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Abstract

With the advent of power electronics devices, the usage of ac motors,
particularly, induction motors in variable speed drives have increased due
to flexible speed control strategy. Majority of industrial drives are driven
by induction motors because of its ruggedness and less maintenance.
Motors experience various abnormal operating conditions that lead to their
failure. These failures not only damage the equipment, but also severely
interrupt to the processes involved in the industry, causing revenue loss.
Thus, the detection and diagnosis of fault condition at the inception stage is
of great practical significance. In general, fault diagnosis schemes
concentrate on sensing specific failure modes in one of three induction
motor components i.e. stator, rotor and bearings. One of the most difficult
problem related to three-phase induction motors is the identification of
stator incipient faults at the time of inception. These faults usually starts
with winding insulation failure, which occurs due to overheating, thermal
stress, insulation deterioration etc. In particular, an undetected stator
inter-turn fault may progressively lead to a line to ground fault in the stator
winding. Hence, early detection of stator inter-turn fault is essential for
improving motor reliability, to reduce the cost of breakdown and to avoid

catastrophic failures of motors. For these reasons, there has been a
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continually increasing interest in the area of fault detection and diagnosis
of induction motor. = Both technical and economical consideration
necessitates the development of a new computer-based diagnostic system
to detect, classify, identify and locate the faults through condition
monitoring. Typically, sensors are added to motors to detect specific faults,
which include thermal and proximity sensors for bearing failures,
accelerometers for vibrations, etc. An ideal diagnostic procedure should
take the minimum measurements needed from a machine and by analysis
extract a feature, so that its condition can be inferred to give a clear
indication of incipient failure modes in minimal time. In this thesis the
condition monitoring of induction machines have been carried out by using
three phase currents which are typically available at motor control centre.
From the perspective of long-term research on the fault diagnosis of
electrical machines, it appears that recent focus has been on the use of
signal processing and artificial intelligent in order to improve the
performances of traditional model-based methods. An effective algorithm
should be able to take variations in fault signature amplitude, line current
noise level, frequency offset, and phase offset into consideration to avoid
missing or false alarms. Still there is no on-line monitoring method widely
applied in industries and accepted in the motor fault diagnosis community.
Hence, the development of any on-line monitoring method should be
capable of diagnosing various faults and detection of deterioration of the
inter-turn insulation prior to a fault besides being cost effective. In this
thesis two fault detection algorithms are presented for low voltage
induction motors based on Discrete Wavelet Transform and Stationary
Wavelet Transform for detection of various stator winding faults and

X



supply side faults. To classify various disturbances, identify the stator
winding insulation faults and severity level of stator inter-turn fault, two
types of classification algorithms are presented based on feed forward

neural network and modular neural network.
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Chapter 1

Introduction

1.1 Overview

A significant issue in the operation of any equipment is the proper and
reliable operation, which in economic terms is a maximum financial benefit
and residing within technical constraints. Moreover, the capital investment
required for equipment often necessitates high levels of accessibility to
ensure a reasonable rate of return. Thus, the minimization of operational
costs resulting from unexpected downtimes, unnecessary maintenance and
a reduction of the system abilities has become an essential objective of any
industry. Hence the detection and diagnosis of fault components in an
induction motor is of great practical significance. With the proper machine
monitoring and fault detection schemes, early warning signs can be
obtained for preventive maintenance, enhanced safety, and improved
reliability. Faults can produce plant shutdown, economic and production
losses, and even human casualties. Thus early, fast and accurate detection
and diagnosis of incipient faults is essential in preventing major damage to

the system and allows adequate timely actions to protect the system.
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AC motors play a major role in modern industrial applications.
Squirrel-cage Induction Motors (IMs) are most frequently used when
compared to other motors because of their low cost, ruggedness and low
maintenance. Moreover, the motors undergo many abnormal conditions
during their total service life. In view of above, an incorrect operation of
motor always lead to various failures and finally causing production
curtailments. With reference to the origin, a fault may be internal or
external. These faults are caused due to electrical, mechanical, thermal and
environmental stresses. Mechanical stresses are caused by overloads and
abrupt load changes, which can produce bearing failures and rotor bar
breakage. On the other hand, electrical stresses are usually associated with
the power supply, which can produce stator faults and supply faults.
Figure 1.1 shows the various industrial applications of induction motor and
root causes of various stresses on three-phase induction motor. Figure 1.2
shows the detailed classification of various faults on induction motors.
According to surveys reported on motor reliability in [1] and [2], bearing
failures are responsible for approximately two-fifths of all faults, inter-turn
short circuits in stator windings are contribute to approximately one-third
of the reported faults and broken rotor bars and end ring faults contribute to
around ten percent of the induction motor faults. Induction motor fault
distribution is summarized in Table 1.1. In medium size induction motors
bearing failures occupy the first place but in medium to large size induction
motors failures are due to stator winding insulation breakdown (one of the

internal types of electrical fault).
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Applications Non Ideal Operating Conditions
* Abnormal System Conditions
« Constant Torque applications *Undervaliage
. . . *Overvoltage
*Steel mills machines, Paper machines .
«Cement mills. rubber mills. mixers »Unbalance in 3-phase Thermal stress
crushers ’ ’ ’ «Single phasing
«Conveyors *Voltage surges

*Low frequency/High frequency
* Abnormal Operating conditions
*Over Loads }_ Thermal stress
«Insufficient Lubrication
*Reswitching/Frequent start-stops } Electrical stress
*Momentary interruption/Bus transfer
* Environmental conditions
*High/low ambient temperature
*High altitude, High humidity ]—Environment stress
«Corrosive atmosphere
* Mechanical problems
*Seized bearings, Incorrect alignment
«Incorrect fixing of coupling }' Mechanical stress
* Condition at location
*Inadequate Cooling etc

*Cranes and elevators cars

* Variable Torque applications
*Centrifugal pumps
«Centrifugal fans
» Compressors

Figure 1.1: Various applications and root causes of stress on a three-phase induction motor

Squirrel Cage Induction Motor Faults
[
| l |
| Internal Faults | External Fualts
| |

Electrical Faults

Mechanical Faults | Supply side Faults | |Mechanical Overload|

|Stator Faults| | Rotor Faults | |Bearing Faults| | Air Gap Eccentricity| —ISingIe phasing| Locked Rotor|

—| Tum Faults Lroken Rotor Bars

Less/Excessive E Statlg '
or End Ring Faults| Lubrication coentricy
| [Phase-Phase Dynamic
Faults High Seal Eccentricity
Friction
| |Phase-Ground
Faults

Figure 1.2: Typical failures of induction motor
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Table 1.1: Distribution of induction motor faults with respect to failed component.

% of failure

Fault related component | IEEE-IAS | EPRI | Allianz
Bearings 44 41 13
Windings 26 36 66

Rotor 8 9 13
Other 22 14 8

The organic compounds used for insulation materials in electric
machines are subjected to deterioration, due to combination of thermal
overloading, transient voltage stresses, mechanical stresses and
environmental stresses. In spite of all possible causes, thermal stresses are
the main reason for the degradation of the stator winding insulations.
Thermal stress are classified into three types: aging, overloading, and
cycling. Even the best insulation will fail quickly if operated above its
temperature limit. As a rule of thumb, for every 10°C increase in
temperature, useful life of insulation reduces by 50% [3]. Regardless of the
causes, stator winding related failures can be divided into the following
five groups: turn-to-turn, coil-to-coil, line-to-line, line-to-ground, and
single or multi-phase windings open-circuit faults as presented in
Figure 1.3. In particular, an undetected stator inter-turn fault may grows up
and finally lead to a permanent damage of the machine. Hence, early
detection of stator inter-turn faults is necessary for preventing damage to
the adjacent coils and the core of the stator. Other major causes for
induction motor faults are incorrect supply voltages and load changes.

These are supply unbalance, single phasing, under voltage and sudden
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change in electrical load.

Turn to turn fault
Coil to coil fault

5yOpen phase fault

Phase to phase fault

=
Turn to ground fault

Figure 1.3: Stator winding insulation faults

In industry, basically people follows three types of maintenance
procedures which include corrective maintenance, time based maintenance
and condition based maintenance. Figure 1.4 illustrates the merits and
demerits of the maintenance procedures. Recently, industrialists have
shown much interest towards the use of prognosis techniques in Condition
Based Maintenance (CBM). These techniques rely on information
provided by condition monitoring and fault identification systems, which
assess system conditions continuously. This requires accurate and effective
fault detection methods which must be non-invasive and able to detect any
type of faults in the early stages. A large amount of research has been
directed towards the electrical monitoring of Motor Current Signature
Analysis (MCSA), which is a non-invasive and standard for monitoring of
motor faults due to its simplicity [4]. The main advantage of MCSA is to
analyse the stator current in search of current harmonics directly related to
new rotating flux components, which are triggered by faults in the

motor-flux distribution.
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1.2 Literature Survey on Fault Diagnosis

This section describes how significant and challenging it is to build an
accurate stator fault diagnosis technique for induction machines. In
addition to that an exhaustive literature survey on various condition
monitoring techniques are presented which includes common modelling
techniques, signal processing techniques and data based techniques.
Finally, summary of various condition monitoring techniques for induction

motors developed by other researchers are presented.

s N Condition
+ Corrective maintenance Monitoring
+ Simply respond to the motor
failures

* Advantages

* Reduces Consequential Damage
¢ Increases Machine Life

* Reduces Spare Parts Inventory
* Reduces Breakdown Time

* Maintenance cost is low
* Gives unexpected downtime
* Time based maintenance
« Performed at fixed time intervals
+ Maintenance cost is high

+ Reduces unexpected downtime Condition based

Traditional Maintenance maintenance
Procedures

Figure 1.4: Maintenance procedures in industries and their features

Stator faults are usually associated with insulation failure. The root causes
for the stator insulation failures are broadly categorised into four
groups [5]. These are thermal, electrical, mechanical and environmental
stresses. Normally, the deterioration of stator winding insulation usually
begins with inter-turn fault which causes to produce high circulating

current between adjacent coils and therefore burns the insulation in
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adjacent windings. This insulation failure spreads to core very quickly and
then leads to stator to core insulation failure. Hence, reliable detection
techniques are essential for detecting the stator insulation failure at the
earliest to avoid the catastrophic motor failures [6]. There are different
types of fault detection and diagnosis methods for induction motor which
have advantages and disadvantages. The main objective of the fault
detection and diagnosis method is to obtain a signal sensitive to faults, but
robust against model uncertainty, noise and unknown disturbances. In
general, the development of a fault detection and diagnosis system involves
a time consuming process to identify the symptoms to be monitored,
provide the correct signals for recognition of suitable fault symptoms, and
then provide the correct computational methods to process the signals. In
fact, in the literature, there is still no global fault detection and diagnosis
algorithm that can overcome the parametric and model uncertainty,
measurement noise, load torque effects and intrinsically electrical machine
mechanical unbalance for induction motor [7]. For this reason, researchers
have suggested different detection and diagnosis schemes with parameter
settings that are developed specifically to the system under investigation.
According to the survey reports the fault diagnosis techniques are classified

into two categories. These are Model based and model free methods [8].

1.2.1 Model Based Methods

Model-based methods have been proposed in [9] and [10]. They take
advantage of the plant model, since the idea is to calculate such quantities
from the models that reflect inconsistencies between nominal and faulty

system operation. In the case of model-based techniques, accurate models
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of the system are essentially required for achieving a good fault
diagnosis [11]. More precisely, the more accurate the model, the more
reliable the model-based fault diagnosis scheme will be, i.e. mathematical
models among the system inputs and outputs are utilized. Most of the
methods rely on the concept of analytical redundancy rather than physical
redundancy. The basic idea behind the model-based fault detection and
1solation approach is to take advantage of the nominal model of the system
to generate residuals that contain information about the faults. Evidently,
the quality of the model is of fundamental importance for both fault
detection and isolation to avoid false alarms. The difference between
computationally obtained quantities and measurements results is so-called
residuals. Fault Detection, Isolation and Reconfiguration (FDIR) is a
control methodology which ensures safe or acceptable operation of a
system when a fault occurs through fault detection and isolation, as well as
controller reconfiguration in response to the specific fault. Fault detection,
and isolation are major part of FDIR [12]. Generally, the application of
model-based methods can be divided in two parts: residual generation and
decision making.

In Figure 1.5, a general framework of model-based FDIR scheme is
presented [8], [12], [13], [14]. In the first step, process models in healthy
and faulty operation are applied to generate residuals describing the current
condition of the process. The second step is to make decisions on whether
a fault has occurred (fault detection) and on the type of faults that have
occurred (fault isolation) based on the residuals. Finally, the controller is
reconfigured on-line in response to any faults detected. The residual

generation has to be followed by residual evaluation, in order to arrive at a
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detection and isolation decision.

s 1

u(t) Y(t) [

— Controller : > PIanl\tA/:I:eallthy > |
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i > [

! Ya(t) !
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Figure 1.5: Analytical redundancy model-based fault detection, isolation, and

reconfiguration

In some cases the residuals never become zero because of the presence of
noise and model errors, even if there is no fault. Therefore the detection
decision requires testing the residuals against thresholds, obtained
empirically, or by theoretical considerations in which the condition is
decided based on the residuals [12]. To overcome this problem, robust
residual generation can be addressed by using observer-based
methods [15], the parity relation methods [11], the parameter estimation
methods [16] and Kalman filter-based method [17].

The model-based method can be divided into three
classes [13], [16], [18] based on their analysis: data based model,
analytical model, and knowledge-based model. Analytical models are
based on the known physical interactions in the diagnosed plant. It can be
applied using observers [19], parameter estimation [18], or parity equations
[16]. Knowledge-based models rely on human-like knowledge of the
process and its faults [13], whereas Data-based models are applied when

the process model is not known in the analytical form and expert
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knowledge of the process performance under faults is not available.
However, for complex and wuncertain systems, the derivation of
high-fidelity mathematical models from physical principles can become
very complicated, time consuming, and even sometimes unfeasible (for
instance, some systems cannot be represented accurately enough by a
lumped parameter system). Generally obtaining accurate model parameter
values may become a very tedious job, or even practically impossible, due

to proprietary issues regularly imposed by system integrators [18].

1.2.2 Model-Free Methods

Model-free methods can be carried out by monitoring and processing the
signals. These methods use suitable sensor signals such as voltage, current,
vibration, temperature, etc., at the initial stage. The second stage extracts
the useful information by using one or more of the signal processing
techniques e.g. Fourier techniques, wavelet, etc [8]. The third stage,
considered the heart of the condition monitoring, is the stage where the
fault is detected and identified according to the extracted data from the
previous stage. The advantages of the model-free approaches are that they
are able to avoid parameter mismatches between theoretical model and

actual motor [13].

1.2.2.1 Signal Monitoring Methods

In any machine, a key factor for detection of fault is proper signal
conditioning and monitoring. They are mainly five types of monitoring
techniques such as temperature monitoring, chemical monitoring, vibration

monitoring, electrical monitoring and Partial Discharge (PD) monitoring.
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Numerous fault detection and identification techniques that have been
reported for the past two decades are based on electrical monitoring which
includes currents, voltages and power. Out of all electrical monitoring
techniques, motor current signature analysis is well known and recognised
technique because it is more practical and no additional sensors are
required [20]. Other techniques include vibration analysis, torque profile
analysis, acoustic noise measurement, magnetic field analysis and
temperature analysis [5]. These techniques require sophisticated and
expensive sensors, extra electrical and mechanical installations and
frequent maintenance. Moreover, the use of a physical sensor in induction
motor fault identification system results in lower system reliability
compared to other fault monitoring systems that do not involve extra
instrumentation. This is due to the susceptibility of the sensor to fail is
added to the inherent susceptibility of the induction motor to fail. The
remaining monitoring techniques, such as chemical and PD Motor Current
Signature Analysis analysis are presented in [21], [7]. In these two
techniques, PD is only applicable for above 4 kV rating of the motors.
Other monitoring technique is not useful for stator incipient fault cases. PD
and chemical analysis techniques are not applicable for low and medium

range induction motors due to their higher cost and other limitations.

1.2.2.2 Signal Analysing Methods

Generally, the signal analysing methods can be carried out either in

frequency domain or time domain or time-frequency domain.
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1.2.2.2.1 Time Domain Analysis: In time domain analysis, the fault
detection algorithms are developed based on the signal features of root
mean square, shape factor or crest factor. The same inferred can be drawn
from other methods based on statistical measures such as mean, standard
deviation and Kurtosis. In that the last one is based on higher order
moments [22]. Generally, the three-phase stator currents of an induction
motor is in a periodic nature which is dominated by fundamental
component. Whenever fault occur, the fault related frequency components
present in the stator current is less compared with fundamental frequency.
Thus, fault detection makes difficult using time domain analysis. The more
reliable fault techniques in time domain is addressed by using the
notch-filtered stator current [23]. However, it is hard to relate the origin of
the fault from the features because the obtained features for different kinds
of faults could be similar. Hence, fault classification needs the

post-processing step [24].

1.2.2.2.2 Frequency Domain Analysis: The frequency domain analysis is
widely applied for diagnosis of electrical faults in induction machines such
as broken bar faults, rotor faults and stator faults since their corresponding
fault characteristic frequencies are well defined [19], [25]. The mechanical
faults such as bearing, eccentricity and load unbalance faults can also be
detected using stator current frequency spectrum [19]. In several research
works, the feature extraction in the frequency domain is not restricted to
the monitoring of fault-related frequencies magnitudes in the stator current
spectrum. It has been shown that the spectrum statistical information such

as the frequency centre, the root mean square frequency and the root
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variance frequency are also efficient for electrical and mechanical faults
diagnosis in induction machines [24], [22], [26]. The performance of
frequency domain analysis is mainly influenced by two factors which are
frequency resolution and spectrum leakages. Detection of fault using
frequency component of electrical signatures are commonly load and slip

dependent.

