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ABSTRACT

Mathematical modeling and analysis of the convective flow of nanofluids is an emerging
field of research due to their high thermal conductivity properties and large number of
industrial applications. Nanofluids are prepared by the uniform dispersion and suspension of
nanometer sized metallic particles into the conventional heat transfer fluids such as water, oil,
or ethylene glycol. Moreover, the problems on natural /mixed convective flow of a nanofluid
over the vertical frustum of a cone under various physical conditions become slightly more
complicated, and leading to the complex interactions of the fluid flow, heat and mass transfer
mechanisms. The main aim of the thesis is to investigate the natural and mixed convective
flow of a nanofluid in the presence of Soret and viscous dissipation, double stratification, non-
Darcy porous medium, Arrhenius activation energy, thermal radiation, double dispersion,
nonlinear convection, amplitude and angle of the wavy frustum of a cone. The problems
considered deal with the vertical frustum of a cone, rotating frustum of a cone and wavy

frustum of a cone.

The thesis consists of EIGHT chapters. Chapter—1 provides an introduction to the con-
cepts in nanofluid, porous medium, convective boundary condition and a review of the
pertinent literature. Chapter—2 deals with the effects of Soret and viscous dissipation on
the convective flow of a nanofluid over the vertical frustum of a cone, whereas Chapter—3
explores the convective heat and mass transport over the frustum of a cone embedded in
a non-Darcy porous medium saturated by a doubly stratified nanofluid. Chapter—4 consid-
ers the combined effects of Arrhenius activation energy with binary chemical reaction and
thermal radiation on the convective nanofluid flow over the frustum of a cone subject to the
convective boundary condition. Chapter—5 investigates the thermal and solutal dispersion
effects on the convective flows over the vertical frustum of a cone in a nanofluid saturated
non-Darcy porous medium subject to the convective boundary condition. Chapter—6 reports
the convective flow of a nanofluid due to the vertically rotating permeable frustum of a cone
under the influence of convective boundary condition. The nonlinear convective flow of a
nanofluid over the permeable wavy frustum of a cone in the presence of convective boundary

condition, is discussed in Chapter—7.

In all the above chapters, the non-linear governing equations and their associated bound-
ary conditions are initially cast into dimensionless form by using a suitable set of non-
similarity transformations. The resulting system of equations is solved using the Bivariate
Pseudo-Spectral Local Linearization Method (BPSLLM). The influence of pertinent parame-

ters on the non-dimensional velocity, temperature, nanoparticle volume fraction, and regular

vi



concentration are presented graphically. Moreover, the skin friction, local heat transfer rate,
local nanoparticle and regular mass transfer rates are studied quantitatively and qualita-

tively.

The last chapter (Chapter—8) gives a summary and overall conclusions and scope for

future work.
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NOMENCLATURE

Half angle of the frustum of a cone
Amplitude of the wavy surface
Biot number

Forchheimer constant

Regular concentration

Regular concentration at the wall

Regular concentration at the am-

bient medium

Specific heat capacity

Local skin-friction coefficient
Brownian diffusion coefficient

Thermophoretic diffusion coeffi-

cient

Solutal diffusivity

Soret, type diffusivity

Darcy number

Effective solutal diffusivity
Thermal dispersion parameter
Solutal dispersion parameter

Arrhenius activation energy pa-

rameter
Eckert number

Suction/Injection parameter

Le

Nr
Nt
Nb
Nuz

N Shz

Quw
dn
m
Rez

Rd

viil

Reduced stream function
Gravitational acceleration
Local Grashof number

Convective heat transfer coeffi-

clent

Thermal conductivity
Permeability of the medium
Mean absorption coefficient
Characteristic length

Lewis number

Regular buoyancy ratio
Nanoparticle buoyancy ratio
Thermophoresis parameter
Brownian motion parameter
Local Nusselt number

Local nanoparticle Sherwood num-
ber

Prandtl number
Surface heat flux
Nanoparticle mass flux
Regular mass flux
Local Reynolds number

Radiation parameter



Shz

Sc

Zo

Radius of a frustum of a cone

Dimensionless regular concentra-

tion

Local regular Sherwood number
Schmidt number

Soret number

Temperature

Temperature at the wall
Convective wall temperature

Temperature at the ambient

medium
Reference velocity

Leading edge distance of a frustum

of a cone

Greek Symbols

O,
Pfoo

Pp

Poo

/BT7 BTT

Be, Bee

Thermal diffusivity

Density of the base fluid
Density of the nanoparticles
Viscosity of the base fluid
Nanoparticle volume fraction

Nanoparticle volume fraction at

the ambient medium

First and second order thermal ex-

pansion coefficients

First and second order solutal ex-

pansion coefficients

Y Stream function

¢ Streamwise coordinate

i Similarity variable

v Kinematic viscosity

0 Dimensionless temperature

v Dimensionless nanoparticle vol-
ume fraction

€ Porosity

Tw Surface shear stress

Qy Effective thermal diffusivity

A Mixed convection parameter

o* Stefan-Boltzmann constant

€1,E9 Thermal and solutal stratification
parameters

Operators

\Y%& Laplacian operator

Subscripts

w Wall condition

o0 Ambient condition

Superscript

1X

Differentiation with respect to 7
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Chapter 1

Preliminaries and Review

1.1 Introduction

The science of fluid dynamics encompasses the motion of gases and liquids, the forces those
are responsible for this motion, and the interaction of the fluid with solids. This field stands
to various branches of science and engineering, and touches almost every aspect of our daily
life. From predicting the aerodynamic behavior of moving vehicles, to the movement of
biological fluids in the human body, weather predictions, cooling of electronic components,
performance of microfluidic devices, all demand a detailed understanding of the subject of

fluid dynamics and substantial research, thereof.

Due to the complexity of the subject and breadth of its applications, fluid dynamics is
proven to be a highly exciting and challenging subject of modern sciences. The quest for more
profound understanding of the subject has not only inspired the development of the subject
itself but has also led to the progress in the supporting areas, such as applied mathematics,
numerical computing, and experimental techniques. A large number of problems in fluid

dynamics have claimed the attention of mathematicians, physicists, and engineers for many



years. As a result, an enormous body of established results has accumulated steadily but

remains scattered in the literature.

The mechanism of heat transfer is the passage of thermal energy from a hot to a cold
body. It occurs through conduction, convection, radiation or any combination of these.
The combined process of heat transfer by conduction and convection is referred to as the
convective heat transfer. The convective mode of heat transfer is generally divided into two
basic processes: free (or natural) convection and forced convection. If the fluid motion is set
up by buoyancy effects resulting from density differences, which is caused by temperature
variations in the fluid, then the heat transfer is said to be free convection. On the other
hand, if the motion of the fluid arises from an external agent, then the process is termed as
forced convection. When both free and forced convection effects are significant, and neither
of these can be neglected, then the process is termed as mixed convection. Both free and
mixed convection processes may be divided into external flows over immersed bodies (such as
flat plates, cones, cylinders and wires, spheres or other bodies), free boundary flows (such as

plumes, jets, and wakes), and internal flow in ducts (such as pipes, channels and enclosures).

The transport of a component in a mixture, from a region of high concentration to a
region of low concentration, is called mass transfer. The involvement and applications of
mass transfer process have gained much attention, and it goes to a greater length in multiple
fields such as the industrial, biological, physical and chemical engineering processes. Mass
transfer is divided into two modes: Diffusive mass transfer and Convective mass transfer.
The convective mass transfer is analogous to the convective heat transfer, it occurs between
a moving mixture of fluid species and an exposed solid surface. Coupled heat and mass
transport constitute a significant area of research in modern fluid dynamics such as an elec-
tronic cooling, drying processes, manufacture of electric cable insulations, curing of plastics,

solar energy system, purification processes, etc.

In the recent past, the nanofluids have gained considerable interest for their potential
to enhance the heat transfer rate in several engineering systems, while reducing or possibly
eliminating, sedimentation and clogging that plagued earlier solid-liquid mixtures with larger

particles. Nanofluids can be used in a wide variety of engineering applications ranging



from the automotive industry to the medical arena, power plant cooling systems as well as
computers. The convection due to heated/cooled objects of various shapes in a nanofluid
saturated porous medium yields one of the most critical scenarios for heat and mass transfer

theory, and thus is of considerable theoretical and practical interest.

1.2 Nanofluids

Conventional heat transfer fluids like water, ethylene glycol, and oil have relatively low
thermal conductivities when compared to the thermal conductivity of solids. Hence, an
innovative way of improving the thermal conductivity of fluid is that, by suspending small
solid particles, such as millimeter or micrometer-sized particles into the conventional fluids.
In 1904, Maxwell added millimeter or micrometer-sized solid particles into the conventional
fluids to enhance their thermal conductivity. However, they have not been of interest for
practical applications as they include sedimentation, erosion, fouling and increased pressure
drop of the flow. These situations are highly undesirable for many practical applications in
cooling process. The recent advances in material technology has made it possible to produce

nanometer-sized particles that can overcome the above said difficulties.

A base fluid with suspended solid nanoparticles is named as a nanofluid, which is initially
introduced by Choi [21]. The thermal conductivity of nanometer-sized particles is typically in
the order of magnitude higher than those of the base fluids. The addition of nanoparticles to
the base fluid even at low volume concentrations, results in significant increase of the thermal
performance. The goal of nanofluids is to achieve the highest possible thermal properties
at the smallest possible concentrations (preferably < 1% by volume) by uniform dispersion
and stable suspension of nanoparticles (preferably < 10nm) in host fluids. During the past
decade, the study of nanofluids has attracted immense enthusiasm from researchers, because
of its exceptional applications in electronics, communication, computing technologies, high
power X-rays, medicine, lasers, optical devices, scientific measurement, material processing,
material synthesis, etc. The detailed introduction and applications of nanofluids can be seen

in the textbook by Das et al. [24].



Currently, two different models being investigated: (i) Tiwari-Das model [118], and (ii)
Buongiorno model [13]. These models have been used frequently by several researchers to

investigate the heat transfer enhancement by very fine particles suspended in a host fluid.

Tiwari-Das model

Tiwari and Das [118] developed a model to analyze the behaviour of nanofluids by taking the
volumetric fraction of nanparticles into the consideration. In this model, the basic governing

equations for laminar, incompressible flow of a nanofluid can be written as

V.u=0 (1.1)
O Vi — 4 ot g OB = 0Pibs (1.2)
%—f +u- VT = a,; V°T (1.3)

where w is the velocity vector, T is the fluid temperature, ¢ is the volume fraction of the
nanoparticle, g is the acceleration due to gravity, B; and 3, are the thermal expansion
coefficients of the base fluid and nanoparticles, respectively. Further, p,; is the viscosity of
the nanofluid, a,,¢ is the thermal diffusivity of the nanofluid and p, is the density of the

nanofluid, which are given by

ko
pcpnf’
knp (ks +2kyp) — 2¢(ky — k)

PCons = (1 = ¢)pCyy + dpCps, T = (bt 2k T olhy — k) (1.4)

[if
nf =g M (1= @)ps+ ¢ps; omp =

where py is the density of the base fluid, p, is the density of the solid particle, py is the
viscosity of the base fluid, k,,; is the effective thermal conductivity of the nanofluid, ks and

ks are the thermal conductivities of the base fluid and nanoparticle, respectively.



Buongiorno model

Buongiorno [13] proposed an analytical model for convective transport in nanofluids, which
incorporates the effects of Brownian diffusion and thermophoresis. Contrary to the Tiwari-
Das model [118], that focuses on volumetric fraction of nanoparticles, Buongiorno model [13]
pays more attention to Brownian motion and thermophoresis effects. The arbitrary motion
of nanoparticles within the base fluid is called Brownian motion, and this results from con-
tinuous collisions between nanoparticles and molecules of the base fluid. Particles can diffuse
under the influence of a temperature gradient. This phenomenon is called thermophoresis,
and is the particle equivalent of the renowned Soret effect for gaseous or liquid mixtures.
This Buongiorno’s model has been used in many recent works such as those of, Nield and
Kuznetsov ([81], [82], [83]), Kuznetsov and Nield ([52], [53]) and Khan and Aziz [50], among

others.

The basic governing equations of Buongiorno’s nanofluid model are given by

V-u=0 (1.5)
ouw _ __ 1 9
E+u-Vu=—;Vp+l/Vu+g(1—¢oo)BT(T—Too)—(pp—pfoo)g(¢—¢oo) (16)
or _ (pc) Dy
—4+u-VT=aV?T+ -2 |DpVe¢-VT + —VT-VT 1.
8t+u AV aV +<,00)f sVo-V —i—TOOV \V4 ( 7)
(9(;5 — _ 2 Dr 2
6t+u Vo =DV ¢+TOOVT (1.8)

where (7 is the thermal expansion coefficient, v is the kinematic viscosity of the nanofluid.
Further, p, is the density of nanoparticle, pso is the density of the base fluid, « is the
thermal diffusivity of the nanofluid, Dp is the Brownian diffusion coefficient and Dy is the
thermophoretic diffusion coefficient. Finally, (pc); and (pc), are the heat capacity of the

nanofluid and the effective heat capacity of the nanoparticle material, respectively.



1.3 Porous Medium

A porous medium may be defined as a solid matrix containing holes either connected or
non-connected, dispersed within the medium in a regular or random manner provided such
holes occur frequently in the medium. If these pores are saturated with fluid, then the solid
matrix with the fluid is called a fluid-saturated porous medium. This type of analysis in
porous media plays an essential role in many fields of science and engineering, for instance,
petroleum engineering, groundwater hydrology, agricultural engineering and soil mechanics.
But, the flow of the fluid in a saturated porous material is possible only when some of the

pores are interconnected.

To study the motion of fluids through porous media, one must have sufficient under-
standing of the governing equations for the fluid flow through porous medium. Owing to
the intricate structure of the porous medium, several models have been proposed to explain
mathematical and physical aspects of porous media. Among these, the Darcy model and
a series of its modifications have attained much acceptance. Further, the boundary layer
assumptions have been successfully applied to these models and much work over the last few

decades has been done on them for a wide variety of geometries.

Darcy Model

The governing equation of fluid motion in a vertical porous column was first given by Darcy
[23] in 1856. It represents a balance of viscous force, gravitational force and pressure gradient.

In mathematical form, it is written as

7= —%(Vp—pm (1.9)

where 7 is the space averaged velocity (or Darcian velocity), K, is the (intrinsic) permeabil-
ity of the medium, p is the coefficient of viscosity. For one-dimensional flow and low porosity
system, the above law appears to provide good agreement with experimental results. As this

model does not take inertial effects into consideration, it is valid only for seepage flows, i.e.,



for flows with low Reynolds number [O(Re) < 1].

Darcy-Brinkman Model

It is assumed that the flow through an anisotropic porous medium with high permeability
must reduce to the viscous flow in a limit. In viewing this, Brinkman felt the need to
account for the viscous force exerted by a flowing fluid on a dense swarm of spherical particles
embedded in a porous mass and added the term p’ V2V to balance the pressure gradient.
Here y' is the effective viscosity given by p/ = u[1 —2.5(1 —¢)]. The validity of the Brinkman
model is restricted to the high porosity medium (as confirmed by the experiments) and its

governing equation is given by

—[Vp — pg] = —7 ITAvaxTi (1.10)

Darcy-Forchheimer Model

In 1901, Forchheimer conducted experiments and proposed that inertial effects can be ac-
counted for by the addition of the square of velocity in the momentum equation. The

modification to Darcy’s equation is

p"“—\?r] 7 = —=Z [Vp - pg] (1.11)

where ¢ is the dimensionless form drag coefficient and it varies with the nature of the porous
medium. The coefficients of Darcy and Forchheimer terms contain both fluid properties and
the microstructure of the porous medium. Several other models are found in the literature
related to porous media, and the validity and limitations of these models are well discussed

in the textbook by Nield and Bejan [84].



1.4 Convective Boundary Condition

It is seen from the literature that several investigators have considered convective heat trans-
fer problems with either wall temperature or heat flux in Newtonian and/or non-Newtonian
fluids. But, these conditions cannot explain the supply of heat with a finite heat capacity to
the convecting fluid through a bounding surface. To demonstrate this, a novel mechanism for
the heating process has drawn the attention of many researchers, known as the Convective
Boundary Condition (CBC) (for more details see Aziz [8]). Further, the heat transfer with
a convective boundary condition is more general and realistic, especially concerning various
engineering and industrial processes including material drying, laser pulse heating and tran-
spiration cooling. Also, it occurs when a solid substrate is in contact with the fluid at a
different temperature and involves relative motion between the fluid and the substrate. The
magnitude of heat exchange is described in terms of Newton’s law of cooling, for which the
relevant constitutive property of the system is the convective heat transfer coefficient. The
convective boundary condition for heat transfer involves equating Fourier’s law of conduction

at the solid surface with Newton’s law of cooling in the fluid as given below:
—k—=hy(Ty-T) (1.12)

where hy is the convective heat transfer coefficient, k is the thermal conductivity of the fluid,

and T is the temperature of the hot fluid.

1.5 Bivariate Pseudo-Spectral Local Linearization Method

The governing equations of convective heat and mass transfer in Newtonian and/or non-
Newtonian fluids are essentially coupled and non-linear partial differential equations. Gen-
erally, these non-linear partial differential equations cannot be solved analytically, so recourse
must be made to a numerical approach. Various numerical methods, including the finite ele-
ment methods, finite difference methods, finite volume methods, spectral methods, shooting

methods, boundary element methods, homotopy analysis method, cubic spline collocation



method, etc., have been used by several researches to solve the system of nonlinear differen-
tial equations. Among these, a novel and rapid convergence approach named as the Bivariate
Pseudo-Spectral Local Linearization Method (BPSLLM) is used to solve the governing par-
tial differential equations in this work. Initially, this method has been introduced by Motsa
[63] and it is the combination of local linearization technique and bivariate pseudo-spectral
collocation method. This method has several desirable features that make it appropriate
for the approximate solutions of partial differential equations. For more details about the
pseudo-spectral collocation methods, one can follow the works of Motsa ([63], [64]). Also, an
outstanding theoretical results on the various spectral methods, for solving the coupled sys-
tem of highly non-linear differential equations defined on both regular and irregular domains,

have been discussed by Gottlieb and Orszag [32].

In this section, we present the Bivariate Pseudo-Spectral Local Linearization Method
(BPSLLM) for approximate solution of the system of non-linear partial differential equations.
This method is presented for a general system of n nonlinear partial differential equations.

For this, consider a system of n nonlinear partial differential equations of the following form:

Tk: [Fl,FQ,Fg, ...... ;Fn] =0 for k= 1,2,3, ey, (113)

where

Fo= {f Oh O°h . Oh @_fﬁ(a_f)}
o U ant ot o og o \on ) J

B - {f Ofy @ P @_fz(a_f)}

2 - 2y alr]7 an27 bl anp7 85’85 an Y

| B of, 0*f, of, O0f, 0 (0f,
Fn - {fnaa_na 87”]2 P anp 78_578_5 (8_77>} (114)

in which p is the order of differentiation with respect to 7, fx(n,§) are the approximate
solutions of Egs. (1.13) and Yj are the non-linear operators including the derivatives of

fr(n, &) with respect to both n and &.

On applying the quasi-linearization technique (see Ref. [10]) independently in each equa-



tion, we obtain

Fl,r+1 : Vflfrl [Fl,raFZ,ra"' 7Fn,r] = Fl,r : vflTl [FI,MFQ,T?"' aFn,r]

Y1 [Fip Fory- o Foyl (1.15)

FQ,r—&—l . VngQ [Fl,r-i—la FQ,’M to 7Fn,r] = FQ,T : vszQ [Fl,r+17F2,r7 to aFn,r]

_TZ [Fl,r+1;F2,r7"' 7Fn,7“] (1'16)

Fn,r—i—l : vfnﬁrn [Fl,r—i—la F2,7"+17 te >Fn—1,r+1; Fn,r] =

Fn,r ' vfn’rn [FI,T+17 F2,7"+17 e 7Fn—1,7"+1a Fn,r] - Tn [Fl,T-‘y-l) F27r+17 ) Fn—l,r—f—la Fn,r] (117)

where

o o0 0 0 0 0

Vl = ar TR AR ) ) ; ’ 1.18

CT R AR o g (2 5 (%) 1%
o o 0 0 0 0

vg = ar 0 TR AR ) ) ’ ’ 1.19

S AT T T CANPT 0 (119)
g o0 0 0 0 0

— - = = ... 1.20

an afn’ﬁf,faf{{? ’8f,(lp)’a<3aig>7a<3£b> ( )

where the prime denotes the differentiation with respect to n.
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Further, the Egs. (1.15)-(1.17) can be expressed as

1)
Zalr n, 6 fl 41 +B(1 (77 6) flg-+1 %El)(ﬁ’f) fég—’—l = Kl(naf)a
(2) f2 41 (2) f2(1r)+1 o
Za” 1) fol oy + B (n, )22 e T O = Kano),

(n) fn r+1 af'r(zlg—l—l'
Za Ofire + 000 O=FE 400, OF = Kalng)  (121)

where al(,’? (n,&), ﬁﬁk) (n,&) and %gk) (n, &) are the coefficients corresponding to the k' partial
differential equation for k =1,2,3,...nand [ =0,1,2,....p.

Since the constant p denotes the order of differential equation, we have the following

oY oY oY
iy
and p (0) (1)
=S om0 + 80,28 W T 1, (129
7, 65 Ve o\, ag k :

=0

The modified system of Eqs.(1.21) forms a system of n decoupled linear partial differential
equations. Hence, these equations are to be solved iteratively for f1(n, &), fa(n, &), -+, fu(n,§)
by using any numerical method. In this work, the bivariate pseudo-spectral collocation
method is employed to solve the system of Eqgs.(1.21) and it involves the following proce-

dure.

Initially, the solutions can be approximated by a bivariate Lagrangian interpolation poly-

nomials of the following form

Ng N
A Y e ) L) L&), for k=1,2,...n (1.24)

i=0 j=0

where N, and V; are the number of collocation points in the 1 and £ directions, respectively,
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and the characteristic Lagrange cardinal polynomial L;(n) is given by

e n— Nk 0 ifi#k
Li(n) = H —— such that Li(nk) = 6 = o (1.25)
=0 i = Tk 1 ifi=k

Next, the Chebyshev-Gauss-Lobatto collocation points are introduced to discretize both

the domains of £ and 7, as follows

ni:cos(%>, @zcos(?\]—j) for i=0,1,...,N, and 57=0,1,..., N, (1.26)
T t

The derivatives of the unknown functions fi(n, &) with respect to n and £ at the colloca-

tion points n; and &; are given by (see Canuto [14], Trefethen [119])

af ac t

FEIED ) SRR o ZDszk &) =DF, (127
U mi$5)  m=0 n=0

882.};]6 — DQFk,j, 88-]29 — Dka’j7 (128)
gy T 1nigy)

af ac t
a_g —Zka nmvfn 1)

i5)  m=0 n=0

> 2 e
= dinfilmi &) =) dF.;  (1.29)
n=0 n=0

where D, = sz_ém) is the (i,m)™ entry of the standard first derivative Chebyshev differ-

entiation matrix of size (N, + 1) x (N, + 1), and d;, = dLZ—égj) is the (4,n)" entry of the

Chebyshev differentiation matrix of size (IV; + 1) x (IV; 4+ 1) and the vector Fy, ; is defined as

i = U0, &)s fem, &), felon, )T (1.30)

On solving the system of Eqgs. (1.21) at the Chebyshev-Gauss-Lobbatto collocation points
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(771'7 f])u we get

Nt Nt
B(l)Flvi + ﬁfal) Z dijFl,j + '}’,Sl) Z dijDFl,j = Rl,ia
=0 =0
Nt Nt
BOF,, + B Z d;;Fs; + Z d;jDF3; = Ry,
=0 =0
Nt Nt
B™WE,;+B™ Y dyF,; +v"> diDF,; = Ry, (1.31)
j=0 J=0
where
P P P
BY =3O, B® =3 a®DO,... B" =3 oDV (1.32)
1=0 1=0 1=0

in which ¥ = diagla") (i, &), BY = diag[8® (n, ;)] and A = diagly* (n;, ;)] are

the diagonal matrices at each k' equations.

Now, the system of Eqs. (1.31) can be expressed as the matrix form with (N; + 1)(N, +
1) X (Ny + 1)(N, + 1) order, as follows

Byjo By Bis o Box, | |Fro| | Ruo
By Bl Bl - BR, || Fa Rj,.
Bjo Byl Byy - Byy, | |Frz| = | Rue (1.33)
B, BY, BY, - BY| |Fun]  |Rem

where

p
B =" oD + BWd, 1+ 4Pd;D, for k=1,2,3,..,n, when i=j
=0

B(k) — lg(k)dwl + ng)de’ for k= 1,2,3,...,n, when 1 #]

2,7 T

After incorporating the boundary conditions, the above system of equations in matrix

form is solved iteratively by taking a suitable initial approximations.
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1.6 Literature Review

The study of free and mixed convection due to a heated or cooled vertical surface provides
one of the most basic scenarios for heat and mass transfer theory and thus is of considerable
theoretical and practical interest. Free convection of heat and mass transfer occurs simulta-
neously in the fields of design of chemical processing equipment, formation and dispersion of
fog, distributions of temperature, moisture over agricultural fields and groves of fruit trees.
It also occurs in the context of damage to crops due to freezing and pollution of the en-
vironment. The phenomenon of mixed convection occurs in many technical and industrial
problems such as electronic devices cooled by fans, nuclear reactors cooled during an emer-
gency shutdown, a heat exchanger placed in a low-velocity environment, solar collectors, and

SO on.

Convective flow along a vertical surface embedded in a porous medium, is one of the fun-
damental and classical problems in the heat and mass transfer theory. It has attracted a great
deal of interest from many investigators owing to the broad applications such as geothermal
systems, energy-storage units, heat insulation, heat exchangers, drying technology, catalytic
reactors, nuclear waste repositories, etc. The literature relevant to the convective flows over
different surface geometries in Darcy and non-Darcy porous media has been reported by

Ingham and Pop [39], Nield and Bejan [84], Vafai [122] (see the citations therein).

During the past decades, the study of nanofluids has gained much interest due to its
numerous applications in science and engineering. Nanofluids are prepared by dispersing
solid nanoparticles in conventional fluids such as water, oil, or ethylene glycol. Choi et al.
[22] showed that the addition of small amount (less than 1 by volume) of nanoparticles to
conventional heat transfer fluids enhances the thermal conductivity of the fluid. The detailed
introduction and applications of nanofluids can be found in Das et al. [24]. Buongiorno [13]
developed an analytical model for convective transport in nanofluids, which takes Brownian
diffusion and thermophoresis effects into account. The literature on nanofluids has been
reviewed by Daungthongsuk and Wongwises [25], Trisaksri and Wongwises [120], Wang and
Mujumdar [126, 127, 128], Eastman et al. [27], and Kakac and Pramuanjaroenkij [45], Gi-
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anluca et al. [31] among several others. These reviews provide details of the research work

carried out by the various authors on the convective transport in nanofluids.

The study of convective heat and mass transfer over the vertical frustum of a cone has
attracted the interest of scientists and researchers, as a consequence of their important
applications in engineering and industrial processes. Initially, the natural convective flow
over the vertical frustum of a cone has been investigated by Na and Chiou [75]. Vasantha et
al. [124] discussed the natural convective flow over the vertical frustum of a cone embedded in
a non-Darcy porous medium. The laminar natural convective flow over the vertical frustum
of a cone has been studied by Singh et al. [114]. Yih [130] analyzed the heat and mass
transfer characteristics over the truncated cone embedded in a porous medium. The natural
convective boundary layer flow of a nanofluid over the vertical frustum of a cone embedded
in a porous medium has been reported by Cheng [17]. Patrulescu et al. [88] proposed a
mathematical model for combined free and forced convective flow of a nanofluid over the

vertical frustum of a cone.

