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A B S T R A C T

Modeling and analysis of the dynamics of a power-law fluid continue to be an area of

intensive research activity. This stems from the evident that these types of fluids have a

large variety of engineering and industrial applications. Moreover, the theoretical analysis

of power-law fluids in a Darcy/non-Darcy porous medium has been attracting attention

for several decades because of its great importance in practical applications of engineering

and industrial problems. Industrial fluids like molten plastics, glues, pulp, slurries, etc.,

do not obey the linear relationship between shear stress and shear rate, and are described

as non-Newtonian in their flow attributes. The main aim of the thesis is to investigate

the mixed convective flow in a power-law fluid saturated porous medium in the presence of

variable properties, double dispersion, thermophoresis, Soret, MHD, thermal radiation and

local thermal equilibrium.

The thesis consists of FOUR parts and NINE chapters. Part-I consists of a single chap-

ter (Chapter - 1), which provides an introduction to the concepts in power-law fluid, porous

medium, stability analysis and a review of the pertinent literature. Part-II contains four

chapters (i.e., Chapters 2, 3, 4, and 5) and deals with the similarity solution for mixed con-

vective flow along a vertical plate in a Darcy porous medium saturated with power-law fluid.

Chapters-2 deal with the mixed convective flow over a vertical plate embedded in a power-law

fluid saturated porous medium in the presence of double dispersion and variable viscosity

effects, whereas Chapter-3 explore the effects of variable properties and thermophoresis on

mixed convective flow of a power-law fluid saturated porous medium. Chapters-4 examines

the influence of thermal radiation, Soret and variable properties on mixed convective flow in

a porous medium saturated by power-law fluid. Chapter-5 investigates the linear stability

of the vertical throughflow in a horizontal porous layer saturated with power-law fluid. The

linearized disturbance equations are reduced to a eigenvalue problem in ordinary differential

by assuming a periodic train of convection cells. This eigenvalue problem is solved using

finite differences and a matrix-based method. Part-III consists of three chapters (Chapters

6, 7 and 8) and deal with the similarity solution for a power-law fluid flow along a vertical

plate in a non-Darcy porous medium. Chapter-6 is an extension of Chapter-2 in which MHD

and non-Darcy porous medium are considered. Chapter-7 is an extension of Chapter-3 in

which MHD and non-Darcy porous medium are taken into consideration. Mixed convection

in a power-law fluid saturated non-Darcy porous medium with the effects of MHD, thermal

radiation and variable properties, is discussed in Chapter-8. The final Part-IV consists of

only one chapter (Chapter-9) which gives a summary, overall conclusions and scope for future

work.
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N O M E N C L A T U R E

B Buoyancy ratio

B0 Magnetic filed strength

C Dimensionless concentration

C Concentration

Cw Wall concentration

C∞ Ambient concentration

d∗ Pore diameter

D Mass diffusivity

G Non-Darcy parameter

g Gravitational acceleration

K Permeability constant

H Non-dimensional inter phase heat

transfer coefficient

k Wavenumber

L Characteristic length

Le Lewis number

M Magnetic parameter

n Power-law index

Nux Local Nusselt number

Pe Péclet number

R Radiation parameter

Sr Soret parameter

Ra Rayleigh number

Peγ Thermal Dispersion parameter

Peζ Solutal Dispersion parameter

Sc Schmidt number

P Pressure gradient

τ Thermophoretic parameter

Rac Critical Rayleigh number

Shx Local Sherwood number

T Temperature

qw Surface heat flux

qm Regular mass flux

T Dimensionless Temperature

T∞ Ambient temperature

Tw Wall temperature

u∞ Free stream velocity

u, v Velocity components in the x and

y directions respectively

x, y Cartesian coordinates along the

plate and normal to the plate

x, y Dimensionless coordinates along

and normal to the plate
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Greek Symbols

α Thermal conductivity

α0 Thermal diffusivity

β Thermal conductivity parameter

β∗T Coefficient of thermal expansion

β∗c Coefficient of concentration expan-

sion

η Similarity variable

k∗ Rosseland mean absorption coeffi-

cient

λ Mixed convection parameter

σ Electrical conductivity of the fluid

τ Thermophoresis parameter

δ Thermal property of the fluid

σ∗ Stefan-Boltzmann constant

θe Variable viscosity

θ∗ Consistency factor

µ∞ Thermal conductivity of the fluid

Ω Porosity-modified conductivity ra-

tio

γ Mechanical thermal dispersion

ζ Mechanical solutal dispersion

µe Magnetic permeability

ν Kinematic viscosity

ν∞ Kinematic viscosity constant

ρ∞ Density of the fluid

ψ Stream function

Subscripts

w Wall condition.

∞ Ambient condition.

Superscript

′ Differentiation with respect to η.
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Chapter 1

Preliminaries and Review

1.1 Introduction

Fluid mechanics is the study of behavior of fluids that are, either at rest or in motion. It is

one of the primary engineering sciences that has important applications in many engineering

disciplines. For example, aeronautical and aerospace engineers use fluid mechanical princi-

ples to study the flight of aeroplane and to design propulsion systems. Civil engineers use

this subject to design drainage channels, water networks, sewer systems and water-resisting

structures such as dams and levees. Fluid mechanics is used by mechanical engineers to

design pumps, compressors, turbines, process control systems, heating and air conditioning

equipment. Chemical engineers use the concept of this subject to design equipment used for

filtering, pumping and mixing fluids (Batchelor [11], Russell [87], Yuan [110]).

This subject is proven to be a highly exciting and challenging subject of modern sciences

in view of its applications in every aspect of our daily life. The quest for deeper under-

standing of the subject has not just enlivened the development of the subject itself but has

additionally proposed the progress in the supporting areas, such as applied mathematics,
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numerical computing, and experimental techniques. A large number of problems in fluid

dynamics have claimed the attention of mathematicians, physicists, and engineers for many

years. As a result, an enormous body of established results has accumulated steadily but

remains scattered in the literature.

The mechanism of heat transfer is the passage of thermal energy from a hot to a cold

body. It occurs through conduction, convection, radiation or any combination of these. The

molecular transport of heat in bodies or between bodies in the thermo dynamical system is

referred to as conduction. Convection is concerned with the fluid medium and/or the fluid

in the medium. The heat transfer due to the movement of fluid from one region to the other

region in the medium is called convection. Radiation heat transfer is a mechanism in which

the internal energy of a substance is converted into radiant energy. The transport of heat

by convection together with conduction is known as convective heat transfer. Further, the

free, forced and mixed convection are three classifications of the convective flows.

The transport of a component in a mixture, from a region of high concentration to a

region of low concentration, is called mass transfer. The involvement and applications of

mass transfer process have gained much attention, and it goes to a greater length in multiple

fields such as the industrial, biological, physical and chemical engineering processes. Mass

transfer is divided into two modes: Diffusive mass transfer and Convective mass transfer.

The convective mass transfer is analogous to the convective heat transfer, it occurs between

a moving mixture of fluid species and an exposed solid surface. Coupled heat and mass

transport constitute a significant area of research in modern fluid dynamics such as an elec-

tronic cooling, drying processes, manufacture of electric cable insulations, curing of plastics,

solar energy system, purification processes, etc.

A Newtonian fluid is a fluid that exhibits a viscosity that remains constant regardless

of any external stress that is placed upon it, such as mixing or a sudden application of

force. One example is water, since it flows the same way, in spite of of whether it is left

alone or agitated vigorously. Another way to describe these fluids is that they have a linear

relationship between viscosity and shear stress. Regardless of the shear stress applied to these

fluids, the coefficient of viscosity will not change. Further, Newtonian fluids are those that
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obey Newtons law relating shear stress and shear rate with a simple material property (the

viscosity) dependent on basic thermodynamic variables such as temperature, concentration

and pressure, but independent of flow parameters such as shear rate and time. This can be

contrasted with non-Newtonian fluids, which can become thicker or thinner when stress is

applied.

1.2 Porous Medium

The analysis of porous media plays an essential role in many fields of science and engineering,

for instance, petroleum engineering, groundwater hydrology, agricultural engineering and soil

mechanics. To study the motion of fluids through porous media, one must have sufficient

under-standing of the governing equations for the fluid flow through porous medium. Owing

to the intricate structure of the porous medium, several models have been proposed to explain

mathematical and physical aspects of porous media. Among these, the Darcy model and

a series of its modifications have attained much acceptance. Further, the boundary layer

assumptions have been successfully applied to these models and much work over the last few

decades has been done on them for a wide variety of geometries.

The study of convective heat and mass transport through porous media has been a

fascinating and prominent research area for the past few decades, because of its wide range

of industrial and engineering applications such as ground water contamination, thermal

insulation, extraction of crude oil, chemical catalytic reactors, etc. Previous studies indicate

that the Darcy model is applicable only for slow flows through porous media with low

permeability (see Darcy [23]). At higher flow rates, modifications to the Darcy model are

suggested, in view of nonlinear drag due to the solid matrix (see Forccheimer [30]) and

viscous stresses by the solid boundary (see Brinkman [14]). A detailed review of convective

heat and mass transport in Darcian and non-Darcian porous medium can be found in the

book by Nield and Bejan [69].

The governing equation for fluid motion in a vertical porous column was first given by
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Darcy [23] in 1856. It represents a balance of gravitational force, viscous force and pressure

gradient. In mathematical form, it is given as

V = −K
µ

(∇P− ρ∞ g) (1.1)

where V represents the space averaged velocity or Darcian velocity, µ represents the co-

efficient of viscosity, K represents the permeability of the medium, P represents the pres-

sure, and g represents the body force per unit volume, ρ∞ represents the density of the

fluid. For one-dimensional flow and low porosity system, the above law appears to provide

good agreement with experimental results. As this model does not take inertial effects into

consideration, it is valid for seepage flows only i.e., for flows with low Reynolds number

(O(Re) < 1).

It is assumption that the flow through anisotropic porous medium with high permeability

must reduce to the viscous flow in limit. In viewing this, Brinkman felt the need to account

for the viscous force exerted by a flowing fluid on a dense swarm of spherical particles

embedded in a porous mass and added the term µ′∇2V to balance the pressure gradient.

Here µ′ represents the effective viscosity given by µ′ = µ [1− 2.5(1− ε)]. The validity of the

Brinkman model is restricted to the high porosity medium (as confirmed by the experiments).

Its governing equation can be written as

− [∇P − ρ∞g] =
µ

K
V − µ′∇2V (1.2)

In 1901, Forchheimer conducted experiments and proposed that the inertial effects can

be accounted for through the addition of square of velocity in the momentum equation. At

higher velocities one gets separation effects and wake effects both of which arise due to the

nonlinearity of the Navier-Stokes equations, but which, in an averaged sense. Causes a mild

quadratic effect to be added to Darcys law. So the pressure gradient is rendered less effective

than it would be if everything satisfied a linear equation. The modification to the Darcy’s
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equation can be written as follows[
1 +

ρ∞CF
√
K

µ
|V |

]
V = −K

µ
[∇P − ρ∞g] (1.3)

where CF represents the dimensionless form drag coefficient. The coefficients of Darcy

and Forchheimer terms contain both fluid properties and the microstructure of the porous

medium. Some other models are also found in the literature related to porous media, and

the validity and limitations of these models are well discussed in Nield and Bejan [69].

1.3 Power-law Fluid

It is well known that most of the fluids which are encountered in chemical and allied pro-

cessing applications do not adhere to the classical Newtonian viscosity postulate and are

accordingly known as non-Newtonian fluids. One particular class of fluids which are of con-

siderable practical importance is that in which the viscosity depends on the shear stress or

on the flow rate. Due to important applications of non-Newtonian fluids for the design of

equipment and in the industrial processing, considerable efforts have been directed towards

the analysis and understanding of such fluids. In modeling with the complexities of non-

Newtonian fluid flows, methods that allow the description, interpretation and correlation of

fluids properties are required. A number of mathematical models have been proposed in the

literature to describe the rheological behavior of such fluids. Among these, a model which

has been most widely used for non-Newtonian fluids and frequently encountered in chem-

ical engineering processes, is the empirical Ostwald-deWaele model, or so-called power-law

model. In this model, the relation between shear stress and viscosity is given by

τxy = µ∗
∣∣∣∣∂u∂y

∣∣∣∣n−1
∂u

∂y
(1.4)

where µ∗ is the consistency coefficient and n is the power-law index. The dimension of µ∗

depends on the value of n and n being non-dimensional. When n = 1, the equation represents
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a Newtonian fluid with a dynamic coefficient of viscosity µ∗. Therefore, deviation of n from

a unity indicates the degree of deviation from Newtonian behavior. One may interpret the

physical behavior of the fluid by appealing to an effective viscosity. For n > 1, the fluid is

dilatant i.e, the effective viscosity increases from zero as the rate of strain increases from

zero, which means that the fluid is easily moved by applying small forces. For n < 1, the

fluid is pseudo-plastic i.e, the effective viscosity decreases from infinity as the rate of strain

increases from zero, and therefore the fluid becomes runnier but it’s very highly viscous

at low strain rates. Shenoy [91] explained that numerous applications of convective heat

transport in a porous medium saturated by a non-Newtonian power-law fluid. Chahtour et

al. [15] investigated the effect of magnetic field on thermal instabilities of a power-law fluid

saturated porous medium. Chamkha and Al-Humoud [17] presented the mixed convection

for a non-Newtonian power-law fluid from a permeable vertical plate embedded in a fluid

saturated porous medium with heat generation or absorption effects.

1.4 Fundamental Equation

The modified Darcy Law for the Power-law fluids is given by Kumari and Murthy [50]

µ∗

K
|V |n−1V = −∇P − ρ∞g (1.5)

where µ∗ is the effective consistency factor, K is the permeability, n is power law index, ρ is

the fluid density at the reference temperature and P is the dynamic pressure. The expression

for the modified permeability K for flows of non-Newtonian power-law are given by

K =


6
25

(
nε

3n+1

)n ( εd
3(1−ε)

)n+1

, (Christopher and Middleman [20])

2
ε

(
dε2

8(1−ε)

)n+1 (
6n+1
10n−3

) (
16
75

) 3(10n−3)
10n+1 , (Dharmadhikari and Kale [24])

(1.6)

It is noted that the vertical plate embedded in a porous medium is saturated with power-
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law fluid. The fluid and the saturated porous medium are locally thermodynamic equilibrium

and the properties of the porous medium are homogeneous and isotropic. Since the porous

medium is to be closely packed, Darcy’s law is moderate and adequate. For thermal and

concentration convection to occur, the fluid density is to be a function of the temperature

and concentration and hence it is necessary to consider an equation of state which couples

the equation of mass, momentum and energy.

ρ∞ = ρ (1− βT (T − T∞)− βC(C − C∞)) (1.7)

Subsequently, we employ the Boussinesq approximation, which is valid and provided

that density variation along with temperature gradient and concentration gradient of the

medium(Solid and fluid).

Using the above approximations and employing the boundary layer assumptions, we get

the following simplified equations for continuity equation, modified Darcy law, conservation

of energy and conservation of concentration

∂u

∂x
+
∂v

∂y
= 0 (1.8)

un =
K

µ

(
∂p

∂x
+ gρ (βT (T − T∞) + βC(C − C∞))

)
(1.9)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[
α
∂T

∂y

]
(1.10)

u
∂C

∂x
+ v

∂C

∂y
= D

∂

∂y

[
∂C

∂y

]
(1.11)

where T∞ is the free stream temperature, C is the species concentration, C∞ is the concen-

tration, g is the acceleration due to gravity, ρ is the reference density, K is the permeability,

βT and βC are the thermal and concentration expansion coefficients respectively. Here, n is

the index in the power-law variation of viscosity, n < 1 for the pseudo-plastic fluids, n > 1

for the dilatant fluids and n = 1 for the Newtonian fluids.
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1.5 Local thermal non-equilibrium model

In most cases studied in the literature it has been assumed that the porous matrix and the

fluid flowing through it are in local thermal equilibrium (LTE). At the microscopic level,

the temperature and the rate of heat flux at the interface between solid and fluid phases

must be identical, but the average value over a representative elementary volume should not

yield locally equal temperatures for the two phases. In this case the two phases are in local

thermal non-equilibrium (LTNE). Rees and Pop [86] explained that LTNE is not necessarily

an unsteady phenomenon, but it can also arise in steady flows. A recent review by Rees

and Pop [86] summarises much of the present knowledge, including the various models used

for LTNE and their application to free, mixed and forced convective flows and to stability

analyses. Following Banu and Rees [6] and Barletta [7] the simplest way to model the LTNE

in an isotropic porous medium is to use two thermal balance equations, one for the fluid

phase and one for the solid matrix, namely

ε(ρc)f
∂Tf
∂t̄

+ (ρc)f ū.∇Tf = εkf∇2Tf + h(Ts − Tf ), (1.12)

(1− ε)(ρc)s
∂Ts
∂t̄

= (1− ε)ks∇2Ts + h(Tf − Ts), (1.13)

where Tf is the fluid temperature, Ts is the solid temperature, ε is the porosity of the porous

medium and h is the interphase heat transfer coefficient, respectively. Most papers which

deals with convective flows in porous media assume that LTE holds. However, important

cases where LTE cannot be invoked may exist. First introduced by Schumann [88], Eqs. 1.12

and 1.13 use simple linear source/sink terms to model the local (i.e. microscopic) heat

transfer between the phases at the pore level.

When Ts > Tf the final term in Eq. 1.12 acts as a source of thermal energy into the fluid

phase, while the final term in Eq. 1.13 is a thermal sink for the solid phase. Equation 1.12

also shows us that, when a medium is of low porosity (ε� 1) and the solid and fluid phases

exhibit the temperature difference, ∆T , then the rate of change of the fluid temperature

is O(h∆T/ερc)f . As this is inversely proportional to ε, there is a rapid change in the fluid

9



temperature towards that of the solid phase to establish LTE.

1.6 Stability

The study of hydrodynamic stability aims to determine conditions under which a given flow

is stable, i.e. realizable in practice, or unstable. This is undertaken by adding disturbances

to a known flow, often called the basic state, and the fate of such disturbances is found

using either analytical or numerical methods. For a convective flow the disturbances may

be to either the velocity or temperature field or both, and may also arise because of imper-

fections in the overall system such as rough bounding surfaces. There are two main ways of

approaching such flow instability problems. One is the use of a linear stability theory where

the disturbances have a sufficiently small magnitude that nonlinear terms may be neglected,

and therefore their exponential growth rate may be computed. The other is a nonlinear

stability analysis which may take a variety of forms such as a weakly nonlinear analysis or

energy/integral methods.

Linear Stability

The method of linear stability analysis consists of introducing infinitesimal perturbations

to an initial state of the flow whose stability is to be examined. The procedure to find

the condition on stability is described in this section.To examine the stability of a physical

system, let Ψ be a steady state (initial state) solution. Then we add a perturbation Ψx to

the steady state solution Ψ, and substitute (Ψ = Ψb + ψ) into the flow governing equations.

From the resulting equations, we subtract away the basic terms which Ψ satisfies identically.

We remain with the perturbation equations. Then, we have to linearize the perturbation

equations by assuming small (infinitesimal) perturbations, and by neglecting the product of

perturbations. The linearized perturbation equations can be simplified by assuming a form

for the perturbations. These linearized perturbation equations should be homogeneous with

homogeneous boundary conditions. From this system of equations, eigenvalue problem can
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be obtained. These eigenvalues determine the condition on the stability. In this analysis,

the problem is linearized by neglecting the product of perturbations. And therefore, this

method examines the initial behavior of the perturbations.

When a physical system is perturbed, either the amplitude of perturbation gradually

decays; or grows with time in such a way that the system progressively departs from its

initial state and never comes back to it. In the first case, the system is stable with respect

to that particular perturbation; in the second case, it is unstable. We say that the system

is stable if it is stable with respect to all possible perturbations. However, the system is

unstable even if it is unstable with respect to only one perturbation.

As explained above, to check the stability of the system one needs to check the stability of

all possible perturbations. In practice, we take an arbitrary perturbation in terms of normal

modes. In illustration of how one does this, consider a system which is confined between two

parallel planes and in which the physical variable in the steady state are functions only of z

normal to the plane. In this case, the time dependent periodic perturbations in horizontal

plane can be written in the form

Ψ = f(z)eλ t cos kx; Θ = g(z)eλ t sin kx; Φ = h(z)eλ t sin kx (1.14)

where λ is the exponential growth rate and k is the wavenumber of the disturbance.

1.7 Numerical methods

The governing equations of convective heat and mass transfer in Newtonian and/or non-

Newtonian fluids are essentially coupled and non-linear partial differential equations. Gen-

erally, these non-linear partial differential equations cannot be solved analytically, so recourse

must be made to a numerical approach. Various numerical methods, including the finite ele-

ment methods, finite difference methods, finite volume methods, spectral methods, boundary

element methods, homotopy analysis method, cubic spline collocation method, etc., have
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been used by several researches to solve the system of nonlinear differential equations. Here,

we have used two numerical methods namely, shooting method and matrix-based method.

Shooting method used to solve the boundary value problems, and matrix-based method used

to solve the eigenvalue problems obtained in hydrodynamic stability.

Shooting Method

Shooting method is very simple and it is particularly easy to modify from problem to problem,

basically it requires to change in only one subroutine that contains the first order differential

equations. Moreover, it is easy to implement different boundary conditions in shooting

method. The basic idea of shooting method for solving boundary value problem is to try

to find an appropriate initial condition for which the computed solution “hit the target” so

that the boundary conditions at other points are satisfied. The major steps for applying

shooting method are as follows

• The higher order non-linear differential equations are converted into simultaneous non-

linear differential equations of first order.

