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ABSTRACT

The thesis consists of NINE chapters. In each chapter, we consider two different physical
conditions on the sheet i.e. when the sheet is (i) subjected to thermal convective bound-
ary condition and (ii) maintained at uniform wall temperature with Hall effect. Chapter 1
provides an introduction to the concepts in Newtonian fluid, heat and mass transfer and a
review of the pertinent literature. Chapter 2 presents the effect of thermal radiation and
chemical reaction in a viscous fluid flow over an exponentially stretching sheet. Chapter 3
investigates the effect of Joule heating on the viscous flow over an exponentially stretching
sheet. Chapter 4 deals the numerical solution of influence of cross-diffusion effects on the
flow of viscous incompressible fluid due to the exponentially stretching sheet. Chapter 5
studies the effect of variable fluid properties and heat source/sink on the laminar viscous
flow on an exponentially stretching sheet. Chapter 6 presents the influence of thermophoresis
and viscous dissipation effects of incompressible viscous fluid flow due to a sheet stretching
exponentially. Chapter 7 studies the double dispersion effects in a laminar slip flow of elec-
trically conducting viscous fluid over an exponentially stretching permeable sheet. Chapter
8 explores the influence of homogeneous-heterogeneous reactions in presence of thermal radi-
ation on the laminar slip flow of viscous incompressible fluid on an exponentially stretching
sheet.

Except for case (a) of chapters 3 and 6 and both cases of chapters 7 and 8, in all the chap-
ters, the governing non-linear ordinary differential equations and their associated boundary
conditions are linearized by using successive linearization method and then solved numer-
ically by using Chebyshev spectral collocation method. For the case of non-similar equa-
tions, in the above-mentioned chapters, a local similarity and non-similarity method is used
to transform the governing partial differential equations into ordinary differential equations
and then solved by using Successive linearization method together with Chebyshev spec-
tral collocation method. The effects of convective heat transfer coefficient(Biot number),
Hall parameter, magnetic parameter, thermal radiation, chemical reaction, Joule heating,
cross-diffusion effects, variable viscosity, variable thermal conductivity, heat source or sink,
thermophoresis, viscous dissipation, double dispersion effects, homogeneous and heteroge-
neous reactions are considered on the flow characteristics such as the velocity, temperature
and concentration distributions along with the local heat and mass transfer coefficients and
are presented through graphs. The last chapter (Chapter 9) gives key findings of the thesis
and scope of the work for further study.
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NOMENCLATURE

Concentrations of the chemical V,

species A and B

Positive constant N,
Chemical species No, Vo
Biot number g
Buoyancy ratio Gr
Concentration hy

Wall concentration

Ambient concentration e, ks
Specific heat capacity K
Concentration susceptibility %
Thermal diffusion ratio

Mean fluid temperature k*
Wall temperature L
Molecular diffusivity Nugz
Effective molecular diffusivity Pr
Diffusion coefficients R
Heat flux Re;
Mass flux Re
Suction/Injection parameter Sc
Stretching velocity J
Reference velocity Q

vil

Variable wall mass transfer veloc-
ity

Slip velocity

Constants

Gravitational acceleration

Grashof number

Convective heat transfer coeffi-

cient
Rate constants

Measures the strength of the ho-

mogeneous reaction

Measures the strength of the het-

erogeneous (surface) reaction
Mean absorption coefficient
Characteristic length

Local Nusselt number
Prandtl number

Radiation parameter

Local Reynolds number
Reynolds number

Schmidt number

Joule heating parameter

Heat source



Constant

Rate constant

Constant

Permeability of porous medium
Porosity parameter
Magnetic parameter

Heat source parameter
Streamwise coordinate
Eckert number

Soret number

Dufour number

Local Sherwood number
Temperature

Convective wall temperature
Ambient temperature
Dimensionless temperature

Dimensionless concentration

Greek Symbols

Bn

Thermal diffusivity

Effective thermal diffusivity
Coefficients of thermal expansion
Coefficients of solutal expansion
Chemical reaction parameter

Hall parameter

K Thermal conductivity
y Thermal dispersion parameter
N Solutal dispersion parameter
€ Thermal conductivity parameter
T Thermophoresis parameter
0, Viscosity parameter
i Similarity variable
Te Electron collison time
We Cyclotran frequency of electrons
A Velocity slip parameter
1 Dynamic viscosity
v Kinematic viscosity
p Density of the fluid
o Stefan-Boltzmann constant
o Electrial conductivity
Tw Wall shear stress
Y Stream function
Subscripts
w Wall condition.
00 Ambient condition.
Superscript

viil

Differentiation with respect to 7.
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Chapter 1

Preliminaries and Review

1.1 Introduction

Fluid mechanics deals with the behavior of liquids and gases at rest or in motion. It stands
central to much of science and engineering and impacts defense, transportation, manufactur-
ing, environment, medicine, energy, etc. It encompasses a vast variety of practical problems
ranging from the flow of blood in capillaries to flow of oil in huge pipelines and from the
flight of birds to supersonic flights of airplanes. This subject is proven to be a highly exciting
and challenging subject of modern sciences in view of its applications in every aspect our
daily life. The quest for deeper understanding of the subject has not just enlivened the de-
velopment of the subject itself but has additionally proposed the progress in the supporting

areas, such as applied mathematics, numerical computing, and experimental techniques.

The fluid dynamics due to a stretching surface has ever increasing applications in industry
as well as in certain technological processes. When sheets are being manufactured, molten
material is pulled from the slit and stretched to obtain required thickness [5]. The eminence

of such products is determined by both the kinematics of stretching and the simultaneous



heating or cooling during the process. This situation is similar to continuous pulling of
plastic sheets in the manufacturing of plastic bags and rubber sheets. It is important to
study the velocity of the stretching surface relative to the point of extrusion [115]. In all
these processes, the quality of the final product, as well as the cost of production, is affected
by the rate of heat transfer and mass transfer on the stretching surface, and knowledge
of cooling fluid and its flow properties. The rate at which the sheet is drawn from the
extrusion slit is described in a number of different ways namely; linear, continuous, unsteady
and nonlinear such as exponential. In most studies it is assumed that the velocity of the
stretching sheet is need not be linearly proportional to the distance from the extrusion slit

[50).

Many chemical engineering processes like those in metallurgy and polymer extrusion Fig.
(2.2.4)) (image is taken from Abel et al. [2]) involve the cooling of a molten liquid (polymer
solution, molten metal, etc.) by drawing it into a cooling liquid, sometimes referred as the
ambient liquid. While drawing the molten liquid into the cooling system it is sometimes
stretched (as in the case of polymersheet extrusion). The stretching imparts a unidirectional
orientation to the extrudate, thereby improving its fluid mechanical properties (see [29]).
The problem of stretching sheet is thus a fundamental one and arises in many practical
situations that are similar to the polymer extrusion and metallurgical processes. Some of

these are listed below:

Continuous stretching, rolling, manufacturing of polymer sheets.

Drawing, annealing, tinning of copper wires.

Cooling of an infinite metallic plate in a cooling path.

Boundary Layer along a liquid film in condensation processes.

Manufacture of materials by extrusion process and heat-treated materials traveling

between a feed and wind-up rolls or conveyer belts.

Glass blowing, paper production, crystal growing, etc.
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Figure 1.1: Schematic diagram of a polymer extrusion process

In a polymer extrusion process, the fluid mechanical properties desired for the ultimate
outcome (sheet being stretched) depend mainly on the rate of cooling. The liquid which
is basically meant to cool the stretching sheet plays an important role in determining the
property sought for the final product. It is imperative therefore to consider two important

aspects in this physically interesting problem:

e Proper choice of cooling liquid.
e Regulation of the flow of the cooling liquid.
An appropriate and advantageous choice of cooling liquid in all these processes is Newtonian

fluid. Hence, the laminar flow, heat and mass transfer over a stretching sheet in a Newtonian

fluid has received considerable interest by several researchers.



1.2 Newtonian fluids

The great majority of most common fluids (liquids and gases) such as water, gasoline, honey,
organic solvents, oils, air, steam, nitrogen or rare gases are characterized as Newtonian fluids.
These fluids resist movement or the movement of an object through the fluid. The magnitude
of the resistance to this deformation is represented by the viscosity of the fluid. The study of
a Newtonian fluid flow gained much attention in last few decades because of their industrial

and engineering applications.

A Newtonian fluid is a fluid that exhibits a viscosity that remains constant regardless
of any external stress that is placed upon it, such as mixing or a sudden application of
force. Another way to describe these fluids is that they obey Newtons law of viscosity or a
linear relationship between viscosity and shear stress i.e. the shear stress induced by flow
is proportional to the rate of the strain and the constant of proportionality is the fluid’s

viscosity.

The equations governing the flow of incompressible Newtonian fluids are

ap B
ai — — r 2 -
Plg T @ VIT) =pf = Vp+uVig (1.2)

where ¢ is the velocity vector and p is the fluid pressure, p is the density of the fluid and f

is the body force per unit mass.

1.3 Basic Terminology

Heat Transfer

Heat transfer means the exchange of internal energy between individual elements or regions

of the medium considered. It always occurs from higher temperature region to lower temper-



ature region. There are three modes by which the heat transfer occurs. They are conduction,
convection and radiation. The molecular transport of heat in bodies or between bodies in
the thermo dynamical system is referred to as conduction. Convection is concerned with
the fluid medium and/or the fluid in the medium. The heat transfer due to the movement
of fluid from one region to the other region in the medium is called convection. Radiation
heat transfer is a mechanism in which the internal energy of a substance is converted into
radiant energy. The transport of heat by convection together with conduction is known as
convective heat transfer. Further, forced, free and mixed convection are three classification of
convection. To compute the heat transfer rate in the medium, the temperature distribution
or temperature field is to be determined from the heat or energy (conservation of energy)
equation.
aT

pCp (E +q- VT) = V.(aVT) (1.3)

where T, ¢, and « are the local equilibrium temperature, the specific heat capacity at

constant pressure and the thermal diffusivity of the medium, repsectively.

Radiation

Heat transfer due to the emission of electromagnetic waves is known as thermal radiation.
The importance of radiation becomes intensified at high absolute temperature levels. It
is well known that the thermal radiation heat transfer does not require any intermediate
medium by electromagnetic waves, or photons, which may travel a long distance without
interacting with the medium. Thus thermal radiation is of great importance in vacuum
and space applications. The transfer of energy by radiation depends on differences of the
individual absolute temperature of the bodies. In the presence of thermal radiation, the

energy equation (1.3) reduce to

oT - ~
pCp (a +q- VT) =V.(aVT) + Vg, (1.4)



The radiation heat flux is ¢,, under the Rosseland approximation [102] can be written as

4o OT*
3k* Oy

where o* is Stefan-Boltzman constant and k* is coefficient of mean absorption. We assume
the variation in the fluid phase temperature inside the flow to be appropriately minimum such
that 7% may be shown as a linearly continuous function of the temperatures and enlarged

in a Taylor Series around T}, and removing highest order terms, we get T% = 4T3 T — 371

Viscous Dissipation

Viscous dissipation or dissipation is referred as transforming the energy taken from the
motion of the fluid by the viscosity into internal energy. This process is partially irreversible.

The energy conservation equation by including viscous dissipation is given by

oT . -
pCp <E +q- VT) =V.(aVT)+ (1.6)

where @ is the dissipation function representing the work done against viscous forces, which

is irreversibly converted into internal energy. It is defined as p® = A\ (V - §)° + 2u (D : D)

Mass Transfer

The tendency of a component in a mixture to travel from a region of high concentration to
one of low concentration is called mass transfer. Mass transfer occurs by two mechanisms
Diffusion mass transfer and Convective mass transfer. Diffusion mass transfer may occur
either due to concentration gradient or temperature gradient or pressure gradient. Convective
mass transfer is a mechanism in which mass is transferred between the fluid and the solid
surface as a result of movement of matter from the fluid to the solid surface or fluid. The

species mass flux can be determined from the statement of conservation of mass species,



which is given by 3
oc . _ = ~
W+QVOZV(DVO) (17)

where C is the concentration and D is the solutal diffusivity.

Chemical Reaction

Chemical reaction is the reaction in which the rate of reaction is directly proportional to
the species concentration. Depending on the occurrence at an interface or as a single-
phase volume reaction, the chemical reaction can be termed as either heterogeneous or
homogeneous or both homogeneous and heterogeneous. With first order chemical reaction,
the equation (1.7) can be written as

oC

=T q-VC =V.(DVC) - ki (C — Cy) (18)

where k; is the rate of chemical reaction.

Chemical reaction effect on the fluid flow is of considerable significance in chemical tech-
nology, materials processing systems and hydrometallurgical industries. The research on fluid
flow with chemical reaction effects can help to design the chemical processing equipment,
chemical diffusion in disk electrode modeling, carbon monoxide reactions in metallurgical
mass transfer and kinetics, optical materials processing, and formation and dispersion of
fog, etc. Several investigators have analyzed the impact of chemical reaction on the flow,

heat and mass transfer through channels, pipes and annular region.

Cross-diffusion effects

When heat and mass transfer arise at the same time in a moving liquid, the relations between
the fluxes and the driving abilities are of complex nature. It has been observed that an
energy flux can be generated not only by temperature gradients but also by concentration

gradients. “The mass flux can be generated by temperature gradients and this embodies the



Thermal diffusion, also called thermo-diffusion or Soret effect [89]. The heat flux induced by

a concentration gradient is called Dufour or diffusion-thermo effect”.

The modified energy and concentration equations, in steady state, with the Soret and

Dufour effects, are given by
q-VT =V - (aVT + DrcVC) (1.9)

q-VC =V -(DVC+ DcrVT) (1.10)

where Der/D is the Soret number and D¢/« and is Dufour number.

Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the branch of continuum mechanics which deals with
the mutual interaction between the magnetic field and electrically conducting fluid. If the
magnetic field is present in an incompressible, electrically conducting fluid, then it interacts
with the fluid by means of body force and body couple per unit mass. In the absence of
gravitational effects, the regular magneto-fluid dynamics assumption is p f = peﬁ +J x E,
where p, is the free charge density, E is the electric field, B is the total magnetic field, and Jis
the current density and given by the Ohm’s law J=o0 [E + ¢ X é] . Since Jx B > peE, the
later can be neglected. Hence, by adding the electromagnetic force term to the momentum
equation of the fluid, the fluid dynamical aspects of MHD can be studied. The equation of
motion of MHD Newtonian fluid will have the form

G | o o= > -
p(a_'_(q.V)q):pf—Vp—I—MVQQ—I—JXB (1.11)

The total magnetic field in the medium is the sum of the applied magnetic field and induced
magnetic field due to the motion of a conducting liquid in an applied magnetic field. The
motion of a conducting fluid through a magnetic field induces electric currents and the fluid
experiences a force. This force is called Lorenz force (f X é) and it alters the motion of the

fluid.



Hall Effect

“The presence of a magnetic field, in the flow of electric current through a conductor, applies
a transverse force on the moving charge carriers that tend to push them to one side of the
conductor. All accumulation of charge along the edges of conductors will adjust this magnetic
effect, producing a quantifiable voltage between two sides of the conductor. The existence of
quantifiable transverse voltage is known as Hall effect” named after E. H. Hall who discovered

it in 1879.

The study of fluid flow with Hall current effects has important engineering applications
in problems of magnetohydrodynamics generators and Hall accelerators as well as in flight
magnetohydrodynamics. If the electron-atom collision frequency is assumed to be relatively
high, the Hall effect cannot be neglected in which a current is induced in the direction
normal to both the electric and magnetic fields. In this case, the generalized ohms law

(current density ) [110] is given by
J:a[E+@xB—n(§x ) (1.12)

where 7 is the Hall factor.

Joule Heating

James Prescott Joule(1841) was the first to studey the Joule heating effect. It is also known
as ohmic heating or resistive heating. When an electric current pass through an electrolyte,
it causes Joule heating. It is produced by intercommunication among the atomic ions that
compose the body of the conductor and moving charged particles that form the current. In
this process, some of the kinetic energy is converted into the heat and as a result temperature
of the body increases. The rise in the temperature of the fluid translates to nonuniform
properties of the fluid, such as a change in density and conductivity of the fluid. Changes
in the applied electric potential field and the flow field are among some of the factors that

alter the properties of the fluid.



Thermophoresis

The thermophoresis is a mechanism in which small particles migrate in the direction of de-
creasing thermal gradient. It is quite significant in radioactive particle deposition in nuclear

reactor safety simulations, aerosol particle sampling, deposition of silicon thin films etc.

Variable fluid properties

In most of the engineering applications, the thermophysical properties of the fluid, especially
viscosity and thermal conductivity may vary with temperature. Therefore, to predict the
heat transfer rate accurately, it is necessary to take into account this variation of viscosity
and thermal conductivity. Different researchers have taken the variations of the viscosity
and thermal conductivity as different functions of temperature, time etc.. Lai and Kulacki
[51] assumed that the fluid viscosity p varies as an inverse linear function of the temperature
T ie.,

1 1 S

S <1+5(T—Too)) (1.13)

Ko Hoo

where 0 is a thermal property of the fluid and p., is the constant value of coefficient of

viscosity at far away from the surface.

Similarly, Slattery [100] and Chaim [13] assumed that the fluid thermal conductivity a

varies as a linear function of temperature i.e.,

a=a,(l1+€l) (1.14)

where € = F(T,, — T,) is the thermal conductivity parameter, E is a constant depending on
the nature of the fluid and T}, is the surface temperature. The variation of € can be taken in

the range as —0.1 < e < 0 for lubrication oils, 0 < € < 0.12 for water and 0 < € < 6 for air.

10



Boundary Layer Approximation

The boundary layer theory was presented by Ludwig Prandtl in 1904. The main idea was
to divide the flow into two parts. The smaller part is a thin layer in the vicinity of solid
surface in which the effects of viscosity are felt. This thin layer near the solid surface is
called boundary layer. Although the boundary layer is thin, it plays an essential role in fluid
dynamics. The thickness of the boundary layer is a function of the ratio between inertial
forces and viscous forces, that is, the Reynolds number. The concept of boundary layer can
be used to simplify the Navier-Stokes equations to such an extent that it becomes possible

to tackle a large number of practical problems of great importance.

Boussinesq Approximation

For sufficiently small isobaric changes in temperature and concentration, the fluid density
depends linearly on temperature and concentration differences, which is called as a linear

Boussinesq approximation (discussed in detail by Tritton [113]) and is given by
p:poo[l_ﬁT(T_Too) _BC(é_Ooo)] (1'15)

where p is the fluid density, T, is the ambient temperature,C, is the ambient concentration
at some reference point in the medium, St is the coefficient of thermal expansion and S¢ is

the coefficient of solutal expansion, which are given by

_ (%

Br P (8T>p,c (1.16a)
_ (o

Be = p (56)1;1 (1.16Db)

Equation (1.16) is a good approximation for the variation of density. This states that

i. all variations in fluid properties can be completely ignored except for density in mo-

mentum equation.
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ii. the density is considered to vary with temperature and concentrations only, and its

variations can be ignored everywhere except where they give rise to buoyancy force.

1.4 Boundary Conditions

The governing equations for the velocity and temperature fields are partial differential equa-
tions. Which are applicable at every point in a fluid that is being modeled as a continuum.
When they are integrated into any given situation, it can be expected to see arbitrary func-
tions or constants appear in the solution. To evaluate these, an additional statement of
velocity, temperature fields and their gradients at the natural boundaries of the flow domain

are needed. Such statements are known as boundary conditions.

The question of the conditions to be satisfied by a moving fluid in contact with a solid
body was one of considerable difficulty for a long time, A short historical note on the condi-
tions at the surface of the contact of a fluid with sold of the body is presented in Goldstein
[32]. During the nineteenth century three different hypotheses were put forward by various
authors at various times. According to the first, the velocity is the same at a solid wall
as that of the solid itself, and changes continuously in the fluid, which has everywhere the
same properties. The second was put forward by Girard in the discussion of his experiments
on the flow of liquids through tubes. He supposed that a very thin layer of fluid remains
completely attached to the walls. Further, Girard assumed that the rest of the fluid slips
over it. He also supposed that if the walls are of the same material everywhere, the layer
has a constant thickness, so that its surface presents to the current the same irregularities
as those of the wall itself. Also, he assumed that the thickness of the layer depends on the
curvature of the wall and on the temperature. He took it to be different for different liquids
or different materials of the walland to become zero for liquids which do not wet the wall. In
such cases he supposed that the liquid slips over the surface, Thirdlyfrom the same molecular
hypotheses which led him to the equations of motion of a viscous fluid, Navier deduced that
there is slipping at a solid boundary, and this slipping is resisted by a force proportional to

the relative velocity. Since the tangential stress on the solid wall at any point is the same
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as the stress at a neighbouring internal point of the fluid, this is equivalent to the boundary
condition fu = u% for flow in the one direction along a plane wall, where u is the velocity,
the differentiation is along the normal away from the wall, and  is a constant, such that %
is a length. This length is zero if there is no slip. A brief historical, theoretical and exper-
imental summary by several researchers along with the validations on the three conditions
is given by Goldstien (pp 667-680). As it was generally accepted and adopted in the book
by Goldstien that the slip, if it takes place, is thin or a quasi solid layer of the fluid, the slip

boundary condition at the boundary of the surface is considered in the present thesis.

The different boundary conditions for the velocity (no-slip condition and slip condition),
and temperature (uniform temperature, heat flux, and convective conditions) are given be-

low.

No-slip Condition

In no-slip boundary condition, the fluid is in contact with a wall will have the same velocity
as the velocity of the wall. Often, the walls are not moving, so as the fluid velocity is zero. In

drag flows, the velocity of the wall is finite and the fluid velocity is equal to the wall velocity.
‘T(at the boundary) — Tyall

Slip Condition

Generally accepted boundary condition on the solid surface is no-slip condition. Navier [75]
suggested that fluid slips at the solid boundary and slip velocity depends linearly on the

shear stress.
Tyall = € Twall

where ( is the slip length or slip coefficient. The measure of the slip is called slip length.
Factors that affect the slip length include weak wall fluid attraction, surface roughness, and

high shear stress. If ( = 0, then the general assumed no-slip boundary condition is obtained.
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Isothemral /Flux conditions

In most usual situations, heat transfer takes place in a fluid moving near a wall heated or
cooled at a temperature different from that of the fluid. In this case, the boundary conditions
are expressed at the fluid/solid interface. The most usual conditions consist of one of the

following simplified assumptions:

1. The fluid/solid interface is at a uniform temperature : Tqy;q = T5olig = constant

2. The heat flux is uniform on the interface : ¢, = =Ky (n.VT).

Convective Boundary Conditions

Recently, a novel mechanism for the heating process has drawn the involvement of many
researchers, namely, convective boundary condition (CBC), where the heat is supplied to
the convecting fluid through a bounding surface with a finite heat capacity. Further, this
results in the heat transfer rate through the surface being proportional to the local difference

in temperature with the ambient conditions [65].

—K; (n.VT) = h(T, T.)

urface —

where h is the heat transfer coefficient, T, is the ambient temperature.

1.5 Swuccessive Linearization Method

The Successive Linearisation Method (SLM) is proposed and developed by Makukula et al.
[59] and Motsa and Sibanda [69]. This method linearizes the governing nonlinear equations.
To solve the nonlinear boundary value problem in an unknown function z(z) using SLM, we

assume that z(z) is approximated by

z(z) = z.(z) + Z Zm () (1.17)



where z.(z) is an unknown function and zy(z), z1(z) - - - z,_1(z) are known approximate so-
lutions. The unknown function z,(x) can be determined by solving the linearized differential
equation in z.(z) obtained by substituting (1.17) in the given nonlinear differential equation
and linearizing the resulting differential equation using Taylor’s series expansion. Hence, the
subsequent solutions z,.(x),r > 1, are obtained by successively solving the linear equations
for z.(x),r > 1 given that the previous guess z,_1(z) is known. The initial guess zo(z) is

chosen such that it satisfy the given boundary conditions.

Any numerical scheme can used to solve the above iterative sequence of linearized dif-
ferential equations. The SLM method has been successfully applied to a wide variety of
scientific models over finite and semi-infinite intervals. The SLM approximation was applied

to boundary value problems which possess smooth solutions.

1.6 Chebyshev Spectral Collocation Method

The Chebyshev spectral collocation method ([12, 21, 112]) is based on the Chebyshev polyno-
mials defined on the interval [—1, 1]. To solve a differential equation, in an unknown function
z(x), on [—1, 1], first descritize the interval [—1, 1] using the following N + 1 Gauss-Lobatto

collocation points

5j:cos%, j=0,1,2,....N (1.18)

Next, the unknown function z(x) and its derivatives are approximated at the collocation
points as follows
al d"z al 2 "
2 =D AWTHE) == {(b—D@} 2(&), (1.19)

dx” —a)
k=0 k=0

where T}, is the k" Chebyshev polynomial defined by Ty (£) = cos (kcos™1€), and D being
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the Chebyshev spectral differentiation matrix whose entries are defined as ([12, 21, 112])

D _ 2NZ?%41 )
00 — 6
I o ) L R A

Djw =G g J7k HF=012-.N (1.20)

— £ _
Dy = —gqsy, k=1,2- N1,

___2NZ2%41
Dyy = —~ 6

Substituting equations (1.18)-(1.19) into the given differential equation, we get the fol-

lowing system of the algebraic equation

A, X, =R, (1.21)

in which A,_; is a square matrix of order (N +1) x (N + 1) while X, and R,_; are (N +1)™"
order coloumn vectors. Writing the boundary conditions in terms of Chebyshev polynomi-
als, incorporating them in the above system of equations and solving the reduced system
of algebraic equations, we obtain the solution of the given differential equation. If the do-
main is [a, b], then it will be transformed to the domain [—1, 1] by using the using suitable

transformation.

1.7 Literature Review

The heat and mass transfer in the boundary layer flow on a continuously stretching surface
is of considerable importance both from theoretical and practical points of view because of
their wider applications to polymer technology and metallurgy. Sakiadis [91] was the first
to study the boundary layer behavior on continuously moving solid surface, which is the
Blasius type of flow. Griffith [33] studied the boundary layer behavior on moving contin-
uous cylindrical surfaces. In this study, velocity distribution was experimentally measured
and the temperature and concentration profiles were theoretically calculated. Erickson [28]
investigated the boundary layer behaviour on a moving continuous flat plate with suction

by considering the transverse velocity component as nonzero at the surface of the plate. An
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extension to this, Crane [18] studied this flow problem, where stretching sheet whose velocity
is proportional to the distance from the slit. The flow in this case has certain similarities
with tile Hiemenz boundary layer flow near a stagnation point in which the main velocity
in the outer flow is proportional to the distance from the stagnation point. Gupta and
Gupta [37] considered the flow, heat and mass transfer on a permeable stretching sheet with
suction. Vleggaar [116] investigated heat and momentum transfer to continuously acceler-
ating surface and concluded that the cooling of a monofilament proves to be independent
of the drawing speed, which compares well with the results obtained in practice. Grubka
and Bobba [34] analyzed the effect of power-law surface temperature variation on the heat
transfer characteristics of a continuous, linearly stretching surface. Magyari and Keller [56]
studied heat and mass transfer analysis of boundary layer flow on exponentially stretching
continuous surface. Elbashbeshy [25] extended this work to porous media. Partha et al. [78]
investigated the mixed convection flow and heat transfer from an exponentially stretching
vertical surface in a quiescent fluid. From this study, it is noticed that the velocity boundary
layer thickness is increased with the increase of both mixed convection and viscous dissipa-
tion parameters. Bidin and Nazar [11] analyzed numerical he effect of thermal radiation on
the boundary layer flow over an exponentially stretching sheet. Mukhopadhyay et al. [70]
investigated the mass transfer over an exponentially stretching sheet embedded in a stratified
medium. Heat transfer analysis of water-based nanofluid over an exponentially stretching
sheet was studied by Nadeem et al. [72]. Lare [52] discussed the Casson fluid flow of variable
viscosity and thermal conductivity along exponentially stretching sheet embedded in a ther-
mally stratified medium with exponentially heat generation. Zaib et al. [120] reported the
micropolar fluid flow over an exponentially stretching sheet. Rehman et al. [87] investigated
the heat transfer analysis for three-dimensional stagnation-point flow over an exponentially

stretching surface.

The study of MHD flow of an electrically conducting fluid over an stretching sheet is of
great importance in engineering applications, metallurgical and metal processing. Gupta [35]
analyzed the effect of magnetic field on the heat transfer of a viscous electrically conducting

fluid from a hot vertical plate. It is witnessed that the effect of the magnetic field is to
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decrease the rate of heat transfer from the wall. Sato [93] considered viscous incompressible
flow between two parallel plates under the transient electric and magnetic fields. Sparrow
and Cess [101] investigated the free convection heat transfer due to the simultaneous action
of buoyancy and induced magnetic forces. Singh and Cowling [98] presented the boundary
layer flow up a hot vertical plate, in the presence of a uniform horizontal magnetic field
normal to the plate. Kameswaran et al. [45] investigated the radiation effect on MHD
Newtonian fluid over an exponentially stretching sheet. Seini and Makinde [94] investigated
the MHD boundary layer flow due to the exponential stretching sheet with thermal radiation
and observed that increasing the radiation parameter and the Eckert number increases the
thermal boundary layer thickness whilst the reverse is observed for increasing values of the

Prandtl number.

