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ABSTRACT

Machining is the process of removal of unwanted material to give a desired size and
shape to the components. Usage of super aloys are increasing day-by-day in various
engineering applications such as aircraft, power-generation turbines, rocket engines,
automobiles, nuclear power, and chemical processing plants etc. Machining of Nickel based
super aloys using conventional machining processes is very difficult due to their high
hardness even at elevated temperatures and aso low thermal conductivity. Wire cut electrical
discharge machining (WEDM) is one of the widely used advanced machining processes to
machine any electrically conductive material, irrespective of its hardness. Due to its stochastic
nature, WEDM process is difficult to understand and analyze. Hence some specific aspects of
the process such as modeling of material removal rate, surface roughness, geometrical errors,
recast-layer thickness and micro hardness and influence of various process parameters on

these responses need to be studied thoroughly.

Identification of optimal values for material removal rate and surface roughness is
essential from productivity and quality viewpoints. Cuckoo search (CS) agorithm was found to
be efficient in yielding the globa optimal value and this algorithm was found to outperform
genetic algorithm (GA) and particle swarm optimization (PSO) techniques. In order to improve
the performance of cuckoo search further, an attempt has been made in the present work to
propose a modified cuckoo search involving two-stage initialization. Benchmark functions have
been used to test the performance of the proposed method. Furthermore, the proposed method
has been applied to WEDM process and was found to be accurate and fast as compared to the
existing cuckoo search. The machining data generated in this work for Inconel-690 and
Nimonic-263 materialswill also be useful to the industry.Further, in order to optimize material
removal rate and surface roughness simultaneously, a non-dominated sorting principle has been

applied to the proposed algorithm and pareto-optimal sets are a so generated.

Machining of axi-symmetrical components of desired quality using WEDM on
materials such as Inconel-690 and Nimonic-263 is a challenging task. Prediction of
geometrical errors such as circularity and cylindricity in WEDM s difficult due to stochastic
nature of the process. Hence, a study on influence of process parameters and accurate
prediction of geometrical errorsis very much essential for the manufacturer in order to reduce

the rejection rate of the parts during inspection. Investigations on the influence of process



parameters on the geometrical errors are carried out in this work. In order to predict
geometrical errors accurately, modelsare also developed for the first time to estimate these
errors using a feed forward back propagated neural network. Predicted results of the models
are validated against the experimental values. It has been found that the developed modelsare
predicting the geometrical errors with acceptable deviation.

Though the WEDM is used to cut hard materials, one of themgjor disadvantages of
this process is formation of recast layeras it affects the properties of the machined surfaces. In
the present study experimental investigation has been carried out to study the effect of process
parameters on micro-hardness and recast layer while machining Inconel-690 and Nimonic-
263 materials.Interestingly, hardness of the machined surface was found to be lower than that
of the bulk material. The micro-hardness and recast layer thickness are inversely related to the
variation of process parameters. The research findings and the data generated for the first time
on hardness and recast layer thicknessfor Inconel-690 and Nimonic-263 will be useful to the
industry.

Keywords: Wire Electrical Discharge Machining, Modified cuckoo search algorithm, Neural
networks, Geometrical errors, Recast-layer thickness, Micro-hardness.
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CHAPTER 1

INTRODUCTION

1.1. General

Owing to increase in the usage of nickel based alloys due to their superior properties such
as high temperature hardness and resistance to oxidation and corrosion, it is essential to know the
machining behavior of these materials. They have great demand in nuclear and aerospace
applications as they retain their mechanical and physical properties at temperature over 700 °C.
They are difficult to machine because, of their high shear strength, work hardening and
precipitation hardening. High abrasive particles in their microstructure and tendency to form built
up edge (BUE) make them more difficult to machine. Friction between tool and material and its
low thermal conductivity results in high temperature generation. Cutting tool material undergoes
severe thermal and mechanical changes because of high heat generation. The temperature
produced at tool tip resultsin rapid tool wear; reduce the life of the tool. Dimensiona variations
of the product cause due to tool wear. Tool failure occur mainly because of combination of
problems like high temperature produced, high materia strength, work hardening of alloys,
abrasive chips formation and very large amount of heat generation. Due to these reasons a search
for an aternative machining process led to find the pathway for a new advanced machining

processes.

Wire-cut electrical discharge machining (WEDM) is one of the most emerging non
conventional manufacturing processes for machining hard to cut materials and intricate shapes
which are very difficult to machine with conventional machining methods. The ability to produce
intricate profiles on materials irrespective of the mechanical properties made this process to be
widely used in industries. WEDM process is generally used in tool and dies industry where
accuracy and surface finish is of great importance. WEDM has the capability to impart
production accuracy in the range of = 2.5 um. WEDM is used for machining of newer and
difficult to machine materials, such as hardened steel, high-strength, temperature-resistant alloys
and fiber-reinforced composites in aerospace, nuclear, missile, turbine, automobile, and tool and
die making industries. This process enables machining of any type of feature such as deep, blind,

inclined and micro holes and complicated profiles. The important WEDM responses are material



removal rate, surface roughness, kerf, crater size, wire wear rate, recast layer thickness and micro
hardness. In the present work experiments are carried out on super aloys such as Inconel-690 and
Nimonic-263 using WEDM to study and develop the mathematical models for various WEDM
responses such as material removal rate (MRR), surface roughness (SR), geometrical errors, re-
cast layer thickness (RLT) and micro-hardness (MH).

This chapter introduces the super alloys with their applications, chemical compositions
and properties, advanced machining processes and principle of WEDM. This chapter aso

describes the design of experiments and lastly organization of the thesisis presented.

1.2. Super alloys

The term "super aloy" is applied to alloys, which can have very high temperature strength
and oxidation resistance. Nickel-based super alloys are a specia class of materials with an
exceptional combination of high temperature strength, toughness, and resistance to degradation in
corrosive or oxidizing environments. Super aloys are the primary materials used in the hot
portions of jet turbine engines, such as the blades, vanes, and combustion chambers, constituting
over 50% of the engine weight as shown in Figure 1.1. Super alloys are also used in other
industrial applications where their high temperature strength and/or corrosion resistance is
required. These applications include rocket engines, steam turbine power plants, reciprocating
engines, metal processing equipment, heat treating equipment, chemical and petrochemical
plants, pollution control equipment, coal gasification and liquification systems, and medical
applications. The Nickel based super aloys can be used up to an operating temperature of 1230

°C and is shown in Figure 1.2.
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Machining of these materials using conventional machine tools is very difficult due to
their high hardness and low thermal conductivity. A large amount of cutting force is required for
these materials due to their high hardness; a reasonable amount of heat is generated. Due to low
thermal conductivity, accumulation of temperature at tool and work, and tool and chip interface
leads to increase of tool wear and surface roughness. Due to these reasons conventional machines
are not encouraged to machine super alloys. Wire-cut EDM, one of the advanced machining
processes, is an alternative process to machine this kind of materials and produce intricate shapes

which are not possible with conventional machining methods.
1.2.1. Inconel-690

It is a high-chromium nickel based super alloy having excellent properties such as
hardness and corrosive resistance at high temperature atmospheres. Due to its superior properties
it iswidely used for steam generator tubes, baffles, tube sheets, and hardware in nuclear power
generation. The chemical composition in % of weight has been given in Table 1.1. Physical and

thermal properties of the Inconel-690 are given in the Table 1.2

Table 1.1 Chemical composition of Inconel-690 in % of weight

Element % of weight Element % of weight
Nickel 60.0 Chromium 29.58
Ferrous 9.05 Carbon 0.017
Silicon 0.25 Manganese 0.21

Sul phur 0.0013 Copper 0.01

Titanium 0.2 Niobium 0.02




Table 1.2 Properties of Inconel-690 alloy

Density 8.19 g/cm®

Melting range 1343-1377 °C

Electrical resistivity 1.15 pQ-m

Specific heat capacity | 0.450 Jg- °C

Thermal conductivity | 13.5 W/m-K

Hardness 221 HV

1.2.2. Nimonic-263

It is a nickel-chromium-cobalt-molybdenum alloy specially meant for use in high
temperature and high strength applications. This material is mainly used in gas turbine hot section
components. The chemical composition in % of weight has been given in Table 1.3. Physical and
thermal properties of the Inconel-690 are given in the Tablel.4

Table 1.3 Chemical composition of Nimonic-263, in % of weight

Element % of weight Element % of weight
Nickel 51.44 Chromium 20.0
Ferrous 0.25 Carbon 0.043
Silicon 0.04 Manganese 0.43
Sulphur 0.005 Copper 0.002

Titanium 2.2 Niobium 0.02

Aluminum 0.48 Cobalt 19.5
Molybdenum 5.6 Oxygen 0.0022
Nitrogen 0.0031 Phosphorous 0.005




Table 1.4 Properties of Nimonic-263 alloy

Density 8.36 g/cm®

Melting range 1300-1355 °C

Electrical resistivity 1.148 pQ-m

Specific heat capacity | 0.461J/g-°C

Thermal conductivity | 11.7 W/m-k

Hardness 350 HV

1.3. Machining process- EDM

Machining is ssimply a process of removing unwanted material to provide the required
shape and size to an object using a machine tool. The machining processes are broadly divided
into two groups and they are conventional machining processes and advanced machining
processes. In conventional machining process, there is a direct contact between tool and work
material, and a large force is applied to remove the material in the form of chips. To meet this,
cutting tool required is harder than that of workpiece and aso a firm fixing of both material and
tool are required in conventional machining. Huge amount of heat is generated at cutting tool and
work material and also at tool and chip interface. This leads to decrease in tool life, and surface
finish.

Now a days, different materials are emerging in the industry to meet special applications
such as high hardness at elevated temperatures, high resistance to corrosion, oxidation and
friction. Nickel based super alloys come under this category and are used extensively in
automobile, aeronautics and nuclear power generation applications. Machining of these materials
with conventional machining processes like turning, milling, drilling etc. is very difficult due to

their superior properties such as high hardness and low therma conductivity. Further, these

6



conventional methods cannot be used where complex shapes, low tolerances and good surface
finish are required. Therefore to machine these hard to cut materials, advanced machining
processes are developed. There are different advanced machining processes and are grouped into

three basic categories based on type of energy required as shown in Figure 1.3.

Advanced machining processes

U I U

| Mechanical I | Thermo-electric | IElectro-chemical&Chemical

*Abrasive Jet Machining
(AIM) *Electro-chemical

*Ultrasonic Machining (PAM) o Machining (ECM)
*Laser Beam Machining

*Plasma Arc Machining

(USM) *Chemical Machining
*WaterJet Machining (LEM) (ChM)
(WIM) *Electron Beam *Biochemical Machining

Machining (EBM) (BM)
*Electric Discharge

Machining (EDM)

*lon Beam Machining

(IBM)

*Abrasiv Water Jet
Machining (AWJM)
*Abrasive Flow Machining
(AFM)

*Magnetic Abrasive
Finishing (MAF)

Figure 1.3 Classification of advanced machining processes

At al machining situations, none of these processes is the best. Therefore, selection
appropriate machining process is important for a given situation. The comparative study of
various advanced machining processes, in terms of material removal rate with respect to power
consumption are presented, in Figure 1.4. It can be found that the power consumption rates of
EDM, MCG and PAM are less as compared to other advanced machining processes. The EDM
has the capability to machine electrically conductive materials irrespective of their hardness.
EDM has the lower capital cost and produces components with higher surface finish. Further
WEDM can be used to produce intricate shapes and also WEDM can cut up to 300 mm thick
plates. Due to these reasons WEDM has been selected in the present work to machine super

aloys.
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Figure 1.4 Comparison of various machining processes on mean power consumption with MRR
(Singh, 2010)

There are two types of EDM processes and are differentiated by usage of electrode.

1. Die-sinking EDM and
2. Wire-cut EDM

1.3.1. Die-sinking EDM

The die-sinking EDM is widely used in mould and die making industry in machining
complex die cavities for producing plastic injection-molded parts and die-cast parts. A copper or
graphite tool electrode is normally used in the process and the workpiece (normally a mould or
die) to be machined is immersed in dielectric fluid. Electrode of die-sinking EDM s the replica
of the part to be machined. By switching DC voltage supply to the tool electrode and workpiece,
high frequency electrical sparks will be generated (Guitrau, 1997) such that very high
temperatures of the order of 12000° C developed locally will melt and vaporize (DiBitonto et al.,
1989; Patdl et al., 1989) the workpiece to form the required cavity.
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Figure 1.5 EDM working principle

1.3.2. Wire- EDM

WEDM is a thermo- electrical process in which material is removed by a series of sparks
between workpiece and wire electrode (tool). The workpiece and wire are immersed in a
dielectric (electrically non-conductive) fluid, usually de-ionized water, which also acts as a
coolant and flushes the debris away. The materia to be cut must be eectrically conductive. In
WEDM, there is no direct contact between workpiece and tool (wire) as in conventiona
machining process, therefore materials of any hardness can be machined and minimum clamping
pressure is required to hold the workpiece (Kuriakose and Shanmugam, 2004). In this process,
the material is eroded by a series of discrete electrical discharges between the workpiece and tool.
When the material approaches the electrode and the gap reaches a certain threshold value, the
insulating liquid breaks down and discharging channel forms thereby sparks are generated
resulting in high temperature instantaneously up to about 10000° C. These temperatures are huge
enough to melt and vaporize the workpiece metal and the eroded debris cool down swiftly in
working liquid and flushed away. The working principle is shown in the figure 1.6. In 1969, the
Swiss firm Agie produced the world’s first wire EDM machine. These early machines were
extremely slow but today, machines are equipped with automatic wire threading and can cut over

20 times faster, (Carl and Steev, 2005).
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Figure 1.6 Working principle of WEDM

The effectiveness of the whole process depends on number of process parameters such as
pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, wire feed, and wire
tension. Wire EDM has its own particular advantages; this machining process is capable of
cutting materials regardless of its hardness. It can cut intricate shapes and narrow dlots.
Furthermore, no burrs are generated during the process. Wire EDM is able to cut taper shaped
products and can cut multiple parts in a stack. It is a highly accurate method of part production
and its technology is essential for narrow tolerance parts and repeatable tooling as achieving high
accuracy and tighter tolerances is essential in many industries. This process can produce and
repeat the required specifications with ease. Besides that, wire EDM also has disadvantages, this
IS more expensive than conventional machines and high skills are required to handle the machine.
Wire EDM gives low material removal rate (MRR) and is less flexible on workpiece material
when compared to other machines. The workpiece to be machined should be a conductor and
leaves white layer and HAZ on the machined component. Prototypes are expensive to produce

using WEDM. Wire EDM has a broad range of applications that are continuing to grow in many
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industries such as aerospace for complex geometries, in medical and dental for instrumentation,
tooling for forging or injection molding operations and for manufacturing of progressive,
blanking and trimming dies. This process is suitable for thin or delicate parts that are susceptible
to tool pressure in conventional manufacturing processes. Recently, WEDM process is aso being
used to machine awide variety of miniature and micro-parts in metas, alloys, sintered materials,
cemented carbides, ceramics and silicon (Mukherjee et a., 2012) The above list of applications

represents only afew of areas where wire EDM is being used.

1.4. Optimization

Optimization is the process used to select an optimal (best) choice from a set of
alternatives. The technique used for optimization is termed as optimization technique. An
optimization problem consists of maximizing or minimizing a real function (objective function)
systematically. A feasible solution that minimizes or maximizes the objective function is a
candidate solution. Fermat and Lagrange found calculus-based formulas for identifying optima,
while Newton and Gauss proposed iterative methods for moving towards an optimum.

Classification of optimization techniquesis shownin Figure 1.7.

Optimization Methods

Classicals Metaheuristics

I
| ]
Trajectory-based Population-Based
]
Nature-inspired

Evolutionary Algorithms Swarm Intelligence

Genetic Algorithm Particle Swarm Optimization

Imperialist Competitive Algorithm Atit Colbny Optimization

Immune Algorithm

Clonal Selection

Harmony Search Bee Algorithm
L Differential Evolution

Bacterial Foraging

Figure 1.7 Classification of optimization methods
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Techniques shown in Figure 1.7, fall under the metaheuristic techniques. The Traditional or
classical methods include linear programming, non-linear programming, quadratic programming,
gradient method, Newton’s method, interior point methods etc. However, these techniques suffer
from drawbacks in addressing multi-modal problems and handling discrete control variables.
Since the WEDM process, being a stochastic in nature, and the responses involve number of
discrete variables, metaheuristic techniques are employed in the present work.

1.5. Design of experiments. RSM

For analyzing of any system or process effectively, efficiently and economically,
experiments are to be designed and conducted systematically. In any experiment, the results and
conclusions that can be drawn depend to a large extent on the manner in which the data were
collected. The aim of any experimental design is to provide an insight into the relationship
between process parameters with their responses, the influence of various process parameters and
also their percentage contributions. One-Variable-At-aTime (OVAT) approach is used in
manufacturing industries, where one variable is varied at a time keeping all other variablesin the
experiments fixed. This type of experimentation requires large resources to be obtained and also
involves many constraints such as it depends upon guesswork, luck, experience and instinct for
its success. Therefore, these are often considered as unreliable, inefficient, time consuming and

may Yield false optimum conditions for the process.

Factorial design of experiments is mostly used to simultaneously determine the significance
of multiple independent variables and their interactions. In a full factorial design of experiments
two or more factors with discrete values or levels are considered with all the possible
combinations. However, it is costly to perform full factorial experiments. Instead, a fractional
factorial design, which is a subset of full factorial design, is generally used which requires fewer
runs. Factorial design is less preferable when more than two levels are considered. This is
needed, as the number of experiments required for such designs will be considerably greater than
their two level counterparts. Generally, factors in real engineering problems are continuous, but
the two-level factorial design assumes that the effect is linear. In order to consider a quadratic

effect, a more complicated experiment is to be selected such as centra composite design.

12



Response surface methodology (RSM) is mostly used while optimizing factors that could have
quadratic effects (Rao, 2011).

RSM is a collection of statistical and mathematical techniques useful for the modeling and
analysis of problems (Montgomery, 2005). They can be applied for modeling and optimization of
any engineering problems. In RSM, the objective is to optimize the responses that are influenced
by the input process parameters. Sufficient data is gathered through the designed experimental
layout and a second-order regression equation is developed. A multi-variable regression analysis
has been developed between the input process parameters and responses. The general second
order regression equation is given by equation 1.1.

Yr=b0+zn‘,bixir+ib,ixi$+Zn‘,b”.xi,xju+er 11
= i1 S
where, Y; is response, X, is the value for i input process parameter of r'™ experiment; n is the
number of process parameters; by, b, bij are the regression coefficients; and & is the experimental
error of the r'™ observation. This regression modeling is done to generate the fitness equations for
the output responses.

Optimization study in RSM is carried out in three stages. First stage is to determine the
independent input parameters and their levels for experimentation. In the second stage, selection
of experimental design, prediction and verification of the model equation is performed. Lastly,
the response surface plots and contour plots of these response functions are used to determine the
optimum points. RSM has severa advantages as compared to classical experimental methods as
listed below.

e RSM delivers more information from less number of experiments. Whereas, classical
methods are more time consuming with large number of experiments to explain the
behavior of asystem.

e It is possible to determine the interaction effect of the parameters on the responses. RSM
model can easily clarify theses interaction effects for binary combination of the
independent parameters.

e Empirical model is aso developed which helps to obtain the nature or trend of the response

with respect to the input parametersin the given process.

13



On the contrary, the major drawback of RSM is to fit the data to a second order polynomial. It
cannot be said that all systems containing curvature are well accommodated by the second order
polynomial. Therefore, preliminary experiments are required to be carried out to determine the

range of independent input parameter.

1.6. Organization of thesis

Thethesisis organized into seven chapters.

Chapter-1: Introduction
A brief background of the work has been reported in this chapter and insight into super alloys and
their applications are introduced. Different EDM processes are aso introduced here. At the end

of the chapter design of experimentsis aso explained briefly.

Chapter-2: Literaturereview

The literature on the topics related to optimization of MRR, SR, evolutionary algorithms,
circularity and cylindricity errors, neural networks, recast layer thickness and micro hardness are
presented in this chapter. Based on literature survey, research gaps are identified and objectives

are formulated at the end of this chapter.

Chapter-3: Experimental setup and measurement of responses

A description on the experimenta set-up, selection of process parameters with their ranges and
levels, working conditions and procedures adopted while conducting the experiments to fulfill the
objectives of the present work on super alloys are given in this chapter. Different equipments

used in the present study to measure the responses are aso described in this chapter.