• Assume some values for variables which are not specified at the initial point

• Integrate the first order equations using the 4th order Runge-Kutta method with as-

sumed initial values from initial point to terminal point

• Check the accuracy of the assumed initial values by comparing the calculated terminal

values with the given values

• This process is continued until the agreement between the calculated and the given

condition at terminal point is within the specified degree of accuracy.
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Matrix-based Method

In shooting method, we have considered the Péclet number range from 0.1 to 2.0. When we

increased the range of Péclet number for certain parameters they are not converging, Hence

to over come these difficulties, we have resort to a numerical method called matrix-based

method. These matrix methods play an important role, and offer useful alternative to the

shooting method. The main advantages of matrix-based method are the achievement of a

global solution, faster convergence and produce as many eigenvalues and the corresponding

functions as one desired. This method is easy to extend to higher order systems. More

importantly, finite difference method is particularly suitable for eigenvalue problems, in

which the differential equations contain a singular form.

Therefore the equations for both the eigenvalue problem and the basic state were solved

by approximating the derivatives in the above-quoted equations by second order central

differences and the resulting algebraic written in matrix/vector form. A uniform grid of

points of length, δ, was used where the numerical values of f at z = zi = iδ are denoted

by fi. When there are N internal points, then (N + 1)δ = 1 and we denote the vector of

f -values by f = (f1, f2, · · · , fN−1, fN). In the following, we shall illustrate the method by

taking N ×N when N intervals are used in range, 0 ≤ z ≤ 1.

1.8 Literature Review

The study of free and mixed convection due to a heated or cooled vertical surface provides

one of the most basic scenarios for heat and mass transfer theory and thus is of consid-

erable theoretical and practical interest. Free convection of heat and mass transfer occurs

simultaneously in the fields of design of chemical processing equipment, distributions of tem-

perature, formation and dispersion of fog, groves of fruit trees and moisture over agricultural

fields. It also occurs in the context of damage to crops due to freezing and pollution of the

environment. The phenomenon of mixed convection occurs in many technical and industrial

problems such as solar collectors, nuclear reactors cooled during an emergency shutdown,
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electronic devices cooled by fans, a heat exchanger placed in a low-velocity environment and

so on.

Convective flow along a vertical surface embedded in a porous medium, is one of the fun-

damental and classical problems in the heat and mass transfer theory. It has attracted a great

deal of interest from many investigators owing to the broad applications such as geothermal

systems, energy-storage units, heat insulation, heat exchangers, drying technology, catalytic

reactors, nuclear waste repositories, etc. The literature relevant to the convective flows over

different surface geometries in Darcy and non-Darcy porous media has been reported by

Ingham and Pop [40], Nield and Bejan [69], Vafai [106] (see the citations therein).

In wide range, most of the researchers considered the effects of buoyancy force by as-

suming that the temperature and density vary linearly (it is known as linear Boussinesq

approximation or simply Boussinesq approximation). However, there are several reasons for

the density-temperature relationship to become non-linear, for instance when the tempera-

ture difference between the surface of the body and the ambient fluid becomes significantly

large. In this case, non-linear density and temperature variations in the buoyancy force term

may exert a strong influence on the flow field and heat transfer characteristics (for details see

Barrow and Rao [10]). This physical concept has a unavoidable applications in geothermal

and engineering process such as pore water convection near salt domes, cooling of electric

equipment, and the residual warm water discharged from a geothermal power plant. In view

of the above said applications, Partha [75] developed a mathematical model on non-Darcy

porous medium with a temperature-concentration dependent density relation, in which they

observed that an increase in nonlinear temperature and concentration parameters, the heat

and mass transfer varies extensively depending on Darcy and non-Darcy porous medium.

Prasad et al. [77] scrutinized the natural convection flow along a vertical at plate in a non-

Darcy porous medium with the nonlinear density-temperature variation under prescribed

constant surface temperature. The convective flow of nonlinear density-temperature rela-

tionship over an impulsive stretching sheet has been examined by Motsa et al. [61] (and also

see the citations therein).

In flow problems the thermo physical properties of fluid were assumed to be constant.
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However, it is known that these properties, especially for fluid viscosity and fluid thermal

conductivity, may change with temperature. To predict the heat transfer rate accurately,

it is necessary to take into account the variation of viscosity and thermal conductivity. In

recent years, the effect of variable viscosity and thermal conductivity on the convective heat

and mass transfer has gained much importance in production of paper, plastic film’s drawing,

hot rolling glass fiber, glass fiber production, etc. Ling and Dybbs [53] found theoretically

that the viscosity of water decreases by about 240% when the temperature increases from

10◦C(µ = 0.0131g/cms) to 50◦C(µ = 0.00548g/cms). Hossain et al. [37] discussed the free

convective boundary layer flow along a vertical plate in the presence of variable viscosity. The

effect of variable viscosity, thermal radiation and velocity slip on the flow of a power-law fluid

over a non-linearly stretching surface has been examined by Megahed [59]. Noghrehabadi et

al. [70] investigated the effect of variable viscosity and thermal conductivity on the natural

convection heat transfer along a vertical plate in a porous medium saturated by nanofluid.

Mahanti and Gaur [54], studied the effects of variable viscosity and thermal conductivity on

free convective flow of a viscous incompressible fluid along an isothermal vertical plate in

the presence of heat sink. Umavathi [105] discussed the influence of variable viscosity and

thermal conductivity on free convective flow, heat and mass transfer in a vertical channel

filled with porous medium. Recently, The two dimensional stagnation point flow of a viscous

incompressible electrically conducting fluid over a linearly stretching sheet in porous media

with variable viscosity and thermal conductivity, has been presented by Rao et al. [80].

The influence of thermal and solutal dispersion in a porous medium are essential due

to the existence of inertial effects (see Nield and Bejan [69]). The heat and mass transport

due to the hydrodynamic mixing is called thermal and solutal dispersions, respectively.

The interest in the above studies is motivated by numerous engineering applications such as

thermal insulation systems, geothermal engineering, packed bed reactors, petroleum recovery,

ceramic processing, sensible heat storage beds, groundwater pollution, etc. In view of the

above said applications, Telles and Trevisan [100] presented the hydrodynamic dispersion

effect on free convective heat and mass transfer near to the vertical surface in a porous

medium. The effects of thermal and solutal dispersion in a non-Darcy porous medium have
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been discussed by Murthy [63]. The effects of double dispersion and variable viscosity on

free convective flow of a non-Newtonian fluid over the vertical cone embedded in a non-

Darcy porous medium have been explored by Kairi [43]. Afify and Elgazery [1] presented

the effects of double dispersion, melting and thermal radiation on mixed convective heat

and mass transfer flow over a vertical surface in a non-Darcy porous medium. Narayana

and Sibanda [67] analyzed the double dispersion effects on MHD mixed convective flow

along a vertical flat plate embedded in a non-Darcy porous medium. Murthy and Singh [65]

investigated the thermal dispersion effect on the mixed convective flow over the isothermal

vertical cone embedded in a non-Darcy porous medium.

The effect of thermal radiation in different fluid flows, is very useful in the nuclear plants,

gas turbines, various propulsion devices for aircraft, missiles, satellites, space vehicles, etc.

At high temperature, the thermal radiation can significantly affect the heat transfer rate and

the temperature distribution within the boundary layer flow of a participating fluid. Also,

the thermal radiation may play an essential role in controlling the heat transfer in industries

where the quality of final product depends on the heat controlling factors to some extent.

Because of these applications, Hossain and Takhar [38] considered the mixed convective

boundary layer flow along a heated vertical plate in the presence of thermal radiation. Grosan

and Pop [31] discussed numerically the influence of radiation free convective flow over a

vertical surface in a power-law fluid. Hayat et al. [34] focused on two dimensional mixed

convection stagnation-point flow of power-law fluids towards a stretching sheet with the

effect of MHD and thermal radiation. Umamaheswar et al. [104] studied the free convection

flow of a non-Newtonian fluid past an impulsively started vertical plate in the influence of

MHD, thermal radiation, thermal diffusion, chemical reaction and heat absorption.

In recent years, several boundary layer flow problems have received attention more at-

tention in context of magneto-hydrodynamics (MHD). Several investigators have extended

many of the available boundary layer solutions to include the effects of magnetic fields for

those cases when the fluid is electrically conducting. The study of magnetohydrodynamic

flow for an electrically conducting fluid past a heated surface has important applications in

many engineering problems such as plasma studies, petroleum industries, MHD power gen-
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erators, cooling of nuclear reactors, the boundary layer control in aerodynamics, and crystal

growth. Aldoss et al. [3] have considered the magnetohydrodynamic mixed convection from

a vertical plate embedded in a porus medium. Makinde and Aziz [57] numerically investi-

gated the influence of convective boundary condition on MHD mixed convective heat and

mass transfer along a vertical plate embedded in a porous medium.

The occurrence of diffusive flux due to temperature gradient is known as the thermal

diffusion or Soret effect. In most of the studies, Soret effect is neglected on the basis that

it is of a smaller order of magnitude than the effects described by Fourier’s and Fick’s laws.

This Soret effect plays an important role in many natural activities, viz., in the underlying

physics of the solar ponds, the demographics of an ocean and also convection in stars (see

Ingham and Pop [40]). Also, it has been utilized for isotope separation and in a mixture

between gases with very light weight molecular (H2, He) and of medium weight molecular

(N2, air) [26]. Due to its significant applications, several authors analyzed the Soret effect on

Newtonian and non-Newtonian fluids through different geometries. Dursunkaya and Worek

[25] studied the cross-diffusion effects on natural convective flow along a vertical surface.

Kafoussias and Williams [42] discussed the mixed convective flow along a vertical plate

under the influence of Dufour and Soret effects.

In the recent past, many researchers focused on different procedures for obtaining the

similarity solution of the convective transport phenomena problems arising in fluid dynam-

ics, plasma physics, aerodynamics, meteorology and some branches of engineering. One such

procedure is Lie group analysis. The concept of Lie group analysis, initiated by Sophus Lie,

is also known as symmetry analysis. It determine point transformations which map a given

differential equation to itself and it combines almost all known exact integration techniques

(Ref. [73], [72], [13]). It provides a potent, sophisticated and systematic tool for generat-

ing the invariant solutions of the system of nonlinear partial differential equations (PDEs)

with relevant initial or boundary conditions. A special form of Lie group transformations,

known as the scaling group of transformation, has been suggested by various researchers to

study convection flows of different flow phenomena with some unavoidable limitations (see

Tapanidis et al. [99], Hassanien and Hamad [33], Kandasamy et al. [45], Mutlag et al. [66],

17



Ramreddy et al. [79] etc. are worth observing).

The flow and heat transfer in an electrically conducting fluid in the presence of a magnetic

field has attracted several researchers in view of its applications in engineering, technology

and science. Makinde and Aziz [57] numerically investigated the influence of convective

boundary condition on MHD mixed convective flow along a vertical plate embedded in a

porous medium. Mahmoud [56] investigated the effect of thermal radiation, viscous dissipa-

tion and variable viscosity on the problem of unsteady MHD flow on natural convection flow

over a vertical plate. Khidir et al. [47] analyzed the MHD convective flow due to a porous

rotating disk under the influence of variable properties, viscous dissipation, Ohmic heating,

Hall current, and thermal radiation. Mukhopadhyay and Mandal [62] studied the effects of

velocity slip and thermal slip on magnetohydrodynamic boundary layer mixed convection

flow heat transfer over a vertical porous plate in the presence of suction/blowing.

The infinitesimal convection occurring in a horizontal fluid saturated porous medium

heated from below was extensively studied since the first papers by Horton and Rogers [36]

and Lapwood [52] (motivated from the works of Rayleigh [83]). This work was generally

known as Horton-Rogers-Lapwood problem or Darcy-Bénard problem. In this study, they

investigated on the convection in a homogeneous and isotropic porous layer with uniform

thickness. The flow in their studies was governed by the Darcy-law, and the Oberbeck-

Boussinesq approximation was employed; and also fluid and solid phases were in local ther-

mal equilibrium condition. These works showed as to how the porous layer becomes unstable

when the temperature difference exceeds certain critical value. This critical value is deter-

mined by the coefficient of thermal conductivity, thermal expansion coefficient, kinematic

viscosity, length of porous layer and boundary conditions. Sutton [97] found the critical

Rayleigh number for the convective flow in a porous channel.

The above works were based on convective instability in a porous layer due to vertical

temperature difference alone. The stability of convection in a horizontal porous layer with

horizontal as well as vertical temperature gradients was studied in Weber [107]. In this

work, temperature was varied linearly along the boundaries, where as the vertical temper-

ature difference was kept constant. This work was limited to small horizontal temperature
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gradients. The analysis of this problem showed that the critical Rayleigh number for this

problem is always larger than the critical Rayleigh number for the Darcy-Bénard problem.

In the standard Darcy-Bénard problem, the instability is driven by density variations caused

by temperature difference between upper and lower boundaries. Convective instability of the

Darcy-Bénard problem with throughflow in a porous layer saturated by a power-law fluid

(see Kumari and Murthy [50], Alves and Barletta [4]).

Local thermal non-equilibrium (LTNE) arises under various circumstances when consid-

ering heat transfer in porous media. Given that the temperature field is an average over

a Representative Elementary Volume, one which is small compared with any macroscopic

length scale of interest, but one which is large compared with the microstructure of the

medium, it is quite possible for the respective fluid and solid temperatures which are as-

sociated with a given point to be different. Examples of such circumstances include the

rapid heating of one of the phases or the sudden and rapid infiltration of a fluid with a

different temperature from that of the previous equilibrium. In such cases, two Fourier’s

equations are used, one for each phase, and these are coupled by source/sink terms which

allow for microscopic heat transfer between the phases. Detailed correlations for a wide

variety of possible porous structure were given in Rees (Ref. [85], [84]). Within context of

the Darcy-Bénard problem, a comprehensive analysis of the effect of LTNE was given by

Banu and Rees [6]. These found that LTNE serves to increase both the critical wavenumber

and Darcy-Rayleigh number from the classical values quoted above. In some circumstances,

(namely where hd2/εkf � 1 but where hd2/(1 − ε)ks = O(1), where ε is the porosity and

k represents the conductivity of the fluid and solid phases,) the critical wavenumber can

become extremely large.

Due to the important applications of power-law fluid saturated Darcy/non-Darcy porous

medium, the usefulness of convective flows over the vertical plate has been analyzed in this

thesis. In addition, a problem of linear stability of the Darcy-Bénard convection on a power-

law fluid has been studied. The problems considered in this thesis are outlined in the next

section. Although the literature mentioned above is small, we will provide a good amount

of literature in the subsequent chapter which motivated us to study these problem.
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1.9 Aim and Scope

The objective of the present thesis is to obtain the numerical solutions for the convective heat

and mass transport in a power-law fluid saturated porous medium. The study focusses on

the attributes of various effects such as MHD, variable properties, double dispersion, Soret,

thermophoresis and thermal radiation in Darcy and/or non-Darcy porous medium saturated

with a power-law fluid. The problems considered in this thesis deal with boundary layer

flow, and/or linear stability analysis for the Darcy-Bénard convection.

1.10 Outline of the Thesis

This thesis is arranged in FOUR Parts with a total of NINE Chapters.

Part-I consists of a single Chapter 1 which is introductory in nature. In this chapter

we present the governing equations of fluid flow, heat and mass transfers of power-law fluid

along with a brief review of the basic terminology related to the thesis and the existing

literature.

Part II presents the similarity solution for mixed convective flow along a vertical plate in

a Darcy porous medium saturated with power-law fluid. This part consists of four Chapters

(i,e., Chapters 2-5). In Chapters 2-4, Lie scaling group of transformations are applied to get

the similarity representation to the governing equations and then the resulting systems of

ordinary differential equations are solved using the shooting method. The obtained results

are compared with previously published work and are found to be in good agreement. In

chapter-5, a linear stability analysis for the Darcy-Bénard convection is studied. The lin-

earized disturbance equations are reduced to a eigenvalue problem in ordinary differential

by assuming a periodic train of convection cells. Then the critical Rayleigh number is found

as the eigenvalue of that system. The details of these chapters are given below.

The effects of variable properties and double dispersion on mixed convective flow over

a vertical plate embedded in a power-law fluid saturated porous medium, are studied in
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Chapter-2. The variable viscosity is assumed to vary as a inverse linear function of temper-

ature and thermal conductivity as a linear function of temperature. The numerical results

for the non-dimensional velocity, temperature and concentration are displayed graphically

for different values of variable viscosity, thermal conductivity, thermal dispersion and solutal

dispersion.

Chapter-3 deals with the mixed convective heat and mass transport along a vertical

plate in a power-law fluid saturated Darcy porous medium. The influence of variable viscos-

ity, thermal conductivity and thermophoresis parameters on the non-dimensional velocity,

temperature and concentration profiles are displayed graphically for pseudo-plastic, Newto-

nian and dilatant fluid. Further, the dimensionless heat and mass transfer rates are displayed

in a tabular form.

Chapter-4 an analysis is made for the influence of thermal radiation, Soret and variable

properties on mixed convective flow, heat and mass transfer from a vertical plate in a Darcy

porous medium saturated by a power-law fluid. The numerical results for dimensionless

velocity, temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant

fluids are presented graphically for different values of Soret, thermal radiation, variable

viscosity and thermal conductivity parameters. The non-dimensional Nusselt and Sherwood

numbers are presented in tabular form. The present numerical results are compared with

previously published work and the results are found to be in excellent agreement.

In Chapter-5, a horizontal porous layer which is heated from below is subjected to a

vertical throughflow which eventually confines the temperature field to being near one the

bounding surfaces when the throughflow is sufficiently strong. The saturating fluid is taken to

be of power-law form, and the solid and fluid phases of the porous medium are assumed not to

be in local thermal equilibrium; thus there are separate heat transport equations for the fluid

and solid phases. The basic state, whose stability characteristics are to be sought, are solved

numerically, because no analytical solution is available. The linear stability analysis is then

carried out, by descritizing the tenth-order eigenvalue problem using finite differences then

solving it by a matrix-based method. The neutral stability curves and the critical Rayleigh

number for the onset of instability are obtained. It is found that the critical wavenumber
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and Rayleigh number both increase as the Péclet number increases.

Part III presents the similarity solution for a power-law fluid flow along a vertical plate

in a non-Darcy porous medium. This part consists of three Chapters (i,e., Chapters 6-8).

In these chapters, Lie scaling group of transformations are applied to get the similarity

representation to the system of partial differential equations and then the resulting systems

of equations are solved by shooting method. Comparisons with the published works are

performed and are found to be in very good agreement. The details of these chapters are

given below:

Chapter-6 explores the effects of magnetohydrodynamic, double dispersion and variable

properties on mixed convective flow past a vertical surface in a power-law fluid saturated

porous medium. The influence of relevant parameters on the non-dimensional velocity, tem-

perature, and concentration for pseudo-plastic fluid, Newtonian and dilatant fluids are dis-

cussed and displayed graphically. The behaviors of heat and mass transfer coefficients are

shown in tabular form.

The objective of Chapter-7, is to analyse the hydromagnetic mixed convective heat and

mass transfer over a vertical plate in a power-law fluid saturated non-Darcy porous medium

under the influence of thermophoresis, variable viscosity and variable thermal conductiv-

ity. The numerical results for the non-dimensional velocity, temperature and concentration

are discussed and displayed graphically for various parameters such as magnetic field, ther-

mophoresis, variable viscosity and thermal conductivity.

The analysis of steady mixed convective heat and mass transfer along a permeable ver-

tical plate in a non-Darcy porous medium saturated with power-law fluid, is examined in

Chapter-8. The effects of thermal radiation, variable properties and MHD parameters on

physical quantities of the fluid flow are exhibited graphically.

For solving the problems in chapters (2,3,4,6,7 and 8), shooting technique which uses

Runge-Kutta fourth-order method is employed. In chapter-5, the tenth-order eigenvalue

problem is solved using finite differences and a matrix-based method.
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Finally, Part IV consists of single Chapter (i.e., Chapter-9) which presents the main

conclusions of the thesis and point out various problems which are yet to be solved in this

area.

List of references is given at the end of the thesis. The references are arranged in an

alphabetical order and according to this order, citations appear in the text.

Considerable part of the work in the thesis is published/accepted for publication in re-
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Chapter 2

Mixed Convective Flow over a

Vertical Plate Embedded in a

Power-law Fluid Saturated Porous

Medium with Double Dispersion and

Variable Properties 1

2.1 Introduction

In the recent past, the study of fluid flow, heat and mass transfers with the variable thermo

physical properties has received much attention. Jayanthi and Kumari [41] analyzed the

effect of variable viscosity in a power-law fluid saturated porous medium. Srinivasacharya

et al. [94] obtained a similarity solution to explore the effects of Soret and Dufour on mixed

convective flow along a vertical wavy surface in a porous medium with variable properties.

Rao et al. [80] investigated the influence of thermal radiation on MHD flow over a lin-

early stretching sheet in a porous medium in the presence of variable viscosity and thermal

1Published in “Procedia Engineering” 127 (2015) 362–369
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conductivity.

The energy and concentration transport due to the hydrodynamic mixing is called thermal

and solutal dispersions, respectively. The effects of thermal and solutal dispersions (double

dispersion) in a Darcy porous medium are necessary due to the presence of inertial effects

(see Nield and Bejan [69]). The thermal and solutal dispersion effects in a homogeneous

and isotropic Darcian porous media have been studied by Dagan [22]. Thermal and solutal

dispersions are used in many engineering and industrial applications. The effects of thermal

and solutal dispersion on mixed convective flow of a porous medium saturated with power-

law fluid have been analysed by Kairi and Murthy [43]. Kameswaran and Sibanda [44]

analyzed thermal dispersion on a non-Newtonian power-law nanofluid over an impermeable

vertical plate. Srinivasacharya et al. [96] investigated the magnetic and double dispersion

effects on natural convection in non-Darcy porous media saturated with power-law fluid.

