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A B S T R A C T

The thesis consists of NINE chapters. In each chapter, we consider two different physical

conditions on the sheet i.e. when the sheet is (i) subjected to thermal convective bound-

ary condition and (ii) maintained at uniform wall temperature with Hall effect. Chapter 1

provides an introduction to the concepts in Newtonian fluid, heat and mass transfer and a

review of the pertinent literature. Chapter 2 presents the effect of thermal radiation and

chemical reaction in a viscous fluid flow over an exponentially stretching sheet. Chapter 3

investigates the effect of Joule heating on the viscous flow over an exponentially stretching

sheet. Chapter 4 deals the numerical solution of influence of cross-diffusion effects on the

flow of viscous incompressible fluid due to the exponentially stretching sheet. Chapter 5

studies the effect of variable fluid properties and heat source/sink on the laminar viscous

flow on an exponentially stretching sheet. Chapter 6 presents the influence of thermophoresis

and viscous dissipation effects of incompressible viscous fluid flow due to a sheet stretching

exponentially. Chapter 7 studies the double dispersion effects in a laminar slip flow of elec-

trically conducting viscous fluid over an exponentially stretching permeable sheet. Chapter

8 explores the influence of homogeneous-heterogeneous reactions in presence of thermal radi-

ation on the laminar slip flow of viscous incompressible fluid on an exponentially stretching

sheet.

Except for case (a) of chapters 3 and 6 and both cases of chapters 7 and 8, in all the chap-

ters, the governing non-linear ordinary differential equations and their associated boundary

conditions are linearized by using successive linearization method and then solved numer-

ically by using Chebyshev spectral collocation method. For the case of non-similar equa-

tions, in the above-mentioned chapters, a local similarity and non-similarity method is used

to transform the governing partial differential equations into ordinary differential equations

and then solved by using Successive linearization method together with Chebyshev spec-

tral collocation method. The effects of convective heat transfer coefficient(Biot number),

Hall parameter, magnetic parameter, thermal radiation, chemical reaction, Joule heating,

cross-diffusion effects, variable viscosity, variable thermal conductivity, heat source or sink,

thermophoresis, viscous dissipation, double dispersion effects, homogeneous and heteroge-

neous reactions are considered on the flow characteristics such as the velocity, temperature

and concentration distributions along with the local heat and mass transfer coefficients and

are presented through graphs. The last chapter (Chapter 9) gives key findings of the thesis

and scope of the work for further study.
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N O M E N C L A T U R E

ã, b̃ Concentrations of the chemical

species Ã and B̃

ã0 Positive constant

Ã, B̃ Chemical species

Bi Biot number

B Buoyancy ratio

C̃ Concentration

Cw Wall concentration

C∞ Ambient concentration

cp Specific heat capacity

cs Concentration susceptibility

KT Thermal diffusion ratio

Tm Mean fluid temperature

Tw Wall temperature

D Molecular diffusivity

D̃e Effective molecular diffusivity

DA, DB Diffusion coefficients

qw Heat flux

qm Mass flux

S Suction/Injection parameter

U∗ Stretching velocity

U0 Reference velocity

V∗ Variable wall mass transfer veloc-

ity

N∗ Slip velocity

N0, V0 Constants

g Gravitational acceleration

Gr Grashof number

hf Convective heat transfer coeffi-

cient

kc, ks Rate constants

K Measures the strength of the ho-

mogeneous reaction

Ks Measures the strength of the het-

erogeneous (surface) reaction

k∗ Mean absorption coefficient

L Characteristic length

Nux̃ Local Nusselt number

Pr Prandtl number

R Radiation parameter

Rex̃ Local Reynolds number

Re Reynolds number

Sc Schmidt number

J Joule heating parameter

Q Heat source
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Q0 Constant

k1 Rate constant

k0 Constant

kp Permeability of porous medium

Kp Porosity parameter

Ha Magnetic parameter

q1 Heat source parameter

x Streamwise coordinate

Ec Eckert number

Sr Soret number

Df Dufour number

Shx̃ Local Sherwood number

T̃ Temperature

Tf Convective wall temperature

T∞ Ambient temperature

T Dimensionless temperature

C Dimensionless concentration

Greek Symbols

α Thermal diffusivity

α̃e Effective thermal diffusivity

βT Coefficients of thermal expansion

βC Coefficients of solutal expansion

γ Chemical reaction parameter

βh Hall parameter

κ Thermal conductivity

Dγ Thermal dispersion parameter

Dχ Solutal dispersion parameter

ε Thermal conductivity parameter

τ Thermophoresis parameter

θr Viscosity parameter

η Similarity variable

τe Electron collison time

ωe Cyclotran frequency of electrons

λ Velocity slip parameter

µ Dynamic viscosity

ν Kinematic viscosity

ρ Density of the fluid

σ∗ Stefan-Boltzmann constant

σ Electrial conductivity

τw Wall shear stress

ψ Stream function

Subscripts

w Wall condition.

∞ Ambient condition.

Superscript

′ Differentiation with respect to η.
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Chapter 1

Preliminaries and Review

1.1 Introduction

Fluid mechanics deals with the behavior of liquids and gases at rest or in motion. It stands

central to much of science and engineering and impacts defense, transportation, manufactur-

ing, environment, medicine, energy, etc. It encompasses a vast variety of practical problems

ranging from the flow of blood in capillaries to flow of oil in huge pipelines and from the

flight of birds to supersonic flights of airplanes. This subject is proven to be a highly exciting

and challenging subject of modern sciences in view of its applications in every aspect our

daily life. The quest for deeper understanding of the subject has not just enlivened the de-

velopment of the subject itself but has additionally proposed the progress in the supporting

areas, such as applied mathematics, numerical computing, and experimental techniques.

The fluid dynamics due to a stretching surface has ever increasing applications in industry

as well as in certain technological processes. When sheets are being manufactured, molten

material is pulled from the slit and stretched to obtain required thickness [5]. The eminence

of such products is determined by both the kinematics of stretching and the simultaneous

1



heating or cooling during the process. This situation is similar to continuous pulling of

plastic sheets in the manufacturing of plastic bags and rubber sheets. It is important to

study the velocity of the stretching surface relative to the point of extrusion [115]. In all

these processes, the quality of the final product, as well as the cost of production, is affected

by the rate of heat transfer and mass transfer on the stretching surface, and knowledge

of cooling fluid and its flow properties. The rate at which the sheet is drawn from the

extrusion slit is described in a number of different ways namely; linear, continuous, unsteady

and nonlinear such as exponential. In most studies it is assumed that the velocity of the

stretching sheet is need not be linearly proportional to the distance from the extrusion slit

[50].

Many chemical engineering processes like those in metallurgy and polymer extrusion Fig.

(2.2.4)) (image is taken from Abel et al. [2]) involve the cooling of a molten liquid (polymer

solution, molten metal, etc.) by drawing it into a cooling liquid, sometimes referred as the

ambient liquid. While drawing the molten liquid into the cooling system it is sometimes

stretched (as in the case of polymersheet extrusion). The stretching imparts a unidirectional

orientation to the extrudate, thereby improving its fluid mechanical properties (see [29]).

The problem of stretching sheet is thus a fundamental one and arises in many practical

situations that are similar to the polymer extrusion and metallurgical processes. Some of

these are listed below:

• Continuous stretching, rolling, manufacturing of polymer sheets.

• Drawing, annealing, tinning of copper wires.

• Cooling of an infinite metallic plate in a cooling path.

• Boundary Layer along a liquid film in condensation processes.

• Manufacture of materials by extrusion process and heat-treated materials traveling

between a feed and wind-up rolls or conveyer belts.

• Glass blowing, paper production, crystal growing, etc.

2



Figure 1.1: Schematic diagram of a polymer extrusion process

In a polymer extrusion process, the fluid mechanical properties desired for the ultimate

outcome (sheet being stretched) depend mainly on the rate of cooling. The liquid which

is basically meant to cool the stretching sheet plays an important role in determining the

property sought for the final product. It is imperative therefore to consider two important

aspects in this physically interesting problem:

• Proper choice of cooling liquid.

• Regulation of the flow of the cooling liquid.

An appropriate and advantageous choice of cooling liquid in all these processes is Newtonian

fluid. Hence, the laminar flow, heat and mass transfer over a stretching sheet in a Newtonian

fluid has received considerable interest by several researchers.

3



1.2 Newtonian fluids

The great majority of most common fluids (liquids and gases) such as water, gasoline, honey,

organic solvents, oils, air, steam, nitrogen or rare gases are characterized as Newtonian fluids.

These fluids resist movement or the movement of an object through the fluid. The magnitude

of the resistance to this deformation is represented by the viscosity of the fluid. The study of

a Newtonian fluid flow gained much attention in last few decades because of their industrial

and engineering applications.

A Newtonian fluid is a fluid that exhibits a viscosity that remains constant regardless

of any external stress that is placed upon it, such as mixing or a sudden application of

force. Another way to describe these fluids is that they obey Newtons law of viscosity or a

linear relationship between viscosity and shear stress i.e. the shear stress induced by flow

is proportional to the rate of the strain and the constant of proportionality is the fluid’s

viscosity.

The equations governing the flow of incompressible Newtonian fluids are

∂ρ

∂t
+ ρ(∇ · ~q) = 0 (1.1)

ρ

(
∂~q

∂t
+ (~q · ∇)~q

)
= ρ~f −∇p+ µ∇2~q (1.2)

where ~q is the velocity vector and p is the fluid pressure, ρ is the density of the fluid and ~f

is the body force per unit mass.

1.3 Basic Terminology

Heat Transfer

Heat transfer means the exchange of internal energy between individual elements or regions

of the medium considered. It always occurs from higher temperature region to lower temper-

4



ature region. There are three modes by which the heat transfer occurs. They are conduction,

convection and radiation. The molecular transport of heat in bodies or between bodies in

the thermo dynamical system is referred to as conduction. Convection is concerned with

the fluid medium and/or the fluid in the medium. The heat transfer due to the movement

of fluid from one region to the other region in the medium is called convection. Radiation

heat transfer is a mechanism in which the internal energy of a substance is converted into

radiant energy. The transport of heat by convection together with conduction is known as

convective heat transfer. Further, forced, free and mixed convection are three classification of

convection. To compute the heat transfer rate in the medium, the temperature distribution

or temperature field is to be determined from the heat or energy (conservation of energy)

equation.

ρ cp

(
∂T̃

∂t
+ ~q · ∇T̃

)
= ∇.(α∇T̃ ) (1.3)

where T̃ , cp and α are the local equilibrium temperature, the specific heat capacity at

constant pressure and the thermal diffusivity of the medium, repsectively.

Radiation

Heat transfer due to the emission of electromagnetic waves is known as thermal radiation.

The importance of radiation becomes intensified at high absolute temperature levels. It

is well known that the thermal radiation heat transfer does not require any intermediate

medium by electromagnetic waves, or photons, which may travel a long distance without

interacting with the medium. Thus thermal radiation is of great importance in vacuum

and space applications. The transfer of energy by radiation depends on differences of the

individual absolute temperature of the bodies. In the presence of thermal radiation, the

energy equation (1.3) reduce to

ρ cp

(
∂T̃

∂t
+ ~q · ∇T̃

)
= ∇.(α∇T̃ ) +∇qr (1.4)
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The radiation heat flux is qr, under the Rosseland approximation [102] can be written as

qr = −4σ∗

3k∗
∂T̃ 4

∂ỹ
(1.5)

where σ∗ is Stefan-Boltzman constant and k∗ is coefficient of mean absorption. We assume

the variation in the fluid phase temperature inside the flow to be appropriately minimum such

that T̃ 4 may be shown as a linearly continuous function of the temperatures and enlarged

in a Taylor Series around Tm and removing highest order terms, we get T̃ 4 = 4T 3
m T̃ − 3T 4

m.

Viscous Dissipation

Viscous dissipation or dissipation is referred as transforming the energy taken from the

motion of the fluid by the viscosity into internal energy. This process is partially irreversible.

The energy conservation equation by including viscous dissipation is given by

ρ cp

(
∂T̃

∂t
+ ~q · ∇T̃

)
= ∇.(α∇T̃ ) + Φ (1.6)

where Φ is the dissipation function representing the work done against viscous forces, which

is irreversibly converted into internal energy. It is defined as ρΦ = λd (∇ · ~q)2 + 2µ (D : D)

Mass Transfer

The tendency of a component in a mixture to travel from a region of high concentration to

one of low concentration is called mass transfer. Mass transfer occurs by two mechanisms

Diffusion mass transfer and Convective mass transfer. Diffusion mass transfer may occur

either due to concentration gradient or temperature gradient or pressure gradient. Convective

mass transfer is a mechanism in which mass is transferred between the fluid and the solid

surface as a result of movement of matter from the fluid to the solid surface or fluid. The

species mass flux can be determined from the statement of conservation of mass species,
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which is given by
∂C̃

∂t
+ ~q · ∇C̃ = ∇.(D∇C̃) (1.7)

where C̃ is the concentration and D is the solutal diffusivity.

Chemical Reaction

Chemical reaction is the reaction in which the rate of reaction is directly proportional to

the species concentration. Depending on the occurrence at an interface or as a single-

phase volume reaction, the chemical reaction can be termed as either heterogeneous or

homogeneous or both homogeneous and heterogeneous. With first order chemical reaction,

the equation (1.7) can be written as

∂C̃

∂t
+ ~q · ∇C̃ = ∇.(D∇C̃)− k1(C̃ − C0) (1.8)

where k1 is the rate of chemical reaction.

Chemical reaction effect on the fluid flow is of considerable significance in chemical tech-

nology, materials processing systems and hydrometallurgical industries. The research on fluid

flow with chemical reaction effects can help to design the chemical processing equipment,

chemical diffusion in disk electrode modeling, carbon monoxide reactions in metallurgical

mass transfer and kinetics, optical materials processing, and formation and dispersion of

fog, etc. Several investigators have analyzed the impact of chemical reaction on the flow,

heat and mass transfer through channels, pipes and annular region.

Cross-diffusion effects

When heat and mass transfer arise at the same time in a moving liquid, the relations between

the fluxes and the driving abilities are of complex nature. It has been observed that an

energy flux can be generated not only by temperature gradients but also by concentration

gradients. “The mass flux can be generated by temperature gradients and this embodies the
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Thermal diffusion, also called thermo-diffusion or Soret effect [89]. The heat flux induced by

a concentration gradient is called Dufour or diffusion-thermo effect”.

The modified energy and concentration equations, in steady state, with the Soret and

Dufour effects, are given by

~q · ∇T̃ = ∇ · (α∇T̃ +DTC∇C̃) (1.9)

~q · ∇C̃ = ∇ · (D∇C̃ +DCT∇T̃ ) (1.10)

where DCT/D is the Soret number and DTC/α and is Dufour number.

Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the branch of continuum mechanics which deals with

the mutual interaction between the magnetic field and electrically conducting fluid. If the

magnetic field is present in an incompressible, electrically conducting fluid, then it interacts

with the fluid by means of body force and body couple per unit mass. In the absence of

gravitational effects, the regular magneto-fluid dynamics assumption is ρ~f = ρe ~E + ~J × ~B,

where ρe is the free charge density, ~E is the electric field, ~B is the total magnetic field, and ~J is

the current density and given by the Ohm’s law ~J = σ
[
~E + ~q × ~B

]
. Since ~J× ~B � ρeE, the

later can be neglected. Hence, by adding the electromagnetic force term to the momentum

equation of the fluid, the fluid dynamical aspects of MHD can be studied. The equation of

motion of MHD Newtonian fluid will have the form

ρ

(
∂~q

∂t
+ (~q · ∇)~q

)
= ρ~f −∇p+ µ∇2~q + ~J × ~B (1.11)

The total magnetic field in the medium is the sum of the applied magnetic field and induced

magnetic field due to the motion of a conducting liquid in an applied magnetic field. The

motion of a conducting fluid through a magnetic field induces electric currents and the fluid

experiences a force. This force is called Lorenz force ( ~J × ~B) and it alters the motion of the

fluid.
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Hall Effect

“The presence of a magnetic field, in the flow of electric current through a conductor, applies

a transverse force on the moving charge carriers that tend to push them to one side of the

conductor. All accumulation of charge along the edges of conductors will adjust this magnetic

effect, producing a quantifiable voltage between two sides of the conductor. The existence of

quantifiable transverse voltage is known as Hall effect” named after E. H. Hall who discovered

it in 1879.

The study of fluid flow with Hall current effects has important engineering applications

in problems of magnetohydrodynamics generators and Hall accelerators as well as in flight

magnetohydrodynamics. If the electron-atom collision frequency is assumed to be relatively

high, the Hall effect cannot be neglected in which a current is induced in the direction

normal to both the electric and magnetic fields. In this case, the generalized ohms law

(current density ) [110] is given by

~J = σ
[
~E + ~q × ~B − η( ~B × ~J)

]
(1.12)

where η is the Hall factor.

Joule Heating

James Prescott Joule(1841) was the first to studey the Joule heating effect. It is also known

as ohmic heating or resistive heating. When an electric current pass through an electrolyte,

it causes Joule heating. It is produced by intercommunication among the atomic ions that

compose the body of the conductor and moving charged particles that form the current. In

this process, some of the kinetic energy is converted into the heat and as a result temperature

of the body increases. The rise in the temperature of the fluid translates to nonuniform

properties of the fluid, such as a change in density and conductivity of the fluid. Changes

in the applied electric potential field and the flow field are among some of the factors that

alter the properties of the fluid.
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Thermophoresis

The thermophoresis is a mechanism in which small particles migrate in the direction of de-

creasing thermal gradient. It is quite significant in radioactive particle deposition in nuclear

reactor safety simulations, aerosol particle sampling, deposition of silicon thin films etc.

Variable fluid properties

In most of the engineering applications, the thermophysical properties of the fluid, especially

viscosity and thermal conductivity may vary with temperature. Therefore, to predict the

heat transfer rate accurately, it is necessary to take into account this variation of viscosity

and thermal conductivity. Different researchers have taken the variations of the viscosity

and thermal conductivity as different functions of temperature, time etc.. Lai and Kulacki

[51] assumed that the fluid viscosity µ varies as an inverse linear function of the temperature

T̃ i.e.,
1

µ
=

1

µ∞

(
1 + δ(T̃ − T∞)

)
(1.13)

where δ is a thermal property of the fluid and µ∞ is the constant value of coefficient of

viscosity at far away from the surface.

Similarly, Slattery [100] and Chaim [13] assumed that the fluid thermal conductivity α

varies as a linear function of temperature i.e.,

α = αo(1 + εT ) (1.14)

where ε = E(Tw−T∞) is the thermal conductivity parameter, E is a constant depending on

the nature of the fluid and Tw is the surface temperature. The variation of ε can be taken in

the range as −0.1 ≤ ε ≤ 0 for lubrication oils, 0 ≤ ε ≤ 0.12 for water and 0 ≤ ε ≤ 6 for air.
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Boundary Layer Approximation

The boundary layer theory was presented by Ludwig Prandtl in 1904. The main idea was

to divide the flow into two parts. The smaller part is a thin layer in the vicinity of solid

surface in which the effects of viscosity are felt. This thin layer near the solid surface is

called boundary layer. Although the boundary layer is thin, it plays an essential role in fluid

dynamics. The thickness of the boundary layer is a function of the ratio between inertial

forces and viscous forces, that is, the Reynolds number. The concept of boundary layer can

be used to simplify the Navier-Stokes equations to such an extent that it becomes possible

to tackle a large number of practical problems of great importance.

Boussinesq Approximation

For sufficiently small isobaric changes in temperature and concentration, the fluid density

depends linearly on temperature and concentration differences, which is called as a linear

Boussinesq approximation (discussed in detail by Tritton [113]) and is given by

ρ = ρ∞[1− βT (T̃ − T∞)− βC(C̃ − C∞)] (1.15)

where ρ∞ is the fluid density, T∞ is the ambient temperature,C∞ is the ambient concentration

at some reference point in the medium, βT is the coefficient of thermal expansion and βC is

the coefficient of solutal expansion, which are given by

βT = −1

ρ

(
∂ρ

∂T̃

)
p,C

(1.16a)

βC = −1

ρ

(
∂ρ

∂C̃

)
p,T

(1.16b)

Equation (1.16) is a good approximation for the variation of density. This states that

i. all variations in fluid properties can be completely ignored except for density in mo-

mentum equation.
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ii. the density is considered to vary with temperature and concentrations only, and its

variations can be ignored everywhere except where they give rise to buoyancy force.

1.4 Boundary Conditions

The governing equations for the velocity and temperature fields are partial differential equa-

tions. Which are applicable at every point in a fluid that is being modeled as a continuum.

When they are integrated into any given situation, it can be expected to see arbitrary func-

tions or constants appear in the solution. To evaluate these, an additional statement of

velocity, temperature fields and their gradients at the natural boundaries of the flow domain

are needed. Such statements are known as boundary conditions.

The question of the conditions to be satisfied by a moving fluid in contact with a solid

body was one of considerable difficulty for a long time, A short historical note on the condi-

tions at the surface of the contact of a fluid with sold of the body is presented in Goldstein

[32]. During the nineteenth century three different hypotheses were put forward by various

authors at various times. According to the first, the velocity is the same at a solid wall

as that of the solid itself, and changes continuously in the fluid, which has everywhere the

same properties. The second was put forward by Girard in the discussion of his experiments

on the flow of liquids through tubes. He supposed that a very thin layer of fluid remains

completely attached to the walls. Further, Girard assumed that the rest of the fluid slips

over it. He also supposed that if the walls are of the same material everywhere, the layer

has a constant thickness, so that its surface presents to the current the same irregularities

as those of the wall itself. Also, he assumed that the thickness of the layer depends on the

curvature of the wall and on the temperature. He took it to be different for different liquids

or different materials of the walland to become zero for liquids which do not wet the wall. In

such cases he supposed that the liquid slips over the surface, Thirdlyfrom the same molecular

hypotheses which led him to the equations of motion of a viscous fluid, Navier deduced that

there is slipping at a solid boundary, and this slipping is resisted by a force proportional to

the relative velocity. Since the tangential stress on the solid wall at any point is the same
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as the stress at a neighbouring internal point of the fluid, this is equivalent to the boundary

condition βu = µ∂u
∂n

for flow in the one direction along a plane wall, where u is the velocity,

the differentiation is along the normal away from the wall, and β is a constant, such that µ
β

is a length. This length is zero if there is no slip. A brief historical, theoretical and exper-

imental summary by several researchers along with the validations on the three conditions

is given by Goldstien (pp 667-680). As it was generally accepted and adopted in the book

by Goldstien that the slip, if it takes place, is thin or a quasi solid layer of the fluid, the slip

boundary condition at the boundary of the surface is considered in the present thesis.

The different boundary conditions for the velocity (no-slip condition and slip condition),

and temperature (uniform temperature, heat flux, and convective conditions) are given be-

low.

No-slip Condition

In no-slip boundary condition, the fluid is in contact with a wall will have the same velocity

as the velocity of the wall. Often, the walls are not moving, so as the fluid velocity is zero. In

drag flows, the velocity of the wall is finite and the fluid velocity is equal to the wall velocity.

~q
(at the boundary)

= ~qwall

Slip Condition

Generally accepted boundary condition on the solid surface is no-slip condition. Navier [75]

suggested that fluid slips at the solid boundary and slip velocity depends linearly on the

shear stress.

qwall = ζ τwall

where ζ is the slip length or slip coefficient. The measure of the slip is called slip length.

Factors that affect the slip length include weak wall fluid attraction, surface roughness, and

high shear stress. If ζ = 0, then the general assumed no-slip boundary condition is obtained.
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Isothemral/Flux conditions

In most usual situations, heat transfer takes place in a fluid moving near a wall heated or

cooled at a temperature different from that of the fluid. In this case, the boundary conditions

are expressed at the fluid/solid interface. The most usual conditions consist of one of the

following simplified assumptions:

1. The fluid/solid interface is at a uniform temperature : Tfluid = Tsolid = constant

2. The heat flux is uniform on the interface : qw = −Kf (n.∇T ).

Convective Boundary Conditions

Recently, a novel mechanism for the heating process has drawn the involvement of many

researchers, namely, convective boundary condition (CBC), where the heat is supplied to

the convecting fluid through a bounding surface with a finite heat capacity. Further, this

results in the heat transfer rate through the surface being proportional to the local difference

in temperature with the ambient conditions [65].

−Kf (n.∇T ) = h(Tsurface − T∞)

where h is the heat transfer coefficient, T∞ is the ambient temperature.

1.5 Successive Linearization Method

The Successive Linearisation Method (SLM) is proposed and developed by Makukula et al.

[59] and Motsa and Sibanda [69]. This method linearizes the governing nonlinear equations.

To solve the nonlinear boundary value problem in an unknown function z(x) using SLM, we

assume that z(x) is approximated by

z(x) = zr(x) +
r−1∑
m=0

zm(x) (1.17)
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where zr(x) is an unknown function and z0(x), z1(x) · · · zr−1(x) are known approximate so-

lutions. The unknown function zr(x) can be determined by solving the linearized differential

equation in zr(x) obtained by substituting (1.17) in the given nonlinear differential equation

and linearizing the resulting differential equation using Taylor’s series expansion. Hence, the

subsequent solutions zr(x), r ≥ 1, are obtained by successively solving the linear equations

for zr(x), r ≥ 1 given that the previous guess zr−1(x) is known. The initial guess z0(x) is

chosen such that it satisfy the given boundary conditions.

Any numerical scheme can used to solve the above iterative sequence of linearized dif-

ferential equations. The SLM method has been successfully applied to a wide variety of

scientific models over finite and semi-infinite intervals. The SLM approximation was applied

to boundary value problems which possess smooth solutions.

1.6 Chebyshev Spectral Collocation Method

The Chebyshev spectral collocation method ([12, 21, 112]) is based on the Chebyshev polyno-

mials defined on the interval [−1, 1]. To solve a differential equation, in an unknown function

z(x), on [−1, 1], first descritize the interval [−1, 1] using the following N + 1 Gauss-Lobatto

collocation points

ξj = cos
πj

N
, j = 0, 1, 2, ......, N (1.18)

Next, the unknown function z(x) and its derivatives are approximated at the collocation

points as follows

z(ξ) =
N∑
k=0

z(ξk)Tk(ξj)
drz

dxr
=

N∑
k=0

[
2

(b− a)
Dkj

]r
z(ξk), (1.19)

where Tk is the kth Chebyshev polynomial defined by Tk(ξ) = cos (kcos−1ξ), and D being
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the Chebyshev spectral differentiation matrix whose entries are defined as ([12, 21, 112])

D00 = 2N2+1
6

Djk =
cj
ck

(−1)j+k

ξj−ξk
, j 6= k; j, k = 0, 1, 2 · · · , N,

Dkk = − ξk
2(1−ξk2)

, k = 1, 2 · · · , N − 1,

DNN = −2N2+1
6


(1.20)

Substituting equations (1.18)-(1.19) into the given differential equation, we get the fol-

lowing system of the algebraic equation

Ar−1Xr = Rr−1, (1.21)

in which Ar−1 is a square matrix of order (N + 1)× (N + 1) while Xr and Rr−1 are (N + 1)th

order coloumn vectors. Writing the boundary conditions in terms of Chebyshev polynomi-

als, incorporating them in the above system of equations and solving the reduced system

of algebraic equations, we obtain the solution of the given differential equation. If the do-

main is [a, b], then it will be transformed to the domain [−1, 1] by using the using suitable

transformation.

1.7 Literature Review

The heat and mass transfer in the boundary layer flow on a continuously stretching surface

is of considerable importance both from theoretical and practical points of view because of

their wider applications to polymer technology and metallurgy. Sakiadis [91] was the first

to study the boundary layer behavior on continuously moving solid surface, which is the

Blasius type of flow. Griffith [33] studied the boundary layer behavior on moving contin-

uous cylindrical surfaces. In this study, velocity distribution was experimentally measured

and the temperature and concentration profiles were theoretically calculated. Erickson [28]

investigated the boundary layer behaviour on a moving continuous flat plate with suction

by considering the transverse velocity component as nonzero at the surface of the plate. An
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extension to this, Crane [18] studied this flow problem, where stretching sheet whose velocity

is proportional to the distance from the slit. The flow in this case has certain similarities

with tile Hiemenz boundary layer flow near a stagnation point in which the main velocity

in the outer flow is proportional to the distance from the stagnation point. Gupta and

Gupta [37] considered the flow, heat and mass transfer on a permeable stretching sheet with

suction. Vleggaar [116] investigated heat and momentum transfer to continuously acceler-

ating surface and concluded that the cooling of a monofilament proves to be independent

of the drawing speed, which compares well with the results obtained in practice. Grubka

and Bobba [34] analyzed the effect of power-law surface temperature variation on the heat

transfer characteristics of a continuous, linearly stretching surface. Magyari and Keller [56]

studied heat and mass transfer analysis of boundary layer flow on exponentially stretching

continuous surface. Elbashbeshy [25] extended this work to porous media. Partha et al. [78]

investigated the mixed convection flow and heat transfer from an exponentially stretching

vertical surface in a quiescent fluid. From this study, it is noticed that the velocity boundary

layer thickness is increased with the increase of both mixed convection and viscous dissipa-

tion parameters. Bidin and Nazar [11] analyzed numerical he effect of thermal radiation on

the boundary layer flow over an exponentially stretching sheet. Mukhopadhyay et al. [70]

investigated the mass transfer over an exponentially stretching sheet embedded in a stratified

medium. Heat transfer analysis of water-based nanofluid over an exponentially stretching

sheet was studied by Nadeem et al. [72]. Lare [52] discussed the Casson fluid flow of variable

viscosity and thermal conductivity along exponentially stretching sheet embedded in a ther-

mally stratified medium with exponentially heat generation. Zaib et al. [120] reported the

micropolar fluid flow over an exponentially stretching sheet. Rehman et al. [87] investigated

the heat transfer analysis for three-dimensional stagnation-point flow over an exponentially

stretching surface.

The study of MHD flow of an electrically conducting fluid over an stretching sheet is of

great importance in engineering applications, metallurgical and metal processing. Gupta [35]

analyzed the effect of magnetic field on the heat transfer of a viscous electrically conducting

fluid from a hot vertical plate. It is witnessed that the effect of the magnetic field is to
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decrease the rate of heat transfer from the wall. Sato [93] considered viscous incompressible

flow between two parallel plates under the transient electric and magnetic fields. Sparrow

and Cess [101] investigated the free convection heat transfer due to the simultaneous action

of buoyancy and induced magnetic forces. Singh and Cowling [98] presented the boundary

layer flow up a hot vertical plate, in the presence of a uniform horizontal magnetic field

normal to the plate. Kameswaran et al. [45] investigated the radiation effect on MHD

Newtonian fluid over an exponentially stretching sheet. Seini and Makinde [94] investigated

the MHD boundary layer flow due to the exponential stretching sheet with thermal radiation

and observed that increasing the radiation parameter and the Eckert number increases the

thermal boundary layer thickness whilst the reverse is observed for increasing values of the

Prandtl number.

In most of the MHD flows reported in the literature, the Hall current term in the Ohm’s

law was ignored as it has no significant influence for smaller values of the applied mag-

netic field. However, when the strong magnetic field is utilized the effect of Hall current

is very predominant. The study of effects of Hall current on MHD flows has been given

much importance due to its widely spread applications in power generators and pumps, Hall

accelerators, electric transformers, refrigeration coils, flight MHD, solar physics involved in

the sunspot development, the solar cycle, the structure of magnetic stars, cool combustors,

electronic system cooling, thermal energy storage, fiber and granular insulation, oil extrac-

tion and flow through filtering devices and porous material regenerative heat exchangers.

Several investigators have analyzed the Hall currents on the fluid flow problems for different

geometries. Katagiri [47] described the numerical investigation of the effects of Hall currents

on the steady boundary layer flow of viscous incompressible and electrically fluid past a

semi-infinite vertical plate. Pop and Soundalgekar [80] investigated the effect of the uniform

transverse magnetic field and the Hall currents on the flow of an incompressible viscous,

electrically conducting fluid past an infinite, porous plate. Gupta [36] studied the effects of

Hall currents on the flow of an electrically conducting liquid past an infinite porous plate in

the presence of a uniform transverse magnetic field with suction. Debnath et al. [20] studied

the effects of Hall current on the unsteady hydromagnetic rotating fluid flow induced in a
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viscous conducting liquid bounded by a porous flat plate with uniform suction or blowing.

Pop and Watanabe [81] presented flow problem of free convection along a semi-infinite ver-

tical flat plate taking the account of Hall effect. Eldahad and El-Aziz [26] investigated the

effects of Hall and ion-slip currents with internal heat generation past a semi-infinite vertical

plate. Megahed et al. [62] studied the heat and mass transfer along a semi-infinite vertical

flat plate by taking the combined buoyancy force effects and Hall currents into account and

observed that the transverse velocity being equal to zero when Hall parameter becomes very

large. Abo et al. [27] investigated the influence of Hall current on the MHD mixed convec-

tive flow and heat transfer along an inclined continuously stretching surface with power-law

variation in the surface temperature. Aziz [8] reported the effect of Hall current on the flow

and of heat transfer over an unsteady stretching surface. Motsa and Shateyi [95] considered

the significance of Hall currents and strong magnetic field on the unsteady flow and heat

transfer of an electrically conducting fluid over an stretching surface. Pal [77] investigated

the Hall currents effect with radiation over an unsteady stretching surface. Aurang and

Sharidan [119] studied the effect of Hall currents with Soret and Dufour effects over an un-

steady stretching surface. Zaman et al. [121] investigated the effects of Hall current on the

flow of unsteady MHD axisymmetric second-grade fluid with suction over an exponentially

stretching sheet. Nagalakshmi et al. [73] studied the unsteady flow of viscous incompressible

fluid past an exponentially stretching sheet with thermal radiation, chemical reaction, and

Hall current effects.

