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ABSTRACT

The importance of entropy and entropy generation is noticeable in areas of immediate
practical interest such as engineering and science. Entropy is used to establish criteria
for the performance of engineering devices. Minimizing entropy generation is important to
improving the efficiency of any system. The entropy generation analysis enables us to identify
the factors that are the major cause of irreversible effects in the system. In order to preserve
the quality of energy in a fluid flow process or at least to reduce the entropy generation,
it is important to study the distribution of the entropy generation within the fluid volume.
Further, the Newtonian fluids cannot precisely describe the characteristics of the fluid flow
with suspended particles. This aspect is precisely taken care by micropolar fluids, which
have been receiving much attention in the recent years. The physiological characteristics of
most of the industrial fluids described by micropolar fluids. Hence, this thesis describes the
entropy generation due to micropolar fluid flow through channels and pipes. The boundaries
of the geometry are subject to (i)No slip for velocity and thermal/heat flux for temperature

(ii)Slip for velocity and the convective boundary condition for temperature.

The thesis consists of EIGHT chapters. Chapter 1 provides an introduction to the con-
cepts in laws of thermodynamics, entropy generation analysis, micropolar fluid and a review
of the pertinent literature. Chapter 2 presents the numerical solution of entropy generation
with micropolar fluid flow through an inclined channel. Chapter 3 investigates the entropy
generation analysis for the micropolar fluid flow through a porous channel. Chapter 4 deals
the numerical solution for entropy generation analysis of the MHD flow of micropolar fluid
in a rectangular duct. Chapter 5 studies the entropy generation analysis of micropolar fluid
flow through an inclined porous circular pipe. Chapter 6 presents the entropy generation
analysis of micropolar fluid flow through concentric cylinders. Chapter 7 studies the nu-
merical solution of entropy generation with micropolar fluid flow through porous concentric

cylinders.

In all these chapters (except chapter 4), the governing equations are initially linearized
by using the Quasilinearization method. The resulting linearized equations are solved by
applying Chebyshev spectral collocation method. The governing partial differential equa-
tions of momentum, angular momentum, and energy in chapter - 4 are solved numerically
using finite difference method. The effects of coupling number, Reynolds number, Brinkman
number, slip parameter and Biot number on the velocity, microrotation, temperature, as
well as entropy generation rate and Bejan number are presented through graphs. The last

chapter (Chapter - 8) gives key findings of the thesis and scope of the work for further study.



NOMENCLATURE

radius of the pipe

constant pressure gradient
microinertia parameter
micropolar constant

Bejan number

Biot number

magnetic flux density

Brinkman number

specific heat at constant pressure
Eckert number

dimensionless axial velocity
dimensionless transverse velocity

dimensionless microrotational

component

Grashof number

acceleration due to gravity
channel width

Hartman number

thermal conductivity of the fluid
non-dimensional parameter
micropolar parameter

coupling number

1

T

Re

vi

entropy generation due to heat

transfer

entropy generation due to viscous

dissipation

entropy generation due to mag-

netic effect

dimensionless entropy generation

number

Prandtl number

radius of the inner cylinder
radius of the outer cylinder

suction or injection Reynolds num-

ber
Reynolds number
dimensional temperature

dimensionless temperature differ-

ence
dimensional axial velocity
dimensional transverse velocity
characteristic velocity
injection velocity

suction velocity



Greek Symbols

a, B, gyration viscosity coefficients

K vortex viscosity

p density of the fluid.

0 dimensionless temperature
I viscosity of the fluid

0] inclined angle

¢ slip coefficient

vil

o dimensional microrotational com-
ponent

Oc fluid electrical conductivity

1, angular velocities of the inner and

outer cylinders

Superscripts

differentiation with respect to 7.
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Chapter 1

Introduction

1.1 Introduction

Fluid flow through channels, pipes and annulus have received the considerable attention
of the several investigators as it is encountered in many energy related applications. The
channel configuration is relevant to solar energy collectors, transpiration cooling, gaseous
diffusion technology, cooling of rocket, mechanized irrigation and filtration processes, thermal
insulation engineering, etc. Further, flow in a pipe or induced by a relative rotating motion
or axial movement between concentric cylinders is applicable to rotating electrical machines,
swirl nozzles, rotating disks, standard commercial rheometers, journal bearings and other
chemical and mechanical mixing equipment. Although a wide variety problems involving
channel, circular pipe and concentric cylinder geometry were reported in the literature,
these problems have been restricted, in thermodynamic point of view, to only the first law

of thermodynamics analyses.

The improvement of thermal systems has gained a growing interest due to the relations

with the problems of material processing, energy conversion and environmental effects. Ef-



ficient energy utilization during any fluid flow is one of the fundamental problems of the
engineering processes to improve the system. One of the methods used for the prediction of
performance of the engineering processes has been the second law analysis. Hence, the con-
temporary trend in the field of heat transfer and thermal design is to perform analysis of the
second law of thermodynamics and its design-related concept of entropy generation and its
minimization. This new trend is important and, at the same time, necessary to contribute to
a viable engineering solution to the energy problems. Entropy generation analysis is gaining
currency in engineering fields like heat exchangers, cooling of nuclear reactors, energy storage
systems, cooling of electronic devices, pumps, turbine, and pipe networks, and so forth. A
great surge of investigations on entropy generation aspects of fluid flow systems was carried

out theoretically in idealized flow configurations having technological implications.

The thermodynamic systems and engineering devices involve various processes such as
compression, expansion, cooling, heating, humidification etc. In all these processes, there
is an exchange of mass, momentum and energy. Hence, a basic knowledge of the laws of

thermodynamics, fluid mechanics and heat transfer that governs these processes is essential.

1.2 Laws of Thermodynamics

Thermodynamics is the study of energy, the conversion of energy between various forms
and the ability of energy to do the work. It is concerned with heat and temperature and
their relation to energy and work. The foundations of thermodynamics are the four laws
of thermodynamics, which define the rules of temperature equivalence (zeroth law), energy
conservation (first law), entropy tendencies (second law), and conditions for an absence of
temperature (third law). These laws provide a sound basis for studying the relationships

among the various forms of energy and their interactions.



1.2.1 First Law of Thermodynamics

The first law of thermodynamics, also known as the law of conservation of energy, states that
the energy can be neither created nor destroyed during a process, but changes only forms.
The first law of thermodynamics evaluates temperature distributions of fluids within the
geometry and also heat transfer coefficients at the surrounding walls. However, it provides
no information about the direction in which processes can spontaneously occur, that is, the
reversibility aspect of thermodynamics processes. It gives no information about the inability
of any thermodynamics processes to convert heat into mechanical work with full efficiency.
An experimentally derived principle is required to characterize the availability of energy,

which is precisely stated in the second law of thermodynamics.

1.2.2 Second Law of Thermodynamics

The first law is concerned with the quantity of energy and the transformation of energy from
one form to another irrespective of its quality. Preserving the quality of energy is a major
concern to engineers, and the second law provides the necessary means to determine the

quality as well as the degree of degradation of energy during a process.

The second law of thermodynamics states that energy of all sorts, whether it be light,
potential, chemical, kinetic, or whatever, tends to change itself spontaneously into a more
dispersed, random, or less organized, form. It defines the fundamental physical quantity
entropy as randomized energy state unavailable for direct conversion to work. It states that
the entropy of the universe (i.e. system and the surroundings) increases in a spontaneous
process and remains unchanged in an equilibrium process. The change in the entropy of the

universe (AS

univ) 15 sum of the entropy changes in the system (ASgys) and the surroundings

(ASsurr), which is expressed by the following mathematical equation:

Asuniv = ASsys + ASsurr



Then the second law of thermodynamics states that

Spontaneous process :  AS| iy = ASsys + ASsurr > 0 (1.1)
Equilibrium  process :  ASypivy = ASsys + ASsurr = 0 (1.2)
Nonspontaneous process :  ASypiy = ASsys + ASsurr < 0 (1.3)

1.3 Entropy Generation Analysis

Entropy and entropy generation are fundamental quantities. They play essential role in
understanding of many diverse phenomena ranging from cosmology to biology. A physical
quantity termed entropy defined in the second law of thermodynamics is a measure of irre-
versibility of the systems. Entropy generation is not a property because it depends upon the
process path. Generation of entropy destroys the available work of a system. Therefore, it
makes good engineering sense to focus on the irreversibility of heat transfer and fluid flow
processes to understand the function of the entropy generation mechanism. To optimize the
performance of engineering systems containing devices in which simultaneous heat and mass
exchange occur, their irreversibilities of individual devices must be minimized. Since the
total irreversibility of a system is the sum of the component irreversibilities, this procedure
improves the system performance. The factors that cause irreversibilities include friction,
unrestrained expansion, mixing of two fluids, heat transfer across a finite temperature dif-

ference, electric resistance, inelastic deformation of solids, and chemical reactions.

The second law of thermodynamics can be combined with the principles of fluid mechan-
ics and heat transfer to acquire knowledge about irreversibilities that influence the working
efficiency of the system and processes. All the real processes related to thermal convection
system are associated with thermal gradient and frictional effects and hence some amount of
available energy is destroyed during the process due to irreversibilities. The optimization may
therefore be carried out by minimizing the irreversibilities present in the system. This ap-
proach of thermodynamic optimization known as Entropy Generation Minimization(EGM)

was first reported by Bejan [12]. Entropy generation minimization(EGM)is a method of



modeling and optimization. Since then the theories based on these foundations have rapidly
developed. However, the entropy production resulting from temperature differences has re-
mained untreated by classical thermodynamics, which motivates many researchers to analyze
the fundamental and applied engineering problems based on the second law of thermody-
namics. Bejan [15] presented the following expression for the volumetric entropy generation
rate.

Ky 1

Sgen = 77 [VT)? + ﬁ@ (1.4)

where the first term on the right hand side of the above equation represents the entropy
generation due to heat transfer and the second term represents the entropy generation due

to viscous dissipation or friction.

It can be noted that second law analysis makes possible to compare many different
interactions in a process or system and to identify the major sources of exergy distributions
or losses. This enables us to exactly identify the region where the entropy generation rate is
maximum in the entire fluid regime. This study facilitated through the entropy generation
number introduced by Bejan. Consequently, the relative effects of heat transfer and fluid

friction can be determined successfully by Bejan number.

1.4 Micropolar Fluid

Newtonian fluid is one for which the shear stress induced by flow is proportional to the rate
of the strain (Newton’s law of viscosity) and the constant of proportionality is the fluid’s
viscosity. Most of the common fluids used in our daily life, e.g., gasoline, honey, water and
air are satisfactorily characterized as Newtonian fluids. There are numerous fluids such as
multigrade engine oils, liquid soaps, paint, shampoo, toothpaste, peanut butter and may-
onnaise, for which Newton’s law of viscosity does not hold good. These fluids are termed
as Non-Newtonian fluids. Further, examples include slurries and polymers in molten form.
The rheological characteristics of the fluids can be described through the constitutive equa-

tions. In view of the diversity of non-Newtonian fluids, a single constitutive equation cannot



predict their rheological behavior. Therefore, several empirical and semi-empirical consti-
tutive equations have been proposed in the literature. Micropolar fluid model, presented
by Eringen [41], is one amongst them, which exhibit microinertial effects and support body
couples and couple stresses. Shearing stress components are affected by the vorticity and
microrotation in these fluids and are no longer symmetric. The important feature of these

fluids is the microrotation.

The applications of the micropolar fluid model include the extrusion of polymer fluids
and real fluids with suspensions, solidification of liquid crystals, cooling of a metallic plate in
a bath, animal blood, porous media, turbulent shear flows, flow in capillaries, microchannels,
colloidal and suspension solutions. In the micropolar fluid theory, rigid particles contained in
a small fluid volume element are limited to rotation about the center of the volume element
described by the micro-rotation vector. This local rotation of the particles is in addition to
the usual rigid body motion of the entire volume element. Physically micropolar fluids may
be described as the non-Newtonian fluids consisting of dumb-bell molecules or short rigid

cylindrical elements.

The theory of micropolar fluids requires to append a transport equation representing the
principle of conservation of local angular momentum to the usual transport equations for the
conservation of mass and momentum with additional local constitutive parameters. Hence,
this theory allows for two independent vectors, velocity vector § and microrotation vector &
associated with each fluid particle. The microrotation vector represents the rotation in an
average sense of the rigid particles centered in a small volume element about the centroid of

the element. The field equations of micropolar fluid dynamics [41, 20] are

Conservation of mass:

7 +p(V.q) =0 (1.5)



Conservation of momentum:

dg —
po = Pf =V =+ RV XV XTHRYXT+ A+ 204+ 0) V (VD) (16)

Conservation of angular momentum:
Ldo - _ _ _ _
it = PRV XT =260 =7V X V XT + (0 + f+7) v (V-9) (1.7)

Conservation of energy:

dE

p— =P (VD) +p2— (V1) (1.8)

where ® is the viscous dissipation function of mechanical energy per unit mass and is given

by
1 2
p® =\ (v.9)* +2u (D : D)+ 4x (2 U X — a> +a(vo)l+v(vo:v.o)+ 0 (w : (V.E)T)

The scalar quantities p and j* are density, micro-inertia and are assumed to be constants. The
vectors G, @, f and [ are the velocity, microrotation, body force per unit mass and body couple
per unit mass respectively. P is the fluid pressure at any point, D denotes deformation tensor i.e.,
D= % (vq : (v.q)T>, E is the specific internal energy, h = —K; v/ T is the heat flux and K is the
thermal conductivity. The material constants (A, u, k) are the viscosity coefficients and (a, 3, 7)

are the gyro-viscosity coefficients. These confirm the following inequalities,

k>0, 2u+rKk>0, 3A+2u+k>0, v>0, 3a+8+7>0, v>|0F]| (1.9)

The stress tensor 7;; in the theory of micropolar fluid is given by
Tij = (=P + A(v.0)) 6ij + 2p + K) dij + Keijm (Wm — om)

where 0, and w,, are the components of microrotation vector and the vorticity vector respectively,

d;; are the components of rate of shear strain, d;; is the kronecker symbol and ¢;;,,, is the Levi-Civita



symbol.

In the special case where the fluid has constant physical properties, no external body forces exist
and the flow is in steady state, the conservation equations can be greatly simplified. Additionally,
in the case where Kk = 0, a = 8 = v = 0 and with vanishing [, the gyration vector disappears
and angular momentum equation (1.7) vanishes identically and the equation (1.6) reduces to the
classical Navier-Stokes equation. We also note that in the case of zero vortex viscosity (k = 0)
only, the velocity vector g and the microrotation vector & are decoupled and the global motion is

unaffected by the microrotations.

1.5 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the branch of continuum mechanics which deals with the motion
of an electrically conducting fluid in the presence of a magnetic field. This subject has attracted
numerous scientists and engineers for the last few decades because of its fascination and impor-
tance in various technological devices and in understanding the diverse cosmic phenomena. MHD
describes the frontier area combining classical fluid mechanics and electrodynamics. MHD phe-
nomena are outcome of mutual interaction between magnetic field and electrically conducting fluid
flowing across it i.e., electric current induced in the fluid as a result of its motion modify the field,
and at the same time their flow in the magnetic field produces a mechanical force called Lorentz

force which modifies the motion.

The flow of electric currents in the magnetic field produces a mechanical force that brings a
change in the fluid motion. Suppose that the fluid is incompressible, electrically conducting and is
in the presence of an arbitrary magnetic field. The magnetic field, then interacts with the fluid by
means of body force and body couple per unit mass. If gravitational effects are not present, then
a regular magneto-fluid dynamics assumption is pf = p.E + J x B , where p, is the free charge
density. Since, the electric force density p.E is smaller than J x B, the electric force density can be
neglected. Hence, the fluid dynamical aspects of MHD are handled by adding an electromagnetic
force term to the momentum equation of the fluid. There are two key physical effects which occur
when the fluid moves into the magnetic field: motion of a conducting liquid in an applied magnetic

field will induce a magnetic field in the medium. The total field is the sum of the applied and induced



magnetic fields (B = Bg+b , b is induced magnetic field). The relative strength of the induced field
is characterized by the magnetic Reynolds number. The neglect of the induced magnetic field is a
valid assumption when magnetic Reynolds number is small. The second key effect is dynamical.
When currents are induced by a motion of a conducting fluid through a magnetic field, a force
(Lorenz force or .J x B, where J is the current density and B is the magnetic field) will act on the

fluid and alter its motion. Hence, fluid motion in a magnetic field induces

1.6 Boundary Conditions

The governing equations for the velocity, microrotation and temperature fields are partial differen-
tial equations. Which are applicable at every point in a fluid that is being modeled as a continuum.
When they are integrated in any given situation, it can be expected to see arbitrary functions or
constants appear in the solution. To evaluate these, an additional statement of velocity, micro-
rotation, temperature fields and their gradients at the natural boundaries of the flow domain are
needed. Such statements are known as boundary conditions. The different boundary conditions
for the velocity (no-slip condition and slip condition), microrotation (hyperstick condition) and

temperature (uniform temperature, heat flux and convective conditions) are given below.

No-slip Condition

In no-slip boundary condition, the fluid is in contact with a wall will have the same velocity as the
velocity of the wall. Often, the walls are not moving, so as the fluid velocity is zero. In drag flows,

the velocity of the wall is finite and the fluid velocity is equal to the wall velocity.
9(at the boundary) = dwall

Slip Condition

Navier [82] proposed a general boundary condition that incorporates the possibility of fluid slip at

a solid boundary. This condition states that the velocity at a solid surface is proportional to the



shear stress at the surface.
Awall = ¢ Twall

where ( is the slip length or slip coefficient. The measure of the slip is called slip length. Factors
that affect the slip length include weak wall fluid attraction, surface roughness and high shear
stress. If ( = 0, then the general assumed no-slip boundary condition is obtained. The fluid
slippage phenomenon at the solid boundaries appear in many applications such as in microchan-
nels or nanochannels and in applications where a thin film of light oil is attached to the moving
plates or when the surface is coated with special coatings such as thick monolayer of hydrophobic

octadecyltrichlorosilane.

Hyper-stick Condition

In this thesis it has been taken the hyper-stick condition for microrotation. This condition states
that the microrotation vector on the boundary is same as the angular velocity of the fluid on the

boundary.
1 _
Owall = 5 (V X Tyall)

A more general condition is taken as

Owall = (VX Tyall)

where 0 < n < 1 (refer [62]). This value of n indicates the concentration of micropolarity or
interaction of fluid particles with the boundary. The case n = 0 indicates o = 0 at the boundary. It
represents the flow of concentrated particles in which the micro elements closed to the wall surface
are unable to rotate. This case is also known as strong concentration of micro elements. The
case corresponding to n = 0.5 results in the vanishing of antisymmetric part of stress tensor and
represents weak concentrations of microelements. The particle spin is equal to fluid vorticity at the
boundary for the fine particle suspensions. The case corresponding to n = 1 represents a turbulent

boundary layer flows.

