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ABSTRACT 

Viscoelastic materials are gaining importance for the control of vibrations in aerospace 

and automotive industry. Viscoelastic layers are sandwiched in the parent structure either in 

unconstrained or constrained layer configuration to attenuate the vibration levels and enhance 

the damping of a structure. The effectiveness of the viscoelastic layer in attenuating vibrations 

can be found from the dynamic behaviour of sandwich structure with unconstrained and 

constrained viscoelastic layers. The present work is focused on theoretical and experimental 

investigations of dynamic responses of sandwich beam and plate structures with viscoelastic 

layers.  

Two viscoelastic materials developed by Naval Material Research Laboratory, NMRL 

(DRDO laboratory) for Defence applications are studied by sandwiching them with the parent 

structure. The frequency dependent Young’s Modulus, shear modulus and loss factors of both 

the viscoelastic materials is obtained from Dynamic Mechanical Analyzer (DMA). The 

experimental data obtained from DMA are expressed in mathematical form using power fit for 

further use in dynamic models of sandwich structures. 

Finite element based dynamic models are developed for sandwich beam and plate 

structures. The sandwich structure is discretized into finite elements and dynamic equations of 

motion are developed using Lagrangian method. The sandwich beam structure is modelled using 

Euler-Bernoulli beam theory for base and constraining layer and shear deformation is considered 

for constrained layer. For two dimensional structures, Mindlin-Reissner first order shear 

deformation theory is considered for all three layers.  The frequency dependent material 

properties and loss factors of the viscoelastic materials are introduced into the dynamic models.  

An iterative computational scheme is developed to solve the dynamic equations of motion of the 

sandwich structures and frequency response functions (FRF’s) are computed. The FRFs and loss 

factors obtained from the finite element model with and without considering the variation of 

frequency dependent material properties of the viscoelastic layer are compared. These results are 

validated with experiments for sandwich beam and plate structures in unconstrained and 

constrained layer configurations. The Finite element model considering the frequency dependent 

material properties of viscoelastic layers are in close agreement with experiments compared to 

FE model considering constant material properties of viscoelastic layer.  
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The validated finite element model is further used in simulation studies of sandwich plate 

structure with different layer thicknesses and boundary conditions. The optimum layer thickness 

ratios of sandwich plate for high loss factors are identified. The high loss factors are obtained 

when the thickness ratio of constraining layer to total thickness of sandwich plate (tc/t) lies 

between 0.41 to 0.46 and it is independent of mode and boundary condition. The loss factor 

increases for higher mode number for all the boundary conditions. The loss factor increases with 

increase in thickness of viscoelastic layer. 

 

Keywords:-  Unconstrained layer,  Constrained layer,  sandwich structure, viscoelastic layer, 

frequency dependent material properties, frequency response function (FRF), and  loss factor. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 MOTIVATION 

 

 All structures having elasticity and inertia undergo vibrations. Dynamic systems 

convert kinetic energy to strain energy and vice versa. The conservation of energy from one 

form to another causes vibration in the structure. When the excitation frequency coincides or 

gets close to any of the natural frequencies of the structure, resonance occurs and results in 

large amplitude vibrations. These resonant vibrations severely influence the dynamic 

characteristics of the structures and produce discomfort and noise. These vibrations can be 

minimized through the dissipation of vibrational energy present in the system. The dissipation 

mechanism of vibrational energy from the system is known as damping. The mere presence of 

damping brings down the resonant amplitude to finite values which are infinite otherwise. 

Due to the influence of resonant vibrations on the life of the structure, damping has become 

one of the major design considerations. Hence, the need to improve damping in a structure is 

undisputed. Enhancing damping of structure is very important in aerospace, mechanical and 

civil engineering.  

 Enhancement of damping in the structures can be achieved by passive or active means. 

In active damping, vibrations are controlled by external source of energy using sensors and 

actuators. Use of sensors and actuators increases the complexity of the system in active 
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damping. In passive damping, the vibrations are minimised by using the material’s inherent 

ability in dissipating the energy. Hence, material selection plays a significant role in deciding 

the damping capability of a structure. In recent times, the sandwich structures are employed in 

place of conventional structures due to their ability in providing higher damping.  

 The current research is motivated by the organization goal of reducing the vibration 

levels of electronic packages when they are subjected to severe dynamic loads. The electronic 

packages are mounted on brackets that are attached inside the missile at designated locations. 

In general the electronic packages have very low material damping. So, there is a need to 

enhance the damping in the supporting structure of electronic packages to suppress the 

vibrations. The focus of the proposed research is on enhancing the damping by sandwiching 

viscoelastic layer in parent structure. Two viscoelastic materials developed by Naval Material 

Research Laboratory (NMRL, DRDO) are characterized to understand their damping 

properties when sandwiched between the base and constraining layers. 

 

1.2 OBJECTIVES 

 

 The objective of the present research work is to minimize the vibrations of structures 

at resonance using viscoelastic materials. Two viscoelastic materials developed for defence 

application are chosen for this study.  

(a) The first step to achieve this objective is to understand the behaviour of viscoelastic layer 

by sandwiching them between base and constraining layers. Since electronics packages 

do not experience high temperatures, the effect of temperature variation on the 

viscoelastic materials are not considered in the present study and the main focus is on the 

frequency dependent material properties. These frequency dependent material properties 

of viscoelastic layer viz; Young’s modulus, shear modulus and loss factors (in tension 

and shear mode) are obtained experimentally using Dynamic Mechanical Analyzer 

(DMA) and expressed in a mathematical form using curve fit for further use in the FE 

model. The complex Young’s modulus and shear modulus for both the viscoelastic 

materials are derived using the above properties. The frequency dependent Poisson’s ratio 

is obtained from the complex Young’s modulus and shear modulus data. 
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(b) The second step is to develop a FE Based dynamic model for sandwich beams and plate 

structures considering the frequency dependent material properties of viscoelastic layer. 

The stiffness matrix of the sandwich structure is complex quantity and depends on the 

frequency of excitation. The element matrices are assembled and dynamic equations of 

motion are developed. An iterative computational scheme is necessary to solve the 

dynamic equations of motion due to the frequency dependent complex stiffness matrix. 

The equations of motion are derived for base excitation. The experiments are performed 

on sandwich beam and plate structures with base excitation to minimise the contribution 

of armature dynamics of the shaker. The developed dynamic models are validated by 

comparing frequency response functions (FRF’s) and loss factors calculated from the 

analytical results with experiments. Assuming constant material properties of the 

viscoelastic layer, FRFs and loss factors are also calculated and compared with the results 

obtained from the dynamic model considering frequency dependent material properties of 

the VE layer.  

(c) The third step is to carry out simulation studies with the validated dynamic model to 

identify the optimum thickness ratios of sandwich layers for better vibration attenuation. 

The simulation studies are also carried out for three different boundary conditions.  

Thus, the scope of this research is to: 

 Characterize two viscoelastic materials for frequency dependent Young’s Modulus, shear 

modulus and loss factors using Dynamic Mechanical Analyzer (DMA) and expressing the 

measured frequency dependent material properties in a mathematical form using power fit 

for further use in dynamic models of sandwich structures. 

 Develop a finite element based dynamic models for sandwich beam and plate structures 

with viscoelastic materials considering the frequency dependent Young’s modulus, shear 

modulus and loss factors of the viscoelastic material.  

 Develop an iterative computational scheme to solve the dynamic equations of motion.  

 Validate the dynamic model with experimental results on sandwich beam and plate 

structures. 

 Carryout simulation studies on sandwich plate structures using dynamic model and 

computational scheme under different boundary condition for identifying optimum 

thickness ratios for higher damping. 
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1.3 ORGANISATION OF THESIS 

 

The thesis is organized as follows.  

Chapter 1 introduces the need for enhancing the damping of a structure. This chapter also 

brings out the motivation and objectives of the present work. 

Chapter 2 brings out the research work presented by various investigators for modelling the 

viscoelastic materials, finite element models of sandwich beams and plate structures and the 

scope of the present research work. 

Chapter 3 gives a brief review on the constitutive relations of viscoelastic materials, 

experiments for determining the frequency dependent material constants. It also includes the 

mathematical representation of the frequency dependent material constants. Two viscoelastic 

materials (EAP-2 and EAP-43) are characterised for their frequency dependent material 

properties.  

Chapter 4 deals with the formulation of finite element based dynamic model of sandwich 

beam and plate structures. The dynamic model incorporates the frequency dependent Young’s 

modulus, shear modulus and loss factors of the viscoelastic material. Dynamic equations of 

motion are developed using Lagrangian method. 

Chapter 5 deals with an iterative computational scheme to solve the dynamic equations of 

motion with base excitation. 

Chapter 6 deals with the details of instrumentation, preparation of test specimens, test setup 

and experimental procedure. Frequency response functions (FRFs) are obtained from the 

experimental data. Loss factors are calculated from the FRF’s. 

Chapter 7 deals with the validation of the dynamic models of sandwich beam and plate 

structures with experimental results. Eight case studies are considered to validate the dynamic 

models. Four of these cases are sandwich beam structures and four are sandwich plate 

structures. 

Chapter 8 deals with the simulation studies of the sandwich plate structures using developed 

dynamic model. The objective of these simulation studies is to enhance the damping in 
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sandwich plate structures. Damping loss factors are obtained for different thickness 

proportions under various boundary conditions to identify optimal parameters.  

Chapter 9 presents the summary and conclusions. It also includes the scope for further 

research in this field. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1   INTRODUCTION 

 

 Minimisation of resonant vibrations is a major design consideration for structures 

subjected to cyclic loading. This makes damping an important parameter in the study of 

dynamic behaviour of structures. Damping is the phenomenon by which mechanical energy is 

dissipated in a dynamic system thereby reducing the vibration amplitudes. Hence, 

improvement of damping in the structures through various techniques has been attracting 

researchers for the past several years. The mechanism of damping is complex and sometimes 

difficult to comprehend. There are many ways of energy dissipation in a vibrating system and 

often more than one mechanism may be present simultaneously. The energy dissipation in a 

vibrating structure is mainly due to the material damping, structural damping and viscous 

damping. Among the available techniques, sandwiching viscoelastic layers in the parent 

structures is one technique to enhance damping. In this chapter, the published literature in the 

area of viscoelastic damping and the research work carried out by various investigators on 

finite element models of sandwich structures using viscoelastic layers is presented. 
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2.2   STATE OF THE ART 

 

 From the literature, it is understood that there are two types of damping treatment. 

They are unconstrained or free layer treatment and constrained layer treatment. 

(A)   UNCONSTRAINED LAYER DAMPING TREATMENT 

In unconstrained layer damping treatment, the viscoelastic layer is glued to the surface 

of base structure as shown in Fig. 2.1. The mechanism of energy dissipation in unconstrained 

layer damping treatment is through cyclic extension or compression deformation of the 

damping layer during each cycle of flexural vibration of the base structure. 

 

 

 

 

Figure 2.1 Unconstrained layer damping [48] Figure 2.2 Constrained layer damping [48] 
 

(B)   CONSTRAINED LAYER DAMPING TREATMENT 

In constrained layer damping treatment, a viscoelastic layer is constrained between 

base structure and a constraining layer as shown in Figure 2.2.  The mechanism of energy 

dissipation in a constrained layer damping treatment is through shear deformation in the 

viscoelastic layer during each cycle of flexural vibration of the structure.  Proper damping 

treatment requires the selection of appropriate damping material, location of the treatment and 

choice of configuration. 

The published literature on sandwich structures is classified into three sub groups. It 

consists of modelling of viscoelastic materials, modelling of sandwich beam structures and 

modelling of sandwich plate structures with viscoelastic layers. The work carried out in each 

group is presented below. 
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2.2.1   VISCOELASTIC MATERIAL MODELS 

 

 The fundamental concepts and methods to characterize viscoelastic materials are 

presented by Nashif et al (1985). The detail of test setup and procedures for measurement of 

complex modulus of the viscoelastic materials is discussed by the author. When a viscoelastic 

sample is subjected to harmonic force, the steady state response around resonance is used to 

determine the damping. The complex modulus of the viscoelastic material depends on steady 

state harmonic excitation and temperature.  

 The temperature nomogram presented by Jones (2001) is considered as a standard 

temperature nomogram for representing complex modulus data. Using this nomogram, 

complex elastic modulus is obtained for a certain frequency and temperature. Nashif et al 

have shown such nomogram for various viscoelastic materials in this book.  

 Classical damping like Maxwell, Kelvin and Zener models available in the literature 

are reviewed by Sun and Yu (1995).  Fractional derivative model for describing viscoelastic 

material behaviour is presented by Bagley and Torvik (1983). The author expressed the 

complex modulus of the viscoelastic material in Laplace domain as follows.  

 
(2.1) 

Five parameters  are used to curve fit the experimental data. This model is good 

only in the frequency domain. The drawback in their model is that it is difficult to transform 

frequency domain complex modulus into time domain using fractional derivative.  

 Some of the damping models that are developed by fitting a curve using the 

experimental data of viscoelastic materials are,  Augmented Thermodynamic Field (ATF), 

An-elastic displacement field (ADF) and Golla Hughes & McTavish (GHM)   models. These 

three models use an additional dissipation coordinate to account for the frequency dependent 

complex modulus. The ATF and ADF models are developed by Lesieutre et al (1990, 1995).  

These are time domain models representing viscoelastic material behaviour, which also 

preserves the characteristics of frequency dependent modulus of the viscoelastic material. 

According to Vasques et al (2010), the limitations in using ATF and ADF are that they are 

first order damping models and only state space forms can be used to combine with structural 

analytical models.  
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 Golla et al (1985) developed GHM model. It is a second order Laplace equation to 

represent variation of complex elastic modulus with frequency. Mini oscillators are used to 

represent the behaviour of viscoelastic material. The parameters used in the mini oscillators to 

curve fit the experimental data are, the storage modulus and the loss factor that vary with 

frequency and temperature. Once these parameters are obtained from the curve fit, the GHM 

model can be used in the conventional dynamic structural analysis of sandwich structures. 

According to Vasques et al (2010), the limitation of GHM model is increase in the size of the 

element stiffness matrix due to the additional dissipation coordinate. In their review paper on 

viscoelastic damping technologies, Vasques et al (2010) discussed about the constitutive 

model including the historical developments of viscoelasticity. According to the authors, it is 

difficult to develop a mathematical model considering the effects of frequency, temperature, 

amplitude and type of excitation simultaneously. Many researchers have overlooked the 

effects of amplitude and type of excitation. For practical considerations, isothermal conditions 

are assumed and they focused on developing frequency dependent constitutive models. The 

modelling of storage modulus proposed by Fernando Cortes et al (2006) is constant with 

frequency and loss factor is the representative peak damping of the material. 

 Martinez et al (2010) considered two mathematical models for viscoelastic materials 

using homogenized and multi layered approaches. The frequency dependent complex shear 

modulus is represented as a function of polynomial involving many coefficients. These are 

complicated models where many coefficients have to be determined by fitting a curve to the 

experimental data and are also difficult to be transformed into time domain.  

 From the above literature on viscoelastic material models, it is found that most of the 

authors used the commercially available data sheets of viscoelastic materials. The viscoelastic 

models mentioned in the literature are complex and many parameters are required to fit a 

curve for representing the viscoelastic behaviour. The proposed work provides a simple 

relation between storage modulus, loss factors and frequency with few parameters.  

 

2.2.2    SANDWICH BEAM STRUCTURES 

 

 A sandwich beam comprises of base layer, constrained layer and constraining layer. 

The constrained layer is usually a viscoelastic layer. The modelling of sandwich structures is a 
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challenging task due to frequency dependent properties of viscoelastic materials. A summary 

of the analytical models of sandwich beams developed by various investigators is discussed 

below. 

 Kerwin et al (1959) proposed the analysis of the sandwich beam with viscoelastic 

layer using a complex modulus approach. The simply support boundary condition is 

considered during modelling of sandwich structure. A theory has been developed to calculate 

the loss factor of sandwich beam.  Also relationship between the shear strains of the damping 

layer to the transverse motion of the structure has been presented in this paper.  This theory is 

accurate only for thin constrained layer sandwich beams and for small loss factors of the 

viscoelastic layer.  

 DiTaranto et al (1965) modified Kerwin et al (1959) model by considering the 

extensional deformation of viscoelastic layer. A sixth order linear differential equation of 

motion for freely vibrating sandwich beams is developed in terms of longitudinal 

displacements. The assumptions introduced by this model are that both the elastic layers 

undergo same lateral displacement and only transverse inertia is considered neglecting the 

longitudinal inertia. Shear deformation is considered only for the viscoelastic layer and shear 

strain is assumed to be constant through the thickness of viscoelastic layer. From this model, 

natural frequencies and composite loss factors are obtained for a three layer sandwich beam. 

The authors have concluded that for a given thickness of viscoelastic layer, the variation of 

composite loss factors with frequency does not change appreciably by changing the thickness 

of the elastic layer. The authors have also concluded that the relationship between the modal 

loss factors of the sandwich beam and the corresponding modal frequency is independent of 

boundary conditions. 

  Mead and Markus (1969, 1970) modified DiTaranto’s model and developed a sixth 

order differential equation considering the transverse motion of a harmonically excited 

sandwich beam.  Natural frequencies and loss factors are estimated for sandwich beam using 

these equations.  

  Di Taranto (1965) and Mead et al (1969, 1970) used Kerwin’s assumptions, which 

account for the complex modulus for the viscoelastic layer. They concluded that the 

dissipation of energy is through shear deformation of the viscoelastic layer. The authors have 
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examined the developed model for various possible boundary conditions encountered in 

practice.  

 Nakra (1976, 1981 and 1984) and Mead (1982) reviewed the work carried out by 

previous investigators and discussed the similarities and differences between various theories. 

 Douglas and Yang (1978) studied the passive constrained layer damping (PCLD) 

treatment for beam structures. Experiments were conducted to obtain the dynamic responses 

and compared them with theory. They considered two types of damping mechanisms in a 

sandwich beam structure. The first mechanism is due to shear deformation and is called shear 

damping. The other type of mechanism is due to relative transverse motion of base and 

constraining layer and is called as compression damping in the viscoelastic layer. They 

concluded that shear damping is a broad band mechanism useful in most engineering 

applications, whereas the compression damping must be considered only within a certain 

spectral band. The damping of transverse dynamics of the thin sandwich beam is outside the 

spectral influence of compression damping.  Therefore, the shear damping mechanism was 

mainly considered in thin sandwich structures. The authors also presented the comparison of 

experiment results with the model developed by Mead and Markus model (1969). From the 

results, it is understood that Mead and Markus model deviates from the experimental results 

at higher modes. 

 Johnson et al (1982) proposed finite element model to predict the characteristics of 

constrained layer damped structures.  The authors considered solid element (Hexa8) for the 

viscoelastic layer and quadrilateral thick shell element with offsets for the base and 

constraining layer structure. Nastran software is used for the analysis of constrained layer 

damped structure. They derived an expression for the modal loss factor from purely elastic 

analysis by suppressing the imaginary part of complex stiffness. The Modal Strain Energy 

(MSE) method is used to predict the loss factors. The MSE method overestimates the loss 

factors at high modes. 

 Soni et al (1982) presented isoparametric thin shell elements for the base and 

constraining layer and solid element (Hexa8) for the viscoelastic layer. However Mace (1994) 

has criticized both Johnson et al and Soni et al work. The author has mentioned that the above 

two approaches are complex and costly to use. 
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 Mace (1994) has modelled the constrained layer sandwich beam structure using finite 

element technique. A layer wise displacement field is considered to study the dynamic 

behaviour of sandwich beams. The author developed FE model for very thin viscoelastic layer 

and five degrees of freedom per node is considered. However, it is found to be less accurate 

compared with FE models developed by Jonson et al (1982) and Soni (1982). 

 
 Bai et al (1995) proposed a finite element model for harmonically excited viscoelastic 

sandwich beam.  A three layer sandwich beam is considered in which base and constraining 

layer are elastic and isotropic. Non linear longitudinal and transverse displacement fields are 

considered for the viscoelastic layer. The author has considered adhesive effect in the FE 

model. The stiffness at the interface between viscoelastic layer and base beam and 

constraining layer possesses finite value. Due to this, discontinuity in the longitudinal 

displacements is observed which is proportional to the shear stress.  

 
 Baber et al (1998) extended the FE model presented by Bai and Sun. The adhesive is 

considered as stiff layer and neglected during formulation of FE model. Twelve degrees of 

freedom per node is considered during FE formulation. Both Bai et al and Baber et al 

models found to be complex and computationally expensive. The author’s have neglected 

frequency dependent loss factors in their FE model. 