1.2.2.2.3 Time-Frequency Domain Analysis: The frequency domain analysis
cannot give a reliable solution in harsh industrial environment since the
fault frequency components are generally load and slip dependent. A
straightforward solution for that is to analyse the signal in time-frequency
domain. The Windowed Fourier Transform (WFT) or Short Time Fourier
Transform (STFT) is a well-known method to diagnosis the mechanical
and electrical faults in an induction motor. The WFT gives equivalent time
and frequency resolutions in the overall time-frequency plane. But,
diagnosis of fault under non-stationary condition is a challenging problem
which requires advanced time-frequency analysis techniques. Quadratic
time-frequency analysis techniques are efficient alternatives to the WFT
due to their independence from the type or the size for the window
function. In essence, these methods compute energy distributions of the
signal over both time and frequency planes. Particularly, the mechanical
faults in electrical machines have been detected using time-frequency
domain analysis of Wigner-Ville Distribution (WVD) and its variants, the
pseudo-WVD (PWVD) and the smoothed pseudo-WVD (SPWVD). it
WVD gives a better frequency resolution rather than WFT under similar

conditions. But, it has a limitation due to inner interference terms. This
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effect diminishes the ability to estimate the fault severity. To avoid this
practical drawback, the PWVD uses a time window function like Hanning,
Hamming, Blackman, Kaiser, Bartlett, and Gaussian in order to smooth the
time-frequency distribution in the frequency plane at the cost of decreasing
the frequency resolution. The SPWVD attempts to reduce the magnitude of
inner interference terms by smoothing in both time and frequency planes.
This reduces more efliciently the effect of inner interference terms at the
cost of decreasing both time and frequency resolutions. In [27], authors
have applied the SPWVD for rotor faults detection in brushless DC motors
(BLDCM) in continuous time-varying conditions. For instance, the WVD
has been used to track frequency components related to both eccentricity
and broken rotor bar faults in the stator current of an induction machine at
start-up [28], [29]. Climente-Alarcon and et. al have published two
interesting contributions on this subject [30], [31]. In [30], the load torque
oscillations have been associated with the stator current phase modulation
in three-phase induction machines. Authors state that this technique has
been considered as a general one for mechanical faults detections such as
load unbalance, shaft misalignment, gearbox and rolling-bearing defects.
In [31], authors have used the WVD as a mean to distinguish between
magnitude and phase modulation effects of eccentricity and load torque
oscillations.

Diagnosis of electrical machine faults using Wavelet Transform (WT) is
another well-known method in time-frequency domain because of its multi
resolution property [32]. Mathematically, mother WT is based on two
function scale dilatation and translation. These two facts lead to give good

resolutions in both time and frequency [33]. This means that when the
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scale is small the resolution is coarse in the time domain and fine in the
frequency domain and vice-versa when the scale is large [34]. There are
several Wavelet functions such as Daubechies, Biorthogonal and Coiflet
wavelet for real and Morelet wavelet for complex [35]. The fundamental
idea is to replace the frequency shifting operation which occurs in the WFT
by a time scaling operation. This makes the WT a time-scale representation
rather than a time-frequency one. The time-scale representation of the
squared-modulus of Continues Wavelet transform (CWT) is called the
scalogram. A particular case of the CWT is called analytic or cross wavelet
transform (AWT). The AWT separates the phase and the magnitude
information of a signal which allows for analysing the time evolution of

frequency tones.

1.2.3 Classification Methods

Recently, significant efforts have been made on the use of artificial
intelligence tools to develop condition monitoring and fault diagnostic
techniques for electric machines. Artificial intelligence techniques are
considered significant in condition monitoring and fault diagnosis of
electrical machines, reviewed in [36]. Neural network and fuzzy logic
techniques have their own limitations as discussed in [37] and thus a
specific combination of these two techniques, known as Adaptive
Neuro-Fuzzy Inference System (ANFIS), have developed as a better
alternative solution [38]. The ANFIS technique offers the best training
feature of neural network and heuristic interpretation of the process results
similar to fuzzy logic theory, thus providing a powerful tool that can be

employed in conjunction with the condition monitoring and fault
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diagnostic applications. The use of ANFIS is growing towards in this niche
application area and a significant amount of literature is available [39], [40]
and [41]. Bearing failures and inter-turn insulation failure of main winding
of a single-phase induction motor is considered in [42]. Stator current,
rotor speed, temperature of the winding, bearing temperature and motor
noise are considered as input to the ANFIS. However, additional noise
sensors are not very reliable and the data collected from such sensors is not
very accurate. Classification of more faults with single parameter is more
complicated than multiple parameters. Modular Neural Networks (MNN)
have remarkable ability to derive meaning from complicated or imprecise
data and is used to extract patterns and detect trends that are too complex.
Such an approach has noticeable advantages of simple and reduced

architecture and better learning capability [43], [44].

1.3 Summary of Various Monitoring Techniques

Monitoring parameters and analysing techniques have been used to
identify the faults during last 2 decades are illustrated in figurel.6. This
figure shows that the most commonly used monitoring parameter in fault
diagnosis is MCSA because of its non-invasive nature. In that one of the
more frequently used technique for fault diagnosis in the area of induction
motors is Fast Fourier Transform (FFT), which is suitable for steady state
analysis only [45]. Due to this reason the usage of time-frequency domain
analysis has been enlarged in recent times towards fault diagnosis
community. STFT overcomes the certain limitations of FFT but not all due

to a sort of compromise between time and frequency based view of signal
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representation, which has limited precision due to fixed size of window.
Wavelet transform overcome this limitation. Wavelet analysis allows the
use of long time intervals for low-frequency information, and shorter
regions for high-frequency information [46] that means it gives
multi-resolution. Thus, it is a powerful tool for condition monitoring and
fault diagnosis [47]. A well-known technique to detect inter-turn short
circuits in time domain analysis is negative sequence components of stator
currents, which is presented in [48]. The asymmetries produced by a faulty
motor with shorted turns in the stator winding are the basis for fault
diagnosis, such asymmetries will generate a negative sequence current and
1s used to detect the fault. However, some effects can yield
misclassification due to unbalanced power supply voltage, certain types of
load, and measurement errors. These effects can also produce negative
sequence currents even in healthy motors. Even though such effects were
considered in [48], but still fails to detect faults for induction motors with
inherently unbalanced windings as explained in [49]. The other frequency
analysis technique can also be well associated for MCSA are Parks vector
approach. Detection of faults using dq0 components [50] and the envelope
of the stator currents [51] are just an alternative representation of the
negative sequence current component. Methods using other signatures,
such as slot harmonics [45], pendulous oscillation phenomenon [52] and
observer-based method [53] are proposed in the literature. Fault detection
using induced voltage at motor terminals when the power supply is turning
off 1s proposed in [54], but this method cannot provide continuous
monitoring and protection. Using high resolution spectral analysis of stator

current spectrum through experiment, the voltage unbalance and open
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phase external fault condition are identified. In [55], two approaches have
developed based on Discrete Wavelet Transform (DWT) for induction
motor fault detection. In that, the first fault detection criteria is the
comparison between threshold determined experientially during healthy
condition of motor and sixth level DWT coefficients of fault currents
obtained by using selected mother wavelet of db3. The second approach
was based on comparison of modulus maxima of the DWT coefficients.
The DWT of the shifted (down sampled) signal, in general, is different
from the shifted version of the DWT of the original signal. This is because
DWT is not a shift-invariant transform. Such a drawback can cause
problems in fault detection and classification. Wavelet packet transform
based protection system developed in [56] coefficients of the Wavelet
Packet Transform (WPT) line currents compared experimentally decided
threshold for detecting and diagnosing various disturbance occurring in
induction motor. Single phasing, phase to earth and short circuit faults.
WPT is similar to DWT, but in WPT, the high-pass and low-pass filters are
applied to both the detail and approximation coefficients at each level.
Hence, at the n”" level, WPT gives 2n coefficients while DWT gives only
two. The draw back of DWT can be over come by using Stationary

Wavelet Transform (SWT) and CWT.
1.4 Motivation

In harsh industrial environments the noise level and its variation should be
considered precisely for fault diagnosis because the fault signature due to
stator inter-turn short circuit is much lower than the noise level. Hence, it

requires a good technique with a capability to suppress the noise without
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Figure 1.6: Mapping between monitoring parameters and analysing techniques to detect
the faults

corrupting the fault signature. Most of the existing techniques require some
sort of domain expertise to identify whether the three-phase induction motor
1s operating in normal or abnormal condition.

In actual practice, the captured currents are influenced by many factors,
which include supply unbalance, static eccentricity, load level variations
and noise. These conditions may lead to errors in fault detection. Hence,
an accurate inter-turn fault diagnosis technique must be required to detect
the inception of a fault and its location. To detect the inception of a fault
than it requires time-frequency localisation. Wavelet transform is a one the
best technique for analysing the signal in both time and frequency domain,
they have capability to reconstruct the signal from the decomposed signal.

However the discrete wavelet transform (DWT) is not suitable for signal
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noise reduction applications due to the lack of invariant translation
property. But this effect can be overcome by using stationary wavelet
transform (SWT) that has been discussed in [57] and [58]. Especially, only
little contributions have been presented based on SWT in the area of motor
condition monitoring. From the perspective of long-term research on the
diagnosis of electrical machines, it appears that recent focus has been on
the use of signal processing and Al in order to improve the performance of
traditional model-based methods. @ However, the lack of evaluation
techniques for classifying various faults such as supply side faults and
stator internal faults on induction motors are significant.

Specifically, this thesis addresses electrically detectable faults that occur
in the stator windings and supply side faults, namely inter-turn, line-line,
line to ground short circuits in stator windings, single phasing, under
voltage, supply unbalances and sudden electrical load changes. The
methods developed in this thesis detect motor faults without the necessity
of invasive tests or process shut downs. Moreover, the presented methods
monitor the operating condition of induction motor continuously, so that

human inspection is not required to detect motor faults.

1.5 Contributions

According to exhaustive literature survey, effective fault detection is very
essential for induction motors. The exhaustive literature survey on
induction motor condition monitoring is inferred that majority of the cases
the monitoring parameter is a current and analysing method 1is a

time-frequency which is best for non-stationary signals. However, to
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improve the sensitivity of the fault detection and identification, it is
required to integrate the various analysing methods. Till now there is no
such algorithm for detecting multiple faults with minimum number of
non-invasive monitoring parameters and classifying the various faults with
minimum features. Hence, the following objectives are outlined in this

thesis to fulfil the gap in the literature survey.

e To develop an accurate machine model which is valid for wide range

of frequencies.
e Monitoring measurements should be non-invasive and minimum.
e Integrating the analysing techniques (Wavelet and ANN).

e To diagnosis all possible and frequently occurring faults on induction
motor such as supply unbalance, single phasing, under voltage,
switching of sudden electrical loads, stator inter-turn (same phase)
faults, stator turn-ground faults and stator turn-turn (different phases)

faults.

e Detection procedure should be made with variable threshold as the
fault component is not constant, and depends on the inception of fault,

supply and load conditions.

To achieve the above objectives, in this thesis two robust fault diagnosis
schemes are developed by integrating the wavelet with artificial neural
network and wavelet with modular neural network, which can improve
system’s reliability and effectiveness towards detection, classification and
evaluation of the severity level of stator inter-turn short circuit. Figure 1.7

illustrates the road map for research work presented in this thesis.
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Figure 1.7: Road map for research work

1.6 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 describes the development of a low-high frequency
distributed model for an induction motor. The low and high frequency
parameters are derived by conducting various tests which includes no-load,
rotor blocked, differential and common mode test. This chapter also
demonstrated the validation of the considered models of 3-hp and 5-hp
motors by comparing frequency responses obtained from the experimental
setup and simulation.

Chapter 3 deals the fault detection algorithms for three-phase induction
motor based on discrete wavelet transform and stationary wavelet
transform. The proposed algorithms are tested with various faults, which
are modelled and simulated in MATLAB/Simulink environment. The

proposed algorithms are also verified by using data obtained from
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experimental setup provided for a 3-hp and 10-hp three-phase induction
motors.

Chapter 4 describes the classification algorithms for various
disturbances and stator winding insulation faults on a three-phase induction
motor based on Feed Forward Neural Network (FNN) and Modular Neural
Network (MNN). The proposed disturbance classifiers are trained and
tested by using data obtained from the simulation studies for a 3-hp
3-phase induction motor. Experimental setup was arranged for the analysis
of a 3-hp and 10-hp three-phase induction motors.

Chapter 5 presents the classification of stator phase faults along with
faulty phase on a three-phase induction motor based on Feed Forward
Neural Network (FNN) and Modular Neural Network (MNN). The
proposed algorithms are verified by using data obtained from the
simulation studies for a 3-hp 3-phase induction motor and experimental
setup are provided for a 3-hp and 10-hp three-phase induction motors.

Chapter 6 discusses the identification of faulty phase and severity level
of stator inter-turn faults on a three-phase induction motor. The defined
features are not effected by the supply unbalances and load conditions.

Chapter 7 summarizes the conclusions of the work and recommendations

for future work.



Chapter 2

Modelling of Stator Winding in 3-Phase
Induction Motor for Fault

Diagnosis-Validation

2.1 Introduction

Modelling of machines operating under fault conditions is essential in
predicting the behaviour of the machine. The analysis of stator winding
faults especially turn-to-turn short-circuit can be made by different models.
With the advent of more powerful computers and sophisticated electric

machine models, there is a possibility of transient analysis of the motor.

2.2 Modelling of 3-phase Induction Motor

Conducting experiments repeatedly on a real machine to study the
behaviour of faults is not economical as it can lead to the destruction of the
machine. However, many parametric studies can be carried out if an
accurate and simple model is available to study the behaviour of the motor

operating under fault condition. In this thesis, a low-to-high frequency

24
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model is considered to analyse the stator faults. Motor behaviour under
low frequencies is described by IEEE standard 112 [59] and per phase
low-frequency T-equivalent circuit is shown in figure 2.1. In medium to
high frequency ranges, a distributed parameter model is best for analysing
the motor behaviour. Compared to low frequency model, the distributed
high frequency model requires extra elements such as stator to frame
capacitance (C,r), anti-resonance resistance (u R ), anti-resonance
leakage inductance (1 L), stator turn to turn capacitance (Cy,) and stator
turn to turn damping resistance (Rj,). Each coil of the Stator winding is
represented by a distributed I model as shown in figure 2.2. Figure 2.3
shows the distributed model of a 3-phase induction motor. The additional
parameters of the distributed model are calculated from Differential Mode
(DM) and Common Mode (CM) test which has been discussed in [60].
Fast switching means shorter voltage rise time, which can lead to the
reflected wave phenomenon as well as high-frequency leakage currents
through the systems stray capacitors. Reflected waves cause voltage spikes
at the motor terminals and the high frequency leakage currents cause
electromagnetic interference (EMI). These two phenomena are commonly
modelled as two decoupled single-line circuits, namely, DM and CM.

Phase (N ~eAn A

L § Reore R./s

Neytral

Figure 2.1: Lumped parameter model
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2.3 Distributed Model Parameters

2.3.1 Stator First Turn Leakage Inductance (17 L;,):

This is one of the critical parameters in defining the DM motor high
frequency impedance to reflected wave, predicting the antiresonance point
of Figure 2.2 and setting correct EMI leakage current to ground in the CM
circuit. The n L;; parameter is used to account for the fact that only a
fraction of total stator leakage inductance is attributed to the high
frequency (~ 5 MHz) anti-resonance point, specifically the first few turns
(typically 4) in the first slot of the entry winding. Thus, mathematically it
1s expressed as in equation 2.1. Winding data is available from machine
geometry. If the value of L is too high, then this inductance isolates the
rest of the winding from the cable and a wave shaped reflected wave
appears DM simulation is a wave-shape which exhibits of an ideal open
circuit. If i L;, 1s high, then this inductance also isolates the C; — slot term
and current-to-ground peak and ring wave shape will not be correct in the
CM simulation.
Aturns

Lis ~ *Lis 2.1
T (totalturnsperphase) : @D

2.3.2 Total Stator to Frame Capacitance per Phase (C;s_;y11):

A physical representation of (Cyr_s0a1) total stator winding capacitance to
frame ground is shown in figure 2.4. At high frequencies especially more
than resonance frequency, the behaviour of DM and CM motor can be
described by the parameter of stator slot winding-to-frame capacitance
(Csp). At low frequencies, the parameter Cys_0q; plays a major role in

matching CM transfer function. Cgp_pq 1S calculated from machine



2.3 Distributed Model Parameters 28

Figure 2.4: Physical representation of stator winding capacitance to frame ground

geometry by analysing each slot capacitance to ground and multiplying it
by the number of stator slots. Each stator slot can be considered
approximately as a rectangular shaped conductor with stack stator length
L, slot average width w and slot average depth d; see figure 2.5. The
capacitance value between the conductor in each slot and the motor frame

can be obtained as follows

C _ 80leotLS tack
Sf—SlOt Kt61 62 Kt63

+ — +

€rl Er €3

(2.2)

where, L, 1s the stator slot circumference which can be calculated
approximately using the expression as Ly, = 2dg, + 1.5wg,, , 01, 62 and
03 are the thickness of slot wall, wire insulation and air gap, with a relative
permittivity of &,1, &, and g,3 respectively. Effective Cyr_spiq and Cyr_gio
may change in 2:1 ration with liner air gaps, making calculations less
precise. For a motor with N, stator slots, the total stator winding to frame

capacitance can be obtained as follows:

Csf—total = Nslotcsf (23)
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Figure 2.5: Representation of stator slot capacitance to frame ground

2.3.3 Stator Turn to Turn Winding Capacitance (Cj,,):

This parameter can be determined in a two ways. In the first method
parameter can be obtained as a function of Cyf_ffecrive. The mathematical
representation Cy, 1s given in equation 2.4. The second method is to solve

equation 2.5 for Cy,, and assuming f,; is known.

