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A B S T R A C T

The importance of entropy and entropy generation is noticeable in areas of immediate

practical interest such as engineering and science. Entropy is used to establish criteria

for the performance of engineering devices. Minimizing entropy generation is important to

improving the efficiency of any system. The entropy generation analysis enables us to identify

the factors that are the major cause of irreversible effects in the system. In order to preserve

the quality of energy in a fluid flow process or at least to reduce the entropy generation,

it is important to study the distribution of the entropy generation within the fluid volume.

Further, the Newtonian fluids cannot precisely describe the characteristics of the fluid flow

with suspended particles. This aspect is precisely taken care by micropolar fluids, which

have been receiving much attention in the recent years. The physiological characteristics of

most of the industrial fluids described by micropolar fluids. Hence, this thesis describes the

entropy generation due to micropolar fluid flow through channels and pipes. The boundaries

of the geometry are subject to (i)No slip for velocity and thermal/heat flux for temperature

(ii)Slip for velocity and the convective boundary condition for temperature.

The thesis consists of EIGHT chapters. Chapter 1 provides an introduction to the con-

cepts in laws of thermodynamics, entropy generation analysis, micropolar fluid and a review

of the pertinent literature. Chapter 2 presents the numerical solution of entropy generation

with micropolar fluid flow through an inclined channel. Chapter 3 investigates the entropy

generation analysis for the micropolar fluid flow through a porous channel. Chapter 4 deals

the numerical solution for entropy generation analysis of the MHD flow of micropolar fluid

in a rectangular duct. Chapter 5 studies the entropy generation analysis of micropolar fluid

flow through an inclined porous circular pipe. Chapter 6 presents the entropy generation

analysis of micropolar fluid flow through concentric cylinders. Chapter 7 studies the nu-

merical solution of entropy generation with micropolar fluid flow through porous concentric

cylinders.

In all these chapters (except chapter 4), the governing equations are initially linearized

by using the Quasilinearization method. The resulting linearized equations are solved by

applying Chebyshev spectral collocation method. The governing partial differential equa-

tions of momentum, angular momentum, and energy in chapter - 4 are solved numerically

using finite difference method. The effects of coupling number, Reynolds number, Brinkman

number, slip parameter and Biot number on the velocity, microrotation, temperature, as

well as entropy generation rate and Bejan number are presented through graphs. The last

chapter (Chapter - 8) gives key findings of the thesis and scope of the work for further study.
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N O M E N C L A T U R E

a radius of the pipe

A constant pressure gradient

aj microinertia parameter

B micropolar constant

Be Bejan number

Bi Biot number

B0 magnetic flux density

Br Brinkman number

Cp specific heat at constant pressure

Ec Eckert number

f ′ dimensionless axial velocity

f dimensionless transverse velocity

g dimensionless microrotational

component

Gr Grashof number

g∗ acceleration due to gravity

h channel width

Ha Hartman number

Kf thermal conductivity of the fluid

l non-dimensional parameter

m2 micropolar parameter

N coupling number

Nh entropy generation due to heat

transfer

Nϑ entropy generation due to viscous

dissipation

Nm entropy generation due to mag-

netic effect

Ns dimensionless entropy generation

number

Pr Prandtl number

r1 radius of the inner cylinder

r2 radius of the outer cylinder

R suction or injection Reynolds num-

ber

Re Reynolds number

T dimensional temperature

Tp dimensionless temperature differ-

ence

u dimensional axial velocity

v dimensional transverse velocity

U0 characteristic velocity

V0 injection velocity

V1 suction velocity
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Greek Symbols

α, β, γ gyration viscosity coefficients

κ vortex viscosity

ρ density of the fluid.

θ dimensionless temperature

µ viscosity of the fluid

φ inclined angle

ζ slip coefficient

σ dimensional microrotational com-

ponent

σe fluid electrical conductivity

Ω1,Ω2 angular velocities of the inner and

outer cylinders

Superscripts

′ differentiation with respect to η.
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Chapter 1

Introduction

1.1 Introduction

Fluid flow through channels, pipes and annulus have received the considerable attention

of the several investigators as it is encountered in many energy related applications. The

channel configuration is relevant to solar energy collectors, transpiration cooling, gaseous

diffusion technology, cooling of rocket, mechanized irrigation and filtration processes, thermal

insulation engineering, etc. Further, flow in a pipe or induced by a relative rotating motion

or axial movement between concentric cylinders is applicable to rotating electrical machines,

swirl nozzles, rotating disks, standard commercial rheometers, journal bearings and other

chemical and mechanical mixing equipment. Although a wide variety problems involving

channel, circular pipe and concentric cylinder geometry were reported in the literature,

these problems have been restricted, in thermodynamic point of view, to only the first law

of thermodynamics analyses.

The improvement of thermal systems has gained a growing interest due to the relations

with the problems of material processing, energy conversion and environmental effects. Ef-
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ficient energy utilization during any fluid flow is one of the fundamental problems of the

engineering processes to improve the system. One of the methods used for the prediction of

performance of the engineering processes has been the second law analysis. Hence, the con-

temporary trend in the field of heat transfer and thermal design is to perform analysis of the

second law of thermodynamics and its design-related concept of entropy generation and its

minimization. This new trend is important and, at the same time, necessary to contribute to

a viable engineering solution to the energy problems. Entropy generation analysis is gaining

currency in engineering fields like heat exchangers, cooling of nuclear reactors, energy storage

systems, cooling of electronic devices, pumps, turbine, and pipe networks, and so forth. A

great surge of investigations on entropy generation aspects of fluid flow systems was carried

out theoretically in idealized flow configurations having technological implications.

The thermodynamic systems and engineering devices involve various processes such as

compression, expansion, cooling, heating, humidification etc. In all these processes, there

is an exchange of mass, momentum and energy. Hence, a basic knowledge of the laws of

thermodynamics, fluid mechanics and heat transfer that governs these processes is essential.

1.2 Laws of Thermodynamics

Thermodynamics is the study of energy, the conversion of energy between various forms

and the ability of energy to do the work. It is concerned with heat and temperature and

their relation to energy and work. The foundations of thermodynamics are the four laws

of thermodynamics, which define the rules of temperature equivalence (zeroth law), energy

conservation (first law), entropy tendencies (second law), and conditions for an absence of

temperature (third law). These laws provide a sound basis for studying the relationships

among the various forms of energy and their interactions.
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1.2.1 First Law of Thermodynamics

The first law of thermodynamics, also known as the law of conservation of energy, states that

the energy can be neither created nor destroyed during a process, but changes only forms.

The first law of thermodynamics evaluates temperature distributions of fluids within the

geometry and also heat transfer coefficients at the surrounding walls. However, it provides

no information about the direction in which processes can spontaneously occur, that is, the

reversibility aspect of thermodynamics processes. It gives no information about the inability

of any thermodynamics processes to convert heat into mechanical work with full efficiency.

An experimentally derived principle is required to characterize the availability of energy,

which is precisely stated in the second law of thermodynamics.

1.2.2 Second Law of Thermodynamics

The first law is concerned with the quantity of energy and the transformation of energy from

one form to another irrespective of its quality. Preserving the quality of energy is a major

concern to engineers, and the second law provides the necessary means to determine the

quality as well as the degree of degradation of energy during a process.

The second law of thermodynamics states that energy of all sorts, whether it be light,

potential, chemical, kinetic, or whatever, tends to change itself spontaneously into a more

dispersed, random, or less organized, form. It defines the fundamental physical quantity

entropy as randomized energy state unavailable for direct conversion to work. It states that

the entropy of the universe (i.e. system and the surroundings) increases in a spontaneous

process and remains unchanged in an equilibrium process. The change in the entropy of the

universe (4Suniv) is sum of the entropy changes in the system (4Ssys) and the surroundings

(4Ssurr), which is expressed by the following mathematical equation:

4Suniv = 4Ssys +4Ssurr

3



Then the second law of thermodynamics states that

Spontaneous process : 4Suniv = 4Ssys +4Ssurr > 0 (1.1)

Equilibrium process : 4Suniv = 4Ssys +4Ssurr = 0 (1.2)

Nonspontaneous process : 4Suniv = 4Ssys +4Ssurr < 0 (1.3)

1.3 Entropy Generation Analysis

Entropy and entropy generation are fundamental quantities. They play essential role in

understanding of many diverse phenomena ranging from cosmology to biology. A physical

quantity termed entropy defined in the second law of thermodynamics is a measure of irre-

versibility of the systems. Entropy generation is not a property because it depends upon the

process path. Generation of entropy destroys the available work of a system. Therefore, it

makes good engineering sense to focus on the irreversibility of heat transfer and fluid flow

processes to understand the function of the entropy generation mechanism. To optimize the

performance of engineering systems containing devices in which simultaneous heat and mass

exchange occur, their irreversibilities of individual devices must be minimized. Since the

total irreversibility of a system is the sum of the component irreversibilities, this procedure

improves the system performance. The factors that cause irreversibilities include friction,

unrestrained expansion, mixing of two fluids, heat transfer across a finite temperature dif-

ference, electric resistance, inelastic deformation of solids, and chemical reactions.

The second law of thermodynamics can be combined with the principles of fluid mechan-

ics and heat transfer to acquire knowledge about irreversibilities that influence the working

efficiency of the system and processes. All the real processes related to thermal convection

system are associated with thermal gradient and frictional effects and hence some amount of

available energy is destroyed during the process due to irreversibilities. The optimization may

therefore be carried out by minimizing the irreversibilities present in the system. This ap-

proach of thermodynamic optimization known as Entropy Generation Minimization(EGM)

was first reported by Bejan [12]. Entropy generation minimization(EGM)is a method of

4



modeling and optimization. Since then the theories based on these foundations have rapidly

developed. However, the entropy production resulting from temperature differences has re-

mained untreated by classical thermodynamics, which motivates many researchers to analyze

the fundamental and applied engineering problems based on the second law of thermody-

namics. Bejan [15] presented the following expression for the volumetric entropy generation

rate.

Sgen =
Kf

T 2
1

[∇T ]2 +
1

T1

Φ (1.4)

where the first term on the right hand side of the above equation represents the entropy

generation due to heat transfer and the second term represents the entropy generation due

to viscous dissipation or friction.

It can be noted that second law analysis makes possible to compare many different

interactions in a process or system and to identify the major sources of exergy distributions

or losses. This enables us to exactly identify the region where the entropy generation rate is

maximum in the entire fluid regime. This study facilitated through the entropy generation

number introduced by Bejan. Consequently, the relative effects of heat transfer and fluid

friction can be determined successfully by Bejan number.

1.4 Micropolar Fluid

Newtonian fluid is one for which the shear stress induced by flow is proportional to the rate

of the strain (Newton’s law of viscosity) and the constant of proportionality is the fluid’s

viscosity. Most of the common fluids used in our daily life, e.g., gasoline, honey, water and

air are satisfactorily characterized as Newtonian fluids. There are numerous fluids such as

multigrade engine oils, liquid soaps, paint, shampoo, toothpaste, peanut butter and may-

onnaise, for which Newton’s law of viscosity does not hold good. These fluids are termed

as Non-Newtonian fluids. Further, examples include slurries and polymers in molten form.

The rheological characteristics of the fluids can be described through the constitutive equa-

tions. In view of the diversity of non-Newtonian fluids, a single constitutive equation cannot
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predict their rheological behavior. Therefore, several empirical and semi-empirical consti-

tutive equations have been proposed in the literature. Micropolar fluid model, presented

by Eringen [41], is one amongst them, which exhibit microinertial effects and support body

couples and couple stresses. Shearing stress components are affected by the vorticity and

microrotation in these fluids and are no longer symmetric. The important feature of these

fluids is the microrotation.

The applications of the micropolar fluid model include the extrusion of polymer fluids

and real fluids with suspensions, solidification of liquid crystals, cooling of a metallic plate in

a bath, animal blood, porous media, turbulent shear flows, flow in capillaries, microchannels,

colloidal and suspension solutions. In the micropolar fluid theory, rigid particles contained in

a small fluid volume element are limited to rotation about the center of the volume element

described by the micro-rotation vector. This local rotation of the particles is in addition to

the usual rigid body motion of the entire volume element. Physically micropolar fluids may

be described as the non-Newtonian fluids consisting of dumb-bell molecules or short rigid

cylindrical elements.

The theory of micropolar fluids requires to append a transport equation representing the

principle of conservation of local angular momentum to the usual transport equations for the

conservation of mass and momentum with additional local constitutive parameters. Hence,

this theory allows for two independent vectors, velocity vector q and microrotation vector σ

associated with each fluid particle. The microrotation vector represents the rotation in an

average sense of the rigid particles centered in a small volume element about the centroid of

the element. The field equations of micropolar fluid dynamics [41, 20] are

Conservation of mass:

dρ

dt
+ ρ(5.q) = 0 (1.5)
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Conservation of momentum:

ρ
dq

dt
= ρf −5p− (µ+ κ)5×5×q + κ5×σ + (λ+ 2µ+ κ)5 (5.q) (1.6)

Conservation of angular momentum:

ρj∗
dσ

dt
= ρl + κ5×q − 2κσ − γ 5×5×σ + (α + β + γ)5 (5.σ) (1.7)

Conservation of energy:

ρ
dE

dt
= −P (5.q) + ρΦ−

(
5.h

)
(1.8)

where Φ is the viscous dissipation function of mechanical energy per unit mass and is given

by

ρΦ = λ (5.q)2 + 2µ (D : D) + 4κ

(
1

2
5×q − σ

)2

+ α (5.σ)2 + γ (5σ : 5.σ) + β
(
5σ : (5.σ)T

)
The scalar quantities ρ and j∗ are density, micro-inertia and are assumed to be constants. The

vectors q, σ, f and l are the velocity, microrotation, body force per unit mass and body couple

per unit mass respectively. P is the fluid pressure at any point, D denotes deformation tensor i.e.,

D = 1
2

(
5q : (5.q)T

)
, E is the specific internal energy, h = −Kf5T is the heat flux and Kf is the

thermal conductivity. The material constants (λ, µ, κ) are the viscosity coefficients and (α, β, γ)

are the gyro-viscosity coefficients. These confirm the following inequalities,

κ ≥ 0, 2µ+ κ ≥ 0, 3λ+ 2µ+ κ ≥ 0, γ ≥ 0, 3α+ β + γ ≥ 0, γ ≥| β | (1.9)

The stress tensor τij in the theory of micropolar fluid is given by

τij = (−P + λ (5.q)) δij + (2µ+ κ) dij + κεijm (ωm − σm)

where σm and ωm are the components of microrotation vector and the vorticity vector respectively,

dij are the components of rate of shear strain, δij is the kronecker symbol and εijm is the Levi-Civita
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symbol.

In the special case where the fluid has constant physical properties, no external body forces exist

and the flow is in steady state, the conservation equations can be greatly simplified. Additionally,

in the case where κ = 0, α = β = γ = 0 and with vanishing l, the gyration vector disappears

and angular momentum equation (1.7) vanishes identically and the equation (1.6) reduces to the

classical Navier-Stokes equation. We also note that in the case of zero vortex viscosity (κ = 0)

only, the velocity vector q and the microrotation vector σ are decoupled and the global motion is

unaffected by the microrotations.

1.5 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the branch of continuum mechanics which deals with the motion

of an electrically conducting fluid in the presence of a magnetic field. This subject has attracted

numerous scientists and engineers for the last few decades because of its fascination and impor-

tance in various technological devices and in understanding the diverse cosmic phenomena. MHD

describes the frontier area combining classical fluid mechanics and electrodynamics. MHD phe-

nomena are outcome of mutual interaction between magnetic field and electrically conducting fluid

flowing across it i.e., electric current induced in the fluid as a result of its motion modify the field,

and at the same time their flow in the magnetic field produces a mechanical force called Lorentz

force which modifies the motion.

The flow of electric currents in the magnetic field produces a mechanical force that brings a

change in the fluid motion. Suppose that the fluid is incompressible, electrically conducting and is

in the presence of an arbitrary magnetic field. The magnetic field, then interacts with the fluid by

means of body force and body couple per unit mass. If gravitational effects are not present, then

a regular magneto-fluid dynamics assumption is ρf = ρeE + J × B , where ρe is the free charge

density. Since, the electric force density ρeE is smaller than J×B, the electric force density can be

neglected. Hence, the fluid dynamical aspects of MHD are handled by adding an electromagnetic

force term to the momentum equation of the fluid. There are two key physical effects which occur

when the fluid moves into the magnetic field: motion of a conducting liquid in an applied magnetic

field will induce a magnetic field in the medium. The total field is the sum of the applied and induced
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magnetic fields (B = B0 +b , b is induced magnetic field). The relative strength of the induced field

is characterized by the magnetic Reynolds number. The neglect of the induced magnetic field is a

valid assumption when magnetic Reynolds number is small. The second key effect is dynamical.

When currents are induced by a motion of a conducting fluid through a magnetic field, a force

(Lorenz force or J ×B, where J is the current density and B is the magnetic field) will act on the

fluid and alter its motion. Hence, fluid motion in a magnetic field induces

1.6 Boundary Conditions

The governing equations for the velocity, microrotation and temperature fields are partial differen-

tial equations. Which are applicable at every point in a fluid that is being modeled as a continuum.

When they are integrated in any given situation, it can be expected to see arbitrary functions or

constants appear in the solution. To evaluate these, an additional statement of velocity, micro-

rotation, temperature fields and their gradients at the natural boundaries of the flow domain are

needed. Such statements are known as boundary conditions. The different boundary conditions

for the velocity (no-slip condition and slip condition), microrotation (hyperstick condition) and

temperature (uniform temperature, heat flux and convective conditions) are given below.

No-slip Condition

In no-slip boundary condition, the fluid is in contact with a wall will have the same velocity as the

velocity of the wall. Often, the walls are not moving, so as the fluid velocity is zero. In drag flows,

the velocity of the wall is finite and the fluid velocity is equal to the wall velocity.

q(at the boundary) = qwall

Slip Condition

Navier [82] proposed a general boundary condition that incorporates the possibility of fluid slip at

a solid boundary. This condition states that the velocity at a solid surface is proportional to the
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shear stress at the surface.

qwall = ζ τwall

where ζ is the slip length or slip coefficient. The measure of the slip is called slip length. Factors

that affect the slip length include weak wall fluid attraction, surface roughness and high shear

stress. If ζ = 0, then the general assumed no-slip boundary condition is obtained. The fluid

slippage phenomenon at the solid boundaries appear in many applications such as in microchan-

nels or nanochannels and in applications where a thin film of light oil is attached to the moving

plates or when the surface is coated with special coatings such as thick monolayer of hydrophobic

octadecyltrichlorosilane.

Hyper-stick Condition

In this thesis it has been taken the hyper-stick condition for microrotation. This condition states

that the microrotation vector on the boundary is same as the angular velocity of the fluid on the

boundary.

σwall =
1

2

(
∇× qwall

)
A more general condition is taken as

σwall = n
(
∇× qwall

)
where 0 ≤ n ≤ 1 (refer [62]). This value of n indicates the concentration of micropolarity or

interaction of fluid particles with the boundary. The case n = 0 indicates σ = 0 at the boundary. It

represents the flow of concentrated particles in which the micro elements closed to the wall surface

are unable to rotate. This case is also known as strong concentration of micro elements. The

case corresponding to n = 0.5 results in the vanishing of antisymmetric part of stress tensor and

represents weak concentrations of microelements. The particle spin is equal to fluid vorticity at the

boundary for the fine particle suspensions. The case corresponding to n = 1 represents a turbulent

boundary layer flows.
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Isothemral/Flux conditions

In most usual situations, heat transfer takes place in a fluid moving near a wall heated or cooled at

a temperature different from that of the fluid. In this case, the boundary conditions are expressed

at the fluid/solid interface. The most usual conditions consist of one of the following simplified

assumptions:

1. The fluid/solid interface is at a uniform temperature : Tfluid = Tsolid = constant

2. The heat flux is uniform on the interface : qw = −Kf (n.∇T ).

Convective Boundary Conditions

Recently, a novel mechanism for the heating process has drawn the involvement of many researchers,

namely, convective boundary condition (CBC), where the heat is supplied to the convecting fluid

through a bounding surface with a finite heat capacity. Further, this results in the heat transfer

rate through the surface being proportional to the local difference in temperature with the ambient

conditions [74].

−Kf (n.∇T ) = h(Tsurface − T∞)

where h is the heat transfer coefficient, T∞ is the ambient temperature.

1.7 Aim and Scope of the Thesis

The aim of the present thesis is to study the entropy generation analysis due to micropolar fluid

flow through channels and pipes. In this thesis, two types of boundary conditions are consid-

ered. First type (or case) of boundary conditions are no-slip for velocity and iso thermal/iso

flux for temperature and the second type are slip for velocity and convective boundary condition

for temperature. Further, the hyperstick condition for microrotation is taken in both the cases.

The governing non-linear equations are linearized using quasilinearization method and the result-

ing equations are solved using Chebyshev spectral collocation method. The influence of coupling

number, Reynolds number, slip parameter, Biot number and Brinkman number on the velocity,

microrotation, temperature, entropy generation and Bejan number are analyzed.
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Quasilinearization Method

In this section we give a description of the quasilinearization method (QLM). The QLM was initially

proposed by Bellman and Kalaba [16] to solve non-linear boundary layer problems. To develop

the QLM we consider a system of m non-linear ordinary differential equations with m unknowns

zi(η)(i = 1, 2, ....m) where η is the independent variable. The system can be written as a sum of

its linear (L) and non-linear components (N) as

L [z1(η), z2(η), ....zm(η)] +N [z1(η), z2(η), ....zm(η)] = H(η) (1.10)

Define vector Zi to be the vector of the derivatives of the variable zi with respect to the independent

variable η, that is

Zi =
[
z

(0)
i , z

(1)
i , ....., z

(ni)
i

]
(1.11)

where z
(0)
i = zi and z

(p)
i is the pth derivative of zi with respect to η and ni(i = 1, 2, ....m) is the

highest derivative order of the variable zi appearing in the system of equations. In addition, we

define Li and Ni to be the linear and non-linear operators respectively, that operate on the Zi for

i = 1, 2, ....m. With these definitions equation (1.10) can be written as

Li [Z1, Z2, .....Zm] +Ni [Z1, Z2, .....Zm] =
m∑
j=1

ni∑
p=0

α
[p]
ij Z

(p)
j +Ni [Z1, Z2, .....Zm] = Hi (1.12)

where α
[p]
ij are the constant coefficient of z

(p)
j , the derivative of zj(j = 1, 2, ....m) that appears in

the ith equation for i = 1, 2, ....m.