 
 Tso-Liang et al (2001) investigated the damping characteristics of the sandwich beam 

with viscoelastic layer. The constrained layer damping structures are modelled using Ross-

Kerwin-Ungar (RKU) equations. The effect of various parameters like frequency, 

temperature, length and thickness of damped structure on the vibration characteristics are 

presented in this paper. The author has not presented experimental work to validate the 

theoretical model. DiTanto and Mead et al improved the Kerwin (1959), where as the author 

used Kerwin (1959) model without considering these improvements. 

 Wang et al (2002) proposed a sandwich beam with viscoelastic layer using spectral 

finite element method (SFEM). The displacement fields considered in the model are 

exponential (higher order polynomials) in nature compared to lower order polynomials in 

conventional finite element model (CFEM). GHM method is used to model the viscoelastic 

layer which considers the complex storage modulus. To account for the frequency dependent 

complex modulus, an internal dissipation coordinate is added which increases the size of the 

stiffness matrix and also increase computational time. 
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 Barbosa and Farage (2008) presented a GHM based finite element model for 

sandwich viscoelastic beam. Experiments are carried out to evaluate the GHM parameters. 

The model is validated with experiments by comparing frequency domain response curves. To 

account for the frequency dependent complex modulus, an internal dissipation coordinate is 

added which increases the size of the stiffness matrix and also increase computational time. 

 Zapfe et al (1999), Trindade (2001), Sainsbury and Zhang (1999) and Galucio 

(2004) developed FE models of sandwich beams using viscoelastic layers. The authors have 

not considered frequency dependency of loss factors in their model.  

 
 Fernando Cortes and Maria Jesus Elejabarrieta (2008) analyzed the dynamic 

behaviour of free layer damping beams with a thick viscoelastic layer. The viscoelastic 

material is characterized by a fractional derivative model, which takes into consideration the 

variation of complex modulus with frequency. The complex modulus is represented in 

Laplace domain and it is difficult to transform this into time domain using fractional 

derivative. 

 Kamel A et al (2009) proposed a sandwich finite element for laminated steels. It is 

based on discrete displacement approach and allows for both symmetrical and unsymmetrical 

configurations. The three layer sandwich beam is modelled considering Timoshenko 

hypothesis for viscoelastic layer and Euler-Bernoulli hypothesis for base and constraining 

layer. The model accounts for the rotational influence of the transverse shear in the 

viscoelastic layer. The results obtained using this model is validated with analytical, finite 

element model for various boundary conditions. Frequency dependent loss factors are not 

considered in the FE model and they validated the model with previous published literature.  

 Martinez et al (2011) have carried out dynamic characterization of high damping 

viscoelastic material from vibration test data. In this paper, an inverse method is developed to 

characterize high damping and strong frequency dependent viscoelastic material. This method 

minimizes the difference between the theoretical and experimental transfer functions obtained 

by the forced vibration test with resonance at certain discrete frequencies selected by the user. 

In this method, the parameters of the material constitutive model are identified and the 

properties are determined in the whole bandwidth. In this paper, the constrained layer 

damping (CLD) structure is completely characterized. The elastic properties of the metallic 

layers and the viscoelastic material properties are identified from the dynamic response.   
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 Grewalet al (2013) presented sandwich beam structure using finite element method. 

Linear and non linear displacement fields are considered for viscoelastic layer. Results 

obtained by both the methods are compared with experimental data available in the literature. 

The results obtained by linear and non linear finite element models for the natural frequency 

and loss factors at the first mode of clamped-free sandwich beam model do not show 

considerable difference. However, the results differ at higher modes for clamped-clamped 

boundary condition.  Non-liner finite element model show lower natural frequencies and 

higher loss factors compared to the results obtained from linear finite element model. The 

author validated the model with published literature. From the results it is observed that, the 

loss factors obtained from his models are over estimated compared to experimental results.  

 Won et al (2013) proposed a sandwich beam element using virtual work principle. 

The virtual strain energy and potential energies of the sandwich beam element are expressed 

in terms of the lateral displacements and the transverse shear strain of the viscoelastic layer. 

The forced vibration equations of constrained layer sandwich required three pairs of boundary 

of conditions. So, the rotation of the mid surface derived from the lateral displacements is 

added for the sandwich beam element to have three degrees of freedom per node. The shape 

functions are analytically derived using the compatibility relation between the lateral 

displacement and the transverse shear strain. The developed beam element is validated with 

Nastran-3 D element. This developed sandwich beam is valid only for symmetric structure 

and further refinement is required for the forced vibration analysis of asymmetric sandwich 

beam structures. The author has validated the developed beam element with experiments. 

 
 From the above literature, it is understood that most of the authors did not consider the 

variation of loss factors with frequency in their model and not validated with experimental 

results. Most of the author validated their model with those of previous investigators. Many 

authors have validated their models using the data of viscoelastic material scotchdamp, 3M 

(1993) that is readily available in the open literature. It is also found that very few authors 

have validated their model with experimental results. Most of the authors consider force 

excitation for computing the frequency responses on the sandwich beam structure. 
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2.2.3   SANDWICH PLATE STRUCTURES 

The analytical models based on FE formulation of sandwich plates developed by various 

investigators are presented below. 

 Ross et al (1959) investigated simply supported plates and assumed a perfect interface 

and compatibility of transverse displacement in each layer. The simply support boundary 

condition is considered during FE modelling of sandwich plate. A theory has been developed 

to calculate the loss factor of sandwich plate.  Also relationship between the shear strains of 

the damping layer to the transverse motion of the structure has been presented in this paper.  

This theory is accurate only for thin constrained layer sandwich plates and for small loss 

factors of the viscoelastic layer.  The authors have not considered the variation of loss factor 

with frequency and used same loss factor in tension and shear.  

 DiTaranto and McGraw (1969) studied three layer asymmetric sandwich plate 

structures. Only transverse inertia effect of the sandwich plate is considered during the 

analysis. Simple support at the four edges is considered as boundary condition. The author has 

presented relationship between modal frequencies and loss factors similar to one presented for 

the sandwich beam results (1965). 

 Sadasiva Rao et al (1974) studied unsymmetrical sandwich plate with viscoelastic 

layer. Previous work in this area is reviewed and it is found that only transverse inertia of the 

sandwich plate is considered during analysis of sandwich plate neglecting longitudinal inertia.  

In addition to transverse inertia, longitudinal transverse inertia and rotary inertia is also 

considered during analysis of sandwich plate. The base plate and constraining layer chosen 

for this work are isotropic and elastic and the constrained layer is considered as viscoelastic 

layer. The influence on the longitudinal inertia on the response of sandwich plate is presented. 

The longitudinal stress of the sandwich plate is considerably affected by the inclusion of these 

inertias. 

 Ioannides et al (1979) presented a Finite element analysis of damped three layer plate 

under harmonic excitation. The base and constraining layer are isotropic and viscoelastic layer 

is used as constrained layer. Damping has been introduced by replacing the real modulus of 

viscoelastic material by a complex modulus. Triangular elements are considered during FE 

formulation and the dynamic stiffness for the sandwich plate is computed. The FE results are 

validated with experiments.  
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 Lu et al (1979) presented analysis of damped plate structure for free-free boundary 

condition using NASTRAN. Experiments are also carried out in free-free boundary conditions 

to validate the FE model. They assumed constant Poisson’s ratio of 0.48 for viscoelastic layer. 

The Young’s modulus is derived from the shear modulus using constitutive relationship. The 

author has considered same loss factors in tension and shear mode. 

 Asnani et al (1984) investigated dynamic analysis of multi-layered rectangular plates 

with constrained viscoelastic layer. A Multi-layered plate is considered with arbitrary number 

of stiff and soft layer. Extension, bending and shear deformation is considered for stiff layers 

and only transverse shear deformation is considered for viscoelastic layers. The authors have 

presented results for three, five and seven layer sandwich structure. The results show that, the 

loss factors increases with increase in number of layers. The longitudinal, transverse and 

rotary inertias along with the transverse inertia are considered in the analytical model. Both 

symmetric and asymmetric sandwich structures are presented in this paper. Symmetric 

sandwich structures provide slightly higher loss factors compared to asymmetric sandwich 

structure. 

 Ganeshan et al (1986) carried out analysis of unconstrained layer plate. The 

unconstrained layer plate results are compared with base plate. Different layer thicknesses are 

considered and the variation of loss factor with thickness is presented. The author concluded 

that loss factors increases with increase in layer thickness.  

 Ha K.H (1990) has presented an overview of finite element analysis of sandwich 

plates till 1990. Finite element models presented by various investigators are analyzed by the 

author and classified them into two categories based on the type of finite element used. The 

first type of finite element is based on the assumed displacement approach and the second 

type is based on the assumed stress hybrid approach.  Within each element, the characteristics 

vary in terms of the formulation, complexity, accuracy and applicability. 

 Lee et al (1996) investigated finite element analysis of composite sandwich plate. The 

base plate and constraining layer are composite (orthotropic) and viscoelastic layer is used as 

constrained layer.  The sandwich plate is modelled using Reissner -Mindlin plate theory. The 

displacement fields of the viscoelastic layer are linearly interpolated in terms of the 

displacement of the base and constraining layer. The authors presented the effect of transverse 

normal deformation of the viscoelastic core on the sandwich plate when it is subjected to 

static load and free vibrations. From the analytical studies, it is concluded that transverse 

normal deformation of the viscoelastic core should not be neglected and natural frequencies 
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decreases when the viscoelastic layer is considered to be flexible. The limitation of this model 

is that the viscoelastic layer is considered as homogenous and its properties do not vary with 

frequency. 

 Cupial et al (1995) analysed the natural frequencies and loss factors for a rectangular 

three layered plate. The base and constraining layers are composite plates and viscoelastic 

layer is chosen as the constrained layer. First order shear deformation theory is considered 

during modelling of sandwich plate. Results of numerical analysis are presented for simple 

supported boundary condition. The results are compared with and without considering shear 

deformation of the base and constraining layers. Young’s modulus, shear modulus and loss 

factors are considered as constant during numerical simulations. 

 Wang et al (2003) studied sandwich plate structure using viscoelastic layer as a 

constrained layer. The base and constraining layer are elastic and isotropic material where as 

viscoelastic layer is used as a constrained layer. GHM method is used to account for the 

frequency dependent complex shear modulus of the viscoelastic layer. For the base plate 

CFCF boundary condition and for the constraining and constrained layers FFFF boundary 

conditions are considered in the model. The numerical results are validated with experiments. 

The errors in the loss factors are found to be high.  

 Hammami et al (2005) presented sandwich plates using viscoelastic layer. The author 

has considered quadrilateral plate element with seven degrees of freedom per node during 

modelling of the sandwich plate. In this work, main focus is on characterization of modal 

damping sandwich plate coefficients and their assessment. The numerical results shows that 

eigen modes are not orthogonal to the damping matrix but are only weakly coupled. The 

modal damping matrix coefficient vary according to the ratio of the core thickness to the total 

thickness of sandwich plate and follow a second order polynomial function of this ratio. The 

author has not validated the model with the experimental results. 

 Torvik and Runyon (2007) investigated the loss factor of rectangular sandwich plates 

with CLD treatment for various boundary conditions. A method is developed and validated 

predicting loss factors for different boundary conditions for asymmetric sandwich plate. The 

method is referred as equivalent lengths. This method is used in predicting the loss factors of 

sandwich plate using the loss factors and natural frequencies obtained from RKU analysis of 

sandwich beams. Application of this method requires storage modulus, thickness and density 

of the base plate, constraining and constrained layer as well as natural frequency of the plate 

and boundary condition to which the constrained layer treatment is to be applied. This method 
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is validated with finite element method for various boundary conditions. The Young’s 

modulus, shear modulus and loss factors are considered as constant and do not vary with the 

frequency. 

 Saeed et al (2012) presented transverse response of sandwich plate with viscoelastic 

core under random excitation. Quadratic displacement field is adopted for core to capture 

higher modes under random excitation. The Love-Kirchhoff plate theory is considered for 

base and constraining layers. GHM is used to model the viscoelastic layer taking care of 

complex storage modulus. To account for the frequency dependent complex modulus, an 

internal dissipation coordinate is added which increases the size of the stiffness matrix.  

 Zhicheng et al (2014) investigated vibration and damping characteristics of sandwich 

plates with viscoelastic layer. The sandwich plate element is modelled as a four node 

rectangular element with seven degrees of freedom at each node. First order shear 

deformation theory is used for all the layers. The finite element equations of motion are 

derived using the Hamilton principle in variational form. Numerical examples are given to 

validate the developed model. The influence of layer thickness, loss factors of the viscoelastic 

layer on the natural frequency are presented. The author has not accounted for the frequency 

dependent material properties of viscoelastic layer and not validated the model with 

experiments.  
From the above literature, it is understood that most of the authors did not consider the 

variation of loss factors with frequency in their model and not validated with experimental 

results. Most of the authors considered forced excitation for computing the frequency 

responses on the sandwich plate structure. The exciter dynamics also contributes to the 

estimation of the loss factors of sandwich plate structure. This research gap can be filled with 

the proposed base excitation method which can accurately predict the loss factors of the 

sandwich structures.  

 

2.3   SCOPE OF THE PRESENT RESEARCH 

 

The literature review on modelling of sandwich beam and plate structures with 

viscoelastic layers is well reported. However, improving the effectiveness and accuracy of 

solutions for those sandwich structures is still an important goal. In the present work, two 

viscoelastic materials developed for defence applications have been characterized and used in 

the dynamic models of sandwich beam and plate structures. Further, a better dynamic model 
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for sandwich beam and plate structures along with a computational scheme to solve the 

dynamic equations of motion is presented. This dynamic model considers the frequency 

dependent materials properties of the viscoelastic material that is ignored by the previous 

investigators.  The results with and without considering the viscoelastic material properties 

are validated with experimental results.  

 

2.3.1   VISCOELASTIC MATERIALS AND MODELLING 

 

In the present work, two viscoelastic materials have been characterized using Dynamic 

Mechanical Analyzer (DMA). The frequency dependent material properties like: Young’s 

modulus, shear modulus and loss factors are obtained by testing the viscoelastic samples in 

tension and shear mode. The obtained experimental data from DMA is expressed in 

mathematical form using power fit. These mathematical expressions are used during the 

development of dynamic models of sandwich beam and plate structures. 

  

2.3.2    SANDWICH BEAM STRUCTURES 

 

In the present work, a sandwich finite element is developed considering the frequency 

dependent material properties of the viscoelastic material. The model is based on the discrete 

displacement approach and curvature effect is taken into account. It is a beam element with 

four degrees of freedom per node. The primary field variables are longitudinal displacements 

of base and constraining layer and transverse displacement and rotation of sandwich beam. 

The element uses linear and cubic polynomial to interpolate longitudinal and transverse 

displacements. The rotational influence of the shear in the viscoelastic layer on the base and 

constraining layer ensures displacement consistency over the interface between the 

viscoelastic layer, base layer and constraining layer. Experiments have been carried out to 

validate the developed sandwich beam element to estimate frequency response functions, 

natural frequencies, amplifications and loss factors. 
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2.3.3    SANDWICH PLATE STRUCTURES 

 

In the present work, a sandwich plate element is developed considering the frequency 

dependent storage modulus of viscoelastic material. The primary displacement field variables 

in the sandwich plate element are in-plane displacement of base and constraining layer, 

rotation of base and constraining layer and transverse displacement of sandwich plate. It is a 

quadrilateral plate element with nine degrees of freedom. The model is based on the discrete 

displacement approach and also account for the curvature effect. The transverse shear 

deformation of viscoelastic layer is obtained from the in-plane displacements and rotations of 

the base and constraining layer.  The rotational influence of the transversal shear in the 

viscoelastic layer on the base plate and constraining layer ensures displacement consistency 

over the interface between the viscoelastic layer, base plate and constraining layer. 

Experiments have to be carried out to validate the developed sandwich plate element to 

estimate frequency response function, natural frequencies, amplification factors and loss 

factors. 

 

2.3.4 SIMULATION STUDIES 

 

 In the present work, simulation studies are carried out to identify optimal layer 

thicknesses for a given sandwich plate thickness to achieve high loss factors. Damping loss 

factors are obtained for different thickness proportions under various boundary conditions to 

identify these optimal parameters. 

 

2.4   SUMMARY 

 

 The published literature on viscoelastic material models and FE model of sandwich 

beam and plate structures by various investigators are presented in this chapter. From the 

literature it is understood that the frequency dependent material properties like Young’s 

modulus, shear modulus, loss factors and Poisson’s ratio of the viscoelastic materials are not 

considered during modelling of sandwich structures. Based on this literature, the research 

problem is identified and scope of the work is presented. 
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CHAPTER 3 

 

VISCOELASTIC MATERIALS AND THEIR 

CHARACTERIZATION 

 

3.1   INTRODUCTION 

 

The objective of this chapter is to describe the behaviour of viscoelastic materials and 

their characterization through DMA tests. The viscoelastic material plays a significant role in 

enhancing the damping of a sandwich structures. Hence, it is necessary to understand their 

behaviour in detail.  Two viscoelastic materials developed for Defence application are chosen 

for this study. 

Viscoelasticity is defined as material response that exhibits characteristics of both 

viscous fluid and an elastic solid. An elastic material regains its original shape when stretched 

and released, whereas viscous fluid retains its deformed shape. Viscoelastic material (VEM) 

combines these two properties. It returns to its original shape after being stressed, but does it 

slowly enough to oppose the next load cycle. The degree to which a material behaves either 

viscously or elastically under cyclic loading depends on temperature and frequency. The 

material properties namely Young’s modulus, shear modulus and loss factors of viscoelastic 

material are generally represented in complex modulus form. The complex modulus brings in 

lot of convenience in understanding the behaviour of viscoelastic materials. The properties of 
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viscoelastic material depend significantly on environmental and loading conditions such as 

temperature, frequency, pre-load and humidity etc., 

 

3.2   BEHAVIOUR OF VISCOELASTIC MATERIALS 

 

 Viscoelastic material exhibits both elastic and viscous behaviour. The time responses 

of stress and strain behaviour under cyclic loading for an ideal elastic and viscous material are 

shown in Figures 3.1and 3.2. For an ideal elastic material, dynamic stress  is linearly 

proportional to dynamic strain , where the proportionality constant is Young’s modulus 

‘E’ related by the standard expression as follows. 

 

  (3.1) 

 

 From the stress strain behaviour as shown in Figure 3.1, it can be observed that the 

stress and strain for elastic materials are completely in phase. In this process, energy is 

completely conserved i.e. during loading the work done by external force is stored in the form 

of strain energy and this entire energy is released during unloading cycle. The stress-strain 

behaviour of ideal viscous material is shown in Figure 3.2. Under cyclic loading, the strain 

lags the stress by a quarter time period indicating that the stress is proportional to rate of 

strain. The proportionality constant is the coefficient of viscosity (μv). This is a non 

conservative process and the work done by the applied force is dissipated due to phase lag 

between stress and strain. The constitutive relation for this ideal viscous material is given as 

follows. 

  (3.2) 
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Figure 3.1 Response under cyclic loading for purely elastic material [22]  

 

Figure 3.2 Response under cyclic loading for purely viscous material [22] 

The viscoelastic material exhibits both elastic and viscous properties. The variation of 

stress and strain under cyclic loading for viscoelastic material is shown in Figure 3.3, where it 



24 
 

can be observed that strain lags the stress by less than a quarter period unlike ideal viscous 

fluid. When this time responses are seen in frequency domain, usually the phase is 

represented as an angular quantity expressed in radians. For viscoelastic materials, this 

phase angle is between 0 and π/2. Justifying their name, viscoelastic materials exhibit 

partly elastic and partly viscous behaviour. During a loading cycle, the energy associated with 

elasticity is conserved while the energy associated with viscosity is dissipated. The 

viscoelastic materials are characterized by the ratio of the energy dissipated to the total energy 

in a cycle. This energy dissipation is vital in vibration control as it deals with dissipation of 

energy which is causing vibration. This dissipation is referred as damping in the vibration 

terminology. The phase angle  is a measure of the material damping. The larger the angle 

the greater is the damping. 

 

Figure 3.3 Response under cyclic loading for viscoelastic material [22] 

For viscoelastic material, the stress is proportional to strain and strain rate. The 

constitutive relation for the time dependent stress and strain can be expressed as follows. 

  (3.3) 

The dynamic stress and strain induced in viscoelastic material under harmonic force can be 

expressed as, 
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  (3.4) 

       (3.5) 

Where,  is the stress amplitude, 0 is the strain amplitude, ω is the frequency of excitation 

force and δ is the phase angle between stress and strain. By manipulating equation 3.4, it 

can be written as, 

     (3.6) 

By expanding the above equation, it can be expressed as follows. 

