
NUMERICAL SOLUTION OF

HIGHER ORDER BOUNDARY VALUE PROBLEMS

BY PETROV-GALERKIN METHOD
WITH DIFFERENT ORDERS OF B-SPLINES

Submitted in partial fulfilment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY

IN

MATHEMATICS

BY

S. MALLISHWAR REDDY
(ROLL NO: 701318)

Under the Supervision of

PROF. K.N.S. KASI VISWANADHAM

DEPARTMENT OF MATHEMATICS

NATIONAL INSTITUTE OF TECHNOLOGY

WARANGAL - 506 004 INDIA
JANUARY, 2016



CERTIFICATE

This is to certify that the thesis entitled NUMERICAL SOLUTION OF

HIGHER ORDER BOUNDARY VALUE PROBLEMS BY PETROV-

GALERKIN METHOD WITH DIFFERENT ORDERS OF B-SPLINES

submitted to National Institute of Technology, Warangal, INDIA is the bonafide

research work done by Mr. S.Mallishwar Reddy under my supervision. The

contents of the thesis have not been submitted elsewhere for the award of any degree.

Date:

Place: Warangal

Prof. K.N.S. Kasi Viswanadham

(Supervisor)

Department of Mathematics

National Institute of Technology

Warangal - 506 004 INDIA.



Dedicated to

my wife

Smt. Saritha

and

My Parents

ii



DECLARATION

This is to certify that the work presented in the thesis entitled Numerical solu-

tion of higher order boundary value problems by Petrov-Galerkin method

with different orders of B-splines is a bonafide work done by me under the su-

pervision of Prof. K.N.S. Kasi Viswanadham and was not submitted elsewhere

for the award of any degree.

I declare that this written submission represents my ideas in my own words and

where others’ ideas or words have been included, I have adequately cited and ref-

erenced the original sources. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified

any idea / data / fact /source in my submission. I understand that any violation of

the above will be a cause for disciplinary action by the Institute and can also evoke

penal action from the sources which have thus not been properly cited or from whom

proper permission has not been taken when needed.

S. Mallishwar Reddy

(Roll No: 701318)

Date:



Acknowledgements

Foremost, I take this opportunity to express my sincere and deep sense of utmost

gratitude to my supervisor Dr. K.N.S. Kasi Viswanadham, Professor, Depart-

ment of Mathematics, National Institute of Technology, Warangal. I consider myself

privileged to be one of his research students. For his invaluable guidance with un-

reserved cooperation, constructive suggestions and encouragement throughout the

period of my research work and explaining the concepts of B-splines, Finite Ele-

ment Methods, programming skills, teaching skills and many more things. I shall

ever remain thankful to him for bringing the thesis to this shape. His worthy com-

ments, suggestions and valuable guidance enabled me in enhancing and improving

my research ability. I also thank his wife Smt.Lakshmi for her hospitality and her

patience during our elongated discussions, correction of research papers and thesis.

I give my sincere thanks to my Doctoral Scrutiny Committee Members Prof.

J.V.Ramana Murthy, Prof. M. Sai Shanker, Department of Physics and Dr.

D.Srinivasacharya for devoting their precious time in providing valuable feedbacks

and encouragements on this work.

It is a pleasure to express my thanks to Prof. D.Dutta, Head, Department

of Mathematics, Prof. G.Radhakrishnamacharya, Prof. Y.N.Reddy, Dr.

T.Kurmayya, Dr. R.S.Selvaraj and all other faculty members of the Depart-

ment for their valuable suggestions, support and timely help.

Special thanks to my uncle Mr. G.Sudersan Reddy for encouraging me to

do Ph.D. in NIT Warangal and also to Dr. Sreenivasulu Ballem for his constant

support throughout my research.

iv



I also express my thanks to my friends and as well as my co-research scholars Dr.

O.Surender, Dr. M.Venkatrajam, Dr. J.Srinivas, Mr. N.Santosh, Mr.

P.Vijay Kumar, Mr. G.Nitish Kumar, Dr. Y.Showri Raju and Smt. Ki-

ranmayi for their suggestions, technical help and encouragement during my research

period.

(S. Mallishwar Reddy)

v



Abstract

In this thesis, various orders of higher order boundary value problems have been

solved with the combination of B-splines as basis functions as well as weight func-

tions by Petrov-Galerkin method. In Petrov-Galerkin method, the basis functions,

which constitute a basis for the approximation space under consideration, have been

redefined into a new set of basis functions which vanish on the boundary where the

given set of boundary conditions or most of the boundary conditions prescribed and

also the weight functions have been redefined into a new set of weight functions

which in number match with the number of redefined basis functions. The vari-

ous orders of higher boundary value problems have been solved by Petrov-Galerkin

method with redefined set of basis functions and the redefined set of weight func-

tions. The solution to a nonlinear boundary value problem has been obtained as

the limit of a sequence of solutions of linear boundary value problems generated

by quasilinearization technique. Several numerical examples of linear and nonlin-

ear boundary value problems have been considered for testing the efficiency of the

proposed Petrov-Galerkin method.
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Chapter 1

Introduction

Two point boundary value problems manifest themselves in almost all branches of

Science, Engineering and Technology, for instance, boundary layer theory in fluid

mechanics, heat power transmission theory, space technology and also control and

optimization theory, to cite only a few. Most of the real problems are defined on

domains that are geometrically complex, many have different boundary conditions

on different portions of the boundary. The solutions to these equations would be

exact and closed form solutions to the problems are available in rare cases. However,

due to complexities in the geometry, properties and boundary conditions in most

of the real world problems, an exact solution or analytical solution can not be

obtained in a reasonable amount of time. The engineers or designers want to obtain

the solutions of such problems in a short period of time. That means they want to

obtain the approximate solutions in a reasonable time frame with reasonable effort.

The availability of high speed digital computers has made it possible to undertake

such a task, when the chosen approximation method involves computation.

We have some of the numerical methods like Finite Difference Methods, Spectral

Methods, Finite Element Methods, Boundary Element Methods and Finite Volume

Methods etc. Finite Element Method, although somewhat more difficult than other

methods from computer programming point of view, have certain inherent advan-

tages. Using Finite Element Method, the boundary value problem can be solved

with ease even in complicated domains. The schemes also give better results than

the other methods.
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The fundamental idea of the Finite Element Method is the replacement of contin-

uous functions by piecewise approximations, usually polynomials. In Finite Element

Method the approximate solution can be written as a linear combination of a set of

functions which constitute a basis for the approximation space under consideration.

Finite Element Analysis typically employs Lagrangian or Hermite interpolation func-

tions. These functions are easy to implement and can provide sufficient accuracy.

However, they are relatively inefficient and can be expensive computationally. Fur-

thermore, if a smooth solution with continuity of higher-order derivatives is desired

these interpolation functions become even less efficient.

In the past few decades, the Finite Element Method has been developed into

a key indispensable technology in the modelling and simulation of various physical

or engineering systems. In the development of an advanced physical or engineering

system, engineers or designers have to go through a very rigorous process of mod-

elling, simulation, visualization, analysis, designing, prototyping, testing and finally,

fabrication or construction. Such techniques are related to modelling and simula-

tion play an important role in building advanced physical or engineering systems

and therefore the applications of the Finite Element Method have been involved in

getting the solutions of such problems.

The modern use of finite elements really started in the field of structural en-

gineering. Later, this method has been used to discuss low velocity flow phenom-

ena in Stokes equations, flow phenomena in weather prediction, blood flows using

Navier-Stokes equations, magnetic field around a coil from Maxwell equations, pollu-

tion from transport equation, wave phenomena, acoustics, seismic waves from wave

equation, displacement and stress of the elastic bodies from Cauchy-Navier elastic-

ity equation, wave motion of an electron arbitrary armed the proton at the origin

from Schrodinger equation, heat conduction, pollution, osmosis, diffusion through

cell membrane, gravitation, ground water flow, electrostatics from Poisson equation.

The Finite Element Method involves variational methods like Rayleigh-Ritz

method, Collocation method, Galerkin method, Petrov-Galerkin method, Least

Squares method etc. When the given differential operator is self-adjoint and positive

definite, then only one can use the Rayleigh-Ritz method to find the approximate

solution to the given differential equation [29]. The Collocation method seeks an
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approximate solution by requiring the residual to be identically zero at n selected

points(Collocated points), where n is the number of basis functions in the basis

[89]. The selection of the points is crucial in obtaining a well conditioned system

of equations and ultimately in obtaining an accurate solution. In Galerkin method,

the residual of approximation is made orthogonal to the basis functions.

The Least Squares method can be treated as a special case of Petrov-Galerkin

method [89]. In Petrov-Galerkin method, the residual of approximation is made

orthogonal to the weight functions. The weight functions are chosen from another

linear independent set which is different from the test space. The number of weight

functions should match in number with the number of basis functions. When we use

Petrov-Galerkin method, a weak form of approximate solution for a given differential

equation exists and is unique under appropriate conditions [16, 65] irrespective of the

properties of a given differential operator. Further, the weak solution also tends to

the classical solution of the given differential equation provided sufficient attention is

given to the boundary conditions [75]. That means the basis functions should vanish

on the boundary where the Dirichlet type of boundary conditions are prescribed. In

view of this, in this thesis we intend to present the use of Petrov-Galerkin method

to solve higher order boundary value problems with various orders of B-splines.

1.1 B-splines

Splines play an important role in approximation and geometric modeling. They are

widely used in data fitting, Computer Aided Design (CAD), automated manufactur-

ing (CAM) and computer graphics. B-splines were first defined by Schoenberg [104].

This early work revealed that splines possess powerful approximation properties.

The B-splines are one kind of spline polynomials and these B-splines form a basis

for spline polynomial space under consideration. B-splines represent a piecewise

polynomial curve that typically provide a better curve fit than other interpolation

polynomial curves.

B-spline curves were created as an improvement over Bezier curves in the 1970′s.

This effort produced splines which contain local support [100]. Since B-splines have

local support, the shape of a particular segment of the curve can be altered without
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affecting the overall curve. Cox and de Boor [22] discovered a recursive formula for

the definition of B-spline basis functions of any order.

Kadalbajoo and Agarwal have used a fitted mesh B-spline method for solving

singularly perturbed boundary value problems [44]. Brown et al. focused on the

accuracy of B-spline finite element approximation to a PDE [18]. Caglar et al.

compared B-spline approximation with the usual finite element, finite difference and

finite volume methods for a two-point boundary value problem [20]. Results show

lower maximum error norms for B-spline approximation than all other methods.

There have been various applications of numerical methods using splines. Pull-

man and Schaff performed analysis of a cross-ply laminate with a circular hole using

a 3D spline variational method [91]. It was determined that the spline variational

method can reduce the number of degrees of freedom by a factor of 3-5 while main-

taining interlaminar stress distributions comparable to ordinary finite elements.

Mizusawa has applied a spline element method to analyze the bending of skew

plates [78]. It was also observed that use of high-order splines and a mesh grad-

ing technique were effective in improvement of accuracy. Leung and Au applied

spline finite elements to beams and plates [67]. In this paper, the advantages of

splines including computational efficiency, flexibility in modeling different boundary

conditions and the variation diminishing property of splines is noted.

Kong and Cheung have applied spline finite strip analysis to shear-deformable

plates [63]. This type of analysis was proposed to study thick laminated composite

plates. The use of cubic B-splines allowed for the flexibility to meet various continu-

ity requirements for classical plate analysis. Kutluay and Esen used a B-spline finite

element method to analyze a thermistor problem involving electrical conductivity

[64]. Aksan has also used quadratic B-splines to approximate the solution of a 1D

non-linear Burgers’ equation [12]. The Burgers’ equation was converted to a set of

non-linear ordinary differential equations. Each equation was then solved by means

of a quadratic B-spline finite element method.

Soliman [126] solved Burgers’ equation by cubic B-spline Galerkin approach.

The numerical solutions of heat problem and one-dimensional hyperbolic problem

have been obtained by cubic B-splines collocation method by Duygu Donmez Demir

and Necdet Bildik, Christopher et al. [31, 26] respectively. Mittal and Jain [77, 76]
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have used cubic B-spline collocation method to solve a nonlinear parabolic partial

differential equations with Neumann boundary conditions and nonlinear Burgers’

equation respectively.

Feng and Xio [33] used quartic B-splines collocation to solve fifth boundary

value problems. Mingzhu et al. [74] obtained numerical solution of linear sixth

order boundary value problems by using quartic B-splines technique. Geyiklia and

Karakocb [34] applied Subdomain Finite Element Method with quartic B-Splines

for the solution of Modified Equal Width Wave (MEW) equation.

Saka [101] used quintic B-spline Finite Element Method for solving the nonlinear

Schrodinger equation. Siddiqi and Arshed [108] developed quintic B-spline colloca-

tion method for the solution of fourth order parabolic partial differential equations.

Ali et al. [13] obtained approximation of the Korteweg-de Vries Burgers’ equation

(KdVB) equation by the quintic B-spline differential quadrature method. Rasoul

and Reza [97] obtained numerical solution of the Rosenau equation using quintic

collocation B-spline method.

Battal and Turabi [105] obtained numerical solution of the MEW equation using

sextic B-splines. Ghazala [40] has obtained the solution of the system of fifth order

boundary value problem using sextic splines. Reza Mohammadi [98] developed sextic

B-spline collocation method for the solution of Euler-Bernoulli beam models.

Talaat and Aly, Turabi and Battal, Marzieh and Nazemi [133, 73, 135] devel-

oped septic B-spline collocation method for the numerical solution of KdVB, MEW

equation and one-dimensional hyperbolic telegraph equation respectively.

In these days, one finds many researchers are using different finite element meth-

ods for solving initial and boundary value problems. In most cases, the solution is a

smooth function which is a piecewise polynomial. This has led several investigators

to develop algorithms for the solution of initial and boundary value problems which

are based on the finite element methods. In Finite Element Method, most of the

researchers use Lagrange and Hermite functions as basis functions. They are C0 and

C1 functions. While using these basis functions, one may get the desired accuracy

with more number of intervals in the space variable domain. mth order B-splines are

Cm−1 functions. When these splines are used as basis functions, the approximate

solution can be obtained with minimum number of intervals in the space variable
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domain. B-spline Finite Element Method produces solution with less error than

the standard Finite Element Method. Therefore, in this thesis, we have proposed

and illustrated Petrov-Galerkin method with combination of B-splines as basis func-

tions and weight functions for solving various orders of two point boundary value

problems.

When the chosen approximation satisfies all the prescribed boundary conditions

or most of the prescribed boundary conditions, it gives better approximate results.

In view of this, the basis functions are redefined into a new set of basis functions

which vanish on the boundary where all the boundary conditions or most of the

boundary conditions are prescribed. The chosen approximation has been written

as a linear combination of the redefined set of basis functions along with the non-

homogeneous part function which takes care of the boundary conditions where the

redefined basis functions vanish. So, in this thesis we developed a Petrov-Galerkin

method with different orders of B-splines as basis functions to solve various orders

of higher order boundary value problems.

The recurrence formula for the numerical evaluation of cubic B-splines was dis-

covered by Cox [28] and de Boor [23] and it was conveniently modified from the

notation point of view by Kasi Viswanadham [45, 49, 46, 47, 48]. In a similar ana-

logue quartic, quintic, sextic and septic B-splines are defined in this thesis. The

definitions of the above mentioned B-splines are described in the following sections.

1.1.1 Cubic B-splines

The existence of cubic spline interpolate s(x) to a function in a closed interval [c, d]

for spaced knots (need not be evenly spaced) c = x0 < x1 < x2 < · · · < xn−1 <

xn = d is established by constructing it. The construction of s(x) is done with the

help of cubic B-splines. Introduce six additional knots x−3, x−2, x−1, xn+1, xn+2

and xn+3 such that

x−3 < x−2 < x−1 < x0 and xn < xn+1 < xn+2 < xn+3.

6



Now the cubic B-splines, given in[28, 23], are defined by

Bi(x) =


i+2∑

r=i−2

(xr − x)3+
π′(xr)

, if x ∈ [xi−2, xi+2]

0, otherwise.

where

(xr − x)3+ =

{
(xr − x)3, if xr ≥ x

0, if xr ≤ x

and π(x) =
i+2∏

r=i−2

(x− xr).

It can be shown the set {B−1(x), B0(x), · · · , Bn(x), Bn+1(x)} forms a basis for the

space S3(π) of cubic polynomial splines [71]. Schoenberg [104] has proved that the

cubic B-splines are the unique non zero splines of smallest compact support with

knots at

x−3 < x−2 < x−1 < x0 < x1 < . . . < xn < xn+1 < xn+2 < xn+3.

1.1.2 Quartic B-splines

The existence of the quartic spline interpolate s(x) to a function in a closed in-

terval [c, d] for spaced knots (need not be evenly spaced) c = x0 < x1 < x2 <

. . . < xn−1 < xn = d is established by constructing it. The construction of s(x)

is done with the help of the quartic B-splines. Introduce eight additional knots

x−4, x−3, x−2, x−1, xn+1, xn+2, xn+3 and xn+4 such that

x−4 < x−3 < x−2 < x−1 < x0 and xn < xn+1 < xn+2 < xn+3 < xn+4.

Now the quartic B-splines Bi(x)’s are defined by

Bi(x) =


i+3∑

r=i−2

(xr − x)4+
π′(xr)

, if x ∈ [xi−2, xi+3]

0, otherwise.
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where

(xr − x)4+ =

(xr − x)4, if xr ≥ x

0, if xr ≤ x

and π(x) =
i+3∏

r=i−2

(x− xr).

Here the set {B−2(x), B−1(x), B0(x), . . . , Bn(x), Bn+1(x)} forms a basis for the space

S4(π) of fourth degree polynomial splines [71]. The quartic B-splines are the unique

non-zero splines of smallest compact support with knots at

x−4 < x−3 < x−2 < x−1 < x0 < . . . < xn < xn+1 < xn+2 < xn+3 < xn+4.

1.1.3 Quintic B-splines

The existence of quintic spline interpolate s(x) to a function in a closed interval [c, d]

for spaced knots (need not be evenly spaced) c = x0 < x1 < x2 < . . . < xn−1 <

xn = d is established by constructing it. The construction of s(x) is done with the

help of the quintic B-splines. Introduce ten additional knots x−5, x−4, x−3, x−2,

x−1, xn+1, xn+2, xn+3, xn+4 and xn+5 such that

x−5 < x−4 < x−3 < x−2 < x−1 < x0 and xn < xn+1 < xn+2 < xn+3 < xn+4 < xn+5.

Now the quintic B-splines Bi(x)’s are defined by

Bi(x) =


i+3∑

r=i−3

(xr − x)5+
π′(xr)

, for x ∈ [xi−3, xi+3]

0, otherwise.

where

(xr − x)5+ =

{
(xr − x)5, for xr ≥ x

0, for xr ≤ x

and

π(x) =
i+3∏

r=i−3

(x− xr).
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Here the set {B−2(x), B−1(x), B0(x), . . . , Bn(x), Bn+1(x), Bn+2(x)} forms a basis for

the space S5(π) of fifth degree polynomial splines [71]. The quintic B-splines are the

unique nonzero splines of smallest compact support with the knots at

x−5 < x−4 < x−3 < x−2 < x−1 < x0 < . . . < xn < xn+1 < xn+2 < xn+3 < xn+4 < xn+5.

1.1.4 Sextic B-splines

The existence of the sixth degree spline interpolate s(x) to a function in a closed

interval [c, d] for spaced knots (need not be evenly spaced) c = x0 < x1 < x2 < . . . <

xn−1 < xn = d is established by constructing it. The construction of s(x) is done

with the help of the sixth degree B-splines. Introduce twelve additional knots x−6,

x−5, x−4, x−3, x−2, x−1, xn+1, xn+2, xn+3, xn+4, xn+5 and xn+6 such that

x−6 < x−5 < x−4 < x−3 < x−2 < x−1 < x0

and xn < xn+1 < xn+2 < xn+3 < xn+4 < xn+5 < xn+6.

Now the sixth degree B-splines Bi(x)’s are defined by

Bi(x) =


i+4∑

r=i−3

(xr − x)6+
π′(xr)

, for x ∈ [xi−3, xi+4]

0, otherwise.

where

(xr − x)6+ =

{
(xr − x)6, for xr ≥ x

0, for xr ≤ x

and

π(x) =
i+4∏

r=i−3

(x− xr).

Here the set {B−3(x), B−2(x), B−1(x), B0(x), . . ., Bn(x), Bn+1(x), Bn+2(x)} forms

a basis for the space S6(π) of sixth degree polynomial splines [71]. The sixth degree
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B-splines are the unique non zero splines of smallest compact support with knots at

x−6 < x−5 < x−4 < x−3 < x−2 < x−1 < x0 < . . .

< xn < xn+1 < xn+2 < xn+3 < xn+4 < xn+5 < xn+6.

1.1.5 Septic B-splines

The existence of the seventh degree spline interpolate s(x) to a function in a closed

interval [c, d] for spaced knots (need not be evenly spaced) c = x0 < x1 < x2 < . . . <

xn−1 < xn = d is established by constructing it. The construction of s(x) is done

with the help of the septic B-splines. Introduce fourteen additional knots x−7, x−6,

x−5, x−4, x−3, x−2, x−1, xn+1, xn+2, xn+3, xn+4, xn+5, xn+6 and xn+7 such that

x−7 < x−6 < x−5 < x−4 < x−3 < x−2 < x−1 < x0

and xn < xn+1 < xn+2 < xn+3 < xn+4 < xn+5 < xn+6 < xn+7.

Now the seventh degree B-splines Bi(x)’s are defined by

Bi(x) =


i+4∑

r=i−4

(xr − x)7+
π′(xr)

, for x ∈ [xi−4, xi+4]

0, otherwise.

where

(xr − x)7+ =

{
(xr − x)7, for xr ≥ x

0, for xr ≤ x

and

π(x) =
i+4∏

r=i−4

(x− xr).

Here the set {B−3(x), B−2(x), B−1(x), B0(x), . . ., Bn(x), Bn+1(x), Bn+2(x), Bn+3(x)}
forms a basis for the space S7(π) of seventh degree polynomial splines [71]. The sep-

tic B-splines are the unique non zero splines of smallest compact support with knots
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at

x−7 < x−6 < x−5 < x−4 < x−3 < x−2 < x−1 < x0 < . . .

< xn < xn+1 < xn+2 < xn+3 < xn+4 < xn+5 < xn+6 < xn+7.

1.2 Description of the Thesis

The thesis has been divided into five chapters. Chapter-1 is introductory in nature

and deals with the definitions of a complete set of cubic B-splines, quartic B-splines,

quintic B-splines, sextic B-splines and septic B-splines [71, 104, 23]. A brief review

of the available literature dealing with numerical solutions of higher order boundary

value problems with B-splines as basis functions has been presented.

In Chapter 2, we consider a Petrov-Galerkin method with cubic B-splines as basis

functions and quintic B-splines as weight functions for solving a general fourth order

and fifth order boundary value problems. Chapter 3 deals with a Petrov-Galerkin

method with quartic B-splines as basis functions and sextic B-splines as weight

functions to solve a general fifth order and sixth order boundary value problems.

Chapter 4 concerns itself with solving a general sixth order, seventh order, eighth

order, ninth order and tenth order boundary value problems by Petrov-Galerkin

method with quintic B-splines as basis functions and septic B-splines as weight

functions. The thesis ends with chapter 5, where we present the main conclusions

of the thesis and scope for further research.

In all the chapters 2, 3 and 4, the basis functions are redefined into a new set

of basis functions which vanish on the boundary where all the boundary conditions

or most of the boundary conditions are prescribed and the weight functions are

also redefined into a new set of weight functions which in number match with the

number of basis functions. The approximate solution has been written as a linear

combination of the redefined set of basis functions along with the non-homogeneous

part function which takes care of the boundary conditions where the redefined basis

functions vanish.
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In each chapter, several numerical examples of linear and nonlinear problems are

presented to test the efficiency of the method developed. The solution of a nonlinear

problem has been obtained as the limit of a sequence of solutions of linear problems

generated by quasilinearization technique [15]. The numerical results obtained by

the proposed method are compared with the exact solutions available in the litera-

ture and it is seen that the approximate solutions obtained by the proposed method

are in good agreement with the exact solutions.

In a nut-shell, the Petrov-Galerkin method with B-splines have been shown to be

accurate. The method is easy to implement to solve a given two point boundary value

problem. All the computational results presented in this thesis have been computed

in the Computational Laboratory of Department of Mathematics, National Institute

of Technology Warangal, INDIA. We have used FORTRAN - 90 programming to

develop the software packages with B-splines for obtaining the solution of a given

boundary value problem.
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Chapter 2

Petrov-Galerkin method with

cubic B-splines as basis functions

and quintic B-splines as weight

functions

2.1 Petrov-Galerkin method for solving a general

fourth order boundary value problem with cu-

bic B-splines as basis functions and quintic

B-splines as weight functions

2.1.1 Introduction

In this section, we consider a general fourth order linear boundary value problem

given by

a0(x)y(4)(x) + a1(x)y′′′(x) + a2(x)y′′(x) + a3(x)y′(x) + a4(x)y(x) = b(x), c < x < d

(2.1.1)
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subject to the boundary conditions

y(c) = A0, y(d) = C0, y′(c) = A1, y′(d) = C1 (2.1.2)

where A0, C0, A1, C1, are finite real constants and a0(x), a1(x), a2(x), a3(x), a4(x)

and b(x) are all continuous functions defined on the interval [c, d].