Chapter-4: A modified cuckoo search algorithm for optimization of MRR and SR

Introducing cuckoo search algorithm and its procedural steps, proposed modified cuckoo search
and application of modified method to bench mark problems for validation are explained in this
chapter. Application of MCS to optimize MRR and SR of Inconel-690 and Nimonic-263,
ANOVA anaysis, combinations for desired responses, optimal results from different methods
and optimization of wire EDM parameters for simultaneous improvement of surface roughness

and MRR by applying non-dominated sorting principle are also presented in this chapter.
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Chapter-5: Geometrical errors

This chapter reports introduction to geometrical errors. Application of neural network method in
modeling of geometrical errors such as circularity and cylindricity errors is presented. Methods to
evaluate circularity and cylindricity errors also presented. The influence of various process
parameters on circularity and cylindricity, mathematical models to predict these errors are aso
given in this chapter.

Chapter-6: Experimental investigation on re-cast layer thickness and micro-hardness of
WEDMed surfaces of Inconel-690 and Nimonic-263

This chapter presents introduction on re-cast layer thickness and micro-hardness. Modeling of
RCLT and MH for Inconel-690 and Nimonic-263 super alloys, influence of WEDM process
parameters on RCLT and MH through ANOVA are also presented. It also reports EDS anaysis
to check the chemical composition after the process.

Chapter-7: Conclusions and future scope

The conclusions drawn from the results obtained by conducting experimental investigations,
modeling and optimization of WEDM process while machining Nickel based super aloys are
presented in this chapter. All the limitations encountered during conduct of research and possible

extension to the present work is given in the form of future scope.

References
The published research work reported by earlier authors in the related area in the form of journal
papers, conference papers, text books, manuals and hand books which are referred in the thesis

have been listed under the heading “References”.
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CHAPTER 2

LITERATURE

2.1. Introduction

Nowadays WEDM is being used due to its wide applications such as aerospace, nuclear
and automobiles (Jain, 2005). And also it can be used to machine any electrically conductive
materials, irrespective of their hardness. The reason for extensive use of WEDM is due to its
ability to machine precise, complex and irregular shapes (Ho et al. 2004; Su 2012). Due to these
reasons research on WEDM is gaining importance day by day. Hence it is required to study the
behavior of WEDM process parameters in machining of different materials and also to develop
mathematical models to predict different responses of WEDM. In the recent past severd
researchers conducted experiments to investigate the influence of different process parameters
such as pulse-on time, pulse-off time, peak current, servo voltage, wire tension, di-electric fluid
pressure and wire speed on different response parameters such as MRR, SR, kerf, WWR and

white layer thickness.

The effectiveness of the WEDM process depends on number of input process parameters
such as pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, wire feed,
and wire tension. Pulse-on time, also called pulse duration, is expressed in micro seconds. During
the pulse-on time, the voltage is applied in the gap between workpiece and the el ectrode thereby
producing discharge. Higher the pulse on time, higher will be the energy applied thereby
generating more amount of heat energy during this period. Material removal rate depends upon
the amount of energy applied during the pulse on time (Kansal et al., 2005). Pulse-off time, also
known as pulse interval, is also expressed in micro seconds. This s the time between discharges.
Off time is the pause between discharges that allows the debris to solidify and be flushed away by
the dielectric fluid prior to the next discharge. Reducing pulse-off time can increase cutting
speed, by allowing more productive discharges per unit time. However, reducing off time can
overload the wire, causing wire breakage and instability of the cut by not alowing enough time to

evacuate the debris before the next discharge (Fuller, 1996). Peak current is the amount of power
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used in machining and is measured amperes. The current increases until it reaches a preset value
during each pulse-on time, which is known as peak current. The metal removal rate is directly

proportional to peak current (Singh and Garg, 2009)

Servo voltage acts as the reference voltage to control the wire advances and retracts. If the
mean machining voltage is higher than the set servo voltage level, the wire advances, and if it is
lower, the wire retracts. When a smaller value is set, the mean gap becomes narrow, which leads
to an increase in spark intensity, resulting in higher machining rate. However, the state of
machining at the gap may become unstable, causing wire breakage (Ghodsiyeh et al., 2013).
Dielectric flow rate is the rate at which the dielectric fluid is circulated. Flushing is important for
efficient machining to flush the debris from the machining area and to act as a coolant. Flushing
pressure is produced from both the top and bottom nozzles. As the wire feed rate increases, the
consumption of wire as well as cost of machining will increase. Low wire speed will cause wire
breakage in high cutting speed. If the wire tension is high enough the wire stays straight
otherwise wire drags behind. Within certain range, an increase in wire tension significantly
increases the cutting speed and accuracy. The higher tension decreases the wire vibration
amplitude and hence decreases the cut width so that the speed is higher for the same discharge
energy. However, if the applied tension exceeds the tensile strength of the wire, it leads to wire
breakage. This chapter focuses on investigations of different researchers while machining
different materials on WEDM and also optimization of various responses involved in the process.

2.2. Optimization of MRR and SR

The first WEDM machine was produced by the Swiss firm Agie in 1969. These early
machines are extremely slow but today, machines are equipped with automatic wire threading
and can cut over 20 times faster (Carl and Steev, 2005). Tosun and Cogun (2003) carried
experimental investigations to study the effect of cutting parameters such as pulse duration, open
circuit voltage, wire speed and dielectric fluid pressure on wire wear of AISI 4140 steel in
WEDM process. It is found experimentally that the increasing pulse duration and open circuit
voltage increase the WWR, however the increase in wire speed and dielectric fluid pressure
decrease the WWR. The level of importance of the machining parameters on the wire wear was
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estimated by using ANOVA. By using regression anaysis technique, mathematical models are
developed for WWR with machining parameters.

Scott et a., (1991) presented a methodology to determine the optima combination of
control parameters such as discharge current, pulse duration, pulse frequency, wire speed, wire
tension and dielectric flow rate in WEDM of D2 tool steel. The performance measures were
MRR and surface roughness. As no single combination can be optimal for both  MRR and
surface roughness, this led to the notion of non-dominated points and the complementary
optimization problems. Two different methods were used to obtain a set of non-dominated
combinationations, one is explicit enumeration method and the other is dynamic programming.
From the experimental results and ANOV A they found that discharge current, pulse duration and
pulse frequency were significant control factors for both MRR and surface finish where as wire
speed, wire tension and dielectric flow rate were relatively insignificant.

Liao et al., (1997) carried out an experimental investigation to determine the parameters
setting during the machining of SKD11 alloy steel. Based on the Taguchi quality design method
and the analysis of variance, the significant factors affecting the machining performance such as
MRR, gap width, SR, sparking frequency, average gap voltage and normal ratio (ratio of normal
sparks to total sparks) are determined. By means of regression anaysis, mathematical models
relating the machining performance and various machining parameters such as pulse-on time,
pulse-off time, table feed rate, flushing pressure, wire tension, wire velocity are established.
Based on the mathematical models developed, an objective function under the multi-constraint
conditions is formulated. The optimization problem is solved by the feasible direction method,
and the optimal machining parameters are obtained. Experimental results demonstrate that the
machining models are appropriate and the derived machining parameters satisfy the red
requirements in practice.

Kuriakose et a., (2003) applied data mining technique to model the WEDM process. The
process parameters such as applied machining voltage, ignition pulse current, pulse duration, idle
(delay) time (time between two pulses), servo speed variation, servo-control reference voltage,
wire speed, wire tension, and injection pressure for dielectric were considered to model the
responses. A data mining technique C4.5 was used to study the effect of various input parameters

on the outputs, namely the cutting speed and surface finish.
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Konda et al., (1999) caried out experiments to optimize the WEDM process
performances such as machining speed and surface roughness. Pulse duration, charge frequency,
charge current and capacitance were taken as process parameters. Design of experiments strategy
was used for experimental plan. Complimentary optimization technique (identifying the non-
dominated points ) was used to solve the multi-objective optimization problem.

Tarng et al., (1995) used feed forward neura network to construct the WEDM process
model to associate the cutting parameters such as pulse-on time, pulse-off time, peak current
setting, no-load voltage, servo reference voltage, capacitor setting, and servo speed setting and
the responses include machined surface roughness and machining speed. Simulated annealing
algorithm is then applied to the neural network for solving the optimal cutting parameters based
on a performance index within the allowable working conditions.

Spedding and Wang (1997) applied artificial neural networks (ANN) to optimize the
process parameters such as time between two pulses, pulse width, wire mechanical tension, and
wire feed space by modeling the process. Cutting speed, workpiece surface roughness and
waviness were selected as the performance measures. A multi layered feed-forward neural
network is used to model the WEDM process, and the developed model is used for process
performance prediction and parameter optimization.

Tosun and Pihtili (2003) conducted experimental investigation to study the effects of
pulse duration, open circuit voltage, wire speed and dielectric flushing pressure on the dimension
of craters in the wire in WEDM process. From the experimental results it was found that
increasing the pulse duration, open circuit voltage, and wire speed increases the crater diameter
and crater depth, whereas increasing the dielectric fluid pressure decreases these factors. This
study is limited to one response only. Using the conducted experiments, the researchers could
have studied metal removal rate, roughness of machined surface and dimensional deviation also.

Sarkar et. a. (2006) made an attempt to develop an appropriate machining strategy for a
maximum process yield criteria. A feed forward back-propagation neural network was devel oped
to model the machining process. Cutting speed, surface roughness and wire offset have been
considered as measures of the process performance. The model is capable of predicting the
response parameters as a function of six different control parameters such as pulse on time, pulse

off time, peak current, wire tension, dielectric flow rate and servo reference voltage.
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Experimental results demonstrate that the machining model is suitable and the optimization
strategy satisfies practical requirements.

Manna and Bhattacharyya (2006) carried out an experimental investigation to determine
the parameters setting during the machining of aluminium-reinforced silicon carbide metal matrix
composite (Al/SIC-MMC). The Taguchi method was used to optimize the CNC-wire cut-EDM
parameters. From experimental results and through ANOVA and F-test values, the significant
factors were determined for each response performance, such as the metal removal rate, surface
roughness, gap current and spark gap (gap width). Mathematical models relating the machining
performance are established using the Gauss elimination method for the effective machining.
Mahapatra and Patnaik (2007) attempted to determine the important machining parameters for
performance measures like MRR, surface finish and kerf in WEDM on D2 tool steel. Using
Taguchi’s parametric design significant machining parameters affecting the performance
measures are identified as discharge current, pulse duration, pulse frequency, wire speed, wire
tension and dielectric fluid flow rate. Mathematical models are devel oped by means of non linear
regression analysis for MRR, SR, and Kerf. Genetic algorithm is employed to optimize the
WEDM process with Multiple-objectives. The above two studies involved application of Taguchi
method, however, this method fails to show the significance of interaction effects.

Aravind et. a., (2012) used Taguchi’s experimental design to obtaining the optimum
machining parameters for the maximization of MRR and minimization of surface roughness
separately in WEDM of brass material. They considered input voltage, current density, speed
(feed rate), pulse-on time and pulse-off time as input parameters. They found that, the significant
factors are pulse time and feed rate in both MRR and SR. Higher values of feed rate and pulse
duration increase the MRR and decrease the surface roughness.

Khan et. a., (2006) conducted experimental investigations to establish relationships for
surface finish with current and voltage. Work materials tested were mild steel, aluminium,
cemented carbide, copper and stainless steel. They concluded that the machined surface becomes
rougher with increase in current and voltage. Microstructures of the specimens show that craters
on the finished surface becomes larger as a result of using higher current and voltage. Wires of

smaller diameters give smother surface than those cut with that of larger diameter.
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Guiqgin et a., (2007) established a WEDM model in which combined modeling function
of fuzzy inference with the learning ability of artificial neural network was integrated with
genetic optimization. In this work they considered the MRR and SR as output parameters and
workpiece thickness, pulse-on time, peak current and mean current are input parameters.

Yu et d., (2011) investigated the effect of various parameters on cutting speed, machine
groove width and surface roughness in machining polycrystalline silicon. Pulse-on time and open
voltage have significant influence on cutting speed. Increase in flushing rate improved cutting
speed and reduced surface roughness. Strengthening wire tension showed significant
improvement in machining grove width. Tosun (2003) studied variations of cutting performance
with pulse on time, open circuit voltage, wire speed and dielectric fluid pressure on AISI 4140
stedl. It was found experimentally that increase in pulse duration, open circuit voltage, wire speed
and dielectric fluid pressure increased the cutting speed. The surface quality of the workpiece
increased with decrease in pulse duration, open circuit voltage and wire speed, and with
increasing dielectric fluid pressure. Regression anaysis was used to develop mathematical
models. Lee and Liao (2003) developed a gain Self-tuning fuzzy control system to cope with the
conditions that often occur with wire rupture in WEDM process, such as an improper setting of
machining parameters and machining the workpiece with varying thickness.

Manna and Bhttacharyya (2005) experimented to determine the parameters setting during
the machining of aluminium-reinforced silicon carbide metal matrix composite (Al/SIC-MMC).
The Taguchi method is used to optimize the CNC-wire cut-EDM parameters. From the
experimental results and through ANOVA and F-test values, the significant factors are
determined for each machining performance criteria, such as the MRR, surface roughness,
gapcurrent and spark gap (gap width). The important controllable process parameters such as
pulse on-time (Ton), pulse off-time (To), peak current (IP), pulse peak voltage (Vy), wire feed
rate (WF), wire tension (WT) and spark gap voltage (SV) are considered in this study. Open gap
voltage and pulse on period are the most significant machining parameters for controlling the
MRR. The open gap voltage affects the cutting speed significantly. Wire tension (WT) and wire
feed rate (WF) are the most significant machining parameters for the surface roughness (SR).
Wire tension and spark gap voltage setting are the significant parameters for controlling spark
gap (i.e. gap width, W) Open gap voltage and gap current are the significant parameters for
controlling gap current (Ig).
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Han et. al., (2007) experimented to study the influence of the machining parameters such
as pulse duration, discharge current, sustained pulse time, pulse interval time, polarity effect,
material and dielectric on surface roughness in the finish cut of WEDM. It is concluded that the
surface roughness can be improved by decreasing both pulse duration and discharge current. The
removal rate when a short pulse duration is used is much higher than when the pulse duration is
longer. A short pulse duration combined with a high peak value can generate better surface
roughness, which cannot be achieved with long pulses. In the study, it was also found that
reversed polarity machining with the appropriate pulse energy can improve the machined surface
roughness as compared to normal polarity in finish machining, however some copper from the
wire electrode is accreted on the machined surface.

Saha et a., (2008) developed a second order multi-variable regression model and a feed-
forward back-propagation neural network (BPNN) model to correlate the input process
parameters, such as pulse on-time, pulse off-time, peak current, and capacitance with the
performance measures namely, cutting speed and surface roughness while wire machining
tungsten carbide-cobalt (WC-Co) composite material. Scanning electron micrographs reveal that
at higher energy level, the machined surface is characterized by several micro-cracks and loosely
bound solidified WC grains.

Gauri and Chakraborty (2009) worked on optimization of process settings with respect to
all these performance measures. Taguchi’s robust design method can only be applied to optimize
a single-response problem where as the principal component analysis (PCA)-based approach for
multi response optimization can effectively overcome those weaknesses. In this study, some
modifications in the PCA based approach are suggested and two sets of experimental data
published by the past researchers are analyzed using this modified procedure. The aim of this
study was to optimize the settings of six controllable factors, e.g., pulse on time, pulse off time,
peak current, wire tension, servo reference voltage and dielectric flow rate with respect to three
performance characteristics of a WEDM process. The performance characteristics considered
were cutting speed, surface roughness and dimensional deviation. The results demonstrate that
the PCA-based optimization can lead to better overall quality than the constrained optimization-
based approach, and the anticipated overall quality under the PCA and MRSN-based approaches
are observed to be aimost equivalent. This method gives optimal values for multiple responses
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from the conducted experiments only. However, globa optimal solution could lie outside these
experiments.

Gauri and Chakraborty (2010) used two sets of experimental data on WEDM processes
and analysed using four promising multi-response optimization approaches, such as GRA,
MRSN ratio, WSN ratio, and VIKOR methods. The resulting optimal solutions for these four
methods and the expected overall quality at these optimal solutions are compared. It is found that
WSN ratio method can give better overall quality than other methods. The aim of this study was
to optimize the settings of six controllable factors, such as pulse on time, pulse off time, peak
current, wire tension, servo reference voltage and dielectric flow rate with respect to three
performance characteristicssuchas MRR, surface roughness and Kerf. The results demonstrate
that the WSN ratio based multi response optimization can lead to better overall quality than the
GRA, VIKOR and MRSN-based approaches. These techniques can identify optimal solution
within the conducted experiments only.

Satishkumar et al.,(2011) investigated the effect of parameters such as pulse-on time,
pulse-off time, gap voltage and wire feed on MRR and surface roughness in metal matrix
composites (MMCs) consisting of aluminium alloy(Al6063) and silicon carbide(SiCp) in various
volume fractions( 5%,10% and 15% of SIC) prepared through stir casting process. The
experiments are carried out as per design of experiments approach using L9 orthogona array. It
is observed that the MRR was found to decrease with increase in the percentage of SiC particles
in the MMCs, where as the Ra increases with increase in the percentage volume fractions of SiC.
It isalso found that the influence of gap voltage was more significant parameter than others.

Yang et a.,(2012) attempted to analyze variations in metal remova rate MRR, surface
roughness Ra, and corner deviation in relation with WEDM process parameters such as pulse on
time, the pulse off time, arc off time, the servo voltage, the wire feed rate, the wire tension, and
the water pressure in cutting pure tungsten. This research proposes an effective process parameter
optimization approach that integrates Taguchi’s parameter design method, response surface
methodology (RSM), back propagation neural network (BPNN), and simulated annealing
algorithm (SAA) on WEDM processes. Simultaneously, RSM and SAA approaches were
individually applied to search for an optimal setting. In addition, ANOVA was implemented to
identify significant factors for the processing parameters. Furthermore, the field-emission SEM
images show that a lot of built-edge layers were presented on the finished surface after the
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WEDM process. Finally, the optimized result of BPNN with integrated SAA was compared with
that obtained by an RSM approach. Comparisons of the results of the algorithms and
confirmation experiments show that both RSM and BPNN/SAA methods are effective tools for
the optimization of parameters in WEDM process. The results showed that, with the higher pulse
on time, which leads to the discharge energy becoming more intense, the MRR was increased and
the brass wire of cutting tool accelerates depletion, generates alarger built-up layer, and therefore
produces rougher surfaces. Simultaneously, increasing the wire tension results in the decrease of
corner deviation.

Kumar and Agarwal (2012) applied multi-objective genetic algorithm NSGA-II to
optimize the multiple objectives of MRR and surface roughness with respect to process
parameters such as pulse peak current, pulse-on time, pulse-off time, wire feed, wire tension and
flushing pressure on machining high speed steel (M2,SKH9). Experiments, based on Taguchi’s
parameter design, were carried out to study the effect of various parameters and mathematical
models were devel oped between machining parameters and responses like metal removal rate and
surface finish by using nonlinear regression analysis. These mathematical models were then
optimized by using multi-objective optimization technique based on NSGA-I11 to obtain a Pareto-
optimal solution set. The results of optimization indicate that the MRR and surface finish are
influenced more by pulse peak current, pulse duration, pulse-off period and wire feed than by
flushing pressure and wire tension. Results also indicate that the surface quality decreases as the
MRR increases and they vary ailmost linearly.

Sharma et. a., (2012) conducted experiments to investigate the effect of process
parameters on cutting speed and dimensional deviations in cutting high-strength low-alloy steel
(HSLA). The different process parameters considered in their study are Pulse on time, Pulse off
time, Spark gap voltage, Peak current and Wire tension. To optimize the process parameters for
cutting speed and dimensiona deviation, Response Surface Methodology was used. From the
experimental results it is found that pulse-on time was the most prominent factor for cutting
speed and dimensional deviation.

Prasad and Krishna (2009) proposed a methodology to determine the optimal machining
parameters to achieve high production rate and good surface finish of WEDM machined
components. The process parameters considered are Pulse-on time, Pulse-off time, Wire tension,
Dielectric flow rate, and Wire feed. Response surface methodology was used to develop the
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mathematical models for MRR and surface roughness. Since the influence of process parameters
on MRR and Ra are opposite, the problem is formulated as a multi-objective optimization
problem. NSGA was used to obtain the Pareto optimal set of solutions.

Shah et a., (2011) investigated the effect of various wire electrical discharge machining
parameters such as the material thickness, open voltage, pulse-on time, pulse-off time, servo
voltage, wire feed velocity, wire tension, and dielectric pressure on the machining responses such
as MRR, kerf, and surface roughness of tungsten carbide. Taguchi orthogonal design was used
for experiments and ANOVA is used to identify the significant factors. Mathematical models are
developed to optimize the responses such as MRR, Ra, and Kerf separately. From the
experimental results it was observed that metal thickness has little effect on the material removal
rate and kerf but is amore significant factor in terms of surface roughness.