10



Isothemral /Flux conditions

In most usual situations, heat transfer takes place in a fluid moving near a wall heated or cooled at
a temperature different from that of the fluid. In this case, the boundary conditions are expressed
at the fluid/solid interface. The most usual conditions consist of one of the following simplified

assumptions:

1. The fluid/solid interface is at a uniform temperature : 1§39 = T5oliq = constant

2. The heat flux is uniform on the interface : ¢, = —K¢ (n.VT).

Convective Boundary Conditions

Recently, a novel mechanism for the heating process has drawn the involvement of many researchers,
namely, convective boundary condition (CBC), where the heat is supplied to the convecting fluid
through a bounding surface with a finite heat capacity. Further, this results in the heat transfer
rate through the surface being proportional to the local difference in temperature with the ambient
conditions [74].

Ky (n.VT) = h(Tgyptace = Too)

where h is the heat transfer coefficient, T, is the ambient temperature.

1.7 Aim and Scope of the Thesis

The aim of the present thesis is to study the entropy generation analysis due to micropolar fluid
flow through channels and pipes. In this thesis, two types of boundary conditions are consid-
ered. First type (or case) of boundary conditions are no-slip for velocity and iso thermal/iso
flux for temperature and the second type are slip for velocity and convective boundary condition
for temperature. Further, the hyperstick condition for microrotation is taken in both the cases.
The governing non-linear equations are linearized using quasilinearization method and the result-
ing equations are solved using Chebyshev spectral collocation method. The influence of coupling
number, Reynolds number, slip parameter, Biot number and Brinkman number on the velocity,

microrotation, temperature, entropy generation and Bejan number are analyzed.

11



Quasilinearization Method

In this section we give a description of the quasilinearization method (QLM). The QLM was initially
proposed by Bellman and Kalaba [16] to solve non-linear boundary layer problems. To develop
the QLM we consider a system of m non-linear ordinary differential equations with m unknowns
zi(n)(i = 1,2,....m) where 7 is the independent variable. The system can be written as a sum of

its linear (L) and non-linear components (V) as

Lz1(n), z2(n), - 2m(m)] + N [21(n), 22(n), ----zm ()] = H(n) (1.10)

Define vector Z; to be the vector of the derivatives of the variable z; with respect to the independent
variable 7, that is

Z; = zi(o),z,fl), ..... ,z-(ni)} (1.11)

(0)

where z;

(»)

= z; and z; is the pt" derivative of z; with respect to n and n;(i = 1,2,....m) is the
highest derivative order of the variable z; appearing in the system of equations. In addition, we
define L; and N; to be the linear and non-linear operators respectively, that operate on the Z; for

i =1,2,....m. With these definitions equation (1.10) can be written as

Li[Z1, Za, ... 2| + Ni |21, Za, ..... ZZ% )+ N (24, Zoy o T = Hi  (1.12)
Jj=1p=0
where ag] are the constant coefficient of z](.p ), the derivative of z;(j = 1,2,....m) that appears in

the i, equation for ¢ =1,2,....m

Again, we assume that equation (1.10) is to be solved subject to separated two-point boundary

conditions which are expressed as

m Mj—

> Z By v ] Kow, v=1,2,...,m, (1.13)

7=1 p=0

n;—1

m 1
Z Z ’YO',JZJ(p Kavff’ 0 = 17 27 ceeey M (114)
j=1 p=0

where BK’ l-, 'y[p}- are the constant coefficients of z](-p )

py in the boundary conditions and m,, m; are the

total number of prescribed boundary conditions at n = a and n = b respectively.
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Assume that the solution z;(n) of (1.12) at the (r + 1) iteration is 2z;,41. If the solution at
the previous iteration z;,(n) is sufficiently close to z; 41, the non-linear component N; of equation
(1.12) can be linearized using one term Taylor series for multiple variables so that equation (1.12)

can be approximated as

. , _ S (»  _ ON; _ 7.
L; [Zl,r—i—la """ Zm,r’-i-l] +Ni[.]= ;pzo (Zj,r—i-l Zj,r) 8ZJ(;D) [..] = H; (1.15)
where
(] = [Z1rs Zogs oo Zoms] (1.16)

Equation (1.15) can be re-written as

m n; 9
L; [Zl,r+1a ..... mr+1 +ZZ jr+1 (p = H; +ZZ ]IZ,) Ni *Ni [] (117)
j=1 p=0 aZ

The above equation can then be solved using any numerical method. In this work we use the Cheby-
shev spectral collocation method and we call the resulting method, the spectral quasilinearization

method (SQLM).

Chebyshev Spectral Collocation Method

The Chebyshev spectral collocation method [22, 36, 95] is based on the Chebyshev polynomials
defined on the interval [-1, 1]. To solve the problems using this method, first transform the domain

[a, b] to the domain [—1,1] by using the transformation
(b—a)x=2x—(a+b), -1<x<1 (1.18)
We discretize the domain [-1, 1] using the Gauss-Lobatto collocation points given by

§=0,1,2,......,J (1.19)
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where J is the number of collocation points used. The function z; is approximated at the collocation

points as follows

J
=z Tr(x;) (1.20)
k=0

where T}, is the k' Chebyshev polynomial defined by T} (x) = cos[kcos™'x]

The derivatives of the variables at the collocation points are represented as

drzi J 2 "
o => 7D | z(xw), (1.21)
k=0

where r is the order of differentiation and D being the Chebyshev spectral differentiation matrix

whose entries are defined as

_ 2J%41
Dy = ==
) G (—1)
Djy = 20 Ak jik=0,1,2--- ], (122
Dkk:—m, k:1,2,J—1,
2
DNN:_2J6+1 )

Substituting equations (1.19) - (1.22) into the given equation leads to the following system of matrix
equation

A1 X =R, (1.23)

in which 4;_; is a (J +1)x(J +1) square matrix while X; and R;_; are (J +1)x 1 column vectors.

After incorporating the boundary conditions, the solution of the given equation is obtained as

X, =A " Ri (1.24)

1.8 Literature Review

Entropy generation which is the measure of the destruction of available energy in a system that plays
an important role in the design and development of engineering processes such as heat exchangers,
pumps, turbine and pipe networks. The energy utilization during the convection in any fluid flow

and the improvement in thermal system is one of the fundamental problems of the engineering
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processes, this can be done by minimizing the entropy generation. Bejan [12] was the pioneer
to work on entropy generation. Bejan [14, 15] investigated entropy generation minimization and
showed the fundamental importance of entropy minimization for efficient engineering processes.
Thereafter, many authors such as Baytas [11], Tasnim and Mahmud [91], Ganji et al [43], Esfahani
and Shahabi [42], T'shehla et al [97, 96], Heidary et al [47], Chauhan and Kumar [23], Ramakrishna
et al [86], etc., have studied the entropy generation and irreversibility profiles for different geometric

configurations, flow situation and thermal boundary conditions.

Fluid flow and heat transfer in channels with simple geometry at different boundary conditions
is one of the fundamental researches in engineering. Several researchers have discussed the entropy
generation inside the channels under various flows. Tasnim et al [90] analyzed the first and second
law characteristics of non-Darcy mixed convection flow in a porous channel in the presence of
transverse magnetic field. They observed that the channel walls act as strong concentrator of
irreversibility due to high velocity and temperature gradients. Entropy generation in a channel
of two parallel plates with viscous dissipation was investigated by Mahmud and Fraser [70, 69].
Erbay [40] studied the entropy generation due to fluid flow through a channel where the bottom
is moving. Havzali [46] investigated the entropy generation on a laminar, viscous, incompressible

flow between two inclined, parallel, isothermal plates.

The study of fluids in porous channel has received adequate attention over the few centuries due
to its wide applications in physical, biological and applied sciences. Consequently, investigation of
entropy generation in porous channel due to the combined effects of wall suction/injection becomes
essential. Chauhan and Kumar [23] studied entropy analysis in an annulus partly saturated with a
porous medium due to third grade fluid flow. Entropy generation for couple stress fluid through a
vertical channel filled with saturated porous medium was determined by Makinde [72]. Adesanya
and Makinde [1, 2] examined the entropy generation in couple stress fluid flow through a porous
channel with slip and convective heating. Mahdavi et al [65] discussed the fluid flow analysis and
heat transfer in pipes partly occupied with porous medium and evaluated the entropy generation

numerically.

The flow through the circular pipe and flow between two cylinders, where one or both of
the cylinders rotate has many applications. Yilbas et al [101] studied the entropy analysis for
non-Newtonian fluid flow in an annular Pipe. They found that the rate of entropy generation

can be reduced by reducing both non-Newtonian parameter and Brinkman number. Bouzid et al
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[19] investigated the entropy generation in a fully developed ice slurry pipe flow and found that
the volumetric average entropy generation number increases as the mass fraction of ice or the

dimensionless group parameter increases.

Fluid flow and heat transfer inside a cylindrical annular space through convection have many
significant engineering applications. Mirzazadeh et al [75] have focused on the entropy generation
induced by the flow of a non-linear viscoelastic fluid between concentric rotating cylinders. Their
results showed that the entropy generation number increases with increase in Brinkman number.
Atayilmaz [9] carried out both numerical and experimental analysis on natural convection of heat
transfer from horizontal concentric cylinders. Considerable amount of research has been carried out
to investigate the Newtonian and non-Newtonian fluid flow through concentric cylinders. Taylor
[92] studied theoretically and experimentally the flow of viscous incompressible fluid between two
concentric cylinders. Hessami et al [48] analyzed laminar mixed convection flow pattern and heat
transfer of air inside a vertical cylindrical annular space. Borjini et al [18] studied the effect
of radiation on unsteady numerical convection between two horizontal concentric and vertically

eccentric cylinders.

The majority of entropy generation studies deal with convection processes in which the entropy
generation is the result of fluid friction and heat transfers. Haddad et al [44] presented the entropy
generation due to laminar forced convection in the entrance region of a concentric cylindrical
annulus. It was found that the thermal entropy generation is relatively dominant over viscous
entropy generation. Hooman and Ejlali [49] studied the entropy generation for forced convection
in a circular tube filled by a saturated porous medium, with uniform wall temperature. Cimpean
and Pop [28] studied the entropy generation for a mixed convection flow of a fluid saturated porous
medium through an inclined channel with uniform heated walls. Several works have been carried

out on entropy generation with natural convection (see, example [63, 64, 5, 25, 10]).

The flow and heat transfer in an electrically conducting fluid in the presence of a magnetic field
has attracted several researchers in view of its applications in engineering, technology and science.
Rashid and Mehr [87] studied the effects of the velocity slip and temperature jump conditions on
the entropy generation in the MHD flow over a porous rotating disk. Numerical analysis of the
entropy generation within a mixed convection magneto hydrodynamic (MHD) flow in a parallel-
plate vertical channel was performed by Liu and Lo [61]. They observed that the minimum entropy

generation number and the maximum Bejan number occur at centerline region of the channel under
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asymmetric heating conditions.

The boundary condition of the fluid over a solid surface is the generally accepted no-slip con-
dition. However, Navier [82] proposed a slip boundary condition where the slip velocity depends
linearly on the shear stress. The fluid slippage phenomenon at the solid boundaries appear in
many applications such as in microchannels or nanochannels and the polishing of artificial heart
valves, internal cavities. Yari [100] studied the second-law analysis and entropy generation for heat
transfer and fluid flow through microannulus by considering the viscous dissipation effect, slip ve-
locity and temperature jump. Effects of velocity slip, temperature jump on entropy generation in

a rectangular duct with forced convection is presented by Hooman [50].

Furthermore, heat transfer processes poses thermal boundary conditions, heat flux boundary
conditions and convective boundary conditions. Consequently, investigation of entropy generation
due to the effects of Navier slip and different temperature conditions becomes essential. Eegunjobi
and Makinde [38, 39] presented the effect of slip and convection heating on entropy generation
in a channel. Ibanez [52] considered the problem of entropy generation with slip and convective
boundary conditions. Iman [53] investigated the importance of thermal boundary conditions of the
heated/cooled walls in the development of flow, heat transfer, and observed the characteristics of

entropy generation in a porous enclosure.

The flows of non-Newtonian fluids are very important because of their industrial and techno-
logical applications. In many chemical and processing industries, the products such as polymer,
foods, and plastics exhibit non-Newtonian behavior. Adequate research has been done on entropy
generation due to various non-Newtonian fluid flows through different geometries. Langeroudi and
Aghanajafi [59] applied power-law, Bingham and Casson fluid flow models in a circular pipe to
evaluate entropy generation. Mahian et al [66, 67, 68] determined the influence MHD flow on
the entropy generation of nanofluid flow through a vertical annulus. Entropy generation due to
nanofluid flow through a channel with convective cooling/heating was investigated by [24, 76, 30].
The entropy generation and heat transfer characteristics of the fully developed flows of power law

fluids in a micro channel was discussed in [33, 4] .

Micropolar fluid theory is one of the non-Newtonian fluids introduced by Eringen [41] has
distinct features, such as microscopic effects arising from the local structure, micro motion of fluid

elements, presence of couple stresses, body couples and non-symmetric stress tensor. Weng et al [98]

17



applied the micropolar fluid to study the stability problem of flow between two concentric rotating
cylinders. Nadeem et al [80] studied the peristaltic flow of a micropolar fluid with heat transfer
in an annulus. Imtiaz and Mahfouz [54] investigated numerically the conjugate heat transfer in an
annulus between two concentric cylinders. Devi et al [35] studied the mixed convection micro polar

flow through a porous medium in a cylindrical annulus using finite element analysis.

Heat transfer enhancement in a rectangular duct is of great interest and importance in many
industrial applications like heat exchangers, cooling devices and gas turbines because of higher heat
transfer rates increase the efficiency of a system and reduce thermal load. Narusawa [81] investigated
the mixed convection and entropy generation numerically in three dimensional rectangular duct
with heating at the bottom. Oztop [83] studied the entropy generation in a semicircular duct with
constant heat flux. Ko and Ting [57] analyzed the entropy generation in a curved rectangular duct
caused by forced convection with external heating. Haji-Sheikh [45] considered the fully developed
forced convection in a duct of rectangular cross section. Jarungthammachote [55] studied the
entropy generation for laminar fluid flow through a hexagonal duct. Yang et al [99] investigated heat
transfer and entropy generation in the entrance region of a three dimensional vertical rectangular
duct. They noticed that increase in Reynolds number increases the entropy generation rate due to

heat transfer and fluid friction in the channel.

1.9 Outline of the Thesis

The present thesis aims at presenting entropy generation analysis for micropolar fluid flow through
channels and pipes. A quantitative analysis has been performed based on numerical computations
in order to know the effects of certain physical parameters on entropy generation and Bejan number

through graphs. This thesis consists of EIGHT chapters.

Chapter - 1 is introductory in nature and motivates the investigations carried out in the thesis.
The basic terminology is introduced and a survey of pertinent literature is presented to exhibit the
importance of the problems considered. The basic equations governing the micropolar fluid flow

and heat transfer are given.

In chapter-2, the entropy generation for steady incompressible micropolar fluid flow through an

inclined channel for two types of boundary conditions is investigated. In the first case, the lower
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plate of the channel is kept at constant temperature and upper plate is subjected to uniform heat
flux. Slip and convective boundary conditions are prescribed in the second case. The governing
equations are simplified for velocity, microrotation and temperature profiles, which are used to
compute entropy generation and Bejan number. The obtained numerical results are compared and

are found to be in good agreement with previously published results dealing with special cases.

Chapter-3 analyzes the entropy generation due to micropolar fluid flow through a porous channel
under different boundary conditions. In the previous chapter one dimensional channel flow is
considered, whereas in this chapter the two dimensional flow through the channel is considered. The
governing non-linear partial differential equations are transformed to ordinary differential equations
by using similarity transformations. The entropy generation number is computed numerically by

utilizing the velocity, microrotation and temperature.

Chapter-4 deals with the problem of entropy generation due to heat transfer, fluid friction and
magnetic field. The steady, incompressible micropolar fluid flow in a rectangular duct has been
considered associated with different boundary conditions. An external uniform magnetic field is
applied, which is directed arbitrarily in a plane perpendicular to the flow direction. The governing
partial differential equations of momentum, angular momentum and energy are solved numerically
using finite difference method. The obtained velocity, microrotation and temperature distributions

are then used to evaluate the entropy generation and Bejan number.

Chapter-5 describes the second law analysis of micropolar fluid flow and heat transfer inside an
inclined porous circular pipe for different boundary conditions. The cylindrical polar coordinate
system (r, p, z) with z-axis along the direction of the fluid flow is considered. The non-linear gov-
erning equations are transformed using similarity transformations and then solved numerically. The
velocity, microrotation, temperature, entropy generation number and Bejan number are calculated

and discussed quantitatively for various values of the embedded parameters.

Chapter-6 presents the analysis of entropy generation in micropolar fluid flow between concen-
tric cylinders. The non-linear model problem is tackled numerically. The velocity, microrotation
and temperature profiles are obtained and used to compute entropy generation and Bejan num-
ber. The entropy generation number and Bejan number are presented graphically and discussed
quantitatively for various values of the fixed parameters. The numerical results are compared and

are found to be in good agreement with previously published results as special cases of the present
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investigation.

The objective of Chapter-7 is to analyze the entropy generation of micropolar fluid flow through
porous concentric cylinders. A relative rotational motion is present between inner and outer cylin-
ders, thus inducing the flow. The injection fluid flow rate at one wall is assumed to be same as the
suction flow rate at the other wall. A uniform magnetic field is applied along the radial direction.
The flow phenomenon has been characterized by the non-dimensional parameters like coupling
number, cross flow Reynolds number and Brinkman number. The numerical data for velocity,

microrotation and temperature fields are used to evaluate entropy generation and Bejan number.

The Spectral quasilinearization method is employed to solve the problems in Chapters (2, 3,
5, 6 and 7). In all these chapters, the governing equations are initially linearized by using the
quasilinearization method. In this method, the iteration scheme is obtained by linearizing the
non-linear component of a differential equation using the Taylor series expansion. The resulting
linearized equations are solved by applying Chebyshev spectral collocation method. In all the
chapters the effects of various physical parameters on the velocity, microrotation, temperature, as

well as entropy generation rate and Bejan number are presented through graphs

In Chapter - 8, the main conclusions of the earlier chapters are recorded and the directions in

which further investigations may be carried out are indicated.

A list of references is given at the end of the thesis. The references are arranged in an alpha-

betical order.

Considerable part of the work in the thesis is published/accepted for publication in journals.

The remaining part is communicated for publications. The details are presented below.
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Chapter 2

Entropy Generation in a Micropolar
Fluid Flow Through an Inclined

Channel !