The fourth order boundary value problems occur in a number of areas of applied

mathematics, among which are fluid mechanics, elasticity and quantum mechanics as

well as in science and engineering. The existence and uniqueness of the solution for

these types of problems have been discussed in Agarwal [9]. Finding the analytical

solutions of such type of boundary value problems in general is not possible. Over

the years, many researchers have worked on fourth order boundary value problems

by using different methods for numerical solutions. Papamichael and Worsey [90] de-

veloped the solution of a special case of linear fourth order boundary value problems

by cubic spline method. Agarwal and Chow [10] presented the solution of nonlin-

ear fourth order boundary value problems by the Picard’s iterative method and the

quasilinear iterative method. Taiwo and Evans [132] developed perturbed colloca-

tion method to solve a general linear fourth order boundary value problem. Wazawz

[8] presented modified decomposition method to solve a special case of fourth order

boundary value problems. Waleed and Luis [139] developed decomposition method

to solve fourth order boundary value problems. Erturk and Momani [137] presented

a numerical comparison between differential transform method and the Adomian

decomposition method for solving fourth-order boundary value problems. Momani

and Noor [106] presented a numerical comparison between the Differential transform

method, Adomian decomposition, and Homotopy perturbation method for solving a

fourth-order boundary value problem. Samuel and Sinkala [103] developed higher or-

der B-spline collocation method to solve fourth order boundary value problems. Syed

and Noor [131], Noor and Syed [86] developed Homotopy perturbation method and

Variational iteration technique respectively for the solution of fourth order bound-

ary value problems. Ahniyaz et al. [11] developed Sinc-Galerkin method to solve a

general linear fourth order boundary value problem. Manoj and Pankaj [72], Ra-

madan et al. [93], Pankaj et al. [128] and Ghazala and Amin [38] presented the
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solution of a special case of linear fourth order boundary value problems by spline

techniques. Kasi Viswanadham et al. [52], Kasi Viswanadham and Sreenivasulu [59]

developed Galerkin methods with quintic B-splines and cubic B-splines respectively

to solve a general fourth order boundary value problem. Rashidinia and Ghasemi

[94], Kasi Viswanadham and Showri Raju [53] have developed B-spline collocation

method, cubic B-spline collocation method respectively to solve a general fourth

order boundary value problem. So far, fourth order boundary value problems have

not been solved by using Petrov-Galerkin method with cubic B-splines as basis func-

tions and quintic B-splines as weight functions. Therefore in this section, we try to

present a simple Petrov-Galerkin method using cubic B-splines as basis functions

and quintic B-splines as weight functions to solve a general fourth order boundary

value problem of type (2.1.1)-(2.1.2). The solution of a nonlinear boundary value

problem has been obtained as the limit of a sequence of solutions of linear boundary

value problems generated by quasilinearization technique [15].

2.1.2 Description of the Method

Divide the space variable domain [c, d] of the system (2.1.1)-(2.1.2) into n subinter-

vals by means of n+ 1 distinct grid points x0, x1, . . ., xn such that

c = x0 < x1 < x2 < . . . < xn−1 < xn = d.

Introduce six additional knots x−3, x−2, x−1, xn+1, xn+2 and xn+3 such that

x−2 − x−3 = x−1 − x−2 = x0 − x−1 = x1 − x0

xn+3 − xn+2 = xn+2 − xn+1 = xn+1 − xn = xn − xn−1.

To solve the boundary value problem (2.1.1) subject to boundary conditions

(2.1.2) by the Petrov-Galerkin method with cubic B-splines as basis functions and

quintic B-splines as weight functions which are described in sections 1.1.1 and 1.1.3
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respectively, we define the approximation for y(x) as

y(x) =
n+1∑
j=−1

αjBj(x) (2.1.3)

where αj’s are the nodal parameters to be determined and Bj(x)’s are cubic B-spline

basis functions. In Petrov-Galerkin method, the basis functions should vanish on the

boundary where the Dirichlet type of boundary conditions are specified. In the set

of cubic B-splines {B−1(x), B0(x), B1(x), B2(x), . . .,Bn−1(x), Bn(x), Bn+1(x)}, the

basis functions B−1(x), B0(x), B1(x), Bn−1(x), Bn(x) and Bn+1(x) do not vanish at

one of the boundary points. So, there is a necessity of redefining the basis functions

into a new set of basis functions which vanish on the boundary where the Dirichlet

type of boundary conditions are specified. The procedure for redefining the basis

functions is as follows.

Using the definition of cubic B-splines described in section 1.1.1 and the Dirichlet

boundary conditions of (2.1.2), we get the approximate solution for y(x) at the

boundary points as

y(c) = y(x0) =
1∑

j=−1

αjBj(x0) = A0 (2.1.4)

y(d) = y(xn) =
n+1∑

j=n−1

αjBj(xn) = C0 (2.1.5)

Eliminating α−1, αn+1 from the equations (2.1.3), (2.1.4) and (2.1.5), we get the

approximation for y(x) as

y(x) = w(x) +
n∑

j=0

αjPj(x) (2.1.6)

where

w(x) =
A0

B−1(x0)
B−1(x) +

C0

Bn+1(xn)
Bn+1(x)
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and

Pj(x) =


Bj(x)− Bj(x0)

B−1(x0)
B−1(x), for j = 0, 1

Bj(x), for j = 2, 3, · · · , n− 2

Bj(x)− Bj(xn)

Bn+1(xn)
Bn+1(x), for j = n− 1, n

(2.1.7)

The new set of basis functions in the approximation y(x) is { Pj(x), j = 0, 1, . . . ,

n}. Here w(x) takes care of given set of the Dirichlet boundary conditions and

Pj(x)′s vanish on the boundary. In Petrov-Galerkin method, the number of basis

functions in the approximation should match with the number of weight functions.

Here the number of basis functions in the approximation is n+1, where as the number

of weight functions is n+ 5. So, there is a need to redefine the weight functions into

a new set of weight functions which in number match with the number of basis

functions. The procedure for redefining the weight functions is as follows.

Let us write the approximation for v(x) as

v(x) =
n+2∑
j=−2

βjRj(x) (2.1.8)

where Rj(x)’s are quintic B-splines defined in section 1.1.3 and here we assume that

above approximation v(x) satisfies corresponding homogeneous boundary conditions

of the given boundary conditions of (2.1.2). That means v(x), defined in (2.1.8),

satisfies the conditions

v(c) = 0, v(d) = 0, v′(c) = 0, v′(d) = 0 (2.1.9)

Using the definition of quintic B-splines described in section 1.1.3 and applying

the boundary conditions (2.1.9) to (2.1.8), we get the approximate solution at the

boundary points as

v(c) = v(x0) =
2∑

j=−2

βjRj(x0) = 0 (2.1.10)

v(d) = v(xn) =
n+2∑

j=n−2

βjRj(xn) = 0 (2.1.11)
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v′(c) = v′(x0) =
2∑

j=−2

βjR
′
j(x0) = 0 (2.1.12)

v′(d) = v′(xn) =
n+2∑

j=n−2

βjR
′
j(xn) = 0 (2.1.13)

Eliminating β−2, β−1, βn+1 and βn+2 from the equations (2.1.8) and (2.1.10) to

(2.1.13), we get the approximation for v(x) as

v(x) =
n∑

j=0

βjTj(x) (2.1.14)

where

Tj(x) =



Sj(x)−
S

′
j(x0)

S
′
−1(x0)

S−1(x), j = 0, 1, 2

Sj(x), j = 3, 4, . . . , n− 3

Sj(x)−
S

′
j(xn)

S
′
n+1(xn)

Sn+1(x), j = n− 2, n− 1, n

(2.1.15)

Sj(x) =


Rj(x)− Rj(x0)

R−2(x0)
R−2(x), j = −1, 0, 1, 2

Rj(x), j = 3, 4, . . . , n− 3

Rj(x)− Rj(xn)

Rn+2(xn)
Rn+2(x), j = n− 2, n− 1, n, n+ 1

Now the new set of basis functions for the approximation v(x) is { Tj(x), j = 0,

1, . . . , n}. Here Tj(x)’s and their first order derivatives vanish on the boundary.

Let us take Tj(x)’s as weight functions for the prescribed Petrov-Galerkin method.

Here the redefined cubic basis functions Pj(x)’s defined in (2.1.7) and the redefined

quintic weight functions Tj(x)’s defined in (2.1.15) match in number.

Applying the Petrov-Galerkin method to (2.1.1) with the redefined set of cu-

bic basis functions {Pj(x), j = 0, 1, . . . , n} and the redefined set of quintic weight

functions { Tj(x), j = 0, 1, . . . , n}, we get
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∫ xn

x0

[
a0(x)y(4)(x) + a1(x)y′′′(x) + a2(x)y′′(x) + a3(x)y′(x) + a4(x)y(x)

]
Ti(x) dx

=

∫ xn

x0

b(x)Ti(x) dx for i = 0, 1, . . . , n. (2.1.16)

Integrating by parts the first three terms on the left hand side of (2.1.16) and

after applying the boundary conditions prescribed in (2.1.2), we get

∫ xn

x0

a0(x)Ti(x)y(4)(x)dx =
d2

dx2

[
a0(x)Ti(x)

]
xn

C1 −
d2

dx2

[
a0(x)Ti(x)

]
x0

A1

−
∫ xn

x0

d3

dx3

[
a0(x)Ti(x)

]
y′(x) dx (2.1.17)

∫ xn

x0

a1(x)Ti(x)y′′′(x)(x)dx =

∫ xn

x0

d2

dx2

[
a1(x)Ti(x)

]
y′(x) dx (2.1.18)

∫ xn

x0

a2(x)Ti(x)y′′(x)dx = −
∫ xn

x0

d

dx

[
a2(x)Ti(x)

]
y′(x) dx (2.1.19)

Substituting (2.1.17), (2.1.18) and (2.1.19) in (2.1.16) and using the approxima-

tion for y(x) given in (2.1.6) and after rearranging the terms for resulting equations,

we get a system of equations in the matrix form as

Aα = B (2.1.20)

where A = [aij];

aij =

∫ xn

x0

{[
− d3

dx3

[
a0(x)Ti(x)

]
+

d2

dx2

[
a1(x)Ti(x)

]
− d

dx

[
a2(x)Ti(x)

]
+ a3(x)Ti(x)

]
P

′

j (x) + a4(x)Ti(x)Pj(x)

}
dx

for i = 0, 1, 2, . . . , n; j = 0, 1, 2, . . . , n. (2.1.21)
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B = [bi];

bi =

∫ xn

x0

{
b(x)Ti(x) +

[
d3

dx3

[
a0(x)Ti(x)

]
− d2

dx2

[
a1(x)Ti(x)

]
+
d

dx

[
a2(x)Ti(x)

]
− a3(x)Ti(x)

]
w′(x)− a4(x)Ti(x)w(x)

}
dx

− d2

dx2

[
a0(x)Ti(x)

]
xn

C1 +
d2

dx2

[
a0(x)Ti(x)

]
x0

A1

for i = 0, 1, 2, . . . , n. (2.1.22)

and α = [α0 α1 . . . αn]T .

2.1.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the cubic B-spline basis functions

or their derivatives, vi(x) are the quintic B-spline weight functions or their deriva-

tives.

It may be noted that Im = 0 if (xj−2, xj+2) ∩ (xi−3, xi+3) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 5-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a nine diagonal band matrix. The nodal parameter vector α has

been obtained from the system Aα = B using the band matrix solution package.

2.1.4 Numerical Examples

To demonstrate the applicability of the proposed method for solving the fourth order

boundary value problems of the type (2.1.1) and (2.1.2), we considered three linear

and four nonlinear boundary value problems. The obtained numerical results for

each problem are presented in tabular forms and compared with the exact solutions

available in the literature.
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Example 2.1.1. Consider the linear boundary value problem

y(4) + 4y = 1, −1 ≤ x ≤ 1 (2.1.23)

subject to y(−1) = 0, y(1) = 0, y′(−1) = sinh 2−sin 2
4(cosh 2+cos 2)

, y′(1) = sin 2−sinh 2
4(cosh 2+cos 2)

.

The exact solution for the above problem is

y = .25

[
1− 2

sinh 1 sin 1 sinhx sinx+ cosh 1 cos 1 coshx cosx

cos 2 + cosh 2

]
.

The proposed method is tested on this problem where the domain [−1, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 2.1.1. The maximum absolute error obtained by the proposed method is

2.413988× 10−6.

Example 2.1.2. Consider the linear boundary value problem

y(4) + xy = −(8 + 7x+ x3)ex, 0 < x < 1 (2.1.24)

subject to y(0) = y(1) = 0, y′(0) = 1, y′(1) = −e.

The exact solution for the above problem is y = x(1− x)ex.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 2.1.2. The maximum absolute error obtained by the proposed method is

6.765127× 10−6.

Example 2.1.3. Consider the linear boundary value problem

y(4) − y′′ − y = ex(x− 3), 0 < x < 1 (2.1.25)

subject to y(0) = 1, y(1) = 0, y′(0) = 0, y′(1) = −e.
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The exact solution for the above problem is y = (1− x)ex.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 2.1.3. The maximum absolute error obtained by the proposed method is

4.500151× 10−6.

Example 2.1.4. Consider the nonlinear boundary value problem

y(4) = y2 − x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x− 48, 0 < x < 1 (2.1.26)

subject to y(0) = 0, y(1) = 1, y′(0) = 0, y′(1) = 1.

The exact solution for the above problem is y = x5 − 2x4 + 2x2.

The nonlinear boundary value problem (2.1.26) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(4)
(n+1) − [2y(n)]y(n+1) = −x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x− 48− [y(n)]

2,

n = 0, 1, 2, ... (2.1.27)

subject to y(n+1)(0) = 0, y(n+1)(1) = 1, y′(n+1)(0) = 0, y′(n+1)(1) = 1.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (2.1.27). The obtained numerical results for this problem are presented

in Table 2.1.4. The maximum absolute error obtained by the proposed method is

1.120567× 10−5.

Example 2.1.5. Consider the nonlinear boundary value problem

y(4) = sinx+ sin2 x− [y′′]2, 0 < x < 1 (2.1.28)

subject to y(0) = 0, y(1) = sin 1, y′(0) = 1, y′(1) = cos 1.
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The exact solution for the above problem is y = sinx.

The nonlinear boundary value problem (2.1.28) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(4)
(n+1) + [2y′′(n)]y

′′
(n+1) = sinx+ sin2 x+ [y′′(n)]

2, n = 0, 1, 2, ... (2.1.29)

subject to y(n+1)(0) = 0, y(n+1)(1) = sin 1, y(n+1)(0) = 1, y′(n+1)(1) = cos 1.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (2.1.29). The obtained numerical results for this problem are presented

in Table 2.1.5. The maximum absolute error obtained by the proposed method is

5.334616× 10−6.

Example 2.1.6. Consider the nonlinear boundary value problem

y(4) − 6e−4y = −12(1 + x)−4, 0 < x < 1 (2.1.30)

subject to y(0) = 0, y(1) = ln 2, y′(0) = 1, y′(1) = 0.5.

The exact solution for the above problem is y = ln (1 + x).

The nonlinear boundary value problem (2.1.30) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(4)
(n+1)+[24e−4y(n) ]y(n+1) = −12(1+x)−4+e−4y(n) [6+24y(n)], n = 0, 1, 2, ... (2.1.31)

subject to y(n+1)(0) = 0, y(n+1)(1) = ln 2, y′(n+1)(0) = 1, y′(n+1)(1) = 0.5.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (2.1.31). The obtained numerical results for this problem are presented
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in Table 2.1.6. The maximum absolute error obtained by the proposed method is

5.125999× 10−6.

Example 2.1.7. Consider the nonlinear boundary value problem

y(4) +
x2

1 + y2
= −72(1− 5x+ 5x2) +

x2

1 + (x− x2)6
, 0 < x < 1 (2.1.32)

subject to y(0) = 0, y(1) = 0, y′(0) = 0, y′(1) = 0.

The exact solution for the above problem is y = x3(1− x)3.

The nonlinear boundary value problem (2.1.32) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(4)
(n+1) −

2x2y(n)
(1 + [y(n)]2)2

y(n+1) =
x2

1 + (x− x2)6
− 72(1− 5x+ 5x2)

−
2x2[y(n)]

2

(1 + [y(n)]2)2
− x2

1 + [y(n)]2
, n = 0, 1, 2, ... (2.1.33)

subject to y(n+1)(0) = 0, y(n+1)(1) = 0, y′(n+1)(0) = 0, y′(n+1)(1) = 0.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (2.1.33). The obtained numerical results for this problem are presented

in Table 2.1.7. The maximum absolute error obtained by the proposed method is

4.966976× 10−6.
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x Absolute error by
the proposed method

-0.8 1.907349E-06
-0.6 2.175570E-06
-0.4 2.048910E-06
-0.2 2.168119E-06
0.0 2.160668E-06
0.2 2.220273E-06
0.4 2.183020E-06
0.6 2.413988E-06
0.8 2.022833E-06

Table 2.1.1: Numerical results for the Example 2.1.1.

x Absolute error by
the proposed method

0.1 8.642673E-07
0.2 9.387732E-07
0.3 8.344650E-07
0.4 1.192093E-06
0.5 2.115965E-06
0.6 3.784895E-06
0.7 4.827976E-06
0.8 6.765127E-06
0.9 6.288290E-06

Table 2.1.2: Numerical results for the Example 2.1.2.

x Absolute error by
the proposed method

0.1 8.344650E-07
0.2 4.768372E-07
0.3 1.788139E-07
0.4 1.072884E-06
0.5 2.503395E-06
0.6 4.112720E-06
0.7 4.410744E-06
0.8 4.500151E-06
0.9 3.188848E-06

Table 2.1.3: Numerical results for the Example 2.1.3.
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x Absolute error by
the proposed method

0.1 3.879890E-06
0.2 1.497567E-06
0.3 2.533197E-06
0.4 5.781651E-06
0.5 8.285046E-06
0.6 9.894371E-06
0.7 1.037121E-05
0.8 1.120567E-05
0.9 9.357929E-06

Table 2.1.4: Numerical results for the Example 2.1.4.

x Absolute error by
the proposed method

0.1 6.929040E-07
0.2 2.041459E-06
0.3 3.606081E-06
0.4 4.947186E-06
0.5 5.334616E-06
0.6 4.947186E-06
0.7 4.172325E-06
0.8 2.801418E-06
0.9 1.132488E-06

Table 2.1.5: Numerical results for the Example 2.1.5.

x Absolute error by
the proposed method

0.1 1.937151E-07
0.2 1.579523E-06
0.3 3.278255E-06
0.4 4.678965E-06
0.5 5.125999E-06
0.6 4.678965E-06
0.7 3.933907E-06
0.8 2.622604E-06
0.9 1.013279E-06

Table 2.1.6: Numerical results for the Example 2.1.6.
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x Absolute error by
the proposed method

0.1 4.939735E-06
0.2 2.135988E-06
0.3 8.568168E-07
0.4 2.083369E-06
0.5 2.671033E-06
0.6 1.993962E-06
0.7 7.431954E-07
0.8 2.217479E-06
0.9 4.966976E-06

Table 2.1.7: Numerical results for the Example 2.1.7.
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2.2 Petrov-Galerkin method for solving a general

fifth order boundary value problem with cu-

bic B-splines as basis functions and quintic

B-splines as weight functions

2.2.1 Introduction

In this section, we developed a Petrov-Galerkin method with cubic B-splines as basis

functions and quintic B-splines as weight functions for getting the numerical solution

of a general linear fifth order boundary value problem

a0(x)y(5)(x) + a1(x)y(4)(x) + a2(x)y′′′(x) + a3(x)y′′(x) + a4(x)y′(x) + a5(x)y(x)

= b(x), c < x < d (2.2.1)

subject to the boundary conditions

y(c) = A0, y(d) = C0, y′(c) = A1, y′(d) = C1, y′′(c) = A2 (2.2.2)

where A0, C0, A1, C1, A2 are finite real constants and a0(x), a1(x), a2(x), a3(x),

a4(x), a5(x) and b(x) are all continuous functions defined on the interval [c, d].

The fifth order boundary value problems occur in the mathematical modelling of

the viscoelastic flows and other branches of mathematical, physical and engineering

sciences [30, 21]. The existence and uniqueness of the solution for these types of

problems have been discussed in Agarwal [9]. Finding the analytical solutions of

such type of boundary value problems in general is not possible. Over the years,

many researchers have worked on fifth order boundary value problems by using

different methods for numerical solutions. Wazwaz [4] developed the solution of

special type of fifth order boundary value problems by using the modified Adomian

decomposition method. Siddiqi et al. [121], Siddiqi and Ghazala [123] presented

the solution of a special case of linear fifth order boundary value problems by using

quartic spline functions and sextic spline functions techniques respectively. Azam
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et al. [85], Siddiqi and Ghazala [122], Siddiqi et al. [124] and Rashidinia et al. [95]

have presented the solution of a special case of linear fifth order boundary value

problems by using non polynomial spline functions. Noor and Syed [82] applied the

Homotopy perturbation method for solving fifth order boundary value problems.

Caglar and Caglar [19] presented the Local polynomial regression method to solve

the special case of fifth order boundary value problems. Gamel [80] presented the

solution of fifth order boundary value problems by Sinc-Galerkin method. Noor and

Syed [84], Zhao [141] have developed the solution of fifth order boundary value prob-

lems by variational iteration method. Lamnii et al. [66] developed the sextic spline

collocation method to solve a special case of fifth order boundary value problems.

Kasi Viswanadham and Showri Raju [54] developed the quartic B-spline collocation

method to solve a general fifth order boundary value problem. Kasi Viswanadham

and Murali [51] presented quintic B-spline Galerkin method to solve a special case

of fifth order boundary value problem. Kasi Viswanadham and Sreenivasulu [58]

developed quartic B-spline Galerkin method to solve a general fifth order boundary

value problem. Syam and Ahili [87] developed a solution of singularly perturbed

fifth order boundary value problems by Adomian decomposition method. So far,

fifth order boundary value problems have not been solved by using Petrov-Galerkin

method with cubic B-splines as basis functions and quintic B-splines as weight func-

tions. Therefore in this section, we try to present a simple Petrov-Galerkin method

using cubic B-splines as basis functions and quintic B-splines as weight functions to

solve the fifth order boundary value problem of type (2.2.1)-(2.2.2). The solution of

a nonlinear boundary value problem has been obtained as the limit of a sequence

of solutions of linear boundary value problems generated by quasilinearization tech-

nique [15].

2.2.2 Description of the method

Divide the space variable domain [c, d] of the system (2.2.1)-(2.2.2) into n subin-

tervals as described in section 2.1.2. To solve the boundary value problem (2.2.1)-

(2.2.2) by Petrov-Galerkin method with cubic B-splines as basis functions and quin-

tic B-splines as weight functions which are described in sections 1.1.1 and 1.1.3
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respectively, we define the approximation for y(x) as

y(x) =
n+1∑
j=−1

αjBj(x) (2.2.3)

where αj’s are the nodal parameters to be determined and Bj(x)’s are cubic B-spline

basis functions. In Petrov-Galerkin method, the basis functions should vanish on the

boundary where the Dirichlet type of boundary conditions are specified. In the set

of cubic B-splines {B−1(x), B0(x), B1(x), B2(x), . . .,Bn−1(x), Bn(x), Bn+1(x)}, the

basis functions B−1(x), B0(x), B1(x), Bn−1(x), Bn(x) and Bn+1(x) do not vanish at

one of the boundary points. So, there is a necessity of redefining the basis functions

into a new set of basis functions which vanish on the boundary where the Dirichlet

type of boundary conditions are specified. The procedure for redefining the basis

functions is as follows.

Using the definition of cubic B-splines described in section 1.1.1, the Dirich-

let boundary conditions of (2.2.2) and proceeding as in section 2.1.2, we get the

approximation for y(x) as

y(x) = w(x) +
n∑

j=0

αjPj(x) (2.2.4)

where

w(x) =
A0

B−1(x0)
B−1(x) +

C0

Bn+1(xn)
Bn+1(x)

Pj(x) =


Bj(x)− Bj(x0)

B−1(x0)
B−1(x), j = 0, 1

Bj(x), j = 2, 3, ..., n− 2

Bj(x)− Bj(xn)

Bn+1(xn)
Bn+1(x), j = n− 1, n

(2.2.5)

The new set of basis functions in the approximation y(x) is { Pj(x), j = 0, 1, . . . ,

n}. Here w(x) takes care of given set of the Dirichlet boundary conditions and

Pj(x)′s vanish on the boundary. In Petrov-Galerkin method, the number of basis

functions in the approximation should match with the number of weight functions.

Here the number of basis functions in the approximation is n+1, where as the number
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of weight functions is n+ 5. So, there is a need to redefine the weight functions into

a new set of weight functions which in number match with the number of basis

functions. The procedure for redefining the weight functions is as follows.

