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A B S T R A C T

Convective heat transfer from irregular surfaces is a topic of fundamental importance due

to its various enhancing heat transfer characteristics. The presence of roughness elements

disturbs the flow past a flat surface and alters the heat transfer rate. Moreover, heat and mass

transport characteristics about natural/mixed convection of a nanofluid saturated porous

medium is very important in view of its practical applications in engineering. Nanofluids

are prepared by the uniform dispersion and suspension of nanometer sized metallic particles

into conventional heat transfer fluids such as water, oil, or ethylene glycol. The aim of this

thesis is to study the free and mixed convection heat and nanoparticle mass transfer in a

nanofluid saturated Darcy/non-Darcy porous medium in the presence of thermal radiation

and thermal stratification effects. The problems considered deal with inclined wavy surface

geometry.

The thesis consists of TEN chapters. Chapter 1 provides an introduction to the concepts

in nanofluid, porous medium, heat and nanoparticle mass transfer and a review of the perti-

nent literature. Chapters 2 and 3 deal with natural and mixed convection over a semi-infinite

inclined wavy surface embedded in a nanofluid saturated porous medium. Chapters 4 and 5

are extensions of chapters 2 and 3 in which thermal radiation and non-Darcy effects are stud-

ied. Chapters 6 and 7 deals with convective heat and mass transfer along an inclined wavy

surface embedded in a thermally stratified nanofluid saturated porous medium. Chapters 8

and 9 are extensions of chapters 6 and 7 in which thermal radiation and non-Darcy effects are

studied. In all the chapters the governing equations are transformed into a set of non-linear

partial differential equations using the pseudo-similarity transformations. A local similarity

and non-similarity method is used to transform the obtained partial differntial equations to

a set of ordinary differntial equations. The resulting equations are linearized using the Suc-

cessive Linearization Method and then solved using Chebyshev spectral collocation method.

The effects of wave amplitude, angle of inclination of the wavy surface, Brownian motion

parameter, thermophoresis parameter, thermal radiation parameter, non-Darcy parameter

and thermal stratification parameter on the velocity, temperature, and nanoparticle volume

fraction along with heat and nanoparticle mass transfer coefficients are studied.

The last chapter (Chapter - 10) gives summary and overall conclusions and scope for

future work.
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N O M E N C L A T U R E

A Angle of inclination of the wavy

surface.

a Amplitude of the wavy surface.

B Slope of ambient temperature.

DB Brownian motion diffusion coeffi-

cient.

DT Thermophoresis diffusion coeffi-

cient.

f Dimensionless stream function.

Fc Forchheimer number.

g Gravitational acceleration.

Gr Grashof number.

k Thermal conductivity.

K Permeability.

Ke Absorption coefficient.

K̃ Material parameter.

L Linear operator.

l Characteristic length of the wavy

surface.

Le Lewis number.

N Non-linear operator.

Nb Brownian motion parameter.

Nr Nanofluid buoyancy ratio.

Nt Thermophoresis parameter.

Nuξ Local Nusselt number.

NShξ Local Nanoparticle Sherwood

number.

P Pressure.

Pe Peclet number.

qw, qnp Heat and Nanoparticle fluxes.

R Radiation Parameter.

Ra Rayleigh number.

s Reduced nanoparticle volume frac-

tion.

ST Thermal Stratification Parameter.

T Temperature.

T∞(x) Ambient stratified temperature.

Tw Wall temperature.

T∞,0, T∞ Ambient temperature.

U∞ Free stream velocity.

u, v Velocity components in x and y di-

rections.

x, y Coordinates along and normal to

the plate.

α Thermal diffusivity.

β volumetric thermal expansion co-

efficient.
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δ(x) Wavy surface.

∆ Mixed convection parameter.

γ Ratio between the effective heat

capacity of the nanoparticle mate-

rial and heat capacity of the fluid.

η Similarity variable.

θ Dimensionless temperature.

µ Dynamic viscosity.

ν Kinematic viscosity.

ξ Non-similarity variable.

ρf Density of the base fluid.

ρp Density of nanoparticles.

(ρc)f Heat capacity of the fluid.

(ρc)p Effective heat capacity of the

nanoparticle material.

ψ Stream function.

φ Nanoparticle volume fraction.

Subscripts

w Wall condition.

∞ Ambient condition.

Superscript

′ Differentiation with respect to η.
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Chapter 1

Introduction

1.1 Introduction

Fluid transport phenomena in porous medium refers to the processes related to and accom-

panied with the transport of fluid momentum, heat and mass, through the given porous

medium. These processes which are encountered in many different branches of science and

technology, e.g., hydrology, geomechanics, civil, petroleum, chemical and mechanical engi-

neering, etc. are commonly subject to theoretical treatments which are based upon the

methods traditionally developed in classical fluid dynamics. Over recent decades, fluid flows

in porous medium have been studied both experimentally and theoretically. Convective

transport in porous media has been the subject of great importance in recent years due to its

wide range of applications in mechanical, chemical, and civil engineering. These applications

include migration of moisture in fibrous insulation, the spreading of chemical pollutants in

saturated soil, the extraction of geothermal energy, food processing and storage, geophysical

systems, underground disposal of nuclear or non-nuclear waste, electro-chemistry, thermal
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insulation of buildings, metallurgy, the design of pebble bed nuclear reactors, cooling system

of electronic devices, etc.

Flow and heat transfer over irregular surfaces are often encountered in many engineering

applications to enhance heat transfer as in cooling system of micro-electronic devices, flat-

plate solar collectors and flat-plate condensers in refrigerators, and geophysical applications

(e.g., flows in the earths crust), underground cable systems, electric machinery, etc. In

addition, roughened surfaces could be used in the cooling of electrical and nuclear components

where the wall heat flux is known. Sometimes surfaces are intentionally roughened to enhance

heat transfer. The presence of roughness elements disturbs the flow past a flat surface and

alters the heat transfer rate.

Moreover, engineered suspensions of nanoparticles in liquids, known recently as nanoflu-

ids, have generated considerable interest for their potential to enhance the heat transfer

rate in engineering systems, while reducing, or possibly eliminating, the issues of erosion,

sedimentation and clogging that plagued earlier solid-liquid mixtures with larger particles.

Nanofluids can be used in a wide variety of engineering applications ranging from use in the

automotive industry to the medical arena to use in power plant cooling systems as well as

computers. The convection due to heated/cooled objects of various shapes under different

physical conditions in a nanofluid saturated porous medium yields one of the most impor-

tant scenarios for heat and mass transfer theory and thus is of considerable theoretical and

practical interest

1.2 Nanofluids

Conventional heat transfer fluids like water, ethylene glycol, and oil have relatively low

thermal conductivities, when compared to the thermal conductivity of solids. Hence, an

innovative way of improving the thermal conductivities of fluids is to suspend small solid

particles, such as millimeter- or micrometer-sized particles, into the conventional fluids. In

1904, Maxwell added millimeter- or micrometer-sized solid particles, because solids conduct
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heat much better than liquids do. However, they have not been of interest for practical

applications due to problems such as sedimentation, erosion, fouling and increased pressure

drop of the flow channel. These problems are highly undesirable for many practical cooling

applications. The recent advance in materials technology has made it possible to produce

nanometer-sized particles that can overcome these problems.

A nanofluid is a term initially used by Choi [26] and refers to a base fluid with suspended

solid nanoparticles in it. The thermal conductivity of nanometer sized particles is typically

in the order of magnitude higher than those of the base fluids. The addition of nanoparticles

to the base fluid even at low volume concentrations, results in significant increase in thermal

performance. The goal of nanofluids is to achieve the highest possible thermal properties

at the smallest possible concentrations (preferably < 1% by volume) by uniform dispersion

and stable suspension of nanoparticles (preferably < 10nm) in host fluids. During the past

decade the study of nanofluids has attracted immense enthusiasm from researchers in view

of its exceptional applications in electronics, communication, computing technologies, high-

power X-rays, medicine, lasers, optical devices, scientific measurement, material processing

and material synthesis. Nanofluids are promising fluids for heat transfer enhancement due

to their anomalously high thermal conductivity. The detailed introduction and applications

of nanofluids can be seen in Das et al. [29].

Numerous models and methods have been proposed by different authors to study the

convective flows of nanofluids. The computational studies reported in this area include two

main approaches: (1) a two-phase model, in which both liquid and solid heat transfer behav-

iors are solved in the flow fields [116, 64] and (2) a single-phase model, in which solid particles

are considered to behave as fluids, because the nanoparticles are easily fluidized [51, 106, 2].

Several issues are involved while studying the heat transfer enhancement utilizing nanofluids.

These issues are like gravity, Brownian motion, layering at the interface between solid and

liquid, clustering of the nanoparticles, ballistic phono transport through the particles and

the friction between the fluid and the solid particles. The phenomena of sedimentation, dis-

persion and Brownian diffusion may coexist in the main flow of a nanofluid. In the absence of

any suitable theoretical studies and experimental data in the literature to investigate these
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issues, the existing macroscopic two-phase model is not applicable for analyzing nanoflu-

ids. If the main interest is focused on the heat transfer process, the modified single-phase,

accounting for some of the above factors, is more convenient than the two-phase model.

Two models namely, the Tiwari-Das model [106] and Buongiorno model [10] are more

frequently used by several researchers to investigate the heat transfer enhancement by very

fine particles suspended in a fluid.

Tiwari-Das model

Tiwari and Das developed a model to analyze the behaviour of nanofluids by taking the

volumetric fraction of nanparticles into consideration. Using this nanofluid model, the basic

governing equations for the continuity, momentum and energy in laminar incompressible

boundary layer flow of a nanofluid can be written as

∂u

∂x
+
∂v

∂y
= 0 (1.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
µnf
ρnf

∂2u

∂y2
− 1

ρnf

dp

dx
+
φ ρs βs(1− φ)ρf βf

ρnf
g(T − T∞) (1.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
(1.3)

Here u and v are the velocity components along the x and y axes, respectively, T is the

temperature of the nanofluid, βf and βs are the thermal expansion coefficients of the base

fluid and nanoparticle respectively and g is the acceleration due to gravity. Further µnf is

the viscosity of the nanofluid, αnf is the thermal diffusivity of the nanofluid and ρnf is the

density of the nanofluid, which are given by

µnf =
µf

(1− φ)2.5
, ρnf = (1− φ)ρf + φρs, ρCpnf = (1− φ)ρCpf + φρCps

αnf =
knf
ρCpnf

,
knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

(1.4)
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where φ is the solid volume fraction of the nanofluid, ρf is the density of the base fluid,

ρs is the density of the solid particle, µf is the viscosity of the base fluid, kf and ks are

the thermal conductivity of the base fluid and nanoparticle, respectively, knf is the effective

thermal conductivity of the nanofluid approximated by the Maxwell-Garnett model (see

Oztop and Abu-Nada [82]).

Buongiorno model

Buongiorno [10] proposed an analytical model for convective transport in nanofluids which

incorporates the effects of Brownian diffusion and thermophoresis. Contrary to the Tiwari-

Das model [106] that focuses on volumetric fraction of nanoparticles, Buongiorno model [10]

pays more attention to Brownian motion and thermophoresis effects. Furthermore, instead

of focusing on the thermophysical properties of the nanofluid, Buongiorno model focuses on

explaining the heat transfer enhancement observed in convective situations. This Buongiorno

model has been used in many recent works such as those of, Nield and Kuznetsov [78, 77, 79],

Kuznetsov and Nield [53, 54] and Khan and Aziz [50], among others.

Brownian motion

The arbitrary motion of nanoparticles within the base fluid is called Brownian motion, and

this results from continuous collisions between the nanoparticles and the molecules of the

base fluid.

Thermophoresis

Particles can diffuse under the influence of a temperature gradient. This phenomenon is

called thermophoresis, and is the particle equivalent of the renowned Soret effect for gaseous

or liquid mixtures.

The basic governing equations of continuity, momentum, energy and nanoparticle con-

centration for this model are given by

5



∂u

∂x
+
∂v

∂y
= 0 (1.5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(1.6)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

(1.7)

∂φ

∂t
u+

∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
(1.8)

where x and y are the Cartesian coordinates measured along and normal to the surface,

u and v are the velocity component along the x and y axes, T is the temperature of the

nanofluid, φ is the nanoparticle volume fraction, ν is the kinematic viscosity of the nanofluid,

α is the thermal diffusivity of the nanofluid, DB is the Brownian diffusion coefficient, DT

is the thermophoretic diffusion coefficient, γ = (ρc)p/(ρc)f , with (ρc)f and (ρc)p being the

heat capacity of the nanofluid and the effective heat capacity of the nanoparticle material,

respectively.

1.3 Porous Medium

A porous medium may be defined as a solid matrix containing holes either connected or

non-connected, dispersed within the medium in regular or random manner provided such

holes occur frequently in the medium. If these pores are saturated with a fluid, then the

solid matrix with the fluid is called a fluid saturated porous medium. The flow of the fluid

in a saturated porous material is possible only when some of the pores are interconnected.

To study the motion of fluids through porous media, one must have sufficient understand-

ing of the governing equations for the fluid flow through the porous media. Owing to the

intricate structure of the porous medium, several models were proposed in order to explain
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mathematical and physical aspects of porous media. Among these the Darcy model, and

a series of its modifications, attained much acceptance. Boundary-layer assumptions were

successfully applied to these models and much work over the last few decades has been done

on them for a wide variety of body geometries.

Darcy Model

The governing equation for fluid motion in a vertical porous column was first given by Darcy

[28] in 1856. It represents a balance of viscous force, gravitational force and pressure gradient.

In mathematical form it is given as

V = −K
µ

(∇P − ρ g) (1.9)

where V is the space averaged velocity (or Darcian velocity), K is the (intrinsic) permeability

of the medium, µ is the coefficient of viscosity, P is the pressure, ρ is the density of the fluid

and g is the body force per unit volume. For one-dimensional flows and for low porosity

system, the above law appears to provide good agreement with experimental results. As this

model does not take inertial effects into consideration, it is valid for seepage flows only i.e.,

for flows with low Reynolds number (O(Re) < 1).

Darcy-Forchheimer Model

Forchheimer, in 1901, conducted experiments and proposed that the inertial effects can be

accounted for through the addition of a velocity squared term in the momentum equation.

The modification to the Darcy’s equation is[
1 +

ρ c
√
K

µ
|V |

]
V = −K

µ
[∇P − ρg] , (1.10)

where c is the dimensionless form drag coefficient and it varies with the nature of the porous

medium. The coefficients of Darcy and Forchheimer terms contain both the fluid properties

and the micro-structure of the porous medium. The validity of this model has been confirmed
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by a number of experimental works.

Darcy-Brinkman Model

Under the assumption that the flow through an isotropic porous medium with high perme-

ability must reduce to the viscous flow in limit, Brinkman has corrected Darcy’s equation

with addition of Laplace term. Brinkman felt the need to account for the viscous force

exerted by a flowing fluid on a dense swarm of spherical particles embedded in a porous

mass and added the term µ′∇2V to balance the pressure gradient. Here µ′ is the effective

viscosity given by µ′ = µ(1 − 2.5(1 − ε)). The validity of the Brinkman model is restricted

to the high porosity medium (as confirmed by the experiments). Its governing equation is

given by

− [∇P − ρg] =
µ

K
V − µ′∇2V. (1.11)

Other Models

Another model which considers both Forchheimer and Brinkman terms, is governed by the

equation

−∇P =
µ

K
V +

C ρ |V |√
K

V − µ′

ε
∇2V. (1.12)

Yet another model in which the convective term has been considered along with these two

effects has also been used by researchers to study the flow of fluid in the porous medium,

through the governing equation

ρ
DV

Dt
= −∇P − µ

K
V − C ρ |V |√

K
V +

µ′

ε
∇2V. (1.13)

Several other models are found in the literature related to porous media, the validity and

limitations of these models are well discussed in Nield and Bejan [76].
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1.4 Aim and Scope of the Thesis

The aim of the present thesis is to analyze some boundary layer flows arising from the

convection along a semi-infinite inclined wavy surface geometry embedded in a nanofluid

saturated porous medium. We study the influence of amplitude and angle of inclination of the

wavy surface, thermal radiation effects, thermal stratification effects, non-Darcy parameter

effects, mixed convection parameter effects, thermophoresis and Brownian motion effects on

the flow charactereistics, heat transfer rate and nanoparticle mass transfer rate. Buongiorno

[10] model is the basis of the present study. The governing non-linear equations are linearized

using Successive Linearization Method and then the resulting equations are solved using

Chebyshev spectral collocation method.

Successive Linearization Method

The Successive Linearisation Method (SLM) is proposed and developed by Makukula et al.

[60] and Motsa and Sibanda [69]. This technique has been successfully used to solve different

boundary value problems in heat and mass transfer studies (Makukula et al. [61], Shateyi

and Motsa [97] and Awad et al. [5]) and showed by comparison with numerical techniques

that the SLM is accurate, gives rapid convergence.

To describe the basic idea behind the Successive Linearization Method (SLM), consider

a non-linear boundary value problem of order n in the form

L [u(x), u′(x), u′′(x), · · · , u(n)(x)] + N [u(x), u′(x), u′′(x), · · · , u(n)(x)] = g(x), x ∈ [a, b]

(1.14)

subject to the boundary conditions

u(a) = a0, u(b) = b0 (1.15)

where L and N are linear and non-linear operators, u(x) is an unknown function to be
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determined and g(x) is a known function.

A function U1(x) is defined as the vertical difference between the function u(x) and the

initial guess u0(x) i.e.

U1(x) = u(x)− u0(x) or u(x) = u0(x) + U1(x) (1.16)

where U1(x) is an unknown function and u0(x) is the initial guess which is chosen to satisfy

boundary conditions (1.16).

Substituting Eqn. (1.17) into Eqn. (1.15), yields

L [U1, U1
′, U1

′′, · · · , U1
(n)] + N [U1 + u0, U1

′ + u0
′, U1

′′ + u0
′′, · · · , U1

(n) + u0
(n)]

= −L [u0, u0
′, u0

′′, · · · , u0(n)] + g(x) (1.17)

In this equation RHS is known function as u0(x) is known. Further, the above equation

is non-linear in U1(x), so it may not be possible to find an exact solution. Therefore, an

approximate solution is required, which is obtained by solving the linear part of the equation

assuming that U1(x) and its derivatives are very small. This assumption enables to use

Taylors series method to linearize the equation. Let the solution of the full Eqn. (1.18) be

U1(x) and the solution of the linearized version of the Eqn. (1.18) be u1(x). Expanding Eqn.

(1.18) in Taylors series and neglecting the higher order terms, we get

L [u1, u1
′, u1

′′, · · · , u1(n)] + a0,0u1 + a1,0u1
′ + a2,0u1

′′ + · · ·+ an,0u1
(n) = R1(x), (1.18)

10



where

a0,0 =
∂N

∂u1(x)

(
u0(x), u0

′(x), u0
′′(x), · · · , u0(n)(x)

)
,

a1,0 =
∂N

∂u1′(x)

(
u0(x), u0

′(x), u0
′′(x), · · · , u0(n)(x)

)
,

a2,0 =
∂N

∂u1′′(x)

(
u0(x), u0

′(x), u0
′′(x), · · · , u0(n)(x)

)
,

...

an,0 =
∂N

∂u1(n)(x)

(
u0(x), u0

′(x), u0
′′(x), · · · , u0(n)(x)

)
R1(x) = g(x)−L [u0(x), u0

′(x), u0
′′(x), · · · , u0(n)(x)]

−N [u0(x), u0
′(x), u0

′′(x), · · · , u0(n)(x)]

Since the left hand side of Eqn. (1.19) is linear and the right hand side is known, the

equation can be solved for u1(x) subject to the boundary conditions

u(a) = 0, u(b) = 0 (1.19)

Assuming that the solution of the linear equation (1.19) is close to the solution of the

nonlinear equation (1.18) that is U1(x) ≈ u1(x), then the first approximation of the solution

(first order) is

u(x) ≈ u0(x) + u1(x) (1.20)

To improve on this solution, a function U2(x) is defined that when added to u1(x) gives

U1(x)

U1(x) = U2(x) + u1(x) (1.21)

Substitute (1.22) into equation (1.18) to give

L [U2, U2
′, U2

′′, · · · , U2
(n)] + N [U2 + u0 + u1, U2

′ + u0
′ + u1

′, U2
′′ + u0

′′ + u1
′′, · · · ,

U2
(n) + u0

(n) + u1
(n)] = −L [u0 + u1, u0

′ + u1
′, u0

′′ + u1
′′, · · ·u0(n) + u0

(n)] + g(x) (1.22)

Since u0(x) and u1(x) are known and Eqn. (1.23) is non-linear in U2(x), it may not be
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possible to find an exact solution. Therefore, the equation is linearized using the Taylors

series expansion and the resulting linear equation is solved. Let the solution of the linearized

equation is denoted by u2(x), such that U2(x) ≈ u2(x). Taking U2(x) = u2(x) and expanding

Eqn. (1.23) for small u2(x) and its derivatives gives

L [u2, u2
′, u2

′′, ...., u2
(n)] + a0,1u2 + a1,1u2

′ + a2,1u2
′′ + ....+ an,1u2

(n) = R2(x), (1.23)

where

a0,1 =
∂N

∂u2(x)

(
u0 + u1, u0

′ + u1
′, u0

′′ + u0
′′, · · · , u0(n) + u1

(n)
)

a1,1 =
∂N

∂u2′
(
u0 + u1, u0

′ + u1
′, u0

′′ + u0
′′, · · · , u0(n) + u1

(n)
)

a2,1 =
∂N

∂u2′′
(
u0 + u1, u0

′ + u1
′, u0

′′ + u0
′′, · · · , u0(n) + u1

(n)
)

...

an,1 =
∂N

∂u2(n)
(
u0 + u1, u0

′ + u1
′, u0

′′ + u0
′′, · · · , u0(n) + u1

(n)
)

R2(x) = g(x)−L [u0(x) + u1(x), u0
′(x) + u1

′(x), · · · , u0(n)(x) + u1
(n)(x)]

−N [u0(x) + u1(x), u0
′(x) + u1

′(x), · · · , u0(n)(x) + u1
(n)(x)]

After solving the equation (1.24), the second order approximation of u(x) is given by

u(x) ≈ u0(x) + u1(x) + u2(x) (1.24)

Next, U3(x) is defined such that

U2(x) = U3(x) + u2(x) (1.25)

Eqn. (1.26) is substituted in the non-linear equation (1.23) and the linearization process

is repeated. In general, we have

Ui(x) = Ui+1(x) + ui(x) (1.26)
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Thus, u(x) is given by

u(x) = U1(x) + u0(x)

= U2(x) + u0(x) + u1(x)

= U3(x) + u0(x) + u1(x) + u2(x)

...

= Ui+1(x) + u0(x) + u1(x) + u2(x) + · · ·+ ui(x)

= Ui+1(x) +
i∑

m=0

um(x)

It is noted that when i becomes large, Ui+1 becomes smaller. Hence, for large i, ith order

solution of u(x) is approximated by

u(x) =
i∑

m=0

um(x) = ui(x) +
i−1∑
m=0

um(x) (1.27)

The solution ui(x) can be determined by successively linearizing original equation (1.16)

starting from the initial guess u0(x) and solving the resulting linear equations for ui(x) given

that the previous guess ui−1(x) is known. In general, the form of the linearized equation for

ui(x) is given by

L [ui, ui
′, ui

′′, · · · , ui(n)] + a0,i−1ui + a1,i−1ui
′ + a2,i−1ui

′′ + · · ·+ an,i−1ui
(n) = Ri−1(x)(1.28)

subject to the boundary conditions

ui(a) = 0, ui(b) = 0 (1.29)
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where

a0,i−1 =
∂N

∂ui(x)

(
i−1∑
m=0

um,
i−1∑
m=0

um
′,

i−1∑
m=0

um
′′, · · · ,

i−1∑
m=0

um(n)

)

a1,i−1 =
∂N

∂ui′(x)

(
i−1∑
m=0

um,

i−1∑
m=0

um
′,
i−1∑
m=0

um
′′, · · · ,

i−1∑
m=0

um(n)

)

a2,i−1 =
∂N

∂ui′′(x)

(
i−1∑
m=0

um,
i−1∑
m=0

um
′,

i−1∑
m=0

um
′′, · · · ,

i−1∑
m=0

um(n)

)
...

an,i−1 =
∂N

∂ui(n)(x)

(
i−1∑
m=0

um,
i−1∑
m=0

um
′,
i−1∑
m=0

um
′′, · · · ,

i−1∑
m=0

um(n)

)

Ri−1(x) = g(x)−L [
i−1∑
m=0

um,
i−1∑
m=0

um
′,
i−1∑
m=0

um
′′, · · · ,

i−1∑
m=0

um(n)]

−N [
i−1∑
m=0

um,
i−1∑
m=0

um
′,
i−1∑
m=0

um
′′, · · · ,

i−1∑
m=0

um(n)]

The ordinary differential equation (1.29) is linear and can easily be solved using any

analytical or numerical method.

Chebyshev Spectral Collocation Method

The Chebyshev spectral collocation method ( [11, 31, 107]) is based on the Chebyshev

polynomials defined on the interval [-1, 1]. To solve the problems using this method, first

transform the domain [a, b] to the domain [−1, 1] by using the transformation

(b− a)χ = 2x− (a+ b), −1 ≤ χ ≤ 1 (1.30)

We discretize the domain [-1, 1] using the Gauss-Lobatto collocation points given by

χj = cos
πj

N
, j = 0, 1, 2, ......, N (1.31)

where N is the number of collocation points used. The function ui is approximated at the

collocation points as follows
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ui(χ) =
N∑
k=0

ui(χk)Tk(χj) (1.32)

where Tk is the kth Chebyshev polynomial defined by Tk(χ) = cos[kcos−1χ]

The derivatives of the variables at the collocation points are represented as

drui
dxr

=
N∑
k=0

[
2

b− a
Dkj]

rui(χk), (1.33)

where r is the order of differentiation and D being the Chebyshev spectral differentiation

matrix whose entries are defined as ([11, 31, 107])

D00 = 2N2+1
6

Djk =
cj
ck

(−1)j+k

χj−χk
, j 6= k; j, k = 0, 1, 2 · · · , N,

Dkk = − χk

2(1−χk
2)
, k = 1, 2 · · · , N − 1,

DNN = −2N2+1
6


(1.34)

Substituting Eqns. (1.32)-(1.35) into the given equation leads to the following system of

matrix equation

Ai−1Xi = Ri−1, (1.35)

in which Ai−1 is a (N +1)×(N +1) square matrix while Xi and Ri−1 are (N +1)× 1. After

incorporating the boundary conditions, the solution of the given equation is obtained as

Xi = A−1i−1Ri−1 (1.36)
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1.5 Literature Review

During the past decade, the study of nanofluids has gained much interest due to its varied

applications. Nanofluids are prepared by dispersing solid nanoparticles in conventional fluids

such as water, oil, or ethylene glycol. Choi et al. [27] showed that the addition of a small

amount (less than 1% by volume) of nanoparticles to conventional heat transfer liquids

enhanced the thermal conductivity of the fluid. The detailed introduction and applications of

nanofluids can be found in Das et al. [29]. Buongiorno [10] has investigated the factors which

contribute to abnormal thermal conductivity increase relative to base fluids and viscosity. He

developed an analytical model for convective transport in nanofluids, which takes Brownian

diffusion and thermophoresis effects into account. The literature on nanofluids has been

reviewed by Daungthongsuk and Wongwises [30], Trisaksri and Wongwises [108], Wang and

Mujumdar [113, 114, 115], Eastman et al. [32], and Kakac and Pramuanjaroenkij [47],

Gianluca et al. [35] among several others. These reviews examine in detail the work done

on convective transport in nanofluids.