2.1 Introduction

The study of fluid flow and heat transfer has a wide range of thermal engineering applications such
as thermal insulation engineering, water movement in geothermal reservoirs, heat pipes, etc. At the
same time the optimal design criteria for thermal systems by minimizing their entropy generation
have been recently a topic of great interest. Moreover, the performance of thermal devices is
always affected by irreversible losses that lead to an increase of entropy and reduces the thermal
efficiency. Therefore, in the energy optimization problems and in the design of many traditional
heat removal engineering devices, it is necessary to minimize the entropy generation due to heat
transfer and fluid friction. Starting from the pioneering work of Bejan [14], several investigations
[12, 71, 27, 26, 33] have been carried on entropy generation under various flow configurations.
Havzali [46] investigated the effect of entropy generation on a laminar, viscous, incompressible fluid

flow between two inclined, parallel, isothermal plates. Kamisli and Oztop [56] examined the entropy

1Case(a):Published in “Alexandria Engineering Journal, 55 (2016) 973-982", Case(b):Published
in “Energy, 91 (2015) 72-83”
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generation in two immiscible incompressible fluid flows under the influence of pressure difference
in thin slit of constant wall heat fluxes. Komurgoz et al [58] investigated the magnetic effect on
heat-fluid and entropy generation interactions in an inclined channel consisting of two regions: one

filled with clear fluid and the second with a porous medium.

The present chapter concentrates on investigating the characteristics of micropolar fluid flow and
entropy generation in an inclined channel. Two types(cases) of boundary conditions are considered
for the velocity and temperature on the plates of the inclined channel. In the first type(case a),
the plates of the channel are subjected to no-slip and isoflux/isothermal boundary conditions. In
the second type (case b), the plates of the channel are subject to slip and convective boundary
conditions. The effect of pertinent parameters on velocity, microrotation, temperature, entropy

generation and Bejan number are discussed through graphs.

2.2 Mathematical Formulation

Consider a steady, laminar, incompressible, fully developed, micropolar fluid flow bounded by two
infinite inclined parallel plates separated by a distance 2h. Assume that the channel is porous and
inclined at an angle ¢. Let the plates are of infinite length in x and z-directions i.e. -co < x < 00
and -0o < z < 0o. We consider the fluid to be flowing between the two plates under the influence
of a constant pressure gradient % in the z-direction, and a uniform suction or injection from below
and above with a constant velocity vy where vy < 0 is the velocity of suction and vg > 0 is the
velocity of injection. Hence, the flow is along x and y- directions and can be taken as (u(y),v,0).
Therefore, the continuity equation takes the form g—; = 0 which on integration gives v = constant.

This constant is equal to the suction velocity vg. In particular, the velocity of the fluid is given as

q(y) = u(y)i + voj.
With these assumptions and Boussinesq approximations, the governing equations are
— =0 (2.1)
d’u du do dp

(/H"‘@)dTﬂ TPy +K7y +pg"B(T" = T1)sin(¢) — 5~ =0 (2.2)
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Figure 2.1: Physical model and coordinate system.

d*c do du
— i — — 2K0 — Kk— = 2.
’ydy2 0J Udy Ko Rdy 0 (2.3)
d2T dT du\ 2 du do\?
Ki— — pCoo— — 2 2 — — | =0 2.4
i ppvdy+(u+l€)<dy> + n(a +ady>+7<dy> (2.4)

where u is the velocity component in z-direction, ¢ is the microrotation, p and j* are the fluid
density and gyration parameter, p, £ and 7 are the material constants (viscosity coefficients), g*
is the acceleration due to gravity, p is pressure, 3 is the coefficient of thermal expansion and K is

the thermal conductivity of the fluid.

2.2.1 Case(a): No-slip and Isothermal/Isoflux Boundary Condi-

tions

In this case, no-slip and hyper-stick conditions are considered for the velocity and microrotation
respectively on both plates of the channel. Further, the upper plate of the channel is subject to
uniform heat flux ¢ (isoflux) while the lower plate of the channel is kept at uniform temperature
T, (isothermal). These boundary conditions are given by

dI'  q

P4y oy=nh
ay KUY (2.5)

u=0, oc=0, T=1Ty, at y=-—h
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Introducing the following non-dimensional variables

1= =ttt o= "Cgm). o= (26)

Ky

in Egs.(2.2) - (2.4), to get the following coupled non-linear system of differential equations:

1 " , N , Gr . _
1—Nf Rf" + -9 + oo sin(¢)) = A (2.7)
2—N 1-N
2 gll—ajR<N>gl—29—f,=0 (2.8)
B N(2—-N
0" = RPro/ + —— fN [f’2+2N(g2+gf')+(m2 L] =0 (2.9)

where Uy is the characteristic velocity, Pr = %(Prandtl number), Re = %(Reynolds number),

R= "Z—Oh(suction/ injuction Reynolds number), N = W"M(coupling number), Gr = %(Grashof

h2k(2u+rK)
v(ptr)

h? Op

number), A = 558 (constant pressure gradient), m? =

(micropolar parameter), a; =

% 2
j . . . _ pU3 .
7z (micro-inertia parameter), Br = h—q(Brlnkman number).

The corresponding dimensionless boundary conditions are

f=0, ¢g=0 60=1, at n=1
(2.10)
f=0, g=0, 06=0, at n=-1

Method of Solution

The system of Egs. (2.7) to (2.9) along with the boundary conditions (2.10) are solved using the
Spectral quasilinearization method(SQLM) [77, 78, 79]. Initially Quasilinearization technique is
applied to linearize the system of equations (2.7) to (2.9) and then Chebyshev spectral collocation

method is implemented to solve the linearized equations.

Let f;, gr and 6, be an approximate current solution and f,41, gr4+1 and 6,41 be an improved
solution of the system of equations (2.7) to (2.9). By taking the Taylors series expansion of non-

linear terms in (2.7) to (2.9) around the current solution and neglecting the second and higher
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order derivative terms, to get the following linearized equations

1 N Gr
ﬁfﬂl - Rf7{+1 1_ N9r+1 + Re sin(¢)0r41 = A (2.11)
2— N 1—-N
ngﬂ —ajR (N> Gri1 —29r41 — fry1 =0 (2.12)
r+1 RP?“QT_H + a1 rfr+1 + as rgr+1 + a3 rgr+1 = A4,y (213)

where the coefficients as,, s = 1,2, 3,4 are known functions calculated from previous iterations and

are obtained as

2Br 2Br N(2—N) , 2BrN

a1y = 1= (f + Ngr) agr = - N 2 9ry A3y = 1— (f + QQT)
Br N2-N
Ur = TN 24+ 2N (97 + g, f7) + (mz)gf

The above linearized equations (2.11) - (2.13) are solved using the Chebyshev spectral collocation
method [21]. The approximations are done by using the Chebyshev interpolating polynomials for

the unknown functions. Further, they are collocated at the Gauss-Lobatto points represented as

& :cos%, i=0,1,2,..,J (2.14)
where J is the number of collocation points used.

The functions fr+1, gr+1 and 6,41 are approximated at the collocation points by

fr+1(&5) Zfr+1 §)Tk(&),  9r+1(&) ZQH-I &k)Th(&5),

k=0 k=0

0r11(&) Zem )Tk(E), §=01,2,..,] (2.15)
k=0

where Ty, is the k' Chebyshev polynomial defined by T} (&) = cos(kcos™1€).
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The derivatives of the variables at the collocation points are represented as

d*f,
J:?+1 ZDkaT+1 fk)
a* 9r+1
dn®

where

Substituting Egs. (2.15) -

(2.16) into Egs. (2.

a* gr+1

Z Djk‘gr—H fk)

ArXrJrl = B,

Here A, is a (3J + 3) x

defined by
A A Agg Fr1 ri,
A= 149 Ay As|, Xe41= |G| Br=|rg,
A3z Az Asz O©r11 r3,
where
Fri1 = [fr11(80), fra1(€0)s ooy frr(€r-1), frp1(€2)]7,
Gri1 = [9r+1(60)s gr1(61), v g1 (E7-1), g1 (€0)] T
Orp1 = [r+1(50) Or1(&1); woves Or 41 (E5-1), 9r+1(§ N7,
Aj = 25D%2 - RD, Ap=(£5)D, Ai3=%singl, 1, =4,
Ag =-D, Ap=29¥D?-q;R(:55)D - 21, A23 =0, ry, =0,
Az1 = a1,D, Az =as,D+az, I, Az = D2 — RPrD, I3, = a4,

Here I, O represents (J + 1) x

The corresponding boundary conditions

fre1(&0) =0,  gr4+1(&0)

fT+1 (f]) = O’

Z Djk;ngrl (&k),

11) - (2.13) leads to the matrix equation

(J 4 1) identity matrix, zero matrix respectively.

=0, ZDOk9r+l (&) =1

gT‘+1(§J) = 07

27

9r+1 (6]) =0

(2.16)

“a” is the order of differentiation and D being the Chebyshev spectral differentiation matrix.

(2.17)

(3J + 3) square matrix and X,1; and B, are (3J + 3) x 1 column vectors

(2.18)

(2.19)

(2.20)



Incorporate the boundary conditions (2.20) in the matrix system (2.17), the solution is obtained as
X,11=A'B, (2.21)

The initial approximations fy, go and 6y are chosen such that they satisfy the boundary conditions
(2.20) i.e.

fom) =0, go(n) =0, 6bo(n) =5 (n*—1) (2.22)

N |

Entropy Generation

The second law of thermodynamics is an important tool to understand the irreversible effects due
to flow and heat transfer. Thermodynamic irreversibility is closely related to entropy production.
A convection process involving channel flow of micropolar fluids is inherently irreversible due to
the exchange of energy and momentum within the fluid and at solid boundaries. For the present

study the volumetric rate of entropy generation from Eq. (1.4) is given by

Ky (dT 2 w4k (du 2 2k 9 du v (do 2
Sq = — — = — )+ (= 2.23
¢ ( >+ T (dy) T\ ) T \ay (223

Til2 dy
where the first term on the right hand side of the above equation represents the entropy generation

due to heat transfer while the second term gives the entropy generation due to micropolar fluid
friction. According to Bejan [15], the dimensionless entropy generation number Nj is the ratio of the
volumetric entropy generation rate to the characteristic entropy generation rate. The dimensionless

entropy generation number is given by

Np
~>  DBr N(2 - N)
Ny= 07 + ——L|f?+2N(¢* N+ 24" 2.24
s N L [T HENG ) g (2.24)
Ny
where the characteristic entropy generation rate is K‘;Z;Q and L = K}{—? is the dimensionless value
1

and it is a controlling parameter that depends on the heat flux, temperature of the fluid, length of
the channel and the thermal conductivity. In order to have an idea whether fluid friction or heat
transfer entropy generation dominates, an alternate parameter Be (Bejan number) was introduced

by Paoletti [85], which is the ratio of entropy generation due to heat transfer to the overall entropy
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generation.
Ny,

Be= ————
Nh+Nv

(2.25)

The Bejan number varies from 0 to 1. Subsequently, Be = 0 reveals that the irreversibility due to
viscous dissipation dominates, whereas Be = 1 indicates that the irreversibility due to heat transfer
is dominant. It is obvious that the Be = 0.5 is the case in which the irreversibility due to heat

transfer is equal to viscous dissipation in the entropy production.

Results and Discussion

To check the accuracy of the numerical scheme, the velocity and microrotation(for hydrodynamic
case) are compared with analytical solution given by Ariman and Cakmak [6] in the absence of R

and ¢. The comparison is found to be in good agreement as shown in Table. 2.1.

The dimensionless velocity, microrotation, temperature, entropy generation and Bejan number
are shown graphically through the Figs. 2.2 to 2.6. To study the effect of different parameters on
the above mentioned quantities, the parameters a; = 0.001, A = -1, m =2, Gr =1, L = 0.1 and

R =1 are taken as constants.

The effect of coupling number on velocity, microrotation, temperature, entropy generation and
Bejan number of the micropolar fluid flow through an inclined channel is plotted in Fig. 2.2. The
coupling of linear and rotational motion arising from the micromotion of the fluid molecules is char-
acterized by coupling number. Hence, coupling between the Newtonian and rotational viscosities
is represented by N. The microstructure effect is significant as N — 1, and for a smaller value of
N the substructure individuality is limited. The fluid is non polar as its micropolarity is lost as

k — 0ie. N — 0. Thus, for viscous fluid N — 0.

From Fig. 2.2(a) it is observed that as the coupling number increases, velocity decreases. As
N — 1 fluid particles rotate about themselves with high angular velocities, thus, the fluid velocity
decreases. It is observed from Fig. 2.2(b) that the component of microrotation increases near
the lower plate and decreases near the upper plate with an increase of coupling number. In Figs.
2.2(c) and 2.2(d), it can be noticed that the temperature and entropy generation decrease with

an increase in the value of coupling number. As the velocity is decreasing, the dissipation energy
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decreases, leading to decrease in temperature, thus the consequently entropy generation decreases.
It is clear from Fig. 2.2(e) that the Bejan number increases with an increase in the value of N.
From this figure, it is also observed that the heat transfer irreversibility dominates around the

centerline region of the channel, and the fluid friction dominates at the lower plate of the channel.

Figs. 2.3(a) to 2.3(e) describe the effect of angle of inclination ¢ on velocity, microrotation,
temperature, entropy generation and Bejan number. It is noticed from Fig. 2.3(a) that the velocity
increases with the angle of inclination due to increase in forces acting upon the fluid flow. It is
clear from Fig.2.3(b) that the microrotation component decreases near the lower plate and increases
near the upper plate with an increase in the value of angle of inclination thus, showing a reverse
rotation near the two boundaries. It is observed from Figs. 2.3(c) and 2.3(d) that the temperature
and entropy generation are increasing with the increase in the value of angle of inclination. It is
noticed that the entropy-generation rate is less at the lower plate of the channel and increases quite
rapidly to its maximum value at the upper plate of the channel for all the parameter variations. It
can be seen from Fig. 2.3(e) that as the angle of inclination ¢ has no effect on the Bejan number
at the center of the channel, but Be decreases at the upper plate and increases at the lower plate

with increase in ¢.

From Figs. 2.4(a) - 2.4(d), it is observed that as Reynolds number increases the velocity, mi-
crorotation(numerically), temperature and entropy generation are decreasing. Fig. 2.4(e) shows
the effect of Reynolds number on Bejan number. The Bejan number at the lower plate decreases
whereas, it increases, at the upper plate leading to the increasing influence of fluid friction irre-

versibility at the lower plate and heat transfer irreversibility at the upper plate.

The influence of Prandtl number on velocity, microrotation, temperature, entropy generation
and Bejan number of the micropolar fluid flow through an inclined channel is displayed in Fig.
2.5. Tt is observed from Fig. 2.5(a) that the velocity decreases with increase in Prandtl number.
It is shown in the Fig. 2.5(b) that the microrotation component increases near the lower plate
and decreases near the upper plate with an increase in the value of Prandtl number. Fig. 2.5(c)
represents the effect of Prandtl number on temperature. It is observed that the increase in Prandtl
number causes a decrease in temperature. Entropy generation decreases with increase in the Prandtl
number shown in Fig. 2.5(d). Fig. 2.5(e) shows that the Bejan number decreases as Prandtl number

increases.
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The effect of Brinkman number on velocity, microrotation, temperature, entropy generation
and Bejan number is displayed in Fig. 2.6. Fig. 2.6(a) depicts that the non-dimensional velocity
increases with an increase in the Brinkman number. It is seen from Fig. 2.6(b) that the microro-
tation component decrease near the lower plate and increase near the upper plate with increasing
Brinkman number showing a reverse rotation near the two boundaries. However, the magnitude of
the microrotation is increasing near the plates. The reason is that the microrotation field in this
region is dominated by a small number of particles spins that are generated by collisions with the
boundary. It is observed from Figs. 2.6(c) and 2.6(d) that the temperature and entropy generation
increases with an increase in the value of Brinkman number. Brinkman number is related to heat
conduction from a channel wall to a flowing fluid. The effect of viscous forces on entropy generation
is significant in the region close to the channel walls. From Fig. 2.6(e) it is interesting to note that
increasing values of Br results an increase in the dominant effect of fluid-friction irreversibility near
the upper plate and decrease in the dominant effect of fluid friction irreversibility near the lower

plate.

Table 2.1: Comparison of velocity and microrotation by the present method and analytical

solution given by Ariman and Cakmak [6] for N = 0.1, m =1 and A = —1.
Velocity f(n) Microrotation g(n)

n Ariman and Cakmak [6] || Present || Ariman and Cakmak [6] || Present

a1 0 0 0 0
-0.8090 0.1557 0.1557 -0.0204 20.0204
-0.6129 0.2817 0.2817 -0.0275 -0.0275
-0.4258 0.3696 0.3696 -0.0248 -0.0248
-0.2181 0.4302 0.4302 -0.0147 -0.0147

0 0.4518 0.4518 0 0
0.2181 0.4302 0.4302 0.0147 0.0147
0.4258 0.3696 0.3696 0.0248 0.0248
0.6129 0.2817 0.2817 0.0275 0.0275
0.8090 0.1557 0.1557 0.0204 0.0204

1 0 0 0 0
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2.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the fluid slips at the lower, upper plates of the channel and the microelements close
to the channel plates are unable to rotate. Let the lower plate is heated by convection from a hot
fluid with temperature 75 which provides a heat transfer coefficient i1 while the upper plate losses

heat to the ambient with a heat transfer coefficient ho. Thus, the boundary conditions are

d dT
’UJ:C/|:(;L+KJ)dZ+I€O':|, oc=0, de—yqthl(Tle):O, at y=~h

(2.26)
u={¢"|( +/~e)d—u+m c=0 Kd—T—h(T—T)zo at y=—h
1% dy ) ) f dy 2 2 ) Yy
where (' is the slip length of the upper and lower plates of the channel.
Introducing the following non-dimensional variables
y Uo T-Tn - (¢
n=, u=Uof(n), o=-"g(n), 6 o1 ‘"% (2.27)

in Egs. (2.2) - (2.4), to obtain the non-linear system of differential equations (2.7) - (2.9) that are

mentioned in case(a).

The corresponding boundary conditions are:

fZ—ﬁf’, g=0, 0'+Bi10=0, at n=1

g (2.28)
f===f. 9=0, 0 —Bisb=-DBi, at n=-1

where ¢ = (u is the slip parameter, Bi; = % is the Biot number for each plate. Subindexes

k = 1,2 refer to the lower and upper plates, respectively. In this thesis, it is assumed that the Biot

number at the two boundaries is numerically same in every chapter.

Method of Solution

Proceeding as in Case (a), to obtain the following matrix equation

A X, 1 =B, (2.29)
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where A, is a (3J 4 3) x (3J + 3) square matrix and X,4; and B, are (3J +3) x 1 column vectors
defined in (2.18).

The corresponding boundary conditions are

J J
fr1(60) = Z Dok fr41(€k)s gr41(60) = 0, > Dorbr1 (&) + Bib11(60) =
Ni= k=0
J ; (2.30)
f?"+1 SJ Z kfr+1 gk gr+1(5J = 0 ZDJk9r+1(£k;) Bi9T+1(£J) = —Bj
Ni= k=0

Incorporate the boundary conditions (2.30) in the matrix system (2.29), the solution is obtained as
X1 =A'B, (2.31)

The initial approximations fy, go and 6y are chosen to be functions that satisfy the boundary

conditions (2.30) i.e..

fo(m) =0, go(n) =0, 6o(n) = % (1 B .77> (2.32)

Entropy Generation

The Eq. (2.23) mentioned in case(a) is the entropy generation for the micropolar fluid flow through

an inclined channel. The dimensionless entropy generation in this case is given by

Sa Br N(2—N)
N _9/2 o ,2+2N 2+ / +7 12 233
=5 T, = N f (9°+9f) 59 (2.33)
Ki(Th —T1)?
where T}, = TngTl is the dimensionless temperature difference, Sgc = M is the charac-

1272
teristic entropy generation rate. In order to have an idea whether the entropy generation due to

viscous dissipation dominates over the irreversibility due to heat transfer or vice versa, an alternate

parameter Bejan number is introduced in equation (2.25).
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Results and Discussion

To study the effects of pertinent parameters, computations were carried out by taking a; = 0.001,

A=-1,m=2,Gr=2, R=1and Pr=1.

