
FAULT DIAGNOSIS SCHEMES FOR
THREE-PHASE INDUCTION MOTOR

Thesis submitted in partial fulfillment of the requirements
for the award of the degree of

DOCTOR OF PHILOSOPHY
IN

ELECTRICAL ENGINEERING

by

NEERUKONDA RAMA DEVI

Roll No. 700813

Supervisor

Prof. D. V. S. S. Siva Sarma

DEPARTMENT OF ELECTRICAL ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY

WARANGAL-506004
TELANGANA, INDIA

JANUARY 2017



Department of Electrical Engineering

National Institute of Technology

Warangal

CERTIFICATE

This is to certify that the present dissertation work entitled “Fault Diagnosis

Schemes for Three-Phase Induction Motor” which is being submitted

by Smt. Neerukonda Rama Devi (Roll No. 700813), is a bonafide work

submitted to National Institute of Technology, Warangal in partial fulfilment

of the requirement for the award of the degree of Doctor of Philosophy in

the Department of Electrical Engineering. To the best of my knowledge, the

work has not been submitted elsewhere for the award of any degree.

Dr. D. V. S. S. Siva Sarma

(Supervisor)

Professor

Department of Electrical Engineering

National Institute of Technology

Warangal - 506004

Telangana, India.

ii



Approval Sheet

This Thesis entitled “Fault Diagnosis Schemes for Three-Phase

Induction Motor” by NEERUKONDA RAMA DEVI is approved for the

degree of Doctor of Philosophy.

Examiners

——————————

——————————

——————————

Supervisors

——————————

——————————

——————————

Chairman

——————————

Date:————————-

iii



Declaration

This is to certify that the work presented in the thesis entitled “Fault

Diagnosis Schemes for Three-Phase Induction Motor” is a bonafide

work done by me under the supervision of Prof. D. V. S. S. Siva Sarma

and was not submitted elsewhere for the award of any degree.

I declare that this written submission represents my ideas in my own

words and where others’ ideas or words have been included, I have

adequately cited and referenced the original sources. I also declare that I

have adhered to all principles of academic honesty and integrity and have

not misrepresented or fabricated or falsified any idea / data / fact / source in

my submission. I understand that any violation of the above will be a cause

for disciplinary action by the Institute and can also evoke penal action from

the sources which have thus not been properly cited or from whom proper

permission has not been taken when needed.

(Signature)

N. Rama Devi

(Name of the student)

(Roll No: 700813)

Date: 11/01/2017

iv



Dedicated to
my teachers, who taught me

and

my family, who taught me as well

v



Acknowledgements

To begin with, I am grateful to the Almighty for everything destined for me.

I am indebted deeply to my parents for all the sacrifice they have made for

nurturing me during my formative years and throughout my career. I am

equally indebted to my husband, my lovely children, my mother-in-law and

my father-in-law for their untiring care and unwithered affection for me.

I am ever grateful to Prof. D. V. S. S. Siva Sarma, my research

supervisor; but for his unreserved help and support this thesis work

couldn’t have come to submission. He has been a constant source of

inspirational guidance. I am indebted to the academic discipline and

scholastic patience he has brought to bear while dealing with me and my

endeavor.

I express my sincere thanks to Prof. P. V. Ramana Rao, my previous

guide, for his support and care during the course of my Ph.D. work.

I wish to acknowledge my sincere gratitude to DSC members Prof. N.

Viswanathan, Head of the Department, Prof. B. K. Murthy and Dr. C. B.

Rama Rao for their help, feedback, cooperation and encouragement

during the course of my Ph.D. work. I also thank all my teachers and other

faculty members of Department of Electrical Engineering for their help and

support in my efforts. I would like to express my sincere thanks to my

fellow research scholars Mr. Varma, Mr. Vara Prasad, Smt. Pujitha and

all others for their support.

I thank Sri M. Seshagiri Rao, President, Bapatla Education Society,

for his dynamic leadership and for promoting research activities in the

campus of Bapatla Engineering College. Thanks are also due to the other

members of the governing body and the management committee for their

vi



supporting role. I would like to thank our principal Prof. N. Sudhakar, for

all his endeavors in grooming the college and for creating good academic

ambience on the campus.

I am deeply indebted to all the faculty and staff of the Department of

Electrical and Electronics Engineering, Bapatla Engineering College who

have been with me all the time encouraging. I would also like to profusely

thank all the other faculty and staff of the college who directly or indirectly

made my stay at the college successful, happy and enjoyable.

This thesis was typeset with LATEX∗ by the author

∗LATEXis a document preparation system developed by Leslie Lamport as an extension of Donald Knuth’s

TEX typesetting system.

vii



Abstract

With the advent of power electronics devices, the usage of ac motors,

particularly, induction motors in variable speed drives have increased due

to flexible speed control strategy. Majority of industrial drives are driven

by induction motors because of its ruggedness and less maintenance.

Motors experience various abnormal operating conditions that lead to their

failure. These failures not only damage the equipment, but also severely

interrupt to the processes involved in the industry, causing revenue loss.

Thus, the detection and diagnosis of fault condition at the inception stage is

of great practical significance. In general, fault diagnosis schemes

concentrate on sensing specific failure modes in one of three induction

motor components i.e. stator, rotor and bearings. One of the most difficult

problem related to three-phase induction motors is the identification of

stator incipient faults at the time of inception. These faults usually starts

with winding insulation failure, which occurs due to overheating, thermal

stress, insulation deterioration etc. In particular, an undetected stator

inter-turn fault may progressively lead to a line to ground fault in the stator

winding. Hence, early detection of stator inter-turn fault is essential for

improving motor reliability, to reduce the cost of breakdown and to avoid

catastrophic failures of motors. For these reasons, there has been a
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continually increasing interest in the area of fault detection and diagnosis

of induction motor. Both technical and economical consideration

necessitates the development of a new computer-based diagnostic system

to detect, classify, identify and locate the faults through condition

monitoring. Typically, sensors are added to motors to detect specific faults,

which include thermal and proximity sensors for bearing failures,

accelerometers for vibrations, etc. An ideal diagnostic procedure should

take the minimum measurements needed from a machine and by analysis

extract a feature, so that its condition can be inferred to give a clear

indication of incipient failure modes in minimal time. In this thesis the

condition monitoring of induction machines have been carried out by using

three phase currents which are typically available at motor control centre.

From the perspective of long-term research on the fault diagnosis of

electrical machines, it appears that recent focus has been on the use of

signal processing and artificial intelligent in order to improve the

performances of traditional model-based methods. An effective algorithm

should be able to take variations in fault signature amplitude, line current

noise level, frequency offset, and phase offset into consideration to avoid

missing or false alarms. Still there is no on-line monitoring method widely

applied in industries and accepted in the motor fault diagnosis community.

Hence, the development of any on-line monitoring method should be

capable of diagnosing various faults and detection of deterioration of the

inter-turn insulation prior to a fault besides being cost effective. In this

thesis two fault detection algorithms are presented for low voltage

induction motors based on Discrete Wavelet Transform and Stationary

Wavelet Transform for detection of various stator winding faults and
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supply side faults. To classify various disturbances, identify the stator

winding insulation faults and severity level of stator inter-turn fault, two

types of classification algorithms are presented based on feed forward

neural network and modular neural network.

x



Table of Contents

Certificate ii

Approval Sheet iii

Declaration iv

Dedication v

Acknowledgements vi

Abstract viii

List of Figures xvi

List of Tables xxix

List of Abbreviations and Symbols xxxi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Survey on Fault Diagnosis . . . . . . . . . . . . . 6

1.2.1 Model Based Methods . . . . . . . . . . . . . . . . 7

1.2.2 Model-Free Methods . . . . . . . . . . . . . . . . . 10

xi



1.2.2.1 Signal Monitoring Methods . . . . . . . . 10

1.2.2.2 Signal Analysing Methods . . . . . . . . 11

1.2.2.2.1 Time Domain Analysis: . . . . . 12

1.2.2.2.2 Frequency Domain Analysis: . . 12

1.2.2.2.3 Time-Frequency Domain

Analysis: . . . . . . . . . . . . 13

1.2.3 Classification Methods . . . . . . . . . . . . . . . . 15

1.3 Summary of Various Monitoring Techniques . . . . . . . . . 16

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . 22

2 Modelling of Stator Winding in 3-Phase Induction Motor for

Fault Diagnosis-Validation 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Modelling of 3-phase Induction Motor . . . . . . . . . . . . 24

2.3 Distributed Model Parameters . . . . . . . . . . . . . . . . 27

2.3.1 Stator First Turn Leakage Inductance (η Lls): . . . . 27

2.3.2 Total Stator to Frame Capacitance per Phase

(Cs f−total): . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Stator Turn to Turn Winding Capacitance (Csw): . . . 29

2.3.4 Stator Turn to Turn Damping Resistance in Winding

(Rsw): . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.5 Stator Initial Frame to Ground Damping Resistance

(µRs): . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Experimental Setup for DM and CM Test . . . . . . . . . . 30

xii



2.5 Estimation of Parameters . . . . . . . . . . . . . . . . . . . 33

2.6 Model Validation . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Fault Detection Schemes 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Various Stator and Supply Side Faults in a 3-Phase

Induction Motor . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Stator Faults . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Unbalanced Supply . . . . . . . . . . . . . . . . . . 44

3.2.3 Single-Phasing . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Under Voltage . . . . . . . . . . . . . . . . . . . . 46

3.3 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Discrete Wavelet Transform (DWT) . . . . . . . . . 48

3.3.2 Stationary Wavelet Transform (SWT) . . . . . . . . 49

3.4 Proposed Fault Detection Scheme using DWT . . . . . . . . 51

3.4.1 Validation of Proposed Fault Detection Scheme

using DWT . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Proposed Fault Detection Scheme using SWT and DWT . . 63

3.5.1 Validation of Proposed Detection Scheme . . . . . . 73

3.5.1.1 Experimental Setup . . . . . . . . . . . . 73

3.5.1.2 Simulation Models for Stator Faults . . . . 73

3.5.1.3 Experimental and Simulation Results for

a 3-hp Induction Motor . . . . . . . . . . 77

xiii



3.5.1.4 Comparison between Experimental and

Simulation Results for a 3-hp Induction

Motor . . . . . . . . . . . . . . . . . . . 91

3.5.1.5 Experimental Results for a 10-hp

Induction Motor . . . . . . . . . . . . . . 93

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Classification of Various Disturbances of a 3-Phase Induction

Motor Using Wavelet and Modular Neural Network 100

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Features for Disturbance Classifier . . . . . . . . . . . . . . 101

4.3 ANN Structures for Disturbance Classifier (ANN-1) . . . . . 112

4.3.1 Training and Testing of ANN based Disturbance

Classifier . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 MNN Structure for Disturbance Classifier(MNN-1) . . . . . 118

4.4.1 Training and Testing of MNN based Disturbance

Classifier . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Comparison of Performance between ANN-1 and MNN-1 . 120

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Classification of Stator Phase Faults 123

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Extraction of features for phase fault classification . . . . . . 123

5.3 ANN structure for phase fault classifier (ANN-2) . . . . . . 128

5.3.1 Training and Testing of ANN-2 . . . . . . . . . . . 129

5.4 MNN structure for phase fault classifier (MNN-2) . . . . . . 131

5.4.1 Training and Testing of MNN-2 . . . . . . . . . . . 131

xiv



5.5 Comparison of performance between ANN-2 and MNN-2

for stator phase fault classification . . . . . . . . . . . . . . 132

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Identification of Faulty Phase and Estimation of Severity Level

for Stator Inter-Turn Faults 135

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Features used for identification of faulty phase and

estimation of fault severity . . . . . . . . . . . . . . . . . . 136

6.3 Proposed ANN based classifier for identification of faulty

phase and estimation of fault severity of stator inter-turn faults143

6.3.1 Training and testing of the proposed ANN based

method (ANN-3) . . . . . . . . . . . . . . . . . . . 144

6.4 Proposed MNN based classifier for identification of faulty

phase and estimation of fault severity of stator inter-turn faults146

6.4.1 Training and testing of the proposed MNN based

classifier (MNN-3) . . . . . . . . . . . . . . . . . . 147

6.5 Comparison of performance between ANN-3 and MNN-3

for fault classification . . . . . . . . . . . . . . . . . . . . . 149

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Conclusions and Future Scope 151

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 156

xv



List of Figures

1.1 Various applications and root causes of stress on a

three-phase induction motor . . . . . . . . . . . . . . . . . 3

1.2 Typical failures of induction motor . . . . . . . . . . . . . . 3

1.3 Stator winding insulation faults . . . . . . . . . . . . . . . . 5

1.4 Maintenance procedures in industries and their features . . . 6

1.5 Analytical redundancy model-based fault detection,

isolation, and reconfiguration . . . . . . . . . . . . . . . . . 9

1.6 Mapping between monitoring parameters and analysing

techniques to detect the faults . . . . . . . . . . . . . . . . . 19

1.7 Road map for research work . . . . . . . . . . . . . . . . . 22

2.1 Lumped parameter model . . . . . . . . . . . . . . . . . . . 25

2.2 Distributed parameter model . . . . . . . . . . . . . . . . . 26

2.3 3-phase induction motor distributed model . . . . . . . . . . 26

2.4 Physical representation of stator winding capacitance to

frame ground . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Representation of stator slot capacitance to frame ground . . 29

2.6 Experimental setup for DM test on a 3-phase, 5-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 31

xvi



2.7 Experimental setup for CM test on a 3-phase, 5-hp induction

motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Experimental setup for a 3-phase, 3-hp induction motor . . . 32

2.9 Measured frequency response of a 5-hp induction motor . . 34

2.10 Measured frequency response of a 3-hp induction motor . . 34

2.11 Simulation diagram for DM test on a 5-hp induction motor . 37

2.12 Simulation diagram for CM test on a 5-hp induction motor . 37

2.13 Comparison between measured and simulated responses of

impedance versus frequency in differential mode test on a

5-hp IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.14 Comparison between measured and simulated responses of

phase angle versus frequency in differential mode test on a

5-hp IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.15 Comparison between measured and simulated responses of

impedance versus frequency in common mode test on a 5-hp

IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.16 Comparison between measured and simulated responses of

phase angle versus frequency in common mode test on a

5-hp IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.17 Comparison between measured and simulated responses of

impedance versus frequency in differential mode test on

3-hp IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.18 Comparison between measured and simulated responses of

phase angle versus frequency in differential mode test on a

3-hp IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xvii



2.19 Comparison between measured and simulated responses of

impedance versus frequency in common mode test on a 3-hp

IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.20 Comparison between measured and simulated responses of

phase angle versus frequency in common mode test on a

3-hp IM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Three level decomposed discrete wavelet transform . . . . . 49

3.2 Three level decomposed stationary wavelet transform . . . . 50

3.3 Flow chart for proposed fault detection method using DWT . 52

3.4 Three-phase current signals for healthy condition of a 5-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Three-phase current signals for 2-turn short circuit in

R-phase of a 5-hp induction motor . . . . . . . . . . . . . . 53

3.6 Variation in d1 coefficients for healthy condition . . . . . . . 53

3.7 Variation in d1 coefficients for a 2-turn short circuit in R-phase 54

3.8 Variation in fault index for healthy condition . . . . . . . . . 54

3.9 Variation in fault index for a 2-turn short circuit at 0 degree

inception . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Variation in fault index for an inter turn fault on coil-1 . . . . 55

3.11 Three-phase current signals for a LG fault in R-phase of a

5-hp induction motor . . . . . . . . . . . . . . . . . . . . . 56

3.12 Three-phase current signals for a LL fault between R and Y

phases of a 5-hp induction motor . . . . . . . . . . . . . . . 57

3.13 Three-phase current signals for a single phasing in R phase

of a 5-hp induction motor . . . . . . . . . . . . . . . . . . . 57

xviii



3.14 Three-phase current signals for a 30% under voltage of a

5-hp induction motor . . . . . . . . . . . . . . . . . . . . . 57

3.15 Three-phase current signals for a 10% supply unbalance in

R phase of a 5-hp induction motor . . . . . . . . . . . . . . 58

3.17 Variation in d1 coefficients for a LL fault between RY phases 59

3.16 Variation in d1 coefficients for a LG fault in R-phase . . . . 59

3.18 Variation in d1 coefficients for a single phasing in R phase . 60

3.19 Variation in d1 coefficients for 30% under voltage . . . . . . 60

3.21 Variation in fault index for various faults . . . . . . . . . . . 61

3.20 Variation in d1 coefficients for 10% supply unbalance . . . . 61

3.23 Variation in d1 coefficients for a 2-turn fault in R-phase . . . 62

3.22 Three-phase current signals for 2-turn fault in R-phase of a

5-hp induction motor . . . . . . . . . . . . . . . . . . . . . 62

3.24 Variation in fault index for a 2-turn fault at 0degree inception 63

3.25 Variation in MSE for DWT of different mother wavelets . . . 64

3.26 Variation in SNR for DWT of different mother wavelets . . . 64

3.27 Comparison of DWT and SWT . . . . . . . . . . . . . . . . 65

3.28 Flow chart for proposed SWT and DWT based fault

detection scheme . . . . . . . . . . . . . . . . . . . . . . . 66

3.29 Three-phase current signals for 2-turn fault in R-phase of a

3-hp induction motor under experimental case . . . . . . . . 67

3.30 Three-phase current signals for 2-turn fault in R-phase of a

3-hp induction motor under simulation . . . . . . . . . . . . 67

3.31 Three-phase residues for 2-turn fault in R-phase of a 3-hp

induction motor based on minimax method under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 68

xix



3.32 Three-phase residues for 2-turn fault in R-phase of a 3-hp

induction motor based on proposed method under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 68

3.33 Three-phase residues for 2-turn fault in R-phase of a 3-hp

induction motor based on minimax method under simulation 68

3.34 Three-phase residues for 2-turn fault in R-phase of a 3-hp

induction motor based on proposed method under simulation 69

3.35 Variation in d1 coefficients for 2-turn fault in R-phase of a

3-hp induction motor based on minimax method under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 70

3.36 Variation in d1 coefficients for 2-turn fault in R-phase of

a 3-hp induction motor based on proposed method under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 71

3.37 Variation in d1 coefficients for 2-turn fault in R-phase of a

3-hp induction motor based on minimax method under

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.38 Variation in d1 coefficients for 2-turn fault in R-phase of

a 3-hp induction motor based on proposed method under

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.39 Experimental setup for 3-hp induction motor . . . . . . . . . 74

3.40 Experimental setup for 10-hp induction motor . . . . . . . . 74

3.41 Simulation diagram for stator inter-turn fault in R-phase . . . 75

3.42 Simulation diagram for stator line-ground fault in R-phase . 76

3.43 Simulation diagram for stator line-line fault between R-Y

phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xx



3.44 Three-phase currents under healthy condition of a 3-hp

induction motor under simulation case . . . . . . . . . . . . 78

3.45 Three-phase residue currents under healthy condition of a

3-hp induction motor under simulation case . . . . . . . . . 78

3.46 Variation in fault index under healthy condition of a 3-hp

induction motor under simulation case . . . . . . . . . . . . 79

3.47 Three-phase currents under healthy condition with 2%

supply unbalance of a 3-hp induction motor under

simulation case . . . . . . . . . . . . . . . . . . . . . . . . 79

3.48 Three-phase residue currents under healthy condition with

2% supply unbalance of a 3-hp induction motor under

simulation case . . . . . . . . . . . . . . . . . . . . . . . . 79

3.49 Variation in fault index under healthy condition with 2%

supply unbalance of a 3-hp induction motor under

simulation case . . . . . . . . . . . . . . . . . . . . . . . . 80

3.50 Three-phase currents under healthy condition of a 3-hp

induction motor under experimental case . . . . . . . . . . . 80

3.51 Three-phase residue currents under healthy condition of a

3-hp induction motor under experimental case . . . . . . . . 80

3.53 Three-phase currents under healthy condition with 2%

supply unbalance of a 3-hp induction motor under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 81

3.52 variation in fault index under healthy condition of a 3-hp

induction motor under experimental case . . . . . . . . . . . 81

xxi



3.54 Three-phase residue currents under healthy condition with

2% supply unbalance of a 3-hp induction motor under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 81

3.56 Three-phase currents for 8-turn short circuit in R-phase of a

3-hp IM under simulation . . . . . . . . . . . . . . . . . . . 82

3.55 Variation in fault index under healthy condition with 2%

supply unbalance of a 3-hp induction motor under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 82

3.57 Three-phase residue currents for 8-turn short circuit in

R-phase of a 3-hp IM under simulation . . . . . . . . . . . . 83

3.58 Variation in fault index for 8-turn short circuit in R-phase of

a 3-hp IM under simulation . . . . . . . . . . . . . . . . . . 83

3.59 Three-phase currents for for 8-turn short circuit in R-phase

with 2% supply unbalance of a 3-hp IM under simulation . . 83

3.60 Three-phase residue currents for 8-turn short circuit in

R-phase with 2% supply unbalance of a 3-hp IM under

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.61 Variation in fault index for 8-turn short circuit in R-phase

with 2% supply unbalance of a 3-hp IM under simulation . . 84

3.62 Three-phase currents for 8-turn short circuit in R-phase of a

3-hp induction motor under experimental case . . . . . . . . 85

3.63 Three-phase residue currents for 8-turn short circuit in

R-phase of a 3-hp induction motor under experimental case . 85

3.64 Variation in fault index for 8-turn short circuit in R-phase of

a 3-hp induction motor under experimental case . . . . . . . 86

xxii



3.65 Three-phase currents for 8-turn short circuit in R-phase

with 2% supply unbalance of a 3-hp induction motor under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 86