The aim of the present chapter is to study the effects of variable properties and double

dispersion on convective transport in a power-law fluid along a vertical plate. This type

of mathematical modeling becomes slightly more complicated leading to the complex in-

teractions of the flow, heat and mass transfer mechanism. In spite of this complexity, the

similarity representation to the system of non-dimensional equations is obtained using Lie

group transformations. The main advantages of these Lie group transformations is to obtain

similarity representation for the system of nonlinear partial differential equations. Moreover,

the Lie group technique has been applied by many researchers (see Oberlack [71], Kandasamy

et al. [46], Afify et al. [2], Ferdows et al. [29] and Uddin et al. [103]). The solution of the

reduced system of ODE is obtained by the well known shooting method. These numeri-

cal results for the non-dimensional velocity, temperature and concentration are illustrated

graphically for different values of variable viscosity, thermal conductivity, thermal dispersion

and solutal dispersion parameters. In addition, local heat and mass transfer are shown in a

tabular form.
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Figure 2.1: Physical model and coordinate system.

2.2 Mathematical Formulation

Consider a steady, laminar, incompressible, mixed convection heat and mass transfer bound-

ary layer flow over a vertical plate in a power-law fluid saturated Darcy porous medium.

Choose the two dimensional coordinate system such that the x-axis is along the vertical

plate and y-axis normal to the plate. The gravitational acceleration g acts in a downward

direction. The physical model and coordinate system is shown in Fig. (2.1). The wall

is maintained at constant temperature and concentration Tw and Cw, respectively. These

values are assumed to be greater than the ambient temperature and concentration T∞ and

C∞, respectively.

By using Boussinesq approximation and the boundary layer assumptions, the governing

equations, namely, the equations of continuity, momentum, energy and concentration for the

power-law fluid (see Shenoy [91]), are given by

∂u

∂x
+
∂v

∂y
= 0 (2.1)

nun−1∂u

∂y
=

∂

∂y

[
gKρ∞
µ

(
β∗T (T − T∞) + β∗C(C − C∞)

)]
(2.2)
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u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[
αe
∂T

∂y

]
(2.3)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

[
De

∂C

∂y

]
(2.4)

where x and y are the Cartesian coordinates, u and v are the Darcy velocity components in

x and y directions, respectively. Further, T is the temperature, C is the concentration, g is

the acceleration due to gravity, ρ∞ is the reference density, K is the permeability, β∗T and β∗C

are the thermal and concentration expansion coefficients respectively. Here, n is the index

in the power-law variation of viscosity, n < 1 for the pseudo-plastic fluids (shear-thinning

fluid), n > 1 for the dilatant fluids (shear-thickening fluids) and n = 1 for the Newtonian

fluids.

The associated boundary conditions are

v = 0, T = Tw, C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y →∞

 (2.5)

where the subscripts w and ∞ indicate the conditions at the wall and at the outer edge of

the boundary layer, respectively.

The fluid properties are assumed to be isotropic and constant except fluid viscosity and

thermal conductivity. The viscosity µ of the fluid is assumed to be an inverse linear function

of temperature and it can be expressed as (see Lai and Kulacki [51])

1

µ
=

1

µ∞
[1 + δ∗(T − T∞)] or

1

µ
= b∗(T − T e) (2.6)

where b∗ = δ∗

µ∞
, T e−T∞ = − 1

δ∗
, µ∞ is the coefficient of the viscosity far away from the plate.

Here b∗, T∞ are constants and their values depend on the reference state and the thermal

property of the fluid, i.e δ∗ in general b∗ > 0 for liquids and b∗ < 0 for gases. The variable

thermal conductivity α is to vary as a linear function of temperature (see Slattery [92]) such

as

α = α0

(
1 + E(T − T∞)

)
(2.7)
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where α0 is the thermal diffusivity, E is a constant depending on the nature of fluid. This

can be written in the non-dimensional form as

α = α0(1 + βθ) (2.8)

where β = E(Tw − T∞) is the thermal conductivity parameter.

Following Telles and Trevisan [100], the expressions for the effective thermal diffusivity

and mass diffusivities are taken as

αe = α + γd∗u (2.9)

De = D + ζd∗u

where α is the thermal conductivity, D is the molecular diffusivities, γ is the mechanical

thermal dispersion, ζ is the mechanical solutal dispersion and d∗ is the pore diameter. The

above model for thermal dispersion has been used extensively by researchers like (see Nield

and Bejan [69], Murthy [63], Srinivasacharya [95]) in studies of convective heat transfer in

porous media.

Introducing the following non-dimensional variables

x =
x

L
, y =

y

L
Pe

1
2 , u =

uL

α0Pe
, v =

vL

α0Pe
1
2

(2.10)

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

where Pe =
u∞L

α0

represents the Péclet number and L represents the characteristic length.

In view of the continuity equation (2.1), we introduce stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.11)
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Substituting Eqs.(2.6)-(2.11) into Eqs. (2.2)- (2.4), we get the following equations

∆1 = n

(
∂ψ

∂y

)n−1
∂2ψ

∂y2
+
λn

θe
[θ + Bφ]

∂θ

∂y
− λn

[
∂θ

∂y
+ B

∂φ

∂y

] [
1− θ

θe

]
(2.12)

∆2 =
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− β

(
∂θ

∂y

)2

− (1 + βθ)
∂2θ

∂y2
− Peγ

[
∂ψ

∂y

∂2θ

∂y2
+
∂2ψ

∂y2

∂θ

∂y

]
(2.13)

∆3 =
∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Le

∂2φ

∂y2
− Peζ

[
∂ψ

∂y

∂2φ

∂y2
+
∂2ψ

∂y2

∂φ

∂y

]
(2.14)

The corresponding boundary conditions (2.5) becomes

∂ψ

∂x
= 0, θ = 1, φ = 1 at y = 0

∂ψ

∂y
= 1, θ = 0, φ = 0 as y →∞

 (2.15)

where B =
β∗c (Cw − C∞)

β∗T (Tw − T∞)
is the Buoyancy ratio, Ra =

L

α0

[
gKβ∗T (Tw − T∞)

ν

]1/n

is the

generalized Rayleigh number, Le =
α0

D
is the Lewis number, θe =

T e − T∞
Tw − T∞

is the variable

viscosity, Peγ =
γu∞d

∗

α0

is the thermal dispersion parameter, Peζ =
ζu∞d

∗

α0

is the solutal

dispersion parameter and λ =
Ra

Pe
is the mixed convection parameter.

Similarity equations via Lie scaling group transformations

Finding the similarity solutions of Eqs. (2.12)-(2.14) is equivalent to determining the in-

variant solutions of these equations under a particular continuous one parameter group (see

Seddeek [89]). One of the methods is to search for a transformation group from the elemen-

tary set of one parameter scaling transformation, defined by the following group (Γ)

Γ : x∗ = x eε a1 , y∗ = y eε a2 , ψ∗ = ψ eε a3 , θ∗ = θ eε a4 , φ∗ = φ eε a5 (2.16)

Here ε 6= 0 is the parameter of the group and a’s are arbitrary real numbers whose interrela-

tionship will be determined. Transformation in Eq.(2.16) treated as a point transformation,
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transforming the coordinates

(x, y, ψ, θ, φ) = (x∗, y∗, ψ∗, θ∗, φ∗) (2.17)

Investigating the relationship among the exponents a’s such that

∆j

[
x∗, y∗, u∗, v∗, ...,

∂2ψ∗

∂y∗2

]
= Hj

[
x, y, u, v, ...,

∂2ψ∗

∂y∗2
; a

]
∆j

[
x, y, u, v, ...,

∂2ψ∗

∂y∗2

]
(j = 1; 2; 3)

(2.18)

Since this is the requirement that the differential forms ∆1, ∆2 and ∆3 are conformally

invariant under the transformation group Eq.(2.16). Substituting the transformations Eq.

(2.16) in Eqs. (2.12)-(2.14), we have

∆1 = eε(na2−na3+a2)n

(
∂ψ∗

∂y∗

)n−1
∂2ψ∗

∂y∗2
+
λn

θe

(
eε(a2−2a4)θ∗

∂θ∗

∂y∗
+ B eε(a2−a4−a5)φ∗

∂θ∗

∂y∗

)
(2.19a)

−λn
(
eε(a2−a4) ∂θ

∗

∂y∗
+ B eε(a2−a5)∂φ

∗

∂y∗

)(
1− e−εa4 θ

∗

θe

)
∆2 = eε(a1+a2−a3−a4)

(
∂ψ∗

∂y∗
∂θ∗

∂x∗
− ∂ψ∗

∂x∗
∂θ∗

∂y∗

)
− βeε(2a2−2a4)

((
∂θ∗

∂y∗

)2

+ θ∗
∂2θ∗

∂y∗2

)
(2.19b)

−eε(2a2−a4)∂
2θ∗

∂y∗2
− eε(2a2+a2−a3−a4)Peγ

(
∂ψ∗

∂y∗
∂2θ∗

∂y∗2
+
∂2ψ∗

∂y∗2
∂θ∗

∂y∗

)
∆3 = eε(a1+a2−a3−a5)

(
∂ψ∗

∂y∗
∂φ∗

∂x∗
− ∂ψ∗

∂x∗
∂φ∗

∂y∗

)
− 1

Le
eε(2a2−a5)∂

2φ∗

∂y∗2
(2.19c)

−eε(2a2+a2−a3−a5) Peζ

(
∂ψ∗

∂y∗
∂2φ∗

∂y∗2
+
∂2ψ∗

∂y∗2
∂φ∗

∂y∗

)

The boundary conditions (2.15) becomes

eε(a1−a3) ∂ψ∗

∂x∗
= 0, e−εa4θ∗ = 1, e−εa5φ∗ = 1 at y∗ = 0

eε(a2−a3) ∂ψ∗

∂y∗
= 1, e−εa4θ∗ = 0, e−εa5φ∗ = 0 as y∗ →∞

 (2.20)
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The system remains invariant under the group transformation Γ. Hence the relationship of

arbitrary real constants as follows

na2 − na3 + a2 = a2 − a4 = a2 − a5 = a2 − 2a4 = a2 − a4 − a5;

a1 + a2 − a3 − a4 = 2a2 − 2a4 = 2a2 − a4 = 2a2 + a2 − a3 − a4;

a1 + a2 − a3 − a5 = 2a2 − a5 = 2a2 + a2 − a3 − a5;

a2 − a3 = 0; a4 = 0; a5 = 0.


(2.21)

Solving the linear system Eq. (2.21), we get

a1 = 2a3, a2 = a3, a4 = a5 = 0 (2.22)

The set of transformation Γ reduces to

x∗ = xe2εa3 , y∗ = yeεa3 , ψ∗ = ψeεa3 , θ∗ = θ, φ∗ = φ (2.23)

Expanding by the Taylor series in power of ε, keeping the term up to the first degree (ne-

glecting higher power of ε), we get

x∗ − x = 2εa3x, y∗ − y = εa3y, ψ∗ − ψ = εa3ψ, θ∗ = θ, φ∗ = φ (2.24)

The characteristic equations are

dx

2a3x
=

dy

a3y
=

dψ

a3ψ
=
dθ

0
=
dφ

0
(2.25)

Solving the above characteristic equations, we get the following similarity transformations

η = yx−1/2, ψ = x1/2f(η), θ = θ(η), φ = φ(η) (2.26)

On the use of Eq.(2.26) in Eqs. (2.12)-(2.14), we get the following similarity equations

n(f ′)
n−1

f ′′ = −λn (θ + Bφ)
θ′

θe
+ λn (θ′ + Bφ′)

(
1− θ

θe

)
(2.27)
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β(θ′)2 + (1 + βθ) θ′′ + Peγ (f ′θ′′ + f ′′θ′) +
1

2
fθ′ = 0 (2.28)

1

Le
φ′′ + Peζ (f ′φ′′ + f ′′φ′) +

1

2
fφ′ = 0 (2.29)

where the primes indicate differentiation with respect to η.

The transformed boundary conditions (2.15) becomes

f(0) = 0, θ(0) = 1, φ(0) = 1,

f ′(∞) = 1, θ(∞) = 0, φ(∞) = 0

 (2.30)

Heat and Mass transfer coefficients

The local heat flux at the vertical wall is given by

qw = −ke
[
∂T

∂y

]
y=0

(2.31)

The local mass flux at the vertical wall is given by

qm = −DB

[
∂C

∂y

]
y=0

(2.32)

where ke = (k̃ + kd) and DB = (Dm + Dd) are the effective thermal and solutal conduc-

tivities of the porous medium, in which kd and Dd are the dispersion thermal and solutal

conductivities.

The local Nusselt number Nux =
qwx

k̃(Tw − T∞)
and local Sherwood number Shx =

qmx

Dm(Cw − C∞)
are given by

Nux

Pe
1/2
x

= − [1 + Peγf
′(0)] θ′(0) and

Shx

Pe
1/2
x

= − [1 + Peζf
′(0)]φ′(0) (2.33)
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2.3 Numerical Solution

The system of nonlinear ordinary differential Eqs. (2.27)-(2.29) along with the correspond-

ing boundary conditions (2.30) are solved numerically using the shooting technique, that

uses the Runge-Kutta fourth-order and Newton-Raphson method (Murthy and Singh [64]-

Srinivasacharya et al. [96]).

In this method, the Eqs. (2.27)-(2.29) are converted into the following system of linear

differential equation of first order, by assuming f = X1, θ = X3, φ = X5, we get

f ′ = X2, θ
′ = X4, φ

′ = X6 (2.34)

X ′2 = −λ
nθe
−1(X3 + BX5)X4 + λn(X4 + BX6)(1−X3 θe

−1)

nX2
n−1 (2.35)

X ′4 =
nX2

n−1(−1
2
X1X4 − βX4

2) + Peγ λ
nX4

(
X4 θe

−1(X3 + BX5)− (X4 + BX6)(1−X3 θe
−1)
)

nX2
n−1 (1 + β X3 + Peγ X2)

(2.36)

X ′6 =
nX2

n−1(−1
2
LeX1X6) + PeζLeλnX6

(
X4 θe

−1(X3 + BX5)− (X4 + BX6)(1−X3 θe
−1)
)

nX2
n−1 (1 + LePeγ X2)

(2.37)

The associated boundary conditions are

X1(0) = 0, X3(0) = 1, X5(0) = 1 (2.38a)

X2(∞) = 1, X3(∞) = 0, X5(∞) = 0 (2.38b)

As the initial values for X2(0), X4(0), X6(0) are not specified in the boundary conditions.

Assume, some suitable values for X2(0), X4(0), X6(0). Then the Eqs. (2.34)-(2.37) are inte-

grated using 4th order Runge-Kutta method from η = 0 to ηmax over successive step lengths

0.01. Here ηmax is the value of η at∞ and chosen large enough so that the solution shows lit-

tle further change for η larger than ηmax. Further ODE45 solver is used in MATLAB to solve

these six first ordered coupled differential equations. The accuracy of the assumed values

for X2(0), X4(0), X6(0) are then checked by comparing the calculated values of X2, X3, X5

at η = η∞ with their given value at η = ηmax. If a difference exists, another set of initial
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values are assumed and the above process is repeated. In principle, a trial and error-method

can be used to determine these initial values, but it is tedious. Alternatively, an algorithm

is developed to solve coupled non-linear equations, such as Newton-Raphson method. This

approach can be scaled up readily to solve the roots of non-linear coupled equations, can be

devised to solve the boundary value problem iteratively.

Newtons method for solving nonlinear equations involves an iterative process of iteratively

refining x, by a correction h, zi+1 = zi + h, where h is calculated by linear extrapolation of

the function X(z), to zero

0 = X(zi) +

(
dX

dz

)
zi

h (2.39)

This approach can be scaled up readily to find the roots of coupled equations. For this

particular example, the equations in matrix form are
X2(η = 0)i+1

X4(η = 0)i+1

X6(η = 0)i+1

 =


X2(η = 0)i

X4(η = 0)i

X6(η = 0)i

+


h1

h2

h3

 , (2.40)

where (h1 h2 h3)T is the solution to the equation.


0

0

0

 =


X2(η = 10)i

X3(η = 10)i

X5(η = 10)i

+


dX2(η=10)
dX2(η=0)

|X4,X6

dX2(η=10)
dX4(η=0)

|X2,X6

dX2(η=10)
dX6(η=0)

|X2,X4

dX3(η=10)
dX2(η=0)

|X4,X6

dX3(η=10)
dX4(η=0)

|X2,X6

dX3(η=10)
dX6(η=0)

|X2,X4

dX5(η=10)
dX2(η=0)

|X4,X6

dX5(η=10)
dX4(η=0)

|X2,X6

dX5(η=10)
dX6(η=0)

|X2,X4



h1

h2

h3

 (2.41)

These equations are constructed to find the initial values of X2, X4 and X6 (at η = 0)

that satisfy X2, X3 and X5 (at η = 10). The equations in X2, X3, X5 are expressed in matrix

and vector form as Zi+1 = Zi + H∗ and 0 = F + J H∗ respectively, and combined to reach

an iterative process

Zi+1 = Zi − J−1F

where J is the Jacobian matrix. The six derivatives involved in J can be approximated by
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two-term forward finite divided difference. The first of the six is estimated by the equation

dX2(η = 10)

dX2(η = 0)
|X4,X6=

X2(η = 10)(X2+dX2,X4,X6) −X2(η = 10)(X2,X4,X6)

dX2

(2.42)

To find the approximation values for six derivatives, the ODE’s in Eqs.(2.34)-(2.37) are to be

solved for four (3-tuple) of initial values (X2, X4, X6), (X2 +dX2, X4, X6), (X2, X4 +dX4, X6)

and (X2, X4, X6 + dX6), where dX2, dX4 and dX6 are small.

At first, the differential equations (2.34)-(2.37) are solved in the interval 0 ≤ η ≤ ηmax

for four 3-tuples of initial values, where dX2 = 0.01, dX4 = 0.01 and dX6 = 0.01. The

calculated values X2, X3, X5 for each 3-tuple of initial conditions are placed into an array

(Z1, Z2, Z3, Z4).

Now, the six derivatives involved in J are evaluated and third new approximations of

initial values are evaluated from (2.34)-(2.37). This process is continuous until the magnitude

of the both corrections with 10−6. The accuracy of the solution is enhanced by taking

dX2, dX4 and dX6 to reduce the converges.

2.4 Results and Discussion

In order to validate the generated code, the results of the present problem have been com-

pared with that of the results obtained by Chaoyang et al. [18] as a special case by taking

Peγ = Peζ = β = B = 0, Le = 1, θe → ∞ and found that they are in good agreement, as

presented in Table (3.1).

Table 2.1: Comparison of heat transfer for λ with varying values of pseudo-plastic, Newtonian
and dilatant fluids.

n = 0.5 n = 1.0 n = 1.5

λ Chaoyang [18] Present Chaoyang [18] Present Chaoyang [18] Present

0.0 0.5641 0.564190 0.5641 0.564190 0.5641 0.564190
0.5 0.8209 0.821704 0.6473 0.647396 0.6034 0.60339
1.0 0.9303 0.929635 0.7205 0.720585 0.6634 0.663375
4.0 1.3010 1.300685 1.025 1.025796 1.0180 1.017582
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Figures 2.2(a)-2.2(c) represents the non-dimensional velocity f ′(η), temperature θ(η) and

concentration φ(η) profiles for different values of the variable viscosity (θe) and power-law

index (n) for n=0.6 (pseudo-plastic fluid), n=1.0 (Newtonian fluid) and n=1.5 (dilatant

fluid). Figure 2.2(a) shows that increase in the value of variable viscosity tends to increase

the momentum boundary layer thickness near the plate and decrease far away from the

plate. This is due to the fact that for a given fluid, when δ∗ is fixed, smaller θe implies

higher temperature difference between the wall and the ambient fluid. It demonstrates that

θe is an indicator of the variation of fluid viscosity with temperature, has a strong effect

on the velocity profile within the boundary layer. While Fig. 2.2(b) depicts that the non-

dimensional temperature θ(η) of the fluid decreases with increase in the value of the variable

viscosity. The concentration φ(η) profile for different values of variable viscosity is given by

Fig. 2.2(c), which can be seen that the concentration slightly decreases with increase in the

variable viscosity.

The behavior of non-dimensional velocity f ′(η), temperature θ(η) and concentration φ(η)

profiles for different values of the thermal conductivity (β) and power-law index (n), is plotted

in Figs. 2.3(a)-2.3(c). It is interesting to note that the increase in the thermal conductivity

(β) substantially decreases the velocity f ′(η) near the plate and increases far away from the

plate, as shown in Fig. 2.3(a). It is observed from Fig. 2.3(b) that increasing the thermal

conductivity tends to enhance the thermal boundary layer. This is attributed to the fact that

the non-linear drag is more pronounced when the velocity is larger. However, Fig. 2.3(c)

depicts that concentration boundary layer strongly decreases with increasing values of the

thermal conductivity.

Figures 2.4(a)-2.4(c) displays the effect of thermal dispersion (Peγ) and the power-law

index (n) for fixed values of the parameters on the non-dimensional velocity f ′(η), temper-

ature θ(η) and concentration φ(η) profiles, respectively. Figure 2.4(a) shows that enhancing

the thermal dispersion parameter increases the non-dimensional velocity f ′(η). The presence

of thermal dispersion in the energy equation leads to dominate the conduction over the con-

vection. That is, supplementing dispersion effects to the energy equation gives more thermal

conduction. From Fig. 2.4(b) can see that increasing the values of thermal dispersion, in-
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creases the non-dimensional temperature θ(η). That is the thermal dispersion enhances the

transport of heat along the normal direction to the wall as compared with the case where

dispersion is neglected (i.e.,Peγ = 0). Figure 2.4(c) displays that concentration boundary

layer φ(η) reduces with increasing value of the thermal dispersion.