The effect of coupling number on velocity, microrotation, temperature, entropy generation and
Bejan number is displayed in Fig. 2.7. It is observed from the Fig. 2.7(a) that the velocity decreases
with increase in coupling number N. The peak velocity decreases with the increase of N. It is seen
from Fig. 2.7(b) that the microrotation component increases near the lower plate and decreases
near the upper plate with an increase in the value of coupling number N. The shear stress at the
two plates tends to rotate the fluid in opposite directions because of which the microrotation has
opposite signs near the two plates. It is observed from Figs. 2.7(c) and 2.7(d) that the temperature
and entropy generation decreases with an increase in the value of coupling number. It is observed
from Fig. 2.7(e) that the two crossovers in the Bejan number profile with an increase in the value
of N. The crossovers due to the consequence of the microstructure of the particles as N varies
from 0 to 1. The microstructure effect is significant as N — 1, and for a smaller value of N the
substructure individuality is limited. Further, the region near the plates is dominated by a small

number of particles spins that are generated by collisions with the boundary.

Fig. 2.8 presents the effect of angle of inclination ¢ on velocity, microrotation, temperature,
entropy generation and Bejan number. It is noticed from Fig. 2.8(a) that the velocity increases with
an increase in the value of angle of inclination. It is shown from Fig. 2.8(b) that the microrotation
component decreases near the lower plate and increases near the upper plate with an increase in
the value of angle of inclination. It is observed from Figs. 2.8(c) and 2.8(d) that the temperature
and entropy generation increases with an increase in the value of angle of inclination. It is observed

from Fig. 2.8(e) that the Bejan number decreases with an increase in the value of ¢.

The variation of slip parameter on velocity, microrotation, temperature, entropy generation and
Bejan number is displayed in Fig. 2.9. It is observed that the increase in slip parameter increases the
velocity and decreases the microrotation as shown in Figs. 2.9(a) and 2.9(b). It is clear from Figs.
2.9(c) and 2.9(d) that there is no effect of slip parameter on temperature and entropy generation.
Eventhough the temperature is related to convection, in this case the convection is not influenced
by the slip prameter and thus, the temperature is not influenced by slip parameter. Hence, entropy

is also not influenced by the slip parameter. The effect of slip parameter on Bejan number is shown
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in Fig. 2.9(e). It is observed that the slip parameter does not influence the Bejan number from the

lower plate to the center of the channel, but it increases near the upper plate.

Fig. 2.10 shows the influence of Reynolds number on velocity, microrotation, temperature,
entropy generation and Bejan number. From Figs. 2.10(a) - 2.10(d), it is observed that as the
Reynolds number increases, decrease in nature of velocity, microrotation(numerically), temperature
and entropy generation is seen. Also, it is observed from Ns profile that the entropy generation
number is high in magnitude near the upper plate due to the presence of high temperature and
velocity gradients. Fig. 2.10(e) shows that as the Reynolds number increases, Bejan number also
increases. This implies that in the entire flow region as Re increases, the relative increase of

dissipation of energy dominates the fluid friction.

The effect of Brinkman number on velocity, microrotation, temperature, entropy generation
and Bejan number is displayed in Fig. 2.11. Fig. 2.11(a) depicts that the non-dimensional velocity
increases with an increase in the value of Brinkman number. It is seen from Fig. 2.11(b) that
the microrotation component decreases near the lower plate and increases near the upper plate
with an increase in the value of Brinkman number. It is observed from Figs. 2.11(c) and 2.11(d)
that the temperature and entropy generation increases with an increase in the value of Brinkman
number. The Brinkman number Br is an indicative of the rate at which energy is dissipated by
the viscous forces within the fluid. Thus, the entropy generation becomes significant in the region
close to the channel walls and negligible at the center of the channel. An increase in Brinkman
number, increases the fluid temperature (Fig. 2.11(c)) as well as the temperature gradient within
the channel. Consequently, as shown in Fig. 2.11(e), the dominance of fluid friction irreversibility

over heat transfer irreversibility decreases with increase in Br.

The Biot number Bi is the ratio of internal thermal resistance of a solid to the boundary layer
thermal resistance. When Bi = 0 the plate is totally insulated, the internal thermal resistance
of the plate is extremely high therefore no convective heat transfer takes place to the cold fluid
on the upper part of the plate. Fig. 2.12(a) depicts that the non-dimensional velocity decreases
with an increase in the value of Biot number. It is seen from Fig. 2.12(b) that the microrotation
component increases near the lower plate and decreases near the upper plate with an increase in
the value of Biot number. It is observed from Fig. 2.12(c) that the temperature decreases with an
increase in the value of Biot number. It is noticed from Fig. 2.12(d) that the entropy generation

Ns decreases slightly with an increase in the Biot number. As Bi increases, the Bejan number
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increases as depicted in Fig. 2.12(e).

2.3 Conclusions

In this chapter, the problem of entropy generation due to micropolar fluid flow through an inclined
channel with (a)No-slip and isoflux/isothermal boundary conditions and (b)Slip and convective
boundary conditions are presented. From the analysis, the following are the observations in both

the cases (a) and (b).

The presence of microstructure N, decreases the velocity, temperature, entropy generation and
increases the Bejan number. Velocity, temperature and entropy generation increases with increase
in angle of inclination. The Less effect of angle of inclination is observed in Bejan number in Case
(a) whereas in Case (b) Bejan number decreases with an increase in the value of angle of inclination.
Higher values of Re lead to lower values of velocity, temperature and entropy generation. Minimum
entropy generation at the lower plate and maximum entropy generation at the upper plate is
observed for the variation of all parameters in Case (a). Almost zero entropy generation at the
center of the channel is observed in Case (b) due to low velocity and temperature gradients. On the
other hand, slip velocity has no effect on the entropy generation and Bejan number. An increase
in the Biot number leads to decrease the entropy generation near the lower plate and increase the
Bejan number in the entire flow region. From the Bejan number profiles it is observed that the
heat transfer irreversibility dominates the flow process within the channel centerline region and

fluid friction irreversibility dominates at the channel plates.
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Figure 2.7: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,

(d)entropy generation and (e)Bejan number for Re = 1, Bi = 10, Br = 1, ¢ = % and
¢ = 0.05.
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Figure 2.11: Effect of Brinkman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number for N = 0.5, Re = 1, Bi = 10, ¢ = % and
¢ = 0.05.
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Chapter 3

Second Law Analysis of Micropolar
Fluid Flow Through a Porous

Channel !

3.1 Introduction

The study of fluid flow between two porous boundaries has gained tremendous attention by re-
searchers as the theory has wide applications such as transpiration cooling, lubrication of porous
bearings, petroleum technology, ground water hydrology, seepage of water in river beds, purification

and filtration processes and so forth.

The industrial system efficiency calculations are more appropriate in using the second law of
thermodynamics rather than the first law, because the first law of thermodynamics does not refer
to the irreversibility minimization present in the physical process. In most of the thermal systems,
thermal efficiency can be defined as the ratio of actual efficiency of thermal system to reversible
thermal efficiency, in which the applied conditions are same. The fluid flow and heat transfer
processes are intrinsically irreversible, which leads to increase entropy generation and useful energy

destruction. Hooman et al [51] investigated the forced convective heat transfer in a porous channel

!Case(a):Communicated to “Journal of Engineering Thermo Physics”, Case(b) Communicated to
“International Journal of Nonlinear Sciences and Numerical Simulation”
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Figure 3.1: Physical model and coordinate system.

with isothermal or isoflux walls. The effect of suction/injection, magnetic field and Navier slip on
entropy generation in a porous channel with constant pressure gradient has been studied by Das
and Jana [31]. Torabi et al [94] presented the analysis of heat transfer and entropy generation in

a channel partially filled with porous medium.

In the previous chapter, the entropy generation in an inclined channel due to micropolar fluid
flow is considered. In this chapter, analysis of entropy generation is undertaken for micropolar fluid
flow through a two-dimensional porous channel. For this, two types (cases) of boundary conditions
for the velocity and temperature of the plates of the porous channel are chosen as mentioned in
the previous chapter. Specifically, the investigations focus on the effect of different parameters on

the components of velocity, microrotation, temperature, entropy generation and Bejan number.

3.2 Mathematical Formulation

Consider a steady, laminar, incompressible, micropolar fluid flow through the horizontal porous
parallel plates separated by a distance h as shown in Fig. 3.1. Let Vj be the injection velocity of
the lower plate and V; be the suction velocity of the upper plate. Without loss of generality, it
is assumed that |Vi| > |Vj|. Assume that the fluid flows along z-direction and the flow variables
are independent of z co-ordinate. Thus, the velocity and microrotation vectors are taken as g =

u(z, y)?—i—v(:c, y)j and w = o(x, y)@ respectively. Under these assumptions, the governing equations
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[93] of an incompressible micropolar fluid in the absence of body force and body couple are given

by
ou Ov

@+§y_0 (3.1)

ou oul  Op o Pu  0%u
P8 oy T T TRy T )<aw2 ay> &2

[ Ov ov|  dp 0o v 0%
p-u%ﬁ"l)afy- 7_873/_%87_‘_(’“—’_ )<6x2+8gﬂ) (33)
* 8:4_6: @_@ 2 + 2U+82 (34)

pi" Jug vy ox " ay) Xt o Ty

or T 0*T 92T ou\?  [ov\?
£ [y 5y ] =K <ax2+ay2>+<2“”>{<ax> ()
, , (3.5)
(0w o\ kv o\ 1P [(00\P (00}
2\ 0y O 2 [\dx Oy 7 " Ox oy

Apply the following similarity transformation proposed by [93, 7] to convert the governing partial

differential equations to ordinary differential equations.

we) = (L= pw, v =t ot =1 (L) o)

a

Substituting (3.6) in Egs. (3.2), (3.3) and (3.4), to get the following non-dimensional equations

Re(—f'f"+ ff") = Ng "+ 7]”” (3.7)
—2N N N2-N
Reaj(fg' = f'g9) = 5 _2Ng gy mg(i — N))g” (3.8)

pVih
1

where Re = is the suction Reynolds number.
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Eq.(3.5) together with (3.6), propose the formation of temperature can be taken as

Tan) =Ty + 4 g, 4 (L0 A (3.9)
z,m) = —_— = )
=T e, [T\ )

Substituting Eq. (3.9) in Eq. (3.5), equating the coefficients of (% - %)2 and the terms without
(% — %) on both sides of the equation thus, obtained

2(2 - N N(2—-N
9§’+292+PTR6[ ( ) 1 ( )

(1—N) m2(1 — N)92 - f‘%} =0 (3.10)
" 2-N 12 N 1" 2 N(Z_N) 2
bl s taamm TR

B AT 2f’92)} _o (311

The dimensionless form of temperature can be written as

= - F 12
0 T c (91 +z 92) (3.12)
where Ec = 'u—Vl is the Eckert number and 7 = @ — m is the dimensionless axial
p(Ty — T1)hey a h
variable.

3.2.1 Case(a): No-slip and Isothermal Boundary Conditions

Assume that the no-slip condition for velocity and hyper-stick condition for microrotation on lower

and upper plates of the channel. Let the channel plates are maintained at uniform temperatures

T1 and T5 respectively. These boundary conditions are given by

U(ZL‘,U) =0, U(fUﬂ?) =W, O-(x>77) =0, T(-’Baﬂ) =T

at n=20
(3.13)
u(,n) =0, v(z,n) =V, o(x,n) =0, T(z,n)=T> at n=1
The boundary conditions in terms of f, g, #; and 62 become
f(O) =1- a, f/(O) = 07 g(O) = 07 91(0) 07 02(0) =0
1 (3.14)
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The Quasilinearization method is used to convert the non-linear differential equations (3.7), (3.8),
(3.10), (3.11) to a system of linear differential equations. The resultant system is solved using the
Chebyshev spectral collocation method, as described in detail in chapter-2. The physical region

[0, 1] is transformed into the region [—1, 1] using the mapping
p=ST << (3.15)

Proceeding as in chapter-2 and incorporate the boundary conditions (3.14) in the matrix system

A, X, 1 = By, the solution is obtained as

X411 = A 'B, (3.16)

Entropy Generation

The micropolar fluid flow through a porous channel is naturally irreversible. The non-equilibrium
condition arises due to the exchange of energy and momentum within the micropolar fluid and at

the solid boundaries, that leads to continuous entropy generation in the porous channel.

For the present study, the volumetric rate of entropy generation is given by
Or\*, 1 (9T Qu\*, L (0v\* 1 (10w v\
ox hZ \ on Ox h% \ on 2\hon Ox
R A R AN A

2T, [\ Oz hon T, |\ Oz h2 \ on

The dimensionless entropy generation number is given by

Ky
TP

2u+ kK
T

Sa =

(3.17)

Ny,

N, = B [403 + (0 + #9’2)2}
NER-N), 5 op] 18

72 72
+m {(2—]\7) <2fl2+2f”2> +N?(f”+29)2+T(92+$ q°)

N,
The Eq. (3.18) is useful for producing the entropy generation profiles, but it fails to give an

idea about the relative importance of friction and heat transfer effects. Therefore, an alternative
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parameter Bejan number (Be) is introduced. It is defined as the ratio of entropy generation due to

heat transfer to the overall entropy generation given below.

Np,

Be=——"__
Ny, + N,

(3.19)

Results and Discussion

The numerical expressions for velocity, microrotation and temperature are given in Egs. (3.7),
(3.8) and (3.12) respectively. These values are used to evaluate the entropy generation number and
Bejan number. The results are presented in the form of graphs for Pr =1, T, = 0.5, m = 2 and

aj = 0.001.

Fig. 3.2 displays the effect of coupling number N on the dimensionless axial velocity, transverse
velocity, microrotation, temperature, entropy generation and Bejan number. It is observed from
Fig. 3.2(a) that the axial velocity increases near the lower plate and decreases near the upper
plate with an increase in coupling number. It is seen from Fig. 3.2(b) that an increase in coupling
number increases the transverse velocity. The microrotation component decreases near the lower
plate and increases near the upper plate with an increase in the value of coupling number as shown
in Fig. 3.2(c). Fig. 3.2(d) shows the temperature distribution 6 against 7, for several values of
coupling number. It is observed that the temperature increases with an increase in the value of
coupling number. Increase in coupling number N tends to enhance the entropy generation near the
lower plate and reduces the entropy generation near the upper plate as shown in Fig. 3.2(e). It is
observed from Fig. 3.2(f) that as IV increases, the Bejan number decreases. This is attributed to

increase in the dominance of fluid friction irreversibility with an increase in N.

The effect of suction Reynolds number Re on the dimensionless axial velocity, transverse veloc-
ity, microrotation, temperature, entropy generation and Bejan number is plotted in Fig. 3.3. It is
observed from Fig. 3.3(a) that increase in suction Reynolds number(Re) leads to decrease the axial
fluid velocity at the lower plate and increase the axial fluid velocity at the upper plate. Since the
suction velocity of the upper plate is greater than the injection velocity of the lower plate and thus
the axial velocity profile becomes asymmetric with respect to the middle of the channel and it is

pushed towards the upper plate. Fig. 3.3(b) shows that the radial velocity decreases with increase
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in suction Reynolds number. It can be noticed from Fig. 3.3(c) that the microrotation compo-
nent decreases with an increase in suction Reynolds number except near the lower plate, where
microrotation slightly increases. An increase in the value of suction Reynolds number reduces the
temperature, as shown in Fig. 3.3(d). Entropy generation number decreases near the lower plate
n = 0 and increases near the upper plate n = 1 with an increase in suction Reynolds number Re as
displayed in Fig. 3.3(e). It is observed from Fig. 3.3(f) that the Bejan number Be decreases near

the plate n = 0 and increases near the plate 7 = 1 with an increase in Re.

It is observed from Fig. 3.4(a) that the axial velocity increases as the suction injection ratio
increases (i.e., a increases) and the velocity is maximum at the center of the channel for all values of
a. Fig. 3.4(b) shows that the transverse velocity decreases with the increase of a. A general trend is
observed from Fig. 3.4(c) that the microrotation changes its concavity in the center of the channel.
In the lower half, the profiles are concave downward whereas in the upper half they are upward.
The magnitude of the maximum microrotation increases with the increase of the suction injection
ratio. Fig. 3.4(d) depicts the temperature profile with the variation of a. An increase in the value
of a leads to increase the temperature at both injection and suction plates. It is observed from Fig.
3.4(e) that as a increases, the entropy generation increases at the lower plate and decreases at the
upper plate. It is noticed from Fig. 3.4(f) that the Bejan number (Be) decreases with an increase

in the value of a.

Figs. 3.5(a) and 3.5(b) describe the effect of  on entropy generation and Bejan number. It
is clear from Fig. 3.5(a) that the entropy generation increases at the lower plate and there is no
significant effect at the upper plate with increase in z. Fig. 3.5(b) shows that as T increases,
Bejan number decreases near the lower and upper plates. Hence, irreversibility due to fluid friction

dominates the flow process at the lower and upper plates.

Fig. 3.6 illustrates the effect of Eckert number (Ec) on temperature, entropy generation and
Bejan number. Fig. 3.6(a) shows the effect of Eckert number on the temperature profile. The
higher values of Eckert number signifies the higher heat levels, which are formed by friction. Thus
temperature increases with an increase in the value of Eckert number. It is observed from Fig.
3.6(b) that as Fc increases, the entropy generation increases near the lower plate and decreases
near the upper plate. Fig. 3.6(c) shows that as Fc increases, Bejan number increases near the lower
plate and decreases near the upper plate. Hence, irreversibility due to heat transfer dominates the

flow process at the lower plate and irreversibility due to fluid friction dominates at the upper plate.
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The effect of the Brinkman number on entropy generation and Bejan number is plotted in Fig.
3.7. It is noticed from Fig. 3.7(a) that as Br increases, the entropy generation number increases.
In the energy equation the coefficient of viscous dissipation is the Brinkman number. As the
Brinkman number increases the fluid temperature increases consecutively, the viscous dissipation
also increases. In the channel considered as the temperature of the fluid increases, the gradient
of temperature increases and consequently, the entropy generation number increases. It is also
observed that the entropy generation number is less at lower plate of the channel and increases
rapidly to its maximum values at the upper plate of the channel for variation of all parameters. Fig.

3.7(b) shows that the Bejan number decreases with an increase in the value of Brinkman number.