In most of the MHD flows reported in the literature, the Hall current term in the Ohm’s
law was ignored as it has no significant influence for smaller values of the applied mag-
netic field. However, when the strong magnetic field is utilized the effect of Hall current
is very predominant. The study of effects of Hall current on MHD flows has been given
much importance due to its widely spread applications in power generators and pumps, Hall
accelerators, electric transformers, refrigeration coils, flight MHD, solar physics involved in
the sunspot development, the solar cycle, the structure of magnetic stars, cool combustors,
electronic system cooling, thermal energy storage, fiber and granular insulation, oil extrac-
tion and flow through filtering devices and porous material regenerative heat exchangers.
Several investigators have analyzed the Hall currents on the fluid flow problems for different
geometries. Katagiri [47] described the numerical investigation of the effects of Hall currents
on the steady boundary layer flow of viscous incompressible and electrically fluid past a
semi-infinite vertical plate. Pop and Soundalgekar [80] investigated the effect of the uniform
transverse magnetic field and the Hall currents on the flow of an incompressible viscous,
electrically conducting fluid past an infinite, porous plate. Gupta [36] studied the effects of
Hall currents on the flow of an electrically conducting liquid past an infinite porous plate in
the presence of a uniform transverse magnetic field with suction. Debnath et al. [20] studied

the effects of Hall current on the unsteady hydromagnetic rotating fluid flow induced in a
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viscous conducting liquid bounded by a porous flat plate with uniform suction or blowing.
Pop and Watanabe [81] presented flow problem of free convection along a semi-infinite ver-
tical flat plate taking the account of Hall effect. Eldahad and El-Aziz [26] investigated the
effects of Hall and ion-slip currents with internal heat generation past a semi-infinite vertical
plate. Megahed et al. [62] studied the heat and mass transfer along a semi-infinite vertical
flat plate by taking the combined buoyancy force effects and Hall currents into account and
observed that the transverse velocity being equal to zero when Hall parameter becomes very
large. Abo et al. [27] investigated the influence of Hall current on the MHD mixed convec-
tive flow and heat transfer along an inclined continuously stretching surface with power-law
variation in the surface temperature. Aziz [8] reported the effect of Hall current on the flow
and of heat transfer over an unsteady stretching surface. Motsa and Shateyi [95] considered
the significance of Hall currents and strong magnetic field on the unsteady flow and heat
transfer of an electrically conducting fluid over an stretching surface. Pal [77] investigated
the Hall currents effect with radiation over an unsteady stretching surface. Aurang and
Sharidan [119] studied the effect of Hall currents with Soret and Dufour effects over an un-
steady stretching surface. Zaman et al. [121] investigated the effects of Hall current on the
flow of unsteady MHD axisymmetric second-grade fluid with suction over an exponentially
stretching sheet. Nagalakshmi et al. [73] studied the unsteady flow of viscous incompressible
fluid past an exponentially stretching sheet with thermal radiation, chemical reaction, and

Hall current effects.

The heat transfer problems related to the convective boundary condition is more exten-
sive and it occurs in realistic situations, where heat transfer occurs at the boundary surface
to or from a fluid flowing on the surface at a known temperature and a known heat transfer
coefficient, e.g. in heat exchangers, condensers, and re-boilers. Merkin [65] considered the
natural convection boundary-layer flow on a vertical surface generated by Newtonian heat-
ing. Lin et al. [53] investigated the influence of viscous dissipation on the thermal entrance
region laminar pipe flow heat transfer with convective boundary condition. Hamad et al. [38]
studied the significance of hydrodynamic slip and thermal convective boundary conditions

on the heat and mass transfer over a moving porous plate. Yacob and Ishak [117] discussed
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the micropolar fluid flow past stretching or shrinking sheet using convective boundary con-
dition. Rout et al. [90] analyzed the magneto-hydrodynamic flow including heat source and
chemical reaction over a moving vertical plate under prescribed convective boundary con-
dition. Mustafa et al. [71] investigated the flow and heat transfer characteristics over an
exponentially stretching sheet in a nanofluid with convective boundary conditions. Rahman
et al. [83] numerically solved the problem of steady boundary layer flow of a nanofluid past
a permeable exponentially shrinking surface with the convective surface condition, using the
Buongiornos mathematical nanofluid model. Khan et al. [48] studied the boundary layer
flow of nanofluid past a bi-directional exponentially stretching sheet with the convective
thermal condition. Ahmad and Mustafa [4] investigated the rotating flow of nanofluids in-
duced by an exponentially stretching sheet with convective boundary conditions. Nayak et
al. [76] reported the numerical simulation for three-dimensional steady flow of nanofluids
passing through an exponentially stretching sheet in presence of magnetic field and convec-
tive boundary conditions. Reddy et al. [86] analyzed theoretically steady two-dimensional
MHD flow of a Maxwell fluid over an exponentially stretching surface in the presence of

velocity slip and convective boundary condition.

The thermal radiative heat transfer is very important in various propulsion devices for
space vehicles, missiles, and aircrafts, manufacturing industries for the design of reliable
equipment, nuclear plants and gas turbines. Thermal radiation effects become more impor-
tant when the difference between the surface and the ambient temperature is large. Thus
thermal radiation is one of the vital factors controlling the heat and mass transfer. Hussain
et al. [43] explained the radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially
stretching sheet. Thermal radiation Effects on MHD boundary layer flow over an exponen-
tially stretching surface were analyzed by Chaudhary et al. [17]. Further, It is observed
that thickness of the velocity boundary layer, the local skin-friction coefficient and the local
Nusselt number decreases with increasing value of the magnetic parameter. Remus and Mar-
inca [88] studied the MHD viscous fluid flow over an exponentially porous stretching sheet
accompanied by thermal radiation. Loganthan and Vimala [54] investigated the combined

effects of MHD, suction, and radiation of a nanofluid over an exponentially stretching sheet
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embedded in a thermally stratified medium. Hayat et al. [40] reported the unsteady flow
caused by an inclined stretching sheet in a viscous nanofluid including stratification process

due to both temperature and concentration in presence of thermal radiation.

In recent years, the engineers and researchers are intrigued to build the effectiveness of
different mechanical frameworks and industrial machineries. Such sorts of challenges can be
taken care of to diminish the temperature created because of Ohmic dissipation. Several
researchers explored the impact of Joule heating on fluid flow and heat transfer at different
conditions and found that it plays a prominent impact on MHD flows. Yadav and Sharma
[118] investigated the effect of Joule heating on the MHD flow over an exponentially moving
stretching sheet placed in a porous medium in presence of thermal radiation. Sreenivasulu et
al. [105] analyzed the Joule heating, viscous dissipation, thermal radiation and magnetic field
effects the flow past a permeable exponential stretching surface. Hari and Satya [9] explored
the Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet
with power-law heat flux. Hsiao [42] explored the micropolar nanofluid flow with MHD and
viscous dissipation effects towards a stretching sheet with a multimedia feature in presence

of Joule heating effects.

The process of transforming the energy taken from the motion of the fluid by the viscosity
into internal energy, which is partially irreversible, is referred to as viscous dissipation. It
may arise in free convection in several devices which are treated with large deceleration or
operate at high rotative speed [30]. El-Aziz [24] discussed the laminar mixed convection flow
of micropolar fluid over an exponentially stretching sheet with viscous dissipation effect.
Raju et al. [85] investigated the influence of thermal radiation and magnetic field effects
on the heat and mass transfer behavior of Casson fluid past an exponentially permeable
stretching surface in presence of viscous dissipation. Adeniyan and Adigun [3] studied the
natural convective MHD flow and heat transfer over an exponentially stretching sheet in an
incompressible, electrically conducting fluid in the presence of viscous dissipation with Joule
heating. The thermophoresis is a mechanism in which small particles migrate in the direction
of decreasing thermal gradient. It is quite significant in radioactive particle deposition in

nuclear reactor safety simulations, aerosol particle sampling, deposition of silicon thin films
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etc. Goldsmith and May [31] were the first to estimate the thermophoretic velocity in the

one-dimensional flow.

The Soret effect (thermal diffusion), the existence of a diffusion flux inview of a temper-
ature gradient, become very noteworthy when the thermal gradient is very large. Whereas
the energy flux caused by a concentration gradient is termed as the Dufour effect (diffusion-
thermo). Generally, these effects are considered as second-order phenomenon and may be-
come significant in areas such as petrology, hydrology, geosciences, etc. Eckert and Drake [22]
recognized many instances when the importance of these effects cannot be neglected. Srini-
vasacharya and Ramreddy [108] investigated the Soret and Dufour effects on mixed convec-
tion flow, heat and mass transfers from an exponentially stretching surface. Sulochana et al.
[109] investigated the cross-diffusion, viscous dissipation, heat source and chemical reaction
effects on the flow of a nanofluid past an exponentially stretching sheet in a porous medium.
Sravanthi [104] reported the MHD viscous fluid flow towards an exponentially stretching
inclined porous sheet in the presence of Soret and Dufour effects with suction/blowing. are
fewer investigators who addressed the importance of these effects on flow, heat, and mass

transfer process over an exponentially stretching surface.

In most of the studies reported in the literature, the thermophysical properties of fluid
were assumed to be constant. However, it is known that, fluid viscosity and fluid thermal
conductivity may change with temperature. Applications include drawing of plastic films,
wire drawing, paper production, glass fiber production, the study of spilling pollutant crude
oil over the surface of the seawater, cooling of nuclear reactors, food processing, petroleum
reservoir operations, casting and welding in manufacturing processes, and gluing of labels
on hot bodies etc. In spite of its importance in many applications, this effect has received
rather little attention. In recent years, fewer researchers have considered the effect of variable
properties on the convective flows over stretching surfaces. Rahman [82] investigated the
unsteady flow of incompressible laminar, electrically conducting and non-Newtonian fluid
over a non-isothermal stretching sheet with variable viscosity and thermal conductivity in a
porous medium. Siddheshwar et al. [97] studied the boundary layer flow behavior and heat

transfer of a Newtonian fluid past an exponentially stretching sheet in presence of variable
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viscosity. Megahed [64] described the flow and heat transfer of Powell-Eyring fluid over
an exponentially stretching continuous permeable surface in the presence of heat flux and

variable thermal conductivity.

The dispersion is the auxiliary effect of a porous medium on the fluid flow that happens
because of mixing and recirculation of local liquid particles through convoluted ways framed
by the permeable medium solid particles. There has been restored enthusiasm for concentrate
double diffusive convection because of the impact of thermal and solutal dispersion. The
thermal and solutal dispersion have applications in geothermal building applications, ceramic

processing, sensible heat storage beds and petroleum recovery etc.,

The study of heat and mass transfer with chemical reaction has received considerable
attention because of its importance in chemical and hydro-metallurgical industries such as
the design of chemical processing equipment, polymer production, the manufacturing of ce-
ramics or glassware etc. There are several chemically reacting systems which involve both
homogeneous and heterogeneous reactions. Applications of this process occur in catalysis,
biochemical systems, drying processes, combustion processes, metallurgical flows, cooling
towers, etc. Generally, the interaction between the homogeneous reaction in the bulk of the
fluid and heterogeneous reactions occurring on some catalytic surfaces is very complex and is
involved in the production and consumption of reactant species at different rates both within
the fluid and on the catalytic surfaces. Chaudhary and Merkin [14, 15] presented a model
for homogeneous-heterogeneous reaction on uniform stream flow over a surface in which the
heterogeneous reaction takes place by the first-order process and the homogeneous reaction
by cubic autocatalysis method for equal and unequal diffusivities, respectively. Bachok et
al. [10] investigated the effects of homogeneous and heterogeneous reactions on the steady
boundary layer flow near the stagnation point on a stretching surface. Kameswaran et al.
[46] analyzed the effects of homogeneous-heterogeneous reactions in nanofluid flow over a
stretching or shrinking sheet placed in a porous medium saturated with a nanofluid. Abbas
et al. [1] presented the effect of homogeneous and heterogeneous reactions on an electrically
conducting viscous fluid near the stagnation-point past a permeable stretching or shrink-

ing sheet. Masur et al. [61] reported the MHD homogeneous-heterogeneous reaction in a
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nanofluid flow due to a permeable shrinking surface.

Suction or injection (blowing) of a fluid through the bounding surface can significantly
change the flow field. Injection or withdrawal of fluid through a porous bounding wall is of
general interest in practical problems such as film cooling, polymer fiber coating, coating of
wires, etc. The process of suction and blowing has also its importance in many engineering
activities such as in the design of thrust bearing and radial diffusers and thermal oil recov-
ery. Suction is applied to chemical processes to remove reactants. Blowing is used to add

reactants, cool the surface, prevent corrosion or scaling and reduce the drag.

1.8 Aim and Scope

The aim of the present thesis is to study the flow, heat and mass transfer due to steady,
laminar incompressible viscous fluid over an exponentially stretching permeable sheet. The
influence of suction/injection, velocity slip, Hall parameter, magnetic parameter, Richardson
number (mixed convection parameter), Biot number, thermal radiation parameter, chemical
reaction parameter, Joule heating parameter, Soret number, Dufour number, temperature
dependent viscosity and thermal conductivity parameters, heat source/sink, viscous dissi-
pation, thermophoresis, thermal and solutal dispersion parameters, porosity parameter, the
strengths homogeneous and heterogeneous reaction rates on the flow characteristics such as
the velocity, temperature, concentration, heat transfer rate and mass transfer rate are ana-
lyzed numerically. The problems considered deal with semi-infinite exponentially stretching
sheet geometry for the two cases: when the sheet is (i) subjected to thermal convective

boundary condition and (ii) maintained at uniform wall temperature with Hall effect.

1.9 Overview of the Thesis

This thesis is arranged into 9 chapters.

Chapter - 1 provides an introduction to the theory of viscous fluids, definitions of various
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terms along with the equations of motion and magnetohydrodynamic (MHD) flows. A survey
of related literature has been presented. Finally, brief introductions about the problems that

we consider in the subsequent chapters are presented.

Chapter-2 analyzes the flow, heat and mass transports due to viscous fluid flow through
a porous exponentially stretching sheet in the presence of thermal radiation and chemical re-
action effects. The effects of magnetic, Hall parameter, chemical reaction, thermal radiation
parameter, suction/injection parameter, Richardson number (mixed convection parameter)
and Biot number on the non-dimensional velocities, temperature, concentration, heat, and
mass transfer rates are discussed through graphs. The local skin-friction in # and z-directions
are presented in a tabular form for different values of velocity slip, magnetic, Hall parameter,

Richardson number, chemical reaction and thermal radiation parameters.

In chapter-3, the heat and mass transfer for steady incompressible viscous fluid flow
over a permeable exponentially stretching sheet is investigated in presence of Joule heating
effect. The effects of magnetic, Hall parameter, suction/injection parameter, Richardson
number (mixed convection parameter) and Biot number on the non-dimensional velocities,
temperature, concentration are presented through graphs. The variation of heat and mass
transfer rates in presence of Joule heating parameter, magnetic, Hall parameter, slip param-
eter, suction/injection parameter, Richardson number (mixed convection parameter) and
Biot number are presented through graphs. Local skin-friction in & and Z-directions are pre-
sented in tabular form for diverse values of suction/injection, velocity slip, magnetic, Hall

parameter, Joule heating parameter and mixed convection parameter.

Chapter-4 deals with the influence of Soret and Dufour effects due to steady, laminar slip
flow of viscous incompressible fluid over an exponentially stretching sheet. The variation
of non-dimensional velocities, temperature, concentration, heat, and mass transfer rates are
presented through graphs for the physical parameters Tabular values for the skin-friction
for various values of velocity slip, magnetic, Hall, mixed convection parameters, Soret and
Dufour number, is displayed. It is seen that minor changes in Dufour and Soret numbers

caused the major variations in the profiles.
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Chapter-5 describes the impact of variable fluid properties on a steady, laminar incom-
pressible and electrically conducting boundary layer flow of viscous fluid past an exponen-
tially stretching sheet. The influence of variable viscosity parameter and thermal conduc-
tivity parameters, magnetic, Hall parameter, Biot number and heat source parameter on
non-dimensional velocities, temperature, and concentration, local skin-friction, heat and

mass rates are calculated and discussed quantitatively.

Chapter-6 presents the viscous fluid flow past a sheet, stretching exponentially, under the
influence of thermophoresis and viscous dissipation effects. The non-dimensional velocities,
temperature, and concentration profiles are obtained for various values of thermophoresis,
magnetic, Hall parameter, slip parameter, suction/injection parameter, Richardson number,
Eckert number and Biot number. The rate of local heat and mass transfers are presented
graphically and discussed quantitatively for various values of the fixed parameters. The
influence of thermophoresis parameter, Eckert number, velocity slip, magnetic, Hall parame-
ter and Richardson number on local skin-friction in both directions is presented in a tabular
form. The numerical results are compared and are found to be in good agreement with

previously published results as special cases of the present investigation.

The objective of Chapter-7 is to describe the double dispersion on the laminar flow over an
exponentially stretching porous surface in an incompressible electrically conducting viscous
fluid with velocity at the boundary of the stretching surface. The influence of thermal and
solutal dispersion parameters, velocity slip, thermal radiation parameter, magnetic and Hall
parameters on non-dimensional velocities, temperature, concentration, the rate of heat and
mass transfers is shown through graphs. Tabular values for the skin-friction for the various
values of velocity slip, Hall parameter, thermal radiation, mixed convection, thermal and
solutal dispersion parameters are displayed. The obtained results are compared with the

previously published results for special cases.

The objective of Chapter-8 is to analyze the influence of homogeneous-heterogeneous
reactions on the laminar slip flow of electrically conducting viscous fluid over an exponen-
tially stretching porous surface. The variation of non-dimensional velocities, temperature

and the rate of heat transfer for various values of magnetic, Hall parameter, thermal radia-
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tion, mixed convection and suction/injection parameters is analyzed. Influence of strength of
homogeneous-heterogeneous reactions together with all parameter, thermal radiation, mixed
convection and suction/injection parameters on the variation of non-dimensional concentra-
tion and the rate of mass transfer of the fluid is analyzed and presented through graphs. The
obtained results are compared with the previously published results for special cases. Tabu-
lar values for the skin-friction for the different values of velocity slip, Hall parameter, thermal
radiation parameter, Richardson number, the strength of homogeneous-heterogeneous reac-
tion is displayed. It is observed that both the skin-friction are not affected by the strength

of heterogeneous-homogeneous reactions.

The main observation of the earlier chapters are summarized and the scope for further

investigations are recorded in the final chapter (Chapter 9).
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Chapter 2

Flow over an exponentially stretching

sheet with thermal radiation and

chemical reaction !

2.1 Introduction

The effect of thermal radiation on convective flows have applications in physics and engi-
neering such as space technology, solar power technology, propulsion devices for aircraft and
other industrial areas [115, 5, 25, 70, 88]. Animasaun et al. [6] investigated the motion of
temperature dependent viscosity and thermal conductivity of steady incompressible laminar
free convective MHD Casson fluid flow over an exponentially stretching surface with thermal
radiation and exponentially decaying internal heat generation. Mabood et al. [55] investi-
gated the MHD boundary layer flow of a viscous incompressible fluid over an exponentially
stretching sheet including the effect of thermal radiation in the energy equation. On the
other hand, the study of heat and mass transfer with chemical reaction has received con-

siderable attention because of its importance in chemical and hydro-metallurgical industries

LCase(a):Accepted for publication in “Lecture Notes in Mechanical Engineering”,
Case(b):Published in “Frontiers in Heat and Mass Transfer” (2018) 9(37) (2017) 1-10
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such as design of chemical processing equipment, polymer production, the manufacturing of
ceramics or glassware etc. Eid [23] investigated the heat generation/absorption effects on
the mixed convective flow of a nanofluid through a porous medium due to an exponentially

stretching sheet in the presence of chemical reaction and magnetic field.

In this chapter, we investigate the influence of thermal radiation and chemical reaction
on the viscous fluid flow over an exponentially stretching sheet. We consider two different
physical conditions on the sheet i.e. when the sheet is (i) subjected to thermal convective
boundary condition and (ii) maintained at uniform wall temperature with Hall effect. The
influence of important parameters, namely, velocity slip, suction/injection, Hall parameter,
and convective heat transfer parameter(Biot number) on the physical quantities of the flow,

heat, and mass transfer rates are analyzed.

2.2 Formulation of the Problem

Consider a steady, two-dimensional, laminar slip flow of electrically conducting viscous in-
compressible fluid towards an exponentially stretching sheet. The ambient temperature and
concentration of the fluid are T,, and C', respectively. The Cartesian coordinate framework
is considered by taking the positive £—axis along the sheet and g—axis orthogonal to the
sheet so that the fluid occupies the space § > 0 (as shown in the Fig. (2.1)). The stretching
velocity of the sheet is assumed as U, (Z) = Uy et where 7 is the distance from the slit and
L is the reference length or scaling parameter. The suction/injection velocity of the fluid
through the sheet is V(i) = Vj e2r, where Vj is the strength of suction /injection. Further,
the slip velocity of the fluid is assumed as N.(Z) = Ny 6%, where Ny is the velocity slip
factor. The fluid is considered as non-scattering medium, to be gray and absorbing/emitting
radiation. The radiative heat flux in the energy equation is described by the Rosseland
approximation [102]. Also, it is assumed that there exists a homogenous chemical reaction
of the first order with rate constant k; = koe%, where ky is constant, between the diffusing
species and the fluid. With these assumptions, the equations governing the flow are given

by
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Figure 2.1: Schematic diagram with coordinate system

Dty % =0
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“or Yoy 09*  3k*pc, O
_aC  _oC 92C 3
U@% + Uya—g = l)a—g2 - kl(C - Coo)

(2.1)

(2.2)

(2.3)

(2.4)

where (@, @,) is the velocity vector, C is the concentration, T is the temperature. D is the

mass diffusivity, « is the thermal diffusivity, p is density, v is the kinematic viscosity of the

fluid, o* is the Stefan-Boltzmann constant, k* is the mean absorption coefficient and ¢, is

specific heat capacity at the constant pressure.

In this chapter, two types (cases) of problems are considered. In first problem i.e. case

(a), the sheet is subjected to convective thermal condition. In the second problem i.e. case

(b), the sheet maintained at uniform wall temperature with Hall effect.
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2.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

Yoo,

ture Ty and which induces a heat transfer coefficient hy, where hy = hy/ 57

Hence, the conditions on the surface of the sheet are

~ Oty ~ _ ~ o 9T A ~
Uy = U*—i—NN*l/ 5 7:Ly =-—V.(Z), h(Ty —T) = Ky C=C, at g=0 2.5)
Uy — 0, T =T,, C—Cyx as §— o0
Introducing the stream functions through u, = —g—lf and u, = g—ﬁ” and then the following
i T
dimensionless variables
y=10\/55e, ¥ =v2L0erF(z,y), (26)
T =T+ (Tf —T)T(z,y), C=Cyx+(Cyp—Cx)C(z,y)
into Eqgs. (2.1) - (2.4), we obtain
F" + FF" —2F? =0 (2.7)
1 4R
— 1+— |T"+FT'=0 2.8
Pr ( - 3 ) + (28)
Lersro—yco=o (2.9)
Sc '
The conditions at the boundary reduces to
F(0)=S, F'(0)=1+AF"(0), T'(0)=-Bi(l-T(0), C0)=1at y=0
F'(00) =0, T(c0) =0, C(o0)—=0 as y— o0
(2.10)
where Bi = % v is the Biot number, v = % is the chemical reaction parameter, S =
Vo /3—[’}0 is the suction(S > 0) or injection(S < 0) parameter, Sc = 4 is the Schmidt num-

ber, R = % is the radiation parameter, A\ = Ny+/vUy/2L is the velocity slip parameter,

Pr = % is the Prandtl number and the prime denotes derivative with respect to y.
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2.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The wall shear stress is

0,
= 2.11
T { 2j ]go (2.11)

and the heat and mass transfers from the sheet respectively are given by

oT do* | OT* oC
S LCC ol d g¢,—=-D|Z 2.12
=T 9yl T Bk | oy e 97 | (2.122)
g=0 y=0 =0
: : o 27, Tqw
The non-dimensional skin friction C; = ——, the local Nusselt number Nu; = ——————
U? (T — T
and the local Sherwood number Sh; = $, are given by
K(Cyp — Co)
vie & — (0 L:—(H@)T’o and ——2M (o }
/27/L (0), V/Z/2L\/Re; 3 (0) V2 /2L\/Re; ©
(2.13)
where Re; = .(7) is the local Reynold’s number.

v

2.2.3 Solution of the Problem

The system of Egs. (2.7) - (2.9) along with the boundary conditions (2.10) is solved numer-
ically using the successive linearisation method (SLM) ([68], [60]). Using this method the

non-linear governing equations reduce to a system of linear differential equations.

In this method, we assume that the independent vector 2(y) = [F(y), T(y), C(y)] can be

expressed as

Qy) = 2 (y) + Y () (2.14)

where Q,.(y), (r = 1,2,3,....) are unknown functions and €2,(y) are the approximations

which are obtained by recursively solving the linear part of the system of equations that
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results from substituting (2.14) in (2.7) - (2.9).

The initial approximation €2y(y) is chosen such that they satisfy the boundary conditions

(2.10). Therefore Qo(y) = (S + 5 — o€ ¥ 25¢ Y €Y). The subsequent solutions
F., T., C. r > 1 are obtained by successively solving the following linearized form of the
equations which are obtained by substituting Eq. (2.14) in the governing equations (2.7) -

(2.9).

Frm + Xll,r—lFr” + Xl2,r—1Fr, + Xl3,r—1Fr = Cl,r—l (215)
1 4R
Xo1r—1 L7 + Pr (1 + ?) T, + X22,7‘—1T7"/ = Cor1 (2.16)
1 " /
X31,7‘—1F7“ + %Cr + X32,7‘—IO7‘ - 707“ - <3,'r—1 (217)
where
r—1 r—1 r—1
Xll,r—l - Z FTH X127T‘—1 — —42 _F",r;7 X137,’,_1 = Z F’r,{’
n=0 n=0 n=0

r—1 r—1 r—1 r—1
! !
X21,r—1 = 5 T, X22r—1= g Fo, x310-1= E Ch, X32,-1 = E Fy,
n=0 n=0 n=0 n=0

r—1 r—1 r—1 r—1 2
Groa==3 F'=) F.) Fl+2 (ZFO |
n=0 n=0
E,

n=0 n=0
r—1 r—1 r—1
1 4R

r—1 = T 5 1 a5 T” - n Tl»
=g (14 5) X - LAY

n=0 n=0 n=0

1 r—1 r—1 r—1 r—1
63,7’—1:_%20:{_ Fn 07,1_’_72071

n=0 n=0 n=0 n=0

The boundary conditions reduce to
F.(0) = AEY(0)—F/(0) = Fl(00) = T/(0)— BiT;(0) = T,(00) = C.(0) = C\.(00) =0 (2.18)

The approximate solution for €2(y) is then obtained as

Qy) ~ Y Qn(y) (2.19)

where M is the order of SLM approximation.
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Egs. (2.15) - (2.17) are solved using the Chebyshev spectral collocation method [12]. To
solve the problem by this method, first, the interval [0, c0) is replaced by the interval [0, L],
where L is a scaling parameter used to invoke the boundary condition at infinity. Again, the

interval [0, L] is transformed into the region [-1, 1] by

—2T 0 1<e<i (2.20)

The unknown functions are approximated by the Chebyshev interpolating polynomials
in such a way that they are collocated at the Gauss-Lobatto points defined as in Eq. (1.18).
The function €2(y) is approximated at the Gauss-Lobatto points defined as in Eq. (1.18) i.e.,

N
=Y Q(&IT(§), §=01,2,..,N (2.21)
k=0

where T}, is the k" Chebyshev polynomial.

The 7" order derivative in terms of Chebyshev spectral differentiation matrix 2 (defined

in Eq. (1.19)) is given by

d— ()Z@k] (&), j=0,1,2,...,N. (2.22)

dy"

Substituting Eqgs. (2.20) - (2.22) into Egs. (2.15) - (2.17) leads to the following matrix

equation
AT,1XT == erl, (223)
subject to the boundary conditions
N
Z Do (&) = > (AD2yj, — D) Fr (&) = 0 (2.24a)
k=0
Z DyiT (&) — Bi To(én) = To(&o) = Culén) = Cr(&) =0 (2.24b)
k=0

In Eq.(2.23), A,_1 is a (3N + 3)x(3N + 3) square matrix and X, and R,_; are (3N + 3)x1
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column vectors defined by

All A12 A13 FT‘ El,?“fl
Ar—l - Agl AQQ A23 y Xr = 67. ) Rr—l = E27r,1 (225)
Aszi Ay Asg P, Es,

where

F, = [Fi(&), Fr (&), Fr(&2), s Fr(én—1), Fr(€8)]T,
0, = [T7(), Tr(&1), (&) -y Tr(én—1), Tr(En)]T,
P, = [C(), Cr(§1), Cr(&2); -y Cr(En—1), Cr(En)]T,

= [Cr1(80), Crra1(61), Cra1(82)s ooy 1 (1), Crra (E8)]T
Eyr1 = [Gor1(60), Car1(&1), Cor1(82)s -+ Corm1(En—1), Cor1 (En)]"
Es, 1 = [G3-1(80), G3r—1(61), Gr1(62), -y Gr1(En—1), G (EN)]T
A =D%+ x11,-1D?* + x12,1D + X131, A12 =0, A;3=0,
Agt = Xo15-1, Az = 5= (1+28) D+ x20,1D, Ay =0,
Azt = X310-1, A2 =0, Asz = ﬁDQ + x32,—1D — 11

Here I is an identity matrix of size (N +1)x(N +1). After modifying the matrix system

(2.23) to incorporate boundary conditions (2.24), the solution is obtained as

X, =A" R, (2.26)

2.2.4 Result and Discussion

In order to validate the code generated, the results of the present problem have been com-
pared with works of Magyari and Keller [56] as a special case by taking S =0, R =10,y =0,
A =0, and Bi — oo and found that they are in good agreement, as shown in Table. (2.1).
The range of the parameters were chosen arbitrarily in order to study the impact of them on
the physical quantities as S = 0.5, v = 0.5, A = 1.0, R = 0.5, and Bi = 1.0 unless otherwise

mentioned.

Convergence of the method to the numerical results is achieved at the 20" order of SLM
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Table 2.1: Comparative analysis for % by the current method for A\ = 0, R = 0,
v=0,S5=0 and Bi — oo.

Nusselt number %

Pr Magyari and Keller [56] | Present
0.5 0.330493 0.33053741
1 0.549643 0.54964317

1.122188 1.12208592
5 1.521243 1.52123757
8 1.991847 1.99183597
10 2.257429 2.25742182

approximation.