Cow = — Csf—effective (24)

1
Jnandfr = 7 \/ B+ (B - 4)/2a) (2.5)

where a = L;; L;, Cs,, Csf ,p= (L + L[r)Csf + L Csf and frl < frg.

2.3.4 Stator Turn to Turn Damping Resistance in Winding (R;,,):

This parameter accounts for skin and proximity effect of the wire and high

frequency core loss. Quite simply, at first resonance peak of the DM
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impedance measured is equal to the 3/2 times the damping resistance (Ry,,)
for a parallel resonant circuit. It has been found that R, resistor does not

have a great impact on the damping resistor required.

2.3.5 Stator Initial Frame to Ground Damping Resistance (uRs):

This component is the ac resistance of the fractional part of total stator R;

due to the 1 L;s segmentation described. The uRs is proportional
Aturns

) and multiplying factor of 10 to 20 is used for ac
total turns_per_phase

skin and proximity effects. In addition, it also encompasses the resistivity

of the steel laminations from the slots to where the motor ground wire in

the junction box is connected. The term u R, affects peak CM current as

well as damping of oscillations in the CM current to ground.

2.4 Experimental Setup for DM and CM Test

In general, distributed parameters are determined by measuring the
frequency response from DM test setup and CM test setup. A three-phase,
3-hp, 415 V, 4 pole 50 Hz induction motor with 36 slots, 6 coils per phase
and 72 turns per coil and a three-phase, 5 HP, 440 V, 4 pole 50 Hz
induction motor with 36 slots, 6 coils per phase and 54 turns per coil is
considered for the present study. Initially, the low frequency parameters are
estimated by conducting no-load and rotor blocked tests. Later, differential
mode and common mode tests are conducted to estimate the high
frequency parameters of a 5-hp Induction Motor (IM). Differential mode
test was performed by connecting LCR meter between phase A and tied

leads of phase B and phase C. This test procedure is recommended [60] for
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Figure 2.6: Experimental setup for DM test on a 3-phase, 5-hp induction motor

an ungrounded motor frame with LCR meter in Z-6 mode. Common mode
test was performed with ground frame as one probe and phase A, phase B
and phase C motor leads tied together to form the second probe to LCR
meter in Z-0 mode. LCR meter was manufactured by Agilent, whose
model number is 16089A and having a frequency range of 20Hz to 1MHz
1s used for taking measurements. Figure 2.6 shows the experimental setup
for DM test on a three-phase 5-hp IM. Similarly, Figure 2.7 shows the
experimental setup of a three-phase 5-hp IM in CM test. Similar tests are
conducted on another 3-hp induction motor. The experimental procedure

for a 3-phase 3-hp induction motor is shown in figure 2.8.



2.4 Experimental Setup for DM and CM Test

32

W

Figure 2.8: Experimental setup for a 3-phase, 3-hp induction motor
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2.5 Estimation of Parameters

The low frequency parameters are estimated by conducting no-load and
blocked rotor tests. Readings obtained from no-load and blocked rotor tests
for a 3-phase, 5-hp induction motor are tabulated in Table 2.1 and Table 2.2
respectively. Similarly, readings for a 3-hp induction motor are tabulated in
Table 2.3 and Table 2.4 respectively. The distributed parameters are
estimated by using the first and second resonance frequencies of
impedance which are obtained from the frequency response of a motor
during DM and CM test. Figure 2.9 shows the frequency response of a
5-hp induction motor during DM and CM test. Similarly, Figures 2.10

shows the frequency responses of a 3-hp induction motor in DM and CM

test.

Table 2.1: No-load test readings for a 3-phase 5-hp induction motor (IM)

Voltage(Volts)

Current(Amps)

Power(Watts)

Power(Watts)

400

0.98

240

-150

Table 2.2: Blocked rotor test readings for a 3-phase 5-hp induction motor (IM)

Voltage(Volts)

Current(Amps)

Power(Watts)

Power(Watts)

225

7.0

1440

30

Table 2.3: No-load test readings for a 3-phase 3-hp induction motor (IM)

Voltage(Volts)

Current(Amps)

Power(Watts)

Power(Watts)

415

0.8

208

-136
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Table 2.4: No-load test readings for a 3-phase 3-hp induction motor (IM)

Voltage(Volts) | Current(Amps) | Power(Warts) | Power(Watts)
236 4.8 1050 100
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Figure 2.9: Measured frequency response of a 5-hp induction motor
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Figure 2.10: Measured frequency response of a 3-hp induction motor
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Table 2.5: Parameters for a 3-phase 5-hp induction motor (IM)

Motor Parameters 5-hp IM Parameters are obtained from
Stator resistance (Ry) 520

Stator leakage inductance (L;) 37.335 mH

Rotor resistance (R,) 48 Q No load

Rotor leakage inductance (L;,) 16.587 mH and Blocked rotor test
Magnetising Inductance (L,,) 757.68 mH

Core Resistance (R.,.) 17789 Q

Stator to frame capacitance (Cy) 0.562 nF

Anti-resonance resistance (u R;) 392 Q Differential mode
Anti-resonance leakage inductance (1 Lj) 18 uH and Common mode test
Stator turn to turn capacitance (Cj,,) 0.603 nF

Stator turn to turn damping resistance (Ry,) | 14700 Q

Table 2.6: Parameters for a 3-phase 3-hp induction motor (IM)

Motor Parameters 3-hp IM Parameters are obtained from
Stator resistance (Rj) 9.1Q

Stator leakage inductance (L;s) 41.38 mH

Rotor resistance (R,) 8.08 Q No load

Rotor leakage inductance (L;,) 31.83 mH and Blocked rotor test
Magnetising Inductance (L,,) 904.44 mH

Core Resistance (R.,.) 2842.8 Q

Stator to frame capacitance (C,y) 0.253 nF

Anti-resonance resistance (u R;) 2.667 Q Differential mode
Anti-resonance leakage inductance (7 L;;) | 3.547 uH and Common mode test
Stator turn to turn capacitance (Cs,,) 0.853 nF

Stator turn to turn damping resistance (Ry,) | 17356 Q




2.6 Model Validation 36

The distributed parameters are estimated by substituting the values of
low frequency parameters, measured frequency responses, total number of
slots and total number of turns in equations 2.1 to 2.5. Tables 2.5 and 2.6
represent the low to high frequency parameters of a 5-hp induction motor

and 3-hp induction motor respectively.

2.6 Model Validation

The low and high frequency parameters obtained using procedures
mentioned in Section 2.5 are used to simulate the models of 3-hp and 5-hp
induction motors in MATLAB/Simulink environment. Both differential
and common mode tests are carried out in MATLAB/simulink environment
and frequency responses are plotted. The MATLAB/simulink models for
DM and CM tests on a 5-hp induction motor are shown in Figures 2.11 and
2.12 respectively. Figures 2.13 and 2.14 demonstrate the comparison
between measured and simulated frequency responses in a DM test on a
5-hp induction motor. Similarly, figures 2.15 and 2.16 represent the
comparison between measured and simulated frequency responses in CM
test on a 5-hp IM. These figures demonstrate that the frequency response
observed in simulation closely matches with frequency response measured
on practical machine. Comparison between measured and simulated
frequency responses in DM test on a 3-hp induction motor are shown in
figures 2.17 and 2.18 respectively. Similarly, figures 2.19 and 2.20 show
the comparison between measured and simulated frequency responses in

CM test on a 3-hp induction motor. The second resonance impedance wave
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Figure 2.11: Simulation diagram for DM test on a 5-hp induction motor
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Figure 2.12: Simulation diagram for CM test on a 5-hp induction motor
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Figure 2.13: Comparison between measured and simulated responses of impedance versus

frequency in differential mode test on a 5-hp IM
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Figure 2.14: Comparison between measured and simulated responses of phase angle

versus frequency in differential mode test on a 5-hp IM

shape is similar, however, the frequency value in case of simulation is
different from measured value because of the coil level parameter
distribution. Even then, results from the graphs show that the measured and
simulated responses are close to each other. Hence, the model is valid for

transient studies.
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Figure 2.15: Comparison between measured and simulated responses of impedance versus

frequency in common mode test on a 5-hp IM
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Figure 2.16: Comparison between measured and simulated responses of phase angle

versus frequency in common mode test on a 5-hp IM
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Figure 2.17: Comparison between measured and simulated responses of impedance versus

frequency in differential mode test on 3-hp IM
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Figure 2.18: Comparison between measured and simulated responses of phase angle

versus frequency in differential mode test on a 3-hp IM

E 1000000

_g 100000 ] —CM Measured

£ 10000 - ---CM Simulated

S 1000 -

g 100 -

T

o 10 7

E 1 1 1 1 1 1 I I I 1 1 1 1 1 1 1 I I I
oA eeeeeeuneeSeeS
SeSS NN SN NERTIESESE

. - NN
Frequency in kHz

Figure 2.19: Comparison between measured and simulated responses of impedance versus

frequency in common mode test on a 3-hp IM
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Figure 2.20: Comparison between measured and simulated responses of phase angle

versus frequency in common mode test on a 3-hp IM



2.7 Conclusions 41

2.7 Conclusions

In this chapter, model parameters are estimated from physical tests
conducted on induction motor. Applicability of the model is validated by
comparing the frequency responses obtained from simulation and
experimental setup. Considering the fact that actual parameters are
distributed, the responses obtained through simulation, matches well with
experimental observations. Hence, the model is validated and it can be

used for transient analysis.



Chapter 3

Fault Detection Schemes

3.1 Introduction

The objective of this chapter is to propose condition monitoring techniques
of three phase induction motor using wavelet transform for detection of
various faults. The proposed DWT and combination of SWT and DWT
algorithms are tested with various faults in three phase induction motor and
are simulated in MATLAB/Simulink platform. Both the methods are
effective in detecting the faults without having any noise. In case of noise,
the combined scheme of SWT and DWT algorithm performance is well as

compared to DWT.

3.2 Various Stator and Supply Side Faults in a 3-Phase

Induction Motor

Electric motors are critical components of many industrial processes and
are frequently integrated with commercially available equipment and
industrial processes. Squirrel cage induction motors are more prevalent in
use than other motors due to their low cost, ruggedness, low maintenance

42



3.2 Various Stator and Supply Side Faults in a 3-Phase Induction Motor 43

and operation with an easily available power supply. Although induction
motors are reliable electric machines, they are susceptible to internal and
external faults. Different internal motor faults includes inter-turn short
circuits, ground faults, mechanical failure where as external motor faults
includes: a) mechanical overloads, which define prolonged starting or
locked rotor and stalling; b) abnormal supply conditions such as loss of
supply voltage, unbalanced supply voltage, phase sequence reversal of
supply voltage, over voltage, under voltage, and under frequency; c) faults
in starting supply / circuit, which include interruptions in phases or
blowing of fuse / single phasing, and short circuit in supply cable. These
faults are expected to happen at any stage of motor life
time [61], [62], [63]. Correct diagnosis and early detection of faults result
in fast unscheduled maintenance and short shut down time for the machine
under consideration. It not only reduces maintenance costs but also
increases productivity. Statistical analysis proved that the stator winding

faults constitute the largest portion of the electrical faults [64], [65].

3.2.1 Stator Faults

The stator winding of an induction machine is subject to stresses induced
by a variety of factors which include thermal overload, mechanical
vibrations and voltage spikes caused by adjustable-speed drives. The stator
winding short circuit fault in electric motors usually start as an undetected
insulation failure between two adjacent turns and it develops into a short
circuit isolating a few number of turns [66]. Though it starts as an incipient
inter-turn short circuit, undetected small insulation failures can deteriorate

and accumulate rapidly and finally lead to a loss of a phase winding, phase
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to phase or phase to ground fault. Failure of insulation between phases and
phase to ground can cause a large ground current which would result in
irreversible damage to the core of the machine. The incipient winding
faults in a single stator coil may have relatively little effect on motor
performance but may affect overall motor reliability, availability and
longevity. Typical protection for stator insulation failure in an industrial
environment includes the use of ground fault relays and negative-sequence
or phase current balance relays. Negative-sequence relays would cause
nuisance trips with unbalanced line voltages. Ground fault relays would
not be effective for early fault detection. Hence, the stator incipient fault
diagnosis is essential to avoid the catastrophic failures and production

curtailments.

3.2.2 Unbalanced Supply

Voltage unbalance of a 3-phase system is expressed as a percentage value
and is often defined as the maximum deviation from the average of the
3-ph voltages divided by the average of the 3-ph voltages [63]. Many times
the supply to an induction motor is unbalanced due to the presence of
unbalanced loads on the system or due to some line disturbances. When
the voltages are unbalanced, a much higher current is induced in the rotor
because it has much lower impedance to the negative sequence voltage
component. The percentage increase in temperature of the winding is
approximately two times the square of the voltage unbalance. These higher
temperatures soon result in degradation of the motor insulation and reduce
motor life. This additional rotor heat can exist for a considerable time

period and since the rotor and shaft are a continuous metallic structure, the
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heat transfer to the shaft ends can leads to the bearing failure.

3.2.3 Single-Phasing

Single phasing can occur as a result of a fuse blowing or a protection
device opening on any one phase of the motor. Other possibilities include
feeder or step down transformer fuses blowing [62]. The loss of one phase
or leg of a 3-phase line causes serious problems for induction motor. If
single phasing occurs when the motor is rotating, the torque produced by
the remaining two positive rotating fields continues to rotate the motor and
develop the torque demanded by the load. The negatively rotating field i.e.
the field associated with the lost phase produces currents in the inductive
loads resulting in voltages at the faulted leg of the 3-phase supply. These
voltages may be nearly equal to the phase voltage that was lost.
Three-phase motor may continue to run, but they are not capable of starting
on single-phasing. Even though the motor will continue to operate in this
condition, the motor will heat up quickly and hence, it is essential that the
motor be removed from service. Though the overload devices on the
energized phases isolate the motor, the motor is not isolated from the lost
phase; subsequent attempt to restart the motor on that single-phasing
supply will cause the motor to draw locked rotor current. The effects of
single phasing are similar to the unbalanced voltages, since the single
phasing represents the worst case of an unbalanced voltage condition. An
additional effect is the remaining phase windings experience excessive

overheating, thereby creating a greater potential for stator winding failure.
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3.2.4 Under Voltage

Under voltage protection for induction motor is provided for both sustained
and transitory under voltages. With three phase motors, the under voltages
are assumed to be the balanced type. An example of sustained under voltage
1s bus voltage that remains approximately 10% below nominal rating. The
reduction in supply voltage for constant torque load lowers the motor speed
because it is directly proportional to the square of the voltage drop. Thus
the operating slip would increase and rotor power factor would be reduced.
Hence the current supply to the motor is increased drastically. This suggests

that low voltage is serious enough to warrant protection in certain cases.

3.3 Wavelet Transform

A wavelet is a wave-like oscillation with an amplitude that starts out at
zero, increases and then decreases back to zero. Unlike the sines used in
Fourier transform for decomposition of a signal, wavelets are generally
much more concentrated in time [67]. Wavelet Transform was introduced
at the beginning of the 1980s and has attracted much interest in the fields of
speech and image processing since then [35]. Its potential applications to
power industry have been discussed in the recent literature [68], [69], [70].
A brief introduction to the WT and its Multi-Resolution Analysis (MRA) is
given here. They usually provide an analysis of the signal which is
localized in both time and frequency whereas Fourier transform is
localized only in frequency. Jean Morlet in 1982, introduced the idea of the
wavelet transform and provided a new mathematical tool for seismic wave

analysis. Morlet first considered wavelets as a family of functions
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constructed from translations and dilations of a single function called the

“mother wavelet” W(r). They are defined by

1 -b
W, (1) = —‘P(t7> 3.1)

Va
where a, b € R, a#0. The parameter ’a’ is the scaling parameter or scale and
it measures the degree of compression. The parameter ’b’ is the translation
parameter which determines the time location of the wavelet. If ||a|| < 1
the wavelet is the compressed version (smaller support in time- domain)
of the mother wavelet and corresponds mainly to higher frequencies. On
the other hand, when |la|| > 1, then ¥, ,(¢) has a larger time-width than
Y(7) and corresponds to lower frequencies. Thus, wavelets have time-widths
adapted to their frequencies. This is the main reason for the success of the
Morlet wavelets in signal processing and time-frequency signal analysis.
The Continuous Wavelet Transform is defined as the sum over all time of

the signal multiplied by scaled, shifted versions of the wavelet function:

CWT(a,b) = f SO, (t)dt (3.2)

In practice, the transform which is used is the discrete wavelet transform
which transforms discrete (digital) signals to discrete coeflicients in the
wavelet domain. This transform is essentially a sampled version of CWT.
Instead of working with a, b € R, the values of CWT(a,b) are calculated
over a discrete grid: a = 2/ ; b = K ], k € Z where this type of

discretization is called dyadic dilation and dyadic position.



3.3 Wavelet Transform 48

3.3.1 Discrete Wavelet Transform (DWT)

Wavelet calculations are based on two fundamental equations: the scaling

function ¢(¢) and the wavelet function Y (7).

