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ABSTRACT

Entropy and entropy generation are fundamental quantities. They play essential role in
understanding the performance of engineering devices. Minimizing entropy generation is im-
portant to improving the efficiency of any system. To optimize the performance of engineer-
ing systems containing devices the irreversibilities of individual devices must be minimized.
Since the total irreversibility of a system is the sum of the component irreversibilities, this
procedure improves the system performance. In order to preserve the quality of energy in
a fluid flow process or at least to reduce the entropy generation, it is important to study
the distribution of the entropy generation within the fluid volume. Nanofluids are fluids
that contain small volumetric quantities of nanoparticles. Nanofluid is the nanotechnology
based that exhibit thermal properties superior to those of their base fluids. These are more
susceptible to the influence of magnetic field than the conventional base fluids. The study
of entropy generation due to nanofluid flows in different geometries has important applica-
tions in physics and engineering. Hence, this thesis describes the entropy generation due
to nanofluid flow through vertical channels, cylindrical annulus and infinite rotating parallel

disks in the presence of Hall, ion-slip, Joule heating, radiation and chemical reaction effects.

The thesis consists of FIVE parts and TEN chapters. Part-I consists of a single chapter
(Chapter - 1), which provides an introduction to the concepts and a review of the pertinent
literature. Second part contains three chapters (i.e. Chapters 2, 3 and 4). Chapters 2
deals with Hall and ion-slip effects on natural and mixed convection heat transfer flow of
nanofluid in vertical channel, Chapters 3 and 4 are extensions of chapters 2 in which the
effect of thermal radiation Joule heating and chemical reaction on entropy generation and
Bejan number are studied. The third part contains three Chapters (Chapters 5, 6 and 7)
and deals with convective heat transfer flow of a nanofluid in between concentric cylinders
with Hall, ion-slip, thermal radiation, Joule heating and chemical reaction effects. Fourth
part contains two chapters (Chapters 8 and 9) and deals with the entropy generation due
to nanofluid flow through the parallel disks in the presence of Hall, ion-slip, Joule heating,
radiation and chemical reaction effects. In all the above chapters, the governing equations
and the corresponding boundary conditions are initially cast into dimensionless form by
using suitable transformations. The resulting system of equations are solved using Homotopy
Analysis Method. The effects of Hall, ion-slip, Joule heating, radiation and chemical reaction
on the velocity, temperature, nanofluid concentration as well as entropy generation rate
and Bejan number are presented through graphs. The fifth part contains only one chapter

(Chapter - 10) which gives summary and overall conclusions and scope for future work.
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NOMENCLATURE

constant pressure gradient
radius of the inner cylinder
radius of the outer cylinder
Bejan number

uniform magnetite field
Brinkman number

specific heat at constant pressure
Mass diffusivity

Brownian diffusion coefficient

Thermophoretic diffusion coeffi-

cient

channel width

dimensionless transverse velocity
Indused velocity

Grashof number
acceleration due to gravity
channel width

Hartman number

Joule heating parameter
thermal conductivity
chemical reaction parameter

rate of chemical reaction

Le

Nb

Nh

N

Nr

Ns

Nt

vi

thermal conductivity of the fluid
Lewis number

magnetic parameter

Brownian motion parameter

entropy generation due to heat

transfer

entropy generation due to viscous

dissipation

entropy generation due to mag-

netic effect
Buoyancy ratio is

dimensionless entropy generation

number

Thermophoresis parameter
Pressure

Prandtl number

Radiation heat flux

suction or injection Reynolds num-

ber

Radiation parameter
Reynolds number
universal gas constant

dimensionless nanoparticle con-

centration



Sa entropy generation volumetric rate [ coefficients of thermal expansion

T dimensional temperature vy rotating rate parameter
T Mean fluid temperature p density of the fluid
U dimensional axial velocity X mean absorption coefficient
v dimensional transverse velocity 0 dimensionless temperature
Uy characteristic velocity L viscosity of the fluid
Vo injection velocity [0) nanoparticle concentration
Vi suction velocity v kinematic viscosity coefficient

o electrical conductivity

o* Stefan-Boltzman constant
Greek SymbolS Q angular velocities

01, rotating speeds of lower and upper
! effective thermal diffusivity _

disks

Bh Hall parameter Q3, Yy temperature and concentration ra-
01 ion-slip parameter tios
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INTRODUCTION



Chapter 1

Introduction

The problems on laminar flow of a fluid between vertical parallel plates, concentric cylin-
ders and rotating circular disks are of interest to researchers, as they constitute a good
approximation to the flows that are commonly encountered in an engineering and technol-
ogy. The vertical channel configuration is relevant to solar energy collectors, transpiration
cooling, gaseous diffusion technology, cooling of rocket, mechanized irrigation and filtration
processes, thermal insulation engineering, etc. A commonly occurring geometry in electrical
machineries, microelectronic devices, industrial heat exchangers, a growth of single silicon
crystals, motion of a planetary atmosphere, etc., is the annulus between concentric cylinders,
in which one or both the cylinders are rotating. The geometry of rotating disks has spe-
cial technical importance in rotating machinery, crystal growth process, computer storage

devices, chemical engineering, agricultural engineering, etc.

The improvement of thermal systems have gained a growing interest due to the rela-
tions with the problems of material processing, energy conversion and environmental effects.
Efficient energy utilization during any fluid flow is one of the fundamental problems of the

engineering processes to improve the system. One of the powerful tools used for the improve-



ment of performance of the engineering processes are the minimization of entropy generation..
Hence, the contemporary trend in the field of heat transfer and thermal design is to perform
analysis of the entropy generation and its minimization. This new trend is important and,
at the same time, it is necessary to contribute to a viable engineering solution to the energy

problems.

One of the frequently encountered challenge by the technological industries, such as mi-
croelectronics, defense, metrology, nuclear reactors, power generation, thin film solar energy
collectors, manufacturing etc., is cooling. Liquid cooling is necessary when the heat flux is
more in electronic devices. The phenomenal increase in the thermal conductivity of fluids
with an addition of small volumes of nanoparticles has created tremendous interest in the
techniques of heat transfer enhancement. Nanofluids are referred to as safe coolants for
nuclear reactors and smart coolants for computers, i.e. next generation coolants. When
nanofluids are used to improve the design and performance of thermal management systems,
they offer several benefits, including improved reliability, reduction in cooling system size,
decreased pumping-power needs, increased energy and fuel efficiencies, and lower pollution.
Thus, nanofluids can have a significant impact in cooling a number of high-heat-flux de-
vices and systems used in the consumer, industrial and defense industries. The full heat
transfer potential of these nanofluids may be exploited with the acquaintance of underlying

mechanism of heat transfer in these fluids.

1.1 Nanofluids

The utilization of regular fluids, for example, water, ethylene glycol and engine oil in nu-
merous engineering and industrial applications restricts the heat transfer abilities because
of their poor heat transfer properties. The low thermal conductivity of the ordinary heat
transfer liquids is an essential restriction in upgrading the performance and the compact-
ness of many designing electronic gadgets. The proposed traditional approach to upgrade
heat transfer in thermal system frameworks is to expand the heat transfer surface area of

cooling gadgets and the flow velocity or to scatter solid particles in heat transfer liquids.



The idea of utilizing suspensions of solid particles to improve thermal conductivity of tra-
ditional heat transfer liquids was originated by Maxwell [56]. By scattering millimeter or
micrometer-sized particles in fluids, Maxwell could improve the thermophysical properties of
base liquids. However, significant issues, for example, abrasion, clogging micro channel and
high pressure drop prevented the usual microparticle slurries to be utilized as heat transfer
liquids. On account of these reasons, the millimeter or micrometer particles suspension was
rejected in heat transfer application. After a century, Maxwell’s thought was re-examined
by Choi [21] and he utilized the suspensions of nanoparticle in conventional base liquids with

no dispersants.

Nanofluid is the term initially coined by Choi [21] to define another class of heat transfer
liquids that display thermal properties better than those of their base liquids. Nanofluids are
fluids that contain little volumetric amounts of nanometer-sized particles, called nanoparti-
cles. Choi [21] experimentally checked that the inclusion of nanoparticles in ordinary base
liquids significantly improved the thermal conductivity. Nanofluid is the nanotechnology
based heat transfer fluid that can be prepared by stably suspending nanometer-sized parti-
cles in regular liquids. Nanofluids have higher thermophysical properties, such as, viscosity,
thermal diffusivity, thermal conductivity, and convective heat transfer coefficients contrasted
with those of base liquids. Typical thermal conductivity improvements are in the scope of
15% — 40% over the base liquid and heat transfer coefficient improvements have been found
up to 40% et al [95]. The objective of nanofluids is to accomplish the most elevated con-
ceivable thermal properties at the littlest conceivable concentrations (ideally < 1 by volume)
by uniform scattering and stable suspension of nanoparticles (ideally < 10nm) in host lig-
uids. Additionally, the presence of nanoparticles improves the electrical conductivity of the
nanofluids, henceforth are more vulnerable to the impact of magnetic field than the tradi-

tional base fluids.

Several models and methods have been suggested in the literature to investigate the
convective flows of nanofluids. Among them, Tiwari-Das model [88] and Buongiorno model

[13] are often used by researchers to study the heat transfer improvement in nanofluids.



Tiwari-Das Model

Tiwari and Das [88] developed a model to analyze the behaviour of nanofluids by taking the
volumetric fraction of nanparticles into consideration. Using this model, the basic governing

equations are given by

V-V=0 (1.1)
pus(V - V)V = =Vp = (pB)as(T = Too)|g + pins V>V (1.2)
V.-VT = a,;V*T (1.3)

where V is the velocity vector, T is the temperature of the nanofluid, pS3,, s 1s the buoyancy
coefficient of the nanofluid, g is the acceleration due to gravity, p,y is the viscosity of
the nanofluid, «,s is the thermal diffusivity of the nanofluid and p,s is the density of the

nanofluid, which are given by

7
finf = W Py = (1= @)ps + 0ps, pCyp, ;= (1 = 0)pCp; + ¢pCy,

pCpn; Ky (ks + 2kg) + d(ky — k)

here ¢ is the solid volume fraction of the nanofluid, p, and ps are the density of the solid
particle and base fluid, respectively, ;s is the viscosity of the base fluid, k; and k, are the
thermal conductivity of the base fluid and nanoparticle, respectively and &, is the effective
thermal conductivity of the nanofluid approximated by the Maxwell-Garnett model (see

Oztop and Abu-Nada [2]).

Buongiorno Model

Buongiorno [13] proposed a new model based on the mechanics of nanoparticle/base-fluid
relative velocity. He identified seven slip mechanisms namely, Brownian diffusion, inertia,
thermophoresis, fluid drainage, diffusiophoresis, magnus effect and gravity. They can gener-

agte a relative velocity between the base fluid and nanoparticles and inferred that, of these



seven just thermophoresis and Brownian motion are critical slip mechanisms in nanofluids.
Based on this study, he has finally developed an acceptable two-component four-equation
non-homogeneous equilibrium model for mass, momentum, and heat transfer in nanofluids.
This is the model which is being used to study the heat transfer problems theoretically. The

basic governing equations for this model are given by

V-V=0 (1.5)
pr(V-VV) ==Vp+[pps +(1—¢)ps (1 =) (T —Tx)g+pnV?V (1.6)
V.-VT =aV?T +1 |Dg(Vo.VT) + % (VT.VT) (1.7)
Y 2 DT 2
V:Vé =Dy (V'0) + = (V'T) (1.8)

where v is the kinematic viscosity of the nanofluid, « is the thermal diffusivity of the
nanofluid, Dg is the Brownian diffusion coefficient, Dt is the thermophoretic diffusion co-
efficient and 7 = (pc)s/(pc)r, with (pc); and (pc)s being the heat capacity of nanofluid and

the effective heat capacity of the nanoparticle material, respectively.

1.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) deals with the dynamics of matter moving in an electro-
magnetic field, particularly where currents created in the matter by induction change the
field. MHD is the study of magnetic properties of electrically conducting fluids. This sub-
ject has attracted numerous scientists and engineers for the last few decades because of its
fascination and importance in various technological devices and in understanding the diverse
cosmic phenomena. The applications MHD flows include droplets sprays, lubricant, polymer
technology, power generation from two-phase mixtures, medical diagnostic devices, extrusion
of molten polymers, cooling systems with liquid metals etc. MHD describes the frontier area

combining classical fluid mechanics and electrodynamics. MHD phenomena are outcome of



mutual interaction between magnetic field and electrically conducting fluid flowing across it.

Consider an incompressible and electrically conducting fluid in the presence of an arbi-
trary magnetic field. A magnetic field in the medium will be induced due to the motion
of a conducting liquid in an applied magnetic field. The total magnetic field is the sum of
the induced and applied magnetic fields (B = By + b , b is induced magnetic field). The
assumption of electric field (E) is of the same order of magnitude as the induced electric
field (7 x B) allows to assume that the induced magnetic field is much smaller than the
externally applied magnetic field. The magnetic Reynolds number characterizes the relative
strength of the induced field. Assume that the electric energy is negligible compared to the
magnetic energy. Since the displacement current and electric field energy are neglected, the
main interaction is between the magnetic field and the fluid. Further, a force called Lorenz
force (J x B, where J is the current density) will act on the fluid and alter its motion when
currents are induced by a motion of a conducting fluid through a magnetic field. The mag-
netic field, then interacts with the fluid by means of body force and body couple per unit

mass. The current density vector J is approximately the same in any inertial frame. This

means, using Ohm’s law

J=0o [E +q X é} .

If gravitational effects are not present, then a regular magneto-fluid dynamics assumption is
of = peE +J x B, where p, is the free charge density. Since, the electric force density p.F
is smaller than J x B, the electric force density can be neglected. Hence, the fluid dynamical
aspects of MHD are handled by adding an electromagnetic force term to the momentum

equation of the fluid.



1.3 Basic Terminology

Convection

The mechanism of exchange of heat energy as a result of a temperature gradient or tem-
perature differences is determined by heat transfer. Heat transfer happens in three modes:
conduction, convection and radiation. The heat transfer due to the movement of fluid from
one region to the other region in the medium is called convection. The heat transfer by
convection together with conduction is known as convective heat transfer. Convective heat

transfer is further classified as Forced Convection, Free Convection and Mized Convection.

Free/Natural Convection

Free convection flow is caused by buoyancy forces which emerge from the density changes in

the fluid due to temperature and concentration gradients.

Forced Convection

If the external agent (such as pump, fan, etc.) causes the motion of the fluid flow, then the

process is termed as forced convection.

Mixed Convection

The fluid flow in which the influence of forced flow in free convection or the buoyancy force

in forced convection turn out to be significant then it is called mixed convection.



Brownian Motion

The arbitrary motion of nanoparticles within the base fluid is called Brownian motion, and
this results from continuous collisions between the nanoparticles and the molecules of the

base fluid.

Thermophoresis

Particles can diffuse under the influence of a temperature gradient. This phenomenon is
called thermophoresis, and is the particle equivalent of the renowned Soret effect for gaseous

or liquid mixtures.

Boussinesq Approximation

For sufficiently small isobaric changes in temperature and concentration, the fluid density
depends linearly on temperature and concentration differences, which is called as a linear

Boussinesq approximation (discussed in detail by Tritton [90]) and is given by

p = poofl = (T = Tso) = o (C = Cx)] (1.9)

where po is the fluid density, T, is the ambient temperature,C, is the ambient concentration
at some reference point in the medium, 7 is the coefficient of thermal expansion and (¢ is

the coefficient of solutal expansion, which are given by

_ (o
Br = P (8T>p,c (1.10a)

(%
fe = - (80),,; (1.10b)

Equation (1.10) is a good approximation for the variation of density. This states that

i. all variations in fluid properties can be completely ignored except for density in mo-



mentum equation.

ii. the density is considered to vary with temperature and concentrations only, and its

variations can be ignored everywhere except where they give rise to buoyancy force.

Hall and Ion-slip Effects

“The presence of a magnetic field, in the flow of electric current through a conductor, applies
a transverse force on the moving charge carriers that tends to push them to one side of the
conductor. All accumulation of charge along the edges of conductors will adjust this magnetic
effect, producing a quantifiable voltage between two sides of the conductor. The existence
of quantifiable transverse voltage is known as a Hall effect” named after E. H. Hall who

discovered it in 1879.

“In view of non-homogeneous distributions of charge carriers, Lorentz forces generate
voltage gradients in all conducting liquids moving through magnetic fields. In plasma, elec-
trons are stripped from the molecules, leaving a fuming mass of free electrons and positive
ions. These carriers can be isolated by Lorentz forces in the conventional manner. The
electrons tend to move faster than the ions when the plasma moves at high speed. The
difference of the velocities is called ion-slip”. lon-slip creates a voltage that is axial to the

direction of the flow.

The study of fluid flow with Hall currents and ion-slip effects has important engineering
applications in problems of magnetohydrodynamics generators and Hall accelerators as well
as in flight magnetohydrodynamics. If the electron-atom collision frequency is assumed to
be relatively high, the Hall and ion-slip effects cannot be neglected in which a current is
induced in the direction normal to both the electric and magnetic fields. In this case, the

generalized ohms law (current density ) is given by [83]

J=a|BtaxB-nBx])+ T (Bx])x B (1.11)
0

where 7 is the Hall factor and f; is the ionic slip parameter, the total electric field current

10



which is neglected in this study by the assumption that the induced magnetic field is very

small.

Joule Heating Effect

The Joule heating is produced by inter communication among the atomic ions that compose
the body of the conductor and moving charged particles that form the current. It is because
of the collision between the moving particles. In this process, some of the kinetic energy is
converted into the heat and as a result temperature of the body increases. In recent years,
the engineers and scientists are interested to increase the efficiency of various mechanical
systems and industrial machineries. Such kinds of difficulties can be handled to decrease the
temperature produced due to Ohmic dissipation or Joule heating. Numerous researches have
been carried out for Joule heating effect on fluid flow and heat transfer at various conditions

and found that it plays notable effect on MHD flow and heat transfer.

Chemical Reaction

Chemical reaction effect on the fluid flow is of considerable significance in chemical tech-
nology, materials processing systems and hydrometallurgical industries. The research on
fluid flow with thermophoresis and chemical reaction effects can help to design the chemical
processing equipment, chemical diffusion in the disk electrode modelling, carbon monoxide
reactions in metallurgical mass transfer and kinetics, optical materials processing, and for-
mation and dispersion of fog, etc. Several investigators have analyzed the impact of chemical

reaction on the flow, heat and mass transfer through channels, pipes and an annular region.

Chemical reaction is the reaction in which the rate of reaction is directly proportional
to the species concentration. Depending on the occurrence at an interface or as a single-

phase volume reaction, the chemical reaction can be termed as either heterogeneous or
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homogeneous. With first order chemical reaction, the equation (1.8) can be written as

V.V¢ =Dg (V?¢) + % (V°T) — ki (C — Co) (1.12)

m

where k; is the rate of chemical reaction.

Radiation

The influence of thermal radiation is very important when the temperature difference between
the surface and atmosphere is large. The study of radiative and magnetic field effects has

important applications in physics and engineering.

Heat transfer due to emission of electromagnetic waves is known as thermal radiation.
The importance of radiation becomes intensified at high absolute temperature levels. It
is well known that the thermal radiation heat transfer does not require any intermediate
medium by electromagnetic waves, or photons, which may travel a long distance without
interacting with medium. Thus thermal radiation is of great importance in vacuum and space
applications. The transfer of energy by radiation depends on differences of the individual
absolute temperature of the bodies. In the presence of thermal radiation, the energy equation

(1.7) reduce to

3 D
V.-VT =aV?T +7 |Dg (Vo.VT) + T—T (VI.VT)| + Vg, (1.13)

m

The radiation heat flux is ¢, under the Rosseland approximation can be written as

4o OT*
3x Oy

qr = (114)

*

where o* is a Stefan-Boltzman constant and x is the coefficient of mean absorption. We
assume the variation in the fluid phase temperature inside the flow to be appropriately
minimum such that 7% may be shown as a linearly continuous function of the temperatures

and enlarged in a Taylor Series around 7}, and removing highest order terms, we get T =
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ATS T — 3T4.

Homotopy Analysis method

The basic idea of the homotopy in topology is employed by Liao [47] in 1992 to develop a
general analytic method for nonlinear problems, called homotopy analysis method (HAM).
It provides a great freedom to express solution by means of different base functions. Also, it
provides a convenient way to control the rate and region of convergence of the series solution
of nonlinear problems. It can be applied to ordinary differential equations, partial differential
equations, integro-differential equations, delay-differential equation, integral equations etc.

This method is based on the following assumptions:

e There exists the solution of zero-order deformation in the whole region of the embedding

parameter p € [0, 1].
e All the high-order deformation equations have solutions.

e All Taylor series, expanded in the embedding parameter p, converge at p = 1.

Afterward, Liao [49] presented an optimal homotopy analysis approach for strongly nonlinear
differential equations. The optimality of auxilary parameters and HAM are the advancements

of HAM discussed by Turkyilmazoglu [92, 93].

1.4 Entropy Generation

Entropy and entropy generation are fundamental quantities. They play essential role in
understanding of many diverse phenomena ranging from cosmology to biology. A physical
quantity termed entropy defined in the second law of thermodynamics is a measure of ir-
reversibility of systems. Entropy generation is not a property because it depends upon the
process path. To comprehend the function of entropy generation mechanism, it makes prac-

ticality to concentrate on the irreversibility of fluid flow and heat transfer procedures. To
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optimize the performance of engineering systems containing devices in which simultaneous
heat and mass exchange occur, their irreversibilities of individual devices must be minimized.
Since the total irreversibility of a system is the sum of the component irreversibilities, this
procedure improves the system performance. The factors that cause irreversibilities include
friction, inelastic deformation of solids, unrestrained expansion, heat transfer across a finite

temperature difference, electric resistance, mixing of two fluids, and chemical reactions.

The second law of thermodynamics can be combined with the principles of fluid mechan-
ics and heat transfer to acquire knowledge about irreversibilities that influence the working
efficiency of the system and processes. All the real processes related to thermal convection
system are associated with thermal gradient and frictional effects and hence some amount
of available energy is destroyed during the process due to irreversibilities. The optimiza-
tion may, therefore, be carried out by minimizing the irreversibilities present in the system.
This approach of thermodynamic optimization known as Entropy Generation Minimization
(EGM) was first reported by Bejan [9]. Entropy generation minimization (EGM)is a method
of “modeling and optimization”. Since then the theories based on these foundations have
rapidly developed. However, the entropy generation consequential from temperature dif-
ferences has stayed untreated by traditional thermodynamics, which persuades numerous
scientists to investigate the applied and fundamental engineering problems in light of the
second law of thermodynamics. Bejan [10, 11, 12] presented the following expression for the

volumetric entropy generation rate

K; 1
Soen = —2[VT]? + — 1.15

where the first term on the right hand side of the above equation represents the entropy
generation due to heat transfer and the second term represents the entropy generation due

to viscous dissipation or friction.

