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ABSTRACT

Keywords: Nonnegative matrix, Group inverse, Moore-Penrose inverse, proper

splitting, B#-splitting, double splitting, {T, S} splitting, convergence theorem, com-

parison theorem, Indefinite inner product space, Gram matrix, acute cone.

The main objective of our thesis is to extend some of the results characterizing

nonnegativity of classical inverses to nonnegativity of generalized inverses and also

to study applications of these extension results in obtaining certain convergence and

comparison results of iterative methods which are derived from matrix splittings to

solve system of linear equations . There are six chapters in our thesis.

Chapter 1 is introductory. It presents a brief overview of nonnegative matrices,

generalized inverses, matrix splittings, monotonicity and indefinite inner product

spaces together with some preliminary results associated with these notions that

will be used in the subsequent chapters.

Chapter 2 is devoted to study group inverse and Moore-Penrose inverse exten-

sions of certain M -matrix properties. Almost all the results in this chapter are

proved using the notion of proper splittings of some type or the other. As ap-

plications of these results, some comparison theorems for spectral radii of certain

matrices are derived.

Chapter 3 deals with proper double splittings of rectangular matrices. It presents

comparison results for the spectral radii of iteration matrices of corresponding iter-

ative schemes which are formulated by using double splittings. The results of this

chapter are generalizations of comparison results for ordinary inverses to Moore-

Penrose inverses.

In Chapter 4, we consider {T, S} splittings of rectangular matrices and derive

certain convergence theorems and comparison theorems for iterative schemes. The

results of this chapter include outer inverses (or {2}-inverses) with prescribed range

and null space.

In Chapter 5, we deal with indefinite inner product spaces and characterize cone

nonnegativity of Moore-Penrose inverses of Gram matrices. This characterization is

done by using the acuteness (or obtuseness) of certain closed convex cones.

Finally, we summarize the contents of our thesis and present a list of references.



Contents

CERTIFICATE ii

DECLARATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT vi

LIST OF NOTATIONS ix

1 INTRODUCTION 1
1.1 Nonnegative matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 M-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Splittings and monotonicity . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Generalized inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Extensions of monotonicity to rectangular matrices . . . . . . . . . . 15

1.5.1 Proper splittings . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.2 Proper double splittings . . . . . . . . . . . . . . . . . . . . . 19

1.6 Indefinite inner product spaces . . . . . . . . . . . . . . . . . . . . . . 20
1.7 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 GROUP INVERSE EXTENSIONS OF CERTAIN M-MATRIX
PROPERTIES 26
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Definitions and preliminary results . . . . . . . . . . . . . . . . . . . 30
2.3 Characterizations of nonnegativity of A# . . . . . . . . . . . . . . . . 32

2.3.1 Pseudo regular splittings and nonnegativity of A# . . . . . . . 34
2.3.2 B#-splittings and nonnegativity of A# . . . . . . . . . . . . . 39

2.4 Comparison results for proper splittings . . . . . . . . . . . . . . . . . 41
2.5 Moore-Penrose inverse extensions of certain M -matrix properties . . . 48

2.5.1 Characterizations of nonnegativity of A† . . . . . . . . . . . . 49
2.5.2 Comparison results . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



CONTENTS viii

3 COMPARISON RESULTS FOR PROPER DOUBLE SPLITTINGS
OF RECTANGULAR MATRICES 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Definitions and preliminary results . . . . . . . . . . . . . . . . . . . 54
3.3 Comparison results for proper double splittings . . . . . . . . . . . . 55

4 {T, S} SPLITTINGS OF RECTANGULAR MATRICES
REVISITED 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 {T, S} splittings and characterization of A

(2)
T,S . . . . . . . . . . . . . 67

4.3 Convergence results for {T, S} splittings . . . . . . . . . . . . . . . . 69
4.4 Comparison results for {T, S} splittings . . . . . . . . . . . . . . . . . 73

5 MOORE-PENROSE INVERSES OF GRAM MATRICES
LEAVING A CONE INVARIANT IN AN INDEFINITE INNER
PRODUCT SPACE 76
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Definitions and preliminary results . . . . . . . . . . . . . . . . . . . 78
5.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Acuteness of cone . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Cone nonnegativity of Moore-Penrose inverses of Gram matrices 84
5.3.3 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 CONCLUSIONS 89

BIBLOGRAPHY 91



LIST OF NOTATIONS

For easy reference, notations that are frequently used in this thesis are given below:



CONTENTS x

Sets

∈ Element membership.

⊆ Set inclusion.

∩ Set intersection

⊕ Direct sum.

⊥ Orthogonal.

S⊥ Orthogonal complement of a set S.

Spaces

R The space of all real numbers.

Rn The space of all real vectors with n co-ordinates.

Rn
+ The set of all nonnegative vectors in Rn.

Rm×n The set of all real matrices of order m× n.

Rn×n The set of all real square matrices of order n.

K A cone.

K∗ The dual cone of K.

K [∗] The dual of a cone K in an indefinite inner product

space.

Operators and Matrices

I The identity operator.

PM,N Projection onto the space M along N .

PM Orthogonal projection onto M .

rank(A) Rank of the matrix A.

ind(A) The index of a square matrix A .

A ≥ 0 All entries of A are nonnegative.

N(A) The null space of A.

R(A) The range space of A.

ρ(A) The spectral radius of A



CONTENTS xi

At The transpose of A.

R(A) The range space of A with respect to the indefinite

matrix product.

N (A) The null space of A with respect to the indefinite

matrix product.

A[∗] The adjoint of A in indefinite inner product space.

A[∗] ◦ A Gram matrix of A with respect to the indefi-

nite matrix product in an indefinite inner product

space..

A(2) {2}-inverse.

A
(2)
T,S {2}-inverse with range T and null space S.

A† The Moore-Penrose inverse of A.

A# The group inverse of A

A−1 The inverse of A

A(†) Moore-Penrose inverse of A in an indefinite inner

product space with respect to the usual matrix

product

A[†] Moore-Penrose inverse of A in an indefinite inner

product space with respect to the indefinite matrix

product

Operations

〈., .〉 The usual Euclidean inner product

[., .] Indefinite inner product

||.|| A norm



CHAPTER 1

INTRODUCTION

1



CHAPTER 1. 2

In this chapter we present a brief survey of the relevant literature, some basic

definitions and preliminary results that will be used in other chapters of our thesis.

We split this chapter into seven sections. In Section 1.1, we introduce notion of

nonnegative matrix and discuss well known theorem namely Perron-Frobenius theo-

rem. Also, we present some results related to nonnegative matrices. In Section 1.2,

we recall the definition of M -matrix and characterize nonnegativity of inverse of an

invertible M -matrix. In Section 1.3, we collect results related to matrix monotonic-

ity and demonstrate how the matrix splittings are useful in its characterization. In

Section 1.4, we define various types of generalized inverses and study some of their

properties. In Section 1.5, we review some of the important extensions of matrix

monotonicity. In Section 1.6, we discuss some basic definitions and fundamental

results in an indefinite inner product space. The last section of this chapter sum-

marises the contents of thesis.

1.1 Nonnegative matrices

A matrix A ∈ Rm×n is called nonnegative if all the entries of A are nonnegative. It is

called positive if all the entries of A are positive. These two classes of matrices play an

important role in many problems of pure and applied mathematics. In particular,

these matrices appear in many areas such as Numerical analysis, Graph theory,

Economics, Statistics, Optimization and Partial differential equations, to name a

few (see [2], [11], [39] and [41]). We next recall the definition of an irreducible

matrix which is important in the theory of nonnegative matrices.

Definition 1.1.1. (Definition 1.15, [69]) “A matrix A ∈ Rn×n is reducible if there

is a permutation matrix P such that P tAP =

A11 A12

O A22

 , where the submatrices

A11, A22 are square. A matrix A is called irreducible if it is not reducible”.
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The concepts of reducible and irreducible nonnegative matrices, and directed

graphs have connections with the theory of Markov chain (see [32]). In 1907, Perron

discovered some remarkable properties of positive square matrices. Later, the work

was generalized by Frobenius who extended Perron’s results to nonnegative matrices.

Since then the theory of nonnegative matrices has been one of the active areas in

linear algebra. It has found many applications in various parts of mathematical and

physical sciences. We now recall some definitions and fix some notations to discuss

salient aspects of the Perron-Frobenius theory.

“The spectral radius ρ(A) of A ∈ Rn×n is the maximum of the moduli of the

eigenvalues of A”. As mentioned earlier, a matrix A is called nonnegative if all the

entries of A are nonnegative; this is denoted by A ≥ 0. It is called positive if all

the entries of A are positive; this is denoted by A > 0. For A,B ∈ Rm×n, the

notation A ≤ B means that B − A ≥ 0. A vector x ∈ Rn is called nonnegative and

is denoted by x ≥ 0 if all its coordinates are nonnegative; x is called positive if all

its coordinates are positive and this will be denoted by x > 0. Let int(Rn
+) denote

the set of all interior points of Rn
+. In view of this, if x is positive, sometimes, we

also denote that by x ∈ int(Rn
+).

Let us now discuss the salient aspects of the Perron-Frobenius theory. Let B be a

matrix with all entries positive. Perron showed that ρ(B) is an eigenvalue of B and

that it is simple, viz., the eigenspace is one dimensional. He also proved that there

exists a unique positive vector associated with this eigenvalue which is referred to as

the Perron vector. Now, let B be a nonnegative matrix with at least one zero entry.

Then it is known that ρ(B) is again, an eigenvalue (but could be zero) and that there

is an associated eigenvector whose entries are all nonnegative. Furthermore, if B is

nonnegative and irreducible, then ρ(B) > 0, is a simple eigenvalue of B and there

exists a positive eigenvector corresponding to ρ(B). For proofs of these statements
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and other relevant details, we refer to the excellent books [39] and [69].

The following theorem is a part of the Perron-Frobenius theorem which will be

used frequently in our thesis.

Theorem 1.1.1. (Theorem 2.20, [69]) Let A be a real square nonnegative matrix.

Then we have the following:

(i) A has a nonnegative real eigenvalue equal to the spectral radius.

(ii) There exists a nonnegative eigenvector for its spectral radius.

The next result is a part of Frobenius’ extension of Perron’s theorem.

Theorem 1.1.2. (Theorem 2.7, [69]) Let A be a real square nonnegative irreducible

matrix. Then we have the following.

(i) A has a positive real eigenvalue equal to the spectral radius.

(ii) There exists a positive eigenvector for its spectral radius.

Next, we present some results connecting nonnegativity of a matrix and its spec-

tral radius.

Lemma 1.1.1. (Theorem 2.1.11, [11]) “Let A ≥ 0. Then αx ≤ Ax, x ≥ 0 ⇒ α ≤

ρ(A) and Ax ≤ βx, x > 0⇒ ρ(A) ≤ β”.

Theorem 1.1.3. (Theorem 3.15, [69]) “Let B ∈ Rn×n and B ≥ 0. Then ρ(B) < 1

if and only if (I −B)−1 exists and (I −B)−1 =
∑∞

k=0B
k ≥ 0”.

We conclude this section with the following comparison result for spectral radii

of two nonnegative matrices.

Theorem 1.1.4. (Theorem 2.21, [69]) “Let A,B ∈ Rn×n. If A ≥ B ≥ 0, then

ρ(A) ≥ ρ(B)”.
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1.2 M-matrices

This short section deals with an important class of matrices namely M -matrices.

It is proved in the literature that an invertible member of this class always has

a nonnegative inverse. The name M -matrix was originally chosen by Alexander

Ostrowski in reference to Hermann Minkowski. First, he introduced the class of

Z-matrices and then defined the class of M -matrices. The definition of a Z-matrix

is as follows.

Definition 1.2.1. A matrix A ∈ Rn×n is called as a Z-matrix if the off-diagonal

entries are nonpositive. A Z-matrix A can be written as A = sI − B, where s ≥ 0

and B ≥ 0.

The class of Z-matrices is well studied in different contexts such as finite differ-

ence methods for partial differential equations, input-output production and growth

models in economics, Markov processes in probability and statistics, and linear com-

plementarity problems in operations research. Now using the above definition, Os-

trowski in 1937 gave the following definition for M -matrices which is a subclass of

Z-matrices.

Definition 1.2.2. A Z-matrix A = sI −B is called an M-matrix if s ≥ ρ(B).

It is well known that if s > ρ(B) in the representation described above, then A

is invertible and A−1 ≥ 0. Thus, each member in the class of invertible M -matrices

has a nonnegative inverse. Also, it is pertinent to point out the fact that if A is an

invertible M -matrix with the usual representation A = sI − B, then ρ(1
s
B) < 1.

In fact, there are many interesting characterizations of invertible M -matrices. The

book by Berman and Plemmons [11] records more than fifty equivalent conditions.

For our purpose, we recall the following result.
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Theorem 1.2.1. Let A ∈ Rn×n be a Z-matrix with the representation A = sI −B.

Then the following statements are equivalent:

(a) A is invertible and A−1 ≥ 0.

(b) There exists x such that all the entries of x and Ax are positive.

(c) A is an M-matrix with s > ρ(B).

1.3 Splittings and monotonicity

A square real matrix A is called monotone if Ax ≥ 0 implies x ≥ 0. The concept

of monotonicity was first proposed by Collatz (see [16], for instance), in connection

with the application of finite difference methods for solving elliptic partial differential

equations. He showed that a matrix is monotone if and only if it is invertible and the

inverse is entrywise nonnegative. A matrix satisfying the later condition is also called

an inverse positive matrix. Hence, monotonicity of a matrix is equivalent to inverse

positivity. The notion of monotonicity has been extended in a great variety of ways.

Traditionally, splittings of matrices have been used in studying these extensions.

For A ∈ Rn×n, a decomposition A = U − V , where U is nonsingular, is referred to

as a splitting of A (however, throughout this thesis, for us a splitting simply means

a decomposition A = U −V ). With such a splitting, one associates iterative scheme

of the following form:

x(k+1) = Hx(k) + c, (1.1)

where H = U−1V is called the iteration matrix and c = U−1b, for a nonnegative

integer k and given an initial vector x0. It is well known that this sequence converges

to the unique solution of the system Ax = b (irrespective of the choice of the initial

vector x0) if and only if ρ(H) < 1. Many of the results in the literature show that for
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certain kinds of splittings ρ(H) < 1 if and only if A is monotone (or inverse positive).

This establishes a connection between monotonicity and convergence of an iterative

scheme. It is well known that standard iterative methods like the Guass-Jacobi,

Guass-Seidal and successive over-relaxation methods arise from different choices of

U and V . For more details one could refer to the books [11] and [69].

Next, we recall the definitions of regular splitting and weak regular splitting to

review some results related to matrix monotonicity.

Definition 1.3.1. “Let A ∈ Rn×n. A splitting A = U − V where U is invertible,

U−1 ≥ 0 and V ≥ 0 is called a regular splitting”.

This was proposed by Schroder and Varga [69], among others and it was shown

that A is monotone if and only if for any regular splitting A = U − V , one has

ρ(U−1V ) < 1.

Definition 1.3.2. “Let A ∈ Rn×n. A splitting A = U − V where U is invertible,

U−1 ≥ 0 and U−1V ≥ 0 is called a weak regular splitting”.

This was proposed by Ortega and Rheinboldt [49]. (Clearly, any regular splitting

is a weak regular splitting). They showed that A is monotone if and only if for any

weak regular splitting A = U − V , one has ρ(U−1V ) < 1. These results again

show, the importance of splittings and monotonicity in the study of convergence of

iterative schemes of the above form.

Peris extended the Theorem 1.2.1 to a more general class of matrices. These

matrices possesses a splitting called a B-splitting defined next.

Definition 1.3.3. (Definition 1, [51]) A splitting A = U − V of A ∈ Rn×n is called

a B-splitting if it satisfies the following conditions.

(i) U ≥ 0.

(ii) V ≥ 0.
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(iii) V U−1 ≥ 0.

(iv) Ax,Ux ≥ 0 =⇒ x ≥ 0.

Using this splitting Peris obtained the following result.

Theorem 1.3.1. (Theorem 4, [51]) Let A be a square matrix such that A = U − V

is a B-splitting. Then the following conditions are equivalent:

(a) A is invertible and A−1 ≥ 0.

(b) There exists some x ≥ 0 and Ax > 0 .

(c) ρ(V U−1) < 1.

The existence of B-splitting was also studied by Peris.

Theorem 1.3.2. (Theorem 5, [51]) A−1 exists and A−1 ≥ 0 if and only if A allows

a B-splitting A = U − V with ρ(V U−1) < 1.

Weber then extended the above results to operators on infinite dimensional

spaces. We present the finite dimensional version of his result (Theorem 4, [70]).

Theorem 1.3.3. “Let A ∈ Rn×n. Consider the following statements:

(a) A−1 exists and A−1 ≥ 0.

(b) Ax ≥ 0 =⇒ x ≥ 0.

(c) Rn
+ ⊆ ARn

+.

(d) There exists x ∈ Rn
+ and such that Ax ∈ int(Rn

+).

Then we have (a)⇔ (b) =⇒ (c) =⇒ (d).

Suppose that A has a B-splitting A = U − V . Then each of the above statements is

equivalent to the following condition:

(e) ρ(V U−1) < 1”.

The results which we have discussed till now in this section are related to con-

vergence of the iterative scheme 1.1. On the other hand, if the matrix A has two
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decompositions or splittings then the comparison of the spectral radius of the cor-

responding iteration matrices, is an important problem in analyzing the iterative

scheme x(k+1) = Hx(k) + c of the system Ax = b. It is well known that the iter-

ative scheme with smaller spectral radius will converge faster. The comparison of

asymptotic rates of convergence of the iterative schemes induced by two splittings

of a given matrix has been studied by many authors. For details of these results one

could refer to ([6] to [11], [20], [36], [65], [69], [75], [76] and [77]).

Now, we turn our focus on to double splittings of a matrix. For A ∈ Rn×n, a

decomposition A = P−R+S, where P is nonsingular, is called double splitting of A.

This notion was introduced by Woźnicki [74]. Analogous to the earlier discussion,

with such a splitting, the following iterative scheme was formulated to solve Ax = b:

x(k+1) = P−1Rx(k) − P−1Sx(k−1) + P−lb, k = 1, 2, 3... (1.2)

Following the idea of Golub and Varga [22] , Woźnicki wrote equation (1.2) in the

following equivalent form:

xk+1

xk

 =

P−1R −P−1S

I 0


 xk

xk−1

+

P−1b
0

 ,

where I is the identity matrix. Then, it was shown that the iterative method (1.2)

converges to the unique solution of Ax = b for all initial vectors x0 , x1 if and only

if the spectral radius of the iteration matrix

W =

P−1R −P−1S

I 0


is less than one, that is ρ(W ) < 1.
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In recent years, several comparison theorems have been proved for double split-

tings of matrices. We briefly review few of them here. First, let us recall the

definitions of regular and weak regular double splittings.

Definition 1.3.4. Let A ∈ Rn×n be a nonsingular matrix. Then, the double splitting

A = P −R + S is

(i) regular double splitting if P−1 ≥ 0, R ≥ 0 and −S ≥ 0.

(ii) weak regular double splitting if P−1 ≥ 0, P−1R ≥ 0 and −P−1S ≥ 0.

Shen and Huang [60] have considered regular and weak regular double splittings

of a monotone matrix or Hermitian positive definite matrix and obtained some

comparison theorems. Miao and Zheng [40] have obtained comparison theorem for

the spectral radii of matrices obtained from double splitting of different monotone

matrices. Song and Song [64] have studied convergence and comparison theorems

for nonnegative double splittings of a real square nonsingular matrices. Li and Wu

[34] have obtained some comparison theorems for double splittings of a matrix.

Throughout this section, we have considered real nonsingular matrices and char-

acterized the matrix monotonicity and discussed convergence and comparison of

iterative schemes derived from various matrix splittings. In Section 1.5, we will col-

lect extensions of these results for singular matrices and rectangular matrices. For

that, we need various types of generalized inverses. Hence, we collect results related

to these notions in the next section.

1.4 Generalized inverses

If the given matrix A is not invertible then we look for generalized inverse of A. The

concept of generalized inverse has been studied by several mathematicians. E. H.

