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ABSTRACT

Machining is the process of removal of unwanted material to give a desired size and

shape to the components. Usage of super alloys are increasing day-by-day in various

engineering applications such as aircraft, power-generation turbines, rocket engines,

automobiles, nuclear power, and chemical processing plants etc. Machining of Nickel based

super alloys using conventional machining processes is very difficult due to their high

hardness even at elevated temperatures and also low thermal conductivity. Wire cut electrical

discharge machining (WEDM) is one of the widely used advanced machining processes to

machine any electrically conductive material, irrespective of its hardness. Due to its stochastic

nature, WEDM process is difficult to understand and analyze. Hence some specific aspects of

the process such as modeling of material removal rate, surface roughness, geometrical errors,

recast-layer thickness and micro hardness and influence of various process parameters on

these responses need to be studied thoroughly.

Identification of optimal values for material removal rate and surface roughness is

essential from productivity and quality viewpoints. Cuckoo search (CS) algorithm was found to

be efficient in yielding the global optimal value and this algorithm was found to outperform

genetic algorithm (GA) and particle swarm optimization (PSO) techniques. In order to improve

the performance of cuckoo search further, an attempt has been made in the present work to

propose a modified cuckoo search involving two-stage initialization. Benchmark functions have

been used to test the performance of the proposed method. Furthermore, the proposed method

has been applied to WEDM process and was found to be accurate and fast as compared to the

existing cuckoo search. The machining data generated in this work for Inconel-690 and

Nimonic-263 materialswill also be useful to the industry.Further, in order to optimize material

removal rate and surface roughness simultaneously, a non-dominated sorting principle has been

applied to the proposed algorithm and pareto-optimal sets are also generated.

Machining of axi-symmetrical components of desired quality using WEDM on

materials such as Inconel-690 and Nimonic-263 is a challenging task. Prediction of

geometrical errors such as circularity and cylindricity in WEDM is difficult due to stochastic

nature of the process. Hence, a study on influence of process parameters and accurate

prediction of geometrical errors is very much essential for the manufacturer in order to reduce

the rejection rate of the parts during inspection. Investigations on the influence of process
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parameters on the geometrical errors are carried out in this work. In order to predict

geometrical errors accurately, modelsare also developed for the first time to estimate these

errors using a feed forward back propagated neural network. Predicted results of the models

are validated against the experimental values. It has been found that the developed modelsare

predicting the geometrical errors with acceptable deviation.

Though the WEDM is used to cut hard materials, one of themajor disadvantages of

this process is formation of recast layeras it affects the properties of the machined surfaces. In

the present study experimental investigation has been carried out to study the effect of process

parameters on micro-hardness and recast layer while machining Inconel-690 and Nimonic-

263 materials.Interestingly, hardness of the machined surface was found to be lower than that

of the bulk material. The micro-hardness and recast layer thickness are inversely related to the

variation of process parameters. The research findings and the data generated for the first time

on hardness and recast layer thicknessfor Inconel-690 and Nimonic-263 will be useful to the

industry.

Keywords: Wire Electrical Discharge Machining, Modified cuckoo search algorithm, Neural

networks, Geometrical errors, Recast-layer thickness, Micro-hardness.
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CHAPTER 1

INTRODUCTION

1.1. General

Owing to increase in the usage of nickel based alloys due to their superior properties such

as high temperature hardness and resistance to oxidation and corrosion, it is essential to know the

machining behavior of these materials. They have great demand in nuclear and aerospace

applications as they retain their mechanical and physical properties at temperature over 700 °C.

They are difficult to machine because, of their high shear strength, work hardening and

precipitation hardening. High abrasive particles in their microstructure and tendency to form built

up edge (BUE) make them more difficult to machine. Friction between tool and material and its

low thermal conductivity results in high temperature generation. Cutting tool material undergoes

severe thermal and mechanical changes because of high heat generation. The temperature

produced at tool tip results in rapid tool wear; reduce the life of the tool. Dimensional variations

of the product cause due to tool wear. Tool failure occur mainly because of combination of

problems like high temperature produced, high material strength, work hardening of alloys,

abrasive chips formation and very large amount of heat generation. Due to these reasons a search

for an alternative machining process led to find the pathway for a new advanced machining

processes.

Wire-cut electrical discharge machining (WEDM) is one of the most emerging non

conventional manufacturing processes for machining hard to cut materials and intricate shapes

which are very difficult to machine with conventional machining methods. The ability to produce

intricate profiles on materials irrespective of the mechanical properties made this process to be

widely used in industries. WEDM process is generally used in tool and dies industry where

accuracy and surface finish is of great importance. WEDM has the capability to impart

production accuracy in the range of ± 2.5 µm. WEDM is used for machining of newer and

difficult to machine materials, such as hardened steel, high-strength, temperature-resistant alloys

and fiber-reinforced composites in aerospace, nuclear, missile, turbine, automobile, and tool and

die making industries. This process enables machining of any type of feature such as deep, blind,

inclined and micro holes and complicated profiles. The important WEDM responses are material



2

removal rate, surface roughness, kerf, crater size, wire wear rate, recast layer thickness and micro

hardness. In the present work experiments are carried out on super alloys such as Inconel-690 and

Nimonic-263 using WEDM to study and develop the mathematical models for various WEDM

responses such as material removal rate (MRR), surface roughness (SR), geometrical errors, re-

cast layer thickness (RLT) and micro-hardness (MH).

This chapter introduces the super alloys with their applications, chemical compositions

and properties, advanced machining processes and principle of WEDM. This chapter also

describes the design of experiments and lastly organization of the thesis is presented.

1.2. Super alloys

The term "super alloy" is applied to alloys, which can have very high temperature strength

and oxidation resistance. Nickel-based super alloys are a special class of materials with an

exceptional combination of high temperature strength, toughness, and resistance to degradation in

corrosive or oxidizing environments. Super alloys are the primary materials used in the hot

portions of jet turbine engines, such as the blades, vanes, and combustion chambers, constituting

over 50% of the engine weight as shown in Figure 1.1. Super alloys are also used in other

industrial applications where their high temperature strength and/or corrosion resistance is

required. These applications include rocket engines, steam turbine power plants, reciprocating

engines, metal processing equipment, heat treating equipment, chemical and petrochemical

plants, pollution control equipment, coal gasification and liquification systems, and medical

applications. The Nickel based super alloys can be used up to an operating temperature of 1230
0C and is shown in Figure 1.2.



3

Figure 1.1 Typical material distributions in jet engine

Figure 1.2 Operating temperatures of super-alloys
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Machining of these materials using conventional machine tools is very difficult due to

their high hardness and low thermal conductivity. A large amount of cutting force is required for

these materials due to their high hardness; a reasonable amount of heat is generated. Due to low

thermal conductivity, accumulation of temperature at tool and work, and tool and chip interface

leads to increase of tool wear and surface roughness. Due to these reasons conventional machines

are not encouraged to machine super alloys. Wire-cut EDM, one of the advanced machining

processes, is an alternative process to machine this kind of materials and produce intricate shapes

which are not possible with conventional machining methods.

1.2.1. Inconel-690

It is a high-chromium nickel based super alloy having excellent properties such as

hardness and corrosive resistance at high temperature atmospheres. Due to its superior properties

it is widely used for steam generator tubes, baffles, tube sheets, and hardware in nuclear power

generation. The chemical composition in % of weight has been given in Table 1.1. Physical and

thermal properties of the Inconel-690 are given in the Table 1.2

Table 1.1 Chemical composition of Inconel-690 in % of weight

Element % of weight Element % of weight

Nickel 60.0 Chromium 29.58

Ferrous 9.05 Carbon 0.017

Silicon 0.25 Manganese 0.21

Sulphur 0.0013 Copper 0. 01

Titanium 0.2 Niobium 0.02
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Table 1.2 Properties of Inconel-690 alloy

Density 8.19   g/cm3

Melting range 1343-1377 0C

Electrical resistivity 1.15 µΩ-m

Specific heat capacity 0.450 J/g- 0C

Thermal conductivity 13.5 W/m-K

Hardness 221 HV

1.2.2. Nimonic-263

It is a nickel-chromium-cobalt-molybdenum alloy specially meant for use in high

temperature and high strength applications. This material is mainly used in gas turbine hot section

components. The chemical composition in % of weight has been given in Table 1.3. Physical and

thermal properties of the Inconel-690 are given in the Table1.4

Table 1.3 Chemical composition of Nimonic-263, in % of weight

Element % of weight Element % of weight

Nickel 51.44 Chromium 20.0

Ferrous 0.25 Carbon 0.043

Silicon 0.04 Manganese 0.43

Sulphur 0.005 Copper 0.002

Titanium 2.2 Niobium 0.02

Aluminum 0.48 Cobalt 19.5

Molybdenum 5.6 Oxygen 0.0022

Nitrogen 0.0031 Phosphorous 0.005
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Table 1.4 Properties of Nimonic-263 alloy

Density 8.36   g/cm3

Melting range 1300-1355 0C

Electrical resistivity 1.148 µΩ-m

Specific heat capacity 0.461 J/g - 0 C

Thermal conductivity 11.7 W/m-k

Hardness 350 HV

1.3. Machining process – EDM

Machining is simply a process of removing unwanted material to provide the required

shape and size to an object using a machine tool. The machining processes are broadly divided

into two groups and they are conventional machining processes and advanced machining

processes. In conventional machining process, there is a direct contact between tool and work

material, and a large force is applied to remove the material in the form of chips. To meet this,

cutting tool required is harder than that of workpiece and also a firm fixing of both material and

tool are required in conventional machining. Huge amount of heat is generated at cutting tool and

work material and also at tool and chip interface. This leads to decrease in tool life, and surface

finish.

Now a days, different materials are emerging in the industry to meet special applications

such as high hardness at elevated temperatures, high resistance to corrosion, oxidation and

friction. Nickel based super alloys come under this category and are used extensively in

automobile, aeronautics and nuclear power generation applications. Machining of these materials

with conventional machining processes like turning, milling, drilling etc. is very difficult due to

their superior properties such as high hardness and low thermal conductivity. Further, these
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conventional methods cannot be used where complex shapes, low tolerances and good surface

finish are required. Therefore to machine these hard to cut materials, advanced machining

processes are developed. There are different advanced machining processes and are grouped into

three basic categories based on type of energy required as shown in Figure 1.3.

Figure 1.3 Classification of advanced machining processes

At all machining situations, none of these processes is the best. Therefore, selection

appropriate machining process is important for a given situation. The comparative study of

various advanced machining processes, in terms of material removal rate with respect to power

consumption are presented, in Figure 1.4. It can be found that the power consumption rates of

EDM, MCG and PAM are less as compared to other advanced machining processes. The EDM

has the capability to machine electrically conductive materials irrespective of their hardness.

EDM has the lower capital cost and produces components with higher surface finish. Further

WEDM can be used to produce intricate shapes and also WEDM can cut up to 300 mm thick

plates.  Due to these reasons WEDM has been selected in the present work to machine super

alloys.
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Figure 1.4 Comparison of various machining processes on mean power consumption with MRR

(Singh, 2010)

There are two types of EDM processes and are differentiated by usage of electrode.

1. Die-sinking EDM and

2. Wire-cut EDM

1.3.1. Die-sinking EDM

The die-sinking EDM is widely used in mould and die making industry in machining

complex die cavities for producing plastic injection-molded parts and die-cast parts. A copper or

graphite tool electrode is normally used in the process and the workpiece (normally a mould or

die) to be machined is immersed in dielectric fluid. Electrode of die-sinking EDM is the replica

of the part to be machined. By switching DC voltage supply to the tool electrode and workpiece,

high frequency electrical sparks will be generated (Guitrau, 1997) such that very high

temperatures of the order of 120000 C developed locally will melt and vaporize (DiBitonto et al.,

1989; Patel et al., 1989) the workpiece to form the required cavity.
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Figure 1.5 EDM working principle

1.3.2. Wire - EDM

WEDM is a thermo- electrical process in which material is removed by a series of sparks

between workpiece and wire electrode (tool). The workpiece and wire are immersed in a

dielectric (electrically non-conductive) fluid, usually de-ionized water, which also acts as a

coolant and flushes the debris away. The material to be cut must be electrically conductive. In

WEDM, there is no direct contact between workpiece and tool (wire) as in conventional

machining process, therefore materials of any hardness can be machined and minimum clamping

pressure is required to hold the workpiece (Kuriakose and Shanmugam, 2004). In this process,

the material is eroded by a series of discrete electrical discharges between the workpiece and tool.

When the material approaches the electrode and the gap reaches a certain threshold value, the

insulating liquid breaks down and discharging channel forms thereby sparks are generated

resulting in high temperature instantaneously up to about 10000º C. These temperatures are huge

enough to melt and vaporize the workpiece metal and the eroded debris cool down swiftly in

working liquid and flushed away. The working principle is shown in the figure 1.6. In 1969, the

Swiss firm Agie produced the world’s first wire EDM machine. These early machines were

extremely slow but today, machines are equipped with automatic wire threading and can cut over

20 times faster, (Carl and Steev, 2005).

9

Figure 1.5 EDM working principle

1.3.2. Wire - EDM

WEDM is a thermo- electrical process in which material is removed by a series of sparks

between workpiece and wire electrode (tool). The workpiece and wire are immersed in a

dielectric (electrically non-conductive) fluid, usually de-ionized water, which also acts as a

coolant and flushes the debris away. The material to be cut must be electrically conductive. In

WEDM, there is no direct contact between workpiece and tool (wire) as in conventional

machining process, therefore materials of any hardness can be machined and minimum clamping

pressure is required to hold the workpiece (Kuriakose and Shanmugam, 2004). In this process,

the material is eroded by a series of discrete electrical discharges between the workpiece and tool.

When the material approaches the electrode and the gap reaches a certain threshold value, the

insulating liquid breaks down and discharging channel forms thereby sparks are generated

resulting in high temperature instantaneously up to about 10000º C. These temperatures are huge

enough to melt and vaporize the workpiece metal and the eroded debris cool down swiftly in

working liquid and flushed away. The working principle is shown in the figure 1.6. In 1969, the

Swiss firm Agie produced the world’s first wire EDM machine. These early machines were

extremely slow but today, machines are equipped with automatic wire threading and can cut over

20 times faster, (Carl and Steev, 2005).

9

Figure 1.5 EDM working principle

1.3.2. Wire - EDM

WEDM is a thermo- electrical process in which material is removed by a series of sparks

between workpiece and wire electrode (tool). The workpiece and wire are immersed in a

dielectric (electrically non-conductive) fluid, usually de-ionized water, which also acts as a

coolant and flushes the debris away. The material to be cut must be electrically conductive. In

WEDM, there is no direct contact between workpiece and tool (wire) as in conventional

machining process, therefore materials of any hardness can be machined and minimum clamping

pressure is required to hold the workpiece (Kuriakose and Shanmugam, 2004). In this process,

the material is eroded by a series of discrete electrical discharges between the workpiece and tool.

When the material approaches the electrode and the gap reaches a certain threshold value, the

insulating liquid breaks down and discharging channel forms thereby sparks are generated

resulting in high temperature instantaneously up to about 10000º C. These temperatures are huge

enough to melt and vaporize the workpiece metal and the eroded debris cool down swiftly in

working liquid and flushed away. The working principle is shown in the figure 1.6. In 1969, the

Swiss firm Agie produced the world’s first wire EDM machine. These early machines were

extremely slow but today, machines are equipped with automatic wire threading and can cut over

20 times faster, (Carl and Steev, 2005).



10

Figure 1.6 Working principle of WEDM

The effectiveness of the whole process depends on number of process parameters such as

pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, wire feed, and wire

tension. Wire EDM has its own particular advantages; this machining process is capable of

cutting materials regardless of its hardness. It can cut intricate shapes and narrow slots.

Furthermore, no burrs are generated during the process. Wire EDM is able to cut taper shaped

products and can cut multiple parts in a stack. It is a highly accurate method of part production

and its technology is essential for narrow tolerance parts and repeatable tooling as achieving high

accuracy and tighter tolerances is essential in many industries. This process can produce and

repeat the required specifications with ease. Besides that, wire EDM also has disadvantages; this

is more expensive than conventional machines and high skills are required to handle the machine.

Wire EDM gives low material removal rate (MRR) and is less flexible on workpiece material

when compared to other machines. The workpiece to be machined should be a conductor and

leaves white layer and HAZ on the machined component. Prototypes are expensive to produce

using WEDM. Wire EDM has a broad range of applications that are continuing to grow in many
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industries such as aerospace for complex geometries, in medical and dental for instrumentation,

tooling for forging or injection molding operations and for manufacturing of progressive,

blanking and trimming dies. This process is suitable for thin or delicate parts that are susceptible

to tool pressure in conventional manufacturing processes. Recently, WEDM process is also being

used to machine a wide variety of miniature and micro-parts in metals, alloys, sintered materials,

cemented carbides, ceramics and silicon (Mukherjee et al., 2012) The above list of applications

represents only a few of areas where wire EDM is being used.

1.4. Optimization

Optimization is the process used to select an optimal (best) choice from a set of

alternatives. The technique used for optimization is termed as optimization technique. An

optimization problem consists of maximizing or minimizing a real function (objective function)

systematically. A feasible solution that minimizes or maximizes the objective function is a

candidate solution. Fermat and Lagrange found calculus-based formulas for identifying optima,

while Newton and Gauss proposed iterative methods for moving towards an optimum.

Classification of optimization techniques is shown in Figure 1.7.

Figure 1.7 Classification of optimization methods
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Techniques shown in Figure 1.7, fall under the metaheuristic techniques. The Traditional or

classical methods include linear programming, non-linear programming, quadratic programming,

gradient method, Newton’s method, interior point methods etc. However, these techniques suffer

from drawbacks in addressing multi-modal problems and handling discrete control variables.

Since the WEDM process, being a stochastic in nature, and the responses involve number of

discrete variables, metaheuristic techniques are employed in the present work.

1.5. Design of experiments: RSM

For analyzing of any system or process effectively, efficiently and economically,

experiments are to be designed and conducted systematically. In any experiment, the results and

conclusions that can be drawn depend to a large extent on the manner in which the data were

collected. The aim of any experimental design is to provide an insight into the relationship

between process parameters with their responses, the influence of various process parameters and

also their percentage contributions. One-Variable-At-a-Time (OVAT) approach is used in

manufacturing industries, where one variable is varied at a time keeping all other variables in the

experiments fixed. This type of experimentation requires large resources to be obtained and also

involves many constraints such as it depends upon guesswork, luck, experience and instinct for

its success. Therefore, these are often considered as unreliable, inefficient, time consuming and

may yield false optimum conditions for the process.

Factorial design of experiments is mostly used to simultaneously determine the significance

of multiple independent variables and their interactions. In a full factorial design of experiments

two or more factors with discrete values or levels are considered with all the possible

combinations. However, it is costly to perform full factorial experiments. Instead, a fractional

factorial design, which is a subset of full factorial design, is generally used which requires fewer

runs. Factorial design is less preferable when more than two levels are considered. This is

needed, as the number of experiments required for such designs will be considerably greater than

their two level counterparts. Generally, factors in real engineering problems are continuous, but

the two-level factorial design assumes that the effect is linear. In order to consider a quadratic

effect, a more complicated experiment is to be selected such as central composite design.
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Response surface methodology (RSM) is mostly used while optimizing factors that could have

quadratic effects (Rao, 2011).

RSM is a collection of statistical and mathematical techniques useful for the modeling and

analysis of problems (Montgomery, 2005). They can be applied for modeling and optimization of

any engineering problems. In RSM, the objective is to optimize the responses that are influenced

by the input process parameters. Sufficient data is gathered through the designed experimental

layout and a second-order regression equation is developed. A multi-variable regression analysis

has been developed between the input process parameters and responses. The general second

order regression equation is given by equation 1.1.

2
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1 1

n n n

r i ir ii ir ij ir ju r
i i j i

Y b b X b X b X X e
  

       1.1

where, Yr is response, Xir is the value for ith input process parameter of rth experiment; n is the

number of process parameters; bi, bii, bij are the regression coefficients; and er is the experimental

error of the rth observation. This regression modeling is done to generate the fitness equations for

the output responses.

Optimization study in RSM is carried out in three stages. First stage is to determine the

independent input parameters and their levels for experimentation. In the second stage, selection

of experimental design, prediction and verification of the model equation is performed. Lastly,

the response surface plots and contour plots of these response functions are used to determine the

optimum points. RSM has several advantages as compared to classical experimental methods as

listed below.

 RSM delivers more information from less number of experiments. Whereas, classical

methods are more time consuming with large number of experiments to explain the

behavior of a system.

 It is possible to determine the interaction effect of the parameters on the responses. RSM

model can easily clarify theses interaction effects for binary combination of the

independent parameters.

 Empirical model is also developed which helps to obtain the nature or trend of the response

with respect to the input parameters in the given process.
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On the contrary, the major drawback of RSM is to fit the data to a second order polynomial. It

cannot be said that all systems containing curvature are well accommodated by the second order

polynomial. Therefore, preliminary experiments are required to be carried out to determine the

range of independent input parameter.

1.6. Organization of thesis

The thesis is organized into seven chapters.

Chapter-1: Introduction

A brief background of the work has been reported in this chapter and insight into super alloys and

their applications are introduced. Different EDM processes are also introduced here. At the end

of the chapter design of experiments is also explained briefly.

Chapter-2: Literature review

The literature on the topics related to optimization of MRR, SR, evolutionary algorithms,

circularity and cylindricity errors, neural networks, recast layer thickness and micro hardness are

presented in this chapter. Based on literature survey, research gaps are identified and objectives

are formulated at the end of this chapter.

Chapter-3: Experimental setup and measurement of responses

A description on the experimental set-up, selection of process parameters with their ranges and

levels, working conditions and procedures adopted while conducting the experiments to fulfill the

objectives of the present work on super alloys are given in this chapter. Different equipments

used in the present study to measure the responses are also described in this chapter.

Chapter-4: A modified cuckoo search algorithm for optimization of MRR and SR

Introducing cuckoo search algorithm and its procedural steps, proposed modified cuckoo search

and application of modified method to bench mark problems for validation are explained in this

chapter. Application of MCS to optimize MRR and SR of Inconel-690 and Nimonic-263,

ANOVA analysis, combinations for desired responses, optimal results from different methods

and optimization of wire EDM parameters for simultaneous improvement of surface roughness

and MRR by applying non-dominated sorting principle are also presented in this chapter.
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Chapter-5: Geometrical errors

This chapter reports introduction to geometrical errors. Application of neural network method in

modeling of geometrical errors such as circularity and cylindricity errors is presented. Methods to

evaluate circularity and cylindricity errors also presented. The influence of various process

parameters on circularity and cylindricity, mathematical models to predict these errors are also

given in this chapter.

Chapter-6: Experimental investigation on re-cast layer thickness and micro-hardness of

WEDMed surfaces of   Inconel-690 and Nimonic-263

This chapter presents introduction on re-cast layer thickness and micro-hardness. Modeling of

RCLT and MH for Inconel-690 and Nimonic-263 super alloys, influence of WEDM process

parameters on RCLT and MH through ANOVA are also presented. It also reports EDS analysis

to check the chemical composition after the process.

Chapter-7: Conclusions and future scope

The conclusions drawn from the results obtained by conducting experimental investigations,

modeling and optimization of WEDM process while machining Nickel based super alloys are

presented in this chapter. All the limitations encountered during conduct of research and possible

extension to the present work is given in the form of future scope.

References
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CHAPTER 2

LITERATURE

2.1. Introduction

Nowadays WEDM is being used due to its wide applications such as aerospace, nuclear

and automobiles (Jain, 2005). And also it can be used to machine any electrically conductive

materials, irrespective of their hardness. The reason for extensive use of WEDM is due to its

ability to machine precise, complex and irregular shapes (Ho et al. 2004; Su 2012). Due to these

reasons research on WEDM is gaining importance day by day. Hence it is required to study the

behavior of WEDM process parameters in machining of different materials and also to develop

mathematical models to predict different responses of WEDM. In the recent past several

researchers conducted experiments to investigate the influence of different process parameters

such as pulse-on time, pulse-off time, peak current, servo voltage, wire tension, di-electric fluid

pressure and wire speed on different response parameters such as MRR, SR, kerf, WWR and

white layer thickness.

The effectiveness of the WEDM process depends on number of input process parameters

such as pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, wire feed,

and wire tension. Pulse-on time, also called pulse duration, is expressed in micro seconds. During

the pulse-on time, the voltage is applied in the gap between workpiece and the electrode thereby

producing discharge. Higher the pulse on time, higher will be the energy applied thereby

generating more amount of heat energy during this period. Material removal rate depends upon

the amount of energy applied during the pulse on time (Kansal et al., 2005). Pulse-off time, also

known as pulse interval, is also expressed in micro seconds. This is the time between discharges.

Off time is the pause between discharges that allows the debris to solidify and be flushed away by

the dielectric fluid prior to the next discharge. Reducing pulse-off time can increase cutting

speed, by allowing more productive discharges per unit time. However, reducing off time can

overload the wire, causing wire breakage and instability of the cut by not allowing enough time to

evacuate the debris before the next discharge (Fuller, 1996). Peak current is the amount of power
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used in machining and is measured amperes. The current increases until it reaches a preset value

during each pulse-on time, which is known as peak current. The metal removal rate is directly

proportional to peak current (Singh and Garg, 2009)

Servo voltage acts as the reference voltage to control the wire advances and retracts. If the

mean machining voltage is higher than the set servo voltage level, the wire advances, and if it is

lower, the wire retracts. When a smaller value is set, the mean gap becomes narrow, which leads

to an increase in spark intensity, resulting in higher machining rate. However, the state of

machining at the gap may become unstable, causing wire breakage (Ghodsiyeh et al., 2013).