Again, we assume that equation (1.10) is to be solved subject to separated two-point boundary

conditions which are expressed as

m∑
j=1

nj−1∑
p=0

β
[p]
v,jz

(p)
j (a) = Ka,v, v = 1, 2, ....,ma (1.13)

m∑
j=1

nj−1∑
p=0

γ
[p]
σ,jz

(p)
j (b) = Ka,σ, σ = 1, 2, ....,mb (1.14)

where β
[p]
v,j , γ

[p]
σ,j are the constant coefficients of z

(p)
j in the boundary conditions and ma, mb are the

total number of prescribed boundary conditions at η = a and η = b respectively.
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Assume that the solution zi(η) of (1.12) at the (r + 1)th iteration is zi,r+1. If the solution at

the previous iteration zi,r(η) is sufficiently close to zi,r+1, the non-linear component Ni of equation

(1.12) can be linearized using one term Taylor series for multiple variables so that equation (1.12)

can be approximated as

Li [Z1,r+1, .....Zm,r+1] +Ni [...] =
m∑
j=1

ni∑
p=0

(
Z

(p)
j,r+1 − Z

(p)
j,r

) ∂Ni

∂Z
(p)
j

[...] = Hi (1.15)

where

[...] = [Z1,r, Z2,r, .....Zm,r] (1.16)

Equation (1.15) can be re-written as

Li [Z1,r+1, .....Zm,r+1] +
m∑
j=1

ni∑
p=0

Z
(p)
j,r+1

∂Ni

∂Z
(p)
j

[...] = Hi +
m∑
j=1

ni∑
p=0

Z
(p)
j,r

∂Ni

∂Z
(p)
j

[...]−Ni [...] (1.17)

The above equation can then be solved using any numerical method. In this work we use the Cheby-

shev spectral collocation method and we call the resulting method, the spectral quasilinearization

method (SQLM).

Chebyshev Spectral Collocation Method

The Chebyshev spectral collocation method [22, 36, 95] is based on the Chebyshev polynomials

defined on the interval [-1, 1]. To solve the problems using this method, first transform the domain

[a, b] to the domain [−1, 1] by using the transformation

(b− a)χ = 2x− (a+ b), −1 ≤ χ ≤ 1 (1.18)

We discretize the domain [-1, 1] using the Gauss-Lobatto collocation points given by

χj = cos
πj

J
, j = 0, 1, 2, ......, J (1.19)
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where J is the number of collocation points used. The function zi is approximated at the collocation

points as follows

zi(χ) =

J∑
k=0

zi(χk)Tk(χj) (1.20)

where Tk is the kth Chebyshev polynomial defined by Tk(χ) = cos[kcos−1χ]

The derivatives of the variables at the collocation points are represented as

drzi
dxr

=
J∑
k=0

[
2

b− a
Dkj

]r
zi(χk), (1.21)

where r is the order of differentiation and D being the Chebyshev spectral differentiation matrix

whose entries are defined as

D00 = 2J2+1
6

Djk =
cj
ck

(−1)j+k

χj−χk
, j 6= k; j, k = 0, 1, 2 · · · , J,

Dkk = − χk

2(1−χk
2)
, k = 1, 2 · · · , J − 1,

DNN = −2J2+1
6


(1.22)

Substituting equations (1.19) - (1.22) into the given equation leads to the following system of matrix

equation

Ai−1Xi = Ri−1, (1.23)

in which Ai−1 is a (J +1)×(J +1) square matrix while Xi and Ri−1 are (J +1)× 1 column vectors.

After incorporating the boundary conditions, the solution of the given equation is obtained as

Xi = A−1
i−1Ri−1 (1.24)

1.8 Literature Review

Entropy generation which is the measure of the destruction of available energy in a system that plays

an important role in the design and development of engineering processes such as heat exchangers,

pumps, turbine and pipe networks. The energy utilization during the convection in any fluid flow

and the improvement in thermal system is one of the fundamental problems of the engineering
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processes, this can be done by minimizing the entropy generation. Bejan [12] was the pioneer

to work on entropy generation. Bejan [14, 15] investigated entropy generation minimization and

showed the fundamental importance of entropy minimization for efficient engineering processes.

Thereafter, many authors such as Baytas [11], Tasnim and Mahmud [91], Ganji et al [43], Esfahani

and Shahabi [42], Tshehla et al [97, 96], Heidary et al [47], Chauhan and Kumar [23], Ramakrishna

et al [86], etc., have studied the entropy generation and irreversibility profiles for different geometric

configurations, flow situation and thermal boundary conditions.

Fluid flow and heat transfer in channels with simple geometry at different boundary conditions

is one of the fundamental researches in engineering. Several researchers have discussed the entropy

generation inside the channels under various flows. Tasnim et al [90] analyzed the first and second

law characteristics of non-Darcy mixed convection flow in a porous channel in the presence of

transverse magnetic field. They observed that the channel walls act as strong concentrator of

irreversibility due to high velocity and temperature gradients. Entropy generation in a channel

of two parallel plates with viscous dissipation was investigated by Mahmud and Fraser [70, 69].

Erbay [40] studied the entropy generation due to fluid flow through a channel where the bottom

is moving. Havzali [46] investigated the entropy generation on a laminar, viscous, incompressible

flow between two inclined, parallel, isothermal plates.

The study of fluids in porous channel has received adequate attention over the few centuries due

to its wide applications in physical, biological and applied sciences. Consequently, investigation of

entropy generation in porous channel due to the combined effects of wall suction/injection becomes

essential. Chauhan and Kumar [23] studied entropy analysis in an annulus partly saturated with a

porous medium due to third grade fluid flow. Entropy generation for couple stress fluid through a

vertical channel filled with saturated porous medium was determined by Makinde [72]. Adesanya

and Makinde [1, 2] examined the entropy generation in couple stress fluid flow through a porous

channel with slip and convective heating. Mahdavi et al [65] discussed the fluid flow analysis and

heat transfer in pipes partly occupied with porous medium and evaluated the entropy generation

numerically.

The flow through the circular pipe and flow between two cylinders, where one or both of

the cylinders rotate has many applications. Yilbas et al [101] studied the entropy analysis for

non-Newtonian fluid flow in an annular Pipe. They found that the rate of entropy generation

can be reduced by reducing both non-Newtonian parameter and Brinkman number. Bouzid et al
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[19] investigated the entropy generation in a fully developed ice slurry pipe flow and found that

the volumetric average entropy generation number increases as the mass fraction of ice or the

dimensionless group parameter increases.

Fluid flow and heat transfer inside a cylindrical annular space through convection have many

significant engineering applications. Mirzazadeh et al [75] have focused on the entropy generation

induced by the flow of a non-linear viscoelastic fluid between concentric rotating cylinders. Their

results showed that the entropy generation number increases with increase in Brinkman number.

Atayilmaz [9] carried out both numerical and experimental analysis on natural convection of heat

transfer from horizontal concentric cylinders. Considerable amount of research has been carried out

to investigate the Newtonian and non-Newtonian fluid flow through concentric cylinders. Taylor

[92] studied theoretically and experimentally the flow of viscous incompressible fluid between two

concentric cylinders. Hessami et al [48] analyzed laminar mixed convection flow pattern and heat

transfer of air inside a vertical cylindrical annular space. Borjini et al [18] studied the effect

of radiation on unsteady numerical convection between two horizontal concentric and vertically

eccentric cylinders.

The majority of entropy generation studies deal with convection processes in which the entropy

generation is the result of fluid friction and heat transfers. Haddad et al [44] presented the entropy

generation due to laminar forced convection in the entrance region of a concentric cylindrical

annulus. It was found that the thermal entropy generation is relatively dominant over viscous

entropy generation. Hooman and Ejlali [49] studied the entropy generation for forced convection

in a circular tube filled by a saturated porous medium, with uniform wall temperature. Cimpean

and Pop [28] studied the entropy generation for a mixed convection flow of a fluid saturated porous

medium through an inclined channel with uniform heated walls. Several works have been carried

out on entropy generation with natural convection (see, example [63, 64, 5, 25, 10]).

The flow and heat transfer in an electrically conducting fluid in the presence of a magnetic field

has attracted several researchers in view of its applications in engineering, technology and science.

Rashid and Mehr [87] studied the effects of the velocity slip and temperature jump conditions on

the entropy generation in the MHD flow over a porous rotating disk. Numerical analysis of the

entropy generation within a mixed convection magneto hydrodynamic (MHD) flow in a parallel-

plate vertical channel was performed by Liu and Lo [61]. They observed that the minimum entropy

generation number and the maximum Bejan number occur at centerline region of the channel under
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asymmetric heating conditions.

The boundary condition of the fluid over a solid surface is the generally accepted no-slip con-

dition. However, Navier [82] proposed a slip boundary condition where the slip velocity depends

linearly on the shear stress. The fluid slippage phenomenon at the solid boundaries appear in

many applications such as in microchannels or nanochannels and the polishing of artificial heart

valves, internal cavities. Yari [100] studied the second-law analysis and entropy generation for heat

transfer and fluid flow through microannulus by considering the viscous dissipation effect, slip ve-

locity and temperature jump. Effects of velocity slip, temperature jump on entropy generation in

a rectangular duct with forced convection is presented by Hooman [50].

Furthermore, heat transfer processes poses thermal boundary conditions, heat flux boundary

conditions and convective boundary conditions. Consequently, investigation of entropy generation

due to the effects of Navier slip and different temperature conditions becomes essential. Eegunjobi

and Makinde [38, 39] presented the effect of slip and convection heating on entropy generation

in a channel. Ibanez [52] considered the problem of entropy generation with slip and convective

boundary conditions. Iman [53] investigated the importance of thermal boundary conditions of the

heated/cooled walls in the development of flow, heat transfer, and observed the characteristics of

entropy generation in a porous enclosure.

The flows of non-Newtonian fluids are very important because of their industrial and techno-

logical applications. In many chemical and processing industries, the products such as polymer,

foods, and plastics exhibit non-Newtonian behavior. Adequate research has been done on entropy

generation due to various non-Newtonian fluid flows through different geometries. Langeroudi and

Aghanajafi [59] applied power-law, Bingham and Casson fluid flow models in a circular pipe to

evaluate entropy generation. Mahian et al [66, 67, 68] determined the influence MHD flow on

the entropy generation of nanofluid flow through a vertical annulus. Entropy generation due to

nanofluid flow through a channel with convective cooling/heating was investigated by [24, 76, 30].

The entropy generation and heat transfer characteristics of the fully developed flows of power law

fluids in a micro channel was discussed in [33, 4] .

Micropolar fluid theory is one of the non-Newtonian fluids introduced by Eringen [41] has

distinct features, such as microscopic effects arising from the local structure, micro motion of fluid

elements, presence of couple stresses, body couples and non-symmetric stress tensor. Weng et al [98]
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applied the micropolar fluid to study the stability problem of flow between two concentric rotating

cylinders. Nadeem et al [80] studied the peristaltic flow of a micropolar fluid with heat transfer

in an annulus. Imtiaz and Mahfouz [54] investigated numerically the conjugate heat transfer in an

annulus between two concentric cylinders. Devi et al [35] studied the mixed convection micro polar

flow through a porous medium in a cylindrical annulus using finite element analysis.

Heat transfer enhancement in a rectangular duct is of great interest and importance in many

industrial applications like heat exchangers, cooling devices and gas turbines because of higher heat

transfer rates increase the efficiency of a system and reduce thermal load. Narusawa [81] investigated

the mixed convection and entropy generation numerically in three dimensional rectangular duct

with heating at the bottom. Oztop [83] studied the entropy generation in a semicircular duct with

constant heat flux. Ko and Ting [57] analyzed the entropy generation in a curved rectangular duct

caused by forced convection with external heating. Haji-Sheikh [45] considered the fully developed

forced convection in a duct of rectangular cross section. Jarungthammachote [55] studied the

entropy generation for laminar fluid flow through a hexagonal duct. Yang et al [99] investigated heat

transfer and entropy generation in the entrance region of a three dimensional vertical rectangular

duct. They noticed that increase in Reynolds number increases the entropy generation rate due to

heat transfer and fluid friction in the channel.

1.9 Outline of the Thesis

The present thesis aims at presenting entropy generation analysis for micropolar fluid flow through

channels and pipes. A quantitative analysis has been performed based on numerical computations

in order to know the effects of certain physical parameters on entropy generation and Bejan number

through graphs. This thesis consists of EIGHT chapters.

Chapter - 1 is introductory in nature and motivates the investigations carried out in the thesis.

The basic terminology is introduced and a survey of pertinent literature is presented to exhibit the

importance of the problems considered. The basic equations governing the micropolar fluid flow

and heat transfer are given.

In chapter-2, the entropy generation for steady incompressible micropolar fluid flow through an

inclined channel for two types of boundary conditions is investigated. In the first case, the lower
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plate of the channel is kept at constant temperature and upper plate is subjected to uniform heat

flux. Slip and convective boundary conditions are prescribed in the second case. The governing

equations are simplified for velocity, microrotation and temperature profiles, which are used to

compute entropy generation and Bejan number. The obtained numerical results are compared and

are found to be in good agreement with previously published results dealing with special cases.

Chapter-3 analyzes the entropy generation due to micropolar fluid flow through a porous channel

under different boundary conditions. In the previous chapter one dimensional channel flow is

considered, whereas in this chapter the two dimensional flow through the channel is considered. The

governing non-linear partial differential equations are transformed to ordinary differential equations

by using similarity transformations. The entropy generation number is computed numerically by

utilizing the velocity, microrotation and temperature.

Chapter-4 deals with the problem of entropy generation due to heat transfer, fluid friction and

magnetic field. The steady, incompressible micropolar fluid flow in a rectangular duct has been

considered associated with different boundary conditions. An external uniform magnetic field is

applied, which is directed arbitrarily in a plane perpendicular to the flow direction. The governing

partial differential equations of momentum, angular momentum and energy are solved numerically

using finite difference method. The obtained velocity, microrotation and temperature distributions

are then used to evaluate the entropy generation and Bejan number.

Chapter-5 describes the second law analysis of micropolar fluid flow and heat transfer inside an

inclined porous circular pipe for different boundary conditions. The cylindrical polar coordinate

system (r, ϕ, z) with z-axis along the direction of the fluid flow is considered. The non-linear gov-

erning equations are transformed using similarity transformations and then solved numerically. The

velocity, microrotation, temperature, entropy generation number and Bejan number are calculated

and discussed quantitatively for various values of the embedded parameters.

Chapter-6 presents the analysis of entropy generation in micropolar fluid flow between concen-

tric cylinders. The non-linear model problem is tackled numerically. The velocity, microrotation

and temperature profiles are obtained and used to compute entropy generation and Bejan num-

ber. The entropy generation number and Bejan number are presented graphically and discussed

quantitatively for various values of the fixed parameters. The numerical results are compared and

are found to be in good agreement with previously published results as special cases of the present
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investigation.

The objective of Chapter-7 is to analyze the entropy generation of micropolar fluid flow through

porous concentric cylinders. A relative rotational motion is present between inner and outer cylin-

ders, thus inducing the flow. The injection fluid flow rate at one wall is assumed to be same as the

suction flow rate at the other wall. A uniform magnetic field is applied along the radial direction.

The flow phenomenon has been characterized by the non-dimensional parameters like coupling

number, cross flow Reynolds number and Brinkman number. The numerical data for velocity,

microrotation and temperature fields are used to evaluate entropy generation and Bejan number.

The Spectral quasilinearization method is employed to solve the problems in Chapters (2, 3,

5, 6 and 7). In all these chapters, the governing equations are initially linearized by using the

quasilinearization method. In this method, the iteration scheme is obtained by linearizing the

non-linear component of a differential equation using the Taylor series expansion. The resulting

linearized equations are solved by applying Chebyshev spectral collocation method. In all the

chapters the effects of various physical parameters on the velocity, microrotation, temperature, as

well as entropy generation rate and Bejan number are presented through graphs

In Chapter - 8, the main conclusions of the earlier chapters are recorded and the directions in

which further investigations may be carried out are indicated.

A list of references is given at the end of the thesis. The references are arranged in an alpha-

betical order.

Considerable part of the work in the thesis is published/accepted for publication in journals.

The remaining part is communicated for publications. The details are presented below.
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Chapter 2

Entropy Generation in a Micropolar

Fluid Flow Through an Inclined

Channel 1

2.1 Introduction

The study of fluid flow and heat transfer has a wide range of thermal engineering applications such

as thermal insulation engineering, water movement in geothermal reservoirs, heat pipes, etc. At the

same time the optimal design criteria for thermal systems by minimizing their entropy generation

have been recently a topic of great interest. Moreover, the performance of thermal devices is

always affected by irreversible losses that lead to an increase of entropy and reduces the thermal

efficiency. Therefore, in the energy optimization problems and in the design of many traditional

heat removal engineering devices, it is necessary to minimize the entropy generation due to heat

transfer and fluid friction. Starting from the pioneering work of Bejan [14], several investigations

[12, 71, 27, 26, 33] have been carried on entropy generation under various flow configurations.

Havzali [46] investigated the effect of entropy generation on a laminar, viscous, incompressible fluid

flow between two inclined, parallel, isothermal plates. Kamisli and Oztop [56] examined the entropy

1Case(a):Published in “Alexandria Engineering Journal, 55 (2016) 973-982”, Case(b):Published
in “Energy, 91 (2015) 72-83”
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generation in two immiscible incompressible fluid flows under the influence of pressure difference

in thin slit of constant wall heat fluxes. Komurgoz et al [58] investigated the magnetic effect on

heat-fluid and entropy generation interactions in an inclined channel consisting of two regions: one

filled with clear fluid and the second with a porous medium.

The present chapter concentrates on investigating the characteristics of micropolar fluid flow and

entropy generation in an inclined channel. Two types(cases) of boundary conditions are considered

for the velocity and temperature on the plates of the inclined channel. In the first type(case a),

the plates of the channel are subjected to no-slip and isoflux/isothermal boundary conditions. In

the second type (case b), the plates of the channel are subject to slip and convective boundary

conditions. The effect of pertinent parameters on velocity, microrotation, temperature, entropy

generation and Bejan number are discussed through graphs.

2.2 Mathematical Formulation

Consider a steady, laminar, incompressible, fully developed, micropolar fluid flow bounded by two

infinite inclined parallel plates separated by a distance 2h. Assume that the channel is porous and

inclined at an angle φ. Let the plates are of infinite length in x and z-directions i.e. -∞ < x <∞

and -∞ < z < ∞. We consider the fluid to be flowing between the two plates under the influence

of a constant pressure gradient ∂p
∂x in the x-direction, and a uniform suction or injection from below

and above with a constant velocity v0 where v0 < 0 is the velocity of suction and v0 > 0 is the

velocity of injection. Hence, the flow is along x and y- directions and can be taken as (u(y), v, 0).

Therefore, the continuity equation takes the form ∂v
∂y = 0 which on integration gives v = constant.

This constant is equal to the suction velocity v0. In particular, the velocity of the fluid is given as

q(y) = u(y)i+ v0j.

With these assumptions and Boussinesq approximations, the governing equations are

∂v

∂y
= 0 (2.1)

(µ+ κ)
d2u

dy2
− ρvdu

dy
+ κ

dσ

dy
+ ρg∗β(T − T1) sin(φ)− ∂p

∂x
= 0 (2.2)
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Figure 2.1: Physical model and coordinate system.

γ
d2σ

dy2
− ρj∗vdσ

dy
− 2κσ − κdu

dy
= 0 (2.3)

Kf
d2T

dy2
− ρCpv

dT

dy
+ (µ+ κ)

(
du

dy

)2

+ 2κ

(
σ2 + σ

du

dy

)
+ γ

(
dσ

dy

)2

= 0 (2.4)

where u is the velocity component in x-direction, σ is the microrotation, ρ and j∗ are the fluid

density and gyration parameter, µ, κ and γ are the material constants (viscosity coefficients), g∗

is the acceleration due to gravity, p is pressure, β is the coefficient of thermal expansion and Kf is

the thermal conductivity of the fluid.

2.2.1 Case(a): No-slip and Isothermal/Isoflux Boundary Condi-

tions

In this case, no-slip and hyper-stick conditions are considered for the velocity and microrotation

respectively on both plates of the channel. Further, the upper plate of the channel is subject to

uniform heat flux q (isoflux) while the lower plate of the channel is kept at uniform temperature

T1 (isothermal). These boundary conditions are given by

u = 0, σ = 0,
dT

dy
=

q

Kf
, at y = h

u = 0, σ = 0, T = T1, at y = −h
(2.5)
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Introducing the following non-dimensional variables

η =
y

h
, u = U0f(η), σ =

U0

h
g(η), θ(η) =

T − T1

qh
Kf

(2.6)

in Eqs.(2.2) - (2.4), to get the following coupled non-linear system of differential equations:

1

1−N
f ′′ −Rf ′ + N

1−N
g′ +

Gr

Re
sin(φ)θ = A (2.7)

2−N
m2

g′′ − ajR
(

1−N
N

)
g′ − 2g − f ′ = 0 (2.8)

θ′′ −RPrθ′ + Br

1−N

[
f ′2 + 2N(g2 + gf ′) +

N(2−N)

m2
g′2
]

= 0 (2.9)

where U0 is the characteristic velocity, Pr =
µCp

Kf
(Prandtl number), Re = ρU0h

µ (Reynolds number),

R = ρv0h
µ (suction/injuction Reynolds number), N = κ

κ+µ(coupling number), Gr = ρ2gβqh4

µ2Kf
(Grashof

number), A = h2

µU0
∂p
∂x(constant pressure gradient), m2 = h2κ(2µ+κ)

γ(µ+κ) (micropolar parameter), aj =

j∗

h2
(micro-inertia parameter), Br =

µU2
0

hq (Brinkman number).