@lt) = V2 ) h(mg(21 = ) (3.3)
w(t) = V2 ) g(myp(2t —n) (3.4)
where g(n) = (—1)"h(1 — n). These functions are two-scale difference

equations based on a chosen scaling function (mother wavelet), with

properties that satisfy the following conditions.

N
Z h(n) = V2 (3.5)
n=1

N
Z hhQn+1) =1ifl =0 (3.6)
n=1

=0ifl #0

The discrete sequences h(n) and g(n) represent discrete filters that solve
each equation, where g(n) = (—1)"A(N — n + 1). The scaling and wavelet
functions are the prototype of a class of orthonormal basis functions of the

form

Oma(t) =220(2"t = 1); mneZ (3.7)

Uma(t) = 2292t = 1); mneZ (3.8)

Where, the parameter 'm’ controls the dilation or compression of the
function in time scale and amplitude. The parameter 'n’ controls the
translation of the function in time and Z is the set of integers. The DWT is

implemented by sending a signal successively through a low pass and high
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Level 3 Coefficients

Level 2 Coefficients

X(n)

Level 1 Coefficients

Figure 3.1: Three level decomposed discrete wavelet transform

pass filters to produce the approximation and detailed coefficients

respectively. This can be described as follows.
ar(n) = g(n) = x(n) = ) g()x(2n — k) (3.9)

di(n) = h(n) * x(n) = Z h(k)x(2n — k) (3.10)

where a;(n) and d;(n) are the approximation and detailed coefficients at first
level of decomposition. The lengths of a;(n) and d;(n) is N/2 where N is the
length of the signal x(n). A 3-level multi-resolution DWT decomposition

has been illustrated in Fig.3.1.

3.3.2 Stationary Wavelet Transform (SWT)

A threshold is used in wavelet domain to smooth out or to eliminate some
coeflicients of wavelet transform of the measured signal. The noise content
of the signal is reduced effectively under the non-stationary environment,
but the results obtained from it are not optimal mainly because of the loss of
the invariant translation property [71]. To overcome this deficiency of DWT,

SWT can be used. The SWT is similar to the DWT where the high-pass and
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low-pass filters are applied to the input signal at each level, in which the
downsampling stage at each scale is replaced by an upsample of the filter

before the convolution, as illustrated in Fig.3.2.

LY Y™

» 2(n) ;
> 22(n) » hy(n)
f » g1(n) E ; » hy(n) E Leve13 Coefﬁcient;
X(n) » hi(n) E Level 2 Coefﬁcient;
Level 1 Coefﬁcient;
g(n) {2 > gini(n)
hy(n) (12 > h;.1(n)

Figure 3.2: Three level decomposed stationary wavelet transform

Suppose we are given a signal x(n) of length N where N =27 for some
integer J. Let h(n) and g(n) be the impulse responses of the low-pass filter
and the high-pass filter. The impulse responses are chosen such that the
outputs of the filters are orthogonal to each other. At the first level of SWT,
the input signal x(n) is convolved with g;(n) to obtain the approximation

coeflicients /(n) and with g(n) to obtain the detailed coeflicients d;(n), i.e
ai(n) = gi1(n) = x(n) = Zgl(n—k)X(k) (3.11)
di(n) = hi(n) * x(n) = Z hi(n — k)x(k) (3.12)

ai(n) and d;(n) are of length N instead of N/2 as in the DWT case because

no sub-sampling is performed,. At the next level of the SWT, a;(n) is used
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to generate a,(n) and d,(n) with modified filter 4,(n) and g,(n), which are

obtained by up sampling /;(n) and g;(n), respectively.
ax(n) = hy(n) * x(n) = Z hao(n — k)a, (k) (3.13)

dr(n) = g2(n) * x(n) = Z g2(n — k)a, (k) (3.14)

This process is continued recursively. The output of the SWT is then the
detail coefficients d;(n), d>(n),....,djo(n) and the approximation coeflicients
ay,(n) where Jy < J. Compare with the traditional WT, the SWT has several
advantages. First, each sub-band has the same size, so it is easier to get the
relationship among the sub-bands. Second, the resolution can be retained
since the original data is not decimated. Also at the same time the wavelet
coefficients contain many redundant information which helps to distinguish

the noise from feature.

3.4 Proposed Fault Detection Scheme using DWT

A 3-phase, 5-hp, 415 V, 4 pole Induction Motor with 36 slots, 6 coils per
phase and 54 turns per coil is considered for the present study. In this thesis
diagnosis of various faults such as single phasing, under voltage, unbalanced
supply, stator inter-turn fault, stator line to ground fault, stator line to line
fault and sudden electrical load change are discussed. To identify the best
mother wavelet, various types of wavelets have been tested using MRA of
three-phase currents. Biorthogonal 5.5 (Bior5.5) is found to be the most
suitable mother wavelet for the proposed scheme. The three-phase currents
of the motor are sampled at 6 kHz and decomposed with Bior5.5 to obtain

detailed level coefficients over a moving window of a chosen sample length.
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v
Update moving
window of stator
currents (Ia, Ib & Ic)

A Decompose the signals through
DWT upto fourth level by using
Bior 5.5 mother wavelet

Calculate the Fault Index
Fault Index=Max{absolute value of peak
d1 coefficients of three phase currents}

Is
Fault index>=Threshold

YES

A

-( Healthy ’

Fault is detected

Figure 3.3: Flow chart for proposed fault detection method using DWT

The absolute value of peak d1 coefficients are obtained for all the phase
currents. The maximum value of these absolute peak values is defined as
fault index (/5) and this is compared with fixed threshold value to detect the

fault. Figure 3.3 illustrates the proposed detection algorithm using DWT.

3.4.1 Validation of Proposed Fault Detection Scheme using DWT

Initially, the proposed algorithm is tested with various faults data obtained
from the simulated models which are created in MATLAB/Simulink
environment. The variations in captured three-phase currents of normal
and stator inter-turn fault are shown in figures 3.4 and 3.5 respectively. By
looking these waveform, nothing is detected as a short circuit between the
turns in a stator winding causes a small degree of unbalance in stator
current. These unbalances cannot be seen directly from the three-phase

stator currents if the level of turn short circuit is too small i.e. 1 or 2 turns.
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Figure 3.4: Three-phase current signals for healthy condition of a 5-hp induction motor
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Figure 3.5: Three-phase current signals for 2-turn short circuit in R-phase of a 5-hp

induction motor

0.008

0.004 - —R-phase

0.000
-0.004 -

d1 Coefficients

-0.008

0 10 20 30 40 50 60 70 80 90 100
Time in msec
0.008

0.004 - Y-phase

0.000 -+

d1 Coefficients

-0.004 -
-0.008

0 10 20 30 40 50 60 70 8 90 100
Time in msec

0.008
0.004 -
0.000
-0.004
S _0.008 : : : : : :
0 10 20 30 40 50 60 70 80 90 100

Time in msec

Coefficients

Figure 3.6: Variation in d1 coefficients for healthy condition



3.4 Proposed Fault Detection Scheme using DWT 54

0.008

0.004 —R-phase

0.000 |

-0.004

d1 Coefficients

‘0-008 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Time in msec

0.008

0.004 Y-phase

0.000 -
-0.004 -

d1 Coefficients

-0.008

0 10 20 30 40 50 60 70 8 90 100
Time in msec

0.008
0.004 -
0.000
-0.004 -
-0.008 T T T T T T T

0 10 20 30 40 50 60 70 8 9 100
Time in msec

—B-phase

=

Coefficients

d1

Figure 3.7: Variation in d1 coefficients for a 2-turn short circuit in R-phase

Thus, frequency domain analysis is needed for analysing the signal but this
can not give the fault instant. Hence, a time-frequency domain analysis of
Bior5.5 mother wavelet is used to analyse the three-phase current signals.
The corresponding variation in detail level coefficients are demonstrated in
figures 3.6 and 3.7. From these figures, it is cleared that the high frequency
component is exist in case of fault only.

The maximum absolute peak values of three-phase detail level

0.1
z —Fault index
T 0014 —Threshold
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Figure 3.8: Variation in fault index for healthy condition
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Figure 3.9: Variation in fault index for a 2-turn short circuit at 0 degree inception
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Figure 3.10: Variation in fault index for an inter turn fault on coil-1
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Figure 3.11: Three-phase current signals for a LG fault in R-phase of a 5-hp induction

motor

coefficients is set as a fault index which is compared with fixed threshold to
detect the fault and its instant. Figures 3.8 and 3.9 demonstrate the
variations in fault index w.r.t the defined threshold of healthy and 2-turn
fault cases. These results predicted that the fault index crosses the
threshold when the fault occurs. But the fault index depends on fault
incidence angles. Hence, to check the reliability of the proposed algorithm,
vary the fault instant from 0 — 180° insteps of 45°. Figure 3.10 shows the
variation in fault indices w.r.t incidence angle for stator inter-turn fault in
R-phase of coil-1. The results demonstrate that the fault index is above the
threshold if machine is under fault condition other wise it is below the
threshold.

The variations in three-phase currents of other considered cases of stator
line to ground fault, stator line-line fault, single phasing, under voltage and
supply unbalance are shown in figures 3.11, 3.12, 3.13, 3.14 and 3.15
respectively. The figures 3.11 to 3.15 are demonstrates that the current
drawn by the machine increases when the fault occurs. Figures 3.16,
3.17, 3.18, 3.19 and 3.20 illustrate the variation in dl coefficients for

various cases such as stator line to ground fault, stator line-line fault, single
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Figure 3.12: Three-phase current signals for a LL fault between R and Y phases of a 5-hp

induction motor
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Figure 3.13: Three-phase current signals for a single phasing in R phase of a 5-hp

induction motor
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Figure 3.14: Three-phase current signals for a 30% under voltage of a 5-hp induction

motor
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Figure 3.15: Three-phase current signals for a 10% supply unbalance in R phase of a 5-hp

induction motor

phasing, under voltage and supply unbalance respectively. From these
figures, it is cleared that the magnitude of high frequency component is
more in fault effected phase. Figure 3.21 shows the variation of fault
indices w.r.t incidence angles of the considered cases. From this figure, it is
proved that the fault index is above the threshold for any type of fault
happened on a 3-phase Induction motor. Hence, the proposed method is

effective in detecting the fault and its instant.
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Figure 3.21: Variation in fault index for various faults
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Figure 3.20: Variation in d1 coefficients for 10% supply unbalance

To check the reliability and practicality of the proposed detection
algorithm, a 10 dB of Gaussian noise is added to each phase. Figures 3.22
and 3.23 demonstrate the three-phase currents and detail level coeflicients
for a 2-turn fault in R-phase of a 5-hp induction motor under noise

condition. The variations in fault indices are shown in figure 3.24. The
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Figure 3.23: Variation in d1 coefficients for a 2-turn fault in R-phase

variation of fault indices in figure 3.24 are above threshold through out
window but fault is created at an instant of 66.67 msec. Hence, the

proposed fault detection algorithm is fail to work under noisy environment.
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Figure 3.22: Three-phase current signals for 2-turn fault in R-phase of a 5-hp induction

motor
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Figure 3.24: Variation in fault index for a 2-turn fault at Odegree inception

3.5 Proposed Fault Detection Scheme using SWT and
DWT

In signal processing based techniques the fault detection takes place based
on a threshold logic, which is used to distinguish the fault condition from
normal condition. The fault signature in stator inter-turn short circuit is
much smaller due to noise level and supply unbalance conditions, thus the
fault detection using fixed threshold in both the cases are error prone.
Hence, an adaptive threshold based fault detection algorithm is essential
for fault diagnosis in a 3-phase induction motor. In wavelet de-noising
techniques, the threshold selection is very important. Donoho and
Johnstone [72] have introduced various threshold schemes and discussed
both hard and soft thresholds in a general context. Among these threshold
selection rule, universal threshold (fixed threshold) selection rule is the
most widely used rule. However, in practical applications the variance of
the noise signal changes time to time. Thus, the threshold should be
selected based on an interval or level. Hence, a level-based threshold has

been selected for the proposed algorithm. The selection of mother wavelet
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Figure 3.26: Variation in SNR for DWT of different mother wavelets

mainly depends on the type of application. In the proposed technique,
Bior5.5 wavelet has been used as the wavelet basis function for fault
detection and identification. Initially, the captured signal is reconstructed
by using DWT with different mother wavelet. The performance of signal
denoising based on wavelet has been addressed in [73], [74]. Figures 3.25
and 3.26 represent the variation in Mean Square Error (MSE) values and

Signal to Noise Ratio (SNR) values. From the results, it is observed that



3.5 Proposed Fault Detection Scheme using SWT and DWT 65

the best performance by using biorthogonal family of mother wavelet.
Later, the performance of signal denoising is checked with SWT and DWT
for different wavelets of biorthogonal family and calculating MSE and
SNR between the reference signal and reconstructed signal of stator current
in phase R. Figure 3.27 shows the MSE and SNR of SWT and DWT for
different wavelets of bi-orthogonal family. Results are clearly
demonstrated that SWT is far better than DWT in the application of noise
elimination or signal reconstruction and also highlighted that Bior5.5

mother wavelet have less MSE compared to others.
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Figure 3.27: Comparison of DWT and SWT

Figure 3.28 shows the flowchart for the proposed fault detection
technique using SWT and DWT. In this scheme, the level based threshold
reconstruction is used to eliminate the effects due to supply unbalance and
machine unbalance. The reconstructed three phase current signals are
obtained by using stationary wavelet denoising technique with level based
threshold. The three-phase currents of the motor are decomposed with
SWT of Bior5.5 to obtain approximate and detail level coefficients up to 6™

level. The thresholds of dl coefficients to d4 coefficients are made
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Figure 3.28: Flow chart for proposed SWT and DWT based fault detection scheme

maximum while threshold value of d5 coefficients is set to a high value as
this band of frequency components is sensitive to the supply unbalances.
The threshold value of d6 is calculated based on its peak value in the 1*
cycle and multiplied with a distortion factor which is calculated from RMS
value of the current signal during start-up (preferably in the 1* cycle). The
threshold value of d6 coefficient may enhance the fault signature because
the pre-fault value is subtracted from the captured signal. Therefore, the
reconstructed signals are called as fault residues. This type of
reconstruction is essential especially if fault feature is very close to the
noise level.

A short circuit between the turns in a stator winding causes an
unbalance in stator currents. These unbalances cannot be seen directly

from the three-phase stator currents if the level of turn short circuit is too
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Figure 3.29: Three-phase current signals for 2-turn fault in R-phase of a 3-hp induction

motor under experimental case
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Figure 3.30: Three-phase current signals for 2-turn fault in R-phase of a 3-hp induction

motor under simulation

small i.e. 1 or 2 turns. Figures 3.29 and 3.30 illustrate the three-phase
stator currents for 2-turn short circuit in R-phase of a 3-hp induction motor
under experimental and simulation cases respectively. From these figures,
the unbalance due to stator inter-turn short circuit is not predictable by
visual observation due to the noise and supply or machine unbalances.
Hence, an efficient pre-processing method is required for extracting the
fault residues and instant of fault even though the motor is operated under
noisy environment. In this regard, time-frequency domain analysis of SWT
1s considered and carried out in MATLAB/Simulink environment for

predicting the fault residues. Figures 3.31 and 3.32 show the three-phase
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Figure 3.31: Three-phase residues for 2-turn fault in R-phase of a 3-hp induction motor

based on minimax method under experimental case
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Figure 3.32: Three-phase residues for 2-turn fault in R-phase of a 3-hp induction motor

based on proposed method under experimental case
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Figure 3.33: Three-phase residues for 2-turn fault in R-phase of a 3-hp induction motor

based on minimax method under simulation
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Figure 3.34: Three-phase residues for 2-turn fault in R-phase of a 3-hp induction motor

based on proposed method under simulation

residues based on minimax method and proposed threshold based method
(mentioned in above section) for 2-turn short circuit in R-phase under
experimental case. Similarly, Figures 3.33 and 3.34 show the simulation
cases of three-phase residues based on minimax method and proposed
method respectively. From the waveforms, the identification of the fault
instant is not possible. Hence, once again the reconstructed signals are
decomposed by using DWT of Bior5.5 mother wavelet. To extract the fault
features, the three-phase residues are decomposed up to 47 level.
Figures 3.35 and 3.36 demonstrate the experimental cases of detail
coeflicients of residues based on minimax method and proposed method
respectively. Similarly, Figures 3.37 and 3.38 show the simulation cases of
detail coefficients of residues based on minimax method and proposed
method. The variation in detail level coefficients in Figures 3.36 and 3.38
have clearly demonstrated that the proposed wave reconstruction and
decomposition is superior than the existing method to extract the fault
features and its instant. The variation in three-phase detail level coefficients

exists throughout the interval if decomposed signal is reconstructed with
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Figure 3.35: Variation in d1 coefficients for 2-turn fault in R-phase of a 3-hp induction

motor based on minimax method under experimental case

minimax method. Hence, fault feature extraction and instant of fault
identification are not possible by using minimax method.

In this, the instant of fault disturbance is estimated accurately by
calculating the ratio between the difference in sample values of the d1
coefficients of three phase residues over a moving window of 3 samples
and difference in sample intervals. In discrete signal the ratio between the
difference in sample values and difference in sample intervals is called as a
slope. The slopes of each phase d1 coefficients are calculated for
identifying the variation levels due to disturbances. A fault is detected by
comparing the fault index with adaptive threshold. The fault index /; and

Adaptive Threshold T'h are calculated using the following equations.