Let us write the approximation for v(x) as

v(x) =
n+2∑
j=−2

βjRj(x) (2.2.6)

where Rj(x)’s are quintic B-splines defined in section 1.1.3 and here we assume that

above approximation v(x) satisfies the corresponding homogeneous boundary condi-

tions of the Dirichlet and Neumann boundary conditions of (2.2.2). Now Proceeding

as in section 2.1.2, we get the approximation for v(x) as

v(x) =
n∑

j=0

βjTj(x) (2.2.7)

where

Tj(x) =



Sj(x)−
S

′
j(x0)

S
′
−1(x0)

S−1(x), j = 0, 1, 2

Sj(x), j = 3, 4, . . . , n− 3

Sj(x)−
S

′
j(xn)

S
′
n+1(xn)

Sn+1(x), j = n− 2, n− 1, n

(2.2.8)

Sj(x) =


Rj(x)− Rj(x0)

R−2(x0)
R−2(x), j = −1, 0, 1, 2

Rj(x), j = 3, 4, . . . , n− 3

Rj(x)− Rj(xn)

Rn+2(xn)
Rn+2(x), j = n− 2, n− 1, n, n+ 1

Let us take { Tj(x), j = 0, 1, . . . , n} as the set of weight functions for the pre-

scribed Petrov-Galerkin method. Here Tj(x)’s and their derivatives vanish on the

boundary. Here the redefined cubic basis functions Pj(x)’s defined in (2.2.5) and

the redefined quintic weight functions Tj(x)’s defined in (2.2.8) match in number.
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Applying the Petrov-Galerkin method to (2.2.1) with the redefined set of cu-

bic basis functions {Pj(x), j = 0, 1, . . . , n} and the redefined set of quintic weight

functions { Tj(x), j = 0, 1, . . . , n}, we get

∫ xn

x0

[
a0(x)y(5)(x) + a1(x)y(4)(x) + a2(x)y′′′(x) + a3(x)y′′(x) + a4(x)y′(x)

+ a5(x)y(x)
]
Ti(x) dx =

∫ xn

x0

b(x)Ti(x) dx

for i = 0, 1, . . . , n. (2.2.9)

Integrating by parts the first three terms on the left hand side of (2.2.9) and

after applying the boundary conditions prescribed in (2.2.2), we get

∫ xn

x0

a0(x)Ti(x)y(5)(x)dx =
d2

dx2

[
a0(x)Ti(x)

]
xn

y′′(xn)− d2

dx2

[
a0(x)Ti(x)

]
x0

A2

− d3

dx3

[
a0(x)Ti(x)

]
xn

C1 +
d3

dx3

[
a0(x)Ti(x)

]
x0

A1

+

∫ xn

x0

d4

dx4

[
a0(x)Ti(x)

]
y′(x) dx (2.2.10)

∫ xn

x0

a1(x)Ti(x)y(4)(x)dx =

∫ xn

x0

d2

dx2

[
a1(x)Ti(x)

]
y′′(x) dx (2.2.11)

∫ xn

x0

a2(x)Ti(x)y′′′(x)dx = −
∫ xn

x0

d

dx

[
a2(x)Ti(x)

]
y′′(x) dx (2.2.12)

Substituting (2.2.10), (2.2.11) and (2.2.12) in (2.2.9) and using the approximation

for y(x) given in (2.2.4) and after rearranging the terms for resulting equations, we

get a system of equations in the matrix form as

Aα = B (2.2.13)
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where A = [aij];

aij =

∫ xn

x0

{[
d2

dx2

[
a1(x)Ti(x)

]
− d

dx

[
a2(x)Ti(x)

]
+ a3(x)Ti(x)

]
P ′′j (x)

+

[
d4

dx4

[
a0(x)Ti(x)

]
+ a4(x)Ti(x)

]
P ′j(x) + a5(x)Ti(x)Pj(x)

}
dx

+
d2

dx2

[
a0(x)Ti(x)

]
xn

P ′′j (xn) for i = 0, 1, 2, . . . , n; j = 0, 1, 2, . . . , n. (2.2.14)

B = [bi];

bi =

∫ xn

x0

{
b(x)Ti(x)−

[
d2

dx2

[
a1(x)Ti(x)

]
− d

dx

[
a2(x)Ti(x)

]
+ a3(x)Ti(x)

]
w′′(x)

−
[
d4

dx4

[
a0(x)Ti(x)

]
+ a4(x)Ti(x)

]
w′(x)− a5(x)Ti(x)w(x)

}
dx

− d2

dx2

[
a0(x)Ti(x)

]
xn

w′′(xn) +
d2

dx2

[
a0(x)Ti(x)

]
x0

A2 +
d3

dx3

[
a0(x)Ti(x)

]
xn

C1

− d3

dx3

[
a0(x)Ti(x)

]
x0

A1 for i = 0, 1, 2, . . . , n. (2.2.15)

and α = [α0 α1 . . . αn]T .

2.2.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the cubic B-spline basis functions

or their derivatives, vi(x) are the quintic B-spline weight functions or their deriva-

tives.

It may be noted that Im = 0 if (xj−2, xj+2) ∩ (xi−3, xi+3) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 5-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a nine diagonal band matrix. The nodal parameter vector α has

been obtained from the system Aα = B using the band matrix solution package.
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2.2.4 Numerical Examples

To demonstrate the applicability of the proposed method for solving the fifth order

boundary value problems of the type (2.2.1) and (2.2.2), we considered three linear

and three nonlinear boundary value problems. The obtained numerical results for

each problem are presented in tabular forms and compared with the exact solutions

available in the literature.

Example 2.2.1. Consider the linear boundary value problem

y(5) + xy = (1− x)cosx− 5sinx+ xsinx− x2sinx, 0 < x < 1 (2.2.16)

subject to y(0) = 0, y(1) = 0, y′(0) = 1, y′(1) = −sin1, y′′(0) = −2.

The exact solution for the above problem is y = (1− x)sinx.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 2.2.1. The maximum absolute error obtained by the proposed method is

2.369285× 10−6.

Example 2.2.2. Consider the linear boundary value problem

y(5)+y(4)+e−2xy = e−x
[
−4e2x(−3+x)cosx−(1−x+4e2x(5+2x))sinx

]
, 0 ≤ x ≤ 1

(2.2.17)

subject to y(0) = 0, y(1) = 0, y′(0) = −1, y′(1) = esin1, y′′(0) = 0.

The exact solution for the above problem is y = ex(x− 1)sinx.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 2.2.2. The maximum absolute error obtained by the proposed method is

6.347895× 10−6.
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Example 2.2.3. Consider the linear boundary value problem

y(5) + (x− 2)y4 + 2y′′′ − (x2 + 2x− 1)y′′ + (2x2 + 4x)y′ − 2x2y

= 4excosx− 2x4 + 4x3 + 6x2 − 4x+ 2, 0 < x < 1 (2.2.18)

subject to y(0) = 0, y(1) = 1 + 2esin1, y′(0) = 2, y′(1) = 2e(sin1 + cos1) + 2,

y′′(0) = 6.

The exact solution for the above problem is y = 2exsinx+ x2.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 2.2.3. The maximum absolute error obtained by the proposed method is

3.015995× 10−5.

Example 2.2.4. Consider the nonlinear boundary value problem

y(5) + 24e−5y =
48

(1 + x)5
, 0 ≤ x ≤ 1 (2.2.19)

subject to y(0) = 0, y(1) = ln2, y′(0) = 1, y′(1) = 0.5, y′′(0) = −1.

The exact solution for the above problem is y = ln(1 + x).

The nonlinear boundary value problem (2.2.19) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(5)
(n+1) − 120e−5y(n)y(n+1) =

48

(1 + x)5
− 120y(n)e

−5y(n) − 24e−5y(n) ,

n = 0, 1, 2, ... (2.2.20)

subject to y(n+1)(0) = 0, y(n+1)(1) = ln2, y′(n+1)(0) = 1, y′(n+1)(1) = 0.5,

y′′(n+1)(0) = −1.
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Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided

into 10 equal subintervals and the proposed method is applied to the sequence of

linear problems (2.2.20). The obtained numerical results for this problem are given

in Table 2.2.4. The maximum absolute error obtained by the proposed method is

1.639128× 10−6.

Example 2.2.5. Consider the nonlinear boundary value problem

y(5) + [y′]2e4y − 4y2ey
′′

+ e2x[y′′′]2 = 32e−2x, 0 ≤ x ≤ 1 (2.2.21)

subject to y(0) = 1, y(1) = e−2, y′(0) = −2, y′(1) = −2e−2, y′′(0) = 4.

The exact solution for the above problem is y = e−2x.

The nonlinear boundary value problem (2.2.21) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(5)
(n+1) + 2e2xy′′′(n)y

′′′
(n+1) − 4y2(n)e

y′′
(n)y′′(n+1) + 2y′(n)e

4y(n)y′(n+1)

+ [4y′2(n)e
4y(n) − 8y(n)e

y′′
(n) ]y(n+1) = e2x[y′′′(n)]

2 + 4y2(n)e
y′′
(n)(1− y′′(n)) + [y′(n)]

2e4y(n)

+ 32e−2x + (4[y′(n)]
2e4y(n) − 8y(n)e

y′′
(n))y(n), n = 0, 1, 2, ... (2.2.22)

subject to y(n+1)(0) = 1, y(n+1)(1) = e−2, y′(n+1)(0) = −2, y′(n+1)(1) = −2e−2,

y′′(n+1)(0) = 4.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (2.2.22). The obtained numerical results for this problem are given

in Table 2.2.5. The maximum absolute error obtained by the proposed method is

3.695488E × 10−6.
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Example 2.2.6. Consider the nonlinear boundary value problem

y(5) + y(4) + e−2xy2 = 2ex + 1, 0 < x < 1 (2.2.23)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1.

The exact solution for the above problem is y = ex

The nonlinear boundary value problem (2.2.23) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(5)
(n+1) + y

(4)
(n+1) + 2e−2xy(n)y(n+1) = 2ex + e−2xy2(n) + 1, n = 0, 1, 2, ... (2.2.24)

subject to y(n+1)(0) = 1, y(n+1)(1) = e, y′(n+1)(0) = 1, y′(n+1)(1) = e, y′′(n+1)(0) = 1.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (2.2.24). The obtained numerical results for this problem are given

in Table 2.2.6. The maximum absolute error obtained by the proposed method is

6.675720× 10−6.
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x Absolute error by
proposed method

0.1 1.594424E-06
0.2 2.980232E-08
0.3 2.041459E-06
0.4 5.513430E-07
0.5 2.369285E-06
0.6 4.917383E-07
0.7 2.086163E-06
0.8 1.490116E-08
0.9 1.393259E-06

Table 2.2.1: Numerical results for the Example 2.2.1.

x Absolute error by
proposed method

0.1 2.980232E-07
0.2 4.857779E-06
0.3 1.281500E-06
0.4 6.347895E-06
0.5 1.728535E-06
0.6 6.198883E-06
0.7 2.384186E-07
0.8 3.844500E-06
0.9 2.518296E-06

Table 2.2.2: Numerical results for the Example 2.2.2.

x Absolute error by
proposed method

0.1 1.099706E-05
0.2 2.145767E-06
0.3 2.557039E-05
0.4 1.347065E-05
0.5 3.015995E-05
0.6 1.311302E-05
0.7 2.169609E-05
0.8 9.536743E-07
0.9 1.049042E-05

Table 2.2.3: Numerical results for the Example 2.2.3.
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x Absolute error by
proposed method

0.1 6.556511E-07
0.2 4.619360E-07
0.3 4.470348E-07
0.4 1.609325E-06
0.5 1.162291E-06
0.6 1.639128E-06
0.7 9.536743E-07
0.8 1.311302E-06
0.9 0.000000E+00

Table 2.2.4: Numerical results for the Example 2.2.4.

x Absolute error by
proposed method

0.1 3.457069E-06
0.2 1.668930E-06
0.3 3.695488E-06
0.4 1.668930E-06
0.5 2.861023E-06
0.6 2.682209E-07
0.7 1.609325E-06
0.8 5.513430E-07
0.9 1.206994E-06

Table 2.2.5: Numerical results for the Example 2.2.5.

x Absolute error by
proposed method

0.1 1.907349E-06
0.2 2.145767E-06
0.3 4.529953E-06
0.4 5.125999E-06
0.5 6.675720E-06
0.6 5.125999E-06
0.7 5.960464E-06
0.8 3.337860E-06
0.9 1.668930E-06

Table 2.2.6: Numerical results for the Example 2.2.6.
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Chapter 3

Petrov-Galerkin method with

quartic B-splines as basis

functions and sextic B-splines as

weight functions

3.1 Petrov-Galerkin method for solving a general

fifth order boundary value problem with quar-

tic B-splines as basis functions and sextic B-

splines as weight functions

This section is an extension of 2.2. It mainly focuses on the effect of using quartic B-

splines as basis functions and sextic B-splines as weight functions in Petrov-Galerkin

method for solving a general fifth order boundary value problem.
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3.1.1 Introduction

Consider a general linear fifth order boundary value problem

a0(x)y(5)(x) + a1(x)y(4)(x) + a2(x)y′′′(x) + a3(x)y′′(x) + a4(x)y′(x) + a5(x)y(x)

= b(x), c < x < d (3.1.1)

subject to the boundary conditions

y(c) = A0, y(d) = C0, y′(c) = A1, y′(d) = C1, y′′(c) = A2 (3.1.2)

where A0, C0, A1, C1, A2 are finite real constants and a0(x), a1(x), a2(x), a3(x),

a4(x), a5(x) and b(x) are all continuous functions defined on the interval [c, d].

3.1.2 Description of the method

Divide the space variable domain [c, d] of the system (3.1.1)-(3.1.2) into n subinter-

vals by means of n+ 1 distinct grid points x0, x1, . . ., xn such that

c = x0 < x1 < x2 < . . . < xn−1 < xn = d.

Introduce eight additional knots x−4, x−3, x−2, x−1, xn+1, xn+2, xn+3 and xn+4 such

that

x−3 − x−4 = x−2 − x−3 = x−1 − x−2 = x0 − x−1 = x1 − x0

xn+4 − xn+3 = xn+3 − xn+2 = xn+2 − xn+1 = xn+1 − xn = xn − xn−1.

To solve the boundary value problem (3.1.1)-(3.1.2) by Petrov-Galerkin method

with quartic B-splines as basis functions and sextic B-splines as weight functions

which are described in sections 1.1.2 and 1.1.4 respectively, we define the approxi-

mation for y(x) as

y(x) =
n+1∑
j=−2

αjBj(x) (3.1.3)

where αj
′
s are the nodal parameters to be determined and Bj(x)’s are quartic B-
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spline basis functions. In Petrov-Galerkin method, the basis functions should vanish

on the boundary where the Dirichlet type of boundary conditions are specified. In

the set of quartic B-splines {B−2(x), B−1(x), B0(x), B1(x), B2(x), . . . ,Bn−1(x),

Bn(x), Bn+1(x)}, the basis functionsB−2(x), B−1(x), B0(x), B1(x), Bn−2(x), Bn−1(x),

Bn(x) and Bn+1(x) do not vanish at one of the boundary points. So, there is a neces-

sity of redefining the basis functions into a new set of basis functions which vanish

on the boundary where the Dirichlet type of boundary conditions are specified. The

procedure for redefining the basis functions is as follows.

Using the definition of quartic B-splines described in section 1.1.2 and the Dirich-

let boundary conditions of (3.1.2), we get the approximation for y(x) at the bound-

ary points as

y(c) = y(x0) =
1∑

j=−2

αjBj(x0) = A0 (3.1.4)

y(d) = y(xn) =
n+1∑

j=n−2

αjBj(xn) = C0 (3.1.5)

Eliminating α−2 and αn+1 from the equations (3.1.3), (3.1.4) and (3.1.5), we get

y(x) = w(x) +
n∑

j=−1

αjPj(x) (3.1.6)

where

w(x) =
A0

B−2(x0)
B−2(x) +

C0

Bn+1(xn)
Bn+1(x)

Pj(x) =


Bj(x)− Bj(x0)

B−2(x0)
B−2(x), j = −1, 0, 1

Bj(x), j = 2, 3, ..., n− 3

Bj(x)− Bj(xn)

Bn+1(xn)
Bn+1(x), j = n− 2, n− 1, n

(3.1.7)

The new set of basis functions in the approximation y(x) is { Pj(x), j = −1, 0, . . . ,

n}. Here w(x) takes care of given set of the Dirichlet boundary conditions and

Pj(x)’s vanish on the boundary. In Petrov-Galerkin method, the number of basis

functions in the approximation should match with the number of weight functions.

Here the number of basis functions in the approximation for y(x) defined in (3.1.6)
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is n + 2, where as the number of weight functions is n + 6. So, there is a need to

redefine the weight functions into a new set of weight functions which in number

match with the number of basis functions. The procedure for redefining the weight

functions is as follows.

Let us write the approximation for v(x) as

v(x) =
n+2∑
j=−3

βjRj(x) (3.1.8)

where Rj(x)’s are sextic B-splines defined in section 1.1.4 and here we assume that

above approximation v(x) satisfies corresponding homogeneous boundary conditions

of the Dirichlet and Neumann boundary conditions of (3.1.2). That means v(x),

defined in (3.1.8), satisfies the conditions

v(c) = 0, v(d) = 0, v′(c) = 0, v′(d) = 0 (3.1.9)

Using the definition of sextic B-splines described in section 1.1.4 and applying

the boundary conditions (3.1.9) to (3.1.8), we get the approximate solution at the

boundary points as

v(c) = v(x0) =
2∑

j=−3

βjRj(x0) = 0 (3.1.10)

v(d) = v(xn) =
n+2∑

j=n−3

βjRj(xn) = 0 (3.1.11)

v′(c) = v′(x0) =
2∑

j=−3

βjR
′
j(x0) = 0 (3.1.12)

v′(d) = v′(xn) =
n+2∑

j=n−3

βjR
′
j(xn) = 0 (3.1.13)

Eliminating β−3, β−2, βn+1 and βn+2 from the equations (3.1.8) and (3.1.10) to

(3.1.13), we get the approximation for v(x) as

v(x) =
n∑

j=−1

βjTj(x) (3.1.14)
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where

Tj(x) =



Sj(x)−
S

′
j(x0)

S
′
−2(x0)

S−2(x), j = −1, 0, 1, 2

Sj(x), j = 3, 4, . . . , n− 4

Sj(x)−
S

′
j(xn)

S
′
n+1(xn)

Sn+1(x), j = n− 3, n− 2, n− 1, n

(3.1.15)

Sj(x) =


Rj(x)− Rj(x0)

R−3(x0)
R−3(x), j = −2,−1, 0, 1, 2

Rj(x), j = 3, 4, . . . , n− 4

Rj(x)− Rj(xn)

Rn+2(xn)
Rn+2(x), j = n− 3, n− 2, n− 1, n, n+ 1

Now the new set of basis functions for the approximation v(x) is { Tj(x), j = −1,

0, 1, . . . , n}. Here Tj(x)’s and their first order derivatives vanish on the boundary.

Let us take Tj(x)’s as weight functions for the prescribed Petrov-Galerkin method.

Here the redefined quartic basis functions Pj(x)’s defined in (3.1.7) and the redefined

sextic weight functions Tj(x)’s defined in (3.1.15) match in number.

Applying the Petrov-Galerkin method to (3.1.1) with the redefined set of quartic

basis functions {Pj(x), j = −1, 0, 1, . . . , n} and the redefined set of sextic weight

functions { Tj(x), j = −1, 0, 1, . . . , n}, we get

∫ xn

x0

[
a0(x)y(5)(x) + a1(x)y(4)(x) + a2(x)y′′′(x) + a3(x)y′′(x) + a4(x)y′(x)

+ a5(x)y(x)
]
Ti(x) dx =

∫ xn

x0

b(x)Ti(x) dx

for i = −1, 0, 1, . . . , n. (3.1.16)
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Integrating by parts the first two terms on the left hand side of (3.1.16) and after

applying the boundary conditions prescribed in (3.1.2), we get

∫ xn

x0

a0(x)Ti(x)y(5)(x)dx =
d2

dx2

[
a0(x)Ti(x)

]
xn

y′′(xn)− d2

dx2

[
a0(x)Ti(x)

]
x0

A2

− d3

dx3

[
a0(x)Ti(x)

]
xn

C1 +
d3

dx3

[
a0(x)Ti(x)

]
x0

A1

+

∫ xn

x0

d4

dx4

[
a0(x)Ti(x)

]
y′(x) dx (3.1.17)

∫ xn

x0

a1(x)Ti(x)y(4)(x)dx = −
∫ xn

x0

d

dx

[
a1(x)Ti(x)

]
y′′′(x) dx (3.1.18)

Substituting (3.1.17) and (3.1.18) in (3.1.16) and using the approximation for

y(x) given in (3.1.6) and after rearranging the terms for resulting equations, we get

a system of equations in the matrix form as

Aα = B (3.1.19)

where A = [aij];

aij =

∫ xn

x0

{[
− d

dx

[
a1(x)Ti(x)

]
+ a2(x)Ti(x)

]
P

′′′

j (x) + a3(x)Ti(x)P
′′

j (x)

+

[
d4

dx4

[
a0(x)Ti(x)

]
+ a4(x)Ti(x)

]
P

′

j (x) + a5(x)Ti(x)Pj(x)

}
dx

+
d2

dx2

[
a0(x)Ti(x)

]
xn

P
′′

j (xn)

for i = −1, 0, 1, 2, . . . , n; j = −1, 0, 1, 2, . . . , n. (3.1.20)
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B = [bi];

bi =

∫ xn

x0

{
b(x)Ti(x) +

[
d

dx

[
a1(x)Ti(x)

]
− a2(x)Ti(x)

]
w′′′(x)− a3(x)Ti(x)w′′(x)

−
[
d4

dx4

[
a0(x)Ti(x)

]
+ a4(x)Ti(x)

]
w′(x)− a5(x)Ti(x)w(x)

}
dx

− d2

dx2

[
a0(x)Ti(x)

]
xn

w′′(xn) +
d2

dx2

[
a0(x)Ti(x)

]
x0

A2 +
d3

dx3

[
a0(x)Ti(x)

]
xn

C1

− d3

dx3

[
a0(x)Ti(x)

]
x0

A1 for i = −1, 0, 1, 2, . . . , n. (3.1.21)

and α = [α−1 α0 . . . αn]T .

3.1.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the quartic B-spline basis func-

tions or their derivatives, vi(x) are the sextic B-spline weight functions or their

derivatives.

It may be noted that Im = 0 if (xj−3, xj+2) ∩ (xi−4, xi+3) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 6-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a eleven diagonal band matrix. The nodal parameter vector α

has been obtained from the system Aα = B using the band matrix solution package.

3.1.4 Numerical Results

To demonstrate the applicability of the proposed method for solving the fifth order

boundary value problems of the type (3.1.1) and (3.1.2), we considered three linear

and three nonlinear boundary value problems. The obtained numerical results for

each problem are presented in tabular forms and compared with the exact solutions

available in the literature.
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Example 3.1.1. Consider the linear boundary value problem

y(5) + xy = (1− x)cosx− 5sinx+ xsinx− x2sinx, 0 < x < 1 (3.1.22)

subject to y(0) = 0, y(1) = 0, y′(0) = 1, y′(1) = −sin1, y′′(0) = −2.

The exact solution for the above problem is y = (1− x)sinx.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 3.1.1. The maximum absolute error obtained by the proposed method is

6.586313× 10−6.

Example 3.1.2. Consider the linear boundary value problem

y(5)+y(4)+e−2xy = e−x
[
−4e2x(−3+x)cosx−(1−x+4e2x(5+2x))sinx

]
, 0 ≤ x ≤ 1

(3.1.23)

subject to y(0) = 0, y(1) = 0, y′(0) = −1, y′(1) = esin1, y′′(0) = 0.

The exact solution for the above problem is y = ex(x− 1)sinx.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 3.1.2. The maximum absolute error obtained by the proposed method is

6.914139× 10−6.

Example 3.1.3. Consider the linear boundary value problem

y(5) + (x− 2)y4 + 2y′′′ − (x2 + 2x− 1)y′′ + (2x2 + 4x)y′ − 2x2y

= 4excosx− 2x4 + 4x3 + 6x2 − 4x+ 2, 0 < x < 1 (3.1.24)

subject to y(0) = 0, y(1) = 1 + 2esin1, y′(0) = 2, y′(1) = 2e(sin1 + cos1) + 2,

y′′(0) = 6.
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The exact solution for the above problem is y = 2exsinx+ x2.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 3.1.3. The maximum absolute error obtained by the proposed method is

7.152557× 10−6.

Example 3.1.4. Consider the nonlinear boundary value problem

y(5) + 24e−5y =
48

(1 + x)5
, 0 ≤ x ≤ 1 (3.1.25)

subject to y(0) = 0, y(1) = ln2, y′(0) = 1, y′(1) = 0.5, y′′(0) = −1.

The exact solution for the above problem is y = ln(1 + x).

The nonlinear boundary value problem (3.1.25) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(5)
(n+1) − 120e−5y(n)y(n+1) =

48

(1 + x)5
− 120y(n)e

−5y(n) − 24e−5y(n) ,

n = 0, 1, 2, ... (3.1.26)

subject to y(n+1)(0) = 0, y(n+1)(1) = ln2, y′(n+1)(0) = 1, y′(n+1)(1) = 0.5,

y′′(n+1)(0) = −1.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (3.1.26). The obtained numerical results for this problem are given

in Table 3.1.4. The maximum absolute error obtained by the proposed method is

6.198883× 10−6.
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Example 3.1.5. Consider the nonlinear boundary value problem

y(5) + [y′]2e4y − 4y2ey
′′

+ e2x[y′′′]2 = 32e−2x, 0 ≤ x ≤ 1 (3.1.27)

subject to y(0) = 1, y(1) = e−2, y′(0) = −2, y′(1) = −2e−2, y′′(0) = 4.

The exact solution for the above problem is y = e−2x.

The nonlinear boundary value problem (3.1.27) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(5)
(n+1) + 2e2xy′′′(n)y

′′′
(n+1) − 4y2(n)e

y′′
(n)y′′(n+1) + 2y′(n)e

4y(n)y′(n+1)

+ [4y′2(n)e
4y(n) − 8y(n)e

y′′
(n) ]y(n+1) = e2x[y′′′(n)]

2 + 4y2(n)e
y′′
(n)(1− y′′(n)) + [y′(n)]

2e4y(n)

+ 32e−2x + (4[y′(n)]
2e4y(n) − 8y(n)e

y′′
(n))y(n), n = 0, 1, 2, ... (3.1.28)

subject to y(n+1)(0) = 1, y(n+1)(1) = e−2, y′(n+1)(0) = −2, y′(n+1)(1) = −2e−2,

y′′(n+1)(0) = 4.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (3.1.28). The obtained numerical results for this problem are given

in Table 3.1.5. The maximum absolute error obtained by the proposed method is

7.659197× 10−6.

Example 3.1.6. Consider the nonlinear boundary value problem

y(5) + y(4) + e−2xy2 = 2ex + 1, 0 < x < 1 (3.1.29)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1.