Dielectric flow rate is the rate at which the dielectric fluid is circulated. Flushing is important for

efficient machining to flush the debris from the machining area and to act as a coolant. Flushing

pressure is produced from both the top and bottom nozzles. As the wire feed rate increases, the

consumption of wire as well as cost of machining will increase. Low wire speed will cause wire

breakage in high cutting speed.  If the wire tension is high enough the wire stays straight

otherwise wire drags behind. Within certain range, an increase in wire tension significantly

increases the cutting speed and accuracy. The higher tension decreases the wire vibration

amplitude and hence decreases the cut width so that the speed is higher for the same discharge

energy. However, if the applied tension exceeds the tensile strength of the wire, it leads to wire

breakage. This chapter focuses on investigations of different researchers while machining

different materials on WEDM and also optimization of various responses involved in the process.

2.2. Optimization of MRR and SR

The first WEDM machine was produced by the Swiss firm Agie in 1969. These early

machines are extremely slow but today, machines are equipped with automatic wire threading

and can cut over 20 times faster (Carl and Steev, 2005). Tosun and Cogun (2003) carried

experimental investigations to study the effect of cutting parameters such as pulse duration, open

circuit voltage, wire speed and dielectric fluid pressure on wire wear of AISI 4140 steel in

WEDM process. It is found experimentally that the increasing pulse duration and open circuit

voltage increase the WWR, however the increase in wire speed and dielectric fluid pressure

decrease the WWR. The level of importance of the machining parameters on the wire wear was
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estimated by using ANOVA. By using regression analysis technique, mathematical models are

developed for WWR with machining parameters.

Scott et al., (1991) presented a methodology to determine the optimal combination of

control parameters such as discharge current, pulse duration, pulse frequency, wire speed, wire

tension and dielectric flow rate in WEDM of D2 tool steel. The performance measures were

MRR and surface roughness. As no single combination can be optimal for both  MRR and

surface roughness, this led to the notion of non-dominated points and the complementary

optimization problems. Two different methods were used to obtain a set of non-dominated

combinationations, one is explicit enumeration method and the other is dynamic programming.

From the experimental results and ANOVA they found that discharge current, pulse duration and

pulse frequency were significant control factors for both MRR and surface finish where as wire

speed, wire tension and dielectric flow rate were relatively insignificant.

Liao et al., (1997) carried out an experimental investigation to determine the parameters

setting during the machining of SKD11 alloy steel. Based on the Taguchi quality design method

and the analysis of variance, the significant factors affecting the machining performance such as

MRR, gap width, SR, sparking frequency, average gap voltage and normal ratio (ratio of normal

sparks to total sparks) are determined. By means of regression analysis, mathematical models

relating the machining performance and various machining parameters such as pulse-on time,

pulse-off time, table feed rate, flushing pressure, wire tension, wire velocity  are established.

Based on the mathematical models developed, an objective function under the multi-constraint

conditions is formulated. The optimization problem is solved by the feasible direction method,

and the optimal machining parameters are obtained. Experimental results demonstrate that the

machining models are appropriate and the derived machining parameters satisfy the real

requirements in practice.

Kuriakose et al., (2003) applied data mining technique to model the WEDM process. The

process parameters such as applied machining voltage, ignition pulse current, pulse duration, idle

(delay) time (time between two pulses), servo speed variation, servo-control reference voltage,

wire speed, wire tension, and injection pressure for dielectric were considered to model the

responses. A data mining technique C4.5 was used to study the effect of various input parameters

on the outputs, namely the cutting speed and surface finish.
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Konda et al., (1999) carried out experiments to optimize the WEDM process

performances such as machining speed and surface roughness. Pulse duration, charge frequency,

charge current and capacitance were taken as process parameters. Design of experiments strategy

was used for experimental plan. Complimentary optimization technique (identifying the non-

dominated points ) was used to solve the multi-objective optimization problem.

Tarng et al., (1995) used feed forward neural network to construct the WEDM process

model to associate the cutting parameters such as pulse-on time, pulse-off time, peak current

setting, no-load voltage, servo reference voltage, capacitor setting, and servo speed setting and

the responses include machined surface roughness and machining speed. Simulated annealing

algorithm is then applied to the neural network for solving the optimal cutting parameters based

on a performance index within the allowable working conditions.

Spedding and Wang (1997) applied artificial neural networks (ANN) to optimize the

process parameters such as time between two pulses, pulse width, wire mechanical tension, and

wire feed space by modeling the process. Cutting speed, workpiece surface roughness and

waviness were selected as the performance measures. A multi layered feed-forward neural

network is used to model the WEDM process, and the developed model is used for process

performance prediction and parameter optimization.

Tosun and Pihtili (2003) conducted experimental investigation to study the effects of

pulse duration, open circuit voltage, wire speed and dielectric flushing pressure on the dimension

of craters in the wire in WEDM process. From the experimental results it was found that

increasing the pulse duration, open circuit voltage, and wire speed increases the crater diameter

and crater depth, whereas increasing the dielectric fluid pressure decreases these factors. This

study is limited to one response only. Using the conducted experiments, the researchers could

have studied metal removal rate, roughness of machined surface and dimensional deviation also.

Sarkar et. al. (2006) made an attempt to develop an appropriate machining strategy for a

maximum process yield criteria. A feed forward back-propagation neural network was developed

to model the machining process. Cutting speed, surface roughness and wire offset have been

considered as measures of the process performance. The model is capable of predicting the

response parameters as a function of six different control parameters such as pulse on time, pulse

off time, peak current, wire tension, dielectric flow rate and servo reference voltage.
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Experimental results demonstrate that the machining model is suitable and the optimization

strategy satisfies practical requirements.

Manna and Bhattacharyya (2006) carried out an experimental investigation to determine

the parameters setting during the machining of aluminium-reinforced silicon carbide metal matrix

composite (Al/SiC-MMC). The Taguchi method was used to optimize the CNC-wire cut-EDM

parameters. From experimental results and through ANOVA and F-test values, the significant

factors were determined for each response performance, such as the metal removal rate, surface

roughness, gap current and spark gap (gap width). Mathematical models relating the machining

performance are established using the Gauss elimination method for the effective machining.

Mahapatra and Patnaik (2007) attempted to determine the important machining parameters for

performance measures like MRR, surface finish and kerf in WEDM on D2 tool steel. Using

Taguchi’s parametric design significant machining parameters affecting the performance

measures are identified as discharge current, pulse duration, pulse frequency, wire speed, wire

tension and dielectric fluid flow rate. Mathematical models are developed by means of non linear

regression analysis for MRR, SR, and Kerf. Genetic algorithm is employed to optimize the

WEDM process with Multiple-objectives. The above two studies involved application of Taguchi

method, however, this method fails to show the significance of interaction effects.

Aravind et. al., (2012) used Taguchi’s experimental design to obtaining the optimum

machining parameters for the maximization of MRR and minimization of surface roughness

separately in WEDM of brass material. They considered input voltage, current density, speed

(feed rate), pulse-on time and pulse-off time as input parameters. They found that, the significant

factors are pulse time and feed rate in both MRR and SR. Higher values of feed rate and pulse

duration increase the MRR and decrease the surface roughness.

Khan et. al., (2006) conducted experimental investigations to establish relationships for

surface finish with current and voltage. Work materials tested were mild steel, aluminium,

cemented carbide, copper and stainless steel. They concluded that the machined surface becomes

rougher with increase in current and voltage. Microstructures of the specimens show that craters

on the finished surface becomes larger as a result of using higher current and voltage. Wires of

smaller diameters give smother surface than those cut with that of larger diameter.
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Guiqin et al., (2007) established a WEDM model in which combined modeling function

of fuzzy inference with the learning ability of artificial neural network was integrated with

genetic optimization. In this work they considered the MRR and SR as output parameters and

workpiece thickness, pulse-on time, peak current and mean current are input parameters.

Yu et al., (2011) investigated the effect of various parameters on cutting speed, machine

groove width and surface roughness in machining polycrystalline silicon. Pulse-on time and open

voltage have significant influence on cutting speed. Increase in flushing rate improved cutting

speed and reduced surface roughness. Strengthening wire tension showed significant

improvement in machining grove width. Tosun (2003) studied variations of cutting performance

with pulse  on time, open circuit voltage, wire speed and dielectric fluid pressure on AISI 4140

steel. It was found experimentally that increase in pulse duration, open circuit voltage, wire speed

and dielectric fluid pressure increased the cutting speed. The surface quality of the workpiece

increased with decrease in pulse duration, open circuit voltage and wire speed, and with

increasing dielectric fluid pressure. Regression analysis was used to develop mathematical

models. Lee and Liao (2003) developed a gain Self-tuning fuzzy control system to cope with the

conditions that often occur with wire rupture in WEDM process, such as an improper setting of

machining parameters and machining the workpiece with varying thickness.

Manna and Bhttacharyya (2005) experimented to determine the parameters setting during

the machining of aluminium-reinforced silicon carbide metal matrix composite (Al/SiC-MMC).

The Taguchi method is used to optimize the CNC-wire cut-EDM parameters. From the

experimental results and through ANOVA and F-test values, the significant factors are

determined for each machining performance criteria, such as the MRR, surface roughness,

gapcurrent and spark gap (gap width).  The important controllable process parameters such as

pulse on-time (Ton), pulse off-time (Toff), peak current (IP), pulse peak voltage (Vp), wire feed

rate (WF), wire tension (WT) and spark gap voltage (SV) are considered in this study. Open gap

voltage  and pulse on period  are the most significant machining parameters for controlling the

MRR. The open gap voltage affects the cutting speed significantly. Wire tension (WT) and wire

feed rate (WF) are the most significant machining parameters for the surface roughness (SR).

Wire tension and spark gap voltage setting  are the  significant parameters for controlling spark

gap (i.e. gap width, W ) Open gap voltage and gap current are the significant parameters  for

controlling gap current (Ig).
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Han et. al., (2007) experimented to study  the influence of the machining parameters such

as  pulse duration, discharge current, sustained pulse time, pulse interval time, polarity effect,

material and dielectric on surface roughness in the finish cut of WEDM.  It is concluded that the

surface roughness can be improved by decreasing both pulse duration and discharge current. The

removal rate when a short pulse duration is used is much higher than when the pulse duration is

longer. A short pulse duration combined with a high peak value can generate better surface

roughness, which cannot be achieved with long pulses. In the study, it was also found that

reversed polarity machining with the appropriate pulse energy can improve the machined surface

roughness as compared to normal polarity in finish machining, however some copper from the

wire electrode is accreted on the machined surface.

Saha et al., (2008) developed a second order multi-variable regression model and a feed-

forward back-propagation neural network (BPNN) model  to correlate the input process

parameters, such as pulse on-time, pulse off-time, peak current, and capacitance with the

performance measures namely, cutting speed and surface roughness while wire machining

tungsten carbide-cobalt (WC-Co) composite material. Scanning electron micrographs reveal that

at higher energy level, the machined surface is characterized by several micro-cracks and loosely

bound solidified WC grains.

Gauri and Chakraborty (2009) worked on optimization of process settings with respect to

all these performance measures. Taguchi’s robust design method can only be applied to optimize

a single-response problem where as the principal component analysis (PCA)-based approach for

multi response optimization can effectively overcome those weaknesses. In this study, some

modifications in the PCA based approach are suggested and two sets of experimental data

published by the past researchers are analyzed using this modified procedure. The aim of this

study was to optimize the settings of six controllable factors, e.g., pulse on time, pulse off time,

peak current, wire tension, servo reference voltage and dielectric flow rate with respect to three

performance characteristics of a WEDM process. The performance characteristics considered

were cutting speed, surface roughness and dimensional deviation. The results demonstrate that

the PCA-based optimization can lead to better overall quality than the constrained optimization-

based approach, and the anticipated overall quality under the PCA and MRSN-based approaches

are observed to be almost equivalent. This method gives optimal values for multiple responses
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from the conducted experiments only. However, global optimal solution could lie outside these

experiments.

Gauri and Chakraborty (2010) used two sets of experimental data on WEDM processes

and analysed using four promising multi-response optimization approaches, such as  GRA,

MRSN ratio, WSN ratio, and VIKOR methods. The resulting optimal solutions for these four

methods and the expected overall quality at these optimal solutions are compared. It is found that

WSN ratio method can give better overall quality than other methods. The aim of this study was

to optimize the settings of six controllable factors, such as pulse on time, pulse off time, peak

current, wire tension, servo reference voltage and dielectric flow rate with respect to three

performance characteristics such as MRR, surface roughness and Kerf. The results demonstrate

that the WSN ratio based multi response optimization can lead to better overall quality than the

GRA, VIKOR and MRSN-based approaches. These techniques can identify optimal solution

within the conducted experiments only.

Satishkumar et al.,(2011) investigated the effect of parameters such as pulse-on time,

pulse-off time, gap voltage and wire feed on MRR and surface roughness in metal matrix

composites (MMCs) consisting of aluminium alloy(Al6063) and silicon carbide(SiCp) in various

volume fractions( 5%,10% and 15% of SiC) prepared through stir casting process. The

experiments are carried out as per design of experiments approach using L9 orthogonal array. It

is observed that the MRR was found to decrease with increase in the percentage of SiC particles

in the MMCs, where as the Ra increases with increase in the percentage volume fractions of SiC.

It is also found that the influence of gap voltage was more significant parameter than others.

Yang et al.,(2012) attempted to analyze variations in metal removal rate MRR, surface

roughness Ra, and corner deviation in relation with WEDM process parameters such as pulse on

time , the pulse off time, arc off time, the servo voltage, the wire feed rate, the wire tension, and

the water pressure in cutting pure tungsten. This research proposes an effective process parameter

optimization approach that integrates Taguchi’s parameter design method, response surface

methodology (RSM), back propagation neural network (BPNN), and simulated annealing

algorithm (SAA) on WEDM processes. Simultaneously, RSM and SAA approaches were

individually applied to search for an optimal setting. In addition, ANOVA was implemented to

identify significant factors for the processing parameters. Furthermore, the field-emission SEM

images show that a lot of built-edge layers were presented on the finished surface after the
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WEDM process. Finally, the optimized result of BPNN with integrated SAA was compared with

that obtained by an RSM approach. Comparisons of the results of the algorithms and

confirmation experiments show that both RSM and BPNN/SAA methods are effective tools for

the optimization of parameters in WEDM process. The results showed that, with the higher pulse

on time, which leads to the discharge energy becoming more intense, the MRR was increased and

the brass wire of cutting tool accelerates depletion, generates a larger built-up layer, and therefore

produces rougher surfaces. Simultaneously, increasing the wire tension results in the decrease of

corner deviation.

Kumar and Agarwal (2012) applied multi-objective genetic algorithm NSGA-II to

optimize the multiple objectives of  MRR and surface roughness with respect to process

parameters such as pulse peak current, pulse-on time, pulse-off time, wire feed, wire tension and

flushing pressure on machining high speed steel (M2,SKH9). Experiments, based on Taguchi’s

parameter design, were carried out to study the effect of various parameters and mathematical

models were developed between machining parameters and responses like metal removal rate and

surface finish by using nonlinear regression analysis. These mathematical models were then

optimized by using multi-objective optimization technique based on NSGA-II to obtain a Pareto-

optimal solution set. The results of optimization indicate that the MRR and surface finish are

influenced more by pulse peak current, pulse duration, pulse-off period and wire feed than by

flushing pressure and wire tension. Results also indicate that the surface quality decreases as the

MRR increases and they vary almost linearly.

Sharma et. al., (2012) conducted experiments to investigate the effect of process

parameters on cutting speed and dimensional deviations in cutting high-strength low-alloy steel

(HSLA). The different process parameters considered in their study are Pulse on time, Pulse off

time, Spark gap voltage, Peak current and Wire tension. To optimize the process parameters for

cutting speed and dimensional deviation, Response Surface Methodology was used. From the

experimental results it is found that pulse-on time was the most prominent factor for cutting

speed and dimensional deviation.

Prasad and Krishna (2009) proposed a methodology to determine the optimal machining

parameters to achieve high production rate and good surface finish of WEDM machined

components. The process parameters considered are Pulse-on time, Pulse-off time, Wire tension,

Dielectric flow rate, and Wire feed. Response surface methodology was used to develop the
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mathematical models for MRR and surface roughness. Since the influence of process parameters

on MRR and Ra are opposite, the problem is formulated as a multi-objective optimization

problem. NSGA was used to obtain the Pareto optimal set of solutions.

Shah et al., (2011) investigated the effect of various wire electrical discharge machining

parameters such as the material thickness, open voltage, pulse-on time, pulse-off time, servo

voltage, wire feed velocity, wire tension, and dielectric pressure on the machining responses such

as MRR, kerf, and surface roughness of tungsten carbide. Taguchi orthogonal design was used

for experiments and ANOVA is used to identify the significant factors. Mathematical models are

developed to optimize the responses such as MRR, Ra, and Kerf separately. From the

experimental results it was observed that metal thickness has little effect on the material removal

rate and kerf but is a more significant factor in terms of surface roughness.

Ramakrishnan and Karunamoorthy (2006),described a multi response optimization

method (MRSN) using Taguchi’s robust design for machining heat treated tool steel. Pulse on

time, Wire tension, Delay time, Wire feed rate and ignition current intensity are taken as input

process parameters and MRR, surface roughness and wire wear ratio are considered as responses.

It was identified that the pulse on time and ignition current intensity have influenced more than

the other parameters considered in their study.

Gauri and Chakraborty (2009) applied weighted principle component analysis method

(WPC) to optimize the multiple responses of WEDM. In this approach, the set of multiple

responses is first transformed into a set of a small number of uncorrelated principal components.

Then, the weighted sum of all the principal components is taken as the multi-response

performance index (MPI) and the optimal parametric settings that maximize the MPI are

determined in an objective manner.

Datta and Mahapatra (2010) applied response surface methodology to developed

quadratic mathematical models to represent the behavior of WEDM process parameters such as

discharge current, pulse duration, pulse frequency, wire speed, wire tension and dielectric flow

rate for the process responses such as MRR, surface roughness and kerf.  Experiments are

planned and conducted based on the Taguchi’s orthogonal array principles. Grey relational

analysis has been adopted to convert this multi-objective criterion into an equivalent single

objective function; overall grey relational grade, which has been optimized (maximized) by using

Taguchi technique. Experiments were conducted on D2 tool steel.
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Muthu et. al., (2010) demonstrated the  optimization of WEDM process parameters of

Incoloy800 super alloy with multiple performance characteristics such as MRR, surface

roughness and Kerf based on the Grey–Taguchi method by considering the process parameters

such as gap voltage, pulse on-time, pulse off-time and wire feed. The variation of output

responses with process parameters were mathematically modeled using non-linear regression

analysis method. Optimal levels of process parameters were identified using GRA and the

relatively significant parameters were determined using ANOVA.

Vundavalli et. al., (2012) applied multi-objective optimization techniques such as NSGA

and particle swarm optimization (PSO) techniques to WEDM process as this process involves

multiple-objectives like cutting velocity and surface finish. The various process parameters

considered include applied voltage, ignition pulse current, pulse-off time, pulse duration, servo

controlled reference mean voltage, servo-speed variation, wire speed, wire tension and injection

pressure. Both the approaches are found to show similar trend on the Pareto­ optimal fronts.

Moreover, GA has slightly outperformed the PSO in terms of the optimal solution obtained. It is

also important to note that PSO has produced the optimal front in less time when compared with

the GA. It may be due to the simple structure associated with minimal parameter tuning of PSO.

Shandilya et al.,(2012) attempted to optimize the process parameters of WEDM during

machining of SiC/6061 Al MMC using response surface methodology (RSM).Four input process

parameters of WEDM namely servo voltage , pulse-on time, pulse-off time and wire feed rate

were chosen to study the process performance in terms of cutting width (kerf). The ANOVA was

carried out to study the effect of process parameters on process performance. Mathematical

models have also been developed for response parameter and properties of the machined surface

have been examined by using SEM.

Singh and Khanna, (2011) attempted to optimize the cutting rate of cryogenic-treated D-3

material with respect to their input process parameters such as pulse width, time between two

pulses, maximum feed rate, servo reference mean voltage, short pulse time, and wire mechanical

tension. Experimental results showed that cutting rate decreases with increase in pulse width,

time between two pulses, and servo reference mean voltage also cutting rate first decreases and

then increases with increase in wire mechanical tension.

Antar et. al., (2011) presented experimental data for workpiece productivity and integrity

while machining Udimet 720 nickel based super alloy and Ti-6Al-2Sn4Zr-
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6Motitaniumalloy,using Cu core coated wires (ZnCu50 and Zn rich brass). It was found that up to

a 40 % for Udimet 720 and 70 % for Ti-6Al-2Sn4Zr-6Mo titanium alloy increase in productivity

was possible compared to when using uncoated brass wires with the same operating parameters.

The variation in surface roughness values, mainly during roughing, between the top, middle and

bottom sections of the specimens could be related to ‘imperfect’ sparks generated due to erosion

of the wire, leading to wider machining gaps. In terms of recast layer thickness, better results

were achieved using the coated wire for both roughing and trim operations.

2.3. Evolutionary algorithms

Das et al. (2014) applied Artificial Bee Colony (ABC) algorithm to identify the optimal

parameter values to yield minimum surface roughness. They conducted experiments for their

investigation on EN 31 steel and also CCD of RSM was used for their experimental plan. Tharian

et al. (2015) are also used ABC algorithm to estimate the optimal values for minimum surface

roughness. They used AISI 202 stainless steel for experimentation and Taguchi L18 orthogonal

array was used for experimental plan. For both their study results are verified with the

experimental results and found they are in good agreement. Pasam et al. (2010) used Taguchi L27

for their experimental study to machine Titanium alloy on WEDM. Mathematical models are

developed and these models are further optimized using GA. Shandilya et al (2012) and Sharma

et al. (2014) studied the effect of WEDM process parameters in machining of metal matrix

composites (MMC)  and D-2 tool steel respectively. RSM was used to develop mathematical

model for dimensional deviations and then GA was used for further optimization of process

parameters.

Pawar (2011) applied a shuffled frog leaping (SFL) algorithm for simultaneous

optimization of metal removal rate and wear ratio subjected to the constraints of surface

roughness. Rao and Pawar (2010) and Rao and Venkaiah (2015) applied particle swarm

optimization (PSO) technique to optimize WEDM process parameters to improve the machining

speed for a desired value of surface finish. RSM was used for experimental plan and also to

develop mathematical models. Whereas Muthukumar et al. (2015) applied a recently developed

Accelerated PSO (APSO) to optimize the process parameters to maximize MRR and minimize

SR and kerf. Mukherjee et al., (2012) carried out comparative study on different population based
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non-traditional optimization techniques such as GA, PSO, ABC, sheep flock algorithm (SF), ant

colony algorithm (ACO) and biogeography-based optimization (BBO) in selection of optimal

WEDM parameters. They were taken two problems from the literature as case studies and applied

the above algorithms for comparative study. They found that BBO out performance the others in

terms of quick convergence, optimization performance and dispersion of the optimal solutions

from their mean.

Cuckoo search algorithm, a meta-heuristic optimization algorithm, was developed by

Yang and Deb (2009) based on the breeding behavior of cuckoos and the characteristics of Levy

flights of some birds and fruit flies. Cuckoo search algorithm (CSA) was found to be efficient in

yielding the global optimal value and this algorithm was found to outperform GA and PSO

techniques in terms of speed, accuracy and simplicity of computations (Yang and Deb 2009,

Yang and Deb 2010 and Gandomi et al. 2013). However, the accuracy of CS heavily depends

upon the initial solution and its location from the target value and therefore it may involve many

generations. This could lead to delay in convergence.

2.4. Geometrical errors

Circularity error is measured on components where the height of the component is less

than the diameter. Whereas the cylindricity is measured on components where the height of the

component is more than that of the diameter. There are two types of approaches to evaluate the

circularity and cylindricity errors: one is using form data and the other one is CMM data. Though

there are four methods available to assess the circularity error, least squares circle (LSC) method

is used by most of the researchers due to easy and simple to apply and also it gives unique

solution. It is proved by Shunmugam (1986), Thomas and Chan (1989), Kim and Kim (1996) and

Qiu et al. (2000) that the error values estimated using LSC are generally higher. To evaluate

roundness error, an optimization theory was formulated analytically by Kaiser and Morin (1994).

This method involves conversion of circle into line and cylinder to plan by non-linear

transformation. Chang and Lin (1993) employed a Monte Carlo simulation method for circularity

error evaluation. To obtain minimum error value simplex linear programming has been applied

by Carpinetti and Chetwynd (1994) and min-max algorithm described by Lin and Varghese

(1995). Lai and Chen (1996) proposed a strategy for minimum zone (MZ) evaluation of cylinders
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and circles. A vision based inspection system was developed by Chen et al. (1999) based on the

stochastic optimization approach for reference circles. Simulated annealing and Hook-Jeeve’s

pattern search for roundness measurement also proposed by them. Genetic algorithm is also

applied (Liao and Yu (2001) and Wen et al. (2006)) to assess the circularity error. Devillers and

Ramos (2002) proposed discrete local optimization method and it works only if the object is

round feature. A characteristic point-based method proposed by Deng et al. (2003) to find a MZ

solution. An optimization known as semi-definite programming is proposed by Ding et al. (2007)

to evaluate circularity error. Kovvur et al. (2008) and Sun (2009) are used particle swarm

optimization technique to evaluate the roundness error.

In addition to the above techniques proposed by different researchers, computational

geometry (CG) techniques can provide solutions for many geometric problems which can not be

solved by classical methods. Lai and Wang (1988) proposed the convex hull concepts, CG based

algorithm to evaluate circularity error for the first time. Samuel and Shunmugam (2000) applied

computational geometric techniques of convex hulls, to assess the circularity error at different

conditions. Apart from that, an equi-angular diagram concept was also employed to find

circularity error. Zhu et al. (2003) presented a steepest descent algorithm for circularity error

evaluation. An attempt was made by the Li and Shi (2009) to establish the relationship among the

reference circles.