Ramakrishnan and Karunamoorthy (2006),described a multi response optimization
method (MRSN) using Taguchi’s robust design for machining heat treated tool steel. Pulse on
time, Wire tension, Delay time, Wire feed rate and ignition current intensity are taken as input
process parameters and MRR, surface roughness and wire wear ratio are considered as responses.
It was identified that the pulse on time and ignition current intensity have influenced more than
the other parameters considered in their study.

Gauri and Chakraborty (2009) applied weighted principle component analysis method
(WPC) to optimize the multiple responses of WEDM. In this approach, the set of multiple
responses is first transformed into a set of a small number of uncorrelated principal components.
Then, the weighted sum of al the principal components is taken as the multi-response
performance index (MPI) and the optimal parametric settings that maximize the MPI are
determined in an objective manner.

Datta and Mahapatra (2010) applied response surface methodology to developed
quadratic mathematical models to represent the behavior of WEDM process parameters such as
discharge current, pulse duration, pulse frequency, wire speed, wire tension and dielectric flow
rate for the process responses such as MRR, surface roughness and kerf. Experiments are
planned and conducted based on the Taguchi’s orthogonal array principles. Grey relational
analysis has been adopted to convert this multi-objective criterion into an equivaent single
objective function; overall grey relationa grade, which has been optimized (maximized) by using
Taguchi technique. Experiments were conducted on D2 tool stedl.
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Muthu et. al., (2010) demonstrated the optimization of WEDM process parameters of
Incoloy800 super alloy with multiple performance characteristics such as MRR, surface
roughness and Kerf based on the Grey—Taguchi method by considering the process parameters
such as gap voltage, pulse on-time, pulse off-time and wire feed. The variation of output
responses with process parameters were mathematically modeled using non-linear regression
analysis method. Optimal levels of process parameters were identified using GRA and the
relatively significant parameters were determined using ANOVA.

Vundavalli et. al., (2012) applied multi-objective optimization techniques such as NSGA
and particle swarm optimization (PSO) techniques to WEDM process as this process involves
multiple-objectives like cutting velocity and surface finish. The various process parameters
considered include applied voltage, ignition pulse current, pulse-off time, pulse duration, servo
controlled reference mean voltage, servo-speed variation, wire speed, wire tension and injection
pressure. Both the approaches are found to show similar trend on the Pareto- optimal fronts.
Moreover, GA has dlightly outperformed the PSO in terms of the optimal solution obtained. It is
also important to note that PSO has produced the optimal front in less time when compared with
the GA. It may be due to the simple structure associated with minimal parameter tuning of PSO.

Shandilya et a.,(2012) attempted to optimize the process parameters of WEDM during
machining of SiC/6061 Al MMC using response surface methodology (RSM).Four input process
parameters of WEDM namely servo voltage , pulse-on time, pulse-off time and wire feed rate
were chosen to study the process performance in terms of cutting width (kerf). The ANOVA was
carried out to study the effect of process parameters on process performance. Mathematical
models have also been developed for response parameter and properties of the machined surface
have been examined by using SEM.

Singh and Khanna, (2011) attempted to optimize the cutting rate of cryogenic-treated D-3
material with respect to their input process parameters such as pulse width, time between two
pulses, maximum feed rate, servo reference mean voltage, short pulse time, and wire mechanical
tension. Experimental results showed that cutting rate decreases with increase in pulse width,
time between two pulses, and servo reference mean voltage also cutting rate first decreases and

then increases with increase in wire mechanical tension.

Antar et. a., (2011) presented experimental data for workpiece productivity and integrity

while machining Udimet 720 nickel based super aloy and Ti-6Al-2Sn4Zr-
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6M otitaniumalloy,using Cu core coated wires (ZnCu50 and Zn rich brass). It was found that up to
a40 % for Udimet 720 and 70 % for Ti-6Al-2Sn4Zr-6Mo titanium alloy increase in productivity
was possible compared to when using uncoated brass wires with the same operating parameters.
The variation in surface roughness values, mainly during roughing, between the top, middle and
bottom sections of the specimens could be related to ‘imperfect’ sparks generated due to erosion
of the wire, leading to wider machining gaps. In terms of recast layer thickness, better results

were achieved using the coated wire for both roughing and trim operations.

2.3. Evolutionary algorithms

Das et a. (2014) applied Artificial Bee Colony (ABC) agorithm to identify the optimal
parameter values to yield minimum surface roughness. They conducted experiments for their
investigation on EN 31 steel and also CCD of RSM was used for their experimental plan. Tharian
et a. (2015) are adso used ABC agorithm to estimate the optimal values for minimum surface
roughness. They used AISI 202 stainless steel for experimentation and Taguchi L18 orthogonal
array was used for experimental plan. For both their study results are verified with the
experimental results and found they are in good agreement. Pasam et al. (2010) used Taguchi L27
for their experimental study to machine Titanium aloy on WEDM. Mathematical models are
developed and these models are further optimized using GA. Shandilya et a (2012) and Sharma
et a. (2014) studied the effect of WEDM process parameters in machining of metal matrix
composites (MMC) and D-2 tool steel respectively. RSM was used to develop mathematical
model for dimensional deviations and then GA was used for further optimization of process
parameters.

Pawar (2011) applied a shuffled frog leaping (SFL) algorithm for simultaneous
optimization of metal removal rate and wear ratio subjected to the constraints of surface
roughness. Rao and Pawar (2010) and Rao and Venkaiah (2015) applied particle swarm
optimization (PSO) technique to optimize WEDM process parameters to improve the machining
speed for a desired value of surface finish. RSM was used for experimental plan and also to
develop mathematical models. Whereas Muthukumar et al. (2015) applied a recently devel oped
Accelerated PSO (APSO) to optimize the process parameters to maximize MRR and minimize
SR and kerf. Mukherjee et a., (2012) carried out comparative study on different population based
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non-traditional optimization techniques such as GA, PSO, ABC, sheep flock agorithm (SF), ant
colony algorithm (ACO) and biogeography-based optimization (BBO) in selection of optimal
WEDM parameters. They were taken two problems from the literature as case studies and applied
the above algorithms for comparative study. They found that BBO out performance the others in
terms of quick convergence, optimization performance and dispersion of the optimal solutions

from their mean.

Cuckoo search algorithm, a meta-heuristic optimization algorithm, was developed by
Y ang and Deb (2009) based on the breeding behavior of cuckoos and the characteristics of Levy
flights of some birds and fruit flies. Cuckoo search agorithm (CSA) was found to be efficient in
yielding the global optimal value and this agorithm was found to outperform GA and PSO
techniques in terms of speed, accuracy and simplicity of computations (Yang and Deb 2009,
Yang and Deb 2010 and Gandomi et a. 2013). However, the accuracy of CS heavily depends
upon the initial solution and its location from the target value and therefore it may involve many
generations. This could lead to delay in convergence.

2.4. Geometrical errors

Circularity error is measured on components where the height of the component is less
than the diameter. Whereas the cylindricity is measured on components where the height of the
component is more than that of the diameter. There are two types of approaches to evaluate the
circularity and cylindricity errors: one is using form data and the other oneis CMM data. Though
there are four methods available to assess the circularity error, least squares circle (LSC) method
is used by most of the researchers due to easy and ssimple to apply and also it gives unique
solution. It is proved by Shunmugam (1986), Thomas and Chan (1989), Kim and Kim (1996) and
Qiu et a. (2000) that the error values estimated using LSC are generaly higher. To evaluate
roundness error, an optimization theory was formulated analytically by Kaiser and Morin (1994).
This method involves conversion of circle into line and cylinder to plan by non-linear
transformation. Chang and Lin (1993) employed a Monte Carlo simulation method for circularity
error evaluation. To obtain minimum error value simplex linear programming has been applied
by Carpinetti and Chetwynd (1994) and min-max agorithm described by Lin and Varghese
(1995). Lai and Chen (1996) proposed a strategy for minimum zone (MZ) evaluation of cylinders
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and circles. A vision based inspection system was developed by Chen et al. (1999) based on the
stochastic optimization approach for reference circles. Simulated annealing and Hook-Jeeve’s
pattern search for roundness measurement also proposed by them. Genetic agorithm is also
applied (Liao and Yu (2001) and Wen et al. (2006)) to assess the circularity error. Devillers and
Ramos (2002) proposed discrete local optimization method and it works only if the object is
round feature. A characteristic point-based method proposed by Deng et al. (2003) to find a MZ
solution. An optimization known as semi-definite programming is proposed by Ding et al. (2007)
to evaluate circularity error. Kovvur et a. (2008) and Sun (2009) are used particle swarm

optimization technique to evaluate the roundness error.

In addition to the above techniques proposed by different researchers, computational
geometry (CG) techniques can provide solutions for many geometric problems which can not be
solved by classica methods. Lai and Wang (1988) proposed the convex hull concepts, CG based
algorithm to evaluate circularity error for the first time. Samuel and Shunmugam (2000) applied
computational geometric techniques of convex hulls, to assess the circularity error at different
conditions. Apart from that, an equi-angular diagram concept was also employed to find
circularity error. Zhu et al. (2003) presented a steepest descent algorithm for circularity error
evaluation. An attempt was made by the Li and Shi (2009) to establish the relationship among the

reference circles.

Cylindricity is also measured with circularity measuring instruments such as form tester
and CMM with an additional straight datum. Measurements are carried out at few transverse
sections of the cylinder. To evauate the cylindricity error least-squares method was proposed by
shunmugam (1986) and Tsukada et al. (1998), whereas the normal least-squares method was
proposed by Murthy (1982). A non-linear optimization model was proposed by Carr and Ferreira
(1995) for MZ cylindricity solution. Radhakrishnan et al. (1998) proposed a linear iterative cyclic
coordinate search technique to obtain the near optimal solution for evaluation of cylindricity. A
hyperboloid method was proposed by Devillers and Preparata, (2000) to evaluate the cylindricity
error. Initial solution based methods like ssmulated annealing (Chen, 2002; Shakarji and Clement
2004), genetic agorithms (Sharma et a. 2000, Lai et al. 2000) and particle swarm optimization
algorithm (Zhang et al. 2011) etc. have been used by some researchers to find the optimal

cylindricity error values by applying to any of the cylindricity error measuring methods.
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Though different techniques are available in literature to evaluate the geometric errors,
modeling and optimization of geometric errors for the parts made by WEDM process are yet to

be explored.

2.5. Neural networks

Neural networks(NN) are a family of models inspired by biologica neural
networks (the central nervous systems of animals, in particular the brain) and are used to estimate
or approximate functionsthat can depend on a large number of inputsand are generally
unknown. Artificial neural networks are generally presented as systems of interconnected
"neurons” which exchange messages between each other. The connections have numeric weights
(Choudhury and Bartarya 2003) that can be tuned based on experience, making neura nets
adaptive to inputs and capable of learning. Like other machine learning methods - systems that
learn from data - neural networks have been used to solve a wide variety of tasks that are hard to
solve using ordinary rule-based programming, including computer vision and speech recognition.
The most popular learning algorithm for multilayer networks is the back-propagation algorithm
and its variants (Ebrahimi et a., 2006). The ANN istrained by alearning algorithm that performs
the adaptation of weights of the network iteratively until the error between target vectors and the
output of the ANN islessthan an error goal (Joghataie and Amiri 2005)

Esme et al., (2009) carried out experimental investigations for comparative studies in
using factorial design and NN. Both the methods are used for modeling and predicting the surface
roughness in machining of AISI 4340 steel on WEDM. The predicted values using both the
models are compared with experimental values. They found that the predicted values of NN
model are close to the experimental values. Tarng et al. (1995) developed a neural network
system to determine settings of pulse duration, pulse interval, peak current, open circuit voltage,
servo reference voltage, electric capacitance and wire speed for the estimation of cutting speed
and surface finish. Spedding and Wang (1997) presented a parametric combination by using
artificial neural networks and they aso characterized the roughness and waviness of the
workpiece surface and cutting speed. Liao et al. (1997) performed an experimental study to
determine the variation of the machining parameters on the MRR, gap width and surface
roughness. They have determined the level of importance of the machining parameters on the

metal removal rate (MRR). Lok and Lee (1997) compared the machining performance in terms of
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MRR and surface finish by the processing of two advanced ceramics under different cutting
conditions using WEDM. Ramakrishnan and Karunamoorthy (2008) developed an artificial
neural network with Taguchi parameter design. Tsai et al. (2008) found rel ationships between the
heterogeneous second phase and the machinability evaluation of the ferritic SG cast irons in the
WEDM process. Sarkar et al. (2008) studied the features of trim cutting operation of wire
electrical discharge machining of y-titanium aluminide. Caydas et a. (2009) developed an
adaptive neuro-fuzzy inference system (ANFIS) for modeling the surface roughness in the
WEDM process. NN modeling of EDM process is a'so employed by Liao et al. (2002), Caydas
and Hascalik (2008), Chen et al. (2010), Guven et al. (2010), Sarkeyli et al. (2015), Ming et al.
(2015), Patowari et a (2010), Yang et a. (2012), Shandilya et a. (2013) and Zhang et al. (2013)
etc.

It can be noted that the NN modeling is mainly focused on the effect of machining
parameters, discharge energy, theoretica and experimenta verification and crater formation on
the wire electrode. However, the present study involves the development of prediction models for
geometrical errors such as circularity and cylindricity errors in machining of super alloys on
WEDM.

2.6. Recast-layer and Micro-hardness

A portion of the melted workpiece materia is removed by a dielectric circulation system.
The remaining molten material will rapidly re-solidify to form a layer known as the recast layer
(Goswami and Kumar, 2014). This recast layer affects the mechanical properties like hardness of
the materials. Newton et al., (2009) investigated on characteristics of recast layer formed in
machining of Inconel 718. They found that the hardness is increasing with distance from the top
layer of WEDMed surface. Li et al. (2013) and Kumar et a. (2016) also observed that thereis a
dramatic reduction in hardness as compared to that of bulk material.

Recast layer and heat affected zones of EDMed surfaces were studied by Rajurkar and
Pandit (1984), and also developed thermal models to predict the damage layer thickness. Hasgalik
and Caydas (2007) performed experiments on titanium alloy with different electrode materialsin
EDM and explored the influence of parameters on white layer thickness, roughness, and
hardness. Soni and Chakraverti (1996) investigated experimentally the change in resolidified
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layers and micro-hardness of EDMed surfaces of Die steel. Studies were carried out by Cusanelli
et a. (2004) on the formation of white layer and hardness of EDMed surfaces of steel. They aso
studied the white layer in submicron scale for phases present in white layer, micro cracks, Carbon
content in the white layer and nano-hardness of the white layer. They found that the hardness of
the white layer is more than that of the base material. Igbal and Khan (2010) carried out
experimental investigation on the influence of EDM process parameters on the recast layer
thickness, micro cracks, and material migration in machining of stainless steel. Along with MRR
and TWR, recast layer and micro hardness are aso studied by Jabbaripour et al. (2012) for
Titanium aloy in EDM process. Experimental investigations on the effect of WEDM parameters
on the surface roughness and micro-hardness of HSLA material were carried out by Khan et al.
(2014). They aso used gray relational analysis to optimize surface roughness and micro hardness

simultaneously.
2.7. Problem Statements and M otivation

Nickel-based super alloys are a special class of materials with an exceptional combination
of high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing
environments. These materials are primarily used in the hot sections of jet turbine engines, such
as the blades, vanes, and combustion chambers, constituting over 50 % of the engine weight.
Inconel-690 is a high-chromium nickel alloy and is widely used for steam generator tubes,
baffles, tube sheets, and hardware in nuclear power generation. Nimonic-263 is a nickel-
chromium-cobalt-molybdenum alloy specially meant for use in high temperature and high
strength applications. These super alloys are extremely hard to shape using traditional machining
methods due to rapid work hardening. After the first machining pass, work hardening tends to
plastically deform either the workpiece or the tool on subsequent passes. Therefore, modern
machining methods such as sinker EDM and abrasive water jet machining (AWJM) are generally
employed to machine these materials. The drawback with sinker EDM is that it can produce
simple geometries like holes and AWJM consumes higher energy. However, WEDM can be used
to machine complex shapes with lesser energy requirements. Further, adequate WEDM studies
are not reported on these materials. Therefore, generation of machining data using WEDM on

these material s assumes a great importance from the industry viewpoint.
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Surface roughness affects several functional attributes of parts, such as friction, wear and
tear, light reflection, heat transmission, ability of distributing and holding a lubricant and coating.
Hence, assessment of surface roughness of the parts is important from the quality viewpoint.
Further, in order to meet the customer requirement in terms of due date, the manufacturer aways
tries to maximize the MRR. Increasing the MRR is also important from the viewpoint of
machining economics. Depending upon the requirements of the industry, these responses are to
be optimized either individually or simultaneously. Although there are many optimization
techniques, there is a possibility of improving them further to report the accurate results in much
lesser time. Among various optimization techniques, cuckoo search (CS) algorithm was found to
be efficient in yielding the global optimal value and this algorithm was found to outperform GA
and PSO techniques in terms of speed, accuracy and simplicity of computations. However, the
accuracy of CS heavily depends upon the initial solution and its location from the target value
and therefore it may involve large number of generations. Furthermore, in this algorithm, the
evolutionary operators are applied in each generation. This could lead to delay in convergence.

Therefore, there is a scope for improving this agorithm.

In order to meet the desired functional and assembly requirements, engineering
components need to have tighter dimensional and geometrical tolerances. Majority of the
engineering components have circular and cylindrical features in them. These components are
used for different applications such as rotating devices, transmission systems, injection moulds,
bearings and engine cylinders. Producing straight cuts is easier as compared to machining of axi-
symmetric components. The difficulties are further amplified while machining such features on
super aloys with the stochastic nature of WEDM process. Although most of the WEDM
literature is focused on responses such as MRR, SR, Kerf and WWR. Studies on geometrical
errors of axi-symmetric components are not yet reported. Therefore it is required to model the
geometrical errors in order to accurately predict these errors to reduce the regjection rate of the

components during inspection.

Mechanical properties of any material after machining will vary due to the machining
phenomena of sudden heating and cooling. It is difficult to retain the base material properties
after machining. In WEDM process, a huge amount of heat is generated is used to melt the

workpiece. A portion of the melted workpiece material is removed by a dielectric circulation
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system. The remaining molten material will rapidly re-solidify to form a layer known as the

recast layer. This recast layer thickness affects the surface integrity aspects such as hardness and

other surface properties of the materials. Lack of adequate studies on surface integrity on Inconel -

690 and Nimonic-263 materials is another motivation for the present work.

2.8. Objectives of the work

Following objectives are formulated for the present work.

1

To generate WEDM data on material removal rate, surface roughness, form errors,
recast layer thickness and micro-hardness for Inconel-690 and Nimonic-263 materials.
To analyze the existing cuckoo search algorithm for its effectiveness and formulate an
effective algorithm to yield optimal material removal rate and surface roughness.

To formulate non-dominated sorting modified cuckoo search algorithm to yield
simultaneous optimal solutions for MRR and SR.

To develop predictive models for form errors such as circularity and cylindricity using
ANN approach and minimize them for WEDMed components.

To investigate and model recast layer thickness and micro-hardness of WEDMed

surfaces.
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CHAPTER 3

EXPERIMENTAL SETUP AND MEASUREMENT OF
RESPONSES

3.1. Introduction

Analysis of any response of a system heavily depends on how well the experiments are
planned, conducted and measured. The measurement process may also include calculations. For
example, material removal rate cannot be measured directly. It can be estimated by measuring the
dimensions of work material and observed time. Therefore conducting experiments and
measuring the responses is crucial part in any investigation. Ranges of variables should be
identified after trial experiments. In the present study RSM has been used for experimental plan
and also for developing predictive models for various responses such as MRR, SR, RLT and MH.
However, to develop robust predictive models, accurate measurement or estimation of responseis
essential. This chapter describes experimental setup and measurement of responses. Details of the
machine (WEDM), experimental plan, and different instruments to measure the responses such as
surface roughness, circularity, cylindricity, re-cast layer thickness, and micro-hardness are also

presented.
3.2 Experimental setup

A WEDM of Eletronica make Eco-cut machine has been used to conduct the experiments
(Figure 3.1). De-ionized water is used as di-electric fluid and zinc coated brass wire of 0.25 mm
diameter is used as wire electrode. In order to identify the feasible ranges for each parameter for
uninterrupted machining, trial experiments were conducted. For example, at T - 50, 1,- 12 and
S, - 40, the upper limit of T,y isfixed at 125. If Ty, is increased beyond this value, wire breakage
was observed. Further, at Te - 60, I -10, and S, - 60, the lower limit of Ton isfixed at 105. If Ton
is set lesser than this value, there is no machining taking place due to wire shorting. Similar
experimental trials were conducted to fix the ranges for other parameters also. After observing
the results of trial experiments the ranges and levels are fixed as presented in the Table 3.1.
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Table 3.1 Process parameters. Ranges and levels

Variables Units Levell Level 2 Level 3
Pulse on time- Top, (A) HS 105 115 125
Pulse off time- Tox, (B) Us 50 55 60
Peak current- Iy, (C) A 10 11 12
Servo voltage- S, (D) \Y 40 50 60

In order to generate machining data, a face centered central composite design (CCD) of
RSM is used for the experimental plan in the present study. The detailed experimental plan
involving number of experiments has been given in respective chapters. Design Expert 9 software
has been used in the present work for RSM analysis. RSM consists of mathematical and
statistical techniques utilized in the development of adequate functional relationships among

responses and process parameters.