The exact solution for the above problem is y = ex.
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The nonlinear boundary value problem (3.1.29) is converted into a sequence of

linear boundary value problems generated by quasilinearization technique [15] as

y
(5)
(n+1) + y

(4)
(n+1) + 2e−2xy(n)y(n+1) = 2ex + e−2xy2(n) + 1, n = 0, 1, 2, ... (3.1.30)

subject to y(n+1)(0) = 1, y(n+1)(1) = e, y′(n+1)(0) = 1, y′(n+1)(1) = e, y′′(n+1)(0) = 1.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (3.1.30). The obtained numerical results for this problem are given

in Table 3.1.6. The maximum absolute error obtained by the proposed method is

4.649162× 10−6.
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x Absolute error by
proposed method

0.1 2.160668E-07
0.2 6.556511E-07
0.3 2.667308E-06
0.4 4.649162E-06
0.5 6.154180E-06
0.6 6.586313E-06
0.7 5.930662E-06
0.8 4.008412E-06
0.9 1.572073E-06

Table 3.1.1: Numerical results for the Example 3.1.1.

x Absolute error by
proposed method

0.1 2.980232E-08
0.2 8.940697E-08
0.3 2.205372E-06
0.4 4.470348E-06
0.5 6.169081E-06
0.6 6.914139E-06
0.7 6.645918E-06
0.8 4.917383E-06
0.9 1.952052E-06

Table 3.1.2: Numerical results for the Example 3.1.2.

x Absolute error by
proposed method

0.1 2.130866E-06
0.2 2.980232E-06
0.3 7.748604E-07
0.4 0.000000E+00
0.5 2.264977E-06
0.6 7.152557E-06
0.7 5.722046E-06
0.8 3.099442E-06
0.9 4.291534E-06

Table 3.1.3: Numerical results for the Example 3.1.3.
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x Absolute error by
proposed method

0.1 7.450581E-08
0.2 5.066395E-07
0.3 2.831221E-06
0.4 4.917383E-06
0.5 6.198883E-06
0.6 6.169081E-06
0.7 6.020069E-06
0.8 4.410744E-06
0.9 1.788139E-06

Table 3.1.4: Numerical results for the Example 3.1.4.

x Absolute error by
proposed method

0.1 1.370907E-06
0.2 2.026558E-06
0.3 2.622604E-06
0.4 4.887581E-06
0.5 6.884336E-06
0.6 7.659197E-06
0.7 6.496906E-06
0.8 4.261732E-06
0.9 1.281500E-06

Table 3.1.5: Numerical results for the Example 3.1.5.

x Absolute error by
proposed method

0.1 2.503395E-06
0.2 4.649162E-06
0.3 1.549721E-06
0.4 2.384186E-07
0.5 3.576279E-07
0.6 4.768372E-07
0.7 1.668930E-06
0.8 1.668930E-06
0.9 4.768372E-07

Table 3.1.6: Numerical results for the Example 3.1.6.
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3.2 Petrov-Galerkin method for solving a general

sixth order boundary value problem with quar-

tic B-splines as basis functions and sextic B-

splines as weight functions

3.2.1 Introduction

In this section, we developed a Petrov-Galerkin method with quartic B-splines as

basis functions and sextic B-splines as weight functions for getting the numerical

solution of a general linear sixth order boundary value problem

a0(x)y(6)(x) + a1(x)y(5)(x) + a2(x)y(4)(x) + a3(x)y′′′(x) + a4(x)y′′(x) + a5(x)y′(x)

+ a6(x)y(x) = b(x), c < x < d (3.2.1)

subject to the boundary conditions

y(c) = A0, y(d) = C0, y
′(c) = A1, y

′(d) = C1, y
′′(c) = A2, y

′′(d) = C2 (3.2.2)

where A0, C0, A1, C1, A2, C2 are finite real constants and a0(x), a1(x), a2(x),

a3(x), a4(x), a5(x), a6(x) and b(x) are all continuous functions defined on the

interval [c, d].

The sixth order boundary value problems occur in astrophysics [134]. Chan-

drasekhar [24] determined that when an infinite horizontal layer of fluid is heated

from below and is under the action of rotation, instability sets in. When this insta-

bility is as ordinary convection, the ordinary differential equation is of sixth order.

The existence and uniqueness of the solution for these types of problems have been

discussed in Agarwal [9]. Finding the analytical solutions of such type of boundary

value problems in general is not possible. Over the years, many researchers have

worked on sixth order boundary value problems by using different methods for nu-

merical solutions. Wazwaz [7] developed the solution of special type of sixth order

boundary value problems by using the modified Adomian decomposition method.

Huan [43] presented varaiational approach technique to solve a special case of sixth
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order boundary value problems. Noor et al. [81] presented the variational iteration

principle to solve a special case of sixth order boundary value problems after trans-

forming the given differential equation into a system of integral equations. Ghazala

and Siddiqi [39], Ramadan et al. [92] presented the solution of a special case of sixth

order boundary value problems by using non-polynomial spline functions and septic

non-polynomial spline functions respectively. Siddiqi et al. [107], Siddiqi and Ghaz-

ala [112] developed quintic spline funtions and septic spline functions techniques to

solve a special case of linear sixth order boundary value problems respectively. Lam-

nii et al. [3], Kasi Viswanadham and Showri Raju [56] developed septic spline collo-

cation and quintic B-spline collocation methods to solve sixth order boundary value

problems respectively. Loghmani and Ahmadinia [69] used sixth degree B-spline

functions to construct an approximation solution for sixth order boundary value

problems. Waleed [140] presented Adomian decomposition method with Green’s

function to solve a special case of sixth order boundary value problems. Liang and

Jefferey [127] presented Homotopy analysis method to solve a parameterized sixth

order boundary value problems for large parameter values. Kasi Viswanadham and

Murali Krishna [50] developed septic B-spline Collocation method to solve a special

case of sixth order boundary value problems. Kasi Viswanadham and Sreeniva-

sulu [61] developed quintic B-spline Galerkin method to solve a general sixth order

boundary value problem. So far, sixth order boundary value problems have not been

solved by using Petrov-Galerkin method with quartic B-splines as basis functions

and sextic B-splines as weight functions. Therefore in this section, we try to present

a simple Petrov-Galerkin method using quartic B-splines as basis functions and sex-

tic B-splines as weight functions to solve the sixth order boundary value problem of

type (3.2.1)-(3.2.2). The solution of a nonlinear boundary value problem has been

obtained as the limit of a sequence of solutions of linear boundary value problems

generated by quasilinearization technique [15].
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3.2.2 Description of the method

Divide the space variable domain [c, d] of the system (3.2.1)-(3.2.2) into n subinter-

vals as described in section 3.1.2. To solve the boundary value problem (3.2.1)-(3.2.2)

by the Petrov-Galerkin method with quartic B-splines as basis functions and sex-

tic B-splines as weight functions which are described in sections 1.1.2 and 1.1.4

respectively, we define the approximation for y(x) as

y(x) =
n+1∑
j=−2

αjBj(x) (3.2.3)

where αj
′
s are the nodal parameters to be determined and Bj(x)’s are quartic B-

spline basis functions. In Petrov-Galerkin method, the basis functions should vanish

on the boundary where the Dirichlet type of boundary conditions are specified. In

the set of quartic B-splines {B−2(x), B−1(x), B0(x), B1(x), B2(x), . . . ,Bn−1(x),

Bn(x), Bn+1(x)}, the basis functionsB−2(x), B−1(x), B0(x), B1(x), Bn−2(x), Bn−1(x),

Bn(x) and Bn+1(x) do not vanish at one of the boundary points. So, there is a neces-

sity of redefining the basis functions into a new set of basis functions which vanish on

the boundary where the Dirichlet type of boundary conditions are specified. When

the chosen approximation satisfies the prescribed boundary conditions or most of

the boundary conditions, it gives better approximation results. In view of this,

the basis functions are redefined into a new set of basis functions which vanish on

the boundary where the Dirichlet and Neumann type of boundary conditions are

prescribed. The procedure for redefining of the basis functions is as follows.

Using the definition of quartic B-splines described in section 1.1.2, the Dirichlet

and Neumann boundary conditions of (3.2.2), we get the approximation for y(x) at

the boundary points as

y(c) = y(x0) =
1∑

j=−2

αjBj(x0) = A0 (3.2.4)

y(d) = y(xn) =
n+1∑

j=n−2

αjBj(xn) = C0 (3.2.5)
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y′(c) = y′(x0) =
1∑

j=−2

αjB
′
j(x0) = A1 (3.2.6)

y′(d) = y′(xn) =
n+1∑

j=n−2

αjB
′
j(xn) = C1 (3.2.7)

Eliminating α−2, α−1, αn and αn+1 from the equations (3.2.3) to (3.2.7), we get

the approximation for y(x) as

y(x) = w(x) +
n−1∑
j=0

αjQj(x) (3.2.8)

where

w(x) = w1(x) +
A1 − w′1(x0)
P

′
−1(x0)

P−1(x) +
C1 − w′1(xn)

P ′
n(xn)

Pn(x)

w1(x) =
A0

B−2(x0)
B−2(x) +

C0

Bn+1(xn)
Bn+1(x)

Qj(x) =


Pj(x)−

P
′
j (x0)

P
′
−1(x0)

P−1(x), j = 0, 1

Pj(x), j = 2, 3, . . . , n− 3

Pj(x)−
P

′
j (xn)

P ′
n(xn)

Pn(x), j = n− 2, n− 1

(3.2.9)

Pj(x) =


Bj(x)− Bj(x0)

B−2(x0)
B−2(x), j = −1, 0, 1

Bj(x), j = 2, 3, . . . , n− 3

Bj(x)− Bj(xn)

Bn+1(xn)
Bn+1(x), j = n− 2, n− 1, n

The new set of basis functions in the approximation y(x) is { Qj(x), j = 0, 1, . . . ,

n−1}. Here w(x) takes care of given set of the Dirichlet and Neumann type of bound-

ary conditions and Qj(x)’s and its first order derivatives vanish on the boundary. In

Petrov-Galerkin method, the number of basis functions in the approximation should

match with the number of weight functions. Here the number of basis functions in

the approximation for y(x) defined in (3.2.8) is n, where as the number of weight

functions is n + 6. So, there is a need to redefine the weight functions into a new
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set of weight functions which in number match with the number of basis functions.

The procedure for redefining the weight functions is as follows.

Let us write the approximation for v(x) as

v(x) =
n+2∑
j=−3

βjRj(x) (3.2.10)

where Rj(x)’s are sextic B-splines defined in section 1.1.4 and here we assume that

above approximation v(x) satisfies corresponding homogeneous boundary conditions

of the given boundary conditions of (3.2.2). That means v(x), defined in (3.2.10),

satisfies the conditions

v(c) = 0, v(d) = 0, v′(c) = 0, v′(d) = 0, v′′(c) = 0, v′′(d) = 0 (3.2.11)

Using the definition of sextic B-splines described in section 1.1.4 and applying

the boundary conditions (3.2.11) to (3.2.10), we get the approximate solution at the

boundary points as

v(c) = v(x0) =
2∑

j=−3

βjRj(x0) = 0 (3.2.12)

v(d) = v(xn) =
n+2∑

j=n−3

βjRj(xn) = 0 (3.2.13)

v′(c) = v′(x0) =
2∑

j=−3

βjR
′
j(x0) = 0 (3.2.14)

v′(d) = v′(xn) =
n+2∑

j=n−3

βjR
′
j(xn) = 0 (3.2.15)

v′′(c) = v′′(x0) =
2∑

j=−3

βjR
′′
j (x0) = 0 (3.2.16)

v′′(d) = v′′(xn) =
n+2∑

j=n−3

βjR
′′
j (xn) = 0 (3.2.17)
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Eliminating β−3, β−2, β−1, βn, βn+1 and βn+2 from the equations (3.2.10) and

(3.2.12) to (3.2.17), we get the approximation for v(x) as

v(x) =
n−1∑
j=0

βjVj(x) (3.2.18)

where

Vj(x) =


Tj(x)−

T
′′
j (x0)

T
′′
−1(x0)

T−1(x), j = 0, 1, 2

Tj(x), j = 3, 4, . . . , n− 4

Tj(x)−
T

′′
j (xn)

T ′′
n (xn)

Tn(x), j = n− 3, n− 2, n− 1

(3.2.19)

Tj(x) =



Sj(x)−
S

′
j(x0)

S
′
−2(x0)

S−2(x), j = −1, 0, 1, 2

Sj(x), j = 3, 4, . . . , n− 4

Sj(x)−
S

′
j(xn)

S
′
n+1(xn)

Sn+1(x), j = n− 3, n− 2, n− 1, n

Sj(x) =


Rj(x)− Rj(x0)

R−3(x0)
R−3(x), j = −2,−1, 0, 1, 2

Rj(x), j = 3, 4, . . . , n− 4

Rj(x)− Rj(xn)

Rn+2(xn)
Rn+2(x), j = n− 3, n− 2, n− 1, n, n+ 1

Now the new set of basis functions for the approximation v(x) is { Vj(x), j = 0,

1, . . . , n − 1}. Here Vj(x)’s and its first and second order derivatives vanish on the

boundary. Let us take Vj(x)’s as weight functions for the prescribed Petrov-Galerkin

method. Here the redefined quartic basis functions Qj(x)’s defined in (3.2.9) and

the redefined sextic weight functions Vj(x)’s defined in (3.2.19) match in number.

Applying the Petrov-Galerkin method to (3.2.1) with the redefined set of quartic

basis functions {Qj(x), j = 0, 1, . . . , n − 1} and the redefined set of sextic weight

functions { Vj(x), j = 0, 1, . . . , n− 1}, we get
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∫ xn

x0

[
a0(x)y(6)(x) + a1(x)y(5)(x) + a2(x)y(4)(x) + a3(x)y′′′(x) + a4(x)y′′(x)

+ a5(x)y′(x) + a6(x)y(x)
]
Vi(x) dx =

∫ xn

x0

b(x)Vi(x) dx

for i = 0, 1, . . . , n− 1. (3.2.20)

Integrating by parts the first three terms on the left hand side of (3.2.20) and

after applying the boundary conditions prescribed in (3.2.2), we get

∫ xn

x0

a0(x)Vi(x)y(6)(x)dx = − d3

dx3

[
a0(x)Vi(x)

]
xn

C2 +
d3

dx3

[
a0(x)Vi(x)

]
x0

A2

+

∫ xn

x0

d4

dx4

[
a0(x)Vi(x)

]
y′′(x) dx (3.2.21)

∫ xn

x0

a1(x)Vi(x)y(5)(x)dx = −
∫ xn

x0

d3

dx3

[
a1(x)Vi(x)

]
y′′(x) dx (3.2.22)

∫ xn

x0

a2(x)Vi(x)y(4)(x)dx = −
∫ xn

x0

d3

dx3

[
a2(x)Vi(x)

]
y′(x) dx (3.2.23)

Substituting (3.2.21), (3.2.22) and (3.2.23) in (3.2.20) and using the approxima-

tion for y(x) given in (3.2.8) and after rearranging the terms for resulting equations,

we get a system of equations in the matrix form as

Aα = B (3.2.24)

where A = [aij];

aij =

∫ xn

x0

{
a3(x)Vi(x)Q

′′′

j (x) +

[
d4

dx4

[
a0(x)Vi(x)

]
− d3

dx3

[
a1(x)Vi(x)

]
+ a4(x)Vi(x)

]
Q

′′

j (x)

+

[
− d3

dx3

[
a2(x)Vi(x)

]
+ a5(x)Vi(x)

]
Q

′

j(x) + a6(x)Vi(x)Qj(x)

}
dx

for i = 0, 1, 2, . . . , n− 1, j = 0, 1, 2, . . . , n− 1. (3.2.25)
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B = [bi];

bi =

∫ xn

x0

{
b(x)Vi(x)− a3(x)Vi(x)w′′′(x)−

[
d4

dx4

[
a0(x)Vi(x)

]
− d3

dx3

[
a1(x)Vi(x)

]
+ a4(x)Vi(x)

]
w′′(x)

−
[
− d3

dx3

[
a2(x)Vi(x)

]
+ a5(x)Vi(x)

]
w′(x)− a6(x)Vi(x)w(x)

}
dx

+
d3

dx3

[
a0(x)Vi(x)

]
xn

C2 −
d3

dx3

[
a0(x)Vi(x)

]
xn

A2

for i = 0, 1, 2, . . . , n− 1. (3.2.26)

and α = [α0 α1 . . . αn−1]
T .

3.2.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the quartic B-spline basis func-

tions or their derivatives, vi(x) are the sextic B-spline weight functions or their

derivatives.

It may be noted that Im = 0 if (xj−3, xj+2) ∩ (xi−4, xi+3) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 6-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a eleven diagonal band matrix. The nodal parameter vector α

has been obtained from the system Aα = B using the band matrix solution package.

3.2.4 Numerical Results

To demonstrate the applicability of the proposed method for solving the sixth order

boundary value problems of the type (3.2.1) and (3.2.2), we considered three linear

and three nonlinear boundary value problems. The obtained numerical results for
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each problem are presented in tabular forms and compared with the exact solutions

available in the literature.

Example 3.2.1. Consider the linear boundary value problem

y(6) + e−xy = −720 + (x− x2)3e−x, 0 < x < 1 (3.2.27)

subject to y(0) = 0, y(1) = 0, y′(0) = 0, y′(1) = 0, y′′(0) = 0, y′′(1) = 0.

The exact solution for the above problem is y = x3(1− x)3.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 3.2.1. The maximum absolute error obtained by the proposed method is

4.861504× 10−7.

Example 3.2.2. Consider the linear boundary value problem

y(6) + y′′′ + y′′ − y = (−15x2 + 78x− 114)e−x, 0 < x < 1 (3.2.28)

subject to y(0) = 0, y(1) = 1
e
, y′(0) = 0, y′(1) = 2

e
, y′′(0) = 0, y′′(1) = 1

e
.

The exact solution for the above problem is y = x3e−x.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 3.2.2. The maximum absolute error obtained by the proposed method is

2.667308× 10−6.

Example 3.2.3. Consider the linear boundary value problem

sinx y(6) + cosx y(5) + x2y(4) + (1 + sinx)y

= (2sinx+ cosx+ x2 + 1)ex, 0 < x < 1 (3.2.29)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e.
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The exact solution for the above problem is y = ex.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 3.2.3. The maximum absolute error obtained by the proposed method is

5.316734× 10−5.

Example 3.2.4. Consider the nonlinear boundary value problem

y(6) + e−xy2 = e−x + e−3x, 0 < x < 1 (3.2.30)

subject to y(0) = 1, y(1) = 1
e
, y′(0) = −1, y′(1) = −1

e
, y′′(0) = 1, y′′(1) = 1

e
.

The exact solution for the above problem is y = e−x.

The nonlinear boundary value problem (3.2.30) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(6)
(n+1) + 2e−xy(n)y(n+1) = e−xy2(n) + e−x + e−3x, n = 0, 1, 2, ... (3.2.31)

subject to y(n+1)(0) = 1, y(n+1)(1) = 1
e
, y′(n+1)(0) = −1, y′(n+1)(1) = −1

e
,

y′′(n+1)(0) = 1, y′′(n+1)(1) = 1
e
.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (3.2.31) . The obtained numerical results for this problem are given

in Table 3.2.4. The maximum absolute error obtained by the proposed method is

3.516674× 10−6.
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Example 3.2.5. Consider the nonlinear boundary value problem

y(6) = exy3, 0 < x < 1 (3.2.32)

subject to y(0) = 1, y(1) = e−
1
2 , y′(0) = −1

2
, y′(1) = −1

2
e−

1
2 ,

y′′(0) = 1
4
, y′′(1) = 1

4
e−

1
2 .

The exact solution for the above problem is y = e−
x
2 .

The nonlinear boundary value problem (3.2.32) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(6)
(n+1) − 3exy2(n)y(n+1) = −2exy3(n) n = 0, 1, 2, ... (3.2.33)

subject to y(n+1)(0) = 1, y(n+1)(1) = e−
1
2 , y′(n+1)(0) = −1

2
, y′(n+1)(1) = −1

2
e−

1
2 ,

y′′(n+1)(0) = 1
4
, y′′(n+1)(1) = 1

4
e−

1
2 .

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (3.2.33) . The obtained numerical results for this problem are given

in Table 3.2.5. The maximum absolute error obtained by the proposed method is

4.053116× 10−6.

Example 3.2.6. Consider the nonlinear boundary value problem

y(6) − 20e−36y = −40(1 + x)−6, 0 < x < 1 (3.2.34)

subject to y(0) = 0, y(1) = ln2
6
, y′(0) = 1

6
, y′(1) = 1

12
, y′′(0) = −1

6
, y′′(1) = − 1

24
.

The exact solution for the above problem is y = ln(1+x)
6

.
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The nonlinear boundary value problem (3.2.34) is converted into a sequence of

linear boundary value problems generated by quasilinearization technique [15] as

y
(6)
(n+1) + 720e−36y(n)y(n+1) = 720e−36y(n)y(n) + 20e−36y(n) − 40(1 +x)−6, n = 0, 1, 2, ...

(3.2.35)

subject to y(n+1)(0) = 0, y(n+1)(1) = ln2
6
, y′(n+1)(0) = 1

6
, y′(n+1)(1) = 1

12
,

y′′(n+1)(0) = −1
6
, y′′(n+1)(1) = − 1

24
.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (3.2.35). The obtained numerical results for this problem are given

in Table 3.2.6. The maximum absolute error obtained by the proposed method is

3.874302× 10−7.
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x Absolute error by
proposed method

0.1 1.945882E-07
0.2 3.194436E-07
0.3 1.285225E-07
0.4 2.738088E-07
0.5 2.719462E-07
0.6 3.939494E-07
0.7 3.054738E-07
0.8 4.861504E-07
0.9 1.018634E-07

Table 3.2.1: Numerical results for the Example 3.2.1.

x Absolute error by
proposed method

0.1 9.615906E-08
0.2 3.338791E-07
0.3 9.369105E-07
0.4 1.758337E-06
0.5 2.443790E-06
0.6 2.667308E-06
0.7 2.101064E-06
0.8 1.311302E-06
0.9 5.066395E-07

Table 3.2.2: Numerical results for the Example 3.2.2.

x Absolute error by
proposed method

0.1 1.609325E-05
0.2 3.969669E-05
0.3 5.316734E-05
0.4 4.804134E-05
0.5 3.302097E-05
0.6 1.680851E-05
0.7 6.675720E-06
0.8 9.536743E-07
0.9 9.536743E-07

Table 3.2.3: Numerical results for the Example 3.2.3.
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x Absolute error by
proposed method

0.1 4.172325E-07
0.2 8.344650E-07
0.3 8.940697E-07
0.4 1.072884E-06
0.5 2.801418E-06
0.6 3.516674E-06
0.7 2.592802E-06
0.8 1.490116E-06
0.9 4.470348E-07

Table 3.2.4: Numerical results for the Example 3.2.4.

x Absolute error by
proposed method

0.1 4.768372E-07
0.2 1.728535E-06
0.3 4.053116E-06
0.4 3.755093E-06
0.5 2.622604E-06
0.6 1.370907E-06
0.7 8.344650E-07
0.8 5.960464E-08
0.9 2.384186E-07

Table 3.2.5: Numerical results for the Example 3.2.5.

x Absolute error by
proposed method

0.1 2.980232E-08
0.2 1.657754E-07
0.3 3.874302E-07
0.4 3.799796E-07
0.5 2.384186E-07
0.6 5.960464E-08
0.7 7.450581E-09
0.8 6.705523E-08
0.9 6.705523E-08

Table 3.2.6: Numerical results for the Example 3.2.6.
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Chapter 4

Petrov-Galerkin method with

quintic B-splines as basis functions

and septic B-splines as weight

functions

4.1 Petrov-Galerkin method for solving a general

sixth order boundary value problem with quin-

tic B-splines as basis functions and septic B-

splines as weight functions

This section is an extension of 3.2. It mainly focuses on the effect of using quintic B-

splines as basis functions and septic B-splines as weight functions in Petrov-Galerkin

method for solving a general sixth order boundary value problem.
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4.1.1 Introduction

Consider a general linear sixth order boundary value problem

a0(x)y(6)(x) + a1(x)y(5)(x) + a2(x)y(4)(x) + a3(x)y′′′(x) + a4(x)y′′(x) + a5(x)y′(x)

+ a6(x)y(x) = b(x), c < x < d (4.1.1)

subject to the boundary conditions

y(c) = A0, y(d) = C0, y′(c) = A1, y′(d) = C1, y′′(c) = A2, y′′(d) = C2

(4.1.2)

where A0, C0, A1, C1, A2, C2 are finite real constants and a0(x), a1(x), a2(x), a3(x),

a4(x), a5(x), a6(x) and b(x) are all continuous functions defined on the interval [c, d].

4.1.2 Description of the method

Divide the space variable domain [c, d] of the system (4.1.1)-(4.1.2) into n subinter-

vals by means of n+ 1 distinct grid points x0, x1, . . ., xn such that

c = x0 < x1 < x2 < . . . < xn−1 < xn = d.

Introduce ten additional knots x−5, x−4, x−3, x−2, x−1, xn+1, xn+2, xn+3, xn+4 and

xn+5 such that

x−4 − x−5 = x−3 − x−4 = x−2 − x−3 = x−1 − x−2 = x0 − x−1 = x1 − x0

xn+5 − xn+4 = xn+4 − xn+3 = xn+3 − xn+2 = xn+2 − xn+1 = xn+1 − xn = xn − xn−1.

To solve the boundary value problem (4.1.1)-(4.1.2) by the Petrov-Galerkin

method with quintic B-splines as basis functions and septic B-splines as weight

functions which are described in sections 1.1.3 and 1.1.5 respectively, we define the

approximation for y(x) as

y(x) =
n+2∑
j=−2

αjBj(x) (4.1.3)

where αj’s are the nodal parameters to be determined and Bj(x)’s are quintic B-
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spline basis functions. In Petrov-Galerkin method, the basis functions should van-

ish on the boundary where the Dirichlet type of boundary conditions are specified.

In the set of quintic B-splines {B−2(x), B−1(x), B0(x), B1(x), B2(x), . . ., Bn−1(x),

Bn(x), Bn+1(x), Bn+2(x)}, the basis functions B−2(x), B−1(x), B0(x), B1(x), B2(x),

Bn−2(x), Bn−1(x), Bn(x), Bn+1(x) and Bn+2(x) do not vanish at one of the bound-

ary points. So, there is a necessity of redefining the basis functions into a new set of

basis functions which vanish on the boundary where the Dirichlet type of boundary

conditions are specified. When the chosen approximation satisfies the prescribed

boundary conditions or most of the boundary conditions, it gives better approxi-

mation results. In view of this, the basis functions are redefined into a new set of

basis functions which vanish on the boundary where the Dirichlet and Neumann

type of boundary conditions are prescribed. The procedure for redefining of the

basis functions is as follows.