It can be noted that second law analysis makes possible to compare many different
interactions in a process or system and to identify the major sources of exergy distributions

or losses. This enables us to exactly identify the region where the entropy generation rate is
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maximum in the entire fluid regime. This study facilitated through the entropy generation
number introduced by Bejan. Consequently, the relative effects of heat transfer and fluid

friction can be determined successfully by Bejan number.

1.5 Aim and Scope of the Thesis

The aim of the present thesis is to study entropy generation analysis due to convective flow
of a nanofluid in different geometries under various physical effects. Buongiorno [13] model
is the basis of the present study. The geometries considered in this thesis are vertical paral-
lel plates, concentric cylinders and infinite rotating parallel disks. The governing equations
(which are nonlinear) along with the corresponding boundary conditions are initially con-
verted into dimensionless form using non-dimensional transformations. The obtained system
of ordinary differential equations is solved using Homotopy Analysis Method (HAM), which
is one of the most efficient methods in solving diverse types of system of nonlinear differen-
tial equations such as homogeneous, non-homogeneous, coupled and decoupled. The effecs of
Hall, ion-slip, magnetic, Joule Heating, thermal radiation, chemical reaction parameters, and
Brinkman number on the flow characteristics such as the velocity, temperature, nanoparticle

concentration, entropy generation and Bejan number are analyzed.

1.6 Literature Review

Convective flow of a fluid in a vertical channel and an annulus between two concentric cylin-
ders has been the concentration of examination for a long time because of their extensive
variety of practical applications. Several researchers have studied analytically and numeri-
cally the problems on fluid flow and heat transfer between vertical parallel plates. Cheng et al
[20] investigated the problem of the flow reversal and heat transfer of fully developed mixed
convective flow in a vertical channels. Further, the flow in an annulus between concentric
cylinders induced by a relative rotating motion or axial movement is applicable to journal

bearings, rotating electrical machines, standard commercial rheometers and swirl nozzles.
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Williams [96] was the first to investigate numerically the free convection in a rotating an-
nulus. He presented a very good analysis of axisymmetric flows in an annular geometry for
various combinations of physical parameters. The exactness of the numerical computations
was further substantiated by experimental observations [97] for the same geometry. The
convective flow of a fluid between rotating disks is an important topic in view of its appli-
cations in rotating machinery, crystal growth processes, lubrication and computer storage
devices. Soong [75] presented the theoretical analysis for axisymmetric mixed convective

flow between rotating coaxial disks.

The study of convective flow of a nanofluid has received considerable theoretical and
practical interest in view of its use in a wide variety of engineering applications. These ap-
plications include cooling of nuclear reactor, power generating systems, automobile engines,
welding equipment, heat exchanging in electronics devices and computers. The detailed in-
troduction and applications of nanofluids can be found in Das et al [23]. Buongiorno [13] has
investigated the factors which contribute to abnormal thermal conductivity increase relative
to base fluids and viscosity. He developed an analytical model for convective transport in
a nanofluid, which takes Brownian diffusion and thermophoresis effects into account. The
literature on nanofluids has been reviewed by Daungthongsuk and Wongwises [24], Eastman
et al [27] and Lee [46] among several others. These reviews examine in detail the work done
on convective transport in nanofluids. Number of studies were conducted in recent years,
on A vertical channel filled with nanofluid by considering distinct types of convectional
base fluids with particular nanoparticles. Hang and Pop [41] verified the mixed convective
nanofluids flow in a vertical channel and observed that nanoparticle volume fraction plays an
essential role for developing the heat and mass transfer properties of the fluids. Hang et al
[40] studied the mixed convective nanofluid flow in a vertical channel using the Buongiorno
method. Several studies were also conducted on the convective heat transfer and nanofluid
flow through concentric cylinders. Sheikhzadeh et al [73] analyzed the mixed convective
flow of a nanofluid in an annulus between concentric cylinders. Togun et al [89] presented
a detailed review on heat transfer of mixed, forced and natural and convective nanofluid

flow through various annular passage configurations. On the other hand, the heat transfer
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and fluid flow between rotating disks is an important topic in view of its wider applications
in rotating machinery, crystal growth processes, lubrication and computer storage devices.
Feng and Kleinstreuer [33] examained the convective heat transfer of nanofluid in parallel

disks system.

The flow in an electrically conducting nanofluid with magnetic effects has attracted sev-
eral researchers in view of its applications in an engineering technology and science. After
the pioneering works of Hartman and Lazarus [42] in connection to the impact of mag-
netic field on the laminar flow of viscous liquids between parallel plates, several researchers
have investigated the impacts of magnetic field on the Newtonian and non-Newtonian flows
through different geometries when the fluid is an electrically conducting. Chamkha et al [15]
presented a review on various research work done on the MHD convection of a nanofluid
in various geometries and applications. In order to simplify the mathematical analysis of
most of the MHD flow problems, the Hall current and ion-slip effects in Ohms law were
ignored. However, the impact of Hall current and ion-slip is necessary in the presence of
strong magnetic field. Therefore, in several physical situations it is required to include the
effects of Hall and ion-slip terms in the magnetohydrodynamic (MHD) equations. The effects
of Hall current on an electrically conducting viscous steady fluid in a channels is studied by
Tani [86]. Since then several researchers have studied the Hall and ion-slip effects on the
flow through different geometries. Srinivasacharya and Kaladhar [78] analyses the impact
of Hall and ion-slip on MHD natural convective flow of a couple stress fluid in an annulus.
Srinivasacharya and Kaladhar [80] studied the effects of Hall current and ion-slip on mixed
convection flow of a couple stress fluid between parallel plates. Hayat et al [84] examained
the unsteady flow due to non-coaxially rotating disk with Hall effects. It is well known that
the Joule heating plays notable effect on MHD flow and heat transfer. Zhang et al [31]
conducted a numerical study on MHD fluid flow and heat transfer under different levels
of thermal radiation considering Joule heating effect. Hayat et al [70] explored the mixed
convective Jeffrey nanofluid flow in a compliant walls channel by taking Joule heating along

with viscous dissipation and thermal radiation into account.

Several authors examined the effect of radiation on convective flow of a nanofluid with
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heat and mass transfer from bodies of different geometries under various physical conditions.
Sheikholeslami and Ganji [72] investigated the effect of thermal radiation and magnetic field
on the unsteady flow of a nanofluid flow and heat transfer. Srinivasacharya and Vijay
Kumar [82] considered the mixed convective flow of a nanofluid in a non-Darcy porous
medium considering radiation effect. Chen et al [18] studied the effects of thermal radiation
on laminar forced and free convection along a wavy surface. Hady et al [39] reported that
an increase in thermal radiation parameter reduces the nanofluid temperature which leads
to increase the rate of heat transfer. Rahman [1] investigated numerically the problem of
thermal radiation and unsteady MHD flow of a nanofluid in a stretching porous medium.
Turkyilmazoglu and Pop [94] considered the problem of unsteady natural convective flow
of some nanofluids past a vertical infinite plate with radiation effect. El-Kabeir et al [30]
investigated the effect of thermal radiation on boundary flow and heat transfer by non-Darcy
natural convection from a vertical cylinder embedded in a porous medium saturated with
nanofluid. Agha et al [3] studied the influence of thermal radiation on natural convective
boundary layer flow for heat and mass transfer in a porous medium saturated by a nanofluid
past a semi-infinite vertical plate, via a model in which Brownian motion and thermophoresis

are taken into account.

The role of chemical reaction on heat and mass transfer are of great influence in chemical
technology and industries of hydrometallurgy. In most of the cases of chemical reactions, the
reaction rate depends on the concentration of the species itself. Chemically reacting nanofluid
may play a significant role in many processing systems and materials. Several investigators
have focused on the effect of chemical reaction on the heat and mass transfer flow passing
through an annular region between concentric cylinders, channels and parallel disks. Habibis
et al[69] studied the flow reversal of chemical reacting fully developed mixed convective flow
in a vertical channel. Kothandapani and Prakash [52] investigated the chemical reaction
effect on flow of a nanofluid in a vertical channel in presence of inclined magnetite field.
Babulal and Dulalpal [26] discussed the combination of chemical reaction and Joule heating
effects on MHD mixed convective flow of a viscous dissipating fluid on a vertical parallel

plates. Mridulkumar et al [61] analysed the effect chemical reaction on MHD boundary
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layer flow with Joule heating effect over the stretching sheet. Poulomi et al [64] examined
the significance of mixed convective chemically reacting nanofluid flow with internal heat

generation and thermal radiation.

Entropy generation, a measure of the destruction of available energy in a system, plays an
important role in the design and development of engineering processes. Entropy generation
is a powerful and useful optimization tool for a high range of thermal applications. Entropy
generation is directly proportion to the thermodynamic irreversibility in a system. Bejan [11,
12] developed the entropy generation minimization method and introduced its applications
in engineering sciences. Thereafter, many authors such as Baytas [8], Tasnim and Mahmud
[87], Ganji et al [35], Esfahani and Shahabi [32], Tshehla et al[91], Heidary et al [44],
Chauhan and Kumar [16], Ramakrishna et al [65], etc., have studied the entropy generation
and irreversibility profiles for different geometries in different types of Newtonian and non-
Newtonina fluids. The majority of entropy generation analysis deal with convection processes
in which the entropy generation is the result of fluid friction and heat transfer. Haddad et
al [38] presented the entropy generation due to laminar forced convection in the entrance
region of a concentric cylindrical annulus. It was found that the thermal entropy generation
is relatively dominant over viscous entropy generation. Yilbas et al [98] concluded a study
on the entropy analysis for non-Newtonian fluid flow in an annular Pipe. They found that
the rate of entropy generation can be reduced by reducing both non-Newtonian parameter
and Brinkman number. Rashid and Mehr [66] examained the effects of the velocity slip
and temperature jump conditions on the entropy generation in the MHD flow over a porous
rotating disk. Mahian et al [53, 54, 55] determined the influence MHD flow on the entropy
generation of a nanofluid flow through a vertical annulus. Entropy generation due to a
nanofluid flow through a channel with convective cooling/heating was investigated by [22,
17, 51, 58]. Eegunjobi and Makinde [29] presented the effects of slip and convection heating
on entropy generation in a vertical channel. Gyftopoulos and Beretta [37] studied the entropy
generation due to chemically reacting system. Imen et al [45] analyzed the entropy generation
analysis of a chemical reaction process. The entropy generation on the MHD blood flow of

a nanofluid influenced by thermal radiation is presented by Rashidi et al [68]. Fersadou
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et al [34] analyzed numerically the entropy generation and magnetohydrodynamic mixed
convective nanofluid flow in a vertical channel. Srinivasacharya and Hima Bindu [77] explored

the entropy generation due to micropolar fluid flow between concentric cylinders.

1.7 Outline of the Thesis

The main aim of this thesis is to present entropy generation analysis in a nanofluid flow
through a vertical channels, concentric cylinders and parallel disk. A quantitative analysis
has been performed based on numerical computations in order to know the effects of certain

physical parameters on entropy generation and Bejan number through graphs.
This thesis consists of FIVE parts and TEN chapters.

Part-1 consists of a single chapter (Chapter - 1). This chapter is introductory in nature
and presents the motivation for the investigations carried out in the thesis. A survey of
pertinent literature is presented. The basic equations governing the flow, heat and mass

transfers of a nanofluid along with the nanoparticle volume fraction are given.

Part-IT deals with the mixed convective flow of a nanofluid with Hall, ion-slip, Joule
heating and radiation effects in a vertical channel. This part consists of three chapters
(Chapters 2, 3 and 4). In all these chapters, the nonlinear governing equations and their
associated boundary conditions are initially cast into dimensionless form. The resulting
system of equations is then solved using well established method, namely, homotopy analysis
method (HAM). The convergence of the solution is established through error analysis. The
obtained numerical results are compared wherever possible with the available results and

found to be in good agreement.

In chapter 2, the steady convective flow of a nanofluid with Hall and ion-slip effects in
a vertical channel is investigated. The effects of magnetic, Hall, ion-slip, thermophoresis,
Brownian motion and Buoyancy ratio parameters on the non-dimensional velocities, tem-

perature and nanoparticle concentration are discussed.
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The effects of Joule heating and radiation on the entropy generation for steady incom-
pressible mixed convective nanofluid flow in a vertical channel is considered in chapter - 3.
The non-dimensional velocities, temperature, nanoparticle concentration, entropy generation
and Bejan number profiles are presented graphically for different values of thermal radiation,

magnetic and Joule heating parameters.

In chapter 4, the entropy generation due to laminar mixed convective flow of an in-
compressible chemically reacting nanofluid in a vertical channel is studied by taking Joule
heating effect in to consideration. The entropy generation and Bejan number are computed

numerically by utilizing the velocity and temperature.

Part-III deals with the convective flow of a nanofluid between two concentric cylinders
by considering Hall, ion-slip, Joule heating and radiation effects. This part consists of three
chapters (Chapters 5, 6 and 7). Using suitable transformation, the governing equations are
transformed to non-linear ordinary differential equations. Homotopy analysis method is used
to solve the resulting system of equations in order to explore the usefulness of the present

study.

The steady, laminar convective flow of nanofluid with Hall and ion-slip effects in between
two concentric cylinders in presence of magnetic field is studied in chapter 5. The outer
cylinder is rotating with an angular velocity w and the inner cylinder is at rest. The flow
is generated due to the rotation of this cylinder. The effects of magnetic, Hall, ion-slip,
thermophoresis and Brownian motion parameters on the non-dimensional velocities, tem-
perature and nanoparticle concentration are discussed. In this chapter, two types (cases) of
problems are considered. The first type is of natural convective flow and the second type is

of mixed convective flow of a nanofluid.

Chapter6 presents the effects of radiation and Joule heating on entropy generation due
to the laminar mixed convective flow of a nanofluid in an annulus between two concentric
cylinders. The effects of magnetic, Joule heating, radiation parameters and Brinkman num-
ber on the velocity in flow direction, dimensionless temperature, nanoparticle concentration,

Bejan number and entropy generation are analyzed and presented graphically.
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In chapter7, the laminar mixed convective flow of an incompressible chemically reacting
nanofluid in an annulus between two concentric cylinders is investigated by considering Joule
heating effect. The non-linear governing equations are non-dimensionalized and then solved
by using HAM. The entropy generation rate and Bejan number are calculated numerically.
The effects of magnetic, Joule heating, chemical reaction parameters and Brinkman number
on the velocity, temperature and nanoparticle concentration are investigated and presented

graphically.

Part-IV deals with the mixed convective flow of a nanofluids between rotating parallel
circular disks considering Hall, ion-slip, Joule heating and radiation effects. This part consists

of two chapters (Chapters 8 and 9).

Chapter8 analyzes the Hall and ion-slip effects on entropy generation in a mixed con-
vective an electrically conducting nanofluid flow between two parallel coaxial disks by con-
sidering Joule heating effect. The entropy generation rate and Bejan number are calculated
numerically. The effects of Joule heating and relative rotating rate parameters on the axial
and tangential velocities, temperature, nanoparticle concentration, entropy generation and

Bejan number are presented graphically.

In chapter9, the Joule heating effect on entropy generation due to laminar mixed con-
vective flow of an incompressible chemically reacting nanofluid between two parallel coaxial
disks is discussed. The entropy generation and Bejan number are computed numerically
by utilizing the velocity and temperature. The effects of chemical reaction, radiation, ther-
mophoresis parameters and Brinkman number on the velocity, temperature and nanoparticle

concentration are investigated and presented geometrically.

Part-V consists of a single chapter (Chapter - 10). This chapter summarizes the main
conclusions of the earlier chapters and the directions in which further investigations may be

carried out are indicated.

List of references is given at the end of the thesis. The references are numbered in a

sequence in which they appear in the text.
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Part 11

ENTROPY GENERATION IN
MIXED CONVECTIVE FLOW OF A
NANOFLUID IN A VERTICAL
CHANNEL
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Chapter 2

Hall and ion-slip effects on convective
flow in a vertical channel filled with

nanofluid !

2.1 Introduction

Convective transport in a nanofluid through a vertical channel, a frequently encountered
geometry in the thermal engineering equipment, has been the subject of investigation for
many years. This is because of its wide range of applications in the structure of cooling
devices for electronics and microelectronic equipment, solar energy collection, etc. On the
other hand, the study of convective heat transfer and fluid flow problems with the interac-
tion of magnetite field has increased enormously because of many engineering and industrial
applications. In most of the investigations concerned with MHD convective flows, the Hall
and ion-slip terms in Ohm’s law were ignored in order to simplify the mathematical analysis
of the problem. However, the impact of Hall and ion-slip are essential in the presence of

a strong magnetite field. Therefore, in several physical situations it is required to include

!Type - I: Published in “Frontiers in Heat and Mass Transfer, (2017), Vol.8,11”, Type - II:
Published in “Journal of Nanofluids, Vol. 5 (2016), 982—992”
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Figure 2.1: Physical model and coordinate system.

the significance of Hall and ion-slip parameters in MHD flow problems. Several researchers
investigated the influence of Hall current and ion-slip on the convective transport in Newto-
nian and non-Newtonian fluid flows through channels. Tani [86] analyzed the effect of Hall
current on the electrically conducting viscous fluid flow in a vertical channel. Srinivasacharya
and Kaladhar [79] explored the significance of Hall current and ion-slip effects on natural

convection in a couple stress fluid flow through a vertical parallel plates.

The aim of this chapter is to analyze the significance of Hall and ion-slip on the steady
mixed /natural convective flow of a nanofluid in a vertical channel. The homotopy analysis
method (HAM) is used to solve the governing nonlinear ordinary differential equations.
The effect of flow parameters on the dimensionless velocity, temperature, and nanoparticle

concentration are examined.
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2.2 Mathematical Formulation

Consider a steady, laminar and electrically conducting flow of a nanofluid passing through a
vertical channel. The distance between the plates of a channel is 2d. The x-axis is taken in
the direction of flow vertically upward through the central line of a vertical channel, y—axis
is in the direction orthogonal to the flow as shown in figure 2.1. The plate y = —d is
maintained at a temperature T} and nanoparticle volume fraction ¢, while plate y = d is
maintained at a temperature Ty and nanoparticle volume fraction ¢,. A uniform magnetic
field By is applied in y—direction. The Hall current and ion-slip effects are considered in view
of relatively high electron-atom collision frequency. This assumption causes a cross flow in
the z-direction, therefore the flow becomes three dimensional. The induced magnetic field is
negligible comparison to the applied magnetic field. A uniform pressure gradient is applied
in z-direction. Further, all the characteristics of fluid are considered as constant apart from
the density in the buoyancy term. Assume that the plates along the x and z-direction are
extended infinitely. Hence, the velocity vector of a fluid is taken as (u(y),v(y),w(y)). The

temperature and nanoparticle volume fraction are respectively denoted by T'(y) and ¢(y).

Under these assumptions, the equations governing a nanofluid flow, as proposed by Buon-
giorno [13], under the significance of uniform transverse magnetite field with Hall and ion-slip

effects are as follows

ov
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where Sh is the Hall parameter, §i is the ion-slip parameter, p is the density, g* is the
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acceleration due to gravity, p is the viscosity coefficient, C, is the specific heat capacity, o
is the electrical conductivity, ae = 1 4+ Sh 57 is a constant, S is the coefficients of thermal
expansion, « is the effective thermal diffusivity, Dpg is the Brownian diffusion coefficient, D

is the thermophoretic diffusion coefficient, k is the coefficient of thermal conductivity, D is

(rC)p
ers

The conditions on the boundary are

the mass diffusivity and 7 =

op=¢1 u=0, v=vy, w=0, T=T,, on y=—d,
(2.6)
p=¢2 u=0, v=vy, w=0, T=T, on y=d.

It is to be noted from (2.1) and (2.6) that v = vy.

In this chapter, two types of convection i.e., mixed (type - I) and free (type - II) convection

are considered.

2.2.1 Mixed Convection

Assume that the mixed convective flow is taking place in the presence of thermal buoyancy

and uniform pressure gradient in the z-direction. Introducing the following non-dimensional

variables
Y u w T-T ¢ — P d*p
= -, = —, :—’9:—’ :—’P:— 27
7 df w ! =T, P2 — 1 i Uo (27)
in Egs.(2.1) - (2.5), we get the nonlinear differential equations as
Gr Ha?
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where prime indicate the derivative with respect to n, v is the kinematic viscosity coef-
nCp v vod

ficient, Pr = - is Prandtl number, Le = — is Lewis number, R = — is the suc-
! B ()
1— *Br(Ty — Ty d? d
tion/injection parameter, Gr = ( 0)9 BT2( 2 1) is Grashof number, Re = tod is
v v
By® d? d? 0
Reynold’s number, Ha* = 0 9 is Hartman number, A = & 9P 45 a constant pressure
L [ ug Ox
2 D _
gradient, Br = o is Brinkman number, Nb = 7 Dp(¢2 = 61) is the Brownian mo-
kf (T2 - Tl) v
TDp(T; —Th) (Pp = P1o) (P2 — ¢1)

tion parameter, Nt =

is the thermophoresis parameter and Nr =

v psobr(Tz = T1)(1 = ¢)
is the buoyancy ratio.

The corresponding dimensionless boundary conditions are

f=0 ¢g=0, =0, S=0 at n=-1
(2.12)
f=0, ¢g=0, #=1, S=1 at n=1

2.2.2 Natural convection

In this case, we assume that the flow is to be natural convective and there is no external

pressure gradient (% =0).

Introducing the following non-dimensional varaibles

Y ud wd T—-1T; O — P1
=2 = = 0= = 2.1
n d7f l/GT"g I/G’f" TQ—T17S ¢2—¢1 ( 3)
in Egs.(2.1) - (2.5), we get
Gr Ha?
"—Rf'+—(0—-NrS) - ———— hg) = 2.14
"R+ — ey )=0 (2.15)
— —aeqg) = .
$ T e pi?) g

0" — RPr¢ + PrNb0'S'+ PrNt0? +2BrGr’ [(f)*+(¢)?] =0 (2.16)
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Nt
//_ L !/ - //: 217
S"—RLeS +Nb9 0 (2.17)

The corresponding dimensionless boundary conditions are

f=0 ¢g=0, =0, S=0 at n=-1
(2.18)
f=0, g=0, =1, S=1 at n=1

2.3 Solution of the Problem

2.3.1 Mixed Convection

The governing Eqgs. (2.8) - (2.11) along with (2.12) are solved by using homotopy analysis
method (HAM). (For more details on HAM, see the works of Liao [47, 48, 49, 50]). The
first step in HAM is, to choose the initial approximations of f(n), g(n), 8(n) and S(n) and

auxiliary linear operators. Therefore, we choose the initial approximations as

(n+1)

. (2.19)

Jom) =0, go(n) =0, 6bo(n) = and  Sy(n) =

2
and the auxiliary linear operators as L; = — for ¢ = 1,2, 3,4 such that

on?
Li(er +com) =0, La(cs+cym) =0, Ls(cs +cen) =0 and  Ly(c; +csn) =0 (2.20)

where ¢;, (i = 1,2, ---8), are constants.