Wire drive mech
inside

Figure 3.1. WEDM machine
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Trchnical specifications of WEDM machine

Make : ELECTRONICA (INDIA)
Software : ELCAM

Specification : X: 250 mm, Y: 350 mm, Z: 200 mm
Control system : CNC

Axis control 14 AXis

Taper . +/- 5 deg/100mm

Resolution :0.001 mm

Dielectric tank capacity : 140 liters

Least I/Pincrement  : 0.001mm

Wire Materia : Zinc coated Brass wire

Wire Diameter :0.25mm

Input Parameters available: Pulse-on time, pulse-off time, peak current, flushing pressure, wire

feed rate and servo voltage.

In the present work, an attempt has been made to investigate the effect of process
parameters such as pulse on time (Ton), pulse off time (Torr), peak current (1) and servo voltage
(S), on the response parameters such as MRR, SR, circularity and cylindricity errors, re-cast
layer thickness and micro-hardness. Inconel-690 and Nimonic-263, nickel based super alloys
being extensively used in aerospace, automotive and nuclear power applications were chosen as
work materias. In this study, holes of 10 mm diameter (Figure 3.2) were machined on the
Inconel-690 plate of 6.35 mm thickness and Nimonic-263 plate of 18.5 mm respectively.

3.3. Calculation of material removal rate

Material removal rate is the amount of material removed per unit time. Machining is done
to produce circular holes as shown in Figure 3.2. MRR for the circular holes can be calculated

using the equation (3.1).

_p W(D*-d?)
4T

MRR mm?/ min (3.1)
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where, W, = thickness of work piece (mm), D = diameter of the hole (mm), d = diameter of the
boss (mm) and T = Time taken for machining (min).

Wire
kerf

Figure 3.2. Circular hole machined by WEDM

Here the diameters of hole and the removed blanks are measured using co-ordinate
measuring machine (CMM), and time taken to cut these holes at different sets of input levels are
measured using a stop watch.

3.4. M easurement of Surface roughness

The German make Marsurf M-400 (Figure 3.3) surface roughness tester with a profile

resolution of 8 nm has been used to measure the SR value of the machined parts directly.
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Drive unit

Display unit

Meaeringtip
Figure 3.3. Marsurf M - 400

For use as a small measuring station as well as a mobile unit, the MarSurf M 400 fulfills
the needs on the shop floor and in production and the measuring room. The skidless probe BFW
250 and the drive unit SD 26 enable the measurement and evaluation of not only the roughness
depth but aso waviness and profile criteria. The magnetic probe arm holder allows different
probe arms to be changed quickly and easily within seconds without the use of tools. The
motorized height adjustment enables automatic zero positioning and probe lifting. The Bluetooth
function enables cable-free operation with this unit as well. Up to 250 measurements can be
conducted with main-free operation due to the built-in battery. Traversing length of 5.6 mm,
evaluation length of 4 mm have been set while measuring the samples. The number of readings
taken in the present study is 5 for each sample and the average value has been calculated. The
workpiece is oriented such that tracing is done across the predominant lay direction in order to
capture the roughness details. Utmost care has been taken to isolate the measuring instrument

from the external disturbances.

Technical specifications of Mar Surf M400:

Type: Portable

Standard Parameters. As per DIN/ISO/JS/ASME/MOTIF
Number of sampling lengths (n) (as per ISO/JIS): selectable 1t0 5
Measuring range: Min 350 micron

Traversing length (as per ISO/JIS): 1.75 mm, 5.6 mm, 17.5 mm, automatic, free entry.
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Evaluation length (as per ISO/JIS): 1.25 mm, 4.0 mm, 12.5 mm.

Cut-off length (as per 1SO/JIS): 0.25 mm, 0.8 mm, 2.5 mm, automatic

Profile resolution : Measuring range : £250 um = 8 nm.

Drive Unit SD26: Traversing length : 26 mm, measuring speed : 0.2 mm/s, 1 mm/s, Inclination
adjustment: +1.5°, Height adjustment : 7.5 mm motorized.

Column & Stand: Granite base with support stand attachment.

Cdlibrated on: August, 2013.

3.5. Measurement of circularity and cylindricity

Circularity and cylindricity errors of the machined components are measured directly
using a CMM of Mitutoyo make, CRT-Apex C-544 model, and the in-built algorithm software is
based on least squares principle. It is a bridge type CNC controlled CMM consisting of a contact
probe of touch and trigger type, and a means of positioning the probe in three dimensional space
relative to the surface of a work part in order to obtain the data concerning the part size and
geometry. The generated data is further converted into the required form using the inbuilt
software. The resolution of this machine is 0.0001 mm and the software used in the CMM is
MCOSMOS. The data generated from the measurements represent the position of the probe with
respect to machine. This coordinate datais transferred to the computer system where the software
converts it into the required form. The samples are oriented in vertical direction. To estimate the
circularity error the data is collected at one section, on the periphery of the components.
However, for cylindricity estimation, data is generated from three sections on the periphery of

cylindrical components. Procedures for ng the geometric errors are detailed in chapter 5.
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Figure 3.4. Co-ordinate measuring machine

Technical specification of CMM:
Name: 544 Crysta

Made: Mitutoyo Corporation, Japan
Probe: Touch trigger type

Measuring range: X Axis—505mm, Y axis— 405 mm, Z Axis— 405 mm

Accuracy: MPEE (1.7+3L/1000) um

Resolution: 0.0001 mm

Drive Speed: Moving speed — 0 - 80 mm/sec

Measuring speed - 3 mm/sec

Specification of Probe: Make: Renishaw
Type: Touch trigger
Probe diameter: 3 mm

Calibrated date: 2013
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3.6. M easurement of re-cast layer thickness

The re-cast layer of the machined surfaces are observed and measured using scanning
electron microscopy (SEM) of Tescan make VEGA 3 LMU model as shownin Figure 3.5. Itisa
fully PC controlled unit with conventional tungsten heated cathode intended both for high
vacuum as well as low vacuum operations. Outstanding optical properties, flicker-free digital
image with good clarity, sophisticated user-friendly software for microscope control and image
capturing using Windows platform, standard formats of stored images, easy image management,
processing and measurements, automatic setup of the microscope and many other automated
operations are among the characteristic features of the equipment. An inbuilt mechanism to draw
the lines and to measure the distance between lines is available in the existing PC software. By
using this phenomenon the re-cast layer thickness has been measured. As the recast layer
thickness is not constant throughout the periphery of the component, it is measured at different

locations and the average value has been considered.

Figure 3.5. Scanning electron microscope
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Technical specifications of SEM:

Electron Gun: Tungsten heated cathode
Resolution: High Vaccum Mode (SE): 3nm at 30 kv / 2 nm at 30 kb
Low Vaccum Mode (BSE, LVSTD): 3.5 nmat 30 kv /2.5 nm at 30 kv

Magnification: 2x — 1,000,000x (for 5 image width in Continual Wide field/Resolution
Maximum field of view: 24 mm at WD 30 mm
Accelerating Voltage: 200V to 30 kV
Probe current: 1 pA to 2 pA
Scanning Speed: From 20 nsto 10 ms per pixel adjustable or continuously
Number of ports: 11
Chamber suspension: pneumatic
Specimen Stage: Type: Compucentric, fully motorized
Stage Movements:  X=80 mm (-40 mm to + 40 mm)

Y =60 mm (-30 mm to + 30 mm)

Z=47 mm

Rotation: 360° continuous

Tilt: -80° to + 80° (WD and sample size dependent)

3.7. Measurement of micro-hardness

The term hardness is the ability of a material to resist permanent deformation. The larger
the resistance to deformation, the harder the body appears. There are four common methods
available to measure the hardness of any material such as Brinell, Knoop, Rockwell, and Vicker's
hardness tests. Vickers hardness testing method is simple as compared to others and is suited well
for al metals (Herrmann, 2011). In this method an indenter of a straight diamond pyramid with
an angle between opposite faces of 136", is applied under a specific load on to the surface of the
material to be tested for a set time interval. According to the law of proportional resistance, the
indentation surface is proportional to the force applied. For micro hardness studies usually the
range of load is taken to be 5 g to 1000 g and the dwell time is considered in the range 10 to 15
sec. In the present study aload of 500 g is applied for 10 sec as dwell time.
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(a) Indentation (b) Measurement of indent
Figure 3.6. Hardness measurement using Vicker’s hardness tester

After the test, an indentation is formed as shown in Figure 3.6. From the indentation, diagonals
are measured. Micro hardness of the machined sample for Vickers method is estimated as

HY — 0.18?1F
d (3.2)

where d is the arithmetic mean of diagonals and F is the load applied on the work material.

Micro-hardness of the machined surfaces is measured using Chennai Metco make Economet VH

1 MD model as shown in figure 3.7.
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Figure 3.7. Vickers hardness tester

Technical specifications of Vicker’s hardness tester:
Model : Economet VH-1 MD Digital Automatic Turret Micro Vickers Hardness Tester with

digital display
Usage Range: Heat treatment, carbide, quench hardened layer, the surface coating layer, stedl,
non-ferrous metal and small and thin shape parts, etc
Test Load: 10gf (0.098N). 25gf (0.245N). 50gf (0.49N). 100gf (0.98N). 200gf (1.96N).
300gf (2.94N). 5009gf(4.9N). 1kgf (9.8N)

Method of testing force applied: Automatic (Loading, Dwell, Unloading)
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Test microscope magnification: 400X (Measuring), 100X (observation)

Duration time: 0to 60 s

Min measuring unit: 0.031 um

Hardness measuring range: 8 to 2900 HV

Conversion Scale: HRA, HRB, HRC, HRD, HRF, HV, HK, HBW, HR15N, HR30N, HR45N,
HR15T, HR30T, HR45T

Data output: LCD screen display, Inside Printer, RS-232 Max Height of Specimen: 80mm

Distance of Indenter to outer wall: 95mm X-Y Testing table:

Dimension: 100* 100mm Max mobile : 25* 25mm Power supply: AC220V +5%, 50-60Hz

Overal Dimension: 405* 290* 480mm Net weight: About 25K g

3.8. Energy Dispersive Spectroscopy (EDS)

Energy-dispersive  X-ray spectroscopy (EDS or EDX), sometimes caled energy
dispersive X-ray anaysis(EDXA) is an anaytica technique used for theelementa
analysis or chemical characterization of a sample. A beam of electrons is focused on the sample
being studied. At rest, an atom within the sample contains ground state (or unexcited) electronsin
discrete energy levels or electron shells bound to a nucleus. The electron beam may excite an
electron in an inner shell, gecting it from the shell while creating an electron hole where the
electron was. An electron from an outer, higher energy shell then fills the hole and the difference
in energy between the higher energy shell and the lower energy shell may be released in the form

of an x-ray.

The number of x-rays emitted from a specimen can be measured by an EDS spectrometer.
As the energy of the x-rays are characteristic of the difference in energy between the two shells
and of the atomic structure of the element, from which they were emitted, this method allows the
elemental composition of the specimen to be measured. An EDS coupled with SEM as shown in
Figure 3.8 was used in the present study.
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Figure 3.8. EDS coupled with SEM
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CHAPTER 4

A MODIFIED CUCKOO SEARCH ALGORITHM FOR
OPTIMIZATION OF MRR AND SR

4.1. Introduction

The performance of WEDM process is assessed in terms of material removal rate
(MRR), surface roughness (SR), wire wear rate (WWR), kerf and cutting speed etc. However,
MRR and SR are very important response parameters for any machining process. Surface
roughness affects several functiona attributes of parts, such as friction, wear and tear, light
reflection, heat transmission, ability of distributing and holding a lubricant and coating. The
desired surface finish is usually specified for the components and appropriate processes are
required to maintain the quality. Hence, the inspection of surface roughness of the work piece is
important to assess the quality of a component. MRR is the rate at which the material is removed.
In order to meet the customer requirement in terms of due date, the manufacturer always tries to
maximize the MRR. Optimization of these response parameters is essential for any machinist to
meet their functional and economical aspects. From the literature it can be observed that, several
attempts have been made to investigate the influence of WEDM process parameters on the
response parameters and also to optimize them. Researchers in the past used grey relational
analysis (Chiang and Chang 2006; Balasubramanian and Ganapathy 2011) and Taguchi (Sarkar
et a. 2006, aravind et al. 2010) techniques to optimize the responses. Although, in redlity, a
process parameter varies continuously, experiments are conducted, based on these designs, at
discrete levels. Therefore, these techniques can only yield sub-optimal solutions. Global optimal
solution may lie outside the conducted experiments. In order to determine the global optimal
solution, researchers in the past applied other optimizing techniques such as GA, PSO, and ABC
(Mahapatra and Patnaik 2007, Rao and Pawer 2009, Rao and Pawar 2010) etc.

Among different optimization techniques, Cuckoo search (CS) algorithm was found to be
efficient in yielding the global optimal value and this agorithm was found to outperform GA and
PSO techniques in terms of speed, accuracy and simplicity of computations (Y ang and Deb 2009,
Yang and Deb 2010 and Gandomi et al. 2013). However, the accuracy of CS heavily depends
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upon the initial solution and its location from the target value and therefore it may involve many
generations. Furthermore, the evolutionary operators are applied in each generation. This could
lead to delay in convergence. In order to improve the performance of cuckoo search further, an
attempt has been made in the present work to propose a modified cuckoo search involving two-
stage initialization. Benchmark functions have been used to test the performance of the proposed
method. Furthermore, the proposed method has been applied to WEDM process. Inconel-690 and
Nimonic-263, nickel based super aloys, have extensive applications in aerospace, automobile
and nuclear power sectors. The proposed algorithm was found to be accurate and fast as
compared to the existing cuckoo search. The machining data generated in this work on these
super alloys will also be useful to the industry.

This chapter describes cuckoo search algorithm and its steps, modified cuckoo search
algorithm and application of this proposed method to optimize MRR and SR of Inconel-690 and
Nimonic-263. This chapter also gives the Pareto optimal solutions of MRR and SR for Inconel -
690 and Nimonic-263 work materials.

4.2. Cuckoo search algorithm

Cuckoo search algorithm, a meta-heuristic optimization algorithm, was developed by Y ang
and Deb based on the breeding behavior of cuckoos and the characteristics of Levy flights of
some birds and fruit flies. Some cuckoo species lay their eggs in the host nests. The basis for this
optimization algorithm lies in the laying of eggs and breeding of cuckoos. Some cuckoos imitate
the colors and pattern of eggs of a few species, which they select as host nest. This will reduce
the probability of eggs being abandoned by the host bird and also increases their re-productivity.
The eggs, which are not similar to that of host bird nest, are detected and killed. The grown eggs
reveal the suitability of the nests in that area. The cuckoo optimization algorithm searches the
area in which more eggs will survive and re-productivity is higher (Rgabioun 2011). The major
assumptionsin the cuckoo search algorithm are:

= Each cuckoo lays one egg, in arandomly selected nest at atime.

» Thenests of high quality eggs carry over to next generations.
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» Thereis achance of aien egg getting recognized due its quality by the host bird
with a probability of pae [0, 1]. The host bird will abandon the nest completely or
destroy the alien egg if recognized, and build a new nest at new location.

The major stepsinvolved in cuckoo search algorithm have been described (Valian et al. 2013)
below.

I nitialization

In any evolutionary algorithm, the initial population is generated for each control variable using

the following equation (4.1) (El Elaet al. 2010). The value of | variable’s i particle is given by:

%=+ Q1) (7-x™) “.1)

J J

Where, i =1, 2, ...,ps, j =1, 2, ..., hcv, ps = population size, and ncv = number of control
variables. x,-min and x™ are the lower and upper bounds of j™ control variable. In general, the
initial population vector (pv) of size (ps % ncv) is generated and is used for further evolutionary
operations. The single stage initialization of any evolutionary algorithm is shown in equation
4.2).

pv= (4.2
Levy flights

The cuckoo randomly chooses the position of host nest to lay an egg using Levy flights random
walk and is given in equations (4.3), (4.4) and (4.5) (Chandrasekaran and Simon 2012).

X, q(t+1)=x, (t)+s,, a Levy(l) (4.3)

Pq

Spq = tiq - thq (4.4)

p,fe{1,2,...nhn} andq € {1,2,...ncv}
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H

(4.5)

+ x sin pxI
Levy(l )= rit) ( 2

()04

where, Xoq (t+1) is the value of g variable in p" host nest at next generation, sy is the step size, 4
is a constant and is generated randomly in betweenl and 3, t is the current generation number, o
is a constant generated randomly between -1 and 1, nhn is the number of host nests and ncv is the

number of control variables.
Recombination or survival rate of eggs

There is a chance for the host bird to identify the alien egg, with a probability value
associated with the quality of an egg, Pro, as estimated using equation (4.6).

Pro, :n?;;\xm(:llztiifo'l (4.6)

Where, Fityisthe fitness value of an individual p and is proportional to the quality of that egg in
that corresponding nest. If the calculated Prop is greater than that of randomly generated p; €
[0,1], the egg will be survived and carried to the next generation, otherwise egg will be
recognized by the host bird and it will be destroyed or abandon the existing nest and build a new
nest at new location. Then the cuckoo will find a new nest to lay an egg. These newly generated
nests are combined with the earlier survived ones to form a new population vector for further

operations.
Selection

In the present work, sorting and ranking selection process has been used. With this method, at
each generation, the fitness value and its associated strings are ranked. Then, the optimal value
and its corresponding string are selected based on the objective function for the next generation

until the stopping criterion is reached.
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Stopping criteria

The following are the criteria commonly used to stop an iterative process:

1) Maximum number of generations. When the number of generations equals the maximum
number of generations specified by the user, the process comes to end.

2) Specified tolerance: If the accuracy obtained during iterative process is less than specified
tolerance, the execution will be terminated.

Based on the observed results on several data sets, first criterion is used in the current work.

4.3. M odified cuckoo search algorithm

In any evolutionary algorithm, the optimization process will start with initialization step.
Once theinitialization is done, all the operators of the algorithm are applied in a sequence to find
feasible solutions in each generation. In order to guide the search to global optimal solution, the
optimization process will be repeated until a stopping criterion is met. This procedure is followed
in the existing cuckoo search also. However, the accuracy and the convergence rate will heavily
depend upon the initial population and its location from the target value. Furthermore, this
method applies all the operators of the algorithm in every iteration and this could delay the
convergence. However, the modified cuckoo search (MCS) proposed in this work involves two-
stage initialization process. This process enhances the probability of finding optimal solution.
The methodology is presented in Figure 4.1. In the first stage, a sub population vector of size
(sspvxncv) is formed. The value of objective function for each string is evaluated in the sub
population vector. The best string from the sub population vector based on its fitness is selected.
This procedure is repeated for all the sub-population vectors. In the second stage, all the best
strings from the sub population vectors are combined to form a new population vector of size

(nspvxncv) and the evolutionary operators are applied on this newly formed population vector.
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applied only after the new population vector is formed. Therefore accuracy and fast convergence

Figure 4.1 Two stage initialization of proposed MCS algorithm

It should be noted that application of evolutionary operators will consume some
computational time. Therefore, in the proposed method, evolutionary operators were not applied

on the earlier sub-population vectors. Only fitness of the strings was evaluated. Operators were

resulted from the proposed method can be attributed to the following reasons:

(1) The newly formed population vector will be closer to the globa optima solution and
therefore, overal number of generations required to reach the target value will be reduced

significantly.

(2) Evolutionary operators are applied from the second stage of the process instead of initial

sub-populations.
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Furthermore, the proposed method requires less memory for storing the populations. The steps in
the proposed two-stage cuckoo search agorithm have been shown in Figure 4.2.