  (3.7) 

Equation 3.5 can be re-written as follows. 

 
 

(3.8) 

By differentiating the above equation with respect to time and suitable manipulation, it can 

be expressed as, 

 
 

(3.9) 

By substituting equation 3.8 and 3.9 in equation 3.7, it can expressed as follows, 

 
 

 
(3.10) 

     

The term corresponds to   and    in the above equation are replaced with  

and E″, it can be expressed as follows, 

 ′   ;      ; (3.11) 

By substituting  and E″ of the equation in equation (3.10), it can be expressed as follows, 

 
 

(3.12) 

Where,  is known as storage modulus and E″ is known as loss modulus and it depends on 

frequency of loading and unloading cycle. 

By introducing   and manipulating equation (3.11), it can be expressed as 

 
 

(3.13) 

By substituting the above equation in equation (3.12), it can be expressed as follows, 

 
 

(3.14) 
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The stress-strain relationship can also be expressed in terms of complex exponential 

function. The dynamic stress and strain can be expressed as follows 

    and      (3.15) 

 where,   

By introducing equation 3.15 in equation 3.12, it can be expressed as follows  

  =  (3.16) 

 
 

 

(3.17) 

where E* is the complex Young’s modulus of viscoelastic material. 

Similarly, the dynamic stress and strain induced in viscoelastic material under harmonic 

shear force can be expressed as 

 
  

(3.18) 

    and   =  (3.19) 

     (3.20) 

  
 

 

(3.21) 

where, G* is the complex shear modulus of viscoelastic modulus 

Equations (3.17) and (3.21) give the complex modulus relationship for Young’s modulus and 

shear modulus respectively. From these equations it is clearly evident that Young’s and shear 

modulus also called as storage modulus are dependent on frequency. 

 

3.3   EFFECT OF FREQUENCY 

 

The frequency is one of the important factors affecting the dynamic properties of 

viscoelastic materials.  Figure 3.4 shows the effect of frequency on storage modulus and loss 

factor [22]. Experiments have shown that vibration frequency or the rate of loading has 

significant effect on the loss factor and storage modulus of viscoelastic materials. In the 

rubbery region, the storage modulus and loss factor increase slowly with frequency. In the 

transition region, the storage modulus increases rapidly with frequency, whereas the loss 
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factor increases for some portion of frequency and then decreases rapidly with frequency. In 

glassy region, the storage modulus increases slowly whereas the loss factors decreases rapidly 

with frequency.  

 

Figure 3.4 Effect of frequency on storage modulus and loss factor [22] 

 

3.4   EFFECT OF TEMPERATURE 

 

The temperature is also an important environmental factor affecting the dynamic 

properties of viscoelastic materials. The typical variation of storage modulus and loss factor 

[22] with temperature for a viscoelastic material is shown in Figure 3.5. It has four distinct 

regions. The first region is glassy state where the material has very large storage modulus 

(dynamic stiffness) but very low loss factor. The storage modulus in this region changes 

slowly with temperature, while the loss factor changes significantly with increasing 

temperature. In the transition region where the material changes from a glassy state to a 

rubbery state, the material modulus decreases rapidly with increasing temperature. Due to 

increase in temperature, the viscoelastic material softens and this is the reason for increase in 
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loss factor in this region. The loss factor usually peaks around the glass transition region. In 

rubbery stage, both modulus and loss factor decreases slowly with temperature. The flow 

region is typical for a few damping material such as vitreous enamels and thermoplastics, 

where the material continue to soften as temperature increases while the loss factor reach very 

high value. 

 

Figure 3.5 Effect of temperature on storage modulus and loss factor [22] 

 
3.5 CHARACTERIZATION OF VISCOELASTIC MATERIALS 
 

Two viscoelastic materials namely EAP-2 and EAP-43 developed for Defence 

applications are chosen in the present work and characterized using Dynamic Mechanical 

Analyzer (DMA). The properties of these viscoelastic materials namely Young’s modulus, 

shear modulus and loss factors are frequency and temperature dependent. These properties are 

obtained at discrete frequencies from 10-2 Hz to 106 Hz at room temperature. The frequency 

dependent data is expressed in a mathematical form using power fit to incorporate into the 

dynamic model. The polymers used in EAP-2 and EAP-43 are Nitrile Butadiene Rubber 

(NBR) and Polyvinyl Chloride (PVC) blend. The two materials differ in terms of type of filler 

used. EAP-2 has titanium dioxide as a pigment and semi reinforced filler, while EAP-43 has 
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carbon black as reinforced filler. The sample details of viscoelastic material are discussed in 

next section 

 

3.5.1 SAMPLE DETAILS 

 

 The viscoelastic samples are prepared as per ASTM D4065 for tension and shear 

mode. The size of the sample for tensile mode is 50 mm X 10 mm X 2 mm and the size of the 

sample for shear mode is 15 mm X 15 mm X 2 mm. The photograph of samples holders for 

tensile and shear mode are shown in Figure 3.6. 

  

(a) Tension (b). Double Shear 

Figure 3.6 Photograph of  Energy Absorbing Polymer (EAP-2) with fixtures in DMA 

 

3.5.2 DYNAMIC MECHANICAL ANALYZER (DMA) 

 

 Dynamic Mechanical Analyzer examines variation in viscoelastic material properties 

under thermal and dynamic loading. The DMA tests are carried out as per standard ASTM 

D4440-15. The instrument applies a sinusoidal stress and measures the resulting strain. The 

applied force is well within the linear viscoelastic range. The material properties of 
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viscoelastic materials are evaluated for a frequency range from 10-2 Hz to 106 Hz at room 

temperature.   Viscoelastic samples are placed in the holders either in tension mode or shear 

mode. The photograph of DMA is shown in Figure. 3.7.  

 

Figure 3.7 Dynamic Mechanical Analyzer (EPLEXOR 150 N) 

 DMA test allows the estimation of the Young’s modulus (E′), loss modulus (E″) and 

loss factor (tan δ) by positioning the viscoelastic sample in tension mode. Similarly, for 

estimation of the shear modulus (G′), loss modulus (G″) and loss factor (tan δ) the viscoelastic 

sample is positioned in shear mode. These moduli are defined as the ratio of dynamic stress to 

dynamic strain developed in the viscoelastic material.  Therefore, by measuring stress, strain 

and phase angle during the experiment, complex moduli of viscoelastic materials are 

calculated. 

 

3.5.3 RESULTS OF DMA TEST FOR EAP-2 AND EAP-43 

 

 The two viscoelastic materials, EAP-2 and EAP-43 are characterized for their 

frequency dependent material properties. These materials are tested in tension and shear mode 

for discrete frequencies ranging from 10-2 Hz to 106 Hz at room temperature. The 

experimentally obtained material data for EAP-2 along with curve fit are shown in Figures 
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3.8-3.11. The comparison of material properties of EAP-2 and EAP-43 with curve fit up to 

1000 Hz are shown in Figures 3.12 to 3.15. 

 

Figure 3.8 Variation of Young’s modulus with frequency (EAP-2) 

 

Figure 3.9 Variation of shear modulus with frequency (EAP-2) 
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Figure 3.10 Variation of Loss factor with frequency in tensile mode (EAP-2) 

 
Figure 3.11 Variation of Loss factor with frequency in shear mode (EAP-2) 
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Figure 3.12 Variation of Young’s modulus with frequency for EAP-2 and EAP-43 

 

 

Figure 3.13 Variation of shear modulus with frequency for EAP-2 and EAP-43 
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Figure 3.14 Variation of loss factors with frequency for EAP-2 and EAP-43 
 (Tension mode) 

 

 
Figure 3.15 Variation of loss factors with frequency for EAP-2 and EAP-43 

 (Shear mode) 
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The material properties as a function of frequency are mathematically using a power 

fit available in MATLAB and are given in the following equations: 

  (3.22) 

  (3.23) 

 (Tensile mode) (3.24) 

   (Shear mode)  (3.25) 

where Ev and Gv are the real part of Young’s modulus and shear modulus of the viscoelastic 

material.  and  are the loss factors in tension and shear mode of viscoelastic 

material.  

The complex Young’s modulus and shear modulus are expressed in complex form using 

equations (3.22 to 3.25) as follows. 

  (3.26) 

  (3.27) 

where,  and  are the complex Young’s modulus and shear modulus of viscoelastic 

material. 

 

The constants in the equations 3.22 to 3.25 for EAP-2 and EAP-43 are given in Table 3.1.  

 

Table 3.1 Constants of EAP-43 and EAP-2 obtained from Curve fit of DMA data 

 Viscoelastic materials 

Tension mode Shear mode 

Constants EAP-43 EAP-2 Constants EAP-43 EAP-2 

a11 1.6x106 1.24x 106 a12 0.16x 106 0.18x 106 

b11 0.4330 0.4179 b12 0.430 0.4069 

c11 4x105 3.00x 105 c12 0.25x105 0.278x 105 

a13 0.29 0.3112 a14 0.2781 0.1977 

b13 0.1189 0.124 b14 0.1692 0.2026 

c13 0.0629 0.0678 c14 0.08141 0.007035 
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3.6 SUMMARY 

 

 In this chapter, two viscoelastic materials, EAP-2 and EAP-43 are characterized using 

Dynamic Mechanical Analyzer (DMA) for their frequency dependent material properties: 

Young’s modulus, Shear Modulus, Poisson’s ratio and loss factors.  The sample details, test 

setup and procedure for characterising viscoelastic material are explained. The frequency 

dependent material properties obtained from experiments at a reference temperature of 250 

Centigrade for both the viscoelastic materials are presented in this chapter.  The experimental 

data obtained from DMA is expressed in mathematical form using power fit as a continuous 

function of frequency in the range 10-2 Hz to 106 Hz. Through these equations, frequency 

dependent material properties of the viscoelastic layers are introduced in the dynamic models 

of sandwich structures. 
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CHAPTER 4 

 

MODELLING OF SANDWICH STRUCTURES WITH 

VISCOELASTIC LAYERS 

 

4.1   INTRODUCTION 

 

In the previous chapter, viscoelastic materials and their characterization have been 

discussed. This chapter deals with dynamic modelling of sandwich beam containing beams 

and plates with viscoelastic damping layer. In this dynamic model, frequency dependent 

Young’s modulus, shear modulus and loss factors of viscoelastic materials are considered. A 

curve fit is developed with the experimental data to express elastic moduli and loss factor as a 

function of frequency. In the sandwich beams and plate structures, the base and constrained 

layers are elastic and the material properties are independent of frequency, whereas the 

constrained layer is viscoelastic layers and the material properties are frequency dependent. 

Generally, the Young’s modulus and shear modulus of viscoelastic materials are represented 

as complex quantities in which the real and imaginary parts denote the elastic modulus and 

loss modulus respectively. Hence, the the stiffness matrix is also complex. This chapter deals 

with finite element based dynamic modelling of sandwich beam and plate structures with 

viscoelastic layers.  
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4.2   DYNAMIC MODELLING OF SANDWICH STRUCTURES 

 

The sandwich structure is discretized into finite elements and dynamic equations of 

motion of the structure are developed using Lagrangian method. The Lagrangian  is defined 

as 

  (4.1) 

Where T is the kinetic energy and P is the potential energy of the element. 

The equations of motion can be derived using the following Lagrangian  

 
 (4.2) 

   

where,  n is the number of degrees of freedom (DOF),  is the ith generalized displacement,  

is the ith generalized velocity and ‘W’ is the work potential. 

The above equation can be expressed in vectors form as follows. 

 
 (4.3) 

where  is the generalized velocity vector and   is the generalized displacement vector 

and ‘W’ is the work potential. In the present case, the kinetic energy is a function of velocity 

and potential energy is a function of displacement. The equations are solved for base 

excitation. So, work potential is not present in the above equation. Hence, the above equation 

can be written as 

 
 

 
(4.4) 

These equations are used to derive the dynamic equations of motion for sandwich 

beam and plate structures. The elemental equations of motions are obtained by introducing the 

expression for potential energy and kinetic energy in the above equation. The work potential 

term is not included in the present chapter and it is dealt separately through base excitation in 

next chapter. The elemental equations are assembled by imposing the connectivity and 

compatibility across the element boundaries. The sandwich beam and plate structures with 

viscoelastic layers are generally used either in unconstrained layer or constrained layer 

configuration. The detailed process of formulation of these equations of motion for sandwich 

beams and plates are presented in the following sections. 
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4.2.1 SANDWICH BEAM STRUCTURES 

 

 The sandwich beam considered in this study consists of three layers namely base 

beam, constrained layer and constraining layer. The base and constraining layers are elastic 

materials whereas constrained layer is a viscoelastic material. The viscoelastic layer is 

sandwiched between base and constraining layer using an epoxy adhesive. Perfect bonding is 

ensured between all the glued surfaces of the sandwich beam. Linear theories of elasticity and 

viscoelasticity are used.  A finite element based dynamic model is developed for constrained 

layer sandwich beam structure considering the shear effect of the viscoelastic layer. 

 
 The formulation is based on the following assumptions [24] 

i. The longitudinal displacement of base and constrained layer are independent primary 

field variables.  

ii. Neutral axis is computed for the sandwich beam and transverse displacement is 

considered about neutral layer and is assumed to be same for all three layers. The 

transverse displacement is another primary variable. 

iii. Perfect bonding is assumed among the glued surfaces. 

iv. The longitudinal displacement of the viscoelastic layer can be expressed as a function 

of base and constraining layer displacements assuming continuity across the glued 

surfaces. 

v. Linear theories of elasticity and viscoelasticity are used. 

vi. The inertia effects in both longitudinal and transverse direction are considered for the 

base beam and constraining layer. The inertia effect is considered only in transverse 

direction for viscoelastic layer. The rotary inertia effects are neglected for all three 

layers. 

 The configuration of sandwich beam with viscoelastic layer is shown in Figure 4.1.      

The un-deformed configuration of sandwich beam is shown in Figure 4.1(a). The lengths of 

base beam, constrained and constraining layers are given by L, Lv and Lc respectively. The 

viscoelastic and constrained layers are free at both ends. The thicknesses of the base beam, 

viscoelastic layer and constraining layer are tb, tv and tc respectively. The deformed 

configuration of sandwich beam is shown in Figure 4.1(b). The section AA′ BB′ of the 

deformed configuration is shown in Figure 4.1(c) indicating the displacement and rotations of 

individual layers. The nodal displacements of constrained layer sandwich beam are shown in 
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Figure 4.2. The longitudinal displacement of base beam (u1) and constraining layer (u3), the 

transverse displacement (w) and rotation ′  are considered as primary variables.  The 

transverse displacement (w) and rotation is assumed to be same for all the three 

layers. Linear and cubic polynomials are employed to interpolate longitudinal and transverse 

displacement fields respectively. 

 

 

Figure 4.1 (a) Cantilever sandwich beam with viscoelastic layer 

 

 

 

 

Figure 4.1 (b) Deformed configuration of sandwich beam 
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Figure 4.1 (c) Deformed configuration of section AA'BB' 

 

The shear strain of the viscoelastic layer can be expressed as,  

 
 (4.5) 

 

(A) INTERPOLATION OF DISPLACEMENT FIELDS 

 

 The sandwich beam element considered is a two noded element with four degrees of 

freedom per node as described in Figure 4.2. The nodal degrees of freedom are the 

longitudinal displacement of base beam (u1), longitudinal displacement of the constraining 

layer (u3), the transverse displacement (w) and rotation (w′). Assuming Euler-Bernoulli beam 

theory, the transverse rotation (w′) is the gradient of the transverse displacement (w).  

The chosen primary field variables within the element are interpolated in terms of the 

corresponding nodal displacements and they are mapped to the sandwich beam element nodal 

displacements. Assuming no coupling between longitudinal and transverse displacement, the 

field variables are interpolated in terms of corresponding discrete nodal displacements.   
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Figure 4.2 Nodal displacements of sandwich beam element 

 

The longitudinal displacement of base beam ‘u1’ is purely a function of the nodal longitudinal 

displacements ‘u11’ and ‘u12’. Similarly, the longitudinal displacement of constraining layer 

‘u3’ is purely a function of the nodal longitudinal displacements ‘u31’ and ‘u32’. The transverse 

displacement ‘w’ is assumed to be same for all the three layers and they are interpolated in 

terms of nodal transverse displacements and rotations . The derived 

displacements and rotations of the viscoelastic layer are functions of the primary variables of 

base and constraining layer. Hence, interpolation functions of all the primary variables are 

mapped to the entire nodal displacement vector of the sandwich beam element. 

 For convenience, the nodal displacements of the sandwich beam are expressed in a column 

vector as given below. 

  (4.6) 

Where { } is referred as the nodal displacement vector of sandwich beam element 

The interpolation functions for the element displacements can be expressed in the polynomial 

form as follows. 

  

 

 

 

 

(4.7) 

By replacing the polynomial coefficients {a1, a2, a3,……….,a8} with the nodal displacement 

variables, the following interpolations can be obtained.  

The longitudinal displacement ‘u1’ of base beam can be expressed as,  

 
 (4.8) 
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The chosen primary field variable ‘u1’within the element is interpolated in terms of the 

corresponding nodal displacements and they are mapped to the sandwich beam element 

nodal displacements as follows. 

  (4.9) 

where  is the interpolation function for longitudinal displacement of base beam and it 

can be expressed as follows. 

 
 

(4.10) 

 

The strain due to longitudinal displacement of base beam  can be expressed as, 

  (4.11) 

where  is the row vector relating strain due to longitudinal displacement of base beam 

and nodal displacements of sandwich beam element  

By differentiating longitudinal displacement of equation (4.9) with respect to time, the 

velocity vector (  of the base beam can be expressed as, 

  (4.12) 

where,  is the velocity of the base beam in longitudinal direction and  is the nodal 

velocity vector of sandwich beam. 

The longitudinal displacement ‘u3’ of the constraining layer can be expressed as,  

 
 (4.13) 

The chosen primary field variable ‘u3’within the element is interpolated in terms of the 

corresponding nodal displacements and they are mapped to the sandwich beam element 

nodal displacements as follows. 

  (4.14) 

where  is the interpolation function for longitudinal displacement of constraining layer 

and it can be expressed as 

 
 (4.15) 

The strain due to longitudinal displacement of  the constraining layer can be expressed as, 

  (4.16) 

where  is the row vector relating strain due to longitudinal displacement of the 

constraining layer and nodal displacements of sandwich beam. 
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By differentiating longitudinal displacement in equation (4.14) with respect to time, the 

velocity vector ( of the constraining layer can be expressed as, 

  (4.17) 

The transverse displacement ‘w’ of sandwich beam can be expressed as,  

 

(4.18) 

The chosen primary field variable ‘w’ within the element is interpolated in terms of the 

corresponding nodal displacements and rotations and they are mapped to the sandwich 

beam element nodal displacements as follows. 

  (4.19) 

Where   is the interpolation function for transverse displacement of sandwich beam 

and it can be expressed as: 

 

By differentiating the transverse displacement of equation (4.19) twice with respect to ‘x’, 

the beam curvature ‘κ’ can be obtained as follows 

 
  

(4.21) 

where  is the row vector relating beam curvature and nodal displacements of sandwich 

beam element. 

The transverse rotation (w′) of the sandwich beam can be derived by differentiating 

equation (4.18) with respect to time and can be expressed as, 

 
 

   (4.22) 

The above equation can also be expressed as,  

    (4.23) 

Where   is the interpolation function for transverse rotation of sandwich beam and it 

can be expressed as, 
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       (4.24) 

From equations (4.5), the shear strain in the constrained layer  can be expressed in terms 

of nodal displacements as follows: 

  (4.25) 

Where   is the row vector relating shear strain of viscoelastic layer and nodal 

displacement of sandwich plate and it can be expressed as given below: 

 
 (4.26) 

 

(B)  STRAIN ENERGY OF SANDWICH BEAM  

 

 The strains due to longitudinal displacements and transverse displacement of sandwich 

beam are assumed to be uncoupled and they are expressed separately. The strain energy of 

sandwich beam has contributions from the longitudinal displacement of base and constraining 

layer, transverse displacement of the three layers and transverse shear deformation of 

viscoelastic layer.  These contributions of individual strain energies of the sandwich beam are 

derived as below. 

 The contribution of strain energy due to longitudinal displacement of the base beam (Pbe) can 

be expressed as follows: 

 
 

 
(4.27) 

By introducing  equation (4.11) for { } in the above equation, it can be expressed as, 

 
 

 
(4.28) 

The strain energy due to longitudinal displacement of the constraining layer (Pce) can be 

expressed as follows. 