The heat transfer problems related to the convective boundary condition is more exten-

sive and it occurs in realistic situations, where heat transfer occurs at the boundary surface

to or from a fluid flowing on the surface at a known temperature and a known heat transfer

coefficient, e.g. in heat exchangers, condensers, and re-boilers. Merkin [65] considered the

natural convection boundary-layer flow on a vertical surface generated by Newtonian heat-

ing. Lin et al. [53] investigated the influence of viscous dissipation on the thermal entrance

region laminar pipe flow heat transfer with convective boundary condition. Hamad et al. [38]

studied the significance of hydrodynamic slip and thermal convective boundary conditions

on the heat and mass transfer over a moving porous plate. Yacob and Ishak [117] discussed
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the micropolar fluid flow past stretching or shrinking sheet using convective boundary con-

dition. Rout et al. [90] analyzed the magneto-hydrodynamic flow including heat source and

chemical reaction over a moving vertical plate under prescribed convective boundary con-

dition. Mustafa et al. [71] investigated the flow and heat transfer characteristics over an

exponentially stretching sheet in a nanofluid with convective boundary conditions. Rahman

et al. [83] numerically solved the problem of steady boundary layer flow of a nanofluid past

a permeable exponentially shrinking surface with the convective surface condition, using the

Buongiornos mathematical nanofluid model. Khan et al. [48] studied the boundary layer

flow of nanofluid past a bi-directional exponentially stretching sheet with the convective

thermal condition. Ahmad and Mustafa [4] investigated the rotating flow of nanofluids in-

duced by an exponentially stretching sheet with convective boundary conditions. Nayak et

al. [76] reported the numerical simulation for three-dimensional steady flow of nanofluids

passing through an exponentially stretching sheet in presence of magnetic field and convec-

tive boundary conditions. Reddy et al. [86] analyzed theoretically steady two-dimensional

MHD flow of a Maxwell fluid over an exponentially stretching surface in the presence of

velocity slip and convective boundary condition.

The thermal radiative heat transfer is very important in various propulsion devices for

space vehicles, missiles, and aircrafts, manufacturing industries for the design of reliable

equipment, nuclear plants and gas turbines. Thermal radiation effects become more impor-

tant when the difference between the surface and the ambient temperature is large. Thus

thermal radiation is one of the vital factors controlling the heat and mass transfer. Hussain

et al. [43] explained the radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially

stretching sheet. Thermal radiation Effects on MHD boundary layer flow over an exponen-

tially stretching surface were analyzed by Chaudhary et al. [17]. Further, It is observed

that thickness of the velocity boundary layer, the local skin-friction coefficient and the local

Nusselt number decreases with increasing value of the magnetic parameter. Remus and Mar-

inca [88] studied the MHD viscous fluid flow over an exponentially porous stretching sheet

accompanied by thermal radiation. Loganthan and Vimala [54] investigated the combined

effects of MHD, suction, and radiation of a nanofluid over an exponentially stretching sheet
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embedded in a thermally stratified medium. Hayat et al. [40] reported the unsteady flow

caused by an inclined stretching sheet in a viscous nanofluid including stratification process

due to both temperature and concentration in presence of thermal radiation.

In recent years, the engineers and researchers are intrigued to build the effectiveness of

different mechanical frameworks and industrial machineries. Such sorts of challenges can be

taken care of to diminish the temperature created because of Ohmic dissipation. Several

researchers explored the impact of Joule heating on fluid flow and heat transfer at different

conditions and found that it plays a prominent impact on MHD flows. Yadav and Sharma

[118] investigated the effect of Joule heating on the MHD flow over an exponentially moving

stretching sheet placed in a porous medium in presence of thermal radiation. Sreenivasulu et

al. [105] analyzed the Joule heating, viscous dissipation, thermal radiation and magnetic field

effects the flow past a permeable exponential stretching surface. Hari and Satya [9] explored

the Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet

with power-law heat flux. Hsiao [42] explored the micropolar nanofluid flow with MHD and

viscous dissipation effects towards a stretching sheet with a multimedia feature in presence

of Joule heating effects.

The process of transforming the energy taken from the motion of the fluid by the viscosity

into internal energy, which is partially irreversible, is referred to as viscous dissipation. It

may arise in free convection in several devices which are treated with large deceleration or

operate at high rotative speed [30]. El-Aziz [24] discussed the laminar mixed convection flow

of micropolar fluid over an exponentially stretching sheet with viscous dissipation effect.

Raju et al. [85] investigated the influence of thermal radiation and magnetic field effects

on the heat and mass transfer behavior of Casson fluid past an exponentially permeable

stretching surface in presence of viscous dissipation. Adeniyan and Adigun [3] studied the

natural convective MHD flow and heat transfer over an exponentially stretching sheet in an

incompressible, electrically conducting fluid in the presence of viscous dissipation with Joule

heating. The thermophoresis is a mechanism in which small particles migrate in the direction

of decreasing thermal gradient. It is quite significant in radioactive particle deposition in

nuclear reactor safety simulations, aerosol particle sampling, deposition of silicon thin films
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etc. Goldsmith and May [31] were the first to estimate the thermophoretic velocity in the

one-dimensional flow.

The Soret effect (thermal diffusion), the existence of a diffusion flux inview of a temper-

ature gradient, become very noteworthy when the thermal gradient is very large. Whereas

the energy flux caused by a concentration gradient is termed as the Dufour effect (diffusion-

thermo). Generally, these effects are considered as second-order phenomenon and may be-

come significant in areas such as petrology, hydrology, geosciences, etc. Eckert and Drake [22]

recognized many instances when the importance of these effects cannot be neglected. Srini-

vasacharya and Ramreddy [108] investigated the Soret and Dufour effects on mixed convec-

tion flow, heat and mass transfers from an exponentially stretching surface. Sulochana et al.

[109] investigated the cross-diffusion, viscous dissipation, heat source and chemical reaction

effects on the flow of a nanofluid past an exponentially stretching sheet in a porous medium.

Sravanthi [104] reported the MHD viscous fluid flow towards an exponentially stretching

inclined porous sheet in the presence of Soret and Dufour effects with suction/blowing. are

fewer investigators who addressed the importance of these effects on flow, heat, and mass

transfer process over an exponentially stretching surface.

In most of the studies reported in the literature, the thermophysical properties of fluid

were assumed to be constant. However, it is known that, fluid viscosity and fluid thermal

conductivity may change with temperature. Applications include drawing of plastic films,

wire drawing, paper production, glass fiber production, the study of spilling pollutant crude

oil over the surface of the seawater, cooling of nuclear reactors, food processing, petroleum

reservoir operations, casting and welding in manufacturing processes, and gluing of labels

on hot bodies etc. In spite of its importance in many applications, this effect has received

rather little attention. In recent years, fewer researchers have considered the effect of variable

properties on the convective flows over stretching surfaces. Rahman [82] investigated the

unsteady flow of incompressible laminar, electrically conducting and non-Newtonian fluid

over a non-isothermal stretching sheet with variable viscosity and thermal conductivity in a

porous medium. Siddheshwar et al. [97] studied the boundary layer flow behavior and heat

transfer of a Newtonian fluid past an exponentially stretching sheet in presence of variable
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viscosity. Megahed [64] described the flow and heat transfer of Powell-Eyring fluid over

an exponentially stretching continuous permeable surface in the presence of heat flux and

variable thermal conductivity.

The dispersion is the auxiliary effect of a porous medium on the fluid flow that happens

because of mixing and recirculation of local liquid particles through convoluted ways framed

by the permeable medium solid particles. There has been restored enthusiasm for concentrate

double diffusive convection because of the impact of thermal and solutal dispersion. The

thermal and solutal dispersion have applications in geothermal building applications, ceramic

processing, sensible heat storage beds and petroleum recovery etc.,

The study of heat and mass transfer with chemical reaction has received considerable

attention because of its importance in chemical and hydro-metallurgical industries such as

the design of chemical processing equipment, polymer production, the manufacturing of ce-

ramics or glassware etc. There are several chemically reacting systems which involve both

homogeneous and heterogeneous reactions. Applications of this process occur in catalysis,

biochemical systems, drying processes, combustion processes, metallurgical flows, cooling

towers, etc. Generally, the interaction between the homogeneous reaction in the bulk of the

fluid and heterogeneous reactions occurring on some catalytic surfaces is very complex and is

involved in the production and consumption of reactant species at different rates both within

the fluid and on the catalytic surfaces. Chaudhary and Merkin [14, 15] presented a model

for homogeneous-heterogeneous reaction on uniform stream flow over a surface in which the

heterogeneous reaction takes place by the first-order process and the homogeneous reaction

by cubic autocatalysis method for equal and unequal diffusivities, respectively. Bachok et

al. [10] investigated the effects of homogeneous and heterogeneous reactions on the steady

boundary layer flow near the stagnation point on a stretching surface. Kameswaran et al.

[46] analyzed the effects of homogeneous-heterogeneous reactions in nanofluid flow over a

stretching or shrinking sheet placed in a porous medium saturated with a nanofluid. Abbas

et al. [1] presented the effect of homogeneous and heterogeneous reactions on an electrically

conducting viscous fluid near the stagnation-point past a permeable stretching or shrink-

ing sheet. Masur et al. [61] reported the MHD homogeneous-heterogeneous reaction in a
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nanofluid flow due to a permeable shrinking surface.

Suction or injection (blowing) of a fluid through the bounding surface can significantly

change the flow field. Injection or withdrawal of fluid through a porous bounding wall is of

general interest in practical problems such as film cooling, polymer fiber coating, coating of

wires, etc. The process of suction and blowing has also its importance in many engineering

activities such as in the design of thrust bearing and radial diffusers and thermal oil recov-

ery. Suction is applied to chemical processes to remove reactants. Blowing is used to add

reactants, cool the surface, prevent corrosion or scaling and reduce the drag.

1.8 Aim and Scope

The aim of the present thesis is to study the flow, heat and mass transfer due to steady,

laminar incompressible viscous fluid over an exponentially stretching permeable sheet. The

influence of suction/injection, velocity slip, Hall parameter, magnetic parameter, Richardson

number (mixed convection parameter), Biot number, thermal radiation parameter, chemical

reaction parameter, Joule heating parameter, Soret number, Dufour number, temperature

dependent viscosity and thermal conductivity parameters, heat source/sink, viscous dissi-

pation, thermophoresis, thermal and solutal dispersion parameters, porosity parameter, the

strengths homogeneous and heterogeneous reaction rates on the flow characteristics such as

the velocity, temperature, concentration, heat transfer rate and mass transfer rate are ana-

lyzed numerically. The problems considered deal with semi-infinite exponentially stretching

sheet geometry for the two cases: when the sheet is (i) subjected to thermal convective

boundary condition and (ii) maintained at uniform wall temperature with Hall effect.

1.9 Overview of the Thesis

This thesis is arranged into 9 chapters.

Chapter - 1 provides an introduction to the theory of viscous fluids, definitions of various
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terms along with the equations of motion and magnetohydrodynamic (MHD) flows. A survey

of related literature has been presented. Finally, brief introductions about the problems that

we consider in the subsequent chapters are presented.

Chapter-2 analyzes the flow, heat and mass transports due to viscous fluid flow through

a porous exponentially stretching sheet in the presence of thermal radiation and chemical re-

action effects. The effects of magnetic, Hall parameter, chemical reaction, thermal radiation

parameter, suction/injection parameter, Richardson number (mixed convection parameter)

and Biot number on the non-dimensional velocities, temperature, concentration, heat, and

mass transfer rates are discussed through graphs. The local skin-friction in x̃ and z̃-directions

are presented in a tabular form for different values of velocity slip, magnetic, Hall parameter,

Richardson number, chemical reaction and thermal radiation parameters.

In chapter-3, the heat and mass transfer for steady incompressible viscous fluid flow

over a permeable exponentially stretching sheet is investigated in presence of Joule heating

effect. The effects of magnetic, Hall parameter, suction/injection parameter, Richardson

number (mixed convection parameter) and Biot number on the non-dimensional velocities,

temperature, concentration are presented through graphs. The variation of heat and mass

transfer rates in presence of Joule heating parameter, magnetic, Hall parameter, slip param-

eter, suction/injection parameter, Richardson number (mixed convection parameter) and

Biot number are presented through graphs. Local skin-friction in x̃ and z̃-directions are pre-

sented in tabular form for diverse values of suction/injection, velocity slip, magnetic, Hall

parameter, Joule heating parameter and mixed convection parameter.

Chapter-4 deals with the influence of Soret and Dufour effects due to steady, laminar slip

flow of viscous incompressible fluid over an exponentially stretching sheet. The variation

of non-dimensional velocities, temperature, concentration, heat, and mass transfer rates are

presented through graphs for the physical parameters Tabular values for the skin-friction

for various values of velocity slip, magnetic, Hall, mixed convection parameters, Soret and

Dufour number, is displayed. It is seen that minor changes in Dufour and Soret numbers

caused the major variations in the profiles.
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Chapter-5 describes the impact of variable fluid properties on a steady, laminar incom-

pressible and electrically conducting boundary layer flow of viscous fluid past an exponen-

tially stretching sheet. The influence of variable viscosity parameter and thermal conduc-

tivity parameters, magnetic, Hall parameter, Biot number and heat source parameter on

non-dimensional velocities, temperature, and concentration, local skin-friction, heat and

mass rates are calculated and discussed quantitatively.

Chapter-6 presents the viscous fluid flow past a sheet, stretching exponentially, under the

influence of thermophoresis and viscous dissipation effects. The non-dimensional velocities,

temperature, and concentration profiles are obtained for various values of thermophoresis,

magnetic, Hall parameter, slip parameter, suction/injection parameter, Richardson number,

Eckert number and Biot number. The rate of local heat and mass transfers are presented

graphically and discussed quantitatively for various values of the fixed parameters. The

influence of thermophoresis parameter, Eckert number, velocity slip, magnetic, Hall parame-

ter and Richardson number on local skin-friction in both directions is presented in a tabular

form. The numerical results are compared and are found to be in good agreement with

previously published results as special cases of the present investigation.

The objective of Chapter-7 is to describe the double dispersion on the laminar flow over an

exponentially stretching porous surface in an incompressible electrically conducting viscous

fluid with velocity at the boundary of the stretching surface. The influence of thermal and

solutal dispersion parameters, velocity slip, thermal radiation parameter, magnetic and Hall

parameters on non-dimensional velocities, temperature, concentration, the rate of heat and

mass transfers is shown through graphs. Tabular values for the skin-friction for the various

values of velocity slip, Hall parameter, thermal radiation, mixed convection, thermal and

solutal dispersion parameters are displayed. The obtained results are compared with the

previously published results for special cases.

The objective of Chapter-8 is to analyze the influence of homogeneous-heterogeneous

reactions on the laminar slip flow of electrically conducting viscous fluid over an exponen-

tially stretching porous surface. The variation of non-dimensional velocities, temperature

and the rate of heat transfer for various values of magnetic, Hall parameter, thermal radia-

26



tion, mixed convection and suction/injection parameters is analyzed. Influence of strength of

homogeneous-heterogeneous reactions together with all parameter, thermal radiation, mixed

convection and suction/injection parameters on the variation of non-dimensional concentra-

tion and the rate of mass transfer of the fluid is analyzed and presented through graphs. The

obtained results are compared with the previously published results for special cases. Tabu-

lar values for the skin-friction for the different values of velocity slip, Hall parameter, thermal

radiation parameter, Richardson number, the strength of homogeneous-heterogeneous reac-

tion is displayed. It is observed that both the skin-friction are not affected by the strength

of heterogeneous-homogeneous reactions.

The main observation of the earlier chapters are summarized and the scope for further

investigations are recorded in the final chapter (Chapter 9).

Considerable part of the work in the thesis is published/accepted for publication in jour-

nals. The remaining part is communicated for publications. The details are presented below.

List of papers published

1. “Slip viscous flow over an exponentially stretching porous sheet with thermal con-

vective boundary conditions”, International Journal of Applied and Computational

Mathematics, Vol. 3(4) (2017), pp.3525–3537.

2. “Cross-diffusion effects on an exponentially stretching sheet in a doubly stratified vis-

cous fluid”, Engineering Science and Technology, an International Journal, Vol. 20

(2017), pp.1571–1578.

3. “MHD flow with Hall current and Joule heating effects over an exponentially stretching

sheet”, Nonlinear Engineering - Modeling and Application, Vol. 6(2) (2017), pp.101–

114.

4. “Flow over an exponentially stretching sheet with Hall, thermal radiation, and chemical

reaction effects”, Frontiers in Heat and Mass Transfer, Vol. 9(37) (2017), pp.1–10.
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Chapter 2

Flow over an exponentially stretching

sheet with thermal radiation and

chemical reaction 1

2.1 Introduction

The effect of thermal radiation on convective flows have applications in physics and engi-

neering such as space technology, solar power technology, propulsion devices for aircraft and

other industrial areas [115, 5, 25, 70, 88]. Animasaun et al. [6] investigated the motion of

temperature dependent viscosity and thermal conductivity of steady incompressible laminar

free convective MHD Casson fluid flow over an exponentially stretching surface with thermal

radiation and exponentially decaying internal heat generation. Mabood et al. [55] investi-

gated the MHD boundary layer flow of a viscous incompressible fluid over an exponentially

stretching sheet including the effect of thermal radiation in the energy equation. On the

other hand, the study of heat and mass transfer with chemical reaction has received con-

siderable attention because of its importance in chemical and hydro-metallurgical industries

1Case(a):Accepted for publication in “Lecture Notes in Mechanical Engineering”,
Case(b):Published in “Frontiers in Heat and Mass Transfer” (2018) 9(37) (2017) 1–10
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such as design of chemical processing equipment, polymer production, the manufacturing of

ceramics or glassware etc. Eid [23] investigated the heat generation/absorption effects on

the mixed convective flow of a nanofluid through a porous medium due to an exponentially

stretching sheet in the presence of chemical reaction and magnetic field.

In this chapter, we investigate the influence of thermal radiation and chemical reaction

on the viscous fluid flow over an exponentially stretching sheet. We consider two different

physical conditions on the sheet i.e. when the sheet is (i) subjected to thermal convective

boundary condition and (ii) maintained at uniform wall temperature with Hall effect. The

influence of important parameters, namely, velocity slip, suction/injection, Hall parameter,

and convective heat transfer parameter(Biot number) on the physical quantities of the flow,

heat, and mass transfer rates are analyzed.

2.2 Formulation of the Problem

Consider a steady, two-dimensional, laminar slip flow of electrically conducting viscous in-

compressible fluid towards an exponentially stretching sheet. The ambient temperature and

concentration of the fluid are T∞ and C∞, respectively. The Cartesian coordinate framework

is considered by taking the positive x̃−axis along the sheet and ỹ−axis orthogonal to the

sheet so that the fluid occupies the space ỹ > 0 (as shown in the Fig. (2.1)). The stretching

velocity of the sheet is assumed as U∗(x̃) = U0 e
x̃
L where x̃ is the distance from the slit and

L is the reference length or scaling parameter. The suction/injection velocity of the fluid

through the sheet is V∗(x̃) = V0 e
x̃
2L , where V0 is the strength of suction/injection. Further,

the slip velocity of the fluid is assumed as N∗(x̃) = N0 e
−x̃
2L , where N0 is the velocity slip

factor. The fluid is considered as non-scattering medium, to be gray and absorbing/emitting

radiation. The radiative heat flux in the energy equation is described by the Rosseland

approximation [102]. Also, it is assumed that there exists a homogenous chemical reaction

of the first order with rate constant k1 = k0e
x̃
L , where k0 is constant, between the diffusing

species and the fluid. With these assumptions, the equations governing the flow are given

by
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Figure 2.1: Schematic diagram with coordinate system

∂ũx
∂x̃

+
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∂ỹ
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ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

(2.2)

ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
= α

∂2T̃

∂ỹ2
+

16T 3
∞σ
∗

3k∗ρcp

∂2T̃

∂ỹ2
(2.3)

ũx
∂C̃

∂x̃
+ ũy

∂C̃

∂ỹ
= D

∂2C̃

∂ỹ2
− k1(C̃ − C∞) (2.4)

where (ũx, ũy) is the velocity vector, C̃ is the concentration, T̃ is the temperature. D is the

mass diffusivity, α is the thermal diffusivity, ρ is density, ν is the kinematic viscosity of the

fluid, σ∗ is the Stefan-Boltzmann constant, k∗ is the mean absorption coefficient and cp is

specific heat capacity at the constant pressure.

In this chapter, two types (cases) of problems are considered. In first problem i.e. case

(a), the sheet is subjected to convective thermal condition. In the second problem i.e. case

(b), the sheet maintained at uniform wall temperature with Hall effect.
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2.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Tf and which induces a heat transfer coefficient hf , where hf = h
√

U0

2L
e

x̃
2L .

Hence, the conditions on the surface of the sheet are

ũx = U∗ +N∗ν
∂ũx
∂ỹ
, ũy = −V∗(x̃), hf (Tf − T̃ ) = −κ∂T̃

∂ỹ
, C̃ = Cw at ỹ = 0

ũx → 0, T̃ → T∞, C̃ → C∞ as ỹ →∞

 (2.5)

Introducing the stream functions through ũx = −∂ψ
∂ỹ

and ũy = ∂ψ
∂x̃

and then the following

dimensionless variables

y = ỹ
√

U0

2νL
e

x̃
2L , ψ =

√
2νLU0e

x̃
2LF (x, y),

T̃ = T∞ + (Tf − T∞)T (x, y), C̃ = C∞ + (Cw − C∞)C(x, y)

 (2.6)

into Eqs. (2.1) - (2.4), we obtain

F ′′′ + FF ′′ − 2F ′2 = 0 (2.7)

1

Pr

(
1 +

4R

3

)
T ′′ + FT ′ = 0 (2.8)

1

Sc
C ′′ + FC ′ − γ C = 0 (2.9)

The conditions at the boundary reduces to

F (0) = S, F ′(0) = 1 + λF ′′(0), T ′(0) = −Bi(1− T (0)), C(0) = 1 at y = 0

F ′(∞)→ 0, T (∞)→ 0, C(∞)→ 0 as y →∞


(2.10)

where Bi = h
κ

√
ν is the Biot number, γ = 2Lk0

U0
is the chemical reaction parameter, S =

V0

√
2L
νU0

is the suction(S > 0) or injection(S < 0) parameter, Sc = ν
D

is the Schmidt num-

ber, R = 4 σ∗ T 3
∞

κ κ∗
is the radiation parameter, λ = N0

√
νU0/2L is the velocity slip parameter,

Pr = ν
α

is the Prandtl number and the prime denotes derivative with respect to y.
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2.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The wall shear stress is

τω = µ

[
∂ũx
∂ỹ

]
ỹ=0

(2.11)

and the heat and mass transfers from the sheet respectively are given by

qw = −κ

[
∂T̃

∂ỹ

]
ỹ=0

− 4σ∗

3k∗

[
∂T̃ 4

∂ỹ

]
y=0

and qm = −D

[
∂C̃

∂ỹ

]
ỹ=0

(2.12a)

The non-dimensional skin friction Cf =
2τω
ρU2
∗

, the local Nusselt number Nux̃ =
x̃qw

κ(Tf − T∞)

and the local Sherwood number Shx̃ =
x̃qm

κ(Cw − C∞)
, are given by

√
Rex̃ Cf√
2x̃/L

= F ′′(0),
Nux̃√

x̃/2L
√
Rex̃

= −
(

1 +
4R

3

)
T ′(0), and

Shx̃√
x̃/2L

√
Rex̃

= −C ′(0)

}
(2.13)

where Rex̃ =
x̃U∗(x̃)

ν
is the local Reynold’s number.

2.2.3 Solution of the Problem

The system of Eqs. (2.7) - (2.9) along with the boundary conditions (2.10) is solved numer-

ically using the successive linearisation method (SLM) ([68], [60]). Using this method the

non-linear governing equations reduce to a system of linear differential equations.

In this method, we assume that the independent vector Ω(y) = [F (y), T (y), C(y)] can be

expressed as

Ω(y) = Ωr(y) +
r−1∑
n=0

Ωn(y) (2.14)

where Ωr(y), (r = 1, 2, 3, ....) are unknown functions and Ωn(y) are the approximations

which are obtained by recursively solving the linear part of the system of equations that
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results from substituting (2.14) in (2.7) - (2.9).

The initial approximation Ω0(y) is chosen such that they satisfy the boundary conditions

(2.10). Therefore Ω0(y) =
(
S + 1

1+λ
− 1

1+λ
e−y, Bi

1+Bi
e−y, e−y

)
. The subsequent solutions

Fr, Tr, Cr, r ≥ 1 are obtained by successively solving the following linearized form of the

equations which are obtained by substituting Eq. (2.14) in the governing equations (2.7) -

(2.9).

Fr
′′′ + χ11,r−1Fr

′′ + χ12,r−1Fr
′ + χ13,r−1Fr = ζ1,r−1 (2.15)

χ21,r−1Fr +
1

Pr

(
1 +

4R

3

)
Tr
′′ + χ22,r−1Tr

′ = ζ2,r−1 (2.16)

χ31,r−1Fr +
1

Sc
Cr
′′ + χ32,r−1Cr

′ − γCr = ζ3,r−1 (2.17)

where

χ11,r−1 =
r−1∑
n=0

Fn, χ12,r−1 = −4
r−1∑
n=0

F ′n, χ13,r−1 =
r−1∑
n=0

F ′′n ,

χ21,r−1 =
r−1∑
n=0

T ′n, χ22,r−1 =
r−1∑
n=0

Fn, χ31,r−1 =
r−1∑
n=0

C ′n, χ32,r−1 =
r−1∑
n=0

Fn,

ζ1,r−1 = −
r−1∑
n=0

F ′′′n −
r−1∑
n=0

Fn

r−1∑
n=0

F ′′n + 2

(
r−1∑
n=0

F ′n

)2

,

ζ2,r−1 = − 1

Pr

(
1 +

4R

3

) r−1∑
n=0

T ′′n −
r−1∑
n=0

Fn

r−1∑
n=0

T ′n,

ζ3,r−1 = − 1

Sc

r−1∑
n=0

C ′′n −
r−1∑
n=0

Fn

r−1∑
n=0

C ′n + γ

r−1∑
n=0

Cn

The boundary conditions reduce to

Fr(0) = λF ′′r (0)−F ′r(0) = F ′r(∞) = T ′r(0)−BiTr(0) = Tr(∞) = Cr(0) = Cr(∞) = 0 (2.18)

The approximate solution for Ω(y) is then obtained as

Ω(y) ≈
M∑
m=0

Ωm(y) (2.19)

where M is the order of SLM approximation.
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Eqs. (2.15) - (2.17) are solved using the Chebyshev spectral collocation method [12]. To

solve the problem by this method, first, the interval [0,∞) is replaced by the interval [0, L],

where L is a scaling parameter used to invoke the boundary condition at infinity. Again, the

interval [0, L] is transformed into the region [-1, 1] by

y

L
=
ξ + 1

2
, −1 ≤ ξ ≤ 1 (2.20)

The unknown functions are approximated by the Chebyshev interpolating polynomials

in such a way that they are collocated at the Gauss-Lobatto points defined as in Eq. (1.18).

The function Ω(y) is approximated at the Gauss-Lobatto points defined as in Eq. (1.18) i.e.,

Ωr(ξ) =
N∑
k=0

Ωr(ξk)Tk(ξj), j = 0, 1, 2, ..., N (2.21)

where Tk is the kth Chebyshev polynomial.

The rth order derivative in terms of Chebyshev spectral differentiation matrix D (defined

in Eq. (1.19)) is given by

dr

dyr
Ωr(ξ) =

(
2

L

)r N∑
k=0

Dr
kjΩr(ξk), j = 0, 1, 2, ..., N. (2.22)

Substituting Eqs. (2.20) - (2.22) into Eqs. (2.15) - (2.17) leads to the following matrix

equation

Ar−1Xr = Rr−1, (2.23)

subject to the boundary conditions

Fr(ξN) =
N∑
k=0

D0kFr(ξk) =
N∑
k=0

(λD2Nk −DNk)Fr(ξk) = 0 (2.24a)

N∑
k=0

DNkTr(ξk)−Bi Tr(ξN) = Tr(ξ0) = Cr(ξN) = Cr(ξ0) = 0 (2.24b)

In Eq.(2.23), Ar−1 is a (3N + 3)×(3N + 3) square matrix and Xr and Rr−1 are (3N + 3)×1
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column vectors defined by

Ar−1 =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xr =


Fr

Θr

Φr

 , Rr−1 =


E1,r−1

E2,r−1

E3,r−1

 (2.25)

where

Fr = [Fi(ξ0), Fr(ξ1), Fr(ξ2), ..., Fr(ξN−1), Fr(ξN)]T ,

Θr = [Tr(ξ0), Tr(ξ1), Tr(ξ2), ..., Tr(ξN−1), Tr(ξN)]T ,

Φr = [Cr(ξ0), Cr(ξ1), Cr(ξ2), ..., Cr(ξN−1), Cr(ξN)]T ,

E1,r−1 = [ζ1,r−1(ξ0), ζ1,r−1(ξ1), ζ1,r−1(ξ2), ..., ζ1,r−1(ξN−1), ζ1,r−1(ξN)]T

E2,r−1 = [ζ2,r−1(ξ0), ζ2,r−1(ξ1), ζ2,r−1(ξ2), ..., ζ2,r−1(ξN−1), ζ2,r−1(ξN)]T

E3,r−1 = [ζ3,r−1(ξ0), ζ3,r−1(ξ1), ζ3,r−1(ξ2), ..., ζ3,r−1(ξN−1), ζ3,r−1(ξN)]T

A11 = D3 + χ11,r−1D
2 + χ12,r−1D + χ13,r−1, A12 = 0, A13 = 0,

A21 = χ21,r−1, A22 = 1
Pr

(
1 + 4R

3

)
D2 + χ22,r−1D, A23 = 0,

A31 = χ31,r−1, A32 = 0, A33 = 1
Sc

D2 + χ32,r−1D− γI

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(2.23) to incorporate boundary conditions (2.24), the solution is obtained as

Xr = A−1r−1Rr−1 (2.26)

2.2.4 Result and Discussion

In order to validate the code generated, the results of the present problem have been com-

pared with works of Magyari and Keller [56] as a special case by taking S = 0, R = 0, γ = 0,

λ = 0, and Bi → ∞ and found that they are in good agreement, as shown in Table. (2.1).

The range of the parameters were chosen arbitrarily in order to study the impact of them on

the physical quantities as S = 0.5, γ = 0.5, λ = 1.0, R = 0.5, and Bi = 1.0 unless otherwise

mentioned.

Convergence of the method to the numerical results is achieved at the 20th order of SLM
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Table 2.1: Comparative analysis for Nux̃√
x̃/2L

√
Rex̃

by the current method for λ = 0, R = 0,

γ = 0, S = 0 and Bi→∞.

Nusselt number Nux̃√
x̃/2L

√
Rex̃

Pr Magyari and Keller [56] Present

0.5 0.330493 0.33053741
1 0.549643 0.54964317
3 1.122188 1.12208592
5 1.521243 1.52123757
8 1.991847 1.99183597
10 2.257429 2.25742182

approximation.

The influence of slip and suction/injection parameters on the fluid velocity is portrayed

in the Figs. (2.2(a)) - (2.2(b)). It is evident from the Figs. 2.2(a) and (2.2(b)) that the rise

in the slipperiness and the fluid suction diminish the velocity while the injection enhances

the velocity. On the other hand, the skin-friction is enhancing with the slipperiness and

reducing with the suction of the fluid as depicted in the Fig. (2.3).

The variation of the temperature distribution with λ, S, R and Bi is plotted through

the Figs. (2.4(a)) - (2.4(d)). It is evident from the Fig. (2.4(a)) that the temperature is

enhancing with the rise in the slipperiness. It is well known that wall suction reduces the

thickness of thermal boundary layer and hence, reduction in temperature. This phenomenon

is graphically presented in the Fig. (2.4(b)). However, the wall injection produces an exactly

opposite nature. Figure (2.4(c)) illustrates that the temperature is enhancing with the

rise in the value of thermal radiation and hence gain in thickness of thermal boundary.

The variation of the temperature with Bi is presented in the Fig. (2.4(d)). A rise in

the Biot number enhances the temperature. Further, for large large value of Biot number,

the convective thermal condition from (2.10) transforms to T (0) → 1, which signifies the

constant wall condition. i.e., stronger convection leads to the higher surface temperatures

which appreciably increases the temperature.

The influence of λ, S and γ on the concentration is shown graphically in Figs. (2.5(a))
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- (2.5(c)). It is clear from the Fig. (2.5(a)) that an increase in the slipperiness rises the

concentration. While, the wall injection is enhancing the fluid concentration as shown in

the Fig. (2.5(b)). It is noticed from the fig. (2.5(c)) that the concentration of the fluid is

increasing for the constructive reaction (γ < 0) and reducing for the destructive reaction

(γ > 0).

The variations of the rate of heat transfer with S for diverse values of R, Bi and λ

is portrayed through the Figs. (2.6(a)) - (2.6(c)). The rate of heat transfer is enhancing

with the rise in the radiation parameter as shown in the Fig. (2.6(a)). Figure (2.6(b))

demonstrates that the rate of heat transfer is enhancing with the increase in the value of Bi.