-
[ Readtheinputdata |

Choose no.of sub population vectors(nspv) and stringsin
sub popul ati ons(sspv)

Generate the strings using Egn. (4.1) |

Y
Calculate fitness value. Store it and also its
correspondi ng strinq

sspv—sspv+1

Store the best functional val ue & its corresponding
string from population vector

|
I
I
|
I
I
|
I
I
|
I
I
|
|
I
I
I
I
I
|
Stage -1
) Sieg Is
: sspv > Max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Combine the strings from all sub popul ati on vectors to form new
population vector

Select and store the best function value among all the population
vectors and al so store corresponding string

)
&
®
N

| Perform Leavy flight operation |
Y

| Perform recombi nati on operation |

Y
| Perform selection operation |

Iter =

Print the
results

Figure 4.2. Stepsin proposed MCS algorithm
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4.4. Testing of proposed method

In order to test the robustness of the existing cuckoo search and the proposed algorithms,
they are tested against benchmark functions such as Himmelblau function, Booth’s function,
Freudenstein Roth function, Goldstein Price function, and Leon function. The test results for

Himmelblau function and Booth’s function are presented in this section.
Himmelblau function

The objective of Himmelblau function isto minimize and is given asin equation (4.7).

f (%, xz)=(x12+x2—11)2+(xl+x22—7)2 (4.7)
Where, the variables arein the interval (0 < X3, X2 < 6).
The function valueisO at x; = 3and x; = 2.

The function was solved using GA (Deb, 2013), existing cuckoo search and proposed

methods. Comparisons are presented in Table 4.1.

Table 4.1 Comparison of results using standard functions for 100 generations

Parameter Existing GA Existing Cuckoo  Proposed
Standard Test method search MCS
Function method
Himmelblau xivaue 3.003 3.001 3.0004
function Xp value 1.994 1.9887 1.9988

Min functional

value 0.001 0.000123 0.0001

Number of

generations 72 19
Booth’s function xpvalue 0.9994 0.9998

Xz value 2.9625 3.0002

Min functional

value 0.0018174 0.00029

Number of

generations 61 27

55



The Himmelblau function values with GA, existing cuckoo search method and proposed
method are 0.001, 0.000123 and 0.0001 respectively. The proposed method, thus, is performing
better. Furthermore, the existing cuckoo search and the proposed methods are tested for different
number of generations such as 25, 50, 75 and 100 for the Himmelblau function. Plots for 25 and
100 generations are shown in Figure 4.3 and 4.4. It can be observed that the convergence rate of
proposed method is faster than that of the existing cuckoo search. For 25 numbers of generations,
convergence rate is almost same with both the methods. It can be observed from the figure that
the initial solution with existing method is about 1.2. There was no improvement in the solution
up to 5™ generation. However, there is a drastic improvement from 5" to 6™ iteration and the
value is about 0.4. Further, there were gradual improvements in the solution and the global
optimal solution was obtained in the 14™ iteration with function value of about 0.05. However,
the initial solution with the proposed MCS method is found to be 0.2, which is much better than
the initial value of existing method. This initial solution is much closer to the target value and it
was possible due to the mechanism of the proposed two-stage initialization concept as detailed in
section 4.3. It can be observed from the Figure 4.3 that the there is no improvement in the
functional value up to 7" generation. Marginal improvements were observed from 7 to 10"
iterations. The global optimal value of zero has been obtained at 14™ iteration. Hence, the
proposed MCS method is performing better than the existing cuckoo search method in terms of
accuracy and convergence rate. For 100 numbers of generations, the number of generations
required to yield optimal functional value with proposed method and the existing method are
respectively 19 and 72. Optimal values obtained are closely matching with both methods.
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Booth’s function

The objective of Booth’s function is to minimize and is given by equation (4.8).

f(%,%)=(%+2%% —7)" +(2% +%,—5)° (4.8)

Where (-10< x;, X, £10)
The function value is 0 at x;=1 and x,=3.

The existing cuckoo search and proposed methods have been applied against the Booth’s
function and the results are presented in Table 4.1. The Booth’s function values obtained by
existing cuckoo search method and proposed method are 0.0018174 and 0.00029 respectively.
Thus the proposed method is performing better. Furthermore, plots for 25 and 100 generations
are shown in Figures 4.5 and 4.6. For 25 generations, the number of generations required to yield
optimal functional value with proposed and existing methods are 11 and 23 respectively and
proposed method yields better optimal value than that of existing method. For 100 generations,
the number of generations required to yield optimal functional value with proposed and existing
methods are 40 and 61 respectively and the proposed method yields better optimal value than that

of existing method. These results show that the proposed method outperforms the existing
method.
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4.5. Application of MCSto optimize MRR and SR of | nconel-690

The modified cuckoo search approach has been applied to optimize MRR and SR while
machining Inconel-690 using WEDM. In this study, holes of 10 mm diameter were machined on
the Inconel-690 plate of 6.35 mm thickness as shown in Figure 4.7. In the present work, an
attempt has been made to investigate the effect of process parameter such as pulse on time (Toy),
pulse off time (Tur), peak current (1) and servo voltage (S;), on the response parameters such as
MRR and SR. Theranges and levels of process parameters are given in Table 3.1.

Figure 4.7. Inconel-690 material after machining
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In order to generate machining data, a face centered central composite design (CCD) of

RSM is used for the experimental plan in the present study. A CCD for 3 factors has been shown

in Figure 4.8 for illustration purpose. Experimental points are classified into three categories such

as centre, axial and cube (factoria) points. However, the present study involves 4 factorsand it is

difficult to present the graphical representation for the CCD of 4 factors. Therefore, the

experimental plan is presented using Table 4.2 giving the details axial, cubical and center points

information. A total of 30 experimental runs are conducted including 6 center points as presented

in Table 4.2. After conducting trial experiments the ranges and levels are fixed Experiments are

conducted as per the experimental plan and the results are presented in Table 4.3.

\Yal_—l \
5 | B Cube points
0. 4
= 19
: ® Axial points
N ® Center point
i I
Parameter2 L | \_ ______ é .
Parameter 1 l i §
Figure. 4.8 CCD for 3 factors
Table 4.2 Experimental plan
Runorder Typeof point  Ton (US)  Torr (MS) 1, (A) S (V)
1 Center 0 0 0 0
2 Axial 0 1 0 0
3 Fact 1 -1 1 1
4 Axia 0 0 -1 0
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Table 4.3 Experimental results for Inconel-690

Run
Ton Tott Ip S MRR SR
order 3, .

(Hs) (Hs) (A) (V) (mm7min)  (um)

1 115 55 11 50 0.3722 0.354
2 115 60 11 50 0.34049  0.357
3 125 50 12 60 4.06502  2.585
4 115 55 10 50 0.3648 0.336
5 105 60 12 60 0.499 0.559
6 115 55 11 60 0.345 0.373
7 125 60 10 40 0.4113 0.571
8 115 55 11 50 0.35309 0.371
9 115 55 11 50 0.3753 0.348
10 105 50 10 40 0.33727  0.378
11 115 55 12 50 1.71822 1.842
12 125 60 10 60 0.39578  0.377
13 125 50 10 40 058931  0.595
14 105 60 12 40 0.54517  0.669
15 115 55 11 50 0.36988  0.322
16 105 50 10 60 0.36228 0.371
17 115 50 11 50 0.37504 0.407
18 105 50 12 60 0.53466  0.447
19 105 60 10 40 027822  0.332
20 105 60 10 60 0.28444  0.276
21 125 55 11 50 043536 0431
22 105 55 11 50 0.31819  0.317
23 115 55 11 50 0.3457 0.392
24 105 50 12 40 0.8808 0.761
25 125 50 12 40 5.843 3.253
26 125 60 12 60 2.1615 2.786
27 115 55 11 50 0.32263  0.422
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28 125 60 12 40 344124  3.012
29 115 55 11 40 0.35897  0.533
30 125 50 10 60 0.38071  0.436

4.5.1. Results and analysis

(a) ANOVA analysisfor MRR

ANOVA has been applied for each response to investigate the significance of process
parameters and their contributions for the Inconel-690 work material. ANOVA is also used to
model the response parameters in relation to their influencing parameters. The results of ANOVA
for MRR are presented in Table 4.4.

Table 4.4 ANOVA results of MRR for Inconeal-690

SS DOF MS F value p-value Percentage
Source contribution
Model 5.160 6 0.860 138.80 < 0.0001 97.358
A-Ton 1.080 1 1.080 174.64 < 0.0001 20.377
B- Toss 0.100 1 0.100 16.11 0.0005 1.887
C-1lp 2.560 1 2.560 413.00 < 0.0001 48.302
D-S 0.044 1 0.044 7.06 0.0141 0.83
AC 0.250 1 0.250 40.03 < 0.0001 4717
C? 1.130 1 1.130 181.95  <0.0001 21.321
Residua 0.140 23 6.20E-03 2.641
Cor. Total 5.300 29 100.00

From the ANOV A results (Table 4.4 and Figure 4.9 (@) - (€)), it can be observed that Top,
Toit, 1p, S and interaction effect of Ty, and I, are influencing the MRR. When the T,, increases,
the energy applied will also increase and more amount of heat energy will be generated during
this period, thereby increasing the MRR. When the Ty decreases it allows more productive

discharges per unit time thereby increasing the MRR. When |, increases, it leads to more
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discharge power thereby MRR increases. At smaller value of S,, the mean gap will be narrowed

which leads to an increase in number of electric sparks, to speed up the machining rate. These
results are in agreement with that of Singh and Garg (2009). R-Squared, Adjusted R-Squared and
Predicted R-Squared values were found to be 0.973124, 0.966113, and 0.950433 respectively.
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Figure 4.9. Effect of WEDM process parameters on MRR while machining Inconel-690

The mathematical model developed for MRR from ANOVA in coded form is given in
equation (4.9).

)—ZI/ 2

MRR:(1.67—0.25A+ 0.074B—0.38C +0.049D —0.12AC — 0.40C2 (4.9)

(b) ANOVA analysisfor SR

From the ANOVA results of SR as shown in Table 4.5 and Figure 4.10 (a) to (d), it is
observed that Ton, 1p, S, and interaction effect of Ty, and |, are influencing the SR. When the Ton
increases, the energy applied will also increase and more amount of heat energy will be generated
during this period which increases the machining speed and aso increases the SR. When |,
decreases it leads to less discharge power thereby decrease the machining rate and SR. Kumar et
al. (2012) confirmed that high pulse-on time and peak current will cause double sparking, which
leads to increase in surface roughness. At higher values of S, the mean gap becomes wider which
leads to decrease in number of electric sparks, thereby reducing the machining rate and increase
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in surface finish. R-Squared, Adjusted R-Squared and Predicted R-Squared values were found to
be 0.944074, 0.932422 and 0.91289 respectively.

Table 4.5 ANOVA results of SR for Inconel-690

Source SS DOF MS Fvaue p-vaue Percentage

contribution

Model 432633 5  0.86527  81.0273  <0.0001 94.407
A-Ton 1.00238 1 100238 938671  <0.0001 21.873
C-1p 207037 1 207037 193.8790 < 0.0001 45.179
D- S, 012986 1  0.12986  12.1609 0.0019 2.834
AC 018191 1  0.18191  17.0349 0.0004 3.969
c? 094181 1 094181 881950  <0.0001 20.552
Residual 0.25629 24  0.01068 5.593
Cor. Total 458262 29 100.000
sEa
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f
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Figure 4.10. Effect of WEDM process parameters on SR while machining Inconel-690

The mathematical model developed for SR from ANOVA in coded form is given in equation
(4.10).

1% e

SR = (1.62— 0.24A-0.34C +0.085D — 0.11AC — 0.36C 2

Results obtained using RSM, existing cuckoo search and the proposed methods are
presented in Table 4.6 along with machining conditions. From the results it is observed that,
MRR values using RSM, existing cuckoo search and proposed method are 5.8912 mm®/min,
5.9799 mm*min and 6.0537 mm*min respectively. It is also observed that the computational
times to obtain the optimal values with existing cuckoo search and proposed method for MRR are
0.2511 s and 0.2049 s respectively. Correspondingly the number of generations is 60 and 32 as
shown in Figure 4.11.
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Table 4.6 Optimal results from different methods for Inconel-690

Method RSM Existing cuckoo Proposed method
Optimal value 5.8912 5.9788 6.0537
Optimal conditions | Ton: 125, T Ton: 125, Tos: Ton: 124.99, T
MRR 50.28, I 12, S;: 50.78, 1,12, S |50, 1,12, S,
(mm*/min) 40 40.3269 40.023
Computational 0.2511 0.2049
time
Optimal value 0.2713 0.2552 0.255
SR 50.41, Ip: 51.47, 1,:10.70, | T 58.69,
(Hm) 10.98, S:59.82 | S, 59.9405 l,: 10.68, S;: 60
Computational 0.255 0.2166
time

SR values using RSM, existing cuckoo search and proposed method are 0.2713 pm,
0.2552 pum and 0.2550 um respectively. It is also observed that the computational times to obtain
these values with existing cuckoo search and proposed method are 0.2638 s and 0.2166 s
respectively. Number of generations required to yield optimal SR using the existing cuckoo
search and proposed methods are 37 and 13 respectively as shown in Figure 4.12.
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From the results, it is observed that the existing cuckoo search agorithm is giving better
results than that of RSM. Furthermore, the results from the proposed agorithm are better than
that of existing cuckoo search agorithm. The ranges of values for response parameters as
obtained using the experimentation are observed to be too small. In general, if these ranges
increase, the difference between the response values obtained by the RSM, existing cuckoo and
the proposed methods may be significant and the importance of the proposed modified cuckoo
search agorithm can be noticed. In order to minimize the manufacturing and measurement
uncertainties, validation experiments were conducted three times and measurements were carried
out for five times and then the average value has been reported for the comparison purpose. It can
be observed that, the deviations between experimental results and the predicted values for MRR
and SR are 3 % and 4 % respectively as presented in Table 4.7. Since the proposed algorithm

does fine search around the global optimal solution, it is ableto yield better results.

Table 4.7 Confirmation test results for Inconel-690

Response and Conditions Predicted value from Experimental Deviation in
proposed method percentage
Value
MRR (mm%min) 6.0537 5.871 3

SR (um) 0.2550 0.265 4

Ton: 105, Tosr: 59,1, 11, S2 60
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4.6. Application of MCSto optimize MRR and SR of Nimonic-263

The modified cuckoo search method has also been applied to optimize MRR and SR of
Nimonic-263 while machining using WEDM. In this study, holes of 10 mm diameter were
machined on the Nimonic-263 plate of 18.5 mm thickness as shown in Figure 4.13. Attempts are
made to investigate the effect of process parameters such as pulse on time (To,), pulse off time
(Torr), peak current (Ip) and servo voltage (S,), on the response parameters such as MRR and SR.
In order to generate machining data, a Face centered Central Composite Design (CCD) of RSM is
used for the experimental plan in the present study. After conducting trial experiments the ranges
and levels are fixed. A total of 26 experimental runs are conducted including 2 center points as
presented in Table 4.8.

Figure 4.13. Nimonic-263 work material after machining
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Tale 4.8 Experimental results for Nimonic-263

MRR SR
Runorder Ton(us) Tar(US) 1p(A) S (V) 3, .

(mm*/ min) (um)

1 125 60 12 60 3.124 2.01
2 125 60 10 60 0.359 0.605
3 115 55 11 40 0.453 0.525
4 115 55 11 50 0.381 0.387
5 105 60 12 60 0.497 0.537
6 125 55 11 50 0.327 0.578
7 125 50 10 40 0.381 0.484
8 115 55 12 50 2.447 1.021
9 115 50 11 50 0.280 0.501
10 105 50 10 40 0.446 1.364
11 115 55 10 50 0.301 0.514
12 105 60 10 60 0.427 0.694
13 125 50 10 60 0.459 0.46
14 115 55 11 50 0.311 0.539
15 125 50 12 40 3.588 2.027
16 105 60 10 40 0.529 1.323
17 125 60 12 40 3.352 2.089
18 105 55 11 50 0.397 0.892
19 115 55 11 60 0.575 0.76
20 115 60 11 50 0.515 0.764
21 125 60 10 40 0.500 1.081
22 105 50 12 40 1.768 0.891
23 125 50 12 60 3.234 1.85
24 105 60 12 40 0.949 1.18
25 105 50 10 60 0.549 0.863
26 105 50 12 60 0.771 0.603
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4.6.1. Resultsand Analysis

(@) ANOVA analysisof MRR

ANOVA has been applied for each response to investigate the significance of process
parameters and their contributions for the Nimonic-263 work material. ANOVA is also used to
model the response parameters in relation with their influencing parameters. The results of
ANOVA for MRR and SR are explained in the following sections. The results of ANOVA for
MRR are presented in Table 4.9.

Table 4.9 ANOVA results of MRR for Nimonic-263

Percentage
Source SS DOF MS Fvaue P-value o
Contribution

Model  29-3208 9 3.258 44563 <0.0001 96.164

A-Ton 4492364 1 44928 61449 <0.0001 14.734
B-Tor  0.08323 1 0.0838 1.138 0.3018 0.2624

C-1p 13.8341 1 13.834 189.232 < 0.0001 45.372

D-S, 0216133 1 0216 2956  0.1048 0.709
AC 5718684 1 5718 78224 <00001  18.756
BC 0126007 1 0126 1724  0.2077 0.413
CD  0.24216 1 0242 3312  0.0875 0.794
A% 0012463 1 0012 0171  0.6852 0.041
C? 2960149 1 2960 40491 <0.0001 9.708

Residual 1.169703 16 0.073 3.836
cor 3049051 25 100

Total
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From the Anova Results of MRR, it can be observed that Ton, |1, and interaction of To, and |
are significant model terms, and are shown in the Figurs 4.14 (a) to (c). Higher the pulse-on time,
higher will be the energy applied there by generating more amount of heat energy during this
period and it leads to higher MRR. Peak current is the amount of power used in discharge
machining. Higher the peak current, higher will be the energy applied during machining and there
by increasing the MRR. The mathematical model generated for MRR is given in equation (4.11),
in the coded form. From the ANOVA, the R-Square, adjusted R-square and predicted R-square
values were found to be 96.2 %, 94 % and 90 % respectively for the model.

33 — B Tof=5500 | ATon=12500
Clp=1200 B.Tef=5000
D Sv=40.0 ;

MRR
|
MRR
l
R

1500 o 150 12000 12500
A: Ton Gl

(a) Effect of To, on MRR (b) Effect of I, on MRR
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Figure 4.14. Effect of WEDM process parameters on MRR while machining Nimonic-263

MRR = 0.42+ 0.50A-0.068B + 0.88C — 0.11D + 0.60AC-0.089BC-0.12CD-0.062A*+ 0.95C* (4.12)

(b) ANOVA analysisof SR

From the ANOVA Results of SR (Table 4.10), it can be observed that Ton, lp, S, and
interaction effects Ty, and I are significant model terms, and are shown in the Figurs 4.15 (&) to
(d). When the pulse-ontime increases, the number of discharges also increases. It leads to more
heat energy there by increasing the machining rate and decresing the surface finish. Higher the
peak current, higher will be the energy applied and it leads to higher maching rate and high
surface roughness. At higher values of servo voltage, the gap between workpiece and wire
becomes wider and it decreases the number of sparks, stabilizes electric discharge yielding better
surface finish. The mathematical model generated for SR was given in equation (4.12) in the
coded form.From the ANOVA, the R-Square, adjusted R-square and predicted R-square values
were found to be 92 %, 84.22 % and 72 % respectively for the model.
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Table 4.10 ANOVA results of SR for Nimonic-263

Percentage
Source SS DOF MS F value P-value Contribution
Model 6.372 11 0579 13127 <0.0001 91.161
A-Ton 0.447 1 0.447 10132  0.0066 6.397
B- Toft 0.085 1 0.085 1.936 0.1859 1.222
C-Ip 1.291 1 1.291 29247  <0.0001 18.465
D-S, 0.370 1 0.370 8.393 0.0117 5.298
AB 0.056 1 0.056 1.281 0.2767 0.808
AC 2.543 1 2543  57.630  <0.0001 36.384
AD 0.106 1 0.106 2.412 0.1427 1.523
BC 0.001 1 0.001 0.011 0.919 0.0067
CD 0.012 1 0.012 0.278 0.6063 0.175
A? 0.234 1 0.234 5.303 0.0371 3.348
c? 0.294 1 0.294 6.672 0.0217 4.212
Residual 0.618 14 0.044 8.838
Cor Total  6.990 25 100
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Figure 4.15. Effect of WEDM process parameters on SR while machining Nimonic-263
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SR=0.55+0.16 A+ 0.069B + 0.27C — 0.14D + 0.059AB + 0.40AC + 0.082 AD — 0.005437BC
+0.028CD + 0.27 A% + 0.30C2 (4.12)

The optimal values for MRR and SR were 3.59856 mm®/min 0.363162 pm as found from
RSM, respectively, along with their optimal parameters are given in Table 4.11. Similarly the
optimal values found from existing cuckoo method for MRR and SR were 3.6681 mm*/min and
0.26215 pm respectively. Whereas from modified two-stage cuckoo search agorithm the
corresponding values are 3.6713 mm*min and 0.2619 pm. From these results it is observed that
the proposed two stage cuckoo search method is yielding better results than the results of RSM
and existing cuckoo search agorithm.

