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A B S T R A C T

Modeling and analysis of the dynamics of micropolar fluids continue to be an area of

intensive research activity. This stems from the evidence that these types of fluids may have

a large variety of engineering and industrial applications. Micropolar fluids are defined as

fluids consisting of randomly oriented molecules whose fluid elements undergo translational

as well as rotational motions. The heat transfer problems in a micropolar fluid related to the

convective boundary condition are more extensive and it occurs in realistic situations. The

mathematical model of a micropolar fluid flow involving the convective boundary condition

becomes slightly more complicated leading to the complex interactions of the fluid flow,

heat and mass transfer mechanisms. An attempt has been made to analyze free and mixed

convective flows of micropolar fluid and/or micropolar fluid saturated porous medium in the

presence or absence of suction/injection, homogeneous-heterogeneous reactions, nonlinear

convection, radiation, Biot number, Soret and viscous dissipation effects. The problems

considered deal with vertical plate and truncated cone geometries.

The thesis consists of FOUR parts and EIGHT chapters. Part-I consists of a single

chapter (Chapter - 1), which provides an introduction to the concepts in micropolar fluid,

convective boundary condition, porous medium and a review of the pertinent literature.

Part-II contains four chapters (i.e. Chapters 2, 3, 4 and 5) and deals with the similarity

solution of a micropolar fluid along a vertical plate subject to the convective boundary con-

dition. Chapter 2 deals with the effects of suction/injection on a permeable vertical plate

immersed in a micropolar fluid whereas chapter 3 is an extension of chapter 2 in which Darcy

porous medium is considered. Chapter 4 examines the effects of homogeneous-heterogeneous

reactions on the nonlinear convective flow of a micropolar fluid in the presence of thermal

radiation effect. Chapter 5 is an extension of chapter 4 in which Darcy porous medium is

considered in the absence of radiation effect. Part-III consists of two chapters (Chapters 6

and 7) and deal with non-similarity solutions for the Soret and viscous dissipation effects on

micropolar fluid flow over a truncated cone with and without non-Darcy porous medium. In

all the above chapters, the nonlinear governing equations and their associated boundary con-

ditions are initially cast into dimensionless form by using similarity transformations and/or

non-similarity transformations. The resulting system of equations is solved using the Spectral

Quasilinearization Method. The influence of pertinent parameters on the non-dimensional

velocity, microrotation, temperature and concentration are presented graphically. Moreover,

the skin friction, wall couple stress, heat and mass transfer rates are studied quantitatively

and qualitatively. The final Part-IV consists of only one chapter (Chapter - 8) which gives

a summary, overall conclusions and scope for future work.
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N O M E N C L A T U R E

a, b Concentrations of the chemical

species A and B

a0 Positive constant

A,B Chemical species

b Forchheimer constant

Bi Biot number

B Buoyancy ratio

C Concentration

Cw Wall concentration

C∞ Ambient concentration

Cp Specific heat capacity

D Solutal diffusivity

DA, DB Diffusion coefficients

Da Darcy number

f Reduced stream function

fw Suction/Injection parameter

g∗ Gravitational acceleration

g Dimensionless microrotation

Gr Thermal Grashof number

hf Convective heat transfer coeffi-

cient

h, h1 Reduced concentrations of the

chemical species A and B

j Micro-inertia density

J Dimensionless micro-inertia den-

sity

k Thermal conductivity

kc, ks Reaction rate constants

K Measures the strength of the ho-

mogeneous reaction

Kp Permeability of the medium

Ks Measures the strength of the het-

erogeneous (surface) reaction

k∗ Mean absorption coefficient

L Characteristic length

Mw Dimensionless wall couple stress

mw Wall couple stress

Nux Local Nusselt number

n Material constant

Pr Prandtl number

R Radiation parameter

Rex Local Reynolds number

Re Reynolds number

r Radius of truncated cone

Sc Schmidt number

Sr Soret number
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Shx Local Sherwood number

T Temperature

Tf Convective wall temperature

T∞ Ambient temperature

u, v Velocity components in x and y di-

rections

ue Free stream velocity

U∞ Reference velocity

x0 Leading edge distance of a trun-

cated cone

x, y Coordinates along and normal to

the plate

x, y Dimensionless coordinates along

and normal to the plate

Greek Symbols

α Thermal diffusivity

α1, β Gyration viscosity parameters

β1, β2 Coefficients of thermal expansion

γ Spin-gradient viscosity

δ Ratio of diffusion coefficient

ε Porosity

ε Viscous dissipation parameter

η Similarity variable

θ Dimensionless temperature

φ Dimensionless concentration

κ Vortex viscosity

λ Mixed convection parameter

µ Dynamic viscosity

ν Kinematic viscosity

ξ Streamwise coordinate

ρ Density of the fluid

σ∗ Stefan-Boltzmann constant

τw Wall shear stress

ψ Stream function

ω, ω Components of microrotation

Subscripts

w Wall condition.

∞ Ambient condition.

Superscript

′ Differentiation with respect to η.
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Chapter 1

Preliminaries and Review

1.1 Introduction

The science of fluid dynamics encompasses the motion of gases and liquids, the forces those

are responsible for this motion and the interaction of the fluid with solids. This field stands

central to various branches of science and engineering, and touches almost every aspect of

our daily life. Fluid dynamics, one way or another, impacts defense, transportation, manu-

facturing, environment, medicine, energy, etc. From predicting the aerodynamic behavior of

moving vehicles to the movement of biological fluids in the human body, weather predictions,

cooling of electronic components, performance of micro-fluidic devices, all demand a detailed

understanding of the subject of fluid dynamics and a substantial research, thereof.

Due to the complexity of the subject and a breadth of its applications, fluid dynamics

is proven to be a highly exciting and challenging subject of modern sciences. The quest for

deeper understanding of the subject has not only inspired the development of the subject

itself, but has also led to the progress in the supporting areas, such as, applied mathematics,

numerical computing and experimental techniques. A large number of problems in fluid
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dynamics have claimed the attention of mathematicians, physicists and engineers for many

years. As a result, an enormous body of established results has accumulated steadily but

remains scattered in the literature.

The mechanism of heat transfer is the passage of thermal energy from a hot to a cold body.

When a physical body is at a different temperature than its surroundings or another body,

transfer of thermal energy between them is also known as heat transfer. It occurs through

conduction, convection, radiation or any combination of these. The combined process of

heat transfer by conduction and convection is referred to as the convective heat transfer.

The convective mode of heat transfer is generally divided into two basic processes: free (or

natural) convection and forced convection. If the fluid motion is set up by buoyancy effects

resulting from density differences caused by temperature differences in the fluid, then the

heat transfer is said to be free convection. On other hand, if the motion of the fluid arises

from an external agent, then the process is termed as forced convection. When both free

and forced convection effects are significant and neither of these can be neglected, then the

process is termed as mixed convection. Both free and mixed convection processes may be

divided into external flows over immersed bodies (such as flat plates, cones, cylinders and

wires, spheres or other bodies), free boundary flows (such as plumes, jets and wakes), and

internal flow in ducts (such as pipes, channels and enclosures).

The transport of a component in a mixture from a region of high concentration to a

region of low concentration is called mass transfer. The involvement and applications of

mass transfer process has gained much attention and it goes to a greater length in multiple

fields such as in the industrial, biological, physical and chemical engineering processes. Mass

transfer is divided into two modes: Diffusion mass transfer and Convective mass transfer.

There is a close similarity between heat transfer and mass transfer in terms of the transport

rate equation and transport conservation equation. The convective mass transfer is analogous

to convective heat transfer and occurs between a moving mixture of fluid species and an

exposed solid surface. Coupled heat and mass transport constitute a major area of research in

modern fluid dynamics. Such flow arises in electronic cooling, drying processes, manufacture

of electric cable insulations, curing of plastics, solar energy system and purification processes.
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A Newtonian fluid is a fluid that exhibits a viscosity that remains constant regardless

of any external stress that is placed upon it, such as mixing or a sudden application of

force. One example is water, since it flows the same way, in spite of whether it is left

alone or agitated vigorously. Another way to describe these fluids is that obey Newton′s

law relating shear stress and shear rate with a simple material property (the viscosity). The

viscosity dependent on basic thermodynamic variables such as temperature, concentration

and pressure, but independent of flow parameters such as shear rate and time. This can

be contrasted with non-Newtonian fluids, which can become thicker or thinner when stress

is applied. A great deal of involvement has been brought forth to illustrate the nonlinear

relationship between the rate of strain and stress in non-Newtonian fluid models. But there

is no single fluid flow model which undoubtedly exhibits all the properties of real fluids.

Therefore, during the last century, several fluid models are proposed to characterize the

real fluid behaviour. Among these, micropolar fluid introduced by Eringen [32] has distinct

features, such as the micro inertial effect, the presence of couple stresses, body couples and

non-symmetric stress tensor.

1.2 Micropolar Fluids

Micropolar fluids are a subclass of microfluids and deal with a class of fluids which exhibit

some microscopic effects arising from the local structure and micro-motion of the fluid el-

ements. Compared to the classical Newtonian fluids, the flow motion of micropolar fluids

is distinguished by two supplementary variables, (i.e.,) the spin vector responsible for the

micro-rotation, and the microinertia tensor which describes the distribution of atoms and

molecules inside the fluid elements in addition to the velocity vector. Physically, micropolar

fluids are the fluids that comprise of rigid randomly oriented (spherical) particles suspended

in a viscous medium where the deformation of the particles is ignored. Some common exam-

ples of micropolar fluids are sediments in rivers, human blood, liquid crystal, drug suspension

in pharmacology, plasma, colloidal fluids, etc. These fluids have immense applications in di-

verse areas such as engineering sciences, lubrication theory, short waves for heat conducting
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fluids, boundary layer theory, etc. A deep monograph to the micropolar fluid theory and its

applications has been reported by Ariman et al. [5, 6], Lukaszewicz [51] and Eremeyev et al.

[31].

The governing equations of micropolar fluids are represented in terms of the velocity

and microrotation vectors associated with each particle present in the fluid medium. The

governing equations of micropolar fluid dynamics [32] are

dρ

dt
+ ρ(∇ · −→q ) = 0 (1.1)

ρ
d−→q
dt

= ρ
−→
f −∇p+ κ(∇×−→ω )− (µ+ κ)[∇× (∇×−→q )] + (λ1 + 2µ+ κ) ∇(∇ · −→q ) (1.2)

ρj
d−→ω
dt

= ρ
−→
l − 2k−→ω + κ∇×−→q − γ[∇× (∇×−→ω )] + (α1 + β + γ)∇(∇ · −→ω ) (1.3)

where −→q is the velocity vector, −→ω is the microrotation vector, p is the fluid pressure, ρ is the

density of the fluid, j is the microgyration parameter, t is the time variable,
−→
f is the body

force per unit mass and
−→
l is the body couple per unit mass. Also, the material constants

{λ1, µ, κ} and {α1, β, γ} denote the viscosity and gyroviscosity coefficients respectively, and

satisfy the following inequalities

κ ≥ 0, 2µ+ κ ≥ 0, 3α1 + β + γ ≥ 0, 3λ1 + 2µ+ κ ≥ 0, |γ| ≥ 0, γ ≥ |β1|

The force stress tensor τij and couple stress tensor mij of a micropolar fluid are given by

τi,j = (−p+ λ1 (∇.−→q )) δij + (2µ+ κ) eij + κ εijm (Ωm − ωm) (1.4)

mij = α1 (∇.−→ω ) δij + β ωi,j + γ ωj,i (1.5)

where ωi and 2Ωi are the components of microrotation and vorticity vector respectively.

δij is the Kronecker delta, eij’s are the components of the rate of strain, comma indicates

covariant differentiation and εijm is the Levi-Civita symbol. The boundary conditions are

considered for microrotation such that there is no relative spin on the boundary and this

condition is the generalization of classical no-slip condition to require that the fluid particles

5



nearest to a solid boundary stick to it neither translating nor rotating.

In the special case where the fluid has constant physical properties, no external body

forces exist and for steady state flow, the conservation equations can be extremely simpli-

fied. Apart from the previous case, when κ = α1 = β = γ = 0 and with vanishing
−→
l , the

gyration vector disappears and angular momentum equation (1.3) vanishes identically and

the equation (1.2) reduces to the classical Navier-Stokes equations. Also it may be noticed

that in the case of zero vortex viscosity (κ = 0) only, the velocity vector −→q and the micro-

rotation vector −→ω are decoupled and the global motion is unchanged by the microrotation.

1.3 Porous Medium

A porous medium may be defined as a solid matrix containing holes either connected or

non-connected, dispersed within the medium in a regular or random manner provided such

holes occur frequently in the medium. If these pores are saturated with a fluid, then the solid

matrix with the fluid is called a fluid-saturated porous medium. This type of analysis in

porous media plays an important role in many fields of science and engineering, for instance,

petroleum engineering, ground water hydrology, agricultural engineering and soil mechanics.

But, the flow of the fluid in a saturated porous material is possible only when some of the

pores are interconnected.

To study the motion of fluids through porous media, one must have sufficient understand-

ing of the governing equations for the fluid flow through the porous media. Owing to the

intricate structure of the porous medium, several models have proposed in order to explain

mathematical and physical aspects of porous media. Among these, the Darcy model and

a series of its modifications have attained much acceptance. Further, the boundary layer

assumptions have been successfully applied to these models and much work over the last few

decades has been done on them for a wide variety of geometries.
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Darcy Model

The governing equation of fluid motion in a vertical porous column was first given by Darcy

[24] in 1856. It represents a balance of viscous force, gravitational force and pressure gradient.

In mathematical form, it is given as

−→q = −Kp

µ
(∇P − ρ g) (1.6)

where −→q is the space averaged velocity (or Darcian velocity), Kp is the (intrinsic) perme-

ability of the medium, µ is the coefficient of viscosity, P is the pressure, ρ is the density of

the fluid and g is the body force per unit volume. For one-dimensional flow and low porosity

system, the above law appears to provide good agreement with experimental results. As this

model does not take inertial effects into consideration, it is valid only for seepage flows, i.e.,

for flows with low Reynolds number (O(Re) < 1).

Darcy-Brinkman Model

It is assumed that the flow through an anisotropic porous medium with high permeability

must reduce to the viscous flow in a limit. In viewing this, Brinkman felt the need to

account for the viscous force exerted by a flowing fluid on a dense swarm of spherical particles

embedded in a porous mass and added the term µ′∇2V to balance the pressure gradient.

Here µ′ is the effective viscosity given by µ′ = µ(1−2.5(1−ε)). The validity of the Brinkman

model is restricted to the high porosity medium (as confirmed by the experiments) and its

governing equation is given by

− [∇P − ρg] =
µ

Kp

−→q − µ′∇2−→q (1.7)

Darcy-Forchheimer Model

In 1901, Forchheimer conducted experiments and proposed that inertial effects can be ac-

counted for by the addition of the square of velocity in the momentum equation. The
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modification to Darcy′s equation is[
1 +

ρ c
√
Kp

µ
|−→q |

]
−→q = −Kp

µ
[∇P − ρg] (1.8)

where c is the dimensionless form drag coefficient and it varies with the nature of the porous

medium. The coefficients of Darcy and Forchheimer terms contain both fluid properties and

the microstructure of the porous medium. Several other models are found in the literature

related to porous media and the validity and limitations of these models are well discussed

in the text book by Nield and Bejan [74].

1.4 Convective Boundary Condition

It can be seen from the literature that several investigators have considered convective heat

transfer problems with either wall temperature or heat flux in Newtonian and/or non-

Newtonian fluids. But, these conditions cannot explain the supply of heat with a finite

heat capacity to the convecting fluid through a bounding surface. To explain this, a novel

mechanism for the heating process has drawn the attention of many researchers, known as

the Convective Boundary Condition (CBC) (for more details see Aziz [8]). Further, the heat

transfer with a convective boundary condition is more general and realistic, especially with

respect to various engineering and industrial processes including material drying, laser pulse

heating and transpiration cooling. Also, it occurs when a solid substrate is in contact with

the fluid at a different temperature and involves relative motion between the fluid and the

substrate. The magnitude of heat exchange is described in terms of Newton’s law of cooling,

for which the relevant constitutive property of the system is the convective heat transfer

coefficient. The convective boundary condition for heat transfer involves equating Fourier’s

law of conduction at the solid surface with Newton’s law of cooling in the fluid.

−k∂T
∂y

= hf (Tf − T ) (1.9)
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1.5 Spectral Quasi-linearization Method

The governing equations of convective heat and mass transfer in Newtonian and/or non-

Newtonian fluids are essentially coupled and non-linear differential equations. Generally,

these non-linear differential equations cannot be solved analytically, so recourse must be

made to a numerical approach. Several methods are available to solve these nonlinear dif-

ferential equations namely, shooting method, local similarity and non-similarity method,

finite difference method, finite element methods, cubic spline collocation method, spectral

methods etc. Among these, the Spectral Quasi-linearization Method is one of the efficient

and accurate spectral method introduced by Motsa [61]. It is developed by combining two

methods viz., quasi-linearization method and Chebyshev spectral collocation method. This

method has several desirable features that make it appropriate for the solution of differential

equations. In this section, the spectral quasi-linearization method (SQLM) is presented for

solving the differential equation. The brief details of the SQLM are as follows:

Quasi-linearization Method

Quasi-linearization method (QLM) is a generalization of the Newton-Rhapson method ini-

tiated by Bellman and Kalaba [16] to solve nonlinear ordinary and partial differential equa-

tions. To obtain the QLM iteration scheme, the nonlinear component of a differential equa-

tion is linearized using the multi-variable Taylor series expansion. To develop the QLM, we

consider a system of m nonlinear ordinary differential equations with m unknowns zi(η) for

i = 1, 2, ...,m, where η is the independent variable. The system of equations can be written

as a sum of its linear component (L) and nonlinear component (N ) as

L [z1(η), z2(η), ..., zm(η)] +N [z1(η), z2(η), ..., zm(η)] = 0 (1.10)

Define vector Zi to be the vector of derivatives of the variable zi with respect to the inde-

pendent variable η, that is

Zi =
[
z
(0)
i , z

(1)
i , ..., z

(ni)
i

]
(1.11)
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where z
(0)
i = zi and z

(p)
i is the pth derivative of zi with respect to η and ni (i = 1, 2, ...,m)

is the higher order derivative of the variable zi appearing in the system of equations. In

addition, we define Li and Ni to be the linear and non-linear operators respectively, that

operate on the Zi for i = 1, 2, ...,m. With these definitions, the Eq.(1.10) can be written as

Li [Z1, Z2, ..., Zm] +Ni [Z1, Z2, ..., Zm] =
m∑
j=1

ni∑
p=0

α
[p]
ij z

(p)
j +Ni [Z1, Z2, ..., Zm] = 0 (1.12)

where α
[p]
ij are the constant coefficient of z

(p)
j , the derivative of zj (j = 1, 2, ...,m) that appears

in the ith equation for i = 1, 2, ...,m.

Again, assume that the Eq.(1.10) is to be solved subject to separated two-point boundary

conditions which are expressed as

m∑
j=1

nj−1∑
p=0

β
[p]
v,jz

(p)
j (a) = Ka,v, v = 1, 2, ...,ma (1.13)

m∑
j=1

nj−1∑
p=0

γ
[p]
σ,jz

(p)
j (b) = Kb,σ, σ = 1, 2, ...,mb (1.14)

where β
[p]
v,j, γ

[p]
σ,j are the constant coefficients of z

(p)
j in the boundary conditions and ma, mb

are the total number of prescribed boundary conditions at η = a and η = b respectively.

Assume that the solution zi(η) of Eq.(1.12) at the (r + 1)th iteration is zi,r+1(η). If the

solution at the previous iteration zi,r(η) is sufficiently close to zi,r+1(η), then the nonlinear

component Ni of the Eq.(1.12) can be linearised using one term Taylor series for multiple

variables so that the Eq.(1.12) can be approximated as

Li [Z1,r+1, ..., Zm,r+1] +Ni [...] =
m∑
j=1

ni∑
p=0

(
z
(p)
j,r+1 − z

(p)
j,r

) ∂Ni
∂z

(p)
j

[...] = 0 (1.15)

where

[...] = [Z1,r, Z2,r, ..., Zm,r] (1.16)
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Equation (1.15) can be re-written as

Li [Z1,r+1, ..., Zm,r+1] +
m∑
j=1

ni∑
p=0

z
(p)
j,r+1

∂Ni
∂Z

(p)
j

[...] =
m∑
j=1

ni∑
p=0

z
(p)
j,r

∂Ni
∂z

(p)
j

[...]−Ni [...] (1.17)

The above equation can be solved using any numerical method. But, in this work the

Chebyshev spectral collocation method is used and the resulting method is called the spectral

quasi-linearization method (SQLM).

Chebyshev Spectral Collocation Method

The Chebyshev spectral collocation method ([25, 101, 18]) is based on the Chebyshev polyno-

mials defined on the interval [-1, 1]. To solve the problems using this method, one has to first

transform the domain [a, b] of the problem to [−1, 1] by using the following transformation

(b− a)τ = 2η − (a+ b), −1 ≤ τ ≤ 1 (1.18)

Discretize the domain [-1, 1] using the Gauss-Lobatto collocation points given by

τj = cos
πj

N
, j = 0, 1, 2, ..., N (1.19)

where N is the number of collocation points used. The function Zi is approximated at the

collocation points as follows

zi(τ) =
N∑
k=0

zi(τk)Tk(τj) (1.20)

where Tk is the kth Chebyshev polynomial defined by Tk(τ) = cos[kcos−1τ ]

The derivatives of the variables at the collocation points are represented as

drzi
dηr

=
N∑
k=0

[
2

b− a
Dkj

]r
zi(τk) (1.21)

where r is the order of differentiation and D being the Chebyshev spectral differentiation
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matrix whose entries are defined as

D00 = 2N
2
+1

6

Djk =
cj
ck

(−1)j+k

τj−τk
, j 6= k; j, k = 0, 1, 2 · · · , N,

Dkk = − τk
2(1−τk2)

, k = 1, 2 · · · , N − 1,

DNN = −2N
2
+1

6


(1.22)

Substituting Eqs.(1.19)-(1.22) into the given equation leads to the system of matrix equation

as follows

Ai−1Xi = Ri−1 (1.23)

where Ai−1 is a square matrix of size (N + 1) × (N + 1), while Xi and Ri−1 are column

vectors of size (N + 1)× 1. After incorporating the boundary conditions, the solution of the

system of equations can be written as

Xi = A−1i−1Ri−1 (1.24)

Combined Finite Difference and Spectral Method

In the previous subsection, a brief description of the spectral quasi-linearisation method

(SQLM) is provided to solve the system of ordinary differential equations (ODE’s). In this

subsection, the extension of the SQLM is presented briefly to solve the system of partial dif-

ferential equations (PDE’s). Since the finite difference methods are known to converge more

slowly than spectral methods, combining these two methods one would compromise the rapid

convergence of problems. The combination of spectral method and finite difference method

is used to approximate solutions of the system of non-linear partial differential equations.

This modification of the SQLM utilizes the spectral method to discretize derivatives in space

and implicit finite difference method to discretize in a streamwise coordinate. Further, this

spectral method in space improves the accuracy of the results using few grid points and then

it improves the computational time of the finite difference method.
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1.6 Literature Review

The study of free and mixed convection due to a heated or cooled vertical flat plate provides

one of the most basic scenarios for heat and mass transfer theory and thus is of considerable

theoretical and practical interest. Free convection of heat and mass transfer occurs simulta-

neously in the fields of design of chemical processing equipment, formation and dispersion of

fog, distributions of temperature, moisture over agricultural fields and groves of fruit trees.

It also occurs in the context of damage of crops due to freezing and pollution of the en-

vironment. The phenomenon of mixed convection occurs in many technical and industrial

problems such as electronic devices cooled by fans, nuclear reactors cooled during an emer-

gency shutdown, a heat exchanger placed in a low-velocity environment, solar collectors and

so on.

Convective boundary layer flow over a vertical flat plate is probably the first buoyancy

convective problem which has been studied and it has been a very popular research topic

for many years. Merkin [56] considered the boundary layer flow over a semi-infinite vertical

plate in a uniform stream in the presence of buoyancy forces. The mixed convective boundary

layer flow on a vertical surface has been studied by Lloyd and Sparrow [50]. Kafoussias and

Williams [44] analyzed the steady laminar mixed convective flow over an isothermal vertical

plate by considering the temperature dependent viscosity. Aboeldahab and Elbarbary [1]

examined the effect of Hall current on the free convective flow of an electrically conducting

viscous fluid along a semi-infinite vertical plate. An exhaustive monograph on free and mixed

convective heat and mass transfer characteristics has been given in the textbook by Bejan

[15].

Convective flow over a vertical surface embedded in a viscous fluid saturated porous

medium is one of the fundamental and classical problems in the heat and mass transfer

theory. It has attracted a great deal of interest from many investigators owing to their

wide applications, such as in geothermal systems, energy-storage units, heat insulation,

heat exchangers for the packed bed, drying technology, catalytic reactors and nuclear waste

repositories, etc. The literature relevant to the convective flows in Darcy and non-Darcy
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porous medium has been reported in the textbooks by Ingham and Pop [41], Nield and

Bejan [74], Vafai [102] and also see the citations therein.

The heat transfer problems involving the convective boundary condition appears in real-

istic situations, where heat transfer occurs at the bounding surface to or from a fluid flowing

on the surface at a known temperature and a known heat transfer coefficient, e.g. in heat

exchangers, condensers and re-boilers. To explore it, several investigators have analyzed the

fluid flow problems in the presence of convective boundary condition. Ishak [42] studied the

effects of suction and injection on steady laminar boundary layer flow over a permeable sur-

face with the convective boundary condition. Effect of Biot number on the mixed convective

flow of an electrically conducting fluid along a vertical plate embedded in a porous medium

has been considered by Makinde and Aziz [55]. Recently, Rahman et al. [82] considered the

mixed convective boundary layer flow along a vertical plate with the convective boundary

condition.

In wide range, most of the researchers considered the effect of buoyancy force by assuming

that the temperature and density vary linearly (it is known as linear Boussinesq approxi-

mation or simply Boussinesq approximation). However, there are several reasons for the

density-temperature relationship to become non-linear, for instance, when the temperature

difference between the surface of the body and the ambient fluid becomes significantly large.

In this case, non-linear density and temperature variations in the buoyancy force term may

exert a strong influence on the flow field and heat transfer characteristics (for details see

Barrow and Rao [11]). This physical concept has an unavoidable applications in geothermal

and engineering processes such as pore water convection near salt domes, cooling of electric

equipment, and the residual warm water discharged from a geothermal power plant. In view

of the above said applications, Partha [77] developed a mathematical model on non-Darcy

porous medium with a temperature-concentration dependent density relation, in which it can

be observed that with an increase in nonlinear temperature and concentration parameters,

the heat and mass transfer varies extensively depending on Darcy and non-Darcy porous

medium. Prasad et al. [81] scrutinized the natural convective flow along a vertical flat plate

in a non-Darcy porous medium with the nonlinear density-temperature variation under pre-
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scribed constant surface temperature. The convective flow of nonlinear density-temperature

relationship over an impulsive stretching sheet has been examined by Motsa et al. [62] (and

also see the citations therein).

In the recent past, several investigators have concentrated on convective transport phe-

nomena in different fluids with first and higher order chemical reaction effects, owing to the

realistic applications in engineering and industrial processes. Rout et al. [89] analyzed the

effects of heat source and chemical reaction on magneto-hydrodynamic flow over a moving

vertical plate subject to the convective boundary condition. There are several chemically

reacting systems which involve both homogeneous and heterogeneous reactions. Applica-

tions of this process occur in catalysis, biochemical systems, drying processes, combustion

processes, metallurgical flows, cooling towers, etc. Generally, the interaction between the

homogeneous reaction in the bulk of the fluid and heterogeneous reactions occurring on

some catalytic surfaces are very complex and involved in the production and consumption

of reactant species at different rates both within the fluid and on the catalytic surfaces.

In view of the above said applications, Merkin [59] presented a model for homogeneous-

heterogeneous reactions in a uniform stream flow over a flat surface in which the hetero-

geneous reaction takes place by the first-order process and the homogeneous reaction by

the cubic autocatalysis method. The boundary layer flow near the stagnation point over

a stretching sheet with the homogeneous and heterogeneous reactions has been studied by

Bachok et al. [9]. Kameswaran et al. [46] analyzed the effect of homogeneous and heteroge-

neous reactions on the stagnation point in a nanofluid flow due to stretching or shrinking

sheet. Nandkeolyar et al. [70] discussed the effects of MHD and internal heat generation

on heat and mass transport in a nanofluid in the presence of homogeneous-heterogeneous

reactions. The effects of homogeneous and heterogeneous reactions in the viscoelastic fluid

flow towards a melting stretching sheet with variable thickness have been examined by Hayat

et al. [39]. But from the literature, it seems that a very limited work has been reported on

the homogeneous and heterogeneous reactions in non-Newtonian fluid flows.

Radiative heat transfer flow is very important in manufacturing industries for the design

of reliable equipments, nuclear plants, gas turbines and various propulsion devices for aircraft,
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missiles, satellites and space vehicles. Also, the effect of thermal radiation on convective flows

is important in the context of space technology and processes involving high temperature. To

study these applications, Hossain and Takhar [40] considered the combined free and forced

convective boundary layer flow along a heated vertical plate with the radiation effect. The

effect of radiation on laminar free convective flow along a vertical porous plate in a porous

medium has been investigated by Raptis [84]. Makinde [53] discussed the free convective

boundary layer flow past a moving vertical porous plate in the presence of thermal radiation.

Several investigators have shown much attention to non-Newtonian fluids in view of their

applications in various aspects of industrial processing, design of equipment, chemical and

allied processes such as cosmetics, synthetic polymers, biological fluids, synthetic lubricants

etc. These fluids reveal complex rheological nature which is not accomplished by Newtonian

fluids. Among the non-Newtonian fluids, the micropolar fluid is the one which takes care

about the rotation of fluid particles by means of independent kinematic vector known as the

microrotation vector. The subject of convective flow of a micropolar fluid has been studied

by several investigators due to its immense applications in engineering problems such as

solar energy collecting devices, material processing and passive cooling of nuclear reactors.

The boundary layer flow over a semi-infinite flat plate is considered for deep understanding

of the micropolar fluid theory and its application to low concentration suspension flow by

Ahmadi[3]. Hayat et al. [38] presented the study on the laminar mixed convective flow

of micropolar fluid over a non-linear stretching sheet. Yacob and Ishak [104] discussed

the micropolar fluid flow past stretching or shrinking sheet in the presence of convective

boundary condition and obtained the dual solutions. Srinivasacharya and RamReddy [97]

analyzed the effects of double stratification on the mixed convective flow of an incompressible

micropolar fluid along a vertical plate and hence noted that the effect of the stratification

on temperature is the formation of a region with a temperature deficit (i.e., a negative

dimensionless temperature).

The analysis of convective transport phenomena over various surface geometries embed-

ded in a micropolar fluid saturated porous medium has been provided by several researchers

due to its tremendous applications in discrete aspects of engineering, scientific and indus-
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trial applications like porous rocks, foams and foamed solids, aerogel, alloys, polymer blends,

micro-emulsions, cooling of molten metals and so on. In view of these applications, Hassanien

et al. [36] proposed a mathematical model for the natural convective flow over a permeable

semi-infinite plate embedded in a porous medium saturated by a micropolar fluid. The ef-

fect of stratification on natural convection over a continuously moving plate immersed in

a non-Darcian porous medium has been presented by Beg et al. [13]. Srinivasacharya and

RamReddy [94] investigated the effect of double stratification on free convection along a ver-

tical plate in a micropolar fluid saturated non-Darcy porous medium. The hydro-magnetic

boundary layer flow of a micropolar fluid over a stretching surface through a non-Darcy

porous medium, considering a variable permeability, has been discussed by Aiyesimi et al.

[4].

The occurrence of diffusion flux due to temperature gradient is known as Soret or thermal-

diffusion effect. In most of the studies related to heat and mass transfer process, Soret effect

is neglected on the basis that it is of a smaller order of magnitude than the effects described

by Fourier’s and Fick’s laws. This Soret effect can play an important role in many natural

activities, viz., in the underlying physics of the solar ponds, the demographics of an ocean

and also convection in stars (See Ingham and Pop [41]). Also, it has been utilized for

isotope separation and in a mixture between gases with very light molecular weight (H2, He)

and of medium molecular weight (N2, air)[26]. Due to the significant applications of Soret

effect, several authors analyzed the Newtonian and Non-Newtonian fluids through different

geometries. Kafoussias and Williams [45] discussed the mixed convective flow over a vertical

plate under the influence of Soret and Dufour effects. Although, the Soret effect on heat

and mass transfer in a micropolar fluid is important, little work is noticed in the literature.