Natural convection in a fluid-saturated porous medium is of fundamental importance in

many industrial and natural problems. Few examples of the heat transfer by natural con-

vection can be found in geophysics and energy related engineering problems such as natural

circulation in geothermal reservoirs, acquifers, porous insulations, solar power collectors,

spreading of pollutants etc. Natural convection occurs due to the spatial variations in den-

sity, which is caused by the non-uniform distribution of temperature or/and concentration of

a dissolved substance. The first attempt has been made by Nield [75] to analyze the stability

of convective flow in horizontal layers with imposed vertical temperature and concentration

gradients. A detailed review of convective heat and mass transfer in Darcy and non-Darcy

porous medium can be found in Nield and Bejan [76], Ingham and Pop [44, 43], Bejan [8],

Vafai [110] and Vafai and Hadim [111]. Bakier et al. [6] and Mahdy et al. [58] reported the

non-similar solution for natural convection boundary layer flow past a body submerged in a

fluid saturated porous medium.

Several authors investigated the natural convective heat and mass transfer over various
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geometries embedded in a nanofluid saturated porous medium. The Cheng-Minkowycz prob-

lem of free convection over a vertical plate in a porous medium saturated by a nanofluid,

has been investigated analytically by Nield and Kuznetsov [78]. Ahmad and Pop [4] studied

the steady mixed convection boundary layer flow past a vertical flat plate embedded in a

porous medium filled with nanofluids using different types of nanoparticles and the model

they used for the nanofluid incorporates only the nanoparticle volume fraction parameter. A

similarity solution is presented for the problem of double-diffusive free convective boundary

layer flow in a porous medium saturated with a nanofluid by Nield and Kuznetsov [79]. Gorla

and Chamkha [36] analyzed the natural convection flow over a horizontal plate embedded

in a porous medium saturated with nanofluid. Cheng [22] studied the natural convection

boundary layer flow over a truncated cone embedded in a porous medium saturated by a

nanofluid with constant wall temperature and constant wall nanoparticle volume fraction.

Murthy et al. [72] presented the influence of the prominent Soret effect on double-diffusive

free convective heat and mass transfer in the boundary layer region of a semi-infinite inclined

flat plate in a nanofluid saturated non-Darcy porous medium. Salari et al. [96] examined the

heat transfer in boundary layer flow of a nanofluid past a continuous flat stretching sheet for

constant surface temperature and nanoparticle volume fraction, and also for linear variation

of surface temperature and nanoparticle volume fraction. Srinivasacharya and Surender [103]

obtained the non-similar solution for natural convective boundary layer flow of a nanofluid

past a vertical plate embedded in a doubly stratified porous medium. Chamkha et al. [12]

studied the effect of uniform heat and nanoparticle fluxes on non-Darcy natural convec-

tion of non-Newtonian fluid along a vertical cone embedded in a porous medium filled with

nanofluid.

Considerable investigations of mixed convective heat and mass transfer of a nanofluid

saturated porous medium have been tackled by various authors. Mixed convection heat

transfer flow in porous media has been widely studied in recent years due to its wide range

of engineering applications such as chemical processing equipment, electronic device cooling,

lubrication systems, solar energy collectors, food processing, heat exchangers, geothermal

and hydrocarbon recovery and so on. Further, the problem of mixed convection boundary
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layer flow in nanofluids has received much attention in the past. Cheng and Minkowycz [24]

and Cheng [23] were the first to investigate the steady free and mixed convection flow about a

vertical impermeable surface in a fluid-saturated porous medium. Later, Merkin [63] studied

the mixed convection boundary layer flow on a vertical surface in a saturated porous medium.

Lai [55] considered the coupled heat and mass transfer by mixed convection from a vertical

plate in a saturated porous medium. Chin et al. [25] studied the effect of variable viscosity

on mixed convection boundary layer flow over a vertical impermeable surface embedded in

porous medium. Ahmad and Pop [4] obtained numerical results for the mixed convection

boundary layer flow past a vertical flat plate embedded in a porous medium filled with

nanofluid. Mansour et al. [62] carried out an experimental study of mixed convection

with water-Al2O3 nanofluid in an inclined tube with uniform wall heat flux. Chamkha

et al. [13] studied the effect of radiation on mixed convection over a wedge embedded in

a porous medium saturated with nanofluid. Guerroudj and Kahalerras [38] adopted the

Brinkman-Forchheimer extended Darcy model with the Boussinesq approximation for the

mixed convection in an inclined channel with heated porous blocks. Gorla and Hossain [37]

studied mixed convection boundary layer flow past a vertical cylinder in a porous medium

saturated with a nanofluid. Rosca and Pop [92] studied the mixed convection stagnation

point flow of a viscous fluid over a vertical flat plate subject to a heat flux condition. Rashad

et al. [88] investigated the problem of mixed convection from a vertical surface embedded in

a porous medium saturated with non-Newtonian nanofluid. Chamkha et al. [15] presented a

boundary layer analysis for the mixed convection past a vertical wedge in a porous medium

saturated with a power law type non-Newtonian nanofluid. Rosca et al. [91] numerically

solved the problem of steady mixed convection boundary layer flow past a vertical flat plate

embedded in a nanofluid saturated porous medium.

Several authors investigated the effect of thermal radiation on convective flow, heat and

mass transfer from bodies of different geometries under various physical conditions due to

its wide range of applications involving high temperatures such as nuclear power plant, gas

turbines missiles, satellites, space vehicles and aircraft etc. Rudraiah and Sasikumar [95]

reported the effects of non-Darcy and radiation on convection in porous media. Mohamma-
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dien and El-Amin [65] discussed radiation effect on non-Darcy natural convection in a fluid

saturated porous medium. El-Hakiem and El-Amin [33] investigated the radiation effect

on non-Darcy natural convection with lateral mass transfer. Chen and Yang [17] studied

the effects of thermal radiation on laminar forced and free convection along a wavy surface.

Chamkha et al. [13] presented the non-similar solution of steady mixed convection of a

nanofluid in the presence of thermal radiation. Hady et al. [40] reported that an increase in

the thermal radiation parameter reduces the nanofluid temperature which leads to increase in

the heat transfer rate. Rahman [1] numerically investigated the problem of thermal radiation

and unsteady MHD flow of a nanofluid in stretching porous medium. Turkyilmazoglu and

Pop [109] considered the problem of unsteady natural convection flow of some nanofluids past

a vertical infinite flat plate with radiation effect. The effect of thermal radiation on boundary

flow and heat transfer by non-Darcy natural convection from a vertical cylinder embedded in

a porous medium saturated with nanofluids have been investigated by El-Kabeir et al. [34].

Agha et al. [3] studied the influence of thermal radiation on natural convection boundary

layer flow for heat and mass transfer in a porous medium saturated by a nanofluid past a

semi-infinite vertical plate, via a model in which Brownian motion and thermophoresis are

taken into account. Chand and Rana [16] investigated the effect of radiation on thermal

instability in a layer of nanofluid in porous medium by using Galerkin residual method and

concluded that the radiation parameter has a stabilizing effect on stationary convection.

Stratification of fluid occurs due to temperature variations, concentration differences, or

the presence of different fluids. The analysis of free and mixed convective flow in a doubly

stratified medium is fundamentally interesting and important problem due to its broad range

of applications in engineering. These applications include heat rejection into the environ-

ment such as lakes, rivers, and seas; thermal energy storage systems such as solar ponds;

and heat transfer from thermal sources such as the condensers of power plants. However,

the effect of double stratification on free convection in porous media has received very little

attention. Tewari and Singh [105] investigated the natural convection in a thermally strati-

fied fluid saturated porous medium. Rosmila et al. [93] examined the MHD free convection

flow of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in
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the presence of thermal stratification. The effects of thermophoresis and Brownian motion

on MHD boundary layer flow of a nanofluid in the presence of thermal stratification have

been studied by Kandaswamy et al. [48]. Ibrahim and Makinde [42] presented a boundary

layer analysis for free convection flow in a doubly stratified nanofluid over a vertical plate

with uniform surface and mass flux conditions. Mahmoud and Waheed [59] investigated the

problem of steady two dimensional mixed convection flow of a micropolar fluid over stretch-

ing permeable vertical surface with radiation and thermal stratification effects. Arifin et al.

[117] performed a numerical investigation of the steady mixed convection boundary layer

flow over a vertical surface embedded in a thermally stratified porous medium saturated

with a nanofluid. Shezad et al. [98] studied the mixed convection flow of a thixotropic fluid

with thermal stratification and thermal radiation effects. Srinivasacharya and Ramreddy

[101] analysed the effect of double stratification on natural convection along a vertical plate

embedded in a micropolar fluid in both cases of buoyancy-assisting and buoyancy-opposing

flows. The problem of natural convection from a vertical plate in a thermally stratified

porous medium with non-Newtonian liquid has been studied by Narayana et al. [73]. Re-

cently, Srinivasacharya and Surender [103] presented the non-similar solution for natural

convection boundary layer flow over a vertical plate embedded in a porous medium satu-

rated by a nanofluid in the presence of thermal and mass stratification. They have concluded

that the velocity, temperature and concentration are significantly influenced by the thermal

stratification parameter. Rashad et al. [87] performed a numerical study to investigate the

non-Darcy natural convection boundary layer flow along a vertical cylinder embedded in a

thermally stratified nanofluid saturated porous medium. Rashad et al. [86] studied mixed

convection flow of a micropolar fluid on a vertical flat plate immersed in thermally and

solutally stratified medium with chemical reaction.

The study of heat and mass transfer from the irregular wavy surfaces is of fundamental

importance because of its enhancing heat transfer characteristics. Irregularities in surfaces

occur in many practical situations. These irregularities are encountered in several heat

transfer devices such as microelectronic devices, flat plate solar collectors and flat plate

condensers in refrigerators. Rees and Pop [89] investigated the problem of natural convection
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from a vertical wavy surface in a non-Darcy porous medium. Hsu et al. [41] considered the

study of mixed convection of micro polar fluids along a vertical wavy surface. Jang and

Yan [46] studied the mixed convection heat and mass transfer along a vertical wavy surface.

Kumar and Shalini [52] conducted a numerical study on non-Darcy free convection along a

vertical wavy surface in a thermally stratified porous medium. Wang and Chen [112] obtained

numerical results for the problem of mixed convection boundary layer flow on inclined wavy

plate including the magnetic field effect. Cheng [18] presented numerical results of non-Darcy

natural convection heat and mass transfer from a vertical wavy surface in saturated porous

media using the cubic spline collocation method. Molla and Hossain [67] used Keller box

method to investigate the problem of radiation effect on mixed convection laminar flow along

a vertical wavy surface. Cheng [20] analyzed the coupled heat and mass transfer by natural

convection near a vertical wavy surface in a non-Newtonian fluid saturated porous medium

with thermal and mass stratification. Narayana and Sibanda [56] studied natural convection

and mass transfer along a vertical wavy surface in a Newtonian fluid saturated Darcy porous

medium by considering cross diffusion in the medium. Maria Neagu [74] studied natural

convective heat and mass transfer from a vertical wavy wall with a constant surface heat

and mass fluxes under the influence of thermal and mass stratification. Cheng [21] studied

Soret and Dufour effects on free convection boundary layers over an inclined wavy surface

in a porous medium. Mahdy and Ahmed [57] discussed the laminar free convection over a

vertical wavy surface embedded in a porous medium saturated with a nanofluid. Siddiqa

et al. [99] studied the natural convection flow with surface radiation along a vertical wavy

surface.

1.6 Outline of the Thesis

The present thesis aims at presenting numerical solutions for some problems in convective

heat and nanoparticle mass transfer over an inclined wavy surface embedded in a porous

medium saturated with a nanofluid. The study focuses on bringing out the effects of the

amplitude and angle of inclination of the wavy surface, Brownian motion, thermophoresis,
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non-Darcian nature, mixed convection, thermal radiation and stratification on the charac-

teristics of the flow field such as velocity, temperature distribution and nanoparticle volume

fraction. The problems considered deal with semi-infinite inclined wavy surface geometry for

the two cases: when the plate is (i) maintained at uniform wall temperature and nanoparticle

volume fraction (ii) subjected to uniform heat flux and nanoparticle mass flux.

This thesis consists of TEN chapters.

Chapter - 1 is introductory in nature and gives motivation to the investigations carried

out in the thesis. The basic terminology is introduced and a survey of pertinent literature

is presented to exhibit the importance of the problems considered. The basic equations

governing the flow, heat and nanoparticle mass transfers of nanofluid are given.

In Chapter - 2, we study the numerical solution of the steady natural convection heat and

nanoparticle mass transfer along an inclined wavy surface embedded in a porous medium

saturated with nanofluid. The non-dimensional velocity, temperature and nanoparticle vol-

ume fraction profiles are displayed graphically for different values of amplitude of the wavy

surface, angle of inclination of the wavy surface, Brownian motion and thermophoresis pa-

rameters. In addition, the non-dimensional heat and nanoparticle mass transfer coefficients

versus non-similarity variable are presented graphically for different values of pertinent flow

parameters.

Chapter - 3 deals with the problem of steady, laminar mixed convection heat and nanopar-

ticle mass transfer along an inclined wavy surface embedded in a nanofluid saturated porous

medium. The effects of amplitude of the wavy surface, angle of inclination of the wavy

surface, Brownian motion and thermophoresis parameters on non-dimensional velocity, tem-

perature and nanoparticle volume fraction profiles for both aiding and opposing flows are

presented graphically. The non-dimensional heat and nanoparticle mass transfer coefficients

against non-similarity variable for various values of pertinent flow parameters are also ana-

lyzed through graphs.

Chapter - 4 considers the effect of radiation on natural convective heat and nanoparticle

mass transfer along an inclined wavy surface in a nanofluid saturated non-Darcy porous
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medium. The obtained results are exhibited graphically to demonstrate the influence of ra-

diation, non-Darcy, amplitude of the wavy surface, angle of inclination of the wavy surface,

Brownian motion and thermophoresis parameters on the dimensionless velocity, wall tem-

perature and nanoparticle volume fraction. Further, the effect of the physical parameters

on non-dimensional heat and nanoparticle mass transfer coefficients versus non-similarity

variable are discussed and displayed through graphs.

In Chapter - 5, an attempt has been made to study the steady, mixed convection heat and

nanoparticle mass transfer along an inclined wavy surface in a nanofluid saturated non-Darcy

porous medium with radiation effect. The effects of non-Darcy, radiation, amplitude of the

wavy surface, angle of inclination of the wavy surface, Brownian motion and thermophoresis

parameters on non-dimensional velocity, temperature and nanoparticle volume fraction for

both aiding and opposing flows are examined. Also, heat and nanoparticle mass transfer

coefficients against non-similarity variable are illustrated through graphs for various values of

radiation, non-Darcy, amplitude, angle of inclination, Brownian motion and thermophoresis

parameters.

In all the above chapters (2 - 5), two types (cases) of boundary conditions for the temper-

ature and nanoparticle volume fraction on the inclined wavy surface are considered. In the

first type of boundary condition, it is assumed that the wall temperature and nanoparticle

volume fraction are kept uniform on the wavy plate. The second type of boundary condition

involves the imposition of uniform constant heat and nanoparticle mass flux on the wavy

plate. In both the cases, the usual conditions of no slip on velocity component are prescribed.

Chapter - 6 reports the effect of thermal stratification on steady, natural convective

heat and nanoparticle mass transfer along an inclined wavy surface in a porous medium

saturated with nanofluid. The obtained results are exhibited graphically to illustrate the

effects of thermal stratification, Brownian motion, thermophoresis parameters, amplitude

and angle of inclination of the wavy surface on the dimensionless velocity, temperature,

nanoparticle volume fraction. Further, the influence of the physical parameters on non-

dimensional heat and nanoparticle mass transfer coefficients against non-similarity variable

are discussed graphically.

23



Chapter - 7 presents a steady, mixed convection heat and nanoparticle mass transfer

along an inclined wavy surface in a nanofluid saturated porous medium under the influence

of thermal stratification. The effects of amplitude and angle of inclination of the wavy

surface, Brownian motion, thermophoresis and thermal stratification parameters on non-

dimensional velocity, temperature and nanoparticle volume fraction for both aiding and

opposing flows are depicted through graphs. Also, heat and nanoparticle mass transfer

coefficients against non-similarity variable are analyzed through graphs for various values of

thermal stratification parameter, Brownian motion parameter, thermophoresis parameter,

amplitude and angle of inclination of the wavy surface.

Chapter - 8 deals with the effect of radiation and thermal stratification on steady, natural

convective heat and nanoparticle mass transfer along an inclined wavy surface in a non-

Darcy porous medium saturated with nanofluid. Numerical Solutions for non-dimensional

velocity, temperature and nanoparticle volume fraction, heat and nanoparticle mass transfer

are computed. The effects of non - Darcy, radiation, amplitude and angle of inclination of

the wavy surface, Brownian motion, thermophoresis and thermal stratification parameters

on the non-dimensional velocity, temperature and nanoparticle volume fraction, heat and

nanoparticle mass transfer are presented graphically.

In Chapter - 9, the analysis of steady, mixed convective heat and nanoparticle mass

transfer along an inclined wavy surface in a non-Darcy porous medium saturated by nanofluid

with thermal radiation and thermal stratification effects has been carried out. The obtained

results are displayed graphically to explore the effects of non - Darcy, Brownian motion,

thermophoresis, thermal radiation, thermal stratification parameters, amplitude and angle

of inclination of the wavy surface on the dimensionless velocity, temperature, nanoparticle

volume fraction for both aiding and opposing flows. Further, the influence of the physical

parameters on non-dimensional heat and nanoparticle mass transfer coefficients against non-

similarity variable are discussed graphically.

In all the above chapters (2 - 9), the non-linear governing equations and their associated

boundary conditions are initially cast into dimensionless forms by pseudo-similarity variables.

The resulting system of non-similar equations are transformed into ordinary differential
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equations using local similarity and non-similarity method and then solved numerically by

using Successive Linearization Method. Using this method the non-linear boundary layer

equations reduce to a system of linear differential equations. The Chebyshev pseudo spectral

method is then used to transform the iterative sequence of linearized differential equations

into a system of linear algebraic equations which are converted into a matrix system. The

obtained results are compared against previously published work wherever possible on special

cases of the problem and are found to be in good agreement.

In Chapter - 10, the main conclusions of the earlier chapters are recorded and the direc-

tions in which further investigations may be carried out are indicated.
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Chapter 2

Natural convection over an inclined

wavy surface in a nanofluid saturated

porous medium 1

2.1 Introduction

As mentioned in Chapter 1, Natural convection is a very important mechanism that is

operative in a variety of environments from cooling electronic circuit boards in computers

to causing large scale circulation in the atmosphere as well as in lakes and oceans that

influences the weather. It is caused by the action of density gradients in conjunction with

a gravitational field. Natural convection in a fluid-saturated porous medium may be met

in geophysical, geothermal and industrial applications, such as the migration of moisture

through air contained in fibrous insulations, grain storage installations, and the dispersion

of chemical contaminants through water-saturated soil. For an exhaustive discussion of the

natural convection, the reader is referred the book by Bejan [8]. Khan and Aziz [49] studied

the double-diffusive natural convection from a vertical plate in a porous medium saturated

1Case(a):Published in “Meccanica, DOI 10.1007/s11012-015-0331-9”, Case(b):Published in “Pro-
cedia Engineering, 127 ( 2015 ) 40–47”
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with a binary base fluid containing nanoparticles. Haddad et al. [39] studied the significance

of the effect of Brownian motion and thermophoresis parameters on natural convection of

nanofluids. Noghrehabadi et al. [81] examined the natural convection heat and mass transfer

of nanofluids past a vertical plate in a saturated Darcy porous medium, where the plate is

subject to surface heat and nanoparticle fluxes.

The study of heat and mass transfer from the irregular wavy surfaces is of primary

importance because of its enhancing heat transfer characteristics. Tashtoush and Al-Odat

[104] numerically investigated the effect of magnetic field on forced convection heat and fluid

flow along a wavy surface with prescribed heat flux. Molla et al. [66] studied the natural

convection boundary layer flow along a vertical wavy surface with uniform surface heat flux.

Rahman et al. [84] studied natural convection flow along a vertical wavy cone with uniform

surface heat flux.

The preceding literature reveals that the problem of free convection of nanofluid along an

inclined wavy surface embedded in a porous medium has not been considered so far. Hence,

the aim of this chapter is to explore the effects of amplitude, angle of inclination of the

wavy plate to the horizontal, Brownian motion and thermophoresis on natural convection

in Darcy porous medium saturated with nanofluid. Using pseudo-similarity variables, the

non-linear, non-homogeneous governing partial differential equations and their associated

boundary conditions are converted into non-dimensional form. The reduced system of non-

similar equations is solved numerically using Successive Linearization Method ([68], [5]).

2.2 Mathematical Formulation

Consider a natural convection flow along a semi-infinite inclined wavy surface embedded in a

nanofluid saturated porous medium. The x coordinate is taken along the wavy plate and the

y coordinate is measured normal to the wavy plate, while the origin of the reference system

is considered at the leading edge of the wavy plate. The physical model and coordinate
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system is shown in Fig. 2.1. The wavy surface is described by

y = δ(x) = a sin(πx/l)

where a is the amplitude of the wavy surface and 2l is the characteristic length of the wavy

surface. The following assumptions are made to formulate the present problem.

1. The flow is steady, laminar, incompressible and two-dimensional.

2. The porous medium is homogeneous and isotropic (i.e., uniform with a constant poros-

ity and permeability).

3. The fluid has constant properties except the density in the buoyancy term of the

balance of momentum equation.

4. The wavy plate is inclined at an angle A (0o ≤ A ≤ 90o) to the horizontal. The

inclination angle is 0o for horizontal plate, 90o for vertical plate and 0o < A < 90o for

inclined plate.

5. The temperature and the nanoparticle concentration of the ambient medium are T∞

and φ∞.

6. The Boussinesq and boundary-layer approximations are applicable.

With the above assumptions, the governing equations for flow are given by [10, 53]

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂y
− ∂v

∂x
=

(1− φ∞)ρf∞β K g

µ

(
∂T

∂y
sinA− ∂T

∂x
cosA

)
−(ρp − ρf∞)K g

µ

(
∂φ

∂y
sinA− ∂φ

∂x
cosA

)
, (2.2)
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Figure 2.1: Physical model

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

, (2.3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
, (2.4)

where u and v are the velocity components in the x and y directions, respectively, T is the

temperature, φ is the nanoparticle concentration, g is the acceleration due to gravity, K is

the permeability, ρf∞ is the the density of the base fluid at far field, ρp is the density of the

particles, α = k/(ρc)f is the thermal diffusivity of the fluid, k is the thermal conductivity, β

is the volumetric thermal expansion coefficient of the nanofluid, µ is the dynamic viscosity

of the fluid, DB is the Brownian diffusion coefficient, DT is the thermophoresis diffusion

coefficient and γ is the ratio between the effective heat capacity of the nanoparticle material

and heat capacity of the fluid (i.e. γ = (ρc)p/(ρc)f ).

In this chapter, two types (cases) of boundary conditions for the temperature and nanopar-

ticle concentration on the semi-infinite inclined wavy surface are considered. In the first type

(case a), the wavy plate is subject to uniform wall temperature and nanoparticle volume frac-

tion. In the second type (case b), the wavy plate is subject to uniform heat and nanoparticle

mass fluxes.
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2.2.1 Case(a): Uniform Wall Temperature and Nanoparticle Vol-

ume Fraction

Let uniform wall temperature Tw and nanoparticle volume fraction φw be prescribed on the

inclined wavy surface. These values are assumed to be greater than the ambient temperature

T∞ and nanoparticle volume fraction φ∞ at any arbitrary reference point in the medium

(inside the boundary layer). Hence, the boundary conditions are

v = 0, T = Tw, φ = φw, at y = δ(x), (2.5a)

u = 0, T → T∞, φ→ φ∞ as y →∞, (2.5b)

where the subscripts w and ∞ indicate the conditions at the wall and at the outer edge of

the boundary layer respectively.

Introducing the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
(2.6)

and the following non-dimensional variables

ξ =
x

L
, η =

(y/l − δ)Ra1/2

ξ1/2 (1 + δ̇2)
, ψ = αRa1/2ξ1/2f(η),

θ =
T − T∞
Tw − T∞

,

s =
φ− φ∞
φw − φ∞

,


(2.7)

into Eqns. (2.1) - (2.4) and letting Ra→∞ (i.e., boundary layer approximation), we obtain

the following boundary layer equations:

f ′′ = (sinA+ δ̇ cosA) (θ′ −Nrs
′) , (2.8)
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θ′′ +
1

2
fθ′ +Nbs

′θ′ +Ntθ
′2 = 0, (2.9)

s′′ +
1

2
Lefs′ +

Nt

Nb

θ′′ = 0, (2.10)

where the prime denotes differentiation with respect to η, Ra =
(1− φ∞)ρf∞β K g (Tw − T∞)l

µα

is the Rayleigh number, Nr =
(ρp − ρf∞)(φw − φ∞)

ρf∞β(Tw − T∞)(1− φ∞)
is the buoyancy ratio,

Nb =
γDB(φw − φ∞)

α
is the Brownian motion parameter, Nt =

γDT (Tw − T∞)

αT∞
is the ther-

moporesis parameter and Le =
α

DB

is the Lewis number respectively.

The boundary conditions (2.5) in terms of f, θ and s become

f = 0, θ = 1, s = 1, at η = 0 (2.11a)

f ′ = 0, θ → 0, s→ 0 as η →∞, (2.11b)

The heat and nanoparticle mass transfer from the wavy surface are given by

qw = −kn.∇T , (2.12a)

qnp = −DBn.∇φ. (2.12b)

The local Nusselt number

(
=

qw x

k(Tw − T∞)

)
and the local nanoparticle Sherwood number(

=
qnp x

DB(φw − φ∞)

)
are given by

Nux√
Rax

= −

√
1

1 + δ̇2

(
∂θ

∂η

)
η=0

, (2.13a)

NShx√
Rax

= −

√
1

1 + δ̇2

(
∂s

∂η

)
η=0

. (2.13b)
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Method of Solution

Eqns. (2.8) - (2.10) along with the boundary conditions (2.11) were solved numerically us-

ing the Successive Linearisation Method (SLM) [68, 5]. Using this method the non-linear

boundary layer equations reduce to a system of linear differential equations. The Cheby-

shev pseudo spectral method is then used to transform the iterative sequence of linearized

differential equations into a system of linear algebraic equations which are converted into a

matrix system.

In this method we assume that the independent vector Υ(η) = [f(η), θ(η), s(η)] can be

expressed as

Υ(η) = Υi(η) +
i−1∑
n=0

Υn(η) (2.14)

where Υi(η), (i = 1, 2, 3, ....) are unknown functions and Υn(η) are the approximations which

are obtained by recursively solving the linear part of the system of equations that results

from substituting (2.14) in (2.8) - (2.10).

