformed to the natural co-ordinate space using

inverse Jacobian relationship and can be expressed as given below

—KE
_.C
Ky

{ch} =

C
— ny

(

das
9

\

(4.124)

Substituting interpolation functions of equation (4.103) and (4.104) for a3 and f3in the

above equation, it can be expressed as

g

{ch}z<
20
\ [Jdn

(4.125)

20 r 3\
_Ta_E[NS]{Ue}
20
—E%[Nd{Ue}T
20
[N7]{Ue}T - Ea_f [NB]{Ue}TJ

The above curvature {k.,}due to transverse rotation of constraining layer can also be

expressed as,

{Ken} = [Bep[{U,}"

Where, [B.,] is the coupling matrix between curvature of constraining layer and nodal

vectors of sandwich plate and it can be expressed as follows
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( 2 (0[Ng] )
_T{ 0% }
2 (9[No
[kep] = 1 _B{ [an]} - (4.127)
2 (0[Ng]] 2 (0[Ns]
CT{ an }_B{ 0% }J

The transverse shear strain component in vector form of base plate can be expressed as

b —ay + a_W
¥} = {]}:z,z} = { s g_v’f, (4.128)
dy
By replacing the Cartesian gradient with the gradient in natural co-ordinate space, the

above equation can be re-written as,
20w

10
0} = o Vi (4.129)

By substituting interpolation functions of equations (4.100), (4.101) and

(4.102)for a4, B, and w in the above equation, it can be expressed as

20
~INGHULY + 5 INs I
{yby = (4.130)

20
—[N T+ ——[Ns U}
[~ NV + 55 NS U |
The above shear strain component can also be expressed as,

{Vsb} = [Bbs]{Ue}T (4.131)
Where, [B¢] is the coupling matrix due to shear strain of the base plate and nodal vectors

of the sandwich plate and can be expressed as follows

N 2 0[Ns]
B 1= e+ 775 (4.132)
[ bs] - Za[NS]

The transverse shear strain component in vector form for constraining layer can be expressed

as,
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+6W
_a —
-
s = Cc -
Yxz _ ow (4.133)
\ Bz + 3y

By replacing the Cartesian gradient with the gradient in natural co-ordinate space, the

above equation can be re-written as

+26W

e = 31 0¢

’ _p L 20w (4.134)
> bon

—a

By substituting interpolation functions of equations (4.100) ,(4.103) and (4.104) for w, a3

and f3in the above equation, it can be expressed as

20
—[Ngl{Ue}" + =7 [Ns1{U.}"

{rs} = Log

S 29
= [No{Ue)" + 53 [Ns1 (U (4.135)
5} = [Bes U} (4.136)

Where, [Bys] is the coupling matrix between shear strain of the constraining layer and

nodal vectors of the sandwich plate and it can be expressed as follows

2 0[Ns]
—[Ng] + 1 0z

~ 20[Ns (4.137)
[No] + b an

The transverse shear strain matrix of constrained (viscoelastic) layer can be expressed in

terms of base and constraining layer nodal displacements as follows

ow Uz — Uy tpag + teas ow
v = — = — — 4.138
Vaz = @2 0x ( t, ) ( 2t, )] * 0x ( )
aW U3 - Ul tbﬁl + tCﬁ3>:| aW
v o— B + - — + — 4.139
Vyz = B2 ox [( t, > ( 2t, dy ( )
Where, Yy, ¥y, are the transverse shear rotations in xz and yz planes of
viscoelastic layer
v _ (Vxz) _ T
v =1} = [Bulive) (4.140)
Vz
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1

(51 = by (Golel + D/ ) {a[évs]}'
[Bys] =L ' ’ - : (4.141)

| [(CARILA A ((tb [¥7] + e [No]) /Ztv> N {GE')ITV]S]}_

The matrix relating stress —strain due to in-plane loads of base and constraining layer can be

expressed as [47]

1 v 0

Dy, = Epty [vp 1 _0
PIm =)o o (-vww) /s (4.142)

1 v 0

D] = Ect. v 1 _0
T a-w|e o @ DC)/Z (4.143)

The matrix relating stress-strain due to bending loads of base and constraining layer can be

written as
1 Up 0
T 12(1-v3) o o - Db)/2 (4.144)
1 v, 0
D] = Etd [ve 1 0
T 0-vd|o o ATV, (4.145)

The rigidity matrix corresponding to shear strain of base and constraining layer can be

written as
10
[Du] = Goto |, - (4.146)
10
[Des] = Gete [, 4] (4.147)

The rigidity matrix corresponds to shear strain of constrained layer can be written as
[D3s] = Goty [0 1 (4.148)

where G, is the frequency dependent complex shear modulus of the viscoelastic layer
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(C) STRAIN ENERGY OF SANDWICH PLATE ELEMENT

The strain energy of the sandwich plate has contributions due to longitudinal and
transverse displacement of base and constraining layer and transverse shear deformation of
the all three layers. The detailed expressions for the strain energy contributions are given
below

The strain energy due to in plane displacement of base plate [P,,] can be expressed as

follows:
. 11
Popl =5 | [ o) DupltEupidedn 4149
-1-1
substituting equation (4.111) for {€,,} in the above equation, it can be re-written as
1 1 1
[Pop] = 5 (UJT l | Bl mupliuplinidsan| o) w150
-1 -1
The above equation can also be expressed as
1
[Pop] = 5 (e} [Kop ] {Ue} 4.151)

where [Ky,p] is the stiffness matrix due to longitudinal displacement of base plate and it can

be expressed as

11
T
[Kopl = 11 | Bop]" [Dupl 3oy cecn @152
-1-1
The strain energy due to in plane displacement of constraining layer [P,] can be expressed
as follows:
. 11
ol =5 | (€ DepliEcpdildsen @153
-1-1
substituting equation (4.116) for {€,} in the above equation, it can be re-written as
. 11
Pl = 507 | | [ Bl DBy 16| 02 (4.154)
-1-1

The above equation can also be expressed as

1
[Pp] = 5 (U} [Kep](Ue} (4.155)
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where [Kp] is the stiffness matrix due to in-plane displacement of constraining layer and it

can be expressed as

11
T
[Kep) =101 | [ [Bepl" [DeplBepltzan (@.156
-1-1
The strain energy due to in plane shear deformation of base plate [P,s] can be expressed as
[Pys] = f f (Y Dysl ) dédn @157
-1 -1

substituting equation (4.131) for {y?} in the above equation, it can be re-written as

1

1
[Roc] = E{Ue}TI | [ Bl muiBsliniasan| ey (4.158)
Z1

-1

The above equation can also be expressed as

[Pos] = %{Ue}T[Kbs]{Ue} (4.159)

where [Kys] is the stiffness matrix due in plane shear deformation of base layer and it can

be expressed as

[Kus] =01 | [ [Bus]"[Doc] Bosldec (4.160)

-1 -1
The strain energy due to in shear deformation of constraining layer [P.s] can be expressed

as follows:

= f f{)/C}T esI{ys HIldédn (4.161)

-1 -1
substituting equation (4.137) for {ys} in the above equation, it can be re-written as

1

1
[P] = E{Ue}T[ | [ B melBeiasdn| we 4.162)

-1 -1

The above equation can also be expressed as

1
[Pes] = E{Ue}T[Kcs]{Ue} (4.163)

where [Kcs] is the stiffness matrix due to shear deformation of base layer and it can be

expressed as follows:
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1 1

[Kes] = 1]] f f[Bcs]T[Dcs][Bcs]d&dn (4.164)
-1 -1
The strain energy due to bending of base beam [Py}, ]can be expressed as
. 11
Pl =5 | [ G Duslun il dsidn (4.165)
-1 -1
substituting equation (4.121) for {xp,} in the above equation, it can be re-written as
follows:
. 11
Pl = 50| [ | (Buol D1 sl | U (4.166)
-1 -1

The above equation can also be expressed as,

[Pos) = 5 (U [y ]V} w167
where [Kyp] is the stiffness matrix due bending of base layer and it can be expressed as
follows:

1 1
[Kpb] = 1]] f j[Bbb]T[Dbb][Bbb]dﬁdn (4.168)
-1 -1

The strain energy due to in bending of constraining layer [P.,] can be expressed as

1

1 1
Pl =5 [ [t el e (4.169)

-1 -1

substituting equation (4.127) in the above equation, it can be re-written as

1 1
1
[Peb] = E{Ue}T f f [Beb]T[Debl[Bebll]|dédn [ {U} (4.170)
-1-1

The above equation can also be expressed as

[Por] = 5 (UK, (U} (4.171)

where [Kgp,] is stiffness matrix due bending of base layer and it can be expressed as

follows:
1

1
Kep] = 1] f [Beo] T [Dey ] [Bey ) dédn 4.172)
Z14

The strain energy due to shear deformation of viscoelastic layer [Pys] can be expressed as

68



1 1
1
Pl =5 | [0y miosiasan (@.173)

-1 -1

substituting equation (4.141) for {y¢} in the above equation, it can be re-written as

1 1 1
[Pic] = E{Ue}Tl | [ BurmisEaidsan| o) @.174)

-1 -1

The above equation can also be expressed as

1
[Pos] = 5 {USTIKGH{U} (4.175)

where [K{s] is the strain matrix due transverse shear deformation of viscoelastic layer and it

can be expressed as
1

[K2,] = I f f [By,]7[Dts][Bsy ldédn (4.176)

-1 -1
The total strain energy of the sandwich plate can be expressed as
[Pe] = [Pbp] + [Pbb] + [Pbs] + [Pcp] + [Pbc] + [Pcs] + [P\;ks] (4-177)

By combining the individual contributions of strain energy, the total strain energy of the
sandwich plate can be expressed as

1 4.178
P, = S UIIK; U, 179

Where[K;] is the complex element stiffness matrix of sandwich plate and it can be expressed
as

[Ke*] = [ch] + [ch] + [Kcs] + [K;s] + [Kbp] + [Kbb] + [Kbs] (4.179)

(D) KINETIC ENERGY OF SANDWICH PLATE

The total kinetic energy of the sandwich plate has the contributions from in-plane and
bending motion of all the three layers. The effect of rotary inertia of all the three layers is also
taken into account. The contribution of kinetic energy corresponds to bending of all the three

layers can be written as

1
Ty =3 (P0eg | 714 (4.180)

where,(pt)oq = P, by + Pty + pste
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By differentiating equation (4.100) with respect to time and substituting in the above

equation, it can be expressed as,

1

1
1. .
[Tp] == {U)" [(pt)eq | | INsIT[Ns]lJIdEdn |{U,} 4.181
. (4.181)

-1 -1

The above equation can also be expressed as

[T,) = 2 (U M, (0} (4.182)

where [ M, ] is the element mass matrix due to bending of sandwich plate

[My] = (pt)eq) | 1 | NI )z (4.183)

The kinetic energy due to longitudinal motion of base layer [ Ty, ] can be expressed as

1
Topl =35 | putolin)" s} + 0, (514 @184
A

By substituting equation (4.96) and (4.97) in the above equation, it can be expressed as

1 1
1 . .
Topl =5 10" [poty | [N + NI NNl | €03
1 (4.185)
The above equation can also be expressed as
71— 1 0T .
[ bp] - E{ e} [Mbp]{Ue} (4186)
where [Mp,,] is the element mass matrix due to longitudinal motion of base plate
1 1
[Mbp] = pyto f j (IN2T"IN, ] + [N2T'[N, 1) ]l dédn (4.187)
-17-1

The kinetic energy due to longitudinal motion of constraining layer [T¢,] can be expressed

as
1 . T . . T .
Tl =5 [ petellio)T i) + (o) )1 @188
A
By substituting equation (4.98) and (4.99) in the above equation, it can be expressed as
| 11
[Top] = 50" pete | [ANSTTINGT + INITING3 OIS | (0] a.150)
“1-1

The above equation can also be expressed as

1. .
[Tep] = 5 {Ue} Mep){Ue) (4.190)
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where [M, ] is the element mass matrix due to in-plane motion of constraining layer.