On the other hand, the study of boundary layer flows with heat and mass transfer over the
rotating bodies, is essential for various engineering applications such as the design of turbo-
machines and turbines, rotating machinery, estimation of flight path in rotating wheels,
transpiration cooling, spin-stabilized missiles, and in the modeling of several geophysical
systems. Due to the centrifugal force created by rotational bodies, the fluid close to the
surface of the body is enforced in the radial direction, and then this outward fluid is restored
with the fluid in the axial direction. Therefore, the fluid velocity in the axial direction over
the rotating bodies is larger than that of stationary bodies. This development in the axial
velocity helps to increase the heat transfer rate between the contacting fluid and surface of
the body. The effect of variable temperature on the convective flow due to a rotating cone
has been studied by Hering and Grosh [36]. Wang et al. [125] suggested a new streamwise
coordinate, which also serves as a mixed convection parameter, for the steady and laminar
mixed convective flow of a quiescent fluid over the stationary /rotating cone. Pop and Na [93]
examined roles of the half angle and streamwise coordinate on the boundary layer flow over

the rotating frustum of a cone. The effects of magnetic field and heat generation/absorption
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on the laminar, steady and mixed convective flow of a power-law fluid over the rotating
permeable cone in a porous medium have been investigated by Chamkha [16]. Narayana
et al. [77] explored the effects of cross-diffusion on MHD natural convective flow over the

spinning cone under two types of temperature boundary conditions (LST and LSHF).

Further, the prediction of heat and mass transfer from the wavy surfaces (irregular or
non-uniform or rough surfaces) is of fundamental importance, and is encountered in several
heat transfer devices, such as flat-plate solar collectors and flat-plate condensers in refrig-
erators. Irregularities frequently occur in the process of manufacture. Moreover, surfaces
are sometimes intentionally roughened to enhance heat transfer because that the presence of
rough surfaces disturbs the flow and alters the heat transfer rate. Among several others, Pop
and Na ([90], [91], [92] and [94]) examined the various problems on natural convective flow
with heat transfer over the vertical wavy cone/wavy frustum of a cone in a fluid saturated
with/without Darcy porous medium. Cheng [19] considered the free convective flow over
the vertical wavy cone embedded in a Darcy porous medium, whereas Hossain et al. [3§]
explored the effect of variable viscosity on the natural convective flow of a viscous fluid over
the vertical wavy cone. Siddiqa et al. [113] obtained the numerical solution for the natural
convective flow over the vertical wavy cone in the presence of nonlinear thermal radiation
and variable properties. A comprehensive review on the natural and mixed convective flows

with heat transfer over wavy surface geometries has been presented by Shenoy et al. [111].

During the motion of fluid particles, the viscosity of the fluid converts some kinetic
energy into thermal energy. This process, which is caused due to viscosity, is irreversible
and is known as dissipation or viscous dissipation. It may arise in several devices which
are treated with substantial deceleration or operate at high rotative speed (see Gebhart
[30]). The following literature provides some of the most useful and related information on
the viscous dissipation in fluid flows. Murthy and Singh [71] studied the free convective
flow along an isothermal vertical plate in a non-Darcy porous medium in the presence of
viscous dissipation. They noticed that the presence of viscous dissipation parameter reduces
the heat transfer rate about 10% in every flow regimes. The effects of viscous dissipation

and transverse magnetic field on the boundary layer flow of a nanofluid, with heat transfer

16



and fluid-particle suspension, over an exponentially stretching sheet have been discussed by
Krishnamurthy et al. [51]. The entropy generation analysis of the free convective flow of a
nanofluid over the vertical cone in a non-Darcy porous medium, in the presence of Newtonian
heating and viscous dissipation, has been presented by Mahdy et al. [58]. Recently, Afify [1]
discussed the effects of viscous dissipation and multiple slips on the boundary layer flow of

a nanofluid over the stretching surface.

The occurrence of diffusive flux due to temperature gradient is known as the thermal-
diffusion or Soret effect. In most of the studies, Soret effect is neglected on the basis that it is
of a smaller order of magnitude than the effects described by Fourier’s and Fick’s laws. This
Soret effect plays an important role in many natural activities, viz., in the underlying physics
of the solar ponds, the demographics of an ocean and also convection in stars (see Ingham and
Pop [39]). Also, it has been utilized for isotope separation and in a mixture between gases
with very light weight molecular (Hs, He) and of medium weight molecular (Ns, air) [28].
Due to its significant applications, several authors analyzed the Soret effect on Newtonian
and non-Newtonian fluids through different geometries. Dursunkaya and Worek [26] studied
the cross-diffusion effects on natural convective flow along a vertical surface. Kafoussias and
Williams [43] discussed the mixed convective flow along a vertical plate under the influence
of Soret and Dufour effects. Awad et al. [7] analyzed the cross-diffusion effects on convective
flow from an inverted cone embedded in a porous medium. Cheng [18] examined the effects
of Soret and Dufour on the double-diffusive free convective flow over the vertical truncated
cone in a porous medium. Kameswaran et al. [46] considered the convective heat and mass
transfer in a hydromagnetic nanofluid flow over a stretching sheet subject to the Soret and

viscous dissipation effects.

Stratification of fluid occurs due to temperature variations, concentration differences, or
the presence of different fluids. The analysis of free and mixed convective flows in a doubly
stratified medium is fundamentally interesting and relevant problem, due to its broad range
of applications in engineering. These applications include heat rejection into the environment
such as lakes, rivers, and seas; thermal energy storage systems such as solar ponds; and heat

transfer from thermal sources such as the condensers of power plants. However, the effect
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of double stratification on free and mixed convection in a porous medium has received little
attention. Initially, this phenomenon has been reported theoretically by Prandtl [95] for
infinite wall problem, whereas for semi-infinite wall has been investigated by Jaluria and
Himasekhar [41]. Tewari and Singh [117] examined the natural convection in a thermally
stratified fluid saturated porous medium. The problem of natural convective heat and mass
transfer along a vertical surface in a doubly stratified porous medium has been addressed
by Narayana and Murthy [79]. The effects of thermal and solutal stratification on mixed
convection in a non- Darcy porous medium has been studied by Murthy et al. [69]. The
double-diffusive free convective flow over the vertical wavy frustum of a cone in a non-
Newtonian fluid saturated porous medium in the presence of double stratification has been
reported by Cheng [20]. He reported that the heat and mass transfer rates between the
wavy surface and the fluid decrease with the increase of thermal and solutal stratification
parameters. Narayana et al. [78] studied the problem of natural convection from a vertical

plate in a thermally stratified non-Newtonian fluid saturated porous medium.

In view of the emerging applications of a stratified nanofluid, Rosmila et al. [106] analyzed
the MHD free convective flow of an incompressible nanofluid past a semi-infinite vertical
stretching sheet in the presence of thermal stratification. The effects of thermophoresis
and Brownian motion on MHD boundary layer flow of a thermally stratified nanofluid have
been studied by Kandaswamy et al. [48]. Srinivasacharya and Surender [115] presented the
natural convective flow along a vertical plate embedded in a porous medium saturated by a
stratified nanofluid. Rashad et al. [105] performed a numerical study to investigate the effect
of thermal stratification on the convective flow of a nanofluid over the vertical cylinder. The
effect of thermal stratification on free convective flow of a nanofluid along a vertical plate

embedded in a non-Darcy porous medium has been explored by Ramreddy et al. [101].

The uniform wall temperature or flux condition may not valid in some industrial and
engineering systems. For instance, material processing, geothermal systems, and in the
design of thermal insulation, it has been observed that free convection can induce thermal
stresses that lead to critical structural damage in the piping systems of nuclear reactors.

To overcome this, a realistic and more generalized representation in the form of convective
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boundary condition is considered in the heat transfer analysis (for more details, see Aziz
[8]). Further, Makinde and Aziz [60] numerically investigated the influence of convective
boundary condition on MHD mixed convective heat and mass transfer along a vertical plate
embedded in a porous medium. Ishak [40] studied the effects of suction/injection on steady
laminar boundary layer flow over a permeable surface in the presence of convective boundary
condition. Later, the effects of magnetic field and Biot number on free convective flow of
a thermally stratified nanofluid saturated non-Darcy porous medium has been studied by
Murthy et al. [70]. Recently, Rahman [99] considered the mixed convective boundary layer

flow along a vertical plate with the convective boundary condition.

Most of the problems related to the chemically reacting systems occurring in the me-
chanics of oil and water emulsions, oil reservoir and geothermal engineering demand a finite
activation energy along with the species chemical reactions. The term activation energy,
initiated by Swante Arrheniusis in 1889, is characterized by the least amount of energy that
uses to change the reactants to products. Usually, the interactions between the mass trans-
port and chemical reactions are very complex and frequently noticed in the various rates of
production and consumption of reactant species within the fluid medium and mass transfer.
Therefore, it is necessary to discuss the theoretical studies rather than experimental studies
to investigate the effect of Arrhenius activation energy on the fluid flow and mass transfer
models. In the earlier days, Bestman [11] explored the effect of binary chemical reaction
along with Arrhenius activation energy on the natural convective flow through the porous
media. Subsequently, he presented the heat transfer analysis in the flow of a combustible
mixture through a vertical pipe with Arrhenius activation energy and thermal radiation (see
Bestman [12]). Recently, few more contributions in this area have been reported by Awad

et al. [6], Shafique et al. [108], and Mustafa et al. [73].

The effect of thermal radiation in different fluid flows, is very useful in the nuclear plants,
gas turbines, various propulsion devices for aircraft, missiles, satellites, space vehicles, etc.
At high temperature, the thermal radiation can significantly affect the heat transfer rate and
the temperature distribution within the boundary layer flow of a participating fluid. Also,

the thermal radiation may play an essential role in controlling the heat transfer in industries
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where the quality of final product depends on the heat controlling factors to some extent.
Because of these applications, Hossain and Takhar [37] considered the mixed convective
boundary layer flow along a heated vertical plate in the presence of thermal radiation. Yih
[130] presented a numerical investigation to study the radiation effect on natural convective
flow of a viscous fluid over the vertical truncated cone. The effects of thermal radiation
and convective boundary condition on free convective flow of a nanofluid over a stretching
sheet have been addressed by Rahman and Eltayeb [98]. The effects of thermal radiation,
homogeneous chemical reaction and heat source on the stagnation point flow of a nanofluid
over the stretching surface have been examined by Makinde et al. [61]. Ramzan et al. [104]
investigated the effects of thermal radiation, MHD and double stratification on a micropolar

nanofluid flow in the presence of activation energy with binary chemical reaction.

The effects of thermal and solutal dispersion in a porous medium are essential due to
the existence of inertial effects (see Nield and Bejan [84]). The heat and mass transport due
to the hydrodynamic mixing is called thermal and solutal dispersions, respectively. These
thermal and solutal dispersions cause additional heat and mass transfer rates, which brings
further complications in dealing with transport processes in a fluid medium. The interest
in the above studies is motivated by numerous engineering applications such as geothermal
engineering, thermal insulation systems, petroleum recovery, packed bed reactors, sensible
heat storage beds, ceramic processing, groundwater pollution, etc. Further, the natural
convection driven by thermal and solutal dispersions play an essential role in the overall
heat and mass transfer rates. In view of the above said applications, Telles and Trevisan
[116] presented the hydrodynamic dispersion effect on free convective heat and mass transfer
near to the vertical surface in a porous medium. The effects of thermal and solutal dispersion
in a non-Darcy porous medium have been discussed by Murthy [68]. Murthy and Singh [72]
investigated the thermal dispersion effect on the mixed convective flow over the isothermal
vertical cone embedded in a non-Darcy porous medium. The effects of double dispersion
and variable viscosity on free convective flow of a non-Newtonian fluid over the vertical cone
embedded in a non-Darcy porous medium have been explored by Kairi [44]. RamReddy

[100] discussed the thermal and solutal dispersion effects on the free convective flow over the
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vertical cone (also see the references therein).

In a wider range, most of the researchers have considered the linear relationship between
temperature-concentration and density variations in the buoyancy force term. But, the pres-
ence of various physical conditions like inertia, viscous dissipation, radiation, and different
densities in the temperature, the variations of density with temperature-concentration may
become nonlinear. This kind of nonlinear relationship is important in various industrial
and geothermal engineering applications, for instance, the design of thermal systems, cool-
ing transpiration, cooling of electric components, drying of the surfaces, solar collectors,
combustion, space technology, geophysics, etc. Mainly, these nonlinear temperature and
density variations show more effect on the velocity of the flow field and heat transfer rate
(see Vajravelu and Sastri [123]), when there is a significant change in the wall and ambient
temperatures. Partha [87] developed a mathematical model to study the nonlinear varia-
tions in the temperature-concentration dependent density in a non-Darcy porous medium.
He observed that with the increase of nonlinear temperature and concentration parameters,
the heat and mass transfer varies extensively depending on Darcy and non-Darcy porous
media. Prasad et al. [96] scrutinized the natural convective flow along a vertical flat plate
in a non-Darcy porous medium with the nonlinear density-temperature parameter. The
nonlinear convective flow over an impulsive stretching sheet has been examined by Motsa et
al. [65]. The effect of nonlinear density temperature parameter in a nanofluid flow over the

stretching sheet has been studied by Shaw et al. [109].

From the available literature, it is clear that the study of nanofluid flow over the vertical
frustum of a cone under different conditions has not received significant attention so far.
Also, it seems from the literature that the similarity solution does not exist in the case of
vertical frustum of a cone (see [75], [114], [129], [130]). Hence, one has to use suitable non-
similarity transformations to find out the approximate solutions for the governing system of

partial differential equations.

Due to the important applications of nanofluid with and/or without saturated non-Darcy
porous medium, the usefulness of convective flows over the vertical frustum of a cone has been

analyzed in this thesis. In addition, the Buongiorno’s nanofluid model which incorporates
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the effects of Brownian motion and thermophoresis, is considered in the present analysis.

The problems considered in this thesis are outlined in the next section.

1.7 Aim and Scope

The objective of the present thesis is to explore the non-similarity solution for convective
flows of a nanofluid over the vertical frustum of a cone. The study focusses on the attributes
of various effects such as Brownian motion, thermophoresis, Arrhenius activation energy
with binary chemical reaction, double stratification, double dispersion, thermal radiation,
suction/injection, nonlinear convection, amplitude and angle of the wavy frustum of a cone,
Soret and viscous dissipation. In the present study, a nanofluid based on Buongiorno’s model
is used. The problems undertaken in the thesis deal with the vertical frustum of a cone,
rotating frustum of a cone and wavy frustum of a cone for the two cases: (i) free/natural

convection and (ii) mixed convection.

1.8 Outline of the Thesis

This thesis consists of EIGHT chapters. Chapter - 1 is introductory in nature and gives
motivation to the investigations carried out in the thesis. A survey of pertinent literature
is presented to exhibit the importance of problems considered. The basic equations govern-
ing the flow, heat and mass transfers of a nanofluid and details of the numerical method

(Bivariate Pseudo-Spectral Local Linearization Method) are given.

A numerical investigation on the convective flow of a nanofluid over the vertical frustum
of a cone in the presence of Soret and viscous dissipation effects, is presented in Chapter
- 2. The non-dimensional velocity, temperature, nanoparticle volume fraction and regular
concentration profiles are displayed graphically for different values of Soret number, Eckert
number, thermophoresis and Brownian motion parameters. In addition, the non-dimensional

surface drag, local heat, nanoparticle and regular mass transfer rates versus streamwise
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coordinate are presented and discussed for various values of the pertinent parameters.

Chapter - 3 deals with the problem of steady, convective heat and mass transport over the
vertical frustum of a cone embedded in a non-Darcy porous medium saturated by a doubly
stratified nanofluid. The effects of non-Darcy parameter, thermal and solutal stratification
parameters on the non-dimensional velocity, temperature, nanoparticle volume fraction and
the regular concentration along with the skin friction, local Nusselt number, local nanopar-

ticle and regular Sherwood numbers are discussed and analyzed through graphs.

The combined effects of Arrhenius activation energy with binary chemical reaction and
thermal radiation on the convective flow over the vertical frustum of a cone in a Buongiorno’s
nanofluid subject to the convective boundary condition, are examined in Chapter-4. The
obtained numerical results are exhibited graphically to demonstrate the influence of thermal
radiation, Biot number, activation energy, chemical reaction rate and temperature relative
parameters on the dimensionless velocity, temperature, nanoparticle volume fraction and
regular concentration. Further, the effects of pertinent physical parameters on the non-
dimensional surface drag, local heat, nanoparticle and regular mass transfer rates versus

streamwise coordinate are also explored and displayed through graphs.

In Chapter - 5, an attempt has been made to investigate the thermal and solutal disper-
sion effects on the convective flow over the vertical frustum of a cone in a nanofluid saturated
non-Darcy porous medium subject to the convective boundary condition. The effects of var-
ious parameters, namely Biot number, non-Darcy, thermal dispersion and solutal dispersion
parameters on physical quantities of the flow are explored in detail and some interesting

results have been obtained.

Chapter - 6 reports a non-similarity solution for the convective flow of a nanofluid due
to the vertically rotating permeable frustum of a cone under the influence of convective type
thermal boundary condition. The obtained numerical results are exhibited graphically to
illustrate the effects of suction/injection parameter, spinning parameter and Biot number
on the dimensionless tangential velocity, swirl velocity, temperature, nanoparticle volume

fraction and regular concentration profiles. Further, the non-dimensional surface drag, local
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heat, nanoparticle and regular mass transfer rates against the streamwise coordinate are

analyzed and presented through graphs.

A non-similarity solution for the nonlinear convective flow of a nanofluid over the perme-
able wavy frustum of a cone, in the presence of convective boundary condition, is presented
in Chapter - 7. The effects of various parameters, namely wavy amplitude, half angle of
the wavy cone, Biot number, suction/injection, nonlinear density temperature (NDT) and
nonlinear density concentration (NDC) parameters on physical quantities of the nanofluid

flow are explored in detail and some interesting results have been obtained.

In all the above chapters (2 - 7), the nonlinear governing boundary layer equations and
their associated boundary conditions are initially cast into dimensionless form by introduc-
ing a suitable non-similarity variables. The resulting system of non-similarity equations is
then solved numerically by employing Bivariate Pseudo-Spectral Local Linearization Method
(BPSLLM). Initially, the governing equations are linearized by using local linearization tech-
nique and then solved by applying pseudo-spectral collocation method [14]. The convergence
and error analysis tests have conducted to examine the accuracy of the BPSLLM. In a special
case of the above chapters, the accuracy test is conducted through comparison with asymp-
totic series solutions for limiting cases of small and large values of the streamwise coordinate
(for more details, see [66]). To validate the BPSLLM, the obtained numerical results are
compared with the existing results in some special cases and the outcomes are observed to

be in a good agreement.

The main conclusions of the earlier chapters are listed and the directions in which further

investigations may be carried out are also indicated in Chapter - 8.

List of references is given at the end of the thesis. The references are arranged in an

alphabetical order.

Considerable part of the work in the thesis is published/accepted for publication in re-
puted journals. The remaining part is communicated for possible publications. The details

are presented below.
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Chapter 2

Non-Similarity Solution for a
Nanofluid Flow over the Vertical
Frustum of a Cone with Soret and

Viscous Dissipation Effects 1

2.1 Introduction

A broad area of research on convective flows over the vertical frustum of a cone in Newto-
nian and/or non-Newtonian fluids, has received continuous attention due to its significant
engineering applications such as heat exchangers, cooling of electronic devices, etc. (For
more details, see Nakamura et al. [76]). Ahmed and Mahdy [3] studied the laminar, natural
convective boundary layer flow over the isothermal frustum of a cone under the influence of
transverse magnetic field. Recently, the natural convective flow over the vertical frustum of
a cone in the presence of thermal radiation and heat generation/absorption effects, has been

discussed by Elbashbeshy et al. [29].

1Case(a): Published in “Journal of Nanofluids” 6(3) (2017) 530-540, Case(b): Published in “Journal
of Mechanics” 33(5) (2017) 687-702
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In a fluid flow system, the Soret (thermal-diffusion) effect is a thermodynamic phe-
nomenon in which the molecules in fluids are carried in a multi-component mixture impelled
by temperature gradients. It becomes more significant when the large density differences ex-
ist in a flow regime. For example, the Soret effect can be notable when a species is introduced
at the surface in a fluid domain with a density lower than the surrounding fluid (see [110],
[102]). Many investigators have been tried to explore the importance of viscous dissipation
in Newtonian and/or non-Newtonian fluids through various geometries in the recent past.
Because the viscous dissipation acts as a heat source and initiates substantial temperature
in the surrounding medium. From the literature, it seems that a limited work has been
reported on the convective flows of a nanofluid over the vertical frustum of a cone in the
presence of Soret and viscous dissipation effects. The effect of Soret on the laminar boundary
layer flow over the vertical cone embedded in a porous medium saturated by a nanofluid has
been analyzed by Hady et al. [33]. Recently, RamReddy and Pradeepa [103] explored the
effects of Soret and viscous dissipation on the mixed convective flow a non-Newtonian fluid

over the vertical frustum of a cone (for more details, see the references therein).

The problem of Soret and viscous dissipation effects on the convective flow of a nanofluid
over the isothermal frustum of a cone is considered in this chapter. According to the author’s
knowledge, the present study has not been addressed in the literature. From the literature
survey, it seems that the similarity solution does not exist for the convective flow of over the
frustum of a cone (see [75], [114], [129], [130]). Hence, a suitable set of non-similarity trans-
formations is used to transform the governing dimensional equations into non-dimensional
form. The resulting system of non-similarity equations is then solved numerically by em-
ploying Bivariate Pseudo-Spectral Local Linearization Method (BPSLLM). The convergence
and error analysis tests have conducted to validate the BPSLLM. Further, the accuracy of
the present numerical solution is undertaken in a special case through comparison with the
asymptotic series solution for limiting cases of small and large values of £ (Ref. Motsa et
al. [66]). The effects of pertinent parameters on the non-dimensional velocity, temperature,
nanoparticle volume fraction and regular concentration profiles as well as, on the surface

drag, and local heat and mass transfer rates are analyzed and shown graphically.
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Figure 2.1: Physical model and coordinate system.

2.2 Mathematical Formulation

Consider a steady, laminar and two dimensional flow of an incompressible nanofluid over
the vertical frustum of a cone with half angle A. The coordinate geometry of the problem
is chosen such that z-axis is along the surface of full cone and y-axis is normal to the
surface of vertical frustum of a cone with the origin O at the vertex of full cone. The
physical model of the problem is shown in Fig. (2.1). The surface is maintaining at uniform
temperature T,,, solutal concentration (', and zero nanoparticle flux DBg—‘s + %Z ‘g—z =0
(see Kuznetsov and Nield [54]). The velocity, temperature, nanoparticle volume fraction
and regular concentration of the ambient nanofluid are taken as Uy, T, Cs, and ¢,
respectively. The boundary layers are assumed to develop at the leading edge of the vertical

frustum of a cone (x = xy), which implies that the temperature and regular concentration

of the surrounding fluid and circular base are same.

By employing standard boundary layer assumptions and linear Boussinesq approxima-
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tion, the governing equations of the present investigation are given by (see [75])

d(ur) O(vr)
ox + dy

0 0 0%u
pr (WGt 4050 ) =W prg (1= ) 30T — Tu) + e(C — Culleos A (22
—(Pp = P1.)9(¢ — boo) cOs A

or  orT 9T 9¢0T Dy (0T’ wo [Ou\’
s R L O N B o I
L0009 _ 82¢ Dr a2T
oc  oC 9*C 0T
u% —|—Ua—y = DS ayQ DCTa B (25)

where u and v are the components of velocity along z and y—axes, respectively, T is the
temperature, ¢ is the nanoparticle volume fraction, C' is the regular concentration, g is the
acceleration due to gravity, a,,, = k/(pc) is the thermal diffusivity of the fluid, v = pu/py_ is
the coefficient of kinematic viscosity and J = (pc),/(pc) . Moreover, py. is the density of the
base fluid, and k, i, p, Br and B¢ are the thermal conductivity, viscosity, density, volumetric
thermal and solutal expansion coefficients of the nanofluid. Further, p, is the density of the
nanoparticles, (pc); and (pc), are the heat capacity of the fluid and nanoparticle material,
respectively. In Eqgs. (2.3) - (2.5), Dp is the Brownian diffusion coefficient, Dr is the
thermophoretic diffusion coefficient, Dy is the solutal diffusivity and Dgr is the Soret-type

diffusivity. The same notations are used throughout the thesis unless otherwise specified.

The associated boundary conditions are

06 Dy T
u=0 v=0, T="T,, D36¢+TT8 =0, C=C, at y=0 (2.6a)
u=Uy, T=Tyx, ¢=0¢s, C=Cyx as y— (2.6b)

where the subscripts w and oo indicate the conditions at the wall and the outer edge of a
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boundary layer respectively.

We also assumed that the thickness of boundary layers are sufficiently small as comparing
with the local radius of the vertical frustum of a cone. Therefore, the local radius to a point
in the boundary layer can be approximated by the radius of vertical frustum of a cone r, i.e.,
r = x sin A (Ref. Singh et al. [114]). The Egs. (2.1) - (2.5) along with the corresponding
boundary conditions (2.6) are valid in xy < x < 0o, where x is the distance of leading edge

of the vertical frustum of a cone which is measured from the origin O.

Now, we introduce a stream function ¢ such that it satisfies the continuity equation (2.1)

automatically, and it is defined as

1 0y 1 0y
_ ¥ = _ZF 2.7
- oy’ v r Ox (27)
In this chapter, two types (cases) of problems are considered: (a) free/natural convection

and (b) mixed convection.

2.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection which is caused by buoyancy forces only with-
out any external agent, and hence the velocity of the external flow becomes zero, i.e., Uy, = 0.

Initially, we introduce the following non-similarity variables

f=— =2 g=2an v =Gl fEm),
ZTo Zo Zz
T—Ty O — Do C—Cy
0 = = = 2.
(&m) %_%W@M %,S@m . (2.8)
Ty —Ty)(1— 73 cos A
where T = x — z¢ and Grz = 9611 o) 3 Doo)T O is the local Grashof number.
v

Substituting Eqs. (2.7)-(2.8) into Eqs.(2.2)-(2.5), the governing equations reduces to the
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following form:

3 1 aff o
"+ (R+Z>ff”—§(f’)2+9+NcS—Nm=€( ’a—“’g—a—g ) (2.9)
1 3 2 00 8f
—0" 0+ Nb~' 60 + Nt (¢ E " = — - = 2.1
gt (B4 3) 704 Noy o N 07 4 Bes (1 =€ (15 - 00)  (210)
r ., 1 Nt , ,0y 8f
— ——— 0" = — = = 2.11
LeV+< )f T e T\ g e (2.11)
1 os 0
§S"+< )fS’—l—S 9"—§<f o€ a]g ) (2.12)
where the prime represents the partial differentiation with respect to n, Pr = . is
(pp B pfoo)¢oo . . " .
the Prandtl number, Nr = is the nanofluid buoyancy ratio,
pfooﬂT<Tw - Too)(l - ¢OO) Y Y
Nec = % is the regular buoyancy ratio, Sc¢ = DLS is the Schmidt number,
Dpoeo . : : : .
Nb = @C();;Tzaf is the Brownian motion parameter, Le = Y is the Lewis number,
f B
Dy (T, — T, Der(T, — T,
Nt = (e ( T)( U,ir =) is the thermophoresis parameter, S; = (zTC(’ < G O;) is the
PC) V1 o V by = Lo
2
Soret number and Fc = ————=—— is the Eckert number.
Cp(Tw - TOO)

The corresponding boundary conditions become

5 a_f _ / _ _ / / —
S n) =1, at n=0 (2.13a)
fi(&n) =0,0¢n) =0,v¢&n) =0,5¢n) =0 as n—o0 (2.13b)
where R = a f_ 2 When ¢ = 0, R becomes zero, and hence the present problem reduces

to the problem of natural convective flow of a nanofluid along a vertical plate. Since £ =

(x — z9)
Lo

leading edge of the frustum of a cone is very small. In this situation, the similarity solutions

, € becomes large means z is far down-stream or the cross-section radius of the

are expected for the natural convective flow over a full cone (see Hering [35]).