3.66 Three-phase residue currents for 8-turn short circuit in

R-phase with 2% supply unbalance of a 3-hp induction

motor under experimental case . . . . . . . . . . . . . . . . 86

3.67 Variation in fault index for 8-turn short circuit in R-phase

with 2% supply unbalance of a 3-hp induction motor under

experimental case . . . . . . . . . . . . . . . . . . . . . . . 87

3.68 Three-phase currents for LG fault in R-phase of a 3-hp IM

under simulation . . . . . . . . . . . . . . . . . . . . . . . 87

3.69 Three-phase residue currents for LG fault in R-phase of a

3-hp IM under simulation . . . . . . . . . . . . . . . . . . . 88

3.70 Variation in fault index for LG fault in R-phase of a 3-hp IM

under simulation . . . . . . . . . . . . . . . . . . . . . . . 88

3.71 Three-phase currents for LL fault between R and Y phases

of a 3-hp IM under simulation . . . . . . . . . . . . . . . . 88

3.72 Three-phase residue currents for LL fault between R and Y

phases of a 3-hp IM under simulation . . . . . . . . . . . . 89

3.73 Variation in fault index for LL fault between R and Y phases

of a 3-hp IM under simulation . . . . . . . . . . . . . . . . 89

3.74 Three-phase currents for LG fault in R-phase of a 3-hp IM

under experimental case . . . . . . . . . . . . . . . . . . . 89

3.75 Three-phase residue currents for LG fault in R-phase of a

3-hp IM under experimental case . . . . . . . . . . . . . . . 90

xxiii



3.76 Variation in fault index for LG fault in R-phase of a 3-hp IM

under experimental case . . . . . . . . . . . . . . . . . . . 90

3.77 Three-phase currents for LL fault between R and Y phases

of a 3-hp IM under experimental case . . . . . . . . . . . . 90

3.78 Three-phase residue currents for LL fault between R and Y

phases of a 3-hp IM under experimental case . . . . . . . . 91

3.79 variation in fault index for LL fault between R and Y phases

of a 3-hp IM under experimental case . . . . . . . . . . . . 91

3.80 Three-phase currents for healthy of a 10-hp induction motor 94

3.81 Three-phase residue currents for healthy of a 10-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 94

3.82 Variation in fault index for healthy of a 10-hp induction motor 94

3.83 Three-phase currents for 2-turn fault in R-phase of a 10-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 95

3.84 Three-phase residue currents for 2-turn fault in R-phase of

a 10-hp induction motor . . . . . . . . . . . . . . . . . . . . 95

3.85 Variation in fault index for 2-turn fault in R-phase of a 10-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 95

3.86 Three-phase currents for single phasing in R-phase of a

10-hp induction motor . . . . . . . . . . . . . . . . . . . . 96

3.87 Three-phase residue currents for single phasing in R-phase

of a 10-hp induction motor . . . . . . . . . . . . . . . . . . 96

3.88 Variation in fault index for single phasing in R-phase of a

10-hp induction motor . . . . . . . . . . . . . . . . . . . . 96

3.89 Three-phase currents for 2% supply unbalance of 10-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 97

xxiv



3.90 Three-phase residue currents for 2% supply unbalance of a

10-hp induction motor . . . . . . . . . . . . . . . . . . . . 97

3.91 Variation in fault index for 2% supply unbalance of a 10-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 97

3.92 Three-phase currents for 7% under voltage of a 10-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 98

3.93 Three-phase residue currents for 7% under voltage of a

10-hp induction motor . . . . . . . . . . . . . . . . . . . . 98

3.94 Variation in fault index for 7% under voltage of a 10-hp

induction motor . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Proposed stator fault detector and classifier . . . . . . . . . 102

4.2 Three-phase stator currents of a 3-hp IM with 4-turn short

circuit in R-phase . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Variation in three-phase residues of a 3-hp IM with 4-turn

short circuit in R-phase . . . . . . . . . . . . . . . . . . . . 103

4.4 Variation in fault index of a 3-hp IM with 4-turn short circuit

in R-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Variation in a2 coefficients of a 3-hp IM with 4-turn short

circuit in R-phase . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Three-phase stator currents of a 3-hp IM with 4-turn to

ground fault in R-phase . . . . . . . . . . . . . . . . . . . . 105

4.7 Variation in three-phase residues of a 3-hp IM with 4-turn

to ground fault in R-phase . . . . . . . . . . . . . . . . . . 105

4.8 Variation in fault index of a 3-hp IM with 4-turn to ground

fault in R-phase . . . . . . . . . . . . . . . . . . . . . . . . 106

xxv



4.9 Variation in a2 coefficients of a 3-hp IM with 4-turn to

ground fault in R-phase . . . . . . . . . . . . . . . . . . . . 106

4.10 Three-phase stator currents of a 3-hp IM with 4-turn short

circuit between R and Y phases . . . . . . . . . . . . . . . . 106

4.11 Variation in three-phase residues of a 3-hp IM with 4-turn

short circuit between R and Y phases . . . . . . . . . . . . . 107

4.12 Variation in fault index of a 3-hp IM with 4-turn short circuit

between R and Y phases . . . . . . . . . . . . . . . . . . . 107

4.13 Variation in a2 coefficients of a 3-hp IM with 4-turn short

circuit between R and Y phases . . . . . . . . . . . . . . . . 107

4.14 Three-phase stator currents of a 10-hp IM with 3% supply

unbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.15 Variation in three-phase residues of a 10-hp IM with 3%

supply unbalance . . . . . . . . . . . . . . . . . . . . . . . 108

4.16 Variation in fault index of a 10-hp IM with 3% supply

unbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.17 Variation in a2 coefficients of a 10-hp IM with 3% supply

unbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.18 Three-phase stator currents of a 10-hp IM with 10%under

voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.19 Variation in three-phase residues of a 10-hp IM with

10%under voltage . . . . . . . . . . . . . . . . . . . . . . . 109

4.20 Variation in fault index of a 10-hp IM with 10%under voltage 109

4.21 Variation in a2 coefficients of a 10-hp IM with 10%under

voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.22 Three-phase stator currents of a 10-hp IM with single phasing110

xxvi



4.23 Variation in three-phase residues of a 10-hp IM with single

phasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.24 Variation in fault index of a 10-hp IM with single phasing . . 111

4.25 Variation in a2 coefficients of a 10-hp IM with single phasing 111

4.26 Variation in nine features for various disturbances . . . . . . 112

4.27 Variation in nine features for stator faults and supply

unbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.28 Proposed classifiers for classification of faults on a

three-phase induction motor . . . . . . . . . . . . . . . . . 113

4.29 Proposed MNN-1 for disturbance classifier . . . . . . . . . 118

5.1 Three-phase currents for phase to ground fault in Y-phase

of a 3-hp induction motor . . . . . . . . . . . . . . . . . . . 124

5.2 Three-phase currents for phase to phase fault between Y and

B phases of a 3-hp induction motor . . . . . . . . . . . . . . 124

5.3 Variation in fault index for phase to ground fault in Y-phase

of a 3-hp induction motor . . . . . . . . . . . . . . . . . . . 125

5.4 Variation in fault index for phase to phase fault between Y

and B phases of a 3-hp induction motor . . . . . . . . . . . 125

5.5 Variation in slope of detail level coefficients for phase to

ground fault in Y-phase of a 3-hp induction motor . . . . . . 125

5.6 Variation in slope of detail level coefficients for phase to

phase fault between Y and B phases of a 3-hp induction motor126

5.7 Variation in normalised features for YG and YB faults . . . 127

5.8 Variation in normalised features for stator phase faults . . . . 128

5.9 Proposed ANN-2 for classification of stator phase faults . . . 129

xxvii



5.10 Proposed MNN-2 for classification of stator phase faults . . 131

6.1 Three-phase currents for 4-turn short circuit in R-hase . . . . 137

6.2 Three-phase residues for 4-turn short circuit in R-phase . . . 137

6.3 variation in slope of detail level coefficients for 4-turn short

circuit in R-phase . . . . . . . . . . . . . . . . . . . . . . . 137

6.4 Variation in fourth level approximate coefficients for 4-turn

short circuit in R-phase . . . . . . . . . . . . . . . . . . . . 140

6.5 Variation in fourth level approximate coefficients for 4-turn

short circuit in R-phase . . . . . . . . . . . . . . . . . . . . 140

6.6 Variation in fourth level approximate coefficients for 4-turn

short circuit in R-phase . . . . . . . . . . . . . . . . . . . . 141

6.7 Variation in feature 4 for stator inter-turn fault in R-phase . . 142

6.8 Variation in features for various level of stator inter-turn

fault in R-phase . . . . . . . . . . . . . . . . . . . . . . . . 142

6.9 Variation in features for various level of stator inter-turn

fault in Y-phase . . . . . . . . . . . . . . . . . . . . . . . . 143

6.10 Variation in features for various level of stator inter-turn

fault in B-phase . . . . . . . . . . . . . . . . . . . . . . . . 143

6.11 Proposed MNN-3 classifier dentification of faulty phase and

estimation of fault severity of stator inter-turn faults . . . . 147

xxviii



List of Tables

1.1 Distribution of induction motor faults with respect to failed

component. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 No-load test readings for a 3-phase 5-hp induction motor (IM) 33

2.2 Blocked rotor test readings for a 3-phase 5-hp induction

motor (IM) . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 No-load test readings for a 3-phase 3-hp induction motor (IM) 33

2.4 No-load test readings for a 3-phase 3-hp induction motor (IM) 34

2.5 Parameters for a 3-phase 5-hp induction motor (IM) . . . . . 35

2.6 Parameters for a 3-phase 3-hp induction motor (IM) . . . . . 35

3.1 Comparison of fault detection criteria for various practical

and simulation cases of stator inter-turn faults . . . . . . . . 92

3.2 Comparison of fault detection criteria for various practical

and simulation cases other than stator inter-turn faults . . . . 93

4.1 Normalised features extracted from a2 coefficients . . . . . . 111

4.2 Training and testing data for various disturbances . . . . . . 115

4.3 Training performance of single multilayer ANN-1 . . . . . . 115

4.4 Testing performance of single multilayer ANN-1 . . . . . . 116

4.5 Testing performance of multilayer ANN-1 . . . . . . . . . . 117

4.6 Performance of ANN-1 in double multilayer of 14, 20 . . . . 117

xxix



4.7 Confusion matrix for MNN-1 . . . . . . . . . . . . . . . . . 120

4.8 Performance for ANN-1 and MNN-1 in disturbance

classification . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Self normalised features for various stator phase faults . . . 128

5.2 Training and testing data for stator phase faults classification 130

5.3 Confusion matrix for ANN-2 . . . . . . . . . . . . . . . . . 130

5.4 Confusion matrix for MNN-2 . . . . . . . . . . . . . . . . . 132

5.5 Comparison of performance between ANN-2 and MNN-2 . 133

6.1 Features extracted from slope of detail level coefficients . . . 138

6.2 Self normalised features extracted from slope of detail level

coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Feature 4 from fourth level approximate coefficients . . . . . 141

6.4 Training and testing patterns used in ANN-3 . . . . . . . . . 145

6.5 Confusion matrix for ANN-3 . . . . . . . . . . . . . . . . . 146

6.6 Confusion matrix for MNN-3 . . . . . . . . . . . . . . . . . 148

6.7 Performance for ANN-3 and MNN-3 in stator inter-turn

fault classification . . . . . . . . . . . . . . . . . . . . . . . 149

xxx



List of Abbreviations

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN-1 ANN Structure for Disturbance Classifier

ANN-2 ANN Structure for Stator Phase Fault Classifier

ANN-3 ANN based classifier for identification of faulty phase and

estimation of fault severity of stator inter-turn faults

ANN Artificial Neural Network

AWT Analytic Wavelet Transform

Bior5.5 Biorthogonal 5.5

CBM Condition Based Maintenance

CM Common Mode

CWT Continues Wavelet Transform

DM Differential Mode

DWT Discrete Wavelet Transform

FDIR Fault Detection, Isolation and Reconfiguration

FFT Fast Fourier Transform

IMs Induction Motors
xxxi



MCSA Motor Current Signature Analysis

MNN-1 MNN Structure for Disturbance Classifier

MNN-2 MNN Structure for Phase Fault Classifier

MNN-3 MNN based classifier for identification of faulty phase and

estimation of fault severity of stator inter-turn faults

MNN Modular Neural Networks

MRA Multi-Resolution Analysis

MSE Mean Square Error

PD Partial Discharge

PWVD Pseudo Winger-Ville Distribution

RAT Relative Value of Adaptive Threshold

RMFI Relative Value of Maximum Fault Index

SNR Signal to Noise Ratio

SPWVD Smoothed Pseudo Winger-Ville Distribution

STFT Short Time Fourier Transform

SWT Stationary Wavelet Transform

WFT Windowed Fourier Transform

WPT Wavelet Packet Transform

WT Wavelet Transform

WVD Winger-Ville Distribution

xxxii



List of Symbols

η Lls Anti-resonance leakage inductance

µRs Stator initial frame to ground damping resistance

µ Rs f Anti-resonance resistance

Cs f−total Total stator to frame capacitance per phase

Cs f Stator to frame capacitance

Csw Stator turn to turn capacitance

I f Fault index

Llr Rotor leakage inductance

Lls Stator leakage inductance

Lm Magnetising inductance

Rcore Core resistance

Rr Rotor resistance

Rsw Stator turn to turn damping resistance

Rs Stator resistance

xxxiii



Chapter 1

Introduction

1.1 Overview

A significant issue in the operation of any equipment is the proper and

reliable operation, which in economic terms is a maximum financial benefit

and residing within technical constraints. Moreover, the capital investment

required for equipment often necessitates high levels of accessibility to

ensure a reasonable rate of return. Thus, the minimization of operational

costs resulting from unexpected downtimes, unnecessary maintenance and

a reduction of the system abilities has become an essential objective of any

industry. Hence the detection and diagnosis of fault components in an

induction motor is of great practical significance. With the proper machine

monitoring and fault detection schemes, early warning signs can be

obtained for preventive maintenance, enhanced safety, and improved

reliability. Faults can produce plant shutdown, economic and production

losses, and even human casualties. Thus early, fast and accurate detection

and diagnosis of incipient faults is essential in preventing major damage to

the system and allows adequate timely actions to protect the system.

1
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AC motors play a major role in modern industrial applications.

Squirrel-cage Induction Motors (IMs) are most frequently used when

compared to other motors because of their low cost, ruggedness and low

maintenance. Moreover, the motors undergo many abnormal conditions

during their total service life. In view of above, an incorrect operation of

motor always lead to various failures and finally causing production

curtailments. With reference to the origin, a fault may be internal or

external. These faults are caused due to electrical, mechanical, thermal and

environmental stresses. Mechanical stresses are caused by overloads and

abrupt load changes, which can produce bearing failures and rotor bar

breakage. On the other hand, electrical stresses are usually associated with

the power supply, which can produce stator faults and supply faults.

Figure 1.1 shows the various industrial applications of induction motor and

root causes of various stresses on three-phase induction motor. Figure 1.2

shows the detailed classification of various faults on induction motors.

According to surveys reported on motor reliability in [1] and [2], bearing

failures are responsible for approximately two-fifths of all faults, inter-turn

short circuits in stator windings are contribute to approximately one-third

of the reported faults and broken rotor bars and end ring faults contribute to

around ten percent of the induction motor faults. Induction motor fault

distribution is summarized in Table 1.1. In medium size induction motors

bearing failures occupy the first place but in medium to large size induction

motors failures are due to stator winding insulation breakdown (one of the

internal types of electrical fault).
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Figure 1.1: Various applications and root causes of stress on a three-phase induction motor

Squirrel Cage Induction Motor Faults

Internal Faults External Fualts

Electrical Faults Mechanical Faults Supply side Faults Mechanical Overload

Stator Faults Rotor Faults Bearing Faults Air Gap Eccentricity Single phasing Locked Rotor

Turn Faults Broken Rotor Bars 

or End Ring Faults

Less/Excessive 

Lubrication

Static 

Eccentricity Under Voltage

Phase-Phase 

Faults High Seal 

Friction

Dynamic  

Eccentricity Unbalanced Supply

Phase-Ground 

Faults

Figure 1.2: Typical failures of induction motor
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Table 1.1: Distribution of induction motor faults with respect to failed component.

% of failure

Fault related component IEEE-IAS EPRI Allianz

Bearings 44 41 13

Windings 26 36 66

Rotor 8 9 13

Other 22 14 8

The organic compounds used for insulation materials in electric

machines are subjected to deterioration, due to combination of thermal

overloading, transient voltage stresses, mechanical stresses and

environmental stresses. In spite of all possible causes, thermal stresses are

the main reason for the degradation of the stator winding insulations.

Thermal stress are classified into three types: aging, overloading, and

cycling. Even the best insulation will fail quickly if operated above its

temperature limit. As a rule of thumb, for every 100C increase in

temperature, useful life of insulation reduces by 50% [3]. Regardless of the

causes, stator winding related failures can be divided into the following

five groups: turn-to-turn, coil-to-coil, line-to-line, line-to-ground, and

single or multi-phase windings open-circuit faults as presented in

Figure 1.3. In particular, an undetected stator inter-turn fault may grows up

and finally lead to a permanent damage of the machine. Hence, early

detection of stator inter-turn faults is necessary for preventing damage to

the adjacent coils and the core of the stator. Other major causes for

induction motor faults are incorrect supply voltages and load changes.

These are supply unbalance, single phasing, under voltage and sudden
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change in electrical load.

Figure 1.3: Stator winding insulation faults

In industry, basically people follows three types of maintenance

procedures which include corrective maintenance, time based maintenance

and condition based maintenance. Figure 1.4 illustrates the merits and

demerits of the maintenance procedures. Recently, industrialists have

shown much interest towards the use of prognosis techniques in Condition

Based Maintenance (CBM). These techniques rely on information

provided by condition monitoring and fault identification systems, which

assess system conditions continuously. This requires accurate and effective

fault detection methods which must be non-invasive and able to detect any

type of faults in the early stages. A large amount of research has been

directed towards the electrical monitoring of Motor Current Signature

Analysis (MCSA), which is a non-invasive and standard for monitoring of

motor faults due to its simplicity [4]. The main advantage of MCSA is to

analyse the stator current in search of current harmonics directly related to

new rotating flux components, which are triggered by faults in the

motor-flux distribution.
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1.2 Literature Survey on Fault Diagnosis

This section describes how significant and challenging it is to build an

accurate stator fault diagnosis technique for induction machines. In

addition to that an exhaustive literature survey on various condition

monitoring techniques are presented which includes common modelling

techniques, signal processing techniques and data based techniques.

Finally, summary of various condition monitoring techniques for induction

motors developed by other researchers are presented.

 

• Corrective maintenance

• Simply respond to the motor 
failures

• Maintenance cost is low

• Gives unexpected downtime

• Time based maintenance

• Performed at fixed time intervals

• Maintenance cost is high

• Reduces unexpected downtime

Traditional Maintenance 
Procedures

• Advantages

• Reduces Consequential Damage

• Increases Machine Life

• Reduces Spare Parts Inventory

• Reduces Breakdown Time

Condition 
Monitoring

Condition based 

maintenance

Figure 1.4: Maintenance procedures in industries and their features

Stator faults are usually associated with insulation failure. The root causes

for the stator insulation failures are broadly categorised into four

groups [5]. These are thermal, electrical, mechanical and environmental

stresses. Normally, the deterioration of stator winding insulation usually

begins with inter-turn fault which causes to produce high circulating

current between adjacent coils and therefore burns the insulation in
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adjacent windings. This insulation failure spreads to core very quickly and

then leads to stator to core insulation failure. Hence, reliable detection

techniques are essential for detecting the stator insulation failure at the

earliest to avoid the catastrophic motor failures [6]. There are different

types of fault detection and diagnosis methods for induction motor which

have advantages and disadvantages. The main objective of the fault

detection and diagnosis method is to obtain a signal sensitive to faults, but

robust against model uncertainty, noise and unknown disturbances. In

general, the development of a fault detection and diagnosis system involves

a time consuming process to identify the symptoms to be monitored,

provide the correct signals for recognition of suitable fault symptoms, and

then provide the correct computational methods to process the signals. In

fact, in the literature, there is still no global fault detection and diagnosis

algorithm that can overcome the parametric and model uncertainty,

measurement noise, load torque effects and intrinsically electrical machine

mechanical unbalance for induction motor [7]. For this reason, researchers

have suggested different detection and diagnosis schemes with parameter

settings that are developed specifically to the system under investigation.

According to the survey reports the fault diagnosis techniques are classified

into two categories. These are Model based and model free methods [8].