Figures 2.5(a)-2.5(c) presents the non-dimensional velocity f ′(η), temperature θ(η) and

concentration φ(η) profiles for different values of power-law fluid index (n) and solutal dis-

persion (Peζ). It is observed from the Fig. 2.5(a) that non-dimensional velocity f ′(η) profile

increases with an increase in the values of solutal dispersion. Also an increase in the value

of the solutal dispersion slightly decreases the thermal boundary layer thickness, as shown

in Fig. 2.5(b). Figure 2.5(c) depicts that the concentration φ(η) profile continuously in-

creases with increasing value of the solutal dispersion. Hence the concentration boundary

layer thickness enhances with an increases in the solutal dispersion parameter.

The variations of the mixed convection parameter (λ) and the power-law index (n) on the

non-dimensional velocity f ′(η), temperature θ(η) and concentration φ(η) profiles for fixed

value of the other parameters,have been plotted in 2.6(a)-2.6(c). It is observed from Fig.

2.6(a) that the velocity is increased with increase in the value of mixed convection parameter.

It can be evident from this figure that as λ increases, the momentum boundary layer thickness

increases. From Fig. 2.6(b) it is observed that the non-dimensional temperature increases

with decreasing values of mixed convection parameter. Figure 2.6(c) is plotted for the effect

of mixed convection on non-dimensional concentration, and reveals that an increase in the

thermal dispersion leads to decrease thermal boundary layer thickness.

Figure 2.7(a)-2.7(c) explore the non-dimensional velocity f ′(η), temperature θ(η) and

concentration φ(η) profiles for different values of the Newtonian and power-law fluid. It is

observed that the boundary layer thickness is more for power-law fluid when compared to

Newtonian fluid.

Table 2 describes the rate of heat and mass transfer for different values of power-law

index (n), variable viscosity (θe), thermal conductivity (β), thermal dispersion (Peγ) and

solutal dispersion (Peγ) parameters for fixed values of B = 1.0 and Le = 1.0. It is observed
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n θe β Peγ Peζ λ −
[
1 + Peγf

′(0)
]
θ′(0) −

[
1 + Peζf

′(0)
]
φ′(0)

0.6 1.5 0.5 0.5 0.5 1.0 0.498329 0.576219
0.6 2.0 0.5 0.5 0.5 1.0 0.486825 0.551171
0.6 2.5 0.5 0.5 0.5 1.0 0.480030 0.537673
1.0 1.5 0.5 0.5 0.5 1.0 0.450245 0.531321
1.0 2.0 0.5 0.5 0.5 1.0 0.448707 0.523213
1.0 2.5 0.5 0.5 0.5 1.0 0.447846 0.518910
1.5 1.5 0.5 0.5 0.5 1.0 0.426502 0.508064
1.5 2.0 0.5 0.5 0.5 1.0 0.426952 0.504808
1.5 2.5 0.5 0.5 0.5 1.0 0.427307 0.503223
0.6 2.0 0.0 0.5 0.5 1.0 0.550143 0.550143
0.6 2.0 1.0 0.5 0.5 1.0 0.439824 0.552078
0.6 2.0 1.5 0.5 0.5 1.0 0.403332 0.552873
1.0 2.0 0.0 0.5 0.5 1.0 0.522349 0.522349
1.0 2.0 1.0 0.5 0.5 1.0 0.397727 0.523952
1.0 2.0 1.5 0.5 0.5 1.0 0.324591 0.526265
1.5 2.0 0.0 0.5 0.5 1.0 0.504155 0.504155
1.5 2.0 1.0 0.5 0.5 1.0 0.375254 0.504808
1.5 2.0 1.5 0.5 0.5 1.0 0.324228 0.506780
0.6 2.0 0.5 0.0 0.5 1.0 0.731247 0.542309
0.6 2.0 0.5 1.0 0.5 1.0 0.380226 0.554467
0.6 2.0 0.5 1.5 0.5 1.0 0.318587 0.556057
1.0 2.0 0.5 0.0 0.5 1.0 0.586879 0.519212
1.0 2.0 0.5 1.0 0.5 1.0 0.373234 0.525157
1.0 2.0 0.5 1.5 0.5 1.0 0.461777 0.361598
1.5 2.0 0.5 0.0 0.5 1.0 0.528253 0.502541
1.5 2.0 0.5 1.0 0.5 1.0 0.365851 0.506032
1.5 2.0 0.5 1.5 0.5 1.0 0.434350 0.361916
0.6 2.0 0.5 0.5 0.0 1.0 0.453391 0.930892
0.6 2.0 0.5 0.5 1.0 1.0 0.504292 0.425202
0.6 2.0 0.5 0.5 1.5 1.0 0.515382 0.357005
1.0 2.0 0.5 0.5 0.0 1.0 0.435381 0.760308
1.0 2.0 0.5 0.5 1.0 1.0 0.456516 0.421436
1.0 2.0 0.5 0.5 1.5 1.0 0.461777 0.361598
1.5 2.0 0.5 0.5 0.0 1.0 0.419904 0.687774
1.5 2.0 0.5 0.5 1.0 1.0 0.431316 0.416408
1.5 2.0 0.5 0.5 1.5 1.0 0.434350 0.361916
0.6 2.0 0.5 0.5 0.5 0.0 0.470829 0.520391
0.6 2.0 0.5 0.5 0.5 0.5 0.481244 0.539973
0.6 2.0 0.5 0.5 0.5 1.5 0.491378 0.560776
1.0 2.0 0.5 0.5 0.5 0.0 0.446832 0.513544
1.0 2.0 0.5 0.5 0.5 0.5 0.447748 0.518139
1.0 2.0 0.5 0.5 0.5 1.5 0.449705 0.528841
1.5 2.0 0.5 0.5 0.5 0.0 0.427982 0.528841
1.5 2.0 0.5 0.5 0.5 0.5 0.427598 0.502513
1.5 2.0 0.5 0.5 0.5 1.5 0.426312 0.508722

Table 2.2: Variation of heat and mass transfer coefficients for varying values of n, θe, β, Peγ, Peζ
and λ.

that increasing the value of power-law index (n) decreases the heat and mass transfer rates.

It is noticed that enhancing the variable viscosity decreases both the heat and mass transfer

coefficient. It can be seen that the increase in the value of thermal conductivity and thermal

dispersion parameters decreases the heat transfer, but a reverse trend is observed in the mass

transfer rate. An enhancement in the value of solutal dispersion parameter increases in heat

transfer rate, but it decreases the mass transfer rate. It depicts that increase in the value of

mixed convection parameter increases both heat and mass transfer rates.
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Figure 2.2: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of θe and n.
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Figure 2.3: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of β and n.
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Figure 2.4: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of Peγ and n.
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Figure 2.5: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of Peζ and n.
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Figure 2.6: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of λ and n.
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Figure 2.7: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of n.
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2.5 Conclusion

In this Chapter, Lie scaling group transformations are applied to find the similarity solutions

of mixed convection flow over a vertical plate in a power-law fluid saturated Darcy porous

medium in the presence of variable viscosity, thermal conductivity and double dispersion.

The resulting equations are solved numerically by the shooting method. The main findings

are summarized as follows:

• Enhancement in the value of variable viscosity increases the velocity near the plate, and

slightly decreases far away from the plate and decreases in temperature, concentration,

heat and mass transfer rates.

• An increase in the value of thermal conductivity decreases the concentration, heat and

mass transfer rates and increases the velocity and temperature profiles.

• Higher values of the thermal dispersion parameter result in higher velocity, temperature

and mass transfer distributions but lower concentration heat transfer rate.

• Velocity, concentration and heat transfer increases with increase in solutal dispersion

parameter while we noticed that opposite results are reported for temperature and

mass transfer rate.

• An increase in the values of the mixed convection parameter results in higher velocity,

heat and mass transfer rates but lower temperature and concentration profiles.
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Chapter 3

Effect of Variable Properties and

Thermophoresis on a Mixed

Convective Flow of Power-law Fluid

Saturated Porous Medium 1

3.1 Introduction

Thermophoresis is a phenomenon by which sub-micron particles suspended in a non-isothermal

gas acquire velocity relative to the gas in the direction of decreasing temperature. It is im-

portant when the particle sizes are small and the temperature gradients are large. When the

wall is cold, the particles tend to deposit on the surface, while the particles tend to repel

from that surface, when the wall is hot. Here, assuming a sufficiently weak suspension sub-

micron particles. Thermophoresis is of practical importance in many industrial applications

(see Tsai [101]) such as in aerosol collection (thermal precipitator), micro contamination

control, removing small particles from gas streams, etc. Mahdy and Hady [55] investigated

the influence of MHD and thermophoretic particle deposition on the free convective flow over

1Accepted in “Computational Thermal Sciences: An International Journal”
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a vertical flat plate embedded in a power-law fluid saturated porous medium. Animasaun

[5] studied the effects of thermophoresis, Dufour, variable viscosity, thermal conductivity

and chemical reaction on the free convection heat and mass transfer of a non-Darcian flow

along an isothermal vertical porous surface in the presence of viscous dissipation and suction.

Rashad et al. [82] discussed the influence of thermophoresis and thermal radiation effects on

mixed convection heat and mass transfer from a rotating cone in a porous medium. Mondal

et al. [60] explored the effects of thermophoresis, chemical reaction, Dufour and Soret on

MHD mixed convective flow of an infinite permeable inclined flat plate in the presence of

non-uniform heat source/sink.

Survey of the literature reveals that the problem of mixed convection in a power-law

fluid saturated Darcy porous medium under the influence of variable properties and ther-

mophoresis has not been investigated so far. Hence, the present chapter aims to explore the

effects of variable viscosity, thermal conductivity, thermophoresis on the mixed convection in

a power-law fluid saturated Darcy porous medium. In addition, the similarity representation

of the system of governing non-dimensional equations is obtained using the scaling group

of transformations and then solved the resultant system of equations by shooting method.

The effects of pertinent parameters on the physical quantities are studied and the results are

displayed graphically and tabular form.

3.2 Mathematical Formulation

Consider the two-dimensional steady, laminar, incompressible mixed convection heat and

mass transfer boundary layer flow along a vertical plate embedded in a non-Newtonian power-

law fluid saturated Darcy porous medium.The plate is maintained at a constant temperature

Tw and concentration Cw. The ambient fluid temperature is T∞ and the concentration is

C∞. Choose the two dimensional coordinate system such that the x - axis is along the vertical

plate and y - axis is normal to the plate. The physical model of the problem as given in

Figure 2.1. The effects of thermophoresis is taken into account to help in the understanding

of the mass deposition variation on the surface.
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The governing equations of continuity, momentum, temperature and concentration under

the Boussinesq approximation and the boundary layer assumptions (see Shenoy [91]) are

written as:
∂u

∂x
+
∂v

∂y
= 0 (3.1)

nun−1∂u

∂y
=

∂

∂y

[
gKρ∞
µ

(
β∗T (T − T∞) + β∗C(C − C∞)

)]
(3.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α
∂T

∂y

)
(3.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2 −
∂

∂y

(
VTC

)
(3.4)

where x and y are the Cartesian coordinates, u and v are the velocity components in x and

y directions, respectively, T is the temperature, C is the concentration, β∗T and β∗C are the

thermal and concentration expansion coefficients respectively, ρ∞ is the reference density, g

is the acceleration due to gravity, VT is the thermophoretic velocity, K is the permeability,

α and D are the thermal and mass diffusivities of the porous medium, respectively.

The associated boundary conditions are

v = 0, T = Tw, C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y →∞

 (3.5)

The effect of thermophoresis is usually prescribed by means of an average velocity which

a particle will acquire when exposed to a temperature gradient. In the boundary layer flow,

the temperature gradient in the y-direction is very much larger than in the x-direction, and

therefore only the thermophoretic velocity in y-direction is considered. In Eq. (3.4), VT is

thermophoretic velocity which can be written as (see Wu and Greif [109] and Selim et al.

[90])

VT = −KTµ

ρ∞Tr

∂T

∂y
(3.6)

where KT is the thermophoretic coefficient which ranges from 0.2 to 1.2 and is defined as
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(see Talbot et al. [98])

KT =
2Ct (λr/λg + CnKn)

[
1 +Kn(C1 + C2e

−C3/Kn)
]

(1 + 3CmKn)(1 + 2λr/λg + 2CnKn)

Here λr and λg reprsents the thermal conductivities of fluid and diffused particles, Kn

represents the Knudsen number and C1, C2, C3, Cm, Ct, Cn are constants, respectively.

Introducing the following dimensionless variables

x =
x

L
, y =

y

L
Pe

1
2 , u =

uL

α0Pe
, v =

vL

α0Pe
1
2

(3.7)

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

In view of the continuity equation (3.1), we introduce the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
(3.8)

Substituting Eq.(3.6)-(3.8) into Eqs.(3.2)-(3.4), we get the following equations

n

(
∂ψ

∂y

)n−1
∂2ψ

∂y2
+
λn

θe
[θ + Bφ]

∂θ

∂y
− λn

[
∂θ

∂y
+ B

∂φ

∂y

] [
1− θ

θe

]
= 0 (3.9)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− β

(
∂θ

∂y

)2

− (1 + βθ)
∂2θ

∂y2
= 0 (3.10)

Le

[
∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y

]
− ∂2φ

∂y2
+ τSc

θe
θe − θ

[(
∂θ

∂y

)2
φ

θe − θ
+
∂2θ

∂y2
φ+

∂θ

∂y

∂φ

∂y

]
= 0 (3.11)

The corresponding boundary conditions (3.5) becomes

∂ψ

∂x
= 0, θ = 1, φ = 1 at y = 0

∂ψ

∂y
= 1, θ = 0, φ = 0 as y →∞

 (3.12)

where Pe =
u∞L

α0

represents the Péclet number, B =
βc(Cw − C∞)

βT (Tw − T∞)
represents the Buoyancy
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ratio, Sc =
ν

D
represents the Schmidt number, Ra =

L

α0

[
KgβT (Tw − T∞)

ν

]1/n

represents

the generalized Rayleigh number, Le =
α0

D
represents the Lewis number, τ = − k

Tr
(Tw − T∞)

represents the thermophoretic parameter, θe =
T e − T∞
Tw − T∞

represents the variable viscosity

and λ =
Ra

Pe
represents the mixed convection parameter.

Similarity equations via Lie group transformations

Using Lie scaling group transformations and the procedure explained in the second chapter,

the following similarity transformations are obtained

η = yx−1/2, ψ = x1/2f(η), θ = θ(η), φ = φ(η) (3.13)

Substituting Eq.(3.13) into Eqs.(3.9)-(3.11), we obtain the following ordinary differential

equations

n(f ′)
n−1

f ′′ = λn (θ′ + Bφ′)

(
1− θ

θe

)
− λn (θ + Bφ)

θ′

θe
(3.14)

β(θ′)2 + (1 + βθ) θ′′ +
1

2
fθ′ = 0 (3.15)

φ′′ − τSc
θe

θe − θ

[
(θ′)2 φ

θe − θ
+ θ′′φ+ θ′φ′

]
+

1

2
Lefφ′ = 0 (3.16)

where the primes indicate differentiation with respect to η.

The boundary conditions (3.12) becomes

f(0) = 0, θ(0) = 1, φ(0) = 1

f ′(∞) = 1, θ(∞) = 0, φ(∞) = 0

 (3.17)
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Heat and Mass transfer coefficients

The non-dimensional heat and mass fluxes from wall are given by

qw = −k̃
(
∂T

∂y

)
y=0

and qm = −D
(
∂C

∂y

)
y=0

(3.18)

The local Nusselt numberNux =
qwx

k̃(Tw − T∞)
and local Sherwood number Shx =

qmx

D(Cw − C∞)
are given by

Nux
x1/2

= −θ′(0) and
Shx
x1/2

= −φ′(0) (3.19)

3.3 Results and Discussion

The system of nonlinear Eqs.(3.14)-(3.16) with the corresponding boundary conditions (3.17)

are solved numerically by shooting technique that uses fourth order Runge-Kutta method

and Newton-Raphson method. The integration length η∞ varies with the parameter values

and it has been suitably chosen each time such that the boundary conditions at the outer edge

of the boundary layer are satisfied. In order to see the effect of step size (∆η), we executed

the code for our model with three different step sizes as ∆η = 0.001, ∆η = 0.01, ∆η = 0.05

and in each case, we found very good agreement between them on different profiles. After

some trials, we imposed a maximal value of η at ∞ of 10 and a step size ∆η = 0.001 is

used to obtain the numerical solution with six-decimal place accuracy as the criterion of

convergence explained in the Chapter-2. In order to check the effects of step size (∆η) we

found the Nusselt number and Sherwood number with four different step sizes as ∆η = 0.01,

∆η = 0.001, ∆η = 0.0001 and ∆η = 0.00001. We observe from Table 1 that the results are

independent with the step size (∆η). Hence a step size ∆η = 0.1 is selected to be satisfactory

for a convergence criterion of 10−6. in all cases. In order to test the accuracy of our results,

we compared our results with those of Chaoyang et al. [18] by taking Sc = τ = B = β = 0,

Le = 1.0 and θe →∞. The comparison shows a good agreement, as given in Tab. (3.1).

The effect of variable viscosity (θe) and power-law index (n) on the non-dimensional
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Table 3.1: Grid-independence for n = 1.0, β = 0.5, Le = 1.0, B = 1.0, Sc = 1, τ = 1 and θe = 2
∆η(step size) Nux

x1/2
Shx
x1/2

0.01 0.55782608039592329607359033616376 1.6110306403649727879923148066155
0.001 0.55782608039592329607359033616376 1.6110306403649727879923148066155
0.0001 0.55782607864904398820016240279074 1.6110306467658042084423186679487
0.00001 0.55782608043353443250111922679935 1.6110306404468914820427016820759

velocity f ′(η), temperature θ(η) and concentration φ(η) are illustrated in Figs. 3.1(a)-3.1(c)

with fixed values of other parameters. From the Fig. 3.1(a), it is observed that the velocity

increases near the plate and decreases far away from the plate with the increasing values of

variable viscosity for three kinds of fluids. It can be seen from Fig. 3.1(b) that the non-

dimensional temperature decreases with an increase in the value of variable viscosity for all

values of n. It is revealed from Fig. 3.1(c) that an increase in the variable viscosity increases

the concentration boundary layer thickness for three kinds of fluids.

Figures 3.2(a)-3.2(c) depict the non-dimensional velocity f ′(η), temperature θ(η) and

concentration φ(η) profiles for various values of variable thermal conductivity (β) and power-

law indices (n). It is observed that an increase in the thermal conductivity leads to increase

the velocity profile for all values of n, as displayed in Fig. 3.2(a). Figure 3.2(b) shows

that the non-dimensional temperature monotonically increases with the increasing values of

thermal conductivity for all values of n. However, it is seen from the Fig. 3.2(c) that an

increase in the value of thermal conductivity enhances the concentration near the plate and

slightly reduces far away from the plate for three kinds of fluids.

The effects of thermophoresis (τ) and power-law index (n) on the non-dimensional ve-

locity f ′(η), temperature θ(η) and concentration φ(η) profiles are plotted in Figs. 3.3(a)-

3.3(c). Figure 3.3(a) indicates that the velocity decreases with an increase in the values

of thermophoresis parameter for three kinds of n. It is evident from the Fig. 3.3(b) that

temperature slightly increases with increasing values of thermophoresis parameter for three

kinds of fluids. Physically, the temperature distribution near the surface in the presence of

thermophoresis is always negative and thus the heat is always transferred from the surface.

It is seen that the concentration decreases with the increase of the thermophoresis parameter

for the kinds of n, as illustrates in 3.3(c). This is due to the fact that fluid particles move
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away from cool surroundings with the increase in the thermophoretic parameter. Therefore,

thermophoresis parameter is expected to alter the concentration boundary layer significantly.

Figures 3.4(a)-3.4(c) presents the influence of mixed convection parameter (λ) and power-

law indices (n) on the non-dimensional velocity f ′(η), temperature θ(η) and concentration

φ(η) profiles, respectively. It is noticed that the velocity function significantly increases with

an increase in mixed convection parameter for three kinds of fluids, as presented in 3.4(a).

It is clear from Fig. 3.4(b) that the non-dimensional temperature profile decreases with an

increase in the mixed convection parameter for all values of n. Figure 3.4(c) reveals that,

the non-dimensional concentration decreases with increasing the values of mixed convection

parameter for three kinds of fluids. It is also interesting to note that the smaller values of

mixed convection parameter gives strong influence on the temperature and concentration

profiles.

The variations of the heat and mass transfer rates are shown in Tab.(3.2) with different

values of the power-law index (n), variable viscosity (θe), thermal conductivity (β) and

thermophoresis parameter (τ) for fixed values of B = 1.0, Le = 1.0 and Sc = 0.6. We

observe that the heat and mass transfer rates decreases when power-law index increases. An

increase in the value of the variable viscosity the heat transfer rate enhances, but a reverse

trend is observed in the mass transfer rate. Higher value of thermophoresis parameter reduces

the heat transfer rate and increases the mass transfer rate. Both heat and mass transfer rates

increases for the mixed convection parameter, whereas reverse trend is noticed for thermal

conductivity parameter.
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Figure 3.1: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of θe and n.
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Figure 3.2: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of β and n.
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Figure 3.3: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of τ and n.
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Figure 3.4: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of λ and n.
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Table 3.2: Variation of heat and mass transfer coefficients for varying values of n, θe, β, τ
and λ.

n θe β τ λ −θ′(0) −φ′(0)
0.5 2.0 0.5 1.0 1.0 0.741640 1.674919
1.0 2.0 0.5 1.0 1.0 0.563815 1.258742
1.5 2.0 0.5 1.0 1.0 0.515349 1.145993
0.5 1.6 0.5 1.0 1.0 0.686584 1.779595
0.5 2.5 0.5 1.0 1.0 0.785708 1.648386
0.5 3.0 0.5 1.0 1.0 0.815134 1.646386
0.5 2.0 0.0 1.0 1.0 0.973910 1.914540
0.5 2.0 1.0 1.0 1.0 0.615734 1.551708
0.5 2.0 1.5 1.0 1.0 0.534856 1.475657
0.5 2.0 0.5 0.0 1.0 0.770320 1.023001
0.5 2.0 0.5 0.5 1.0 0.755064 1.345503
0.5 2.0 0.5 1.5 1.0 0.729855 2.009595
0.5 2.0 0.5 1.0 0.5 0.431598 0.952043
0.5 2.0 0.5 1.0 1.5 0.650541 1.462362
0.5 2.0 0.5 1.0 2.0 0.811640 1.838279

3.4 Conclusions

In this Chapter, the effect of variable viscosity, thermal conductivity and thermophoresis

parameters on the mixed convection heat and mass transfer along a vertical plate embedded

in a porous medium saturated with power-law fluid has been analyzed. From this analysis,

the following conclusions are drawn.