The corresponding dimensionless boundary conditions are

f = 0, g = 0, θ′ = 1, at η = 1

f = 0, g = 0, θ = 0, at η = −1
(2.10)

Method of Solution

The system of Eqs. (2.7) to (2.9) along with the boundary conditions (2.10) are solved using the

Spectral quasilinearization method(SQLM) [77, 78, 79]. Initially Quasilinearization technique is

applied to linearize the system of equations (2.7) to (2.9) and then Chebyshev spectral collocation

method is implemented to solve the linearized equations.

Let fr, gr and θr be an approximate current solution and fr+1, gr+1 and θr+1 be an improved

solution of the system of equations (2.7) to (2.9). By taking the Taylors series expansion of non-

linear terms in (2.7) to (2.9) around the current solution and neglecting the second and higher
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order derivative terms, to get the following linearized equations

1

1−N
f ′′r+1 −Rf ′r+1 +

N

1−N
g′r+1 +

Gr

Re
sin(φ)θr+1 = A (2.11)

2−N
m2

g′′r+1 − ajR
(

1−N
N

)
g′r+1 − 2gr+1 − f ′r+1 = 0 (2.12)

θ′′r+1 −RPrθ′r+1 + a1,rf
′
r+1 + a2,rg

′
r+1 + a3,rgr+1 = a4,r (2.13)

where the coefficients as,r, s = 1, 2, 3, 4 are known functions calculated from previous iterations and

are obtained as

a1,r =
2Br

1−N
(
f ′r +Ngr

)
, a2,r =

2Br

1−N
N(2−N)

m2
g′r, a3,r =

2BrN

1−N
(
f ′r + 2gr

)
,

a4,r =
Br

1−N

[
f ′2r + 2N(g2

r + grf
′
r) +

N(2−N)

m2
g′2r

]

The above linearized equations (2.11) - (2.13) are solved using the Chebyshev spectral collocation

method [21]. The approximations are done by using the Chebyshev interpolating polynomials for

the unknown functions. Further, they are collocated at the Gauss-Lobatto points represented as

ξj = cos
πj

J
, j = 0, 1, 2, ..., J (2.14)

where J is the number of collocation points used.

The functions fr+1, gr+1 and θr+1 are approximated at the collocation points by

fr+1(ξj) =

J∑
k=0

fr+1(ξk)Tk(ξj), gr+1(ξj) =

J∑
k=0

gr+1(ξk)Tk(ξj),

θr+1(ξj) =

J∑
k=0

θr+1(ξk)Tk(ξj), j = 0, 1, 2, ......, J (2.15)

where Tk is the kth Chebyshev polynomial defined by Tk(ξ) = cos(kcos−1ξ).
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The derivatives of the variables at the collocation points are represented as

dafr+1

dηa
=

J∑
k=0

Da
jkfr+1(ξk),

dagr+1

dηa
=

J∑
k=0

Da
jkgr+1(ξk),

daθr+1

dηa
=

J∑
k=0

Da
jkθr+1(ξk), j = 0, 1, 2, ......, J (2.16)

where “a” is the order of differentiation and D being the Chebyshev spectral differentiation matrix.

Substituting Eqs. (2.15) - (2.16) into Eqs. (2.11) - (2.13) leads to the matrix equation

ArXr+1 = Br, (2.17)

Here Ar is a (3J + 3)× (3J + 3) square matrix and Xr+1 and Br are (3J + 3)× 1 column vectors

defined by

Ar =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xr+1 =


Fr+1

Gr+1

Θr+1

 , Br =


r1,r

r2,r

r3,r

 (2.18)

where

Fr+1 = [fr+1(ξ0), fr+1(ξ1), ......, fr+1(ξJ−1), fr+1(ξJ)]T ,

Gr+1 = [gr+1(ξ0), gr+1(ξ1), ......, gr+1(ξJ−1), gr+1(ξJ)]T ,

Θr+1 = [θr+1(ξ0), θr+1(ξ1), ......, θr+1(ξJ−1), θr+1(ξJ)]T ,

A11 = 1
1−ND2 −RD, A12 = ( N

1−N )D, A13 = Gr
Re sinφI, r1,r = A,

A21 = −D, A22 = 2−N
m2 D2 − ajR(1−N

N )D− 2I, A23 = 0, r2,r = 0,

A31 = a1,rD, A32 = a2,rD + a3,rI, A33 = D2 −RPrD, r3,r = a4,r.


(2.19)

Here I, 0 represents (J + 1)× (J + 1) identity matrix, zero matrix respectively.

The corresponding boundary conditions

fr+1(ξ0) = 0, gr+1(ξ0) = 0,
J∑
k=0

D0kθr+1(ξk) = 1

fr+1(ξJ) = 0, gr+1(ξJ) = 0, θr+1(ξJ) = 0

(2.20)
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Incorporate the boundary conditions (2.20) in the matrix system (2.17), the solution is obtained as

Xr+1 = A−1
r Br (2.21)

The initial approximations f0, g0 and θ0 are chosen such that they satisfy the boundary conditions

(2.20) i.e.

f0(η) = 0, g0(η) = 0, θ0(η) =
1

2

(
η2 − 1

)
(2.22)

Entropy Generation

The second law of thermodynamics is an important tool to understand the irreversible effects due

to flow and heat transfer. Thermodynamic irreversibility is closely related to entropy production.

A convection process involving channel flow of micropolar fluids is inherently irreversible due to

the exchange of energy and momentum within the fluid and at solid boundaries. For the present

study the volumetric rate of entropy generation from Eq. (1.4) is given by

SG =
Kf

T 2
1

(
dT

dy

)2

+

[
µ+ κ

T1

(
du

dy

)2

+
2κ

T1

(
σ2 + σ

du

dy

)
+

γ

T1

(
dσ

dy

)2
]

(2.23)

where the first term on the right hand side of the above equation represents the entropy generation

due to heat transfer while the second term gives the entropy generation due to micropolar fluid

friction. According to Bejan [15], the dimensionless entropy generation number Ns is the ratio of the

volumetric entropy generation rate to the characteristic entropy generation rate. The dimensionless

entropy generation number is given by

Ns =

Nh︷︸︸︷
θ′2 +

Br

1−N
L

[
f ′2 + 2N(g2 + gf ′) +

N(2−N)

m2
g′2
]

︸ ︷︷ ︸
Nv

(2.24)

where the characteristic entropy generation rate is q2

KfT
2
1

and L =
KfT1
hq is the dimensionless value

and it is a controlling parameter that depends on the heat flux, temperature of the fluid, length of

the channel and the thermal conductivity. In order to have an idea whether fluid friction or heat

transfer entropy generation dominates, an alternate parameter Be (Bejan number) was introduced

by Paoletti [85], which is the ratio of entropy generation due to heat transfer to the overall entropy
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generation.

Be =
Nh

Nh +Nv
(2.25)

The Bejan number varies from 0 to 1. Subsequently, Be = 0 reveals that the irreversibility due to

viscous dissipation dominates, whereas Be = 1 indicates that the irreversibility due to heat transfer

is dominant. It is obvious that the Be = 0.5 is the case in which the irreversibility due to heat

transfer is equal to viscous dissipation in the entropy production.

Results and Discussion

To check the accuracy of the numerical scheme, the velocity and microrotation(for hydrodynamic

case) are compared with analytical solution given by Ariman and Cakmak [6] in the absence of R

and φ. The comparison is found to be in good agreement as shown in Table. 2.1.

The dimensionless velocity, microrotation, temperature, entropy generation and Bejan number

are shown graphically through the Figs. 2.2 to 2.6. To study the effect of different parameters on

the above mentioned quantities, the parameters aj = 0.001, A = −1, m = 2, Gr = 1, L = 0.1 and

R = 1 are taken as constants.

The effect of coupling number on velocity, microrotation, temperature, entropy generation and

Bejan number of the micropolar fluid flow through an inclined channel is plotted in Fig. 2.2. The

coupling of linear and rotational motion arising from the micromotion of the fluid molecules is char-

acterized by coupling number. Hence, coupling between the Newtonian and rotational viscosities

is represented by N . The microstructure effect is significant as N → 1, and for a smaller value of

N the substructure individuality is limited. The fluid is non polar as its micropolarity is lost as

κ→ 0 i.e. N → 0. Thus, for viscous fluid N → 0.

From Fig. 2.2(a) it is observed that as the coupling number increases, velocity decreases. As

N → 1 fluid particles rotate about themselves with high angular velocities, thus, the fluid velocity

decreases. It is observed from Fig. 2.2(b) that the component of microrotation increases near

the lower plate and decreases near the upper plate with an increase of coupling number. In Figs.

2.2(c) and 2.2(d), it can be noticed that the temperature and entropy generation decrease with

an increase in the value of coupling number. As the velocity is decreasing, the dissipation energy

29



decreases, leading to decrease in temperature, thus the consequently entropy generation decreases.

It is clear from Fig. 2.2(e) that the Bejan number increases with an increase in the value of N .

From this figure, it is also observed that the heat transfer irreversibility dominates around the

centerline region of the channel, and the fluid friction dominates at the lower plate of the channel.

Figs. 2.3(a) to 2.3(e) describe the effect of angle of inclination φ on velocity, microrotation,

temperature, entropy generation and Bejan number. It is noticed from Fig. 2.3(a) that the velocity

increases with the angle of inclination due to increase in forces acting upon the fluid flow. It is

clear from Fig.2.3(b) that the microrotation component decreases near the lower plate and increases

near the upper plate with an increase in the value of angle of inclination thus, showing a reverse

rotation near the two boundaries. It is observed from Figs. 2.3(c) and 2.3(d) that the temperature

and entropy generation are increasing with the increase in the value of angle of inclination. It is

noticed that the entropy-generation rate is less at the lower plate of the channel and increases quite

rapidly to its maximum value at the upper plate of the channel for all the parameter variations. It

can be seen from Fig. 2.3(e) that as the angle of inclination φ has no effect on the Bejan number

at the center of the channel, but Be decreases at the upper plate and increases at the lower plate

with increase in φ.

From Figs. 2.4(a) - 2.4(d), it is observed that as Reynolds number increases the velocity, mi-

crorotation(numerically), temperature and entropy generation are decreasing. Fig. 2.4(e) shows

the effect of Reynolds number on Bejan number. The Bejan number at the lower plate decreases

whereas, it increases, at the upper plate leading to the increasing influence of fluid friction irre-

versibility at the lower plate and heat transfer irreversibility at the upper plate.

The influence of Prandtl number on velocity, microrotation, temperature, entropy generation

and Bejan number of the micropolar fluid flow through an inclined channel is displayed in Fig.

2.5. It is observed from Fig. 2.5(a) that the velocity decreases with increase in Prandtl number.

It is shown in the Fig. 2.5(b) that the microrotation component increases near the lower plate

and decreases near the upper plate with an increase in the value of Prandtl number. Fig. 2.5(c)

represents the effect of Prandtl number on temperature. It is observed that the increase in Prandtl

number causes a decrease in temperature. Entropy generation decreases with increase in the Prandtl

number shown in Fig. 2.5(d). Fig. 2.5(e) shows that the Bejan number decreases as Prandtl number

increases.
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The effect of Brinkman number on velocity, microrotation, temperature, entropy generation

and Bejan number is displayed in Fig. 2.6. Fig. 2.6(a) depicts that the non-dimensional velocity

increases with an increase in the Brinkman number. It is seen from Fig. 2.6(b) that the microro-

tation component decrease near the lower plate and increase near the upper plate with increasing

Brinkman number showing a reverse rotation near the two boundaries. However, the magnitude of

the microrotation is increasing near the plates. The reason is that the microrotation field in this

region is dominated by a small number of particles spins that are generated by collisions with the

boundary. It is observed from Figs. 2.6(c) and 2.6(d) that the temperature and entropy generation

increases with an increase in the value of Brinkman number. Brinkman number is related to heat

conduction from a channel wall to a flowing fluid. The effect of viscous forces on entropy generation

is significant in the region close to the channel walls. From Fig. 2.6(e) it is interesting to note that

increasing values of Br results an increase in the dominant effect of fluid-friction irreversibility near

the upper plate and decrease in the dominant effect of fluid friction irreversibility near the lower

plate.

Table 2.1: Comparison of velocity and microrotation by the present method and analytical
solution given by Ariman and Cakmak [6] for N = 0.1, m = 1 and A = −1.

Velocity f(η) Microrotation g(η)

η Ariman and Cakmak [6] Present Ariman and Cakmak [6] Present

-1 0 0 0 0
-0.8090 0.1557 0.1557 -0.0204 -0.0204
-0.6129 0.2817 0.2817 -0.0275 -0.0275
-0.4258 0.3696 0.3696 -0.0248 -0.0248
-0.2181 0.4302 0.4302 -0.0147 -0.0147

0 0.4518 0.4518 0 0
0.2181 0.4302 0.4302 0.0147 0.0147
0.4258 0.3696 0.3696 0.0248 0.0248
0.6129 0.2817 0.2817 0.0275 0.0275
0.8090 0.1557 0.1557 0.0204 0.0204

1 0 0 0 0
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Figure 2.2: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for Pr = 1, Re = 1, Br = 1 and φ = π
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Figure 2.3: Effect of angle of inclination on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Pr = 1, Re = 1 and Br = 1.
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Figure 2.4: Effect of Reynolds number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Pr = 1, Br = 1 and φ = π
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Figure 2.5: Effect of Prandtl number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Re = 1, Br = 1 and φ = π
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Figure 2.6: Effect of Brinkman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Pr = 1, Re = 1 and φ = π
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2.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the fluid slips at the lower, upper plates of the channel and the microelements close

to the channel plates are unable to rotate. Let the lower plate is heated by convection from a hot

fluid with temperature T2 which provides a heat transfer coefficient h1 while the upper plate losses

heat to the ambient with a heat transfer coefficient h2. Thus, the boundary conditions are

u = −ζ ′
[
(µ+ κ)

du

dy
+ κσ

]
, σ = 0, Kf

dT

dy
+ h1(T − T1) = 0, at y = h

u = ζ ′
[
(µ+ κ)

du

dy
+ κσ

]
, σ = 0, Kf

dT

dy
− h2(T − T2) = 0, at y = −h

(2.26)

where ζ ′ is the slip length of the upper and lower plates of the channel.

Introducing the following non-dimensional variables

η =
y

h
, u = U0f(η), σ =

U0

h
g(η), θ(η) =

T − T1

T2 − T1
, ζ =

ζ ′

h
(2.27)

in Eqs. (2.2) - (2.4), to obtain the non-linear system of differential equations (2.7) - (2.9) that are

mentioned in case(a).

The corresponding boundary conditions are:

f = − ζ

1−N
f ′, g = 0, θ′ +Bi1θ = 0, at η = 1

f =
ζ

1−N
f ′, g = 0, θ′ −Bi2θ = −Bi2, at η = −1

(2.28)

where ζ = ζµ is the slip parameter, Bik = hhk
Kf

is the Biot number for each plate. Subindexes

k = 1, 2 refer to the lower and upper plates, respectively. In this thesis, it is assumed that the Biot

number at the two boundaries is numerically same in every chapter.

Method of Solution

Proceeding as in Case (a), to obtain the following matrix equation

ArXr+1 = Br (2.29)
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where Ar is a (3J + 3)× (3J + 3) square matrix and Xr+1 and Br are (3J + 3)× 1 column vectors

defined in (2.18).

The corresponding boundary conditions are

fr+1(ξ0) = − ζ

1−N

J∑
k=0

D0kfr+1(ξk), gr+1(ξ0) = 0,

J∑
k=0

D0kθr+1(ξk) +Biθr+1(ξ0) = 0

fr+1(ξJ) =
ζ

1−N

J∑
k=0

DJkfr+1(ξk), gr+1(ξJ) = 0,
J∑
k=0

DJkθr+1(ξk)−Biθr+1(ξJ) = −Bi

(2.30)

Incorporate the boundary conditions (2.30) in the matrix system (2.29), the solution is obtained as

Xr+1 = A−1
r Br (2.31)

The initial approximations f0, g0 and θ0 are chosen to be functions that satisfy the boundary

conditions (2.30) i.e..

f0(η) = 0, g0(η) = 0, θ0(η) =
1

2

(
1− Bi

1 +Bi
η

)
(2.32)

Entropy Generation

The Eq. (2.23) mentioned in case(a) is the entropy generation for the micropolar fluid flow through

an inclined channel. The dimensionless entropy generation in this case is given by

Ns =
SG
SGC

= θ′2 +
Br

Tp(1−N)

[
f ′2 + 2N(g2 + gf ′) +

N(2−N)

m2
g′2
]

(2.33)

where Tp = T2−T1
T1

is the dimensionless temperature difference, SGC =
Kf (T2 − T1)2

h2T 2
1

is the charac-

teristic entropy generation rate. In order to have an idea whether the entropy generation due to

viscous dissipation dominates over the irreversibility due to heat transfer or vice versa, an alternate

parameter Bejan number is introduced in equation (2.25).
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Results and Discussion

To study the effects of pertinent parameters, computations were carried out by taking aj = 0.001,

A = −1, m = 2, Gr = 2, R = 1 and Pr = 1.

The effect of coupling number on velocity, microrotation, temperature, entropy generation and

Bejan number is displayed in Fig. 2.7. It is observed from the Fig. 2.7(a) that the velocity decreases

with increase in coupling number N . The peak velocity decreases with the increase of N . It is seen

from Fig. 2.7(b) that the microrotation component increases near the lower plate and decreases

near the upper plate with an increase in the value of coupling number N . The shear stress at the

two plates tends to rotate the fluid in opposite directions because of which the microrotation has

opposite signs near the two plates. It is observed from Figs. 2.7(c) and 2.7(d) that the temperature

and entropy generation decreases with an increase in the value of coupling number. It is observed

from Fig. 2.7(e) that the two crossovers in the Bejan number profile with an increase in the value

of N . The crossovers due to the consequence of the microstructure of the particles as N varies

from 0 to 1. The microstructure effect is significant as N → 1, and for a smaller value of N the

substructure individuality is limited. Further, the region near the plates is dominated by a small

number of particles spins that are generated by collisions with the boundary.

Fig. 2.8 presents the effect of angle of inclination φ on velocity, microrotation, temperature,

entropy generation and Bejan number. It is noticed from Fig. 2.8(a) that the velocity increases with

an increase in the value of angle of inclination. It is shown from Fig. 2.8(b) that the microrotation

component decreases near the lower plate and increases near the upper plate with an increase in

the value of angle of inclination. It is observed from Figs. 2.8(c) and 2.8(d) that the temperature

and entropy generation increases with an increase in the value of angle of inclination. It is observed

from Fig. 2.8(e) that the Bejan number decreases with an increase in the value of φ.

The variation of slip parameter on velocity, microrotation, temperature, entropy generation and

Bejan number is displayed in Fig. 2.9. It is observed that the increase in slip parameter increases the

velocity and decreases the microrotation as shown in Figs. 2.9(a) and 2.9(b). It is clear from Figs.

2.9(c) and 2.9(d) that there is no effect of slip parameter on temperature and entropy generation.

Eventhough the temperature is related to convection, in this case the convection is not influenced

by the slip prameter and thus, the temperature is not influenced by slip parameter. Hence, entropy

is also not influenced by the slip parameter. The effect of slip parameter on Bejan number is shown

39



in Fig. 2.9(e). It is observed that the slip parameter does not influence the Bejan number from the

lower plate to the center of the channel, but it increases near the upper plate.

Fig. 2.10 shows the influence of Reynolds number on velocity, microrotation, temperature,

entropy generation and Bejan number. From Figs. 2.10(a) - 2.10(d), it is observed that as the

Reynolds number increases, decrease in nature of velocity, microrotation(numerically), temperature

and entropy generation is seen. Also, it is observed from Ns profile that the entropy generation

number is high in magnitude near the upper plate due to the presence of high temperature and

velocity gradients. Fig. 2.10(e) shows that as the Reynolds number increases, Bejan number also

increases. This implies that in the entire flow region as Re increases, the relative increase of

dissipation of energy dominates the fluid friction.

The effect of Brinkman number on velocity, microrotation, temperature, entropy generation

and Bejan number is displayed in Fig. 2.11. Fig. 2.11(a) depicts that the non-dimensional velocity

increases with an increase in the value of Brinkman number. It is seen from Fig. 2.11(b) that

the microrotation component decreases near the lower plate and increases near the upper plate

with an increase in the value of Brinkman number. It is observed from Figs. 2.11(c) and 2.11(d)

that the temperature and entropy generation increases with an increase in the value of Brinkman

number. The Brinkman number Br is an indicative of the rate at which energy is dissipated by

the viscous forces within the fluid. Thus, the entropy generation becomes significant in the region

close to the channel walls and negligible at the center of the channel. An increase in Brinkman

number, increases the fluid temperature (Fig. 2.11(c)) as well as the temperature gradient within

the channel. Consequently, as shown in Fig. 2.11(e), the dominance of fluid friction irreversibility

over heat transfer irreversibility decreases with increase in Br.