Mool = p,tc | 1 | (Nl [Ns] + NN, Dl @.191)

The contribution of kinetic energy due to shear deformation of viscoelastic layer can be

expressed as

Ty == fA poty [l (i} + (5} (0,]dA (4.192)

by substituting interpolations of sandwich plate in the above equation can be written as,

1 1

1 . i
Top =50 oot | [NITIC.INT}IIdEdn | (0] w19
where [N]={[N;] [N,] [N3] [N,] [Ns] [Ne] [N;] [Ng] [Nol}
Equation (4.193) can also be expressed as,
(4.194)

[Topl = {U 3T [Myp](U.)
where, [M,,] is the element mass matrix due to longitudinal vibration of constrained

(viscoelastic) layer.
1 1

[Myp] = p,tul]l j J{ N]}dédn (4.195)

-1 -1

The constant [C,] in the above equation is given in Appendix-‘II’

The contribution of kinetic energy due to rotary inertia of base plate (T},-) can be expressed as

1p,t,°3 ) )
Tbr=§pb12b j [CARCARRTARTAIEY (4.196)
=ty |? ”t” j f (INeI"[Ng] + [N, T[N, T3 lddn | {07} (4.197)

The above matrix can also be expressed as

1 . .
[Thr] = 2 {Ue}T [Mp J{U .} (4.198)
where [My,-] is the element mass matrix due to rotational vibration of base layer and it can

be expressed as

t3 1 1
Myl =222 [ [T+ 017N Dl (4.199)
“14
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The contribution of kinetic energy due to rotary inertia of constraining layer (T,,-) can be

expressed as

1, = 32t || [y + () )] aa 0
-
T = 2 07 (25 [ [N IN + NSNS | (0] (4201
The above matrix can also be expres:edlas
= —{U MU} (4.202)

where [M,, ] is the element mass matrix due to rotational motion of constraining layer and it

can be expressed as
tg 1 1
Pes [ [N + NN 4.203)

-1 -1

[Mcr] =

The contribution of kinetic energy due to rotary inertia of viscoelastic layer (T,,.) can be

expressed as

11 (4.204)
=207 P22 [ [N eddgan| .
-1 -1
The above matrix can also be expressed as
(4.205)

= _{U }T vr {Ue}
where [M,,,] is the element mass matrix due to rotational vibration of constrained layer and

it can be expressed as

M1 =257 f f (INIT[L,]IN]}dgdn 4206

The details of constant [I,] is given in Appendix- ‘II’.

The total kinetic energy of the sandwich plate can be written as

Te =Ty +Tpp + Tep + Top + T + Terr + Ty (4.207)
By introducing equations (4.190), (4.194), (4.198),(4.202) and (4.205) for
Ty, Top s Teps Tups Tors Terand Ty, in the above equation can also be expressed as follows:

1.. .1 . .
T = 5 (0 1) 4:208)
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where[M,] is the element mass matrix for the sandwich plate and it can be expressed as
[Me] = [Mb] + [Mbp] + [Mcp] + [Mvp] + [Mbr] + [Mcr] + [Mvr] (4.209)
The size of the element mass matrix is 36 X 36.

By introducing the total potential energy equation (4.179) and total kinetic energy of equation

(4.210) in equation (4.2), the element equation of motion can be obtained as

[McJ{Ue} + (KU} = 0 (4.210)
By assembling the elemental equations by ensuring continuity across the boundaries, the

equation of motion can be obtain in the following form

[MI{U} + [K*[{U} =0 (4.211)
By suppressing the degrees of freedom and the corresponding coefficients of the constraining

layer, the unconstrained layer can be obtained from the model.

(E) FE FORMULATION OF SANDWICH PLATE STRUCTURE

The sandwich plate is modelled using Reissner —Mindlin plate theory to evaluate the
dynamic properties. The plate is discretized using four noded plate element, with nine degrees
of freedom (DOF) at each node. The constrained and constraining layer length is 240 mm

compared to base plate length of 250mm.
y

51|52 74 | 75

28 | 27 48 | 50

31? 24 | 25
. X

Figure 4.7 FE mesh of sandwich plate
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The sandwich plate is discretized into 25 elements along X-direction and 3 elements along Y-
direction directions as shown in Figure 4.6. The constrained and constraining layers are free at
both edges. So, during FE formulation of sandwich plate, the material properties like Young’s
modulus, shear modulus and density of constrained and constraining layer are degraded to a
low value for the elements 1, 26 and 51 respectively. The element mass matrix and complex
stiffness matrix are assembled using standard assembly procedure to ensure continuity and
compatibility across the element boundaries. The assembled dynamic equation of motion of
sandwich beam is express in equation (4.211). All DOF’s corresponding to clamped edges
are constrained to simulate clamped at one edge and free at other three edge boundary
condition (CFFF). The detailed procedure of solving dynamic equations of motion is
described in chapter 5. Similar procedure is adopted for modelling of unconstrained layer by

degrading the material properties of constraining layer to zero.

4.3 SUMMARY

Finite element based dynamic models are developed for sandwich beam and plate
structures. The sandwich structure is discretized using finite element approximations and
dynamic equations of motion are developed using Lagrangian method. Transverse shear
deformation is considered for viscoelastic as well as base and constraining layers. The
elements of the obtained stiffness matrix are complex and the real and imaginary parts are

represented separately.

The main feature of the developed dynamic model is its capability to incorporate the
frequency dependent properties of the viscoelastic layers. The model is also capable of
handling unconstrained and constrained viscoelastic damping layers. The novel feature of the
model is its suitability for developing an iterative computational scheme to solve the dynamic

equations of motion presented in the next chapter.

74



CHAPTER §

COMPUTATIONAL SCHEME FOR SANDWICH
STRUCTURES WITH VISCOELASTIC LAYERS

5.1 INTRODUCTION

Equations of motion for the sandwich beam and plate structures with viscoelastic
layers have been developed in the previous chapter. As already discussed in chapter 3, the
material constants of viscoelastic layer are complex and frequency dependent. Due to this,
the stiffness matrix in the developed FE based dynamic model consists of frequency
dependent complex elements necessitating a special methodology to solve these equations of
motion. An iterative computational scheme is proposed to solve these equations of motion and
validated with experiment results. Dynamic equations of motion for sandwich structures
developed in the previous chapter are modified for base excitation. The objective of the
computational scheme is to find the loss factors of sandwich structure and evaluate the
performance of viscoelastic materials for dynamic applications over a wide frequency band.
This will help in carrying out simulations to design appropriate sandwich beam and plate

structures.
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5.2 EQUATIONS OF MOTION

The equations of motion developed for sandwich structures in the previous chapter are given

below.

MI{U®} + [KT{U®} =0 (5.1)
Where, [M] is the global mass matrix, [K'] is the global complex stiffness matrix that varies
with excitation frequency. The vectors U(t) and U(t) are the generalized displacement and
acceleration vectors respectively. The material properties of the viscoelastic layer are obtained
using DMA for each discrete frequency and expressed in mathematical form using power-fit.

The details of these equations are given chapter 3 as equations 3.22 to 3.25.

Equation (5.1) is solved for harmonic base excitation and the procedure is described
below. The displacement and accelerations are partitioned into two groups namely the
constrained and unconstrained generalized co-ordinates. The constrained generalized co-
ordinates are those co-ordinates that lie on the base of the structure i.e. clamped to the exciter
where the excitation is given as input. As per the partitioned generalized co-ordinates, the

mass and stiffness matrices in equation 5.1 are also partitioned as given below.

e el [ &)= 62

The displacements in the above equations are partitioned for base excitation as,
(U= {Udx,t) Uu(x,t)} ', where U(x,t) is the set of constrained generalised displacements
and Uy(x,t) is the set of unconstrained generalised displacements. The subscript ‘cc’ and ‘uu’
represent constrained and unconstrained part of global mass and global complex stiffness
matrices. The subscript ‘cu’ represents the coupling terms between constrained and

unconstrained degrees of freedom.

The equation (5.2) can also be written in the expanded form as follows

[MccH{Ue (O} + M J{UL (O} + [Kec]{Ue(6) + [Ka{Uu ()} = 0 (53)
[Muc{Uc(0)} + My {Uu (0} + [Kic U () + [Kp (UL ()} = 0 (5:4)
The set of unconstrained displacements can be decomposed into pseudo-static {Us} and

dynamic parts {Ug4} as
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Uy(x,t) = Ug(x, t) + Uy(x, t) (5.5)
The pseudo-displacements can be obtained by excluding the first term on the left hand side of

the equation (5.4) and by replacing {U,} by {Us}:

{Us(x, )} = —[Kpn ] [Kac{U (e, O} = [kk]{U(x, £)} (5.6)
where, [kk] =—[K., 17 [K;ic] (5.7)
Substituting Eq. (5.6) in Eq. (5.5), it can be expressed as

Wu(x, )} = [kk{U(x, )} + {Ua (x, 1)} (5.8)

By substituting above equation in equation (5.4), it can be re-written as

[Muc]{Uc} + [Muu]{[kk]{Uc} + Ud} + [szc]{Uc} + [Kiu]{[kk] Uc + Ud} =0 (5~9)

The above equation can be further re-arranged as

My {Ua} + [Kiul{Ua} = —{[Myc] + [Myu 3 UEI{UC — (K] + [Ki[kKIHU Y (5.10)
The second terms in the right side of equation (5.10) reduces to zero after substituting

equation (5.7). So equation (5.10) can be expressed as

[Muu]{Ud} + +[K1Iu]{Ud} = _{[Muc] + [Muu]}[kk]{uc} (5-11)
denoting I' = {[M,.] + [M,,1}[kk] , the above equation becomes (5.12)

Adopting modal analysis approach, the response vector, Uq (X, t) can be written as,

{Ua(x,0)} = [Pl{gm (D)} (5.13)
where, [P] is the modal matrix and {qm(t)} is the modal response vector. The modal matrix

can be obtained by solving the eigenvalue problem as,

([Kpw | = My ]o?)p} =0 (5.14)
where {p} is the modal vector
As it is a well-known fact that, the major contribution in the dynamic response is
contributed by first few modes, the equation of motion (5.12) is transformed in to first three
modal co-ordinates. By transforming the equations of motion of Eq. (5.12) in to the modal co-

ordinates using Eqn. (5.13).

[P]T[Muu] [P]{qm(t)} + [P]T[Kuu*][P]{Qm(t)} = [P] [r]{Uc(t)} (5.15)

This equation can be further simplified to
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[Mn{Gm (03 + [Km Ham (0} = [Gnl{Uc (D)} (5.16)
where, [M,,J=[P]"[M,.J[P] is the modal mass matrix, /K, J=/P]'[K.. ][P] is the complex
modal stiffness matrix, and /T,,/=/P]'{ '} is the modal force vector. These equations are
converted to frequency domain to obtain frequency response function (FRF) using state-space

technique.

5.3 STATE SPACE FORMULATION

The equation of motion for the base excitation obtained in the previous section is in
time domain. It is convenient to transform them to frequency domain to obtain Frequency
Response Functions (FRFs). Hence, these equations are transformed using state space
approach. The reduced dynamic model for base excitation of sandwich structure is presented
below.