I¢(n) = |slope_dlIr(n)| + |slope_d1ly(n)|

+ |slope_d11g(n)| (3.15)
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motor based on minimax method under simulation
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Figure 3.38: Variation in d1 coefficients for 2-turn fault in R-phase of a 3-hp induction

motor based on proposed method under simulation

where n = 1 : Ny; N; is the total number of samples in captured window (1
Sec); slope_dllg, slope dlly, and slope_dllg are the slopes of dl

coefficients of residue currents in R, Y and B phases respectively.

Th = max(Fault index in 1% cycle) * (3.16)

K * max(Current in 1* cycle) = factor

where K is the rise factor and

factor = 2if Ratio <3
Significand value of max(/y) in a captured window

Largest integer less than the significand value
if Ratio > 3

Maximum I in a captured window

where Ratio = - -
Maximum Iy in 1% cycle
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3.5.1 Validation of Proposed Detection Scheme

3.5.1.1 Experimental Setup

An experimental setup was prepared with a 3-phase, 3-hp, 4 pole, 50 Hz,
415 V induction motor with 36 slots, 6 coils per phase and 72 turns per
coil. In order to create the inter-turn short circuit, two tapping points were
taken out per phase from the neutral of the stator winding. Each tapping is
having a resistance of 0.8 ohms. The stator inter-turn faults are created
experimentally by connecting a suitable resistance between tapping point
and ungrounded neutral [6]-[7]. If the fault is a turn-turn or turn to ground
then suitable resistance is connected between tapping point of one phase to
another or phase to ground. Another rating of 10-hp induction motor is
also considered for creating various stator faults for a level of 2 turns to 8
turns in steps of 2 turns without connecting any resistance between tapping
point and neutral of the stator winding because in this case tapping points
are directly taken to the level of 2 turns. Totally 6 types of disturbances are
created in these machines. Figures 3.39 and 3.40 show the experimental
setup for creating various disturbances on a 3-hp and 10-hp induction
motors respectively. In the proposed method, three-phase stator currents
were captured in 1 Sec with a sampling frequency of 6.6 kHz by using
UNIPOWER DIP 8000 network analyzer. To acquire the signals the

network analyzer is connected to a personal computer.

3.5.1.2 Simulation Models for Stator Faults

To create the stator faults, a 3-hp induction motor with a star connected

stator winding is considered and various abnormalities are simulated in
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Figure 3.39: Experimental setup for 3-hp induction motor

Figure 3.40: Experimental setup for 10-hp induction motor
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Figure 3.41: Simulation diagram for stator inter-turn fault in R-phase

MATLAB/Simulink environment. The stator winding corresponding to the
phase in which the fault is created is divided into two parts. An additional
branch is connected in parallel to the rotor resistance to simulate the
disturbance component due to stator inter-turn fault. The fault is created by
closing three switches as shown in Figure 3.41 and it illustrates the stator
inter-turn fault in R-phase of a 3-phase induction motor. In this figure Part
I refers to a healthy portion of the winding and Part 2 refers the shortened
turns of the winding. The resistance, inductance, and insulation
capacitance are divided in proportion to the number of short-circuited
turns. The various percentages of turn level short circuits in different
phases have been simulated in the MATLAB/Simulink environment. In
case of stator turn-turn faults, the switches S1 and S2 are connected

between phases and if it is a stator turn to ground fault the switches S1 and
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S2 are connected between phase and ground. To bring the simulation
model more close to practical scenarios Gaussian noise is injected in each
phase. The noise level to be injected is calculated from the captured
three-phase stator currents in the experimental setup. Totally 9 types of
stator faults are considered for simulation such as stator inter-turn fault in
R phase, Y phase, B phase, stator phase-phase fault between RY phases,
YB phases, BR phases and stator phase-ground fault in R phase, Y phase,
B phase. Figures 3.42 and 3.43 show the circuit diagram for stator
phase-phase fault and stator phase-ground fault respectively.

To validate the proposed detection criteria, a 3-hp induction motor is
considered and various abnormalities are simulated in MATLAB/Simulink
environment. The same abnormalities are created on a 3-hp induction
motor using experimental setup also. Especially, stator inter-turn are
created under certain loaded conditions such as 0%, 50% and 100%. Stator
inter-turn faults are also created experimentally on no-load condition with
minor supply unbalances like 1%, 2%, and 3%. In case of simulation that

is extended up to 5% due to numerous data required for classification.

3.5.1.3 Experimental and Simulation Results for a 3-hp Induction Motor

The variation in captured three-phase currents, three-phase residues and
fault indices along with its count values for healthy case under simulation
are shown in figures 3.44, 3.45 and 3.46. Similarly, figures 3.47, 3.48 and
3.49 represent the variation in three-phase currents, three-phase residues
and fault indices along with its count values for healthy with 2% supply
unbalance case under simulation. Figures 3.50, 3.51 and 3.52 show the

variation in three-phase currents, three-phase residues and fault indices
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along with its count values for healthy case under experimental setup.
Similarly, figures3.53, 3.54 and 3.55 represent the variation in three-phase
currents, three-phase residues and fault indices along with its count values
for healthy with 2% supply unbalance case under experimental setup. The
results illustrated that all the cases of fault indices are below the adaptive
threshold because the motor is operated under healthy condition.
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Figure 3.44: Three-phase currents under healthy condition of a 3-hp induction motor

under simulation case
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Figure 3.45: Three-phase residue currents under healthy condition of a 3-hp induction

motor under simulation case
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Figure 3.48: Three-phase residue currents under healthy condition with 2% supply

unbalance of a 3-hp induction motor under simulation case
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a 3-hp induction motor under simulation case
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Figure 3.50: Three-phase currents under healthy condition of a 3-hp induction motor

under experimental case
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motor under experimental case
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Figure 3.56: Three-phase currents for 8-turn short circuit in R-phase of a 3-hp IM under

simulation
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Figure 3.55: Variation in fault index under healthy condition with 2% supply unbalance of

a 3-hp induction motor under experimental case

The variation in three-phase currents, three-phase residues and fault
indices along with its count values of 8-turn short circuit case under
simulation are shown in figures 3.56, 3.57 and 3.58. Similarly, figures 3.59,
3.60 and 3.61 show the 8-turn short circuit with 2% supply unbalance case
under simulation. Figures 3.68, 3.69 and 3.70show the variations in
three-phase currents, three-phase residues and fault indices along with its
count values of 8-turn short circuit case under experimental setup.
Similarly, figures 3.71, 3.72 and 3.73 illustrate the variations in three-phase
currents, three-phase residues and fault indices along with its count values
of 8-turn fault with 2% supply unbalance cases under experimental setup.

Both the results of simulation and experimental case values of fault indices
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Figure 3.58: Variation in fault index for 8-turn short circuit in R-phase of a 3-hp IM under

simulation
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Figure 3.59: Three-phase currents for for 8-turn short circuit in R-phase with 2% supply

unbalance of a 3-hp IM under simulation
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Figure 3.60: Three-phase residue currents for 8-turn short circuit in R-phase with 2%

Fault Index

supply unbalance of a 3-hp IM under simulation
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Figure 3.61: Variation in fault index for 8-turn short circuit in R-phase with 2% supply

unbalance of a 3-hp IM under simulation
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of 8-turn short circuit 8-turn short circuit with 2% supply unbalance
crosses the adaptive threshold and count values are also more than 6.
Hence, faults are detected even under the presence of supply unbalances
also. Similarly, the proposed method is verified with 6-turn, 4-turn and
2-turn of both experimental and simulation cases. The verification of

proposed method is extended with supply unbalances and load conditions.
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Figure 3.62: Three-phase currents for 8-turn short circuit in R-phase of a 3-hp induction

motor under experimental case
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Figure 3.63: Three-phase residue currents for 8-turn short circuit in R-phase of a 3-hp

induction motor under experimental case
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Figure 3.64: Variation in fault index for 8-turn short circuit in R-phase of a 3-hp induction

motor under experimental case
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Figure 3.65: Three-phase currents for 8-turn short circuit in R-phase with 2% supply

unbalance of a 3-hp induction motor under experimental case
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Figure 3.66: Three-phase residue currents for 8-turn short circuit in R-phase with 2%

supply unbalance of a 3-hp induction motor under experimental case
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Figure 3.67: Variation in fault index for 8-turn short circuit in R-phase with 2% supply

unbalance of a 3-hp induction motor under experimental case

The other cases of stator winding faults such as phase to ground and
phase to phase faults are also considered for verifying the proposed
method. The variation in captured three-phase currents, three-phase
residues and fault indices and count values of stator phase faults (LG and
LL) of simulation cases are shown in figures 3.74, 3.75, 3.76, 3.77, 3.78
and 3.79. Similarly, Figures 3.80, 3.81, 3.82, 3.83, 3.84 and 3.85 show the
variation in three-phase currents, three-phase residues and fault indices and
its count values of stator phase faults of experimental cases. The results
proved that the proposed detection scheme is efficient for detecting the
stator winding faults. Because all the discussed cases of simulation and
experimental fault indices crosses the adaptive threshold and its count

value is greater than 6 when the fault exists.
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Figure 3.68: Three-phase currents for LG fault in R-phase of a 3-hp IM under simulation
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Figure 3.69: Three-phase residue currents for LG fault in R-phase of a 3-hp IM under

simulation
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Figure 3.70: Variation in fault index for LG fault in R-phase of a 3-hp IM under simulation
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under simulation
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Figure 3.72: Three-phase residue currents for LL fault between R and Y phases of a 3-hp

IM under simulation
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Figure 3.73: Variation in fault index for LL fault between R and Y phases of a 3-hp IM

under simulation
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Figure 3.74: Three-phase currents for LG fault in R-phase of a 3-hp IM under

experimental case
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Figure 3.75: Three-phase residue currents for LG fault in R-phase of a 3-hp IM under

Fault Index

Figure 3.77: Three-phase currents for LL fault between R and Y phases of a 3-hp IM
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Figure 3.76: Variation in fault index for LG fault in R-phase of a 3-hp IM under
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Figure 3.78: Three-phase residue currents for LL fault between R and Y phases of a 3-hp

IM under experimental case
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Figure 3.79: variation in fault index for LL fault between R and Y phases of a 3-hp IM

under experimental case

3.5.1.4 Comparison between Experimental and Simulation Results for a 3-hp

Induction Motor

To validate the proposed detection algorithm, a comparison is made between

the Relative Value of Maximum Fault Index RMFI and Relative Value of

Adaptive Threshold RAT for various fault cases of practical and simulated

studies. The RMFI and RAT are mathematically expressed using eq.3.17

and eq.3.18 respectively. The detection criteria for both experimental and

simulation cases of different levels of stator inter-turn short circuits under

balanced supply, 2% of supply unbalance and 50% of load condition are

illustrated in Table 3.1. Table 3.2 shows the detection criteria for various
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abnormal conditions other than stator inter-turn faults of

Table 3.1: Comparison of fault detection criteria for various practical and simulation cases

of stator inter-turn faults

Cases Practical Simulation
RMFI RAT RMFI RAT
2-turn fault 3433 135 2320 1.17
2-turn fault with 2% supply unbalance 19.59 0.84 10.33  0.72
4-turn fault 78.50 4.66 6630 3.28
4-turn fault with 2% supply unbalance  69.67 3.18 61.09 3.68
6-turn fault 133.82 431 12439 3.45
6-turn fault with 2% supply unbalance 121.13 7.59 114.86 4.12
8-turn fault 159.62 3.25 145.87 3.52

8-turn fault with 2% supply unbalance 170.34 4.11 127.25 4.11
2-turn fault in R-phase with 50% load  31.09 9.03 34.09 3.96
4-turn fault in R-phase with 50% load  99.45 635 81.17 3.57
6-turn fault in R-phase with 50% load  74.25 8.34 7536 3.29
8-turn fault in R-phase with 50% load 126.07 2.75 189.12 2.69

both experimental and simulation cases. Table 3.1 and 3.2 depict the
effectiveness of the proposed algorithm for various cases under practical
and simulation studies. From Table 3.1, even for small fault i.e 2-turn short
circuit the RMFI in practical case is in good agreement with that of
simulation case. The difference between the values of practical and
simulation case is mainly due to considered constant noise variance in

simulation which is not true in actual practice.

Maximum value of Iy under fault condition

RMFI = (3.17)

Maximum value of Iy under healthy condition
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Th under fault condition

RAT =
T h under healthy condition

(3.18)

Table 3.2: Comparison of fault detection criteria for various practical and simulation cases

other than stator inter-turn faults

Cases Practical Simulation

RMFI RAT RMFI RAT

4-turn phase fault between RY phases 206.44 3.01 469.02 2.28
6-turn phase fault between RY phases 379.92 4.69 356.28 0.96
8-turn phase fault between RY phases 269.48 8.20 603.89 5.02

4-turn ground fault in R-phase 74.07 10.8 107.02 4.24
6-turn ground fault in R-phase 143.52 6.83 356.11 5.76
8-turn ground fault in R-phase 169.30 4.68 304.53 4.10
Single phasing in R-phase 812.78 3.66 899.34 3.67
Single phasing in Y-phase 474.06 5.16 624.59 6.48
Single phasing in B-phase 551.00 4.42 573.86 8.67
3% Supply unbalance in R-phase 144.57 5.23 81.74 2.82
3% Supply unbalance in Y-phase 166.19 5.50 84.01 0.35
3% Supply unbalance in B-phase 159.20 431 9330 2.78

3.5.1.5 Experimental Results for a 10-hp Induction Motor

To check the reliability of the proposed detection criteria, another rating of
10-hp induction motor is also considered. Figures 3.80,3.81 3.82, 3.83,
3.84, 3.85, 3.86, 3.87, 3.88 and 3.92 demonstrate currents, residue currents
and fault index under various experimental cases on a 10-hp induction
motor of healthy, 2-turn fault, single phasing, under voltage and supply
unbalance conditions respectively. From these results it is clear that the
proposed algorithm has successfully detected the abnormal conditions of

the motor. Hence, the proposed SWT and DWT based fault detection is
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reliable and effective in detecting the faults because the rating and

operating condition of the machine does not influence the detection criteria.
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Figure 3.80: Three-phase currents for healthy of a 10-hp induction motor
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Figure 3.81: Three-phase residue currents for healthy of a 10-hp induction motor
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Figure 3.82: Variation in fault index for healthy of a 10-hp induction motor
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Figure 3.83: Three-phase currents for 2-turn fault in R-phase of a 10-hp induction motor
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Figure 3.84: Three-phase residue currents for 2-turn fault in R-phase of a 10-hp induction

motor
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Figure 3.85: Variation in fault index for 2-turn fault in R-phase of a 10-hp induction motor
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Figure 3.86: Three-phase currents for single phasing in R-phase of a 10-hp induction

motor
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Figure 3.87: Three-phase residue currents for single phasing in R-phase of a 10-hp

induction motor
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Figure 3.88: Variation in fault index for single phasing in R-phase of a 10-hp induction

motor
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Figure 3.89: Three-phase currents for 2% supply unbalance of 10-hp induction motor
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Figure 3.90: Three-phase residue currents for 2% supply unbalance of a 10-hp induction
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Figure 3.91: Variation in fault index for 2% supply unbalance of a 10-hp induction motor
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Figure 3.92: Three-phase currents for 7% under voltage of a 10-hp induction motor
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Figure 3.93: Three-phase residue currents for 7% under voltage of a 10-hp induction

motor
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Figure 3.94: Variation in fault index for 7% under voltage of a 10-hp induction motor
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3.6 Conclusions

In this chapter, two approaches are proposed for detecting the various stator
and supply side faults using DWT and combination of SWT and DWT. From
the results of simulation and experimental case, the following conclusions
are made.

The proposed fault detection algorithm using DWT has been tested for
various incidence angles. The exhaustive simulation studies proved that the
proposed algorithm is simple and effective in detecting the various faults.
However, it fails to detect the fault under noisy conditions.

Another proposed fault detection method based on SWT and DWT is
developed to overcome the drawback of DWT based method. The
simulation and experimental results demonstrated the efficacy of the
proposed SWT and DWT based fault detection method on a 3-phase

induction motors in presence of noise as well.



Chapter 4

Classification of Various Disturbances of
a 3-Phase Induction Motor Using
Wavelet and Modular Neural Network

4.1 Introduction

Rapid growth in automation increases the dependency on electric machines
as drives and decreases the direct interaction between man and machine.
This necessitates on line condition monitoring of motor to improve its
reliability. The stator winding faults create unbalancing in the line current,
and similar unbalancing is also created due to supply unbalances. However,
the distinction between these two phenomena is highly challenging.
Unbalancing condition in the motor could be due to stator winding
insulation faults or due to sudden electrical load changes or single phasing
or other conditions. Hence, a classifier is needed for segregating the
various unbalances which are caused due to various faults. The detection,
diagnoses and discrimination of stator turn to turn fault and unbalanced

supply voltage fault in a three phase induction motors has been addressed

100
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in [75]. But, it suffers from the drawback of taking so many measurements.
In recent time, the accuracy of the classifier is improved by integrating the
analysing techniques [76], [77]. This chapter proposes a classifier based on
Wavelet and Modular Neural Network (MNN) to classify various faults
such as stator phase-phase faults, stator phase-ground faults, single

phasing, supply unbalance, under voltage and sudden load change.