 
 

 
(4.29) 

By introducing  equation (4.16) for { }in the above equation, it can be expressed as, 

 
 

 
(4.30) 

The strain energy due to longitudinal displacement of base beam and constraining layer can 

be combined and it can be expressed as follows. 
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  (4.31) 

By substituting equations (4.28) and (4.30) for   and   in the above equation, it 

can be expressed as follows. 

 
 

 
(4.32) 

The above equation can also be expressed as follows.  

 
 

 
(4.33) 

Where, [Kee] is the element stiffness matrix due to the longitudinal deformation of base 

beam and constraining layer and can be expressed as follows. 

 
 

 
(4.34) 

The strain energy due to transverse displacement of the sandwich beam can be expressed as, 

 
 

 
(4.35) 

where  is the equivalent rigidity of sandwich beam [46]. 

Where, (  is the curvature of sandwich beam. By introducing equation (4.21) for  in the 

above equation, it can be expressed as follows. 

 
 

 
(4.36) 

The above equation can also be expressed as follows.  

 
 

 
(4.37) 

where, [Keb] is the element stiffness matrix of the sandwich beam due to transverse 

displacement of the sandwich beam and it can be expressed as follows. 

 
 

 
(4.38) 

The viscoelastic layer is sandwiched between base beam and constraining layer which 

undergoes shear deformation. The shear strain energy for this shear deformation can be 

expressed as 

 
 

 
(4.39) 
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where is the complex shear modulus of viscoelastic material. The shear modulus is 

frequency dependent and equation (3.27 of chapter 3) is introduced in the above equation. So, 

the above equation is also frequency dependent. An iterative computational scheme is 

developed for solving these equations which will be explained in next chapter. 

By substituting equation (4.25) for the shear strain of viscoelastic layer, it can be expressed as 

  
(4.40) 

The above equation can also written as,  

 =  (4.41) 

where [ ] is the element complex stiffness matrix due to shear deformation of the 

viscoelastic layer and can be expressed as, 

 
 (4.42) 

The total strain energy (Pe) of the sandwich beam element can be expressed as 

  (4.43) 

By substituting equations (4.33), (4.37) and (4.41) for   and  in the above 

equation, it can be expressed as follows. 

 
 (4.44) 

where [  is the stiffness matrix of sandwich beam element and can be expressed as follows. 

  (4.45) 

Due to the complex nature of the shear modulus, the element stiffness matrix [   is also 

complex in nature. The above element stiffness matrix of the sandwich beam can be 

partitioned for convenience as follows; 

 
 

(4.46) 

 

 (4.47) 
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(4.48) 

 

 

 

(4.49) 

 

(C)  KINETIC ENERGY OF SANDWICH BEAM 

 

 The assumptions made in the formulation of potential energy are considered in the 

formulation of kinetic energy also. The longitudinal and transverse motions of the sandwich 

beam structure are uncoupled and they are expressed separately. The individual contribution 

of kinetic energy associated with longitudinal motion of base beam  and constraining 

layer ( ) can be expressed as follows: 

 
 

 
(4.50) 

By introducing equation (4.12) for velocity of base beam in the above equation, it can be 

expressed as, 

 
 

 
(4.51) 

The kinetic energy associated with longitudinal motion of constraining layer ( ) can be 

written as, 

 
 

 
(4.52) 

By introducing equation (4.15) for velocity of constraining layer in the above equation, it 

can be expressed as, 
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(4.53) 

are the densities of base layer, viscoelastic layer and constraining layer 

respectively. 

The kinetic energy due to longitudinal motion of base beam and constraining layer can be 

combined and can be expressed as, 

 
 

 
(4.54) 
 

The above equation can also be expressed as  

 =  (4.55) 

where, [Mee] is the element mass matrix due to longitudinal motion of base beam and 

constraining layer and it can be expressed as 

 
 

 
(4.56) 

The kinetic energy due to transverse motion of the base beam, viscoelastic and constraining 

layer can be expressed as 

 
 

 
(4.57) 

where,  

The kinetic energy due to transverse motion of sandwich beam in terms of nodal velocities 

can be expressed as 

 
 

 
(4.58) 

The above equation can also be expressed as  

 =  (4.59) 

Where, [Meb] is the  element mass matrix due to transverse motion of base beam and 

constraining layer and it can be expressed as follows 

 dx (4.60) 

The total kinetic energy of sandwich beam can be written as 

  (4.61) 

using equation (4.49) and (4.52), the above equation can be expressed as  
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 (4.62) 

where   is the element mass matrix of sandwich beam and it can be expressed 

as 
 

  (4.63) 

The above element mass matrix can be partitioned in terms of [  

 
 (4.64) 

Where, 

 

 

 

(4.65) 

 

 

 

(4.66) 

 

By introducing the total potential energy of equation (4.43) and total kinetic energy of 

equation (4.61) in Lagrangian equation (4.4), the element dynamic equation of motion can be 

obtained as 

  (4.67) 

By assembling the elemental equations by ensuring continuity across the element boundaries, 

the equations of motion for the sandwich beam can be obtain in the following form 

  (4.68) 

The same formulation is used for unconstrained layer sandwich structures by degrading the 

material constants of the constraining layer to near zero value. 

 

(D) FE MODEL 

 

 The sandwich beam is modelled considering Euler – Bernoulli assumptions for base 

and constraining layer and transverse shear for constrained layer to evaluate the dynamic 

properties. The sandwich beam is discretized using two noded beam elements, with four 

degrees of freedom (DOF) at each node. The FE mesh of sandwich beam is shown in Fig.4.3. 
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Figure 4.3 Finite element mesh of sandwich beam 

The constrained and constraining layer length is 290 mm compared to base beam length of 

300 mm. The sandwich beam is discretized into 30 elements with each element of 10 mm 

length. During FE model constraining and constrained layer are modelled up to fixed end. The 

material properties of constrained and constraining layer for the first element are degraded to 

low value to represent the absence of this layer in the sandwich element. The dotted line in the 

above Figure 4.3 indicates these details. i.e. only the base layer is clamped to simulate 

cantilever boundary condition. The element mass matrix and complex stiffness matrix are 

assembled using standard assembly procedure to ensure continuity and compatibility across 

the boundaries. The assembled dynamic equation of motion of sandwich beam is expressed by 

equation (4.68). All DOF’s corresponding to clamped edge is constrained to simulate 

clamped-free (cantilever) boundary condition.  The detailed procedure of solving dynamic 

equations of motion is described in chapter 5. The same FE code is used to model the 

unconstrained layer by setting the material properties of the constraining layer to zero. 

 

4.2.2 SANDWICH PLATE STRUCTURES 

 

This section deals with the dynamic modelling of sandwich plates. The three layer 

plate structure consists of a viscoelastic layer sandwiched between the base plate and 

constraining layer with an adhesive. The base and constraining layer are made of elastic and 

isotropic material. Perfect bonding is ensured between all the glued surfaces of sandwich 

plate. The actual challenge lies in introducing the complex elastic moduli and loss factors of 

the viscoelastic layer in the dynamic model. 
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Figure 4.4 Sandwich plate  

 

(a) (b) 

Figure 4.5 Deformed configuration of transverse section of sandwich plate [7] 
pp. X-Z Plane (b) Y-Z  Plane 

 
 The sandwich plate under consideration is shown in Figure 4.4. The deformed 

configuration of a section of sandwich plate along with the displacements and rotations in 

both the transverse planes are shown in Figures 4.5 (a) and (b) respectively. During 

formulation, it is assumed that no coupling exist between the longitudinal and transverse 

displacement of each layer. The shear deformation is considered for all the three layers.  From 

Figure 4.5, the transverse displacement (w) is assumed to be same for the sandwich plate. The 

longitudinal displacements of the base layer are (u1and v1) and transverse rotations are (α1 and 

β1). In a similar way, the field variables of the constraining layer are u3, v3, α3and β3.  
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Transverse displacement (w) of the sandwich plate, longitudinal displacements and transverse 

rotations of base and constraining layer plate are chosen as the primary field variables. The 

longitudinal displacement and transverse rotation of the viscoelastic layer (u2, v2, α2 and β2) 

are related to the primary variables to ensure the continuity of displacement field at the 

interfaces between the base plate, constrained (viscoelastic) layer and constraining layer.  

The continuity requirement for displacement field at the interfaces between the base 

layer, constrained layer and constraining layer leads to the following constraint equations. 

 
 (4.69) 

 
 (4.70) 

 
 (4.71) 

 
 (4.72) 

From these equations the longitudinal displacements and rotations of the viscoelastic core are 

expressed in terms of the longitudinal displacements and rotations of the base and 

constraining layer as given below: 

 
 (4.73) 

 , (4.74) 

 
 (4.75) 

 
 (4.76) 

The strains corresponding to the longitudinal loading are expressed as follows 

 (4.77) 

 (4.78) 

The shear strains corresponds to bending of sandwich plate and rotations of base and 
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constraining layer are expressed as, 

 (4.79) 

 (4.80) 

The curvatures corresponds to bending of base plate and constraining layer can be expressed 
as, 

 (4.81) 

 (4.82) 

 

(A) FINITE ELEMENT DISCRETIZATION 

 

 The displacement field of the sandwich plate is discretized by assigning nine degrees 

of freedom (DOF) at each node. These are longitudinal displacements and transverse rotations 

of base and constraining layer and transverse displacement of the sandwich plate.  

In a vector form the nodal displacement vector  can be represented as follows: 

  (4.83) 

By combining the displacements of all the four nodes, the element displacement vector of the 

sandwich plate element can be obtained and it can be expressed as 

 

 
 

(4.84) 

The size of each nodal displacement vector of sandwich plate {  is 1 x 9 and the size of 

element nodal displacement is 1 x 36.  

 The interpolation of the longitudinal  displacements of base and constraining layer, ui 

and vi, transverse displacement w, transverse  rotations αi and βi over an element of the 

sandwich plate, are approximated with second order polynomials in the natural coordinates 

space (  )  
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(a)      (b) 

Figure 4.6 Quadrilateral sandwich plate element in (a) Cartesian (b) Natural co-ordinates 

 Figure 4.6 depicts the quadrilateral sandwich element in Cartesian co-ordinate space 

and natural co-ordinates space. In the present case a rectangular element is being used. 

Isoparametric formulation is employed by choosing same interpolation polynomials for the 

geometry as well as field variables. The natural and Cartesian coordinates are related by the 

following interpolation functions 

 

 

(4.85) 

 

Where (xi,yi) are the Cartesian co-ordinates of node i 

 
 (4.86) 

               where i= 1, 2, 3 and 4  

Where ξi and ηi are the natural coordinate values at the node I as given in Fig. 4.5(b) and 

are also given below for the respective nodes of the element 

 (ξ1,η1) = (-1,-1) , (ξ2,η2) = (1,-1) , (ξ3,η3) = ( 1, 1) , (ξ4,η4) = (-1,1) (4.87) 
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The gradients of any field variable ‘ф’ within the element in Cartesian co-ordinate space and 

natural co-ordinate space are related through the Jacobian as shown below [47]. 

 

 
 

(4.88) 
 

 

  
(4.89) 

where the Jacobian [J] can be expressed as  

 

 
 

(4.90) 

Equation (4.88) can also be expressed as 

 

 
 

(4.91) 

Where the inverse of Jacobian matrix can be expressed as,  

 
 (4.92) 

Where is the determinant of the Jacobian matrix.  

For the rectangular element under consideration, the Jacobean reduces to a simplified form as 

given below.  

 
 (4.93) 

 
 (4.94) 

 
Where l and b are the length and width of the element in Cartesian coordinate space. 
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The relation between the differential areas in Cartesian co-ordinate space to natural co-

ordinate space is given below. The following relation is useful during the integration of 

element characteristic matrices. 

 dA =dx dy = dξ.dη (4.95) 

 

(B)  INTERPOLATION 

 

 The chosen primary field variables within the element are interpolated in terms of the 

corresponding nodal displacements and they are mapped to the sandwich element nodal 

displacement. For example, u1, the longitudinal displacement of the base plate is purely a 

function of the nodal axial displacement of the base plate in X-direction and has only four 

interpolation functions. Similarly every primary field variable is interpolated in terms of 

corresponding four nodal variables. The derived displacements and rotations of the 

viscoelastic layer are functions of all the primary variables. Hence, interpolation functions of 

all the primary variables are mapped to the entire nodal displacement vector of the sandwich 

plate element. The detailed formulations of all the interpolation functions are given in 

Appendix-`I’. 

The longitudinal displacement of the base plate in x-direction are interpolated and 

expressed as 

  (4.96) 

where    is the interpolation for longitudinal displacement of base plate in x-direction.  

The longitudinal displacement of the base plate in y-direction can be interpolated and 

expressed as 

    (4.97) 

where  is the interpolation for longitudinal displacement of base layer in y-direction.  

The longitudinal displacement of the constraining layer in x-direction can be written as 

  (4.98) 

where,  is the interpolation for longitudinal displacement of constraining layer in x-

direction. 

The longitudinal displacement of the constraining layer in y-direction can be written as 

    (4.99) 

where,   is the interpolation for longitudinal displacement of constraining layer in y-

direction. 
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The transverse displacement of all the three layer in z- direction can be written as 

    (4.100) 

Where  is the interpolation for transverse displacement of all the three layers.  

The rotation of the base layer in x-direction can be written as   

    (4.101) 

Where,   is the interpolation for transverse rotation of base layer in x- direction. 

The rotation of the base layer in y-direction can be written as   

    (4.102) 

Where, [ ] is the interpolation for rotation of base layer in y-direction. 

The rotation of the constraining layer in x-direction can be written as   

    (4.103) 

Where, [ ] is the interpolation for rotation of constraining layer in x-direction. 

    (4.104) 

Where, [ ] is the interpolation for rotation of constraining layer in y-direction.  

 

 The strains components and curvatures in different layers are functions of gradients of 

displacements in Cartesian space, whereas the displacements within the sandwich plate 

element are in natural co-ordinate space. Hence, inverse Jacobian relation mentioned in 

equation (4.91) is used to express the strain components as functions of gradient of 

displacements in natural co-ordinate space.  

The strain vector corresponds to longitudinal displacements of base plate can be 

expressed as, 

 

 

 

 

(4.105) 

The gradients of displacement field mentioned in the above equation are in Cartesian co-

ordinate space. To express the above gradients in natural co-ordinates space, the inverse 

Jacobean relation expressed in equation (4.90)is used by introducing primary field variables 

u1 and v1 in place of ф  as given below, 
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 (4.106) 

Similarly,  

 

 

 

(4.107) 

For the rectangular element of length l and b, the inverse Jacobian can be expressed as, 

 
  (4.108) 

Introducing appropriate terms of equations (4.106), (4.107) and (4.108) in equation (4.105), 

the strain due to longitudinal displacement of base plate can be expressed in natural co-

ordinates as given below. 

 

 

 

 
(4.109) 

Substituting interpolation functions as given in equations (4.96) and (4.97) for u1 and v1in 

the above equation, it can be expressed as follows. 

 

 

 

 
(4.110) 

Now the strain vector corresponds to longitudinal displacements of the base plate can be 

expressed as, 

    (4.111) 

Where,   is the coupling matrix between the strain between longitudinal displacement 

of the base plate and nodal displacements of the sandwich plate and it can be expressed as : 
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(4.112) 

The strain vector  due to longitudinal displacements of constraining layer can be 

expressed as, 

 

 

 

 

(4.113) 

As it was considered in the previous case, the gradients of field variables of constraining 

layer in the above equation are transformed to the natural co-ordinate space using inverse 

Jacobian relationship as given below 

 

 
 

(4.114) 

Substituting interpolation functions as given in equations(4.98) and (4.99) for ‘u3’ and 

‘v3’inthe above equation, it can be expressed as 

 
 

(4.115) 

Now the strain vector corresponds to longitudinal displacements of the constraining layer 

can be expressed as, 

  (4.116) 

Where,   is the coupling matrix between strain due to longitudinal displacement of 

constraining layer and nodal displacements of sandwich plate and it can be expressed as 

given below. 
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(4.117) 

The curvature due to transverse rotations of base plate can be represented as follows  

 

 

 

 

(4.118) 

The gradients in the above equation are transformed to the  natural co-ordinate space using 

inverse Jacobian relationship and can be expressed as given below 

 

 

 

 

(4.119) 

Substituting interpolation functions as given in equation (4.101) and (4.102) for  and in 

the above equation, it can be expressed as 

 

 

 

(4.120) 

The curvature due to transverse rotations of base plate can also be written as, 

  (4.121) 

Where,   is the coupling matrix between curvature of base plate and nodal 

displacement of sandwich plate and it can be expressed as follows 
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(4.122) 

The curvature due to transverse rotations of constraining layer can be represented as follows  

 

 

 

 

(4.123) 

The gradients in the above equation are transformed to the  natural co-ordinate space using 

inverse Jacobian relationship and can be expressed as given below 

 

 

 

 

(4.124) 

Substituting interpolation functions of equation (4.103) and (4.104) for  and in the 

above equation, it can be expressed as 

 

 

 

(4.125) 

The above curvature due to transverse rotation of constraining layer can also be 

expressed as, 

  (4.126) 

Where,   is the coupling matrix between curvature of constraining layer and nodal 

vectors of sandwich plate and it can be expressed as follows 
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(4.127) 

The transverse shear strain component in vector form of base plate can be expressed as 

 

 

 

(4.128) 

By  replacing the Cartesian gradient with the gradient in natural co-ordinate space, the 

above equation can be re-written as, 

 

 

 

(4.129) 

By substituting interpolation functions of equations (4.100), (4.101) and 

(4.102)for and w in the above equation, it can be expressed as 

 

 

(4.130) 

The above shear strain component can also be expressed as, 

  (4.131) 

Where,   is the coupling matrix due to shear strain  of the base plate and nodal vectors 

of the sandwich plate and can be expressed as follows 

 

 

 

(4.132) 

The transverse shear strain component in vector form for constraining layer can be expressed 

as, 
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(4.133) 

By  replacing the Cartesian gradient with the gradient in natural co-ordinate space, the 

above equation can be re-written as 

 

 
 

(4.134) 

By substituting interpolation functions of equations (4.100) ,(4.103) and (4.104) for  w,  

and in the above equation, it can be expressed as 

 

 
 

(4.135) 

 (4.136) 

Where,   is the coupling matrix between shear strain of the constraining layer and 

nodal vectors of the sandwich plate and it can be expressed as follows 

 

 
 

(4.137) 

The transverse shear strain matrix of constrained (viscoelastic) layer can be expressed in 

terms of base and constraining layer nodal displacements as follows 

 (4.138) 

 (4.139) 

Where,   are the transverse shear rotations in xz and yz planes of 

viscoelastic layer 
 

  (4.140) 
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(4.141) 

 

The matrix relating stress –strain due to in-plane loads of base and constraining layer can be 

expressed as [47] 

 υ
υ

υ  
 

(4.142) 

 υ
υ

υ  
 

(4.143) 

The matrix relating stress-strain due to bending loads of base and constraining layer can be 

written as 

 υ
υ

υ  
 

(4.144) 

 

 
 

(4.145) 

The rigidity matrix corresponding to shear strain of base and constraining layer can be 

written as 

  (4.146) 

    (4.147) 

The rigidity matrix corresponds to shear strain of constrained layer can be written as 

  (4.148) 

where  is the frequency dependent complex shear modulus of the viscoelastic layer 
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(C) STRAIN ENERGY OF SANDWICH PLATE ELEMENT 

 

          The strain energy of the sandwich plate has contributions due to longitudinal and 

transverse displacement of base and constraining layer and transverse shear deformation of 

the all three layers.  The detailed expressions for the strain energy contributions are given 

below 

The strain energy due to in plane displacement of base plate  can be expressed as 

follows: 

 
 

 

(4.149) 

substituting equation (4.111) for  in the above equation, it can be re-written as 

 
 

 

(4.150) 

The above equation can also be expressed as  

 
 

 
(4.151) 

where  is the stiffness matrix due to longitudinal displacement of base plate and it can 

be expressed as 

 
ξ η 

 

(4.152) 

The strain energy due to in plane displacement of constraining layer  can be expressed 

as follows: 

 
 

 

(4.153) 

substituting equation (4.116) for in the above equation, it can be re-written as 

 
 

 
(4.154) 

The above equation can also be expressed as  

 
 

 
(4.155) 
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where  is the stiffness matrix due to in-plane displacement of constraining layer and it 

can be expressed as  

 
ξ η 

 

(4.156) 

The strain energy due to in plane shear deformation of base plate  can be expressed as 

 
 

 

(4.157) 

substituting equation (4.131) for in the above equation, it can be re-written as 

 
 