Considering the state vectors as,
{z1(0)} = {gmi (D)} 5.17(a)
{z,(0)} = {¢mi (O} 5.17(b)

using the state equations, the reduced dynamic model equation of (5.16) can be written as

{2'1 (®)

z, (t)} B [—{[Mm[]o-]f [KE T} —{[Mm[]l-]?fﬁfn]}nxn] {Zl (t)}

[0]1
n®s, .t [

[Fm]nxl] {UC (t)}

2nx1
(5.18)

In this equation, the imaginary part of the stiffness matrix [K,'] consists of loss factors of
base plate, viscoelastic layer and constraining layer which represents the damping in the
system. The loss factors for base and constraining layer are obtained from experiments while
the loss factor of viscoelastic layer which is frequency dependent is obtained from DMA test

and expressed as polynomial equations.

So, the equation (5.18) can be written in simplified form as
{z(O} = [Al{z(O} + [BI{U.(D)} (5.19)

where, [A] is the state matrix and [B] is the input matrix

1Gmi (0} = [Bs1{2(D)} (5.20)
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where [Bs] =[0 1]

substituting the above equation in (5.19)

{im(©)} = Bs([Al{z(D)} + [BI{U.()}) (5.21)

The above equation the modal transfer functions can be written as

[Hin(s)] = [Bs[Alls] — A]7*[B] (5.22)

The overall transfer functions for first three modes at the desired location can be expressed as

[H(s)] {P}i [Hpni(s)]
z (5.23)

Mode summation method is used to calculate the overall response of the beam at the
desired location. The frequency response function (FRF) can be generated from the results of
many discrete frequency calculations of equation (5.23) starting from 20 Hz to 1000 Hz in
discrete steps of 1 Hz. The complex stiffness matrix of viscoelastic layer is updated at each
frequency and the magnitude corresponding to each excitation frequency is stored and FRF is
constructed at a given location. From the stored data of FRF the loss factors of sandwich
structure are calculated for the first three modes. The details of calculating response at each

excitation frequency is shown in Figure 5.1 as flow chart.
5.4 SUMMARY

The dynamic equations of motion are altered for base excitation. The iterative
computational scheme is developed to handle the frequency dependent moduli and loss
factors of the viscoelastic material. The guidelines for extending the scheme to handle generic

boundary conditions and force excitations are also presented.

The iterative scheme presented is a novel approach that helps to predict the dynamic
response of sandwich structures with viscoelastic damping layers, whose properties are
frequency dependent. The response is predicted in frequency domain which can be processed
further to estimate the damping loss factors. This leads to a viable approach to predict the

damping in sandwich structures in place of costly experimental methods.
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FLOW CHART

Geometry and material properties of
sandwich layer plate. Compute element
mass and global mass matrix

v

Start freq
=20 Hz

v

Compute element complex stiffness of
sandwich  structure at excitation
freauencv. 20 Hz

y

Compute global complex stiffness
matrix

v

Eigen values & vectors extraction

!

State space technique to construct FRF
at a desired location

\4

Pick up the amplification factor
corresponding to excitation frequency

If exc.
< No freg>100
f=f+1 OHzz

Figure 5.1 Flow chart
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CHAPTER 6

EXPERIMENTAL STUDIES ON SANDWICH
STRUCTURES

6.1 INTRODUCTION

In the previous chapters, the dynamic modelling of sandwich structure and the
computational scheme to solve the dynamic equation of motion for base excitation has been
discussed. In real working conditions, the experimental evaluation of damping becomes
necessary to validate the developed dynamic model. The objective of the present chapter is to
experimentally determine the natural frequencies, amplification and damping ratios of the
sandwich structures. The details are presented in this chapter. The loss factors are calculated
using FRFs obtained from experiments. Experiments are carried out with base excitation to
eliminate the contribution of armature dynamics of the shaker to the response of the sandwich

structure.

6.2 DESCRIPTION OF EXPERIMENTS

Experiments are carried out extensively on sandwich beam and plate structures with
different viscoelastic materials. The details of instrumentation, clamping arrangement,

preparation of test specimens, test setup and experimental procedure are presented below.
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6.2.1 DETAILS OF INSTRUMENTATION

The instruments used in the experiments are briefly described below

(A) Electro-dynamic shaker

(B) Accelerometers

(C) Low noise microdot cables

(D) Signal output card

(E) LMS SCADAS-III programmable Quad Amplifier, PQA (Input module)
(F) LMS SCADAS-III hardware with LMS Test. Lab software

(A) ELECTRO-DYNAMIC SHAKER
It is an electro-mechanical device which transforms electrical A.C signal into
mechanical vibration. The photograph of electrodynamic shaker is shown in Figure 6.1. The

specifications of electro-dynamic shaker used in the experiments are given below.

i.  Force rating : 20000 N
ii. Frequency range : 5-2000 Hz
iii. Maximum bare table : 100 g
acceleration
iv. Maximum displacement : £25mm ) i
Figure 6.1 Electrodynamic
v.  First armature resonance : 2500 Hz

shaker

(B) ACCELEROMETERS

Miniature uniaxial accelerometers with built in signal conditioners are used during
experiments. Figure 6.2 shows a typical miniature accelerometer. The accelerometer mounted
on clamping plate measures base acceleration and accelerometers mounted at different
locations on the sandwich structure measure the response. The specifications of the

accelerometers are given below.

82



1. Type . ICP®

Accelerometer
ii.  Construction : Delta shear
iii.  Sensitivity : 10mV/g
iv.  Amplitude range : 500g

Figure 6.2 Miniature
V. Frequency range : 1-9000 Hz Accelerometer

Model No.352C41 (PCB make)

(C) LOW NOISE MICRODOT CABLES

The accelerometers with built in signal conditioners operate through a two wire circuit
with signal/power on one lead and other lead being ground. Though, the output signals from
these accelerometers are low impedance, low noise microdot cables as shown in Figure 6.3
are used to minimise the electrical noise. These cables are in tightly wrapped construction to
minimize the triboelectric noise. The triboelectric noise is the charge-generated due to
separation and movement of dielectric and shield in the cables which alters the output signal.
The cable motion is restricted by anchoring at appropriate locations to reduce the electrical

noise.

Figure 6.3 Low noise microdot cable

(D) SIGNAL OUTPUT CARD (QDAC)

The signal output card is also called as Quad Digital to Analog Convertor (QDAC)
card. A built in Digital Signal Processing (DSP) chip in the QDAC supports the generation of
variety of standard excitation signals such as burst random with variable burst length,
impulse, sine and stepped sine signals up to a bandwidth of 40 kHz. The signal output card
(DAC) provides the voltage output to the power amplifier. The associated software ‘Test.lab’

generates a sinusoidal frequency with given amplitude and frequency and send it to the power
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amplifier through signal output card. The photograph of signal output card is shown in Figure

6.4. The specifications of signal output card are

Figure 6.4 Signal output card (DAC)

1. Ultra-low noise and ultra low distortion
il.  24-bit Digital to analog convertor for a dynamic range of 108 dB
iii.  Bandwidth up to 40 kHz
iv.  Output voltage of £10 Volts
v.  Full-colour coded LED indicator
vi.  Uncorrelated baseband noise generation
vii.  Sine and stepped signal with amplitude, phase and sweep control
viii.  Continuous output of previously measured signals
ix.  Slow start/stop

X.  Smooth transition algorithm for transient free amplitude control

(E) LMS SCADAS-III PROGRAMMABLE QUAD AMPLIFIER, PQA (INPUT LMS
MODULE)

SCADAS-III programmable Quad amplifier consists of signal conditioning card and
signal processing card. The signal conditioner module provides the interface between
accelerometer signal and signal processing card. The signal conditioner provides the power
supply to the accelerometers. The module has an ICP cable check circuit to detect an open
loop in the sensor cable. The signal processing module converts analog signals to digital
signals. The photograph of the voltage input differential module is shown in Figure 6.5. The
signal processing board provides real time data acquisition and digital signal processing. The
signal processing provides the connection between one or more stacked signal conditioner
cards. It has four 5-pole anti aliasing filters with equal time delay and four 16-bit delta sigma

analog to digital converter.
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Figure 6.5 Input module (ADC)
The specifications of the voltage/ICP input differential module are

i.  Single ended input ( BNC connector)
ii.  Voltage and ICP modes selectable per channel
iii.  Analog anti-alias and digital re-sampling filter
iv.  24-bit Y- A ADC with up to 204.8 kHz sampling frequency
v.  Alias free bandwidth of 92 kHz
vi.  ICP sensor supply (3.5 milli Ampere)
vii.  Cable check with full colour coded LED indicator
viii.  AC coupling with 0.5 Hz or 7 Hz high pass filters
ix.  Input range up to £10 Volts

(F) LMS SCADAS-III HARDWARE WITH TEST. LAB SOFTWARE

The data acquisition and controller used in the experiments is Leuven Measurement
System [48] manufactured by LMS, Belgium. It consists of four channel general purpose
signal output card (Digital to Analog Convertor, DAC) and 64 channel voltage/ICP input
module (Analog to Digital Convertor, ADC). SCADAS stands for supervisory controller and
data acquisition system. The photograph of LMS SCADAS-III system is shown in Figure
6.6.

Figure 6.6 SCADAS-III: Controller and data acquisition system
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6.2.2 CLAMPING ARRANGEMENT

The schematic of clamping arrangement is shown in Figure 6.7. The sandwich beam
or plate is rigidly clamped at its base in between two clamping plates. The dimensions of each
clamping plate are 200 X100 X 20 mm and they are made of mild steel. This clamping
arrangement will also act as an interface fixture between sandwich structure and vibrating
base of the electrodynamic shaker. The vibrating base of the shaker has a standard pattern of

holes and these patterns of holes are replicated on the clamping plate.

M10 Nut

Figure 6.7 Schematic of clamping arrangement

6.2.3 PREPARATION OF TEST SPECIMEN

The details of test specimens of sandwich beam and plate structures are presented
below. For both beam and plate structures, specimens are made with two viscoelastic

materials in unconstrained and constrained layer configurations.
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(A) SANDWICH BEAM

The dimensions of base beam, unconstrained and constrained layer sandwich beams are

presented in Table 6.1.

Table 6.1 Geometry and Material properties of sandwich beam

Sandwich Length | Width | Thickness | Material Young’s modulus(MPa)
structure (mm) (mm) (mm) Properties Shear Modulus (MPa)
Density(p) Poisson’s ratio (v)
kg/m3
Base Beam L=300 b=30 t%,=6.0 2740 E=71000 v =0.30
G=23300
Constrained | Ls=290 b=30 t,=1.00 1220(EAP-2) E; =E,(N{1+inL ()} =
layer 1260(EAP-43) G = G, (N + i) »
Constraining | L,=290 b=30 t=1.00 2740 E=71000 v =0.30
layer G=23300

* equations 3.22 and 3.27 of chapter 3.

The following beam specimens are prepared for the experimental study.

1. Only Base beam

ii.  Unconstrained layer beam with 1mm thickness of EAP-2
iii.  Constrained layer beam with 1mm thickness of EAP-2
iv.  Unconstrained layer beam with 1 mm thickness of EAP-43

v.  Constrained layer beam with 1 mm thickness of EAP-43

During preparation of these test specimens the following procedure is adopted. The base
beam is cleaned with isopropyl alcohol to remove grease and dust particles. The viscoelastic
layer is bonded on the base beam using an adhesive. The chemical composition of the
adhesive is polysulphide with epoxy adhesive and titanium dioxide as a filler material. After
bonding the viscoelastic layer on the base beam, adequate pressure is applied on the specimen
and it is cured at room temperature for 24 hours. This completes the specimen preparation for
unconstrained layer treatment. In case of specimens with constraining layer treatment, the
same procedure is followed and a constraining layer is bonded on the top of the viscoelastic

layer in the same way.

The schematic diagrams and photograph of base, unconstrained and constrained layer beams

are presented in the following Figures. 6.8 to 6.12.
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Figure 6.8 Schematic setup of base beam with clamping plate arrangement
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Figure 6.9 Schematic test setup of unconstrained layer sandwich beam

Figure 6.10 Photograph of unconstrained layer sandwich beam with EAP-2
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Figure 6.11 Schematic test setup of constrained layer sandwich beam

88



TOP VIEW
Figure 6.12 Photograph of constrained layer sandwich beam
(B) SANDWICH PLATE

The dimensions of base plate, unconstrained and constrained layer sandwich plate are

presented in Table 6.2.