4.2 Features for Disturbance Classifier

The schematic diagram of the proposed fault detection and classification is
depicted in Figure 4.1. The proposed detection and classification method
starts with data acquisition and then processing of signals to detect and
classify the faults and its severity. In chapter 3, discussion on detection of
fault is presented. The next process is classification and identification. In
all totally three classifiers are considered to classify various disturbances,
stator phase faults and stator inter-turn faults. This approach decreases the
training time as the classifiers related to stator phase faults (ANN-2) and
stator inter-turn faults (ANN-3) needs training only when the disturbance
classifier recognizes the disturbance as related to the stator winding
insulation faults which means that the faults are related to stator phase or

stator inter-turn faults only.
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Figure 4.1: Proposed stator fault detector and classifier

This chapter mainly deals with disturbance classifier and extraction of
features required for them. Stator phase fault and Stator inter-turn fault
classifiers are explained in chapter 5 and chapter 6 respectively. Totally six
types of disturbances are considered for disturbance classifier. To classify
all these disturbances certain features are essential. The proposed classifier
requires only three measurements and nine features. The three phase stator
currents are the three measurements and are sensed for each of the
disturbance and normal cases. These three phase currents are analysed with
wavelet transform to detect the disturbance instant. After detecting the
instant of disturbance, three statistical features of second level approximate
coeflicients of three phase residues are considered over a window of one
cycle from the fault instant which are standard deviation, maximum and
mean values. Totally, there are nine features such as feature 1, feature 2,
feature 3, feature 4, feature 5, feature 6, feature 7, feature 8 feature 9 are
defined as standard deviation of R-phase, standard deviation of Y-phase,
standard deviation of B-phase, maximum value of R-phase, maximum

value of Y-phase, maximum value of B-phase, mean value of R-phase,
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Figure 4.2: Three-phase stator currents of a 3-hp IM with 4-turn short circuit in R-phase

= 1

8 —R-Phase Y-Phase —B-Phase

-’ A A A A A

e R A AARAANA AN A AR A ANAANAANAAWAREA
=

S o AMAANNANANANANANAALAAAASN
e J v v J v T / Y v /
54

S 05 /
S

= -1

5}

=2

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Time in sec

Figure 4.3: Variation in three-phase residues of a 3-hp IM with 4-turn short circuit in

R-phase

mean value of Y-phase and mean value of B-phase respectively. These are
given as inputs to the disturbance classifier for classifying the various
disturbances on a 3-phase induction motor.

The feature extraction method is explained by considering stator
winding faults and supply side faults. Figures 4.2 shows the variation in
captured three-phase currents for 4-turn short circuit in R-phase of a 3-hp
induction motor. To extract the disturbance features, the instant of fault
occurrence and a2 coeflicients of three-phase residues are to be required
which are obtained by using proposed fault detection algorithm and as
discussed in chapter 3. Figures 4.3 and 4.4 demonstrate the obtained

three-phase residues and fault index for 4-turn short circuit in R-phase of a
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Figure 4.4: Variation in fault index of a 3-hp IM with 4-turn short circuit in R-phase
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Figure 4.5: Variation in a2 coefficients of a 3-hp IM with 4-turn short circuit in R-phase

3-hp induction motor. Detection of fault and its instant occurrence is
identified by comparing the fault index with adaptive threshold as
presented in chapter 3. The 2nd level approximate coefficients of
three-phase residues are obtained by decomposing the three-phase residues
with DWT of Bior 5.5 mother wavelet. The variations in second level
approximate coeflicients of three-phase residues for 4-turn short circuit is
shown in figure 4.5. From this figure, estimate the nine features over a
window of one cycle from the fault instant. The estimated values of nine
features corresponding to the 4-turn short circuit in R-phase of a 3-hp
induction motor are 0.359, 0.358, 0.291, 1.24, 1.21, 1, 0.719, 0.709, and
0.57. These self normalized values are as input to the disturbance classifier

which are 0.2904, 0.2895, 0.235, 1, 0.9822, 0.8093, 0.5813, 0.5735 and
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Figure 4.6: Three-phase stator currents of a 3-hp IM with 4-turn to ground fault in R-phase
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Figure 4.7: Variation in three-phase residues of a 3-hp IM with 4-turn to ground fault in

R-phase

0.4610. The variations in three-phase currents, three-phase residues, fault
index and a2 coeflicients for 4-turn to ground fault of a 3-hp induction
motor are illustrated in figures 4.6, 4.7, 4.8 and 4.9 respectively.
Figures 4.10, 4.11, 4.12 and 4.13 are show the variations in three-phase
currents, three-phase residues, fault index and a2 coefficients for 4-turn
short circuit between R and Y phases of a 3-hp induction motor
respectively. Similarly, the variations in three-phase currents, three-phase
residues, fault index and a2 coeflicients for supply unbalance case are
shown in figures 4.14, 4.15, 4.16and 4.17 respectevely. The other two cases
of under voltage and single phasing are demonstrated in figures 4.18, 4.19,

4.20,4.21,4.22,4.23,4.24 and 4.25.
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Figure 4.9: Variation in a2 coefficients of a 3-hp IM with 4-turn to ground fault in R-phase
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Figure 4.10: Three-phase stator currents of a 3-hp IM with 4-turn short circuit between R

and Y phases
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Figure 4.11: Variation in three-phase residues of a 3-hp IM with 4-turn short circuit
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Figure 4.13: Variation in a2 coeflicients of a 3-hp IM with 4-turn short circuit between R

and Y phases
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Figure 4.14: Three-phase stator currents of a 10-hp IM with 3% supply unbalance
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Figure 4.15: Variation in three-phase residues of a 10-hp IM with 3% supply unbalance
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Figure 4.16: Variation in fault index of a 10-hp IM with 3% supply unbalance
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Figure 4.17: Variation in a2 coefficients of a 10-hp IM with 3% supply unbalance
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Figure 4.18: Three-phase stator currents of a 10-hp IM with 10%under voltage
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Figure 4.19: Variation in three-phase residues of a 10-hp IM with 10%under voltage
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Figure 4.20: Variation in fault index of a 10-hp IM with 10%under voltage
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Figure 4.21: Variation in a2 coeflicients of a 10-hp IM with 10%under voltage
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Figure 4.22: Three-phase stator currents of a 10-hp IM with single phasing
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Figure 4.23: Variation in three-phase residues of a 10-hp IM with single phasing

From figures 4.4, 4.8, 4.12, 4.16, 4.20 and 4.24, it is observed that the
instant of fault occurrence can be identified very accurately. The obtained
value of instant of fault occurrence for each case is used to estimate the
statistical features of a2 coeflicients over a window of one cycle from the
fault instant. The self normalized values of the nine features extracted for

the six fault cases are tabulated in Table 4.1.

Apart from these, sudden electrical load change also gives unbalance in
three-phases. Figure 4.26 demonstrate the variation in nine features for
various disturbances like stator inter-turn fault (R, Y and B), stator phase
faults (RG, YG, BG, RY, YB and BR), single phasing (R, Y and B), under
voltage, supply unbalance (R, Y and B) and sudden load change

conditions. The observation made from the figure 4.26 is that the nine
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Figure 4.24: Variation in fault index of a 10-hp IM with single phasing
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Figure 4.25: Variation in a2 coefficients of a 10-hp IM with single phasing

Table 4.1: Normalised features extracted from a2 coefficients

Features 4-turn fault RG fault | RY fault Supply Under | Single
in R-phase unbalance | voltage | phasing
Feature 1 0.29042 0.28991 | 0.29704 | 0.19779 | 0.25593 | 0.08377
Feature 2 0.28953 0.25358 | 0.17895 0.29736 | 0.29394 | 0.27621
Feature 3 0.23497 0.27213 | 0.18128 0.15351 | 0.27781 | 0.26451
Feature 4 1 1 1 0.64192 | 0.91364 | 0.38264
Feature 5 0.98217 0.86667 | 0.61389 1 1 1
Feature 6 0.80928 0.93295 0.614 0.4936 0.92755 | 0.96998
Feature 7 0.5813 0.57377 | 0.60465 0.40914 | 0.50725 | 0.12104
Feature 8 0.57354 0.50517 | 0.33453 0.59954 | 0.46559 | 0.45205
Feature 9 0.46101 0.51915 | 0.36005 0.31002 0.4851 | 0.49681
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Figure 4.26: Variation in nine features for various disturbances

features of one case is different with other cases. The variations in nine
features of different fault level for stator inter-turn faults, stator phase faults
and supply unbalances are shown in figure 4.27. From this figure 4.27, it is
an evidence that the nine features variation in a particular cases are in
similar pattern. Hence, the selected features are insensitive to the operating

conditions.
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Figure 4.27: Variation in nine features for stator faults and supply unbalance

4.3 ANN Structures for Disturbance Classifier (ANN-1)

The schematic diagram for the proposed classifiers of a three-phase
induction motor using Artificial Neural Network (ANN) is shown in
figure 4.28. In this chapter, a multi layer feed forward back propagation

network based classifier (ANN-1) is explained. The remaining two

T
T Stator inter-turn faults Stator Phlase faults Supply u'nbalance
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Figure 4.28: Proposed classifiers for classification of faults on a three-phase induction

motor
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networks are explained in chapter-5 and chapter-6 respectively. The inputs
to the ANN-1 are the statistical features of second level approximate
coefficients of three-phase residue currents of a motor, which are standard
deviation, maximum value and mean value obtained over a window of one
cycle from the fault instant. The output of ANN-1 classifies 6 classes (C1
to C6) of disturbances on three phase induction motor. the six classes of
disturbances are as follows:

C —Single phasing

C, —Supply unbalance

C3; —Under voltage

C4 —Sudden load change

Cs —Stator phase fault

Ce —Stator inter-turn fault

4.3.1 Training and Testing of ANN based Disturbance Classifier

For the simulation of ANN-1 in MATLAB, a tangent sigmoid (tansig) and
log sigmoid (logsig) activation function are used and training goal is set at
107%.  First, the performance of single multilayer NN of ANN-1 is
demonstrated. Various training and testing patterns are generated by using
simulation and experimentation. The break up of experimental and
simulation data sets of training and testing are given in Table 4.2. Totally
1287 patterns are carried out to train and test the ANN-1, out of 1287 sets
858 data sets are utilized for training i.e. two third of the total data sets
remaining are used for testing. The training performance of single
multilayer NN with respect to number of neurons variation in hidden layer

is depicted in Table 4.3. From Table 4.3, it is observed that the training
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accuracy for 12 hidden neurons and 14 hidden neurons are nearly same but
number of epochs or 14 neurons is less than that for 12 neurons. Therefore,

14 hidden neurons are considered in ANNI1.

Table 4.2: Training and testing data for various disturbances

No. of training patterns | No. of testing patterns
Type of fault

Exp Sim Exp Sim
Single Phasing 24 13 12 8
Supply Unbalance 60 54 30 27
Under Voltage 24 23 12 11
Stator Inter-turn fault | 72 444 36 222
Sudden load change 18 - 8 -
Phase Faults 18 108 9 54

216 642 107 322
Total

858 429

Table 4.3: Training performance of single multilayer ANN-1

Number of neurons Learning epochs | Training accuracy
in hidden layer
11 200 96.4%
12 219 97.5%
13 198 97.2%
14 104 97.59%
15 108 97.13%
6 120 97.4%

In any classifier, the performance evaluation requires specific measures
which include accuracy, sensitivity and specificity.  There are four
additional terms should need to know that are the building blocks used in

computing many evaluation measures. These are TP (True positives), TN
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Table 4.4: Testing performance of single multilayer ANN-1

Learning rate | Momentum | Testing accuracy | Training time in sec
0.3 86.95% 19
0.4 90.21% 14

0.67
0.5 88.11% 17
0.6 86.71% 4.07
0.3 86.95% 16
0.4 87.65% 17
0.68
0.5 90.61% 7
0.6 88.11% 7
0.3 86.48% 26
0.4 90.68% 11
0.69
0.5 89.51% 9
0.6 89.74% 9
0.3 85.05% 18
0.4 85.55% 8
0.7
0.5 87.65% 9
0.6 89.04% 16

(True negatives), FP (False positives) and FN (False negatives).

The

confusion matrix is a useful tool for analyzing how well the classifier can

recognize tuples of different classes.
specificity measures can be used,

performance of the classifier. These measures are defined as follows:

P
Accuracy = S ensitivity
P+ N

TP

S ensitivity = 53

TN

S pecificity = 5

respectively,

+ S pecificity

P+ N

The accuracy, sensitivity and

for identifying the

4.1)

4.2)

4.3)
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Table 4.5: Testing performance of multilayer ANN-1

Number of neurons in . . Training time
Learning rate | Momentum | Testing accuracy
hidden layer 1 and 2 in sec
14,10 0.4 92.31% 37
0.69
14,20 0.4 90.68% 54
14,10 0.5 88.81% 30
0.68
14,20 0.5 91.38% 86

The testing performance of ANN-1 is illustrated in Table 4.4 by making

use of different learning rates and different values of momentums. From

Table 6 it 1s observed that for momentum value of 0.69, 0.68 and learning

rate of 0.4, 0.5 give better accuracy compared to remaining all. Similarly,

Table 4.6: Performance of ANN-1 in double multilayer of 14, 20

Type of disturbance | Sensitivity | Specificity Average
C, 0.952 1
C, 0.804 0.989 Sensitivity: 0.786
C; 0.973 0.980
Cy 0.3 0.99 Specificity: 0.977
Cs 0.9 0.986
Cs 0.786 0.977

same data is used to train and test the multilayer neural network with two

hidden layers also, these results are shown in Table 4.5. From the results,

it is proved that the testing accuracy of multilayer neural network is better

compared with single multilayer neural network but the time taken to train

the network is more. The other performance measures are also calculated

using equations 4.1 and 4.2. Table 4.6 shows the performance measures
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of sensitivity and specificity of 14, 20 configuration of double multilayer

neural network with learning rate of 0.5 and momentum value of 0.68.

4.4 MNN Structure for Disturbance Classifier((MNN-1)

Artificial neural networks are broadly classified into monolithic networks
and modular networks. In canonical implementations, most of the systems
employ a monolithic network in order to solve the given task. However,
when a system needs to process large amount of data or when the problem is
highly complex, then it is not trivial, and sometimes unfeasible, to establish
a good architecture and topology for a single network that can solve the

problem.
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Figure 4.29: Proposed MNN-1 for disturbance classifier
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In order to overcome some of the aforementioned shortcomings of
monolithic ANNs, many researchers have proposed modular
approaches [78] [79]. One of the major benefits of a modular neural
network is the ability to reduce a large, unwieldy neural network to
smaller, more manageable components. Other benefits of these networks
are their efficiency, lower training time and robustness. In this connection,
a modular multilayer neural network is implemented to classify various
disturbances (MNN-1) of a three-phase induction motor. It is compared
with artificial neural network (ANN) of a single multilayer neural network
and double multilayer neural network through the simulation and
experimentation. Figure 4.29 shows the MNN architecture for disturbance

classifier.

4.4.1 Training and Testing of MNN based Disturbance Classifier

The implemented modular structure of disturbance classifier is trained and
tested with same data sets to check the performance of the modular neural
network. Six types of disturbances have been considered for classification,
6 modules of NN are required to form a modular neural network one
(MNN-1). Each module of MNN-1 classifier classifies one class. During
training process, features of a particular disturbance signal are applied to
all modules with target as “1” to the corresponding neural module and
target as “0” to the rest of the modules. During testing, outputs of all the
NN modules are compared. The NN modules having largest output will
represent the corresponding disturbance class. The performance of
classifier MNN-1 is shown in Table 4.7. From this table the overall

accuracy of the modular classifier of MNN-1 i1s 94.64% and this



4.5 Comparison of Performance between ANN-1 and MNN-1 120

Table 4.7: Confusion matrix for MNN-1

Ci |G| C3 | Cy| Cs| Co
C;|21]0[0]0[0] 0
C,| 21570 7]0]1 3
C;| 0] 0[22]0]1 0
Cs4| O] 001910 1
Cs| 0202|581
Co| 1 | 4|2 2] 1246

Overall accuracy = 94.64%

performance is achieved within 4 sec. Hence, the results proved that the
performance of MNN-1 is significantly higher (2.4%) as compared to

multilayer neural network classifier of ANN-1.

4.5 Comparison of Performance between ANN-1 and

MNN-1

The testing performance of ANN-1 and MNN-1 are compared based on the
specific measures they are sensitivity and specificity which are defined in
equation 4.1 and 4.2. Table 4.8 demonstrates the values of sensitivity and
specificity for ANN-1 and MNN-1 based classifiers corresponding to 6
types of disturbances. From this table, it is proved that the modular
structure of neural network has more capability to classify the various
disturbances. Hence the modular based classifier is significantly far better

than the multilayer neural network classifier.



4.6 Conclusions 121

Table 4.8: Performance for ANN-1 and MNN-1 in disturbance classification

Type of network || Type of disturbance | Sensitivity | Specificity Average
C, 0.952 0.995
C, 0.804 0.989 Sensitivity: 0.858
ANN-1 C; 0.913 0.980
Cy 0.961 0.942 Specificity: 0.98
Cs 0.6 0.998
Cs 0.921 0.978
Ci 1 0.993
C, 0.893 0.984 Sensitivity: 0.939
MNN-1 C; 0.957 0.995
Cy 0.961 0.971 Specificity:0.987
Cs 0.9 0.99
Co 0.921 0.992

4.6 Conclusions

This chapter presents the underlying procedure for the extraction of nine
features, from the operating conditions of induction motor, for the
classification of faults that the motor is subjected to. Two classifiers, one
based on multi layer neural network (ANN-1) and the other based on
modular neural network (MNN-1) are proposed for classification of faults
on induction motor. The following conclusions are drawn from the results
of ANN-1 and MNN-1 classifiers.