The variable viscosity parameter increases the velocity, concentration and heat transfer

rate and reduces the temperature and mass transfer rate. An increase in the value of the

thermal conductivity parameter increases the velocity, temperature and concentration pro-

files, but decreases the heat and mass transfer rates. A rise in the value of thermophoresis

parameter monotonically decreases the momentum, concentration boundary layers and heat

transfer rate, but it increases the temperature boundary layer and mass transfer rate. The

velocity, heat and mass transfer rates increases by increasing values of mixed convection

parameter, but it continuously decreases the temperature and concentration profiles.
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Chapter 4

Scaling Group Transformation for

Mixed Convection in a Power-law

Fluid Saturated Porous Medium with

Variable Properties, Soret and

Radiation Effects 1

4.1 Introduction

The study of Soret effect (also known as thermo-diffusion), in which molecules are carried in

a multi-component mixture impelled by temperature gradients, is considered in this chapter.

Even though Soret effect is more significant, the literature regarding Soret effect in power-

law fluid is noticed less. Narayana and Murthy [68] reported the role of free convection on

power-law fluids with yield stress over a vertical flat plate in a porous media with Dufour

and Soret effects. Pal and Chatterjee [74] investigated the influence of radiation, thermal

conductivity, Soret and Dufour on MHD convective transport in a power-law fluid saturated

1Published in “Frontiers in Heat and Mass Transfer”9, 39 (2017)
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porous medium. The influence of internal heat generation, Soret and Dufour on natural

convection of power-law fluids over a vertical permeable cone in a porous medium has been

discussed by Huang [39].

Several investigations have been carried out on the mixed convective flow of different

fluids under the influence of thermal radiation. Grosan and Pop [31] discussed the influence

of radiation on free convective flow over a vertical surface in a power-law fluid. Hayat et al.

[34] discussed on two dimensional mixed convection stagnation-point flow of power-law fluids

towards a stretching sheet with the effects of MHD and radiation. Cortell [21] scrutinized

the viscous dissipation and thermal radiation effects on a power-law fluid past an infinite

porous plate.

The main aim of this chapter is to explore the combined influence of Soret, variable prop-

erties and radiation effect on mixed convection flow of a power-law fluid in a porous medium.

The effect of various physical parameters on the non-dimensional velocity, temperature and

concentration are examined numerically and displayed graphically.

4.2 Mathematical Formulation

Consider a steady, laminar, incompressible, two dimensional, mixed convection flow of power-

law fluid over a vertical surface in a porous medium. The x-axis is along the vertical plate

and y-axis is normal to the plate. The physical model and coordinate system are displayed

in Fig. (2.1). The fluid is considered to be a gray, absorbing emitting radiation but non-

scattering medium and the Rosseland approximation is used to describe the radiative heat

flux in the energy equation. The plate is maintained at a constant temperature Tw and

concentration Cw. The ambient temperature is T∞ and the concentration is C∞. Applying

the boundary layer assumptions and Boussinesq approximations, the governing equations of

the momentum, energy and concentration can be written as

∂u

∂x
+
∂v

∂y
= 0, (4.1)

62



nun−1∂u

∂y
=

∂

∂y

[
gKρ∞
µ

(
β∗T (T − T∞) + β∗C(C − C∞)

)]
(4.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[
α
∂T

∂y
− 1

ρCp
qr

]
(4.3)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2 +
DmKT

Ty

∂2T

∂y2 (4.4)

where u and v are the Darcy velocity components in x and y directions, respectively. Further,

K represents the permeability, KT indicates the thermal diffusion ratio, α represents the

thermal conductivity, Dm is the mass diffusivity of the saturated porous medium, g is the

acceleration due to gravity, Ty is the mean fluid temperature, Cp represents the specific heat

capacity and qr is the component of radiative heat flux.

The associated boundary conditions are

v = 0, T = Tw, C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y →∞

 (4.5)

The quantity qr is the radiative heat flux which is simplified by using the Rosseland diffusion

approximation (see Sparrow [93]). Thus

qr =
−4σ∗

3k∗
∂T

4

∂y
(4.6)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the Rosseland mean absorption coeffi-

cient. Assuming that the temperature differences within the flow are sufficiently small such

that T 4 may expressed as a linear function of temperature

T
4

= 4T
3

∞T − 3T
4
∞ (4.7)
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Introducing the following dimensionless variables:

x =
x

L
, y =

y

L
Pe

1
2 , u =

uL

α0Pe
, v =

vL

α0Pe
1
2

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

 (4.8)

where Pe =
u∞L

α0

is the Péclet number and L represents the characteristic length.

In view of the continuity equation (4.1), introduce the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
(4.9)

Using Eqs.(4.8)-(4.9) into Eqs.(4.2)-(4.4), we get the following momentum, energy, and con-

centration equations in dimensionless form as

n

(
∂ψ

∂y

)n−1
∂2ψ

∂y2
+
λn

θe
[θ + Bφ]

∂θ

∂y
− λn

[
∂θ

∂y
+ B

∂φ

∂y

] [
1− θ

θe

]
= 0 (4.10)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− β

(
∂θ

∂y

)2

−
(

1 + βθ +
4 R

3

)
∂2θ

∂y2
= 0 (4.11)

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Le

∂2φ

∂y2
− Sr

∂2θ

∂y2
= 0 (4.12)

The prescribed boundary conditions (4.5) become

∂ψ

∂x
= 0, θ = 1, φ = 1 at y = 0

∂ψ

∂y
= 1, θ = 0, φ = 0 as y →∞

 (4.13)

where the prime indicates differentiation with respect to η, R =
4σ∗T

3

∞
k∗k

represents thermal

radiation, Le =
α0

Dm

indicates the Lewis number, Ra =
L

α0

[
KgβT (Tw − T∞)

ν

]1/n

represents

the generalized Rayleigh number, B =
βc(Cw − C∞)

βT (Tw − T∞)
represents the Buoyancy ratio, λ =

Ra

Pe

indicates the mixed convection parameter, Sr =
DmKT

Tmα0

(
Tw − T∞
Cw − C∞

)
represents the Soret
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parameter and θe =
T e − T∞
Tw − T∞

indicates the variable viscosity.

Similarity equations via Lie group transformations

Using the mathematical procedure of Lie scaling transformation explained in the second

chapter, the following similarity transformations are obtained

η = yx−1/2, ψ = x1/2f(η), θ = θ(η), φ = φ(η) (4.14)

Using Eq. (4.14) into Eqs. (4.10)-(4.12), the following similarity equations are attained

n(f ′)
n−1

f ′′ = −λn (θ + Bφ)
θ′

θe
+ λn (θ′ + Bφ′)

(
1− θ

θe

)
(4.15)

β(θ′)2 +

(
1 + βθ +

4R

3

)
θ′′ +

1

2
fθ′ = 0 (4.16)

1

Le
φ′′ +

1

2
fφ′ + Srθ′′ = 0 (4.17)

The transformed boundary conditions (4.5) become

f(0) = 0, θ(0) = 1, φ(0) = 1

f ′(∞) = 1, θ(∞) = 0, φ(∞) = 0

 (4.18)

The non-dimensional heat and mass fluxes from wall are given by

qw = −k̃
(
∂T

∂y

)
y=0

− 4σ∗

3k∗

(
∂T

4

∂y

)
y=0

and qm = −D
(
∂C

∂y

)
y=0

(4.19)

The Nusselt number Nux =
qwx

k̃(Tw − T∞)
and Sherwood number Shx =

qmx

D(Cw − C∞)
are given by
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Nux
x1/2

= −
(

1 +
4R

3

)
θ′(0) and

Shx
x1/2

= −φ′(0) (4.20)

4.3 Results and Discussion

The coupled nonlinear Eqs.(4.15)-(4.17) along with the boundary conditions (4.18) are solved

numerically using shooting method, which is explained clearly in chapter-2. In order to

validate the code, we compared the present results with those of Chaoyang et al. [18] as a

special case of Sr = R = B = β = 0, Le = 1.0, and θe →∞, as shown in Tab. (3.1).

The results for the non-dimensional velocity, temperature and concentration have been

computed and presented graphically in Figs. 4.1–4.5 to analyze the influence of variable

viscosity (θe), thermal conductivity (β), radiation (R), Soret parameter (Sr) and mixed

convection parameter (λ).

Figures 4.1(a)-4.1(c) exhibit the dimensionless velocity f ′(η), temperature θ(η) and con-

centration φ(η) distributions for different values of the variable viscosity (θe) and power-law

index (n). Figure 4.1(a) illustrates that, the velocity f ′(η) enhances near the plate up to

a certain value and then reduces far away from the plate with increasing value of variable

viscosity for three types of fluids. From Figs. 4.1(b)-4.1(c), It is observe that, when the vari-

able viscosity is increased there is a reduction in the value of temperature and concentration

for three types of fluids.

The variation of thermal conductivity (β) and power-law index (n), (namely n < 1, n =

1, n > 1) for fixed values of other parameters on the dimensionless velocity f ′(η), temperature

θ(η) and concentration φ(η) profiles, is displayed in Figs. 4.2(a)- 4.2(c). It is clear from Fig.

4.2(a) that an increase in the value of thermal conductivity reduces velocity near the plate

and enhances it far away from the plate for three types of fluids. Figure 4.2(b) depicts that

the temperature θ(η) is more pronounced with increasing values of thermal conductivity for

three types of fluids. It is seen from Fig. 4.2(c) that an enhancement in the value of thermal

conductivity slightly decreases the concentration profile for the three types of fluids. Because
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molecular motion of the fluid reduces at a slower rate for larger values of β.

The effect of radiation parameter (R) and the power-law index (n) illustrated in Figs.4.3(a)-

4.3(c). Figure 4.3(a) indicates that an enhancement in the radiation parameter reduces the

velocity f ′(η) slightly near the plate and enhances it far away from the plate for the three

types of fluids. In Fig. 4.3(b), temperature θ(η) increases monotonically with enhancing

values of the radiation parameter for the three types of fluids. That is, the boundary layer

thickness increases as R increases. This result can be explained by the fact that an increase

in the values of R = 16σ∗T
3
∞

3k∗k
for given T∞ and k means a decrease in the Rosseland radiation

absorptivity k∗ to Eq. (4.6), the divergence of the radiative heat flux ∂qr
∂y

increases as k∗ de-

creases which in turn increases the rate of radiative heat transferred to the fluid, and hence

the fluid temperature increases. In view of this explanation, the effect of radiation becomes

more significant as R→∞ and can be neglected when R=0. Moreover, from Fig. 4.3(c) it

is visible that, for the three different types of fluids, concentration φ(η) reduces slightly with

increasing values of radiation parameter.

Figures 4.4(a)-4.4(c) represent the variation of fluid properties for different values of the

Soret parameter (Sr) and power-law index (n), with fixed values of the other parameters.

Figure 4.4(a) shows that the velocity f ′(η) enhances with an enhancement of the Soret

parameter (Sr) for the three different types of fluids. Moreover, an enhancement in the

value of the Soret parameter (Sr) results in the increase of temperature θ(η) of the fluid, as

displayed in Fig. 4.4(b). The influence of Soret parameter (Sr) on the concentration profile

φ(η) is depicted in fig. 4.4(c). The concentration profile enhances with the increasing the

value of Sr for the three different types of n.

Figures 4.5(a)-4.5(c) depict the variation of mixed convection parameter (λ) and power-

law index (n) on the velocity f ′(η), temperature θ(η) and concentration φ(η) profiles respec-

tively. From Fig. 4.5(a), we notice that enhancing the value of mixed convection parameter

(λ) continuously raises the velocity f ′(η) for the three types of fluids. Figures 4.5(b)-4.5(c)

it can be seen that the temperature θ(η) and concentration φ(η) decreases with an increase

in the mixed convection parameter (λ) for the three types of fluids.
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Table 4.1: Values of heat and mass transfer rates at Le=1.0 and B=1.0 for varying values of
power-law index, temperature dependent viscosity, variable thermal conductivity, radiation,
Soret and mixed convection parameters.

n θe β R Sr λ −θ′(0)

(
1 +

4R

3

)
−φ′(0)

0.5 2.0 0.5 0.5 0.5 1.0 1.083878 0.898871
1.0 2.0 0.5 0.5 0.5 1.0 0.811355 0.665762
1.5 2.0 0.5 0.5 0.5 1.0 0.737721 0.603112
0.5 1.5 0.5 0.5 0.5 1.0 0.985773 0.810344
0.5 2.5 0.5 0.5 0.5 1.0 1.143469 0.952729
0.5 3.0 0.5 0.5 0.5 1.0 1.183445 0.988888
0.5 2.0 0.0 0.5 0.5 1.0 1.305338 0.849427
0.5 2.0 1.0 0.5 0.5 1.0 0.939365 0.928902
0.5 2.0 1.5 0.5 0.5 1.0 0.836542 0.948922
0.5 2.0 0.5 0.0 0.5 1.0 0.790250 0.854522
0.5 2.0 0.5 1.0 0.5 1.0 1.311348 0.925503
0.5 2.0 0.5 1.5 0.5 1.0 1.501126 0.943220
0.5 2.0 0.5 0.5 0.0 1.0 1.060429 1.028426
0.5 2.0 0.5 0.5 1.0 1.0 1.107032 0.768095
0.5 2.0 0.5 0.5 1.5 1.0 1.129908 0.636080
0.5 2.0 0.5 0.5 0.5 0.5 0.945030 0.780440
0.5 2.0 0.5 0.5 0.5 1.5 1.190563 0.989876
0.5 2.0 0.5 0.5 0.5 2.0 1.280580 1.066663

Table. 4.1 displays the variations of heat and mass transfer rates for various values of

the power law index (n), variable viscosity (θe), thermal conductivity (β), thermal radiation

(R), Soret parameter (Sr) and mixed convection parameters (λ). Enhancing the value of

n reduces the heat and mass transfer rates. An increase in the values of variable viscosity,

radiation and mixed convection parameters raises both the heat and mass transfer rates.

It is noticed that an increase in the value of the thermal conductivity decreases the heat

transfer, but a reverse trend is observed in the mass transfer rate. Higher value of the Soret

parameter enhance the heat transfer rate and decrease the mass transfer rate.
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Figure 4.1: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of θe and n.
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Figure 4.2: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of β and n.
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Figure 4.3: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of R and n.
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Figure 4.4: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of Sr and n.
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Figure 4.5: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of λ and n.
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4.4 Conclusions

In the present chapter, we have analyzed mixed convective flow, heat and mass transfer

over a vertical surface in a porous medium saturated with power-law fluid. The numerical

results were obtained for different values of the power law index (n), variable viscosity (θe),

variable thermal conductivity (β), thermal radiation (R) and Soret parameter (Sr). The

main conclusions are as follows.

• An enhancement in values of the variable viscosity parameter (θe) increases the velocity,

heat and mass transfer rates, but decreases the temperature and concentration profiles.

• The effect of variable thermal conductivity (β) decreases the velocity, concentration

and heat transfer rate, but enhances the temperature and mass transfer rates.

• The effect of the thermal radiation parameter (R) reduces the velocity and concentra-

tion profiles, but enhances the temperature, heat and mass transfer rates.

• An increasing value of the Soret parameter (Sr) decreases the temperature and mass

transfer rates, but increases the velocity, concentration and heat transfer rate.

• The influence of the mixed convection parameter (λ) results in an enhancement in

velocity and heat transfer rate, but reduces the temperature, concentration and mass

transfer rate.

74



Chapter 5

Linear Stability of the Darcy-Bénard

Convection of a Power-law Fluid with

Local Thermal Non-Equilibrium 1

5.1 Introduction

This Chapter is concerned with the onset of instability in a porous layer which is heated

from below, and is a variation of the well-known Darcy-Bénard problem. Therefore we are

considering the fate of small-amplitude disturbances when the layer is heated from below,

where the upper and lower bounding surfaces are subject to constant temperature. We shall

consider the combined effects of a vertical throughflow, the presence of a power-law fluid and

Local Thermal non-Equilibrium between the phases. In its original and Newtonian form,

convection ensures at the wave number, k = π, and when the Darcy-Rayleigh number is 4π2.

Within the context of linearised theory, the stability properties of all three variations from the

classical Darcy-Bénard problem are quite well-known. Wooding [108] and Sutton [97] were

the first to consider vertical throughflow through the layer. Such fluid movement alters the

basic temperature profile which, as the strength of the flow increases, causes that part of the

1Communicated to “Transport in porous media”
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temperature field which varies rapidly (and thus is the location where destabilisation takes

place) to concentrate at either the lower or the upper surface, depending on the direction of

that flow. This causes both the critical wavenumber and Darcy-Rayleigh number to increase,

eventually forming a deep-pool system whereby both these quantities eventually vary linearly

with the transpiration velocity once it is sufficiently large. when Rayleigh number is above

the critical value then small amplitude disturbances grow exponentially with time, and when

it is below then they decay exponentially with time.

On the other hand, when the saturating fluid is no longer Newtonian but takes a power-

law form, then certain difficulties arise when considering instability when there is no back-

ground flow. Barletta and Storesletten [9] and Barletta and Nield [8] both considered the

onset of convection of a power-law fluid in the presence of a background flow, the former

being a vertical flow of the type to be considered here, while the latter was a horizontal

flow after Prats [78]. These authors found that when the background flows were present,

then critical values could be found with ease and explained on physical grounds. However,

the limit as the background flow tends to zero is singular in the sense that when the fluid

is shear-thinning then critical Darcy-Rayleigh number is infinite, whereas when the fluid is

shear-thickening then it is zero. Such unphysical results are due to the idealised model which

is used for power-law fluids in porous media. In particular, a shear-thickening has an effective

viscosity of zero when Darcy velocity is zero. In practice there will be a nonzero viscosity

in the zero velocity limit, and in such cases the Carreau model will apply. However, when

there is a background flow, such as we consider here, the power law and Carreau models will

yield almost identical results because the effective viscosity will be essentially the same.

So the present chapter considers the combination of these three effects (Péclet number

(Pe), inter-phase heat transfer parameter (H) and porosity-modified conductivity parameter

(Ω)) and how they influence the onset of convection. The chapter proceeds in the obvious

manner by presenting in turn the governing equations, the basic state solution (which needs

to be computed, rather than having an analytical form), the linear stability analysis, a

description of the numerical method and a results and discussion section.
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5.2 Mathematical Formulation

We consider a plane horizontal porous layer with thickness d, which is saturated by an

Ostwald-de Waele (power-law) fluid. The boundary planes at z = 0 and z = d are permeable

and the surface temperatures are T = T0 + ∆T and T = T0, respectively. The gravitational

acceleration g is acting in the negative z-direction (see Fig. 5.1). Here T is the temperature

field, T0 is a reference temperature and ∆T is a positive temperature difference. The velocity

components are (u,w).

The power-law fluid form of Darcy’s law is modified due to the presence of buoyancy

forces and subject to the Oberbeck-Boussinesq approximation, takes the form,

µ∗

K
|V |n−1V = −∇p− ρgβ∗(T − T0), (5.1)

where µ∗ is the effective consistency factor, K is the permeability, n is power law index

with n < 1 for a thixotropic fluid, n > 1 for dilatant fluids and n = 1 the Newtonian

fluids. In addition, ρ is the fluid density at the reference temperature, T0, β∗ is the thermal

expansion coefficient of the fluid and p is the dynamic pressure. The ratio, µ∗

K
, depends on

the consistency factor, µ, and the tortuosity factor, ct, through the relationship

µ∗

K
= 2ct µ

(
3n+ 1

nφ

)n(
3φ

50K

)(n+1)/2

. (5.2)

The tortuosity factor ct is set equal to 25/12 (Christopher and Middleman [20]), so that, for

a Newtonian fluid, µ∗/K coincides with the usual µ/K.

Darcy-Boussinesq convection is usually studied by first invoking the assumption that the

solid and fluid phases of the medium are in local thermal equilibrium. In this chapter we

study the case where the two-temperature model of microscopic heat transfer applies and

therefore the porous medium is no longer in local thermal equilibrium. Subject to these

assumptions, the governing equations are
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Figure 5.1: Physical model and co-ordinate system

∇.ū = 0, (5.3)

µ∗

K
(ū2 + w̄2)(n−1

2
)ū = −p̄x, (5.4)

µ∗

K
(ū2 + w̄2)(n−1

2
)w̄ = −p̄z +

ρfgβ
∗K

µ
(Tf − T0), (5.5)

ε(ρc)f
∂Tf
∂t̄

+ (ρc)f ū.∇Tf = εkf∇2Tf + h(Ts − Tf ), (5.6)

(1− ε)(ρc)s
∂Ts
∂t̄

= (1− ε)ks∇2Ts + h(Tf − Ts), (5.7)

where t̄ is the time, ū and w̄ are the fluid flux velocities in the horizontal and vertical

directions and x̄ and z̄ are the corresponding Cartesian coordinates. The f and s subscripts

are the fluid and solid phases, c is the specific heat, ε is the porosity and h is the inter-phase

heat transfer co-efficient.