 
(4.158) 

The above equation can also be expressed as  

 
 

 

(4.159) 

where  is the stiffness matrix due in plane shear deformation of base layer and it can 

be expressed as 

 
ξ η 

 
(4.160) 

The strain energy due to in shear deformation of constraining layer  can be expressed 

as follows: 

 
 

 

(4.161) 

substituting equation (4.137) for in the above equation, it can be re-written as 

 
 

 

(4.162) 

The above equation can also be expressed as  

 
 

 

(4.163) 

where  is the stiffness matrix due to shear deformation of base layer and it can be 

expressed as follows: 
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ξ η 

 
(4.164) 

The strain energy due to bending of base beam can be expressed as  

 
 

 
(4.165) 

substituting equation (4.121) for  in the above equation, it can be re-written as 

follows: 

 
 

 
(4.166) 

The above equation can also be expressed as,  

 
 

 

(4.167) 

where  is the stiffness matrix due bending of base layer and it can be expressed as 

follows: 

 
ξ η 

 
(4.168) 

The strain energy  due to in bending of constraining layer  can be expressed as 

 
 

 
(4.169) 

substituting equation (4.127) in the above equation, it can be re-written as  

 
 

 
(4.170) 

The above equation can also be expressed as  

 
 

 

(4.171) 

where  is stiffness matrix due bending of base layer and it can be expressed as 

follows: 

 
ξ η 

 
(4.172) 

The strain energy due to shear deformation of viscoelastic layer  can be expressed as 
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(4.173) 

substituting equation (4.141)  for in the above equation, it can be re-written as 

 
 

 

(4.174) 

The above equation can also be expressed as  

 
 

 

(4.175) 

where  is the strain matrix due transverse shear deformation of viscoelastic layer and it 

can be expressed as 

 
ξ η 

 
(4.176) 

The total strain energy of the sandwich plate can be expressed as  

    (4.177) 

By combining the individual contributions of strain energy, the total strain energy of the 
sandwich plate can be expressed as 

 
 

 (4.178) 

Where  is the complex element stiffness matrix of sandwich plate and it can be expressed 
as 

  (4.179) 

 

(D)  KINETIC ENERGY OF SANDWICH PLATE 

 

 The total kinetic energy of the sandwich plate has the contributions from in-plane and 

bending motion of all the three layers. The effect of rotary inertia of all the three layers is also 

taken into account. The contribution of kinetic energy corresponds to bending of all the three 

layers can be written as 

 
 (4.180) 

where, ρ ρ ρ   
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By differentiating equation (4.100) with respect to time and substituting in the above 

equation, it can be expressed as, 

 
 

 

(4.181) 

The above equation can also be expressed as  

 
  (4.182) 

where [ ] is the element mass matrix due to bending of sandwich plate  

 
ξ η (4.183) 

The  kinetic energy due to longitudinal motion of  base layer [ can be expressed as 

 
 

 

(4.184) 

By substituting equation (4.96) and (4.97) in the above equation, it can be expressed as 

 

 

 

 

(4.185) 

The above equation can also be expressed as  

 
 

 

(4.186) 

where [ ] is the element mass matrix due to longitudinal motion of base plate 

 
ρ ξ η 

 

(4.187) 

The kinetic energy due to longitudinal motion of constraining layer can be expressed 

as 

 
 

 

(4.188) 

By substituting equation (4.98) and (4.99) in the above equation, it can be expressed as 

 

 

 

 

(4.189) 

The above equation can also be expressed as  

 
 

 

(4.190) 
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where [ ] is the element mass matrix due to in-plane motion of constraining layer. 

 
ρ ξ η 

 
(4.191) 

The contribution of kinetic energy due to shear deformation of viscoelastic layer can be 

expressed as 

 
 

 

(4.192) 

by substituting interpolations of sandwich plate in  the above equation can be written as, 

 

 

 

 
(4.193) 

where [N]=    

Equation (4.193) can  also be expressed as,  

 
 

(4.194) 

where, [ ] is the element mass matrix due to longitudinal vibration of constrained 

(viscoelastic) layer. 

 
ρ  

 
(4.195) 

The constant     in the above equation is given in Appendix-‘II’  

The contribution of kinetic energy due to rotary inertia of base plate  can be expressed as 

 
 

 
(4.196) 

 

 
 

(4.197) 

The above matrix can also be expressed as  

 
 

 
(4.198) 

where [ ] is the element mass matrix due to rotational vibration of base layer and it can 

be expressed as 

 ρ
 

 
(4.199) 
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The contribution of kinetic energy due to rotary inertia of constraining layer  can be 

expressed as 

 
 

(4.200) 

 

 

 

(4.201) 

The above matrix can also be expressed as  

 
 

 
(4.202) 

where [ ] is the element mass matrix due to rotational motion of constraining layer and it 

can be expressed as 

  ρ
 

 

(4.203) 

The contribution of kinetic energy due to rotary inertia of viscoelastic layer  can be 

expressed as 

 

 

(4.204) 

The above matrix can also be expressed as  

 
 

(4.205) 

where [ ] is the element mass matrix due to rotational vibration of constrained layer and 

it can be expressed as 

 ρ
 

 

(4.206) 

The details of constant [Iv] is given in Appendix- ‘II’. 

The total kinetic energy of the sandwich plate can be written as 

  (4.207) 

By introducing equations (4.190), (4.194), (4.198),(4.202) and (4.205) for 

 in the above equation can also be expressed as follows: 

 
 

(4.208) 
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where  is the element mass matrix for the sandwich plate and it can be expressed as 

   (4.209) 

The size of the element mass matrix is 36 X 36.  

By introducing the total potential energy equation (4.179) and total kinetic energy of equation 

(4.210) in equation (4.2), the element equation of motion can be obtained as 

  (4.210) 

By assembling the elemental equations by ensuring continuity across the boundaries, the 

equation of motion can be obtain in the following form 

  (4.211) 

By suppressing the degrees of freedom and the corresponding coefficients of the constraining 

layer, the unconstrained layer can be obtained from the model. 

 

(E)  FE FORMULATION OF SANDWICH PLATE STRUCTURE 

 

The sandwich plate is modelled using Reissner –Mindlin plate theory to evaluate the 

dynamic properties. The plate is discretized using four noded plate element, with nine degrees 

of freedom (DOF) at each node. The constrained and constraining layer length is 240 mm 

compared to base plate length of 250mm.  

 

Figure 4.7 FE mesh of sandwich plate 
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The sandwich plate is discretized into 25 elements along X-direction and 3 elements along Y-

direction directions as shown in Figure 4.6. The constrained and constraining layers are free at 

both edges. So, during FE formulation of sandwich plate, the material properties like Young’s 

modulus, shear modulus and density of constrained and constraining layer are degraded to a 

low value for the elements 1, 26 and 51 respectively. The element mass matrix and complex 

stiffness matrix are assembled using standard assembly procedure to ensure continuity and 

compatibility across the element boundaries. The assembled dynamic equation of motion of 

sandwich beam is express in equation (4.211).  All DOF’s corresponding to clamped edges 

are constrained to simulate clamped at one edge and free at other three edge boundary 

condition (CFFF). The detailed procedure of solving dynamic equations of motion is 

described in chapter 5. Similar procedure is adopted for modelling of unconstrained layer by 

degrading the material properties of constraining layer to zero. 

 

4.3   SUMMARY 

 

Finite element based dynamic models are developed for sandwich beam and plate 

structures. The sandwich structure is discretized using finite element approximations and 

dynamic equations of motion are developed using Lagrangian method. Transverse shear 

deformation is considered for viscoelastic as well as base and constraining layers. The 

elements of the obtained stiffness matrix are complex and the real and imaginary parts are 

represented separately. 

 

The main feature of the developed dynamic model is its   capability   to incorporate the 

frequency dependent properties of the viscoelastic layers. The model is also capable of 

handling unconstrained and constrained viscoelastic damping layers. The novel feature of the 

model is its suitability for developing an iterative computational scheme to solve the dynamic 

equations of motion presented in the next chapter. 

 

 

.   
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CHAPTER 5 

 

COMPUTATIONAL SCHEME FOR SANDWICH 

STRUCTURES WITH VISCOELASTIC LAYERS 

 

5.1   INTRODUCTION 

 

 Equations of motion for the sandwich beam and plate structures with viscoelastic 

layers have been developed in the previous chapter. As already discussed in chapter 3, the 

material constants of viscoelastic layer are complex and frequency dependent.  Due to this, 

the stiffness matrix in the developed FE based dynamic model consists of frequency 

dependent complex elements necessitating a special methodology to solve these equations of 

motion. An iterative computational scheme is proposed to solve these equations of motion and 

validated with experiment results.  Dynamic equations of motion for sandwich structures 

developed in the previous chapter are modified for base excitation. The objective of the 

computational scheme is to find the loss factors of sandwich structure and evaluate the 

performance of viscoelastic materials for dynamic applications over a wide frequency band. 

This will help in carrying out simulations to design appropriate sandwich beam and plate 

structures. 
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5.2 EQUATIONS OF MOTION 

 

The equations of motion developed for sandwich structures in the previous chapter are given 

below. 

 } = 0 (5.1) 

Where, [M] is the global mass matrix, [K*] is the global complex stiffness matrix that varies 

with excitation frequency. The vectors  and  are the generalized displacement and 

acceleration vectors respectively. The material properties of the viscoelastic layer are obtained 

using DMA for each discrete frequency and expressed in mathematical form using power-fit. 

The details of these equations are given chapter 3 as equations 3.22 to 3.25. 

Equation (5.1) is solved for harmonic base excitation and the procedure is described 

below. The displacement and accelerations are partitioned into two groups namely the 

constrained and unconstrained generalized co-ordinates. The constrained generalized co-

ordinates are those co-ordinates that lie on the base of the structure i.e. clamped to the exciter 

where the excitation is given as input. As per the partitioned generalized co-ordinates, the 

mass and stiffness matrices in equation 5.1 are also partitioned as given below.  

 
 

 

 (5.2) 

  

The displacements in the above equations are partitioned for base excitation as, 

{U(x,t)}= {Uc(x,t) Uu(x,t)}T, where Uc(x,t) is the set of constrained generalised displacements 

and Uu(x,t) is the set of unconstrained generalised displacements. The subscript ‘cc’ and ‘uu’ 

represent constrained and unconstrained part of global mass and global complex stiffness 

matrices. The subscript ‘cu’ represents the coupling terms between constrained and 

unconstrained degrees of freedom. 

The equation (5.2) can also be written in the expanded form as follows 

  (5.3) 

  (5.4) 

The set of unconstrained displacements can be decomposed into pseudo-static {Us} and 

dynamic parts {Ud} as 
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       (5.5) 

The pseudo-displacements can be obtained by excluding the first term on the left hand side of 

the equation (5.4) and by replacing {Uu} by {Us}: 

  (5.6) 

where,  [  =  (5.7) 

Substituting Eq. (5.6) in Eq. (5.5), it can be expressed as 

  (5.8) 

By substituting above equation in equation (5.4), it can be re-written as 

 (5.9) 

The above equation can be further re-arranged as 

 (5.10) 

The second terms in the right side of equation (5.10) reduces to zero after substituting 

equation (5.7). So equation (5.10) can be expressed as 

     (5.11) 

denoting   , the above equation becomes (5.12) 

 Adopting modal analysis approach, the response vector, Ud (x, t) can be written as, 

  (5.13) 

where, [P] is the modal matrix and {qm(t)} is the modal response vector. The modal matrix 

can be obtained by solving the eigenvalue problem as, 

  (5.14) 

        where {p} is the modal vector  

 As it is a well-known fact that, the major contribution in the dynamic response is 

contributed by first few modes, the equation of motion (5.12) is transformed in to first three 

modal co-ordinates. By transforming the equations of motion of Eq. (5.12) in to the modal co-

ordinates using Eqn. (5.13). 

 (5.15) 

This equation can be further simplified to  



78 
 

  (5.16) 

where, [Mm]=[P]T[Muu][P] is the modal mass matrix, [Km
*]=[P]T[Kuu

*][P] is the complex 

modal stiffness matrix, and [ m]=[P]T{ } is the modal force vector. These equations are 

converted to frequency domain to obtain frequency response function (FRF) using state-space 

technique. 

 

5.3 STATE SPACE FORMULATION 

 

The equation of motion for the base excitation obtained in the previous section is in 

time domain. It is convenient to transform them to frequency domain to obtain Frequency 

Response Functions (FRFs). Hence, these equations are transformed using state space 

approach. The reduced dynamic model for base excitation of sandwich structure is presented 

below. 

Considering the state vectors as, 

  5.17(a) 

  5.17(b) 

using the state equations,  the reduced dynamic model equation of (5.16) can be written as 

 

(5.18) 

In this equation, the imaginary part of the stiffness matrix [Km
I] consists of loss factors of 

base plate, viscoelastic layer and constraining layer which represents the damping in the 

system. The loss factors for base and constraining layer are obtained from experiments while 

the loss factor of viscoelastic layer which is frequency dependent is obtained from DMA test 

and expressed as polynomial equations. 

So, the equation (5.18) can be written in simplified form  as  

  (5.19) 

where, [A] is the state matrix and [B] is the input matrix  

  (5.20) 
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where    

substituting the above equation in (5.19)  

  (5.21) 

The above equation the modal transfer functions can be written as 

  (5.22) 

The overall transfer functions for first three modes at the desired location can be expressed as 

 
  

(5.23) 

 Mode summation method is used to calculate the overall response of the beam at the 

desired location. The frequency response function (FRF) can be generated from the results of 

many discrete frequency calculations of equation (5.23) starting from 20 Hz to 1000 Hz in 

discrete steps of 1 Hz.  The complex stiffness matrix of viscoelastic layer is updated at each 

frequency and the magnitude corresponding to each excitation frequency is stored and FRF is 

constructed at a given location. From the stored data of FRF the loss factors of sandwich 

structure are calculated for the first three modes.  The details of calculating response at each 

excitation frequency is shown in Figure 5.1 as flow chart.  

 

5.4   SUMMARY 

 

The dynamic equations of motion are altered for base excitation. The iterative 

computational scheme is developed to handle the frequency dependent moduli and loss 

factors of the viscoelastic material. The guidelines for extending the scheme to handle generic 

boundary conditions and force excitations are also presented.  

 

The iterative scheme presented is a novel approach that helps to predict the dynamic 

response of sandwich structures with viscoelastic damping layers, whose properties are 

frequency dependent. The response is predicted in frequency domain which can be processed 

further to estimate the damping loss factors. This leads to a viable approach to predict the 

damping in sandwich structures in place of costly experimental methods. 
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Figure 5.1 Flow chart 
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CHAPTER 6 

 

EXPERIMENTAL STUDIES ON SANDWICH 

STRUCTURES 

 

6.1 INTRODUCTION 

 

 In the previous chapters, the dynamic modelling of sandwich structure and the 

computational scheme to solve the dynamic equation of motion for base excitation has been 

discussed.  In real working conditions, the experimental evaluation of damping becomes 

necessary to validate the developed dynamic model.  The objective of the present chapter is to 

experimentally determine the natural frequencies, amplification and damping ratios of the 

sandwich structures. The details are presented in this chapter. The loss factors are calculated 

using FRFs obtained from experiments. Experiments are carried out with base excitation to 

eliminate the contribution of armature dynamics of the shaker to the response of the sandwich 

structure. 

 

6.2 DESCRIPTION OF EXPERIMENTS 

 

Experiments are carried out extensively on sandwich beam and plate structures with 

different viscoelastic materials. The details of instrumentation, clamping arrangement, 

preparation of test specimens, test setup and experimental procedure are presented below.  
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6.2.1 DETAILS OF INSTRUMENTATION  

 

The instruments used in the experiments are briefly described below 

(A) Electro-dynamic shaker 

(B) Accelerometers 

(C) Low noise microdot cables 

(D)  Signal output card 

(E) LMS SCADAS-III programmable Quad Amplifier, PQA (Input module) 

(F)  LMS SCADAS-III hardware with LMS Test. Lab software 

 

(A) ELECTRO-DYNAMIC SHAKER 

 It is an electro-mechanical device which transforms electrical A.C signal into 

mechanical vibration. The photograph of electrodynamic shaker is shown in Figure 6.1. The 

specifications of electro-dynamic shaker used in the experiments are given below. 

i. Force rating : 20000 N 

 

Figure 6.1 Electrodynamic 

shaker 

ii. Frequency range : 5-2000 Hz 

iii. Maximum bare table 

acceleration 

: 100 g 

iv. Maximum displacement  : ± 25 mm 

v. First armature resonance : 2500 Hz 

 

(B)  ACCELEROMETERS 

 Miniature uniaxial accelerometers with built in signal conditioners are used during 

experiments.  Figure 6.2 shows a typical miniature accelerometer. The accelerometer mounted 

on clamping plate measures base acceleration and accelerometers mounted at different 

locations on the sandwich structure measure the response. The specifications of the 

accelerometers are given below. 
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i. Type  : ICP® 

Accelerometer 

 

Figure 6.2 Miniature 
Accelerometer 

Model No.352C41 (PCB make) 

ii. Construction : Delta shear 

iii. Sensitivity : 10 mV/g 

iv. Amplitude range : 500 g 

v. Frequency range : 1-9000 Hz 

 

(C) LOW NOISE MICRODOT CABLES 

 The accelerometers with built in signal conditioners operate through a two wire circuit 

with signal/power on one lead and other lead being ground. Though, the output signals from 

these accelerometers are low impedance, low noise microdot cables as shown in Figure 6.3 

are used to minimise the electrical noise.  These cables are in tightly wrapped construction to 

minimize the triboelectric noise. The triboelectric noise is the charge-generated due to 

separation and movement of dielectric and shield in the cables which alters the output signal. 

The cable motion is restricted by anchoring at appropriate locations to reduce the electrical 

noise. 

 

Figure 6.3 Low noise microdot cable 

 

(D) SIGNAL OUTPUT CARD (QDAC) 

 

 The signal output card is also called as Quad Digital to Analog Convertor (QDAC) 

card. A built in Digital Signal Processing (DSP) chip in the QDAC supports  the generation of 

variety of standard excitation signals such as burst random with variable burst length, 

impulse, sine and stepped sine signals up to a bandwidth of 40 kHz.   The signal output card 

(DAC) provides the voltage output to the power amplifier. The associated software ‘Test.lab’ 

generates a sinusoidal frequency with given amplitude and frequency and send it to the power 
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amplifier through signal output card. The photograph of signal output card is shown in Figure 

6.4. The specifications of signal output card are 

 

 

Figure 6.4 Signal output card (DAC) 

i. Ultra-low noise and ultra low distortion  

ii. 24-bit Digital to analog convertor for a dynamic range of 108 dB 

iii. Bandwidth up to 40 kHz 

iv. Output voltage of ±10 Volts 

v. Full-colour coded LED indicator 

vi. Uncorrelated baseband noise generation 

vii. Sine and stepped signal with amplitude, phase and sweep control 

viii. Continuous output of previously measured signals  

ix. Slow start/stop 

x. Smooth transition algorithm for transient free amplitude control 

 

(E) LMS SCADAS-III PROGRAMMABLE QUAD AMPLIFIER, PQA (INPUT LMS  
      MODULE) 
 

    SCADAS-III programmable Quad amplifier consists of signal conditioning card and 

signal processing card. The signal conditioner module provides the interface between 

accelerometer signal and signal processing card. The signal conditioner provides the power 

supply to the accelerometers. The module has an ICP cable check circuit to detect an open 

loop in the sensor cable. The signal processing module converts analog signals to digital 

signals. The photograph of the voltage input differential module is shown in Figure 6.5. The 

signal processing board provides real time data acquisition and digital signal processing. The 

signal processing provides the connection between one or more stacked signal conditioner 

cards. It has four 5-pole anti aliasing filters with equal time delay and four 16-bit delta sigma 

analog to digital converter.  
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Figure 6.5 Input module (ADC) 

The specifications of the voltage/ICP input differential module are 

i. Single ended input ( BNC connector) 

ii. Voltage and ICP modes selectable per channel 

iii. Analog anti-alias and digital re-sampling filter 

iv. 24-bit ∑- Δ ADC with up to 204.8 kHz sampling frequency 

v. Alias free  bandwidth of 92 kHz 

vi. ICP sensor supply (3.5 milli Ampere) 

vii. Cable check with full colour coded LED indicator 

viii. AC coupling with 0.5 Hz or 7 Hz high pass filters 

ix. Input range up to ±10 Volts 

 

(F) LMS SCADAS-III HARDWARE WITH TEST. LAB SOFTWARE 

 

 The data acquisition and controller used in the experiments is Leuven Measurement 

System [48] manufactured by LMS, Belgium. It consists of four channel general purpose 

signal output card (Digital to Analog Convertor, DAC) and 64 channel voltage/ICP input 

module (Analog to Digital Convertor, ADC). SCADAS stands for supervisory controller and 

data acquisition system.  The photograph of LMS SCADAS-III system is shown in Figure 

6.6. 