Cylindricity is also measured with circularity measuring instruments such as form tester

and CMM with an additional straight datum. Measurements are carried out at few transverse

sections of the cylinder. To evaluate the cylindricity error least-squares method was proposed by

shunmugam (1986) and Tsukada et al. (1998), whereas the normal least-squares method was

proposed by Murthy (1982). A non-linear optimization model was proposed by Carr and Ferreira

(1995) for MZ cylindricity solution. Radhakrishnan et al. (1998) proposed a linear iterative cyclic

coordinate search technique to obtain the near optimal solution for evaluation of cylindricity. A

hyperboloid method was proposed by Devillers and Preparata, (2000) to evaluate the cylindricity

error. Initial solution based methods like simulated annealing (Chen, 2002; Shakarji and Clement

2004), genetic algorithms (Sharma et al. 2000, Lai et al. 2000) and particle swarm optimization

algorithm (Zhang et al. 2011) etc. have been used by some researchers to find the optimal

cylindricity error values by applying to any of the cylindricity error measuring methods.
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Though different techniques are available in literature to evaluate the geometric errors,

modeling and optimization of geometric errors for the parts made by WEDM process are yet to

be explored.

2.5. Neural networks

Neural networks (NN) are a family of models inspired by biological neural

networks (the central nervous systems of animals, in particular the brain) and are used to estimate

or approximate functions that can depend on a large number of inputs and are generally

unknown. Artificial neural networks are generally presented as systems of interconnected

"neurons" which exchange messages between each other. The connections have numeric weights

(Choudhury and Bartarya 2003) that can be tuned based on experience, making neural nets

adaptive to inputs and capable of learning. Like other machine learning methods - systems that

learn from data - neural networks have been used to solve a wide variety of tasks that are hard to

solve using ordinary rule-based programming, including computer vision and speech recognition.

The most popular learning algorithm for multilayer networks is the back-propagation algorithm

and its variants (Ebrahimi et al., 2006). The ANN is trained by a learning algorithm that performs

the adaptation of weights of the network iteratively until the error between target vectors and the

output of the ANN is less than an error goal (Joghataie and Amiri 2005)

Esme et al., (2009) carried out experimental investigations for comparative studies in

using factorial design and NN. Both the methods are used for modeling and predicting the surface

roughness in machining of AISI 4340 steel on WEDM. The predicted values using both the

models are compared with experimental values. They found that the predicted values of NN

model are close to the experimental values. Tarng et al. (1995) developed a neural network

system to determine settings of pulse duration, pulse interval, peak current, open circuit voltage,

servo reference voltage, electric capacitance and wire speed for the estimation of cutting speed

and surface finish. Spedding and Wang (1997) presented a parametric combination by using

artificial neural networks and they also characterized the roughness and waviness of the

workpiece surface and cutting speed. Liao et al. (1997) performed an experimental study to

determine the variation of the machining parameters on the MRR, gap width and surface

roughness. They have determined the level of importance of the machining parameters on the

metal removal rate (MRR). Lok and Lee (1997) compared the machining performance in terms of
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MRR and surface finish by the processing of two advanced ceramics under different cutting

conditions using WEDM. Ramakrishnan and Karunamoorthy (2008) developed an artificial

neural network with Taguchi parameter design. Tsai et al. (2008) found relationships between the

heterogeneous second phase and the machinability evaluation of the ferritic SG cast irons in the

WEDM process. Sarkar et al. (2008) studied the features of trim cutting operation of wire

electrical discharge machining of γ-titanium aluminide. Caydas et al. (2009) developed an

adaptive neuro-fuzzy inference system (ANFIS) for modeling the surface roughness in the

WEDM process.  NN modeling of EDM process is also employed by Liao et al. (2002), Çaydaş

and Hasçalık (2008),   Chen et al. (2010), Guven et al. (2010), Sarkeyli et al. (2015), Ming et al.

(2015), Patowari et al (2010),  Yang et al. (2012), Shandilya et al. (2013) and Zhang et al. (2013)

etc.

It can be noted that the NN modeling is mainly focused on the effect of machining

parameters, discharge energy, theoretical and experimental verification and crater formation on

the wire electrode. However, the present study involves the development of prediction models for

geometrical errors such as circularity and cylindricity errors in machining of super alloys on

WEDM.

2.6. Recast-layer and Micro-hardness

A portion of the melted workpiece material is removed by a dielectric circulation system.

The remaining molten material will rapidly re-solidify to form a layer known as the recast layer

(Goswami and Kumar, 2014). This recast layer affects the mechanical properties like hardness of

the materials.  Newton et al., (2009) investigated on characteristics of recast layer formed in

machining of Inconel 718. They found that the hardness is increasing with distance from the top

layer of WEDMed surface. Li et al. (2013) and Kumar et al. (2016) also observed that there is a

dramatic reduction in hardness as compared to that of bulk material.

Recast layer and heat affected zones of EDMed surfaces were studied by Rajurkar and

Pandit (1984), and also developed thermal models to predict the damage layer thickness. Hasçalık

and Çaydaş (2007) performed experiments on titanium alloy with different electrode materials in

EDM and explored the influence of parameters on white layer thickness, roughness, and

hardness. Soni and Chakraverti (1996) investigated experimentally the change in resolidified
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layers and micro-hardness of EDMed surfaces of Die steel. Studies were carried out by Cusanelli

et al. (2004) on the formation of white layer and hardness of EDMed surfaces of steel. They also

studied the white layer in submicron scale for phases present in white layer, micro cracks, Carbon

content in the white layer and nano-hardness of the white layer. They found that the hardness of

the white layer is more than that of the base material. Iqbal and Khan (2010) carried out

experimental investigation on the influence of EDM process parameters on the recast layer

thickness, micro cracks, and material migration in machining of stainless steel. Along with MRR

and TWR, recast layer and micro hardness are also studied by Jabbaripour et al. (2012) for

Titanium alloy in EDM process. Experimental investigations on the effect of WEDM parameters

on the surface roughness and micro-hardness of HSLA material were carried out by Khan et al.

(2014). They also used gray relational analysis to optimize surface roughness and micro hardness

simultaneously.

2.7. Problem Statements and Motivation

Nickel-based super alloys are a special class of materials with an exceptional combination

of high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing

environments. These materials are primarily used in the hot sections of jet turbine engines, such

as the blades, vanes, and combustion chambers, constituting over 50 % of the engine weight.

Inconel-690 is a high-chromium nickel alloy and is widely used for steam generator tubes,

baffles, tube sheets, and hardware in nuclear power generation. Nimonic-263 is a nickel-

chromium-cobalt-molybdenum alloy specially meant for use in high temperature and high

strength applications. These super alloys are extremely hard to shape using traditional machining

methods due to rapid work hardening. After the first machining pass, work hardening tends to

plastically deform either the workpiece or the tool on subsequent passes. Therefore, modern

machining methods such as sinker EDM and abrasive water jet machining (AWJM) are generally

employed to machine these materials. The drawback with sinker EDM is that it can produce

simple geometries like holes and AWJM consumes higher energy. However, WEDM can be used

to machine complex shapes with lesser energy requirements. Further, adequate WEDM studies

are not reported on these materials. Therefore, generation of machining data using WEDM on

these materials assumes a great importance from the industry viewpoint.
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Surface roughness affects several functional attributes of parts, such as friction, wear and

tear, light reflection, heat transmission, ability of distributing and holding a lubricant and coating.

Hence, assessment of surface roughness of the parts is important from the quality viewpoint.

Further, in order to meet the customer requirement in terms of due date, the manufacturer always

tries to maximize the MRR. Increasing the MRR is also important from the viewpoint of

machining economics. Depending upon the requirements of the industry, these responses are to

be optimized either individually or simultaneously. Although there are many optimization

techniques, there is a possibility of improving them further to report the accurate results in much

lesser time. Among various optimization techniques, cuckoo search (CS) algorithm was found to

be efficient in yielding the global optimal value and this algorithm was found to outperform GA

and PSO techniques in terms of speed, accuracy and simplicity of computations. However, the

accuracy of CS heavily depends upon the initial solution and its location from the target value

and therefore it may involve large number of generations. Furthermore, in this algorithm, the

evolutionary operators are applied in each generation. This could lead to delay in convergence.

Therefore, there is a scope for improving this algorithm.

In order to meet the desired functional and assembly requirements, engineering

components need to have tighter dimensional and geometrical tolerances. Majority of the

engineering components have circular and cylindrical features in them. These components are

used for different applications such as rotating devices, transmission systems, injection moulds,

bearings and engine cylinders. Producing straight cuts is easier as compared to machining of axi-

symmetric components. The difficulties are further amplified while machining such features on

super alloys with the stochastic nature of WEDM process. Although most of the WEDM

literature is focused on responses such as MRR, SR, Kerf and WWR. Studies on geometrical

errors of axi-symmetric components are not yet reported. Therefore it is required to model the

geometrical errors in order to accurately predict these errors to reduce the rejection rate of the

components during inspection.

Mechanical properties of any material after machining will vary due to the machining

phenomena of sudden heating and cooling. It is difficult to retain the base material properties

after machining. In WEDM process, a huge amount of heat is generated is used to melt the

workpiece. A portion of the melted workpiece material is removed by a dielectric circulation
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system. The remaining molten material will rapidly re-solidify to form a layer known as the

recast layer. This recast layer thickness affects the surface integrity aspects such as hardness and

other surface properties of the materials. Lack of adequate studies on surface integrity on Inconel-

690 and Nimonic-263 materials is another motivation for the present work.

2.8. Objectives of the work

Following objectives are formulated for the present work.

1. To generate WEDM data on material removal rate, surface roughness, form errors,

recast layer thickness and micro-hardness for Inconel-690 and Nimonic-263 materials.

2. To analyze the existing cuckoo search algorithm for its effectiveness and formulate an

effective algorithm to yield optimal material removal rate and surface roughness.

3. To formulate non-dominated sorting modified cuckoo search algorithm to yield

simultaneous optimal solutions for MRR and SR.

4. To develop predictive models for form errors such as circularity and cylindricity using

ANN approach and minimize them for WEDMed components.

5. To investigate and model recast layer thickness and micro-hardness of WEDMed

surfaces.
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CHAPTER 3

EXPERIMENTAL SETUP AND MEASUREMENT OF

RESPONSES

3.1. Introduction

Analysis of any response of a system heavily depends on how well the experiments are

planned, conducted and measured.  The measurement process may also include calculations. For

example, material removal rate cannot be measured directly. It can be estimated by measuring the

dimensions of work material and observed time. Therefore conducting experiments and

measuring the responses is crucial part in any investigation. Ranges of variables should be

identified after trial experiments. In the present study RSM has been used for experimental plan

and also for developing predictive models for various responses such as MRR, SR, RLT and MH.

However, to develop robust predictive models, accurate measurement or estimation of response is

essential. This chapter describes experimental setup and measurement of responses. Details of the

machine (WEDM), experimental plan, and different instruments to measure the responses such as

surface roughness, circularity, cylindricity, re-cast layer thickness, and micro-hardness are also

presented.

3.2 Experimental setup

A WEDM of Eletronica make Eco-cut machine has been used to conduct the experiments

(Figure 3.1). De-ionized water is used as di-electric fluid and zinc coated brass wire of 0.25 mm

diameter is used as wire electrode. In order to identify the feasible ranges for each parameter for

uninterrupted machining, trial experiments were conducted. For example, at Toff - 50, Ip - 12 and

Sv - 40, the upper limit of Ton is fixed at 125. If Ton is increased beyond this value, wire breakage

was observed. Further, at Toff - 60, Ip -10, and Sv - 60, the lower limit of Ton is fixed at 105. If Ton

is set lesser than this value, there is no machining taking place due to wire shorting. Similar

experimental trials were conducted to fix the ranges for other parameters also. After observing

the results of trial experiments the ranges and levels are fixed as presented in the Table 3.1.
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Table 3.1 Process parameters: Ranges and levels

Variables Units Level 1 Level 2 Level 3

Pulse on time- Ton, (A) µs 105 115 125

Pulse off time- Toff, (B) µs 50 55 60

Peak current- Ip, (C) A 10 11 12

Servo voltage- Sv, (D) V 40 50 60

In order to generate machining data, a face centered central composite design (CCD) of

RSM is used for the experimental plan in the present study. The detailed experimental plan

involving number of experiments has been given in respective chapters. Design Expert 9 software

has been used in the present work for RSM analysis. RSM consists of mathematical and

statistical techniques utilized in the development of adequate functional relationships among

responses and process parameters.

Figure 3.1. WEDM machine
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Trchnical specifications of WEDM machine

Make : ELECTRONICA (INDIA)

Software                         : ELCAM

Specification                   : X: 250 mm, Y: 350 mm, Z: 200 mm

Control system               : CNC

Axis control                   : 4 Axis

Taper                              : +/- 5 deg/100mm

Resolution                     : 0.001 mm

Dielectric tank capacity : 140 liters

Least I/P increment       : 0.001mm

Wire Material                : Zinc coated Brass wire

Wire Diameter               : 0.25 mm

Input Parameters available: Pulse-on time, pulse-off time, peak current, flushing pressure, wire

feed rate and servo voltage.

In the present work, an attempt has been made to investigate the effect of process

parameters such as pulse on time (Ton), pulse off time (Toff), peak current (Ip) and servo voltage

(Sv), on the response parameters such as MRR, SR, circularity and cylindricity errors, re-cast

layer thickness and micro-hardness. Inconel-690 and Nimonic-263, nickel based super alloys

being extensively used in aerospace, automotive and nuclear power applications were chosen as

work materials. In this study, holes of 10 mm diameter (Figure 3.2) were machined on the

Inconel-690 plate of 6.35 mm thickness and Nimonic-263 plate of 18.5 mm respectively.

3.3. Calculation of material removal rate

Material removal rate is the amount of material removed per unit time. Machining is done

to produce circular holes as shown in Figure 3.2. MRR for the circular holes can be calculated

using the equation (3.1).

2 2 ( )
4

t D d
MRR

T

W 
 mm3/ min (3.1)
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where, Wt = thickness of work piece (mm), D = diameter of the hole (mm), d = diameter of the

boss (mm) and T = Time taken for machining (min).

Figure 3.2. Circular hole machined by WEDM

Here the diameters of hole and the removed blanks are measured using co-ordinate

measuring machine (CMM), and time taken to cut these holes at different sets of input levels are

measured using a stop watch.

3.4. Measurement of Surface roughness

The German make Marsurf M-400 (Figure 3.3) surface roughness tester with a profile

resolution of 8 nm has been used to measure the SR value of the machined parts directly.
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Figure 3.3. Marsurf M - 400

For use as a small measuring station as well as a mobile unit, the MarSurf M 400 fulfills

the needs on the shop floor and in production and the measuring room. The skidless probe BFW

250 and the drive unit SD 26 enable the measurement and evaluation of not only the roughness

depth but also waviness and profile criteria. The magnetic probe arm holder allows different

probe arms to be changed quickly and easily within seconds without the use of tools. The

motorized height adjustment enables automatic zero positioning and probe lifting. The Bluetooth

function enables cable-free operation with this unit as well. Up to 250 measurements can be

conducted with main-free operation due to the built-in battery. Traversing length of 5.6 mm,

evaluation length of 4 mm have been set while measuring the samples. The number of readings

taken in the present study is 5 for each sample and the average value has been calculated. The

workpiece is oriented such that tracing is done across the predominant lay direction in order to

capture the roughness details. Utmost care has been taken to isolate the measuring instrument

from the external disturbances.

Technical specifications of MarSurf M400:

Type: Portable

Standard Parameters: As per DIN/ISO/JIS/ASME/MOTIF

Number of sampling lengths (n) (as per ISO/JIS): selectable 1 to 5

Measuring range: Min 350 micron

Traversing length (as per ISO/JIS): 1.75 mm, 5.6 mm, 17.5 mm, automatic, free entry.
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Evaluation length (as per ISO/JIS): 1.25 mm, 4.0 mm, 12.5 mm.

Cut-off length (as per ISO/JIS): 0.25 mm, 0.8 mm, 2.5 mm, automatic

Profile resolution : Measuring range : ±250 µm = 8 nm.

Drive Unit SD26: Traversing length : 26 mm, measuring speed : 0.2 mm/s, 1 mm/s, Inclination

adjustment: ±1.5º, Height adjustment : 7.5 mm motorized.

Column & Stand: Granite base with support stand attachment.

Calibrated on: August, 2013.

3.5. Measurement of circularity and cylindricity

Circularity and cylindricity errors of the machined components are measured directly

using a CMM of Mitutoyo make, CRT-Apex C-544 model, and the in-built algorithm software is

based on least squares principle. It is a bridge type CNC controlled CMM consisting of a contact

probe of touch and trigger type, and a means of positioning the probe in three dimensional space

relative to the surface of a work part in order to obtain the data concerning the part size and

geometry. The generated data is further converted into the required form using the inbuilt

software. The resolution of this machine is 0.0001 mm and the software used in the CMM is

MCOSMOS. The data generated from the measurements represent the position of the probe with

respect to machine. This coordinate data is transferred to the computer system where the software

converts it into the required form. The samples are oriented in vertical direction. To estimate the

circularity error the data is collected at one section, on the periphery of the components.

However, for cylindricity estimation, data is generated from three sections on the periphery of

cylindrical components. Procedures for assessing the geometric errors are detailed in chapter 5.
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Figure 3.4. Co-ordinate measuring machine

Technical specification of CMM:

Name: 544 Crysta

Made: Mitutoyo Corporation, Japan

Probe: Touch trigger type

Measuring range: X Axis – 505 mm, Y axis – 405 mm, Z  Axis – 405 mm

Accuracy: MPEE (1.7+3L/1000) µm

Resolution: 0.0001 mm

Drive Speed: Moving speed – 0 - 80 mm/sec

Measuring speed - 3 mm/sec

Specification of Probe: Make: Renishaw

Type: Touch trigger

Probe diameter: 3 mm

Calibrated date: 2013
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3.6. Measurement of re-cast layer thickness

The re-cast layer of the machined surfaces are observed and measured using scanning

electron microscopy (SEM) of Tescan make VEGA 3 LMU model as shown in Figure 3.5. It is a

fully PC controlled unit with conventional tungsten heated cathode intended both for high

vacuum as well as low vacuum operations. Outstanding optical properties, flicker-free digital

image with good clarity, sophisticated user-friendly software for microscope control and image

capturing using Windows platform, standard formats of stored images, easy image management,

processing and measurements, automatic setup of the microscope and many other automated

operations are among the characteristic features of the equipment. An inbuilt mechanism to draw

the lines and to measure the distance between lines is available in the existing PC software. By

using this phenomenon the re-cast layer thickness has been measured. As the recast layer

thickness is not constant throughout the periphery of the component, it is measured at different

locations and the average value has been considered.

Figure 3.5. Scanning electron microscope
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Technical specifications of SEM:

Electron Gun: Tungsten heated cathode

Resolution: High Vaccum Mode (SE): 3 nm at 30 kv / 2 nm at 30 kb

Low Vaccum Mode (BSE, LVSTD): 3.5 nm at 30 kv / 2.5 nm at 30 kv

Magnification: 2x – 1,000,000x (for 5” image width in Continual Wide field/Resolution

Maximum field of view: 24 mm at WD 30 mm

Accelerating Voltage: 200 V to 30 kV

Probe current: 1 pA to 2 µA

Scanning Speed: From 20 ns to 10 ms per pixel adjustable or continuously

Number of ports: 11

Chamber suspension: pneumatic

Specimen Stage: Type: Compucentric, fully motorized

Stage Movements:      X=80 mm (-40 mm to + 40 mm)

Y=60 mm (-30 mm to + 30 mm)

Z= 47 mm

Rotation: 360º continuous

Tilt: -80º to + 80º (WD and sample size dependent)

3.7. Measurement of micro-hardness

The term hardness is the ability of a material to resist permanent deformation. The larger

the resistance to deformation, the harder the body appears. There are four common methods

available to measure the hardness of any material such as Brinell, Knoop, Rockwell, and Vicker's

hardness tests. Vickers hardness testing method is simple as compared to others and is suited well

for all metals (Herrmann, 2011). In this method an indenter of a straight diamond pyramid with

an angle between opposite faces of 1360, is applied under a specific load on to the surface of the

material to be tested for a set time interval. According to the law of proportional resistance, the

indentation surface is proportional to the force applied. For micro hardness studies usually the

range of load is taken to be 5 g to 1000 g and the dwell time is considered in the range 10 to 15

sec. In the present study a load of 500 g is applied for 10 sec as dwell time.
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(a) Indentation (b) Measurement of indent

Figure 3.6. Hardness measurement using Vicker’s hardness tester

After the test, an indentation is formed as shown in Figure 3.6. From the indentation, diagonals

are measured. Micro hardness of the machined sample for Vickers method is estimated as

2

0.1891F
HV

d


(3.2)

where d is the arithmetic mean of diagonals and F is the load applied on the work material.

Micro-hardness of the machined surfaces is measured using Chennai Metco make Economet VH

1 MD model as shown in figure 3.7.



45

Figure 3.7. Vickers hardness tester

Technical specifications of Vicker’s hardness tester:

Model : Economet VH-1 MD Digital Automatic Turret Micro Vickers Hardness Tester with

digital display

Usage Range: Heat treatment, carbide, quench hardened layer, the surface coating layer, steel,

non-ferrous metal and small and thin shape parts, etc

Test Load: 10gf (0.098N)、25gf (0.245N)、50gf (0.49N)、100gf (0.98N)、 200gf (1.96N)、

300gf (2.94N)、500gf(4.9N)、1kgf (9.8N)

Method of testing force applied: Automatic (Loading, Dwell, Unloading）
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Test microscope magnification: 400X(Measuring)，100X（observation）

Duration time: 0 to 60 s

Min measuring unit: 0.031 µm

Hardness measuring range: 8 to 2900 HV

Conversion Scale: HRA, HRB, HRC, HRD, HRF, HV, HK, HBW, HR15N, HR30N, HR45N,

HR15T, HR30T, HR45T

Data output: LCD screen display, Inside Printer, RS-232 Max Height of Specimen: 80mm

Distance of Indenter to outer wall: 95mm X-Y Testing table:

Dimension: 100*100mm Max mobile：25*25mm Power supply: AC220V+5%，50-60Hz

Overall Dimension: 405*290*480mm Net weight: About 25Kg

3.8. Energy Dispersive Spectroscopy (EDS)

Energy-dispersive X-ray spectroscopy (EDS or EDX), sometimes called energy

dispersive X-ray analysis (EDXA) is an analytical technique used for the elemental

analysis or chemical characterization of a sample. A beam of electrons is focused on the sample

being studied. At rest, an atom within the sample contains ground state (or unexcited) electrons in

discrete energy levels or electron shells bound to a nucleus. The electron beam may excite an

electron in an inner shell, ejecting it from the shell while creating an electron hole where the

electron was. An electron from an outer, higher energy shell then fills the hole and the difference

in energy between the higher energy shell and the lower energy shell may be released in the form

of an x-ray.

The number of x-rays emitted from a specimen can be measured by an EDS spectrometer.

As the energy of the x-rays are characteristic of the difference in energy between the two shells

and of the atomic structure of the element, from which they were emitted, this method allows the

elemental composition of the specimen to be measured. An EDS coupled with SEM as shown in

Figure 3.8 was used in the present study.
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Figure 3.8. EDS coupled with SEM
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CHAPTER 4

A MODIFIED CUCKOO SEARCH ALGORITHM FOR

OPTIMIZATION OF MRR AND SR

4.1. Introduction

The performance of WEDM process is assessed in terms of material removal rate

(MRR), surface roughness (SR), wire wear rate (WWR), kerf and cutting speed etc. However,

MRR and SR are very important response parameters for any machining process. Surface

roughness affects several functional attributes of parts, such as friction, wear and tear, light

reflection, heat transmission, ability of distributing and holding a lubricant and coating. The

desired surface finish is usually specified for the components and appropriate processes are

required to maintain the quality. Hence, the inspection of surface roughness of the work piece is

important to assess the quality of a component. MRR is the rate at which the material is removed.

In order to meet the customer requirement in terms of due date, the manufacturer always tries to

maximize the MRR. Optimization of these response parameters is essential for any machinist to

meet their functional and economical aspects. From the literature it can be observed that, several

attempts have been made to investigate the influence of WEDM process parameters on the

response parameters and also to optimize them. Researchers in the past used grey relational

analysis (Chiang and Chang 2006; Balasubramanian and Ganapathy 2011) and Taguchi (Sarkar

et al. 2006, aravind et al. 2010) techniques to optimize the responses. Although, in reality, a

process parameter varies continuously, experiments are conducted, based on these designs, at

discrete levels. Therefore, these techniques can only yield sub-optimal solutions. Global optimal

solution may lie outside the conducted experiments. In order to determine the global optimal

solution, researchers in the past applied other optimizing techniques such as GA, PSO, and ABC

(Mahapatra and Patnaik 2007, Rao and Pawer 2009, Rao and Pawar 2010) etc.

Among different optimization techniques, Cuckoo search (CS) algorithm was found to be

efficient in yielding the global optimal value and this algorithm was found to outperform GA and

PSO techniques in terms of speed, accuracy and simplicity of computations (Yang and Deb 2009,

Yang and Deb 2010 and Gandomi et al. 2013). However, the accuracy of CS heavily depends
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upon the initial solution and its location from the target value and therefore it may involve many

generations. Furthermore, the evolutionary operators are applied in each generation. This could

lead to delay in convergence. In order to improve the performance of cuckoo search further, an

attempt has been made in the present work to propose a modified cuckoo search involving two-

stage initialization. Benchmark functions have been used to test the performance of the proposed

method. Furthermore, the proposed method has been applied to WEDM process. Inconel-690 and

Nimonic-263, nickel based super alloys, have extensive applications in aerospace, automobile

and nuclear power sectors. The proposed algorithm was found to be accurate and fast as

compared to the existing cuckoo search. The machining data generated in this work on these

super alloys will also be useful to the industry.