Using the definition of quintic B-splines described in section 1.1.3, the Dirichlet

and Neumann boundary conditions of (4.1.2), we get the approximation for y(x) at

the boundary points as

y(c) = y(x0) =
2∑

j=−2

αjBj(x0) = A0 (4.1.4)

y(d) = y(xn) =
n+2∑

j=n−2

αjBj(xn) = C0 (4.1.5)

y′(c) = y′(x0) =
2∑

j=−2

αjB
′
j(x0) = A1 (4.1.6)

y′(d) = y′(xn) =
n+2∑

j=n−2

αjB
′
j(xn) = C1 (4.1.7)

Eliminating α−2, α−1, αn+1 and αn+2 from the equations (4.1.3) to (4.1.7), we

get the approximation for y(x) as

y(x) = w(x) +
n∑

j=0

αjQj(x) (4.1.8)
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where

w(x) = w1(x) +
A1 − w′1(x0)
P

′
−1(x0)

P−1(x) +
C1 − w′1(xn)

P
′
n+1(xn)

Pn+1(x)

w1(x) =
A0

B−2(x0)
B−2(x) +

C0

Bn+2(xn)
Bn+2(x)

Qj(x) =



Pj(x)−
P

′
j (x0)

P
′
−1(x0)

P−1(x), j = 0, 1, 2

Pj(x), j = 3, 4, . . . , n− 3

Pj(x)−
P

′
j (xn)

P
′
n+1(xn)

Pn+1(x), j = n− 2, n− 1, n

(4.1.9)

Pj(x) =


Bj(x)− Bj(x0)

B−2(x0)
B−2(x), j = −1, 0, 1, 2

Bj(x), j = 3, 4, . . . , n− 3

Bj(x)− Bj(xn)

Bn+2(xn)
Bn+2(x), j = n− 2, n− 1, n, n+ 1

The new set of basis functions in the approximation y(x) is { Qj(x), j = 0, 1, . . . ,

n}. Here w(x) takes care of given set of the Dirichlet and Neumann type of boundary

conditions and Qj(x)’s and its first order derivatives vanish on the boundary. In

Petrov-Galerkin method, the number of basis functions in the approximation should

match with the number of weight functions. Here the number of basis functions in

the approximation for y(x) defined in (4.1.8) is n+1, where as the number of weight

functions is n + 7. So, there is a need to redefine the weight functions into a new

set of weight functions which in number match with the number of basis functions.

The procedure for redefining the weight functions is as follows.

Let us write the approximation for v(x) as

v(x) =
n+3∑
j=−3

βjRj(x) (4.1.10)

where Rj(x)’s are septic B-splines defined in section 1.1.5 and here we assume that

above approximation v(x) satisfies corresponding homogeneous boundary conditions

of the given boundary conditions of (4.1.2). That means v(x), defined in (4.1.10),
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satisfies the conditions

v(c) = 0, v(d) = 0, v′(c) = 0, v′(d) = 0, v′′(c) = 0, v′′(d) = 0 (4.1.11)

Using the definition of septic B-splines described in section 1.1.5 and applying

the boundary conditions (4.1.11) to (4.1.10), we get the approximate solution at the

boundary points as

v(c) = v(x0) =
3∑

j=−3

βjRj(x0) = 0 (4.1.12)

v(d) = v(xn) =
n+3∑

j=n−3

βjRj(xn) = 0 (4.1.13)

v′(c) = v′(x0) =
3∑

j=−3

βjR
′
j(x0) = 0 (4.1.14)

v′(d) = v′(xn) =
n+3∑

j=n−3

βjR
′
j(xn) = 0 (4.1.15)

v′′(c) = v′′(x0) =
3∑

j=−3

βjR
′′
j (x0) = 0 (4.1.16)

v′′(d) = v′′(xn) =
n+3∑

j=n−3

βjR
′′
j (xn) = 0 (4.1.17)

Eliminating β−3, β−2, β−1, βn+1, βn+2 and βn+3 from the equations (4.1.10) and

(4.1.12) to (4.1.17), we get the approximation for v(x) as

v(x) =
n∑

j=0

βjVj(x) (4.1.18)

where

Vj(x) =



Tj(x)−
T

′′
j (x0)

T
′′
−1(x0)

T−1(x), j = 0, 1, 2, 3

Tj(x), j = 4, 5, . . . , n− 4

Tj(x)−
T

′′
j (xn)

T
′′
n+1(xn)

Tn+1(x), j = n− 3, n− 2, n− 1, n

(4.1.19)
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Tj(x) =



Sj(x)−
S

′
j(x0)

S
′
−2(x0)

S−2(x), j = −1, 0, 1, 2, 3

Sj(x), j = 4, 5, . . . , n− 4

Sj(x)−
S

′
j(xn)

S
′
n+2(xn)

Sn+2(x), j = n− 3, n− 2, n− 1, n, n+ 1

Sj(x) =


Rj(x)− Rj(x0)

R−3(x0)
R−3(x), j = −2,−1, 0, 1, 2, 3

Rj(x), j = 4, 5, . . . , n− 4

Rj(x)− Rj(xn)

Rn+3(xn)
Rn+3(x), j = n− 3, n− 2, n− 1, n, n+ 1, n+ 2

Now the new set of basis functions for approximation v(x) is { Vj(x), j = 0, 1,

. . . , n}. Here Vj(x)’s and its first and second order derivatives vanish on the bound-

ary. Let us take Vj(x)’s as weight functions for the prescribed Petrov-Galerkin

method. Here the redefined quintic basis functions Qj(x)’s defined in (4.1.9) and

the redefined septic weight functions Vj(x)’s defined in (4.1.19) match in number.

Applying the Petrov-Galerkin method to (4.1.1) with the redefined set of quin-

tic basis functions {Qj(x), j = 0, 1, . . . , n} and the redefined set of septic weight

functions { Vj(x), j = 0, 1, . . . , n}, we get

∫ xn

x0

[
a0(x)y(6)(x) + a1(x)y(5)(x) + a2(x)y(4)(x) + a3(x)y′′′(x) + a4(x)y′′(x)

+ a5(x)y′(x) + a6(x)y(x)
]
Vi(x) dx =

∫ xn

x0

b(x)Vi(x) dx

for i = 0, 1, . . . , n. (4.1.20)

Integrating by parts the first two terms on the left hand side of (4.1.20) and after

applying the boundary conditions prescribed in (4.1.2), we get

∫ xn

x0

a0(x)Vi(x)y(6)(x)dx = − d3

dx3

[
a0(x)Vi(x)

]
xn

C2 +
d3

dx3

[
a0(x)Vi(x)

]
x0

A2

+

∫ xn

x0

d4

dx4

[
a0(x)Vi(x)

]
y′′(x) dx (4.1.21)
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∫ xn

x0

a1(x)Vi(x)y(5)(x)dx = −
∫ xn

x0

d3

dx3

[
a1(x)Vi(x)

]
y′′(x) dx (4.1.22)

Substituting (4.1.21) and (4.1.22) in (4.1.20) and using the approximation for

y(x) given in (4.1.8) and after rearranging the terms for resulting equations, we get

a system of equations in the matrix form as

Aα = B (4.1.23)

where A = [aij];

aij =

∫ xn

x0

{
a2(x)Vi(x)Q

(4)
j (x) + a3(x)Vi(x)Q

′′′

j (x)

+

[
d4

dx4

[
a0(x)Vi(x)

]
− d3

dx3

[
a1(x)Vi(x)

]
+ a4(x)Vi(x)

]
Q

′′

j (x)

+a5(x)Vi(x)Q
′

j(x) + a6(x)Vi(x)Qj(x)
}
dx

for i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . , n. (4.1.24)

B = [bi];

bi =

∫ xn

x0

{
b(x)Vi(x)− a2(x)Vi(x)w(4)(x)− a3(x)Vi(x)w′′′(x)

−
[
d4

dx4

[
a0(x)Vi(x)

]
− d3

dx3

[
a1(x)Vi(x)

]
+ a4(x)Vi(x)

]
w′′(x)

−a5(x)Vi(x)w′(x)− a6(x)Vi(x)w(x)} dx

+
d3

dx3

[
a0(x)Vi(x)

]
xn

C2 −
d3

dx3

[
a0(x)Vi(x)

]
xn

A2

for i = 0, 1, 2, . . . , n. (4.1.25)

and α = [α0 α1 . . . αn]T .
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4.1.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the quintic B-spline basis func-

tions or their derivatives, vi(x) are the septic B-spline weight functions or their

derivatives.

It may be noted that Im = 0 if (xj−3, xj+3) ∩ (xi−4, xi+4) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 7-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a thirteen diagonal band matrix. The nodal parameter vector α

has been obtained from the system Aα = B using the band matrix solution package.

4.1.4 Numerical Results

To demonstrate the applicability of the proposed method for solving the sixth order

boundary value problems of the type (4.1.1) and (4.1.2), we considered three linear

and three nonlinear boundary value problems. The obtained numerical results for

each problem are presented in tabular forms and compared with the exact solutions

available in the literature.

Example 4.1.1. Consider the linear boundary value problem

y(6) − 4y(4) + 2y′′ + xy = (5 + 2x− x2)ex, 0 < x < 1 (4.1.26)

subject to y(0) = 1, y(1) = 0, y′(0) = 0, y′(1) = −e, y′′(0) = −1, y′′(1) = −2e.

The exact solution for the above problem is y = (1− x)ex.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are given in Table 4.1.1.

The maximum absolute error obtained by the proposed method is 1.382828× 10−6.
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Example 4.1.2. Consider the linear boundary value problem

y(6) + y(5) + sinx y(4) + xy = (2 + sinx+ x)ex, 0 < x < 1 (4.1.27)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e.

The exact solution for the above problem is y = ex.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are given in Table 4.1.2.

The maximum absolute error obtained by the proposed method is 1.716614× 10−5.

Example 4.1.3. Consider the linear boundary value problem

y(6) + y′′′ + y′′ − y = (−15x2 + 78x− 114)e−x, 0 < x < 1 (4.1.28)

subject to y(0) = 0, y(1) = 1
e
, y′(0) = 0, y′(1) = 2

e
, y′′(0) = 0, y′′(1) = 1

e
.

The exact solution for the above problem is y = x3e−x.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are given in Table 4.1.3.

The maximum absolute error obtained by the proposed method is 2.533197× 10−6.

Example 4.1.4. Consider the nonlinear boundary value problem

y(6) + e−xy2 = e−x + e−3x, 0 < x < 1 (4.1.29)

subject to y(0) = 1, y(1) = 1
e
, y′(0) = −1, y′(1) = −1

e
, y′′(0) = 1, y′′(1) = 1

e
.

The exact solution for the above problem is y = e−x.
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The nonlinear boundary value problem (4.1.29) is converted into a sequence of

linear boundary value problems generated by quasilinearization technique [15] as

y
(6)
(n+1) + 2e−xy(n)y(n+1) = e−xy2(n) + e−x + e−3x, n = 0, 1, 2, ... (4.1.30)

subject to y(n+1)(0) = 1, y(n+1)(1) = 1
e
, y′(n+1)(0) = −1, y′(n+1)(1) = −1

e
,

y′′(n+1)(0) = 1, y′′(n+1)(1) = 1
e
.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.1.30). Numerical results for this problem are given in Table 4.1.4. The

maximum absolute error obtained by the proposed method is 2.563000× 10−6.

Example 4.1.5. Consider the nonlinear boundary value problem

y(6) + y′y(5) − π3 sin (πx)y′′′ + yy′′ + π2y2 = −π6 cos (πx), 0 < x < 1 (4.1.31)

subject to y(0) = 1, y(1) = −1, y′(0) = 0, y′(1) = 0, y′′(0) = −π2, y′′(1) = π2.

The exact solution for the above problem is y = cos (πx).

The nonlinear boundary value problem (4.1.31) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(6)
(n+1) +y′(n)y

(5)
(n+1)−π

3 sin (πx)y′′′(n+1) +y(n)y
′′
(n+1) +y

(5)
(n)y

′
(n+1) +(2π2y(n) +y′′(n))y(n+1)

= y(n)y
′′
(n) + π2y2(n) + y′(n)y

(5)
(n) − π

6 cos (πx), n = 0, 1, 2, ... (4.1.32)

subject to y(n+1)(0) = 1, y(n+1)(1) = −1, y′(n+1)(0) = 0, y′(n+1)(1) = 0,

y′′(n+1)(0) = −π2, y′′(n+1)(1) = π2.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of a linear

problems (4.1.32). The obtained numerical results for this problem are presented
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in Table 4.1.5. The maximum absolute error obtained by the proposed method is

3.288842× 10−05.

Example 4.1.6. Consider the nonlinear boundary value problem

y(6) − 20e−36y = −40(1 + x)−6, 0 < x < 1 (4.1.33)

subject to y(0) = 0, y(1) = ln2
6
, y′(0) = 1

6
, y′(1) = 1

12
, y′′(0) = −1

6
, y′′(1) = − 1

24
.

The exact solution for the above problem is y = ln(1+x)
6

.

The nonlinear boundary value problem (4.1.33) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(6)
(n+1)+720e−36y(n)y(n+1) = 720e−36y(n)y(n)+20e−36y(n)−40(1+x)−6, n = 0, 1, 2, 3, ...

(4.1.34)

subject to y(n+1)(0) = 0, y(n+1)(1) = ln2
6
, y′(n+1)(0) = 1

6
, y′(n+1)(1) = 1

12
,

y′′(n+1)(0) = −1
6
, y′′(n+1)(1) = − 1

24
.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.1.34). Numerical results for this problem are given in Table 4.1.6. The

maximum absolute error obtained by the proposed method is 6.780028× 10−7.
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x Absolute error by
proposed method

0.1 1.192093E-07
0.2 3.278553E-06
0.3 8.404255E-06
0.4 1.186132E-05
0.5 1.382828E-05
0.6 1.275539E-05
0.7 8.046627E-06
0.8 3.367662E-06
0.9 1.341105E-07

Table 4.1.1: Numerical results for the Example 4.1.1.

x Absolute error by
proposed method

0.1 1.311302E-06
0.2 9.536743E-07
0.3 4.768372E-07
0.4 1.072884E-06
0.5 7.510185E-06
0.6 1.549721E-05
0.7 1.716614E-05
0.8 1.406670E-05
0.9 9.775162E-06

Table 4.1.2: Numerical results for the Example 4.1.2.

x Absolute error by
proposed method

0.1 3.114110E-08
0.2 1.401640E-07
0.3 1.527369E-07
0.4 3.352761E-08
0.5 9.238720E-07
0.6 2.115965E-06
0.7 2.533197E-06
0.8 2.190471E-06
0.9 1.639128E-06

Table 4.1.3: Numerical results for the Example 4.1.3.
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x Absolute error by
proposed method

0.1 7.748604E-07
0.2 4.768372E-07
0.3 1.132488E-06
0.4 8.940697E-07
0.5 1.490116E-06
0.6 2.563000E-06
0.7 2.413988E-06
0.8 1.728535E-06
0.9 1.102686E-06

Table 4.1.4: Numerical results for the Example 4.1.4.

x Absolute error by
proposed method

0.1 4.172325E-07
0.2 9.536743E-06
0.3 2.193451E-05
0.4 3.221631E-05
0.5 3.288842E-05
0.6 2.413988E-05
0.7 1.323223E-05
0.8 3.933907E-06
0.9 7.748604E-07

Table 4.1.5: Numerical results for the Example 4.1.5.

x Absolute error by
proposed method

0.1 1.303852E-08
0.2 1.676381E-08
0.3 6.705523E-08
0.4 1.192093E-07
0.5 3.725290E-07
0.6 6.780028E-07
0.7 6.854534E-07
0.8 5.066395E-07
0.9 3.427267E-07

Table 4.1.6: Numerical results for the Example 4.1.6.
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4.2 Petrov-Galerkin method for solving a general

seventh order boundary value problem with

quintic B-splines as basis functions and septic

B-splines as weight functions

In this section, we developed a Petrov-Galerkin method with quintic B-splines as

basis functions and septic B-splines as weight functions for getting the numerical

solution of a general linear seventh order boundary value problem.

4.2.1 Introduction

Consider a general seventh order linear boundary value problem

a0(x)y(7)(x) + a1(x)y(6)(x) + a2(x)y(5)(x) + a3(x)y(4)(x) + a4(x)y′′′(x)

+ a5(x)y′′(x) + a6(x)y′(x) + a7(x)y(x) = b(x), c < x < d (4.2.1)

subject to the boundary conditions

y(c) = A0, y(d) = C0, y′(c) = A1, y′(d) = C1, y′′(c) = A2,

y′′(d) = C2, y′′′(c) = A3 (4.2.2)

where A0, C0, A1, C1, A2, C2, A3 are finite real constants and a0(x), a1(x),

a2(x), a3(x), a4(x), a5(x), a6(x), a7(x) and b(x) are all continuous functions defined

on the interval [c, d].

The seventh order boundary value problems generally arise in modelling induc-

tion motors with two rotor circuits. The induction motor behaviour is represented

by a fifth order differential equation model. This model contains two stator state

variables, two rotor state variables and one shaft speed. Normally, two more vari-

ables must be added to account for the effects of a second rotor circuit representing

deep bars, a starting cage or rotor distributed parameters. To avoid the compu-

tational burden of additional state variables when additional rotor circuits are re-
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quired, model is often limited to the fifth order and rotor impedance is algebraically

altered as function of rotor speed. This is done under the assumption that the fre-

quency of rotor currents depends on rotor speed. This approach is efficient for the

steady state response with sinusoidal voltage, but it does not hold up during the

transient conditions, when rotor frequency is not a single value. The behaviour of

such models is shown as seventh order boundary value problems [99]. The existence

and uniqueness of the solution for these types of problems have been discussed in

Agarwal [9]. Finding the analytical solutions of such type of boundary value prob-

lems in general is not possible. Over the years, many researchers have worked on

seventh order boundary value problems by using different methods for numerical

solutions. Siddiqi et al. [113] developed the solution of special type of seventh

order boundary value problems by using differential transformation method. Sid-

diqi et al. [114] presented the variational iteration principle to solve a special case

of seventh order boundary value problems after transforming the given differential

equation into a system of integral equations. Siddiqi and Iftikhar [115] presented

the variational iteration technique for the solution of seventh order boundary value

problems by using He’s polynomials. Siddiqi and Iftikhar [117] discussed Adomian

decomposition method to solve the seventh order boundary value problems. Siddiqi

and Iftikhar [118] discussed the numerical solution of higher order boundary value

problems by using homotopy analysis method. Siddiqi and Iftikhar [119] dealt with

variation of parameters method to solve a special case of seventh order boundary

value problems. Siddiqi and Iftikhar [120] presented variational iteration homotopy

perturbation method to solve the seventh order boundary value problems, where

the variational iteration homotopy perturbation method is formulated by coupling

of variational iteration method and homotopy perturbation method. Mustafa and

Ali [88], Ghazala and Rehman [37] got the solution of a special case of seventh

order boundary value problems by using reproducing kernel Hilbert space method

and reproducing kernel method respectively. So far, seventh order boundary value

problems have not been solved by using Petrov-Galerkin method with quintic B-

splines as basis functions and septic B-splines as weight functions. Therefore in this

section, we try to present a simple Petrov-Galerkin method using quintic B-splines

as basis functions and septic B-splines as weight functions to solve a general seventh
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order boundary value problem of type (4.2.1)-(4.2.2). The solution of a nonlinear

boundary value problem has been obtained as the limit of a sequence of solutions of

linear boundary value problems generated by quasilinearization technique [15].

4.2.2 Description of the method

Divide the space variable domain [c, d] of the system (4.2.1)-(4.2.2) into n subinter-

vals as described in section 4.1.2.

To solve the boundary value problem (4.2.1)-(4.2.2) by the Petrov-Galerkin

method with quintic B-splines as basis functions and septic B-splines as weight

functions which are described in sections 1.1.3 and 1.1.5 respectively, we define the

approximation for y(x) as

y(x) =
n+2∑
j=−2

αjBj(x) (4.2.3)

where αj’s are the nodal parameters to be determined and Bj(x)’s are quintic B-

spline basis functions. In Petrov-Galerkin method, the basis functions should van-

ish on the boundary where the Dirichlet type of boundary conditions are specified.

In the set of quintic B-splines {B−2(x), B−1(x), B0(x), B1(x), B2(x), . . ., Bn−1(x),

Bn(x), Bn+1(x), Bn+2(x)}, the basis functions B−2(x), B−1(x), B0(x), B1(x), B2(x),

Bn−2(x), Bn−1(x), Bn(x), Bn+1(x) and Bn+2(x) do not vanish at one of the bound-

ary points. So, there is a necessity of redefining the basis functions into a new set of

basis functions which vanish on the boundary where the Dirichlet type of boundary

conditions are specified. When the chosen approximation satisfies the prescribed

boundary conditions or most of the boundary conditions, it gives better approxi-

mation results. In view of this, the basis functions are redefined into a new set of

basis functions which vanish on the boundary where the Dirichlet and Neumann

type of boundary conditions are prescribed. The procedure for redefining of the

basis functions is as follows.

82



Using the definition of quintic B-splines described in section 1.1.3, the Dirichlet

and Neumann boundary conditions of (4.2.2) and proceeding as in section 4.1.2, we

get the approximation for y(x) as

y(x) = w(x) +
n∑

j=0

αjQj(x) (4.2.4)

where

w(x) = w1(x) +
A1 − w′1(x0)
P

′
−1(x0)

P−1(x) +
C1 − w′1(xn)

P
′
n+1(xn)

Pn+1(x)

w1(x) =
A0

B−2(x0)
B−2(x) +

C0

Bn+2(xn)
Bn+2(x)

Qj(x) =



Pj(x)−
P

′
j (x0)

P
′
−1(x0)

P−1(x), j = 0, 1, 2

Pj(x), j = 3, 4, . . . , n− 3

Pj(x)−
P

′
j (xn)

P
′
n+1(xn)

Pn+1(x), j = n− 2, n− 1, n

(4.2.5)

Pj(x) =


Bj(x)− Bj(x0)

B−2(x0)
B−2(x), j = −1, 0, 1, 2

Bj(x), j = 3, 4, . . . , n− 3

Bj(x)− Bj(xn)

Bn+2(xn)
Bn+2(x), j = n− 2, n− 1, n, n+ 1

The new set of basis functions in the approximation y(x) is { Qj(x), j = 0, 1, . . . ,

n}. Here w(x) takes care of given set of the Dirichlet and Neumann type of boundary

conditions and Qj(x)’s and its first order derivatives vanish on the boundary. In

Petrov-Galerkin method, the number of basis functions in the approximation should

match with the number of weight functions. Here the number of basis functions in

the approximation for y(x) defined in (4.2.4) is n+1, where as the number of weight

functions is n + 7. So, there is a need to redefine the weight functions into a new

set of weight functions which in number match with the number of basis functions.

The procedure for redefining the weight functions is as follows.
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Let us write the approximation for v(x) as

v(x) =
n+3∑
j=−3

βjRj(x) (4.2.6)

where Rj(x)’s are septic B-splines defined in section 1.1.5 and here we assume that

above approximation v(x) satisfies the corresponding homogeneous boundary con-

ditions of the Dirichlet, Neumann and second order derivatives boundary conditions

of (4.2.2). Now proceeding as in section 4.1.2, we get the approximation for v(x) as

v(x) =
n∑

j=0

βjVj(x) (4.2.7)

where

Vj(x) =



Tj(x)−
T

′′
j (x0)

T
′′
−1(x0)

T−1(x), j = 0, 1, 2, 3

Tj(x), j = 4, 5, . . . , n− 4

Tj(x)−
T

′′
j (xn)

T
′′
n+1(xn)

Tn+1(x), j = n− 3, n− 2, n− 1, n

(4.2.8)

Tj(x) =



Sj(x)−
S

′
j(x0)

S
′
−2(x0)

S−2(x), j = −1, 0, 1, 2, 3

Sj(x), j = 4, 5, . . . , n− 4

Sj(x)−
S

′
j(xn)

S
′
n+2(xn)

Sn+2(x), j = n− 3, n− 2, n− 1, n, n+ 1

Sj(x) =


Rj(x)− Rj(x0)

R−3(x0)
R−3(x), j = −2,−1, 0, 1, 2, 3

Rj(x), j = 4, 5, . . . , n− 4

Rj(x)− Rj(xn)

Rn+3(xn)
Rn+3(x), j = n− 3, n− 2, n− 1, n, n+ 1, n+ 2

Now the new set of basis functions for approximation v(x) is { Vj(x), j = 0, 1,

. . . , n}. Here Vj(x)’s and its first and second order derivatives vanish on the bound-

ary. Let us take Vj(x)’s as weight functions for the prescribed Petrov-Galerkin

method. Here the redefined quintic basis functions Qj(x)’s defined in (4.2.5) and

84



the redefined septic weight functions Vj(x)’s defined in (4.2.8) match in number.