Srinivasacharya and RamReddy [95] analyzed the effects of thermal-diffusion and diffusion-

thermo on micropolar fluid flow over a vertical plate (for more details, see the citations

therein).

During the motion of fluid particles, the viscosity of the fluid converts some kinetic

energy into thermal energy. This process, which is caused due to viscosity is irreversible

and is known as viscous dissipation. It may arise in free convection in several devices which
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are treated with large deceleration or operate at a high rotative speed [33]. In spite of the

huge literature available on viscous dissipation, here we have provided some of the useful and

related studies only. El-Aziz [28] discussed the effect of viscous dissipation on the laminar

mixed convective flow of a micropolar fluid over an exponentially stretching sheet. Effects

of slip velocity and thermal slip boundary condition on micropolar fluid flow along a moving

vertical surface in the presence of viscous dissipation have been studied by Mutlag et al.

[67]. Muthuraj et al. [65] presented a mathematical model to explore the combined effects

of viscous dissipation and cross-diffusion on MHD mixed convective fully developed flow of

a micropolar fluid in a vertical channel and also provided usefulness of the study.

Self similarity of solution of PDE’s has allowed their reduction to ODE’s which often

simplifies the investigation. In the recent past, many researchers focused on different proce-

dures for obtaining the similarity solutions of the convective transport phenomena problems

arising in fluid dynamics, aerodynamics, plasma physics, meteorology and some branches of

engineering. One such procedure is Lie group analysis, also known as symmetry analysis,

initiated by Sophus Lie. The very idea of self-similarity is connected with the study of the

structure of PDE’s using the notion of symmetry group. It determines point transformations

which map a given differential equation to itself and it combines almost all known exact inte-

gration techniques (Ref.[76, 75, 17]). It provides a potent, sophisticated and systematic tool

for generating the invariant solutions of the system of nonlinear partial differential equations

(PDE’s) with relevant initial or boundary conditions. A special form of Lie group trans-

formations, known as the scaling group of transformation, has been suggested by various

researchers to study convective flows of different fluids with some unavoidable limitations

[see Tapanidis et al. [100]; Hassanien and Hamad [37]; Kandasamy et al. [48]; Mutlag et al.

[66] etc, are worth observing].

The analysis of heat and mass transfer over a vertical truncated cone has attracted the

interest of scientists and researchers as a consequence of their important applications in

engineering and industrial processes such as cooling of electronic devices, heat exchangers,

etc. Initially, the free convective flow over a truncated cone has been investigated by Na

and Chiou [68]. Later, Singh et al. [92] studied the laminar natural convective flow over the
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vertical frustum of a cone with constant wall temperature. Using the Keller-box method,

a numerical solution has been provided by Yih [105] for the natural convective flow over a

vertical truncated cone in a porous medium. Cheng [22] discussed the natural convective

boundary layer flow over a truncated cone embedded in a porous medium saturated with a

nanofluid by taking thermophoresis and Brownian motion effects. Postelnicu [80] scrutinized

the laminar natural convective flow of an incompressible micropolar fluid over a truncated

cone subjected to heat flux condition. Patrulescu et al. [78] analyzed the mathematical

model for combined free and forced convective flow of nanofluid over a truncated cone by

incorporating three kinds of nanoparticles and noticed that the dual solution exists for flow

reversal.

This limited literature shows that the analysis of micropolar fluid flow over the vertical

frustum of a cone under different conditions has not received significant attention so far.

Also, it seems from the literature that the similarity solution in the case of vertical frustum

of a cone does not exist by using either Lie scaling group or other transformations. Hence,

one has to use appropriate non-similarity transformations to find the approximate solutions

of the governing system of partial differential equations.

Owing to the important applications of the micropolar fluid with and/or without sat-

urated porous media, the convective flow over a vertical plate and/or truncated cone has

been analyzed in this thesis. In addition, the convective boundary is incorporated into the

analysis. The problems that we studied are outlined in the next section.

1.7 Aim and Scope

The objective of the present thesis is to develop the numerical solution for convective heat and

mass transfer in a micropolar fluid flow with the convective boundary condition. The study

focuses on the attributes of various effects such as suction/injection, mixed convection, Darcy

and non-Darcy (Forchheimer), nonlinear convection, radiation, homogeneous-heterogeneous

reactions, Soret and viscous dissipation. The problems considered in this thesis deal with

19



a semi-infinite vertical plate and/or a vertical truncated cone for the two cases: (i) free

convection (ii) mixed convection.

1.8 Outline of the Thesis

This thesis is arranged in four sections with a total of eight chapters. Part I consists of

single chapter (i.e., Chapter-1). It is introductory in nature and gives motivation to the

investigations carried out in the thesis. A survey of pertinent literature is presented to

show the significance of the problems considered. The basic equations governing the flow,

heat and mass transfers of a micropolar fluid and details of the numerical method (spectral

quasi-linearization method) are given.

Part II presents the similarity solution of a micropolar fluid flow along a vertical plate

in the presence of convective boundary condition. This part consists of four chapters (i,e.,

Chapters 2-5). In these chapters, Lie scaling group of transformations are applied to get the

similarity representation to the system of partial differential equations and then the resulting

systems of equations are solved numerically by the spectral quasi-linearization method. A

quantitative comparison of the numerical results with previously published results has been

done for special cases and the results are found to be in good agreement. The details of

these chapters are given below.

In Chapter-2, the similarity solution of a micropolar fluid along a permeable vertical

plate with the convective boundary condition is obtained. The effects of physical parameters

on the velocity, microrotation, temperature, concentration, skin friction, wall couple stress,

heat and mass transfer rates along a vertical plate are given and the salient features are

discussed.

The effects of Biot number on the free and mixed convective flow along a permeable

vertical plate in a micropolar fluid saturated porous medium, are examined in Chapter-3.

The effects of Biot number, Darcy and micropolar parameters on the fluid flow are exhibited

graphically and quantitatively in the presence of suction and injection.
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In Chapter-4, the significance of nonlinear temperature-dependent density relation and

convective boundary condition on the convective flow of an incompressible micropolar fluid

with the homogeneous-heterogeneous reactions, is analyzed. The effects of various parame-

ters on the velocity, microrotation, temperature, concentration are presented through graphs.

Moreover, the skin friction and wall couple stress coefficients, heat and mass transfer rates

are presented in tabular form.

Chapter-5 discusses the effects of homogeneous-heterogeneous reactions on nonlinear con-

vective flow of a micropolar fluid along a semi-infinite vertical plate embedded in a Darcy

porous medium under the convective boundary condition. The velocity, microrotation, tem-

perature and concentration profiles are exhibited graphically. Further, the local skin-friction

coefficient, wall couple stress coefficient, heat and mass transfer rates are explored quantita-

tively for various values of the coupling number, Biot number, Darcy parameter, nonlinear

convection parameter, homogeneous and heterogeneous reaction parameters.

Part III deals with the non-similarity solution for the convective flow over a truncated

cone immersed in a micropolar fluid with and without saturated porous medium subject to

the convective boundary condition. This consists of two chapters (i,e., Chapters 6-7) in which

the governing non-linear partial differential equations in dimensional form are transformed to

non-dimensional, non-linear partial differential equations by making use of appropriate non-

similarity transformations. The extended spectral quasi-linearization method is employed to

solve the system of non-similar, coupled partial differential equations. The obtained results

are checked against previously published work on special cases of the problem and are found

to be in excellent agreement. The details of these chapters are given below.

In the presence of convective boundary condition, the non-similarity solution for the con-

vective flow of a micropolar fluid over a truncated cone is provided in Chapter-6. In addition,

the Soret and viscous dissipation effects are taken into account. The effects of viscous dis-

sipation, coupling number, Biot number and Soret number on the velocity, microrotation,

temperature and concentration are presented graphically. Moreover, the non-dimensional

skin friction, wall couple stress, Nusselt and Sherwood numbers against the stream-wise

coordinate for various values of pertinent flow parameters are also analyzed through graphs.
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In Chapter-7, the effects of Soret and viscous dissipation on the convective flow of mi-

cropolar fluid over a truncated cone embedded in a non-Darcy porous medium under the

convective boundary condition, are discussed. The effects of various parameters, namely,

micropolar, viscous dissipation, Biot number, Forchheimer number and Soret number on

physical quantities of the fluid flow are explored in detail and some interesting results have

been obtained.

The spectral quasi-linearisation method is used to solve the resultant system of nonlinear

ordinary/partial differential equations in all the chapters (i.e., Chapters 2-7). The governing

equations are linearised by using the quasi-linearisation method and then solved by applying

the Chebyshev spectral collocation method [18]. In addition to these two methods, the

implicit finite difference method has been utilised in Chapters - 6 and 7.

Finally, Part IV consists of single chapter (i.e., Chapter-8). The main conclusions of

the earlier chapters are recorded and the directions in which further investigations may be

carried out are indicated in this chapter.

List of references is given at the end of the thesis. The references are arranged in an

alphabetical order and according to this order, citations appear in the text.

Considerable part of the work in the thesis is published/accepted for publication in re-

puted journals. The remaining part is communicated for possible publications. The details

are presented below.
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Chapter 2

Similarity Solution of Micropolar

Fluid Flow along a Permeable Vertical

Plate with Convective Boundary

Condition1

2.1 Introduction

Convective boundary condition plays a vital role in the mechanism of supplying heat to the

convecting fluid through a bounding surface with a confined heat capacity, because of its

universal and realistic nature, particularly in diverse technologies and industrial operations

such as transpiration cooling process, textile drying, laser pulse heating etc. In view of these

applications, Bataller [12] analyzed the thermal radiation effect on Blasius and Sakiadis

flows under the convective boundary condition. Aziz [8] provided the similarity solution for

thermal boundary layer flow over a flat plate in a uniform stream of fluid with the convective

boundary condition. In the presence of an internal heat generation and convective boundary

1Case(a):Published in “Advances in High Energy Physics”2015 (2015) 1–16, Case(b):Published in
“Journal of Applied Analysis and Computation”6(2) (2016) 254–270
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condition, the local similarity solution for the free convective heat transfer from a moving

vertical plate has been given by Makinde [54].

One of the best established theories of fluids with microstructure is the theory of micropo-

lar fluids. It has received a good deal of attention due to the obvious reasons that Newtonian

fluids cannot explain successfully the attributes of fluids with a substructure. Physically, the

micropolar fluids may be treated as fluids consisting of rigid randomly oriented spherical

particles suspended in a viscous medium where the deformation of the particles is ignored.

The analysis of free and mixed convective flows of a micropolar fluid along a vertical plate

has received considerable interest from both theoretical and practical point of view. Jena

and Mathur [43] considered the mixed convective flow of an incompressible micropolar fluid

from an isothermal vertical plate. Rees and Pop [87] discussed the free convective flow of a

micropolar fluid along a vertical flat plate (For more details, see the citations therein).

From the literature survey, it seems that the problem of convective heat and mass trans-

port along a permeable vertical plate in a micropolar fluid with the convective boundary

condition has not been investigated so far. Hence, the aim of the present chapter is to

identify the similarity solution of a micropolar fluid flow along a permeable vertical plate

with the convective boundary condition. But, this type of mathematical modeling becomes

slightly more complicated leading to the complex interactions of the flow, heat, and mass

transfer mechanisms. In spite of this complexity, the similarity representation of the sys-

tem of non-dimensional equations is obtained using Lie group transformations and then the

similarity solution to the reduced system of non-dimensional equations is obtained using the

spectral quasi-linearisation method. Also, the influence of important parameters, namely,

Biot number, micropolar and suction/injection parameters on the physical quantities of the

flow, heat and mass transfer rates, are analyzed in different flow situations.
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Figure 2.1: Physical model and coordinate system.

2.2 Mathematical Formulation

Consider the steady, laminar and two dimensional flow of an incompressible micropolar fluid

along a permeable vertical plate. The velocity of the external/outer flow is taken in the form

ue(x), whereas the free stream temperature and concentration are assumed to be T∞ and C∞

respectively. Choose the coordinate system such that the x-axis is along the vertical plate

and y-axis is normal to the plate. The physical model of the problem is shown in Fig. (2.1).

The suction/injection velocity distribution is assumed to be vw. The plate is either heated or

cooled from left by convection from a fluid of temperature Tf with Tf > T∞ corresponding

to a heated surface and Tf < T∞ corresponding to a cooled surface respectively. On the

wall, the concentration is taken to be constant and is given by Cw.

By employing linear Boussinesq approximation and standard boundary layer assump-

tions, the governing equations for the micropolar fluid [3, 43] are given by

∂u

∂x
+
∂v

∂y
= 0 (2.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= (µ+ κ)

∂2u

∂y2
+ ρue

due
dx

+ κ
∂ω

∂y
+ ρg∗ [βT (x)(T − T∞) + βC(x)(C − C∞)]

(2.2)

ρj

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

∂u

∂y

)
(2.3)
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u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(2.4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(2.5)

where u and v are the velocity components in x and y directions respectively, T is the

temperature, C is the concentration, ω is the component of microrotation whose direction of

rotation lies in the x y-plane, g∗ is the acceleration due to gravity, ρ is the density, µ is the

dynamic coefficient of viscosity, βT (x) is the coefficient of thermal expansion, βC(x) is the

coefficient of solutal expansion, κ is the vortex viscosity, j is the micro-inertia density, γ is

the spin-gradient viscosity, α and D are the thermal and solutal diffusivities of the medium

respectively.

The boundary conditions are

u = 0, v = vw, ω = −n∂u
∂y
, −k∂T

∂y
= hf (Tf − T ), C = Cw at y = 0 (2.6a)

u = ue(x), ω = 0, T = T∞, C = C∞ as y →∞ (2.6b)

where, the subscripts w and ∞ indicate the conditions at the wall and the outer edge

of the boundary layer respectively, hf is the convective heat transfer coefficient, k is the

thermal conductivity of the fluid and n is a material constant (0 ≤ n ≤ 1). Generally, when

n = 0, Eq.(2.6) yields ω = 0 and this represents the case of concentrated particle flows in

which the micro-elements close to the wall are not able to rotate. The case corresponding

to n = 1/2 results in the vanishing of antisymmetric part of stress tensor and represents

weak concentrations. The particle spin is equal to fluid vorticity at the boundary for the

fine particle suspensions. The case corresponding to n = 1 is representative of turbulent

boundary layer flows [3]. Thus, for n = 0, particles are not free to rotate near the surface,

whereas, as n increases from 0 to 1, the microrotation term gets augmented and induces

flow enhancement. Further, the assumption γ =
(
µ+

κ

2

)
j is incorporated to allow the field

equations to predict the correct behavior in the limiting case when the microstructure effects

become negligible and the total spin ω reduces to the angular velocity [3]. The same symbols

are used throughout the thesis unless otherwise specified.
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In this chapter, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

2.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection which is caused by buoyancy forces only with-

out any external agent, and hence the velocity of the external flow becomes zero (i.e., ue = 0).

Initially, we introduce the following dimensionless variables

x =
x

L
, y =

y

L
Gr1/4, u =

L

νGr1/2
u, v =

L

νGr1/4
v,

ω =
L2

νGr3/4
ω, θ =

T − T∞
Tf − T∞

, φ =
C − C∞
Cw − C∞

,


(2.7)

where Gr =
g∗βT0(Tf − T∞)L3

ν2
is the Grashof number.

Later, the stream function ψ is introduced to satisfy the continuity equation (2.1) identically

by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.8)

Substituting (2.7) and (2.8) into Eqs.(2.2)-(2.5), we get the following momentum, angular momen-

tum, energy and concentration equations

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
−
(

1

1−N

)
∂3ψ

∂y3
−
(

N

1−N

)
∂ω

∂y
− βT (x)

βT0
θ − βC(x)(Cw − C∞)

βT0(Tf − T∞)
φ = 0 (2.9)

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)[
2ω +

∂2ψ

∂y2

]
= 0 (2.10)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0 (2.11)

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Sc

∂2φ

∂y2
= 0 (2.12)

In usual definitions, ν is the kinematic viscosity, Pr =
ν

α
is the Prandtl number, Sc =

ν

D
is

the Schmidt number, N =
κ

µ+ κ
(0 ≤ N < 1) is the coupling number [23] and the micro-inertia
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density is taken to be j =
L2

Gr1/2
.

Now, the boundary conditions (2.6) become

∂ψ

∂y
= 0,

∂ψ

∂x
= fw, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), φ = 1 at y = 0 (2.13a)

∂ψ

∂y
= 0, ω = 0, θ = 0, φ = 0 as y →∞ (2.13b)

where fw = − L

νGr1/4
vw is the suction/injection parameter. It is worth mentioning that fw deter-

mines the transpiration rate at the surface. Further, fw > 0 represents suction, fw < 0 indicates

injection and fw = 0 corresponds to an impermeable surface. Bi =
hf L

kGr1/4
is the Biot number and

physically, it is the ratio of internal thermal resistance of the plate to the boundary layer thermal

resistance of the hot fluid at the bottom of the surface.

Similarity representation via Lie scaling group transformations

A one-parameter Lie scaling group of transformations, which is a simplified form of Lie group

transformation, is selected as (For Ref. See [90])

Γ : x∗ = x eε α1 , y∗ = y eε α2 , ψ∗ = ψ eε α3 , ω∗ = ω eε α4 ,

θ∗ = θ eε α5 , φ∗ = φ eε α6 , β∗T = βT e
ε α7 , β∗C = βC e

ε α8 (2.14)

Here ε 6= 0 is the parameter of the group and α′is are arbitrary real numbers, whose interrelation-

ship will be determined by our analysis. Transformations in Eq.(2.14) may be treated as a point

transformation, transforming the coordinates as given below:

(x, y, ψ, ω, θ, φ, βT , βC) = (x∗, y∗, ψ∗, ω∗, θ∗, φ∗, β∗T , β
∗
C)

Investigating the relationship among the exponents α′s such that

∆j

[
x∗, y∗, u∗, v∗, ...,

∂3ψ∗

∂y∗3

]
= Hj

[
x, y, u, v, ...,

∂3ψ

∂y3
; a

]
∆j

[
x, y, u, v, ...,

∂3ψ

∂y3

]
, (j = 1, 2, 3, 4)

This is the requirement that the differential forms ∆1, ∆2, ∆3 and ∆4 are conformally invariant

under the transformation Eq.(2.14). Substituting the transformations Eq.(2.14) into Eqs.(2.9)-
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(2.12), the following equations are obtained

∆1 = eε(α1+2α2−2α3)

(
∂ψ∗

∂y∗
∂2ψ∗

∂x∗∂y∗
− ∂ψ∗

∂x∗
∂2ψ∗

∂y∗2

)
−
β∗T
βT0

e−ε(α5+α7)θ∗ (2.15a)

−
(

1

1−N

)
eε(3α2−α3)∂

3ψ∗

∂y∗3
−
(

N

1−N

)
eε(α2−α4)∂ω

∗

∂y∗
−
β∗C(Cw − C∞)

βT0(Tf − T∞)
e−ε(α6+α8)φ∗ = 0

∆2 = eε(α1+α2−α3−α4)

(
∂ψ∗

∂y∗
∂ω∗

∂x∗
− ∂ψ∗

∂x∗
∂ω∗

∂y∗

)
−
(

2−N
2− 2N

)
eε(2α2−α4)∂

2ω∗

∂y∗2
+ (2.15b)(

N

1−N

)(
2ω∗e−ε α4 + eε(2α2−α3)∂

2ψ∗

∂y∗2

)
= 0

∆3 = eε(α1+α2−α3−α5)

(
∂ψ∗

∂y∗
∂θ∗

∂x∗
− ∂ψ∗

∂x∗
∂θ∗

∂y∗

)
− 1

Pr
eε(2α2−α5)

(
∂2θ∗

∂y∗2

)
= 0 (2.15c)

∆4 = eε(α1+α2−α3−α6)

(
∂ψ∗

∂y∗
∂φ∗

∂x∗
− ∂ψ∗

∂x∗
∂φ∗

∂y∗

)
− 1

Sc
eε(2α2−α6)

(
∂2φ∗

∂y∗2

)
= 0 (2.15d)

Now, the boundary conditions (2.13) become

eε(α2−α3)∂ψ
∗

∂y∗
= 0, eε(α1−α3)∂ψ

∗

∂x∗
= fw, e

−εα4ω∗ = −neε(2α2−α3)∂
2ψ∗

∂y∗2
,

eε(α2−α5) ∂θ
∗

∂y∗
= −Bi(1− e−εα5θ∗), e−εα6φ∗ = 1 at y∗ = 0 (2.16a)

eε(α2−α3)∂ψ
∗

∂y∗
= 0, e−εα4ω∗ = 0, e−εα5θ∗ = 0, e−εα6φ∗ = 0 as y∗ →∞ (2.16b)

From the Lie group analysis, it can be observed that the system remains invariant under the group

transformation Γ. To maintain this invariant nature, equating the exponents of Eqs. (2.15)-(2.16),

we get

α1 + 2α2 − 2α3 = 3α2 − α3 = α2 − α4 = −α5 − α7 = −α6 − α8;

α1 + α2 − α3 − α4 = 2α2 − α4 = −α4 = 2α2 − α3;

α1 + α2 − α3 − α5 = 2α2 − α5;α1 + α2 − α3 − α6 = 2α2 − α6;

α1 − α3 = 0;−α4 = 2α2 − α3;α2 − α5 = 0 = −α5;α6 = 0


(2.17)

Solving the linear system of Eq.(2.17), we get the following relationship among the exponents

α1 = α3 = α4 = α7 = α8, α2 = α5 = α6 = 0 (2.18)
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Substituting (2.18) into (2.14), the set of transformations Γ reduces to

x∗ = x eε α1 , y∗ = y, ψ∗ = ψ eε α1 , ω∗ = ω eε α1 ,

θ∗ = θ, φ∗ = φ, β∗T = βT e
ε α1 , β∗C = βC e

ε α1

 (2.19)

Expanding the transformations (2.19) by using the Taylor series in powers of ε, keeping the term

up to the first degree (neglecting higher power of ε), we obtain

x∗ − x = ε α1x, y
∗ = y, ψ∗ − ψ = ε α1ψ, ω

∗ − ω = ε α1ω,

θ∗ = θ, φ∗ = φ, β∗T − βT = ε α1βT , β
∗
C − βC = ε α1βC

 (2.20)

The characteristic equations to the above system (2.20) can be written as

dx

α1x
=
dy

0
=

dψ

α1ψ
=

dω

α1ω
=
dθ

0
=
dφ

0
=

dβT
α1βT

=
dβC
α1βC

(2.21)

Solving the above characteristic equations, the similarity transformations are obtained as follows

η = y, ψ = xf(η), ω = xg(η), βT = βT0x, βC = βC0x, θ = θ(η), φ = φ(η) (2.22)

where βT0 and βC0 are the constant thermal and solutal expansion coefficients.

Using (2.22) in Eqs.(2.9)-(2.12), we get the following system of similarity equations

(
1

1−N

)
f ′′′ + ff ′′ − f ′2 +

(
N

1−N

)
g′ + θ + Bφ = 0 (2.23)

(
2−N
2− 2N

)
g′′ + fg′ − f ′g −

(
N

1−N

)
(2g + f ′′) = 0 (2.24)

1

Pr
θ′′ + fθ′ = 0 (2.25)

1

Sc
φ′′ + fφ′ = 0 (2.26)

where the primes indicate differentiation with respect to η alone and B =
βC0(Cw − C∞)

βT0(Tf − T∞)
is the

buoyancy ratio.
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Boundary conditions (2.13) in terms of f , g, θ and φ become

f(0) = fw, f
′(0) = 0, g(0) = −nf ′′(0), θ′(0) = −Bi[1− θ(0)], φ(0) = 1, (2.27a)

f ′(∞)→ 0, g(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0 (2.27b)

Skin friction, Wall couple stress, Heat and Mass transfer coefficients

The wall shear stress and the wall couple stress are

τw =

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

and mw = γ

[
∂ω

∂y

]
y=0

(2.28a)

and the heat and mass transfer rates along the plate respectively, are given by

qw = −k
[
∂T

∂y

]
y=0

and qm = −D
[
∂C

∂y

]
y=0

(2.29a)

The non-dimensional skin friction Cf =
2τw
ρu2∗

, wall couple stress Mw =
mw

ρu2∗x
, local Nusselt number

Nux =
qwx

k(Tf − T∞)
and local Sherwood number Shx =

qmx

D(Cw − C∞)
, are given by

CfGr
1/4
x = 2

(
1− nN
1−N

)
f ′′(0), MwGr

1/2
x =

(
2−N
2− 2N

)
g′(0),

Nux

Gr
1/4
x

= −θ′(0),
Shx

Gr
1/4
x

= −φ′(0)

 (2.30)

where u∗ is the characteristic velocity and Grx =
g∗βT0(Tf − T∞)x3

ν2
is the local Grashof number.

Numerical Solution

The governing Eqs.(2.23)-(2.26) along with the boundary conditions (2.27) are solved numerically

using the spectral quasi-linearization method (for more details, one can refer the works of Motsa

et al. [63, 64]). The following procedure includes main steps of the spectral quasi-linearization

method.

Assume that the solutions fr, gr, θr and φr of Eqs.(2.23)-(2.26) at the (r+1)th iteration are fr+1,
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gr+1, θr+1 and φr+1. If the solutions at the previous iteration are sufficiently close to the solutions

at the present iteration, then the nonlinear components of Eqs.(2.23)-(2.26) can be linearised using

one–term Taylor series of multiple variables so that the Eqs.(2.23)-(2.26) give the following iterative

sequence of linear differential equations

(
1

1−N

)
f ′′′r+1 + a1,r f

′′
r+1 + a2,r f

′
r+1 + a3,r fr+1 +

(
N

1−N

)
g′r+1 + θr+1 + B φr+1 = R1,r (2.31)

(
2−N
2− 2N

)
g′′r+1 + b3,r g

′
r+1 + b4,r gr+1 + b1,r f

′
r+1 + b2,r fr+1 −

(
N

1−N

)
f ′′r+1 = R2,r (2.32)

1

Pr
θ′′r+1 + c1,r fr+1 + c2,r θ

′
r+1 = R3,r (2.33)

1

Sc
φ′′r+1 + d1,r fr+1 + d2,r φ

′
r+1 = R4,r (2.34)

where the coefficients as1,r(s1 = 1, 2, 3), bs2,r(s2 = 1, 2, .., 4), cs3,r(s3 = 1, 2) , ds4,r(s4 = 1, 2) and

Rs5,r(s5 = 1, 2, .., 4) are known functions (calculated from previous iterations) and are defined as

a1,r = fr, a2,r = −2 f ′r, a3,r = f ′′r , R1,r = fr f
′′
r − (f ′r)

2,

b1,r = −gr, b2,r = g′r, b3,r = fr, b4,r = −f ′r −
(

2N

1−N

)
, R2,r = fr g

′
r − f ′r gr,

c1,r = θ′r, c2,r = fr, R3,r = fr θ
′
r, d1,r = φ′r, d2,r = fr, R4,r = fr φ

′
r

subject to the boundary conditions

fr+1(0) = fw, f
′
r+1(0) = 0, gr+1(0) = −n f ′′r+1(0), θ′r+1(0) = −Bi(1− θr+1(0)), (2.35a)

φr+1(0) = 1

f ′r+1(∞) = 0, gr+1(∞) = 0, θr+1(∞) = 0, φr+1(∞) = 0 (2.35b)

The system of equations (2.31) to (2.34) constitute a linear system of coupled differential equations

with variable coefficients and hence, it can be solved iteratively using any numerical method for

r = 1, 2, 3, .... In this work, as will be discussed below, the Chebyshev pseudo–spectral method

is used to solve the system of equations (2.31) to (2.34). Starting from the following set of initial

approximations

f0(η) = fw − (η + 1)e−η + 1, g0(η) = −n(1− η) e−η, θ0(η) =
Bi

Bi + 1
e−η, φ0(η) = e−η
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the system of equations (2.31) to (2.34) is solved iteratively for fr+1(η), gr+1(η), θr+1(η), φr+1(η)

when r = 0, 1, 2,... For this, the equations are discretized using the Chebyshev spectral collocation

method as follows:

The unknown functions are approximated by the Chebyshev interpolating polynomials in such

way that they are collocated at the Gauss–Lobatto collocation points defined as

τj = cos
πj

N
, j = 0, 1, 2, ..., N (2.36)

where N is the number of collocation points.

The physical region [0,∞) is transformed into the region [−1, 1] using the domain truncation

technique in which the problem is solved on the interval [0, η∞] instead of [0,∞). This leads to the

mapping
η

η∞
=
τ + 1

2
, −1 ≤ τ ≤ 1 (2.37)

where η∞ is the scaling parameter used to invoke the boundary condition at infinity.

The functions fr+1, gr+1, θr+1 and φr+1 are approximated at the collocation points by

fr+1(τ) =
N∑
k=0

fr+1(τk)Tk(τj), gr+1(τ) =

N∑
k=0

gr+1(τk)Tk(τj),

θr+1(τ) =

N∑
k=0

θr+1(τk)Tk(τj), φr+1(τ) =

N∑
k=0

φr+1(τk)Tk(τj), j = 0, 1, 2, ..., N


(2.38)

where Tk is the kth Chebyshev polynomial defined as

Tk(τ) = cos[k cos−1(τ)] (2.39)

The derivatives of the variables at the collocation points are represented as

dpfr+1

dηp
=

N∑
k=0

Dp
lkfr+1(τk),

dpgr+1

dηp
=

N∑
k=0

Dp
lkgr+1(τk),

dpθr+1

dηp
=

N∑
k=0

Dp
lkθr+1(τk),

dpφr+1

dηp
=

N∑
k=0

Dp
lkφr+1(τk), l = 0, 1, ..., N


(2.40)

where p is the order of the derivative and D =
2D
η∞

is the Chebyshev spectral differentiation matrix
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and its entries are clearly defined in the text book by Canuto et al. [18].

Substitution of Eqs.(2.36)-(2.40) into Eqs.(2.31)-(2.34) leads to the following matrix equation

AX = R (2.41)

subject to the boundary conditions

fr+1(τN ) = fw,
N∑
k=0

DNkfr+1(τk) = 0, gr+1(τN ) = −n
N∑
k=0

D2
Nk
fr+1(τk),

N∑
k=0

DNkθr+1(τk)− Bi θr+1(τN ) = −Bi, φr+1(τN ) = 1,

N∑
k=0

D0kfr+1(τk) = 0, gr+1(τ0) = 0, θr+1(τ0) = 0, φr+1(τ0) = 0


(2.42)

In Eq.(2.41), A is (4N + 4)× (4N + 4) square matrix, X and R are (4N + 4)× 1 column vectors,

which are defined as

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 , X =


Fr+1

Gr+1

Θr+1

Φr+1

 , R =


R1

R2

R3

R4

 (2.43)

where

A11 =
(

1
1−N

)
D3 + diag[a1,r]D

2 + diag[a2,r]D + diag[a3,r], A12 =
(

N
1−N

)
D, A13 = I, A14 = BI,

A21 = −
(

N
1−N

)
D2 + diag[b1,r]D + diag[b2,r], A22 =

(
2−N
2−2N

)
D2 + diag[b3,r]D + diag[b4,r],

A23 = 0, A24 = 0, A31 = diag[c1,r], A32 = 0, A33 = 1
PrD

2 + diag[c2,r]D, A34 = 0,

A41 = diag[d1,r], A42 = 0, A43 = 0, A44 = 1
ScD

2 + diag[d2,r]D,

R1 = R1,r, R2 = R2,r, R3 = R3,r, R4 = R4,r

F = [fr+1(τ0), fr+1(τ1), ..., fr+1(τN )]T , G = [gr+1(τ0), gr+1(τ1), ..., gr+1(τN )]T ,

Θ = [θr+1(τ0), θr+1(τ1), ..., θr+1(τN )]T , Φ = [φr+1(τ0), φr+1(τ1), ..., φr+1(τN )]T

Here I, 0 and diag[ ] are identity, zero and diagonal matrices respectively, all are of size (N + 1)×

(N + 1). The subscript r denotes the iteration number.
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After modifying the matrix system (2.41) to incorporate boundary condition (2.42), the solution

is obtained as

X = A−1R (2.44)

Results and Discussion

It may be pointed out that the present problem reduces to free convective heat transfer in a

micropolar fluid along an impermeable vertical plate without the convective boundary condition

when fw = 0, Bi → ∞ and B = 0. Also in the limiting case as N → 0, the governing equations

reduce to the corresponding equations of a free convective heat and mass transfer in a viscous fluid.

In order to validate the code generated, for the special case of N = 0, n = 0, B = 0, Pr = 1,

Bi→∞ and fw = 0, the results of the present problem have been compared with those of Merkin

[57], Nazaret al. [72] and Molla et al. [60] and it is found that they are in good agreement [Tab.