1.2.1 Model Based Methods

Model-based methods have been proposed in [9] and [10]. They take

advantage of the plant model, since the idea is to calculate such quantities

from the models that reflect inconsistencies between nominal and faulty

system operation. In the case of model-based techniques, accurate models
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of the system are essentially required for achieving a good fault

diagnosis [11]. More precisely, the more accurate the model, the more

reliable the model-based fault diagnosis scheme will be, i.e. mathematical

models among the system inputs and outputs are utilized. Most of the

methods rely on the concept of analytical redundancy rather than physical

redundancy. The basic idea behind the model-based fault detection and

isolation approach is to take advantage of the nominal model of the system

to generate residuals that contain information about the faults. Evidently,

the quality of the model is of fundamental importance for both fault

detection and isolation to avoid false alarms. The difference between

computationally obtained quantities and measurements results is so-called

residuals. Fault Detection, Isolation and Reconfiguration (FDIR) is a

control methodology which ensures safe or acceptable operation of a

system when a fault occurs through fault detection and isolation, as well as

controller reconfiguration in response to the specific fault. Fault detection,

and isolation are major part of FDIR [12]. Generally, the application of

model-based methods can be divided in two parts: residual generation and

decision making.

In Figure 1.5, a general framework of model-based FDIR scheme is

presented [8], [12], [13], [14]. In the first step, process models in healthy

and faulty operation are applied to generate residuals describing the current

condition of the process. The second step is to make decisions on whether

a fault has occurred (fault detection) and on the type of faults that have

occurred (fault isolation) based on the residuals. Finally, the controller is

reconfigured on-line in response to any faults detected. The residual

generation has to be followed by residual evaluation, in order to arrive at a
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detection and isolation decision.

Controller
Plant/Healthy 

Model

Decision on 

FDI

Model 1

Model 2

Reconfiguration

+

+

_

_

U(t) Y(t)

FDI

FDIR

Residual1

Residual2

Y1(t)

Y2(t)

Figure 1.5: Analytical redundancy model-based fault detection, isolation, and

reconfiguration

In some cases the residuals never become zero because of the presence of

noise and model errors, even if there is no fault. Therefore the detection

decision requires testing the residuals against thresholds, obtained

empirically, or by theoretical considerations in which the condition is

decided based on the residuals [12]. To overcome this problem, robust

residual generation can be addressed by using observer-based

methods [15], the parity relation methods [11], the parameter estimation

methods [16] and Kalman filter-based method [17].

The model-based method can be divided into three

classes [13], [16], [18] based on their analysis: data based model,

analytical model, and knowledge-based model. Analytical models are

based on the known physical interactions in the diagnosed plant. It can be

applied using observers [19], parameter estimation [18], or parity equations

[16]. Knowledge-based models rely on human-like knowledge of the

process and its faults [13], whereas Data-based models are applied when

the process model is not known in the analytical form and expert
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knowledge of the process performance under faults is not available.

However, for complex and uncertain systems, the derivation of

high-fidelity mathematical models from physical principles can become

very complicated, time consuming, and even sometimes unfeasible (for

instance, some systems cannot be represented accurately enough by a

lumped parameter system). Generally obtaining accurate model parameter

values may become a very tedious job, or even practically impossible, due

to proprietary issues regularly imposed by system integrators [18].

1.2.2 Model-Free Methods

Model-free methods can be carried out by monitoring and processing the

signals. These methods use suitable sensor signals such as voltage, current,

vibration, temperature, etc., at the initial stage. The second stage extracts

the useful information by using one or more of the signal processing

techniques e.g. Fourier techniques, wavelet, etc [8]. The third stage,

considered the heart of the condition monitoring, is the stage where the

fault is detected and identified according to the extracted data from the

previous stage. The advantages of the model-free approaches are that they

are able to avoid parameter mismatches between theoretical model and

actual motor [13].

1.2.2.1 Signal Monitoring Methods

In any machine, a key factor for detection of fault is proper signal

conditioning and monitoring. They are mainly five types of monitoring

techniques such as temperature monitoring, chemical monitoring, vibration

monitoring, electrical monitoring and Partial Discharge (PD) monitoring.
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Numerous fault detection and identification techniques that have been

reported for the past two decades are based on electrical monitoring which

includes currents, voltages and power. Out of all electrical monitoring

techniques, motor current signature analysis is well known and recognised

technique because it is more practical and no additional sensors are

required [20]. Other techniques include vibration analysis, torque profile

analysis, acoustic noise measurement, magnetic field analysis and

temperature analysis [5]. These techniques require sophisticated and

expensive sensors, extra electrical and mechanical installations and

frequent maintenance. Moreover, the use of a physical sensor in induction

motor fault identification system results in lower system reliability

compared to other fault monitoring systems that do not involve extra

instrumentation. This is due to the susceptibility of the sensor to fail is

added to the inherent susceptibility of the induction motor to fail. The

remaining monitoring techniques, such as chemical and PD Motor Current

Signature Analysis analysis are presented in [21], [7]. In these two

techniques, PD is only applicable for above 4 kV rating of the motors.

Other monitoring technique is not useful for stator incipient fault cases. PD

and chemical analysis techniques are not applicable for low and medium

range induction motors due to their higher cost and other limitations.

1.2.2.2 Signal Analysing Methods

Generally, the signal analysing methods can be carried out either in

frequency domain or time domain or time-frequency domain.



1.2 Literature Survey on Fault Diagnosis 12

1.2.2.2.1 Time Domain Analysis: In time domain analysis, the fault

detection algorithms are developed based on the signal features of root

mean square, shape factor or crest factor. The same inferred can be drawn

from other methods based on statistical measures such as mean, standard

deviation and Kurtosis. In that the last one is based on higher order

moments [22]. Generally, the three-phase stator currents of an induction

motor is in a periodic nature which is dominated by fundamental

component. Whenever fault occur, the fault related frequency components

present in the stator current is less compared with fundamental frequency.

Thus, fault detection makes difficult using time domain analysis. The more

reliable fault techniques in time domain is addressed by using the

notch-filtered stator current [23]. However, it is hard to relate the origin of

the fault from the features because the obtained features for different kinds

of faults could be similar. Hence, fault classification needs the

post-processing step [24].

1.2.2.2.2 Frequency Domain Analysis: The frequency domain analysis is

widely applied for diagnosis of electrical faults in induction machines such

as broken bar faults, rotor faults and stator faults since their corresponding

fault characteristic frequencies are well defined [19], [25]. The mechanical

faults such as bearing, eccentricity and load unbalance faults can also be

detected using stator current frequency spectrum [19]. In several research

works, the feature extraction in the frequency domain is not restricted to

the monitoring of fault-related frequencies magnitudes in the stator current

spectrum. It has been shown that the spectrum statistical information such

as the frequency centre, the root mean square frequency and the root
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variance frequency are also efficient for electrical and mechanical faults

diagnosis in induction machines [24], [22], [26]. The performance of

frequency domain analysis is mainly influenced by two factors which are

frequency resolution and spectrum leakages. Detection of fault using

frequency component of electrical signatures are commonly load and slip

dependent.

1.2.2.2.3 Time-Frequency Domain Analysis: The frequency domain analysis

cannot give a reliable solution in harsh industrial environment since the

fault frequency components are generally load and slip dependent. A

straightforward solution for that is to analyse the signal in time-frequency

domain. The Windowed Fourier Transform (WFT) or Short Time Fourier

Transform (STFT) is a well-known method to diagnosis the mechanical

and electrical faults in an induction motor. The WFT gives equivalent time

and frequency resolutions in the overall time-frequency plane. But,

diagnosis of fault under non-stationary condition is a challenging problem

which requires advanced time-frequency analysis techniques. Quadratic

time-frequency analysis techniques are efficient alternatives to the WFT

due to their independence from the type or the size for the window

function. In essence, these methods compute energy distributions of the

signal over both time and frequency planes. Particularly, the mechanical

faults in electrical machines have been detected using time-frequency

domain analysis of Wigner-Ville Distribution (WVD) and its variants, the

pseudo-WVD (PWVD) and the smoothed pseudo-WVD (SPWVD). it

WVD gives a better frequency resolution rather than WFT under similar

conditions. But, it has a limitation due to inner interference terms. This
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effect diminishes the ability to estimate the fault severity. To avoid this

practical drawback, the PWVD uses a time window function like Hanning,

Hamming, Blackman, Kaiser, Bartlett, and Gaussian in order to smooth the

time-frequency distribution in the frequency plane at the cost of decreasing

the frequency resolution. The SPWVD attempts to reduce the magnitude of

inner interference terms by smoothing in both time and frequency planes.

This reduces more efficiently the effect of inner interference terms at the

cost of decreasing both time and frequency resolutions. In [27], authors

have applied the SPWVD for rotor faults detection in brushless DC motors

(BLDCM) in continuous time-varying conditions. For instance, the WVD

has been used to track frequency components related to both eccentricity

and broken rotor bar faults in the stator current of an induction machine at

start-up [28], [29]. Climente-Alarcon and et. al have published two

interesting contributions on this subject [30], [31]. In [30], the load torque

oscillations have been associated with the stator current phase modulation

in three-phase induction machines. Authors state that this technique has

been considered as a general one for mechanical faults detections such as

load unbalance, shaft misalignment, gearbox and rolling-bearing defects.

In [31], authors have used the WVD as a mean to distinguish between

magnitude and phase modulation effects of eccentricity and load torque

oscillations.

Diagnosis of electrical machine faults using Wavelet Transform (WT) is

another well-known method in time-frequency domain because of its multi

resolution property [32]. Mathematically, mother WT is based on two

function scale dilatation and translation. These two facts lead to give good

resolutions in both time and frequency [33]. This means that when the
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scale is small the resolution is coarse in the time domain and fine in the

frequency domain and vice-versa when the scale is large [34]. There are

several Wavelet functions such as Daubechies, Biorthogonal and Coiflet

wavelet for real and Morelet wavelet for complex [35]. The fundamental

idea is to replace the frequency shifting operation which occurs in the WFT

by a time scaling operation. This makes the WT a time-scale representation

rather than a time-frequency one. The time-scale representation of the

squared-modulus of Continues Wavelet transform (CWT) is called the

scalogram. A particular case of the CWT is called analytic or cross wavelet

transform (AWT). The AWT separates the phase and the magnitude

information of a signal which allows for analysing the time evolution of

frequency tones.

1.2.3 Classification Methods

Recently, significant efforts have been made on the use of artificial

intelligence tools to develop condition monitoring and fault diagnostic

techniques for electric machines. Artificial intelligence techniques are

considered significant in condition monitoring and fault diagnosis of

electrical machines, reviewed in [36]. Neural network and fuzzy logic

techniques have their own limitations as discussed in [37] and thus a

specific combination of these two techniques, known as Adaptive

Neuro-Fuzzy Inference System (ANFIS), have developed as a better

alternative solution [38]. The ANFIS technique offers the best training

feature of neural network and heuristic interpretation of the process results

similar to fuzzy logic theory, thus providing a powerful tool that can be

employed in conjunction with the condition monitoring and fault



1.3 Summary of Various Monitoring Techniques 16

diagnostic applications. The use of ANFIS is growing towards in this niche

application area and a significant amount of literature is available [39], [40]

and [41]. Bearing failures and inter-turn insulation failure of main winding

of a single-phase induction motor is considered in [42]. Stator current,

rotor speed, temperature of the winding, bearing temperature and motor

noise are considered as input to the ANFIS. However, additional noise

sensors are not very reliable and the data collected from such sensors is not

very accurate. Classification of more faults with single parameter is more

complicated than multiple parameters. Modular Neural Networks (MNN)

have remarkable ability to derive meaning from complicated or imprecise

data and is used to extract patterns and detect trends that are too complex.

Such an approach has noticeable advantages of simple and reduced

architecture and better learning capability [43], [44].

1.3 Summary of Various Monitoring Techniques

Monitoring parameters and analysing techniques have been used to

identify the faults during last 2 decades are illustrated in figure1.6. This

figure shows that the most commonly used monitoring parameter in fault

diagnosis is MCSA because of its non-invasive nature. In that one of the

more frequently used technique for fault diagnosis in the area of induction

motors is Fast Fourier Transform (FFT), which is suitable for steady state

analysis only [45]. Due to this reason the usage of time-frequency domain

analysis has been enlarged in recent times towards fault diagnosis

community. STFT overcomes the certain limitations of FFT but not all due

to a sort of compromise between time and frequency based view of signal
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representation, which has limited precision due to fixed size of window.

Wavelet transform overcome this limitation. Wavelet analysis allows the

use of long time intervals for low-frequency information, and shorter

regions for high-frequency information [46] that means it gives

multi-resolution. Thus, it is a powerful tool for condition monitoring and

fault diagnosis [47]. A well-known technique to detect inter-turn short

circuits in time domain analysis is negative sequence components of stator

currents, which is presented in [48]. The asymmetries produced by a faulty

motor with shorted turns in the stator winding are the basis for fault

diagnosis, such asymmetries will generate a negative sequence current and

is used to detect the fault. However, some effects can yield

misclassification due to unbalanced power supply voltage, certain types of

load, and measurement errors. These effects can also produce negative

sequence currents even in healthy motors. Even though such effects were

considered in [48], but still fails to detect faults for induction motors with

inherently unbalanced windings as explained in [49]. The other frequency

analysis technique can also be well associated for MCSA are Parks vector

approach. Detection of faults using dq0 components [50] and the envelope

of the stator currents [51] are just an alternative representation of the

negative sequence current component. Methods using other signatures,

such as slot harmonics [45], pendulous oscillation phenomenon [52] and

observer-based method [53] are proposed in the literature. Fault detection

using induced voltage at motor terminals when the power supply is turning

off is proposed in [54], but this method cannot provide continuous

monitoring and protection. Using high resolution spectral analysis of stator

current spectrum through experiment, the voltage unbalance and open
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phase external fault condition are identified. In [55], two approaches have

developed based on Discrete Wavelet Transform (DWT) for induction

motor fault detection. In that, the first fault detection criteria is the

comparison between threshold determined experientially during healthy

condition of motor and sixth level DWT coefficients of fault currents

obtained by using selected mother wavelet of db3. The second approach

was based on comparison of modulus maxima of the DWT coefficients.

The DWT of the shifted (down sampled) signal, in general, is different

from the shifted version of the DWT of the original signal. This is because

DWT is not a shift-invariant transform. Such a drawback can cause

problems in fault detection and classification. Wavelet packet transform

based protection system developed in [56] coefficients of the Wavelet

Packet Transform (WPT) line currents compared experimentally decided

threshold for detecting and diagnosing various disturbance occurring in

induction motor. Single phasing, phase to earth and short circuit faults.

WPT is similar to DWT, but in WPT, the high-pass and low-pass filters are

applied to both the detail and approximation coefficients at each level.

Hence, at the nth level, WPT gives 2n coefficients while DWT gives only

two. The draw back of DWT can be over come by using Stationary

Wavelet Transform (SWT) and CWT.

1.4 Motivation

In harsh industrial environments the noise level and its variation should be

considered precisely for fault diagnosis because the fault signature due to

stator inter-turn short circuit is much lower than the noise level. Hence, it

requires a good technique with a capability to suppress the noise without
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Figure 1.6: Mapping between monitoring parameters and analysing techniques to detect

the faults

corrupting the fault signature. Most of the existing techniques require some

sort of domain expertise to identify whether the three-phase induction motor

is operating in normal or abnormal condition.

In actual practice, the captured currents are influenced by many factors,

which include supply unbalance, static eccentricity, load level variations

and noise. These conditions may lead to errors in fault detection. Hence,

an accurate inter-turn fault diagnosis technique must be required to detect

the inception of a fault and its location. To detect the inception of a fault

than it requires time-frequency localisation. Wavelet transform is a one the

best technique for analysing the signal in both time and frequency domain,

they have capability to reconstruct the signal from the decomposed signal.

However the discrete wavelet transform (DWT) is not suitable for signal
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noise reduction applications due to the lack of invariant translation

property. But this effect can be overcome by using stationary wavelet

transform (SWT) that has been discussed in [57] and [58]. Especially, only

little contributions have been presented based on SWT in the area of motor

condition monitoring. From the perspective of long-term research on the

diagnosis of electrical machines, it appears that recent focus has been on

the use of signal processing and AI in order to improve the performance of

traditional model-based methods. However, the lack of evaluation

techniques for classifying various faults such as supply side faults and

stator internal faults on induction motors are significant.

Specifically, this thesis addresses electrically detectable faults that occur

in the stator windings and supply side faults, namely inter-turn, line-line,

line to ground short circuits in stator windings, single phasing, under

voltage, supply unbalances and sudden electrical load changes. The

methods developed in this thesis detect motor faults without the necessity

of invasive tests or process shut downs. Moreover, the presented methods

monitor the operating condition of induction motor continuously, so that

human inspection is not required to detect motor faults.

1.5 Contributions

According to exhaustive literature survey, effective fault detection is very

essential for induction motors. The exhaustive literature survey on

induction motor condition monitoring is inferred that majority of the cases

the monitoring parameter is a current and analysing method is a

time-frequency which is best for non-stationary signals. However, to
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improve the sensitivity of the fault detection and identification, it is

required to integrate the various analysing methods. Till now there is no

such algorithm for detecting multiple faults with minimum number of

non-invasive monitoring parameters and classifying the various faults with

minimum features. Hence, the following objectives are outlined in this

thesis to fulfil the gap in the literature survey.

• To develop an accurate machine model which is valid for wide range

of frequencies.

• Monitoring measurements should be non-invasive and minimum.

• Integrating the analysing techniques (Wavelet and ANN).

• To diagnosis all possible and frequently occurring faults on induction

motor such as supply unbalance, single phasing, under voltage,

switching of sudden electrical loads, stator inter-turn (same phase)

faults, stator turn-ground faults and stator turn-turn (different phases)

faults.

• Detection procedure should be made with variable threshold as the

fault component is not constant, and depends on the inception of fault,

supply and load conditions.

To achieve the above objectives, in this thesis two robust fault diagnosis

schemes are developed by integrating the wavelet with artificial neural

network and wavelet with modular neural network, which can improve

system’s reliability and effectiveness towards detection, classification and

evaluation of the severity level of stator inter-turn short circuit. Figure 1.7

illustrates the road map for research work presented in this thesis.
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Figure 1.7: Road map for research work

1.6 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 describes the development of a low-high frequency

distributed model for an induction motor. The low and high frequency

parameters are derived by conducting various tests which includes no-load,

rotor blocked, differential and common mode test. This chapter also

demonstrated the validation of the considered models of 3-hp and 5-hp

motors by comparing frequency responses obtained from the experimental

setup and simulation.

Chapter 3 deals the fault detection algorithms for three-phase induction

motor based on discrete wavelet transform and stationary wavelet

transform. The proposed algorithms are tested with various faults, which

are modelled and simulated in MATLAB/Simulink environment. The

proposed algorithms are also verified by using data obtained from
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experimental setup provided for a 3-hp and 10-hp three-phase induction

motors.

Chapter 4 describes the classification algorithms for various

disturbances and stator winding insulation faults on a three-phase induction

motor based on Feed Forward Neural Network (FNN) and Modular Neural

Network (MNN). The proposed disturbance classifiers are trained and

tested by using data obtained from the simulation studies for a 3-hp

3-phase induction motor. Experimental setup was arranged for the analysis

of a 3-hp and 10-hp three-phase induction motors.

Chapter 5 presents the classification of stator phase faults along with

faulty phase on a three-phase induction motor based on Feed Forward

Neural Network (FNN) and Modular Neural Network (MNN). The

proposed algorithms are verified by using data obtained from the

simulation studies for a 3-hp 3-phase induction motor and experimental

setup are provided for a 3-hp and 10-hp three-phase induction motors.

Chapter 6 discusses the identification of faulty phase and severity level

of stator inter-turn faults on a three-phase induction motor. The defined

features are not effected by the supply unbalances and load conditions.

Chapter 7 summarizes the conclusions of the work and recommendations

for future work.



Chapter 2

Modelling of Stator Winding in 3-Phase

Induction Motor for Fault

Diagnosis-Validation

2.1 Introduction

Modelling of machines operating under fault conditions is essential in

predicting the behaviour of the machine. The analysis of stator winding

faults especially turn-to-turn short-circuit can be made by different models.

With the advent of more powerful computers and sophisticated electric

machine models, there is a possibility of transient analysis of the motor.

2.2 Modelling of 3-phase Induction Motor

Conducting experiments repeatedly on a real machine to study the

behaviour of faults is not economical as it can lead to the destruction of the

machine. However, many parametric studies can be carried out if an

accurate and simple model is available to study the behaviour of the motor

operating under fault condition. In this thesis, a low-to-high frequency

24
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model is considered to analyse the stator faults. Motor behaviour under

low frequencies is described by IEEE standard 112 [59] and per phase

low-frequency T-equivalent circuit is shown in figure 2.1. In medium to

high frequency ranges, a distributed parameter model is best for analysing

the motor behaviour. Compared to low frequency model, the distributed

high frequency model requires extra elements such as stator to frame

capacitance (Cs f ), anti-resonance resistance (µ Rs f ), anti-resonance

leakage inductance (η Lls), stator turn to turn capacitance (Csw) and stator

turn to turn damping resistance (Rsw). Each coil of the Stator winding is

represented by a distributed Π model as shown in figure 2.2. Figure 2.3

shows the distributed model of a 3-phase induction motor. The additional

parameters of the distributed model are calculated from Differential Mode

(DM) and Common Mode (CM) test which has been discussed in [60].