The Biot number Bi is the ratio of internal thermal resistance of a solid to the boundary layer

thermal resistance. When Bi = 0 the plate is totally insulated, the internal thermal resistance

of the plate is extremely high therefore no convective heat transfer takes place to the cold fluid

on the upper part of the plate. Fig. 2.12(a) depicts that the non-dimensional velocity decreases

with an increase in the value of Biot number. It is seen from Fig. 2.12(b) that the microrotation

component increases near the lower plate and decreases near the upper plate with an increase in

the value of Biot number. It is observed from Fig. 2.12(c) that the temperature decreases with an

increase in the value of Biot number. It is noticed from Fig. 2.12(d) that the entropy generation

Ns decreases slightly with an increase in the Biot number. As Bi increases, the Bejan number

40



increases as depicted in Fig. 2.12(e).

2.3 Conclusions

In this chapter, the problem of entropy generation due to micropolar fluid flow through an inclined

channel with (a)No-slip and isoflux/isothermal boundary conditions and (b)Slip and convective

boundary conditions are presented. From the analysis, the following are the observations in both

the cases (a) and (b).

The presence of microstructure N , decreases the velocity, temperature, entropy generation and

increases the Bejan number. Velocity, temperature and entropy generation increases with increase

in angle of inclination. The Less effect of angle of inclination is observed in Bejan number in Case

(a) whereas in Case (b) Bejan number decreases with an increase in the value of angle of inclination.

Higher values of Re lead to lower values of velocity, temperature and entropy generation. Minimum

entropy generation at the lower plate and maximum entropy generation at the upper plate is

observed for the variation of all parameters in Case (a). Almost zero entropy generation at the

center of the channel is observed in Case (b) due to low velocity and temperature gradients. On the

other hand, slip velocity has no effect on the entropy generation and Bejan number. An increase

in the Biot number leads to decrease the entropy generation near the lower plate and increase the

Bejan number in the entire flow region. From the Bejan number profiles it is observed that the

heat transfer irreversibility dominates the flow process within the channel centerline region and

fluid friction irreversibility dominates at the channel plates.
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Figure 2.7: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for Re = 1, Bi = 10, Br = 1, φ = π

6
and

ζ = 0.05.

42



-1.0 -0.5 0.0 0.5 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f

η

 φ=π/6

 φ=π/5

 φ=π/4

 φ=π/3

(a)

-1.0 -0.5 0.0 0.5 1.0

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

 φ=π/6

 φ=π/5

 φ=π/4

 φ=π/3

g

η

(b)

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  φ=π/6

  φ=π/5

  φ=π/4

  φ=π/3

θ

η

(c)

-1.0 -0.5 0.0 0.5 1.0

0

2

4

6

8

10

12

14

  φ=π/6

  φ=π/5

  φ=π/4

  φ=π/3

N
s

η

(d)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 φ=π/6

 φ=π/5

 φ=π/4

 φ=π/3

B
e

η

(e)

Figure 2.8: Effect of angle of inclination on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Re = 1, Bi = 10, Br = 1 and
ζ = 0.05.
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Figure 2.9: Effect of slip parameter on (a)velocity, (b)microrotation, (c)temperature,
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Figure 2.10: Effect of Reynolds number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Bi = 10, Br = 1, φ = π
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Figure 2.11: Effect of Brinkman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Re = 1, Bi = 10, φ = π
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Figure 2.12: Effect of Biot number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Re = 1, Br = 1, φ = π
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Chapter 3

Second Law Analysis of Micropolar

Fluid Flow Through a Porous

Channel 1

3.1 Introduction

The study of fluid flow between two porous boundaries has gained tremendous attention by re-

searchers as the theory has wide applications such as transpiration cooling, lubrication of porous

bearings, petroleum technology, ground water hydrology, seepage of water in river beds, purification

and filtration processes and so forth.

The industrial system efficiency calculations are more appropriate in using the second law of

thermodynamics rather than the first law, because the first law of thermodynamics does not refer

to the irreversibility minimization present in the physical process. In most of the thermal systems,

thermal efficiency can be defined as the ratio of actual efficiency of thermal system to reversible

thermal efficiency, in which the applied conditions are same. The fluid flow and heat transfer

processes are intrinsically irreversible, which leads to increase entropy generation and useful energy

destruction. Hooman et al [51] investigated the forced convective heat transfer in a porous channel

1Case(a):Communicated to “Journal of Engineering Thermo Physics”, Case(b) Communicated to
“International Journal of Nonlinear Sciences and Numerical Simulation”
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Figure 3.1: Physical model and coordinate system.

with isothermal or isoflux walls. The effect of suction/injection, magnetic field and Navier slip on

entropy generation in a porous channel with constant pressure gradient has been studied by Das

and Jana [31]. Torabi et al [94] presented the analysis of heat transfer and entropy generation in

a channel partially filled with porous medium.

In the previous chapter, the entropy generation in an inclined channel due to micropolar fluid

flow is considered. In this chapter, analysis of entropy generation is undertaken for micropolar fluid

flow through a two-dimensional porous channel. For this, two types (cases) of boundary conditions

for the velocity and temperature of the plates of the porous channel are chosen as mentioned in

the previous chapter. Specifically, the investigations focus on the effect of different parameters on

the components of velocity, microrotation, temperature, entropy generation and Bejan number.

3.2 Mathematical Formulation

Consider a steady, laminar, incompressible, micropolar fluid flow through the horizontal porous

parallel plates separated by a distance h as shown in Fig. 3.1. Let V0 be the injection velocity of

the lower plate and V1 be the suction velocity of the upper plate. Without loss of generality, it

is assumed that |V1| ≥ |V0|. Assume that the fluid flows along x-direction and the flow variables

are independent of z co-ordinate. Thus, the velocity and microrotation vectors are taken as q =

u(x, y)̂i+v(x, y)ĵ and ω = σ(x, y)k̂ respectively. Under these assumptions, the governing equations
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[93] of an incompressible micropolar fluid in the absence of body force and body couple are given

by
∂u

∂x
+
∂v

∂y
= 0 (3.1)

ρ

[
u
∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+ κ

∂σ

∂y
+ (µ+ κ)

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.2)

ρ

[
u
∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
− κ∂σ

∂x
+ (µ+ κ)

(
∂2v

∂x2
+
∂2v

∂y2

)
(3.3)

ρj∗
[
u
∂σ

∂x
+ v

∂σ

∂y

]
= κ

(
∂v

∂x
− ∂u

∂y

)
− 2κσ + γ

(
∂2σ

∂x2
+
∂2σ

∂y2

)
(3.4)

ρCp

[
u
∂T

∂x
+ v

∂T

∂y

]
= Kf

(
∂2T

∂x2
+
∂2T

∂y2

)
+ (2µ+ κ)

{(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂u

∂y
+
∂v

∂x

)2
}

+
κ

2

[(
∂v

∂x
− ∂u

∂y

)
− 2σ

]2

+ γ

[(
∂σ

∂x

)2

+

(
∂σ

∂y

)2
] (3.5)

Apply the following similarity transformation proposed by [93, 7] to convert the governing partial

differential equations to ordinary differential equations.

u(x, η) =

(
U0

a
− V1x

h

)
f ′(η), v(x, η) = V1f(η), σ(x, η) =

1

h

(
U0

a
− V1x

h

)
g(η) (3.6)

where η =
y

h
, a = 1− V0

V1
.

Substituting (3.6) in Eqs. (3.2), (3.3) and (3.4), to get the following non-dimensional equations

Re(−f ′f ′′ + ff ′′′) =
N

1−N
g′′ +

1

1−N
f iv (3.7)

Reaj(fg
′ − f ′g) =

−2N

1−N
g − N

1−N
f ′′ +

N(2−N)

m2(1−N)
g′′ (3.8)

where Re =
ρV1h

µ
is the suction Reynolds number.
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Eq.(3.5) together with (3.6), propose the formation of temperature can be taken as

T (x, η) = T1 +
µV1

%hCp

[
θ1 +

(
U0

aV1
− x

h

)2

θ2

]
(3.9)

Substituting Eq. (3.9) in Eq. (3.5), equating the coefficients of
(
U0
a −

V1x
h

)2
and the terms without(

U0
a −

V1x
h

)
on both sides of the equation thus, obtained

θ′′1 + 2θ2 + PrRe

[
2(2−N)

(1−N)
f ′2 +

N(2−N)

m2(1−N)
g2 − fθ′1

]
= 0 (3.10)

θ′′2 + PrRe

[
2−N

2(1−N)
f ′′2 +

N

2(1−N)
(f ′′ + 2g)2 +

N(2−N)

m2(1−N)
g′2 − (fθ′2 − 2f ′θ2)

]
= 0 (3.11)

The dimensionless form of temperature can be written as

θ =
T − T1

T2 − T1
= Ec

(
θ1 + x̂2θ2

)
(3.12)

where Ec =
µV1

ρ(T2 − T1)hcp
is the Eckert number and x̂ =

(
U0

a
− V1x

h

)
is the dimensionless axial

variable.

3.2.1 Case(a): No-slip and Isothermal Boundary Conditions

Assume that the no-slip condition for velocity and hyper-stick condition for microrotation on lower

and upper plates of the channel. Let the channel plates are maintained at uniform temperatures

T1 and T2 respectively. These boundary conditions are given by

u(x, η) = 0, v(x, η) = V0, σ(x, η) = 0, T (x, η) = T1 at η = 0

u(x, η) = 0, v(x, η) = V1, σ(x, η) = 0, T (x, η) = T2 at η = 1
(3.13)

The boundary conditions in terms of f , g, θ1 and θ2 become

f(0) = 1− a, f ′(0) = 0, g(0) = 0, θ1(0) = 0, θ2(0) = 0

f(1) = 1, f ′(1) = 0, g(1) = 0, θ1(1) =
1

Ec
, θ2(1) = 0

(3.14)
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The Quasilinearization method is used to convert the non-linear differential equations (3.7), (3.8),

(3.10), (3.11) to a system of linear differential equations. The resultant system is solved using the

Chebyshev spectral collocation method, as described in detail in chapter-2. The physical region

[0, 1] is transformed into the region [−1, 1] using the mapping

η =
ξ + 1

2
, −1 ≤ ξ ≤ 1 (3.15)

Proceeding as in chapter-2 and incorporate the boundary conditions (3.14) in the matrix system

ArXr+1 = Br, the solution is obtained as

Xr+1 = A−1
r Br (3.16)

Entropy Generation

The micropolar fluid flow through a porous channel is naturally irreversible. The non-equilibrium

condition arises due to the exchange of energy and momentum within the micropolar fluid and at

the solid boundaries, that leads to continuous entropy generation in the porous channel.

For the present study, the volumetric rate of entropy generation is given by

SG =
Kf

T 2
1

[(
∂T

∂x

)2

+
1

h2

(
∂T

∂η

)2
]

+
2µ+ κ

T1

[(
∂u

∂x

)2

+
1

h2

(
∂v

∂η

)2

+
1

2

(
1

h

∂u

∂η
+
∂v

∂x

)2
]

+
κ

2T1

[(
∂v

∂x
− 1

h

∂u

∂η

)
− 2σ

]2

+
γ

T1

[(
∂σ

∂x

)2

+
1

h2

(
∂σ

∂η

)2
] (3.17)

The dimensionless entropy generation number is given by

Ns =

Nh︷ ︸︸ ︷
Ec2

[
4θ2

2 +
(
θ′1 + x̂2θ′2

)2]
+

Br

Tp(1−N)

[
(2−N)

(
2f ′2 +

x̂2

2
f ′′2
)

+
Nx̂2

2
(f ′′ + 2g)2 +

N(2−N)

m2
(g2 + x̂2g′2)

]
︸ ︷︷ ︸

Nv

(3.18)

The Eq. (3.18) is useful for producing the entropy generation profiles, but it fails to give an

idea about the relative importance of friction and heat transfer effects. Therefore, an alternative
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parameter Bejan number (Be) is introduced. It is defined as the ratio of entropy generation due to

heat transfer to the overall entropy generation given below.

Be =
Nh

Nh +Nv
(3.19)

Results and Discussion

The numerical expressions for velocity, microrotation and temperature are given in Eqs. (3.7),

(3.8) and (3.12) respectively. These values are used to evaluate the entropy generation number and

Bejan number. The results are presented in the form of graphs for Pr = 1, Tp = 0.5, m = 2 and

aj = 0.001.

Fig. 3.2 displays the effect of coupling number N on the dimensionless axial velocity, transverse

velocity, microrotation, temperature, entropy generation and Bejan number. It is observed from

Fig. 3.2(a) that the axial velocity increases near the lower plate and decreases near the upper

plate with an increase in coupling number. It is seen from Fig. 3.2(b) that an increase in coupling

number increases the transverse velocity. The microrotation component decreases near the lower

plate and increases near the upper plate with an increase in the value of coupling number as shown

in Fig. 3.2(c). Fig. 3.2(d) shows the temperature distribution θ against η, for several values of

coupling number. It is observed that the temperature increases with an increase in the value of

coupling number. Increase in coupling number N tends to enhance the entropy generation near the

lower plate and reduces the entropy generation near the upper plate as shown in Fig. 3.2(e). It is

observed from Fig. 3.2(f) that as N increases, the Bejan number decreases. This is attributed to

increase in the dominance of fluid friction irreversibility with an increase in N .

The effect of suction Reynolds number Re on the dimensionless axial velocity, transverse veloc-

ity, microrotation, temperature, entropy generation and Bejan number is plotted in Fig. 3.3. It is

observed from Fig. 3.3(a) that increase in suction Reynolds number(Re) leads to decrease the axial

fluid velocity at the lower plate and increase the axial fluid velocity at the upper plate. Since the

suction velocity of the upper plate is greater than the injection velocity of the lower plate and thus

the axial velocity profile becomes asymmetric with respect to the middle of the channel and it is

pushed towards the upper plate. Fig. 3.3(b) shows that the radial velocity decreases with increase
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in suction Reynolds number. It can be noticed from Fig. 3.3(c) that the microrotation compo-

nent decreases with an increase in suction Reynolds number except near the lower plate, where

microrotation slightly increases. An increase in the value of suction Reynolds number reduces the

temperature, as shown in Fig. 3.3(d). Entropy generation number decreases near the lower plate

η = 0 and increases near the upper plate η = 1 with an increase in suction Reynolds number Re as

displayed in Fig. 3.3(e). It is observed from Fig. 3.3(f) that the Bejan number Be decreases near

the plate η = 0 and increases near the plate η = 1 with an increase in Re.

It is observed from Fig. 3.4(a) that the axial velocity increases as the suction injection ratio

increases (i.e., a increases) and the velocity is maximum at the center of the channel for all values of

a. Fig. 3.4(b) shows that the transverse velocity decreases with the increase of a. A general trend is

observed from Fig. 3.4(c) that the microrotation changes its concavity in the center of the channel.

In the lower half, the profiles are concave downward whereas in the upper half they are upward.

The magnitude of the maximum microrotation increases with the increase of the suction injection

ratio. Fig. 3.4(d) depicts the temperature profile with the variation of a. An increase in the value

of a leads to increase the temperature at both injection and suction plates. It is observed from Fig.

3.4(e) that as a increases, the entropy generation increases at the lower plate and decreases at the

upper plate. It is noticed from Fig. 3.4(f) that the Bejan number (Be) decreases with an increase

in the value of a.

Figs. 3.5(a) and 3.5(b) describe the effect of x̂ on entropy generation and Bejan number. It

is clear from Fig. 3.5(a) that the entropy generation increases at the lower plate and there is no

significant effect at the upper plate with increase in x̂. Fig. 3.5(b) shows that as x̂ increases,

Bejan number decreases near the lower and upper plates. Hence, irreversibility due to fluid friction

dominates the flow process at the lower and upper plates.

Fig. 3.6 illustrates the effect of Eckert number (Ec) on temperature, entropy generation and

Bejan number. Fig. 3.6(a) shows the effect of Eckert number on the temperature profile. The

higher values of Eckert number signifies the higher heat levels, which are formed by friction. Thus

temperature increases with an increase in the value of Eckert number. It is observed from Fig.

3.6(b) that as Ec increases, the entropy generation increases near the lower plate and decreases

near the upper plate. Fig. 3.6(c) shows that as Ec increases, Bejan number increases near the lower

plate and decreases near the upper plate. Hence, irreversibility due to heat transfer dominates the

flow process at the lower plate and irreversibility due to fluid friction dominates at the upper plate.

54



The effect of the Brinkman number on entropy generation and Bejan number is plotted in Fig.

3.7. It is noticed from Fig. 3.7(a) that as Br increases, the entropy generation number increases.

In the energy equation the coefficient of viscous dissipation is the Brinkman number. As the

Brinkman number increases the fluid temperature increases consecutively, the viscous dissipation

also increases. In the channel considered as the temperature of the fluid increases, the gradient

of temperature increases and consequently, the entropy generation number increases. It is also

observed that the entropy generation number is less at lower plate of the channel and increases

rapidly to its maximum values at the upper plate of the channel for variation of all parameters. Fig.

3.7(b) shows that the Bejan number decreases with an increase in the value of Brinkman number.
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Figure 3.2: Effect of coupling number on (a)axial velocity, (b)transverse velocity,
(c)microrotation, (d)temperature, (e)entropy generation and (f)Bejan number for Ec = 1,
Br = 0.1, Re = 1, a = 0.2 and x̂ = 0.5.
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Figure 3.3: Effect of suction Reynolds number on (a)axial velocity, (b)transverse velocity,
(c)microrotation, (d)temperature, (e)entropy generation and (f)Bejan number for Ec = 1,
Br = 0.1, N = 0.5, a = 0.2 and x̂ = 0.5.
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Figure 3.4: Effect of a on (a)axial velocity, (b)transverse velocity, (c)microrotation,
(d)temperature, (e)entropy generation and (f)Bejan numberfor Ec = 1, Br = 0.1, Re = 1,
N = 0.5 and x̂ = 0.5.
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Figure 3.5: Effect of x̂ on (a)entropy generation and (b)Bejan number for Ec = 1, Br = 0.1,
Re = 1, a = 0.2 and N = 0.5.

3.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the fluid adjacent to the channel plates has finite tangential velocity, it slips along

the boundary and the microelements close to the channel plates are unable to rotate. Further, the

fluid is convectively heated at the lower plate while at the upper plate convective heat loss can take

place. Hence, the boundary conditions are

u(x, η) =
ζ ′

h

∂u

∂η
, v(x, η) = V0, σ(x, η) = 0,

Kf

h

∂T

∂η
− h1(T − T1) = 0 at η = 0

u(x, η) = −ζ
′

h

∂u

∂η
, v(x, η) = V1, σ(x, η) = 0,

Kf

h

∂T

∂η
+ h2(T − T2) = 0 at η = 1

(3.20)

The boundary conditions (3.20) in terms of f , g, θ1 and θ2 are:

f(0) = 1− a, f ′(0)− ζf ′′(0) = 0, g(0) = 0, θ′1(0)−Bi1θ1(0) = 0, θ′2(0)−Bi1θ2(0) = 0

f(1) = 1, f ′(1) + ζf ′′(1) = 0, g(1) = 0, θ′1(1) +Bi2θ1(1) =
Bi2
Ec

, θ′2(1) +Bi2θ2(1) = 0
(3.21)

where ζ = ζ′

h is the slip parameter and consider Bi1 = Bi2 = Bi.

Proceeding as in Case(a), the solution is obtained from the following matrix equation

Xr+1 = A−1
r Br (3.22)

The entropy generation and Bejan number have been calculated for the slip and convective boundary

conditions(Eq. (3.21)) from equations (3.18) and (3.19).
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Figure 3.6: Effect of Eckert number on (a)temperature, (b)entropy generation and (c)Bejan
number for N = 0.5, Br = 0.1, Re = 1, a = 0.2 and x̂ = 0.5.
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Figure 3.7: Effect of Brinkman number on (a)entropy generation and (b)Bejan number for
Ec = 1, N = 0.5, Re = 1, a = 0.2 and x̂ = 0.5.

Results and Discussion

Extensive calculations have been performed to obtain the entropy generation and the Bejan number

for different values of the parameters N , Re, ζ, Ec, Bi and Br. The following parameters are taken

as constant in the overall study: Pr = 1, Tp = 0.5, m = 2, a = 2, x̂ = 0.5 and aj = 0.001.

Fig. 3.8, displays the effects of coupling numberN on the dimensionless axial velocity, transverse

velocity, microrotation, temperature, entropy generation and Bejan number. It is observed from

Fig. 3.8(a) that the axial velocity increases near the lower plate and decreases near the upper

plate with an increase in coupling number. It is noticed from Fig. 3.8(b) that as N increases,

the transverse velocity increases. Fig. 3.8(c) depicts that the microrotation component decreases

near the lower plate and increases near the upper plate with an increase in the value of N . Fig.

3.8(d) shows the temperature distribution θ against η, for several values of coupling number. It is

observed that the temperature increases with increase in N . Fig. 3.8(e) reveals that the entropy

generation number Ns increases with the increase of the coupling number N . It is observed from

Fig. 3.8(f) that as N increases, the Bejan number decreases.

Fig. 3.9, represents the effect of suction Reynolds number Re on the dimensionless axial velocity,

transverse velocity, microrotation, temperature, entropy generation and Bejan number. Fig. 3.9(a)

shows the effect of an increase in the suction Reynolds number on the axial velocity of the fluid

flow. The result shows that an increase in the suction parameter breaks the symmetric nature of
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the flow due to continuous increase in the injection flow at the lower plate which is sucked off at the

upper plate. Due to a break in symmetry, the fluid flow is observed to be skewed towards the upper

plate with suction. Fig. 3.9(b) shows that the radial velocity is not effected with an increase in the

value of Re. From the Fig. 3.9(c) it is observed that with an increase in suction Reynolds number,

the microrotation component decreases and this decrease is significant in the middle of the channel

and negligible near the upper plate, whereas the trend is reversed with negligible difference near

the lower plate. No change in the temperature with an increase in the value of suction Reynolds

number is observed from Fig. 3.9(d). Fig. 3.9(e) illustrates that an increase in the suction Reynolds

number decreases the entropy generation at the lower plate due to injection and convective heating,

whereas Ns increases near the upper plate due to convective cooling. It is observed from Fig. 3.9(f)

that the Bejan number Be decreases with an increase in Re.