(2.1)]. The values of heat transfer rate, for n = 0.5, B = 0, Pr = 1, Bi → ∞ and fw = 0, agree

well with that of Nazar et al. [72] as shown in Tab. (2.2). To study the effects of coupling number

N , suction/injection parameter fw, Biot number Bi and material parameter n, computations have

been carried out for B = 1.0, Pr = 0.71 and Sc = 0.22.

The effects of coupling number N on the dimensionless velocity, microrotation, temperature

and concentration are illustrated in Figs. 2.2(a)-2.2(d), for fixed values of other parameters. The

coupling number N characterizes the coupling of linear and rotational motion arising from the

motion of the fluid particles. In the case of N = 0 (i.e., as κ tends to zero), the micro-polarity is

absent and the fluid become non-polar fluid. For large values of N , the effect of microstructure

becomes significant, whereas, for small value of N , the individuality of the substructure is not

significant. As N increases, it is found from Fig. 2.2(a) that the maximum velocity decreases

in amplitude and the location of the maximum velocity moves farther away from the wall. Since

N → 0 corresponds to a viscous fluid, the velocity in case of a micropolar fluid is less compared

to that of a viscous fluid case. Initially, the microrotation profile tends to become flat and then

approaches to their free stream values far away from the wall with the increase of coupling number

[Fig. 2.2(b)]. An increment in the value of N implies a higher vortex viscosity of the fluid which

promotes the microrotation of a micropolar fluid. It is seen from Figs. 2.2(c) and 2.2(d) that the

thickness of the thermal and concentration boundary layers of the fluid increase with an increase
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in coupling number N . Hence, temperature and concentration in case of the micropolar fluid are

more than those of the viscous fluid case.

The variation of Biot number Bi on the non-dimensional velocity, microrotation, temperature

and concentration are displayed in Figs. 2.3(a)-2.3(d), for fixed values of other parameters. Gener-

ally, the fluid velocity is zero at plate surface and increases gradually away from plate to free stream

value satisfying boundary conditions. It is interesting to note that an increase in the intensity of

convective surface heat transfer Bi produces a significant enhancement in the fluid velocity within

the momentum boundary layer. It can be observed from Fig. 2.3(b) that as Bi increases, the

microrotation profile shows reverse rotation near the two boundaries. When Bi = 0, the plate is

totally insulated, internal thermal resistance of the plate is extremely high and no convective heat

transfer to the cold fluid on the upper part of the plate takes place. Also, the convective heating

increases with Biot number and the case of Bi → ∞ gives the isothermal surface which is clearly

seen from the Fig. 2.3(c), where θ(0) = 1. In fact, a higher Biot number indicates higher internal

thermal resistance of the plate than the boundary layer thermal resistance. The fluid temperature

is maximum at the plate surface and decreases exponentially to zero value far away from the plate

satisfying boundary conditions. As a consequence, an increment in the Biot number leads to in-

crease the fluid temperature efficiency. From Fig. 2.3(d), it is clear that the concentration of fluid

decreases with the increase of Bi.

The influence of suction or injection parameter fw on the dimensionless velocity, microrotation,

temperature and concentration is depicted in Figs. 2.4(a)-2.4(d). Here, fw > 0 represents suction

and fw < 0 denotes injection. From Fig. 2.4(a), the lower velocity is noticed in the case of suction

when compared to the injection case. It can be observed from Fig. 2.4(b) that microrotation shows

reverse rotation near two boundaries for both suction and injection parameter. From Fig. 2.4(c),

it can be noticed that the temperature of the fluid is more in the case of injection, but less in

the suction case when compared with the impermeable surface (fw = 0). From Fig. 2.4(d), it

can be observed that the concentration of fluid is more with the injection, but less with suction in

comparison to the impermeable surface (fw = 0). As a finale, the temperature and concentration

are more in the case of injection, but less in suction case [Figs. 2.4(c) and 2.4(d)].

The variations of CfGr
1/4
x , MwGr

1/2
x ,

Nux

Gr
1/4
x

and
Shx

Gr
1/4
x

, which are proportional to the coefficients

of skin-friction, wall couple stress, Nusselt and Sherwood numbers, are shown in Tab. (2.3). An
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Table 2.1: Comparison of −θ′(0) for free convective flow along a vertical flat plate in New-
tonian fluid.

Merkin [57] Nazar et al. [72] Molla et al. [60] Present

0.4214 0.4214 0.4214 0.4214313

Table 2.2: Comparison of −θ′(0) for the free convective flow of a micropolar fluid with the
results obtained by Nazar et al. [72] for different values of coupling number N .

N Nazar et al. [72] Present

0.00 0.4214 0.4214
0.33 0.3991 0.3990
0.50 0.3834 0.3834
0.60 0.3709 0.3709
0.66 0.3608 0.3608
0.75 0.3447 0.3447

increase in the value of coupling number N , results in higher skin friction and lower wall couple

stress, heat and mass transfer rates. This may be beneficial in flow, temperature and concentration

control of polymer processing. Thus, the presence of microscopic effects arising from the local

structure and micromotion of the fluid elements reduces the heat and mass transfer rates. It can

be noticed from this table that the skin-friction, wall couple stress, heat and mass transfer rates

enhance with Bi for fixed values of other parameters. It is also noted that the skin-friction, wall

couple stress, Nusselt and Sherwood number are less in the injection case, but more in suction case

when compared to the impermeable surface. Finally, the skin friction reduces but the wall couple

stress, heat and mass transfer rates increase with a material parameter n [Tab. (2.3)].
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Figure 2.2: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 2.3: Variation of Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Table 2.3: Variation of skin friction, wall couple stress, Nusselt and Sherwood number for
different values of micropolar parameter N , Biot numbers Bi, suction/injection parameter
fw and material parameter n.

N Bi fw n CfGr
1/4
x MwGr

1/2
x

Nux

Gr
1/4
x

Shx

Gr
1/4
x

0.1 0.1 0.5 0.5 2.424227 0.63279 0.086824 0.301042
0.3 0.1 0.5 0.5 2.502716 0.639966 0.086672 0.298137
0.5 0.1 0.5 0.5 2.647987 0.630863 0.086437 0.293402
0.7 0.1 0.5 0.5 2.943561 0.603879 0.086006 0.284419
0.9 0.1 0.5 0.5 3.874631 0.550891 0.084799 0.258482
0.5 0.1 0.5 0.5 2.647987 0.630863 0.086437 0.293402
0.5 1.0 0.5 0.5 3.211755 0.805879 0.396928 0.30332
0.5 5.0 0.5 0.5 3.533141 0.908078 0.590276 0.30864
0.5 20.0 0.5 0.5 3.629791 0.939137 0.650654 0.310198
0.5 0.1 -0.5 0.5 2.426265 0.336219 0.070426 0.18013
0.5 0.1 0.0 0.5 2.530014 0.465429 0.08043 0.232171
0.5 0.1 1.0 0.5 2.737553 0.820899 0.090042 0.362603
0.5 0.1 0.5 0.0 2.916655 -0.289339 0.086161 0.286993
0.5 0.1 0.5 0.5 2.647987 0.630863 0.086437 0.293402

2.2.2 Case(b): Mixed Convection

The flow is assumed to be a mixed convection, which arises from both buoyancy forces and external

flow with velocity [ūe(x)]. We introduce the following dimensionless variables

x =
x

L
, y =

y

L
Re1/2, u =

u

U∞
, v =

v

U∞
Re1/2,

ue =
ue
U∞

, ω =
L2

νRe3/2
ω, θ =

T − T∞
Tf − T∞

, φ =
C − C∞
Cw − C∞

 (2.45)

where U∞ is the reference velocity and Re =
U∞L

ν
is the global Reynold’s number.

Substituting (2.45) and (2.8) into Eqs.(2.2)-(2.5), the momentum, angular momentum, energy,

and concentration equations are obtained as follows

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
−
(

1

1−N

)
∂3ψ

∂y3
−
(

N

1−N

)
∂ω

∂y
− ue

due
dx

−
g∗βT (x)(Tf − T∞)

ν2Re2
θ − g∗βC(x)(Cw − C∞)

ν2Re2
φ = 0 (2.46)
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∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)(
2ω +

∂2ψ

∂y2

)
= 0 (2.47)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0 (2.48)

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Sc

∂2φ

∂y2
= 0 (2.49)

Now, the boundary conditions (2.6) become

∂ψ

∂y
= 0,

∂ψ

∂x
= fw, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), φ = 1 at y = 0 (2.50a)

∂ψ

∂y
= ue, ω = 0, θ = 0, φ = 0 as y →∞ (2.50b)

where fw = −Re
1/2

U∞
vw is the suction/injection parameter, Bi =

hf L

kRe1/2
is the Biot number and

the micro-inertia density is taken as j =
L2

Re
.

Similarity representation via Lie scaling group transformations

A one-parameter scaling group of transformations, which is a simplified form of Lie group trans-

formation, is selected as ([48])

Γ : x∗ = x eε α1 , y∗ = y eε α2 , ψ∗ = ψ eε α3 , ω∗ = ω eε α4 , θ∗ = θ eε α5 ,

φ∗ = φ eε α6 , β∗T = βT e
ε α7 , β∗C = βC e

ε α8 , u∗e = ue e
ε α9

 (2.51)

Here ε 6= 0 is the parameter of the group and α′s are arbitrary real numbers, not all simultaneously

zero. Eqs.(2.46)- (2.49) along with the boundary conditions (2.50) will remain invariant under the

group of transformations in Eq.(2.51) if αi’s hold following relationships

α1 + 2α2 − 2α3 = 3α2 − α3 = α2 − α4 = −α5 − α7 = −α6 − α8 = α1 − 2α9;

α1 + α2 − α3 − α4 = 2α2 − α4 = −α4 = 2α2 − α3;

α1 + α2 − α3 − α5 = 2α2 − α5;α1 + α2 − α3 − α6 = 2α2 − α6;

α1 − α3 = 0;−α4 = 2α2 − α3;α2 − α5 = 0 = −α5;α6 = 0;α2 − α3 = −α9


(2.52)
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Using the procedure explained in the previous case, the following similarity transformations are

obtained by using the Lie scaling group transformations

η = y, ψ = xf(η), ω = xg(η), ue = x, βT = xβT0 , βC = xβC0 , θ = θ(η), φ = φ(η) (2.53)

Using (2.53) in Eqs.(2.46)-(2.49), the similarity equations are obtained as follows

(
1

1−N

)
f ′′′ + ff ′′ + 1− f ′2 +

(
N

1−N

)
g′ + λ(θ + Bφ) = 0 (2.54)

(
2−N
2− 2N

)
g′′ + fg′ − f ′g −

(
N

1−N

)(
2g + f ′′

)
= 0 (2.55)

1

Pr
θ′′ + fθ′ = 0 (2.56)

1

Sc
φ′′ + fφ′ = 0 (2.57)

where λ =
Gr

Re2
is the mixed convection parameter. Notice that λ > 0 and λ < 0 correspond to

aiding flow and opposing flow respectively, whereas λ = 0 produces forced convective flow problem.

Boundary conditions (2.50) in terms of f , g, θ and φ become

f(0) = fw, f
′(0) = 0, g(0) = −nf ′′(0), θ′(0) = −Bi[1− θ(0)], φ(0) = 1 (2.58a)

f ′(∞) = 1, g(∞) = 0, θ(∞) = 0, φ(∞) = 0 (2.58b)

The non-dimensional skin friction Cf =
2τw
ρu2e

, wall couple stress Mw =
mw

ρu2ex
, local Nusselt number

Nux =
qwx

k(Tf − T∞)
and local Sherwood number Shx =

qmx

D(Cw − C∞)
, are given by

CfRex1/2 = 2

(
1− nN
1−N

)
f ′′(0), MwRex =

(
2−N
2− 2N

)
g′(0)

Nux
Rex1/2

= −θ′(0),
Shx
Rex1/2

= −φ′(0)

 (2.59)

where Rex =
uex

ν
is the local Reynold’s number.
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Table 2.4: Comparison of f ′′(0) and − θ′(0) for mixed convection along a vertical flat plate
in Newtonian fluids ([58]; [73]).

λ f ′′(0) −θ′(0)

Merkin [58] Nazar et al. [73] Present Merkin [58] Nazar et al. [73] Present

-1.0 0.6489 0.6497 0.648861 0.5067 0.5071 0.506658
-0.6 0.8963 0.8971 0.896272 0.5357 0.5360 0.535659
-0.2 1.1241 1.1250 1.124101 0.5597 0.5601 0.559725
0.0 1.2326 1.2336 1.232588 0.5705 0.5708 0.570462
0.6 1.5416 1.5428 1.541593 0.5990 0.5993 0.598949
1.0 1.7367 1.7380 1.736681 0.6156 0.6160 0.615581
3.0 2.6259 2.6282 2.625893 0.6817 0.6822 0.681721
5.0 3.4230 3.4264 3.422943 0.7315 0.7320 0.731504

Results and Discussion

The governing non-linear ordinary differential equations (2.54)-(2.57) together with the boundary

conditions (2.58) are solved numerically using the spectral quasi-linearization method, which is

explained in the previous case. In order to validate the code generated, for the special case of

N = 0, n = 0, λ = 0, Bi→∞ and fw = 0, the results of the present problem have been compared

with those of Merkin [58] and Nazar et al. [73] and it is found that they are in good agreement

[Tab. (2.4)]. In order to study the effects of coupling number N , suction/injection parameter fw,

Biot number Bi and material parameter n on the various flow profiles in both opposing and aiding

flow cases explicitly, computations have been carried for B = 1.0, Pr = 0.71 and Sc = 0.22.

The influence of coupling number N on the dimensionless velocity, microrotation, temperature

and concentration is illustrated in Figs. 2.5(a)-2.5(d) for both the cases of aiding and opposing

flows and for fixed values of other parameters. Physically, the coupling number N characterizes

the coupling of linear and rotational motion arising from the micro-motion of the fluid molecules.

As N increases, it is found from Fig. 2.5(a) that the maximum velocity decreases for both aiding

and opposing flow situations. It is significant to mention that the velocity of the micropolar fluid

is less compared to that of the viscous fluid case. It can be noted from Fig. 2.5(b) that the

microtation profile tends to become flat initially, and then tend to their free stream values far away

from the wall with an increase in values of N . Likewise, an increment in the values of N , implies a

higher vortex viscosity of the fluid, which promotes the microrotation of a micropolar fluid. Figs.
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2.5(c) and 2.5(d) reveal that the temperature and concentration of the fluid increases with the

increase of coupling number N for both aiding and opposing flow situations. The temperature and

concentration of the micropolar fluid are more than those of the viscous fluid.

The effects of Biot number on the dimensionless velocity, microrotation, temperature and con-

centration are depicted in Figs. 2.6(a)-2.6(d) for both aiding and opposing flows cases and for

fixed values of other parameters. Generally, the fluid velocity is zero at the plate surface and

rises gradually away from the plate to the free stream value satisfying the boundary conditions.

It is interesting to observe that an increase in the strength of convective surface heat transfer Bi

produces a substantial enhancement in the fluid velocity within the momentum boundary layer in

the aiding flow. But, the reverse tendency is true in the case of opposing flow situation. As Bi

increases, the microrotation shows reverse rotation near the two limits as displayed in Fig. 2.6(b).

In fact, the higher values of Biot number indicates higher internal thermal resistance of the plate

than the boundary layer thermal resistance. For both aiding and opposing flow situations, the fluid

temperature is maximum at the plate surface and decreases exponentially to zero value far away

from the plate satisfying the boundary conditions. As a consequence, an increment in Biot number

leads to increase in the fluid temperature, which is shown in Fig. 2.6(c). From Fig. 2.6(d), a slight

reduction is seen in concentration boundary layer thickness with increasing values of Bi in the case

of aiding flow situation whereas, a reverse nature is observed in the opposing flow situation.

For both aiding and opposing flow situations, the effects of fw on the non-dimensional velocity,

microrotation, temperature and concentration are exhibited in Figs. 2.7(a)-2.7(d) for fixed values

of other parameters. From Fig. 2.7(a), it can be noticed that the velocity is less in the case of

injection as compared to the suction case for aiding flow situation, but it shows the reverse trend

for opposing flow situation. It can be seen from Fig. 2.7(b) that the microrotation is completely

negative within the boundary layer. Also, it shows reverse rotation near the two boundaries for

both suction and injection cases. From Fig. 2.7(c), it can be noticed that for both aiding and

opposing flow situations, the temperature of the fluid is more in the case of injection, whereas it is

less in the case of suction in comparison with the impermeable surface (fw = 0). It is seen from

Fig. 2.7(d) that the absorption of the fluid is more with injection case, whereas less with suction

case when compared to the impermeable surface case (fw = 0) for both aiding and opposing flow

situations. The temperature and concentration are more in the case of injection as compared to

the case of suction as displayed in Figs. 2.7(c) and 2.7(d).
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The variations of local skin-friction, wall couple stress, rate of heat and mass transfers, is shown

in Tab. (2.5) for both cases of aiding and opposing flows. It indicates that the skin friction is higher

for the micropolar fluid as compared to that of the viscous fluid (n = 0, N = 0) in both cases of

aiding and opposing flows. Micropolar fluids offer more resistance (resulting from vortex viscosity)

to the fluid motion. The results also indicate that for both situations of aiding and opposing flows,

larger values of the coupling number N leads to lower the wall couple stress, heat and mass transfer

rates. Further, it can be noticed that the heat and mass transfer rates are more for a viscous fluid

when compared with that of a micropolar fluid. This is because that as N increases, the thermal

and solutal boundary layer thickness become larger, thus giving rise to a small value of local heat

and mass transfer rates. In opposing flow, the skin friction, wall couple stress and mass transfer

rate reduce, but the heat transfer rate enhances. However, in aiding flow case, the skin friction,

wall couple stress, heat and mass transfer rates increase with the increase of Biot number. For both

opposing and aiding flow situations, the skin friction, wall couple stress, heat and mass transfer

rates are more in suction case than compared with those values in injection case. As the material

constant (n) increases, the skin friction reduces, but the wall couple stress, heat and mass transfer

rates enhances for both opposing and aiding flows.
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Table 2.5: Effects of skin friction, wall couple stress, heat and mass transfer coefficients
for varying values of mixed convection parameter, micropolar parameter, Biot number, suc-
tion/injection parameter and material constant

λ N Bi fw n CfRex1/2 MwRex
Nux
Rex1/2

Shx
Rex1/2

-0.3 0.0 1.0 0.5 0.0 2.457608 0 0.419258 0.374096
-0.3 0.5 1.0 0.5 0.5 2.950299 0.592078 0.411817 0.363764
-0.3 0.9 1.0 0.5 0.5 5.402849 0.446797 0.386531 0.3267
1.0 0.0 1.0 0.5 0.0 4.911863 0 0.447789 0.417825
1.0 0.5 1.0 0.5 0.5 5.629340 1.462654 0.438512 0.404909
1.0 0.9 1.0 0.5 0.5 9.307047 1.275809 0.406981 0.357578
-0.5 0.5 0.1 0.5 0.5 2.756776 0.53627 0.087375 0.359461
-0.5 0.5 1.0 0.5 0.5 2.464685 0.446769 0.405662 0.35496
-0.5 0.5 5.0 0.5 0.5 2.280918 0.391248 0.595771 0.352041
1.0 0.5 0.1 0.5 0.5 5.18669 1.308037 0.088515 0.400014
1.0 0.5 1.0 0.5 0.5 5.62934 1.462654 0.438512 0.404909
1.0 0.5 5.0 0.5 0.5 5.92276 1.566396 0.680407 0.408067
-0.2 0.25 0.1 -0.3 0.5 1.998619 0.278709 0.077558 0.252597
-0.2 0.25 0.1 0.0 0.5 2.335069 0.416304 0.082618 0.297167
-0.2 0.25 0.1 2.0 0.5 5.21101 2.685523 0.094208 0.638161
1.0 0.25 0.1 -0.5 0.5 3.802504 0.698301 0.080986 0.294422
1.0 0.25 0.1 0.0 0.5 4.128077 0.906629 0.084617 0.33504
1.0 0.25 0.1 2.0 0.5 6.909385 3.703693 0.094314 0.656918
-0.3 0.5 1.0 0.5 0.0 3.214136 -0.447122 0.4066 0.356919
-0.3 0.5 1.0 0.5 0.5 2.950299 0.592078 0.411817 0.363764
1.0 0.5 1.0 0.5 0.0 6.248153 -0.626214 0.432237 0.395818
1.0 0.5 1.0 0.5 0.5 5.62934 1.462654 0.438512 0.404909
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Figure 2.5: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles
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Figure 2.6: Variation of Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles
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Figure 2.7: Variation of fw on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles
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2.3 Conclusions

In this chapter, the similarity solution of a micropolar fluid flow along a permeable vertical plate

under the convective boundary condition is obtained in two cases, namely, (a) natural convection

and (b) mixed convection. Following are the important conclusions:

The velocity distribution is less near the plate and far away from the plate it shows reverse

trend with the increase of coupling number in case(a), but the velocity decreases in case(b). For

both cases (a) and (b), the temperature, concentration and skin friction increase, but wall couple

stress, heat and mass transfer rates decrease with the increase of coupling number. An increase in

Biot number leads to increase of the velocity near the plate whereas, far away from the plate it

decreases. The temperature, skin friction, wall couple stress, heat and mass transfer rates enhance

but the concentration reduce in case(a). However, for case (b), the velocity, skin friction, wall

couple stress and mass transfer rate increase, but the concentration decreases in the aiding flow

whereas, they show a reverse trend in the opposing flow. Further, for both opposing and aiding

flows, the temperature and heat transfer rate increase with the increase of Biot number. In both

case(a) and case(b), the skin friction, wall couple stress, heat and mass transfer rates are more, but

temperature and concentration are less in suction compared to that of injection except for velocity

in case(a). As the material parameter n increases, the skin friction decreases, but the wall couple

stress, heat and mass transfer rates increase.
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Chapter 3

Free and Mixed Convection along a

Permeable Vertical Plate Embedded

in a Porous Medium Saturated with

Micropolar Fluid1

3.1 Introduction

The study of convective heat and mass transfer embedded in a porous medium arises in a number

of important applications, including food processing, pollutant dispersion in aquifers, storage of

nuclear waste material, a heat exchanger placed in a low-velocity environment, solar energy col-

lecting devices, air conditioning of a room, etc. Comprehensive review of convective heat and mass

transfer in a Darcy and non-Darcy porous medium can be found in the books by Ingham and Pop

[41], Nield and Bejan [74] and Vafai [102].

The boundary layer flow of convective transport in a micropolar fluid saturated porous medium

has gained the attention of several researchers due to its significant applications in the context

1Case(a):Published in “Procedia Engineering” 127 (2015) 235–243,
Case(b) Published in “Advanced Science Engineering and Medicine” 7 (2015) 234–245
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of industrial manufacturing processes, discrete aspects of engineering, and also geothermal extrac-

tion. In view of the above said applications, Chamkha et al. [19] investigated the double diffusive

natural convective boundary layer flow of a micropolar fluid over a vertical plate embedded in a

uniform porous medium in the presence of chemical reaction. Bakier [10] discussed the influence of

thermophoresis and radiation on the free convective flow of a micropolar fluid through saturated

non-Darcy porous medium. Srinivasacharya and RamReddy [96] analyzed the mixed convective

flow of an incompressible micropolar fluid in a doubly stratified non-Darcy porous medium sub-

jected to the uniform wall temperature and concentration. Though the similarity representation of

the system of governing equations for the convective flow of a micropolar fluid is essential to get

invariant solutions, it has not received much attention.

In this chapter, the problem of free and mixed convective flows along a permeable vertical plate

in a micropolar fluid saturated Darcy porous medium, is considered. In addition, the convective

boundary condition is prescribed on the surface of the vertical plate. As in the previous chapter, the

governing equations and their associated boundary conditions are initially cast into dimensionless

forms by similarity variables, which are obtained using the scaling group of transformations, and

then solved numerically using the spectral quasi-linearization method. The present study mainly

focused on exploring the effects of micropolar parameter, Darcy number, mixed convection param-

eter, and convective heat transfer parameter on the physical quantities of the flow for both suction

and injection cases. Further, the numerical data for the skin-friction, wall couple stress, heat and

mass transfer rates are shown in the tabular form.

3.2 Mathematical Formulation

Consider the steady, two dimensional and laminar convective flow of an incompressible micropolar

fluid over a permeable vertical plate in a Darcy porous medium. The x-axis is taken along the

vertical plate and y-axis is normal to the plate as displayed in Fig. 3.1. This chapter is an

extension of chapter-2 by considering the microplar fluid saturated porous medium. In addition to

assumptions made in chapter-2, the following assumptions are taken into account in the analysis:

(i) the porous medium is isotropic and homogeneous, (ii) the properties of the fluid and porous

medium are constant except for the density variation required by the Boussinesq approximation

and (iii) the fluid and the porous medium are in local thermodynamic equilibrium. Under these
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Figure 3.1: Physical model and coordinate system

assumptions, and using the Darcy model and Dupuit-Forchheimer relationship [74], the governing

equations describing the micropolar fluid are:

∂u

∂x
+
∂v

∂y
= 0 (3.1)

ρ

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=

1

ε
(µ+κ)

∂2u

∂y2
+ρue

due
dx

+κ
∂ω

∂y
+ρg∗ (βT (x)(T − T∞) + βC(x)(C − C∞))− µ

Kp
(u−ue)

(3.2)
ρj

ε

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

1

ε

∂u

∂y

)
(3.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3.4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(3.5)

where u and v are the Darcy velocity components in x and y directions respectively, ε is the porosity

and Kp is the (intrinsic) permeability of the medium.

The boundary conditions are

u = 0, v = vw, ω = −n∂u
∂y
, −k∂T

∂y
= hf (Tf − T ), C = Cw at y = 0 (3.6a)

u = ue(x), ω = 0, T = T∞, C = C∞ as y →∞ (3.6b)

In this chapter, two types (cases) of problems are considered: (a) free/natural convection and

(b) mixed convection.
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3.2.1 Case(a): Natural Convection

In the case of natural convection, the fluid flow is due to buoyancy forces only and hence, the

velocity of the outer flow becomes zero (ie., ue = 0). We introduce the following dimensionless

variables

x =
x

L
, y =

y

L
Gr1/4, u =

L

νGr1/2
u, v =

L

νGr1/4
v,

ω =
L2

νGr3/4
ω, θ =

T − T∞
Tf − T∞

, φ =
C − C∞
Cw − C∞

 (3.7)

In view of the continuity equation (3.1), we introduce the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.8)

Using (3.7) and (3.8) in Eqs.(3.2)-(3.5), we get the following momentum, angular momentum,

energy and concentration equations

1

ε2

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
−1

ε

(
1

1−N

)
∂3ψ

∂y3
−
(

N

1−N

)
∂ω

∂y
− βT
βT0

θ−βC(Cw − C∞)

βT0(Tf − T∞)
φ+

1

DaGr1/2
∂ψ

∂y
= 0

(3.9)
1

ε

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)(
2ω +

1

ε

∂2ψ

∂y2

)
= 0 (3.10)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0 (3.11)

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Sc

∂2φ

∂y2
= 0 (3.12)

where Da =
Kp

L2
is the Darcy number.

Now, the boundary conditions (3.6) become

∂ψ

∂y
= 0,

∂ψ

∂x
= fw, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), φ = 1 at y = 0 (3.13a)

∂ψ

∂y
= 0, ω = 0, θ = 0, φ = 0 as y →∞ (3.13b)

Making use of the Lie scaling group transformations as explained in the previous chapter, the
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following similarity transformations are obtained

η = y, ψ = xf(η), ω = xg(η), βT = xβT0 , βC = xβC0 , θ = θ(η), φ = φ(η) (3.14)

Using (3.14) in Eqs.(3.9)-(3.12), the similarity equations are obtained as follows

1

ε

(
1

1−N

)
f ′′′ +

1

ε2
ff ′′ − 1

ε2
f ′2 +

(
N

1−N

)
g′ + θ + Bφ− 1

DaGr1/2
f ′ = 0 (3.15)

(
2−N
2− 2N

)
g′′ +

1

ε
fg′ − 1

ε
f ′g −

(
N

1−N

)(
2g +

1

ε
f ′′
)

= 0 (3.16)

1

Pr
θ′′ + fθ′ = 0 (3.17)

1

Sc
φ′′ + fφ′ = 0 (3.18)

Boundary conditions (3.13) in terms of f , g, θ and φ become

f(0) = fw, f
′(0) = 0, g(0) = −nf ′′(0), θ′(0) = −Bi[1− θ(0)], φ(0) = 1 (3.19a)

f ′(∞) = 0, g(∞) = 0, θ(∞) = 0, φ(∞) = 0 (3.19b)

The non-dimensional skin friction Cf , wall couple stress Mw, local Nusselt number Nux and local

Sherwood number Shx, are given by

CfGr
1/4 = 2

[
1− nN
1−N

]
f ′′(0), MwGr

1/2 =

(
2−N
2− 2N

)
g′(0),

Nux

Gr
−1/4
x

= −θ′(0),
Shx

Gr
−1/4
x

= −φ′(0)

 (3.20)

Results and Discussion

The coupled nonlinear Eqs.(3.15)-(3.18) along with the boundary conditions (3.19) are solved nu-

merically using the spectral quasilinearisation method as explained in the previous chapter. In

order to validate the code generated, for the special case of N = 0, n = 0, Da→∞, ε = 1, B = 0,

Pr = 1, Bi→∞ and fw = 0, the results of the present problem have been compared with those of

Merkin [57], Nazar et al. [72] and Molla et al. [60] and it is found that they are in good agreement

[Tab. (2.1)]. Also, the values of heat transfer rate, for n = 0.5, Da → ∞, ε = 1, B = 0, Pr = 1,
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Bi → ∞ and fw = 0, agree well with that of Nazar et al. [72] as shown in Tab. (2.2). To explore

the significance of coupling number N , Darcy number Da and Biot number Bi, the computations

have been carried out in the cases of suction and injection for B = 1.0, n = 0, ε = 0.6, Pr = 0.71

and Sc = 0.22.

The effects of coupling number (N) on the dimensionless velocity, microrotation, temperature

and concentration profiles are illustrated in Figs. 3.2(a)-3.2(d) for both suction and injection cases

and for fixed values of other parameters. The main advantage using the coupling number N in fluid

flow model is that it characterizes the coupling between the linear and rotational motion emerging

from the micromotion of the fluid particles. As N increases, it is found from Fig. 3.2(a) that the

maximum velocity decreases in amplitude and the position of the maximum velocity moves farther

away from the wall. It can be observed from Fig. 3.2(b) that initially, the microrotation profiles

tends to become flat, and then approaches their free stream values far away from the wall with the

increase of N . This is because an increment in the value of N implies a higher vortex viscosity of

the fluid which promotes the microrotation of micropolar fluid. It is seen from Figs. 3.2(c) and

3.2(d) that with the increase of coupling number N , the thickness of thermal and concentration

boundary layers of the fluid increase. It is observed from the above analysis that the results are

true for both the suction and injection cases. Finally, the temperature and concentration are more

in case of the micropolar fluid than those of the viscous fluid case.

Figs. 3.3(a)-3.3(d) depict the influence of Darcy number (Da) on the non-dimensional velocity,

microrotation, temperature and concentration profiles in both the cases of suction and injection.

With the increase of permeability, the porous matrix structure becomes less and less prominent.

Thus, in the point of accumulation, as Da → ∞
(
i.e.,

1

DaGr1/2
f ′ → 0

)
along with ε = 1, the

porous medium vanishes and the present problem reduces to a purely free convective heat and mass

transfer in a micropolar fluid. Fig. 3.3(a) indicates that with an increase in Da (which means a

rise in permeability Kp), the velocity of the micropolar fluid enhances considerably near the wall

and it shows reverse trend far away from the wall. From Fig. 3.3(b), it can be depicted that the

microrotation changes its sign from negative to positive within the boundary layer. Also, it is noted

that the magnitude of the microrotation increases with an increase in Darcy number. It is seen

from Figs. 3.3(c) and 3.3(d) that the temperature and concentration of the fluid decrease with the

increase of Darcy number. Further, it is to note that the above results are true in both the suction

and injection cases.
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Figs. 3.4(a)-3.4(d) display the effects of Biot number (Bi) on the dimensionless velocity, micro-

rotation, temperature and concentration profiles in both the suction and injection cases for fixed

values of other parameters. The fluid velocity is zero at the plate surface and increases gradually

away from the plate to the free stream value satisfying the boundary conditions. It is interesting to

observe that an increase in the strength of convective surface heat transfer Bi produces a substantial

enhancement in the fluid velocity within the momentum boundary layer. The microrotation shows

reverse rotation near the two boundaries with the increase of Bi [Fig. 3.4(b)]. The fluid temperature

is maximum at the plate surface and decreases exponentially to zero value far away from the plate

satisfying the boundary conditions. As a consequence, an increment in Biot number leads to

enhance in the fluid temperature [Fig. 3.4(c)]. From Fig. 3.4(d), it is observed that a slight

decrement in the concentration boundary layer thickness with the increase of Biot number Bi.