Table 4.11 Optimal results from different methods for Nimonic-263

Response RSM Existing method  Proposed method
MRR Optimal value 3.59856 3.6681 3.6713
(mm%min)  Optimal Ton:125, Te:52.14, Ton: 125, Tes:51, Ton: 125, Tet:50,
parameters 1p:12, S:42 1p:12, S:42 1p:12, S,:42
SR (um)  Optimal value 0.363162 0.26215 0.2619
Optimal Ton:119, Tes:51, Ton:115.7, Toi:50,  Ton:115.8, Te1:50,
parameters 1p:10, S,:56 1p:10.4, S,:60 1p:10.5, S,:60

Confirmation tests have been conducted to check the effectiveness of proposed method
for both MRR and SR, and the results are given in Table 4.12. It can be observed from the
confirmation test results that the deviations between experimental values and the predicted values
from the modified cuckoo search method are not exceeding 7 % for both MRR and SR. Hence
the proposed method can be used for prediction of MRR and SR.
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Table 4.12 Confirmation Test results for Nimonic-263

Predicted value from  EXPerimental Deviationin

Response
Proposed method Value percentage
MRR (mm>/min) 3.6713 3.614 2
(Ton:125, Tei1:50, 15:12, S,:40)
SR (um) 0.2619 0.282 7

4.7. Non-dominated sorting modified cuckoo search algorithm

In order to generate simultaneous optimal solutions for MRR and SR, a well known non-
dominated sorting principle has been applied to the proposed modified cuckoo search agorithm.
The steps involved in the non dominated sorting modified cuckoo search algorithm (NSMCS) are
given in Figure 4.16. This algorithm starts with two stage initialization. After initialization, each
individual’s objective functions are evaluated to rank and sort using non-dominated sorting
principle before applying the other operators. Once the ranking is done, cuckoo search operators
have been applied to generate new solutions for further generations. Then non-dominated sorting

principleis applied to get a set of optimal solutions (Pareto front).
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Figure 4.16. Flow chart of NSMCS

The Pareto front of optimal solutions have been generated for Inconel-690 and Nimonic-263
materials as shown in Figures 4.17 and 4.18 respectively. The MRR and SR values are also
presented at different weights of the responses (Table 4.13 and 4.14) to enable the manufacturer
to choose a solution and associated conditions as per the requirement for Inconel-690 and

Nimonic-263 materials respectively.
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Figure 4.17. Pareto optimal solutions of MRR and SR for Inconel-690 alloy
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Table 4.13 Optimal solutions of MRR and SR at different weights for Inconel-690

W, W SR MRR Ton Toft Ip S
(SR)  MRR) m) MMM (g A W)
1 0 0.3309 0.347 105 54.56 10.68 60
0.9 0.1 0.3409 0.371 105 50 11.54 60
0.8 0.2 0.5038 0.5827 105 50 11.94 60
0.7 0.3 0.6484 0.7845 108.2 50 12 60
0.6 0.4 0.8003 1.0097 111.74 50 12 60
0.5 0.5 0.9696 1.2773 114.72 50 12 60
04 0.6 1.1733 1.6221 117.42 50 12 60
0.3 0.7 1.4418 2.1149 120.05 50 12 60
0.2 0.8 1.849 2.9469 122.89 50 12 60
0.1 0.9 2.2721 3.9234 125 50 12 60

0 1 3.248 5.843 125 50 12 40
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Figure 4.18 Pareto optimal solutions of MRR and SR for Nimonic-263 alloy
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Table 4.14. Optimal solutions of MRR and SR at different weights for Nimonic-263

W, W, SR MRR Ton Totf Ip S
(mm%min)

(SR) (MRR)  (pm) (Hs) (1) (A) V)

1 0 0.3618 0.2751 115.77 50 10.45 60

0.9 0.1 0.4084 0.5879 113.69 50 11.27 60

0.8 0.2 0.5074 0.9056 112.46 50 11.54 60

0.7 0.3 0.5961 1.2003 111.58 50 11.74 60

0.6 0.4 0.6872 1.5091 110.78 50 11.92 60

0.5 0.5 0.7576 1.7453 111.21 50 12 60
0.4 0.6 0.8218 1.9199 112.74 50 12 60
0.3 0.7 0.9236 2.1417 114.69 50 12 59.78
0.2 0.8 1.2667 2.8582 117.05 50 12 40
0.1 0.9 1.5991 3.3828 122.09 50 12 40

0 1 2.031 3.5713 125 50 12 40
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4.8. Summary

Although WEDM is one of the advanced machining processes used to machine hard to
cut materials, machining data for Inconel-690 and Nimonic-263 is not available in the literature.
An attempt has been made in this work to study the machining behavior for Inconel-690 and
Nimonic-263 using WEDM. By conducting the trial experiments, feasible ranges for process
parameters have been identified for the material in order to avoid problems such as wire breakage
and wire shorting. A face centered centra composite design of RSM was used for the
experimental design. Effects of process parameters and their interaction effects on performance
measures such as MRR and SR have been investigated. Percentage contributions of each process
parameter on various responses have been estimated using ANOVA. MRR and SR are
significantly influenced by Ton, I and their interaction. In order to estimate the global optimal
response values accurately, a modified cuckoo search algorithm has been proposed in this work.
The proposed method has been successfully tested on standard bench-mark problems for its
robustness in yielding the accurate results. The proposed a gorithm was found to be accurate and
fast as compared to existing cuckoo search and RSM methods. The proposed method is able to
perform better than the existing cuckoo search technique in terms of accuracy and speed because
of the novel two-stage initialization concept introduced in this work. Since the best strings, after
the first generation, are grouped and further search is made around these solutions, the
convergence rate is much faster. Though the proposed algorithm has been applied for optimizing
the WEDM process, it can also be used for other applications. Confirmation tests were conducted
to validate the proposed algorithm. The machining data generated for the first time for Inconel-
690 and Nimonic-263 materialsin thiswork helps the industry to understand the general behavior
of WEDM. Based on this data, industry can carry out focused work to meet the specific needs. A
non-dominated sorting principle is aso applied to the modified two-stage cuckoo algorithm in
order to generate Pareto front for both the materials. These Pareto fronts provide a set of optimal

solutions. From this data, the manufacturer can select any solution based on the requirement.
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CHAPTER 5

GEOMETRICAL ERRORS

5.1. Introduction

To meet the desired functional and assembly criteria, engineering components require
tight dimensional and geometrical tolerances. Majority of the engineering components have
circular and cylindrical features in them. These components are used for different applications
such as rotating devices, transmission systems, injection moulds, bearings and engine cylinders
etc. Circularity error is estimated for those components having size to height ratio less than unity,
whereas cylindricity error is estimated for those components whose size to height ratio is greater
than unity.

Researchers in the past made a number of attempts to assess the circularity error using
coordinate data obtained from coordinate measuring machine (CMM) and also form data
obtained from form testers. Murthy and Abdin (1990) applied Monte Carlo technique, normal
least squares fit, simplex search and spiral search techniques. They found from their results, that
Monte Carlo, spiral and simplex search were suitable for minimum zone evaluation. Chetwynd
(1985) applied linear programming and developed a general approach for roundness evaluation.
Shunmugam (1986) introduced a concept of median technique to minimize the error values.
Sharma et al. (2000) used GA to optimize the solution for form tolerance evaluation. Samuel and
Shunmugam (2000) applied computational geometric techniques involving convex hulls, to
assess the circularity error at different conditions. They also employed an equi-angular diagram
concept to find circularity error. Portman et al. (2002) applied statistical approach to measure
roundness error. Venkaiah and Shunmugam (2007) introduced a control hull concept to evaluate
circularity error. They compared their method against simplex search method and found that the
proposed one gives accurate results and also takes lesser time. They also introduced a new
procedure for updating the hull. Wen et al. (2006) implemented GA to search for the circularity
error based on maximum inscribed circle (MIC), minimum circumscribed circle (MCC),
minimum zone circles (MZC) and least squares circle (LSC). They found that GA gives better
results than other existing methods. Sun (2009) applied Particle swarm optimization (PSO)

algorithm to
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compute the roundness error based on MIC, MCC and MZC methods. Results of PSO were
compared against that of GA and found that PSO outperforms GA method.

Several researchers attempted to evaluate the cylindricity error using numerical
techniques such as normal least squares (Murthy, 1982), least squares (Shunmugam 1986), non-
linear optimization method (Carr and Ferreira, 1995) and hyperboloid method (Devillers and
Preparata 2000) etc. Different optimization algorithms such as genetic algorithm (Sharma et al.
2000, Lai et al. 2000), geometry optimization search algorithm (Lei et al. 2011), PSO algorithm

(Zhang et al. 2011) etc. have been used to find the minimum cylindricity error values.

Majority of engineering components consist of circular and cylindrical features
somewhere in them. Errors on such features affect the functionality and assembly requirements of
the components. Although various researchers made several attempts to assess the geometrical
errors using different algorithms for the given data, comprehensive studies on geometrical
features produced by WEDM process are not yet reported. For the first time, attempts are made in
this work to investigate on the effect of process parameters on the circularity and cylindricity
errors. ANN technique was used in the past to predict different responses such as MRR, SR, kerf
and cutting speed etc. However, this technique has never been used for the prediction of the
circularity and cylindricity errors. In the present work, prediction models are developed for these
errors using a feed forward back-propagated neural network (BPNN) technique. A CMM, CRT-
Apex C-544 model of Mitutoyo make has been used to generate the coordinate data from the
circular and cylindrical parts. MCOSMOS software has been used to assess the errors directly

from the measured data based on LSC principle.
5.2. Methodology

Flow chart (Figure 5.1) presents the sequence of steps in the proposed methodology. Trial
experiments are conducted to fix the ranges for process parameters. Experiments are conducted at
different levels of process parameters. Geometrical error is measured for the machined parts
based on the LSC principle. Effects of process parameters such as pulse-on time, pulse-off time,
peak current and servo voltage on circularity error are studied. An artificial neural network has

been used to develop a modal to predict the geometrical error. Initially the developed model has
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been trained using training data sets up to desired level of R-value. The performance of the neural
network is expressed with its regression coefficient R. R value gives the correlation between
target (experimental value) and network output (predicted value). If the R-value reaches 1, there
is a strong correlation between experimental and predicted values. Once the model is trained,

then the adequacy of the model will be validated with different data sets.

Trial experiments to determine WEDM parameter ranges

v

Generate training data sets

v

Measure geometrical error using LSC principle by CMM

v

Study on Effects of process parameters

v

Generate NN model

v

Train NN using training data sets

Is R value
acceptabl

No

Yes

Validate the model using experimental results

Figure 5.1. Steps in proposed methodology
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5.3. Artificial Neural networks

"An artificial neural network system is an information-processing system that has certain
performance characteristics in common with biological neural networks" (Fausette, 1994). Any
neural network comprises of a large number of processing elements such as neurons, units and

cells or nodes. A neural network is specified by

e its pattern of connections between the neurons - called its architecture

e its method of determining the weights on the connections - called its training or learning

algorithm

e its activation function.

Each neuron is connected to other neurons by means of links with an associated weight. The
weights represent information being used by the net to solve problem. Every neuron has an
internal state called its activation level. Each neuron sends its activation or activity level as a
signal to several other neurons. A feed forward back propagation neural network has been
adopted in the present work to model the WEDM process to predict the geometric errors. This
network comprises of large number of artificial neurons and these neurons are grouped into
different layers such as input layer, hidden layers and output layer (Somashekhar et al. 2010,
Benardos and Vosniakos, 2002) as depicted in Figure 5.2. The information contained in the input
layer is transferred or mapped to the output layer through hidden layers (Tzeng et al. 2011).

The feed forward and back propagation network learning includes two phases. During
feed forward (i.e. in the first stage), the input neurons receive input signal or information and
transfer it to hidden neurons. Each hidden neuron computes its activation and convey its signal or
information to output neurons. Each output neuron computes its activation to form the response
of the net for the given input conditions. Each output unit compares its computed activation with
target value to determine the associated error for that pattern with that unit. This error is back
propagated from output layer to hidden layers in the second stage in order to minimize this error,
modification of weights will be done. This process is repeated until the deviation reaches to the

minimal or the user defined minimum value.
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Figure 5.2. Network diagram

Artificial neural network models are widely used in prediction of outputs with respect to
inputs of different machining processes where there is no linear relationship between input and
output, complex machining processes and regular conventional methods fail to model the
process. A 4-10-1 network has been selected in the present work to predict circularity and
cylindricity errors as shown in Figure 5.2, in which 4 input neurons, 10 hidden neurons and one
output neuron are considered. This network is trained for several times up to the desired value
(more than 95 %) of regression coefficient (R). Once the prediction model is developed,

goodness of the model must be verified using the confirmation tests.
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5.4. Circularity error

Circularity or roundness is a tolerance of form that checks the periphery of any circular
cross-section taken perpendicular to the axis of a cylinder or cone, or through the center of a
sphere to ensure that all elements are within two concentric circle tolerance zones (ASME, 1994).
Circularity error is estimated for those components having size to height ratio less than unity. The
CMM gives coordinate data and the circularity profile drawn from this data is shown in Figure
5.3. Distance between the measured point on the circular profile and the center of the reference

circle can be obtained as,

r =\/(x,.—x0)2+(yi—y0)2 5.1

Where, (xo, yo) represents the center of the circle.

circle (r,) Least squares

ref. Circle

_—

Part centre (X, , o)

Deviation from
ref. circle (e;)

Y- Coordinate, mm

X- Coordinate, mm —_

Figure 5.3.Circularity error evaluation
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The deviation between the measured point and the reference circle is given by,

G=h=h (5.2)

Where, rgis radius of the reference circle and is calculated as the mean of the radial distances
from the measured points to the center coordinates of the reference circle. The deviations above

the reference circle are taken to be positive and that below the circle are treated negative.

Let
€max = Maximum (e;), i=1,2....,N.
€min = Minimum (e;), i=1,2....,N.

Where, N is the total number of measured points.
The circularity error is evaluated as the absolute sum of maximum and minimum deviations from

the reference circle as given by Eq. 5.3

Circularity error, A=|e

max

(5.3)

+ |e

min

It is to be noted that reference circle is established using various methods such as MIC,

MCC, MZC and LSC as shown in Fig. 5.4.

MIC method: MIC is the largest circle that can be drawn inside the profile without cutting
across the profile. The roundness error is specified as the distance of the largest peak above the

circle. To illustrate the concept, following deviations from the MIC may be considered:
Deviations: + 2, +5, 0, + 3, +0, +6, 0, +1 units

Circularity error = largest peak = ‘emax‘ - ‘+6] = 6 units

MCC method: MCC is the smallest circle that will completely enclose the profile without
cutting it. Its center and radius can be found in the similar manner to that of the inscribed circle.

The roundness error is the distance of the lowest valley from the circle.
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Figure 5.4. Methods to assess circularity error
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Let the deviations be - 1,0, -4, -3,0, -5, 0, - 1 units

Circularity error = lowest valley = ‘emin| =‘ 5‘ =5 units

MZC method: In Minimum zone circles method there are two concentric circles that just enclose
the profile and have minimum radial separation. The value of the roundness error is the radial

distance between the two circles.

Let the deviations be + 1,0, -4,-2,+4,-3,-4, -1, + 4 units

Circularity error = |e_ | +|e

max

=‘ 4’+‘44‘ = 8 units

5.4.1. Least-squares method for circularity error

Principle of LSC method involves fitting a circle to the profile data points of the part such that
sum of the squares of the deviations of the actual profile from the fitted circle is minimum.
Circularity error 1s defined as the radial distance of the maximum peak from this circle (P) plus
the distance of the maximum valley from this circle (V) i.e. P + V. Unlike the other three
methods, LSC method is the most straight forward in the sense that all the data of the profile is
used to establish the circle. Other advantages of this method include sound mathematical basis,
unique solution, ease of implementation and low computational time. Therefore, LSC method is
popular even today in the industry. The only disadvantage is that this method slightly
overestimates the error. In spite of this, LSC method is implemented in the present work, as the
scope of the work is to investigate the influence of various process parameters on circularity

CITor.

LSM is based on minimizing the sum of the squares of the deviations as given by,

N
Minimize Z 3;2 5.4)

i=1

The circularity error is evaluated as the absolute sum of maximum and minimum deviations from

the reference circle as given by Eq. 5.3
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Since the circularity error function is non-linear, a non-linear LSM, often called as Gauss-
Newton method is employed to solve this problem. A complete derivation of the method (Nash
and Sofer 1996, Wolf and Ghilani 1997) is not given here, however a functional description is
provided. This method needs Jacobian matrix to be formed. The Jacobian matrix (J) is the matrix

of partial differentials of the deviation Eq. 5.5 with respect to each parameter.

[Oe, Oe, Oe |
x() y{) ’:)
Oe, 0Oe, Oe,
x() y() ’/;)
J=|0e, Oe, Oe (5.5)
X0 Yo P
where
oe; X, —X
xa \/'xiz - 2x0xi + yiz - zyoyi + 'xoz + y02
aei _ Yo = )i
Yo \/xl.z -2x,x, + yl.2 -2y, y + xo2 + )’02
oe,
% _
5

The solution requires multiple iterations and an initial solution for the unknowns (x,, y,, 7,) is

needed. The initial solution may be obtained as follows:

XOZ%E)Q

1

__ , 5.6
Y, N§y, (5.6)

r=y—x) + (-3,
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The vector of residuals, K is given by

0 (oo xreiy w7 )
0 (\/(X2 X))+, ¥,) ro)

K= (\/(X3 X))+, ¥) ro) (5.7)

It is essential to solve for adjustment values, AV. The vector of adjustments for the parameters is

given below.

X

V= y, (5.8)
rO

The adjustments of the parameters, Ax,, Ay, and Ar, can be solved using the equation
AV=(D"'TK (5.9)
On solving the adjustment values, the circle parameters are then adjusted as
X, = x,+ Ax,
Yo' = Yo+ Ay, (5.10)
r, =r,+ Ar,

This new solution is now used to compute a new Jacobian matrix and a new residual
vector, which are then used to get a new adjustment vector AV. This procedure is continued until
the adjusted values are closer to zero. In fact, even today, most of the CMMs use the LSM to

report the final solution due to its advantages such as sound mathematical formulation, unique

solution and less computational effort.
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5.4.2. Results and analysis

Since the studies on effects of process parameters on the circularity error are not reported
in literature, attempts are made to carry out these studies in the present work. In order to establish
the relationship between process parameters and circularity error, experiments were conducted
and 60 data sets were generated as presented in Table 5.1 along with the associated circularity
error. These data sets are used to develop predictive model for circularity error using ANN.
Another set of 10 experiments was conducted to validate the model.Inconel-690 has been used as
workpiece material and 10 mm circular holes were produced on 6.5 mm thick plate. The
circularity error was measured directly using CMM, and the in-built algorithm involved in
MCOSMOS software is LSC method. The ranges for the process parameters were fixed as pulse
on time (7,,) 105-125 ps, pulse off time (7o) 50-60 us, peak current (/) 10-12 A and servo

voltage (Sv) 40-60 V after conducting trial experiments.

Table 5.1 Training data set to train NN model for circularity error

S. No. Ton (us) Tore (us) I, (A)  S,(V) Circularity error (um)
1 115 60 11 50 9
2 115 55 10 50 7
3 105 60 12 60 9
4 115 55 11 60 13
5 115 55 11 50 13
6 115 55 11 50 8
7 115 55 12 50 5
8 125 60 10 60 28
9 125 50 10 40 26
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48 120 55 12 50 114

49 120 55 12 55 12
50 120 55 12 60 12
51 120 60 11 40 29.5
52 120 60 11 45 29
53 120 60 11 50 25.7
54 120 60 11 55 9
55 120 60 11 60 4
56 120 60 12 40 4.1
57 120 60 12 45 6.8
58 120 60 12 50 11.5
59 120 60 12 55 10
60 120 60 12 60 9.2

The influence of process parameters such as pulse-on time, pulse-off time, peak current
and servo voltage on the circularity error are shown in Figure 5.5 (a), (b), (c) and (d) respectively

while machining Inconel-690 using WEDM.
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Figure 5.5. Effect of process parameters on circularity error

Figure 5.5 (a) shows the effect of pulse-on time on circularity error. During the pulse-on
time, energy is discharged between electrode and work material. It is observed that up to 120 us
of pulse-on time, circularity error is low. This can be attributed to the fact that cutting speed is
moderate and the sparks are generated uniformly between wire electrode and workpiece towards
the cutting direction yielding uniform material removal. During this range of pulse-on time, the
effect of pulse-on time on circularity error is also marginal. However, beyond 120 ps of pulse-on
time, the energy is applied for a longer duration thereby generating more amount of heat and it

leads to increase in material removal rate (Mahapatra and Patnaik, 2009). This increased cutting
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speed leads to increased wire wear and formation of craters on machined surface which in turn
results in higher circularity error. The increase in circularity error may also be attributed to the
fact that the higher cutting speed at higher pulse-on time does not permit the effective flush out of
the debris from the machined zone. The left over debris may weld to the machined surface

causing higher circularity error.