Applying the Petrov-Galerkin method to (4.2.1) with the redefined set of quin-

tic basis functions {Qj(x), j = 0, 1, . . . , n} and the redefined set of septic weight

functions { Vj(x), j = 0, 1, . . . , n}, we get

∫ xn

x0

[
a0(x)y(7)(x) + a1(x)y(6)(x) + a2(x)y(5)(x) + a3(x)y(4)(x) + a4(x)y′′′(x)

+ a5(x)y′′(x) + a6(x)y′(x) + a7(x)y(x)
]
Vi(x) dx =

∫ xn

x0

b(x)Vi(x) dx

for i = 0, 1, . . . , n. (4.2.9)

Integrating by parts the first three terms on the left hand side of (4.2.9) and

after applying the boundary conditions prescribed in (4.2.2), we get

∫ xn

x0

a0(x)Vi(x)y(7)(x)dx = − d3

dx3

[
a0(x)Vi(x)

]
xn

y′′′(xn) +
d3

dx3

[
a0(x)Vi(x)

]
x0

A3

+
d4

dx4

[
a0(x)Vi(x)

]
xn

C2 −
d4

dx4

[
a0(x)Vi(x)

]
x0

A2

−
∫ xn

x0

d5

dx5

[
a0(x)Vi(x)

]
y′′(x) dx (4.2.10)

∫ xn

x0

a1(x)Vi(x)y(6)(x)dx = −
∫ xn

x0

d3

dx3

[
a1(x)Vi(x)

]
y′′′(x) dx (4.2.11)

∫ xn

x0

a2(x)Vi(x)y(5)(x)dx =

∫ xn

x0

d2

dx2

[
a2(x)Vi(x)

]
y′′′(x) dx (4.2.12)

Substituting (4.2.10), (4.2.11) and (4.2.12) in (4.2.9) and using the approximation

for y(x) given in (4.2.4) and after rearranging the terms for resulting equations, we

get a system of equations in the matrix form as

Aα = B (4.2.13)
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where A = [aij];

aij =

∫ xn

x0

{
a3(x)Vi(x)Q

(4)
j (x) +

[
− d3

dx3

[
a1(x)Vi(x)

]
+
d2

dx2

[
a2(x)Vi(x)

]
+ a4(x)Vi(x)

]
Q

′′′

j (x) +

[
− d5

dx5

[
a0(x)Vi(x)

]
+ a5(x)Vi(x)

]
Q

′′

j (x)

+a6(x)Vi(x)Q
′

j(x) + a7(x)Vi(x)Qj(x)
}
dx− d3

dx3

[
a0(x)Vi(x)

]
xn

Q
′′′

j (xn)

for i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . , n. (4.2.14)

B = [bi];

bi =

∫ xn

x0

{
b(x)Vi(x)− a3(x)Vi(x)w(4)(x)−

[
− d3

dx3

[
a1(x)Vi(x)

]
+
d2

dx2

[
a2(x)Vi(x)

]
+ a4(x)Vi(x)

]
w

′′′
(x)−

[
− d5

dx5

[
a0(x)Vi(x)

]
+ a5(x)Vi(x)

]
w

′′
(x)

−a6(x)Vi(x)w
′
(x)− a7(x)Vi(x)w(x)

}
dx+

d3

dx3

[
a0(x)Vi(x)

]
xn

w
′′′

(xn)

− d3

dx3

[
a0(x)Vi(x)

]
x0

A3 −
d4

dx4

[
a0(x)Vi(x)

]
xn

C2 +
d4

dx4

[
a0(x)Vi(x)

]
x0

A2

for i = 0, 1, 2, . . . , n. (4.2.15)

and α = [α0 α1 . . . αn]T .

4.2.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the quintic B-spline basis func-

tions or their derivatives, vi(x) are the septic B-spline weight functions or their

derivatives.
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It may be noted that Im = 0 if (xj−3, xj+3) ∩ (xi−4, xi+4) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 7-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a thirteen diagonal band matrix. The nodal parameter vector α

has been obtained from the system Aα = B using the band matrix solution package.

4.2.4 Numerical Results

To demonstrate the applicability of the proposed method for solving the seventh

order boundary value problems of the type (4.2.1) and (4.2.2), we considered three

linear and three nonlinear boundary value problems. The obtained numerical re-

sults for each problem are presented in tabular forms and compared with the exact

solutions available in the literature.

Example 4.2.1. Consider the linear boundary value problem

y(7) + y = −(35 + 12x+ 12x2)ex, 0 < x < 1 (4.2.16)

subject to y(0) = 0, y(1) = 0, y′(0) = 1, y′(1) = −e,
y′′(0) = 0, y′′(1) = −4e, y′′′(0) = −3.

The exact solution for the above problem is y = x(1− x)ex.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are given in Table 4.2.1.

The maximum absolute error obtained by the proposed method is 6.735325× 10−6.

Example 4.2.2. Consider the linear boundary value problem

y(7) − xy = (x2 − 2x− 6)ex, 0 ≤ x ≤ 1 (4.2.17)

subject to y(0) = 1, y(1) = 0, y′(0) = 0, y′(1) = −e,
y′′(0) = −1, y′′(1) = −2e, y′′′(0) = −2.

The exact solution for the above problem is y = (1− x)ex.
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The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are given in Table 4.2.2.

The maximum absolute error obtained by the proposed method is 4.905462× 10−5.

Example 4.2.3. Consider the linear boundary value problem

y(7) +sinx y(4) +cosx y′′′+(1−x)y = (2+sinx+cosx−x)ex, 0 < x < 1 (4.2.18)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e, y′′′(0) = 1.

The exact solution for the above problem is y = ex.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are given in Table 4.2.3.

The maximum absolute error obtained by the proposed method is 5.269051× 10−5.

Example 4.2.4. Consider the nonlinear boundary value problem

y(7) − yy′ = e−2x(2 + ex(x− 8)− 3x+ x2), 0 ≤ x ≤ 1 (4.2.19)

subject to y(0) = 1, y(1) = 0, y′(0) = −2, y′(1) = −e−1,
y′′(0) = 3, y′′(1) = 2e−1, y′′′(0) = −4.

The exact solution for the above problem is y = (1− x)e−x.

The nonlinear boundary value problem (4.2.19) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(7)
(n+1)−y(n)y

′
(n+1)−y′(n)y(n+1) = e−2x(2+ex(x−8)−3x+x2)−y(n)y′(n), n = 0, 1, 2, ...

(4.2.20)

subject to y(n+1)(0) = 1, y(n+1)(1) = 0, y′(n+1)(0) = −2, y′(n+1)(1) = −e−1,
y′′(n+1)(0) = 3, y′′(1)(n+1) = 2e−1, y′′′(n+1)(0) = −4.
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Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.2.20). Numerical results for this problem are given in Table 4.2.4. The

maximum absolute error obtained by the proposed method is 1.746416× 10−5.

Example 4.2.5. Consider the nonlinear boundary value problem

y(7) +y(4)−eyy = ex((12−4x+e−e
x(x−1)cosx(x−1))cosx−8(5+x)sinx), 0 < x < 1

(4.2.21)

subject to y(0) = 1, y(1) = 0, y′(0) = 0, y′(1) = −ecos1,
y′′(0) = −2, y′′(1) = −2ecos1 + 2esin1, y′′′(0) = −2.

The exact solution for the above problem is y = ex(1− x)sinx.

The nonlinear boundary value problem (4.2.21) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(7)
(n+1) + y

(4)
(n+1) − e

y(n)(1 + y(n))y(n+1) = ex((12− 4x+ e−e
x(x−1)cosx(x− 1)cosx

− 8(5 + x)sinx)− ey(n)y2(n) n = 0, 1, 2, ... (4.2.22)

subject to y(n+1)(0) = 1, y(n+1)(1) = 0, y′(n+1)(0) = 0, y′(n+1)(1) = −ecos1,
y′′(n+1)(0) = −2, y′′(n+1)(1) = −2ecos1 + 2esin1, y′′′(n+1)(0) = −2.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.2.22). Numerical results for this problem are given in Table 4.2.5. The

maximum absolute error obtained by the proposed method is 2.980232× 10−5.

Example 4.2.6. Consider the nonlinear boundary value problem

y(7) + siny y(4) + eyy′′ = ex(1 + sin(ex) + ee
x

), 0 < x < 1 (4.2.23)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e,

y′′′(0) = 1.
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The exact solution for the above problem is y = ex.

The nonlinear boundary value problem (4.2.23) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(7)
(n+1) + sin(y(n))y

(4)
(n+1) + ey(n)y′′(n+1) + (cos(y(n))y

(4)
(n) + ey(n)y′′(n))y(n+1)

= (cos(y(n))y
(4)
(n) + ey(n)y′′(n))y(n) + ex(1 + sin(ex) + ee

x

), n = 0, 1, 2, ... (4.2.24)

subject to y(n+1)(0) = 1, y(n+1)(1) = e, y′(n+1)(0) = 1, y′(n+1)(1) = e,

y′′(n+1)(0) = 1, y′′(n+1)(1) = e, y′′′(n+1)(0) = 1.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.2.24). Numerical results for this problem are given in Table 4.2.6. The

maximum absolute error obtained by the proposed method is 2.849102× 10−5.
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x Absolute error by
proposed method

0.1 1.415610E-07
0.2 6.407499E-07
0.3 2.920628E-06
0.4 4.410744E-06
0.5 6.735325E-06
0.6 6.407499E-06
0.7 3.665686E-06
0.8 3.278255E-07
0.9 1.430511E-06

Table 4.2.1: Numerical results for the Example 4.2.1.

x Absolute error by
proposed method

0.1 6.556511E-07
0.2 9.596348E-06
0.3 2.580881E-05
0.4 4.059076E-05
0.5 4.905462E-05
0.6 4.571676E-05
0.7 3.087521E-05
0.8 1.317263E-05
0.9 1.326203E-06

Table 4.2.2: Numerical results for the Example 4.2.2.

x Absolute error by
proposed method

0.1 2.384186E-06
0.2 1.204014E-05
0.3 3.457069E-05
0.4 4.410744E-05
0.5 5.269051E-05
0.6 4.005432E-05
0.7 2.121925E-05
0.8 1.192093E-06
0.9 2.622604E-06

Table 4.2.3: Numerical results for the Example 4.2.3.
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x Absolute error by
proposed method

0.1 8.344650E-07
0.2 6.377697E-06
0.3 1.281500E-05
0.4 1.686811E-05
0.5 1.746416E-05
0.6 1.436472E-05
0.7 8.881092E-06
0.8 3.449619E-06
0.9 3.911555E-07

Table 4.2.4: Numerical results for the Example 4.2.4.

x Absolute error by
proposed method

0.1 3.576279E-07
0.2 4.947186E-06
0.3 1.436472E-05
0.4 2.515316E-05
0.5 2.980232E-05
0.6 2.753735E-05
0.7 1.963973E-05
0.8 9.894371E-06
0.9 2.294779E-06

Table 4.2.5: Numerical results for the Example 4.2.5.

x Absolute error by
proposed method

0.1 1.192093E-06
0.2 9.059906E-06
0.3 9.536743E-06
0.4 2.205372E-05
0.5 2.300739E-05
0.6 2.849102E-05
0.7 2.503395E-05
0.8 2.336502E-05
0.9 1.907349E-06

Table 4.2.6: Numerical results for the Example 4.2.6.
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4.3 Petrov-Galerkin method for solving a general

eighth order boundary value problem with

quintic B-splines as basis functions and septic

B-splines as weight functions

In this section, we developed a Petrov-Galerkin method with quintic B-splines as

basis functions and septic B-splines as weight functions for getting the numerical

solution of a general linear eighth order boundary value problem.

4.3.1 Introduction

Consider a general linear eighth order boundary value problem

a0(x)y(8)(x)+a1(x)y(7)(x)+a2(x)y(6)(x)+a3(x)y(5)(x)+a4(x)y(4)(x)+a5(x)y′′′(x)

+ a6(x)y′′(x) + a7(x)y′(x) + a8(x)y(x) = b(x), c < x < d (4.3.1)

subject to the boundary conditions

y(c) = A0, y(d) = C0, y′(c) = A1, y′(d) = C1,

y′′(c) = A2, y′′(d) = C2, y′′′(c) = A3, y′′′(d) = C3 (4.3.2)

where A0, C0, A1, C1, A2, C2, A3, C3 are finite real constants and a0(x), a1(x),

a2(x), a3(x), a4(x), a5(x) , a6(x), a7(x), a8(x) and b(x) are all continuous functions

defined on the interval [c, d].

Generally, this type of eighth order boundary value problems arise in the study

of astrophysics, hydrodynamics and hydro magnetic stability, fluid dynamics, as-

tronomy, beam and long wave theory, applied mathematics, engineering and applied

physics. The boundary value problems of higher order differential equations have

been investigated due to their mathematical importance and the potential for ap-

plications in diversified applied sciences. The literature on the numerical solutions

of eighth order boundary value problems is very rare. Chandra sekhar [24] deter-
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mined that when an infinite horizontal layer of fluid is heated from below and is

under the action of rotation, instability sets in, when this instability is an ordinary

convection the ordinary differential equation is sixth order, when the instability sets

in as overstability, it is modeled by an eighth order ordinary differential equation.

The existence and uniqueness of the solution for these type of problems are dis-

cussed in Agarwal [9]. Over the years, many researchers have worked on eighth

order boundary value problems by using different methods for numerical solutions.

Boutayed and Twizell [17] developed a family of finite difference methods for

the solution of special nonlinear eighth order boundary value problems by writing

the eighth order differential equation as a system of four second order differential

equations. Siddiqi and Twizell [109] presented the solution of a special case of linear

eighth order boundary value problems by using sextic spline functions. Rashidinia

et al. [96] developed non-polynomial spline techniques to solve a special case of

linear eighth order boundary value problems. Liu and Wu [68] developed Differ-

ential quadrature solutions for a special case of linear eighth order boundary value

problems. Ghazala and Siddiqi [35] discussed the solution for a special case of linear

eighth order boundary value problems by using nonic spline functions. Golbabai

and Javidi [41] discussed homotopy perturbation method for the solution of eighth

order boundary value problems. Mladen [79] dealt with the solution of a special case

of eighth order boundary value problems by using a modified Adomian decomposi-

tion method. Noor and Sayed [83] developed the variational iteration decomposition

method to solve a special case of linear eighth order boundary value problems. Haq

et al. [125] presented the optimal homotopy asymptotic method for the solution of

eighth order boundary value problems. Kasi Viswanadham and Showri raju [55] de-

veloped a quintic B-spline collocation method to solve a general eighth order bound-

ary value problem. Costabile and Napoli [27] presented the solution of eighth order

boundary value problems with Bernoulli boundary conditions by using collocation

method. Ghazala and Rehman [36] developed the solution of eighth order boundary

value problems by using reproducing kernel space method. Kasi Viswanadham and

Sreenivasulu [60] developed the quintic B-spline Galerkin method to solve a general

eighth order boundary value problem. So far, eighth order boundary value problems

have not been solved by using Petrov-Galerkin method with quintic B-splines as
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basis functions and septic B-splines as weight functions.

Therefore in this section, we try to present a simple Petrov-Galerkin method

using quintic B-splines as basis functions and septic B-splines as weight functions to

solve the eighth order boundary value problem of type (4.3.1)-(4.3.2). The solution

of a nonlinear boundary value problem has been obtained as the limit of a sequence

of solutions of linear boundary value problems generated by quasilinearization tech-

nique [15].

4.3.2 Description of the method

Divide the space variable domain [c, d] of the system (4.3.1)-(4.3.2) into n subin-

tervals as described in section 4.1.2. To solve the boundary value problem (4.3.1)-

(4.3.2) by the Petrov-Galerkin method with quintic B-splines as basis functions and

septic B-splines as weight functions which are described in sections 1.1.3 and 1.1.5

respectively, we define the approximation for y(x) as

y(x) =
n+2∑
j=−2

αjBj(x) (4.3.3)

where αj’s are the nodal parameters to be determined and Bj(x)’s are quintic B-

spline basis functions. In Petrov-Galerkin method, the basis functions should van-

ish on the boundary where the Dirichlet type of boundary conditions are specified.

In the set of quintic B-splines {B−2(x), B−1(x), B0(x), B1(x), B2(x), . . ., Bn−1(x),

Bn(x), Bn+1(x), Bn+2(x)}, the basis functions B−2(x), B−1(x), B0(x), B1(x), B2(x),

Bn−2(x), Bn−1(x), Bn(x), Bn+1(x) and Bn+2(x) do not vanish at one of the bound-

ary points. So, there is a necessity of redefining the basis functions into a new set of

basis functions which vanish on the boundary where the Dirichlet type of boundary

conditions are specified. When the chosen approximation satisfies the prescribed

boundary conditions or most of the boundary conditions, it gives better approxi-

mation results. In view of this, the basis functions are redefined into a new set of

basis functions which vanish on the boundary where the Dirichlet, Neumann and

second order derivative type of boundary conditions are prescribed. The procedure

for redefining of the basis functions is as follows.
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Using the definition of quintic B-splines described in section 1.1.3, the Dirichlet,

Neumann and second order derivative boundary condition of (4.3.2), we get the

approximate solution at the boundary points as

y(c) = y(x0) =
2∑

j=−2

αjBj(x0) = A0 (4.3.4)

y(d) = y(xn) =
n+2∑

j=n−2

αjBj(xn) = C0 (4.3.5)

y′(c) = y′(x0) =
2∑

j=−2

αjB
′
j(x0) = A1 (4.3.6)

y′(d) = y′(xn) =
n+2∑

j=n−2

αjB
′
j(xn) = C1 (4.3.7)

y′′(c) = y′′(x0) =
2∑

j=−2

αjB
′′
j (x0) = A2 (4.3.8)

y′′(d) = y′′(xn) =
n+2∑

j=n−2

αjB
′′
j (xn) = C2 (4.3.9)

Eliminating α−2, α−1, α0, αn, αn+1 and αn+2 from the equations (4.3.4) to (4.3.9),

we get the approximation for y(x) as

y(x) = w(x) +
n−1∑
j=1

αjRj(x) (4.3.10)

where

w(x) = w2(x) +
A2 − w′′2(x0)

Q
′′
0(x0)

Q0(x) +
C2 − w′′2(xn)

Q′′
n(xn)

Qn(x)

w2(x) = w1(x) +
A1 − w′1(x0)
Q

′
−1(x0)

Q−1(x) +
C1 − w′1(xn)

Q
′
n+1(xn)

Qn+1(x)

w1(x) =
A0

B−2(x0)
B−2(x) +

C0

Bn+2(xn)
Bn+2(x)

96



Rj(x) =


Qj(x)−

Q
′′
j (x0)

Q
′′
0(x0)

Q0(x), j = 1, 2

Qj(x), j = 3, 4, . . . , n− 3

Qj(x)−
Q

′′
j (xn)

Q′′
n(xn)

Qn(x), j = n− 2, n− 1

(4.3.11)

Qj(x) =



Pj(x)−
P

′
j (x0)

P
′
−1(x0)

P−1(x), j = 0, 1, 2

Pj(x), j = 3, 4, . . . , n− 3

Pj(x)−
P

′
j (xn)

P
′
n+1(xn)

Pn+1(x), j = n− 2, n− 1, n

Pj(x) =


Bj(x)− Bj(x0)

B−2(x0)
B−2(x), j = −1, 0, 1, 2

Bj(x), j = 3, 4, . . . , n− 3

Bj(x)− Bj(xn)

Bn+2(xn)
Bn+2(x), j = n− 2, n− 1, n, n+ 1

The new set of basis functions in the approximation y(x) is { Rj(x), j = 1, 2, . . . ,

n−1}. Here w(x) takes care of given set of the Dirichlet, Neumann and second order

type of boundary conditions and Rj(x)′s and its first and second order derivatives

vanish on the boundary. In Petrov-Galerkin method, the number of basis functions

in the approximation should match with the number of weight functions. Here the

number of basis functions in the approximation is n − 1, where as the number of

weight functions is n + 7. So, there is a need to redefine the weight functions into

a new set of weight functions which in number match with the number of basis

functions. The procedure for redefining the weight functions is as follows.

Let us write the approximation for v(x) as

v(x) =
n+3∑
j=−3

βjSj(x) (4.3.12)

where Sj(x)’s are septic B-splines defined in section 1.1.5 and here we assume that

above approximation v(x) satisfies corresponding homogeneous boundary conditions
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of (4.3.2). That means v(x), defined in (4.3.12), satisfies the conditions

v(c) = 0, v(d) = 0, v′(c) = 0, v′(d) = 0,

v′′(c) = 0, v′′(d) = 0, v′′′(c) = 0, v′′′(d) = 0 (4.3.13)

Using the definition of septic B-splines described in section 1.1.5 and applying

the boundary conditions (4.3.13) to (4.3.12), we get the approximate solution at the

boundary points as

v(c) = v(x0) =
3∑

j=−3

βjSj(x0) = 0 (4.3.14)

v(d) = v(xn) =
n+3∑

j=n−3

βjSj(xn) = 0 (4.3.15)

v′(c) = v′(x0) =
3∑

j=−3

βjS
′
j(x0) = 0 (4.3.16)

v′(d) = v′(xn) =
n+3∑

j=n−3

βjS
′
j(xn) = 0 (4.3.17)

v′′(c) = v′′(x0) =
3∑

j=−3

βjS
′′
j (x0) = 0 (4.3.18)

v′′(d) = v′′(xn) =
n+3∑

j=n−3

βjS
′′
j (xn) = 0 (4.3.19)

v′′′(c) = v′′′(x0) =
3∑

j=−3

βjS
′′′
j (x0) = 0 (4.3.20)

v′′′(d) = v′′′(xn) =
n+3∑

j=n−3

βjS
′′′
j (xn) = 0 (4.3.21)

Eliminating β−3, β−2, β−1, β0, βn, βn+1, βn+2 and βn+3 from the equations

(4.3.12) and (4.3.14) to (4.3.21), we get the approximation for v(x) as

v(x) =
n−1∑
j=1

βjV̂j(x) (4.3.22)

98



where

V̂j(x) =


Vj(x)−

V
′′′
j (x0)

V
′′′
0 (x0)

V0(x), j = 1, 2, 3

Vj(x), j = 4, 5, . . . , n− 4

Vj(x)−
V

′′′
j (xn)

V ′′′
n (xn)

Vn(x), j = n− 3, n− 2, n− 1

(4.3.23)

Vj(x) =



Uj(x)−
U

′′
j (x0)

U
′′
−1(x0)

U−1(x), j = 0, 1, 2, 3

Uj(x), j = 4, 5, . . . , n− 4

Uj(x)−
U

′′
j (xn)

U
′′
n+1(xn)

Un+1(x), j = n− 3, n− 2, n− 1, n

Uj(x) =



Tj(x)−
T

′
j (x0)

T
′
−2(x0)

T−2(x), j = −1, 0, 1, 2, 3

Tj(x), j = 4, 5, . . . , n− 4

Tj(x)−
T

′
j (xn)

T
′
n+2(xn)

Tn+2(x), j = n− 3, n− 2, n− 1, n, n+ 1

Tj(x) =


Sj(x)− Sj(x0)

S−3(x0)
S−3(x), j = −2,−1, 0, 1, 2, 3

Sj(x), j = 4, 5, . . . , n− 4

Sj(x)− Sj(xn)

Sn+3(xn)
Sn+3(x), j = n− 3, n− 2, n− 1, n, n+ 1, n+ 2

Now the new set of basis functions for the approximation v(x) is { V̂j(x), j = 1,

2, . . . , n − 1}. Here V̂j(x)’s and its first, second and third order derivatives vanish

on the boundary. Let us take V̂j(x)’s as weight functions for the prescribed Petrov-

Galerkin method. Here the redefined quintic basis functions Rj(x)’s defined in

(4.3.11) and the redefined septic weight functions V̂j(x)’s defined in (4.3.23) match

in number.

Applying the Petrov-Galerkin method to (4.3.1) with the redefined set of quintic

basis functions {Rj(x), j = 1, 2, . . . , n − 1} and the redefined set of septic weight

functions { V̂j(x), j = 1, 2, . . . , n− 1}, we get
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∫ xn

x0

[
a0(x)y(8)(x) + a1(x)y(7)(x) + a2(x)y(6)(x) + a3(x)y(5)(x) + a4(x)y(4)(x)

+ a5(x)y′′′(x) + a6(x)y′′(x) + a7(x)y′(x) + a8(x)y(x)
]
V̂i(x) dx

=

∫ xn

x0

b(x)V̂i(x) dx for i = 1, 2, . . . , n− 1. (4.3.24)

Integrating by parts the first four terms on the left hand side of (4.3.22) and

after applying the boundary conditions prescribed in (4.3.2), we get

∫ xn

x0

a0(x)V̂i(x)y(8)(x)dx =
d4

dx4

[
a0(x)V̂i(x)

]
xn

C3 −
d4

dx4

[
a0(x)V̂i(x)

]
x0

A3

−
∫ xn

x0

d5

dx5

[
a0(x)V̂i(x)

]
y′′′(x) dx (4.3.25)

∫ xn

x0

a1(x)V̂i(x)y(7)(x)dx =

∫ xn

x0

d4

dx4

[
a1(x)V̂i(x)

]
y′′′(x) dx (4.3.26)

∫ xn

x0

a2(x)V̂i(x)y(6)(x)dx =

∫ xn

x0

d4

dx4

[
a2(x)V̂i(x)

]
y′′(x) dx (4.3.27)

∫ xn

x0

a3(x)V̂i(x)y(5)(x)dx =

∫ xn

x0

d4

dx4

[
a3(x)V̂i(x)

]
y′(x) dx (4.3.28)

Substituting (4.3.25) to (4.3.28) in (4.3.24) and using the approximation for y(x)

given in (4.3.10) and after rearranging the terms for resulting equations, we get a

system of equations in the matrix form as

Aα = B (4.3.29)
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where A = [aij];

aij =

∫ xn

x0

{
a4(x)V̂i(x)R

(4)
j (x) +

[
− d5

dx5

[
a0(x)V̂i(x)

]
+

d4

dx4

[
a1(x)V̂i(x)

]
+a5(x)V̂i(x)

]
R

′′′

j (x) +

[
d4

dx4

[
a2(x)V̂i(x)

]
+ a6(x)V̂i(x)

]
R

′′

j (x)

+

[
d4

dx4

[
a3(x)V̂i(x)

]
+ a7(x)V̂i(x)

]
R′j(x) + a8(x)V̂i(x)Rj(x)

}
dx

for i = 1, 2, . . . , n− 1, j = 1, 2, . . . , n− 1. (4.3.30)

B = [bi];

bi =

∫ xn

x0

{
b(x)V̂i(x)− a4(x)V̂i(x)w(4)(x)

−
[
− d5

dx5

[
a0(x)V̂i(x)

]
+

d4

dx4

[
a1(x)V̂i(x)

]
+ a5(x)V̂i(x)

]
w′′′(x)

−
[
d4

dx4

[
a2(x)V̂i(x)

]
+ a6(x)V̂i(x)

]
w′′(x)

−
[
d4

dx4

[
a3(x)V̂i(x)

]
+ a7(x)V̂i(x)

]
w′(x)− a8(x)V̂i(x)w(x)

}
dx

− d4

dx4

[
a0(x)V̂i(x)

]
xn

C3 +
d4

dx4

[
a0(x)V̂i(x)

]
x0

A3

for i = 1, 2, . . . , n− 1. (4.3.31)

and α = [α1 α2 . . . αn−1]
T .