95



0.16

0.14 4

0.12 4

0.10 4

0.08 4

£

0.06 4

0.04 4

0.02 4

0.00

0.0

0.05

0.2 0.4

0.04 4

0.03 4

0.02 4

0.014

-0.02

-0.03 4

-0.04

-0.05
0.0

0.8

Ns

Figure 3.2:

Effect of coupling number on (a)axial velocity, (b)transverse velocity,
(c)microrotation, (d)temperature, (e)entropy generation and (f)Bejan number for Ec = 1,
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3.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the fluid adjacent to the channel plates has finite tangential velocity, it slips along
the boundary and the microelements close to the channel plates are unable to rotate. Further, the
fluid is convectively heated at the lower plate while at the upper plate convective heat loss can take

place. Hence, the boundary conditions are

"0 Ky oT
u(‘rﬂ?):giuv U(ajan):‘/o: ‘7(1’777):07 Ji_hl(T_Tl):O at 77:0
h On h On
/ (3.20)
u(z )——C—@ v(z,n) =V, o(x,n) =0 ﬁa—T%—h(T—T)—O at n=1
y 1) = hanv 1) = V1, 1) =Y, ha?’] 2 2) — n=
The boundary conditions (3.20) in terms of f, g, 61 and 6, are:
f(0) =1—a, f'(0) = Cf"(0) =0, g(0) = 0, 61(0) — Bi161(0) = 0, 65(0) — Bi102(0) =0
. 3.21)
B (
FU) =1, f/()+CF"(1) =0, g(1) =0, 6,(1) + Biodh (1) = 22, 65(1) + Biahi(1) =0
where ¢ = % is the slip parameter and consider Bi; = Bis = Bi.
Proceeding as in Case(a), the solution is obtained from the following matrix equation
X411 = A 'B, (3.22)

The entropy generation and Bejan number have been calculated for the slip and convective boundary

conditions(Eq. (3.21)) from equations (3.18) and (3.19).
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Results and Discussion

Extensive calculations have been performed to obtain the entropy generation and the Bejan number
for different values of the parameters N, Re, ¢, Ec, Bi and Br. The following parameters are taken

as constant in the overall study: Pr=1,T,=0.5, m =2, a =2,z = 0.5 and a; = 0.001.

Fig. 3.8, displays the effects of coupling number N on the dimensionless axial velocity, transverse
velocity, microrotation, temperature, entropy generation and Bejan number. It is observed from
Fig. 3.8(a) that the axial velocity increases near the lower plate and decreases near the upper
plate with an increase in coupling number. It is noticed from Fig. 3.8(b) that as N increases,
the transverse velocity increases. Fig. 3.8(c) depicts that the microrotation component decreases
near the lower plate and increases near the upper plate with an increase in the value of N. Fig.
3.8(d) shows the temperature distribution 6 against 7, for several values of coupling number. It is
observed that the temperature increases with increase in N. Fig. 3.8(e) reveals that the entropy
generation number Ns increases with the increase of the coupling number N. It is observed from

Fig. 3.8(f) that as IV increases, the Bejan number decreases.

Fig. 3.9, represents the effect of suction Reynolds number Re on the dimensionless axial velocity,
transverse velocity, microrotation, temperature, entropy generation and Bejan number. Fig. 3.9(a)
shows the effect of an increase in the suction Reynolds number on the axial velocity of the fluid

flow. The result shows that an increase in the suction parameter breaks the symmetric nature of
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the flow due to continuous increase in the injection flow at the lower plate which is sucked off at the
upper plate. Due to a break in symmetry, the fluid flow is observed to be skewed towards the upper
plate with suction. Fig. 3.9(b) shows that the radial velocity is not effected with an increase in the
value of Re. From the Fig. 3.9(c) it is observed that with an increase in suction Reynolds number,
the microrotation component decreases and this decrease is significant in the middle of the channel
and negligible near the upper plate, whereas the trend is reversed with negligible difference near
the lower plate. No change in the temperature with an increase in the value of suction Reynolds
number is observed from Fig. 3.9(d). Fig. 3.9(e) illustrates that an increase in the suction Reynolds
number decreases the entropy generation at the lower plate due to injection and convective heating,
whereas Ns increases near the upper plate due to convective cooling. It is observed from Fig. 3.9(f)

that the Bejan number Be decreases with an increase in Re.

Fig. 3.10, displays the effect of { on governing parameters, entropy generation and Bejan
number. Fig. 3.10(a) shows that the axial velocity increases near the lower and upper plates,
whereas it decreases in the middle of the channel as the slip parameter increases. Fig. 3.10(b)
depicts that the transverse velocity increases slightly near the lower plate with the increase of (.
A general trend is observed from Fig. 3.10(c) that the microrotation changes its concavity in the
center of the channel. Fig. 3.10(d), depicts the temperature profile with the variation of (. An
increase in the value of (, leads to decrease the temperature at both injection and suction plates.
It is observed from Fig. 3.10(e) that as ( increases, entropy generation increases at the lower and
upper plates and decreases at the center line region of the channel. It is noticed from Fig. 3.10(f)
that the Bejan number (Be) decreases near the lower plate and then increases with an increase in

the value of (.

Fig. 3.11(a) shows the effect of convective heating parameter(Bi) on the fluid temperature. It
is observed that the fluid temperature falls at the lower plate of the channel as the fluid exchange
heat with the plate and opposite phenomena is experienced at the other plate. The influence of the
Biot number on entropy generation and Bejan number is shown in Figs. 3.11(b) and 3.11(c). It is

noticed that the increase in the Biot number enhances the entropy generation and Bejan number.

Fig. 3.12, illustrates the effect of Eckert number (E¢) on temperature, Entropy generation and
Bejan number. As observed from the previous case that the temperature increases with increase in
Eckert number as indicated in Fig. 3.12(a). It is observed from Fig. 3.12(b) that as Ec increases,

the entropy generation increases near the lower plate and decreases near the upper plate. Fig.
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3.12(c) shows that as E'¢ increases, Bejan number increases near the lower plate and decreases near

the upper plate.

The effect of the Brinkman number on entropy generation and Bejan number is plotted in Fig.
3.13. It is noticed from Fig. 3.13(a) that as Br increases, the entropy generation number increases.
It is observed that the entropy generation number is less at lower plate of the channel and increases
rapidly to its maximum value around the center of the channel and gradually decreases at the upper
plate of the channel for variation in all parameters. From Fig. 3.13(b) an increase in the Brinkman

number reduces the heat transfer in the channel so, the Bejan number also decreases.

3.3 Conclusions

In this Chapter, the entropy generation in a micropolar fluid flow through a horizontal porous
channel is analyzed subject to (a)No-slip and isothermal boundary conditions and (b)Slip and
convective boundary conditions. From the analysis, the following are the observations in both the

cases (a) and (b).

An increase in the microrotation parameter N, increases the temperature and decreases the
Bejan number. An increase in the suction parameter(i.e. suction Reynolds number) breaks the
symmetric nature of the flow due to continuous increase in the injection flow at the lower plate
which is sucked off at the upper plate. Due to a break in symmetry, the fluid flow is observed
to be skewed towards the upper plate with suction. Entropy generation decreases near the lower
plate and increases near the upper plate with an increase in the suction Reynolds number. High
Eckert numbers imply high heat levels are produced by friction resulting in increased temperatures
on the system. It is observed that as Ec increases, the entropy generation and Bejan number
increases near the lower plate and decreases near the upper plate. As Brinkman number increases
the entropy generation increases and Bejan number decreases. Further, it is observed in Case (b)
that as increase in slip parameter enhances the velocity at the lower and upper plates, and reduction
in the velocity at the center of the channel. The similar trend is observed for entropy generation.

It is found that, the entropy generation increases with an increase in the Biot number.
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Chapter 4

Effect of Magnetic Field on Entropy
Generation due to Micropolar Fluid

Flow in a Rectangular Duct !

4.1 Introduction

The present trend in the field of heat transfer and thermal design is to conduct second law (of ther-
modynamics) analysis, including, design related concept of entropy generation and its minimization.
Entropy generation is a measure of irreversibilities associated to the real process. Entropy genera-
tion is present in all heat transfer processes. The Magnetic effect, viscous effect, heat transfer down
temperature gradient etc., are responsible for the generation of entropy. The entropy generation
is encountered in many energy related applications such as geothermal energy systems, cooling of

modern electronic systems and solar power collectors.

The heat transfer behavior of laminar flow through non-circular ducts is an area of special
interest as it has got wide applications in compact heat exchangers. Sahin [88] described the en-
tropy generation analysis for viscous flow through a duct with constant temperature. Hooman et

al [49] analyzed heat transfer and optimization of entropy generation in porous saturated ducts

!Case(a):Published in “Procedia Engineering Journal, 127 (2015) 1150-1157", Case(b) Commu-
nicated to “Journal of Heat Transfer”
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of rectangular cross section. Oztop et al [84] studied the entropy generation through rectangular
shaped ducts with semicircular ends. Leong and Ong [60] discussed the characteristics of entropy
generation in various shapes of cross section ducts with constant heat flux. An electrically conduct-
ing fluid in a duct with the effect of the magnetic field has special technical significance because of
its frequent occurrence in many industrial applications such as cooling of nuclear reactors, MHD
marine propulsion, electronic packages, microelectronic devices, etc. The aim of this chapter is
to investigate the effect of magnetic field on entropy generation with micropolar fluid flow in a
rectangular duct. The governing equations are simplified and solved using finite difference method.
The effects of coupling number, Hartman number and Brinkman number on entropy generation

and Bejan number are presented through graphs.

4.2 Mathematical Formulation

Consider a steady, laminar, incompressible flow of an electrically conducting micropolar fluid
through a rectangular duct of uniform cross-section(shown in Fig. 4.1). The flow is generated
due to constant pressure gradient along the axis of the duct(z-axis). An external uniform magnetic
field is applied in a plane normal to the z-axis, which has a constant magnetic flux density By
that is assumed constant by taking the magnetic Reynolds number much smaller than the fluid
Reynolds number. The flow variables are invariant in the flow direction (z-direction), except the
pressure gradient g—g, which is a constant. The velocity and microrotation vectors of the fluid are
q = w(x,y)?s\ and 7 = oy(x, y)?—i— ag(x,y); respectively. Under these assumptions the governing
equations for the MHD flow of micropolar fluid in the absence of both body force and body couple

are

Op Ooy 0oy Pw 0w 2
‘aﬁ“(ax‘ay)*(““)(axﬁayz —oBw=0 (4.1)
w 0 [Ooy 0o 0 [0o1 0Ooa]
_9 RPN I — | — 4+ —=| = 4.2
ml+/<;ay 783/_83: ay_+(a+6+7>am_ax+ay_ 0 (4.2)
ow 0 _80'2 801- 0 -801 80’2- -
SO R g ae oy | T T gy e ey ) 0 (4.3)
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a
Figure 4.1: Schematic diagram of the problem
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Introducing the following non-dimensional variables

_ _ _ Up — U . T-Ty op  pUZ
r=ax, y=ay, w=Uyw, oc1=—01, 09=—009, =60, —=—
a T —T 0z a

Substituting (4.5) into the Eqgs. (4.1) to (4.4) and dropping tildes, to obtain

N doy  Joq 1 Pw  Pw 9
_Rep0+1—<8x_(33/>+1—N<8x2 Ty ) T HTw=0

oy YOw 12-N 0 00, Dov] 10 [Doy  Doa]
"20y 2 m? oylox oy| PPox|ox oy

Ly MOw  12-N 0 [0y Dov] 10 [001  Doo) _,
27992 T2 m? oz |0z Oy | 120y |0z Oy |

71

—~



@4_@_’_3 1 aﬂ 2_|_ 8710 ’
ox?  Oy? " 1-N Ox Oy

aflo ] e (o () () ()]

N N
+
[\
=
N —
)
[l V]
+
9
NI
Q
—_
_|_
)
)
Q
g
1

80 1 2 80' 1 80 2 80’ 2 2
<8x> + Oy Ox + oy (49)
9 2a%kK ) ) . o .
where [ = ———— is non-dimensional parameter, Ha = Bga,/— is Hartman number,
at+pB+y p
pUg . . o p :
Br = ————— is the Brinkman number, and A = —, B = — are micropolar parameters.
K¢(Th — Th) pa pa

Here in this chapter also, two types (cases) of boundary conditions are considered for the velocity

and temperature on the walls of the rectangular duct.

4.2.1 Case(a): No-slip and Isothermal Boundary Conditions

Assume that the fluid particles closest to the rectangular duct stick to it, neither rotating nor
translating. Moreover, the duct is maintained at a uniform temperature. Hence, the boundary

conditions are

b
w=0 at x=+1 and y=tyg where yg=—
a

op=09=0 at =41 and y ==y (4.10)

=0 at =41 and y=tyo

Method of Solution

The governing equations given by Eqgs. (4.6) - (4.9) along with the boundary conditions Eq. (4.10)
are solved numerically using finite difference method. The derivatives are replaced by the central
difference approximations to get the algebraic system of equations and these equations are solved
using Gauss-Seidel iteration method. A numerical experiment was conducted with various meshes
in the rectangular region and axial step lengths in x and y-directions to check the independence

of the mesh resolution of the numerical results. There are three mesh distributions tested in the

72



analysis. They are 21 x 21, 41 x 41 and 81 x 81 respectively. It is found that the deviations in the
velocity, microrotation and temperature components calculated with 41 x 41 and 81 x 81 are always
less than 1073, Therefore the computations with mesh distribution of 41 x 41 are considered to be
sufficiently accurate to describe the flow in this study. The obtained velocity, microrotation and

temperature distributions are then used to evaluate the entropy generation and Bejan number.

Entropy Generation

Non-equilibrium conditions arise due to the exchange of energy and momentum within the fluid
and at the walls of the duct. This causes a continuous entropy generation. The mechanisms of
entropy generation are heat transfer, fluid friction and magnetic effect. The volumetric rate of

entropy generation for incompressible micropolar fluid is given as

[VT]2+11,1@+1 [(J - Q7).(E+7 x B)] (4.11)

Ky
SG - = Tl

Tj

For the present study, the dimensionless entropy generation number is given by

= () ) T e () ()

ON 2
2 [J%+U§—U1aw+028w] +A {801+802}

1-N oy ox ox oy
N(Q—N) 80‘1 2 (90'2 2 80‘1 2 (90’2 2 (90’1 2 60'1 60'2 802 2
*MK&U) +<ax> o) T\ay) | TP ) TPy e T oy
BrHa® (4.12)
T w .
The Eq. (4.12) can be expressed alternatively as follows
N, = Nj + N, + Ny, (4.13)
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Alternatively, the dominant effect of either heat transfer irreversibility or fluid friction irreversibility

can be investigated using the Bejan number (Be) defined mathematically as follows

Ny,
Be = — 4.14
o= (414

Results and Discussion

The magnetohydrodynamic flow and heat transfer in a micropolar fluid flow through a rectangular
duct has been solved numerically using finite difference method. Numerical expressions of velocity,
microrotation and temperature have been used to compute entropy generation and Bejan number.
These quantities are evaluated numerically by dividing the rectangular region into a grid of mesh
points (z;,y;). The effects of various parameters like coupling number(N), magnetic parameter
(Ha) and Brinkman number (Br) on entropy generation and Bejan number are described graph-
ically for yo = 1,Ha = 2,m = 1,1 = 0.5,N = 0.25,Re = 1,pg = 1,71, = 1,Br = 1,A = 1 and
B=0.1.

In order to validate the accuracy of the method, the results of velocity have been compared
with the analytical solution of [29] for Newtonian fluids in the absence of N and Ha as a special
case by taking Re = 1 and pg = 1. The comparison in this case is found to be in good agreement,

as shown in Table. 4.1.

Table 4.1: Comparison analysis for the velocity calculated by the present method and that
of analytical solution [29] of Newtonian fluids for N =0, Ha =0, Re = 1 and py = 1.

T Y Analytical solution || Present solution
-1 -1 0 0
-0.75 || -0.75 0.07292 0.07274
-0.5 || -0.5 0.18141 0.18104
-0.25 | -0.25 0.26454 0.26401
0 0 0.29512 0.29454
0.25 || 0.25 0.26454 0.26401
0.5 0.5 0.18141 0.18104
0.75 || 0.75 0.07292 0.07274
1 1 0 0

Fig. 4.2 shows the 3 - dimensional profiles of entropy generation and Bejan number. It is
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clear from Fig. 4.2(a) that the maximum magnitude of the entropy generation is observed at the
boundaries of the rectangular duct and minimum at the center of the duct due to their suppressing
effect on the flow and thermal fields. Furthermore, a similar phenomenon also occurs in 2 — D
figures. Fig. 4.2(b) shows the Bejan number profile in the rectangular duct. Contribution of
either thermal or viscous irreversibility on entropy generation is characterized by the dimensionless
number called Bejan number (Be). The Bejan number at the boundary of the duct is higher than
than the center region of the duct. It is observed that the fluid friction irreversibility dominates at

the center of the duct than the periphery of the duct.

The effect of coupling number on entropy generation is shown in Figs. 4.3(a) and 4.3(b) in x
and y-directions. It is observed that the entropy generation decreases with an increase in the value
of N in x and y-directions.The peak value of entropy generation is noticed at the boundaries of the
rectangular duct. It is seen from Figs. 4.3(c) and 4.3(d) that the Bejan number initially increases
and then decreases with an increase in the value of N in both x and y-directions. It is noticed that

the fluid friction irreversibility dominates around the center of the duct.

Fig. 4.4 presents the effect of Hartman number on entropy generation and Bejan number in
x and y-directions. It is observed from Figs. 4.4(a) and 4.4(b) that the entropy generation near
the boundaries of the duct is higher than the center of the duct, due to high temperature and
velocity gradients. With the increase in Hartman number the entropy generation rises at the center
of the duct, as in this region the velocities are maximum and hence the contribution of MHD flow
is maximized on the entropy generation. Likewise near the boundaries of the duct the entropy
generation is less when Ha is more, because increasing the magnetic field results in a decrease in
the irreversibility caused by fluid friction. Figs. 4.4(c) and 4.4(d) show that the decrease in Bejan

number with increase in Hartman number.

Fig. 4.5, analyses the effect of Brinkman number on entropy generation and Bejan number in
x and y-directions. Figs. 4.5(a) and 4.5(b) show that the entropy generation increases with an
increase in the value of Br in the entire rectangular duct. The entropy generation number is high
in magnitude at the boundaries of the duct due to the presence of high temperature and velocity
gradients. Ns profiles are similar in shape and almost parallel to one another for any parameter,
but they do vary in magnitude. The Bejan number indicates whether the entropy generation is
dominated by the heat transfer or fluid friction. It is observed from Figs. 4.5(c) and 4.5(d) that the

Bejan number increases with increase in Brinkman number due to decrease in viscous dissipation

5



Figure 4.2: 3-Dimensional profiles of entropy generation and Bejan nuber.

irreversibility.
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Figure 4.3: Effect of coupling number on entropy generation and Bejan number.
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4.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the no-slip boundary condition is considered at the top and bottom walls of the duct
while the slip condition is taken at the side walls of the duct. Let the bottom wall of the duct
is convectively heated, whereas the convective heat loss can take place at the top wall and the
side walls of the duct are maintained at uniform temperature 7. Further, it is assumed that the

microrotation is zero at all sides of the duct.

w=0 o01=0, 00=0, at z==a

dT dT
Kf@—h(T—Tg):O, at T = —a, Kf%—l-h(T—Tﬂ:O, at ¥ = a,

C/ dw t . . dw t ) (4.15)
w = _— a = — w = — _— a =
1 dy? y ) 1 dy? y )
01:0, O’QZO, T:T1 at y:ib
The non-dimensional boundary conditions are
w=0, 0,=0, 0o=0 at x==+1
do do
d——Bi(O—l)ant x=—1, d—+Bi0:Oatx:1
* * (4.16)

dw dw
w=(-— at y=-y, w=-C5— at y=uyo

dy dy
01=0, 09=0, =0 at y= =ty

b

a’

where ¢ = % and yo =

The entropy generation and Bejan number have been calculated for the slip and convective

boundary conditions (4.16) from Eqgs. (4.12) and (4.14).