Moore [46] was the first to give an explicit definition of the generalized inverse of an
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arbitrary matrix. This definition was given by Moore in an abstract published in

the Bulletin of the American Mathematical Society in 1920, whose significance was

not realized for the concept remain undeveloped for decades there after. He studied

some of its main properties and its applications to linear system of equations. He

also showed that it is unique (see [46] and [47]). He obtained the following theorem.

Theorem 1.4.1. (29.3, part 1, P.174, [47]) “For every matrix A ∈ Rm×n, there

exists a matrix X : R(A)→ R(At) such that AX = PR(A) and XA = PR(At)”.

However, this work did not come to prominence during the period 1920-1950.

Unaware of Moore’s work Penrose [50] rediscovered the concept of generalized inverse

(or pseudo inverse) of a matrix. The equivalence of the Moore’s definition and

Penrose’s definition was pointed out by Rado [52]. Various important contributions

in 1950’s were also made by Bjerhammer, Greville, Rao and others. For a history

of generalized inverses one can refer to an excellent survey by Ried [59], Ben-Israel

[4], and the historical note in the book by Ben-Israel and Greville [5]. For a detailed

study of generalized inverses and applications, we mention the books by Rao and

Mitra [58], Groetsch [23], Campbell and Meyer [12] and Ben-Israel and Greville [5].

The Penrose definition [50] for the generalized inverse of a given matrix is presented

next.

Definition 1.4.1. For a given matrix A ∈ Rm×n, the unique matrix X ∈ Rn×m

satisfying AXA = A, XAX = X, (AX)t = AX and (XA)t = XA is called the

Moore-Penrose inverse of A and it is denoted by A†.

The Moore-Penrose inverse always exists and is unique. There are also other

equivalent definitions for A† [23]. A definition of A† (Definition (D-W), p-5), [23]

that was proved by Desoer and Whalen(1963) is given next. This will be used in

some of the proofs in our thesis.
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Theorem 1.4.2. (Theorem 2.2.2, [23]) For A ∈ Rm×n, A† is the unique matrix

X ∈ Rn×m satisfying

XAx = x for all x ∈ R(At)

and Xy = 0 for all y ∈ N(At).

Next, we discuss two other important generalized inverses which are defined only

for square matrices. Let us first recall the index of a square matrix which is used in

both the definitions.

Definition 1.4.2. The index of a square matrix A is the least nonnegative integer

k such that rank(Ak+1) = rank(Ak). It is denoted by ind(A).

Definition 1.4.3. Let A ∈ Rn×n. The matrix X ∈ Rn×n satisfying A = AXA,

X = XAX and AX = XA is called the the group inverse of A.

For a given matrix A ∈ Rn×n, the group inverse need not exists always. If it

exists, then it is unique and is usually denoted byA#. The name group inverse

has come due to the fact that the positive powers of A and A# together with the

projector AA# form an abelian group under multiplication, (with A# being the

inverse of A) and was named by I. Endelyi in 1967.

The following result gives existence conditions for the group inverse. We refer

the reader to [5] for the proofs.

Proposition 1.4.1. Let A ∈ Rn×n. Then A# exists if A satisfies any one of the

following conditions:

(a) R(A) ∩N(A) = 0.

(b) N(A) = N(A2).

(c) R(A) = R(A2).
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(d) rank(A) = rank(A2).

(e) The index of A equal to 1.

Another equivalent definition for A# is given below.

Theorem 1.4.3. (Definition 41, page 163, [5]) “Let A ∈ Rn×n. If X ∈ Rn×n satisfies

XAx = x for all x ∈ R(A)

and Xy = 0 for all y ∈ N(A)

then X = A#.”

Let L and M be complementary subspaces of Rn. Then the projection of Rn on

L along M will be denoted by PL,M . If, in addition, L and M are orthogonal then

we denote this by PL. Some of the well known properties of A† and A# which will be

frequently used in our thesis, are: R(At) = R(A†), N(At) = N(A†), AA† = PR(A),

A†A = PR(At); R(A) = R(A#), N(A) = N(A#) and AA# = PR(A),N(A) = A#A. In

particular, if x ∈ R(At) then x = A†Ax and if x ∈ R(A) then x = A#Ax.

We now present another generalized inverse called the Drazin inverse (named

after M.P. Drazin [19] who studied this notion in associative rings) which exists for

all square matrices.

Definition 1.4.4. Let A ∈ Rn×n be of index k. Then the Drazin inverse of A

is the unique matrix AD ∈ Rn×n satisfying Ak = AkADA, AD = ADAAD and

AAD = ADA.

It is easy to note that the Drazin inverse of a matrix with index 1 is equal to the

group inverse. An equivalent definition for AD is given below.
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Theorem 1.4.4. (Definition 41, page 163, [5]) “Let A ∈ Rn×n. If X ∈ Rn×n satisfies

XAx = x for all x ∈ R(Ak)

and Xy = 0 for all y ∈ N(Ak)

then X = AD”.

In this thesis, we will use one more generalized inverse called outer inverse with

prescribed range and null space. First we recall the definition of {2}-inverse.

Definition 1.4.5. For A ∈ Rm×n the matrix X ∈ Rn×m satisfying the equation

XAX = X is called {2}-inverse (or outer inverse) of A. It always exists and is

denoted by A(2).

This generalized inverse is used in the iterative methods for solving the non-linear

equations and the applications to statistics. In particular, {2}-inverse plays an im-

portant role in stable approximation of ill posed problems and in linear and non-

linear problems involving rank deficient generalized inverse. Nashed [48] presented

Kantorovich-type analysis for Newton-like methods for singular operator equations

using outer inverses.

Let T and S be subspaces of Rn and Rm, respectively. Then for A ∈ Rm×n, the

matrix A
(2)
T,S ∈ Rn×m denotes {2}-inverse with range T and null space S.

The following theorem guarantees the existence and uniqueness of A
(2)
T,S for a given

matrix A ∈ Rm×n.

Theorem 1.4.5. (Theorem 14, [5]) Let A ∈ Rm×n be of rank r, let T be a subspace

of Rn of dimension s ≤ r and let S be a subspace of Rm of dimension m− s. Then

A
(2)
T,S exists and unique if and only if AT ⊕S = Rm, where AT ⊕S denotes the direct

sum of subspaces AT and S of Rm.
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The next result gives the relation between {2}-inverse and the other generalized

inverses discussed in this section.

Theorem 1.4.6. ([5], [12]) Let A ∈ Rm×n. Then

(i) A† = A
(2)
R(At),N(At).

(ii) AD = A
(2)

R(Ak),N(Ak)
, where k is index of the matrix A; in particular, when k = 1,

A# = A
(2)
R(A),N(A).

In the past thirty years, the subject of computation for A
(2)
T,S was investigated

by numerous authors (see [14], [61], [66], [67], [72] and [73]). Most of these works

concentrated on iterative method or approximation to compute A
(2)
T,S.

We conclude this section with the following fundamental results concerning sys-

tems of linear equations. These will be rather frequently used in deriving some of

our results. We refer the reader to [5] for the proofs.

Lemma 1.4.1. “Let A ∈ Rm×n and b ∈ Rm. Then the system of linear equations

Ax = b has a solution if and only if AA†b = b. In such a case, the general solution

is given by the formula x = A†b+ z for some z ∈ N(A)”.

Lemma 1.4.2. “Let A ∈ Rn×n and b ∈ Rn. Then the system of linear equations

Ax = b has a solution if and only if AA#b = b. In such a case, the general solution

is given by the formula x = A#b+ z for some z ∈ N(A)”.

1.5 Extensions of monotonicity to rectangular ma-

trices

We review here some of the important extensions of monotonicity by using proper

splittings of a matrix. Mangasarian [35] called a rectangular matrix A to be mono-

tone if Ax ≥ 0 ⇒ x ≥ 0. He showed, using the duality theorem of linear program-
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ming, that A is monotone if and only if A has a nonnegative left inverse. Berman

and Plemmons generalized the concept of monotonicity in several ways, in a series

of papers, where they studied their relationships with nonnegativity of generalized

inverses. The book by Berman and Plemmons [11] documents these results. Several

applications are also studied there.

Let us recall the following result that collects two characterizations for the non-

negativity of the two generalized inverses, viz., the Moore-Penrose inverse and the

group inverse. These were proved in (Theorem 2) [8] and (Theorem 1) [10], respec-

tively.

Theorem 1.5.1. Let A ∈ Rn×n. Then the following hold.

(a) A† ≥ 0 if and only if

Ax ∈ Rn
+ +N(At) and x ∈ R(At) =⇒ x ≥ 0.

(b) A# exists and A# ≥ 0 if and only if

Ax ∈ Rn
+ +N(A) and x ∈ R(A) =⇒ x ≥ 0.

It is helpful to observe that A† ≥ 0 and A# ≥ 0 are extensions of A−1 ≥ 0

to singular matrices, whereas the second parts of statements (a) and (b) above are

generalizations of the implication Ax ≥ 0⇒ x ≥ 0.

1.5.1 Proper splittings

The notion of proper splitting of matrices has proved to be an important tool in the

study of nonnegativity of generalized inverses (or generalized monotonicity). Let us

recall this briefly.

Definition 1.5.1. “A splitting A = U − V of A ∈ Rm×n is called a proper splitting

if R(A) = R(U) and N(A) = N(U)”.
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This notion was introduced by Berman and Plemmons [9]. Analogous to the

invertible case, with such a splitting, one associates an iterative sequence x(k+1) =

Hx(k) + c, where (this time) H = U †V is (again) called the iteration matrix and

c = U †b, for a nonnegative integer k. The initial vector x0 however, cannot be

chosen arbitrarily; it must not belong to N(V ). Once again, it is well known that

this sequence converges to the unique solution of the system Ax = b (irrespective

of the choice of the initial vector x0) if and only if ρ(H) < 1. For details, refer to

[11]. Recently, Mishra ([15] and [42]) extended the convergence theory of alternating

iterations and obtained comparison results for such iterations using proper splittings.

Berman and Plemmons [9] proved the following results which collects some of

the properties of a proper splitting.

Theorem 1.5.2. (Theorem 1, [9]) “Let A = U−V be a proper splitting of A ∈ Rn×n.

Then

(i) AA† = UU † and A†A = U †U .

(ii) A = U(I − U †V ).

(iii) I − U †V is invertible.

(iv) A† = (I − U †V )−1U †”.

The following result provides necessary and sufficient conditions for the conver-

gence of iterative methods to solve Ax = b.

Theorem 1.5.3. ( Theorem 3, [9]) “Let A = U−V be a proper splitting of A ∈ Rm×n

such that U † ≥ 0 and U †V ≥ 0. Then the following are equivalent:

(i) A† ≥ 0.

(ii) A†V ≥ 0.

(iii) ρ(U †V ) =
ρ(A†V )

1 + ρ(A†V )
< 1”.
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It is known that [7] any A ∈ Rm×n of rank r has a factorization of the form

A = P

 I

C

A11

(
I B

)
Q,

where A11 and I are of order r × r, P and Q are permutation matrices of order m

and n, C ∈ Rm−r×r and B ∈ Rr×n−r. The next result shows how to construct proper

splittings using the above factorization.

Theorem 1.5.4. (Theorem 1, [7]) Let A ∈ Rm×n of rank r be factorized as above.

Then A = U − V is a proper splitting if and only if U = P

 I

C

M11

(
I B

)
Q,

where M11 is a nonsingular matrix of order r × r

Using this theorem a simpler method of constructing a proper splitting is then

stated.

Theorem 1.5.5. Let A ∈ Rn×n and A = FG be a full-rank factorization. Then

A = U − V is a proper splitting if and only if U = FWG for some nonsingular W.

In this case ρ(U †V ) = ρ(I −W−1).

The next result is the group inverse analogue of the above result.

Theorem 1.5.6. Let A ∈ Rm×n and A = FG be a full-rank factorization. Suppose

that U# exists. Then A = U − V is a proper splitting if and only if U = FWG for

some nonsingular W. In this case ρ(U#V ) = ρ(I −W−1).

Jena et al. [28] extended the notion of regular and weak regular splittings to

rectangular matrices and derived some results which characterize nonnegativity of

generalized inverses. We next discuss proper double splittings of a matrix.
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1.5.2 Proper double splittings

A double splitting A = P −R+S of A ∈ Rm×n is called a proper double splitting if

R(A) = R(P ) and N(A) = N(P ). Again, consider the following rectangular linear

system,

Ax = b, (1.3)

where A ∈ Rm×n (this time A need not be nonsingular), b ∈ Rm×1 is a given vector

and x ∈ Rn×1 is an unknown vector. Similar to the nonsingular case, if we use proper

double splitting A = P − R + S to solve (1.3), it leads to the following iterative

scheme:

x(k+1) = P †Rx(k) − P †Sx(k−1) + P †b, where k = 1, 2, ... (1.4)

Motivated by Woźnicki′s [74] idea , equation (1.4) can be written as

xk+1

xk

 =

P †R −P †S

I 0


 xk

xk−1

+

P †b
0

 .

If we denote, Xk+1 =

xk+1

xk

 , W =

P †R −P †S

I 0

 , Xk =

 xk

xk−1


and B =

P †b
0

 , then we get

X(k+1) = WX(k) +B, k = 1, 2... (1.5)

Then, it can be shown that the iterative method (1.5) converges to the unique least

square solution of minimum norm of (1.3) if and only if ρ(W ) < 1.
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So far, several convergence and comparison theorems for double splittings have

been proved. Jena et al. [28] and Mishra [43] have introduced the notions of proper

regular double splittings and proper weak regular double splittings and derived

some comparison theorems. Recently, Alekha kumar and Mishra [1] have consid-

ered proper nonnegative double splittings of nonnegative matrix and derived certain

comparison theorems.

Next, we present literature on indefinite inner product spaces.

1.6 Indefinite inner product spaces

The concept of indefinite inner product space first appeared in a paper of Dirac on

quantum field theory [17]. Soon afterwards, Pontrajagin gave the first mathematical

interpretation for an indefinite inner product space. Several authors renewed the

attempts of Dirac and Pauli in indefinite inner product space to quantum field theory

(see [24] and [37]). The past two decades have seen many an investigation into linear

transformations in an indefinite inner product space in various directions.

Rodman investigated the behavior of nonnegative invariant subspaces in an in-

definite inner product space and applied these results to the problems concerning

factorization of nonnegative matrix polynomials and solution of the algebraic Riccati

equation.

We now recall the definition of indefinite inner product space before moving to

further results.

Definition 1.6.1. Let N be a real symmetric matrix of order n× n such that N =

N−1. Such a matrix N is called a weight. An indefinite inner product in Rn is

defined by [x, y] = 〈x,Ny〉 for all x, y ∈ Rn, where 〈., .〉 denotes the usual Euclidean

inner product on Rn. A space with an indefinite inner product is called an indefinite



CHAPTER 1. 21

inner product space.

Throughout this section, Rm and Rn represent indefinite inner product spaces

with the corresponding weights M and N , respectively.

Sun and Wei [68] used the term weighted conjugate transpose for adjoint. The

definition of adjoint relative to weights N and M is defined defined as follows.

Definition 1.6.2. Let A ∈ Rm×n, where Rm×n denotes the set of all real matrices

of order m × n. The adjoint A[∗] of A (relative to weights N, M) is defined by

A[∗] = NA∗M , where A∗ stands for the transpose of A.

The next result gives the properties of adjoint.

Theorem 1.6.3. (Proposition 2.1.3, [30]) Let A, B and C be real matrices of order

m× p, p× n and m× p, respectively. Then

(i) (A[∗])[∗] = A.

(ii) (AB)[∗] = B[∗]A[∗].

(iii) (A+ C)[∗] = A[∗] + C [∗].

(iv) If Rn is an indefinite inner product spaces with weight N, then N [∗] = N.

(v) I
[∗]
n = In, where In denotes the identity matrix of order n.

Kalman [29] gave a characterization for the existence of generalized inverses in an

arbitrary field. Mehl and Rodman [38] remarked that there is no systematic study

of generalized inverse in an indefinite inner product space. Kamaraj and Sivakumar

[30] defined Moore-Penrose inverse in an indefinite inner product space and proved

existence and uniqueness of Moore-Penrose inverse.

Now, we recall the definition of Moore-Penrose inverse in an indefinite inner

product space.
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Definition 1.6.1. For a given matrix A ∈ Rm×n, the matrix X ∈ Rn×m (if it exists)

is called the Moore-Penrose inverse of A if it satisfies the equations AXA = A,

XAX = X, (AX)[∗] = AX and (XA)[∗] = XA, and it is denoted by A(†). If A is

invertible then A(†) = A−1.

In the literature, usually A[†] is used to denote More-Penrose inverse of A in

an indefinite inner product space with respect to usual matrix product. But, we

reserve this notation till Chapter 4, to denote More-Penrose inverse of a matrix A

in an indefinite inner product spaces with respect to indefinite matrix product.

We know that Moore-Penrose inverse of each matrix always exists and is unique

in Euclidean case. But, this is not true in indefinite inner product space. Our next

result is for existence and uniqueness of Moore-Penrose inverse in an indefinite inner

product space.

Theorem 1.6.4. (Theorem 2.2.6, [30]) Let A ∈ Rm×n. Then A(†) exists if and only

if rank(A) = rank(AA[∗]) = rank(A[∗]A). If A(†) exists, then it is unique.

We now collect some properties and basic results of A(†)

Theorem 1.6.5. (Proposition 2.4.1, [30]) Let A ∈ Rm×n. If A(†) exists then (A[∗])(†) =

(A(†))[∗].

Theorem 1.6.6. (Proposition 2.4.3, [30]) Let A ∈ Rm×n of full-column rank. Then

A(†) exists iff A[∗]A is invertible. In this case, A(†) = (A[∗]A)−1A[∗].

Theorem 1.6.7. (Theorem 2.4.7, [30]) Let A ∈ Rm×n. If A(†) exists then (AA[∗])(†)

and (A[∗]A)(†) exist. In this case, (AA[∗])(†) = (A[∗])(†)A(†) and (A[∗]A)(†) = A(†)(A[∗])(†).

Theorem 1.6.8. (Corollary 2.4.8, [30]) Let A ∈ Rm×n such that A(†) exists. Then

A(†) = A[∗](AA[∗])(†) = (A[∗]A)(†)A[∗].
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Kamaraj and Sivakumar (see [31] and [63]) studied spectral theorem for normal

matrices and characterization of *-isomorphism in indefinite inner product spaces.

While one studies matrices in an indefinite inner product space, the usual matrix

multiplication is employed. This gives rise to a mismatch when one computes the

inner product of vectors. To rectify this deficiency, the authors of [55] defined a new

matrix product namely indefinite matrix product. Its definition is the following.

Definition 1.6.9. Let A and B be m×n and n× l real matrices, respectively. Let N

be an arbitrary but fixed weight matrix of order n× n. An indefinite matrix product

of A and B (relative to N) is defined by A ◦B = ANB.

Note that for N = I the above product becomes the usual matrix product. For

A ∈ Rm×n and B ∈ Rn×l , it easily follows that (A ◦B)[∗] = B[∗] ◦A[∗]. We refer the

reader to [55] for the detailed study of properties of this product.

Using this indefinite matrix product quite a few results for matrices in the setting

of a real Euclidean space were obtained in the setting of indefinite inner product

spaces with a feature that one could obtain the results in the Euclidean space as

particular cases. This aspect was exemplified in [55] in connection with the proof

of the existence of Moore-Penrose inverses, in [56] in the proof of the Farkas lemma

and nonnegativity of the Moore-Penrose inverse of Gram operators in [57]. This

new matrix product proved fruitful in other considerations as well. Let us cite a

few results in this regard. The author in [25] studied EP matrices with respect

to the new multiplication and obtained characterizations. A host of questions on

nonnegative generalized inverses were considered in the work [26]. He also considered

the reverse order law and obtained necessary and sufficient conditions for this law

to hold. Relationships with certain matrix partial orders were also obtained [27].