Figure (2.6(c)) shows that an increase in λ diminishes the rate of heat transfer. Further, it

is noticed from these figures that the fluid suction enhances the rate of heat transfer.

The variation of the rate of mass transfer with S for different values of λ and γ is shown

in the Figs. (2.7(a)) and (2.7(b)). It is observed from the Fig. (2.7(a)) that an increase

in the slipperiness reduces the rate of mass transfer. On the other hand, an increase in the

magnitude of chemical reaction parameter (positive values of γ) enhances the rate of mass

transfer as shown in the Fig. (2.7(b)). Further, the rate of mass transfer is increasing with

the fluid suction.
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2.2.5 Case(b): Uniform wall temperature with Hall effect

A magnetic field of strength B(x̃) = B0e
x̃
2L , where B0 is the constant magnetic field, is ap-

plied orthogonal to the sheet as shown in the Fig. (2.8). The assumption of small magnetic

Reynolds number allows to neglect the induced magnetic field in contrast to applied mag-

netic field. The Hall current is considered in view of relatively high electron-atom collision

frequency. This assumption causes a cross flow in the z̃-direction, therefore the flow becomes

three dimensional. Further, it is assumed that the sheet is maintained at uniform wall tem-

perature and concentration Tw(x̃) and Cw(x̃), respectively. These values are assumed to be

greater than the ambient temperature and concentration at any arbitrary reference point in

the medium (inside the boundary layer). Under the Boussinesq approximation, the flow is

governed by the equations (2.1), (2.3), (2.4) along with the following momentum equations

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

+ g βT (T̃ − T∞) + g βC(C̃ − C∞)− σB2

ρ(1 + β2
h)

(ũx + βhũz) (2.27)

ũx
∂ũz
∂x̃

+ ũy
∂ũz
∂ỹ

= ν
∂2ũz
∂ỹ2

+
σB2

ρ(1 + β2
h)

(βhũx − ũz) (2.28)

where ũz is the velocity in z̃-direction.

The associated boundary conditions are

ũx = U∗ +N∗ν
∂ũx
∂ỹ
, ũy = −V∗(x̃), ũz = 0,

Tw = T∞ + T0e
2x̃
L , Cw = C∞ + C0e

2x̃
L at ỹ = 0

ũx → 0, ũz → 0, T̃ → T∞, C̃ → C∞ as ỹ →∞

 (2.29)

Substituting the following similarity transformations

ỹ = y
√

2νL
U0
e
−x̃
2L , ψ =

√
2νLU0e

x̃
2LF,

ũx = U0e
x̃
LF ′, ũy = −

√
νU0

2L
e

x̃
2L (F + yF ′), ũz = U0e

x̃
LW

T̃ = T∞ + T0 e
2x̃
L T, C̃ = C∞ + C0 e

2x̃
L C

 (2.30)
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Figure 2.8: Schematic diagram with coordinate system

into the Eqs. (2.1), (2.27), (2.28), (2.3), and (2.4)

F ′′′ + FF ′′ − 2F ′2 + 2Ri(T + BC)− Ha

1 + β2
h

(F ′ + βhW ) = 0 (2.31)

W ′′ − 2F ′W + FW ′ +
Ha

1 + β2
h

(βhF
′ −W ) = 0 (2.32)

1

Pr

(
1 +

4R

3

)
T ′′ + FT ′ − 4F ′T = 0 (2.33)

1

Sc
C ′′ + FC ′ − 4F ′C − γC = 0 (2.34)

The conditions (2.29) reduce to

F (y) = S, F ′(y) = 1 + λF ′′(y), W (y) = 0, T (y) = 1, C(y) = 1 at y = 0

F ′(y)→ 0, W (y)→ 0, T (y)→ 0, C(y)→ 0 as y →∞

 (2.35)

where Gr = gβTT0L
3

ν2
is the Grashof number, Ri = Gr

Re2
is the mixed convection parameter,

Ha =
2LσB2

0

ρU0
is the magnetic parameter, Re = U0L

ν
is the Reynold’s number, βh = (ωeτe) is

46



Hall parameter, τe is the electron collison time, ωe is the cyclotran frequency of electrons

and B = βC C0

βT T0
is the buoyancy ratio. The other parameters are defined in case(a).

2.2.6 Skin Friction in x̃ and z̃-directions, Heat and Mass Transfer

Coefficients

The wall shear stress in x̃- and z̃-directions are

τωx̃ = µ

[
∂ũx
∂ỹ

]
ỹ=0

, τωz̃ = µ

[
∂ũz
∂ỹ

]
ỹ=0

(2.36a)

and the heat and mass transfers from the sheet respectively are given by

qw = −κ

[
∂T̃

∂ỹ

]
ỹ=0

− 4σ∗

3k∗

[
∂T̃ 4

∂ỹ

]
y=0

and qm = −D

[
∂C̃

∂ỹ

]
ỹ=0

(2.37a)

The non-dimensional skin friction in x̃−direction CF x̃ = 2τωx̃

ρU2
∗

, local skin-friction in z̃−direction

CF z̃ = 2τωz̃

ρU2
∗

, the local Nusselt number Nux̃ = x̃qw
κ(Tw−T∞)

and local Sherwood number Shx̃ =

x̃qm
κ(Cw−C∞)

, are given by

√
Rex√
2x̃/L

CF x̃ = F ′′(0),

√
Rex√
2x̃/L

CF z̃ = W ′(0),

Nux̃√
x̃/2L

√
Rex̃

= −
(

1 +
4R

3

)
T ′(0), and

Shx̃√
x̃/2L

√
Rex̃

= −C ′(0).

 (2.38)

where Rex̃ =
x̃U∗(x̃)

ν
is the local Reynold’s number.

2.2.7 Solution of the problem

The system of Eqs. (2.31) - (2.34) along with the boundary conditions (2.35), is solved

numerically, using the successive linearisation method.
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Proceeding as in case (a), we obtain the following matrix equation

Ai−1Xi = Ri−1, (2.39)

subject to the boundary conditions

Fi(ξN) =
N∑
k=0

D0kFi(ξk) =
N∑
k=0

(λD2Nk −DNk)Fi(ξk) = 0 (2.40a)

Wi(ξN) = Wi(ξ0) = Ti(ξN) = Ti(ξ0) = Ci(ξN) = Ci(ξ0) = 0 (2.40b)

In Eq.(2.39), Ai−1 is a (4N + 4)×(4N + 4) square matrix and Xi and Ri−1 are (4N + 4)×1

column vectors defined by

Ai−1 =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 , Xi =


Fi

Wi

Θi

Φi

 , Ri−1 =


E1,i−1

E2,i−1

E3,i−1

E4,i−1

 (2.41)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Wi = [Wi(ξ0),Wi(ξ1),Wi(ξ2), ...,Wi(ξN−1),Wi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

E1,i−1 = [ζ1,i−1(ξ0), ζ1,i−1(ξ1), ζ1,i−1(ξ2), ..., ζ1,i−1(ξN−1), ζ1,i−1(ξN)]T

E2,i−1 = [ζ2,i−1(ξ0), ζ2,i−1(ξ1), ζ2,i−1(ξ2), ..., ζ2,i−1(ξN−1), ζ2,i−1(ξN)]T

E3,i−1 = [ζ3,i−1(ξ0), ζ3,i−1(ξ1), ζ3,i−1(ξ2), ..., ζ3,i−1(ξN−1), ζ3,i−1(ξN)]T

E4,i−1 = [ζ4,i−1(ξ0), ζ4,i−1(ξ1), ζ4,i−1(ξ2), ..., ζ4,i−1(ξN−1), ζ4,i−1(ξN)]T

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = −Haβh

1+β2
h
I, A13 = 2RiI, A14 = 2BRiI

A21 = χ21,i−1D + χ22,i−1, A22 = D2 + χ23,i−1D + χ24,i−1, A23 = 0, A24 = 0

A31 = χ31,i−1D + χ32,i−1, A32 = 0, A33 = 1
Pr

(
1 + 4R

3

)
D2 + χ33,i−1D + χ34,i−1, A34 = 0

A41 = χ41,i−1D + χ42,i−1, A42 = 0, A43 = 0, A44 = 1
Sc

D2 + χ43,i−1D + χ44,i−1
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Table 2.2: Comparison of −F ′′(0) and F (∞) calculated by the present method for S = 0,
λ = 0, Ha = 0, and Ri = 0.

Magyari and Keller [56] Present

−F ′′(0) 1.281808 1.28180856
F (∞) 0.905639 0.90564370

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(2.39) to incorporate boundary conditions (2.40), the solution is obtained as

Xi = A−1i−1Ri−1 (2.42)

2.2.8 Results and Discussion

In order to validate the code generated, the results of the present problem have been com-

pared with that of the results obtained by Magyari and Keller [56] as a special case by taking

Ri = 0, Ha = 0, S = 0, λ = 0, R = 0, and γ = 0 and found that they are in good agreement,

as presented in Table. (2.2). To study the effects of Hall parameter βh, suction/injection

parameter S, radiation parameter R and chemical reaction parameter γ, computations have

been carried out in the cases of Ri = 1.0, B = 0.5, S = 0.5, λ = 1.0, βh = 1.0, Ha = 2.0,

R = 0.5, and γ = 0.5.

Figures (2.9(a)) - (2.9(d)) interpret the variation of the velocities, temperature and con-

centration with S. It is seen from these figures that the velocities, temperature, and con-

centration are increasing with the increase in the injection parameter (S < 0). It is also

perceived that the suction (S > 0) reduces both the momentum, thermal and concentration

boundary layer thickness which, in turn, reduce the velocity, temperature, and concentration.

Figures (2.10(a)) - (2.10(d)) represent the behavior of the velocities, temperature and

concentration with Hall parameter βh. From figure (2.10(a)), it is observed that the tan-

gential velocity increases with the increase in βh. Figure (2.10(b)) shows that the cross flow

velocity increases with an increase in the value of βh. It is increasing near the plate and
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then gradually decreasing. Figures (2.10(c)) and (2.10(d)) depict that the temperature and

concentration are diminishing with an increase in the value of βh.

The influence of γ on the velocities, temperature and concentration is presented in the

figures (2.11(a)) - (2.11(d)). Figure (2.11(a)) depicts that the temperature is decreasing with

an increase in the values γ. The same effect is observed on the secondary velocity as presented

in the figure (2.11(b)). Further, from figure (2.11(c)), it is seen that the temperature is rising

with an increase in the values of γ. The concentration reduces with the increasing values of

γ as depicted in the figure (2.11(d)). This is due to the fact that the reaction-rate parameter

is a decelerating agent, the conversion of the species takes place as a result of the chemical

reaction and thereby reduces the concentration in the boundary layer.

The behaviour of both the velocities, temperature and concentration profiles with the

radiation parameter R is exhibited in the figures (2.12(a)) - (2.12(d)). From figures (2.12(a))

and (2.12(b)), it is observed that both the velocities are increasing with an increase in the

value of R. Applying the thermal radiation accumulates the momentum boundary layer

thickness and hence, velocity rises. It is seen from the figure (2.12(c)) that the temperature

increases with the increasing values of the thermal radiation, which in turn, intensifies the

thermal boundary layer thickness. Figure (2.12(d)) shows that concentration is decreasing

with an increase in the thermal radiation.

The influence of Ri, βh, Ha, R, γ and λ on the heat transfer −(1 + 4R
3

)T ′(0) coefficient

against S are presented in the figures (2.13(a)) - (2.13(d)) and (2.14(a)) - (2.14(b)), respec-

tively. It is observed from the Figs. (2.13(a)) and (2.13(b)) that the heat transfer coefficient

is increasing with the increase in the values of the mixed convection parameter Ri and the

Hall parameter βh. The rate of heat transfer decreases with an increase in the value of the

magnetic parameter Ha, as shown in the Fig. (2.13(c)). It is evident from Fig. (2.13(d))

that, the heat transfer rate is increasing with an increase in the value of the radiation param-

eter R. The heat transfer rate is decreasing with an increase in the values of the chemical

reaction parameter γ as presented in the Fig. (2.14(a)). It is seen from Fig. (2.14(b)) that

heat transfer is decreasing with an increase in the values of λ. This is due to the fact that,

the slipperiness enhances the thermal boundary layer thickness. Further, it is understood
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from the figures that heat transfer rate is increasing with increasing the fluid suction on the

boundary of the stretching sheet.

The variation mass transfer (−C ′(0)) coefficient against S is presented in the Figs.

(2.15(a)) - (2.15(b)) and (2.16(a)) - (2.16(d)), respectively. Figures (2.15(a)) and (2.15(b))

show the variation of the mass transfer coefficient for different values of the chemical reaction

parameter γ and the slip parameter λ. It is evident from these figures that the increase in

the value of the chemical reaction parameter the mass transfer rate increases. An increase in

the slipperiness reduces the rate of mass transfer. Figures (2.16(a)), (2.16(b)) and (2.16(d))

show that the mass transfer rate is increasing with the increase in the values of the mixed

convection, Hall and thermal radiation parameters, respectively. While an increase in the

magnetic parameter decreases the rate of mass transfer as shown in the Fig. (2.16(c)). It is

clear from the figures that the mass transfer rate is increasing with an increase in the fluid

suction at the boundary.

The behaviour of non-dimensional skin-friction in x̃ and z̃-directions,
√

(2x̃/L)RexCF x̃

and
√

(2x̃/L)RexCF z̃, respectively, for different values of λ, βh, Ha, Ri, R and γ are tabulated

in Table (2.3). It is evident from the table that F ′′(0) is raising and W ′(0) reducing with the

slipperiness. In the presence of Hall parameter both the skin-frictions are increasing. It is

also observed that when βh = 0, then there is no secondary flow velocity and hence there is

no skin-friction in the direction. Table (2.3) illustrates that, F ′′(0) is decreasing and W ′(0) is

increasing with the magnetic parameter. It is also seen that the skin-friction in z̃ -direction is

zero when Ha = 0. The positive values of Ri increases both the skin-frictions. In addition to

this, F ′′(0) in x̃-direction is increases with the positive values of Ri. Furthermore, it is also

identified that a unique value of F ′′(0) = −0.61660061 and W ′(0) = 0.15023781 is attained

when Ri = 0 (the case of forced convection flow) and for all values of the radiation parameter

R. Because (2.31) and (2.33) are uncoupled when Ri = 0. As a result, the flow and the

thermal fields are independent. Hence, there is no effect of the thermal field parameters on

the flow filed. The radiation parameter increases both the skin-frictions. It is noticed from

the table that, F ′′(0) is increasing and W ′(0) is decreasing with γ < 0 (destructive chemical

reaction) and both are decreasing with γ > 0 (constructive chemical reaction).
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Table 2.3: Variation of skin friction in x̃- and z̃-directions for varying values of slip parameter
λ, Hall parameter βh, magnetic parameter Ha, mixed convection parameter Ri, radiation
parameter R and chemical reaction parameter γ.

λ βh Ha Ri R γ F ′′(0) W ′(0)
0.0 1.0 2.0 1.0 0.5 0.5 -0.84854024 0.48354636
0.5 1.0 2.0 1.0 0.5 0.5 -0.37218224 0.44456698
1.0 1.0 2.0 1.0 0.5 0.5 -0.23963767 0.43303045
2.0 1.0 2.0 1.0 0.5 0.5 -0.14018654 0.42415295
1.0 0.0 2.0 1.0 0.5 0.5 -0.30883545 0.00000000
1.0 0.1 2.0 1.0 0.5 0.5 -0.30771879 0.06607727
1.0 1.0 2.0 1.0 0.5 0.5 -0.23963767 0.43303045
1.0 2.0 2.0 1.0 0.5 0.5 -0.17666970 0.43597489
1.0 1.0 0.0 1.0 0.5 0.5 -0.11322710 0.00000001
1.0 1.0 0.1 1.0 0.5 0.5 -0.11970192 0.03314271
1.0 1.0 1.0 1.0 0.5 0.5 -0.17852309 0.26727093
1.0 1.0 2.0 1.0 0.5 0.5 -0.23963767 0.43303045
1.0 1.0 2.0 0.0 0.5 0.5 -0.61660061 0.15023781
1.0 1.0 2.0 0.5 0.5 0.5 -0.39839663 0.33594925
1.0 1.0 2.0 1.5 0.5 0.5 -0.10565609 0.50306747
1.0 1.0 2.0 3.0 0.5 0.5 0.22147847 0.64645130
1.0 1.0 2.0 1.0 0.0 0.5 -0.26780778 0.40671604
1.0 1.0 2.0 1.0 0.5 0.5 -0.23963767 0.43303045
1.0 1.0 2.0 1.0 1.0 0.5 -0.22203919 0.45200184
1.0 1.0 2.0 1.0 2.0 0.5 -0.20024593 0.47826014
1.0 1.0 2.0 1.0 0.5 -1.0 -0.22103672 0.45452242
1.0 1.0 2.0 1.0 0.5 -0.5 -0.22876207 0.45510319
1.0 1.0 2.0 1.0 0.5 0.0 -0.23497509 0.44256653
1.0 1.0 2.0 1.0 0.5 1.0 -0.23963767 0.43303045
1.0 1.0 2.0 1.0 0.5 2.0 -0.24325520 0.42672253
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Figure 2.9: “Effect of S on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles”.
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Figure 2.10: “Effect of βh on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles”.
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Figure 2.11: “Effect of R on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.”
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Figure 2.12: “Effect of γ on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration” profiles.
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Figure 2.13: “Effect of (a)Ri, (b)βh, (c)Ha, and (d)R on −(1 + 4R
3

)T ′(0)”.
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Figure 2.14: “Effect of (a)γ, and (b)λ on −(1 + 4R
3

)T ′(0)”.
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Figure 2.15: “Effect of (a)γ, and (b)λ on −C ′(0)”.

58



- 0 . 4 0 . 0 0 . 4 0 . 8 1 . 2 1 . 6 2 . 0
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0
R i  =  1 . 5

R i  =  1 . 0

R i  =  0 . 1

- C
’(0

)

S

R i  =  0 . 0

(a)

- 0 . 4 0 . 0 0 . 4 0 . 8 1 . 2 1 . 6 2 . 0
0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

β h  =  2 . 0

β h  =  1 . 0- C
 ’(

0)

S

β h  =  0 . 0 ,  0 . 5

(b)

- 0 . 4 0 . 0 0 . 4 0 . 8 1 . 2 1 . 6 2 . 0
0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

H a  =  3 . 0
H a  =  2 . 0

H a  =  1 . 0

- C
 ’(

0)

S

H a  =  0 . 5

(c)

- 0 . 4 0 . 0 0 . 4 0 . 8 1 . 2 1 . 6 2 . 0
0 . 7 8

0 . 8 4

0 . 9 0

0 . 9 6

1 . 0 2

R  =  2 . 0

R  =  0 . 5

R  =  0 . 0

- C
 ’(

0)

S

R  =  1 . 0

(d)

Figure 2.16: “Effect of (a)Ri, (b)βh, (c)Ha, and (d)R on −C ′(0)”.
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2.3 Conclusions

In this chapter, the heat and mass transfer due to laminar slip flow of electrically conducting

incompressible viscous fluid over an exponentially stretching permeable sheet is studied with

the thermal radiation and the chemical reaction effects. From this study the following

conclusions are drawn for two cases:

The fluid suction reduces the velocity of the fluid for both the cases (a) and (b). In

case (b), both the velocities increase with an increase in the Hall and the thermal radiation

parameters while the opposite trend is observed with the increase in the chemical reaction

parameter and suction parameter. The temperature of the fluid increases with an increase

in the thermal radiation parameter in both the cases. But, an increase in the temperature is

more in case (a) than in case (b). An increase in the Biot number increases the temperature

in case (a). In both the cases, the concentration decreases with the increase in the chemical

reaction parameter and the fluid suction. The skin-friction in x̃-direction increases with the

fluid slippage at the boundary and decreases in z̃-direction. While, for case (a), the skin-

friction decreases with the fluid suction. The rate of heat transfer increases with an increase

in Hall, mixed convection, and thermal radiation parameters. Whereas, the opposite trend is

observed with the increase in the chemical reaction parameter. While, in both the cases (a)

and (b), the rate of heat and mass transfers decrease with the fluid slippage at the boundary

of the stretching surface. In case (a), the rate of heat transfer increases with the increase

in the thermal radiation parameter and Biot number. In both the cases, increase in the

chemical reaction parameter increases the rate of mass transfer.
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Chapter 3

Effect of Joule heating on the flow

over an exponentially stretching

sheet1

3.1 Introduction

A good number of investigations have been carried out to study the Joule heating effect on

the flow, heat and mass transfer along difference surfaces in view of thier applications in

nuclear engineering and allied engineering areas. Jat and Gopi [44] investigated the effect

of Joule heating on a laminar flow over an exponentially stretching surface in presence of

thermal radiation and viscous dissipation effects. Hayat et al. [39] reported the MHD flow

of Jeffrey liquid due to a nonlinear radially stretched sheet in presence of Joule heating.

This chapter explores the effect of Joule heating on the flow of a viscous fluid over a

permeable exponentially stretching surface. In addition to Joule heating, the present study

explains the effects of velocity slip parameter, mixed convection parameter, Hall parameter

and Biot number parameter on the physical quantities of the flow for both the suction and

1Case(a):Communicated to “Mathematical Sciences”,
Case(b):Published in “Nonlinear Engineering - Modeling and Application” 6(2) (2017) 101–114
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injection. In addition, the numerical data for skin-friction is shown in tabular form.

3.2 Formulation of the Problem

Consider a stretching sheet in a laminar slip flow of incompressible viscous fluid with a

temperature T∞ and concentration C∞. Apart from the assumptions made in case (a) of

Chapter-2, here, we assume that a magnetic field of strength B(x̃) = B0e
x̃
2L , where B0 is the

constant magnetic field, is applied orthogonal to the sheet and the induced magnetic field is

neglected. Hence, the following are the equations which governs the present flow

∂ũx
∂x̃

+
∂ũy
∂ỹ

= 0 (3.1)

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

− σB2

ρ
ũx (3.2)

ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
= α

∂2T̃

∂ỹ2
+
σB2

ρcp
ũ2x (3.3)

ũx
∂C̃

∂x̃
+ ũy

∂C̃

∂ỹ
= D

∂2C̃

∂ỹ2
(3.4)

3.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Tf and which induces a heat transfer coefficient hf , where hf = h
√

U0

2L
e

x̃
2L .

Hence, the conditions on the surface of the sheet are

ũx = U∗ +N∗ν
∂ũx
∂ỹ
, ũy = −V∗(x̃), hf (Tf − T̃ ) = −κ∂T̃

∂ỹ
, C̃ = Cw at ỹ = 0

ũx → 0, T̃ → T∞, C̃ → C∞ as ỹ →∞

 (3.5)

Introducing the stream functions through ũx = −∂ψ
∂ỹ

and ũy = ∂ψ
∂x̃

and then the following
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Figure 3.1: Schematic diagram with coordinate system

dimensionless variables

x̃ = xL, ỹ = y
√

2νL
U0
e
−x̃
2L , ψ =

√
2νLU0e

x̃
2LF (x, y),

T̃ = T∞ + (Tf − T∞)T (x, y), C̃ = C∞ + (Cw − C∞)C(x, y)

 (3.6)

into Eqs. (3.1) - (3.4), we obtain

F ′′′ + FF ′′ − 2F ′2 −HaF
′ + 2

(
F ′′

∂F

∂x
− F ′∂F

′

∂x

)
= 0 (3.7)

1

Pr
T ′′ + FT ′ + 2

(
T ′
∂F

∂x
− F ′∂T

∂x

)
= 0 (3.8)

1

Sc
C ′′ + FC ′ + 2

(
C ′
∂F

∂x
− F ′∂C

∂x

)
= 0 (3.9)
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The conditions at the boundary reduces to

F (x, 0) + 2∂F
∂x

(x, 0) = S, F ′(x, 0) = 1 + λF ′′(x, 0),

T ′(x, 0) = −Bi(1− T (x, 0)), C(x, 0) = 1,

F ′(x, y)→ 0, T (x, y)→ 0, C(x, y)→ 0 as y →∞

 (3.10)

where Ha =
2LσB2

0

ρU0
is the magnetic parameter and J =

2LσB2
0U0

ρcp(Tf−T∞)
is the Joule heating pa-

rameter.

3.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction Cf , the local Nusselt number Nux̃ and the local Sherwood

number Shx̃, are given by

√
Rex Cf√
2x/L

= F ′′(0),
Nux√

x/2L
√
Rex

= −T ′(0), and
Shx√

x/2L
√
Rex

= −C ′(0)

}
(3.11)

where Rex =
xU∗(x)

ν
is the local Reynold’s number.

3.2.3 Solution of the problem

To solve the system of Eqs. (3.7) - (3.9) along with the boundary conditions (3.10), a local

similarity and non-similarity method([103], [67]) has been applied. The boundary value

problems obtained from this method are linearized by the successive linearisation method

and then solved using the Chebyshev spectral collocation method.

The local similarity and non-similarity method includes three levels of truncations which

are explained as follows:

In the first level of truncation, the initial approximate solution can be obtained from the

local similarity equations for a particular case x << 1 by suppressing the terms x( ∂
∂x

). As
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there are no terms accompanied with x ∂
∂x

in (3.7) - (3.9), there is no change in the governing

equations and boundary conditions.

For the second level of truncation, we introduce G = ∂F
∂x

, H = ∂T
∂x

and K = ∂C
∂x

to get

back the suppressed terms in the first level of truncation. Thus the governing equations at

the second level truncation reduce to

F ′′′ + FF ′′ − 2F ′2 + 2 (F ′′G− F ′G′)−HaF
′ = 0 (3.12)

1

Pr
T ′′ + FT ′ + J e2xF ′2 + 2 (T ′G− F ′H) = 0 (3.13)

1

Sc
C ′′ + FC ′ + 2 (C ′G− F ′K) = 0 (3.14)

The corresponding conditions on the boundary are

F (x, 0) + 2G(x, 0) = S, F ′(x, 0) = 1 + λF ′′(x, 0),

T ′(x, 0) = −Bi(1− T (x, 0)), C(x, 0) = 1,

F ′(x,∞)→ 0, T (x,∞)→ 0, C(x,∞)→ 0

 (3.15)

At the third level of truncation, we differentiate Eqs. (3.12) - (3.14) with respect to x

and neglect terms accompanied with ∂G
∂x

, ∂H
∂x

and ∂K
∂x

, then we get

G′′′ + FG′′ +GF ′′ − 4F ′G′ + 2
(
GG′′ −G′2

)
−HaG

′ = 0 (3.16)

1

Pr
H ′′ + (FH ′ +GT ′) + 2J e2x

(
F ′2 + F ′G′

)
+ 2 (H ′G−G′H) = 0 (3.17)

1

Sc
K ′′ + (FK ′ +GC ′) + 2 (K ′G−G′K) = 0 (3.18)

The associated conditions on the surface of the stretching sheet are

G(x, 0) = 0, G′(x, 0) = λ G′′(x, 0), H ′(x, 0) = Bi H(x, 0), K(x, 0) = 0

G′(x,∞)→ 0, H(x,∞)→ 0, K(x,∞)→ 0

 (3.19)
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The set of differential equations (3.12) - (3.14) and (3.16) - (3.18) together with the

boundary conditions (3.15) and (3.19) are now solved using successive linearisation method

([68], [60]) and Chebyshev spectral collocation method [12].

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (3.20)

In Eq.(3.20), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N + 6)×1

column vectors defined by

Ai−1 = [Ars] , r, s = 1, 2, · · · , 6, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



E1,i−1

E2,i−1

E3,i−1

E4,i−1

E5,i−1

E6,i−1


(3.21)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

Gi = [Gi(ξ0), Gi(ξ1), Gi(ξ2), ..., Gi(ξN−1), Gi(ξN)]T ,

Hi = [Hi(ξ0), Hi(ξ1), Hi(ξ2), ..., Hi(ξN−1), Hi(ξN)]T ,

Ki = [Ki(ξ0), Ki(ξ1), Ki(ξ2), ..., Ki(ξN−1), Ki(ξN)]T ,

Ej,i−1 = [ζj,i−1(ξ0), ζj,i−1(ξ1), ζj,i−1(ξ2), ..., ζj,i−1(ξN−1), ζj,i−1(ξN)]T , j = 1, 2, 3, 4, 5, 6

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = 0, A13 = 0,

A14 = χ14,i−1D + χ15,i−1, A15 = 0, A16 = 0,

A21 = χ21,i−1D + χ22,i−1, A22 = 1
Pr

D2 + χ23,i−1D, A23 = 0,

A24 = χ24,i−1, A25 = χ25,i−1, A26 = 0,
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A31 = χ31,i−1D + χ32,i−1, A32 = 0, A33 = 1
Sc

D2 + χ33,i−1D,

A34 = χ34,i−1, A35 = 0, A36 = χ35,i−1,

A41 = χ41,i−1D
2 + χ42,i−1D + χ43,i−1, A42 = 0, A43 = 0,

A44 = D3 + χ44,i−1D
2 + χ45,i−1D + χ46,i−1, A45 = 0, A46 = 0,

A51 = χ51,i−1D + χ52,i−1, A52 = χ53,i−1D, A53 = 0,

A54 = χ54,i−1D + χ55,i−1, A55 = 1
Pr

D2 + χ56,i−1D + χ57,i−1, A56 = 0,

A61 = χ61,i−1, A62 = 0, A63 = χ62,i−1D,

A64 = χ63,i−1D + χ64,i−1, A65 = 0, A66 = 1
Sc

D2 + χ65,i−1D + χ66,i−1,

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(3.20) to incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (3.22)

3.2.4 Result and Discussion

The results of the present problem have been compared with works of Magyari and Keller [56]

as a special case by taking S = 0, J = 0, λ = 0, Ha = 0, x = 0, and Bi→∞ and found that

they are in good agreement, as shown in Table. (3.1). To study the effects of Joule heating

parameter J , suction/injection parameter S, Biot number Bi, magnetic parameter Ha and

velocity slip parameter λ, computations have been carried out taking S = 0.5, J = 0.2,

λ = 1.0, Ha = 1.0, x = 0.3, and Bi = 1.0 unless otherwise mentioned.

The influence of slip parameter λ on the velocity, skin-friction, temperature, concentration

and the rate of heat and mass transfer is portrayed through the (3.2(a)) - (3.2(f)) by taking

S = 0.5, J = 0.2, Ha = 1.0, x = 0.3, and Bi = 1.0. It is evident from the Figs. (3.2(a))

and (3.2(b)) that raise in the slip parameter diminishes the fluid velocity and enhanaces the

skin-friction. From figures (3.2(c)) and (3.2(d)), it is witnessed that the temperature and

rate of heat transfer are increasing with λ. The concentration of the fluid is increasing and

the rate of mass transfer is diminishing with the enhancement in λ as shown in the Figs.
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Table 3.1: Comparative analysis for Nux√
Lx/2

√
Rex

by the current method for λ = 0, J = 0,

Ha = 0, x = 0, S = 0 and Bi→∞.

Nusselt number Nux√
Lx/2

√
Rex

Pr Magyari and Keller [56] Present

0.5 0.330493 0.33053766
1 0.549643 0.54964345
3 1.122188 1.12208577
5 1.521243 1.52123668
8 1.991847 1.99183375
10 2.257429 2.25741862

(3.2(e)) and (3.2(f)). The mass transfer rate is maximum, in the absence of slip parameter.

Further, the impact of x on the skin-friction and the mass transfer rate is negligible.

The changes of the velocity, the skin-friction, the temperature, the rate of heat transfer,

the concentration and the rate of mass transfer for fixed values of S = 0.5, J = 0.2, λ = 1.0,

x = 0.3, and Bi = 1.0 and varying magnetic parameter Ha are presented in the Figs. (3.3(a))

- (3.3(f)) f. Due to magnetic field effect both the velocity and skin-friction are decreasing

as shown in the Figs. (3.3(a)) and (3.3(b)). Applying the uniform magnetic field normal to

the flow direction gives rise to Lorentz force. This force has the tendency to slow down the

velocity of the fluid in the boundary layer. Hence, the velocity and skin-friction diminish with

the enhancement in Ha. It is seen from the figure (3.3(c)) and (3.3(d)) that the temperature

enhances slightly and the rate of heat transfer reduces with an increase in the value of Ha.

Further, in the absence of magnetic field maximum heat exchange is taking place. Figures

(3.3(e)) and (3.3(f)) depict that the concentration is enhancing and the rate of mass transfer

is reducing with an increase in the value of Ha. Finally, it is noticed that, the rate of heat

transfer is reducing with an increase in x.

For fixed values of J = 0.2, λ = 1.0, Ha = 1.0, x = 0.3, and Bi = 1.0, the variations of F ′,

F ′′(x, 0), T , −T ′(x, 0), C and −C ′(x, 0) with suction/injection parameter S are displayed in

the Figs. (3.4(a)) - (3.4(f)). It is demonstrated from the Fig. (3.4(a)) that F ′ is diminishing

with a rise in S. It is depicted from the Fig. (3.4(b)) that F ′′(x, 0) decreases with an

enhancement in the value of suction parameter. Figure (3.4(c)) displays that the temperature
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profile reduces with an increment in the value of the suction parameter and increases with

an increase in the value of injection parameter. While, a reverse trend is observed on the

rate of heat transfer as shown in the Fig. (3.4(d)). Therefore, there is a maximum, heat

transfer from the sheet to the fluid. Figures (3.4(e)) and (3.4(f)) narrate the variation of

the concentration and rate of mass transfer. It is obvious from the figures that the same

observations may be seen as that of the temperature and rate of heat transfer.