The wall shear stress, local heat, nanoparticle mass and regular mass fluxes over the

32



vertical frustum of a cone are

ou oT aﬂ {50}
Tw = a sy Qu = —k | — , Qn = -D - and m = -D - 2.14
M |:ay:| y:O q |: 8y :| y:O q b |:ay y:O q s ay y:O ( )

27y
The non-dimensional skin friction Cfy = TU2’ the local Nusselt number Nuz; =
pfOO *
Guw® . GnT
————— the local ticle Sh d ber NShz = d the local 1
(T —To0) e local nanopar ICE erwood number Dy and the local regular
Sherwood number Sh; = Dyl Cq:f ) are given by
Nug
CrGre" = 2£1(6,0), Z575 = =0/(&.0),
NShg Shy" (2.15)
A —7'(£,0), R —5'(&,0)

where U, is the characteristic velocity.

Numerical Solution

The governing Eqs. (2.9)-(2.12) subject to the boundary conditions (2.13) are solved nu-
merically using the Bivariate Pseudo-Spectral Local Linearization Method (BPSLLM) (for
more details, see Motsa et al. [66]). The following procedure describes the main steps of the

Bivariate Pseudo-Spectral Local Linearization Method.

Assume that the solutions f,, 6,, v, and S, of Egs.(2.9)-(2.12) at the (r + 1) iteration
are fri1, 0,41, Vo1 and Sy, respectively. If the solutions at the previous iteration are
sufficiently close to the solutions at the present iteration, then the nonlinear components of
Eqs.(2.9)-(2.12) can be locally linearised using one-term Taylor series so that the Eqs.(2.9)-

(2.12) give the following iterative sequence of linear differential equations

9 1i+1 afr-i—l
(95 + Qs r 85

i+ ave [l +agy froq +asy fra + aa, =Ky, (2.16)
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a97‘+1

P 9/+1 ‘I’ b1 K3 0;4_1 + b277n 0—5 - KQJ (217)
1 0

T Tre1 O Y F G —Z)g - = K, (2.18)
1 a5,

Sc Sie1 e Si teay 8§+1 = Ry (2.19)

where the coefficients ag, ,(s1 = 1,2, ..,5), bs, (52 = 1,2), €syr(53 =1,2) , €5, (54 = 1,2) and
K. ,(ss = 1,2,..,4) are known functions, which are evaluated from the previous iterations,

and are given by

of, ’ of] " /

o= (R4 2) 5+ €0F =1 aa = (R 5) 11w = -t
=ttt = (R 3) £a = 5w (RGE - 115 ) =6, - Nes,+ o,
b <R+ 3) fr+1+Nb’Yr+2Nt01+£af2_la b2,r = _ff;Jrl’ K2,r = Nt (91/”)2_EC (.ﬂl)za

3 Ofria 1 Nt
Cir = (R+ Z) f?‘-‘rl +§ ag— , Cor = _é-f;+17 K3,T' = —E mei‘grl?

3
€1r = (R + Z) Jro1 + 50—57 e2r = —&fry1, Kap=—Sr 0,

The system of Eqs. (2.16)-(2.19) constitute a linear system of coupled partial differential
equations with variable coefficients and it can be solved iteratively using any numerical
method. In this work, the bivariate pseudo-spectral collocation method is employed to solve
the system of Eqs. (2.16)-(2.19) with the boundary conditions (2.13). Starting from the

following set of initial approximations

1 1 Nt

foln) ==+ e =€, by(n) =€, y(n) = N e, So(n) =e" (2.20)

the system of linearized Eqs. (2.16)-(2.19) is solved iteratively for f.11(n), 6r41(n), Yrs1(n)
and S,11(n).

For this, the physical region [0, 00) x [0, 00) is transformed into the region [—1, 1] x [—1, 1]
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using the domain truncation technique, in which the problem is solved on the region [0, 7s] X

[0, £s] instead of [0, 00) x [0,00). This leads to the following mappings

1 1
77—Ciand § Tt

Moo 2 oo (221)

where 7, and &, are the scaling parameters, which are used to invoke the boundary condi-

tions at infinity.

To discretize the unknown functions in the truncated region, the following Gauss—Lobatto

collocation points are introduced

Q-cos(%), Tj—cos<;7—]> for i=0,1,...,N, and j=0,1,..., N, (2.22)

where N, and N, are the number of collocation points in 77 and £ — directions, respectively.

The unknown functions are approximated by the bivariate Lagrange’s polynomials of the
form
N, N,

F0.0 =~ f(Gms ) Ln(C)Ls(7) (2.23)

m=0 5=0
which interpolates f(n,£) at the collocation points defined by Eq. (2.22). The similar
expressions are used to obtain the approximate functions for 6(n, &), v(n,£) and S(n,§).
Here, the functions L,,(¢) and L;(7) are known as the characteristic Lagrange cardinal

polynomials.

The derivatives of the unknown function f(n, &) with respect to n and &, at the collocation

points (; and 7;, are defined as (see Canuto et al. [14] and Trefethen [119])

Nz Nr

of 2 d Ly, (Ck)

- S f(Gn, 7j) ———L;(1;) = DF,, (2.24)

I BB

2 3

8772 (CkoTi) 8773 (CsTi)

of 2 A dL(7, 2 & a

%l T > Tj)%/lm(@) = > dyFy =) dF;. (2.26)
(Ck»i) ® m=0 j=0 =0 §j=0



2
In the above, d;;’s are entries of the standard Chebyshev differentiation matrix d = —[d;;]

of size (N; +1) x (N, +1) and D = (2/ns)[D;s] being an (N, + 1) x (N, + 1) Chebyshev

spectral differentiation matrix and the vector F; is defined as

Fi = [fi(¢0). fi(C1)s-- - filCn)]T

where 0 < 4,5 < Nyand 0 < r, s < N,.

(2.27)

Similar kind of expressions are used for derivatives of the unknown functions 6, v and

S with respect to n and & On applying the pseudo-spectral collocation method to Egs.

(2.16)-(2.19) in both n and {-directions gives

Nt Nt
AWF; +ay; Z d;DF; + as,; Z d;F; = Ky

Jj=0 J=0

Ny
AP, +by; Y " d;;0; =Koy,

=0

Nt
A(3) Gz + Ca.i Z dijGj = Kgﬂ'

J=0

Ny
A(4)SZ + €2 Z diij = K4’i

Jj=0
where

1
AV =D? +a;,D* + a,,D +ay,;,, A®? = P_D2 +by;D,
r

1 1
A® = —D? +¢;D, AW = _D? +e,D.
Le Sc
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The system of Egs. (2.28) can be written in matrix form as

ASy AR AR A% | | Fo K

Al Al Al A B K,
AR AD) A AN T Fe | = | Kuz (2.32)

1 1 1 1
_AS\Q),O AEVBJ Ag\ft),z e Agv,i]vt_ _FNt_ _Kl,Nt
fori=0,1,..., N; and
1) _ 4@ 1 AT s

Ai,j =AY + a4,zdzzD + a5,ZdMI, 1=, (2_33)
Aj = aydyD + a5, dy1, i # (2.34)

In the similar way, the matrix form of Eqs. (2.29)-(2.31) can be obtained. To find the
approximate solution, the system of equations in matrix form is solved iteratively by starting

with a suitable initial approximations as given in Eq. (2.20).

In this chapter, a finite computational domain of extent 7., = 30 and &,, = 15 are taken
in the n and &-directions, respectively. Through numerical experimentation, these values
have been found to give accurate results for all the selected physical parameters. Moreover,
the results have not been changed with the increase of 1., and &, to significant extent. The
number of collocation points N, and N; used in the pseudo-spectral collocation method for
discretization are 60 and 15, respectively. The iteration calculations are carried until some

appropriate tolerance level is obtained. In this analysis, the tolerance level has fixed to be

1074,

Validation of the BPSLLM

To validate the numerical solution obtained by using the method as described in the above

section, the series solutions about small and large values of £ have been computed for residual
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errors. It can be noticed that the residual errors decrease with an increase in the number of
iterations for both small and large values of ¢&. This trend indicates the convergence of the
series solutions and the convergence is much faster for both small and large values of ¢ (For

more details, one can refer the work of Motsa et al. [66]).

Further, the residual errors for the solutions of f, 6, v and S have been evaluated to show
the accuracy and convergence of the BPSLLM. These residuals are defined as the norm of
the difference between two successive iterations, and it is said to have converged when the
norms are less than a given tolerance level. The residual error norms are given by

Ef = max ”frJrl,i - fr,i”oo; E0 = maX$ H9r+1,i - 97",2'”007

0<i<Naz 0<i<N

(2.35)
EV = max ||77"+1,i - ’yr,iHom ES - maxw ||Sr+1,i - Sr,i”oo

0<i<Nz 0<i<N

Figures 2.2(a)-2.2(d) depict the variations in the norm of residual errors of the four
governing equations (2.9)-(2.12) across &, at different iteration levels of the BPSLLM. It can
be seen from Figs. 2.2(a)-2.2(d) that the residual errors decrease with an increase in the
number of iterations. This trend is an indication for the convergence of present numerical
solutions. It can be also observed that the residual errors are uniform and very small across
€, as shown in Figs. 2.2(a)-2.2(d). These results reveal that the accuracy of BPSLLM does
not depend on the length of streamwise coordinate £. Therefore, the residual error analysis

gives a clear sign to use BPSLLM for solving the partial differential equations.

Results and Discussion

In order to assess the generated code, for the special case of Nt = 0.0, Ec = 0.0, St = 0.0,
Nc=10.0, Nr =0.0, Sc =1.0, Le = 1.0 and Nb — 0.0, the results of the present problem
have been compared with those of Na and Chiou [75], Kays and Crawford [49], Lin and
Chen [55] and Yih [130]. It is found that they are in good agreement as shown in Tab. (2.1).
To analyze the effects of Soret number Sy, Brownian motion parameter Nb, thermophoresis

parameter Nt and Eckert number Eec¢, the computations are carried out for Pr = 1.0,
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Figure 2.2: Residual errors over number of iterations when Pr = 1.0, Sc = 0.6, Nr = 0.5,
Nc=1.0, Sy =1.0, Le =10.0, Nb=0.2, Nt =0.3 and Ec=0.2.
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Table 2.1: Comparison of f”(0, 0) and —6'(0, 0) for various values of Pr.

| \ f"(0,0) | —0'(0, 0)
Pr [130] Present [75] [49] [55] [130] Present
0.1 1.2144 1.21446092 | —— 0.1640 0.1627 0.1629 0.16275771

1.0 0.9084 0.90819121 | 0.4010  0.4010  0.4009 0.4012 0.40103314
10.0 | 0.5927 0.59283234 | 0.8269  0.8270  0.8258 0.8266 0.82684304
100.0 | 0.3559 0.35587198 | 1.5493  1.5500  1.5490 1.5493 1.54948222

1000.0 | 0.2049 0.19648944 | —— 2.8000  2.8035 2.8035 2.79895132

Sc=10.6, Nr =0.5, Nc = 1.0, and Le = 10.0. These values are fixed in this analysis unless

otherwise mentioned.

The distributions of non-dimensional velocity f’, temperature €, nanoparticle volume
fraction 7 and regular concentration S, under the influence of Soret number (Sr) and Eckert
number (Ec¢), are displayed in Figs. 2.3(a)-2.3(d). From Figs. 2.3(a)-2.3(d), it is evident
that an increase in the Soret number leads to increase the velocity and regular concentration,
but decrease the temperature and nanoparticle volume fraction. The velocity, temperature
and nanoparticle volume fraction profiles increase with the increase of viscous dissipation
parameter. This is due to the fact that the viscous dissipation acts as a heat source and
affects the fluid flow. Hence, it increases the thermal buoyancy effects which causes to
increase the velocity and temperature. As the viscous dissipation parameter increases, the

regular concentration shows a reverse behavior within the boundary layer.

Figures 2.4(a)-2.4(d) explore the effects of thermophoresis parameter (Nt) and Brownian
motion parameter (Nb) on the dimensionless velocity f’, temperature 6, nanoparticle volume
fraction v and regular concentration S, across the corresponding boundary layers. As ex-
pected the strengthening of Brownian motion parameter (i.e., the diffusion of nanoparticles
into the fluid) leads to strengthen the velocity and temperature, as shown in Figs. 2.4(a) and
2.4(b). But, the nanoparticle volume fraction increases near to the vertical frustum of a cone
and decreases far away from the surface, with the increase of Brownian motion parameter,
as plotted in Fig. 2.4(c). Figure 2.4(d) shows that as Brownian motion parameter increases,

the regular concentration decreases for fixed value of thermophoresis parameter. On the
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other hand, an increase in the thermophoresis parameter causes to increase the velocity
and decrease the regular concentration, as given in Figs. 2.4(a) and 2.4(d). This is due to
the enhancement of thermophoresis force. Furthermore, an increase in the thermophoresis

parameter increases the temperature and nanoparticle volume fraction near to the surface.

The variations of surface drag, local heat, local nanoparticle mass and regular mass
transfer rates over the streamwise coordinate ¢ for different values of Soret number (S7) and
Eckert number (Ec), are plotted in Figs. 2.5(a)-2.5(d). From Fig. 2.5(a), it is seen that the
skin friction coefficient increases with the increase of Soret and Eckert numbers. As the Soret
number enhances, the heat transfer rate enhances for EFc = 0.01 and EFc = 0.1. But, the heat
transfer rate reduces by enhancing the values of Eckert number, as shown in Fig. 2.5(b). It
is perceived that, with the increase of Soret number, the local nanoparticle and regular mass
transfer rates decrease. But, the local nanoparticle and regular mass transfer rates increase
with the increase of Eckert number, as depicted in Figs. 2.5(c) and 2.5(d). Moreover, the
local heat and regular mass transfer rates enhance, whereas the skin friction coefficient and

local nanoparticle mass transfer rate reduce along with the streamwise coordinate &.

Figures 2.6(a)-2.6(d) determine the influence of Brownian motion parameter (Nb) and
thermophoresis parameter (/Nt) on the surface drag, local heat transfer rate, local nanopar-
ticle and regular mass transfer rates, over £. From these figures, it is noticed that the surface
drag and local nanoparticle mass transfer rate decrease, with increasing values of Brownian
motion parameter. But, the local nanoparticle mass transfer rate increases with the increase
of Brownian motion parameter. As the thermophoresis parameter enhances, the surface drag
and local regular mass transfer enhance, whereas the local nanoparticle mass transfer rate
reduces, as plotted in Figs. 2.6(a) and 2.6(d). However, with the increase of thermophoresis
parameter, the local nanoparticle mass transfer rate decreases. The thermophoresis force is
proportional to the temperature gradient from hot fluid to cold fluid, whereas the Brownian
motion is proportional to the volumetric fraction of nanoparticles in the direction from high
concentration to low concentration. Hence, it is noted that the presence of Brownian motion
enhance the local heat transfer rate, whereas the presence of thermophoresis reduce the local

heat transfer rate, as shown in Fig. 2.6(b).
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2.2.2 Case(b): Mixed Convection

The flow is assumed to be a mixed convection, which arises from both buoyancy forces and

external flow with velocity U,,. We introduce the following non-similarity variables

€= =0 = LR o = rwRel*fg.n),
T—-T, — Poo C—-Cyx
0(6n) = s e = 2 S = o (2.36)

T is the local Reynolds number.

where T = ¢ — 2o and Rez =
v

Substituting Eq.(2.7) and Eq.(2.36) into Egs.(2.2)- (2.5), we obtain the following system

of differential equations:

1 aof' 0
7+ (R+ 5) FI"+ X0+ NcS—Nry)=¢ (f —"; - a—éf ) (2.37)
1 1" / / / 1\ 2 80 af
— N N E = — === 2.
Pr9 +(R+ )f9+ by' 0 + Nt (0')° + Ec(f") §< o€ ag) (2.38)
1, 1 1 Nt , 0y 8f
o7 +<R+2)f7+L Nbe —§< o€ 85 (2.39)
1 1 / ! 65 af
§S —I—( )f8+59 —§( € (%S) (2.40)
hete Fe — ——U% __ig the Eckert number, Res, — 2= is the Reynolds numb
where Ec = Ty — 1) is the Eckert number, Res, = —— is the Reynolds number
based on xy and \ = 7“2 is the mixed convection parameter.
ez
The corresponding non-dimensional boundary conditions become
£ of
, =0, =0,0 =1,
f&m) + (1) o€ f'(&m) =0,0(&m) =
Nby'(§,m) + Ntd'(&,n) =0, S(,n) =1 at n=0 (2.41a)
fi&m =1,00m) =0 (&n)=0,5¢n=0 as n—oo (2.41b)
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quT

local Nusselt number Nuz = m,

The non-dimensional skin friction Cy = U2 ,

local nanoparticle Sherwood number NSh; = an;c and loacl regular sherwood number
_ B¥P o
Shy = Dy (Cf];i oL are given by
Nugz
CsReY? = 2 f"(€,0), R;/Q = —0/(¢,0),
NShy Shy” (2.42)
B2 —7/(£,0), Rl —-5'(£,0)

Results and Discussion

The reduced non-linear partial differential equations (2.37)-(2.40) together with the bound-
ary conditions (2.41) are solved numerically using the Bivariate Pseudo-Spectral Local Lin-
earization Method, as explained in the case (a). In order to validate the generated code, the
present numerical results have been compared with those of Lloyd and Sparrow [56] for the
special case of Nt = 0.0, S = 0.0, Ec = 0.0, Nc = 0.0, Nr = 0.0, S¢c = 1.0, Le = 1.0,
Nb — 0.0 and XA = 0.0. Also, the results of present problem have been compared with those
of Kafoussias [42] for the special of Sc¢ = 0.24, Pr = 0.73, Le = 1.0, Nr = 0.0, Sy = 0.0,
Ec=0.0, Nt =0.0 and Nb — 0.0. It is found that the present results are in good agreement
as shown in Tabs. (2.2) and (2.3). To investigate the effects of Brownian motion parameter
(ND), thermophoresis parameter (Nt), Soret number (S7) and Eckret number (E¢) on the
various profiles and physical quantities in both aiding and opposing flow situations, the com-
putations have been carried out for Nr = 1.0, Ne = 1.0, Pr = 1.0, S¢ = 0.6 and Le = 10.0.

These values are fixed in the present study unless particularly specified.

The distributions of non-dimensional velocity f’, temperature 6, nanoparticle volume
fraction v and regular concentration S, under the influence of Eckert number (Fc¢) and
mixed convection parameter (A), are shown in Figs. 2.7(a)-2.7(d). It is observed that an
increase in the Eckert number leads to increase the velocity in the aiding flow, and decrease
in the opposing flow, as displayed in Fig. 2.7(a). From Fig. 2.7(b), it is noticed that

the fluid temperature increases for both opposing and aiding flows with an increase in Fec.
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Table 2.2: Comparison of —0'(0, 0) for various values of Pr.

| | —/(0, 0) |
Pr Lloyd and Sparrow [56]  Present
0.72 0.2956 0.29563518
10.0 0.7281 0.72814119
100.0 1.572 1.57165763

Table 2.3: Comparison of f”(0,0) and —6'(0,0) for various values of A\ and Ne.

f”(0,0) _0/(070)

A Nc|Kafoussias [42] Present |Kafoussias [42] Present
0.10 0.5 0.5538 0.55394797 0.3296 0.32962694
0.10 1.0 0.6317 0.63189857 0.3404 0.34045600
0.10 2.0 0.7776 0.77789469 0.3589 0.35898224
1.00 0.5 1.4452 1.44516615 0.4129 0.41289888
1.00 1.0 1.5007 1.50072839 0.4179 0.41794525
1.00 2.0 1.6096 1.60970732 0.4274 0.42748233

Figure 2.7(c) reports that the nanoparticle volume fraction increases near to the frustum of
a cone, and decreases far away from the surface, with the increase of Eckert number in both
opposing and aiding flows. However, the regular concentration reduces in both opposing and
aiding flows with the enhancement of Eckert number, as plotted in Fig. 2.7(d). Moreover,
the velocity and nanoparticle volume fraction are more, but the temperature and regular

concentration are less in the aiding flow when compared to that of the opposing flow.

Figures 2.8(a)-2.8(d) exhibit the non-dimensional velocity f’, temperature 6, nanoparticle
volume fraction v and regular concentration S, for different values of the Soret number (St)
in both aiding and opposing flow situations. Figure 2.8(a) reveals that the velocity decreases
in the opposing flow, and increases in the aiding flow with the increase of Soret number. It is
seen from Fig. 2.8(b) that as the Soret number enhances, the temperature diminishes in the
aiding flow, but it enhances in the opposing flow. Figure 2.8(c) shows that the nanoparticle
volume fraction increases for aiding flow, whereas it decreases for opposing flow with the
increase of Soret number. Since, the existence of diffusive flux due to temperature gradient

is known as the Soret effect and it shows that diffusive species along with the higher values
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of Soret number accelerates the concentration. Hence, the regular concentration enhances
with the enhancement of Soret number in both aiding and opposing flows, as depicted in

Fig. 2.8(d).

Considering the aiding and opposing flows, the influence of thermophoresis parameter
(Nt) on the dimensionless velocity f’, temperature ¢, nanoparticle volume fraction v and
regular concentration S, are displayed in Figs. 2.9(a)-2.9(d). The diffusion of nanoparticles
under the influence of a temperature gradient is known as the thermophoresis. When the
thermophoresis parameter increases, the solid nanoparticles in a nanofluid experience a force
which is opposite to the direction of temperature gradient. Hence, increasing values of the
thermophoresis parameter leads to increase the velocity in the case of aiding flow, but it
reduces in the case of opposing flow, as shown in Fig. 2.9(a). With the increase of ther-
mophoresis parameter, the temperature of nanofluid increases in both aiding and opposing
flows, as given in Fig. 2.9(b). Figures 2.9(c) and 2.9(d) reports that the nanoparticle volume
fraction and regular concentration profiles decrease with increasing values of thermophoresis

parameter.

Figures 2.10(a)-2.10(b) explore the effect of Brownian motion parameter (Nb) on the
non-dimensional velocity f’ and nanoparticle volume fraction ~, for both aiding and oppos-
ing flows. It is noticed that an increase in the intensity of Brownian motion parameter leads
to increase the velocity within the momentum boundary layer, in both aiding and oppos-
ing flows. Moreover, an increase in the Brownian motion parameter tends to increase the
nanoparticle volume fraction near to the frustum of a cone and the trend is reversed far away

from the cone for both aiding and opposing flow situations.

Figures 2.11(a)-2.11(d) illustrate the effects of Eckert number (Ec¢) and Soret number
(S7) on the non-dimensional skin friction, local Nusselt number, local nanoparticle and
regular Sherwood numbers, for aiding flow situation (A = 0.5). As a result of Fig. 2.11(a),
the skin friction enhances with an enhancement in the Eckert number. Since the positive
values of Eckert number (Ec¢ > 0) indicates the fluid heating (i.e., heat supplied across
the surface into the fluid region) and hence the temperature increases, and the regular

concentration decreases with the increase of Eckert number. Consequently, the local Nusselt
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number decreases, whereas the local regular Sherwood number increases with increasing
values of Ec¢, as shown in Figs. 2.11(b) and 2.11(d). But, with rising values of Eckert
number, the local nanoparticle Sherwood number reduces, as shown in Fig. 2.11(c). On
the other hand, it is seen that the dimensionless surface drag and local Nusselt number
enhance, whereas the local nanoparticle and regular Sherwood numbers diminish with the
enhancement of Soret number. This is because of the fact that the regular concentration

increases with an additional mass diffusion term in the regular concentration equation.

For opposing flow situation (A = —0.05), the streamwise variations of the above discussed
physical quantities under the influence of Soret and viscous dissipation, are plotted in 2.12(a)-
2.12(d). Figure 2.12(a) reveals that the skin friction reduces with enhancing values of both
Eckert and Soret numbers. From Fig. 2.12(b), it is seen that the temperature decreases
with the increase of Eckert number as well as Soret number. With the increase of both
Eckert and Soret numbers, the local nanoparticle Sherwood number increases as shown in
Fig. 2.12(c). Figure 2.12(d) portrays that the local regular Sherwood number enhances with

the enhancement of Eckert number, but reduces with the increase of Soret number.

The effects of thermophoresis parameter (Nt) and Brownian motion parameter (Nb) on
the dimensionless surface drag, local heat transfer rate, local nanoparticle mass and regular
mass transfer rates over the streamwise coordinate £, for aiding flow situation (A = 0.5),
are depicted in Figs. 2.13(a)-2.13(d). It is seen from these figures that an increase in
thermophoresis parameter strengthens the force acting on the nanoparticles away from the
hot surface of vertical frustum of a cone and thus, the diffusion of nanoparticles rises with
the nanofluid. Therefore, with the increasing values of thermophoresis parameter, the skin
friction and local regular mass transfer rate increase, but the local heat and nanoparticle mass
transfer rates decrease. Figures 2.13(a) and 2.13(d) reveal that the surface drag and local
regular Sherwood number diminish with the enhancement of Brownian motion parameter.
It is also observed from these figures that the local heat transfer rate and local nanoparticle

mass transfer rate increase with the increase of Brownian motion parameter.

Figures 2.14(a)-2.14(d) exhibit the effects of thermophoresis parameter (Nt) and Brow-

nian motion parameter (Nb) on the above mentioned physical quantities, for opposing flow
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situation (A = —0.05). The Brownian motion parameter is attributed as the random motion
of nanoparticles within the base fluid. Further, the diffusion of Brownian motion is always
inversely proportional to the diameter of nanoparticles. From Figs.2.14(a)-2.14(d), it is seen
that the surface drag, local heat transfer rate, local nanoparticle mass and regular mass
transfer rates increase with the increase of Brownian motion parameter. Since, the solid
nanoparticles in a nanofluid experience a force which is opposite to the direction of temper-
ature gradient and hence Nt < 0 represents a hot surface, while Nt > 0 indicates a cold
surface. For a hot surface, thermophoresis tends to blow the nanoparticle volume fraction
away from the surface and it repels the sub-micron sized particles from it, thereby forming
a relative particle-free layer near the surface. As a result, an increase of thermophoresis
parameter leads to decrease the surface drag, local heat, local nanoparticle and regular mass

transfer rates, as displayed in Figs.2.14(a)-2.14(d).
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Figure 2.7: Effects of A and Ec on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume
fraction and (d) Regular concentration for Sy = 1.0, Nt = 0.5 and Nb = 0.2.
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Figure 2.8: Effects of A and St on (a) Velocity, (b) Temperature, (c) Nanoparticle volume

fraction and (d) Regular concentration for Ec = 0.5, Nt = 0.5 and Nb = 0.2.
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Figure 2.9: Effects of A and Nt on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume
fraction and (d) Regular concentration for Ec = 0.5, Sp = 1.0 and Nb = 0.2.

o4



T I T I T I T I
T
101 /@‘ T
/ \\
AN
A
08{
/
!
06 |
/
Pl
044 'II —)\2-0.05, Nb=0.1
| ----1=-0.05,Nb =03

-/ ------ N=-0.05,Nb=09|

024: / [ )\:0.5, Nb=0.1
! ---1=05,Nb=0.3

W/ - \=05,Nb=09
0.0 T 1 1

0 1 2 3 4

Figure 2.10: Effects of A\ and Nb on (a) Velocity and (b) Nanoparticle volume fraction for

Ec=0.5, St =1.0 and Nt =0.5.