Fig. 3.10, displays the effect of ζ on governing parameters, entropy generation and Bejan

number. Fig. 3.10(a) shows that the axial velocity increases near the lower and upper plates,

whereas it decreases in the middle of the channel as the slip parameter increases. Fig. 3.10(b)

depicts that the transverse velocity increases slightly near the lower plate with the increase of ζ.

A general trend is observed from Fig. 3.10(c) that the microrotation changes its concavity in the

center of the channel. Fig. 3.10(d), depicts the temperature profile with the variation of ζ. An

increase in the value of ζ, leads to decrease the temperature at both injection and suction plates.

It is observed from Fig. 3.10(e) that as ζ increases, entropy generation increases at the lower and

upper plates and decreases at the center line region of the channel. It is noticed from Fig. 3.10(f)

that the Bejan number (Be) decreases near the lower plate and then increases with an increase in

the value of ζ.

Fig. 3.11(a) shows the effect of convective heating parameter(Bi) on the fluid temperature. It

is observed that the fluid temperature falls at the lower plate of the channel as the fluid exchange

heat with the plate and opposite phenomena is experienced at the other plate. The influence of the

Biot number on entropy generation and Bejan number is shown in Figs. 3.11(b) and 3.11(c). It is

noticed that the increase in the Biot number enhances the entropy generation and Bejan number.

Fig. 3.12, illustrates the effect of Eckert number (Ec) on temperature, Entropy generation and

Bejan number. As observed from the previous case that the temperature increases with increase in

Eckert number as indicated in Fig. 3.12(a). It is observed from Fig. 3.12(b) that as Ec increases,

the entropy generation increases near the lower plate and decreases near the upper plate. Fig.
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3.12(c) shows that as Ec increases, Bejan number increases near the lower plate and decreases near

the upper plate.

The effect of the Brinkman number on entropy generation and Bejan number is plotted in Fig.

3.13. It is noticed from Fig. 3.13(a) that as Br increases, the entropy generation number increases.

It is observed that the entropy generation number is less at lower plate of the channel and increases

rapidly to its maximum value around the center of the channel and gradually decreases at the upper

plate of the channel for variation in all parameters. From Fig. 3.13(b) an increase in the Brinkman

number reduces the heat transfer in the channel so, the Bejan number also decreases.

3.3 Conclusions

In this Chapter, the entropy generation in a micropolar fluid flow through a horizontal porous

channel is analyzed subject to (a)No-slip and isothermal boundary conditions and (b)Slip and

convective boundary conditions. From the analysis, the following are the observations in both the

cases (a) and (b).

An increase in the microrotation parameter N , increases the temperature and decreases the

Bejan number. An increase in the suction parameter(i.e. suction Reynolds number) breaks the

symmetric nature of the flow due to continuous increase in the injection flow at the lower plate

which is sucked off at the upper plate. Due to a break in symmetry, the fluid flow is observed

to be skewed towards the upper plate with suction. Entropy generation decreases near the lower

plate and increases near the upper plate with an increase in the suction Reynolds number. High

Eckert numbers imply high heat levels are produced by friction resulting in increased temperatures

on the system. It is observed that as Ec increases, the entropy generation and Bejan number

increases near the lower plate and decreases near the upper plate. As Brinkman number increases

the entropy generation increases and Bejan number decreases. Further, it is observed in Case (b)

that as increase in slip parameter enhances the velocity at the lower and upper plates, and reduction

in the velocity at the center of the channel. The similar trend is observed for entropy generation.

It is found that, the entropy generation increases with an increase in the Biot number.
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Figure 3.8: Effect of coupling number on (a)axial velocity, (b)transverse velocity,
(c)microrotation, (d)temperature, (e)entropy generation and (f)Bejan number.

64



0.0 0.2 0.4 0.6 0.8 1.0

0.17

0.18

0.19

0.20

0.21

0.22

N=0.5,ζ=1,Bi=1,Ec=1,Br=1

f
'

η

 Re=0.2

 Re=0.4

 Re=0.6

 Re=0.8

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

1.00

N=0.5,ζ=1,Bi=1,Ec=1,Br=1

f

η

 Re=0.2

 Re=0.4

 Re=0.6

 Re=0.8

(b)

0.0 0.2 0.4 0.6 0.8 1.0

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

N=0.5,ζ=1,Bi=1,Ec=1,Br=1

g

η

 Re=0.2

 Re=0.4

 Re=0.6

 Re=0.8

(c)
0.0 0.2 0.4 0.6 0.8 1.0

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

N=0.5,ζ=1,Bi=1,Ec=1,Br=1
θ

η

 Re=0.2

 Re=0.4

 Re=0.6

 Re=0.8

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.28

0.30

0.32

0.34

0.36

0.38

0.40

N=0.5,ζ=1,Bi=1,Ec=1,Br=1

N
s

η

 Re=0.2

 Re=0.4

 Re=0.6

 Re=0.8

(e)
0.0 0.2 0.4 0.6 0.8 1.0

0.26

0.28

0.30

0.32

0.34

0.36

0.38

N=0.5,ζ=1,Bi=1,Ec=1,Br=1

B
e

η

 Re=0.2

 Re=0.4

 Re=0.6

 Re=0.8

(f)

Figure 3.9: Effect of suction Reynolds number on (a)axial velocity, (b)transverse velocity,
(c)microrotation, (d)temperature (e)entropy generation and (f)Bejan number.
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Figure 3.10: Effect of slip parameter on (a)axial velocity, (b)transverse velocity,
(c)microrotation, (d)temperature, (e)entropy generation and (f)Bejan number.

66



0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

N=0.5,Re=1,ζ=1,Ec=1,Br=1

θ

η

 Bi=2

 Bi=4

 Bi=6

 Bi=8

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2 N=0.5,Re=1,ζ=1,Ec=1,Br=1

N
s

η

 Bi=2

 Bi=4

 Bi=6

 Bi=8

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

N=0.5,Re=1,ζ=1,Ec=1,Br=1

B
e

η

 Bi=2

 Bi=4

 Bi=6

 Bi=8

(c)

Figure 3.11: Effect of Biot number on (a)temperature, (b)entropy generation and (c)Bejan
number.
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Figure 3.12: Effect of Eckert number on (a)temperature, (b)entropy generation and (c)Bejan
number.

0.0 0.2 0.4 0.6 0.8 1.0

0.30

0.45

0.60

0.75

0.90

1.05

1.20

N=0.5,Re=1,ζ=1,Bi=1,Ec=1

N
s

η

 Br=1

 Br=2

 Br=3

 Br=4

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0.12

0.18

0.24

0.30

0.36 N=0.5,Re=1,ζ=1,Bi=1,Ec=1

B
e

η

 Br=1

 Br=2

 Br=3

 Br=4

(b)

Figure 3.13: Effect of Brinkman number on (a)entropy generation and (b)Bejan number.
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Chapter 4

Effect of Magnetic Field on Entropy

Generation due to Micropolar Fluid

Flow in a Rectangular Duct 1

4.1 Introduction

The present trend in the field of heat transfer and thermal design is to conduct second law (of ther-

modynamics) analysis, including, design related concept of entropy generation and its minimization.

Entropy generation is a measure of irreversibilities associated to the real process. Entropy genera-

tion is present in all heat transfer processes. The Magnetic effect, viscous effect, heat transfer down

temperature gradient etc., are responsible for the generation of entropy. The entropy generation

is encountered in many energy related applications such as geothermal energy systems, cooling of

modern electronic systems and solar power collectors.

The heat transfer behavior of laminar flow through non-circular ducts is an area of special

interest as it has got wide applications in compact heat exchangers. Sahin [88] described the en-

tropy generation analysis for viscous flow through a duct with constant temperature. Hooman et

al [49] analyzed heat transfer and optimization of entropy generation in porous saturated ducts

1Case(a):Published in “Procedia Engineering Journal, 127 (2015) 1150-1157”, Case(b) Commu-
nicated to “Journal of Heat Transfer”
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of rectangular cross section. Oztop et al [84] studied the entropy generation through rectangular

shaped ducts with semicircular ends. Leong and Ong [60] discussed the characteristics of entropy

generation in various shapes of cross section ducts with constant heat flux. An electrically conduct-

ing fluid in a duct with the effect of the magnetic field has special technical significance because of

its frequent occurrence in many industrial applications such as cooling of nuclear reactors, MHD

marine propulsion, electronic packages, microelectronic devices, etc. The aim of this chapter is

to investigate the effect of magnetic field on entropy generation with micropolar fluid flow in a

rectangular duct. The governing equations are simplified and solved using finite difference method.

The effects of coupling number, Hartman number and Brinkman number on entropy generation

and Bejan number are presented through graphs.

4.2 Mathematical Formulation

Consider a steady, laminar, incompressible flow of an electrically conducting micropolar fluid

through a rectangular duct of uniform cross-section(shown in Fig. 4.1). The flow is generated

due to constant pressure gradient along the axis of the duct(z-axis). An external uniform magnetic

field is applied in a plane normal to the z-axis, which has a constant magnetic flux density B0

that is assumed constant by taking the magnetic Reynolds number much smaller than the fluid

Reynolds number. The flow variables are invariant in the flow direction (z-direction), except the

pressure gradient ∂p
∂z , which is a constant. The velocity and microrotation vectors of the fluid are

q = w(x, y)k̂ and σ = σ1(x, y)̂i + σ2(x, y)ĵ respectively. Under these assumptions the governing

equations for the MHD flow of micropolar fluid in the absence of both body force and body couple

are

−∂p
∂z

+ κ

(
∂σ2

∂x
− ∂σ1

∂y

)
+ (µ+ κ)

(
∂2w

∂x2
+
∂2w

∂y2

)
− σB2

0w = 0 (4.1)

−2κσ1 + κ
∂w

∂y
− γ ∂

∂y

[
∂σ2

∂x
− ∂σ1

∂y

]
+ (α+ β + γ)

∂

∂x

[
∂σ1

∂x
+
∂σ2

∂y

]
= 0 (4.2)

−2κσ2 − κ
∂w

∂x
+ γ

∂

∂x

[
∂σ2

∂x
− ∂σ1

∂y

]
+ (α+ β + γ)

∂

∂y

[
∂σ1

∂x
+
∂σ2

∂y

]
= 0 (4.3)
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Figure 4.1: Schematic diagram of the problem

Kf

[
∂2T

∂x2
+
∂2T

∂y2

]
+ (2µ+ κ)

[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]

+ 2κ

[
σ2

1 + σ2
2 − σ1

∂w

∂y
+ σ2

∂w

∂x

]

+α

(
∂σ1

∂x
+
∂σ2

∂y

)2

+ γ

[(
∂σ1

∂x

)2

+

(
∂σ2

∂x

)2

+

(
∂σ1

∂y

)2

+

(
∂σ2

∂y

)2
]

(4.4)

+β

[(
∂σ1

∂x

)2

+ 2
∂σ1

∂y

∂σ2

∂x
+

(
∂σ2

∂y

)2
]

= 0

Introducing the following non-dimensional variables

x = ax̃, y = aỹ, w = U0w̃, σ1 =
U0

a
σ̃1, σ2 =

U0

a
σ̃2,

T − T1

T2 − T1
= θ,

∂p

∂z
=
ρU2

0

a
p0 (4.5)

Substituting (4.5) into the Eqs. (4.1) to (4.4) and dropping tildes, to obtain

−Re p0 +
N

1−N

(
∂σ2

∂x
− ∂σ1

∂y

)
+

1

1−N

(
∂2w

∂x2
+
∂2w

∂y2

)
−Ha2w = 0 (4.6)

−σ1 +
1

2

∂w

∂y
− 1

2

2−N
m2

∂

∂y

[
∂σ2

∂x
− ∂σ1

∂y

]
+

1

l2
∂

∂x

[
∂σ1

∂x
+
∂σ2

∂y

]
= 0 (4.7)

−σ2 −
1

2

∂w

∂x
+

1

2

2−N
m2

∂

∂x

[
∂σ2

∂x
− ∂σ1

∂y

]
+

1

l2
∂

∂y

[
∂σ1

∂x
+
∂σ2

∂y

]
= 0 (4.8)
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∂2θ

∂x2
+
∂2θ

∂y2
+Br

{(
1

1−N

)((
∂w

∂x

)2

+

(
∂w

∂y

)2
)

+
2N

1−N

[
σ2

1 + σ2
2 − σ1

∂w

∂y
+ σ2

∂w

∂x

]

+A

[
∂σ1

∂x
+
∂σ2

∂y

]2

+
N(2−N)

m2(1−N)

[(
∂σ1

∂x

)2

+

(
∂σ2

∂x

)2

+

(
∂σ1

∂y

)2

+

(
∂σ2

∂y

)2
]

B

[(
∂σ1

∂x

)2

+ 2
∂σ1

∂y

∂σ2

∂x
+

(
∂σ2

∂y

)2
]}

= 0 (4.9)

where l2 =
2a2κ

α+ β + γ
is non-dimensional parameter, Ha = B0a

√
σ

µ
is Hartman number,

Br =
µU2

0

Kf (T2 − T1)
is the Brinkman number, and A =

α

µa2
, B =

β

µa2
are micropolar parameters.

Here in this chapter also, two types (cases) of boundary conditions are considered for the velocity

and temperature on the walls of the rectangular duct.

4.2.1 Case(a): No-slip and Isothermal Boundary Conditions

Assume that the fluid particles closest to the rectangular duct stick to it, neither rotating nor

translating. Moreover, the duct is maintained at a uniform temperature. Hence, the boundary

conditions are

w = 0 at x = ±1 and y = ±y0 where y0 =
b

a

σ1 = σ2 = 0 at x = ±1 and y = ±y0

θ = 0 at x = ±1 and y = ±y0

(4.10)

Method of Solution

The governing equations given by Eqs. (4.6) - (4.9) along with the boundary conditions Eq. (4.10)

are solved numerically using finite difference method. The derivatives are replaced by the central

difference approximations to get the algebraic system of equations and these equations are solved

using Gauss-Seidel iteration method. A numerical experiment was conducted with various meshes

in the rectangular region and axial step lengths in x and y-directions to check the independence

of the mesh resolution of the numerical results. There are three mesh distributions tested in the
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analysis. They are 21× 21, 41× 41 and 81× 81 respectively. It is found that the deviations in the

velocity, microrotation and temperature components calculated with 41×41 and 81×81 are always

less than 10−3. Therefore the computations with mesh distribution of 41× 41 are considered to be

sufficiently accurate to describe the flow in this study. The obtained velocity, microrotation and

temperature distributions are then used to evaluate the entropy generation and Bejan number.

Entropy Generation

Non-equilibrium conditions arise due to the exchange of energy and momentum within the fluid

and at the walls of the duct. This causes a continuous entropy generation. The mechanisms of

entropy generation are heat transfer, fluid friction and magnetic effect. The volumetric rate of

entropy generation for incompressible micropolar fluid is given as

SG =
Kf

T 2
1

[∇T ]2 +
1

T1
Φ +

1

T1

[
(J −Qq).(E + q ×B)

]
(4.11)

For the present study, the dimensionless entropy generation number is given by

Ns =

(
∂θ

∂x

)2

+

(
∂θ

∂y

)2

+
Br

Tp

{
1

1−N

((
∂w

∂x

)2

+

(
∂w

∂y

)2
)

+
2N

1−N

[
σ2

1 + σ2
2 − σ1

∂w

∂y
+ σ2

∂w

∂x

]
+A

[
∂σ1

∂x
+
∂σ2

∂y

]2

+
N(2−N)

m2(1−N)

[(
∂σ1

∂x

)2

+

(
∂σ2

∂x

)2

+

(
∂σ1

∂y

)2

+

(
∂σ2

∂y

)2
]

+B

[(
∂σ1

∂x

)2

+ 2
∂σ1

∂y

∂σ2

∂x
+

(
∂σ2

∂y

)2
]}

+
BrHa2

Tp
w2 (4.12)

The Eq. (4.12) can be expressed alternatively as follows

Ns = Nh +Nv +Nm (4.13)
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Alternatively, the dominant effect of either heat transfer irreversibility or fluid friction irreversibility

can be investigated using the Bejan number (Be) defined mathematically as follows

Be =
Nh

Ns
(4.14)

Results and Discussion

The magnetohydrodynamic flow and heat transfer in a micropolar fluid flow through a rectangular

duct has been solved numerically using finite difference method. Numerical expressions of velocity,

microrotation and temperature have been used to compute entropy generation and Bejan number.

These quantities are evaluated numerically by dividing the rectangular region into a grid of mesh

points (xi, yj). The effects of various parameters like coupling number(N), magnetic parameter

(Ha) and Brinkman number (Br) on entropy generation and Bejan number are described graph-

ically for y0 = 1, Ha = 2,m = 1, l = 0.5, N = 0.25, Re = 1, p0 = 1, Tp = 1, Br = 1, A = 1 and

B = 0.1.

In order to validate the accuracy of the method, the results of velocity have been compared

with the analytical solution of [29] for Newtonian fluids in the absence of N and Ha as a special

case by taking Re = 1 and p0 = 1. The comparison in this case is found to be in good agreement,

as shown in Table. 4.1.

Table 4.1: Comparison analysis for the velocity calculated by the present method and that
of analytical solution [29] of Newtonian fluids for N = 0, Ha = 0, Re = 1 and p0 = 1.

x y Analytical solution Present solution

-1 -1 0 0
-0.75 -0.75 0.07292 0.07274
-0.5 -0.5 0.18141 0.18104
-0.25 -0.25 0.26454 0.26401

0 0 0.29512 0.29454
0.25 0.25 0.26454 0.26401
0.5 0.5 0.18141 0.18104
0.75 0.75 0.07292 0.07274

1 1 0 0

Fig. 4.2 shows the 3 - dimensional profiles of entropy generation and Bejan number. It is
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clear from Fig. 4.2(a) that the maximum magnitude of the entropy generation is observed at the

boundaries of the rectangular duct and minimum at the center of the duct due to their suppressing

effect on the flow and thermal fields. Furthermore, a similar phenomenon also occurs in 2 − D

figures. Fig. 4.2(b) shows the Bejan number profile in the rectangular duct. Contribution of

either thermal or viscous irreversibility on entropy generation is characterized by the dimensionless

number called Bejan number (Be). The Bejan number at the boundary of the duct is higher than

than the center region of the duct. It is observed that the fluid friction irreversibility dominates at

the center of the duct than the periphery of the duct.

The effect of coupling number on entropy generation is shown in Figs. 4.3(a) and 4.3(b) in x

and y-directions. It is observed that the entropy generation decreases with an increase in the value

of N in x and y-directions.The peak value of entropy generation is noticed at the boundaries of the

rectangular duct. It is seen from Figs. 4.3(c) and 4.3(d) that the Bejan number initially increases

and then decreases with an increase in the value of N in both x and y-directions. It is noticed that

the fluid friction irreversibility dominates around the center of the duct.

Fig. 4.4 presents the effect of Hartman number on entropy generation and Bejan number in

x and y-directions. It is observed from Figs. 4.4(a) and 4.4(b) that the entropy generation near

the boundaries of the duct is higher than the center of the duct, due to high temperature and

velocity gradients. With the increase in Hartman number the entropy generation rises at the center

of the duct, as in this region the velocities are maximum and hence the contribution of MHD flow

is maximized on the entropy generation. Likewise near the boundaries of the duct the entropy

generation is less when Ha is more, because increasing the magnetic field results in a decrease in

the irreversibility caused by fluid friction. Figs. 4.4(c) and 4.4(d) show that the decrease in Bejan

number with increase in Hartman number.

Fig. 4.5, analyses the effect of Brinkman number on entropy generation and Bejan number in

x and y-directions. Figs. 4.5(a) and 4.5(b) show that the entropy generation increases with an

increase in the value of Br in the entire rectangular duct. The entropy generation number is high

in magnitude at the boundaries of the duct due to the presence of high temperature and velocity

gradients. Ns profiles are similar in shape and almost parallel to one another for any parameter,

but they do vary in magnitude. The Bejan number indicates whether the entropy generation is

dominated by the heat transfer or fluid friction. It is observed from Figs. 4.5(c) and 4.5(d) that the

Bejan number increases with increase in Brinkman number due to decrease in viscous dissipation
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Figure 4.2: 3-Dimensional profiles of entropy generation and Bejan nuber.
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Figure 4.3: Effect of coupling number on entropy generation and Bejan number.
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Figure 4.4: Effect of Hartman number on entropy generation and Bejan number.
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Figure 4.5: Effect of Brinkman number on entropy generation and Bejan number.
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4.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the no-slip boundary condition is considered at the top and bottom walls of the duct

while the slip condition is taken at the side walls of the duct. Let the bottom wall of the duct

is convectively heated, whereas the convective heat loss can take place at the top wall and the

side walls of the duct are maintained at uniform temperature T1. Further, it is assumed that the

microrotation is zero at all sides of the duct.

w = 0, σ1 = 0, σ2 = 0, at x = ±a

Kf
dT

dx
− h(T − T2) = 0, at x = −a, Kf

dT

dx
+ h(T − T1) = 0, at x = a,

w = ζ ′1
dw

dy
, at y = −b, w = −ζ ′1

dw

dy
, at y = b,

σ1 = 0, σ2 = 0, T = T1 at y = ±b

(4.15)

The non-dimensional boundary conditions are

w = 0, σ1 = 0, σ2 = 0 at x = ±1

dθ

dx
−Bi(θ − 1) = 0 at x = −1,

dθ

dx
+Bi θ = 0 at x = 1

w = ζ
dw

dy
at y = −y0, w = −ζ dw

dy
at y = y0

σ1 = 0, σ2 = 0, θ = 0 at y = ±y0

(4.16)

where ζ = ζ′

a and y0 = b
a .