 

 

Figure 6.6 SCADAS-III: Controller and data acquisition system 
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6.2.2 CLAMPING ARRANGEMENT 

 

The schematic of clamping arrangement is shown in Figure 6.7. The sandwich beam 

or plate is rigidly clamped at its base in between two clamping plates. The dimensions of each 

clamping plate are 200 X100 X 20 mm and they are made of mild steel.  This clamping 

arrangement will also act as an interface fixture between sandwich structure and vibrating 

base of the electrodynamic shaker. The vibrating base of the shaker has a standard pattern of 

holes and these patterns of holes are replicated on the clamping plate.  

 

 

Figure 6.7 Schematic of clamping arrangement 

 

6.2.3 PREPARATION OF TEST SPECIMEN 

 

The details of test specimens of sandwich beam and plate structures are presented 

below. For both beam and plate structures, specimens are made with two viscoelastic 

materials in unconstrained and constrained layer configurations. 
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(A) SANDWICH BEAM 

The dimensions of base beam, unconstrained and constrained layer sandwich beams are 

presented in Table 6.1.  

Table 6.1 Geometry and Material properties of sandwich beam 

Sandwich 
structure 

Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Material 
Properties 
Density(ρ) 
kg/m3   

Young’s modulus(MPa) 
 Shear Modulus  (MPa) 
Poisson’s ratio (             

Base Beam L= 300 b=30 tb=6.0 2740 E=71000 
G=23300 

 

Constrained 
layer 

Lc= 290 b=30 tv=1.00 1220(EAP-2) 
1260(EAP-43) 

 

 

Constraining 
layer 

Lv= 290 b=30 tc=1.00 2740 E=71000 
G=23300 

 

* equations 3.22 and 3.27 of chapter 3. 

The following beam specimens are prepared for the experimental study. 

i. Only Base beam  

ii. Unconstrained layer beam with 1mm thickness of EAP-2  

iii. Constrained layer beam with 1mm thickness of EAP-2 

iv. Unconstrained layer beam with 1 mm thickness of EAP-43  

v. Constrained layer beam with 1 mm thickness of EAP-43  

During preparation of these test specimens the following procedure is adopted. The base 

beam is cleaned with isopropyl alcohol to remove grease and dust particles.  The viscoelastic 

layer is bonded on the base beam using an adhesive. The chemical composition of the 

adhesive is polysulphide with epoxy adhesive and titanium dioxide as a filler material. After 

bonding the viscoelastic layer on the base beam, adequate pressure is applied on the specimen 

and it is cured at room temperature for 24 hours. This completes the specimen preparation for 

unconstrained layer treatment. In case of specimens with constraining layer treatment, the 

same procedure is followed and a constraining layer is bonded on the top of the viscoelastic 

layer in the same way. 

The schematic diagrams and photograph of base, unconstrained and constrained layer beams 

are presented in the following Figures. 6.8 to 6.12. 
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Figure 6.8 Schematic setup of base beam with clamping plate arrangement 

 

Figure 6.9 Schematic test setup of unconstrained layer sandwich beam 

 

Figure 6.10 Photograph of unconstrained layer sandwich beam with EAP-2  

 

Figure 6.11 Schematic test setup of constrained layer sandwich beam 
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Figure 6.12 Photograph of constrained layer sandwich beam 

(B) SANDWICH PLATE 

The dimensions of base plate, unconstrained and constrained layer sandwich plate are 

presented in Table 6.2.  

Table 6.2 Geometry and Material properties of sandwich plate 

Sandwich 
structure 

Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Material 
Properties 
Density(ρ) 
kg/m3              

Young’s Modulus (MPa) 
, Shear Modulus  (MPa)    

Base Beam Lxb= 250 Ly=150 tb=6.00 2740 E=71000 ; G=23300 

Constrained 
layer 

Lxv= 240 Ly=150 tv=1.00 1220(EAP-2) 
1260(EAP-
43) 

 

 

Constraining 
layer 

Lv= 240 Ly=150 tc=1.00 2740 E=71000 ; G=23300 

*The constrained layer material properties are measured experimentally and expressed in 
mathematical form using power fit and presented in the respective equations 3.22 to 3.27 of 
chapter 3. 

For preparation of these specimens, similar procedure as explained for sandwich 

beams is adopted. The schematic and photographs of base plate, unconstrained and 

constrained layer plates are presented in the Figures 6.13 to 6.18. 
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Figure 6.13 Schematic of base plate with clamping arrangement 

 

 

Figure 6.14 Schematic of unconstrained layer plate with clamping arrangement 

 

 

Figure 6.15 Schematic setup of constrained layer plate 
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Figure 6.16 Photograph of unconstrained layer plate with EAP-2 

 

 

 

Figure 6.17 Photograph of unconstrained layer plate with EAP-43 
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Figure 6.18 Photograph of constrained layer plate with EAP-43 

6.2.4 EXPERIMENTAL SETUP 

 

The schematic test and instrumentation setup of sandwich structure is shown in Fig. 

6.19. The sandwich structure is held in between the clamping arrangement and in turn fixed to 

the vibrating base of the electrodynamic shaker. An accelerometer mounted on the clamping 

plate measures the base acceleration input and accelerometers mounted on the sandwich 

structure measures the responses. The accelerometers are selected in such a way that their 

total weight is less than one tenth of the sandwich structure [11]. Base excitation is chosen in 

the experiments to eliminate the participation of armature dynamics. This precautionary 

measure ensures the minimization of the mass loading of armature of the shaker and 

accelerometers. The voltage output signal of LMS controller is fed through signal output card 

to the power amplifier input and the amplified current output signal is fed to the armature of 

the shaker which provides necessary base acceleration to the sandwich structure.  

Ten accelerometers are mounted on the sandwich beam and 15 accelerometers are 

mounted on the sandwich plate to measure the responses. The accelerometers are located at 

appropriate locations to capture the first three modes. The information about the nodes and 

antinodes obtained through theoretical modal analysis is used to mount the accelerometers at 
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appropriate locations. All the accelerometer outputs are connected to PQA module (voltage 

input) of LMS controller and data acquisition system using low noise microdot cables.  

 

Figure 6.19 Schematic test and instrumentation setup of sandwich structure 

 

6.2.5 EXPERIMENTAL PROCEDURE 

 

The test specimens are subjected to harmonic acceleration input at the base.  Base 

harmonic acceleration is given through the clamping device and the vibration responses of the 

specimen and the base acceleration input are acquired through the LMS system. The base of 

the specimen is subjected to stepped sine excitation for each frequency in the chosen 

frequency range. The details are summarized below. 

i. The frequency of excitation starts from 20 Hz. 

ii. A sine wave is generated at that frequency (say 20 Hz)in the  digital computer and sent 

through the signal generation card (DAC).The voltage output  of the signal generation 

card is fed to the power amplifier using co-axial cable. The amplified current output 

signal is fed to the armature of the shaker. 

iii. After reaching the steady state condition, the responses of the accelerometers from all 

channels are acquired by PQA (input module) and processed in SCADAS-III hardware 

to obtain magnitude and phase information at that particular excitation frequency. 

iv. Steps (i) to (iii) are repeated for each frequency up to 1000 Hz in steps of 1Hz and the 

FRFs are constructed. 
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The specimens are tested using sine sweep tests with sufficient dwell time for data 

acquisition and processing for a frequency band of 20 to 1000 Hz with an increment of 1 Hz. 

The time domain base acceleration input and response at different locations of the sandwich 

structure are transformed to frequency domain using Fast Fourier Transform (FFT). 

Frequency Response Functions (FRFs) are obtained from the responses of the sandwich 

structure to base acceleration input. The peak in the FRF is identified as the amplification 

factors and the corresponding frequency is the natural frequency. After identifying the 

resonance frequencies, with a fine frequency sweep in steps of 0.01 Hz and corresponding 

responses, damping ratios are estimated using half power point. Once the peak response and 

resonance are located for the chosen ith mode, the half power points are determined where the 

acceleration amplitude is 0.707 times the peak amplitude and the corresponding frequencies f1 

and f2 on either side of the resonance frequency are also determined. The damping ratio for 

the ith mode ξmi can be estimated using the half-power point method using the following 

expression [49]. 

 
(6.1) 

For structural damping, loss factor is considered as twice the damping ratio at resonance 

frequency. Hence the loss factor for the ith mode,  ηi can be expressed as 

 
(6.2) 

Using this methodology, the damping ratios and loss factors are estimated for the first three 

modes of the test specimen. Further details of calculating damping ratio and loss factor are 

presented through a sample calculation in the next section.  

(A) BASE BEAM  

 

Base excitation experiments are carried out in cantilever boundary condition. The 

photograph of experimental setup for base beam is shown in Fig. 6.20. Stepped sine excitation 

is applied at the clamping plate locations and all 10 accelerometer responses on the base beam 

are acquired. Frequency response functions are obtained by transforming the input and 

response signals from time domain to frequency domain through Fast Fourier Transformation. 

A typical FRF obtained at the free end of the base beam is shown in Figure 6.21. The first 

three natural frequencies are identified from the FRF plot and they are found to be 51.00 Hz, 
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319.00 Hz and 909.10 Hz. The frequency response functions around the resonance 

frequencies are expanded by repeating the experiment around resonance with a frequency step 

of 0.01 Hz. The expanded frequency response function around the first mode is shown in Fig. 

6.22. A sample calculation of loss factor for the first mode is given below.  

 

Figure 6.20 Photograph of experimental setup  

 

Figure 6.21 Frequency response function at tip of the base beam (experiment results) 
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Figure 6.22 Frequency response function at tip of the base beam around Ist mode resonance 

The identified peak amplitude is 139.8. The amplitude corresponding to half power points is 

99.8. The frequencies corresponding to half power points are 50.85 Hz and 51.65 Hz. The 

damping ratios and loss factors are calculated for the first mode using equation (6.1) as 

follows 

 

Loss factor ηs= 0.0030*2= 0.0060 

Similarly, the loss factors at resonance are obtained for the second and third modes and they 

are 0.0065 and 0.0073 respectively. 

The FRFs obtained from all the ten accelerometers are used to plot experimental mode shapes. 

The first three normalized mode shapes of base beam are shown in Figure 6.23. 
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Figure 6.23 Normalized mode shapes of the cantilever beam 

(B)  UNCONSTRAINED LAYER SANDWICH BEAM 

 

Similar procedure as explained for the base beam is adopted for unconstrained layer beam. A 

typical experimental FRF at the free end of unconstrained layer beam with 1mm thick EAP-

43 viscoelastic layer is presented in Figure 6.24. The first three experimental natural 

frequencies obtained from FRF are 49.37 Hz, 310 Hz and 871 Hz.  It can be observed that the 

natural frequencies of the unconstrained viscoelastic layered beam have slightly decreased 

due to additional mass and damping contribution of viscoelastic layer. Comparison of 

amplification factors is made by considering the respective first, second and third modes of 

base beam as reference. The attenuation levels are calculated using the following equation 

 (6.3) 

Where xui is the magnitude of ith natural mode of unconstrained layer sandwich beam and xbi is 

the magnitude of ith natural mode of the base beam.  By comparing the FRF of unconstrained 

layer beam (refer Fig. 6.24) with base beam (refer Figure 6.21), an attenuation in 

amplification factors of 9.15 dB, 16.65 dB and 24.42 dB is observed for the first three modes 

respectively.   
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Figure 6.24 FRF at free end of the unconstrained layer beam with EAP-43 

 

(C) CONSTRAINED LAYER SANDWICH BEAM 

 

The typical frequency response function obtained at the free end of constrained layer beam is 

shown in Figure 6.25. The natural frequencies of the first three modes of constrained layer 

beam with EAP-43 are 47.00 Hz, 306 Hz and 850 Hz. It can be observed that the natural 

frequencies of the constrained layer sandwich beam have decreased due to the additional mass 

of viscoelastic and constraining layers and damping contribution of viscoelastic layer. The 

attenuation in amplification factors of unconstrained layer beam with EAP-43 are calculated 

using equation 6.3 by considering the respective base beam amplification factor as reference. 

The attenuation levels are 13.35 dB, 22.8 dB and 22.52 dB for the first three modes. It is 

found that higher attenuation is observed for all configurations. Constrained layer beam 

shows higher attenuation compared to unconstrained layer beam for all modes.  
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Figure 6.25 FRF at free end of the constrained layer beam with EAP-43 

 

(D)  BASE PLATE 

 

Experiments are carried out with base plate fixed at one edge and free at other three edges 

(cantilever) boundary condition. The photograph of experimental setup for base plate is 

shown in Figure 6.26.  The frequency response function at the free end of the base plate is 

shown in Figure6.27. The natural frequencies for the first three modes are found as 48.7 Hz, 

302.3 Hz and 852 Hz respectively. The loss factors are calculated using half power point 

method as explained for beams.  The loss factors for the first three modes are 0.0076, 0.0098 

and 0.0120 respectively. The first three mode shapes obtained from the measured data during 

experiments are shown in Figures 6.28 to 6.30. These mode shapes are plotted using the 

responses obtained from fifteen accelerometers. 
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Figure 6.26 Photograph of experimental setup  

 

Figure 6.27 FRF at free end of the base plate  
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Figure 6.28 First bending mode of base plate (experimental) 

 

Figure 6.29 Second bending mode of base plate (experimental) 
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Figure 6.30 Third bending mode of base plate (experimental) 

(E) UNCONSTRAINED LAYER SANDWICH PLATE 

 

A typical FRF obtained from the experiment of the unconstrained layer sandwich plate with 

EAP-43 is shown in Figure 6.31. The experimental natural frequencies of the first three 

modes are measured as 45.89, 277.8 and 795 Hz respectively. It can be observed that the 

natural frequencies of the unconstrained viscoelastic layered plate have decreased due to 

additional weight and damping contribution of viscoelastic layer. The attenuation in 

amplification factors of unconstrained layer pate with EAP-43 are calculated using equation 

6.3 by considering the respective base plate amplification factor as reference and they are 

5.90, dB 6.89 dB and 12 dB for the first three modes respectively. It is also observed that 

higher attenuations are observed for higher modes. Similar behaviour is observed in 

unconstrained layer sandwich beam studies. 
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Figure 6.31 FRF of the unconstrained layer plate with EAP-43 at free end 

(F) CONSTRAINED LAYER SANDWICH PLATE 

 

The typical frequency response functions of the constrained layer plate with EAP-43 are 

obtained with similar experiments and are and shown in Fig.6.32. The experimental natural 

frequencies of the first three modes are measured as 43.07, 273.8 and 740.16 Hz respectively. 

It can be observed that the natural frequencies of the constrained layer sandwich plate have 

decreased due to the additional mass of viscoelastic layer and constraining layer plate and 

damping contribution of viscoelastic layer. Comparison of amplification factors are made by 

considering the respective first, second and third modes of base plate as reference and they are 

12.92 dB, 23.45 dB and 21.98 dB for the first three modes respectively. From the FRF plots it 

is observed that constrained layer shows higher attenuation compared to unconstrained layer 

plate. Similar trend is observed during experiments of constrained layer sandwich beams. 
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Figure 6.32 FRF of the constrained layer plate with EAP-43 at free end 

 

6.3    SUMMARY 

 

The detailed description of the instrumentation, sample preparation, test setup and 

experimental procedures are presented in this chapter. Experiments are carried out for 8 

specimens; four of them are sandwich beams and remaining four are sandwich plates. FRF 

results for each case are presented. The dynamic models are validated and with the 

experimental results in the next chapter. 
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CHAPTER 7 

 

VALIDATION OF THEORETICAL MODEL AND 

ANALYSIS OF SANDWICH STRUCTURES 

 

7.1   INTRODUCTION 

Finite element based dynamic models are developed in chapter 4. A computational 

scheme is developed in chapter 5 to solve the equation of motion for base excitation.  The 

frequency response functions (FRFs) and loss factors are calculated using the computational 

scheme. The modal parameters are also obtained experimentally for uniform sandwich beams 

and plates in chapter 6.  By comparing the computational and experimental results, the 

developed dynamic models are validated and the analysis of the results is carried out to 

understand the role of viscoelastic materials in improving damping. In most of the published 

literature, results are presented where it is assumed that the material properties of viscoelastic 

layer do not vary with excitation frequency. The viscoelastic materials considered in the 

present study have frequency dependent properties. Thus, computational studies are also 

carried out for sandwich beams and plate structures assuming constant material properties as 

given in literature and the results are compared with the present work. The theoretical results 

are validated with experiments for unconstrained and constrained configurations of beam and 

plates using different viscoelastic materials. 
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7.2 DYNAMIC BEAHVIOUR OF SANDWICH BEAMS 

 

The geometric and material properties of the sandwich beam are given in Table 6.1 of 

the previous chapter. Two viscoelastic layers, EAP-2 and EAP-43, recently developed are 

considered in the present analysis. The material properties of these viscoelastic layers are 

presented in chapter 3. Before applying viscoelastic layer treatment on the beam, the loss 

factors of base beam are obtained. The attenuation levels using viscoelastic layers are 

expressed in decibels with the levels of base beam as a reference. 

 

7.2.1   ANALYSIS OF BASE BEAM 

 

 The base beam is made of Aluminum and its dimension is given in Table 6.1.  The 

Frequency Response Functions (FRFs)at the free end obtained from developed dynamic 

model and computational scheme are compared with experimental results of the base beam 

and are shown in Figure 7.1 and given in Table 7.1. Both the computational and experimental 

FRFs and frequencies are compared with theory and it is found that the errors are less than 

3%.  The loss factors for the first three modes are calculated from the experimental FRFs 

using half power method and they are 0.006, 0.0065 and 0.0073 respectively. These loss 

factors of the base beam are used in the FE model of unconstrained and constrained layer 

sandwich beam models. The loss factors obtained from the experiment are very low and it is 

due to the material damping of the aluminum beam.   
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Figure.7.1 Comparison of numerical and experimental FRF at free end of cantilever beam 

 

Table 7.1 Comparison of computational and Experimental frequencies for cantilever beam 

 Natural Frequency (Hz)  

Mode Theory (Hz) 
(Closed form)[49]* 

FEM** (Hz) 
(Error) 

Expt.(Hz) 
(Error) 

Loss factor 
(Experiment) 

I 52.05 51.96 
(0.17%) 

51.00 
(2.02%) 

0.0060 

II 326.20 324.15 
(0.60%) 

319.00 
(2.21%) 

0.0065 

III 913.39 910.76 
(0.3%) 

909.10 
(0.53%) 

0.0073 

*Dimension of the beam are substituted in the formula for estimating natural frequencies 
** Finite element method 
 
7.2.2 ANALYSIS OF UNCONSTRAINED LAYER SANDWICH BEAM  
 
 

The viscoelastic material is glued on the base beam to form an unconstrained layer 

sandwich beam configuration. Two viscoelastic materials namely EAP-2 and EAP-43 are 

used to get two different cases of unconstrained layer sandwich beam structures. Frequency 

Response Functions (FRFs) obtained at the free end using the dynamic model are compared 
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with experimental results for EAP-2 and EAP-43 are shown in Figures 7.2 and 7.3. The 

comparison of computational and experimental model frequencies, amplification and loss 

factors are presented in Tables 7.2 and 7.3. From the above figures and tables, it is found that 

computational results with frequency dependent material properties of viscoelastic layer and 

experimental results agree with experiments. By suppressing the variation of material 

properties in the dynamic models, computations are also carried and the results do not match 

well. Comparison of experimental amplification factors is made by considering the respective 

first, second and third modes of base beam as reference. The attenuation levels are calculated 

using the following expression. 

 (7.1) 

Where xui is the amplification factor for ith natural mode of unconstrained layer sandwich 

beam and xbi is the amplification factors for ith natural mode of the base beam.   

An attenuation of 9.13 dB, 16.10 dB and 21.80 dB in amplitudes are observed for EAP-2 and 

an attenuation of   9.15 dB, 16.65 dB and 24.42 dB are observed for EAP-43 with respect to 

base beam for the first three natural modes respectively. The attenuation is observed to be 

higher for higher modes. Unconstrained layer beam with EAP-43 provides slightly higher 

vibration attenuation compared to EAP-2. 