This chapter describes cuckoo search algorithm and its steps, modified cuckoo search

algorithm and application of this proposed method to optimize MRR and SR of Inconel-690 and

Nimonic-263. This chapter also gives the Pareto optimal solutions of MRR and SR for Inconel-

690 and Nimonic-263 work materials.

4.2. Cuckoo search algorithm

Cuckoo search algorithm, a meta-heuristic optimization algorithm, was developed by Yang

and Deb based on the breeding behavior of cuckoos and the characteristics of Levy flights of

some birds and fruit flies. Some cuckoo species lay their eggs in the host nests. The basis for this

optimization algorithm lies in the laying of eggs and breeding of cuckoos. Some cuckoos imitate

the colors and pattern of eggs of a few species, which they select as host nest. This will reduce

the probability of eggs being abandoned by the host bird and also increases their re-productivity.

The eggs, which are not similar to that of host bird nest, are detected and killed. The grown eggs

reveal the suitability of the nests in that area. The cuckoo optimization algorithm searches the

area in which more eggs will survive and re-productivity is higher (Rajabioun 2011). The major

assumptions in the cuckoo search algorithm are:

 Each cuckoo lays one egg, in a randomly selected nest at a time.

 The nests of high quality eggs carry over to next generations.
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 There is a chance of alien egg getting recognized due its quality by the host bird

with a probability of pa ϵ [0, 1]. The host bird will abandon the nest completely or

destroy the alien egg if recognized, and build a new nest at new location.

The major steps involved in cuckoo search algorithm have been described (Valian et al. 2013)

below.

Initialization

In any evolutionary algorithm, the initial population is generated for each control variable using

the following equation (4.1) (El Ela et al. 2010). The value of jth variable’s ith particle is given by:

   rand 0, 1min max min
i,j j j jx =x + x -x (4.1)

Where, i = 1, 2, …, ps; j = 1, 2, …, ncv, ps = population size, and ncv = number of control

variables. xj
min and xj

max are the lower and upper bounds of jth control  variable. In general, the

initial population vector (pv) of size (ps × ncv) is generated and is used for further evolutionary

operations. The single stage initialization of any evolutionary algorithm is shown in equation

(4.2).
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 
  

 (4.2)

Levy flights

The cuckoo randomly chooses the position of host nest to lay an egg using Levy flights random

walk and is given in equations (4.3), (4.4) and (4.5) (Chandrasekaran and Simon 2012).

     1
p qp q p qx t x t s L evy    (4.3)

t t
pq fqpqs x x  (4.4)

p, f ϵ {1,2,…nhn} and q ϵ {1,2,…ncv}
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(4.5)

where, xpq (t+1) is the value of qth variable in pth host nest at next generation, spq is the step size, λ

is a constant and is generated randomly in between1 and 3, t is the current generation number, α

is a constant generated randomly between -1 and 1, nhn is the number of host nests and ncv is the

number of control variables.

Recombination or survival rate of eggs

There is a chance for the host bird to identify the alien egg, with a probability value

associated with the quality of an egg, Prop as estimated using equation (4.6).

0.9
0.1

max( )
p

p

Fit
Pro

Fit
  (4.6)

Where, Fitp is the fitness value of an individual p and is proportional to the quality of that egg in

that corresponding nest. If the calculated Prop is greater than that of randomly generated pa ϵ

[0,1], the egg will be survived and carried to the next generation, otherwise egg will be

recognized by the host bird and it will be destroyed or abandon the existing nest and build a new

nest at new location. Then the cuckoo will find a new nest to lay an egg. These newly generated

nests are combined with the earlier survived ones to form a new population vector for further

operations.

Selection

In the present work, sorting and ranking selection process has been used. With this method, at

each generation, the fitness value and its associated strings are ranked. Then, the optimal value

and its corresponding string are selected based on the objective function for the next generation

until the stopping criterion is reached.
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Stopping criteria

The following are the criteria commonly used to stop an iterative process:

1) Maximum number of generations: When the number of generations equals the maximum

number of generations specified by the user, the process comes to end.

2) Specified tolerance: If the accuracy obtained during iterative process is less than specified

tolerance, the execution will be terminated.

Based on the observed results on several data sets, first criterion is used in the current work.

4.3. Modified cuckoo search algorithm

In any evolutionary algorithm, the optimization process will start with initialization step.

Once the initialization is done, all the operators of the algorithm are applied in a sequence to find

feasible solutions in each generation. In order to guide the search to global optimal solution, the

optimization process will be repeated until a stopping criterion is met. This procedure is followed

in the existing cuckoo search also. However, the accuracy and the convergence rate will heavily

depend upon the initial population and its location from the target value. Furthermore, this

method applies all the operators of the algorithm in every iteration and this could delay the

convergence. However, the modified cuckoo search (MCS) proposed in this work involves two-

stage initialization process. This process enhances the probability of finding optimal solution.

The methodology is presented in Figure 4.1. In the first stage, a sub population vector of size

(sspv×ncv) is formed. The value of objective function for each string is evaluated in the sub

population vector.  The best string from the sub population vector based on its fitness is selected.

This procedure is repeated for all the sub-population vectors. In the second stage, all the best

strings from the sub population vectors are combined to form a new population vector of size

(nspv×ncv) and the evolutionary operators are applied on this newly formed population vector.
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Figure 4.1 Two stage initialization of proposed MCS algorithm

It should be noted that application of evolutionary operators will consume some

computational time. Therefore, in the proposed method, evolutionary operators were not applied

on the earlier sub-population vectors. Only fitness of the strings was evaluated. Operators were

applied only after the new population vector is formed. Therefore accuracy and fast convergence

resulted from the proposed method can be attributed to the following reasons:

(1) The newly formed population vector will be closer to the global optimal solution and

therefore, overall number of generations required to reach the target value will be reduced

significantly.

(2) Evolutionary operators are applied from the second stage of the process instead of initial

sub-populations.
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Furthermore, the proposed method requires less memory for storing the populations. The steps in

the proposed two-stage cuckoo search algorithm have been shown in Figure 4.2.

Start

Choose no.of sub population vectors(nspv) and strings in
sub populations(sspv)

Set nspv = 1

Set sspv = 1

Generate the strings  using Eqn. (4.1)

Calculate fitness value. Store it and also its
corresponding string

sspv = sspv + 1

Is
sspv > Max

sspv

Store the best functional value & its corresponding
string from population vector

nspv = nspv + 1

Is
nspv > Max

nspv

Combine the strings from all sub population vectors to form new
population vector

Select and store the best function value among all the population
vectors and also store corresponding string

Set Iter = 1

Perform Leavy flight operation

Perform recombination operation

Perform selection operation

Iter = Iter + 1

Print the
results

Stop

Is
Iter > Max Iter

No

Yes

Yes

No

Read the input data

No

Yes

Stage -1

Stage -2

Figure 4.2. Steps in proposed MCS algorithm
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4.4. Testing of proposed method

In order to test the robustness of the existing cuckoo search and the proposed algorithms,

they are tested against benchmark functions such as Himmelblau function, Booth’s function,

Freudenstein Roth function, Goldstein Price function, and Leon function. The test results for

Himmelblau function and Booth’s function are presented in this section.

Himmelblau function

The objective of Himmelblau function is to minimize and is given as in equation (4.7).

     2 22 2
1 2 1 2 1 2, 11 7f x x x x x x      (4.7)

Where, the variables are in the interval (0 ≤ x1, x2 ≤ 6).

The function value is 0 at x1 = 3 and x2 = 2.

The function was solved using GA (Deb, 2013), existing cuckoo search and proposed

methods. Comparisons are presented in Table 4.1.

Table 4.1 Comparison of results using standard functions for 100 generations

Standard Test
Function

Parameter Existing GA
method

Existing Cuckoo
search

Proposed
MCS
method

Himmelblau
function

x1value 3.003 3.001 3.0004

x2 value 1.994 1.9887 1.9988

Min functional
value 0.001 0.000123 0.0001

Number of
generations --- 72 19

Booth’s function x1value 0.9994 0.9998

x2 value 2.9625 3.0002

Min functional
value 0.0018174 0.00029

Number of
generations 61 27
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The Himmelblau function values with GA, existing cuckoo search method and proposed

method are 0.001, 0.000123 and 0.0001 respectively. The proposed method, thus, is performing

better. Furthermore, the existing cuckoo search and the proposed methods are tested for different

number of generations such as 25, 50, 75 and 100 for the Himmelblau function. Plots for 25 and

100 generations are shown in Figure 4.3 and 4.4. It can be observed that the convergence rate of

proposed method is faster than that of the existing cuckoo search. For 25 numbers of generations,

convergence rate is almost same with both the methods. It can be observed from the figure that

the initial solution with existing method is about 1.2. There was no improvement in the solution

up to 5th generation. However, there is a drastic improvement from 5th to 6th iteration and the

value is about 0.4. Further, there were gradual improvements in the solution and the global

optimal solution was obtained in the 14th iteration with function value of about 0.05. However,

the initial solution with the proposed MCS method is found to be 0.2, which is much better than

the initial value of existing method. This initial solution is much closer to the target value and it

was possible due to the mechanism of the proposed two-stage initialization concept as detailed in

section 4.3. It can be observed from the Figure 4.3 that the there is no improvement in the

functional value up to 7th generation. Marginal improvements were observed from 7th to 10th

iterations. The global optimal value of zero has been obtained at 14th iteration. Hence, the

proposed MCS method is performing better than the existing cuckoo search method in terms of

accuracy and convergence rate. For 100 numbers of generations, the number of generations

required to yield optimal functional value with proposed method and the existing method are

respectively 19 and 72. Optimal values obtained are closely matching with both methods.
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Figure 4.3. Performance of existing cuckoo and proposed methods against Himmelblau function

for 25 generations

Figure 4.4. Performance of existing cuckoo and proposed methods against Himmelblau function

for 100 generations
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Booth’s function

The objective of Booth’s function is to minimize and is given by equation (4.8).

     2 2

1 2 1 1 2 1 2, 2 7 2 5f x x x x x x x     
(4.8)

Where 1 2( 10 , 10)x x  

The function value is 0 at x1=1 and x2=3.

The existing cuckoo search and proposed methods have been applied against the Booth’s

function and the results are presented in Table 4.1. The Booth’s function values obtained by

existing cuckoo search method and proposed method are 0.0018174 and 0.00029 respectively.

Thus the proposed method is performing better. Furthermore, plots for 25 and 100 generations

are shown in Figures 4.5 and 4.6. For 25 generations, the number of generations required to yield

optimal functional value with proposed and existing methods are 11 and 23 respectively and

proposed method yields better optimal value than that of existing method. For 100 generations,

the number of generations required to yield optimal functional value with proposed and existing

methods are 40 and 61 respectively and the proposed method yields better optimal value than that

of existing method. These results show that the proposed method outperforms the existing

method.
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Figure 4.5. Performance of existing cuckoo and proposed methods against Booth’s function for

25 generations

Figure 4.6. Performance of existing cuckoo and proposed methods against Booth’s function for

100 generations
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4.5. Application of MCS to optimize MRR and SR of Inconel-690

The modified cuckoo search approach has been applied to optimize MRR and SR while

machining Inconel-690 using WEDM. In this study, holes of 10 mm diameter were machined on

the Inconel-690 plate of 6.35 mm thickness as shown in Figure 4.7. In the present work, an

attempt has been made to investigate the effect of process parameter such as pulse on time (Ton),

pulse off time (Toff), peak current (Ip) and servo voltage (Sv), on the response parameters such as

MRR and SR. The ranges and levels of process parameters are given in Table 3.1.

Figure 4.7. Inconel-690 material after machining
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In order to generate machining data, a face centered central composite design (CCD) of

RSM is used for the experimental plan in the present study. A CCD for 3 factors has been shown

in Figure 4.8 for illustration purpose. Experimental points are classified into three categories such

as centre, axial and cube (factorial) points. However, the present study involves 4 factors and it is

difficult to present the graphical representation for the CCD of 4 factors. Therefore, the

experimental plan is presented using Table 4.2 giving the details axial, cubical and center points

information. A total of 30 experimental runs are conducted including 6 center points as presented

in Table 4.2. After conducting trial experiments the ranges and levels are fixed Experiments are

conducted as per the experimental plan and the results are presented in Table 4.3.

Figure. 4.8 CCD for 3 factors

Table 4.2 Experimental plan

Run order Type of point Ton (µs) Toff (µs) Ip (A) Sv (V)

1 Center 0 0 0 0

2 Axial 0 1 0 0

3 Fact 1 -1 1 1

4 Axial 0 0 -1 0
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5 Fact -1 1 1 1

6 Axial 0 0 0 1

7 Fact 1 1 -1 -1

8 Center 0 0 0 0

9 Center 0 0 0 0

10 Fact -1 -1 -1 -1

11 Axial 0 0 1 0

12 Fact 1 1 -1 1

13 Fact 1 -1 -1 -1

14 Fact -1 1 1 -1

15 Center 0 0 0 0

16 Fact -1 -1 -1 1

17 Axial 0 -1 0 0

18 Fact -1 -1 1 1

19 Fact -1 1 -1 -1

20 Fact -1 1 -1 1

21 Axial 1 0 0 0

22 Axial -1 0 0 0

23 Center 0 0 0 0

24 Fact -1 -1 1 -1

25 Fact 1 -1 1 -1

26 Fact 1 1 1 1

27 Center 0 0 0 0

28 Fact 1 1 1 -1

29 Axial 0 0 0 -1

30 Fact 1 -1 -1 1
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Table 4.3 Experimental results for Inconel-690

Run

order
Ton

(µs)

Toff

(µs)

Ip

(A)

Sv

(V)

MRR

(mm3/min)

SR

(µm)

1 115 55 11 50 0.3722 0.354

2 115 60 11 50 0.34049 0.357

3 125 50 12 60 4.06502 2.585

4 115 55 10 50 0.3648 0.336

5 105 60 12 60 0.499 0.559

6 115 55 11 60 0.345 0.373

7 125 60 10 40 0.4113 0.571

8 115 55 11 50 0.35309 0.371

9 115 55 11 50 0.3753 0.348

10 105 50 10 40 0.33727 0.378

11 115 55 12 50 1.71822 1.842

12 125 60 10 60 0.39578 0.377

13 125 50 10 40 0.58931 0.595

14 105 60 12 40 0.54517 0.669

15 115 55 11 50 0.36988 0.322

16 105 50 10 60 0.36228 0.371

17 115 50 11 50 0.37504 0.407

18 105 50 12 60 0.53466 0.447

19 105 60 10 40 0.27822 0.332

20 105 60 10 60 0.28444 0.276

21 125 55 11 50 0.43536 0.431

22 105 55 11 50 0.31819 0.317

23 115 55 11 50 0.3457 0.392

24 105 50 12 40 0.8808 0.761

25 125 50 12 40 5.843 3.253

26 125 60 12 60 2.1615 2.786

27 115 55 11 50 0.32263 0.422
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28 125 60 12 40 3.44124 3.012

29 115 55 11 40 0.35897 0.533

30 125 50 10 60 0.38071 0.436

4.5.1. Results and analysis

(a) ANOVA analysis for MRR

ANOVA has been applied for each response to investigate the significance of process

parameters and their contributions for the Inconel-690 work material.  ANOVA is also used to

model the response parameters in relation to their influencing parameters. The results of ANOVA

for MRR are presented in Table 4.4.

Table 4.4 ANOVA results of MRR for Inconel-690

Source
SS DOF MS F value p-value Percentage

contribution

Model 5.160 6 0.860 138.80 < 0.0001 97.358

A- Ton 1.080 1 1.080 174.64 < 0.0001 20.377

B- Toff 0.100 1 0.100 16.11 0.0005 1.887

C- Ip 2.560 1 2.560 413.00 < 0.0001 48.302

D- Sv 0.044 1 0.044 7.06 0.0141 0.83

AC 0.250 1 0.250 40.03 < 0.0001 4.717

C2 1.130 1 1.130 181.95 < 0.0001 21.321

Residual 0.140 23 6.20E-03 2.641

Cor. Total 5.300 29 100.00

From the ANOVA results (Table 4.4 and Figure 4.9 (a) - (e)), it can be observed that Ton,

Toff, Ip, Sv and interaction effect of Ton and Ip are influencing the MRR. When the Ton increases,

the energy applied will also increase and more amount of heat energy will be generated during

this period, thereby increasing the MRR. When the Toff decreases it allows more productive

discharges per unit time thereby increasing the MRR. When Ip increases, it leads to more
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discharge power thereby MRR increases. At smaller value of Sv, the mean gap will be narrowed

which leads to an increase in number of electric sparks, to speed up the machining rate. These

results are in agreement with that of Singh and Garg (2009). R-Squared, Adjusted R-Squared and

Predicted R-Squared values were found to be 0.973124, 0.966113, and 0.950433 respectively.

(a)   Effect of Ton on MRR (b)Effect of Toff on MRR

(c)   Effect of Ip on MRR (d)   Effect of Sv on MRR
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(e)   Effect of interaction Ip and Ton on MRR

Figure 4.9. Effect of WEDM process parameters on MRR while machining Inconel-690

The mathematical model developed for MRR from ANOVA in coded form is given in

equation (4.9).

1/221.67 0.25 0.074 0.38 0.049 0.12 0.40MRR A B C D AC C 
 
 


       (4.9)

(b) ANOVA analysis for SR

From the ANOVA results of SR as shown in Table 4.5 and Figure 4.10 (a) to (d), it is

observed that Ton, Ip, Sv and interaction effect of Ton and Ip are influencing the SR. When the Ton

increases, the energy applied will also increase and more amount of heat energy will be generated

during this period which increases the machining speed and also increases the SR. When Ip

decreases it leads to less discharge power thereby decrease the machining rate and SR. Kumar et

al. (2012) confirmed that high pulse-on time and peak current will cause double sparking, which

leads to increase in surface roughness. At higher values of Sv, the mean gap becomes wider which

leads to decrease in number of electric sparks, thereby reducing the machining rate and increase
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in surface finish. R-Squared, Adjusted R-Squared and Predicted R-Squared values were found to

be 0.944074, 0.932422 and 0.91289 respectively.

Table 4.5 ANOVA results of SR for Inconel-690

Source SS DOF MS F value p-value Percentage

contribution

Model 4.32633 5 0.86527 81.0273 < 0.0001 94.407

A- Ton 1.00238 1 1.00238 93.8671 < 0.0001 21.873

C- Ip 2.07037 1 2.07037 193.8790 < 0.0001 45.179

D- Sv 0.12986 1 0.12986 12.1609 0.0019 2.834

AC 0.18191 1 0.18191 17.0349 0.0004 3.969

C2 0.94181 1 0.94181 88.1950 < 0.0001 20.552

Residual 0.25629 24 0.01068 5.593

Cor. Total 4.58262 29 100.000

(a)   Effect of Ton on SR (b)   Effect of Ip on SR
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(c)   Effect of Sv on SR (d)   Effect of interaction Ip and Ton on SR

Figure 4.10. Effect of WEDM process parameters on SR while machining Inconel-690

The mathematical model developed for SR from ANOVA in coded form is given in equation

(4.10).

1/221.62 0.24 0.34 0.085 0.11 0.36SR A C D AC C 
 
 


      (4.10)

Results obtained using RSM, existing cuckoo search and the proposed methods are

presented in Table 4.6 along with machining conditions. From the results it is observed that,

MRR values using RSM, existing cuckoo search and proposed method are 5.8912 mm3/min,

5.9799 mm3/min and 6.0537 mm3/min respectively. It is also observed that the computational

times to obtain the optimal values with existing cuckoo search and proposed method for MRR are

0.2511 s and 0.2049 s respectively. Correspondingly the number of generations is 60 and 32 as

shown in Figure 4.11.
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Table 4.6 Optimal results from different methods for Inconel-690

Method RSM Existing cuckoo Proposed method

MRR

(mm3/min)

Optimal value 5.8912 5.9788 6.0537

Optimal conditions Ton: 125, Toff:

50.28, Ip: 12, Sv:

40

Ton: 125, Toff:

50.78, Ip: 12, Sv:

40.3269

Ton: 124.99, Toff:

50, Ip: 12, Sv:

40.023

Computational

time

--- 0.2511 0.2049

SR

(µm)

Optimal value 0.2713 0.2552 0.255

Optimal conditions Ton: 106, Toff:

50.41, Ip:

10.98, Sv: 59.82

Ton: 105, Toff:

51.47, Ip: 10.70,

Sv: 59.9405

Ton: 105,

Toff: 58.69,

Ip: 10.68, Sv: 60

Computational

time

--- 0.255 0.2166

SR values using RSM, existing cuckoo search and proposed method are 0.2713 µm,

0.2552 µm and 0.2550 µm respectively. It is also observed that the computational times to obtain

these values with existing cuckoo search and proposed method are 0.2638 s and 0.2166 s

respectively. Number of generations required to yield optimal SR using the existing cuckoo

search and proposed methods are 37 and 13 respectively as shown in Figure 4.12.
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Figure 4.11. Performance of proposed method for MRR

Figure 4.12. Performance of proposed method for SR
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From the results, it is observed that the existing cuckoo search algorithm is giving better

results than that of RSM. Furthermore, the results from the proposed algorithm are better than

that of existing cuckoo search algorithm. The ranges of values for response parameters as

obtained using the experimentation are observed to be too small. In general, if these ranges

increase, the difference between the response values obtained by the RSM, existing cuckoo and

the proposed methods may be significant and the importance of the proposed modified cuckoo

search algorithm can be noticed. In order to minimize the manufacturing and measurement

uncertainties, validation experiments were conducted three times and measurements were carried

out for five times and then the average value has been reported for the comparison purpose. It can

be observed that, the deviations between experimental results and the predicted values for MRR

and SR are 3 % and 4 % respectively as presented in Table 4.7. Since the proposed algorithm

does fine search around the global optimal solution, it is able to yield better results.

Table 4.7 Confirmation test results for Inconel-690

Response and   Conditions Predicted value from

proposed method

Experimental

Value

Deviation in

percentage

MRR (mm3/min)

Ton: 125, Toff: 50, Ip: 12, Sv: 40

6.0537 5.871 3

SR (µm)

Ton: 105, Toff: 59,Ip: 11, Sv: 60

0.2550 0.265 4



72

4.6. Application of MCS to optimize MRR and SR of Nimonic-263

The modified cuckoo search method has also been applied to optimize MRR and SR of

Nimonic-263 while machining using WEDM. In this study, holes of 10 mm diameter were

machined on the Nimonic-263 plate of 18.5 mm thickness as shown in Figure 4.13. Attempts are

made to investigate the effect of process parameters such as pulse on time (Ton), pulse off time

(Toff), peak current (Ip) and servo voltage (Sv), on the response parameters such as MRR and SR.

In order to generate machining data, a Face centered Central Composite Design (CCD) of RSM is

used for the experimental plan in the present study. After conducting trial experiments the ranges

and levels are fixed. A total of 26 experimental runs are conducted including 2 center points as

presented in Table 4.8.

Figure 4.13. Nimonic-263 work material after machining
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Tale 4.8 Experimental results for Nimonic-263

Run order Ton (µs) Toff (µs) Ip (A) Sv (V)
MRR

(mm3 / min)

SR

(µm)

1 125 60 12 60 3.124 2.01

2 125 60 10 60 0.359 0.605

3 115 55 11 40 0.453 0.525

4 115 55 11 50 0.381 0.387

5 105 60 12 60 0.497 0.537

6 125 55 11 50 0.327 0.578

7 125 50 10 40 0.381 0.484

8 115 55 12 50 2.447 1.021

9 115 50 11 50 0.280 0.501

10 105 50 10 40 0.446 1.364

11 115 55 10 50 0.301 0.514

12 105 60 10 60 0.427 0.694

13 125 50 10 60 0.459 0.46

14 115 55 11 50 0.311 0.539

15 125 50 12 40 3.588 2.027

16 105 60 10 40 0.529 1.323

17 125 60 12 40 3.352 2.089

18 105 55 11 50 0.397 0.892

19 115 55 11 60 0.575 0.76

20 115 60 11 50 0.515 0.764

21 125 60 10 40 0.500 1.081

22 105 50 12 40 1.768 0.891

23 125 50 12 60 3.234 1.85

24 105 60 12 40 0.949 1.18

25 105 50 10 60 0.549 0.863

26 105 50 12 60 0.771 0.603
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4.6.1. Results and Analysis

(a) ANOVA analysis of MRR

ANOVA has been applied for each response to investigate the significance of process

parameters and their contributions for the Nimonic-263 work material.  ANOVA is also used to

model the response parameters in relation with their influencing parameters. The results of

ANOVA for MRR and SR are explained in the following sections. The results of ANOVA for

MRR are presented in Table 4.9.

Table 4.9 ANOVA results of MRR for Nimonic-263

Source SS DOF MS F value P-value
Percentage

Contribution

Model 29.3208 9 3.258 44.563 < 0.0001 96.164

A- Ton 4.492364 1 4.4928 61.449 < 0.0001 14.734

B- Toff 0.08323 1 0.0838 1.138 0.3018 0.2624

C- Ip 13.8341 1 13.834 189.232 < 0.0001 45.372

D- Sv 0.216133 1 0.216 2.956 0.1048 0.709

AC 5.718684 1 5.718 78.224 < 0.0001 18.756

BC 0.126007 1 0.126 1.724 0.2077 0.413

CD 0.24216 1 0.242 3.312 0.0875 0.794

A2 0.012463 1 0.012 0.171 0.6852 0.041

C2 2.960149 1 2.960 40.491 < 0.0001 9.708

Residual 1.169703 16 0.073 3.836

Cor.