The second step in HAM is to define the zeroth order deformation, which is given by

(I =p)La[f(m;p) — fon)] = phaN1[f(n;p)], (1 = p)L2[g(n;p) — go(n)] = phaNa[g(n; p)],

(1 = p)L3[0(n; p) — Oo(n)] = phaN3[0(n; p)], (1 — p)La[S(n;p) — So(n)] = phaN4[S(n; p)]
(2.21)
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where

Gr Ha?

M [f(n,p), 9(n,p),0(n,p), S(n,p)] = f" = Rf' + == (0 = NrS) — (a2 1 510

o (e f+ Bhg)— A

2

No[f(n,p), g0, p),0(n,p), S(n,p)] = ¢" — Rg' + m

(Bh f — aeg)
Ns[f(n,p),9(n,p),0(n,p), S(n,p)] = 0" — RPr¢' + PrNbd'S" + PrNt0? +2BrGr’ [(f')* + (¢)?]

1! ! Nt /!
Nalf(n,p),9(n.p),0(n,p),S(n,p)] =S" — RLeS + NI 0

(2.22)
where p € [0, 1] is the embedded parameter and h;, (i = 1,2,3,4), are the non-zero auxiliary

parameters.

The equivalent boundary conditions are

f(=Lp)=0, g(-L;p)=0, 0(-1;p)=0, S(=1;p)=0,

f(L;p) =0, g(L,p)=0, 6(1;p)=1, S(;p) =1

(2.23)

From p =0 to p = 1, we can have

f(m:0) = fo, 9(n:0) =go, 0(n;0) =6y, S(1;0) =Sy,
f; 1) =f(m), gm;1)=gn), 0n;1)=0@mn), Smn1l)==Sn)

Thus, as p varying from 0 to 1, f, g, # and S varies continuously from the initial guess fj,

go, 0o and Sy to the final solution f(n), g(n), 6(n) and S(n) respectively. Using the Taylor’s
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series, f,g,0 and S can be written as

f(n;p) Ifo+2fm(77)pm, fm(n) =

gip) =go+ > g™, gm(n) =

m=1

0(m;p) = b+ > _ Om(mp™,  Om(n) =

Sm;p) = S0+ Y _ Smln
m=1

™, Sm(n) =

m!  Op™

m!  Op™

m!  Op™

m!  Op™

10" f(nip)
1 0™g(n;p)
1 9m0(n; p)

1. 9mS(n;p)

p=0
p=0

(2.24)

p=0

p=0

The values of the auxiliary parameters are chosen in such a way that the series (2.24)

converge at p =1 i.e.,

F) = Ffo+ > ), 9) =90+ > gm(n),

0(n) =00+ D O0m(n), S()=So+ D Suln).

Next, the m*-order deformation equations are given by

Ll[fm(n) - mem—l(n)] = thfn<77)a

L[0m(n) — XmOm-1(n)] = hsR%,(n),

where

Xm =0 for

=1 for

(2.25)

La[gm(1n) = Xmm-1(n)] = ha R, (1),

Ly[Sim(n) = XmSm-1(n)] =

m<1

m > 1
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here m is an integer and

F = " — R+ S ___Ha _ \
R () = f" = Rf + 5~ (0 = Nr5) (a€2+6h2)(&6f+6h9) A

2

a
R (M =¢ —Rg + ———
m(n) =g It T

(Bh f — aeg)

m—1 m—1

R)\(n) =0"—RPro' + PrNb'S' + PrNt0” + 2BrGr* | Y fr  ofo+ > Gt na

Nt
S — 1 _ L ! Y i
R>(n)=S5"—RLeS ~|—Nb9 )
(2.27)

2.3.2 Natural convection

In this case also, the governing Eqgs.(2.14) - (2.17) along with the boundary conditions (2.18)
are solved by using homotopy analysis method (HAM). The procedure of obtaining the
solution is similar to that of the mixed convection case and hence details of the solution

procedure for this case are not presented here to avoid repetition.

2.4 Convergence

2.4.1 Mixed convection

In HAM, it is essential to see that the series solution converges. Also, the rate of convergence
of the HAM solution strongly depends on the values of auxiliary parameter h. To find the
admissible range of the auxiliary parameters, h-curves are plotted for 20**-order of approx-
imation and are shown in figure (2.2). It is evident from these figures that the admissible
range for hq, ho, hy and hy are —0.6 < h; < —0.3, —0.65 < hy < —0.4, —1.5 < hg < —0.3
and —1.6 < hy < —0.15 respectively.
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Optimal of hy Optimal of hs Optimal of hs Optimal of hy

Order | h;y Min. of E,, | ho Min. of E,,, | hs Min. of E,, | hy Min. of E,,

10 [-0.59 450x107°%]-051 843 x10°% [-0.2 213x10°%|-1.56 6.26 x 108
15 |-0.59 881 x107%]-0.52 4.71x1071°[-02 480x1072 | -1.6 5.41 x 1071
20 -0.6 451 x107%|-0.51 852x 1071 |-1.6 230x107Y | -1.6 8.69 x 10710

Table 2.1: “Optimal values of hq, ho, hg and hy at different order of approximations (mixed
convection case)”.

The following average residual errors ( Ref. Liao [49] ) are computed to obtain the

optimal value of auxiliary parameters

Jj=0

K m 2 K m T\ 2
1 , 1 .
Eg,m = ﬁ | (N3 [Z HJ(ZAt)]> s ES,m = % | <N4 [Z SJ(ZAt) ) .
i=—K 7=0 i=—K 7=0

where At = 1/K and K = 5. At different order of approximations (m), the least average
residual errors are shown in table (2.1). From this, we see that the average residual errors
are least at h1=-0.59, hy=-0.51, h3=-0.20 and hy=-1.6. Therefore, the optimum values of
convergence control parameters are taken as hy=-0.59, ho=-0.51, h3=-0.20 and hy=-1.6. The
series solutions for different values of m are computed and presented in table (2.2). It is found
from this table that the series (2.25) converges in the whole region of 7. The graphs of the

following ratio’s

Jm(h)
fm—l(h>

gm(h)
gm—l(h)

O (h)
Qm—l (h)

Sm(h)

ﬁf B Sm—1<h) ‘ .

. BO= (2.29)

: 692’

-

against the number of terms m in the homotopy series are presented in figure (2.3). These

figures indicate that the series expansion in (2.25) converge to the exact solution.
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Figure 2.2: “h-curves for (a) f(n), (b) g(n), (c) 0(n) an ( ) S(n) when Nr = 1.0, Nt =
0.5,Gr = 10.0, Ha = 5.0,R = 1.0, A = 1.0, Pr = 1.0, i = 2.0, Re = 2, 8h = 2.0, Le = 1.0
and Br = 0.5 (mixed convection case)”.
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Figure 2.3: “The ratios of 5 f, Bg, 80 and Bs to reveal the convergence of the HAM solutions
(mixed convection case)”.
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Figure 2.4: “h-curves for (a) f(n), (b) g(n), (c) 6(n) and (d) S(n) when Nr = 1.0, Nt =
0.5,Gr = 10.0, Ha = 4.0, R = 1.0, Nb = 0.5, Pr = 1.0, 8i = 2.0, Re = 2, Le = 1.0, 8h = 2.0
and Br = 0.5(natural convection case)”.
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Order £(0) g(0) 6(0) S(0)

) 0.10620400 0.031283400 0.53412318 0.46716189
10 0.10621315 0.030166000 0.54427627 0.46723565
15 0.10621472 0.029013511 0.54731928 0.46734612
20 0.10622485 0.029015717 0.54731934 0.46735634
25 0.10622487 0.029016788 0.54731936 0.46735657
30 0.10622495 0.029023823 0.54732937 0.46735667
35 0.10622496 0.029025837 0.54732938 0.46736671
40 0.10622497 0.029025838 0.54732938 0.46736774
45 0.10622498 0.029026893 0.54732939 0.46736775
50 0.10622498 0.029026893 0.54732939 0.46736879
95 0.10622498 0.029026893 0.54732939 0.46736879

Table 2.2: “Convergence of HAM
convection case).”

solutions for different order of approximations (mixed

2.4.2 Natural convection

To find the admissible range of the auxiliary parameters, h-curves are plotted for 20**-order
of approximation and shown in figure (2.4). It is evident from this figure that the admissible
ranges for hq, ho, hy and hy are —1.0 < hy < =04, —1.4 < hy < —0.45, —=1.7 < hy3 < —0.1
and —1.8 < hy < —0.2 respectively. The average residual errors given by (2.28), at different
orders of approximations (m), are computed. It is found that the average residual errors
are least at hy = —0.49, ho = —1.2, h3 = —0.22 and hy = —1.58. Therefore, the optimum
values of convergence control parameters are taken as hy = —0.49, hy = —1.2, h3 = —0.22
and hy = —1.59. Further, the series solutions for different values of m are computed. It is
observed from these computed values that the series (2.25) converge in the whole region of
n. The graphs of the ratio are shown in figure (2.5) against the number of terms m in the

homotopy series and it indicates that the series (2.25) converges to the exact solution.
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Optimal of hq

Optimal of hs

Optimal of hs

Optimal of hy

Order | h;  Min. of £,

hg Min. of Em

hg Min. of Em

h4 Min. of Em

10 [-0.49 6.68 x 1077
15 |-049 828 x 1078
20 [-0.50 1.35x10°®

-1.20 451 x 1078
-1.20  1.46 x 107°
-1.32 745 x 1071

-0.24 1.89 x 107°
-0.22 1.98 x 1075
-0.22 2.05x107°

-1.58 1.88 x 1077
-1.60 3.08 x 1078
-1.58 9.15x 1078

Table 2.3: “Optimal values of hy, ho, hs and hy4 at different order of approximations (natural

convection case)”.

Order  £(0) 2(0) 0(0) S(0)
5 0.001062040 0.0004656312 0.436658412 0.449041671
10 0.106547215 0.0008211301 0.415106427 0.454270672
15 0.113062142 0.0010397013 0.410628731 0.455023673
20 0.120618062 0.0010598529 0.410337319 0.455477867
25 0.120612487 0.0024016788 0.410546319 0.467356575
30 0.120612495 0.0029023823 0.410546329 0.534617356
35 0.120624963 0.0390258370 0.410546352 0.534657367
40 0.120628976 0.0390283896 0.410546793 0.546723674
45 0.120632449 0.0390293790 0.410547931 0.546723677
50 0.120632498 0.0390296893 0.410547932 0.546732687
55 0.120632498 0.0390296893 0.410547932 0.546736287

Table 2.4: “Convergence of HAM solutions for different order of approximations (natural

convection case)”.
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Figure 2.5: “The ratios of 5 f, Bg, 50 and Bs to reveal the convergence of the HAM solutions
(natural convection case)”.
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2.5 Results and Discussion

2.5.1 Mixed convection

An influence of magnetic parameter Ha, Hall parameter Sh, ion-slip parameter (57, buoy-
ancy ratio parameter Nr and thermophoresis parameter Nt on f(n), g(n),0(n) and S(n) are
presented graphically in figures (2.6) - (2.10). To study the effect of these parameters, the
computations were carried out by taking Le = 1.0, Br = 0.5, Pr = 1.0, Gr = 10, R = 1,
Re=2 Nb=0.5and A= 1.

Figure (2.6) exhibits the impact of the magnetic parameter Ha on the velocity in flow
direction, induced flow velocity, temperature and nanoparticle concentration. Figure 2.6(a)
reveals that the velocity in flow direction is decreasing with an increase in Ha. The transverse
magnetic field, which is orthogonal to the flow direction, gives a resistance force called as
Lorentz force. This Lorentz force resists the fluid low and due to this, the velocity in flow
direction decreases. The influence of Ha on induced velocity is presented in figure 2.6(b). It
is depicted from this figure that the induced velocity is increasing with a rise in Ha. Figure
2.6(c) explains the changes of dimensionless temperature with Ha. It is seen from this figure
that the temperature decays with a growth in Ha. Figure 2.6(d) interprets the variations
of nanoparticle concentration with Ha. The nanoparticle concentration is reduced with
an enhancement in the magnetic parameter. The resistance, created by the Lorentz force,
increases the friction between its fluid layers and hence, the temperature and nanoparticle

concentration decrease.

The variations of velocity in the flow direction f(n), induced flow velocity g(n) , temper-
ature A(n) and nanoparticle concentration S(n) with Sh are presented in figure (2.7). It is
identified from figure 2.7(a) that the velocity is increasing with a rise in Sh . Figure 2.7(b)
reveals that the induced flow in the z-direction (g(n)) is decreasing as the value of Hall pa-
rameter increases. From figure 2.7(c). It is noticed that the temperature (n) is diminishing
with a rise in Sh. The nanoparticle concentration is decreasing with an increase in h, as

depicted in figure 2.7(d). The inclusion of Hall current reduces the effective conductivity
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and it drops the resisting force enforced by the magnetic field. Hence the increase in the

Hall parameter enhances the velocity component and temperature.

The variations of velocity in the flow direction, cross flow velocity, temperature and
nanoparticle concentration with i are shown in figure (2.8). It is seen from figure 2.8(a)
that the velocity in flow direction is increasing with an enhancement in fi. Figure 2.8(b)
reveals that the induced flow velocity decays with an enhancement in ion-slip parameter.
From figure 2.8(c), it is noticed that the temperature is diminishing with a rise in i. There

is a decay in the nanoparticle concentration with growth in i, as depicted in figure 2.8(d).

Figure (2.9) represents the influence of Nr on the velocity in flow direction, induced flow
velocity, temperature and nanoparticle concentration. From figure 2.9(a), it is identified that
the velocity is increasing with a rise in Nr. Figure 2.9(b) explains that the induced flow in
the direction of z-axis is diminishing with a rise in Nr. The dimensionless temperature is
rising with a rise in Nr, as shown in figure 2.9(c). From figure 2.9(d), it is noticed that the

nanoparticle concentration is decreasing with an enhancement in Nr.

The impact of Nt on the velocity in the flow direction, induced flow velocity, temperature
and nanoparticle concentration is represented in figure (2.10). The velocity is increasing with
a rise in Nt as shown in figure 2.10(a). An increase in Nt leads to increase in the effective
conductivity, which in turn, decreases the damping force. It is observed from figure 2.10(b)
that the induced flow in the direction of the z-axis is diminishing with an enhancement in Nt.
Figure 2.10(c) reveals that the temperature is increasing with an increase in Nt. From figure
2.10(d), it is noticed that the nanoparticle concentration is decays with an enhancement in

Nt.
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Figure 2.6: “Effect of Ha on (a) f(n), (b) g(n), (¢) 8(n) and (d) S(n) for fi = 2.0, Nr =
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and Br = 0.5 (mixed convection case)”.
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2.5.2 Natural convection

The effects of magnetic parameter Ha, Hall parameter Sh, ion-slip parameter Ji, ther-
mophoresis parameter Nt and Brownian motion Nb on f(n), g(n), 8(n) and S(n) are shown
graphically in figures (2.11) - (2.15). To study the effects of these parameters, the compu-
tations were carried out by taking Le = 1.0, Br = 0.5, Pr = 1.0, Gr =10, R =1, Re =2
and Nr = 1.0.

Figure (2.11) shows the impact of magnetic parameter Ha on the velocity in flow direc-
tion, cross flow velocty, temperature and nanoparticle concentration. Figure 2.11(a) reveals
that the velocity in flow direction diminishes with an enhancement in Ha. The transverse
magnetic field which is applied normal to the flow direction gives rise to a resistive force
known as Lorentz force. This Lorentz force resists the flow and hence, the velocity in flow
direction decreases. The impact of Ha on the g(n) is shown in figure 2.11(b). It is seen from
this figure that g(n) increases with an enhancement in Ha. Figure 2.11(c) presents the vari-
ation of non-dimensional temperature with Ha. It shows that the temperature drops with
an intensification in Ha. Figure 2.11(d) shows the variation of nanoparticle concentration
with Ha. The nanoparticle concentration S(n) increases with an increase in Ha as shown
in figure 2.11(d). The resistance, created by Lorentz force, increases the friction between its

fluid layers and thus decreases its temperature and increases nanoparticle concentration.

The variations of velocity in flow direction f(n), cross flow velocty g(n), temperature 6(n)
and nanoparticle concentration S(n) with Sh are presented in figure (2.12). It is noticed from
figure 2.12(a) that the velocity in flow direction increases with an increase in Sh. Figure
2.12(b) reveals that the induced flow in the z-direction g(n) decreases as Hall parameter
increases. From figure 2.12(c), it is noticed that the temperature 6(n) increases with a rise
in Sh. There is an increase in the nanoparticle concentration S(n) with an increase in Sh as
depicted in figure 2.12(d). The inclusion of Hall parameter reduces the effective conductivity
then it drops the resistive force imposed by the magnetic field. Hence an increase in Hall

parameter increases the velocity component f(n) and temperature 6(n).

The variations of velocity in flow direction f(n), induced flow velocty g(n) , temperature
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6(n) and nanoparticle concentration S(n) with fi are shown in figure (2.13). It is observed
from figure 2.13(a) that the dimensionless velocity in flow direction increases with an increase
in Bi. Figure 2.13(b) reveals that the induced flow in the z-direction g(n) decreases as ion-
slip parameter increases. From figure 2.13(c), it is noticed that the temperature 6(n) rises
with a rise in $i. There is a decrease in the nanoparticle concentration S(n) with an increase

in (i as depicted in figure 2.13(d).

Figure (2.14) represent the impact of Nb on the velocity in flow direction f(n), in-
duced flow velocity g(n), temperature 6(n) and nanoparticle concentration S(n). From fig-
ure 2.14(a), it is identified that the velocity f(n) increases with a rise in Nb. Figure 2.14(b)
explains that the induced flow in the direction of z—axis, increases with a rise in Nb. The
dimensionless temperature #(n) increases with an increase in Nb as shown in figure 2.14(c).
From figure 2.14(d), it is noticed that the nanoparticle concentration S(n) decreases with an

enhancement in Nb.

The effect of Nt on the velocity in flow direction f(n), induced flow velocity g(n), temper-
ature 0(n) and nanoparticle concentration S(n) are presented in figure (2.15). The velocity
f(n) increases with a rise in Nt as shown in figure 2.15(a). Increase in Nt leads to an
increase in the effective conductivity, which in turn, increase in the damping force on the
velocity component f(n). It is observed from figure 2.15(b) that the induced flow in the
direction of z—axis increases with an enhancement in Nt. Figure 2.15(c) reveals that the
temperature 6(n) increasing with an enhancement in Nt. From figure 2.15(d), it is noticed

that the nanoparticle concentration S(n) is increasing with an enhancement in Nt.
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2.6 Conclusions

In this chapter, the steady, laminar and an incompressible flow of a nanofluid passing through
a vertical channel has been investigated in the presence of MHD, Hall and ion-slip effects
with the natural and mixed convective flows. From the analysis, the following are the major

observations in both cases.

With an increase in the magnetic parameter, the velocity in flow direction and the tem-
perature decrease, whereas the velocity in z-direction increases in both the cases, but the
nanoparticle concentration increases in case of natural convection, whereas it decreases in
case of mixed convection. As Hall parameter increases, the dimensionless temperature and
velocity in the flow direction increase, whereas the induced flow velocity decreases in both
the cases, but the nanoparticle concentration increases in case of natural convection, whereas
it decreases in case of mixed convection. The dimensionless temperature and the velocity
in the flow direction increase, but the nanoparticle concentration and the flow velocity in
z-direction decrease in both the cases with an ion-slip parameter increases. As the Brown-
ian motion parameter increases, the dimensionless temperature and the velocity in the flow

direction increase, but the nanoparticle concentration decreases in case of natural convection.
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Chapter 3

Radiation and Joule heating effects on
entropy generation due to MHD
mixed convective flow of a nanofluid

in a vertical channel !

3.1 Introduction

The study of mixed convective heat transfer and nanofluid flow in a vertical channel has a
wide range of applications in thermal engineering equipment. Grosan and Pop [36] analyzed
the fully developed and mixed convective nanofluid flow in a vertical channel. Further, the
radiation effect on convective flow of a nanofluid under different geometries have a vast
range of applications involving a high temperatures such as gas turbines, missiles, satellites,
nuclear power plant, aircraft, space vehicles etc. Chamkha et al [14] studied numerically the
effects of thermal radiation on mixed convective flow around a cone inscribed in a porous
medium filled with a nanofluid. Numerous studies have been carried out to explore the effect

of Joule heating on fluid flow and heat transfer at various conditions and found that, it plays

!Published ins “International Journal of Engineering and Technology, Vol.9, No. 4(2017) ”
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a significant role on MHD flow and heat transfer. Anand et al [4] analyzed the thermal
radiation and Joule heating effect on magnetohydrodynamic flow of a nanofluid in boundary
layer. Hayat et al [70] presented a model for Joule heating and solar radiation in MHD

convective flow of a nanofluid.

Also, the optimal design criteria for thermal systems by minimizing their entropy gener-
ation has been a topic of great interest in recent times. In the energy optimization problems
and in the design of many traditional heat removal engineering devices, it is necessary to
minimize the entropy generation due to heat transfer and fluid friction. Bejan [9] introduced
the entropy generation minimization method and developed its applications in an engineering
sciences. Since then several researchers have been studying the entropy generation analy-
sis for different types of geometries with diverse fluids. Omid et al [63, 62] analyzed the
significance of radiation effect on entropy generation within nanofluids. Dehsara et al [25]
analyzed numerically the entropy generation in a nanofluid flow in the presence of variable

magnetic field, viscous dissipation and solar radiation.

The present chapter concentrates on the investigation of characteristics of mixed convec-
tive flow of a nanofluid through a vertical channel with Joule heating and thermal radiation
effect. The homotopy analysis method is used to solve the governing nonlinear differential
equations. The effects of radiation, Joule heating and magnetic parameter on the veloc-
ity along the fluid direction, temperature, nanoparticle concentration, Bejan number and

entropy generation are investigated.

3.2 Mathematical Formulation

Consider a laminar, steady, incompressible and electrically conducting nanofluid flow through
a vertical channel of width 2d. The physical model and coordinate system is given in figure
(2.1). The fluid is considered to be absorbing/emitting radiation, but non-scattering medium.
T descibe the radiative heat flux, Rosseland approximation [76] is used in an energy equation.