4.3.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the quintic B-spline basis func-

tions or their derivatives, vi(x) are the septic B-spline weight functions or their
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derivatives.

It may be noted that Im = 0 if (xj−3, xj+3) ∩ (xi−4, xi+4) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 7-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a thirteen diagonal band matrix. The nodal parameter vector α

has been obtained from the system Aα = B using the band matrix solution package.

4.3.4 Numerical Results

To demonstrate the applicability of the proposed method for solving the eighth order

boundary value problems of the type (4.3.1) and (4.3.2), we considered three linear

and three nonlinear boundary value problems. The obtained numerical results for

each problem are presented in tabular forms and compared with the exact solutions

available in the literature.

Example 4.3.1. Consider the linear boundary value problem

y(8) + y(7) + 2y(6) + 2y(5) + 2y(4) + 2y′′′ + 2y′′ + y′ + y

= 14cosx− 16sinx− 4xsinx, 0 < x < 1 (4.3.32)

subject to y(0) = 0, y(1) = 0, y′(0) = −1, y′(1) = 2sin1,

y′′(0) = 0, y′′(1) = 4cos1 + 2sin1, y′′′(0) = 7, y′′′(1) = 6cos1− 6sin1.

The exact solution for the above problem is y = (x2 − 1)sinx.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are shown in Table 4.3.1.

The maximum absolute error obtained by the proposed method is 2.235174× 10−6.

Example 4.3.2. Consider the linear boundary value problem

y(8) + xy = −(48 + 15x+ x3)ex, 0 < x < 1 (4.3.33)

subject to y(0) = 0, y(1) = 0, y′(0) = 1, y′(1) = −e, y′′(0) = 0, y′′(1) = −4e,

y′′′(0) = −3, y′′′(1) = −9e.
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The exact solution for the above problem is y = x(1− x)ex.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are shown in Table 4.3.2.

The maximum absolute error obtained by the proposed method is 7.569790× 10−6.

Example 4.3.3. Consider the linear boundary value problem

y(8) + sinx y(5) + (1− x2)y(4) + y = (3 + sinx− x2)ex, 0 < x < 1 (4.3.34)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e,

y′′′(0) = 1, y′′′(1) = e.

The exact solution for the above problem is y = ex.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are shown in Table 4.3.3.

The maximum absolute error obtained by the proposed method is 4.875660× 10−5.

Example 4.3.4. Consider the nonlinear boundary value problem

y(8) = 7!(e−8y − 2

(1 + x)8
), 0 < x < e

1
2 − 1 (4.3.35)

subject to y(0) = 0, y(e
1
2 − 1) = 1

2
, y′(0) = 1, y′(e

1
2 − 1) = e−

1
2 ,

y′′(0) = −1, y′′(e
1
2 − 1) = −1

e
, y′′′(0) = 2, y′′′(e

1
2 − 1) = 2e−

3
2 .

The exact solution for the above problem is y = ln(1 + x).

The nonlinear boundary value problem (4.3.35) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(8)
(n+1) + 8!e−8y(n)y(n+1) = e−8y(n)(8!y(n) + 7!)− 2.7!

(1 + x)8
, n = 0, 1, 2, ... (4.3.36)
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subject to y(n+1)(0) = 0, y(n+1)(e
1
2 − 1) = 1

2
, y′(n+1)(0) = 1, y′(n+1)(e

1
2 − 1) = e−

1
2 ,

y′′(n+1)(0) = −1, y′′(n+1)(e
1
2 − 1) = −1

e
, y′′′(n+1)(0) = 2, y′′′(n+1)(e

1
2 − 1) = 2e−

3
2 .

Here y(n+1) is the (n+1)th approximation for y. The domain [0, e
1
2−1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.3.36). Numerical results for this problem are shown in Table 4.3.4. The

maximum absolute error obtained by the proposed method is 8.225441× 10−6.

Example 4.3.5. Consider the nonlinear boundary value problem

y(8) + e−xy2 = e−x + e−3x, 0 < x < 1 (4.3.37)

subject to y(0) = 1, y(1) = e−1, y′(0) = −1, y′(1) = −e−1, y′′(0) = 1, y′′(1) = e−1,

y′′′(0) = −1, y′′′(1) = −e−1.

The exact solution for the above problem is y = e−x.

The nonlinear boundary value problem (4.3.37) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(8)
(n+1) + 2e−xy(n)y(n+1) = e−xy2(n) + e−x + e−3x n = 0, 1, 2, ... (4.3.38)

subject to y(n+1)(0) = 1, y(n+1)(1) = e−1, y′(n+1)(0) = −1, y′(n+1)(1) = −e−1,
y′′(n+1)(0) = 1, y′′(n+1)(1) = e−1, y′′′(n+1)(0) = −1, y′′′(n+1)(1) = −e−1.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.3.38). Numerical results for this problem are shown in Table 4.3.5. The

maximum absolute error obtained by the proposed method is 8.702278× 10−6.
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Example 4.3.6. Consider the nonlinear boundary value problem

y(8) + siny y′′′ = (1 + sin(ex))ex, 0 < x < 1 (4.3.39)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e,

y′′′(0) = 1, y′′′(1) = e.

The exact solution for the above problem is y = ex.

The nonlinear boundary value problem (4.3.39) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(8)
(n+1) + sin(y(n))y

′′′
(n+1) + cos(y(n))y

′′′
(n)y(n+1) = (1 + sin(ex))ex

+ cos(y(n))y
′′′
(n)y(n), n = 0, 1, 2, ... (4.3.40)

subject to y(n+1)(0) = 1, y(n+1)(1) = e, y′(n+1)(0) = 1, y′(n+1)(1) = e,

y′′(n+1)(0) = 1, y′′(n+1)(1) = e, y′′′(n+1)(0) = 1, y′′′(n+1)(1) = e.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.3.40). Numerical results for this problem are shown in Table 4.3.6. The

maximum absolute error obtained by the proposed method is 1.931190× 10−5.
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x Absolute error by
proposed method

0.1 2.086163E-07
0.2 2.086163E-07
0.3 2.980232E-08
0.4 2.980232E-07
0.5 5.364418E-07
0.6 1.102686E-06
0.7 2.115965E-06
0.8 2.235174E-06
0.9 1.281500E-06

Table 4.3.1: Numerical results for the Example 4.3.1.

x Absolute error by
proposed method

0.1 3.129244E-07
0.2 1.236796E-06
0.3 2.861023E-06
0.4 5.275011E-06
0.5 6.824732E-06
0.6 7.569790E-06
0.7 7.301569E-06
0.8 5.215406E-06
0.9 2.399087E-06

Table 4.3.2: Numerical results for the Example 4.3.2.

x Absolute error by
proposed method

0.1 8.344650E-07
0.2 4.053116E-06
0.3 1.573563E-05
0.4 2.801418E-05
0.5 4.112720E-05
0.6 4.875660E-05
0.7 4.458427E-05
0.8 2.932549E-05
0.9 1.287460E-05

Table 4.3.3: Numerical results for the Example 4.3.3.
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x Absolute error by
proposed method

6.487213E-02 3.501773E-07
1.297443E-01 4.768372E-07
1.946164E-01 4.470348E-07
2.594885E-01 1.147389E-06
3.243607E-01 3.188848E-06
3.892328E-01 5.960464E-06
4.541049E-01 8.225441E-06
4.541049E-01 5.036592E-06
5.838492E-01 2.473593E-06

Table 4.3.4: Numerical results for the Example 4.3.4.

x Absolute error by
proposed method

0.1 6.556511E-07
0.2 8.940697E-07
0.3 3.993511E-06
0.4 6.556511E-06
0.5 8.702278E-06
0.6 8.702278E-06
0.7 6.258488E-06
0.8 3.248453E-06
0.9 1.281500E-06

Table 4.3.5: Numerical results for the Example 4.3.5.

x Absolute error by
proposed method

0.1 2.503395E-06
0.2 8.940697E-06
0.3 1.561642E-05
0.4 1.823902E-05
0.5 8.821487E-06
0.6 7.510185E-06
0.7 1.883507E-05
0.8 1.931190E-05
0.9 1.168251E-05

Table 4.3.6: Numerical results for the Example 4.3.6.
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4.4 Petrov-Galerkin method for solving a general

ninth order boundary value problem with quin-

tic B-splines as basis functions and septic B-

splines as weight functions

In this section, we developed a Petrov-Galerkin method with quintic B-splines as

basis functions and septic B-splines as weight functions for getting the numerical

solution of a general linear ninth order boundary value problem.

4.4.1 Introduction

Consider a general linear ninth order boundary value problem

a0(x)y(9)(x)+a1(x)y(8)(x)+a2(x)y(7)(x)+a3(x)y(6)(x)+a4(x)y(5)(x)+a5(x)y(4)(x)

+ a6(x)y′′′(x) + a7(x)y′′(x) + a8(x)y′(x) + a9(x)y(x) = b(x), c < x < d (4.4.1)

subject to the boundary conditions

y(c) = A0, y(d) = C0, y′(c) = A1, y′(d) = C1, y′′(c) = A2, y′′(d) = C2,

y′′′(c) = A3, y′′′(d) = C3, y(4)(c) = A4 (4.4.2)

where A0, C0, A1, C1, A2, C2, A3, C3, A4 are finite real constants and a0(x), a1(x),

a2(x), a3(x), a4(x), a5(x), a6(x), a7(x), a8(x), a9(x) and b(x) are all continuous

functions defined on the interval [c, d].

The ninth-order boundary value problems are known to arise in the study of as-

trophysics, hydrodynamic and hydromagnetic stability [24]. A class of characteristic-

value problems of higher order (as higher as twenty four) is known to arise in hy-

drodynamic and hydromagnetic stability [24]. The existence and uniqueness of the

solution for these types of problems have been discussed in Agarwal [9]. Finding the

analytical solutions of such type of boundary value problems in general is not pos-

sible. Over the years, many researchers have worked on ninth-order boundary value
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problems by using different methods for numerical solutions. Chawla and Katti [25]

developed a finite difference scheme for the solution of a special case of nonlinear

higher order two point boundary value problems. Wazwaz [5] developed the solu-

tion of a special type of higher order boundary value problems by using the modified

Adomian decomposition method. Hassan and Erturk [2] provided solution of dif-

ferent types of linear and nonlinear higher order boundary value problems by using

Differential transformation method. Tauseef and Ahmet [129] presented the solution

of ninth and tenth order boundary value problems by using homotopy perturbation

method without any discretization, linearization or restrictive assumptions. Tauseef

and Ahmet [130] developed modified variational method for solving ninth and tenth

order boundary value problems introducing He’s polynomials in the correction func-

tional. Jafar and Shirin [42] presented homotopy perturbation method for solving

the boundary value problems of higher order by reformulating them as an equiva-

lent system of integral equations. Tawfiq and Yassien [70] developed semi-analytic

technique for the solution of higher order boundary value problems using two-point

oscillatory interpolation to construct polynomial solution. Hossain and Islam [14]

presented the Galerkin method with Legendre polynomials as basis functions for

the solution of odd higher order boundary value problems. Samir [102] developed

spectral collocation method for the solution of mth order boundary value problems

with help of Tchebychev polynomials by converting the given differential equation

into a system of first order boundary value problems. So far, ninth order boundary

value problems have not been solved by using Petrov-Galerkin method with quintic

B-splines as basis functions and septic B-splines as weight functions. Therefore in

this section, we try to present a simple Petrov-Galerkin method using quintic B-

splines as basis functions and septic B-splines as weight functions to solve the ninth

order boundary value problem of type (4.4.1)-(4.4.2). The solution of a nonlinear

boundary value problem has been obtained as the limit of a sequence of solutions of

linear boundary value problems generated by quasilinearization technique [15].
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4.4.2 Description of the method

Divide the space variable domain [c, d] of the system (4.4.1)-(4.4.2) into n subinter-

vals as described in section 4.1.2. To solve the boundary value problem (4.4.1)-(4.4.2)

by the Petrov-Galerkin method with quintic B-splines as basis functions and sep-

tic B-splines as weight functions which are described in sections 1.1.3 and 1.1.5

respectively, we define the approximation for y(x) as

y(x) =
n+2∑
j=−3

αjBj(x) (4.4.3)

where αj
′
s are the nodal parameters to be determined and Bj(x)’s are quintic B-

spline basis functions.

Proceeding as in section 4.3.2 and applying the Petrov-Galerkin method to (4.4.1)

with the redefined set of quintic basis functions {Rj(x), j = 1, 2, . . . , n− 1} defined

in (4.3.11) and with the redefined set of septic weight functions { V̂j(x), j = 1, 2, . . . ,

n− 1} defined in (4.3.23), we get

∫ xn

x0

[
a0(x)y(9)(x) + a1(x)y(8)(x) + a2(x)y(7)(x) + a3(x)y(6)(x) + a4(x)y(5)(x)

+ a5(x)y(4)(x) + a6(x)y′′′(x) + a7(x)y′′(x) + a8(x)y′(x)

+ a9(x)y(x)
]
V̂i(x) dx =

∫ xn

x0

b(x)V̂i(x) dx for i = 1, 2, . . . , n− 1. (4.4.4)

Integrating by parts the first five terms on the left hand side of (4.4.4) and after

applying the boundary conditions prescribed in (4.4.2), we get

∫ xn

x0

a0(x)V̂i(x)y(9)(x)dx =
d4

dx4

[
a0(x)V̂i(x)

]
xn

y(4)(xn)− d4

dx4

[
a0(x)V̂i(x)

]
x0

A4

− d5

dx5

[
a0(x)V̂i(x)

]
xn

C3 +
d5

dx5

[
a0(x)V̂i(x)

]
x0

A3

+

∫ xn

x0

d6

dx6

[
a0(x)V̂i(x)

]
y′′′(x) dx (4.4.5)
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∫ xn

x0

a1(x)V̂i(x)y(8)(x)dx =

∫ xn

x0

d4

dx4

[
a1(x)V̂i(x)

]
y(4)(x) dx (4.4.6)

∫ xn

x0

a2(x)V̂i(x)y(7)(x)dx =

∫ xn

x0

d4

dx4

[
a2(x)V̂i(x)

]
y′′′(x) dx (4.4.7)

∫ xn

x0

a3(x)V̂i(x)y(6)(x)dx =

∫ xn

x0

d4

dx4

[
a3(x)V̂i(x)

]
y′′(x) dx (4.4.8)

∫ xn

x0

a4(x)V̂i(x)y(5)(x)dx =

∫ xn

x0

d4

dx4

[
a4(x)V̂i(x)

]
y′(x) dx (4.4.9)

Substituting (4.4.5) to (4.4.9) in (4.4.4) and using the approximation for y(x)

given in (4.3.10) and after rearranging the terms for resulting equations, we get a

system of equations in the matrix form as

Aα = B (4.4.10)

where A = [aij];

aij =

∫ xn

x0

{[
d4

dx4

[
a1(x)V̂i(x)

]
+ a5(x)V̂i(x)

]
R

(4)
j (x)

+

[
d6

dx6

[
a0(x)V̂i(x)

]
+

d4

dx4

[
a2(x)V̂i(x)

]
+ a6(x)V̂i(x)

]
R

′′′

j (x)

+

[
d4

dx4

[
a3(x)V̂i(x)

]
+ a7(x)V̂i(x)

]
R

′′

j (x)

+

[
d4

dx4

[
a4(x)V̂i(x)

]
+ a8(x)V̂i(x)

]
R

′

j(x) + a9(x)V̂i(x)Rj(x)

}
dx

+
d4

dx4

[
a0(x)V̂i(x)

]
xn

R
(4)
j (xn) for i = 1, 2, . . . , n− 1, j = 1, 2, . . . , n− 1.

(4.4.11)
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B = [bi];

bi =

∫ xn

x0

{
b(x)V̂i(x)−

{[
d4

dx4

[
a1(x)V̂i(x)

]
+ a5(x)V̂i(x)

]
w(4)(x)

+

[
d6

dx6

[
a0(x)V̂i(x)

]
+

d4

dx4

[
a2(x)V̂i(x)

]
+ a6(x)V̂i(x)

]
w′′′(x)

+

[
d4

dx4

[
a3(x)V̂i(x)

]
+ a7(x)V̂i(x)

]
w′′(x)

+

[
d4

dx4

[
a4(x)V̂i(x)

]
+ a8(x)V̂i(x)

]
w′(x) + a9(x)V̂i(x)Rj(x)

}}
dx

− d4

dx4

[
a0(x)V̂i(x)

]
xn

w(4)(xn) +
d4

dx4

[
a0(x)V̂i(x)

]
x0

A4 +
d5

dx5

[
a0(x)V̂i(x)

]
xn

C3

− d5

dx5

[
a0(x)V̂i(x)

]
x0

A3 for i = 1, 2, . . . , n− 1. (4.4.12)

and α = [α1 α2 . . . αn−1]
T .

4.4.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the quintic B-spline basis func-

tions or their derivatives, vi(x) are the septic B-spline weight functions or their

derivatives.

It may be noted that Im = 0 if (xj−3, xj+3) ∩ (xi−4, xi+4) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 7-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a thirteen diagonal band matrix. The nodal parameter vector α

has been obtained from the system Aα = B using the band matrix solution package.
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4.4.4 Numerical Results

To demonstrate the applicability of the proposed method for solving the ninth order

boundary value problems of the type (4.4.1) and (4.4.2), we considered three linear

and two nonlinear boundary value problems. The obtained numerical results for

each problem are presented in tabular forms and compared with the exact solutions

available in the literature.

Example 4.4.1. Consider the linear boundary value problem

y(9) − y = −9ex, 0 < x < 1 (4.4.13)

subject to y(0) = 1, y(1) = 0, y′(0) = 0, y′(1) = −e, y′′(0) = −1, y′′(1) = −2e,

y′′′(0) = −2, y′′′(1) = −3e, y(4)(0) = −3.

The exact solution for the above problem is y = (1− x)ex.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 4.4.1. The maximum absolute error obtained by the proposed method is

9.179115× 10−6.

Example 4.4.2. Consider the linear boundary value problem

y(9) + sinx y(4) + y = (2 + sinx)ex, 0 < x < 1 (4.4.14)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e,

y′′′(0) = 1, y′′′(1) = e, y(4)(0) = 1.

The exact solution for the above problem is y = ex.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 4.4.2. The maximum absolute error obtained by the proposed method is

1.764297× 10−5.
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Example 4.4.3. Consider the linear boundary value problem

y(9) + y(7) + xy(4) + y′′′ + sinx y′ + y

= 5xsinx− cosx+ x2cosx− xsin2x+ sinxcosx+ xcosx, 0 < x < 1 (4.4.15)

subject to y(0) = 0, y(1) = cos1, y′(0) = 1, y′(1) = cos1− sin1,

y′′(0) = 0, y′′(1) = −2sin1− cos1, y′′′(0) = −3, y′′′(1) = −3cos1 + sin1,

y(4)(0) = 0.

The exact solution for the above problem is y = xcosx.

The proposed method is tested on this problem where the domain [0, 1] is divided

into 10 equal subintervals. The obtained numerical results for this problem are given

in Table 4.4.3. The maximum absolute error obtained by the proposed method is

2.324581× 10−6.

Example 4.4.4. Consider the nonlinear boundary value problem

y(9) + eyy′′′ + y′y = (1 + ee
x

+ ex)ex, 0 < x < 1 (4.4.16)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e,

y′′′(0) = 1, y′′′(1) = e, y(4)(0) = 1.

The exact solution for the above problem is y = ex.

The nonlinear boundary value problem (4.4.16) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(9)
(n+1) + ey(n)y′′′(n+1) + y(n)y

′
(n+1) + (y′′′(n)e

y(n) + y′(n))y(n+1)

= (1 + ee
x

+ ex)ex + (y′′′(n)e
y(n) + y′(n))y(n), n = 0, 1, 2, ... (4.4.17)

subject to y(n+1)(0) = 1, y(n+1)(1) = e, y′(n+1)(0) = 1, y′(n+1)(1) = e,

y′′(n+1)(0) = 1, y′′(n+1)(1) = e, y′′′(n+1)(0) = 1, y′′′(n+1)(1) = e, y
(4)
(n+1)(0) = 1.
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Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (4.4.17). The obtained numerical results for this problem are given

in Table 4.4.4. The maximum absolute error obtained by the proposed method is

1.716614× 10−5.

Example 4.4.5. Consider the nonlinear boundary value problem

y(9) − y′y2 = cos3x, 0 < x < 1 (4.4.18)

subject to y(0) = 0, y(1) = sin1, y′(0) = 1, y′(1) = cos1, y′′(0) = 0, y′′(1) = −sin1,

y′′′(0) = −1, y′′′(1) = −cos1, y(4)(0) = 0.

The exact solution for the above problem is y = sinx.

The nonlinear boundary value problem (4.4.18) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(9)
(n+1) − y

2
(n)y

′
(n+1) − 2y(n)y

′
(n)y(n+1) = cos3x− 2y2(n)y

′
(n) n = 0, 1, 2, ... (4.4.19)

subject to y(n+1)(0) = 0, y(n+1)(1) = sin1, y′(n+1)(0) = 1, y′(n+1)(1) = cos1,

y′′(n+1)(0) = 0, y′′(n+1)(1) = −sin1, y′′′(n+1)(0) = −1, y′′′(n+1)(1) = −cos1, y(4)(n+1)(0) = 0.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of lin-

ear problems (4.4.19). The obtained numerical results for this problem are given

in Table 4.4.5. The maximum absolute error obtained by the proposed method is

5.662441× 10−6.
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x Absolute error by
proposed method

0.1 1.072884E-06
0.2 5.960464E-07
0.3 3.278255E-06
0.4 7.152557E-06
0.5 9.179115E-06
0.6 6.616116E-06
0.7 1.311302E-06
0.8 2.086163E-06
0.9 1.892447E-06

Table 4.4.1: Numerical results for the Example 4.4.1.

x Absolute error by
proposed method

0.1 1.549721E-06
0.2 6.198883E-06
0.3 9.894371E-06
0.4 1.299381E-05
0.5 5.125999E-06
0.6 7.629395E-06
0.7 1.764297E-05
0.8 1.716614E-05
0.9 1.120567E-05

Table 4.4.2: Numerical results for the Example 4.4.2.

x Absolute error by
proposed method

0.1 2.458692E-07
0.2 7.003546E-07
0.3 1.430511E-06
0.4 2.324581E-06
0.5 1.668930E-06
0.6 2.086163E-07
0.7 1.430511E-06
0.8 1.609325E-06
0.9 1.072884E-06

Table 4.4.3: Numerical results for the Example 4.4.3.
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x Absolute error by
proposed method

0.1 1.788139E-06
0.2 5.960464E-06
0.3 1.072884E-05
0.4 1.573563E-05
0.5 9.894371E-06
0.6 3.457069E-06
0.7 1.525879E-05
0.8 1.716614E-05
0.9 1.120567E-05

Table 4.4.4: Numerical results for the Example 4.4.4.

x Absolute error by
proposed method

0.1 1.862645E-07
0.2 7.301569E-07
0.3 9.834766E-07
0.4 1.221895E-06
0.5 8.344650E-07
0.6 3.874302E-06
0.7 5.662441E-06
0.8 4.887581E-06
0.9 2.861023E-06

Table 4.4.5: Numerical results for the Example 4.4.5.
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4.5 Petrov-Galerkin method for solving a general

tenth order boundary value problem with quin-

tic B-splines as basis functions and septic B-

splines as weight functions

In this section, we developed a Petrov-Galerkin method with quintic B-splines as

basis functions and septic B-splines as weight functions for getting the numerical

solution of a general linear tenth order boundary value problem.

4.5.1 Introduction

Consider a general linear tenth order boundary value problem

a0(x)y(10)(x)+a1(x)y(9)(x)+a2(x)y(8)(x)+a3(x)y(7)(x)+a4(x)y(6)(x)+a5(x)y(5)(x)

+a6(x)y(4)(x)+a7(x)y′′′(x)+a8(x)y′′(x)+a9(x)y′(x)+a10(x)y(x) = b(x), c < x < d

(4.5.1)

subject to the boundary conditions

y(c) = A0, y(d) = C0, y′(c) = A1, y′(d) = C1, y′′(c) = A2, y′′(d) = C2,

y′′′(c) = A3, y′′′(d) = C3, y(4)(c) = A4, y(4)(d) = C4 (4.5.2)

where A0, C0, A1, C1, A2, C2, A3, C3, A4, C4 are finite real constants and

a0(x), a1(x), a2(x), a3(x), a4(x), a5(x), a6(x), a7(x), a8(x), a9(x), a10(x) and b(x)

are all continuous functions defined on the interval [c, d].

A class of characteristic-value problems of high order (as high as twenty four)

are known to arise in hydrodynamic and hydromagnetic stability [24]. Tenth-order

differential equations govern the physics of some hydrodynamic stability problems.

When an infinite horizontal layer of fluid is heated from below, with the supposition

that a uniform magnetic field is also applied across the fluid in the same direction

as gravity and the fluid is subject to the action of rotation, instability sets in. When

this instability sets in as ordinary convection, it is modelled by a tenth-order ordi-
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nary differential equation [24]. The existence and uniqueness of the solution for these

types of problems have been discussed in Agarwal [9]. Finding the analytical solu-

tions of such type of boundary value problems in general is not possible. Over the

years, many researchers have worked on tenth order boundary value problems by us-

ing different methods for numerical solutions. Twizell and Boutayeb [136] developed

finite difference techniques for the solution of eighth, tenth and twelfth order bound-

ary value problems. Siddiqi and Twizell [116], Siddiqi and Ghazala [110] presented

the solution of a special case of linear tenth order boundary value problems by using

tenth order and eleventh order spline functions respectively. Wazwaz [6] dealt with

modified Adomian decomposition for the solution of tenth and twelfth order bound-

ary value problems. Siddiqi and Ghazala [111] discussed the solution of a special

case of linear tenth order boundary value problems by using non-polynomial spline

techniques. Erturk and Shaher [138] presented differential transform method for the

solution of tenth order boundary value problems. Geng and Li [32], Abbasbandy

and Shirzdi [1] discussed the solution of a special case of tenth order boundary value

problems by using variational iteration techniques respectively. Kasi Viswanad-

ham and Showri Raju [57] developed quintic B-spline collocation method to solve a

general tenth order boundary value problem. Kasi Viswanadham and Sreenivasulu

[62] developed the quintic B-spline Galerkin method to solve a general tenth order

boundary value problem. So far, tenth order boundary value problems have not

been solved by using Petrov-Galerkin method with quintic B-splines as basis func-

tions and septic B-splines as weight functions. Therefore in this section, we try to

present a simple Petrov-Galerkin method using quintic B-splines as basis functions

and septic B-splines as weight functions to solve the tenth order boundary value

problem of type (4.5.1)-(4.5.2). The solution of a nonlinear boundary value problem

has been obtained as the limit of a sequence of solutions of linear boundary value

problems generated by quasilinearization technique [15].
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4.5.2 Description of the method

Divide the space variable domain [c, d] of the system (4.5.1)-(4.5.2) into n subinter-

vals as described in section 4.1.2.