 

Figure 7.2 Comparison of FRF at free end of unconstrained layer cantilever sandwich beam  
with 1 mm thickness of EAP-2 
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Figure 7.3 Comparison of FRF at free end of unconstrained layer cantilever sandwich beam  
with 1mm thickness of EAP-43 

 
Table 7.2 Comparison of computational and Experimental results of unconstrained layer 

cantilever sandwich beam with 1mm thickness of EAP-2 
 

 Frequency(Hz) Amplification (g/g) Loss factors 

Comp(1)* Comp(2)* Expt. Comp(1) Comp(2) Expt. Comp(1) Comp(2) Expt. 

I 50.57 51.00 49.37 47.39 47.00 48.43 0.021 0.019 0.020 

II 305.00 306.00 302.00 24.50 30.77 21.04 0.045 0.041 0.047 

III 869.30 868.90 865.24 8.149 12.31 8.392 0.080 0.072 0.083 
*Comp (1) computational results considering frequency dependent material properties of viscoelastic 
layer. Comp (2) computational results considering constant material properties of viscoelastic layer 
 

Table 7.3 Comparison of computational and Experimental results of unconstrained layer 
cantilever sandwich beam with 1mm thickness of EAP-43 

 Frequency(Hz) Amplification (g/g) Loss factors 

Comp(1)* Comp(2)* Expt Comp(1) Comp(2) Expt Comp(1) Comp(2) Expt. 

I 50.00 50.60 49.00 47.39 47.20 46.09 0.022 0.020 0.023 

II 302.00 304.00 301.00 23.70 30.20 19.68 0.053 0.046 0.055 

III 869.00 862.00 836.00 8.069 12.31  6.21 0.099 0.078 0.108 
*Comp (1) computational results considering frequency dependent material properties of viscoelastic 
layer. Comp (2) computational results considering constant material properties of viscoelastic layer 
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7.2.3 ANALYSIS OF CONSTRAINED LAYER SANDWICH BEAM  
 
 

Two constrained layered sandwich beams are considered in the analysis. The first 

beam consists of EAP-2 as viscoelastic layer and the second beam consists of EAP-43. 

Frequency Response Functions (FRFs) obtained for the two beams at the free end using the 

dynamic model are compared with experimental results and are shown in Figures 7.4 and 7.5. 

The comparison of computational and experimental model frequencies, amplification and loss 

factors are given in Tables 7.4 and 7.5. 

 
Figure 7.4 Comparison of FRF at free end of the constrained layer sandwich beam  

with 1 mm thickness of EAP-2 
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Figure 7.5 Comparison of FRF at free end of the constrained layer sandwich beam  

With1mm thickness of EAP-43 
 

Table.7.4 Comparison of computational and Experimental results of constrained layer 
cantilever sandwich beam with 1mm thickness of EAP-2  

 
 Frequency(Hz) Amplification (g/g) Loss factors 

Comp(1)* Comp(2)* Expt Comp(1) Comp(2) Expt Comp(1) Comp(2) Expt. 

I 48.52 49.50 47.37 40.22 44.13 39.92 0.025 0.023 0.026 

II 307.07 305.00 308.90 11.69 15.01 12.66 0.073 0.070 0.075 

III 851.01 849.50 847.00 7.008 9.193 6.36 0.151 0.013 0.158 
*Comp (1) computational results considering frequency dependent material properties of 
viscoelastic layer. Comp (2) computational results considering constant material properties of 
viscoelastic layer 
 

Table.7.5 Comparison of computational and Experimental results of constrained layer 
cantilever sandwich beam of 1mm thickness of EAP-43 

 
 Frequency(Hz) Amplification (g/g) Loss factors 

Comp(1)* Comp(2)* Expt Comp(1) Comp(2) Expt Comp(1) Comp(2) Expt. 

I 48.11 49.00 47.00 30.56 32.12 30.05 0.033 0.025 0.034 

II 307.00 302.40 306.00 9.047 14.04 10.17 0.093 0.073 0.096 

III 857.00 842.00 850.00 5.707 8.859 5.472 0.151 0.182 0.191 
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From the above figures and tables, it is found that computational results with 

frequency dependent material properties of viscoelastic layer and experimental results agree 

with experiments. By suppressing the variation of material properties in the dynamic models, 

computations are also carried and the results do not match well. Comparison of amplification 

factors is made by considering the respective first, second and third modes of base beam as 

reference. Equation 7.1 is used to calculate the vibration attenuation of constrained layer 

sandwich beam.  An attenuation of 10.89 dB, 20.48 dB and 24.42 dB in amplitudes are 

observed for EAP-2 with respect to base beam for the first three natural modes respectively. 

Similarly, an attenuation of 13.35 dB, 22.38 dB and 25.52 dB in amplitudes are observed for 

EAP-43 with respect to base beam for the first three natural modes respectively.  From these 

figures and tables, it can be concluded that constrained layer sandwich beam with EAP-43 

provides higher vibration attenuation compared to EAP-2. 

 

The above comparative study of unconstrained layer and constrained layer sandwich 

beam results validates the developed dynamic model. The overall comparison of frequencies, 

amplification factors and vibration attenuation levels for base beam, unconstrained and 

constrained layer beam for EAP-2 and EAP-43 obtained from experiments are presented in 

Table 7.6. 

Table 7.6 Comparison of amplification factors for EAP-2 and EAP-43 of cantilever sandwich 
beam (Experiment results) 

Amplification,  g/g (dB) 

 mode First Second Third First Second Third 

Base beam 

 (Base beam is 

considered as reference) 

Freq (Hz) 51.96 324.15 910.76 51.96 324.15 910.76 

Amp.(g/g) 139.80 133.80 103.30 139.80 133.80 103.30 

dB 0 0 0 0 0 0 

  EAP-2 EAP-43 

unconstrained layer 

sandwich beam 

(tv/t=0.16) 

Freq (Hz) 49.37 302.00 865.40 49.00 302.00 836.00 

Amp.(g/g) 48.86 21.04 8.40 48.75 19.68 6.21 

dB -9.13 -16.10 -21.80 -9.15 -16.65 24.42 

Constrained layer 

sandwich beam 

(tv/t=0.16) & (tc/t=0.16) 

Freq (Hz) 47.37 308.90 847.00 47.00 306.00 850.00 

Amp.(g/g) 39.92 12.66 6.36 30.05 10.17 5.472 

dB -11 -20.48 -24.40 -13.35 -22.38 -25.52 
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Based on these comparative results, it can be concluded that EAP-2 and EAP-43 provide 

higher attenuation at higher modes. The constrained layer sandwich structure provides higher 

attenuation compared to unconstrained layer sandwich structure. EAP-43 provides slightly 

higher attenuation in vibration levels compared to EAP-2. 

 
 7.3   DYNAMIC BEHAVIOUR OF SANDWICH PLATE  

 
The results obtained from the dynamic model of sandwich plate are compared with 

experiments. The geometry and material properties of the sandwich plate are given in Table 

6.2 of the previous chapter. Two viscoelastic materials, EAP-2 and EAP-43 are considered 

both in unconstrained and constrained configurations. The loss factors of the base plate made 

of aluminum are estimated from experimental results. The loss factors of the base plate are 

used in the computational model of the sandwich plate. These loss factors are considered as a 

reference for comparison of loss factors of sandwich plates of different configurations. 

7.3.1 ANALYSIS OF BASE PLATE 

 

  The experimentally obtained FRF at the free end of the base plate is compared with 

analytical results and presented in Figure 7.6.  

 
Figure7.6 Comparison of FRF of base plate at one of the free ends 
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The analytical and experimental natural frequencies, amplification factors and modal loss 

factors are tabulated in Table 7.7. It can be observed that the experimental and theoretical 

results are in good agreement. The damping present in the base plate is mainly due to the 

material damping. 

Table 7.7 Comparison of Computational and experimental frequencies of base plate 

 Natural Frequency (Hz) Amplification (g/g)  

Mode Comp. Expt. Comp. Expt Loss factor 
(experiment) 

I 47.7 48.7 63.4 63.7 0.007 
II 301.3 302.3 54.5 56.6 0.010 
III 847.4 852.3 25.1 21.1 0.012 

 

7.3.2 ANALYSIS OF UNCONSTRAINED LAYER SANDWICH PLATE 

The viscoelastic material is glued on the base plate to form an unconstrained layer 

sandwich plate configuration. Two viscoelastic materials namely EAP-2 and EAP-43 are used 

to get two different cases of unconstrained layer sandwich plate structures. Frequency 

Response Functions (FRFs) obtained at the free end using the dynamic model are compared 

with experimental results for EAP-2 and EAP-43 as shown in Figures 7.6 and 7.7. The 

comparison of computational and experimental model frequencies, amplification and loss 

factors are presented in Tables 7.6 and 7.7. From the above figures and tables, it is found that 

computational results with frequency dependent material properties of viscoelastic layer agree 

with experiment results. By suppressing the variation of material properties in the dynamic 

models, computations are also carried and the results do not match well. It can also be 

observed from the tabulated data that higher attenuation levels are observed for higher modes. 

It can also be observed that EAP-43 provides higher loss factors and high attenuation 

compared to EAP-2.  
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Figure 7.7 Comparison of FRF at one of the free end of unconstrained layer cantilever  
sandwich plate with 1mm thick EAP-2 

 
 

 

Figure 7.8 Comparison of FRF at one of the free end of unconstrained layer cantilever 
sandwich plate with 1mm thick EAP-43 

 
 



116 
 

Table 7.8 Comparison of computational and Experimental results of unconstrained layer 
cantilever sandwich plate with 1mm thickness of EAP-2  

 Frequency(Hz) Amplification (g/g) Loss factors 

Comp(1)* Comp(2)* Expt Comp(1) Comp(2) Expt Comp(1) Comp(2) Expt. 

I 46.40 44.80   45.80 35.32 36.85 33.26 0.014 0.013 0.015 

II 289.80 285.20 282.00 33.04 35.44 31.13 0.015 0.013 0.016 

III 804.90 790.40 800.00 7.12 10.20 5.550 0.065 0.058 0.071 
*Comp (1) computational results considering frequency dependent material properties of viscoelastic 
layer.  Comp (2) computational results considering constant material properties of viscoelastic layer 
 

Table 7.9 Comparison of computational and Experimental results of unconstrained layer 
cantilever sandwich plate with 1mm thickness of EAP-43 

 Frequency(Hz) Amplification (g/g) Loss factors 

Comp(1)* Comp(2)* Expt. Comp(1) Comp(2) Expt. Comp(1) Comp(2) Expt. 

I 45.10 44.10 45.89 32.57 34.81 32.31 0.017 0.016 0.018 

II 281.80 277.10 277.80 27.09 30.21 25.35 0.020 0.018 0.021 

III 781.40 768.12 795.00 6.002 10.18 5.30 0.074 0.070 0.076 
*Comp (1) computational results considering frequency dependent material properties of viscoelastic 
layer.  Comp (2) computational results considering constant material properties of viscoelastic layer 
 

 

7.3.3 ANALYSIS OF CONSTRAINED LAYER SANDWICH PLATE  

 
The viscoelastic layer is sandwiched between aluminum base plate and constraining 

layer using epoxy adhesive to form a constrained layer plate structure.  Two different 

viscoelastic layers namely EAP-2 and EAP-43 are used to obtain two different constrained 

layered plates for the purpose of validation and analysis. The FRFs, modal frequencies, 

amplification factors and modal loss factors are calculated using dynamic model and 

compared with experiments. The FRFs obtained at a free end of the plate by both methods is 

compared for validating the analytical model. The FRFs for the plate with EAP-2 and EAP-43 

are shown in Figures 7.9 and 7.10. The corresponding data is tabulated in Table 7.9 and 7.10. 

From these figures and tabulated data, it is observed that the results of the theoretical model 

agree with the experiments. The table shows high attenuation levels for higher modes. The 

loss factors with EAP-43 sandwich plate are higher than loss factors of EAP-2 sandwich 

plate.  
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Figure 7.9 Comparison of FRF at one of the free end constrained layer cantilever sandwich 
plate with 1mm thick EAP-2 

 

 
Figure 7.10 Comparison of FRF at one of the free end of constrained layer cantilever 

sandwich plate with 1mm thick EAP-43 
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Table 7.10 Comparison of computational and experimental results of constrained layer 
cantilever sandwich plate with 1mm thickness for EAP-2 

 Frequency(Hz) Amplification (g/g) Loss factors 

Comp(1)* Comp(2)* Expt Comp(1) Comp(2) Expt Comp(1) Comp(2) Expt. 

I 44.50 45.40 44.20 16.20 17.40 15.70 0.042 0.040 0.044 

II 282.90 260.90 282.00 4.80 5.69 4.40 0.071 0.068 0.074 

III 786.70 737.40 777.20 2.20 2.82 1.80 0.095 0.083 0.101 
*Comp (1) computational results considering frequency dependent material properties of viscoelastic 
layer.  Comp (2) computational results considering constant material properties of viscoelastic layer 

 
Table 7.11 Comparison of computational and experimental results of constrained layer 

cantilever sandwich plate with 1mm thickness for EAP-43 

 Frequency(Hz) Amplification (g/g) Loss factors 

Comp(1)* Comp(2)* Expt. Comp(1) Comp(2) Expt. Comp(1) Comp(2) Expt. 

I 43.60 45.00 43.07 14.60 14.75 14.40 0.051 0.050 0.052 

II 267.20 258.90 273.80 4.20 5.613 3.80 0.080 0.076 0.083 

III 759.00 728.80 740.16 2.10 2.82 1.70 0.120 0.105 0.130 

The overall comparison of amplification factors for bare plate, unconstrained and constrained 

layer plate for EAP-2 and EAP-43 are presented in Table 7.12. 

 

Table 7.12 Comparison of Amplification factors for cantilever sandwich plate  

(Experimental results) 

Amplification,  g/g (dB), 

 Mode First Second Third First Second Third 

Base plate, 
(Base plate is considered 

as reference) 

Freq (Hz) 48.70 302.30 852.30 48.70 302.30 852.30 

Amp.(g/g) 63.70 56.60 21.10 63.70 56.60 21.10 

dB 0 0 0 0 0 0 
  EAP-2 EAP-43 

unconstrained layer 

sandwich plate 

(tv/t=0.16) 

Freq (Hz) 45.80 282.00 800.00 45.89 277.80 795.00 

Amp.(g/g) 33.26 31.13 5.55 32.31 25.35 5.30 

dB -5.66 -5.14 -11.37 -5.90 -6.89 -12.00 

Constrained layer 

sandwich plate 

(tv/t=0.16) & (tc/t=0.16) 

Freq (Hz) 44.20 282.00 777.20 43.07 273.80 740.16 

Amp.(g/g) 15.70 4.40 1.80 14.40 3.80 1.70 

dB -12.17 -22.17 -21.38 -12.92 -23.45 -21.90 



119 
 

 
 The above comparative study of unconstrained layer plate and constrained layer plate 

results obtained from the computation and experimental methods validates the developed 

dynamic model of sandwich plate and computational scheme. Based on these comparative 

studies, one can conclude that EAP-2 and EAP-43 shows higher attenuation at higher modes. 

The constrained layer sandwich structure shows higher attenuation compared to unconstrained 

layer. EAP-43 shows higher attenuation in vibration levels compared to EAP-2. The 

observations for sandwich plate structures are in line with the observations of the sandwich 

beam structures. By suppressing the variation of material properties in the dynamic models, 

computations are also carried and the results do not match well. 

 

7.4 SUMMARY 

 

The developed dynamic model for sandwich beam and plate structures and 

computational scheme are validated with several experimental results. The developed 

dynamic model and computational results with and without considering frequency dependent 

material properties of viscoelastic layer are also presented for eight configurations. From the 

computational results, it is concluded that the dynamic model considering frequency 

dependent material properties of viscoelastic layers are in close agreement with experimental 

results compared to dynamic model considering constant material properties of viscoelastic 

layer. The constrained viscoelastic layered structures provide higher damping when compared 

with unconstrained viscoelastic layered structures.  Both the viscoelastic materials provide 

higher damping at higher modes. EAP-43 provides slightly higher damping compared to 

EAP-2. 
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CHAPTER 8 

 

SIMULATION STUDIES ON SANDWICH PLATE 

STRUCTURES 

 
8.1    INTRODUCTION 

 
 In the previous chapter, the developed dynamic models of sandwich beam and plate 

structures are validated with experiments. From the results it it understood that, sandwich 

structures with EAP-43 provides high attenuation than EAP-2.  Further simulation studies are 

carried out on sandwich plate structures with EAP-3 using the validated dynamic model for 

different boundary conditions to identify optimal design parameters for high loss factors as a 

function of different layer thicknesses. 

 

8.2   SIMULATION STUDIES ON SANDWICH PLATES 

 

  Simulations are carried out on constrained layer sandwich plate structure to determine 

the optimum layer thickness for various combinations of base plate (tb), constraining layer (tc) 

and viscoelastic layer thicknesses (tv). The objective of these simulation studies is to obtain 

high loss factors for a given sandwich plate thickness (t).  The viscoelastic layer thicknesses 

considered in the simulations are 0.5, 1, 1.5 and 2 mm. For each of the viscoelastic layer 

thickness, 15 combinations of base plate (tb) and constraining layer (tc) thicknesses are 
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considered in the simulation studies. The loss factors are computed for different ratios of (tc/t) 

and (tv/t). Neutral axis is computed for each of the above case and it is found that the neutral 

axis lies in the base layer when (tc/t) is less than 0.41, in the constraining layer when this ratio 

is above 0.46, in the viscoelastic layer (constrained) when the ratio of (tc/t) lies between 0.41 

and 0.46. 

Simulation studies are also carried out for the three different boundary conditions. The 

following are the three boundary conditions considered in the simulation studies. 

a) Fixed at one edge and free at the three edges (CFFF). 

b) Simple support on opposite edges and free at the other two opposite edges (SFSF). 

c) Free–Free at all four edges (FFFF) boundary conditions. 

 
(A)   SANDWICH PLATE WITH CFFF BOUNDARY CONDITION 

The sandwich structure is subjected to a harmonic force input. The FRFs are computed 

for a given location on the sandwich plate for fifteen combinations of base plate and 

constraining layer thicknesses keeping the viscoelastic layer thickness as constant. From the 

FRF, loss factors are calculated using half power method for the first three natural modes. The 

loss factors computed for each ratio of (tc/t) and (tv/t) are shown in Figures 8.1 to 8.3 and also 

given in Tables 8.1 to 8.3 for the first three modes respectively. 
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Figure 8.1 Variation of loss factor for CFFF   boundary condition (Mode I) for different layer 

thicknesses 

 
Figure 8.2   Variation of loss factor for CFFF   boundary condition (Mode II) for different 

layer thicknesses 
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Figure 8.3   Variation of loss factor for CFFF   boundary condition (Mode III) for different 

layer thicknesses 

Table 8.1 Variation of loss factors for CFFF boundary condition (Mode I) for different layer 
thicknesses 

 Loss Factors 

     

0.06 0.0228 0.0242 0.0320 0.0397 
0.11 0.0283 0.0329 0.0463 0.0689 
0.16 0.0329 0.0408 0.0597 0.0927 
0.21 0.0363 0.0477 0.0717 0.1126 
0.26 0.0389 0.0534 0.0819 0.1283 
0.31 0.0404 0.0578 0.0902 0.1396 
0.36 0.0408 0.0607 0.0961 0.1466 
0.41 0.0401 0.0618 0.09919 0.1492 
0.46 0.0383 0.0609 0.0995 0.1475 
0.51 0.0353 0.0581 0.0958 0.1415 
0.56 0.0312 0.0530 0.0888 0.1312 
0.61 0.0259 0.0453 0.0776 0.1165 
0.66 0.0193 0.0350 0.0619 0.0975 
0.71 0.0116 0.0219 0.0416 0.0741 
0.76 0.0025 0.0058 0.0161 0.0464 

tc = thickness of constraining layer, tv= thickness of constrained layer;tb= thickness of base 
plate;  t= total thickness of constrained layer sandwich plate. i.e. t=tb+tv+tc 
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Table 8.2 Variation of loss factors for CFFF boundary condition (Mode II) for different layer 
thicknesses 

 Loss Factors 

     

0.06 0.0359 0.0426 0.0575 0.0599 
0.11 0.0439 0.0549 0.0746 0.1101 
0.16 0.0504 0.0662 0.0945 0.1528 
0.21 0.0552 0.0759 0.1112 0.1879 
0.26 0.0585 0.0841 0.1258 0.2155 
0.31 0.0601 0.0903 0.1377 0.2356 
0.36 0.0602 0.0942 0.1461 0.2448 
0.41 0.0586 0.0955 0.1505 0.2532 
0.46 0.0555 0.0939 0.1501 0.2507 
0.51 0.0507 0.0892 0.1444 0.2407 
0.56 0.0444 0.0810 0.1326 0.2231 
0.61 0.0364 0.0692 0.1141 0.1981 
0.66 0.0239 0.0529 0.0883 0.1655 
0.71 0.0158 0.0326 0.0544 0.1254 
0.76 0.0030 0.0075 0.0119 0.0777 

tc = thickness of constraining layer, tv= thickness of constrained layer; tb= thickness of base 
plate;  t= total thickness of constrained layer sandwich plate. i.e t=tb+tv+tc 

 

Table 8.3 Variation of loss factors for CFFF boundary condition (Mode III) for different layer 
thicknesses 

 Loss Factors 

     

0.06 0.0512 0.0668 0.0723 0.1165 
0.11 0.0618 0.0811 0.1152 0.1509 
0.16 0.0701 0.0943 0.1510 0.1848 
0.21 0.0760 0.1058 0.1799 0.2167 
0.26 0.0797 0.1154 0.2018 0.2452 
0.31 0.0813 0.1226 0.2166 0.2690 
0.36 0.0807 0.1270 0.2245 0.2865 
0.41 0.0780 0.1283 0.2245 0.2964 
0.46 0.0734 0.1262 0.2192 0.2973 
0.51 0.0668 0.1201 0.2061 0.2877 
0.56 0.0584 0.1097 0.1860 0.2662 
0.61 0.0481 0.0947 0.1588 0.2315 
0.66 0.0361 0.0746 0.1247 0.1812 
0.71 0.0225 0.0491 0.0856 0.1166 
0.76 0.0079 0.0177 0.0354 0.0335 

tc = thickness of constraining layer, tv= thickness of constrained layer; tb= thickness of base 
plate;  t= total thickness of constrained layer sandwich plate. i.e. t=tb+tv+tc 
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  From the above results, it can be concluded that the high loss factors are observed 

when (tc/t) lies between 0.41 and 0.46. For a given cross section of the sandwich plate 

structure, the shear strain is maximum at the neutral axis and decreases along the thickness on 

either side of the neutral axis. The dissipation of energy in constrained layer sandwich structure 

is through the shear deformation of viscoelastic layer. So, high loss factors are observed when 

the neutral axis of the sandwich structure falls in the viscoelastic layer. It is also observed from 

the above figures that the loss factors are higher for higher modes and increase as thickness of 

viscoelastic layer increases. 