The effect of Joule heating parameter J taking the fixed values for S = 0.5, λ = 1.0,

Ha = 1.0, x = 0.3, and Bi = 1.0 on the temperature and the rate of heat transfer is presented

in the Figs. (3.5(a)) and (3.5(b)). As the effect of J on velocity, skin-friction, concentration

and mass transfer are almost negligible, the corresponding graphs are not presented for

brevity. The temperature is slightly increased and the rate of heat transfer is decreased with

an increase in the value of J . It is observed that, in the absence of Joule heating parameter

(J = 0), the effect of non-similar variable x on the rate of heat transfer is minimal and heat

transfer rate is maximum.

Figures (3.6(a)) and (3.6(b)) show the variation of temperature and rate of heat transfer

with Biot number Bi by taking S = 0.5, J = 0.2, λ = 1.0, Ha = 1.0 and x = 0.3. It

is obvious that the temperature is increasing with the increase in Biot number. For larger

values of Bi, equation (3.10) implies T (0) → 1 which is clearly shown in the Fig. (3.6(a)).

Increasing the value of Biot number, the heat transfer coefficient is enhanced predominantly

on the surface due to the strong convection as shown in the Fig. (3.6(b)). Further, the rate

of heat transfer is slightly reduced with x.
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Figure 3.3: Effect of Ha on (a) F ′, (b) F ′′(x, 0), (c) T , (d) −T ′(x, 0), (e) C and (f) −C ′(x, 0)
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Figure 3.4: Effect of S on (a) F ′, (b) F ′′(x, 0), (c) T , (d) −T ′(x, 0), (e) C and (f) −C ′(x, 0)
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3.2.5 Case(b): Uniform wall temperature with Hall effect

In addition to the applied magnetic field of strength B(x̃), here we consider the Hall current in

view of relatively high electron-atom collision frequency. This assumption causes a cross flow

in the z̃-direction, therefore the flow becomes three dimensional. Further, it is assumed that

the sheet is maintained at uniform wall temperature and concentration Tw(x̃) and Cw(x̃),

respectively. Under the Boussinesq approximation, the flow is governed by the equations

(3.1), (3.4) along with the following momentum and energy equations

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

+ g βT (T̃ − T∞) + g βC(C̃ − C∞)− σB2

ρ(1 + β2
h)

(ũx + βhũz) (3.23)

ũx
∂ũz
∂x̃

+ ũy
∂ũz
∂ỹ

= ν
∂2ũz
∂ỹ2

+
σB2

ρ(1 + β2
h)

(βhũx − ũz) (3.24)

ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
= α

∂2T̃

∂ỹ2
+

σB2

ρcp(1 + β2
h)

(ũ2x + ũ2z) (3.25)

ũz is the velocity in z̃-direction.

The boundary conditions are

ũx = U∗ +N∗ν
∂ũx
∂ỹ
, ũy = −V∗(x̃), ũz = 0,

Tw = T∞ + T0e
2x̃
L , Cw = C∞ + C0e

2x̃
L at ỹ = 0

ũx → 0, ũz → 0, T̃ → T∞, C̃ → C∞ as ỹ →∞

 (3.26)

Substituting the following similarity transformations

ỹ = y
√

2νL
U0
e
−x̃
2L , ψ =

√
2νLU0e

x̃
2LF,

ũx = U0e
x̃
LF ′, ũy = −

√
νU0

2L
e

x̃
2L (F + yF ′), ũz = U0e

x̃
LW

T̃ = T∞ + T0 e
2x̃
L T, C̃ = C∞ + C0 e

2x̃
L C

 (3.27)
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into the Eqs. (3.1), (3.23), (3.24), (3.25), and (3.4)

F ′′′ + FF ′′ − 2F ′2 + 2Ri(T + BC)− Ha

1 + β2
h

(F ′ + βhW ) = 0 (3.28)

W ′′ − 2F ′W + FW ′ +
Ha

1 + β2
h

(βhF
′ −W ) = 0 (3.29)

1

Pr
T ′′ + FT ′ − 4F ′T +

J

1 + β2
h

(
F ′2 +W 2

)
= 0 (3.30)

1

Sc
C ′′ + FC ′ − 4F ′C = 0 (3.31)

The conditions (3.26) reduce to

F (y) = S, F ′(y) = 1 + λF ′′(y), W (y) = 0, T (y) = 1, C(y) = 1 at y = 0

F ′(y)→ 0, W (y)→ 0, T (y)→ 0, C(y)→ 0 as y →∞

 (3.32)

where J =
2LσB2

0U0

ρcpT0
is the Joule heating parameter.

3.2.6 Skin Friction in x̃ and z̃-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in x̃−direction CF x̃, local skin-friction in z̃−direction CF z̃,

the local Nusselt number Nux̃ and the local Sherwood number Shx̃, are given by

√
Rex√
2x̃/L

CF x̃ = F ′′(0),

√
Rex√
2x̃/L

CF z̃ = W ′(0),

Nux̃√
x̃/2L

√
Rex̃

= −T ′(0), and
Shx̃√

x̃/2L
√
Rex̃

= −C ′(0).

 (3.33)

where Rex̃ =
x̃U∗(x̃)

ν
is the local Reynold’s number.
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3.2.7 Solution of the Problem

The system of Eqs. (3.28) - (3.31) along with the boundary conditions (3.32), is solved

numerically, using the successive linearisation method as explained in Chapter-2.

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (3.34)

subject to the boundary conditions

Fi(ξN) =
N∑
k=0

D0kFi(ξk) =
N∑
k=0

(λD2Nk −DNk)Fi(ξk) = 0 (3.35a)

Wi(ξN) = Wi(ξ0) = Ti(ξN) = Ti(ξ0) = Ci(ξN) = Ci(ξ0) = 0 (3.35b)

In Eq.(3.34), Ai−1 is a (4N + 4)×(4N + 4) square matrix and Xi and Ri−1 are (4N + 4)×1

column vectors defined by

Ai−1 = [Ars] , r, s = 1, 2, 3, 4, Xi =


Fi

Wi

Θi

Φi

 , Ri−1 =


E1,i−1

E2,i−1

E3,i−1

E4,i−1

 (3.36)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Wi = [Wi(ξ0),Wi(ξ1),Wi(ξ2), ...,Wi(ξN−1),Wi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

E1,i−1 = [ζ1,i−1(ξ0), ζ1,i−1(ξ1), ζ1,i−1(ξ2), ..., ζ1,i−1(ξN−1), ζ1,i−1(ξN)]T

E2,i−1 = [ζ2,i−1(ξ0), ζ2,i−1(ξ1), ζ2,i−1(ξ2), ..., ζ2,i−1(ξN−1), ζ2,i−1(ξN)]T

E3,i−1 = [ζ3,i−1(ξ0), ζ3,i−1(ξ1), ζ3,i−1(ξ2), ..., ζ3,i−1(ξN−1), ζ3,i−1(ξN)]T

E4,i−1 = [ζ4,i−1(ξ0), ζ4,i−1(ξ1), ζ4,i−1(ξ2), ..., ζ4,i−1(ξN−1), ζ4,i−1(ξN)]T
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Table 3.2: Comparison of −F ′′(0) and F (∞) calculated by the present method for S = 0,
λ = 0, Ha = 0, and Ri = 0.

Magyari and Keller [56] Present

−F ′′(0) 1.281808 1.28180856
F (∞) 0.905639 0.90564370

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = −Haβh

1+β2
h
I, A13 = 2RiI, A14 = 2BRiI

A21 = χ21,i−1D + χ22,i−1, A22 = D2 + χ23,i−1D + χ24,i−1, A23 = 0, A24 = 0

A31 = χ31,i−1D + χ32,i−1, A32 = χ33,i−1, A33 = 1
Pr

D2 + χ34,i−1D + χ35,i−1, A34 = 0

A41 = χ41,i−1D + χ42,i−1, A42 = 0, A43 = 0, A44 = 1
Sc

D2 + χ43,i−1D + χ44,i−1

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(3.34) to incorporate boundary conditions (3.35), the solution is obtained as

Xi = A−1i−1Ri−1 (3.37)

3.2.8 Results and Discussion

The results of the present problem are compared with that of the results obtained by Magyari

and Keller [56] as a special case by taking Ri = 0, Ha = 0, S = 0, λ = 0, and J = 0 and

found that they are in good agreement, as presented in Table (3.2). The computations have

been carried out in the cases of Ri = 1.0, B = 0.5, S = 0.5, λ = 1.0, βh = 2.0, Ha = 1.0, and

J = 0.3.

Figures (3.7(a)) - (3.7(d)) indicate the effect of the suction/injection parameter S on both

the velocity components F ′(y) and W (y), temperature T (y) and concentration C(y). From

these figures it is noticed that all the physical quantities are decreasing with an enhancement

in S. It is known that applying the wall suction have the propensity to lessen both the

momentum and thermal boundary layer thickness.
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The influence of the Hall parameter βh on both the velocities, temperature and concen-

tration is depicted in Figs. (3.8(a)) - (3.8(d)). From Fig. (3.8(a)), it is observed that the

tangential velocity increases with the increasing values of the Hall parameter βh. Figure

(3.8(c)) reveals that the temperature decreases with the increasing values of βh. As the Hall

parameter βh increases, the effective conductivity reduces which in turn reduces the mag-

netic damping force on the tangential velocity. Hence, the tangential velocity increases and

temperature decreases with an increase in the Hall parameter. Figure (3.8(b)) shows that

the cross flow velocity increases with an increase in the value of βh. Further, it is observed

that the cross flow velocity first increases gradually with βh, attaining an extreme value and

then drops to zero. From Fig. (3.8(d)), it is noticed that the concentration decreases with

the increasing values of βh.

Figures (3.9(a)) - (3.9(d)) exhibit the influence of the magnetic parameter Ha on both

the velocities, the temperature and the concentration. It is seen from Fig. (3.9(a)) that the

tangential velocity is decreasing with an increase in the value of the magnetic parameter

Ha. Applying the uniform magnetic field normal to the flow direction gives rise to Lorentz

force. This force has the tendency to slow down the velocity of the fluid in the boundary

layer. Hence, the velocity diminishes with an enhancement in Ha. From Fig. (3.9(b)), it is

seen that there is no cross flow velocity in the absence of the magnetic field (Ha = 0) and

it increases gradually with an increase of Ha. Hence, for large values of Ha, a cross-flow is

generated due to the Hall effect. This is clearly depicted in the Fig. (3.9(b)). From Figs.

(3.9(c)) and (3.9(d)), it is evident that the temperature and concentration are increasing

with the increasing values of Ha.

The impact of the mixed convection parameter Ri on F ′(y), W (y), T (y) and C(y) is

depicted in the Figs.(3.10(a)) (3.10(d)). From the Fig. (3.10(a)), it is seen that the tangential

velocity increases with an increase in the values of Ri. This is because, the positive values

of Ri induces a favorable pressure gradient which, in turn, increases the fluid flow in the

boundary layer. The same trend is observed for the cross-flow velocity component as shown

in Fig. (3.10(b)). From the Figs. (3.10(c)) and (3.10(d)), it is noticed that both the

temperature and concentration are decreasing with the increasing the values of Ri. This is
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due to the fact that positive values of Ri accelerate the fluid and which results in decreasing

both the thermal and concentration boundary layers.

The variation of the heat and mass transfer rates with varying values of the Joule heating

parameter J is presented in the Figs. (3.11(a)) and (3.11(b)). Due to Joule heating, the

heat transfer from the sheet to the fluid is decreasing and the mass transfer at the surface

of stretching is increasing. The effect of Hall parameter βh on the rate of heat and mass

transfers are shown in the Figs. (3.12(a)) and (3.12(b)). It is noticed from the figures that,

the rate of heat and mass transfers are increasing with an increase in βh, The increase in the

rate of mass transfer is more than the increase in the rate of heat transfer. The variation

of heat and mass transfer rates with the magnetic parameter Ha is presented in the Figs.

(3.13(a)) and (3.13(b)). These figures describe that the heat transfer rate is reducing with

the increasing values of Ha. The same trend is observed for the mass transfer rate also. The

decrease in the mass transfer rate is low when compared to that heat transfer rate as shown

in the Fig. (3.13(b)). The effect of the mixed convection parameter Ri on both the heat

and mass transfer coefficients is shown in the Figs. (3.14(a)) and (3.14(b)). These figures

indicate that the heat and mass transfer rates are rising with the increasing values of the Ri.

The values of local skin-friction coefficients in x̃-direction (F ′′(0)) and z̃-direction (W ′(0))

are presented in Table (3.3) for various values of βh, Ha, Ri, and J . It is seen from the table

that, both the skin-friction increase with an increase the Hall parameter βh. Further, it is

observed that there is no transverse velocity and hence no skin-friction in z̃-direction in the

absence of Hall parameter. The skin-friction in x̃-direction reduces and in z̃-direction en-

hances as Ha increase. In the absence of magnetic field, there is no cross flow velocity and in

turn, there is no skin-friction in z̃-direction. Further, It is noticed that both the skin-friction

increase as the values of the mixed convection parameter Ri and the Joule heating parameter

J increases.
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Table 3.3: Variation of skin friction in x̃- and z̃-directions for varying values of Hall parame-
ter βh, magnetic parameter Ha, mixed convection parameter Ri, and Joule heating parameter
J .

βh Ha Ri J F ′′(0) W ′(0)
0.0 1.0 1.0 0.3 -0.24296611 0.00000000
0.1 1.0 1.0 0.3 -0.24222539 0.04374048
0.5 1.0 1.0 0.3 -0.22726487 0.18816680
2.0 1.0 1.0 0.3 -0.16656763 0.24358744
2.0 0.0 1.0 0.3 -0.13678548 0.00000001
2.0 0.1 1.0 0.3 -0.13940455 0.02720645
2.0 1.0 1.0 0.3 -0.16656763 0.24358744
2.0 3.0 1.0 0.3 -0.23488654 0.56845554
2.0 1.0 -0.1 0.3 -0.63795469 0.02350794
2.0 1.0 -0.05 0.3 -0.59542168 0.05461319
2.0 1.0 0.0 0.3 -0.55832267 0.10101136
2.0 1.0 1.0 0.3 -0.16656763 0.24358744
2.0 1.0 3.0 0.3 0.28412908 0.32157171
2.0 1.0 1.0 0.0 -0.16781391 0.24316904
2.0 1.0 1.0 0.2 -0.16698415 0.24344783
2.0 1.0 1.0 0.5 -0.16573129 0.24386710
2.0 1.0 1.0 1.0 -0.16362106 0.24456874

80



0 2 4 6 8 1 0 1 2 1 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

F’

y

S  =  -  0 . 2 ,  -  0 . 1 ,  0 . 0 ,  1 . 0 ,  2 . 0

(a)

0 3 6 9 1 2 1 5 1 8
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2

W

y

S  =  -  0 . 2 ,  -  0 . 1 ,  0 . 0 ,  1 . 0 ,  2 . 0

(b)

0 1 2 3 4 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

T

y

S  =  -  0 . 2 ,  -  0 . 1 ,  0 . 0 ,  1 . 0 ,  2 . 0

(c)

0 2 4 6 8 1 0 1 2 1 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

C

y

S  =  -  0 . 2 ,  -  0 . 1 ,  0 . 0 ,  1 . 0 ,  2 . 0

(d)

Figure 3.7: Effect of S on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 3.8: Effect of βh on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 3.9: Effect of Ha on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 3.10: Effect of Ri on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 3.11: Effect of J on (a) −T ′(0), and (b) −C ′(0).
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Figure 3.12: Effect of βh on (a) −T ′(0), and (b) −C ′(0).
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Figure 3.13: Effect of Ha on (a) −T ′(0), and (b) −C ′(0).
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Figure 3.14: Effect of Ri on (a) −T ′(0), and (b) −C ′(0).
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3.3 Conclusions

In this chapter, the effect of Joule heating on the heat and mass transfer process due to

laminar slip flow of electrically conducting incompressible viscous fluid over an exponen-

tially stretching permeable sheet is studied for two cases namely (a) subjected to thermal

convective boundary condition and (b) uniform wall temperature with Hall effect.

The velocity, temperature, and concentration of the fluid decrease for both the cases

(a) and (b) with an increase in the fluid suction. Also, in case (b), the transverse velocity

decreases with an increase in the suction. In both the cases, an increase in the value of the

magnetic parameter Ha, the velocity reduces and temperature and concentration increases.

While the transverse velocity of the fluid in case (b) enhances with an increase in the value

of Ha. In case (b) both the velocities increases and temperature and concentration decreases

with an increase in the value of the Hall parameter. The temperature of the fluid in case (a)

increases with an increase in the Joule heating parameter and there is negligible effect on

the temperature in case (b). Increasing the value of the mixed convection parameter, both

the velocities increase and the temperature and the concentration decreases in case (b). On

the other hand, in case (a) the same trend is observed with an increase in the value of the

velocity slip parameter. Both the skin-friction in case (b) increase with the increase in the

Hall and Joule heating parameter. Whereas, in case (a), the skin-friction reduces with an

increase in the magnetic parameter. Both the heat and mass transfer rates increase in both

the cases with the increase in fluid suction. An increase in the Biot number increases the

temperature as well as the rate of heat transfer in case (a). In both the cases, the rate of

heat transfer reduces with an increase in the Joule heating parameter. While mass transfer

in case (b) increase with the increase in the Joule parameter. In case (b), both the heat and

mass transfer rates increase with the increase in Hall and mixed convection parameters and

in both the cases decreases with an increase in the value of the magnetic parameter.
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Chapter 4

Cross diffusion effects on the flow due

to exponentially stretching sheet 1

4.1 Introduction

The Soret and Dufour effects on the heat and mass transfer in a viscous fluid are very impor-

tant, in view of its applications engineering technology. Inspite of engineering and industrial

applications of these flows, a little attention (Srinivasacharya and Ramreddy [107], Khidir

and Sibanda [49], Patil et al. [79] etc., ) is focussed on the flow over the sheets stretching

exponentially including the soret and dufour effects. This chapter presents the significance

of Soret and Dufour effects in an incompressible viscous fluid flow along a sheet, which is

stretching exponentially. The influence of pertinent parameters on velocity, temperature,

concentration and heat and mass transfer rates are exhibited through graphs and salient fea-

tures are discussed. The numerical values of the skin friction for different values of governing

parameters are also tabulated.

1Case(a):Published in “International Journal of Engineering, TRANSACTIONS A” 31(1) (2018)
120–127,
Case(b):Communicated to “Propulsion and Power Research”
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4.2 Formulation of the Problem

Consider a stretching sheet in a laminar slip flow of incompressible viscous fluid with a

temperature T∞ and concentration C∞. The stretching velocity, suction/injection velocity

and slip velocity are taken as in case(a) of Chapter-2. The equations which governs the flow

in the presence of cross-diffusion effects are:

∂ũx
∂x̃

+
∂ũy
∂ỹ

= 0 (4.1)

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

(4.2)

ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
= α

∂2T̃

∂ỹ2
+
DKT

cs cp

∂2C̃

∂ỹ2
(4.3)

ũx
∂C̃

∂x̃
+ ũy

∂C̃

∂ỹ
= D

∂2C̃

∂ỹ2
+
DKT

Tm

∂2T̃

∂ỹ2
(4.4)

where KT is thermal diffusion ratio and Tm is mean fluid temperature.

4.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Tf and which induces a heat transfer coefficient hf , where hf = h
√

U0

2L
e

x̃
2L .

Hence, the conditions on the surface of the stretching sheet are

ũx = U∗ +N∗ν
∂ũx
∂ỹ
, ũy = −V∗(x̃), hf (Tf − T̃ ) = −κ∂T̃

∂ỹ
, C̃ = Cw at ỹ = 0

ũx → 0, T̃ → T∞, C̃ → C∞ as ỹ →∞

 (4.5)

Introducing the stream functions through ũx = −∂ψ
∂ỹ

and ũy = ∂ψ
∂x̃

and then the following

dimensionless variables

y = ỹ
√

U0

2νL
e

x̃
2L , ψ =

√
2νLU0e

x̃
2LF (x, y),

T̃ = T∞ + (Tf − T∞)T (x, y), C̃ = C∞ + (Cw − C∞)C(x, y)

 (4.6)
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into Eqs. (4.1) - (4.4), we obtain

F ′′′ + FF ′′ − 2F ′2 = 0 (4.7)

1

Pr
T ′′ + FT ′ +Df C

′′ = 0 (4.8)

1

Sc
C ′′ + FC ′ + Sr T

′′ = 0 (4.9)

The conditions (4.5) at the boundary reduces to

F (0) = S, F ′(0) = 1 + λF ′′(0), T ′(0) = −Bi(1− T (0)), C(0) = 1 at y = 0

F ′(∞)→ 0, T (∞)→ 0, C(∞)→ 0 as y →∞


(4.10)

where Sr =
D KT (Tf−T∞)

ν Tm(Cw−C∞)
is the Soret number, and Df = D KT (Cw−C∞)

νcs cp (Tf−T∞)
is the Dufour number.

4.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction Cf , the local Nusselt number Nux̃ and the local Sherwood

number Shx̃, are given by

√
Rex̃ Cf√
2x̃/L

= F ′′(0),
Nux̃√

x̃/2L
√
Rex̃

= −T ′(0), and
Shx̃√

x̃/2L
√
Rex̃

= −C ′(0)

}
(4.11)

where Rex̃ =
x̃U∗(x̃)

ν
is the local Reynold’s number.

4.2.3 Solution of the problem

The system of Eqs. (4.7) - (4.9) along with the boundary conditions (4.10), is solved numer-

ically, using the successive linearisation method as explained in Chapter-2.
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Proceeding as in Chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (4.12)

subject to the boundary conditions

Fi(ξN) =
N∑
k=0

D0kFi(ξk) =
N∑
k=0

(λD2Nk −DNk)Fi(ξk) = 0 (4.13a)

N∑
k=0

DNkTi(ξk)−BiTi(ξN) = Ti(ξ0) = Ci(ξ0) = Ci(ξN) = 0 (4.13b)

In Eq.(4.12), Ai−1 is a (3N + 3)×(3N + 3) square matrix and Xi and Ri−1 are (3N + 3)×1

column vectors defined by

Ai−1 =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xi =


Fi

Θi

Φi

 , Ri−1 =


E1,i−1

E2,i−1

E3,i−1

 (4.14)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

E1,i−1 = [ζ1,i−1(ξ0), ζ1,i−1(ξ1), ζ1,i−1(ξ2), ..., ζ1,i−1(ξN−1), ζ1,i−1(ξN)]T

E2,i−1 = [ζ2,i−1(ξ0), ζ2,i−1(ξ1), ζ2,i−1(ξ2), ..., ζ2,i−1(ξN−1), ζ2,i−1(ξN)]T

E3,i−1 = [ζ3,i−1(ξ0), ζ3,i−1(ξ1), ζ3,i−1(ξ2), ..., ζ3,i−1(ξN−1), ζ3,i−1(ξN)]T

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = 0, A13 = 0

A21 = χ21,i−1, A22 = 1
Pr

D2 + χ22,i−1D, A23 = DfD
2

A31 = χ31,i−1, A32 = SrD
2, A33 = 1

Sc
D2 + χ32,i−1D

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(4.12) to incorporate boundary conditions (4.13), the solution is obtained as

Xi = A−1i−1Ri−1 (4.15)
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Table 4.1: Comparative analysis for Nux̃√
x̃/2L

√
Rex̃

by the current method for λ = 0, Sr = 0,

Df = 0, S = 0 and Bi→∞.

Nusselt number Nux̃√
x̃/2L

√
Rex̃

Pr Magyari and Keller [56] Present

0.5 0.330493 0.33053766
1 0.549643 0.54964345
3 1.122188 1.12208577
5 1.521243 1.52123668
8 1.991847 1.99183375
10 2.257429 2.25741862

4.2.4 Result and Discussion

In order to validate the code generated, the results of the present problem have been com-

pared with works of Magyari and Keller [56] as a special case by taking S = 0, Df = 0,

Sr = 0, λ = 0, and Bi→∞ and found that they are in good agreement, as shown in Table.

(4.1). The computations have been carried out by taking S = 0.5, Sr = 0.5, Df = 0.03,

λ = 1.0, and Bi = 1.0 unless otherwise mentioned.

The influence of the slip and the suction/injection parameters on the velocity is portrayed

in the Figs. (4.1(a)) - (4.1(b)). It is evident from the Figs. 4.1(a) and (4.1(b)) that the

rise in the slipperiness and the fluid suction diminishes the fluid velocity while the injection

enhances the velocity. The skin-friction is enhancing with the slipperiness and reducing with

the suction of the fluid as depicted in the Fig. (4.2).

The variation of temperature distribution with Bi, λ, S, Df , and Sr is plotted in the

Figures (4.3(a)) - (4.3(e)). Figure (4.3(a)) illustrates that the temperature is enhancing with

the rise in the value of Bi and gain in the thickness of thermal boundary. Further, for a

large value of the Biot number, the convective thermal condition from (4.10) transforms

to T (0) → 1, which signifies the constant wall condition. It is evident from the Figure

(4.3(b)) that temperature is enhancing with the rise in the slipperiness. It is well-known

fact that the suction reduces the thickness of thermal boundary layer and hence, reduction

in temperature arises. This phenomenon is graphically presented in the Figure (4.3(c)).

92



However, the injection produces an exactly contradictory nature. It is observed from the

figures that the thickness of the thermal boundary layer is increasing with the increasing

values of Dufour number as shown in the Figure (4.3(d)). But, there is no dominance of

Soret number on the temperature distribution as shown in the Fig. (4.3(e)).

The influence of λ, S, Sr, Bi, and Df on the concentration is shown graphically in Figures

(4.4(a)) - (4.4(e)). It is clear from the Figure (4.4(a)) that the increase in slipperiness rises

the concentration. While the injection is enhancing the concentration and suction reducing

the concentration as shown in the Figure (4.4(b)). The impact of the Soret number on the

concentration profile is presented in the Figure (4.4(c)). It is apparent from this figure that

the concentration is increasing with the increase in Sr. Figure (4.4(d)) illustrates that the

concentration is enhancing with the rise in the value of Bi and hence gain in thickness of the

concentration boundary. But, the enhancement in concentration is less compared to that of

temperature with the rise in Biot number as shown in the Figure (4.3(a)). Further, there is

no dominance of Df on fluid’s concentration distribution as shown in the Fig. (4.4(e)).

The influence of Bi, Df , λ, and Sr on the rate of heat transfer against S are depicted

through the Figures (4.5(a)) - (4.5(d)). Figure (4.5(a)) demonstrates that the rate of heat

transfer is increasing with a rise in Bi. On the other hand, Figures (4.5(b)) and (4.5(c))

depict the behavior of the rate of heat transfer for different values of the Dufour number

and the slip parameter. It is clear from these figures that the rate of heat transfer decreases

with the increase in the values of Dufour number and slip parameter. It is evidenced from

the Fig. (4.5(d)), that the rate of heat transfer increasing with an increase in the value of

Soret number Sr.

The rate of mass transfer under the influence of Dufour, Soret, Biot numbers and velocity

slip parameter is represented in Figures (4.6(a)) - (4.6(d)). It is noticed from the Figure

(4.6(a)) that the rate of mass transfer is enhanced with an enhancement in the value of Df .

While the reduction in the rate of mass transfer is observed with the rise in Sr as portrayed

in Figure (4.6(b)). Figures (4.6(c)) and (4.6(d)) depict that the rate of mass transfer is

diminishing with the rise in Biot number and slip parameter. Further, the rate of heat and

mass transfers increasing with fluid suction.
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4.2.5 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(x̃) = B0e
x̃
2L is applied in ỹ−direction and

the influence of Hall current is not neglected. Assume that magnetic Reynolds number is

very small so that the induced magnetic field is negligible in comparison to applied magnetic

field. The presence of Hall current induces a cross flow in z̃-direction and hence the flow

becomes three-dimensional. Under the Boussinesq approximation, the equations governing

the flow in non-dimensional form are

F ′′′ + FF ′′ − 2F ′2 + 2Ri(T + BC)− Ha

1 + β2
h

(F ′ + βhW ) = 0 (4.16)

W ′′ − 2F ′W + FW ′ +
Ha

1 + β2
h

(βhF
′ −W ) = 0 (4.17)

1

Pr
T ′′ + FT ′ − 4F ′T +Df C

′′ = 0 (4.18)

1

Sc
C ′′ + FC ′ − 4F ′C + Sr T

′′ = 0 (4.19)

The non-dimensional boundary conditions are

F (y) = S, F ′(y) = 1 + λF ′′(y), W (y) = 0, T (y) = 1, C(y) = 1 at y = 0

F ′(y)→ 0, W (y)→ 0, T (y)→ 0, C(y)→ 0 as y →∞

 (4.20)

where Sr = D KT T0
νTm C0

is the Soret number, and Df = D KT C0

νcs cp T0
is the Dufour number.
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4.2.6 Skin Friction in x̃ and z̃-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in x̃−direction CF x̃, local skin-friction in z̃−direction CF z̃,

the local Nusselt number Nux̃ and the local Sherwood number Shx̃, are given by

√
Rex̃√
2x̃/L

CF x̃ = F ′′(0),

√
Rex̃√
2x̃/L

CF z̃ = W ′(0),

Nux̃√
x̃/2L

√
Rex̃

= −T ′(0), and
Shx̃√

x̃/2L
√
Rex̃

= −C ′(0).

 (4.21)

where Rex̃ =
x̃U∗(x̃)

ν
is the local Reynold’s number.

4.2.7 Solution of the Problem

The system of Eqs. (4.16) - (4.19) along with the boundary conditions (4.20), is solved

numerically, using the successive linearisation method as explained in Chapter-2.

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (4.22)

subject to the boundary conditions

Fi(ξN) =
N∑
k=0

D0kFi(ξk) =
N∑
k=0

(λD2Nk −DNk)Fi(ξk) = 0 (4.23a)

Wi(ξN) = Wi(ξ0) = Ti(ξN) = Ti(ξ0) = Ci(ξN) = Ci(ξ0) = 0 (4.23b)

In Eq.(4.22), Ai−1 is a (4N + 4)×(4N + 4) square matrix and Xi and Ri−1 are (4N + 4)×1
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column vectors defined by

Ai−1 = [Ars] , r, s = 1, 2, 3, 4, Xi =


Fi

Wi

Θi

Φi

 , Ri−1 =


E1,i−1

E2,i−1

E3,i−1

E4,i−1

 (4.24)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Wi = [Wi(ξ0),Wi(ξ1),Wi(ξ2), ...,Wi(ξN−1),Wi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

E1,i−1 = [ζ1,i−1(ξ0), ζ1,i−1(ξ1), ζ1,i−1(ξ2), ..., ζ1,i−1(ξN−1), ζ1,i−1(ξN)]T

E2,i−1 = [ζ2,i−1(ξ0), ζ2,i−1(ξ1), ζ2,i−1(ξ2), ..., ζ2,i−1(ξN−1), ζ2,i−1(ξN)]T

E3,i−1 = [ζ3,i−1(ξ0), ζ3,i−1(ξ1), ζ3,i−1(ξ2), ..., ζ3,i−1(ξN−1), ζ3,i−1(ξN)]T

E4,i−1 = [ζ4,i−1(ξ0), ζ4,i−1(ξ1), ζ4,i−1(ξ2), ..., ζ4,i−1(ξN−1), ζ4,i−1(ξN)]T

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = −Haβh

1+β2
h
I, A13 = 2RiI, A14 = 2BRiI

A21 = χ21,i−1D + χ22,i−1, A22 = D2 + χ23,i−1D + χ24,i−1, A23 = 0, A24 = 0

A31 = χ31,i−1D + χ32,i−1, A32 = 0, A33 = 1
Pr

D2 + χ33,i−1D + χ34,i−1, A34 = DfD
2

A41 = χ41,i−1D + χ42,i−1, A42 = 0, A43 = SrD
2, A44 = 1

Sc
D2 + χ43,i−1D + χ44,i−1

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(4.22) to incorporate boundary conditions (4.23), the solution is obtained as

Xi = A−1i−1Ri−1 (4.25)

4.2.8 Results and Discussion

In order to validate the code generated the results of the present problem have been com-

pared with that of the results obtained by Magyari and Keller [56] as a special case by
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Table 4.2: Comparison of −F ′′(0) and F (∞) calculated by the present method for S = 0,
λ = 0, Ha = 0, Sr = 0, Df = 0, and Ri = 0.

Magyari and Keller [56] Present

−F ′′(0) 1.281808 1.28180856
F (∞) 0.905639 0.90564370

taking Ri = 0, Ha = 0, S = 0, λ = 0, Sr = 0, and Df = 0 and found that they are in

good agreement, as presented in Table (4.2). To study the effects of Hall parameter βh, suc-

tion/injection parameter S, Soret number Sr, Dufour number Df , and magnetic parameter

Ha, computations have been carried out in the cases of Ri = 1.0, B = 0.5, S = 0.5, λ = 1.0,

βh = 1.0, Ha = 2.0, Sr = 0.5, and Df = 0.03.

Figures (4.7(a)) - (4.7(d)) depict the effect of S on both the velocities, the temperature

and the concentration. It is evident from the figures that both the velocities, the temperature

and the concentration are increasing with the rise in the values (magnitude) of the injection

(S < 0) parameter. Further, the imposition of wall suction (S > 0) lowers the thickness of

the momentum, thermal and concentration boundary layers which, in turn, decrease both

the tangential and cross flow velocities, temperature and concentration of the fluid.