These results shows same behaviour for both suction and injection cases.

The variations of skin-friction, wall couple stress, heat and mass transfer rates are shown in

Tab.(3.1) for different values of the coupling number N , Biot number and Darcy parameter for

both the cases of suction and injection. It is noticed that the skin friction of the micropolar fluid is

higher than the viscous fluid (N = 0). The wall couple stress, heat and mass transfer rates reduces

with coupling number enhancement. This may be beneficial in flow, temperature and concentration

control of polymer processing. It can be observed that the skin-friction, heat and mass transfer

rates increase, but the wall couple stress decreases with the increase of Bi. Also, it can be observed

that the skin friction, Nusselt and Sherwood numbers enhances, but the wall couple stress reduces

with the enhancement of Darcy parameter Da. It is observed from these results that the skin-

friction, wall couple stress, heat and mass transfer rates show similar behaviour in both the cases

of suction and injection.
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Table 3.1: Variations of skin friction, wall couple stress, Nusselt number and Sherwood
number for varying values of micropolar parameter N , Biot numbers Bi and Darcy number
Da in the presence of suction/injection parameter fw.

fw N Bi Da CfGr
1/4
x MwGr

1/2
x

Nux

Gr
1/4
x

Shx

Gr
1/4
x

-0.5 0 0.1 0.1 0.801568 0 0.048975 0.083206
-0.5 0.5 0.1 0.1 1.173704 -0.180042 0.046976 0.08024
-0.5 0.9 0.1 0.1 2.488803 -0.845552 0.040401 0.070989
0.5 0 0.1 0.1 0.890467 0 0.083082 0.194364
0.5 0.5 0.1 0.1 1.119873 -0.155206 0.082709 0.189986
0.5 0.9 0.1 0.1 1.838558 -0.600532 0.081669 0.177206
-0.5 0.5 0.1 0.1 1.173704 -0.180042 0.046976 0.08024
-0.5 0.5 1 0.1 1.438289 -0.214785 0.094606 0.088765
-0.5 0.5 20 0.1 1.500169 -0.222677 0.107394 0.090614
0.5 0.5 0.1 0.1 1.119873 -0.155206 0.082709 0.189986
0.5 0.5 1 0.1 1.482741 -0.189829 0.331779 0.198439
0.5 0.5 20 0.1 1.701339 -0.209863 0.494073 0.203173
-0.5 0.5 0.1 0.05 0.995963 -0.133976 0.035511 0.059373
-0.5 0.5 0.1 0.1 1.173704 -0.180042 0.046976 0.08024
-0.5 0.5 0.1 0.3 1.424426 -0.245786 0.056806 0.109738
0.5 0.5 0.1 0.05 0.842806 -0.101742 0.081594 0.168418
0.5 0.5 0.1 0.1 1.119873 -0.155206 0.082709 0.189986
0.5 0.5 0.1 0.3 1.557228 -0.241907 0.08401 0.220713
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Figure 3.2: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 3.3: Variation of Da on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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3.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convection, which arises from an external flow with velocity [ūe(x)]

and buoyancy forces. We introduce the following dimensionless variables

x =
x

L
, y =

y

L
Re1/2, u =

u

U∞
, v =

v

U∞
Re1/2, (3.21)

ue =
ue
U∞

, ω =
L2

νRe3/2
ω, θ =

T − T∞
Tf − T∞

, φ =
C − C∞
Cw − C∞

In view of the continuity equation (3.1), we introduce the stream function ψ as follows

u =
∂ψ

∂y
, v = −∂ψ

∂x
(3.22)

Using (3.21) and (3.22) in Eqs.(3.2)-(3.5), we get the following momentum, angular momentum,

energy and concentration equations

1

ε2

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
− 1

ε

(
1

1−N

)
∂3ψ

∂y3
−
(

N

1−N

)
∂ω

∂y
−
g∗βT (Tf − T∞)

ν2Re2
θ

−g
∗βC(Cw − C∞)

ν2Re2
φ− ue

due
dx

+
1

DaRe

(
∂ψ

∂y
− ue

)
= 0 (3.23)

1

ε

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)(
2ω +

1

ε

∂2ψ

∂y2

)
= 0 (3.24)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0 (3.25)

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Sc

∂2φ

∂y2
= 0 (3.26)

Now, the boundary conditions (3.6) become

∂ψ

∂y
= 0,

∂ψ

∂x
= fw, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), φ = 1 at y = 0 (3.27a)

∂ψ

∂y
= ue, ω = 0, θ = 0, φ = 0 as y →∞ (3.27b)

Proceeding same as in case(a) of the chapter-2, the following similarity transformations are
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attained using Lie group scaling transformations.

η = y, ψ = xf(η), ω = xg(η), ue = x, βT = xβT0 , βC = xβC0 , θ = θ(η), φ = φ(η) (3.28)

Using (3.28) in Eqs. (3.23)-(3.26), we get the following system of similarity equations

1

ε

(
1

1−N

)
f ′′′ +

1

ε2
ff ′′ + 1− 1

ε2
f ′2 +

(
N

1−N

)
g′ + λ(θ + Bφ) +

1

DaRe
(1− f ′) = 0 (3.29)

(
2−N
2− 2N

)
g′′ +

1

ε
fg′ − 1

ε
f ′g −

(
N

1−N

)(
2g +

1

ε
f ′′
)

= 0 (3.30)

1

Pr
θ′′ + fθ′ = 0 (3.31)

1

Sc
φ′′ + fφ′ = 0 (3.32)

Boundary conditions (3.27) in terms of f , g, θ and φ become

f(0) = fw, f
′(0) = 0, g(0) = −nf ′′(0), θ′(0) = −Bi[1− θ(0)], φ(0) = 1 (3.33a)

f ′(∞) = 1, g(∞) = 0, θ(∞) = 0, φ(∞) = 0 (3.33b)

The non-dimensional skin friction Cf , wall couple stress Mw, local Nusselt number Nux and Sher-

wood number Shx, are given by

CfRex1/2 = 2

(
1− nN
1−N

)
f ′′(0), MwRex =

(
2−N
2− 2N

)
g′(0),

Nux
Rex1/2

= −θ′(0),
Shx
Rex1/2

= −φ′(0)

 (3.34)

Results and Discussion

The system of Eqs.(3.29)-(3.32) along with the boundary conditions (3.33) are solved numerically

using the spectral quasi-linearization method, which is clearly discussed in the chapter-2. In order

to validate the code generated, for the special case of N = 0, n = 0, λ = 0, Bi → ∞, Da → ∞

and fw = 0, the results of the present problem have been compared with those of Merkin [58]

and Nazar et al. [73] and it is found that they are in good agreement (Tab. (2.4)). The effects of

coupling number N , Darcy number Da, Biot number Bi and suction/injection parameter fw on
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the physical quantities of the flow, heat and mass transfer rates have been carried out explicitly

for both opposing and aiding flow situations by taking B = 1.0, n = 0, ε = 1.0, Pr = 0.71 and

Sc = 0.22. Further, it is noticed that the value of the mixed convection parameter λ is taken as

positive in the aiding flow situation and negative in the opposing flow situation. However, in the

case of opposing flow, the flow field becomes more complex.

Opposing flow

The effects of coupling number N on the non-dimensional velocity, microrotation, temperature and

concentration profiles are displayed in Figs. 3.5(a)-3.5(d) for both the cases of suction and injection.

In the absence of N , the fluid behaves as non-polar fluid with a loss of the micropolarity. As N

increases, it is found from Fig. 3.5(a) that the maximum velocity decreases. It is observed from

Fig. 3.5(b) that as N increases, the microrotation profile tends to become flat, and then approaches

to their free stream values far away from the wall. It is seen from Figs. 3.5(c) and 3.5(d) that the

temperature and concentration of the fluid increase with the increase of coupling number N . It is

important to note that the velocity in case of the micropolar fluid is less but, the temperature and

concentration are more when compared to those of viscous fluids. The above results are true for

both suction and injection cases.

Figs. 3.6(a)-3.6(d) illustrate the influence of Darcy number Da on the non-dimensional ve-

locity, microrotation, temperature and concentration profiles for both suction and injection cases.

As Darcy number increases, the velocity decreases in both the cases of suction and injection [Fig.

3.6(a)]. The porous matrix structure becomes less and less prominent with the increase of perme-

ability and in the point of accumulation, as Da→∞
(
i.e.,− 1

DaRe
f ′ → 0

)
and ε = 1, the porous

medium vanishes and reduces to mixed convective flow of micropolar fluid. From Fig. 3.6(b), it is

explored that the microrotation reduces with the enhancement of Darcy number and converges to

their free stream values. It is seen from Fig. 3.6(c) that the temperature of the fluid increases with

the increase of Darcy number for both suction and injection cases. Also, Fig. 3.6(d) shows that as

Darcy number increases, the concentration profile enhances for both suction and injection cases.

The variations of non-dimensional velocity, microrotation, temperature and concentration pro-

files for different values of Biot number for both suction and injection cases are depicted in Figs.

3.7(a)-3.7(d). As Biot number Bi increases, the fluid velocity decreases within the momentum
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boundary layer in both the cases of suction and injection [Fig. 3.7(a)]. Fig. 3.7(b) shows that as

the Biot number increases, the microrotation profile slightly decreases within the range (0 < η < 1)

after that, it increases in the injection case. However, in the suction case, there is no significant

effect up to η = 0.65 approximately and then it increases with the increase of Biot number. Fig.

3.7(c) reveals that for both suction and injection cases, the fluid temperature is high at the plate

surface and decreases exponentially to zero value far away from the plate satisfying the boundary

conditions. As a result, an increase in Biot number leads to increase in the fluid temperature

efficiency. Fig. 3.7(d) illustrates that as Biot number Bi increases, there is no significant effect

on the concentration boundary layer thickness in the case of suction, but slightly increases in the

injection case.

The variations of the skin-friction, wall couple stress, heat and mass transfers rate are shown in

Tab.(3.2) in both the cases of suction and injection for different values of the coupling number, Biot

number and Darcy number. Tab.(3.2) indicates that the skin friction is higher for the micropolar

fluid when compared to the viscous fluid (n = 0, N = 0). The wall couple stress, heat and mass

transfer rates decrease but, the skin friction increases with the increase of coupling number. From

Tab.(3.2), it can be observed that the skin-friction, heat and mass transfer rates decrease, but the

wall couple stress increases with the increase of Da. It is also noticed that the skin-friction and

mass transfer rate reduce, but the wall couple stress and heat transfer rate enhances with Biot

number Bi enhancement.

Aiding flow

The influence of coupling number N on the dimensionless velocity, microrotation, temperature and

concentration profiles is displayed in Figs. 3.8(a)-3.8(d) in both the cases of suction and injection

for fixed values of other parameters. As coupling number N increases, it is found from Fig. 3.8(a)

that the velocity decreases in both suction and injection cases. Fig. 3.8(b) exhibits that initially,

the microrotation profile tends to become flat, and then converges to their free stream values far

away from the wall with an increase in coupling number. For both suction and injection, the

temperature and concentration increase with the increase of coupling number as shown in Figs.

3.8(c) and 3.8(d).

Figs. 3.9(a)-3.9(d) exhibit the effects of Darcy number Da, on the non-dimensional velocity,
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microrotation, temperature and concentration profiles in both the cases of suction and injection.

Fig. 3.9(a) indicates that an increase in Da reduces the velocity of the micropolar fluid near the

wall and its behaviour reverses far away from the wall. From Fig. 3.9(b), it can be noticed that

as Darcy number increases the microrotation profile shows reverse rotation. From Figs. 3.9(c) and

3.9(d), it can be concluded that the temperature and concentration increase with the increase of

Darcy number. The above results are same in both the cases of suction and injection.

The variation of Biot number Bi on the dimensionless velocity, microrotation, temperature and

concentration profiles is depicted in Figs. 3.10(a)-3.10(d) in both the cases of suction and injection

for fixed values of other parameters. It is interesting to observe from Fig. 3.10(a) that an increase

in Biot number Bi produces a substantial enhancement in the fluid velocity within the momentum

boundary layer. As Bi increases, initially, there is no significant effect in the case of suction, but

slightly decreases in the injection case and then it increases for both suction and injection [Fig.

3.10(b)]. Fig. 3.10(c) interprets that for both suction and injection cases, the temperature of the

fluid enhances with the enhancement of Biot number. As the value of Biot number increases, the

concentration decreases slightly in the injection case, but it does not show significant effect in the

suction case [Fig.3.10(d)].

The variations of skin-friction, wall couple stress, heat and mass transfer rates are shown in

Tab.(3.2) in both the cases of suction and injection for different values of coupling, Biot and Darcy

numbers. From Tab. (3.2), it can be seen that the skin friction CfRex1/2 is higher for the micropolar

fluid when compared to the viscous fluid (n = 0, N = 0) for both suction as well as injection cases.

Further, the wall couple stress, heat and mass transfer rates decrease with the increase of coupling

number in both suction and injection cases. It can be observed from table that the skin-friction,

heat and mass transfer rates decrease but, the wall couple stress increases with the increase of Da

in the presence of suction and injection. It can be noticed that the skin-friction, heat and mass

transfer rates increase, but the wall couple stress decreases with an increase in Biot number Bi for

both suction and injection cases.
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Table 3.2: Variations of skin friction, wall couple stress, heat and mass transfer coefficients
for varying values of coupling number, Darcy number, Biot number, mixed convection and
suction/injection parameters

λ fw N Da Bi CfRex1/2 MwRex
Nux
Rex1/2

Shx
Rex1/2

-0.5 -0.5 0 0.1 0.1 4.200684 0 0.077355 0.258083
-0.5 -0.5 0.5 0.1 0.1 6.028993 -0.5016 0.076054 0.247237
-0.5 -0.5 0.8 0.1 0.1 9.279943 -1.45206 0.073841 0.23027
-0.5 0.5 0 0.1 0.1 5.237084 0 0.088676 0.400173
-0.5 0.5 0.5 0.1 0.1 7.109759 -0.59758 0.088259 0.387192
-0.5 0.5 0.8 0.1 0.1 10.44195 -1.66538 0.087611 0.367259
1 -0.5 0 0.1 0.1 5.393751 0 0.079244 0.279211
1 -0.5 0.5 0.1 0.1 7.689083 -0.59422 0.077944 0.266581
1 -0.5 0.8 0.1 0.1 11.7283 -1.73555 0.075727 0.246983
1 0.5 0 0.1 0.1 6.443151 0 0.089099 0.417337
1 0.5 0.5 0.1 0.1 8.672207 -0.67155 0.088656 0.40257
1 0.5 0.8 0.1 0.1 12.58159 -1.89275 0.087967 0.38009
-0.5 -0.5 0.3 0.01 0.1 16.45829 -0.33854 0.080276 0.286325
-0.5 -0.5 0.3 0.1 0.1 5.086925 -0.24007 0.076725 0.252733
-0.5 -0.5 0.3 0.5 0.1 2.477442 -0.17672 0.073133 0.224628
-0.5 0.5 0.3 0.01 0.1 17.47235 -0.36032 0.08941 0.424335
-0.5 0.5 0.3 0.1 0.1 6.143973 -0.28831 0.08847 0.393731
-0.5 0.5 0.3 0.5 0.1 3.624604 -0.24647 0.08782 0.373152
1 -0.5 0.3 0.01 0.1 17.01112 -0.34663 0.080535 0.289739
1 -0.5 0.3 0.1 0.1 6.506748 -0.28201 0.078613 0.272964
1 -0.5 0.3 0.5 0.1 4.615073 -0.258 0.077737 0.2663
1 0.5 0.3 0.01 0.1 17.99893 -0.36673 0.089477 0.427263
1 0.5 0.3 0.1 0.1 7.523803 -0.32081 0.08888 0.409995
1 0.5 0.3 0.5 0.1 5.67869 -0.30557 0.088653 0.403908
-0.5 -0.5 0.3 1 0.1 1.977417 -0.15929 0.071856 0.215988
-0.5 -0.5 0.3 1 1 1.618677 -0.14356 0.193142 0.207599
-0.5 -0.5 0.3 1 3 1.533433 -0.13967 0.218255 0.205485
-0.5 0.5 0.3 1 0.1 3.169636 -0.23637 0.087648 0.367902
-0.5 0.5 0.3 1 1 2.903577 -0.2296 0.412412 0.364319
-0.5 0.5 0.3 1 3 2.77322 -0.22623 0.56625 0.362526
1 -0.5 0.3 1 0.1 4.327651 -0.25371 0.07757 0.265113
1 -0.5 0.3 1 1 4.86199 -0.27045 0.265047 0.27263
1 -0.5 0.3 1 3 5.022161 -0.27534 0.32533 0.274796
1 0.5 0.3 1 0.1 5.404291 -0.30306 0.088614 0.402902
1 0.5 0.3 1 1 5.836549 -0.31223 0.440615 0.407301
1 0.5 0.3 1 3 6.05778 -0.31686 0.626829 0.409502
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(d)

Figure 3.5: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles (Opposing flow case)

72



0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

iN 

 fw=-0.5, Da = 0.01
 fw=-0.5, Da = 0.1
 fw=-0.5, Da = 0.5
 fw= 0.5, Da = 0.01
 fw= 0.5, Da = 0.1
 fw= 0.5, Da = 0.5

 

 

f'


(a)

0 1 2 3 4 5 6
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

iN 

 fw=-0.5, Da = 0.01
 fw=-0.5, Da = 0.1
 fw=-0.5, Da = 0.5
 fw= 0.5, Da = 0.01
 fw= 0.5, Da = 0.1
 fw= 0.5, Da = 0.5

 

 

g



(b)

0 1 2 3 4 5
0.00

0.05

0.10

0.15

0.20

0.25 iN   fw=-0.5, Da = 0.01
 fw=-0.5, Da = 0.1
 fw=-0.5, Da = 0.5
 fw= 0.5, Da = 0.01
 fw= 0.5, Da = 0.1
 fw= 0.5, Da = 0.5  

 





(c)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

iN   fw=-0.5, Da = 0.01
 fw=-0.5, Da = 0.1
 fw=-0.5, Da = 0.5
 fw= 0.5, Da = 0.01
 fw= 0.5, Da = 0.1
 fw= 0.5, Da = 0.5  

 





(d)

Figure 3.6: Variation of Da on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles (Opposing flow case)
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Figure 3.7: Variation of Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles (Opposing flow case)
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Figure 3.8: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles (Aiding flow case)
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Figure 3.9: Variation of Da on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles (Aiding flow case)
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Figure 3.10: Variation of Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles (Aiding flow case)
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3.3 Conclusions

In this chapter, free and mixed convective heat and mass transfer along a permeable vertical plate

embedded in a porous medium saturated with a micropolar fluid subject to the convective boundary

condition is analyzed. From this computational analysis, the following conclusions are drawn in

the presence of suction/injection for both case (a) and case (b).

Case (a) Free Convection: The higher values of the coupling numberN results in a lower velocity

distribution compared to the Newtonian fluid case (N = 0). The numerical results indicate that

the skin friction is higher and wall couple stresses is lower for the micropolar fluid in comparison

with the Newtonian fluid. Likewise, non-dimensional heat and mass transfer rates decrease with

the increase of the coupling number. An increase in N leads to increase in the temperature and

concentration distributions for both the injection and suction. Also, the microrotation shows reverse

rotation near the two boundaries. For both the cases of suction and injection, an increase in Biot

number Bi, results in decrease of concentration and wall couple stress accompanied by an increase

in the temperature, skin friction, heat and mass transfer rates within the boundary layers. It is

observed that the wall couple stress decreases, but the skin friction, heat and mass transfer rates

increase with an increase in Darcy parameter Da for both suction and injection cases.

Case (b) Mixed Convection: The larger values of the coupling number results in a lower velocity,

wall couple stress, heat and mass transfer rates, but higher temperature, concentration and skin

friction for both the aiding and opposing flow situations. For both aiding and opposing flows: the

velocity, skin friction, heat and mass transfer rates decrease, but the temperature, concentration

and wall couple stresses increase with an increase in the value of Darcy number Da in the presence

of suction and injection. For both opposing and aiding flows, the temperature and heat transfer rate

increase with the increase of Biot number. In opposing flow situation: the velocity, skin-friction

and mass transfer rate decrease, but the wall couple stress and concentration increase with the

increase of Bi in both the cases of suction and injection. These profiles and physical quantities

show reverse trend in the case of aiding flow situation.
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Chapter 4

Homogeneous-Heterogeneous

Reactions on Nonlinear Convective

Flow of a Micropolar Fluid with

Radiation Effect 1

4.1 Introduction

Considerable attention has been paid to study the combined heat and mass transfer problems with

the effect of chemical reaction in the recent past. As it plays a crucial role in diverse applications

such as drying, energy transfer in the wet cooling surface, evaporation at the surface of the water

body, etc. Two types of chemical reactions, namely, homogeneous and heterogeneous reactions

in different fluid flows over various surface geometries have been attracted by several researchers.

Further, the homogeneous reaction arises constantly throughout a given phase, while the heteroge-

neous reaction occurs in a bounded region or within the boundary of phase. In view of the above

said applications, a mathematical model has been proposed by Chaudhary and Merkin [20] to study

the homogeneous-heterogeneous reactions in boundary layer flow with the effect of loss of autocat-

1Case(a):Published in “Nonlinear Engineering” 5(3) (2016) 193–204.,
Case(b) Accepted in “Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci”
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alyst. Khan and Pop[49] studied the viscoelastic fluid along a stretching sheet in the presence of

homogeneous-heterogeneous reactions. Nandkeolyar et al. [71] investigated the influence of internal

heat generation in a nanofluid flow with homogeneous-heterogeneous reactions.

The analysis of nonlinear thermal convection (i.e., may be treated as nonlinear relationship

between the density and temperature) is of great interest owing to their numerous applications in

engineering, astrophysics, geophysics and industrial manufacturing processes such as cooling of elec-

tronic components, doping processes, pore water convection near salt domes, etc. Few researchers

have aimed at this point and tried to explore various aspects in this direction. Barrow and Rao

[11] discussed the effect of variable thermal expansion coefficient on free convection. Nandkeol-

yar et al. [70] analyzed the effect of viscous dissipation on a stagnation point flow of a nanofluid

along a stretching sheet by considering the nonlinear convection (For more details, see the citations

therein).

In this chapter, the significance of nonlinear temperature-dependent density relation in an

incompressible micropolar fluid flow along a vertical plate with the convective boundary condi-

tion, is studied in two cases, namely, free and mixed convections. In addition, the homogeneous-

heterogeneous reactions and thermal radiation are incorporated in the present analysis. To our

best knowledge, this problem in a micropolar fluid has not been reported in the literature. The

influence of pertinent parameters on physical quantities of the flow are examined and exhibited

through graphs. The numerical values of the skin friction, wall couple stress and heat transfer

rate for different values of governing parameters are also tabulated. The results are compared with

relevant results in the existing literature and found to be in good agreement.

4.2 Mathematical Formulation

Consider the steady, two dimensional and laminar convective flow of an incompressible micropolar

fluid along a vertical plate. Choose the coordinate system such that the x-axis is along the vertical

plate and y-axis normal to the plate. The physical model and coordinate system is shown in Fig.

(4.1). The temperature difference between the plate and the medium is assumed to be large, so

that the convection region is thick. The fluid is considered to be a gray, absorbing and emitting

radiation, but non-scattering medium and the Rosseland approximation is used to describe the

80



Figure 4.1: Physical model and coordinate system

radiative heat flux in the energy equation. Assume that the velocity of the outer flow is ue(x) and

the free stream temperature is T∞ . The plate is either heated or cooled from left by convection

from a fluid of temperature Tf with Tf > T∞ corresponding to a heated surface and Tf < T∞

corresponding to a cooled surface respectively.

It is assumed that a simple homogeneous-heterogeneous reaction model exists as proposed by

Chaudhary and Merkin [20] in the following form:

For the homogeneous reaction, cubic autocatalysis is chosen as follows:

A+ 2B → 3B, rate = kca b
2

while on the catalyst surface, the single isothermal first order reaction is taken as

A→ B, rate = ksa

By employing nonlinear Boussinesq approximation and making use of the standard boundary layer

assumptions, the governing equations for the micropolar fluid [59, 43, 103] are given by

∂u

∂x
+
∂v

∂y
= 0 (4.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= (µ+ κ)

∂2u

∂y2
+ ρue

due
dx

+ κ
∂ω

∂y
+ ρg∗

[
β1(T − T∞) + β2(T − T∞)2

]
(4.2)
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ρj

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

∂u

∂y

)
(4.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

4ασ∗

3k k∗
∂2

∂y2
(
4T 3
∞T − 3T 4

∞
)

(4.4)

u
∂a

∂x
+ v

∂a

∂y
= DA

∂2a

∂y2
− kca b

2
(4.5)

u
∂b

∂x
+ v

∂b

∂y
= DB

∂2b

∂y2
+ kca b

2
(4.6)

where a and b are concentrations of the chemical species A and B, DA and DB are the respective

diffusion coefficients of species A and B, β1 and β2 are the coefficients of thermal expansion, σ∗

is the Stefan-Boltzmann constant and k∗ is the mean absorption coefficient. In the Eq.(4.4), the

last term is obtained by assuming that the temperature differences within the flow are sufficiently

small and the power function is expressed as a linear function of temperature by neglecting the

higher-order terms of the expansion.

The associated boundary conditions are

u = 0, v = 0, ω = −n∂u
∂y
, −k∂T

∂y
= hf (Tf − T ), DA

∂a

∂y
= ksa, DB

∂b

∂y
= −ksa at y = 0 (4.7a)

u = ue(x), ω = 0, T = T∞, a = a0, b = 0 as y →∞ (4.7b)

where a0 is a positive constant and ks is the rate constant. In this chapter also, two types (cases)

of problems are considered: (a) free/natural convection and (b) mixed convection.

4.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection which is caused by buoyancy forces only without

any external agent, and hence the velocity of the external flow becomes zero (ie., ue = 0). We

introduce the following dimensionless variables

x =
x

L
, y =

y

L
Gr1/4, u =

L

νGr1/2
u, v =

L

νGr1/4
v, ω =

L2

νGr3/4
ω, θ =

T − T∞
Tf − T∞

, h =
a

a0
, h1 =

b

a0
(4.8)
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In view of the continuity equation (4.1), we introduce the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
(4.9)

Using (4.8) and (4.9) in Eqs.(4.2)-(4.6), we get the following momentum, angular momentum,

energy, and concentration equations of species A and B

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
−
(

1

1−N

)
∂3ψ

∂y3
−
(

N

1−N

)
∂ω

∂y
− β1
βT0

θ

(
1 +

β2
β1
θ(Tf − T∞)

)
= 0 (4.10)

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)(
2ω +

∂2ψ

∂y2

)
= 0 (4.11)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

(
1 +

4

3
R

)
∂2θ

∂y2
= 0 (4.12)

∂ψ

∂y

∂h

∂x
− ∂ψ

∂x

∂h

∂y
− 1

Sc

∂2h

∂y2
+K hh1

2 = 0 (4.13)

∂ψ

∂y

∂h1
∂x
− ∂ψ

∂x

∂h1
∂y
− δ

Sc

∂2h1
∂y2

−K hh1
2 = 0 (4.14)

In usual definitions, Sc =
ν

DA
is the Schmidt number, R =

4σ∗T 3
∞

kk∗
is the radiation parameter,

K =
kca0

2L

νGr1/2
is the strength of homogeneous reaction and δ =

DB

DA
is the ratio of diffusion coefficient.

Now, the boundary conditions (4.7) become

∂ψ

∂y
= 0,

∂ψ

∂x
= 0, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), ∂h

∂y
= Ksh, δ

∂h1
∂y

= −Ksh at y = 0 (4.15a)

∂ψ

∂y
= 0, ω = 0, θ = 0, h = 1, h1 = 0 as y →∞ (4.15b)

where Ks =
ksLGr

−1/4

DA
is the strength of heterogeneous (surface) reaction.

In order to get the similarity represenatation of the system of Eqs. (4.10) - (4.14), a one-

parameter scaling group of transformations, which is a simplified form of Lie group transformation,

is selected as (Seddeek et al. [90])

Γ : x∗ = x eε α1 , y∗ = y eε α2 , ψ∗ = ψ eε α3 , ω∗ = ω eε α4 , θ∗ = θ eε α5 ,

h∗ = h eε α6 , h∗1 = h1 e
ε α7 , β∗1 = β1 e

ε α8 , β∗2 = β2 e
ε α9

(4.16)
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Using the procedure of Lie scaling group transformations as explained in the case(a) of second

chapter, the similarity transformations are obtained as

η = y, ψ = xf(η), ω = xg(η), β1 = xβT0 , β2 = xβT1 , θ = θ(η), h = h(η), h1 = h1(η) (4.17)

where βT0 and βT1 are the constant coefficients of thermal expansion.

Using (4.17) in Eqs. (4.10) - (4.14), the following similarity equations are attained

(
1

1−N

)
f ′′′ + ff ′′ − f ′2 +

(
N

1−N

)
g′ + θ(1 + χθ) = 0 (4.18)

(
2−N
2− 2N

)
g′′ + fg′ − f ′g −

(
N

1−N

)(
2g + f ′′

)
= 0 (4.19)

1

Pr

(
1 +

4

3
R

)
θ′′ + fθ′ = 0 (4.20)

1

Sc
h′′ + fh′ −Khh12 = 0 (4.21)

δ

Sc
h′′1 + fh′1 +Khh1

2 = 0 (4.22)

where χ =
βT1
βT0

(Tf − T∞) is the nonlinear density temperature (NDT) parameter.

Boundary conditions (4.15) in terms of f , g, θ, h and h1 become

f(0) = 0, f ′(0) = 0, f ′(η) = 0 as η →∞ (4.23a)

g(0) = −nf ′′(0), g(η) = 0 as η →∞ (4.23b)

θ′(0) = −Bi[1− θ(0)], θ(η) = 0 as η →∞ (4.23c)

h′(0) = Ksh(0), h(η) = 1 as η →∞ (4.23d)

δh′1(0) = −Ksh(0), h1(η) = 0 as η →∞ (4.23e)

It is expected that the diffusion coefficients of chemical species A and B are of comparable size,

which undergo further assumption that the diffusion coefficients DA and DB are equal, i.e., δ = 1

(See Ref.[20]). This assumption leads to the following relation

h(η) + h1(η) = 1 (4.24)
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Thus, the two Eqs. (4.21) and (4.22) reduce into the single equation as given below

1

Sc
h′′ + fh′ −Kh(1− h)2 = 0 (4.25)

and the associated boundary conditions are simplified as follows

h′(0) = Ks h(0), h(η) = 1 as η →∞ (4.26)

The shear stress, wall couple stress and heat transfer rate from the plate, are defined as

τw =

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

, mw = γ

[
∂ω

∂y

]
y=0

and qw = −k
[(

∂T

∂y

)
+

4ασ∗

3k k∗
∂

∂y

(
4T 3
∞T − 3T 4

∞
)]
y=0

(4.27a)

The quantities of physical interest are the non-dimensional skin friction Cf =
2τw
ρu2∗

, wall couple

stress Mw =
mw

ρu2∗x
and local Nusselt number Nux =

qwx

k(Tf − T∞)
, which are given by

CfGr
1/4 = 2

(
1− nN
1−N

)
f ′′(0), MwGr

1/2 =

(
2−N
2− 2N

)
g′(0) and

Nux

Gr
1/4
x

=

(
1 +

4

3
R

)
θ′(0) (4.28)

where Grx =
g∗βT0(Tf − T∞)x3

ν2
is the local Grashof number and u∗ is the characteristic velocity.

Results and Discussion

The coupled nonlinear Eqs.(4.18)-(4.20) and (4.25) along with the boundary conditions (4.23)(a) -

(4.23)(c) and (4.26) are solved numerically using the spectral quasi-linearisation method, which is

explained clearly in the case(a) of chapter-2. In order to assess the accuracy of the code generated,

for N = 0, R = 0, n = 0, Pr = 1, χ = 0 and Bi → ∞, the results of the present problem in the

absence of homogeneous and heterogeneous reactions, have been compared with those of Merkin

[57], Nazar et al. [72] and Molla et al. [60] and found that they are in good agreement [Tab. (2.1)].

Also, the values of heat transfer rate, for n = 0.5, R = 0, Pr = 1, Bi → ∞ and χ = 0, agree well

with that of Nazar et al. [72] as shown in Tab. (2.2). The investigation is carried out to analyze

the nonlinear convection parameter χ, Biot number Bi, homogeneous and heterogeneous reaction
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parameters K and Ks, for fixed values of n = 0, Pr = 0.71 and Sc = 0.22.

The influence of coupling number N on the dimensionless velocity, microrotation, temperature

and species concentration is illustrated in Figs. 4.2(a)-4.2(d) for fixed values of other parameters.