Apart from the uniform magnetic field By applied in y—direction, the Joule heating effect is
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also considered.
The governing equations of the fluid flow, under the assumption of low magnetic Reynolds

number and Boussinesq approximation, are as follows

ov
i Nl
oy 0 (3-1)

ou op 9%u . .
PrVg = g Thas (1= ¢m)psg” Br(T = T1) = (ps — pg) g (¢ — 1) — 0 Biu (3.2)

or 9T 1 g 2u (m)Q oT 8¢ Dy (6T>2 1
V= — ———+ | — | +7|Dpgot— | =) | +—o0oBiu® (3.3
dy oy*  pc, Oy pc, \ Oy oy oy  T,, \ Oy pc, 0 (33)
0¢ Dy 0°T 0%
o=t~ 41 D,—_ 3.4
oy " Tw oy Py (34)
The conditions on the boundary are
U:O, U = Yo, T:Tla ¢:¢1 on y:_da
(3.5)
UZO, v = Yo, T:T27 ¢:¢2 on y:d
Radiation heat flux ¢,, using Rosseland approximation, is taken as
4o OT*
= — — 3.6
q 3% 0y (3.6)

*

where ¢* is a Stefan-Boltzman constant and y is the coefficient of mean absorption. We
assume the variation in fluid phase temperature inside the flow to be appropriately minimum
such that 7% may be expressed as a linearly continuous function of the temperature and
expanding in a Taylor series around 7}, and removing highest order terms, we get T =

ATS T — 3T4.

It is to be noted from (3.1) and the boundary conditions (3.5) that v = vy (a constant).
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Introducing the following non-dimensional varaibles

Y U M Uo T—-"T ¢ — 1
:—, :—’ :—Pje: 75: 37
T4 d w " @ -1 P2 — P (3.7)
in Egs. (3.1) - (3.4), we get
" / GT 2

4
0" (1 + ng) — RPr0 + PrNb0'S'+ PrNt0? +2Br(f ) +J f*=0 (3.9)

Nt
S"—RLeS +—0"=0 3.10
edS + Nb ( )
2 P2 2 3
up*o B{d° : 40 T . L
where J = ————— is Joule heating parameter and Rd = — =2 is radiation parameter.
(T2 = T1)ky &P 3x Ky b

The other parameters are defined in the earlier chapter.

The corresponding conditions on boundary (3.5) become

S=0, 6=0, f=0 at n=-1
(3.11)

S=1, =1, f=0 at n=1

3.3 Solution of the problem

The governing Eqgs. (3.8) - (3.10) along with the boundary conditions (3.11) are solved by
using homotopy analysis method (HAM) [47, 48, 49, 50]. This method is explained in detail

in the previous chapter.

As explained in chapter-2, the rate of convergence of approximation for the HAM solution
strongly depends on the values of auxiliary parameter h. Hence, the h-curves are plotted
for 20" order of approximation and presented in figure (3.1). From these figures, it is
found that the admissible ranges for hy, he and hsy are —0.6 < hy < 0, —0.7 < hy < 0

and —1.0 < hy < —0.2 respectively. In order to obtain the optimal value of the auxiliary
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parameters, the average residual errors (given by (2.28)) are calculated and shown in table
(3.1). From these average residual errors, it is noticed that the optimal value of auxiliary

parameters are hy = —0.3, ho = —0.64 and hy = —0.73.

Further, the series solutions for different values of m are computed and presented in table

(8.2). It is found from this table that the series solution converges in the whole region of 7
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Optimal of hy Optimal of ho Optimal of hs

Order | h; Min. of E,, | ho Min. of E,, hs  Min. of E,,
10 [-031 7.77x10%]-064 232x107° [-0.73 5.31 x 1074
15 |-0.30 1.19x107°|-0.60 1.25x107* |-0.73 2.31x107*

20 |-0.30 3.19x 107% | -0.64 36.05 x 1075 | -0.75 1.60 x 10~*

Table 3.1: “At different order of approximations, the optimal values of hy, ho, and hs”.

Order f(0) 6(0) S(0)

05 0.0996756660 0.4756995038 0.3252773388
10 0.1055946694 0.4767324900 0.3156283339
15 0.1063916720 0.4772954862 0.3145533334
20 0.1065646732 0.4774348404 0.3145533332
25 0.1066468132 0.4775840270 0.3145353201
30 0.1066496324 0.4776434840 0.3145353198
35 0.1066546731 0.4778384021  0.3145353198
40 0.1066546732  0.4778348402 0.3145353198
45 0.1066546821  0.4778348402 0.3145353198
50 0.1066546821 0.4778348402 0.3145353198
55 0.1066546821 0.4774848402 0.3145353198

Table 3.2: “At different order of approximations, the convergence of HAM solutions”.
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3.4 Entropy Generation

The volumetric rate of local entropy generation of a nanofluid flow in a vertical channel can

be expressed as

o - & o B2u?

oT\* | 160 T3 (OT?
T? Jy 3x Ky \ Oy T
24 8u>2 RuD <a¢>2 RuD <8T> (a¢)
+ = (=) + — | + — | = 3.12
T, <8y ¢1 \ 0y T \9y) \09y (312)

where Ru is the universal gas constant and D is the mass diffusivity through the fluid.

According to Bejan [12], entropy generation number Ns is the ratio of the volumetric
entropy generation rate to the characteristic entropy generation rate. Therefore, the entropy
generation number is given by

Ns=(1+ %Rd) 07 + Qi (2Brf?+J ) +¢35% + ¢260'S (3.13)
3

The dimensionless coefficients are ¢3 and ¢4, called irreversibility distribution ratios,

which are related to diffusive irreversibility, given by

_ RuD
K

b Ad (3.14)

RuD <Q4

= A

where Q; = 22 and Q3 = AT—IT are the concentration and temperature ratios, respectively and

1
K (AT)?
Sge = K
c d2T12

is the characteristic entropy generation rate. The Eq.(3.13) can be formulate
as

Ns = Nh+ Nv (3.15)

The entropy generation due to heat transfer irreversibility is denoted by the first term on
the right hand side of the Eq.(3.15) and the entropy generation due to viscous dissipation
is represented by second term of Eq.(3.15). The ratio of the entropy generation due to heat
transfer and the total entropy generation is called Bejan number Be and to understand the

entropy generation mechanisms, Bejan number Be is specified. The Bejan number for this
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problem can be expressed as
Nh

Be— "
“= Nh+ No

(3.16)

In general, the range of Bejan number varies from 0 to 1. Finally, the irreversibility due to
viscous dissipation dominant is presented by Be = 0, whereas the dominance of heat transfer
irreversibility is shown by Be = 1. It shows that the irreversibility due to heat transfer is

equal to viscous dissipation at Be=0.5.

3.5 Results and Discussion

The effects of radiation, Joule heating and magnetic parameter on non-dimensional velocity;,
temperature, nanoparticle volume fraction, Bejan number Be, entropy generation Ns are
presented graphically in figures (3.2) - (3.5). To study the effect of the parameters, the
computations are carried out by taking Nr = 1, Nb = 0.5,Gr = 10, Nt = 1, Re = 2, R =
,Pr=1,A=1Le=1and Tp=0.1.

Figure (3.2) displays the effect of radiation parameter Rd on the velocity in flow di-
rection, temperature, nanoparticle concentration, entropy generation and Bejan number.
Figure 3.2(a) reveals that the velocity is increasing with an increase in the radiation pa-
rameter Rd. This indicates that Rd has a retarding impact on the mixed convective flow.
From figure 3.2(b), it is noticed that 6(n) is increasing with an increase in the radiation
parameter Rd. A rise in the radiation parameter Rd leads to release of heat energy in the
flow direction, therefore the temperature of the fluid is increasing. Figure 3.2(c) depicts that
the nanoparticle concentration S(n) decays with an enhancement in the radiation parameter
Rd. Figure 3.2(d) shows that the entropy generation reduces with an enhancement in the
radiation parameter Rd. It is noticed from figure 3.2(e) that Be (Bejan number) increases
near the left plate of the channel, while away from the plate the trend is reversed due to
more contribution of the heat transfer irreversibility on Ns and Be is decreasing near the

right plate of the channel with an enhancement in Rd.

The variations of velocity in flow direction, temperature, nanoparticle concentration, Ns
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and Be with magnetic parameter Ha are presented in figure (3.3). It is noticed from figure
3.3(a) that, the dimensionless velocity decreases with an increase in the magnetic parameter
Ha. Figure 3.3(b) reveals that 0(n) decreases with a rise in the magnetic parameter Ha.
There is a rise in the nanoparticle concentration S(n) with a rise in the magnetic parameter
Ha as depicted in figure 3.3(c). Figure 3.3(d) shows that entropy generation decreases with
an enhancement in the magnetic parameter Ha. It is clear from figure 3.3(e) that, Be is
decreasing near the left plate of the channel, while away from the plate the trend is reversed
due to more contribution of the heat transfer irreversibility on Ns and Be is decreasing near

the right plate of the channel with an increase in Ha.

The influence of Brinkman number Br on f(n), 6(n), S(n), Ns and Be is depicted in
figure (3.4). The dimensionless velocity f(n) is increasing with a rise in Brinkman number
Br as shown in figure 3.4(a). Figure 3.4(b) reveals that the 6(n) increases with a raise in
Br. From figure 3.4(c), it is noticed that nanoparticle concentration S(n) decays with an
increment in Brinkman number Br. Figure 3.4(d) shows that the increase in Brinkman

number Br causes a increment in the entropy generation.

The influence of the Joule heating parameter on f(n), 6(n) , S(n), Ns and Be is shown
in figure (3.5). The velocity in the flow direction increases with a rise in the Joule heating
parameter J as shown in figure 3.5(a). Figure 3.5(b) explains that the temperature 0(n) rises
with an enhancement in the Joule heating parameter J. From figure 3.5(c), it is noticed
that nanoparticle concentration S(n) decreases with an enhancement in the Joule heating
parameter J. Figure 3.5(d) shows that the increment in the Joule heating parameter J rises
the entropy generation. As the Joule heating parameter J increases, the Bejan number is
decreasing near the left plate of the channel and increasing near the right plate of the channel

as presented in figure 3.5(e).
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Figure 3.4: “Effect of Brinkman number Br on (a) f(n), (b) 8(n), (c) S(n) (d) Ns and (e)
Be”.
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3.6 Conclusions

In this chapter, the entropy generation on a mixed convective nanofluid flow in a vertical
channel has been investigated by including magnetic, Joule heating and radiation effects.
The non-dimensional non-linear equations are solved by HAM method. The following are

the main observations

The velocity in flow direction and temperature increase, whereas the nanoparticle con-
centration and entropy generation decrease with a rise in the thermal-radiation Rd. As
the Joule heating parameter increases, the dimensionless temperature, velocity and entropy
generation increase, while the nanoparticle concentration decreases. The maximum values
of Bejan number are observed at the right plate of the channel due to more heat transfer
irreversibility on entropy generation and minimum value near the left plate of channel due to
more contribution of the fluid friction irreversibility on entropy generation with an increase

in Rd, Ha and J.
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Chapter 4

Joule heating effect on entropy
generation in MHD mixed convective
flow of a chemically reacting nanofluid

in a vertical channel !

4.1 Introduction

The impact of chemical reaction on heat and mass transfer has received great importance
in chemical technology and hydrometallurgy industry. Chemically reacting nanofluid may
play an important role in many processing systems and materials. It is well known that
Joule heating is produced by inter communication among the atomic ions that composes the
body of the conductor and moving charged particles that form the current. Joule heating
effect on the fluid flow and heat transfer at various conditions are analyzed and found that,
it plays a notable effect on MHD flow and heat transfer. Babulal and Dulalpal [26] studied
the combination of chemical reaction and Joule heating effects on MHD mixed convective

flow of viscous dissipating fluid through a vertical channel.

!Communicated to “Chemical Industry and Chemical Engineering Quarterly, (2017)”
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The amount of irreversibility associated with the real processes is measured by entropy
generation. The entropy generation destroys the system energy. Hence, the performance of
the system can be improved by decreasing the entropy generation. Therefore, a powerful
and useful optimization tool for a high range of thermal applications is minimization of
entropy generation. Bejan [11, 12] developed the entropy generation minimization method
and introduced its applications in engineering sciences. Since then several researchers have
been studying the entropy generation analysis for different types of geometries with diverse
fluids. Gyftopoulos and Beretta [37] discussed the entropy generation rate in a chemically

reacting system.

The objective of this chapter is to analyse the combined effect of chemical reaction and
Joule heating on the entropy generation due to MHD mixed convective nanofluid flow in a
vertical channel. The governing equations are solved using HAM. The effect of pertinent
parameters on the velocity, temperature, nanoparticle concentration, Bejan number and

entropy generation are investigated and shown graphically.

4.2 Mathematical Formulation

Consider a steady, laminar, incompressible, an electrically conducting nanofluid flow through
a vertical channel of width 2d. The physical model and coordinate system is given in figure
(2.1). In addition to suction/injection and magnetic field, Joule heating along with chemical
reaction effects are taken into consideration. Further, all the properties of the fluid are
assumed to be constant except the density in buoyancy term. The governing equations of

the fluid flow, under the above assumptions, are given by

ov
8_y =0 (4.1)

ou op 0%u

P Ua—y = _8_:1: + ,ua—y2 + (1 - (bm),afog* BT(T - Tl) - (ps - pfo>g*<¢ - ¢1) - UBSU (42)
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or T  2u [ou)’ T d¢ Dr (0T’ L g2

o= 0 o o) TPy o (3y) | o B @9
06 _ Dr&T 82¢
2 =T o7 TP — ki(¢ — 1) (4.4)

along with the boundary conditions are

UIO, U = Yo, T:Tla ¢:¢1 on y:_da

(4.5)
u=0, v=wvy, T=1T, ¢=¢s on y=d.
Introducing the following non-dimensional variables
Y u Hug T-T ¢ — ¢
=2 f=— P, 6= .S = 4.6
K df w '@ -1 P2 — ¢1 (4.6)
in Egs. (4.1) - (4.4), we get the nonlinear differential equations as
" / Gr 2
f—Rf+R—(Q—NrS)+Ha f—A=0 (4.7)
e
0" — RPr¢ + PrNbv0'S' + PrNt0? + 2Br(f )+ J 2 =0 (4.8)
" ! Nt /!
S"—RLeS"+——0"—KLeS=0 (4.9)
Nb
ug?c B3 d* | ,
where K = 5. ig the chemical reaction parameter and J = ——————— is the Joule heating
(To — Th)ky

parameter. Remammg parameters are defined in the earlier chapters.

The corresponding non-dimensional boundary conditions are

S=0, 6=0, f=0 at n=-1
(4.10)
S=1, =1, f=0 at n=1
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Optimal of hy Optimal of hs Optimal of hs
Order | Ay Min. of E,, | hy Min. of £, | hs Min. of E,,
10 |-0.44 867x107°]-0.38 7.31x107° |-1.18 3.54 x 1074
15 |-043 1.18x107°|-0.36 7.65x 107* |-1.16 3.81 x 107
20 |-0.43 1.02x107° | -0.38 7.64x107* |-1.16 3.84 x 1074

Table 4.1: “At different order of approximations, the optimal values of hy, ho, and hs”.

Order f(0) 6(0) S(0)

05 0.1388039967 0.4890064756 0.1928253252
10 0.1304585594  0.4785814767 0.1932333156
15 0.1193821063 0.4697395477 0.1997383124
20 0.1084391065 0.4614794434 0.2056582531
25 0.0981478164 0.4614791477 0.2056583145
30 0.0981478129 0.4614791275 0.2056583124
35 0.0981478125 0.4614791275 0.2056583124
40 0.0981478106 0.4614791275 0.2056583124
45 0.0981478106 0.4614791047 0.2056583124
50 0.0981478106 0.4614791047 0.2056583124
55} 0.0981478106 0.4614791047 0.2056583124

Table 4.2: “At different order of approximations, the convergence of HAM solutions”.

4.3 Solution of the problem

The governing Eqs. (4.7) - (4.9) along with the boundary conditions (4.10) are solved by
using HAM. As this method is explained in chapter - 2, the details are not presented here.
However, the convergence of homotopy solution is discussed. To determine the admissible
range of auxiliary parameters, the h-curves are plotted for 20" order of approximation
and presented in figure (4.1). It is found that the admissible ranges for hi, hy and hg are
—0.6 < h; < —0.2, =0.5 < hy < —0.1 and —1.4 < h3z < —0.2 respectively. In order to obtain
the optimal value of the auxiliary parameter, the average residual errors (given by (2.28))
are calculated and shown in table (4.1). From this table, it is noticed that the optimal value
of auxiliary parameters are h; = —0.43, hy = —0.38 and hg = —1.16. Further, the series
solutions for different values of m are computed and displayed in table (4.2). From table

(4.2), it is found that the series solution converges in the whole region of 7.
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4.4 Entropy generation

The nanofluid flow through a vertical channel is naturally irreversible. The non-equilibrium
condition arises due to the exchange of energy and momentum within the nanofluid and at
the solid boundaries, that leads to continuous entropy generation in a vertical channel. For
the present study, the volumetric rate of local entropy generation of a nanofluid in a vertical

channel can be expressed as
2 2,2 2 2
So = 5;‘ (a_T) 4 o Byu +2_“ (@) +@ (%) +@ (6_T) _ (%) } (4.11)
17 \ Oy 11 Ty \ Oy o1 \ Oy Ty \ Oy dy

The dimensionless entropy generation number Ns is given by

1
Ns =02+ o (2Brf?+J f?) + ¢35% + ¢4 0'S’ (4.12)
3
Here ¢3 and ¢4 are the dimensionless coefficients, called irreversibility distribution ratios

which are related to diffusive irreversibility as given in the earlier chapter.

To produce the entropy generation profiles Eq. (4.12) is useful, but it fails to give an
idea about the relative importance of fluid friction and heat transfer effects. Therefore, an
alternative parameter Bejan number (Be), is introduced. It is defined as the ratio of entropy

generation due to heat transfer to the overall entropy generation, which is given below

Nh

Be— "
“T Nh+ N

(4.13)

4.5 Results and Discussion

The effects of chemical reaction, Joule heating, magnetic parameters and Brinkman number
on non-dimensional velocity, temperature, nanoparticle volume fraction, Bejan number Be
and entropy generation Ns are presented graphically in figures (4.2) - (4.3). To study the
effect of these parameters, other parameters are taken as Nr = 1, Nb = 0.5, Nt = 1,Gr =
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10,Re=2,R=1,Pr=1,A=1,Le=1and Tp=0.1.

Figure 4.2 displays the role of chemical reaction K on velocity, temperature and nanopar-
ticle volume fraction. Figure 4.2(a) reveals that the velocity increases as the rate of chemical
reaction K increases. This indicates that K has a retarding impact on the mixed convective
flow. From figure 4.2(b), it is noticed that 6(n) increases with an increase in K. The influ-
ence of the parameter K is to rise the temperature extremely in the flow field. From the flow
region, the heat energy is released because of rise in chemical reaction, therefore the fluid
temperature increases. It is evident from figure 4.2(c) that the nanoparticle concentration
S(n) decays with a rise in K. Figure 4.2(d) shows that the entropy generation increases with
an enhancement in K. It is shown in figure 4.2(e) that, Be (Bejan number) is increasing
near the left plate of the channel, while away from the plate the trend is reversed due to
more contribution of the heat transfer irreversibility on Ns and Be is decreasing at the right

plate of the channel as K increases.

The influence of the Joule heating parameter J on velocity f(n), temperature 6(n) and
nanoparticle volume fraction S(n) are shown in figure (4.3). The dimensionless velocity f(n)
rises with a rise in the Joule heating parameter J as shown in figure 4.3(a). Figure 4.3(b)
reveals that the temperature increases with an increase in the Joule heating parameter J.
From figure 4.3(c), it is noticed that nanoparticle concentration S(n) decays with a growth
in the Joule heating pameter J. Figure 4.3(d) shows that an enhancement in J causes
an increase in entropy generation. With an increase in the Joule heating parameter .J, the
Bejan number is observed to be increases near the end plate of the channel, while the trend is
reversed at the center of the channel due to more contribution of heat transfer irreversibility

on Ns, therefore, Be increases near the right plate of the channel as represented in figure

4.3(e).

The influence of magnetic parameter Ha on the velocity in flow direction, dimensionless
temperature, nanoparticle concentration, Bejan number and entropy generation is presented
in figure (4.4). It is noticed from the figure 4.4(a) that the dimensionless velocity in flow
direction decreases with an increase in magnetic parameter Ha. Figure 4.4(b) reveals that

the temperature 6(n) decays with a rise in magnetic parameter Ha. There is a rise in
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the nanoparticle concentration S(n) with a rise in magnetic parameter Ha as depicted in
figure 4.4(c). Figure 4.4(d) shows that entropy generation decays with a growth in magnetic
parameter Ha. From the figure 4.4(e), it is clear that Be increases near the lower plate of
the channel, while away from the plate the trend is reversed due to more contribution of the
heat transfer irreversibility on Ns with Be is decreasing near the upper plate of the channel

as Ha reports an increase in value.

The effects of Brinkman number Br on f(n), 8(n), S(n), Be and Ns is displayed in figure
(4.5). The dimensionless velocity f(n) rises with a rise in Brinkman number Br as shown
in figure 4.5(a). Figure 4.5(b) reveals that 6(n) increases with a rise in Br. From the figure
4.5(c), it is noticed that the nanoparticle concentration S(n) decays with an enhancement in
Brinkman number Br. Figure 4.5(d) shows that an enhancement in Br causes an increment
in the entropy generation. With an increase in Brinkman number Br, the Bejan number is
observed to be increasing near the end plate of the channel, while the trend is reversed at
center of the channel due to more contribution of heat transfer irreversibility on Ns and Be

increases near the right plate of the channel as presented in figure 4.5(e).
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4.6 Conclusions

In this chapter, the effect of the Joule heating parameter on laminar mixed convective flow of
an incompressible chemically reacting nanofluid in vertical channel is studied. The entropy
generation rate and Bejan number are calculated numerically. The effect of Joule heating
and chemical reaction parameters on the dimensionless velocity, temperature, nanoparti-
cle concentration, entropy generation and Bejan number are investigated and represented

graphically. From the analysis, the following are the observations

The dimensionless velocity, temperature and entropy generation increase, whereas the
nanoparticle concentration decreases with a rise in the chemical reaction parameter K. The
dimensionless temperature, velocity and entropy generation increase but the nanoparticle
concentration decreases with an increase in J. The maximum values of Bejan number are
observed at upper and lower plate of the channel due to more contribution of heat transfer

irreversibility on entropy generation Ns with an increase in Ha, K, J and Br.
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Part 111

ENTROPY GENERATION DUE TO
MIXED CONVECTIVE FLOW OF A
NANOFLUID BETWEEN TWO
CONCENTRIC CYLINDERS
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Chapter 5

Mixed convective flow of a nanofluid

in an annulus with Hall and ion-slip

effects !