The effect of the Hall parameter βh on the velocity profiles, the temperature, and the

concentration is shown graphically through the Figs. (4.8(a)) - (4.8(d)). As the value of the

Hall parameter increases, the primary velocity increases as shown in the Fig. (4.8(a)). Due

to the Hall effect, the secondary flow increases as depicted in the Fig. (4.8(b)). Further, it

is identified from the Figs. (4.8(c)) and (4.8(d)) that in the presence of the Hall parameter,

the temperature and the concentration of the fluid decreases.

The Soret (Sr) effect on both the velocities, the temperature and concentration profiles are

depicted in the Figs. (4.9(a)) - (4.9(d)). In the presence of Soret parameter, both the velocity

components are increasing as shown in the Figs. (4.9(a)) and (4.9(b)). The temperature

of the fluid is severely affected by the Soret effect, especially thickness of the concentration

boundary layer escalates and thickness of the thermal boundary layer decreases with rising

in the value of the Soret number. Hence, the temperature of the fluid decreases and the fluid
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concentration increases with an increase in the value of the Soret parameter as presented

in the Fig. (4.9(c)) and (4.9(d)). Figs. (4.10(a)) - (4.10(d)), exhibit the influence of the

Dufour (Df ) effect on both the velocities, the temperature and the concentration. Figures

(4.10(a)) and (4.10(b)) show that both the tangential and transverse velocities are increasing

as the value of the Dufour number increasing. Further, it is observed from the figures that

the thickness of the thermal boundary layer increases and concentration boundary layer

decreases with the increasing value of the Dufour number as shown in the Figs (4.10(c)) and

(4.10(d)). Thus, in mixed convection flow problems the influence of diffusion-thermal and

the thermal-diffusion effects is very important.

The effect of Soret number Sr on −T ′(0) and −C ′(0) is graphically presented through

the Figs. (4.11(a)) - (4.11(b)). It is known that in the presence of the Soret parameter,

the temperature reduces and the concentration increases. As a result, −T ′(0) increases

and −C ′(0) decreases. Figs. (4.12(a)) - (4.12(b)) exhibit the influence of the Dufour Df

parameter on the heat and mass transfer rates. It is for the same reason under the influence

of Dufour parameter, the temperature increases, and the concentration decreases. The heat

transfer rate decreases and mass transfer rate increases as shown in the Fig. (4.12(a))

and Fig. (4.12(b)). It is also observed that the heat transfer rate is increasing and mass

transfer rate is reducing with the suction/injection parameter S. The fluctuations of −T ′(0)

and −C ′(0) for various values of the Hall parameter βh, against S, is presented via the

Figs. (4.13(a)) - (4.13(b)). It is clearly evident from the Fig. (4.13(a)) that the rate of

heat transfer is increasing with an increase in the value of the Hall parameter βh. Figure

(4.13(b)) reveals that mass transfer rate is escalated with an increase in the value of Hall

parameter βh. Further, it is observed from the figures that −T ′(0) is increasing and −C ′(0)

is reducing with the suction/injection parameter S. The behavior of heat transfer and mass

transfer coefficients for distinct values of the slip parameter λ against the suction/injection

parameter S is presented through the Figs. (4.14(a)) - (4.14(b)). It is inferred from the

Fig. (4.14(a)) that, the rate of heat transfer is decreasing with the slip parameter λ for

both suction (S > 0) and injection (S < 0) cases. Furthermore, it is reducing with the

injection parameter and increasing with the suction parameter. While from Fig. (4.14(b)),
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it is deduced that the mass transfer rate is decreasing with the rise in slip parameter and

increasing with an increase in the injection parameter. It is noticed from the figures that,

the mass transfer rate is drastically falling down when compared with the heat transfer rate

against S.

The variations of local skin-friction coefficient F ′′(0) in x̃-direction and local skin-friction

coefficient W ′(0) in z̃-direction for diverse values of pertinent parameters are tabulated in

Table (4.3). It is noticeable from the table that the F ′′(0) is raising and W ′(0) reducing

with slip parameter. As the Hall parameter increase, both the skin frictions are increasing.

It is also observed that when βh = 0, then there is no cross flow and hence there is no skin-

friction in z̃-direction. The fluid suction reduces the skin-friction in x̃-direction and increases

in z̃-direction. The positive values of Ri increase both the skin frictions. In addition to this,

skin-friction in x̃-direction is greatly increased with the positive values of Ri. As mentioned

earlier, the positive buoyancy forces act as a favorable pressure gradient and which in turn,

accelerates the fluid velocity in the boundary layer. Due to which, the thickness of the

boundary layer reduces and higher velocity gradient at the surface. Furthermore, it is also

identified that a unique value of F ′′(0) = −0.616601 and W ′(0) = 0.150238 is attained for

all values of Soret (Sr) and Dufour (Df ) parameters when Ri = 0 (forced convection). This

is due to the fact that equations (4.16) and (4.18) are uncoupled when Ri = 0. As a result,

the obtained solutions for flow and thermal fields are independent. Hence, there is no effect

of thermal field parameters on the flow field. At the end of the table, the influence of the

Soret and Dufour parameters on the skin-friction is presented. It is obvious from the table

that, both the skin-friction is increasing with the Soret and Dufour parameters, and which,

rises the fluid velocity in the boundary layer.
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Table 4.3: Variation of skin friction in x̃- and z̃-directions for varying values of suc-
tion/injection parameter S, slip parameter λ, Hall parameter βh, Dufour number Sr, mixed
convection parameter Ri, and Soret number Sr.

λ βh S Ri Sr Df F ′′(0) W ′(0)
0.0 1.0 0.5 1.0 0.5 0.03 -0.906158 0.480939
0.5 1.0 0.5 1.0 0.5 0.03 -0.397836 0.438572
1.0 1.0 0.5 1.0 0.5 0.03 -0.256311 0.425975
2.0 1.0 0.5 1.0 0.5 0.03 -0.150026 0.416256
1.0 0.0 0.5 1.0 0.5 0.03 -0.323340 0.000000
1.0 0.1 0.5 1.0 0.5 0.03 -0.322259 0.064472
1.0 0.5 0.5 1.0 0.5 0.03 -0.299899 0.285576
1.0 2.0 0.5 1.0 0.5 0.03 -0.194722 0.435495
1.0 1.0 -0.5 1.0 0.5 0.03 -0.177965 0.389593
1.0 1.0 -0.3 1.0 0.5 0.03 -0.192026 0.399476
1.0 1.0 0.0 1.0 0.5 0.03 -0.214672 0.412193
1.0 1.0 0.5 1.0 0.5 0.03 -0.256311 0.425975
1.0 1.0 1.0 1.0 0.5 0.03 -0.302077 0.428199
1.0 1.0 0.5 0.0 0.5 0.03 -0.616601 0.150238
1.0 1.0 0.5 0.1 0.5 0.03 -0.564879 0.205253
1.0 1.0 0.5 1.0 0.5 0.03 -0.256311 0.425975
1.0 1.0 0.5 3.0 0.5 0.03 0.185927 0.635549
1.0 1.0 0.5 1.0 0.0 0.03 -0.261722 0.419414
1.0 1.0 0.5 1.0 0.5 0.03 -0.256311 0.425975
1.0 1.0 0.5 1.0 1.0 0.03 -0.250931 0.432281
1.0 1.0 0.5 1.0 2.0 0.03 -0.240264 0.444231
1.0 1.0 0.5 1.0 0.5 0.0 -0.256822 0.425276
1.0 1.0 0.5 1.0 0.5 0.03 -0.256311 0.425975
1.0 1.0 0.5 1.0 0.5 0.5 -0.248220 0.436555
1.0 1.0 0.5 1.0 0.5 2.0 -0.221230 0.467005
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Figure 4.7: Effect of S on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 4.8: Effect of βh on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 4.9: Effect of Sr on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 4.10: Effect of Df on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 4.11: Effect of Sr on (a) −T ′(0), and (b) −C ′(0).
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Figure 4.12: Effect of Df on (a) −T ′(0), and (b) −C ′(0).
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Figure 4.13: Effect of βh on (a) −T ′(0), and (b) −C ′(0).

- 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
1 . 5

1 . 8

2 . 1

2 . 4

2 . 7

3 . 0

-T
 ’ 

(0
)

S

λ =  0 . 1 ,  0 . 5 ,  1 . 0 ,  2 . 0

(a)

- 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0 . 5 5

0 . 5 6

0 . 5 7

0 . 5 8

0 . 5 9

0 . 6 0

0 . 6 1

0 . 6 2

0 . 6 3

λ =  2 . 0

λ =  1 . 0

λ =  0 . 5

-C
 ’(

0)

S

λ =  0 . 1

(b)

Figure 4.14: Effect of λ on (a) −T ′(0), and (b) −C ′(0).
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4.3 Conclusions

This chapter investigates the influence of cross-diffusion effects on the slip viscous fluid flow

over a porous sheet, stretching exponentially From this study the following conclusions are

drawn for two cases:

The fluid suction reduces the velocity the for both cases (a) and (b). In case (b), the

transverse velocity decreases with the fluid suction, while, it reduces with an increase in

the values of the Hall parameter, Soret and Dufour numbers. In both the cases (a) and

(b), the temperature increases with an increase in the Soret number and decreases with the

increase in the Dufour number. But, in both cases, an opposite trend is witnessed for the

concentration. In case (a), it is observed that both the temperature and concentration of

the fluid increase with an increase in the Biot number and the velocity slip parameter. Skin-

friction in both the cases increase with an increase in the value of the velocity slip parameter

and decrease with the fluid suction. In both cases, the rate of heat transfer is increasing

with the increase in the Soret number and decreasing with an increase in Dufour number.

But, an opposite impact is observed for the mass transfer. In case (a), the heat transfer

rate increases and the mass transfer rate decreases with an increase in the value of the Biot

number. It is observed that an increase in the value of velocity slip parameter reduces the

heat and mass transfer rates for both the cases. Further, it is identified that the heat and

mass transfer rates are increasing with the fluid suction, except for the mass transfer rate in

case (b) when the Hall and slip parameters increase.
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Chapter 5

Viscous flow over an exponentially

stretching sheet with variable fluid

properties 1

5.1 Introduction

In many of the flow problems the thermo physical properties of fluid were assumed to be

constant. However, it is known that these properties, especially for fluid viscosity and

fluid thermal conductivity, may change with temperature. To predict the heat transfer rate

accurately, it is necessary to take into account the variation of viscosity. Singh and Agarwal

[99] studied the effects of variable viscosity and variable thermal conductivity on the steady

flow and heat transfer of Maxwell fluid over an exponentially stretching sheet. Hazarika and

Goswami [41] investigated the influence of variable viscosity and thermal conductivity on the

MHD boundary layer flow over an exponentially stretching sheet with viscous dissipation

and Joule heating effects. Mahmoud [58] reported the laminar flow of viscous, electrically

conducting fluid past an exponentially stretching permeable sheet with variable viscosity and

1Case(a):Accepted for publication in “Modelling, Measurement and Control B” 87(1) (2018) 7–14,
Case(b):Published in “International Journal of Energy for a Clean Environment ” 19(1-2) (2018)
67–83
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thermal conductivity in the presence of non-uniform magnetic field and non-uniform heat

generation/absorption.

This chapter presents the influence of variable viscosity and thermal conductivity in an

incompressible viscous fluid flow along a sheet, stretching exponentially. The influence of

pertinent parameters on velocity, temperature, concentration and heat and mass transfer

rates are exhibited through graphs and salient features are discussed. The numerical values

of the skin friction for different values of governing parameters are also tabulated.

5.2 Formulation of the Problem

Consider a laminar slip flow of viscous incompressible fluid over an exponentially stretching

sheet with variable viscosity and thermal conductivity. The heat source is assumed as Q(x̃) =

Q0 e
x̃
L , where Q0 is the constant. The stretching velocity and suction/injection velocity are

taken as in case(a) of Chapter-2, the equations governing the flow are

∂ũx
∂x̃

+
∂ũy
∂ỹ

= 0 (5.1)

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

=
1

ρ

∂

∂ỹ

(
µ
∂ũx
∂ỹ

)
(5.2)

ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
=

1

ρ cp

∂

∂ỹ

(
κ
∂T̃

∂ỹ

)
+

Q

ρ cp
(T̃ − T∞) (5.3)

ũx
∂C̃

∂x̃
+ ũy

∂C̃

∂ỹ
= D

∂2C̃

∂ỹ2
(5.4)

where µ is the viscosity of the fluid, κ is the thermal conductivity, and ρ is fluid den-

sity(assumed constant).

Assue that the temperature dependent coefficient of viscosity µ(T̃ ) vary as inverse func-

tion of temperature [51] and temperature dependent thermal conductivity κ(T̃ ) vary as the
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linear function of temperature [13] such as

1

µ
= b(T̃ − Tr), κ = κ∞

[
1 + ε

(
T̃ − T∞
Tw − T∞

)]
(5.5)

where Tr = T∞ − 1/δ, b = δ/µ∞, b and Tr are the constants and their values depend on the

reference state, δ is the thermal property of the fluid, ε is the variable conductivity parameter

and κ∞ is the conductivity of the fluid far away from the sheet. Generally for the liquids

b > 0 and for gases b < 0.

The relation between constant viscosity and variable viscosity is µ = µ∞

(
1− T

θr

)−1
Prandtl number depends on variable viscosity and variable thermal conductivity [84],

therefore, Prandtl number also varies

Pr =
µcp
κ

=
(µ∞cp/κ∞)

(1 + εT )(1− T
θr

)
(5.6)

where Pr∞ = µ∞cp
κ∞

is the Prandtl number related to constant viscosity. From equation

(5.6) it is clear that as θr →∞ and ε→ 0, Pr → Pr∞.

5.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Tf and which induces a heat transfer coefficient hf , where hf = h
√

U0

2L
e

x̃
2L .

The conditions on the surface of the sheet are

ũx = U∗, ũy = −V∗(x̃), hf (Tf − T̃ ) = −κ∂T̃
∂ỹ
, C̃ = Cw at ỹ = 0

ũx → 0, T̃ → T∞, C̃ → C∞ as ỹ →∞

 (5.7)

The non-dimensional form of the governing equations (5.1) - (5.4), are
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(
1− T

θr

)
F ′′′ +

1

θr
T ′F ′′ +

(
1− T

θr

)2 (
FF ′′ − 2F ′2

)
= 0 (5.8)

(1 + εT )T ′′ + εT ′2 + Pr

(
1− T

θr

)
(1 + εT ) (FT ′ + q1T ) = 0 (5.9)

1

Sc
C ′′ + FC ′ = 0 (5.10)

The conditions (5.7) at the boundary reduces to

F (0) = S, F ′(0) = 1, T ′(0) = −Bi(1− T (0)), C(0) = 1 at y = 0

F ′(∞)→ 0, T (∞)→ 0, C(∞)→ 0 as y →∞

 (5.11)

where ν∞ is the kinematic viscosity of the fluid in the free stream, Bi = h
κ

√
ν∞ is the Biot

number, θr = −1
δ(Tf−T∞)

is the fluid viscosity parameter, q1 = 2LQ0

ρcp U0
is the heat source param-

eter, and S = V0

√
2L

ν∞U0
is the suction(S > 0) or injection(S < 0) parameter.

5.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction Cf , the local Nusselt number Nux̃ and the local Sherwood

number Shx̃, are given by

√
Rex̃ Cf√
2x̃/L

=
(

θr
θr−T (0)

)
F ′′(0),

Nux̃√
x̃/2L

√
Rex̃

= −T ′(0), and
Shx̃√

x̃/2L
√
Rex̃

= −C ′(0)

}
(5.12)

where Rex̃ =
x̃U∗(x̃)

ν∞
is the local Reynold’s number.

5.2.3 Solution of the Problem

The system of Eqs. (5.8) - (5.10) along with the boundary conditions (5.11), is solved

numerically, using the successive linearisation method as explained in Chapter-2.
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Proceeding as in Chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (5.13)

subject to the boundary conditions

Fi(ξN) =
N∑
k=0

D0kFi(ξk) =
N∑
k=0

DNkFi(ξk) = 0 (5.14a)

N∑
k=0

DNkTi(ξk)−BiTi(ξN) = Ti(ξ0) = Ci(ξ0) = Ci(ξN) = 0 (5.14b)

In Eq.(5.13), Ai−1 is a (3N + 3)×(3N + 3) square matrix and Xi and Ri−1 are (3N + 3)×1

column vectors defined by

Ai−1 =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Xi =


Fi

Θi

Φi

 , Ri−1 =


E1,i−1

E2,i−1

E3,i−1

 (5.15)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

E1,i−1 = [ζ1,i−1(ξ0), ζ1,i−1(ξ1), ζ1,i−1(ξ2), ..., ζ1,i−1(ξN−1), ζ1,i−1(ξN)]T

E2,i−1 = [ζ2,i−1(ξ0), ζ2,i−1(ξ1), ζ2,i−1(ξ2), ..., ζ2,i−1(ξN−1), ζ2,i−1(ξN)]T

E3,i−1 = [ζ3,i−1(ξ0), ζ3,i−1(ξ1), ζ3,i−1(ξ2), ..., ζ3,i−1(ξN−1), ζ3,i−1(ξN)]T

A11 = χ11,i−1D
3 + χ12,i−1D

2 + χ13,i−1D + χ14,i−1, A12 = χ15,i−1D + χ16,i−1, A13 = 0

A21 = χ21,i−1, A22 = χ22,i−1D
2 + χ23,i−1D + χ24,i−1, A23 = 0

A31 = χ31,i−1, A32 = 0, A33 = 1
Sc

D2 + χ32,i−1D

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system
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Table 5.1: Comparative analysis for Nux̃√
x̃/2L

√
Rex̃

by the current method for λ = 0, θr → ∞,

ε = 0, q1 = 0, S = 0 and Bi→∞.

Nusselt number Nux̃√
x̃/2L

√
Rex̃

Pr Magyari and Keller [56] Present

0.5 0.330493 0.33053741
1 0.549643 0.54964317
3 1.122188 1.12208592
5 1.521243 1.52123757
8 1.991847 1.99183597
10 2.257429 2.25742182

(5.13) to incorporate boundary conditions (5.14), the solution is obtained as

Xi = A−1i−1Ri−1 (5.16)

5.2.4 Result and Discussion

As in the previous Chapters, the results of the present problem are compared with works of

Magyari and Keller [56] as a special case by taking S = 0, q1 = 0, ε = 0, θr →∞, λ = 0, and

Bi→∞ and presetned in Table. (5.1). In order to study the effects of viscosity parameter

θr, suction/injection parameter S, Biot number Bi, thermal conductivity parameter ε, heat

source parameter q1, velocity slip parameter λ, computations have been carried out taking

S = 0.5, q1 = 0.1, ε = 0.1, θr = 3.0, λ = 1.0, and Bi = 1.0 unless otherwise mentioned.

The variation of the velocity profile for diverse values of θr, q1, Bi and S is presented in the

Figs. (5.1(a)) - (5.1(d)). It is obvious that fluid velocity is decreasing with the enhancement

in the value of θr as shown in the Fig. (5.1(a)). Heat source parameter q1 has an almost

negligible influence on velocity. Figure (5.1(b)) depicts that the velocity is increasing, but

negligible as the value of that q1 is increasing. Biot number Bi has a considerable effect on

the fluid velocity as shown in the Fig. (5.1(c)). It is seen that the velocity is enhanced with

the rise in the value of Bi. From Fig. (5.1(d)), it is clear that velocity is rising with the

injection (S < 0) and reducing with the suction (S > 0).

118



The effect of the parameters ε, q1, Bi and S on temperature is shown in the Figs. (5.2(a))

- (5.2(d)). It is observed that the temperature increases as the value of thermal conductivity

parameter ε increases as shown in the Fig. (5.2(a)). An increase in the values of heat source

parameter and Biot number, the temperature increases as shown in the Figs. (5.2(b)) and

(5.2(c)). Reduction in the temperature is observed with an increase in the suction and

enhancement with the blowing as shown in the Fig. (5.2(d)). This is due to the fact that

the wall suction, reduces thermal boundary layer thickness.

The behavior of the concentration profile for various values of the parameters θr, q1, Bi

and S is depicted in the Figs. (5.3(a)) - (5.3(d)). Rising the value of θr, the concentration of

the fluid is increased as shown in the Fig. (5.3(a)). It is noticed from the Figs. (5.3(b)) and

(5.3(c)) that an increase in the values of q1 and Bi increases the concentration. It is observed

that the effect of heat source parameter q1 on concentration is almost negligible. From the

Fig. (5.3(d)), it is observed that an increase in the value of suction/injection parameter

S reduces the concentration. Therefore, the concentration of the fluid decreases with the

suction and increases with the injection as depicted in the Fig. (5.3(d)).

The variation of the skin-friction coefficient with varying values of θr, Bi, q1 and ε against

S is presented in the Figs. (5.4(a)) - (5.4(d)). It is evident from the Fig. (5.4(a)) that increase

in the value of viscosity parameter increases the skin-friction. Hence, decrease in the fluid

velocity. An increase in the value of Bi diminishes the skin-friction and increases the fluid

velocity as shown in the Fig. (5.4(b)). While there is a negligible effect of q1 and ε on the

skin-friction as depicted in the Figs. (5.4(c)) and (5.4(d)). It is obvious from these figures

that the skin-friction is reducing slightly with an increase in the value of heat source and

thermal conductivity parameters. Further, it is identified that the skin-friction is reducing

with the increase in the value of S.

The behaviour of rate of heat transfer for several values of θr, Bi, q1 and ε against S is

portrayed in the Figs. (5.5(a)) - (5.5(d)). The rate of heat transfer is diminishing with the

rise in θr as shown in the Fig. (5.5(a)). Further, it is noticed that the trend is reversed from

S = 0.15 onwards. ie., heat transfer is increasing with an increase in the values of S and

θr (S > 0.15). Figure (5.5(b)) narrates the rise in Bi enhances the rate of heat transfer.

119



The rate of heat transfer is reducing with the rise in the values of q1 and ε as shown in the

Figs. (5.5(c)) and (5.5(d)). While it is clear from the figures that the rate of heat transfer

increasing with the suction.

For distinct values of θr, Bi, q1 and ε, the variations of the rate of mass transfer is

graphitized against S through the Figs. (5.6(a)) - (5.6(d)). Increasing the value of the

viscosity parameter θr, the rate of mass transfer is diminishing as shown in the Fig. (5.6(a)).

From the Fig. (5.6(b)), it is obvious that the rate of mass transfer is reducing with the rise

in Bi. There is a mild effect of the heat source and thermal conductivity parameters on the

rate of mass transfer as depicted in the Figs. (5.6(c)) and (5.6(d)). It is obvious from these

figures that the rate of mass transfer is slightly enhanced with the rise in q1 and ε. Further,

it is noticed that the suction increases the rate of mass transfer.
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Figure 5.1: Effect of (a) θr, (b) q1, (c) Bi, and (d) S on velocity profile.
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Figure 5.2: Effect of (a) ε, (b) q1, (c) Bi, and (d) S on temperature profile.
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Figure 5.3: Effect of (a) θr, (b) q1, (c) Bi, and (d) S on concentration profile.
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Figure 5.4: Effect of (a) θr, (b) Bi, (c) q1, and (d) ε on skin-friction coefficient.
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Figure 5.5: Effect of (a) θr, (b) Bi, (c) q1, and (d) ε on -T’(0).
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Figure 5.6: Effect of (a) θr, (b) Bi, (c) q1, and (d) ε on -C’(0).
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5.2.5 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(x̃) = B0e
x̃
2L is applied in ỹ−direction and

the influence of Hall current is not neglected. Assume that magnetic Reynolds number is very

small so that the induced magnetic field is negligible in comparison to applied magnetic field.

The presence of Hall current induces a cross flow in z̃-direction and hence the flow becomes

three-dimensional. Further, the slip velocity of the fluid is assumed as N∗(x̃) = N0 e
−x̃
2L , where

N0 is the velocity slip factor. Under the Boussinesq approximation, the non-dimensional form

of the governing equations are

(
1− T

θr

)
F ′′′+

1

θr
T ′F ′′+

(
1− T

θr

)2(
FF ′′ − 2F ′2 + 2Ri(T + BC)− Ha

1 + β2
h

(F ′ + βhW )

)
= 0

(5.17)(
1− T

θr

)
W ′′ +

1

θr
T ′W ′ +

(
1− T

θr

)2(
FW ′ − 2F ′W +

Ha

1 + β2
h

(βhF
′ −W )

)
= 0 (5.18)

(1 + εT )T ′′ + εT ′2 + Pr

(
1− T

θr

)
(1 + εT ) (FT ′ − 4F ′T + q1T ) = 0 (5.19)

1

Sc
C ′′ + FC ′ − 4F ′C = 0 (5.20)

The boundary conditions, in dimensionless form, are

F (y) = S, F ′(y) = 1 +
(

θr
θr−1

)
λF ′′(y), W (y) = 0, T (y) = 1, C(y) = 1 at y = 0

F ′(y)→ 0, W (y)→ 0, T (y)→ 0, C(y)→ 0 as y →∞


(5.21)
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5.2.6 Skin Friction in x̃ and z̃-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in x̃−direction CF x̃, local skin-friction in z̃−direction CF z̃,

the local Nusselt number Nux̃ and the local Sherwood number Shx̃, are given by

√
Rex̃√
2x̃/L

CF x̃ =
(

θr
θr−1

)
F ′′(0),

√
Rex̃√
2x̃/L

CF z̃ =

(
θr

θr − 1

)
W ′(0),

Nux̃√
x̃/2L

√
Rex̃

= −T ′(0), and
Shx̃√

x̃/2L
√
Rex̃

= −C ′(0).


(5.22)

5.2.7 Solution of the Problem

The system of Eqs. (5.17) - (5.20) along with the boundary conditions (5.21), is solved

numerically, using the successive linearisation method as explained in Chapter-2.

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (5.23)

subject to the boundary conditions

Fi(ξN) =
N∑
k=0

D0kFi(ξk) =
N∑
k=0

(λD2Nk −DNk)Fi(ξk) = 0 (5.24a)

Wi(ξN) = Wi(ξ0) = Ti(ξN) = Ti(ξ0) = Ci(ξN) = Ci(ξ0) = 0 (5.24b)

In Eq.(5.23), Ai−1 is a (4N + 4)×(4N + 4) square matrix and Xi and Ri−1 are (4N + 4)×1

column vectors defined by

Ai−1 = [Ars] , r, s = 1, 2, 3, 4, Xi =


Fi

Wi

Θi

Φi

 , Ri−1 =


E1,i−1

E2,i−1

E3,i−1

E4,i−1

 (5.25)
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where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Wi = [Wi(ξ0),Wi(ξ1),Wi(ξ2), ...,Wi(ξN−1),Wi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

E1,i−1 = [ζ1,i−1(ξ0), ζ1,i−1(ξ1), ζ1,i−1(ξ2), ..., ζ1,i−1(ξN−1), ζ1,i−1(ξN)]T

E2,i−1 = [ζ2,i−1(ξ0), ζ2,i−1(ξ1), ζ2,i−1(ξ2), ..., ζ2,i−1(ξN−1), ζ2,i−1(ξN)]T

E3,i−1 = [ζ3,i−1(ξ0), ζ3,i−1(ξ1), ζ3,i−1(ξ2), ..., ζ3,i−1(ξN−1), ζ3,i−1(ξN)]T

E4,i−1 = [ζ4,i−1(ξ0), ζ4,i−1(ξ1), ζ4,i−1(ξ2), ..., ζ4,i−1(ξN−1), ζ4,i−1(ξN)]T

A11 = χ11,i−1D
3 + χ12,i−1D

2 + χ13,i−1D + χ14,i−1, A12 = χ15,i−1,

A13 = χ16,i−1D + χ17,i−1, A14 = χ18,i−1

A21 = χ21,i−1D + χ22,i−1, A22 = χ23,i−1D
2 + χ24,i−1D + χ25,i−1,

A23 = χ26,i−1D + χ27,i−1, A24 = 0

A31 = χ31,i−1D + χ32,i−1, A32 = 0, A33 = χ33,i−1D
2 + χ34,i−1D + χ35,i−1, A34 = 0

A41 = χ41,i−1D + χ42,i−1, A42 = 0, A43 = 0, A44 = 1
Sc

D2 + χ43,i−1D + χ44,i−1

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(5.23) to incorporate boundary conditions (5.24), the solution is obtained as

Xi = A−1i−1Ri−1 (5.26)

5.2.8 Results and Discussion

The comparison of the results with the results obtained by Magyari and Keller [56] as a

special case by taking Ri = 0, Ha = 0, S = 0, λ = 0, θr →∞, q1 = 0, and ε = 0 is presented

in Table (5.2).

The variation of both the velocities, temperature and concentration under the influence

of Hall parameter βh, is demonstrated in the Figs. (5.7(a)) - (5.7(d)). The Hall parameter

increases the tangential velocity as shown in the Fig. (5.7(a)). In the absence of the hall
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Table 5.2: Comparison of −F ′′(0) and F (∞) calculated by the present method for S = 0,
λ = 0, Ha = 0, θr →∞, ε = 0, q1 = 0, and Ri = 0.

Magyari and Keller [56] Present

−F ′′(0) 1.281808 1.28180856
F (∞) 0.905639 0.90564382

parameter (βh = 0) there is no transverse flow velocity as shown in Fig. (5.7(b)).

The effect of the viscosity parameter θr (θr = 2.0, 3.0, 5.0,∞) on the velocities, the tem-

perature and the concentration is presented in the Figs. (5.8(a)) - (5.8(d)). The tangential

velocity decreases as the viscosity parameter θr →∞ as shown in the Fig. (5.8(a)). This is

due to the fact that an increase in the viscosity parameter θr decreases the boundary layer

thickness which results in decrease of the tangential velocity. Further, the transverse flow

increases as the the viscosity parameter θr → ∞ as shown in the Fig. (5.8(b)). There is a

slightly decrease in the temperature and an increase in the fluid concentration as the value

of the viscosity parameter θr →∞ as demonstrated through the Figs. (5.8(c)) - (5.8(d)).

The variation of both velocities, the temperature and the concentration for diverse values

of the thermal conductivity parameter ε is shown graphically through the Figs. (5.9(a)) -

(5.9(b)). The fluid velocity is increasing with the increase in the values of the thermal

conductivity parameter ε as depicted in the Fig. (5.9(a)). Fig. (5.9(b)) shows that the

secondary velocity increases first reaching to a maximum with ε for every profile slightly,

and then gradually decreases with the increasing boundary layer thickness and about from

η = 3.8, the trend is reversed with the rising values of ε. From Figs. (5.9(c)) - (5.9(d)),

it is evident that the temperature is increasing and the concentration is decreasing with

the increasing values of the thermal conductivity parameter ε. It is also observed that the

increase in the temperature is more when compared that of the decrease in the concentration

with ε.

The effect of heat source parameter q1 on both the velocities, temperature and concen-

tration is presented in the Figs. (5.10(a)) - (5.10(b)). Both the fluid velocities are increasing

with the increase in the value of heat source parameter q1 as presented in the Figs. (5.10(a))
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and (5.10(b)). Figs. (5.10(c)) and (5.10(d)), demonstrate that the fluid temperature in-

creases and the concentration decreases as the value of the heat source parameter q1 is

increasing.

The behavior of the rate of heat and mass transfers against suction/injection parameter

S are presented in the Figs. (5.11(a)) - (5.14(b)) for different values of βh, θr, ε, and q1.

Figures (5.11(a)) and (5.11(b)) demonstrates the variation of the rate of heat and mass

transfers for different values of Hall parameter βh. It is clear from the figures that both

the heat and mass transfers are increasing with an increase in the value of Hall parameter

βh. It is evident from the figures that the rate of heat transfer is increasing and the rate of

mass transfer is decreasing with θr as shown in the Figs. (5.12(a)) and (5.12(b)). From the

Figs. (5.13(a)) and (5.13(b)), it is observed an opposite trend, on the rate of heat and mass

transfer transfers when θr is replaced by thermal conductivity parameter ε. From figures

(5.14(a)) and (5.14(b)), it is seen that the rate of heat transfer is decreasing and the rate of

mass transfer is increasing with an increase in the value of heat source parameter q1. Further,

It is observed from these figures that both the rate of heat and mass transfers are increasing

with an increase in the fluid suction. The influence of the velocity slip parameter λ on the

rate of heat and mass transfers is depicted in the Figs. (5.15(a)) and (5.15(b)). It is evident

from these figures that both the heat and mass transfer rates are reducing with the fluid

slippage at the boundary. Moreover, both the heat and mass transfer rates are increasing

with the fluid suction.

The variations of the local skin-friction coefficient in x̃ and z̃-directions for diverse values

of pertinent parameters are tabulated in Table (5.3). The effect of the slip parameter on

both the skin-friction is depicted numerically in the table (5.3) and it is noticeable from the

table that the skin-friction in x̃-direction is increasing and z̃-direction is decreasing with the

fluid slippage at the boundary. Table (5.3) shows that in the presence of Hall parameter

both the skin-friction increase which results in reducing the boundary layer and therefore,

higher velocity gradient at the surface. It is also observed that when βh = 0, then there is no

cross flow velocity and hence there is no skin-friction in z̃-direction. Table (5.3) illustrates

that, the fluid suction at the boundary reduces the skin-friction in x̃ and z̃-directions. It is
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identified from the table that the skin-friction in x̃-direction is increasing with an increase

in the magnitude of the value of θr. But, an opposite trend is observed for the skin-friction

in z̃-direction. At the end of the table, the influence thermal conductivity and heat source

parameters are presented. It is obvious from the table that, both the skin-friction increase

with an increase in the value of the thermal conductivity and heat source parameters and

hence, fluid velocity enhances in the boundary layer.
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Table 5.3: Variation of skin friction in x̃- and z̃-directions for varying values of suc-
tion/injection parameter S, slip parameter λ, Hall parameter βh, viscosity parameter θr,
thermal conductivity parameter Ri, and heat source parameter q1.