The influence of slip and suction/injection parameters on the fluid velocity is portrayed
in the Figs. (2.2(a)) - (2.2(b)). It is evident from the Figs. 2.2(a) and (2.2(b)) that the rise
in the slipperiness and the fluid suction diminish the velocity while the injection enhances
the velocity. On the other hand, the skin-friction is enhancing with the slipperiness and

reducing with the suction of the fluid as depicted in the Fig. (2.3).

The variation of the temperature distribution with A\, S, R and B1 is plotted through
the Figs. (2.4(a)) - (2.4(d)). It is evident from the Fig. (2.4(a)) that the temperature is
enhancing with the rise in the slipperiness. It is well known that wall suction reduces the
thickness of thermal boundary layer and hence, reduction in temperature. This phenomenon
is graphically presented in the Fig. (2.4(b)). However, the wall injection produces an exactly
opposite nature. Figure (2.4(c)) illustrates that the temperature is enhancing with the
rise in the value of thermal radiation and hence gain in thickness of thermal boundary.
The variation of the temperature with Bi is presented in the Fig. (2.4(d)). A rise in
the Biot number enhances the temperature. Further, for large large value of Biot number,
the convective thermal condition from (2.10) transforms to 7°(0) — 1, which signifies the
constant wall condition. i.e., stronger convection leads to the higher surface temperatures

which appreciably increases the temperature.

The influence of A\, S and 7 on the concentration is shown graphically in Figs. (2.5(a))
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- (2.5(c)). It is clear from the Fig. (2.5(a)) that an increase in the slipperiness rises the
concentration. While, the wall injection is enhancing the fluid concentration as shown in
the Fig. (2.5(b)). It is noticed from the fig. (2.5(c)) that the concentration of the fluid is

increasing for the constructive reaction (7 < 0) and reducing for the destructive reaction

(v > 0).

The variations of the rate of heat transfer with S for diverse values of R, Bi and A
is portrayed through the Figs. (2.6(a)) - (2.6(c)). The rate of heat transfer is enhancing
with the rise in the radiation parameter as shown in the Fig. (2.6(a)). Figure (2.6(b))
demonstrates that the rate of heat transfer is enhancing with the increase in the value of Bi.
Figure (2.6(c)) shows that an increase in A diminishes the rate of heat transfer. Further, it

is noticed from these figures that the fluid suction enhances the rate of heat transfer.

The variation of the rate of mass transfer with S for different values of A and v is shown
in the Figs. (2.7(a)) and (2.7(b)). It is observed from the Fig. (2.7(a)) that an increase
in the slipperiness reduces the rate of mass transfer. On the other hand, an increase in the
magnitude of chemical reaction parameter (positive values of ) enhances the rate of mass
transfer as shown in the Fig. (2.7(b)). Further, the rate of mass transfer is increasing with

the fluid suction.
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2.2.5 Case(b): Uniform wall temperature with Hall effect

A magnetic field of strength B(#) = Byezr, where By is the constant magnetic field, is ap-
plied orthogonal to the sheet as shown in the Fig. (2.8). The assumption of small magnetic
Reynolds number allows to neglect the induced magnetic field in contrast to applied mag-
netic field. The Hall current is considered in view of relatively high electron-atom collision
frequency. This assumption causes a cross flow in the z-direction, therefore the flow becomes
three dimensional. Further, it is assumed that the sheet is maintained at uniform wall tem-
perature and concentration 7,,(Z) and C,, (%), respectively. These values are assumed to be
greater than the ambient temperature and concentration at any arbitrary reference point in
the medium (inside the boundary layer). Under the Boussinesq approximation, the flow is

governed by the equations (2.1), (2.3), (2.4) along with the following momentum equations

o1 o1 0?1 - ~ o B?
ly—— + Uy—— = — T - T C—-Cx)— ——— (U, u,) (2.27
_ 0u, L o, 9%, N o B? (Bui i) (2.28)
Up—o T Uy = V(s Uy — U, )
ox Y 0y 29> p(l+33) "
where u, is the velocity in zZ-direction.
The associated boundary conditions are
ax:U*‘i‘N*Vaaa;a ay:_Vk<j>7 az:()v
Tw - Too + T06%7 Cw = Ooo -+ 006% at g =0 (229)

Uy =0, G4, =0, T =T, C—Cx as §— 00

Substituting the following similarity transformations

j=yy/2Lert, ) =/ WLUpesr F,
Uy = Uget F', iy = —/ %0 er (F +yF'), @, = Upet W (2.30)

T=Ty+TyeZT, C=Cy+CyerC
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Figure 2.8: Schematic diagram with coordinate system

into the Eqs. (2.1), (2.27), (2.28), (2.3), and (2.4)

H
Jal + FE" _ 2F/2 + 2RZ(T + BC) — 1 -l-aﬂ2 (F’ —+ ﬂhW) =0 (2.31)
h
H,
W' — 2F'W + FW' + —— (B, F — W) =0 (2.32)
1+ 35
1 4R
— 1+ = T"+FT' —4AF'T = 2.33
Pr < + 3 > + 0 ( )
Sic” }FC' —4F'C —~C =0 (2.34)
&

The conditions (2.29) reduce to

F(y)=25, F'(y) =1+ AF"(y), W(y) =0, T(y) =1, Cy) =1 at y=0 (2.35)
F'ly) =0, W(y) =0, T(y) =0, C(y) =0 as y— oo '

3. . . . .
where Gr = QBT% is the Grashof number, Ri = % is the mixed convection parameter,

2
H, = Qi"TOBO is the magnetic parameter, Re = % is the Reynold’s number, g, = (w.7.) is
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Hall parameter, 7, is the electron collison time, w, is the cyclotran frequency of electrons

and B = gi—%) is the buoyancy ratio. The other parameters are defined in case(a).

2.2.6 Skin Friction in  and z-directions, Heat and Mass Transfer

Coefficients

The wall shear stress in Z- and 2-directions are

Oty O,
R o 2.
Twi H |: ag :|g()’ Twz H |: ag :|g() ( 36&)

and the heat and mass transfers from the sheet respectively are given by

oT*
9y

oT
9y

40*

3k
0

oC
Z

Qu = —K and ¢ =—D (2.37a)

y= y=0 =0

The non-dimensional skin friction in z—direction C'rz = %, local skin-friction in Z—direction
*

Cps; = i@’f, the local Nusselt number Nu; = ﬁ and local Sherwood number Sh; =

Zqm

m, are given by

€ " Rem !
%GF = F"(0), V%/LCFZ = W'(0),

% = (1 + ?) T'(0), and L = —C"(0). (2.38)

where Re; = H.(7) is the local Reynold’s number.
v

2.2.7 Solution of the problem

The system of Egs. (2.31) - (2.34) along with the boundary conditions (2.35), is solved

numerically, using the successive linearisation method.
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Proceeding as in case (a), we obtain the following matrix equation

AifIX’L' - Ri*lu (239)
subject to the boundary conditions
N
Z Do Fi(&) = Y (AD2y; — Dii) Fi(&) = 0 (2.40a)
k=0
Wi(En) = Wi(&) = Ti(&n) = Ti(&) = Ci(én) = Ci(&) = 0 (2.40b)

In Eq.(2.39), A;_1 is a (4N + 4)x (4N + 4) square matrix and X; and R;_; are (4N + 4)x1

column vectors defined by

A A Az Ay
Ay Ay Agz A ;
A, = 21 22 Ag3 A DX, = R, = , (2.41)
Az Azy Asz Ay

An Ap Ay Ay

% © = =
T

s
=

\.% -

s

—

F; = [Fi(&), Fi(&), Fi(&), -, Fi(§nv—1), Fi(€n)]",

W, = [Wi(&o), Wil&1), Wil&2), -, Wil€n—1), Wilén)]T,
0; = [Ti(%), Ti(&1), Ti(&2), -, Ti(sn—1), Ti(€n)]",

®; = [Ci(&), Ci(&1), Ci(&a), -+, Cil€n—1), Ci(En)]T,

S

(

= [Gi-1(%0), C1i-1(&1), Cri-1(&2), -, Cri—1(€n-1), Cri-1(En)
Esi1 = [Ci-1(80), C2i-1(1), Ci-1(&2), -+ Ci—1(€n-1), C2i-1(En)

= [G3,i-1(&0); ); (En-1) (&n)

[Cai-1(&0), ), (En-1), (€n)

]
) - I

Eszi1 = [G3i-1(60); Gim1(61), Gim1(€2), s G (En—1), Gaim1 (E)]T

E i = o), Cai—1(&1), Cai—1(&2), s Cayim1(Env—1), Caim1(En)]

A =D? + Xll,ile +X12-1D + X13,-1, A2 = 1+521 Az =2Ril, Ay =2BRil

!

Aot = X21,i-1D + X221, Ass =D + xo03,01D + X041, Ay =0, Ay =0
Ast = x31i-1D + X32,-1, A2 =0, Az =2 (14 %) D+ x33,.1D + x344-1, Az1 =0
Ay = Xa1,i-1D + Xxa2-1, A =0, Ap3=0, Ay = éDQ + Xa3,i—1D + X441
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Table 2.2: Comparison of —F"(0) and F(oco) calculated by the present method for S = 0,
A=0, H,=0, and Ri = 0.

Magyari and Keller [56] | Present
—F(0) 1.281808 1.28180856
F(o00) 0.905639 0.90564370

Here I is an identity matrix of size (N +1)x(N +1). After modifying the matrix system

(2.39) to incorporate boundary conditions (2.40), the solution is obtained as

2.2.8 Results and Discussion

In order to validate the code generated, the results of the present problem have been com-
pared with that of the results obtained by Magyari and Keller [56] as a special case by taking
Ri=0,H,=0,5=0,A=0, R=0, and v = 0 and found that they are in good agreement,
as presented in Table. (2.2). To study the effects of Hall parameter (3, suction/injection
parameter .S, radiation parameter R and chemical reaction parameter v, computations have
been carried out in the cases of Rt = 1.0, B = 0.5, S =05, A =1.0, 8, = 1.0, H, = 2.0,
R =0.5, and v = 0.5.

Figures (2.9(a)) - (2.9(d)) interpret the variation of the velocities, temperature and con-
centration with S. It is seen from these figures that the velocities, temperature, and con-
centration are increasing with the increase in the injection parameter (S < 0). It is also
perceived that the suction (S > 0) reduces both the momentum, thermal and concentration

boundary layer thickness which, in turn, reduce the velocity, temperature, and concentration.

Figures (2.10(a)) - (2.10(d)) represent the behavior of the velocities, temperature and
concentration with Hall parameter 8. From figure (2.10(a)), it is observed that the tan-
gential velocity increases with the increase in fj,. Figure (2.10(b)) shows that the cross flow

velocity increases with an increase in the value of . It is increasing near the plate and
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then gradually decreasing. Figures (2.10(c)) and (2.10(d)) depict that the temperature and

concentration are diminishing with an increase in the value of (.

The influence of v on the velocities, temperature and concentration is presented in the
figures (2.11(a)) - (2.11(d)). Figure (2.11(a)) depicts that the temperature is decreasing with
an increase in the values v. The same effect is observed on the secondary velocity as presented
in the figure (2.11(b)). Further, from figure (2.11(c)), it is seen that the temperature is rising
with an increase in the values of 7. The concentration reduces with the increasing values of
~ as depicted in the figure (2.11(d)). This is due to the fact that the reaction-rate parameter
is a decelerating agent, the conversion of the species takes place as a result of the chemical

reaction and thereby reduces the concentration in the boundary layer.

The behaviour of both the velocities, temperature and concentration profiles with the
radiation parameter R is exhibited in the figures (2.12(a)) - (2.12(d)). From figures (2.12(a))
and (2.12(b)), it is observed that both the velocities are increasing with an increase in the
value of R. Applying the thermal radiation accumulates the momentum boundary layer
thickness and hence, velocity rises. It is seen from the figure (2.12(c)) that the temperature
increases with the increasing values of the thermal radiation, which in turn, intensifies the
thermal boundary layer thickness. Figure (2.12(d)) shows that concentration is decreasing

with an increase in the thermal radiation.

The influence of Ri, By, H,, R, v and A on the heat transfer —(1 + 2£)77(0) coefficient
against S are presented in the figures (2.13(a)) - (2.13(d)) and (2.14(a)) - (2.14(b)), respec-
tively. It is observed from the Figs. (2.13(a)) and (2.13(b)) that the heat transfer coefficient
is increasing with the increase in the values of the mixed convection parameter Ri and the
Hall parameter (3,. The rate of heat transfer decreases with an increase in the value of the
magnetic parameter H,, as shown in the Fig. (2.13(c)). It is evident from Fig. (2.13(d))
that, the heat transfer rate is increasing with an increase in the value of the radiation param-
eter R. The heat transfer rate is decreasing with an increase in the values of the chemical
reaction parameter 7 as presented in the Fig. (2.14(a)). It is seen from Fig. (2.14(b)) that
heat transfer is decreasing with an increase in the values of A. This is due to the fact that,

the slipperiness enhances the thermal boundary layer thickness. Further, it is understood

20



from the figures that heat transfer rate is increasing with increasing the fluid suction on the

boundary of the stretching sheet.

The variation mass transfer (—C’(0)) coefficient against S is presented in the Figs.
(2.15(a)) - (2.15(b)) and (2.16(a)) - (2.16(d)), respectively. Figures (2.15(a)) and (2.15(b))
show the variation of the mass transfer coefficient for different values of the chemical reaction
parameter v and the slip parameter A. It is evident from these figures that the increase in
the value of the chemical reaction parameter the mass transfer rate increases. An increase in
the slipperiness reduces the rate of mass transfer. Figures (2.16(a)), (2.16(b)) and (2.16(d))
show that the mass transfer rate is increasing with the increase in the values of the mixed
convection, Hall and thermal radiation parameters, respectively. While an increase in the
magnetic parameter decreases the rate of mass transfer as shown in the Fig. (2.16(c)). It is
clear from the figures that the mass transfer rate is increasing with an increase in the fluid

suction at the boundary.

The behaviour of non-dimensional skin-friction in z and Z-directions, \/WOF:}
and WO r3z, respectively, for different values of A\, 8y, H,, Ri, R and y are tabulated
in Table (2.3). It is evident from the table that F”(0) is raising and W’(0) reducing with the
slipperiness. In the presence of Hall parameter both the skin-frictions are increasing. It is
also observed that when (), = 0, then there is no secondary flow velocity and hence there is
no skin-friction in the direction. Table (2.3) illustrates that, F”(0) is decreasing and W’(0) is
increasing with the magnetic parameter. It is also seen that the skin-friction in z -direction is
zero when H, = 0. The positive values of R: increases both the skin-frictions. In addition to
this, F”(0) in Z-direction is increases with the positive values of Ri. Furthermore, it is also
identified that a unique value of F”(0) = —0.61660061 and W’(0) = 0.15023781 is attained
when Ri = 0 (the case of forced convection flow) and for all values of the radiation parameter
R. Because (2.31) and (2.33) are uncoupled when Ri = 0. As a result, the flow and the
thermal fields are independent. Hence, there is no effect of the thermal field parameters on
the flow filed. The radiation parameter increases both the skin-frictions. It is noticed from
the table that, £"(0) is increasing and W’(0) is decreasing with v < 0 (destructive chemical

reaction) and both are decreasing with v > 0 (constructive chemical reaction).
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Table 2.3: Variation of skin friction in T- and Z-directions for varying values of slip parameter
A, Hall parameter By, magnetic parameter H,, mized convection parameter Ri, radiation
parameter R and chemical reaction parameter -y.

N pB» H, Ri R ~ F(0) W'(0)
00 1.0 2.0 1.0 05 0.5 |-0.84854024 | 0.48354636
05 1.0 2.0 1.0 0.5 0.5 |-0.37218224 | 0.44456698
1.0 1.0 2.0 1.0 05 0.5 |-0.23963767 | 0.43303045
20 1.0 2.0 1.0 05 05 |-0.14018654 | 0.42415295
1.0 00 2.0 1.0 05 0.5 |-0.30883545 | 0.00000000
1.0 0.1 2.0 1.0 05 0.5 |-0.30771879 | 0.06607727
1.0 1.0 2.0 1.0 05 0.5 |-0.23963767 | 0.43303045
1.0 20 2.0 10 05 0.5 |-0.17666970 | 0.43597489
1.0 1.0 0.0 10 05 0.5 |-0.11322710 | 0.00000001
1.0 1.0 0.1 1.0 05 0.5 |-0.11970192 | 0.03314271
1.0 1.0 1.0 1.0 05 0.5 |-0.17852309 | 0.26727093
1.0 1.0 2.0 1.0 05 0.5 |-0.23963767 | 0.43303045
1.0 1.0 2.0 00 05 0.5 |-0.61660061 | 0.15023781
1.0 1.0 2.0 0.5 05 0.5 |-0.39839663 | 0.33594925
1.0 1.0 2.0 15 05 0.5 |-0.10565609 | 0.50306747
1.0 1.0 2.0 3.0 05 0.5 | 0.22147847 | 0.64645130
1.0 1.0 2.0 1.0 0.0 0.5 |-0.26780778 | 0.40671604
1.0 1.0 2.0 1.0 05 0.5 |-0.23963767 | 0.43303045
1.0 1.0 20 1.0 1.0 0.5 |-0.22203919 | 0.45200184
1.0 1.0 20 1.0 2.0 0.5 |-0.20024593 | 0.47826014
1.0 1.0 2.0 1.0 05 -1.0]-0.22103672 | 0.45452242
1.0 1.0 2.0 1.0 05 -0.5|-0.22876207 | 0.45510319
1.0 1.0 2.0 1.0 05 0.0 |-0.23497509 | 0.44256653
1.0 1.0 2.0 1.0 05 1.0 |-0.23963767 | 0.43303045
1.0 1.0 20 1.0 0.5 2.0 |-0.24325520 | 0.42672253
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Figure 2.9:  “Effect of S on (a)Velocity, (b)transverse wvelocity, (c)Temperature, and
(d)Concentration profiles”.
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2.3 Conclusions

In this chapter, the heat and mass transfer due to laminar slip flow of electrically conducting
incompressible viscous fluid over an exponentially stretching permeable sheet is studied with
the thermal radiation and the chemical reaction effects. From this study the following

conclusions are drawn for two cases:

The fluid suction reduces the velocity of the fluid for both the cases (a) and (b). In
case (b), both the velocities increase with an increase in the Hall and the thermal radiation
parameters while the opposite trend is observed with the increase in the chemical reaction
parameter and suction parameter. The temperature of the fluid increases with an increase
in the thermal radiation parameter in both the cases. But, an increase in the temperature is
more in case (a) than in case (b). An increase in the Biot number increases the temperature
in case (a). In both the cases, the concentration decreases with the increase in the chemical
reaction parameter and the fluid suction. The skin-friction in Z-direction increases with the
fluid slippage at the boundary and decreases in Z-direction. While, for case (a), the skin-
friction decreases with the fluid suction. The rate of heat transfer increases with an increase
in Hall, mixed convection, and thermal radiation parameters. Whereas, the opposite trend is
observed with the increase in the chemical reaction parameter. While, in both the cases (a)
and (b), the rate of heat and mass transfers decrease with the fluid slippage at the boundary
of the stretching surface. In case (a), the rate of heat transfer increases with the increase
in the thermal radiation parameter and Biot number. In both the cases, increase in the

chemical reaction parameter increases the rate of mass transfer.
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Chapter 3

Effect of Joule heating on the flow
over an exponentially stretching

sheet!

3.1 Introduction

A good number of investigations have been carried out to study the Joule heating effect on
the flow, heat and mass transfer along difference surfaces in view of thier applications in
nuclear engineering and allied engineering areas. Jat and Gopi [44] investigated the effect
of Joule heating on a laminar flow over an exponentially stretching surface in presence of
thermal radiation and viscous dissipation effects. Hayat et al. [39] reported the MHD flow

of Jeffrey liquid due to a nonlinear radially stretched sheet in presence of Joule heating.

This chapter explores the effect of Joule heating on the flow of a viscous fluid over a
permeable exponentially stretching surface. In addition to Joule heating, the present study
explains the effects of velocity slip parameter, mixed convection parameter, Hall parameter

and Biot number parameter on the physical quantities of the flow for both the suction and

!Case(a):Communicated to “Mathematical Sciences”,
Case(b):Published in “Nonlinear Engineering - Modeling and Application” 6(2) (2017) 101-114
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injection. In addition, the numerical data for skin-friction is shown in tabular form.

3.2 Formulation of the Problem

Consider a stretching sheet in a laminar slip flow of incompressible viscous fluid with a
temperature T, and concentration C,,. Apart from the assumptions made in case (a) of
Chapter-2, here, we assume that a magnetic field of strength B(Z) = Byest , where By is the
constant magnetic field, is applied orthogonal to the sheet and the induced magnetic field is
neglected. Hence, the following are the equations which governs the present flow

i, 0,

0% 05

=0 (3.1)

_ Oy i Oty 0*u, oB?_ (3.2)
Up—— + Uy = Ve — Uy ,
0T Y 0y 01? p

oT i or 0T N oB? (3:3)
(o Uy —=——= = O0——= u .
0T Yoy 0y*>  pc, °

oC oC 02C
oy A Ty = D 4
. o + 1y, 95 7 (3.4)

3.2.1 Case(a): Convective Thermal Condition
Assume that the sheet is either cooled or heated convectively through a fluid with tempera-
ture Ty and which induces a heat transfer coefficient hy, where hy = h g—]‘je%.

Hence, the conditions on the surface of the sheet are

ly = U+ N9 i, = —Vi(&), hy(Ty —T) = —k%L, C=C, at §=0

o (3.5)
Uy — 0, T =T,, C—Csx as 7§ — 00
Introducing the stream functions through u, = —% and u, = % and then the following
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Figure 3.1: Schematic diagram with coordinate system

dimensionless variables

F=al, j=y\/%kei, ¢ =WLUekF(z,y),
T="T,+ (T — Too)T (x,y), C=0C,+ (Cp — Cso)C(z,y)

into Egs. (3.1) - (3.4), we obtain

OF OF'
F" + FF" —2F? —H,F' + 2 F'— — F' =0
or or
1 OF or
— T+ FT'4+2(T'— —F=— ) =0
Pr * * ( Ox ax)

1

oF aCc\ 0
Sc -

1" F ! /__F/_
" + C+2<Cax o
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The conditions at the boundary reduces to

F(2,0) +22%(2,0) =S, F'(z,0) =1+ \F"(x,0),

T'(z,0) = —Bi(1 — T(x,0)), C(z,0) =1, (3.10)
Fl(z,y) =0, T(z,y) =0, C(z,y) -0 as y — o0

2LoB2

where H, = i

is the magnetic parameter and J = QLUBgUO) is the Joule heating pa-

PCp (Tf —Tso

rameter.

3.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction C'y, the local Nusselt number Nu; and the local Sherwood

number Shz, are given by

vhes G p _ Nwe —T7'(0), and —Shz =-C'(0 3

v = , = , = 11
2/l © V& /2L\/Re, © V& /2L\/Re, © (3:11)
where Re, = 2U.(z) is the local Reynold’s number.

v

3.2.3 Solution of the problem

To solve the system of Eqgs. (3.7) - (3.9) along with the boundary conditions (3.10), a local
similarity and non-similarity method([103], [67]) has been applied. The boundary value
problems obtained from this method are linearized by the successive linearisation method

and then solved using the Chebyshev spectral collocation method.

The local similarity and non-similarity method includes three levels of truncations which

are explained as follows:

In the first level of truncation, the initial approximate solution can be obtained from the

local similarity equations for a particular case © << 1 by suppressing the terms x(a%). As
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there are no terms accompanied with 22 in (3.7) - (3.9), there is no change in the governing

equations and boundary conditions.

For the second level of truncation, we introduce G = ‘?9—5, H = g—f and K = % to get

back the suppressed terms in the first level of truncation. Thus the governing equations at

the second level truncation reduce to

F" 4+ FF' —2F? +2(F'G - F'G') -~ H,F' =0 (3.12)
1
ET” + FT' +J *F? +2(T'G— F'H)=0 (3.13)
1
§C” +FC'+2(C'G-F'K)=0 (3.14)

The corresponding conditions on the boundary are

F(z,0) +2G(x,0) =S, F'(x,0) =1+ AF"(z,0),
T'(z,0) = —Bi(1 — T(z,0)), C(z,0) =1, (3.15)
F'(x,00) = 0, T(x,00) — 0, C(z,00) =0

At the third level of truncation, we differentiate Eqs. (3.12) - (3.14) with respect to =

and neglect terms accompanied with %, %—f and %—I;, then we get
G" + FG"+GF' —4F'G' +2(GG" - G?) - H,G' =0 (3.16)
PLTH” +(FH' +GT')+2J e (FP+ F'G') +2(HG-GH)=0 (3.17)
SicK” +(FK'+ GO +2(K'G - G'K) = 0 (3.18)

The associated conditions on the surface of the stretching sheet are

G(z,0) =0, G'(z,0) = XA G"(x,0), H'(x,0) = Bi H(x,0), K(z,0)=0
G'(z,00) = 0, H(z,00) = 0, K(x,00) = 0

(3.19)
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The set of differential equations (3.12) - (3.14) and (3.16) - (3.18) together with the
boundary conditions (3.15) and (3.19) are now solved using successive linearisation method

([68], [60]) and Chebyshev spectral collocation method [12].

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai,lXi - Rifl, (320)

In Eq.(3.20), A;_1 is a (6N + 6)x (6N + 6) square matrix and X; and R;_; are (6N + 6)x1

column vectors defined by

=
~ ~ ~
0 = o=
w N =
= . .
oL L

A=A, rs=1,2-.6 X, = R : R (3.21)

A Q80
8B
T

@
=
2
2
L

2)s - Fi(€n1), Fi(én)]7,

2); s Ti(€n—1), Ti(Ew)]"

(&2), - Ci(fN—l)vCi(gN)]Ty

G; = [Gi(&) ,Gi(&2), -y Gi(En—1), Gi(éN)]T,

H; = [Hz‘(ﬁo);Hz( 1), Hi(&2), -y Hi€v-1), Hi(€n)]T

K; = [K;(&) Ki(&2), oy Ki(€n—1), Ki(§w)]T,

Gi-1 = [Cj,z’—1(§o) ng 1(51)&2 1(62), s Gim1(Ev—1), Gam1 (€))7, 7 = 1,2,3,4,5,6
A =D%+ 111D + x12:1D + X131, A2 =0, A;3=0,

O
—~
Iy
=)
-
O
—~
)
—
~—
0
—

=

Ay = x14i-1D + x15,i-1, A5 =0, A =0,
Asp = x21,i-1D + x22,i-1, Az = %Dz + x23,i-1D, Ay =0
Agy = X24,i—1, Ags = X25,i—1, A = 0,
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Asi = x31,i-1D + Xx32,i-1, Asze =0, Agg = SLCD2 + X33,i-1D,

Asy = X341, Aszs =0, Aszs = X35,i-1,

Ay = Xa1,-1D” + xazi 1D + Xazi1, A =0, Ay =0,

Ay =D+ x421D% + xa5,-1D + Xa6i-1, Ass =0, Ay =0,

A5 = X51,i—1D + X52,i-1; Aso = X53,i—1D7 As3 =0,

Ass = X5a,i-1D + X55i-1, Ass = p%DZ + X56,i—1D + Xs57,i-1, Asg =0,
Ag1 = Xe1,i-1, As2 =0, Agz = Xe2,i-1D,

At = Xe3,i—1D + Xea,i—1, Aes =0, Ags = SLCD2 + X65,i—1D + X66,i—1,

Here I is an identity matrix of size (N +1)x(N +1). After modifying the matrix system

(3.20) to incorporate boundary conditions, the solution is obtained as

3.2.4 Result and Discussion

The results of the present problem have been compared with works of Magyari and Keller [56]
as a special case by taking S =0, J =0, A=0, H, =0, x =0, and Bi1 — oo and found that
they are in good agreement, as shown in Table. (3.1). To study the effects of Joule heating
parameter J, suction/injection parameter S, Biot number Bi, magnetic parameter H, and
velocity slip parameter A\, computations have been carried out taking S = 0.5, J = 0.2,

A=1.0, H,=1.0, z = 0.3, and Bt = 1.0 unless otherwise mentioned.

The influence of slip parameter A\ on the velocity, skin-friction, temperature, concentration
and the rate of heat and mass transfer is portrayed through the (3.2(a)) - (3.2(f)) by taking
S =05 J=02 H, =10, x = 0.3, and Bi = 1.0. It is evident from the Figs. (3.2(a))
and (3.2(b)) that raise in the slip parameter diminishes the fluid velocity and enhanaces the
skin-friction. From figures (3.2(c)) and (3.2(d)), it is witnessed that the temperature and
rate of heat transfer are increasing with \. The concentration of the fluid is increasing and

the rate of mass transfer is diminishing with the enhancement in A as shown in the Figs.
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Table 3.1: Comparative analysis for ﬁ by the current method for A = 0, J = 0,
H,=0,2=0,5=0 and Bi — .

Nusselt number %

Pr Magyari and Keller [56] | Present
0.5 0.330493 0.33053766
1 0.549643 0.54964345

1.122188 1.12208577
) 1.521243 1.52123668
8 1.991847 1.99183375
10 2.257429 2.25741862

(3.2(e)) and (3.2(f)). The mass transfer rate is maximum, in the absence of slip parameter.

Further, the impact of z on the skin-friction and the mass transfer rate is negligible.