Table 6.2 Geometry and Material properties of sandwich plate

Sandwich | Length | Width | Thickness | Material Young’s Modulus (MPa)
structure (mm) (mm) (mm) Properties , Shear Modulus (MPa)
Density(p)
kg/m3
Base Beam | L=250 | Ly=150 | t=6.00 2740 E=71000 ; G=23300
Constrained | Ly,=240 | L,=150 | t=1.00 | 1220(EAP-2) | E; = E,(H){1 + int(HH}*
layer 1260(EAP- " - "
Y e G =GN+ (D)
Constraining | L,=240 | Ly=150 t=1.00 2740 E=71000 ; G=23300
layer

*The constrained layer material properties are measured experimentally and expressed in
mathematical form using power fit and presented in the respective equations 3.22 to 3.27 of
chapter 3.

For preparation of these specimens, similar procedure as explained for sandwich
beams is adopted. The schematic and photographs of base plate, unconstrained and

constrained layer plates are presented in the Figures 6.13 to 6.18.
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Figure 6.13 Schematic of base plate with clamping arrangement

Figure 6.14 Schematic of unconstrained layer plate with clamping arrangement

Figure 6.15 Schematic setup of constrained layer plate
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Figure 6.16 Photograph of unconstrained layer plate with EAP-2

Figure 6.17 Photograph of unconstrained layer plate with EAP-43
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Figure 6.18 Photograph of constrained layer plate with EAP-43

6.2.4 EXPERIMENTAL SETUP

The schematic test and instrumentation setup of sandwich structure is shown in Fig.
6.19. The sandwich structure is held in between the clamping arrangement and in turn fixed to
the vibrating base of the electrodynamic shaker. An accelerometer mounted on the clamping
plate measures the base acceleration input and accelerometers mounted on the sandwich
structure measures the responses. The accelerometers are selected in such a way that their
total weight is less than one tenth of the sandwich structure [11]. Base excitation is chosen in
the experiments to eliminate the participation of armature dynamics. This precautionary
measure ensures the minimization of the mass loading of armature of the shaker and
accelerometers. The voltage output signal of LMS controller is fed through signal output card
to the power amplifier input and the amplified current output signal is fed to the armature of
the shaker which provides necessary base acceleration to the sandwich structure.

Ten accelerometers are mounted on the sandwich beam and 15 accelerometers are
mounted on the sandwich plate to measure the responses. The accelerometers are located at
appropriate locations to capture the first three modes. The information about the nodes and

antinodes obtained through theoretical modal analysis is used to mount the accelerometers at
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appropriate locations. All the accelerometer outputs are connected to PQA module (voltage

input) of LMS controller and data acquisition system using low noise microdot cables.

Low noise microdot cables
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Figure 6.19 Schematic test and instrumentation setup of sandwich structure

6.2.5 EXPERIMENTAL PROCEDURE

The test specimens are subjected to harmonic acceleration input at the base. Base
harmonic acceleration is given through the clamping device and the vibration responses of the
specimen and the base acceleration input are acquired through the LMS system. The base of
the specimen is subjected to stepped sine excitation for each frequency in the chosen
frequency range. The details are summarized below.

i.  The frequency of excitation starts from 20 Hz.

i1. A sine wave is generated at that frequency (say 20 Hz)in the digital computer and sent
through the signal generation card (DAC).The voltage output of the signal generation
card is fed to the power amplifier using co-axial cable. The amplified current output
signal is fed to the armature of the shaker.

1. After reaching the steady state condition, the responses of the accelerometers from all
channels are acquired by PQA (input module) and processed in SCADAS-III hardware
to obtain magnitude and phase information at that particular excitation frequency.

iv.  Steps (i) to (iii) are repeated for each frequency up to 1000 Hz in steps of 1Hz and the

FRFs are constructed.
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The specimens are tested using sine sweep tests with sufficient dwell time for data
acquisition and processing for a frequency band of 20 to 1000 Hz with an increment of 1 Hz.
The time domain base acceleration input and response at different locations of the sandwich
structure are transformed to frequency domain using Fast Fourier Transform (FFT).
Frequency Response Functions (FRFs) are obtained from the responses of the sandwich
structure to base acceleration input. The peak in the FRF is identified as the amplification
factors and the corresponding frequency is the natural frequency. After identifying the
resonance frequencies, with a fine frequency sweep in steps of 0.01 Hz and corresponding
responses, damping ratios are estimated using half power point. Once the peak response and
resonance are located for the chosen i™ mode, the half power points are determined where the
acceleration amplitude is 0.707 times the peak amplitude and the corresponding frequencies f;
and f, on either side of the resonance frequency are also determined. The damping ratio for

h

the i" mode &y can be estimated using the half-power point method using the following

expression [49].

_ fai-fu (6.1)
==

For structural damping, loss factor is considered as twice the damping ratio at resonance

S;mi

frequency. Hence the loss factor for the i mode, n; can be expressed as

o f2i-fai (6.2)
r’ml f‘l

Using this methodology, the damping ratios and loss factors are estimated for the first three

modes of the test specimen. Further details of calculating damping ratio and loss factor are

presented through a sample calculation in the next section.

(A) BASE BEAM

Base excitation experiments are carried out in cantilever boundary condition. The
photograph of experimental setup for base beam is shown in Fig. 6.20. Stepped sine excitation
is applied at the clamping plate locations and all 10 accelerometer responses on the base beam
are acquired. Frequency response functions are obtained by transforming the input and
response signals from time domain to frequency domain through Fast Fourier Transformation.
A typical FRF obtained at the free end of the base beam is shown in Figure 6.21. The first
three natural frequencies are identified from the FRF plot and they are found to be 51.00 Hz,
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319.00 Hz and 909.10 Hz. The frequency response functions around the resonance
frequencies are expanded by repeating the experiment around resonance with a frequency step
of 0.01 Hz. The expanded frequency response function around the first mode is shown in Fig.

6.22. A sample calculation of loss factor for the first mode is given below.

LMS system
With Test.
Lab soﬁwa;e !

=]

SCADAS-IIL

Low noise
microdot cables

Clamping plate

B

Electrodynamic shaker

150 T T T T
; ; ;
e 100 i
=
=
=
=
=
~
=
—_—
:
< 50 .
00 200 400 600 800 1000

Frequency (Hz)

Figure 6.21 Frequency response function at tip of the base beam (experiment results)
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Figure 6.22 Frequency response function at tip of the base beam around I* mode resonance

The identified peak amplitude is 139.8. The amplitude corresponding to half power points is
99.8. The frequencies corresponding to half power points are 50.85 Hz and 51.65 Hz. The

damping ratios and loss factors are calculated for the first mode using equation (6.1) as

follows

_fofi  51.65-50.85

= 0.0030
$m1 2f,, 2 %51

Loss factor ng= 0.0030*2= 0.0060

Similarly, the loss factors at resonance are obtained for the second and third modes and they

are 0.0065 and 0.0073 respectively.

The FRFs obtained from all the ten accelerometers are used to plot experimental mode shapes.

The first three normalized mode shapes of base beam are shown in Figure 6.23.
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Figure 6.23 Normalized mode shapes of the cantilever beam

(B) UNCONSTRAINED LAYER SANDWICH BEAM

Similar procedure as explained for the base beam is adopted for unconstrained layer beam. A
typical experimental FRF at the free end of unconstrained layer beam with 1mm thick EAP-
43 viscoelastic layer is presented in Figure 6.24. The first three experimental natural
frequencies obtained from FRF are 49.37 Hz, 310 Hz and 871 Hz. It can be observed that the
natural frequencies of the unconstrained viscoelastic layered beam have slightly decreased
due to additional mass and damping contribution of viscoelastic layer. Comparison of
amplification factors is made by considering the respective first, second and third modes of

base beam as reference. The attenuation levels are calculated using the following equation

Xbi

Where x,; 1s the magnitude of i natural mode of unconstrained layer sandwich beam and x;; is
the magnitude of i"™ natural mode of the base beam. By comparing the FRF of unconstrained
layer beam (refer Fig. 6.24) with base beam (refer Figure 6.21), an attenuation in
amplification factors of 9.15 dB, 16.65 dB and 24.42 dB is observed for the first three modes

respectively.

97



60 T T T T
: ' ==Expt

e
=
T

Amplification (g/g)

()
=
T

U{l 200 400 600 800 1000
Frequency (Hz)

Figure 6.24 FRF at free end of the unconstrained layer beam with EAP-43

(C) CONSTRAINED LAYER SANDWICH BEAM

The typical frequency response function obtained at the free end of constrained layer beam is
shown in Figure 6.25. The natural frequencies of the first three modes of constrained layer
beam with EAP-43 are 47.00 Hz, 306 Hz and 850 Hz. It can be observed that the natural
frequencies of the constrained layer sandwich beam have decreased due to the additional mass
of viscoelastic and constraining layers and damping contribution of viscoelastic layer. The
attenuation in amplification factors of unconstrained layer beam with EAP-43 are calculated
using equation 6.3 by considering the respective base beam amplification factor as reference.
The attenuation levels are 13.35 dB, 22.8 dB and 22.52 dB for the first three modes. It is
found that higher attenuation is observed for all configurations. Constrained layer beam

shows higher attenuation compared to unconstrained layer beam for all modes.
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Figure 6.25 FRF at free end of the constrained layer beam with EAP-43

(D) BASE PLATE

Experiments are carried out with base plate fixed at one edge and free at other three edges
(cantilever) boundary condition. The photograph of experimental setup for base plate is
shown in Figure 6.26. The frequency response function at the free end of the base plate is
shown in Figure6.27. The natural frequencies for the first three modes are found as 48.7 Hz,
302.3 Hz and 852 Hz respectively. The loss factors are calculated using half power point
method as explained for beams. The loss factors for the first three modes are 0.0076, 0.0098
and 0.0120 respectively. The first three mode shapes obtained from the measured data during

experiments are shown in Figures 6.28 to 6.30. These mode shapes are plotted using the

responses obtained from fifteen accelerometers.
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Figure 6.27 FRF at free end of the base plate
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Figure 6.29 Second bending mode of base plate (experimental)
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Figure 6.30 Third bending mode of base plate (experimental)

(E) UNCONSTRAINED LAYER SANDWICH PLATE

A typical FRF obtained from the experiment of the unconstrained layer sandwich plate with
EAP-43 is shown in Figure 6.31. The experimental natural frequencies of the first three
modes are measured as 45.89, 277.8 and 795 Hz respectively. It can be observed that the
natural frequencies of the unconstrained viscoelastic layered plate have decreased due to
additional weight and damping contribution of viscoelastic layer. The attenuation in
amplification factors of unconstrained layer pate with EAP-43 are calculated using equation
6.3 by considering the respective base plate amplification factor as reference and they are
5.90, dB 6.89 dB and 12 dB for the first three modes respectively. It is also observed that
higher attenuations are observed for higher modes. Similar behaviour is observed in

unconstrained layer sandwich beam studies.
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Figure 6.31 FRF of the unconstrained layer plate with EAP-43 at free end

(F) CONSTRAINED LAYER SANDWICH PLATE

The typical frequency response functions of the constrained layer plate with EAP-43 are
obtained with similar experiments and are and shown in Fig.6.32. The experimental natural
frequencies of the first three modes are measured as 43.07, 273.8 and 740.16 Hz respectively.
It can be observed that the natural frequencies of the constrained layer sandwich plate have
decreased due to the additional mass of viscoelastic layer and constraining layer plate and
damping contribution of viscoelastic layer. Comparison of amplification factors are made by
considering the respective first, second and third modes of base plate as reference and they are
12.92 dB, 23.45 dB and 21.98 dB for the first three modes respectively. From the FRF plots it
is observed that constrained layer shows higher attenuation compared to unconstrained layer

plate. Similar trend is observed during experiments of constrained layer sandwich beams.
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Figure 6.32 FRF of the constrained layer plate with EAP-43 at free end