The initial approximation Υ0(η) is chosen such that they satisfy the boundary conditions

(2.5). Therefore Υ0(η) = [1 − e−η, e−η, e−η]. The subsequent solutions fi, θi, si ,i ≥ 1

are obtained by successively solving the following linearized form of the equations which are

obtained by substituting Eqn. (2.14) in the governing equations (2.8) - (2.10).

fi
′′ + a1,i−1θi

′ + a2,i−1si
′ = r1,i−1 (2.15)

θi
′′ + b1,i−1θi

′ + b2,i−1si
′ + b3,i−1fi = r2,i−1 (2.16)

si
′′ + c1,i−1si

′ + c2,i−1θi
′′ + c3,i−1fi = r3,i−1 (2.17)
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where

a1,i−1 = −(sinA+ δ̇ cosA), a2,i−1 = Nr(sinA+ δ̇ cosA)

b1,i−1 =
1

2

i−1∑
n=0

fn +Nb

i−1∑
n=0

sn
′ + 2Nt

i−1∑
n=0

θn
′, b2,i−1 = Nb

i−1∑
n=0

θn
′, b3,i−1 =

1

2

i−1∑
n=0

θn
′

c1,i−1 =
1

2
Le

i−1∑
n=0

fn, c2,i−1 =
Nt

Nb

, c3,i−1 =
1

2
Le

i−1∑
n=0

sn
′

r1,i−1 = −
i−1∑
n=0

fn
′′ + (sinA+ δ̇ cosA)

i−1∑
n=0

θn
′ − (sinA+ δ̇ cosA)Nr

i−1∑
n=0

sn
′

r2,i−1 = −
i−1∑
n=0

θn
′′ − 1

2

i−1∑
n=0

fn

i−1∑
n=0

θn
′ −Nb

i−1∑
n=0

sn
′
i−1∑
n=0

θn
′ −Nt

i−1∑
n=0

θn
′
i−1∑
n=0

θn
′

r3,i−1 = −
i−1∑
n=0

sn
′′ − 1

2

i−1∑
n=0

fn

i−1∑
n=0

sn
′ − Nt

Nb

i−1∑
n=0

θn
′′

The boundary conditions reduce to

fi(0) = fi
′(∞) = 0, θi(0) = θi(∞) = si(0) = si(∞) = 0 (2.18)

The approximate solution for Υ(η) is then obtained as

Υ(η) ≈
M∑
m=0

Υm(η) (2.19)

where M is the order of SLM approximation. Eqns. (2.15) - (2.17) are solved using the

Chebyshev spectral collocation method [11]. The unknown functions are approximated by

the Chebyshev interpolating polynomials in such a way that they are collocated at the

Gauss-Lobatto points defined as

χj = cos
πj

N
, j = 0, 1, 2, ......, N (2.20)

where N is the number of collocation points used. The physical region [0,∞) is transformed

into the region [-1, 1] using the domain truncation technique in which the problem is solved
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on the interval [0, L] instead of [0,∞). This leads to the mapping

η

L
=
χ+ 1

2
, −1 ≤ χ ≤ 1 (2.21)

where L is a scaling parameter used to invoke the boundary condition at infinity. The

function Υ(η) is approximated at the collocation points by

Υi(χ) =
N∑
k=0

Υi(χk)Tk(χj), j = 0, 1, 2, ......, N (2.22)

where Tk is the kth Chebyshev polynomial defined by Tk(χ) = cos[kcos−1χ].

The derivatives of the variables at the collocation points are represented as

dr

dηr
Υi(χ) =

N∑
k=0

Dr
kjΥi(χk), j = 0, 1, 2, ......, N. (2.23)

where r is the order of differentiation and D = 2
L
D , D being the Chebyshev spectral dif-

ferentiation matrix. Substituting Eqs. (2.21) - (2.23) into Eqs. (2.15) - (2.17) leads to the

following matrix equation

Ai−1Xi = Ri−1, (2.24)

subject to the boundary conditions

fi(χN) = 0,
N∑
k=0

D0kfi(χk) = 0 (2.25)

θi(χN) = θi(χ0) = si(χN) = si(χ0) = 0 (2.26)

In Eqn. (2.24), Ai−1 is a (3N + 3)×(3N + 3) square matrix and Xi and Ri−1 are (3N +

3)×1 column vectors defined by

Ai−1 =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xi =


Fi

Θi

Φi

 , Ri−1 =


r1,i−1

r2,i−1

r3,i−1

 (2.27)

35



where

Fi = [fi(χ0), fi(χ1), ......, fi(χN−1), fi(χN)]T ,

Θi = [θi(χ0), θi(χ1), ......, θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ......, si(χN−1), si(χN)]T ,

r1,i−1 = [r1,i−1(χ0), r1,i−1(χ1), ......, r1,i−1(χN−1), r1,i−1(χN)]T

r2,i−1 = [r2,i−1(χ0), r2,i−1(χ1), ......, r2,i−1(χN−1), r2,i−1(χN)]T

r3,i−1 = [r3,i−1(χ0), r3,i−1(χ1), ......, r3,i−1(χN−1), r3,i−1(χN)]T

A11 = D2, A12 = a1,i−1D, A13 = a2,i−1D

A21 = b3,i−1I, A22 = D2 + b1,i−1D, A23 = b2,i−1D

A31 = c3,i−1I, A32 = c2,i−1D
2, A33 = D2 + c1,i−1D

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(2.24) to incorporate boundary conditions (2.25) - (2.26), the solution is obtained as

Xi = A−1i−1Ri−1 (2.28)

Results and Discussion

We have computed the solutions for the dimensionless velocity, temperature and nanoparticle

volume fraction functions and heat and nanoparticle mass transfer rates and the results are

shown graphically in Figs. 2.2 - 2.7. The effects of angle of inclination (A), Brownian motion

parameter (Nb), thermophoresis parameter (Nt) and amplitude (a) of the wavy surface are

discussed hereunder. The choice of values for Nr, Nt and Nb is based on those values utilized

by Nield and Kuznetsov [78] for the case with the isothermal wall boundary condition.

Table. 2.1 shows the comparison of the results of the local Nusselt number Nux/
√
Rax

for fixed values of A = π/2, a = 0, with the results obtained by Bejan and Khair [9]. It is

shown that these two results are in excellent agreement.

Figure. 2.2 shows the effect of the amplitude of the wavy surface on velocity, temperature

and nanoparticle volume fraction distributions. It is observed that increasing the amplitude

a of the wavy surface increases the velocity near the plate and decreases away from the plate,
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whereas the temperature and nanoparticle volume fraction decreases.

The effect of the angle of inclination of the wavy surface on velocity, temperature and

nanoparticle volume fraction is plotted in Fig. 2.3. The similarity equations for the limiting

cases of the horizontal and vertical plates are recovered from the transformed equations by

setting A = 0o and A = 90o, respectively. It is noted from Fig. 2.3 that as A increases,

the velocity increases near the plate and decreases away from the plate but the temperature

and nanoparticle volume fraction decrease within the boundary layer region. When the

surface is vertical, the smallest temperature and nanoparticle volume fraction distributions

are observed, whereas they are largest for the horizontal surface.

Figure. 2.4 displays the effect of Brownian motion parameter Nb on dimensionless ve-

locity, temperature and nanoparticle fraction. It is interesting to note that an increase in

the intensity of Brownian motion parameter produces an enhancement in the fluid veloc-

ity within the momentum boundary layer which causes an increase in the diffusion of the

nanoparticles into the the fluid. This results an increase in velocity and temperature of the

fluid as shown in Fig. 2.4(a) and 2.4(b). Increasing the Brownian motion parameter tends

to reduce the nanoparticle volume fraction as shown in Fig. 2.4(c). This is due to increase

in difference between the nanoparticle volume fractions at the wall and the ambient.

Figure. 2.5 shows the effect of thermophoresis parameter Nt on dimensionless velocity,

temperature and nanoparticle fraction of the fluid. It is observed that an increase in the

thermophoresis parameter tends to increase the maximum stream wise velocity, temperature

and nanoparticle volume fraction of the fluid. This is due to the fact that increase in

thermophoresis parameter increases the thermophoresis force, which tends to move particles

from the hot zone to the cold zone, which results in the increase in nanoparticle concentration,

as seen in 2.5(c). Furthermore, increase in the thermophoresis parameter increases the

nanoparticle diffusion into the fluid which increases the magnitude of the dimensionless

temperature, as shown in 2.5(b).

The variation of heat and nanoparticle mass transfer rates for various values of the wave

amplitude a and angle of inclination A is displayed in Fig. 2.6. Figs. 2.6(a) and 2.6(b)
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shows the effect of wave amplitude on the local Nusselt and nanoparticle Sherwood number.

It is found that an enhancement in wavy amplitude reduces the local heat and nanoparticle

mass transfer rates as compared with the limiting case of a smooth surface. It is noticed

that the maximum value of the local heat transfer rate is located at ξ =1, 2, 3, 4 and 5 and

its minimum value is located at ξ =0.5, 1.5, 2.5, 3.5 and 4.5. In general, we conclude that

the surface becomes more roughened for increasing values of amplitude of the wavy surface.

Figs. 2.6(c) and 2.6(d) displays the variation of heat and nanoparticle mass transfer rates

for various values of the angle of inclination A. It is observed that an increase in the angle

of inclination increases the buoyancy force and assists the flow, leading to an increase in the

heat and nanoparticle mass transfer rates. The maximum values of the dimensionless heat

and nanoparticle mass transfer rates are observed when the surface is vertical; in which case,

the buoyancy force is at its maximum.

The effect of Brownian motion parameter Nb and thermoporesis parameter Nt on the heat

and nanoparticle mass transfer rates is presented in Fig. 2.7. Figs. 2.7(a) and 2.7(c) depict

that the dimensionless heat transfer rate decreases with increase in both the Browinian mo-

tion and thermophoresis parameters. An increase in the value of Brownian motion parameter

enhances the nanoparticle volume fraction transfer rate, as shown in Fig. 2.7(b). It is seen

from Fig. 2.7(d) that the nanoparticle mass transfer rate decreases with an increase in the

thermophoresis parameter. As Brownian motion is proportional to the volumetric fraction

of nanoparticles in the direction from high to low concentration, and the thermophoresis is

proportional to the temperature gradient from hot to cold. Hence, we conclude that the

effect of the combination of Brownian motion and thermophoresis is to reduce the value of

Nusselt number.
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Figure 2.2: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of amplitude of the wavy surface a.
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Figure 2.3: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of angle of inclination A.
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Figure 2.4: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of Brownian motion parameer Nb.
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Figure 2.5: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of thermophoresis parameter Nt.
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Figure 2.6: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with wave
amplitude a and (c) heat, (d) nanoparticle mass transfer coefficients with angle of inclination
A.
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Figure 2.7: Variation of (a) heat and (b) nanoparticle mass transfer coefficients with Brow-
nian motion parameter Nb and (c) heat, (d) nanoparticle mass transfer coefficients with
thermophoresis parameter Nt.
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Table 2.1: Comparison of Nux/
√
Rax by the present method and Bejan and Khair [9] for

fixed values of A = π
2
, a = 0, ξ = 0.

Nr Le Bejan & Khair[9] Present
-1 4 0.559 0.55849933
-1 6 0.541 0.54076461
-1 8 0.529 0.52943958
-4 4 0.798 0.79754849
-4 6 0.742 0.74229679
-4 8 0.707 0.706508651

2.2.2 Case(b): Uniform Wall Heat and Nanoparticle Mass Flux

Let a uniform and constant heat flux qw and uniform nanoparticle mass flux qnp be prescribed

on the wavy surface. The steady natural convection boundary layer flow is governed by Eqns.

(2.1) to (2.4) and the boundary conditions are given by

v = 0, qw = −k(n.∇T ), qnp = DB(n.∇φ) at y = δ(x), (2.29a)

u = 0, T → T∞, φ→ φ∞ as y →∞. (2.29b)

Substituting the stream function ψ and introducing the following non-dimensional variables

ξ =
x

L
, η =

(y/l − δ)Ra1/3

ξ1/3 (1 + δ̇2)
, ψ = αRa1/3 ξ2/3 f(ξ, η),

T − T∞ =
qw l

k
ξ1/3Ra−1/3 θ(ξ, η),

φ− φ∞ =
qnpl

DB

ξ1/3Ra−1/3 s(ξ, η),


(2.30)

in to Eqns. (2.1) - (2.4) and letting Ra→∞ (i.e., boundary layer approximation), we obtain

the following boundary layer equations

f ′′ = (sinA+ δ̇ cosA) (θ′ −Nrs
′) (2.31)
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θ′′ +
2

3
fθ′ − 1

3
f ′θ + ξ1/3Nbs

′θ′ + ξ1/3Ntθ
′2 = ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
(2.32)

s′′ +
2

3
Le f s′ − 1

3
Le f ′ s+

Nt

Nb

θ′′ = Leξ

(
f ′
∂s

∂ξ
− s′∂f

∂ξ

)
(2.33)

where Ra =
(1− φ∞)ρf∞β K g qw l

2

µ k α
is the Rayleigh number, Nr =

(ρp − ρf∞)k qnp
(1− φ∞) ρf∞β qwDB

is

the buoyancy ratio, Nb =
γ qnp l

α
Ra−1/3 is the Brownian motion parameter, Nt =

γDT qw l

αT∞ k
Ra−1/3

is the thermophoresis parameter and Le =
α

DB

is the Lewis number respectively.

The boundary conditions (2.29) in terms of f, θ and s becomes

2f + 3ξ

(
∂f

∂ξ

)
η=0

= 0, θ′ = −
√

1 + δ̇2, s′ = −
√

1 + δ̇2, at η = 0 (2.34a)

f ′ → 0, θ → 0, s→ 0 as η →∞. (2.34b)

The non-dimensional local Nusselt number Nuξ and the local nanoparticle Sherwood number

NShξ are given by

Nuξ

Raξ
1/3

=
ξ1/3

θ(ξ, 0)
, (2.35a)

NShξ

Raξ
1/3

=
ξ1/3

s(ξ, 0)
. (2.35b)

Method of Solution

To solve the system of Eqns. (2.31) - (2.33) along with the boundary conditions (2.34), a

local similarity and non-similarity method [24, 100] has been applied. The boundary value

problems obtained from this method are linearized by the Successive Linearisation Method

and then solved using Chebyshev spectral collocation method.

The local similarity and non-similarity method includes three levels of truncations which

are explained as follows

In the first level of truncation, the terms accompanied by ξ ∂
∂ξ

are assumed to be very
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small. This is particularly true when ξ << 1. Thus the terms with ξ ∂
∂ξ

in Eqns. (2.31) -

(2.33) can be neglected to get the following system of equations.

f ′′ = (sinA+ δ̇ cosA) (θ′ −Nrs
′) (2.36)

θ′′ +
2

3
fθ′ − 1

3
f ′θ + ξ1/3Nbs

′θ′ + ξ1/3Ntθ
′2 = 0 (2.37)

s′′ +
2

3
Le f s′ − 1

3
Le f ′ s+

Nt

Nb

θ′′ = 0 (2.38)

The associated boundary conditions are

f = 0, θ′ = −
√

1 + δ̇2, s′ = −
√

1 + δ̇2 η = 0 (2.39a)

f ′ = 0, θ → 0, s→ 0 as η →∞, (2.39b)

For the second level of truncation we introduce g = ∂f
∂ξ

, h = ∂θ
∂ξ

and k = ∂s
∂ξ

and recover the

neglected terms at the first level of truncation. Thus the governing equations at the second

level reduce to

f ′′ = (sinA+ δ̇ cosA) (θ′ −Nrs
′) (2.40)

θ′′ +
2

3
fθ′ − 1

3
f ′θ + ξ1/3Nbs

′θ′ + ξ1/3Ntθ
′2 = ξ (f ′h− θ′g) (2.41)

s′′ +
2

3
Le f s′ − 1

3
Le f ′ s+

Nt

Nb

θ′′ = Leξ (f ′k − s′g) (2.42)

The associated boundary conditions are

2f + 3ξg = 0, θ′ = −
√

1 + δ̇2, s′ = −
√

1 + δ̇2 η = 0 (2.43a)

f ′ = 0, θ → 0, s→ 0 as η →∞, (2.43b)

At the third level of truncation we differentiate Eqns. (2.40) - (2.43) with respect to ξ and

neglect the terms ∂g
∂ξ

, ∂h
∂ξ

and ∂k
∂ξ

to get the following system of equations

g′′ = (δ̈ cosA) (θ′ −Nrs
′) + (sinA+ δ̇ cosA) (h′ −Nrk

′) (2.44)
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h′′ +
5

3
gθ′ +

2

3
fh′ − 1

3
g′θ − 4

3
f ′h+

1

3
Nbξ

−2/3s′θ′ +Nbξ
1/3(k′θ′ + s′h′) +

1

3
Ntξ

−2/3θ′
2

+

2Ntξ
1/3θ′h′ − ξ(g′h− h′g) = 0 (2.45)

k′′ +
5

3
Legs′ +

2

3
Lefk′ − 1

3
Leg′s− 4

3
Lef ′k +

Nt

Nb

h′′ − Leξ(g′k − k′g) = 0 (2.46)

The associated boundary conditions are

g = 0, h′ = − δ̇δ̈√
1 + δ̇2

, k′ = − δ̇δ̈√
1 + δ̇2

, at η = 0 (2.47a)

g′ = 0, h→ 0, k → 0 as η →∞, (2.47b)

The set of differential equations (2.40) - (2.42) and (2.44) - (2.46) together with the boundary

conditions (2.43) and (2.47) are now solved using Successive Linearisation Method([68, 5]).

Proceeding same as in the case (a), we obtain the following matrix equation

Ai−1Xi = Ri−1, (2.48)

In Eq. (2.48), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N + 6)×1

column vectors defined by

Ai−1 =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1


(2.49)
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where

Fi = [fi(χ0), fi(χ1), ...., fi(χN−1), fi(χN)]T , Θi = [θi(χ0), θi(χ1), ...., θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ...., si(χN−1), si(χN)]T , Gi = [gi(χ0), gi(χ1), ...., gi(χN−1), gi(χN)]T ,

Hi = [hi(χ0), hi(χ1), ...., hi(χN−1), hi(χN)]T , Ki = [ki(χ0), ki(χ1), ...., ki(χN−1), ki(χN)]T ,

rj,i−1 = [rj,i−1(χ0), rj,i−1(χ1), · · · , rj,i−1(χN−1), rj,i−1(χN)]T , j = 1, 2, 3, 4, 5, 6

A11 = D2, A12 = a1,i−1D, A13 = a2,i−1D, A14 = 0, A15 = 0, A16 = 0

A21 = b3,i−1D + b4,i−1I, A22 = D2 + b1,i−1D + b2,i−1I, A23 = b5,i−1D, A24 = b6,i−1I,

A25 = b7,i−1I, A26 = 0, A31 = c3,i−1D + c4,i−1I, A32 = c5,i−1D
2,

A33 = D2 + c1,i−1D + c2,i−1I, A34 = c6,i−1I, A35 = 0, A36 = c7,i−1I, A41 = 0,

A42 = d1,i−1D, A43 = d2,i−1D, A44 = D2, A45 = d3,i−1D, A46 = d4,i−1D,

A51 = l3,i−1D + l4,i−1I, A52 = l5,i−1D + l6,i−1I, A53 = l7,i−1D

A54 = l8,i−1D + l9,i−1I, A55 = D2 + l1,i−1D + l2,i−1I, A56 = l10,i−1D,

A61 = m3,i−1D +m4,i−1I, A62 = 0, A63 = m5,i−1D +m6,i−1I

A64 = m7,i−1D +m8,i−1I, A65 = m9,i−1D
2, A66 = D2 +m1,i−1D +m2,i−1I

where I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(2.48) to incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (2.50)

Results and Discussion

The solutions for dimensionless heat and nanoparticle mass transfer rates are computed

and presented graphically in Figs. 2.8 and 2.9. The effects of angle of inclination (A),

Brownian motion parameter (Nb), thermophoresis parameter (Nt) and amplitude (a) of the

wavy surface have been discussed.

The effect of the amplitude and angle of inclination of the wavy surface on the Nusselt

and nanoparticle Sherwood number is plotted in Fig. 2.8. It is observed from Figs. 2.8(a)

and 2.8(b) that an enhancement in wavy amplitude increases the local heat and nanoparticle
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mass transfer rates as compared with the limiting case of a smooth surface. The variation

of heat and nanoparticle mass transfer rates for various values of the angle of inclination

A is displayed in Figs. 2.8(c) and 2.8(d). It is found that increasing the angle of incli-

nation increases the buoyancy force and assist the flow, leading to an increase in the heat

and nanoparticle mass transfer rates. The maximum values of the dimensionless heat and

nanoparticle mass transfer rates are observed when the surface is vertical; in which case, the

buoyancy force is at its maximum.

Fig. 2.9 displays the effect of Brownian motion and thermophoresis parameters on the

heat and nanoparticle mass transfer rates. Fig. 2.9(a) depicts that the dimensionless heat

transfer rate decreases with increase in the Browinian motion parameter. An increase in

the value of Brownian motion parameter enhances the nanoparticle volume fraction transfer

rate, as shown in Fig. 2.9(b). It is seen from Fig. 2.9(c) that the heat transfer rate decreases

with increase in the thermophoresis parameter. The effect of thermophoresis number on

nanoparticle mass transfer is to increase the nanoparticle Sherwood number which can be

seen from Fig. 2.9(d).
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Figure 2.8: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with wave
amplitude a and (c) heat, (d)nanoparticle mass transfer coefficients with angle of inclination
A.
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Figure 2.9: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with Brownian
motion parameter Nb and (c) heat, (d)nanoparticle mass transfer coefficients with ther-
mophoresis parameter Nt.
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2.3 Conclusions

In this chapter, we studied the problem of natural convection heat and nanoparticle mass

transfer over an inclined wavy surface embedded in a porous medium saturated with nanofluid

with (a) uniform wall temperature and nanoparticle volume fraction conditions and (b)uniform

and constant heat and nanoparticle mass flux conditions. From this analysis, the following

conclusions can be drawn for both the cases (a) and (b):

An increase in the Brownian motion parameter Nb, increases the velocity, temperature

and local nanoparticle mass transfer coefficient but reduces the nanoparticle volume fraction

and local heat transfer coefficient. A higher value of the thermoporesis parameter Nt leads to

higher velocity, temperature and nanoparticle volume fraction but lower local heat transfer

coefficient and no effect is seen on nanoparticle mass transfer coefficient. The effect of the

amplitude of the wavy surface is to reduce the local heat transfer and local nanoparticle

mass transfer coefficients for case (a) but enhances in case (b). The influence of the angle

of inclination of the wavy surface to the horizontal is to enhance the velocity and local heat

and nanoparticle mass transfer rate but to reduce the temperature and nanoparticle volume

fraction of the fluid.
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Chapter 3

Mixed convection over an inclined

wavy surface in a nanofluid saturated

porous medium 1

3.1 Introduction

Mixed convective heat and mass transfer problems are used in a wide range of industrial and

engineering applications that include heat exchangers, nuclear reactors, thermal insulation

systems, electronic device cooling, oil separation from sand by steam, packed bed chemical

reactors, underground disposal of nuclear waste materials and food storage. Several authors

studied the mixed convective transport in the boundary layer flow past different geometries

submerged in a porous medium subject to various effects ([70, 41, 67, 14, 80, 90, 103]).

Conventional heat transfer fluids such as water and oil are poor heat transfer fluids. So as

to improve the thermal conductivity of these fluids, nanosized particles are being suspended

in them. Nanofluids are used in the production of nano structured materials for cleaning

1Case(a):Published in “International Journal of Numerical Methods for Heat and Fluid Flow,
25(8) (2015) 1774–1792”,
Case(b) Published in “Journal of Nanofluids” 5(1) (2016) 120–129
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oil from surfaces due to their exceptional wetting and spreading behavior. Nanofluids are

used as coolant in heat exchangers, electronic cooling system (flat plate) and radiators.

Moreover, the study of heat transfer from irregular surfaces (wavy surfaces) is a problem

of fundamental importance. Irregularities in surfaces occur in many practical situations

which enhances the heat transfer characteristics. These irregularities encounter in several

heat transfer devices such as microelectronic devices, flat plate solar collectors and flat plate

condensers in refrigerators.

In this chapter we consider the mixed convective heat and nanoparticle mass transfer

over an inclined wavy surface in a nanofluid saturated porous medium for both the cases of

aiding and opposing flows. The presence of Brownian motion and thermophoresis effects is

taken into account. The influence of pertinent parameters on physical quantities for both

aiding and opposing flows are examined numerically and shown through graphs.

3.2 Mathematical Formulation

Consider the steady laminar incompressible mixed convective two-dimensional boundary

layer flow along a semi-infinite inclined wavy surface embedded in a nanofluid saturated

Darcy porous medium with uniform stream U∞ in the ambient medium. The wavy plate is

inclined at an angle A (0o ≤ A ≤ 90o) to the horizontal. Choose the coordinate system so

that x-axis is along the wavy plate and y-axis is normal to the plate. The physical model

and coordinate system are as shown in 2.1.

Using the same assumptions made in chapter-2, the governing equations of the flow are

∂u

∂x
+
∂v

∂y
= 0, (3.1)

∂u

∂y
− ∂v

∂x
=

(1− φ∞)ρf∞β K g

µ

(
∂T

∂y
sinA− ∂T

∂x
cosA

)
−(ρp − ρf∞)K g

µ

(
∂φ

∂y
sinA− ∂φ

∂x
cosA

)
, (3.2)

55



u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

, (3.3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
, (3.4)

In this chapter, we have solved the problem subject to two types of boundary conditions,

given in the previous chapter.

3.2.1 Case(a): Uniform Wall Temperature and Nanoparticle Vol-

ume Fraction

Let uniform wall temperature Tw and nanoparticle volume fraction φw are prescribed on the

wavy surface. These values are assumed to be greater than the ambient temperature T∞

and nanoparticle volume fraction φ∞ at any arbitrary reference point in the medium (inside

the boundary layer). Hence, the boundary conditions are

v = 0, T = Tw, φ = φw, at y = δ(x), (3.5a)

u = U∞, T → T∞, φ→ φ∞ as y →∞, (3.5b)

where the subscripts w, and ∞ indicate the conditions at the wall and at the outer edge of

the boundary layer respectively.

Introducing the stream function ψ in Eqns. (3.2) - (3.4) and then using the following
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non-dimensional variables

ξ = x
L
, η =

(y/l − δ)Pe1/2

ξ1/2 (1 + δ̇2)
, ψ = U∞lPe

−1/2ξ1/2f(η),

θ =
T − T∞
Tw − T∞

,

s =
φ− φ∞
φw − φ∞

,


(3.6)

we obtain the following system of ordinary differential equations

f ′′ = ∆(sinA+ δ̇ cosA) (θ′ −Nrs
′) , (3.7)

θ′′ +
1

2
fθ′ +Nbs

′θ′ +Ntθ
′2 = 0, (3.8)

s′′ +
1

2
Lefs′ +

Nt

Nb

θ′′ = 0, (3.9)

where ∆ = Ra
Pe

is mixed convection parameter, Pe = U∞ L
α

is the Peclet number.

The boundary conditions (3.5) in terms of f, θ and s becomes

f = 0, θ = 1, s = 1, at η = 0, (3.10a)

f ′ = 1, θ → 0, s→ 0 as η →∞. (3.10b)

The local Nusselt number and the local nanoparticle Sherwood number are given by

Nux

Pex
1/2

= −

√
1

1 + δ̇2

(
∂θ

∂η

)
η=0

, (3.11a)

NShx

Pex
1/2

= −

√
1

1 + δ̇2

(
∂s

∂η

)
η=0

. (3.11b)
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Method of Solution

The system of Eqns. (3.7) - (3.9) along with the boundary conditions (3.10) were solved

numerically using the Successive Linearisation Method (SLM) ([68, 5]). Using this method

the non linear boundary layer equations reduce to a system of linear differential equations.