Finally, the author of [53] again considered EP matrices and extended many results

of [25].
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1.7 Outline of the Thesis

In Chapter 2, the first main result generalizes the result of Fan (Lemma 2 in [21]) who

showed that if A−I is an invertible M -matrix, then (A is invertible and) the matrix

I−A−1 is also an invertible M -matrix. In Theorem 2.3.1, we obtain an extension of

this result for the group inverse. We obtain two consequences of this result. The first

one is an extension of Fan’s result for inverse positive matrices and the second one is

the result that motivated the generalization of Fan’s result which we proved. Barker

(Theorem 10, Proposition 7, Proposition 8, Proposition 9 and Proposition 11 in [3])

studied generalizations of M -matrix properties to matrices which allow splittings of

certain types. We prove extensions of his results in Theorem 2.3.2, Theorem 2.3.3

and Theorem 2.3.4. Once again, these results involve the group inverse. Theorem

2.3.5 presents an analogue of Theorem 2.1.3 for matrices that possess a B#-splitting.

Converse of Theorem 2.3.5 need not be true. However, we have shown that the

converse can be recovered in the presence of an additional condition, in Theorem

2.3.6. The last set of results concern extensions of the corresponding results of [20].

To derive these theorems, we use the notion of a B#-splitting. As an application of

this, certain comparison theorems are proved in Theorem 2.4.3 and Theorem 2.4.4,

extending the corresponding results of [20].

In Chapter 3, we generalize the comparison results of Shen and Huang (Theo-

rem 3.1 and Theorem 3.2 in [60]) from square nonsingular matrices to rectangular

matrices and from classical inverses to Moore-Penrose inverses, in Theorem 3.3.1

and Theorem 3.3.2. Infact, we consider two double splittings A = P1−R1 +S1 and

A = P2−R2 +S2 of a semi-monotone matrix A ∈ Rm×n and derive two comparison

theorems for the spectral radii of corresponding iteration matrices.

In Chapter 4, the first main result (Lemma 4.3.1) gives a relation between eigen-

values of certain matrices obtain from {T, S} splitting of a rectangular matrix. This
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result is a generalization of Lemma 2.6 in [44]. Theorem 4.3.1 and Theorem 4.3.2

are convergence results for {T, S} splitting of a rectangular matrix. These results

generalizes the Lemma 3.4 and Lemma 3.5 in [43]. Theorem 4.4.1 and Theorem

4.4.2 are comparison results for {T, S} splitting which generalize Theorem 3.2 and

Theorem 3.3 in [28].

In Chapter 5, we deal with indefinite inner product spaces and we characterize

cone nonnegativity of the Moore-Penrose inverse of Gram matrices in terms of ob-

tuseness or acuteness of certain cones (Theorem 5.3.2), generalizing the Sivakumar’s

result [62] from finite dimensional real Euclidean space to indefinite inner product

space.

Finally, we summarize the contents of our thesis and present a list of references.
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2.1 Introduction

In this chapter, we focus mainly on group inverse extensions of results on M -

matrices. Also, we state Moore-Penrose inverse extensions of these results (without

proofs) at the end of the chapter. As mentioned in the introduction, a Z-matrix

A = sI − B, where s ≥ 0 and B ≥ 0, is called an M -matrix if s ≥ ρ(B). It

is well known that if s > ρ(B) in the representation described above, then A is

invertible and A−1 ≥ 0. A matrix satisfying the later condition is also called an

inverse positive matrix. In fact, there are many interesting characterizations of in-

vertible M -matrices. The book by Berman and Plemmons [11] records more than

fifty equivalent conditions. We recall that a square real matrix A is called monotone

if Ax ≥ 0 implies x ≥ 0. This notion was first proposed by Collatz [16]. He showed

that a matrix is monotone if and only if it is invertible and the inverse is entrywise

nonnegative. Hence monotonicity is equivalent to inverse positivity. Also, we make

a note that monotonicity (or inverse positivity) is one of the M -matrix properties.

We generalize this M -matrix property for the group inverse. Our results in this

chapter are group inverse extensions of some of the results of [3] and [20].

Let us review the results which provide a motivation to the results of this chapter.

We begin with a nice result of Fan [21] which concerns the M -matrix property of

an invertible matrix of the type I − A−1.

Theorem 2.1.1. (Lemma 2, [21]) Let A− I be an invertible M-matrix. Then A is

invertible and the matrix I − A−1 is also an invertible M-matrix.

We next mention the work of Barker [3], who considered regular splittings and

completely regular splittings of a matrix and considered several extensions of the

properties of M -matrices. One notable contribution in this work is the use of cones

in place of the nonnegative orthant of the real Euclidean space. Irreducibility and
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imprimitivity of matrices were also studied in that work. We recall the following

result from that work for the present purpose.

Theorem 2.1.2. (Proposition 9, [3]) Let A = U − V be a regular splitting. Then

the following statements are equivalent:

(i) A−1 ≥ 0.

(ii) The real parts of the eigenvalues of U−1A are positive.

(iii) The real eigenvalues of U−1A are positive.

The following definitions are used in theorems to follow.

Definition 2.1.1. ([3]) A splitting A = U−V where U is invertible, U ≥ 0, U−1 ≥ 0

and V ≥ 0 is called a completely regular splitting .

Definition 2.1.2. A splitting A = U − V is called:

(i) weak nonnegative of first type if U−1 ≥ 0 and U−1V ≥ 0.

(ii) weak nonnegative of second type if U−1 ≥ 0 and V U−1 ≥ 0.

(iii) nonnegative if it is weak nonnegative of both types.

In the next result, the notion of completely regular splitting is used to derive a

sufficient condition for a matrix to be inverse positive.

Theorem 2.1.3. (Proposition 11, [3]) If A = U−V is a completely regular splitting

and if U−1V or V U−1 has an eigenvector x > 0 corresponding to an eigenvalue

λ < 1, then A−1 ≥ 0.

Finally, we present two results of Elsner et.al. [20], who studied comparison

results for certain nonnegative splittings and studied their relationships with inverse

positive matrices.

Theorem 2.1.4. (Theorem 3.5, [20]) Assume that A1 = U1 − V , A2 = U2 − V are

two weak nonnegative splittings of different types of nonsingular square matrices A1,
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A2 with V 6= 0. Assume that A1 ≤ A2 (or, equivalently, U1 ≤ U2) and that A−11 > 0,

A−12 ≥ 0. Then ρ(U−12 V ) < ρ(U−11 V ) < 1.

Theorem 2.1.5. (Theorem 4.2, [20]) Assume that A1 = U1− V1, A2 = U2− V2 are

two weak nonnegative splittings of different types of nonsingular square matrices A1,

A2 with V1, V2 6= 0. Assume that A−11 − A−12 > 0 and that A−11 > 0, A−12 ≥ 0.

(i) If U2 − U1 ≤ A2 − A1 then ρ(U−12 V2) < ρ(U−11 V1) < 1.

(ii) If ρ(U−11 V1) > 0 and U−11 − U−12 ≥ A−11 − A−12 , then ρ(U−11 V1) < ρ(U−12 V2) < 1.

The descriptions of the main results of this chapter are as follows: we start with

an interesting little result of Fan [21]. In Theorem 2.3.1, we obtain an extension

of this result for the group inverse. We obtain two consequences of this result.

The first is still an extension of Fan’s result for inverse positive matrices. The

second is the very result of Fan that motivated the generalization we are proving.

We then turn our attention to certain interesting results of Barker [3]. He studied

generalizations of M -matrix properties to matrices which allow splittings of certain

types, as mentioned above. We prove extensions of his results in Theorem 2.3.2,

Theorem 2.3.3 and Theorem 2.3.4. Once again, these results involve the group

inverse. The last set of results concern extensions of the corresponding results of

[20]. To derive these theorems, we use the notion of B#-splitting. Theorem 2.3.5

presents an analogue of Theorem 2.1.3 for matrices that possess a B#-splitting. We

then prove a group inverse analogue of an important result of [20], in Theorem 2.4.1.

As an application of this, certain comparison theorems are proved in Theorem 2.4.3

and Theorem 2.4.4, extending the corresponding results of [20].

Most of the definitions that are used in this chapter have already been given in

Chapter 1. We include some more definitions and preliminary results in the next

section.
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2.2 Definitions and preliminary results

We begin this section with classification of proper splittings. Throughout this chap-

ter except in Section 2.5, A is a real square matrix.

Definition 2.2.1. Let A ∈ Rn×n. A proper splitting A = U − V is called a pseudo

regular splitting if U# exists, U# ≥ 0 and V ≥ 0.

Definition 2.2.2. Let A ∈ Rn×n. A proper splitting A = U − V is called a weak

pseudo regular splitting if U# exists, U# ≥ 0 and U#V ≥ 0.

We frequently use the following theorem in proving main results of this chapter.

Theorem 2.2.1. (Theorem 4.1, [45]) Let A = U − V be a proper splitting of A ∈

Rn×n. Suppose that A# exists. Then

(a) U# exists.

(b) AA# = UU# and A#A = U#U .

(c) A = U(I − U#V ).

(d) I − U#V is invertible.

(e) A# = (I − U#V )−1U#.

Let us observe that if A = U −V is a proper splitting then A# exists if and only

if U# exists. The following result, characterizing the nonnegativity of the group

inverse of A if it has a weak pseudo regular splitting can be considered the group

inverse analogue of the result of Berman and Plemmons.

Theorem 2.2.2. (Theorem 3.5, [71]) Let A ∈ Rn×n with index 1. Let A = U − V

be a proper splitting of A such that U# ≥ 0 and U#V ≥ 0. Then the following are

equivalent.

(i) A# ≥ 0.
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(ii) A#V ≥ 0.

(iii) ρ(U#V ) =
ρ(A#V )

1 + ρ(A#V )
< 1.

Next, we define B#-splitting. This was introduced in [45].

Definition 2.2.3. Let A ∈ Rn×n. A proper splitting A = U − V is called a B#-

splitting if it satisfies the following conditions:

(i) U ≥ 0.

(ii) V ≥ 0.

(iii) U# exists, V U# ≥ 0.

(iv) Ax,Ux ∈ Rn
+ +N(A) and x ∈ R(A) =⇒ x ≥ 0.

The notion of B#-splitting extends the notion of B-splitting studied by Peris

[51]. The next two results were stated in [45].

Theorem 2.2.3. Let A ∈ Rn×n. Consider the following statements:

(a) A# exists and A# ≥ 0.

(b) Ax ∈ Rn
+ +N(A) and x ∈ R(A) =⇒ x ≥ 0.

(c) Rn
+ ⊆ ARn

+ +N(A).

(d) There exists x ∈ Rn
+ and z ∈ N(A) such that Ax+ z > 0.

Then we have (a)⇔ (b) =⇒ (c) =⇒ (d).

Suppose that A has a B#-splitting A = U − V . Then each of the above statements

is equivalent to the following condition:

(e) ρ(V U#) < 1.

Theorem 2.2.4. Let A ∈ Rn×n. Suppose that A# exists, A# ≥ 0 and R(A) ∩

int(Rn
+) 6= ∅. Further, let A#A ≥ 0. Then A possesses a B#-splitting A = U − V

such that ρ(V U#) < 1.
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2.3 Characterizations of nonnegativity of A#

In this section, we present main results of this chapter. We begin with an extension

of the result of Fan, mentioned above.

Theorem 2.3.1. Let A ∈ Rn×n with index 1. Let F = A−AA# and G = AA#−A#

be proper splittings of F and G, respectively. Then F# exists. Furthermore if AA# ≥

0 and F# ≥ 0, then G# exists and G# ≥ 0.

Proof. Since F = A−AA# and G = AA#−A# are proper splittings, it follows that

R(F ) = R(A) = R(AA#) = R(G)

and

N(F ) = N(A) = N(AA#) = N(G).

Since A# exists, the subspaces R(A) and N(A) are complementary; so are R(F ) and

N(F ) so that F# exists. Since we also have the complementarity of the subspaces

R(G) and N(G), it follows that G# exists. Note that

GG# = PR(G),N(G) = PR(A),N(A) = AA#

and so GG# ≥ 0.

Let u ≥ 0 and v = G#u ∈ R(G) = R(A) so that AA#v = v. Then Gv =

GG#u ≥ 0 as GG# ≥ 0. We show that v ≥ Gv and so we would have v ≥ 0,

proving that G# ≥ 0. By Lemma 1.4.2, we have u = Gv + w for some w ∈ N(G).

Thus we have

Gv ∈ Rn
+ +N(G) = Rn

+ +N(F ).

Let z = A#v. Then AA#z = z and Az = AA#v so that

Gv = AA#v − A#v = Az − z = Az − AA#z = Fz.
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So,

Fz ∈ Rn
+ +N(F ) and z ∈ R(A) = R(F ).

Since F# ≥ 0, by Theorem 1.5.1, we then have z ≥ 0. So,

0 ≤ z = A#v = AA#v −Gv = v −Gv.

We have shown that v ≥ Gv, as required.

We have the following consequence of Theorem 2.3.1 for matrices with positive

inverse.

Corollary 2.3.1. Let A ∈ Rn×n be invertible, F = A−I and G = I−A−1. Suppose

that F−1 exists and F−1 ≥ 0. Then G−1 exists and G−1 ≥ 0.

Proof. Let Gx = 0 so that x = A−1x. Then Ax = x and so Fx = 0, so that x = 0.

Thus, G is invertible. It now follows that F = A− I and G = I − A−1 are (trivial)

proper splittings. Theorem 2.3.1 can be applied now to conclude that G−1 ≥ 0.

In particular, we have the result of Fan.

Corollary 2.3.2. (Lemma 2, [21]) Let A − I be an invertible M-matrix. Then A

is invertible and the matrix I − A−1 is also an invertible M-matrix.

Proof. Let us denote F = A−I and G = I−A−1. Since F is an invertible M -matrix,

F = A − I = sI − B where s > ρ(B) and B ≥ 0. So, F−1 ≥ 0 by Theorem 1.2.1.

Also, A = (s + 1)I − B and s + 1 > s > ρ(B). This implies that A is invertible

and A−1 ≥ 0. Let Gx = 0 so that x = A−1x. Then Ax = x and so Fx = 0, so

that x = 0. Thus G is invertible. It now follows that F and G satisfies all the

conditions of Theorem 2.3.1. So G−1 ≥ 0. Then ρ(A−1) < 1 by Theorem 1.2.1.

Hence, G = I − A−1 is an invertible M -matrix.
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2.3.1 Pseudo regular splittings and nonnegativity of A#

We derive here certain generalizations of the results of [3]. As it was mentioned in

the introduction, these are group inverse extensions of results on M -matrices. These

are presented in Theorem 2.3.2, Theorem 2.3.3, Theorem 2.3.4 and Theorem 2.3.5.

Theorem 2.3.2. Let A ∈ Rn×n such that A# exists. Let A = U − V be a pseudo

regular splitting. Then the following statements are equivalent:

(i) A# ≥ 0.

(ii) The real part of any nonzero eigenvalue of U#A is positive.

(iii) Any nonzero real eigenvalue of U#A is positive.

Proof. (i) =⇒ (ii): Suppose that A# ≥ 0 and A = U − V is a pseudo regular

splitting. Then, by Theorem 2.2.2, ρ(U#V ) < 1. Let µ be a nonzero eigenvalue of

U#V . There exists 0 6= x such that U#V x = µx. Let x = x1 +x2, where x1 ∈ R(U)

and x2 ∈ N(U). Since A = U−V is a proper splitting, it follows that N(U) ⊆ N(V ).

So, U#V x2 = 0. Consider U#V x = µ(x1 + x2). The left hand side vector belongs

to R(U#) = R(U) and so is x1. Hence, µx2 = 0. Since µ 6= 0, we have x2 = 0 and

so x1 = x 6= 0. Thus U#V x1 = µx1. Also, U#Ux = x1 and Ax = Ax1. Hence, we

have U#Ax1 = U#Ax = U#Ux − U#V x = x1 − U#V x1 = (1 − µ)x1. So, if µ is a

nonzero eigenvalue of U#V , then 1−µ is an eigenvalue of U#A. An entirely similar

argument shows that 1− µ is an eigenvalue of U#V , if µ is a nonzero eigenvalue of

U#A. So, if µ is a nonzero eigenvalue of U#A, then |1 − µ| < 1. This means that

Reµ > 0, showing that (ii) holds.

(ii)⇒ (iii): The proof of this part is obvious.

(iii)⇒ (i): Suppose that the nonzero real eigenvalues of U#A are positive. We must

show that A# ≥ 0. For this, it is enough to show ρ(U#V ) < 1. If ρ(U#V ) = 0, then

there is nothing to prove. If possible, let ρ(U#V ) = 1. Then there exists a nonzero



CHAPTER 2. 35

vector x such that U#V x = x. Then x ∈ R(U#) = R(U) and UU#V x = Ux. Also,

UU#V x = V x, since R(V ) ⊆ R(U). So, V x = Ux. Therefore, Ax = Ux− V x = 0.

Thus, x ∈ N(A) = N(U), so that x = 0, a contradiction. So, ρ(U#V ) 6= 1.

Since U#V ≥ 0, ρ(U#V ) is a non-zero eigenvalue of U#V , by the Perron-Frobenius

theorem. Thus, as before, 1 − ρ(U#V ) is a nonzero eigenvalue of U#A. So, by

hypothesis 1 − ρ(U#V ) > 0, proving that ρ(U#V ) < 1. By Theorem 2.2.2, it now

follows that A# ≥ 0.

The following example illustrates Theorem 2.3.2.

Example 2.3.1. Let A =


1 −2 2

0 2 0

0 0 0

 . Set U =


1 −1 2

0 3 0

0 0 0

 and

V =


0 1 0

0 1 0

0 0 0

 . Then U# =
1

3


3 1 6

0 1 0

0 0 0

 ≥ 0, V ≥ 0, R(A) = R(U) and

N(A) = N(U). Therefore, A = U − V is a pseudo regular splitting. Also, A# =

1

2


2 2 4

0 1 0

0 0 0

 ≥ 0 and U#A =
1

3


3 −4 6

0 2 0

0 0 0

 . Note that the eigenvalues of U#A

are 0, 2
3

and 1. So, the non-zero real eigenvalues are positive.

As mentioned in Section 1.2, if A ∈ Rn×n is an M -matrix, then A is inverse

positive if and only if there exists a vector x ∈ Rn such that both x and Ax are

positive vectors. If we define h : Rn → R by h(x) := etx, x ∈ Rn, where e ∈ Rn

has all its coordinates equal to 1, then the latter part of the previous statement

could be paraphrased as: there exists x ∈ Rn such that h(x) and h(Ax) are positive

real numbers. In what follows, we generalize this to the nonnegativity of the group

inverse, while also extending Theorem 10 of [3] and its converse viz., (part of)
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Proposition 7 of [3].

Theorem 2.3.3. Let A ∈ Rn×n be with index 1. Suppose that R(A) ∩ Rn
+ 6= {0}.

Let A = U − V be a proper splitting of A such that U ≥ 0, U# ≥ 0 and U#V ≥ 0.

Suppose that there exists a linear functional f such that f(x) ≥ 0 and f(Ax) > 0 for

every 0 6= x ∈ Rn
+ ∩ R(A). Then A# ≥ 0. Conversely, suppose that A# ≥ 0. Then

there exists a linear functional f such that f(x) ≥ 0 for all 0 6= x ∈ Rn
+ ∩R(A) and

f(Ax) > 0.

Proof. Let us observe that the splitting for A given as above is a weak pseudo

regular splitting satisfying the additional condition that U ≥ 0. We have U#V ≥ 0.

Let ρ = ρ(U#V ) and let 0 6= y ≥ 0 be an eigenvector corresponding to ρ so that

U#V y = ρy. Such a vector exists, by the Perron-Frobenius theorem. If ρ = 0,

then by Theorem 2.2.2, it follows that A# ≥ 0. Suppose that ρ > 0. Observe that

y ∈ R(U#) = R(A#) = R(A). Thus y ∈ Rn
+ ∩ R(A). Let g be a linear functional

satisfying the hypothesis. Then g(y) ≥ 0 and g(Ay) > 0. We have U#V y = ρy so

that upon premultiplying by U we have UU#V y = ρUy. Since R(V ) ⊆ R(U), it then

follows that V y = ρUy so that (ρU−V )y = 0. If ρ ≥ 1 we get ρU−V ≥ U−V = A

(it is in step where U ≥ 0 is used). This implies that 0 = (ρU − V )y ≥ Ay and

so g(Ay) ≤ 0, since g is nonnegative on Rn
+ ∩ R(A). This is a contradiction and so

ρ(U#V ) < 1. Again, it follows from Theorem 2.2.2 that A# ≥ 0.