0.1

——=-0.05,Nb=0.1
----1=-0.05,Nb=0.3] |
------ A =-0.05,Nb=0.9

————— A=05Nb=01 | |
---1=05,Nb=0.3
------- A=05,Nb=09

95




-1/2
(Re_)
S
~
o
1

NSh
=
S
1

Ec=001,10

0.15- 1
-0.65 T T T T T T T T T T T T T T
0.0 05 10 15 20 0.0 05 10 15 20
¢ ¢
(c) (d)

Figure 2.11: Effects of Ec and St on (a) Skin friction, (b) Heat transfer rate, (c¢) Nanopar-

ticle mass transfer rate, and (d) Regular mass transfer rate (Aiding flow case) for Nt = 0.5
and Nb=0.2.

o6



0.384

0.28 —
0.0 05 10 15 20
¢ ¢
(a) (b)
0.28 T T T T T T T 035 ' ' %
0.30-
0.30- ]
5 032 o [ S
) ~0.251 ]
& v et
0341 g |
C X
1) c
Z 0] 0204 | e ]
0364 S NE N | T
. ----$=10
Ec=0.01,10 :
-0.384 0154 . TR c20 1
T I T I T I T T T T T T T T
0.0 05 10 15 20 0.0 05 10 15 20
¢ ;
(c) (d)

Figure 2.12: Effects of Ec and St on (a) Skin friction, (b) Heat transfer rate, (¢) Nanoparti-
cle mass transfer rate, and (d) Regular mass transfer rate (Opposing flow case) for Nt = 0.5
and Nb=0.2.

o7



45 03—

4.0

0.0 05 1.0 15 2.0

o
o

'‘Nt=04,07 055

S
[hS)
1

.
=
~
1 n
T
1
]
'
]
1

-------------------------------- 0,50

1
o
(o)
L
7
1
’
1

-1/2
)
-1/2
)
o
~
(&3]
1

X
'
X

(Re.

X
e e =
co o @ BB O O o

{

\
(Re.

0.40

Sh.

NSh.

——Nb=0.1 i 0.354

0.30

ro
o
1

0.25

o
o

0.0 05 10 15 20

o
o
o
ol
—
o
—_
ol
[pe)
o

Figure 2.13: Effects of Nt and Nb on (a) Skin friction, (b) Heat transfer rate, (¢) Nanopar-
ticle mass transfer rate, and (d) Regular mass transfer rate (Aiding flow case) for Ec = 0.5
and St = 1.0.

o8



0.7

0.2

0.1

00

o
o

S
[)S)
1

S
~
1

S
>
1 1 1

)—1/2

X
'

(Re_

x
'

=,
s N o [ee)
1 1 1 1 1 1 1

NSh.

!'_\
o
L

A
o o
n 1 n 1 "

o
[N

o
o

Figure 2.14: Effects of Nt and Nb on (a) Skin friction, (b) Heat transfer rate, (c) Nanoparti-

cle mass transfer rate, and (d) Regular mass transfer rate (Opposing flow case) for Ec = 0.5
and St = 1.0.

29



2.3 Conclusions

In this chapter, the non-similarity solution for a nanofluid flow over the vertical frustum
of a cone with Soret and viscous dissipation effects, is obtained in two cases: (a) natural
convection and (b) mixed convection. From this analysis, the following conclusions can be

drawn for both the cases (a) and (b).

An increase in the Eckert number tends to increase the temperature, nanoparticle vol-
ume fraction, local nanoparticle and regular Sherwood numbers, but decrease the regular
concentration and local Nusselt number. Further, the velocity increases in case (a) and aid-
ing flow of case (b), whereas it decreases in opposing flow of case (b). With the increase
of Soret number, the velocity, regular concentration, surface drag and local Nusselt number
enhance, but the temperature, local nanoparticle and regular Sherwood numbers reduce in
case (a) and aiding flow of case (b). The velocity, temperature, surface drag, local Nusselt
and nanoparticle Sherwood numbers show a reverse trend in the opposing flow of case (b).
The velocity, temperature, local Nusselt number and local nanoparticle Sherwood number
increase, but the regular concentration, surface drag and local regular Sherwood number
decrease, with the increase of thermophoresis parameter in case (a) and aiding flow of case
(b). However, with the increase of thermophoresis parameter, the velocity, surface drag, and
local regular Sherwood number depict reverse behavior in opposing flow of case (b). An in-
crease in the Brownian motion parameter, increases the velocity, temperature, nanoparticle
volume fraction, local Nusselt number and local nanoparticle Sherwood number, but reduces
the surface drag and local regular Sherwood number in case (a) and aiding flow of case (b).
Further, the velocity and nanoparticle volume fraction are more, whereas the temperature
and regular concentration are less in the aiding flow of case (b) when compared to those of

opposing flow of case (b).
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Chapter 3

Effects of Double Stratification on
Convective Flow over the Frustum of

a Cone in a Nanofluid Saturated

Non-Darcy Porous Medium !

3.1 Introduction

The study of convective heat and mass transfer in a porous medium arises in various ap-
plications including, pollutant dispersion in aquifers, storage of nuclear waste material, a
heat exchanger placed in a low-velocity environment, solar energy collecting devices, etc.
A detailed review of convective heat and mass transfer in a Darcy and non-Darcy porous
medium can be found in the text books by Ingham and Pop [39], Nield and Bejan [84] and
Vafai [122] (also see the citations therein).

In practical situations, where the heat and mass transfer mechanism takes place simul-

taneously, mainly in porous media applications, it is worth analyzing the effects of thermal

LCase(a): Published in “International Journal of Applied and Computational Mathematics” 3
(2017) 99-113, Case(b): Published in “Journal of Nanofluids” 6 (2017) 971-981
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and solutal stratifications on the convective heat and mass transfer. For example, the ther-
mal stratification and concentration differences of hydrogen and oxygen in lakes and ponds
is one instance that needs examination, as this may directly affect the growth rate of all
cultured species. Several authors have explored the importance of convective transport in
a doubly stratified porous medium due to its immense applications in various fields of sci-
ence and engineering. The effect of double stratification on the natural convective flow of a
nanofluid along a vertical flat plate embedded in a porous medium has been investigated by
Srinivasacharya and Surender [115]. Using Tiwari-Das nanofluid model, Peddisetty [89] dis-
cussed the natural convective flow of a thermally stratified nanofluid along a vertical plate.
Recently, Hayat et al. [34] analyzed the effect of double stratification on a MHD flow of

nanofluid by a stretching cylinder. (For more details, see the references therein).

Survey of the literature reveal that the problem of free and mixed convective flows of a
nanofluid over the vertical frustum of a cone embedded in a doubly stratified porous medium
has not been investigated so far. Hence, the present chapter aims to explore the effects of
thermal and solutal stratifications on the convective flow of a nanofluid over the frustum of
a cone in a non-Darcy porous medium. The effects of pertinent parameters on the physical

quantities are studied, and the results are displayed graphically.

3.2 Mathematical Formulation

Consider a steady, laminar and two-dimensional convective flow of an incompressible nanofluid
over the vertical frustum of a cone embedded in a non-Darcy porous medium. The z-axis is
taken along the surface of a full cone and y-axis is normal to the surface, while the origin O
of the reference system is taken at the vertex of a full cone, as displayed in Fig. (3.1). The
ambient medium is assumed to be linearly stratified with respect to temperature and regular
concentration in the form T (x —x¢) = T 0+ B (z—120) and Coo(z—120) = Cxo 0+ D (2 —20),
where B and D are constants, which are varied to adjust the intensity of stratification in the
medium. The values of T}, and (), are assumed to be greater than the ambient temperature

T o and regular concentration Cw o at any arbitrary reference point in the medium (inside
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Figure 3.1: Physical model and coordinate system

the boundary layer). The nanoparticle volume fraction at the surface and ambient medium
are considered as in the Chapter-2. In addition, the following assumptions are taken into
account: (i) the porous medium is isotropic and homogeneous, (ii) the properties of the fluid
and porous medium are constant except for the density variation required by the Boussinesq
approximation, (iii) the fluid and the porous medium are in local thermodynamic equilib-
rium, and (iv) the fluid flow is moderate and the permeability of the medium is low, so that

the Forchheimer flow model is applicable (See Nield and Bejan [84]).

Under the above assumptions and Oberbeck-Boussinesq approximations, the governing
boundary layer equations for the conservation of mass, momentum, energy, nanoparticle
volume fraction and regular concentration are given by

d(ur) N d(vr)

- T (3.1)

2
Plo (u% + au) _nou + 050 9 (1= o) [Br (T — Toop) + B (C — Cx )] cos A

g2 ox U(?—y g 0y?
b
—(pp = P1) 9(¢ — do) cOS A — Kﬁ (u—Us) — p% (u* = UZ) (3.2)
p p
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or T 9T 06 0T Dy [OT\’
Yor tUay T map Y DBa_ya_Nm(@_y) 43)
09  0¢ ¢  Dr 0°T
or 7Y dy o 9y*  Tuop Oy* 34
oc  aC 9%C
Ua +v _8y = Dg _8y2 (3.5)

where u and v are the Darcy velocity components in x and y-directions, respectively. Further,

¢ is the porosity, b is the empirical constant related to Forchheimer porous inertia term and
K, is the (intrinsic) permeability of the medium.

The corresponding boundary conditions are

0¢p  Dr OT
=0 =0, 7T=T, Dp—+——=0, C=C, t =0 3.6
em e Bay+Too,o dy ooy (3.62)
U=Usx, T=Tx(x—20), ¢ =0, C=Cqx(x—129) as y— o0 (3.6b)

In this chapter also, two types (cases) of problems are considered: (a) free/natural con-

vection and (b) mixed convection.

3.2.1 Case(a): Natural Convection

In this case, the fluid flow is due to buoyancy forces only and hence, the velocity of the outer

flow becomes zero (i.e., Uy, = 0). Introduce the following non-similarity variables

e="" =2 p=2an p=rvGrl'f (e, ),
Zo o i
T —Too(x — 20) ¢ — oo C — Co(r — 10)
9 — e g .
(& n) To—Toy (& n) P S (& m) o= Con (3.7)
Ty — 1— 73 cos A
where Grzy = 95T OO’O)(2 boo)T cOS is the local Grashof number.
v

Using (2.7) and (3.7) in Eqgs.(3.2)-(3.5), we get the following non-dimensional form of the
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governing equations

]‘ " ]‘ " §1/2 !/
gf +5_2( )ff — (f) +0+NcS—Nrvy— Do Criz Grl/Qf
s e 5 Of of .,
1 3 00 8f
=y 2 "L N~ O+ N AV o ‘
5 +<R+4)f9+ by 0+ Nt(0) —e & f = f(faé % ) (3.9)
1 Nt o 0y Of
— = 1
o) (R+ )f T Tens! 5( o o) ) (3:10)
1 3 s  of
— 5" R+-)fS8 - "= '— - =9 3.11
p . BQ?O . . .
where Da = 2 i the Darcy parameter, ¢, = T s the thermal stratification param-
0 w — 4Loo,0
eter, F's = ﬁ is the Forchheimer number, and g5 = A is the solutal stratification
Zo Cw - C’oo,O
parameter.

The boundary conditions (3.6) in terms of f, 6, v and S become

f'(&m) =0, f(&mn) + 7+ ég)gé 0, 0(§,m) =1 —e1& Nby'(§,m) + Nto'(§,m) =0,
4
SEn)=1-e& at n=0 (3.12a)
fi(&m)=0,0(&n) =0,7(&n) =0,5&n) =0 as n—oo (3.12b)

The non-dimensional skin friction C, local Nusselt number Nuz, local nanoparticle Sher-

wood number N Shz and local regular Sherwood number Shz, are given by

, Nug ,
_CG1/4_f/(£ O) G1/4:_8(£70)7
T
NShs Shy' (3.13)
oot = (60, 5 = =560
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Results and Discussion

The coupled non-linear partial differential equations (3.8)-(3.11) along with the boundary
conditions (3.12) are solved numerically using the Bivariate Pseudo-Spectral Local Lineariza-
tion Method, as explained in the previous chapter. In order to validate the code generated,
the results of the present problem have been compared with those of Yih [130], Na and Chiou
[75], Kays and Crawford [49] and Lin and Chen [55] for the special case of Gr = 1.0, ¢ = 1.0,
Fs =10.0, Da = 1.0, ¢y = 0.0 and 5 = 0.0. It is found that they are in good agreement
as shown in Tab. (2.1). To explore the physical significance of non-Darcy parameter (F's),
thermal stratification parameter (1) and solutal stratification parameter (¢2), the computa-
tions have been carried out for Pr = 1.0, S¢ = 0.6, Nt = 0.5, Nb=0.2, Nc = 1.0, Nr = 0.5,
Gr = 5.0, e = 0.5 and Da = 0.1. These values are fixed throughout in this case (a) unless
specified separately.

For various values of Forchhiemer number (F's) and thermal stratification parameter (1),
the non-dimensional velocity f’, temperature #, nanoparticle volume fraction ~, and regular
concentration S, are shown in Figs. 3.2(a)-3.2(d). An increase in thermal stratification
parameter reduces the effective convective potential between the heated surface and the
ambient nanofluid in the medium. This factor leads to decrease the buoyancy force and hence,
decreases the velocity for both Darcy and non-Darcy flows. It is also seen that the velocity
reduces with the enhancement of Forchheimer number, as depicted in Fig. 3.2(a). Since, the
porous medium offers more resistance to the fluid flow and therefore the fluid velocity is less
in the case of non-Darcy porous medium when compared to that of Darcy porous medium.
However, the temperature and nanoparticle volume fraction profiles decrease, whereas the
regular concentration increases with the increase of thermal stratification parameter for
both Darcy and non-Darcy flows. Further, it is noticed from Figs. 3.2(b)-3.2(d) that the
temperature, nanoparticle volume fraction and regular concentration are more in the case of

non-Darcy porous medium when compared to that of Darcy porous medium.

Figures 3.3(a)-3.3(d) exhibit the non-dimensional velocity f’, temperature #, nanoparticle

volume fraction ~, and regular concentration S for various values of the solutal stratification
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parameter (). From Fig. 3.3(a), it is found that the velocity of the fluid flow decreases
with the increase of solutal stratification parameter. But, the temperature increases with
increasing values of the solutal stratification parameter, as plotted in Fig. 3.3(b). With the
increase of solutal stratification parameter, the nanoparticle volume fraction decreases near
to the surface of the vertical frustum of a cone and increases far away from the surface, as
shown in Fig. 3.3(c). From Fig. 3.3(d), it is observed that the regular concentration reduces

with the enhancement of solutal stratification parameter.

Considering the Darcy and non-Darcy porous medium cases, the streamwise distribution
of the surface drag, local Nusselt number, local nanoparticle and regular Sherwood numbers
for various values of the thermal stratification parameter (1), are depicted in Figs. 3.4(a)-
3.4(d). The Forchheimer number represents the inertial drag in a non-Darcy porous medium
and also, it is applicable only for high permeability cases. As F's — 0, the nanofluid sat-
urated non-Darcy porous medium tends to the nanofluid saturated Darcy porous medium.
It is seen from Fig. 3.4(a) that the drag coefficient decreases with the increase of thermal
stratification parameter for both F's = 0.0 and F's = 1.0. Also, the local Nusselt and regular
Sherwood numbers reduces with the enhancement of both Forchheimer number and thermal
stratification parameter, as plotted in Figs. 3.4(b) and 3.4(d). As the thermal stratification
parameter enhances, the local nanoparticle Sherwood number is also enhances in both Darcy
and non-Darcy porous media, as shown in Fig. 3.4(c). Moreover, the surface drag, local Nus-
selt and regular Sherwood numbers are less and, the local nanoparticle Sherwood number is

more in the non-Darcy porous medium as compared with those of the Darcy porous medium.

Figures 3.5(a)-3.5(d) display the streamwise distribution of the surface drag, local Nus-
selt number, local nanoparticle and regular Sherwood numbers in the presence of solutal
stratification (e9). From Fig. 3.5(a), it is observed that the drag coefficient reduces with
the enhancement of solutal stratification parameter. It is also noticed that the local Nus-
selt number decreases, whereas the local nanoparticle Sherwood number increases with the
increase of solutal stratification parameter, as displayed in Figs. 3.5(b) and 3.5(c). How-
ever, the local regular Sherwood number decreases with the increase of solutal stratification

parameter, as shown in Fig. 3.5(d).
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Figure 3.2: Effects of F's and 1 on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume
fraction, and (d) Regular concentration for e5 = 0.05.
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3.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convection, which arises from an external flow with the

velocity U, and buoyancy forces. we introduce the following dimensionless variables

T Tr—x T—-—T.(x—=x
f= Lo TTT0 YRy~ uRef (), () = (£ —20)
Zo Zo x Tw_ 00,0
_¢_¢oo _C_Coo($—$0>
v(&m) = . , S(&m) = Co = Con (3.14)

Using (2.7) and (3.14) in Egs.(3.2)-(3.5), we get the following momentum, energy, nanopar

ticle volume fraction and regular concentration equations

%f,,, > (R+ > fI" 4280+ NeS = Nroy) + 5= (1= f)
+Eg( ) 5( 3_?_2_? ”> (3.15)
o (R ) N 0N @ e = (PR - S) )
wr(Res) g -g) e
%su( )fS’—ff ¢ —§<f 3% - 555 ) (3.18)
where Rey, = —= %0 is the Reynolds number based on zp, and A = Z is the mixed

o
convection parameter.

The boundary conditions (3.6) in terms of f, 6, v and S become

)
f(&m) =0, f(&n)+ (Ri%)a—g =0,0(n) =1—-e1& Nbv'(&n) + Nto'(&,n) =0,
SEn)=1—e& at n=0 (3.19a)
f&n) =10(&n) =0,7v¢&n)=0,5¢&n)=0 as n— o0 (3.19b)
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The non-dimensional skin friction C, local Nusselt number Nuz, local nanoparticle Sher-

wood number N Shz and local Sherwood number Shyz, are given by

1 Nux /
C Re 1/2_f (5 O) R 1/2 = —0 (€a0)7
(A
NShf Shy® (3.20)
@: 7'(£,0), Tl —5'(&,0)

Results and Discussion

The reduced system of non-linear partial differential equations (3.15)-(3.18) together with the
boundary conditions (3.19) is solved numerically using the Bivariate Pseudo-Spectral Local
Linearization Method, as discussed in the Chapter-2. In order to validate the generated code,
for the special case of Nc = 0.0, Nr = 0.0, Re = 200.0, ¢ = 1.0, A = 1.0, Sc = 1.0, Le = 1.0,
Da = 1.0, Nt =0.0, Nb — 0.0, F's = 0.0, ¢, = 0.0 and €5 = 0.0, the results of the present
problem have been compared with those of Lloyd and Sparrow [56] and it is found that they
are in good agreement as shown in Tab. 2.2. To explore the effects of Forchheimer number
(F's), thermal stratification parameter (g1) and solutal stratification parameter (¢2) on the
physical quantities of the flow, heat and mass transfer characteristics, the computations have
been carried out for both aiding and opposing flow situations by taking Pr = 1.0, Sc = 0.6,
Le =10.0, Ne = 1.0, Nr = 0.5, Re = 200.0, ¢ = 0.8, Da = 0.5, Nt = 0.5 and Nb = 0.2.

Figures 3.6(a)-3.6(b) explore the influence of thermal stratification parameter (¢;) on the
dimensionless velocity f’ and temperature 6 for aiding flow, whereas these results in the
case of opposing flow are displayed in Figs. 3.7(a)-3.7(b). Figures 3.6(a) and 3.7(a) reveal
that the velocity decreases with the increase of thermal stratification parameter for aiding
flow, but it increases for opposing flow. As the thermal stratification parameter enhances,
the temperature reduces in both the aiding and opposing flows as given in Figs. 3.6(b) and
3.7(b).

The effect of solutal stratification parameter (g2) on the non-dimensional velocity f’
and regular concentration S in the case of aiding flow, are exhibited in Figs. 3.8(a)-3.8(b),

whereas these results in the case of opposing flow are shown in Figs. 3.9(a)-3.9(b). An
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increase in the solutal stratification parameter leads to decrease the velocity in aiding flow,
but it increases in opposing flow [see Figs. 3.8(a) and 3.9(a)]. However, the regular concen-
tration reduces with the increase of solutal stratification parameter in both the aiding and

opposing flows, as interpreted in Figs. 3.8(b) and 3.9(b).

Figures 3.10(a)-3.10(d) show the influence of Forchhiemer number (F's) on the non-
dimensional velocity f’, temperature 6, nanoparticle volume fraction v, and regular con-
centration S for aiding flow, whereas these results in opposing flow are explored in Figures
3.11(a)-3.11(d). As the non-Darcy parameter increases, the porous medium offers more resis-
tance to the fluid flow and hence, the velocity is more in the non-Darcy porous medium (Fs
= 0.5) when compared to that of the Darcy porous medium (Fs = 0.0), for both aiding and
opposing flows. The temperature decreases with the increase of Forchhiemer number in both
aiding and opposing flows, as exhibited in Figs. 3.10(b) and 3.11(b). As the Forchhiemer
number rises, the nanoparticle volume fraction increases for aiding and opposing flows, as
given in Figs. 3.10(c) and 3.11(c). For aiding and opposing flows, the regular concentra-
tion decreases with the increase of Forchhiemer number, as portrayed in Figs. 3.10(d) and

3.11(d).

Figures 3.12(a)-3.12(d) illustrate the variations of non-dimensional surface drag, local
Nusselt number, local nanoparticle and regular Sherwood numbers over the streamwise co-
ordinate £, in the presence of thermal stratification parameter for both aiding and opposing
flow situations. Here €; = 0.0 represents the ambient medium with no thermal stratification
(i.e., the isothermal surface case). It can be seen from Fig. 3.12(a) that the surface drag
coefficient decreases with the increase of thermal stratification parameter in the aiding flow
whereas, it increases in the opposing flow. It is known that the presence of stable thermal
stratification decreases the temperature differences between a surface of the frustum of a
cone and surrounding nanofluid. Hence, a rapid increase in the local Nusselt number is
found with increasing values of thermal stratification parameter for opposing flow, and a
reduction is noticed for aiding flow as shown in Fig. 3.12(b). As the thermal stratification
parameter rises, the local nanoparticle Sherwood number rises and the local regular Sher-

wood number falls in the aiding flow, whereas an opposite trend is observed in the opposing
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flow, as depicted in Fig. 3.12(c)- 3.12(d). Moreover, the surface drag, local Nusselt and
regular Sherwood numbers are more in the case of aiding flow as a comparison with those of

opposing flow.

The streamwise distributions of dimensionless surface drag, local Nusselt number, local
nanoparticle and regular Sherwood numbers for various values of the solutal stratification
parameter for both aiding and opposing flow cases, are displayed in Figs. 3.13(a)-3.13(d).
Here g5 = 0.0 represents the ambient medium with no solutal stratification (i.e., the uniform
wall concentration case). It is observed from Fig. 3.13(a) that the surface drag enhances
with enhancing values of the solutal stratification parameter for opposing flow, whereas it
diminishes in the aiding flow. Figure 3.13(b) illustrates that as the solutal stratification pa-
rameter increases, the local Nusselt number increases in case of the opposing flow, whereas
it decreases in aiding flow case. The local nanoparticle Sherwood number increases, but
the local regular Sherwood number decreases, with an increase in the solutal stratification
parameter for aiding flow. But, an opposite trend is noticed for opposing flow, as shown
in Figs. 3.13(c) and 3.13(d). The results under the influence of both thermal and solutal
stratifications are due to the less temperature and concentration at the surface of the frus-
tum of a cone compared those at the ambient medium. Consequently, an expansion in the
double stratification parameters £ and €5 causes a reduction in the local Nusselt and regular

Sherwood numbers for aiding flow.

For aiding and opposing flows, the streamwise distributions of the non-dimensional sur-
face drag, local Nusselt number, local nanoparticle and regular Sherwood numbers under
the influence of non-Darcy parameter are exhibited in Figs. 3.14(a)-3.14(d). The surface
drag coefficient in the case of non-Darcy porous medium (F's # 0) is higher than the case
of Darcy porous medium (F's = 0) for both opposing and aiding flows. Also, it increases
with the increase of non-Darcy parameter, as plotted in Fig. 3.14(a). As the non-Darcy
parameter enhances, the local Nusselt number enhances in both the aiding and opposing
flows, but the local Nusselt number in aiding flow is higher than that of the opposing flow,
as shown in Fig. 3.14(b). It is noted from Fig. 3.14(c) that the local nanoparticle Sherwood

number diminishes with the enhancement of non-Darcy parameter. Further, Fig. 3.14(d)
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reveals that the local regular Sherwood number increases with the increase of non-Darcy
parameter. Moreover, the local nanoparticle Sherwood number is more in the opposing flow,

whereas the local regular Sherwood number is more in the aiding flow.

76



and g9 = 0.1.
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Figure 3.6: Effect of €1 on (a) Velocity and (b) Temperature (Aiding flow case) for F's = 0.5
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Figure 3.8: Effect of 5 on (a) Velocity and (b) Regular Concentration (Aiding flow case) for
Fs=0.5ande; =0.1.
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Figure 3.9: Effect of e5 on (a) Velocity and (b) Regular Concentration (Opposing flow case)
for Fs =0.5 and ¢; = 0.1.
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3.3 Conclusions

The natural and mixed convective transport over the vertical frustum of a cone embed-
ded in a porous medium saturated by a nanofluid is, analyzed in this chapter. From this

computational analysis, the following conclusions are drawn for both case (a) and case (b):

An increase in the thermal stratification parameter reduces the velocity, temperature,
local Nusselt and regular Sherwood numbers, but increases the regular concentration and
local nanoparticle Sherwood number in case (a) and aiding flow of case (b). However, the
velocity, local Nusselt number, and local Sherwood numbers show an opposite trend in the
opposing flow case (b). The higher values of the solutal stratification parameter results in
a lower velocity, regular concentration, local Nusselt number and local regular Sherwood
number, and higher local nanoparticle Sherwood number in case (a) and aiding flow of case
(b). An increase in F's leads to decreases the velocity, surface drag, local Nusselt number
and local regular Sherwood number, but increases the temperature, regular concentration
and local nanoparticle Sherwood number in case (a). These profiles and physical quantities
show a reverse trend in case (b). Moreover, the surface drag, local Nusselt number, and
local regular Sherwood number are high in the aiding flow when compared to those of the

opposing flow.
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Chapter 4

Effect of Arrhenius Activation Energy
with Binary Chemical Reaction on

Convective Flow of a Nanofluid with

Convective Boundary Condition !

4.1 Introduction

The analysis of mass transfer with Arrhenius activation energy and binary chemical reaction
has been gained a lot of attention due to its immense applications in chemical engineering,
cooling of nuclear reacting, oil reservoir, geothermal engineering, etc. But, very few studies
have been reported in the literature to examine the boundary layer flows in the presence of
Arrhenius activation energy with binary chemical reaction (see Awad et al. [6], Shafique et

al. [108], Mustafa et al. [73]).

The effect of thermal radiation on the fluid flow and heat transfer has significant ap-

plications in the design of many advanced energy conversion systems operating at high

!Case(a): Published in “International Journal of Chemical Reactor Engineering” 16(3) (2017)
DOL: 10.1515/ijcre-2016-0188, Case(b): Accepted in “Advanced Science, Engineering and Medicine”
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temperature. The thermal radiation occurs because of the emission by the hot walls and
working fluid. Hence, several investigations have been carried out on the natural and mixed
convective flows of different fluids under the influence of thermal radiation. Merely, it is
essential to study the effect of thermal radiation due to its relevance to various applications
involving high temperatures such as nuclear power plant, gas turbines missiles, satellites,

space vehicles, and aircrafts, etc.

Convective boundary condition plays a vital role in the analysis of heat transfer, due
to diverse engineering and industrial applications such as the transpiration cooling process,
textile drying, laser pulse heating, etc. In this mechanism, heat is supplied to the convecting
fluid through a bounding surface with a finite heat capacity. Noghrehabadi et al. [86] inves-
tigated the role of slip velocity and convective surface boundary condition on the convective
flow of a nanofluid along a stretching surface. Recently, the combined effects of convective
and diffusive boundary conditions on the natural convective flow of a dilatant nanofluid over
the vertical full cone/vertical flat plate in a Darcy porous medium has been analyzed by

Uddin et al. [121] (For more details, see the references therein).