The Chebyshev pseudo spectral method is then used to transform the iterative sequence

of linearized differential equations into a system of linear algebraic equations which are

converted into a matrix system as described in detail in Chapter-2. Proceeding same as in

the chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (3.12)

subject to the boundary conditions

fi(χN) = 0,
N∑
k=0

D0kfi(χk) = 0 (3.13)

θi(χN) = θi(χ0) = si(χN) = si(χ0) = 0 (3.14)

In Eqn. (3.12), Ai−1 is a (3N + 3)×(3N + 3) square matrix and Xi and Ri−1 are (3N +

3)×1 column vectors defined by

Ai−1 =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xi =


Fi

Θi

Φi

 , Ri =


r1,i−1

r2,i−1

r3,i−1

 (3.15)
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where

Fi = [fi(χ0), fi(χ1), ......, fi(χN−1), fi(χN)]T ,

Θi = [θi(χ0), θi(χ1), ......, θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ......, si(χN−1), si(χN)]T ,

r1,i−1 = [r1,i−1(χ0), r1,i−1(χ1), ......, r1,i−1(χN−1), r1,i−1(χN)]T

r2,i−1 = [r2,i−1(χ0), r2,i−1(χ1), ......, r2,i−1(χN−1), r2,i−1(χN)]T

r3,i−1 = [r3,i−1(χ0), r3,i−1(χ1), ......, r3,i−1(χN−1), r3,i−1(χN)]T

A11 = D2, A12 = a1,i−1D, A13 = a2,i−1D

A21 = b3,i−1I, A22 = D2 + b1,i−1D, A23 = b2,i−1D

A31 = c3,i−1I, A32 = c2,i−1D
2, A33 = D2 + c1,i−1D

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(3.12) to incorporate boundary conditions (3.13) - (3.14), the solution is obtained as

Xi = A−1i−1Ri−1 (3.16)

Results and Discussion

Solutions for the dimensionless velocity, temperature and nanoparticle volume fraction func-

tions, heat and nanoparticle mass transfer rates for aiding and opposing flows have been

computed and displayed graphically in Figs. 3.1 - 3.6. The effects of angle of inclination A,

Brownian motion parameter Nb, thermophoresis parameter Nt and amplitude a of the wave

surface for both aiding and opposing flows have been discussed.

In order to assess the accuracy of our method, we have compared our results with those

of Cheng [23] for fixed values of a = 0, A = π/2, Nr = 0, Nt = 0, Le = 0.0, Nb → 0 with

the variation of mixed convection parameter ∆ for both aiding and opposing flows. The

comparison in the above case is found to be in good agreement, as shown in Tables 3.1 and

3.2.

Figure 3.1 depicts the effect of the amplitude of the wavy surface on velocity, temperature

and nanoparticle volume fraction distributions. It is observed that as a increases, velocity
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Table 3.1: Comparison of −θ′(0) calculated by the present method and that of Cheng [23]
for fixed values of a = 0, A = π/2, Nr = 0, Nt = 0, Le = 0.0, Nb → 0 with the variation of
mixed convection parameter ∆ for the case of aiding flow

−θ′(0)

∆ Cheng [23] Present
0.0 0.5641 0.56413
0.5 0.6473 0.64733
1.0 0.7205 0.72052
3.0 0.9574 0.95747
10.0 1.516 1.51596
20.0 2.066 2.06615

Table 3.2: Comparison of −θ′(0) calculated by the present method and that of Cheng [23]
for fixed values of a = 0, A = π/2, Nr = 0, Nt = 0, Le = 0.0, Nb → 0 with the variation of
mixed convection parameter ∆ for the case of opposing flow

−θ′(0)

∆ Cheng [23] Present
-0.2 0.5269 0.52691089
-0.4 0.4865 0.48653284
-0.6 0.442 0.44202064
-0.8 0.3916 0.39166292
-1.0 0.332 0.33202116
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increases near the plate and decreases away from the plate in the case of aiding flow while

in the case of opposing flow, velocity decreases near the plate and increases away from the

plate. But the temperature and nanoparticle volume fraction decrease for aiding flow and

increase for opposing flow.

The variation of non-dimensional velocity, temperature and nanoparticle volume fraction

profiles with η for different values of angle of inclination A is illustrated in Fig. 3.2. It is

observed from Fig. 3.2(a) that the velocity increases near the plate and decreases away from

the plate for aiding flow whereas the velocity decreases near the plate and increases away from

the plate for opposing flow with increase in the values of the angle of inclination A. From Fig.

3.2(b) and 3.2(c), it is clear that the temperature and nanoparticle volume fraction decrease

within the boundary layer region for the aiding flow and increase for opposing flow. When the

surface is vertical, the smallest temperature and nanoparticle volume fraction distributions

are observed for aiding flow whereas largest temperature and nanoparticle volume fraction

distributions are observed for opposing flow. For the horizontal surface, largest temperature

and nanoparticle volume fraction distributions are observed for aiding flow whereas smallest

temperature and nanoparticle volume fraction distributions are observed for opposing flow.

Figures 3.3 and 3.4 show the distributions of the dimensionless velocity component, tem-

perature and nanoparticle volume fraction for different values of Brownian motion parameter

Nb and thermophoresis parameter Nt. It is observed that an increase in the intensity of Brow-

nian motion parameter produces an enhancement in the fluid velocity within the momentum

boundary layer thus enhancing the fluid flow in the case of aiding flow but reduces in the

case of opposing flow as shown in Fig. 3.3(a). Fig. 3.4(a) depicts that an increase in the

thermophoresis parameter tends to increase the maximum stream wise velocity, thus as-

sisting the fluid flow in the case of aiding flow but reduces in the case of opposing flow.

Fig. 3.3(b) shows that as the Brownian motion parameter increases, the temperature of

the fluid in the boundary layer increases for both aiding and opposing flows. Moreover, the

temperature increases in both the cases (i.e. aiding and opposing flows) with an increase in

the thermophoresis parameter, as shown in Fig. 3.4(b). Increase in the Brownian motion

parameter tends to reduce the nanoparticle volume fraction for both aiding and opposing
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flows as shown in Fig. 3.3(c). However, the reverse trend is observed in case of thermophore-

sis parameter, i.e. an increase in the value of the thermophoresis parameter enhances the

nanoparticle volume fraction for both aiding and opposing flows as shown in Fig. 3.4(c).

The effect of wave amplitude a on the local heat and nanoparticle mass transfer is shown

in Figs. 3.5(a) and 3.5(b). This figure reveals that an enhancement in wave amplitude causes

smaller fluctuations in the heat and nanoparticle transfer rates for both aiding and opposing

flows. In general, we conclude that the surface becomes more roughened for increasing values

of amplitude of the wavy surface.

The variation of heat and nanoparticle mass transfer rates with the angle of inclination

A is displayed in Figs. 3.5(c) and 3.5(d). This figure shows that increasing the angle of

inclination increases the buoyancy force and assists the flow, leading to an increase in the

heat and nanoparticle mass transfer rates in the case of aiding flow whereas a reverse trend

is observed in the case of opposing flow.

Figure 3.6 presents the effects of Brownian motion parameter Nb and thermophoresis

parameter Nt on the heat and nanoparticle mass transfer rates. The dimensionless heat

transfer rate decreases with increase in the Brownian motion parameter and thermophoresis

parameter for both aiding and opposing flows as shown in Figs. 3.6(a) and 3.6(c). An increase

in the value of the Brownian motion parameter enhances the nanoparticle mass transfer rate,

as shown in Fig. 3.6(b). The effect of thermophoresis number on the nanoparticle mass

transfer is negligible as depicted in Fig. 3.6(d).

62



0 1 2 3 4 5
0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

2 . 2

f’

η

 ∆= - 0 . 5 ,  a = 0 . 1
 ∆= - 0 . 5 ,  a = 0 . 3
 ∆= - 0 . 5 ,  a = 0 . 5
 ∆= 1 ,  a = 0 . 1
 ∆= 1 ,  a = 0 . 3
 ∆= 1 ,  a = 0 . 5

O p p o s i n g  f l o w

A i d i n g  f l o w

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,
A = π/ 6 ,  L e = 5 . 0

(a)

0 1 2 3 4 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

θ

η

 ∆= - 0 . 5 ,  a = 0 . 1
 ∆= - 0 . 5 ,  a = 0 . 3
 ∆= - 0 . 5 ,  a = 0 . 5
 ∆= 1 ,  a = 0 . 1
 ∆= 1 ,  a = 0 . 3
 ∆= 1 ,  a = 0 . 5

O p p o s i n g  f l o w

A i d i n g  f l o w

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,
A = π/ 6 ,  L e = 5 . 0

(b)

0 1 2 3 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

s

η

 ∆= - 0 . 5 ,  a = 0 . 1
 ∆= - 0 . 5 ,  a = 0 . 3
 ∆= - 0 . 5 ,  a = 0 . 5
 ∆= 1 ,  a = 0 . 1
 ∆= 1 ,  a = 0 . 3
 ∆= 1 ,  a = 0 . 5

O p p o s i n g  f l o w

A i d i n g
f l o w

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,
A = π/ 6 ,  L e = 5 . 0

(c)

Figure 3.1: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of wave amplitude a.
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Figure 3.2: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of angle of inclination A.
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Figure 3.3: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of Brownian motion parameter Nb.
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Figure 3.4: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of thermophoresis parameter Nt.
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Figure 3.5: Variation of (a) heat, (b)nanoparticle mass transfer coefficients with wave am-
plitude a and (c) heat, (d)nanoparticle mass transfer coefficients with angle of inclination
A.
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Figure 3.6: Variation of (a) heat, (b)nanoparticle mass transfer coefficients with Brownian
motion parameter Nb and (c) heat, (d)nanoparticle mass transfer coefficients with ther-
mophoresis parameter Nt.
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3.2.2 Case(b): Uniform Wall Heat and Nanoparticle Mass Flux

Assume that the plate is maintained at uniform and constant heat and nanoparticle mass

fluxes qw and qnp respectively. The steady mixed convection boundary layer flow is governed

by Eqs. (3.1) to (3.4) and the boundary conditions are given by

v = 0, qw = −k(n.∇T ), qnp = −DB(n.∇φ) at y = 0 (3.17a)

u = U∞, T → T∞, φ→ φ∞ as y →∞ (3.17b)

Substituting the stream function ψ and introducing the following non-dimensional variables

in Eqns. (3.1) - (3.4)

ξ = x
L
, η =

(y/l − δ)Pe1/3

ξ1/3 (1 + δ̇2)
, ψ = U∞l Pe

−2/3ξ2/3f(ξ, η),

T − T∞ =
qw l

k
ξ1/3 Pe−1/3 θ(ξ, η), φ− φ∞ =

qnp l

DB

ξ1/3 Pe−1/3 s(ξ, η),

 (3.18)

we get the following system of non-linear partial differential equations

f ′′ = ∆ (sinA+ δ̇ cosA) (θ′ −Nrs
′) , (3.19)

θ′′ +
2

3
fθ′ − 1

3
f ′θ + ξ1/3Nbs

′θ′ + ξ1/3Ntθ
′2 = ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (3.20)

s′′ +
2

3
Le f s′ − 1

3
Le f ′ s+

Nt

Nb

θ′′ = Leξ

(
f ′
∂s

∂ξ
− s′∂f

∂ξ

)
, (3.21)

The boundary conditions (3.17) in terms of f, θ and s becomes

2f + 3ξ

(
∂f

∂ξ

)
η=0

= 0, θ′ = −
√

1 + δ̇2, φ′ = −
√

1 + δ̇2, (3.22a)

f ′ → 1, θ → 0, φ→ 0. (3.22b)

The non-dimensional local Nusselt number Nuξ and the local nanoparticle Sherwood number
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NShξ are given by

Nuξ

Peξ
1/3

=
ξ1/3

θ(ξ, 0)
, (3.23a)

NShξ

Peξ
1/3

=
ξ1/3

s(ξ, 0)
. (3.23b)

Method of Solution

To solve the system of Eqns. (3.19) - (3.21) along with the boundary conditions (3.22),

a local similarity and non-similarity method [24, 100] has been applied. The boundary

value problems obtained from this method are linearized by the Successive Linearisation

Method and then solved using Chebyshev spectral collocation method as explained in detail

in chapter-2. Proceeding same as in chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (3.24)

In Eqn. (3.24), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N +

6)×1 column vectors defined by

Ai−1 =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1


(3.25)
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where

Fi = [fi(χ0), fi(χ1), ...., fi(χN−1), fi(χN)]T , Θi = [θi(χ0), θi(χ1), ...., θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ...., si(χN−1), si(χN)]T , Gi = [gi(χ0), gi(χ1), ...., gi(χN−1), gi(χN)]T ,

Hi = [hi(χ0), hi(χ1), ...., hi(χN−1), hi(χN)]T , Ki = [ki(χ0), ki(χ1), ...., ki(χN−1), ki(χN)]T ,

rj,i−1 = [rj,i−1(χ0), rj,i−1(χ1), · · · , rj,i−1(χN−1), rj,i−1(χN)]T , j = 1, 2, 3, 4, 5, 6

A11 = D2, A12 = a1,i−1D, A13 = a2,i−1D, A14 = 0, A15 = 0, A16 = 0

A21 = b3,i−1D + b4,i−1I, A22 = D2 + b1,i−1D + b2,i−1I, A23 = b5,i−1D, A24 = b6,i−1I,

A25 = b7,i−1I, A26 = 0, A31 = c3,i−1D + c4,i−1I, A32 = c5,i−1D
2,

A33 = D2 + c1,i−1D + c2,i−1I, A34 = c6,i−1I, A35 = 0, A36 = c7,i−1I, A41 = 0,

A42 = d1,i−1D, A43 = d2,i−1D, A44 = D2, A45 = d3,i−1D, A46 = d4,i−1D,

A51 = l3,i−1D + l4,i−1I, A52 = l5,i−1D + l6,i−1I, A53 = l7,i−1D

A54 = l8,i−1D + l9,i−1I, A55 = D2 + l1,i−1D + l2,i−1I, A56 = l10,i−1D,

A61 = m3,i−1D +m4,i−1I, A62 = 0, A63 = m5,i−1D +m6,i−1I

A64 = m7,i−1D +m8,i−1I, A65 = m9,i−1D
2, A66 = D2 +m1,i−1D +m2,i−1I

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(3.24) to incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (3.26)

Results and Discussion

The numerical solution for dimensionless velocity, temperature and nanoparticle volume

fraction functions and heat and nanoparticle mass transfer rates are computed and presented

graphically for both aiding and opposing flows in Figs. 3.7 - 3.18. The effects of angle of

inclination A, Brownian motion parameter Nb, thermophoresis parameter Nt and amplitude

a of the wavy surface on the flow, heat and nanoparticle mass transfer rates have been

discussed.

The effect of amplitude a of the wavy surface on the velocity, temperature and nanopar-
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ticle volume fraction for both aiding and opposing flows respectively are plotted in Fig. 3.7.

It is observed that as a increases, velocity increases but the temperature and nanoparticle

volume fraction decreases for aiding flow. In contrast, for opposing flow it is observed that

the velocity decreases and the temperature and nanoparticle volume fraction of the fluid flow

increase.

Figure 3.8 displays the effect of angle of inclination A on the velocity, temperature and

nanoparticle volume fraction for both aiding and opposing flows respectively. The equations

for the limiting cases of the horizontal and vertical plates are recovered from the transformed

equations by setting A = 0o and A = 90o, respectively. It is noted from Fig. 3.8 that

the velocity increases near the plate but the temperature and nanoparticle volume fraction

decrease within the boundary layer region for the aiding flow whereas velocity reduces but

the temperature and nanoparticle volume fraction increase for opposing flow with increase

in the values of angle of inclination.

The dimensionless velocity, temperature, and nanoparticle fraction for different values of

Brownian motion parameter and thermophoresis parameter are displayed in Figs. 3.9 and

3.10. It is seen that an increase in the value of Brownian motion parameter increases the

fluid velocity within the momentum boundary layer thus enhancing the fluid flow in the case

of aiding flow whereas the velocity of the fluid flow decreases in the case of opposing flow, as

shown in Fig 3.9(a). Fig 3.10(a) depicts that an increase in the thermophoresis parameter

tends to increase the maximum stream wise velocity, thus assisting the fluid flow in the case

of aiding flow, while the velocity of the fluid flow decreases in the case of opposing flow.

Fig 3.9(b) shows that as the Brownian motion parameter increases, the temperature of the

fluid in the boundary layer increases for both aiding and opposing flows. Moreover, the

temperature increases in both the cases of aiding and opposing flows with an increase in

the thermophoresis parameter, as shown in Fig 3.10(b). Increase in the Brownian motion

parameter tends to reduce the nanoparticle volume fraction for both aiding and opposing

flows as shown in Fig 3.9(c). An increase in the value of the thermophoresis parameter

enhances the nanoparticle volume fraction for both aiding and opposing flows as shown in

Fig 3.10(c).
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The effect of the wave amplitude on the local Nusselt number Nuξ/Peξ
1/3 and nanopar-

ticle Sherwood number NShξ/Peξ
1/3 for both aiding and opposing flows is plotted in Figs

3.11 and 3.12. It is observed that an enhancement in wavy amplitude increases the local

heat transfer and nanoparticle mass transfer rates for both aiding and opposing flows.

The variation of heat and nanoparticle mass transfer rates for various values of the angle

of inclination A is displayed in Figs. 3.13 and 3.14. It is noticed that increasing the angle

of inclination increases the buoyancy force and assists the flow, leading to an increase in the

heat and nanoparticle mass transfer rates in the case of aiding flow whereas a reverse trend

is seen in the case of opposing flow. The minimum value of the dimensionless heat transfer

rate is observed when the surface is vertical.

The effect of Brownian motion parameter Nb on the heat and nanoparticle mass transfer

rates is plotted in Figs. 3.15 and 3.16. It is observed that the local heat transfer rate decreases

with increase in the Browinian motion parameter Nb for both aiding and opposing flows as

shown in Fig. 3.15. Increasing the Brownian motion parameter enhances the nanoparticle

mass transfer rate for both aiding and opposing flows as shown in Fig. 3.16

Figures 3.17 and 3.18 display the effect of local Nusselt number Nuξ/Peξ
1/3 and nanopar-

ticle Sherwood number NShξ/Peξ
1/3 on the thermophoresis parameter Nt for both aiding

and opposing flows. It is seen that the heat and nanoparticle mass transfer rates decrease

with increase in the value of thermophoresis parameter Nt for both aiding and opposing

flows. Brownian motion is proportional to the volumetric fraction of nanoparticles in the

direction from high to low concentration, whereas the thermophoresis is proportional to the

temperature gradient from hot to cold. Hence, we conclude that the effect of the combination

of Brownian motion and thermophoresis is to reduce the rate of heat transfer.
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Figure 3.7: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of wave amplitude a.
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Figure 3.8: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of angle of inclination A.
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Figure 3.9: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of Brownian motion parameter Nb.
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Figure 3.10: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of thermophoresis parameter Nt.
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Figure 3.11: Variation of heat transfer coefficient with wave amplitude a for both (a) Aiding
and (b) Opposing flows.
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Figure 3.12: Variation of nanoparticle mass transfer coefficient with wave amplitude a for
both (a) Aiding and (b) Opposing flows.
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Figure 3.13: Variation of heat transfer coefficient with angle of inclination A for both (a)
Aiding and (b) Opposing flows.
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Figure 3.14: Variation of nanoparticle mass transfer coefficient with angle of inclination A
for both (a) Aiding and (b) Opposing flows.
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Figure 3.15: Variation of heat transfer coefficient with Brownian motion Parameter Nb for
both (a) Aiding and (b) Opposing flows.
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Figure 3.16: Variation of nanoparticle mass transfer coefficient with Brownian motion Pa-
rameter Nb for both (a) Aiding and (b) Opposing flows.
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Figure 3.17: Variation of heat transfer coefficient with thermophoresis Parameter Nt for both
(a) Aiding and (b) Opposing flows.
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Figure 3.18: Variation of nanoparticle mass transfer coefficient with thermophoresis Param-
eter Nt for both (a) Aiding and (b) Opposing flows.
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3.3 Conclusions

In this Chapter, Mixed convection heat and nanoparticle mass transfer over an inclined

wavy surface embedded in a porous medium saturated with nanofluid subject to (a) uniform

wall temperature and nanoparticle volume fraction conditions and (b)uniform and constant

heat flux and nanoparticle mass flux conditions has been analyzed. From this analysis, the

following conclusions are drawn for both the cases (a) and (b).

An increase in the Brownian motion parameter Nb, increases the velocity, temperature

and local nanoparticle mass transfer coefficient for aiding flow, but reduces the nanoparticle

volume fraction and local heat transfer coefficient for both aiding and opposing flows. A

higher value of the thermophoresis parameter Nt leads to higher temperatures and nanopar-

ticle volume fraction for both aiding and opposing flows, but an increase in velocity for aiding

flow and decrease in velocity for opposing flow is observed. Moreover, lower local heat trans-

fer coefficient for both aiding and opposing flows is observed. The effect of the amplitude of

the wavy surface is to increase the velocity but to reduce the temperature and nanoparticle

volume fraction for aiding flow and a reverse trend is observed for opposing flow. The lo-

cal heat transfer coefficient and local nanoparticle mass transfer coefficient reduces for both

aiding and opposing flows for case (a) and a reverse trend is seen in case (b). The influence

of the angle of inclination of the wavy surface to the horizontal is to enhance the velocity

and local heat and nanoparticle mass transfer coefficients but to reduce the temperature,

nanoparticle volume fraction for aiding flow and to increase these in the case of opposing

flow.
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Chapter 4

Radiation effect on natural convection

over an inclined wavy surface

embedded in a non-Darcy porous

medium saturated with a nanofluid 1

4.1 Introduction

Natural convection in a fluid-saturated porous medium is of fundamental importance in

many industrial and natural problems. Most of the researches have been carried out on

natural convection in porous medium under the assumption of Darcy law model. However,

this model is valid only for slow flows through porous matrix. For fluid flows with high

velocity, we must consider the non-Darcy model that considers the effect of fluid inertia as

well as viscous diffusion. In many practical situations the porous medium is bounded by

an impermeable wall, has higher flow rates, and reveals non-uniform porosity distribution

near the wall region, making Darcy law inapplicable. To model the real physical situation

1Case(a):Published in “Journal of Porous Media”,
Case(b) Communicated to “Iranian Journal of Science and Technology”
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better, it is therefore necessary to include the non-Darcy terms in the analysis of convective

transport in a porous medium. Non-Darcy models are the extensions of the classical Darcy

formulation to incorporate inertial drag effects, vorticity diffusion, and combinations of these

effects. The Darcy-Forchheimer (non-Darcy) model is an extension of the classical Darcy

model obtained by adding a velocity squared term in the momentum equation to account

for the inertial effects.

A few studies have been reported in the literature to study the effect of the radiation on

natural convection in a nanofluid saturated porous medium. The effect of thermal radiation

on flow and heat transfer processes is of major importance in the design of many advanced

energy conversion systems operating at high temperature. Thermal radiation within such

systems occur because of the emission by the hot walls and working fluid. Several investiga-

tions have been carried out on natural convection under the influence of thermal radiation.

It is really important to study the effect of thermal radiation due to its relevance to various

applications involving high temperatures such as nuclear power plant, gas turbines missiles,

satellites, space vehicles and aircrafts etc.

In this chapter, we obtain the numerical solutions for the problem of natural convection

over an inclined wavy surface embedded in a nanofluid saturated non-Darcy porous medium.

The Rosseland approximation is considered to study the effect of radiation. A wavy to flat

plate transformation is employed to convert the wavy surface to flat surface. The governing

partial differential equations are transformed to non-linear ordinary differential equations

and solved using Successive Linearization Method. The influence of pertinent parameters on

physical quantities are examined and the results are exhibited through graphs.

4.2 Mathematical Formulation

We consider a steady, laminar, incompressible and two-dimensional boundary layer free

convection flow along a semi-infinite inclined wavy surface embedded in a nanofluid satu-

rated non-Darcy porous medium in the presence of radiation effect. The porous medium
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is considered to be homogeneous and isotropic (i.e. uniform with a constant porosity and

permeability). The fluid has constant properties except the density in the buoyancy term of

the balance of momentum equation. The fluid flow is moderate, so the pressure drop is pro-

portional to the linear combination of fluid velocity and the square of velocity (Forchheimer

flow model is considered). The fluid is considered to be a gray, absorbing emitting radiation

but non-scattering medium. The wavy surface is described by

y = δ(x) = a sin(πx/l)

where a is the amplitude of the wavy surface, and 2l is the characteristic length of the

wavy surface. The wavy surface is maintained at constant temperature Tw and constant

nanoparticle volume fraction φw which are higher than the porous medium temperature T∞

and nanoparticle volume fraction φ∞ sufficiently far from the wavy surface.

The governing equations for this problem under the laminar boundary layer assumptions,

Boussinesq approximation and by using the Darcy-Forchheimer model are given by

∂u

∂x
+
∂v

∂y
= 0, (4.1)

(
1 +

K̃

ν

√
u2 + v2

)[
∂u

∂y
− ∂v

∂x

]
+

K̃

ν
√
u2 + v2

[
u2
∂u

∂y
+ uv

(
∂v

∂y
− ∂u

∂x

)
− v2 ∂v

∂x

]
=

(1− φ∞)ρf∞β K g

µ

(
∂T

∂y
sinA− ∂T

∂x
cosA

)
− (ρp − ρf∞)K g

µ

(
∂φ

∂y
sinA− ∂φ

∂x
cosA

)
,(4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

+
16σ T 3

∞
3Ke

(
∂2T

∂x2
+
∂2T

∂y2

)
, (4.3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
, (4.4)
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where K̃ is a material parameter which is a measure of inertia impedance of the matrix to

account for non-Darcian inertial effects and qr is the radiative heat flux. If K̃ = 0, the flow

becomes Darcian flow. The last term in Eqn. (4.3) is due to radiation effect.

Two types (cases) of boundary conditions for the temperature and nanoparticle volume

fraction on inclined wavy plate are presented in this chapter. In case(a), the plate is main-

tained at uniform wall temperature and nanoparticle volume fraction. In case(b), the plate

is subjected to a uniform and constant heat and nanoparticle mass fluxes.

4.2.1 Case(a): Uniform Wall Temperature and Nanoparticle Vol-

ume Fraction

Assume that the wavy plate is subject to uniform wall temperature and nanoparticle volume

fraction Tw and φw respectively. These values are assumed to be greater than the ambient

temperature T∞ and nanoparticle volume fraction φ∞ at any arbitrary reference point in the

medium (inside the boundary layer). Therefore, the boundary conditions are given by (2.5)

Introducing the stream function ψ in Eqns. (4.1) - (4.4) and then making use of the

non-dimensional variables given in (2.7), we get the following system of non-linear ordinary

differential equations

f ′′ + 2Gr(1 + δ̇2)−1/2f ′f ′′ = (sinA+ δ̇ cosA) (θ′ −Nrs
′) , (4.5)

(
1 +

4R

3

)
θ′′ +

1

2
fθ′ +Nbs

′θ′ +Ntθ
′2 = 0, (4.6)

s′′ +
1

2
Lefs′ +

Nt

Nb

θ′′ = 0 (4.7)

where Gr =
(1− φ∞)β K K̃ g (Tw − T∞)

ν2
is the Grashof number and R =

4σ T∞
3

KKe

is the Ra-

diation parameter.

The boundary conditions (2.5) in terms of f, θ and s are given by (2.11).
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The non-dimensional heat and nanoparticle mass transfer rates are given by

Nuξ

Raξ
1/2

= −
(

1 +
4R

3

)√
1

1 + δ̇2

(
∂θ

∂η

)
η=0

, (4.8a)

NShξ

Raξ
1/2

= −

√
1

1 + δ̇2

(
∂s

∂η

)
η=0

. (4.8b)

Method of Solution

The transformed governing equations (4.5) to (4.7) with the boundary conditions (2.11)

are solved numerically using Successive Linearization Method along with Chebyshev spec-

tral collocation method. The detailed descreption of the method can be seen in chapter-2.