A downward vertical throughflow is considered, so that the boundary conditions are given

by

w̄ = −w0, Tf = T0 + ∆T, Ts = T0 + ∆T at z = 0

w̄ = −w0, Tf = T0, Ts = T0 at z = 1,

 (5.8)
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where w0 > 0 is the prescribed vertical through flow velocity.

Non-Dimensional analysis

The governing equations are non-dimensionalized by using the non-dimensional variables as

follows:

(x̄, z̄) = d(x, z), (ū, w̄) =
εkf

(ρc)fd
(u, v), t̄ =

(ρc)fd
2t

kf
,

Tf−T0
∆T

= θ, Ts−T0
∆T

= φ, p̄ = K
dµ

(
(ρc)fd

εkf

)n
P.

 (5.9)

The governing Eqs. (5.3) to (5.7), become

ux + wz = 0, (5.10)

(u2 + w2)(n−1
2

)u = −Px, (5.11)

(u2 + w2)(n−1
2

)w = −Pz + Ra θ, (5.12)

θt + w θz + u θx = ∇2θ +H(φ− θ), (5.13)

αφt = ∇2φ+Hγ(θ − φ). (5.14)

The boundary conditions can be written in the form,

w = −Pe, θ = 1, φ = 1 at z = 0,

w = −Pe, θ = 0, φ = 0 at z = 1,

 (5.15)

where the Darcy-Rayleigh and Péclet numbers are given by,

Ra =
ρfgβ

∗K∆Tdn(ρc)
n
f

µεnkf
n , Pe =

w0(ρc)fd

εkf
.

while Ra can only be positive, the Péclet number can be negative (Upward throughflow).

We note that Ra > 0 here so that it is possible for thermoconvective instability to arise,

and while Pe may take either sign, we shall confine ourselves to positive values for numerical
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convenience since (i) the shooting method is much easier to implement when the thermal

variations are confined to the lower part of the layer and (ii) onset criteria for negative values

of Pe are identical, given the inherent symmetries within the equations.

The continuity Eq.(5.10) is satisfied automatically when the stream function ψ is intro-

duced according to

u = −ψz, w = ψx. (5.16)

Substitution of the expressions in equation (5.16) into equations (5.11)-(5.14) transforms the

latter to,

(ψz
2 +ψx

2)(n−1
2

)
(
ψxx+ψzz

)
+ (n−1)(ψz

2 +ψx
2)(n−3

2
)
(
ψx

2ψxx+ψz
2ψzz + 2ψxψzψxz

)
= Raθx,

(5.17)

θt − ψzθx + ψxθz = θxx + θzz +H(φ− θ), (5.18)

αφt = θxx + θzz +HΩ(θ − φ), (5.19)

and these are to be solved subject to the boundary conditions,

z = 0 : ψ = 0, θ = φ = 1, z = 1 : ψ = θ = φ = 0. (5.20)

5.3 Basic state solution

The basic stationary solution of Eqs. (5.17)-(5.19) is given by a uniform through flow,

ub = 0, wb = −Pe, ψb = −Pex, (5.21)

where the subscript, b, denotes the basic solution. The temperature fields are now purely

z-dependent and these satisfy the following equations,

T ′′b + PeT ′b +H(φb − Tb) = 0, (5.22)
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and

φ′′b +HΩ(Tb − φb) = 0, (5.23)

and are subject to the following boundary conditions

z = 0 : Tb = φb = 1 z = 1 : Tb = φb = 0. (5.24)

These equations have to be solved numerically, and given that the solutions depend on

the governing parameters, H, Ω and Pe, these solutions are solved simultaneously with the

linearised stability equations.

5.4 Linear Stability Analysis

Disturbance equations

We perturb the basic state given by Eq. (5.21) and the solutions to Eqs. (5.22) and (5.23),

by defining the following stream function and temperature disturbances,

ψ = −Pex+ εΨ, θ = Tb + εΘ, φ = φb + εΦ (5.25)

where |ε| � 1 represents the amplitude of the perturbations, and therefore nonlinear terms

in ε may be neglected. Substitution of these into Eqs. (5.17) to (5.19) and linearization

yields the following equations for the disturbance,

nPe(n−1)Ψxx + Pe(n−1)Ψzz = Ra Θx, (5.26)

Θt − Pe Θz + ΨxT
′
b = Θxx + Θzz +H(Φ−Θ), (5.27)

αΦt = Φxx + Φzz +HΩ(Θ− Φ), (5.28)

where the subscripts denote partial derivatives. All three functions satisfy homogeneous

Dirichlet conditions at the bounding surfaces. This partial differential eigenvalue problem
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for Ra may be transformed into ordinary differential eigenvalue form by substituting the

following normal mode,

Ψ = f(z) cos kx; Θ = g(z) sin kx; Φ = h(z) sin kx (5.29)

where k is the wavenumber of the disturbance. The functions f(z), g(z) and h(z) satisfy the

equations,

f ′′ − nk2f − Ra k g/Pe(n−1) = 0, (5.30)

g′′ + Pe g′ − k2g + kT ′(b)f +H(h− g) = 0, (5.31)

h′′ − k2h+HΩ(g − h) = 0, (5.32)

and the boundary conditions that,

f = g = h = 0, at z = 0, 1. (5.33)

5.5 Numerical Solution

Equations (5.30)–(5.33) together with those for the basic state, Eqs. (5.22) and (5.23), were

solved using two different methods, namely shooting method using the classical fourth order

Runge-Kutta as its basic ODE solver, and a matrix-based method. The former was encoded

first but was eventually abandoned because the governing equations become stiff when any of

the following parameters are too large: Pe, H, HΩ, k. The methodology performs reliably

and very accurately when all of these parameters are too small. One possible route to

increasing the reliability of the method is to employ the method of multiple shooting, but

this was deemed to be too complicated a scheme to adopt when the latter approach, which

is a direct method, performs very reliably indeed over all the parameter ranges considered.

Therefore the equations for both the eigenvalue problem and the basic state were solved
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by approximating the derivatives in the above-quoted equations by second order central

differences and the resulting algebraic written in matrix/vector form. A uniform grid of

points of length, δ, was used where the numerical values of f at z = zi = iδ are denoted

by fi. When there are N internal points, then (N + 1)δ = 1 and we denote the vector of

f -values by f = (f1, f2, · · · , fN−1, fN). In the following, we shall illustrate the method by

taking N = 4.

Equation (5.30) becomes,


− 2
δ2
− nk2 1

δ2
0 0

1
δ2

− 2
δ2
− nk2 1

δ2
0

0 1
δ2

− 2
δ2
− nk2 1

δ2

0 0 1
δ2

− 2
δ2
− nk2




f1

f2

f3

f4

 =
Ra k

Pe(n−1)


g1

g2

g3

g4

 , (5.34)

or, in abbreviated form,

M1f = Ra kg/Pe(n−1) (5.35)

where

M1 =


− 2
δ2
− nk2 1

δ2
0 0

1
δ2

− 2
δ2
− nk2 1

δ2
0

0 1
δ2

− 2
δ2
− nk2 1

δ2

0 0 1
δ2

− 2
δ2
− nk2

 , f =


f1

f2

f3

f4

 , g =


g1

g2

g3

g4

 (5.36)

Equation (5.31) may be written in the form,

M2g +Hh + kAf = 0, (5.37)
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where

M2 =


− 2
δ2
− k2 −H 1

δ2
+ Pe

2δ
0 0

1
δ2
− Pe

2δ
− 2
δ2
− k2 −H 1

δ2
+ Pe

2δ
0

0 1
δ2
− Pe

2δ
− 2
δ2
− k2 −H 1

δ2
+ Pe

2δ

0 0 1
δ2
− Pe

2δ
− 2
δ2
− k2 −H

 , (5.38)

and

A =


1
2δ

(T2 − T0) 0 0 0

0 1
2δ

(T3 − T1) 0 0

0 0 1
2δ

(T4 − T2) 0

0 0 0 1
2δ

(T5 − T3)

 (5.39)

Finally, the set of disturbance equations are completed by the following replacement of

Eq. (5.32),

M3h +HΩg = 0, (5.40)

where

M3 =


− 2
δ2
− k2 −HΩ 1

δ2
0 0

1
δ2

− 2
δ2
− k2 −HΩ 1

δ2
0

0 1
δ2

− 2
δ2
− k2 −HΩ 1

δ2

0 0 1
δ2

− 2
δ2
− k2 −HΩ

 (5.41)

These three discretised equations may be rearranged into the following, which is a matrix

eigenvalue problem for Ra/Pe(n−1) and is written as a matrix/vector system for g:

[
H2Ω M1A

−1M−1
3 −M1A

−1M2

]
g = (Ra/Pe(n−1))g. (5.42)

The equations for the basic state temperature profiles may be treated in the same way,
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except for the fact that they do not form an eigensystem. Thus we have,

M4T +Hφ = V1, (5.43)

M5φ+HΩT = V2, (5.44)

where,

M4 =


− 2
δ2
−H 1

δ2
+ Pe

2δ
0 0

1
δ2
− Pe

2δ
− 2
δ2
−H 1

δ2
+ Pe

2δ
0

0 1
δ2
− Pe

2δ
− 2
δ2
−H 1

δ2
+ Pe

2δ

0 0 1
δ2
− Pe

2δ
− 2
δ2
−H

 , V1 =


− 1
δ2

+ Pe
2δ

0

0

0

 (5.45)

and

M5 =


− 2
δ2
−HΩ 1

δ2
0 0

1
δ2

− 2
δ2
−HΩ 1

δ2
0

0 1
δ2

− 2
δ2
−HΩ 1

δ2

0 0 1
δ2

− 2
δ2
−HΩ

 , V2 =


−1
δ2

0

0

0

 . (5.46)

The basic temperature distribution, T , for the fluid phase is:

T = (M5M4 −H2ΩI)−1(M5V1 −HV2), (5.47)

and, for the solid phase, φ is

φ = H−1(V1 −M4T). (5.48)
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5.6 Results and Discussion

In the present study, linear stability of the vertical throughflow in a horizontal porous layer

saturated by a power-law fluid with local thermal non-equilibrium is studied. The criti-

cal Rayleigh number is presented for various value of Péclet number Pe, inter-phase heat

transfer parameter H, power-law index n, porosity-modified conductivity parameter Ω and

wavenumber k. The results are shown in the form of variation of critical Rayleigh number

with other parameters. Also, minimising values of Rac,
RacΩ
(1+Ω)

and kc as shown graphically

in Figs. 5.3(a)-5.7(c). Here, Péclet number range from 0.1 to 10.

Table (5.1) shows the comparison of the results of Ra of the present paper for fixed

values of Pe=1.0, n=0.5, H=100000 and Ω=10000 with the results obtained by Barletta and

Storesletten [9] . Also, the comparison of neutral stability critical value of Ra when Pe = 0,

n=1.0, H=5402.725, k=12.69114 and Ω=0.001 with the results obtained by Banu and Rees

[6] as shown in Table (5.2). It is shown that these two results are in excellent agreement.

Table 5.1: Comparison of neutral stability values of Ra when n=0.5, Pe=1.0, H=100000
and Ω = 10000.

k Barletta and Storesletten [9] Present

4.0 29.803019 29.805084
6.0 36.205476 36.208314

Table 5.2: Comparison of neutral stability values of Ra when Pe=0, n=1.0, H=5402.725,
k=12.69114 and Ω = 0.001.

Banu and Rees [6] Present

5739.522 5739.5152

Basic State Solutions

Figures 5.2(a)-5.2(e) represents the basic temperature profiles T against the z for inter phase

heat transfer (H). From Figs. 5.2(a)-5.2(e) it is seen from these that, an enhancement in

the inter phase heat transfer parameter (H) tends to reduce the thermal boundary layer
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for the fluid phase, but no variation in solid phase. The basic temperature profile is more

pronounced for small value of inter phase heat transfer parameter (H).

The Neutral stability curves

Figures 5.3(a)-5.3(f) shows that the neutral stability curves on the parametric plane Ra. In

the cases considered, the Péclet number (Pe) ranges from 0.1 to 2 and the power-law index

(n) from 0.5 to 2. The neutral stability curve, in each case, confines the region of linear

stability laying below the curve from the region of instability above the curve. The neutral

stability curve is affected by both parameters Péclet number and power-law index. The effect

of an increasing n for a given power-law index is different for either smaller or larger values

of Pe. As shown in Figs. 5.3(a)-5.3(f), when Péclet number 0.1 and 0.2, an increasing value

of n has a destabilising effect.

This behaviour changes gradually when Péclet number is 0.5 and 0.7, as the transition to

instability depends non-monotonically on n. For larger Péclet numbers, such as Pe=1 and 2,

the effect of an increasing n is stabilising effect. Thus, pseudo-plastic fluids are more stable

than dilatant fluids when Péclet number is small, while they become more unstable if Péclet

number is larger. This behaviour is partly a consequence of the scaling with Pen−1 of the

Rayleigh number (Ra). However, this is just a rough aspect of the actual trend, due to the

sensible dependence of Ra
Pen−1 on n at neutral stability. Those things are more complicated

than the law Ra
Pen−1 is made clear by the frame with Pe=1 in Figs. 5.3(a)-5.3(f), where Ra

displays an evident change with n.

Figures 5.4(a)-5.4(c) display the neutral stability curves of Ra against k, for varying

values of H, Ω and n. It is evident from these Figs. 5.4(a)-5.4(c) that, an increase in the H

leads to increase in the Ra for pseudo-plastic, Newtonian and dilatant fluids. The reason for

this is that the apparent viscosity of the pseudo-plastic fluid is infinite as shear rate tends

to zero (i.e., for small Ω) while it becomes zero for dilatant fluid at low shear rate. The

inhibition of convective instability for pseudo-plastic fluid is represented by the large values

of Ra while an exhibition of clear instability for dilatant fluid is represented by the vanishing
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values of Ra for fixed values of other parameters.

The values of Ra can be minimized with respect to k and although the condition ∂Ra
∂k

may

be written down, it appears to be impossible to obtain a straightforward closed-form explicit

expression for the minimising value of k. Therefore, we used Newton-Raphson iteration

scheme to obtain the minimum values of Ra and k as function of H and Ω. In Figs. 5.5(a)-

5.7(c) display the minimising values of Rac and RacΩ
(1+Ω)

and kc.

The variation of the Rac with H for a range of values of Ω, as displayed in Fig.5.5(a)-

5.5(c). At small values of H that Rac is close to 4π2 and is independent of Ω to leading

order. The physical reason for this is that there is almost no transfer of heat between the

phases and therefore the onset criterion is not affected by the properties of the solid phase.

But at large values of H, the LTE limit, the onset criterion is based on the mean properties

of the medium and therefore the onset criterion in terms of Rac is dependent on Ω.

In figs. 5.6(a)-5.6(c), we show the variation of critical Rayleigh number based on the mean

properties of medium
(
RacΩ
(1+Ω)

)
, the Rac which is defined in terms of the mean properties of

the fluid with the H for specific values of Ω. It is interesting to note that RacΩ
(1+Ω)

approaches a

common limit of 4π2 as H →∞, although the approach to that limit depends quite strongly

on the value of Ω. We also find that RacΩ
(1+Ω)

vary monotonically as H increases. It is interesting

to note that, for very small H, and large Ω, the convection can be completely suppressed.

The Rac based on the mean properties is independent of H for large Ω. In all cases both

Rac and RacΩ
(1+Ω)

vary monotonically as H increases with Ω fixed.

In Figs. 5.7(a)-5.7(c) we display kc with H for different values of the Ω. We observed

that the kc approaches a common limit for small n as H → 0 and as H → ∞. However

for large n, kc approaches two different limits, one as H → 0 and another as H → ∞. As

H → 0 the solid phase ceases to affect the thermal field of the fluid which is free to act

independently, whereas H →∞ the solid and fluid phases may be treated as a single phase

as they have nearly identical temperatures. Therefore in these two limiting cases, the Ω has

little effect on the kc. For the intermediate values of H, the kc increases with decreasing

values of Ω and that the kc is always greater than the LTE case.
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Figure 5.2: Basic state solutions of T with different values of H.
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Figure 5.3: Neutral stability curves in the Plane Ra with different values of Pe and n
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Figure 5.4: Variation of Ra with k for specific values of Ω, H and n
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Figure 5.5: Variation of Rac with log10H for specific values of Ω and n
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Figure 5.7: Variation of kc with log10H for specific values of Ω and n
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5.7 Conclusions

This chapter investigates the instability of vertical throughflow in a horizontal porous layer

saturated by a power-law fluid with local non-thermal equilibrium. The lower and upper

boundary planes are considered as permeable and kept at constant temperatures. Besides

the Rayleigh number Ra, there are four governing dimensionless parameters in this problem,

Pe, H, Ω and n. The latter parameter is proportional to the prescribed vertical throughflow

velocity. The linear stability eigenvalue problem has been solved by employing a numerical

solution based on the matrix based-method. From this analysis, the following conclusions

can be drawn below.

• The neutral stability curve is affected by both n and Pe, while it is unaffected by the

sign of Pe. The effect of an increasing n for a given Pe is different for either smaller

or larger values of Pe. Generally speaking, pseudo-plastic fluids n < 1 are more stable

than dilatant fluids n > 1 when Pe is small, while they become more unstable if Pe is

large.

• The effect of increasing Ω is to decrease the Rac and hence the effect of increasing Ω is

to destabilize the system. The effect is more pronounced for very small Ω. The critical

Rayleigh number is independent of Ω for very small H while for large H,it decreases

with increasing Ω

• It is found that the critical Rayleigh number based on the mean properties of the

medium vary monotonically with H and approaches a common limit as H →∞. It is

also observed that the critical wave number kc approaches a common limit as H → 0

and H →∞.
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Part III

SIMILARITY SOLUTION FOR A

POWER-LAW FLUID FLOW

ALONG A VERTICAL PLATE IN A

NON-DARCY POROUS MEDIUM.
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Chapter 6

Effect of Double Dispersion, MHD

and Variable Properties on Mixed

Convection in a Power-law Fluid

Saturated Non-Darcy Porous Medium

1

6.1 Introduction

The Darcy-Forchheimer model is a supplement of classical Darcian formulation obtained by

adding a squared term of velocity in the momentum equation to account for the inertial

effects. Modeling and analysis of a power-law fluid saturated porous medium has been an

active field of research from the past few years, and it has a large number of industrial

and engineering applications. Due to this importance, many of the researchers have been

reported their studies on the convective transport in a power-law fluid saturated non-Darcy

1Published in “Special Topics & Reviews in Porous Media-An International Journal” 8(3),
177-195 (2017)
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porous medium (see Khidir et al. [48], Prasad et al. [76], Chamkha et al. [16] and Mansour

and El-Shaer [58]).

Magneto-hydrodynamics (MHD) flows through porous media saturated with Newtonian

or non-Newtonian fluids have been analyzed by several researchers due to its significance in

the different fields (see Chen [19], Kumar and Sivaraj [49], Benazir and Sivaraj [12], Zubair

et al. [111]). The study of magneto-hydrodynamic flow, for fluid past a heated surface,

has important applications in numerous engineering problems such as petroleum industries,

cooling of nuclear reactors, MHD power generators, boundary layer control in aerodynamics,

plasma studies, and crystal growth. Eldabe et al. [27] studied the influence of viscous

dissipation on free convective heat and mass transfer of MHD non-Newtonian fluid flow

through a porous medium. Uddin et al. [102] obtained the similarity representation of the

problem on power-law fluid from stretching sheet with slip and MHD effects by applying lie

scaling group transformations.

This chapter is an extension of second chapter by taking Darcy-Forchheimer model and

MHD into account. The main objective of the present chapter is to study the influence

of MHD, double dispersion and variable properties in power-law fluid saturated non-Darcy

porous medium. The governing similarity equations are obtained by using the method of Lie

scaling group transformations. Then, these similarity equations are solved numerically by

applying Shooting technique. The effects of various parameters on the velocity, temperature

and concentration profiles are presented graphically. Also, the physical quantities of the

flow, heat and mass transfer rates are presented in tabular form.

6.2 Mathematical Formulation

Consider the two dimensional, laminar, steady and incompressible flow of mixed convective in

a power-law fluid saturated non-Darcy porous medium. A uniform magnetic field is applied

normal to the plate, as shown in Fig. (6.1). The magnetic Reynolds number is assumed

to be small, so that the induced magnetic field can be neglected. The fluid and the porous
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Figure 6.1: Physical geometry of the problem

structure are everywhere in local thermodynamic equilibrium and porous medium is assumed

to be transparent. The fluid flow is moderate, so the pressure drop is proportional to the

linear combination of fluid velocity and the square of the velocity (Forchhiemer flow model

is considered). Choose the cartesian coordinate system such as x-axis is taken along the

vertical surface and y-axis is normal to the surface. The gravitational acceleration g is in a

direction opposite to the x-direction. The surface is maintained at the uniform temperature

and concentrations Tw and Cw, respectively. These values are considered to be greater than

the ambient temperature and concentrations T∞ and C∞, respectively.