5.1 Introduction

The convective heat exchange and problems of fluid flow with the interaction of magnetic field
have increased enormously due to several astrophysics and industrial applications. Mozayyeni
and Rahimi [60] discussed the effect of the magnetic field applied in the radial direction on
mixed convective flow in a cylindrical annulus with rotating outer cylinder. Ashorynejad
et al [5] studied numerically the problem of mixed convective heat transfer in an annuli of
horizontal cylinders filled with a nanofluid considering constant radial magnetic field. In the
investigations concerned with the MHD convective flows, the Hall current and ion-slip terms
in Ohms law were neglected in order to simplify the mathematical analysis of the problem.
However, the significance of Hall current and ion-slip are essential for the existence of strong

magnetic field. Srinivasacharya and Kaladhar [79] examined the effects of Hall current and

IType - I: Published in “Journal of the Association of Arab Universities for Basic and Applied
Sciences,Vol. 24(2017), 223-231”, Type - II. Communicated to “Propulsion and Power Research”
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ion-slip on mixed convection in a couple stress fluid flow between two circular cylinders.

The aim of this chapter is to study the magnetic, Hall and ion-slip effects on steady,
laminar mixed/natural convective heat transfer flow between two concentric cylinders in a
nanofluid. The effect of Hall and ion-slip and magnetic parameters on the velocity, temper-

ature and nanoparticle concentration are investigated.

5.2 Mathematical Formulation

Consider a nanofluid flow in an annular space between two infinitely long concentric cylinders
of radius a and b (a < b) and kept at temperatures T, and T}, respectively. Assume that the
outer cylinder is rotating with a constant angular velocity €2 whereas the inner cylinder is at
rest. The flow is induced by the rotation of the exterior cylinder. The flow is subjected to
a uniform magnetic field By in an axial direction as shown in figure (5.1). The assumption
of very small magnetic Reynolds number leads to neglect of the induced magnetic field.
Assume relatively high electron-atom collision frequency so that the impact of Hall and ion-
slip cannot be omitted. Thermo-physical characteristics of a nanofluid are taken as constant.
The velocity component along 1 direction is u, temperature is 7" and nanoparticle volume
fraction is ¢. Under the assumptions of steady state, laminar, incompressible, boundary
layer and Boussinesq approximation, the governing equations with Brownian motion and
the thermophoresis effects [18] in polar coordinates (7,1, z) (z-axis along the common axis

of the cylinders) become
ou
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Figure 5.1: Physical model and coordinate system.

op wu o B2 Bhu

v _ - 70FT" 5.2

or r?  (ae?+ BhQ) (52)
o B2aeu 1 Op

pViu+ (1= @)prg* Br(T —T,) — (ps — ps) 9° (¢ — ¢a) — (ac2+ 517 r o =0 (5.3)

O LOT] L i ()" yuou nys
“lorz "7 ar (pc), |\ Or r or r

0T d¢ Dr (OT\?|
7 DBWE*T_,”(E) =0 (5.4)

¢ 10¢| Dr [0°T 10T
Ds [Wﬁﬂ*ﬁ[ﬁﬁﬂ—o (5:5)

where p is the density, p is the pressure, C), is the specific heat capacity, p is the viscosity
coefficient, ¢* is the acceleration due to gravity, o is the electrical conductivity, ¢ is the

ion-slip parameter, Sh is the Hall parameter, Dp is the Brownian diffusion coefficient, f7 is
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the coefficients of thermal expansion, Dp is the thermophoretic diffusion coefficient, « is the
effective thermal diffusivity, Ky = a (p C'), is the coefficient of thermal conductivity, D is the
mass diffusivity, T}, is the mean fluid temperature, Viu = % [% %(T u)} and o, = 1+ Sh i

is a constant.

The conditions on the boundary are

u=0, T=1T, ¢=0¢, at r =a,
(5.6)
u="5b0, T =T, ¢=q¢, at r=0>0,

In this chapter, two types of convection i.e., mixed (type - I) and natural (type - II)

convection are considered.

5.2.1 Mixed Convection

Assume that the mixed convective flow is taking place in the presence of thermal buoyancy

and the uniform axial pressure gradient.

Introducing the following non-dimensional variables

r? ubv/\ T-1T, ¢ — Pa p
SN == s = 2= po L (57)
in Eqgs.(5.3) - (5.5), we get the nonlinear differential equations as
Gr Ha?ae f
AFf N4+ VA= (0 - NrS) — ———— —A=0 5.8

N+ N0+ Br [N(f)? =20 f f'+ (f)’] + PrNbX* ¢/ S"+ PrNtA* (07 =0 (5.9)

Nt
AS"+ 5 +—(N\0"+6)=0 (5.10)
Nb
C
where the prime indicates derivative corresponding to A\, Pr = ,uk P is Prandtl number,
f
1— *Br(Ty, — T,)b3 Qb 10
Gr = (1-¢)g 57‘2( b ) is Grashof number, Re = P2 Reynold’s number, A = — %
v M r
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0 By? b? 22

is a constant pressure gradient, Ha* = is Hartman number, Br = ———— is
% ky (Ty —T,)

, . Dr(Ty, — T,
7 Dp(ds — ¢a) is the Brownian motion parameter, Nt = %b)
v °

(pp - pf)(¢b - ¢a)
psBr(Ty —T,)(1 — ¢)

Brinkman number, Nb =

is the thermophoresis parameter and Nr = is the buoyancy ratio.

The corresponding dimensionless boundary conditions are

S=0,0=0,f=0 at A=)\
(5.11)

S=1,0=1,f=bat A=1

5.2.2 Natural convection

In this case, we assume the flow is free convective which is caused by buoyancy forces and

assume that there is no external pressure gradient ( g—i = 0). The non-dimensional form of

governing equations takes the form

Ha?ae f
4F"AN4+ VA0 = NrS)— ———1_ = 5.12
f + ( r ) (a€2+ﬁh2) ( )
N0+ 020+ Br [N(f)2 —2Xf F 4 (f)2] + PrNoA 0 S + PrNEN ()2 =0 (5.13)
Nt

1 !/ - /! / — 14
AS +S+Nb(/\9 +6)=0 (5.14)

The corresponding dimensionless boundary conditions are

fZO,SZO,QZO at )\:)\0
(5.15)

f=b S=1,0=1at A=1
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5.3 Solution of the Problem

5.3.1 Mixed convection

The governing Egs. (5.8) - (5.10) along with the boundary conditions (5.11) are solved by
using homotopy analysis method (HAM). (For more details on HAM, see the works of Liao
[47, 48, 49, 50]). The initial values of f(A), #(\) and S(\) and auxiliary linear operators are

chosen as
b(A—Xo) A— X A—Xo
AN=——2 Gy(\) = d A) = 5.16
fo(A) 11— | 0o(A) 1— X and  Sp(A) 1— X ( )
and
0? ,

L= 2 for i=1,2,3 (5.17)

such that
L1 (Cl + CQ/\) = 0, LQ(C3 -+ 04)\) =0 and L3(C5 + C@)\) =0 (518)

where ¢;, (i = 1,2,---6), are constants. The second step in HAM is to define the zeroth

order deformation, which is given by

(1 =p)Li[f(Nip) — fo(N)] = phaN1[f(X; p)] (5.19)
(1 =p)La[0(N;p) — bo(N)] = phaN3[0(N; p)] (5.20)
(1 —p)Ls[S(X;p) — So(N)] = phsN3[S(X; p)] (5.21)
where
o Gr Ha? ae f
N [FN,p), 0N, p), SN, p)] = 4 f"\ + \/XE (0 — NrS) — PR A (5.22)

No[f(A, ), 0N, p), SO\, p)] = N0+ N0+ Br [N(f')? =21 f '+ (f)?] + PrNbX* ¢S
+Pr Nt \* (605.23)
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Ny[FOLp), 600 ), SOLp)] = 87+ 8+ 1 (A8 +0) (524)

where p € [0,1] is the embedded parameter and h;, (i = 1,2,3), are auxiliary parameters

which are not vanish.

The equivalent boundary conditions are

f(0;p) =0, 0(0;p) =0, S(0;p) =0,

(5.25)
f(Lp)=0b, 0(1;p)=1, S(l;p)=1
From p =0 to p =1, we have
F0) = fo,  fN1) = f(N),
0(A;0) = 0o, O(N; 1) =0(N),
S(A0) =Sy, S(\:1) =S\ (5.26)

Thus, as p varying from 0 to 1, f, 8 and S varies continuously from fy, 6y and Sy to final
value f(\), () and S(\) respectively. Using Taylor’s series and Eq.(5.26), f,0 and S can

be written as

= m L 0" f(\p)
Fup) = fot n;fmmp = |
L > . _ 1.0m8(\p)
0(\;p) —eo+n;emu>p ;O\ = o |, (5.27)
s . 1 9™S(\;p)
S()‘ap) = SO + mZ:l Sm()‘)p ) Sm()‘) - % apm o

We have to choose the values of auxiliary parameters for which the series (5.27) is con-

verges at p =1 i.e.,

FO)=fo+ D D), ) =00+ > 0u(N), SN =So+>_ Su()  (5.28)
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Next, the deformation equations of m*-order are given by
LQ[em()‘) - Xm9m71<)‘)] = hZan<)‘)
Ls[Sm(A) = XmSm-1(N)] = hs R, ()
where

H 2
RE(N) =4 "\ + \/X% (0 Nrg) — aact

R% (A) = N30" + 220" + Br N2(f)2 —2X f £/ + (F)2] + PrNbA* 0/ S' + Pr Nt )3 (/)2

Nt
S _aqn ! e /" /
RE(N)=8"+S +Nb(w +6)

and

Xm =0 for m<1,

=1 for m>1

for any integer m

5.3.2 Natural convection

(ae + Bh?)

(5.29)

(5.30)

(5.31)

In this case also, the governing Eqgs. (5.12) - (5.14) along with the boundary conditions

(5.15) are solved by using homotopy analysis method (HAM). The procedure is similar to

that of mixed convection case and hence details of the method for this case are not presented

to avoid repetition.
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5.4 Convergence

5.4.1 Mixed convection

In HAM, it is essential to see that the series solution converges. Also, the rate of convergence
of approximation for the HAM solution depends mainly on the values of h. To find the ad-
missible range of the auxiliary parameters, h-curves are plotted for 16!"-order approximation
and shown in figure (5.2). It is visible from this figure that the permissible interval for hy, hy

and hz are —0.5 < hy <0, —1.8 < hy < —0.5 and —1.8 < hg < —0.6, respectively.

The following average residual errors ( Ref. Liao [49] ) are computed to obtain the

optimal value of auxiliary parameter

Efpm = %Z <N1 > filine) > (5.33)

<N2 i 0,(iAt) ) (5.34)

1 (& ’
Bsm = 57 (N3 > Sj(zAt)]> (5.35)

Lj=0

where At = 1/K and K = 5. At various level of approximations (m), least average residual
errors are represented in table (5.4). From this, we see that the average residual errors are
least at hy = —0.43, hy = —0.67 and hy = —1.60. Therefore, the optimality of convergence
control parameters are taken as h; = —0.43, hy = —0.67 and hy = —1.60. For different
values of m, the series solutions are calculated and presented in table (5.5). It is noticed
from this table that, the series (5.28) converges in the total area of A. The graphs of the

following ratio

S (h)
fmfl(h)

Om (h)

Bf= G s (1)

, P=

. BS = (5.36)

Sm_(h)’
Sm-1(h)

versus the number of terms m in the homotopy series is presented in figure (5.3). These
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Figure 5.2: “h-curves of (a) f(A), (b) O(A) and (¢) S(A\) when Nr = 1.0, Nt = 0.5, Nb =
0.5,Gr = 10.0, Ha = 5.0,A = 1.0, Re = 2.0, Pr = 1.0, 3i = 5.0, 8h = 2.0 and Br = 0.5
(mixed convection case)”.

figures indicate that the series (5.28) converges to the exact solution.
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Figure 5.3: “Ratios of (a) Af, (b) 86 and (c) s verses m to reveal the convergence of HAM
solutions (mixed convection case)”.

Order

Optimal of hy
hl Min. of Em

Optimal of ho
hQ Min. of Em

Optimal of hs
h3 Min. of Em

12
14
16

042 1.49x 1076
-0.43 1.08 x 1076
-0.43 8.03 x 1077

-0.67 2.92 x 10~
-0.67  7.90 x 10~
-0.65 2.89 x 107°

-1.56 7.16 x 107°
-1.60 1.23x107°
-1.60 3.53x 107°

Table 5.1: “Optimal values of hy, hy and hs at different order of approximations (mixed

convection case)”.
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Table 5.2: “Convergence of HAM solutions for different order of approximations (mixed

convection case)”.

Table 5.3: “Comparison of HAM for the velocity against analytical and SQLM solutions for

Order

£(0.625)

6(0.625)

5(0.625)

05
10
15
20
25
30
35
40
45
20
95

0.45201062040
0.45166547215
0.45133062142
0.44120618062
0.44120612487
0.44120612495
0.44120564124
0.44120564128
0.44120563244
0.44120563244
0.44120563244

0.80760004656
0.80760008211
0.80720010397
0.80720010598
0.80724016788
0.80722102382
0.80719025837
0.80719025389
0.80719024879
0.80719024689
0.80719024689

0.65436658412
0.65415106427
0.64106428731
0.64106337319
0.64105463192
0.64105463293
0.64105463524
0.64105467933
0.64105437932
0.64105437932
0.64105437932

Gr=0,Ha=0,A=0, Pr=0, Nt =0 and Nb =0 (mixed convection case)”.

A Sinha and Chaudhary[74] Srinivasacharya and Himabindu[77]  Present
analytical solution SQLM HAM

0.25 0 0
0.2684 0.02453 0.024532 0.0245333
0.3216 0.09546 0.095462 0.0954667
0.4046 0.20613 0.206127 0.206133
0.5091 0.34546 0.345462 0.345467
0.625 0.5 0.5 0.5
0.7409 0.65453 0.654539 0.654533
0.8454 0.793867 0.793863 0.793867
0.9284 0.90453 0.904529 0.904533
0.9816 0.97546 0.975468 0.975467

1

1

1
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Optimal of hy Optimal of hs Optimal of hs
Order | Ay Min. of E,, | hy Min. of £, | hs Min. of E,,
12 [-042 1.68x107°|-0.67 2.95x 107* |-1.38 5.19 x 107°
14 -0.43 121 x107° | -0.64 6.58 x 107* | -1.40 5.14 x 107
16 |-0.44 7.83x107°|-0.65 2.92x107%|-1.40 4.53 x 107

Table 5.4: “Optimal values of hy, hy and hg at different order of approximations (natural
convection case)”.

5.4.2 Natural convection

To find the admissible range of the auxiliary parameters, h-curves are plotted for 16%-
order approximation and shown in figure (5.4). It is evident from this figure that, the
admissible ranges for hy, hy and hs are —0.5 < h; < 0, —1.8 < hy < —0.5 and —1.8 <
hs < —0.6 respectively. The average residual errors given by (5.33)-(5.35), at different order
of approximations (m), are computed. It is found that the average residual errors are least
at hy = —0.43, ho = —0.64 and hy = —1.4. Therefore, the optimum values of convergence
control parameters are taken as h; = —0.43, hy = —0.64 and hy = —1.4. Further, the series
solutions for different values of m are computed. It is observed from these computed values
that the series (5.28) converges in the whole region of 1. The graphs of the ratio given by

figure (5.5) against the number of terms m in homotopy series indicate that the series (5.28)

converges to the exact solution.

5.5 Results and Discussion

5.5.1 Mixed convection

In order to determine the accuracy of HAM, we have compared present solution with the an-
alytical solution [74], as well as the solution obtained by spectral quasi-linearization method

(SQLM) [77] in absence of Gr, Ha, A, Pr, Nt and Nb. The comparisons are found to be in

good agreement, as shown in table (5.3).
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Figure 5.4: “h-curves of (a) f(A), (b) 8(A) and (c) S(A\) when Nr = 1.0, Nt = 0.5, Nb =
0.5,Gr = 10.0,Ha = 5.0, Re = 2.0, Pr = 1.0,5i = 5.0, h = 2.0 and Br = 0.5 (natural

convection case)”.
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Figure 5.5: “Ratios of (a) Sf, (b) 86 and (c) Bs versus m to reveal the convergence of HAM
solutions (natural convection case)”.
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Table 5.5: “Convergence of HAM solutions for different order of approximations (natural

convection case)”.

Order £(0.625) 6(0.625) S(0.625)

05 0.4897195201 0.6703748076 0.6552164366
10 0.4977435164 0.6738914807 0.6476354151
15 0.5021085133 0.6776065807 0.6429961064
20 0.5092824541 0.6807795200 0.6410633722
25 0.5129294412 0.6808724016 0.6409112546
30 0.5144120618 0.6809872210 0.6408546329
35 0.5151205641 0.6810719025 0.6405463524
40 0.5157220364 0.6810731902 0.6400754680
45 0.5164120763 0.6810751902 0.6400554379
50 0.5164125634 0.6810756190 0.6400549913
55 0.5164126324 0.6810756190 0.6400549913

The influence of magnetic parameter Ha, thermophoresis Nt, Brownian motion Nb,
Hall parameter Sh, ion-slip fi on the non-dimensional velocity f(\), temperature #(\) and
nanoparticle volume fraction S(\) are shown graphically in figures (5.6) - (5.10) by taking
Br=0.5, Pr=10,Gr=10, A=1, Re=2 and Nr = 1.0.

Figure (5.6) presents the impact of the magnetite parameter Ha on the dimensionless
velocity in flow direction, temperature and nanoparticle volume fraction. Figure 5.6(a)
reveals that the dimensionless velocity decays with a rise in Ha. The transverse magnetic
field, which is applied orthogonally to the direction of flow gives a resistive force, known as
Lorentz force. This Lorentz force resists the flow of a nanofluid and therefore, the velocity
decreases. Figure 5.6(b) illustrates that the dimensionless temperature () increases with a

rise in Ha. Figure 5.6(c) depicts that the nanoparticle volume fraction S(\) reduces as Ha

increases. This is due to the perpendicular effect of magnetic field on the flow direction.

The variations of velocity f(A), temperature #(\) and nanoparticle volume fraction S(\)
with Hall-parameter Sh are presented in figure (5.7). It is observed from figure 5.7(a) that the
velocity increases with an increase in the parameter Sh. From figure 5.7(b), it is noticed that
the dimensionless temperature #(\) decreases with a rise in Sh. There is an enhancement

in the nanoparticle concentration S(A) with a rise in Sh as depicted in figure 5.7(c). The
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inclusion of Hall parameter reduces the effective conductivity and hence drops the magnetic
resistive force. Therefore, increase in Sh rises the velocity component f(A) and nanoparticle

volume fraction S(A), whereas decreases temperature 0(\).

The variations of velocity in flow direction f(A), temperature §(A) and nanoparticle
volume fraction S(A) with ion-slip parameter i are presented in figure (5.8). It is observed
from the figure 5.8(a) that the velocity increases with a rise in fi. Figure 5.8(b) reports that
0(A\) decreases with a rise in fi. There is an increment in the nanoparticle concentration
S(A) with an increase in i as depicted in figure 5.8(c). The effective conductivity increases
as increase in i, hence the damping force on the dimensionless velocity decreases due to

increase in the velocity .

The impact of thermophoresis parameter Nt on the dimensionless velocity f(\), tempera-
ture () and nanoparticle concentration S(\) are depicted in figure (5.9). The dimensionless
velocity f(A) rises with a rise in Nt as shown in figure 5.9(a). Figure 5.9(b) reveals that
G(\) rises with a rise in Nt. Increase of Nt leads to increase in the effective-conductivity.
It is recognized from figure 5.9(c) that the nanoparticle concentration S(\) decays with an

enhancement in Nt.

The influence of Brownian motion Nb on the dimensionless velocity f()\), temperature
6(A\) and nanoparticle concentration S(\) are presented in figure (5.10). The velocity f(\)
rises with rise in N'b as shown in figure 5.10(a). Figure 5.10(b) reveals that the dimensionless
temperature 6(\) increases with an enhancement in Nb. The nanoparticle volume fraction

S(A) decreases with an increase in Nb as shown in figure 5.10(c).
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Figure 5.6: “Effect of Ha on (a) velocity, (b) temperature and (c) nanoparticle concentration
profiles (mixed convection case)”.
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5.5.2 Natural convection

The influence of magnetic parameter Ha, Hall parameter Sh and ion-slip parameter 37 on the
velocity f(\), temperature 0(\) and nanoparticle volume fraction S(A) are shown graphically
in figure (5.11) - (5.13). To study the effect of these parameters, the remaining parameters,
are taken as Br = 0.5, Pr = 1.0 and Nr = 1.0.

Figure (5.11) represents the influence of magnetic parameter Ha on dimensionless veloc-
ity, temperature and nanoparticle volume fraction. Figure 5.11(a) reveals that the dimen-
sionless velocity decays with a rise in Ha. The magnetic field which is applied orthogonally
to the flow direction gives a resistive force, known as Lorentz force. This Lorentz force
resists the flow of a nanofluid leading to decrease in the velocity. Figure 5.11(b) presents
the variations in dimensionless temperature with Ha. From this figure, it observed that the
temperature () is increasing with an increase in Ha. Figure.5.11(c) depicts the variations
of S(A\) with Ha. A decay in a nanoparticle volume fraction S(\) is noticed as magnetic

parameter Ha increases.

The variation of the velocity f(\), temperature #(\) and nanoparticle volume fraction
S(A) with hall parameter Sh is presented in figure (5.13). It is noticed from figure 5.12(a)
that the velocity is increasing with a rise in the value of Hall parameter Sh . From the
figure 5.12(b), it is observed that the dimensionless temperature #(\) is decreasing with an
increase in Sh. There is an increase in a nanoparticle volume fraction S(\) with an increase
in the value of Sh as depicted in figure 5.12(c). The inclusion of Hall parameter reduces the
effective conductivity and drops the magnetic resistive force. Hence, increase in h, rises the

velocity f(A) and nanoparticle volume fraction S(A), but decreases temperature 6(\).

The variation of velocity in flow direction f(\), temperature 6(\) and nanoparticle vol-
ume fraction S(A) with ion-slip parameter §i is depicted in figure (5.13). Figure 5.13(a)
reveals that the velocity in flow direction is increases with an enhancement in 57 . From
the figure 5.13(b), it is seen that the temperature @(\) decreases with an increase in [i.
The nanoparticle volume fraction S(A) is enhanced with an increase in i as shown in figure

5.13(c). The effective conductivity increases as (i increases, hence the damping force on the
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Figure 5.11: “Effect of Ha on (a) velocity, (b) temperature and (c¢) nanoparticle concentration

profiles (natural convection case)”.

dimensionless velocity decreases and due to this, the dimensionless velocity increases.
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5.6 Conclusions

In this chapter, the steady, laminar, an incompressible nanofluid flow passing through the
concentric cylinders has been investigated in presence of Hall and ion-slip effects. In addition,
two types of convection namely, natural and mixed convective flows are considered. From

this analysis, the following are the main observations in both cases.