Proceeding as in chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (4.9)

subject to the boundary conditions

fi(χN) = 0,
N∑
k=0

D0kfi(χk) = 0 (4.10)

θi(χN) = θi(χ0) = si(χN) = si(χ0) = 0 (4.11)

In Eqn. (4.9), Ai−1 is a (3N + 3)×(3N + 3) square matrix and Xi and Ri−1 are (3N + 3)×1

column vectors defined by

Ai−1 =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xi =


Fi

Θi

Φi

 , Ri−1 =


r1,i−1

r2,i−1

r3,i−1

 (4.12)
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where

Fi = [fi(χ0), fi(χ1), ......, fi(χN−1), fi(χN)]T ,

Θi = [θi(χ0), θi(χ1), ......, θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ......, si(χN−1), si(χN)]T ,

r1,i−1 = [r1,i−1(χ0), r1,i−1(χ1), ......, r1,i−1(χN−1), r1,i−1(χN)]T

r2,i−1 = [r2,i−1(χ0), r2,i−1(χ1), ......, r2,i−1(χN−1), r2,i−1(χN)]T

r3,i−1 = [r3,i−1(χ0), r3,i−1(χ1), ......, r3,i−1(χN−1), r3,i−1(χN)]T

A11 = a1,i−1D
2 + a2,i−1D, A12 = a3,i−1D, A13 = a4,i−1D

A21 = b4,i−1I, A22 = b1,i−1D
2 + b2,i−1D, A23 = b3,i−1D

A31 = c3,i−1I, A32 = c2,i−1D
2, A33 = D2 + c1,i−1D

Here ak,i−1, bl,i−1, cl,i−1 (k = 1, 2) and (l = 1, 2, 3) are diagonal matrices of size (N+1)×(N+1)

and I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system (4.9)

to incorporate boundary conditions (4.10) - (4.11), the solution is obtained as

Xi = A−1i−1Ri−1 (4.13)

Results and Discussion

In order to assess the accuracy of our method, we have compared our results with those of

Bejan and Khair [83] for fixed values of A = π
2
, a = 0, ξ = 0, Gr = 0, R = 0 with the

variation of Nr and Le. The comparison in the above case is found to be in good agreement,

as shown in Table 4.1.

The effect of the amplitude of the wavy surface on velocity, temperature and nanoparticle

volume fraction is plotted in Fig. 4.1. It is noticed that as a increases, the velocity increases

near the plate and decreases away from the plate but the temperature and nanoparticle

volume fraction decrease within the boundary layer region.

Fig. 4.2 shows the effect of the angle of inclination of the wavy surface on velocity,

temperature and nanoparticle volume fraction. It is observed that as A increases, the ve-

locity increases near the plate and decreases away from the plate but the temperature and
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Table 4.1: Comparison of Nuξ/
√
Raξ and NShξ/

√
Raξ for various values of Nr and Le

calculated by the present method with A = π
2
, a = 0, ξ = 0, Gr = 0, R = 0 and that of

Bejan and Khair [9].

Nuξ/
√
Raξ NShξ/

√
Raξ

Nr Le Bejan and Khair [9] Present Bejan and Khair [9] Present
-3 6 0.683 0.68337284 2.286 2.28633713
-3 8 0.655 0.65480116 2.652 2.65158112
-3 10 0.634 0.63445699 2.973 2.97299942
-2 6 0.618 0.61746121 2.009 2.00890316
-2 8 0.597 0.59691786 2.332 2.33244761
-2 10 0.582 0.58231077 2.617 2.61712295

nanoparticle volume fraction decrease within the boundary layer region. When the sur-

face is vertical, the smallest temperature and nanoparticle volume fraction distributions are

observed. While for the horizontal surface, largest temperature and nanoparticle volume

fraction distributions are observed.

Figure 4.3 presents the variation of non-dimensional velocity, temperature and nanopar-

ticle volume fraction with variation of Grashof number Gr. It is clear from Fig. 4.3(a) that

velocity of the fluid decreases near the plate and then increases away from the plate with the

increase of Grashof number. It is observed from Figs. 4.3(b) and 4.3(c) that the temperature

and nanoparticle volume fraction of the fluid increases with increase of the Grashof number.

The effect of radiation R on non dimensional velocity, temperature and nanoparticle

volume fraction is displayed in Fig. 4.4. It is observed from Figs. 4.4(a) and 4.4(b) that the

velocity and temperature increase with increase in the value of radiation parameter. It is

noticed from Fig. 4.4(c) that the nanoparticle volume fraction reduces with increase in the

value of radiation parameter.

The variation of heat and nanoparticle mass transfer rates for various values of the

amplitude a is displayed in Figs. 4.5(a) and 4.5(b). This figure shows that increasing the

amplitude decreases the buoyancy force and retards the flow, leading to a decrease in the heat

and nanoparticle mass transfer rates. Therefore, the heat and nanoparticle mass transfer
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rates are at a lower level when this effect is considered. The influence of angle of inclination

of the wavy surface on the local heat and nanoparticle mass transfer rates is shown in Figs.

4.5(c) and 4.5(d). It is observed that increase in the angle of inclination A enhances the

local heat and nanoparticle mass transfer rates.

The effect of Brownian motion parameter Nb and thermophoresis parameter Nt on the

local heat and nanoparticle mass transfer rates is presented in Figs. 4.6(a) and 4.6(b).

As observed from the previous chapters that the dimensionless heat transfer rate decreases

with increase in both the Brownian motion parameter and thermophoresis parameter as

indicated by Fig. 4.6(a). An increase in the value of Brownian motion parameter enhances

the nanoparticle mass transfer rate but increase in the thermophoresis parameter reduces

the nanoparticle mass transfer rate. This is seen in Fig. 4.6(b).

Figures 4.6(c) and 4.6(d) display the streamwise distribution of Nusselt and nanoparticle

Sherwood numbers for different values of radiation parameter R and Grashof number Gr.

It is seen that the heat transfer rate increases with increase in the radiation parameter

but decreases with increase in the Grashof number. The effect of radiation parameter and

Grashof number on nanoparticle mass transfer is depicted in Fig. 4.6(d) which shows that

increase in the value of Grashof number reduces the nanoparticle mass transfer rate but

increase in the value of radiation parameter enhances the nanoparticle Sherwood number.
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Figure 4.1: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of wave amplitude a.
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Figure 4.2: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of angle of inclination A.
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Figure 4.3: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of Grashof number Gr.
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Figure 4.4: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of radiation parameter R.
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Figure 4.5: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with wave
amplitude a and (c) heat, (d) nanoparticle mass transfer coefficients with angle of inclination
A.

95



0 1 2 3 4 5

0 . 2 1

0 . 2 2

0 . 2 3

0 . 2 4

0 . 2 5

0 . 2 6

0 . 2 7

0 . 2 8

0 . 2 9

N
u x

/R
a x

1/
2

ξ

N b = 0 . 1 ,  0 . 1 5 ,  0 . 2   ( N t = 0 . 1 )

N t = 0 . 1 ,  0 . 2 ,  0 . 3  ( N b = 0 . 5 )
N r = 0 . 3 ,  a = 0 . 1 ,  A = π/ 6 ,  L e = 5 . 0 ,  G r = 2 . 0 ,  R = 0 . 2

(a)

0 1 2 3 4 5

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

N
S

h
x
/R

a
x

1
/2

ξ

N
b
=0.1, 0.15, 0.2  (N

t
=0.1)

N
t
=0.1, 0.2, 0.3 (N

b
=0.5)

N
r
=0.3, a=0.1, A=π/6, Le=5.0

Gr=2.0, R=0.2

(b)

0 1 2 3 4 5

0 . 2 0

0 . 2 2

0 . 2 4

0 . 2 6

0 . 2 8

N
u x

/R
a x

1/
2

ξ

R = 0 . 3 ,  0 . 3 5 ,  0 . 4  ( G r = 2 . 0 )G r = 3 . 0 ,  4 . 0 ,  5 . 0  ( R = 0 . 2 )

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  a = 0 . 1 ,  L e = 5 . 0 ,  A = π/ 6

(c)

0 1 2 3 4 5

0 . 6 0

0 . 6 2

0 . 6 4

0 . 6 6

0 . 6 8

0 . 7 0

0 . 7 2

0 . 7 4

N
Sh

x/R
a x

1/
2

ξ

G r = 3 . 0 ,  3 . 5 ,  4 . 0  ( R = 0 . 2 )

R = 0 . 3 ,  0 . 4 ,  0 . 5  ( G r = 2 . 0 )
N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  a = 0 . 1 ,  A = π/ 6 ,  L e = 5 . 0  

(d)

Figure 4.6: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with Brownian
motion and thermophoresis parameters (c) heat, (d) nanoparticle mass transfer coefficients
with Grashof number and radiation parameters.
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4.2.2 Case(b): Uniform Wall Heat and Nanoparticle Mass Flux

Assume that the plate is maintained at uniform and constant heat and nanoparticle mass

fluxes qw and qnp respectively. The steady natural convection boundary layer flow is governed

by Eqns. (4.1) to (4.4) and the boundary conditions are given by

v = 0, qw = −k(n.∇T ) + n.qr, qnp = DB(n.∇φ) at y = 0, (4.14a)

u = 0, T → T∞, φ→ φ∞ as y →∞. (4.14b)

Substituting the stream function ψ in Eqns. (4.1) - (4.4), and introducing the following

non-dimensional variables

ξ =
x

L
, η =

(y/l − δ)Ra1/3

ξ1/3 (1 + δ̇2)
, ψ = αRa1/3 ξ2/3 f(ξ, η),

T − T∞ =
qw l

k
ξ1/3Ra−1/3 θ(ξ, η),

φ− φ∞ =
qnpl

DB

ξ1/3Ra−1/3 s(ξ, η), Gr∗ = GrRa−1/3


(4.15)

we obtain the following system of nonlinear ordinary differential equations

f ′′ + 2Gr∗ξ1/3(1 + δ̇2)−1/2f ′f ′′ = (sinA+ δ̇ cosA) (θ′ −Nrs
′) , (4.16)

(
1 +

4R

3

)
θ′′ +

2

3
fθ′ − 1

3
f ′θ + ξ1/3Nbs

′θ′ + ξ1/3Ntθ
′2 = ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (4.17)

s′′ +
2

3
Le f s′ − 1

3
Le f ′ s+

Nt

Nb

θ′′ = Leξ

(
f ′
∂s

∂ξ
− s′∂f

∂ξ

)
, (4.18)

The boundary conditions (4.14) in terms of f, θ and s are given by
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2f + 3ξ

(
∂f

∂ξ

)
η=0

= 0, θ′ = − 3

3 + 4R

√
1 + δ̇2, s′ = −

√
1 + δ̇2, (4.19a)

f ′ → 0, θ → 0, s→ 0. (4.19b)

and the non-dimensional heat and nanoparticle mass transfer rates are given by

Nuξ

Raξ
1/3

=
ξ1/3

θ(ξ, 0)
, (4.20a)

NShξ

Raξ
1/3

=
ξ1/3

s(ξ, 0)
. (4.20b)

Method of Solution

The transformed governing equations (4.16) to (4.18) with the boundary conditions (4.19)

are solved using a local similarity and non-similarity method. The resulting boundary layer

equations are linearized using Successive linearization Method and then solved using Cheby-

shev spectral collocation method same as in the previous chapters. Proceeding same as in

previous chapters, we obtain the following matrix equation

Ai−1Xi = Ri−1, (4.21)

In Eqn. (4.21), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N +

6)×1 column vectors defined by

Ai−1 =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1


(4.22)
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where

Fi = [fi(χ0), fi(χ1), ...., fi(χN−1), fi(χN)]T , Θi = [θi(χ0), θi(χ1), ...., θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ...., si(χN−1), si(χN)]T , Gi = [gi(χ0), gi(χ1), ...., gi(χN−1), gi(χN)]T ,

Hi = [hi(χ0), hi(χ1), ...., hi(χN−1), hi(χN)]T , Ki = [ki(χ0), ki(χ1), ...., ki(χN−1), ki(χN)]T ,

rj,i−1 = [rj,i−1(χ0), rj,i−1(χ1), · · · , rj,i−1(χN−1), rj,i−1(χN)]T , j = 1, 2, 3, 4, 5, 6

A11 = a1,i−1D
2 + a2,i−1D, A12 = a3,i−1D, A13 = a4,i−1D, A14 = 0, A15 = 0, A16 = 0

A21 = b4,i−1D + b5,i−1I, A22 = b1,i−1D
2 + b2,i−1D + b3,i−1I, A23 = b6,i−1D,

A24 = b7,i−1I, A25 = b8,i−1I, A26 = 0, A31 = c3,i−1D + c4,i−1I, A32 = c5,i−1D
2,

A33 = D2 + c1,i−1D + c2,i−1I, A34 = c6,i−1I, A35 = 0, A36 = c7,i−1I,

A41 = d3,i−1D
2 + d4,i−1D, A42 = d5,i−1D, A43 = d6,i−1D, A44 = d1,i−1D

2 + d2,i−1D,

A45 = d7,i−1D, A46 = d8,i−1D, A51 = l4,i−1D + l5,i−1I, A52 = l6,i−1D + l7,i−1I,

A53 = l8,i−1D A54 = l9,i−1D + l10,i−1I, A55 = l1,i−1D
2 + l2,i−1D + l3,i−1I,

A56 = l11,i−1D, A61 = m3,i−1D +m4,i−1I, A62 = 0, A63 = m5,i−1D +m6,i−1I

A64 = m7,i−1D +m8,i−1I, A65 = m9,i−1D
2, A66 = D2 +m1,i−1D +m2,i−1I

Here ak,i−1, bk,i−1, ck,i−1,dk,i−1, lk,i−1, mk,i−1 are diagonal matrices of size (N+1)×(N+1) and

I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system (4.21) to

incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (4.23)

Results and Discussion

Numerical solutions for dimensionless heat and nanoparticle mass transfer rates with varia-

tion of pertinent parameters are computed and presented graphically in Figs. 4.7 - 4.9.

Figures 4.7(a) and 4.7(b) show the effect of wave amplitude on the Nusselt and nanopar-

ticle Sherwood number. It is observed that an enhancement in wavy amplitude increases

the local heat and nanoparticle mass transfer rates as compared with the limiting case of a

smooth surface. In general, we conclude that increasing the amplitude a leads to a larger fluc-
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tuation of the local Nusselt number and nanoparticle sherwood number with the streamwise

coordinate ξ.

The effect of angle of inclination A on the heat and nanoparticle mass transfer rates

is displayed in Figs. 4.7(c) and 4.7(d). This figure shows that increasing the angle of

inclination increases the buoyancy force and assists the flow, leading to an increase in the

heat and nanoparticle mass transfer rates. The maximum values of the dimensionless heat

and nanoparticle mass transfer rates are observed when the surface is vertical; in which case,

the buoyancy force is at its maximum.

Figures. 4.8(a) and 4.8(b) display the effect of Brownian motion parameter Nb on the

heat and nanoparticle mass transfer rates. Fig. 4.8(a) depicts that the dimensionless heat

transfer rate decreases with an increase in the Browinian motion parameter. An increase in

the value of Brownian motion parameter enhances the nanoparticle mass transfer rate, as

shown in Fig. 4.8(b). Figs. 4.8(c) and 4.8(d) depict the streamwise distribution of Nusselt

and nanoparticle Sherwood numbers for different values of thermophoresis parameter Nt. It

is noticed that the heat and nanoparticle mass transfer rates decrease with the increase in the

thermophoresis parameter. Since, Brownian motion is proportional to the volumetric fraction

of nanoparticles in the direction from high to low concentration, whereas the thermophoresis

is proportional to the temperature gradient from hot to cold, we conclude that the effect of

Brownian motion and thermophoresis is to reduce the value of non-dimensional heat transfer

rate.

The variation of heat and nanoparticle mass transfer rates for different values of Grashof

number Gr is plotted in Figs. 4.9(a) and 4.9(b). It is seen that the heat and nanoparticle

mass transfer rates decrease with increase in the value of Grashof number. The effect of

radiation parameter on the heat and nanoparticle mass transfer is depicted in Figs. 4.9(c)

and 4.9(d) which shows that increase in the value of radiation parameter enhances the heat

and nanoparticle mass transfer rates. This is due to the fact that an increase in the radiation

parameter for given K and T∞ means a decrease in the Rosseland radiation absorptivity Ke.

Hence, the divergence of radiative heat flux qr increases as Ke decreases. Therefore, the rate

of radiative heat transferred to the fluid increases, and consequently the fluid temperature
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and heat transfer increases.

4.3 Conclusions

In this chapter, we have investigated the problem of steady, laminar natural convection

boundary layer flow over a semi-infinite inclined wavy plate embedded in a nanofluid sat-

urated non-Darcy porous medium in the presence of radiation effect with (a) uniform wall

temperature and nanoparticle volume fraction conditions and (b)uniform and constant heat

and nanoparticle mass flux conditions. From this analysis, the following conclusions are

drawn for both the cases (a) and (b).

An increase in the value of radiation parameter R increases the velocity, temperature,

heat and nanoparticle mass transfer rates but reduces the nanoparticle volume fraction of

the fluid. The influence of Grashof number Gr is to reduce the velocity, heat transfer rate

and nanoparticle mass transfer rate near the plate and to increase the temperature and

nanoparticle volume fraction of the fluid. An increase in the amplitude a of the wavy surface

enhances the velocity near the plate and reduces the temperature, nanoparticle volume

fraction, heat transfer, and nanoparticle mass transfer rates. The effect of angle of inclination

A of the wavy surface is to increase the velocity, heat transfer and nanoparticle mass transfer

and to reduce the temperature and nanoparticle volume fraction.
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Figure 4.7: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with wave
amplitude a and (c) heat, (d) nanoparticle mass transfer coefficients with angle of inclination
A.
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Figure 4.8: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with Brow-
nian motion parameter Nb and (c) heat, (d) nanoparticle mass transfer coefficients with
thermophoresis parameter Nt.
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Figure 4.9: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with Grashof
number Gr and (c) heat, (d) nanoparticle mass transfer coefficients with radiation parameter.
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Chapter 5

Mixed convection over an inclined

wavy surface in a nanofluid saturated

non-Darcy porous medium with

radiation effect 1

5.1 Introduction

In the previous chapter we have studied the natural convection flow of a nanofluid over

an inclined wavy surface in the presence of radiation effect. In this chapter we undertake

the analysis of mixed convection flow of nanofluid over an inclined wavy surface in the

presence of radiation effect. Considerable work has been reported in the literature focusing

on the problem of mixed convection of nanofluid along various geometries embedded in

porous medium. Radiation effect on mixed convection gained importance in the context of

many industrial applications involving high temperatures such as gas turbines, nuclear power

plant and various propulsion engines for aircraft, missiles, satellites, and space technology.

1Case(a):Published in “International Journal of Chemical Engineering, 2015 (2015) Article ID:
927508”,
Case(b) Communicated to “Propulsion and Power research.”
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Chamkha et al. [13] presented the non-similar solution of steady mixed convection of a

nanofluid in the presence of thermal radiation. Chamkha et al. [14] investigated the effect

of thermal radiation on mixed convection about a cone embedded in a porous medium filled

with a nanofluid. Yazdi et al. [118] considered the problem of two dimensional mixed

convection MHD boundary layer stagnation point flow over a stretching vertical plate in

porous medium filled with a nanofluid in the presence of thermal radiation.

The objective of the present chapter is to obtain the numerical solution for the problem

of mixed convection over an inclined wavy surface immersed in a porous medium filled with

nanofluid. A Rosseland approximation is considered to study the effect of radiation. The

influence of pertinent parameters on physical quantities are examined numerically and shown

through graphs.

5.2 Mathematical Formulation

A steady, laminar, incompressible, two-dimensional mixed convective flow of a nanofluid

with uniform velocity U∞, temperature T∞ and nanoparticle volume fraction φ∞ along a

semi infinite inclined wavy surface in a non-Darcy porous medium with radiation effect is

considered. The porous medium is considered to be homogeneous and isotropic and the

fluid has constant properties except the density in the buoyancy term of the balance of

momentum equation. The fluid is considered to be a gray, absorbing emitting radiation but

non-scattering medium.

The physical model and the coordinate system are shown in Fig. 2.1. By employing

laminar boundary layer flow assumptions, Boussinesq approximation and using the Darcy-

Forchheimer model, the governing equations for flow are given by
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∂u

∂x
+
∂v

∂y
= 0, (5.1)

(
1 +

K̃

ν

√
u2 + v2

)[
∂u

∂y
− ∂v

∂x

]
+

K̃

ν
√
u2 + v2

[
u2
∂u

∂y
+ uv

(
∂v

∂y
− ∂u

∂x

)
− v2 ∂v

∂x

]
=

(1− φ∞)ρf∞β K g

µ

(
∂T

∂y
sinA− ∂T

∂x
cosA

)
− (ρp − ρf∞)K g

µ

(
∂φ

∂y
sinA− ∂φ

∂x
cosA

)
,(5.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

+
16σ T 3

∞
3Ke

(
∂2T

∂x2
+
∂2T

∂y2

)
, (5.3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
, (5.4)

Here in this chapter also, we have considered two types (cases) of boundary conditions for

the temperature and nanoparticle volume fraction on the semi-infinite inclined wavy plate

as seen in previous chapters. In case(a), the plate is maintained at uniform wall temperature

and nanoparticle volume fraction. In case(b), the plate is subjected to a uniform and constant

heat and nanoparticle mass fluxes.

5.2.1 Case(a): Uniform Wall Temperature and Nanoparticle Vol-

ume Fraction

Assume that the wavy plate is subject to uniform wall temperature and nanoparticle volume

fraction Tw and φw respectively. These values are assumed to be greater than the ambient

temperature T∞ and nanoparticle volume fraction φ∞ at any arbitrary reference point in the

medium (inside the boundary layer). Hence, the boundary conditions are given by (3.5).
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Introducing stream function ψ in Eqns. (5.1) - (5.4) and then using the non-dimensional

variables given in (3.6), we get the following system of non-linear ordinary differential equa-

tions

f ′′ + 2Fc(1 + δ̇2)−1/2f ′f ′′ = ∆(sinA+ δ̇ cosA) (θ′ −Nrs
′) , (5.5)(

1 +
4R

3

)
θ′′ +

1

2
fθ′ +Nbs

′θ′ +Ntθ
′2 = 0, (5.6)

s′′ +
1

2
Lefs′ +

Nt

Nb

θ′′ = 0, (5.7)

where Fc =
K̃ U∞
ν

is the non-Darcy parameter and R =
4σ T∞

3

KKe

is the Radiation parameter.

The boundary conditions (3.5) in terms of f, θ and s are given by (3.10).

The non-dimensional heat and nanoparticle mass transfer rates are given by

Nux√
Pex

= −
(

1 +
4R

3

)√
1

1 + δ̇2

(
∂θ

∂η

)
η=0

, (5.8a)

NShx√
Pex

= −

√
1

1 + δ̇2

(
∂s

∂η

)
η=0

. (5.8b)

Method of Solution

Equations (5.5) - (5.7) with the boundary conditions (3.10) are solved numerically using

Successive Linearization Method along with Chebyshev spectral collocation method as de-

scribed in detail in previous chapters. Proceeding same as in previous chapters we obtain

the following matrix equation

Ai−1Xi = Ri−1, (5.9)

subject to the boundary conditions

fi(χN) = 0,
N∑
k=0

D0kfi(χk) = 0 (5.10)
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θi(χN) = θi(χ0) = si(χN) = si(χ0) = 0 (5.11)

In Eqn. (5.9), Ai−1 is a (3N + 3)×(3N + 3) square matrix and Xi and Ri−1 are (3N + 3)×1

column vectors defined by

Ai−1 =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xi =


Fi

Θi

Φi

 , Ri−1 =


r1,i−1

r2,i−1

r3,i−1

 (5.12)

where

Fi = [fi(χ0), fi(χ1), ......, fi(χN−1), fi(χN)]T ,

Θi = [θi(χ0), θi(χ1), ......, θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ......, si(χN−1), si(χN)]T ,

r1,i−1 = [r1,i−1(χ0), r1,i−1(χ1), ......, r1,i−1(χN−1), r1,i−1(χN)]T

r2,i−1 = [r2,i−1(χ0), r2,i−1(χ1), ......, r2,i−1(χN−1), r2,i−1(χN)]T

r3,i−1 = [r3,i−1(χ0), r3,i−1(χ1), ......, r3,i−1(χN−1), r3,i−1(χN)]T

A11 = a1,i−1D
2 + a2,i−1D, A12 = a3,i−1D, A13 = a4,i−1D

A21 = b4,i−1I, A22 = b1,i−1D
2 + b2,i−1D, A23 = b3,i−1D

A31 = c3,i−1I, A32 = c2,i−1D
2, A33 = D2 + c1,i−1D

Here ak,i−1, bl,i−1, cl,i−1 (k = 1, 2) and (l = 1, 2, 3) are diagonal matrices of size (N+1)×(N+1)

and I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system (5.9)

to incorporate boundary conditions (5.10) - (5.11), the solution is obtained as

Xi = A−1i−1Ri−1 (5.13)

Results and Discussion

In order to validate the numerical procedure generated, the results of the present problem

have been compared with work of Cheng [23] as a special case by taking A = π
2
, a = 0, ξ = 0,

Nr = 0, Nt = 0, Nb → 0, Le = 0, Fc = 0, R = 0 and found that they are in good agreement,
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Table 5.1: Comparison of values of −θ′(0) for aiding and opposing flows by the present
method and Cheng [23] for fixed values of A = π

2
, a = 0, ξ = 0, Nr = 0, Nt = 0, Nb → 0,

Le = 0, R = 0.

Aiding Flow Opposing Flow

∆ Cheng [23] Present ∆ Cheng [23] Present

0 0.5641 0.56415775 -0.2 0.5269 0.52691089
0.5 0.6473 0.64736510 -0.4 0.4865 0.48653284
1 0.7205 0.72055401 -0.6 0.442 0.44202064
3 0.9574 0.95744512 -0.8 0.3916 0.39166292
10 1.516 1.51623967 -1.0 0.332 0.33202116
20 2.066 2.066

as shown in Table. (5.1).

The effects of radiation R, non-Darcy parameter Fc, angle of inclination A, Brownian

motion parameter Nb, thermophoresis parameter Nt and amplitude a of the wavy surface

on the dimensionless velocity, temperature, nanoparticle volume fraction functions and heat

and nanoparticle mass transfer rates are presented graphically in Figs. 5.1 - 5.7.

Fig. 5.1 shows the effect of the amplitude of the wavy surface on velocity, temperature

and nanoparticle volume fraction distributions. It is observed that as a increases, velocity

increases near the plate and decreases away from the plate, whereas the temperature and

nanoparticle volume fraction decrease for aiding flow and the reverse trend is observed in

the case of opposing flow.

The effect of the angle of inclination of the wavy surface on velocity, temperature and

nanoparticle volume fraction is plotted in Fig. 5.2. Here again as observed in previous chap-

ters, we note that as A increases, the velocity increases near the plate and decreases away

from the plate for aiding flow whereas the velocity decreases near the plate and increases

away from the plate for opposing flow. But the temperature and nanoparticle volume fraction

decrease within the boundary layer region for the aiding flow and increase for the opposing

flow. When the surface is vertical, the smallest temperature and nanoparticle volume frac-

tion distributions are observed for aiding flow whereas largest temperature and nanoparticle

volume fraction distributions are observed for opposing flow. For the horizontal surface,
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largest temperature and nanoparticle volume fraction distributions are observed for aiding

flow. Smallest temperature and nanoparticle volume fraction distributions are observed for

opposing flow.