6.3 SUMMARY

The detailed description of the instrumentation, sample preparation, test setup and
experimental procedures are presented in this chapter. Experiments are carried out for 8
specimens; four of them are sandwich beams and remaining four are sandwich plates. FRF
results for each case are presented. The dynamic models are validated and with the

experimental results in the next chapter.
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CHAPTER 7

VALIDATION OF THEORETICAL MODEL AND
ANALYSIS OF SANDWICH STRUCTURES

7.1 INTRODUCTION

Finite element based dynamic models are developed in chapter 4. A computational
scheme is developed in chapter 5 to solve the equation of motion for base excitation. The
frequency response functions (FRFs) and loss factors are calculated using the computational
scheme. The modal parameters are also obtained experimentally for uniform sandwich beams
and plates in chapter 6. By comparing the computational and experimental results, the
developed dynamic models are validated and the analysis of the results is carried out to
understand the role of viscoelastic materials in improving damping. In most of the published
literature, results are presented where it is assumed that the material properties of viscoelastic
layer do not vary with excitation frequency. The viscoelastic materials considered in the
present study have frequency dependent properties. Thus, computational studies are also
carried out for sandwich beams and plate structures assuming constant material properties as
given in literature and the results are compared with the present work. The theoretical results
are validated with experiments for unconstrained and constrained configurations of beam and

plates using different viscoelastic materials.
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7.2 DYNAMIC BEAHVIOUR OF SANDWICH BEAMS

The geometric and material properties of the sandwich beam are given in Table 6.1 of
the previous chapter. Two viscoelastic layers, EAP-2 and EAP-43, recently developed are
considered in the present analysis. The material properties of these viscoelastic layers are
presented in chapter 3. Before applying viscoelastic layer treatment on the beam, the loss
factors of base beam are obtained. The attenuation levels using viscoelastic layers are

expressed in decibels with the levels of base beam as a reference.

7.2.1 ANALYSIS OF BASE BEAM

The base beam is made of Aluminum and its dimension is given in Table 6.1. The
Frequency Response Functions (FRFs)at the free end obtained from developed dynamic
model and computational scheme are compared with experimental results of the base beam
and are shown in Figure 7.1 and given in Table 7.1. Both the computational and experimental
FRFs and frequencies are compared with theory and it is found that the errors are less than
3%. The loss factors for the first three modes are calculated from the experimental FRFs
using half power method and they are 0.006, 0.0065 and 0.0073 respectively. These loss
factors of the base beam are used in the FE model of unconstrained and constrained layer
sandwich beam models. The loss factors obtained from the experiment are very low and it is

due to the material damping of the aluminum beam.
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Figure.7.1 Comparison of numerical and experimental FRF at free end of cantilever beam

600

800

1000

Natural Frequency (Hz)
Mode Theory (Hz) FEM' (Hz) | Expt.(Hz) | Loss factor
(Closed form) [49]" (Error) (Error) | (Experiment)
I 52.05 51.96 51.00 0.0060
(0.17%) (2.02%)
II 326.20 324.15 319.00 0.0065
(0.60%) (2.21%)
I 913.39 910.76 909.10 0.0073
(0.3%) (0.53%)

"Dimension of the beam are substituted in the formula for estimating natural frequencies

** Finite element method

7.2.2 ANALYSIS OF UNCONSTRAINED LAYER SANDWICH BEAM

The viscoelastic material is glued on the base beam to form an unconstrained layer
sandwich beam configuration. Two viscoelastic materials namely EAP-2 and EAP-43 are
used to get two different cases of unconstrained layer sandwich beam structures. Frequency

Response Functions (FRFs) obtained at the free end using the dynamic model are compared
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with experimental results for EAP-2 and EAP-43 are shown in Figures 7.2 and 7.3. The
comparison of computational and experimental model frequencies, amplification and loss
factors are presented in Tables 7.2 and 7.3. From the above figures and tables, it is found that
computational results with frequency dependent material properties of viscoelastic layer and
experimental results agree with experiments. By suppressing the variation of material
properties in the dynamic models, computations are also carried and the results do not match
well. Comparison of experimental amplification factors is made by considering the respective
first, second and third modes of base beam as reference. The attenuation levels are calculated

using the following expression.

x .

Xbi
Where x,; is the amplification factor for i™ natural mode of unconstrained layer sandwich
beam and x;;is the amplification factors for i™ natural mode of the base beam.
An attenuation of 9.13 dB, 16.10 dB and 21.80 dB in amplitudes are observed for EAP-2 and
an attenuation of 9.15 dB, 16.65 dB and 24.42 dB are observed for EAP-43 with respect to
base beam for the first three natural modes respectively. The attenuation is observed to be
higher for higher modes. Unconstrained layer beam with EAP-43 provides slightly higher

vibration attenuation compared to EAP-2.
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Figure 7.2 Comparison of FRF at free end of unconstrained layer cantilever sandwich beam
with 1 mm thickness of EAP-2
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Figure 7.3 Comparison of FRF at free end of unconstrained layer cantilever sandwich beam
with 1mm thickness of EAP-43

Table 7.2 Comparison of computational and Experimental results of unconstrained layer
cantilever sandwich beam with Imm thickness of EAP-2

Loss factors

Frequency(Hz) Amplification (g/g)
Comp(l)* Comp(2)* Expt. | Comp(1) | Comp(2) | Expt. | Comp(1) | Comp(2) | Expt.
I 50.57 51.00 49.37 47.39 47.00 |48.43| 0.021 0.019 | 0.020
Ir | 305.00 306.00 |302.00 | 24.50 30.77 | 21.04 | 0.045 0.041 | 0.047
| 869.30 868.90 |865.24 | 8.149 1231 8392 | 0.080 0.072 | 0.083

"Comp (1) computational results considering frequency dependent material properties of viscoelastic
layer. Comp (2) computational results considering constant material properties of viscoelastic layer

Table 7.3 Comparison of computational and Experimental results of unconstrained layer
cantilever sandwich beam with 1mm thickness of EAP-43

Frequency(Hz) Amplification (g/g) Loss factors
Comp(1)" | Comp(2)" | Expt | Comp(1) | Comp(2) | Expt | Comp(1) | Comp(2) | Expt.
I 50.00 50.60 49.00 | 47.39 4720 |46.09 | 0.022 0.020 | 0.023
II | 302.00 304.00 |301.00 | 23.70 30.20 | 19.68 | 0.053 0.046 | 0.055
1| 869.00 862.00 | 836.00 | 8.069 12.31 6.21 | 0.099 0.078 | 0.108

"Comp (1) computational results considering frequency dependent material properties of viscoelastic
layer. Comp (2) computational results considering constant material properties of viscoelastic layer
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7.2.3 ANALYSIS OF CONSTRAINED LAYER SANDWICH BEAM

Two constrained layered sandwich beams are considered in the analysis. The first
beam consists of EAP-2 as viscoelastic layer and the second beam consists of EAP-43.
Frequency Response Functions (FRFs) obtained for the two beams at the free end using the
dynamic model are compared with experimental results and are shown in Figures 7.4 and 7.5.

The comparison of computational and experimental model frequencies, amplification and loss

factors are given in Tables 7.4 and 7.5.

60

S
h
T

Amplification (g/g)

L
!

==Computational (freq. dependent material properties of viscoelastic layer
=== xperimental

s
=
T

==Computational (constant material properties of viscoelastic layer)

200 400 600 800 1000
Frequency (Hz)
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Table.7.4 Comparison of computational and Experimental results of constrained layer
cantilever sandwich beam with 1mm thickness of EAP-2

Loss factors

Frequency(Hz) Amplification (g/g)
Comp(1)" | Comp(2)' | Expt | Comp(1) | Comp(2) | Expt | Comp(1) | Comp(2) | Expt.
I 48.52 49.50 47.37 40.22 4413 3992 | 0.025 0.023 | 0.026
Ir | 307.07 305.00 |308.90| 11.69 15.01 | 12.66 | 0.073 0.070 | 0.075
1| 851.01 849.50 | 847.00 | 7.008 9.193 6.36 0.151 0.013 | 0.158

viscoelastic layer. Comp (2) computational results considering constant material properties of

viscoelastic layer

*Comp (1) computational results considering frequency dependent material properties of

Table.7.5 Comparison of computational and Experimental results of constrained layer
cantilever sandwich beam of Imm thickness of EAP-43

Frequency(Hz) Amplification (g/g) Loss factors
Comp(l)* Comp(Z)* Expt | Comp(1) | Comp(2) | Expt | Comp(1) | Comp(2) | Expt.
I 48.11 49.00 47.00 30.56 32.12 | 30.05| 0.033 0.025 | 0.034
II | 307.00 302.40 |306.00 | 9.047 14.04 |10.17 | 0.093 0.073 | 0.096
I | 857.00 842.00 | 850.00 | 5.707 8.859 |5.472] 0.151 0.182 | 0.191
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From the above figures and tables, it is found that computational results with
frequency dependent material properties of viscoelastic layer and experimental results agree
with experiments. By suppressing the variation of material properties in the dynamic models,
computations are also carried and the results do not match well. Comparison of amplification
factors is made by considering the respective first, second and third modes of base beam as
reference. Equation 7.1 is used to calculate the vibration attenuation of constrained layer
sandwich beam. An attenuation of 10.89 dB, 20.48 dB and 24.42 dB in amplitudes are
observed for EAP-2 with respect to base beam for the first three natural modes respectively.
Similarly, an attenuation of 13.35 dB, 22.38 dB and 25.52 dB in amplitudes are observed for
EAP-43 with respect to base beam for the first three natural modes respectively. From these
figures and tables, it can be concluded that constrained layer sandwich beam with EAP-43

provides higher vibration attenuation compared to EAP-2.

The above comparative study of unconstrained layer and constrained layer sandwich
beam results validates the developed dynamic model. The overall comparison of frequencies,
amplification factors and vibration attenuation levels for base beam, unconstrained and
constrained layer beam for EAP-2 and EAP-43 obtained from experiments are presented in
Table 7.6.

Table 7.6 Comparison of amplification factors for EAP-2 and EAP-43 of cantilever sandwich
beam (Experiment results)

Amplification, g/g (dB)

mode First | Second | Third | First | Second | Third
Base beam Freq (Hz) | 51.96 | 324.15 | 910.76 | 51.96 | 324.15 | 910.76
(Base beam is Amp.(g/g) | 139.80 | 133.80 | 103.30 | 139.80 | 133.80 | 103.30
considered as reference) dB 0 0 0 0 0 0
EAP-2 EAP-43

unconstrained layer Freq (Hz) | 49.37 | 302.00 | 865.40 | 49.00 | 302.00 | 836.00

sandwich beam Amp.(g/g) | 48.86 | 21.04 | 8.40 | 48.75 | 19.68 | 6.21

(t,/t=0.16) dB 9.13 | -16.10 | -21.80 | -9.15 | -16.65 | 24.42

Constrained layer Freq (Hz) | 47.37 | 308.90 | 847.00 | 47.00 | 306.00 | 850.00

sandwich beam Amp.(g/g) | 39.92 | 12.66 | 636 | 30.05 | 10.17 | 5.472

(t/t=0.16) & (t/t=0.16) dB 11 | -2048 | -24.40 | -13.35 | -22.38 | -25.52
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Based on these comparative results, it can be concluded that EAP-2 and EAP-43 provide
higher attenuation at higher modes. The constrained layer sandwich structure provides higher
attenuation compared to unconstrained layer sandwich structure. EAP-43 provides slightly

higher attenuation in vibration levels compared to EAP-2.