Total
30.49051 25 100
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From the Anova Results of MRR, it can be observed that Ton, Ip, and interaction of Ton and Ip

are significant model terms, and are shown in the Figurs 4.14 (a) to (c). Higher the pulse-on time,

higher will be the energy applied there by generating more amount of heat energy during this

period and it leads to higher MRR. Peak current is the amount of power used in discharge

machining. Higher the peak current, higher will be the energy applied during machining and there

by increasing the MRR. The mathematical model generated for MRR is given in equation (4.11),

in the coded form. From the ANOVA, the R-Square, adjusted R-square and predicted R-square

values were found to be 96.2 %, 94 % and 90 % respectively for the model.

(a) Effect of Ton on MRR                                  (b) Effect of Ip on MRR



76

(c) Effect of Ton and Ip on MRR

Figure 4.14. Effect of WEDM process parameters on MRR while machining Nimonic-263

2 20.42 0.50 0.068 0.88 0.11 0.60 AC 0.089 BC 0.12 CD 0.062 A 0.95MRR A B C D C          (4.11)

(b) ANOVA analysis of SR

From the ANOVA Results of SR (Table 4.10), it can be observed that Ton, Ip, Sv and

interaction effects Ton and Ip are significant model terms, and are shown in the Figurs 4.15 (a) to

(d). When the pulse-ontime increases, the number of discharges also increases. It leads to more

heat energy there by increasing the machining rate and decresing the surface finish. Higher the

peak current, higher will be the energy applied and it leads to higher maching rate and high

surface roughness. At higher values of servo voltage, the gap between workpiece and wire

becomes wider and it decreases the number of sparks, stabilizes electric discharge yielding better

surface finish. The mathematical model generated for SR was given in equation (4.12) in the

coded form.From the ANOVA, the R-Square, adjusted R-square and predicted R-square values

were found to be 92 %, 84.22 % and 72 % respectively for the model.
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Table 4.10 ANOVA results of SR for Nimonic-263

Source SS DOF MS F value P-value
Percentage

Contribution

Model 6.372 11 0.579 13.127 < 0.0001 91.161

A- Ton 0.447 1 0.447 10.132 0.0066 6.397

B- Toff 0.085 1 0.085 1.936 0.1859 1.222

C- Ip 1.291 1 1.291 29.247 < 0.0001 18.465

D- Sv 0.370 1 0.370 8.393 0.0117 5.298

AB 0.056 1 0.056 1.281 0.2767 0.808

AC 2.543 1 2.543 57.630 < 0.0001 36.384

AD 0.106 1 0.106 2.412 0.1427 1.523

BC 0.001 1 0.001 0.011 0.919 0.0067

CD 0.012 1 0.012 0.278 0.6063 0.175

A2 0.234 1 0.234 5.303 0.0371 3.348

C2 0.294 1 0.294 6.672 0.0217 4.212

Residual 0.618 14 0.044 8.838

Cor Total 6.990 25 100
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(a) Effect of Ton on SR                                     (b) Effect of Ip on SR

(c) Effect of Sv on SR (d) Effect of Ton and Ip on SR

Figure 4.15. Effect of WEDM process parameters on SR while machining Nimonic-263
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2 2

0.55 0.16 0.069 0.27 0.14 0.059 0.40 0.082 0.005437

        0.028 0.27 0.30

SR A B C D AB AC AD BC

CD A C

        

   (4.12)

The optimal values for MRR and SR were 3.59856 mm3/min 0.363162 µm as found from

RSM, respectively, along with their optimal parameters are given in Table 4.11. Similarly the

optimal values found from existing cuckoo method for MRR and SR were 3.6681 mm3/min and

0.26215 µm respectively. Whereas from modified two-stage cuckoo search algorithm the

corresponding values are 3.6713 mm3/min and 0.2619 µm. From these results it is observed that

the proposed two stage cuckoo search method is yielding better results than the results of RSM

and existing cuckoo search algorithm.

Table 4.11 Optimal results from different methods for Nimonic-263

Response RSM Existing method Proposed method

MRR

(mm3/min)

Optimal value 3.59856 3.6681 3.6713

Optimal

parameters

Ton:125, Toff:52.14,

Ip:12, Sv:42

Ton:125, Toff:51,

Ip:12, Sv:42

Ton:125, Toff:50,

Ip:12, Sv:42

SR (µm) Optimal value 0.363162 0.26215 0.2619

Optimal

parameters

Ton:119, Toff:51,

Ip:10, Sv:56

Ton:115.7, Toff:50,

Ip:10.4, Sv:60

Ton:115.8, Toff:50,

Ip:10.5, Sv:60

Confirmation tests have been conducted to check the effectiveness of proposed method

for both MRR and SR, and the results are given in Table 4.12. It can be observed from the

confirmation test results that the deviations between experimental values and the predicted values

from the modified cuckoo search method are not exceeding 7 % for both MRR and SR. Hence

the proposed method can be used for prediction of MRR and SR.
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Table 4.12 Confirmation Test results for Nimonic-263

Response
Predicted value from

Proposed method

Experimental

Value

Deviation in

percentage

MRR (mm3/min) 3.6713 3.614 2

(Ton:125, Toff:50, Ip:12, Sv:40)

SR (µm) 0.2619 0.282 7

(Ton:116, Toff:50, Ip:10, Sv:60)

4.7. Non-dominated sorting modified cuckoo search algorithm

In order to generate simultaneous optimal solutions for MRR and SR, a well known non-

dominated sorting principle has been applied to the proposed modified cuckoo search algorithm.

The steps involved in the non dominated sorting modified cuckoo search algorithm (NSMCS) are

given in Figure 4.16. This algorithm starts with two stage initialization. After initialization, each

individual’s objective functions are evaluated to rank and sort using non-dominated sorting

principle before applying the other operators. Once the ranking is done, cuckoo search operators

have been applied to generate new solutions for further generations. Then non-dominated sorting

principle is applied to get a set of optimal solutions (Pareto front).
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Apply two stage intialization for
initial population

start

Evaluate objective functions

Find pareto solutions and rank them usinf
non dominated sorting

Set Iter =1

Perform Leavy flight operator

Perform recombination operator

Apply the non dominated sorting to
find pareto solutions

Is
Iter ≥ Max Iter

Store the pareto solutions

stop

Iter = Iter+1

Yes
No

Figure 4.16. Flow chart of NSMCS

The Pareto front of optimal solutions have been generated for Inconel-690 and Nimonic-263

materials as shown in Figures 4.17 and 4.18 respectively. The MRR and SR values are also

presented at different weights of the responses (Table 4.13 and 4.14) to enable the manufacturer

to choose a solution and associated conditions as per the requirement for Inconel-690 and

Nimonic-263 materials respectively.
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Figure 4.17. Pareto optimal solutions of MRR and SR for Inconel-690 alloy

82

Figure 4.17. Pareto optimal solutions of MRR and SR for Inconel-690 alloy

82

Figure 4.17. Pareto optimal solutions of MRR and SR for Inconel-690 alloy
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Table 4.13 Optimal solutions of MRR and SR at different weights for Inconel-690

W1

(SR)

W2

(MRR)

SR

(µm)

MRR

(mm3/min)

Ton

(µs)

Toff

(µs)

IP

(A)

Sv

(V)

1 0 0.3309 0.347 105 54.56 10.68 60

0.9 0.1 0.3409 0.371 105 50 11.54 60

0.8 0.2 0.5038 0.5827 105 50 11.94 60

0.7 0.3 0.6484 0.7845 108.2 50 12 60

0.6 0.4 0.8003 1.0097 111.74 50 12 60

0.5 0.5 0.9696 1.2773 114.72 50 12 60

0.4 0.6 1.1733 1.6221 117.42 50 12 60

0.3 0.7 1.4418 2.1149 120.05 50 12 60

0.2 0.8 1.849 2.9469 122.89 50 12 60

0.1 0.9 2.2721 3.9234 125 50 12 60

0 1 3.248 5.843 125 50 12 40
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Figure 4.18 Pareto optimal solutions of MRR and SR for Nimonic-263 alloy
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Table 4.14. Optimal solutions of MRR and SR at different weights for Nimonic-263

W1

(SR)

W2

(MRR)

SR

(µm)

MRR

(mm3/min)

Ton

(µs)

Toff

(µs)

IP

(A)

Sv

(V)

1 0 0.3618 0.2751 115.77 50 10.45 60

0.9 0.1 0.4084 0.5879 113.69 50 11.27 60

0.8 0.2 0.5074 0.9056 112.46 50 11.54 60

0.7 0.3 0.5961 1.2003 111.58 50 11.74 60

0.6 0.4 0.6872 1.5091 110.78 50 11.92 60

0.5 0.5 0.7576 1.7453 111.21 50 12 60

0.4 0.6 0.8218 1.9199 112.74 50 12 60

0.3 0.7 0.9236 2.1417 114.69 50 12 59.78

0.2 0.8 1.2667 2.8582 117.05 50 12 40

0.1 0.9 1.5991 3.3828 122.09 50 12 40

0 1 2.031 3.5713 125 50 12 40



86

4.8. Summary

Although WEDM is one of the advanced machining processes used to machine hard to

cut materials, machining data for Inconel-690 and Nimonic-263 is not available in the literature.

An attempt has been made in this work to study the machining behavior for Inconel-690 and

Nimonic-263 using WEDM. By conducting the trial experiments, feasible ranges for process

parameters have been identified for the material in order to avoid problems such as wire breakage

and wire shorting. A face centered central composite design of RSM was used for the

experimental design. Effects of process parameters and their interaction effects on performance

measures such as MRR and SR have been investigated. Percentage contributions of each process

parameter on various responses have been estimated using ANOVA. MRR and SR are

significantly influenced by Ton, Ip and their interaction. In order to estimate the global optimal

response values accurately, a modified cuckoo search algorithm has been proposed in this work.

The proposed method has been successfully tested on standard bench-mark problems for its

robustness in yielding the accurate results. The proposed algorithm was found to be accurate and

fast as compared to existing cuckoo search and RSM methods. The proposed method is able to

perform better than the existing cuckoo search technique in terms of accuracy and speed because

of the novel two-stage initialization concept introduced in this work. Since the best strings, after

the first generation, are grouped and further search is made around these solutions, the

convergence rate is much faster. Though the proposed algorithm has been applied for optimizing

the WEDM process, it can also be used for other applications. Confirmation tests were conducted

to validate the proposed algorithm. The machining data generated for the first time for Inconel-

690 and Nimonic-263 materials in this work helps the industry to understand the general behavior

of WEDM. Based on this data, industry can carry out focused work to meet the specific needs. A

non-dominated sorting principle is also applied to the modified two-stage cuckoo algorithm in

order to generate Pareto front for both the materials. These Pareto fronts provide a set of optimal

solutions. From this data, the manufacturer can select any solution based on the requirement.
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CHAPTER 5 

GEOMETRICAL ERRORS 

5.1. Introduction 

 To meet the desired functional and assembly criteria, engineering components require 

tight dimensional and geometrical tolerances. Majority of the engineering components have 

circular and cylindrical features in them. These components are used for different applications 

such as rotating devices, transmission systems, injection moulds, bearings and engine cylinders 

etc. Circularity error is estimated for those components having size to height ratio less than unity, 

whereas cylindricity error is estimated for those components whose size to height ratio is greater 

than unity.  

 Researchers in the past made a number of attempts to assess the circularity error using 

coordinate data obtained from coordinate measuring machine (CMM) and also form data 

obtained from form testers. Murthy and Abdin (1990) applied Monte Carlo technique, normal 

least squares fit, simplex search and spiral search techniques. They found from their results, that 

Monte Carlo, spiral and simplex search were suitable for minimum zone evaluation. Chetwynd 

(1985) applied linear programming and developed a general approach for roundness evaluation. 

Shunmugam (1986) introduced a concept of median technique to minimize the error values. 

Sharma et al. (2000) used GA to optimize the solution for form tolerance evaluation. Samuel and 

Shunmugam (2000) applied computational geometric techniques involving convex hulls, to 

assess the circularity error at different conditions. They also employed an equi-angular diagram 

concept to find circularity error. Portman et al. (2002) applied statistical approach to measure 

roundness error. Venkaiah and Shunmugam (2007) introduced a control hull concept to evaluate 

circularity error. They compared their method against simplex search method and found that the 

proposed one gives accurate results and also takes lesser time. They also introduced a new 

procedure for updating the hull. Wen et al. (2006) implemented GA to search for the circularity 

error based on maximum inscribed circle (MIC), minimum circumscribed circle (MCC), 

minimum zone circles (MZC) and least squares circle (LSC). They found that GA gives better 

results than other existing methods. Sun (2009) applied Particle swarm optimization (PSO) 

algorithm to 
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compute the roundness error based on MIC, MCC and MZC methods. Results of PSO were 

compared against that of GA and found that PSO outperforms GA method. 

Several researchers attempted to evaluate the cylindricity error using numerical 

techniques such as normal least squares (Murthy, 1982), least squares (Shunmugam 1986), non-

linear optimization method (Carr and Ferreira, 1995) and hyperboloid method (Devillers and 

Preparata 2000) etc. Different optimization algorithms such as genetic algorithm (Sharma et al. 

2000, Lai et al. 2000), geometry optimization search algorithm (Lei et al. 2011), PSO algorithm 

(Zhang et al. 2011) etc. have been used to find the minimum cylindricity error values. 

Majority of engineering components consist of circular and cylindrical features 

somewhere in them. Errors on such features affect the functionality and assembly requirements of 

the components. Although various researchers made several attempts to assess the geometrical 

errors using different algorithms for the given data, comprehensive studies on geometrical 

features produced by WEDM process are not yet reported. For the first time, attempts are made in 

this work to investigate on the effect of process parameters on the circularity and cylindricity 

errors. ANN technique was used in the past to predict different responses such as MRR, SR, kerf 

and cutting speed etc. However, this technique has never been used for the prediction of the 

circularity and cylindricity errors. In the present work, prediction models are developed for these 

errors using a feed forward back-propagated neural network (BPNN) technique. A CMM, CRT-

Apex C-544 model of Mitutoyo make has been used to generate the coordinate data from the 

circular and cylindrical parts. MCOSMOS software has been used to assess the errors directly 

from the measured data based on LSC principle.  

5.2. Methodology 

 Flow chart (Figure 5.1) presents the sequence of steps in the proposed methodology. Trial 

experiments are conducted to fix the ranges for process parameters. Experiments are conducted at 

different levels of process parameters. Geometrical error is measured for the machined parts 

based on the LSC principle. Effects of process parameters such as pulse-on time, pulse-off time, 

peak current and servo voltage on circularity error are studied. An artificial neural network has 

been used to develop a modal to predict the geometrical error. Initially the developed model has 
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been trained using training data sets up to desired level of R-value. The performance of the neural 

network is expressed with its regression coefficient R. R value gives the correlation between 

target (experimental value) and network output (predicted value). If the R-value reaches 1, there 

is a strong correlation between experimental and predicted values. Once the model is trained, 

then the adequacy of the model will be validated with different data sets. 

Start 

Trial experiments to determine WEDM parameter ranges

Generate training data sets

Measure geometrical error using LSC principle by CMM

Generate NN model 

Train NN  using training data sets 

Is R value 

acceptable

Validate the model using experimental results

stop

No

Yes 

Study on Effects of process parameters

 

 
Figure 5.1. Steps in proposed methodology 
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5.3. Artificial Neural networks 

 "An artificial neural network system is an information-processing system that has certain 

performance characteristics in common with biological neural networks" (Fausette, 1994). Any 

neural network comprises of a large number of processing elements such as neurons, units and 

cells or nodes. A neural network is specified by  

 its pattern of connections between the neurons - called its architecture 

 its method of determining the weights on the connections - called its training or learning 

algorithm 

 its activation function. 

Each neuron is connected to other neurons by means of links with an associated weight. The 

weights represent information being used by the net to solve problem. Every neuron has an 

internal state called its activation level. Each neuron sends its activation or activity level as a 

signal to several other neurons. A feed forward back propagation neural network has been 

adopted in the present work to model the WEDM process to predict the geometric errors. This 

network comprises of large number of artificial neurons and these neurons are grouped into 

different layers such as input layer, hidden layers and output layer (Somashekhar et al. 2010, 

Benardos and Vosniakos, 2002) as depicted in Figure 5.2. The information contained in the input 

layer is transferred or mapped to the output layer through hidden layers (Tzeng et al. 2011). 

 The feed forward and back propagation network learning includes two phases. During 

feed forward (i.e. in the first stage), the input neurons receive input signal or information and 

transfer it to hidden neurons. Each hidden neuron computes its activation and convey its signal or 

information to output neurons. Each output neuron computes its activation to form the response 

of the net for the given input conditions. Each output unit compares its computed activation with 

target value to determine the associated error for that pattern with that unit. This error is back 

propagated from output layer to hidden layers in the second stage in order to minimize this error, 

modification of weights will be done. This process is repeated until the deviation reaches to the 

minimal or the user defined minimum value. 
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Figure 5.2. Network diagram 

 Artificial neural network models are widely used in prediction of outputs with respect to 

inputs of different machining processes where there is no linear relationship between input and 

output, complex machining processes and regular conventional methods fail to model the 

process. A 4-10-1 network has been selected in the present work to predict circularity and 

cylindricity errors as shown in Figure 5.2, in which 4 input neurons, 10 hidden neurons and one 

output neuron are considered. This network is trained for several times up to the desired value 

(more than 95 %) of regression coefficient (R). Once the prediction model is developed, 

goodness of the model must be verified using the confirmation tests. 
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5.4. Circularity error 

Circularity or roundness is a tolerance of form that checks the periphery of any circular 

cross-section taken perpendicular to the axis of a cylinder or cone, or through the center of a 

sphere to ensure that all elements are within two concentric circle tolerance zones (ASME, 1994). 

Circularity error is estimated for those components having size to height ratio less than unity. The 

CMM gives coordinate data and the circularity profile drawn from this data is shown in Figure 

5.3. Distance between the measured point on the circular profile and the center of the reference 

circle can be obtained as,  

2

0

2

0 )()( yyxxr iii 
      (5.1) 

Where, (x0, y0) represents the center of the circle. 

 

Figure 5.3.Circularity error evaluation 
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The deviation between the measured point and the reference circle is given by, 

0rre ii 
      (5.2) 

Where, r0 is radius of the reference circle and is calculated as the mean of the radial distances 

from the measured points to the center coordinates of the reference circle. The deviations above 

the reference circle are taken to be positive and that below the circle are treated negative. 

Let 

emax = maximum (ei),  i = 1, 2…., N. 

emin = minimum (ei),   i = 1, 2…., N. 

Where, N is the total number of measured points.  

The circularity error is evaluated as the absolute sum of maximum and minimum deviations from 

the reference circle as given by Eq. 5.3 

 

Circularity error, 
max min  e e         (5.3) 

It is to be noted that reference circle is established using various methods such as MIC, 

MCC, MZC and LSC as shown in Fig. 5.4.  

MIC method: MIC is the largest circle that can be drawn inside the profile without cutting 

across the profile. The roundness error is specified as the distance of the largest peak above the 

circle. To illustrate the concept, following deviations from the MIC may be considered: 

Deviations: + 2, +5, 0, + 3, +0, +6, 0, +1 units 

Circularity error = largest peak = 
  
e

max
= +6 = 6 units  

MCC method: MCC is the smallest circle that will completely enclose the profile without 

cutting it. Its center and radius can be found in the similar manner to that of the inscribed circle. 

The roundness error is the distance of the lowest valley from the circle. 
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a) Maximum inscribed circle b) Minimum circumscribed circle 

  

c) Minimum zone circles d) Least squares circle 

 

Figure 5.4. Methods to assess circularity error 
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Let the deviations be - 1, 0, - 4, - 3, 0, - 5, 0, - 1 units 

Circularity error = lowest valley = 
  
e

min
= - 5 = 5 units  

MZC method: In Minimum zone circles method there are two concentric circles that just enclose 

the profile and have minimum radial separation. The value of the roundness error is the radial 

distance between the two circles.  

Let the deviations be + 1, 0, - 4, - 2, + 4, - 3, - 4, - 1, + 4 units 

Circularity error = 
  
e

min
+ e

max
= - 4 + +4 = 8 units  

5.4.1. Least-squares method for circularity error 

Principle of LSC method involves fitting a circle to the profile data points of the part such that 

sum of the squares of the deviations of the actual profile from the fitted circle is minimum. 

Circularity error is defined as the radial distance of the maximum peak from this circle (P) plus 

the distance of the maximum valley from this circle (V) i.e. P + V. Unlike the other three 

methods, LSC method is the most straight forward in the sense that all the data of the profile is 

used to establish the circle. Other advantages of this method include sound mathematical basis, 

unique solution, ease of implementation and low computational time. Therefore, LSC method is 

popular even today in the industry. The only disadvantage is that this method slightly 

overestimates the error. In spite of this, LSC method is implemented in the present work, as the 

scope of the work is to investigate the influence of various process parameters on circularity 

error. 

LSM is based on minimizing the sum of the squares of the deviations as given by, 

 2

1

Minimize
N

i

i

e

        (5.4) 

The circularity error is evaluated as the absolute sum of maximum and minimum deviations from 

the reference circle as given by Eq. 5.3 
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Since the circularity error function is non-linear, a non-linear LSM, often called as Gauss-

Newton method is employed to solve this problem. A complete derivation of the method (Nash 

and Sofer 1996, Wolf and Ghilani 1997) is not given here, however a functional description is 

provided. This method needs Jacobian matrix to be formed. The Jacobian matrix (J) is the matrix 

of partial differentials of the deviation Eq. 5.5 with respect to each parameter.  

      (5.5) 

 

The solution requires multiple iterations and an initial solution for the unknowns (xo, yo, ro) is 

needed. The initial solution may be obtained as follows: 

      (5.6) 
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The vector of residuals, K is given by 
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It is essential to solve for adjustment values, V. The vector of adjustments for the parameters is 

given below. 

D V=

D x
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        (5.8) 

The adjustments of the parameters, xo, yo and ro can be solved using the equation  

V = (J'J)
-1 

J'K       (5.9) 

On solving the adjustment values, the circle parameters are then adjusted as 

xo' = xo + xo 

yo' = yo+ yo        (5.10) 

ro' = ro+ ro 

 This new solution is now used to compute a new Jacobian matrix and a new residual 

vector, which are then used to get a new adjustment vector V. This procedure is continued until 

the adjusted values are closer to zero. In fact, even today, most of the CMMs use the LSM to 

report the final solution due to its advantages such as sound mathematical formulation, unique 

solution and less computational effort. 
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5.4.2. Results and analysis 

Since the studies on effects of process parameters on the circularity error are not reported 

in literature, attempts are made to carry out these studies in the present work. In order to establish 

the relationship between process parameters and circularity error, experiments were conducted 

and 60 data sets were generated as presented in Table 5.1 along with the associated circularity 

error. These data sets are used to develop predictive model for circularity error using ANN. 

Another set of 10 experiments was conducted to validate the model.Inconel-690 has been used as 

workpiece material and 10 mm circular holes were produced on 6.5 mm thick plate. The 

circularity error was measured directly using CMM, and the in-built algorithm involved in 

MCOSMOS software is LSC method. The ranges for the process parameters were fixed as pulse 

on time (Ton) 105-125 µs, pulse off time (Toff) 50-60 µs, peak current (Ip) 10-12 A and servo 

voltage (Sv)  40-60 V after conducting trial experiments.  

Table 5.1 Training data set to train NN model for circularity error 

S. No. Ton (µs) Toff  (µs) Ip (A) Sv (V) Circularity error (µm) 

1 115 60 11 50 9 

2 115 55 10 50 7 

3 105 60 12 60 9 

4 115 55 11 60 13 

5 115 55 11 50 13 

6 115 55 11 50 8 

7 115 55 12 50 5 

8 125 60 10 60 28 

9 125 50 10 40 26 
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10 105 60 12 40 4 

11 115 55 11 50 9 

12 105 50 10 60 12 

13 105 60 10 40 16 

14 105 60 10 60 11 

15 125 55 11 50 6 

16 115 55 11 50 9 

17 125 50 12 40 6 

18 115 55 11 50 12 

19 115 55 11 40 8.5 

20 125 50 10 60 4 

21 110 50 11 40 5 

22 110 50 11 45 13.3 

23 110 50 11 50 16 

24 110 50 11 55 17 

25 110 50 11 60 16.7 

26 110 50 12 40 4 

27 110 50 12 45 5 

28 110 50 12 50 15 
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29 110 50 12 55 20 

30 110 50 12 60 19 

31 110 55 11 40 4 

32 110 55 11 45 6.1 

33 110 55 11 50 8 

34 110 55 11 55 10 

35 110 55 11 60 11 

36 110 55 12 40 4 

37 110 55 12 45 4 

38 110 55 12 50 6 

39 110 55 12 55 10.7 

40 110 55 12 60 11.5 

41 120 55 11 40 10.1 

42 120 55 11 45 9 

43 120 55 11 50 7 

44 120 55 11 55 5.9 

45 120 55 11 60 5 

46 120 55 12 40 4 

47 120 55 12 45 6.7 
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48 120 55 12 50 11.4 

49 120 55 12 55 12 

50 120 55 12 60 12 

51 120 60 11 40 29.5 

52 120 60 11 45 29 

53 120 60 11 50 25.7 

54 120 60 11 55 9 

55 120 60 11 60 4 

56 120 60 12 40 4.1 

57 120 60 12 45 6.8 

58 120 60 12 50 11.5 

59 120 60 12 55 10 

60 120 60 12 60 9.2 

The influence of process parameters such as pulse-on time, pulse-off time, peak current 

and servo voltage on the circularity error are shown in Figure 5.5 (a), (b), (c) and (d) respectively 

while machining Inconel-690 using WEDM.  
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(a) Pulse-on time    (b) Pulse-off time 

  

(c) Peak current    (d) Servo voltage 

Figure 5.5. Effect of process parameters on circularity error 

Figure 5.5 (a) shows the effect of pulse-on time on circularity error. During the pulse-on 

time, energy is discharged between electrode and work material. It is observed that up to 120 µs 

of pulse-on time, circularity error is low. This can be attributed to the fact that cutting speed is 

moderate and the sparks are generated uniformly between wire electrode and workpiece towards 

the cutting direction yielding uniform material removal. During this range of pulse-on time, the 

effect of pulse-on time on circularity error is also marginal. However, beyond 120 µs of pulse-on 

time, the energy is applied for a longer duration thereby generating more amount of heat and it 

leads to increase in material removal rate (Mahapatra and Patnaik, 2009). This increased cutting 
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speed leads to increased wire wear and formation of craters on machined surface which in turn 

results in higher circularity error. The increase in circularity error may also be attributed to the 

fact that the higher cutting speed at higher pulse-on time does not permit the effective flush out of 

the debris from the machined zone. The left over debris may weld to the machined surface 

causing higher circularity error.  