Only three measurements are required to obtain the nine features fed as
input to the proposed classifiers. Double multi layer ANN based disturbance
classifier performed better when compared with single layer ANN based

classifier. The over all accuracy of single multi layer ANN is 90.68% and



4.6 Conclusions 122

double layer ANN performance is improved by 1.63% when compared that
of single layer ANN. But the time taken to achieve this performance is more.
The results revealed that there is an improvement in the accuracy of

MNN-1 by 2.33% when compared with that of ANN-1.



Chapter 5

Classification of Stator Phase Faults

5.1 Introduction

The stator phase faults can be caused by the insulation failure between two
phases or phase to ground of stator windings. These faults causes to lead
the damage of winding or core of the machine. Hence, early detection and
classification of stator phase faults along with faulty phase is essential to
prevent permanent damage to the motor and to reduce motor down time.
This chapter explains the ANN and MNN based classifier for stator phase

faults.

5.2 Extraction of features for phase fault classification

The classification of phase faults also have equal importance as that of
stator incipient faults, if phase faults occur towards the neutral point.
Hence, identification and classification of phase faults are essential, before
they lead to a major fault. Very little effort was made to address the
classification of stator phase faults on a 3-phase Induction motor. In 2006,

M. A. S. K Khan and et al. [56] have addressed the stator phase faults
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Figure 5.1: Three-phase currents for phase to ground fault in Y-phase of a 3-hp induction

motor
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Figure 5.2: Three-phase currents for phase to phase fault between Y and B phases of a

3-hp induction motor

based on DWT. In general, classifier requires certain features which are
insensitive to the operating conditions. Three features extracted from the
slope of detail level coeflicients of three-phase residues are considered for
fault classification. These are the slopes of detail level coeflicients of
absolute peak values of three phase residue currents obtained over a
window of 10 samples from the instant of fault occurrence. Figures 5.1 and
5.2 show the captured three-phase currents of the considered cases of phase
to ground fault in Y-phase and phase to phase fault between Y and B
phases. To identify the instant of fault occurrence is essential for extracting
the features require to classify the phase faults. The SWT and DWT based
fault detection criteria and identification of the instant of fault occurrence is

already explained in chapter 3. With the help of that approach instant of
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Figure 5.5: Variation in slope of detail level coeflicients for phase to ground fault in

Y-phase of a 3-hp induction motor
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Figure 5.6: Variation in slope of detail level coeflicients for phase to phase fault between

Y and B phases of a 3-hp induction motor

fault occurrence is identified for the cases of phase to ground fault in
Y-phase and phase to phase fault between Y and B phases and are
demonstrated in figures 5.3 and 5.4 respectively. After getting the fault
instant, features are calculated from the slope of detail level coefficients
which are illustrated in figures5.5 and 5.6. From these figures, the absolute
peak values of the slope of detail level coeflicients of three-phase residues
for YG fault are 6.19 x 107, 6.74 x 1071° and 3.01 x 107 and YB fault
are 8.43 x 1071°, 442 x 107 and 6.29E x 107 . Figure 5.7 shows the
variation in normalised values of features for YG and YB fault cases. The
results clearly demonstrate that the features of YG fault case is different
from YB fault case. The variation in feature 1, feature 2 and feature 3 with
respective to the various stator phase faults like phase to ground fault in

R-phase, phase to ground fault in Y-phase, phase to ground fault in
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Figure 5.7: Variation in normalised features for YG and YB faults

B-phase, phase-phase fault between R and Y, phase-phase fault between Y
and B and phase-phase fault between B and R are tabulated in Table 5.1.
Interesting patterns that can be observed from the normalized feature
values given in Table 5.1 are: for phase-ground fault two features assume
low value and remaining third feature assumes higher value and for
phase-phase fault two features assume high value and the remaining third
feature assumes low value (quite opposite to the pattern observed for
phase-ground fault). Figure 5.8 shows the variations in feature 1, feature 2
and feature 3 for various levels of stator phase faults such as 2-turn, 4-turn,
6-turn and 8-turn fault cases. The results gives an evidence that the features
corresponding to the faulted phases are higher compared with healthy
phase features. Hence, the selected features are good for segregating the
various stator phase faults irrespective of its operating conditions because

of the self normalization ability of the features.
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Figure 5.8: Variation in normalised features for stator phase faults

Table 5.1: Self normalised features for various stator phase faults

Faulty phase RG fault | YG fault | BG fault | RY fault | YB fault | BR fault
Features R-phase 0.9 0.1 0.1 0.9 0.1 0.9
in Y-phase 0.102 0.9 0.1 0.669 0.9 0.1
simulation | B-phase 0.1 0.101 0.9 0.1 0.898 0.347
Features R-phase 0.9 0.1 0.105 0.9 0.1 0.9
in Y-phase 0.1 0.9 0.1 0.52 0.9 0.1
Experimental | B-phase 0.136 0.137 0.9 0.1 0.821 0.396

5.3 ANN structure for phase fault classifier (ANN-2)

The classifier used for classifying the stator phase faults is named as ANN-2
which is already mentioned in chapter 4. Three detail level coeflicients are
fed as inputs to the ANN-2 when it is activated. The ANN-2 is active if and
only if Cs of ANN-1 is 1. The output of ANN-2 identify 6 classes of phase
faults and these are as follows:

P, —Stator turn-turn fault between RY phases

P, —Stator turn-turn fault between YB phases

P3 —Stator turn-turn fault between BR phases
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Figure 5.9: Proposed ANN-2 for classification of stator phase faults

P4 —Stator turn-ground fault in R phase
Ps —Stator turn-ground fault in Y phase

Pg —Stator turn-ground fault in B phase

5.3.1 Training and Testing of ANN-2

ANN-2 is simulated in MATLAB with an activation functions of a tangent

sigmoid (tansig) and log sigmoid (logsig) and training goal is set at 1075,

Number of training and test patterns used to train and test the classifier

respectively are tabulated in Table 5.2. Out of 201 total patterns, 136

patterns are utilized for training the classifier and the remaining 66 patterns

are used for testing. Approximately two thirds of the data set is used for

training and one thirds of the data set is used for testing. Several multilayer

neural network configurations are tested using MATLAB/Simulink

software. Among all, the best performed configuration of multilayer neural

network of ANN-2 has 3 (input neurons), 5 (hidden neurons), 7 (hidden
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neurons) and 6 (output neurons). Figure 5.9 shows the proposed
architecture for ANN-2. The testing performance of ANN-2 is
demonstrated by using confusion matrix. The confusion matrix for the

classifier is shown in Table 5.3. The overall accuracy is obtained as

89.39%.

Table 5.2: Training and testing data for stator phase faults classification

No. of training patterns | No. of testing patterns
Type of stator phase fault

Exp Sim Exp Sim
Stator turn-ground fault in R phase 6 18 2 9
Stator turn-ground fault in Y phase 6 18 2 9
Stator turn-ground fault in B phase 6 18 2 9
Stator turn-turn fault between RY phase | 2 19 2 9
Stator turn-turn fault between YB phase | 2 19 2 9
Stator turn-turn fault between BR phase | 2 19 2 9

24 111 12 54
Total
135 66

Table 5.3: Confusion matrix for ANN-2

Py | Py, | P3| Py| Ps| Pg
P10 0| 1]0]0|0
P, 011 0] 0]0 |0
P;| 21011 0]0 |0
P,/O|O0O]O0O]10]0|0
Ps| O 2]0]0]8|0
P O 0[O0 2]01]9

Overall accuracy = 89.39%




5.4 MNN structure for phase fault classifier (MNN-2) 131

[Max_slope_d1IRg|
|[Max_slope_d1IRy|

|Max_slope_d1IRg|

Type of stator
phase fault

|[Max_slope_d1IRg|

[Max_slope_d1IRy|

|Max_slope_d1IRg|

Figure 5.10: Proposed MNN-2 for classification of stator phase faults

5.4 MNN structure for phase fault classifier (MINN-2)

In this section, a modular structure of neural networks is implemented to
classify various stator phase faults on a 3-phase Induction motor. Its
performance is compared with that of ANN-2 for both simulation and
experimental data. Figure 5.10 shows the proposed MNN configuration for

stator phase fault classifier(MNN-2).

5.4.1 Training and Testing of MNN-2

To improve the stator phase fault classification performance a modular
structure of neural network (NN) as shown in figure 5.10 is used. Training
and testing data sets that are used for ANN-2, are also used to train and test
the modular neural network respectively. Six modules of NN are required
to form a modular neural network MNN-2. Each module of MNN-2
classifier classifies one class. During training phase, features of a stator

phase fault signal are applied to all modules with target as 1 to the



5.5 Comparison of performance between ANN-2 and MNN-2 for stator phase fault
classification 132

corresponding phase fault neural module and target as O to the rest of the
modules. During testing, outputs of all the NN modules are compared. The
output of MNN-2 is same as the stator phase fault class corresponding to
the NN module with largest output. The performance of MNN-2 classifier

1s shown in Table 5.4.

Table 5.4: Confusion matrix for MNN-2

Py | Py | P3| Py| Ps| Pg

P11, 0[O0 0]0]O0
P, O 110 0] 0] O0
Py OO0 (11 0]0]O0
Py, O 0[]0 10|00
Ps| O 0|0 | 0]10] O
Ps| O O0O]O0]2]09

Overall accuracy = 93.94%

5.5 Comparison of performance between ANN-2 and

MNN-2 for stator phase fault classification

A comparison is made between the performance of ANN-2 and that of
MNN-2 based on the specific measures which are sensitivity and
specificity. The values of sensitivity and specificity for ANN-2 and MNN-2
classifiers corresponding to 6 types of phase faults are tabulated in Table
5.5. The results clearly demonstrate that the modular structure of neural
network has more capability to correctly classify the various stator phase
faults. Hence the modular based classifier is significantly far better than the

multilayer neural network classifier.
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Table 5.5: Comparison of performance between ANN-2 and MNN-2

Type of network | Type of disturbance | Sensitivity | Specificity Average
P, 0.909 0.964
P, 1 0.964 Sensitivity: 0.896
ANN-2 P; 0.846 0.981
Py 1 0.964 Specificity: 0.979
Ps 0.8 1
Ps 0.818 1
P, 1 0.964
P, 1 1 Sensitivity: 0.944
MNN-2 P; 0.846 1
Py 1 0.964 Specificity:0.988
Ps 1 1
Ps 0.818 1

5.6 Conclusions

This chapter presented the procedure for extraction of features and
introduced two classifiers for stator phase fault classification on a 3-phase
Induction motor. The features considered for stator phase fault
classification are insensitive to the operating condition of a 3-phase
Induction motor. Two classifiers based on ANN and MNN respectively are
proposed. The following conclusions are drawn from the results of ANN-2
and MNN-2 classifiers.

The multi layer ANN of stator phase fault classifier attains an accuracy
of 89.39% with minimum number of features. To improve the efficacy of
the classifier a modular concept is introduced. The MNN based classifier

has an edge over ANN based classifier for classifying stator phase faults.
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The results revealed that there is an improvement in classifier accuracy by

4.55% when MNN is used in place of ANN.



Chapter 6

Identification of Faulty Phase and
Estimation of Severity Level for Stator

Inter-Turn Faults

6.1 Introduction

In recent times, the condition monitoring techniques are concentrated not
only on the detection of faults but also on the identification of faulty phase
and severity level of faults. Algorithms for fault detection and disturbance
classification are discussed in chapter 3 and chapter 4 respectively. This
chapter discusses and proposes an identifier based on ANN and MNN to
identify the fault phase and to find severity level of stator inter-turn faults.
Only four features, that are insensitive to the operating conditions, are used

for identification of fault phase and to find severity level of fault.
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6.2 Features used for identification of faulty phase and

estimation of fault severity

Identification of faulty phase and estimation of severity of stator inter-turn
faults are essential for induction motor fault diagnosis. In [77] and [80]
discussion was made about assessment of fault severity based on CWT
technique. But, for both the techniques the number of features required is
more. Hence, an attempt is made to assess fault severity with minimum
number of features which are selected from wavelet analysis and are
insensitive to the operating conditions. Three features are extracted from
the slope of detail level coefficients of three-phase residues and another
feature is extracted from the mean energy values of 4™ level approximate
coefficients of three-phase residues. The first three features are the slope of
detail level coefficients of absolute peak values of three phase residue
currents obtained over a window of 10 samples from the fault instant and
are named as feature 1, feature 2 and feature 3. The other feature is the
ratio of post fault and pre-fault mean energy values of 4™ level
approximate coeflicients and is named as feature 4.

To explain the selection process of the proposed features a 4-turn short
circuit in R-phase is considered. The captured three-phase current signals
of 4-turn short circuit in R-phase of experimental case are shown in
figure 6.1 and their three-phase residues are obtained from SWT of Bior
5.5 mother wavelet which are shown in figure 6.2. The detail level
coefficients of three-phase residues are obtained by decomposing the
three-phase residue with DWT of Bior 5.5 mother wavelet. The instant of

fault occurrence for extracting the features is estimated accurately by
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Figure 6.1: Three-phase currents for 4-turn short circuit in R-hase
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Figure 6.2: Three-phase residues for 4-turn short circuit in R-phase
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Table 6.1: Features extracted from slope of detail level coefficients

Rfault | Yfault | Bfault | Rfault | Yfault | Bfault
Faulty phase Exp. Exp. Exp. Sim. Sim. Sim.
(x107) | (x107%) | (x107%) | (x107%) | (x107%) | (x107%)
2turn | R-phase | 10.36 1.117 1.529 49.49 1.386 2.025
fault | Y-phase | 2.533 3.179 1.626 3.348 58.2 0.741
features | B-phase | 1.732 3.136 2.844 | 0.7426 | 7.329 21.53
4 turn | R-phase | 33.74 1.652 26.19 3092 | 0.5804 | 3.520
fault | Y-phase | 0.7762 | 18.50 1.687 11.44 28.47 1.006
features | B-phase | 12.94 5.288 56.90 | 0.7325 | 0.5591 | 57.73
6 turn | R-phase | 45.15 38.44 9.959 54.55 1.506 | 0.7698
fault | Y-phase | 0.6834 | 192.0 2.939 | 0.4086 | 30.61 | 0.8719
features | B-phase | 5.414 27.84 61.51 | 04728 | 1.707 40.78
8 turn | R-phase | 33.9 11.44 24.56 38.12 0.939 1.019
fault | Y-phase | 3.329 51.97 31.95 | 0.5919 | 18.82 | 0.7379
features | B-phase | 0.8075 | 12.19 107.8 | 0.6292 | 1.227 23.62

calculating the ratio between the difference in sample values of the d1
coeflicients of three phase residues over a moving window of 3 samples
and difference in sample intervals. For a discrete signal the ratio between
the difference in sample values and difference in sample intervals is called
slope. A fault is detected by comparing the fault index with adaptive
threshold which is already explained in chapter 3. Figure 6.3 illustrates the
variations in slope of detail level coefficients of three phase residues for
4-turn short circuit in R-phase of a 3-hp induction motor. From figure 6.3,
the positive and negative peak values of slope of detail coefficients

three-phase residues over a window 10 samples are 2.14 x 1079 and

—2.2 x 107% in R-phase, 6.19 x 107" and —5.6 x 107 in Y-phase and

6.28 x 107'9 and —7.76 x 10~'° in B-phase for a 3-hp induction motor. From
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Table 6.2: Self normalised features extracted from slope of detail level coefficients

Rfault | Yfault | Bfault | Rfault | Yfault | Bfault
Faulty phase

Exp. Exp. Exp. Sim. Sim. Sim.
R-phase | 0.9 0.1 0.192 0.9 0.1 0.100

2 turn fault
Y-phase | 0.1423 0.9 0.1 0.17 0.9 0.1
features
B-phase | 0.1 0.184 0.9 0.1 0.153 0.9
R-phase 0.9 0.101 | 0.119 0.9 0.1 0.432
4 turn fault
Y-phase | 0.384 0.9 0.1 0.1 0.9 0.1
features

B-phase 0.1 0.1 0.9 0.395 | 0.274 0.9
R-phase 0.9 0.1 0.15 0.9 0.152 | 0.173
Y-phase 0.1 0.9 0.1 0.1 0.9 0.1
B-phase | 0.101 | 0.106 0.9 0.185 0.1 0.9
R-phase 0.9 0.1 0.11 0.9 0.1 0.1
Y-phase 0.1 0.9 0.1 0.161 0.9 0.363
B-phase | 0.101 | 0.113 0.9 0.1 0.115 0.9

6 turn fault

features

8 turn fault

features

these values, it is clear that the faulty phase peak values are higher than

those of healthy phases.

Table 6.1 and Table 6.2 demonstrate the actual and self normalized
values of feature 1, feature 2 and feature 3 for various levels of stator
inter-turn faults. The results from Table 6.1 and Table 6.2 show that, of all
the three feature values the faulty phase feature has highest value. Hence,
these three features are effective in identifying the faulty phase accurately.
But severity level can not be identified from these features and is identified
from feature 4, which can be obtained from 4" level approximate
coefficients.  The variation in 4”7 level approximate coefficients of
three-phase residues and their energies for a 4-turn short circuit in R-phase

are illustrated in figure6.4 and figure6.5 respectively. Figure 6.6 shows the



6.2 Features used for identification of faulty phase and estimation of fault severityl40

4

0.00 0.02 0.03 0.05 0.07 0.08 0.10 0.12 0.14 0.15 0.17 0.19 0.20
Time in sec

Figure 6.4: Variation in fourth level approximate coefficients for 4-turn short circuit in

R-phase

= 15

§ —R-phase

(]

T 10 -

i

(=)

5 51

)

é 0 T T T T T T T T T Ll T T
0.00 0.02 0.03 0.05 0.07 0.08 0.10 0.12 0.14 0.15 0.17 0.19 0.20

Time in sec

= 15

E Y-phase

()

T 10 -

L

=}

g 51

)

é 0 T 1 1 1 T T T T 1 T 1 T
0.00 0.02 0.03 0.05 0.07 0.08 0.10 0.12 0.14 0.15 0.17 0.19 0.20

Time in sec

= 1

E 5 —B-phase

(5]

.