The changes of the velocity, the skin-friction, the temperature, the rate of heat transfer,
the concentration and the rate of mass transfer for fixed values of S = 0.5, J = 0.2, A = 1.0,
x = 0.3, and Bi = 1.0 and varying magnetic parameter H, are presented in the Figs. (3.3(a))
- (3.3(f)) f. Due to magnetic field effect both the velocity and skin-friction are decreasing
as shown in the Figs. (3.3(a)) and (3.3(b)). Applying the uniform magnetic field normal to
the flow direction gives rise to Lorentz force. This force has the tendency to slow down the
velocity of the fluid in the boundary layer. Hence, the velocity and skin-friction diminish with
the enhancement in H,. It is seen from the figure (3.3(c)) and (3.3(d)) that the temperature
enhances slightly and the rate of heat transfer reduces with an increase in the value of H,.
Further, in the absence of magnetic field maximum heat exchange is taking place. Figures
(3.3(e)) and (3.3(f)) depict that the concentration is enhancing and the rate of mass transfer
is reducing with an increase in the value of H,. Finally, it is noticed that, the rate of heat

transfer is reducing with an increase in .

For fixed values of J = 0.2, A = 1.0, H, = 1.0, x = 0.3, and Bi = 1.0, the variations of F’,
F'(x,0), T, =T'(x,0), C and —C"(x,0) with suction/injection parameter S are displayed in
the Figs. (3.4(a)) - (3.4(f)). It is demonstrated from the Fig. (3.4(a)) that F” is diminishing
with a rise in S. It is depicted from the Fig. (3.4(b)) that F”(x,0) decreases with an

enhancement in the value of suction parameter. Figure (3.4(c)) displays that the temperature
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profile reduces with an increment in the value of the suction parameter and increases with
an increase in the value of injection parameter. While, a reverse trend is observed on the
rate of heat transfer as shown in the Fig. (3.4(d)). Therefore, there is a maximum, heat
transfer from the sheet to the fluid. Figures (3.4(e)) and (3.4(f)) narrate the variation of
the concentration and rate of mass transfer. It is obvious from the figures that the same

observations may be seen as that of the temperature and rate of heat transfer.

The effect of Joule heating parameter J taking the fixed values for S = 0.5, A = 1.0,
H,=1.0,x = 0.3, and Bi = 1.0 on the temperature and the rate of heat transfer is presented
in the Figs. (3.5(a)) and (3.5(b)). As the effect of J on velocity, skin-friction, concentration
and mass transfer are almost negligible, the corresponding graphs are not presented for
brevity. The temperature is slightly increased and the rate of heat transfer is decreased with
an increase in the value of J. It is observed that, in the absence of Joule heating parameter
(J = 0), the effect of non-similar variable = on the rate of heat transfer is minimal and heat

transfer rate is maximum.

Figures (3.6(a)) and (3.6(b)) show the variation of temperature and rate of heat transfer
with Biot number Bi by taking S = 0.5, J =02, A = 1.0, H, = 1.0 and z = 0.3. It
is obvious that the temperature is increasing with the increase in Biot number. For larger
values of Bi, equation (3.10) implies 7(0) — 1 which is clearly shown in the Fig. (3.6(a)).
Increasing the value of Biot number, the heat transfer coefficient is enhanced predominantly
on the surface due to the strong convection as shown in the Fig. (3.6(b)). Further, the rate

of heat transfer is slightly reduced with .
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3.2.5 Case(b): Uniform wall temperature with Hall effect

In addition to the applied magnetic field of strength B(Z), here we consider the Hall current in
view of relatively high electron-atom collision frequency. This assumption causes a cross flow
in the z-direction, therefore the flow becomes three dimensional. Further, it is assumed that
the sheet is maintained at uniform wall temperature and concentration T, (%) and C,(Z),
respectively. Under the Boussinesq approximation, the flow is governed by the equations

(3.1), (3.4) along with the following momentum and energy equations

__oB*
p(1+5;)

L Ou, | 0n, _ O,
“or T Yoy Vo

+9 Br(T —Tx) + g Bo(C = Cx) (Mg + Puii.) (3.23)

o1 ot 0% oB?
s + iy = Ve g — il 24
oz ey = Vo T g e T ) (824

T or 0T oB*> .,
Upy—— + Uy—— = .2
a5 + 1, i a@QQ - (15 Bg)(um + ) (3.25)

U, is the velocity in z-direction.

The boundary conditions are

ﬂx = U* + N*I/%i;, ﬂ,y = _‘/*<j>, ﬂz — 0’

Uy — 0, u, — 0, T—>Too, C’—>C’oo as Yy — o0

Substituting the following similarity transformations

j=yy/%Lert, ) =/ wLUpesr I,
Uy = Uget F',  diy = —/ %0 e30 (F 4+ yF'), @, = Upet W (3.27)
T=Ty+TyeTT, C=Cy+CyeTC
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into the Egs. (3.1), (3.23), (3.24), (3.25), and (3.4)

H
F" + FF" —2F” + 2Ri(T + BC) — r‘lﬁQ(F' + BW) =0 (3.28)
h
" / ! Ha / _
W" —2F'W + FW' + (B F' = W) =0 (3.29)
1+ 57

Lo pr arry (F?+W?) =0 (3.30)

Pr 1+ 32 .

1

O+ FC —4F'C =0 (3.31)

The conditions (3.26) reduce to

F(y) =25, F'(y) =1+ AF"(y), W(y) =0, T(y) =1, C(y) =1 at y=0
F'(y) =0, W(y)—0, T(y) =0, Cly) >0 as y — o0

(3.32)

2LoB2Uy

where J =
pcpTo

is the Joule heating parameter.

3.2.6 Skin Friction in z and z-directions, Heat and Mass Transfer

Coeflicients

The non-dimensional skin friction in z—direction C'rz, local skin-friction in Z—direction Cps,

the local Nusselt number Nu; and the local Sherwood number Shz, are given by

Ve pw VRe, .,
Nugz o o p _ v .
NooN 7'(0), and NaoN C'(0).
zU,(7)

where Re; = is the local Reynold’s number.

v
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3.2.7 Solution of the Problem

The system of Egs. (3.28) - (3.31) along with the boundary conditions (3.32), is solved

numerically, using the successive linearisation method as explained in Chapter-2.

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai,lXi - Rz;l, (334)
subject to the boundary conditions
N
Z Do Fi(&) = Y (AD2y; — Dii) Fi(&) = 0 (3.35a)
k=0
Wi(En) = Wi(&) = Ti(én) = Ti(&) = Ci(én) = Ci(&) =0 (3.35b)

In Eq.(3.34), A;—1 is a (4N + 4)x (4N + 4) square matrix and X; and R;_; are (4N + 4)x1
column vectors defined by

F.

i El,i—l
Wi E2,i—1
Aifl = [Ars] ,r,§ = 1, 2, 3,4, XZ = y Rifl = (336)
@i E3,i—1
(I)i E4,i71

where

F, = [Fi(&), Fi(&), Fi(&), ..., Fi(En-1), Fi(&n)]7,

W, = [Wi(&o), Wi(&1), Wi(ﬁz)a- Wi(En-1), Wi(En)]",
0; = [Ti(&%), Ti(&), Ti(&), ... Ti(En—1), Ti(En)]",

b

i = [Ci(&0), Ci(61), Ci( &), -, Cil€n—1), Cil N7,
Eiic1 = [Crim1(€0)s Cuim1(61)s Cim1(62)s s Crim1(Ev—1), CLim1 (€))7
Eoi1 = [Ci-1(&0)s Goim1(61)s Giim1(82), s Goim1(En—1), Gim1 (€))7
Esi1 = [G3i-1(60), C3i-1(&1), Gim1(&2), -+ Gim1 (Ev-1), Caim1 (En)]T
Eyi1 = [Cic1(60), Cai1(61), Caim1(&2)s -y Caim1(En1)s Caim1(€n)]T
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Table 3.2: Comparison of —F"(0) and F(oo) calculated by the present method for S = 0,
A=0, H,=0, and Ri = 0.

Magyari and Keller [56] | Present
—F(0) 1.281808 1.28180856
F(o00) 0.905639 0.90564370

A =D? + x11,,.1D% + x12:-1D + x13i-1, A = —%I, Ay =2Ril, Ay =2BRil
Aor = Xo1,i1D + Xo2,i—1, A = D? + X23,i-1D + X24i—1, A3 =0, Ay =0
Azt = x31,i-1D + xs2,-1, Az2 = X334-1, Az = %DQ + X34,i-1D + x35,-1, Az =0

Ap = Xa1,i-1D + xa2,-1, A =0, A =0, Ay = éDz + X43,i—1D + Xa4,i—1

Here I is an identity matrix of size (N +1)x(N +1). After modifying the matrix system

(3.34) to incorporate boundary conditions (3.35), the solution is obtained as

X; =A R (3.37)

3.2.8 Results and Discussion

The results of the present problem are compared with that of the results obtained by Magyari
and Keller [56] as a special case by taking Ri =0, H, =0, S =0, A =0, and J = 0 and
found that they are in good agreement, as presented in Table (3.2). The computations have
been carried out in the cases of Rt =1.0,B=0.5, S =0.5, A= 1.0, 8, = 2.0, H, = 1.0, and
J =0.3.

Figures (3.7(a)) - (3.7(d)) indicate the effect of the suction/injection parameter S on both
the velocity components F'(y) and W (y), temperature T'(y) and concentration C(y). From
these figures it is noticed that all the physical quantities are decreasing with an enhancement
in S. It is known that applying the wall suction have the propensity to lessen both the

momentum and thermal boundary layer thickness.
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The influence of the Hall parameter (3, on both the velocities, temperature and concen-
tration is depicted in Figs. (3.8(a)) - (3.8(d)). From Fig. (3.8(a)), it is observed that the
tangential velocity increases with the increasing values of the Hall parameter ;. Figure
(3.8(c)) reveals that the temperature decreases with the increasing values of 5. As the Hall
parameter ), increases, the effective conductivity reduces which in turn reduces the mag-
netic damping force on the tangential velocity. Hence, the tangential velocity increases and
temperature decreases with an increase in the Hall parameter. Figure (3.8(b)) shows that
the cross flow velocity increases with an increase in the value of ;. Further, it is observed
that the cross flow velocity first increases gradually with [, attaining an extreme value and
then drops to zero. From Fig. (3.8(d)), it is noticed that the concentration decreases with

the increasing values of (.

Figures (3.9(a)) - (3.9(d)) exhibit the influence of the magnetic parameter H, on both
the velocities, the temperature and the concentration. It is seen from Fig. (3.9(a)) that the
tangential velocity is decreasing with an increase in the value of the magnetic parameter
H,. Applying the uniform magnetic field normal to the flow direction gives rise to Lorentz
force. This force has the tendency to slow down the velocity of the fluid in the boundary
layer. Hence, the velocity diminishes with an enhancement in H,. From Fig. (3.9(b)), it is
seen that there is no cross flow velocity in the absence of the magnetic field (H, = 0) and
it increases gradually with an increase of H,. Hence, for large values of H,, a cross-flow is
generated due to the Hall effect. This is clearly depicted in the Fig. (3.9(b)). From Figs.
(3.9(c)) and (3.9(d)), it is evident that the temperature and concentration are increasing

with the increasing values of H,,.

The impact of the mixed convection parameter Ri on F'(y), W(y), T(y) and C(y) is
depicted in the Figs.(3.10(a)) (3.10(d)). From the Fig. (3.10(a)), it is seen that the tangential
velocity increases with an increase in the values of Ri. This is because, the positive values
of Ri induces a favorable pressure gradient which, in turn, increases the fluid flow in the
boundary layer. The same trend is observed for the cross-flow velocity component as shown
in Fig. (3.10(b)). From the Figs. (3.10(c)) and (3.10(d)), it is noticed that both the

temperature and concentration are decreasing with the increasing the values of Ri. This is
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due to the fact that positive values of Ri accelerate the fluid and which results in decreasing

both the thermal and concentration boundary layers.

The variation of the heat and mass transfer rates with varying values of the Joule heating
parameter .J is presented in the Figs. (3.11(a)) and (3.11(b)). Due to Joule heating, the
heat transfer from the sheet to the fluid is decreasing and the mass transfer at the surface
of stretching is increasing. The effect of Hall parameter [, on the rate of heat and mass
transfers are shown in the Figs. (3.12(a)) and (3.12(b)). It is noticed from the figures that,
the rate of heat and mass transfers are increasing with an increase in 5, The increase in the
rate of mass transfer is more than the increase in the rate of heat transfer. The variation
of heat and mass transfer rates with the magnetic parameter H, is presented in the Figs.
(3.13(a)) and (3.13(b)). These figures describe that the heat transfer rate is reducing with
the increasing values of H,. The same trend is observed for the mass transfer rate also. The
decrease in the mass transfer rate is low when compared to that heat transfer rate as shown
in the Fig. (3.13(b)). The effect of the mixed convection parameter Ri on both the heat
and mass transfer coefficients is shown in the Figs. (3.14(a)) and (3.14(b)). These figures

indicate that the heat and mass transfer rates are rising with the increasing values of the Rz.

The values of local skin-friction coefficients in Z-direction (F”(0)) and Z-direction (W'(0))
are presented in Table (3.3) for various values of f,, H,, Ri, and J. It is seen from the table
that, both the skin-friction increase with an increase the Hall parameter [3;,. Further, it is
observed that there is no transverse velocity and hence no skin-friction in z-direction in the
absence of Hall parameter. The skin-friction in Z-direction reduces and in Z-direction en-
hances as H, increase. In the absence of magnetic field, there is no cross flow velocity and in
turn, there is no skin-friction in Z-direction. Further, It is noticed that both the skin-friction
increase as the values of the mixed convection parameter R: and the Joule heating parameter

J Increases.
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Table 3.3: Variation of skin friction in - and zZ-directions for varying values of Hall parame-
ter By, magnetic parameter H,, mized convection parameter Ri, and Joule heating parameter

J.

Bn H, Ri J F(0) W(0)

00 1.0 1.0 0.3 -0.24296611 0.00000000
0.1 10 1.0 0.3 -0.24222539 0.04374048
0.5 1.0 1.0 0.3 -0.22726487 0.18816680
20 1.0 1.0 0.3 -0.16656763 0.24358744
20 00 1.0 0.3 -0.13678548 0.00000001
20 0.1 1.0 0.3 -0.13940455 0.02720645
20 1.0 1.0 0.3 -0.16656763 0.24358744
20 30 1.0 0.3 -0.23488654 0.56845554
20 1.0 -0.1 0.3 -0.63795469 0.02350794
20 1.0 -0.05 0.3 -0.59542168 0.05461319
20 1.0 0.0 0.3 -0.55832267 0.10101136
20 1.0 1.0 0.3 -0.16656763 0.24358744
20 1.0 3.0 0.3 028412908 0.32157171
20 1.0 10 0.0 -0.16781301 0.24316904
20 1.0 1.0 02 -0.16698415 0.24344783
20 1.0 1.0 05 -0.16573129 0.24386710
20 1.0 10 10 -0.16362106 0.24456874
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3.3 Conclusions

In this chapter, the effect of Joule heating on the heat and mass transfer process due to
laminar slip flow of electrically conducting incompressible viscous fluid over an exponen-
tially stretching permeable sheet is studied for two cases namely (a) subjected to thermal

convective boundary condition and (b) uniform wall temperature with Hall effect.

The velocity, temperature, and concentration of the fluid decrease for both the cases
(a) and (b) with an increase in the fluid suction. Also, in case (b), the transverse velocity
decreases with an increase in the suction. In both the cases, an increase in the value of the
magnetic parameter H,, the velocity reduces and temperature and concentration increases.
While the transverse velocity of the fluid in case (b) enhances with an increase in the value
of H,. In case (b) both the velocities increases and temperature and concentration decreases
with an increase in the value of the Hall parameter. The temperature of the fluid in case (a)
increases with an increase in the Joule heating parameter and there is negligible effect on
the temperature in case (b). Increasing the value of the mixed convection parameter, both
the velocities increase and the temperature and the concentration decreases in case (b). On
the other hand, in case (a) the same trend is observed with an increase in the value of the
velocity slip parameter. Both the skin-friction in case (b) increase with the increase in the
Hall and Joule heating parameter. Whereas, in case (a), the skin-friction reduces with an
increase in the magnetic parameter. Both the heat and mass transfer rates increase in both
the cases with the increase in fluid suction. An increase in the Biot number increases the
temperature as well as the rate of heat transfer in case (a). In both the cases, the rate of
heat transfer reduces with an increase in the Joule heating parameter. While mass transfer
in case (b) increase with the increase in the Joule parameter. In case (b), both the heat and
mass transfer rates increase with the increase in Hall and mixed convection parameters and

in both the cases decreases with an increase in the value of the magnetic parameter.
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Chapter 4

Cross diffusion effects on the flow due

to exponentially stretching sheet !

4.1 Introduction

The Soret and Dufour effects on the heat and mass transfer in a viscous fluid are very impor-
tant, in view of its applications engineering technology. Inspite of engineering and industrial
applications of these flows, a little attention (Srinivasacharya and Ramreddy [107], Khidir
and Sibanda [49], Patil et al. [79] etc., ) is focussed on the flow over the sheets stretching
exponentially including the soret and dufour effects. This chapter presents the significance
of Soret and Dufour effects in an incompressible viscous fluid flow along a sheet, which is
stretching exponentially. The influence of pertinent parameters on velocity, temperature,
concentration and heat and mass transfer rates are exhibited through graphs and salient fea-
tures are discussed. The numerical values of the skin friction for different values of governing

parameters are also tabulated.

!Case(a):Published in “International Journal of Engineering, TRANSACTIONS A” 31(1) (2018)
120-127,
Case(b):Communicated to “Propulsion and Power Research”
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4.2 Formulation of the Problem

Consider a stretching sheet in a laminar slip flow of incompressible viscous fluid with a
temperature Ty, and concentration C,,. The stretching velocity, suction/injection velocity
and slip velocity are taken as in case(a) of Chapter-2. The equations which governs the flow
in the presence of cross-diffusion effects are:

i, | 0,

9% | 0

=0 (4.1)

_ 0ty Ouy 0?1,

iz 5 + 1, 77 =v 07 (4.2)
_ 0T _ 9T 8T DKy o*C
Uz% —+ Uya—g = agQ + e Cp agQ (43)
~ ~ 2 A 2T
_oC oC D@C+DKT8T (4.4)

o oy ~ Vo T T, o

where K7 is thermal diffusion ratio and 7, is mean fluid temperature.

4.2.1 Case(a): Convective Thermal Condition
Assume that the sheet is either cooled or heated convectively through a fluid with tempera-
ture Ty and which induces a heat transfer coefficient hy, where hy = h g—ge%.

Hence, the conditions on the surface of the stretching sheet are

i, = U, + N2 g, = —V.(%), hf(Tf—T):—/‘ﬂg_Z;, C=0C, at §=0

e (4.5)
Uy =0, T =Ty, C—Cyx as 7§ — 0
Introducing the stream functions through u, = —% and u, = % and then the following
dimensionless variables
y =i/ agerr, = 2wLles F(,y), (4.

T =T+ Ty —To)T(2,y), C=Cu+ (Cop —Cs)C(z,y)
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into Egs. (4.1) - (4.4), we obtain

F" +FF" —2F* =0 (4.7)
iT” +FT'+D; C"=0 (4.8)
Pr f '

1
S—CH—{—FC,—FST T” — 0 (49)

c

The conditions (4.5) at the boundary reduces to

F(0)=S, F'(0)=1+AF"0), T'(0)=-Bi(1-T(0), C(0)=1at y=0
F'(c0) =0, T(c0) =0, C(o0)—=0 as y— o0
(4.10)

D Kr (Tf—TOO)
V T (Cuw—Coxo)

D Kr (Cuw—Co)

Vo oy (T =T 19 the Dufour number.

where S, = is the Soret number, and Dy =

4.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction C, the local Nusselt number Nu; and the local Sherwood

number Shz, are given by

Vhies Cr _ pog L:—T’O andL:_O’Q 411
NN P VT A B
UL (7
where Re; = ‘ l/(:c) is the local Reynold’s number.

4.2.3 Solution of the problem

The system of Eqs. (4.7) - (4.9) along with the boundary conditions (4.10), is solved numer-

ically, using the successive linearisation method as explained in Chapter-2.
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Proceeding as in Chapter-2, we obtain the following matrix equation

Ai,lxi - Ri*lu (412)
subject to the boundary conditions
N
Z Do Fi(&) = Y (AD2y; — Dii) Fi(&) = 0 (4.13a)
k=0
ZDNkTi(fk) - BiTi(fN) = Ti(fo) = Ci(fo) = Ci(fN) =0 (4'13]0)

k=0

In Eq.(4.12), A;_; is a (3N + 3)x (3N + 3) square matrix and X; and R;_; are (3N + 3)x1

column vectors defined by

A A Agg F; Ei;
Aisi = [Ay Ay Aozl Xi=10;|, Rii= Esy; 1 (4-14)
Az Azy Ass P; Es; 1

where
F; = [Fy(&), Fi(§1), Fi(&2), - Fi(€n—1), Fi(€n)]7,

0; = [Ti(%), Ti(&1), Ti(&2), -, Ti(sn—1), Ta(€n)]",
®; = [Ci(&), Ci(&1), Cil&2), -+ Cil€n-1), Ci(En)]T,
~1(&0)s Cri-1(61), Crim1(62), s Cri1(§v-1), G- ()]
C2z 1(60): G2i-1(&1)s Coim1(&2), oo Goim1 (En—1), G (E)]T

~1(€0): Gi-1(61), Gim1(82), -+ Gim1(Ev-1), G i1 (En)]T
A =D3 + Xn,i,lDQ + X125-1D 4 Xx13:-1, A12=0, A;3=0
Agy = Xo14-1, Az = %DZ + X22i-1D, As3 = D;D?
Az = X31,i—1; Aszy = SrD , Asg = §;D2 + XSQ,i—lD

~
—

Here I is an identity matrix of size (N +1)x(N +1). After modifying the matrix system

(4.12) to incorporate boundary conditions (4.13), the solution is obtained as

X;=A "R, (4.15)
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. . . Nugz _ _
Table 4.1: Comparative analysis for NN = by the current method for A = 0, S, = 0,
Dy =0,S5=0 and Bi — oc.

Nusselt number %

Pr Magyari and Keller [56] | Present

0.5 0.330493 0.33053766
1 0.549643 0.54964345
3 1.122188 1.12208577
5} 1.521243 1.52123668
8 1.991847 1.99183375
10 2.257429 2.25741862

4.2.4 Result and Discussion

In order to validate the code generated, the results of the present problem have been com-
pared with works of Magyari and Keller [56] as a special case by taking S = 0, Dy = 0,
S, =0, A =0, and Bi — oo and found that they are in good agreement, as shown in Table.
(4.1). The computations have been carried out by taking S = 0.5, S, = 0.5, Dy = 0.03,

A = 1.0, and Bi = 1.0 unless otherwise mentioned.

The influence of the slip and the suction/injection parameters on the velocity is portrayed
in the Figs. (4.1(a)) - (4.1(b)). It is evident from the Figs. 4.1(a) and (4.1(b)) that the
rise in the slipperiness and the fluid suction diminishes the fluid velocity while the injection
enhances the velocity. The skin-friction is enhancing with the slipperiness and reducing with

the suction of the fluid as depicted in the Fig. (4.2).

The variation of temperature distribution with Bi, A, S, Dy, and S, is plotted in the
Figures (4.3(a)) - (4.3(e)). Figure (4.3(a)) illustrates that the temperature is enhancing with
the rise in the value of B¢ and gain in the thickness of thermal boundary. Further, for a
large value of the Biot number, the convective thermal condition from (4.10) transforms
to T(0) — 1, which signifies the constant wall condition. It is evident from the Figure
(4.3(b)) that temperature is enhancing with the rise in the slipperiness. It is well-known
fact that the suction reduces the thickness of thermal boundary layer and hence, reduction

in temperature arises. This phenomenon is graphically presented in the Figure (4.3(c)).
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However, the injection produces an exactly contradictory nature. It is observed from the
figures that the thickness of the thermal boundary layer is increasing with the increasing
values of Dufour number as shown in the Figure (4.3(d)). But, there is no dominance of

Soret number on the temperature distribution as shown in the Fig. (4.3(e)).

The influence of A, S, S,, Bi, and Dy on the concentration is shown graphically in Figures
(4.4(a)) - (4.4(e)). It is clear from the Figure (4.4(a)) that the increase in slipperiness rises
the concentration. While the injection is enhancing the concentration and suction reducing
the concentration as shown in the Figure (4.4(b)). The impact of the Soret number on the
concentration profile is presented in the Figure (4.4(c)). It is apparent from this figure that
the concentration is increasing with the increase in S,. Figure (4.4(d)) illustrates that the
concentration is enhancing with the rise in the value of Bi and hence gain in thickness of the
concentration boundary. But, the enhancement in concentration is less compared to that of
temperature with the rise in Biot number as shown in the Figure (4.3(a)). Further, there is

no dominance of Dy on fluid’s concentration distribution as shown in the Fig. (4.4(e)).

The influence of Bi, Df, A, and S, on the rate of heat transfer against S are depicted
through the Figures (4.5(a)) - (4.5(d)). Figure (4.5(a)) demonstrates that the rate of heat
transfer is increasing with a rise in Bi. On the other hand, Figures (4.5(b)) and (4.5(c))
depict the behavior of the rate of heat transfer for different values of the Dufour number
and the slip parameter. It is clear from these figures that the rate of heat transfer decreases
with the increase in the values of Dufour number and slip parameter. It is evidenced from
the Fig. (4.5(d)), that the rate of heat transfer increasing with an increase in the value of

Soret number S,.

The rate of mass transfer under the influence of Dufour, Soret, Biot numbers and velocity
slip parameter is represented in Figures (4.6(a)) - (4.6(d)). It is noticed from the Figure
(4.6(a)) that the rate of mass transfer is enhanced with an enhancement in the value of Dy.
While the reduction in the rate of mass transfer is observed with the rise in .S, as portrayed
in Figure (4.6(b)). Figures (4.6(c)) and (4.6(d)) depict that the rate of mass transfer is
diminishing with the rise in Biot number and slip parameter. Further, the rate of heat and

mass transfers increasing with fluid suction.
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4.2.5 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(#) = Bye3r is applied in §—direction and

the influence of Hall current is not neglected. Assume that magnetic Reynolds number is

very small so that the induced magnetic field is negligible in comparison to applied magnetic

field. The presence of Hall current induces a cross flow in Z-direction and hence the flow

becomes three-dimensional. Under the Boussinesq approximation, the equations governing

the flow in non-dimensional form are

H,
F///+FF//_2F/2+2Ri(T+BC) — 1+52(F’—|—ﬂhW) =0
h

H,
W" —2F'W + FW' + S(BF = W) =0
1+ 5;

1
P—T”—I—FT’—4F’T+Df C"=0
r

1

5 C"+FC'"—4F'C+ S, T"=0
c

The non-dimensional boundary conditions are

Fly) =S, F'(y) =1+ AF'(y), W(y) =0, T(y) =1, C(y) =1 at y=0
F'(y) >0, W(y) —0, T(y) >0, C(y) >0 as y — o0

where S, = [iTK—Tc? is the Soret number, and D; =

D Ky Cy
ves ¢p 1o
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is the Dufour number.

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)



4.2.6 Skin Friction in z and z-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in Z—direction C'rz, local skin-friction in Z—direction Cps,

the local Nusselt number Nu; and the local Sherwood number Shz, are given by

e o o), YES o o),

N 2L o
% = —T7'(0), and % = —C'(0). '
#UL (%)

where Re; = is the local Reynold’s number.

14

4.2.7 Solution of the Problem

The system of Egs. (4.16) - (4.19) along with the boundary conditions (4.20), is solved

numerically, using the successive linearisation method as explained in Chapter-2.

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai,lxi - Ri*lu (422)
subject to the boundary conditions
N
Z Do Fi(&) = Y (AD2y; — Dii) Fi(&) = 0 (4.23a)
k=0
Wi(En) = Wi(&) = Ti(én) = Ti(&) = Ci(én) = Ci(&) =0 (4.23b)

In Eq.(4.22), A;_1 is a (4N + 4)x (4N + 4) square matrix and X; and R;_; are (4N + 4)x1
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column vectors defined by

s _ELH_
A=A, rs=1234 X; = Wi . Ri = Bt (4.24)
®i E3,i—1
_(ﬁi_ _E4,i—1_
where
F; = [Fi(&%), Fi(&1), Fi(&2), - Fi(En—1), (€87,
W; = [Wi(&), W@(fl),m(§2)7-~-a i(Ev-1), WiEw)],
0; = [T5(%0), Ti(&1), Til&), -, Ti(§n—1), Ti(én)]",
®; = [Ci(&), Ci(&), i(&)v“’7Ci(§N71)7Ci<£N>] :
Eri1 = [Cri1(60); CLic1(61), Cuic1(€2), o Crima(En—1); Crima (§n)]"
Eo i1 = [Ci-1(5); Coi1(&1), Coim1(€2), s Coima(En—1), Coima ()]
Esio1 = [Gim1(80)s Gim1(6), Gim1(62), s Gim1 (Ev—1), Ga—1 ()"
Epic1 = [Ci-1(80)s Caim1(61); Caim1(62), s Caima (§n—1), Caim1(€n)]"

A =D+ x11,,-1D? + x12-1D + x13,i-1, Ap = —

Aot = x21,i-1D + X22i-1, A = D? + X23,i-1D + X24,i—1,

Asi = x31,-1D + x32,i-1, A3z =0, Az = %DQ + X33,i—
A42 - 07 A43 - S’FD27 A44 ==

Ay = xa1,i-1D + Xa2,i-1,

Here I is an identity matrix of size (N +1)x(N +1).

Haﬁh
1+57

I Ay — 2RI, Ay = 2BRil
Aypy=0, Ay =0

1D+ x344i-1, Ass = D;D?
+=D? 4 Xu3:-1D + Xaa,i-1

After modifying the matrix system

(4.22) to incorporate boundary conditions (4.23), the solution is obtained as

Xi - A;_llRi_l

4.2.8 Results and Discussion

(4.25)

In order to validate the code generated the results of the present problem have been com-

pared with that of the results obtained by Magyari and
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Table 4.2: Comparison of —F"(0) and F(oco) calculated by the present method for S = 0,
AN=0,H,=0,95 =0, Df =0, and Ri = 0.