Fast switching means shorter voltage rise time, which can lead to the

reflected wave phenomenon as well as high-frequency leakage currents

through the systems stray capacitors. Reflected waves cause voltage spikes

at the motor terminals and the high frequency leakage currents cause

electromagnetic interference (EMI). These two phenomena are commonly

modelled as two decoupled single-line circuits, namely, DM and CM.

Rs Lls

Rr/s

Llr

RcoreLm

Phase

Neutral

Figure 2.1: Lumped parameter model
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Figure 2.2: Distributed parameter model
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Figure 2.3: 3-phase induction motor distributed model
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2.3 Distributed Model Parameters

2.3.1 Stator First Turn Leakage Inductance (η Lls):

This is one of the critical parameters in defining the DM motor high

frequency impedance to reflected wave, predicting the antiresonance point

of Figure 2.2 and setting correct EMI leakage current to ground in the CM

circuit. The η Lls parameter is used to account for the fact that only a

fraction of total stator leakage inductance is attributed to the high

frequency (∼ 5 MHz) anti-resonance point, specifically the first few turns

(typically 4) in the first slot of the entry winding. Thus, mathematically it

is expressed as in equation 2.1. Winding data is available from machine

geometry. If the value of Lls is too high, then this inductance isolates the

rest of the winding from the cable and a wave shaped reflected wave

appears DM simulation is a wave-shape which exhibits of an ideal open

circuit. If η Lls is high, then this inductance also isolates the Cs f − slot term

and current-to-ground peak and ring wave shape will not be correct in the

CM simulation.

ηLls ∼ (
4turns

totalturnsperphase
)2Lls (2.1)

2.3.2 Total Stator to Frame Capacitance per Phase (Cs f−total):

A physical representation of (Cs f−total) total stator winding capacitance to

frame ground is shown in figure 2.4. At high frequencies especially more

than resonance frequency, the behaviour of DM and CM motor can be

described by the parameter of stator slot winding-to-frame capacitance

(Cs f ). At low frequencies, the parameter Cs f−total plays a major role in

matching CM transfer function. Cs f−total is calculated from machine
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Figure 2.4: Physical representation of stator winding capacitance to frame ground

geometry by analysing each slot capacitance to ground and multiplying it

by the number of stator slots. Each stator slot can be considered

approximately as a rectangular shaped conductor with stack stator length

L, slot average width w and slot average depth d; see figure 2.5. The

capacitance value between the conductor in each slot and the motor frame

can be obtained as follows

Cs f−slot =
ε0LslotLS tack

Ktδ1

εr1
+
δ2

εr2
+

Ktδ3

εr3

(2.2)

where, Lslot is the stator slot circumference which can be calculated

approximately using the expression as Lslot � 2dslot + 1.5wslot , δ1, δ2 and

δ3 are the thickness of slot wall, wire insulation and air gap, with a relative

permittivity of εr1, εr2 and εr3 respectively. Effective Cs f−total and Cs f−slot

may change in 2:1 ration with liner air gaps, making calculations less

precise. For a motor with Nslot stator slots, the total stator winding to frame

capacitance can be obtained as follows:

Cs f−total = NslotCs f (2.3)
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Figure 2.5: Representation of stator slot capacitance to frame ground

2.3.3 Stator Turn to Turn Winding Capacitance (Csw):

This parameter can be determined in a two ways. In the first method

parameter can be obtained as a function of Cs f−e f f ective. The mathematical

representation Csw is given in equation 2.4. The second method is to solve

equation 2.5 for Csw and assuming fr1 is known.

Csw =
fr2

fr2

2

Cs f−e f f ective (2.4)

fr1and fr2 =
1

2Π

√
(β ±

√
(β2 − 4α))/(2α) (2.5)

where α = Lls Llr Csw Cs f , β = (Lls + Llr)Cs f + Lls Cs f and fr1 < fr2.

2.3.4 Stator Turn to Turn Damping Resistance in Winding (Rsw):

This parameter accounts for skin and proximity effect of the wire and high

frequency core loss. Quite simply, at first resonance peak of the DM
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impedance measured is equal to the 3/2 times the damping resistance (Rsw)

for a parallel resonant circuit. It has been found that Rcore resistor does not

have a great impact on the damping resistor required.

2.3.5 Stator Initial Frame to Ground Damping Resistance (µRs):

This component is the ac resistance of the fractional part of total stator Rs

due to the η Lls segmentation described. The µRs is proportional

(
4turns

total turns per phase
) and multiplying factor of 10 to 20 is used for ac

skin and proximity effects. In addition, it also encompasses the resistivity

of the steel laminations from the slots to where the motor ground wire in

the junction box is connected. The term µ Rs affects peak CM current as

well as damping of oscillations in the CM current to ground.

2.4 Experimental Setup for DM and CM Test

In general, distributed parameters are determined by measuring the

frequency response from DM test setup and CM test setup. A three-phase,

3-hp, 415 V, 4 pole 50 Hz induction motor with 36 slots, 6 coils per phase

and 72 turns per coil and a three-phase, 5 HP, 440 V, 4 pole 50 Hz

induction motor with 36 slots, 6 coils per phase and 54 turns per coil is

considered for the present study. Initially, the low frequency parameters are

estimated by conducting no-load and rotor blocked tests. Later, differential

mode and common mode tests are conducted to estimate the high

frequency parameters of a 5-hp Induction Motor (IM). Differential mode

test was performed by connecting LCR meter between phase A and tied

leads of phase B and phase C. This test procedure is recommended [60] for
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Figure 2.6: Experimental setup for DM test on a 3-phase, 5-hp induction motor

an ungrounded motor frame with LCR meter in Z-θ mode. Common mode

test was performed with ground frame as one probe and phase A, phase B

and phase C motor leads tied together to form the second probe to LCR

meter in Z-θ mode. LCR meter was manufactured by Agilent, whose

model number is 16089A and having a frequency range of 20Hz to 1MHz

is used for taking measurements. Figure 2.6 shows the experimental setup

for DM test on a three-phase 5-hp IM. Similarly, Figure 2.7 shows the

experimental setup of a three-phase 5-hp IM in CM test. Similar tests are

conducted on another 3-hp induction motor. The experimental procedure

for a 3-phase 3-hp induction motor is shown in figure 2.8.
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Figure 2.7: Experimental setup for CM test on a 3-phase, 5-hp induction motor

Figure 2.8: Experimental setup for a 3-phase, 3-hp induction motor
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2.5 Estimation of Parameters

The low frequency parameters are estimated by conducting no-load and

blocked rotor tests. Readings obtained from no-load and blocked rotor tests

for a 3-phase, 5-hp induction motor are tabulated in Table 2.1 and Table 2.2

respectively. Similarly, readings for a 3-hp induction motor are tabulated in

Table 2.3 and Table 2.4 respectively. The distributed parameters are

estimated by using the first and second resonance frequencies of

impedance which are obtained from the frequency response of a motor

during DM and CM test. Figure 2.9 shows the frequency response of a

5-hp induction motor during DM and CM test. Similarly, Figures 2.10

shows the frequency responses of a 3-hp induction motor in DM and CM

test.

Table 2.1: No-load test readings for a 3-phase 5-hp induction motor (IM)

Voltage(Volts) Current(Amps) Power(Watts) Power(Watts)

400 0.98 240 -150

Table 2.2: Blocked rotor test readings for a 3-phase 5-hp induction motor (IM)

Voltage(Volts) Current(Amps) Power(Watts) Power(Watts)

225 7.0 1440 30

Table 2.3: No-load test readings for a 3-phase 3-hp induction motor (IM)

Voltage(Volts) Current(Amps) Power(Watts) Power(Watts)

415 0.8 208 -136
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Table 2.4: No-load test readings for a 3-phase 3-hp induction motor (IM)

Voltage(Volts) Current(Amps) Power(Watts) Power(Watts)

236 4.8 1050 100

Figure 2.9: Measured frequency response of a 5-hp induction motor

Figure 2.10: Measured frequency response of a 3-hp induction motor
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Table 2.5: Parameters for a 3-phase 5-hp induction motor (IM)

Motor Parameters 5-hp IM Parameters are obtained from

Stator resistance (Rs) 5.2 Ω

Stator leakage inductance (Lls) 37.335 mH

Rotor resistance (Rr) 4.8 Ω No load

Rotor leakage inductance (Llr) 16.587 mH and Blocked rotor test

Magnetising Inductance (Lm) 757.68 mH

Core Resistance (Rcore) 1778.9 Ω

Stator to frame capacitance (Cs f ) 0.562 nF

Anti-resonance resistance (µ Rs) 39.2 Ω Differential mode

Anti-resonance leakage inductance (η Lls) 18 µH and Common mode test

Stator turn to turn capacitance (Csw) 0.603 nF

Stator turn to turn damping resistance (Rsw) 14700 Ω

Table 2.6: Parameters for a 3-phase 3-hp induction motor (IM)

Motor Parameters 3-hp IM Parameters are obtained from

Stator resistance (Rs) 9.1 Ω

Stator leakage inductance (Lls) 41.38 mH

Rotor resistance (Rr) 8.08 Ω No load

Rotor leakage inductance (Llr) 31.83 mH and Blocked rotor test

Magnetising Inductance (Lm) 904.44 mH

Core Resistance (Rcore) 2842.8 Ω

Stator to frame capacitance (Cs f ) 0.253 nF

Anti-resonance resistance (µ Rs) 2.667 Ω Differential mode

Anti-resonance leakage inductance (η Lls) 3.547 µH and Common mode test

Stator turn to turn capacitance (Csw) 0.853 nF

Stator turn to turn damping resistance (Rsw) 17356 Ω
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The distributed parameters are estimated by substituting the values of

low frequency parameters, measured frequency responses, total number of

slots and total number of turns in equations 2.1 to 2.5. Tables 2.5 and 2.6

represent the low to high frequency parameters of a 5-hp induction motor

and 3-hp induction motor respectively.

2.6 Model Validation

The low and high frequency parameters obtained using procedures

mentioned in Section 2.5 are used to simulate the models of 3-hp and 5-hp

induction motors in MATLAB/Simulink environment. Both differential

and common mode tests are carried out in MATLAB/simulink environment

and frequency responses are plotted. The MATLAB/simulink models for

DM and CM tests on a 5-hp induction motor are shown in Figures 2.11 and

2.12 respectively. Figures 2.13 and 2.14 demonstrate the comparison

between measured and simulated frequency responses in a DM test on a

5-hp induction motor. Similarly, figures 2.15 and 2.16 represent the

comparison between measured and simulated frequency responses in CM

test on a 5-hp IM. These figures demonstrate that the frequency response

observed in simulation closely matches with frequency response measured

on practical machine. Comparison between measured and simulated

frequency responses in DM test on a 3-hp induction motor are shown in

figures 2.17 and 2.18 respectively. Similarly, figures 2.19 and 2.20 show

the comparison between measured and simulated frequency responses in

CM test on a 3-hp induction motor. The second resonance impedance wave
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Figure 2.11: Simulation diagram for DM test on a 5-hp induction motor

Figure 2.12: Simulation diagram for CM test on a 5-hp induction motor
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Figure 2.13: Comparison between measured and simulated responses of impedance versus

frequency in differential mode test on a 5-hp IM

Figure 2.14: Comparison between measured and simulated responses of phase angle

versus frequency in differential mode test on a 5-hp IM

shape is similar, however, the frequency value in case of simulation is

different from measured value because of the coil level parameter

distribution. Even then, results from the graphs show that the measured and

simulated responses are close to each other. Hence, the model is valid for

transient studies.
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Figure 2.15: Comparison between measured and simulated responses of impedance versus

frequency in common mode test on a 5-hp IM

Figure 2.16: Comparison between measured and simulated responses of phase angle

versus frequency in common mode test on a 5-hp IM

Figure 2.17: Comparison between measured and simulated responses of impedance versus

frequency in differential mode test on 3-hp IM
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Figure 2.18: Comparison between measured and simulated responses of phase angle

versus frequency in differential mode test on a 3-hp IM

Figure 2.19: Comparison between measured and simulated responses of impedance versus

frequency in common mode test on a 3-hp IM

Figure 2.20: Comparison between measured and simulated responses of phase angle

versus frequency in common mode test on a 3-hp IM
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2.7 Conclusions

In this chapter, model parameters are estimated from physical tests

conducted on induction motor. Applicability of the model is validated by

comparing the frequency responses obtained from simulation and

experimental setup. Considering the fact that actual parameters are

distributed, the responses obtained through simulation, matches well with

experimental observations. Hence, the model is validated and it can be

used for transient analysis.



Chapter 3

Fault Detection Schemes

3.1 Introduction

The objective of this chapter is to propose condition monitoring techniques

of three phase induction motor using wavelet transform for detection of

various faults. The proposed DWT and combination of SWT and DWT

algorithms are tested with various faults in three phase induction motor and

are simulated in MATLAB/Simulink platform. Both the methods are

effective in detecting the faults without having any noise. In case of noise,

the combined scheme of SWT and DWT algorithm performance is well as

compared to DWT.

3.2 Various Stator and Supply Side Faults in a 3-Phase

Induction Motor

Electric motors are critical components of many industrial processes and

are frequently integrated with commercially available equipment and

industrial processes. Squirrel cage induction motors are more prevalent in

use than other motors due to their low cost, ruggedness, low maintenance

42
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and operation with an easily available power supply. Although induction

motors are reliable electric machines, they are susceptible to internal and

external faults. Different internal motor faults includes inter-turn short

circuits, ground faults, mechanical failure where as external motor faults

includes: a) mechanical overloads, which define prolonged starting or

locked rotor and stalling; b) abnormal supply conditions such as loss of

supply voltage, unbalanced supply voltage, phase sequence reversal of

supply voltage, over voltage, under voltage, and under frequency; c) faults

in starting supply / circuit, which include interruptions in phases or

blowing of fuse / single phasing, and short circuit in supply cable. These

faults are expected to happen at any stage of motor life

time [61], [62], [63]. Correct diagnosis and early detection of faults result

in fast unscheduled maintenance and short shut down time for the machine

under consideration. It not only reduces maintenance costs but also

increases productivity. Statistical analysis proved that the stator winding

faults constitute the largest portion of the electrical faults [64], [65].

3.2.1 Stator Faults

The stator winding of an induction machine is subject to stresses induced

by a variety of factors which include thermal overload, mechanical

vibrations and voltage spikes caused by adjustable-speed drives. The stator

winding short circuit fault in electric motors usually start as an undetected

insulation failure between two adjacent turns and it develops into a short

circuit isolating a few number of turns [66]. Though it starts as an incipient

inter-turn short circuit, undetected small insulation failures can deteriorate

and accumulate rapidly and finally lead to a loss of a phase winding, phase
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to phase or phase to ground fault. Failure of insulation between phases and

phase to ground can cause a large ground current which would result in

irreversible damage to the core of the machine. The incipient winding

faults in a single stator coil may have relatively little effect on motor

performance but may affect overall motor reliability, availability and

longevity. Typical protection for stator insulation failure in an industrial

environment includes the use of ground fault relays and negative-sequence

or phase current balance relays. Negative-sequence relays would cause

nuisance trips with unbalanced line voltages. Ground fault relays would

not be effective for early fault detection. Hence, the stator incipient fault

diagnosis is essential to avoid the catastrophic failures and production

curtailments.

3.2.2 Unbalanced Supply

Voltage unbalance of a 3-phase system is expressed as a percentage value

and is often defined as the maximum deviation from the average of the

3-ph voltages divided by the average of the 3-ph voltages [63]. Many times

the supply to an induction motor is unbalanced due to the presence of

unbalanced loads on the system or due to some line disturbances. When

the voltages are unbalanced, a much higher current is induced in the rotor

because it has much lower impedance to the negative sequence voltage

component. The percentage increase in temperature of the winding is

approximately two times the square of the voltage unbalance. These higher

temperatures soon result in degradation of the motor insulation and reduce

motor life. This additional rotor heat can exist for a considerable time

period and since the rotor and shaft are a continuous metallic structure, the
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heat transfer to the shaft ends can leads to the bearing failure.

3.2.3 Single-Phasing

Single phasing can occur as a result of a fuse blowing or a protection

device opening on any one phase of the motor. Other possibilities include

feeder or step down transformer fuses blowing [62]. The loss of one phase

or leg of a 3-phase line causes serious problems for induction motor. If

single phasing occurs when the motor is rotating, the torque produced by

the remaining two positive rotating fields continues to rotate the motor and

develop the torque demanded by the load. The negatively rotating field i.e.

the field associated with the lost phase produces currents in the inductive

loads resulting in voltages at the faulted leg of the 3-phase supply. These

voltages may be nearly equal to the phase voltage that was lost.

Three-phase motor may continue to run, but they are not capable of starting

on single-phasing. Even though the motor will continue to operate in this

condition, the motor will heat up quickly and hence, it is essential that the

motor be removed from service. Though the overload devices on the

energized phases isolate the motor, the motor is not isolated from the lost

phase; subsequent attempt to restart the motor on that single-phasing

supply will cause the motor to draw locked rotor current. The effects of

single phasing are similar to the unbalanced voltages, since the single

phasing represents the worst case of an unbalanced voltage condition. An

additional effect is the remaining phase windings experience excessive

overheating, thereby creating a greater potential for stator winding failure.
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3.2.4 Under Voltage

Under voltage protection for induction motor is provided for both sustained

and transitory under voltages. With three phase motors, the under voltages

are assumed to be the balanced type. An example of sustained under voltage

is bus voltage that remains approximately 10% below nominal rating. The

reduction in supply voltage for constant torque load lowers the motor speed

because it is directly proportional to the square of the voltage drop. Thus

the operating slip would increase and rotor power factor would be reduced.

Hence the current supply to the motor is increased drastically. This suggests

that low voltage is serious enough to warrant protection in certain cases.

3.3 Wavelet Transform

A wavelet is a wave-like oscillation with an amplitude that starts out at

zero, increases and then decreases back to zero. Unlike the sines used in

Fourier transform for decomposition of a signal, wavelets are generally

much more concentrated in time [67]. Wavelet Transform was introduced

at the beginning of the 1980s and has attracted much interest in the fields of

speech and image processing since then [35]. Its potential applications to

power industry have been discussed in the recent literature [68], [69], [70].

A brief introduction to the WT and its Multi-Resolution Analysis (MRA) is

given here. They usually provide an analysis of the signal which is

localized in both time and frequency whereas Fourier transform is

localized only in frequency. Jean Morlet in 1982, introduced the idea of the

wavelet transform and provided a new mathematical tool for seismic wave

analysis. Morlet first considered wavelets as a family of functions
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constructed from translations and dilations of a single function called the

”mother wavelet” Ψ(t). They are defined by

Ψa,b(t) =
1
√

a
Ψ(

t − b
a

) (3.1)

where a, b ϵ R , a,0. The parameter ’a’ is the scaling parameter or scale and

it measures the degree of compression. The parameter ’b’ is the translation

parameter which determines the time location of the wavelet. If ∥a∥ < 1

the wavelet is the compressed version (smaller support in time- domain)

of the mother wavelet and corresponds mainly to higher frequencies. On

the other hand, when ∥a∥ > 1, then Ψa,b(t) has a larger time-width than

Ψ(t) and corresponds to lower frequencies. Thus, wavelets have time-widths

adapted to their frequencies. This is the main reason for the success of the

Morlet wavelets in signal processing and time-frequency signal analysis.

The Continuous Wavelet Transform is defined as the sum over all time of

the signal multiplied by scaled, shifted versions of the wavelet function:

CWT (a, b) =
∫

f (t)Ψa,b(t)dt (3.2)

In practice, the transform which is used is the discrete wavelet transform

which transforms discrete (digital) signals to discrete coefficients in the

wavelet domain. This transform is essentially a sampled version of CWT.

Instead of working with a, b ϵ R, the values of CWT(a,b) are calculated

over a discrete grid: a = 2 j ; b = k2 j
; j, k ϵ Z where this type of

discretization is called dyadic dilation and dyadic position.
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3.3.1 Discrete Wavelet Transform (DWT)

Wavelet calculations are based on two fundamental equations: the scaling

function φ(t) and the wavelet function ψ(t).

φ(t) =
√

2
∑

h(n)φ(2t − n) (3.3)

ψ(t) =
√

2
∑

g(n)φ(2t − n) (3.4)

where g(n) = (−1)nh(1 − n). These functions are two-scale difference

equations based on a chosen scaling function (mother wavelet), with

properties that satisfy the following conditions.

N∑
n=1

h(n) =
√

2 (3.5)

N∑
n=1

h(n)h(2n + l) = 1 i f l = 0 (3.6)

= 0 i f l , 0

The discrete sequences h(n) and g(n) represent discrete filters that solve

each equation, where g(n) = (−1)nh(N − n + 1). The scaling and wavelet

functions are the prototype of a class of orthonormal basis functions of the

form

φm,n(t) = 2
m
2 φ(2mt − 1); m, n ∈ Z (3.7)

ψm,n(t) = 2
m
2ψ(2mt − 1); m, n ∈ Z (3.8)

Where, the parameter ’m’ controls the dilation or compression of the

function in time scale and amplitude. The parameter ’n’ controls the

translation of the function in time and Z is the set of integers. The DWT is

implemented by sending a signal successively through a low pass and high
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x(n)

Level 1 Coefficients

Level 2 Coefficients

Level 3 Coefficientsg(n)   2

h(n)   2

g(n)   2

h(n)   2

g(n)   2

h(n)   2

Figure 3.1: Three level decomposed discrete wavelet transform

pass filters to produce the approximation and detailed coefficients

respectively. This can be described as follows.

a1(n) = g(n) ∗ x(n) =
∑

g(k)x(2n − k) (3.9)

d1(n) = h(n) ∗ x(n) =
∑

h(k)x(2n − k) (3.10)

where a1(n) and d1(n) are the approximation and detailed coefficients at first

level of decomposition. The lengths of a1(n) and d1(n) is N/2 where N is the

length of the signal x(n). A 3-level multi-resolution DWT decomposition

has been illustrated in Fig.3.1.