As N increases, it is found from Fig. 4.2(a) that the maximum velocity decreases in amplitude and

the location of the maximum velocity moves farther away from the wall. Since N → 0 corresponds

to a viscous fluid, the velocity in the case of micropolar fluid is less compared to that of the viscous

fluid case. From Fig. 4.2(b), it can be observed that as N increases, the microrotation tends to

become flat initially, and then approaches to their free stream values far away from the wall. This

is due to the fact that with an increase in N , the vortex viscosity of fluid increases and hence, it

promotes the microrotation of micropolar fluid. It is seen from Fig. 4.2(c) that the thickness of

thermal boundary layer of the fluid increases with the increase of coupling number N . Fig. 4.2(d)

shows that an increase in coupling number N causes to decrease of the species concentration.

Figs. 4.3(a) - 4.3(d) depict the variation of non-dimensional velocity f ′, microrotation g, tem-

perature θ and species concentration h across the boundary layers with the influence of Biot number.

Physically, the case of Bi = 0 (i,e., the plate is completely insulated) indicates that the internal

thermal resistance of the plate is very high and no convective heat transfer to the cold fluid on

the upper part of the plate. It is also interesting to notice that an increase in Biot number Bi

leads to increase of the fluid velocity within the momentum boundary layer [Fig. 4.3(a)]. Fig.

4.3(b) brings out the behavior of microrotation that, as the value of Bi increases, the microrotation

shows reverse rotation near the two boundaries. The physical behaviour of Bi, (i.e., the convective

heating increases with the Biot number, and the limiting case of Bi → ∞ gives the isothermal

surface), is clearly seen in Fig. 4.3(c), where θ(0) = 1. Hence, the fluid temperature is maximum

at the plate surface and decreases exponentially to zero value far away from the plate satisfying

the boundary conditions with Biot number. Finally, the outcome of varying Biot number is seen

to be qualitatively same on both the temperature and species concentration.

The variations of non-dimensional velocity f ′, microrotation g, temperature θ and species con-

centration h across the boundary layers for different values of the nonlinear convection parameter

or nonlinear density-temperature (NDT) parameter χ, are displayed in Figs.4.4(a) - 4.4(d). The

nonlinear convection (NDT) parameter χ measures the nonlinearity in a density-temperature re-

lationship. Physically, the case of χ > 0 indicates that the fluid temperature is higher than the

ambient temperature and hence, there is a supply of heat to the flow region from the wall. Further,
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χ = 0 is used to represent the case of linear convection. Fig. 4.4(a) explores that the velocity in-

creases in amplitude and moves far away from the wall with the increase of NDT parameter. From

Fig. 4.4(b), it can be noticed that the microrotation shows reverse rotation near the two bound-

aries with the increase of nonlinear convection parameter. Fig.4.4(c) and 4.4(d) display that the

temperature of the fluid reduces, but the the species concentration enhances with the enhancement

of NDT parameter.

Figs.4.5(a)-4.5(d) illustrate the effects of radiation on the non-dimensional velocity f ′, micro-

rotation g, temperature θ and species concentration h across the boundary layers. The velocity of

the fluid increase in amplitude with the increase of radiation parameter [Fig. 4.5(a)]. This is due to

the fact that, when heat is absorbed, the buoyancy force accelerates the flow and hence, the fluid

velocity enhances. Fig. 4.5(b) depicts that initially, the microrotation reduces up to some range

and then enhances with the increase of radiation parameter. As the value of radiation parameter

enhances, the temperature and species concentration enhance as displayed in Figs.4.5(c) and 4.5(d).

The variations of species concentration and mass transfer rate for different values of the ho-

mogeneous and heterogeneous reaction parameters, are presented in Figs. 4.6(a)-4.6(b). As we

know that an increase in the value of K corresponds to increase in the strength of homogeneous

reaction rate. It is noticed that by increasing the homogeneous reaction parameter, both the species

concentration and rate of mass transfer decrease. If the heterogeneous reaction parameter Ks in-

creases, then the strength of heterogeneous reaction rate increases. It is clear from Figs. 4.7(a)

and 4.7(b) that the species concentration and rate of mass transfer decrease with the increase of

heterogeneous reaction parameter Ks. Also noticed that the influence of heterogeneous reaction on

species concentration is more as compared with that of the homogeneous reaction.

Table (4.1) displays the variations of CfGr
1/4, MwGr

1/2, and Nux

Gr
1/4
x

with different combinations

of coupling number N , Biot number Bi, NDT parameter χ and radiation parameter R for fixed

values of K and Ks parameters. It can be observed from Tab.(4.1) that the skin friction factor is

higher for micropolar fluid than that of the viscous fluid (N = 0). Since micropolar fluids offer

a more resistance (resulting from vortex viscosity) to the fluid movement and cause larger skin

friction factor compared to viscous fluid. The results as well suggest that for larger values of the

coupling number N , results in lower wall couple stresses and heat transfer coefficient but, higher

skin friction coefficient. The skin-friction as well as heat transfer rate increase, but the wall couple

stress decreases with an increase in the values of Bi. From Tab.(4.1), it can be noticed that the
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Table 4.1: Variations of skin friction, wall couple stress and heat transfer rate for varying
values of micropolar parameter N , Biot numbers Bi, nonlinear convection parameter χ and
radiation parameter R with K = 1 and Ks = 0.5.

N Bi χ R CfGr
1/4 MwGr

1/2 Nux

Gr
1/4
x

0 1 0.2 1 1.756493 0 0.480086
0.3 1 0.2 1 2.015974 -0.123739 0.467144
0.5 1 0.2 1 2.267649 -0.245410 0.454613
0.8 1 0.2 1 3.026412 -0.575191 0.417755
0.5 0.1 0.2 1 1.122521 -0.142904 0.153756
0.5 1 0.2 1 2.267649 -0.245410 0.454613
0.5 5 0.2 1 2.614438 -0.272738 0.562262
0.5 20 0.2 1 2.698133 -0.279139 0.589131
0.5 1 0 1 2.074777 -0.231944 0.447202
0.5 1 1 1 2.975747 -0.292284 0.479211
0.5 1 3 1 4.475145 -0.381480 0.521647
0.5 1 5 1 5.756038 -0.449982 0.551059
0.5 1 0.2 1 2.267649 -0.245410 0.454613
0.5 1 0.2 3 2.588761 -0.291111 0.770213
0.5 1 0.2 5 2.756319 -0.315331 1.022012
0.5 1 0.2 7 2.865031 -0.331128 1.239710

skin friction and heat transfer rate increase, but the wall couple stress decreases with the increase

of NDT parameter. It can be seen from the Tab.(4.1) that as the radiation parameter increases,

the skin friction and heat transfer rate increase, whereas the wall couple stress decreases.
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Figure 4.2: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 4.3: Variation of Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 4.4: Variation of χ on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 4.5: Variation of R on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.

92



0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Bi = 5.0
N = 0.5
R = 5.0
 0.1
KS 1.0

 K = 1.0
 K = 2.0
 K = 3.0
 K = 4.0

 

 

h



(a)

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Bi = 10.0
N = 0.3
R = 5.0
 1.0

 K = 1.0
 K = 2.0
 K = 3.0
 K = 4.0

 

 

h(0)

KS

(b)

Figure 4.6: Variation of K on (a)Concentration profile h and (b) Mass transfer rate h(0).
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Figure 4.7: Variation of Ks on (a)Concentration profile h and (b) Mass transfer rate h(0).
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4.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convection, which arises from an external flow with velocity [ūe(x)]

and buoyancy forces. We introduce the following dimensionless variables

x =
x

L
, y =

y

L
Re1/2, u =

u

U∞
, v =

v

U∞
Re1/2,

ue =
ue
U∞

, ω =
L2

νRe3/2
ω, θ =

T − T∞
Tf − T∞

, h =
a

a0
, h1 =

b

a0
.

 (4.29)

Using (4.9) and (4.29) in Eqs.(4.2)-(4.6), we get the momentum, angular momentum, energy

and concentration equations of species A and B as follows

∂ψ

∂y

∂2ψ

∂x∂y
−∂ψ
∂x

∂2ψ

∂y2
−
(

1

1−N

)
∂3ψ

∂y3
−
(

N

1−N

)
∂ω

∂y
−ue

due
dx
−
g∗β1(Tf − T∞)

ν2Re2
θ

(
1 +

β2
β1
θ(Tf − T∞)

)
= 0

(4.30)

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)(
2ω +

∂2ψ

∂y2

)
= 0 (4.31)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

(
1 +

4

3
R

)
∂2θ

∂y2
= 0 (4.32)

∂ψ

∂y

∂h

∂x
− ∂ψ

∂x

∂h

∂y
− 1

Sc

∂2h

∂y2
+K hh1

2 = 0 (4.33)

∂ψ

∂y

∂h1
∂x
− ∂ψ

∂x

∂h1
∂y
− δ

Sc

∂2h1
∂y2

−K hh1
2 = 0 (4.34)

where K =
kca0

2L

U∞
is the strength of homogenous reaction and δ =

DB

DA
is the ratio of diffusion

coefficient.

Now, the boundary conditions (4.7) become

∂ψ

∂y
= 0,

∂ψ

∂x
= 0, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), ∂h

∂y
= Ksh, δ

∂h1
∂y

= −Ksh at y = 0 (4.35a)

∂ψ

∂y
= ue, ω = 0, θ = 0, h = 1, h1 = 0 as y →∞ (4.35b)

where Ks =
ksLRe

−1/2

DA
is the strength of heterogeneous (surface) reaction.

Using the procedure of the Lie group transformations as explained in the case(a) of second
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chapter, the following similarity transformations are obtained

η = y, ψ = xf(η), ω = xg(η), ue = x, β1 = βT0x, β2 = βT1x, θ = θ(η), h1 = h1(η), h2 = h2(η)

(4.36)

Substituting (4.36) into Eqs. (4.30)-(4.34), and making use of the assumption that diffusion

coefficients DA and DB are equal as explained in the previous case, the resulting system of similarity

equations takes the following form:

(
1

1−N

)
f ′′′ + ff ′′ + 1− f ′2 +

(
N

1−N

)
g′ + λθ(1 + χθ) = 0 (4.37)

(
2−N
2− 2N

)
g′′ + fg′ − f ′g −

(
N

1−N

)(
2g + f ′′

)
= 0 (4.38)

1

Pr

(
1 +

4

3
R

)
θ′′ + fθ′ = 0 (4.39)

1

Sc
h′′ + fh′ −Kh(1− h)2 = 0 (4.40)

The associated boundary conditions (4.35) become

f(η) = 0, f ′(η) = 0, g(η) = −nf ′′(η), θ′(η) = −Bi[1− θ(η)], h′(η) = Ks h(0) at η = 0 (4.41a)

f ′(η) = 1, g(η) = 0, θ(η) = 0, h(η) = 1 as η →∞ (4.41b)

The quantities of physical interest are the non-dimensional skin friction Cf =
2τw
ρu2e

, wall couple

stress Mw =
mw

ρu2ex
and the local Nusselt number Nux =

qwx

k(Tf − T∞)
, are given by

CfRex1/2 = 2

(
1− nN
1−N

)
f ′′(0), MwRex =

(
2−N
2− 2N

)
g′(0),

Nux
Rex1/2

= −
(

1 +
4

3
R

)
θ′(0) (4.42)

Results and Discussion

The governing non-linear ordinary differential equations (4.37) - (4.40) along with the boundary

conditions (4.41) are solved numerically using the spectral quasi-linearization method. In order

to validate the code generated, for the special case of N = 0, n = 0, Pr = 1, R = 0, χ = 0
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and Bi → ∞, the results of the present problem have been compared with those of Merkin [58]

and Nazar et al. [73] in the absence of homogeneous and heterogeneous reactions and found that

they are in good agreement, as shown in Tab. (2.4). To study the effects of nonlinear convection

parameter χ, Biot number Bi, strength of homogeneous and heterogeneous reaction parameters K

and Ks, computations have been carried out for n = 0, Pr = 0.71 and Sc = 0.22.

Figs. 4.8(a)-4.8(d) illustrate the effect of coupling number N on the dimensionless velocity,

microrotation, temperature and species concentration for fixed values of other parameters. As the

coupling number N increases, it is found from Fig. 4.8(a) that the velocity decreases within the

momentum boundary layer. From Fig. 4.8(b), it can be observed that the microrotation is flat for

N = 0, and it shows reverse rotation near two boundaries with the increase of coupling number.

This is due to the fact that an increment in N indicates a higher vortex viscosity of fluid and hence

it promotes the microrotation of micropolar fluids. It is seen from Fig. 4.8(c) that the thermal

boundary layer of the fluid increases with the increase of coupling number N . Fig. 4.8(d) shows

that an enhancement in coupling number N causes to reduction of the species concentration. The

above results are true in both the cases of aiding and opposing flow situations.

Figs. 4.9(a) - 4.9(d) displayed the influence of Biot number on the non-dimensional velocity

f ′, microrotation g, temperature θ and species concentration h across the boundary layers for both

opposing and aiding flows. It is interesting to note that an increase in the intensity of convective

surface heat transfer Bi produces a significant enhancement in the fluid velocity within the mo-

mentum boundary layer for aiding flow situation, but the reverse is true for opposing flow situation

[Fig. 4.9(a)]. Fig. 4.9(b) illustrates that as the Biot number Bi increases, the microrotation shows

reverse rotation near the two boundaries and moreover, it is observed that the microrotation in

aiding and opposing flows shows opposite trend. The outcome of temperature with the increase

of Biot number is seen to be qualitatively same for both aiding and opposing flow situations as

displayed in Fig. 4.9(c). From Fig. 4.9(d), it can be noticed that the species concentration reduces

in opposing flow situation, but it enhances in aiding flow situation. Physically, the aiding flow

(λ > 0) implies favourable pressure gradient and thus fluid gets accelerated, but in the case of

opposing flow (λ < 0), the fluid gets decelerated. Hence, the concentration enhances in aiding flow,

but reduces in opposing flow with the increase of Biot number.

In Figs. 4.10(a) - 4.10(d), the variation of nonlinear convection parameter(NDT) on the non-

dimensional velocity f ′, microrotation g, temperature θ and species concentration h across the
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boundary layers, are depicted. The nonlinear convection (NDT) parameter χ measures the nonlin-

earity in a density-temperature relationship. With an increase in NDT parameter, the velocity of

the fluid increases in aiding flow, but decreases in opposing flow [Fig. 4.10(a)]. From Fig. 4.10(b),

it can be perceived that the microrotation shows reverse rotation near two boundaries with the

increase of NDT parameter and it is found that the microrotation in opposing and aiding flows

depicts the reverse nature. From Fig. 4.10(c), it is seen that the fluid temperature reduces in

aiding flow, but it enhances in opposing flow. It is observed from Fig. 4.10(d) that the concentra-

tion profile shows a reverse behaviour to the temperature profile for both opposing and aiding flow

situations.

The effects of radiation on the non-dimensional velocity f ′, microrotation g, temperature θ and

species concentration h across the boundary layers, are explored in Figs. 4.11(a)-4.11(d). Fig.

4.11(a) shows that the velocity of the fluid increases in aiding flow, but it reduces in opposing flow

with the increase of radiation parameter. Fig.4.11(b) reveals that the microrotation first decreases

up to certain range and then increases in the case of aiding flow, but coming to the opposing flow

situation, it shows reverse behaviour with the increase of radiation parameter. As the radiation

parameter enhances, the temperature enhances for both opposing and aiding flow cases as displayed

in Fig.4.11(c). Fig.4.5(d) exhibits that the species concentration diminishes in opposing flow, but

it raises in aiding flow.

Figs. 4.12(a) - 4.13(b) display effects of homogeneous and heterogeneous reaction parameters

on the species concentration h and mass transfer rate h(0) for fixed values of other parameters.

Generally, an increase in the values of K and Ks correspond to an increase in the strength of

homogeneous and heterogeneous reaction rates. For both aiding and opposing flow situations,

Figs. 4.12(a) - 4.13(b) shows that the species concentration and rate of mass transfer decrease with

the increase of homogeneous and heterogeneous reaction parameters. Also, it can be noticed that

the influence of heterogeneous reaction is more about the species concentration as compared with

that of homogeneous reaction.

For both opposing and aiding flow situations, Tab. (4.2) displays the variations of CfRex1/2 ,

MwRex, and Nux
Re

x1/2
with different combinations of the coupling number N , Biot number Bi, NDT

parameter χ and radiation parameter R for fixed values of K and Ks parameters. For Bi = 1,

χ = 0.2 and R = 1, it can be seen from Tab.(4.2) that the skin friction is more for the micropolar

fluid than that of the viscous fluid (N = 0). Because micropolar fluids offer more resistance to
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the fluid movement and causes higher skin friction factor compared to that of the viscous fluid.

The results reveal that for larger values of coupling number N , lower the wall couple stresses and

heat transfer coefficient, but higher the skin friction coefficient for both opposing and aiding flows.

In the presence of opposing and aiding flow situations, the skin-friction and wall couple stress

coefficients show opposite trend, but the heat transfer rate increases with the increase of Bi. It

can be noticed that with the increase of NDT parameter for fixed N = 0.5, Bi = 1 and R = 1,

the skin friction and heat transfer rate increase, but the wall couple stress decreases in aiding flow

situation and these show opposite behaviour in opposing flow. It can be noticed that by increasing

the values of radiation parameter, the skin friction and wall couple stress show reverse trend, but

the heat transfer rate increases for both opposing and aiding flow situations for N = 0.5, Bi = 1

and χ = 0.2.
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Table 4.2: Variations of skin friction, wall couple stress and heat transfer rate for varying val-
ues of mixed convection parameter λ, micropolar parameter N , Biot numbers Bi, nonlinear
convection parameter χ and radiation parameter R with K = 1 and Ks = 0.5.

λ N Bi χ R CfRex1/2 MwRex
Nux
Re

x1/2

-0.5 0 1 0.2 1 1.90338 0 0.58773
-0.5 0.5 1 0.2 1 2.64177 -0.377 0.56254
-0.5 0.8 1 0.2 1 3.89651 -0.92115 0.52662
1 0 1 0.2 1 3.45320 0 0.64195
1 0.5 1 0.2 1 4.64805 -0.51521 0.61203
1 0.8 1 0.2 1 6.59057 -1.30285 0.56908
-0.5 0.5 0.1 0.2 2 3.115025 -0.41039 0.26830
-0.5 0.5 1 0.2 2 2.548011 -0.36657 0.76384
-0.5 0.5 10 0.2 2 2.321203 -0.34859 0.92608
1 0.5 0.1 0.2 2 3.832294 -0.46378 0.27124
1 0.5 1 0.2 2 4.802345 -0.53067 0.84178
1 0.5 10 0.2 2 5.201253 -0.55668 1.07891
-0.5 0.5 1 0 1 2.720552 -0.38201 0.56437
-0.5 0.5 1 1 1 2.316535 -0.35591 0.55473
-0.5 0.5 1 3 1 1.408176 -0.29323 0.53042
1 0.5 1 0 1 4.52312 -0.50851 0.60991
1 0.5 1 1 1 5.133435 -0.5408 0.62003
1 0.5 1 3 1 6.264075 -0.59791 0.63730
-0.5 0.5 1 0.2 1 2.641779 -0.377 0.56254
-0.5 0.5 1 0.2 3 2.483645 -0.35907 0.93739
-0.5 0.5 1 0.2 5 2.398495 -0.34875 1.23928
1 0.5 1 0.2 1 4.648059 -0.51521 0.61203
1 0.5 1 0.2 3 4.907605 -0.54162 1.04180
1 0.5 1 0.2 5 5.047856 -0.55666 1.38941
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Figure 4.8: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 4.9: Variation of Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles
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Figure 4.10: Variation of χ on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles
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Figure 4.11: Variation of R on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles

103



0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

N = 0.5, Bi = 5.0,  = 0.1,
 KS= 1.0, R = 5.0

 

 

h



  = -0.5, K = 1.0
  = -0.5, K = 2.0
  = -0.5, K = 3.0
  = 1.0, K = 1.0
  = 1.0, K = 2.0
  = 1.0, K = 3.0

(a)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Bi = 10.0, N = 0.3,
 R = 5.0,  1.0

 

 

h(0)

KS

 
 
 
 
 
 

(b)

Figure 4.12: Variation of K on (a)Concentration profile h and (b) Mass transfer rate h(0)
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Figure 4.13: Variation of Ks on (a)Concentration profile h and (b) Mass transfer rate h(0)
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4.3 Conclusions

In this chapter, the influence of radiation and homogeneous and heterogeneous reactions on non-

linear convective flow of a micropolar fluid in the preence of the convective boundary condition, is

studied. The resulting equations are solved numerically by the spectral quasi-linearization method.

The main findings are summarized as follows:

As in the previous chapters, the behavior of coupling number N is found to be similar on various

profiles, except for the species concentration. As Biot number Bi increases, the wall couple stress

coefficient decreases, but the skin friction, velocity distribution and species concentration increase

for both case (a) and aiding flow (i,e. in case (b)). However, these show reverse trend in opposing

flow (i,e., case(b)). For both cases (a) and (b), the temperature and heat transfer rate increases

with the increase of Biot number. The higher values of nonlinear convection parameter χ results

in lower temperature and wall couple stress coefficient, but higher velocity, species concentration,

skin friction and heat transfer rate for both case(a) and aiding flow (i,e. in case (b)). Further,

the velocity, skin friction and heat transfer rate decrease, but the temperature and wall couple

stress enhances in opposing flow (i,e. in case(b)) with the enhancement of nonlinear convection

parameter. It is observed that with an increase in strength of homogeneous and heterogeneous

reaction parameters K and Ks, the species concentration and mass transfer rate decrease for both

case(a) and case(b). Finally, we conclude that the effect of heterogeneous reaction is more on

species concentration as compared with that of homogeneous reaction.
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Chapter 5

Nonlinear Convective Flow of a

Micropolar Fluid in a Darcy Porous

Medium with Homogeneous -

Heterogeneous Reactions 1

5.1 Introduction

The convection in a fluid saturated porous media received much attention in recent times due to

its significant role in various engineering, scientific and industrial applications. Since, Darcy′s law

gives a linear empirical relationship between the Darcian velocity and the pressure drop across the

porous medium, and it is valid for slow flows with the low permeability. The study of convective

flows embedded in a Darcy′s porous medium saturated with a micropolar fluid has been attracted

by several researchers (to mention few, see Refs. [14]; [29]; [96]). Most of the chemical reactions

comprise of both homogeneous and heterogeneous reactions. The homogeneous reaction takes place

in the bulk of the fluid, while heterogeneous reaction occurs on some catalytic surfaces. Several

investigators discussed the significance of homogeneous-heterogeneous reactions in Newtonian fluid,

1Case(a): Published in “Frontiers in Heat and Mass Transfer” (2017) DOI: 10.5098/hmt.8.6,
Case(b) Published in “Open Engineering”, 6 (2016) 106–119
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but very few authors noticed these effects in non-Newtonian fluids. For instance, Shaw et al. [91]

analyzed the effects of homogeneous-heterogeneous reactions on the micropolar fluid flow from a

permeable stretching or shrinking sheet, including the influence of permeability. Kameswaran et al.

[46] discussed the stagnation point flow over a shrinking or stretching sheet placed in a saturated

porous medium, considering the effects of homogeneous-heterogeneous reactions.

As mentioned in introduction part (i.e., in Chapter-1), most of the works dealing with the linear

convective flows in Newtonian and non-Newtonian fluids have been reported in the literature. But,

the nonlinear variation in buoyancy due to the nonlinear thermal convection may affect on the flow

and heat transfer characteristics (for more details, see Vajravelu et al. [103] and refer the citations

therein). In order to explore this physical situation, Kameswaran et al. [47] studied the effect of

thermophoretic on nonlinear convective flow in a non-Darcy porous medium. Later, Nandkeolyar et

al. [71] analyzed the nonlinear convection in a nanofluid saturated porous medium in the presence

of viscous dissipation and Newtonian heating effects.

The objective of this chapter is to analyze the effects of homogeneous and heterogeneous re-

actions on nonlinear free and mixed convective flows of a micropolar fluid embedded in a porous

medium under the convective boundary condition. To our best knowledge and from the literature,

to date, there is no study which considers this problem in a micropolar fluid with homogeneous-

heterogeneous reactions and nonlinear convection effects. As in the previous Chapter, here also

the governing equations and their associated boundary conditions are solved numerically using the

spectral quasi-linearization method. The results are compared with the relevant results in the

existing literature and are found to be in good agreement. Also, the physical quantities of the

flow, and heat and mass transfer rates are analyzed for various parameters namely, the micropolar

parameter, nonlinear convection parameter, Darcy parameter and Biot number.

5.2 Mathematical Formulation

Consider the steady, laminar, two dimensional convective flow of a micropolar fluid along a vertical

plate embedded in Darcy porous medium. Choose the coordinate system such that x-axis is along

the vertical plate and y-axis is normal to the plate as shown in Fig. (5.1). This chapter is an

extension of the chapter - 4 by considering the fluid saturated porous medium in the absence of
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Figure 5.1: Physical model and coordinate system

radiation effect. In addition to assumptions made in chapter - 4, the following assumptions are taken

into account in the analysis: (i) the porous medium is isotropic and homogeneous, (ii) the properties

of the fluid and porous medium are constant except for the nonlinear density-temperature variation

required by the nonlinear Boussinesq approximation (i.e., this will be achieved by assuming that

the sufficiently large temperature differences between the plate and the medium), and (iii) the fluid

and porous medium are in local thermodynamic equilibrium.

Under the above assumptions, and using the Darcy model and Dupuit-Forchheimer relationship

[74], the governing equations describing the micropolar fluid are given by

∂u

∂x
+
∂v

∂y
= 0 (5.1)

ρ

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=

1

ε
(µ+κ)

∂2u

∂y2
+ρue

due
dx

+κ
∂ω

∂y
+ρg∗

[
β1(T − T∞) + β2(T − T∞)2

]
− µ

Kp
(u−ue)

(5.2)
ρj

ε

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

1

ε

∂u

∂y

)
(5.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(5.4)

u
∂a

∂x
+ v

∂a

∂y
= DA

∂2a

∂y2
− kca b

2
(5.5)

u
∂b

∂x
+ v

∂b

∂y
= DB

∂2b

∂y2
+ kca b

2
(5.6)
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where u and v are the Darcy velocity components in x and y directions respectively.

The boundary conditions are

u = 0, v = 0, ω = −n∂u
∂y
, −k∂T

∂y
= hf (Tf − T ), DA

∂a

∂y
= ksa, DB

∂b

∂y
= −ksa at y = 0 (5.7a)

u = ue(x), ω = 0, T = T∞, a = a0, b = 0 as y →∞ (5.7b)

In this chapter also, two types (cases) of problems are considered: (a) free/natural convection and

(b) mixed convection.

5.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection which is caused by buoyancy forces only without

any external agent, and hence the velocity of the external flow becomes zero. We introduce the

following dimensionless variables

x =
x

L
, y =

y

L
Gr1/4, u =

L

νGr1/2
u, v =

L

νGr1/4
v, ω =

L2

νGr3/4
ω, θ =

T − T∞
Tf − T∞

, h =
a

a0
, h1 =

b

a0
(5.8)

The following stream function ψ has been introduced to satisfy the continuity equation (5.1)

identically

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (5.9)

Substituting (5.8) and (5.9) into Eqs. (5.2)-(5.6), the momentum, angular momentum, energy, and

concentration equations of species A and B can be written as

1

ε2

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
− 1

ε

(
1

1−N

)
∂3ψ

∂y3
−
β1(Tf − T∞)

βT0
θ

(
1 +

β2
β1
θ(Tf − T∞)

)
(5.10)

−
(

N

1−N

)
∂ω

∂y
+

1

DaGr1/2
∂ψ

∂y
= 0

1

ε

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)(
2ω +

1

ε

∂2ψ

∂y2

)
= 0 (5.11)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0 (5.12)
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∂ψ

∂y

∂h

∂x
− ∂ψ

∂x

∂h

∂y
− 1

Sc

∂2h

∂y2
+K hh1

2 = 0 (5.13)

∂ψ

∂y

∂h1
∂x
− ∂ψ

∂x

∂h1
∂y
− δ

Sc

∂2h1
∂y2

−K hh1
2 = 0 (5.14)

Now, the boundary conditions (5.7) become

∂ψ

∂y
= 0,

∂ψ

∂x
= 0, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), ∂h

∂y
= Ks h, δ

∂h1
∂y

= −Ks h at y = 0

(5.15a)

∂ψ

∂y
= 0, ω = 0, θ = 0, h = 1, h1 = 0 as y →∞ (5.15b)

Using the procedure explained in the earlier chapter (i.e., in case(a) of the Chapter-2), the following

similarity transformations are obtained

η = y, ψ = xf(η), ω = xg(η), β1 = xβT0 , β2 = xβT1 , θ = θ(η), h = h(η), h1 = h1(η) (5.16)

Using (5.16) in Eqs. (5.10)-(5.14), and making use of the assumption that diffusion coefficients DA

and DB are equal as explained in previous chapter of case(a), the resultant similarity representation

of system of equations is obtained in the following form

1

ε

(
1

1−N

)
f ′′′ +

1

ε2
ff ′′ − 1

ε2
f ′2 +

(
N

1−N

)
g′ + θ(1 + χθ)− 1

DaGr1/2
f ′ = 0 (5.17)

(
2−N
2− 2N

)
g′′ +

1

ε
fg′ − 1

ε
f ′g −

(
N

1−N

)(
2g +

1

ε
f ′′
)

= 0 (5.18)

1

Pr
θ′′ + fθ′ = 0 (5.19)

1

Sc
h′′ + fh′ −Kh(1− h)2 = 0 (5.20)

along with the modified boundary conditions

f ′(0) = 0, g(0) = −nf ′′(0), θ′(0) = −Bi[1− θ(0)], h′(0) = Ks h(0) (5.21a)

f ′(∞)→ 0, g(∞)→ 0, θ(∞)→ 0, h(∞)→ 1 (5.21b)
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The non-dimensional skin friction Cf =
2τw
ρu2∗

, wall couple stress Mw =
mw

ρu2∗x
and local Nusselt

number Nux =
qwx

k(Tf − T∞)
, are given by

CfGr
1/4
x = 2

(
1− nN
1−N

)
f ′′(0), MwGr

1/2
x =

(
2−N
2− 2N

)
g′(0) and

Nux

Gr
1/4
x

= −θ′(0) (5.22)

where Grx =
g∗βT0(Tf − T∞)x3

ν2
is the local Grashof number.

Results and Discussion

The resultant Eqs. (5.17) - (5.20) along with the boundary conditions (5.21) have been solved

numerically using the spectral quasi-linearization method. In order to assess the accuracy of the

code generated, for N = 0, ε = 1, n = 0, Pr = 1, χ = 0, Da→∞ and Bi→∞, the results of the

present problem in the absence of homogeneous and heterogeneous reactions, have been compared

with those of Merkin [57], Nazar et al. [72] and Molla et al. [60] and found that they are in good

agreement [Tab. (2.1)]. Also, the values of heat transfer rate, for n = 0.5, ε = 1, Pr = 1, Bi→∞,

Da → ∞ and χ = 0, agree well with that of Nazar et al. [72] as shown in Tab. (2.2). To study

the effects of nonlinear convection parameter χ, Darcy number Da, Biot number Bi, strength of

homogeneous and heterogeneous reaction parameters K and Ks, computations have been carried

out in the case of n = 0, ε = 0.6, Gr = 10, Pr = 0.71 and Sc = 0.22.

The effects of coupling number N on the non-dimensional velocity, microrotation, temperature

and species concentration are displayed in Figs. 5.2(a)-5.2(d). From Fig. 5.2(a), it can be observed

that with the increase of coupling number, the fluid velocity reduces near the surface of the plate and

far away from the plate it shows reverse behaviour. As expected, the fluid vortex viscosity increases

by increasing the coupling number and thus it promotes the microrotation of micropolar fluids. It

is noticed from Fig. 5.2(b) that initially, the microrotation profile is flat and then approaches to

their free stream values with the increase of coupling number. By enhancing the coupling number,

the thickness of temperature and species concentration boundary layers increase [Figs. 5.2(c) and

5.2(d)]. These results are tuned with the results of earlier chapters for coupling number N .

Figs. 5.3(a) -5.3(d) depict the variation of Biot number Bi on the non-dimensional velocity f ′,
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microrotation g, temperature θ and species concentration h across the boundary layers. From Fig.

5.3(a), it is clear that the fluid velocity is zero at the plate surface and then enhances gradually

near the surface of the plate. It is interesting to reveal that the fluid velocity enhances within

the momentum boundary layer with the increase of Biot number Bi. As expected, by increasing

the value of Biot number, the microrotation profile shows reverse rotation near two boundaries as

shown in Fig. 5.3(b). Fig. 5.3(c) depicts that, the temperature of the fluid is extreme at plate

surface and diminishes exponentially to zero far away from the plate and moreover, it is observed

that the temperature enhances with an increase in Biot number. Fig. 5.3(d) illustrates that the

species concentration increases with the increase of Biot number Bi.