Applying the boundary layer assumptions and Boussinesq approximations, the govern-

ing partial differential equations, such as continuity, momentum, energy and concentration

equations are given by

∂u

∂x
+
∂v

∂y
= 0 (6.1)
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nun−1∂u

∂y
+
∂

∂y

[
CFρ∞

√
K

µ
u2

]
=

∂

∂y

[
Kgρ∞
µ

(β∗T [T − T∞] + β∗C [C − C∞])

]
− ∂

∂y

[
σB0

2Kµe
2

µ
u

]
(6.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[
(α + γd∗ u)

∂T

∂y

]
(6.3)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

[
(D + ζd∗ u)

∂C

∂y

]
(6.4)

where x and y are the cartesian coordinates, u and v are the velocity components in x and

y directions, respectively. Further, T is the temperature, C is the concentration, g is the

acceleration due to gravity, ρ∞ is the reference density, K is the permeability, µe is the

magnetic permeability and B0 represents the magnetic field and σ∞ represents the electrical

conductivity of the fluid, d∗ represents the pore diameter, γ and ζ are the coefficients of the

thermal and solutal dispersions, β∗T and β∗C are the thermal and concentration expansion

coefficients, respectively. The boundary conditions are

v = 0, T = Tw, C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y →∞

 (6.5)

The dimensionless variables are defined as follows:

x =
x

L
, y =

y

L
Pe

1
2 , u =

uL

α0Pe
, u =

vL

α0Pe
1
2

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

 (6.6)

where Pe =
u∞L

α0

represents the Péclet number and L represents the characteristic length.

In view of the continuity Eq.(6.1), we introduce a stream function ψ(x, y) as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(6.7)

Using the Eqs.(6.6)–(6.7) into equations (6.2)-(6.4) reduces the following dimensionless mo-
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mentum, energy and concentration equations are obtained as follows.

n

(
∂ψ

∂y

)n−1
∂2ψ

∂y2
+ 2G

(
∂ψ

∂y

)
∂2ψ

∂y2

(
θe − θ
θe

)
− G

θe

(
∂ψ

∂y

)2
∂θ

∂y
+ M

(
∂2ψ

∂y2

)(
θe − θ
θe

)
(6.8)

−M

θe

(
∂ψ

∂y

)(
∂θ

∂Y

)
− λn

(
∂θ

∂y
+ B

∂φ

∂y

)(
θe − θ
θe

)
+
λn

θe
(θ + Bφ)

(
∂θ

∂y

)
= 0

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− β

(
∂θ

∂y

)2

− (1 + βθ)
∂2θ

∂y2
− Peγ

[
∂ψ

∂y

∂2θ

∂y2
+
∂2ψ

∂y2

∂θ

∂y

]
= 0 (6.9)

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Le

∂2φ

∂y2
− Peζ

[
∂ψ

∂y

∂2φ

∂y2
+
∂2ψ

∂y2

∂φ

∂y

]
= 0 (6.10)

The boundary conditions (6.5) transform into the following form

∂ψ

∂x
= 0, θ = 1, φ = 1 at y = 0

∂ψ

∂y
= 1, θ = 0, φ = 0 as y →∞

 (6.11)

In usual definition M =
σB0

2µe
2K

µ∞

(
L

α0

)(n−1)

Pe−(n−1) represents the magnetic field param-

eter, θe =
T e − T∞
Tw − T∞

is the variable viscosity, G =
CF
√
K

ν∞

(
L

α0

)(n−2)

Pe−(n−2) indicates mod-

ified non-Darcy parameter, B =
β∗c (Cw − C∞)

β∗T (Tw − T∞)
is the buoyancy ratio, λ =

Ra

Pe
is the mixed

convection parameter, Ra =
L

α0

(
gKβT (Tw − T∞)

ν

)1/n

is the generalized Rayleigh number,

Le =
α0

D
is the Lewis number, Peγ =

γu∞d
∗

α0

is the thermal dispersion and Peζ =
ζu∞d

∗

α0

is

the solutal dispersion.

Similarity equations via Lie group transformations

Using Lie scaling group transformations and procedure explained in the second chapter, the

following similarity transformations are obtained:

ψ = x
1
2f(η), η = yx−

1
2 , θ = θ(η), φ = φ(η). (6.12)
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Using Eq. (6.12) into Eqs.(6.8)-(6.10), we obtain the following similarity equations.

f ′′
[
n(f ′)

n−1
+ 2Gf ′

(
θe − θ
θe

)
+ M

(
θe − θ
θe

)]
=
f ′θ′

θe
(Gf ′ + M) (6.13)

+λn (θ′ + Bφ′)

(
θe − θ
θe

)
− λn (θ + Bφ)

θ′

θe

β(θ′)2 + (1 + βθ) θ′′ + Peγ (f ′θ′′ + f ′′θ′) +
1

2
fθ′ = 0 (6.14)

1

Le
φ′′ + Peζ (f ′φ′′ + f ′′φ′) +

1

2
fφ′ = 0 (6.15)

The boundary conditions (6.11) in terms of f ′,θ and φ become

f(0) = 0, θ(0) = 1, φ(0) = 1 (6.16a)

f ′(∞) = 1, θ(∞) = 0, φ(∞) = 0. (6.16b)

The physical quantities of present interest obtained by the local Nusselt and Sherwood

number, which are given as follows

Nux

Pe
1/2
x

= − [1 + Peγf
′(0)] θ′(0) and

Shx

Pe
1/2
x

= − [1 + Peζf
′(0)]φ′(0) (6.17)

6.3 Results and Discussion

The system of nonlinear ordinary differential Eqs. (6.13)-(6.15) along with the correspond-

ing boundary conditions (6.16) are solved using the shooting method, which is explained

clearly in chapter-2. To validate the code, the current results are correlated with previously

available results in the literature. The Eqs. (6.13)-(6.15) coincide with equations presented

by Chaoyang [18], by excluding concentration equation with B = M = Peγ = Peζ = β = 0,

Le = 1.0 and θe →∞. The comparison in the above case seems to be good and the results

are accurate, as presented in Tab. (2.1).

Figures 6.2-6.7 represent the variation of non-dimensional velocity f ′(η), temperature

θ(η), and concentration φ(η) profiles with the influence of variable viscosity (θe), variable
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thermal conductivity (β), magnetic field parameter (M), thermal dispersion (Peγ), solutal

dispersion (Peζ) and non-Darcy parameter (G) for three values of power-law index (n).

The effect of variable viscosity (θe) and power-law index (n) on non-dimensional velocity

f(η), temperature θ(η) and concentration φ(η) is portrayed in Figs.6.2(a)-6.2(c). Figure

6.2(a) depicts that the momentum boundary layer reduces with the rise of variable viscosity

parameter for pseudo-plastic, Newtonian and dilatant fluids. Figure 6.2(b) illustrates that

an increase in variable viscosity parameter increases the thermal boundary layer thickness

for all three kinds of fluids. The effect of variable viscosity on the concentration profile for

different types of power-law fluids is depicted in Fig. 6.2(c). From this figure, it is seen that

the concentration increases with increase in variable viscosity for all three values of n.

Figures 6.3(a)-6.3(c) explore the influence of the variable thermal conductivity (β) and

power-law index (n) on the non-dimensional velocity f ′(η), temperature θ(η) and concentra-

tion φ(η) profiles, respectively. Figures 6.3(a)-6.3(b) depict that the velocity and the tem-

perature increase with increasing the thermal conductivity for pseudo-plastic, Newtonian

and dilatant fluids. This is due to the enhancement of thermal boundary layer thickness as a

result of the enhancement of the thermal conductivity parameter. Figure 6.3(c) presents the

effect of β and n on the concentration profile. It is observed that the concentration increases

with decrease in the value of the variable thermal conductivity for all three kinds of fluids.

So, it is evident that molecular motion of the fluid decreases at a slower rate for larger values

of thermal conductivity parameters.

Figures 6.4(a)-6.4(c) illustrate the effect of thermal dispersion and power-law index (n)

on non-dimensional velocity f ′(η), temperature θ(η) and concentration φ(η) distributions,

respectively. Figure 6.4(a) describes the influence of thermal dispersion and power-law index

(n) on the velocity profile. It is observed that the velocity profile increases with increasing

values of thermal dispersion for pseudo-plastic, Newtonian and dilatant fluids. Figure 6.4(b)

reveals that the temperature monotonically rises with enhancement in the value of thermal

dispersion for all three kinds of fluids. Moreover, from Fig. 6.4(c), it is noticed that the

concentration decreases as the thermal dispersion parameter increases, for all three types of

fluids.
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The influence of solutal dispersion parameter and power-law index on non-dimensional

velocity f ′(η), temperature θ(η) and concentration φ(η) profiles is depicted in Figs. 6.5(a)-

6.5(c). Figure 6.5(a) illustrates the effect of solutal dispersion on the velocity field. It can be

observed that the increase in the solutal dispersion leads to enhance the velocity profile for

pseudo-plastic, Newtonian and dilatant fluids. The effect of solutal dispersion on temperature

for different power-law fluids is shown in Fig. 6.5(b). The thermal boundary layer thickness

diminishes with an enhancement of the solutal dispersion for all three different fluids. Figure

6.5(c) describes the enhancement of concentration boundary layer with an increase in the

value of solutal dispersion parameter for all three fluids.

Figures 6.6(a)-6.6(c) display the result of magnetic parameter (M) and power-law indices

(see pseudo-plastic, dilatant and Newtonian fluid) on dimensionless velocity f ′(η), tempera-

ture θ(η), and concentration φ(η) profiles, respectively. It can be perceived from Fig. 6.6(a)

that as M increases, the velocity profile decreases for pseudo-plastic and Newtonian fluid,

but increases near the plate and reduces far away from the plate for dilatant fluid. Figure

6.6(b) demonstrates that a rise in M substantially increases the temperature profiles for

n < 1 and n = 1.0 but there is a slight decrease for the index n > 1. This behavior in the

fluid is because of the presence of a transverse magnetic field that has a tendency to make

the Lorentz drag which resists the flow. Due to increase in the magnetic parameter, the

non-dimensional concentration increases for pseudo-plastic and Newtonian fluid but slightly

depreciates for dilatant fluids, as shown Fig. 6.6(c).

The variation of dimensionless velocity f ′(η), temperature θ(η) and concentration φ(η)

distribution for various values of non-Darcy parameter (G) and power-law index [see (n <

1, n = 1, n > 1)] are plotted in Figures 6.7(a)-6.7(c). From Fig. 6.7(a) reveals that the

velocity reduces as G increases for all kinds of fluids. Since (G) demonstrates inertial drag,

thus an increase in the Forchheimer number increments the imperviousness to the flow and

reduces the fluid velocity to develop. Figure 6.7(b) exhibits that the temperature increases

with an increase in G for all kinds of fluids. Figure 6.7(c) explores that concentration

increases with an increase in non-Darcy parameter G for all three kinds of fluids. The

increase in G decreases the intensity of the flow and raises the temperature and concentration
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Table 6.1: The heat and mass transfer coefficients for varying values of power-law index,
variable viscosity, thermal conductivity, thermal and solutal dispersion, magnetic field and
non-Darcy porous medium parameters.

n θe β Peγ Peζ G M − [1 + Peγf
′(0)] θ′(0) − [1 + Peζf

′(0)]φ′(0)
0.6 2.0 0.5 0.5 0.5 0.1 1.0 0.433746 0.500456
1.0 2.0 0.5 0.5 0.5 0.1 1.0 0.427097 0.498653
1.5 2.0 0.5 0.5 0.5 0.1 1.0 0.419431 0.494501
0.6 1.5 0.5 0.5 0.5 0.1 1.0 0.435564 0.500356
0.6 2.5 0.5 0.5 0.5 0.1 1.0 0.432135 0.499538
0.6 3.0 0.5 0.5 0.5 0.1 1.0 0.430972 0.498719
0.6 2.0 0.0 0.5 0.5 0.1 1.0 0.495944 0.495944
0.6 2.0 1.0 0.5 0.5 0.1 1.0 0.389290 0.504245
0.6 2.0 1.5 0.5 0.5 0.1 1.0 0.355630 0.507475
0.6 2.0 0.5 0.0 0.5 0.1 1.0 0.596362 0.486367
0.6 2.0 0.5 1.0 0.5 0.1 1.0 0.354689 0.508685
0.6 2.0 0.5 1.5 0.5 0.1 1.0 0.306122 0.514225
0.6 2.0 0.5 0.5 0.0 0.1 1.0 0.424461 0.790510
0.6 2.0 0.5 0.5 1.0 0.1 1.0 0.438843 0.388123
0.6 2.0 0.5 0.5 1.5 0.1 1.0 0.442182 0.325106
0.6 2.0 0.5 0.5 1.0 0.0 1.0 0.438136 0.503041
0.6 2.0 0.5 0.5 1.0 0.2 1.0 0.430195 0.498079
0.6 2.0 0.5 0.5 1.0 0.3 1.0 0.427276 0.496004
0.6 2.0 0.5 0.5 1.0 0.1 0.0 0.461055 0.528752
0.6 2.0 0.5 0.5 1.0 0.1 0.5 0.443134 0.510141
0.6 2.0 0.5 0.5 1.0 0.1 1.5 0.427971 0.494524

boundary layer thickness.

Table 6.1 shows the effect of various parameters on the local heat and the local mass

transfer coefficient for different physical parameters. It is clear that enhancement in n and

θe reduces the Nusselt number and Sherwood numbers. It is noticed that an increase in β

and Peγ depreciates the Nusselt number, but increases the Sherwood number. Higher values

of Peζ raise the Nusselt number, but reduce the Sherwood numbers. The influence of G and

M results in a decrease of both Nusselt and Sherwood numbers.
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Figure 6.2: Effect of θe and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, Peγ=0.5, Peζ=0.5, β = 0.5, M = 1.0,
G = 0.1 and λ = 1.0.
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Figure 6.3: Effect of β and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, Peγ = 0.5, Peζ = 0.5, θe = 2.0, M = 1.0,
G = 0.1 and λ = 1.0.
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Figure 6.4: Effect of Peγ and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, β = 0.5, Peζ = 0.5, θe = 2.0, M = 1.0,
G = 0.1 and λ = 1.0.
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Figure 6.5: Effect of Peζ and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, β = 0.5, Peγ = 0.5, θe = 2.0, M = 1.0,
G = 0.1 and λ = 1.0.
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Figure 6.6: Effect of M and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, β = 0.5, Peγ = 0.5, Peζ = 0.5, θe = 2.0,
G = 0.1 and λ = 1.0.
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Figure 6.7: Effect of G and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, β = 0.5, Peγ = 0.5, Peζ = 0.5, θe = 2.0,
M = 1.0 and λ = 1.0.

111



6.4 Conclusions

This chapter aims to compute numerical results of mixed convective flow of power-law fluid

with the influence of variable properties, MHD and double dispersion along a vertical surface.

The governing system of higher order non-linear differential equations is transformed into

ordinary differential equations by using Lie scaling group transformations and numerical

solutions are attained by the shooting method. The representative set of results is reported

graphically to demonstrate the details of velocity, temperature, and concentration on some

of the physical parameters.

• An increase in variable viscosity cause a decrease in velocity profile, heat and mass

transfer rates, but increases the temperature and concentration profiles.

• The coefficients of velocity and temperature are found to enhance strongly with a rise in

thermal conductivity, but depreciation in concentration, heat and mass transfer rates.

• The effect of thermal dispersion is to increase the velocity, temperature and mass

transfer rate, but reduces the concentration and the heat transfer rate.

• Enhancement in the solutal dispersion decreases the velocity, concentration and mass

transfer rate, but raises the temperature and heat transfer rate.

• The influence of the non-Darcy parameter enhances the temperature and concentration,

but reduces the velocity, heat and mass transfer rates.

• The higher values of the magnetic field result in lower velocity, heat and mass transfer

rates, but higher temperature and concentration profiles.
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Chapter 7

Influence of MHD, Thermophoresis

and Variable Properties on Mixed

Convection Flow over a Vertical Plate

in a Non-Darcy Porous Medium

Saturated with a Power-law Fluid 1

7.1 Introduction

Thermophoresis is a mechanism in which small particles migrate in the direction of decreasing

thermal gradient. It is quite significant in radioactive particle deposition in nuclear reactor

safety simulations, aerosol particle sampling, deposition of silicon thin films etc. Fagbade

et al. [28] studied the effects of thermophoresis, viscous dissipation and magnetic field on

mixed convection over a vertical plate in fluid saturated non-Darcy porous medium. Helal

and Saif [35] investigated the effect of thermophoresis on free convective boundary layer flow

1Published in “International Journal of Pure and Applied Mathematics”, Vol.113, no.12, pp.160-
168, 2017.
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along an inclined surface in a power-law fluid. Magnetic field, thermophoresis and thermal

radiation effects on natural convection from a vertical plate embedded in porous media have

been reported by Rashad [81].

This chapter is an extension of Chapter-3 by considering the effects of MHD and non-

Darcy porous medium. The problem of MHD mixed convection flow along a vertical surface

in a power-law fluid saturated non-Darcy porous medium with the thermophoresis and vari-

able properties, are considered in this chapter. In addition, the similarity representation of

the system of governing non-dimensional equations is obtained using the scaling group of

transformations and then solved the resultant system of equations by shooting method. The

present study mainly focused on exploring the effects of thermophoresis, MHD and variable

properties, non-Darcy parameter. Further, the numerical data for heat and mass transfer

rates are shown in tabular form.

7.2 Mathematical Formulation

Consider steady, laminar, incompressible mixed convection flow along a vertical plate embed-

ded in a power-law fluid saturated non-Darcy porous medium. Choose the two dimensional

coordinate system such that the x-axis is along the vertical plate and the y-axis is normal to

the plate. The physical model of the system is shown Fig. (6.1). A uniform magnetic field is

applied normal to the plate. The gravitational acceleration g acts in a downward direction.

The plate is maintained at a constant temperature Tw and concentration Cw. The ambient

fluid temperature is T∞ and the concentration is C∞. Using the Boussinesq approximation

and boundary layer assumptions, the governing equations of continuity, momentum, energy

and concentration are given by:
∂u

∂x
+
∂v

∂y
= 0 (7.1)

nun−1∂u

∂y
+
∂

∂y

[
CFρ∞

√
K

µ
u2

]
=

∂

∂y

[
Kgρ∞
µ

(β∗T [T − T∞] + β∗C [C − C∞])

]
− ∂

∂y

[
σB0

2Kµe
2

µ
u

]
(7.2)
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u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[
α
∂T

∂y

]
(7.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2 +
∂

∂y

[
KTµ

ρ∞Tr

∂T

∂y
(C − C∞)

]
(7.4)

The associated boundary conditions are

v = 0, T = Tw, C = Cw at y = 0, (7.5a)

u = u∞, T = T∞, C = C∞ as y →∞ (7.5b)

where u and v are Darcy velocity components along the x and y- axes, respectively, ρ∞ is the

density, β∗T and β∗C are coefficients of thermal and concentration expansions respectively, g

represents the acceleration due to gravity, T indicates temperature, K indicates permeability,

B0 represents the strength of the magnetic field, C indicates concentration, µe indicates

magnetic permeability, D is the mass diffusivities of the medium.

Introducing the non-dimensional transformation variables:

x =
x

L
, y =

y

L
Pe

1
2 , u =

uL

α0Pe
, u =

vL

α0Pe
1
2

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

 (7.6)

where Pe =
u∞L

α0

is the Péclet number and L represents the characteristic length.

By introducing the non-dimensional stream function ψ(x, y) the continuity Eq. (7.1)

satisfies automatically, and it is defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(7.7)

Substituting Eqs.(7.6)-(7.7) into Eqs.(7.2)-(7.4), we obtain the following system of equa-
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tions

n

(
∂ψ

∂y

)n−1
∂2ψ

∂y2
+ 2G

(
∂ψ

∂y

)
∂2ψ

∂y2

(
θe − θ
θe

)
− G

θe

(
∂ψ

∂y

)2
∂θ

∂y
− M

θe

(
∂ψ

∂y

)(
∂θ

∂y

)
(7.8)

+M

(
∂2ψ

∂y2

)(
θe − θ
θe

)
− λn

(
∂θ

∂y
+ B

∂φ

∂y

)(
θe − θ
θe

)
+
λn

θe
(θ + Bφ)

(
∂θ

∂y

)
= 0

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− β

(
∂θ

∂y

)2

− (1 + βθ)
∂2θ

∂y2
= 0 (7.9)

Le

[
∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y

]
− ∂2φ

∂y2
+ τSc

θe
θe − θ

[(
∂θ

∂y

)2
φ

θe − θ
+ φ

∂2θ

∂y2
+
∂θ

∂y

∂φ

∂y

]
= 0 (7.10)

The boundary conditions are

∂ψ

∂x
= 0, θ = 1, φ = 1 at y = 0

∂ψ

∂y
= 1, θ = 0, φ = 0 as y →∞

 (7.11)

where B =
β∗c (Cw − C∞)

β∗T (Tw − T∞)
is the Buoyancy ratio, M =

σB0
2µe

2K

µ∞

(
L

α0

)(n−1)

Pe−(n−1) is the

magnetic field parameter, λ =
Ra

Pe
is the mixed convection parameter, τ = − k

Tr
(Tw − T∞)

is the thermophoresis parameter, θe =
T e − T∞
Tw − T∞

is the variable viscosity, Le =
α0

D
is the

Lewis number, G =
CF
√
K

ν∞

(
L

α0

)(n−2)

Pe−(n−2) is the modified non-Darcy parameter and

Ra =
L

α0

(
gKβT (Tw − T∞)

ν

)1/n

is the Rayleigh number.