Fig. 5.3 displays the effect of non-Darcy parameter on the dimensionless velocity, tem-

perature and nanoparticle volume fraction. Fig. 5.3(a) shows that an increase in non-Darcy

parameter reduces velocity for aiding flow. Since Fc represents the inertial drag, an increase

in the non-Darcy parameter increases the resistance to the flow and so a decrease in the fluid

velocity is expected. Here Fc = 0 represents the case where the flow is Darcian. The velocity

is maximum in this case due to the total absence of inertial drag. In case of opposing flow

the velocity is increasing with the increase in the non-Darcy parameter. An increase in Fc,

increases temperature values for aiding flow, since as the fluid is decelerated, energy is dis-

sipated as heat and serves to increase temperatures. As such the temperature is minimised

for the lowest value of Fc and maximised for the highest value of Fc as shown in Fig. 5.3(b).

Further it is noticed that increase in Fc decreases the temperature for opposing flow. From

Fig. 5.3(c), it is observed that the nanoparticle volume fraction increases for aiding flow and

decreases in the case of opposing flow.

The variation of velocity, temperature and nanoparticle volume fraction on radiation

parameter R is shown in Fig. 5.4. Fig. 5.4(a) reveals that an increase in the radiation

parameter increases the velocity for aiding flow and reduces for the case of opposing flow.

Increase in radiation parameter enhances the temperature for both aiding and opposing

flows as shown in Fig. 5.4(b). We observe a negligible effect of radiation on nanoparticle

volume fraction as shown in Fig. 5.4(c). These results can be explained by the fact that an

increase in the radiation parameter (R = 4σ T∞3

KKe
) for a given K and T∞ means a decrease

in the Rosseland radiation absorptivity Ke. Hence, the divergence of radiative heat flux

qr increases as Ke decreases. Therefore, the rate of radiative heat transferred to the fluid

increases, and consequently the fluid temperature increases and simultaneously the velocity

of the fluid also increases.

Figure 5.5 shows the effect of amplitude and angle of inclination of the wavy surface

on the Nusselt and nanoparticle Sherwood number. It reveals that an increase in the wave
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amplitude reduces the local heat and nanoparticle mass transfer for both aiding and opposing

flows as shown in Figs. 5.5(a) and 5.5(b). In general, we conclude that increasing the wave

amplitude makes the surface more roughened. The variation of heat and nanoparticle mass

transfer rates for various values of the angle of inclination A is displayed in Figs. 5.5(c) and

5.5(d). It is seen that an increase in the angle of inclination increases the buoyancy force

and assists the flow, leading to an increase in the heat and nanoparticle mass transfer rates

for aiding flow whereas reverse trend is observed in the case of opposing flow. The minimum

values of the dimensionless heat and nanoparticle mass transfer rates are observed when the

surface is horizontal; in which case, the buoyancy force is at its maximum. Therefore, the

heat and nanoparticle mass transfer rates are at a lower level when this effect is considered.

The effect of Brownian motion parameter Nb on the heat and nanoparticle mass transfer

rates is presented in Figs. 5.6(a) and 5.6(b). Fig. 5.6(a) depicts that the dimensionless

heat transfer rate decreases with an increase in the Brownian motion parameter for both

aiding and opposing flows. An increase in the value of Brownian motion parameter enhances

the nanoparticle volume fraction transfer rate for both aiding and opposing flows, as shown

in Fig. 5.6(b). Figs. 5.6(c) and 5.6(d) depict the streamwise distribution of Nusselt and

nanoparticle Sherwood numbers for different values of thermophoresis parameter Nt. It is

revealed that the heat and nanoparticle mass transfer rate reduce with an increase in the

thermophoresis parameter for both aiding and opposing flows.

Figures 5.7(a) and 5.7(b) display the effect of non-Darcy parameter Fc on the Nusselt

and nanoparticle Sherwood number. It is observed that in the case of aiding flow, the heat

and nanoparticle mass transfer reduces with increase in the value of non-Darcy parameter

and a reverse trend is observed in the case of opposing flow. The effect of radiation R on the

heat and nanoparticle mass transfer is illustrated in Figs. 5.7(c) and 5.7(d). It is noticed

from Fig. 5.7(c) that increase in the radiation parameter increases the heat transfer rate for

both aiding and opposing flows. And a negligible effect of radiation on nanoparticle mass

transfer is seen through Fig. 5.7(d).
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Figure 5.1: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of wave amplitude a.
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Figure 5.2: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of angle of inclination A.
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Figure 5.3: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of non-Darcy parameter Fc.
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Figure 5.4: (a) Velocity, (b) temperature and (c) nanoparticle volume fraction profiles for
various values of radiation parameter R.
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Figure 5.5: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with wave
amplitude and (c) heat, (d) nanoparticle mass transfer coefficients with angle of inclination.
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Figure 5.6: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with Brownian
motion parameter and (c) heat, (d) nanoparticle mass transfer coefficients with thermophore-
sis parameter.
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Figure 5.7: Variation of (a) heat, (b) nanoparticle mass transfer coefficients with non-Darcy
parameter and (c) heat, (d) nanoparticle mass transfer coefficients with radiation parameter.
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5.2.2 Case(b): Uniform Wall Heat and Nanoparticle Mass Flux

Assume that the wavy plate is maintained at uniform and constant heat and nanoparticle

mass fluxes qw and qnp respectively. The steady mixed convection boundary layer flow is

governed by Eqns. (5.1) to (5.4) and the present boundary conditions are given by

v = 0, qw = −k(n.∇T ) + n.qr, qnp = DB(n.∇φ) at y = 0, (5.14a)

u = U∞, T → T∞, φ→ φ∞ as y →∞. (5.14b)

Substituting the stream function ψ in Eqns. (5.1) - (5.4), and introducing the non-dimensional

variables given in (3.18) including Fc
∗ = Fc Pe

−1/3, we get the following system of non-linear

partial differential equations

f ′′ + 2Fc
∗ξ1/3(1 + δ̇2)−1/2f ′f ′′ = ∆(sinA+ δ̇ cosA) (θ′ −Nrs

′) , (5.15)(
1 +

4R

3

)
θ′′ +

2

3
fθ′ − 1

3
f ′θ + ξ1/3Nbs

′θ′ + ξ1/3Ntθ
′2 = ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (5.16)

s′′ +
2

3
Le f s′ − 1

3
Le f ′ s+

Nt

Nb

θ′′ = Leξ

(
f ′
∂s

∂ξ
− s′∂f

∂ξ

)
, (5.17)

where Fc =
K̃ U∞
ν

is the non-Darcy parameter and R =
4σ T∞

3

KKe

is the Radiation parameter.

The boundary conditions (5.14) in terms of f, θ and s are given by

2f + 3ξ

(
∂f

∂ξ

)
η=0

= 0, θ′ = − 3

3 + 4R

√
1 + δ̇2, s′ = −

√
1 + δ̇2, (5.18a)

f ′ → 1, θ → 0, s→ 0. (5.18b)

The non-dimensional heat and nanoparticle mass transfer rates are respectively given by

Nuξ

Peξ
1/3

=
ξ1/3

θ(ξ, 0)
, (5.19a)

NShξ

Peξ
1/3

=
ξ1/3

s(ξ, 0)
. (5.19b)
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Method of Solution

A local similarity and non-similarity method has been applied to solve the system of Eqns.

(5.15) - (5.17) along with the boundary conditions (5.18). The boundary value problems

obtained from this method are linearized by the Successive Linearisation Method and then

solved using Chebyshev spectral collocation method as explained in detail in previous chap-

ters. Proceeding same as in previous chapters, we obtain the following matrix equation

Ai−1Xi = Ri−1, (5.20)

In Eqn. (5.20), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N +

6)×1 column vectors defined by

Ai−1 =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1


(5.21)
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where

Fi = [fi(χ0), fi(χ1), ...., fi(χN−1), fi(χN)]T , Θi = [θi(χ0), θi(χ1), ...., θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ...., si(χN−1), si(χN)]T , Gi = [gi(χ0), gi(χ1), ...., gi(χN−1), gi(χN)]T ,

Hi = [hi(χ0), hi(χ1), ...., hi(χN−1), hi(χN)]T , Ki = [ki(χ0), ki(χ1), ...., ki(χN−1), ki(χN)]T ,

rj,i−1 = [rj,i−1(χ0), rj,i−1(χ1), · · · , rj,i−1(χN−1), rj,i−1(χN)]T , j = 1, 2, 3, 4, 5, 6

A11 = a1,i−1D
2 + a2,i−1D, A12 = a3,i−1D, A13 = a4,i−1D, A14 = 0, A15 = 0, A16 = 0

A21 = b4,i−1D + b5,i−1I, A22 = b1,i−1D
2 + b2,i−1D + b3,i−1I, A23 = b6,i−1D,

A24 = b7,i−1I, A25 = b8,i−1I, A26 = 0, A31 = c3,i−1D + c4,i−1I, A32 = c5,i−1D
2,

A33 = D2 + c1,i−1D + c2,i−1I, A34 = c6,i−1I, A35 = 0, A36 = c7,i−1I,

A41 = d3,i−1D
2 + d4,i−1D, A42 = d5,i−1D, A43 = d6,i−1D, A44 = d1,i−1D

2 + d2,i−1D,

A45 = d7,i−1D, A46 = d8,i−1D, A51 = l4,i−1D + l5,i−1I, A52 = l6,i−1D + l7,i−1I,

A53 = l8,i−1D, A54 = l9,i−1D + l10,i−1I, A55 = l1,i−1D
2 + l2,i−1D + l3,i−1I,

A56 = l11,i−1D, A61 = m3,i−1D +m4,i−1I, A62 = 0, A63 = m5,i−1D +m6,i−1I

A64 = m7,i−1D +m8,i−1I, A65 = m9,i−1D
2, A66 = D2 +m1,i−1D +m2,i−1I

Here ak,i−1, bk,i−1, ck,i−1,dk,i−1, lk,i−1, mk,i−1 are diagonal matrices of size (N+1)×(N+1) and

I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system (5.20) to

incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (5.22)

Results and Discussion

The effects of non-Darcy parameter Fc, radiation parameter R, amplitude a of the wavy sur-

face, angle of inclination A, Brownian motion parameter Nb and thermophoresis parameter

Nt on the heat and nanopareticle mass transfer rates have been displayed in Figs. 5.8 - 5.19.

The effect of wave amplitude on the heat and nanoparticle mass transfer rates is shown

in Figs. 5.8 and 5.9. It is observed that an increase in the wave amplitude increases the

local heat and nanoparticle mass transfer for both aiding and opposing flows. In general, we
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conclude that increasing the wave amplitude makes the surface more roughened.

The variation of heat and nanoparticle mass transfer rates for various values of the angle

of inclination A is displayed in Figs. 5.10 and 5.11. It is shown that an increase in the angle

of inclination increases the buoyancy force and assists the flow, leading to an increase in the

heat and nanoparticle mass transfer rates for aiding flow while reverse trend is observed in

the case of opposing flow. The minimum values of the dimensionless heat and nanoparticle

mass transfer rates are observed when the surface is horizontal; in which case, the buoyancy

force is at its maximum. Therefore, the heat and nanoparticle mass transfer rates are at a

lower level when this effect is considered (A 6= 0).

Figs. 5.12 and 5.13 present the effect of Brownian motion parameter Nb on the heat and

nanoparticle mass transfer rates. Fig. 5.12 depicts that the dimensionless heat transfer rate

decreases with increase in the Brownian motion parameter for both aiding and opposing

flows. An increase in the value of Brownian motion parameter enhances the nanoparti-

cle mass transfer rate for both aiding and opposing flows, as shown in Fig. 5.13. The

streamwise distribution of Nusselt and nanoparticle Sherwood numbers for different values

of thermophoresis parameter Nt is plotted in Figs. 5.14 and 5.15. It is depicted that the

heat and nanoparticle mass transfer rates reduce with an increase in the thermophoresis

parameter for both the cases of aiding and opposing flows.

Figs. 5.16 and 5.17 display the effect of non-Darcy parameter Fc on the Nusselt and

nanoparticle Sherwood number. It is revealed that the heat and nanoparticle mass transfer

reduces with increase in the value of non-Darcy parameter in both the cases of aiding and

opposing flows. The effect of radiation R on the heat and nanoparticle mass transfer is

illustrated in Figs. 5.18 and 5.19. It is noticed that increase in the radiation parameter

increases the heat and nanoparticle mass transfer rates for both aiding and opposing flows.

123



5.3 Conclusions

In this Chapter, the problem of mixed convection in a nanofluid along an inclined wavy

surface embedded in a non-Darcy porous medium with radiation effect with (a) uniform wall

temperature and nanoparticle concentration conditions and (b)uniform and constant heat

and nanoparticle mass flux conditions has been investigated. From this investigation, the

following conclusions are drawn for cases (a) and (b).

The effect of non-Darcy parameter is to reduce the velocity, local heat and nanoparticle

mass transfer for aiding flow and to increase in the case of opposing flow while the tempera-

ture and nanoparticle volume fraction increases for aiding flow and reduces for opposing flow.

The influence of radiation is to enhance the velocity and temperature for aiding flow and to

reduce these in the case of opposing flow. For both aiding and opposing flows, the local heat

transfer enhances and a negligible effect on nanoparticle volume fraction and nanoparticle

mass transfer rates is observed. An increase in the wave amplitude enhances the velocity

for aiding flow but reduces for opposing flow whereas the temperature, nanoparticle volume

fraction reduces for aiding flow and increases for opposing flow. The local heat and nanopar-

ticle mass transfer rates are increased for both aiding and opposing flows. The effect of angle

of inclination is to increase the velocity, local heat and nanoparticle mass transfer for aiding

flow and a reverse trend is observed in the case of opposing flow. Moreover, the temperature

and nanoparticle volume fraction reduce for aiding flow and increase these for opposing flow.
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Figure 5.8: Variation of heat transfer coefficient with wave amplitude a for both (a) Aiding
and (b) Opposing flows.
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Figure 5.9: Variation of nanoparticle mass transfer coefficient with wave amplitude a for
both (a) Aiding and (b) Opposing flows.
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Figure 5.10: Variation of heat transfer coefficient with angle of inclination A for both (a)
Aiding and (b) Opposing flows.
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Figure 5.11: Variation of nanoparticle mass transfer coefficient with angle of inclination A
for both (a) Aiding and (b) Opposing flows.
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Figure 5.12: Variation of heat transfer coefficient with Brownian motion parameter Nb for
both (a) Aiding and (b) Opposing flows.
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Figure 5.13: Variation of nanoparticle mass transfer coefficient with Brownian motion pa-
rameter Nb for both (a) Aiding and (b) Opposing flows.
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Figure 5.14: Variation of heat transfer coefficient with thermophoresis parameter Nt for both
(a) Aiding and (b) Opposing flows.
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Figure 5.15: Variation of nanoparticle mass transfer coefficient with thermophoresis param-
eter Nt for both (a) Aiding and (b) Opposing flows.
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Figure 5.16: Variation of heat transfer coefficient with non-Darcy parameter Fc for both (a)
Aiding and (b) Opposing flows.
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Figure 5.17: Variation of nanoparticle mass transfer coefficient with non-Darcy parameter
Fc for both (a) Aiding and (b) Opposing flows.
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Figure 5.18: Variation of heat transfer coefficient with radiation parameter R for both (a)
Aiding and (b) Opposing flows.
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Figure 5.19: Variation of nanoparticle mass transfer coefficient with radiation parameter R
for both (a) Aiding and (b) Opposing flows.
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Chapter 6

Effect of thermal stratification on

natural convection over an inclined

wavy surface embedded in a porous

medium saturated with a nanofluid 1

6.1 Introduction

In practical situations, where heat and mass transfer mechanism run in parallel, particularly

in porous media applications, it is worth analyzing the effect of thermal stratification on

natural convective heat and mass transfer in porous medium. For example, the temperature

stratification and concentration differences of hydrogen and oxygen in lakes and ponds is one

instance that needs examination, as this may directly affect the growth rate of all cultured

species. Also, the analysis of thermal stratification is important for solar engineering because

higher energy efficiency can be achieved with better stratification. Some of the authors

have explored the importance of convective transport in doubly stratified porous media due

to its application in various fields. Based on their results, the scientists have shown that

1Accepted for publication in “Computational thermal Sciences: An International Journal”
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thermal stratification in energy storage may considerably increase system performance. An

exhaustive discussion of the natural convection in a thermallly stratified porous medium can

be found in the literature.

The study of heat and mass transfer from the irregular wavy surfaces is of fundamental

importance because of its enhancing heat transfer characteristics. Rathish kumar and Shalini

[52] investigated the effect of thermal stratification on free convection along a vertical wavy

surface and showed that thermal stratification decreases the local Nusselt number along the

wavy wall as one moves away from the leading edge. Cheng [19] analyzed the effect of

thermal and mass stratification on double diffusion from a vertical frustum of a wavy cone

in porous media saturated with power law fluid. Cheng [20] studied the coupled heat and

mass transfer by natural convection near a vertical wavy surface in a non-Newtonian fluid

saturated porous medium with thermal and mass stratification.

A Survey of earlier studies on convective transport in porous media reveals that the

problem of free convection of nanofluid over an inclined wavy surface in a thermally stratified

porous medium is not considered so far. The aim of the present chapter is to consider the

influence of thermal stratification on natural convection over an inclined wavy surface in a

porous medium saturated with a nanofluid. The effects of pertinent parameters on physical

quantities are studied and the results are displayed graphically.

6.2 Mathematical Formulation

Consider the steady natural convection boundary layer flow over an inclined wavy surface

embedded in a porous medium saturated with a nanofluid. The x coordinate is taken along

the wavy plate and the y coordinate is measured normal to the plate, while the origin of the

reference system is considered at the leading edge of the wavy plate. The ambient medium is

assumed to be linearly stratified with respect to temperature in the form T∞(x) = T∞,0+Bx,

where B is a constant which is varied to alter the intensity of stratification in the medium.

The values of Tw and φw are assumed to be greater than the ambient temperature T∞,0 and

132



nanoparticle concentration φ∞ at any arbitrary reference point in the medium (inside the

boundary layer). The porous medium is assumed to be uniform and isotropic and is in local

thermal equilibrium with the fluid. The fluid properties are assumed to be constant except

for density variations in the buoyancy force term.

Making use of the Boussinesq and standard boundary layer approximations, the governing

equations for the conservation of mass, momentum, energy and nanoparticle volume fraction

within the boundary layer near the wavy plate are

∂u

∂x
+
∂v

∂y
= 0, (6.1)

∂u

∂y
− ∂v

∂x
=

(1− φ∞)ρf∞β K g

µ

(
∂T

∂y
sinA− ∂T

∂x
cosA

)
−(ρp − ρf∞)K g

µ

(
∂φ

∂y
sinA− ∂φ

∂x
cosA

)
, (6.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

, (6.3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
, (6.4)

We study the problem with the condition that the plate is maintained at uniform wall

temperature and nanoparticle volume fraction. Here we do not consider the other case (i,e.

imposition of uniform and constant heat and nanoparticle mass flux on the wavy surface) as

the results are analogous to the previous chapters.
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Boundary Conditions

Assume that the semi-infinite inclined wavy plate is subject to uniform wall temperature

and nanoparticle volume fraction Tw and φw, respectively. Hence, the boundary conditions

are

v = 0, T = Tw, φ = φw at y = 0 (6.5a)

u→ 0, T → T∞(x), φ→ φ∞ as y →∞, (6.5b)

Introducing the stream function ψ in Eqns. (6.1) - (6.4) and then using the following

non-dimensional variables

ξ =
x

l
, η =

(y/l − δ)Ra1/2

ξ1/2 (1 + δ̇2)
, ψ = αRa1/2ξ1/2f(ξ, η),

T − T∞(x) = (Tw − T∞,0)θ(ξ, η)

φ− φ∞ = (φw − φ∞) s(ξ, η),


(6.6)

we get the following system of non-linear partial differential equations

f ′′ = (sinA+ δ̇ cosA) (θ′ −Nrs
′) , (6.7)

θ′′ +
1

2
fθ′ +Nbs

′θ′ +Ntθ
′2 = ξ

(
STf

′ + f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (6.8)

s′′ +
1

2
Lefs′ +

Nt

Nb

θ′′ = Leξ

(
f ′
∂s

∂ξ
− s′∂f

∂ξ

)
, (6.9)

where ST =
Bl

Tw − T∞,0
is the thermal stratification parameter.
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The boundary conditions (6.5) in terms of f, θ and s becomes

f + 2ξ

(
∂f

∂ξ

)
η=0

= 0, θ = 1− ST ξ, s = 1, at η = 0 (6.10a)

f ′ = 0, θ → 0, s→ 0 as η →∞ (6.10b)

The heat and nanoparticle fluxes from the wavy plate are given by

qw = −kn.∇T , (6.11a)

qnp = −DB n.∇φ. (6.11b)

The non dimensional rate of heat transfer, called the Nusselt number Nuξ =
qw x

k (Tw − T∞,0)

and the rate of nanoparticle transfer, called nanoparticle Sherwood numberNShξ =
qnp x

DB (φw − φ∞)
are given by

Nuξ√
Raξ

= − θ′(ξ, 0)

(1− ST ξ)(1 + δ̇2)1/2
, (6.12a)

NShξ√
Raξ

= − s′(ξ, 0)

(1 + δ̇2)1/2
. (6.12b)

Method of Solution

A local Similarity and non-Similarity method is used to solve the non-linear boundary value

problems (6.7) - (6.9) subject to the boundary conditions (6.10) to convert them to a sequence

of ordinary differential equations and then the Successive Linearization Method along with

Chebyshev spetral collocation method is used to solve the resulting system of equations.

Proceeding same as in previous chapters we obtain the following matrix equation

Ai−1Xi = Ri−1, (6.13)
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In Eqn. (6.13), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N +

6)×1 column vectors defined by

Ai−1 =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1


(6.14)

where

Fi = [fi(χ0), fi(χ1), ...., fi(χN−1), fi(χN)]T , Θi = [θi(χ0), θi(χ1), ...., θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ...., si(χN−1), si(χN)]T , Gi = [gi(χ0), gi(χ1), ...., gi(χN−1), gi(χN)]T ,

Hi = [hi(χ0), hi(χ1), ...., hi(χN−1), hi(χN)]T , Ki = [ki(χ0), ki(χ1), ...., ki(χN−1), ki(χN)]T ,

rj,i−1 = [rj,i−1(χ0), rj,i−1(χ1), · · · , rj,i−1(χN−1), rj,i−1(χN)]T , j = 1, 2, 3, 4, 5, 6

A11 = D2, A12 = a1,i−1D, A13 = a2,i−1D A14 = 0, A15 = 0, A16 = 0

A21 = b2,i−1D + b3,i−1I, A22 = D2 + b1,i−1D, A23 = b4,i−1D, A24 = b5,i−1I,

A25 = b6,i−1I, A26 = 0, A31 = c2,i−1D + c3,i−1I, A32 = c4,i−1D
2, A33 = D2 + c1,i−1D,

A34 = c5,i−1I, A35 = 0, A36 = c6,i−1I, A41 = 0, A42 = d1,i−1D, A43 = d2,i−1D,

A44 = D2, A45 = d3,i−1D, A46 = d4,i−1D, A51 = l3,i−1D + l4,i−1I, A52 = l5,i−1D,

A53 = l6,i−1D, A54 = l7,i−1D + l8,i−1I, A55 = D2 + l1,i−1D + l2,i−1I, A56 = l9,i−1D

A61 = m3,i−1D +m4,i−1I, A62 = 0, A63 = m5,i−1D, A64 = m6,i−1D +m7,i−1I,

A65 = m8,i−1D
2, A66 = D2 +m1,i−1D +m2,i−1I

Here ak,i−1, bk,i−1, ck,i−1,dk,i−1, lk,i−1, mk,i−1 are diagonal matrices of size (N+1)×(N+1) and

I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system (6.13) to

incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (6.15)
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Results and Discussion

Figures 6.1 - 6.5 display the effects of thermal stratification, angle of inclination, Brownian

motion parameter, thermophoresis parameter and amplitude of the wavy surface on the flow,

heat and nanoparticle mass transfer of the fluid.

The effect of amplitude and the angle of inclination of the wavy surface on velocity, tem-

perature and nanoparticle volume fraction is plotted in Figs. 6.1 and 6.2. It is observed from

Fig. 6.1 that as a increases, velocity increases near the plate and decreases away from the

plate, whereas the temperature and nanoparticle volume fraction decreases with increasing

values of amplitude. It is noted from Fig. 6.2 that as A increases, the velocity increases near

the plate and decreases away from the plate but the temperature and nanoparticle volume

fraction decrease within the boundary layer region. When the surface is vertical, the smallest

temperature and nanoparticle volume fraction distributions are observed, whereas they are

largest for the horizontal surface.

Fig. 6.3 shows the effect of thermal stratification on velocity, temperature and nanoparti-

cle volume fraction distributions. It is noticed that increase in thermal stratification param-

eter diminishes the effective convective potential between the heated plate and the ambient

fluid in the medium. This factor causes a decrease in the buoyancy force, which decelerates

the velocity of the flow. Also it is observed that increase in the thermal stratification param-

eter ST reduces the temperature of the fluid but increases the nanoparticle volume fraction

of the fluid flow.

The effect of the wave amplitude on the local Nusselt and nanoparticle Sherwood number

is plotted in Figs. 6.4(a) and 6.4(b). It is seen that an enhancement in wavy amplitude

decreases the local heat and nanoparticle mass transfer rates. In general, we conclude that

the surface becomes more roughened for increasing values of amplitude of the wavy surface.

The variation of heat and nanoparticle mass transfer rates for various values of the

angle of inclination A and thermal stratification parameter ST is displayed in Figs. 6.4(c)

and 6.4(d). It is observed that increasing the angle of inclination increases the buoyancy
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force and assists the flow, leading to an increase in the heat and nanoparticle mass transfer

rates. But, increasing the thermal stratification parameter ST decreases both the heat and

nanoparticle mass transfer rates.

In Fig. 6.5, the effect of Brownian motion parameter Nb and thermophoresis parame-

ter Nt on the heat and nanoparticle mass transfer rates is presented. The dimensionless

heat transfer rate decreases with increasing values of Brownian motion and thermophoresis

parameter whereas the nanoparticle mass transfer rate increases with increasing values of

Brownian motion parameter and decreases with increasing values of thermophoresis param-

eter as observed in the earlier chapters.
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Figure 6.1: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with wave amplitude a.

139



0 2 4 6 8 1 0 1 2
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

f’

η

 A = 0
 A = π/ 6
 A = π/ 4
 A = π/ 3
 A = π/ 2

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  a = 0 . 1  
L e = 5 . 0 ,  ξ= 0 . 1 ,  S T = 0 . 1

(a)

0 2 4 6 8 1 0 1 2 1 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

θ

η

 A = 0
 A = π/ 6
 A = π/ 4
 A = π/ 3
 A = π/ 2

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  a = 0 . 1  
L e = 5 . 0 ,  ξ= 0 . 1 ,  S T = 0 . 1

(b)

0 1 2 3 4 5 6 7
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

s

η

 A = 0
 A = π/ 6
 A = π/ 4
 A = π/ 3
 A = π/ 2

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  a = 0 . 1  
L e = 5 . 0 ,  ξ= 0 . 1 ,  S T = 0 . 1

(c)

Figure 6.2: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with angle of inclination A.
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Figure 6.3: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with thermal stratification parameter ST .
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Figure 6.4: Variation of (a) heat and (b) nanoparticle mass transfer rates with wave ampli-
tude a and (c) heat and (d) nanoparticle mass transfer rates with angle of inclination A and
thermal stratification parameter ST .
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Figure 6.5: Variation of (a) heat and (b) nanoparticle mass transfer rates with Brownian
motion parameter Nb and thermophoresis parameter Nt.

6.3 Conclusions

In this chapter, we analyzed the problem of natural convection heat and nanoparticle mass

transfer over an inclined wavy surface embedded in a thermally stratified porous medium sat-

urated with nanofluid subject to uniform wall temperature and nanoparticle volume fraction

conditions. From this analysis, the following conclusions are drawn.