7.3 DYNAMIC BEHAVIOUR OF SANDWICH PLATE

The results obtained from the dynamic model of sandwich plate are compared with
experiments. The geometry and material properties of the sandwich plate are given in Table
6.2 of the previous chapter. Two viscoelastic materials, EAP-2 and EAP-43 are considered
both in unconstrained and constrained configurations. The loss factors of the base plate made
of aluminum are estimated from experimental results. The loss factors of the base plate are
used in the computational model of the sandwich plate. These loss factors are considered as a

reference for comparison of loss factors of sandwich plates of different configurations.

7.3.1 ANALYSIS OF BASE PLATE

The experimentally obtained FRF at the free end of the base plate is compared with
analytical results and presented in Figure 7.6.

80 T T .

==Computational
=== xperimental
60 B R R o i s R T e s B R L e R i -
‘% a
=
S
*?_)' 40 b I T e i G g s R R e e -
20 b s i e s o T s e e e B e e i O v e i v -
0 *-..IIIIII.q.I"“ EI.- 1 “"..’“
0 200 400 600 800 1000

Frequency (Hz)
Figure7.6 Comparison of FRF of base plate at one of the free ends
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The analytical and experimental natural frequencies, amplification factors and modal loss
factors are tabulated in Table 7.7. It can be observed that the experimental and theoretical
results are in good agreement. The damping present in the base plate is mainly due to the

material damping.

Table 7.7 Comparison of Computational and experimental frequencies of base plate

Natural Frequency (Hz) | Amplification (g/g)
Mode Comp. Expt. Comp. Expt | Loss factor
(experiment)
I 47.7 48.7 63.4 63.7 0.007
I 301.3 302.3 54.5 56.6 0.010
I 847.4 852.3 25.1 21.1 0.012

7.3.2 ANALYSIS OF UNCONSTRAINED LAYER SANDWICH PLATE

The viscoelastic material is glued on the base plate to form an unconstrained layer
sandwich plate configuration. Two viscoelastic materials namely EAP-2 and EAP-43 are used
to get two different cases of unconstrained layer sandwich plate structures. Frequency
Response Functions (FRFs) obtained at the free end using the dynamic model are compared
with experimental results for EAP-2 and EAP-43 as shown in Figures 7.6 and 7.7. The
comparison of computational and experimental model frequencies, amplification and loss
factors are presented in Tables 7.6 and 7.7. From the above figures and tables, it is found that
computational results with frequency dependent material properties of viscoelastic layer agree
with experiment results. By suppressing the variation of material properties in the dynamic
models, computations are also carried and the results do not match well. It can also be
observed from the tabulated data that higher attenuation levels are observed for higher modes.
It can also be observed that EAP-43 provides higher loss factors and high attenuation
compared to EAP-2.
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Table 7.8 Comparison of computational and Experimental results of unconstrained layer
cantilever sandwich plate with Imm thickness of EAP-2

Frequency(Hz) Amplification (g/g) Loss factors
Comp(1)" | Comp(2)" | Expt | Comp(1) | Comp(2) | Expt | Comp(1) | Comp(2) | Expt.
I 46.40 44.80 4580 | 35.32 36.85 |33.26| 0.014 0.013 | 0.015
II | 289.80 285.20 |282.00 | 33.04 3544 | 31.13 | 0.015 0.013 | 0.016
11| 804.90 790.40 | 800.00 7.12 10.20 | 5.550 | 0.065 0.058 | 0.071

"Comp (1) computational results considering frequency dependent material properties of viscoelastic
layer. Comp (2) computational results considering constant material properties of viscoelastic layer

Table 7.9 Comparison of computational and Experimental results of unconstrained layer
cantilever sandwich plate with 1mm thickness of EAP-43

Frequency(Hz) Amplification (g/g) Loss factors
Comp(1)" | Comp(2)" | Expt. | Comp(1) | Comp(2) | Expt. | Comp(1) | Comp(2) | Expt.
I 45.10 44.10 45.89 32.57 3481 |3231| 0.017 0.016 |0.018
Ir | 281.80 277.10 |277.80| 27.09 30.21 |25.35| 0.020 0.018 | 0.021
I | 781.40 768.12 | 795.00 | 6.002 10.18 5.30 0.074 0.070 | 0.076

"Comp (1) computational results considering frequency dependent material properties of viscoelastic
layer. Comp (2) computational results considering constant material properties of viscoelastic layer

7.3.3 ANALYSIS OF CONSTRAINED LAYER SANDWICH PLATE

The viscoelastic layer is sandwiched between aluminum base plate and constraining
layer using epoxy adhesive to form a constrained layer plate structure. Two different
viscoelastic layers namely EAP-2 and EAP-43 are used to obtain two different constrained
layered plates for the purpose of validation and analysis. The FRFs, modal frequencies,
amplification factors and modal loss factors are calculated using dynamic model and
compared with experiments. The FRFs obtained at a free end of the plate by both methods is
compared for validating the analytical model. The FRFs for the plate with EAP-2 and EAP-43
are shown in Figures 7.9 and 7.10. The corresponding data is tabulated in Table 7.9 and 7.10.
From these figures and tabulated data, it is observed that the results of the theoretical model
agree with the experiments. The table shows high attenuation levels for higher modes. The

loss factors with EAP-43 sandwich plate are higher than loss factors of EAP-2 sandwich
plate.
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Table 7.10 Comparison of computational and experimental results of constrained layer
cantilever sandwich plate with 1mm thickness for EAP-2

Frequency(Hz) Amplification (g/g) Loss factors

Comp(1)" | Comp(2)" | Expt | Comp(1) | Comp(2) | Expt | Comp(1) | Comp(2) | Expt.

I 44.50 45.40 44.20 16.20 17.40 | 15.70 | 0.042 0.040 | 0.044

Ir | 282.90 260.90 |282.00| 4.80 5.69 4.40 | 0.071 0.068 |0.074

I | 786.70 737.40 | 777.20 | 2.20 2.82 1.80 | 0.095 0.083 |0.101

"Comp (1) computational results considering frequency dependent material properties of viscoelastic
layer. Comp (2) computational results considering constant material properties of viscoelastic layer

Table 7.11 Comparison of computational and experimental results of constrained layer
cantilever sandwich plate with 1mm thickness for EAP-43

Frequency(Hz) Amplification (g/g) Loss factors

Comp(1)" | Comp(2)’ | Expt. | Comp(1) | Comp(2) | Expt. | Comp(1) | Comp(2) | Expt.

I 43.60 45.00 43.07 14.60 1475 | 14.40 | 0.051 0.050 | 0.052

Ir| 267.20 25890 |273.80 | 4.20 5.613 | 3.80 | 0.080 0.076 | 0.083

I | 759.00 728.80 | 740.16 | 2.10 2.82 1.70 | 0.120 0.105 |0.130

The overall comparison of amplification factors for bare plate, unconstrained and constrained

layer plate for EAP-2 and EAP-43 are presented in Table 7.12.

Table 7.12 Comparison of Amplification factors for cantilever sandwich plate

(Experimental results)

Amplification, g/g (dB),

Mode First | Second | Third | First | Second | Third
Base plate, Freq (Hz) | 48.70 | 302.30 | 852.30 | 48.70 | 302.30 | 852.30

(Base plate is considered |"x1 670y 176370 | 56.60 | 21.10 | 63.70 | 56.60 | 21.10

as reference)
dB 0 0 0 0 0 0
EAP-2 EAP-43

unconstrained layer Freq (Hz) | 45.80 | 282.00 | 800.00 | 45.89 | 277.80 | 795.00

sandwich plate Amp.(g/g) | 33.26 | 31.13 | 555 | 32.31 | 2535 | 5.30
(t/t=0.16) dB -5.66 | -5.14 | -11.37 | -5.90 | -6.89 | -12.00
Constrained layer Freq (Hz) | 44.20 | 282.00 | 777.20 | 43.07 | 273.80 | 740.16

sandwich plate Amp.(g/g) | 15.70 | 440 | 1.80 | 1440 | 3.80 | 1.70
(t/t=0.16) & (t/t=0.16) dB 1217 | 22.17 | 2138 | -12.92 | -23.45 | -21.90
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The above comparative study of unconstrained layer plate and constrained layer plate
results obtained from the computation and experimental methods validates the developed
dynamic model of sandwich plate and computational scheme. Based on these comparative
studies, one can conclude that EAP-2 and EAP-43 shows higher attenuation at higher modes.
The constrained layer sandwich structure shows higher attenuation compared to unconstrained
layer. EAP-43 shows higher attenuation in vibration levels compared to EAP-2. The
observations for sandwich plate structures are in line with the observations of the sandwich
beam structures. By suppressing the variation of material properties in the dynamic models,

computations are also carried and the results do not match well.

7.4 SUMMARY

The developed dynamic model for sandwich beam and plate structures and
computational scheme are validated with several experimental results. The developed
dynamic model and computational results with and without considering frequency dependent
material properties of viscoelastic layer are also presented for eight configurations. From the
computational results, it is concluded that the dynamic model considering frequency
dependent material properties of viscoelastic layers are in close agreement with experimental
results compared to dynamic model considering constant material properties of viscoelastic
layer. The constrained viscoelastic layered structures provide higher damping when compared
with unconstrained viscoelastic layered structures. Both the viscoelastic materials provide
higher damping at higher modes. EAP-43 provides slightly higher damping compared to
EAP-2.
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CHAPTER 8

SIMULATION STUDIES ON SANDWICH PLATE
STRUCTURES

8.1 INTRODUCTION

In the previous chapter, the developed dynamic models of sandwich beam and plate
structures are validated with experiments. From the results it it understood that, sandwich
structures with EAP-43 provides high attenuation than EAP-2. Further simulation studies are
carried out on sandwich plate structures with EAP-3 using the validated dynamic model for
different boundary conditions to identify optimal design parameters for high loss factors as a

function of different layer thicknesses.

8.2 SIMULATION STUDIES ON SANDWICH PLATES

Simulations are carried out on constrained layer sandwich plate structure to determine
the optimum layer thickness for various combinations of base plate (ty), constraining layer (t.)
and viscoelastic layer thicknesses (ty). The objective of these simulation studies is to obtain
high loss factors for a given sandwich plate thickness (t). The viscoelastic layer thicknesses
considered in the simulations are 0.5, 1, 1.5 and 2 mm. For each of the viscoelastic layer

thickness, 15 combinations of base plate (t,) and constraining layer (t.) thicknesses are
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considered in the simulation studies. The loss factors are computed for different ratios of (t./t)
and (t,/t). Neutral axis is computed for each of the above case and it is found that the neutral
axis lies in the base layer when (t./t) is less than 0.41, in the constraining layer when this ratio
is above 0.46, in the viscoelastic layer (constrained) when the ratio of (t./t) lies between 0.41
and 0.46.

Simulation studies are also carried out for the three different boundary conditions. The

following are the three boundary conditions considered in the simulation studies.

a) Fixed at one edge and free at the three edges (CFFF).
b) Simple support on opposite edges and free at the other two opposite edges (SFSF).
c) Free—Free at all four edges (FFFF) boundary conditions.