λ βh S θr ε q1

(
θr
θr−1

)
F ′′(0)

(
θr
θr−1

)
W ′(0)

0.0 1.0 0.5 2.0 0.1 0.1 -1.782612 0.501525
0.5 1.0 0.5 2.0 0.1 0.1 -0.728843 0.391008
1.0 1.0 0.5 2.0 0.1 0.1 -0.463473 0.358577
2.0 1.0 0.5 2.0 0.1 0.1 -0.269148 0.333299
1.0 0.0 0.5 2.0 0.1 0.1 -0.521005 0.000000
1.0 0.1 0.5 2.0 0.1 0.1 -0.520091 0.053623
1.0 0.5 0.5 2.0 0.1 0.1 -0.501077 0.238343
1.0 2.0 0.5 2.0 0.1 0.1 -0.408879 0.375312
1.0 1.0 -0.4 2.0 0.1 0.1 -0.402515 0.366976
1.0 1.0 -0.2 2.0 0.1 0.1 -0.414789 0.369755
1.0 1.0 0.0 2.0 0.1 0.1 -0.427883 0.368949
1.0 1.0 0.5 2.0 0.1 0.1 -0.463473 0.358577
1.0 1.0 1.0 2.0 0.1 0.1 -0.502533 0.336370
1.0 1.0 0.5 -5.0 0.1 0.1 -0.430670 0.287220
1.0 1.0 0.5 -3.0 0.1 0.1 -0.426055 0.278507
1.0 1.0 0.5 -1.0 0.1 0.1 -0.407420 0.245875
1.0 1.0 0.5 2.0 0.1 0.1 -0.463473 0.358577
1.0 1.0 0.5 3.0 0.1 0.1 -0.453923 0.335858
1.0 1.0 0.5 2.0 0.0 0.1 -0.464558 0.356664
1.0 1.0 0.5 2.0 0.1 0.1 -0.463473 0.358577
1.0 1.0 0.5 2.0 0.5 0.1 -0.460092 0.364618
1.0 1.0 0.5 2.0 1.0 0.1 -0.457247 0.369831
1.0 1.0 0.5 2.0 0.1 -0.2 -0.467421 0.350981
1.0 1.0 0.5 2.0 0.1 -0.1 -0.466202 0.353284
1.0 1.0 0.5 2.0 0.1 0.0 -0.464892 0.355799
1.0 1.0 0.5 2.0 0.1 0.2 -0.462039 0.360916
1.0 1.0 0.5 2.0 0.1 0.4 -0.458192 0.369602
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Figure 5.7: Effect of βh on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 5.8: Effect of θr on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 5.9: Effect of ε on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 5.10: Effect of q1 on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 5.11: Effect of βh on (a) −T ′(0), and (b) −C ′(0).
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Figure 5.12: Effect of θr on (a) −T ′(0), and (b) −C ′(0).
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Figure 5.13: Effect of ε on (a) −T ′(0), and (b) −C ′(0).
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Figure 5.14: Effect of q1 on (a) −T ′(0), and (b) −C ′(0).
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Figure 5.15: Effect of λ on (a) −T ′(0), and (b) −C ′(0).
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5.3 Conclusions

In this chapter, the effect of variable viscosity and thermal conductivity of a viscous fluid

flow over an exponentially stretching permeable sheet is considered. From this study the

following conclusions are drawn for two cases:

The velocity, in both the cases, decreases with an increase in the value of viscosity

parameter and increases with the increase in the thermal conductivity parameter. But,

an opposite result is observed for the concentration profile. In case (b), the transverse

velocity increases with the increase in the value of the Hall, viscosity, heat source, and

thermal conductivity parameters. In both cases, the temperature increase with an increase

in the value of thermal conductivity and heat source parameters. While, in case (a), the

temperature increases with the increase in the Biot number and in case (b), the temperature

decreases with the increase in the Hall parameter. In case (a), the skin-friction decreases with

an increase in the value of thermal conductivity and heat source parameters. While in case

(b), it increases. In both the cases, the skin-friction increase with an increase in the thermal

conductivity parameter, while skin-friction in z̃-direction decreases. In case (a) and (b), the

rate of heat transfer increases with the increase in viscosity parameter and decreases with

an increase in the thermal conductivity and heat source parameters. Whereas an opposite

trend is observed for the rate of mass transfer. In case (b), both the heat and mass transfer

rates are decreasing with the slipperiness and increasing with the Hall parameter. Further,

in both the cases, the skin-friction decrease and the rate of heat and mass transfers increase

with the fluid suction.
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Chapter 6

Viscous fluid flow over an

exponentially stretching sheet with

thermophoresis and viscous

dissipation 1

6.1 Introduction

Thermophoresis is a mechanism in which small particles migrate in the direction of decreasing

thermal gradient. It is quite significant in radioactive particle deposition in nuclear reactor

safety simulations, aerosol particle sampling, deposition of silicon thin films etc. Sandeep and

Sulochana [92] studied the nanofluid flow over an exponentially stretching porous sheet im-

mersed in a porous medium in the presence of thermophoresis, radiation and magnetic field.

Viscous dissipation is necessary when analyzing the characteristics of fluids with low specific

heat and high viscosity. It is significant in geological process, nuclear engineering and num-

ber of devices which are subjected to large deceleration or high rotational speeds. Megahed

1Case(a): Communicated to “International Journal of Applied Mechanics and Engineering”,
Case(b) Communicated to “Journal of the Association of Arab Universities for Basic and Applied
Sciences”
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[63] reported the flow of Casson thin film over an unsteady stretching sheet in the presence of

viscous dissipation and velocity slip. Daniel [19] presented the MHD nanofluid flow and slip

boundary conditions over an exponential stretching sheet in the presence of thermal radiation

and thermophoresis effects. Mahantesh et al. [57] investigated Unsteady three-dimensional

MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the

presence of thermal radiation, viscous dissipation and Joule heating.

This chapter investigates the thermophoresis and viscous dissipation effects on the in-

compressible viscous fluid flow over an permeable exponentially stretching sheet.

6.2 Formulation of the Problem

Consider the slip flow of an incompressible viscous fluid over an exponential stretching per-

meable sheet with thermophoresis and viscous dissipation effects. Making use of the assump-

tions of case (a) of Chapter-2, the equations governing the flow are given by

∂ũx
∂x̃

+
∂ũy
∂ỹ

= 0 (6.1)

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

(6.2)

ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
= α

∂2T̃

∂ỹ2
+

µ

ρcp

(
∂ũx
∂ỹ

)2

(6.3)

ũx
∂C̃

∂x̃
+ ũy

∂C̃

∂ỹ
= D

∂2C̃

∂ỹ2
− ∂

∂y

[
VT (C̃ − C∞)

]
(6.4)

where VT is the thermophoretic velocity.

The term VT ([111]) in (6.4) can be written as

VT = −ν kt
Tr

∂T̃

∂ỹ
(6.5)

where Tr is the reference temperature and kt is the thermophoretic coefficient.
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6.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Tf and which induces a heat transfer coefficient hf , where hf = h
√

U0

2L
e

x̃
2L .

The non-dimensional form of the conditions at the boundary are

F (x, 0) + 2∂F
∂x

(x, 0) = S, F ′(x, 0) = 1 + λF ′′(x, 0),

T ′(x, 0) = −Bi(1− T (x, 0)), C(x, 0) = 1,

F ′(x, y)→ 0, T (x, y)→ 0, C(x, y)→ 0 as y →∞

 (6.6)

The dimensionless form of the equations (6.1) - (6.4) governing the flow(see case (a) of

Chapter-3) are

F ′′′ + FF ′′ − 2F ′2 + 2

(
F ′′

∂F

∂x
− F ′∂F

′

∂x

)
= 0 (6.7)

1

Pr
T ′′ + FT ′ + Ec e2x F ′′2 + 2

(
T ′
∂F

∂x
− F ′∂T

∂x

)
= 0 (6.8)

1

Sc
C ′′ + FC ′ − τ (T ′C ′ + C T ′′) + 2

(
C ′
∂F

∂x
− F ′∂C

∂x

)
= 0 (6.9)

where Ec =
U2
0

cp(Tf−T∞)
is the Eckert number and τ = − kt

Tr
(Tf − T∞) is the thermophoretic

parameter (The surface is cold for τ > 0 and hot for τ < 0 [66, 114]).

6.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction Cf , the local Nusselt number Nux̃ and the local Sherwood

number Shx̃, are given by

√
Rex Cf√
2x/L

= F ′′(0),
Nux√

x/2L
√
Rex

= −T ′(0), and
Shx√

x/2L
√
Rex

= −C ′(0)

}
(6.10)
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6.2.3 Solution of the Problem

The system of Eqs. (6.7) - (6.9) along with the boundary conditions (6.6), is solved numer-

ically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation

Ai−1Xi = Ri−1, (6.11)

In Eq. (6.11), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N + 6)×1

column vectors defined by

Ai−1 = [Ars] , r, s = 1, 2, · · · , 6, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


, Ri−1 =



E1,i−1

E2,i−1

E3,i−1

E4,i−1

E5,i−1

E6,i−1


(6.12)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

Gi = [Gi(ξ0), Gi(ξ1), Gi(ξ2), ..., Gi(ξN−1), Gi(ξN)]T ,

Hi = [Hi(ξ0), Hi(ξ1), Hi(ξ2), ..., Hi(ξN−1), Hi(ξN)]T ,

Ki = [Ki(ξ0), Ki(ξ1), Ki(ξ2), ..., Ki(ξN−1), Ki(ξN)]T ,

Ej,i−1 = [ζj,i−1(ξ0), ζj,i−1(ξ1), ζj,i−1(ξ2), ..., ζj,i−1(ξN−1), ζj,i−1(ξN)]T , j = 1, 2, 3, 4, 5, 6

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = 0, A13 = 0,

A14 = χ14,i−1D + χ15,i−1, A15 = 0, A16 = 0,

A21 = χ21,i−1D
2 + χ22,i−1D + χ23,i−1, A22 = 1

Pr
D2 + χ24,i−1D, A23 = 0,

A24 = χ25,i−1, A25 = χ26,i−1, A26 = 0,
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A31 = χ31,i−1D + χ32,i−1, A32 = χ32,i−1D
2 + χ34,i−1D, A33 = 1

Sc
D2 + χ35,i−1D + χ36,i−1,

A34 = χ37,i−1, A35 = 0, A36 = χ38,i−1,

A41 = χ41,i−1D
2 + χ42,i−1D + χ43,i−1, A42 = 0, A43 = 0,

A44 = D3 + χ44,i−1D
2 + χ45,i−1D + χ46,i−1, A45 = 0, A46 = 0,

A51 = χ51,i−1D
2 + χ52,i−1, A52 = χ53,i−1D, A53 = 0,

A54 = χ54,i−1D
2 + χ55,i−1D + χ56,i−1, A55 = 1

Pr
D2 + χ57,i−1D + χ58,i−1, A56 = 0,

A61 = χ61,i−1, A62 = χ62,i−1D
2 + χ63,i−1D, A63 = χ64,i−1D + χ65,i−1,

A64 = χ66,i−1D + χ67,i−1, A65 = χ68,i−1D
2 + χ69,i−1D, A66 = 1

Sc
D2 + χ610,i−1D + χ611,i−1,

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(6.11) to incorporate boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (6.13)

6.2.4 Result and Discussion

The results of the present analysis are compared with the results of the Magyari and Keller

[56] as a special case and shown in Table. (6.1). In order to study the effects of Joule heating

parameter J , suction/injection parameter S, Biot number Bi, magnetic parameter Ha and

velocity slip parameter λ, computations have been carried out taking S = 0.5, Ec = 0.2,

λ = 0.5, τ = 0.3, x = 0.2, and Bi = 1.0 unless otherwise mentioned. The behavior of

velocity in the presence of the velocity slip at the boundary for the exponentially stretching

sheet is presented in the fig. (6.1(a)). The velocity is decreasing with an increase in the slip

parameter, which in turn lessens the momentum boundary layer thickness. Figure (6.1(b))

represents the variation of the velocity profile in the presence of suction/injection parameter

S. It is observed that the velocity is decreasing by the rise in the value of S. While a

reverse trend is noticed for injection(S < 0). The variation of the skin-friction coefficient

F ′′(x, 0) against non-similar variable x for distinct values of the slip and the suction/injection

parameters is presented in the figures (6.2(a)) and (6.2(b)). It is noticed from these figures
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Table 6.1: Comparative analysis for Nux√
Lx/2

√
Rex

by the current method for λ = 0, τ = 0,

Ec = 0, x = 0, S = 0 and Bi→∞.

Nusselt number Nux√
Lx/2

√
Rex

Pr Magyari and Keller [56] Present

0.5 0.330493 0.33053766
1 0.549643 0.54964345
3 1.122188 1.12208577
5 1.521243 1.52123668
8 1.991847 1.99183375
10 2.257429 2.25741862

that the skin-friction coefficient is increasing with an increase in the value of the slip and

decreasing with the rise in the suction parameter.

Figures (6.3(a)) - (6.3(d)) exhibit the behaviour of the temperature profile for diverse

values of Ec, Bi, λ and S, respectively. It is evident from the figure (6.3(a)) that the

temperature is increasing with an increase in the value of Ec. Figure (6.3(b)) shows that the

temperature enhancing by the rise in the value of Bi. It is seen that temperature within the

boundary layer increases with the increase in the Biot number. For Bi→∞, equation (6.6)

implies T (0) → 1, which is clearly shown in the Fig. (6.3(b)) for larger values of Bi. The

figure (6.3(c)) reveals that the temperature profile increases with an increase in the value of

the slip parameter λ. Figure (6.3(d)) shows that the temperature of the fluid is decreasing

with an increase in the value of the suction parameter and an opposite trend is seen for

injection.

The effect of thermophoretic parameter τ , Biot number Bi, slip parameter λ and suc-

tion/injection parameter S on the concentration profile is presented in the Figs. (6.4(a)) -

(6.4(d)). An increase in the value of τ decreases the concentration as shown in the figure

(6.4(a)). This is due to the fact that fluid particles move away from cool surroundings with

the increase in the thermophoretic parameter. Figure (6.4(b)) shows that the influence of

convection on concentration. It is known that a rise in the convection at the stretching sheet

results in lowering thermal penetration and hence decreases the concentration boundary layer

thickness. Therefore, mass transfer at the sheet increases with an increase in the value of Bi.
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Further, as the value of the slip parameter increases, the concentration of the fluid increases

as shown in the Fig. (6.4(c)). Due to which, mass transfer at the sheet decreases. Further,

the concentration decreases with the increase in the value of the suction and increases with

the increase in the value of the injection as shown in Fig. (6.4(d)).

The variation of heat transfer coefficient for different values of Eckert number, Biot

number, slip and suction/injection parameters against non-similar variable x are presented

through the Figs. (6.5(a)) - (6.5(d)). It is evident from the Fig. (6.5(a)) that heat transfer

from the sheet to the fluid is decreasing with an increase in the value of Ec. In the absence of

Eckert number(Ec = 0), there is no effect of the non-similar variable x on the heat transfer

coefficient. As the value of Ec increases, the heat transfer from the sheet to the fluid increases

and for higher values of Eckert number heat absorption takes place. Increasing the values

of the Biot number enhances the heat transfer coefficient predominantly on the surface due

to the strong convection as shown in the Fig. (6.5(b)). Figure (6.5(c)) shows that the rate

of heat transfer enhanced with an increase in the slipperiness. But, it is noticed that in the

absence of the slipperiness and for small values of slipperiness heat absorption is taking place

far away from the boundary. While heat transfer coefficient is increasing with increase in

the value of S as depicted in the Fig. (6.5(d)).

The behavior of the mass transfer coefficient with τ against x is portrayed in the Fig.

(6.6(a)). It is seen from the figure that the rate of mass transfer is increasing with an increase

in the value of τ . Further, it is noticed that for higher values of τ , the mass transfer rate

is slightly decreasing with x. The influence of Biot number Bi on the mass transfer rate

is presented in the Fig. (6.6(b)). From this figure, it is observed that the rate of mass

transfer is increasing with the increase in Bi. From Fig. (6.6(c)) it is evident that the rate

of mass transfer is reducing with a rise in the value of λ. Further, in the absence of slip

parameter, there is maximum mass transfer from the sheet to the fluid. But, an opposite

trend is observed on the rate of mass transfer when the slip parameter is replaced by the

Biot number. Finally, the variation of mass transfer coefficient for different values of S is

depicted in the Fig. (6.6(d)). This figure reveals that the rate of mass transfer is increasing

with an increase in the value of suction and reducing with a rise in the value of injection.
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Figure 6.3: Effect of (a) Ec, (b) Bi, (c) λ, and (d) S on T .
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Figure 6.4: Effect of (a) τ , (b) Bi, (c) λ, and (d) S on C.
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Figure 6.5: Effect of (a) Ec, (b) Bi, (c) λ, and (d) S on −T ′(x, 0).
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Figure 6.6: Effect of (a) τ , (b) Bi, (c) λ, and (d) S on −C ′(x, 0).
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6.2.5 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(x̃) = B0e
x̃
2L is applied in ỹ−direction and

the influence of Hall current is not neglected. Assume that magnetic Reynolds number is

very small so that the induced magnetic field is negligible in comparison to applied magnetic

field. The presence of Hall current induces a cross flow in z̃-direction and hence the flow

becomes three-dimensional. Under the Boussinesq approximation, the flow is governed by

the following non-dimensional equations

F ′′′ + FF ′′ − 2F ′2 + 2Ri(T + BC)− Ha

1 + β2
h

(F ′ + βhW ) = 0 (6.14)

W ′′ − 2F ′W + FW ′ +
Ha

1 + β2
h

(βhF
′ −W ) = 0 (6.15)

1

Pr
T ′′ + FT ′ − 4F ′T + Ec (F ′′2 +W ′2) = 0 (6.16)

1

Sc
C ′′ + FC ′ − 4F ′C − τ (T ′C ′ + C T ′′) = 0 (6.17)

The corresponding boundary conditions are

F (y) = S, F ′(y) = 1 + λF ′′(y), W (y) = 0, T (y) = 1, C(y) = 1 at y = 0

F ′(y)→ 0, W (y)→ 0, T (y)→ 0, C(y)→ 0 as y →∞

 (6.18)

where Ec =
U2
0

cpT0
is the Eckert number and τ = − kt

Tr
(Tw−T∞) is the thermophoretic parameter

(The surface is cold for τ > 0 and hot for τ < 0 [66, 114]).
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6.2.6 Skin Friction in x̃ and z̃-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in x̃−direction CF x̃, local skin-friction in z̃−direction CF z̃,

the local Nusselt number Nux̃ and the local Sherwood number Shx̃, are given by

√
Rex̃√
2x̃/L

CF x̃ = F ′′(0),

√
Rex̃√
2x̃/L

CF z̃ = W ′(0),

Nux̃√
x̃/2L

√
Rex̃

= −T ′(0), and
Shx̃√

x̃/2L
√
Rex̃

= −C ′(0).

 (6.19)

where Rex̃ =
x̃U∗(x̃)

ν
is the local Reynold’s number.

6.2.7 Solution of the Problem

The system of Eqs. (6.14) - (6.17) along with the boundary conditions (6.18), is solved

numerically using the successive linearisation method as explained in Chapter-2.

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai−1Xi = Ri−1, (6.20)

subject to the boundary conditions

Fi(ξN) =
N∑
k=0

D0kFi(ξk) =
N∑
k=0

(λD2Nk −DNk)Fi(ξk) = 0 (6.21a)

Wi(ξN) = Wi(ξ0) = Ti(ξN) = Ti(ξ0) = Ci(ξN) = Ci(ξ0) = 0 (6.21b)

In Eq.(6.20), Ai−1 is a (4N + 4)×(4N + 4) square matrix and Xi and Ri−1 are (4N + 4)×1
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column vectors defined by

Ai−1 = [Ars] , r, s = 1, 2, 3, 4, Xi =


Fi

Wi

Θi

Φi

 , Ri−1 =


E1,i−1

E2,i−1

E3,i−1

E4,i−1

 (6.22)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Wi = [Wi(ξ0),Wi(ξ1),Wi(ξ2), ...,Wi(ξN−1),Wi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

E1,i−1 = [ζ1,i−1(ξ0), ζ1,i−1(ξ1), ζ1,i−1(ξ2), ..., ζ1,i−1(ξN−1), ζ1,i−1(ξN)]T

E2,i−1 = [ζ2,i−1(ξ0), ζ2,i−1(ξ1), ζ2,i−1(ξ2), ..., ζ2,i−1(ξN−1), ζ2,i−1(ξN)]T

E3,i−1 = [ζ3,i−1(ξ0), ζ3,i−1(ξ1), ζ3,i−1(ξ2), ..., ζ3,i−1(ξN−1), ζ3,i−1(ξN)]T

E4,i−1 = [ζ4,i−1(ξ0), ζ4,i−1(ξ1), ζ4,i−1(ξ2), ..., ζ4,i−1(ξN−1), ζ4,i−1(ξN)]T

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = −Haβh

1+β2
h
I, A13 = 2RiI, A14 = 2BRiI

A21 = χ21,i−1D + χ22,i−1, A22 = D2 + χ23,i−1D + χ24,i−1, A23 = 0, A24 = 0

A31 = χ31,i−1D
2 + χ32,i−1D + χ33,i−1, A32 = χ34,i−1D,

A33 = 1
Pr

D2 + χ35,i−1D + χ36,i−1, A34 = 0

A41 = χ41,i−1D + χ42,i−1, A42 = 0, A43 = χ43,i−1D
2 + χ44,i−1D,

A44 = 1
Sc

D2 + χ45,i−1D + χ46,i−1

Here I is an identity matrix of size (N +1)×(N +1). After modifying the matrix system

(6.20) to incorporate boundary conditions (6.21), the solution is obtained as

Xi = A−1i−1Ri−1 (6.23)
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Table 6.2: Comparison of −F ′′(0) and F (∞) calculated by the present method for S = 0,
λ = 0, Ha = 0, and Ri = 0.

Magyari and Keller [56] Present

−F ′′(0) 1.281808 1.28180856
F (∞) 0.905639 0.90564370

6.2.8 Results and Discussion

In this case also, the results are compared with the results of Magyari and Keller [56] and

presented in Table (6.2). To study the effects of Hall parameter βh, Eckert number Ec, slip

parameter λ, and thermophoresis parameter τ , computations have been carried out in the

cases of S = 0.5, Ri = 1.0, B = 0.5, S = 0.5, λ = 1.0, βh = 1.0, Ha = 2.0, Ec = 0.5, and

τ = 0.3.

Figures (6.7(a)) - (6.7(d)) represent the behaviour of both the velocities, temperature

and concentration with the Hall parameter βh. From Fig. (6.7(a)), it is observed that the

tangential velocity rises with the rise in βh. Fig. (6.7(b)) indicates that W (y) enhances with

an enhancement in βh. This is in tune with the fact that the Hall currents produce cross

flow velocity. It is increasing near the plate and then gradually decreasing. Figs. (6.7(c))

and (6.7(d)) depict that the T (y) and C(y) are reducing with an enhancement in βh.

The influence of τ on the tangential and transverse velocities, temperature and concen-

tration is presented in the Figs. (6.8(a)) - (6.8(d)). Figure (6.8(a)) depicts that F ′(y) is

diminishing with the increment in the values τ . The same trend is seen on the secondary

velocity as presented in the Fig. (6.8(b)). Further, from Fig. (6.8(c)), it is observed that the

temperature is enhancing with the enhancement in τ . The concentration is lessened with

the increasing values of τ as portrayed in the Fig. (6.8(d)). From Figures (6.8(a)) - (6.8(d)),

it is noticed that the impact is very mild.

The behavior of F ′(y), W (y), T (y) and C(y) with the Eckert number Ec is exhibited

in the Figs. (6.9(a)) - (6.9(d)). From Figs. (6.9(a)) and (6.9(b)), it is perceived that

both the velocities are increasing with an increase in the value of Ec. Applying the viscous
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dissipation effect, the momentum boundary layer thickness reduces slightly and hence, the

velocity raises. It is apparent from the Fig. (6.9(c)) that the temperature increases with

the increasing value of Ec, which in turn, intensifies the thermal boundary layer thickness.

Figure (6.9(d)) shows that the concentration is reducing with the increase in the value of

Ec. It is obvious from the figures that the impact of Ec on the profiles is not significant.

The influence of βh, τ , Ec and λ on the heat transfer (−T ′(0)) and mass transfer (−C ′(0))

coefficients against S is depicted in the Figs. (6.10(a)) to (6.13(b)). It is understood from

these figures that −T ′(0) and −C ′(0) are improving with the improvement in S. It is evident

from Fig. (6.10(a)) and Fig. (6.10(b)) that, the heat transfer and mass transfer phenomena

are increasing with a rise in the value of Hall parameter βh. Further, it is clear from the

figures that the variation in the mass transfer is more to that of heat transfer. −T ′(0)

is decreasing with the increasing value of τ as presented in the Fig. (6.11(a)). −C ′(0) is

increasing with the rise in the value of τ as shown in the Fig. (6.11(b)). But, the amount

of the mass transfer from the sheet to the fluid is very high when compared that decrease

in heat transfer from the sheet to the fluid. It is depicted from Fig. (6.12(a)) that the heat

transfer coefficient is decreasing with an increase in the values of Ec. But, an opposite trend

is observed for the mass transfer rate as shown in the Fig. (6.12(b)). Further, it is identified

that the mass transfer rate is decreasing with the increasing values of Ec after S = 1.4. It is

seen from the Fig. (6.13(a)) that the heat transfer rate is decreasing with an increase in λ.

Further, the mass transfer rate is decreasing with an increase in the value of λ. as presented

in Fig. (6.13(b)).

The behaviour of F ′′(0) and W ′(0) for different values of λ, βh, S, Ri, Ec and τ are

tabulated in Table (6.3). It is evident from the table that the F ′′(0) is increasing and W ′(0)

is reducing with the slipperiness. In the presence of the Hall parameter both the skin-frictions

are increasing. It is also observed that the transverse velocity vanishes when βh = 0 and

hence in z̃−direction there is no skin-friction. Table (6.3) illustrates that, F ′′(0) is decreasing

and W ′(0) is increasing with slip at the surface of the stretching sheet. The positive values

of Ri increases both the skin-frictions. In addition to this, F ′′(0) in x̃−direction is greatly

increasing with the positive values of Ri. Furthermore, it is identified that a unique value of
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F ′′(0) = −0.61660061 and W ′(0) = 0.15023781 is attained when Ri = 0 (the case of forced

convection flow) and for all values of Eckert number Ec and thermophoresis parameter τ .

Because (6.14) and (6.16) are uncoupled when Ri = 0. As a result, the flow and thermal fields

are independent. Hence, there is no effect of thermal field parameters on the flow filed. Also,

both the skin-friction coefficients are increasing with an increase in the viscous dissipation

parameter Ec. At the end of the table, the influence of the thermophoresis parameter τ is

presented. It is noticed from the table that, both F ′′(0) and W ′(0) are decreasing with the

increasing value of τ .

6.3 Conclusions

A laminar slip flow of electrically conducting incompressible viscous fluid over an exponen-

tially stretching permeable sheet in presence of thermophoresis and viscous dissipation effects

is studied. The following conclusions are drawn for two cases:

In case (a), the rate of heat transfer increased with an increase in the value of Biot

number. While, in case (b), the rate of heat and mass transfers are increased with an

increase in the Hall parameter. In both the cases, the rate of heat transfer decreases with

an increase in viscous dissipation parameter and the rate of mass transfer is increased with

an increase in the thermophoresis parameter. In both cases, the rate of mass transfer is

decreased with an increase in the velocity slip parameter and both the rate of heat and mass

transfers are increased with an increase in the fluid suction.
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Table 6.3: Variation of skin friction in x̃- and z̃-directions for varying values of suc-
tion/injection parameter S, slip parameter λ, Hall parameter βh, mixed convection parameter
Ri, Eckert number Ec, and thermophoretic parameeter τ .

λ βh S Ri Ec τ F ′′(0) W ′(0)
0.0 1.0 2.0 1.0 0.5 0.3 -0.91411137 0.47617496
0.5 1.0 2.0 1.0 0.5 0.3 -0.40508974 0.43196532
1.0 1.0 2.0 1.0 0.5 0.3 -0.26159285 0.41872230
2.0 1.0 2.0 1.0 0.5 0.3 -0.15337319 0.40848340
1.0 0.0 2.0 1.0 0.5 0.3 -0.32860030 0.00000000
1.0 0.1 2.0 1.0 0.5 0.3 -0.32751833 0.06334880
1.0 0.5 2.0 1.0 0.5 0.3 -0.30513773 0.28064884
1.0 2.0 2.0 1.0 0.5 0.3 -0.20049245 0.42829099
1.0 1.0 -1.0 1.0 0.5 0.3 -0.14906795 0.35949291
1.0 1.0 -0.5 1.0 0.5 0.3 -0.18095685 0.38686966
1.0 1.0 0.0 1.0 0.5 0.3 -0.21855851 0.40771949
1.0 1.0 0.2 1.0 0.5 0.3 -0.23514661 0.41348703
1.0 1.0 0.4 1.0 0.5 0.3 -0.25257718 0.41746135
1.0 1.0 2.0 0.0 0.5 0.3 -0.61660061 0.15023781
1.0 1.0 2.0 0.5 0.5 0.3 -0.41196661 0.32493986
1.0 1.0 2.0 1.5 0.5 0.3 -0.13354694 0.48753998
1.0 1.0 2.0 3.0 0.5 0.3 0.18359188 0.63163669
1.0 1.0 2.0 1.0 0.0 0.3 -0.26528503 0.41540314
1.0 1.0 2.0 1.0 0.1 0.3 -0.26454405 0.41606772
1.0 1.0 2.0 1.0 0.6 0.3 -0.26085833 0.41938493
1.0 1.0 2.0 1.0 1.0 0.3 -0.25793402 0.42203084
1.0 1.0 2.0 1.0 0.5 0.0 -0.25881448 0.42180522
1.0 1.0 2.0 1.0 0.5 0.1 -0.25974839 0.42077008
1.0 1.0 2.0 1.0 0.5 0.5 -0.26340638 0.41670467
1.0 1.0 2.0 1.0 0.5 1.0 -0.26780688 0.41179353
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Figure 6.7: Effect of βh on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 6.8: Effect of τ on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 6.9: Effect of Ec on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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Figure 6.10: Effect of βh on (a) −T ′(0), and (b) −C ′(0).
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Figure 6.11: Effect of τ on (a) −T ′(0), and (b) −C ′(0).
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Figure 6.12: Effect of Ec on (a) −T ′(0), and (b) −C ′(0).
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Figure 6.13: Effect of λ on (a) −T ′(0), and (b) −C ′(0).
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Chapter 7

Double dispersion effects on the flow

over an exponentially stretching sheet

1

7.1 Introduction

Mixing and recirculation of local fluid streams occur as the fluid moves through tortuous

paths in packed beds. This hydrodynamic mixing of fluid at pore level causes the dispersion

effects in porous medium. This becomes more considerable for moderate and fast flows.

The development of dispersion theory has been mainly related to miscible displacement

and solute spreading in porous media. These areas are of major interest to secondary and

tertiary oil recovery operations and to pollution control in water resources engineering. Awad

et al. [7] investigated the nanofluid flow in a porous layer with double dispersion effects.

Srinivasacharya et al. [106] reported the dispersion effects and variable properties on mixed

convection over vertical wavy surface immersed in a fluid saturated Darcy porous medium.

To the authors knowledge, no studies has been reported yet to analyse the flow, heat and

1Case(a): Communicated to “International Journal of Engineering Science”,
Case(b) Communicated to “Journal of Molecular Liquids”
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mass transfer behaviour of flow towards a permeable sheet stretching exponentially, in the

presence of thermal radiation effect.

Thermal and solutal dispersion effects together with thermal radiation on laminar slip

flow in a porous medium saturated with of incompressible viscous fluid over an exponentially

stretching permeable sheet under two types of boundary conditions as considered in Chapter-

2.

7.2 Formulation of the Problem

Consider a laminar slip flow in a Darcy-Brinkman porous medium saturated with incompress-

ible viscous fluid over an exponentially stretching sheet with double dispersion effects. The

fluid is considered to be a gray, absorbing/emitting radiation, but non-scattering medium.

The Rosseland approximation [102] is used to describe the radiative heat flux in the energy

equation. Hence, the equations governing the flow are given by

∂ũx
∂x̃

+
∂ũy
∂ỹ

= 0 (7.1)

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

− ν

kp
ũx (7.2)

ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
=

∂

∂ỹ

(
α̃e

∂T̃

∂ỹ

)
+

16T 3
∞σ
∗

3k∗ρcp

∂2T̃

∂ỹ2
(7.3)

ũx
∂C̃

∂x̃
+ ũy

∂C̃

∂ỹ
=

∂

∂ỹ

(
D̃e

∂C̃

∂ỹ

)
(7.4)

where α̃e and D̃e are the effective thermal and molecular diffusivities, respectively, and can

be written as

α̃e = α + γ∗ ud, D̃e = D + χ ud (7.5)

where kp is the permeability of the porous medium, γ∗ and χ are coefficient of thermal and

molecular diffusiveness which varies between 1
7

to 1
3

and d is pore diameter or mean particle
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diameter.

7.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Tf and which induces a heat transfer coefficient hf , where hf = h
√

U0

2L
e

x̃
2L .