The entropy generation and Bejan number have been calculated for the slip and convective

boundary conditions (4.16) from Eqs. (4.12) and (4.14).

Results and Discussion

The problem of magnetohydrodynamic flow and heat transfer in a micropolar fluid flow through a

rectangular duct subject to slip and convective boundary conditions has been solved numerically

using finite difference method by taking the values of the parameters y0 = 1, Ha = 2,m = 1, l =

0.5, N = 0.25, Re = 1, p0 = 1, Tp = 1, Br = 1, A = 1, B = 0.1, ζ = 0.1 and Bi = 1 are constant as

mentioned in case(a).
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Fig. 4.6, shows the 3-Dimensional profiles of entropy generation and Bejan number. Fig.

4.6(a) shows that the maximum value of the entropy generation is at the wall of the rectangular

duct where the convective boundary condition is applied. Moreover, the entropy generation rate

decreases in both the directions due to the suppressing effect on the flow and thermal fields. Fig.

4.6(b) shows the profile of Bejan number in the rectangular duct. It is observed that the heat

transfer irreversibility dominates at the bottom wall of the duct and fluid friction irreversibility

dominates at the top wall of the duct.

The effect of coupling number on entropy generation is shown in Fig. 4.7 in x and y-directions.

It is observed from Fig. 4.7(a) that there is no significant effect of coupling number on entropy

generation in the x-direction. Fig. 4.7(b) states that the entropy generation decreases with an

increase in the value of coupling number in y-direction. The Bejan number increases with increase

of N along x-direction as shown in Fig. 4.7(c). It is noticed that the heat transfer irreversibility

dominates near lower plate and fluid friction irreversibility dominates near the upper plate. It

is seen from Fig. 4.7(d) that the Bejan number increases with an increase in the value of N in

y-direction.

Fig. 4.8, presents the effect of magnetic parameter on entropy generation and Bejan number

in x and y-directions. It is observed from Figs. 4.8(a) and 4.8(b) that the entropy generation

decreases with an increase in the value of Hartman number, which indicates that the presence of

magnetic field reduces the entropy generation. Figs. 4.8(c) and 4.8(d), show that the Bejan number

increases with an increase in the value of Hartman number in both the directions.

Fig. 4.9, shows the effect of Reynolds number Re on entropy generation and Bejan number in x

and y-directions. From Figs. 4.9(a) and 4.9(b) it is observed that the entropy generation increases

more rapidly in y-direction than in x-direction. This is due to the fact that the fluid is more viscous

in y-direction. From Figs. 4.9(c) and 4.9(d), it is clear that as the Reynolds number increases,

Bejan number decreases.

The effect of slip parameter ζ on entropy generation and Bejan number is shown in Fig. 4.10

along x and y-directions. It is observed from Fig. 4.10(a) that the slip parameter does not show a

significant effect on entropy generation. Fig. 4.10(b) shows that the entropy generation decreases

near the side walls of the duct with increase in ζ. From Fig. 4.10(c) it is seen that the Bejan number

is high at the lower plate due to domination of heat transfer irreversibility on entropy generation.
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Figure 4.6: 3-Dimensional profiles of entropy generation and Bejan number.

Fig. 4.10(d) illustrates that the Bejan number slightly increases near the side walls of the duct in

y-direction with an increase in the value of ζ.

Figs. 4.11(a) and 4.11(b) illustrate that increase in the entropy generation rate with an increase

in the value of Bi in x and y-directions due to convection on lower and upper plates. It is noticed

from Figs. 4.11(c) and 4.11(d) that the Bejan number increases with increasing values of Bi due

to the dominant effect of heat transfer irreversibility. Hence the convective thermal boundary

conditions enhance the dominant effects of heat transfer irreversibility on the flow system.

The effect of Brinkman number on the entropy generation and Bejan number in x and y-

directions are shown in Fig. 4.12. The Brinkman number Br is indicative of the rate at which

energy is dissipated by the viscous forces within the fluid. Due to the effect of these viscous and

magnetic forces, the entropy generation becomes significant in the rectangular duct. Ns profiles

remain similar but they vary in magnitude for variation of all parameters. With the increase in the

value of Br, the entropy generation increases, but the Bejan number decreases as shown in Fig.

4.12.
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Figure 4.7: Effect of coupling number on entropy generation and Bejan number.
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Figure 4.8: Effect of Hartman number on entropy generation and Bejan number.

84



-1.0 -0.5 0.0 0.5 1.0

0.0

0.3

0.6

0.9

1.2

1.5

1.8 N=0.25,Ha=2,ζ =0.1,Br=1,Bi=1

N
s

x

 Re=1

 Re=2

 Re=3

 Re=4

(a)
-1.0 -0.5 0.0 0.5 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N=0.25,Ha=2,ζ =0.1,Br=1,Bi=1

N
s

y

 Re=1

 Re=2

 Re=3

 Re=4

(b)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

N=0.25,Ha=2,ζ =0.1,Br=1,Bi=1

B
e

x

 Re=1

 Re=2

 Re=3

 Re=4

(c)

-1.0 -0.5 0.0 0.5 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30
N=0.25,Ha=2,ζ =0.1,Br=1,Bi=1

B
e

y

 Re=1

 Re=2

 Re=3

 Re=4

(d)

Figure 4.9: Effect of Reynolds number on entropy generation and Bejan number.
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Figure 4.10: Effect of slip parameter on entropy generation and Bejan number.
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Figure 4.11: Effect of Biot number on entropy generation and Bejan number.
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Figure 4.12: Effect of Brinkman number on entropy generation and Bejan number.
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4.3 Conclusions

In this chapter, the problem of entropy generation due to steady, laminar, incompressible, microp-

olar fluid flow through a rectangular duct with magnetic field effect is investigated. This problem is

solved for two types of boundary conditions. Case (a)No-slip and isothermal boundary conditions

and Case (b)Slip and convective boundary conditions. From the analysis, the following are the

observations in both the cases (a) and (b).

It is observed that the entropy generation number of viscous fluid is more than the corresponding

values in micropolar fluid case. This may be due to the fact that in viscous fluids, microrotations are

absent and hence available energy is not being used. As micropolarity increases, entropy generation

decreases and Bejan number increases. Thus, these fluids can be used as good lubricants. In Case (a)

it is noticed that with increase in Hartman number the entropy generation rises at the center of

the duct, as in this region the velocities are maximum and hence the contribution of MHD flow is

maximized on the entropy generation. In Case (b) Hartman number has no influence on entropy

generation. As Brinkman number increases, entropy generation increases in both the cases. The

domination of heat transfer irreversibility on entropy generation is observed at the center of the

rectangular duct from the Bejan number profiles in y-direction in Case (b).
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Chapter 5

Analysis of Entropy Generation in a

Micropolar Fluid Flow Through an

Inclined Porous Circular Pipe 1

5.1 Introduction

The cornerstone in the field of heat transfer and thermal design is the second law of thermodynamics

and its design is related to the concept of entropy generation minimization. Entropy generation

destroys the available energy of a system and as a result imposes considerable extra costs to any

thermal system. In order to improve the efficiency in all types of thermal systems, it is important to

minimize the entropy generation and thus optimizing the energy resources. The concept of entropy

generation minimization is developed by Bejan [13, 14, 15] which is based on the second law of

thermodynamics.

The flow through pipes or ducts is commonly used in heating and cooling applications and

fluid distribution networks. In fluid flow systems, thermodynamic irreversibility can be quantified

through entropy analysis. In order to preserve the quality of energy in a fluid flow process or

at least to reduce the entropy generation, it is important to study the distribution of the entropy

1Case(a): Accepted in “Advances and Applications in fluid Mechanics”, Case(b) Accepted in
“Sadhana”
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generation within the fluid volume. Al-Zaharnah [3] investigated the entropy generation in the pipe

flow by considering different pipe wall temperatures. Mansour and Sahin [17] studied the entropy

generation in a circular pipe as a two-dimensional flow with uniform wall heat flux boundary

condition and observed that the viscosity variation with temperature is important for determining

the entropy generation especially when highly viscous fluids are used as working fluids.

The objective of the present chapter is to investigate the entropy generation rate of microp-

olar fluid flow in an inclined porous circular pipe. Two types (cases) of boundary conditions are

considered for the velocity and temperature as in earlier chapters.

5.2 Mathematical Formulation

Consider a steady, axisymmetric, fully developed, laminar, incompressible, micropolar fluid flow

through an inclined porous circular pipe is driven by a constant pressure gradient(see Fig. 5.1).

Choose the cylindrical polar coordinate system (r, ϕ, z) with z - axis is in the direction of fluid

flow. As the flow is fully developed and the pipe is of infinite length, the flow depends only on r.

Let w, v, u be the velocity components. We apply uniform suction or injection with velocity wo on

the wall r = a of the pipe., Here w0 < 0 is the velocity of the suction and w0 > 0 is the velocity

of the injection. The motion being rotationally symmetric, suction or injection to be uniform, and

assuming that the pipe is long enough, all the physical quantities will be independent of ϕ and z,

and v will be zero. The corresponding equation of continuity is ∂
∂r (rw) = 0, which on integration

gives w = w0 a constant. The equations that govern the fluid flow in the absence of both body

force (force per unit volume) and body couple (moment per unit volume) are:

∂

∂r
(rw) = 0 (5.1)

−∂p
∂z

+
κ

r

[
σ + r

dσ

dr

]
+ (µ+ κ)

[
d2u

dr2
+

1

r

du

dr

]
+ ρg∗β(T − T1) sinφ = ρw

du

dr
(5.2)

−2κσ − κdu
dr

+ γ

[
d2σ

dr2
+

1

r

dσ

dr
− σ

r2

]
= ρj∗w

dσ

dr
(5.3)

Kf

[
d2T

dr2
+

1

r

dT

dr

]
+(µ+

κ

2
)

(
du

dr

)2

−2β
σ

r

dσ

dr
+
κ

2

[
du

dr
+ 2σ

]2

+γ

[(
dσ

dr

)2

+
σ2

r2

]
= ρCpw

dT

dr
(5.4)
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Figure 5.1: Physical model and coordinate system.

where u(r) is the component of velocity in the flow direction, σ is the microrotation component,

T is the temperature of the fluid and β is the coefficient of thermal expansion.

5.2.1 Case(a): No-slip and Isothermal Boundary Conditions

Assume that the fluid velocity on the pipe wall is same as the velocity of the pipe wall(no-slip

velocity). The fluid particles are neither rotating nor translating at the pipe wall(hyper-stick) and

the pipe is maintained at a uniform temperature (T2). The mathematical expressions of these

conditions are given by

du

dr
= 0, σ = 0,

dT

dr
= 0, at r = 0

u = 0, σ = 0, T = T2, at r = a

(5.5)

Introducing the following non-dimensional variables

r = aη, u = u0f(η), σ =
u0

a
g(η), θ(η) =

T − T1

T2 − T1
(5.6)

in Eqs. (5.2) - (5.4), to get the following non-linear system of differential equations:

1

1−N

(
f ′′ +

1

η
f ′
)

+
N

1−N

(
g′ +

1

η
g

)
+ gs sin(φ)θ −A = Rf ′ (5.7)
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N(2−N)

m2(1−N)

(
g′′ +

1

η
g′ − 1

η2
g

)
− 2N

1−N
g − N

1−N
f ′ = Rajg

′ (5.8)

θ′′ +
1

η
θ′ +Br

[
2−N

2(1−N)
f ′2 +

1

2

N

1−N
(
f ′ + 2g

)2 − 2B

η
gg′ +

N(2−N)

m2(1−N)

(
g′2 +

1

η2
g2

)]
= PrRθ′

(5.9)

where R = ρw0a
µ (suction Reynolds number), A = a2

µu0
∂p
∂Z (constant pressure gradient) and B =

β
µa2

(material constant).

The corresponding boundary conditions are:

f ′(η) = 0, g(η) = 0, θ′(η) = 0, at η = 0

f(η) = 0, g(η) = 0, θ(η) = 1, at η = 1
(5.10)

The Quasilinearization method is used to convert the non-linear boundary value problems (5.7)

- (5.9) to a system of linear differential equations. The resultant equations are solved using the

Chebyshev spectral collocation method, which is described in detail in chapter-2. The physical

region [0, 1] is transformed into the region [-1, 1] using the mapping

η =
ξ + 1

2
− 1 ≤ ξ ≤ 1 (5.11)

Proceeding as in chapter-2 and incorporate the boundary conditions (5.10) in the matrix system

ArXr+1 = Br, the solution is obtained as

Xr+1 = A−1
r Br (5.12)

Entropy Generation

In the fluid flow, irreversibility arises due to the heat transfer and the viscous effects of the fluid.

The entropy generation rate can be expressed as the sum of contributions due to viscous effects and

thermal effects, and thus it depends functionally on the local values of velocity and temperature in

the domain of interest. For the present study, the volumetric rate of entropy generation reduces to

SG =
Kf

T 2
1

(
dT

dr

)2

+
µ+ κ

2

T1

(
du

dr

)2

+
κ

2T1

[
2σ +

du

dr

]2

− 2β

T1

σ

r

dσ

dr
+

γ

T1

[(
dσ

dr

)2

+
σ2

r2

]
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The dimensionless entropy generation number is given by

Ns = θ′2 +
Br

Tp(1−N)

[
2−N

2
f ′2 +

N

2
(f ′ + 2g)2 − 2B(1−N)

η
gg′ +

N(2−N)

m2

(
g′2 +

1

η2
g2

)]
(5.13)

The dimensionless entropy generation number gives a good idea about the rate of total entropy gen-

eration. However, it does not convey which of the two entropy generation mechanisms, namely, heat

transfer and fluid friction, dominates. To resolve this, Paoletti et al [85], defined a dimensionless

number, called Bejan number, defined as

Be =
Entropy generation due to heat transfer

Total entropy generation
(5.14)

Results and Discussion

Figs. 5.2 - 5.5 show the variation of velocity, microrotation, temperature, entropy generation and

Bejan number with η for different values of coupling number (N), angle of inclination (φ), suction

Reynolds number (R) and Brinkman number (Br) for m = 2, Pr = 1, aj = 0.001, gs = 0.5 A = −2,

B = 0.1 and Tp = 1.

In order to validate the accuracy of the present method, the results of velocity and microrotation

are compared with the analytical solution given by Eringen [41] in the absence of gs, R, φ as a

special case by taking N = 0.5, m = 2 and A = −2. The comparison in this case is found to be in

good agreement, as shown in Table. 5.1.

The effect of coupling number on velocity, microrotation, temperature, entropy generation and

Bejan number of the micropolar fluid flow through an inclined porous pipe is plotted in Fig. 5.2.

It is observed from Figs. 5.2(a) - 5.2(e) that the velocity, microrotation, temperature, entropy

generation and Bejan number decrease with an increase in the value of N . As N → 0 equations

(5.7) and (5.8) reduce to the corresponding equation for viscous fluid. Hence, it is observed that

the velocity of the micropolar fluid is less than the viscous fluid. Furthermore, for fixed N , the

microrotation increases and then decreases as radial distance from the axis increases. Since, it is

assumed that the microrotation is zero at the centre of the pipe and also at the wall of the pipe.

This implies that the fluid particles cannot rotate near the boundary and also at the centre of the

pipe. The microrotation field in this region is dominated by a small number of particles spins that
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are generated by collisions with the boundary. The particles moves to the middle from the wall

and also from the centre of the pipe to rotate and hence the microrotation becomes maximum.

The effect of angle of inclination (φ) of the circular pipe on the velocity, microrotation, tem-

perature, entropy generation and Bejan number is shown in Fig. 5.3. Fig. 5.3(a) shows that the

velocity increases with increase in angle of inclination φ, due to increase in forces acting upon the

fluid flow. It is observed that the microrotation increases with increase in angle of inclination as

shown in Fig. 5.3(b). It is clear from Figs. 5.3(c) to 5.3(e) that the temperature, entropy generation

and Bejan number increase as increase in φ. Moreover, the peak value of temperature is observed

at the center of the channel. The maximum entropy generation is noticed at the pipe wall due to

high velocity and temperature gradients.

The behavior of flow quantities in response to increase in suction Reynolds number is similar

to that with respect to angle of inclination as shown in Fig. 5.4. The fluid velocity, microrotation

and temperature increase with increase in R as shown in Figs. 5.4(a) - 5.4(c). It is observed

from the Fig. 5.4(d) that the entropy generation is maximum at the pipe wall where velocity and

temperature gradients are highest and minimum at the channel center line where zero velocity and

temperature gradients are recorded. The same trend is observed for the Bejan number profile as

interpreted in Fig. 5.4(e).

The effect of Brinkman number on velocity, microrotation and temperature fields are shown

in Figs. 5.5(a) to 5.5(c). It is clear that the velocity, microrotation and temperature increase

as Brinkman number increases. The analogous importance between viscous dissipation and fluid

conduction is determined by the Brinkman number. As Br increases more heat is generated by the

viscous dissipation effect in the fluid. This results in increasing temperature profile with increase

in Br. It is observed from Fig. 5.5(d) that the contribution of Brinkman number is nil on the

entropy generation at the center of the pipe since the velocity and temperature gradients are zero.

It can be seen from Fig. 5.5(e) that the Bejan number increases with an increase in the value of

Br. It is observed that the heat transfer irreversibility dominates at the pipe wall and fluid friction

irreversibility dominates at the center of the pipe.
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Figure 5.2: Effect of coupling number on (a)velocity, (b)microrotation (c)temperature
(d)entropy generation and (e)Bejan number.
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Figure 5.3: Effect of angle of inclination on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 5.4: Effect of suction Reynolds number on (a)velocity, (b)microrotation,
(c)temperature, (d)entropy generation and (e)Bejan number.
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Figure 5.5: Effect of Brinkman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Table 5.1: Comparison of SQLM solutions for the velocity and microrotation with that of
analytical solution given by Eringen [41] for gs = 0, R = 0 and φ = 0.

Velocity f(η) Microrotation g(η)

η Analytical solution[41] Present Analytical solution[41] Present

1 0 0 0 0
0.9755 0.01213 0.012128 0.00675 0.006758
0.9045 0.04605 0.046052 0.02309 0.023092
0.7939 0.09479 0.094809 0.04001 0.040029
0.6545 0.14845 0.148466 0.04944 0.049459

0.5 0.19688 0.196902 0.04821 0.048232
0.3455 0.23292 0.232950 0.03835 0.038355
0.2061 0.25435 0.254385 0.02458 0.024587
0.0955 0.26370 0.263735 0.01173 0.011728
0.0245 0.26609 0.266128 0.003032 0.003027

1 0.26626 0.266296 0 0

5.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the surface of the pipe is convectively heated with hot fluid T2, which provides a heat

transfer coefficient h. The slip velocity and zero microrotation are considered at the pipe wall.

Thus, the boundary conditions are given by

du

dr
= 0, σ = 0,

dT

dr
= 0, at r = 0

u = −ζ1
du

dr
, σ = 0, −Kf

dT

dr
= h(T − T1), at r = a

(5.15)

The dimensionless boundary conditions are:

f ′(η) = 0, g(η) = 0, θ′(η) = 0, at η = 0

ζf ′(η) + f(η) = 0, g(η) = 0, θ′(η) +Biθ(η) = 0, at η = 1
(5.16)

where ζ = ζ1
a is the slip parameter and Bi = ah

Kf
is the Biot number. Proceeding as in Case (a),

the solution is obtained from the following matrix equation

Xr+1 = A−1
r Br (5.17)

The entropy generation and Bejan number have been calculated for the slip and convective boundary

conditions from equations (5.13) and (5.14).
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Results and Discussion

For the numerical validation of the results, physically meaningful values have been chosen for the

parameters Pr = 1, gs = 0.5, m = 2, A = −2, B = 0.1 and Tp = 1 in the problem.

Fig. 5.6, presents the effect of coupling number (N) on non-dimensional velocity, microrotation,

temperature, entropy generation and Bejan number. It is observed from Figs. 5.6(a) - 5.6(e) that

the velocity, microrotation, temperature, entropy generation and Bejan number decrease with an

increase in the value of coupling number (N).

The influence of the angle of inclination on velocity, microrotation, temperature, entropy gen-

eration and Bejan number is shown in Fig. 5.7. It is observed that the fluid velocity increases

with increase in angle of inclination φ as displayed in Fig. 5.7(a). It is observed from Fig. 5.7(b)

that the microrotation increases at the center of the channel as the angle of inclination increases.

It is clear from Figs. 5.7(c) to 5.7(e) that the temperature, entropy generation and Bejan number

increase as φ increases.

The variation of suction Reynolds number on velocity, microrotation, temperature, entropy

generation and Bejan number are presented in Fig. 5.8. Increase in the suction Reynolds number

causes an increase in all the governing parameters. It is noticed that the heat transfer irreversibility

dominates at the pipe wall and fluid friction irreversibility dominates at the axis of the pipe as shown

in Fig. 5.8(e) with an increase in suction Reynolds number.