With an increase in magnetic parameter, the velocity and nanoparticle concentration de-
crease, whereas the temperature increases in both the cases. As the Hall parameter increases,
the velocity and nanoparticle concentration increase, whereas the temperature decreases in
both the cases. The velocity and nanoparticle concentration increase, whereas the temper-
ature decreases in both the cases as ion-slip parameter increases. As Brownian motion pa-
rameter increases, the dimensionless temperature and velocity in the flow direction increase,
but the nanoparticle concentration decreases. The dimensionless temperature, velocity in
the flow direction increase, but the nanoparticle concentration decreases as thermophoresis

parameter increases.
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Chapter 6

Entropy generation due to MHD
mixed convective flow of a nanofluid
between two concentric cylinders with

radiation and Joule heating !

6.1 Introduction

The entropy generation plays an important role in the design and development of thermal
machines. As irreversibility destroys the system’s energy, its minimization has been consid-
ered as the optimal design criteria for thermal systems to utilize maximum available energy.
Hence, efficient utilization of energy can be achieved by entropy generation minimization.
Chen et al [19] analyzed the entropy generation due to natural convection in a vertically
concentric annular space. Eegunjobi and Makinde [28] studied the entropy generation rate
in transient couette flow of variable viscosity fluid between two concentric pipes where inner
pipe is moving and outer pipe is fixed. Srinivasacharya and Hima bindu [77] investigated

the entropy generation in a micropolar fluid flow between concentric cylinders.

!Published in “Journal of Nanofluids, Vol. 6(2017), 1227-1237”
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In this chapter, the mixed convective flow of a nanofluid passing through a concentric
cylinders with thermal radiation and Joule heating effects is considered. The homotopy
analysis method is used to solve the governing nonlinear differential equations. The effects
of pertinent parameters on the velocity along the fluid direction, temperature, nanopar-
ticle concentration, Bejan number and entropy generation are investigated and presented

graphically.

6.2 Mathematical Formulation

Consider steady, laminar and incompressible nanofluid flow in an annular space between
two infinitely long concentric cylinders of radius a and b (a < b). The inner cylinder and
outer cylinders are kept at temperatures T, and T, respectively. The physical model and
coordinate system is given in figure (5.1). The flow is induced due to the rotation of the
exterior cylinder. A strong magnetic field By is taken in an axial direction. The magnetic
Reynolds number is assumed to be very small so that the induced magnetic field is negligible
compared to the applied radial field. The fluid is considered to be a gray, absorbing/emitting
radiation, but non-scattering medium so that the Rosseland approximation [76] can be used
to describe the radiative heat flux in the energy equation. Further, the Joule heating effect

is considered.

The equations of the governing flow are as follows

ou
dp wu
10
HV Ut (L= 0)psgBr(T = To) = (pu = ps) 6" (6 = 6u) =0 Bju— 200 (63)
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The radiation heat flux ¢, under the Rosseland approximation takes the form
4o* OT*

.= — R 6.6
¢ 3y Or (6.6)

where ¢* is a Stefan-Boltzman constant and x is the coefficient of mean absorption. We
assume the variation in fluid phase temperature inside the flow to be appropriately min-
imum such that 7% may be taken as a linearly continuous function of the temperatures
and expanded in a Taylor series around 7,, and removing highest order terms, we get
T = 4T3 T — 3T2.

The boundary conditions are

u=0 T=1T, ¢=q¢, at r=a,

(6.7)
u=0bQ, T=T, ¢=¢, at r =0>.
Introducing the following non-dimensional variables
r? ubv/\ T-1T, b — g p
A=—=, f(A) = 0= = pP=—— .
g I = g0 = e S = S P (6.5)
in Egs. (6.1) to (6.5), to get the following non-linear system of differential equations
" Gr 2
4f/\+\/X§(9—NrS)—Ha f—A=0 (6.9)
4 1
(1 +3 Rd) (A%0" + X°0") + Br [N(f")? = 2X [ [+ ()] + 1 JA?f?
(6.10)

+Pr NbA* 0" S’ + Pr Nt X* (0')° = 0
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Optimal of hy Optimal of hs Optimal of hs
Order | Ay Min. of E,, | hy Min. of £, | hs Min. of E,,
12 | -0.37 581 x107°[-0.53 578 x107*| -1.2 9.75 x 1074
14 |-039 1.05x107*|-0.54 6.52x107* | -1.2 1.49 x 1073
16 |-0.39 1.62x107*|-0.53 7.73x107*|-1.19 224 x 1074

Table 6.1: “At different order of approximations, the optimal values of hy, ho, and h3”.

Nt
AS"+ 858 4+ —(N0"+6)=0 (6.11)
Nb
* 3 o BQ bQQQ
where Rd = ™ is the radiation parameter and J = ——2——— is the Joule heating
x Ky (T — Ta)ky

parameter. The remaining parameters are defined in chapter-5.

The corresponding boundary conditions in dimensionless form become

S=0,0=0f=0 at A=\
(6.12)

S=1,0=1,f=bat A=1

6.3 Solution of the problem

The governing Eqgs. (6.9) - (6.11) along with the boundary conditions (6.12) are solved by
using HAM [47, 48, 49, 50]. The method is explained in detail in Chapter-5.

As explained in chapter-5, the h-curves are plotted for 16" order approximations and
are presented in figure (6.1). It is found that the admissible ranges for hy, hy and hg are
—0.5 < hy < —0.25, —0.6 < hy < 0.25 and —1.7 < hy < —0.2, respectively. In order to
obtain the optimal value of the auxiliary parameter, the average residual errors (given by
(5.36)) are calculated and represented in the table (6.1). From these average residual errors,

—0.39, hy = —0.53

it is noticed that the optimal value of auxiliary parameters are h; =
and hy = —1.12. Further the series solutions for different values of m are computed and
represented in table (6.2). From table (6.2), it is found that the series solution converge in

the whole region of 7.
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Figure 6.1: “h-curves of (a) f(X), (b) #(A) and (c) S(A), when Nr = 1.0, Nt = 0.5, Nb =
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Order  £(0.625) 6(0.625) 5(0.625)

05 0.4376535201 0.6737468076 0.6581184839
10 0.4406095166 0.6916338076 0.6219805748
15 0.4413595133  0.7055058072 0.6127974698
20 0.4420191206 0.7061768072 0.6020224807
25 0.4420194520 0.7172401678 0.6020226948
30 0.4420194612  0.7172472210 0.6020226464
35 0.4420194612 0.7172472807 0.6020226464
40 0.4420194612  0.7172472807 0.6020226464
45 0.4420194612 0.7172472807 0.6020226464
50 0.4420194612  0.7172472807 0.6020226464
55 0.4420194612 0.7172472807 0.6020226464

Table 6.2: “At different order of approximations, the convergence of HAM solutions”.

Entropy Generation

For the present study, the volumetric rate of entropy generation reduces to

Ky (0T 2 1 ou\? 24 0u w2 o B2 u?
SGT—g(E) T, (a_) -t () [+ 7
+RuD 9% 2_V.qT+RuD or\ (0¢

¢o \Or T, T, \or) \or

The entropy generation number Ns [12] is given by

(6.13)

4 B J
Ns = (1+ 5 Rd) 3" 0" + Q—T U2 =2XF 1+ (1] + 85 A7 87 + 0u N0'S' + o= M2 f?
3 3
(6.14)
The dimensionless coefficients are ¢3 and ¢4, called irreversibility distribution ratios which

are related to diffusive irreversibility, given by

RuD [
o ( :

- —) Ao = (6.15)

Q3

117



where (3 = % and € = % are the concentration and temperature ratios, respectively.

The Eq.(6.14) can be formulate as
Ns = Nh+ Nv (6.16)

The Bejan number for this problem can be expressed as

Nh

Be— "
“= Nh+ No

(6.17)

Results and Discussion

The effects of radiation, Joule heating, magnetic parameters and Brinkman number on the
velocity component f(\), temperature 6(\), nanoparticle concentration S(\), entropy gen-
eration Ns and Bejan number Be are presented graphically in figures (6.2) - (6.6) by taking
Nr=1, Nb=05 Gr=10, Re=2, Pr=1, A=1,Q3=0.1 and 4y = 1.

Figure (6.2) displays the effect of the thermal-radiation Rd on the velocity in flow di-
rection, temperature, nanoparticle concentration, entropy generation Ns and Bejan number
Be. Figure 6.2(a) reveals that the velocity decays with an enhancement in Rd. The effect of
Rd on the non-dimensional temperature #(\) is represented in figure 6.2(b). From this figure,
it is noticed that () decays with an increase in the radiation parameter Rd. The influence
of the radiation parameter Rd is to get the temperature to decay extremely in the flow field.
From the flow region, the heat energy is released because of a rise in the radiation Rd and
therefore, the fluid temperature decreases. Figure 6.2(c) depicts the variation of nanopar-
ticle concentration with the radiation parameter Rd. The nanoparticle concentration S(\)
increases with a rise in the radiation parameter Rd. Figure 6.2(d) shows that entropy gen-
eration increases with an enhancement in Rd. It is clear from figure 6.2(e) that Be (Bejan
number) increases near the inner cylinder of the channel, while away from the inner cylinder
the trend is reversed due to more contribution of the heat transfer irreversibility on Ns and

Be decreasing near the outer cylinder with enhancement in the radiation parameter Rd.
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From the result, it is observed that the fluid friction dominates near the inner cylinder and

heat transfer irreversibility dominates around the center of an annulus.

The variations of velocity in flow direction, temperature, nanoparticle concentration, Ns
and Be with the magnetic parameter Ha is presented in figure (6.3). It is noticed from
figure 6.3(a) that the dimensionless velocity in flow direction decreases with an enhancement
in magnetic parameter Ha. Figure 6.3(b) reveals that, the dimensionless temperature ()
increases with a rise in magnetic parameter Ha. There is a rise in the nanoparticle concen-
tration S(A) with a rise in magnetic parameter Ha as depicted in figure 6.3(c). Figure 6.3(d)
shows that entropy generation is enhanced with a growth in the magnetic parameter Ha. It
is clear from figure 6.3(e) that Be decreases near the inner cylinder while away from the inner
cylinder, the trend is reversed due to more contribution of the heat transfer irreversibility
on entropy generation and Be increases near the outer cylinder with an enhancement in the
value of Ha. It observed that the fluid friction dominated at the inner cylinder, and heat

transfer irreversibility dominates around the center of an annulus.

The influence of Joule heating parameter on f(\), (\), S(A\), Ns and Be is shown in
figure (6.4). The dimensionless velocity f(\) rises with a rise in the Joule heating pameter
J as shown in figure 6.4(a). Figure 6.4(b) reveals that 6(\) rises with a rise in the Joule
heating parameter J. From figure 6.4(c), it is noticed that the nanoparticle concentration
S(A) decays with a growth in the Joule heating pameter J. Figure 6.4(d) shows that the
increase in Joule heating parameter J causes an increase in the entropy generation. With an
increase in the Joule heating parameter .J, the Bejan number is observed to decrease near
the inner cylinder, while away from the inner cylinder, the trend is reversed due to more
contribution of heat transfer irreversibility on entropy generation and Be increasing near
the outer cylinder as presented in figure 6.4(e). It observe that the fluid friction dominates
near the inner cylinder and heat transfer irreversibility dominates around the center of an

annulus.

The impact of Brinkman number Br on f(A), 8(A), S(\), Ns and Be is depicted in figure

(6.5). The dimensionless velocity f(\) rises with a rise in Brinkman number Br as shown in
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figure 6.5(a). Figure 6.5(b) reveals that #(\) increases with an increase in Br. From figure
6.5(c), it is noticed that nanoparticle concentration S(\) decays with a growth in Brinkman
number Br. Figure 6.5(d) shows that an increase in Br causes an increase in the entropy
generation. With an increase in Br, the Bejan number is decreasing as presented in figure
6.5(e) and it is observed that the fluid friction dominated near the inner cylinder and heat

transfer irreversibility dominated around the center of an annulus.

Figure (6.6) shows the effect of the thermophoresis parameter Nt on velocity in flow direc-
tion f(\), temperature (), nanoparticle concentration S(\), Bejan number Be and entropy
generation N's. The velocity f(\) increases with an enhancement in the thermophoresis pa-
rameter Nt as shown in figure 6.6(a). Figure 6.6(b) reveals that the temperature 6(\)
increases with an improvement in the thermophoresis parameter Nt. An increase in the
thermophoresis parameter Nt leads to increase in effective-conductivity, hence the nanopar-
ticle concentration S(\) decreases as recognized from figure 6.6(c). It is seen from figure
6.6(d) that the entropy generation is increasing with an enhancement in the thermophoresis
parameter Nt. It is noticed from figure 6.6(d) that Be decreases as an enhancement in the
thermophoresis parameter Nt. It is observed that the fluid friction dominated near the inner

cylinder and heat transfer irreversibility dominated around the center of an annulus.

6.4 Conclusions

In this chapter, the entropy generation due to nanofluid in mixed convective flow between
two concentric cylinders has been analyzed by considering magnetic, Joule heating, ther-
mophoresis, radiation parameters and Brinkman number effects. The main observations are

summarized below

The dimensionless velocity and temperature decrease, whereas the nanoparticle concen-
tration and entropy generation increase with an increase in thermal-radiation Rd. As mag-
netic parameter increases, the dimensionless temperature, nanoparticle concentration and

entropy generation increase, but the velocity decreases. As Joule heating parameter in-
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creases, the dimensionless temperature, velocity and entropy generation increase, but the
nanoparticle concentration decreases. As Brinkman number increases, the velocity, temper-
ature and entropy generation increase, but the nanoparticle concentration and Bejan number
decrease. As the thermophoresis parameter increases, the velocity, temperature and entropy
generation increase, but the nanoparticle concentration and Bejan number are decrease. The
maximum values of Bejan number are observed at the center of an annulus due to more con-
tribution of heat transfer irreversibility on entropy generation and minimum value is near the
inner cylinder, due to more contribution of fluid friction irreversibility on entropy generation

by increasing Rd, Ha, Br,J and Nt.
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Chapter 7

Joule heating effect on entropy
generation due to MHD mixed
convective flow of a chemically

reacting nanofluid between two

concentric cylinders !

7.1 Introduction

The influence of Joule heating on heat transfer and fluid flow, under various conditions, plays
a notable effect in an engineering and industrial applications. Motsa et al [59] focused on
the effects of viscous dissipation and Joule heating on a nanofluid flow through a shrink-
ing/stretching sheet considering homogeneous heterogeneous reactions. On the otherhand,
entropy generation is directly proportion to the thermodynamic irreversibility in a system.
Bejan [9, 10] examined the different aspects behind the entropy generation in applied ther-

mal engineering. Assad and Oztop [6] presented the influence of internal heat generation

!Published in “International Journal of Heat and Technology, Vol. 35, No. 3(2017), 487—497”
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on entropy generation between two rotating cylinders. Mazgar et al [57] investigated the
interaction between thermal radiation and mixed convection on the entropy generation in a
semi-transparent and non-gray gas, bounded by two vertical coaxial cylinders. Specifically,
the investigations focused on the effect of different parameters on the components of velocity,

temperature, nanoparticle concentration, entropy generation and Bejan number.

In this chapter, the mixed convective flow of an incompressible chemically reacting
nanofluid in an annulus between two concentric cylinders is investigated by considering the

Joule heating effect.

7.2 Mathematical Formulation

Consider the steady, laminar, incompressible nanofluid flow in an annular space between two

infinitely long concentric cylinders as shown in figure (5.1). It is assumed that

e The outer cylinder is rotates with a constant angular velocity €2, whereas the inner

cylinder is at rest. The flow is induced due to the rotation of the exterior cylinder.

e The velocity component along ¢ direction, temperature and nanoparticle concentration

are denoted by u,T" and ¢ , respectively.

e The radii of the inner and outer cylinders are a and b (a < b) and kept at temperatures

T, and Ty respectively.

e A strong magnetic field By is taken in an axial direction. The conductivity of fluid is
chosen to be small so that the magnetic Reynolds number is smaller than one unit and

hence the induced magnetic field is removable compared to the applied radial field.

e Thermophysical characteristics of the nanofluid are taken as constant except density

in the buoyancy term of the balance of momentum equation.

The equations which govern the present flow [13] with Boussinesq approximation are
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dp u
-r_ - 2
or r? (72)
2 * * 2 1 ap
pViu+ (1= 9)prg Br(T —Ta) = (ps — py) g (¢ — ¢a) — 0 Byu — o0 =0 (7.3)
o?T 10T U ou\? u Ou w2 1
i - L - _9Z 7 - - BZ 2
&{87‘2 rar} pC, <87’) r8r+<r> +pC’pJ 0t (7.4
7.4
oT 8¢ Dy (0T\*
D —_—— —_— — p—
7 387’8T+Tm (87”) 0
0?¢ 1 0¢ Dy [0*T 10T
Dp|l=—4+-——|4+=— |=—+—-———| —ki(p—0s) =0 7.5
B {87’2 r 87’} + T, {87”2 r 87’] 16 = ) (7.5)
u=0 T=1T, ¢=0¢, at r =a,
(7.6)
u=00, T=T, ¢o=¢, at r=1>
Introducing the following non-dimensional variables
r? ubv/\ T-1T, O — Pq P
A= I =R e 5= 22t po B (7.7)
in Egs. (7.1) to (7.5), to get the following non-linear system of differential equations
" Gr 2
4f)\+\/XE(0—NrS)—Ha f—A=0 (7.8)
1
N0+ N0+ Br [N(f) =2Xff+ ()] + 1 JN 2 PrNbA O S + PrNt X (0)* =0
(7.9)
1" ,, Nt 1" N 5 _
AS"+ S +m()\9 +6") 4LeS—O (7.10)
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Optimal of hy Optimal of hs Optimal of hs

Order | Ay Min. of E,, | hy Min. of £, | hs Min. of E,,
12 [-041 7.82x107°|-0.58 6.24x 107> | -1.11 6.46 x 1074
14 -0.41 5.35x107* | -0.59 842 x 1076 |[-1.12 1.95 x 107°
16 -0.40 242 x107* | -0.58 7.99x 107% | -1.12 2.45x 1077

Table 7.1: “At different order of approximations, the optimal values of hy, ho, and h3”.

k1 b

v
earlier chapters.

where K = is the chemically reacting parameter and the other parameters are defined in the

The corresponding boundary conditions (7.6) are

S=0,0=0,f=0at A=\
(7.11)
S=1,0=1,f=bat A=1

7.3 Solution of the problem

The governing Eqgs. (7.8) - (7.10) along with the boundary conditions (7.11) are solved by using
HAM [47, 48, 49, 50]. The method is explained in detail in chapter-5.

As explained in chapter-5, the h-curves are plotted for 16" order approximation and presented
in figure (7.1). It is found that the admissible ranges for hi, hy and hg are —0.6 < h; < —0.05,
—1.5 < hg < 0 and —1.5 < hg < 0, respectively. In order to obtain the optimal value of the
auxiliary parameter, the average residual errors (given by (5.36)) are calculated and presented in
the table (7.1). From these average residual errors, it is noticed that the optimal value of auxiliary
parameters are hy = —0.41, hg = —0.58 and hz = —1.12. Further, the series solutions for different
values of m are computed and represented in table (7.2). From table (7.2), it is found that the

series solution converges in the whole region of .
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Order  £(0.625) 6(0.625) 5(0.625)

05 0.4290765352 0.6847374680 0.6480435436
10 0.4310609516 0.6901633807 0.6367595415
15 0.4321359513  0.7055058007 0.6340344106
20 0.4332019120 0.7016176807 0.6301234106
25 0.4342019452 0.7010724018 0.6283910546
30 0.4342019461 0.7017247220 0.6283964105
35 0.4352019461 0.7017247280 0.6283964641
40 0.4352019461 0.7017247280 0.6283964664
45 0.4352019461 0.7017247280 0.6283964664
50 0.4352019461 0.7017247280 0.6283964664
55 0.4352019461 0.7017247280 0.6283964664

Table 7.2: “At different order of approximations, the convergence of HAM solutions”.

Entropy Generation

The mechanisms of entropy generation are the heat transfer, fluid friction and magnetic effect. The

volumetric rate of entropy generation for incompressible nanofluid is given as

_ky (0T 2 I
so=7% () +1,

ou\?  2uou w2 o BZ u?
[(a) ‘raﬁ(r)]* T,

5 (7.12)
n RuD 8;;5 n RuD (97T %
o or T, or ) \ or
For the present study, the dimensionless entropy generation number is given by
32, Brria e / 2 3 Q2 39/l J 1o
Ns=X0 +Q—[)\ () =2XFf 4+ (f)?] + d3X° S + 94 N0'S AT (7.13)
3 3
The Eq.(7.13) can be expressed, alternatively, as follows
Ns=Nh+ Nv (7.14)

The dominant effect of either heat transfer irreversibility or fluid friction irreversibility can be

investigated using Bejan number (Be). The Bejan number is defined as follows

Nh

Be—= "
“T Nh+ Nv

(7.15)
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Results and Discussion

The effects of the chemical reaction, Joule heating and magnetic parameters on non-dimensional
velocity f(A), temperature #(\), nanoparticle volume fraction S(\), Bejan number Be and entropy
generation N's are presented graphically in figures (7.2) - (7.4). To study the effect of these pa-
rameters, calculations were carried out by taking Nr = 1.0, Nb = 0.5,Q3 = 0.1,Gr = 10, Re =
2.0,Pr=1.0,A=1.0 and Le = 1.0.

The variation of velocity in flow direction, temperature, nanoparticle concentration, Ns and
Be with magnetic parameter Ha is presented in figure (7.2). It is identified from figure 7.2(a) that
the dimensionless velocity in flow direction decreases with an enhancement in magnetic parameter
Ha . Figure 7.2(b) reveals that #()) is rising with a rise in magnetic parameter Ha. There is a
rise in the nanoparticle concentration S(\) with a rise in magnetic parameter Ha as depicted in
figure 7.2(c). Figure 7.2(d) shows that the entropy generation decays with a growth in magnetic
parameter Ha. It is clear from figure 7.2(e) that Be increases with an enhancement in the value
of Ha. The maximal values of Be are observed at the center of an annulus region due to more
contribution of heat transfer irreversibility on entropy generation and it is observed that the fluid

friction dominates near the cylinders.

The influence of Joule heating pameter on f(\), 8(\), S(A), Ns and Be is shown in figure (7.3).
The dimensionless velocity f(\) rises with a rise in the Joule heating parameter J as shown in
figure 7.3(a). Figure 7.3(b) reveals that §(\) increase with an increase in the Joule heating pameter
J. From figure 7.3(c) it is noticed that nanoparticle concentration S(\) decays with a growth in the
Joule heating parameter J. Figure 7.3(d) shows that an increase in the Joule heating parameter
J causes an increase in entropy generation. With an increase in the Joule heating parameter J
the Bejan number is observed to be increasing near the inner cylinder, while away from the inner
cylinder the trend is reversed due to more contribution of heat transfer irreversibility on Ns as
presented in figure 7.3(e). It observed that the fluid friction dominates near the end points of the

cylinder and heat transfer irreversibility dominates around the center of an annulus.