To prove the converse, let us suppose that A# ≥ 0 and g is a strictly positive

linear functional on Rn
+. Clearly, g(x) := etx, x ∈ Rn, where e ∈ Rn has all its

coordinates equal to 1, is one such functional. Then g(x) > 0 for all 0 6= x ∈ Rn
+.

This applies in particular, to all the vectors 0 6= x ∈ Rn
+ ∩ R(A). Let 0 6= x∗ ≥ 0

and x∗ ∈ R(A). Then A#x∗ ≥ 0 and x∗ = AA#x∗. Set f = g(A#). Then

f(Ax∗) = g(A#Ax∗) = g(AA#x∗) = g(x∗) > 0,
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showing that f is the required linear functional.

Example 2.3.2. Let A =


0 0 1

2 0 0

2 0 0

 . Then the index of A is 1 and e ∈ R(A)∩R3
+.

Set U =


0 0 1

3 0 0

3 0 0

 and V =


0 0 0

1 0 0

1 0 0

. Then R(A) = R(U) and N(A) = N(U).

Further, U# =
1

3


0 0 1

3 0 0

3 0 0

 ≥ 0 and so U#V ≥ 0. Note that A# =
1

2


0 0 1

2 0 0

2 0 0

 ≥
0. Define f(x) = etA#x, x ∈ R3. Let 0 6= x = (x1, x2, x3) ∈ R(A) ∩ R3

+. Then

f(x) = 1
2
(4x1 + x3) ≥ 0 and f(Ax) = etA#Ax = x1 + 2x3 > 0.

In order to motivate the next result, let us recall the following: Let A,B ∈ Rm×n

such that R(A) = R(B) and N(A) = N(B). Suppose that A ≤ B and B† ≥ 0. If

int(Rn
+) ∩ {ARn

+ + N(At)} 6= ∅, then A† ≥ B† ≥ 0. The converse also holds. For a

proof of this, we refer to (Theorem 3.4) [54]. The next result somewhat resembles the

situation mentioned above, without the condition involving the interior. Curiously,

there is a reversal of the roles of A and B insofar as the nonnegativity of their

group inverses are concerned. It is pertinent to point to the fact that this result is a

generalization of a corresponding result for invertible matrices proved in (Proposition

8) [3]. However, the proof technique is completely different from the proof in [3].

Theorem 2.3.4. Let A,B ∈ Rn×n where A has index 1. Suppose that the following

hold:

(a) A and B have pseudo regular splittings.

(b) R(A) = R(B), N(A) = N(B) and A ≤ B.
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(c) A# ≥ 0.

Then B# exists and A# ≥ B# ≥ 0.

Proof. Since A and B have pseudo regular splittings, there exist matrices UA, VA, UB

and VB such that R(A) = R(UA), N(A) = N(UA), R(B) = R(UB) and N(B) =

N(UB). Further,

A = UA − VA with U#
A ≥ 0 and VA ≥ 0

and

B = UB − VB with U#
B ≥ 0 and VB ≥ 0.

Also, we have A ≤ B = UB − VB ≤ UB. Thus, UB − A ≥ UB − B ≥ 0. Set Z = UB

and W = UB − A. Then R(Z) = R(UB) = R(B) = R(A) and N(Z) = N(UB) =

N(B) = N(A). Thus, A = Z −W is a proper splitting. Further,

Z# = U#
B ≥ 0 and Z#W = U#

B (UB − A) ≥ 0.

This shows that the above proper splitting is also a weak pseudo regular splitting.

Since it is given that A# ≥ 0, by Theorem 2.2.2, we have

1 > ρ(Z#W ) = ρ(U#
B (UB − A)) ≥ ρ(U#

B (UB −B)).

Since UB − (UB −B) is a pseudo regular splitting of B, again by Theorem 2.2.2, it

follows that B# ≥ 0.

We have A ≤ B. Premultiplying by A# ≥ 0 and post multiplying by B# ≥ 0,

we get A#AB# ≤ A#BB#. Since R(B) = R(A) and N(B) = N(A), it follows that

A#AB# = PR(A),N(A)B
# = PR(B),N(B)B

# = B#BB# = B#

and

A#BB# = A#PR(B),N(B) = A#PR(A),N(A) = A#AA# = A#.

This shows that A# ≥ B# ≥ 0, completing the proof.
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The following example illustrates Theorem 2.3.4.

Example 2.3.3. Let A =


1 0 0

−3 1 0

1 0 0

 and B =


1 0 0

−2 1 0

1 0 0

. Set UA =


1 0 0

−2 1 0

1 0 0

 ,

VA =


0 0 0

1 0 0

0 0 0

 , UB =


1 0 0

−1 1 0

1 0 0

 and VB =


0 0 0

1 0 0

0 0 0

 . Then U#
A =


1 0 0

2 1 0

1 0 0

 ≥

0, U#
B =


1 0 0

1 1 0

1 0 0

 ≥ 0, VA ≥ 0 and VB ≥ 0. It can be verified that A = UA − VA

and B = UB − VB are pseudo regular splittings of A and B, respectively. Also,

R(A) = R(B), N(A) = N(B), A ≤ B and A# =


1 0 0

3 1 0

1 0 0

 ≥ 0. Thus, all the

conditions of Theorem 2.3.4 are satisfied. Note that B# =


1 0 0

2 1 0

1 0 0

 and that

A# ≥ B# ≥ 0.

2.3.2 B#-splittings and nonnegativity of A#

We begin this subsection with an extension of Theorem 2.1.3, mentioned in the

introduction.

Theorem 2.3.5. For A ∈ Rn×n, let A = U − V be a B#-splitting such that no row

of U is zero. Suppose that there exists x > 0 such that U#V x = λx for some λ < 1.

Then A# ≥ 0.

Proof. We show that there exists z ∈ Rn
+ and w ∈ N(A) such that Az + w > 0. It
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would then follow from (d) of Theorem 2.2.3, that A# ≥ 0.

Let U#V x = λx for some λ < 1. Premultiplying with U and by using the

fact that R(V ) ⊆ R(U), we have V x = λUx. If λ = 0, then V x = 0 so that

Ax = Ux. Since U ≥ 0 and has no zero row, and x > 0, we have Ux > 0. Thus,

Ax+w > 0 by taking w = 0 ∈ N(A). So, if λ = 0, then (d) of Theorem 2.2.3 holds.

Consider the case 0 < λ (< 1). Then x ∈ R(U#) so that U#Ux = x. We have

Ax = U(I − U#V )x = (1 − λ)Ux. Thus U#Ax = (1 − λ)U#Ux = (1 − λ)x > 0.

Set y = U#Ax > 0. Then by Lemma 1.4.2, we have Uy = Ax + z, for some

z ∈ N(U#) = N(A#) = N(A). Again, since U has no zero row, we have Uy > 0.

Thus, there exists z ∈ N(A) such that Ax+ z > 0, as required.

The following example demonstrates that the converse of the last theorem is not

true.

Example 2.3.4. Let A =


1 0 0

0 0 1

0 0 1

 . Then A# =


1 0 0

0 0 1

0 0 1

 ≥ 0. Set U =


1 0 0

0 0 2

0 0 2

 and V =


0 0 0

0 0 1

0 0 1

. Then R(A) = R(U) and N(A) = N(U). Also,

U ≥ 0, V ≥ 0, U# =
1

4


4 0 0

0 0 2

0 0 2

 and V U# ≥ 0. Thus A = U − V is a B#-

splitting. Further, U#V =
1

4


0 0 0

0 0 2

0 0 2

 and the eigenvalues of U#V are 0 and
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1
2
. The corresponding eigenvectors are


k1

k2

0

 where k1, k2 ∈ R and


0

k3

k3

 , k3 ∈ R,

respectively. Thus there is no vector x > 0 such that U#V x = λx for any λ.

However, we show that the converse can be recovered in the presence of an

additional condition.

Theorem 2.3.6. For A ∈ Rn×n, let A = U − V be a B#-splitting such that no

row of U is zero. Suppose that either U#V ≥ 0 and is irreducible or U#V > 0. If

A# ≥ 0, then there exists a vector x > 0 such that U#V x = λx for some λ < 1.

Proof. Suppose that A# ≥ 0. Since A = U − V is a B#-splitting, by Theorem

2.2.3 ρ(U#V ) = ρ(V U#) < 1. Also, we have either U#V ≥ 0 and is irreducible or

U#V > 0. So, by the Perron-Frobenius theory, there exists a unique vector x > 0

such that U#V x = ρ(U#V )x, proving the result.

2.4 Comparison results for proper splittings

In this section, we will be concerned with comparison results for the two types of

splittings discussed here. In the process we obtain generalizations of the results of

[20]. The proof of the first result is very similar to the corresponding result there,

to fit into the group inverse frame work. However, we prefer to include the proof for

a self-contained discussion. This is mainly used in deriving comparison results, viz.,

Theorem 2.4.3 and Theorem 2.4.4. We would like to point out that the results in this

section are motivated by purely theoretical considerations. In particular, no claim of

superiority is made on any splitting over another. Applications of these comparison

results to numerical solutions of linear systems are not considered either.



CHAPTER 2. 42

Theorem 2.4.1. (Extension of Theorem 3.4, [20]) Let A ∈ Rn×n with index 1.

Suppose that no row or column of A is zero. Suppose also that A# ≥ 0, R(A) ∩

int(Rn
+) 6= ∅ and A#A ≥ 0. Then there exists a B#-splitting A = U − V , where the

matrices U, V and A are further related by the following statements: There exists

x ∈ Rn
+ ∩ R(U) such that U#V x = ρ(U#V )x, and 0 6= Ax ≥ 0. Moreover, if V U#

is not nilpotent then 0 6= V w ≥ 0 for some w ∈ Rn
+ ∩R(U).

Proof. By Theorem 2.2.4, there exists a B#-splitting A = U −V . Set ρ∗ = ρ(U#V ).

Let x be a corresponding eigenvector of U#V so that U#V x = ρ∗x. We show that the

coordinates of x are all nonnegative or all nonpositive. We have x ∈ R(U#) = R(U)

so that UU#x = U#Ux = x. Premultiplying the equation U#V x = ρ∗x by U and

using the fact that R(V ) ⊆ R(U), we get V x = ρ∗Ux. Also, V x = V U#Ux. Set

z = Ux. Then V U#z = ρ∗z. If z = 0, then x = 0, a contradiction. So, z is an

eigenvector for the matrix V U#. From Theorem 2.2.4 we have ρ∗ = ρ(U#V ) =

ρ(V U#) < 1. Note that by the definition of a B#-splitting, we have V U# ≥ 0.

First, let us assume that V U# > 0, not just nonnegative. By the result of

Perron, there exists a unique positive (Perron) eigenvector y corresponding to the

(simple) eigenvalue ρ∗ for the positive matrix V U#, i.e., V U#y = ρ∗y. Thus we have

Ux = αy for some 0 6= α ∈ R. Upon premultiplying by U#, we have x = αU#y.

Since N(A) = N(U) = N(U#), it follows that no row or column of U# is zero. Hence

U#y > 0. So, either the components of x are all negative or all positive. Replacing

x by −x, if need be, we have x > 0 as well as Ux > 0. Thus x ∈ int(Rn
+) ∩ R(U).

Now, we have Ax = Ux−V x = (1−ρ∗)Ux and since ρ∗ < 1 this proves that Ax > 0.

To summarize, what we have shown that under the hypotheses of the theorem,

if the splitting A = U −V satisfies the assumptions that V U# > 0 then there exists

x ∈ Rn
+ ∩R(U) such that U#V x = ρ∗x, where ρ∗ = ρ(U#V ).

To complete the proof, we consider the case V U# ≥ 0. Let E ∈ Rn×n be the
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matrix with all entries 1. Observe that, as mentioned earlier, since U# has no zero

row or column, it follows that EU# > 0. Let ‖ . ‖ denote any matrix norm. Let α

be chosen such that 0 < α < 1
‖EU#‖ . Then the series

∑∞
k=0(αEU

#)k is convergent.

We have

0 <
∑∞

k=0(αEU
#)k = (I − αEU#)−1.

Define W = (I − αEU#)−1U#. Then W > 0 and WUU# = W . Note that

WUA# = (I − αEU#)−1U#UA#

= (I − αEU#)−1A#AA#

= (I − αEU#)−1A#.

Again, it follows that WUA# > 0. Set ε0 = 1
‖WUA#‖ . Let ε be chosen such that

0 < ε < ε0.

Define Aε = A− εWU . Then

Aε = A− εWUU#U

= A− εWUA#A

= (I − εWUA#)A.

Also, ‖ εWUA# ‖= ε ‖ WUA# ‖< 1, so that I − εWUA# is invertible. It then

follows that R(Aε) = R(A) = R(U) and N(Aε) = N(A) = N(U). Thus Aε = U −

(V + εWU) is a proper splitting. Observe that since A# exists, the subspaces R(A)

and N(A) are complementary. So are R(Aε) and N(Aε) and so A#
ε exists. Next, we

show that Aε
# ≥ 0. First, we show that Aε

# exists. Let X = A#(I − εWUA#)−1

and x ∈ R(Aε). Then
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XAεx = A#(I − εWUA#)−1(I − εWUA#)Ax = A#Ax = x.

For y ∈ N(Aε) = N(A) = N(A#), we also have

Xy = A#(I−εWUA#)−1y = A#
∑∞

k=0(εWUA#)ky = A#y+
∑∞

k=1(εWUA#)ky = 0.

Hence, A#
ε = A#(I − εWUA#)−1 = A#

∑∞
k=0(εWUA#)k ≥ 0.

Also, R(Aε) ∩ int(Rn
+) = R(A) ∩ int(Rn

+) 6= ∅ and A#
ε Aε = A#A ≥ 0. Further,

(V + εWU)U# = V U# + εWUU# = V U# + εW > 0.

By what we have already shown, there exists xε ∈ Rn
+ ∩R(U) such that

U#(V + εWU)xε = ρ(U#(V + εWU))xε

and Aεxε > 0. We may choose xε such that its 1-norm satisfy ‖ xε ‖1 = 1. Set

εk = 1
k
ε0. Then the sequence xεk , being bounded, has a convergent subsequence

with limit 0 6= x ≥ 0. Observe that since

U#(V + εkWU)xεk = ρ(U#(V + εkWU))xεk ,

we have in the limit, the equation U#V x = ρ(U#V )x. We have Ax ≥ 0, as well. If

Ax = 0, then V x = 0 and so x = 0, a contradiction. Hence Ax 6= 0.

Let us prove the last part. We have Ux =
1

ρ∗
V x, where we have used ρ∗ 6= 0,

since V U# is not nilpotent. Thus

0 ≤ Ax = (U − V )x = U(I − U#V )x = (1− ρ∗)Ux =
1− ρ∗
ρ∗

V x.

Note that since ρ∗ < 1, we have V x ≥ 0. If w =
1− ρ∗
ρ∗

x then V w ≥ 0. If V w = 0

then Ax = 0, a contradiction. Thus V w 6= 0, completing the proof.

In the next result, we show that the conclusions of Theorem 2.4.1 follow easily,

if we consider a splitting that is stronger than a B#-splitting.
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Theorem 2.4.2. Let A ∈ Rn×n with index 1. Suppose that no row or column of

A is zero. Let A = U − V be a proper splitting such that U ≥ 0, V ≥ 0 and

U# ≥ 0. Suppose also that A# ≥ 0. Then there exists x ∈ Rn
+ ∩ R(U) such

that U#V x = ρ(U#V )x and 0 6= Ax ≥ 0. Further, if V U# is not nilpotent then

0 6= V w ≥ 0 for some w ∈ Rn
+ ∩R(U).

Proof. Note that the given splitting is a B#-splitting. Set ρ∗ = ρ(U#V ). Since

U#V ≥ 0, by the Perron-Frobenius theorem there exists a vector 0 6= x ≥ 0 such

that U#V x = ρ∗x. Premultiplying the equation U#V x = ρ∗x by U and using the

fact that R(V ) ⊆ R(U), we get V x = ρ∗Ux. Now, we have Ax = Ux − V x =

Ux − ρ∗Ux = (1 − ρ∗)Ux and since ρ∗ < 1 this proves that Ax ≥ 0. As above,

Ax 6= 0. The second part may be proved as done earlier.

Next, we present some applications of Theorem 2.4.1. These are comparison

results for the spectral radii of iteration matrices corresponding to two matrices A

and B with A ≤ B. These also extend Theorem 3.5 and Theorem 4.2 in [20].

Theorem 2.4.3. Let B ∈ Rn×n such that B has index 1, B# ≥ 0 and no row or

column of B is zero. Suppose that R(B) ∩ int(Rn
+) 6= ∅ and B#B ≥ 0. Then there

exists a B#-splitting B = UB − V. Let A ∈ Rn×n such that A has index 1, A# ≥ 0

and let A = UA − V be a pseudo regular splitting. Further, suppose that V U#
B is

not nilpotent, U#
B ≥ 0 and A ≤ B with R(A) = R(B) and N(A) = N(B). Then

ρ(U#
B V ) ≤ ρ(U#

A V ) < 1.

Proof. By Theorem 2.2.4, there exists a B#-splitting B = UB − V. Since U#
B ≥ 0,

the splitting B = UB −V is also a pseudo regular splitting. So, A,B ∈ Rn×n satisfy

all the conditions of Theorem 2.3.4. Therefore A# ≥ B# ≥ 0. Since A# ≥ 0 and

A = UA−V is a pseudo regular splitting, by Theorem 2.2.2 it follows that ρ(U#
A V ) <

1. Similarly, ρ(U#
B V ) < 1. Next, we show that ρ(U#

B V ) ≤ ρ(U#
A V ). Let us denote
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GA = A#V and GB = B#V. Then, again by Theorem 2.2.2, ρ(U#
A V ) =

ρ(GA)

1 + ρ(GA)

and ρ(U#
B V ) =

ρ(GB)

1 + ρ(GB)
. Since the function f(t) = t

1+t
is strictly increasing for

t ≥ 0, it is enough to show that ρ(GB) ≤ ρ(GA). For this, we consider B = UB − V

that satisfies all the conditions of Theorem 2.4.1. So, there exists a vector 0 6= x ≥ 0

such that U#
B V x = ρ(U#

B V )x and 0 6= V x ≥ 0. Then for the same x,

GAx = A#V x ≥ B#V x = GBx = ρ(GB)x.

This implies that ρ(GB) ≤ ρ(GA), by Lemma 1.1.1.

The following example illustrates Theorem 2.4.3.

Example 2.4.1. Let B =


−1 3 −1

3 −2 3

−1 3 −1

 , then B# =
1

14


1 3 1

3 2 3

1 3 1

 ≥ 0.

Also R(B) ∩ int(R3
+) 6= ∅ and B#B =

1

14


7 0 7

0 14 0

7 0 7

 ≥ 0.

Set UB =


0 3 0

3 0 3

0 3 0

 and V =


1 0 1

0 2 0

1 0 1

 then U#
B =

1

6


0 1 0

1 0 1

0 1 0

 ≥ 0. So, B =

UB − V is a B#-splitting. Let A =


−1 2 −1

2 −3 2

−1 2 −1

 then A# =
1

4


3 4 3

4 4 4

3 4 3

 ≥ 0.

Set UA =


0 2 0

2 −1 2

0 2 0

 , then U#
A =

1

64


4 16 4

16 0 16

4 16 4

 ≥ 0. So A = UA − V is a
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pseudo regular spliting. V U#
B =

1

6


0 2 0

2 0 2

0 2 0

 is not nilpotent.

U#
B V =

1

6


0 2 0

2 0 2

0 2 0

 and U#
A V =

1

64


8 32 8

32 0 32

8 32 8

 .

Observe that 0.4714 = ρ(U#
B V ) ≤ ρ(U#

A V ) = 0.8431 < 1.