3.3.2 Stationary Wavelet Transform (SWT)

A threshold is used in wavelet domain to smooth out or to eliminate some

coefficients of wavelet transform of the measured signal. The noise content

of the signal is reduced effectively under the non-stationary environment,

but the results obtained from it are not optimal mainly because of the loss of

the invariant translation property [71]. To overcome this deficiency of DWT,

SWT can be used. The SWT is similar to the DWT where the high-pass and
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low-pass filters are applied to the input signal at each level, in which the

downsampling stage at each scale is replaced by an upsample of the filter

before the convolution, as illustrated in Fig.3.2.

h1(n)X(n)

g1(n) h2(n)

g2(n) h2(n)

g2(n)

Level 1 Coefficients

Level 2 Coefficients

Level 3 Coefficients

2gj(n) gj+1(n)

2hj(n) hj+1(n)

Figure 3.2: Three level decomposed stationary wavelet transform

Suppose we are given a signal x(n) of length N where N =2J for some

integer J. Let h(n) and g(n) be the impulse responses of the low-pass filter

and the high-pass filter. The impulse responses are chosen such that the

outputs of the filters are orthogonal to each other. At the first level of SWT,

the input signal x(n) is convolved with g1(n) to obtain the approximation

coefficients h1(n) and with g1(n) to obtain the detailed coefficients d1(n), i.e

a1(n) = g1(n) ∗ x(n) =
∑

g1(n − k)x(k) (3.11)

d1(n) = h1(n) ∗ x(n) =
∑

h1(n − k)x(k) (3.12)

a1(n) and d1(n) are of length N instead of N/2 as in the DWT case because

no sub-sampling is performed,. At the next level of the SWT, a1(n) is used
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to generate a2(n) and d2(n) with modified filter h2(n) and g2(n), which are

obtained by up sampling h1(n) and g1(n), respectively.

a2(n) = h2(n) ∗ x(n) =
∑

h2(n − k)a1(k) (3.13)

d2(n) = g2(n) ∗ x(n) =
∑

g2(n − k)a1(k) (3.14)

This process is continued recursively. The output of the SWT is then the

detail coefficients d1(n), d2(n),....,dJ0(n) and the approximation coefficients

aJ0(n) where J0 < J. Compare with the traditional WT, the SWT has several

advantages. First, each sub-band has the same size, so it is easier to get the

relationship among the sub-bands. Second, the resolution can be retained

since the original data is not decimated. Also at the same time the wavelet

coefficients contain many redundant information which helps to distinguish

the noise from feature.

3.4 Proposed Fault Detection Scheme using DWT

A 3-phase, 5-hp, 415 V, 4 pole Induction Motor with 36 slots, 6 coils per

phase and 54 turns per coil is considered for the present study. In this thesis

diagnosis of various faults such as single phasing, under voltage, unbalanced

supply, stator inter-turn fault, stator line to ground fault, stator line to line

fault and sudden electrical load change are discussed. To identify the best

mother wavelet, various types of wavelets have been tested using MRA of

three-phase currents. Biorthogonal 5.5 (Bior5.5) is found to be the most

suitable mother wavelet for the proposed scheme. The three-phase currents

of the motor are sampled at 6 kHz and decomposed with Bior5.5 to obtain

detailed level coefficients over a moving window of a chosen sample length.
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Decompose the signals   through 

DWT upto fourth level by using 

Bior 5.5 mother wavelet

Start

Calculate the Fault Index 

Fault Index=Max{absolute value of peak 

d1 coefficients of three phase currents}

Fault is detected

Is 

Fault index>=Threshold

YES

NO

Healthy

Update moving 

window of stator 

currents (Ia, Ib & Ic)

Figure 3.3: Flow chart for proposed fault detection method using DWT

The absolute value of peak d1 coefficients are obtained for all the phase

currents. The maximum value of these absolute peak values is defined as

fault index (I f ) and this is compared with fixed threshold value to detect the

fault. Figure 3.3 illustrates the proposed detection algorithm using DWT.

3.4.1 Validation of Proposed Fault Detection Scheme using DWT

Initially, the proposed algorithm is tested with various faults data obtained

from the simulated models which are created in MATLAB/Simulink

environment. The variations in captured three-phase currents of normal

and stator inter-turn fault are shown in figures 3.4 and 3.5 respectively. By

looking these waveform, nothing is detected as a short circuit between the

turns in a stator winding causes a small degree of unbalance in stator

current. These unbalances cannot be seen directly from the three-phase

stator currents if the level of turn short circuit is too small i.e. 1 or 2 turns.
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Figure 3.4: Three-phase current signals for healthy condition of a 5-hp induction motor

Figure 3.5: Three-phase current signals for 2-turn short circuit in R-phase of a 5-hp

induction motor

Figure 3.6: Variation in d1 coefficients for healthy condition
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Figure 3.7: Variation in d1 coefficients for a 2-turn short circuit in R-phase

Thus, frequency domain analysis is needed for analysing the signal but this

can not give the fault instant. Hence, a time-frequency domain analysis of

Bior5.5 mother wavelet is used to analyse the three-phase current signals.

The corresponding variation in detail level coefficients are demonstrated in

figures 3.6 and 3.7. From these figures, it is cleared that the high frequency

component is exist in case of fault only.

The maximum absolute peak values of three-phase detail level

Figure 3.8: Variation in fault index for healthy condition
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Figure 3.9: Variation in fault index for a 2-turn short circuit at 0 degree inception

Figure 3.10: Variation in fault index for an inter turn fault on coil-1
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Figure 3.11: Three-phase current signals for a LG fault in R-phase of a 5-hp induction

motor

coefficients is set as a fault index which is compared with fixed threshold to

detect the fault and its instant. Figures 3.8 and 3.9 demonstrate the

variations in fault index w.r.t the defined threshold of healthy and 2-turn

fault cases. These results predicted that the fault index crosses the

threshold when the fault occurs. But the fault index depends on fault

incidence angles. Hence, to check the reliability of the proposed algorithm,

vary the fault instant from 0 − 1800 insteps of 450. Figure 3.10 shows the

variation in fault indices w.r.t incidence angle for stator inter-turn fault in

R-phase of coil-1. The results demonstrate that the fault index is above the

threshold if machine is under fault condition other wise it is below the

threshold.

The variations in three-phase currents of other considered cases of stator

line to ground fault, stator line-line fault, single phasing, under voltage and

supply unbalance are shown in figures 3.11, 3.12, 3.13, 3.14 and 3.15

respectively. The figures 3.11 to 3.15 are demonstrates that the current

drawn by the machine increases when the fault occurs. Figures 3.16,

3.17, 3.18, 3.19 and 3.20 illustrate the variation in d1 coefficients for

various cases such as stator line to ground fault, stator line-line fault, single
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Figure 3.12: Three-phase current signals for a LL fault between R and Y phases of a 5-hp

induction motor

Figure 3.13: Three-phase current signals for a single phasing in R phase of a 5-hp

induction motor

Figure 3.14: Three-phase current signals for a 30% under voltage of a 5-hp induction

motor
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Figure 3.15: Three-phase current signals for a 10% supply unbalance in R phase of a 5-hp

induction motor

phasing, under voltage and supply unbalance respectively. From these

figures, it is cleared that the magnitude of high frequency component is

more in fault effected phase. Figure 3.21 shows the variation of fault

indices w.r.t incidence angles of the considered cases. From this figure, it is

proved that the fault index is above the threshold for any type of fault

happened on a 3-phase Induction motor. Hence, the proposed method is

effective in detecting the fault and its instant.
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Figure 3.17: Variation in d1 coefficients for a LL fault between RY phases

Figure 3.16: Variation in d1 coefficients for a LG fault in R-phase
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Figure 3.18: Variation in d1 coefficients for a single phasing in R phase

Figure 3.19: Variation in d1 coefficients for 30% under voltage
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Figure 3.21: Variation in fault index for various faults

Figure 3.20: Variation in d1 coefficients for 10% supply unbalance

To check the reliability and practicality of the proposed detection

algorithm, a 10 dB of Gaussian noise is added to each phase. Figures 3.22

and 3.23 demonstrate the three-phase currents and detail level coefficients

for a 2-turn fault in R-phase of a 5-hp induction motor under noise

condition. The variations in fault indices are shown in figure 3.24. The
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Figure 3.23: Variation in d1 coefficients for a 2-turn fault in R-phase

variation of fault indices in figure 3.24 are above threshold through out

window but fault is created at an instant of 66.67 msec. Hence, the

proposed fault detection algorithm is fail to work under noisy environment.

Figure 3.22: Three-phase current signals for 2-turn fault in R-phase of a 5-hp induction

motor
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Figure 3.24: Variation in fault index for a 2-turn fault at 0degree inception

3.5 Proposed Fault Detection Scheme using SWT and

DWT

In signal processing based techniques the fault detection takes place based

on a threshold logic, which is used to distinguish the fault condition from

normal condition. The fault signature in stator inter-turn short circuit is

much smaller due to noise level and supply unbalance conditions, thus the

fault detection using fixed threshold in both the cases are error prone.

Hence, an adaptive threshold based fault detection algorithm is essential

for fault diagnosis in a 3-phase induction motor. In wavelet de-noising

techniques, the threshold selection is very important. Donoho and

Johnstone [72] have introduced various threshold schemes and discussed

both hard and soft thresholds in a general context. Among these threshold

selection rule, universal threshold (fixed threshold) selection rule is the

most widely used rule. However, in practical applications the variance of

the noise signal changes time to time. Thus, the threshold should be

selected based on an interval or level. Hence, a level-based threshold has

been selected for the proposed algorithm. The selection of mother wavelet
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Figure 3.25: Variation in MSE for DWT of different mother wavelets

Figure 3.26: Variation in SNR for DWT of different mother wavelets

mainly depends on the type of application. In the proposed technique,

Bior5.5 wavelet has been used as the wavelet basis function for fault

detection and identification. Initially, the captured signal is reconstructed

by using DWT with different mother wavelet. The performance of signal

denoising based on wavelet has been addressed in [73], [74]. Figures 3.25

and 3.26 represent the variation in Mean Square Error (MSE) values and

Signal to Noise Ratio (SNR) values. From the results, it is observed that
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the best performance by using biorthogonal family of mother wavelet.

Later, the performance of signal denoising is checked with SWT and DWT

for different wavelets of biorthogonal family and calculating MSE and

SNR between the reference signal and reconstructed signal of stator current

in phase R. Figure 3.27 shows the MSE and SNR of SWT and DWT for

different wavelets of bi-orthogonal family. Results are clearly

demonstrated that SWT is far better than DWT in the application of noise

elimination or signal reconstruction and also highlighted that Bior5.5

mother wavelet have less MSE compared to others.

Figure 3.27: Comparison of DWT and SWT

Figure 3.28 shows the flowchart for the proposed fault detection

technique using SWT and DWT. In this scheme, the level based threshold

reconstruction is used to eliminate the effects due to supply unbalance and

machine unbalance. The reconstructed three phase current signals are

obtained by using stationary wavelet denoising technique with level based

threshold. The three-phase currents of the motor are decomposed with

SWT of Bior5.5 to obtain approximate and detail level coefficients up to 6th

level. The thresholds of d1 coefficients to d4 coefficients are made
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Figure 3.28: Flow chart for proposed SWT and DWT based fault detection scheme

maximum while threshold value of d5 coefficients is set to a high value as

this band of frequency components is sensitive to the supply unbalances.

The threshold value of d6 is calculated based on its peak value in the 1st

cycle and multiplied with a distortion factor which is calculated from RMS

value of the current signal during start-up (preferably in the 1st cycle). The

threshold value of d6 coefficient may enhance the fault signature because

the pre-fault value is subtracted from the captured signal. Therefore, the

reconstructed signals are called as fault residues. This type of

reconstruction is essential especially if fault feature is very close to the

noise level.

A short circuit between the turns in a stator winding causes an

unbalance in stator currents. These unbalances cannot be seen directly

from the three-phase stator currents if the level of turn short circuit is too
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Figure 3.29: Three-phase current signals for 2-turn fault in R-phase of a 3-hp induction

motor under experimental case

Figure 3.30: Three-phase current signals for 2-turn fault in R-phase of a 3-hp induction

motor under simulation

small i.e. 1 or 2 turns. Figures 3.29 and 3.30 illustrate the three-phase

stator currents for 2-turn short circuit in R-phase of a 3-hp induction motor

under experimental and simulation cases respectively. From these figures,

the unbalance due to stator inter-turn short circuit is not predictable by

visual observation due to the noise and supply or machine unbalances.

Hence, an efficient pre-processing method is required for extracting the

fault residues and instant of fault even though the motor is operated under

noisy environment. In this regard, time-frequency domain analysis of SWT

is considered and carried out in MATLAB/Simulink environment for

predicting the fault residues. Figures 3.31 and 3.32 show the three-phase
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Figure 3.31: Three-phase residues for 2-turn fault in R-phase of a 3-hp induction motor

based on minimax method under experimental case

Figure 3.32: Three-phase residues for 2-turn fault in R-phase of a 3-hp induction motor

based on proposed method under experimental case

Figure 3.33: Three-phase residues for 2-turn fault in R-phase of a 3-hp induction motor

based on minimax method under simulation
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Figure 3.34: Three-phase residues for 2-turn fault in R-phase of a 3-hp induction motor

based on proposed method under simulation

residues based on minimax method and proposed threshold based method

(mentioned in above section) for 2-turn short circuit in R-phase under

experimental case. Similarly, Figures 3.33 and 3.34 show the simulation

cases of three-phase residues based on minimax method and proposed

method respectively. From the waveforms, the identification of the fault

instant is not possible. Hence, once again the reconstructed signals are

decomposed by using DWT of Bior5.5 mother wavelet. To extract the fault

features, the three-phase residues are decomposed up to 4th level.

Figures 3.35 and 3.36 demonstrate the experimental cases of detail

coefficients of residues based on minimax method and proposed method

respectively. Similarly, Figures 3.37 and 3.38 show the simulation cases of

detail coefficients of residues based on minimax method and proposed

method. The variation in detail level coefficients in Figures 3.36 and 3.38

have clearly demonstrated that the proposed wave reconstruction and

decomposition is superior than the existing method to extract the fault

features and its instant. The variation in three-phase detail level coefficients

exists throughout the interval if decomposed signal is reconstructed with
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Figure 3.35: Variation in d1 coefficients for 2-turn fault in R-phase of a 3-hp induction

motor based on minimax method under experimental case

minimax method. Hence, fault feature extraction and instant of fault

identification are not possible by using minimax method.

In this, the instant of fault disturbance is estimated accurately by

calculating the ratio between the difference in sample values of the d1

coefficients of three phase residues over a moving window of 3 samples

and difference in sample intervals. In discrete signal the ratio between the

difference in sample values and difference in sample intervals is called as a

slope. The slopes of each phase d1 coefficients are calculated for

identifying the variation levels due to disturbances. A fault is detected by

comparing the fault index with adaptive threshold. The fault index I f and

Adaptive Threshold Th are calculated using the following equations.

I f (n) = |slope d1IR(n)| + |slope d1IY(n)|

+ |slope d1IB(n)| (3.15)
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Figure 3.36: Variation in d1 coefficients for 2-turn fault in R-phase of a 3-hp induction

motor based on proposed method under experimental case

Figure 3.37: Variation in d1 coefficients for 2-turn fault in R-phase of a 3-hp induction

motor based on minimax method under simulation



3.5 Proposed Fault Detection Scheme using SWT and DWT 72

Figure 3.38: Variation in d1 coefficients for 2-turn fault in R-phase of a 3-hp induction

motor based on proposed method under simulation

where n = 1 : N1; N1 is the total number of samples in captured window (1

Sec); slope d1IR, slope d1IY , and slope d1IB are the slopes of d1

coefficients of residue currents in R, Y and B phases respectively.

Th = max(Fault index in 1st cycle) ∗ (3.16)

K ∗ max(Current in 1st cycle) ∗ f actor

where K is the rise factor and

f actor = 2 if Ratio ≤ 3

=
Significand value of max(I f ) in a captured window

Largest integer less than the significand value
if Ratio > 3

where Ratio =
Maximum I f in a captured window

Maximum I f in 1st cycle
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3.5.1 Validation of Proposed Detection Scheme

3.5.1.1 Experimental Setup

An experimental setup was prepared with a 3-phase, 3-hp, 4 pole, 50 Hz,

415 V induction motor with 36 slots, 6 coils per phase and 72 turns per

coil. In order to create the inter-turn short circuit, two tapping points were

taken out per phase from the neutral of the stator winding. Each tapping is

having a resistance of 0.8 ohms. The stator inter-turn faults are created

experimentally by connecting a suitable resistance between tapping point

and ungrounded neutral [6]-[7]. If the fault is a turn-turn or turn to ground

then suitable resistance is connected between tapping point of one phase to

another or phase to ground. Another rating of 10-hp induction motor is

also considered for creating various stator faults for a level of 2 turns to 8

turns in steps of 2 turns without connecting any resistance between tapping

point and neutral of the stator winding because in this case tapping points

are directly taken to the level of 2 turns. Totally 6 types of disturbances are

created in these machines. Figures 3.39 and 3.40 show the experimental

setup for creating various disturbances on a 3-hp and 10-hp induction

motors respectively. In the proposed method, three-phase stator currents

were captured in 1 Sec with a sampling frequency of 6.6 kHz by using

UNIPOWER DIP 8000 network analyzer. To acquire the signals the

network analyzer is connected to a personal computer.

3.5.1.2 Simulation Models for Stator Faults

To create the stator faults, a 3-hp induction motor with a star connected

stator winding is considered and various abnormalities are simulated in
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Figure 3.39: Experimental setup for 3-hp induction motor

Figure 3.40: Experimental setup for 10-hp induction motor
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Figure 3.41: Simulation diagram for stator inter-turn fault in R-phase

MATLAB/Simulink environment. The stator winding corresponding to the

phase in which the fault is created is divided into two parts. An additional

branch is connected in parallel to the rotor resistance to simulate the

disturbance component due to stator inter-turn fault. The fault is created by

closing three switches as shown in Figure 3.41 and it illustrates the stator

inter-turn fault in R-phase of a 3-phase induction motor. In this figure Part

1 refers to a healthy portion of the winding and Part 2 refers the shortened

turns of the winding. The resistance, inductance, and insulation

capacitance are divided in proportion to the number of short-circuited

turns. The various percentages of turn level short circuits in different

phases have been simulated in the MATLAB/Simulink environment. In

case of stator turn-turn faults, the switches S1 and S2 are connected

between phases and if it is a stator turn to ground fault the switches S1 and
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Figure 3.42: Simulation diagram for stator line-ground fault in R-phase

η ls

μRsf1

Csf1

Rs1 Lls1

Csw1

Rsw1

Rr/s

Llr

Rcore

Lm1

Phase R

Ground Frame

Lls2

Csw2

Lm2

Rs2

Rsw2

μRsf2

Csf2

Ground Frame

ηLls

μRsf

Csf

Rs Lls

Csw

Rsw

Llr

RcoreLm
Rr/s

N

Ground Frame

Phase B

Part 1 Part 2

Part 1

Part 2

R2r/(2-S)

S1

S2

S3

ηLls

μRsf1

Csf1

Rs1 Lls1

Csw1

Rsw1

Rr/s

Llr

Rcore

Lm1

Phase R

Ground Frame

Lls2

Csw2

Lm2

Rs2

Rsw2

μRsf2

Csf2

Ground Frame

Part 1 Part 2

Part 1

Part 2

R2r/(2-S)

S1

S2

S3

Figure 3.43: Simulation diagram for stator line-line fault between R-Y phases
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S2 are connected between phase and ground. To bring the simulation

model more close to practical scenarios Gaussian noise is injected in each

phase. The noise level to be injected is calculated from the captured

three-phase stator currents in the experimental setup. Totally 9 types of

stator faults are considered for simulation such as stator inter-turn fault in

R phase, Y phase, B phase, stator phase-phase fault between RY phases,

YB phases, BR phases and stator phase-ground fault in R phase, Y phase,

B phase. Figures 3.42 and 3.43 show the circuit diagram for stator

phase-phase fault and stator phase-ground fault respectively.

To validate the proposed detection criteria, a 3-hp induction motor is

considered and various abnormalities are simulated in MATLAB/Simulink

environment. The same abnormalities are created on a 3-hp induction

motor using experimental setup also. Especially, stator inter-turn are

created under certain loaded conditions such as 0%, 50% and 100%. Stator

inter-turn faults are also created experimentally on no-load condition with

minor supply unbalances like 1%, 2%, and 3%. In case of simulation that

is extended up to 5% due to numerous data required for classification.