Figure (7.4) displays the impact of chemical reaction parameter K on velocity in flow direction,
temperature, nanoparticle concentration, entropy generation and Bejan number. Figure 7.4(a) re-

veals that the velocity is increasing as the chemical reaction parameter increases. The effect of K
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on the non-dimensional temperature §(\) is represented in figure 7.4(b). From this figure, it is ob-
served that 8(\) decays with an enhancement in the chemical reaction parameter K. The influence
of K is to reduce the temperature extremely in the flow field. From the flow region the heat energy
is released because of a rise in the chemical reaction K, therefore the fluid temperature decreases.
Figure 7.4(c) depicts the variation of nanoparticle concentration with K. The nanoparticle con-
centration S(A) decreases with an increase in the chemical reaction K. Figure 7.4(d) shows that
the entropy generation decays with an enhancement in K. It is clear from figure 7.4(e) that Be
increases with an enhancement in the value of K. The maximal value of Bejan number is noticed
at the center of an annular region due to more contribution of heat transfer irreversibility on Ns

and it is noticed that the fluid friction dominated near the cylinders.
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Figure 7.2: “ Effect of the magnetic parameter Ha on (a) f(A), (b) 8()\), (¢) S(A), (d) Ns
and (e) Be”.
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7.4 Conclusions

In this chapter, the entropy generation due to a chemically reacting nanofluid flow between two
concentric cylinders has been analyzed by considering MHD and Joule heating effects. The main

observations are summarized below:

As magnetic parameter increases, the velocity and entropy generation decrease, but the nanopar-
ticle concentration, temperature and Bejan number increase. As the Joule heating parameter in-
creases, the dimensionless temperature, velocity and entropy generation increase, but the nanopar-
ticle concentration decreases. The dimensionless velocity and Bejan number increase, whereas the
temperature, nanoparticle concentration and entropy generation are decrease with a rise in chemical

reaction K.

The maximum values of Bejan number Be are observed at the center of an annulus due to
more contribution of heat transfer irreversibility on entropy generation and minimum value is near
the cylinders, due to more contribution of fluid friction irreversibility on entropy generation by

increasing the values of K, Ha and J.
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Part 1V

ENTROPY GENERATION DUE TO
MIXED
CONVECTIVE FLOW OF A
NANOFLUID BETWEEN
PARALLEL DISKS
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Chapter 8

Entropy generation in MHD mixed
convective flow of a nanofluid between
parallel disks with Joule heating, Hall

and ion-slip effects !

8.1 Introduction

Heat transfer and fluid flow between rotating disks is an important topic in view of its wider appli-
cations in rotating machinery, crystal growth processes, lubrication and computer storage devices.
Further, the analysis of magnetohydrodynamics (MHD) flow of a nanofluids has gained much at-
tention due to its an engineering and industrial applications. Hatami and Ganji [43] analyzed the
influence of magnetite field on the heat transfer and nanofluid flow in between two parallel disks
considering the lower plate is stationary and the upper disk moves away from the lower disk or
towards the lower disk, using least square method. Azimi and Riazi [7] investigated the MHD flow
of grapheme oxide water nanofluids between parallel coaxial disks. In most of the investigations
concerned with the MHD convective flows, the Hall current and ion-slip effects in Ohms law were

neglected in order to simplify the problem. However, the impact of the Hall current and ion-slip

!Communicated to “Journal of the Brazilian Society of Mechanical Sciences and Engineering”
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effects are an essential in a strong magnetic field. Srinivasacharya and Kaladhar [81] analyzed the
role of Hall current and ion-slip parameters on mixed convection in a couple stress fluid between

parallel disks.

Entropy generation analysis is vital for optimizing the thermal systems. Entropy generation
is directly proportion to the thermodynamic irreversibility in a system. The quality of energy
decreases when entropy generation takes place i.e. the entropy generation destroys the system
energy. Hence, the performance of the system can be improved by decreasing the entropy genera-
tion. Therefore, a powerful and useful optimization tool for a high range of thermal applications is
minimization of entropy generation. Bejan [11, 12] introduced the entropy generation optimization

method and developed its applications in science and engineering field.

In this chapter, we analysed the effects of Joule heating, Hall and ion-slip parameters on entropy
generation due to mixed convective flow of a nanofluid between parallel disks. The effect of Hall
and ion-slip, Joule heating and magnetic parameters on the temperature, velocity, nanoparticle

concentration, Bejan number and entropy generation are investigated.

8.2 Mathematical Formulation

Consider the steady, laminar and incompressible nanofluid between two horizontal coaxial parallel
disks separated by a spacing d. The lower and upper disks are rotating with rotational speeds €y
and 5. The temperature and nanoparticle volume fraction of the lower disk are T and ¢ while
for the upper disk, they are 75 and ¢2. The cylindrical coordinate system (r, ¢, z) is taken on the
lower disk and the center of the disk is considered as a pole. It is assumed that the stress work
effects and the gravitational force are negligibly small. Uniform magnetic filed of strength By is
applied normal to the disk. Consider a very small magnetic Reynolds number for which the induced
magnetite field can be omitted in comparison with the applied magnetic field. Assume relatively
high electron atom collision frequency, so that the Hall and ion-slip parameters cannot be omitted.
The Boussinesq approximation can be easily applied because the Coriolis force (2pQ x ) and
centrifugal forces (pS2 x (Q x 7)), appear in the momentum balance explicitly due to disk-rotation.
Hence, the Coriolis force, centrifugal force, curvilinear flow of the fluids and the density correlated

with the terms of gravitation are all treated as variables. To account for the rotational buoyancy
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E

Figure 8.1: “Physical model and coordinate system”.

induced by the body forces, a linear density-temperature-nanoparticle concentration relation is
employed. Under the uniform axial pressure gradient and thermal buoyancy, the flow is mixed
convective. Let u, v and w be the components of velocities along r, ¢ and z directions, T" and ¢ are

the temperature and nanoparticle volume fraction respectively.

Under these assumptions, equations governing the nanofluid flow in the presence of uniform

transverse magnetic field are given by

ou Jw u

o T Ty T 0 (8.1)
0 0 2 I
pr(ue +w5") = L1~ (1= 90)pg" Br(T = Th) = (ps = py) 97(6 = 1)) = 5.
2 X N o (10 d%u
g (1 = dw)os g (T = T3) = (px = o) (@ = o0} | o (5 tr) ) + 5]
B2
~2p5 v (1 — (1= ¢o)py g Br(T — T) — (ps — py) 9°(6 — 1)) — (a:‘)ﬁ,{z) (aeu— Bhv) (8.2)
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0 0
prlug +wss) = =LA (1= 90)ps 9" Br(T = T1) = (ps = p7) g" (6 = 61))

— 2ppuSti(1 = (1= @o)pr g™ Br(T —T1) — (ps — ps) 9" (¢ — é1))

o (10 0% o B2
+ u |:87' <7’ ar(’l”v)) + 82’2:| - m (O(@U —i—Bhu) (83)
ow ow N " op*
pf (Ua +wa> = p((L=o)ps g Br(T —=T1) — (ps — py) 9" (¢ — 1)) — 9
10 ow 0%w
Yor TV T pCp [\ Or r 0z Y822 Tz T or
2 2 2
(2 ov Ou | ow
* pCp <T or <r>> + <8z> + <8z * or
o B} 2 2
* pCp(ae? + Bh?) (" v%)
Dy ((0T\* [0T\? 06 0T 9¢OT\ |
o6  d¢ Dy [10T &*T 0°T 926 1096  020]
“or +w$ T [r or + 022 + or? + Db 92 "7 or + or? | (86)

where py is the density, the difference between reference pressure and local pressure is P* = P — P,.

The boundary conditions are

u=0, v=ry, w=0, T=T, ¢=¢1 on z=0

(8.7)
u=0, v=rQy, w=0, T=1T5, ¢=¢o on z=d
Introducing the following non-dimensional variables
z u v w T-T ¢—¢1
= =, F = — = — = N 0 = 5 = 88
" d TQl g TQl f l/Ql T2 - Tl ¢2 - ¢1 ( )
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in Egs. (8.1) to (8.6), we get

% —VRe |4Re(g' — gg') + 2f f" + ff" — 2/VRef' 4+ 2Gr(29¢'0 — 29’0 + g*0' — 296" + 0')
Ha’ae f" 2VReHa?Bhyg

+VReNT(299'S — 29'S + ¢>S' — 295’ + §') — =0(8.9
eNr(299 gS+yg gs' +5') (01 810 T (ac? + pHD) (8.9)

2VReq" —2Re(f'g+ fg' +f) + Gr[f'gd+2f0—Nrf'gS—2Nrf'S]
B Ha?Bh f! B 2V ReHaaeg (8.10)

(ce? + Bh?) (ae? + Bh?) .
0" —VRe Pro'f + PrNb'S' + PrNt6” + 43—}; [10f + f"] + Br [2¢° + ¢"]
2 2
J ! (f"*+4Re g*) 0 (8.11)
(ae? 4 Bh?) 4Re
" ! Nt //

S"—VReLefS +-—0" =0 (8.12)

Nb

in which the continuity equation f’ = 2v/ReF(n) is used to solve the system to eliminate the
2 o BQQ2 d2
0°41
(Tp = Th) ky

function F(n) of radial velocity. Re = is the

is Reynold’s number and J =

Joule heating parameter.

The rate of relative rotation of the disk 2 with respect to disk 1 is denoted by the parameter

Qb;l%. For example, v = 0 and 7 = 1 values corresponding to the cases of rotating disks

’y =
(€1 = Q9) and rotorstator (€21 # Q9), respectively.

The corresponding conditions on boundary (8.7) are

(8.13)

8.3 Solution of the Problem

The governing Egs. (8.8) - (8.12) together with(8.13) are solved by using HAM. (For more details

on homotopy analysis method see the works of Liao [47, 48, 49, 50]). The initial approximations of
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f(), g(n), 6(n) and S(n) and auxiliary linear operators are chosen as

fom) =0, go(n)=1+(y—=1)n, 6o(n)=n and So(n)=n (8.14)
and
ot 0? )
L1 = 87"74’ LZ = 671”2 fOI‘ 1= 2,3,4 (815)
such that

Li(c1 + con+ 03172 + 04?73) =0, La(cs +cgn) =0, Ls(cr 4+ cgn) = 0 and Ly(cg + c19n) =0 (8.16)

where ¢;, (i =1,2,---10), are constants.

The zeroth order deformation, which is given by

(L =p)La[f(n;p) — fo(m)] = phaN1[f(m;p)], (1 —p)L2[g(n;p) — go(n)] = phaN2[g(n; p)],

(1 =p)Ls[0(n; p) — Oo(n)] = phaN3[0(n; p)], (1 —p)La[S(n;p) — So(n)] = phaNa[S(n; p)]

(8.17)

where

Ni[f(n,p).9(n.p),0(n,p), S(n,p)] = f — VRe |4Re(q' — g¢') + 2f f" + ff" — 2/VRef’

—2VReGr(299'0 — 29’0 + g°0' — 290" +0') + VReNT(299'S — 2¢'S + ¢*S' — 295’ + &)

Ha’ae f" 2vVReHa?Bh ¢’
B (cve? + ﬁhQ) + (e? + ﬁhQ) (8.18)

Nalf(n,p),9(n,p),0(n,p), S(n,p)] = 2V Reg” — 2Re(fg + f'g + f)
Ha2Bh f' ReHa?
+Gr (f'g0+ 2f'0 — Nrf'gS — 2Nrf'S) — (aej f 5£ 5 22{;;;25)9 (8.19)

Ns[f(n,p),9(n,p),0(n,p), S(n,p)] = 6" —VRe Pro'f + PrNb0'S’ + PrNt9”
Br J (f? + 4Re g%)

o [0+ ()] + Br [209)° + (9] + ST o (8.20)
Nalf (0.),9(1.),01.9). S(n.p)] = 8"~ VEe Le [ &' + 30 0" (3.21)

where p € [0, 1] is the embedded parameter and h;, (i = 1,2,3,4), are auxiliary parameters which
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are not vanish. From p =0 to p = 1, we have

fm;0) = fo(m), fu1)=fm),  gm;0)=g0(n), gmn;1)=gn) (8.22)
0(n;0) = bo(n), O(m;1) =0(m),  S(n;0)=5S0(n), S(n;1)=S(n) (8.23)

Thus, as p varies from 0 to 1, fo, go, 8o and Sy approach f(n), g(n), 6(n) and S(n), respectively.

Using Taylor’s series, one can write them as

> - L 0™ f(n;p)
p)=fot+ D fmp™,  fm(n) = =5
F(n:p) = fo mzz:lf Op™, I = S|
9(5p) = g0+ Y gm(p™,  gm(n) = ,g(z 2T
m=1 m P p=0
= P (8.24)
D) — m _ 1 9m6tnp)
0(n:p) = o + mzlem(n)p o Om) = =
S S - _ 1 9"8(mp)
S(m;p) = So + mZ:lSm(n)p w S = o

We have to choose the values of auxiliary parameters for which the series (8.24) converges at

p=11ie.,

Fo) = fo+ D fu)s 90) = g0+ D gm(n), 6(n) =60+ > Om(n), S(n) =So+ Y Sm(n).
m=1 m=1 m=1 m=1

(8.25)

Next, mt-order deformation is given by

Lilfm() = XmFm-1(m)] = MBRL (™), La[gm(n) = Xmgm-1(n)] = ha RS, (n),

(8.26)
L3[0m (1) = XmOm-1(n)] = h3R,(n),  La[Sm(n) — XmSm—1(n)] = ha Ry, (n).
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where

RI(n) = " —VRe

m—1 m—1 m—1
ARe(g' = Gm1ndh) +2 D> froindi + D fmoanf!
n=0 n=0 n=0

_2/\/7f:| - 2\/7GT 2 Z 0771 1-n Zglgn I 2 Z gm 1— ne + Z Hm 1—-n Zglgnfl
=0
m—1 m—1
23" 16l +6'| + VReNt |2 Z Sim—1-n Zgzg;_z -2 Z —1-nSn
n=0 n=0 1=0 =

B Ha’ae f" 2\/7Ha2ﬁhg
(ce? + Bh?) (ae? + Bh?)

(8.27)

m—1 n m—1
+Y S > GGt —2 Y gmo1-aSy+ S
n=0 =0 n=0

Ha?ph f' 2v/ ReHa’ae g

" (a2 + BhY) (ae? + Bh2)

m—1 n m—1 m—1 n m—1
Z frlnflfn Zglenfl +2 Z frlnflfnen — Nr Z f;nflfn Zglsnfl —2Nr Z qunlnSn(:|828)
n=0 =0 n=0 n=0 =0 n=0

RY.(n) = 2V Reg” — 2Re

m—1 m—1
Z fm—l—ngqlm =+ Z f?lnflfngn + f
n=0 n=0

+Gr

m—1
Rm®(n) = 0" — VRe Pr 29 i nfn—errNbZGm 1—nSh + PrNt Zem a0

n=0 n=0
m—1

[ SEARVRS SYV R A E) sARVA se A
n=0 n=0

J
+
4Re(ce? + Bh?)

m—1 m—1
Z f;nflfnf;z +4 Re Z gm—l—ngn] (8'29)
n=0 n=0

Ry (n)=8"—~VReLefS + N g

= (8.30)

for integer m, we take

xm =0 for m<1

=1 for m>1.
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8.4 Convergence

To find the admissible range of the auxiliary parameters, h-curves are drawn for 12"-order ap-
proximation and shown in figure (8.2). It is visible from this figure that the permissible inter-
val for hq,he,hs and hg are —1.0 < h; < —0.5, —1.8 < hy < —0.6, —1.5 < hg < —0.5 and
—2.0 < hgy < —0.5, respectively. In order to obtain the optimal values of the auxiliary parameters,

the following average residual errors ( Ref. Liao [49] ) are computed

1 K m 2 1 K m i 2
Ef,m = ﬁ Z Nl Z fj(ZAt) 5 Eg,m = ﬁ Z Ng Zgj(ZAt) 5
1=—K J=0 i=—K 7=0
) Tl (8.31)
1 K m 1 K m
i=—K ]:0 i=—K ]:O )

where At = 1/K and K = 5. At different order of approximations (m), the least average

residual errors are shown in table (8.1).

From this, we see that the average residual errors are least at hy = —0.76, hg = —1.26, hy =
—0.65 and hgy = —0.85. Therefore, the optimum values of convergence control parameters are taken
as hy = —0.76, ho = —1.26, hg = —0.65 and hy = —0.85. The series solutions for different values
of m are computed and presented in table (8.2). It is found from this table that the series (8.25)

converges in the whole region of 7.

Further, the ratios

bf = JM' Bgz‘

gm(h)

| PP

o ml 55:‘ (8.32)

Sm(h) ‘
Sm-1(h)|’

against the number of terms m in homotopy series are calculated and observed that the series (8.25)

converges to the exact solution.
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Figure 8.2: “h-curve for (a) axial velocity, (b) tangential velocity, (c¢) temperature and (d)
nanoparticle concentration when Nr = 1.0, Nt = 0.5,Gr = 10.0, Ha = 1.0, Nb = 0.5, Pr =
1.0, 5i = 2.0, Re = 50, Le = 1.0, Sh = 2.0 and Br = 0.5”.

Optimal of hy Optimal of hy Optimal of hs Optimal of hy
Order | h; Min. of E,,, | hy Min. of E,, | hy Min. of £/, | hsy Min. of E,,
10 -0.76  3.29 x 107° | -1.26 2.68 x 10~* | -0.65 8.39 x 107° | -0.83 6.76 x 107
12 -0.76  5.13 x107° | -1.24 1.10x 107® | -0.64 7.47x107%|-0.85 3.12x 107°
14 -0.78 7.22x107*|-1.26 5.10x107%]-0.65 8.25x 107 |-0.85 6.88 x 1076

Table 8.1: “At different order of approximations, the optimal values of hq, hy, hg and hy”.
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Order £(0.5) £(0.5) 6(0.5) S(0.5)

5 -0.1145800106 -0.7237400046 0.1804538436 0.6047344904
10 -0.1171206547 -0.6548700082 0.2004254151 0.6571454270
15 -0.1211306214 -0.6384600103 0.2011424106 0.6872366455
20 -0.1212140618 -0.6375800105 0.2024264103 0.6893354554
25 -0.1212380612 -0.6375500240 0.2025124105 0.6894564673
30 -0.1212390612 -0.6375350290 0.2025174105 0.6894615346
35 -0.1212410624 -0.6375339025 0.2025174105 0.6894615346
40 -0.1212411206 -0.6375339028 0.2025174105 0.6894615467
45 -0.1212411206 -0.6375339029 0.2025174105 0.6894615467
50 -0.1212411206 -0.6375339029 0.2025174105 0.6894615467
55 -0.1212411206 -0.6375339029 0.2025174105 0.6894615467

Table 8.2: “At different order of approximations, the convergence of HAM solutions”.

8.5 Entropy generation

The entropy generation volumetric rate of nanofluid in between parallel disks can be expressed as

Ky | (0T 21 [oT\? 2u | (Ou 2 u\ 2 ow\?
% = T <a> e <a> T (a> () <a>
2 2 2 2
Hof, 9 v 9v Ou | Ow o By 2 4 o2
* T <r or (r)) + (82) + (82 * or + T1 (e + Bh?) (u*+27)
(8.33)
The entropy generation Ns ([12]) is given by
Br (1 J (f? + 4Re g%)
Ns = 0/2 = ({—T10 N2 11\2 9 2 /N2
5 +Tp <4Re [ (F)7+ () }4_ (9)"+(g) +(a62+5h2) 4Tp Re
(8.34)
where the dimensionless temperature difference is Tp = %, and the characteristic entropy gener-
1
2
ation rate is Sg. = K’;gi? . The Eq.(8.34) can be formulate as
1
Ns= Nh+ Nv (8.35)

The ratio of entropy generation due to heat transfer and the total entropy generation is called

Bejan number Be, to understand the mechanisms of entropy generation, Be is specified. The Bejan

150



number for this problem can be expressed as

Nh

Be— "
“T Nh+ Nv

(8.36)

8.6 Results and discussion

Effects of Hall 8h, ion-slip B4, magnetic Ha, relative rotating rate v and Joule heating parameters
on non-dimensional axial velocity component f(n), tangential velocity component ¢g(n), temperature
6(n), nanoparticle volume fraction S(n), Bejan number Be and entropy generation Ns are presented
graphically in Figures (8.3) - (8.8). The effect of these parameter values are established by choosing
Le=1.0, Br=0.5, Pr=1.0,Tp = 1.0, Gr =10, Re =50, Nb = 0.5 and Nr = 1.0.

Figure (8.3) displays the impact of magnetite parameter Ha on the axial and tangential ve-
locities, temperature, nanoparticle concentration, entropy generation and Bejan number. Figure
8.3(a) reveals that the axial velocity decays with an enhancement in Ha. This is because of the
fact that the induction of a magnetic field, normal to the flow direction has a tendency to develope
the drag known as Lorentz force which leads to resist the flow. Hence, the velocity decays as a
growth in Ha. It is realized from figure 8.3(b) that g(n) increases with an enhancement in Ha. The
non-dimensional temperature is increasing with an enhancement in the magnetic parameter Ha as
shown in figure 8.3(c). The resistance, created by Lorentz force, increases the fluid friction between
layers of fluid and hence the temperature increases. From figure 8.3(d), it is observed that the
nanoparticle concentration S(n) is decreasing with a rise in Ha. Figure 8.3(e) shows that entropy
generation is increasing with an increase in Ha. The significance of Ha on Be is presented in figure
8.3(f). An increase in Bejan number is examined from lower disk to the center of the disks due to
more contribution of the heat transfer irreversibility on Ns, while away from the center of the disk,

the trend is reversed and there is no effect on the end points of disks with an enhancement in Ha.

The variations of f(n), g(n), 8(n), S(n), Be and Ns with Sh are presented in figure (8.4). It is
seen from figure 8.4(a) that the axial velocity in flow direction decreases with an enhancement in
Bh. Figure 8.4(b) reveals that the tangential velocity g(n) increases with an enhancement in Sh.
Hall current tends to stimulate secondary fluid velocity. From figure 8.4(c), it is noticed that the

dimensionless temperature 6(n) is increasing with an enhancement in the Hall parameter Sh. There
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is a decay in the nanoparticle volume fraction S(n) with an enhancement in Sh as depicted in figure
8.4(d). The involvement of Hall parameter decays the resistive force demand by the magnetic field
due to its effect in minimizing the effective conductivity. Figure 8.4(e) shows the entropy generation
increased with growth in Sh. It is clear from figure 8.4(f) that Be decays from lower disk to the
center of the disks, while far away from the center of the disk the trend is reversed due to more
contribution of the heat transfer irreversibility on Ns and there is no effect on the end points of

disks with an enhancement in Sh.