Pulse-off time or pulse interval is the time interval between discharges. At lower pulse-off 

time, more amount of heat is generated resulting in higher material removal, overload of wire and 

instability in machining (Fuller, 1996). Further, lower pulse-off time causes incomplete flush out 

of the debris. Due to these reasons, circularity error increases at lower pulse-off time as shown in 

Figure 5.5(b). Increasing the pulse-off time up to 55 µs slows down the cutting speed allowing 

uniform material removal rate and stability in machining, which results in reduced circularity 

error. However, beyond this value of pulse-off time, cutting speed drops drastically. During this 

phase of machining, sparks are not continuous causing the wire vibration and inconsistent 

machining, which increases the circularity error. 

Peak current is the amount of current supplied during machining. The discharge energy is 

directly proportional to the peak current (Singh and Garg, 2009). At low peak current, cutting 

speed is low and there is no continuous in spark generation causing inconsistent machining 

producing more undulations on the machined surface resulting in higher circularity error. As the 

peak current increases, sparks are generated uniformly yielding uniform material removal thereby 

decreasing the circularity error as shown in Figure 5.5(c). 

Servo voltage is the reference voltage and is used to control the wire retracts and 

advances. At lower value of servo voltage, the gap between wire and workpiece becomes narrow, 

which allows more number of sparks per unit time and more amount of heat is generated 

(Ghodesiyeh et al., 2013) and cutting speed increases thereby increasing the circularity error. 

Furthermore, at low servo voltage, wire will be overloaded causing the frequent wire breaks and 

it results in discontinuities on the machined surface leading to higher circularity error. As the 

servo voltage increases, the cutting speed will be moderate and circularity error decreases up to 

45 V as shown in Figure 5.5(d). Further increase in servo voltage leads to increase in circularity 

error due to low cutting speed and sparks are not generated continuously causing non-uniform 

material removal and wire vibration. 
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Artificial neural network toolbox has been used to develop predictive model for the 

circularity error. The NN tool internally divides the total data sets into 70 %, 15 % and 15 % for 

training, validation and testing respectively. While developing the model, the neurons are trained 

to the desired level using the 70 % of data sets. Once the model is developed, prediction accuracy 

will be verified with validation and testing data sets. Correlations between experimental and 

predicted values are expressed by regression coefficient R in NN modeling. If the regression 

coefficients for training, validation and testing data are acceptable, training may be stopped and 

the developed model can be used to predict the circularity error. The regression coefficients of 

the developed NN model are found to be 96 %, 97 %, 98 % and 96 % for training, validation, 

testing and overall model respectively as shown in Figure 5.6 (a) to (d). 

 

Figure 5.6. Correlation between experimental and predicted circularity errors with associated R 

values 
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Effectiveness of the model was validated against 10 experimental data sets. Table 5.2 

presents the percentage of deviation between the experimental and predicted circularity errors for 

the validation data sets. Figure 5.7 shows the graphical representation of the confirmation test 

results. It can be observed that the deviations between experimental and predicted values are 

marginal. It was found from the results of confirmation test data sets that the average deviation of 

circularity error from experimental value to the predicted value is 5.08 %. Therefore, the 

developed model can be used to predict the circularity error. 

 

 

Figure 5.7. Experimental and predictive circularity errors in testing of NN model  

Table 5.2 Experimental data to validate NN model for circularity error 

S. No. 
Ton 

(µs) 

Toff 

(µs) 

Ip   

(A) 

Sv  

(V) 

Experimental 

circularity error 

(µm) 

Predicted circularity 

error using NN (µm) 

Deviation 

in % 

1 115 55 11 50 9.6 10.2 5.88 

2 125 60 10 40 31 29.9 3.68 
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3 105 55 11 50 7 7.5 6.67 

4 125 60 12 60 11.4 10.2 11.76 

5 125 50 12 60 13 12.88 0.93 

6 105 50 10 40 15 15.6 3.85 

7 105 50 12 60 20 20.4 1.96 

8 115 50 11 50 17 17.8 4.49 

9 105 50 12 40 4 4.02 0.49 

10 125 60 12 40 11 9.9 11.11 

 

5.5. Cylindricity error 

 Cylindricity error is estimated for those components having size to height ratio greater 

than unity. Cylindricity is a condition where all points on the surface of a cylinder are equidistant 

from the axis. There are four standard methods available to assess the cylindricity namely least-

squares (LS), minimum circumscribing (MC), maximum inscribing (MI) and minimum zone 

(MZ) method as depicted in Figure 5.8 (a) to (d). In LS method, the cylinder axis is generated by 

working out the LS centers of all the levels. The best-fit line is established from the centers and 

then the deviations at each level are found from the cylinder generated using this axis. The 

cylindricity is usually given by the farthest peak deviation added to the lowest valley deviation 

from the LS radius of all the data. MC cylinder is the smallest cylinder around the data. Once this 

cylinder is found using the points, the cylindricity error can be estimated as the deepest valley 

distance from the MC cylinder. MI cylinder is the biggest cylinder inscribing the data.   The 

cylindricity error is estimated as the maximum peak distance from the MI cylinder. MZ cylinders 

are the coaxial cylinders with least radial separation containing the data points in the annular 

zone. ISO guidelines suggest the MZ cylinders as the preferred method but do not specify the 

method to establish them. 
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a) LS cylinder                                             b) MC cylinder 

 
c) MI cylinder                                           d) MZ cylinder 

 

Figure 5.8. Various reference features for cylindricity assessment (Whitehouse, 2002) 

 

5.5.1. Least-squares method for cylindricity error 

Figure 5.9 shows measured profiles at different sections of a cylindrical feature and a point on the 

measured profile is indicated by P1 (xi,yi,zi). The figure also shows the reference circular-cylinder 

used for the assessment of the cylindricity error. By convention, deviation of a measured point 

lying outside the reference cylinder is taken to be positive and a point inside is considered to have 

negative deviation.  The cylindricity error (Δ) is, therefore, obtained as an absolute sum of the 

maximum and minimum deviations. 
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Figure 5.9. Cylindricity data and circular-cylinder  

Cylindricity measurements are denoted by (xi,yi,zi).  If the assessment cylinder, whose radius is ro, 

is represented by the axis 
  
x

0
+ l

0
z

i
and 0 0 iy m z , the normal deviation ei from the i

th
 measured 

point to the cylinder is given by  

    
1/2 1/22 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0( ) [( ) ] [ ( ) ( )] 1/ (1 )i i i i i i ie x x l z y y m z m x x l y y l m r           

(5.11) 

Where (x0, y0) is a point on the axis of the assessment cylinder and (l0, m0) are the slope values 

with respect to x and y-axis 

5.5.2. Results and analysis 

Though researchers in the past made several attempts to assess the cylindrical features 

using different algorithms, studies on influence of process parameters on cylindricity error are not 

reported yet. Also, it is to be noted that cylindricity is basically a complex geometry and 

producing such a feature on a super alloy with acceptable deviation from the nominal size and 
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shape makes it much more complex. Therefore, for the first time, attempts are made in this work 

to investigate the effect of process parameters on the cylindricity error. A predictive model for 

cylindricity error is also developed using a feed forward back-propagated neural network 

(BPNN) technique. For this study, Nimonic-263 has been used as workpiece material and 10 mm 

holes of 18.5 mm length were produced on 120 mm × 110 mm × 18.5 mm. Experiments were 

conducted and 60 data sets were generated as presented in Table 5.3 along with the associated 

cylindricity error. CMM data generated from the circular-cylindrical components was used to 

assess the cylindricity error. The influence of process parameters such as pulse-on time, pulse-off 

time, peak current and servo voltage on the cylindricity error are shown in Figure 5.10 (a) to (d) 

respectively in machining of Inconel-690 using WEDM.  

Table 5.3 Training data set to train NN model for cylindricity error 

S. No. Ton (µs) Toff (µs) Ip (A) Sv (V) Cylindricity error (µm) 

1 125 60 12 60 38.84 

2 125 60 10 60 15.86 

3 115 55 11 50 41.24 

4 125 55 11 50 29.07 

5 125 50 10 40 29.06 

6 115 55 12 50 22.24 

7 115 50 11 50 27.49 

8 115 55 10 50 38.98 

9 115 55 11 50 39.64 

10 105 60 10 40 40.74 
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11 125 60 12 40 31.21 

12 105 55 11 50 27.56 

13 115 55 11 60 37.07 

14 115 55 11 50 40.89 

15 125 60 10 40 28.44 

16 105 50 12 40 18.96 

17 105 60 12 40 21.89 

18 105 50 10 60 40.50 

19 105 50 12 60 24.22 

20 115 55 11 50 39.24 

21 110 50 11 40 29.52 

22 110 50 11 45 25.32 

23 110 50 11 50 24.02 

24 110 50 11 55 27.53 

25 110 50 11 60 35.75 

26 110 50 12 40 17.89 

27 110 50 12 45 17.95 

28 110 50 12 50 19.93 

29 110 50 12 55 27.57 
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30 110 50 12 60 43.39 

31 110 55 11 40 39.71 

32 110 55 11 45 45.22 

33 110 55 11 50 45.36 

34 110 55 11 55 43.25 

35 110 55 11 60 42.95 

36 110 55 12 40 21.51 

37 110 55 12 45 19.13 

38 110 55 12 50 18.86 

39 110 55 12 55 21.47 

40 110 55 12 60 29.62 

41 120 55 11 40 44.42 

42 120 55 11 45 43.67 

43 120 55 11 50 37.16 

44 120 55 11 55 24.57 

45 120 55 11 60 19.82 

46 120 55 12 40 28.09 

47 120 55 12 45 21.91 

48 120 55 12 50 18.74 
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49 120 55 12 55 22.07 

50 120 55 12 60 39.09 

51 120 60 11 40 38.94 

52 120 60 11 45 35.98 

53 120 60 11 50 38.57 

54 120 60 11 55 43.46 

55 120 60 11 60 44.58 

56 120 60 12 40 37.22 

57 120 60 12 45 45.95 

58 120 60 12 50 49.27 

59 120 60 12 55 48.66 

60 120 60 12 60 48.42 

 

Pulse-on time is the time during which the energy is discharged between wire and 

workpiece. At low pulse-on time the energy discharged is low, load on the wire is low and 

machining will be stable. As a result, the cylindricity error is low. When the pulse-on time 

increases, the energy supplied increases, load on the wire increases. Inconsistent machining 

produces more undulations on the machined surface, thereby increasing the cylindricity error as 

shown in Fig. 5.10 (a).  Further increase in pulse-on time from 115 to 125 μs, the machining 

speed was found to be high and uniform and therefore wire vibrations were diminishing thereby 

decreasing the cylindricity error. 
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(a) Pulse-on time    (b) Pulse-off time 

 

 (c) Peak current   (d) Servo voltage 

Figure 5.10. Effect of process parameters on cylindricity error 

 

 Pulse-off time is the interval between discharges. At lower pulse off time there is a 

uniform material removal and stability in machining leads to low cylindricity error. Whereas with 

increase in the pulse-off time the gap between discharges increases, there by sparks are not 

continuous and inconsistent machining, causes to increase in circularity as shown in Figure 5.10 

(b). 

 Peak current is the amount of current supplied at the time of machining. Machining speed 

is directly proportional to the amount of current supplied during the process. Fig. 5.10 (c) shows 

the effect of peak current on cylindricity error. At low peak current the machining speed is very 
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low and uniform and therefore cylindricity error is less. When the peak current increases, 

inconsistent machining takes place and it produces more undulations thereby increasing the 

cylindricity error up to certain level. Further increase in peak current causes the sparks to produce 

continuously and the machining becomes uniform and stable thereby reducing the cylindricity 

error. 

 Servo voltage, also called as the reference voltage, controls the wire advance and retracts. 

At low servo voltage, the gap between the wire and workpiece becomes narrow and more number 

of sparks are generated continuously, which results in uniform material removal thereby 

decreasing the cylindricity error. When servo voltage increases, the gap between wire and 

workpiece increases thereby generating the sparks inconsistently causing vibrations of wire. 

These vibrations produce more undulations causing higher cylindricity error as depicted in Fig 

5.10 (d). However, beyond 50 V the effect of change in servo voltage on the cylindricity error 

was found to be negligible.  

 To develop prediction model for the cylindricity error, neural network toolbox has been 

used in the present study. The total data sets are internally divided into 70 %, 15 % and 15 % for 

training, validation and testing respectively. The neurons are trained using the 70 % of data in 

developing the model. Once the model is developed, prediction accuracy was verified with 

validation and testing data sets. The regression coefficient, R is used to express the correlations 

between experimental and predicted values in NN modeling. The training may be stopped when 

the regression coefficients for training, validation and testing data are acceptable, and the 

developed model can be used to predict the cylindricity error. The regression coefficients of the 

developed NN model are found to be 98 %, 99 %, 97 % and 98 % for training, validation, testing 

and overall model respectively as shown in Fig. 5.11 (a) to (d) 
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Figure 5.11. Correlation between experimental and predicted cylindricity errors with associated R 

values 

Effectiveness of the model was validated against 10 experimental data sets. Table 5.4 

presents the percentage of deviation between the experimental and predicted cylindricity errors 

for the validation data sets. Figure 5.12 shows the graphical representation of the confirmation 

test results. It can be observed that the deviations between experimental and predicted values are 

marginal. It was found from the results of confirmation test data sets that the average deviation of 

cylindricity error from experimental value to the predicted value is 4.87 %. Therefore, the 

developed model can be used to predict the cylindricity error. 
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Figure 5.12. Experimental and predictive cylindricity errors in validation of NN model 

Table 5.4 Experimental data to validate NN model for cylindricity error 

S. No. 
Ton 

(µs) 

Toff 

(µs) 

Ip 

(A) 

Sv  

(V) 

Experimental 

cylindricity 

error (µm) 

Predicted  

cylindricity error 

using NN  (µm) 

Deviation     

in % 

1 125 50 10 60 29.81 32.294 8.33 

2 125 50 12 60 42.75 42.003 1.75 

3 115 55 11 50 41.11 39.847 3.075 

4 125 50 12 40 25.12 23.686 5.715 

5 105 50 10 40 32.56 31.931 1.95 

6 105 60 10 60 29.50 32.116 8.86 

7 115 60 11 50 51.61 50.874 1.44 

8 115 55 11 50 38.28 39.847 4.10 

9 115 55 11 40 44.96 46.127 2.59 

10 105 60 12 60 21.65 24.025 10.95 
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5.6. Summary 

Inconel-690 and Nimonic-263, nickel based super alloys, are very hard to cut using the 

conventional machining processes. WEDM, being an advanced machining process, can be used 

to machine electrically conductive materials of any hardness. Majority of engineering 

components have axi-symmetrical features in them. In order to minimize the rejection rate during 

inspection, these features are to be manufactured with strict control with regard to their 

tolerances. Machining of circular and cylindrical components with minimum circularity or 

cylindricity errors to meet their functional and assembly criteria is always a challenging task 

especially with a stochastic machining process like WEDM. Since the studies on influence of 

process parameters on the circularity error and cylindricity errors in WEDM are not yet reported, 

attempts are made in this work to carry out these investigations.  

Summary of the findings on circularity error: 

 It is observed that, up to 120 µs of pulse-on time circularity error is low and further 

increase in pulse-on time increases the circularity error.  

 The circularity error decreases with increase in pulse-off time up to 55 µs and further 

increase in pulse-off time increases circularity error. 

 Circularity error decreases with increase in peak current. 

 It is also observed that the circularity error decreases with increase in servo voltage up 

to 45 V and further increase in servo voltage increases the circularity error. 

Summary of the findings on cylindricity error: 

 It is observed that, up to a pulse-on time of 115 µs cylindricity error is increased and 

further increase in pulse-on time decreases the cylindricity error. 

 The cylindricity error steadily increases with increase in pulse-off time. 

 Cylindricity error was found to increase with increase in peak current up to 11 A and 

further increase in peak current decreases the cylindricity error. 

 It is also observed that the cylindricity error sharply increases with increase in servo 

voltage up to 50 V and remains constant beyond 50 V. 

Robust prediction models for the circularity error and cylindrical errors can reduce the 

rejection rate and yield parts of better quality. For the first time, attempts are made to develop 
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predictive models for the circularity error and cylindrical errors in WEDM process. Neural 

network technique is used and the models are trained, validated and tested with different data 

sets. Deviations between experimental and predicted values are estimated for all the data sets. 

Since the regression coefficient values are above 96 % for all the data sets, correlations between 

experimental and predicted values are strong. Furthermore, all the deviations of the circularity 

error and cylindricity errors are in acceptable range and therefore, the models developed in this 

work can be applied for accurate prediction of the circularity and cylindricity errors. The 

machining data generated in the present work for the Inconel-690 and also Nimonic-263 using 

WEDM process will be useful to the industry. 
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CHAPTER 6 

EXPERIMENTAL INVESTIGATION ON RE-CAST 

LAYER THICKNESS AND MICRO-HARDNESS OF 

WEDMed SURFACES OF INCONEL-690  AND  

NIMONIC-263 

6.1. Introduction 

The mechanical properties of any material after machining will vary due to the machining 

phenomena of sudden heating and cooling. The base material properties cannot be maintained by 

the machined components. Therefore, the mechanical properties of the machined components 

such as micro-hardness (MH), recast layer thickness (RLT) are very essential to know whether 

they are meeting the functional requirements or not. In WEDM process, when the workpiece 

approaches the electrode, the gap between workpiece and wire reaches a certain threshold value, 

the insulating liquid breaks down and discharging channel forms thereby sparks are generated 

resulting in high temperature instantaneously up to about 10000º C. A huge amount of heat is 

generated due to these sparks and this heat is used to melt workpiece. A portion of the melted 

workpiece material is removed by a dielectric circulation system. The remaining molten material 

will rapidly re-solidify to form a layer known as the recast layer (Goswami and Kumar, 2014). 

This recast layer affects the mechanical properties like hardness of the materials.  The hardness of 

the WEDMed surfaces will depend on the recast layer thickness. Newton et al. (2009) 

investigated on characteristics of recast layer formed in machining of Inconel-718. They found 

that the hardness is increasing with distance from the top layer of WEDMed surface. Li et al. 

(2013) and Kumar et al. (2016) also observed that there is a dramatic reduction of hardness as 

compared to bulk material. 

As the nickel based super alloys are using in various applications such as nuclear, 

automobiles and aerospace etc., it is required to investigate the recast layer thickness and 
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hardness of the machined surfaces along with MRR, SR and kerf etc. Most of the researchers 

concentrated in modeling of WEDM responses like MRR, SR and kerf etc.  using regression 

(Mahapatra and Patnaik, 2007; Sadeghi et al. 2011), neural networks (Spedding and Wang 1997; 

Sarkar and Mitra 2006; Saha et al. 2008) and RSM (Datta and Mahapatra, 2010; Shandilya et al., 

2012) etc. No importance is given for modelling and prediction of recast layer thickness and 

hardness of WEDMed surfaces. In the present study RSM is used to generate mathematical 

models and optimization of recast layer thickness and hardness for first time. The data generated 

may be useful to the industry.  

This chapter describes the modeling of RLT and hardness of the machined components 

for both Inconel-690 and Nimonic-263. It is also describe the influence of various process 

parameters like pulse-on time, pulse-off time, peak current and servo voltage and their 

interactional effects on RLT and MH. 

6.2. Modeling of RLT and MH for Inconel-690 

 In this study the face cantered central composite design with six centre points has been 

used. The workpiece material of Inconel-690, a nickel based super alloy, of size 100 mm × 50 

mm × 6.5 mm is used. Holes of 10 mm size are produced on the material with zinc coated brass 

wire as electrode and deionized water as di-electric fluid. The re-cast layer has been observed 

using Scanning Electron Microscope (SEM) of Tescan make VEGA 3 LMU model and micro-

hardness of the machined surfaces is measured using Economet VH 1 MD, Chennai Metco, India 

and are shown in Figure 3.5 and Figure 3.7 respectively. A load of 500 gm for a dwell time of 10 

min was applied to measure the micro-harness. Prediction models are generated for RLT and MH 

using RSM and the adequacies of these models are expressed in terms of R-square values.  

6.2.1. Results and analysis 

 Experimental results of RLT and MH are given in Table 6.1 in the coded form along with 

the measured responses of hardness and recast layer thickness. ANOVA has been conducted for 

both RLT and MH to study the significance of parameters and their interaction effects.  
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Table 6.1 Experimental plan and results for Inconel-690 

S. No. Ton  Toff  Ip     Sv    RLT (µm) MH (HV) 

1 2 2 2 2 31.07 139.7 

2 2 3 2 2 27.86 143 

3 3 1 3 3 38.4 133 

4 2 2 1 1 19.14 155.3 

5 1 3 3 3 27.24 144.5 

6 2 2 2 3 27.66 143.4 

7 3 3 1 1 23.13 159.67 

8 2 2 2 2 30.25 139.9 

9 2 2 2 1 29.37 141 

10 1 1 1 1 16.48 157.1 

11 2 2 3 1 41.98 133 

12 3 3 1 3 14.55 161 

13 3 1 1 1 26.66 145 

14 1 3 3 1 33.14 138.2 

15 2 2 2 2 28.68 142.7 

16 1 1 1 3 11.4 167.4 

17 2 1 2 2 31.83 139.7 

18 1 1 3 3 32.14 139 

19 1 3 1 1 12.84 161 

20 1 3 1 3 10.06 171 

21 3 2 2 2 28 141.2 

22 1 2 2 2 26.24 147.1 

23 2 2 2 2 29.29 142 

24 1 1 3 1 36.16 134 

25 3 1 3 1 49.34 122.5 
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26 3 3 3 3 37.91 134 

27 2 2 2 2 29.22 142.1 

28 3 3 3 1 47.42 128.6 

29 2 2 2 1 35.5 137.9 

30 3 1 1 3 16.37 158 

 

(a) ANOVA analysis of recast layer thickness 

It is observed from the ANOVA results of RLT (Table 6.2) that the factors influencing the 

RLT are pulse-on time, peak current and servo voltage and are shown in Figure 6.1 (a) to (c). The 

factors for which the P value is less than 0.05 will influence the model. A mathematical 

predictive model has been developed using ANOVA. 

Table 6.2 ANOVA results of RLT for Inconel-690 

Source SS DF MS F P 

Model 2777.04 12 231.42 99.94484 < 0.0001 

A-Ton 321.565 1 321.565 138.8762 < 0.0001 

B- Toff 33.7021 1 33.7021 14.55512 0.0014 

C-Ip 2071.53 1 2071.53 894.6466 < 0.0001 

D-Sv 234.289 1 234.289 101.1839 < 0.0001 

AB 1.65122 1 1.65122 0.713125 0.4101 

AC 13.0682 1 13.0682 5.643858 0.0295 

AD 28.9982 1 28.9982 12.52365 0.0025 

CD 0.8281 1 0.8281 0.357637 0.5577 
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A2 29.8336 1 29.8336 12.88441 0.0023 

B2 1.15728 1 1.15728 0.499802 0.4892 

C2 0.00564 1 0.00564 0.002437 0.9612 

D2 2.94788 1 2.94788 1.273119 0.2749 

Residual 39.3631 17 2.31548 

  Lack of Fit 35.653 12 2.97108 4.004009 0.0681 

Pure Error 3.71013 5 0.74203 

  Cor. Total 2816.4 29 

    The predictive model in coded form is given in Equation (6.1). For this model R-square, 

adjusted R-square and predicted R-square values are 98.6 %, 97.62 % and 94.91 % respectively. 

  
2 2 2 2

30.08 4.23 1.37 10.73 3.61 0.32 0.9 1.35 0.23

          3.39 0.67 0.047 1.07

RLT A B C D AB AC AD CD

A B C D

        

   
  (6.1) 

Influence of process parameters on recast layer thickness is shown in Figure 6.1 (a) to (f). 

It can be observed from the Figure 6.1 (a) that RLT increases as pulse-on time increases. Since 

pulse-on time corresponds to amount of time allowed to discharge energy in machining process, 

amount of energy increases with pulse-on time. Higher the energy discharged, higher will be the 

MRR and cutting speed. As the material removal increases, it causes more oxides to form and the 

dielectric fluid will not be able to flush away the debris effectively at higher cutting speed. 

Therefore, at high pulse-on time, chances of increasing the recast layer thickness on the machined 

surface will be high. Pulse-off time is the time interval between discharges. Behavior with this 

factor is opposite to that of pulse-on time as shown in Figure 6.1 (b). Peak current is the amount 

of current applied during machining. The discharge energy is directly proportional to the current. 