Increase in the value of thermal stratification parameter reduces the velocity, tempera-

ture, local heat and nanoparticle mass transfer rates but enhances the nanoparticle volume

fraction of the fluid. The effect of amplitude a of the wavy surface was found to enhance

the velocity near the plate and to reduce the temperature, nanoparticle volume fraction, and

local heat transfer and nanoparticle mass transfer coefficients. The influence of the angle of

inclination A of the wavy surface to the horizontal is to enhance the velocity, local heat trans-

fer and nanoparticle mass transfer rates, but to reduce the temperature and nanoparticle

volume fraction of the fluid flow.
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Chapter 7

Effect of thermal stratification on

mixed convection over an inclined

wavy surface embedded in a porous

medium saturated with a nanofluid 1

7.1 Introduction

In Chapter-6, we studied the influence of thermal stratification on natural convection flow

of a nanofluid past an inclined wavy surface embedded in a porous medium. In this chapter

we propose to study the mixed convection flow of a nanofluid past an inclined wavy surface

embedded in a porous medium under the influence of thermal stratification. A few studies

on mixed convection in a thermally stratified fluid saturated porous medium is reported in

the literature. Ishak et al. [45] theoretically studied the similarity solutions of the mixed

convection boundary layer flow over a vertical surface embedded in a thermally stratified

porous medium. They have reported that the thermal stratification significantly affects the

surface heat transfer as well as surface shear stress. Bansod and Jadhav [7] studied the effect

1Communicated to “International Journal of Non-linear Sciences”
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of double stratification on mixed convection heat and mass transfer from a vertical surface

in a fluid saturated porous medium. Ibrahim and Makinde [42] presented a boundary layer

analysis for free convection flow in a doubly stratified nanofluid over a vertical plate with

uniform surface heat and mass flux conditions. Mahmoud and Waheed [59] investigated

the problem of steady two dimensional mixed convection flow of a micropolar fluid over

stretching permeable vertical surface with radiation and thermal stratification effects. They

have shown that the local Nusselt number and wall couple stress decreases with increasing

thermal stratification parmeter. Srinivasacharya and Surender [102] investigated the effect

of thermal and mass stratification on mixed convection boundary layer flow of a nanofluid

saturated porous medium.

In this chapter we study the effect of thermal stratification on mixed convection in a

nanofluid along an inclined wavy surface embedded in a porous medium. A coordinate

transformation is employed to transform the complex wavy surface to a smooth surface. The

governing equations are transformed into a set of partial differential equations using the non-

similarity transformation and then applied the local similarity and non-similarity method

to obtain coupled ordinary differential equations. Now, these equations are linearized using

the Successive Linearization Method and then solved using Chebyshev spectral collocation

method. The effects of pertinent parameters on physical quantities for both aiding and

opposing flows are studied and displayed graphically.

7.2 Mathematical Formulation

Consider the steady mixed convection boundary layer flow over an inclined wavy surface

embedded in a porous medium saturated with a nanofluid. The x coordinate is taken along

the wavy plate and the y coordinate is measured normal to the plate, while the origin of the

reference system is considered at the leading edge of the wavy plate. The ambient medium is

assumed to be linearly stratified with respect to temperature in the form T∞(x) = T∞,0+Bx,

where B is a constant which is varied to alter the intensity of stratification in the medium.

The values of Tw and φw are assumed to be greater than the ambient temperature T∞,0 and
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nanoparticle volume fraction φ∞ at any arbitrary reference point in the medium (inside the

boundary layer). The porous medium is assumed to be uniform and isotropic and is in local

thermal equilibrium with the fluid. The fluid properties are assumed to be constant except

for density variations in the buoyancy force term.

Making use of the Boussinesq and boundary layer approximations, the governing equa-

tions for the conservation of total mass, momentum, energy and nanoparticle volume fraction

within the boundary layer near the wavy plate can be written as:

∂u

∂x
+
∂v

∂y
= 0, (7.1)

∂u

∂y
− ∂v

∂x
=

(1− φ∞)ρf∞β K g

µ

(
∂T

∂y
sinA− ∂T

∂x
cosA

)
−(ρp − ρf∞)K g

µ

(
∂φ

∂y
sinA− ∂φ

∂x
cosA

)
, (7.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

, (7.3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
, (7.4)

Boundary Conditions

Assume that the semi-infinite inclined wavy plate is subject to uniform wall temperature

and nanoparticle volume fraction Tw and φw, respectively. Hence, the boundary conditions
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are

v = 0, T = Tw, φ = φw at y = 0 (7.5a)

u→ U∞, T → T∞(x), φ→ φ∞ as y →∞, (7.5b)

Introducing the stream function ψ in Eqns. (7.1) - (7.4) and then using the following

non-dimensional variables

ξ =
x

l
, η =

(y/l − δ)Pe1/2

ξ1/2 (1 + δ̇2)
, ψ = αPe1/2ξ1/2f(ξ, η),

T − T∞(x) = (Tw − T∞,0)θ(ξ, η)

φ− φ∞ = (φw − φ∞) s(ξ, η),


(7.6)

we get the following system of nonlinear partial differential equations

f ′′ = ∆(sinA+ δ̇ cosA) (θ′ −Nrs
′) , (7.7)

θ′′ +
1

2
fθ′ +Nbs

′θ′ +Ntθ
′2 = ξ

(
STf

′ + f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (7.8)

s′′ +
1

2
Lefs′ +

Nt

Nb

θ′′ = Leξ

(
f ′
∂s

∂ξ
− s′∂f

∂ξ

)
, (7.9)

The boundary conditions (7.5) in terms of f, θ and s becomes

f + 2ξ

(
∂f

∂ξ

)
η=0

= 0, θ = 1− ST ξ, s = 1, at η = 0 (7.10a)

f ′ → 1, θ → 0, s→ 0 as η →∞ (7.10b)
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The heat and nanoparticle fluxes from the wavy plate are given by

qw = −kn.∇T , (7.11a)

qnp = −DB n.∇φ. (7.11b)

The non dimensional rate of heat transfer, called the Nusselt number Nuξ =
qw x

k (Tw − T∞,0)

and the rate of nanoparticle transfer, called nanoparticle Sherwood numberNShξ =
qnp x

DB (φw − φ∞)
are given by

Nuξ√
Peξ

= − θ′(ξ, 0)

(1− ST ξ)(1 + δ̇2)1/2
, (7.12a)

NShξ√
Peξ

= − s′(ξ, 0)

(1 + δ̇2)1/2
. (7.12b)

Method of Solution

A local Similarity and non-Similarity method is used to convert the non-linear boundary

value problems (7.7) - (7.9) subject to the boundary conditions (7.10) to a sequence of

ordinary differential equations and then the Successive Linearization Method along with

Chebyshev spectral collocation method is used to solve the resulting system of equations.

Ai−1Xi = Ri−1, (7.13)
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In Eqn. (7.13), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N +

6)×1 column vectors defined by

Ai−1 =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1


(7.14)

where

Fi = [fi(χ0), fi(χ1), ...., fi(χN−1), fi(χN)]T , Θi = [θi(χ0), θi(χ1), ...., θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ...., si(χN−1), si(χN)]T , Gi = [gi(χ0), gi(χ1), ...., gi(χN−1), gi(χN)]T ,

Hi = [hi(χ0), hi(χ1), ...., hi(χN−1), hi(χN)]T , Ki = [ki(χ0), ki(χ1), ...., ki(χN−1), ki(χN)]T ,

rj,i−1 = [rj,i−1(χ0), rj,i−1(χ1), · · · , rj,i−1(χN−1), rj,i−1(χN)]T , j = 1, 2, 3, 4, 5, 6

A11 = D2, A12 = a1,i−1D, A13 = a2,i−1D, A14 = 0, A15 = 0, A16 = 0

A21 = b2,i−1D + b3,i−1I, A22 = D2 + b1,i−1D, A23 = b4,i−1D, A24 = b5,i−1I,

A25 = b6,i−1I, A26 = 0, A31 = c2,i−1D + c3,i−1I, A32 = c4,i−1D
2, A33 = D2 + c1,i−1D,

A34 = c5,i−1I, A35 = 0, A36 = c6,i−1I, A41 = 0, A42 = d1,i−1D, A43 = d2,i−1D,

A44 = D2, A45 = d3,i−1D, A46 = d4,i−1D, A51 = l3,i−1D + l4,i−1I, A52 = l5,i−1D,

A53 = l6,i−1D, A54 = l7,i−1D + l8,i−1I, A55 = D2 + l1,i−1D + l2,i−1I, A56 = l9,i−1D,

A61 = m3,i−1D +m4,i−1I, A62 = 0, A63 = m5,i−1D, A64 = m6,i−1D +m7,i−1I,

A65 = m8,i−1D
2, A66 = D2 +m1,i−1D +m2,i−1I

Here ak,i−1, bk,i−1, ck,i−1,dk,i−1, lk,i−1, mk,i−1 are diagonal matrices of size (N+1)×(N+1) and

I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system (7.13) to

incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (7.15)
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Table 7.1: Comparison of values of −θ′(0) for Aiding and Opposing flow by the present
method and Cheng [23] for fixed values of for A = π

2
, a = 0, ξ = 0, Nr = 0, Nt = 0, Nb = 0,

Le = 0.

Aiding Flow Opposing Flow

∆ Cheng [23] Present ∆ Cheng [23] Present
0 0.5641 0.56415775 -0.2 0.5269 0.52691089
0.5 0.6473 0.64736510 -0.4 0.4865 0.48653284
1 0.7205 0.72055401 -0.6 0.442 0.44202064
3 0.9574 0.95744512 -0.8 0.3916 0.39166292
10 1.516 1.51623967 -1.0 0.332 0.33202116
20 2.066 2.066

Results and Discussion

Numerical solutions for the dimensionless velocity, temperature and nanoparticle volume

fraction functions and heat and nanoparticle mass transfer rates for aiding and opposing

flows have been computed and displayed graphically in Figs. 7.1 - 7.7. The effects of thermal

stratification ST , angle of inclination A, Brownian motion parameter Nb, thermoporesis

parameter Nt and amplitude a of the wavy surface have been discussed.

Table. 7.1 shows the comparison of the results of −θ′(0) for fixed values of A = π
2
, a = 0,

ξ = 0, Nr = 0, Nt = 0, Nb = 0, Le = 0, Fc = 0, R = 0 for both aiding and opposing flows

with the results obtained by Cheng [23]. It is observed that these two results are in good

agreement.

Figures 7.1 and 7.2 illustrate the effect of thermal stratification on velocity, temperature

and nanoparticle volume fraction distributions for both aiding and opposing flows respec-

tively. It is noticed from Fig. 7.1 that increasing the thermal stratification parameter ST

reduces the velocity for aiding flow. This is because thermal stratification reduces the effec-

tive convective potential between the heated plate and ambient fluid in the medium. Hence,

the thermal stratification effect reduces velocity in the boundary layer. The temperature of

the fluid decreases with an increase in the value of thermal stratification parameter. When

thermal stratification is taken into consideration, the effective temperature difference be-
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tween the plate and the ambient fluid will decrease; therefore, the thermal boundary layer

is thickened and the temperature is reduced. The nanoparticle volume fraction of the fluid

flow increases with increase in the value of thermal stratification parameter for aiding flow.

In the case of opposing flow, the velocity increases but the temperature and nanoparticle

volume fraction decreases with increase in the value of thermal stratification parameter as

seen from Fig. 7.2.

The effect of amplitude a of the wavy surface on the velocity, temperature and nanopar-

ticle volume fraction for both aiding and opposing flows respectively is plotted in Fig. 7.3.

As a increases, velocity increases but the temperature and nanoparticle volume fraction de-

crease for aiding flow whereas the velocity decreases and the temperature and nanoparticle

volume fraction of the fluid flow increase in the case of opposing flow as noticed in the earlier

chapters.

Figure 7.4 displays the effect of angle of inclination A on the velocity, temperature and

nanoparticle volume fraction for both aiding and opposing flows respectively. The equations

for the limiting cases of the horizontal and vertical plates are recovered from the transformed

equations by setting A = 0o and A = 90o, respectively. It is noted from Fig. 7.4 that

as A increases, the velocity increases near the plate but the temperature and nanoparticle

volume fraction decrease within the boundary layer region for the aiding flow whereas velocity

reduces but the temperature and nanoparticle volume fraction enhances for opposing flow

as observed in the earlier chapters.

The effect of the wave amplitude and angle of inclination of the wavy surface on the

local Nusselt number Nuξ(1−ST ξ)/Peξ1/2 and nanoparticle Sherwood number NShξ/Peξ
1/2

is plotted in Fig. 7.5. An enhancement in wavy amplitude decreases the local heat and

nanoparticle mass transfer rates for both aiding and opposing flows as shown in Figs. 7.5(a)

and 7.5(b). In general, we conclude that the surface becomes more roughened for increasing

values of amplitude of the wavy surface. The variation of heat and nanoparticle mass transfer

rates for various values of the angle of inclination A is displayed in Figs. 7.5(c) and 7.5(d).

It is seen that increase in the angle of inclination increases the buoyancy force and assists

the flow, leading to an increase in the heat and nanoparticle mass transfer rates in the case
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of aiding flow where as a reverse trend is seen in the case of opposing flow. The maximum

values of the dimensionless heat and nanoparticle mass transfer rates are observed when the

surface is vertical.

Figure 7.6 displays the effect of Brownian motion parameter Nb and thermophoresis

parameter Nt on the heat and nanoparticle mass transfer rates. It is observed that the local

heat transfer rate decreases with increase in the Browinian motion parameter Nb whereas

the nanoparticle mass transfer rate increases with an increase in the value of Brownian

motion parameter Nb for aiding flow where as a reverse pattern is observed in the case of

opposing flow as shown in Figs. 7.6(a) and 7.6(b). It is seen from Figs. 7.6(c) and 7.6(d)

that the heat transfer rate decreases with increase in the value of thermophoresis parameter

Nt for both aiding and opposing flows and there is a negligible effect on nanoparticle mass

transfer. Brownian motion is proportional to the volumetric fraction of nanoparticles in the

direction from high to low concentration, whereas the thermophoresis is proportional to the

temperature gradient from hot to cold. Hence, we conclude that the effect of the combination

of Brownian motion and thermophoresis is to reduce the value of Nusselt number.

The streamwise distribution of the local Nusselt Nuξ(1− ST ξ)/Peξ1/2 and nanoparticle

Sherwood numbers NShξ/Peξ
1/2 for different values of thermal stratification parameter ST is

displayed in Fig. 7.7. It is observed that both the heat and nanoparticle mass transfer rates

decrease with increase in the thermal stratification parameter ST for aiding flow whereas

they are seen to decrease in the case of opposing flow.
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Figure 7.1: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with thermal Stratification parameter ST for aiding flow.
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Figure 7.2: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with thermal Stratification parameter ST for opposing flow.
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Figure 7.3: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with wave amplitude a for both aiding and opposing flows.
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Figure 7.4: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with angle of inclination A for both aiding and opposing flows.

156



0 1 2 3 4 5

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

N
u ξ

(1
-S

Tξ
)/P

e ξ

1/
2

ξ

O p p o s i n g  f l o w ,  ∆= - 0 . 5 ,  a = 0 . 0 ,  0 . 1 ,  0 . 2 ,  0 . 3

A i d i n g  f l o w ,  ∆= 1 . 0 ,  a = 0 . 0 ,  0 . 1 ,  0 . 2 ,  0 . 3

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  A = π/ 6 ,  L e = 5 . 0 ,  S T = 0 . 1

(a)

0 1 2 3 4 5
0 . 5

1 . 0

1 . 5

2 . 0

N
Sh

ξ
/P

e ξ

1/
2

ξ

O p p o s i n g  f l o w ,  ∆= - 0 . 5 ,  a = 0 . 0 ,  0 . 1 ,  0 . 2 ,  0 . 3

A i d i n g  f l o w ,  ∆= 1 . 0 ,  a = 0 . 0 ,  0 . 1 ,  0 . 2 ,  0 . 3
N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  A = π/ 6 ,  L e = 5 . 0 ,  S T = 0 . 1

(b)

0 1 2 3 4 5
0 . 3 0

0 . 3 2

0 . 3 4

0 . 3 6

0 . 3 8

0 . 4 0

0 . 4 2

0 . 4 4

0 . 4 6

N
u ξ

(1
-S

Tξ
)/P

e ξ

1/
2

ξ

A i d i n g  f l o w ,  ∆= 1 . 0 ,  A = π/ 6 ,  π, 4 ,  π/ 3

O p p o s i n g  f l o w ,  ∆= - 0 . 5 ,  A = π/ 6 ,  π, 4 ,  π/ 3

N r = 0 . 3 ,  N b = 0 . 5 ,  N t = 0 . 1 ,  a = 0 . 1 ,  S T = 0 . 1 ,  L e = 5 . 0  

(c)

0 1 2 3 4 5

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

N
Sh

ξ
/P

e ξ

1/
2

ξ

A i d i n g  f l o w ,  ∆= 1 . 0 ,  A = π/ 6 ,  π, 4 ,  π/ 3

O p p o s i n g  f l o w ,  ∆= - 0 . 5 ,  A = π/ 6 ,  π, 4 ,  π/ 3

N r = 0 . 3 ,  N b = 0 . 5 ,  N t = 0 . 1 ,  a = 0 . 1 ,  S T = 0 . 1 ,  L e = 5 . 0

(d)

Figure 7.5: Variation of (a) heat and (b) nanoparticle mass transfer rates with wave am-
plitude a and (c) heat and (d) nanoparticle mass transfer rates with thermal stratification
parameter ST .

157



0 1 2 3 4 5
0 . 4 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

N
u ξ

(1
-S

Tξ
)/P

e ξ

1/
2

ξ

N r = 0 . 3 ,  N t = 0 . 1 ,  a = 0 . 1 ,  A = π/ 6 ,  L e = 5 . 0 ,  S T = 0 . 1

A i d i n g  f l o w ,  ∆= 1 . 0 ,  N b = 0 . 1 ,  0 . 1 5 ,  0 . 2

O p p o s i n g  f l o w ,  ∆= - 0 . 5 ,  N b = 0 . 1 ,  0 . 1 5 ,  0 . 2

(a)

0 1 2 3 4 5

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

N
Sh

ξ
/P

e ξ

1/
2

ξ

N r = 0 . 3 ,  N t = 0 . 1 ,  a = 0 . 1 ,  A = π/ 6 ,  L e = 5 . 0 ,  S T = 0 . 1

A i d i n g  f l o w ,  ∆= 1 . 0 ,  N b = 0 . 1 ,  0 . 1 5 ,  0 . 2

O p p o s i n g  f l o w ,  ∆= - 0 . 5 ,  N b = 0 . 1 ,  0 . 1 5 ,  0 . 2

(b)

0 1 2 3 4 5
0 . 3 0

0 . 3 2

0 . 3 4

0 . 3 6

0 . 3 8

0 . 4 0

0 . 4 2

0 . 4 4

N
u ξ

(1
-S

Tξ
)/P

e ξ

1/
2

ξ

A i d i n g  f l o w ,  ∆= 1 . 0 ,  N t = 0 . 1 ,  0 . 1 5 ,  0 . 2

O p p o s i n g  f l o w ,  ∆= - 0 . 5 ,  N t = 0 . 1 ,  0 . 1 5 ,  0 . 2

N r = 0 . 3 ,  N b = 0 . 5 ,  a = 0 . 1 ,  A = π/ 6 ,  L e = 5 . 0 ,  S T = 0 . 1

(c)

0 1 2 3 4 5

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

N
Sh

ξ
/P

e ξ

1/
2

ξ

A i d i n g  f l o w ,  ∆= 1 . 0 ,  N t = 0 . 1 ,  0 . 1 5 ,  0 . 2

O p p o s i n g  f l o w ,  ∆= - 0 . 5 ,  N t = 0 . 1 ,  0 . 1 5 ,  0 . 2

N r = 0 . 3 ,  N b = 0 . 5 ,  a = 0 . 1 ,  A = π/ 6 ,  L e = 5 . 0 ,  S T = 0 . 1

(d)

Figure 7.6: Variation of (a) heat and (b) nanoparticle mass transfer rates with Brownian
motion parameter Nb and thermophoresis parameter Nt.
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Figure 7.7: Variation of (a) heat, and (b) nanoparticle mass transfer rates with thermal
stratification parameter ST .

7.3 Conclusions

In this chapter, we investigated the problem of steady, laminar mixed convection heat and

nanoparticle mass transfer over an inclined wavy surface embedded in a thermally stratified

porous medium saturated with nanofluid subject to uniform wall temperature and nanopar-

ticle volume fraction conditions. From this analysis, the following conclusions can be drawn:

Increase in the thermal stratification parameter reduces the velocity, temperature, local

heat and nanoparticle mass transfer rates but enhances the nanoparticle volume fraction of

the fluid for aiding flow, whereas the velocity, local heat and mass transfer rates increases and

the temperature and nanoparticle volume fraction decreases in the case of opposing flow. The

wave amplitude a significantly effects the velocity, temperature, nanoparticle volume fraction,

local heat transfer and nanoparticle mass transfer coefficients for both aiding and opposing

flows. The influence of the angle of inclination A of the wavy surface to the horizontal is to

enhance the velocity, local heat transfer and nanoparticle mass transfer rates, but to reduce
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the temperature and nanoparticle volume fraction of the fluid flow for aiding flow and to

reduce the velocity, local heat and nanoparticle mass transfer rates in the case of opposing

flow.
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Chapter 8

Effect of thermal radiation and

thermal stratification on natural

convection over an inclined wavy

surface embedded in a porous

medium saturated with a nanofluid 1

8.1 Introduction

As discussed in previous chapters that natural convection flow is induced by buoyancy forces

which arise from density differences in a fluid. The analysis of free convection in a thermally

stratified medium is a fundamentally interesting and important problem because of its broad

range of engineering applications. It has been shown by scientists that thermal stratification

in energy storage may considerably increase system performance. Although the influence of

stratification of the medium on the heat removal process in a porous medium is significant,

very little work has been reported in the literature. Several authors [94, 48, 42, 71, 85, 87, 103]

1Published in “International Journal of Mining, Metallurgy and Mechanical Engineering”
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studied convective flows in a stratified medium.

Thermal radiation plays a major role in some industrial applications such as glass pro-

duction and furnace design, and also in space technology applications, such as comical flight

aerodynamics rocket, propulsion systems, plasma physics and space craft reentry aerodynam-

ics which operates at high temperatures, and also in applications involving high temperatures

such as nuclear power plant, gas turbines missiles, satellites, space vehicles and aircraft etc.

Hady et al. [40] reported that an increase in the thermal radiation parameter reduces the

nanofluid temperature which leads to increase in the heat transfer rate. Kandaswamy et

al. [48] studied the effects of thermophoresis and Brownian motion on MHD boundary layer

flow of a nanofluid in the presence of thermal stratification due to solar radiation.

A survey of literature indicates that no work has been reported on natural convection of

nanofluid over an inclined wavy surface in a non-Darcy porous medium under the influence

of thermal radiation and thermal stratification. Hence, in this chapter we aim at exploring

the effects of thermal radiation and thermal stratification on physical quantities and results

are displayed through graphs.

8.2 Mathematical Formulation

A steady natural convection boundary layer flow over an inclined wavy surface embedded in

a porous medium saturated with a nanofluid is considered. The x coordinate is taken along

the wavy plate and the y coordinate is measured normal to the plate, while the origin of the

reference system is considered at the leading edge of the wavy plate. The ambient medium is

assumed to be linearly stratified with respect to temperature in the form T∞(x) = T∞,0+Bx,

where B is a constant which is varied to alter the intensity of stratification in the medium.

The values of Tw and φw are assumed to be greater than the ambient temperature T∞,0 and

nanoparticle volume fraction φ∞ at any arbitrary reference point in the medium. The porous

medium is assumed to be uniform and isotropic and is in local thermal equilibrium with the

fluid. The fluid properties are assumed to be constant except for density variations in the
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buoyancy force term.

As in earlier chapters, making use of the Boussinesq and boundary layer approximations,

the governing equations are:

∂u

∂x
+
∂v

∂y
= 0, (8.1)

(
1 +

K̃

ν

√
u2 + v2

)[
∂u

∂y
− ∂v

∂x

]
+

K̃

ν
√
u2 + v2

[
u2
∂u

∂y
+ uv

(
∂v

∂y
− ∂u

∂x

)
− v2 ∂v

∂x

]
=

(1− φ∞)ρf∞β K g

µ

(
∂T

∂y
sinA− ∂T

∂x
cosA

)
− (ρp − ρf∞)K g

µ

(
∂φ

∂y
sinA− ∂φ

∂x
cosA

)
,(8.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

+
16σ T 3

∞
3Ke

(
∂2T

∂x2
+
∂2T

∂y2

)
, (8.3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
, (8.4)

Boundary Conditions

Assume that the semi-infinite inclined wavy plate is subject to uniform wall temperature

and nanoparticle volume fraction Tw and φw, respectively. Hence, the boundary conditions

are as given by (6.5).

Introducing the stream function ψ in Eqns. (8.1) - (8.4) and making use of the non-

dimensional variables given in (6.6), we get the following system of nonlinear partial differ-

ential equations

f ′′ + 2Gr(1 + δ̇2)−1/2f ′f ′′ = (sinA+ δ̇ cosA) (θ′ −Nrs
′) , (8.5)
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(
1 +

4R

3

)
θ′′ +

1

2
fθ′ +Nbs

′θ′ +Ntθ
′2 = ξ

(
STf

′ + f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (8.6)

s′′ +
1

2
Lefs′ +

Nt

Nb

θ′′ = Leξ

(
f ′
∂s

∂ξ
− s′∂f

∂ξ

)
, (8.7)

The boundary conditions (6.5) in terms of f, θ and s are given by (6.10) The heat and

nanoparticle fluxes from the wavy plate are given by

qw = −kn.∇T , (8.8a)

qnp = −DB n.∇φ. (8.8b)

The non dimensional rate of heat transfer (Nusselt number Nuξ) and the rate of nanoparticle

transfer (nanoparticle Sherwood number NShξ) are given by

Nuξ√
Raξ

= − (1 + 4R/3)θ′(ξ, 0)

(1− ST ξ)(1 + δ̇2)1/2
, (8.9a)

NShξ√
Raξ

= − s′(ξ, 0)

(1 + δ̇2)1/2
. (8.9b)

Method of Solution

A local Similarity and non-Similarity method is used to solve the non-linear boundary value

problems (8.5) - (8.7) subject to the boundary conditions (6.10) to convert them to a sequence

of ordinary differential equations and then the Successive Linearization Method along with

Chebyshev spectral collocation method is used to solve the resulting system of equations.