Magyari and Keller [56] Present
—F"(0) 1.281808 1.28180856
F(o0) 0.905639 0.90564370

taking Ri = 0, H, =0, S =0, A =0, S, =0, and Dy = 0 and found that they are in
good agreement, as presented in Table (4.2). To study the effects of Hall parameter /3, suc-
tion/injection parameter S, Soret number S,, Dufour number D, and magnetic parameter

H,, computations have been carried out in the cases of Ri = 1.0, B=10.5, S = 0.5, A = 1.0,
Br=1.0, H, =2.0, S, = 0.5, and Dy = 0.03.

Figures (4.7(a)) - (4.7(d)) depict the effect of S on both the velocities, the temperature
and the concentration. It is evident from the figures that both the velocities, the temperature
and the concentration are increasing with the rise in the values (magnitude) of the injection
(S < 0) parameter. Further, the imposition of wall suction (S > 0) lowers the thickness of
the momentum, thermal and concentration boundary layers which, in turn, decrease both

the tangential and cross flow velocities, temperature and concentration of the fluid.

The effect of the Hall parameter 3, on the velocity profiles, the temperature, and the
concentration is shown graphically through the Figs. (4.8(a)) - (4.8(d)). As the value of the
Hall parameter increases, the primary velocity increases as shown in the Fig. (4.8(a)). Due
to the Hall effect, the secondary flow increases as depicted in the Fig. (4.8(b)). Further, it
is identified from the Figs. (4.8(c)) and (4.8(d)) that in the presence of the Hall parameter,

the temperature and the concentration of the fluid decreases.

The Soret (.S,) effect on both the velocities, the temperature and concentration profiles are
depicted in the Figs. (4.9(a)) - (4.9(d)). In the presence of Soret parameter, both the velocity
components are increasing as shown in the Figs. (4.9(a)) and (4.9(b)). The temperature
of the fluid is severely affected by the Soret effect, especially thickness of the concentration
boundary layer escalates and thickness of the thermal boundary layer decreases with rising

in the value of the Soret number. Hence, the temperature of the fluid decreases and the fluid
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concentration increases with an increase in the value of the Soret parameter as presented
in the Fig. (4.9(c)) and (4.9(d)). Figs. (4.10(a)) - (4.10(d)), exhibit the influence of the
Dufour (Dy) effect on both the velocities, the temperature and the concentration. Figures
(4.10(a)) and (4.10(b)) show that both the tangential and transverse velocities are increasing
as the value of the Dufour number increasing. Further, it is observed from the figures that
the thickness of the thermal boundary layer increases and concentration boundary layer
decreases with the increasing value of the Dufour number as shown in the Figs (4.10(c)) and
(4.10(d)). Thus, in mixed convection flow problems the influence of diffusion-thermal and

the thermal-diffusion effects is very important.

The effect of Soret number S, on —77(0) and —C”(0) is graphically presented through
the Figs. (4.11(a)) - (4.11(b)). It is known that in the presence of the Soret parameter,
the temperature reduces and the concentration increases. As a result, —7"(0) increases
and —C"(0) decreases. Figs. (4.12(a)) - (4.12(b)) exhibit the influence of the Dufour Dy
parameter on the heat and mass transfer rates. It is for the same reason under the influence
of Dufour parameter, the temperature increases, and the concentration decreases. The heat
transfer rate decreases and mass transfer rate increases as shown in the Fig. (4.12(a))
and Fig. (4.12(b)). It is also observed that the heat transfer rate is increasing and mass
transfer rate is reducing with the suction/injection parameter S. The fluctuations of —77(0)
and —C"(0) for various values of the Hall parameter (3, against S, is presented via the
Figs. (4.13(a)) - (4.13(b)). It is clearly evident from the Fig. (4.13(a)) that the rate of
heat transfer is increasing with an increase in the value of the Hall parameter 3. Figure
(4.13(b)) reveals that mass transfer rate is escalated with an increase in the value of Hall
parameter (. Further, it is observed from the figures that —77(0) is increasing and —C"(0)
is reducing with the suction/injection parameter S. The behavior of heat transfer and mass
transfer coefficients for distinct values of the slip parameter A\ against the suction/injection
parameter S is presented through the Figs. (4.14(a)) - (4.14(b)). It is inferred from the
Fig. (4.14(a)) that, the rate of heat transfer is decreasing with the slip parameter A\ for
both suction (S > 0) and injection (S < 0) cases. Furthermore, it is reducing with the

injection parameter and increasing with the suction parameter. While from Fig. (4.14(b)),
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it is deduced that the mass transfer rate is decreasing with the rise in slip parameter and
increasing with an increase in the injection parameter. It is noticed from the figures that,
the mass transfer rate is drastically falling down when compared with the heat transfer rate

against S.

The variations of local skin-friction coefficient F”(0) in z-direction and local skin-friction
coefficient W'(0) in 2-direction for diverse values of pertinent parameters are tabulated in
Table (4.3). It is noticeable from the table that the F”(0) is raising and W’'(0) reducing
with slip parameter. As the Hall parameter increase, both the skin frictions are increasing.
It is also observed that when (3, = 0, then there is no cross flow and hence there is no skin-
friction in Z-direction. The fluid suction reduces the skin-friction in Z-direction and increases
in Z-direction. The positive values of Ri increase both the skin frictions. In addition to this,
skin-friction in Z-direction is greatly increased with the positive values of Ri. As mentioned
earlier, the positive buoyancy forces act as a favorable pressure gradient and which in turn,
accelerates the fluid velocity in the boundary layer. Due to which, the thickness of the
boundary layer reduces and higher velocity gradient at the surface. Furthermore, it is also
identified that a unique value of F”(0) = —0.616601 and W’(0) = 0.150238 is attained for
all values of Soret (.S,) and Dufour (Dy) parameters when Ri = 0 (forced convection). This
is due to the fact that equations (4.16) and (4.18) are uncoupled when Ri = 0. As a result,
the obtained solutions for flow and thermal fields are independent. Hence, there is no effect
of thermal field parameters on the flow field. At the end of the table, the influence of the
Soret and Dufour parameters on the skin-friction is presented. It is obvious from the table
that, both the skin-friction is increasing with the Soret and Dufour parameters, and which,

rises the fluid velocity in the boundary layer.
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Table 4.3:

Variation of skin friction in - and Z-directions for wvarying values of suc-
tion/injection parameter S, slip parameter \, Hall parameter 3, Dufour number S,., mized

convection parameter Ri, and Soret number S,.

X B. S Ri S D;| F'(0) W (0)
0.0 1.0 0.5 1.0 0.5 0.03|-0.906158 | 0.480939
05 1.0 05 1.0 05 0.03|-0.397836 | 0.438572
1.0 1.0 05 1.0 0.5 0.03|-0.256311 | 0.425975
20 1.0 0.5 1.0 0.5 0.03]-0.150026 | 0.416256
1.0 0.0 05 1.0 0.5 0.03|-0.323340 | 0.000000
1.0 0.1 05 1.0 0.5 0.03|-0.322259 | 0.064472
1.0 05 0.5 1.0 0.5 0.03|-0.299899 | 0.285576
1.0 2.0 05 1.0 0.5 0.03]|-0.194722 | 0.435495
1.0 1.0 -0.5 1.0 0.5 0.03|-0.177965 | 0.389593
1.0 1.0 -0.3 1.0 0.5 0.03|-0.192026 | 0.399476
1.0 1.0 0.0 1.0 0.5 0.03|-0.214672 | 0.412193
1.0 1.0 05 1.0 0.5 0.03|-0.256311 | 0.425975
1.0 1.0 1.0 1.0 0.5 0.03|-0.302077 | 0.428199
1.0 1.0 05 0.0 0.5 0.03|-0.616601 | 0.150238
1.0 1.0 05 0.1 0.5 0.03|-0.564879 | 0.205253
1.0 1.0 0.5 1.0 0.5 0.03|-0.256311 | 0.425975
1.0 1.0 0.5 3.0 0.5 0.03| 0.185927 | 0.635549
1.0 1.0 0.5 1.0 0.0 0.03]-0.261722 | 0.419414
1.0 1.0 05 1.0 0.5 0.03|-0.256311 | 0.425975
1.0 1.0 0.5 1.0 1.0 0.03]|-0.250931 | 0.432281
1.0 1.0 0.5 1.0 2.0 0.03]-0.240264 | 0.444231
10 1.0 05 1.0 05 00 |-0.256822 | 0.425276
1.0 1.0 05 1.0 0.5 0.03|-0.256311 | 0.425975
1.0 1.0 05 1.0 0.5 0.5 |-0.248220 | 0.436555
1.0 1.0 0.5 1.0 0.5 2.0 |-0.221230 | 0.467005
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Figure 4.7:  Effect of S on (a)Velocity, (b)transverse velocity, (c)Temperature, and
(d)Concentration profiles.
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4.3 Conclusions

This chapter investigates the influence of cross-diffusion effects on the slip viscous fluid flow
over a porous sheet, stretching exponentially From this study the following conclusions are

drawn for two cases:

The fluid suction reduces the velocity the for both cases (a) and (b). In case (b), the
transverse velocity decreases with the fluid suction, while, it reduces with an increase in
the values of the Hall parameter, Soret and Dufour numbers. In both the cases (a) and
(b), the temperature increases with an increase in the Soret number and decreases with the
increase in the Dufour number. But, in both cases, an opposite trend is witnessed for the
concentration. In case (a), it is observed that both the temperature and concentration of
the fluid increase with an increase in the Biot number and the velocity slip parameter. Skin-
friction in both the cases increase with an increase in the value of the velocity slip parameter
and decrease with the fluid suction. In both cases, the rate of heat transfer is increasing
with the increase in the Soret number and decreasing with an increase in Dufour number.
But, an opposite impact is observed for the mass transfer. In case (a), the heat transfer
rate increases and the mass transfer rate decreases with an increase in the value of the Biot
number. It is observed that an increase in the value of velocity slip parameter reduces the
heat and mass transfer rates for both the cases. Further, it is identified that the heat and
mass transfer rates are increasing with the fluid suction, except for the mass transfer rate in

case (b) when the Hall and slip parameters increase.
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Chapter 5

Viscous flow over an exponentially

stretching sheet with variable fluid

properties !

5.1 Introduction

In many of the flow problems the thermo physical properties of fluid were assumed to be
constant. However, it is known that these properties, especially for fluid viscosity and
fluid thermal conductivity, may change with temperature. To predict the heat transfer rate
accurately, it is necessary to take into account the variation of viscosity. Singh and Agarwal
[99] studied the effects of variable viscosity and variable thermal conductivity on the steady
flow and heat transfer of Maxwell fluid over an exponentially stretching sheet. Hazarika and
Goswami [41] investigated the influence of variable viscosity and thermal conductivity on the
MHD boundary layer flow over an exponentially stretching sheet with viscous dissipation
and Joule heating effects. Mahmoud [58] reported the laminar flow of viscous, electrically

conducting fluid past an exponentially stretching permeable sheet with variable viscosity and

!Case(a):Accepted for publication in “Modelling, Measurement and Control B” 87(1) (2018) 7-14,
Case(b):Published in “International Journal of Energy for a Clean Environment ” 19(1-2) (2018)
67-83
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thermal conductivity in the presence of non-uniform magnetic field and non-uniform heat

generation/absorption.

This chapter presents the influence of variable viscosity and thermal conductivity in an
incompressible viscous fluid flow along a sheet, stretching exponentially. The influence of
pertinent parameters on velocity, temperature, concentration and heat and mass transfer
rates are exhibited through graphs and salient features are discussed. The numerical values

of the skin friction for different values of governing parameters are also tabulated.

5.2 Formulation of the Problem

Consider a laminar slip flow of viscous incompressible fluid over an exponentially stretching
sheet with variable viscosity and thermal conductivity. The heat source is assumed as Q (%) =
Qo e%, where @ is the constant. The stretching velocity and suction/injection velocity are

taken as in case(a) of Chapter-2, the equations governing the flow are

du, O,
_ 1
or | 0y 0 (5-1)
ou, _ O, 1 0 O,
. _: 9 2
“or ey p o (“ a@) (5:2)
_or o 1 o ( oT Q -
- k== (T-T .
uxé?:i Y 0y pc, 0y (K 83}) +pcp( ) (5-3)

oc ~_oC _0°C
Uy + Uy = Do 5.4
e gz Tl 07 o1 (54)
where p is the viscosity of the fluid, s is the thermal conductivity, and p is fluid den-

sity(assumed constant).

Assue that the temperature dependent coefficient of viscosity ,u(T) vary as inverse func-

tion of temperature [51] and temperature dependent thermal conductivity «(T') vary as the
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linear function of temperature [13] such as

=0T —-1T,), kK=Fke (5.5)

1+ T Ty
6 e —
Ty — Ts

where T, = T, — 1/9, b = /1100, b and T, are the constants and their values depend on the

reference state, 9 is the thermal property of the fluid, € is the variable conductivity parameter
and K is the conductivity of the fluid far away from the sheet. Generally for the liquids

b > 0 and for gases b < 0.
-1
The relation between constant viscosity and variable viscosity is @ = piso (1 — %)

Prandtl number depends on variable viscosity and variable thermal conductivity [84],

therefore, Prandtl number also varies

MGy (HooCp/Foo)
e T urena- D) (5.6)

where Pro, = “:’—CP is the Prandtl number related to constant viscosity. From equation

(5.6) it is clear that as 0, — oo and € — 0, Pr — Pro.

5.2.1 Case(a): Convective Thermal Condition
Assume that the sheet is either cooled or heated convectively through a fluid with tempera-
ture Ty and which induces a heat transfer coefficient hy, where hy = h g—]‘je%.

The conditions on the surface of the sheet are

iy = U,, ity = —Vi(&), hy(Ty —=T) = -k, C=C, at §=0 5)
Gy =0, T =Ty, C—Cyx as §— 00 .

The non-dimensional form of the governing equations (5.1) - (5.4), are

115



T 1 T\
(1 - —) F" 4+ —T'F" + <1 — —) (FF"—2F"?) =0 (5.8)

0, 0, 0,
T
(1+€T)T" + €T + Pr (1 - 9—> 1+ el (FT'+¢T)=0 (5.9)
Leorirer—o (5.10)
Sc '

The conditions (5.7) at the boundary reduces to

F(0)=S, F(0)=1, T(0)=-Bi(l-T(0)), C(0)=1 at y=0 (5.11)
F'(00) -0, T(c0)—0, C(oo)—=0 as y— 0 .

where v, is the kinematic viscosity of the fluid in the free stream, Bi = }—;,/VOO is the Biot

=1 2LQo
(Tr—Two) pcp Uo

eter, and S = Vj,/ -2 is the suction(S > 0) or injection(S < 0) parameter.
Voo Up y

number, 0, = is the fluid viscosity parameter, ¢; = is the heat source param-

5.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction C, the local Nusselt number Nu; and the local Sherwood

number Shz, are given by

VRez Cs _ 0r F'"(0 NU,j — _T’ 0 d L — —Cl 0
\V/2E/L (GT*T(O)) (0), /T /2L\/Re; (0), an \/Z/2L/ Re; ©

(5.12)
7U.L(7)

Voo

where Re; = is the local Reynold’s number.

5.2.3 Solution of the Problem

The system of Egs. (5.8) - (5.10) along with the boundary conditions (5.11), is solved

numerically, using the successive linearisation method as explained in Chapter-2.
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Proceeding as in Chapter-2, we obtain the following matrix equation

Ai,lxi = Ri*lu (513)
subject to the boundary conditions
ZD%F &) = ZDNkF (&) =0 (5.14a)
N
ZDNkTi(fk) — BiT;(&n) = Ti(&0) = Ci(&) = Ci(€n) =0 (5.14b)

k=0

In Eq.(5.13), A;_; is a (3N + 3)x (3N + 3) square matrix and X; and R;_; are (3N + 3)x1

column vectors defined by

A A Agg F; Ei;
Aisi = [Ay Ay Aozl Xi=10;|, Rii= Esy; 1 (5-15)
Az Azy Ass P; Es; 1

F; = [Fi(&), Fi(&), Fi(&), -, Fi(€nv—1), Fi(én)]T,
©; = [Ti(&), Ti(&1), Ti(&), -, Ti(€n—1), Ti(€w)] T,
®; = [Ci(&), Ci(&1), Ci(&a), -+, Ci(En—1), Ci(En)]T,
~1(€0)s Crim1(60); Cim1(62)s s Crima (Ev—1), G- (€)1
Cz i-1(60)s Gim1(&1)s Cim1(&2), ++os Goim1(En—1), G (€))7
= [Gi-1(&0)s Gi-1(61), Gim1(62), s Gim1 (En—1), Gim1 (€8]
A = Xll,i—lD + X12,i—lD2 +x13,i—1D + X14,i-1, A2 = x15,-1D + x16,i-1, A1z =0
Asy = x21i-1, A = ng,i,lDQ + X23i-1D + X244-1, A3 =0
Asz1 = X31i-1, A2 =0, Aszz=gD?+ x32,1D

Here I is an identity matrix of size (N +1)x(N +1). After modifying the matrix system
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Nuz

Table 5.1: Comparative analysis for i 2L Tes

by the current method for A =0, 6, — oo,
e=0,¢=0,5=0 and Bi — oc.

Nusselt number %

Pr Magyari and Keller [56] | Present
0.5 0.330493 0.33053741
1 0.549643 0.54964317

1.122188 1.12208592
5 1.521243 1.52123757
8 1.991847 1.99183597
10 2.257429 2.25742182

(5.13) to incorporate boundary conditions (5.14), the solution is obtained as

X;=A " 'R; (5.16)

5.2.4 Result and Discussion

As in the previous Chapters, the results of the present problem are compared with works of
Magyari and Keller [56] as a special case by taking S =0, ¢ =0,¢e =0, 0, — oo, A =0, and
Bi — oo and presetned in Table. (5.1). In order to study the effects of viscosity parameter
0., suction/injection parameter S, Biot number Bi, thermal conductivity parameter €, heat
source parameter qp, velocity slip parameter A, computations have been carried out taking

S=05,¢q=01€¢=0.1,0.=3.0, A\=1.0, and B = 1.0 unless otherwise mentioned.

The variation of the velocity profile for diverse values of 6,., ¢;, Bi and S is presented in the
Figs. (5.1(a)) - (5.1(d)). It is obvious that fluid velocity is decreasing with the enhancement
in the value of 6, as shown in the Fig. (5.1(a)). Heat source parameter ¢; has an almost
negligible influence on velocity. Figure (5.1(b)) depicts that the velocity is increasing, but
negligible as the value of that ¢, is increasing. Biot number Bi has a considerable effect on
the fluid velocity as shown in the Fig. (5.1(c)). It is seen that the velocity is enhanced with
the rise in the value of Bi. From Fig. (5.1(d)), it is clear that velocity is rising with the

injection (S < 0) and reducing with the suction (S > 0).
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The effect of the parameters €, ¢;, Bi and S on temperature is shown in the Figs. (5.2(a))
- (5.2(d)). It is observed that the temperature increases as the value of thermal conductivity
parameter € increases as shown in the Fig. (5.2(a)). An increase in the values of heat source
parameter and Biot number, the temperature increases as shown in the Figs. (5.2(b)) and
(5.2(c)). Reduction in the temperature is observed with an increase in the suction and
enhancement with the blowing as shown in the Fig. (5.2(d)). This is due to the fact that

the wall suction, reduces thermal boundary layer thickness.

The behavior of the concentration profile for various values of the parameters 6,., ¢, Bi
and S is depicted in the Figs. (5.3(a)) - (5.3(d)). Rising the value of 6,., the concentration of
the fluid is increased as shown in the Fig. (5.3(a)). It is noticed from the Figs. (5.3(b)) and
(5.3(c)) that an increase in the values of ¢; and Bi increases the concentration. It is observed
that the effect of heat source parameter g; on concentration is almost negligible. From the
Fig. (5.3(d)), it is observed that an increase in the value of suction/injection parameter
S reduces the concentration. Therefore, the concentration of the fluid decreases with the

suction and increases with the injection as depicted in the Fig. (5.3(d)).

The variation of the skin-friction coefficient with varying values of 6,., Bi, ¢; and € against
S is presented in the Figs. (5.4(a)) - (5.4(d)). It is evident from the Fig. (5.4(a)) that increase
in the value of viscosity parameter increases the skin-friction. Hence, decrease in the fluid
velocity. An increase in the value of Bi diminishes the skin-friction and increases the fluid
velocity as shown in the Fig. (5.4(b)). While there is a negligible effect of ¢; and € on the
skin-friction as depicted in the Figs. (5.4(c)) and (5.4(d)). It is obvious from these figures
that the skin-friction is reducing slightly with an increase in the value of heat source and
thermal conductivity parameters. Further, it is identified that the skin-friction is reducing

with the increase in the value of S.

The behaviour of rate of heat transfer for several values of 6., Bi, ¢; and € against S is
portrayed in the Figs. (5.5(a)) - (5.5(d)). The rate of heat transfer is diminishing with the
rise in 6, as shown in the Fig. (5.5(a)). Further, it is noticed that the trend is reversed from
S = 0.15 onwards. ie., heat transfer is increasing with an increase in the values of S and

0. (S > 0.15). Figure (5.5(b)) narrates the rise in Bi enhances the rate of heat transfer.
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The rate of heat transfer is reducing with the rise in the values of ¢; and e as shown in the
Figs. (5.5(c)) and (5.5(d)). While it is clear from the figures that the rate of heat transfer

increasing with the suction.

For distinct values of 6,, Bi, ¢, and ¢, the variations of the rate of mass transfer is
graphitized against S through the Figs. (5.6(a)) - (5.6(d)). Increasing the value of the
viscosity parameter 6,., the rate of mass transfer is diminishing as shown in the Fig. (5.6(a)).
From the Fig. (5.6(b)), it is obvious that the rate of mass transfer is reducing with the rise
in Bi. There is a mild effect of the heat source and thermal conductivity parameters on the
rate of mass transfer as depicted in the Figs. (5.6(c)) and (5.6(d)). It is obvious from these
figures that the rate of mass transfer is slightly enhanced with the rise in ¢; and e. Further,

it is noticed that the suction increases the rate of mass transfer.
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Figure 5.1: Effect of (a) 0,, (b) q1, (¢) B, and (d) S on velocity profile.
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Figure 5.3: Effect of (a) 0,, (b) q1, (¢) Bi, and (d) S on concentration profile.
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5.2.5 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(#) = Bye3r is applied in §—direction and
the influence of Hall current is not neglected. Assume that magnetic Reynolds number is very
small so that the induced magnetic field is negligible in comparison to applied magnetic field.
The presence of Hall current induces a cross flow in Z-direction and hence the flow becomes
three-dimensional. Further, the slip velocity of the fluid is assumed as N,(Z) = Ny e%, where
Ny is the velocity slip factor. Under the Boussinesq approximation, the non-dimensional form

of the governing equations are

oL F"+ ! TF'+(1 T FF" —2F"” + 2Ri(T + BC) il (F'+B,W) | =0
_ — _ L _ i _ _
0, 0, 0, 1+ 63 "

T 1 T\? H
I— W'+ =—TW +[1-= FW' —2F a F— — 1
( GT)W +9T W+( 9r> < w W+1+ﬁ2(6h W)) 0 (5.18)

T
(1+€T)T" + €T + Pr (1 - 9—) (1+€T) (FT' — AF'T + ,T) =0 (5.19)
1

"4+ FC' — AF'C = 2
5. O FC C=0 (5.20)

The boundary conditions, in dimensionless form, are

F(y) =S, F'(y) =1+ (55) AF"(y), Wy) =0, T(y) =1, Cy) =1 at y=0

F'(y) =0, W(y) =0, T(y) =0, Cy) >0 as y —
(5.21)
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5.2.6 Skin Friction in ¥ and z-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in Z—direction C'rz, local skin-friction in Z—direction Cps,

the local Nusselt number Nu; and the local Sherwood number Shz, are given by

ez B } / Rei 6) / )
(5.22)
Nuz o Sha v
7/2L\/Re; T10),  and VZ/2L\/Re; c(0).

5.2.7 Solution of the Problem

The system of Egs. (5.17) - (5.20) along with the boundary conditions (5.21), is solved

numerically, using the successive linearisation method as explained in Chapter-2.

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai_lXi - Ri—la (523)
subject to the boundary conditions
N
Z Do Fy (&) = Y (AD2x; — D) Fi(&:) = 0 (5.24a)
k=0
Wi(En) = Wi(&) = Ti(En) = Ti(&o) = Ci(én) = Ci(§) =0 (5.24b)

In Eq.(5.23), A;_; is a (4N + 4)x (4N + 4) square matrix and X; and R;_; are (4N + 4)x1

column vectors defined by

Fi El,i—l
Wi E2,i71
Ai—l = [Ars] , s = 1, 2, 3,4, Xz = s Ri—l = (525)
O, Es;_1
(I)z E4,i—1
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Fi = [Fi(%), Fi(&), Fi(&2), - Fi(En—1), ()7,

Wi - [I/Vz(g())?V[/I(Sl)aVVZ(é.Q)’ i ( 1)7I/VZ( )] ;
®i = [E(€0)>E(§l)’n(€2)> (fN 1)>TZ(£N)]T7

P

i = [Ci(&), Ci(&), Ci(&), "'7Ci<€N71)7Ci(£N)] ,
Eiio1 = [Crim1(€0)s Cuim1(61)s Cim1(82), s Crim1(Ev—1), Crim1(§n)]T
Eoi1 = [C2i-1(80)s Gai-1(61)s Coi1(E2), -+ Crim1(En—1), Coi1 (En)]"
Ezi1 = [Gi-1(80)s Gi1(61), Gim1(€2), s Gim1(Ev—1), Gim1 (E3)]T
Esic1 = [Cim1(€0)s Caim1(61); Caim1(82), s Caim1 (Ev—1), Caim1 (€))7

A = x11-1D% + x12:21D? + x13:-1D + X14-1, A1z = Xi5,i-1,

A1z = x16,-1D + X17,-1,  A1a = X181

Aot = x21,i-1D + X221, Az = X23,i71D2 + X24,i—1D + X251,

Az = X26i-1D + x27.i-1, A2 =0

Azt = x31,i-1D + X321, Ase =0, Az = x33,-1D* + X34,-1D + X351, A4 =0
Ay = Xa1,i-1D + Xxa2-1, A =0, Ap3=0, Ay = SLCDQ + X43,i—1D + Xa4,i—1

Here I is an identity matrix of size (N +1)x(N +1). After modifying the matrix system

(5.23) to incorporate boundary conditions (5.24), the solution is obtained as

X;=A R (5.26)

5.2.8 Results and Discussion

The comparison of the results with the results obtained by Magyari and Keller [56] as a
special case by taking Ri =0, H, =0, S =0, A\=0, 6, — 00, ¢ =0, and € = 0 is presented
in Table (5.2).

The variation of both the velocities, temperature and concentration under the influence
of Hall parameter [, is demonstrated in the Figs. (5.7(a)) - (5.7(d)). The Hall parameter
increases the tangential velocity as shown in the Fig. (5.7(a)). In the absence of the hall
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Table 5.2: Comparison of —F"(0) and F(oo) calculated by the present method for S = 0,
A=0,H,=0,0, 500,¢e6=0,q =0, and Rt = 0.

Magyari and Keller [56] | Present
—F(0) 1.281808 1.28180856
F(o00) 0.905639 0.90564382

parameter (3, = 0) there is no transverse flow velocity as shown in Fig. (5.7(b)).

The effect of the viscosity parameter 6, (6, = 2.0,3.0,5.0,00) on the velocities, the tem-
perature and the concentration is presented in the Figs. (5.8(a)) - (5.8(d)). The tangential
velocity decreases as the viscosity parameter 6, — oo as shown in the Fig. (5.8(a)). This is
due to the fact that an increase in the viscosity parameter 6, decreases the boundary layer
thickness which results in decrease of the tangential velocity. Further, the transverse flow
increases as the the viscosity parameter 6, — oo as shown in the Fig. (5.8(b)). There is a
slightly decrease in the temperature and an increase in the fluid concentration as the value

of the viscosity parameter 6, — oo as demonstrated through the Figs. (5.8(c)) - (5.8(d)).

The variation of both velocities, the temperature and the concentration for diverse values
of the thermal conductivity parameter € is shown graphically through the Figs. (5.9(a)) -
(5.9(b)). The fluid velocity is increasing with the increase in the values of the thermal
conductivity parameter € as depicted in the Fig. (5.9(a)). Fig. (5.9(b)) shows that the
secondary velocity increases first reaching to a maximum with e for every profile slightly,
and then gradually decreases with the increasing boundary layer thickness and about from
n = 3.8, the trend is reversed with the rising values of e. From Figs. (5.9(c)) - (5.9(d)),
it is evident that the temperature is increasing and the concentration is decreasing with
the increasing values of the thermal conductivity parameter e. It is also observed that the
increase in the temperature is more when compared that of the decrease in the concentration

with e.

The effect of heat source parameter ¢; on both the velocities, temperature and concen-
tration is presented in the Figs. (5.10(a)) - (5.10(b)). Both the fluid velocities are increasing

with the increase in the value of heat source parameter ¢; as presented in the Figs. (5.10(a))

130



and (5.10(b)). Figs. (5.10(c)) and (5.10(d)), demonstrate that the fluid temperature in-
creases and the concentration decreases as the value of the heat source parameter ¢; is

increasing.