At high peak current, more energy is discharged resulting in more MRR and there is continuous 

spark generation and therefore, the cutting speed increases. Under these conditions, more amount 

of material is removed from workpiece as well as electrode and also more oxides will form on the 
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surface therefore chances of forming the RLT will be high as shown in Figure 6.1 (c). Servo 

voltage is the reference voltage and is used to control the wire retracts and advances. At lower 

value of servo voltage, the gap between wire and workpiece becomes narrow allowing more 

number of sparks per unit time. More amount of heat is generated causing cutting speed to 

increase thereby increasing the RLT. In other words, as the servo voltage increases, the cutting 

speed decreases which causes RLT to decrease as shown in Figure 6.1 (d). The interaction effects 

on RLT are also shown in Figure 6.1 (e) and (f). 

 

 
 

(a) Ton (µs) (b) Toff (µs) 

 
 

(c) Ip (A) (d) Sv (V) 
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(e) Ton (µs) and Ip (A) (f) Ton (µs) and Sv (V) 

  

Figure 6.1. Effect of process parameters on recast layer thickness while machining Inconel-

690 

 

(b) ANOVA analysis of micro-hardness 

 From the ANOVA Table 6.3, it is observed that the factors such as pulse-on time, pulse-

off time, peak current, and servo voltage influence the hardness of machined surfaces.  

Table 6.3 ANOVA results of MH for Inconel-690 

Source SS DF MS F P 

Model 3845.28 14 274.662976 64.93432235 < 0.0001 

A-Ton 323.682 1 323.6816056 76.52303934 < 0.0001 

B- Toff 113.854 1 113.85405 26.91675337 0.0001 

C-Ip 2905 1 2904.998272 686.7838433 < 0.0001 

D-Sv 251.852 1 251.8516056 59.54138261 < 0.0001 

AB 3.58156 1 3.58155625 0.846731989 0.3720 
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AC 1.42206 1 1.42205625 0.336194781 0.5706 

AD 0.11731 1 0.11730625 0.027732904 0.8700 

BC 4.37856 1 4.37855625 1.035154381 0.3251 

BD 15.5433 1 15.54330625 3.674663667 0.0745 

CD 3.45031 1 3.45030625 0.81570258 0.3807 

A2 24.3159 1 24.31590463 5.748633516 0.0300 

B2 0.1799 1 0.179904625 0.04253207 0.8394 

C2 24.3159 1 24.31590463 5.748633516 0.0300 

D2 0.493632 1 0.493631898 0.11670176 0.7374 

Residual 63.44787 15 4.229858202 

  Lack of Fit 55.77454 10 5.577453969 3.634309711 0.0835 

Pure Error 7.673333 5 1.534666667 

  Cor. Total 3908.73 29 

    

A prediction model has been developed using ANOVA and is given by Equation (6.2) in coded 

form. The R-squared, adjusted R-squared and predicted R-squared values are 98.37 %, 96.86 % 

and 88.95 % respectively for this model. 

                  (6.2) 

Hardness of bulk material (zero recast layer thickness) is higher for nickel based super 

alloys as compared to that of recast layer. This is due to the fact that recast layer is composed of 

elements like Cu, Zn, oxides and salts. Therefore hardness and RLT are inversely related.  

2 2 2 2

141.159 4.241 2.51 12.7 3.74 0.47 0.3 0.086

          0.52 0.99 0.46 3.06 0.26 3.06 0.44

MH A B C D AB AC AD

BC BD CD A B C D

       

      
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The effects of various process parameters and their interactions on hardness are shown in 

Figure 6.2 (a) to (d). It can be observed from the Figure 6.2 (a) that the hardness decreases as 

pulse-on time increases. At higher pulse-on time discharge energy is more causing the cutting 

speed to increase. RLT increases with increase in cutting speed thereby decreasing the hardness 

of machined surface. The behavior with pulse-off time is opposite to that of pulse-on time as 

shown in Figure 6.2 (b). As the discharge energy is directly proportional to the current, at the 

high peak current, the cutting speed, melting of metal is more. Therefore the RLT increases 

thereby hardness decreases as shown in Figure 6.2 (c). At low value of servo voltage, cutting 

speed is high due to the reasons explained earlier. As a result, RLT increases thereby decreasing 

the hardness as shown in Figure 6.2 (d). 

 The recast-layers of the machined samples were measured using the inbuilt 

measuring software of scanning electron microscope. Two specimens are chosen, one at lowest 

RLT from Table 6.1, corresponding to Experiment number 20 (Ton=105 µs, Toff = 60 µs, Ip = 10 

A, Sv = 60 V) and another at highest RLT corresponding to Experiment number 25 (Ton = 125 µs, 

Toff = 50 µs, Ip = 12 A, Sv = 40 V) shown in Figure 6.3. 

Micro cracks, voids can also be observed on the WEDMed surfaces (Figure 6.4). A pool 

of molten metal in the form of debris, which is not flushed away by di-electric fluid,  deposits on 

the machined surface as shown in Figure 6.4. A pool of molten metal increases RLT and it cannot 

be completely eliminated during WEDM process. RLT can be minimized upto certain level by 

choosing the optimal machining conditions. Also, circulation of dielectric fluid with sufficient 

pressure will flush most of the molten metal and debris thereby reducing the RLT. The recast 

layer thickness, was observed in the range of 10 - 50 µm. Hardness of Inconel-690 base material 

is 221 HV. However, hardness of the machined surface was found to lie in the range 122 - 171 

HV due to the variation of the RLT at different conditions. The reduction in hardness can be 

attributed to the presence of Zn, Cu, oxides and salts in the recast layer. 
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(a) Ton (µs) (b) Toff (µs) 

  
(c) Ip (A) (d) Sv (V) 

Figure 6.2.  Effect of process parameters on micro-hardness while machining Inconel-690 

 



129 
 

  
(a)  Ton=105 µs, Toff =60 µs,Ip=10 A, Sv=60 V (b) Ton=125 µs, Toff =50 µs,Ip =12 A, Sv=40 V 

Figure 6.3. SEM images showing the recast layer thicknesses at different conditions 

 

Figure 6.4.  SEM images showing micro cracks, voids and debris of molten metal 
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6.2.2.  EDS analysis 

Energy Dispersive X-ray Spectroscopy or EDS coupled with SEM, is used for compositional 

analysis and chemical characterization. Surface layers of the WEDMed specimens have been 

analysed using EDS. Figure 6.5 (a) and (b) show the EDS spectra of machined surfaces 

corresponding to experiment number 20 (Ton = 105 µs, Toff = 60 µs, Ip = 10 A, Sv = 60 V) and 

experiment number 25 (Ton = 125 µs, Toff = 50 µs, Ip = 12 A, Sv = 40 V) respectively. Though, the 

bulk material does not have zinc and has very less percentage of copper, the WEDMed surfaces 

were found to be contained these elements in appreciable quantities. The quantities of these 

elements corresponding to experiment number 20 and 25 are found to be 4.12 % Zn and 0.94 % 

Cu and also 8.26 % Zn and 1.51 % Cu respectively. These elements are migrated from the wire 

electrode while machining. Migration of Zn and Cu leads to soften the machined surfaces. Hence 

hardness of the machined surface is lesser than that of the bulk material. Hardness of the 

machined surfaces are presented in Table 6.1.  

6.3. Modeling of RLT and MH for Nimonic-263 

Similar experimental procedure has been followed for the Nimonic-263 material, a nickel 

based super alloy of size 120 mm × 110 mm × 18.5 mm also. The influence of WEDM process 

parameters such as pulse-on time, pulse-off time, peak current and servo voltage on the micro-

hardness and recast layer of Nimonic-263 machined surfaces have been studied. Predictive 

mathematical models for RLT and MH are also developed.    

6.3.1. Results and analysis 

Experiments are conducted as per the RSM plan as presented in Table 6.4 along with the 

measured responses. ANOVA has been conducted for RLT, SR and MH to study the significance 

of parameters and their interaction effects on the responses. Prediction models are generated 

using RSM and the adequacies of these models are expressed in terms of R-squared values.  
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(a)  Ton = 105 µs, Toff = 60 µs, Ip = 10 A, Sv = 60 V 

 

 

(b) Ton = 125 µs, Toff = 50 µs, Ip = 12 A, Sv = 40 V 

 

Figure 6.5.  EDS images at different conditions 

 

Table 6.4 Experimental plan and results for Nimonic-263 

S. No Ton (µs) Toff (µs) Ip (A) Sv (V) RLT (µm) MH (HV) 

1  125  60  12  60  26.05 259.1 

2  125  60  10  60  10.21 320.9 

3  115  55  11  40  24.88 267.6 

Element Weight% Atomic%

C K 23.14 42.92

O K 26.69 37.17

Si K 0.3 0.24

S K 0.2 0.14

Ti K 0.35 0.16

Cr K 13.2 5.66

Fe K 10.37 4.14

Ni K 20.69 7.85

Cu K 0.94 0.33

Zn K 4.12 1.4

Totals 100

Element Weight% Atomic%

O K 30.06 59.62

Si K 1.8 2.04

S K 0.85 0.84

Ti K 0.52 0.34

Cr K 15.8 9.64

Fe K 17.6 10

Ni K 23.6 12.75

Cu K 1.51 0.75

Zn K 8.26 4.01

Totals 100
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4  115  55  11  50  19.09 287.7 

5  105  60  12  60  15.75 309.1 

6  125  55  11  50  25.19 260 

7  125  50  10  40  15.49 313 

8  115  55  12  50  28.49 245 

9  115  50  11  50  19.87 247.4 

10  105  50  10  40  12.33 318.1 

11  115  55  10  50  11.89 315 

12  105  60  10  60  8.8 335.9 

13  125  50  10  60  10.954 327.1 

14  115  55  11  50  18.57 298 

15  125  50  12  40  37.79 232.2 

16  105  60  10  40  9.5 330.2 

17  125  60  12  40  36.31 238 

18  105  55  11  50  14.27 313 

19  115  55  11  60  17.68 299.5 

20  115  60  11  50  18.36 298.1 

21  125  60  10  40  13.99 314.6 

22  105  50  12  40  25.38 259.8 
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23  125  50  12  60  26.67 248.3 

24  105  60  12  40  22 281.6 

25  105  50  10  60  8.99 332.5 

26  105  50  12  60  22.39 273.2 

 

 (a) ANOVA analysis of RLT 

It is observed from the ANOVA results of RLT that the factors influencing the RLT are 

pulse-on time, pulse-off time, peak current, servo voltage and the interaction effects of pulse-on 

time and current, pulse-on time and servo voltage, and current and servo voltage as shown in 

Figures 6.6 (a) - (g). 

Table 6.5 ANOVA results of RLT for Nimonic-263 

Source  SSquares  DF  MS  F  P  

Model 1553.01 10 155.301 65.56155 < 0.0001 

A-Ton 222.2113 1 222.2113 93.80828 < 0.0001 

B-Toff  19.8324 1 19.8324 8.372407 0.0111 

C-Ip  1068.391 1 1068.391 451.0297 < 0.0001 

D-Sv  139.8684 1 139.8684 59.04656 < 0.0001 

AB 4.726276 1 4.726276 1.995235 0.1782 

AC 57.28976 1 57.28976 24.18533 0.0002 
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AD 16.84282 1 16.84282 7.110329 0.0176 

BC 2.937796 1 2.937796 1.240214 0.2830 

BD 0.062001 1 0.062001 0.026174 0.8736 

CD 20.84836 1 20.84836 8.8013 0.0096 

Residual 35.53172 15 2.368781 

  Lack of Fit 35.39652 14 2.528323 18.70061 0.1795 

Pure Error 0.1352 1 0.1352 

  Cor Total 1588.542 25 

    

 The factors for which the P value is less than 0.05, will influence the model. A 

mathematical predictive model has been developed using ANOVA. The predictive model of 

coded form is given in Equation (6.3). For this model R-square, adjusted R-square and predicted 

R-square values are 97.76 %, 96.27 % and 91.34 % respectively. 

 

19.27 3.51 1.05 7.7 2.79 0.54 1.89 1.03

           0.43 0.062 1.14

RLT A B C D AB AC AD

BC BD CD

       

  
                     (6.3) 
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(a) Ton (b) Toff 

  

   (c) Ip (d) Sv 
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(e) Ton and Ip (f) Ton and Sv 

 

(g) Ip and Sv 

Figure 6.6. Effect of process parameters on recast layer thickness while machining Nimonic-

263 

  

Effect of various process parameters (Figure 6.6) on RLT in machining of Nimonic-263 are as 

similar as thst of machining in Inconel-690 and are explained in 6.2. The interaction effects on 

RLT are also shown in Figure 6.6 (e) to (g). 
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(b) ANOVA analysis of micro-hardness 

 From the ANOVA Table 6.6, it is observed that the factors such as pulse-on time, pulse-

off time, peak current, and servo voltage influence the hardness of machined surfaces.  

Table 6.6 ANOVA results of MH for Nimonic-263 

Source SSquares DF MS F P 

Model 23929.8 14 1709.27 27.4674 < 0.0001 

A-Ton 858.361 1 858.361 13.7936 0.0034 

B-Toff 228.98 1 228.98 3.67964 0.0814 

C-Ip 19503.1 1 19503.1 313.409 < 0.0001 

D-Sv 1854.41 1 1854.41 29.7997 0.0002 

AB 12.4256 1 12.4256 0.19968 0.6637 

AC 43.8906 1 43.8906 0.70531 0.4189 

AD 108.681 1 108.681 1.74647 0.2131 

BC 0.05063 1 0.05063 0.00081 0.9778 

BD 3.90063 1 3.90063 0.06268 0.8069 

CD 33.3506 1 33.3506 0.53594 0.4794 

A2 65.1882 1 65.1882 1.04755 0.3281 

B2 148.107 1 148.107 2.38004 0.1512 

C2 610.935 1 610.935 9.81753 0.0095 

D2 0.76134 1 0.76134 0.01223 0.9139 

Residual 684.518 11 62.2289 

  Lack of Fit 653.313 10 65.3313 2.09362 0.4948 

Pure Error 31.205 1 31.205 

  Cor. Total 24614.3 25 

   
 From the ANOVA Table 6.6, it is observed that pulse-on time, peak current and servo 

voltage are influencing the hardness model. A prediction model has been developed using 

ANOVA. The predictive model of coded form is given in Equation (6.4). The R-square, adjusted 

R-square and predicted R-square values are 93.26 %, 87.03 % and 74.02 % respectively for this 

model. 
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2 2 2 2

281.63 13.34 7.55 31.17 8.36 3.83 6.56

           +3.96BC+2.35CD+8.61A 5.14 2.11 5.66

MH A B C D AB AC

B C D

      

  
                (6.4) 

The effect of various process parameters and interaction effects on hardness are shown in 

Figure 6.7 (a) to (c). Effect of various process parameters (Figure 6.6) on RLT in machining of 

Nimonic-263 are as similar as that of machining in Inconel-690 and are explained in 6.2. The 

recast-layer of the machined samples was measured using the inbuilt measuring software of 

scanning electron microscope. 

 
 

(a) Ton (b) Ip 

 
(c) Sv 

Figure 6.7. Effect of process parameters on micro hardness while machining Nimonic-263 

 



139 
 

6.4. Summary 

Nickel based super alloys are gaining importance day by day due to their superior 

properties like high hardness at elevated temperatures, low thermal conductivity and high 

resistance to corrosion. Machining of these alloys with conventional machining processes is very 

difficult due to these properties. Inconel-690 and Nimonic-263 which are nickel based alloys can 

be machined using WEDM process. Recast layers will be formed on the surfaces of these 

machined components, this leads to decrease in hardness as compared to base materials. 

However, the machined components should meet their functional requirements like retaining the 

hardness at high temperatures. Avoiding the rejection rate of machined surface based on the 

functional criteria is a challenging task especially in a machining process like WEDM due to its 

stochastic nature. In the present work an attempt is made to investigate the influence of WEDM 

process parameters on recast layer thickness and hardness of the machined surfaces of Inconel-

690 and Nimonic-263. Summary of the observations include: 

 Recast layer thickness of machined components is increasing with increase of pulse-on 

time and peak current, whereas, it is decreasing with increase of servo voltage. 

 Hardness of the machined surface is lower than that of the base material. 

 Hardness of the machined surface is affected by pulse-on time, peak current, servo 

voltage, interaction of pulse-on time and servo voltage and interaction of peak current and 

pulse-off time. 

 Micro-cracks are observed on the machined surfaces. 

 Some amount of zinc is embodied to the machined surface while machining.  

Also, predictive models for recast layer thickness and hardness are developed with respect 

to WEDM process parameters for the first time and are very much useful to the industry. 
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CHAPTER 7

CONCLUSIONS AND SCOPE FOR FUTURE WORK

7.1. Conclusions

Nickel-based super alloys are a special class of materials with an exceptional combination

of high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing

environments. These materials are extremely hard to shape using traditional machining methods

due to rapid work hardening. Therefore, modern machining methods are to be employed to

process such materials. WEDM is known for machining complex shapes with lesser energy

requirements. Since adequate WEDM studies are not reported on these materials, generation of

machining data using WEDM on these materials assumes a great importance from the industry

viewpoint. In the present study, performance of WEDM process is assessed in terms of MRR,

SR, RLT, MH and form errors such as circularity and cylindricity of the machined surfaces for

Inconel-690 and Nimonic-263 materials.

Surface roughness affects several functional attributes of parts, such as friction, wear and

tear, light reflection, heat transmission, ability of distributing and holding a lubricant and coating.

Hence, assessment of surface roughness of the parts is important from the quality viewpoint.

Further, in order to meet the customer requirement in terms of due date, the manufacturer always

tries to maximize the MRR. Increasing the MRR is also important from the viewpoint of

machining economics. Depending upon the requirements of the industry, these responses are to

be optimized either individually or simultaneously. Since the accuracy of cuckoo search

algorithm (CSA) heavily depends upon the initial solution and its location from the target value,

it may involve large number of generations. In order to overcome these drawbacks, a modified

cuckoo search (MCS) algorithm has been proposed in this work. The two-stage initialization

concept ensures the identification of initial solution set very nearer to the final target value.

Therefore, the proposed MCS algorithm is more accurate and faster when compared to CSA.

Before applying the proposed method on actual WEDM data, it has been successfully tested on

standard benchmark problems for its robustness in yielding the accurate results. The results for

the WEDM data using the proposed MCS algorithm were found to be better than that of the
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CSA.Confirmation tests were also conducted at optimal parameter sets and the deviations

between the predicted values and experimental values are less than 5 %.Therefore, the proposed

MCS algorithm can also be applied for optimization problems in other fields. Non-dominating

sorting principle has also been applied on the proposed MCS to generate Pareto optimal

solutions. The Pareto solutions will give the alternate solutions to the manufacturer so as to select

the best solution based on the requirement. The machining data generated for the first time for

Inconel-690 and Nimonic-263 in this work provides the industry some useful information on

general behavior of WEDM. Based on this data, industry can carry out focused work to meet the

specific needs.

In order to meet the desired functional and assembly requirements, engineering

components need to have tighter dimensional and geometrical tolerances. Majority of the

engineering components have circular and cylindrical features in them. These components are

used for different applications such as rotating devices, transmission systems, injection moulds,

bearings and engine cylinders etc. Producing straight cuts is easier as compared to machining of

axisymmetric components. The difficulties are further amplified while machining such features

on super alloys with the stochastic nature of WEDM process. Although most of the WEDM

literature is focused on responses such as MRR, SR, Kerf, WWR etc. Studies on geometrical

errors of axisymmetric components are not yet reported. Therefore attempts are made to model

the geometrical errors in order to accurately predict these errors to reduce the rejection rate of the

components during inspection. Neural network technique was used to develop the predictive

models and the models are trained, validated and tested with different data sets. Deviations

between experimental and predicted circularity and also cylindricity errors are estimated for all

the data sets. Since the regression coefficient values are above 96 % for all the data sets,

correlations between experimental and predicted circularity and cylindricity errors are strong. It

was found from the results of confirmation test data sets that the average deviation of circularity

error from experimental value to the predicted value is 5.08 %.The average deviation of

cylindricity error between the experimental and the predicted values was found to be 4.87 %.

Since all the deviations of the circularity and cylindricity errors are in acceptable range, the

models developed in this work can be applied for accurate prediction of the circularity and

cylindricity errors. The machining data generated on geometric errors for the first time in the



142

present work for Inconel-690 and also Nimonic-263 using WEDM process will be useful to the

industry.

Mechanical properties of any material after machining will vary due to the machining

phenomena of sudden heating and cooling. It is difficult to retain the base material properties

after machining. In WEDM process, a huge amount of heat is generated is used to melt the

workpiece. A portion of the melted workpiece material is removed by a dielectric circulation

system. The remaining molten material will rapidly re-solidify to form a layer known as the

recast layer. This recast layer thickness affects the surface integrity aspects such as hardness and

other surface properties of the materials. Prediction models for recast layer thickness and

hardness are developed with respect to WEDM process parameters for the first time and are very

much useful to the industry. The re-cast layer thickness values of machined components are

increasing with increase of pulse-on time and peak current, whereas, RLT is decreasing with

decrease of servo voltage. Pulse-on time, peak current, servo voltage, interaction of pulse-on time

and servo voltage and interaction of peak current and pulse-off time affect the hardness of the

machined surface. Hardness of the machined surface was found to be lower than that of the base

material for both the work materials chosen. The reduction in hardness values of machined

surfaces can be attributed to the migration of Zn and Cu from the wire electrode to the workpiece

and formation of oxides and carbides while machining as revealed by the EDS studies. Micro-

cracks are also observed on the machined surfaces. The machining data generated on surface

integrity for the first time for Inconel-690 and Nimonic-263 in this work provides the industry

some useful information on general behavior of WEDM.

7.2. Scope for future work

The proposed cuckoo search algorithm with two stage initialization is generic in nature and

therefore can be extended to other optimization problems. The principle of two stage

initialization can also be applied to other evolutionary algorithms. Generation of machine data for

different super alloys can be carried out in the similar lines. Further work may be directed to

optimize more than two WEDM responses simultaneously by using non dominated sorting

principle. Other form errors such as conicity, straightness etc. may also be studied on WEDMed

parts.



143

REFERECES

1 American Society of Mechanical Engineers (1994) Dimensioning and Tolerancing. ASME

Y14.5M

2 Antar M T, Soo S L, Aspinwall D K, Jones D, Perez R, (2011) Productivity and workpiece

surface integrity when WEDM aerospace alloys using coated wires.  Procedia Engineering

19: 3-8

3 Aravind S N, Sowmya S, Yuvaraj K P, (2012) Optimization Of Metal Removal Rate And

Surface Roughness On Wire Edm Using Taguchi Method. In: IEEE-International

Conference On Advances In Engineering, Science And Management. IEEE; 2012: 155-

159

4 Balasubramanian S, Ganapathy S, (2011) Grey Relational Analysis to determine optimum

process parameters for Wire Electro Discharge Machining (WEDM). Int J Eng Sci

Technol 3(1): 95-101

5 Benardos P G, Vosniakos G C, (2002) Prediction of surface roughness in CNC face

milling using neural networks and Taguchi's design of experiments. Robot Comput Integr

Manuf 18(5): 343-354

6 Carl Sommer, Steeve Sommer, (2005) The complete EDM Handbook, Advance

Publishers Inc., USA

7 Carpinetti L C R, Chetwynd D G, (1994) A new strategy for inspecting roundness

features. Prec Eng. 16(4): 283-289

8 Carr K, Ferreira P, (1995) Verification of form tolerances Part II: Cylindricity and

straightness of a median line. Preci Eng 17(2): 144-156

9 Çaydas U, Hasçalik A, (2008) A study on surface roughness in abrasive waterjet

machining process using artificial neural networks and regression analysis method. J

mater proces technol 202(1): 574-582

10 Çaydas U, Hasçalik A, Ekici S, (2009) An adaptive neuro-fuzzy inference system

(ANFIS) model for wire-EDM. Expert Systems with Applications 36(3): 6135-6139

11 Chandrasekaran K, Simon S P, (2012) Multi-objective scheduling problem: Hybrid

approach using fuzzy assisted cuckoo search algorithm. Swarm Evol Comput 5:1-16

12 Chang H, Lin T W, (1993) Evaluation of circularity tolerance using Monte Carlo

simulation for coordinate measuring machine. Int J Prod Rese 31: 2079-2086



144

13 Chen H C, Lin J C, Yang Y K, Tsai C H, (2010) Optimization of wire electrical discharge

machining for pure tungsten using a neural network integrated simulated annealing

approach. Expert Systems with Applications 37(10): 7147-7153

14 Chen M C, (2002) Roundness measurements for discontinuous perimeters via machine

visions. Computers in Industry 47(2): 185-197

15 Chen M C, Tsai D M, Tseng H Y, (1999) A stochastic optimization approach for

roundness measurement, Pattern Recognition Letters, 20, 707-719.

16 Chetwynd D G, (1985) Applications of linear programming to engineering metrology.

Proc Inst Mech Eng Part B J Eng Manuf  199(2): 93-100

17 Chiang K T, Chang F P, (2006) Optimization of the WEDM process of particle-reinforced

material with multiple performance characteristics using grey relational analysis. J Mater

Process Technol 180(1): 96-101

18 Choudhury S K, Bartarya G, (2003) Role of temperature and surface finish in predicting

tool wear using neural network and design of experiments. Int J Machine Tools Manuf

43(7): 747-753

19 Cusanelli G, Hessler-Wyser A, Bobard F, Demellayer R, Perez R, Flukiger R, (2004)

Microstructure at submicron scale of the white layer produced by EDM technique. J Mater

Process Technol 149(1): 289-295

20 Das M K, Kumar K, Barman T K, Sahoo P, (2014) Optimization of surface roughness in

WEDM process using Artificial Bee Colony algorithm, Int J App Eng Resea  9(26): 8748-

8751

21 Datta S, Mahapatra S S, (2010) Modeling, Simulation and parametric optimization of wire

EDM process using response surface methodology coupled with grey-Taguchi technique.