Theorem 2.4.4. Let A,B ∈ Rn×n with index 1 such that A# − B# > 0, A# ≥ 0,

B# ≥ 0 and no row or column of A and B is zero. Suppose that R(B)∩ int(Rn
+) 6= ∅

and B#B ≥ 0. Then there exists a B#-splitting B = UB − VB. Let A = UA − VA

be a pseudo regular splitting. Suppose also that U#
B ≥ 0 and VAU

#
A , VBU

#
B are not

nilpotent.

(i) If UB − UA ≤ B − A then ρ(U#
B VB) ≤ ρ(U#

A VA) < 1.

(ii) If U#
A − U

#
B ≥ A# −B# then ρ(U#

A VA) < ρ(U#
B VB) < 1.

Proof. (i) By Theorem 2.2.4, there exists a B#-splitting B = UB − VB. Clearly

ρ1 = ρ(U#
A VA) < 1 and ρ2 = ρ(U#

B VB) < 1. It remains to show ρ(U#
B VB) ≤ ρ(U#

A VA).

Let us denote GA = A#VA and GB = B#VB. If UB − UA ≤ B − A then VA ≥ VB.

Applying Theorem 2.4.1 to B = UB − VB, we get a non-zero vector x ≥ 0 such that

U#
B VBx = ρ2x. For the same x, we have

GAx = A#VAx > B#VAx ≥ B#VBx = GBx = ρ(GB)x.

This implies that ρ(GB) ≤ ρ(GA), by Lemma 1.1.1.

(ii) Consider

U#
B VBB

# = U#
B (UB −B)B# = B# − U#

B ,

here we have used the fact that U#
B UB = B#B. Also, since U#

A UA = A#A, one has
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A#VAU
#
A = A#(UA − A)U#

A = A# − U#
A .

Therefore,

U#
B VBB

# = B# − U#
B ≥ A# − U#

A = A#VAU
#
A ≥ 0.

Since VAU
#
A ≥ 0 and U#

B VB ≥ 0, by the Perron-Frobenius theorem there exist

nonzero vectors x ≥ 0 and y ≥ 0 such that

VAU
#
A x = ρ1x and ytU#

B VB = ρ2y
t.

Thus

ρ2y
tB#x = ytU#

B VBB
#x ≥ ytA#VAU

#
A x = ρ1y

tA#x.

Since A# > B# and since x and y are both nonzero and ρ1 > 0, we obtain

ρ2y
tB#x > ρ1y

tB#x.

Therefore, ρ(U#
A VA) < ρ(U#

B VB) < 1.

2.5 Moore-Penrose inverse extensions of certain

M-matrix properties

In this section, we state Moore-Penrose inverse versions of some of the results of

Section 2.3 and Section 2.4. Since the proofs of these results are almost similar to

the group inverse case, we omit the proofs. The following definition was introduced

in [45] to study the nonnegativity of generalized inverses of matrices.

Definition 2.5.1. Let A ∈ Rm×n. A proper splitting A = U − V of A is called a

B†-splitting if it satisfies the following conditions:

(i) U ≥ 0.

(ii) V ≥ 0.
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(iii) V U † ≥ 0.

(iv) Ax,Ux ∈ Rm
+ +N(A) and x ∈ R(At) =⇒ x ≥ 0.

The next result provides various equivalent conditions for semimonotonicity, in-

cluding one involving a B†-splitting.

Theorem 2.5.1. (Theorem 3.8, [45]) Let A ∈ Rm×n. Consider the following state-

ments:

(a) A† exists and A† ≥ 0.

(b) Ax ∈ Rm
+ +N(At) and x ∈ R(At) =⇒ x ≥ 0.

(c) Rm
+ ⊆ ARn

+ +N(At).

(d) There exists x ∈ Rn
+ and z ∈ N(At) such that Ax+ z > 0.

Then we have (a)⇔ (b) =⇒ (c) =⇒ (d).

Suppose that A has a B†-splitting A = U − V . Then each of the statements above is

equivalent to the following condition:

(e) ρ(V U †) < 1.

2.5.1 Characterizations of nonnegativity of A†

The following result is an extension of the result of Barker (Proposition 9, [3]) to

Moore-Penrose inverse case.

Theorem 2.5.2. Let A ∈ Rm×n. Let A = U −V be a proper regular splitting. Then

the following statements are equivalent:

(i) A† ≥ 0.

(ii) The real part of any nonzero eigenvalue of U †A is positive.

(iii) Any nonzero real eigenvalue of U †A is positive.

The next result is a generalization of a corresponding result for invertible matrices

proved in (Proposition 8) [3].
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Theorem 2.5.3. Let A,B ∈ Rm×n . Suppose that the following hold:

(a) A and B have proper regular splittings.

(b) R(A) = R(B), N(A) = N(B) and A ≤ B.

(c) A† ≥ 0.

Then A† ≥ B† ≥ 0.

Next, we state an extension of Theorem 2.1.3, mentioned in the introduction.

Theorem 2.5.4. For A ∈ Rm×n, let A = U − V be a B†-splitting such that no row

of U is zero. Suppose that there exists x > 0 such that U †V x = λx for some λ < 1.

Then A† ≥ 0.

Converse of the theorem above is not true. However, converse can be recovered

in the presence of an additional condition.

Theorem 2.5.5. For A ∈ Rm×n, let A = U − V be a B†-splitting such that no row

of U is zero. Suppose that either U †V ≥ 0 and is irreducible or U †V > 0. If A† ≥ 0,

then there exists a vector x > 0 such that U †V x = λx for some λ < 1.

2.5.2 Comparison results

In this subsection, we obtain some generalizations of the results of [20]. The first

result of this part is used in deriving comparison results, viz., Theorem 2.5.7 and

Theorem 2.5.8.

Theorem 2.5.6. (Extension of Theorem 3.4, [20]) Let A ∈ Rm×n . Suppose that

no row or column of A is zero. Let A = U −V is a proper splitting such that U † ≥ 0

and V U † ≥ 0. Suppose also that A† ≥ 0. Then there exists x ∈ Rn
+ ∩ R(U t) such

that U †V x = ρ(U †V )x, and 0 6= Ax ≥ 0. Moreover, if V U † is not nilpotent then

0 6= V x ≥ 0 for some x ∈ Rn
+ ∩R(U t).
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We now present some applications of Theorem 2.5.6. These are comparison

results for the spectral radii of iteration matrices corresponding to two matrices A

and B with A ≤ B. Also, these results are generalizations of Theorem 3.5 and

Theorem 4.2 in [20].

Theorem 2.5.7. Let A = UA − V, B = UB − V are two proper regular splittings of

matrices A,B ∈ Rm×n with V 6= 0. Suppose that A† ≥ 0 and no row or column of B

is zero. Further, suppose that V U †B is not nilpotent and A ≤ B with R(A) = R(B)

and N(A) = N(B). Then ρ(U †BV ) ≤ ρ(U †AV ) < 1.

Theorem 2.5.8. Let A = UA−VA, B = UB−VB are two proper regular splittings of

matrices A,B ∈ Rm×n with VA, VB 6= 0. Suppose that A† − B† > 0, A† ≥ 0, B† ≥ 0

and no row or column of A and B is zero. Suppose also that VAU
†
A, VBU

†
B are not

nilpotent.

(i) If UB − UA ≤ B − A then ρ(U †BVB) ≤ ρ(U †AVA) < 1.

(ii) If U †A − U
†
B ≥ A† −B† then ρ(U †AVA) < ρ(U †BVB) < 1.
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3.1 Introduction

In this short chapter, we derive two comparison results (Theorem 3.3.1 and Theorem

3.3.2) for the spectral radii of certain iteration matrices which are induced by double

splittings of rectangular matrices. Our results generalize the comparison results of

Shen and Huang (Theorem 3.1 and Theorem 3.2 in [60]) in two directions; first,

from square nonsingular matrices to rectangular matrices ; secondly, from classical

inverses to Moore-Penrose inverses.

A matrix A ∈ Rm×n is called semi-monotone (or generalized monotone) if A† ≥ 0.

In this chapter, we consider two double splittings A = P1 − R1 + S1 and A =

P2 − R2 + S2 of a semi-monotone matrix A. Then, as we discussed in Chapter 1,

we could formulate two iterative schemes associated with these splittings. In order

to study the convergence rate of these iterative schemes, we need to compare the

spectral radii of corresponding iteration matrices. This leads us to derive results

which give comparison between spectral radii of iteration matrices. It is well known

that the iterative scheme with smaller spectral radius will converge faster. In this

connection, several comparison results have been proved. We have reviewed some

of these results in Chapter 1.

The motivation for results of this chapter comes from the comparison results

of Shen and Huang [60]. They considered certain type of double splittings of a

monotone matrix and obtained comparison results. We state those results, next.

Theorem 3.1.1. (Theorem 3.1, [60]) Let A−1 ≥ 0. Let A = P1 − R1 + S1 be a

regular double splitting and A = P2 − R2 + S2 be a weak regular double splitting. If

P−11 ≥ P−12 and any one of the following conditions,

(i) P−11 R1 ≥ P−12 R2

(ii) P−11 S1 ≥ P−12 S2
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holds, then ρ(W1) ≤ ρ(W2) < 1, where W1 =

P−11 R1 −P−11 S1

I 0

 and

W2 =

P−12 R2 −P−12 S2

I 0

.

In the next theorem, first splitting is weak regular and second one is regular.

However, the conclusion is same as conclusion of Theorem 3.1.1.

Theorem 3.1.2. (Theorem 3.2, [60]) Let A−1 ≥ 0. Let A = P1 − R1 + S1 be a

weak regular double splitting and A = P2 − R2 + S2 be a regular double splitting. If

P−11 ≥ P−12 and any one of the following conditions,

(i) P−11 R1 ≥ P−12 R2

(ii) P−11 S1 ≥ P−12 S2

holds, then ρ(W1) ≤ ρ(W2) < 1.

In this chapter, we obtain generalization of Theorem 3.1.1 for rectangular ma-

trices, in Theorem 3.3.1. We do this by using the notion of Moore-Penrose inverse

of a matrix. In Theorem 3.3.2, we present generalization of Theorem 3.1.2.

3.2 Definitions and preliminary results

We begin this section with definitions of some subclasses of proper double splittings.

Definition 3.2.1. Let A ∈ Rm×n. A proper double splitting A = P −R+S is called

(i) regular proper double splitting if P † ≥ 0, R ≥ 0 and −S ≥ 0.

(ii) weak regular proper double splitting if P † ≥ 0, P †R ≥ 0 and −P †S ≥ 0.

The following result is used in deriving certain results of this chapter.

Lemma 3.2.1. (Lemma 2.2, [60]) Let A =

B C

I 0

 ≥ 0 and ρ(B+C) < 1. Then,

ρ(A) < 1.
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The next result gives the relation between the spectral radius of the iteration

matrices associated with a single splitting and a double splitting.

Theorem 3.2.1. (Theorem 4.3, [43]) Let A = P −R+ S be a weak regular proper

double splitting of A ∈ Rm×n. Then ρ(W ) < 1 if and only if ρ(U †V ) < 1, where

U = P, V = R− S and W =

P †R −P †S

I 0

 .

We conclude this section with a convergence theorem for a proper double splitting

of a monotone matrix.

Theorem 3.2.2. (Theorem 3.6, [28]) Let A ∈ Rm×n such that A† ≥ 0. Let A =

P −R + S be a weak regular proper double splitting. Then, ρ(W ) < 1.

3.3 Comparison results for proper double split-

tings

This section deals with main results of this chapter. Let A ∈ Rm×n. Let A =

P1 − R1 + S1 = P2 − R2 + S2 be two proper double splittings of A. Set W1 =P †1R1 −P †1S1

I 0

 and W2 =

P †2R2 −P †2S2

I 0

. These matrices are called iteration

matrices associated with double splittings, as mentioned in Chapter 1.

The following comparison result gives the comparison between ρ(W1) and ρ(W2).

This comparison is useful to analyse the rate of convergence of the iterative methods

formulated from these double splittings, for solving linear system Ax = b.

Theorem 3.3.1. Let A ∈ Rm×n be such that A† ≥ 0. Let A = P1 − R1 + S1 be a

regular proper double splitting such that P1P
†
1 ≥ 0 and let A = P2−R2+S2 be a weak

regular proper double splitting. If P †1 ≥ P †2 and any one of the following conditions,
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(i) P †1R1 ≥ P †2R2

(ii) P †1S1 ≥ P †2S2

holds, then ρ(W1) ≤ ρ(W2) < 1.

Proof. Since A = P1−R1 +S1 is a regular proper double splitting of A, by Theorem

3.2.2, we get ρ(W1) < 1. Similarly, ρ(W2) < 1. It remains to show that ρ(W1) ≤

ρ(W2).

Assume that ρ(W1) = 0. Then the conclusion follows, obviously. So, without

loss of generality assume that ρ(W1) 6= 0. Since A = P1 − R1 + S1 is a regular

proper double splitting, we have W1 =

P †1R1 −P †1S1

I 0

 ≥ 0. Then, by the Perron-

Frobenius theorem, there exists a vector x =

x1
x2

 ∈ R2n, x ≥ 0 and x 6= 0 such

that W1x = ρ(W1)x. This implies that

P †1R1x1 − P †1S1x2 = ρ(W1)x1. (3.1)

x1 = ρ(W1)x2. (3.2)

Upon pre multiplying equation (3.1) by P1 and using equation (3.2), we get

[ρ(W1)]
2P1x1 = ρ(W1)P1P

†
1R1x1 − P1P

†
1S1x1. (3.3)

We have P1P
†
1 ≥ 0, R1 ≥ 0, −S1 ≥ 0 and x1 ≥ 0. So, by (3.3), [ρ(W1)]

2P1x1 ≥ 0.
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Now, again from (3.3),

0 = [ρ(W1)]
2P1x1 − ρ(W1)P1P

†
1R1x1 + P1P

†
1S1x1

≤ ρ(W1)P1x1 − ρ(W1)P1P
†
1R1x1 + ρ(W1)P1P

†
1S1x1

= ρ(W1)[P1x1 − P1P
†
1 (R1 − S1)x1]

= ρ(W1)[P1x1 −R1x1 + S1x1]

= ρ(W1)Ax1,

where we have used the facts that 0 < ρ(W1) < 1 and R(R1 − S1) ⊆ R(P1). This

proves that Ax1 ≥ 0.

Also, by using equations (3.1) and (3.2), we get

W2x−ρ(W1)x =

P †2R2x1 − P †2S2x2 − ρ(W1)x1

x1 − ρ(W1)x2


=

(P †2R2 − P †1R1)x1 + 1
ρ(W1)

(P †1S1 − P †2S2)x1

0


=

∇
0

 ,

where ∇ = (P †2R2 − P †1R1)x1 + 1
ρ(W1)

(P †1S1 − P †2S2)x1.

Case(i) Let us assume that P †1R1 ≥ P †2R2. Since 0 < ρ(W1) < 1, we get (P †2R2 −
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P †1R1)x1 ≥ 1
ρ(W1)

(P †2R2 − P †1R1)x1. Then

∇ =(P †2R2 − P †1R1)x1 +
1

ρ(W1)
(P †1S1 − P †2S2)x1

≥ 1

ρ(W1)
(P †2R2 − P †1R1)x1 +

1

ρ(W1)
(P †1S1 − P †2S2)x1

=
1

ρ(W1)
[(P †2 (R2 − S2)x1 − P †1 (R1 − S1)x1]

=
1

ρ(W1)
[P †2P2 − P †2A− P

†
1P1 + P †1A]x1

=
1

ρ(W1)
(P †1 − P

†
2 )Ax1, (3.4)

where we have used the fact that P †1P1 = P †2P2. Since Ax1 ≥ 0 and P †1 ≥ P †2 ,

from the above inequality, we get ∇ ≥ 0. Then, W2x − ρ(W1)x =

∇
0

 ≥ 0. This

implies that ρ(W1)x ≤ W2x. So, by Lemma 1.1.1, ρ(W1) ≤ ρ(W2). This proves that

ρ(W1) ≤ ρ(W2) < 1.

Case(ii) Assume that P †1S1 ≥ P †2S2. Since 0 < ρ(W1) < 1 and Ax1 ≥ 0, again we

get

∇ =(P †2R2 − P †1R1)x1 +
1

ρ(W1)
(P †1S1 − P †2S2)x1

≥ (P †2R2 − P †1R1)x1 + (P †1S1 − P †2S2)x1

= (P †1 − P
†
2 )Ax1 ≥ 0.

This implies that W2x− ρ(W1)x =

∇
0

 ≥ 0.

So, again by Lemma 1.1.1, we get ρ(W1) ≤ ρ(W2). This proves that ρ(W1) ≤

ρ(W2) < 1.
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The following example shows that the converse of Theorem 3.3.1 is not true.

Example 3.3.1. Let A =

 3 −2 0

−1 1 0

. Let P1 =

5 −1 0

0 1 0

 ,

R1 =

1 0 0

0 0 0

 , S1 =

−1 −1 0

−1 0 0

 , P2 =

3 0 0

0 2 0

 , R2 =

0 1 0

0 1 0



and S2 =

 0 −1 0

−1 0 0

. Then P †1 = 1
5


1 1

0 5

0 0

 , P †1R1 = 1
5


1 0 0

0 0 0

0 0 0

 , P †1S1 =

1
5


−2 −1 0

−5 0 0

0 0 0

 , P †2 = 1
6


2 0

0 3

0 0

 , P †2R2 = 1
6


0 2 0

0 3 0

0 0 0

 and P †2S2 = 1
6


0 −2 0

−3 0 0

0 0 0

.

It is easy to verify that A = P1 − R1 + S1 is a regular proper double splitting

and A = P2 − R2 + S2 is a weak regular proper double splitting. Also, 0.9079 =

ρ(W1) ≤ ρ(W2) = 0.9158 < 1. However, the conditions P †1 ≥ P †2 , P
†
1R1 ≥ P †2R2 and

P †1S1 ≥ P †2S2 do not hold.

Corollary 3.3.1. (Theorem 3.1, [60]) Let A−1 ≥ 0. Let A = P1 − R1 + S1 be a

regular double splitting and A = P2 − R2 + S2 be a weak regular double splitting. If

P−11 ≥ P−12 and any one of the following conditions,

(i) P−11 R1 ≥ P−12 R2

(ii) P−11 S1 ≥ P−12 S2

holds, then ρ(W1) ≤ ρ(W2) < 1, where W1 =

P−11 R1 −P−11 S1

I 0

 and

W2 =

P−12 R2 −P−12 S2

I 0

.

Corollary 3.3.2. Let A−1 ≥ 0. Let A = P1 − R1 + S1 be a regular double splitting

and A = P2−R2 +S2 be a weak regular double splitting. If P−11 ≥ P−12 and R1 ≥ R2
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hold, then ρ(W1) ≤ ρ(W2) < 1.

The conclusion of Theorem 3.3.1 can also be achieved by replacing a regular

proper double splitting A = P1−R1+S1 with a weak regular proper double splitting;

and a weak regular proper double splitting A = P2 −R2 + S2 with a regular proper

double splitting, in Theorem 3.3.1. The following is the exact statement of this

result.

Theorem 3.3.2. Let A ∈ Rm×n such that e = (1, 1, ..., 1)t ∈ R(A) and A† ≥ 0. Let

A = P1−R1 +S1 be a weak regular proper double splitting and let A = P2−R2 +S2

be a regular proper double splitting such that P †2 has no zero row and P2P
†
2 ≥ 0. If

P †1 ≥ P †2 and any one of the following conditions,

(i) P †1R1 ≥ P †2R2

(ii) P †1S1 ≥ P †2S2

holds, then ρ(W1) ≤ ρ(W2) < 1.

Proof. Since A = P1 − R1 + S1 is a weak regular proper double splitting of A, by

Theorem 3.2.2, we get ρ(W1) < 1. Similarly, ρ(W2) < 1. It remains to show that

ρ(W1) ≤ ρ(W2).