The behavior of the rate of heat and mass transfers against suction/injection parameter
S are presented in the Figs. (5.11(a)) - (5.14(b)) for different values of gy, 0., €, and ¢.
Figures (5.11(a)) and (5.11(b)) demonstrates the variation of the rate of heat and mass
transfers for different values of Hall parameter 5,. It is clear from the figures that both
the heat and mass transfers are increasing with an increase in the value of Hall parameter
Br. It is evident from the figures that the rate of heat transfer is increasing and the rate of
mass transfer is decreasing with 6, as shown in the Figs. (5.12(a)) and (5.12(b)). From the
Figs. (5.13(a)) and (5.13(b)), it is observed an opposite trend, on the rate of heat and mass
transfer transfers when 6, is replaced by thermal conductivity parameter e. From figures
(5.14(a)) and (5.14(b)), it is seen that the rate of heat transfer is decreasing and the rate of
mass transfer is increasing with an increase in the value of heat source parameter ¢;. Further,
It is observed from these figures that both the rate of heat and mass transfers are increasing
with an increase in the fluid suction. The influence of the velocity slip parameter A on the
rate of heat and mass transfers is depicted in the Figs. (5.15(a)) and (5.15(b)). It is evident
from these figures that both the heat and mass transfer rates are reducing with the fluid
slippage at the boundary. Moreover, both the heat and mass transfer rates are increasing

with the fluid suction.

The variations of the local skin-friction coefficient in & and z-directions for diverse values
of pertinent parameters are tabulated in Table (5.3). The effect of the slip parameter on
both the skin-friction is depicted numerically in the table (5.3) and it is noticeable from the
table that the skin-friction in Z-direction is increasing and z-direction is decreasing with the
fluid slippage at the boundary. Table (5.3) shows that in the presence of Hall parameter
both the skin-friction increase which results in reducing the boundary layer and therefore,
higher velocity gradient at the surface. It is also observed that when 3, = 0, then there is no
cross flow velocity and hence there is no skin-friction in Z-direction. Table (5.3) illustrates

that, the fluid suction at the boundary reduces the skin-friction in # and Z-directions. It is
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identified from the table that the skin-friction in Z-direction is increasing with an increase
in the magnitude of the value of 6,. But, an opposite trend is observed for the skin-friction
in Z-direction. At the end of the table, the influence thermal conductivity and heat source
parameters are presented. It is obvious from the table that, both the skin-friction increase
with an increase in the value of the thermal conductivity and heat source parameters and

hence, fluid velocity enhances in the boundary layer.
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Table 5.3:

Variation of skin friction in - and Z-directions for varying values of suc-
tion/injection parameter S, slip parameter \, Hall parameter 0By, viscosity parameter 0,

thermal conductivity parameter Ri, and heat source parameter q;.

Ao 5 0 a | (&) Po] () o)
00 1.0 05 20 0.1 0.1 -1.782612 0.501525
05 1.0 05 20 0.1 0.1 -0.728843 0.391008
1.0 1.0 05 20 0.1 0.1 -0.463473 0.358577
20 1.0 05 20 0.1 0.1 -0.269148 0.333299
1.0 00 05 20 0.1 0.1 -0.521005 0.000000
1.0 01 05 20 0.1 0.1 -0.520091 0.053623
1.0 0.5 05 20 0.1 0.1 -0.501077 0.238343
1.0 20 05 20 0.1 0.1 -0.408879 0.375312
1.0 1.0 -04 20 0.1 0.1 -0.402515 0.366976
1.0 1.0 -02 20 0.1 0.1 -0.414789 0.369755
1.0 1.0 00 20 0.1 0.1 -0.427883 0.368949
1.0 1.0 05 20 0.1 0.1 -0.463473 0.358577
1.0 1.0 1.0 20 0.1 0.1 -0.502533 0.336370
1.0 1.0 05 -50 0.1 0.1 -0.430670 0.287220
1.0 1.0 0.5 -30 0.1 0.1 -0.426055 0.278507
1.0 1.0 05 -1.0 0.1 0.1 -0.407420 0.245875
1.0 1.0 05 20 0.1 0.1 -0.463473 0.358577
1.0 1.0 05 3.0 0.1 0.1 -0.453923 0.335858
1.0 1.0 05 20 0.0 0.1 -0.464558 0.356664
1.0 1.0 05 20 0.1 0.1 -0.463473 0.358577
1.0 1.0 05 20 0.5 0.1 -0.460092 0.364618
1.0 1.0 0.5 20 1.0 0.1 -0.457247 0.369831
1.0 1.0 05 20 01 -0.2 -0.467421 0.350981
1.0 1.0 05 20 0.1 -0.1 -0.466202 0.353284
1.0 1.0 05 20 0.1 0.0 -0.464892 0.355799
1.0 1.0 05 20 0.1 0.2 -0.462039 0.360916
1.0 1.0 05 20 01 04 -0.458192 0.369602
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5.3 Conclusions

In this chapter, the effect of variable viscosity and thermal conductivity of a viscous fluid
flow over an exponentially stretching permeable sheet is considered. From this study the

following conclusions are drawn for two cases:

The velocity, in both the cases, decreases with an increase in the value of viscosity
parameter and increases with the increase in the thermal conductivity parameter. But,
an opposite result is observed for the concentration profile. In case (b), the transverse
velocity increases with the increase in the value of the Hall, viscosity, heat source, and
thermal conductivity parameters. In both cases, the temperature increase with an increase
in the value of thermal conductivity and heat source parameters. While, in case (a), the
temperature increases with the increase in the Biot number and in case (b), the temperature
decreases with the increase in the Hall parameter. In case (a), the skin-friction decreases with
an increase in the value of thermal conductivity and heat source parameters. While in case
(b), it increases. In both the cases, the skin-friction increase with an increase in the thermal
conductivity parameter, while skin-friction in Z-direction decreases. In case (a) and (b), the
rate of heat transfer increases with the increase in viscosity parameter and decreases with
an increase in the thermal conductivity and heat source parameters. Whereas an opposite
trend is observed for the rate of mass transfer. In case (b), both the heat and mass transfer
rates are decreasing with the slipperiness and increasing with the Hall parameter. Further,
in both the cases, the skin-friction decrease and the rate of heat and mass transfers increase

with the fluid suction.
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Chapter 6

Viscous fluid flow over an
exponentially stretching sheet with

thermophoresis and viscous

dissipation !

6.1 Introduction

Thermophoresis is a mechanism in which small particles migrate in the direction of decreasing
thermal gradient. It is quite significant in radioactive particle deposition in nuclear reactor
safety simulations, aerosol particle sampling, deposition of silicon thin films etc. Sandeep and
Sulochana [92] studied the nanofluid flow over an exponentially stretching porous sheet im-
mersed in a porous medium in the presence of thermophoresis, radiation and magnetic field.
Viscous dissipation is necessary when analyzing the characteristics of fluids with low specific
heat and high viscosity. It is significant in geological process, nuclear engineering and num-

ber of devices which are subjected to large deceleration or high rotational speeds. Megahed

LCase(a): Communicated to “International Journal of Applied Mechanics and Engineering”,
Case(b) Communicated to “Journal of the Association of Arab Universities for Basic and Applied
Sciences”

142



[63] reported the flow of Casson thin film over an unsteady stretching sheet in the presence of
viscous dissipation and velocity slip. Daniel [19] presented the MHD nanofluid flow and slip
boundary conditions over an exponential stretching sheet in the presence of thermal radiation
and thermophoresis effects. Mahantesh et al. [57] investigated Unsteady three-dimensional
MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the

presence of thermal radiation, viscous dissipation and Joule heating.

This chapter investigates the thermophoresis and viscous dissipation effects on the in-

compressible viscous fluid flow over an permeable exponentially stretching sheet.

6.2 Formulation of the Problem

Consider the slip flow of an incompressible viscous fluid over an exponential stretching per-
meable sheet with thermophoresis and viscous dissipation effects. Making use of the assump-

tions of case (a) of Chapter-2, the equations governing the flow are given by

o o _, o

Ty %% + Ty Z‘C = 1/6)82;; (6.2)
agcg—?jtayg—g :a%ericp (%%)2 (6.3)
axg + ay% - D% - (% [VT(C* - COO)] (6.4)

where V7 is the thermophoretic velocity.

The term Vz ([111]) in (6.4) can be written as

_I/ kft aT
T, 9§

Vi = (6.5)

where T, is the reference temperature and k; is the thermophoretic coefficient.
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6.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Ty and which induces a heat transfer coefficient hy, where hy = h g—]‘je%.

The non-dimensional form of the conditions at the boundary are

F(z,0) 4+ 2%5(2,0) = S, F'(2,0) =1+ AF"(x,0),

T'(z,0) = =Bi(1 — T(x,0)), C(x,0) =1, (6.6)
Fl(z,y) =0, T(z,y) -0, C(z,y) -0 as y — o0

The dimensionless form of the equations (6.1) - (6.4) governing the flow(see case (a) of

Chapter-3) are

F F’
F" + FF" —2F? +2 (F”g— — F’% ) =0 (6.7)

x x

1 OF oT
ET” + FT' + Ec e** F"™ +2 (T’% - F’%) =0 (6.8)
1 oF oC

§C” +FC'—7(T'C"+C T") +2 (C’—ax — Fl_m:) =0 (6.9)
where Fc = ﬁ is the Eckert number and 7 = —%(T t — T.) is the thermophoretic

parameter (The surface is cold for 7 > 0 and hot for 7 < 0 [66, 114]).

6.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction C'y, the local Nusselt number Nu; and the local Sherwood

number Shz, are given by

VRe: Cy _ 1wy Nug _ v an L:_’
Tt = O e O e =00 )
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6.2.3 Solution of the Problem

The system of Egs. (6.7) - (6.9) along with the boundary conditions (6.6), is solved numer-

ically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation
Ai,lXi - Rz;l, (611)

In Eq. (6.11), A;_; is a (6N + 6)x (6N + 6) square matrix and X; and R;_; are (6N + 6)x1

column vectors defined by

=
~ ~ ~
g = o
w N =
& . .
Lol L

A =[A],rs=1,2-,6, X;= L Rig=| (6.12)

A E Q80
88
T

@
1
o
2
L

: (&), s FilEv-1), Fi(§w)]T
O, = [Ti(fo)aTz(f )s Ti(&)s oy Ti(€n—1), Ti(€m)]T
®; = (&2), - Ci(fN—l) Ci(En)]",
G; = [Gi(%) ,Gi(&2), -+ Gi(€n—1), Gi(En)]T,
H, = [Hz‘(fo)aHz( &), Hi(&a), s Hi(En-1), Hi(En)]T,
K; = [Ki(%) Ki(&2), oy Ki(€n—1), Ki(§w)],
Eji1= [Cj,z‘fl(fo) ng 1(51)»Cjz 1(&2), s Gim1(Ev—1), G (€))7 = 1,2,3,4,5,6
A =D% + x11,1D* + x12:.1D + x135-1, A2 =0, A;3=0,
Ay = X14i-1D + X151, A5 =0, A =0,

9!
~~
PAaY
=
-
9!
—~
A2
iy
~—
0
—

At = X21,i-1D% + x22i-1D + X23-1, Az = P%D2 + X24i-1D, A3 =0,
Aoy = Xo25i-1, Aos = X261, A2 =0,
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Azi = X31i-1D + X321, As2 = x32.-1D? + x31-1D, Asz = éDZ + x35,i-1D + X36,i—1,
Azs = Xa7i-1, A5 =0, Azs = X381,

Ayt = xa1,i-1D? + Xa2,i-1D + xa35-1, A =0, As3=0,

Ags = D% + x40 1D* + Xusi1D + Xupi-1, Ass =0, Ay =0,

Az = X51,i—1D2 + X521, As2 = Xs3,1D,  Asz =0,

Asy = X54,z‘—1D2 + X55,i—1D + X56,i-1, Ass = %DQ + X57,i-1D + X58,i-1, Asg =0,

As1 = Xe1,i-1, Az = X62,i71D2 + Xe3,i-1D,  Agz = Xe4,i—1D + X65,i-1

Ass = X66,—1D + Xo7,i-1,  Aes = Xes,i—1D? + X69,-1D, Ags = éDQ + X610,i—1D + X611,i—1,

Here I is an identity matrix of size (N +1)x(N +1). After modifying the matrix system

(6.11) to incorporate boundary conditions, the solution is obtained as

X;=A R (6.13)

6.2.4 Result and Discussion

The results of the present analysis are compared with the results of the Magyari and Keller
[56] as a special case and shown in Table. (6.1). In order to study the effects of Joule heating
parameter J, suction/injection parameter S, Biot number Bi, magnetic parameter H, and
velocity slip parameter A, computations have been carried out taking S = 0.5, Ec = 0.2,
A =05 7=03, z=0.2 and Bi = 1.0 unless otherwise mentioned. The behavior of
velocity in the presence of the velocity slip at the boundary for the exponentially stretching
sheet is presented in the fig. (6.1(a)). The velocity is decreasing with an increase in the slip
parameter, which in turn lessens the momentum boundary layer thickness. Figure (6.1(b))
represents the variation of the velocity profile in the presence of suction/injection parameter
S. 1t is observed that the velocity is decreasing by the rise in the value of S. While a
reverse trend is noticed for injection(S < 0). The variation of the skin-friction coefficient
F"(x,0) against non-similar variable z for distinct values of the slip and the suction/injection

parameters is presented in the figures (6.2(a)) and (6.2(b)). It is noticed from these figures
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Table 6.1: Comparative analysis for NN by the current method for A = 0, 7 = 0,

Ec=0,2=0,5=0 and Bi — oco.

Nusselt number %

Pr Magyari and Keller [56] | Present
0.5 0.330493 0.33053766
1 0.549643 0.54964345

1.122188 1.12208577
) 1.521243 1.52123668
8 1.991847 1.99183375
10 2.257429 2.25741862

that the skin-friction coefficient is increasing with an increase in the value of the slip and

decreasing with the rise in the suction parameter.

Figures (6.3(a)) - (6.3(d)) exhibit the behaviour of the temperature profile for diverse
values of Fe¢, Bi, A and S, respectively. It is evident from the figure (6.3(a)) that the
temperature is increasing with an increase in the value of Ec. Figure (6.3(b)) shows that the
temperature enhancing by the rise in the value of Bi. It is seen that temperature within the
boundary layer increases with the increase in the Biot number. For Bi — oo, equation (6.6)
implies 7'(0) — 1, which is clearly shown in the Fig. (6.3(b)) for larger values of Bi. The
figure (6.3(c)) reveals that the temperature profile increases with an increase in the value of
the slip parameter \. Figure (6.3(d)) shows that the temperature of the fluid is decreasing
with an increase in the value of the suction parameter and an opposite trend is seen for

injection.

The effect of thermophoretic parameter 7, Biot number Bi, slip parameter A and suc-
tion/injection parameter S on the concentration profile is presented in the Figs. (6.4(a)) -
(6.4(d)). An increase in the value of 7 decreases the concentration as shown in the figure
(6.4(a)). This is due to the fact that fluid particles move away from cool surroundings with
the increase in the thermophoretic parameter. Figure (6.4(b)) shows that the influence of
convection on concentration. It is known that a rise in the convection at the stretching sheet
results in lowering thermal penetration and hence decreases the concentration boundary layer

thickness. Therefore, mass transfer at the sheet increases with an increase in the value of Bi.
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Further, as the value of the slip parameter increases, the concentration of the fluid increases
as shown in the Fig. (6.4(c)). Due to which, mass transfer at the sheet decreases. Further,
the concentration decreases with the increase in the value of the suction and increases with

the increase in the value of the injection as shown in Fig. (6.4(d)).

The variation of heat transfer coefficient for different values of Eckert number, Biot
number, slip and suction/injection parameters against non-similar variable x are presented
through the Figs. (6.5(a)) - (6.5(d)). It is evident from the Fig. (6.5(a)) that heat transfer
from the sheet to the fluid is decreasing with an increase in the value of Ec. In the absence of
Eckert number(FEc = 0), there is no effect of the non-similar variable x on the heat transfer
coefficient. As the value of E'¢c increases, the heat transfer from the sheet to the fluid increases
and for higher values of Eckert number heat absorption takes place. Increasing the values
of the Biot number enhances the heat transfer coefficient predominantly on the surface due
to the strong convection as shown in the Fig. (6.5(b)). Figure (6.5(c)) shows that the rate
of heat transfer enhanced with an increase in the slipperiness. But, it is noticed that in the
absence of the slipperiness and for small values of slipperiness heat absorption is taking place
far away from the boundary. While heat transfer coefficient is increasing with increase in

the value of S as depicted in the Fig. (6.5(d)).

The behavior of the mass transfer coefficient with 7 against x is portrayed in the Fig.
(6.6(a)). It is seen from the figure that the rate of mass transfer is increasing with an increase
in the value of 7. Further, it is noticed that for higher values of 7, the mass transfer rate
is slightly decreasing with z. The influence of Biot number Bi on the mass transfer rate
is presented in the Fig. (6.6(b)). From this figure, it is observed that the rate of mass
transfer is increasing with the increase in Bi. From Fig. (6.6(c)) it is evident that the rate
of mass transfer is reducing with a rise in the value of A\. Further, in the absence of slip
parameter, there is maximum mass transfer from the sheet to the fluid. But, an opposite
trend is observed on the rate of mass transfer when the slip parameter is replaced by the
Biot number. Finally, the variation of mass transfer coefficient for different values of S is
depicted in the Fig. (6.6(d)). This figure reveals that the rate of mass transfer is increasing

with an increase in the value of suction and reducing with a rise in the value of injection.
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Figure 6.4: Effect of (a) 7, (b) Bi, (¢) A\, and (d) S on C.
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6.2.5 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(#) = Bye3r is applied in §—direction and
the influence of Hall current is not neglected. Assume that magnetic Reynolds number is
very small so that the induced magnetic field is negligible in comparison to applied magnetic
field. The presence of Hall current induces a cross flow in Z-direction and hence the flow
becomes three-dimensional. Under the Boussinesq approximation, the flow is governed by

the following non-dimensional equations

H,
F" + FF" —2F? + 2Ri(T + BC) — P (F' + B,W) =0 (6.14)
h
H,
W" —2F'W + FW' + S(BpF' = W) =0 (6.15)
1+ 57
1
P—T” + FT' —4F'T + Ec (F™ +W"?) =0 (6.16)
.
1
S—O” + FC' —4F'C—7(T'C'"+CT") =0 (6.17)
C

The corresponding boundary conditions are

Fly) =S, F'(y) =1+ AF'(y), W(y) =0, T(y) =1, C(y) =1 at y=0

(6.18)
F'(y) >0, W(y) —0, T(y) >0, C(y) >0 as y — o0
where E'c = Cﬁo is the Eckert number and 7 = —%(Tw—T ) is the thermophoretic parameter

(The surface is cold for 7 > 0 and hot for 7 < 0 [66, 114]).
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6.2.6 Skin Friction in ¥ and z-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in Z—direction C'rz, local skin-friction in Z—direction Cps,

the local Nusselt number Nu; and the local Sherwood number Shz, are given by

e o o), YES o o),

= | 2L (6.19)
% = —T7'(0), and % = —C'(0). '
iU, (%)

where Re; = is the local Reynold’s number.

14

6.2.7 Solution of the Problem

The system of Egs. (6.14) - (6.17) along with the boundary conditions (6.18), is solved

numerically using the successive linearisation method as explained in Chapter-2.

Proceeding as in Chapter-2, we obtain the following matrix equation

Ai,lxi = Ri*lu (620)
subject to the boundary conditions
N
k=0
Wi(én) = Wi(fO) Ti(én) = Ti(&) = Ci(én) = Ci(&) =0 (6.21b)

In Eq.(6.20), A;_1 is a (4N + 4)x (4N + 4) square matrix and X; and R;_; are (4N + 4)x1
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column vectors defined by

a _ELH_
A=A, rs=1234 X; = Wi . Ri = Bt (6.22)
Gi E3,i—1
_(bi_ _E4,i—1_
where
F; = [Fi(&%), Fi(&1), Fi(&2), - Fi(En—1), (€87,
W; = [Wi(&), Wi(&),Wi(&),---, i(Ev-1), WiEw)],
0; = [T5(%0), Ti(&1), Til&), -, Ti(§n—1), Ti(én)]",
®; = [Ci(&), Ci(&), i(&)v“’7Ci(§N71)7Ci<£N>] :
Eri1 = [Cri1(60); CLic1(61), Cuic1(€2), o Crima(En—1); Crima (§n)]"
Eo i1 = [Ci-1(5); Coi1(&1), Coim1(€2), s Coima(En—1), Coima ()]
Esio1 = [Gim1(80)s Gim1(6), Gim1(62), s Gim1 (Ev—1), Ga—1 ()"
Epic1 = [Ci-1(80)s Caim1(61); Caim1(62), s Caima (§n—1), Caim1(€n)]"
A = D%+ x11i1D + X121 D+ xsio1, Az = — L A = 2Rl Ay = 2BRil

Ag1 = Xa1,i-1D + X221,
Agi = x31-1D% + x3241D + X331,
Asg = #DQ + x35,i—1D + X36,i-1, Asz4 =0
Ag = Xar,i-1D + X421,
Ay = SLCDQ + X45,i—1D + X46,i—1

Here I is an identity matrix of size (N +1)x(N +1).

(6.20) to incorporate boundary conditions (6.21), the

X;=A R,
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Ay =D? + X23,i—1D + X24,i—1,

A3 =0, Ay =0

Asy = X34,¢—1D7

Ap =0, A= X43,zelD2 + Xa4,i—1D),

After modifying the matrix system

solution is obtained as

(6.23)



Table 6.2: Comparison of —F"(0) and F(o0) calculated by the present method for S = 0,
A=0, H,=0, and Ri = 0.

Magyari and Keller [56] | Present
—F(0) 1.281808 1.28180856
F(o00) 0.905639 0.90564370

6.2.8 Results and Discussion

In this case also, the results are compared with the results of Magyari and Keller [56] and
presented in Table (6.2). To study the effects of Hall parameter f3;,, Eckert number E¢, slip
parameter A\, and thermophoresis parameter 7, computations have been carried out in the
cases of S = 0.5, Ri = 1.0, B=0.5,5 =05, A=1.0, 8, = 1.0, H, = 2.0, Ec = 0.5, and
T =0.3.

Figures (6.7(a)) - (6.7(d)) represent the behaviour of both the velocities, temperature
and concentration with the Hall parameter 8. From Fig. (6.7(a)), it is observed that the
tangential velocity rises with the rise in ). Fig. (6.7(b)) indicates that W (y) enhances with
an enhancement in f,. This is in tune with the fact that the Hall currents produce cross
flow velocity. It is increasing near the plate and then gradually decreasing. Figs. (6.7(c))

and (6.7(d)) depict that the T'(y) and C(y) are reducing with an enhancement in fy,.

The influence of 7 on the tangential and transverse velocities, temperature and concen-
tration is presented in the Figs. (6.8(a)) - (6.8(d)). Figure (6.8(a)) depicts that F'(y) is
diminishing with the increment in the values 7. The same trend is seen on the secondary
velocity as presented in the Fig. (6.8(b)). Further, from Fig. (6.8(c)), it is observed that the
temperature is enhancing with the enhancement in 7. The concentration is lessened with
the increasing values of 7 as portrayed in the Fig. (6.8(d)). From Figures (6.8(a)) - (6.8(d)),

it is noticed that the impact is very mild.

The behavior of F'(y), W(y), T(y) and C(y) with the Eckert number Ec is exhibited
in the Figs. (6.9(a)) - (6.9(d)). From Figs. (6.9(a)) and (6.9(b)), it is perceived that

both the velocities are increasing with an increase in the value of Ec. Applying the viscous
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dissipation effect, the momentum boundary layer thickness reduces slightly and hence, the
velocity raises. It is apparent from the Fig. (6.9(c)) that the temperature increases with
the increasing value of Ec¢, which in turn, intensifies the thermal boundary layer thickness.
Figure (6.9(d)) shows that the concentration is reducing with the increase in the value of

Ec. 1t is obvious from the figures that the impact of Fc on the profiles is not significant.

The influence of By, 7, Ec and X on the heat transfer (—77(0)) and mass transfer (—C’(0))
coefficients against S is depicted in the Figs. (6.10(a)) to (6.13(b)). It is understood from
these figures that —77(0) and —C"(0) are improving with the improvement in S. It is evident
from Fig. (6.10(a)) and Fig. (6.10(b)) that, the heat transfer and mass transfer phenomena
are increasing with a rise in the value of Hall parameter (3. Further, it is clear from the
figures that the variation in the mass transfer is more to that of heat transfer. —77(0)
is decreasing with the increasing value of 7 as presented in the Fig. (6.11(a)). —C’(0) is
increasing with the rise in the value of 7 as shown in the Fig. (6.11(b)). But, the amount
of the mass transfer from the sheet to the fluid is very high when compared that decrease
in heat transfer from the sheet to the fluid. It is depicted from Fig. (6.12(a)) that the heat
transfer coefficient is decreasing with an increase in the values of Ec. But, an opposite trend
is observed for the mass transfer rate as shown in the Fig. (6.12(b)). Further, it is identified
that the mass transfer rate is decreasing with the increasing values of Ec after S = 1.4. It is
seen from the Fig. (6.13(a)) that the heat transfer rate is decreasing with an increase in .

Further, the mass transfer rate is decreasing with an increase in the value of \. as presented

in Fig. (6.13(b)).

The behaviour of F”(0) and W’(0) for different values of A\, §,, S, Ri, Fc and 7 are
tabulated in Table (6.3). It is evident from the table that the F/(0) is increasing and W’ (0)
is reducing with the slipperiness. In the presence of the Hall parameter both the skin-frictions
are increasing. It is also observed that the transverse velocity vanishes when 3, = 0 and
hence in Z—direction there is no skin-friction. Table (6.3) illustrates that, F”(0) is decreasing
and W’(0) is increasing with slip at the surface of the stretching sheet. The positive values
of Ri increases both the skin-frictions. In addition to this, F”(0) in Z—direction is greatly

increasing with the positive values of Ri. Furthermore, it is identified that a unique value of
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F"(0) = —0.61660061 and W’(0) = 0.15023781 is attained when Ri = 0 (the case of forced
convection flow) and for all values of Eckert number Ec¢ and thermophoresis parameter 7.
Because (6.14) and (6.16) are uncoupled when Ri = 0. As a result, the flow and thermal fields
are independent. Hence, there is no effect of thermal field parameters on the flow filed. Also,
both the skin-friction coefficients are increasing with an increase in the viscous dissipation
parameter Fc. At the end of the table, the influence of the thermophoresis parameter 7 is
presented. It is noticed from the table that, both F”(0) and W’(0) are decreasing with the

increasing value of 7.

6.3 Conclusions

A laminar slip flow of electrically conducting incompressible viscous fluid over an exponen-
tially stretching permeable sheet in presence of thermophoresis and viscous dissipation effects

is studied. The following conclusions are drawn for two cases:

In case (a), the rate of heat transfer increased with an increase in the value of Biot
number. While, in case (b), the rate of heat and mass transfers are increased with an
increase in the Hall parameter. In both the cases, the rate of heat transfer decreases with
an increase in viscous dissipation parameter and the rate of mass transfer is increased with
an increase in the thermophoresis parameter. In both cases, the rate of mass transfer is
decreased with an increase in the velocity slip parameter and both the rate of heat and mass

transfers are increased with an increase in the fluid suction.
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Table 6.3:

Ri, Eckert number Ec, and thermophoretic parameeter 7.

Variation of skin friction in - and Z-directions for wvarying values of suc-
tion/injection parameter S, slip parameter \, Hall parameter By, mized convection parameter

N B S Ri Ec r F7(0) W'(0)
00 1.0 20 1.0 05 0.3]-0.91411137 | 0.47617496
05 1.0 20 1.0 05 0.3 |-0.40508974 | 0.43196532
1.0 1.0 2.0 1.0 0.5 0.3 |-0.26159285 | 0.41872230
20 1.0 20 1.0 05 0.3]-0.15337319 | 0.40848340
1.0 00 20 10 05 0.3]-0.32860030 | 0.00000000
1.0 0.1 20 1.0 05 0.3]-0.32751833 | 0.06334880
1.0 05 20 1.0 05 0.3]-0.30513773 | 0.28064884
1.0 20 20 1.0 0.5 0.3 |-0.20049245 | 0.42829099
1.0 1.0 -1.0 1.0 05 0.3]-0.14906795 | 0.35949291
1.0 1.0 -05 1.0 0.5 0.3|-0.18095685 | 0.38686966
1.0 1.0 00 1.0 05 0.3]|-0.21855851 | 0.40771949
1.0 1.0 02 1.0 0.5 0.3 |-0.23514661 | 0.41348703
1.0 1.0 04 1.0 0.5 0.3 |-0.25257718 | 0.41746135
1.0 1.0 20 00 05 0.3]-0.61660061 | 0.15023781
1.0 1.0 20 05 05 0.3]|-0.41196661 | 0.32493986
1.0 1.0 20 15 05 0.3]-0.13354694 | 0.48753998
1.0 1.0 20 3.0 05 0.3 0.18359188 | 0.63163669
1.0 1.0 20 1.0 0.0 0.3|-0.26528503 | 0.41540314
1.0 1.0 20 1.0 0.1 0.3 |-0.26454405 | 0.41606772
1.0 1.0 20 1.0 0.6 0.3]-0.26085833 | 0.41938493
1.0 1.0 2.0 1.0 1.0 0.3 |-0.25793402 | 0.42203084
1.0 1.0 20 1.0 0.5 0.0|-0.25881448 | 0.42180522
1.0 1.0 20 1.0 05 0.1|-0.25974839 | 0.42077008
1.0 1.0 20 1.0 05 0.5 |-0.26340638 | 0.41670467
1.0 1.0 20 1.0 05 1.0|-0.26780688 | 0.41179353
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Chapter 7

Double dispersion effects on the flow

over an exponentially stretching sheet
1

7.1 Introduction

Mixing and recirculation of local fluid streams occur as the fluid moves through tortuous
paths in packed beds. This hydrodynamic mixing of fluid at pore level causes the dispersion
effects in porous medium. This becomes more considerable for moderate and fast flows.
The development of dispersion theory has been mainly related to miscible displacement
and solute spreading in porous media. These areas are of major interest to secondary and
tertiary oil recovery operations and to pollution control in water resources engineering. Awad
et al. [7] investigated the nanofluid flow in a porous layer with double dispersion effects.
Srinivasacharya et al. [106] reported the dispersion effects and variable properties on mixed
convection over vertical wavy surface immersed in a fluid saturated Darcy porous medium.