The changes in axial velocity, tangential velocity, temperature, nanoparticle concentration,
entropy generation and Bejan number with /37 are represented in figure (8.5). From figure 8.5(a), it
is noticed that the dimensionless axial velocity in flow direction increases with an enhancement in 3.
Figure 8.5(b) reveals that the tangential velocity flow g(n) decays with a rise in Bi. The effective
conductivity also increases as (i increases, while it decreases the damping force on the velocity
component in the direction of the flow, due to which velocity increases. The non-dimensional
temperature increases with an increase in i as shown in figure 8.5(c). It is observed that the
nanoparticle concentration S(7) increases with a rise in 3i as depicted in figure 8.5(d). The effect

of B¢ on Bejan number and entropy generation is similar to that of Sh.

The variation of f(n), 8(n), g(n), S(n), Be and Ns with Nt are presented in figure (8.6). From
figure 8.6(a), it is examined that the axial velocity in flow direction rises with a rise in parameter
Nt . Figure 8.6(b) reveals that the tangential velocity g(n) increases as an increase in Nt¢. From
figura 8.6(c), it is noticed that the dimensionless temperature 6(n) increases with an increase in Nt.
There is a decrease in the nanoparticle concentration S(n) with an enhancement in thermoporesis
parameter Nt as depicted in figure 8.6(d). Figure 8.6(e) shows that the entropy generation increases
at the center of the disks, the trend is reversed at the end point of the disks with an increase in
Nt. Figure 8.6(f) shows that Be diminishes with a rise in the value of Nt and Bejan number is not

much effected with increase in the value of Nt at the center of the disks.

Figure (8.7) displays the role of relative rotating rate parameter v on the non-dimensional axial
and tangential velocities, temperature, nanoparticle concentration, entropy generation and Bejan
number. Figure 8.7(a) reveals that the axial velocity decreases with a rise in 7. It is observed from
figure 8.7(b) that g(n) rises with a rise in 7. The non-dimensional temperature is increases with an
increase in 7 as shown in figure 8.7(c). Figure 8.7(d) reveals that the nanoparticle concentration

S(n) decreases with a rise in 7. Figure 8.7(e) shows that the entropy generation increases at the
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center of the disks, and at the end point of the disks, the trend is reversed with an enhancement in
~. Increasing Bejan number is observed from lower disk to the center of the disks because of more
contribution of the heat transfer irreversibility on Ns, while away from the center of the disk the
trend is reversed and there is no effect at the end points of the disks with an enhancement in Be

(Bejan number), as shown in figure 8.7(f).

Figure (8.8) expiores the importance of Joule heating parameter J on f(n), 8(n), g(n), S(n), Be
and Ns. Figure 8.8(a) reveals that the axial velocity rises with a rise in J . It is observed from figure
8.8(b) that g(n) rises with a rise in J. It is clear from figure 8.8(c) that the temperature increases
with an increase in J. Nanoparticle concentration S(n) decreases with a rise in J, as presented
in figure 8.8(d). Figure 8.8(e) shows that the entropy generation increases with an enhancement
in J. Increasing Bejan number is observed from lower disk to the center of the disks due to more
contribution of the heat transfer irreversibility on Ns, while away from the center of the disks, the
trend is reversed and there is no effect at the end points of the disks with an enhancement in J, as

shown in figure 8.8(f).
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Figure 8.3: “Effect of Ha on (a) axial velocity, (b) tangential velocity, (c¢) temperature, (d)
nanoparticle concentration, (e) entropy generation and (f) Bejan number”.
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Figure 8.4: “Effect of Sh on (a) axial velocity, (b) tangential velocity, (c) temperature, (d)
nanoparticle concentration, (e) entropy generation and (f) Bejan number”.
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Figure 8.6: “Effect of Nt on (a) axial velocity, (b) tangential velocity, (c) temperature, (d)
nanoparticle concentration, (e) entropy generation and (f) Bejan number”.
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Figure 8.7: “Effect of v on (a) axial velocity, (b) tangential velocity, (¢) temperature, (d)
nanoparticle concentration, (e) entropy generation and (f) Bejan number”.
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8.7 Conclusions

In this chapter, the entropy generation due to mixed convective nanofluid flow between the hori-
zontal parallel infinite coaxial disks has been investigated by considering the effects of Joule, Hall

and ion-slip parameters. The following are the observations:

As Hall current increases, the tangential velocity, axial velocity, temperature and entropy gen-
eration increase, but the nanoparticle concentration decreases. The axial velocity, temperature and
nanoparticle concentration increase, whereas the tangential velocity decreases with an increase in
ion-slip parameter. The axial velocity, temperature and entropy generation increase, whereas the
tangential velocity and nanoparticle concentration decrease with a rise in v. The tangential, axial
velocities, temperature and entropy generation increase, whereas the nanoparticle concentration
decreases with a rise in Joule heating parameter J. The maximum values of Bejan number Be are
observed at the end point of the disks due to more contribution of the heat transfer irreversibility
on the entropy generation and minimum value at the center of the disks due to more contribution
of the fluid friction irreversibility on the entropy generation with an enhancement in Ha, 8h, 8i,y

and J.
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Chapter 9

Entropy generation in mixed
convective flow of a chemically
reacting nanofluid between parallel

disks with radiation effect !

9.1 Introduction

Rotating disk flow has long been an interesting research topic in the thermal fluid field for its
importance in fluid physics. From the practical point of view, one of the important areas in
mechanical engineering is the rotating machinery, in which thermal fluid plays a very significant
role in design and performance analysis. Especially, rotating disk configuration is the most common
one in real time applications, e.g. gas turbine disks, hard disk driver in desk top computers, rotating

heat exchangers, disk-type contactor, rotating disk reactors for epitaxy of thin film, etc.

The effect of radiation on mixed convective flow of a nanofluid over different surface geometries
has vast applications involving high temperatures such as satellites, gas turbines missiles, nuclear

power plant, aircraft, space vehicles, etc. Sheikholeslami and Davood [71] investigated the effects

LCommunicated to “Journal of King Saud University - Science”
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of radiation on the unsteady flow of the nanofluid flow and heat transfer. On the other hand, the
impact of chemical reaction on heat and mass transfer is of great influence in chemical technology
and industries of hydrometallurgy. Chemically reacting nanofluid may play a significant role in
many processing systems and materials. These include flow in packed bed electrodes and co-current
buoyant upward gas-liquid [85]. Poulomi et al [64] analysed the significance of mixed convective

chemically reacting nanofluid flow with a thermal radiation effect.

Entropy generation destroys the available energy of a system and as a result imposes consid-
erable extra costs to any thermal system. In order to improve the efficiency in all types of ther-
mal systems, it is important to minimize the entropy generation and thus optimizing the energy
resources. Gyftopoulos and Beretta [37] studied the rate of entropy generation in a chemically re-
acting system. Rashidi et al[67] analysed the magnetohydrodynamic nanofluid flow due to entropy

generation in a rotating porous disk.

In this chapter, the effect of thermal radiation on entropy generation due to mixed convective
chemically reacting nanofluid flow between parallel disks is investigated. The effects of thermal ra-
diation and chemical reaction on the temperature, velocity, nanoparticle concentration and entropy

generation are investigated.

9.2 Mathematical Formulation

Consider the steady, laminar and incompressible nanofluid flow between two horizontal coaxial
parallel disks (see figure 8.1). We assume that

e The distance between two horizontal coaxial parallel disks is d.

e The lower and upper disks are rotating with angular velocities £2; and {25 respectively.

e 77 and ¢ are the temperature and nanoparticle volume fraction of the lower disk whereas

T5 and ¢9 are at the upper disk.

e The cylindrical coordinate system (r,p, z) is taken on the lower disk and the center of the

disk is considered as pole.
e Uniform magnetic field of strength By is applied normal to the disk.
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The governing equations of the flow are given by

ou Ow wu
E‘f’%"‘;—o (9.1)

d d 2 op”
pr (wgr +w52) = L1 = (1= do)ps 9" Br(T = T0) = (s = py) " (6 = 1)) = 5

2u
—pp T (1= ¢0)ps g* Br(T —T1) — (ps — py) g*(¢ — ¢1)) + [; <1 %(r u)> - 222]

=205 v (1 = (1= ¢o)py g* Br(T —T1) — (ps — pr) g° (¢ — #1))  (9.2)

0 0
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Under the Rosseland approximation, we assume the radiation heat flux ¢, as

40* OT*
= — —_— 9.7
4 3y Or (9.7)
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The boundary conditions are

u=0, v=rQy, w=0, T=1T, ¢=¢1 on z=0,

(9.8)
u=0, v=rQe, w=0, T=Ty ¢=¢s on z=d
Introducing the following non-dimensional variables
z u v w T-T ¢—¢1
= = F = — = — = N 0 = 5 = 99
" d TQl g TQl f l/Ql T2 - Tl ¢2 - ¢1 ( )

in Egs. (9.1) to (9.6), we get

2
VvV Re
+VReGrNT(29¢'S — 2¢'S + ¢*S' — 295’ + s') = 0(9.10)

% —VRe |4Re(g — gg') + 2f f" + f " — I +2Gr(299'0 — 29’0 + ¢%0' — 290" +0')

2V Reg" —2Re(f'g+ fg' +f) + Gr [f'90+2f0— Nrf'gS—2Nrf'S] =0 (9.11)

4 B 12
(1+ R0~ VRe Pro'f + PrNw's' + PrNt9” + Rl 3f72 + fT + Reg?| =0 (9.12)
e
1 / Nt /!
S"—vVReLefS —l—mQ — KLeS =0 (9.13)
40'* T% . .. k1 d? - . .
where Rd = N X, s the thermal radiation parameter and K = *L= is the chemically reacting
f

parameter. The remaining parameters are already defined in chapter-8.

The corresponding conditions on boundary (9.8) are

S=0 f=f=0 g=1, #=0, at n=0
(9.14)
S=1 f:f/:07 9=, =1, at n=1
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Optimal of hy Optimal of hy Optimal of h3 Optimal of hy
Order | Ay Min. of E,,| hy Min. of £, | hs Min. of E,, | hys Min. of £,
10 [-041 4.39x107*[-1.02 7.67x107%[-0.34 7.69x107° |-1.18 7.62x 10~°
12 |1-039 6.31x107°|-1.01 3.12x1077 |-0.34 743 x107% |-1.16 8.42x107°
14 |-040 142 x107*|-1.01 5.41x107%]-0.34 6.12x 1079 | -1.18 9.68 x 107

Table 9.1: “At different order of approximations, the optimal values of hy, ho, h3 and hy 7.

Order £(0.5) g(0.5) 6(0.5) S(0.5)

D 0.1545800106 0.6523740006 0.0453843627 0.6047344904
10 0.1871206547 0.4654870002 0.0425415168 0.6571454270
15 0.2011306214 0.4563846001 0.1126424106 0.6752366455
20 0.2112140618 0.4463758001 0.2412264103 0.6973354554
25 0.2120380612 0.4426375500 0.2532124105 0.6984564673
30 0.2123906124 0.4426375350 0.2532174105 0.6984615346
35 0.2124106248 0.4426137533 0.2532174105 0.6984615346
40 0.2124112065 0.4426137532 0.2532174105 0.6984615467
45 0.2124112065 0.4426137532 0.2532174105 0.6984615467
50 0.2124112065 0.4426137532 0.2532174105 0.6984615467
55 0.2124112065 0.4426137532 0.2532174105 0.6984615467

Table 9.2: “At different order of approximations, the convergency of HAM solutions”.

9.3 Solution of the problem

The governing Egs. (9.10) - (9.13) along with the boundary conditions (9.14) are solved by using
HAM. As this method is already explained in the chapter - 8, the details are not provided here.
However, the convergence of homotopy solution is discussed. To determine the admissible range

2t order approximation and presented in

of auxiliary parameters, the h-curves are plotted for 1
figure (9.1). It is found that the admissible ranges for hq, ha, hs and hy are —1.4 < hy < —0.2,
—1.5 < hg < —0.5, —0.6 < hs < —0.2 and —1.6 < hgy < —0.4 respectively. The average residual
errors (given by (8.31)) are calculated to get the optimum values of hy, ha, hs and hs and presented
in the table (9.1). From this table, it is noticed that the optimal value of auxiliary parameters are
h, = —0.4, hg = —1.01, h3 = —0.34 and hy = —1.18. Further, the series solutions for different

values of m are computed and represented in table (9.2). From table (9.2), it is found that the

series solution converges in the whole region of 7.
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Figure 9.1: “h-curves for (a) axial velocity, (b) tangential velocity, (c¢) temperature and (d)
nanoparticle concentration when Nr = 1.0, Nt = 0.5, Gr = 10.0, Nb = 0.5, Pr = 1.0, Re =
20, Le = 1.0, K = 1.0, Br = 0.5 and Rd = 1.0”.
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9.4 Entropy generation

The entropy generation volumetric rate of nanofluid between parallel disks can be expressed as

Ky | (0T 2 1 [oT\? 2u | (Ou 2 w2 ow\?
Se = — || — = | = — |l = - —
¢ T? <8r> +al2 (82’) T <8r> +<r) +<82>
2 2 2
I 0 (v ov ou  Ow 1
2y = (2 °L L) | - v 1
* T <r or (r)) * <32> * <8z * or Tlv e (9.15)
The entropy generation Ns (Bejan [12]) is given by
4 Br i
Ns = (1 ZRd 9/2 o 12 Jo /2 1
s=(1+ 3R ) +R6Tp [3]“" + 1 + Reg (9.16)
The Eq.(9.16) can be formulate as
Ns=Nh+ Nv (9.17)

To understand the mechanisms of entropy generation, Be is specified and defined as

Nh

Be—— "
°T Nh+ Nv

(9.18)

9.5 Results and discussion

Effects of radiation parameter Rd, chemical reaction parameter K, Brinkman number Br and
thermophSoresis parameters Nt on the non-dimensional axial velocity f(n), tangential velocity
g(n), temperature 6(n), nanoparticle volume fraction S(n) and the entropy generation Ns are
presented geometrically in Figures. (9.2) - (9.5). The effects of these parameters are found by
choosing Le = 1.0, Pr =1.0, Tp = 1.0, Gr = 10, Re = 20, Nb = 0.5 and Nr = 1.0.

Figure (9.2) displays the impact of radiation parameter Rd on the axial and tangential velocities,
temperature, nanoparticle concentration and the entropy generation. Figure 9.2(a) reveals that the
axial velocity is decreasing with an increase in Rd. It is realized from figure 9.2(b) that g(n)
is decreasing with an increase in Rd. The non-dimensional temperature is decreasing with an
enhancement in Rd as shown in figure 9.2(c). From figure 9.2(d), it is noticed that the nanoparticle

concentration S(n) is increasing with a rise in Rd. Figure 9.2(e) depicts that the entropy generation
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is decreasing with an increase in Rd.

The variation of f(n), g(n), 8(n), S(n) and Ns with chemical reaction parameter K is presented
in figure (9.3). It is examined from figure 9.3(a) that the axial velocity in flow direction increases
with an increase in K. Figure 9.3(b) reveals that the tangential velocity g(n) decreases with an
enhancement in K. From figure 9.3(c), it is noticed that the dimensionless temperature 6(n)
is decreasing with an enhancement in K. There is a decay in the nanoparticle volume fraction
S(n) with an enhancement in K as show in figure 9.3(d). Figure 9.3(e) presents that the entropy

generation increases with an increase in K.

The changes in the axial velocity, tangential velocity, temperature, nanoparticle concentration
and the entropy generation with Br are represented in figure (9.4). From figure 9.4(a), it is observed
that the dimensionless axial velocity in flow direction increases with an enhancement in Br. Figure
9.4(b) reveals that the tangential velocity g(n) is increasing with a rise in Br. The non-dimensional
temperature increases with an increase in Br as shown in figure 9.4(c). It is noticed that the
nanoparticle concentration S(n) decreases with a rise in Br as depicted in figure 9.4(d). Figure

9.4(e) presents that the entropy generation is increasing with an enhancement in Br.

The variations of f(n), 8(n), g(n), S(n) and Ns with Nt are presented in figure (9.5). From
figure 9.5(a), it is revealed that the axial velocity in the flow direction is increasing with a rise in Nt.
Figure 9.5(b) reveals that the tangential velocity g(n) increases as the thermophoresis parameter Nt
increases. From figure 9.5(c), it is noticed that the dimensionless temperature () is increasing as
the thermophoresis parameter Nt increases. There is a decrease in the nanoparticle concentration
S(n) with an enhancement in the thermophoresis parameter Nt as depicted in figure 9.5(d). Figure

9.5(e) shows that the entropy generation increases with an enhancement in Nt.
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Figure 9.2: “Effect of Rd on (a) axial velocity, (b) tangential velocity, (c¢) temperature, (d)
nanoparticle concentration and (e) entropy generation”.
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9.6 Conclusions

In this chapter, the entropy generation in a mixed convective chemically reacting nanofluid flow
between the horizontal parallel infinite coaxial disks have been investigated by considering the
effects of radiation and Brinkman number. The non-dimensional nonlinear equations are solved

using HAM method. The main conclusions are given below

With an increase in radiation parameter Rd, the tangential velocity, axial velocity, temperature
and the entropy generation decrease, but nanoparticle concentration increases. The axial velocity
and the entropy generation increase, whereas the tangential velocity, temperature and nanoparticle
concentration decrease with an enhancement in chemical reaction parameter. As Brinkman number
and thermophoresis parameters increase, the axial, tangential velocity, temperature and the entropy

generation increase, whereas the nanoparticle concentration decreases.
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SUMMARY AND CONCLUSIONS
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Chapter 10

Summary and Conclusions

In this thesis, the steady, laminar convective flow of an incompressible nanofluid and the entropy
generation under the influence of transverse magnetic field through vertical channel, concentric
cylinders and parallel discs is studied. The entropy generation rate and Bejan number are calculated
numerically. Nanofluids are studied because of their heat transfer properties, they enhance thermal

conductivity and convective properties over the properties of the base fluid.

The steady convective flow and the entropy generation of nanofluid in vertical channel has
been investigated in part-II. The aim of this part is to analyze the effects of magnetic parameter,
Hall, ion-slip, Joule heating, radiation and chemical reaction parameter on the velocity in flow
direction, temperature, nanoparticle concentration, These findings are used to compute the entropy
generation and Bejan number in a vertical channel. The governing equations and the corresponding
boundary conditions are changed into a dimensionless form using suitable transformations. The
obtained system of equations is then solved using the Homotopy Analysis method (HAM). The

main findings of the analysis carried in part-II are

e As the Hall parameter increases, the dimensionless temperature and velocity in the flow direc-
tion increase, whereas the induced flow velocity decreases, but the nanoparticle concentration

increases in case of natural convection, whereas it decreases in the case of mixed convection.

e The dimensionless temperature and velocity in the flow direction increase, but the nanoparti-

cle concentration and the flow velocity in z-direction decrease as ion-slip parameter increases.
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e With an increase in the magnetic parameter, the velocity in flow direction and temperature
decrease, whereas the velocity in z-direction increases, whereas the nanoparticle concentration

increases in case of natural convection and decreases in case of mixed convection.

e The dimensionless velocity and temperature increase, whereas the nanoparticle concentration

and the entropy generation decrease with a rise in thermal-radiation.

e As the Joule heating parameter increases, the dimensionless temperature, velocity and the

entropy generation increase, but the nanoparticle concentration decreases.

e The dimensionless velocity, temperature and the entropy generation increase, whereas the

nanoparticle concentration decreases with a rise in chemical reaction parameter K.

Part-IIT deals with free and mixed convective flow of nanofluid passing through the annulus
between two concentric cylinders in the presence of a magnetic field. Studying the effects of Hall,
ion-slip, Joule heating, radiation and chemical reaction parameter on the velocity in flow direc-
tion, temperature, nanoparticle concentration are the objectives of this section. The important

observations from these investigations are

e As the Hall parameter increases, the dimensionless temperature decreases whereas the veloc-

ity and nanoparticle concentration increase.

e The dimensionless temperature decreases, but the nanoparticle concentration and the velocity

in flow direction increase as ion-slip parameter increases.

e As an increase in the magnetic parameter, the velocity in flow direction, nanoparticle con-

centration decrease, whereas the temperature increases.

e The dimensionless velocity and temperature decrease, whereas the nanoparticle concentration

and entropy generation increase with a rise in thermal radiation Rd.

e As the Joule heating parameter increases, the dimensionless temperature, velocity and en-

tropy generation increase, whereas the nanoparticle concentration decreases.

e The dimensionless velocity and Bejan number are found to be increasing, whereas the tem-
perature, nanoparticle concentration and the entropy generation are decreasing with a rise

in chemical reaction K.
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In Part-IV, the entropy generation in a mixed convective electrically conducting nanofluid flow
between the horizontal parallel infinite coaxial disks has been investigated by considering the effects
of Joule, radiation, chemical reaction, Hall and ion-slip parameters. The non-dimensional nonlinear

equations are solved using HAM procedure. The main conclusions figure below

e With an increment in Hall current, the tangential velocity, axial velocity, temperature and
the entropy generation increase, but the nanoparticle concentration decreases. The axial
velocity, temperature and the nanoparticle concentration increase, whereas the tangential

velocity decreases as ion-slip increases.

e The axial velocity, temperature and the entropy generation increase, whereas the tangential
velocity and nanoparticle concentration decrease with a rise in relative rotating rate param-
eter 7. The tangential, axial velocities, temperature and the entropy generation increase,

whereas nanoparticle concentration decreases with a rise in Joule heating parameter J.

e As an increment in radiation, the tangential velocity, axial velocity, temperature and the
entropy generation decrease, but the nanoparticle concentration increases. The axial velocity
and entropy generation increase, whereas the tangential velocity, temperature and nanopar-

ticle concentration decrease as chemical reaction increases.

e The maximum values of Bejan number Be are observed at the end point of the disks due
to more contribution of heat transfer irreversibility on entropy generation Ns and minimum
value at the center of the disks due to more contribution of the fluid friction irreversibility

on the entropy generation Vs with an enhancement of Ha, Sh, Nt,~v and J.

The work presented in the thesis can be extended to analyze the effect of heat and mass transfer,
viscosity variation and it can also be extended to study the effect of porosity variation, effect of
wall channeling, effect of stratification, double diffusion, conjugate convection etc. In this thesis,
we have used nanofluid model. These problems can be extended to other fluid models like Jeffery
fluid, micropolar fluid, viscoelastic fluid model, etc. Such an exhaustive study can be a rewarding

experience though it is challenging as well as time consuming.
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