The variations of non-dimensional velocity f ′, microrotation g, temperature θ and species con-

centration h profiles are displayed in Figs. 5.4(a)-5.4(d) for different values of the nonlinear con-

vection parameter χ. With an increase in χ, the velocity increases, but far away from the plate

it shows opposite trend as depicted in Fig. 5.4(a). From Fig. 5.4(b), it can be observed that

the microrotation shows reverse rotation near two boundaries with an increase in the values of

nonlinear convection parameter. The nonlinear convection parameter χ measures the nonlinearity

in density-temperature relationship. From Figs.5.4(c) and 5.4(d), it is clear that the temperature

reduces and species concentration enhances with an enhance in nonlinear convection parameter.

Finally, it is concluded from the results that the fluid temperature is more and species concentration

is less in the case of linear convection (χ = 0) as compared with that of nonlinear convection case

(χ 6= 0).

Figs. 5.5(a)-5.5(d) present the influence of Darcy number Da on the non-dimensional velocity,

microrotation, temperature and species concentration. From Fig. 5.5(a), it can be noticed that

with an increase in Darcy number, the velocity of the fluid increases near the wall and farther

from the plate it shows opposite behaviour. With the increase of Darcy number the porous matrix

structure becomes less and less prominent. Moreover, as the Darcy number tends to infinity (i,e.

Da → ∞) and porosity ε =1, the present problem reduces to the classical free convective flow of

a micropolar fluid with the convective boundary condition. Fig. 5.5(b) reveals that as the value

of Darcy parameter increases, the microrotation show opposite trends within the boundary layer.

It is seen from Figs. 5.5(c) and 5.5(d) that the temperature and species concentration of the fluid

show qualitatively opposite nature with an increase in Darcy number.

The variations of homogeneous and heterogeneous reaction parameters K and Ks on the species
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concentration h and mass transfer rate h(0) across the boundary layers, are plotted in Figs. 5.6(a)-

5.7(b). Physically, an increase in the value of K corresponds to increase in the strength of homoge-

neous reaction rate. Figs. 5.6(a) and 5.6(b) depict that an increase in homogeneous reaction causes

to decrease in the species concentration and rate of mass transfer. As the heterogeneous reaction

parameter Ks increases, the strength of heterogeneous reaction rate increases. It is clear from

Fig. 5.7(a) that with the increase of heterogeneous reaction parameter, the species concentration

decreases slightly. From Fig. 5.7(b), it can be noticed that the rate of mass transfer decreases with

the increase of heterogeneous reaction parameter Ks.

Table (5.1) displays the variations of skin-friction, wall couple stress and heat transfer rate for

different values of coupling number N , Biot number Bi, nonlinear convection parameter χ and

Darcy number Da and for fixed K and Ks parameters. From Tab. (5.1), it can be observed that

with the enhance of coupling number N , the skin friction enhances, but the wall couple stress and

heat transfer rate reduce. The skin-friction as well as heat transfer rate increase, but the wall

couple stress decrease with the increase of Biot number Bi. It is noticed that with the increase of

nonlinear convection parameter, both the skin friction as well as heat transfer rate enhance and

the wall couple stress reduces. It is clear that the skin friction and heat transfer rate enhance, but

the wall couple stress reduces with the enhancement of Darcy number.
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Table 5.1: Variations of skin friction, wall couple stress and heat transfer rate for varying
values of micropolar parameter N , Biot numbers Bi, nonlinear convection parameter χ and
Darcy number Da with K = 1 and Ks = 0.5.

N Bi χ Da CfGr
1/4
x MwGr

1/2
x

Nux

Gr
1/4
x

0.0 1.0 1.0 1.0 1.537527 0.000000 0.305228
0.3 1.0 1.0 1.0 1.750517 -0.142651 0.294051
0.5 1.0 1.0 1.0 1.959351 -0.291564 0.283342
0.8 1.0 1.0 1 .0 2.57905 -0.710582 0.253065
0.5 0.1 1.0 1.0 0.649682 -0.127284 0.067754
0.5 1.0 1.0 1.0 1.593042 -0.251223 0.219462
0.5 5.0 1.0 1.0 1.959351 -0.291564 0.283342
0.5 10 1.0 1.0 2.022233 -0.29819 0.294465
0.5 1.0 0.0 1.0 1.106618 -0.198623 0.20424
0.5 1.0 1.0 1.0 1.593042 -0.251223 0.219462
0.5 1.0 3.0 1.0 2.399576 -0.328708 0.239398
0.5 1.0 5.0 1.0 3.086638 -0.388064 0.253076
0.5 5.0 1.0 0.05 1.283075 -0.156822 0.197751
0.5 5.0 1.0 0.1 1.530281 -0.204481 0.231549
0.5 5.0 1.0 0.3 1.813237 -0.261512 0.266797
0.5 5.0 1.0 0.5 1.892408 -0.277765 0.275907
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Figure 5.2: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 5.3: Variation of Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.

116



0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5
N = 0.5, Da= 1.0, K = 1.0, KS = 0.5, Bi = 1.0

  = 0.0
  = 1.0
  = 3.0
  = 5.0

 

 

f '



(a)

0 2 4 6 8 10 12
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

  = 0.0
  = 1.0
  = 3.0
  = 5.0

N = 0.5, Da= 1.0, K = 1.0, KS = 0.5, Bi = 1.0

 

 

g



(b)

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8
N = 0.5, Da= 1.0, K = 1.0, KS = 0.5, Bi = 1.0

  = 0.0
  = 1.0
  = 3.0
  = 5.0

 

 





(c)

0 4 8 12 16 20
0.0

0.2

0.4

0.6

0.8

1.0
N = 0.5, Da= 1.0, K = 1.0, KS = 0.5, Bi = 1.0

 

 

h



  = 0.0
  = 1.0
  = 3.0
  = 5.0

(d)

Figure 5.4: Variation of χ on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 5.5: Variation of Da on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 5.6: Variation of K on (a)Concentration profile h and (b) Mass transfer rate h(0).
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Figure 5.7: Variation of Ks on (a)Concentration profile h (b) Mass transfer rate h(0).
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5.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convection, which arises from an external flow with velocity [ūe(x)]

and buoyancy forces. We introduce the non-dimensional variables as follows

x =
x

L
, y =

y

L
Re1/2, u =

u

U∞
, v =

v

U∞
Re1/2,

ue =
ue
U∞

, ω =
L2

νRe3/2
ω, θ =

T − T∞
Tf − T∞

, h =
a

a0
, h1 =

b

a0

 (5.23)

Using (5.23) and then (5.9) in Eqs.(5.2)-(5.6), we get the following momentum, angular momentum,

energy and concentration equations of species A and B

1

ε2

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
− 1

ε

(
1

1−N

)
∂3ψ

∂y3
−
(

N

1−N

)
∂ω

∂y
− ue

due
dx

(5.24)

−
g∗β1(Tf − T∞)

ν2Re2
θ

(
1 +

β2
β1
θ(Tf − T∞)

)
+

1

DaRe

(
∂ψ

∂y
− ue

)
= 0

1

ε

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
−
(

2−N
2− 2N

)
∂2ω

∂y2
+

(
N

1−N

)(
2ω +

1

ε

∂2ψ

∂y2

)
= 0 (5.25)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0 (5.26)

∂ψ

∂y

∂h

∂x
− ∂ψ

∂x

∂h

∂y
− 1

Sc

∂2h

∂y2
+K hh1

2 = 0 (5.27)

∂ψ

∂y

∂h1
∂x
− ∂ψ

∂x

∂h1
∂y
− δ

Sc

∂2h1
∂y2

−K hh1
2 = 0 (5.28)

The boundary conditions (5.7) become

∂ψ

∂y
= 0,

∂ψ

∂x
= 0, ω = −n∂

2ψ

∂y2
,
∂θ

∂y
= −Bi(1− θ), (5.29a)

∂h

∂y
= Ksh, δ

∂h1
∂y

= −Ksh at y = 0

∂ψ

∂y
= ue, ω = 0, θ = 0, h = 1, h1 = 0 as y →∞ (5.29b)

Using the procedure explained in case(a) of the second chapter, the following similarity trans-
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formations are obtained

η = y, ψ = xf(η), ω = xg(η), ue = x, β1 = βT0x, β2 = βT1x, θ = θ(η), h1 = h1(η), h2 = h2(η)

(5.30)

Substituting (5.30) into Eqs. (5.24)-(5.28), and making use of the assumption that diffusion coef-

ficients DA and DB are equal as explained in the previous chapter, then the following system of

equations in the similarity form is obtained

1

ε

(
1

1−N

)
f ′′′ +

1

ε2
ff ′′ − 1

ε2
f ′2 + 1 +

(
N

1−N

)
g′ + λθ(1 + χθ) +

1

DaRe
(1− f ′) = 0 (5.31)

(
2−N
2− 2N

)
g′′ +

1

ε
fg′ − 1

ε
f ′g −

(
N

1−N

)(
2g +

1

ε
f ′′
)

= 0 (5.32)

1

Pr
θ′′ + fθ′ = 0 (5.33)

1

Sc
h′′ + fh′ −Kh(1− h)2 = 0 (5.34)

along with the reduced boundary conditions

f(0) = 0, f ′(0) = 0, g(0) = −nf ′′(0), θ′(0) = −Bi[1− θ(0)], h′(0) = Ks h(0) (5.35a)

f ′(∞)→ 1, g(∞)→ 0, θ(∞)→ 0, h(∞)→ 1 (5.35b)

The quantities of physical interest are the non-dimensional skin friction Cf =
2τw
ρu2e

, wall couple

stress Mw =
mw

ρu2ex
and local Nusselt number Nux =

qwx

k(Tf − T∞)
, are given by

CfRex1/2 = 2

(
1− nN
1−N

)
f ′′(0), MwRex =

(
2−N
2− 2N

)
g′(0) and

Nux
Rex1/2

= −θ′(0) (5.36)

Results and Discussion

The non-linear coupled system of Eqs. (5.31) - (5.34) together with the boundary conditions (5.35)

are solved numerically using the spectral quasi-linearization method. In order to validate the code

generated, for the special case of N = 0, n = 0, Pr = 1, Bi → ∞, ε = 1, Da → ∞ and χ = 0,

the results of the present problem have been compared with those of Merkin [58] and Nazar et al.
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[73] in the absence of homogeneous and heterogeneous reactions and found that they are in good

agreement, as shown in Tab. (2.4). To analyze the effects of nonlinear convection χ, Biot number

Bi, Darcy number Da, strength of homogeneous and heterogeneous reaction parameters K and

Ks, computations have been carried out for n = 0, ε = 1, Re = 2, Pr = 0.71 and Sc = 0.22.

Figs. 5.8(a)-5.8(d) illustrate the variations of dimensionless velocity, microrotation, temperature

and species concentration with the influence of coupling number N . As the coupling number N

increases, it is found from Fig. 5.8(a) that the velocity decreases for both aiding and opposing

flows. Further, the velocity in the case of micropolar fluid (N 6= 0) is less compared to that of

the viscous fluid case (N = 0). From Fig. 5.8(b), it can be observed that as N increases, initially

the microrotation profiles tends to become flat, and then approaches to their free stream values

far away from the wall. It is seen from Figs. 5.8(c) and 5.8(d) that the temperature of the fluid

enhances, while the species concentration reduces with the increase of coupling number N for both

opposing and aiding flow situations.

The variation of Biot number Bi on the non-dimensional velocity f ′, microrotation g, tempera-

ture θ and species concentration h across the boundary layers, is plotted in Figs. 5.9(a) - 5.9(d). It

can be noticed from Fig. 5.9(a) that an increase in Biot number Bi causes to increase in the fluid

velocity within the momentum boundary layer in aiding flow situation, but it shows the reverse

trend in opposing flow situation. From Fig. 5.9(b), it can be found that the microrotation depicts

reverse rotation near the two boundaries and also observed that the behaviour of microrotation

in aiding flow shows reverse trend when compared to the opposing flow. The increment of Biot

number increases the convective heating and hence, Bi→∞ gives the isothermal surface, which is

clearly observed from Fig. 5.9(c), where θ(0) = 1. From this figure it is clear that the temperature

of the fluid increases with the increase of Biot number for both aiding and opposing flow situations.

Fig. 5.9(d) reveals that the species concentration decreases in the case of opposing flow whereas,

it increases in the aiding flow case.

Figs. 5.10(a) - 5.10(d) depict the variation of nonlinear convection parameter χ on the non-

dimensional velocity f ′, microrotation g, temperature θ and species concentration h across the

boundary layers. The nonlinear convection (NDT) parameter χ measures the nonlinearity in a

density-temperature relationship. From Fig. 5.10(a), it is found that with the increase of NDT

parameter, the fluid velocity increases in aiding flow, but decreases in opposing flow. From Fig.

5.10(b), it can be seen that with an increase in the values of χ, the microrotation increases slightly
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first and then decreases in opposing flow, but it shows reverse phenomena in aiding flow. The fluid

temperature decreases, but the concentration increases in aiding flow while, these show reverse

trend in aiding flow [Figs.5.10(c) and 5.10(d)].

The influence of Darcy parameter on the non-dimensional velocity f ′, microrotation g, tem-

perature θ and species concentration h across the boundary layers, is exhibited in Figs. 5.11(a) -

5.11(d). From Fig. 5.11(a), it is found that the fluid velocity reduces with the increase of Darcy

parameter for both aiding and opposing flows. The microrotation profile shows opposite trend

within the boundary as shown in Fig. 5.11(b) and it satisfies the free stream values for both aiding

and opposing flow situation. It can be seen from Figs. 5.11(c) and 5.11(d) that the temperature

enhances and species concentration reduces with the increase of Darcy parameter in both the cases

of aiding and opposing flows.

The set of Figs. 5.12(a) - 5.13(b) are prepared to display the influence of K and Ks on the

species concentration h and mass transfer rate h(0). An increase in the values of K and Ks

correspond to increase in the strength of homogeneous and heterogeneous reaction rates. It is

clear from Figs. 5.12(a) and 5.12(b) that the species concentration and mass transfer rate decrease

with the increase of homogeneous reaction parameter for both aiding and opposing flows. With

the increase of heterogeneous reaction parameter, the species concentration and mass transfer rate

decreases in both the cases of opposing and aiding flows [Figs. 5.13(a) and 5.13(b)]. Also noticed

that the effect of heterogeneous reaction is more on the species concentration as compared with the

homogeneous reaction.

The variations of CfRex1/2 , MwRex, and Nux
Re

x1/2
for different combinations of physical parame-

ters, are displayed in Tab. (5.2) for both opposing and aiding flow situations. Generally, the skin

friction factor is more for the micropolar fluid than compared with the viscous fluid. It can be

noticed that the larger values of coupling number N , results in lower wall couple stresses and heat

transfer rate, but higher skin friction for both opposing and aiding flows. It can be observed that in

the presence of opposing and aiding flows, the skin-friction and wall couple stress coefficients show

opposite trend while, the heat transfer rate enhances with the increase of Bi. It can be revealed

that with the increase of NDT parameter the skin friction and heat transfer rate increase, but the

wall couple stress decreases for aiding flow and these show reverse behaviour for aiding flow. It can

be seen that with the increase of Darcy parameter, the skin friction and heat transfer rate decrease,

but the wall couple stress increases for both opposing and aiding flows.
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Table 5.2: Variations of skin friction, wall couple stress and heat transfer rate for differ-
ent values of mixed convection parameter λ, micropolar parameter N , Biot numbers Bi,
nonlinear convection parameter χ and Darcy parameter Da with K = 1 and Ks = 0.5.

λ N Bi χ Da CfRex1/2 MwRex
Nux
Re

x1/2

-0.5 0 0.1 0.2 0.1 5.05139745 0 0.08471708
-0.5 0.5 0.1 0.2 0.1 7.02948203 -0.57643615 0.08397957
-0.5 0.8 0.1 0.2 0.1 10.52585038 -1.63641876 0.08277617
1 0 0.1 0.2 0.1 5.20029251 0 0.08481064
1 0.5 0.1 0.2 0.1 7.23303374 -0.58533796 0.08407231
1 0.8 0.1 0.2 0.1 10.82520697 -1.66533959 0.08286739
-0.5 0.5 0.1 0.2 0.1 7.02948203 -0.57643615 0.08397957
-0.5 0.5 1 0.2 0.1 6.79463737 -0.56628956 0.34212506
-0.5 0.5 10 0.2 0.1 6.6400254 -0.55969522 0.49188867
1 0.5 0.1 0.2 0.1 7.23303374 -0.58533796 0.08407231
1 0.5 1 0.2 0.1 7.6899358 -0.60466536 0.34881656
1 0.5 10 0.2 0.1 7.9942759 -0.61709627 0.51292588
-0.5 0.5 1 0 0.1 6.82382014 -0.56729995 0.3423021
-0.5 0.5 1 1 0.1 6.67734275 -0.56221764 0.34140988
-0.5 0.5 1 3 0.1 6.38001875 -0.55181666 0.33957065
1 0.5 1 0 0.1 7.63449242 -0.60282032 0.34850487
1 0.5 1 1 0.1 7.9098937 -0.61195218 0.35004251
1 0.5 1 3 0.1 8.44778335 -0.62955653 0.35297148
-0.5 0.5 5 0.2 0.05 9.13996551 -0.62702376 0.49063025
-0.5 0.5 5 0.2 0.1 6.66438295 -0.56073086 0.46917743
-0.5 0.5 5 0.2 0.5 3.73210783 -0.44389793 0.42859056
1 0.5 5 0.2 0.05 10.16478248 -0.66388312 0.5024711
1 0.5 5 0.2 0.1 7.94570088 -0.61513293 0.4872598
1 0.5 5 0.2 0.5 5.5444293 -0.54185965 0.46332811
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Figure 5.8: Variation of N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles

125



0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

N= 0.5, = 0.2, K = 1.0, Ks = 1.0, Da = 0.1

 

 

f '



  = -0.5, Bi = 0.1
  = -0.5, Bi = 1.0
  = -0.5, Bi = 10.0
  = 1.0, Bi = 0.1
  = 1.0, Bi = 1.0
  = 1.0, Bi = 10.0

(a)

0 1 2 3 4

-0.08

-0.06

-0.04

-0.02

0.00

N = 0.5, = 0.2, K = 1.0, Ks = 1.0, Da = 0.1

  = -0.5, Bi = 0.1
  = -0.5, Bi = 1.0
  = -0.5, Bi = 10.0
  = 1.0, Bi = 0.1
  = 1.0, Bi = 1.0
  = 1.0, Bi = 10.0

 

 

g


(b)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
N = 0.5, = 0.2, K = 1.0, Ks = 1.0, Da = 0.1

  = -0.5, Bi = 0.1
  = -0.5, Bi = 1.0
  = -0.5, Bi = 10.0
  = 1.0, Bi = 0.1
  = 1.0, Bi = 1.0
  = 1.0, Bi = 10.0

 

 





(c)

0 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1.0

N = 0.5,  = 0.2, K = 1.0, Ks = 1.0, Da = 0.1

  = -0.5, Bi = 0.1
  = -0.5, Bi = 1.0
  = -0.5, Bi = 10.0
  = 1.0, Bi = 0.1
  = 1.0, Bi = 1.0
  = 1.0, Bi = 10.0

 

 

h


(d)
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Figure 5.10: Variation of χ on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles
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Figure 5.11: Variation of Da on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles
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Figure 5.12: Variation of K on (a)Concentration profile h and (b) Mass transfer rate h(0)
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Figure 5.13: Variation of Ks on (a)Concentration profile h and (b) Mass transfer rate h(0)
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5.3 Conclusions

This chapter investigates the nonlinear convective flow of a micropolar fluid embedded in a Darcy

porous medium by taking into an account of homogeneous-heterogeneous reactions with the con-

vective boundary condition. From this study, the conclusions can be drawn in both cases (a) and

(b) as follows:

As in the previous chapter, the behavior of nonlinear convection parameter, homogeneous-

heterogeneous reaction parameter is found to be similar on various profiles. Case(a): It is found

that the skin friction, heat transfer rate, species concentration and velocity (near the plate) increase,

but the wall couple stress and temperature decrease with the increase of Darcy number. Case(b):

In this case, the flow properties are studied for both opposing and aiding flows. The skin friction

coefficient, heat transfer rate, velocity and species concentration enhances, whereas the wall couple

stress and temperature reduces with the increase of Darcy parameter. Finally, the microrotation

depicts reverse trend.
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FREE AND MIXED CONVECTION
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Chapter 6

Convective Flow of a Micropolar Fluid

over a Truncated Cone with Soret and

Viscous Dissipation Effects 1

6.1 Introduction

A broad area of research on convective flows over the vertical frustum of a cone in Newtonian /non-

Newtonian fluids has gained continuous attention due to its significant engineering applications

such as heat exchangers, cooling of electronic devices, etc (for more details, see Hamilton et al.

[34] and Nakamura et al. [69]). Yih [106] discussed the flow and heat transfer characteristics in a

free convective boundary layer flow of an optically dense viscous fluid over an isothermal truncated

cone in the presence of thermal radiation. Postelnicu [79] provided the non-similar solution for

free convective flow of an incompressible micropolar fluid about a truncated cone subjected to a

isothermal boundary condition. The boundary layer analysis for micropolar fluid flow over the

vertical frustum of a cone with power-law variation in temperature has been studied by Cheng [21].

Recently, Elbashbeshy et al. [30] considered the free convective flow over a truncated cone in the

presence of thermal radiation and heat generation/absorption effects (for more references, see the

1Case(a): Published in “Int. J. Appl. Comput. Math”, DOI: 10.1007/s40819-016-0227-y (2016)
Case(b) Accepted in “International Journal of Nonlinear Sciences and Numerical Simulation”
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citaitons therein).

In a fluid flow system, the Soret (thermal-diffusion) effect is a thermodynamic phenomenon in

which the molecules in fluids are carried in a multi-component mixture impelled by temperature

gradients. It become significant when large density differences exist in a flow regime. For example,

the Soret effect can be notable when species are introduced at the surface in a fluid domain with a

density lower than the surrounding fluid. From the literature, it seems that a very limited work has

been reported on the convective flow of a micropolar fluid over different surface geometries with

the Soret effect [7, 98, 99].

Since the viscous dissipation acts as a heat source and initiates substantial temperature in the

medium, many investigators have been tried to explore the significance of viscous dissipation in

Newtonian and non-Newtonian fluids through various geometries in the recent past. Amin and

Mohammadein [27] analyzed the Joule heating and viscous dissipation effects on the magneto-

hydromagnetic free convective flow of micropolar fluid with Heimenz slip but, Haque et al. [35]

considered the same effects with constant heat and mass fluxes in the absence of Heimenz slip.

Ahmad et al. [2] discussed the micropolar fluid flow over a nonlinearly stretching sheet in the

presence of viscous dissipation effect.

In this chapter, the non-similarity solution is provided to analyse the Soret and viscous dissipa-

tion effects on a micropolar fluid flow over a truncated cone with the convective boundary condition.

According to the author’s knowledge, the present study has not been discussed in the literature.

For this complex problem, the similarity solution does not exist and hence suitable non-similarity

transformations are used to transform the governing equations along with the boundary conditions

into non-dimensional form. To find the solution of the present setup, the spectral quasi-linearization

method explained in the previous chapters (i.e., Chapters 2 - 5) requires some modification. Hence,

the spectral quasi-linearization method has been modified by combining it with implicit finite

difference method, named as the extended spectral quasi-linearization method. In this chapter,

the system of reduced non-linear partial differential equations are solved by the extended spectral

quasi-linearization method. The effects of pertinent parameters on the non-dimensional velocity,

microrotation, temperature and concentration profiles as well as, on the surface drag, wall couple

stress, heat and mass transfer rates are analyzed.
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Figure 6.1: Physical geometry of the problem

6.2 Mathematical Formulation

Consider the steady, two-dimensional and laminar flow of an incompressible micropolar fluid over a

truncated cone. The velocity of the outer flow is assumed to be U∞. The origin O of the coordinate

system is placed at the vertex of a full cone, where x-axis is taken along the surface of the cone

measured from the origin and y-axis is normal to the surface [ Fig. (6.1)]. The temperature and

concentration of the ambient medium are assumed to be T∞ and C∞, respectively. The surface of a

truncated cone is either cooled or heated by convection from a fluid of temperature Tf with Tf < T∞

(cooled surface) and Tf > T∞ (heated surface) respectively. The truncated cone surface is held at

constant concentration Cw. The thickness of boundary layer is assumed to be comparatively small

in comparison with the radius of a cone and hence the local radius to a point can be approximated

by r = xsinA (Ref. Singh et al. [92]).

By employing standard boundary layer assumptions and Boussinesq approximation, the gov-

erning equations of an incompressible micropolar fluid flow over a truncated cone [68, 79] can be

written as
∂(u r)

∂x
+
∂(v r)

∂y
= 0 (6.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= (µ+ κ)

∂2u

∂y2
+ κ

∂ω

∂y
+ ρg∗ [βT (T − T∞) + βC(C − C∞)] cosA (6.2)
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ρj

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

∂u

∂y

)
(6.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
µ+ κ

ρCp

(
∂u

∂y

)2

(6.4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+
DKT

Tm

∂2T

∂y2
(6.5)

where r is the radius of the vertical frustum of a cone, KT is the thermal diffusion ratio, Tm is the

mean fluid temperature and Cp is the specific heat.

The associated boundary conditions are

u = 0, v = 0, ω = −n∂u
∂y
, −k∂T

∂y
= hf (Tf − T ), C = Cw at y = 0 (6.6a)

u = U∞, ω = 0, T = T∞, C = C∞ as y →∞ (6.6b)

Now, we define a stream function ψ, such that it satisfies the continuity equation automatically,

defined as

u =
1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x
(6.7)

6.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection which is caused by buoyancy forces only without

any external agent, hence the velocity of the external flow become zero (ie., U∞ = 0). We introduce

the following transformations

ξ =
x

x0
=
x− x0
x0

, η =
y

x
Gr1/4x , ψ = rνGr1/4x f (ξ, η) ,

ω =
ν Gr

3/4
x

x2
g (ξ, η) , θ (ξ, η) =

T − T∞
Tf − T∞

, φ (ξ, η) =
C − C∞
Cw − C∞

(6.8)

where x = x− x0 and Grx =
g∗βT (Tf − T∞)x3cosA

ν2
is the local Grashof number.

Substituting (6.7)-(6.8) into Eqs.(6.2)-(6.5), the governing equations reduces to the following
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form

(
1

1−N

)
f ′′′ +

(
R+

3

4

)
f f ′′ − 1

2
(f ′)2 +

(
N

1−N

)
g′ + θ + Bφ = ξ

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
(6.9)

(
2−N
2− 2N

)
g′′ +

(
R+

3

4

)
f g′ − 1

4
f ′ g − ξ1/2

(
N

1−N

)(
2g + f ′′

)
= ξ

(
f ′
∂g

∂ξ
− g′∂f

∂ξ

)
(6.10)

1

Pr
θ′′ +

(
R+

3

4

)
f θ′ + ξ ε

(
1

1−N

)
(f ′′)2 = ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
(6.11)

1

Sc
φ′′ +

(
R+

3

4

)
f φ′ + Sr θ′′ = ξ

(
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

)
(6.12)

where the prime represents the partial differentiation with respect to η, B =
Gcx
Grx

is the buoyancy

ratio, Gcx =
g∗βC(Cw − C∞)x3cosA

ν2
is the solutal Grashof number, Sr =

DKT (Tf − T∞)

νTm(Cw − C∞)
is the

Soret number and ε =
g∗ βTx0cosA

Cp
is the viscous dissipation parameter.

The corresponding boundary conditions in the non-dimensional form become

f(ξ, 0) +
ξ(

R+ 3
4

) ∂f
∂ξ

= 0, f ′(ξ, 0) = 0, g(ξ, 0) = −nf ′′(ξ, 0), (6.13a)

θ′(ξ, 0) = −ξ1/4Bi(1− θ(ξ, 0)), φ(ξ, 0) = 1

f ′(ξ,∞) = 0, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0 (6.13b)

where
g∗βT (Tf − T∞)x0

3cosA

ν2
is the thermal Grashof number based on x0, Bi =

hf x0

k Gr
1/4
x0

is the Biot

number and R =
ξ

1 + ξ
. When ξ = 0, R becomes zero, and hence the current problem reduces to

the free convective flow of micropolar fluid along a vertical plate. Since ξ = (x−x0)/x0, ξ becomes

large means x is far down-stream or the cross section radius of the leading edge of truncated cone

is very small. Finally, as ξ → ∞, R → 1 (i,e. the geometry of the present problem becomes a full

cone).

The wall shear stress, wall couple stress, heat and mass transfer rates over a truncated cone are

τw =

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

, mw = γ

[
∂ω

∂y

]
y=0

, qw = −k
[
∂T

∂y

]
y=0

and qm = −D
[
∂C

∂y

]
y=0

(6.14)

The dimensionless skin friction Cf =
2τw
ρu2∗

, wall couple stress Mw =
mw

ρu2∗x0
, local Nusselt number
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Nux =
qwx

k(Tf − T∞)
and local Sherwood number Shx =

qmx

D(Cw − C∞)
, are given by

CfGr
1/4
x = 2

(
1− nN
1−N

)
f ′′(ξ, 0), MwGr1/2x = ξ1/2

(
2−N
2− 2N

)
g′(ξ, 0),

Nux

Gr
1/4
x

= −θ′(ξ, 0),
Shx

Gr
1/4
x

= −φ′(ξ, 0)

 (6.15)

where u∗ is the characteristic velocity.

Numerical Solution

In earlier chapters, the spectral quasilinearization method is used to find the solution of system

of non-linear ordinary differential equations. In this chapter, the extended SQLM [93] is used to

get the non-similarity solution of non-linear and non-homogeneous partial differential equations

(6.9)-(6.12) along with the boundary conditions (6.13). Applying QLM on Eqs. (6.9)-(6.12),

the nonlinear partial differential equations reduce to the iterative sequence of linearized partial

differential equations in the following form

(
1

1−N

)
f ′′′r+1 +

(
N

1−N

)
g′r+1 + a1,r f

′′
r+1 + a2,r f

′
r+1 + a3,r fr+1 + a4,r (6.16)

+θr+1 + B φr+1 = a5,r
∂f ′r+1

∂ξ
+ a6,r

∂fr+1

∂ξ(
2−N
2− 2N

)
g′′r+1 + b1,r g

′
r+1 + b2,r gr+1 − ξ1/2

(
N

1−N

)
f ′′r+1 + b3,r f

′
r+1 (6.17)

+b4,r fr+1 + b5,r = b6,r
∂gr+1

∂ξ
+ b7,r

∂fr+1

∂ξ

1

Pr
θ′′r+1 + c1,r θ

′
r+1 + c2,r f

′′
r+1 + c3,r f

′
r+1 + c4,r fr+1 + c5,r = c6,r

∂θr+1

∂ξ
+ c7,r

∂fr+1

∂ξ
(6.18)

1

Sc
φ′′r+1 + d1,r φ

′
r+1 + d2,r f

′
r+1 + d3,r fr+1 + Srθ′′r+1 + d4,r = d5,r

∂φr+1

∂ξ
+ d6,r

∂fr+1

∂ξ
(6.19)

where a1,r =

(
R+

3

4

)
fr + ξ

∂fr
∂ξ

; a2,r = −f ′r − ξ
∂f ′r
∂ξ

; a3,r =

(
R+

3

4

)
f ′′r ;

a4,r = −
(
R+

3

4

)
fr f

′′
r +

1

2
f ′2r + ξf ′r

∂f ′r
∂ξ
− ξf ′′r

∂fr
∂ξ

; a5,r = ξ f ′r; a6,r = −ξ f ′′r ;
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b1,r =

(
R+

3

4

)
fr + ξ

∂fr
∂ξ

; b2,r = −1

4
f ′r − 2ξ1/2

(
N

1−N

)
;

b3,r = −1

4
gr − ξ

∂gr
∂ξ

; b4,r =

(
R+

3

4

)
g′r; b6,r = ξf ′r; b7,r = −ξg′r;

b5,r = −
(
R+

3

4

)
fr g

′
r +

1

4
f ′r gr + ξf ′r

∂gr
∂ξ
− ξg′r

∂fr
∂ξ

; c2,r = 2ξ ε

(
1

1−N

)
f ′′r ;

c1,r =

(
R+

3

4

)
fr + ξ

∂fr
∂ξ

; c3,r = −ξ ∂θr
∂ξ

; c4,r =

(
R+

3

4

)
θ′r;

c5,r = −
(
R+

3

4

)
fr θ

′
r − ξ ε

(
1

1−N

)
f ′′2r + ξf ′r

∂θr
∂ξ
− ξθ′r

∂fr
∂ξ

; c6,r = ξf ′r;

c7,r = −ξθ′r; d1,r =

(
R+

3

4

)
fr + ξ

∂fr
∂ξ

; d2,r = −ξ ∂φr
∂ξ

; d3,r =

(
R+

3

4

)
φ′r;

d4,r = −
(
R+

3

4

)
fr φ

′
r + ξf ′r

∂φr
∂ξ
− ξφ′r

∂fr
∂ξ

; d5,r = ξf ′r; d6,r = −ξφ′r

The linearised system of coupled partial differential equations (6.16) - (6.19) with the variable

coefficients can be solved iteratively by employing the Chebyshev pseudo-spectral method [18].