To solve the boundary value problem (4.5.1)-(4.5.2) by the Petrov-Galerkin

method with quintic B-splines as basis functions and septic B-splines as weight

functions which are described in sections 1.1.3 and 1.1.5 respectively, we define the

approximation for y(x) as

y(x) =
n+2∑
j=−2

αjBj(x) (4.5.3)

where αj’s are the nodal parameters to be determined and Bj(x)’s are quintic B-

spline basis functions. In Petrov-Galerkin method, the basis functions should van-

ish on the boundary where the Dirichlet type of boundary conditions are specified.

In the set of quintic B-splines {B−2(x), B−1(x), B0(x), B1(x), B2(x), . . ., Bn−1(x),

Bn(x), Bn+1(x), Bn+2(x)}, the basis functions B−2(x), B−1(x), B0(x), B1(x), B2(x),

Bn−2(x), Bn−1(x), Bn(x), Bn+1(x) and Bn+2(x) do not vanish at one of the bound-

ary points. So, there is a necessity of redefining the basis functions into a new set of

basis functions which vanish on the boundary where the Dirichlet type of boundary

conditions are specified. When the chosen approximation satisfies the prescribed

boundary conditions or most of the boundary conditions, it gives better approxima-

tion results. In view of this, the basis functions are redefined into a new set of basis

functions which vanish on the boundary where the Dirichlet, Neumann, second or-

der derivative and third order derivative type of boundary conditions are prescribed.

The procedure for redefining of the basis functions is as follows.

Using the definition of 1.1.3, the Dirichlet, Neumann, second order derivative

and third order derivative boundary conditions of (4.5.2), we get the approximate

solution at the boundary points as

A0 = y(c) = y(x0) =
2∑

j=−2

αjBj(x0) (4.5.4)

C0 = y(d) = y(xn) =
n+2∑

j=n−2

αjBj(xn) (4.5.5)
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A1 = y′(c) = y′(x0) =
2∑

j=−2

αjB
′
j(x0) (4.5.6)

C1 = y′(d) = y′(xn) =
n+2∑

j=n−2

αjB
′
j(xn) (4.5.7)

A2 = y′′(c) = y′′(x0) =
2∑

j=−2

αjB
′′
j (x0) (4.5.8)

C2 = y′′(d) = y′′(xn) =
n+2∑

j=n−2

αjB
′′
j (xn) (4.5.9)

A3 = y′′′′(c) = y′′′(x0) =
2∑

j=−2

αjB
′′′
j (x0) (4.5.10)

C3 = y′′′(d) = y′′′(xn) =
n+2∑

j=n−2

αjB
′′′
j (xn) (4.5.11)

Eliminating α−2, α−1, α0, α1, αn−1, αn, αn+1 and αn+2 from the equations (4.5.3)

to (4.5.11), we get

y(x) = w(x) +
n−2∑
j=2

αjSj(x) (4.5.12)

where

w(x) = w3(x) +
A3 − w′′′3 (x0)

R′′′1 (x0)
R1(x) +

C3 − w′′′3 (xn)

R′′′n−1(xn)
Rn−1(x)

w3(x) = w2(x) +
A2 − w′′2(x0)

Q′′0(x0)
Q0(x) +

C2 − w′′2(xn)

Q′′n(xn)
Qn(x)

w2(x) = w1(x) +
A1 − w′1(x0)
P ′−1(x0)

P−1(x) +
C1 − w′1(xn)

P ′n+1(xn)
Pn+1(x)

w1(x) =
A0

B−2(x0)
B−2(x) +

C0

Bn+2(xn)
Bn+2(x)
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Sj(x) =


Rj(x)−

R′′′j (x0)

R′′′1 (x0)
R1(x), j = 2

Rj(x), j = 3, 4, . . . , n− 3

Rj(x)−
R′′′j (xn)

R′′′n−1(xn)
Rn−1(x), j = n− 2

(4.5.13)

Rj(x) =


Qj(x)−

Q′′j (x0)

Q′′0(x0)
Q0(x), j = 1, 2

Qj(x), j = 3, 4, . . . , n− 3

Qj(x)−
Q′′j (xn)

Q′′n(xn)
Qn(x), j = n− 2, n− 1

Qj(x) =


Pj(x)−

P ′j(x0)

P ′−1(x0)
P−1(x), j = 0, 1, 2

Pj(x), j = 3, 4, . . . , n− 3

Pj(x)−
P ′j(xn)

P ′n+1(xn)
Pn+1(x), j = n− 2, n− 1, n

Pj(x) =


Bj(x)− Bj(x0)

B−2(x0)
B−2(x), j = −1, 0, 1, 2

Bj(x), j = 3, 4, . . . , n− 3

Bj(x)− Bj(xn)

Bn+2(xn)
Bn+2(x), j = n− 2, n− 1, n, n+ 1

The new set of basis functions in the approximation y(x) is { Sj(x), j = 2, 3, . . . ,

n − 2}. Here w(x) takes care of the given set of Dirichlet, Neumann, second order

derivative and third order derivative type of boundary conditions and Sj(x)′s and

its first, second and third order derivatives vanish on the boundary. In Petrov-

Galerkin method, the number of basis functions in the approximation should match

with the number of weight functions. Here the number of basis functions in the

approximation for y(x) defined in (4.5.12) is n− 3, where as the number of weight

functions is n + 7. So, there is a need to redefine the weight functions into a new

set of weight functions which in number match with the number of basis functions.

The procedure for redefining the weight functions is as follows.

122



Let us write the approximation for v(x) as

v(x) =
n+3∑
j=−3

βjB̂j(x) (4.5.14)

where B̂j(x)’s are septic B-splines defined in section 1.1.5 and here we assume that

above approximation v(x) satisfies corresponding homogeneous boundary conditions

of (4.5.2). That means v(x), defined in (4.5.14), satisfies the conditions

v(c) = 0, v(d) = 0, v′(c) = 0, v′(d) = 0,

v′′(c) = 0, v′′(d) = 0, v′′′(c) = 0, v′′′(d) = 0, v(4)(c) = 0, v(4)(d) = 0

(4.5.15)

Using the definition of septic B-splines defined in section 1.1.5 and applying the

boundary conditions (4.5.15) to (4.5.14), we get the approximate solution at the

boundary points as

v(c) = v(x0) =
3∑

j=−3

βjB̂j(x0) = 0 (4.5.16)

v(d) = v(xn) =
n+3∑

j=n−3

βjB̂j(xn) = 0 (4.5.17)

v′(c) = v′(x0) =
3∑

j=−3

βjB̂
′
j(x0) = 0 (4.5.18)

v′(d) = v′(xn) =
n+3∑

j=n−3

βjB̂
′
j(xn) = 0 (4.5.19)

v′′(c) = v′′(x0) =
3∑

j=−3

βjB̂
′′
j (x0) = 0 (4.5.20)

v′′(d) = v′′(xn) =
n+3∑

j=n−3

βjB̂
′′
j (xn) = 0 (4.5.21)

v′′′(c) = v′′′(x0) =
3∑

j=−3

βjB̂
′′′
j (x0) = 0 (4.5.22)
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v′′′(d) = v′′′(xn) =
n+3∑

j=n−3

βjB̂
′′′
j (xn) = 0 (4.5.23)

v(4)(c) = v(4)(x0) =
3∑

j=−3

βjB̂
(4)
j (x0) = 0 (4.5.24)

v(4)(d) = v(4)(xn) =
n+3∑

j=n−3

βjB̂
(4)
j (xn) = 0 (4.5.25)

Eliminating β−3, β−2, β−1, β0, β1, βn−1, βn, βn+1, βn+2 and βn+3 from the equa-

tions (4.5.14) and (4.5.16) to (4.5.25), we get the approximation for v(x) as

v(x) =
n−2∑
j=2

βjV̂j(x) (4.5.26)

where

V̂j(x) =



Ûj(x)−
Û

(4)
j (x0)

Û
(4)
1 (x0)

Û1(x), j = 2, 3

Ûj(x), j = 4, 5, . . . , n− 4

Ûj(x)−
Û

(4)
j (xn)

Û
(4)
n−1(xn)

Ûn−1(x), j = n− 3, n− 2

(4.5.27)

Ûj(x) =


Vj(x)−

V ′′′j (x0)

V ′′′0 (x0)
V0(x), j = 1, 2, 3

Vj(x), j = 4, 5, . . . , n− 4

Vj(x)−
V ′′′j (xn)

V ′′′n (xn)
Vn(x), j = n− 3, n− 2, n− 1,

Vj(x) =


Uj(x)−

U ′′j (x0)

U ′′−1(x0)
U−1(x), j = 0, 1, 2, 3

Uj(x), j = 4, 5, . . . , n− 4

Uj(x)−
U ′′j (xn)

U ′′n+1(xn)
Un+1(x), j = n− 3, n− 2, n− 1, n
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Uj(x) =


Tj(x)−

T ′j(x0)

T ′−2(x0)
T−2(x), j = −1, 0, 1, 2, 3

Tj(x), j = 4, 5, . . . , n− 4

Tj(x)−
T ′j(xn)

T ′n+2(xn)
Tn+2(x), j = n− 3, n− 2, n− 1, n, n+ 1

Tj(x) =



B̂j(x)− B̂j(x0)

B̂−3(x0)
B̂−3(x), j = −2,−1, 0, 1, 2, 3

B̂j(x), j = 4, 5, . . . , n− 4

B̂j(x)− B̂j(xn)

B̂n+3(xn)
B̂n+3(x), j = n− 3, n− 2, n− 1, n, n+ 1, n+ 2

Now the new set of basis functions for the approximation v(x) is { V̂j(x), j = 2,

3, . . . , n − 2}. Here V̂j(x)’s and its first, second, third and fourth order derivatives

vanish on the boundary. Let us take V̂j(x)’s as weight functions for the prescribed

Petrov-Galerkin method. Here the redefined quintic basis functions Sj(x)’s defined

in (4.5.13) and the redefined septic weight functions V̂j(x)’s defined in (4.5.27) match

in number.

Applying the Petrov-Galerkin method to (4.5.1) with the redefined set of quintic

basis functions {Sj(x), j = 2, 3, . . . , n − 2} and the redefined set of septic weight

functions { V̂j(x), j = 2, 3, . . . , n− 2}, we get

∫ xn

x0

[
a0(x)y(10)(x) + a1(x)y(9)(x) + a2(x)y(8)(x) + a3(x)y(7)(x) + a4(x)y(6)(x)

+ a5(x)y(5)(x) + a6(x)y(4)(x) + a7(x)y′′′(x) + a8(x)y′′(x) + a9(x)y′(x)

+ a10(x)y(x)
]
V̂i(x) dx =

∫ xn

x0

b(x)V̂i(x) dx

for i = 2, 3, . . . , n− 2. (4.5.28)
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Integrating by parts the first six terms on the left hand side of (4.5.28) and after

applying the boundary conditions prescribed in (4.5.2), we get

∫ xn

x0

a0(x)V̂i(x)y(10)(x)dx = − d5

dx5

[
a0(x)V̂i(x)

]
xn

C4 +
d5

dx5

[
a0(x)V̂i(x)

]
x0

A4

+

∫ xn

x0

d6

dx6

[
a0(x)V̂i(x)

]
y(4)(x) dx (4.5.29)

∫ xn

x0

a1(x)V̂i(x)y(9)(x)dx = −
∫ xn

x0

d5

dx5

[
a1(x)V̂i(x)

]
y(4)(x) dx (4.5.30)

∫ xn

x0

a2(x)V̂i(x)y(8)(x)dx = −
∫ xn

x0

d5

dx5

[
a2(x)V̂i(x)

]
y′′′(x) dx (4.5.31)

∫ xn

x0

a3(x)V̂i(x)y(7)(x)dx = −
∫ xn

x0

d5

dx5

[
a3(x)V̂i(x)

]
y′′(x) dx (4.5.32)

∫ xn

x0

a4(x)V̂i(x)y(6)(x)dx = −
∫ xn

x0

d5

dx5

[
a4(x)V̂i(x)

]
y′(x) dx (4.5.33)

∫ xn

x0

a5(x)V̂i(x)y(5)(x)dx = −
∫ xn

x0

d5

dx5

[
a5(x)V̂i(x)

]
y(x) dx (4.5.34)

Substituting (4.5.29) to (4.5.34) in (4.5.28) and using the approximation for y(x)

given in (4.5.12) and after rearranging the terms for resulting equations, we get a

system of equations in the matrix form as

Aα = B (4.5.35)

126



where A = [aij];

aij =

∫ xn

x0

{[
d6

dx6

[
a0(x)V̂i(x)

]
− d5

dx5

[
a1(x)V̂i(x)

]
+ a6(x)V̂i(x)

]
S
(4)
j (x)

+

[
− d5

dx5

[
a2(x)V̂i(x)

]
+ a7(x)V̂i(x)

]
S ′′′j (x)

+

[
− d5

dx5

[
a3(x)V̂i(x)

]
+ a8(x)V̂i(x)

]
S ′′j (x) +

[
− d5

dx5

[
a4(x)V̂i(x)

]
+ a9(x)V̂i(x)

]
S ′j(x)

+

[
− d5

dx5

[
a5(x)V̂i(x)

]
+ a10(x)V̂i(x)

]
Sj(x)

}
dx

for i = 2, 3, . . . , n− 2, j = 2, 3, . . . , n− 2. (4.5.36)

B = [bi];

bi =

∫ xn

x0

{
b(x)V̂i(x)−

[
d6

dx6

[
a0(x)V̂i(x)

]
− d5

dx5

[
a1(x)V̂i(x)

]
+ a6(x)V̂i(x)

]
w(4)(x)

−
[
− d5

dx5

[
a2(x)V̂i(x)

]
+ a7(x)V̂i(x)

]
w′′′(x)

−
[
− d5

dx5

[
a3(x)V̂i(x)

]
+ a8(x)V̂i(x)

]
w′′(x)−

[
− d5

dx5

[
a4(x)V̂i(x)

]
+ a9(x)V̂i(x)

]
w′(x)

−
[
− d5

dx5

[
a5(x)V̂i(x)

]
+ a10(x)V̂i(x)

]
w(x)

}
dx

+
d5

dx5

[
a0(x)V̂i(x)

]
xn

C4 −
d5

dx5

[
a0(x)V̂i(x)

]
x0

A4

for i = 2, 3, . . . , n− 2. (4.5.37)

and α = [α2 α3 . . . αn−2]
T .
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4.5.3 Solution procedure to find the nodal parameters

A typical integral element in the matrix A is

n−1∑
m=0

Im

where Im =
∫ xm+1

xm
vi(x)rj(x)Z(x) dx and rj(x) are the quintic B-spline basis func-

tions or their derivatives, vi(x) are the septic B-spline weight functions or their

derivatives.

It may be noted that Im = 0 if (xj−3, xj+3) ∩ (xi−4, xi+4) ∩ (xm, xm+1) = ∅. To

evaluate each Im, we employed 7-point Gauss-Legendre quadrature formula. Thus

the stiff matrix A is a thirteen diagonal band matrix. The nodal parameter vector α

has been obtained from the system Aα = B using the band matrix solution package.

4.5.4 Numerical Results

To demonstrate the applicability of the proposed method for solving the tenth order

boundary value problems of the type (4.5.1) and (4.5.2), we considered three linear

and three nonlinear boundary value problems. The obtained numerical results for

each problem are presented in tabular forms and compared with the exact solutions

available in the literature.

Example 4.5.1. Consider the linear boundary value problem

y(10) + xy = −(80 + 19x+ x3)ex, 0 < x < 1 (4.5.38)

subject to y(0) = 0, y(1) = 0, y′(0) = 1, y′(1) = −e, y′′(0) = 0, y′′(1) = −4e,

y′′′(0) = −3, y′′′(1) = −9e, y(4)(0) = −8, y(4)(1) = −16e.

The exact solution for the above problem is y = x(1− x)ex.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are given in Table 4.5.1.

The maximum absolute error obtained by the proposed method is 2.825260× 10−5.
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Example 4.5.2. Consider the linear boundary value problem

y(10) − (x2 − 2)y = 10cosx− (x− 1)2(x+ 1)sinx, −1 ≤ x ≤ 1 (4.5.39)

subject to y(−1) = 2sin1, y(1) = 0, y′(−1) = −2cos1− sin1, y′(1) = sin1,

y′′(−1) = 2cos1− 2sin1, y′′(1) = 2cos1, y′′′(−1) = 2cos1 + 3sin1, y′′′(1) = −3sin1,

y(4)(−1) = −4cos1 + 2sin1, y(4)(1) = −4cos1.

The exact solution for the above problem is y = (x− 1)sinx.

The proposed method is tested on this problem where the domain [−1, 1] is divided

into 10 equal subintervals. Numerical results for this problem are given in Table

4.5.2. The maximum absolute error obtained by the proposed method is 1.725554×
10−5.

Example 4.5.3. Consider the linear boundary value problem

y(10)+y(9)+sinx y(4)+cosx y′′′+x2y = (2+sinx+cosx+x2)ex, 0 < x < 1 (4.5.40)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e,

y′′′(0) = 1, y′′′(1) = e, y(4)(0) = 1, y(4)(1) = e.

The exact solution for the above problem is y = ex.

The proposed method is tested on this problem where the domain [0, 1] is divided into

10 equal subintervals. Numerical results for this problem are given in Table 4.5.3.

The maximum absolute error obtained by the proposed method is 8.916855× 10−5.

Example 4.5.4. Consider the nonlinear boundary value problem

y(10) + e−xy2 = e−x + e−3x, 0 < x < 1 (4.5.41)

subject to y(0) = 1, y(1) = e−1, y′(0) = −1, y′(1) = −e−1, y′′(0) = 1, y′′(1) = e−1,

y′′′(0) = −1, y′′′(1) = −e−1, y(4)(0) = 1, y(4)(1) = e−1.
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The exact solution for the above problem is y = e−x.

The nonlinear boundary value problem (4.5.41) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(10)
(n+1) + 2e−xy(n)y(n+1) = e−xy2(n) + e−x + e−3x, n = 0, 1, 2, ... (4.5.42)

subject to y(n+1)(0) = 1, y(n+1)(1) = e−1, y′(n+1)(0) = −1, y′(n+1)(1) = −e−1,
y′′(n+1)(0) = 1, y′′(n+1)(1) = e−1, y′′′(n+1)(0) = −1, y′′′(n+1)(1) = −e−1,
y
(4)
(n+1)(0) = 1, y

(4)
(n+1)(1) = e−1.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.5.42). Numerical results for this problem are given in Table 4.5.4. The

maximum absolute error obtained by the proposed method is 2.998114× 10−5.

Example 4.5.5. Consider the nonlinear boundary value problem

y(10) =
14175

4
(x+ y + 1)11, 0 ≤ x ≤ 1 (4.5.43)

subject to y(0) = 0, y(1) = 0, y′(0) = −0.5, y′(1) = 1, y′′(0) = 0.5, y′′(1) = 4,

y′′′(0) = 0.75, y′′′(1) = 12, y(4)(0) = 1.5, y(4)(1) = 48.

The exact solution for the above problem is y = 2
2−x − x− 1.

The nonlinear boundary value problem (4.5.43) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(10)
(n+1) −

14175

4
(x+ y(n) + 1)10y(n+1)

=
14175

4
(x+ y(n) + 1)10(1 + x− 10y(n)) n = 0, 1, 2, ... (4.5.44)

subject to y(n+1)(0) = 0, y(n+1)(1) = 0, y′(n+1)(0) = −0.5, y′(n+1)(1) = 1,
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y′′(n+1)(0) = 0.5, y′′(n+1)(1) = 4, y′′′(n+1)(0) = 0.75, y′′′(n+1)(1) = 12,

y
(4)
(n+1)(0) = 1.5, y

(4)
(n+1)(1) = 48.

Here y(n+1) is the (n + 1)th approximation for y. The domain [0, 1] is divided into

10 equal subintervals and the proposed method is applied to the sequence of linear

problems (4.5.44). Numerical results for this problem are given in Table 4.5.5. The

maximum absolute error obtained by the proposed method is 6.258488× 10−6.

Example 4.5.6. Consider the nonlinear boundary value problem

y(10) + y(9) + y2y(4) + cosy y′ = (2 + e2x + cos(ex))ex, 0 < x < 1 (4.5.45)

subject to y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1, y′′(1) = e,

y′′′(0) = 1, y′′′(1) = e, y(4)(0) = 1, y(4)(1) = e.

The exact solution for the above problem is y = ex.

The nonlinear boundary value problem (4.5.45) is converted into a sequence of linear

boundary value problems generated by quasilinearization technique [15] as

y
(10)
(n+1) + y

(9)
(n+1) + y2(n)y

(4)
(n+1) + cos(y(n))y

′
(n+1) + (2y(n)y

(4)
(n) − sin(y(n))y

′
(n))y(n+1)

= (2y(n)y
(4)
(n) − sin(y(n))y

′
(n))y(n) + (2 + e2x + cos(ex))ex, n = 0, 1, 2, ... (4.5.46)

subject to y(n+1)(0) = 1, y(n+1)(1) = e, y′(n+1)(0) = 1, y′(n+1)(1) = e,

y′′(n+1)(0) = 1, y′′(n+1)(1) = e, y′′′(n+1)(0) = 1, y′′′(n+1)(1) = e,

y
(4)
(n+1)(0) = 1, y

(4)
(n+1)(1) = e.

Here y(n+1) is the (n+ 1)th approximation for y. The domain [0, 1] is divided into 10

equal subintervals and the proposed method is applied to the sequence of linear prob-

lems (4.5.46). The obtained numerical results for this problem are presented in Table

6. The maximum absolute error obtained by the proposed method is 8.428097×10−5.
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x Absolute error by
proposed method

0.1 4.172325E-07
0.2 3.233552E-06
0.3 1.123548E-05
0.4 2.232194E-05
0.5 2.825260E-05
0.6 2.512336E-05
0.7 1.624227E-05
0.8 7.450581E-06
0.9 2.518296E-06

Table 4.5.1: Numerical results for the Example 4.5.1.

x Absolute error by
proposed method

-0.8 7.152557E-07
-0.6 6.973743E-06
-0.4 1.382828E-05
-0.2 1.725554E-05
0.0 1.461588E-05
0.2 6.839633E-06
0.4 3.427267E-07
0.6 2.250075E-06
0.8 1.624227E-06

Table 4.5.2: Numerical results for the Example 4.5.2.

x Absolute error by
proposed method

0.1 2.861023E-06
0.2 1.585484E-05
0.3 4.673004E-05
0.4 8.201599E-05
0.5 8.916855E-05
0.6 5.972385E-05
0.7 1.788139E-05
0.8 7.152557E-06
0.9 9.775162E-06

Table 4.5.3: Numerical results for the Example 4.5.3.
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x Absolute error by
proposed method

0.1 1.609325E-06
0.2 7.867813E-06
0.3 1.960993E-05
0.4 2.998114E-05
0.5 2.872944E-05
0.6 1.639128E-05
0.7 3.337860E-06
0.8 2.175570E-06
0.9 1.460314E-06

Table 4.5.4: Numerical results for the Example 4.5.4.

x Absolute error by
proposed method

0.1 1.490116E-07
0.2 9.238720E-07
0.3 2.965331E-06
0.4 5.558133E-06
0.5 6.258488E-06
0.6 4.455447E-06
0.7 1.817942E-06
0.8 1.788139E-07
0.9 1.192093E-07

Table 4.5.5: Numerical results for the Example 4.5.5.

x Absolute error by
proposed method

0.1 2.980232E-06
0.2 1.597404E-05
0.3 4.577637E-05
0.4 7.903576E-05
0.5 8.428097E-05
0.6 5.435944E-05
0.7 1.430511E-05
0.8 8.106232E-06
0.9 9.775162E-06

Table 4.5.6: Numerical results for the Example 4.5.6.
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Chapter 5

Conclusions and Scope for further

research

Conclusions

In this thesis, we have developed Petrov-Galerkin method with the combina-

tion of different orders of B-splines as basis functions and weight functions to solve

higher order boundary value problems. In the method the basis functions are re-

defined into a new set of basis functions which vanish on the boundary where all

the boundary conditions or most of the boundary conditions are prescribed and the

weight functions are also redefined into a new set of weight functions which in num-

ber match with the number of basis functions. The approximate solution has been

written as a linear combination of the redefined set of basis functions along with the

non-homogeneous part function which takes care of the boundary conditions where

the redefined basis functions vanish. We have approximated the solution with a

B-spline polynomial whose order is less than the order of the given differential equa-

tion. The proposed method is applied to solve several linear and nonlinear boundary

value problems numerically with moderate value of step size to test the efficiency.

The solution of a nonlinear problem has been obtained as the limit of a sequence

of solutions of the linear problems generated by quasilinearization technique. The

numerical results obtained by the proposed method are in good agreement with the

exact solutions available in the literature. The objective of this thesis is to present

simple and accurate method to solve higher order boundary value problems.
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Scope for further research

Time dependent problems can be solved with B-splines as basis functions. The

method can be extended to solve two dimensional problems by using tensor probuct

B-splines.
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