Results and Discussion

The problem of magnetohydrodynamic flow and heat transfer in a micropolar fluid flow through a
rectangular duct subject to slip and convective boundary conditions has been solved numerically
using finite difference method by taking the values of the parameters yo = 1, Ha = 2,m = 1,1 =
05,N=025Re=1,po=1,1T,=1,Br=1,A=1,B=0.1,( =0.1 and Bi = 1 are constant as

mentioned in case(a).
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Fig. 4.6, shows the 3-Dimensional profiles of entropy generation and Bejan number. Fig.
4.6(a) shows that the maximum value of the entropy generation is at the wall of the rectangular
duct where the convective boundary condition is applied. Moreover, the entropy generation rate
decreases in both the directions due to the suppressing effect on the flow and thermal fields. Fig.
4.6(b) shows the profile of Bejan number in the rectangular duct. It is observed that the heat
transfer irreversibility dominates at the bottom wall of the duct and fluid friction irreversibility

dominates at the top wall of the duct.

The effect of coupling number on entropy generation is shown in Fig. 4.7 in z and y-directions.
It is observed from Fig. 4.7(a) that there is no significant effect of coupling number on entropy
generation in the z-direction. Fig. 4.7(b) states that the entropy generation decreases with an
increase in the value of coupling number in y-direction. The Bejan number increases with increase
of N along z-direction as shown in Fig. 4.7(c). It is noticed that the heat transfer irreversibility
dominates near lower plate and fluid friction irreversibility dominates near the upper plate. It
is seen from Fig. 4.7(d) that the Bejan number increases with an increase in the value of N in

y-direction.

Fig. 4.8, presents the effect of magnetic parameter on entropy generation and Bejan number
in x and y-directions. It is observed from Figs. 4.8(a) and 4.8(b) that the entropy generation
decreases with an increase in the value of Hartman number, which indicates that the presence of
magnetic field reduces the entropy generation. Figs. 4.8(c) and 4.8(d), show that the Bejan number

increases with an increase in the value of Hartman number in both the directions.

Fig. 4.9, shows the effect of Reynolds number Re on entropy generation and Bejan number in z
and y-directions. From Figs. 4.9(a) and 4.9(b) it is observed that the entropy generation increases
more rapidly in y-direction than in z-direction. This is due to the fact that the fluid is more viscous
in y-direction. From Figs. 4.9(c) and 4.9(d), it is clear that as the Reynolds number increases,

Bejan number decreases.

The effect of slip parameter ¢ on entropy generation and Bejan number is shown in Fig. 4.10
along = and y-directions. It is observed from Fig. 4.10(a) that the slip parameter does not show a
significant effect on entropy generation. Fig. 4.10(b) shows that the entropy generation decreases
near the side walls of the duct with increase in . From Fig. 4.10(c) it is seen that the Bejan number

is high at the lower plate due to domination of heat transfer irreversibility on entropy generation.
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Figure 4.6: 3-Dimensional profiles of entropy generation and Bejan number.

Fig. 4.10(d) illustrates that the Bejan number slightly increases near the side walls of the duct in

y-direction with an increase in the value of (.

Figs. 4.11(a) and 4.11(Db) illustrate that increase in the entropy generation rate with an increase
in the value of Bi in x and y-directions due to convection on lower and upper plates. It is noticed
from Figs. 4.11(c) and 4.11(d) that the Bejan number increases with increasing values of Bi due
to the dominant effect of heat transfer irreversibility. Hence the convective thermal boundary

conditions enhance the dominant effects of heat transfer irreversibility on the flow system.

The effect of Brinkman number on the entropy generation and Bejan number in x and y-
directions are shown in Fig. 4.12. The Brinkman number Br is indicative of the rate at which
energy is dissipated by the viscous forces within the fluid. Due to the effect of these viscous and
magnetic forces, the entropy generation becomes significant in the rectangular duct. Ns profiles
remain similar but they vary in magnitude for variation of all parameters. With the increase in the

value of Br, the entropy generation increases, but the Bejan number decreases as shown in Fig.

4.12.
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4.3 Conclusions

In this chapter, the problem of entropy generation due to steady, laminar, incompressible, microp-
olar fluid flow through a rectangular duct with magnetic field effect is investigated. This problem is
solved for two types of boundary conditions. Case (a)No-slip and isothermal boundary conditions
and Case (b)Slip and convective boundary conditions. From the analysis, the following are the

observations in both the cases (a) and (b).

It is observed that the entropy generation number of viscous fluid is more than the corresponding
values in micropolar fluid case. This may be due to the fact that in viscous fluids, microrotations are
absent and hence available energy is not being used. As micropolarity increases, entropy generation
decreases and Bejan number increases. Thus, these fluids can be used as good lubricants. In Case (a)
it is noticed that with increase in Hartman number the entropy generation rises at the center of
the duct, as in this region the velocities are maximum and hence the contribution of MHD flow is
maximized on the entropy generation. In Case (b) Hartman number has no influence on entropy
generation. As Brinkman number increases, entropy generation increases in both the cases. The
domination of heat transfer irreversibility on entropy generation is observed at the center of the

rectangular duct from the Bejan number profiles in y-direction in Case (b).
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Chapter 5

Analysis of Entropy (Generation in a

Micropolar Fluid Flow Through an

Inclined Porous Circular Pipe !

5.1 Introduction

The cornerstone in the field of heat transfer and thermal design is the second law of thermodynamics
and its design is related to the concept of entropy generation minimization. Entropy generation
destroys the available energy of a system and as a result imposes considerable extra costs to any
thermal system. In order to improve the efficiency in all types of thermal systems, it is important to
minimize the entropy generation and thus optimizing the energy resources. The concept of entropy
generation minimization is developed by Bejan [13, 14, 15] which is based on the second law of

thermodynamics.

The flow through pipes or ducts is commonly used in heating and cooling applications and
fluid distribution networks. In fluid flow systems, thermodynamic irreversibility can be quantified
through entropy analysis. In order to preserve the quality of energy in a fluid flow process or

at least to reduce the entropy generation, it is important to study the distribution of the entropy

!Case(a): Accepted in “Advances and Applications in fluid Mechanics”, Case(b) Accepted in
“Sadhana”
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generation within the fluid volume. Al-Zaharnah [3] investigated the entropy generation in the pipe
flow by considering different pipe wall temperatures. Mansour and Sahin [17] studied the entropy
generation in a circular pipe as a two-dimensional flow with uniform wall heat flux boundary
condition and observed that the viscosity variation with temperature is important for determining

the entropy generation especially when highly viscous fluids are used as working fluids.

The objective of the present chapter is to investigate the entropy generation rate of microp-
olar fluid flow in an inclined porous circular pipe. Two types (cases) of boundary conditions are

considered for the velocity and temperature as in earlier chapters.

5.2 Mathematical Formulation

Consider a steady, axisymmetric, fully developed, laminar, incompressible, micropolar fluid flow
through an inclined porous circular pipe is driven by a constant pressure gradient(see Fig. 5.1).
Choose the cylindrical polar coordinate system (r,p, z) with z - axis is in the direction of fluid
flow. As the flow is fully developed and the pipe is of infinite length, the flow depends only on 7.
Let w, v, u be the velocity components. We apply uniform suction or injection with velocity w, on
the wall » = a of the pipe., Here wg < 0 is the velocity of the suction and wg > 0 is the velocity
of the injection. The motion being rotationally symmetric, suction or injection to be uniform, and
assuming that the pipe is long enough, all the physical quantities will be independent of ¢ and z,
and v will be zero. The corresponding equation of continuity is %(rw) = 0, which on integration

gives w = wo a constant. The equations that govern the fluid flow in the absence of both body

force (force per unit volume) and body couple (moment per unit volume) are:

0

op kK do d®u  1du du
LR il du, 2 “B(T — Ty) sin ¢ = pws 2
o S o] e |G | T - Tsme =gl (52)

U d?c  1do o do
Yo — g “eo 28 9 29 )
i Hdr+7[dr2 rdr 7“2] P wdr (5-3)
2T 1dT k. (du\?® _ odo K [du 2 do\? o2 dT

K|S+ -2 Ey(E2) 25287 B Ly 7 = pows (54
f[dr2 rdr} (p 2)<dr> Brdr+2 [dr+ U] 7 (d’r) +r2 p pwdr (5-4)




Figure 5.1: Physical model and coordinate system.

where u(r) is the component of velocity in the flow direction, o is the microrotation component,

T is the temperature of the fluid and S is the coefficient of thermal expansion.

5.2.1 Case(a): No-slip and Isothermal Boundary Conditions

Assume that the fluid velocity on the pipe wall is same as the velocity of the pipe wall(no-slip
velocity). The fluid particles are neither rotating nor translating at the pipe wall(hyper-stick) and
the pipe is maintained at a uniform temperature (7%). The mathematical expressions of these

conditions are given by

d dT

Yo Y0, at r=0

dr (5.5)
u=0, oc=0, T=1T, at r=a

Introducing the following non-dimensional variables

T-T

r=an, u=uf(n), o=-—gn), 0= oo (5.6)
in Egs. (5.2) - (5.4), to get the following non-linear system of differential equations:
1 1 1 !/ N / 1 : /
2 : - ) —A= :
1—N<f +77f>+1—N g—i—ng + gssin(¢)6 Rf (5.7)
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NZ-N) /[, 1, 1 ON N ,
mQ(l_N)<g +%9—ﬁ9 —1_N9—1_Nf:Raj9 (5.8)
1 2N 1 N > 2B N(2 - N) 1
0" + -0+ B 2 = ) /P 2, - 2 — Pr RO
s U e g (et
(5.9)
where R = %(suction Reynolds number), A = M“—;g—g(constant pressure gradient) and B =

B

—qz (material constant).

The corresponding boundary conditions are:

(5.10)
fn)=0, gn)=0, 0(n=1 at n=

The Quasilinearization method is used to convert the non-linear boundary value problems (5.7)
- (5.9) to a system of linear differential equations. The resultant equations are solved using the
Chebyshev spectral collocation method, which is described in detail in chapter-2. The physical

region [0, 1] is transformed into the region [-1, 1] using the mapping
n=ci- —1<é<1 (5.11)

Proceeding as in chapter-2 and incorporate the boundary conditions (5.10) in the matrix system

A, X, 11 = B,, the solution is obtained as

X,11 = A, 'B, (5.12)

r

Entropy Generation

In the fluid flow, irreversibility arises due to the heat transfer and the viscous effects of the fluid.
The entropy generation rate can be expressed as the sum of contributions due to viscous effects and
thermal effects, and thus it depends functionally on the local values of velocity and temperature in

the domain of interest. For the present study, the volumetric rate of entropy generation reduces to

Ky (dT\? + 5 /du\? dul?® 28c0d do\? o2
ngg( ) L 2<u> +“[QU+U] _280do v (0> L
15 dr r

dr T, \dr 2T Tyrdr Ty
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The dimensionless entropy generation number is given by

Br 2-N N 2B(1—N) N(2—N) 1
Ns — 0/2 12 - !/ 2 2 _ / /2 7 2
+Tp(1_N) 5[+ 5 (f +29) S99t 9"+ 39
(5.13)

The dimensionless entropy generation number gives a good idea about the rate of total entropy gen-
eration. However, it does not convey which of the two entropy generation mechanisms, namely, heat
transfer and fluid friction, dominates. To resolve this, Paoletti et al [85], defined a dimensionless

number, called Bejan number, defined as

Entropy generation due to heat transfer
Be = - (5.14)
Total entropy generation

Results and Discussion

Figs. 5.2 - 5.5 show the variation of velocity, microrotation, temperature, entropy generation and
Bejan number with 7 for different values of coupling number (N), angle of inclination (¢), suction
Reynolds number (R) and Brinkman number (Br) form =2, Pr =1, a; = 0.001, gs = 0.5 A = -2,
B=0.1and T, =1.

In order to validate the accuracy of the present method, the results of velocity and microrotation
are compared with the analytical solution given by Eringen [41] in the absence of g5, R, ¢ as a
special case by taking N = 0.5, m = 2 and A = —2. The comparison in this case is found to be in

good agreement, as shown in Table. 5.1.

The effect of coupling number on velocity, microrotation, temperature, entropy generation and
Bejan number of the micropolar fluid flow through an inclined porous pipe is plotted in Fig. 5.2.
It is observed from Figs. 5.2(a) - 5.2(e) that the velocity, microrotation, temperature, entropy
generation and Bejan number decrease with an increase in the value of N. As N — 0 equations
(5.7) and (5.8) reduce to the corresponding equation for viscous fluid. Hence, it is observed that
the velocity of the micropolar fluid is less than the viscous fluid. Furthermore, for fixed N, the
microrotation increases and then decreases as radial distance from the axis increases. Since, it is
assumed that the microrotation is zero at the centre of the pipe and also at the wall of the pipe.
This implies that the fluid particles cannot rotate near the boundary and also at the centre of the

pipe. The microrotation field in this region is dominated by a small number of particles spins that
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are generated by collisions with the boundary. The particles moves to the middle from the wall

and also from the centre of the pipe to rotate and hence the microrotation becomes maximum.

The effect of angle of inclination (¢) of the circular pipe on the velocity, microrotation, tem-
perature, entropy generation and Bejan number is shown in Fig. 5.3. Fig. 5.3(a) shows that the
velocity increases with increase in angle of inclination ¢, due to increase in forces acting upon the
fluid flow. It is observed that the microrotation increases with increase in angle of inclination as
shown in Fig. 5.3(b). It is clear from Figs. 5.3(c) to 5.3(e) that the temperature, entropy generation
and Bejan number increase as increase in ¢. Moreover, the peak value of temperature is observed
at the center of the channel. The maximum entropy generation is noticed at the pipe wall due to

high velocity and temperature gradients.

The behavior of flow quantities in response to increase in suction Reynolds number is similar
to that with respect to angle of inclination as shown in Fig. 5.4. The fluid velocity, microrotation
and temperature increase with increase in R as shown in Figs. 5.4(a) - 5.4(c). It is observed
from the Fig. 5.4(d) that the entropy generation is maximum at the pipe wall where velocity and
temperature gradients are highest and minimum at the channel center line where zero velocity and
temperature gradients are recorded. The same trend is observed for the Bejan number profile as

interpreted in Fig. 5.4(e).

The effect of Brinkman number on velocity, microrotation and temperature fields are shown
in Figs. 5.5(a) to 5.5(c). It is clear that the velocity, microrotation and temperature increase
as Brinkman number increases. The analogous importance between viscous dissipation and fluid
conduction is determined by the Brinkman number. As Br increases more heat is generated by the
viscous dissipation effect in the fluid. This results in increasing temperature profile with increase
in Br. It is observed from Fig. 5.5(d) that the contribution of Brinkman number is nil on the
entropy generation at the center of the pipe since the velocity and temperature gradients are zero.
It can be seen from Fig. 5.5(e) that the Bejan number increases with an increase in the value of
Br. It is observed that the heat transfer irreversibility dominates at the pipe wall and fluid friction

irreversibility dominates at the center of the pipe.
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Table 5.1: Comparison of SQLM solutions for the velocity and microrotation with that of
analytical solution given by Eringen [41] for gs =0, R =0 and ¢ = 0.

Velocity f(n) Microrotation g(n)

n Analytical solution[41]  Present  Analytical solution[41]  Present

1 0 0 0 0
0.9755 0.01213 0.012128 0.00675 0.006758
0.9045 0.04605 0.046052 0.02309 0.023092
0.7939 0.09479 0.094809 0.04001 0.040029
0.6545 0.14845 0.148466 0.04944 0.049459
0.5 0.19688 0.196902 0.04821 0.048232
0.3455 0.23292 0.232950 0.03835 0.038355
0.2061 0.25435 0.254385 0.02458 0.024587
0.0955 0.26370 0.263735 0.01173 0.011728
0.0245 0.26609 0.266128 0.003032 0.003027

1 0.26626 0.266296 0 0

5.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the surface of the pipe is convectively heated with hot fluid 75, which provides a heat
transfer coefficient h. The slip velocity and zero microrotation are considered at the pipe wall.

Thus, the boundary conditions are given by

L L
dr dr
du I (5.15)
u:—Q%,U:O, —Kf%:h(T—Tl), at r=a

The dimensionless boundary conditions are:

f'(n)=0, gn)=0, 6On=0, at n=0

Cf'm+fn)=0, g(n)=0, &(n)+Bib(n) =0, at n=1

(5.16)

where ( = %1 is the slip parameter and Bi = f(—’; is the Biot number. Proceeding as in Case (a),

the solution is obtained from the following matrix equation
X,41 = A B, (5.17)

The entropy generation and Bejan number have been calculated for the slip and convective boundary

conditions from equations (5.13) and (5.14).
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Results and Discussion

For the numerical validation of the results, physically meaningful values have been chosen for the

parameters Pr =1, gs =0.5, m =2, A= -2, B=0.1 and T, = 1 in the problem.

Fig. 5.6, presents the effect of coupling number (V) on non-dimensional velocity, microrotation,
temperature, entropy generation and Bejan number. It is observed from Figs. 5.6(a) - 5.6(e) that
the velocity, microrotation, temperature, entropy generation and Bejan number decrease with an

increase in the value of coupling number (N).

The influence of the angle of inclination on velocity, microrotation, temperature, entropy gen-
eration and Bejan number is shown in Fig. 5.7. It is observed that the fluid velocity increases
with increase in angle of inclination ¢ as displayed in Fig. 5.7(a). It is observed from Fig. 5.7(b)
that the microrotation increases at the center of the channel as the angle of inclination increases.
It is clear from Figs. 5.7(c) to 5.7(e) that the temperature, entropy generation and Bejan number

increase as ¢ increases.

The variation of suction Reynolds number on velocity, microrotation, temperature, entropy
generation and Bejan number are presented in Fig. 5.8. Increase in the suction Reynolds number
causes an increase in all the governing parameters. It is noticed that the heat transfer irreversibility
dominates at the pipe wall and fluid friction irreversibility dominates at the axis of the pipe as shown

in Fig. 5.8(e) with an increase in suction Reynolds number.