It is observed from Figs. 5.9(a) and 5.9(b) that the velocity and microrotation decrease with

increase in Biot number. As the Biot number increases, the circular pipe thermal resistance en-

hances significantly, and the velocity decreases. Fig. 5.9(c) reveals that the temperature decreases

as Biot number increases. Since the Biot number depends on heat transfer coefficient h, which leads

to decrease in temperature. Decrease in entropy generation is observed with an increase in Biot

number Bi as shown in Fig. 5.9(d). This is due to the fact that both velocity and temperature

gradients within the pipe decreases as Bi increases. Fig. 5.9(e) shows that the Bejan number

decreases as Biot number increases. This implies an increase in the dominant effect of fluid friction

irreversibility.

Increase in Brinkman number, increases the velocity, microrotation and temperature fields as

shown in Figs. 5.10(a) to 5.10(c). Brinkman number is the term act as a strong heat source in the
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energy equation thus, increase in Brinkman number significantly increases the fluid temperature

and hence increase the fluid velocity and microrotation. It is observed from Fig. 5.10(d) that

the entropy generation increases as Brinkman number increases. The zero value of the entropy

generation along the pipe centerline can be attributed to the axialsymmetric nature of the pipe

flow with zero velocity and temperature gradients along the centerline. It is noticed from Fig.

5.10(e) that the Bejan number increases with an increase in the value of Br.

5.3 Conclusions

In this chapter, the problem of entropy generation due to micropolar fluid flow through an inclined

porous pipe is studied with (a)No-slip and isothermal boundary conditions and (b)Slip and convec-

tive boundary conditions. From the analysis, the following are the observations in both the cases

(a) and (b).

The presence of microstructure N decreases the velocity, temperature, entropy generation and

Bejan number in both cases. As there is an increase in angle of inclination, the entropy generation

and Bejan number increases in Case(a). In Case(b) entropy generation and Bejan number does not

increase significantly with the angle of inclination. It is observed that the fluid friction irreversibility

dominates around the center of the pipe and heat transfer irreversibility dominates at the pipe wall

in both cases from the Bejan number graphs for variation of all parameters. Increase in suction

Reynolds number, increases the entropy generation and Bejan number. In Case(b) slight decrease

in entropy generation and Bejan number are observed with increase in Biot number. All the Bejan

number profiles show a minimum value at the center of the pipe and maximum value at the pipe

wall since the velocity and temperature gradients are zero at the center of the pipe.
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Figure 5.6: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 5.7: Effect of angle of inclination on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 5.8: Effect of suction Reynolds number on (a)velocity, (b)microrotation,
(c)temperature, (d)entropy generation and (e)Bejan number.
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Figure 5.9: Effect of Biot number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 5.10: Effect of Brinkman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Chapter 6

Entropy Generation due to

Micropolar Fluid Flow between

Concentric Cylinders 1

6.1 Introduction

The study of fluid flow between two cylinders, where one or both of the cylinders rotate has many

applications such as swirl nozzles, rotating electrical machines, commercial viscometers, journal

bearings and chemical and mechanical mixing devices. In practical situations, many factors affect

the flow and heat transfer through annular space. Considerable research studies [92, 18, 34] were

carried out to investigate the Newtonian and non-Newtonian fluid flow through concentric cylinders.

The entropy generation plays an important role in the design and development of thermal

machines such as power plants, heat engines, refrigerators, turbine, and pipe networks. Entropy

generation in these systems is an important issue because it gives information about local and global

losses of energy due to heat transfer and fluid friction irreversibility. Thus, the energy saving can be

obtained by reducing these losses. As irreversibility destroys the system energy, its minimization

has been considered as the optimal design criteria for thermal systems to utilize its maximum

1Case(a): Communicated to “Applied Thermal Engineering”, Case(b) Accepted in“Ain Shams
Engineering Journal”
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available energy. Hence, the efficient utilization of energy can be achieved by entropy generation

minimization. Chen et al [25] analyzed the natural convection and entropy generation in a vertically

concentric annular space. Eegunjobi and Makinde [37] investigated the entropy generation rate in

transient Couette flow of variable viscosity fluid between two concentric pipes where inner pipe is

moving and outer pipe is fixed. Chinyoka et al [26] analyzed the presence of irreversibility inside

a porous vertical pipe and also investigated the entropy generation. Das et al [32] analyzed the

entropy generation in a Couette flow caused due to the movement of the upper channel wall with

suction/injection in a rotating frame of reference.

The study of entropy generation of micropolar fluid through concentric cylindrical annulus

associated with or without slip and convective boundary conditions has been discussed in this

chapter. The governing equations in cylindrical coordinates are simplified and numerically solved

using the spectral quasilinearization method to obtain the entropy generation and Bejan number

in the annulus.

6.2 Mathematical Formulation

Consider a steady, laminar, incompressible, micropolar fluid in an annulus between infinite vertical

concentric circular cylinders of radii a and b (a < b). Choose the cylindrical polar coordinate

system (r, ϕ, z) with z-axis as the common axis for both cylinders. The inner cylinder is at rest

and the outer cylinder is rotating with constant angular velocity Ω(shown in Fig. 6.1). The flow is

generated due to rotation of the outer cylinder. Since the flow is fully developed and the cylinders

are of infinite length, the flow depends only on r . Further, it is assumed that, except density all

the fluid properties are constant in the buoyancy term of the balance of momentum equation. With

the above assumptions and Boussinesq approximations with energy, the equations governing the

steady flow of an incompressible micropolar fluid are

∂u

∂ϕ
= 0 (6.1)

∂p

∂r
=
ρu2

r
(6.2)

−κ∂σ
∂r

+ (µ+ κ)

(
1

r

∂u

∂r
− u

r2
+
∂2u

∂r2

)
+ ρg∗βT (T − T1) = 0 (6.3)
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Figure 6.1: Physical model and coordinate system.

−2κσ + κ

(
∂u

∂r
+
u

r

)
+ γ

(
1

r

∂σ

∂r
+
∂2σ

∂r2

)
= 0 (6.4)

Kf

(
1

r

∂T

∂r
+
∂2T

∂r2

)
+ 2κ

(
1

2r

∂(ru)

∂r
− σ

)2

+ (µ+ κ)

(
∂u

∂r
− u

r

)2

+ γ

(
∂σ

∂r

)2

= 0 (6.5)

where u is velocity in ϕ direction, σ is microrotaion, T is the temperature of the fluid.

6.2.1 Case(a): No-slip and Isothermal Boundary Conditions

In this case, it is assumed that the inner cylinder is at rest and the outer cylinder is rotating with

constant angular velocity Ω. Moreover, the inner and outer cylinders are maintained at uniform

temperatures T1 and T2 respectively. Hence, the boundary conditions are

u = 0, σ = 0, T = T1, at r = a

u = bΩ, σ =
1

2r

∂

∂r
(ru), T = T2, at r = b

(6.6)

Introducing the following non-dimensional variables

r = b
√
η, u =

Ω
√
η
f(η), σ =

Ω

b
g(η), T − T1 = (T2 − T1)θ(η) (6.7)
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in Eqs. (6.3) to (6.5), to get the following non-linear system of differential equations:

− 2N

1−N
ηg′ +

4η

1−N
f ′′ +

√
η
Gr

Re
θ = 0 (6.8)

−g + f ′ +
2(2−N)

m2
(g′ + ηg′′) = 0 (6.9)

(η3θ′′ + η2θ′) +
Br

1−N

[
N

2
η2(f ′ − g)2 + (f − ηf ′)2 +

N(2−N)

m2
η3g′2

]
= 0 (6.10)

The corresponding boundary conditions in dimensionless form are:

f(η0) = 0, g(η0) = 0, θ(η0) = 0, where η0 =
(a
b

)2
,

f(1) = b, g(1) =

[
df

dη

]
η=1

, θ(1) = 1
(6.11)

The Quasilinearization method is used to convert the non-linear boundary value problems (6.8)-

(6.10) to a system of linear differential equations. The resultant equations are solved using the

Chebyshev spectral collocation method, which is described in detail in chapter-2. Proceeding as in

chapter-2, the solution is obtained as

Xr+1 = A−1
r Br (6.12)

Entropy Generation

In fluid flow, irreversibility arises due to heat transfer and viscous frictional effects in the fluid. The

entropy generation rate can be expressed as the sum of contributions due to viscous and thermal

effects and depends functionally on local velocities and temperatures in the domain of interest.

When both temperature and velocity fields are known, the volumetric entropy generation rate SG

at a point in a system is given in equation (1.4).

For the present study, the volumetric rate of entropy generation reduces to

SG =
Kf

T 2
1

(
∂T

∂r

)2

+
µ+ κ

T1

[
r
∂

∂r

(u
r

)]2

+
2κ

T1

[
1

2r

∂

∂r
(ru)− σ

]2

+
γ

T1

(
∂σ

∂r

)2

(6.13)
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The dimensionless entropy generation number is given by

Ns =

Nh︷ ︸︸ ︷
4η

(
dθ

dη

)2

+
4Br

Tp

[
1

1−N

(
f ′ − f

η

)2

+
N

2(1−N)

(
df

dη
− g
)2

+
Nη

1−N

(
2−N
m2

)(
dg

dη

)2
]

︸ ︷︷ ︸
(Nv)

(6.14)

To evaluate the irreversibility distribution, the parameter Be(Bejan number), which is the ratio of

entropy generation due to heat transfer to the overall entropy generation is defined as follows

Be =
Nh

Nh +Nv
(6.15)

Results and Discussion

The case of Newtonian fluid flow between concentric cylinders of Sinha and Chaudhary [89] can

be obtained by taking N = 0, Gr = 0,m = 0. Thus, in order to assess the accuracy of SQLM

method, the results of the present problem, in the absence of N,Gr,m have been compared with

the analytical solution of Sinha and Chaudhary [89] for Newtonian fluids. The comparison was

found to be in good agreement, as shown in Table. 6.1.

In order to investigate the effect of the parameters coupling number (N), Brinkman number

(Br), Reynolds number (Re) on the velocity(f), microrotation(g), temperature(θ), entropy gen-

eration number(Ns) and Bejan number(Be), the parameters are fixed as m = 2, Tp = 1, and

Gr = 1.

Fig. 6.2, displays the effect of coupling number N on the dimensionless velocity, microrotation,

temperature, entropy generation and Bejan number. It is observed from Fig. 6.2(a) that the

velocity decreases, as N increases. The velocity in case of micropolar fluid is less compared to

that of the viscous fluid case. But the values of microrotation profile enhances with an increase

in coupling number as shown in Fig. 6.2(b). From Fig. 6.2(c), it is seen that the temperature

increases with an increase in the value of coupling number. Entropy generation enhances with an

increase in coupling number as shown in Fig. 6.2(d). It can be seen from Fig. 6.2(e) that the Bejan

number decreases as N increases.
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The variation of the non-dimensional velocity, microrotation, temperature, entropy generation

and Bejan number profiles with η for different values of Brinkman number is illustrated in Fig.

6.3. It is observed from Fig. 6.3(a) that velocity slightly increases as Br increases. From Fig.

6.3(b), it is seen that as Br increases, the microrotation increases at the outer cylinder and there

is no change at the inner cylinder. Fig. 6.3(c) illustrates the effect of Br on the temperature

profile. It is also noticed that as Br increases, the temperature profile increases. According to the

definition, Br is the ratio of the viscous heat generation of external heating. Thus higher values of

Br, the lesser will be the conduction of heat produced by viscous dissipation and hence the larger

is the temperature. The entropy generation profile for different values of Br is described in Fig.

6.3(d). It is observed that as Br increases, the entropy generation increases at both cylinders.

The parameter Br determines the relative importance of viscous effects and has a significant effect

on entropy generation. For all parameters, the inner cylinder acts as a strong concentrator of

irreversibility. Entropy generation number is high in magnitude near the inner cylinder due to the

high temperature and velocity gradients. It is observed from Fig. 6.3(e) that the Be decreases with

η and tends to 0 and then increases. Further, it is noticed that as the Brinkman number increases

the Bejan number Be decreases.

Fig. 6.4, illustrates the effect of Reynolds number (Re) on the dimensionless velocity, microro-

tation, temperature, entropy generation and Bejan number. Fig. 6.4(a) shows the velocity profile

with increase in Re. As Re increases, the flow velocity decreases. Fig. 6.4(b) depicts that increase

in Re, increases the microrotation. From Fig. 6.4(c), it is clear that the increase in the value of

Reynolds number slightly increases the temperature near the outer cylinder. The effect of Reynolds

number Re on entropy generation is presented in Fig. 6.4(d). As the value of Re increases, the

entropy generation decreases near the inner cylinder and increases near the outer cylinder. As the

Reynolds number increases, the Bejan number increases at the inner cylinder with the dominant

effect of heat transfer irreversibility and decreases at the outer cylinder with increasing effect of

fluid friction irreversibility as demonstrated in Fig. 6.4(e).

6.2.2 Case(b): Slip and Convective Boundary Conditions

In this case, it is assumed that the fluid adjacent to the cylinders has finite tangential velocity,

it slips along the boundary. The inner cylinder is heated by convection from a hot fluid with
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Figure 6.2: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 6.3: Effect of Brinkman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 6.4: Effect of Reynolds number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Table 6.1: Comparison analysis for the velocity calculated by the present method and that
of analytical solution [89] for N = 0.

η Analytical solution Present solution

1 1 1
0.9816 0.97546 0.975528
0.9284 0.90453 0.904509
0.8454 0.79386 0.793893
0.7409 0.65453 0.654509
0.625 0.5 0.5
0.5091 0.34546 0.345492
0.4046 0.20613 0.206107
0.3216 0.09546 0.095492
0.2684 0.02453 0.024472
0.25 0 0

temperature T1 which provides a heat transfer coefficient h1 while, the upper cylinder losses heat

to the ambient with a heat transfer coefficient h2. Thus, the boundary conditions are

u = ζ ′
[
∂u

∂r
− u

r

]
, σ = 0, Kf

∂T

∂r
− h1(T − T1) = 0, at r = a

u = bΩ− ζ ′
[
∂u

∂r
− u

r

]
, σ =

1

2r

∂

∂r
(ru), Kf

∂T

∂r
+ h2(T − T2) = 0, at r = b

(6.16)

where ζ ′ slip length of the inner and outer cylinders.

The corresponding boundary conditions in dimensionless form are:

−2ζη0f
′(η0) + (

√
η0 + 2ζ)f(η0) = 0, g(η0) = 0, Bi1θ(η0) = 2

√
η0θ
′(η0), where η0 = (

a

b
)2

2ζf ′(1) + (1− 2ζ)f(1) = b, g(1) =

[
df

dη

]
η=1

, Bi2(1− θ(1)) = 2θ′(1)
(6.17)

where ζ = ζ′

b is the slip parameter. In general Biot number is assumed to be same for the two

cylinders. (Bi1 = Bi2 = Bi) Proceeding as in Case (a), the solution is obtained from the following

matrix equation

Xr+1 = A−1
r Br (6.18)

The entropy generation and Bejan number have been calculated for the slip and convective

boundary conditions from equations (6.14) and (6.15).
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Results and Discussion

The effects of N , Br, ζ and Bi on velocity, microrotation, temperature, entropy generation and

Bejan number have been studied. The computations were carried out by taking m = 2, gs = 1,

Tp = 1, a = 0.5, b = 1.

Fig. 6.5, presents the effect of coupling number (N) on nondimensional velocity, microrotation,

temperature, entropy generation and Bejan number. Fig. 6.5(a) shows that the velocity decreases

as N increases. Fig. 6.5(b) depicts that, the microrotation component decreases with an increase

in the value of N . Fig. 6.5(c) reveals that as N increases temperature increases. In Fig. 6.5(d) it

is observed that the entropy generation increases as coupling number increases. Fig. 6.5(e) reveals

that the Bejan number Be decreases near the inner cylinder and increases near the outer cylinder

with an increase in the coupling number N .

Fig. 6.6(a) shows that the velocity increases with an increase in the value of Br. Fig. 6.6(b)

shows that the microrotation increases as Br increases. It is noticed from Figs. 6.6(c) and 6.6(d)

that the temperature and entropy generation increase as Br increases. For all parameters, the

inner cylinder acts as a strong concentrator of irreversibility. Entropy generation number is high in

magnitude near the inner cylinder due to the presence of high temperature and velocity gradients.

Ns then falls exponentially along the radial direction, approaching an asymptote near the outer

cylinder. Entropy generation profiles are similar in shape and almost parallel to one another for all

the parameter variations, but they vary in magnitudes. It is noticed from Fig. 6.6(e) that as Br

increases, the Bejan number decreases at the inner cylinder which indicates that the fluid friction

contribution to entropy generation increases. It is also observed that the Bejan number increases

near the outer cylinder due to the high heat transfer contribution.

Figs. 6.7(a) to 6.7(d) illustrate the effect of slip parameter on the velocity, microrotation,

temperature and entropy generation. It is observed that the slip parameter (ζ) has a significant

influence on all the parameters. As slip parameter increases, the velocity, microrotation, tem-

perature, and entropy generation decrease. The existence of slip condition in velocity increases

convection by rotating the outer cylinder leading to influence the temperature consequently, affects

the entropy generation. It is noticed from Fig. 6.7(e) that the effect of ζ has not significant on the

Bejan number near the inner cylinder, but at the outer cylinder the Bejan number decreases as ζ

increases.
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Fig. 6.8, shows the velocity, microrotation, temperature, entropy generation and Bejan num-

ber profiles for different values of the Biot number. Physically, Biot number is expressed as the

convection at the surface of the body to the conduction within the surface of the body. It is as-

sumed the convective heat transfer coefficients (h1, h2) are same at the inner and outer cylinders

i.e. Bi1 = Bi2 = Bi. It is observed from Fig. 6.8(a) that an increase in the Biot number decreases

the velocity profile of the fluid in an annular space. It is due to the fact that Biot number reduces

the heat transfer rate in the cylinder walls. Fig. 6.8(b) shows that the microrotation decreases

as Bi increases. It is noticed from Fig. 6.8(c) that the temperature decreases with a rise in Biot

number due to a convective cooling at the cylinders. Fig. 6.8(d) reveals that the entropy generation

increases as Bi increases. The effect of Biot number Bi on Be is shown in Fig. 6.8(e). As Biot

number increases, Bejan number also increases.

6.3 Conclusions

In this chapter, the entropy generation in a steady flow of an incompressible micropolar fluid

between concentric cylinders is analyzed. This problem of entropy generation is solved for two

cases, i.e. Case (a)No-slip and isothermal boundary conditions and Case (b)slip and convective

boundary conditions. The following are the observations from the analysis of both the cases.

Flow in the annular space is induced by the rotation of the outer cylinder. The results reveal

that the entropy generation is higher near the inner cylinder in both the cases due to velocity

and temperature gradients. Entropy generation profiles show an asymptotic behavior towards the

outer cylinder. The fluid friction irreversibility dominates around the center of the annulus while

the influence of heat transfer irreversibility can be observed near the cylinders. The influence

of microrotation and the Brinkman number increases the entropy generation irrespective of the

boundary conditions. The presence of slip in the fluid particles at the rotating outer cylinder

increases the domination of fluid friction irreversibility. Thus, the Bejan number decreases near the

outer cylinder as observed in the case (b). An increase in the Biot number causes the convective

cooling at the inner and outer cylinders, leading to an increase in the Bejan number.

119



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1.0

Br = 1, ζ = 1, Bi = 0.5

f

η

 N=0.2

 N=0.4

 N=0.6

 N=0.8

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Br = 1, ζ = 1, Bi = 0.5

g

η

 N=0.2

 N=0.4

 N=0.6

 N=0.8

(b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

1.5

2.0

2.5

3.0

3.5 Br = 1, ζ = 1, Bi = 0.5.

θ

η

 N=0.2

 N=0.4

 N=0.6

 N=0.8

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

4

8

12

16

20

Br = 1, ζ = 1, Bi = 0.5
N
s

η

 N=0.2

 N=0.4

 N=0.6

 N=0.8

(d)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4
Br = 1, ζ = 1, Bi = 0.5

B
e

η

 N=0.2

 N=0.4

 N=0.6

 N=0.8

(e)

Figure 6.5: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 6.6: Effect of Brinkman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 6.7: Effect of slip parameter on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 6.8: Effect of Biot number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Chapter 7

Analysis of Entropy Generation

between Porous Concentric Cylinders

due to Micropolar Fluid Flow 1

7.1 Introduction

In the present decade, the entropy generation analysis has been the topic of great interest in view

of its applications in many fields such as electronics cooling, heat exchangers, porous media, turbo

machinery and combustion. The optimization of thermal systems has been received a unique atten-

tion. Thermal systems have been analyzed and optimized using the second law of thermodynamics.

The second law of thermodynamics states that the Exergy(available energy) is always destroyed

partially or totally and the destroyed amount of energy is proportional to the entropy generation.

Even though there are various sources for entropy generation in engineering systems the main

sources are heat transfer, viscous dissipation, electrical conduction and chemical reaction. Bejan [12,

13] investigated the different factors behind the entropy generation in applied thermal engineering,

where the destruction of available work of a system occurs during the generation of entropy. Assad

and Oztop [8] presented the effect of internal heat generation on entropy generation between two

1Case(a): Communicated to “Journal of Taiwan Institute of Chemical Engineers”, Case(b) Pub-
lished in“Energy, 111 (2016) 165-177”
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rotating cylinders. Mazgar et al [73] presented entropy generation due to the interaction between

thermal radiation and mixed convection in a semi-transparent and non-gray gas, bounded by two

vertical coaxial cylinders.

In the previous chapter, the entropy generation analysis of micropolar fluid flow between con-

centric cylinders was studied. In this chapter, the problem of entropy generation is undertaken for

the micropolar fluid flow through porous concentric cylinders with magneto hydrodynamic effect.

Specifically, the investigations focus on the effect of different parameters on the components of

velocity, microrotation, temperature, entropy generation and Bejan number.

7.2 Mathematical Formulation

Consider the electrically conducting micropolar fluid flow between two horizontal porous coaxial

rotating cylinders(see Fig. 7.1). The following assumptions are made to formulate the present

problem.