3.5.1.3 Experimental and Simulation Results for a 3-hp Induction Motor

The variation in captured three-phase currents, three-phase residues and

fault indices along with its count values for healthy case under simulation

are shown in figures 3.44, 3.45 and 3.46. Similarly, figures 3.47, 3.48 and

3.49 represent the variation in three-phase currents, three-phase residues

and fault indices along with its count values for healthy with 2% supply

unbalance case under simulation. Figures 3.50, 3.51 and 3.52 show the

variation in three-phase currents, three-phase residues and fault indices
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along with its count values for healthy case under experimental setup.

Similarly, figures3.53, 3.54 and 3.55 represent the variation in three-phase

currents, three-phase residues and fault indices along with its count values

for healthy with 2% supply unbalance case under experimental setup. The

results illustrated that all the cases of fault indices are below the adaptive

threshold because the motor is operated under healthy condition.

Figure 3.44: Three-phase currents under healthy condition of a 3-hp induction motor

under simulation case

Figure 3.45: Three-phase residue currents under healthy condition of a 3-hp induction

motor under simulation case
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Figure 3.46: Variation in fault index under healthy condition of a 3-hp induction motor

under simulation case

Figure 3.47: Three-phase currents under healthy condition with 2% supply unbalance of a

3-hp induction motor under simulation case

Figure 3.48: Three-phase residue currents under healthy condition with 2% supply

unbalance of a 3-hp induction motor under simulation case
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Figure 3.49: Variation in fault index under healthy condition with 2% supply unbalance of

a 3-hp induction motor under simulation case

Figure 3.50: Three-phase currents under healthy condition of a 3-hp induction motor

under experimental case

Figure 3.51: Three-phase residue currents under healthy condition of a 3-hp induction

motor under experimental case
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Figure 3.53: Three-phase currents under healthy condition with 2% supply unbalance of a

3-hp induction motor under experimental case

Figure 3.52: variation in fault index under healthy condition of a 3-hp induction motor

under experimental case

Figure 3.54: Three-phase residue currents under healthy condition with 2% supply

unbalance of a 3-hp induction motor under experimental case
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Figure 3.56: Three-phase currents for 8-turn short circuit in R-phase of a 3-hp IM under

simulation

Figure 3.55: Variation in fault index under healthy condition with 2% supply unbalance of

a 3-hp induction motor under experimental case

The variation in three-phase currents, three-phase residues and fault

indices along with its count values of 8-turn short circuit case under

simulation are shown in figures 3.56, 3.57 and 3.58. Similarly, figures 3.59,

3.60 and 3.61 show the 8-turn short circuit with 2% supply unbalance case

under simulation. Figures 3.68, 3.69 and 3.70show the variations in

three-phase currents, three-phase residues and fault indices along with its

count values of 8-turn short circuit case under experimental setup.

Similarly, figures 3.71, 3.72 and 3.73 illustrate the variations in three-phase

currents, three-phase residues and fault indices along with its count values

of 8-turn fault with 2% supply unbalance cases under experimental setup.

Both the results of simulation and experimental case values of fault indices
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Figure 3.57: Three-phase residue currents for 8-turn short circuit in R-phase of a 3-hp IM

under simulation

Figure 3.58: Variation in fault index for 8-turn short circuit in R-phase of a 3-hp IM under

simulation

Figure 3.59: Three-phase currents for for 8-turn short circuit in R-phase with 2% supply

unbalance of a 3-hp IM under simulation
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Figure 3.60: Three-phase residue currents for 8-turn short circuit in R-phase with 2%

supply unbalance of a 3-hp IM under simulation

Figure 3.61: Variation in fault index for 8-turn short circuit in R-phase with 2% supply

unbalance of a 3-hp IM under simulation
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of 8-turn short circuit 8-turn short circuit with 2% supply unbalance

crosses the adaptive threshold and count values are also more than 6.

Hence, faults are detected even under the presence of supply unbalances

also. Similarly, the proposed method is verified with 6-turn, 4-turn and

2-turn of both experimental and simulation cases. The verification of

proposed method is extended with supply unbalances and load conditions.

Figure 3.62: Three-phase currents for 8-turn short circuit in R-phase of a 3-hp induction

motor under experimental case

Figure 3.63: Three-phase residue currents for 8-turn short circuit in R-phase of a 3-hp

induction motor under experimental case
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Figure 3.64: Variation in fault index for 8-turn short circuit in R-phase of a 3-hp induction

motor under experimental case

Figure 3.65: Three-phase currents for 8-turn short circuit in R-phase with 2% supply

unbalance of a 3-hp induction motor under experimental case

Figure 3.66: Three-phase residue currents for 8-turn short circuit in R-phase with 2%

supply unbalance of a 3-hp induction motor under experimental case
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Figure 3.67: Variation in fault index for 8-turn short circuit in R-phase with 2% supply

unbalance of a 3-hp induction motor under experimental case

The other cases of stator winding faults such as phase to ground and

phase to phase faults are also considered for verifying the proposed

method. The variation in captured three-phase currents, three-phase

residues and fault indices and count values of stator phase faults (LG and

LL) of simulation cases are shown in figures 3.74, 3.75, 3.76, 3.77, 3.78

and 3.79. Similarly, Figures 3.80, 3.81, 3.82, 3.83, 3.84 and 3.85 show the

variation in three-phase currents, three-phase residues and fault indices and

its count values of stator phase faults of experimental cases. The results

proved that the proposed detection scheme is efficient for detecting the

stator winding faults. Because all the discussed cases of simulation and

experimental fault indices crosses the adaptive threshold and its count

value is greater than 6 when the fault exists.

Figure 3.68: Three-phase currents for LG fault in R-phase of a 3-hp IM under simulation
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Figure 3.69: Three-phase residue currents for LG fault in R-phase of a 3-hp IM under

simulation

Figure 3.70: Variation in fault index for LG fault in R-phase of a 3-hp IM under simulation

Figure 3.71: Three-phase currents for LL fault between R and Y phases of a 3-hp IM

under simulation
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Figure 3.72: Three-phase residue currents for LL fault between R and Y phases of a 3-hp

IM under simulation

Figure 3.73: Variation in fault index for LL fault between R and Y phases of a 3-hp IM

under simulation

Figure 3.74: Three-phase currents for LG fault in R-phase of a 3-hp IM under

experimental case



3.5 Proposed Fault Detection Scheme using SWT and DWT 90

Figure 3.75: Three-phase residue currents for LG fault in R-phase of a 3-hp IM under

experimental case

Figure 3.76: Variation in fault index for LG fault in R-phase of a 3-hp IM under

experimental case

Figure 3.77: Three-phase currents for LL fault between R and Y phases of a 3-hp IM

under experimental case
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Figure 3.78: Three-phase residue currents for LL fault between R and Y phases of a 3-hp

IM under experimental case

Figure 3.79: variation in fault index for LL fault between R and Y phases of a 3-hp IM

under experimental case

3.5.1.4 Comparison between Experimental and Simulation Results for a 3-hp

Induction Motor

To validate the proposed detection algorithm, a comparison is made between

the Relative Value of Maximum Fault Index RMFI and Relative Value of

Adaptive Threshold RAT for various fault cases of practical and simulated

studies. The RMFI and RAT are mathematically expressed using eq.3.17

and eq.3.18 respectively. The detection criteria for both experimental and

simulation cases of different levels of stator inter-turn short circuits under

balanced supply, 2% of supply unbalance and 50% of load condition are

illustrated in Table 3.1. Table 3.2 shows the detection criteria for various
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abnormal conditions other than stator inter-turn faults of

Table 3.1: Comparison of fault detection criteria for various practical and simulation cases

of stator inter-turn faults

Cases Practical Simulation

RMFI RAT RMFI RAT

2-turn fault 34.33 1.35 23.20 1.17

2-turn fault with 2% supply unbalance 19.59 0.84 10.33 0.72

4-turn fault 78.50 4.66 66.30 3.28

4-turn fault with 2% supply unbalance 69.67 3.18 61.09 3.68

6-turn fault 133.82 4.31 124.39 3.45

6-turn fault with 2% supply unbalance 121.13 7.59 114.86 4.12

8-turn fault 159.62 3.25 145.87 3.52

8-turn fault with 2% supply unbalance 170.34 4.11 127.25 4.11

2-turn fault in R-phase with 50% load 31.09 9.03 34.09 3.96

4-turn fault in R-phase with 50% load 99.45 6.35 81.17 3.57

6-turn fault in R-phase with 50% load 74.25 8.34 75.36 3.29

8-turn fault in R-phase with 50% load 126.07 2.75 189.12 2.69

both experimental and simulation cases. Table 3.1 and 3.2 depict the

effectiveness of the proposed algorithm for various cases under practical

and simulation studies. From Table 3.1, even for small fault i.e 2-turn short

circuit the RMFI in practical case is in good agreement with that of

simulation case. The difference between the values of practical and

simulation case is mainly due to considered constant noise variance in

simulation which is not true in actual practice.

RMFI =
Maximum value o f I f under f ault condition

Maximum value o f I f under healthy condition
(3.17)
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RAT =
Th under f ault condition

Th under healthy condition
(3.18)

Table 3.2: Comparison of fault detection criteria for various practical and simulation cases

other than stator inter-turn faults

Cases Practical Simulation

RMFI RAT RMFI RAT

4-turn phase fault between RY phases 206.44 3.01 469.02 2.28

6-turn phase fault between RY phases 379.92 4.69 356.28 0.96

8-turn phase fault between RY phases 269.48 8.20 603.89 5.02

4-turn ground fault in R-phase 74.07 10.8 107.02 4.24

6-turn ground fault in R-phase 143.52 6.83 356.11 5.76

8-turn ground fault in R-phase 169.30 4.68 304.53 4.10

Single phasing in R-phase 812.78 3.66 899.34 3.67

Single phasing in Y-phase 474.06 5.16 624.59 6.48

Single phasing in B-phase 551.00 4.42 573.86 8.67

3% Supply unbalance in R-phase 144.57 5.23 81.74 2.82

3% Supply unbalance in Y-phase 166.19 5.50 84.01 0.35

3% Supply unbalance in B-phase 159.20 4.31 93.30 2.78

3.5.1.5 Experimental Results for a 10-hp Induction Motor

To check the reliability of the proposed detection criteria, another rating of

10-hp induction motor is also considered. Figures 3.80,3.81 3.82, 3.83,

3.84, 3.85, 3.86, 3.87, 3.88 and 3.92 demonstrate currents, residue currents

and fault index under various experimental cases on a 10-hp induction

motor of healthy, 2-turn fault, single phasing, under voltage and supply

unbalance conditions respectively. From these results it is clear that the

proposed algorithm has successfully detected the abnormal conditions of

the motor. Hence, the proposed SWT and DWT based fault detection is
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reliable and effective in detecting the faults because the rating and

operating condition of the machine does not influence the detection criteria.

Figure 3.80: Three-phase currents for healthy of a 10-hp induction motor

Figure 3.81: Three-phase residue currents for healthy of a 10-hp induction motor

Figure 3.82: Variation in fault index for healthy of a 10-hp induction motor
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Figure 3.83: Three-phase currents for 2-turn fault in R-phase of a 10-hp induction motor

Figure 3.84: Three-phase residue currents for 2-turn fault in R-phase of a 10-hp induction

motor

Figure 3.85: Variation in fault index for 2-turn fault in R-phase of a 10-hp induction motor
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Figure 3.86: Three-phase currents for single phasing in R-phase of a 10-hp induction

motor

Figure 3.87: Three-phase residue currents for single phasing in R-phase of a 10-hp

induction motor

Figure 3.88: Variation in fault index for single phasing in R-phase of a 10-hp induction

motor
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Figure 3.89: Three-phase currents for 2% supply unbalance of 10-hp induction motor

Figure 3.90: Three-phase residue currents for 2% supply unbalance of a 10-hp induction

motor

Figure 3.91: Variation in fault index for 2% supply unbalance of a 10-hp induction motor
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Figure 3.92: Three-phase currents for 7% under voltage of a 10-hp induction motor

Figure 3.93: Three-phase residue currents for 7% under voltage of a 10-hp induction

motor

Figure 3.94: Variation in fault index for 7% under voltage of a 10-hp induction motor
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3.6 Conclusions

In this chapter, two approaches are proposed for detecting the various stator

and supply side faults using DWT and combination of SWT and DWT. From

the results of simulation and experimental case, the following conclusions

are made.

The proposed fault detection algorithm using DWT has been tested for

various incidence angles. The exhaustive simulation studies proved that the

proposed algorithm is simple and effective in detecting the various faults.

However, it fails to detect the fault under noisy conditions.

Another proposed fault detection method based on SWT and DWT is

developed to overcome the drawback of DWT based method. The

simulation and experimental results demonstrated the efficacy of the

proposed SWT and DWT based fault detection method on a 3-phase

induction motors in presence of noise as well.



Chapter 4

Classification of Various Disturbances of

a 3-Phase Induction Motor Using

Wavelet and Modular Neural Network

4.1 Introduction

Rapid growth in automation increases the dependency on electric machines

as drives and decreases the direct interaction between man and machine.

This necessitates on line condition monitoring of motor to improve its

reliability. The stator winding faults create unbalancing in the line current,

and similar unbalancing is also created due to supply unbalances. However,

the distinction between these two phenomena is highly challenging.

Unbalancing condition in the motor could be due to stator winding

insulation faults or due to sudden electrical load changes or single phasing

or other conditions. Hence, a classifier is needed for segregating the

various unbalances which are caused due to various faults. The detection,

diagnoses and discrimination of stator turn to turn fault and unbalanced

supply voltage fault in a three phase induction motors has been addressed

100
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in [75]. But, it suffers from the drawback of taking so many measurements.

In recent time, the accuracy of the classifier is improved by integrating the

analysing techniques [76], [77]. This chapter proposes a classifier based on

Wavelet and Modular Neural Network (MNN) to classify various faults

such as stator phase-phase faults, stator phase-ground faults, single

phasing, supply unbalance, under voltage and sudden load change.

4.2 Features for Disturbance Classifier

The schematic diagram of the proposed fault detection and classification is

depicted in Figure 4.1. The proposed detection and classification method

starts with data acquisition and then processing of signals to detect and

classify the faults and its severity. In chapter 3, discussion on detection of

fault is presented. The next process is classification and identification. In

all totally three classifiers are considered to classify various disturbances,

stator phase faults and stator inter-turn faults. This approach decreases the

training time as the classifiers related to stator phase faults (ANN-2) and

stator inter-turn faults (ANN-3) needs training only when the disturbance

classifier recognizes the disturbance as related to the stator winding

insulation faults which means that the faults are related to stator phase or

stator inter-turn faults only.
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Figure 4.1: Proposed stator fault detector and classifier

This chapter mainly deals with disturbance classifier and extraction of

features required for them. Stator phase fault and Stator inter-turn fault

classifiers are explained in chapter 5 and chapter 6 respectively. Totally six

types of disturbances are considered for disturbance classifier. To classify

all these disturbances certain features are essential. The proposed classifier

requires only three measurements and nine features. The three phase stator

currents are the three measurements and are sensed for each of the

disturbance and normal cases. These three phase currents are analysed with

wavelet transform to detect the disturbance instant. After detecting the

instant of disturbance, three statistical features of second level approximate

coefficients of three phase residues are considered over a window of one

cycle from the fault instant which are standard deviation, maximum and

mean values. Totally, there are nine features such as feature 1, feature 2,

feature 3, feature 4, feature 5, feature 6, feature 7, feature 8 feature 9 are

defined as standard deviation of R-phase, standard deviation of Y-phase,

standard deviation of B-phase, maximum value of R-phase, maximum

value of Y-phase, maximum value of B-phase, mean value of R-phase,
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Figure 4.2: Three-phase stator currents of a 3-hp IM with 4-turn short circuit in R-phase

Figure 4.3: Variation in three-phase residues of a 3-hp IM with 4-turn short circuit in

R-phase

mean value of Y-phase and mean value of B-phase respectively. These are

given as inputs to the disturbance classifier for classifying the various

disturbances on a 3-phase induction motor.

The feature extraction method is explained by considering stator

winding faults and supply side faults. Figures 4.2 shows the variation in

captured three-phase currents for 4-turn short circuit in R-phase of a 3-hp

induction motor. To extract the disturbance features, the instant of fault

occurrence and a2 coefficients of three-phase residues are to be required

which are obtained by using proposed fault detection algorithm and as

discussed in chapter 3. Figures 4.3 and 4.4 demonstrate the obtained

three-phase residues and fault index for 4-turn short circuit in R-phase of a
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Figure 4.4: Variation in fault index of a 3-hp IM with 4-turn short circuit in R-phase

Figure 4.5: Variation in a2 coefficients of a 3-hp IM with 4-turn short circuit in R-phase

3-hp induction motor. Detection of fault and its instant occurrence is

identified by comparing the fault index with adaptive threshold as

presented in chapter 3. The 2nd level approximate coefficients of

three-phase residues are obtained by decomposing the three-phase residues

with DWT of Bior 5.5 mother wavelet. The variations in second level

approximate coefficients of three-phase residues for 4-turn short circuit is

shown in figure 4.5. From this figure, estimate the nine features over a

window of one cycle from the fault instant. The estimated values of nine

features corresponding to the 4-turn short circuit in R-phase of a 3-hp

induction motor are 0.359, 0.358, 0.291, 1.24, 1.21, 1, 0.719, 0.709, and

0.57. These self normalized values are as input to the disturbance classifier

which are 0.2904, 0.2895, 0.235, 1, 0.9822, 0.8093, 0.5813, 0.5735 and
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Figure 4.6: Three-phase stator currents of a 3-hp IM with 4-turn to ground fault in R-phase

Figure 4.7: Variation in three-phase residues of a 3-hp IM with 4-turn to ground fault in

R-phase

0.4610. The variations in three-phase currents, three-phase residues, fault

index and a2 coefficients for 4-turn to ground fault of a 3-hp induction

motor are illustrated in figures 4.6, 4.7, 4.8 and 4.9 respectively.

Figures 4.10, 4.11, 4.12 and 4.13 are show the variations in three-phase

currents, three-phase residues, fault index and a2 coefficients for 4-turn

short circuit between R and Y phases of a 3-hp induction motor

respectively. Similarly, the variations in three-phase currents, three-phase

residues, fault index and a2 coefficients for supply unbalance case are

shown in figures 4.14, 4.15, 4.16and 4.17 respectevely. The other two cases

of under voltage and single phasing are demonstrated in figures 4.18, 4.19,

4.20, 4.21, 4.22, 4.23, 4.24 and 4.25.
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Figure 4.8: Variation in fault index of a 3-hp IM with 4-turn to ground fault in R-phase

Figure 4.9: Variation in a2 coefficients of a 3-hp IM with 4-turn to ground fault in R-phase

Figure 4.10: Three-phase stator currents of a 3-hp IM with 4-turn short circuit between R

and Y phases
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Figure 4.11: Variation in three-phase residues of a 3-hp IM with 4-turn short circuit

between R and Y phases

Figure 4.12: Variation in fault index of a 3-hp IM with 4-turn short circuit between R and

Y phases

Figure 4.13: Variation in a2 coefficients of a 3-hp IM with 4-turn short circuit between R

and Y phases
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Figure 4.14: Three-phase stator currents of a 10-hp IM with 3% supply unbalance

Figure 4.15: Variation in three-phase residues of a 10-hp IM with 3% supply unbalance

Figure 4.16: Variation in fault index of a 10-hp IM with 3% supply unbalance

Figure 4.17: Variation in a2 coefficients of a 10-hp IM with 3% supply unbalance
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Figure 4.18: Three-phase stator currents of a 10-hp IM with 10%under voltage

Figure 4.19: Variation in three-phase residues of a 10-hp IM with 10%under voltage

Figure 4.20: Variation in fault index of a 10-hp IM with 10%under voltage

Figure 4.21: Variation in a2 coefficients of a 10-hp IM with 10%under voltage
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Figure 4.22: Three-phase stator currents of a 10-hp IM with single phasing

Figure 4.23: Variation in three-phase residues of a 10-hp IM with single phasing

From figures 4.4, 4.8, 4.12, 4.16, 4.20 and 4.24, it is observed that the

instant of fault occurrence can be identified very accurately. The obtained

value of instant of fault occurrence for each case is used to estimate the

statistical features of a2 coefficients over a window of one cycle from the

fault instant. The self normalized values of the nine features extracted for

the six fault cases are tabulated in Table 4.1.