 

(B)   SANDWICH PLATE WITH SFSF BOUNDARY CONDITION 

Simulation studies are carried out for SFSF boundary condition. The FRFs are 

computed for a given location on the sandwich plate for the various base and constraining layer 

thicknesses. For each case, the loss factors are calculated from FRFs for the first three modes.  

The variation of loss factors with different (tc/t) is shown in Figures 8.4 to and 8.6 and is also 

given in Tables 8.4 to 8.6 for the first three modes respectively. 

 

Fig. 8.4   Variation of loss factor for SFSF   boundary condition (Mode I) for different layer 
thicknesses 
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Figure 8.5 Variation of loss factor for SFSF   boundary condition (Mode II) for different layer 

thicknesses 

 

Figure 8.6 Variation of loss factor for SFSF   boundary condition (Mode III) for different 
layer thicknesses 
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Table 8.4 Variation of loss factors for SFSF boundary condition (Mode I) for different layer 
thicknesses 

 Loss Factors 

     

0.06 0.0065 0.0124 0.0163 0.0164 
0.11 0.0074 0.0158 0.0221 0.0264 
0.16 0.0081 0.0189 0.0276 0.0364 
0.21 0.0087 0.0217 0.0326 0.0458 
0.26 0.0091 0.0240 0.0369 0.0543 
0.31 0.0093 0.0258 0.0404 0.0616 
0.36 0.0093 0.0269 0.0428 0.0674 
0.41 0.0090 0.0274 0.0441 0.0712 
0.46 0.0086 0.0270 0.0440 0.0727 
0.51 0.0080 0.0257 0.0423 0.0716 
0.56 0.0071 0.0234 0.0388 0.0675 
0.61 0.0060 0.0200 0.0335 0.0601 
0.66 0.0046 0.0154 0.0260 0.0488 
0.71 0.0030 0.0096 0.0163 0.0037 
0.76 0.0010 0.0023 0.0041 0.0141 

tc = thickness of constraining layer, tv= thickness of constrained layer; tb= thickness of base 
plate;   t= total thickness of constrained layer sandwich plate. i.e. t=tb+tv+tc 

 

Table 8.5 Variation of loss factors for SFSF boundary condition (Mode II) for different layer 
thicknesses 

 Loss Factors 

     

0.06 0.0238 0.0263 0.0318 0.0494 
0.11 0.0273 0.0314 0.0425 0.0632 
0.16 0.0301 0.0364 0.0526 0.0771 
0.21 0.0324 0.0408 0.0617 0.0903 
0.26 0.0339 0.0446 0.0696 0.1022 
0.31 0.0347 0.0476 0.0758 0.1123 
0.36 0.0347 0.0495 0.0801 0.1199 
0.41 0.0340 0.0502 0.0822 0.1243 
0.46 0.0323 0.0494 0.0816 0.1250 
0.51 0.0297 0.0469 0.0782 0.1213 
0.56 0.0262 0.0426 0.0716 0.1125 
0.61 0.0217 0.0362 0.0615 0.0982 
0.66 0.0161 0.0275 0.0475 0.0776 
0.71 0.0095 0.0614 0.0294 0.0501 
0.76 0.0017 0.0025 0.0068 0.0151 

tc = thickness of constraining layer, tv= thickness of constrained layer; tb= thickness of base 
plate;   t= total thickness of constrained layer sandwich plate. i.e. t=tb+tv+tc 
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Table 8.6 Variation of loss factors for SFSF boundary condition (Mode III) for different layer 
thicknesses 

 Loss Factors 

     

0.06 0.0353 0.0376 0.0563 0.0719 
0.11 0.0403 0.0468 0.0711 0.0924 
0.16 0.0442 0.0553 0.0852 0.1125 
0.21 0.0472 0.0626 0.0987 0.1315 
0.26 0.0492 0.0686 0.1092 0.1485 
0.31 0.0500 0.0731 0.1180 0.1626 
0.36 0.0497 0.0758 0.1240 0.1731 
0.41 0.0483 0.0766 0.1267 0.1790 
0.46 0.0456 0.0753 0.1256 0.1796 
0.51 0.0417 0.0716 0.1210 0.1739 
0.56 0.0364 0.0653 0.1097 0.1612 
0.61 0.0298 0.0563 0.0940 0.1450 
0.66 0.0213 0.0442 0.0724 0.1111 
0.71 0.0123 0.0290 0.0443 0.0721 
0.76 0.0014 0.0103 0.0092 0.0226 

tc = thickness of constraining layer, tv= thickness of constrained layer; tb= thickness of base 
plate;   t= total thickness of constrained layer sandwich plate. i.e. t=tb+tv+tc 

 
From the above figures and tables, it is observed that high loss factors are observed when (tc/t) 

lies between 0.41 and 0.46. The trend in the variation of loss factors for the first three modes is 

similar to that of CFFF boundary condition. 

 

(C)  SANDWICH PLATE WITH FFFF BOUNDARY CONDITION 

 

The numerical studies are also extended for FFFF boundary condition.  The variation 

of loss factors with different (tc/t) and (tv/t) are shown in Figures 8.7 to 8.9 and are also given 

in Tables 8.7 to 8.9 for the first three modes respectively. 
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Figure 8.7   Variation of loss factor for FFFF   boundary condition (Mode I) for different layer 
thicknesses 

 

Figure 8.8 Variation of loss factor for FFFF   boundary condition (Mode II) for different layer 
thicknesses 
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Figure 8.9   Variation of loss factor for FFFF   boundary condition (Mode III) for different 
layer thickness 

Table 8.7 Variation of loss factors for FFFF boundary condition (Mode I) for different layer 
thickness 

 Loss Factors 

     

0.06 0.0059 0.0067 0.0097 0.0132 
0.11 0.0072 0.0084 0.0124 0.0172 
0.16 0.0082 0.0100 0.0150 0.0212 
0.21 0.0089 0.0114 0.0173 0.0250 
0.26 0.0094 0.0126 0.0196 0.0285 
0.31 0.0097 0.0135 0.0213 0.0314 
0.36 0.0097 0.0141 0.0226 0.0337 
0.41 0.0094 0.0143 0.0233 0.0350 
0.46 0.0081 0.0141 0.0233 0.0353 
0.51 0.0082 0.0135 0.0225 0.0343 
0.56 0.0072 0.0123 0.0208 0.0343 
0.61 0.0059 0.0105 0.0180 0.0277 
0.66 0.0044 0.0081 0.0142 0.0218 
0.71 0.0027 0.0050 0.0911 0.0140 
0.76 0.0007 0.0012 0.0027 0.0039 

tc = thickness of constraining layer, tv= thickness of constrained layer; tb= thickness of base 
plate;    t= total thickness of constrained layer sandwich plate. i.e. t=tb+tv+tc 
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Table 8.8 Variation of loss factors for FFFF boundary condition (Mode II) for different layer 
thickness 

 Loss Factors 

     

0.06 0.0084 0.0111 0.0166 0.0239 
0.11 0.0110 0.0145 0.0216 0.0311 
0.16 0.0131 0.0175 0.0263 0.0382 
0.21 0.0147 0.0206 0.0307 0.0448 
0.26 0.0159 0.0221 0.0344 0.0508 
0.31 0.0165 0.0236 0.0375 0.0558 
0.36 0.0167 0.0244 0.0396 0.0596 
0.41 0.0164 0.0246 0.0407 0.0617 
0.46 0.0157 0.0241 0.0406 0.0620 
0.51 0.0144 0.0228 0.0390 0.0601 
0.56 0.0127 0.0206 0.0360 0.0556 
0.61 0.0105 0.0176 0.0311 0.0484 
0.66 0.0078 0.0137 0.0244 0.0381 
0.71 0.0046 0.0088 0.0157 0.0244 
0.76 0.0010 0.0029 0.0047 0.0078 

tc = thickness of constraining layer, tv= thickness of constrained layer; tb= thickness of base 
plate;   t= total thickness of constrained layer sandwich plate. i.e. t=tb+tv+tc 

 
 

Table 8.9 Variation of loss factors for FFFF boundary condition (Mode III) for different layer 
thickness 

 Loss Factors 

     

0.06 0.0219 0.0270 0.0317 0.0417 
0.11 0.0254 0.0314 0.0398 0.0560 
0.16 0.0281 0.0355 0.0477 0.0697 
0.21 0.0300 0.0393 0.0551 0.0825 
0.26 0.0311 0.0422 0.0617 0.0938 
0.31 0.0315 0.0448 0.0671 0.1031 
0.36 0.0312 0.0463 0.0710 0.1100 
0.41 0.0300 0.0467 0.0730 0.1138 
0.46 0.0281 0.0458 0.0729 0.1141 
0.51 0.0254 0.0435 0.0702 0.1103 
0.56 0.0220 0.0396 0.0646 0.1020 
0.61 0.0178 0.0339 0.0558 0.0880 
0.66 0.0128 0.0263 0.0435 0.0698 
0.71 0.0071 0.0165 0.0272 0.0449 
0.76 0.0005 0.0045 0.0066 0.0133 

tc = thickness of constraining layer, tv= thickness of constrained layer; tb= thickness of base 
plate;    t= total thickness of constrained layer sandwich plate. i.e. t=tb+tv+tc 
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From the above figures and tables, it is seen that the variation of loss factor for the sandwich 

plate structure with FFFF boundary condition is similar to the sandwich plate with CFFF and 

SFSF boundary conditions as discussed earlier. 

A comparison of maximum loss factor for each (tv/t) is given in table 8.10.The loss 

factor of the base plate in each mode is taken as reference value and the vibration attenuation 

levels are calculated in terms of decibels (dB) and presented below. 

 
Table 8.10 Comparison of loss factor of base plate with maximum loss factors in CFFF, 

SFSF and FFFF boundary conditions 
  Mode I Mode II Mode III 

Base plate  0. 0076 0.0098 0.0120 
 
 

CFFF 
tc/t 

tv/t = 0.057 0.0408 0.0602 0.08130 
Attenuation(dB) 14.60 15.77 16.62 

tv/t = 0.091 0.0618 0.0955 0.1283 
Attenuation(dB) 18.10 19.78 20.58 

tv/t = 0.167 0.0995 0.1505 0.2245 
Attenuation(dB) 22.34 23.73 25.44 

tv/t = 0.430 0.1492 0.2543 0.2964 
 Attenuation(dB) 25.86 28.28 27.85 
 
 

SFSF 
tc/t 

tv/t = 0.057 0.0090 0.0347 0.050 
Attenuation(dB) 1.47 10.98 12.40 

tv/t = 0.091 0.0274 0.0502 0.0731 
Attenuation(dB) 11.14 14.19 15.70 

tv/t = 0.167 0.0441 0.0822 0.1180 
Attenuation(dB) 15.27 18.47 19.86 

tv/t = 0.430 0.0727 0.1250 0.1626 
 Attenuation(dB) 19.61 22.11 22.64 
 
 

FFFF 
tc/t 

tv/t = 0.057 0.0097 0.0167 0.0315 
Attenuation(dB) 2.12 4.66 8.40 

tv/t = 0.091 0.0143 0.0246 0.0467 
Attenuation(dB) 5.49 7.99 11.80 

tv/t = 0.167 0.0233 0.0407 0.0730 
Attenuation(dB) 9.73 12.38 15.68 

tv/t = 0.430 0.0353 0.0620 0.1138 
 Attenuation(dB) 13.34 16.02 19.54 

 
 
  By comparing the loss factors of base plate with the maximum loss factors obtained 

for different tv/t in all three boundary conditions, it is concluded the loss factor increases with 

mode number and thickness of viscoelastic layer.  
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8.3 SUMMARY 

 

The validated dynamic model and the computational scheme are extended to 

understand the behaviour of loss factors for various combinations of layer thicknesses. 

Simulation studies are also carried out for three different boundary conditions. From the 

simulations studies, it is concluded that high loss factors are observed when (tc/t) lies between 

0.41 and 0.46. This trend is independent of the natural modes and boundary conditions. The 

loss factors increase with increase in thickness of viscoelastic layer and mode number. 
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CHAPTER 9 

 

SUMMARY AND CONCLUSIONS 

 

9.1 SUMMARY 

 

 Two viscoelastic materials, EAP-2 and EAP-43 are characterized using Dynamic 

Mechanical Analyzer (DMA) for their frequency dependent material properties: Young’s 

modulus, Shear Modulus, Poisson’s ratio and loss factors. The experimental data obtained 

from DMA is expressed in mathematical form using power fit as continuous functions of 

frequencies in the range from 10-2 Hz to 106 Hz. Through these equations, frequency 

dependent material properties of the viscoelastic layers are introduced in the dynamic models 

of sandwich structures. 

Finite element based dynamic models are developed for sandwich beam and plate 

structures. The sandwich structure is discretized into finite elements and dynamic equations of 

motion are developed using Lagrangian method. The element mass and complex stiffness 

matrices for the sandwich beam and plate are developed considering the shear deformation of 

the viscoelastic layer.  During FE formulation of the sandwich beam structure, longitudinal 

displacements of the base, constraining layer and transverse displacement of the sandwich 

beam are considered as primary field variables. The shear deformation of viscoelastic layer is 

derived from the longitudinal displacements of base and constraining layer. During 

formulation of sandwich plate structure, longitudinal displacements and rotations in x and y 

directions of the base and constraining layers, transverse displacement of the sandwich plate 

are considered as primary field variables.  
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A computational scheme is developed to solve the dynamic equations of motion of the 

sandwich structures. The developed dynamic equations of motion accommodate frequency 

dependent complex stiffness of the viscoelastic material. MATLAB codes are developed to 

solve the dynamic models for computing frequency response functions and loss factors. 

Extensive experiments are carried out on sandwich beam and plate structures and 

frequency response functions (FRF’s) are obtained. The FRF’s and loss factors obtained from 

the experiments are compared with those obtained from computational scheme for eight 

different configurations. By suppressing the variation of material properties in the dynamic 

model, simulations are also carried out to confirm the need of introducing frequency 

dependent material properties.  

The validated dynamic model and the developed code is used to compute loss factors 

for various thickness ratios and boundary conditions of the sandwich plate structure and  

optimal parameters are identified for vibration attenuation. 

 

9.2 CONCLUSIONS 

 

The following are the conclusions drawn from the present work: 

i. Two viscoelastic materials, EAP-2 and EAP-43 are characterised for their frequency 

dependent material properties. Based on the experimental data, frequency dependent 

Young’s modulus, shear modulus and loss factors are expressed in mathematical form 

using power fit as functions of frequency using the experimental data for both the 

viscoelastic materials. 

ii. Finite Element based dynamic models are developed for sandwich structures 

considering the frequency dependent complex Young’s and shear modulus of 

viscoelastic material. 

iii. The performance of both the viscoelastic material, EAP-2 and EAP-43 in attenuating 

the vibration amplitudes are evaluated. It is concluded that both the viscoelastic 

materials provide higher vibration attenuation. 

iv. By comparing both the viscoelastic materials, EAP-43 is found to be superior 

compared to EAP-2 for achieving higher vibration attenuations.  The reason for higher 
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attenuation is attributed to carbon black used as filler in EAP-43 which provides better 

loss factors compared to the titanium dioxide in EAP-2. 

v. Constraining layer sandwich structures provide higher damping and vibration 

attenuation compared to unconstrained layer sandwich structures. 

vi. Unconstrained layer sandwich beams and plates with the thickness ratio (tv/t=0.20) can 

be employed in real life structures, if the required vibration attenuation levels are 

around 5 to 10 dB. 

vii. Constrained layer sandwich beams and plates with the thickness ratio (tv/t=0.16) and 

((tc/t=0.16) can be employed in real life structures, if the required vibration attenuation 

levels are more than 10 dB. 

viii. There is a shift in natural frequency of unconstrained and constrained layer sandwich 

structures to a lower side compared to base structure alone. This is due to the 

additional mass and damping of viscoelastic layer. 

ix. Based on the simulation studies on sandwich plate structure,  it is concluded that  

(a) For a given sandwich plate thickness (t), higher loss factors are obtained when 

the ratio of constraining layer thickness to total thickness of sandwich plate 

(tc/t) lies between 0.41 to 0.46.  

(b) Loss factor increases with increase in viscoelastic layer thickness. 

(c) Irrespective of boundary conditions, loss factors increase with mode number. 

 

9.3 SCOPE FOR FUTURE WORK 

 

The following future work is proposed 

i. During development of dynamic models for sandwich beam and plate structures, only 

the frequency dependent material properties of viscoelastic layers are considered at 

constant temperature. The proposed models can be extended by considering both 

frequency and temperature dependent material properties of viscoelastic layers. 

 

ii. The developed dynamic models for sandwich beam and plate structure, assume perfect 

bonding between the layers. The developed dynamic model can be improved by 

modelling adhesive between the layers. 
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iii. In the present model the viscoelastic layers covers the entire surface of the base 

structure. The model can be extended for optimum location of viscoelastic patches 

instead of complete layer. 

 

iv. The developed dynamic model consider passive constraining layer. The proposed 

model can be extended by replacing passive constraining layer with active 

constraining layer. 
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APPENDIX-`I’ 

INTERPOLATION FUNCTIONS OF SANDWICH PLATE 

   is the interpolation for in-plane displacement of  base layer 

in x-direction and the individual terms are expressed as follows: 

 

 

 

 

 

(A.1) 

 = is the interpolation for inplane displacement of base layer in 

y-direction and the individual terms are expressed as follows: 

 

 

 

 

(A.2) 

 

 is the interpolation for constraining layer in x-direction and 

the individual terms are expressed as follows: 

 

 

 

 
(A.3) 

  is the interpolation for constraining layer in y-direction 

and the individual terms are expressed as follows: 

 

 

 

 
(A.4) 

is the interpolation for transverse displacement for all three 

layers.  

 

 

 

 
(A.5) 

 is the interpolation for rotation of base layer in x direction 

and the individual terms are expressed as follows: 

 

 

 

 
(A.6) 

 is the interpolation for rotation of base layer in y-direction 

and the individual terms are expressed as follows: 

 

 

 

 
(A.7) 
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is the interpolation for rotation of constraining layer in x-

direction. Where, 

 

 

 

 
(A.8) 

is the interpolation for rotation of constraining layer in y-

direction.  

 

 

 

 

 

(A.9) 
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APPENDIX-`II’ 

 
 

(B.1) 

 

  (B.2) 
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