Let J be an m× n matrix in which each entry is equal to 1. For given ε > 0, set

Aε = A−εJ, R1(ε) = R1+ 1
2
εJ , S1(ε) = S1− 1

2
εJ , R2(ε) = R2+ 1

2
εJ, S2(ε) = S2− 1

2
εJ,

W1(ε) =

P †1R1(ε) −P †1S1(ε)

I 0

 and W2(ε) =

P †2R2(ε) −P †2S2(ε)

I 0

. We have,

e = (1, 1, ..., 1)t ∈ R(A). So, there exists a matrix B ∈ Rn×n such that J = AB.

ThenAε = A−εJ = (A−εAB) = (A−εAA†AB) = (A−εAA†J) = A(I−εA†J).Now,

choose the above ε such that ρ(εA†J) < 1 and N(Aε) = N(A). Since ρ(εA†J) < 1,

I−εA†J is invertible and hence R(Aε) = R(A). Then Aε = A−εJ becomes a proper

splitting and thus we can conclude that Aε = P1 − R1(ε) + S1(ε) is a weak regular
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proper double splitting and Aε = P2 − R2(ε) + S2(ε) is a regular proper double

splitting.

For the same ε, define X = (I − εA†J)−1A†, we shall prove that X is the Moore-

Penrose inverse of Aε. Let x ∈ R(Atε). Then

XAεx = (I − εA†J)−1A†(A− εAA†J)x

= (I − εA†J)−1(A†Ax− εA†AA†Jx)

= (I − εA†J)−1(x− εA†Jx)

= x

and for y ∈ N(Atε), we get

Xy = (I − εA†J)−1A†y = 0

Hence, by the definition, A†ε = X = (I − εA†J)−1A†. Also,

A†ε = (I+εA†J+ε(A†J)2+ ...)A† ≥ 0. Then ρ(P †2 (R2(ε)−S2(ε))) < 1. So, by Lemma

3.2.1, ρ(W2(ε)) < 1.

Clearly, P †2R2(ε) > 0 and −P †2S2(ε) > 0. So, W2(ε) ≥ 0. Then, by the Perron-

Frobenius theorem, there exists a vector x(ε) =

x1(ε)
x2(ε)

 ∈ R2n, x(ε) ≥ 0 and

x(ε) 6= 0 such that W2(ε)x(ε) = ρ(W2(ε))x(ε). This implies,

P †2R2(ε)x1(ε)− P †2S2(ε)x2(ε) = ρ(W2(ε))x1(ε) (3.5)

x1(ε) = ρ(W2(ε))x2(ε). (3.6)

If ρ(W2(ε)) = 0 then from equations (3.5) and (3.6), x(ε) = 0. This is a contradiction.

So, 0 < ρ(W2(ε)) < 1. Then by using equations (3.5) and (3.6), as in the proof
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of the Theorem 3.3.1, we can show that ρ(W2(ε))Aεx1(ε) ≥ 0. This implies that

Aεx1(ε) ≥ 0. Also, from equations (3.5) and (3.6), we get

W1(ε)x(ε)− ρ(W2(ε))x(ε)

=

P †1R1(ε)x1(ε)− P †1S1(ε)x2(ε)− ρ(W2(ε))x1(ε)

x1(ε)− ρ(W2(ε))x2(ε)


=

(P †1R1(ε)− P †2R2(ε))x1(ε) + 1
ρ(W2(ε))

(P †2S2(ε)− P †1S1(ε))x1(ε)

0


=

∇
0

 ,

where ∇ = (P †1R1(ε)− P †2R2(ε))x1(ε) + 1
ρ(W2(ε))

(P †2S2(ε)− P †1S1(ε))x1(ε).

Case(i) Assume that P †1R1 ≥ P †2R2. Since 0 < ρ(W2(ε)) < 1, we get that (P †1R1(ε)−

P †2R2(ε))x1(ε) ≤ 1
ρ(W2(ε))

(P †1R1(ε)− P †2R2(ε))x1(ε). Therefore,

∇ ≤ 1

ρ(W2(ε))
(P †1R1(ε)− P †2R2(ε))x1(ε) +

1

ρ(W2(ε))
(P †2S2(ε)− P †1S1(ε))x1(ε)

=
1

ρ(W2(ε))
[(P †1 (R1(ε)− S1(ε))x1(ε)− P †2 (R2(ε)− S2(ε))x1(ε)]

=
1

ρ(W2(ε))
[P †1P1 − P †1Aε − P

†
2P2 + P †2Aε]x1(ε)

=
1

ρ(W2(ε))
(P †2 − P

†
1 )Aεx1(ε)

where we have used the fact that P †1P1 = P †2P2. Since Aεx1(ε) ≥ 0 and P †1 ≥ P †2 ,

we get that ∇ ≤ 0. Thus, W1(ε)x(ε) − ρ(W2(ε))x(ε) =

∇
0

 ≤ 0. This implies,

W1(ε)x(ε) ≤ ρ(W2(ε))x(ε). So, by Lemma 1.1.1, ρ(W1(ε)) ≤ ρ(W2(ε)).



CHAPTER 3. 63

Now, from the continuity of eigenvalues, we have

ρ(W1) = lim
ε→0

ρ(W1(ε)) ≤ lim
ε→0

ρ(W2(ε)) = ρ(W2).

Case(ii) Assume that P †1S1 ≥ P †2S2. We have ρ(εA†J) < 1. Choose the above ε

small enough such that

P †1S1 − P †2S2 ≥
ε

2
(P †1 − P

†
2 )J.

Since, P †1S1(ε) ≥ P †2S2(ε), A
†
ε ≥ 0 and 0 < ρ(W2) < 1, we get

∇ ≤ (P †1R1(ε)− P †2R2(ε))x1(ε) + (P †2S2(ε)− P †1S1(ε))x1(ε)

= (P †2 − P
†
1 )Aεx1(ε) ≤ 0.

This implies that W1(ε)x(ε)− ρ(W2(ε))x(ε) =

∇
0

 ≤ 0.

So, W1(ε)x(ε) ≤ ρ(W2(ε))x(ε). Then, by Lemma 1.1.1, ρ(W1(ε)) ≤ ρ(W2(ε)). Similar

to the proof of case(i), this implies that ρ(W1) ≤ ρ(W2).

The following example illustrates Theorem 3.3.2.

Example 3.3.2. Let A =

1 0 1

0 1 0

 then A† = 1
2


1 0

0 2

1 0

 ≥ 0.

Set P1 =

3 0 3

0 3 0

 , R1 =

2 0 2

0 1 0

 and S1 =

0 0 0

0 −1 0

. P2 =

4 0 4

0 4 0

 ,

R2 =

2 0 2

0 0 0

 and S2 =

−1 0 −1

0 −3 0

. Then P †1 = 1
6


1 0

0 2

1 0

 , P †1R1 =
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1
6


2 0 2

0 2 0

2 0 2

 and P †1S1 = 1
6


0 0 0

0 −2 0

0 0 0

. P †2 = 1
8


1 0

0 2

1 0

 , P †2R2 = 1
8


2 0 2

0 0 0

2 0 2



and P †2S2 = 1
8


−1 0 −1

0 −6 0

−1 0 −1

. Note that A = P1−R1+S1 is a weak regular proper

double splitting and A = P2 − R2 + S2 is a regular proper double splitting. Also,

e ∈ R(A), P †2 has no zero row and P2P
†
2 ≥ 0. We can verify that P †1 ≥ P †2 , and

P †1R1 ≥ P †2R2. Hence 0.7676 = ρ(W1) ≤ ρ(W2) = 0.8660 < 1.

The following result is an obvious consequence of Theorem 3.3.2

Corollary 3.3.3. (Theorem 3.2, [60]) Let A−1 ≥ 0. Let A = P1 − R1 + S1 be a

weak regular double splitting and A = P2 − R2 + S2 be a regular double splitting. If

P−11 ≥ P−12 and any one of the following conditions,

(i) P−11 R1 ≥ P−12 R2

(ii) P−11 S1 ≥ P−12 S2

holds, then ρ(W1) ≤ ρ(W2) < 1.

The next result proof is similar to the proof of Theorem 3.3.1. Thus we skip the

proof.

Theorem 3.3.3. Let A ∈ Rm×n and A† ≥ 0. Let A = P1 − R1 + S1 be a weak

regular proper double splitting and A = P2−R2 +S2 be a weak regular proper double

splitting. If P †1A ≥ P †2A and any of the following conditions,

(i) P †1R1 ≥ P †2R2

(ii) P †1S1 ≥ P †2S2

holds, then ρ(W1) ≤ ρ(W2) < 1.
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4.1 Introduction

In this chapter, we study some more convergence theorems and comparison theorems

of iterative methods for solving singular system of linear equations. But, this time

we use a matrix splitting called {T, S} splitting. This splitting was introduced by

Djordjević and Stanimirović [18]. It is a generalization of well known splittings

namely index splitting and proper splitting; and it is applicable in characterization

and representation of an outer inverse with prescribed range and null space. Also,

it is useful to construct iterative methods which produce solution of a given linear

system. In this chapter, we will obtain conditions for convergence of these iterative

methods, Also, we obtain comparison results to study the rate of convergence of

these iterative methods.

Recently, Mishra and Sivakumar [44] considered subclass of proper splitting of

matrices and derived few comparison theorems. Also, in another paper Mishra

[43] proposed the extension of the nonnegative splitting for rectangular matrices

called proper nonnegative splitting (a decomposition A = U − V of A ∈ Rm×n is

called proper nonnegative splitting if it is a proper splitting such that U †V ≥ 0)

and established different convergence and comparison theorems. Jena et al. [28]

obtained several convergence and comparison theorems for proper regular splittings

and proper weak regular splittings of rectangular matrices. We review some of those

results to provide motivation for results of this chapter.

The following two results are convergence results for nonnegative splittings of a

rectangular matrix.

Theorem 4.1.1. (Lemma 3.4, [43]) Let A = U−V be a proper nonnegative splitting

of A ∈ Rm×n and A†U ≥ 0 then ρ(U †V ) =
ρ(A†U)− 1

ρ(A†U)
< 1.

Theorem 4.1.2. (Lemma 3.5, [43]) Let A = U−V be a proper nonnegative splitting
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of A ∈ Rm×n. Then A†V ≥ 0 if and only if ρ(U †V ) =
ρA†V )

1 + ρ(A†V )
< 1.

The next two results are comparison results for proper regular splittings. These

results were proved by Jena et al. [28].

Theorem 4.1.3. (Theorem 3.2, [28]) Let A = U1 − V1 = U2 − V2 be two proper

regular splittings of A ∈ Rm×n. If A† ≥ 0 and V2 ≥ V1, then 1 > ρ(U †2V2) ≥ ρ(U †1V1).

Theorem 4.1.4. (Theorem 3.3, [28]) Let A = U1 − V1 = U2 − V2 be two proper

regular splittings of A ∈ Rm×n. If A† ≥ 0 and U †1 ≥ U †2 , then 1 > ρ(U †2V2) ≥ ρ(U †1V1).

We generalize the above four results for {T, S} splittings in Theorem 4.3.1, The-

orem 4.3.2, Theorem 4.4.1 and Theorem 4.4.2, respectively. We collect some defini-

tions and preliminary results in the next section.

4.2 {T, S} splittings and characterization of A
(2)
T,S

We begin this section with the definition of {T, S} splitting which play a key role

in this chapter. Then, we collect results characterizing A
(2)
T,S, in terms of these

splittings.

Definition 4.2.1. Let A ∈ Rm×n be of rank r, let T be a subspace of Rn of dimension

s ≤ r and let S be a subspace of Rm of dimension m−s. Then the splitting A = U−V

is called the {T, S} splitting of A if UT ⊕ S = Rm.

Definition 4.2.2. Let A ∈ Rn×n with k = ind(A). Then the splitting A = U − V is

called an index splitting of A if R(U) = R(Ak) and N(U) = N(Ak).

Note that {T, S} splitting reduces to index splitting if m = n, T = R(U) =

R(Ak) and S = N(U) = N(Ak), where k ≥ ind(A). On the other hand, {T, S}

splitting reduces to proper splitting if T = R(U t) = R(At) and S = N(U t) = N(At).
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The following result characterize the generalized inverse A
(2)
T,S and it will be used

in proving main results of this chapter.

Theorem 4.2.1. (Theorem 2.1, [18]) Let A ∈ Rm×n be of rank r, let T be a subspace

of Rn of dimension s ≤ r and let S be a subspace of Rm of dimension m − s,

such that AT ⊕ S = Rm. Assume that A = U − V is a {T, S} splitting of A

and dim(T ) ≤ rank(U). Then the generalized inverse A
(2)
T,S satisfies the following

conditions:

(i) U
(2)
T,S − A

(2)
T,S = −U (2)

T,SV A
(2)
T,S = −A(2)

T,SV U
(2)
T,S,

(ii) A
(2)
T,S = (I − U (2)

T,SV )−1U
(2)
T,S = U

(2)
T,S(I − V U (2)

T,S)−1 and

(iii) U
(2)
T,S = (I + A

(2)
T,SV )−1A

(2)
T,S = A

(2)
T,S(I + V A

(2)
T,S)−1.

If A = U − V is a {T, S} splitting of A ∈ Rm×n, then the following result gives

equivalent conditions for ρ(U
(2)
T,SV ) < 1.

Theorem 4.2.2. (Theorem 2.2, [18]) Let A = U − V is a {T, S} splitting of A ∈

Rm×n, such that the conditions of Theorem 4.2.1 are satisfied. Further, let U
(2)
T,S ≥ 0

and U
(2)
T,SV ≥ 0. Then the following statements are equivalent:

(i) A
(2)
T,S ≥ 0.

(ii) A
(2)
T,SV ≥ 0.

(iii) ρ(U
(2)
T,SV ) =

ρ(A
(2)
T,SV )

1 + ρ(A
(2)
T,SV )

< 1.

We conclude this section with a result that has motivated us to prove the main

results of this chapter.

Theorem 4.2.3. (Corollary 2.3, [18]) Let A = U − V is a {T, S} splitting of

A ∈ Rm×n, such that the conditions of Theorem 4.2.1 are satisfied. Suppose that

x ∈ T, then:

(i) The inverse A
(2)
T,Sb is the unique solution of the system x = U

(2)
T,SV x + U

(2)
T,Sb for
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any b ∈ Rn.

(ii) The iteration xi+1 = U
(2)
T,SV x

i + U
(2)
T,Sb, b ∈ Rn, converges to A

(2)
T,Sb for every

x◦ ∈ Rn if and only if ρ(U
(2)
T,SV ) < 1.

As mentioned in Chapter 1, if the matrix A has two decompositions or splittings

then the comparison of the spectral radius of the corresponding iteration matrices,

is an important problem in analyzing the iterative scheme x(k+1) = Hx(k) + c of the

system Ax = b (here A = U −V, where U is nonsingular and the matrix H = U−1V

is called an iteration matrix [69] and c = U−1b). The comparison of asymptotic

rates of convergence of the iterative schemes induced by two splittings of a given

matrix has been studied by many authors; for example Varga [69], Elsner and Song,

to name a few. We obtain some convergence and comparison theorems for {T, S}

splittings in the next section.

4.3 Convergence results for {T, S} splittings

We begin this section with a result that gives a relation between the eigenvalues of

certain matrices induce by the {T, S} splitting of a rectangular matrix.

Lemma 4.3.1. Let A = U − V be a {T, S} splitting of A ∈ Rm×n, such that the

conditions of Theorem 4.2.1 are satisfied. Let µi, 1 ≤ i ≤ p and λj, 1 ≤ j ≤ p be the

eigenvalues of the matrices U
(2)
T,SV ( or V U

(2)
T,S) and A

(2)
T,SV (or V A

(2)
T,S), respectively.

Then for every j, we have 1 + λj 6= 0. Also, for every i, there exists j such that

µi =
λj

1+λj
and for every j, there exists i such that λj = µi

1−µi .

Proof. Let λ be an eigenvalue of the matrix U
(2)
T,SV and x be the corresponding

eigenvector. By Theorem 4.2.1, U
(2)
T,S = (I + A

(2)
T,SV )−1A

(2)
T,S. This implies that (I +

A
(2)
T,SV )U

(2)
T,SV x = A

(2)
T,SV x. Then (I + A

(2)
T,SV )λx = A

(2)
T,SV x. Thus A

(2)
T,SV x = λ

1−λx

(λ 6= 1). This shows that the matrices U
(2)
T,SV and A

(2)
T,SV have the same eigenvectors.
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Now, let y be an eigenvector corresponding to the eigenvalue µi of the matrix

U
(2)
T,SV. Then, y is also an eigenvector of the matrix A

(2)
T,SV corresponding to some

eigenvalue λj. By Theorem 4.2.1, µiy = U
(2)
T,SV y = (I + A

(2)
T,SV )−1A

(2)
T,SV y =

λj
1+λj

y.

This implies that µi =
λj

1+λj
. Similarly, one can show that for each j, there exists i

such that λj = µi
1−µi .

Note that if T = R(U t) = R(At) and S = N(U t) = N(At) in Lemma 4.3.1 then

it reduces to Lemma 2.6 in [44].

We now present a convergent result for {T, S} splittings of a rectangular matrix.

This result is a generalization of Lemma 3.4 in [43].

Theorem 4.3.1. Let A = U − V be a {T, S} splitting of A ∈ Rm×n such that the

conditions of Theorem 4.2.1 are satisfied. Suppose that A
(2)
T,SU ≥ 0 and U

(2)
T,SV ≥ 0.

Then ρ(U
(2)
T,SV ) =

ρ(A
(2)
T,SU)− 1

ρ(A
(2)
T,SU)

< 1.

Proof. We have U
(2)
T,SV ≥ 0. So, by the Perron-Frobenius theorem there exists a

nonnegative vector 0 6= x such that U
(2)
T,SV x = ρ(U

(2)
T,SV )x. Hence x ∈ R(U

(2)
T,S) = T =

R(A
(2)
T,S) so that U

(2)
T,SUx = x. Also, we have A

(2)
T,S = (I − U (2)

T,SV )−1U
(2)
T,S by Theorem

4.2.1. So, A
(2)
T,SU = (I − U (2)

T,SV )−1U
(2)
T,SU. Then A

(2)
T,SUx = (I − U (2)

T,SV )−1U
(2)
T,SUx =

(I − U
(2)
T,SV )−1x = 1

1−ρ(U(2)
T,SV )

x. Since A
(2)
T,SU ≥ 0, it follows that 1

1−ρ(U(2)
T,SV )

is a

nonnegative eigenvalue of A
(2)
T,SU. Hence 0 ≤ 1

1−ρ(U(2)
T,SV )

≤ ρ(A
(2)
T,SU). This implies

that ρ(U
(2)
T,SV ) ≤ ρ(A

(2)
T,SU)−1

ρ(A
(2)
T,SU)

.

Again, the condition A
(2)
T,SU ≥ 0 implies existence of a nonnegative vector 0 6= y

such thatA
(2)
T,SUy = ρ(A

(2)
T,SU)y. Then y ∈ R(A

(2)
T,S) = R(U

(2)
T,S). Therefore ρ(A

(2)
T,SU)y =

(I − U (2)
T,SV )−1U

(2)
T,SUy = (I − U (2)

T,SV )−1y. So, we have (I − U (2)
T,SV )−1y = ρ(A

(2)
T,SU)y.

This implies that 1

ρ(A
(2)
T,SU)

y = y−U (2)
T,SV y i.e., U

(2)
T,SV y =

ρ(A
(2)
T,SU)−1

ρ(A
(2)
T,SU)

y. Then ρ(U
(2)
T,SV ) ≥

ρ(A
(2)
T,SU)−1

ρ(A
(2)
T,SU)

. Now, from the earlier part of the proof it follows that ρ(U
(2)
T,SV ) =
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ρ(A
(2)
T,SU)− 1

ρ(A
(2)
T,SU)

< 1.

Next, we obtain another convergence result which generalizes Lemma 3.5 in [43].

Theorem 4.3.2. Let A = U − V is a {T, S} splitting of A ∈ Rm×n such that the

conditions of Theorem 4.2.1 are satisfied. Suppose that U
(2)
T,SV ≥ 0. Then A

(2)
T,SV ≥ 0

if and only if ρ(U
(2)
T,SV ) =

ρ(A
(2)
T,SV )

1 + ρ(A
(2)
T,SV )

< 1.