In this chapter, the effects of thermal radiation and Arrhenius activation energy with
binary chemical reaction on the convective flow of a nanofluid over the vertical frustum of a
cone under the convective boundary condition, are studied. The Rosseland approximation
is considered to investigate the effect of thermal radiation. The governing coupled and non-
linear partial differential equations are solved by using a Bivariate Pseudo-Spectral Local
Linearization Method. The influence of various physical parameters on the nanofluid flow

with heat and mass transfer characteristics, are examined and displayed graphically.

4.2 Mathematical Formulation
Consider a laminar, steady and two dimensional flow of an incompressible nanofluid over the

vertical frustum of a cone. The origin O of the coordinate system is placed at the vertex

of a full cone, where z-axis is taken along the surface of the cone measured from the origin
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Figure 4.1: Physical model and coordinate system

and y-axis is normal to the surface [see Fig. (4.1)]. The temperature difference between the
surface and the medium is assumed to be large, so that the convection region is thick. The
fluid is considered to be a gray, absorbing and emitting radiation, but non-scattering medium
and the Rosseland approximation is used to describe the radiative heat flux in the energy
equation. Assume that the velocity of the outer flow is U,,. The temperature, nanoparticle
volume fraction, and regular concentration of the ambient medium are assumed to be T,
0o and Cy, respectively. The surface of the vertical frustum of a cone is either cooled or
heated by convection from a fluid of temperature T with Ty < T (cooled surface) and
Ty > T, (heated surface), respectively. The surface of the vertical frustum of a cone is held

at uniform regular concentration C,,,.

By employing Oberbeck-Boussinesq approximation and making use of the standard bound-
ary layer assumptions, the governing equations for the nanofluid flow over the vertical frus-

tum of a cone are given by

d(ur) N d(vr)

- 5y =" (4.1)
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where k* is the Rosseland mean absorption coefficient, o* is the Stefan Boltzmann constant,
K? is the rate of chemical reaction, (%)n e*1" is the modified Arrhenius function in which

k is the Boltzmann constant and n is the rate of exponent fitted constant (—1 < n < 1).

The associated boundary conditions are

) oT 06  DroT _ _
u=0, v= k:ay—hf( -T), DB@ +T 3y 0,C=C, at y=0 (4.6a)
U=Uyg, T =Ty, ¢ =, C=Cyx as y— o0 (4.6b)

where hy is the coefficient of convective heat transfer.

In this chapter also, two types (cases) of problems are considered: (a) free/natural con-

vection and (b) mixed convection.

4.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection which is caused by buoyancy forces only with-
out any external agent, and hence the velocity of the external flow becomes zero i.e., Uy, = 0.

Now, we introduce the following non-similarity variables

=TI T Gl G ),

Zo Zo
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T —Th
Ty — Tw,

¢ — Poo  C—Cy
e ,5(§;n)—m

0 n) =

(& n) = (4.7)

Using (2.7) and (4.7) in Eqgs.(4.2)-(4.5), we get the following dimensionless equations

m § //_1 2 . _ /8_f/_8_f 1"
f +(R+4 ff 2(f) +0+ NcS—Nry=¢£ o€ o (4.8)
1 4 3 00  of
- 1 - " e ! N ! nl N N2 _ 17 ZJ ol 4.
Pr<+3Rd)9+(R+4>f9+ by 0"+ Nt (¢) f( 9 859) (4.9)
L 3 / 1 Nt / /ary 8f /
— - —— 0 = — - = 4.1
Le | +(R+4>f’y+Ler6 f(faf 857) (4.10)
is”_,_ R+§ fS - £ 1/2A2(1+n(59)e_lft595—£ lﬁ—%sl (4.11)
Se 4 Gr N oE o€ '
* 13
where Rd = 42 ]5"0 is the thermal radiation parameter, A = KZ—/J;O is the rate of chemical
v
reaction, 0 = I 2% i the temperature relative parameter and £ = —— is the Arrhenius

[ee] o0
activation energy parameter.

The boundary conditions (4.6) in terms of f, , v and S become

§ of

/ _ A / _ _Ricl/ _
f(&mn) =0, f(S,n)+—(R+%) 96 =0,0(&n) =—-Bi* [1-0(¢ ),
Nb~'(€m) + Nto'(§,n) =0, S&n) =1 at n=0 (4.12a)
f(€n) =0,00¢n) =0,v&mn) =0,5&mn) =0 as n—oo (4.12b)

The shear stress, local heat flux, local nanoparticle and regular mass fluxes are defined

as

T 4 *
e 5] ek () e T -sny)|
y=0

dy oy 3kk* Oy =0
0 oC
gn = —Dp {ﬁ} and ¢, = —Dg [—} (4.13)
ay y=0 ay y=0
» o : : el 27y
The quantities of physical interest are the non-dimensional skin friction C'y = P the
Pfools
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qQu T . Gn T
Nusselt number Nuz; = ——————, the nanoparticle Sherwood number NSh; =
k(Ty —T) P B Dp ¢
and the regular Sherwood number Shz = Ds (Cq;nf oy are given by
Nug 4
06/t =26, 0), S~ |1+ Lrd] 6. 0)
Grs ’ (4.14)
NShy Shz '
?%/4 =—'(£ 0), w =-5'(¢, 0),
_3 _ _
where Grz = T g Br (Ty = Too) (1= foo) c0S A is the local Grashof number.

2

Results and Discussion

The reduced governing Eqs. (4.8)-(4.11) along with the boundary conditions (4.12) are solved
numerically using the Bivariate Pseudo-Spectral Local Linearization Method, as explained in
the case (a) of Chapter-2. In order to assess the accuracy of the generated code, for Rd = 0.0,
Ec = 0.0, A = 0.0 and Bi — oo, the results of the present problem have been compared
with those of Na and Chiou [75], Kays and Crawford [49], Lin and Chen [55] and Yih [130]
and found to be a good agreement, as shown in Tab. (2.1). The investigation is carried out
to analyze the effects of Arrhenius activation energy (£), thermal radiation parameter (Rd),
Biot number (Bi), chemical reaction rate constant (A), temperature relative parameter (¢)
and exponent fitted rate constant (n), for fixed values of N¢c = 1.0, Nr = 0.5, Sc = 0.6, Pr =
1.0, Le = 10.0,Gr = 5.0, Nt = 0.5 and Nb = 0.2.

The set of Figs. 4.2(a)-4.2(d) is prepared to explore the effects of Arrhenius activation
energy (F) and Biot number (B7) on the dimensionless velocity f’, temperature ¢, nanopar-
ticle volume fraction 7, and regular concentration S. The Arrhenius activation energy is the
minimum energy that required to start a chemical reaction. It can also be defined as the
height of potential barrier (energy barrier) dividing two minima of potential energy of the
products and reactants in a reaction. For a reasonable rate of chemical reaction, there must

be some molecules with energy greater than or equal to the activation energy. It is evident
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from Fig. 4.2(a) and Fig. 4.2(b) that the increasing value of activation energy leads to
increase the momentum boundary layer thickness and decrease the thermal boundary layer
thickness. The nanoparticle volume fraction enhances with the enhancement of activation
energy, as shown in Fig. 4.2(c). But, the improving value of activation energy (F) leads to
decrease \2 ¢ T4 as well as, enhances the regular concentration profile within the boundary
layer. Further, the ratio of the internal thermal resistance of a solid to the boundary layer
thermal resistance is defined as the Biot number (Bi). For Bi = 0, the vertical frustum of a
cone surface is insulated, and therefore the surface is maintained at high thermal resistance,
and no heat transfer to the cold fluid take places on the upper part of the surface. For
Bi — 00, the convective boundary condition reduces into an isothermal boundary condition
(i.e., wall condition). It is seen from Figs. 4.2(a)-4.2(c) that the non-dimensional veloc-
ity, temperature, and the regular concentration profiles enhance but, the non-dimensional
nanoparticle volume fraction reduces near to the surface of the frustum of a cone with an

increase of the Biot number.

Figures 4.3(a)-4.3(d) show the non-dimensional velocity f’, temperature 6, nanoparticle
volume fraction «, and regular concentration S under the influence of thermal radiation
parameter (Rd) and rate of chemical reaction (A). With the increase of radiation parame-
ter, the velocity and temperature distributions increase within the corresponding boundary
layers, and the maximum velocity is noticed near to the surface of frustum of a cone. The
boundary layer thickness of nanoparticle volume fraction enhances near to the surface and
diminishes far away from the surface with an enhancing values of the radiation parameter.
However, the regular concentration boundary layer thickness decreases with an increase of
radiation parameter. Further, increasing the rate of chemical reaction reduces the momen-
tum and nanoparticle boundary layer thickness, as shown in Figs. 4.3(a) and 4.3(c). It is
also seen from Figs. 4.3(b) and 4.3(d) that the regular concentration distribution decreases,

whereas the temperature distribution increase with an increase in chemical reaction rate.

The influence of temperature relative parameter (0) and exponent fitted rate constant
(n) on the distribution of velocity f” and regular concentration S, are given in Figs. 4.4(a)-

4.4(b). The distribution of velocity and regular concentration profiles decrease with the
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increase of exponent fitted rate constant and temperature relative parameter. The effects of
Arrhenius activation energy (E) and Biot number (B7) on the non-dimensional surface drag,
local Nusselt, local nanoparticle Sherwood number and local regular Sherwood number are,
presented in Figs. 4.5(a)-4.5(d). Figure 4.5(a) reveals that the drag coefficient increases with
an increase of activation energy parameter, and a huge increment is noticed for Bi = 1.0.
The regular Sherwood number diminishes with an increase of activation energy parameter,
whereas it enhances with an increase of Biot number, as plotted in Fig. 4.5(d). As activation
energy parameter increases, the local Nusselt number increases, but the local nanoparticle
Sherwood number decreases. This variation is negligible for the case of Bi = 0.1 (i.e., non-
isothermal surface), as shown in Figs. 4.5(b) and 4.5(c). It is interesting to note that, the
drag coefficient, local Nusselt number, and local regular Sherwood number along the vertical
plate (i.e.,& = 0) are lower when compared to those of the full cone (i.e., £ — c0). Whereas,
the local nanoparticle Sherwood number along the vertical plate is higher than the case of

full cone.

The influence of thermal radiation (Rd) and chemical reaction rate constant (A) on the
dimensionless surface drag, local Nusselt number, local nanoparticle and regular Sherwood
numbers over the vertical frustum of a cone, are displayed in Figs. 4.6(a)-4.6(d). With the
rise of thermal radiation parameter, a considerable increment is noticed in the all above
mentioned physical quantities along &, as shown in Figs. 4.6(a)-4.6(d). The reason for
above change is that the large values of thermal radiation parameter will produce a large
amount of heat to the fluid medium. Then, the fluid medium enhances the fluid motion
along the frustum of a cone surface. So that the thermal radiation can be used as a heat
source and consequently, the velocity, temperature, nanoparticle volume fraction and regular
concentration profiles increase. Further, the presence of chemical reaction rate reduces the
drag coefficient and local Nusselt number while the reverse trend is noticed for both local
nanoparticle and regular Sherwood numbers. Furthermore, the surface drag, local Nusselt
number and local regular Sherwood number across the full cone problem (i.e.,{ — 00)
are higher than those of the vertical plate problem (i.e.,£ = 0), whereas the nanoparticle

Sherwood number shows an opposite behavior.
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The effects of temperature relative parameter (§) and exponent fitted rate constant (n)
on the surface drag and local regular Sherwood number, are given in Figs. 4.7(a)-4.7(b).
The drag coefficient diminishes with enhanced values of exponent fitted rate constant and

temperature relative parameter, whereas the local Sherwood number shows a reverse trend.
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Figure 4.2: Effects of Bi and E on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume
fraction, and (d) Regular concentration for Rd = 1.0, A = 1.0, 6 = 1.0 and n = 0.5.

94



0.8

0.6
0.5
9 0.4

0.3+

074

0.2 -
0.1 4
0.0
0 8
1.0 I . I T
—Rd=0.1
----Rd=05
ogd4tVv == Rd=1.0 i
0.6 i
S
041 %\ ]
A\ A=00,20
‘.\‘ N \
N \

——Rd=01] | 0] LN l

----Rd=05 NN

------ Rd=10

. 00 . Bl
0 2
0 2 N 4 6
(c) (d)
Figure 4.3: Effects of A and Rd on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume

fraction, and (d) Regular concentration for E = 1.0, Bi = 1.0, § = 1.0 and n = 0.5.



Figure 4.4: FEffects of 6 and n on (a) Velocity and (b) Regular concentration for E =
Bi=1.0, A=1.0 and Rd =1.0.
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4.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convection, which arises from an external flow with velocity

U and buoyancy forces. We introduce the following non-similarity variables

_ T _xz—% Y 1/2 :T T,
f— To Zo ) 77 TRef ) rVRef f(fﬂ?)v 9(6777) Tf _Too7
¢ — oo C—-Cx
= =—>= 4.1
v (&n) P S (&) C —C. (4.15)

Using (2.7) and (4.15) in Eqs.(4.2)-(4.5), we get

f/l/ _|_ (

l\')l}—t

)ff”+)\§(9+NcS Nrey) = §<f’%—%f”> (4.16)

1 4 , . , ,00 8f
,0 0
=7 <R+ )f gl +—L1 —]]\V[Z 0”25( —az —a‘gv’) (4.18)

L o 1 ’ § 2 _1-«—% _ /@_ﬁ /
§S ‘l‘(R‘Fé)fS—(E)A(l—FTL(S@)B S—f( 85 865’) (419)

The associated boundary conditions (4.6) become

Fem =0, fem+ 0 (e = —Bie 1 - o).
(R+1) o€
Nb~'(&,n)+ Ntd'(E,n)=0,S&n)=1 at n=0 (4.20a)
f&n) =100&n)=0,v&n)=0,5&n=0 as n— o0 (4.20b)

The physical quantities of interest in real life applications are the local skin friction Cf,

local Nusselt number Nuz, local nanoparticle Sherwood number N Shz and local Sherwood
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number Shz, are given by

Oy Relf* =26.0), 255 = = |14 3 R #1(6.0),
% k (4.21)
NShy Shy , '
R —'(£,0), Rl —S'(€,0)

Results and Discussion

As in the previous case, here also the non-linear partial differential equations (4.16) - (4.19)
along with the boundary conditions (4.20) are solved numerically using the Bivariate Pseudo-
Spectral Local Linearization Method. In the special case of Rd = 0.0, A = 0.0, Re = 2.0,
A=10,FE=10,6=1.0,n=0.5and Bi — oo, the results of the present problem have been
compared with those of Lloyd and Sparrow [56] and found that they are in good agreement
[see Tab. 2.2]. To examine the effects of thermal radiation (Rd), Arrhenius activation
energy (FE), Biot number (Bi) and chemical reaction rate constant (A), computations have
been carried out for Ne¢ = 1.0, Nr = 0.5, 5S¢ = 0.6, Pr = 1.0, Le = 10.0, Re = 2.0, Nt =
0.5,Nb=0.2,0 = 1.0 and n = 0.5.

The effects of Biot number (Bi) and thermal radiation (Rd) on the non-dimensional
velocity f’, temperature 6, nanoparticle volume fraction 7, and regular concentration S, are
depicted in Figs. 4.8(a)-4.8(d) for aiding flow (A = 0.5) and opposing flow (A = —0.05)
at £ = 1.5. The Biot number is characterized as the ratio between the internal thermal
resistance of a solid and the thermal resistance of a boundary layer. When Bi = 0, the
surface of a frustum is completely insulated, and there is no heat transfer from the cold fluid
to the surface. From Fig. 4.8(a), it is noticed that the thickness of momentum boundary layer
increases, as Rd increases for both aiding and opposing flow cases. But, the enhancement
of Biot number accelerates the flow velocity for aiding flow and decelerates for opposing
flow. It is seen that the thermal boundary layer thickness increases with increasing values
of thermal radiation and Biot number for both opposing and aiding flows, as plotted in Fig.
4.8(b). Figure 4.8(c) demonstrates that the nanoparticle volume fraction increases with the

increase of Rd, whereas decreases with an increase of Bi, for both aiding and opposing flows.
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For opposing and aiding flow cases, rising values of thermal radiation parameter and Biot

number leads to reduce the regular concentration, as given in Fig. 4.8(d).

Figures 4.9(a)-4.9(b) represent the dimensionless velocity f” and regular concentration
S under the combined effects of chemical reaction constant (A) and Arrhenius activation
energy (FE) for both aiding flow (A = 0.5) and opposing flow (A = —0.05) at & = 1.5. As the
Arrhenius activation energy parameter increases, the thickness of momentum boundary layer
increases for aiding flow and decreases for opposing flow. An increasing value of activation
energy parameter causes to decrease A2¢7550 and therefore the regular concentration profile
increases for both the aiding and opposing flows. However, an opposite behavior is observed

for chemical reaction rate parameter, as plotted in Fig. 4.9(b).

For aiding flow case (A = 0.5), the effects of thermal radiation and Biot number on the
streamwise distribution of surface drag, local Nusselt number, local nanoparticle and regular
Sherwood numbers, are depicted in Figs. 4.10(a)-4.10(d). With the increase of thermal
radiation parameter, the surface drag, local Nusselt number, local nanoparticle and regular
Sherwood numbers increase. For large values of Rd, thermal radiation produces a high
temperature. Therefore it can be used as a source of heat, and subsequently it enhances
the quantity of heat added to the fluid medium and the fluid motion along the surface of
the frustum of a cone. As Biot number enhances, the non-dimensional surface drag, local
Nusselt and regular Sherwood numbers enhance, whereas the local nanoparticle Sherwood
number diminishes, as shown in Figs. 4.10(a)-4.10(d). By this study, it is noted that the
surface drag, local Nusselt and regular Sherwood numbers over the full cone (i.e.,§{ — 00)

are higher than those of a vertical plate (i.e.,£ = 0).

For opposing flow case, (A = —0.05), the streamwise distribution of surface drag, lo-
cal Nusselt number, local nanoparticle and regular Sherwood numbers under the combined
effects of Biot number and thermal radiation, are exhibited in Figs. 4.11(a)-4.11(d). It
indicates that the local Nusselt number, local nanoparticle and regular Sherwood numbers
increase, but the surface drag decreases with the increase of thermal radiation parameter.
As Biot number rises, the surface drag and local nanoparticle Sherwood number diminish,

whereas the local Nusselt and regular Sherwood numbers enhance. Moreover, the local Nus-
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selt and Sherwood numbers over the full cone (i.e.,{ — oo) are higher than those of a
vertical plate (i.e.,£ = 0), as shown in Figs. 4.11(a)-4.11(d). From the above discussion, it is
remarked that the presence of convective boundary condition and thermal radiation highly

influences the local Nusselt and Sherwood numbers for opposing and aiding flows.

Figures 4.12(a)-4.12(b) and 4.13(a)-4.13(b) explore the impact of Arrhenius activation
energy and rate of chemical reaction parameters on the dimensionless surface drag and local
regular Sherwood number for aiding and opposing flow cases, respectively. The surface
drag coefficient increases for aiding flow and decreases for opposing flow with an increase of
Arrhenius activation energy parameter. As the chemical reaction rate parameter rises, the
surface drag enhances for opposing flow and reduces for aiding flow. But, the local regular
Sherwood number decreases with £ and increases with A for both aiding and opposing flows,

respectively.
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Figure 4.8: Effects of Bi and Rd on (a) Velocity, (b) Temperature, (c) Nanoparticle volume
fraction, and (d) Regular concentration for A = 1.0, § = 1.0, n = 0.5 and E = 1.0.

104



11 T T T T T T T T T 1.0 S e I

1.0 S - ——1=05,E=00 | |
| P - ] 0'9_ .‘ ----A=05E=10 | |
094 7 0 / 1 o b \=05E=20 | 4
08 7/ AV ] A \=-0.05,E=00]
7 ,/I V// /\‘< | 0.7 \\\ --=--2=-0.05 E=1.0|
07 f / 1 el il B A=-005,E=20
0.6 ; 1 1
oo 1 S05-
05- : 1
0.4 4 —1=05E=00 | - ]
03] 7 - A=05,E510 | ] 03
] / ------ A=05E=20 | | 1
21l /£ - r=-005E=00 | 027
01_‘ -----2=-0.05E=1.0 _ 0.1-
72, S A=-0.05,E=20] ] ]
0.0 T T T T T T T T T 0.0
0 1 2 3 4 5 0
n
(a)

Figure 4.9: Effect of A and E on (a) Velocity and (b) Regular concentration for Rd = 1.0,
0=1.0,n=0.5 and Bi =1.0.
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Figure 4.13: Effects of A and E on (a) Skin friction and (b) Regular mass transfer
(Opposing flow case) for Rd = 1.0, 6 = 1.0, n = 0.5 and Bi = 1.0.
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4.3 Conclusions

In this chapter, the influence of thermal radiation and Arrhenius activation energy with
binary chemical reaction on the convective flow of a nanofluid over the vertical frustum of a
cone in the presence of convective boundary condition, is studied. The resulting equations are
solved numerically by employing the Bivariate Pseudo-Spectral Local Linearization Method.

The main findings are summarized as follows:

As activation energy parameter F increases, the velocity and regular concentration in-
crease but the temperature and regular Sherwood number decrease in both case (a) and case
(b). However, the drag coefficient increases in case (a) and aiding flow of case (b), whereas it
decreases in opposing flow of case (b). The higher values of thermal radiation parameter Rd
results in a higher velocity, temperature, local Nusselt and Sherwood numbers, but a lower
regular concentration for both case (a) and case (b). Further, the temperature, local Nus-
selt and regular Sherwood number enhance, whereas the distribution of nanoparticle volume
fraction, local nanoparticle Sherwood number diminish with an enhancement of Rd. The
temperature, local heat and regular mass transfer rates enhance, whereas the nanoparticle
volume fraction and local nanoparticle mass transfer rate reduce with the enhancement of
Biot number in both the cases (a) and (b). But, the velocity and surface drag increase, and
regular concentration decreases in free convective flow and aiding flow of case (b), whereas
they show reverse trend in opposing flow of case (b). However, the velocity and drag coeffi-
cient improve in case (a) and aiding flow of case (b), but reduce in opposing flow of case (b).
It is observed that with an increase of chemical reaction rate A, the regular concentration
decreases and regular Sherwood number increases. But, the velocity and drag coefficient

decrease in case (a) and aiding flow of case (b).
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Chapter 5

Effects of Double Dispersion on
Non-Darcy Flow of a Nanofluid over

the Frustum of a Cone with

Convective Boundary Condition !

5.1 Introduction

Convective heat and mass transfer in a porous medium is the subject of great interest in
the recent years owing to its wide range of engineering and industrial applications. In many
practical situations, the porous medium is bounded by an impermeable surface which has
high flow rates and hence, the Darcy law is inapplicable. To model this kind of physical
situation, it is therefore, necessary to include the non-Darcian terms in the analysis of con-
vective transport in a porous medium. Various models have been proposed in the literature
to study the convective transport phenomena in a non-Darcy porous medium. Among these,

the Darcy-Forchheimer model is one, which is an extension of classical Darcy formulation,

!Case(a): Published in “Nonlinear Engineering” 6(4) (2017) 277-292, Case(b): Published in “Heat
Transfer Research” DOI: 10.1615/HeatTransRes.2018018754
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obtained by adding a squared term of velocity in the momentum equation to account for the
inertial effects. Considerable work has been discussed on the nanofluid flow, heat, and mass

transfer characteristics in a Darcy and non- Darcy porous medium (see Nield and Kuznetsov

[81], [83], Cheng [17], Noghrehabadi et al. [85]).

The energy and concentration transport due to the hydrodynamic mixing is called thermal
and solutal dispersions, respectively. The effects of thermal and solutal dispersions (double
dispersion) in a non-Darcy porous medium are necessary due to the presence of inertial
effects (see Nield and Bejan [84]). Because of various engineering applications, Narayana and
Sibanda [80] analyzed the double dispersion effects on MHD mixed convective flow along a
vertical flat plate embedded in a non-Darcy porous medium. The combined convective heat
and mass transfer along a vertical surface in a non-Darcy porous medium in the presence of
double dispersion effects has been discussed by Afify and Elgazery [2] (For more details, see

the references therein).

Survey on earlier studies reveal that the natural and mixed convective flows of a nanofluid
over the vertical frustum of a cone in a non-Dary porous medium with double dispersion
effects, are not studied so far. Hence, the present chapter aims to analyze the influence
of double dispersion effects on the convective flow over the vertical frustum of a cone in a
non-Darcy porous medium saturated with a nanofluid. The effects of pertinent parameters

on the physical quantities are studied, and the results are displayed graphically.

5.2 Mathematical Formulation

Consider a steady, laminar and two dimensional convective flow of a nanofluid over the
vertical frustum of a cone embedded in a non-Darcy porous medium. Choose the coordinate
system such that z-axis is along the surface and y-axis is normal to the surface of vertical
frustum of a cone, as shown in Fig. (5.1). Let xg is the distance of the leading edge of vertical
frustum of a cone measured from the origin O. Assume that the velocity of the outer flow

is Uy, whereas the temperature, nanoparticle volume fraction and regular concentration at
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Figure 5.1: Physical model and coordinate system

ambient medium are T, ¢ and Cy, respectively. The regular concentration at surface

of the vertical frustum of a cone is C,,. In addition, the following assumptions are taken

into account in the present analysis: (i) the porous medium is isotropic and homogeneous,

(i) the properties of the fluid and porous medium are constant except for the Oberbeck-

Boussinesq approximation, and (iii) the fluid and porous medium are in local thermodynamic

equilibrium, and (iv) the fluid flow is moderate and the permeability of the medium is low,

so that the Forchheimer flow model is applicable (See Nield and Bejan [84]).

Implementing the above said assumptions and Oberbeck-Boussinesq approximations, the

governing equations can be written as:

Pfoo
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ou

u% Ua—y

d(ur) N d(vr)

p— -1
ox oy 0 (5:1)

0 0?
“) = B+ p 0 (1= 0) [B2(T = To) + (€ = Cuc) cos A
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where u and v are the Darcy velocity components in x and y-directions, respectively. Further,
K, is the permeability, b is the empirical constant associated with the Forchheimer porous
inertia term, ¢ is the porosity, a, = a,,, +0 dw and D, = D,,, +( d u are the effective thermal
and solutal diffusivities in which d is the pore diameter, o and ( are the coefficients of the

thermal and solutal dispersions, respectively.

The associated boundary conditions are

oT 0¢p  Dp 0T
=0, v=0, k= h (T} -T), Dy 22+ 2% _¢, ¢ = t y=0 (5.
u=0, v=0, oy f( f ), Bay—l-Too y 0, C=0C, at y=0 (56&)
U=Us, T =Ty, ¢ = s, C=Cy as y— (5.6b)

In this chapter also, two types (cases) of problems are considered: (a) free/natural con-

vection and (b) mixed convection.

5.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection, which is caused by buoyancy forces only with-
out any external agent, and hence the velocity of the external flow becomes zero i.e., Uy, = 0.

We introduce the following non-similarity variables

§ = . :x_xo’n:ggr%/4’ ZTVGT%M]C(&”)’
To Zo i
0 = — g = — .
(&m) T, - T v (&m) o , S (&) o . (5.7)

Substituting (2.7) and (5.7) into Egs. (5.2)-(5.5), the momentum, energy, nanoparticle
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volume fraction and regular concentration equations can be written as

]‘ " 1 " 9 N S N 61/2 /
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where Ds = % is the thermal dispersion parameter, Dc = % is the solutal
0 0

b
is the Darcy parameter, and F's = — is the Forchheimer
Zo

dispersion parameter, Da = —2p
x
0

number.