The conditions on the boundary of the stretching surface are

ũx = U∗ +N∗ν
∂ũx
∂ỹ
, ũy = −V∗(x̃), hf (Tf − T̃ ) = −κ∂T̃

∂ỹ
, C̃ = Cw at ỹ = 0

ũx → 0, T̃ → T∞, C̃ → C∞ as ỹ →∞

 (7.6)

Introducing the stream functions through ũx = −∂ψ
∂ỹ

and ũy = ∂ψ
∂x̃

and then the following

dimensionless variables

x̃ = xL, ỹ = y
√

2νL
U0
e
−x̃
2L , ψ =

√
2νLU0e

x̃
2LF (x, y),

T̃ = T∞ + (Tf − T∞)T (x, y), C̃ = C∞ + (Cw − C∞)C(x, y)

 (7.7)

into Eqs. (7.1) - (7.4), we obtain

F ′′′ + FF ′′ − 2F ′2 −Kp e
−xF ′ + 2

(
F ′′

∂F

∂x
− F ′∂F

′

∂x

)
= 0 (7.8)

1

Pr

(
1 +

4R

3

)
T ′′ + FT ′ + 2

(
T ′
∂F

∂x
− F ′∂T

∂x

)
+Dγe

x (F ′T ′′ + F ′′T ′) = 0 (7.9)

1

Sc
C ′′ + FC ′ + 2

(
C ′
∂F

∂x
− F ′∂C

∂x

)
+Dχe

x(F ′C ′′ + F ′′C ′) = 0 (7.10)

The conditions at the boundary reduces to

F (x, 0) + 2∂F
∂x

(x, 0) = S, F ′(x, 0) = 1 + λF ′′(x, 0),

T ′(x, 0) = −Bi(1− T (x, 0)), C(x, 0) = 1,

F ′(x, y)→ 0, T (x, y)→ 0, C(x, y)→ 0 as y →∞

 (7.11)
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where Kp = 2νL
kpU0

is the porosity parameter, Dγ = γ∗dU0

ν
is the thermal dispersion parameter

and Dχ = χdU0

ν
is the solutal dispersion parameter.

7.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction Cf , the local Nusselt number Nux̃ and the local Sherwood

number Shx̃, are given by

√
Rex√
2x/L

Cf = F ′′(x, 0),
Nux√

Lx/2
√
Rex

= −
(

1 +
4R

3

)
T ′(x, 0), and

Shx√
Lx/2

√
Rex

= −C ′(x, 0)

}
(7.12)

where Rex =
xU∗(x)

ν
is the local Reynold’s number.

7.2.3 Solution of the Problem

The system of Eqs. (7.8) - (7.10) along with the boundary conditions (7.11), is solved

numerically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation

Ai−1Xi = Ri−1, (7.13)

In Eq. (7.13), Ai−1 is a (6N + 6)×(6N + 6) square matrix and Xi and Ri−1 are (6N + 6)×1

column vectors defined by

Ai−1 = [Ars],Ri−1 = [Er,i−1] , r, s = 1, 2, · · · , 6, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


(7.14)
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where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

Gi = [Gi(ξ0), Gi(ξ1), Gi(ξ2), ..., Gi(ξN−1), Gi(ξN)]T ,

Hi = [Hi(ξ0), Hi(ξ1), Hi(ξ2), ..., Hi(ξN−1), Hi(ξN)]T ,

Ki = [Ki(ξ0), Ki(ξ1), Ki(ξ2), ..., Ki(ξN−1), Ki(ξN)]T ,

Ej,i−1 = [ζj,i−1(ξ0), ζj,i−1(ξ1), ζj,i−1(ξ2), ..., ζj,i−1(ξN−1), ζj,i−1(ξN)]T , j = 1, 2, 3, 4, 5, 6

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = 0, A13 = 0,

A14 = χ14,i−1D + χ15,i−1, A15 = 0, A16 = 0,

A21 = χ21,i−1D
2 + χ22,i−1D + χ23,i−1, A22 = χ24,i−1D

2 + χ25,i−1D, A23 = 0,

A24 = χ26,i−1, A25 = χ27,i−1, A26 = 0,

A31 = χ31,i−1D
2 + χ32,i−1D + χ33,i−1, A32 = 0, A33 = χ34,i−1D

2 + χ35,i−1D,

A34 = χ36,i−1, A35 = 0, A36 = χ37,i−1,

A41 = χ41,i−1D
2 + χ42,i−1D + χ43,i−1, A42 = 0, A43 = 0,

A44 = D3 + χ44,i−1D
2 + χ45,i−1D + χ46,i−1, A45 = 0, A46 = 0,

A51 = χ51,i−1D
2 + χ52,i−1D + χ53,i−1, A52 = χ54,i−1D + χ55,i−1, A53 = 0,

A54 = χ56,i−1D
2 + χ57,i−1D + χ58,i−1, A55 = χ59,i−1D

2 + χ510,i−1D + χ511,i−1,

A56 = 0, A61 = χ61,i−1D
2 + χ62,i−1D + χ63,i−1, A62 = 0,

A63 = χ64,i−1D
2 + χ65,i−1D, A64 = χ66,i−1D

2 + χ67,i−1D + χ68,i−1,

A65 = 0, A66 = χ69,i−1D
2 + χ610,i−1D + χ611,i−1,

where the coefficients χlk,n−1 and ζl,i−1, (l = 1, 2, 3, ..., 6, k = 1, 2, 3, ..., 11) are approximations

in terms of Fi, Ti and Ci, (i = 1, 2, 3, ..., n − 1) and their derivatives, 0 and I are null and

identity matrices of size (N +1)×(N +1).

After modifying the matrix system (7.13) to incorporate boundary conditions, the solu-

tion is obtained as

Xi = A−1i−1Ri−1 (7.15)

170



Table 7.1: Comparative analysis for Nux√
Lx/2

√
Rex

by the current method for λ = 0, Dχ = 0,

Dγ = 0, Kp = 0, R = 0, x = 0, S = 0 and Bi→∞.

Nusselt number Nux√
Lx/2

√
Rex

Pr Magyari and Keller [56] Present

0.5 0.330493 0.33053766
1 0.549643 0.54964345
3 1.122188 1.12208577
5 1.521243 1.52123668
8 1.991847 1.99183375
10 2.257429 2.25741862

7.2.4 Result and Discussion

The results of the present problem are compared with works of Magyari and Keller [56] as

a special case and shown in Table. (7.1). Further, the computations have been carried out

taking λ = 1.0, Sc = 0.22, Pr = 1.0, Kp = 0.0, R = 0.5, Bi = 1.0, Dγ = 0.3, S = 0.5,

Dχ = 0.3 and x = 0.2 unless otherwise mentioned.

The variation of the velocity with the slip parameter, suction/injection and porosity

parameters is portrayed through the Figures (7.1(a)) - (7.1(c)). It is known that as the

slipperiness escalates the thickness of the momentum boundary layer reduces. As a result,

the velocity reduces as shown in the Figure (7.1(a)). Figure (7.1(b)) depicts the variation of

the velocity in the presence of S. It is evident from the figure that the velocity reduces with

the suction and escalates with the injection. This is due to the fact that the suction has

the tendency to reduce the momentum boundary. While the velocity of the fluid is reducing

with an increase in the value of porosity parameter as shown in the Fig. (7.1(c)).

Figures (7.2(a)) - (7.2(c)) represent the fluctuation of skin-friction against x for distinct

values of λ, S and Kp, respectively. It is obvious from these figures that the skin-friction

escalates with the slipperiness and falls down with the fluid suction. Further, it is noticed

that the non-similar variable has no effect on the skin-friction coefficient in the presence

of velocity slip and fluid suction/injection as shown in the Figs. (7.2(a)) and (7.2(b)). In

the presence of the porosity parameter Kp, the skin-friction reduces and increases with an
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increase in x as depicted in the Fig. (7.2(c)). The effect of the other parameters on the

velocity and skin-friction are not much significant and hence graphs are not included.

Figures (7.3(a)) - (7.3(e)) exhibit the behaviour of the temperature for different values of

Dγ, R, Bi, λ and Kp. The temperature rises with an increase in the value Dγ as shown in the

Figure (7.3(a)). It is seen from the Figure (7.3(b)) that the temperature increases with the

increasing values of thermal radiation, which in turn, intensifies the thermal boundary layer

thickness. Figure (7.3(c)) illustrates that the temperature is enhancing with the rise in the

value of Bi and hence gain in the thickness of thermal boundary. Further, for large value of

Biot number Bi, the convective thermal condition from (7.11) transforms to T (0)→ 1, which

signifies the constant wall condition. Due to slipperiness, thermal boundary intensifies, and

hence, the temperature escalates with an increase in the value of λ as portrayed in the Figure

(7.3(d)). Further, Fig. (7.3(e)) explores that the temperature increases with an increase in

the value of porosity parameter Kp.

The influence of Dγ, R, Bi, λ and Kp on the rate of heat transfer against non-similar

variable x is explored in the Figures (7.4(a)) - (7.4(e)). It is evident from the Fig. (7.4(a)),

that the rate of heat transfer is decreasing with an increase in the value of Dγ. In the

absence of Dγ, i.e.,(Dγ = 0), there is no effect of the non-similar variable x on the rate of

heat transfer. As expected, enhancing the value of Dγ, the rate of heat transfer reduces.

While the rate of heat transfer escalates with an increase in the value of thermal radiation

parameter R as depicted in the Fig. (7.4(b)). Figure (7.4(c)) narrates the behaviour of the

rate of heat transfer for different values of Biot number Bi. As Biot number enhances, the

rate of heat transfer escalates predominantly on the surface due to the strong convection.

Figures (7.4(d)) and (7.4(e)) show that the rate of heat transfer reduces with an increase in

the values of velocity slip and porosity parameters.

The variation of concentration profile for distinct values of Dχ, λ and Kp is shown in the

Figures (7.5(a)) - (7.5(c)). An enhancement in the value of Dχ increases the concentration of

the fluid as shown in the Fig. (7.5(a)). It is noticed from the Figs. (7.5(b)) and (7.5(c)) that,

as the value of the slip parameter and the porosity parameter increases, the concentration

of the fluid increases. Hence, mass transfer at the sheet decreases.
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Figures (7.6(a)) - (7.6(c)) depict the behaviour of the rate of mass transfer for different

values of Dχ, λ and Kp against the non-similar variable x. Enhancing the solute dispersion

parameter Dχ, the rate of mass transfer from the sheet to the fluid is falling down. In

the absence of Dχ, i.e., (Dχ = 0), there is no effect of the non-similar variable x on the

rate of mass transfer. As the value of Dχ escalates, the rate of mass transfer reduces as

shown in the Fig. (7.6(a)). Figures (7.6(b)) and (7.6(c)), it is identified that the rate of

mass transfer at the sheet reduces with an increase in the values of velocity and porosity

parameters. Further, it is identified that in the presence of porosity parameter Kp the rate

of mass transfer increases gradually as x→ 1.
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Figure 7.1: Effect of (a) λ, (b) S and (c) Kp on F ′.
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Figure 7.2: Effect of (a) λ, (b) S and (c) Kp on F ′′(x, 0).
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Figure 7.5: Effect of(a) Dχ, (b) λ and (c) Kp on F ′.
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Figure 7.6: Effect of (a) Dχ, (b) λ and (c) Kp on F ′′(x, 0).
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7.2.5 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(x̃) = B0e
x̃
2L is applied in ỹ−direction and

the influence of Hall current is not neglected. Assume that magnetic Reynolds number is

very small so that the induced magnetic field is negligible in comparison to applied magnetic

field. The presence of Hall current induces a cross flow in z̃-direction and hence the flow

becomes three-dimensional. Under the Boussinesq approximation, the flow is governed by

the equations (7.1), (7.4) along with the following momentum and energy equations

ũx
∂ũx
∂x̃

+ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

+g βT (T̃−T∞)+g βC(C̃−C∞)− σB2

ρ(1 + β2
h)

(ũx+βhũz)−
ν

kp
ũx (7.16)

ũx
∂ũz
∂x̃

+ ũy
∂ũz
∂ỹ

= ν
∂2ũz
∂ỹ2

+
σB2

ρ(1 + β2
h)

(βhũx − ũz)−
ν

kp
ũz (7.17)

ũz is the velocity in z̃-direction.

The conditions on the boundary of the sheet are

ũx = U∗ +N∗ν
∂ũx
∂ỹ
, ũy = −V∗(x̃), ũz = 0,

Tw = T∞ + T0e
2x̃
L , Cw = C∞ + C0e

2x̃
L at ỹ = 0

ũx → 0, ũz → 0, T̃ → T∞, C̃ → C∞ as ỹ →∞

 (7.18)

Introducing the following dimensionless variables

x̃ = xL, ỹ = y
√

2νL
U0
e
−x̃
2L , ψ =

√
2νLU0e

x̃
2LF,

ũx = U0e
x̃
LF ′, ũy = −

√
νU0

2L
e

x̃
2L (F + yF ′), ũz = U0e

x̃
LW

T̃ = T∞ + T0 e
2x̃
L T, C̃ = C∞ + C0 e

2x̃
L C

 (7.19)

into the Eqs. (7.1), (7.16), (7.17), (7.3), (7.4)

F ′′′+FF ′′−2F ′2−Kp e
−xF ′+2Ri(T +BC)− Ha

1 + β2
h

(F ′+βhW )+2

(
F ′′

∂F

∂x
− F ′∂F

′

∂x

)
= 0

(7.20)

W ′′ − 2F ′W + FW ′ −Kp e
−xW +

Ha

1 + β2
h

(βhF
′ −W ) + 2

(
W ′∂F

∂x
− F ′∂W

∂x

)
= 0 (7.21)
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1

Pr

(
1 +

4R

3

)
T ′′ + FT ′ − 4F ′T + 2

(
T ′
∂F

∂x
− F ′∂T

∂x

)
+Dγe

x (F ′T ′′ + F ′′T ′) = 0 (7.22)

1

Sc
C ′′ + FC ′ − 4F ′C + 2

(
C ′
∂F

∂x
− F ′∂C

∂x

)
+Dχe

x(F ′C ′′ + F ′′C ′) = 0 (7.23)

The conditions (7.18) reduce to

F ′(x, 0) = 1 + λF ′′(x, 0), F (x, 0) + 2∂F
∂x

(x, 0) = S,

W (x, 0) = 0, T (x, 0) = 1, C(x, 0) = 1,

F ′(x, y)→ 0, W (x, y)→ 0, T (x, y)→ 0, C(x, y)→ 0 as y →∞

 (7.24)

7.2.6 Skin Friction in x̃ and z̃-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in x̃−direction CF x̃, local skin-friction in z̃−direction CF z̃,

the local Nusselt number Nux̃ and the local Sherwood number Shx̃, are given by

√
Rex√
2x/L

CF x̃ = F ′′(x, 0),

√
Rex√
2x/L

CF z̃ = W ′(x, 0),

Nux√
x/2L

√
Rex

= −
(

1 +
4R

3

)
T ′(x, 0), and

Shx√
x/2L

√
Rex

= −C ′(x, 0).

 (7.25)

where Rex = xU∗(x)
ν

is the local Reynold’s number.

7.2.7 Solution of the Problem

To solve the system of Eqs. (7.20) - (7.23) along with the boundary conditions (7.24), is

solved numerically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation

Ai−1Xi = Ri−1, (7.26)
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In Eq. (7.26), Ai−1 is a (8N + 8)×(8N + 8) square matrix and Xi and Ri−1 are (8N + 8)×1

column vectors defined by

Ai−1 = [Ars],Ri−1 = [Er,i−1] , r, s = 1, 2, · · · , 8, Xi =



Fi

Wi

Θi

Φi

Gi

Hi

Ji

Ki



(7.27)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Wi = [Wi(ξ0),Wi(ξ1),Wi(ξ2), ...,Wi(ξN−1),Wi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

Gi = [Gi(ξ0), Gi(ξ1), Gi(ξ2), ..., Gi(ξN−1), Gi(ξN)]T ,

Hi = [Hi(ξ0), Hi(ξ1), Hi(ξ2), ..., Hi(ξN−1), Hi(ξN)]T ,

Ji = [Ji(ξ0), Ji(ξ1), Ji(ξ2), ..., Ji(ξN−1), Ji(ξN)]T ,

Ki = [Ki(ξ0), Ki(ξ1), Ki(ξ2), ..., Ki(ξN−1), Ki(ξN)]T ,

Ej,i−1 = [ζj,i−1(ξ0), ζj,i−1(ξ1), ζj,i−1(ξ2), ..., ζj,i−1(ξN−1), ζj,i−1(ξN)]T , j = 1, 2, 3, ..., 8

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = −Haβh

1+β2
h
I, A13 = 2RiI,

A14 = 2BRiI, A15 = χ14,i−1D + χ15,i−1, A16 = 0, A17 = 0, A18 = 0,

A21 = χ21,i−1D + χ22,i−1, A22 = D2 + χ23,i−1D + χ24,i−1, A23 = 0,

A24 = 0, A25 = χ25,i−1, A26 = χ26,i−1, A27 = 0, A28 = 0

A31 = χ31,i−1D
2 + χ32,i−1D + χ33,i−1, A32 = 0, A33 = χ34,i−1D

2 + χ35,i−1D + χ36,i−1,

A34 = 0, A35 = χ37,i−1, A36 = 0, A37 = χ38,i−1, A38 = 0

A41 = χ41,i−1D
2 + χ42,i−1D + χ43,i−1, A42 = 0, A43 = 0,
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A44 = χ44,i−1D
2 + χ45,i−1D + χ46,i−1, A45 = χ47,i−1, A46 = 0, A47 = 0,

A48 = χ48,i−1, A51 = χ51,i−1D
2 + χ52,i−1D + χ53,i−1, A52 = 0, A53 = 0, A54 = 0,

A55 = D3 + χ54,i−1D
2 + χ55,i−1D + χ56,i−1, A56 = −Haβh

1+β2
h
I, A57 = 2RiI,

A58 = 2BRiI, A61 = χ61,i−1D + χ62,i−1, A62 = χ63,i−1D + χ64,i−1, A63 = 0, A64 = 0,

A65 = χ65,i−1D + χ66,i−1, A66 = D2 + χ67,i−1D + χ68,i−1, A67 = 0, A68 = 0,

A71 = χ71,i−1D
2 + χ72,i−1D + χ73,i−1, A72 = 0, A73 = χ74,i−1D

2 + χ75,i−1D + χ76,i−1,

A74 = 0, A75 = χ77,i−1D
2 + χ78,i−1D + χ79,i−1, A76 = 0,

A77 = χ710,i−1D
2 + χ711,i−1D + χ712,i−1, A78 = 0,

A81 = χ81,i−1D
2 + χ82,i−1D + χ83,i−1, A82 = 0, A83 = 0,

A84 = χ84,i−1D
2 + χ85,i−1D + χ86,i−1, A85 = χ87,i−1D

2 + χ88,i−1D + χ89,i−1,

A86 = 0, A87 = 0, A88 = χ810,i−1D
2 + χ811,i−1D + χ812,i−1,

where the coefficients χlk,n−1 and ζl,i−1, (l = 1, 2, 3, ..., 8, k = 1, 2, 3, ..., 12) are approximations

in terms of Fi,Wi, Ti and Ci, (i = 1, 2, 3, ..., n− 1) and their derivatives, 0 and I are null and

identity matrices of size (N +1)×(N +1).

After modifying the matrix system (7.26) to incorporate boundary conditions, the solu-

tion is obtained as

Xi = A−1i−1Ri−1 (7.28)

7.2.8 Results and Discussion

The variation of the tangential velocity for distinct values of βh, R, Dγ and Kp is exhibited

through the Figs. (7.7(a)) - (7.7(d)). An increase in the Hall parameter, the tangential

velocity of the fluid enhances as depicted in the Fig. (7.7(a)). It is witnessed from the

Fig. (7.7(b)) that, an increase in the thermal radiation, the velocity of the fluid escalated.

It is seen from the Fig. (7.7(c)) that the fluid velocity is less in the absence of thermal

dispersion and more in the presence of thermal dispersion. This is because conduction over

convection occurs by considering the thermal dispersion effect into the energy equation. As a
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result, more dominance of the thermal conduction. Therefore, increase in thermal dispersion

enhances the fluid velocity. An increase in the value of Kp reduces the fluid velocity in the

boundary layer as portrayed in the Fig. (7.7(d)).

Figures (7.8(a)) - (7.8(d)) represents the fluctuation of transverse velocity for distinct

values of βh, Dγ, R and Kp, respectively. It is noticed from the Fig. (7.8(a)) that there is no

secondary flow velocity in the absence of the Hall parameter. As the value of βh increased,

the cross flow is generated As expected, an increase in the thermal dispersion the transverse

velocity reduces as shown in the Fig. (7.8(b)). Figs. (7.8(c)) and (7.8(d)) depict that the

cross flow generated due to Hall effect, escalates with an enhance in the values of R and Kp.

Figures (7.9(a)) - (7.9(d)) are due to the variation of temperature profile for distinct

values of βh, R, Dγ and Kp. Enhance in the value of βh, the effective thermal conductivity

of the fluid reduces and hence temperature diminishes as shown in the Fig. (7.9(a)). It

is seen from the Fig. (7.9(b)) that the temperature escalates with the increasing values of

the thermal radiation, which in turn, intensifies the thermal boundary layer thickness. The

temperature rises with enhancing the value Dγ as shown in the Fig. (7.9(c)). Increase in

the value of porosity parameter Kp results in the reduction of the thermal boundary layer.

ie., temperature reduces with the rise in Kp as shown in the Fig. (7.9(d)).

Variation of concentration profile for distinct values of βh, R, Dχ and Kp is portrayed

in the Figs. (7.10(a)) - (7.10(d)). Figure (7.10(a)) exhibits that concentration reduces with

the rise in the value of βh. As the values of the radiation and porosity parameter escalates,

the concentration boundary layer reduces and hence, fluid concentration reduces as shown

in the Figs. (7.10(b)) and (7.10(d)), respectively. It is observed from the Fig. (7.10(c))

that, the concentration is less in the absence of Dχ and more in the presence of Dχ. ie.,

the concentration of the fluid enhances with the rise in Dχ, which in turn, intensifies the

concentration boundary layer thickness.

The influence of βh, Dγ, R, Dχ, S and Kp on the rate of heat transfer against non-

similar variable x is explored in the Figures (7.11(a)) - (7.11(f)). It is observed from the

Fig. (7.11(a)) that the rate of heat transfer reduces with enhancing the value of βh. It is
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portrayed in the Fig. (7.11(b)) that the rate of heat transfer reduces with the enhancement

in the value of Dγ. In the absence of Dγ, i.e.,(Dγ = 0), there’s no effect of non-similar

variable x on the rate of heat transfer. As expected, enhancing the value of Dγ, the rate of

heat transfer reduces. While the rate of heat transfer escalates with an increase in the value

of thermal radiation parameter R as depicted in the Fig. (7.11(c)). It is noticed that in the

absence of solutal dispersion maximum rate of heat transfer occurs and as strengthening the

solutal dispersion rate of mass transfer escalated as shown in the Fig. (7.11(d)). It is also

noticed that the decrease in the rate of heat transfer is more in the presence of the thermal

dispersion than that of increase in the presence of the solutal dispersion. The effect of S on

the rate of heat transfer is presented in the Fig. (7.11(e)) and it is evident from the figure

that the rate of heat transfer enhances with the suction. Figure (7.11(f)) shows that the rate

of heat transfer reduces with the rising the slipperiness. Further, it is seen that the rate of

heat transfer is reducing gradually as x→ 1.

Figures (7.12(a)) - (7.12(f)) depict the behaviour of rate of mass transfer for different

values of βh, R, Dχ, Dγ, S and Kp against non-similar variable x. Increase in the values of βh

and R the rate of mass transfer escalated as portrayed in the Figs. (7.12(a)) and (7.12(b)).

Enhancing the solutal dispersion parameter Dχ, the rate of mass transfer is falling down.

In the absence of Dχ, i.e., (Dχ = 0), there is no effect of the non-similar variable x on the

rate of mass transfer. As the value of Dχ escalates, the rate of mass transfer reduces as

shown in the Fig. (7.12(c)). It is evident from the Fig. (7.12(d)) that the rate mass transfer

escalates by strengthening the thermal dispersion. While the rate of mass transfer enhances

with an increase in fluid suction and opposite trend is observed with an increase in porosity

parameter as shown in the Figs. (7.12(e)) and (7.12(f)). Further, it is identified that the

rate of mass transfer is reducing gradually as x→ 1 except in presence of porosity parameter

Kp.

The behaviour of F ′′(x, 0) and W ′(x, 0) for different values of λ, βh, R, Ri, Dγ and Dχ

are tabulated in Table (7.2). It is evident from the table that the F ′′(x, 0) is increasing

and W ′(x, 0) is reducing with slipperiness. In the presence of Hall parameter both the skin-

frictions are increasing. It is also observed that the transverse velocity vanishes when βh = 0
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Table 7.2: Variation of skin friction in x̃- and z̃-directions for varying values of slip param-
eter λ, Hall parameter βh, radiation parameter R, mixed convection parameter Ri, thermal
dispersion parameter Dγ, and solutal dispersion parameeter Dχ.

λ βh R Ri Dγ Dχ F ′′(0) W ′(0)
0.0 0.5 1.0 0.5 0.2 0.3 -1.311129 0.186076
0.5 0.5 1.0 0.5 0.2 0.3 -0.602602 0.157860
1.0 0.5 1.0 0.5 0.2 0.3 -0.395690 0.148450
2.0 0.5 1.0 0.5 0.2 0.3 -0.235600 0.140698
1.0 0.0 1.0 0.5 0.2 0.3 -0.409960 0.000000
1.0 0.1 1.0 0.5 0.2 0.3 -0.409293 0.034153
1.0 0.5 1.0 0.5 0.2 0.3 -0.395690 0.148450
1.0 2.0 1.0 0.5 0.2 0.3 -0.337632 0.201963
1.0 0.5 0.0 0.5 0.2 0.3 -0.427562 0.131475
1.0 0.5 0.5 0.5 0.2 0.3 -0.408048 0.141353
1.0 0.5 1.0 0.5 0.2 0.3 -0.395690 0.148450
1.0 0.5 3.0 0.5 0.2 0.3 -0.370626 0.164738
1.0 0.5 1.0 0.0 0.2 0.3 -0.598768 0.070074
1.0 0.5 1.0 0.5 0.2 0.3 -0.395690 0.148450
1.0 0.5 1.0 1.0 0.2 0.3 -0.252741 0.184808
1.0 0.5 1.0 3.0 0.2 0.3 0.162148 0.262885
1.0 0.5 1.0 0.5 0.0 0.3 -0.396671 0.148266
1.0 0.5 1.0 0.5 1.0 0.3 -0.391956 0.149278
1.0 0.5 1.0 0.5 2.0 0.3 -0.387727 0.150419
1.0 0.5 1.0 0.5 3.0 0.3 -0.383945 0.151588
1.0 0.5 1.0 0.5 0.2 0.0 -0.395823 0.148420
1.0 0.5 1.0 0.5 0.2 1.0 -0.395387 0.148529
1.0 0.5 1.0 0.5 0.2 2.0 -0.394971 0.148662
1.0 0.5 1.0 0.5 0.2 3.0 -0.394579 0.148807

and hence in z̃−direction there is no skin-friction. Table (7.2) illustrates that, F ′′(x, 0)

and W ′(x, 0) are enhancing with a rise in the thermal radiation. The positive values of

Ri increases both the skin-frictions. In addition to this, F ′′(x, 0) in x̃−direction is greatly

increasing with positive values of Ri. At the end of the table, the influence of the thermal

and solutal dispersions on F ′′(x, 0) and W ′(x, 0) is presented. It is noticed from the table

that, enhancing the thermal or solutal or both the dispersions leads to the reduction in

surface drag and hence, both the skin-frictions F ′′(x, 0) and W ′(x, 0) escalates.
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Figure 7.7: Effect (a)βh, (b)R, (c)Dγ and (d)Kp on tangential velocity.
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Figure 7.8: Effect (a)βh, (b)Dγ, (c)R and (d)Kp on transverse velocity.
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Figure 7.9: Effect (a)βh, (b)R, (c)Dγ and (d)Kp on temperature profile.

189



0 3 6 9 1 2 1 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

C

y

βh  =  0 . 0 , 0 . 5 , 1 . 0 , 2 . 0

(a)

0 4 8 1 2 1 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

C

y

R  =  0 . 0 , 0 . 5 , 1 . 0 , 2 . 0

(b)

0 4 8 1 2 1 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

C

y

D
χ
=  0 , 1 , 2 , 3

(c)

0 3 6 9 1 2
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

C

K p  =  3 ,  4 ,  5 ,  8

y
(d)

Figure 7.10: Effect (a)βh, (b)R, (c)Dχ and (d)Kp on concentration profile.
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Figure 7.12: Effect (a)βh, (b)Dγ, (c)R, (d)Dχ, (e)S and (f)Kp on −C ′(x, 0)
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7.3 Conclusions

Numerical investigation of the influence of the thermal and solutal dispersions in the presence

of thermal radiation on the laminar slip flow, heat and mass transfer of an incompressible

viscous fluid over a porous sheet stretching exponentially is analyzed.

The temperature increases with an increase in the Biot number and decreases with an

increase in the Hall parameter. In both the cases, the temperature increases with an increase

in the thermal dispersion and radiation parameters. In both cases, the rate of heat transfer

decreases with an increase in the thermal dispersion and porosity parameters and increases

with an increase in the radiation parameter. While, in case (a), the rate of heat transfer

increases with an increase in Biot number and in case (b), it increases with the increase in the

Hall, solutal dispersion and suction parameters. In both cases, the concentration increases

and the rate of mass transfer decrease with the increase in solutal dispersion parameter.
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Chapter 8

Influence of

homogeneous-heterogeneous reactions

on the viscous flow on an

exponentially stretching sheet 1

8.1 Introduction

In the recent past, considerable attention has been given to study of combined heat and mass

transfer problems with the effect of chemical reaction as it plays a crucial role in diverse ap-

plications such as drying, energy transfer in wet cooling surface, evaporation at the surface of

the water body etc. There are two types of chemical reactions, namely, homogeneous and het-

erogeneous reactions. Chaudhary and Merkin [16] discussed the homogeneous-heterogeneous

reactions in boundary layer flow. Nandkeolyar et al. [74] investigated the influence of internal

heat generation in nanofluid flow with homogeneous-heterogeneous reactions. Sheikh and

Abbas [96] studied the effect of homogeneousheterogeneous reaction in the boundary layer

1Case(a): Communicated to “Nonlinear Engineering - Modeling and Application”,
Case(b) Communicated to “International Journal of Chemical Reactor Engineering”
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flow of a non-Newtonian fluid near a stagnation point over a porous stretching/shrinking

sheet with a constant suction.

In this Chapter, the effect of homogeneous-heterogeneous chemical reactions on the vis-

cous fluid flow over an exponentially stretching permeable sheet in presence of thermal

radiation is considered.

8.2 Mathematical Formulation

Consider a stretching sheet with a temperature Tw(x̃) and concentration Cw(x̃) in a laminar

slip flow of electrically viscous incompressible fluid with a temperature and concentration as

T∞ and C∞, respectively. The fluid is considered to be a gray, absorbing/emitting radiation,

but non-scattering medium. The Rosseland approximation [102] is used to describe the radia-

tive heat flux in the energy equation. It is assumed that a simple homogeneous-heterogeneous

reaction model exists as proposed by Chaudary and Merkin [16] in the following form: For

homogeneous reaction, cubic autocatalysis method is chosen, namely

Ã+ 2B̃ → 3B̃, rate = kcã b̃
2

while on the catalyst surface, we have the single isothermal first order reaction

Ã→ B̃, rate = ksã

where ã and b̃ are concentrations of the chemical species Ã and B̃, respectively, kc and ks

are constants. Hence, with the above assumptions, the following are the equations which

governs the flow problem in the presence of thermal radiation:

∂ũx
∂x̃

+
∂ũy
∂ỹ

= 0 (8.1)

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

(8.2)
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ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
= α

∂2T̃

∂ỹ2
+

16T 3
∞σ
∗

3k∗ρcp

∂2T̃

∂ỹ2
(8.3)

ũx
∂ã

∂x̃
+ ũy

∂ã

∂ỹ
= DA

∂2ã

∂ỹ2
− kcã b̃2 (8.4)

ũx
∂b̃

∂x̃
+ ũy

∂b̃

∂ỹ
= DB

∂2b̃

∂ỹ2
+ kcã b̃

2 (8.5)

8.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Tf (Tf > T∞ corresponding to a heated surface and Tf < T∞ corresponding to a cooled

surface, respectively) and which induces a heat transfer coefficient hf , where hf = h
√

U0

2L
e

x̃
2L .

The conditions on the boundary of the stretching surface are

ũx = U∗ +N∗ν
∂ũx
∂ỹ
, ũy = −V∗(x̃), hf (Tf − T̃ ) = −κ∂T̃

∂ỹ
,

DA
∂ã
∂ỹ

= ksã, DB
∂b̃
∂ỹ

= −ksã at ỹ = 0

ũx → 0, T̃ → T∞, ã→ ã0, b̃→ 0 as ỹ →∞

 (8.6)

where ã0 is a positive constant.