Proof. We first assume that A
(2)
T,SV ≥ 0. Let λ and µ be the eigenvalues of A

(2)
T,SV

and U
(2)
T,SV, respectively. Let f(λ) = λ

1+λ
, λ ≥ 0. Then f is a strictly increasing

function. We have µ = λ
1+λ

by Lemma 4.3.1. So, µ attains its maximum when λ is

maximum. However, λ is maximum when λ = ρ(A
(2)
T,SV ). As a result, the maximum

value of µ is ρ(U
(2)
T,SV ). Hence ρ(U

(2)
T,SV ) =

ρ(A
(2)
T,SV )

1 + ρ(A
(2)
T,SV )

< 1.

Conversly, assume that ρ(U
(2)
T,SV ) =

ρ(A
(2)
T,SV )

1 + ρ(A
(2)
T,SV )

< 1. Since A = U −V is a {T, S}

splitting, we have A
(2)
T,S = (I − U

(2)
T,SV )−1U

(2)
T,S by Theorem 4.2.1. The condition

ρ(U
(2)
T,SV ) < 1 implies that (I − U

(2)
T,SV )−1 =

∑∞
k=0(U

(2)
T,SV )k. Therefore A

(2)
T,SV =∑∞

k=1(U
(2)
T,SV )k ≥ 0.

The following result provides some more properties of {T, S} splitting, in addition

to the properties discussed in Section 4.2.

Theorem 4.3.3. Let A = U − V be a {T, S} splitting of A ∈ Rm×n such that the

conditions of Theorem 4.2.1 are satisfied. Suppose that U
(2)
T,SV ≥ 0 and A

(2)
T,SV ≥ 0.

Then

(i) (I − U (2)
T,SV )−1 ≥ 0.

(ii) (I − U (2)
T,SV )−1 ≥ I.

(iii) A
(2)
T,SV ≥ U

(2)
T,SV.
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Proof. (i) By Theorem 4.3.2, we have ρ(U
(2)
T,SV ) < 1. Then by Theorem 1.1.3, (I −

U
(2)
T,SV )−1 exists and (I − U (2)

T,SV )−1 =
∑∞

k=0(U
(2)
T,SV )k ≥ 0 since U

(2)
T,SV ≥ 0.

(ii) (I − U (2)
T,SV )−1 =

∑∞
k=0(U

(2)
T,SV )k = I +

∑∞
k=1(U

(2)
T,SV )k ≥ I since U

(2)
T,SV ≥ 0.

(iii) From Theorem 4.2.1, we have A
(2)
T,S = (I−U (2)

T,SV )−1U
(2)
T,S. So (I−U (2)

T,SV )A
(2)
T,S =

U
(2)
T,S. Upon post multiplying by V, we have A

(2)
T,SV −U

(2)
T,SV = U

(2)
T,SV A

(2)
T,SV ≥ 0 since

U
(2)
T,SV ≥ 0 and A

(2)
T,SV ≥ 0. Hence A

(2)
T,SV ≥ U

(2)
T,SV.

Now we prove one more convergent result for {T, S} splitting which is a gener-

alization of Theorem 3.9 in [43].

Theorem 4.3.4. Let A = U − V be a {T, S} splitting of A ∈ Rm×n such that the

conditions of Theorem 4.2.1 are satisfied. Suppose that U
(2)
T,SV ≥ 0, ρ(U

(2)
T,SV ) < 1

and A
(2)
T,S ≥ 0, then

(i) A
(2)
T,S ≥ U

(2)
T,S.

(ii) A
(2)
T,SV ≥ U

(2)
T,SV.

(iii) ρ(U
(2)
T,SV ) =

ρ(A
(2)
T,SV )

1 + ρ(A
(2)
T,SV )

.

Proof. (i) By Theorem 4.2.1, we have A
(2)
T,S = (I − U

(2)
T,SV )−1U

(2)
T,S so that (I −

U
(2)
T,SV )A

(2)
T,S = U

(2)
T,S. Therefore A

(2)
T,S − U

(2)
T,S = U

(2)
T,SV A

(2)
T,S ≥ 0. i.e., A

(2)
T,S ≥ U

(2)
T,S.

(ii)A
(2)
T,S = (I−U (2)

T,SV )−1U
(2)
T,S by Theorem 4.2.1. The condition ρ(U

(2)
T,SV ) < 1 implies

that (I −U (2)
T,SV )−1 =

∑∞
k=0(U

(2)
T,SV )k. Therefore A

(2)
T,SV −U

(2)
T,SV =

∑∞
k=2(U

(2)
T,SV )k ≥

0. i.e., A
(2)
T,SV ≥ U

(2)
T,SV.

(iii) From (ii) we have A
(2)
T,SV ≥ U

(2)
T,SV ≥ 0. Hence ρ(U

(2)
T,SV ) =

ρ(A
(2)
T,SV )

1 + ρ(A
(2)
T,SV )

by

Theorem 4.3.2.

We next obtain comparison theorems for {T, S} splittings.
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4.4 Comparison results for {T, S} splittings

Theorem 4.4.1. Let A ∈ Rm×n be of rank r, let T be a subspace of Rn of dimension

s ≤ r and let S be a subspace of Rm of dimension m − s, such that AT ⊕ S =

Rm. Let A = U − V = P − Q be two {T, S} splittings of A such that dim(T ) ≤

min{rank(U), rank(P )} and U
(2)
T,S ≥ 0, P

(2)
T,S ≥ 0, V ≥ 0, Q ≥ 0. If A

(2)
T,S ≥ 0 and

Q ≥ V, then 1 > ρ(P
(2)
T,SQ) ≥ ρ(U

(2)
T,SV ).

Proof. By Theorem 4.3.2, we have ρ(U
(2)
T,SV ) < 1 and ρ(P

(2)
T,SQ) < 1. Also, A

(2)
T,S ≥ 0

and Q ≥ V ≥ 0. Then A
(2)
T,SQ ≥ A

(2)
T,SV ≥ 0 and Theorem 1.1.4 yields ρ(A

(2)
T,SQ) ≥

ρ(A
(2)
T,SV ). Let λ1 and λ2 be the eigenvalue of A

(2)
T,SV and A

(2)
T,SQ, respectively. Then

1 > ρ(P
(2)
T,SQ) =

ρ(A
(2)
T,SQ)

1 + ρ(A
(2)
T,SQ)

≥
ρ(A

(2)
T,SV )

1 + ρ(A
(2)
T,SV )

= ρ(U
(2)
T,SV ) since λ

1+λ
is a strictly

increasing function.

Note that if T = R(U t) = R(P t) = R(At) and S = N(U t) = N(P t) = N(At)

then the above result reduces to Theorem 3.2 in [28]. We illustrates Theorem 4.4.1

with The following example .

Example 4.4.1. Let A =

0 1 0

0 0 0

 . Set U =

1 1 0

0 0 1

 , V =

1 0 0

0 0 1

 ,

P =

1 2 1

0 0 1

 and Q =

1 1 1

0 0 1

 . Also, let T = {(x, x, 0)t : x ∈ R} and

S = {(0, y)t : y ∈ R}, then T is a subspace of R3 with dimension 1 and S is

a subspace of R2 with dimension 1. Further AT ⊕ S = R2, UT ⊕ S = R2 and

PT⊕S = R2. So A = U−V = P−Q are two {T, S} splittings of A and Q ≥ V ≥ 0.

Now A
(2)
T,S =


1 0

1 0

0 0

 ≥ 0, U
(2)
T,S = 1

2


1 0

1 0

0 0

 ≥ 0, P
(2)
T,S = 1

3


1 0

1 0

0 0

 ≥ 0, U
(2)
T,SV =
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1
2


1 0 0

1 0 0

0 0 0

 and P
(2)
T,SQ = 1

3


1 1 1

1 1 1

0 0 0

 . Thus, ρ(U
(2)
T,SV ) = 1

2
and ρ(P

(2)
T,SQ) = 2

3
.

Hence 1 > ρ(P
(2)
T,SQ) ≥ ρ(U

(2)
T,SV ).

Another comparison theorem for {T, S} splitting is proved, next. This general-

izes Theorem 3.3 in [28].

Theorem 4.4.2. Let A = U − V = P − Q be two {T, S} splittings of A ∈ Rm×n

such that the conditions of Theorem 4.4.1 are satisfied. If A
(2)
T,S ≥ 0 and U

(2)
T,S ≥ P

(2)
T,S,

then 1 > ρ(P
(2)
T,SQ) ≥ ρ(U

(2)
T,SV ).

Proof. By Theorem 4.2.2, we have ρ(U
(2)
T,SV ) < 1 and ρ(P

(2)
T,SQ) < 1. Also ρ(U

(2)
T,SV )

and ρ(P
(2)
T,SQ) are strictly monotone increasing functions of ρ(A

(2)
T,SV ) and ρ(A

(2)
T,SQ),

respectively. Therefore, it is enough to show that ρ(A
(2)
T,SQ) ≥ ρ(A

(2)
T,SV ). By the

hypothesis, we have A = U − V = P − Q two {T, S} splittings satisfying the

conditions of Theorem 4.4.1 and A
(2)
T,S ≥ 0. So, I + A

(2)
T,SV and I + QA

(2)
T,S are both

invertible and nonnegative. Now U
(2)
T,S ≥ P

(2)
T,S implies A

(2)
T,S(I + QA

(2)
T,S) ≥ (I +

A
(2)
T,SV )A

(2)
T,S i.e., A

(2)
T,SQA

(2)
T,S ≥ A

(2)
T,SV A

(2)
T,S. Then post multiplying by Q, and again

by V , we have (A
(2)
T,SQ)2 ≥ A

(2)
T,SV A

(2)
T,SQ and A

(2)
T,SQA

(2)
T,SV ≥ (A

(2)
T,SV )2. Therefore,

by Theorem 1.1.4, we have

ρ2(A2
T,SQ) ≥ ρ(A

(2)
T,SV A

(2)
T,SQ) = ρ(A

(2)
T,SQA

(2)
T,SV ) ≥ ρ2(A

(2)
T,SV ).

Hence ρ(A
(2)
T,SQ) ≥ ρ(A

(2)
T,SV ).

The following example illustrates Theorem 4.4.2.

Example 4.4.2. Let A =

1 0 0

0 0 0

 . Set U =

2 1 0

0 1 0

 , V =

1 1 0

0 1 0

 ≥ 0,
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P =

3 0 0

0 1 0

 and Q =

2 0 0

0 1 0

 ≥ 0. Also, let T = {(x, 0, 0)t : x ∈ R}

and S = {(0, y)t : y ∈ R}, then T is a subspace of R3 with dimension 1 and S

is a subspace of R2 with dimension 1. Further AT ⊕ S = R2, UT ⊕ S = R2 and

PT ⊕ S = R2. So A = U − V = P −Q are two {T, S} splittings of A.

Now A
(2)
T,S =


1 0

0 0

0 0

 ≥ 0, U
(2)
T,S = 1

2


1 0

0 0

0 0

 , P
(2)
T,S = 1

3


1 0

0 0

0 0

 , U
(2)
T,SV = 1

2


1 1 0

0 0 0

0 0 0



and P
(2)
T,SQ = 1

3


2 1 0

0 0 0

0 0 0

 . So U
(2)
T,S ≥ P

(2)
T,S ≥ 0 and ρ(U

(2)
T,SV ) = 1

2
, ρ(P

(2)
T,SQ) = 2

3
.

Hence 1 > ρ(P
(2)
T,SQ) ≥ ρ(U

(2)
T,SV ).
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5.1 Introduction

In usual inner product setting, a matrix A ∈ Rm×n is called cone nonnegative with

respect to cones K1 and K2 if AK1 ⊆ K2. In this chapter, we characterize cone

nonnegativity of Moore-Penrose inverses of Gram matrices in an indefinite inner

product space with respect to indefinite matrix product. This will be done through

the acuteness (or obtuseness) property of certain closed convex cones.

As we discussed in Chapter 1, monotonicity has been extended to characterize

nonnegativity of generalized inverses. In particular, nonnegativity of the inverse of

Gram operators has been studied in connection with certain optimization problems

[13], where a characterization is proved. This characterization has been extended to

operators between Hilbert spaces in [33] and [62]. In the later article, a completely

new approach was proposed to prove this characterization. The following result is

a finite dimensional version of this characterization.

Theorem 5.1.1. Let A ∈ Rm×n and K be a closed cone in Rn with A†AK ⊆ K.

Then the following conditions are equivalent:

(i) (A†)∗K∗ is acute.

(ii) (A∗A)†K∗ ⊆ K +N(A).

(iii) AK is obtuse.

The above result is a motivation for results of this chapter. The sole aim of the

present chapter is to extend this characterization of nonnegativity of the Moore-

Penrose inverse of a Gram operator in an indefinite inner product space with the

indefinite product of matrices, adopting the approach taken as in [62]. Again here,

nonnegativity should be interpreted in terms of taking one cone into another. This

result is proved in Theorem 5.3.2.

In Section 5.2, we collect certain preliminary results and fix the notation that
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will be used in the rest of this chapter. In Section 5.3, we prove a series of results

which lead to the main result of this chapter. We conclude this chapter with certain

remarks.

5.2 Definitions and preliminary results

We start this section with the definition of a Gram matrix in an indefinite inner

product space with respect to an indefinite matrix product. This notion is used

throughout this chapter.

Definition 5.2.1. Let A ∈ Rm×n. Then A[∗] ◦ A is called Gram matrix of A with

respect to the indefinite matrix product in an indefinite inner product space.

Definition 5.2.2. Let A ∈ Rm×n. The range space of A with respect to the indefinite

matrix product, R(A) is defined by R(A) = {y ∈ Rm : y = A ◦ x, x ∈ Rn} and the

null space of A with respect to the indefinite matrix product, N (A) is defined by

N (A) = {x ∈ Rn : A ◦ x = 0}.

Let R(A) and N(A) denote the range and null spaces of A with respect to

the usual matrix product, respectively. Then it follows that R(A) = R(A) and

N (A[∗]) = N(A∗).

We now move on to the definition of the Moore-Penrose inverse in an indefinite

inner product space with respect to the indefinite matrix product.

Definition 5.2.3. Let A ∈ Rm×n. Then the matrix X ∈ Rn×m is called the Moore-

Penrose inverse of A if it satisfies the following equations:

A ◦X ◦ A = A, X ◦ A ◦X = X, (A ◦X)[∗] = A ◦X, (X ◦ A)[∗] = X ◦ A.

Such an X will be denoted by A[†]. It is shown in [55] that the Moore-Penrose

inverse of any matrix exists over an indefinite inner product space with respect to
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the indefinite matrix product, whereas a similar result is false with the usual matrix

product. It easily follows from the definition that for A ∈ Rm×n, (A[†])[†] = A and

A[†] = NA†M . If N = M = I then A[†] = A†. We refer the reader to [5] (and the

references cited there in) for a detailed study of A†.

In the next lemma, we collect some more properties of A[†] that will be used in

proving main results of this paper. These properties can be proved easily, by the

direct verification of definitions.

Lemma 5.2.1. Let A ∈ Rm×n. Then

(i) (A[∗])
[†]

= (A[†])
[∗]
.

(ii) (A[∗] ◦ A)[†] = A[†] ◦ (A[†])[∗].

(iii) (A ◦ I)[†] = I ◦ A[†] and (I ◦ A)[†] = A[†] ◦ I.

(iv) R(A ◦ A[†]) = R(A) and R(A[†] ◦ A) = R(A[∗]).

(v) (A[∗] ◦ A)[†] ◦ (A[∗] ◦ A) = A[†] ◦ A.

We now briefly discuss the notions of a cone and its dual.

Definition 5.2.4. Let K be a subset of Rn. Then K is called a cone if (i) x, y ∈

K ⇒ x + y ∈ K and (ii) x ∈ K, and α ∈ R, α ≥ 0 ⇒ αx ∈ K. The dual of a

cone K in an indefinite inner product space is defined by K [∗] = {x ∈ Rn : [x, t] ≥

0, for all t ∈ K}. K is self dual if K [∗] = K.

Let K be a cone, closed in Rn with usual topology and let K∗ denote the dual

of the cone K, in the Euclidean setting. Then

K∗ = {x ∈ Rn : 〈x, t〉 ≥ 0, for all t ∈ K}

and K∗∗ = K. Note that K [∗] = NK∗ and K [∗][∗] = (K [∗])[∗] = N2K = K. In

particular, if K = Rn
+ then K [∗] = I ◦ Rn

+ = NRn
+ and K [∗][∗] = Rn

+.
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In the setting of an indefinite inner product space, a cone C is said to be acute

if [x, y] ≥ 0 for all x, y ∈ C and C is said to be obtuse if C [∗] ∩{cl span C} is acute.

In particular, let C = A ◦ I ◦K then we say that C = {A ◦ I ◦ x : x ∈ K} is obtuse

if (A ◦ I ◦K)[∗] ∩R(A ◦ I) is acute. According to Novikoff, the acuteness of a cone

C in Rn is defined by the inclusion C ⊆ C∗. We can easily verify this condition in

indefinite inner product spaces as C ⊆ C [∗].

The next definition is an equivalent definition for cone nonnegativity of a matrix.

Definition 5.2.5. Let K1 and K2 be cones in Rn and Rm, respectively. Let A ∈

Rm×n. Then A leaves a cone invariant (relative to K1, K2) with respect to the

indefinite matrix product, if A ◦K1 ⊆ K2.

Finally, we conclude this section with the following lemma which will be used

frequently in this thesis.

Lemma 5.2.2. (Lemma 2.2, [57]) Let A ∈ Rm×n and b ∈ Rm. Then, the linear

equation A ◦ x = b has a solution iff b ∈ R(A). In this case, the general solution is

given by x = A[†] ◦ b+ z where z ∈ N (A).

5.3 Main results

In the setting of an indefinite inner product space, for a given A ∈ Rm×n, Ra-

manathan and Sivakumar [57] derived a set of necessary and sufficient conditions

for a cone to be invariant under (A[∗]◦A)[†]. These conditions include pairwise acute-

ness (or pairwise obtuseness) of certain cones. In this chapter, we avoid using the

notion of pairwise acuteness of cones and characterize the Moore-Penrose inverses

of Gram matrices leaving a cone invariant in the approach of Sivakumar [62]. These

results generalize the existing results of Sivakumar [62] in the finite dimensional

setting from Euclidean spaces to indefinite inner product spaces.
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In this section, we prove a series of results that lead up to the main theorem

(Theorem 5.3.2). Some of these are interesting in their own right. First, we fix some

notations. Throughout this section, we consider an m× n real matrix A satisfying

the condition A ◦ I = I ◦ A (i.e., AN = MA, where M,N are weight matrices)

and K be a cone, closed in Rn with respect to the indefinite matrix (or vector)

product. Also, we make a note that for any A ∈ Rm×n, if A ◦ I = I ◦ A then

A[∗] = NA∗M = (MAN)∗ = (ANN)∗ = A∗.

Lemma 5.3.1. Let A ∈ Rm×n be such that A ◦ I = I ◦A and let K be a closed cone

in Rn with respect to the indefinite matrix product. Then

(i) [A ◦ x, y] = [x,A[∗] ◦ y] for all x ∈ Rn and for all y ∈ Rm.

(ii) u ∈ (A ◦ I ◦K)[∗] ⇒ (A ◦ I)[∗] ◦ u ∈ K [∗].

(iii) A[†] ◦ A ◦K ⊆ K ⇔ A[†] ◦ A ◦K [∗] ⊆ K [∗].

Proof.

(i) [A◦x, y] = 〈A◦x,My〉 = 〈ANx,My〉 = 〈x,NA∗My〉 = [x,A∗My] = [x,A[∗]My] =

[x,A[∗] ◦ y], since A[∗] = A∗.

(ii) Let u ∈ (A ◦ I ◦K)[∗] and r ∈ K. Then 0 ≤ [u,A ◦ I ◦ r] = [(A ◦ I)[∗] ◦ u, r], by

part (i). Thus (A ◦ I)[∗] ◦ u ∈ K [∗].