(A) SANDWICH PLATE WITH CFFF BOUNDARY CONDITION

The sandwich structure is subjected to a harmonic force input. The FRFs are computed
for a given location on the sandwich plate for fifteen combinations of base plate and
constraining layer thicknesses keeping the viscoelastic layer thickness as constant. From the
FREF, loss factors are calculated using half power method for the first three natural modes. The
loss factors computed for each ratio of (t./t) and (t,/t) are shown in Figures 8.1 to 8.3 and also

given in Tables 8.1 to 8.3 for the first three modes respectively.
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Table 8.1 Variation of loss factors for CFFF boundary condition (Mode I) for different layer

thicknesses
Loss Factors
t?c t?,, = 0.057 t?v = 0.091 t?v = 0.167 t?v =0.430
0.06 0.0228 0.0242 0.0320 0.0397
0.11 0.0283 0.0329 0.0463 0.0689
0.16 0.0329 0.0408 0.0597 0.0927
0.21 0.0363 0.0477 0.0717 0.1126
0.26 0.0389 0.0534 0.0819 0.1283
0.31 0.0404 0.0578 0.0902 0.1396
0.36 0.0408 0.0607 0.0961 0.1466
0.41 0.0401 0.0618 0.09919 0.1492
0.46 0.0383 0.0609 0.0995 0.1475
0.51 0.0353 0.0581 0.0958 0.1415
0.56 0.0312 0.0530 0.0888 0.1312
0.61 0.0259 0.0453 0.0776 0.1165
0.66 0.0193 0.0350 0.0619 0.0975
0.71 0.0116 0.0219 0.0416 0.0741
0.76 0.0025 0.0058 0.0161 0.0464

t. = thickness of constraining layer, t,= thickness of constrained layer;t,= thickness of base
plate; t= total thickness of constrained layer sandwich plate. i.e. t=ty+t,+t,
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Table 8.2 Variation of loss factors for CFFF boundary condition (Mode II) for different layer

thicknesses
Loss Factors

t—c t—v = 0.057 t—v = 0.091 t_,, = 0.167 t—v = 0.430

t t t t t
0.06 0.0359 0.0426 0.0575 0.0599
0.11 0.0439 0.0549 0.0746 0.1101
0.16 0.0504 0.0662 0.0945 0.1528
0.21 0.0552 0.0759 0.1112 0.1879
0.26 0.0585 0.0841 0.1258 0.2155
0.31 0.0601 0.0903 0.1377 0.2356
0.36 0.0602 0.0942 0.1461 0.2448
0.41 0.0586 0.0955 0.1505 0.2532
0.46 0.0555 0.0939 0.1501 0.2507
0.51 0.0507 0.0892 0.1444 0.2407
0.56 0.0444 0.0810 0.1326 0.2231
0.61 0.0364 0.0692 0.1141 0.1981
0.66 0.0239 0.0529 0.0883 0.1655
0.71 0.0158 0.0326 0.0544 0.1254
0.76 0.0030 0.0075 0.0119 0.0777

t. = thickness of constraining layer, t,= thickness of constrained layer; t,= thickness of base
plate; t= total thickness of constrained layer sandwich plate. i.e t=t,+t,+t,

Table 8.3 Variation of loss factors for CFFF boundary condition (Mode III) for different layer

thicknesses
Loss Factors

t—c t—v = 0.057 t—v = 0.091 t—v = 0.167 t—v =0.430

t t t t t
0.06 0.0512 0.0668 0.0723 0.1165
0.11 0.0618 0.0811 0.1152 0.1509
0.16 0.0701 0.0943 0.1510 0.1848
0.21 0.0760 0.1058 0.1799 0.2167
0.26 0.0797 0.1154 0.2018 0.2452
0.31 0.0813 0.1226 0.2166 0.2690
0.36 0.0807 0.1270 0.2245 0.2865
041 0.0780 0.1283 0.2245 0.2964
0.46 0.0734 0.1262 0.2192 0.2973
0.51 0.0668 0.1201 0.2061 0.2877
0.56 0.0584 0.1097 0.1860 0.2662
0.61 0.0481 0.0947 0.1588 0.2315
0.66 0.0361 0.0746 0.1247 0.1812
0.71 0.0225 0.0491 0.0856 0.1166
0.76 0.0079 0.0177 0.0354 0.0335

t. = thickness of constraining layer, t,= thickness of constrained layer; t,= thickness of base
plate; t= total thickness of constrained layer sandwich plate. i.e. t=ty+t,+t,
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From the above results, it can be concluded that the high loss factors are observed
when (t/t) lies between 0.41 and 0.46. For a given cross section of the sandwich plate
structure, the shear strain is maximum at the neutral axis and decreases along the thickness on
either side of the neutral axis. The dissipation of energy in constrained layer sandwich structure
is through the shear deformation of viscoelastic layer. So, high loss factors are observed when
the neutral axis of the sandwich structure falls in the viscoelastic layer. It is also observed from
the above figures that the loss factors are higher for higher modes and increase as thickness of

viscoelastic layer increases.

(B) SANDWICH PLATE WITH SFSF BOUNDARY CONDITION

Simulation studies are carried out for SFSF boundary condition. The FRFs are
computed for a given location on the sandwich plate for the various base and constraining layer
thicknesses. For each case, the loss factors are calculated from FRFs for the first three modes.
The variation of loss factors with different (t./t) is shown in Figures 8.4 to and 8.6 and is also

given in Tables 8.4 to 8.6 for the first three modes respectively.
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Table 8.4 Variation of loss factors for SFSF boundary condition (Mode I) for different layer

thicknesses
Loss Factors

t—c t—v = 0.057 t_,, = 0.091 t—v = 0.167 t—v = 0.430

t t t t t
0.06 0.0065 0.0124 0.0163 0.0164
0.11 0.0074 0.0158 0.0221 0.0264
0.16 0.0081 0.0189 0.0276 0.0364
0.21 0.0087 0.0217 0.0326 0.0458
0.26 0.0091 0.0240 0.0369 0.0543
0.31 0.0093 0.0258 0.0404 0.0616
0.36 0.0093 0.0269 0.0428 0.0674
0.41 0.0090 0.0274 0.0441 0.0712
0.46 0.0086 0.0270 0.0440 0.0727
0.51 0.0080 0.0257 0.0423 0.0716
0.56 0.0071 0.0234 0.0388 0.0675
0.61 0.0060 0.0200 0.0335 0.0601
0.66 0.0046 0.0154 0.0260 0.0488
0.71 0.0030 0.0096 0.0163 0.0037
0.76 0.0010 0.0023 0.0041 0.0141

t. = thickness of constraining layer, t,= thickness of constrained layer; t,= thickness of base
plate; t= total thickness of constrained layer sandwich plate. i.e. t=t,+t,+t,.

Table 8.5 Variation of loss factors for SFSF boundary condition (Mode II) for different layer

thicknesses
Loss Factors
t?,: t?v = 0.057 t?,, = 0.091 t?,, = 0.167 t?,, = 0.430
0.06 0.0238 0.0263 0.0318 0.0494
0.11 0.0273 0.0314 0.0425 0.0632
0.16 0.0301 0.0364 0.0526 0.0771
0.21 0.0324 0.0408 0.0617 0.0903
0.26 0.0339 0.0446 0.0696 0.1022
0.31 0.0347 0.0476 0.0758 0.1123
0.36 0.0347 0.0495 0.0801 0.1199
0.41 0.0340 0.0502 0.0822 0.1243
0.46 0.0323 0.0494 0.0816 0.1250
0.51 0.0297 0.0469 0.0782 0.1213
0.56 0.0262 0.0426 0.0716 0.1125
0.61 0.0217 0.0362 0.0615 0.0982
0.66 0.0161 0.0275 0.0475 0.0776
0.71 0.0095 0.0614 0.0294 0.0501
0.76 0.0017 0.0025 0.0068 0.0151

t. = thickness of constraining layer, t,= thickness of constrained layer, t,= thickness of base
plate; t= total thickness of constrained layer sandwich plate. i.e. t=ty+t,+t,
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Table 8.6 Variation of loss factors for SFSF boundary condition (Mode III) for different layer

thicknesses
Loss Factors

t—c t—v = 0.057 t—v = 0.091 t—v = 0.167 t—v = 0.430

t t t t t
0.06 0.0353 0.0376 0.0563 0.0719
0.11 0.0403 0.0468 0.0711 0.0924
0.16 0.0442 0.0553 0.0852 0.1125
0.21 0.0472 0.0626 0.0987 0.1315
0.26 0.0492 0.0686 0.1092 0.1485
0.31 0.0500 0.0731 0.1180 0.1626
0.36 0.0497 0.0758 0.1240 0.1731
041 0.0483 0.0766 0.1267 0.1790
0.46 0.0456 0.0753 0.1256 0.1796
0.51 0.0417 0.0716 0.1210 0.1739
0.56 0.0364 0.0653 0.1097 0.1612
0.61 0.0298 0.0563 0.0940 0.1450
0.66 0.0213 0.0442 0.0724 0.1111
0.71 0.0123 0.0290 0.0443 0.0721
0.76 0.0014 0.0103 0.0092 0.0226

t. = thickness of constraining layer, t,= thickness of constrained layer; t,= thickness of base
plate; t= total thickness of constrained layer sandwich plate. i.e. t=ty+t,+t.

From the above figures and tables, it is observed that high loss factors are observed when (t./t)
lies between 0.41 and 0.46. The trend in the variation of loss factors for the first three modes is

similar to that of CFFF boundary condition.

(C) SANDWICH PLATE WITH FFFF BOUNDARY CONDITION

The numerical studies are also extended for FFFF boundary condition. The variation

of loss factors with different (t./t) and (t,/t) are shown in Figures 8.7 to 8.9 and are also given

in Tables 8.7 to 8.9 for the first three modes respectively.
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Table 8.7 Variation of loss factors for FFFF boundary condition (Mode I) for different layer
thickness
Loss Factors
t?c t?v = 0.057 t?,, = 0.091 t?,, = 0.167 t?,, = 0.430
0.06 0.0059 0.0067 0.0097 0.0132
0.11 0.0072 0.0084 0.0124 0.0172
0.16 0.0082 0.0100 0.0150 0.0212
0.21 0.0089 0.0114 0.0173 0.0250
0.26 0.0094 0.0126 0.0196 0.0285
0.31 0.0097 0.0135 0.0213 0.0314
0.36 0.0097 0.0141 0.0226 0.0337
0.41 0.0094 0.0143 0.0233 0.0350
0.46 0.0081 0.0141 0.0233 0.0353
0.51 0.0082 0.0135 0.0225 0.0343
0.56 0.0072 0.0123 0.0208 0.0343
0.61 0.0059 0.0105 0.0180 0.0277
0.66 0.0044 0.0081 0.0142 0.0218
0.71 0.0027 0.0050 0.0911 0.0140
0.76 0.0007 0.0012 0.0027 0.0039

t. = thickness of constraining layer, t,= thickness of constrained layer; t,= thickness of base
plate;  t= total thickness of constrained layer sandwich plate. i.e. t=ty+t,+t,
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Table 8.8 Variation of loss factors for FFFF boundary condition (Mode II) for different layer

thickness
Loss Factors

t—c t—v = 0.057 t—v = 0.091 t—v = 0.167 t—v = 0.430

t t t t t
0.06 0.0084 0.0111 0.0166 0.0239
0.11 0.0110 0.0145 0.0216 0.0311
0.16 0.0131 0.0175 0.0263 0.0382
0.21 0.0147 0.0206 0.0307 0.0448
0.26 0.0159 0.0221 0.0344 0.0508
0.31 0.0165 0.0236 0.0375 0.0558
0.36 0.0167 0.0244 0.0396 0.0596
0.41 0.0164 0.0246 0.0407 0.0617
0.46 0.0157 0.0241 0.0406 0.0620
0.51 0.0144 0.0228 0.0390 0.0601
0.56 0.0127 0.0206 0.0360 0.0556
0.61 0.0105 0.0176 0.0311 0.0484
0.66 0.0078 0.0137 0.0244 0.0381
0.71 0.0046 0.0088 0.0157 0.0244
0.76 0.0010 0.0029 0.0047 0.0078

t. = thickness of constraining layer, t,= thickness of constrained layer; t,= thickness of base
plate; t= total thickness of constrained layer sandwich plate. i.e. t=ty+t,+t,.