Introducing the stream functions through ũx = −∂ψ
∂ỹ

and ũy = ∂ψ
∂x̃

and then the following

dimensionless variables

x̃ = xL, ỹ = y
√

2νL
U0
e
−x̃
2L , ψ =

√
2νLU0e

x̃
2LF (x, y),

T̃ = T∞ + (Tf − T∞)T (x, y), C̃ = ã0C, C̃1 = ã0C1

 (8.7)

into Eqs. (8.1) - (8.5), we obtain

F ′′′ + FF ′′ − 2F ′2 + 2

(
F ′′

∂F

∂x
− F ′∂F

′

∂x

)
= 0 (8.8)

1

Pr

(
1 +

4R

3

)
T ′′ + FT ′ + 2

(
T ′
∂F

∂x
− F ′∂T

∂x

)
= 0 (8.9)
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1

Sc
C ′′ + FC ′ −K e−xCC2

1 + 2

(
C ′
∂F

∂x
− F ′∂C

∂x

)
= 0 (8.10)

δ

Sc
C ′′1 + FC ′1 +K e−xCC2

1 + 2

(
C ′1
∂F

∂x
− F ′∂C1

∂x

)
= 0 (8.11)

The conditions at the boundary reduces to

F (x, 0) + 2∂F
∂x

(x, 0) = S, F ′(x, 0) = 1 + λF ′′(x, 0),

T ′(x, 0) = −Bi(1− T (x, 0)),

C ′(x, 0) = Ks e
−x/2C(x, 0), δC ′1(x, 0) = −Ks e

−x/2C(x, 0),

F ′(x, y)→ 0, T (x, y)→ 0, C(x, y)→ 1, C1(x, y)→ 0, as y →∞


(8.12)

where δ = DB

DA
is the duffusion ratio.

It is predicted that the diffusion coefficients of chemical species Ã and B̃ are of comparable

size, which undergo further assumption that diffusion coefficients DA and DB are equal, i.e.,

δ = 1 [16]. This assumption leads to the following relation

C(x, y) + C1(x, y) = 1 (8.13)

Thus, Eqs. (8.10) and (8.11) reduce to

1

Sc
C ′′ + FC ′ −K e−xC(1− C)2 + 2

(
C ′
∂F

∂x
− F ′∂C

∂x

)
= 0 (8.14)

and the boundary condition in (8.12) reduce to

C ′(x, 0) = Kse
−x/2C(x, 0) and C(x,∞) = 1 (8.15)

K = 2Lkcã0
2

U0
is the measure of the strength of homogenous reaction, Ks =

√
2LksRe−1/2

DA
is the

measure of the strength of heterogeneous (surface) reaction.

The non-dimensional skin friction Cf and the local Nusselt number Nux̃ are given by

√
Rex√
2x/L

Cf = F ′′(x, 0) and
Nux√

Lx/2
√
Rex

= −
(

1 +
4R

3

)
T ′(x, 0) (8.16)
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where Rex = xU∗(x)
ν

is the local Reynolds number.

8.2.2 Method of Solution

The numerical solutions to Eqs. (8.8), (8.9) and (8.14) along with the boundary conditions

(8.12) and (8.15), is solved numerically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation

Ai−1Xi = Ri−1, (8.17)

In Eq. (8.17), Ai−1 is a square matrix of order (6N + 6) and Xi and Ri−1 are (6N + 6)×1

column vectors defined by

Ai−1 = [Ars],Ri−1 = [Er,i−1] , r, s = 1, 2, · · · , 6, Xi =



Fi

Θi

Φi

Gi

Hi

Ki


(8.18)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

Gi = [Gi(ξ0), Gi(ξ1), Gi(ξ2), ..., Gi(ξN−1), Gi(ξN)]T ,

Hi = [Hi(ξ0), Hi(ξ1), Hi(ξ2), ..., Hi(ξN−1), Hi(ξN)]T ,

Ki = [Ki(ξ0), Ki(ξ1), Ki(ξ2), ..., Ki(ξN−1), Ki(ξN)]T ,
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Ej,i−1 = [ζj,i−1(ξ0), ζj,i−1(ξ1), ζj,i−1(ξ2), ..., ζj,i−1(ξN−1), ζj,i−1(ξN)]T , j = 1, 2, 3, 4, 5, 6

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = 0, A13 = 0,

A14 = χ14,i−1D + χ15,i−1, A15 = 0, A16 = 0, A21 = χ21,i−1D + χ22,i−1,

A22 = 1
Pr

(
1 + 4R

3

)
D2 + χ23,i−1D, A23 = 0, A24 = χ24,i−1, A25 = χ25,i−1,

A26 = 0, A31 = χ31,i−1D + χ32,i−1, A32 = 0, A33 = 1
Sc

D2 + χ33,i−1D + χ34,i−1,

A34 = χ35,i−1, A35 = 0, A36 = χ36,i−1, A41 = χ41,i−1D
2 + χ42,i−1D + χ43,i−1,

A42 = 0, A43 = 0, A44 = D3 + χ44,i−1D
2 + χ45,i−1D + χ46,i−1,

A45 = 0, A46 = 0, A51 = χ51,i−1, A52 = χ52,i−1D, A53 = 0,

A54 = χ53,i−1D + χ54,i−1, A55 = 1
Pr

(
1 + 4R

3

)
D2 + χ55,i−1D + χ56,i−1,

A56 = 0, A61 = χ61,i−1, A62 = 0, A63 = χ62,i−1D + χ63,i−1,

A64 = χ64,i−1D + χ65,i−1, A65 = 0, A66 = 1
Sc

D2 + χ66,i−1D + χ67,i−1,

where the coefficients χlk,n−1 and ζl,i−1, (l = 1, 2, 3, ..., 6, k = 1, 2, 3, ..., 7) are approximations

in terms of Fi, Ti and Ci, (i = 1, 2, 3, ..., n − 1) and their derivatives, 0 and I are null and

identity matrices of size (N +1)×(N +1).

After modifying the matrix system (8.17) to incorporate boundary conditions, the solu-

tion is obtained as

Xi = A−1i−1Ri−1 (8.19)

8.2.3 Result and Discussion

The variation of fluid velocity with slip parameter and suction/injection parameter is por-

trayed through the Figures (8.1(a)) - (8.1(b)). The velocity reduces with an increase in

the slip parameter as shown in the Figure (8.1(a)). Figure (8.1(b)) depicts the variation of

velocity with S. It is evident from the figure that velocity reduces with the wall suction

and escalates with the injection. Figures (8.2(a)) and (8.2(b)) represent the variation of the

skin-friction against x for distinct values of λ and S, respectively. It is observed from these

figures that the skin-friction escalates with an increase in slip and falls down with an increase
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in the fluid suction. The effect of the other parameters on the velocity and skin-friction are

not much significant and hence graphs are not included.

Figures (8.3(a)) - (8.3(d)) exhibit the behaviour of temperature for different values of

Bi, R, λ and S. It is known that the stronger convection leads to the higher surface

temperatures which appreciably increases the temperature Therefore, the temperature rises

with an increase in the value of Bi as shown in the Figure (8.3(a)). Further, for large

large value of Biot number Bi, the convective thermal condition from (8.12) transforms to

T (0)→ 1, which signifies the constant wall condition. It is seen from the Fig. (8.3(b)) that

the temperature increases with the increasing values of thermal radiation, which in turn,

intensifies the thermal boundary layer thickness. Figure (8.3(c)) illustrates that variation of

the temperature with λ. The temperature escalates with a raise in λ as portrayed in the

Fig. (8.3(c)). Reduction in temperature is observed with an increase in the fluid suction and

enhancement with blowing as shown in the Fig. (8.3(d)).

The variation of the rate of heat transfer in the presence of Bi, R, λ and S against

non-similar variable x is presented in the Figures (8.4(a)) - (8.4(d)). It is evident from the

Fig. (8.4(a)) that the Biot number enhances the rate of heat transfer predominantly. The

rate of heat transfer escalates with a rise in the value of the thermal radiation parameter

R as depicted in the Fig. (8.4(b)). Figure (8.4(c)) shows that the rate of heat transfer

diminishes with a raise in the slipperiness. Due to fluid suction the rate of heat transfer rises

and reduces with injection as shown in the Fig. (8.4(d)).

The variation of concentration profile for distinct values of K and Ks, respectively, is

shown in the Figures (8.5(a)) and (8.5(b)). An Enhancement in the values of K and Ks,

i.e., strengthening the homogeneous-heterogeneous reactions, decreases the concentration of

the fluid as shown in the Figs. (8.5(a)) and (8.5(b)). Further, Figs. (8.5(c)) and (8.5(d))

depicts the behaviour of species concentration for distinct values of λ and S. It is noticed

from these figures that, as the value of slip parameter increases the concentration decreases

and it increases with the fluid suction.

Figures (8.6(a)) - (8.6(d)) depicts the behaviour of mass transfer rate for different values
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Figure 8.1: Effect of(a) λ, and (b) S on F ′.

of K, Ks, λ and S against non-similar variable x. An increase in value of K and Ks,

corresponds to an increase in the strengths of homogeneous and heterogeneous reaction

rates, respectively. As the values of K and Ks escalates, the mass transfer rate reduces as

portrayed in the figures (8.6(a)) and (8.6(b)), respectively. As the slipperiness escalates, the

mass transfer is reducing as witnessed in the Fig. (8.6(c)). Further, it is noticed from the

figure (8.6(d)) that the mass transfer escalates with the fluid suction and reduces with the

fluid injection. Finally, mass transfer rate is increasing gradually with x.
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Figure 8.2: Effect of (a) λ, and (b) S on F ′′(x, 0).

202



0 . 0 2 . 2 4 . 4 6 . 6 8 . 8 1 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

T

y

B i  =  0 . 1 ,  1 . 0 ,  5 . 0 ,  2 0 . 0

(a)

0 4 8 1 2 1 6 2 0
0 . 0 0

0 . 1 5

0 . 3 0

0 . 4 5

0 . 6 0

0 . 7 5

0 . 9 0

T

y

R  =  0 . 0 ,  0 . 5 ,  1 . 0 ,  2 . 0

(b)

0 2 4 6 8 1 0 1 2
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

T

y

λ =  0 . 0 ,  0 . 5 ,  1 . 0 ,  2 . 0

(c)

0 4 8 1 2 1 6 2 0
0 . 0 0

0 . 1 5

0 . 3 0

0 . 4 5

0 . 6 0

0 . 7 5

0 . 9 0

T

y

S  =  -  0 . 5 ,  -  0 . 3 ,  0 . 0 ,  0 . 3 ,  0 . 5

(d)

Figure 8.3: “Effect of (a)Bi, (b)R, (c)λ, and (d)S on T”.
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Figure 8.4: “Effect of (a)Bi, (b)R, (c)λ, and (d)S on −
(
1 + 4R

3

)
T ′(x, 0)”.
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Figure 8.5: “Effect of (a) K, (b) Ks, (c) λ, and (d) S on C”.
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Figure 8.6: “Effect of (a) K, (b) Ks, (c) λ, and (d) S on C(x, 0)”.
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8.2.4 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(x̃) = B0e
x̃
2L is applied in ỹ−direction and

the influence of Hall current is not neglected. Assume that magnetic Reynolds number is

very small so that the induced magnetic field is negligible in comparison to applied magnetic

field. The presence of Hall current induces a cross flow in z̃-direction and hence the flow

becomes three-dimensional. Under the Boussinesq approximation, the flow is governed by

the following non-dimensional equations

F ′′′ + FF ′′ − 2F ′2 + 2Ri T − Ha

1 + β2
h

(F ′ + βhW ) + 2

(
F ′′

∂F

∂x
− F ′∂F

′

∂x

)
= 0 (8.20)

W ′′ − 2F ′W + FW ′ +
Ha

1 + β2
h

(βhF
′ −W ) + 2

(
W ′∂F

∂x
− F ′∂W

∂x

)
= 0 (8.21)

1

Pr

(
1 +

4R

3

)
T ′′ + FT ′ − 4F ′T + 2

(
T ′
∂F

∂x
− F ′∂T

∂x

)
= 0 (8.22)

1

Sc
C ′′ + FC ′ −K e−xCC2

1 + 2

(
C ′
∂F

∂x
− F ′∂C

∂x

)
= 0 (8.23)

δ

Sc
C ′′1 + FC ′1 +K e−xCC2

1 + 2

(
C ′1
∂F

∂x
− F ′∂C1

∂x

)
= 0 (8.24)

The corresponding non-dimensional conditions on the boundary

F ′(x, 0) = 1 + λF ′′(x, 0), F (x, 0) + 2∂F
∂x

(x, 0) = S, W (x, 0) = 0, T (x, 0) = 1,

C ′(x, 0) = Ks e
−x/2C(x, 0), δC ′1(x, 0) = −Ks e

−x/2C(x, 0),

F ′(x, y)→ 0, W (x, y)→ 0, T (x, y)→ 0, C(x, y)→ 1, C1(x, y)→ 0, as y →∞


(8.25)

It is predicted that the diffusion coefficients of chemical species Ã and B̃ are of comparable

size, which undergo further assumption that diffusion coefficients DA and DB are equal, i.e.,

δ = 1 [16]. This assumption leads to the following relation

C(x, y) + C1(x, y) = 1 (8.26)
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Thus, Eqs. (8.23) and (8.24) reduce to

1

Sc
C ′′ + FC ′ −K e−xC(1− C)2 + 2

(
C ′
∂F

∂x
− F ′∂C

∂x

)
= 0 (8.27)

and the boundary condition in (8.25) reduce to

C ′(x, 0) = Kse
−x/2C(x, 0) and C(x,∞) = 1 (8.28)

The non-dimensional skin friction in x̃−direction CF x̃, local skin-friction in z̃−direction

CF z̃ and the local Nusselt number Nux̃, are given by

√
Rex√
2x/L

CF x̃ = F ′′(x, 0),

√
Rex√
2x/L

CF z̃ = W ′(x, 0) and
Nux√

x/2L
√
Rex

= −
(

1 +
4R

3

)
T ′(x, 0)

where Rex = xU∗(x)
ν

is the local Reynolds number.

8.2.5 Method of Solution

To solve the system of Eqs. (8.20) - (8.22) and (8.27) along with the boundary conditions

(8.25) and (8.28), is solved numerically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation

Ai−1Xi = Ri−1, (8.29)

In Eq. (8.29), Ai−1 is a square matrix of order (8N + 8) and Xi and Ri−1 are (8N + 8)×1
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column vectors defined by

Ai−1 = [Ars],Ri−1 = [Er,i−1] , r, s = 1, 2, · · · , 8, Xi =



Fi

Wi

Θi

Φi

Gi

Hi

Ji

Ki



(8.30)

where

Fi = [Fi(ξ0), Fi(ξ1), Fi(ξ2), ..., Fi(ξN−1), Fi(ξN)]T ,

Wi = [Wi(ξ0),Wi(ξ1),Wi(ξ2), ...,Wi(ξN−1),Wi(ξN)]T ,

Θi = [Ti(ξ0), Ti(ξ1), Ti(ξ2), ..., Ti(ξN−1), Ti(ξN)]T ,

Φi = [Ci(ξ0), Ci(ξ1), Ci(ξ2), ..., Ci(ξN−1), Ci(ξN)]T ,

Gi = [Gi(ξ0), Gi(ξ1), Gi(ξ2), ..., Gi(ξN−1), Gi(ξN)]T ,

Hi = [Hi(ξ0), Hi(ξ1), Hi(ξ2), ..., Hi(ξN−1), Hi(ξN)]T ,

Ji = [Ji(ξ0), Ji(ξ1), Ji(ξ2), ..., Ji(ξN−1), Ji(ξN)]T ,

Ki = [Ki(ξ0), Ki(ξ1), Ki(ξ2), ..., Ki(ξN−1), Ki(ξN)]T ,

Ej,i−1 = [ζj,i−1(ξ0), ζj,i−1(ξ1), ζj,i−1(ξ2), ..., ζj,i−1(ξN−1), ζj,i−1(ξN)]T , j = 1, 2, 3, ..., 8

A11 = D3 + χ11,i−1D
2 + χ12,i−1D + χ13,i−1, A12 = −Haβh

1+β2
h
I, A13 = 2RiI,

A14 = 0, A15 = χ14,i−1D + χ15,i−1, A16 = 0, A17 = 0, A18 = 0,

A21 = χ21,i−1D + χ22,i−1, A22 = D2 + χ23,i−1D + χ24,i−1, A23 = 0,

A24 = 0, A25 = χ25,i−1, A26 = χ26,i−1, A27 = 0, A28 = 0

A31 = χ31,i−1D + χ32,i−1, A32 = 0, A33 = 1
Pr

(
1 + 4R

3

)
D2 + χ33,i−1D + χ34,i−1,

A34 = 0, A35 = χ35,i−1, A36 = 0, A37 = χ36,i−1, A38 = 0

A41 = χ41,i−1D + χ42,i−1, A42 = 0, A43 = 0, A44 = 1
Sc

D2 + χ43,i−1D + χ44,i−1,

A45 = χ45,i−1, A46 = 0, A47 = 0, A48 = χ46,i−1,

A51 = χ51,i−1D
2 + χ52,i−1D + χ53,i−1, A52 = 0, A53 = 0, A54 = 0,
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A55 = D3 + χ54,i−1D
2 + χ55,i−1D + χ56,i−1, A56 = −Haβh

1+β2
h
I, A57 = 2RiI, A58 = 0,

A61 = χ61,i−1D + χ62,i−1, A62 = χ63,i−1D + χ64,i−1, A63 = 0, A64 = 0,

A65 = χ65,i−1D + χ66,i−1, A66 = D2 + χ67,i−1D + χ68,i−1, A67 = 0, A68 = 0,

A71 = χ71,i−1D + χ72,i−1, A72 = 0, A73 = χ73,i−1D + χ74,i−1, A74 = 0,

A75 = χ75,i−1D + χ76,i−1, A76 = 0, A77 = 1
Pr

(
1 + 4R

3

)
D2 + χ77,i−1D + χ78,i−1,

A78 = 0, A81 = χ81,i−1, A82 = 0, A83 = 0, A84 = χ82,i−1D + χ83,i−1,

A85 = χ84,i−1D + χ85,i−1, A86 = 0, A87 = 0, A88 = 1
Sc

D2 + χ86,i−1D + χ87,i−1,

where the coefficients χlk,n−1 and ζl,i−1, (l, k = 1, 2, 3, ..., 8) are approximations in terms of

Fi,Wi, Ti and Ci, (i = 1, 2, 3, ..., n − 1) and their derivatives, 0 and I are null and identity

matrices of size (N +1)×(N +1).

After modifying the matrix system (8.29) to incorporate boundary conditions, the solu-

tion is obtained as

Xi = A−1i−1Ri−1 (8.31)

8.2.6 Results and Discussion

Comparison analysis is presented between the present results and the results obtained by

Magyari and Keller [56] as a special case by taking λ = 0, S = 0, R = 0, Ri = 0, Ha = 0

and x = 0 and found that they are in good agreement, as presented in Table (8.1). To study

the effects of homogeneous-heterogeneous reaction parameters K and Ks, respectively, Hall

parameter βh, slip parameter λ, radiation parameter R, and suction/injection parameter S,

computations have been carried out in the cases of λ = 1.0, Ri = 0.5, βh = 0.5, R = 0.5,

S = 0.5, K = 0.5, Ks = 1.0, Ha = 1.0 and x = 0.2

The variation of tangential velocity for distinct values of βh, R, S and Ri is exhibited

through the Figs. (8.7(a)) - (8.7(d)). An increase in the Hall parameter enhances the

tangential velocity as depicted in the Fig. (8.7(a)). It is noticed from the Fig. (8.7(b)) that,

an increase in the thermal radiation causes an increase in the velocity. It is seen from the
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Table 8.1: Comparison of −F ′′(0) and F (∞) calculated by the present method for λ = 0,
S = 0, R = 0, Ri = 0, Ha = 0 and x = 0.

Magyari and Keller [56] Present

−F ′′(0) 1.281808 1.28180856
F (∞) 0.905639 0.90564370

Fig. (8.7(c)) that the fluid velocity is less in the presence of fluid suction and more in the

presence of injection. An increase in the value of Ri, induces a favorable pressure gradient

which, in turn, enhances the fluid velocity in the boundary layer as portrayed in the Fig.

(8.7(d)).

Figures (8.8(a)) - (8.8(d)) represents the variations of the transverse velocity for distinct

values of βh, R, S and Ri, respectively. It is noticed from the Fig. (8.8(a)), that there is

no secondary flow velocity in the absence of Hall parameter. As the values of βh increased,

the cross flow is generated. An increase in the thermal radiation, the transverse velocity

enhances as shown in the Fig. (8.8(b)). Fig. (8.8(c)) exhibits that the transverse velocity

decreases with the fluid suction and increases with the injection. It is evident from the Fig.

(8.8(d)) that the cross flow, generated due to Hall effect, escalates with an enhancement in

the values Ri.

Figures (8.9(a)) - (8.9(d)) are due to the variation of temperature profile for distinct values

of βh, R, S and Ri. An enhancement in the value of βh, the effective thermal conductivity

of the fluid reduces and hence temperature diminishes as shown in the Fig. (8.9(a)). It

is seen from the Fig. (8.9(b)) that the temperature escalates with the increasing values of

thermal radiation, which in turn, intensifies the thermal boundary layer thickness. Figure

(8.9(c)) shows that the fluid temperature decreases with the fluid suction and escalates with

the injection. The temperature reduces with rise in Ri as shown in the Fig. (8.9(d)).

The variation of concentration profile for distinct values of Ks, K, R, Ri, βh and S

is portrayed in the Figs. (8.10(a)) - (8.10(f)). From Fig. (8.10(a)), it is seen that the

concentration reduces as the strength of heterogeneous reaction enhances and decreases

by strengthening the homogeneous reaction as shown in the Fig. (8.10(b)). This is due
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to the fact that, reaction rates dominate diffusion coefficients. This is in tune with the

general physical behavior of homogeneous and heterogeneous reactions. As the values of

radiation, mixed convection and Hall parameter escalates, concentration boundary layer

enhances and hence, concentration rises as shown in the Figs. (8.10(c)), (8.10(d)) and

(8.10(e)), respectively. Moreover, it is observed that the concentration less influenced with

Hall effect. Figure (8.10(f)) exhibits that concentration of the fluid enhances with the fluid

suction and diminishes with the injection.

The influence of βh, R, Ri and S on the rate of heat transfer against non-similar variable

x is explored in the Figures (8.11(a)) - (8.11(d)). It is observed from the Fig. (8.11(a)) that

the rate of heat transfer reduces with an increase in the value of βh. The rate of heat transfer

escalates with an increase in the value of thermal radiation parameter R as depicted in the

Fig. (8.11(b)). Further, in the absence of thermal radiation, minimum rate of heat transfer

occurred and as strengthening the radiation, the rate of heat transfer escalated as shown

in the Fig. (8.11(b)). The effect of Ri on the rate of heat transfer is presented in the Fig.

(8.11(c)). It is evident from the figure that the rate of heat transfer enhances with a raise in

Ri. Figure (8.11(d)) shows that the rate of heat transfer enhances with a raise in the fluid

suction and diminishes with the injection.

Figures (8.12(a)) - (8.12(f)) depict the behaviour of the rate of mass transfer for dif-

ferent values of Ks, K, R, Ri, βh and S against non-similar variable x. It is known that

increase in the value of Ks and K corresponds to increase in the strength of heterogeneous

and homogeneous reactions. Figures (8.12(a)) and (8.12(b)) depicts that, the mass transfer

rate decreases as the strength of heterogeneous and homogeneous reactions escalates. It is

noticed that, the effect of heterogeneous reaction is more than that of homogeneous reac-

tion. However, it is witnessed that both the concentration and mass transfer rate influenced

uniformly by the strength of heterogeneous and homogeneous reactions. An increase in the

values of the R, Ri, βh and S, the mass transfer rate escalates as portrayed in the Figs.

(8.12(c)) - (8.12(f)). Further, it is depicted that the rate of mass transfer enhances gradually

as x→ 1.

The behaviour of F ′′(x, 0) and W ′(x, 0) for different values of λ, βh, R, Ri, Ks and K
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are tabulated in the Table (8.2). It is evident from the table that the F ′′(x, 0) is increasing

and W ′(x, 0) is reducing with the slipperiness. In the presence of Hall parameter both

the skin-frictions are increasing. It is also observed that the transverse velocity vanishes

when βh = 0 and hence in z̃−direction there is no skin-friction. Table (8.2) illustrates that,

F ′′(x, 0) and W ′(x, 0) are enhancing with a rise in the thermal radiation. The positive values

of Ri increases both the skin-frictions. In addition to this, F ′′(x, 0) in x̃−direction is greatly

increased with positive values of Ri. At the end of the table the influence of strength of

homogeneous-heterogeneous reactions on F ′′(x, 0) and W ′(x, 0) is presented. It is noticed

from the table that, there is no effect of Ks and K on both the skin-friction.
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Table 8.2: Variation of skin friction in x̃- and z̃-directions for varying values of slip parameter
λ, Hall parameter βh, radiation parameter R, mixed convection parameter Ri, heterogeneous
reaction parameter Ks, and homogeneous reaction parameeter K.

λ βh R Ri Ks K F ′′(x, 0) W ′(x, 0)
0.0 0.5 0.5 0.5 1.0 0.5 -1.452122 0.171179
0.5 0.5 0.5 0.5 1.0 0.5 -0.670978 0.138906
1.0 0.5 0.5 0.5 1.0 0.5 -0.442109 0.127885
2.0 0.5 0.5 0.5 1.0 0.5 -0.264181 0.118659
1.0 0.0 0.5 0.5 1.0 0.5 -0.455100 0.000000
1.0 0.5 0.5 0.5 1.0 0.5 -0.442109 0.127885
1.0 1.0 0.5 0.5 1.0 0.5 -0.419032 0.182813
1.0 1.5 0.5 0.5 1.0 0.5 -0.400926 0.187412
1.0 0.5 0.0 0.5 1.0 0.5 -0.464936 0.114359
1.0 0.5 0.5 0.5 1.0 0.5 -0.442109 0.127885
1.0 0.5 1.0 0.5 1.0 0.5 -0.428240 0.136786
1.0 0.5 2.0 0.5 1.0 0.5 -0.411402 0.148090
1.0 0.5 0.5 0.0 1.0 0.5 -0.598770 0.070074
1.0 0.5 0.5 0.1 1.0 0.5 -0.559650 0.088126
1.0 0.5 0.5 0.5 1.0 0.5 -0.442110 0.127885
1.0 0.5 0.5 1.0 1.0 0.5 -0.327710 0.157594
1.0 0.5 0.5 0.5 0.1 0.5 -0.442086 0.127950
1.0 0.5 0.5 0.5 0.5 0.5 -0.442086 0.127950
1.0 0.5 0.5 0.5 1.0 0.5 -0.442086 0.127950
1.0 0.5 0.5 0.5 2.0 0.5 -0.442086 0.127950
1.0 0.5 0.5 0.5 1.0 1.0 -0.444640 0.127212
1.0 0.5 0.5 0.5 1.0 2.0 -0.444640 0.127212
1.0 0.5 0.5 0.5 1.0 3.0 -0.444640 0.127212
1.0 0.5 0.5 0.5 1.0 4.0 -0.444640 0.127212
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Figure 8.7: “Effect (a)βh, (b)R, (c)S, and (d)Ri on tangential velocity”.
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Figure 8.8: “Effect (a)βh, (b)R, (c)S, and (d)Ri on transverse velocity.”
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Figure 8.9: “Effect (a)βh, (b)R, (c)S, and (d)Ri on temperature profile”.
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Figure 8.10: “Effect (a)Ks, (b)K, (c)R, (d)Ri, (e)βh and (f)S on C”
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Figure 8.11: “Effect (a)βh, (b)R, (c)Ri, and (d)S on −
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T ′(x, 0)”.
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Figure 8.12: “Effect (a)Ks, (b)K, (c)R, (d)Ri, (e)βh and (f)S on C(x, 0)”

220



8.3 Conclusions

Numerical investigation of influence of homogeneous-heterogeneous reactions on the lami-

nar slip flow, heat and mass transfer of a incompressible viscous fluid over a porous sheet

stretching exponentially is analyzed in this chapter. Based on the analysis carried out the

main conclusions are drawn:

In case (a) and (b), the velocity decreases with the fluid suction and the skin-friction

increases with the slippage. In case (a), the temperature of the fluid increases with an

increase in the Biot number and decreases with an increase in Hall parameter for case (b).

In both the cases, the temperature increases with the thermal radiation. In both the cases,

the concentration decreases with an increase in the strengths of homogeneous-heterogeneous

reactions and increases with the fluid suction. The rate of heat transfer, in case (a), increases

with an increase in the Biot number and increases with the Hall parameter in case (b). In

both the cases, the rate of heat transfer increases with the thermal radiation and the fluid

suction. In both the cases, the mass transfer rate decreases with an increase in the strengths

of homogeneous-heterogeneous reactions .
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Chapter 9

Summary and Conclusions

In this thesis, a steady, laminar viscous fluid flow over an exponentially stretching sheet

is investigated. On the surface of the sheet two different types physical conditions were

considered. The sheet is (i) subjected to thermal convective boundary condition and (ii)

maintained at uniform wall temperature with Hall effect. The effect of various parameters

i.e., convective heat transfer coefficient (Biot number), Hall parameter, thermal radiation,

chemical reaction, Joule heating, cross-diffusion effects, variable viscosity, variable thermal

conductivity, heat source or sink, thermophoresis, viscous dissipation, double dispersion

effects, homogeneous and heterogeneous reactions on the flow characteristics such as velocity,

temperature and concentration distributions along with the local heat and mass transfer

coefficients were considered.

The governing equations of the flow in the Chapters 2, 4, 5 and case (b) of Chapter 3

and 6 are transformed into a system of nonlinear ordinary differential equations using simi-

larity transformations. These non-linear ordinary differential equations and their associated

boundary conditions are linearized by using successive linearization method. In the case

(a) of Chapter 3 and 6, Chapters 7 and 8, the governing equations of the flow are reduced

to a system of nonlinear partial differential equations using non-dimensional variables. A

local similarity and non-similarity method is used to transform the governing partial differ-

ential equations into ordinary differential equations and then linearized by using Successive
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linearization method. In all the chapters, the linearized equations together with correspond-

ing boundary conditions were solved using Chebyshev spectral collocation method. The

important observations made from this study are listed below.

• In the presence of the Hall parameter, both the velocities, the skin-friction and the

rate of heat and mass transfer increase and the temperature and the concentration

decrease. Whereas the temperature and the rate of heat transfer increase with the

increase in the convective heat transfer coefficient.

• In the presence of the convective heat transfer coefficient, the rate of heat transfer and

temperature increases with an increase in the radiation parameter. As the chemical

reaction parameter increases, the concentration decreases and the rate of mass transfer

increases. Whereas in the presence of the Hall effect, both the velocities, the tempera-

ture, the skin-friction, the rate of heat and mass transfers increase with an increase in

the radiation parameter and both the velocities, the concentration, the skin-friction and

the rate of heat transfer reduce with the increase in the chemical reaction parameter.

• An increase in the Joule heating parameter, the rate of heat transfer increases in both

the cases. The temperature and concentration, increase and the rate of heat and mass

transfers decrease with the increase in the magnetic parameter.

• The presence of the Hall effect increases both the velocities and the skin-friction with

an increase in the Soret and Dufour numbers. In both the cases, the temperature

and the rate of mass transfer decrease, the concentration and the rate of heat transfer

increase with the increase in the Soret number. Whereas exactly an opposite trend is

witnessed with the increase in the Dufour number.

• The rate of heat transfer increases with the increase in the viscosity parameter and

decreases with an increase in the thermal conductivity and the heat source parameters.

But, an opposite trend is observed in the rate of mass transfer. Further, in the presence

of Hall effect the rate of heat and mass transfers decrease with the increase in slip

parameter. In the absence of slip parameter, an opposite trend is observed with the

increase in convective heat transfer coefficient.
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• As the viscous dissipation parameter increases, the temperature increases and the rate

of heat transfer decreases. Increase in the value of thermophoresis parameter, the

concentration decreases and the rate of mass transfer increases.

• An increase in the thermal dispersion parameter increases the temperature and de-

creases the rate of heat transfer. On the other hand, the concentration increases and

the rate of mass transfer decrease with an increase in the solutal dispersion parame-

ter. But, in the presence of the Hall effect, the rate of heat transfer increases with

an increase in the value of solutal dispersion parameter and the rate of mass transfer

increases with an increase in the thermal dispersion parameter.

• The species concentration and mass transfer rate decrease with the increase in the

strength of homogeneous and heterogeneous reaction parameter. The effect of homo-

geneous reaction is greater on species concentration as compared with heterogeneous

reaction.

• The velocity, temperature and concentration decreases and the rate of heat and mass

transfers increase with the fluid suction at the boundary of the stretching surface.

While, in the presence of Hall and cross-diffusion effects, a dual trend is observed on

the rate of mass transfer. The velocity, rate of heat and mass transfers reduce and the

temperature and concentration increase with the fluid slippage at the boundary. But,

in the presence of thermophoresis and convective heat transfer coefficient, the rate of

heat transfer increases with the fluid slippage at the wall.

The work presented in the thesis can be extended to analyze the effect of double stratification,

nonlinear convection, Arrhenius activation energy, binary chemical reaction, etc. Further,

this work can be extended by studying the analysis in various non-Newtonian fluids like

Couple stress fluids, Casson fluids, Jeffrey fluids, Power-law fluids and the geometry can

be changed to oscillatory, inclined exponentially stretching sheet. This work can also be

extended to porous media. Further, this work can be extended to study the heat and mass

transfer analysis on free convection.
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In the recent past, the study of stability analysis has attracted the curiosity of many

researchers. Thus, the work presented in the thesis can be extended to study the stability

and convergence analysis.
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