Int J Adv Manuf Technol  2(5): 162-1183

22 Deb K, Optimization for engineering design: Algorithms and examples. 2nd Edition. PHI

Learning Private Limited; 2013.

23 Deng G, Wang G, Duan J, (2003) A new algorithm for evaluating form error: the valid

characteristic point method with the rapidly contracted constraint zone, J Mater Proces

Technol 139(1): 247-252

24 Devillers O, Preparata F, (2000) Evaluating the cylindricity of a nominally cylindrical

point set. ACM-SIAM Sympos. Discrete Algorithms, Jan 2000, San Francisco, United



145

States.

25 Devillers O, Ramos P, (2002) Computing roundness is easy if the data set is almost round.

Int J Computational Geometry and Applications, 12: 229-248

26 DiBitonto D D, Eubank P T, Patel M R, Barrufet M A, (1989) Theoretical models of the

electrical discharge machining process-I: a simple cathode erosion model, J Appl Phys

66(9): 4095-4103

27 Ding Y, Zhu L, Ding H, (2007) A unified approach for circularity and spatial straightness

evaluation using semi-definite programming. Int. J. Machine Tools Manuf, 47(10): 1646-

1650

28 Ebrahimi M, Rezaei E, Vaseghi B, Danesh M, (2006) Rotor resistance identification using

neural networks for induction motor drives in the case of insensitivity to load variations.

Iranian J Scie Technol: Transaction B Eng 30(B2): 223-236

29 El Ela A A, Abido M A, Spea S R, (2010) Optimal power flow using differential evolution

algorithm. Electr Power Syst Res 80(7): 878-885

30 Esme U, Sagbas A, Kahraman F, (2009) Prediction of surface roughness in wire electrical

discharge machining using design of experiments and neural networks. Iranian J Sci

Technol Transaction B: Eng 33(B3): 231-240

31 Fausett L, (1994) Fundamentals of neural networks: architectures, algorithms, and

applications. Prentice-Hall, Inc., USA

32 Fuller JE, (1996) Electrical Discharging Machining. ASME Machining Handbook 16:557-

564

33 Gandomi A H, Yang X S, Alavi A H, (2013) Cuckoo search algorithm: A metaheuristic

approach to solve structural optimization problems. Eng Comput 29(1): 17-35

34 Gauri S K, Chakraborty S, (2009) Multi-response optimisation of WEDM process using

principal component analysis. Int J Adv Manuf Technol  41(7-8): 741-748

35 Gauri S K, Chakraborty S, (2009) Optimisation of multiple responses for WEDM

processes using weighted principal components. Int J Adv Manuf Technol   40(11-12):

1102-1110.

36 Gauri S K, Chakraborty S, (2010) A study on the performance of some multi-response

optimization methods of WEDM processes, Int J Adv Manuf Technol 49(1-4): 155-166

37 Ghodsiyeh D, Golshan A, Shirvanehdeh J A, (2013) Review on current research trends in

wire electrical discharge machining (WEDM). Indian J Scie Technol 6(2): 4128-4140



146

38 Goswami A, Kumar J, (2014) Investigation of surface integrity, material removal rate and

wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method. Eng

Scie Technol 17(4): 173-184

39 Guiqin L, Fanhui K, Wenle L, Qingfeng Y, Minglun F, (2007) The Neural-Fuzzy

modeling and Genetic Optimization in WEDM. IEEE International Conference In Control

and Automation (ICCA 2007): 1440-1443

40 Guitrau E B, The EDM Handbook, Hanser Gardner Publications, Cincinnati, OH, 1997

41 Guven O, Esme U, Kaya I E, Kazancoglu Y, Kulekci M K, Boga C, (2010) Comparative

modeling of wire electrical discharge machining (WEDM) process using Back

propagation (BPN) and general regression neural networks (GRNN). Mater Technol

44(3): 147-152

42 Han F, Jiang J, Yu D, (2007) Influence of machining parameters on surface roughness in

finish cut of WEDM. Int J Adv Manuf Technol 34(5-6): 538-546

43 Hasçalik A, Çaydas U, (2007) Electrical discharge machining of titanium alloy (Ti-6Al-

4V). Appl Surface Scie 253(22): 9007-9016

44 Herrmann K, Hardness Testing: Principles and Applications, ASM International, USA,

2011.

45 Ho K H, Newman S T, Rahimifard S, Allen A D, (2004) State of the art in wire electrical

discharge machining (WEDM). Int J Machine Tools Manuf 44(12): 1247-1259

46 Iqbal A K M, Khan A A, (2010) Influence of process parameters on Electrical discharge

machined job surface integrity. American J Eng Appl Sci 3(2): 396-402

47 Jabbaripour B, Sadeghi M H, Faridvand Sh, Shabgard M R, (2012) Investigating the

effects of EDM parameters on surface integrity, MRR and TWR in machining of Ti-6Al-

4V. Mach Scie Technol: An Int. J 16(3): 419-444

48 Jain V K (2005) Advanced Machining Processes. Allied Publishers Pvt. Limited, New

Delhi

49 Jangra K K, Kumar V, Kumar V, (2014) An experimental and comparative study on rough

and trim cutting operation in WEDM of hard to machine materials. Procedia Materials

Science 5: 1603-1612

50 Joghataie A, Amiri B, (2005) Modeling structure-actuator systems by neural networks.

Iranian J Scie Technol Transaction B: Eng 29(B3): 323-332

51 Kaiser M J, Morin T L, (1994) Centers, out-of-roundness measures and mathematical

programming. Comp Industrial Eng, 26(1): 35-54



147

52 Kansal H K, Singh S, Kumar P, (2005) Parametric optimization of powder mixed

electrical discharge machining by response surface methodology. J Mater Process Technol

169(3): 427-436

53 Khan A A, Ali M B M, Shaffiar N B M, (2006) Relationship of surface roughness with

current and voltage during wire EDM. J Appl Scie 6(10): 2317-2320

54 Khan N J, Khan Z A, Siddiquee A N, Chanda A K, (2014) Investigations on the effect of

wire EDM process parameters on surface integrity of HSLA: A multi-performance

characteristics optimization. Prod Manuf Res 2(1): 501-518

55 Kim N H, Kim S W, (1996) Geometrical tolerances: improved linear approximation of

least squares evaluation of circularity by minimum variance. Int. J Machine Tools Manuf

36(3): 355-366

56 Konda R, Rajurkar K P, Bishu R R, Guha A, Parson M, (1999) Design of experiments to

study and optimize process performance. Int J Quality & Relia Manag 16(1): 56-71

57 Kovvur Y, Ramaswami H, Anand R B, Anand S, (2008) Minimum zone form evaluation

using Particle swarm optimization. Int. J. Systems Technologies and Appli 4(1-2): 79-96

58 Kumar A, Kumar V, Kumar J, (2012) Prediction of surface roughness in wire electric

discharge machining (WEDM) process based on response surface methodology. Int J Eng

Technol 2(4): 708-719

59 Kumar K, Agarwal S, (2012) Multi-objective parametric optimization on machining with

wire electric discharge machining. Int J Adv Manuf Technol 62(5-8): 617-633

60 Kumar V, Jangra K, (2016) An experimental study on trim cutting operation using powder

mixed dielectric WEDM of Nimonic-90. Int J Ind Eng Computations 7(1): 135-146

61 Kuriakose S, Mohan K, Shunmugam M S, (2003) Data mining applied to wire-EDM

process. J Mater Proces Technol 142(1): 182-189

62 Lai H Y, Jywe W Y, Liu C H (2000) Precision modeling of form errors for cylindricity

evaluation using genetic algorithms. Preci Eng 24(4): 310-319

63 Lai J Y, Chen I H, (1996) Minimum zone evaluation of circles and cylinders, Int. J.

Machine Tools Manuf 36(4): 435-451

64 Lai K, Wang J, (1988) A computational geometry approach to geometric tolerancing,

Proc. 16th North Amer. Manuf. Res. Conf., University of Illinois, 376-379

65 Lee W M,  Liao Y S, (2003) Self-tuning fuzzy control with a grey prediction for wire

rupture prevention in WEDM, Int J Adv Manuf Technol 22(7-8): 481-490



148

66 Lei X, Song H, Xue Y, Li J, Zhou J, Duan M, (2011) Method of cylindricity error

evaluation using Geometry Optimization Searching Algorithm. Measurement 44(9): 1556-

1563

67 Li L, Guo Y B, Wei X T, Li W, (2013) Surface integrity characteristics in wire-EDM of

inconel 718 at different discharge energy.  Procedia CIRP 6: 221 - 226

68 Li X, Shi Z, (2009) The relationship between the minimum zone circle and the maximum

inscribed circle and the minimum circumscribed circle. Preci Eng 33(3): 284-290.

69 Liao P, Yu SY (2001) A calculating method of circle radius using genetic algorithms,

Metrology Transaction China, 20(7): 87-89

70 Liao Y S, Huang J T, Su H C, (1997) A study on the machining-parameters optimization

of wire electrical discharge machining. J Mater Proces Technol 71(3): 487-493

71 Liao Y S, Yan M T, Chang C C ,(2002) A neural network approach for the on-line

estimation of workpiece height in WEDM. J mater proces technol 121(2): 252-258

72 Lin S S, Varghese P, (1995) A comparative analysis of CMM form fitting algorithms.

Manuf Rev 8: 47-58

73 Lok Y K, Lee T C, (1997) Processing of advanced ceramics using the wire-cut EDM

process. J Mater Proces Technol 63(1): 839-843

74 Mahapatra S S, Patnaik A, (2007) Optimization of wire electrical discharge machining

(WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34(9-10):

911-925

75 Manna A, Bhattacharayya B, (2005) Influence of machining parameters on the

machinability of particulate reinforced Al/SiC–MMC. Int J Adv Manuf Technol 25(9): 67-

75

76 Manna A, Bhattacharayya B, (2006) Taguchi and Gauss elimination method: A dual

response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC.

Int J Adv Manuf Technol 28(1-2): 67-75

77 Ming W, Hou J, Zhang Z, Huang H, Xu Z, Zhang G, Huang Y, (2015) Integrated ANN-

LWPA for cutting parameter optimization in WEDM. Int J Adv Manuf Technol 1-18

78 Montgomery D C, (2005) Design and Analysis of Experiments. 6th edition, John Wiley &

Sons, Inc., USA

79 Mukherjee R, Chakraborty S, Samanta S, (2012) Selection of wire electrical discharge

machining process parameters using non-traditional optimization algorithms. Appl Soft



149

Comput 12(8): 2506-2516

80 Murthy T S R, (1982) A compararison of different algorithms for cylindricity evaluation.

lnt J Mach Tool Des Res  22(4): 283-292

81 Murthy T S R, Abdin S Z, (1980) Minimum zone evaluation of surfaces. Int. J Machine

Tool Des Re 20(2): 123-136

82 Muthu Kumar V,  Suresh Babu A, Venkatasamy R, Raajenthiren M (2010), Optimization

of the WEDM Parameters on Machining Incoloy800 Super alloy with Multiple Quality

Characteristics,Int J Eng Scie Technol 2(5): 162-183

83 Muthukumar V, Babu A S, Venkatasamy R, Kumar N S, (2015) An Accelerated Particle

Swarm optimization algorithm on parametric optimization of WEDM of Die-Steel. J Insti

Engineers : Series C 96(1): 49-56

84 Nash S G, Sofer A, (1996) Linear and Nonlinear Programming. McGraw-Hill, New York.

85 Newton T R, Melkote S N, Watkins T R, Trejo R M, Reister L,  (2009)  Investigation of

the effect of process parameters on the formation and characteristics of recast layer in

wire-EDM of Inconel 718. Mater Scie Eng A 513: 208-215

86 Pasam V K, Battula S B, Madar Valli P, Swapna M, (2010) Optimizing Surface finish in

WEDM using the Taguchi parameter design method, J Braz Soci Mechan Scie Eng 32(2):

107-113

87 Patel M R, Barrufet M A, Eubank P T, DiBitonto D D, (1989) Theoretical models of the

electrical discharge machining process-II: the anode erosion model. J Appl Phy 66(9):

4104-4111

88 Patowari P K, Saha P, Mishra P K, (2010) Artificial neural network model in surface

modification by EDM using tungsten-copper powder metallurgy sintered electrodes. Int J

Adv Manuf Technol 51(5-8): 627-638

89 Pawar P J (2011) Multi-objective optimization of wire electric discharge machining

process using shuffled frog leaping algorithm. Int J Manuf Technol Indust Eng 1(1): 43-47

90 Portman V T, Rubenchik Y L, Shuster V G, (2002) Statistical approach to assessments of

geometrical accuracy. CIRP Ann - Manuf Technol 51(1): 463-466

91 Prasad D V S S S V, Krishna A G, (2009) Empirical modeling and optimization of wire

electrical discharge machining. Int J Adv Manuf Technol   43(9-10): 914-925

92 Qui H, Li Y, Cheng K, Li Yan, (2000) A practical evaluation approach towards from

deviation for two-dimensional contours based on coordinate measurement data. Int J



150

Machine Tools Manuf 40(2): 259-275

93 Radhakrishnan S, Ventura J A, Ramaswamy S E, (1998) The minimax cylinder estimation

problem. J manuf syst 17(2): 97-106

94 Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput  11(8): 5508-5518

95 Rajurkar K P, Pandit S M, (1984) Quantitative expressions for some aspects of surface

integrity of electro discharge machined components. J Manuf Scie Eng 106(2): 171-177

96 Ramakrishnan R, Karunamoorthy L, (2006) Multi response optimization of wire EDM

operations using robust design of experiments. Int J Adv Manuf Technol  29(1-2): 105-

112

97 Ramakrishnana R, Karunamoorthy L, (2008) Modeling and multi-response optimization

of inconel 718 on machining of CNC WEDM process. J Mater Proces Technol 207(1):

343-349

98 Rao M S, Venkaiah N, (2015) Parametric optimization in machining of Nimonic-263 alloy

using RSM and particle swarm optimization. Procedia Mater Scie 10: 70-79

99 Rao R V, (2011) Advanced Modeling and Optimization of Manufacturing Processes,

International Research and Development, Springer-Verlag, London

100 Rao R V, Pawar P J, (2009) Modelling and optimization of process parameters of wire

electrical discharge machining. Proc Inst Mech Eng Part B J Eng Manuf Eng 223(11):

1431-1440

101 Rao R V, Pawar P J, (2010) Process parameters modeling and optimization of wire

electrical discharge machining. Adv Prod Eng Mater 5(3): 139-150

102 Sadeghi M, Razavi H, Esmaeilzadeh A, Kolahan F, (2011) Optimization of cutting

conditions in WEDM process using regression modelling and Tabu-search algorithm. Proc

Inst Mech Eng Part B J Eng Manuf Eng 225(10): 1825-1834

103 Saha P, Singha A, Pal S K, Saha P, (2008) Soft computing models based prediction of

cutting speed and surface roughness in wire electro-discharge machining of tungsten

carbide cobalt composite. Int J Adv Manuf Technol 39(1): 74-84

104 Samuel G L, Shunmugam M S, (2000) Evaluation circularity from coordinate and form

data using computational geometric techniques. Preci Eng 24(3): 251-263

105 Sarkar S, Mitra S, Bhattacharyya B, (2006) Parametric optimisation of wire electrical

discharge machining of γ titanium aluminide alloy through an artificial neural network

model. Int J Adv Manuf Technol 27(5-6): 501-508

106 Sarkar S, Sekh M, Mitra S, Bhattacharyya B. (2008) Modeling and optimization of wire



151

electrical discharge machining of γ-TiAl in trim cutting operation. J Mater Proces Technol

205(1): 376-387

107 Sarkheyli A, Zain A M, Sharif S, (2015) A multi-performance prediction model based on

ANFIS and new modified-GA for machining processes. J Intelligent Manuf 26(4): 703-

715

108 Satishkumar D, Kanthababu M, Vajjiravelu V, Anburaj R, Sundarrajan N T, Arul H,

(2011) Investigation of wire electrical discharge machining characteristics of Al6063/SiCp

composites. Int J Adv Manuf Technol 56(9-12): 975-986

109 Scott D, Boyina S, Rajurkar K P, (1991) Analysis and optimization of parameter

combinations in wire electrical discharge machining. Int J Prod Res 29(11): 2189-2207

110 Shah A, Mufti N A, Rakwal D, Bamberg E, (2011) Material removal rate, kerf, and

surface roughness of tungsten carbide machined with wire electrical discharge machining.

J Mater Eng Perf 20(1): 71-76

111 Shahali H, Yazdi M R S, Mohammadi A, Iimanian E, (2012) Optimization of surface

roughness and thickness of white layer in wire electrical discharge machining of DIN

1.4542 stainless steel using micro-genetic algorithm and signal to noise ratio techniques.

Proc Inst Mech Eng Part B J Eng Manuf Eng 226(5): 803-812

112 Shakarji C M, Clement A, (2004) Reference algorithms for Chebyshev and one-sided data

fitting for coordinate metrology. CIRP Annals-Manuf Technol 53(1): 439-442

113 Shandilya P, Jain P K, Jain N K, (2012) Parametric optimization during wire electrical

discharge machining using response surface methodology. Procedia Engineerin 38: 2371 –

2377

114 Shandilya P, Jain P K, Jain N K, (2013) RSM and ANN Modeling Approaches For

Predicting Average Cutting Speed During WEDM of SiC p/6061 Al MMC. Procedia Eng

64: 767-774

115 Shandilya P, Jain P K, Jain N K, (2013) Study on wire electric discharge machining based

on response surface methodology and genetic algorithm. Adv Mater Rese  622: 1280-1284

116 Sharma N, Ahuja N, Gupta S, Singh A, Sharma R, (2014) Modeling and parametric

investigation of WEDM for D-2 tool steel using RSM and GA. Appl Mechan Mater 592:

511-515

117 Sharma N, Khanna R, Gupta R D, Sharma R, (2013) Modeling and multi response

optimization on WEDM for HSLA by RSM. Int J Adv Manuf Technol  67(9-12): 2269-



152

2281.

118 Sharma R, Rajagopal K, Anand S, (2000) A genetic algorithm based approach for robust

evaluation of form tolerances. J Manuf Syst 19(1): 46-57

119 Shunmugam M S, (1986) On assessment of geometric errors. Int J Prod Res 24 (2): 413-

425

120 Shunmugam M S, Venkaiah N (2010) Establishing circle and circular-cylinder references

using computational geometric techniques. Int J Adv Manuf Technol 51(1-4): 261-275

121 Singh H, Garg R, (2009) Effects of process parameters on material removal rate in

WEDM. J Achievements Mater Manuf Eng 32(1): 70-74

122 Singh H, Khanna R, (2011) Parametric optimization of cryogenic-treated D-3 for cutting

rate in wire electrical discharge machining,  J Eng Technol  1(2): 59-64

123 Singh M K (2010) Unconventional Manufacturing Process. New Age International, New

Delhi

124 Somashekhar K P, Ramachandran N, Mathew J, (2010) Optimization of material removal

rate in micro-EDM using artificial neural network and genetic algorithms.  Mater  Manuf

Process 25(6): 467-475

125 Soni J S, Chakraverti G, (1996) Experimental investigation on migration of material

during EDM of die steel (T215 Cr12). J Mater Process Technol 56(1): 439-451

126 Spedding T A, Wang Z Q, (1997) Parametric optimization and surface characterization of

wire electrical discharge machining process. Preci Eng 20(1): 5-15

127 Sun T H, (2009) Applying particle swarm optimization algorithm to roundness

measurement.  Expert Syst Appl 36(2): 3428-3438

128 Tarng Y S, Ma S C, Chung L K, (1995) Determination of optimal cutting parameters in

wire electrical discharge machining. Int J Machine Tools Manuf 35(12): 1693-1701

129 Tharian B K, Kuriachen B, Paul J, Paul V E, (2015) Surface roughness optimization of

wire electrical discharge machining using ABC algorithm. Appl Mechanics  Mater 766-

767: 902-907

130 Thomas S M, Chan Y T, (1989) A simple approach for the estimation of circular arc

center and its radius. Computer Vision, Graphics and Image Processing 45(3): 362-370

131 Tosun N, (2003) The effect of the cutting parameters on performance of WEDM. KSME

Int J 17(6): 816-824

132 Tosun N, Cogun C, (2003), An investigation on wire wear in WEDM. J Mater Proces

Technol 134(3): 273-278



153

133 Tosun N, Pihtili H, (2003) The effect of cutting parameters on wire crater sizes in wire

EDM. Int J Adv Manuf Technol 21(10-11): 857-865

134 Tsai T C, Horng J T, Liu N M, Chou C C, Chiang K T, (2008) The effect of

heterogeneous second phase on the machinability evaluation of spheroidal graphite cast

irons in the WEDM process. Mater Design, 29(9): 1762-1767

135 Tsukada T, Kanada T and Liu S (1998) The development of computer-aided centering and

leveling system for cylindrical form measurement, Preci Eng 10(1): 13-18

136 Tzeng C J, Yang Y K, Hsieh M H, Jeng M C, (2011) Optimization of wire electrical

discharge machining of pure tungsten using neural network and response surface

methodology. Proc Inst Mech Eng Part B J Eng Manuf 225: 841-852

137 Valian E, Tavakoli S, Mohanna S, Haghi A, (2013) Improved cuckoo search for reliability

optimization problems. Comput Ind Eng 64(1): 459-468

138 Venkaiah N, Shunmugam M S, (2007) Evaluation of form data using computational

geometric techniques-Part I: Circularity error,  Int J Mach Tools Manuf 47(7): 1229-1236

139 Vundavilli P R, Kumar J P, Priyatham C S, (2012) Parameter optimization of wire electric

discharge machining process using GA and PSO. IEEE-International Conference On

Advances In Engineering, Science And Management (ICAESM -2012) March 30, 31,180-

185

140 Wen X, Xia Q, Zhao Y, (2006) An effective genetic algorithm for circularity error unified

evaluation. Int J Mach Tools Manuf  46(14): 1770-1777

141 Whitehouse D J, (2002) Surfaces and their Measurement. Hermens Penton Ltd., London

142 Wolf P R, Ghilani C D, (1997) Adjustment Computations, Statistics and Least Squares in

Surveying and GIS. John Wiley & Sons Inc, New York

143 Xu C S, (2012) Working principle and performance of wire electrical discharge

machining. Adv Mater Res 507: 7147-7153

144 Yang R T, Tzeng C J, Yang Y K, Hsieh M H, (2012) Optimization of wire electrical

discharge machining process parameters for cutting tungsten. Int J Adv Manuf Technol

60(1-4): 135-147

145 Yang X S, Deb S, (2009) Cuckoo search via Levy flights. In: 2009 World Congress on

Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings. 2009: 210-214

146 Yang X S, Deb S, (2010) Engineering optimisation by Cuckoo search. Int J Math Model

Numer Optim 1(4): 330-343



154

147 Yu P H, Lee H K, Lin Y X, Qin S J, Yan B H, Huang F Y, (2011) Machining

characteristics of polycrystalline silicon by wire electrical discharge machining. Mater

Manuf Proces 26(12): 1443-1450

148 Zhang X, Jiang X, Scott P J, (2011) A reliable method of minimum zone evaluation of

cylindricity and conicity from coordinate measurement data. Preci Eng 35(3): 484-489

149 Zhang, G., Zhang, Z., Guo, J., Ming, W., Li, M., & Huang, Y. (2013). Modeling and

optimization of medium-speed WEDM process parameters for machining SKD11.

Materials and Manufacturing Processes, 28(10), 1124-1132.

150 Zhu L M, Ding H, Xiong Y L, (2003) A steepest descent algorithm for circularity

evaluation. Computer-Aided Design 35(3): 255-265



155

Visible Research Output

International Journals:

1. Sreenivasa Rao M and Venkaiah N, 2015. “Parametric Optimization in Machining of

Nimonic-263 alloy using RSM and Particle Swarm Optimization”. Procedia Materials

Science, 10:  70-79.

2. Sreenivasa Rao M and Venkaiah N, “Modeling of circularity error while machining

Inconel-690 using WEDM”, International Journal of Applied Engineering Research,

11: 3999-4006

3. Sreenivasa Rao M and Venkaiah N, “A modified cuckoo search algorithm to optimize

Wire-EDM process while machining Inconel-690”, Journal of the Brazilian Society of

Mechanical Sciences and Engineering (Accepted with minor modifications).

4. Sreenivasa Rao M and Venkaiah N, “Experimental investigations on surface integrity

issues of Inconel-690 during WEDM process”, Proceedings of the iMechE, Part B:

Journal of Engineering Manufacture (1st review completed).

5. Sreenivasa Rao M and Venkaiah N, “Multi-response optimization of WEDM process in

machining of Nimonic-263 super alloy”, International Journal of Materials and Product

Technology: Inder Science (1st review completed).

6. Sreenivasa Rao M and Venkaiah N, “Modeling of Cylindricity Error while Machining

Nimonic-263 using WEDM”, Indian Journal of Engineering & Materials Sciences

(Under review).

7. Sreenivasa Rao M and Venkaiah N, “Application of differential evolution algorithm for

parametric optimization of WEDM while machining Nimonic-263 alloy” International

Journal of Advancements in Mechanical and Aeronautical Engineering, 2(2): 57-61.

8. Sreenivasa Rao M, Venkaiah N, 2013. “Review on Wire-Cut EDM Process”,

International Journal of Advanced Trends in Computer Science and Engineering, 2(6):

12-17.