It is observed from Figs. 5.9(a) and 5.9(b) that the velocity and microrotation decrease with
increase in Biot number. As the Biot number increases, the circular pipe thermal resistance en-
hances significantly, and the velocity decreases. Fig. 5.9(c) reveals that the temperature decreases
as Biot number increases. Since the Biot number depends on heat transfer coefficient i, which leads
to decrease in temperature. Decrease in entropy generation is observed with an increase in Biot
number Bi as shown in Fig. 5.9(d). This is due to the fact that both velocity and temperature
gradients within the pipe decreases as Bi increases. Fig. 5.9(e) shows that the Bejan number
decreases as Biot number increases. This implies an increase in the dominant effect of fluid friction

irreversibility.

Increase in Brinkman number, increases the velocity, microrotation and temperature fields as

shown in Figs. 5.10(a) to 5.10(c). Brinkman number is the term act as a strong heat source in the

101



energy equation thus, increase in Brinkman number significantly increases the fluid temperature
and hence increase the fluid velocity and microrotation. It is observed from Fig. 5.10(d) that
the entropy generation increases as Brinkman number increases. The zero value of the entropy
generation along the pipe centerline can be attributed to the axialsymmetric nature of the pipe
flow with zero velocity and temperature gradients along the centerline. It is noticed from Fig.

5.10(e) that the Bejan number increases with an increase in the value of Br.

5.3 Conclusions

In this chapter, the problem of entropy generation due to micropolar fluid flow through an inclined
porous pipe is studied with (a)No-slip and isothermal boundary conditions and (b)Slip and convec-

tive boundary conditions. From the analysis, the following are the observations in both the cases

(a) and (b).

The presence of microstructure N decreases the velocity, temperature, entropy generation and
Bejan number in both cases. As there is an increase in angle of inclination, the entropy generation
and Bejan number increases in Case(a). In Case(b) entropy generation and Bejan number does not
increase significantly with the angle of inclination. It is observed that the fluid friction irreversibility
dominates around the center of the pipe and heat transfer irreversibility dominates at the pipe wall
in both cases from the Bejan number graphs for variation of all parameters. Increase in suction
Reynolds number, increases the entropy generation and Bejan number. In Case(b) slight decrease
in entropy generation and Bejan number are observed with increase in Biot number. All the Bejan
number profiles show a minimum value at the center of the pipe and maximum value at the pipe

wall since the velocity and temperature gradients are zero at the center of the pipe.
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Chapter 6

Entropy Generation due to

Micropolar Fluid Flow between

Concentric Cylinders !

6.1 Introduction

The study of fluid flow between two cylinders, where one or both of the cylinders rotate has many
applications such as swirl nozzles, rotating electrical machines, commercial viscometers, journal
bearings and chemical and mechanical mixing devices. In practical situations, many factors affect
the flow and heat transfer through annular space. Considerable research studies [92, 18, 34] were

carried out to investigate the Newtonian and non-Newtonian fluid flow through concentric cylinders.

The entropy generation plays an important role in the design and development of thermal
machines such as power plants, heat engines, refrigerators, turbine, and pipe networks. Entropy
generation in these systems is an important issue because it gives information about local and global
losses of energy due to heat transfer and fluid friction irreversibility. Thus, the energy saving can be
obtained by reducing these losses. As irreversibility destroys the system energy, its minimization

has been considered as the optimal design criteria for thermal systems to utilize its maximum

!Case(a): Communicated to “Applied Thermal Engineering”, Case(b) Accepted in“Ain Shams
Engineering Journal”
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available energy. Hence, the efficient utilization of energy can be achieved by entropy generation
minimization. Chen et al [25] analyzed the natural convection and entropy generation in a vertically
concentric annular space. Eegunjobi and Makinde [37] investigated the entropy generation rate in
transient Couette flow of variable viscosity fluid between two concentric pipes where inner pipe is
moving and outer pipe is fixed. Chinyoka et al [26] analyzed the presence of irreversibility inside
a porous vertical pipe and also investigated the entropy generation. Das et al [32] analyzed the
entropy generation in a Couette flow caused due to the movement of the upper channel wall with

suction/injection in a rotating frame of reference.

The study of entropy generation of micropolar fluid through concentric cylindrical annulus
associated with or without slip and convective boundary conditions has been discussed in this
chapter. The governing equations in cylindrical coordinates are simplified and numerically solved
using the spectral quasilinearization method to obtain the entropy generation and Bejan number

in the annulus.

6.2 Mathematical Formulation

Consider a steady, laminar, incompressible, micropolar fluid in an annulus between infinite vertical
concentric circular cylinders of radii a and b (a < b). Choose the cylindrical polar coordinate
system (7, ¢, z) with z-axis as the common axis for both cylinders. The inner cylinder is at rest
and the outer cylinder is rotating with constant angular velocity Q(shown in Fig. 6.1). The flow is
generated due to rotation of the outer cylinder. Since the flow is fully developed and the cylinders
are of infinite length, the flow depends only on r . Further, it is assumed that, except density all
the fluid properties are constant in the buoyancy term of the balance of momentum equation. With
the above assumptions and Boussinesq approximations with energy, the equations governing the

steady flow of an incompressible micropolar fluid are

ou

—~ =0 6.1
% (6.1)
op  pu?
o (6.2)
Oo 10u  u O%u .
_KT{?T +(,U+H) (Ta7“_7’2+87'2> + pg /BT(T_TI) =0 (6'3)
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Figure 6.1: Physical model and coordinate system.
ou u 100 0%
_2KU+K<87"+7‘>+7<T8T+87’2>_0 (64)

10T  O0*T 1 d(ru) 2 ou )\’ do\?
Kf(r&«+87~2>+2”(2r or “’) Flutr) <ar‘r> *”(&a) =0 (65

where w is velocity in ¢ direction, ¢ is microrotaion, T is the temperature of the fluid.

6.2.1 Case(a): No-slip and Isothermal Boundary Conditions

In this case, it is assumed that the inner cylinder is at rest and the outer cylinder is rotating with
constant angular velocity 2. Moreover, the inner and outer cylinders are maintained at uniform

temperatures 77 and T, respectively. Hence, the boundary conditions are

u=0, o=0, T=1T, at r=a

19 (6.6)
u = b8, UZQ—TE(TU), T=T, at r=0b
Introducing the following non-dimensional variables
= byl u = f() gn), T-T=(T> - T1)0(n) (6.7)
== ) = = ) g = — ) — 41 = 2 — 41
NI b
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in Egs. (6.3) to (6.5), to get the following non-linear system of differential equations:

2N, n ., Gr
_ —0 = .
TN oy VIR0 =0 (6.8)
22— N
o 7+ 22 gy =0 (6.9)
Br [N N(2—-N)
31, 200 2 g1 2 "2 3 12
0 0 = (f - - = 1
70" +0°0) + T |5 (=) (f=nf) + — 779} 0 (6.10)
The corresponding boundary conditions in dimensionless form are:
an 2
f(m) =0, g(no) =0, 6(no) =0, where 79 = <5) ;
(6.11)

f(1) =1, g<1>:[jj;] RROEY
.

The Quasilinearization method is used to convert the non-linear boundary value problems (6.8)-
(6.10) to a system of linear differential equations. The resultant equations are solved using the
Chebyshev spectral collocation method, which is described in detail in chapter-2. Proceeding as in
chapter-2, the solution is obtained as

X411 = A, 'B, (6.12)

r

Entropy Generation

In fluid flow, irreversibility arises due to heat transfer and viscous frictional effects in the fluid. The
entropy generation rate can be expressed as the sum of contributions due to viscous and thermal
effects and depends functionally on local velocities and temperatures in the domain of interest.
When both temperature and velocity fields are known, the volumetric entropy generation rate Sg

at a point in a system is given in equation (1.4).

For the present study, the volumetric rate of entropy generation reduces to

Kp (0T\?* p+nr[ 0 ju\]®> 26[1 0 2 002
~ 1z \or ETo e A Bt et G = (== 1
S Tl2 (37"> * Ty [rar (r)] +T1 2r 8r(ru) g +T1 Ir (6.13)
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The dimensionless entropy generation number is given by

(-2 e (4 -0) 2% () ()]

(6.14)

To evaluate the irreversibility distribution, the parameter Be(Bejan number), which is the ratio of

entropy generation due to heat transfer to the overall entropy generation is defined as follows

Ny,

Be= ———
Nh+Nv

(6.15)

Results and Discussion

The case of Newtonian fluid flow between concentric cylinders of Sinha and Chaudhary [89] can
be obtained by taking N = 0,Gr = 0,m = 0. Thus, in order to assess the accuracy of SQLM
method, the results of the present problem, in the absence of N, Gr,m have been compared with
the analytical solution of Sinha and Chaudhary [89] for Newtonian fluids. The comparison was

found to be in good agreement, as shown in Table. 6.1.

In order to investigate the effect of the parameters coupling number (/N), Brinkman number
(Br), Reynolds number (Re) on the velocity(f), microrotation(g), temperature(f), entropy gen-
eration number(/Ns) and Bejan number(Be), the parameters are fixed as m = 2, T, = 1, and

Gr =1.

Fig. 6.2, displays the effect of coupling number N on the dimensionless velocity, microrotation,
temperature, entropy generation and Bejan number. It is observed from Fig. 6.2(a) that the
velocity decreases, as IN increases. The velocity in case of micropolar fluid is less compared to
that of the viscous fluid case. But the values of microrotation profile enhances with an increase
in coupling number as shown in Fig. 6.2(b). From Fig. 6.2(c), it is seen that the temperature
increases with an increase in the value of coupling number. Entropy generation enhances with an
increase in coupling number as shown in Fig. 6.2(d). It can be seen from Fig. 6.2(e) that the Bejan

number decreases as N increases.
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The variation of the non-dimensional velocity, microrotation, temperature, entropy generation
and Bejan number profiles with 7 for different values of Brinkman number is illustrated in Fig.
6.3. It is observed from Fig. 6.3(a) that velocity slightly increases as Br increases. From Fig.
6.3(b), it is seen that as Br increases, the microrotation increases at the outer cylinder and there
is no change at the inner cylinder. Fig. 6.3(c) illustrates the effect of Br on the temperature
profile. It is also noticed that as Br increases, the temperature profile increases. According to the
definition, Br is the ratio of the viscous heat generation of external heating. Thus higher values of
Br, the lesser will be the conduction of heat produced by viscous dissipation and hence the larger
is the temperature. The entropy generation profile for different values of Br is described in Fig.
6.3(d). It is observed that as Br increases, the entropy generation increases at both cylinders.
The parameter Br determines the relative importance of viscous effects and has a significant effect
on entropy generation. For all parameters, the inner cylinder acts as a strong concentrator of
irreversibility. Entropy generation number is high in magnitude near the inner cylinder due to the
high temperature and velocity gradients. It is observed from Fig. 6.3(e) that the Be decreases with
n and tends to 0 and then increases. Further, it is noticed that as the Brinkman number increases

the Bejan number Be decreases.

Fig. 6.4, illustrates the effect of Reynolds number (Re) on the dimensionless velocity, microro-
tation, temperature, entropy generation and Bejan number. Fig. 6.4(a) shows the velocity profile
with increase in Re. As Re increases, the flow velocity decreases. Fig. 6.4(b) depicts that increase
in Re, increases the microrotation. From Fig. 6.4(c), it is clear that the increase in the value of
Reynolds number slightly increases the temperature near the outer cylinder. The effect of Reynolds
number Re on entropy generation is presented in Fig. 6.4(d). As the value of Re increases, the
entropy generation decreases near the inner cylinder and increases near the outer cylinder. As the
Reynolds number increases, the Bejan number increases at the inner cylinder with the dominant
effect of heat transfer irreversibility and decreases at the outer cylinder with increasing effect of

fluid friction irreversibility as demonstrated in Fig. 6.4(e).

6.2.2 Case(b): Slip and Convective Boundary Conditions

In this case, it is assumed that the fluid adjacent to the cylinders has finite tangential velocity,

it slips along the boundary. The inner cylinder is heated by convection from a hot fluid with
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(d)entropy generation and (e)Bejan number.
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Table 6.1: Comparison analysis for the velocity calculated by the present method and that
of analytical solution [89] for N = 0.

n Analytical solution || Present solution

1 1 1
0.9816 0.97546 0.975528
0.9284 0.90453 0.904509
0.8454 0.79386 0.793893
0.7409 0.65453 0.654509
0.625 0.5 0.5
0.5091 0.34546 0.345492
0.4046 0.20613 0.206107
0.3216 0.09546 0.095492
0.2684 0.02453 0.024472

0.25 0 0

temperature T which provides a heat transfer coefficient h; while, the upper cylinder losses heat

to the ambient with a heat transfer coefficient hy. Thus, the boundary conditions are

T
uzclligli,t_z:la 0:07 Kfaa_hl(T_Tl)ZO, at r=a
r
0 10 oT (6.16)
—pn |l -7 K2 T-Ty) = -
u=> ¢ [(% r} » 0 2r6r<m>’ P + ha( ) =0, at r=5b
where (’ slip length of the inner and outer cylinders.
The corresponding boundary conditions in dimensionless form are:
. a
=2¢nof'(n0) + (v/no + 2¢) f(m0) = 0, g(no) = 0, Bir6(no) = 24/no8 (1), whereng = (5)2
df (6.17)

2 (1) + (1 — 20)f(1) = b, g(1) = [ } s Bl 6(1) = 20/(1)

dn

where ( = % is the slip parameter. In general Biot number is assumed to be same for the two
cylinders. (Bi; = Bis = Bi) Proceeding as in Case (a), the solution is obtained from the following
matrix equation

X,11=A'B, (6.18)

The entropy generation and Bejan number have been calculated for the slip and convective

boundary conditions from equations (6.14) and (6.15).
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Results and Discussion

The effects of N, Br, ( and Bi on velocity, microrotation, temperature, entropy generation and
Bejan number have been studied. The computations were carried out by taking m = 2,gs = 1,

T,=1,a=050b=1.

Fig. 6.5, presents the effect of coupling number (N) on nondimensional velocity, microrotation,
temperature, entropy generation and Bejan number. Fig. 6.5(a) shows that the velocity decreases
as N increases. Fig. 6.5(b) depicts that, the microrotation component decreases with an increase
in the value of N. Fig. 6.5(c) reveals that as N increases temperature increases. In Fig. 6.5(d) it
is observed that the entropy generation increases as coupling number increases. Fig. 6.5(e) reveals
that the Bejan number Be decreases near the inner cylinder and increases near the outer cylinder

with an increase in the coupling number N.

Fig. 6.6(a) shows that the velocity increases with an increase in the value of Br. Fig. 6.6(b)
shows that the microrotation increases as Br increases. It is noticed from Figs. 6.6(c) and 6.6(d)
that the temperature and entropy generation increase as Br increases. For all parameters, the
inner cylinder acts as a strong concentrator of irreversibility. Entropy generation number is high in
magnitude near the inner cylinder due to the presence of high temperature and velocity gradients.
Ns then falls exponentially along the radial direction, approaching an asymptote near the outer
cylinder. Entropy generation profiles are similar in shape and almost parallel to one another for all
the parameter variations, but they vary in magnitudes. It is noticed from Fig. 6.6(e) that as Br
increases, the Bejan number decreases at the inner cylinder which indicates that the fluid friction
contribution to entropy generation increases. It is also observed that the Bejan number increases

near the outer cylinder due to the high heat transfer contribution.

Figs. 6.7(a) to 6.7(d) illustrate the effect of slip parameter on the velocity, microrotation,
temperature and entropy generation. It is observed that the slip parameter ({) has a significant
influence on all the parameters. As slip parameter increases, the velocity, microrotation, tem-
perature, and entropy generation decrease. The existence of slip condition in velocity increases
convection by rotating the outer cylinder leading to influence the temperature consequently, affects
the entropy generation. It is noticed from Fig. 6.7(e) that the effect of ¢ has not significant on the
Bejan number near the inner cylinder, but at the outer cylinder the Bejan number decreases as ¢

increases.

118



Fig. 6.8, shows the velocity, microrotation, temperature, entropy generation and Bejan num-
ber profiles for different values of the Biot number. Physically, Biot number is expressed as the
convection at the surface of the body to the conduction within the surface of the body. It is as-
sumed the convective heat transfer coefficients (hl, h2) are same at the inner and outer cylinders
i.e. Biy = Bigs = Bi. It is observed from Fig. 6.8(a) that an increase in the Biot number decreases
the velocity profile of the fluid in an annular space. It is due to the fact that Biot number reduces
the heat transfer rate in the cylinder walls. Fig. 6.8(b) shows that the microrotation decreases
as Bi increases. It is noticed from Fig. 6.8(c) that the temperature decreases with a rise in Biot
number due to a convective cooling at the cylinders. Fig. 6.8(d) reveals that the entropy generation
increases as Bi increases. The effect of Biot number Bi on Be is shown in Fig. 6.8(e). As Biot

number increases, Bejan number also increases.

6.3 Conclusions

In this chapter, the entropy generation in a steady flow of an incompressible micropolar fluid
between concentric cylinders is analyzed. This problem of entropy generation is solved for two
cases, i.e. Case (a)No-slip and isothermal boundary conditions and Case (b)slip and convective

boundary conditions. The following are the observations from the analysis of both the cases.

Flow in the annular space is induced by the rotation of the outer cylinder. The results reveal
that the entropy generation is higher near the inner cylinder in both the cases due to velocity
and temperature gradients. Entropy generation profiles show an asymptotic behavior towards the
outer cylinder. The fluid friction irreversibility dominates around the center of the annulus while
the influence of heat transfer irreversibility can be observed near the cylinders. The influence
of microrotation and the Brinkman number increases the entropy generation irrespective of the
boundary conditions. The presence of slip in the fluid particles at the rotating outer cylinder
increases the domination of fluid friction irreversibility. Thus, the Bejan number decreases near the
outer cylinder as observed in the case (b). An increase in the Biot number causes the convective

cooling at the inner and outer cylinders, leading to an increase in the Bejan number.
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Chapter 7

Analysis of Entropy (Generation
between Porous Concentric Cylinders

due to Micropolar Fluid Flow !

7.1 Introduction

In the present decade, the entropy generation analysis has been the topic of great interest in view
of its applications in many fields such as electronics cooling, heat exchangers, porous media, turbo
machinery and combustion. The optimization of thermal systems has been received a unique atten-
tion. Thermal systems have been analyzed and optimized using the second law of thermodynamics.
The second law of thermodynamics states that the Exergy(available energy) is always destroyed

partially or totally and the destroyed amount of energy is proportional to the entropy generation.

Even though there are various sources for entropy generation in engineering systems the main
sources are heat transfer, viscous dissipation, electrical conduction and chemical reaction. Bejan [12,
13] investigated the different factors behind the entropy generation in applied thermal engineering,
where the destruction of available work of a system occurs during the generation of entropy. Assad

and Oztop [8] presented the effect of internal heat generation on entropy generation between two

1Case(a): Communicated to “Journal of Taiwan Institute of Chemical Engineers”, Case(b) Pub-
lished in“Energy, 111 (2016) 165-177"
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rotating cylinders. Mazgar et al [73] presented entropy generation due to the interaction between
thermal radiation and mixed convection in a semi-transparent and non-gray gas, bounded by two

vertical coaxial cylinders.