The associated boundary conditions (5.6) in terms of f, 6, v and S are

/ _ 5 g — / — Rl —
F(&mn) =0, f(&n) + () oc =0,0'(&n) =—Big"" [1-0(¢, ),
Nb~'(&,n)+ Ntd'(E,n)=0,S&n)=1 at n=0 (5.12a)
f&n) =0,00&n)=0,7v¢&n)=0,5&n=0 as n— o0 (5.12b)

The shear stress, local heat, nanoparticle mass and regular mass fluxes are given by

ou orT 0o oC
Tw = — Q= —ke | — , qn = —D [—] and g, = —D, [—}
: L%] =0 ! lﬁy } y=0 P Loy y=0 Y |0

(5.13)
where k. = (k+kq) and D, = (D,,,+D,) are the effective thermal and solutal conductivities of
the porous medium, in which k; and D, are the dispersion thermal and solutal conductivities.

Quw T
k(T —Tw)’

and the regular Sherwood number

The non-dimensional skin friction Cy = local Nusselt number Nug; =

Pfoo Uz?
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the nanoparticle Sherwood number NSh; =
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= Do (Co— o)’ are given by

% =~ [1+&2Ds Pr f/(£,0)] 0'(£,0),

g (5.14)
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g = —7'(&,0),

Results and Discussion

The resultant partial differential equations (5.8) - (5.11) along with the boundary conditions
(5.12) have been solved numerically using the Bivariate Pseudo-Spectral Local Linearization
Method. In order to assess the accuracy of the generated code, for a special case of Ds = 0.0,
Dc=0.0,Gr =1.0,e = 1.0, Da = 1.0 and Bi — oo, the present results have been compared
with those of Na and Chiou [75], Kays and Crawford [49], Lin and Chen [55] and Yih [130]
and found that they are in good agreement [see Tab. 2.1]. To study the effects of non-Darcy
parameter (F's), Biot number (Bi), thermal dispersion (Ds) and solutal dispersion (Dc), the
computations have been carried out for Pr = 1.0, S¢ = 0.6, Le = 10.0, Nc¢ = 1.0, Nr = 0.5,
Gr =5.0,e=0.8, Da=0.5, Nt =0.5 and Nb = 0.2.

Figures 5.2(a)-5.2(d) are prepared to show the non-dimensional velocity f’, temperature
0, nanoparticle volume fraction v, and regular concentration S, for various values of the
non-Darcy parameter (F's) and Biot number (Bi). It is observed that an increase in the
Biot number leads to increase the velocity and decrease the regular concentration in both
Darcy and non-Darcy porous media cases. The temperature is maximum at the surface of
the frustum and decreases exponentially to zero far away from the surface, and further, it
is seen that the temperature increases with an increase in the Biot number, as depicted in
Fig. 5.2(b). The nanoparticle volume fraction decreases near to the surface of the vertical
frustum of a cone and then increases far away from the surface in both the cases of Darcy
and non-Darcy porous media. Moreover, it is seen that the velocity decreases with an
increase in the non-Darcy parameter, as plotted in Fig. 5.2(a). The reason for above said

trend is that the non-Darcy parameter represents the Forchheimer effect, which is the second
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order non-linear porous medium inertial resistance. It means increasing the inertial effects,
the Forchheimer drag will be dominant, and then causes a strong deceleration in the fluid
flow. From Figs. 5.2(b)-5.2(d), it is clear that the temperature and regular concentration
enhance, but the nanoparticle volume fraction reduces with an enhancement in the non-
Darcy parameter. From these results, it is concluded that the fluid temperature and regular
concentration are more, whereas the velocity and nanoparticle volume fraction are less, in
the case of non-Darcy porous medium (F's # 0) when compared to the case of Darcy porous

medium (F's = 0).

The effects of thermal dispersion (Ds) and solutal dispersion (Dc) on the non-dimensional
velocity f’, temperature 6, nanoparticle volume fraction 7, and regular concentration S, are
displayed in Figs. 5.3(a)-5.3(d). Figure 5.3(a) depicts that the velocity increases with the
increase of both thermal and solutal dispersion parameters. The presence of thermal dis-
persion in the energy equation leads to dominate the conduction over the convection. That
is, supplementing dispersion effects to the energy equation gives more thermal conduction.
Hence, as the thermal dispersion parameter enhances, the temperature reduces near to the
surface and then enhances far away from the surface, whereas the nanoparticle volume frac-
tion profiles show the reverse trend. It is perceived from Figs. 5.3(b) and 5.3(c) that the
temperature and nanoparticle volume fraction reduce with an increase in the solutal disper-
sion parameter. However, the regular concentration increases with the increase of solutal

dispersion parameter and it decreases with the increase of thermal dispersion parameter, as

shown in Fig. 5.3(d).

Figures 5.4(a)-5.4(d) depict the streamwise variations of non-dimensional skin friction,
local Nusselt number, local nanoparticle and regular Sherwood numbers under the influence
of Biot number for F's = 0.0 and Fs = 1.0. An increase in the Biot number tends to
increase the magnitude of skin friction coefficient, whereas it decreases with the increase of
non-Darcy parameter, as given in Fig. 5.4(a). As Bi — oo, the thermal boundary condition
at the surface reaches the isothermal surface condition (i,e., uniform wall condition). In this
case, the internal thermal resistance of the vertical frustum of a cone is more compared to

the thermal resistance of boundary layer. Hence, the local Nusselt and regular Sherwood
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numbers enhance as the Biot number enhances, but an opposite behavior is observed in the
case of the non-Darcy parameter, as plotted in Figs. 5.4(b) and 5.4(d). It is noted from
Fig. 5.4(c) that the local nanoparticle Sherwood number increases with the increase of Biot
number and it shows a reverse trend with the increase of non-Darcy parameter. Moreover,
the local Nusselt and regular Sherwood numbers are more in the Darcy porous medium when

compared with those of the non-Darcy porous medium.

The significance of both thermal dispersion (Ds) and solutal dispersion (Dc) effects
on the dimensionless skin friction, local Nusselt number, local nanoparticle and regular
Sherwood numbers, are exhibited in Figs. 5.5(a)-5.5(d). By strengthening the values of
thermal dispersion parameter, the skin friction coefficient and local nanoparticle Sherwood
number reduce, but the local Nusselt and regular Sherwood numbers enhance. Further, it
is perceived that the skin friction, local Nusselt number and local regular Sherwood number
increase, whereas the local nanoparticle Sherwood number decreases with an increase in
the solutal dispersion parameter, as shown in Figs. 5.5(a)-5.5(d). Moreover, the influence
of both thermal and solutal dispersion is more prominent on the local Nusselt and regular

Sherwood numbers.
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Figure 5.2: Effects of F's and Bi on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume
fraction, and (d) Regular concentration for Ds = 0.2 and Dc = 0.3.
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Figure 5.3: Effects of Dc and Ds on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume
fraction, and (d) Regular concentration for F's = 0.5 and Bi = 1.0.
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Figure 5.4: Effects of F's and Bi on (a) Skin friction, (b) Heat transfer rate, (c) Nanoparticle
mass transfer rate, and (d) Regular mass transfer rate for Ds = 0.2 and Dc = 0.3.
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Figure 5.5: Effects of D¢ and Ds on (a) Skin friction, (b) Heat transfer rate, (c) Nanoparticle
mass transfer rate, and (d) Regular mass transfer rate for F's = 0.5 and Bi = 1.0.
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5.2.2 Case(b): Mixed Convection

Consider the flow to be a mixed convection, which arises from an external flow with velocity

U, and buoyancy forces. We introduce the non-similarity variables as follows

¢="n="LRel” y=rvRel* (&),
i) T
T— — o C—-Cy
9(5777)21}? v(En) = ¢¢¢ ,SEn) = F—=

1
. (5.15)

Using (2.7) and (5.15) in Eqgs.(5.2)-(5.5), we get the following non-similarity equations

1 /// 1! 1
gf (R—i— )ff + A0+ NcS—Nrvy)+ D Rf( —f
FS / g af af 1!
+—§(— 2__2(0_ = ) (5.16)
/" / / / 0\ 80 af
oo N N D = -~ 2L 1
Pre <R+ )f9+ b~'0' + Nt (0')* + Ds (f'0) 5(8& ag) (5.17)
1 1 Nt , 0y Of
E (R+ )f +L—m9 _g( o ag ) (5.18)
" 1 ran a_S g
§S +<R+ )fS + Dc (fS)_g( o (%S) (5.19)
along with the reduced boundary conditions
/ 0 / .
FIEM =0, € + 7y g = 0 016 m) = ~Big (L= 0(E )
Nbo~'(&,n)+ Nt#'(&,n)=0,SEn) =1 at n=0 (5.20a)
f(€m) =10(&n) =0,7(&n) =0,9¢&n) =0 as n—o0 (5.20b)
The quantities of physical interest are the non-dimensional skin friction Cy = [)2%,
_ foo Yoo
local Nusselt number Nuz __

T, —Too)’ local nanoparticle Sherwood number NSh
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DCZI;OO and local regular Sherwood number Shg; = D (é:f oy are given by
1/2 " Nug ’ /
CfRef = 2f (é?o)v W = _[1 +DSP7’f (570)]‘9 (f?o)v
e’
7 5.21)
NShy Shy , , (
R —7'(£,0), Rl T —[1+ DeSe f'(€,0)] S'(€,0)

Results and Discussion

The reduced non-linear system of partial differential Eqs. (5.16) - (5.19) together with
the boundary conditions (5.20) are solved numerically using the Bivariate Pseudo-Spectral
Local Linearization Method. In order to validate the code generated, for the special case
of Dc = 0.0, Ds = 0.0, Re = 200.0, ¢ = Da = 1.0, F's = 0.0 and Bt — oo, the results of
present problem have been compared with those of Lloyd and Sparrow [56], and found that
they are in good agreement, as shown in Tab. (2.2). To investigate the effects of non-Darcy
parameter (F's), Biot number (Bi), thermal and solutal dispersion parameters (Ds) and
(Dc), the computations have been carried out for Pr = 1.0, S¢ = 0.6, Le = 10.0, Nc¢ = 1.0,
Nr =0.5, Re =200.0, e = 0.8, Da = 0.5, Nt = 0.5 and Nb=0.2.

The influence of non-Darcy parameter (F's) on the dimensionless velocity f/, temperature
f, nanoparticle volume fraction v, and regular concentration S for aiding and opposing
flows, is depicted in Figs. 5.6(a)-5.6(d). From Fig. 5.6(a), it is observed that the velocity
enhances with the enhancement of non-Darcy parameter in both aiding and opposing flows.
With an increase of F's, the temperature decreases for both aiding and opposing flows, as
plotted in Fig. 5.6(b). But, the nanoparticle volume fraction enhances near to the surface
of the frustum of a cone, whereas it shows a reverse trend far away from the surface, as
displayed in Fig. 5.6(c). It is seen from Fig. 5.6(d) that the regular concentration decreases
with the increase of non-Darcy parameter in both the cases of aiding and opposing flows.
Moreover, the temperature and regular concentration are more in the opposing flow situation

in comparison with those of aiding flow situation.

The set of Figs. 5.7(a)-5.7(d) explores the effect of Biot number (Bi) on the non-
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dimensional velocity f’, temperature 6, nanoparticle volume fraction v, and regular con-
centration S, for aiding and opposing flows. It is seen from Fig. 5.7(a) that an increase in
the Biot number leads to increase the velocity when the flow is aiding, but it reveals the
opposite trend when the flow is opposing. An enhancement in the Biot number enhances
the convective heating and hence, Bi — oo provides the isothermal surface, which is noticed
from Fig. 5.7(b). From this figure, it is clear that the temperature increases with the in-
crease of Biot number in both opposing and aiding flows. As the Biot number enhances, the
nanoparticle volume fraction reduces near to the surface and then it enhances far away from
the surface for aiding and opposing flows, as depicted in Fig. 5.7(c). However, the regular
concentration rises with rising values of Bi in both aiding and opposing flows, as shown Fig.

5.7(d).

For both aiding and opposing flows, the effect of thermal dispersion parameter (Ds) on
the dimensionless velocity f’, temperature #, nanoparticle volume fraction v, and regular
concentration S, is shown in Figs. 5.8(a)-5.8(d). It is clear from Fig. 5.8(a) that the velocity
increases in the aiding flow case, whereas it decreases in the opposing flow case with the
increase of thermal dispersion parameter. The temperature reduces near to the surface and
gradually enhances far away from the surface with the enhancement of thermal dispersion
parameter in both aiding and opposing flows, as plotted in Fig. 5.8(b). For both aiding
and opposing flows, as the thermal dispersion parameter increases, the nanoparticle volume
fraction increases near to the surface and then decreases far away from the surface, as given in
Fig. 5.8(c). Further, the regular concentration diminishes with the enhancement of thermal

dispersion parameter for both aiding and opposing flows, as shown in Fig. 5.8(d).

Figures 5.9(a)-5.9(b) exhibit the effect of solutal dispersion parameter (Dc) on the non-
dimensional velocity f’ and regular concentration S for both aiding and opposing flows.
Figure 5.9(a) illustrates that the velocity enhances in the aiding flow, whereas it decreases
in the opposing flow with the increase of solutal dispersion parameter. It can be seen that
the regular concentration increases with an increase in the solutal dispersion parameter for

both aiding and opposing flows, as portrayed in Fig. 5.9(b).

The effect of non-Darcy parameter (F's) on the streamwise distribution of non-dimensional
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skin friction, local Nusselt number, local nanoparticle and regular Sherwood numbers for
both aiding and opposing flows, is depicted in Figs. 5.10(a)-5.10(d). Figure 5.10(a) shows
that an increase in the non-Darcy parameter leads to increase the skin friction in aiding
and opposing flow situations. This is because of more velocity created by a large pressure
drop due to the drag forces. It is observed from Figs. 5.10(b) and 5.10(d) that the local
Nusselt and regular Sherwood numbers increase with the increase of non-Darcy parameter
for opposing and aiding flows. However, an increase in the non-Darcy parameter corresponds

to reduce the local nanoparticle Sherwood number, as plotted in Fig. 5.10(c).

Figures 5.11(a)-5.11(d) show the variations of dimensionless skin friction, local Nusselt
number, local nanoparticle and regular Sherwood numbers versus streamwise coordinate &,
in the presence of Biot number (B7) for both aiding and opposing flows. With the increase of
Biot number, the skin friction and local regular Sherwood number increase in the aiding flow,
but these show opposite trend in the opposing flow, as given in Figs. 5.11(a) and 5.11(d).
It is noted from Fig. 5.11(b) that the local Nusselt number reduces with an increase in the
Biot number for both aiding and opposing flows. For both aiding and opposing flows, an
increase in the Biot number causes to decrease the local nanoparticle Sherwood number, as
plotted in Fig. 5.11(c). Moreover, the skin friction, local Nusselt number, and local regular

Sherwood number are more in the aiding flow in comparison with those of the opposing flow.

For both aiding and opposing flow situations, the impact of thermal dispersion parameter
(Ds) on the non-dimensional skin friction, local Nusselt number, local nanoparticle and
regular Sherwood numbers over the streamwise coordinate &, is shown in Figs. 5.12(a)-
5.12(d). It is seen from Fig. 5.12(a) that the skin friction increases in the opposing flow and
it decreases in the aiding flow with an increase of thermal dispersion parameter. When the
thermal dispersion parameter enhances, the temperature gradient increases considerably in a
small region near to the surface. Therefore, the local Nusselt number substantially enhances
with increasing values of the thermal dispersion parameter, as plotted in Fig. 5.12(b). But,
the local nanoparticle Sherwood number decreases with the increase of thermal dispersion
parameter for both aiding and opposing flows, as portrayed in Fig. 5.12(c). However, the

thermal dispersion effect is negligible for the local regular Sherwood number in both opposing
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and aiding flow situations.

Figures 5.13(a)-5.13(d) exhibit the effect of solutal dispersion parameter (Dc) on the
dimensionless skin friction, local Nusselt number, local nanoparticle and regular Sherwood
numbers across £ for aiding and opposing flows. It is observed from Figs. 5.13(a) and 5.13(b)
that the skin friction and local Nusselt number decrease for opposing flow, whereas these
show revere trend for aiding flow, with the increase of solutal dispersion parameter. As
the solutal dispersion parameter enhances, the local nanoparticle Sherwood number reduces
for aiding flow, but there is no considerable effect in the opposing flow, as shown in Fig.
5.13(c). Further, it can be noticed that the local regular Sherwood number increases with
the increase of solutal dispersion parameter for both aiding and opposing flows, as depicted
in Fig. 5.13(d). Moreover, the effects of thermal and solutal dispersions are more prominent

in the local Nusselt number and local regular Sherwood number, respectively.
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Figure 5.6: Effects of A\ and F's on (a) Velocity, (b) Temperature, (c) Nanoparticle volume
fraction and (d) Regular concentration for Bi = 1.0, Ds = 0.2 and Dc = 0.3.
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Figure 5.11: Effects of A and Bi on (a) Skin friction, (b) Heat transfer rate, (¢) Nanoparticle
mass transfer rate, and (d) Regular mass transfer rate for Fs = 0.5, Ds = 0.2 and Dc = 0.3.
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Figure 5.12: Effects of A and Ds on (a) Skin friction, (b) Heat transfer rate, (c) Nanoparticle
mass transfer rate, and (d) Regular mass transfer rate for F's = 0.5, Bi = 1.0 and Dc = 0.3.
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Figure 5.13: Effects of A and Dc on (a) Skin friction, (b) Heat transfer rate, (c) Nanoparticle
mass transfer rate, and (d) Regular mass transfer rate for F's = 0.5, Bi = 1.0 and Ds = 0.2.
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5.3 Conclusions

The present chapter investigates the double dispersion effects on the convective flow of a
nanofluid over the frustum of a cone embedded in a non-Darcy porous medium in the presence
of convective boundary condition. From this study, the conclusions can be drawn in both

cases (a) and (b) as follows:

The behavior of non-Darcy parameter (i.e., Forchheimer number) on the various profiles,
and local Nusselt and Sherwood numbers in both case (a) and case (b) are similar to the
results of chapter-3. Also, the effect of Biot number on the different profiles and physical
quantities show the similar behavior as reported in the previous chapter. Further, it is
found that the velocity, nanoparticle volume fraction and local Nusselt number increase,
whereas the regular concentration, surface drag and local nanoparticle Sherwood number
decrease with the increase of thermal dispersion parameter, in case (a) and aiding flow of
case (b). As the solutal dispersion parameter enhances, the regular concentration and local
regular Sherwood number enhance. But, the velocity, surface drag and local Nusselt number
increase, whereas the local nanoparticle Sherwood number decreases with Dc in case (a) and

aiding flow of case (b).
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Chapter 6

Convective Flow of a Nanofluid over
the Rotating Frustum of a Permeable

Cone with Convective Boundary

Condition !

6.1 Introduction

In Chapters 2-5, the convective transport over the stationary vertical frustum of a cone in a
nanofluid has been analyzed. But, the detailed analysis of heat and mass transfer over the
rotating bodies is essential for various engineering applications such as the design of turbo-
machines and turbines, rotating machinery, estimation of flight path in rotating wheels,
transpiration cooling, spin-stabilized missiles, modeling of several geophysical systems, etc.
Anilkumar and Roy [5] presented a self-similar solution for the unsteady mixed convective
flow of a rotating fluid due to the rotating cone in the presence of thermal and mass diffusion

effects. Recently, the effects of cross-diffusion, viscous dissipation, and thermal radiation on

LCase(a): Communicated to “Sadhana—Academy Proceedings in Eng. Sci.”, Case(b): Communi-
cated to “Indian Journal of Physics”
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the natural convective flow of a Casson fluid over the spinning cone in a non-Darcy porous
medium have been reported by Makanda and Sibanda [59]. Beg et al. [9] discussed the
problem of MHD natural convective flow over the vertically rotating cone in an orthotropic

Darcian porous medium. (For more details, see the references therein).

From the literature survey, it is observed that the study of free and mixed convective
flows of a nanofluid over the rotating frustum of a permeable cone has not been investigated
so far. Therefore, the problem of convective flow of a nanofluid due to the rotating frustum
of a permeable cone under the influence of convective boundary condition, is considered in
this chapter. Further, the reduced system of non-dimensional partial differential equations
is solved numerically by employing Bivariate Pseudo-Spectral Local Linearization Method.
The effects of various physical parameters on the non-dimensional tangential and swirl veloc-
ities, temperature, nanoparticle volume fraction, and regular concentration along with the
surface drag, local Nusselt and Sherwood numbers are, examined numerically and displayed

graphically.

6.2 Mathematical Formulation

A steady, laminar and two-dimensional flow of an incompressible nanofluid caused by the
rotating frustum of a permeable cone is considered. The velocity of the outer flow is assumed
to be U,. The co-ordinate system and configuration of the rotating frustum of a cone are
shown in Fig. (6.1). Choose (x,y,z) as the rectangular coordinate system in which z-
axis is taken along the surface, y-axis is normal to the surface, and z-axis is taken along a
circular section. The angle of rotating frustum of a cone is assumed to be large so that the
effect of transverse curvature is negligible (Ref. Hering and Grosh [36]). The temperature,
nanoparticle volume fraction and regular concentration of the ambient medium are assumed
to be Ty, ¢o and Cy, respectively. The surface of a permeable frustum of a cone is
either cooled or heated by convection from a nanofluid of temperature Ty with Ty < T
(cooled surface) and Ty > T, (heated surface), respectively. The rotating surface is held

at uniform regular concentration C,. The thickness of boundary layer is assumed to be
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Figure 6.1: Physical geometry of the problem

small in comparison with the radius of a cone and hence the local radius to a point can be

approximated by r = x sin A (Ref. Singh et al. [114]).

Following the above assumptions and Oberbeck-Boussinesq approximations, the govern-
ing boundary layer equations can be written as

d(ru) O(rv)

ek el (6.1)

2 2
Pl (ua—z—i-v% — w_> —ug—;+pfoog (1 = ¢oo) [Br(T — Tw) + Pc(C — Cy)] cos A
~(pp = P1) 9(¢ — Do) cos A6.2)

ow ow uw 0*w
Yor Tyt TV (6.3)
or  oT 9T 060T Dr [OT\*

U TV T g j[DBa—ya—Nﬂ(a—y) (6.4)
o9 96 ¢ Dp 0T
ua—x—f‘va—y—DBa—yQ—f—ia—yz (65)

2
ua—o—l—va—O—D 0°C (6.6)

or oy oy

where u, v and w are the components of velocity along the tangential (z), normal (y) and
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azimuthal (z)-directions, respectively.

The associated boundary conditions are

oT 0¢p D 0T
= = =rQ, “k—=hy(Ty-T), Dp — + — — = = toy =
U 0,’0 Uy, W rii, ay f(f )7 Bay+Too ay 0,0 Cw at y 0
(6.7a)
U=Usx, w=0, T=Ty, ¢ =0y, C=Cyx as y— o0 (6.7b)

In this chapter also, two types (cases) of problems are considered: (a) free/natural con-

vection and (b) mixed convection.

6.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection, which is caused by buoyancy forces only
without any external agent, hence the velocity of the external flow become zero (i.e., Uy, = 0).

Next, introduce the following non-similarity transformations

=" =S p=tewie = v=rverl fEn),
To Lo z Tw
0 = % = — _
(&m) Tf_Too,v(ﬁ,n) . ;S (&m) . (6.8)
T —Ty)(1— 3 A
where T = — xg and Gry = 9 9r(Ty o) $o0) T cO8 is the local Grashof number.

2
Substituting (2.7) and (6.8) into Eqgs.(6.2)-(6.6), the governing equations reduces to the

following form

" 3 " 1 "2 2 _ /af/ _af "
/ +(R+Z>ff —§(f) +XRW"+0+NcS—Nry=¢ (f—(% 9€ ) (6.9)
" 3 / / _ /aW_af /
1474 +(R+Z>fW—2Rf W_g< 3 _agW) (6.10)
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L, , , 00 af
B +(R+ >f0+Nb70+Nt( )? §<fa—€—a—€ ) (6.11)
1, 3 L Nt,, Oy 9f
L—e’Y +(R+Z)f’7 +L_Fb —f( 65 85 ) (6'12)
1 1/ 3 ! /aS_af !

The reduced boundary conditions in terms of f, W, 6, v and S are

9
F(&m) =0, fa—g + <R+ 2) FEm) =" o, W(En) =1,0(&n) = —Big* [1-0(¢,n)],
Nb~'(€m) + Nto'(§,n) =0, S n) =1 at n=0 (6.14a)

f(€mn) =0, W(En)=0,00&n) =0,v&n) =0,S&n) =0 as n—o00  (6.14b)

where the prime represents the partial differentiation with respect to n and R = 11 ¢ f_ £ Next,
022t sin? A hex Vo T

x = —2 " is the spinning parameter, Bi = ! 1(; 118 the Biot number, f,, = — 10/ n
vGrz k Gr; vGry

is the suction/injection parameter with f,, < 0 for injection, f,, > 0 for suction and f, =0

for impermeable surface.

The wall shear stress, local heat, nanoparticle mass and regular mass fluxes over the

rotating frustum of a cone are

T
Y y=0 y=0 y=0 Y y=0

GQuw T
k (Tf - TOO)7

The non-dimensional skin friction C'y = local Nusselt number Nugz =

Pfoo UQ,

local nanoparticle Sherwood number NSh; = an 5 and local regular Sherwood number
_ B Yoo
Shz = Ds (Cq;ni oy are given by
Nuz
5 CrGrilt = f1(,0), —r = —0(0)
NShj , sht (6.16)

GT%/ L Gr
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Results and Discussion

The system of Egs. (6.9)-(6.13) along with the boundary conditions (6.14) have been solved
numerically using the Bivariate Pseudo-Spectral Local Linearization Method. In order to
assess the accuracy of the generated code, for Nr = Nc = Nt = 0,5¢ = Le = 1, Nb —
0, fo =0,Bi — 00, x =0 and £ = 0, the results of the present problem have been compared
with those of Na and Chiou [75], Na [74], Yih [130] and Cebeci and Bradshaw [15], as shown
in Tab. (6.1). Also, for Nr = Ne = Nt =0,Sc=Le=1,Nb — 0, f, =0,Bi — 00, x =0
and £ — oo, the present results have been compared with the results given by Na and Chiou
[75], Yih [130], Roy [107] and Alamgir [4], as given in Tab. (6.2). From Tabs. (6.1) and
(6.2), it is found that the present numerical results are in a good agreement. To study the
effects of Biot number (Bi), spinning parameter (), and suction/injection parameter (f,),
the computations have been carried out for Ne¢ = 1.0, Nt = 0.2, Nb = 0.2, Nr = 0.5, Pr =
1.0, S¢ = 0.6 and Le = 10.0. Also, the present analysis is carried out with all possible cases

of suction/injection parameter (f,).

The set of Figs. 6.2(a)-6.2(d) are prepared to analyze the effect of spinning parameter
(x) on the non-dimensional tangential velocity f’, swirl velocity W, temperature 6 and
nanoparticle volume fraction v. With the increase of y (i.e., the higher rotation of the
frustum of a cone), the tangential velocity enhances near to the surface and then gradually
decreases up to its free stream velocity, as given in Fig. 6.2(a). The above effect is due to
the more induced axial flow caused by the more rotation of the frustum of a cone. However,
the swirl velocity is not much affected by the spinning parameter, as plotted in Fig. 6.2(b).
It is also seen from Figs. 6.2(c) that the temperature enhances with the enhancement of
spinning parameter. The above observations are found to be same in both the suction and
injection cases. But, the nanoparticle volume fraction profile enlarges for the injection and
impermeability cases, whereas it shows an opposite behavior for the suction case. Further,
the tangential velocity, swirl velocity and temperature are high in the case of injection, when
compared to those of the impermeability and suction cases. But, the nanoparticle volume

fraction shows a reverse behavior, as displayed in Fig. 6.2(d).
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Table 6.1: Comparison of f"(0,0) and —6'(0,0) for various values of Pr.