=)

5 51

5

S 0

0.00 0.02 0.03 0.05 0.07 0.08 0.10 0.12 0.14 0.15 0.17 0.19 0.20
Time in sec

Figure 6.5: Variation in fourth level approximate coefficients for 4-turn short circuit in

R-phase



6.2 Features used for identification of faulty phase and estimation of fault severityl41

11

&=
5] —) - - —
g 10 - 2-turn 4-turn 6-turn 8-turn
Ao
= 9 -
7.689 / / e
“i 8 - VA / 6.19E-08 9.912
207 1 / £
S 6 - 7
= 5 6.445
= T T T 1 Ll T T T T T T T
3 0.00 0.02 0.03 0.05 0.07 0.08 0.10 0.12 0.14 0.15 0.17 0.19 0.20
= Time in sec

Figure 6.6: Variation in fourth level approximate coefficients for 4-turn short circuit in

R-phase

Table 6.3: Feature 4 from fourth level approximate coefficients

Feature 4
Faulty Phase
2-turn 4-turn 6-turn 8-turn

short circuit | short circuit | short circuit | short circuit
Rfaultsim 1.033704137 | 1.144667577 | 1.222547031 | 1.358542172
Yfaultsim 0.920199876 | 1.155779873 | 1.253613051 | 1.430107598
Yfaultsim 0.990207341 | 1.162978797 | 1.181858508 | 1.417702387
Rfault prac 1.070851345 | 1.112396703 | 1.190610055 | 1.890531044
Yfault prac 1.084232481 | 1.194048079 | 1.212579815 | 1.921602236
Bfault prac 1.100641357 | 1.108734934 | 1.157378489 | 1.910163369

mean energy values of various levels of stator inter-turn faults in R-phase.
From this figure, it is clear that the severity level segregation is possible
from variation in mean energy of fourth level approximate coeflicients for
various levels of stator inter-turn faults in R-phase. The variations in
feature 4 for various levels of stator inter-turn faults in various phases of
simulation and experimental cases are tabulated in Table 6.3. Figures 6.7

illustrates the variations in feature 4 for stator inter-turn faults in R-phase

under various operating conditions such as no-load, 50% load, 100% load
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Figure 6.8: Variation in features for various level of stator inter-turn fault in R-phase

2% supply unbalance and 3% supply unbalance of simulation and
experimental cases for a 3-hp induction motor.

The variations in feature 1, feature 2, feature 3 and feature 4 w.r.t the
various severity levels of stator inter-turn faults like 2-turn, 4-turn, 6-turn
and 8-turn faults of stator winding in R-phase under various operating
conditions such as no-load, 50% of full load, 100% load, and supply
unbalances from 1% to 5% are shown in figure 6.8. Similarly, figures 6.9
and 6.10 show the variations in features w.r.t the various severity levels of
stator inter-turn fault in Y-phase and B-phase respectively. These figures
provide evidence to the fact that the selected features are insensitive to the

supply unbalance and load conditions. Hence, the selected features are
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Figure 6.9: Variation in features for various level of stator inter-turn fault in Y-phase
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Figure 6.10: Variation in features for various level of stator inter-turn fault in B-phase

strong enough in segregating the stator inter-turn faults.

6.3 Proposed ANN based classifier for identification of
faulty phase and estimation of fault severity of stator

inter-turn faults

The proposed identifier (ANN-3) is modelled with four inputs and twelve
outputs for identifying the stator inter-turn faults and its severity level.
Figure ?? shows the configuration of ANN based identifier (ANN-3) for
identifying faulty phase and severity level of stator inter-turn faults on a
three-phase induction motor. The faulty phase and severity level identifier
is triggered when the output of ANN-1 of C¢ becomes one. The features

fed to the ANN-3 are the slope of detail level coefficients of absolute peak

H Feature 1 no-load W Feature 150% load ™ Feature 1100% load ® Feature 11% SUB = Feature 12% SUB Feature 13% SUB Feature 1 4% SUB Feature 15% SUB
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values of three phase residue currents and ratio of post fault to pre-fault
mean values of fourth level approximate coefficients. The twelve classes of
outputs of ANN-3 are as follows:

F —2-turns short circuit in R phase

F> —4-turns short circuit in R phase

F3 —6-turns short circuit in R phase

F, —8-turns short circuit in R phase

F's —2-turns short circuit in Y phase

F¢ —4-turns short circuit in Y phase

F7 —6-turns short circuit in Y phase

Fg —8-turns short circuit in Y phase

F9 —2-turns short circuit in B phase

F1p —4-turns short circuit in B phase

F{1 —6-turns short circuit in B phase

F, —8-turns short circuit in B phase

6.3.1 Training and testing of the proposed ANN based method
(ANN-3)

ANN-3 is simulated in MATLAB with an activation functions of a tangent
sigmoid (tansig) and log sigmoid (logsig) and training goal is set at 1075,
Number of training and testing patterns used to train and test ANN-3 are
tabulated in Table 6.4. Out of 762 patterns, 504 patterns are utilized for
training the classifier and the remaining 258 patterns are used for testing.
Approximately two thirds of the data set is used for training and one thirds
of the data set is used for testing.

The performance of several multilayer neural network configurations
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Table 6.4: Training and testing patterns used in ANN-3

No. of training patterns | No. of testing patterns
Type of stator phase fault

Exp Sim Exp Sim
2-turns short in R phase 6 36 3 18
4-turns short in R phase 6 36 3 19
6-turns short in R phase 6 36 3 19
8-turns short in R phase 6 36 3 18
2-turns short in Y phase 6 36 3 18
4-turns short in Y phase 6 36 3 19
6-turns short in Y phase 6 36 3 19
8-turns short in Y phase 6 36 3 18
2-turns short in B phase 6 36 3 18
4-turns short in B phase 6 36 3 19
6-turns short in B phase 6 36 3 19
8-turns short in B phase 6 36 3 18

72 432 36 222
Total
504 258

are studied using MATLAB/Simulink. Among all, the best performed
configuration of multilayer neural network ANN-3 as 3 (input neurons), 5
(hidden neurons), 9 (hidden neurons) and 12 (output neurons). Figure ??
shows the pconfiguration of best performed multi layer neural network
ANN-3. he confusion matrix for the classifier ANN-3 is shown in
Table6.5. From Table6.5 the accuracy of the classifier is 95.73%. This

result proved the efficacy of the proposed ANN-3.
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Table 6.5: Confusion matrix for ANN-3

Fi|Fy | Fs | Fy | Fs | Fe | F; | Fs | Fo|Fy|Fu|Fp
Fr{21,0,0[0]0]0|0]0]O0 0 0 0
Fr, 10|20, 0 (0701 ,0]01]O0 0 0 0
F; 100122000, 01]01]O0 0 0 0
Fye O] 00 (200001101 O0 0 0 0
Fs |00 0] 0200 0] 0]1 0 0 0
Fe | O] 0 0[0]01(22|01]0]O0 0 0 0
F,10]10,0[0]0]2 20010 0 0 0
Fg | OO0, 0[0]0]0|01]21]O0 0 0 0
Fo | O] 1 10]0]0]007]0]191 0 0
Fo|lO]O0O|0]0]O0]0,0]0]0]21 1 0
Fho| O] O0O]O0O]O0O[O0OLO0]O0O]O0]O0 3 19| 0
Fob| O O0O]O0O]O0O[O0OO0]O0]1]O0 0 0 | 20

Overall accuracy = 95.73%

6.4 Proposed MNN based classifier for identification of
faulty phase and estimation of fault severity of stator

inter-turn faults

A modular structure of neural network (NN) is implemented for
identification of faulty phase and estimation of fault severity of stator
inter-turn faults on a three-phse induction motor. Figure 6.11 shows the

MNN configuration for stator inter-turn faults identifier (MNN-3).
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Figure 6.11: Proposed MNN-3 classifier dentification of faulty phase and estimation of

fault severity of stator inter-turn faults

6.4.1 Training and testing of the proposed MNN based classifier
(MNN-3)

Same training and testing data sets that are used for ANN-3, are also used
to train and test the modular neural network respectively. Twelve types of
severity levels of stator inter-turn faults have been considered for
identification, 12 modules of NN are used to form one modular neural
network (MNN-3). Each module of MNN-3 classifier identifies one class.
Table 6.6 shows the performance of MNN-3. The overall accuracy of the
classifier of MNN-3 is 94.64% and this performance is achieved within 4
sec. The results proved that the performance of classifier MNN-3 is better

when compared with that of classifier ANN-3.
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Table 6.6: Confusion matrix for MNN-3

Fiy|Fy | F3 | Fy|Fs|Fe|F;|Fs|Fo|Fp|Fiu|Fp
F, 120007 0]0[0]0]0]0] 0 0 0
F, 102101 70]0[0]0]0]0] 0 0 0
F; 1 0]0(|22]0]0(0]0]0]0] 0 0 0
Fy /O] 00200 (0] O0]0]0] O 0 0
Fs 1 0] 0| 0]0|200]0]0/0 1 0 0
Fe | O] O0O|O0O[O00]2,0]0/]0]O0 0 0
F,{0[0[0|O0 02200010 0 0
Fg 1 00| 1]0]0[0]01]20]01] 0 0 0
Fe {O]O0O|O0O]O0O,O0]1,0]0(20]O0 0 0
Fo/ 0] O0O|0]O0O]O0O]O0O]O0O]O0O|0]22] 0 0
F, 0] 0]0]O0O]O0O[O0O]O]O0O]O0O] O01]20] O
Fp, 0] 0]O0]O0O]O0O[O0O]O0O]0]0]O0 0 | 21

Overall accuracy = 96.9%
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6.5 Comparison of performance between ANN-3 and

MNN-3 for fault classification

Table 6.7: Performance for ANN-3 and MNN-3 in stator inter-turn fault classification

Type of network || Type of disturbance | Sensitivity | Specificity Average

F, 1 1

F; 0.954 0.996

F3; 1 1

F, 1 1 Specificity: 0.957
Fs 0.952 1

Fe 1 0.987

ANN-3

F; 0.909 1

Fg 1 0.996

Fy 0.905 0.996 Specificity: 0.996
Fio 0.954 0.983

Fyy 0.864 0.995

Fip 0.952 1

F, 1 1

F; 0.954 1

F; 1 0.991

Fy 1 1 Specificity: 0.969
Fs 0.952 1

Fe 1 0.987

MNN-3

F7 0.909 1

Fg 0.952 1

Fy 0.952 1 Specificity: 0.997
Fio 1 0.987

Fi 0.909 1
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The performances of ANN-3 and MNN-3 are compared based on the
specific measures that is sensitivity and specificity. Table 6.7 shows the
values of sensitivity and specificity for ANN-3 and MNN-3 corresponding
to 12 types of stator inter-turn faults. The average sensitivity of MNN-3 is
0.969 and average specificity is 0.997 which are better than those of
ANN-3. The results proved that the modular neural network based
classifiers are better when compared to neural network based classifiers in
identifying faulty phase and estimating the severity level of stator inter-turn

fault.

6.6 Conclusions

In this chapter the procedure for extraction of features and two proposed
classifiers based on neural networks and modular neural networks for
classifying stator inter-turn faults are explained. The four features, that are
used as inputs to classifiers, are insensitive to the supply unbalances and
load conditions. From the performance results of two classifiers ANN-3
and MNN-3, the following conclusions are drawn.

The multi layer classifier of ANN-3 attains an accuracy of 95.73% with
minimum number of features. To improve the performance of the classifier
further a modular concept is introduced and an overall accuracy of 96.9% is
achieved. The results revealed that there is an improvement in the accuracy
by 1.17% when MNN-3 is used in place of ANN-3 for classifying stator

inter-turn fault.



Chapter 7

Conclusions and Future Scope

7.1 Conclusions

Rapid industrialization enhances the usage of induction motors especially
in processes industries. To improve the reliability of motors, for a good
return on investment, they need continuous condition monitoring. A reliable
condition monitoring method for detecting, classifying and identifying the
supply side faults and stator winding insulation faults at the earliest without
effecting the motor operation, is the focus on this thesis.

Common types of faults and their root causes in induction motor are
studied in this research work. Various types of model and model-free
techniques are reviewed and summarized in this thesis. From the literature
survey, it is inferred that till now there is no algorithm for detecting
multiple faults with single diagnosis technique and minimum number of
measurements and features. Even though the multi function digital relays
are responding well but it does not respond to the incipient faults in
presence of supply unbalance and machine unbalances. Hence, in this
thesis, an attempt has been made to propose reliable fault diagnosis

schemes for a three-phase induction motor with a focus on detection,

151
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classification and identification of various faults such as stator winding
insulation faults and supply side faults. The present research is organized
into five stages.

The first stage of research work focuses on development of distributed
parameter model and its validation for a three-phase induction motor. The
distributed parameters are estimated physically for a 5-hp and 3-hp
induction motors by conducting no-load, blocked rotor, differential mode
and common mode tests, as presented in chapter 2. The model is validated
by comparing the frequency responses obtained from simulation and
experimental setup. The results proved that the developed distributed
parameter model is applicable for transient analysis.

The second stage of research work focuses on fault detection algorithms
based on three-phase current measurements and wavelet analysis. Using
the developed model, the stator winding insulation faults and supply side
faults in an induction machine are simulated, by taking into account
various fault switching instants, in MATLAB/Simulink environment. The
DWT based fault detection algorithm is validated through simulation data
and proved to be effective in detecting the faults. This algorithm fails to
detect the fault under noisy conditions. For more realistic study, another
fault detection algorithm based on SWT and DWT is considered. The
sequence of steps for fault detection using this method 1is signal
reconstruction (using SWT), decomposition (using DWT), and calculation
of fault index and adaptive threshold. The observations made from the
reconstruction of the captured signals indicated that the SWT has clear
advantage over the DWT to extract the fault residues in the presence of

noise and supply unbalances. The instant at which disturbance starts can be
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identified accurately by comparing the fault indices with adaptive threshold
and count value as discussed in chapter 3. Experimental setup is built with
two three-phase induction motor machines of 3-hp and 10-hp ratings. The
stator winding faults are created by short circuiting the tap points, which
are already brought from each phase of the winding. The effectiveness of
the proposed SWT and DWT based fault detection algorithm is verified by
simulation and experimental data as presented in chapter 3. The results
proved that the proposed SWT and DWT based fault detection algorithm is
insensitive to the operating conditions because of adaptive threshold logic.
Classification of disturbances in a three-phase induction motor is
discussed in the third stage.  Two classifiers are implemented in
MATLAB/Simulink to classify various faults. One classifier is based on
ANN and another one is based on modular neural network (MNN). Nine
features are selected to classify 6 types of disturbances on a three-phase
induction motor. The normalised features are fed as input to the ANN
disturbance classifier and various structures of ANN are considered for
finding best performed ANN structure. The best performance is achieved
by using double multilayer ANN as presented in chapter 3. The results
demonstrates that the proposed algorithm classifies the disturbances
irrespective of operating conditions. However, the accuracy of the classifier
1s observed to 92.31%, which is not satisfactory. Hence, the modular
concept is introduced to NN for enhancing efficacy and reducing task
complexity of the disturbance classifier. The results proved that the
performance of MNN in disturbance classification is significantly higher as
compared to that of ANN and an increase in performance by 2.33% in

overall accuracy, 8% in sensitivity, and 0.7% in specificity, is achieved in
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minimum time as demonstrated in chapter 3.

The fourth stage of research focuses on classification of stator phase
faults using two methods, one based on ANN and the other one based on
MNN. Six types of phase faults are classified with only three features,
which are extracted from slope of detail level coefficients.  The
performance of MNN in stator phase faults classification is accurate,
simple and insensitive to the operating conditions because of self
normalised features. The results proved that the performance of MNN
classifier of stator phase faults is higher than ANN classifier for stator
phase faults and an increase in performance by 4.55% in overall accuracy,
4.85% 1in sensitivity and 0.9% in specificity is observed. The details are
given in Chapter 4..

Finally, identifiers are developed for identification of faulty phase and
severity level of stator inter-turn faults based on ANN and MNN.
Experimentations and exhaustive simulation studies are conducted to check
reliability of the proposed identifiers. Identifying the faulty phase and
severity level of stator inter-turn faults using features of slope of detail
level coeflicients of absolute peak values of three phase residue currents
and ratio of post fault and pre-fault mean energy values of 47 level
approximate coeflicients. The results are found to be efficient and reliable
because these feature are insensitive to the operating conditions. The
performance of MNN is better than that of ANN in identifying faulty phase
and severity level of stator inter-turn faults. An increase in performance by
1.17% 1n accuracy, 1.15% in sensitivity and 0.1% in specificity is observed
for MNN based identifier when compared with the performance of ANN

based identifier.
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7.2 Future Scope

The proposed algorithms were tested on practical induction motors of 3-hp
and 10-hp. These schemes can be extended to be part of on-line condition
monitoring and to be assessed for various operating conditions faced by the
induction motor during its life time.

The proposed protection schemes are tested only on low voltage motors.
The same methodologies can also be extended to medium and high voltage
motors with further study.

The proposed techniques can be extended to generators as well, but it

requires further study.
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