(iii) Let A[†]◦A◦K ⊆ K, y = A[†]◦A◦x with x ∈ K [∗], u ∈ K and u1 = A[†]◦A◦u ∈

K. Then [y, u] = [A[†] ◦A ◦ x, u] = [x, (A[†] ◦A)[∗] ◦ u] = [x,A[†] ◦A ◦ u] = [x, u1] ≥ 0.

This shows that y ∈ K [∗]. Hence A[†] ◦ A ◦ K [∗] ⊆ K [∗]. Similarly, one can easily

prove the converse part.

The condition (iii) in Lemma 5.3.1 is equivalent to ”K is invariant under A[†] ◦A

if and only if K [∗] is invariant under A[†] ◦ A”.

In the next result, we determine the set ((A[†])[∗] ◦ I ◦K [∗])[∗] under the condition

A[†] ◦ A ◦K ⊆ K.
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Theorem 5.3.1. Let A ∈ Rm×n be such that A ◦ I = I ◦ A and let K be a closed

cone in Rn with respect to the indefinite matrix product satisfying the condition

A[†] ◦ A ◦K ⊆ K. Then ((A[†])[∗] ◦ I ◦K [∗])[∗] = A ◦ I ◦K +N ((A ◦ I)[∗]).

Proof. First, we prove that

(A ◦ I ◦K)[∗] = (A[†])[∗] ◦ I ◦K [∗] +N ((A ◦ I)[∗]). (5.1)

For this, let y ∈ (A ◦ I ◦K)[∗]. Then by part (ii) of Lemma 5.3.1, z = (A ◦ I)[∗] ◦ y ∈

K [∗]. So, by Lemma 5.2.2, y = ((A ◦ I)[∗])[†] ◦ z+w for some w ∈ N ((A ◦ I)[∗]). Then

y ∈ ((A ◦ I)[∗])[†] ◦K [∗] +N ((A ◦ I)[∗]) = (A[†])[∗] ◦ I ◦K [∗] +N ((A ◦ I)[∗]), by part (i)

and (iii) of Lemma 5.2.1. This proves (A◦I ◦K)[∗] ⊆ (A[†])[∗]◦I ◦K [∗]+N ((A◦I)[∗]).

Next, let u = u1+u2, where u1 = (A[†])[∗]◦I◦l with l ∈ K [∗] and u2 ∈ N ((A◦I)[∗]).

Let v = A ◦ I ◦ t, t ∈ K and set t
′

= A[†] ◦ A ◦ t ∈ K. Then [u, v] = [u1 + u2, v] =

[u1, v] + [u2, v] = [u1, A ◦ I ◦ t] = [(A[†])[∗] ◦ I ◦ l, A ◦ I ◦ t] = [l, (A ◦ I)[†] ◦A ◦ I ◦ t] =

[l, A[†] ◦A◦ t] = [l, t
′
] ≥ 0, since [u2, v] = [u2, A◦I ◦ t] = 0 and by part (iii) of Lemma

5.2.1. Thus u ∈ (A ◦ I ◦K)[∗]. This proves (1).

Now, we replace A by ((A[†])[∗] and K by K [∗] in the equation (1), and use part

(iii) of Lemma 5.3.1 to get the desired result.

Remark 5.3.1. The following example shows that Theorem 5.3.1 may not hold in

the absence of the condition A[†] ◦ A ◦K ⊆ K.

Let A =

1 0 0

0 −1 1

 , M =

1 0

0 −1

 and N =


1 0 0

0 −1 0

0 0 −1

. Then A† =

1

2


2 0

0 −1

0 1

 and A[†] = NA†M =
1

2


2 0

0 −1

0 1

. Let K = R3
+ then K [∗] = NR3

+.
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Suppose x = (1, 2, 3)t. Then A[†] ◦ A ◦ x = (1,
−1

2
,
1

2
) /∈ K. Thus A[†] ◦ A ◦K * K.

Also A ◦ I =

1 0 0

0 1 −1

. Therefore, N ((A ◦ I)[∗]) contains only the zero vector.

Let y = (2, 5, 8)t ∈ K and set y1 = A ◦ I ◦ y = Ay = (2, 3)t ∈ A ◦ I ◦ K. Let

v = N(1, 2, 0)t = (1,−2, 0)t ∈ K [∗] and z = (A[†])[∗]◦I◦v = (1, 1)t ∈ (A[†])[∗]◦I◦K [∗].

Then [y1, z] = 〈y1,Mz〉 = 〈(2, 3)t, (1,−1)t〉 < 0, so that y1 /∈ ((A[†])[∗] ◦ I ◦K [∗])[∗].

5.3.1 Acuteness of cone

The following result is useful to prove the acuteness of certain cones.

Lemma 5.3.2. Let A ∈ Rm×n be such that A ◦ I = I ◦ A and let K be a closed

cone in Rn with respect to the indefinite matrix product satisfying the condition

A[†] ◦ A ◦K ⊆ K. Then (A ◦ I ◦K)[∗] ∩R(A ◦ I) = (A[†])[∗] ◦ I ◦K [∗].

Proof. Let y = A ◦ I ◦ x ∈ (A ◦ I ◦ K)[∗]. Then by part (ii) of Lemma 5.3.1,

(A ◦ I)[∗] ◦ y ∈ K [∗]. Also, y = (A ◦ I) ◦ (A ◦ I)[†] ◦ y = ((A ◦ I) ◦ (A ◦ I)[†])[∗] ◦ y =

((A ◦ I)[†])[∗] ◦ (A ◦ I)[∗] ◦ y = (A[†])[∗] ◦ I ◦ (A ◦ I)[∗] ◦ y ∈ (A[†])[∗] ◦ I ◦K [∗], proving

that (A ◦ I ◦K)[∗] ∩R(A ◦ I) ⊆ (A[†])[∗] ◦ I ◦K [∗].

Conversely, suppose that x ∈ (A[†])[∗] ◦ I ◦ K [∗]. Then x = ((A ◦ I)[†])[∗] ◦ u for

some u ∈ K [∗]. This implies x ∈ R(A ◦ I). Let w ∈ K, v = A ◦ I ◦ w ∈ A ◦ I ◦K

and w1 = A[†] ◦ A ◦ w ∈ K. Then we have [x, v] = [(A[†])[∗] ◦ I ◦ u,A ◦ I ◦ w] =

[u,A[†] ◦ A ◦ w] = [u,w1] ≥ 0. Thus x ∈ (A ◦ I ◦K)[∗].

In the next lemma, we obtain an equivalent condition for the acuteness of the

cone (A ◦ I ◦K)[∗] ∩R(A ◦ I).

Lemma 5.3.3. Let A ∈ Rm×n be such that A◦I = I◦A and let K be a closed cone in

Rn with respect to the indefinite matrix product satisfying the condition A[†]◦A◦K ⊆

K. Then (A◦I◦K)[∗]∩R(A◦I) is acute if and only if (A◦I◦K)[∗]∩R(A◦I) ⊆ A◦I◦K.
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Proof. Suppose that L = (A ◦ I ◦ K)[∗] ∩ R(A ◦ I) is acute. Then L ⊆ L[∗]. By

Lemma 5.3.2 and Theorem 5.3.1, it follows that L[∗] = ((A◦ I ◦K)[∗]∩R(A◦ I))[∗] =

((A[†])[∗] ◦ I ◦K [∗])[∗] = A◦ I ◦K+N ((A◦ I)[∗]). So, (A◦ I ◦K)[∗]∩R(A◦ I) ⊆ A◦ I ◦

K+N ((A◦I)[∗]). However, we have to show that (A◦I ◦K)[∗]∩R(A◦I) ⊆ A◦I ◦K.

Let x ∈ (A◦I ◦K)[∗]∩R(A◦I). Then x = A◦I ◦u+z, with u ∈ K, z ∈ N ((A◦I)[∗]).

Since x and A ◦ I ◦ u ∈ R(A ◦ I), it follows that z ∈ R(A ◦ I)∩N ((A ◦ I)[∗]) = {0}.

Thus x ∈ A ◦ I ◦K.

Conversely, let x, y ∈ (A◦I◦K)[∗]∩R(A◦I) ⊆ A◦I◦K. Then x = A◦I◦u, u ∈ K.

We also have (A ◦ I)[∗] ◦ y ∈ K [∗]. Now, [x, y] = [A ◦ I ◦ u, y] = [u, (A ◦ I)[∗] ◦ y] ≥ 0.

Thus (A ◦ I ◦K)[∗] ∩R(A ◦ I) is acute.

5.3.2 Cone nonnegativity of Moore-Penrose inverses of Gram

matrices

In this section, we prove main results of this chapter. First, we obtain a necessary

and sufficient conditions for a cone to be invariant under (A[∗] ◦ A)[†] .

Lemma 5.3.4. Let A ∈ Rm×n be such that A ◦ I = I ◦ A and let K be a closed

cone in Rn with respect to the indefinite matrix product satisfying the condition

A[†] ◦ A ◦K ⊆ K. Then the following are equivalent:

(i) (A[†])[∗] ◦ I ◦K [∗] ⊆ A ◦ I ◦K +N ((A ◦ I)[∗]).

(ii) (A[∗] ◦ A)[†] ◦K [∗] ⊆ K +N (A ◦ I).

(iii) (A[∗] ◦ A)[†] ◦K [∗] ⊆ K.

Proof. (i)⇒ (ii):

For x ∈ K [∗], let y = (A[∗] ◦ A)[†] ◦ x = ((A ◦ I)[∗] ◦ (A ◦ I))[†] ◦ x = (A ◦ I)[†] ◦
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((A ◦ I)[†])[∗] ◦ x. Then

A ◦ I ◦ y = (A ◦ I) ◦ (A ◦ I)[†] ◦ ((A ◦ I)[†])[∗] ◦ x

= ((A ◦ I)[†])[∗] ◦ x

= (A[†])[∗] ◦ I ◦ x ∈ (A[†])[∗] ◦ I ◦K [∗]

⊆ A ◦ I ◦K +N ((A ◦ I)[∗]).

Therefore A ◦ I ◦ y = A ◦ I ◦ v + w, v ∈ K, w ∈ N ((A ◦ I)[∗]). So , A ◦ I ◦ (y −

v) ∈ R(A ◦ I) ∩ N ((A ◦ I)[∗]) = {0}. Then A ◦ I ◦ (y − v) = 0. This implies,

y − v = u ∈ N (A ◦ I). Then y = u + v, v ∈ K, u ∈ N (A ◦ I). This shows that

(A[∗] ◦ A)[†] ◦K [∗] ⊆ K +N (A ◦ I).

(ii)⇒ (i):

Let y = (A[†])[∗] ◦ I ◦ x, x ∈ K [∗]. Then y = ((A ◦ I)[†])[∗] ◦ x and (A ◦ I)[†] ◦ y =

(A ◦ I)[†] ◦ ((A ◦ I)[†])[∗] ◦ x = ((A ◦ I)[∗] ◦ (A ◦ I))[†] ◦ x = (A[∗] ◦ A)[†] ◦ x = u + v,

u ∈ K, v ∈ N (A◦I). This implies that y = ((A◦I)[†])[†]◦(u+v)+w, w ∈ N ((A◦I)[†]).

Thus y = A ◦ I ◦ u+ w ∈ A ◦ I ◦K +N ((A ◦ I)[∗]).

(ii)⇒ (iii):

Let x ∈ K [∗] and y = (A[∗] ◦ A)[†] ◦ x. Then (A[∗] ◦ A)[†] ◦ x = u + v where u ∈ K,

v ∈ N (A ◦ I). This implies x = (A[∗] ◦ A) ◦ (u + v) + w, w ∈ N (A ◦ I), so that

y = (A[∗] ◦ A)[†] ◦ (A[∗] ◦ A) ◦ u = A[†] ◦ A ◦ u ∈ K, by part (v) of Lemma 5.2.1.

(iii)⇒ (ii):

This part is obvious.

We also have a stronger one-way implication, given below.

Lemma 5.3.5. Let A ∈ Rm×n be such that A◦I = I◦A and let K be a closed cone in

Rn with respect to the indefinite matrix product. If (A[∗] ◦A)[†] ◦K [∗] ⊆ K+N (A◦I)

then K [∗] ∩R(A ◦ I)[∗] ⊆ A[∗] ◦ A ◦K +N ((A ◦ I).
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Proof. Let y = (A◦I)[∗]◦x ∈ K [∗]. Then (A[∗]◦A)[†]◦y = u+z, u ∈ K, z ∈ N (A◦I).

From this y = (A[∗]◦A)◦(u+z)+w, w ∈ N (A[∗]◦A)[†]. Since A[∗]◦A = (A◦I)[∗]◦(A◦I)

and z ∈ N (A ◦ I), we get y = A[∗] ◦ A ◦ u+ w ∈ A[∗] ◦ A ◦K +N (A ◦ I).

We are now in a position to prove the main result of this chapter.

Theorem 5.3.2. (Main Result) Let A ∈ Rm×n be such that A ◦ I = I ◦ A and let

K be a closed cone in Rn with respect to the indefinite matrix product satisfying the

condition A[†] ◦A ◦K ⊆ K. Let C = A ◦ I ◦K and D = (A[†])[∗] ◦ I ◦K [∗]. Then the

following conditions are equivalent:

(i) D is acute.

(ii) (A[∗] ◦ A)[†] ◦K [∗] ⊆ K +N (A ◦ I).

(iii) C is obtuse.

Proof. (i)⇒ (ii):

Suppose D is acute then by definition, D ⊆ D[∗]. By Theorem 5.3.1, D[∗] = A ◦ I ◦

K+N (A◦ I)[∗]. Thus D ⊆ A◦ I ◦K+N (A◦ I)[∗]. Now, by Lemma 5.3.4, we obtain

(A[∗] ◦ A)[†] ◦K [∗] ⊆ K +N (A ◦ I).

(ii)⇒ (i):

Suppose (A[∗] ◦A)[†] ◦K [∗] ⊆ K+N (A◦I). By Lemma 5.3.4, D ⊆ A◦I ◦K+N ((A◦

I)[∗]). Since A ◦ I ◦ K + N ((A ◦ I)[∗]) = D[∗] by Theorem 5.3.1, we get D ⊆ D[∗].

Hence D is acute.

(ii) ⇒ (iii) Suppose (A[∗] ◦ A)[†] ◦K [∗] ⊆ K +N (A ◦ I). Note that C = A ◦ I ◦K

is obtuse if C [∗] ∩ R(A ◦ I) is acute. By Lemma 5.3.3, it is enough to show that

C [∗] ∩R(A ◦ I) ⊆ C.

Let y ∈ C [∗] ∩ R(A ◦ I). Then y = A ◦ I ◦ x and by part (ii) of Lemma 5.3.1,

(A◦I)[∗]◦y ∈ K [∗]. So, (A◦I)[∗]◦y ∈ K [∗]∩R(A◦I)[∗]. By Lemma 5.3.5, (A◦I)[∗]◦y =

A[∗]◦A◦u+z with u ∈ K, z ∈ N (A◦I). Since A[∗]◦A = (A◦I)[∗]◦(A◦I), it follows
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that (A ◦ I)[∗] ◦ y, A[∗] ◦A ◦ u ∈ R(A ◦ I)[∗]. Thus z ∈ R(A ◦ I)[∗] ∩N (A ◦ I) = {0}.

This implies z = 0. Then (A ◦ I)[∗] ◦ y = A[∗] ◦ A ◦ u. From this,

y = ((A ◦ I)[†])[∗] ◦ ((A ◦ I)[∗] ◦ A ◦ I ◦ u) + w

= ((A ◦ I) ◦ (A ◦ I)[†])[∗] ◦ (A ◦ I) ◦ u+ w

= (A ◦ I) ◦ (A ◦ I)[†] ◦ (A ◦ I) ◦ u+ w

= (A ◦ I) ◦ u+ w,

where w ∈ N ((A ◦ I)[∗]).

Since y ∈ R(A ◦ I), it follows that w ∈ R(A ◦ I) ∩ N (A ◦ I)[∗]) = {0}. Thus

y ∈ A ◦ I ◦K = C.

(iii)⇒ (ii):

Let C = A◦I◦K be obtuse. Then by definition, C [∗]∩R(A◦I) ⊆ C. By Lemma 5.3.2,

(A[†])[∗] ◦ I ◦K [∗] ⊆ C. Now by Lemma 5.3.4, (A[∗] ◦A)[†] ◦K [∗] ⊆ K +N (A ◦ I).

Corollary 5.3.1. In addition to the conditions of Theorem 5.3.2, suppose that K

is self dual (i.e., K [∗] = K). Then the conditions (i) and (iii) are equivalent to

(A[∗] ◦ A)[†] ◦K ⊆ K +N (A ◦ I).

The above corollary and Lemma 5.3.4 shows that (A[∗] ◦ A)[†] is cone invariant

that justifies the title of the chapter.

5.3.3 Some remarks

(i) The inclusion (A[∗] ◦ A)[†] ◦ K [∗] ⊆ K + N (A ◦ I) does not appear to imply

(A[∗]◦A)[†] leaves a cone invariant. However, due to Lemma 5.3.4 this inclusion

is equivalent to (A[∗] ◦ A)[†] ◦K [∗] ⊆ K which clearly shows our requirement.
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(ii) The following example illustrates Theorem 5.3.2. Let A =

1 0 1

1 0 1

, M =

0 1

1 0

, N =


0 0 1

0 1 0

1 0 0

 and K = R3
+. Then A† =

1

4


1 1

0 0

1 1

, A[†] =

NA†M =
1

4


1 1

0 0

1 1

 and K [∗] = NR3
+. Note that for x1 = (x, y, z)t ∈ K,

A[†] ◦ A ◦ x1 = A[†]Ax1 =
1

2
(x + z, 0, x + z)t ∈ K. Thus A[†] ◦ A ◦ K ⊆ K.

And (A[∗] ◦ A)† =
1

16


2 0 2

0 0 0

2 0 2

. Therefore (A[∗] ◦ A)[†] ◦ K [∗] = N(A[∗] ◦

A)†NK [∗] ⊆ K. Also one can easily verify that C = A ◦ I ◦K is obtuse and

D = (A[†])[∗] ◦ I ◦K [∗] is acute.

(iii) Here, we show by an example that in the absence of the condition A◦I = I ◦A,

Theorem 5.3.2 may not hold. Let A =

0 1

0 1

, M =

0 1

1 0

 = N . Then

clearly A ◦ I 6= I ◦ A. Let K = {(x, 0) : x ≥ 0} then K∗ = {(x, y) : x ≥

0, y ∈ R} and K [∗] = {(y, x) : x ≥ 0, y ∈ R}. Also, A† =
1

2

0 0

1 1

 and

A[†] =
1

2

1 1

0 0

. Clearly A[†] ◦A ◦K ⊆ K and D =
{

(x
2
, x
2
) : x ≥ 0

}
is acute

but (A[∗] ◦ A)[†] ◦K [∗] * K where (A[∗] ◦ A)[†] =
1

4

0 2

0 0

 .
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Our thesis is primarily motivated by theoretical considerations. It studies gener-

alizations of various characterizations of nonnegativity of group inverses and Moore-

Penrose inverses. It also presents some convergence and comparison theorems. The

highlights are the following.

• We obtain an extension of Fan’s result (Lemma 2, [21]) from classical inverses

to group inverses (Theorem 2.3.1).

• We generalize the result of Barker (Proposition 9, [3]) to the case of group

inverse (Theorem 2.3.2).

• We derive a group inverse analogue of an important result of Elsener et al.

(Theorem 3.4, [20]), in Theorem 2.4.1.

• We obtain certain comparison results as an application of Theorem 2.4.1.

• We extend the comparison results for double splittings of Shen and Huang

(Theorem 3.1 and Theorem 3.2 in [60]) from ordinary inverses to Moore-

Penrose inverses (Theorem 3.3.1 and Theorem 3.3.2).

• We obtain certain convergence and comparison results (Theorem 4.3.4, Theo-

rem 4.4.1 and Theorem 4.4.2) similar to the results of ([43] and [28]) by using

{T, S} splittings which are introduced by Djordjević and Stanimirović.

• We characterize the Moore-Penrose inverses of Gram matrices leaving a cone

invariant in terms of obtuseness or acuteness of certain cones (Theorem 5.3.2),

generalizing the Sivakumar’s result [62] from finite dimensional real Euclidean

space to indefinite inner product space.
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