Table 8.9 Variation of loss factors for FFFF boundary condition (Mode III) for different layer

thickness
Loss Factors

t—c t—v = 0.057 t_,, = 0.091 t_,, = 0.167 t_,, = 0.430

t t t t t
0.06 0.0219 0.0270 0.0317 0.0417
0.11 0.0254 0.0314 0.0398 0.0560
0.16 0.0281 0.0355 0.0477 0.0697
0.21 0.0300 0.0393 0.0551 0.0825
0.26 0.0311 0.0422 0.0617 0.0938
0.31 0.0315 0.0448 0.0671 0.1031
0.36 0.0312 0.0463 0.0710 0.1100
0.41 0.0300 0.0467 0.0730 0.1138
0.46 0.0281 0.0458 0.0729 0.1141
0.51 0.0254 0.0435 0.0702 0.1103
0.56 0.0220 0.0396 0.0646 0.1020
0.61 0.0178 0.0339 0.0558 0.0880
0.66 0.0128 0.0263 0.0435 0.0698
0.71 0.0071 0.0165 0.0272 0.0449
0.76 0.0005 0.0045 0.0066 0.0133

t. = thickness of constraining layer, t,= thickness of constrained layer; t,= thickness of base
plate;  t= total thickness of constrained layer sandwich plate. i.e. t=ty+t,+t,
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From the above figures and tables, it is seen that the variation of loss factor for the sandwich
plate structure with FFFF boundary condition is similar to the sandwich plate with CFFF and

SFSF boundary conditions as discussed earlier.

A comparison of maximum loss factor for each (t,/t) is given in table 8.10.The loss
factor of the base plate in each mode is taken as reference value and the vibration attenuation

levels are calculated in terms of decibels (dB) and presented below.

Table 8.10 Comparison of loss factor of base plate with maximum loss factors in CFFF,
SFSF and FFFF boundary conditions

Mode I Mode I1 Mode I1I
Base plate 0. 0076 0.0098 0.0120
t,/t = 0.057 0.0408 0.0602 0.08130
Attenuation(dB) 14.60 15.77 16.62
CFFF ty/t =0.091 0.0618 0.0955 0.1283
to/t Attenuation(dB) 18.10 19.78 20.58
t,/t=0.167 0.0995 0.1505 0.2245
Attenuation(dB) 22.34 23.73 25.44
ty/t =0.430 0.1492 0.2543 0.2964
Attenuation(dB) 25.86 28.28 27.85
t,/t = 0.057 0.0090 0.0347 0.050
Attenuation(dB) 1.47 10.98 12.40
SFSF ty/t =0.091 0.0274 0.0502 0.0731
to/t Attenuation(dB) 11.14 14.19 15.70
t,/t =0.167 0.0441 0.0822 0.1180
Attenuation(dB) 15.27 18.47 19.86
t,/t = 0.430 0.0727 0.1250 0.1626
Attenuation(dB) 19.61 22.11 22.64
t,/t =0.057 0.0097 0.0167 0.0315
Attenuation(dB) 2.12 4.66 8.40
FFFF ty/t =0.091 0.0143 0.0246 0.0467
to/t Attenuation(dB) 5.49 7.99 11.80
ty/t=0.167 0.0233 0.0407 0.0730
Attenuation(dB) 9.73 12.38 15.68
t,/t = 0.430 0.0353 0.0620 0.1138
Attenuation(dB) 13.34 16.02 19.54

By comparing the loss factors of base plate with the maximum loss factors obtained
for different t,/t in all three boundary conditions, it is concluded the loss factor increases with

mode number and thickness of viscoelastic layer.
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8.3 SUMMARY

The validated dynamic model and the computational scheme are extended to
understand the behaviour of loss factors for various combinations of layer thicknesses.
Simulation studies are also carried out for three different boundary conditions. From the
simulations studies, it is concluded that high loss factors are observed when (t./t) lies between
0.41 and 0.46. This trend is independent of the natural modes and boundary conditions. The

loss factors increase with increase in thickness of viscoelastic layer and mode number.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

9.1 SUMMARY

Two viscoelastic materials, EAP-2 and EAP-43 are characterized using Dynamic
Mechanical Analyzer (DMA) for their frequency dependent material properties: Young’s
modulus, Shear Modulus, Poisson’s ratio and loss factors. The experimental data obtained
from DMA is expressed in mathematical form using power fit as continuous functions of
frequencies in the range from 102 Hz to 10° Hz. Through these equations, frequency
dependent material properties of the viscoelastic layers are introduced in the dynamic models

of sandwich structures.

Finite element based dynamic models are developed for sandwich beam and plate
structures. The sandwich structure is discretized into finite elements and dynamic equations of
motion are developed using Lagrangian method. The element mass and complex stiffness
matrices for the sandwich beam and plate are developed considering the shear deformation of
the viscoelastic layer. During FE formulation of the sandwich beam structure, longitudinal
displacements of the base, constraining layer and transverse displacement of the sandwich
beam are considered as primary field variables. The shear deformation of viscoelastic layer is
derived from the longitudinal displacements of base and constraining layer. During
formulation of sandwich plate structure, longitudinal displacements and rotations in x and y
directions of the base and constraining layers, transverse displacement of the sandwich plate

are considered as primary field variables.
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A computational scheme is developed to solve the dynamic equations of motion of the
sandwich structures. The developed dynamic equations of motion accommodate frequency
dependent complex stiffness of the viscoelastic material. MATLAB codes are developed to

solve the dynamic models for computing frequency response functions and loss factors.

Extensive experiments are carried out on sandwich beam and plate structures and
frequency response functions (FRF’s) are obtained. The FRF’s and loss factors obtained from
the experiments are compared with those obtained from computational scheme for eight
different configurations. By suppressing the variation of material properties in the dynamic
model, simulations are also carried out to confirm the need of introducing frequency

dependent material properties.

The validated dynamic model and the developed code is used to compute loss factors
for various thickness ratios and boundary conditions of the sandwich plate structure and

optimal parameters are identified for vibration attenuation.

9.2 CONCLUSIONS

The following are the conclusions drawn from the present work:

i.  Two viscoelastic materials, EAP-2 and EAP-43 are characterised for their frequency
dependent material properties. Based on the experimental data, frequency dependent
Young’s modulus, shear modulus and loss factors are expressed in mathematical form
using power fit as functions of frequency using the experimental data for both the
viscoelastic materials.

ii.  Finite Element based dynamic models are developed for sandwich structures
considering the frequency dependent complex Young’s and shear modulus of
viscoelastic material.

iii.  The performance of both the viscoelastic material, EAP-2 and EAP-43 in attenuating
the vibration amplitudes are evaluated. It is concluded that both the viscoelastic
materials provide higher vibration attenuation.

iv. By comparing both the viscoelastic materials, EAP-43 is found to be superior

compared to EAP-2 for achieving higher vibration attenuations. The reason for higher
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1X.

attenuation is attributed to carbon black used as filler in EAP-43 which provides better
loss factors compared to the titanium dioxide in EAP-2.
Constraining layer sandwich structures provide higher damping and vibration
attenuation compared to unconstrained layer sandwich structures.
Unconstrained layer sandwich beams and plates with the thickness ratio (t,/t=0.20) can
be employed in real life structures, if the required vibration attenuation levels are
around 5 to 10 dB.
Constrained layer sandwich beams and plates with the thickness ratio (t,/t=0.16) and
((t/t=0.16) can be employed in real life structures, if the required vibration attenuation
levels are more than 10 dB.
There is a shift in natural frequency of unconstrained and constrained layer sandwich
structures to a lower side compared to base structure alone. This is due to the
additional mass and damping of viscoelastic layer.
Based on the simulation studies on sandwich plate structure, it is concluded that
(a) For a given sandwich plate thickness (t), higher loss factors are obtained when
the ratio of constraining layer thickness to total thickness of sandwich plate
(tc/t) lies between 0.41 to 0.46.
(b) Loss factor increases with increase in viscoelastic layer thickness.

(c) Irrespective of boundary conditions, loss factors increase with mode number.

9.3 SCOPE FOR FUTURE WORK

The following future work is proposed

ii.

During development of dynamic models for sandwich beam and plate structures, only
the frequency dependent material properties of viscoelastic layers are considered at
constant temperature. The proposed models can be extended by considering both

frequency and temperature dependent material properties of viscoelastic layers.
The developed dynamic models for sandwich beam and plate structure, assume perfect

bonding between the layers. The developed dynamic model can be improved by

modelling adhesive between the layers.
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In the present model the viscoelastic layers covers the entire surface of the base
structure. The model can be extended for optimum location of viscoelastic patches

instead of complete layer.
The developed dynamic model consider passive constraining layer. The proposed

model can be extended by replacing passive constraining layer with active

constraining layer.
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APPENDIX-'I’

INTERPOLATION FUNCTIONS OF SANDWICH PLATE

[N;] =[M11 M1z My3 Ny4] is the interpolation for in-plane displacement of base layer
in x-direction and the individual terms are expressed as follows:

ny;=1[n, 0 000000 0] ny;=[ng 0 000000 O]

ny,=[n, 0000000 O] Ny=1[n, 0 000000 O] (A.1)
[N,] =[n11 M1z Ny3 MNy4lis the interpolation for inplane displacement of base layer in
y-direction and the individual terms are expressed as follows:

ny,y, =[0n, 000000 0] Nnys =[0 ng 000000 0] (A.2)

ny, =[0 n, 000000 0] Ny =1[0mn, 000000 0]

[N3] =[n31 N3z N33 N34 is the interpolation for constraining layer in x-direction and
the individual terms are expressed as follows:

ng; =[0 0 n; 0000 0 O] ns3=[0 0 n; 000 0 0 0]

ns, =[0 0 n, 0000 0 0] ns, =[00mn, 00000 0] (&.3)
[Ny =[Ma1 N4z M43  mny,] isthe interpolation for constraining layer in y-direction
and the individual terms are expressed as follows:

ng =[0 0 0n, 0000 O] Ny =[0 0 0nz; 0000 O]

Ng, =[0 0 0n, 0000 0] Ngt=[000n, 0000 O] (&4)
[Ng] = [s51 Ms2  Ms3ng,] is the interpolation for transverse displacement for all three
layers. where,

ng; =[0 0 00n, 000 O] nss=[0 0 00n; 000 0]

ns, =[0 0 00n, 000 0] ns, =[0 0 00n, 000 0] (A-3)
[No | = [ngs ne2 mes Teal is the interpolation for rotation of base layer in x direction
and the individual terms are expressed as follows:

Ng;,=[00 000 n, 00 0] Mgz =[00 000 ng 00 0]
Mg, =[00 000 n, 00 0] Ne,=[00 000mn, 00 0]

(A.6)

[N7 ] = [n71 Nyy MNgg n74] is the interpolation for rotation of base layer in y-direction
and the individual terms are expressed as follows:
n,,=[00 0000 n; 00] n,;=[00 0 000mn; 0 0]

(A7)
n,,=[00 0 000mn, 00] n,,=[00 0 000mn, 0 0]
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[N8 ] = [7181 Ng, MNgsz n84] is the interpolation for rotation of constraining layer in x-

direction. Where,
ng; =[0 0 00 000 n; 0] ng;=[0 0 00 000 ng 0] A8)
ng, =[0 0 00 000 n, 0] ng, =[0 000 000 n, 0] .

[N9 ] = [n91 Ngy, Moz n94] is the interpolation for rotation of constraining layer in y-

direction.where,
Ng;=[0 000 000 0 ny] Ng3=[0 000 000 0 ng]
Ng, =[0 0 00 000 0 n, Ng, =[0 0 00 000 0 ny,l (A.9)
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