Starting from the set of initial approximations f0, g0, θ0, φ0, the iteration scheme (6.16) - (6.19)

can be worked out iteratively for fr+1(ξ, η), gr+1(ξ, η), θr+1(ξ, η), φr+1(ξ, η) when r = 0, 1, 2,.... To

solve Eqs. (6.16) - (6.19), first we discretize the equations using the Chebyshev spectral collocation

method in the η-direction and then we employ the implicit finite difference method in ξ-direction.

The basic idea behind the spectral collocation method is that the introduction of a differentiation

matrix D, which is used to approximate the unknown variable derivatives at the collocation points

as the matrix vector product

df

dη
=

Nx∑
k=0

Dlkf(τk) = DF, l = 0, 1, ..., Nx (6.20)

where Nx+1 is the number of collocation points in η direction, D =
2D
L

and F = [f(τ0), ..., f(τNx)]T

represents the vector function at the collocation points. In the similar manner, vector functions

corresponding to g, θ and φ are represented by G, Θ and Φ respectively. Derivatives of higher

order are obtained as powers of D,

f (q) = DqF, g(q) = DqG, θ(q) = DqΘ, φ(q) = DqΦ (6.21)

here q represents the order of the derivative. In the governing problem, the physical region in
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the space direction is approximated by truncated domain [0, η∞], and this truncated domain is

transformed into the region [−1, 1] using the mapping η =
η∞(τ + 1)

2
, where η∞ is the finite length

selected as numerically large value to approximate the conditions at infinity.

The collocation points on (η, ξ) are defined as

τj = cos
πj

Nx
, ξn = n∆ξ j = 0, 1, 2, ..., Nx, n = 0, 1, 2, ..., Nt (6.22)

where Nx + 1, Nt + 1 are number of grid points in η and ξ directions respectively, and ∆ξ denotes

the spacing in the ξ-direction. The finite difference method with centering about midpoint halfway

between ξn and ξn+1 is used where the midpoint is defined as ξn+
1
2 = (ξn+1+ξn)/2. The derivatives

with respect to η are defined in terms of the Chebyshev differentiation matrices. In the procedure

of applying the centering process about ξn+
1
2 to any function, say f(ξ, η), its related derivatives

can be written as

f(ξn+
1
2 , ηj) = f

n+ 1
2

j =
fn+1
j + fnj

2
(6.23)

(
∂f

∂ξ

)n+ 1
2

j

=
fn+1
j − fnj

∆ξ
(6.24)

Apply the spectral method on Eqs. (6.16) - (6.19), with the finite difference in ξ direction, leads

to the system of matrix equation as follows:


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




Fn+1
r+1

Gn+1
r+1

Θn+1
r+1

Φn+1
r+1

 =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44




Fnr+1

Gnr+1

Θn
r+1

Φn
r+1

+


K1

K2

K3

K4

 (6.25)

where A11 =
1

2

[(
1

1−N

)
D3 + a

n+ 1
2

1,r D2 + a
n+ 1

2
2,r D + a

n+ 1
2

3,r

]
−
a
n+ 1

2
5,r D

∆ξ
−
a
n+ 1

2
6,r

∆ξ
;

A12 =
1

2

[(
N

1−N

)
D

]
; A13 =

1

2
I; A14 =

1

2
B I;

A21 =
1

2

[
−(ξ1/2)n+

1
2

(
N

1−N

)
D2 + b

n+ 1
2

3,r D + b
n+ 1

2
4,r

]
−
b
n+ 1

2
7,r

∆ξ
; A24 = 0;

A22 =
1

2

[(
2−N
2− 2N

)
D2 + b

n+ 1
2

1,r D + b
n+ 1

2
2,r

]
−
b
n+ 1

2
6,r

∆ξ
; A23 = 0;
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A31 =
1

2

[
c
n+ 1

2
2,r D2 + c

n+ 1
2

3,r D + c
n+ 1

2
4,r

]
−
c
n+ 1

2
7,r

∆ξ
; A32 = 0;

A33 =
1

2

[
1

Pr
D2 + c

n+ 1
2

1,r D

]
−
c
n+ 1

2
6,r

∆ξ
; A34 = 0;

A41 =
1

2

[
d
n+ 1

2
2,r D + d

n+ 1
2

3,r

]
−
d
n+ 1

2
6,r

∆ξ
; A42 = 0;

A43 =
1

2

[
SrD2

]
; A44 =

1

2

[
1

Sc
D2 + d

n+ 1
2

1,r D

]
−
d
n+ 1

2
5,r

∆ξ
;

B11 = −1

2

[(
1

1−N

)
D3 + a

n+ 1
2

1,r D2 + a
n+ 1

2
2,r D + a

n+ 1
2

3,r

]
−
a
n+ 1

2
5,r D

∆ξ
−
a
n+ 1

2
6,r

∆ξ
;

B12 = −1

2

[(
N

1−N

)
D

]
; B13 = −1

2
I; B14 = −1

2
B I;

B21 = −1

2

[
−(ξ1/2)n+

1
2

(
N

1−N

)
D2 + b

n+ 1
2

3,r D + b
n+ 1

2
4,r

]
−
b
n+ 1

2
7,r

∆ξ
; B23 = 0;

B22 = −1

2

[(
2−N
2− 2N

)
D2 + b

n+ 1
2

1,r D + b
n+ 1

2
2,r

]
−
b
n+ 1

2
6,r

∆ξ
; B24 = 0;

B31 = −1

2

[
c
n+ 1

2
2,r D2 + c

n+ 1
2

3,r D + c
n+ 1

2
4,r

]
−
c
n+ 1

2
7,r

∆ξ
; B32 = 0;

B33 = −1

2

[
1

Pr
D2 + c

n+ 1
2

1,r D

]
−
c
n+ 1

2
6,r

∆ξ
; B34 = 0;

B41 = −1

2

[
d
n+ 1

2
2,r D + d

n+ 1
2

3,r

]
−
d
n+ 1

2
6,r

∆ξ
; B42 = 0;

B43 = −1

2

[
SrD2

]
; B44 = −1

2

[
1

Sc
D2 + d

n+ 1
2

1,r D

]
−
d
n+ 1

2
5,r

∆ξ
;

K1 = −an+
1
2

4,r ; K2 = −bn+
1
2

5,r ; K3 = −cn+
1
2

5,r ; K4 = −dn+
1
2

4,r .

where Aij , Bij , (i, j = 1, 2, 3, 4), identity matrix I and zero matrix 0 are of size (Nx+1)× (Nx+1).

Numerical procedure is carried out to obtain approximate solution for the quantities of physical

interest. In this chapter, a finite computational domain of extent η∞ = 30 is chosen in the η-

direction. Through numerical experimentation, this value has been found to give accurate results

for all the selected physical parameters used in the generation of results. Moreover, the results have
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Table 6.1: Comparison of f ′′(0, 0) and −θ′(0, 0), for various values of Pr between the present
method and the results obtained by Yih [106].

Pr f ′′(0, 0) −θ′(0, 0)

Yih [106] Present Yih [106] Present

1 0.9084 0.90819 0.4012 0.40103
10 0.5927 0.59283 0.8266 0.82684
100 0.3559 0.35594 1.5493 1.54953

not been changed with the increase of η∞ to a significant extent. The number of collocation points

Nx used in the spectral method for discretization is 100. Note that at each time step, the SQLM

algorithm allocated on computation value of some quantity, say Fn+1
r+1 . This is attained by iteration

procedure using the quasi-linearization method with a known value at the previous time step n

as initial approximation. The iteration calculations are carried until some appropriate tolerance

level, ε1 is obtained. In this analysis, the tolerance level has fixed to be 10−4. The tolerance level

is defined as the maximum values of the infinity norm of the difference between the values of the

calculated quantities. For example, in calculating Fn+1
r+1 , the tolerance level and convergence criteria

are defined as

max{‖f ′n+1
r+1 − f

′n
r+1‖∞, ‖gn+1

r+1 − g
n
r+1‖∞, ‖θn+1

r+1 − θ
n
r+1‖∞, ‖φn+1

r+1 − φ
n
r+1‖∞} < ε1 (6.26)

To ensure the accuracy of the results, a sufficiently small step size ∆ξ has been taken. The step

size preferred to be small enough such that further reduction did not alter the obtained results for

the flow properties of physical interest.

Results and Discussion

In order to assess the accuracy of the present method, for the special case of N = 0, Bi→∞, B = 0,

ε = 0 and Sr = 0, the results of the present problem have been compared with that of Yih [106] and

it seems to be good agreement [Tab. (6.1)]. To study the effects of viscous dissipation parameter,

coupling, Soret and Biot numbers, the computations have been carried out for Pr = 0.71, n = 0,

ξ = 0.5, and Sc = 0.22. These values are fixed in this analysis unless otherwise specified.
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Figs. 6.2(a) - 6.2(d) display the effects of coupling number on the non-dimensional velocity

f ′, microrotation g, temperature θ and concentration φ in the presence and/or absence of Soret

number. The coupling number characterizes the coupling of rotational and linear motion arising

from the motion of the fluid particles. The micropolarity is absent in the case of N = 0 (i.e.,

as κ tends to zero) and hence, the fluid becomes non-polar fluid. As the coupling number N

increases, the velocity decreases near the vertical frustum of a cone and far away from the surface

it increases [Fig. 6.2(a)]. From Fig. 6.2(b), it can be remarked that the microrotation profiles

tends to become flat at N = 0, and further, the microrotation shows reverse rotation with coupling

number N enhancement. It can be perceived from Figs. 6.2(c) and 6.2(d) that the temperature

and concentration of the micropolar fluid are higher in comparison with the viscous fluid. It is

important to note that the velocity (near the truncated cone surface) and concentration are more

in the presence of Soret number as compared with those results in the absence of Soret number.

The temperature and microrotation don not show any significant effect with the increase of Soret

number.

The variation of Biot number on the dimensionless velocity f ′, microrotation g, temperature

θ and concentration φ for both ε = 0.0 and ε = 0.2, is plotted in Fig. 6.3(a) - 6.3(d). From

Fig. 6.3(a), it can be observed that the velocity rises near the truncated cone and far away from a

truncated cone the velocity diminishes with an increase in Biot number. Fig. 6.3(b) shows that with

an increase in Biot number, the microrotation shows reverse rotation within the boundary layer

for both ε = 0 and ε = 0.2. The temperature enhances with the enhancement of Biot number, as

observed in Fig. 6.3(c). From Fig. 6.3(d), it can be illustrated that as the Biot number increases,

the concentration shows reverse behaviour within the boundary. The velocity and temperature

increases with the increase of viscous dissipation parameter because, the viscous dissipation acts

as a heat source and affects the fluid flow. Hence, it increases the thermal buoyancy effects which

causes to increase in the velocity and temperature. As the viscous dissipation parameter ε increases,

the concentration shows opposite behaviour within the concentration boundary layer.

The effects of coupling number on the non-dimensional skin friction, wall couple stress, heat

and mass transfer rates against the streamwise coordinate ξ, are portrayed in Figs. 6.4(a) - 6.4(d)

in the presence and absence of Soret number. From Fig. 6.4(a), it can be observed that the skin

friction increases with an increase in the value of coupling number. It is worthy to note that,

the skin friction is more for the micropolar fluid in comparison to that of the viscous fluid. As
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the coupling number enhances, the wall couple stress reduces nonlinearly for the micropolar fluid

[Fig. 6.4(b)]. From Fig. 6.4(c), it can be perceived that with the increase of coupling number

N , the Nusselt number reduces nonlinearly. From Fig. 6.4(d), it can be illustrated that for both

Sr = 0.0 and Sr = 0.5, the Sherwood number reduces by enhancing the values of coupling number

N . Further, it can be noticed that the Nusselt and Sherwood numbers are lower for a micropolar

fluid as compared with those of a viscous fluid. Moreover, the skin friction increases slightly, but

the Nusselt number and wall couple stress decrease marginally with the increase of Soret number

[Figs. 6.4(a) - 6.4(d)].

Figs. 6.5(a) - 6.5(d) depict the variation of Biot number on the non-dimensional skin friction,

wall couple stress, Nusselt and Sherwood numbers against the streamwise coordinate ξ in the

presence and absence of viscous dissipation parameter. From Fig. 6.5(a), it can be observed that

with the enhancement of Biot number, the skin friction coefficient enhances. As the streamwise

coordinate increases from 0 to 1, the wall couple stress coefficient reduces with an increase in Biot

number [Fig. 6.5(b)]. Moreover, it can be noticed that the wall couple stress decreases nonlinearly

with the increase of Biot number. It can be seen from Fig. 6.5(c) that an increase in Biot number

leads to increase in the heat transfer rate. The mass transfer rate reduces with the enhancement

of Biot number as shown in Fig. 6.5(d). It can be noticed from Figs. 6.5(a) - 6.5(d) that the skin

friction and mass transfer rate are more, but the wall couple stress and heat transfer are less in

the presence of viscous dissipation parameter when compared with those results in the absence of

viscous dissipation parameter.
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Figure 6.2: Effects of Sr and N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.
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Figure 6.3: Effects of ε and Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.
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Figure 6.4: Effects of Sr and N on (a)Skin friction, (b)Wall couple stress, (c)Nusselt number
and (d)Sherwood number.
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Figure 6.5: Effects of ε and Bi on (a)Skin friction, (b)Wall couple stress, (c)Nusselt number
and (d)Sherwood number.
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6.2.2 Case(b): Mixed Convection

Consider the flow to be mixed convection arises from buoyancy forces and an external flow with

velocity (U∞). We introduce the following transformations

ξ =
x

x0
=
x− x0
x0

, η =
y

x
Re1/2x , ψ = rνRe1/2x f (ξ, η) , (6.27)

ω =
ν Re

3/2
x

x2
g (ξ, η) , θ (ξ, η) =

T − T∞
Tf − T∞

, φ (ξ, η) =
C − C∞
Cw − C∞

where x = x− x0 and Rex =
U∞ x

ν
is the local Reynolds number.

Substitution of (6.7) and (6.27) into Eqs.(6.2)- (6.5), gives the following system of differential

equations:

(
1

1−N

)
f ′′′ +

(
R+

1

2

)
f f ′′ +

(
N

1−N

)
g′ + ξ λ (θ + Bφ) = ξ

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
(6.28)

(
2−N
2− 2N

)
g′′ +

(
R+

1

2

)
f g′ +

1

2
f ′ g − ξ

(
N

1−N

)(
2g + f ′′

)
= ξ

(
f ′
∂g

∂ξ
− g′∂f

∂ξ

)
(6.29)

1

Pr
θ′′ +

(
R+

1

2

)
f θ′ + ε

(
1

1−N

)
(f ′′)2 = ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
(6.30)

1

Sc
φ′′ +

(
R+

1

2

)
f φ′ + Sr θ′′ = ξ

(
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

)
(6.31)

where ε =
U2
∞

Cp(Tf − T∞)
is the viscous dissipation parameter, Rex0 =

U∞ x0
ν

is the Reynolds num-

ber based on x0 and λ =
Grx0
Re2x0

is the mixed convection parameter.

The boundary conditions (6.6) become

f(ξ, 0) =
−ξ(

R+ 1
2

) ∂f
∂ξ
, f ′(ξ, 0) = 0, g(ξ, 0) = −nf ′′(ξ, 0), (6.32a)

θ′(ξ, 0) = −ξ1/2Bi(1− θ(ξ, 0)), φ(ξ, 0) = 1

f ′(ξ,∞) = 1, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0 (6.32b)

where Bi =
hf x0

k Re
1/2
x0

is the Biot number.
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Table 6.2: Comparison of −θ′(0, 0) for mixed convection flow in Newtonian fluid with the
results obtained by Lloyd and Sparrow [50] for different values of Pr.

−θ′(0, 0)

Pr Lloyd and Sparrow [50] Present

0.03 0.08439 0.08443
0.72 0.2956 0.29564
10 0.7281 0.72814
100 1.572 1.57184

The non-dimensional skin friction Cf =
2τw
ρU2
∞

, wall couple stress Mw =
mw

ρU2
∞x0

, local Nusselt

number Nux =
qwx

k(Tf − T∞)
and local Sherwood number Shx =

qmx

D(Cw − C∞)
, are given by

CfRe
1/2
x = 2

(
1− nN
1−N

)
f ′′(ξ, 0), MwRex =

(
2−N
2− 2N

)
g′(ξ, 0)

Nux

Re
1/2
x

= −θ′(ξ, 0),
Shx

Re
1/2
x

= −φ′(ξ, 0)

 (6.33)

Results and Discussion

The reduced non-dimensional partial differential equations (6.28)-(6.31) along with the boundary

conditions (6.32) are solved numerically using the extended spectral quasi-linearization method, as

explained in the previous case. In order to asses the code generated, for special case of N = 0,

B = 0, Bi→∞, Sr = 0, ε = 0, ξ = 0 and λ = 0, the results have been compared with those of Lloyd

and Sparrow [50] and results seems to be good agreement as shown in Tab. (6.2). To study the

effects of coupling number, Biot number, viscous dissipation and Soret number, the computations

have been carried out for Pr = 0.72, Sc = 0.22, ξ = 0.5, and n = 0.

Figs. 6.6(a)-6.6(d) depict the influence of coupling numbers on the non-dimensional velocity

f ′, microrotation g, temperature θ and concentration φ across the boundary layers with or without

Soret number. Fig. 6.6(a) shows that the velocity decreases with an increase in coupling number,

but it increases slightly with the increase of Soret number. As expected, the velocity in the case

of viscous fluid is more as compared with that of the micropolar fluid. Fig. 6.6(b) reveals that the

microrotation profiles tend to become flat at N = 0, and with the increase of N , it exhibits the
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reverse rotation. As the Soret number enhances, the microrotation do not show significant effect.

Fig. 6.6(c) displays that the temperature enhances with the increase of coupling number, but it

does not show significant effect with the increase of Soret number. The occurrence of diffusion flux

due to temperature gradient is treated as Soret effect. This shows that diffusive species with higher

values of Soret number accelerates the concentration. Hence, the concentration increases with the

enhancement of Soret numbers as depicted in Fig. 6.6(d). Finally, the concentration increases with

the increase of coupling number.

The effects of Biot number on the non-dimensional velocity f ′, microrotation g, temperature

θ and concentration φ, are displayed in Figs. 6.7(a)-6.7(d) in the presence and absence of viscous

dissipation parameter. Fig. 6.7(a) shows that an increase in Biot number leads to increase in the

fluid velocity and also, the velocity increases with the increase of viscous dissipation parameter. Fig.

6.7(b) exhibits that the microrotation slightly reduces first and then enhances with the increase of

Biot number. The microrotation shows qualitatively same behaviour in the presence and absence

of viscous dissipation parameter. Physically, the viscous dissipation acts as a heat source generated

due to the viscous stresses acting on it and hence, it increases the temperature of the fluid. Fig.

6.7(c) depicts that the thickness of thermal boundary layer enhances with the increase of both

viscous dissipation parameter as well as Biot number. Fig. 6.7(d) illustrates that the solutal

boundary layer thickness enhances first and then reduces slightly with the increase of Biot number.

Finally, it is noticed that the role of viscous dissipation parameter is very small on the concentration

profile.

In Figs. 6.8(a)-6.8(d), the effects of mixed convection parameter λ on the dimensionless velocity,

microrotation, temperature and concentration profiles across the boundary layers, are displayed.

We know that, λ < 0 corresponds to the opposing flow, λ = 0 indicates the forced convective flow

and λ > 0 corresponds to the aiding flow. Fig. 6.8(a) illustrates that the velocity is more in the case

of aiding flow, but less in the opposing flow as compared to the forced convective flow case. The

microrotation shows reverse rotation within the boundary as displayed in Fig. 6.8(b) for opposing,

aiding and forced convective flows. Figs. 6.8(c)-6.8(d) show that the temperature and concentration

exhibit qualitatively same behaviour with the influence of mixed convection parameter. In other

words, the temperature and concentration are more in the case of opposing flow as compared with

those results in the aiding and forced convective flows.

The effects of coupling number on the dimensionless skin friction, wall couple stress, Nusselt and
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Sherwood numbers against the streamwise coordinate ξ for Sr = 0.0 and Sr = 0.5, are portrayed in

Figs. 6.9(a)-6.9(d). Fig. 6.9(a) reveals that the skin friction coefficient increases with an increase

in coupling number. Further, it can be perceived that the skin friction increases slightly with an

increase in Soret number. The wall couple stress coefficient decreases with the increase of coupling

number [Fig. 6.9(b)]. As the Soret number enhances, the wall couple stress reduces marginally.

Fig. 6.9(c) displays that the Nusselt number reduces nonlinearly with the enhancement of coupling

number, whereas, it reduces slightly with an increase in Soret number. Fig. 6.9(d) illustrates that

the Sherwood number reduces with the increase of both coupling and Soret numbers. Further,

it can be noticed that the Nusselt and Sherwood numbers are lower for the micropolar fluid as

compared with those values of the viscous fluid.

Figs. 6.10(a)-6.10(d) depict the variation of Biot number on the non-dimensional skin fric-

tion, wall couple stress, Nusselt and Sherwood numbers against the streamwise coordinate ξ in the

presence and absence of viscous dissipation. Fig. 6.10(a) reveals that the skin friction coefficient

enhances with the enhancing values of Biot number and viscous dissipation parameter. Fig. 6.10(b)

explores that the wall couple stress coefficient decreases with the increase of viscous dissipation pa-

rameter as well as Biot number. Fig. 6.10(c) reveals that the Nusselt number increases non-linearly

with an increase in Biot number, but it decreases with an increase in viscous dissipation parameter.

From Fig. 6.10(d), it can be seen that the Sherwood number reduces with the enhancement of Biot

number but, it increases with the increase of viscous dissipation parameter.

The influence of mixed convection parameter on skin friction, wall couple stress, Nusselt and

Sherwood numbers against the streamwise coordinate ξ , is displayed in Figs. 6.11(a) - 6.11(d). Fig.

6.11(a) portrays that the skin friction in the opposing flow is lower than compared with those of

both aiding and forced convective flows. Fig. 6.11(b) depicts that the wall couple stress decreases

from opposing flow to aiding flow and moreover, it can be observed that the wall couple stress in

the opposing flow is more than that of the aiding flow. Fig. 6.11(c) reveals that the heat transfer

rate increases from opposing to aiding flow. Fig. 6.11(d) displays that the mass transfer rate is less

in the opposing flow as compared with those of the forced convective and aiding flows.
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Figure 6.6: Effects of Sr and N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 6.7: Effects of ε and Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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Figure 6.8: Effect of λ on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration profiles.
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(d)

Figure 6.9: Effects of N and Bi on (a)Skin friction, (b)wall couple stress, (c)Nusselt number
and (d)Sherwood number.

155



0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5  = 1.0, Sr = 1.0, N = 0.5 
0.0Bi = 0.1
 0.0Bi = 1.0
 0.0Bi = 5.0
 0.2Bi = 0.1
 0.2Bi = 1.0
 0.2Bi = 5.0



C
f 
R

e
1

/2
x

 

 

(a)

0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

 = 1.0, Sr = 1.0, N = 0.5 
0.0Bi = 0.1
 0.0Bi = 1.0
 0.0Bi = 5.0
 0.2Bi = 0.1
 0.2Bi = 1.0
 0.2Bi = 5.0



M
w
R

e
x

 

 

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5



N
u

x
R

e
-1

/2
x

 = 1.0, Sr = 1.0, N = 0.5 
0.0Bi = 0.1
 0.0Bi = 1.0
 0.0Bi = 5.0
 0.2Bi = 0.1
 0.2Bi = 1.0
 0.2Bi = 5.0

 

 

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32



0.0Bi = 0.1
 0.0Bi = 1.0
 0.0Bi = 5.0
 0.2Bi = 0.1
 0.2Bi = 1.0
 0.2Bi = 5.0

 = 1.0, Sr = 1.0, N = 0.5 

S
h

x
R

e
-1

/2
x

 

 

(d)

Figure 6.10: Effects of ε and Bi on (a)Skin friction, (b)wall couple stress, (c)Nusselt number
and (d)Sherwood number.
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(d)

Figure 6.11: Effect of λ on (a)Skin friction, (b)wall couple stress, (c)Nusselt number and
(d)Sherwood number.
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6.3 Conclusions

In erstwhile chapters, the similarity solution for micropolar fluid flow along a vertical plate is ob-

tained numerically using the spectral quasi-linearization method. In this chapter, the non-similarity

solution is obtained to analyze the effects of viscous dissipation and Soret on natural and mixed

convective flow of a micropolar fluid over the vertical frustum of a cone with the convective bound-

ary condition. From this analysis, the main findings are drawn for both case(a) and case(b) as

follows:

An increase in coupling number leads to decrease in the wall couple stress, Nusselt number and

Sherwood number, but increase the temperature, concentration and skin friction. Moreover, the

velocity decreases in case (a) and (b), but far away from the surface of a truncated cone the velocity

shows opposite trend in case(a). The velocity, concentration and skin friction increase, but the wall

couple stress, heat and mass transfer rates decrease with the increase of Soret number. By enhancing

the Biot number, the skin friction, Nusselt number and temperature enhance, but the wall couple

stress and Sherwood number reduce. With the increase of both Biot number and viscous dissipation

parameter, the velocity and concentration depicts reverse behaviour within the boundary in case(a)

while, the velocity and concentration increase in case(b). As the viscous dissipation parameter

increases, the wall couple stress and heat transfer rate decrease, but temperature, skin friction

and mass transfer rate increase. Moreover, with the increase of viscous dissipation parameter,

the microrotation depicts reverse rotation within the boundary layer. The velocity, skin friction,

Nusselt and Sherwood numbers are more in the case of aiding flow as compared with the opposing

flow. Further, the temperature and concentration are more in the opposing flow and less in the

aiding flow.
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Chapter 7

Effects of Soret and Viscous

Dissipation on Convective Flow over a

Truncated Cone Embedded in a

Micropolar Fluid Saturated

Non-Darcy Porous Medium 1

7.1 Introduction

Convective transport phenomena in a porous medium has been the subject of great importance and

interest in the recent years owing to its wide range of applications in civil, chemical and mechanical

engineering. In many practical situations, the porous medium is bounded by an impermeable

surface which has high flow rates, and reveals the non-uniform porosity distribution near the surface

region, making Darcy law inapplicable. To model this kind of preferable physical situation, it is

therefore, necessary to include the non-Darcian terms in the analysis of convective transport in a

porous medium. In brief, the non-Darcy models are extensions of the classical Darcy formulation

1Case(a): Accepted in “Special Topics and Reviews in Porous Media”,
Case(b) Communicated to “Journal of Engineering Thermophysics”
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to incorporate inertial drag effects, vorticity diffusion, and combinations of these effects. Different

models have been proposed in the literature to study the convective transport phenomena in the

non-Darcy porous medium. Among these, the Darcy-Forchheimer model is an extension of classical

Darcy formulation obtained by adding a squared term of velocity in the momentum equation to

account for the inertial effects. Modelling and analysis of dynamics of a micropolar fluid saturated

porous medium has been the active field of research from the past few years. This stems from the

evidence that this fluid has a large number of industrial and engineering applications. Considerable

work has been discussed on the flow, heat and mass transfer characteristics in a Darcy and non-

Darcy porous medium [83, 86, 88].

Several investigators analyzed the free convective boundary layer flow over a truncated cone

through porous medium saturated with Newtonian and/or non-Newtonian fluids. Mahdy [52] for-

mulated the mathematical model for the double diffusive convective flow over a truncated cone

embedded in a porous medium by considering variable viscosity, chemical reaction and heat gener-

ation/absorption effects. Cheng [22] analyzed the natural convective flow over a truncated cone in

a porous medium saturated with a non-Newtonian nanofluid by incorporating the thermophoresis

and Brownian motion effects. The cross-diffusion (Soret and Dufour) effects on free convective flow

over the vertical frustum of a cone embedded in a porous medium has been discussed by Rashad

and Chamkha [85] (and also see the citations therein).

The objective of this chapter is to examine the viscous dissipation and Soret effects on convective

flow over a truncated cone embedded in a micropolar fluid saturated non-Darcy porous medium

with the convective boundary condition. From the literature, it seems that the problem under

consideration has not been addressed so far. As in the previous chapter, here also, the extended

spectral quasi-linearization method has been used to solve the system of reduced non-linear partial

differential equations. The influence of pertinent parameters, namely Biot number, Soret number,

viscous dissipation, Darcy and Forchheimer numbers on the velocity, microrotation, temperature,

concentration, skin-friction, wall couple stress, heat and mass transfer rates over a truncated cone

are displayed through graphs and the salient features are discussed.
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Figure 7.1: Physical model of the problem

7.2 Mathematical Formulation

In this chapter, the steady, two dimensional and laminar convective flow over a truncated cone

in a micropolar fluid saturated non-Darcy porous medium is considered. Choose the coordinate

system such that the x-axis is taken along the vertical frustum of a cone and y-axis is measured

normal to it, as shown in Fig. (7.1). This chapter is an extension of chapter-6 by considering the

fluid saturated non-Darcy porous medium. In addition to the assumptions made in chapter-6, the

following assumptions are taken into account in the analysis: (i) the porous medium is isotropic and

homogeneous, (ii) the properties of the fluid and porous medium are constant except for the density

variation required by the Boussinesq approximation, and (iii) the fluid and the porous medium are

in local thermodynamic equilibrium.

Under the above assumptions, and using the Darcy-Forcheimer model and Dupuit-Forchheimer

relationship [74], the governing equations for micropolar fluid saturated non-Darcy porous medium

are given by
∂(u r)

∂x
+
∂(v r)

∂y
= 0 (7.1)

ρ

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=

(
µ+ κ

ε

)
∂2u

∂y2
+ κ

∂ω

∂y
+ ρg∗ [βT (T − T∞) + βC(C − C∞)] cosA (7.2)
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− µ

Kp
(u− U∞)− ρ b

Kp

(
u2 − U2

∞
)

ρj

ε

(
u
∂ω

∂x
+ v

∂ω

∂y

)
= γ

∂2ω

∂y2
− κ

(
2ω +

1

ε

∂u

∂y

)
(7.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

(
µ+ κ

ρCp

)(
∂u

∂y

)2

(7.4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+
DKT

Tm

∂2T

∂y2
(7.5)

where b is the Forchheimer constant and Kp is the permeability of the medium.

The associate boundary conditions are

u = 0, v = 0, ω = −n∂u
∂y
, −k∂T

∂y
= hf (Tf − T ), C = Cw at y = 0 (7.6a)

u = U∞, ω = 0, T = T∞, C = C∞ as y →∞ (7.6b)

Now, we introduce the following stream function ψ, to satisfy the equation of continuity identically,

as

u =
1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x
(7.7)

7.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection which is caused by buoyancy forces only without

any external agent and hence, the velocity of the external flow becomes zero (ie., U∞ = 0). We

introduce the following transformations

ξ =
x

x0
=
x− x0
x0

, η =
y

x
Gr1/4x , ψ = rνGr1/4x f (ξ, η) ,

ω =
ν Gr

3/4
x

x2
g (ξ, η) , θ (ξ, η) =

T − T∞
Tf − T∞

, φ (ξ, η) =
C − C∞
Cw − C∞

(7.8)

Substitution of (7.7) - (7.8) into Eqs. (7.2)-(7.5), the system of governing equations become

1

ε

(
1

1−N

)
f ′′′ +

1

ε2

(
R+

3

4

)
f f ′′ − 1

2ε2
(f ′)2 +

(
N

1−N

)
g′ + θ + Bφ (7.9)
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− ξ1/2

DaGr
1/2
x0

f ′ − ξ Fs
Da

(f ′)2 =
ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
(

2−N
2− 2N

)
g′′+

1

ε

(
R+

3

4

)
f g′− 1

4ε
f ′ g−ξ1/2

(
N

1−N

)(
2g +

1

ε
f ′′
)

=
ξ

ε

(
f ′
∂g

∂ξ
− g′∂f

∂ξ

)
(7.10)

1

Pr
θ′′ +

(
R+

3

4

)
f θ′ + ξε

(
1

1−N

)
(f ′′)2 = ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
(7.11)

1

Sc
φ′′ +

(
R+

3

4

)
f φ′ + Sr θ′′ = ξ

(
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

)
(7.12)

where Da =
Kp

x20
is the Darcy parameter and Fs =

b

x0
is the Forchheimer number.