] £(0, 0) | —4/(0, 0)
Pr | [130] [15] Present [74] [75] [130] [15] Present
0.1 | 1.2144 1.2104 1.21165028 | —— —_— 0.1629 0.1637 0.16340582

1 0.9084 0.9081 0.90819101 | 0.4010  0.4011  0.4012 0.4009 0.40103279
10 | 0.5927  0.5930  0.59282356 | 0.8269  0.8269  0.8266 0.8266 0.82682956
100 | 0.3558 0.3564 0.35588168 | 1.5493  1.5493  1.5493 1.5495 1.54930393

1000 | 0.2049 ——  0.20574836 | —— — 2.8035 —— 2.80311089

Figures 6.3(a)-6.3(d) explore the tangential velocity f’, swirl velocity W, temperature 6
and nanoparticle volume fraction -, under the influence of Biot number (B7). Biot number
is characterized by the ratio of the thermal resistance of the boundary layer and the solid
surface. With an increase in the Biot number, the tangential velocity increases, whereas the
swirl velocity decreases in the injection, impermeable and suction cases. But, the maximum
tangential and swirl velocities are found in the case of injection, as shown in Figs. 6.3(a)
and 6.3(b). Also, the convective heating increases with the Biot number and the case of
Bi — oo gives the isothermal surface which is clearly shown in Fig. 6.3(c). The higher values
of the Biot number (strong convection) leads to a higher temperature, and consequently
enhances the temperature, for all cases of f,,. For a fixed f,,, the nanoparticle volume fraction
diminishes with an increase in the Biot number. But, the minimum values of nanoparticle

volume fraction, and the maximum values of temperature are found in the injection case.

The variations of regular concentration for different values of x and Bi, are exhibited in
Figs. 6.4(a) and 6.4(b), respectively. With the increase of both x and Bi, the regular concen-
tration diminishes for all cases of f,,. However, the regular concentration of the nanofluid is

more with the injection, but less with suction in comparison to that of impermeable surface.

The streamwise distribution of non-dimensional skin friction [f” (&, 0)], local Nusselt num-
ber [—6'(&,0)], local nanoparticle Sherwood number [—v/(£,0)] and local regular Sherwood
number [—S5'(£,0)] in the presence of spinning parameter (x), are shown in Figs. 6.5(a)-
6.5(d). It is evident from Fig. 6.5(a) that the drag coefficient substantially increases with

an increase in the spinning parameter for different cases of f,,. But, more surface drag is
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Table 6.2: Comparison of f"(c0,0) and —6'(c0,0) for various values of Pr.

| | f"(c0, 0) | —9/(c0, 0)
Pr | [107] [130] Present [107] 4] [75] [130] Present
0.1 —_— 1.0960 1.09464314 | —— 0.2141 — 0.2116  0.21130560

1 0.8600  0.7699  0.76944922 | 0.5275 0.5280 0.5104 0.5109 0.51039548
10 | 0.4899  0.4877  0.48769819 | 1.0354 1.0159 1.0340 1.0339 1.03398025
100 | 0.2897  0.2896  0.28960777 | 1.9229 1.8237 1.9220 1.9226 1.92271470

1000 | 0.1661  0.1661  0.16168925 | 3.4700 3.2463 —  3.4696 3.46515335

found in the injection case. For a fixed f,,, the local Nusselt and regular Sherwood numbers
increase with an increase of the spinning parameter, as depicted in Figs. 6.5(b) and 6.5(d).
Also, a substantial increase in the local Nusselt and regular Sherwood numbers are noticed
in the case of suction. The above effect is due to a decrease in the thickness of the ther-
mal and regular concentration boundary layers. As spinning parameter enhances, the local
nanoparticle Sherwood number diminishes at a fixed value of f,. It is also found that the

local nanoparticle Sherwood number is high in the case of injection.

The effect of Biot number (Bi) on the dimensionless surface drag [f”(&,0)], local Nusselt
number [—6'(&,0)], local nanoparticle Sherwood number [—+/(£,0)] and local regular Sher-
wood number [—5'(&,0)], are exhibited in Figs. 6.6(a)-6.6(d). For all cases of f,,, the surface
drag increases with an increase in the Biot number, as plotted in Fig. 6.6(a) whereas the
local nanoparticle Sherwood number decreases, as shown in Fig. 6.6(c). However, the maxi-
mum values of the surface drag and local nanoparticle Sherwood number are noticed in the
case of injection. When the Biot number increases, the local Nusselt and regular Sherwood
numbers increase in all cases of f,,. But, more local Nusselt and regular Sherwood numbers

are found in the case of suction, as depicted in Figs. 6.6(b) and 6.6(d).
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Figure 6.2: Effects of f,, and x on (a) Tangential velocity, (b) Swirl velocity, (¢) Temperature,
and (d) Nanoparticle volume fraction for Bi = 1.0.
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Figure 6.3: Effects of f.,, and Bi on (a) Tangential velocity, (b) Swirl velocity, (c¢) Tempera-
ture, and (d) Nanoparticle volume fraction for x = 2.0.
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Figure 6.5: Effects of f, and x on (a) Skin friction, (b) Heat transfer rate, (¢) Nanoparticle
mass transfer rate, and (d) Regular mass transfer rate for Bi = 1.0.
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Figure 6.6: Effects of f,, and Bi on (a) Skin friction, (b) Heat transfer rate, (¢) Nanoparticle
mass transfer rate, and (d) Regular mass transfer rate for y = 2.0.
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6.2.2 Case(b): Mixed Convection

Consider the flow to be mixed convection arises from buoyancy forces and an external flow

with velocity U,,. Next, introduce the following non-similarity transformations

fzx_xoz_x,n:gReé/Q, :TI/RB%/Zf(éan)7” (5777): u§)2>
Zo i) T r
T—Ts O — doo C—-Cy

where T = ¢ — 2o and Re, = U‘jf is the local Reynolds number.

Substitution of (2.7) and (6.17) into Eqs.(6.2)- (6.6) gives the following system of differ-

ential equations:

L <R+%)ff”+x§(§+1)w2+)\§ (6+NcS—Nry)=¢ (f'%—?—g—g > (6.18)
W + <R+ %) fW —RfW =¢ (f’%—zf = g—‘éW’) (6.19)

Pire" + (R+ %) [0+ Noy' ¢ + Nt (0)* =¢ ( ’g—z - Z—ge) (6.20)

év’% (R+%) v+ i%m =¢ (f’g—z = Z—ng’) (6.21)

%S//—i— <R+ %) f9=¢ < g—? - g—§5'> (6.22)

and the reduced boundary conditions are

f(&n) =0, 62—? - (R+ %) f&m) =2 f,, W(En) =1,0(&n) =-Big? [1-0(& )],

Nbo~'(&,n)+ Nt0'(&,n)=0,SEn) =1 at n=0 (6.23a)

f'E&mn) =1, W(En) =007 =0v&n) =0,S¢n =0 a n—00  (623b)

Dzl sin? A .
————— is the spinning

Tzo . . .
¢ is the mixed convection parameter, y =

where \ = Reio Uz
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hyx Uy . e
parameter, Bi = h ! 1(}2 is the Biot number and f,, = U—ReiéQ is the suction/injection
Rew oo
parameter. ’
. . e . 2u ou
The non-dimensional skin friction Cy = = |7 , local Nusselt number Nuz =
P foo Uoo ay y=0

— T ]
v [8_} , local nanoparticle Sherwood number NSh; = _r [@] and
(T = Tw) L0y ],y =
T oC
local regular Sherwood number Shy = ————+— {_} are given by
(C’w - Coo) 8:1./ y=0
1 Nuz
5 Cr Reyl” = (€. 0), ol —6'(¢, 0),
e’
] 6.24)
W = _7/(57 O), ﬁ = —S/(£7 0)

Results and Discussion

The reduced non-dimensional partial differential equations (6.18)-(6.22) along with the bound-
ary conditions (6.23) are solved numerically using the Bivariate Pseudo-Spectral Local Lin-
earization Method, as explained in the previous chapters. In order to assess the generated
code, for special case of y = 0.0, f,, = 0.0, Bi — oo and £ = 0, the present results have been
compared with those of Lloyd and Sparrow [56] and the results are in a good agreement [see
Tab. 2.2]. To explore the effects of suction/injection parameter (f,), spinning parameter
(x), Biot number (Bi7) and mixed convection parameter (\), the computations have been

carried out for Pr = 1.0, Nr = 0.5, Nc = 1.0, Nt = 0.2, Nb =0.2,Sc = 0.6 and Le = 10.0.

The first set of Figs. 6.7(a)-6.7(d) depict the effect of spinning parameter (x) on the non-
dimensional tangential velocity f’, swirl velocity W, temperature 6 and nanoparticle volume
fraction +, for both aiding and opposing flows. An increase in the spinning parameter, i.e.,
the higher rotation of the frustum of a cone, significantly increases the tangential velocity,
for both opposing and aiding flow cases. This is due to more induced axial flow caused
by more rotation of the frustum of a cone. In both opposing and aiding flows, the swirl
velocity and temperature decrease with an increase in the spinning parameter. But, the

nanoparticle volume fraction increases for both opposing and aiding flows. It is also noted
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that the tangential velocity and nanoparticle volume fraction are higher in the case of aiding
flow, when compared to the case of opposing flow. Whereas, an opposite behavior is observed

in the swirl velocity and temperature.

The second set of Figs. 6.8(a)-6.8(d) are prepared to examine the effect of suction/injection
parameter (f,) on the tangential velocity f’, swirl velocity W, temperature ¢ and nanopar-
ticle volume fraction v, for both the cases of aiding flow (A = 0.5) and opposing flow
(A = —0.5). The higher tangential velocity is observed in the suction case when compared
to the impermeability and injection cases, for both aiding and opposing flows, as shown in
Fig. 6.8(a). It is seen from Figs. 6.8(b) and 6.8(c) that the swirl velocity and temperature
reduces with the enhancement of f,,. It is also noted that the nanoparticle volume fraction
shows a reverse trend, as plotted in Fig. 6.8(d). Moreover, it is clear that the higher values
of the tangential velocity and nanoparticle volume fraction are observed in the case of aiding
flow, whereas the higher values of the swirl velocity and temperature are noticed in the case

of opposing flow.

For both the cases of aiding flow (A = 0.5) and opposing flow (A = —0.5), the influence
of Biot number (Bi) on the tangential velocity f’, swirl velocity W, temperature 6 and
nanoparticle volume fraction 7, are depicted in the third set of Figs. 6.9(a)-6.9(d). With
an increase in the Biot number, the tangential velocity increases for aiding flow case, and
decreases for opposing flow case, as plotted in Fig. 6.9(a). But, opposite results are noticed
for the swirl velocity with an increase in the Biot number. The higher values of the Biot
number (strong convection) leads to a higher temperature and consequently enhance the
temperature for both aiding and opposing flows. When Bi > 1, the temperature reaches
its maximum value as a result of uniform wall temperature condition. It is also noticed
that the nanoparticle volume fraction decreases near to the solid surface and increases far
away from the surface with an increase of Bi. Further, the values of tangential velocity and
nanoparticle volume fraction are more in the aiding flow in comparison with those of the

opposing flow, whereas the swirl velocity and temperature show a reverse behavior.

The influence of mixed convection parameter (\) on the regular concentration for various

values of x, f, and Bi, is shown in Figs. 6.10(a)-6.10(c). With the increase of y and f,,
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the regular concentration decreases in both the cases of aiding and opposing flows. However,
the regular concentration increases for opposing flow, but it decreases for aiding flow, with
an increase of Bi. Further, the regular concentration is more in the opposing flow case when

compared to that of the aiding flow case.

The next set of Figs. 6.11(a)-6.11(d) are prepared to explore the influence of spinning
parameter (x) on the surface drag [f”(&,0)], local Nusselt number [—6'(£, 0)], local nanopar-
ticle Sherwood number [—+/(£,0)] and local regular Sherwood number [—S5’(,0)], for both
aiding and opposing flow situations. Here, y = 0 represents the stationary surface, whereas
X # 0 represents the rotational surface. It is evident from Fig. 6.11(a) that the drag coeffi-
cient substantially increases with an increase in the spinning parameter, for both the cases
of aiding and opposing flows. But, more surface drag is found in the case of aiding flow. For
both the aiding and opposing flows, the local Nusselt and regular Sherwood numbers increase
with higher values of the spinning parameter, as depicted in Figs. 6.11(b) and 6.11(d). Also,
a rapid increase in the local Nusselt and regular Sherwood numbers are observed in the case
of aiding flow. Furthermore, the local nanoparticle Sherwood number diminishes in both the

cases of aiding and opposing flows with an increase of the spinning parameter.

The effects of mixed convection parameter (A) and suction/injection parameter (f,) on
the dimensionless surface drag [f”(£,0)], local Nusselt number [—€'(&,0)], local nanoparti-
cle Sherwood number [—+/(£,0)] and local regular Sherwood number [—S’(&,0)] over the
streamwise coordinate, are shown in Figs. 6.12(a)-6.12(d). It is observed that the surface
drag increases in the case of opposing flow, but it decreases in the case of aiding flow with
an increase in the suction/injection parameter, as plotted in Fig. 6.12(a). Figure 6.12(b)
reveals that the local Nusselt number enhances with the enhancement of suction/injection
parameter, and also more heat transfer rate is observed in the case of suction. But, the lo-
cal nanoparticle Sherwood number diminishes and local regular Sherwood number enhances
with enhancing values of the suction/injection parameter. Further, the surface drag, local
Nusselt and regular Sherwood numbers are found to be large in the aiding flow case when

compared to those of the opposing flow case.
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Figure 6.7: Effects of A and x on (a) Tangential velocity, (b) Swirl velocity, (c) Temperature,
(d) Nanoparticle volume fraction, and (e) Regular concentration for f, = 0.0 and Bi = 1.0.
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Figure 6.8: Effects of A and f,, on (a) Tangential velocity, (b) Swirl velocity, (c) Temperature,
(d) Nanoparticle volume fraction, and (e) Regular concentration for x = 2.0 and Bi = 1.0.
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Figure 6.9: Effects of A and Bi on (a) Tangential velocity, (b) Swirl velocity, (¢) Temperature,
(d) Nanoparticle volume fraction, and (e) Regular concentration for x = 2.0 and f,, = 0.0.
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Figure 6.10: Variations in Regular concentration under the effects of (a) A and x, (b) A and
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Figure 6.12: Effects of A and f,, on (a) Skin friction, (b) Heat transfer rate, (¢) Nanoparticle
mass transfer rate, and (d) Regular mass transfer rate for x = 2.0 and Bi = 1.0.
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6.3 Conclusions

In this chapter, the non-similarity solution is obtained to analyze the effects of suction/injection
and convective boundary condition on the convective flow of a nanofluid over the vertically
rotating frustum of a cone. From this analysis, the main findings are drawn in both cases

(a) and (b) as follows:

An increase in spinning parameter leads to increases the nanoparticle volume fraction,
skin friction, local Nusselt and regular Sherwood numbers, but decreases the swirl velocity,
temperature, regular concentration and local nanoparticle Sherwood number. Further, the
tangential velocity increases in case (a) and case (b), but it shows opposite trend in case
(a) far away from the frustum of a cone. With the increase of Biot number, the tangential
velocity, temperature, local Nusselt and regular Sherwood numbers enhance, but the swirl
velocity, nanoparticle volume fraction, regular concentration, local nanoparticle Sherwood
number reduce in case (a). An opposite behavior is noticed in the opposing flow of case
(b). As the suction/injection parameter increases, the swirl velocity, temperature, regular
concentration and local nanoparticle Sherwood number reduce, but the nanoparticle volume
fraction, local Nusselt and regular Sherwood numbers enhance. In addition, the tangential
velocity and surface drag decrease in the case (a), while these show a reverse trend in the
case (b). Moreover, the higher Nusselt and regular Sherwood numbers are found for the
suction case when compared to those of the injection and impermeable cases. Finally, it is
noticed that the tangential velocity, nanoparticle volume fraction, surface drag, Nusselt and
regular Sherwood numbers are more in the aiding flow when compared to the opposing flow

of case (b).
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Chapter 7

Nonlinear Convective Flow of a
Nanofluid over the Permeable Wavy

Frustum of a Cone with Convective

Boundary Condition !

7.1 Introduction

Most of the theoretical and numerical studies on the convective heat and mass transfer deal
with the flat surface and/or uniform surface. Further, the study of convective transport on
the irregular wavy surfaces has received significant attention due to its emerging heat and
mass transfer applications. In view of the engineering and industrial applications, the effects
of temperature dependent viscosity and uniform surface heat flux on natural convective flow
over the vertical wavy cone, have been investigated by Rahman et al. [97]. Siddiqa et al.
[112] obtained the numerical solution for the natural convective flow of a two-phase dusty

nanofluid over the vertical wavy frustum of a cone.

!Case(a): Published in “Journal of Nanofluids” 7 (2018) 1258-1271, Case(b): Communicated to
“International Journal of Numerical Methods for Heat & Fluid Flow”
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The analysis of nonlinear convection (i.e., may be treated as the nonlinear relationship
between the density, temperature and concentration) is of great interest owing to their
numerous applications such as cooling of electronic components, pore water convection near
salt domes, etc. Very few researchers have aimed at this point and tried to explore various
aspects on the fluid flows in this direction. Kameswaran et al. [47] analyzed the effects
of nonlinear Boussinesq approximation and convective boundary condition on the mixed
convective flow of a thermally stratified nanofluid over the vertical wavy surface in a non-
Darcy porous medium. The combined effects of radiation and nonlinear convection on a
three dimensional thermal boundary layer flow of a nanfluid over the stretching sheet have

been addressed by Mahanthesh et al. [57] (For more details, see the citations therein).

The objective of this chapter is to examine the influence of nonlinear Boussinesq approx-
imation on convective flow of a nanofluid over the permeable wavy frustum of a cone in
the presence of convective boundary condition. As in the previous chapter, here also, the
Bivariate Pseudo-Spectral Local Linearization Method is employed to solve the system of
reduced non-linear partial differential equations. The effects of various physical parameters
on the dimensionless velocity, temperature, nanoparticle volume fraction, regular concentra-
tion along with the skin friction, heat and mass transfer rates are displayed through graphs

and the salient features are discussed.

7.2 Mathematical Formulation

A steady, laminar and two-dimensional convective flow of an incompressible nanofluid over
the wavy frustum of a cone with transverse sinusoidal waves of characteristic length 2L and
amplitude a, is considered in this chapter. Choose the coordinate system such that the z-axis
is taken along the surface of the wavy frustum of a cone and y-axis is measured normal to
it, with the origin O at the vertex of a full cone, as shown in Fig. (7.1). The wavy surface

profile of the frustum of a cone is characterized by

o= o) =0 (12) -
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Figure 7.1: Physical model of the problem

where z( is the height of frustum of a cone. Assume that the regular concentration near to

wavy surface is C,. The temperature, nanoparticle volume fraction and regular concentration

at ambient medium are assumed to be T, ¢ and Cy, respectively. Due to the convective

boundary condition, the wavy surface is to be heated for Ty > T, or cooled for Ty < T in

which T} is the nanofluid temperature.

Following the above assumptions and nonlinear Oberbeck-Boussinesq approximations,

the basic governing equations are given by

e (

d(ru) O(rv)

= 2
pe + Jy 0 (7.2)

0 0 0
u%ﬂa—;‘) = — P u VPt pr g (1= 6) | Br (T = Too) + B (T = Toe)?
+ 60 (C = Coe) + oo (€ = C)?| cos A= (py = p..) 9 (6 — 6a0) cos A

(7.3)
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Jv ov\  Op 5 9
Pfoe (“%“ja_y) ——a—yﬂtv v—pr. g (1 - 0x) |:/8T(T_Too)+BTT(T_Too)

+ 0 (C = Coe) + fioo (€ — Coo)?] sin A (74)
ug—Z+v%:amv2T+j{DBW.VTJFIT)—;VT.VT} (7.5)
U%Jrvg—j:DBV%—k?—;VQT (7.6)
ug—iﬂg—gzpsv?c: (7.7)

where V2 is the Laplacian operator, p is the pressure, By and Brr are the first and second
order thermal expansion coefficients, and o and [Sc¢ are the first and second order solutal

expansion coefficients, respectively.

The associated boundary conditions are

B B or d¢  Drp 0T B B
u=0, v="1y, —kay—hf(Tf T), DB8y+T008y_O’C_Ow at y=0 (7.8a)
U=Uuy(T), T=Tw, § =, C =Cyx as y — o0 (7.8b)

In this chapter also, two types (cases) of problems are considered: (a) free/natural con-

vection and (b) mixed convection.

7.2.1 Case(a): Natural Convection

The flow is assumed to be a natural convection which is caused by buoyancy forces only
without any external agent and hence, the velocity of the external flow becomes zero. We

introduce the following non-similarity transformations

. rx—x T - y—o(@) 1/4 7 (0 1/4 T'-Tx ~ ¢—9x
xr L Lay ’77D U6L2 ) Tf_Too’gb ¢OO )
~ C’_C(oo ~ DP7Po ~ T - G -  Tg
C= Ow_coo7p_ puz y I — L7 a = L? To = L (79)



U L
where u? = g L 87 (Tf — Tx) (1 — ¢ho) cos A and Gr'/2 = ——.
v
Here, we assumed that the width of the boundary layers is very small as a contrast with
the local radius of the flat frustum of a cone. Hence, the local radius to a point in the
boundary layer is approximated to the radius of a flat cone. Also, it is assumed that the

Grashof number (Gr) is very large and hence the natural convection happens only inside the

boundary layer whose width is significantly smaller than the amplitude of the wavy frustum

of a cone.

Substituting Eq. (2.7) and Eq. (7.9) into Eqgs.(7.3)-(7.7) and letting Gr — oo (i.e.,

boundary layer approximation), the flow governing equations reduce to the following form

‘Bl —_

o % O oY 9% op i, 0P 1 P
_ 77 = 1
7 0707 (ay Gop| = e O gyt o

+ [+ M D)T + Ne(1+20)C| = Nr g (7.10)

O B W C VAN B S T N
“\ozor ogoroy) "=\ oy =% oy ~ By

=
_%(1+g§)gg_£+ [(1+>\1T)T+Nc(1+>\25)(7} tan A (7.11)
. %?—%% — (1402 [Si%—gf (7.14)
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along with the boundary conditions

b 19¢ orT | 0¢ r . = _
0 2 e T mia 7y, b2 Nt 0 G =1 at =0 (715
oy T o1 / oy i ) oy + oy w (7.152)
0 o~ e _
a—gzo,T:0,¢:O,C:O,p:O as Yy — 00 (7.15D)
Ty — T C,—C
where \; = Brr (T; = Tc) and \y = foo(Cuw = Cx) are the nonlinear density temperature

Br 2 Bc

parameter (NDT) and nonlinear density concentration parameter (NDC), respectively. Fur-
ther, f, = - Gr'/* is the suction/injection parameter with f,, < 0 for injection, f, > 0

for suction, and f,, = 0 for impermeable surface.

From the Eq. (7.11), it is seen that the order of the term g—g is O(Gr=1/*). Therefore, the
least order of %: can be evaluated from the solution of inviscid flow case. But, this pressure

gradient is zero for the problem under consideration. On eliminating the term g—g from Egs.

(7.10) and (7.11), we get

l @82{;_%82{; T %v 2+0'50'55 @ ’ 1(1+0_)83,¢
72 oy 00y 0T 0y oy 1+02\ 0y T o3
1—o0ztan A

1+o02

For the numerical purpose, again we introduce the following new variables

E=7,1= gi/ b =EMFfEm), 0=T(En), v=0(&n), S=C(&n) (7.17)

where 7 = (£ + &) sin A.

Substituting Eq. (7.17) into Eq. (7.16) and Eqs. (7.12) - (7.14), we obtain

(1+o§)f”’+(R+ >ff”—%(f’)2+1_fj—t;M[(1+)\19)9+Nc(1+/\25)5]
3
Nr O¢0¢e ppo /af, af 1"
EEA f(rag +fa_§_a_§f>(7‘18)
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2
1;—:50”+(R+§L)f9’+(1+0§)Nb9’7’+]\7t(1+a§2) 0 =¢ ( 'g—z ‘;]g ) (7.19)
1—'—0'2 I 3 , 1+ gNt ,, 87 3f
o —|—(R—|—Z)f’7+ e Nb —f( 85 8§ ) (7.20)
1+0_§ " 3 !/ /aS 8f/
o S+<R+Z)fs_€< 8_5_8_§S> (7.21)

and the associated boundary conditions (7.15) reduce to

0 .
Plen) =0, €50 + (R4 3) J6.0) = €/ o 06m) = ~Big " 1= 8(e )],
Nby'(§,m) + Nto'(§,n) =0, S(&n) =1 at n=0 (7.22a)
f1(&m) =0,006m) =0,7(&n)=0,5¢n=0 as n—o0 (7.22b)
£
where R = .
£+ &o
Th di ional skin friction C' Tw_ Jocal Nusselt number N Gu T
non-dimension in fr = =
e no ensional s = pooU27 R(Ty — )
local nanoparticle Sherwood number NShzy = Gn T and local regular Sherwood number
B Yoo
qm T : .
hz = , hich
S Dy (Cyy — O} in whic

where

05 1
n= | — :
\/1+a§ \/1+o—§

is the unit normal vector to the surface of the wavy frustum of a cone, are given by

1 " NUI /
5 CrGrilt =gt o160, — Rl —\ 1+ 020'(€,0),
(7.23)
NShz Sh
e €M1+ 0g/ (60, —a = €142 5(6,0)
Tz
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Results and Discussion

As explained in the previous chapters, here also, the Bivariate Pseudo-Spectral Local Lin-
earization Method is employed to solve the non-homogeneous and non-linear coupled partial
differential equations (7.18)-(7.21) along with the boundary conditions (7.22). To validate
the generated code, the numerical values of the surface drag %C’f(Gr)l/ * and heat transfer
rate Nugz(Gr)~'/* at € = 0 (i.e., flat vertical plate case) are compared with the existing
results (Na and Chiou [75], Na [74], Yih [130] and Cebeci and Bradshaw [15]), as given
in Tab. (7.1). Also, the numerical values of the surface drag and heat transfer rate for
¢ — oo (i.e., flat full cone case) are compared with the results presented by Na and Chiou
[75], Roy [107], Alamgir [4] and Yih [130], as given in Tab. (7.2). It is observed that the
results are in a good agreement, as exhibited in Tabs. (7.1) and (7.2). To investigate the
effects of amplitude (a) and half angle (A) of the wavy frustum of a cone, suction/injection
parameter (f,), Biot number (Bi), nonlinear density temperature parameter (A;) and non-
linear density concentration parameter (A2), the computations have been carried out for
Nc=1,Nr =0.5,5¢=0.6, Pr =1,Le =10, Nt = 0.2, Nb = 0.2 and & = 1. These values

are fixed in this analysis unless otherwise specified.

The influence of nonlinear density temperature parameter (A;) and suction/injection
parameter ( f,,) on the velocity f’, temperature 6, nanoparticle volume fraction v, and regular
concentration S, is explored in Figs. 7.2(a)-7.2(d). Figure 7.2(a) reveals that the velocity
increases with an increase of the nonlinear density temperature parameter (NDT) for all the
cases of injection, impermeability and suction. It is well known that the NDT parameter
shows the nonlinear relationship between the fluid density and temperature. Physically,
A1 > 0 refers to the heat supplies from the surface of a wavy cone to the fluid region. For
fw=—-0.5, f, = 0.0 and f,, = 0.5, the profiles of the temperature and regular concentration
diminish with an enhancement in the NDT parameter, as plotted in Figs. 7.2(b) and 7.2(d).
But, the reverse responses are noticed for the nanoparticle volume fraction, as shown in Fig.
7.2(c). Further, the velocity, temperature and regular concentration are found to be high in

the case of injection in comparison with those of the suction and impermeable cases.
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Table 7.1: Comparison of 1C¢(Gr)Y/* and Nuz(Gr)=Y* for various values of Pr, when
Nr=Nc=Nt=0,Sc=Le=1,Nb—=0,a=0:=0,A=0,\, =X =0, f,, =0, Bi = 00
and £ = 0.