Proceeding same as in previous chapters we obtain the following matrix equation

Ai−1Xi = Ri−1, (8.10)
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In Eqn. (8.10), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N +

6)×1 column vectors defined by

Ai−1 =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1


(8.11)

where

Fi = [fi(χ0), fi(χ1), ...., fi(χN−1), fi(χN)]T , Θi = [θi(χ0), θi(χ1), ...., θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ...., si(χN−1), si(χN)]T , Gi = [gi(χ0), gi(χ1), ...., gi(χN−1), gi(χN)]T ,

Hi = [hi(χ0), hi(χ1), ...., hi(χN−1), hi(χN)]T , Ki = [ki(χ0), ki(χ1), ...., ki(χN−1), ki(χN)]T ,

rj,i−1 = [rj,i−1(χ0), rj,i−1(χ1), · · · , rj,i−1(χN−1), rj,i−1(χN)]T , j = 1, 2, 3, 4, 5, 6

A11 = a1,i−1D
2 + a2,i−1D, A12 = a3,i−1D, A13 = a4,i−1D, A14 = 0, A15 = 0, A16 = 0

A21 = b3,i−1D + b4,i−1I, A22 = b1,i−1D
2 + b1,i−1D, A23 = b5,i−1D, A24 = b6,i−1I,

A25 = b7,i−1I, A26 = 0, A31 = c2,i−1D + c3,i−1I, A32 = c4,i−1D
2, A33 = D2 + c1,i−1D,

A34 = c5,i−1I, A35 = 0, A36 = c6,i−1I, A41 = d3,i−1D
2 + d4,i−1D, A42 = d5,i−1D,

A43 = d6,i−1D, A44 = d1,i−1D
2 + d2,i−1D, A45 = d7,i−1D, A46 = d8,i−1D

A51 = l4,i−1D + l5,i−1I, A52 = l6,i−1D, A53 = l7,i−1D A54 = l8,i−1D + l9,i−1I,

A55 = l1,i−1D
2 + l2,i−1D + l3,i−1I, A56 = l10,i−1D, A61 = m3,i−1D +m4,i−1I,

A62 = 0, A63 = m5,i−1D, A64 = m6,i−1D +m7,i−1I, A65 = m8,i−1D
2,

A66 = D2 +m1,i−1D +m2,i−1I

Here ak,i−1, bk,i−1, ck,i−1,dk,i−1, lk,i−1, mk,i−1 are diagonal matrices of size (N+1)×(N+1) and

I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system (8.10) to

incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (8.12)
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Results and Discussion

Table 8.1: Comparison of θ′(0) and f ′(0) by the present method and Plumb and Huenefeld
[83] for different values of Gr and fixed values of A = π

2
, a = 0, ξ = 0, ST = 0.

θ′(0) f ′(0)

Gr Plumb & Huenefeld[83] Present Plumb & Huenefeld[83] Present

0.00 -0.4439 -0.443717 1.0000 1.0000
0.01 -0.44232 -0.442126 0.9902 0.990195
0.10 -0.42969 -0.429475 0.91608 0.916079
1.00 -0.36617 -0.365732 0.61803 0.618033
10.00 -0.25126 -0.250634 0.27016 0.270156
100.00 -0.15186 -0.151443 0.09512 0.095124

The solutions for the dimensionless velocity, temperature and nanoparticle volume frac-

tion functions and heat and nanoparticle mass transfer rates have been computed and are

displayed graphically in Figs. 8.1 - 8.7. The effects of thermal stratification ST , thermal

radiation R, Grashof number Gr, angle of inclination A, Brownian motion parameter Nb,

thermoporesis parameter Nt and amplitude a of the wavy surface on the physical quantities

have been discussed.

Table. 8.1 shows the comparison of the results of the values of θ′(0) and f ′(0) for different

values of Gr and fixed values of A = π/2, a = 0, ST = 0 with the results obtained by Plumb

and Huenefeld [83]. It is shown that these two results are in good agreement.

The effect of amplitude of the wavy surface on velocity, temperature and nanoparticle

volume fraction is plotted in Fig. 8.1. It is observed that as a increases, velocity increases

near the plate and decreases away from the plate, whereas the temperature and nanoparticle

volume fraction decreases. It is noted from Fig. 8.2 that as A increases, the velocity increases

near the plate and decreases away from the plate but the temperature and nanoparticle

volume fraction decrease within the boundary layer region. When the surface is vertical, the

smallest temperature and nanoparticle volume fraction distributions are observed, whereas

they are largest for the horizontal surface.

Figure 8.3 depicts the effect of Grashof number Gr on velocity, temperature and nanopar-

ticle volume fraction distributions. It is clear from Fig. 8.3(a) that velocity of the fluid
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decreases near the plate and then increases away from the plate with the increase of Grashof

number. It is noticed from Figs. 8.3(b) and 8.3(c) that the temperature and nanoparticle

volume fraction of the fluid increases with increase of the Grashof number.

Figure 8.4 presents the effect of radiation R on non dimensional velocity, temperature and

nanoparticle volume fraction. It is observed from Figs. 8.4(a) and 8.4(b) that the velocity

and temperature increases with increase in the value of radiation parameter. It is noticed

from Fig. 8.4(c) that the nanoparticle volume fraction reduces with increase in the value of

radiation parameter.

Figure 8.5 shows the effect of thermal stratification on velocity, temperature and nanopar-

ticle volume fraction distributions. It is noticed that increase in the thermal stratification

parameter ST reduces the velocity and temperature of the fluid but increases the nanoparticle

volume fraction of the fluid flow.

The effect of the wave amplitude, angle of inclination and thermal stratification on the

local Nusselt number Nuξ(1−ST ξ)/Raξ1/2 and nanoparticle Sherwood number NShξ/Raξ
1/2

is plotted in Fig. 8.6. It is revealed that an enhancement in wavy amplitude decreases the

local heat and nanoparticle mass transfer rates as shown in 8.6(a) and 8.6(b). The variation

of heat and nanoparticle mass transfer rates for various values of the angle of inclination A

and thermal stratification parameter ST is displayed in Figs. 8.6(c) and 8.6(d). It is shown

that increase in the angle of inclination increases the heat and nanoparticle mass transfer

rates but an increase in the value of thermal stratification parameter ST reduces both the

heat and nanoparticle mass transfer rates.

The effect of Brownian motion parameter Nb, thermophoresis parameter Nt, Grashof

number Gr and radiation parameter R on the heat and nanoparticle mass transfer rates is

presented in Fig. 8.7. It is observed that the dimensionless heat transfer rate decreases with

increase in both the Browinian motion parameter and thermoporesis parameter. An increase

in the value of Brownian motion parameter enhances the nanoparticle mass transfer rate and

an increase in the value of thermophoresis parameter reduces the nanoparticle mass transfer

rate. Figs. 8.7(c) - 8.7(d) display the streamwise distribution of Nusselt and nanoparticle
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Sherwood numbers for different values of radiation parameter R and Grashof number Gr.

It is seen that the heat and nanoparticle mass transfer rates enhances with increase in the

radiation parameter and reduces with increase in the value of Grashof number Gr.
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Figure 8.1: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with wave amplitude a.
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Figure 8.2: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with angle of inclination A.
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Figure 8.4: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with radiation parameter R.
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Figure 8.5: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with thermal Stratification parameter ST .

173



0 1 2 3 4 5
0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

N
u ξ

(1
−
S T

ξ
)/
R

a ξ

1
/2

ξ

 a = 0 . 0
 a = 0 . 1
 a = 0 . 2
 a = 0 . 3

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  A = π/ 6 ,  L e = 5 . 0 ,
 S T = 0 . 1 ,  R = 0 . 2 ,  G r = 2 . 0

(a)

0 1 2 3 4 5

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

N
Sh

ξ
/R

a ξ

1
/2

ξ

 a = 0 . 0
 a = 0 . 1
 a = 0 . 2
 a = 0 . 3

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  A = π/ 6 ,  L e = 5 . 0 ,
 S T = 0 . 1 ,  R = 0 . 2 ,  G r = 2 . 0

(b)

0 1 2 3 4 5

0 . 1 9

0 . 2 0

0 . 2 1

0 . 2 2

0 . 2 3

0 . 2 4

0 . 2 5

0 . 2 6

N
u ξ

(1
−
S T

ξ
)/
R

a ξ

1
/2

ξ

S T = 0 . 3 ,  0 . 6 ,  0 . 9   ( A = π/ 6 )

A = π/ 4 ,  7 π/ 2 4 ,  π/ 3   ( S T = 0 . 1 )

N r = 0 . 3 ,  N t = 0 . 1 ,  N b = 0 . 5 ,  a = 0 . 1 ,  L e = 5 . 0 ,  R = 0 . 2 ,  G r = 2 . 0

(c)

0 1 2 3 4 5

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

N
S

h
ξ
/R

a
ξ

1
/2

ξ

S
T
=0.3, 0.6, 0.9  (A=π/6)

A=π/4, 7π/24, π/3  (S
T
=0.1)

N
r
=0.3, N

t
=0.1, N

b
=0.5, a=0.1, Le=5.0, R=0.2, Gr=2.0

(d)

Figure 8.6: Variation of (a) heat and (b) nanoparticle mass transfer rates with wave ampli-
tude a and (c) heat and (d) nanoparticle mass transfer rates with angle of inclination A and
thermal stratification parameter ST .
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Figure 8.7: Variation of (a) heat and (b) nanoparticle mass transfer rates with Brownian mo-
tion parameter Nb and (c) heat and (d) nanoparticle mass transfer rates with thermophoresis
parameter Nt.
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8.3 Conclusions

In this chapter, we studied the problem of effect of thermal radiation on natural convection

heat and nanoparticle mass transfer over an inclined wavy surface embedded in a thermally

stratified non-Darcy porous medium saturated with nanofluid subject to uniform wall tem-

perature and nanoparticle volume fraction conditions. From this analysis, the following

conclusions can be drawn:

The effect of thermal radiation parameter R is to enhance the velocity, temperature, local

heat and nanoparticle mass transfer but to decrease the nanoparticle volume fraction of the

fluid. Increase in the thermal stratification parameter ST reduces the velocity, temperature,

local heat and nanoparticle mass transfer but increases the nanoparticle volume fraction of

the fluid. The Grashof number significantly affects the flow field. Increase in the value of

Grashof number reduces the velocity, heat and nanoparticle mass transfer rates but increase

the temperature and nanoparticle volume fraction of the fluid. The effect of amplitude

a of the wavy surface is found to enhance the velocity near the plate and to reduce the

temperature, nanoparticle volume fraction, local heat transfer and nanoparticle mass transfer

coefficients. The influence of the angle of inclination A of the wavy surface to the horizontal

is to enhance the velocity, local heat transfer and nanoparticle mass transfer rates, but to

reduce the temperature and nanoparticle volume fraction of the fluid flow.
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Chapter 9

Mixed convection of nanofluid over an

inclined wavy surface saturated

non-Darcy porous medium with

thermal radiation and thermal

stratification effects1

9.1 Introduction

As mentioned in the previous chapters that the thermal stratification on mixed convection

in a fluid saturated porous medium is widely accepted due to its geophysical and industrial

applications such as hot dike complexes in volcanic regions for heating of ground water,

development of advanced technologies for nuclear waste management, pollutant and con-

taminant transport in soil etc. Generally, stratification of fluid arises due to the temperature

variations, concentration differences or the presence of different fluids. A survey of literature

on mixed convection flow in a thermally stratified porous medium is reported. In this chapter

1Communicated to “Open Engineering Journal”
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we considered the effects of radiation and thermal stratification on mixed convection flow of

a nanofluid over an inclined wavy surface embedded in a non-Darcy porous medium.

The aim of the present chapter is to explore the effects of thermal stratification and

thermal radiation on the physical quantities for both aiding and opposing flows and display

the results graphically.

9.2 Mathematical Formulation

Consider the steady, laminar, incompressible and two-dimensional mixed convection bound-

ary layer flow over a semi-infinite inclined wavy plate embedded in a non-Darcy porous

medium saturated with a nanofluid. The plate is maintained at a uniform and constant

wall temperature and nanoparticle volume fraction Tw and φw respectively. The ambi-

ent medium is assumed to be linearly stratified with respect to temperature in the form

T∞(x) = T∞,0 +Bx, where B is a constant which is varied to alter the intensity of stratifica-

tion in the medium. T∞,0 and φ∞ are ambient temperature and nanoparticle concentration

respectively. The porous medium is assumed to be uniform and isotropic and is in local

thermal equilibrium with the fluid. The effects of Brownian motion and thermophoresis are

incorporated into the model for nanofluids. The fluid properties are assumed to be constant

except for density variations in the buoyancy force term.

Using again the Boussinesq and boundary layer approximations, the governing equations

can be written as:

∂u

∂x
+
∂v

∂y
= 0, (9.1)

(
1 +

K̃

ν

√
u2 + v2

)[
∂u

∂y
− ∂v

∂x

]
+

K̃

ν
√
u2 + v2

[
u2
∂u

∂y
+ uv

(
∂v

∂y
− ∂u

∂x

)
− v2 ∂v

∂x

]
=

(1− φ∞)ρf∞β K g

µ

(
∂T

∂y
sinA− ∂T

∂x
cosA

)
− (ρp − ρf∞)K g

µ

(
∂φ

∂y
sinA− ∂φ

∂x
cosA

)
,(9.2)
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u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ γ

[
DB

(
∂φ

∂x

∂T

∂x
+
∂φ

∂y

∂T

∂y

)
+
DT

T∞

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)]

+
16σ T 3

∞
3Ke

(
∂2T

∂x2
+
∂2T

∂y2

)
, (9.3)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+
DT

T∞

(
∂2T

∂x2
+
∂2T

∂y2

)
, (9.4)

Boundary Conditions

Assume that the wavy plate is subject to uniform wall temperature and nanoparticle volume

fraction Tw and φw, respectively. Hence, the boundary conditions are given by (7.5)

Introducing the stream function ψ in Eqns. (9.1) - (9.4) and then using non-dimensional

variables given in (7.6), we get the following system of non-linear partial differential equations

f ′′ + 2Fc(1 + δ̇2)−1/2f ′f ′′ = ∆(sinA+ δ̇ cosA) (θ′ −Nrs
′) , (9.5)

(
1 +

4R

3

)
θ′′ +

1

2
fθ′ +Nbs

′θ′ +Ntθ
′2 = ξ

(
STf

′ + f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
, (9.6)

s′′ +
1

2
Lefs′ +

Nt

Nb

θ′′ = Leξ

(
f ′
∂s

∂ξ
− s′∂f

∂ξ

)
, (9.7)

The boundary conditions (7.5) in terms of f, θ and s are given by (7.10) The non-

dimensional heat and nanoparticle mass transfer rates are respectively given by

Nuξ√
Peξ

= − (1 + 4R/3)θ′(ξ, 0)

(1− ST ξ)(1 + δ̇2)1/2
, (9.8a)

NShξ√
Peξ

= − s′(ξ, 0)

(1 + δ̇2)1/2
. (9.8b)

Method of Solution

The transformed governing equations (9.5) to (9.7) with the boundary conditions (7.10)

are solved using a local similarity and non-similarity method. The resulting boundary layer
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equations are linearized using Successive Linearization Method and then solved using Cheby-

shev spectral collocation method as discussed in detail in the previous chapters. Proceeding

same as in previous chapters, we obtain the following matrix equation

Ai−1Xi = Ri−1, (9.9)

In Eqn. (9.9), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N + 6)×1

column vectors defined by

Ai−1 =



A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66


, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



r1,i−1

r2,i−1

r3,i−1

r4,i−1

r5,i−1

r6,i−1


(9.10)

where

Fi = [fi(χ0), fi(χ1), ...., fi(χN−1), fi(χN)]T , Θi = [θi(χ0), θi(χ1), ...., θi(χN−1), θi(χN)]T ,

Φi = [si(χ0), si(χ1), ...., si(χN−1), si(χN)]T , Gi = [gi(χ0), gi(χ1), ...., gi(χN−1), gi(χN)]T ,

Hi = [hi(χ0), hi(χ1), ...., hi(χN−1), hi(χN)]T , Ki = [ki(χ0), ki(χ1), ...., ki(χN−1), ki(χN)]T ,

rj,i−1 = [rj,i−1(χ0), rj,i−1(χ1), · · · , rj,i−1(χN−1), rj,i−1(χN)]T , j = 1, 2, 3, 4, 5, 6

A11 = a1,i−1D
2 + a2,i−1D, A12 = a3,i−1D, A13 = a4,i−1D, A14 = 0, A15 = 0, A16 = 0

A21 = b3,i−1D + b4,i−1I, A22 = b1,i−1D
2 + b2,i−1D, A23 = b5,i−1D, A24 = b6,i−1I,

A25 = b7,i−1I, A26 = 0, A31 = c2,i−1D + c3,i−1I, A32 = c4,i−1D
2, A33 = D2 + c1,i−1D,

A34 = c5,i−1I, A35 = 0, A36 = c6,i−1I, A41 = d3,i−1D
2 + d4,i−1D, A42 = d5,i−1D,

A43 = d6,i−1D, A44 = d1,i−1D
2 + d2,i−1D, A45 = d7,i−1D, A46 = d8,i−1D,

A51 = l4,i−1D + l5,i−1I, A52 = l6,i−1D, A53 = l7,i−1D, A54 = l8,i−1D + l9,i−1I,

A55 = l1,i−1D
2 + l2,i−1D + l3,i−1I, A56 = l10,i−1D, A61 = m3,i−1D +m4,i−1I,

A62 = 0, A63 = m5,i−1D, A64 = m6,i−1D +m7,i−1I, A65 = m8,i−1D
2,

A66 = D2 +m1,i−1D +m2,i−1I
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Table 9.1: Comparison of values of −θ′(0) for aiding and opposing flows by the present
method and Cheng [23] for fixed values of for A = π

2
, a = 0, ξ = 0, Nr = 0, Nt = 0, Nb → 0,

Le = 0, R = 0, ST = 0.

Aiding Flow Opposing Flow

∆ Cheng [23] Present ∆ Cheng [23] Present
0 0.5641 0.56415775 -0.2 0.5269 0.52691089
0.5 0.6473 0.64736510 -0.4 0.4865 0.48653284
1 0.7205 0.72055401 -0.6 0.442 0.44202064
3 0.9574 0.95744512 -0.8 0.3916 0.39166292
10 1.516 1.51623967 -1.0 0.332 0.33202116
20 2.066 2.066

Here ak,i−1, bk,i−1, ck,i−1,dk,i−1, lk,i−1, mk,i−1 are diagonal matrices of size (N+1)×(N+1) and

I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system (9.9) to

incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (9.11)

Results and Discussion

The solutions for the dimensionless velocity, temperature and nanoparticle volume fraction

functions and heat and nanoparticle mass transfer rates have been computed and are dis-

played graphically in Figs. 9.1 - 9.9. The effects of thermal stratification ST , thermal

radiation R, non-Darcy parameter Fc, angle of inclination A, and amplitude a of the wavy

surface have been discussed.

Table. 9.1 shows the comparison of the results of the values of θ′(0) of the present problem

for different values of ∆ and fixed values of A = π/2, a = 0, ST = 0 with the results obtained

by Cheng [23]. It is seen that these two results are in excellent agreement.

The effect of amplitude of the wavy surface on velocity, temperature and nanoparticle

volume fraction is plotted in Fig. 9.1. It is observed that as a increases, velocity increases
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near the plate and decreases away from the plate, whereas the temperature and nanoparticle

volume fraction decreases for aiding flow but a reverse pattern is observed in the case of

opposing flow.

The variation of velocity, temperature and nanoparticle volume fraction with the angle of

inclination is depicted in Fig. 9.2. It is noticed from Fig. 9.2(a) - 9.2(c) that as A increases,

the velocity increases near the plate and decreases away from the plate but the temperature

and nanoparticle volume fraction decrease within the boundary layer region for aiding flow

whereas a reverse pattern is seen in the case of opposing flow.

Figure 9.3 depicts the effect of non-Darcy parameter Fc on velocity, temperature and

nanoparticle volume fraction distributions. It is clear from Fig. 9.3(a) that increase in non-

Darcy parameter reduces the velocity of the fluid in the case of aiding flow and enhances the

velocity in the case of opposing flow. It is noticed from Figs. 9.3(b) and 9.3(c) that increase

in the non-Darcy parameter enhances the temperature and nanoparticle volume fraction of

the fluid in the case of aiding flow but reduces in the case of opposing flow.

The influence of radiation parameter R on non-dimensional velocity, temperature and

nanoparticle volume fraction is presented in Fig. 9.4. It is observed from Fig. 9.4(a) that

the velocity increases with increase in the value of radiation parameter for aiding flow and

decreases for opposing flow. It is noticed from Fig. 9.4(b) that the temperature increases

with increase in the value of radiation parameter for both aiding and opposing flows whereas

a negligible effect of radiation on nanoparticle volume fraction for both aiding and opposing

flows is observed as shown in Fig. 9.4(c).

The effect of thermal stratification on velocity, temperature and nanoparticle volume

fraction distributions is shown in Figs. 9.5 and 9.6 for both aiding and opposing flows

respectively. It is noticed from Fig. 9.5 that increase in the thermal stratification parameter

ST reduces the velocity and temperature of the fluid but increases the nanoparticle volume

fraction in the case of aiding flow whereas the velocity enhances but the temperature and

nanoparticle volume fraction reduce in the case of opposing flow as seen in Fig. 9.6.

The effect of the wave amplitude and angle of inclination of the wavy surface on the local
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Nusselt number Nuξ(1 − ST ξ)/Peξ1/2 and nanoparticle Sherwood number NShξ/Peξ
1/2 is

plotted in Fig. 9.7. It is observed from Fig. 9.7(a) and 9.7(b) that an enhancement in wavy

amplitude decreases the local heat and nanoparticle mass transfer rates for both aiding and

opposing flows. From Figs. 9.7(c) and 9.7(d) it is noticed that increase in the angle of

inclination increases the buoyancy force and assists the flow, leading to an increase in the

heat and nanoparticle mass transfer rates in the case of aiding flow whereas a reverse trend

is observed in the case of opposing flow.

Figure 9.8 displays the streamwise distribution of Nusselt and nanoparticle Sherwood

numbers for different values of non-Darcy parameter Fc and radiation parameter R. It is

seen that increase in the non-Darcy parameter decreases the local heat and nanoparticle

mass transfer rates for aiding flow but enhances in the case of opposing flow as seen in Figs.

9.8(a) and 9.8(b). It is noticed from Fig. 9.8(c) that increase in the radiation parameter

enhances the local heat transfer rate for both aiding and opposing flows whereas a negligible

effect of radiation on nanoparticle mass transfer rate is seen through Fig. 9.8(d).

The effect of thermal stratification parameter ST on the heat and nanoparticle mass

transfer rates is presented in Fig. 9.9. It is observed from Fig. 9.9(a) and 9.9(b) that

increase in the thermal stratification parameter reduces both the dimensionless heat and

nanoparticle mass transfer rates for aiding flow but enhances in the case of opposing flow.
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Figure 9.1: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with wave amplitude.
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Figure 9.2: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with angle of inclination A.
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Figure 9.3: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with non-Darcy parameter.
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Figure 9.4: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with radiation parameter.
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Figure 9.5: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with thermal stratification parameter for aiding flow.
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Figure 9.6: Variation of (a) velocity, (b) temperature and (c) nanoparticle volume fraction
profiles with thermal stratification parameter for opposing flow.
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Figure 9.7: Variation of (a) heat and (b) nanoparticle transfer rates with wave amplitude
and (c) heat and (d) nanoparticle transfer rates with angle of inclination.
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Figure 9.8: Variation of (a) heat and (b) nanoparticle transfer rates with non-Darcy param-
eter and (c) heat and (d) nanoparticle transfer rates with radiation parameter.
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Figure 9.9: Variation of (a) heat and (b) nanoparticle transfer rates with thermal stratifica-
tion parameter.

9.3 Conclusions

In this chapter, we analyzed the problem of steady, laminar mixed convection heat and

nanoparticle mass transfer over an inclined wavy surface embedded in a non-Darcy porous

medium saturated with nanofluid with thermal stratification and thermal radiation effects,

subject to uniform wall temperature and nanoparticle volume fraction conditions. From this

investigation, the following conclusions can be drawn for both the cases (a) and (b):

The effect of thermal radiation parameter R is to reduce the velocity in the case of

opposing flow and to enhance the temperature and local heat transfer rate for both aiding

and opposing flows. Increase in the thermal stratification parameter ST increases the velocity,

local heat and nanoparticle mass transfer rates for opposing flow but reduces in the case of

aiding flow whereas the temperature of the fluid reduces for both aiding and opposing flows.

The non-Darcy parameter significantly affects the flow field i.e, increasing the non-Darcy

parameter reduces the velocity, heat and nanoparticle mass transfer rates for aiding flow
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but increases in the case of opposing flow. The effect of amplitude a of the wavy surface

was found to enhance the temperature and nanoparticle volume fraction for opposing flow

but to reduce the local heat transfer and nanoparticle mass transfer rates for both aiding

and opposing flows. The influence of the angle of inclination A of the wavy surface to the

horizontal is to reduce the velocity, local heat transfer and nanoparticle mass transfer rates

but to enhance the temperature and nanoparticle volume fraction of the fluid for opposing

flow.
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Chapter 10

Summary and Conclusions

In this thesis an analysis of convective heat and nanoparticle mass transfer over a semi-infinite

inclined wavy surface immersed in a nanofluid saturated porous medium is attempted.

The steady natural/mixed convection heat and nanoparticle mass transfer along an semi-

infinite inclined wavy surface submerged in a nanofluid saturated non-Darcy porous medium

has been investigated. The aim of the chapters is to present numerical solutions for the

considered problems and also to investigate the effects of thermal stratification, thermal

radiation, non-Darcy effect on the flow characteristics such as velocity, temperature and

nanoparticle concentration along with local heat and nanoparticle mass transfer coefficients.

In all the chapters (2 - 9), the non-linear governing equations and their associated boundary

conditions are linearized by using Successive Linearization Method and then solved numer-

ically by Chebyshev spectral collocation method. For the case of non-similar equations, a

local similarity and non-similarity method is used for converting the partial differential equa-

tions to ordinary differential equations and then the system is solved numerically by using

Successive Linearization Method. The main findings of the analysis carried are

• An increase in the Brownian motion parameter Nb, increases the velocity, tempera-

ture and local nanoparticle mass transfer coefficient for aiding flow, but reduces the

nanoparticle volume fraction and local heat transfer coefficient for both aiding and
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opposing flows.

• A higher value of the thermophoresis parameter Nt leads to higher temperatures and

nanoparticle volume fraction for both aiding and opposing flows, but an increase in

velocity for aiding flow and decrease in velocity for opposing flow is observed. Moreover,

lower local heat transfer coefficient for both aiding and opposing flows and no effect

on the nanoparticle mass transfer coefficient is observed.

• The effect of the amplitude a of the wavy surface is to increase the velocity and to

reduce the temperature and nanoparticle volume fraction in the case of aiding flow

but to reduce the velocity and to increase the temperature and nanoparticle volume

fraction in the case of opposing flow. The local heat transfer and nanoparticle mass

transfer coefficient reduces for both aiding and opposing flows.

• The influence of the angle of inclination A of the wavy surface to the horizontal is

to enhance the velocity, local heat and nanoparticle mass transfer coefficients but to

reduce the temperature and nanoparticle volume fraction of the fluid for aiding flow

and a reverse trend is observed in the case of opposing flow.

• The effect of non-Darcy parameter Fc is to reduce the velocity, local heat and nanopar-

ticle mass transfer for aiding flow and to increase the same in the case of opposing flow

while the temperature and nanoparticle volume fraction increase for aiding flow and

reduce for opposing flow.

• The influence of radiation parameter R is to enhance the velocity and temperature

for aiding flow and reduce the same in the case of opposing flow. The local heat

transfer enhances for both aiding and opposing flows and there is a negligible effect on

nanoparticle volume fraction and nanoparticle mass transfer rates.

• Increase in the thermal stratification parameter ST reduces the velocity, temperature,

local heat and nanoparticle mass transfer rates but enhances the nanoparticle volume

fraction of the fluid for aiding flow. The velocity, local heat and nanoparticle mass

transfer rates increase and the temperature and nanoparticle volume fraction decrease

in the case of opposing flow.
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The work presented in the thesis can be extended to analyze the effect of Joule heating,

MHD, Hall and Ion slip, double diffusion, conjugate convection, viscous dissipation etc.,

independently and then examining their combined effects over the complex structure. Such

an exhaustive study can be a rewarding experience though it is challenging as well as time

consuming.
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