The corresponding boundary conditions (7.6) become

f(ξ, 0) +
ξ(

R+ 3
4

) ∂f
∂ξ

= 0, f ′(ξ, 0) = 0, g(ξ, 0) = −nf ′′(ξ, 0), (7.13a)

θ′(ξ, 0) = −ξ1/4Bi(1− θ(ξ, 0)), φ(ξ, 0) = 1

f ′(ξ,∞) = 0, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0 (7.13b)

The non-dimensional skin friction (CfGr
1/4
x ), wall couple stress (MwGr

1/2
x ), local Nusselt number

( Nux

Gr
1/4
x

) and local Sherwood number ( Shx

Gr
1/4
x

), are given by

CfGr
1/4
x = 2

(
1− nN
1−N

)
f ′′(ξ, 0), MwGr1/2x = ξ1/2

(
2−N
2− 2N

)
g′(ξ, 0),

Nux

Gr
1/4
x

= −θ′(ξ, 0),
Shx

Gr
1/4
x

= −φ′(ξ, 0)

 (7.14)

Results and Discussion

As explained in the previous chapter (i,e. chapter 6), here also, the extended spectral quasi-

linearization method is employed to solve the non-homogeneous and nonlinear coupled partial

differential equations (7.9)-(7.12) along with the boundary conditions (7.13). To verify the accuracy

of the code generated, for the special case of n = 0, ε = 0, B = 0, ε = 1, Fs = 0, N = 0, Sr = 0,

Da → ∞ and Bi → ∞, the results of the present problem have been compared with those of Yih

[106] and it seems to be good agreement [Tab. (6.1)]. To explore the effects of viscous dissipation

parameter, coupling, Forchheimer, Soret and Biot numbers, the computations have been carried

out for Pr = 0.71, ξ = 0.5, Grx0 = 5, Sc = 0.22, ε = 0.9 and n = 0. These values are fixed in this
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analysis unless otherwise specified.

In Figs.7.2(a) - 7.2(d), effects of Soret and coupling numbers on the non-dimensional velocity

f ′, microrotation g, temperature θ and concentration φ, are exhibited. It can be found from Fig.

7.2(a) that with the increase of coupling number N , the velocity reduces near the vertical frustum

of a cone, but it enhances far away from the surface. Meanwhile, the velocity increases with the

increase of Soret number. From Fig. 7.2(b), it can be noticed that the microrotation profiles tend

to become flat initially, and then it shows the reverse rotation with the enhancement of coupling

number but, it does not show any significant effect with the increase of Soret number. It can be

perceived from Figs. 7.2(c) and 7.2(d) that by enhancing the coupling number N , the temperature

and concentration increases with the increase of coupling number. Physically, Soret number is

defined as the additional mass diffusion due to the temperature gradients. Therefore, with the

increase of Soret number, the concentration increases and the temperature decreases within the

respective solutal and thermal boundary layers.

In the presence and absence of viscous dissipation, the variation of Biot number Bi on the

non-dimensional velocity f ′, microrotation g, temperature θ and concentration φ, is plotted in

Figs. 7.3(a) - 7.3(d). From Fig. 7.3(a), it can be observed that the velocity enhances near the

truncated cone and far away from the truncated cone it reduces with the enhancement of both Biot

number as well as viscous dissipation parameter. From Fig. 7.3(b), it can be noticed that as the

Biot number increases, the microrotation shows qualitatively same behaviour for both ε = 0.0 and

ε = 0.5. Generally, the positive values of viscous dissipation parameter represents the fluid heating

case (i,e. heat is supplying into the fluid across the surface). Consequently, the temperature of the

fluid increases with the enhancement of both Biot number and viscous dissipation parameter [Fig.

7.3(c)]. From Fig. 7.3(d), it can be revealed that the concentration enhances slightly in the initial

stage and then reduces with an increase in both Biot number and viscous dissipation parameter.

The influence of both Darcy number Da and Forchhiemer number Fs on the dimensionless

velocity f ′, microrotation g, temperature θ and concentration φ, are displayed in Figs. 7.4(a) -

7.4(d). From Fig. 7.4(a), it can be observed that the velocity increases with the increase of Darcy

number for both Fs = 0.0 and Fs = 0.5. As the non-Darcy parameter Fs increases, the porous

medium offers more resistance to the fluid flow and hence the velocity is less in the case of non-Darcy

porous medium (Fs = 0.5) as compared with that of the Darcy porous medium (Fs = 0.0). From

this figure, it is also clear that the velocity decreases with the increase of Forchheimer number. In
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both Darcy (Fs = 0.0) and non-Darcy (Fs 6= 0) porous media, the microrotation shows reverse

rotation with the increase of Darcy parameter [Fig. 7.4(b)]. It can be revealed from Figs. 7.4(c) and

7.4(d) that for both Fs = 0.0 and Fs = 0.5, the temperature and concentration diminishes with the

increase of Darcy parameter. Moreover, it can be noticed that the temperature and concentration

are more in the case of non-Darcy porous medium as compared with that of Darcy porous medium

case.

The effects of coupling number on the skin friction, wall couple stress, Nusselt and Sherwood

numbers against the streamwise coordinate ξ, are portrayed in Figs. 7.5(a) - 7.5(d) for both

Sr = 0.0 and Sr = 1.0. It can be observed from Fig. 7.5(a) that the skin friction enhances with the

increase of both coupling and Soret numbers. Moreover, the effect of coupling number shows more

prominent than the Soret number on the skin friction. As the coupling number enhances, the wall

couple stress coefficient reduces nonlinearly for the micropolar fluid, but it reduces slightly with

the increase of Soret number as portrayed in Fig. 7.5(b). From Fig. 7.5(c), it can be perceived

that the Nusselt number decreases with the increase of coupling number N but, it increases with

the increase of Soret number. It can be observed from Fig. 7.5(d) that by enhancing both coupling

number N and Soret number Sr, the Sherwood number reduces. Further, it can be noticed that

for both Sr = 0.0 and Sr = 1.0, the Nusselt and Sherwood numbers are lower for the micropolar

fluid as compared with those of the viscous fluid.

Figs. 7.6(a) - 7.6(d) depict the influence of Biot number on the skin friction, wall couple stress,

Nusselt and Sherwood numbers against the streamwise coordinate ξ in the presence and absence of

viscous dissipation parameter. From Fig. 7.6(a), it can be observed that the skin friction coefficient

increases with the increase of both Biot number and viscous dissipation parameter. It can be noticed

that the wall couple stress coefficient decreases nonlinearly with an increase in both Bi and ε as

displayed in Fig. 7.6(b). From Fig. 7.6(c), it can be observed that the Nusselt number enhances

with the increase of Biot number whereas, it decreases with the increase of viscous dissipation.

It can be perceived from Fig. 7.6(d) that the Sherwood number reduces nonlinearly with the

enhancement of Biot number, but it enhances with the increase of viscous dissipation parameter.

Effects of Forchheimer number and Darcy parameter on the non-dimensional skin friction, wall

couple stress, Nusselt and Sherwood numbers against the streamwise coordinate ξ, are portrayed

in Figs. 7.7(a) - 7.7(d). Here the Forchheimer number represents the inertial drag in a non-Darcy

porous medium and it is applicable for high permeability. As Fs → 0, the non-Darcy porous
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medium tends to the Darcy porous medium. It is clear from Fig. 7.7(a) that the resistance to the

flow enhances with the increase of Forchheimer number. From Fig. 7.7(a), it can be perceived that

the skin friction increases with an increase in Darcy parameter and it decreases with an increase in

Forchheimer number. From Fig. 7.7(b), it can be noticed that the wall couple stress reduces with

the Darcy parameter enhancement, but it enhances with the Forchheimer number increment. The

heat and mass transfer rates increase with the increase of Darcy number, while they decrease with

the increase of Forchheimer number [Figs. 7.7(c) and 7.7(d)].
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Figure 7.2: Effects of Sr and N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.
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Figure 7.3: Effects of ε and Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.
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Figure 7.4: Effects of Fs and Da on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.
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(d)

Figure 7.5: Effects of Sr and N on (a)Skin friction, (b)Wall couple stress, (c)Nusselt number
and (d)Sherwood number.
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Figure 7.6: Effects of ε and Bi on (a)Skin friction, (b)Wall couple stress, (c)Nusselt number
and (d)Sherwood number.
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Figure 7.7: Effects of Fs and Da on (a)Skin friction, (b)Wall couple stress, (c)Nusselt
number and (d)Sherwood number.
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7.2.2 Case(b): Mixed Convection

Consider the flow is mixed convective flow arises from an external flow with velocity (U∞) and

buoyancy forces. We introduce the non-similarity transformations in the following form

η =
y

x
Re1/2x , ξ =

x

x0
=
x− x0
x0

, ψ = rνRe1/2x f (ξ, η) , (7.15)

ω =
ν Re

3/2
x

x2
g (ξ, η) , θ (ξ, η) =

T − T∞
Tf − T∞

, φ (ξ, η) =
C − C∞
Cw − C∞

Substitution of (7.7) and (7.15) into Eqs. (7.2)- (7.5), the set of governing equations reduces to the

following form

1

ε

(
1

1−N

)
f ′′′ +

1

ε2

(
R+

1

2

)
f f ′′ +

ξ

DaRex0
(1− f ′) + ξ

Fs

Da

(
1− (f ′)2

)
+

(
N

1−N

)
g′ (7.16)

+ξ λ (θ + Bφ) =
ξ

ε2

(
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

)
(

2−N
2− 2N

)
g′′ +

1

ε

(
R+

1

2

)
f g′ +

1

2ε
f ′ g − ξ

(
N

1−N

)(
2g +

1

ε
f ′′
)

=
ξ

ε

(
f ′
∂g

∂ξ
− g′∂f

∂ξ

)
(7.17)

1

Pr
θ′′ +

(
R+

1

2

)
f θ′ +

(
1

1−N

)
ε (f ′′)2 = ξ

(
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

)
(7.18)

1

Sc
φ′′ +

(
R+

1

2

)
f φ′ + Sr θ′′ = ξ

(
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

)
(7.19)

The associated boundary conditions become

f(ξ, 0) =
−ξ(

R+ 1
2

) ∂f
∂ξ
, f ′(ξ, 0) = 0, g(ξ, 0) = −nf ′′(ξ, 0), (7.20a)

θ′(ξ, 0) = −ξ1/2Bi(1− θ(ξ, 0)), φ(ξ, 0) = 1

f ′(ξ,∞) = 1, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0 (7.20b)

The non-dimensional skin friction Cf =
2τw
ρU2
∞

, wall couple stress Mw =
mw

ρU2
∞x0

, local Nusselt
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number Nux =
qwx

k(Tf − T∞)
and local Sherwood number Shx =

qmx

D(Cw − C∞)
, are given by

CfRe
1/2
x = 2

(
1− nN
1−N

)
f ′′(ξ, 0), MwRex =

(
2−N
2− 2N

)
g′(ξ, 0),

Nux

Re
1/2
x

= −θ′(ξ, 0),
Shx

Re
1/2
x

= −φ′(ξ, 0)

 (7.21)

Results and Discussion

The reduced partial differential equations (7.16)-(7.19) along with the boundary conditions (7.20)

are solved numerically using the extended spectral quasi-linearization method. In order to asses

the code generated, for special case of ξ = 0, N = 0, Bi → ∞, Sr = 0, B = 0, Da → ∞, ε = 0,

Fs = 0 and λ = 0, the results have been compared with those of Lloyd and Sparrow [50] and the

agreement is appeared to be good as shown in Tab. (6.2). To study the effects of coupling number,

Biot number, viscous dissipation and Soret number, the computations have been carried out for

fixed Pr = 0.71, Rex0 = 200, ε = 0.9, Sc = 0.22, ξ = 0.5 and n = 0.

The variation of non-dimensional velocity f ′, microrotation g, temperature θ and concentration

φ are displayed in Fig. 7.8 for different values of the coupling number N in the presence and

absence of Soret number. It can be noticed from Fig. 7.8(a) that with an increase in the value

of coupling number N , decreases the velocity. From Fig. 7.8(b), it can be observed that initially,

the microrotation profiles is flat, and then it shows the reverse rotation near the two boundaries

with the increase of coupling number. Further, it remarked that there is no significant effect on

microrotation profile with the increase of Soret number. It can be perceived from Figs. 7.8(c) and

7.8(d) that with an increase in the values of coupling number N , the temperature and concentration

increase. Generally, the diffusive species with higher values of Soret number leads to increase in

the concentration. As expected, the temperature and concentration of micropolar fluids are higher

as compared with those values of the viscous fluid. Moreover, the velocity and concentration are

more in the presence of Soret number, but they are less in the absence of Soret number.

Figs. 7.9(a) - 7.9(d) are prepared to show the variation of non-dimensional velocity f ′, microro-

tation g, temperature θ and concentration φ for different values of Bi in the presence and absence

of ε. From Fig. 7.9(a), it can be observed that the velocity increases with the increase of both

Biot number and viscous dissipation parameter. From Fig. 7.9(b), it can be noticed that as the
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Biot number increases, the microrotation shows qualitatively same behaviour in the presence and

absence of viscous dissipation parameter ε. The temperature enhances with the increase of Biot

number as shown in Fig. 7.9(c). The viscous dissipation term in the energy equation acts as an

internal distributed heat source generated due to the action of viscous stresses and hence, increases

the temperature of the fluid. From Fig. 7.9(d), it can be noticed that the concentration increases

with the increase of both Biot number and viscous dissipation parameter.

The influence of Darcy number Da and Forchhiemer number Fs on the dimensionless velocity

f ′, microrotation g, temperature θ and concentration φ, is displayed in Figs. 7.10(a) - 7.10(d). It

is clear that Fs = 0.0 represents the Darcy porous medium. With the increase of permeability,

the porous matrix structure becomes less and less prominent and at the point of accumulation, as

Da → ∞ and ε = 1, the porous medium vanishes. From Fig. 7.10(a), it can be observed that

the velocity reduces with the increase of Darcy number in the presence of Forchheimer number,

but it does not show significant effect in the absence of Forchheimer number. As the non-Darcy

parameter increases, the porous medium offers more resistance to the fluid flow and hence, the

velocity is more in the case of non-Darcy porous medium (Fs = 0.5) as compared with that of the

Darcy porous medium case (Fs = 0.0). The microrotation shows reverse rotation with the increase

of Darcy parameter in the presence of Forchheimer number [Fig. 7.10(b)]. From Fig. 7.10(c), it

can be seen that with the increase of Darcy parameter the temperature shows reverse behaviour

within the boundary layer for Fs = 0.5, but it depict opposite trend for Fs = 0.0. It can be

remarked from Fig. 7.10(d) that with the increase of Darcy parameter, the concentration enhances

in the case of non-Darcy porous medium, but it does not show significant effect in the Darcy porous

medium case.

In Figs. 7.11(a)-7.11(d), the effects of mixed convection parameter λ on the dimensionless

velocity, microrotation, temperature and concentration profiles across the boundary layers, are

displayed. From Fig. 7.11(a), it can be illustrated that the velocity is more in the aiding flow and

less in the opposing flow as compared to the velocity in the forced convective flow. The microrotation

shows reverse rotation within the boundary as displayed in Fig. 7.11(b) for opposing, aiding and

forced convective flows. The temperature and concentration exhibit qualitatively same behaviour

with the influence of mixed convection parameter as shown in Figs. 7.11(c)-7.11(d). In other words,

the temperature and concentration are more in the case of opposing flow as compared with those

results in the aiding and forced convective flows.
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The effects of coupling numbers on the skin friction, wall couple stress, Nusselt and Sherwood

numbers against the streamwise coordinate ξ, are portrayed in Figs. 7.12(a) - 7.12(d) for both

Sr = 0.0 and Sr = 1.0. It can be observed from Fig. 7.12(a) that the skin friction enhances

with the increase of coupling number, but it enhances slightly with the increase of Soret number.

The skin friction coefficient is higher for the micropolar fluid when compared with that of the

viscous fluid. As the coupling number enhances, the wall couple stress reduces nonlinearly for the

micropolar fluid in the presence and absence of the Soret number [Fig. 7.12(b)]. From Fig. 7.12(c),

it can be perceived that the Nusselt number decreases with the increase of coupling number N , but

it decreases marginally with the increase of Soret number. It can be observed from Fig. 7.12(d)

that by enhancing the coupling number N , the Sherwood number reduces for both Sr = 0.0 and

Sr = 1.0. Further, it can be noticed that the Nusselt and Sherwood numbers are lower for the

micropolar fluid as compared with those of the viscous fluid for both Sr = 0.0 and Sr = 1.0.

Figs. 7.13(a) - 7.13(d) depict the variation of Biot number on the skin friction, wall couple stress,

Nusselt and Sherwood numbers against the streamwise coordinate ξ in the presence and absence

of viscous dissipation parameter. From Fig. 7.13(a), it can be illustrated that the skin friction

coefficient increases with the increase of both Biot number and viscous dissipation parameter. It

can be noticed that the wall couple stress coefficient decreases nonlinearly with an increase in both

Bi and ε, as shown in Fig. 7.13(b). From Fig. 7.13(c), it can be observed that the Nusselt number

enhances with the enhance of Biot number, but it reduces with the enhance of viscous dissipation

parameter. From Fig. 7.13(d), it can be perceived that the Sherwood number decreases with an

increase in Biot number but, it increases with an increase in viscous dissipation parameter.

Effects of Forchheimer number and Darcy number on the non-dimensional skin friction, wall

couple stress, Nusselt and Sherwood numbers against the streamwise coordinate ξ, are depicted in

Figs. 7.14(a) - 7.14(d). It is to note that Fs = 0 is taken in the analysis to indicate Darcy porous

medium and the resistance to the flow is enhanced by increasing the Forchheimer number. It can

be perceived from Fig. 7.14(a) that the skin friction decreases in the non-Darcy porous medium

and slightly reduces in the Darcy porous medium with the increase of Darcy parameter. From Fig.

7.14(b), it can be noticed that with the increase of Darcy number, the wall couple stress increases for

Fs = 0.5, but no siginificant effect is found for Fs = 0.0. From Fig. 7.14(c), it can be observed that

with the increase of Darcy number, the Nusselt number shows more significant effect in the non-

Darcy porous medium (Fs = 0.5) as compared with that of the Darcy porous medium(Fs = 0.0).
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The mass transfer rate reduces with the increase of Darcy parameter and also noticed that it is

more prominent in the presence of Forchheimer number as shown in Fig. 7.14(d). From Figs.

7.14(a) - 7.14(d), it can be observed that the skin friction and mass transfer rate increase, but the

wall couple stress and heat transfer rate decrease with the increase of Forchheimer number.

The variation of mixed convection parameter on the skin friction, wall couple stress, Nusselt

and Sherwood numbers against streamwise coordinate ξ, is displayed in Figs. 7.15(a) - 7.15(d).

From Fig. 7.15(a), it can be noticed that the skin friction in the opposing flow is less as compared

with that of both aiding and forced convective flows. Fig. 7.15(b) shows that the wall couple stress

decreases from the opposing flow to the aiding flow and moreover, it can be observed that the wall

couple stress in the opposing flow is higher than that of the aiding flow. From Fig. 7.15(c), it can

be revealed that the heat transfer rate decreases from the opposing flow to the aiding flow. It can

be noticed in Fig. 7.15(d) that the mass transfer rate is less in the opposing flow as compared with

that of the forced convective and aiding flows.
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Figure 7.8: Effects of Sr and N on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.

178



0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0



 = 1.0, Da = 0.5, Sr = 1.0, N = 0.5, Fs = 0.5 

f '()

 

 

 = 0.0, Bi = 0.1
 = 0.0, Bi = 1.0
 = 0.0, Bi = 5.0
 = 0.3, Bi = 0.1
 = 0.3, Bi = 1.0
 = 0.3, Bi = 5.0

(a)

0 1 2 3 4 5 6

-0.08

-0.06

-0.04

-0.02

0.00

 = 0.0, Bi = 0.1
 = 0.0, Bi = 1.0
 = 0.0, Bi = 5.0
 = 0.3, Bi = 0.1
 = 0.3, Bi = 1.0
 = 0.3, Bi = 5.0

g()



 = 1.0, Da = 0.5, Sr = 1.0, N = 0.5, Fs = 0.5 

 

 

(b)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

 = 0.0, Bi = 0.1
 = 0.0, Bi = 1.0
 = 0.0, Bi = 5.0
 = 0.3, Bi = 0.1
 = 0.3, Bi = 1.0
 = 0.3, Bi = 5.0()

 = 1.0, Da = 0.5, Sr = 1.0, N = 0.5, Fs = 0.5 



 

 

(c)

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

 = 0.0, Bi = 0.1
 = 0.0, Bi = 1.0
 = 0.0, Bi = 5.0
 = 0.3, Bi = 0.1
 = 0.3, Bi = 1.0
 = 0.3, Bi = 5.0

 = 1.0, Da = 0.5, Sr = 1.0, N = 0.5, Fs = 0.5 

()



 

 

(d)

Figure 7.9: Effects of ε and Bi on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.
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Figure 7.10: Effects of Fs and Da on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.
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Figure 7.11: Effects of λ on (a)Velocity, (b)Microrotation, (c)Temperature and
(d)Concentration.

181



0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8



 = 1.0,  = 0.3, Da = 0.5, Bi = 1.0, Fs = 0.5 

C
f 
R

e
1

/2
x

 

 

 Sr = 0.0, N =0.0
 Sr = 0.0, N =0.5
 Sr = 0.0, N =0.8
 Sr = 1.0, N =0.0
 Sr = 1.0, N =0.5
 Sr = 1.0, N =0.8

(a)

0.0 0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

 = 1.0,  = 0.3, Da = 0.5, Bi = 1.0, Fs = 0.5 

M
w
R

e
x



 Sr = 0.0, N =0.0
 Sr = 0.0, N =0.5
 Sr = 0.0, N =0.8
 Sr = 1.0, N =0.0
 Sr = 1.0, N =0.5
 Sr = 1.0, N =0.8

 

 

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

 = 1.0,  = 0.3, Da = 0.5, Bi = 1.0, Fs = 0.5 

N
u

x
R

e
-1

/2
x



 Sr = 0.0, N =0.0
 Sr = 0.0, N =0.5
 Sr = 0.0, N =0.8
 Sr = 1.0, N =0.0
 Sr = 1.0, N =0.5
 Sr = 1.0, N =0.8

 

 

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.16

0.20

0.24

0.28

0.32

 = 1.0,  = 0.3, Da = 0.5, Bi = 1.0, Fs = 0.5 



 Sr = 0.0, N =0.0
 Sr = 0.0, N =0.5
 Sr = 0.0, N =0.8
 Sr = 1.0, N =0.0
 Sr = 1.0, N =0.5
 Sr = 1.0, N =0.8

S
h

x
R

e
-1

/2
x

 

 

(d)

Figure 7.12: Effects of Sr and N on (a)Skin friction, (b)Wall couple stress (c)Nusselt number
and (d)Sherwood number.
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(d)

Figure 7.13: Effects of ε and Bi on (a)Skin friction, (b)Wall couple stress, (c)Nusselt number
and (d)Sherwood number.

183



0.0 0.2 0.4 0.6 0.8 1.0

1.5

3.0

4.5

6.0

7.5

9.0



 Fs = 0.0, Da = 0.1
 Fs = 0.0, Da = 0.3
 Fs = 0.0, Da = 0.5
 Fs = 0.5, Da = 0.1
 Fs = 0.5, Da = 0.3
 Fs = 0.5, Da = 0.5

 = 1.0,  = 0.2, Bi = 5.0, Sr = 1.0, N = 0.5  

C
fR

e
1

/2
x

 

 

(a)

0.0 0.2 0.4 0.6 0.8 1.0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

M
w
R

e
x



 Fs = 0.0, Da = 0.1
 Fs = 0.0, Da = 0.3
 Fs = 0.0, Da = 0.5
 Fs = 0.5, Da = 0.1
 Fs = 0.5, Da = 0.3
 Fs = 0.5, Da = 0.5

 = 1.0,  = 0.2, Bi = 5.0, Sr = 1.0, N = 0.5 

 

 

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32



 Fs = 0.0, Da = 0.1
 Fs = 0.0, Da = 0.3
 Fs = 0.0, Da = 0.5
 Fs = 0.5, Da = 0.1
 Fs = 0.5, Da = 0.3
 Fs = 0.5, Da = 0.5

 = 1.0,  = 0.2, Bi = 5.0, Sr = 1.0, N = 0.5  

N
u

x
R

e
-1

/2
x

 

 

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.16

0.20

0.24

0.28

0.32



 Fs = 0.0, Da = 0.1
 Fs = 0.0, Da = 0.3
 Fs = 0.0, Da = 0.5
 Fs = 0.5, Da = 0.1
 Fs = 0.5, Da = 0.3
 Fs = 0.5, Da = 0.5

 = 1.0,  = 0.2, Bi = 5.0, Sr = 1.0, N = 0.5  

S
h

x
R

e
-1

/2
x

 

 

(d)

Figure 7.14: Effects of Fs and Da on (a)Skin friction, (b)Wall couple stress, (c)Nusselt
number and (d)Sherwood number.
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(d)

Figure 7.15: Effect of λ on (a)Skin friction, (b)Wall couple stress, (c)Nusselt number and
(d)Sherwood number.
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7.3 Conclusions

In this chapter, the convective flow of an incompressible micropolar fluid over a truncated cone

embedded in a saturated porous medium with the viscous dissipation and thermal diffusion effects,

is investigated. The resulting non-similarity equations are solved using the extended spectral quasi-

linearization method. Based on the analysis carried out, the main conclusions are drawn for both

case (a) and case (b) as given below.

As in the previous chapter, the behavior of various parameters namely, N , Sr, Bi are ε are

found to be similar on various profiles. Case(a): In the presence and absence of the Forchheimer

number, the velocity, skin friction, Nusselt and Sherwood number increase, whereas, the wall couple

stress, temperature and concentration decrease with the increase of the Darcy parameter. The

velocity, skin friction, heat and mass transfer decrease, but the wall couple stress, temperature

and concentration increase with the increase of Forchheimer number. Moreover, the microrotation

slightly reduces and then enhances within the boundary layer. Case(b): The velocity, skin friction

and Sherwood numbers are more in the aiding flow than compared to that of the opposing flow.

Further, the Nusselt number, temperature and concentration are more in the opposing flow and

less in the aiding flow. The velocity, skin friction and Sherwood number reduce, but the wall

couple stress, Nusselt number, concentration and temperature enhance with the enhance of the

Darcy parameter and also, it is observed that these physical quantities are more prominent in the

presence of Forchheimer number as compared with the absence of Forchheimer number. The skin

friction, mass transfer rate and velocity increase, but the wall couple stress, heat transfer rate,

temperature and concentration decrease with the increase of Forchheimer number.
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Chapter 8

Summary and Conclusions

In this thesis, an analysis of convective heat and mass transfer in a micropolar fluid with/without

saturated porous medium subject to the convective boundary condition, is discussed. The study of

convective boundary condition has a significant role in heat transfer problems because, it is more

realistic in various engineering and industrial processes.

The similarity solution for convective flow along a vertical plate immersed in a micropolar

fluid with and without saturated porous medium, is obtained in part-II. The objective of this

part is to study the effects of Biot number, micropolar parameter, suction-injection parameter,

Darcy parameter, non-linear convection parameter and homogeneous and heterogeneous reactions

on free and mixed convective flows. The Lie scaling group of transformations is applied to get

the similarity representation of the system of governing partial differential equations and then the

resulting system of equations is solved using the spectral quasi-linearization method. The main

results indicate the following findings for both (a) free convection and (b) mixed convection in the

presence and/or absence of suction-injection parameter:

• An increase in the coupling number N , increases the temperature, concentration and skin

friction, but reduces the wall couple stress, heat and mass transfer rates for both free and

mixed convective flows. Moreover, the velocity reduces near plate and far away from the

plate it shows reverse behaviour in case of free convection, while in mixed convective flow,

the velocity decreases for both opposing and aiding flows. In the case of mixed convection

flow of chapters 4 and 5, the species concentration reduces.
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• The skin friction, mass transfer rate and species concentration (i.e., in chapters 4 and 5)

increase whereas, the wall couple stress and concentration decrease with the increase of

Biot number in both free convective and aiding flows, but, these show reverse behaviour

in opposing flow. The wall couple stress increases for material constant n = 0.5 in free

convective and aiding flows of chapter 2. Moreover, the velocity enhances in both aiding flow

and free convection (near the surface of the plate), whereas it reduces in the opposing flow.

The temperature and heat transfer rate enhance for both cases (a) and (b). Microrotation

shows reverse rotation within the boundary layer.

• In free convective flow, the skin friction coefficient, heat transfer rate, velocity and species

concentration (i,e., in the chapter 5) are more, but the wall couple stress, temperature and

concentration (in chapter 3) are less with the increase of Darcy parameter. While, in mixed

convective flows, these show reverse behaviour. Further, the microrotation depicts reverse

trend.

• The higher values of nonlinear convection parameter results in lower temperature and wall

couple stress coefficient, but higher velocity, species concentration, skin friction and heat

transfer rate. The behaviour of physical quantities of the flow in the opposing and aiding

flow situations show opposite nature.

• The increase in radiation parameter leads to increase in the velocity, species concentration

and skin friction for both free convective and aiding flows, but these show reverse behaviour

for the opposing flow. For both free and mixed convection, the temperature and heat transfer

rate enhance.

• Species concentration and mass transfer rate decreases with the increase of strength of ho-

mogeneous and heterogeneous reaction parameters. The effect of heterogeneous reaction on

species concentration is more as compared with that of the homogeneous reaction.

Part-III deals with the non-similarity solution for convective flow of a micropolar fluid over the

vertical frustum of a cone with Soret and viscous dissipation effects in the presence and absence

of non-Darcy porous medium. Studying the influence of pertinent parameters (i.e., like coupling

number, Forchheimer number, Biot number, Soret and viscous dissipation) on the velocity, microro-

tation, temperature and concentration profiles along with the local skin friction, wall couple stress,

heat and mass transfer rates are the objectives of this section. Using non-similarity variables, the
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governing equations are transformed into non-linear partial differential equations and then solved

by using the extended spectral quasi-linearization method. The important observations from these

investigations are as follows:

• An increase in coupling number leads to decrease in the wall couple stress, Nusselt number

and Sherwood number, but increase in the temperature, concentration and skin friction.

Moreover, the velocity decreases in case (a) and (b), but far away from the truncated cone

surface, it shows opposite trend in case(a).

• The concentration and skin friction increase, but the wall couple stress and mass transfer

rates decrease with the increase of Soret number. Moreover, the heat transfer rate decreases,

but it increases in free convective flow (i,e., in chapter 7). Further, the velocity enhances

slightly near the vertical frustum of a cone and far away from the surface it shows reverse

behaviour in case (a) whereas, it enhances in case (b).

• By enhancing the Biot number, the skin friction, Nusselt number and temperature enhance

but, the wall couple stress and Sherwood number reduce. The velocity and concentration

depicts reverse behaviour within the boundary layers in case(a) but, they increases in case(b).

• As the viscous dissipation parameter increases, the wall couple stress and heat transfer rate

decrease, but the temperature, skin friction and mass transfer rate increase. The veloc-

ity and concentration depicts reverse behaviour within the boundary layer in case(a) but,

they increase in case(b). Moreover, with the increase of viscous dissipation parameter, the

microrotation depicts reverse rotation within the boundary layer.

• In case(a), the velocity, skin friction, Nusselt and Sherwood numbers increase, whereas, the

wall couple stress, temperature and concentration decrease with the increase of the Darcy

parameter. Moreover, the microrotation slightly reduces and then enhances. In case(b),

the velocity, skin friction and Sherwood number reduce, but the wall couple stress, Nusselt

number, concentration and temperature increase with the increase of the Darcy parameter.

The effect of Darcy parameter is more prominent in the presence of Forchheimer number as

compared with those results in the absence of Forchheimer number.

• With the increase of Forchheimer number, the velocity, skin friction, heat and mass transfer

decrease, but the wall couple stress, temperature and concentration increase in case(a). The
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skin friction, mass transfer rate and velocity increase whereas, the wall couple stress, heat

transfer rate, temperature and concentration decrease in case (b).

• As compared to the opposing flow, the skin friction, Sherwood number and velocity are more,

but the temperature and concentration are less in the case of aiding flow. The Nusselt number

is less in the opposing flow as compared with that of the forced convective and aiding flows

in case(a), but it shows opposite trend in case (b).

The work presented in the thesis can be extended to analyze the effects of Joule heating, stratifica-

tion, double dispersion, MHD, Hall and Ion slip, first and second order slip, etc. Further, this work

can be extended by studying the analysis for various non-Newtonian fluids like Couple stress fluids,

Casson fluids, nanofluids, etc. Such an exhaustive study can be a rewarding experience though it

is challenging as well as time consuming.
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