To the authors knowledge, no studies has been reported yet to analyse the flow, heat and

ICase(a): Communicated to “International Journal of Engineering Science”,
Case(b) Communicated to “Journal of Molecular Liquids”
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mass transfer behaviour of flow towards a permeable sheet stretching exponentially, in the

presence of thermal radiation effect.

Thermal and solutal dispersion effects together with thermal radiation on laminar slip
flow in a porous medium saturated with of incompressible viscous fluid over an exponentially
stretching permeable sheet under two types of boundary conditions as considered in Chapter-

2.

7.2 Formulation of the Problem

Consider a laminar slip flow in a Darcy-Brinkman porous medium saturated with incompress-
ible viscous fluid over an exponentially stretching sheet with double dispersion effects. The
fluid is considered to be a gray, absorbing/emitting radiation, but non-scattering medium.
The Rosseland approximation [102] is used to describe the radiative heat flux in the energy

equation. Hence, the equations governing the flow are given by

du, — 0uy
Y NI
or 0y 0 (7.1)
_ Ou, . Ou, P, v

- Sy 2
Uy o + 1, 7 v 07 kpux (7.2)

or ot _o (. of\ wreor -
Yoz T "oy T oy \ " a5 ) " Bkvpe, 03P '
_aC  _aC 9 [~ oC
ux% + uya_g - a_g (De a_g> (74)

where @, and D, are the effective thermal and molecular diffusivities, respectively, and can

be written as

G, =a+7, ud, D.=D+ y ud (7.5)

where k, is the permeability of the porous medium, 7, and x are coefficient of thermal and

molecular diffusiveness which varies between % to % and d is pore diameter or mean particle
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diameter.

7.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-

ture Ty and which induces a heat transfer coefficient hy, where hy = h

&

2L€2L'
The conditions on the boundary of the stretching surface are
iy = U, + N %z, i, = =V.(%), hy(Ty - T) = —rIE, C=C, at §=0 76)
Gy =0, T =Ty, C—Cyx as §— 00

Introducing the stream functions through u, =

glf and u, = g—? and then the following
dimensionless variables
T =L, ,/ % = 2vLU, ezLF T
) (G 0 (z,y), (7.7)
T=T ) y), C + (Cw — Cs)C(x,y)
into Eqgs. (7.1) - (7.4), we obtain
oF OF’
" " 2 —z % /
F"+ FF" —2F K,e F+2(F e F(‘?x) 0 (7.8)
1 4R oF oT
— 14+ = T"+FT"+2(T— — F' D.e” (F'T" + F'"T") = .
o (L4 ) e 2 (T - PO ) £ D (P FT) =0 (19
1 oF oC
—C"+FC"+2|C'— — F'— D, e*(F'C" + F"C") =0 7.10
Sc * - ( Ox 8:6) e * ) (7.10)
The conditions at the boundary reduces to
F(z,0) +2%(2,0) = S, F'(z,0) =1+ AF"(z,0),
T'(2,0) = ~Bi(1 - T(2,0)), C(x,0) =1, (7.11)
F'(z,y) = 0, T(x,y) = 0, C(z,y) = 0 as

Yy — o0
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where K, = is the porosity parameter, D, = @ is the thermal dispersion parameter

and D, = &VUO is the solutal dispersion parameter.

7.2.2 Skin Friction, Heat and Mass Transfer Coefficients

The non-dimensional skin friction C, the local Nusselt number Nu; and the local Sherwood

number Shz, are given by

e Nu 4R Sh
M — Bz, 0 —x:—<1+—>T’xO and ——— = —(C"(z,0 }
N (z,0), /Lz/2+/Re, 3 (z,0), Lz /2v/Re, (,0)
(7.12)
U
where Re, = L V(:c) is the local Reynold’s number.

7.2.3 Solution of the Problem

The system of Egs. (7.8) - (7.10) along with the boundary conditions (7.11), is solved

numerically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation

Ai—IXi = Ri—la (713)

In Eq. (7.13), A;_; is a (6N + 6)x (6N + 6) square matrix and X; and R;_; are (6N + 6)x1

column vectors defined by

SN

Ai—l = [Ars]a Ri—l = [Er,i—l] 'S = 17 2a te 767 Xz = (714)

<.

I
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2)s o Fi(€n-1), Fi(€n)]7,
2) o Ti(€n—1), Ti(Ew)]",
5 ) Ci(SN—l)? Ol(SN)]T7
G; = [Gi(%) Gi(&2), -+, Gil€n—1), Gi(En)]",
Hz‘:[Hz(fo);Hz( &), Hi(&), -y Hi(En—1), Hi(€n)]"
K; = [K;(&) Ki(&2), -y Ki(€n—1), Ki(w)]",
Eji1= [Cj,ifl(fo) ng 1(51)7&1 1(&2), s Gim1(Ev—1), G (€))7 = 1,2,3,4,5,6
A =D% + x11,1D* + x12:1D + x135-1, A2 =0, A;3=0,

9!
~—~
Iy
=
-
0
—~
)
iy
~—
i
—

A= x1,-1D + xa5-1, Ais =0, Ais=0,

Aop = xo1,i-1D? + X22,1D + X231, Aoz = Xoai—1D?* + x25,1D, A =0,
Agy = X265i-1, Ass = X271, A6 =0,

Aszi = X31i-1D? + Xx32:-1D + X331, A2 =0, Azz = x34:-1D? + x35.:-1D,
Azs = X361, Az =0, Azs= X371,

Ay = xa1,.1D% + Xazi 1D + Xazi1, A =0, Ay =0,

Ay = D? + xug,i1D* 4 Xu5i-1D + Xugi-1, Aus =0, Ay =0,

As = X51,i—1D2 + X52,z‘—1D + X53,i—15 Asy = X54,i—1D + X55,i-1, As3 =0,
Ass = x56.-1D? + X57.-1D + Xs8.i-1, Ass = X59.i-1D? + X510i-1D + X111,
Ass =0, Ag = Xe1.i-1D” + Xe2i1D + X631, Ag2 = 0,

Agz = X64,z'—1D2 + Xe5,i—1D,  Ags = X66,i—1D2 + Xe67,i-1D + X68,i-1,

Ags =0, Ags = X69,z‘—1D2 + X610,i—1D + X611,i—15

where the coefficients xx,,—1 and (-1, (1 =1,2,3,...,6,k = 1,2,3, ..., 11) are approximations
in terms of F;,T; and C;, (i = 1,2,3,...,n — 1) and their derivatives, 0 and I are null and
identity matrices of size (N +1)x(N +1).

After modifying the matrix system (7.13) to incorporate boundary conditions, the solu-
tion is obtained as

X; =A R (7.15)
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Table 7.1: Comparative analysis for NN by the current method for A = 0, D, = 0,

D,=0,K,=0,R=0,2=0, 5 =0 and Bi = oo.

Nusselt number %

Pr Magyari and Keller [56] | Present
0.5 0.330493 0.33053766
1 0.549643 0.54964345

1.122188 1.12208577
) 1.521243 1.52123668
8 1.991847 1.99183375
10 2.257429 2.25741862

7.2.4 Result and Discussion

The results of the present problem are compared with works of Magyari and Keller [56] as
a special case and shown in Table. (7.1). Further, the computations have been carried out
taking A = 1.0, S¢ = 0.22, Pr = 1.0, K, = 0.0, R = 0.5, Bi = 1.0, D, = 0.3, S = 0.5,

D, = 0.3 and = 0.2 unless otherwise mentioned.

The variation of the velocity with the slip parameter, suction/injection and porosity
parameters is portrayed through the Figures (7.1(a)) - (7.1(c)). It is known that as the
slipperiness escalates the thickness of the momentum boundary layer reduces. As a result,
the velocity reduces as shown in the Figure (7.1(a)). Figure (7.1(b)) depicts the variation of
the velocity in the presence of S. It is evident from the figure that the velocity reduces with
the suction and escalates with the injection. This is due to the fact that the suction has
the tendency to reduce the momentum boundary. While the velocity of the fluid is reducing

with an increase in the value of porosity parameter as shown in the Fig. (7.1(c)).

Figures (7.2(a)) - (7.2(c)) represent the fluctuation of skin-friction against = for distinct
values of A\, S and K, respectively. It is obvious from these figures that the skin-friction
escalates with the slipperiness and falls down with the fluid suction. Further, it is noticed
that the non-similar variable has no effect on the skin-friction coefficient in the presence
of velocity slip and fluid suction/injection as shown in the Figs. (7.2(a)) and (7.2(b)). In

the presence of the porosity parameter K, the skin-friction reduces and increases with an
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increase in z as depicted in the Fig. (7.2(c)). The effect of the other parameters on the

velocity and skin-friction are not much significant and hence graphs are not included.

Figures (7.3(a)) - (7.3(e)) exhibit the behaviour of the temperature for different values of
D,, R, Bi, A and K,. The temperature rises with an increase in the value D, as shown in the
Figure (7.3(a)). It is seen from the Figure (7.3(b)) that the temperature increases with the
increasing values of thermal radiation, which in turn, intensifies the thermal boundary layer
thickness. Figure (7.3(c)) illustrates that the temperature is enhancing with the rise in the
value of Bi and hence gain in the thickness of thermal boundary. Further, for large value of
Biot number Bi, the convective thermal condition from (7.11) transforms to 7°(0) — 1, which
signifies the constant wall condition. Due to slipperiness, thermal boundary intensifies, and
hence, the temperature escalates with an increase in the value of A as portrayed in the Figure
(7.3(d)). Further, Fig. (7.3(e)) explores that the temperature increases with an increase in

the value of porosity parameter K.

The influence of D., R, Bi, A and K, on the rate of heat transfer against non-similar
variable x is explored in the Figures (7.4(a)) - (7.4(e)). It is evident from the Fig. (7.4(a)),
that the rate of heat transfer is decreasing with an increase in the value of D,. In the
absence of D,, i.e.,(D, = 0), there is no effect of the non-similar variable z on the rate of
heat transfer. As expected, enhancing the value of D,, the rate of heat transfer reduces.
While the rate of heat transfer escalates with an increase in the value of thermal radiation
parameter R as depicted in the Fig. (7.4(b)). Figure (7.4(c)) narrates the behaviour of the
rate of heat transfer for different values of Biot number Bi. As Biot number enhances, the
rate of heat transfer escalates predominantly on the surface due to the strong convection.
Figures (7.4(d)) and (7.4(e)) show that the rate of heat transfer reduces with an increase in

the values of velocity slip and porosity parameters.

The variation of concentration profile for distinct values of D,,, A and K, is shown in the
Figures (7.5(a)) - (7.5(c)). An enhancement in the value of D, increases the concentration of
the fluid as shown in the Fig. (7.5(a)). It is noticed from the Figs. (7.5(b)) and (7.5(c)) that,
as the value of the slip parameter and the porosity parameter increases, the concentration

of the fluid increases. Hence, mass transfer at the sheet decreases.
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Figures (7.6(a)) - (7.6(c)) depict the behaviour of the rate of mass transfer for different
values of D,, A and K, against the non-similar variable z. Enhancing the solute dispersion
parameter D,, the rate of mass transfer from the sheet to the fluid is falling down. In
the absence of D,, ie., (D, = 0), there is no effect of the non-similar variable x on the
rate of mass transfer. As the value of D, escalates, the rate of mass transfer reduces as
shown in the Fig. (7.6(a)). Figures (7.6(b)) and (7.6(c)), it is identified that the rate of
mass transfer at the sheet reduces with an increase in the values of velocity and porosity
parameters. Further, it is identified that in the presence of porosity parameter K, the rate

of mass transfer increases gradually as x — 1.
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Figure 7.5: Effect of(a) D,, (b) A and (¢) K, on F".
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7.2.5 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(Z) = BoeiL is applied in y—direction and
the influence of Hall current is not neglected. Assume that magnetic Reynolds number is
very small so that the induced magnetic field is negligible in comparison to applied magnetic
field. The presence of Hall current induces a cross flow in Z-direction and hence the flow
becomes three-dimensional. Under the Boussinesq approximation, the flow is governed by

the equations (7.1), (7.4) along with the following momentum and energy equations

O, Oty 0%, . ~ o B2 ,
N W =T —Coo) =~ (U Bp) = it (7.1
o, oL, 0%, o B2 i i o
‘ L - —Uy) — 1
rr + 1y 95 v e + o+ ) (Briy — 1) k:puz (7.17)

u, is the velocity in z-direction.

The conditions on the boundary of the sheet are

/IEI = Zj>|< —+ N*I/aa%, {Ly = —%(i’% '[LZ — 0’
Ty =Too +ToeT, Cp=Co+Coet at §=0 (7.18)

Uy =0, Gy, =0, T =Ty, C—Cx as §— 00

Introducing the following dimensionless variables

r=xL, y=y Meu = \/QVLUOe%F,
iy = Upet F', @ty = —y /g—lg) e (F+yF'), i, =UpeiW (7.19)

T:TOO+T0 B%T, é:Om+Co GZLjC

into the Eqgs. (7.1), (7.16), (7.17), (7.3), (7.4)

H, oF OF'
F"4+FF'—2F? _K,e *F +2Ri(T+BC) — —2_(F' 2(F'— — F —
+ pe "F'+ 2RUT+BO) — == (F/ 4+ BulV) + ( o 8:10) 0
7.20)
H, F
W" —2F'W + FW' — K, —xw+ S(BpF' — W) + (W’a F’6W> 0 (7.21)
+ B2 Oz Oz
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1 4R oF oT
— (1+— | T"+FT' —4F'T+2 (T — — F'— D.e” (F'T"+ F'T') = 22
PT<+3> + +( o 3x)+ Ve (F'T" + F'T) =0 (7.22)
1 oF oC
11 F /_4F/ 2 ! _F/ D T F/ " F/l !/ — 2
o'+ FC C+ (C—ax _0x)+ L (F'C" 4+ F"C) =0 (7.23)

The conditions (7.18) reduce to

F'(z,0) =1+ AF"(2,0), F(z,0)+2%(z,0) =S,
W(z,0)=0, T(z,0)=1, C(z,0)=1, (7.24)
Fl(z,y) -0, W(z,y) -0, T(x,y) -0, C(z,y) -0 as y — o0

7.2.6 Skin Friction in = and Z-directions, Heat and Mass Transfer

Coefficients

The non-dimensional skin friction in Z—direction C'rz, local skin-friction in Z—direction Cps,

the local Nusselt number Nu; and the local Sherwood number Shz, are given by

v/ Re, vV Re,
¢ Cpf :F”(.T,O), ¢ CFg :W/(.T, O),
2z /L 2z /L (7.25)
Nu 4R Sh .
— = —(1+— | T'(2,0), and —=—"—=—-C"(2,0).
\/m, /Re, 3 > (z,0) \x/2L+\/Re, (=:0)
where Re, = %@) is the local Reynold’s number.

7.2.7 Solution of the Problem

To solve the system of Egs. (7.20) - (7.23) along with the boundary conditions (7.24), is

solved numerically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation

Ai—IXi = Ri—la (726)
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In Eq. (7.26), A;_; is a (8N + 8)x (8N + 8) square matrix and X; and R;_; are (8N + 8)x1

column vectors defined by

@ ==

.

Ai—l = [Ars]a Ri—l = [Er,i—l] ,rys = 17 2a T 787 Xz = (727)

e

“ T QRO

=

7

where

Fi = [Fi(&), Fi(&1), Fi(&2), -, Fi(Env—1), Fi(En)]",
W, = [Wi(&), Wi(&), Wil& ) ooy Wil€n—1), WiEw)]
0; = [T;(%), Ti(&), Ti(&), - (§N 1), Ti(éwn)]",
®; = [Ci(&), Cil€ ) Ci(&2), -, Ci(En—1), Ci(én)]T,
Gi(&2), -+, Gilén-1), Gi(En)]",
(&2), - Hi(En—1), Hi(EN)]T,
Ji = [Ji(fo)an(fl)an(&)a (fN 1), Ji(€w)]T,
(52) Ki(én—1), Ki(€w)]T,
Eji1= [Cj,ifl(fo%Cj,ifl(fl),Cj,i71(£2); s Gim1(€n—1), G GV, = 1,2,3,..,8
A = D? + x11,-1D% + X12i1D + xazio1, A = — L Aig = 2R,
Ay = 2BRiI, A5 = x14i-1D + x155-1, A =0, Az =0, Aizs=0,

Agr = x21,i-1D + X22,-1, A = D? + X23,i—1D + X24i-1, Az =0,

Aos =0, Ags = Xa5i-1, Aze = X26,i-1, Ar =0, Ay =0

Azt = x31i-1D? + x32:-1D + x33.i-1, A2 =0, Asz = x34,-1D? + x35,-1D + X36,i-1:
Ags =0, Agzs = X37,i—1, Ase =0, Agr = X38,i—15 Ass =0

Ay = Xa1,-1D” + Xa2i1D + Xazio1, A =0, Ay =0,
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Ags = Xa4,i-1D* + Xa5,1D + Xupi—1,  Ass = Xario1, A =0, Ay =0,

Ags = xus.i-1, Ast = X51i-1D? + x52-1D + X53.0-1, As2 =0, As3 =0, Az =0,
Ass = D? + x50-1D* + X55,1D + X561, Ase = —i{ﬁg:z:I, As7 = 2Ril,

Asg = 2BRil, A1 = X61,i-1D + Xe2:i-1,  As2 = X63,i-1D + Xea,i-1, Az =0, Aes =0,

Aes = Xes,i—1D + Xe6.i-1, Aee = D? + Xe67,i—1D + Xes,i—1, Ae7 =0, Agg =0,

A = )(71,2‘—1D2 + x72,i-1D + X73,-1, A2 =0, Az = X74,z‘—1D2 + X75,i—1D + X76,i—1,
A7y =0, Az = x77i-1D* + Xx78i-1D + X791, A76 =0,

Az = x110,i-1D? + x711i-1D + X7124-1, A7 =0,

Ag = X81,z‘—1D2 + X82,i—1D + X83,i—15 Ago =0, Ag3=0,

Agy = X84,i71D2 + x85,i—1D + Xs6,i-1, Ass = X87,i71D2 + xs88,i—1D + X89,i—1,

Ass =0, Asr =0, Ass = xs10i-1D* + Xs11.i-1D + Xs12:i-1,

where the coefficients xx,—1 and (-1, (1 =1,2,3,...,8,k = 1,2,3, ..., 12) are approximations
in terms of F;, W;, T; and C;, (i = 1,2,3,...,n— 1) and their derivatives, 0 and I are null and
identity matrices of size (N +1)x(N +1).

After modifying the matrix system (7.26) to incorporate boundary conditions, the solu-
tion is obtained as

7.2.8 Results and Discussion

The variation of the tangential velocity for distinct values of 3, R, D, and K, is exhibited
through the Figs. (7.7(a)) - (7.7(d)). An increase in the Hall parameter, the tangential
velocity of the fluid enhances as depicted in the Fig. (7.7(a)). It is witnessed from the
Fig. (7.7(b)) that, an increase in the thermal radiation, the velocity of the fluid escalated.
It is seen from the Fig. (7.7(c)) that the fluid velocity is less in the absence of thermal
dispersion and more in the presence of thermal dispersion. This is because conduction over

convection occurs by considering the thermal dispersion effect into the energy equation. As a

183



result, more dominance of the thermal conduction. Therefore, increase in thermal dispersion
enhances the fluid velocity. An increase in the value of K reduces the fluid velocity in the

boundary layer as portrayed in the Fig. (7.7(d)).

Figures (7.8(a)) - (7.8(d)) represents the fluctuation of transverse velocity for distinct
values of 8y, D, R and K, respectively. It is noticed from the Fig. (7.8(a)) that there is no
secondary flow velocity in the absence of the Hall parameter. As the value of ) increased,
the cross flow is generated As expected, an increase in the thermal dispersion the transverse
velocity reduces as shown in the Fig. (7.8(b)). Figs. (7.8(c)) and (7.8(d)) depict that the

cross flow generated due to Hall effect, escalates with an enhance in the values of R and K.

Figures (7.9(a)) - (7.9(d)) are due to the variation of temperature profile for distinct
values of B, R, D, and K,. Enhance in the value of 3, the effective thermal conductivity
of the fluid reduces and hence temperature diminishes as shown in the Fig. (7.9(a)). It
is seen from the Fig. (7.9(b)) that the temperature escalates with the increasing values of
the thermal radiation, which in turn, intensifies the thermal boundary layer thickness. The
temperature rises with enhancing the value D, as shown in the Fig. (7.9(c)). Increase in
the value of porosity parameter K, results in the reduction of the thermal boundary layer.

ie., temperature reduces with the rise in K, as shown in the Fig. (7.9(d)).

Variation of concentration profile for distinct values of 35, R, D, and K, is portrayed
in the Figs. (7.10(a)) - (7.10(d)). Figure (7.10(a)) exhibits that concentration reduces with
the rise in the value of 3. As the values of the radiation and porosity parameter escalates,
the concentration boundary layer reduces and hence, fluid concentration reduces as shown
in the Figs. (7.10(b)) and (7.10(d)), respectively. It is observed from the Fig. (7.10(c))
that, the concentration is less in the absence of D, and more in the presence of D,. ie.,
the concentration of the fluid enhances with the rise in D,, which in turn, intensifies the

concentration boundary layer thickness.

The influence of 5, D,, R, D,, S and K, on the rate of heat transfer against non-
similar variable x is explored in the Figures (7.11(a)) - (7.11(f)). It is observed from the
Fig. (7.11(a)) that the rate of heat transfer reduces with enhancing the value of 3. It is
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portrayed in the Fig. (7.11(b)) that the rate of heat transfer reduces with the enhancement
in the value of D,. In the absence of D,, ie., (D, = 0), there’s no effect of non-similar
variable x on the rate of heat transfer. As expected, enhancing the value of D., the rate of
heat transfer reduces. While the rate of heat transfer escalates with an increase in the value
of thermal radiation parameter R as depicted in the Fig. (7.11(c)). It is noticed that in the
absence of solutal dispersion maximum rate of heat transfer occurs and as strengthening the
solutal dispersion rate of mass transfer escalated as shown in the Fig. (7.11(d)). It is also
noticed that the decrease in the rate of heat transfer is more in the presence of the thermal
dispersion than that of increase in the presence of the solutal dispersion. The effect of .S on
the rate of heat transfer is presented in the Fig. (7.11(e)) and it is evident from the figure
that the rate of heat transfer enhances with the suction. Figure (7.11(f)) shows that the rate
of heat transfer reduces with the rising the slipperiness. Further, it is seen that the rate of

heat transfer is reducing gradually as z — 1.

Figures (7.12(a)) - (7.12(f)) depict the behaviour of rate of mass transfer for different
values of 3, R, Dy, D.,, S and K, against non-similar variable z. Increase in the values of 3,
and R the rate of mass transfer escalated as portrayed in the Figs. (7.12(a)) and (7.12(b)).
Enhancing the solutal dispersion parameter D,, the rate of mass transfer is falling down.
In the absence of D,, i.e., (D, = 0), there is no effect of the non-similar variable x on the
rate of mass transfer. As the value of D, escalates, the rate of mass transfer reduces as
shown in the Fig. (7.12(c)). It is evident from the Fig. (7.12(d)) that the rate mass transfer
escalates by strengthening the thermal dispersion. While the rate of mass transfer enhances
with an increase in fluid suction and opposite trend is observed with an increase in porosity
parameter as shown in the Figs. (7.12(e)) and (7.12(f)). Further, it is identified that the

rate of mass transfer is reducing gradually as ¢ — 1 except in presence of porosity parameter

K

P

The behaviour of F(z,0) and W’(z,0) for different values of A, 55, R, Ri, D., and D,
are tabulated in Table (7.2). It is evident from the table that the F”(z,0) is increasing
and W'(z,0) is reducing with slipperiness. In the presence of Hall parameter both the skin-

frictions are increasing. It is also observed that the transverse velocity vanishes when £, = 0
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Table 7.2: Variation of skin friction in - and zZ-directions for varying values of slip param-
eter X\, Hall parameter By, radiation parameter R, mixed convection parameter Ri, thermal

dispersion parameter D, and solutal dispersion parameeter D, .

N B, R Ri D, D,| F'(0) W (0)
00 05 1.0 05 02 0.3 |-1.311129 | 0.186076
05 05 1.0 05 02 0.3 |-0.602602 | 0.157860
1.0 0.5 1.0 05 0.2 0.3]-0.395690 | 0.148450
20 05 10 05 02 0.3 |-0.235600 | 0.140698
1.0 0.0 1.0 05 0.2 0.3]-0.409960 | 0.000000
1.0 0.1 1.0 05 0.2 0.3]-0.409293 | 0.034153
1.0 05 1.0 05 0.2 0.3]-0.395690 | 0.148450
1.0 20 1.0 05 0.2 0.3]-0.337632 | 0.201963
1.0 05 00 05 02 0.3]-0.427562 | 0.131475
1.0 05 05 05 0.2 0.3]-0.408048 | 0.141353
1.0 05 1.0 05 0.2 0.3]-0.395690 | 0.148450
1.0 0.5 3.0 05 0.2 0.3]-0.370626 | 0.164738
1.0 05 1.0 0.0 02 0.3]-0.598768 | 0.070074
1.0 0.5 1.0 05 0.2 0.3]-0.395690 | 0.148450
1.0 0.5 1.0 1.0 0.2 0.3]-0.252741 | 0.184808
1.0 05 1.0 3.0 0.2 0.3 0.162148 | 0.262885
1.0 05 1.0 05 0.0 0.3]-0.396671 | 0.148266
1.0 05 1.0 05 1.0 0.3|-0.391956 | 0.149278
1.0 05 1.0 0.5 2.0 0.3]-0.387727 | 0.150419
1.0 05 1.0 0.5 3.0 0.3-0.383945 | 0.151588
1.0 05 1.0 05 0.2 0.0 -0.395823 | 0.148420
1.0 0.5 1.0 05 0.2 1.0|-0.395387 | 0.148529
1.0 05 1.0 05 0.2 2.0 |-0.394971 | 0.148662
1.0 05 1.0 05 0.2 3.0 |-0.394579 | 0.148807

and hence in Z—direction there is no skin-friction. Table (7.2) illustrates that, F"(x,0)
and W'(x,0) are enhancing with a rise in the thermal radiation. The positive values of
Ri increases both the skin-frictions. In addition to this, F"”(x,0) in Z—direction is greatly
increasing with positive values of Ri. At the end of the table, the influence of the thermal
and solutal dispersions on F”(z,0) and W'(z,0) is presented. It is noticed from the table
that, enhancing the thermal or solutal or both the dispersions leads to the reduction in

surface drag and hence, both the skin-frictions F”(x,0) and W'(z,0) escalates.
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Figure 7.10: Effect (a)pn, (b)R, (¢)D, and (d)K, on concentration profile.
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7.3 Conclusions

Numerical investigation of the influence of the thermal and solutal dispersions in the presence
of thermal radiation on the laminar slip flow, heat and mass transfer of an incompressible

viscous fluid over a porous sheet stretching exponentially is analyzed.

The temperature increases with an increase in the Biot number and decreases with an
increase in the Hall parameter. In both the cases, the temperature increases with an increase
in the thermal dispersion and radiation parameters. In both cases, the rate of heat transfer
decreases with an increase in the thermal dispersion and porosity parameters and increases
with an increase in the radiation parameter. While, in case (a), the rate of heat transfer
increases with an increase in Biot number and in case (b), it increases with the increase in the
Hall, solutal dispersion and suction parameters. In both cases, the concentration increases

and the rate of mass transfer decrease with the increase in solutal dispersion parameter.
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Chapter 8

Influence of
homogeneous-heterogeneous reactions
on the viscous flow on an

exponentially stretching sheet !

8.1 Introduction

In the recent past, considerable attention has been given to study of combined heat and mass
transfer problems with the effect of chemical reaction as it plays a crucial role in diverse ap-
plications such as drying, energy transfer in wet cooling surface, evaporation at the surface of
the water body etc. There are two types of chemical reactions, namely, homogeneous and het-
erogeneous reactions. Chaudhary and Merkin [16] discussed the homogeneous-heterogeneous
reactions in boundary layer flow. Nandkeolyar et al. [74] investigated the influence of internal
heat generation in nanofluid flow with homogeneous-heterogeneous reactions. Sheikh and

Abbas [96] studied the effect of homogeneousheterogeneous reaction in the boundary layer

!Case(a): Communicated to “Nonlinear Engineering - Modeling and Application”,
Case(b) Communicated to “International Journal of Chemical Reactor Engineering”
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flow of a non-Newtonian fluid near a stagnation point over a porous stretching/shrinking

sheet with a constant suction.

In this Chapter, the effect of homogeneous-heterogeneous chemical reactions on the vis-
cous fluid flow over an exponentially stretching permeable sheet in presence of thermal

radiation is considered.

8.2 Mathematical Formulation

Consider a stretching sheet with a temperature T, (%) and concentration C,,(Z) in a laminar
slip flow of electrically viscous incompressible fluid with a temperature and concentration as
T, and Cy, respectively. The fluid is considered to be a gray, absorbing/emitting radiation,
but non-scattering medium. The Rosseland approximation [102] is used to describe the radia-
tive heat flux in the energy equation. It is assumed that a simple homogeneous-heterogeneous
reaction model exists as proposed by Chaudary and Merkin [16] in the following form: For

homogeneous reaction, cubic autocatalysis method is chosen, namely
A+2B — 3B, rate = k.ab?
while on the catalyst surface, we have the single isothermal first order reaction
A— B, rate =k

where @ and b are concentrations of the chemical species A and B, respectively, k. and k,
are constants. Hence, with the above assumptions, the following are the equations which
governs the flow problem in the presence of thermal radiation:

dii, 0,
55t 9 =0 (8.1)

iy ou, 0%ty
i i = 2
U + 1, o7 v e (8.2)
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or _ 0T 9T 16T20* 0T

Ux% + uya_ﬂ = a@gQ + Sk pe, O (8.3)
_oa 8@ 82~ =g
ob ob a?é .
U,—— + U =D a b’ .
uxaj—iruyay B82 + k.ab (8.5)

8.2.1 Case(a): Convective Thermal Condition

Assume that the sheet is either cooled or heated convectively through a fluid with tempera-
ture Ty (Ty > T corresponding to a heated surface and 7y < T’ corresponding to a cooled

&

surface, respectively) and which induces a heat transfer coefficient hy, where hy = h 2U—£e2L.