Apart from these, sudden electrical load change also gives unbalance in

three-phases. Figure 4.26 demonstrate the variation in nine features for

various disturbances like stator inter-turn fault (R, Y and B), stator phase

faults (RG, YG, BG, RY, YB and BR), single phasing (R, Y and B), under

voltage, supply unbalance (R, Y and B) and sudden load change

conditions. The observation made from the figure 4.26 is that the nine
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Figure 4.24: Variation in fault index of a 10-hp IM with single phasing

Figure 4.25: Variation in a2 coefficients of a 10-hp IM with single phasing

Table 4.1: Normalised features extracted from a2 coefficients

Features
4-turn fault

in R-phase
RG fault RY fault

Supply

unbalance

Under

voltage

Single

phasing

Feature 1 0.29042 0.28991 0.29704 0.19779 0.25593 0.08377

Feature 2 0.28953 0.25358 0.17895 0.29736 0.29394 0.27621

Feature 3 0.23497 0.27213 0.18128 0.15351 0.27781 0.26451

Feature 4 1 1 1 0.64192 0.91364 0.38264

Feature 5 0.98217 0.86667 0.61389 1 1 1

Feature 6 0.80928 0.93295 0.614 0.4936 0.92755 0.96998

Feature 7 0.5813 0.57377 0.60465 0.40914 0.50725 0.12104

Feature 8 0.57354 0.50517 0.33453 0.59954 0.46559 0.45205

Feature 9 0.46101 0.51915 0.36005 0.31002 0.4851 0.49681
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Figure 4.26: Variation in nine features for various disturbances

features of one case is different with other cases. The variations in nine

features of different fault level for stator inter-turn faults, stator phase faults

and supply unbalances are shown in figure 4.27. From this figure 4.27, it is

an evidence that the nine features variation in a particular cases are in

similar pattern. Hence, the selected features are insensitive to the operating

conditions.

Figure 4.27: Variation in nine features for stator faults and supply unbalance

4.3 ANN Structures for Disturbance Classifier (ANN-1)

The schematic diagram for the proposed classifiers of a three-phase

induction motor using Artificial Neural Network (ANN) is shown in

figure 4.28. In this chapter, a multi layer feed forward back propagation

network based classifier (ANN-1) is explained. The remaining two
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Figure 4.28: Proposed classifiers for classification of faults on a three-phase induction

motor
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networks are explained in chapter-5 and chapter-6 respectively. The inputs

to the ANN-1 are the statistical features of second level approximate

coefficients of three-phase residue currents of a motor, which are standard

deviation, maximum value and mean value obtained over a window of one

cycle from the fault instant. The output of ANN-1 classifies 6 classes (C1

to C6) of disturbances on three phase induction motor. the six classes of

disturbances are as follows:

C1 →Single phasing

C2 →Supply unbalance

C3 →Under voltage

C4 →Sudden load change

C5 →Stator phase fault

C6 →Stator inter-turn fault

4.3.1 Training and Testing of ANN based Disturbance Classifier

For the simulation of ANN-1 in MATLAB, a tangent sigmoid (tansig) and

log sigmoid (logsig) activation function are used and training goal is set at

10−6. First, the performance of single multilayer NN of ANN-1 is

demonstrated. Various training and testing patterns are generated by using

simulation and experimentation. The break up of experimental and

simulation data sets of training and testing are given in Table 4.2. Totally

1287 patterns are carried out to train and test the ANN-1, out of 1287 sets

858 data sets are utilized for training i.e. two third of the total data sets

remaining are used for testing. The training performance of single

multilayer NN with respect to number of neurons variation in hidden layer

is depicted in Table 4.3. From Table 4.3, it is observed that the training
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accuracy for 12 hidden neurons and 14 hidden neurons are nearly same but

number of epochs or 14 neurons is less than that for 12 neurons. Therefore,

14 hidden neurons are considered in ANN1.

Table 4.2: Training and testing data for various disturbances

Type of fault
No. of training patterns No. of testing patterns

Exp Sim Exp Sim

Single Phasing 24 13 12 8

Supply Unbalance 60 54 30 27

Under Voltage 24 23 12 11

Stator Inter-turn fault 72 444 36 222

Sudden load change 18 - 8 -

Phase Faults 18 108 9 54

Total
216 642 107 322

858 429

Table 4.3: Training performance of single multilayer ANN-1

Number of neurons

in hidden layer
Learning epochs Training accuracy

11 200 96.4%

12 219 97.5%

13 198 97.2%

14 104 97.59%

15 108 97.13%

16 120 97.4%

In any classifier, the performance evaluation requires specific measures

which include accuracy, sensitivity and specificity. There are four

additional terms should need to know that are the building blocks used in

computing many evaluation measures. These are TP (True positives), TN
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Table 4.4: Testing performance of single multilayer ANN-1

Learning rate Momentum Testing accuracy Training time in sec

0.3

0.67

86.95% 19

0.4 90.21% 14

0.5 88.11% 17

0.6 86.71% 4.07

0.3

0.68

86.95% 16

0.4 87.65% 17

0.5 90.61% 7

0.6 88.11% 7

0.3

0.69

86.48% 26

0.4 90.68% 11

0.5 89.51% 9

0.6 89.74% 9

0.3

0.7

85.05% 18

0.4 85.55% 8

o.5 87.65% 9

0.6 89.04% 16

(True negatives), FP (False positives) and FN (False negatives). The

confusion matrix is a useful tool for analyzing how well the classifier can

recognize tuples of different classes. The accuracy, sensitivity and

specificity measures can be used, respectively, for identifying the

performance of the classifier. These measures are defined as follows:

S ensitivity =
T P
P

(4.1)

S peci f icity =
T N
N

(4.2)

Accuracy = S ensitivity
P

P + N
+ S peci f icity

N
P + N

(4.3)
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Table 4.5: Testing performance of multilayer ANN-1

Number of neurons in

hidden layer 1 and 2
Learning rate Momentum Testing accuracy

Training time

in sec

14,10 0.4
0.69

92.31% 37

14,20 0.4 90.68% 54

14,10 0.5
0.68

88.81% 30

14,20 0.5 91.38% 86

The testing performance of ANN-1 is illustrated in Table 4.4 by making

use of different learning rates and different values of momentums. From

Table 6 it is observed that for momentum value of 0.69, 0.68 and learning

rate of 0.4, 0.5 give better accuracy compared to remaining all. Similarly,

Table 4.6: Performance of ANN-1 in double multilayer of 14, 20

Type of disturbance Sensitivity Specificity Average

C1 0.952 1

C2 0.804 0.989 Sensitivity: 0.786

C3 0.973 0.980

C4 0.3 0.99 Specificity: 0.977

C5 0.9 0.986

C6 0.786 0.977

same data is used to train and test the multilayer neural network with two

hidden layers also, these results are shown in Table 4.5. From the results,

it is proved that the testing accuracy of multilayer neural network is better

compared with single multilayer neural network but the time taken to train

the network is more. The other performance measures are also calculated

using equations 4.1 and 4.2. Table 4.6 shows the performance measures
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of sensitivity and specificity of 14, 20 configuration of double multilayer

neural network with learning rate of 0.5 and momentum value of 0.68.

4.4 MNN Structure for Disturbance Classifier(MNN-1)

Artificial neural networks are broadly classified into monolithic networks

and modular networks. In canonical implementations, most of the systems

employ a monolithic network in order to solve the given task. However,

when a system needs to process large amount of data or when the problem is

highly complex, then it is not trivial, and sometimes unfeasible, to establish

a good architecture and topology for a single network that can solve the

problem.
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Figure 4.29: Proposed MNN-1 for disturbance classifier
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In order to overcome some of the aforementioned shortcomings of

monolithic ANNs, many researchers have proposed modular

approaches [78] [79]. One of the major benefits of a modular neural

network is the ability to reduce a large, unwieldy neural network to

smaller, more manageable components. Other benefits of these networks

are their efficiency, lower training time and robustness. In this connection,

a modular multilayer neural network is implemented to classify various

disturbances (MNN-1) of a three-phase induction motor. It is compared

with artificial neural network (ANN) of a single multilayer neural network

and double multilayer neural network through the simulation and

experimentation. Figure 4.29 shows the MNN architecture for disturbance

classifier.

4.4.1 Training and Testing of MNN based Disturbance Classifier

The implemented modular structure of disturbance classifier is trained and

tested with same data sets to check the performance of the modular neural

network. Six types of disturbances have been considered for classification,

6 modules of NN are required to form a modular neural network one

(MNN-1). Each module of MNN-1 classifier classifies one class. During

training process, features of a particular disturbance signal are applied to

all modules with target as “1” to the corresponding neural module and

target as “0” to the rest of the modules. During testing, outputs of all the

NN modules are compared. The NN modules having largest output will

represent the corresponding disturbance class. The performance of

classifier MNN-1 is shown in Table 4.7. From this table the overall

accuracy of the modular classifier of MNN-1 is 94.64% and this
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Table 4.7: Confusion matrix for MNN-1

C1 C2 C3 C4 C5 C6

C1 21 0 0 0 0 0

C2 2 50 0 0 1 3

C3 0 0 22 0 1 0

C4 0 0 0 9 0 1

C5 0 2 0 2 58 1

C6 1 4 2 2 1 246

Overall accuracy = 94.64%

performance is achieved within 4 sec. Hence, the results proved that the

performance of MNN-1 is significantly higher (2.4%) as compared to

multilayer neural network classifier of ANN-1.

4.5 Comparison of Performance between ANN-1 and

MNN-1

The testing performance of ANN-1 and MNN-1 are compared based on the

specific measures they are sensitivity and specificity which are defined in

equation 4.1 and 4.2. Table 4.8 demonstrates the values of sensitivity and

specificity for ANN-1 and MNN-1 based classifiers corresponding to 6

types of disturbances. From this table, it is proved that the modular

structure of neural network has more capability to classify the various

disturbances. Hence the modular based classifier is significantly far better

than the multilayer neural network classifier.
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Table 4.8: Performance for ANN-1 and MNN-1 in disturbance classification

Type of network Type of disturbance Sensitivity Specificity Average

C1 0.952 0.995

C2 0.804 0.989 Sensitivity: 0.858

ANN-1 C3 0.913 0.980

C4 0.961 0.942 Specificity: 0.98

C5 0.6 0.998

C6 0.921 0.978

C1 1 0.993

C2 0.893 0.984 Sensitivity: 0.939

MNN-1 C3 0.957 0.995

C4 0.961 0.971 Specificity:0.987

C5 0.9 0.99

C6 0.921 0.992

4.6 Conclusions

This chapter presents the underlying procedure for the extraction of nine

features, from the operating conditions of induction motor, for the

classification of faults that the motor is subjected to. Two classifiers, one

based on multi layer neural network (ANN-1) and the other based on

modular neural network (MNN-1) are proposed for classification of faults

on induction motor. The following conclusions are drawn from the results

of ANN-1 and MNN-1 classifiers.

Only three measurements are required to obtain the nine features fed as

input to the proposed classifiers. Double multi layer ANN based disturbance

classifier performed better when compared with single layer ANN based

classifier. The over all accuracy of single multi layer ANN is 90.68% and
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double layer ANN performance is improved by 1.63% when compared that

of single layer ANN. But the time taken to achieve this performance is more.

The results revealed that there is an improvement in the accuracy of

MNN-1 by 2.33% when compared with that of ANN-1.



Chapter 5

Classification of Stator Phase Faults

5.1 Introduction

The stator phase faults can be caused by the insulation failure between two

phases or phase to ground of stator windings. These faults causes to lead

the damage of winding or core of the machine. Hence, early detection and

classification of stator phase faults along with faulty phase is essential to

prevent permanent damage to the motor and to reduce motor down time.

This chapter explains the ANN and MNN based classifier for stator phase

faults.

5.2 Extraction of features for phase fault classification

The classification of phase faults also have equal importance as that of

stator incipient faults, if phase faults occur towards the neutral point.

Hence, identification and classification of phase faults are essential, before

they lead to a major fault. Very little effort was made to address the

classification of stator phase faults on a 3-phase Induction motor. In 2006,

M. A. S. K Khan and et al. [56] have addressed the stator phase faults

123
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Figure 5.1: Three-phase currents for phase to ground fault in Y-phase of a 3-hp induction

motor

Figure 5.2: Three-phase currents for phase to phase fault between Y and B phases of a

3-hp induction motor

based on DWT. In general, classifier requires certain features which are

insensitive to the operating conditions. Three features extracted from the

slope of detail level coefficients of three-phase residues are considered for

fault classification. These are the slopes of detail level coefficients of

absolute peak values of three phase residue currents obtained over a

window of 10 samples from the instant of fault occurrence. Figures 5.1 and

5.2 show the captured three-phase currents of the considered cases of phase

to ground fault in Y-phase and phase to phase fault between Y and B

phases. To identify the instant of fault occurrence is essential for extracting

the features require to classify the phase faults. The SWT and DWT based

fault detection criteria and identification of the instant of fault occurrence is

already explained in chapter 3. With the help of that approach instant of
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Figure 5.3: Variation in fault index for phase to ground fault in Y-phase of a 3-hp

induction motor

Figure 5.4: Variation in fault index for phase to phase fault between Y and B phases of a

3-hp induction motor

Figure 5.5: Variation in slope of detail level coefficients for phase to ground fault in

Y-phase of a 3-hp induction motor
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Figure 5.6: Variation in slope of detail level coefficients for phase to phase fault between

Y and B phases of a 3-hp induction motor

fault occurrence is identified for the cases of phase to ground fault in

Y-phase and phase to phase fault between Y and B phases and are

demonstrated in figures 5.3 and 5.4 respectively. After getting the fault

instant, features are calculated from the slope of detail level coefficients

which are illustrated in figures5.5 and 5.6. From these figures, the absolute

peak values of the slope of detail level coefficients of three-phase residues

for YG fault are 6.19 × 10−08, 6.74 × 10−10 and 3.01 × 10−09 and YB fault

are 8.43 × 10−10, 4.42 × 10−08 and 6.29E × 10−08 . Figure 5.7 shows the

variation in normalised values of features for YG and YB fault cases. The

results clearly demonstrate that the features of YG fault case is different

from YB fault case. The variation in feature 1, feature 2 and feature 3 with

respective to the various stator phase faults like phase to ground fault in

R-phase, phase to ground fault in Y-phase, phase to ground fault in
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Figure 5.7: Variation in normalised features for YG and YB faults

B-phase, phase-phase fault between R and Y, phase-phase fault between Y

and B and phase-phase fault between B and R are tabulated in Table 5.1.

Interesting patterns that can be observed from the normalized feature

values given in Table 5.1 are: for phase-ground fault two features assume

low value and remaining third feature assumes higher value and for

phase-phase fault two features assume high value and the remaining third

feature assumes low value (quite opposite to the pattern observed for

phase-ground fault). Figure 5.8 shows the variations in feature 1, feature 2

and feature 3 for various levels of stator phase faults such as 2-turn, 4-turn,

6-turn and 8-turn fault cases. The results gives an evidence that the features

corresponding to the faulted phases are higher compared with healthy

phase features. Hence, the selected features are good for segregating the

various stator phase faults irrespective of its operating conditions because

of the self normalization ability of the features.
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Figure 5.8: Variation in normalised features for stator phase faults

Table 5.1: Self normalised features for various stator phase faults

Faulty phase RG fault YG fault BG fault RY fault YB fault BR fault

Features R-phase 0.9 0.1 0.1 0.9 0.1 0.9

in Y-phase 0.102 0.9 0.1 0.669 0.9 0.1

simulation B-phase 0.1 0.101 0.9 0.1 0.898 0.347

Features R-phase 0.9 0.1 0.105 0.9 0.1 0.9

in Y-phase 0.1 0.9 0.1 0.52 0.9 0.1

Experimental B-phase 0.136 0.137 0.9 0.1 0.821 0.396

5.3 ANN structure for phase fault classifier (ANN-2)

The classifier used for classifying the stator phase faults is named as ANN-2

which is already mentioned in chapter 4. Three detail level coefficients are

fed as inputs to the ANN-2 when it is activated. The ANN-2 is active if and

only if C5 of ANN-1 is 1. The output of ANN-2 identify 6 classes of phase

faults and these are as follows:

P1 →Stator turn-turn fault between RY phases

P2 →Stator turn-turn fault between YB phases

P3 →Stator turn-turn fault between BR phases
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Figure 5.9: Proposed ANN-2 for classification of stator phase faults

P4 →Stator turn-ground fault in R phase

P5 →Stator turn-ground fault in Y phase

P6 →Stator turn-ground fault in B phase

5.3.1 Training and Testing of ANN-2

ANN-2 is simulated in MATLAB with an activation functions of a tangent

sigmoid (tansig) and log sigmoid (logsig) and training goal is set at 10−6.

Number of training and test patterns used to train and test the classifier

respectively are tabulated in Table 5.2. Out of 201 total patterns, 136

patterns are utilized for training the classifier and the remaining 66 patterns

are used for testing. Approximately two thirds of the data set is used for

training and one thirds of the data set is used for testing. Several multilayer

neural network configurations are tested using MATLAB/Simulink

software. Among all, the best performed configuration of multilayer neural

network of ANN-2 has 3 (input neurons), 5 (hidden neurons), 7 (hidden
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neurons) and 6 (output neurons). Figure 5.9 shows the proposed

architecture for ANN-2. The testing performance of ANN-2 is

demonstrated by using confusion matrix. The confusion matrix for the

classifier is shown in Table 5.3. The overall accuracy is obtained as

89.39%.

Table 5.2: Training and testing data for stator phase faults classification

Type of stator phase fault
No. of training patterns No. of testing patterns

Exp Sim Exp Sim

Stator turn-ground fault in R phase 6 18 2 9

Stator turn-ground fault in Y phase 6 18 2 9

Stator turn-ground fault in B phase 6 18 2 9

Stator turn-turn fault between RY phase 2 19 2 9

Stator turn-turn fault between YB phase 2 19 2 9

Stator turn-turn fault between BR phase 2 19 2 9

Total
24 111 12 54

135 66

Table 5.3: Confusion matrix for ANN-2

P1 P2 P3 P4 P5 P6

P1 10 0 1 0 0 0

P2 0 11 0 0 0 0

P3 2 0 11 0 0 0

P4 0 0 0 10 0 0

P5 0 2 0 0 8 0

P6 0 0 0 2 0 9

Overall accuracy = 89.39%
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Figure 5.10: Proposed MNN-2 for classification of stator phase faults

5.4 MNN structure for phase fault classifier (MNN-2)

In this section, a modular structure of neural networks is implemented to

classify various stator phase faults on a 3-phase Induction motor. Its

performance is compared with that of ANN-2 for both simulation and

experimental data. Figure 5.10 shows the proposed MNN configuration for

stator phase fault classifier(MNN-2).

5.4.1 Training and Testing of MNN-2

To improve the stator phase fault classification performance a modular

structure of neural network (NN) as shown in figure 5.10 is used. Training

and testing data sets that are used for ANN-2, are also used to train and test

the modular neural network respectively. Six modules of NN are required

to form a modular neural network MNN-2. Each module of MNN-2

classifier classifies one class. During training phase, features of a stator

phase fault signal are applied to all modules with target as 1 to the
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corresponding phase fault neural module and target as 0 to the rest of the

modules. During testing, outputs of all the NN modules are compared. The

output of MNN-2 is same as the stator phase fault class corresponding to

the NN module with largest output. The performance of MNN-2 classifier

is shown in Table 5.4.

Table 5.4: Confusion matrix for MNN-2

P1 P2 P3 P4 P5 P6

P1 11 0 0 0 0 0

P2 0 11 0 0 0 0

P3 0 0 11 0 0 0

P4 0 0 0 10 0 0

P5 0 0 0 0 10 0

P6 0 0 0 2 0 9

Overall accuracy = 93.94%

5.5 Comparison of performance between ANN-2 and

MNN-2 for stator phase fault classification

A comparison is made between the performance of ANN-2 and that of

MNN-2 based on the specific measures which are sensitivity and

specificity. The values of sensitivity and specificity for ANN-2 and MNN-2

classifiers corresponding to 6 types of phase faults are tabulated in Table

5.5. The results clearly demonstrate that the modular structure of neural

network has more capability to correctly classify the various stator phase

faults. Hence the modular based classifier is significantly far better than the

multilayer neural network classifier.
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Table 5.5: Comparison of performance between ANN-2 and MNN-2

Type of network Type of disturbance Sensitivity Specificity Average

P1 0.909 0.964

P2 1 0.964 Sensitivity: 0.896

ANN-2 P3 0.846 0.981

P4 1 0.964 Specificity: 0.979

P5 0.8 1

P6 0.818 1

P1 1 0.964

P2 1 1 Sensitivity: 0.944

MNN-2 P3 0.846 1

P4 1 0.964 Specificity:0.988

P5 1 1

P6 0.818 1

5.6 Conclusions

This chapter presented the procedure for extraction of features and

introduced two classifiers for stator phase fault classification on a 3-phase

Induction motor. The features considered for stator phase fault

classification are insensitive to the operating condition of a 3-phase

Induction motor. Two classifiers based on ANN and MNN respectively are

proposed. The following conclusions are drawn from the results of ANN-2

and MNN-2 classifiers.

The multi layer ANN of stator phase fault classifier attains an accuracy

of 89.39% with minimum number of features. To improve the efficacy of

the classifier a modular concept is introduced. The MNN based classifier

has an edge over ANN based classifier for classifying stator phase faults.
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The results revealed that there is an improvement in classifier accuracy by

4.55% when MNN is used in place of ANN.



Chapter 6

Identification of Faulty Phase and

Estimation of Severity Level for Stator

Inter-Turn Faults

6.1 Introduction

In recent times, the condition monitoring techniques are concentrated not

only on the detection of faults but also on the identification of faulty phase

and severity level of faults. Algorithms for fault detection and disturbance

classification are discussed in chapter 3 and chapter 4 respectively. This

chapter discusses and proposes an identifier based on ANN and MNN to

identify the fault phase and to find severity level of stator inter-turn faults.

Only four features, that are insensitive to the operating conditions, are used

for identification of fault phase and to find severity level of fault.