] £(0, 0) | —9/(0, 0)
Pr | [130] [15] Present [74] [75] [130] [15] Present
0.1 | 1.2144 1.2104 1.21165028 | —— — 0.1629 0.1637 0.16340583

1 0.9084 0.9081 0.90819093 | 0.4010  0.4011  0.4012 0.4009 0.40103296
10 | 0.5927  0.5930  0.59282326 | 0.8269  0.8269  0.8266 0.8266 0.82683087
100 | 0.3558 0.3564 0.35588101 | 1.5493  1.5493  1.5493 1.5495 1.54931193
1000 | 0.2049 —  0.20574685 | —— — 2.8035 —— 2.80316218

Figures 7.3(a)-7.3(d) explore the effects of wavy surface parameter (a) and NDC param-
eter () on the velocity f’, temperature 6, volume fraction v, and regular concentration S.
Here, a = 0 and A3 = 0 are used to indicate the flat surface and linear density concentra-
tion, respectively. From Figs. 7.3(a), 7.3(b) and 7.3(d), it is seen that the enhancement in
the amplitude of wavy surface leads to enhance the thickness of the momentum and solutal
boundary layers but reduces the thermal boundary layer thickness. Further, the nanoparticle
volume fraction increases in the neighborhood of the surface and gradually decreases towards
the outer edge of the boundary layer, as shown in Fig. 7.3(c). The NDC parameter causes
to escalate the velocity and nanoparticle volume fraction near to the wavy surface, but an
opposite behavior is noticed towards the outer edge of the corresponding boundary layers, as
plotted in Figs. 7.3(a) and 7.3(c). The magnitude of temperature and regular concentration
diminishes with rising values of the NDC parameter, as given in Figs. 7.3(b) and 7.3(d).
Further, it is observed that the influence of NDC parameter Ay is more on the temperature

and regular concentration profiles as a contrast with that of the NDT parameter A;.

The variations of velocity f’, temperature €, nanoparticle volume fraction -, and regular
concentration S for diverse values of Biot number (Bi) and half angle of the wavy cone (A),
are shown in Figs. 7.4(a)-7.4(d) . When the wavy surface is non-isothermal (i.e., small values
of Bi), the thickness of momentum and regular concentration boundary layers increase, but
the thermal boundary layer thickness decreases with an increase in the half angle of wavy

cone. With the enhancement of the half angle parameter (A), the nanoparticle volume
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Table 7.2: Comparison of 1C¢(Gr)"/* and Nuz(Gr)='* for various values of Pr, when
Nr=Nc=Nt=0,Sc=Le=1,Nb—=0,a=0:=0,A=0,\, =X =0, f,, =0, Bi = 00
and & — oo.

’ ‘ 1" (0, 0) ‘ —0'(00, 0)
Pr | [107] [130] Present [107] 4] [75] [130] Present
0.1 —_— 1.0960 1.09464314 | —— 0.2141 — 0.2116 0.21130560

1 0.8600  0.7699  0.76944922 | 0.5275 0.5280 0.5104 0.5109 0.51039548
10 | 0.4899  0.4877  0.48769819 | 1.0354 1.0159 1.0340 1.0339 1.03398025
100 | 0.2897  0.2896  0.28960777 | 1.9229 1.8237 1.9220 1.9226 1.92271470

1000 | 0.1661  0.1661  0.16168925 | 3.4700 3.2463 —  3.4696 3.46515335

fraction enhances near to the wavy surface and shown an opposite trend towards the outer
edge of the boundary layer, as displayed in Fig. 7.4(c). Additionally, the ratio of the thermal
resistance of the boundary layer and the solid surface is characterized by the Biot number
(Bi). With an increase in the Biot number, the non-dimensional velocity and temperature

enhance rapidly, whereas the nanoparticle volume fraction and regular concentration reduce,

as plotted in Figs. 7.4(a)-7.4(d).

The streamwise variations on the surface drag +C;(Gr)'/*, local heat transfer rate Nug(Gr)=/4,
local nanoparticle mass transfer rate NShyz(Gr)~*/4, and local regular mass transfer rate
Shz(Gr)~"* under the influence of suction/injection parameter (f,) and nonlinear density
temperature parameter (\;), are shown in Figs. 7.5(a)-7.5(d). Figure 7.5(a) reveals that
the surface drag enhances with an enhancement in the NDT parameter for the injection,
impermeable and suction cases. Figures 7.5(b) and 7.5(d) shown that the local heat and
regular mass transfer rates rise with rising values of NDT for all cases of f,,. But, an oppo-
site behavior is noticed on the local nanoparticle mass transfer rate, as given in Fig. 7.5(c).
Moreover, the local heat and regular mass transfer rates are found to be high for the suction
case in comparison with those of the impermeable and injection cases. But, the surface drag

and local nanoparticle mass transfer rate are more in the case of injection when these are

compared to other cases.

The influence of wavy surface parameter (a) and NDC parameter (Ay) on the non-

dimensional surface drag 1Cy(Gr)'/4, local heat transfer rate Nuz(Gr)~*/4, local nanopar-
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ticle mass transfer rate NShz(Gr)~'/4, and local regular mass transfer rate Shy(Gr)—/*

over £, are presented in Figs. 7.6(a)-7.6(d). The range of ¢ is taken from 0 to 4, which is
proportional to two full cycles of the wavy surface, as displayed in Fig. 7.1. At fixed \s,
the surface drag and local regular mass transfer rate are observed to be higher for a smooth

surface (a = 0) compared to the wavy surface (a # 0). The reason for this behaviour is that

1—0¢tan A

the buoyancy force along the wavy frustum of a cone is reduced by the component —=—
€

from its value of the smooth frustum of a cone. Further, we consider one full cycle for &
from 2 to 4. When a increases, the local heat transfer rate decreases in the first quarter
of the cycle (£ ~ 2.0 to £ ~ 2.5) and then increases in the second quarter of the cycle
(& =~ 2.5 to & = 3.0). Again, a decrease in the heat transfer rate is observed for the third
quarter of the cycle (£ = 3.0 to £ ~ 3.5) and a large increase is noticed in the last quarter of
the cycle (£ &~ 3.5 to £ ~ 4.0). But, the nanoparticle mass transfer rate follows an opposite
trend in all the cycles from & = 2 to £ = 4. The same phenomenon is repeated when the
range of ¢ is promoted by another cycle. For the wavy surface (a # 0), the surface drag,
local heat and regular mass transfer rates enhance but the local nanoparticle mass transfer

rate diminishes with an increase of the NDC parameter.

The streamwise distributions of the surface drag %Cf(GT)l/ 4 local heat transfer rate
Nug(Gr)~/*, nanoparticle mass transfer rate NShz(Gr)~'/* and regular mass transfer rate
Shz(Gr)~Y* for different values of Biot number (Bi) and half angle of the wavy cone (A),
are presented in Figs. 7.7(a)-7.7(d). Here also, one full cycle for £ from 2 to 4 is considered
to explore the influence of half angle parameter. It is seen that the surface drag, local heat
and regular mass transfer rates increase in the first half of the cycle (£ ~ 2.0 to £ ~ 3.0) and
then it shows a reverse trend in the second half of the cycle (£ =~ 3.0 to £ ~ 4.0) with an
increase in the half angle of a cone. But, the opposite results are noticed for nanoparticle
mass transfer rate with half angle of a cone. These trends are repeated when the range of
¢ is extended by one more cycle. For a fixed A, the surface drag, local heat and regular
mass transfer rates enhance, but the local nanoparticle mass transfer rate diminishes with

an increase in the Biot number, as plotted in Figs. 7.7(a)-7.7(d).
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Figure 7.2: Effects of f,, and Ay on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume
fraction, and (d) Regular concentration for a = 0.15,\y = 3, A = 10° and Bi = 1.
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Figure 7.3: Effects of a and \y on (a) Velocity, (b) Temperature, (c) Nanoparticle
fraction, and (d) Regular concentration for f, = 0,A\; =3, A =10° and Bi = 1.
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7.2.2 Case(b): Mixed Convection

Consider the mixed convective flow arises from an external flow with velocity U,, and buoy-

ancy forces. We introduce the non-similarity transformations in the following form

. xz—x0 T . y—o(T) 1/2 v 1/2 T— T _ 9~ 9
x L L ) y L € Y w UOO L2 € ) Tf _ TOO 7 ¢ (boo ?
~ C—Cyx ~ P—Pso ~ T - 0 _ a _ T Uy
Cw_cooy pUOQO ) L7U Lyaz L;vr() Lau UOO ( )
where Re = is the Reynolds number and U, is the reference free stream velocity.

v
Substituting Eq. (2.7) and Eq. (7.24) into Egs. (7.3)-(7.7) and letting (Re — oo) (i.e.,
boundary layer approximation), the dimensionless boundary layer equations can be written

as

~\ 2 ~ ~
1 00 0% 89 b 0% | op 1291 2N
7 | oy o705 (a_@“ swop |~ o gttt g

+ A [(1+A1T)f+Nc(1+A25)5—Nr$
(7.25)

~\ 2 ~\ 2 ~
1 of 0 b 8% AN 2O o ,. O
il b il A 4 | == To == = Tag2) 2
=" (&C o oy owoy) 7 oy ) | e \ay) T e T

+A [( + M )T+ Ne(l +A26)O] tan A
(7.26)
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_ (1403 &°C (7.20)

—_

along with the boundary conditions

0 o 100 T oy ne % %L 0 G ot at =0 (7300

oy T or oy oy oy
3w ~ ~ ~ ~ _
F—ruw,T:(),gb:O,C:O,p:O as Yy — 00 (7.30Db)
Y
Vw . . .. .
where f, = “U_ReZ is the suction/injection parameter.

It is seen from Eq. (7.26) that the order of the term g—g is O(Re'/2). Therefore, the least

order of pressure gradient in the Z - direction can be evaluated from the solution of inviscid

flow case and it is given by (see [67], [62] and [111])

g—g = —[(1+03) uptl, + 05 075 u| (7.31)
Now, the elimination of the term from Egs. (7.25) and (7.26) gives
l (@ﬁ_aja%/’) <5¢> n Oz O35 <3_IZ>2 _ 1 8]'5
72 Oy 010y 0T 02 oy 1+o02 \ Oy (14 02) oz
+2(+o )g?iif I\ fjj%“f“ 1+ M T)T 4+ Ne(1+2,6)8] - A lf;%a (7.32)

For the numerical purpose, we introduce the following new variables

=T, n=ull2e Vg, b =Full2E 2 f(&m), 0 =T(En), v = d(,n), S = C(& ) (7.33)
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Substituting Eq. (7.33) into Eq. (7.32) and Eqs. (7.27) - (7.29), we obtain

(rat) 7+ (Rt g+ 56 )ff”—f(—"f"%@)(f')? s

2 L+07 u, 1+ 0f
§ 1—o0¢tanA LOf Of
(1+o ),, 11 , . ,00 af
TQ (R+§+§£u—w>f9+]\fb(l+ag)87+Nt(1+0§)( "2 —f( 9 o€ )
(7.35)
(1+0?) , 1 W\ o Ao N, (0 Of
T (Regegei) e T e (1R ) 0
(14—02) . 1 1 , ,05  Of ,
o S+<R+§+§§E>f5—§( 8_§_8_£S) (7.37)
and the associated boundary conditions reduce to
Flem =065+ (R 5+ 565 ) flem = e
’ o¢ 2 Uy v
0'(¢m) = —u, 22 Bi [1 = 0(& )], Nby'(€,0) + NtO'(€,m) =0, S(En) =1 at n=
(7.38a)
f€m) =1,0(&n) =0,7(&n) =0,9¢n) =0 as n—o0 (7.38b)

The terms u!, and u, appeared in the above system of equations (7.34)-(7.37) can be
obtained from the solution of an inviscid fluid flow problem. But, this solution is valid only
for small values of the amplitude-wave length ratio. Therefore, the solution u,(z) of the
potential flow for small values of a(<< 1) is given by (For more details, see [67], [62] and
[111])

- _[1 [ dt) -
w(T) =1 — —Zdt| +O(a® 7.39
Uy (T) +a[7r/0 — }—i— (@) (7.39)
The non-dimensional skin friction C; — —__local Nusselt number N Gw?®

e non-dimensional skin friction C'; = ocal Nusselt number Nuz = —————,

T o U2 k(T; — Too)

local nanoparticle Sherwood number NSh; = an 5 and local regular Sherwood number

B P00
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Shf:D (Co—C ),are given by
S w — VYoo
1 1/2 3/2 ¢—1/2 2 g1 Nug 1/2 172/ 2
§CfR6 = Uy 5 1+0—§f (§70)7W:_uw 5 1+0_§0(§70)7 (740)
NShT o _ul/Z 51/2 1 +0_2 /(6 O) Shi . 1/2 51/2 14+ 251/(g O) .
Rel/2 w \V ¢ T\ V) Rel/2 Uy O¢ )

Results and Discussion

The resultant system of partial differential Eqs. (7.34)-(7.37) along with the boundary con-
ditions (7.38) are solved numerically using the Bivariate Pseudo-Spectral Local Linearization
Method. In order to assess the generated code, for special case of a = 0, A\ = 0, Ay = 0,
fw = 0 and Bi — oo, the present results of the local Nusselt number at & = 0 (Vertical
flat plate case) have been compared with those of Lloyd and Sparrow [56] and an excellent
agreement is noticed, as shown in Tab. (2.2). To study the influence of various physical
parameters, the computations have been carried out for N¢ = 1, Nr = 0.5, S¢ = 0.6, Pr =

1,Le=10,Nt =02,Nb =02, A=10° and & = 1.

Figures 7.8(a)-7.8(d) are plotted to explore the effects of NDT parameter (\;) and suc-
tion/injection parameter (f,,) on the dimensionless velocity f’, temperature 6, nanoparticle
volume fraction 7, and solutal concentration S at A = 1. Physically, the nonlinear density
temperature parameter (NDT) shows a nonlinear relationship between the fluid density and
temperature. Therefore, \; > 0 (i.e., Ty > T) refers to the heat supplies from the surface
of a wavy cone to the nanofluid region. As expected, the velocity and nanoparticle volume
fraction increase with an increase in the NDT parameter, as displayed in Fig. 7.8(a) and
7.8(c). But, the temperature and regular concentration decrease with increasing values of
A1, as shown in Figs. 7.8(b) and 7.8(d). These observations are also true for the suction,
injection and impermeability cases. Moreover, the permeable surface is characterized by
suction/injection parameter f,. The values f, = —0.5,0 and 0.5 indicate the injection,
impermeable surface and suction cases, respectively. For a fixed A{, the velocity increases
when suction/injection parameter increases, as given in Fig. 7.8(a). With the increasing

values of f,, the non-dimensional temperature decreases at a fixed A, as plotted in 7.8(b).
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From Figs. 7.8(c) and 7.8(d), it is also noted that the nanoparticle volume fraction enhances
and regular concentration diminishes with enhancing values of f,,. Further, the temperature
and regular concentration of the nanofluid are more in the case of injection in comparison

with those of fluid suction and impermeable surface cases.

For various values of the NDC parameter () and Biot number (Bi), the distributions of
velocity f’, temperature 6, nanoparticle volume fraction 7, and regular concentration S, are
demonstrated in Figs. 7.9(a)-7.9(d). Physically, the NDC describes a nonlinear relationship
between the fluid density and concentration. Therefore, Ay > 0 (i.e.,C,, > C.) refers to
the mass supplied from the surface of a wavy cone to the nanofluid region. For small
values of Bi, the NDC parameter escalate the velocity and nanoparticle volume fraction
near to the wavy surface, but an opposite behavior is noticed towards the outer edge of the
corresponding boundary layers, as shown in Figs. 7.9(a) and 7.9(c). It is seen from Figs.
7.9(b) and 7.9(d) that the magnitude of temperature and regular concentration diminish
as the NDC parameter raises. This effect is due to the additional mass supplied from the
mass near to the surface. It is interesting to note that the influence of \; is more prominent
on the temperature and regular concentration profiles, as a contrast with that of A\;. With
an increase in the Biot number, the magnitude of the velocity increases as given in Fig.
7.9(a). Figure 7.9(b) explores that an increase in the Biot number (Bi7) rapidly increases the
dimensionless temperature. Further, it is found that the magnitude of nanoparticle volume
fraction diminish near to the surface and show a reverse trend towards the outer edge of the
corresponding boundary layer, whereas the regular concentration fall down with the rise of

Biot number, as plotted in Figs. 7.9(c)-7.9(d).

The influence of mixed convection parameter (A) on the velocity f’, temperature 0,
nanoparticle volume fraction v, and regular concentration S, is demonstrated in Figs. 7.10(a)-
7.10(d). The mixed convection parameter characterizes the fluid flow behavior such as the
opposing flow for A < 0, forced convective flow for A = 0 and aiding flow for A > 0. For large
values of the mixed convection parameter (i.e., \ — 00), the flow becomes the free convec-
tion. From Fig. 7.10(a), it is clear that the velocity in aiding flow is found to be more when

compared with the opposing, forced and free convective flows. The higher temperature is
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noticed for opposing flow when compared to the aiding, free convective and forced convective
flows, as plotted in Fig. 7.10(b). From Fig. 7.10(c), it is clear that the nanoparticle volume
fraction reaches its maximum value for free convective flow, as compared to the mixed con-
vective flows. This is due to the large buoyancy forces occurred in the presence of the mixed
convection parameter. The regular concentration for aiding flow is very less in comparison

with the opposing, forced and free convective flows, as depicted in Fig. 7.10(d).

Figures 7.11(a)-7.11(d) exhibit the effects of NDT (A1) and NDC (\g) parameters on
the streamwise distributions of surface drag, local heat transfer rate, local nanoparticle and
regular mass transfer rates for Bi = 1 (non-isothermal case) and Bi >> 1 (isothermal case).
For a fixed value of NDC parameter, the surface drag, local heat and regular mass transfer
rates rise with the rising values of NDT parameter, as plotted in Figs. 7.11(a), 7.11(b) and
7.11(d). The similar observation is drawn with the rising values of NDC parameter for a
fixed value of NDT parameter. Also, a huge increment is noticed in the drag coefficient, and
local heat and regular mass transfer rates in the presence of both NDT and NDC parameters.
But, the opposite results are noticed for the local nanoparticle mass transfer rate, as shown
in Fig. 7.11(c). From the obtained results, it is clear that the influence of NDC parameter is
more significant on both heat and regular mass transfer rates when compared to that of NDT
parameter. Further, the presence of convective thermal boundary condition at the surface
controls the drag coefficient and also the heat and regular mass transfer rates. That is, the
higher heat and regular mass transfer rates are noticed when Bi — oo (i.e., for isothermal

surface).

The influence of suction/injection parameter (f,,) on the surface drag, local heat transfer
rate, local nanoparticle and regular mass transfer rates versus the streamwise coordinate (),
for smooth surface (a = 0.0) and wavy surface (e = 0.2), is displayed in Figs. 7.12(a)-7.12(d).
The range of £ is taken from 0 to 4, which is proportional to two full cycles of the wavy
surface. At a constant f,, the surface drag, local nanoparticle and regular mass transfer rates
are observed to be higher for smooth surface (e = 0) than that of the corresponding wavy
surface (a = 0.2). From Fig. 7.12(a), it is clear that the surface drag coefficient increases

with the increase of suction/injection parameter, for both a = 0.0 and a = 0.2. The same
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behavior is noticed for both local heat and regular mass transfer rates, as depicted in Figs.
7.12(b) and 7.12(d). But, the local nanoparticle mass transfer rate follows an opposite trend
with suction/injection parameter, as shown in Fig. 7.12(c). Particularly, the higher values
of heat and regular mass transfer rates are found in the suction case when compared to the

injection and impermeability cases.

Figures 7.13(a)-7.13(d) illustrate the streamwise distribution of surface drag, local heat
transfer rate, local nanoparticle and regular mass transfer rates under the influence of mixed
convection parameter (\). The magnitude of surface drag in the opposing flow is very less
in comparison to the aiding, free and forced convective flows as portrayed in Fig. 7.13(a).
Figures 7.13(b) and 7.13(d) reveal that the heat and regular mass transfer rates for aiding
flow are noted to be substantial than those of for opposing, free and forced convective flows.
But, the mixed convection parameter is shown an opposite behaviour on the nanoparticle

mass transfer rate, as depicted in 7.13(c).
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Figure 7.8: Effects of f,, and Ay on (a) Velocity, (b) Temperature, (¢) Nanoparticle volume

fraction, and (d) Regular concentration for Bi = 1.0, Ay = 0.1,a = 0.1 and A = 10°.
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7.3 Conclusions

The nonlinear convective flow of an incompressible nanofluid over the permeable wavy frus-
tum of a cone subject to the convective boundary condition, is investigated in this chapter.
The resultant non-similarity equations are solved using the Bivariate Pseudo-Spectral Local
Linearization Method. Based on the analysis carried out, the main conclusions are drawn

for both case (a) and case (b) as given below:

With the increase of both NDT and NDC parameters, the velocity and nanoparticle
volume fraction increase, whereas the temperature and regular concentration decrease in both
case (a) and case (b). Also, the drag coefficient, local heat and regular mass transfer rates
increase in both the cases (a) and (b). For both the cases (a) and (b), the surface drag and
regular mass transfer rate reduce, but the sinusoidal oscillations are noticed with an increase
of the amplitude of wavy surface. As Biot number enhances, the velocity and temperature
profiles along with the heat and regular mass transfer rates enhance, whereas the nanoparticle
mass transfer rate diminishes for both the cases (a) and (b). The temperature, regular
concentration, and nanoparticle mass transfer rate decrease, but the nanoparticle volume
fraction, heat and regular mass transfer rates increase, with an increase of suction/injection
parameter in both the cases (a) and (b). However, the velocity and drag coefficient decrease
for case (a) but an opposite behaviour is noticed for case (b). Moreover, the heat and regular
mass transfer rates are high in the case of opposing flow when compared to the cases of aiding

flow, free and forced convective flows.
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Chapter 8

Summary and Conclusions

In this thesis, an analysis of convective heat and mass transport over the vertical frustum of a
cone in a nanofluid, subject to the uniform wall temperature/convective boundary condition,

is discussed.

The steady, two-dimensional natural/mixed convective flow of a nanofluid over the ver-
tical frustum of a cone has been investigated. The main aim of chapters is to present the
non-similarity solution for the considered problems and also to investigate the effects of Soret
and viscous dissipation, double stratification, non-Darcy porous medium, Arrhenius activa-
tion energy, thermal radiation, double dispersion, spinning parameter, nonlinear convection,
amplitude and angle of wavy frustum of a cone on the various profiles and physical quantities.
Using a suitable set of non-similarity variables, the governing equations are transformed into
a system of non-linear partial differential equations and then solved by using the Bivariate
Pseudo-Spectral Local Linearization Method. The important observations, in both (a) free

convection and (b) mixed convection, are as follows:

e An increase in the Eckert number, increases the temperature, nanoparticle volume
fraction, local nanoparticle and regular mass transfer rates, but decreases the regular
concentration and local heat transfer rate. Moreover, the velocity increases in case (a)

and aiding flow of case (b), whereas it decreases in the opposing flow of case (b).
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e The velocity, regular concentration, surface drag and local heat transfer rate enhance,
whereas the temperature, local nanoparticle and regular mass transfer rates reduce
with the increase of Soret number in case (a) and aiding flow of case (b). But, the
velocity, temperature, surface drag, local heat and nanoparticle mass transfer rates

show a reverse trend in the opposing flow of case (b).

e With the increase of both Brownian motion and thermophoresis parameters, the ve-
locity, temperature, local heat and nanoparticle mass transfer rates increase, but the
regular concentration, surface drag and local regular mass transfer rate decrease in case
(a) and aiding flow of case (b). Moreover, the velocity, surface drag, and local regular

mass transfer rate show a reverse trend in the opposing flow of case (b).

e In case (a) and aiding flow of case (b): the velocity, temperature, local heat and
regular mass transfer rates reduce, but the regular concentration and local nanoparticle
mass transfer rate enhance with the enhancement of thermal stratification parameter.
Moreover, the velocity, regular concentration, local heat and regular mass transfer rates
decrease, whereas the local nanoparticle mass transfer rate increases with the increase
of solutal stratification parameter. However, the velocity, local heat and regular mass

transfer rates show an opposite trend in the opposing flow of case (b).

e As the Forchheimer number increases (i.e., in chapters 3 and 5), the velocity, surface
drag, local heat and regular mass transfer rates decrease, but the temperature, regu-
lar concentration and local nanoparticle mass transfer rate increase in case (a). The

behavior of physical quantities of the flow in case (b) show an opposite nature.

e The higher values of activation energy parameter results in higher velocity and regular
concentration, but lower temperature and regular Sherwood number in both case (a)
and case (b). However, the drag coefficient increases in case (a) and aiding flow of case

(b), whereas it decreases in the opposing flow of case (b).

e The velocity, temperature, local heat and regular mass transfer rate increase, but the
regular concentration decreases with the increase of thermal radiation parameter in

both free and mixed convective flows.
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e In the free convective and aiding flows: the velocity, nanoparticle volume fraction and
local heat transfer rate increase, whereas the regular concentration, surface drag and
local nanoparticle mass transfer rate decrease with the increase of thermal dispersion

parameter.

e As the solutal dispersion parameter enhances, the regular concentration and local reg-
ular mass transfer rate enhance in both free and mixed convective flows. But, the
velocity, surface drag and local heat transfer rate increase, whereas the local nanopar-

ticle mass transfer rate decreases in case (a) and aiding flow of case (b).

e In both the cases (a) and (b): the nanoparticle volume fraction, skin friction, local heat
and regular mass transfer rates increase, but the swirl velocity, temperature, regular
concentration and local nanoparticle mass transfer rate decrease with the increase of
spinning parameter. Further, the tangential velocity increases in case (a) and case (b),

but it shows opposite trend in case (a) far away from the frustum of a cone.

e The higher values of both NDT and NDC parameters results in higher velocity and
nanoparticle volume fraction, but lower temperature and regular concentration in both
the cases (a) and (b). Also, the surface drag, local heat transfer rate, local nanoparticle

and regular mass transfer rates increase in both the cases (a) and (b).

e With an increase of the amplitude of wavy surface, the surface drag and local regular
mass transfer rate decrease, whereas the local heat and nanoparticle mass transfer rates

show the sinusoidal oscillations in both the cases (a) and (b).

e As the Biot number increases, the temperature, local heat and regular mass transfer
rates (i.e., in chapters 4-7) increase, whereas the nanoparticle volume fraction and
local nanoparticle mass transfer rate decrease in both free and mixed convective flows.
But, the velocity and surface drag increase, and regular concentration decreases in
free convective and aiding flows whereas they show reverse trend in the opposing flow

situation.

e The temperature, regular concentration and local nanoparticle mass transfer rate re-

duce, but the nanoparticle volume fraction, local heat and regular mass transfer rates
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(i.e., chapters 6 and 7) enhance with the enhancement of suction/injection parameter
in both the cases (a) and (b). But, the velocity and surface drag show an opposite

behavior.

e As compared to the opposing flow, the velocity, nanoparticle volume fraction, surface
drag, local heat and regular mass transfer rates are more, but the temperature, regular
concentration and local nanoparticle mass transfer rate are less in the case of aiding

flow.

The work presented in the thesis can be extended to investigate the effects of Joule
heating, MHD, Hall and Ion slip, heat source/sink, first and second order slip, etc. Further,
this work can be extended by studying the analysis for various non-Newtonian fluids like
micropolar fluids, Casson fluids, Couple stress fluids, etc. Such an exhaustive study can be

a rewarding experience though it is challenging as well as time consuming.
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