1. The flow is steady, laminar, incompressible and axisymmetric.

2. The fluid motion is due to the rotation of the cylinders.

3. The rate of flow through the walls is uniformly equal for both cylinders such that the rate of

injection is equal to the rate of suction.

4. The radii and angular velocities of the inner and outer cylinders are r1,Ω1 and r2,Ω2 (r1 < r2),

respectively.

5. A constant magnetic field of strength B0 is imposed transversely in the r-direction. The

magnetic Reynolds number is very small, so that induced magnetic field can be neglected in

comparison to the applied magnetic field.

With the above assumptions the equations governing the micropolar fluid flow [41, 20] are

∂u

∂r
+
u

r
= 0 (7.1)

ρ

[
u
∂u

∂r
− v2

r

]
= −∂p

∂r
(7.2)
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Figure 7.1: Schematic diagram of the problem

ρ

[
u
∂v

∂r
+
uv

r

]
= (µ+ κ)

[
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2

]
− κ∂σ

∂r
− σeB2

0v (7.3)

∂p

∂z
= 0 (7.4)

ρj∗u
∂σ

∂r
= κ

[
∂v

∂r
+
v

r

]
− 2κσ + γ

[
∂2σ

∂r2
+

1

r

∂σ

∂r

]
(7.5)

ρCpu
∂T

∂r
= Kf

[
∂2T

∂r2
+

1

r

∂T

∂r

]
+(2µ+κ)

[
2
u2

r2
+

1

2

(
∂v

∂r
− v

r

)2
]

+2κ

[
1

2

(
∂v

∂r
+
v

r

)
− σ

]2

+γ

(
∂σ

∂r

)2

(7.6)

Eq. (7.4) states that the condition of uniform pressure distribution along the axis of the

cylinders. Simplifying Eqs. (7.1) and (7.2) to get

ρ

(
u2 + v2

r

)
=
∂p

∂r
(7.7)

Eq. (7.7) gives the Bernoulli’s type pressure variation in the radial direction, which will not be

discussed further in the present investigation. Integration of Eq. (7.1) gives

ru(r) = constant (7.8)

consider u1,u2 are the radial velocities of the inner and outer cylinders

u2r2 = u1r1 (7.9)

Simplifying Eqs. (7.8) and (7.9) give

ur = u2r2 = u1r1 (7.10)
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Substitute (7.10) in (7.3), to get

R

r

[
dv

dr
+
v

r

]
=

1

1−N

[
d2v

dr2
+

1

r

dv

dr
− v

r2

]
− N

1−N
dσ

dr
− σeB

2
0

µ
v (7.11)

Introducing the following dimensionless quantities

η =
r

r1
, f =

vr1

ν
, g =

σr2
1

ν
, θ =

T − T1

T2 − T1
(7.12)

in equations (7.11), (7.5) and (7.6) to get the following non-linear system of differential equations

1

1−N
f ′′ +

(
1

1−N
−R

)
1

η
f ′ −

(
1

1−N
+R+ η2Ha2

)
f

η2
− N

1−N
g′ = 0 (7.13)

N(2−N)

m2(1−N)
g′′ +

[
N(2−N)

m2(1−N)
−Raj

]
g′

η
− 2N

1−N
g +

N

1−N

(
f ′ +

f

η

)
= 0 (7.14)

θ′′ +
(1−RPr)

η
θ′ +

Br

1−N

{
(2−N)

[
2

η4
+

1

2R2

(
f ′ − f

η

)2
]

+
2N

R2

[
1

2

(
f ′ +

f

η

)
− g
]2

+
N(2−N)

m2R2
g′2
}

= 0

(7.15)

where R = u1r1
ν is the cross flow Reynolds number, Ha = B0r1

√
σe
µ is the Hartman number.

In this chapter, the analysis was done for fluid subjected to two types of boundary conditions,

given in the previous chapter.

7.2.1 Case(a): No-slip and Isothermal Boundary Conditions

In this case, it is assumed that the two cylinders are rotating with angular velocities Ω1 and Ω2.

Also the inner and outer cylinders are maintained at uniform temperatures T1 and T2 respectively.

Thus, the boundary conditions are

v = r1Ω1, σ =
1

2r

∂

∂r
(rv), T = T1, at r = r1

v = r2Ω2, σ =
1

2r

∂

∂r
(rv), T = T2, at r = r2

(7.16)

The corresponding boundary conditions in dimensionless form are:

f = P1, g =
1

2

(
f ′ +

f

η

)
, θ = 0, at η = 1

f = P2, g =
1

2

(
f ′ +

f

η

)
, θ = 1, at η =

r2

r1

(7.17)
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where P1 =
r21Ω1

ν and P2 = r1r2Ω2
ν are constants. Consider r1 = 0.5 and r2 = 1. The Quasilin-

earization method is used to convert the non-linear boundary value problems (7.13) - (7.15) to the

system of linear differential equations. The resultant equations are solved using the Chebyshev

spectral collocation method, which is described in detail in chapter-2. Proceeding as in chapter-2,

the solution is obtained from the following matrix equation.

Xr+1 = A−1
r Br (7.18)

Entropy Generation

Once the velocity, microrotation, and temperature fields have been obtained, the entropy gener-

ation distribution can be determined in a flow channel. This function, which characterizes the

irreversible behavior of the system, will be used to optimize(minimize) the entropy generation rate

by evaluating parameters as well as fluid properties. For the present study, the volumetric rate of

entropy generation reduces to

SG =
Kf

T 2
1

(
∂T

∂r

)2

+
2µ+ κ

T1

[
2u2

r2
+

1

2

(
∂v

∂r
− v

r

)2
]

+
2κ

T1

[
1

2

(
∂v

∂r
+
v

r

)
− σ

]2

+
γ

T1

(
∂σ

∂r

)2

+
σeB

2
0

T1
v2

The dimensionless entropy generation number is given by

Ns =

Nh︷︸︸︷
θ′2 +

Br

TpR2(1−N)

{
(2−N)

[
2R2

η4
+

1

2

(
f ′ − f

η

)2
]

+ 2N

[
1

2

(
f ′ +

f

η

)
− g
]2

+
N(2−N)

m2
g′2

}
︸ ︷︷ ︸

Nv

+

Nm︷ ︸︸ ︷
Br

Tp

Ha2

R2
f2 (7.19)

The convective heat transfer processes are analyzed by the second law of thermodynamics

namely entropy generation due to the irreversibility of the processes. In convective heat transfer,

both fluid friction and heat transfer make contributions to the rate of entropy generation. Entropy

generation number (Ns) is useful for generating entropy generation profiles, but it fails to give any

128



idea about the relative importance of friction and heat transfer effects. Therefore, an alternative

parameter Bejan number (Be) is introduced for this purpose, which is the ratio of entropy generation

due to heat transfer to the overall entropy generation.

Be =
Nh

Nh +Nv +Nm
(7.20)

Results and Discussion

The micropolar fluid flow through a horizontal porous concentric cylindrical annulus is studied in

this chapter. Entropy generation in the flow field due to heat transfer, fluid friction and magnetic

field is formulated. The influence of various parameters on velocity, microrotation, temperature,

entropy generation and Bejan number are examined. To study the effects of N , Ha, R and Br,

computations were carried out by taking r1 = 0.5, r2 = 1, P1 = 0.5, P2 = 1, m = 2, Pr = 1,

aj = 0.001 and Tp = 1.

Fig. 7.2, presents the effect of coupling number (N) on non-dimensional velocity, microrotation,

temperature, entropy generation and Bejan number. Fig. 7.2(a) shows that the velocity increases

as N increases. Fig. 7.2(b) depicts that the microrotation component increases at the inner cylinder

and decreases at the outer cylinder with an increase in the value of N . Fig. 7.2(c) reveals that

as N increases temperature increases. In Fig. 7.2(d) it is observed that the entropy generation

increases as coupling number increases. Fig. 7.2(e) reveals that the Bejan number Be decreases

with an increase in the value of coupling number and Be increases in the region very close to the

inner cylinder.

The variation of Hartman number on velocity, microrotation, temperature, entropy generation

and Bejan number is displayed in Fig. 7.3. It is observed from Fig. 7.3(a) that the velocity decreases

as Hartman number Ha increases. As the imposing magnetic field is normal to the flow direction,

the resistive force, and the fluid movement reduces. Fig. 7.3(b) depicts that, the microrotation

component decreases near the inner cylinder and increases near the outer cylinder with an increase

in the value of Ha, thus showing a reverse rotation near the two boundaries. From Fig. 7.3(c), it

is observed that the temperature increases as Hartman number increases. As seen from Fig. 7.3(d)

an increase in the Hartmann number leads to increase in the entropy generation number near the
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walls of the cylinders whereas the less contribution of Ns in the middle of the two cylinders due

to the small temperature gradient in this region. The distribution of the Bejan number Be in Fig.

7.3(e) explains that the viscous dissipation contribution (Nv), which decreases near the walls with

an increase in the magnetic parameter (Ha). From Eq. (7.19) it is noticed that there is no effect of

magnetic field on the temperature field and so Nh remains constant. Thus, from the Bejan number

definition (see Eq. (7.20)), with a decrease of Nv, Bejan number will increase.

Fig. 7.4, presents the influence of cross flow Reynolds number on velocity, microrotation,

temperature, entropy generation and Bejan number. It is observed from Fig. 7.4(a) that the

velocity decreases with the increase of cross flow Reynolds number. It is seen from Fig. 7.4(b)

that the microrotation component decreases near the inner cylinder and increases near the outer

cylinder with an increase in the value of a cross flow Reynolds number. Fig. 7.4(c) shows that

as R increases, temperature decreases. It is noticed from Figs. 7.4(d) and 7.4(e) that the entropy

generation and Bejan number decreases near the inner cylinder and increases near the outer cylinder

as R increases.

The variation of temperature, entropy generation and Bejan number with Brinkman number is

displayed in Fig. 7.5. The parameter Br determines a relative importance of viscous effects and

has a significant effect on entropy generation. Fig. 7.5(a) shows an increase in temperature with

Brinkman number. It is observed from Fig. 7.5(b) that the entropy generation increases with an

increase in the value of Brinkman number. Due to the higher gradient of temperature, velocity, the

entropy generation number is high in magnitude near the inner cylinder. The effect of Brinkman

number on Bejan number is shown in Fig. 7.5(c). As it can be seen from the figure that the Bejan

number decreases with increase in Br, except at the boundaries.
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Figure 7.2: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 7.3: Effect of Hartman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 7.4: Effect of cross flow Reynolds number on (a)velocity, (b)microrotation,
(c)temperature, (d)entropy generation and (e)Bejan number.
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Figure 7.5: Effect of Brinkman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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7.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the fluid slips at the inner and outer cylinders. Let the inner cylinder is heated by

convection from a hot fluid with temperature T2 which provides a heat transfer coefficient h1 while

the outer cylinder losses heat to the ambient with a heat transfer coefficient h2. Thus, the boundary

conditions are

v = r1Ω1 + ζ ′
[
∂v

∂r
− v

r

]
, σ =

1

2r

∂

∂r
(rv), Kf

∂T

∂r
− h1(T − T1) = 0 at r = r1

v = r2Ω2 − ζ ′
[
∂v

∂r
− v

r

]
, σ =

1

2r

∂

∂r
(rv), Kf

∂T

∂r
+ h2(T − T2) = 0 at r = r2

(7.21)

where ζ ′ slip length of the inner and outer cylinders.

The corresponding dimensionless boundary conditions are:

f = P1 + ζ

(
f ′ − f

η

)
, g =

1

2

(
f ′ +

f

η

)
, θ′ −Bi1θ = 0, at η = 1

f = P2 − ζ
(
f ′ − f

η

)
, g =

1

2

(
f ′ +

f

η

)
, θ′ +Bi2θ = Bi2, at η =

r2

r1

(7.22)

where P1 =
r21Ω1

ν and P2 = r1r2Ω2
ν are constants, ζ = ζ′

r1
is the slip parameter and Bik = hri

Kf

is the Biot number for each cylinder. Subindexes k = 1, 2 refer to the inner and outer cylinders

respectively. In general, Biot number is assumed to be same for the inner and outer cylinders.

Proceeding as in Case(a), the solution is obtained from the following matrix equation

Xr+1 = A−1
r Br (7.23)

The entropy generation and Bejan number have been calculated for the slip and convective boundary

conditions from equations (7.19) and (7.20).

Results and Discussion

The micropolar fluid flow through a horizontal porous concentric cylinders associated with slip and

convective boundary conditions are studied in this case. Entropy generation in the flow field due to

heat transfer, fluid friction and magnetic field is formulated. The influence of various parameters
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on velocity, microrotation, temperature, entropy generation and Bejan number is examined. To

study the effects of N , ζ, Ha, R, Bi and Br, computations were carried out by taking r1 = 0.5,

r2 = 1, P1 = 0.5, P2 = 1, m = 2, Pr = 1, aj = 0.001 and Tp = 1.

Fig. 7.6, presents the effect of coupling number (N) on non-dimensional velocity, microrotation,

temperature, entropy generation and Bejan number. Fig. 7.6(a) shows that the velocity increases

as N increases. Fig.7.6(b) depicts that the microrotation component increases with increase in

value of N . Fig. 7.6(c) reveals that as N increases temperature increases. The same effect is seen

on the entropy generation in Fig. 7.6(d). Fig. 7.6(e) reveals that the Bejan number Be increases

at the walls of the cylinders with an increase in the value of coupling number. The Bejan number

Be = 0 at the interior of annulus indicates that the domination of fluid friction irreversibility due

to rotation of the cylinders.

In Fig. 7.7(a) it is observed that an increase in the slip parameter ζ at the cylinders causes a

decrease in velocity at injection and suction while a large decrease in the fluid velocity is noticed

with a high rate of flow reversal at the suction wall. The decreasing nature of microrotation and

temperature is observed to increase in the value of slip parameter as seen in Figs. 7.7(b) and 7.7(c).

Fig. 7.7(d) shows that the entropy generation number decreases as ζ increases. Since the effect of

slip reduces the velocities and velocity gradients. This results in a decrease in viscous contribution

to the entropy generation. Fig. 7.7(e) describes the effect of ζ on Bejan number. It is noticed that

the Bejan number at the suction wall of the annulus increases, leads to increasing the influence of

heat transfer irreversibility when compared to the fluid friction irreversibility at the outer cylinder.

It is observed from Fig. 7.8(a) that the velocity decreases with an increase in the value of

Hartman number Ha. As the imposing magnetic field is normal to the flow direction, it causes

the resistive force, thus reducing the fluid movement. Fig. 7.8(b) depicts that, the microrotation

component decreases with an increase in the value of Ha. From Fig. 7.8(c), it is observed that

the temperature increases as Hartman number increases. As seen from Fig. 7.8(d) an increase in

the Hartmann number leads to increase in the entropy generation number. The distribution of the

Bejan number Be is shown in Fig. 7.8(e). The Bejan number at injection wall increases while it

decreases at the suction wall leading to the increase in the influence of heat transfer irreversibility

at the inner cylinder and fluid friction irreversibility at the outer cylinder.

Fig. 7.9, presents the influence of a cross flow Reynolds number of velocity, microrotation,
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temperature, entropy generation and Bejan number. It is observed from Fig. 7.9(a) that the

velocity decreases with the increase of cross flow Reynolds numbers. It is seen from Fig. 7.9(b)

that the microrotation component decreases with an increase in the value of a cross flow Reynolds

number. Fig. 7.9(c) shows that as R increases, temperature increases at the suction wall of the

annulus. It is noticed from Fig. 7.9(d) that the entropy generation increases as cross flow Reynolds

number increases. From Fig. 7.9(e) it is observed that the Bejan number increases near the inner

cylinder and decreases near the outer cylinder as R increases.

Fig. 7.10(a) describes the effect of increasing Bi on the temperature. The fluid temperature

decreases as increase in Biot number indicates a rise in convective cooling due to heat loss to the

ambient surrounding from the annulus walls. It is noticed from Fig. 7.10(b) that the entropy

generation Ns increases with an increase in the Biot number. Ns profiles are similar in shape

and are almost parallel to one another, for all the parameters, but they vary in magnitude. In

Fig. 7.10(c) the dominant influence of heat transfer irreversibility is observed as the parameter

values of Bi increases consequently thus the Bejan number increases. Hence, the convective thermal

boundary conditions enhance the dominant effects of heat transfer irreversibility on the flow system.

The variation of temperature, entropy generation and Bejan number with Brinkman number

is displayed in Fig. 7.11. The parameter Br determines a relative importance of viscous effects

and has a significant effect on entropy generation. Fig. 7.11(a) shows an increase in temperature

with Brinkman number. It is observed from Fig. 7.11(b) that the entropy generation increases

with an increase in the value of Brinkman number. Due to the higher gradient of temperature and

velocity, the entropy generation number is high in magnitude near the inner cylinder. The effect

of Brinkman number on Bejan number is shown in Fig. 7.11(c). As it can be seen from the figure

that the Bejan number increases with increase in Br.

7.3 Conclusions

In this chapter, the problem of entropy generation due to steady, laminar incompressible micropolar

fluid flow through horizontal porous concentric cylinders with magnetic effect is investigated. This

problem is solved for two types of boundary conditions Case (a) No-slip and isothermal boundary

conditions and Case (b) slip and convective boundary conditions. The following conclusions can
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Figure 7.6: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 7.7: Effect of slip parameter on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 7.8: Effect of Hartman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 7.9: Effect of cross flow Reynolds number on (a)velocity, (b)microrotation,
(c)temperature, (d)entropy generation and (e)Bejan number profiles.

141



1.0 1.2 1.4 1.6 1.8 2.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ν=0.5,ζ =1,Ha=1,R=1,Br=1

θ

η

 Bi=1

 Bi=2

 Bi=3

 Bi=4

(a)

1.0 1.2 1.4 1.6 1.8 2.0

1

2

3

4

5

6

7

8

9

10

Ν=0.5,ζ =1,Ha=1,R=1,Br=1

N
s

η

 Bi=1

 Bi=2

 Bi=3

 Bi=4

(b)

1.0 1.2 1.4 1.6 1.8 2.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ν=0.5,ζ =1,Ha=1,R=1,Br=1

B
e

η

 Bi=1

 Bi=2

 Bi=3

 Bi=4

(c)

Figure 7.10: Effect of Biot number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 7.11: Effect of Biot number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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be drawn for both the cases (a) and (b) from this analysis.

It is observed that the entropy generation number of viscous fluid is less than the corresponding

values in micropolar fluid case. The presence of microstructure increases the Bejan number near

the inner cylinder as seen in both the cases. The imposing magnetic field is normal to the flow

direction, it causes the resistive force, thus enhances the irreversibility. Thus, it can be observed

that the entropy generation increases with increase in Hartman number in both the cases. It is

observed that as R increases, entropy generation increases in the entire region. The cross flow

Reynolds number decreases the Bejan number near the inner cylinder and increases at the outer

cylinder in case(a). The reverse trend is observed in case (b). Due to high temperature and

velocity gradients, the entropy generation is maximum near the inner cylinder and gradually shows

an asymptotic behavior near the outer cylinder in either case. The entropy generation number

decreases as ζ increases. As the effect of slip reduces the velocities and velocity gradients. This

results in a decrease in viscous contribution to the entropy generation. The dominant influence of

heat transfer irreversibility is observed as the parameter values of Bi increases consequently, the

Bejan number increases. Hence, the convective thermal boundary conditions enhance the dominant

effects of heat transfer irreversibility on the flow system.
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Chapter 8

Summary and Conclusions

In this thesis, the steady, laminar flow and entropy generation in channels and pipes due to mi-

cropolar fluid flow is considered. Micropolar fluids can model the behavior of lubricants, colloidal

suspensions, polymeric fluids, liquid crystals and animal blood etc. Entropy generation is calcu-

lated for two types of boundary conditions on different geometries. In view of this, the problems

for these two cases are studied jointly.

The considered problems for entropy generation are as follows:

• Entropy generation in a micropolar fluid flow through an inclined channel.

• Second law analysis of micropolar fluid flow through a porous channel.

• Effect of magnetic field on entropy generation due to micropolar fluid flow in a rectangular

duct.

• Analysis of entropy generation in a micropolar fluid flow through an inclined circular pipe.

• Entropy generation due to micropolar fluid flow between concentric cylinders.

• Analysis of entropy generation between porous concentric cylinders due to micropolar fluid

flow.

Except for the third problem, all are solved by using Spectral quasilinearization method whereas

the third one is solved by Finite difference method.
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The solutions are obtained for velocity, microrotation and temperature distributions. These

distributions are used to compute entropy generation and Bejan number. The main contributions

of this thesis are listed below.

• Heat transfer irreversibility dominated at the center of the channel and fluid friction irre-

versibility dominated at the lower plate of the channel.

• As viscous dissipation parameter i.e., Brinkman number(Br) increases, entropy generation

increases irrespective of geometry and boundary conditions.

• As micropolarity increases, entropy generation decreases and Bejan number increases for an

inclined channel. This indicates that they can be used as good lubricants.

• The increase in the slip parameter results in decrease the entropy generation for horizontal

and vertical concentric cylinders. This analysis helps the designer for the better efficiency

calculations and geometrical optimization of rotating systems.

• The dominant influence of heat transfer irreversibility is observed as the parameter values of

Bi increases consequently, the Bejan number increases in any geometry. Hence, the convective

thermal boundary conditions enhance the dominant effects of heat transfer irreversibility on

the flow system.

The work presented in the thesis can be extended to analyze the effect of heat and mass transfer,

Joule heating, thermal radiation, chemical reaction etc. In this thesis, we have used micropolar

fluid model. These problems can be extended to other fluid models like Jeffery fluid, nanofluid,

viscoelastic fluid model etc.
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