The conditions on the boundary of the stretching surface are

= U, + N, @, = =V.(2), hy(Ty = T) = —r%E,
DAa—g = kya, DBa—g = —ka at §=0 (8.6)

Uy — 0, T —>Ty, a—ag, b—0 as y— o
where a is a positive constant.

Introducing the stream functions through u, = glf and u, = j Y and then the following

dimensionless variables

T = y = w/ % VLU 62LF T
) Y 0 ) (z,y), (8.7)
T= ) - doC, Cl - CL~001

into Eqgs. (8.1) - (8.5), we obtain

/
FIII+FF//_2F/2+2 (FNZF F/aaF) :O (88)
X Xz
1 4R oF or
—(1+— | T"+FT"+2(T'— - F 0 8.9
Pr( + 3) * * < ox (93:) (8.9)
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1

oF oC
" F I K e ® 2 2 ! . F/ — 1
Scc + FC e *CCy + (C a7 _&B) 0 (8.10)
) oF oCh
o F ! K e ® 2 2) 'z F/_ — 11
Sccl + Cl + e CCI + (Ol ax ax ) 0 (8 )
The conditions at the boundary reduces to
F(z,0) 4+ 2%5(2,0) = S, F'(2,0) =1+ AF"(x,0),
T(x,0) = —Bi(l — T(z,0)),
(2.0) = ~Bi(1 - T(z,0) 512

C'(z,0) = K, e=/2C(z,0), 0C!(z,0) = —K, e=*/>C(z,0),
F/($>y>_>07 T(l’,y)—>0, C(xvy)_)lucl<x7y)_>07 as Yy — o0

/

where § = g—j is the duffusion ratio.

It is predicted that the diffusion coefficients of chemical species A and B are of comparable
size, which undergo further assumption that diffusion coefficients D4 and Dpg are equal, i.e.,

d =1 [16]. This assumption leads to the following relation

C(x,y) + Ci(z,y) =1 (8.13)

Thus, Eqgs. (8.10) and (8.11) reduce to

1 oF oC
—C'+FC' —Ke"C1-CP+2(C——-F— )= 14
SCC +FC e *C(1-C)" + (C o 833) 0 (8.14)
and the boundary condition in (8.12) reduce to
C'(x,0) = Ky */?C(x,0) and  C(z,00) =1 (8.15)

~2 . 71/2 :
K = —2”;;0“0 is the measure of the strength of homogenous reaction, K = ‘/m;)—ie is the

measure of the strength of heterogeneous (surface) reaction.

The non-dimensional skin friction C'y and the local Nusselt number Nuj; are given by

Re Nu 4R
T O = F'(2,0) and ——— " — (1420 (2,0 8.16
oAU~ v o (S ECCIN D
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where Re, = %@) is the local Reynolds number.

8.2.2 Method of Solution

The numerical solutions to Eqgs. (8.8), (8.9) and (8.14) along with the boundary conditions
(8.12) and (8.15), is solved numerically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation
Ai*lxi - Rifl, (817)

In Eq. (8.17), A,_; is a square matrix of order (6N 4 6) and X; and R;_; are (6N + 6)x1

column vectors defined by

n
0,
A=Ay Risy = [Epy],rs=1,2,-++ .6, X;= i (8.18)
G;
H;
_Ki_
where
F; = [Fi(&%), Fi(&), Fi(&2), - Fi(§n—1), Fi(én)]7,
0; = [Ti(%), Ti(&1), Ti(&2), -, Ti(En—1), Ti(€n)]",
®; = [Ci(&), Ci(&1), Ci(&2), -, Cilén—1), Cilén)]T,
G; = [Gi(&),Gi(&1), Gi(&), ..., Gil€n-1), Gi(En)]T,
H; = [Hi(&), Hi(&1), Hi(&2), s Hi(En—1), Hi(En)]T,
K; = [Ki(&), Ki(&1), Ki(&), -, Ki(En—1), Ki(én)]T,
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Eji1 = [(i-1(80), Gi1(61), Gim1(62), o, Gam1(En—1), Gim1 (En)]T 7 = 1,2,3,4,5,6
A =D% + x11,1D?* + x12.-1D + x135-1, 412 =0, A;3=0,

Ay = X14,i-1D + X151, A5 =0, Aig =0, Az = x21,1-1D + x22,-1,

Ay = 3= (14+2E)D? + x23,.1D, As3 =0, Aoy = x245-1, Ass = X25-1,

Ay =0, Az = x31-1D 4+ X32,i-1, Az =0, Asz = iDQ + x33,i-1D + X34,i-1,
Asi = X35-1, A5 =0, Ass = X361, A1 = Xa1,-1D* + xa2:-1D + X431,
Ap =0, A;3=0, Ay =D+ x41,.1D? + x15,-1D + Xu6,1,

Ay =0, A =0, Asi = xs51i-1, Asz = X52,,1D, As3 =0,

Asy = X53,i-1D + X541, Ass = % (1 + %%) D? + x55,:-1D + X56,i-1,

Ase =0, At = Xe1,i-1, As2 =0, Ags = X62,,—1D + X631,

Ags = Xoa,i—1D + Xe5,-1, Aes =0, Ags = éDQ + Xe6,i-1D + Xe7,i-1,

where the coefficients xx,—1 and (;-1, (1 =1,2,3,...,6,k = 1,2,3,...,7) are approximations
in terms of F;,T; and C;, (i = 1,2,3,...,n — 1) and their derivatives, 0 and I are null and

identity matrices of size (N +1)x (N +1).

After modifying the matrix system (8.17) to incorporate boundary conditions, the solu-
tion is obtained as

X;=A R, (8.19)

8.2.3 Result and Discussion

The variation of fluid velocity with slip parameter and suction/injection parameter is por-
trayed through the Figures (8.1(a)) - (8.1(b)). The velocity reduces with an increase in
the slip parameter as shown in the Figure (8.1(a)). Figure (8.1(b)) depicts the variation of
velocity with S. It is evident from the figure that velocity reduces with the wall suction
and escalates with the injection. Figures (8.2(a)) and (8.2(b)) represent the variation of the
skin-friction against = for distinct values of A\ and S, respectively. It is observed from these

figures that the skin-friction escalates with an increase in slip and falls down with an increase
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in the fluid suction. The effect of the other parameters on the velocity and skin-friction are

not much significant and hence graphs are not included.

Figures (8.3(a)) - (8.3(d)) exhibit the behaviour of temperature for different values of
Bi, R, A and S. It is known that the stronger convection leads to the higher surface
temperatures which appreciably increases the temperature Therefore, the temperature rises
with an increase in the value of Bi as shown in the Figure (8.3(a)). Further, for large
large value of Biot number Bi, the convective thermal condition from (8.12) transforms to
T(0) — 1, which signifies the constant wall condition. It is seen from the Fig. (8.3(b)) that
the temperature increases with the increasing values of thermal radiation, which in turn,
intensifies the thermal boundary layer thickness. Figure (8.3(c)) illustrates that variation of
the temperature with A\. The temperature escalates with a raise in A as portrayed in the
Fig. (8.3(c)). Reduction in temperature is observed with an increase in the fluid suction and

enhancement with blowing as shown in the Fig. (8.3(d)).

The variation of the rate of heat transfer in the presence of Bi, R, A and S against
non-similar variable x is presented in the Figures (8.4(a)) - (8.4(d)). It is evident from the
Fig. (8.4(a)) that the Biot number enhances the rate of heat transfer predominantly. The
rate of heat transfer escalates with a rise in the value of the thermal radiation parameter
R as depicted in the Fig. (8.4(b)). Figure (8.4(c)) shows that the rate of heat transfer
diminishes with a raise in the slipperiness. Due to fluid suction the rate of heat transfer rises

and reduces with injection as shown in the Fig. (8.4(d)).

The variation of concentration profile for distinct values of K and K, respectively, is
shown in the Figures (8.5(a)) and (8.5(b)). An Enhancement in the values of K and Kj,
i.e., strengthening the homogeneous-heterogeneous reactions, decreases the concentration of
the fluid as shown in the Figs. (8.5(a)) and (8.5(b)). Further, Figs. (8.5(c)) and (8.5(d))
depicts the behaviour of species concentration for distinct values of A and S. It is noticed
from these figures that, as the value of slip parameter increases the concentration decreases

and it increases with the fluid suction.

Figures (8.6(a)) - (8.6(d)) depicts the behaviour of mass transfer rate for different values
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Figure 8.1: Effect of(a) A, and (b) S on F".

of K, K,, A and S against non-similar variable z. An increase in value of K and Ks,
corresponds to an increase in the strengths of homogeneous and heterogeneous reaction
rates, respectively. As the values of K and K escalates, the mass transfer rate reduces as
portrayed in the figures (8.6(a)) and (8.6(b)), respectively. As the slipperiness escalates, the
mass transfer is reducing as witnessed in the Fig. (8.6(c)). Further, it is noticed from the
figure (8.6(d)) that the mass transfer escalates with the fluid suction and reduces with the

fluid injection. Finally, mass transfer rate is increasing gradually with x.
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8.2.4 Case(b): Uniform wall temperature with Hall effect

Assume that, a strong magnetic field of strength B(Z) = BoeiL is applied in y—direction and
the influence of Hall current is not neglected. Assume that magnetic Reynolds number is
very small so that the induced magnetic field is negligible in comparison to applied magnetic
field. The presence of Hall current induces a cross flow in Z-direction and hence the flow
becomes three-dimensional. Under the Boussinesq approximation, the flow is governed by

the following non-dimensional equations

H OF oOF’
F" + FF" —2F? 4 2Ri T — —°_(F' 2(F'=— - F' = 2

+ + 2Ri 1+5§< + BW) + ( e ax) 0 (8.20)

H oF ow
" _ FI F ! a F/ _ /! F/ — ) 1
W" —2F'W + W+1+Bﬁ(ﬁh W)+2(Wax 3x) 0 (8.21)

1 AR\ ., , , JOF 0T\

PT(1+ B)T +FT—4FT+2<T8I F8x>_0 (8.22)

i 1" r_ —x 2 /aF o /80 _
5O+ FC' —K e°CCf +2 <C ) =0 (8.23)

5 // / —x 2 /aF /801 _

The corresponding non-dimensional conditions on the boundary

F'(,0) =14 AF"(2,0), F(z,0)+2%(2,00=S8, W(z,0)=0, T(z,0)=1,
C'(z,0) = K, e2/2C(2,0), 0C(x,0) = —K, e */2C(x,0),
F'(z,y) = 0, W(x,y) =0, T(x,y) — 0, C(z,y) = 1,C1(xz,y) - 0, as y— oo
(8.25)
It is predicted that the diffusion coefficients of chemical species A and B are of comparable
size, which undergo further assumption that diffusion coefficients D4 and Dpg are equal, i.e.,

d =1 [16]. This assumption leads to the following relation

Clz,y) + Ci(z,y) =1 (8.26)
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Thus, Eqgs. (8.23) and (8.24) reduce to

1 oF aC
e F /_K - 1— 2 9 /__F/_ — 9
ScC + FC e *C(1-C) + <C e ax> 0 (8.27)
and the boundary condition in (8.25) reduce to
C'(x,0) = K,e */*C(z,0) and C(z,00) = 1 (8.28)

The non-dimensional skin friction in Z—direction C'rz, local skin-friction in Z—direction

Cr; and the local Nusselt number Nugz, are given by

V V €T N €T 4R
ﬁOFﬁ::F”(an)u iOFézwl(‘rao) and —u = - <1+_> T/(ZE,O)
\/2x/L V2x/L Vx/2L\/Re, 3
where Re, = %(x) is the local Reynolds number.

8.2.5 Method of Solution

To solve the system of Egs. (8.20) - (8.22) and (8.27) along with the boundary conditions

(8.25) and (8.28), is solved numerically, as explained in case (a) of Chapter-3.

Proceeding in case (a) of Chapter-3, we obtain the following matrix equation

A X, =R, (8.29)

In Eq. (8.29), A;_; is a square matrix of order (8N + 8) and X; and R;_; are (8N + 8)x1
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column vectors defined by

W,
CF
A=A R =[Ey].rs=12-,8 X, = i (8.30)

G;

H,

Ji

_Ki_

where

F; = [Fi(&%), Fi(&1), Fi(&2), -, Fi(En—1), Fi (€87,
Wi = [Wi(&), Wi(&%m(&)w Wi(€n—1), Wi(En)],
0; = [Ti(%0), Ti(&1), Til&2), -, Ti(sn—1), Ti(€n)]",
®; = [Ci(&0), Ci(&1), Cil&2), -, Ci(En—1), Ci(En)]T,
Gi = [Gi(&), Gi(&1), Gi(&), -+, Gi(§n—1), Gi(én)]T,
H; = [Hi(&), Hi(&1), Hi(&2), s Hi(En—1), Hi(€n)]T,
Ji = [Ji(&), Ji(&), Jil&2), - (fN 1), Ji€n)7,
K; = [K;(§ ):Kz(fl),Kz(&) Ki(€n—1), Ki(En)]",
Eji1= [Cj,i—1(§o),Cj,i—1(€1),éj,i—1(€2) - Gri1(Ev-1), ng &) =1,23,...,8
Apy = D8+ x110aD? + X1z D + Xigir, Arp = — BT Ay = 2RIl

A4 =0, A5 =x1:1D+x15:-1, As=0, Az =0, Ai=0,

Aot = X21i-1D + X221, Ao =D?+ x93,;-1D + X241, A3 =0

A4 =0, Az = X2s5i-1, Az = X261, A2r =0, Ap=0

Az = x31,i-1D + X321, Az =0, Asz= % (1 + %%) D? + x33,-1D + X34,i-1,
Az =0, Ass = x35i-1, Az =0, Az = x36i-1, Ass=0

Ag = Xa1,i-1D + Xa2,i-1, A =0, Ay3=0, Ay = éDQ + Xa3,i—1D + Xa4,i-1,
Ags = xasi-1, A =0, A;r=0, A= xa6i-1,

As1 = x51.i-1D? + X52-1D + X53i-1, Az2 =0, As3=0, Az =0,
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Ass = D% + X500 1D? + X55:1D + X561, Ase = —ﬁfgzly As7 = 2Ril, Ass =0,
Ag1 = Xe61,i-1D + Xe2,-1, A2 = X63,i-1D + X6a,i-1, Az =0, Ags =0,

Ags = Xe5,i-1D + Xe6,i—1, Ass = D? + Xe67,i—1D + Xes,i—1, Aer =0, Agg =0,

A = xr,i1D + X721, A =0, A7z = x73,1D + X741, A7a =0,

Azs = X755-1D 4 X761, A6 =0, Az = 5= (1+ E)D? + x77,21D + x78,i-1,
A7 =0, Agi = Xxs1,i-1, A2 =0, Ag3 =0, Ags = xs82,,-1D + X831,

Ags = Xga,i—1D + xs5i-1, Asgg =0, Agr =0, Ags= SLCDQ + X86,i—1D + X87,i—1,

where the coefficients xyn,—1 and (-1, (I,k = 1,2,3,...,8) are approximations in terms of
F;,,W;,T; and C;, (i = 1,2,3,...,n — 1) and their derivatives, 0 and I are null and identity
matrices of size (N +1)x (N +1).

After modifying the matrix system (8.29) to incorporate boundary conditions, the solu-

tion is obtained as

X;=A" R, (8.31)

8.2.6 Results and Discussion

Comparison analysis is presented between the present results and the results obtained by
Magyari and Keller [56] as a special case by taking A =0, S =0, R=0, Ri =0, H, =0
and z = 0 and found that they are in good agreement, as presented in Table (8.1). To study
the effects of homogeneous-heterogeneous reaction parameters K and Ks, respectively, Hall
parameter [, slip parameter A, radiation parameter R, and suction/injection parameter S,
computations have been carried out in the cases of A = 1.0, Ri = 0.5, 8, = 0.5, R = 0.5,
S=05 K=05 K,=1.0, H,=1.0and x =0.2

The variation of tangential velocity for distinct values of g, R, S and R is exhibited
through the Figs. (8.7(a)) - (8.7(d)). An increase in the Hall parameter enhances the
tangential velocity as depicted in the Fig. (8.7(a)). It is noticed from the Fig. (8.7(b)) that,

an increase in the thermal radiation causes an increase in the velocity. It is seen from the
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Table 8.1: Comparison of —F"(0) and F(co) calculated by the present method for A = 0,
S=0,R=0,Ri=0, H,=0 and x = 0.

Magyari and Keller [56] | Present
—F(0) 1.281808 1.28180856
F(o00) 0.905639 0.90564370

Fig. (8.7(c)) that the fluid velocity is less in the presence of fluid suction and more in the
presence of injection. An increase in the value of Ri, induces a favorable pressure gradient

which, in turn, enhances the fluid velocity in the boundary layer as portrayed in the Fig.

(8.7(d)).

Figures (8.8(a)) - (8.8(d)) represents the variations of the transverse velocity for distinct
values of 8, R, S and Ri, respectively. It is noticed from the Fig. (8.8(a)), that there is
no secondary flow velocity in the absence of Hall parameter. As the values of 3} increased,
the cross flow is generated. An increase in the thermal radiation, the transverse velocity
enhances as shown in the Fig. (8.8(b)). Fig. (8.8(c)) exhibits that the transverse velocity
decreases with the fluid suction and increases with the injection. It is evident from the Fig.
(8.8(d)) that the cross flow, generated due to Hall effect, escalates with an enhancement in

the values Ri.

Figures (8.9(a)) - (8.9(d)) are due to the variation of temperature profile for distinct values
of B, R, S and Ri. An enhancement in the value of £, the effective thermal conductivity
of the fluid reduces and hence temperature diminishes as shown in the Fig. (8.9(a)). It
is seen from the Fig. (8.9(b)) that the temperature escalates with the increasing values of
thermal radiation, which in turn, intensifies the thermal boundary layer thickness. Figure
(8.9(c)) shows that the fluid temperature decreases with the fluid suction and escalates with

the injection. The temperature reduces with rise in Ri as shown in the Fig. (8.9(d)).

The variation of concentration profile for distinct values of K, K, R, Ri, (5, and S
is portrayed in the Figs. (8.10(a)) - (8.10(f)). From Fig. (8.10(a)), it is seen that the
concentration reduces as the strength of heterogeneous reaction enhances and decreases

by strengthening the homogeneous reaction as shown in the Fig. (8.10(b)). This is due
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to the fact that, reaction rates dominate diffusion coefficients. This is in tune with the
general physical behavior of homogeneous and heterogeneous reactions. As the values of
radiation, mixed convection and Hall parameter escalates, concentration boundary layer
enhances and hence, concentration rises as shown in the Figs. (8.10(c)), (8.10(d)) and
(8.10(e)), respectively. Moreover, it is observed that the concentration less influenced with
Hall effect. Figure (8.10(f)) exhibits that concentration of the fluid enhances with the fluid

suction and diminishes with the injection.

The influence of 3, R, Ri and S on the rate of heat transfer against non-similar variable
x is explored in the Figures (8.11(a)) - (8.11(d)). It is observed from the Fig. (8.11(a)) that
the rate of heat transfer reduces with an increase in the value of ;. The rate of heat transfer
escalates with an increase in the value of thermal radiation parameter R as depicted in the
Fig. (8.11(b)). Further, in the absence of thermal radiation, minimum rate of heat transfer
occurred and as strengthening the radiation, the rate of heat transfer escalated as shown
in the Fig. (8.11(b)). The effect of Ri on the rate of heat transfer is presented in the Fig.
(8.11(c)). It is evident from the figure that the rate of heat transfer enhances with a raise in
Ri. Figure (8.11(d)) shows that the rate of heat transfer enhances with a raise in the fluid

suction and diminishes with the injection.

Figures (8.12(a)) - (8.12(f)) depict the behaviour of the rate of mass transfer for dif-
ferent values of Ky, K, R, Ri, 8, and S against non-similar variable z. It is known that
increase in the value of K and K corresponds to increase in the strength of heterogeneous
and homogeneous reactions. Figures (8.12(a)) and (8.12(b)) depicts that, the mass transfer
rate decreases as the strength of heterogeneous and homogeneous reactions escalates. It is
noticed that, the effect of heterogeneous reaction is more than that of homogeneous reac-
tion. However, it is witnessed that both the concentration and mass transfer rate influenced
uniformly by the strength of heterogeneous and homogeneous reactions. An increase in the
values of the R, Ri, [, and S, the mass transfer rate escalates as portrayed in the Figs.
(8.12(c)) - (8.12(f)). Further, it is depicted that the rate of mass transfer enhances gradually

as r — 1.

The behaviour of F”(x,0) and W'(z,0) for different values of X\, 5, R, Ri, K and K

212



are tabulated in the Table (8.2). It is evident from the table that the F"(x,0) is increasing
and W'(x,0) is reducing with the slipperiness. In the presence of Hall parameter both
the skin-frictions are increasing. It is also observed that the transverse velocity vanishes
when (5, = 0 and hence in Z—direction there is no skin-friction. Table (8.2) illustrates that,
F"(x,0) and W’(x,0) are enhancing with a rise in the thermal radiation. The positive values
of Ri increases both the skin-frictions. In addition to this, F”'(x,0) in Z—direction is greatly
increased with positive values of Ri. At the end of the table the influence of strength of
homogeneous-heterogeneous reactions on F”(z,0) and W’(x,0) is presented. It is noticed

from the table that, there is no effect of K, and K on both the skin-friction.
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Table 8.2: Variation of skin friction in T- and Z-directions for varying values of slip parameter
A, Hall parameter By, radiation parameter R, mixed convection parameter Ri, heterogeneous

reaction parameter Ks, and homogeneous reaction parameeter K.

N B R Ri K, K] F'(z,0) | W(z0)
0.0 05 05 05 1.0 0.5 ]-1.452122 | 0.171179
05 05 05 05 1.0 0.5 |-0.670978 | 0.138906
1.0 05 05 05 1.0 0.5 |-0.442109 | 0.127885
20 05 05 05 1.0 0.5 |-0.264181 | 0.118659
1.0 00 05 05 1.0 0.5 |-0.455100 | 0.000000
1.0 05 05 05 1.0 0.5 |-0.442109 | 0.127885
1.0 1.0 05 05 1.0 0.5 |-0.419032 | 0.182813
1.0 1.5 05 05 1.0 0.5 |-0.400926 | 0.187412
1.0 05 00 05 1.0 0.5 |-0.464936 | 0.114359
1.0 05 05 05 1.0 0.5 |-0.442109 | 0.127885
1.0 05 1.0 05 1.0 0.5 |-0.428240 | 0.136786
1.0 0.5 2.0 05 1.0 0.5 |-0.411402 | 0.148090
1.0 05 05 00 1.0 0.5 |-0.598770 | 0.070074
1.0 05 05 0.1 1.0 0.5 |-0.559650 | 0.088126
1.0 05 05 05 1.0 0.5 |-0.442110 | 0.127885
1.0 05 05 1.0 1.0 0.5 |-0.327710 | 0.157594
1.0 05 05 05 01 05 |-0.442086 | 0.127950
1.0 05 05 05 05 0.5 |-0.442086 | 0.127950
1.0 05 05 05 1.0 0.5 |-0.442086 | 0.127950
1.0 05 05 05 2.0 0.5 |-0.442086 | 0.127950
1.0 05 05 05 1.0 1.0|-0.444640 | 0.127212
1.0 05 05 05 1.0 2.0 |-0.444640 | 0.127212
1.0 05 05 05 1.0 3.0 |-0.444640 | 0.127212
1.0 0.5 05 05 1.0 4.0 |-0.444640 | 0.127212
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Figure 8.7: “Effect (a)B, (b)R, (c)S, and (d)Ri on tangential velocity”.
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8.3 Conclusions

Numerical investigation of influence of homogeneous-heterogeneous reactions on the lami-
nar slip flow, heat and mass transfer of a incompressible viscous fluid over a porous sheet
stretching exponentially is analyzed in this chapter. Based on the analysis carried out the

main conclusions are drawn:

In case (a) and (b), the velocity decreases with the fluid suction and the skin-friction
increases with the slippage. In case (a), the temperature of the fluid increases with an
increase in the Biot number and decreases with an increase in Hall parameter for case (b).
In both the cases, the temperature increases with the thermal radiation. In both the cases,
the concentration decreases with an increase in the strengths of homogeneous-heterogeneous
reactions and increases with the fluid suction. The rate of heat transfer, in case (a), increases
with an increase in the Biot number and increases with the Hall parameter in case (b). In
both the cases, the rate of heat transfer increases with the thermal radiation and the fluid
suction. In both the cases, the mass transfer rate decreases with an increase in the strengths

of homogeneous-heterogeneous reactions .
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Chapter 9

Summary and Conclusions

In this thesis, a steady, laminar viscous fluid flow over an exponentially stretching sheet
is investigated. On the surface of the sheet two different types physical conditions were
considered. The sheet is (i) subjected to thermal convective boundary condition and (ii)
maintained at uniform wall temperature with Hall effect. The effect of various parameters
i.e., convective heat transfer coefficient (Biot number), Hall parameter, thermal radiation,
chemical reaction, Joule heating, cross-diffusion effects, variable viscosity, variable thermal
conductivity, heat source or sink, thermophoresis, viscous dissipation, double dispersion
effects, homogeneous and heterogeneous reactions on the flow characteristics such as velocity,
temperature and concentration distributions along with the local heat and mass transfer

coefficients were considered.

The governing equations of the flow in the Chapters 2, 4, 5 and case (b) of Chapter 3
and 6 are transformed into a system of nonlinear ordinary differential equations using simi-
larity transformations. These non-linear ordinary differential equations and their associated
boundary conditions are linearized by using successive linearization method. In the case
(a) of Chapter 3 and 6, Chapters 7 and 8, the governing equations of the flow are reduced
to a system of nonlinear partial differential equations using non-dimensional variables. A
local similarity and non-similarity method is used to transform the governing partial differ-

ential equations into ordinary differential equations and then linearized by using Successive
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linearization method. In all the chapters, the linearized equations together with correspond-
ing boundary conditions were solved using Chebyshev spectral collocation method. The

important observations made from this study are listed below.

e In the presence of the Hall parameter, both the velocities, the skin-friction and the
rate of heat and mass transfer increase and the temperature and the concentration
decrease. Whereas the temperature and the rate of heat transfer increase with the

increase in the convective heat transfer coeflicient.

e In the presence of the convective heat transfer coefficient, the rate of heat transfer and
temperature increases with an increase in the radiation parameter. As the chemical
reaction parameter increases, the concentration decreases and the rate of mass transfer
increases. Whereas in the presence of the Hall effect, both the velocities, the tempera-
ture, the skin-friction, the rate of heat and mass transfers increase with an increase in
the radiation parameter and both the velocities, the concentration, the skin-friction and

the rate of heat transfer reduce with the increase in the chemical reaction parameter.

e An increase in the Joule heating parameter, the rate of heat transfer increases in both
the cases. The temperature and concentration, increase and the rate of heat and mass

transfers decrease with the increase in the magnetic parameter.

e The presence of the Hall effect increases both the velocities and the skin-friction with
an increase in the Soret and Dufour numbers. In both the cases, the temperature
and the rate of mass transfer decrease, the concentration and the rate of heat transfer
increase with the increase in the Soret number. Whereas exactly an opposite trend is

witnessed with the increase in the Dufour number.

e The rate of heat transfer increases with the increase in the viscosity parameter and
decreases with an increase in the thermal conductivity and the heat source parameters.
But, an opposite trend is observed in the rate of mass transfer. Further, in the presence
of Hall effect the rate of heat and mass transfers decrease with the increase in slip
parameter. In the absence of slip parameter, an opposite trend is observed with the

increase in convective heat transfer coefficient.
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e As the viscous dissipation parameter increases, the temperature increases and the rate
of heat transfer decreases. Increase in the value of thermophoresis parameter, the

concentration decreases and the rate of mass transfer increases.

e An increase in the thermal dispersion parameter increases the temperature and de-
creases the rate of heat transfer. On the other hand, the concentration increases and
the rate of mass transfer decrease with an increase in the solutal dispersion parame-
ter. But, in the presence of the Hall effect, the rate of heat transfer increases with
an increase in the value of solutal dispersion parameter and the rate of mass transfer

increases with an increase in the thermal dispersion parameter.

e The species concentration and mass transfer rate decrease with the increase in the
strength of homogeneous and heterogeneous reaction parameter. The effect of homo-
geneous reaction is greater on species concentration as compared with heterogeneous

reaction.

e The velocity, temperature and concentration decreases and the rate of heat and mass
transfers increase with the fluid suction at the boundary of the stretching surface.
While, in the presence of Hall and cross-diffusion effects, a dual trend is observed on
the rate of mass transfer. The velocity, rate of heat and mass transfers reduce and the
temperature and concentration increase with the fluid slippage at the boundary. But,
in the presence of thermophoresis and convective heat transfer coefficient, the rate of

heat transfer increases with the fluid slippage at the wall.

The work presented in the thesis can be extended to analyze the effect of double stratification,
nonlinear convection, Arrhenius activation energy, binary chemical reaction, etc. Further,
this work can be extended by studying the analysis in various non-Newtonian fluids like
Couple stress fluids, Casson fluids, Jeffrey fluids, Power-law fluids and the geometry can
be changed to oscillatory, inclined exponentially stretching sheet. This work can also be
extended to porous media. Further, this work can be extended to study the heat and mass

transfer analysis on free convection.

224



In the recent past, the study of stability analysis has attracted the curiosity of many
researchers. Thus, the work presented in the thesis can be extended to study the stability

and convergence analysis.
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