In the previous chapter, the entropy generation analysis of micropolar fluid flow between con-
centric cylinders was studied. In this chapter, the problem of entropy generation is undertaken for
the micropolar fluid flow through porous concentric cylinders with magneto hydrodynamic effect.
Specifically, the investigations focus on the effect of different parameters on the components of

velocity, microrotation, temperature, entropy generation and Bejan number.

7.2 Mathematical Formulation

Consider the electrically conducting micropolar fluid flow between two horizontal porous coaxial
rotating cylinders(see Fig. 7.1). The following assumptions are made to formulate the present
problem.

1. The flow is steady, laminar, incompressible and axisymmetric.

2. The fluid motion is due to the rotation of the cylinders.

3. The rate of flow through the walls is uniformly equal for both cylinders such that the rate of

injection is equal to the rate of suction.

4. The radii and angular velocities of the inner and outer cylinders are r1, 1 and 9, Qs (11 < 72),

respectively.

5. A constant magnetic field of strength By is imposed transversely in the r-direction. The
magnetic Reynolds number is very small, so that induced magnetic field can be neglected in

comparison to the applied magnetic field.

With the above assumptions the equations governing the micropolar fluid flow [41, 20] are
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Figure 7.1: Schematic diagram of the problem
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Eq. (7.4) states that the condition of uniform pressure distribution along the axis of the
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cylinders. Simplifying Eqgs. (7.1) and (7.2) to get
u? + v? op
== 7.7
o) - &

,
Eq. (7.7) gives the Bernoulli’s type pressure variation in the radial direction, which will not be

discussed further in the present investigation. Integration of Eq. (7.1) gives
ru(r) = constant (7.8)
consider u1,us are the radial velocities of the inner and outer cylinders
U9Ty = UIT] (7.9)
Simplifying Eqs. (7.8) and (7.9) give

Ur = Ugry = UIT] (7.10)
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Substitute (7.10) in (7.3), to get

Rdv v 1 [d  1dv v] N do aeBgv (7.11)
dr T1-N a2 T rdr 2 1—Ndr i
Introducing the following dimensionless quantlties
2
r vrl ori T -1
E——— = — =1 9= 7.12
n=- f= 9= T (7.12)
in equations (7.11), (7.5) and (7.6) to get the following non-linear system of differential equations
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= 2R2< _f>2 +21gB (fl+£>_gr (7.15)

N(2—-N) ,

where R = “7% is the cross flow Reynolds number, Ha = Byr , /% is the Hartman number.

In this chapter, the analysis was done for fluid subjected to two types of boundary conditions,

given in the previous chapter.

7.2.1 Case(a): No-slip and Isothermal Boundary Conditions

In this case, it is assumed that the two cylinders are rotating with angular velocities 2; and €.
Also the inner and outer cylinders are maintained at uniform temperatures 77 and 75 respectively.

Thus, the boundary conditions are

10

v=r1, o= 2B —(rv), T=T;, at r=nr
15 (7.16)
v="98, 0= 2B —(rv), T =Ty at r=r9

The corresponding boundary conditions in dimensionless form are:

1
f:Plu g:2(f/_|_f)’ 9:0, at 7’]:1
X f” (7.17)
f:P27 g:(f/+>7 0:17 at 77:2
2 n 1
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20) . ..
where P, = rlTl and Py, = @ are constants. Consider 71 = 0.5 and 7o = 1. The Quasilin-

earization method is used to convert the non-linear boundary value problems (7.13) - (7.15) to the
system of linear differential equations. The resultant equations are solved using the Chebyshev
spectral collocation method, which is described in detail in chapter-2. Proceeding as in chapter-2,

the solution is obtained from the following matrix equation.

X,11 = A 'B, (7.18)

Entropy Generation

Once the velocity, microrotation, and temperature fields have been obtained, the entropy gener-
ation distribution can be determined in a flow channel. This function, which characterizes the
irreversible behavior of the system, will be used to optimize(minimize) the entropy generation rate
by evaluating parameters as well as fluid properties. For the present study, the volumetric rate of

entropy generation reduces to

2u? n 1/ov v\? +2/@ 1 (0v LY 2+ v (Oo 2+aeBg 9
—+=lF=-- —|zl=+=-)—-0| += | = v
r2  2\0r r T |2 \or r Ty \ Or Ty

The dimensionless entropy generation number is given by

K; (0T\* 2u+k
Se =3 =
“T 12 (87~)+ T
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+TpR2(1N){( ) n4+2<f 77) i {2<f+n> g}+ m Y
Ny
N'm
Br Ha?
r a 2
. 1
] (7.19)

The convective heat transfer processes are analyzed by the second law of thermodynamics
namely entropy generation due to the irreversibility of the processes. In convective heat transfer,
both fluid friction and heat transfer make contributions to the rate of entropy generation. Entropy

generation number (Ns) is useful for generating entropy generation profiles, but it fails to give any
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idea about the relative importance of friction and heat transfer effects. Therefore, an alternative
parameter Bejan number (Be) is introduced for this purpose, which is the ratio of entropy generation

due to heat transfer to the overall entropy generation.

Ny,

Be=— M
Nh+Nv+Nm

(7.20)

Results and Discussion

The micropolar fluid flow through a horizontal porous concentric cylindrical annulus is studied in
this chapter. Entropy generation in the flow field due to heat transfer, fluid friction and magnetic
field is formulated. The influence of various parameters on velocity, microrotation, temperature,
entropy generation and Bejan number are examined. To study the effects of N, Ha, R and Br,
computations were carried out by taking rqy = 0.5, 7o =1, P, =05, P =1, m =2, Pr =1,

aj = 0.001 and T, = 1,

Fig. 7.2, presents the effect of coupling number (V) on non-dimensional velocity, microrotation,
temperature, entropy generation and Bejan number. Fig. 7.2(a) shows that the velocity increases
as N increases. Fig. 7.2(b) depicts that the microrotation component increases at the inner cylinder
and decreases at the outer cylinder with an increase in the value of N. Fig. 7.2(c) reveals that
as N increases temperature increases. In Fig. 7.2(d) it is observed that the entropy generation
increases as coupling number increases. Fig. 7.2(e) reveals that the Bejan number Be decreases
with an increase in the value of coupling number and Be increases in the region very close to the

inner cylinder.

The variation of Hartman number on velocity, microrotation, temperature, entropy generation
and Bejan number is displayed in Fig. 7.3. It is observed from Fig. 7.3(a) that the velocity decreases
as Hartman number Ha increases. As the imposing magnetic field is normal to the flow direction,
the resistive force, and the fluid movement reduces. Fig. 7.3(b) depicts that, the microrotation
component decreases near the inner cylinder and increases near the outer cylinder with an increase
in the value of Ha, thus showing a reverse rotation near the two boundaries. From Fig. 7.3(c), it
is observed that the temperature increases as Hartman number increases. As seen from Fig. 7.3(d)

an increase in the Hartmann number leads to increase in the entropy generation number near the
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walls of the cylinders whereas the less contribution of Ns in the middle of the two cylinders due
to the small temperature gradient in this region. The distribution of the Bejan number Be in Fig.
7.3(e) explains that the viscous dissipation contribution (N, ), which decreases near the walls with
an increase in the magnetic parameter (Ha). From Eq. (7.19) it is noticed that there is no effect of
magnetic field on the temperature field and so Np remains constant. Thus, from the Bejan number

definition (see Eq. (7.20)), with a decrease of N,, Bejan number will increase.

Fig. 7.4, presents the influence of cross flow Reynolds number on velocity, microrotation,
temperature, entropy generation and Bejan number. It is observed from Fig. 7.4(a) that the
velocity decreases with the increase of cross flow Reynolds number. It is seen from Fig. 7.4(b)
that the microrotation component decreases near the inner cylinder and increases near the outer
cylinder with an increase in the value of a cross flow Reynolds number. Fig. 7.4(c) shows that
as R increases, temperature decreases. It is noticed from Figs. 7.4(d) and 7.4(e) that the entropy
generation and Bejan number decreases near the inner cylinder and increases near the outer cylinder

as R increases.

The variation of temperature, entropy generation and Bejan number with Brinkman number is
displayed in Fig. 7.5. The parameter Br determines a relative importance of viscous effects and
has a significant effect on entropy generation. Fig. 7.5(a) shows an increase in temperature with
Brinkman number. It is observed from Fig. 7.5(b) that the entropy generation increases with an
increase in the value of Brinkman number. Due to the higher gradient of temperature, velocity, the
entropy generation number is high in magnitude near the inner cylinder. The effect of Brinkman
number on Bejan number is shown in Fig. 7.5(c). As it can be seen from the figure that the Bejan

number decreases with increase in Br, except at the boundaries.
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Figure 7.2: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,

(d)entropy generation and (e)Bejan number.
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Figure 7.3: Effect of Hartman number on (a)velocity, (b)microrotation, (c)temperature,
(d)entropy generation and (e)Bejan number.
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Figure 7.4: Effect of cross flow Reynolds number on (a)velocity, (b)microrotation,
(c)temperature, (d)entropy generation and (e)Bejan number.
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7.2.2 Case(b): Slip and Convective Boundary Conditions

Assume that the fluid slips at the inner and outer cylinders. Let the inner cylinder is heated by
convection from a hot fluid with temperature 75 which provides a heat transfer coefficient h; while
the outer cylinder losses heat to the ambient with a heat transfer coefficient hs. Thus, the boundary

conditions are

ov v 10 oT
=70 M=_= = —— Ki— —hT-T1)=0 at r=
v [87“ 7“]’ 27"8r(rv)’ I or i ) aor=n (7.21)
v v 10 oT ’
=19l — (' | == — = =—— Ki— +ho(T —Tp) = t or=
v =190y — [ar r] , o= 5 8T(TU)’ %, + ha( ) =0 at r=r9
where ¢’ slip length of the inner and outer cylinders.
The corresponding dimensionless boundary conditions are:
1
f=P1+c<f’—f), g=2(f'+f), o~ Bif=0, at n=1
; 1 X ; K (7.22)
r
f—P2—C<f/_>’ 9_<f,+>’ 0/ + Bisf = Biy, at 1= —
Ui 2 n 1
where P; = T%% and P, = % are constants, ( = % is the slip parameter and Bi, = i;(r;

is the Biot number for each cylinder. Subindexes k = 1,2 refer to the inner and outer cylinders
respectively. In general, Biot number is assumed to be same for the inner and outer cylinders.

Proceeding as in Case(a), the solution is obtained from the following matrix equation
X1 =A;'B, (7.23)
The entropy generation and Bejan number have been calculated for the slip and convective boundary

conditions from equations (7.19) and (7.20).

Results and Discussion

The micropolar fluid flow through a horizontal porous concentric cylinders associated with slip and
convective boundary conditions are studied in this case. Entropy generation in the flow field due to

heat transfer, fluid friction and magnetic field is formulated. The influence of various parameters
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on velocity, microrotation, temperature, entropy generation and Bejan number is examined. To
study the effects of N, {, Ha, R, Bi and Br, computations were carried out by taking r; = 0.5,
ro=1 P =05 P=1m=2, Pr=1,a; =0.001 and T, = 1.

Fig. 7.6, presents the effect of coupling number (V) on non-dimensional velocity, microrotation,
temperature, entropy generation and Bejan number. Fig. 7.6(a) shows that the velocity increases
as N increases. Fig.7.6(b) depicts that the microrotation component increases with increase in
value of N. Fig. 7.6(c) reveals that as NV increases temperature increases. The same effect is seen
on the entropy generation in Fig. 7.6(d). Fig. 7.6(e) reveals that the Bejan number Be increases
at the walls of the cylinders with an increase in the value of coupling number. The Bejan number
Be = 0 at the interior of annulus indicates that the domination of fluid friction irreversibility due

to rotation of the cylinders.

In Fig. 7.7(a) it is observed that an increase in the slip parameter ¢ at the cylinders causes a
decrease in velocity at injection and suction while a large decrease in the fluid velocity is noticed
with a high rate of flow reversal at the suction wall. The decreasing nature of microrotation and
temperature is observed to increase in the value of slip parameter as seen in Figs. 7.7(b) and 7.7(c).
Fig. 7.7(d) shows that the entropy generation number decreases as ¢ increases. Since the effect of
slip reduces the velocities and velocity gradients. This results in a decrease in viscous contribution
to the entropy generation. Fig. 7.7(e) describes the effect of ¢ on Bejan number. It is noticed that
the Bejan number at the suction wall of the annulus increases, leads to increasing the influence of

heat transfer irreversibility when compared to the fluid friction irreversibility at the outer cylinder.

It is observed from Fig. 7.8(a) that the velocity decreases with an increase in the value of
Hartman number Ha. As the imposing magnetic field is normal to the flow direction, it causes
the resistive force, thus reducing the fluid movement. Fig. 7.8(b) depicts that, the microrotation
component decreases with an increase in the value of Ha. From Fig. 7.8(c), it is observed that
the temperature increases as Hartman number increases. As seen from Fig. 7.8(d) an increase in
the Hartmann number leads to increase in the entropy generation number. The distribution of the
Bejan number Be is shown in Fig. 7.8(e). The Bejan number at injection wall increases while it
decreases at the suction wall leading to the increase in the influence of heat transfer irreversibility

at the inner cylinder and fluid friction irreversibility at the outer cylinder.

Fig. 7.9, presents the influence of a cross flow Reynolds number of velocity, microrotation,
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temperature, entropy generation and Bejan number. It is observed from Fig. 7.9(a) that the
velocity decreases with the increase of cross flow Reynolds numbers. It is seen from Fig. 7.9(b)
that the microrotation component decreases with an increase in the value of a cross flow Reynolds
number. Fig. 7.9(c) shows that as R increases, temperature increases at the suction wall of the
annulus. It is noticed from Fig. 7.9(d) that the entropy generation increases as cross flow Reynolds
number increases. From Fig. 7.9(e) it is observed that the Bejan number increases near the inner

cylinder and decreases near the outer cylinder as R increases.

Fig. 7.10(a) describes the effect of increasing Bi on the temperature. The fluid temperature
decreases as increase in Biot number indicates a rise in convective cooling due to heat loss to the
ambient surrounding from the annulus walls. It is noticed from Fig. 7.10(b) that the entropy
generation Ns increases with an increase in the Biot number. Ns profiles are similar in shape
and are almost parallel to one another, for all the parameters, but they vary in magnitude. In
Fig. 7.10(c) the dominant influence of heat transfer irreversibility is observed as the parameter
values of Bi increases consequently thus the Bejan number increases. Hence, the convective thermal

boundary conditions enhance the dominant effects of heat transfer irreversibility on the flow system.

The variation of temperature, entropy generation and Bejan number with Brinkman number
is displayed in Fig. 7.11. The parameter Br determines a relative importance of viscous effects
and has a significant effect on entropy generation. Fig. 7.11(a) shows an increase in temperature
with Brinkman number. It is observed from Fig. 7.11(b) that the entropy generation increases
with an increase in the value of Brinkman number. Due to the higher gradient of temperature and
velocity, the entropy generation number is high in magnitude near the inner cylinder. The effect
of Brinkman number on Bejan number is shown in Fig. 7.11(c). As it can be seen from the figure

that the Bejan number increases with increase in Br.

7.3 Conclusions

In this chapter, the problem of entropy generation due to steady, laminar incompressible micropolar
fluid flow through horizontal porous concentric cylinders with magnetic effect is investigated. This
problem is solved for two types of boundary conditions Case (a) No-slip and isothermal boundary

conditions and Case (b) slip and convective boundary conditions. The following conclusions can
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Figure 7.6: Effect of coupling number on (a)velocity, (b)microrotation, (c)temperature,
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be drawn for both the cases (a) and (b) from this analysis.

It is observed that the entropy generation number of viscous fluid is less than the corresponding
values in micropolar fluid case. The presence of microstructure increases the Bejan number near
the inner cylinder as seen in both the cases. The imposing magnetic field is normal to the flow
direction, it causes the resistive force, thus enhances the irreversibility. Thus, it can be observed
that the entropy generation increases with increase in Hartman number in both the cases. It is
observed that as R increases, entropy generation increases in the entire region. The cross flow
Reynolds number decreases the Bejan number near the inner cylinder and increases at the outer
cylinder in case(a). The reverse trend is observed in case (b). Due to high temperature and
velocity gradients, the entropy generation is maximum near the inner cylinder and gradually shows
an asymptotic behavior near the outer cylinder in either case. The entropy generation number
decreases as ( increases. As the effect of slip reduces the velocities and velocity gradients. This
results in a decrease in viscous contribution to the entropy generation. The dominant influence of
heat transfer irreversibility is observed as the parameter values of Bi increases consequently, the
Bejan number increases. Hence, the convective thermal boundary conditions enhance the dominant

effects of heat transfer irreversibility on the flow system.
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Chapter 8

Summary and Conclusions

In this thesis, the steady, laminar flow and entropy generation in channels and pipes due to mi-
cropolar fluid flow is considered. Micropolar fluids can model the behavior of lubricants, colloidal
suspensions, polymeric fluids, liquid crystals and animal blood etc. Entropy generation is calcu-
lated for two types of boundary conditions on different geometries. In view of this, the problems

for these two cases are studied jointly.

The considered problems for entropy generation are as follows:

e Entropy generation in a micropolar fluid flow through an inclined channel.
e Second law analysis of micropolar fluid flow through a porous channel.

e Effect of magnetic field on entropy generation due to micropolar fluid flow in a rectangular

duct.
e Analysis of entropy generation in a micropolar fluid flow through an inclined circular pipe.
e Entropy generation due to micropolar fluid flow between concentric cylinders.
e Analysis of entropy generation between porous concentric cylinders due to micropolar fluid
flow.
Except for the third problem, all are solved by using Spectral quasilinearization method whereas

the third one is solved by Finite difference method.
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The solutions are obtained for velocity, microrotation and temperature distributions. These
distributions are used to compute entropy generation and Bejan number. The main contributions

of this thesis are listed below.

e Heat transfer irreversibility dominated at the center of the channel and fluid friction irre-

versibility dominated at the lower plate of the channel.

e As viscous dissipation parameter i.e., Brinkman number(Br) increases, entropy generation

increases irrespective of geometry and boundary conditions.

e As micropolarity increases, entropy generation decreases and Bejan number increases for an

inclined channel. This indicates that they can be used as good lubricants.

e The increase in the slip parameter results in decrease the entropy generation for horizontal
and vertical concentric cylinders. This analysis helps the designer for the better efficiency

calculations and geometrical optimization of rotating systems.

e The dominant influence of heat transfer irreversibility is observed as the parameter values of
Bi increases consequently, the Bejan number increases in any geometry. Hence, the convective
thermal boundary conditions enhance the dominant effects of heat transfer irreversibility on

the flow system.

The work presented in the thesis can be extended to analyze the effect of heat and mass transfer,
Joule heating, thermal radiation, chemical reaction etc. In this thesis, we have used micropolar
fluid model. These problems can be extended to other fluid models like Jeffery fluid, nanofluid,

viscoelastic fluid model etc.
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