Pulse-off time or pulse interval is the time interval between discharges. At lower pulse-off
time, more amount of heat is generated resulting in higher material removal, overload of wire and
instability in machining (Fuller, 1996). Further, lower pulse-off time causes incomplete flush out
of the debris. Due to these reasons, circularity error increases at lower pulse-off time as shown in
Figure 5.5(b). Increasing the pulse-off time up to 55 ps slows down the cutting speed allowing
uniform material removal rate and stability in machining, which results in reduced circularity
error. However, beyond this value of pulse-off time, cutting speed drops drastically. During this
phase of machining, sparks are not continuous causing the wire vibration and inconsistent

machining, which increases the circularity error.

Peak current is the amount of current supplied during machining. The discharge energy is
directly proportional to the peak current (Singh and Garg, 2009). At low peak current, cutting
speed is low and there is no continuous in spark generation causing inconsistent machining
producing more undulations on the machined surface resulting in higher circularity error. As the
peak current increases, sparks are generated uniformly yielding uniform material removal thereby

decreasing the circularity error as shown in Figure 5.5(c).

Servo voltage is the reference voltage and is used to control the wire retracts and
advances. At lower value of servo voltage, the gap between wire and workpiece becomes narrow,
which allows more number of sparks per unit time and more amount of heat is generated
(Ghodesiyeh et al., 2013) and cutting speed increases thereby increasing the circularity error.
Furthermore, at low servo voltage, wire will be overloaded causing the frequent wire breaks and
it results in discontinuities on the machined surface leading to higher circularity error. As the
servo voltage increases, the cutting speed will be moderate and circularity error decreases up to
45 V as shown in Figure 5.5(d). Further increase in servo voltage leads to increase in circularity
error due to low cutting speed and sparks are not generated continuously causing non-uniform

material removal and wire vibration.
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Artificial neural network toolbox has been used to develop predictive model for the
circularity error. The NN tool internally divides the total data sets into 70 %, 15 % and 15 % for
training, validation and testing respectively. While developing the model, the neurons are trained
to the desired level using the 70 % of data sets. Once the model is developed, prediction accuracy
will be verified with validation and testing data sets. Correlations between experimental and
predicted values are expressed by regression coefficient R in NN modeling. If the regression
coefficients for training, validation and testing data are acceptable, training may be stopped and
the developed model can be used to predict the circularity error. The regression coefficients of
the developed NN model are found to be 96 %, 97 %, 98 % and 96 % for training, validation,

testing and overall model respectively as shown in Figure 5.6 (a) to (d).
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Figure 5.6. Correlation between experimental and predicted circularity errors with associated R
values

104



Effectiveness of the model was validated against 10 experimental data sets. Table 5.2

presents the percentage of deviation between the experimental and predicted circularity errors for

the validation data sets. Figure 5.7 shows the graphical representation of the confirmation test

results. It

can be observed that the deviations between experimental and predicted values are

marginal. It was found from the results of confirmation test data sets that the average deviation of

circularity error from experimental value to the predicted value is 5.08 %. Therefore, the

developed model can be used to predict the circularity error.
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Figure 5.7. Experimental and predictive circularity errors in testing of NN model
Table 5.2 Experimental data to validate NN model for circularity error
Experimental
Ton Togs I, Sy Predicted circularity ~ Deviation
S. No. circularity error
(us) (us) (A) V) error using NN (um) in %
(um)
1 115 55 11 50 9.6 10.2 5.88
2 125 60 10 40 31 29.9 3.68
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3 105 55 11 50 7 7.5 6.67

4 125 60 12 60 11.4 10.2 11.76
5 125 50 12 60 13 12.88 0.93
6 105 50 10 40 15 15.6 3.85
7 105 50 12 60 20 20.4 1.96
8 115 50 11 50 17 17.8 4.49
9 105 50 12 40 4 4.02 0.49
10 125 60 12 40 11 9.9 11.11

5.5. Cylindricity error

Cylindricity error is estimated for those components having size to height ratio greater
than unity. Cylindricity is a condition where all points on the surface of a cylinder are equidistant
from the axis. There are four standard methods available to assess the cylindricity namely least-
squares (LS), minimum circumscribing (MC), maximum inscribing (MI) and minimum zone
(MZ) method as depicted in Figure 5.8 (a) to (d). In LS method, the cylinder axis is generated by
working out the LS centers of all the levels. The best-fit line is established from the centers and
then the deviations at each level are found from the cylinder generated using this axis. The
cylindricity is usually given by the farthest peak deviation added to the lowest valley deviation
from the LS radius of all the data. MC cylinder is the smallest cylinder around the data. Once this
cylinder is found using the points, the cylindricity error can be estimated as the deepest valley
distance from the MC cylinder. MI cylinder is the biggest cylinder inscribing the data. The
cylindricity error is estimated as the maximum peak distance from the MI cylinder. MZ cylinders
are the coaxial cylinders with least radial separation containing the data points in the annular
zone. ISO guidelines suggest the MZ cylinders as the preferred method but do not specify the
method to establish them.
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Figure 5.8. Various reference features for cylindricity assessment (Whitehouse, 2002)

5.5.1. Least-squares method for cylindricity error

Figure 5.9 shows measured profiles at different sections of a cylindrical feature and a point on the
measured profile is indicated by Py (x;,y;,z;). The figure also shows the reference circular-cylinder
used for the assessment of the cylindricity error. By convention, deviation of a measured point
lying outside the reference cylinder is taken to be positive and a point inside is considered to have
negative deviation. The cylindricity error (A) is, therefore, obtained as an absolute sum of the

maximum and minimum deviations.
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Figure 5.9. Cylindricity data and circular-cylinder

Cylindricity measurements are denoted by (x;,y;,z;). If the assessment cylinder, whose radius is r,,

is represented by the axis x +/ zand y, +m,z;, the normal deviation ¢; from the i"" measured

point to the cylinder is given by

1/2
€= {[(x,- _-xo)_lozi]2 +[(yi - yo)_mozi]2 +[m0('xi'x0)_lo(yi _ yo)]Z} {1/(1+l()2 +m§)}1/2 e
(5.11)

Where (xo, yo) is a point on the axis of the assessment cylinder and (/y, mp) are the slope values

with respect to x and y-axis
5.5.2. Results and analysis

Though researchers in the past made several attempts to assess the cylindrical features
using different algorithms, studies on influence of process parameters on cylindricity error are not
reported yet. Also, it is to be noted that cylindricity is basically a complex geometry and

producing such a feature on a super alloy with acceptable deviation from the nominal size and
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shape makes it much more complex. Therefore, for the first time, attempts are made in this work
to investigate the effect of process parameters on the cylindricity error. A predictive model for
cylindricity error is also developed using a feed forward back-propagated neural network
(BPNN) technique. For this study, Nimonic-263 has been used as workpiece material and 10 mm
holes of 18.5 mm length were produced on 120 mm X 110 mm X 18.5 mm. Experiments were
conducted and 60 data sets were generated as presented in Table 5.3 along with the associated
cylindricity error. CMM data generated from the circular-cylindrical components was used to
assess the cylindricity error. The influence of process parameters such as pulse-on time, pulse-off
time, peak current and servo voltage on the cylindricity error are shown in Figure 5.10 (a) to (d)

respectively in machining of Inconel-690 using WEDM.

Table 5.3 Training data set to train NN model for cylindricity error

S. No. Ton (us) Tors(us) I, (A) Sy (V) Cylindricity error (um)

1 125 60 12 60 38.84
2 125 60 10 60 15.86
3 115 55 11 50 41.24
4 125 55 11 50 29.07
5 125 50 10 40 29.06
6 115 55 12 50 22.24
7 115 50 11 50 27.49
8 115 55 10 50 38.98
9 115 55 11 50 39.64
10 105 60 10 40 40.74
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Pulse-on time is the time during which the energy is discharged between wire and
workpiece. At low pulse-on time the energy discharged is low, load on the wire is low and
machining will be stable. As a result, the cylindricity error is low. When the pulse-on time
increases, the energy supplied increases, load on the wire increases. Inconsistent machining
produces more undulations on the machined surface, thereby increasing the cylindricity error as
shown in Fig. 5.10 (a). Further increase in pulse-on time from 115 to 125 ps, the machining

speed was found to be high and uniform and therefore wire vibrations were diminishing thereby

decreasing the cylindricity error.
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uniform material removal and stability in machining leads to low cylindricity error. Whereas with
increase in the pulse-off time the gap between discharges increases, there by sparks are not

continuous and inconsistent machining, causes to increase in circularity as shown in Figure 5.10

(b).

is directly proportional to the amount of current supplied during the process. Fig. 5.10 (c) shows

the effect of peak current on cylindricity error. At low peak current the machining speed is very
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Pulse-off time is the interval between discharges. At lower pulse off time there is a

Peak current is the amount of current supplied at the time of machining. Machining speed



low and uniform and therefore cylindricity error is less. When the peak current increases,
inconsistent machining takes place and it produces more undulations thereby increasing the
cylindricity error up to certain level. Further increase in peak current causes the sparks to produce
continuously and the machining becomes uniform and stable thereby reducing the cylindricity

€ITor.

Servo voltage, also called as the reference voltage, controls the wire advance and retracts.
At low servo voltage, the gap between the wire and workpiece becomes narrow and more number
of sparks are generated continuously, which results in uniform material removal thereby
decreasing the cylindricity error. When servo voltage increases, the gap between wire and
workpiece increases thereby generating the sparks inconsistently causing vibrations of wire.
These vibrations produce more undulations causing higher cylindricity error as depicted in Fig
5.10 (d). However, beyond 50 V the effect of change in servo voltage on the cylindricity error

was found to be negligible.

To develop prediction model for the cylindricity error, neural network toolbox has been
used in the present study. The total data sets are internally divided into 70 %, 15 % and 15 % for
training, validation and testing respectively. The neurons are trained using the 70 % of data in
developing the model. Once the model is developed, prediction accuracy was verified with
validation and testing data sets. The regression coefficient, R is used to express the correlations
between experimental and predicted values in NN modeling. The training may be stopped when
the regression coefficients for training, validation and testing data are acceptable, and the
developed model can be used to predict the cylindricity error. The regression coefficients of the
developed NN model are found to be 98 %, 99 %, 97 % and 98 % for training, validation, testing

and overall model respectively as shown in Fig. 5.11 (a) to (d)
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Figure 5.11. Correlation between experimental and predicted cylindricity errors with associated R

values

Effectiveness of the model was validated against 10 experimental data sets. Table 5.4
presents the percentage of deviation between the experimental and predicted cylindricity errors
for the validation data sets. Figure 5.12 shows the graphical representation of the confirmation
test results. It can be observed that the deviations between experimental and predicted values are
marginal. It was found from the results of confirmation test data sets that the average deviation of
cylindricity error from experimental value to the predicted value is 4.87 %. Therefore, the

developed model can be used to predict the cylindricity error.
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Figure 5.12. Experimental and predictive cylindricity errors in validation of NN model

Table 5.4 Experimental data to validate NN model for cylindricity error

Experimental Predicted
Ton Tost I, Sy Deviation
S. No. cylindricity cylindricity error '
(s)  (us) (A (V) . in %
error (um) using NN (um)

1 125 50 10 60 29.81 32.294 8.33
2 125 50 12 60 42.75 42.003 1.75
3 115 55 11 50 41.11 39.847 3.075
4 125 50 12 40 25.12 23.686 5.715
5 105 50 10 40 32.56 31.931 1.95
6 105 60 10 60 29.50 32.116 8.86
7 115 60 11 50 51.61 50.874 1.44
8 115 55 11 50 38.28 39.847 4.10
9 115 55 11 40 44.96 46.127 2.59
10 105 60 12 60 21.65 24.025 10.95
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5.6. Summary

Inconel-690 and Nimonic-263, nickel based super alloys, are very hard to cut using the
conventional machining processes. WEDM, being an advanced machining process, can be used
to machine electrically conductive materials of any hardness. Majority of engineering
components have axi-symmetrical features in them. In order to minimize the rejection rate during
inspection, these features are to be manufactured with strict control with regard to their
tolerances. Machining of circular and cylindrical components with minimum circularity or
cylindricity errors to meet their functional and assembly criteria is always a challenging task
especially with a stochastic machining process like WEDM. Since the studies on influence of
process parameters on the circularity error and cylindricity errors in WEDM are not yet reported,

attempts are made in this work to carry out these investigations.
Summary of the findings on circularity error:

e [t is observed that, up to 120 pus of pulse-on time circularity error is low and further
increase in pulse-on time increases the circularity error.

e The circularity error decreases with increase in pulse-off time up to 55 ps and further
increase in pulse-off time increases circularity error.

e Circularity error decreases with increase in peak current.

e [tis also observed that the circularity error decreases with increase in servo voltage up

to 45 V and further increase in servo voltage increases the circularity error.

Summary of the findings on cylindricity error:
e [t is observed that, up to a pulse-on time of 115 ps cylindricity error is increased and
further increase in pulse-on time decreases the cylindricity error.
e The cylindricity error steadily increases with increase in pulse-off time.
e Cylindricity error was found to increase with increase in peak current up to 11 A and
further increase in peak current decreases the cylindricity error.
e [t is also observed that the cylindricity error sharply increases with increase in servo
voltage up to 50 V and remains constant beyond 50 V.
Robust prediction models for the circularity error and cylindrical errors can reduce the
rejection rate and yield parts of better quality. For the first time, attempts are made to develop
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predictive models for the circularity error and cylindrical errors in WEDM process. Neural
network technique is used and the models are trained, validated and tested with different data
sets. Deviations between experimental and predicted values are estimated for all the data sets.
Since the regression coefficient values are above 96 % for all the data sets, correlations between
experimental and predicted values are strong. Furthermore, all the deviations of the circularity
error and cylindricity errors are in acceptable range and therefore, the models developed in this
work can be applied for accurate prediction of the circularity and cylindricity errors. The
machining data generated in the present work for the Inconel-690 and also Nimonic-263 using

WEDM process will be useful to the industry.
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CHAPTER 6

EXPERIMENTAL INVESTIGATION ON RE-CAST
LAYER THICKNESS AND MICRO-HARDNESS OF
WEDMed SURFACES OF INCONEL-690 AND
NIMONIC-263

6.1. Introduction

The mechanical properties of any material after machining will vary due to the machining
phenomena of sudden heating and cooling. The base material properties cannot be maintained by
the machined components. Therefore, the mechanical properties of the machined components
such as micro-hardness (MH), recast layer thickness (RLT) are very essential to know whether
they are meeting the functional requirements or not. In WEDM process, when the workpiece
approaches the electrode, the gap between workpiece and wire reaches a certain threshold value,
the insulating liquid breaks down and discharging channel forms thereby sparks are generated
resulting in high temperature instantaneously up to about 10000° C. A huge amount of heat is
generated due to these sparks and this heat is used to melt workpiece. A portion of the melted
workpiece material is removed by a dielectric circulation system. The remaining molten material
will rapidly re-solidify to form a layer known as the recast layer (Goswami and Kumar, 2014).
This recast layer affects the mechanical properties like hardness of the materials. The hardness of
the WEDMed surfaces will depend on the recast layer thickness. Newton et al. (2009)
investigated on characteristics of recast layer formed in machining of Inconel-718. They found
that the hardness is increasing with distance from the top layer of WEDMed surface. Li et al.
(2013) and Kumar et al. (2016) also observed that there is a dramatic reduction of hardness as

compared to bulk material.

As the nickel based super alloys are using in various applications such as nuclear,

automobiles and aerospace etc., it is required to investigate the recast layer thickness and
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hardness of the machined surfaces along with MRR, SR and kerf etc. Most of the researchers
concentrated in modeling of WEDM responses like MRR, SR and kerf etc. using regression
(Mahapatra and Patnaik, 2007; Sadeghi et al. 2011), neural networks (Spedding and Wang 1997;
Sarkar and Mitra 2006; Saha et al. 2008) and RSM (Datta and Mahapatra, 2010; Shandilya et al.,
2012) etc. No importance is given for modelling and prediction of recast layer thickness and
hardness of WEDMed surfaces. In the present study RSM is used to generate mathematical
models and optimization of recast layer thickness and hardness for first time. The data generated
may be useful to the industry.

This chapter describes the modeling of RLT and hardness of the machined components
for both Inconel-690 and Nimonic-263. It is also describe the influence of various process
parameters like pulse-on time, pulse-off time, peak current and servo voltage and their

interactional effects on RLT and MH.

6.2. Modeling of RLT and MH for Inconel-690

In this study the face cantered central composite design with six centre points has been
used. The workpiece material of Inconel-690, a nickel based super alloy, of size 100 mm x 50
mm x 6.5 mm is used. Holes of 10 mm size are produced on the material with zinc coated brass
wire as electrode and deionized water as di-electric fluid. The re-cast layer has been observed
using Scanning Electron Microscope (SEM) of Tescan make VEGA 3 LMU model and micro-
hardness of the machined surfaces is measured using Economet VH 1 MD, Chennai Metco, India
and are shown in Figure 3.5 and Figure 3.7 respectively. A load of 500 gm for a dwell time of 10
min was applied to measure the micro-harness. Prediction models are generated for RLT and MH

using RSM and the adequacies of these models are expressed in terms of R-square values.
6.2.1. Results and analysis

Experimental results of RLT and MH are given in Table 6.1 in the coded form along with
the measured responses of hardness and recast layer thickness. ANOVA has been conducted for

both RLT and MH to study the significance of parameters and their interaction effects.
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Table 6.1 Experimental plan and results for Inconel-690

121

No.  Ton  Toft b S, RLT(@M) MH(HV)
1 s 9 ) 5 31.07 139.7
5 s 3 2 5 27.86 143
3 3 1 3 3 38.4 133
A s 9 L L 19.14 155.3
5 13 3 3 27.24 144.5
6 s 9 2 3 27.66 143.4
- 3 3 1 1 23.13 159.67
8 s 9 2 5 30.25 139.9
9 s 9 ) 1 29.37 141
0 1 1 1 1 16.48 157.1
u 2 2 3 L 41.98 133
2 3 3 1 3 14.55 161
13 3 1 1 1 26.66 145
“ 13 3 1 33.14 138.2
T 2 » 28.68 142.7
TR L L 3 11.4 167.4
17 2 1 2 » 31.83 139.7
18 1 1 3 3 32.14 139
9 1 3 1 1 12.84 161
0 1 3 L 3 10.06 171
21 3 2 2 » 28 141.2
» 1 3 5 5 26.24 147.1
23 2 9 ) 5 29.29 142
u 1 1 3 1 36.16 134
25 3 1 3 L 49.34 122.5



37.91 134

26 3 3 3 3

N 2 5 29.22 142.1
8 3 3 3 1 47.42 128.6
29 2 2 ) 1 355 137.9
0 3 1 1 3 16.37 158

(a) ANOVA analysis of recast layer thickness

It is observed from the ANOVA results of RLT (Table 6.2) that the factors influencing the
RLT are pulse-on time, peak current and servo voltage and are shown in Figure 6.1 (a) to (c). The
factors for which the P value is less than 0.05 will influence the model. A mathematical

predictive model has been developed using ANOVA.

Table 6.2 ANOVA results of RLT for Inconel-690

Source SS DF MS F P
Model 2777.04 12 231.42 99.94484 <0.0001
A-Ton 321.565 1 321.565 138.8762 <0.0001
B- Tofr 33.7021 1 33.7021 14.55512 0.0014
C-lp 2071.53 1 2071.53 894.6466 <0.0001
D-Sv 234.289 1 234.289 101.1839 <0.0001
AB 1.65122 1 1.65122 0.713125 0.4101
AC 13.0682 1 13.0682 5.643858 0.0295
AD 28.9982 1 28.9982 12.52365 0.0025
CD 0.8281 1 0.8281 0.357637 0.5577
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A? 29.8336 1 29.8336 12.88441 0.0023

B? 1.15728 1 1.15728 0.499802 0.4892
C? 0.00564 1 0.00564 0.002437 0.9612
D2 2.94788 1 2.94788 1.273119 0.2749
Residual 39.3631 17 2.31548

Lack of Fit 35.653 12 2.97108 4.004009 0.0681
Pure Error 3.71013 5 0.74203

Cor. Total 2816.4 29

The predictive model in coded form is given in Equation (6.1). For this model R-square,
adjusted R-square and predicted R-square values are 98.6 %, 97.62 % and 94.91 % respectively.