135
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6.2 Features used for identification of faulty phase and

estimation of fault severity

Identification of faulty phase and estimation of severity of stator inter-turn

faults are essential for induction motor fault diagnosis. In [77] and [80]

discussion was made about assessment of fault severity based on CWT

technique. But, for both the techniques the number of features required is

more. Hence, an attempt is made to assess fault severity with minimum

number of features which are selected from wavelet analysis and are

insensitive to the operating conditions. Three features are extracted from

the slope of detail level coefficients of three-phase residues and another

feature is extracted from the mean energy values of 4th level approximate

coefficients of three-phase residues. The first three features are the slope of

detail level coefficients of absolute peak values of three phase residue

currents obtained over a window of 10 samples from the fault instant and

are named as feature 1, feature 2 and feature 3. The other feature is the

ratio of post fault and pre-fault mean energy values of 4th level

approximate coefficients and is named as feature 4.

To explain the selection process of the proposed features a 4-turn short

circuit in R-phase is considered. The captured three-phase current signals

of 4-turn short circuit in R-phase of experimental case are shown in

figure 6.1 and their three-phase residues are obtained from SWT of Bior

5.5 mother wavelet which are shown in figure 6.2. The detail level

coefficients of three-phase residues are obtained by decomposing the

three-phase residue with DWT of Bior 5.5 mother wavelet. The instant of

fault occurrence for extracting the features is estimated accurately by
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Figure 6.1: Three-phase currents for 4-turn short circuit in R-hase

Figure 6.2: Three-phase residues for 4-turn short circuit in R-phase

Figure 6.3: variation in slope of detail level coefficients for 4-turn short circuit in R-phase
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Table 6.1: Features extracted from slope of detail level coefficients

Faulty phase

Rfault

Exp.

(×10−9)

Yfault

Exp.

(×10−9)

Bfault

Exp.

(×10−9)

Rfault

Sim.

(×10−9)

Yfault

Sim.

(×10−9)

Bfault

Sim.

(×10−9)

2 turn

fault

features

R-phase 10.36 1.117 1.529 49.49 1.386 2.025

Y-phase 2.533 3.179 1.626 3.348 58.2 0.741

B-phase 1.732 3.136 2.844 0.7426 7.329 21.53

4 turn

fault

features

R-phase 33.74 1.652 26.19 30.92 0.5804 3.520

Y-phase 0.7762 18.50 1.687 11.44 28.47 1.006

B-phase 12.94 5.288 56.90 0.7325 0.5591 57.73

6 turn

fault

features

R-phase 45.15 38.44 9.959 54.55 1.506 0.7698

Y-phase 0.6834 192.0 2.939 0.4086 30.61 0.8719

B-phase 5.414 27.84 61.51 0.4728 1.707 40.78

8 turn

fault

features

R-phase 33.9 11.44 24.56 38.12 0.939 1.019

Y-phase 3.329 51.97 31.95 0.5919 18.82 0.7379

B-phase 0.8075 12.19 107.8 0.6292 1.227 23.62

calculating the ratio between the difference in sample values of the d1

coefficients of three phase residues over a moving window of 3 samples

and difference in sample intervals. For a discrete signal the ratio between

the difference in sample values and difference in sample intervals is called

slope. A fault is detected by comparing the fault index with adaptive

threshold which is already explained in chapter 3. Figure 6.3 illustrates the

variations in slope of detail level coefficients of three phase residues for

4-turn short circuit in R-phase of a 3-hp induction motor. From figure 6.3,

the positive and negative peak values of slope of detail coefficients

three-phase residues over a window 10 samples are 2.14 × 10−08 and

−2.2 × 10−08 in R-phase, 6.19 × 10−09 and −5.6 × 10−09 in Y-phase and

6.28×10−10 and −7.76×10−10 in B-phase for a 3-hp induction motor. From
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Table 6.2: Self normalised features extracted from slope of detail level coefficients

Faulty phase
Rfault

Exp.

Yfault

Exp.

Bfault

Exp.

Rfault

Sim.

Yfault

Sim.

Bfault

Sim.

2 turn fault

features

R-phase 0.9 0.1 0.192 0.9 0.1 0.100

Y-phase 0.1423 0.9 0.1 0.17 0.9 0.1

B-phase 0.1 0.184 0.9 0.1 0.153 0.9

4 turn fault

features

R-phase 0.9 0.101 0.119 0.9 0.1 0.432

Y-phase 0.384 0.9 0.1 0.1 0.9 0.1

B-phase 0.1 0.1 0.9 0.395 0.274 0.9

6 turn fault

features

R-phase 0.9 0.1 0.15 0.9 0.152 0.173

Y-phase 0.1 0.9 0.1 0.1 0.9 0.1

B-phase 0.101 0.106 0.9 0.185 0.1 0.9

8 turn fault

features

R-phase 0.9 0.1 0.11 0.9 0.1 0.1

Y-phase 0.1 0.9 0.1 0.161 0.9 0.363

B-phase 0.101 0.113 0.9 0.1 0.115 0.9

these values, it is clear that the faulty phase peak values are higher than

those of healthy phases.

Table 6.1 and Table 6.2 demonstrate the actual and self normalized

values of feature 1, feature 2 and feature 3 for various levels of stator

inter-turn faults. The results from Table 6.1 and Table 6.2 show that, of all

the three feature values the faulty phase feature has highest value. Hence,

these three features are effective in identifying the faulty phase accurately.

But severity level can not be identified from these features and is identified

from feature 4, which can be obtained from 4th level approximate

coefficients. The variation in 4th level approximate coefficients of

three-phase residues and their energies for a 4-turn short circuit in R-phase

are illustrated in figure6.4 and figure6.5 respectively. Figure 6.6 shows the
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Figure 6.4: Variation in fourth level approximate coefficients for 4-turn short circuit in

R-phase

Figure 6.5: Variation in fourth level approximate coefficients for 4-turn short circuit in

R-phase
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Figure 6.6: Variation in fourth level approximate coefficients for 4-turn short circuit in

R-phase

Table 6.3: Feature 4 from fourth level approximate coefficients

Faulty Phase
Feature 4

2-turn

short circuit

4-turn

short circuit

6-turn

short circuit

8-turn

short circuit

Rfaultsim 1.033704137 1.144667577 1.222547031 1.358542172

Yfaultsim 0.920199876 1.155779873 1.253613051 1.430107598

Yfaultsim 0.990207341 1.162978797 1.181858508 1.417702387

Rfault prac 1.070851345 1.112396703 1.190610055 1.890531044

Yfault prac 1.084232481 1.194048079 1.212579815 1.921602236

Bfault prac 1.100641357 1.108734934 1.157378489 1.910163369

mean energy values of various levels of stator inter-turn faults in R-phase.

From this figure, it is clear that the severity level segregation is possible

from variation in mean energy of fourth level approximate coefficients for

various levels of stator inter-turn faults in R-phase. The variations in

feature 4 for various levels of stator inter-turn faults in various phases of

simulation and experimental cases are tabulated in Table 6.3. Figures 6.7

illustrates the variations in feature 4 for stator inter-turn faults in R-phase

under various operating conditions such as no-load, 50% load, 100% load
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Figure 6.7: Variation in feature 4 for stator inter-turn fault in R-phase

Figure 6.8: Variation in features for various level of stator inter-turn fault in R-phase

2% supply unbalance and 3% supply unbalance of simulation and

experimental cases for a 3-hp induction motor.

The variations in feature 1, feature 2, feature 3 and feature 4 w.r.t the

various severity levels of stator inter-turn faults like 2-turn, 4-turn, 6-turn

and 8-turn faults of stator winding in R-phase under various operating

conditions such as no-load, 50% of full load, 100% load, and supply

unbalances from 1% to 5% are shown in figure 6.8. Similarly, figures 6.9

and 6.10 show the variations in features w.r.t the various severity levels of

stator inter-turn fault in Y-phase and B-phase respectively. These figures

provide evidence to the fact that the selected features are insensitive to the

supply unbalance and load conditions. Hence, the selected features are
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Figure 6.9: Variation in features for various level of stator inter-turn fault in Y-phase

Figure 6.10: Variation in features for various level of stator inter-turn fault in B-phase

strong enough in segregating the stator inter-turn faults.

6.3 Proposed ANN based classifier for identification of

faulty phase and estimation of fault severity of stator

inter-turn faults

The proposed identifier (ANN-3) is modelled with four inputs and twelve

outputs for identifying the stator inter-turn faults and its severity level.

Figure ?? shows the configuration of ANN based identifier (ANN-3) for

identifying faulty phase and severity level of stator inter-turn faults on a

three-phase induction motor. The faulty phase and severity level identifier

is triggered when the output of ANN-1 of C6 becomes one. The features

fed to the ANN-3 are the slope of detail level coefficients of absolute peak
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values of three phase residue currents and ratio of post fault to pre-fault

mean values of fourth level approximate coefficients. The twelve classes of

outputs of ANN-3 are as follows:

F1 →2-turns short circuit in R phase

F2 →4-turns short circuit in R phase

F3 →6-turns short circuit in R phase

F4 →8-turns short circuit in R phase

F5 →2-turns short circuit in Y phase

F6 →4-turns short circuit in Y phase

F7 →6-turns short circuit in Y phase

F8 →8-turns short circuit in Y phase

F9 →2-turns short circuit in B phase

F10 →4-turns short circuit in B phase

F11 →6-turns short circuit in B phase

F12 →8-turns short circuit in B phase

6.3.1 Training and testing of the proposed ANN based method

(ANN-3)

ANN-3 is simulated in MATLAB with an activation functions of a tangent

sigmoid (tansig) and log sigmoid (logsig) and training goal is set at 10−6.

Number of training and testing patterns used to train and test ANN-3 are

tabulated in Table 6.4. Out of 762 patterns, 504 patterns are utilized for

training the classifier and the remaining 258 patterns are used for testing.

Approximately two thirds of the data set is used for training and one thirds

of the data set is used for testing.

The performance of several multilayer neural network configurations
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Table 6.4: Training and testing patterns used in ANN-3

Type of stator phase fault
No. of training patterns No. of testing patterns

Exp Sim Exp Sim

2-turns short in R phase 6 36 3 18

4-turns short in R phase 6 36 3 19

6-turns short in R phase 6 36 3 19

8-turns short in R phase 6 36 3 18

2-turns short in Y phase 6 36 3 18

4-turns short in Y phase 6 36 3 19

6-turns short in Y phase 6 36 3 19

8-turns short in Y phase 6 36 3 18

2-turns short in B phase 6 36 3 18

4-turns short in B phase 6 36 3 19

6-turns short in B phase 6 36 3 19

8-turns short in B phase 6 36 3 18

Total
72 432 36 222

504 258

are studied using MATLAB/Simulink. Among all, the best performed

configuration of multilayer neural network ANN-3 as 3 (input neurons), 5

(hidden neurons), 9 (hidden neurons) and 12 (output neurons). Figure ??

shows the pconfiguration of best performed multi layer neural network

ANN-3. he confusion matrix for the classifier ANN-3 is shown in

Table6.5. From Table6.5 the accuracy of the classifier is 95.73%. This

result proved the efficacy of the proposed ANN-3.
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Table 6.5: Confusion matrix for ANN-3

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

F1 21 0 0 0 0 0 0 0 0 0 0 0

F2 0 21 0 0 0 1 0 0 0 0 0 0

F3 0 0 22 0 0 0 0 0 0 0 0 0

F4 0 0 0 21 0 0 0 0 0 0 0 0

F5 0 0 0 0 20 0 0 0 1 0 0 0

F6 0 0 0 0 0 22 0 0 0 0 0 0

F7 0 0 0 0 0 2 20 0 0 0 0 0

F8 0 0 0 0 0 0 0 21 0 0 0 0

F9 0 1 0 0 0 0 0 0 19 1 0 0

F10 0 0 0 0 0 0 0 0 0 21 1 0

F11 0 0 0 0 0 0 0 0 0 3 19 0

F12 0 0 0 0 0 0 0 1 0 0 0 20

Overall accuracy = 95.73%

6.4 Proposed MNN based classifier for identification of

faulty phase and estimation of fault severity of stator

inter-turn faults

A modular structure of neural network (NN) is implemented for

identification of faulty phase and estimation of fault severity of stator

inter-turn faults on a three-phse induction motor. Figure 6.11 shows the

MNN configuration for stator inter-turn faults identifier (MNN-3).
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Figure 6.11: Proposed MNN-3 classifier dentification of faulty phase and estimation of

fault severity of stator inter-turn faults

6.4.1 Training and testing of the proposed MNN based classifier

(MNN-3)

Same training and testing data sets that are used for ANN-3, are also used

to train and test the modular neural network respectively. Twelve types of

severity levels of stator inter-turn faults have been considered for

identification, 12 modules of NN are used to form one modular neural

network (MNN-3). Each module of MNN-3 classifier identifies one class.

Table 6.6 shows the performance of MNN-3. The overall accuracy of the

classifier of MNN-3 is 94.64% and this performance is achieved within 4

sec. The results proved that the performance of classifier MNN-3 is better

when compared with that of classifier ANN-3.
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Table 6.6: Confusion matrix for MNN-3
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

F1 21 0 0 0 0 0 0 0 0 0 0 0

F2 0 21 1 0 0 0 0 0 0 0 0 0

F3 0 0 22 0 0 0 0 0 0 0 0 0

F4 0 0 0 21 0 0 0 0 0 0 0 0

F5 0 0 0 0 20 0 0 0 0 1 0 0

F6 0 0 0 0 0 22 0 0 0 0 0 0

F7 0 0 0 0 0 2 20 0 0 0 0 0

F8 0 0 1 0 0 0 0 20 0 0 0 0

F9 0 0 0 0 0 1 0 0 20 0 0 0

F10 0 0 0 0 0 0 0 0 0 22 0 0

F11 0 0 0 0 0 0 0 0 0 0 20 0

F12 0 0 0 0 0 0 0 0 0 0 0 21

Overall accuracy = 96.9%
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6.5 Comparison of performance between ANN-3 and

MNN-3 for fault classification

Table 6.7: Performance for ANN-3 and MNN-3 in stator inter-turn fault classification

Type of network Type of disturbance Sensitivity Specificity Average

ANN-3

F1 1 1

F2 0.954 0.996

F3 1 1

F4 1 1 Specificity: 0.957

F5 0.952 1

F6 1 0.987

F7 0.909 1

F8 1 0.996

F9 0.905 0.996 Specificity: 0.996

F10 0.954 0.983

F11 0.864 0.995

F12 0.952 1

MNN-3

F1 1 1

F2 0.954 1

F3 1 0.991

F4 1 1 Specificity: 0.969

F5 0.952 1

F6 1 0.987

F7 0.909 1

F8 0.952 1

F9 0.952 1 Specificity: 0.997

F10 1 0.987

F11 0.909 1

F12 1 1
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The performances of ANN-3 and MNN-3 are compared based on the

specific measures that is sensitivity and specificity. Table 6.7 shows the

values of sensitivity and specificity for ANN-3 and MNN-3 corresponding

to 12 types of stator inter-turn faults. The average sensitivity of MNN-3 is

0.969 and average specificity is 0.997 which are better than those of

ANN-3. The results proved that the modular neural network based

classifiers are better when compared to neural network based classifiers in

identifying faulty phase and estimating the severity level of stator inter-turn

fault.

6.6 Conclusions

In this chapter the procedure for extraction of features and two proposed

classifiers based on neural networks and modular neural networks for

classifying stator inter-turn faults are explained. The four features, that are

used as inputs to classifiers, are insensitive to the supply unbalances and

load conditions. From the performance results of two classifiers ANN-3

and MNN-3, the following conclusions are drawn.

The multi layer classifier of ANN-3 attains an accuracy of 95.73% with

minimum number of features. To improve the performance of the classifier

further a modular concept is introduced and an overall accuracy of 96.9% is

achieved. The results revealed that there is an improvement in the accuracy

by 1.17% when MNN-3 is used in place of ANN-3 for classifying stator

inter-turn fault.



Chapter 7

Conclusions and Future Scope

7.1 Conclusions

Rapid industrialization enhances the usage of induction motors especially

in processes industries. To improve the reliability of motors, for a good

return on investment, they need continuous condition monitoring. A reliable

condition monitoring method for detecting, classifying and identifying the

supply side faults and stator winding insulation faults at the earliest without

effecting the motor operation, is the focus on this thesis.

Common types of faults and their root causes in induction motor are

studied in this research work. Various types of model and model-free

techniques are reviewed and summarized in this thesis. From the literature

survey, it is inferred that till now there is no algorithm for detecting

multiple faults with single diagnosis technique and minimum number of

measurements and features. Even though the multi function digital relays

are responding well but it does not respond to the incipient faults in

presence of supply unbalance and machine unbalances. Hence, in this

thesis, an attempt has been made to propose reliable fault diagnosis

schemes for a three-phase induction motor with a focus on detection,

151
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classification and identification of various faults such as stator winding

insulation faults and supply side faults. The present research is organized

into five stages.

The first stage of research work focuses on development of distributed

parameter model and its validation for a three-phase induction motor. The

distributed parameters are estimated physically for a 5-hp and 3-hp

induction motors by conducting no-load, blocked rotor, differential mode

and common mode tests, as presented in chapter 2. The model is validated

by comparing the frequency responses obtained from simulation and

experimental setup. The results proved that the developed distributed

parameter model is applicable for transient analysis.

The second stage of research work focuses on fault detection algorithms

based on three-phase current measurements and wavelet analysis. Using

the developed model, the stator winding insulation faults and supply side

faults in an induction machine are simulated, by taking into account

various fault switching instants, in MATLAB/Simulink environment. The

DWT based fault detection algorithm is validated through simulation data

and proved to be effective in detecting the faults. This algorithm fails to

detect the fault under noisy conditions. For more realistic study, another

fault detection algorithm based on SWT and DWT is considered. The

sequence of steps for fault detection using this method is signal

reconstruction (using SWT), decomposition (using DWT), and calculation

of fault index and adaptive threshold. The observations made from the

reconstruction of the captured signals indicated that the SWT has clear

advantage over the DWT to extract the fault residues in the presence of

noise and supply unbalances. The instant at which disturbance starts can be
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identified accurately by comparing the fault indices with adaptive threshold

and count value as discussed in chapter 3. Experimental setup is built with

two three-phase induction motor machines of 3-hp and 10-hp ratings. The

stator winding faults are created by short circuiting the tap points, which

are already brought from each phase of the winding. The effectiveness of

the proposed SWT and DWT based fault detection algorithm is verified by

simulation and experimental data as presented in chapter 3. The results

proved that the proposed SWT and DWT based fault detection algorithm is

insensitive to the operating conditions because of adaptive threshold logic.

Classification of disturbances in a three-phase induction motor is

discussed in the third stage. Two classifiers are implemented in

MATLAB/Simulink to classify various faults. One classifier is based on

ANN and another one is based on modular neural network (MNN). Nine

features are selected to classify 6 types of disturbances on a three-phase

induction motor. The normalised features are fed as input to the ANN

disturbance classifier and various structures of ANN are considered for

finding best performed ANN structure. The best performance is achieved

by using double multilayer ANN as presented in chapter 3. The results

demonstrates that the proposed algorithm classifies the disturbances

irrespective of operating conditions. However, the accuracy of the classifier

is observed to 92.31%, which is not satisfactory. Hence, the modular

concept is introduced to NN for enhancing efficacy and reducing task

complexity of the disturbance classifier. The results proved that the

performance of MNN in disturbance classification is significantly higher as

compared to that of ANN and an increase in performance by 2.33% in

overall accuracy, 8% in sensitivity, and 0.7% in specificity, is achieved in
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minimum time as demonstrated in chapter 3.

The fourth stage of research focuses on classification of stator phase

faults using two methods, one based on ANN and the other one based on

MNN. Six types of phase faults are classified with only three features,

which are extracted from slope of detail level coefficients. The

performance of MNN in stator phase faults classification is accurate,

simple and insensitive to the operating conditions because of self

normalised features. The results proved that the performance of MNN

classifier of stator phase faults is higher than ANN classifier for stator

phase faults and an increase in performance by 4.55% in overall accuracy,

4.85% in sensitivity and 0.9% in specificity is observed. The details are

given in Chapter 4..

Finally, identifiers are developed for identification of faulty phase and

severity level of stator inter-turn faults based on ANN and MNN.

Experimentations and exhaustive simulation studies are conducted to check

reliability of the proposed identifiers. Identifying the faulty phase and

severity level of stator inter-turn faults using features of slope of detail

level coefficients of absolute peak values of three phase residue currents

and ratio of post fault and pre-fault mean energy values of 4th level

approximate coefficients. The results are found to be efficient and reliable

because these feature are insensitive to the operating conditions. The

performance of MNN is better than that of ANN in identifying faulty phase

and severity level of stator inter-turn faults. An increase in performance by

1.17% in accuracy, 1.15% in sensitivity and 0.1% in specificity is observed

for MNN based identifier when compared with the performance of ANN

based identifier.
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7.2 Future Scope

The proposed algorithms were tested on practical induction motors of 3-hp

and 10-hp. These schemes can be extended to be part of on-line condition

monitoring and to be assessed for various operating conditions faced by the

induction motor during its life time.

The proposed protection schemes are tested only on low voltage motors.

The same methodologies can also be extended to medium and high voltage

motors with further study.

The proposed techniques can be extended to generators as well, but it

requires further study.
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