RLT =30.08+4.23A-1.37B+10.73C —3.61D + 0.32AB + 0.9AC —1.35AD - 0.23CD

(6.1)
—3.39A? -0.67B? +0.047C* +1.07D?

Influence of process parameters on recast layer thickness is shown in Figure 6.1 (a) to (f).
It can be observed from the Figure 6.1 (a) that RLT increases as pulse-on time increases. Since
pulse-on time corresponds to amount of time allowed to discharge energy in machining process,
amount of energy increases with pulse-on time. Higher the energy discharged, higher will be the
MRR and cutting speed. As the material removal increases, it causes more oxides to form and the
dielectric fluid will not be able to flush away the debris effectively at higher cutting speed.
Therefore, at high pulse-on time, chances of increasing the recast layer thickness on the machined
surface will be high. Pulse-off time is the time interval between discharges. Behavior with this
factor is opposite to that of pulse-on time as shown in Figure 6.1 (b). Peak current is the amount
of current applied during machining. The discharge energy is directly proportional to the current.
At high peak current, more energy is discharged resulting in more MRR and there is continuous
spark generation and therefore, the cutting speed increases. Under these conditions, more amount

of material is removed from workpiece as well as electrode and also more oxides will form on the
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surface therefore chances of forming the RLT will be high as shown in Figure 6.1 (c). Servo
voltage is the reference voltage and is used to control the wire retracts and advances. At lower
value of servo voltage, the gap between wire and workpiece becomes narrow allowing more
number of sparks per unit time. More amount of heat is generated causing cutting speed to
increase thereby increasing the RLT. In other words, as the servo voltage increases, the cutting
speed decreases which causes RLT to decrease as shown in Figure 6.1 (d). The interaction effects

on RLT are also shown in Figure 6.1 (e) and (f).
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B: Toff = 55.00
C:lp=11.00
B: Toff = 55.00
D: Sv=50.00

12500 72000 17500 ‘i
11000
A: Ton

(€) Ton (1s) and 1y (A) () Ton (1s) and Sv (V)

Figure 6.1. Effect of process parameters on recast layer thickness while machining Inconel-
690

(b) ANOVA analysis of micro-hardness

From the ANOVA Table 6.3, it is observed that the factors such as pulse-on time, pulse-
off time, peak current, and servo voltage influence the hardness of machined surfaces.

Table 6.3 ANOVA results of MH for Inconel-690

Source SS DF MS F P
Model 3845.28 14 274.662976 64.93432235 <0.0001
A-Ton 323.682 1 323.6816056 76.52303934 <0.0001
B- Torf 113.854 1 113.85405  26.91675337 0.0001
C-lp 2905 1 2904.998272 686.7838433 <0.0001
D-Sv 251.852 1 251.8516056 59.54138261 <0.0001
AB 3.58156 1 3.58155625 0.846731989 0.3720
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AC 1.42206 1 1.42205625 0.336194781 0.5706
AD 0.11731 1 0.11730625 0.027732904 0.8700
BC 4.37856 1 4.37855625 1.035154381 0.3251
BD 15.5433 1 15.54330625 3.674663667 0.0745
CD 3.45031 1 3.45030625 0.81570258 0.3807
A? 24.3159 1 24.31590463 5.748633516 0.0300
B? 0.1799 1 0.179904625 0.04253207 0.8394
C? 24.3159 1 24.31590463 5.748633516 0.0300
D? 0.493632 1 0.493631898 0.11670176 0.7374
Residual 63.44787 15 4.229858202

Lack of Fit 55.77454 10 5.577453969 3.634309711 0.0835
Pure Error 7.673333 5 1.534666667

Cor. Total 3908.73 29

A prediction model has been developed using ANOVA and is given by Equation (6.2) in coded
form. The R-squared, adjusted R-squared and predicted R-squared values are 98.37 %, 96.86 %
and 88.95 % respectively for this model.

MH =141.159-4.241A+2.51B-12.7C +3.74D +0.47AB - 0.3AC —0.086 AD

(6.2)
—0.52BC —0.99BD — 0.46CD +3.06 A2 +0.26B2 +3.06C° — 0.44D’

Hardness of bulk material (zero recast layer thickness) is higher for nickel based super
alloys as compared to that of recast layer. This is due to the fact that recast layer is composed of
elements like Cu, Zn, oxides and salts. Therefore hardness and RLT are inversely related.
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The effects of various process parameters and their interactions on hardness are shown in
Figure 6.2 (a) to (d). It can be observed from the Figure 6.2 (a) that the hardness decreases as
pulse-on time increases. At higher pulse-on time discharge energy is more causing the cutting
speed to increase. RLT increases with increase in cutting speed thereby decreasing the hardness
of machined surface. The behavior with pulse-off time is opposite to that of pulse-on time as
shown in Figure 6.2 (b). As the discharge energy is directly proportional to the current, at the
high peak current, the cutting speed, melting of metal is more. Therefore the RLT increases
thereby hardness decreases as shown in Figure 6.2 (c). At low value of servo voltage, cutting
speed is high due to the reasons explained earlier. As a result, RLT increases thereby decreasing
the hardness as shown in Figure 6.2 (d).

The recast-layers of the machined samples were measured using the inbuilt
measuring software of scanning electron microscope. Two specimens are chosen, one at lowest
RLT from Table 6.1, corresponding to Experiment number 20 (Ton=105 ps, Tof = 60 ps, Ip = 10
A, Sy =60 V) and another at highest RLT corresponding to Experiment number 25 (Ton = 125 ps,
Tott =50 ps, I, =12 A, Sy =40 V) shown in Figure 6.3.

Micro cracks, voids can also be observed on the WEDMed surfaces (Figure 6.4). A pool
of molten metal in the form of debris, which is not flushed away by di-electric fluid, deposits on
the machined surface as shown in Figure 6.4. A pool of molten metal increases RLT and it cannot
be completely eliminated during WEDM process. RLT can be minimized upto certain level by
choosing the optimal machining conditions. Also, circulation of dielectric fluid with sufficient
pressure will flush most of the molten metal and debris thereby reducing the RLT. The recast
layer thickness, was observed in the range of 10 - 50 um. Hardness of Inconel-690 base material
is 221 HV. However, hardness of the machined surface was found to lie in the range 122 - 171
HV due to the variation of the RLT at different conditions. The reduction in hardness can be
attributed to the presence of Zn, Cu, oxides and salts in the recast layer.
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Figure 6.2. Effect of process parameters on micro-hardness while machining Inconel-690
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Figure 6.3. SEM images showing the recast layer thicknesses at different conditions
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Figure 6.4. SEM images showing micro cracks, voids and debris of molten metal
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6.2.2. EDS analysis

Energy Dispersive X-ray Spectroscopy or EDS coupled with SEM, is used for compositional
analysis and chemical characterization. Surface layers of the WEDMed specimens have been
analysed using EDS. Figure 6.5 (a) and (b) show the EDS spectra of machined surfaces
corresponding to experiment number 20 (Ton = 105 ps, Toff = 60 ps, Ip = 10 A, Sy = 60 V) and
experiment number 25 (Ton = 125 ps, Torf = 50 ps, I, = 12 A, Sy = 40 V) respectively. Though, the
bulk material does not have zinc and has very less percentage of copper, the WEDMed surfaces
were found to be contained these elements in appreciable quantities. The quantities of these
elements corresponding to experiment number 20 and 25 are found to be 4.12 % Zn and 0.94 %
Cu and also 8.26 % Zn and 1.51 % Cu respectively. These elements are migrated from the wire
electrode while machining. Migration of Zn and Cu leads to soften the machined surfaces. Hence
hardness of the machined surface is lesser than that of the bulk material. Hardness of the
machined surfaces are presented in Table 6.1.

6.3. Modeling of RLT and MH for Nimonic-263

Similar experimental procedure has been followed for the Nimonic-263 material, a nickel
based super alloy of size 120 mm x 110 mm x 18.5 mm also. The influence of WEDM process
parameters such as pulse-on time, pulse-off time, peak current and servo voltage on the micro-
hardness and recast layer of Nimonic-263 machined surfaces have been studied. Predictive
mathematical models for RLT and MH are also developed.

6.3.1. Results and analysis

Experiments are conducted as per the RSM plan as presented in Table 6.4 along with the
measured responses. ANOVA has been conducted for RLT, SR and MH to study the significance
of parameters and their interaction effects on the responses. Prediction models are generated
using RSM and the adequacies of these models are expressed in terms of R-squared values.
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Figure 6.5. EDS images at different conditions

Table 6.4 Experimental plan and results for Nimonic-263

S. No Ton (US)  Toff (US) Ip (A) Sv (V) RLT (um)  MH (HV)

1 125 60 12 60 26.05 259.1
2 125 60 10 60 10.21 320.9
3 115 55 11 40 24.88 267.6
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23 125 50 12 60 26.67 248.3

24 105 60 12 40 22 281.6
25 105 50 10 60 8.99 3325
26 105 50 12 60 22.39 273.2

() ANOVA analysis of RLT

It is observed from the ANOVA results of RLT that the factors influencing the RLT are
pulse-on time, pulse-off time, peak current, servo voltage and the interaction effects of pulse-on
time and current, pulse-on time and servo voltage, and current and servo voltage as shown in
Figures 6.6 (a) - ().

Table 6.5 ANOVA results of RLT for Nimonic-263

Source SSquares DF MS F P
Model 1553.01 10 155.301 65.56155 <0.0001
A-Ton 222.2113 1 222.2113 93.80828 <0.0001
B-Toft 19.8324 1 19.8324 8.372407 0.0111

C-lp 1068.391 1 1068.391 451.0297 <0.0001
D-Sv 139.8684 1 139.8684 59.04656 <0.0001
AB 4.726276 1 4.726276 1.995235 0.1782
AC 57.28976 1 57.28976 24.18533 0.0002
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AD 16.84282 1 16.84282 7.110329 0.0176

BC 2.937796 1 2.937796 1.240214 0.2830
BD 0.062001 1 0.062001 0.026174 0.8736
CD 20.84836 1 20.84836 8.8013 0.0096
Residual 35.53172 15 2.368781
Lack of Fit 35.39652 14 2.528323 18.70061 0.1795
Pure Error 0.1352 1 0.1352
Cor Total 1588.542 25

The factors for which the P value is less than 0.05, will influence the model. A
mathematical predictive model has been developed using ANOVA. The predictive model of
coded form is given in Equation (6.3). For this model R-square, adjusted R-square and predicted
R-square values are 97.76 %, 96.27 % and 91.34 % respectively.

RLT =19.27+3.51A-1.05B+7.7C -2.79D+0.54AB +1.89AC —-1.03AD

(6.3)
—0.43BC +0.062BD —1.14CD
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Figure 6.6. Effect of process parameters on recast layer thickness while machining Nimonic-
263

Effect of various process parameters (Figure 6.6) on RLT in machining of Nimonic-263 are as

similar as thst of machining in Inconel-690 and are explained in 6.2. The interaction effects on
RLT are also shown in Figure 6.6 (e) to (g).
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(b) ANOVA analysis of micro-hardness

From the ANOVA Table 6.6, it is observed that the factors such as pulse-on time, pulse-
off time, peak current, and servo voltage influence the hardness of machined surfaces.

Table 6.6 ANOVA results of MH for Nimonic-263

Source SSquares DF MS F P
Model 23929.8 14 1709.27 27.4674 < 0.0001
A-Ton 858.361 1 858.361 13.7936  0.0034
B-Toft 228.98 1 228.98 3.67964  0.0814
C-lp 19503.1 1 19503.1 313.409 <0.0001
D-Sy 1854.41 1 1854.41 29.7997 0.0002
AB 12.4256 1 12.4256 0.19968  0.6637
AC 43.8906 1 43.8906 0.70531  0.4189
AD 108.681 1 108.681 1.74647  0.2131
1
1
1
1
1
1
1

BC 0.05063 0.05063 0.00081  0.9778
BD 3.90063 3.90063 0.06268  0.8069
CD 33.3506 33.3506 0.53594  0.4794
A? 65.1882 65.1882 1.04755  0.3281
B2 148.107 148.107 2.38004 0.1512
C? 610.935 610.935 9.81753  0.0095
D2 0.76134 0.76134 0.01223  0.9139
Residual 684.518 11 62.2289
Lack of Fit ~ 653.313 10 65.3313 2.09362  0.4948
Pure Error 31.205 1 31.205
Cor. Total  24614.3 25

From the ANOVA Table 6.6, it is observed that pulse-on time, peak current and servo
voltage are influencing the hardness model. A prediction model has been developed using
ANOVA. The predictive model of coded form is given in Equation (6.4). The R-square, adjusted
R-square and predicted R-square values are 93.26 %, 87.03 % and 74.02 % respectively for this

model.
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MH =281.63-13.34A+7.55B -31.17C +8.36 D —3.83AB —6.56 AC

(6.4)
+3.96BC+2.35CD+8.61A% —5.14B% + 2.11C* +5.66D°

The effect of various process parameters and interaction effects on hardness are shown in
Figure 6.7 (a) to (c). Effect of various process parameters (Figure 6.6) on RLT in machining of
Nimonic-263 are as similar as that of machining in Inconel-690 and are explained in 6.2. The
recast-layer of the machined samples was measured using the inbuilt measuring software of

scanning electron microscope.
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Figure 6.7. Effect of process parameters on micro hardness while machining Nimonic-263
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6.4. Summary

Nickel based super alloys are gaining importance day by day due to their superior
properties like high hardness at elevated temperatures, low thermal conductivity and high
resistance to corrosion. Machining of these alloys with conventional machining processes is very
difficult due to these properties. Inconel-690 and Nimonic-263 which are nickel based alloys can
be machined using WEDM process. Recast layers will be formed on the surfaces of these
machined components, this leads to decrease in hardness as compared to base materials.
However, the machined components should meet their functional requirements like retaining the
hardness at high temperatures. Avoiding the rejection rate of machined surface based on the
functional criteria is a challenging task especially in a machining process like WEDM due to its
stochastic nature. In the present work an attempt is made to investigate the influence of WEDM
process parameters on recast layer thickness and hardness of the machined surfaces of Inconel-

690 and Nimonic-263. Summary of the observations include:

e Recast layer thickness of machined components is increasing with increase of pulse-on
time and peak current, whereas, it is decreasing with increase of servo voltage.

e Hardness of the machined surface is lower than that of the base material.

e Hardness of the machined surface is affected by pulse-on time, peak current, servo
voltage, interaction of pulse-on time and servo voltage and interaction of peak current and
pulse-off time.

e Micro-cracks are observed on the machined surfaces.

e Some amount of zinc is embodied to the machined surface while machining.

Also, predictive models for recast layer thickness and hardness are developed with respect

to WEDM process parameters for the first time and are very much useful to the industry.
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CHAPTER 7

CONCLUSIONSAND SCOPE FOR FUTURE WORK

7.1. Conclusions

Nickel-based super alloys are a special class of materials with an exceptional combination
of high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing
environments. These materials are extremely hard to shape using traditional machining methods
due to rapid work hardening. Therefore, modern machining methods are to be employed to
process such materials. WEDM is known for machining complex shapes with lesser energy
requirements. Since adequate WEDM studies are not reported on these materials, generation of
machining data using WEDM on these materials assumes a great importance from the industry
viewpoint. In the present study, performance of WEDM process is assessed in terms of MRR,
SR, RLT, MH and form errors such as circularity and cylindricity of the machined surfaces for
Inconel-690 and Nimonic-263 materials.

Surface roughness affects several functional attributes of parts, such as friction, wear and
tear, light reflection, heat transmission, ability of distributing and holding a lubricant and coating.
Hence, assessment of surface roughness of the parts is important from the quality viewpoint.
Further, in order to meet the customer requirement in terms of due date, the manufacturer always
tries to maximize the MRR. Increasing the MRR is also important from the viewpoint of
machining economics. Depending upon the requirements of the industry, these responses are to
be optimized either individually or simultaneously. Since the accuracy of cuckoo search
algorithm (CSA) heavily depends upon the initial solution and its location from the target value,
it may involve large number of generations. In order to overcome these drawbacks, a modified
cuckoo search (MCS) agorithm has been proposed in this work. The two-stage initialization
concept ensures the identification of initial solution set very nearer to the fina target value.
Therefore, the proposed MCS algorithm is more accurate and faster when compared to CSA.
Before applying the proposed method on actual WEDM data, it has been successfully tested on
standard benchmark problems for its robustness in yielding the accurate results. The results for
the WEDM data using the proposed MCS algorithm were found to be better than that of the
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CSA.Confirmation tests were also conducted at optimal parameter sets and the deviations
between the predicted values and experimental values are less than 5 %.Therefore, the proposed
MCS agorithm can also be applied for optimization problems in other fields. Non-dominating
sorting principle has also been applied on the proposed MCS to generate Pareto optimal
solutions. The Pareto solutions will give the alternate solutions to the manufacturer so as to select
the best solution based on the requirement. The machining data generated for the first time for
Inconel-690 and Nimonic-263 in this work provides the industry some useful information on
general behavior of WEDM. Based on this data, industry can carry out focused work to meet the
specific needs.

In order to meet the desired functional and assembly requirements, engineering
components need to have tighter dimensional and geometrical tolerances. Majority of the
engineering components have circular and cylindrical features in them. These components are
used for different applications such as rotating devices, transmission systems, injection moulds,
bearings and engine cylinders etc. Producing straight cuts is easier as compared to machining of
axisymmetric components. The difficulties are further amplified while machining such features
on super aloys with the stochastic nature of WEDM process. Although most of the WEDM
literature is focused on responses such as MRR, SR, Kerf, WWR etc. Studies on geometrical
errors of axisymmetric components are not yet reported. Therefore attempts are made to model
the geometrical errorsin order to accurately predict these errors to reduce the rejection rate of the
components during inspection. Neural network technigue was used to develop the predictive
models and the models are trained, validated and tested with different data sets. Deviations
between experimental and predicted circularity and also cylindricity errors are estimated for al
the data sets. Since the regression coefficient values are above 96 % for all the data sets,
correlations between experimental and predicted circularity and cylindricity errors are strong. It
was found from the results of confirmation test data sets that the average deviation of circularity
error from experimental value to the predicted value is 5.08 %.The average deviation of
cylindricity error between the experimental and the predicted values was found to be 4.87 %.
Since all the deviations of the circularity and cylindricity errors are in acceptable range, the
models developed in this work can be applied for accurate prediction of the circularity and

cylindricity errors. The machining data generated on geometric errors for the first time in the
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present work for Inconel-690 and also Nimonic-263 using WEDM process will be useful to the
industry.

Mechanical properties of any material after machining will vary due to the machining
phenomena of sudden heating and cooling. It is difficult to retain the base material properties
after machining. In WEDM process, a huge amount of heat is generated is used to melt the
workpiece. A portion of the melted workpiece material is removed by a dielectric circulation
system. The remaining molten material will rapidly re-solidify to form a layer known as the
recast layer. This recast layer thickness affects the surface integrity aspects such as hardness and
other surface properties of the materials. Prediction models for recast layer thickness and
hardness are developed with respect to WEDM process parameters for the first time and are very
much useful to the industry. The re-cast layer thickness values of machined components are
increasing with increase of pulse-on time and peak current, whereas, RLT is decreasing with
decrease of servo voltage. Pulse-on time, peak current, servo voltage, interaction of pulse-on time
and servo voltage and interaction of peak current and pulse-off time affect the hardness of the
machined surface. Hardness of the machined surface was found to be lower than that of the base
material for both the work materials chosen. The reduction in hardness values of machined
surfaces can be attributed to the migration of Zn and Cu from the wire electrode to the workpiece
and formation of oxides and carbides while machining as revealed by the EDS studies. Micro-
cracks are also observed on the machined surfaces. The machining data generated on surface
integrity for the first time for Inconel-690 and Nimonic-263 in this work provides the industry

some useful information on general behavior of WEDM.

7.2. Scope for futurework

The proposed cuckoo search agorithm with two stage initialization is generic in nature and
therefore can be extended to other optimization problems. The principle of two stage
initialization can aso be applied to other evolutionary algorithms. Generation of machine data for
different super alloys can be carried out in the similar lines. Further work may be directed to
optimize more than two WEDM responses simultaneously by using non dominated sorting
principle. Other form errors such as conicity, straightness etc. may aso be studied on WEDMed

parts.
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