Now, we introduce the one-parameter scaling group of transformations which is a simpli-

fied form of Lie group transformation. We will get the following similarity transformations

ψ = x
1
2f(η), η = yx−

1
2 , θ = θ(η), φ = φ(η). (7.12)

Substituting equation (7.12) into Eqs.(7.8)-(7.10), we obtain the following ordinary dif-
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ferential equations.

f ′′
[
n(f ′)

n−1
+ 2Gf ′

(
θe − θ
θe

)
+ M

(
θe − θ
θe

)]
=
f ′θ′

θe
(Gf ′ + M) (7.13)

+λn (θ′ + Bφ′)

(
θe − θ
θe

)
− λn (θ + Bφ)

θ′

θe

β(θ′)2 + (1 + βθ) θ′′ +
1

2
fθ′ = 0 (7.14)

φ′′ − τSc
θe

θe − θ

[
(θ′)2 φ

θe − θ
+ θ′′φ+ θ′φ′

]
+

1

2
Lefφ′ = 0 (7.15)

The transformed boundary conditions (7.11) becomes

f(0) = 0, θ(0) = 1, φ(0) = 1, f ′(∞) = 1, θ(∞) = 0, φ(∞) = 0. (7.16)

The Nusselt number Nux and the Sherwood number Shx are respectively given by:

Nux
x1/2

= −θ′(0) and
Shx
x1/2

= −φ′(0) (7.17)

7.3 Results and Discussion

The coupled nonlinear ordinary differential equations (7.13)-(7.15) along with the boundary

conditions (7.16) are solved numerically using shooting method, as discussed in the Chapter-

2. In order to test the accuracy of our results, we compared the present results with those

of Chaoyang et al. [18] by taking Sc = 0, τ = 0, B = 0, Le = 1.0, θe → ∞ and β = 0. The

comparison show good agreement, as presented in Table (3.1).

The solutions for the non-dimensional velocity f ′(η), temperature θ(η), and concentra-

tion φ(η) are computed and are displayed graphically in Figs.7.1(a)-7.5(c) with varying

variable viscosity (θe), thermal conductivity (β), thermophoresis (τ), magnetic field (M) and

non-Darcy porous medium (G) for power-law index (n) (see pseudo-plastic, dilatants and

Newtonian fluids).
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Figures 7.1(a)-7.1(c) represent the non-dimensional velocity f ′(η), temperature θ(η), and

concentration φ(η) for various values of variable viscosity (θe) and power-law index (n),

respectively. We observed from Fig. 7.1(a) that the velocity depreciates with the rise of

variable viscosity for three kinds of fluids. Furthermore, Fig. 7.1(b) and Fig. 7.1(c) perceives

the non-dimensional temperature and concentration profiles for different values of θe and n.

From these figures, we observe that the enhancement in variable viscosity tends to rise the

temperature and concentration for three kinds of fluids.

The influence of thermal conductivity (β) and power-law index (n) on the non-dimensional

velocity f ′(η), temperature θ(η), and concentration φ(η) profiles are exhibited in Figs. 7.2(a)-

7.2(c). It is noted that an increase in the value of thermal conductivity tends to enhance

the velocity, temperature and concentration profiles for three kinds of fluids as displayed in

Figs. 7.2(a)-7.2(c).

Figures 7.3(a)-7.3(c) explore the influence of thermophoresis (τ) and power-law index (n)

on the non-dimensional velocity f ′(η), temperature θ(η), and concentration φ(η) profiles,

respectively. It is observed that, an enhancement in the value of thermophoresis tends to

reduce the velocity and increase the temperature for three kinds of fluids, as portrayed in

Figs. 7.3(a)-7.3(b). This is due to the fact that, an increase in the thermophoresis parameter

increases the thermophoresis force, which tends to move particles from the hot zone to the

cold zone, which results in the increase in temperature. It can be seen from Fig. 7.3(c)

that the concentration enhances with the rise of thermophoresis parameter for three kinds

of fluids.

Figures 7.4(a)-7.4(c) depict the influence of magnetic field parameter (M) and power-

law index (n) on the dimensionless velocity f ′(η), temperature θ(η), and concentration φ(η)

profiles, respectively. It is interesting to note from Fig. 7.4(a) that the velocity profile

decrease across the boundary layer with increase of M for pseudo-plastic, Newtonian and

dilatants fluids. The influence of M leads to increase the temperature for n < 1, n = 1,

but an opposite trend is observed for n > 1, as given 7.4(b). This is due to the fact that

introduction of magnetic field to an electrically conducting fluid gives rise to a rise in resistive

force known as Lorentz force. This force has a tendency to slow down the motion of the fluid
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in the boundary layer and to increase the temperature distribution. It is observed from Fig.

7.4(c) that the concentration boundary layer thickness enhances with enhance in the value of

(M) for pseudo-plastic, Newtonian fluid but reverse trend is observed for the dilatant fluids.

The variation of non-dimensional velocity f ′(η), temperature θ(η), and concentration

φ(η) for different values of non-Darcy parameter (G) and power-law index (n) are plotted

in Figures 7.5(a)-7.5(c). It is observed that the velocity decreases with increase in the value

of non-Darcy parameter for three kinds of fluids, as presented in 7.5(a). As the non-Darcy

parameter decreases, the porous medium offers less resistance to the fluid flow and hence,

the velocity is less in the non-Darcy porous medium. Moreover, the temperature increase

with an increase in the value of non-Darcy parameter for three kinds of fluids in plotted on

7.5(b). Further, from Fig. 7.5(c), it can be observed that concentration enhances with the

enhancing the non-Darcy parameter.

The rate of heat and mass transfers are presented Tab. 7.1. for different values of

power-law index (n), variable viscosity (θe), thermal conductivity (β), thermophoresis (τ),

magnetic field (M), non-Darcy parameter (G). The higher value of power-law index, variable

viscosity, thermal conductivity, magnetic field, non-Darcy parameters reduces the heat and

mass transfer rates. The influence of thermophoresis decreases the heat transfer but increases

the mass transfer rates. Moreover, increase in the value of mixed convection parameter

increases the heat transfer and mass transfer coefficients.
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Figure 7.1: Effect of θe and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, τ = 1.0, Sc = 0.6, β = 0.5, M = 1.0,
G = 0.1 and λ = 1.0.
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Figure 7.2: Effect of β and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, τ = 1.0, Sc = 0.6, θe = 2.0, M = 1.0,
G = 0.1 and λ = 1.0.
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Figure 7.3: Effect of τ and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, θe = 2.0, Sc = 0.6, β = 0.5, M = 1.0,
G = 0.1 and λ = 1.0.”
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Figure 7.4: Effect of M and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, τ = 1.0, Sc = 0.6, β = 0.5, θe = 2.0,
G = 0.1 and λ = 1.0.
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Figure 7.5: Effect of G and n on (a)velocity profile (b)temperature profile and
(c)concentration profile for B = 1.0, Le = 1.0, τ = 1.0, Sc = 0.6, β = 0.5, M = 1.0,
θe = 2.0 and λ = 1.0.
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Table 7.1: Variation of heat and mass transfer coefficients for varying values of n, θe, β, τ ,
M, G and λ.

n θe β τ M G λ −θ′(0) −φ′(0)
0.5 2.0 1.0 1.0 1.0 0.1 1.0 0.493546 1.233965
1.0 2.0 1.0 1.0 1.0 0.1 1.0 0.455366 1.130993
1.5 2.0 1.0 1.0 1.0 0.1 1.0 0.431721 1.067471
0.5 1.5 1.0 1.0 1.0 0.1 1.0 0.507206 1.532350
0.5 2.5 1.0 1.0 1.0 0.1 1.0 0.487059 1.135921
0.5 3.0 1.0 1.0 1.0 0.1 1.0 0.483245 1.087144
0.5 2.0 0.0 1.0 1.0 0.1 1.0 0.770098 1.509194
0.5 2.0 0.5 1.0 1.0 0.1 1.0 0.590767 1.326813
0.5 2.0 1.5 1.0 1.0 0.1 1.0 0.431038 1.177192
0.5 2.0 1.0 0.0 1.0 0.1 1.0 0.499397 0.799997
0.5 2.0 1.0 0.5 1.0 0.1 1.0 0.496319 1.012543
0.5 2.0 1.0 1.5 1.0 0.1 1.0 0.491057 1.462918
0.5 2.0 1.0 1.0 0.0 0.1 1.0 0.535660 1.340347
0.5 2.0 1.0 1.0 0.5 0.1 1.0 0.507915 1.270581
0.5 2.0 1.0 1.0 1.5 0.1 1.0 0.484766 1.211439
0.5 2.0 1.0 1.0 1.0 0.0 1.0 0.510795 1.280454
0.5 2.0 1.0 1.0 1.0 0.2 1.0 0.481842 1.202650
0.5 2.0 1.0 1.0 1.0 0.3 1.0 0.473161 1.179517
0.5 2.0 1.0 1.0 1.0 0.1 0.0 0.411074 1.015310
0.5 2.0 1.0 1.0 1.0 0.1 0.5 0.471042 1.174444
0.5 2.0 1.0 1.0 1.0 0.1 1.5 0.510026 1.277478
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7.4 Conclusions

Mixed convective transport over the vertical plate in a non-Darcy porous medium saturated

by a power-law fluid is analyzed, in this chapter. From this computational analysis, the

following conclusions are drawn below.

Increase in the value of variable viscosity causes an enhancement in the fluid temperature

and concentration and consequently, the fluid velocity, heat and mass transfer rates are

decreases. By rising the thermal conductivity causes an enhancement in the fluid velocity,

temperature and concentrations but local Nusselt number and local Sherwood numbers show

an opposite trend. The influence of thermophoresis decreases the fluid velocity, concentration

and heat transfer but increases the temperature and mass transfer. The effect of magnetic

field reduces the fluid velocity, heat and mass transfer rates, but enhances the temperature

and concentrations. Moreover, an increase in the value of non-Darcy parameter enhances

the temperature, concentration, Nusselt number, and Sherwood, but velocity shown revers

trend.
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Chapter 8

Mixed Convection in a Power-law

Fluid Saturated Non-Darcy Porous

Medium with Effect of MHD,

Thermal Radiation and Variable

Properties 1

8.1 Introduction

The effect of thermal radiation on the fluid flow and heat transfer, has received significant

attention due to their applications in the design of many advanced energy conversion systems

operating at high temperature. The thermal radiation occurs because of the emission by the

hot walls and working fluid. Hence, several investigations have been carried out their research

on the mixed convective transport in different fluids under the influence of thermal radiation.

Merely, it is essential to study the effect of thermal radiation due to its relevance to various

applications involving high temperatures such as nuclear power plant, gas turbines missiles,

1Communicated to “Journal of Nanofluid”
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satellites, space vehicles, and aircrafts, etc. Hamad et al. [32] considered the MHD forced

convective flow over a permeable at plate in the presence of thermal radiation, variable

properties and convective boundary conditions. Megahed [59] explored the influence of

thermal radiation, variable viscosity and velocity slip of a non-Newtonian power-law fluid

over a stretching surface.

In this chapter, the effects of MHD, thermal radiation and variable properties on the

mixed convective flow of power-law fluid in a non-Darcy porous medium is discussed. The

influence of pertinent parameters on physical quantities for non-dimensional velocity, temper-

ature and concentrations are examined numerically and shown through graphs. In addition,

the heat and mass transfer rates are tabulated.

8.2 Mathematical Formulation

Consider a steady, laminar and two-dimensional mixed convective flow of an incompressible

power-law fluid along a vertical plate. Choose the cartesian coordinate system such that

x- axis is taken along the vertical direction and y-axis normal to the plate as shown in

Fig. (6.1). The temperature and concentration of the plate are Tw and Cw, respectively,

and these values are greater than the ambient temperature and concentrations T∞ and C∞

respectively. The fluid is considered to be a gray, absorbing emitting radiation but non-

scattering medium. The Rosseland approximation is used to describe the radiative heat

flux in the energy equation. By implementing boundary layer assumptions and Boussinesq

approximation, the governing equations for the power-law fluid are given by

∂u

∂x
+
∂v

∂y
= 0 (8.1)

nun−1∂u

∂y
+
∂

∂y

[
CFρ∞

√
K

µ
u2

]
+
∂

∂y

[
σB0

2Kµe
2

µ
u

]
=

∂

∂y

[
Kgρ∞
µ

(β∗T [T − T∞] + β∗C [C − C∞])

]
(8.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

[
α
∂T

∂y

]
+

4σ∗

3k∗ρCp

∂2

∂y2

[
4T

3

∞T − 3T
4
∞

]
(8.3)
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u
∂C

∂x
+ v

∂C

∂y
= D0

∂2C

∂y2 (8.4)

where u and v are velocity components along the x and y axes, respectively. ρ∞ is the

density, β∗T indicates the coefficient of thermal expansion, β∗C represents the coefficient of

concentration expansion, g is the acceleration due to gravity, T indicates the temperature, K

represents the permeability, B0 indicates the strength of the magnetic field, C is the concen-

tration, k∗ indicates the mean absorption coefficient, σ represents the electrical conductivity

of the fluid, µe represents the magnetic permeability, D0 indicates the mass diffusivities of the

medium, Cp represents the specific heat capacity and σ∗ is the stefan-Boltzmann constant.

The associated boundary conditions are

v = 0, T = Tw, C = Cw at y = 0

u = u∞, T = T∞, C = C∞ as y →∞

 (8.5)

We introduce the following dimensionless variables:

x =
x

L
, y =

y

L
Pe

1
2 , u =

uL

α0Pe
, u =

vL

α0Pe
1
2

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

 (8.6)

where Pe =
u∞L

α0

is the Péclet number and L represents the characteristic length.

In view of the continuity equation (8.1), we introduce the stream function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
(8.7)

Using (8.6)-(8.7) into (8.2)-(8.4), we get the following momentum, energy, and concentration

equations

n

(
∂ψ

∂y

)n−1
∂2ψ

∂y2
+ 2G

(
∂ψ

∂y

)
∂2ψ

∂y2

(
θe − θ
θe

)
− G

θe

(
∂ψ

∂y

)2
∂θ

∂y
+ M

(
∂2ψ

∂y2

)(
θe − θ
θe

)
(8.8)

−M

θe

(
∂ψ

∂y

)(
∂θ

∂Y

)
− λn

(
∂θ

∂y
+ B

∂φ

∂y

)(
θe − θ
θe

)
+
λn

θe
(θ + Bφ)

(
∂θ

∂y

)
= 0
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∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− β

(
∂θ

∂y

)2

−
(

1 + βθ +
4 R

3

)
∂2θ

∂y2
= 0 (8.9)

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Le

∂2φ

∂y2
= 0 (8.10)

The prescribed boundary conditions (8.5) become

∂ψ

∂x
= 0, θ = 1, φ = 1 at y = 0

∂ψ

∂y
= 1, θ = 0, φ = 0 as y →∞

 (8.11)

where θe =
T e − T∞
Tw − T∞

represents the variable viscosity parameter, R =
4σ∗T 3

∞
k∗k

represents the

thermal radiation parameter, M =
σB0

2µe
2K

µ∞

(
L

α0

)(n−1)

Pe−(n−1) represents the magnetic

field parameter, Le =
α0

D0

represents the Lewis number, Ra =
L

α0

(
gKβT (Tw − T∞)

ν

)1/n

represents the generalized Rayleigh number, G =
CF
√
K

ν∞

(
L

α0

)(n−2)

Pe−(n−2) represents the

non-Darcy parameter, B =
β∗c (Cw − C∞)

β∗T (Tw − T∞)
represents the Buoyancy ratio parameter and

λ =
Ra

Pe
represents the mixed convection parameters.

Now, we introduce the one-parameter scaling group transformations which is simplified

form of Lie scaling group transformations. We will get the following similarity transforma-

tions

η = yx−1/2, ψ = x1/2f(η), θ = θ(η), φ = φ(η) (8.12)

Using Eq. (8.12) into Eqs. (8.8)-(8.10), the following similarity equations are attained

f ′′
[
n(f ′)

n−1
+ 2Gf ′

(
θe − θ
θe

)
+ M

(
θe − θ
θe

)]
=
f ′θ′

θe
(Gf ′ + M) (8.13)

+λn (θ′ + Bφ′)

(
θe − θ
θe

)
− λn (θ + Bφ)

θ′

θe

β(θ′)2 +

(
1 + βθ +

4R

3

)
θ′′ +

1

2
fθ′ = 0 (8.14)
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1

Le
φ′′ +

1

2
fφ′ = 0 (8.15)

The transformed boundary conditions (8.11) become

f(0) = 0, θ(0) = 1, φ(0) = 1

f ′(∞) = 1, θ(∞) = 0, φ(∞) = 0

 (8.16)

The non-dimensional heat and mass flux are given by:

qw = −k̃
(
∂T

∂y

)
y=0

− 4σ∗

3k∗

(
∂T

4

∂y

)
y=0

and qm = −D
(
∂C

∂y

)
y=0

(8.17)

The Nussult number Nu =
qwx

k̃(Tw − T∞)
and Sherwood number Sh =

qmx

D(Cw − C∞)
are

given by
Nux
x1/2

= −
(

1 +
4R

3

)
θ′(0) and

Shx
x1/2

= −φ′(0) (8.18)

8.3 Results and Discussion

The coupled nonlinear Eqs.(8.13)-(8.15) along with the boundary conditions (8.16) are solved

numerically using shooting method, which is explained clearly in chapter-2. In order to

assess the accuracy of the code generated the results of the present problem have been

compared with that of the results obtained by Chaoyang et al. [18] as a special case by

taking G = B = R = M = β = 0, Le = 1 and θe → ∞ and found that they are in good

agreement, as presented in Tab. (3.1).

Figures 8.1(a)-8.1(c) describe the effect of temperature-dependent viscosity (θe) and

power-law index (n) on the dimensionless velocity f ′(η), temperature θ(η) and the con-

centration φ(η) distribution, respectively. Figure 8.1(a) depicts that the enhancement in

the value of temperature-dependent viscosity tends to reduce the velocity profile for pseudo-

plastic, dilatant and Newtonian fluids. The temperature increases with increasing the values
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of θe for all three kinds of fluids, as plotted in Fig. 8.1(b). Thus, the enhancement of

viscosities accelerate the fluid motion and decreases the temperature of the fluid along the

wall. Moreover, Fig. 8.1(c) illustrates that, as increase in θe increases the concentration for

the three cases of pseudo-plastic, dilatant and Newtonian fluid. Here, it is inferred that the

variable viscosity has a significant effect on the velocity, temperature and concentration.

The influence of thermal conductivity (β) and power-law index (pseudo-plastic, dilatant

and Newtonian fluid) on dimensionless velocity f ′(η), temperature θ(η) and concentration

φ(η) distribution can be seen in Figs. 8.2(a)-8.2(c). Figure 8.2(a) reveals the enhancement

in thermal conductivity parameter rises the velocity for three kinds of fluids. Figure 8.2(b)

shows that the temperature enhances with the raise in thermal conductivity for three kinds

of fluids. From this plot it is noticed that the concentration slightly reduces with increase in

the variation of β for three kinds of fluids as shown in Fig. 8.2(c).

Figures 8.3(a)-8.3(c) explore the dimensionless velocity f ′(η), temperature θ(η) and con-

centration φ(η) profiles for thermal radiation (R) and power-law index (n = 0.5, n = 1.0,

n = 1.5), respectively. Figure 8.3(a) illustrates that the velocity f ′(η) enhances with raise

in R for three kinds of fluids (pseudo-plastic, Newtonian and dilatant fluids). Fig.8.3(b)

explores that increasing the value of R results an increase in temperature θ(η) profile for

three kinds of fluids. This is due to fact that the slope of the temperature distribution near

the surface is always negative, in the presence of R and thus heat is always transferred from

the surface. Fig. 8.3(c) depicts that increasing R slightly reduces the concentration for three

kinds of fluids.

Figures 8.4(a)-8.4(c) illustrate the combined effect of magnetic parameter M and pseudo-

plastic, dilatant and Newtonian fluid on dimensionless velocity f ′(η), temperature θ(η) and

concentration φ(η) profiles, respectively. Figure 8.4(a) exhibits that, as M increases, the

velocity profile decreases for pseudo-plastic and Newtonian fluids. But for dilatant fluid it is

observed that effect of magnetic field increases near the plate and reduces far away from the

plate. Figure 8.4(b) demonstrates that a rise in M substantially increases the temperature

profiles for index n < 1 and n = 1 but slightly decreases for index n > 1. This behaviour in

the fluid is because of the presence of a transverse magnetic field has a tendency to make the
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Lorentz drag which resists the flow. Accordingly, the vertical temperature and concentration

profiles increases as M increases. Due to the increase in the magnetic parameter, the non

dimensional concentration increases for index n < 1 and n = 1 but slightly reduces for

dilatant fluids as shown in Fig. 8.4(c).

Figures 8.5(a)-8.5(c) depict the dimensionless velocity f ′(η), temperature θ(η) and con-

centration φ(η) distributions for varying values of non-Darcy parameter (G) and power law

index (n), respectively. Figure 8.5(a) reveals that the velocity reduces as G increases for

all kinds of fluids. Since G demonstrates inertial drag, thus an increase in the Forchheimer

number increments the imperviousness to the flow, reduces the fluid velocity to develop. The

enhancement in G shows that the porous medium is offering more resistance to the fluid flow.

Figure 8.5(b) exhibits that the temperature increases with an increase in G for all kinds of

fluids. Figure 8.5(c) explores that the concentration increases with increase in non-Darcy

parameter (G) for all kinds of fluids. The increase in G decreases the intensity of the flow

and raises the temperature and concentration boundary layer thicknesses.

Table 8.1 shows the variation of the heat and mass transfer coefficients for various values

of power-law indices (n), temperature-dependent viscosity (θe), thermal conductivity (β),

thermal radiation (R), modified non-Darcy parameter (G) and magnetic field parameter

(M). Higher the values of n lower the heat and mass transfer coefficients. An increase in

the variable viscosity reduce both the heat and mass transfer coefficients. It is observed that

increase in the thermal conductivity reduces the heat transfer but a reverse trend is observed

for the mass transfer coefficients. It is seen that an enhancement in R raises the heat and

mass transfer coefficients. An increase in the magnetic parameter decrease the heat and

mass transfer coefficients. It can be seen that the heat and mass transfer coefficients reduce

with increasing the value of modified non-Darcy parameter.

133



0 1 2 3 4 5
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2
2 . 4
2 . 6
2 . 8

B = 1 . 0 , L e = 1 . 0 , M = 1 . 0 , R = 0 . 5 , β = 0 . 5 , G = 0 . 1 ,  λ = 1 . 0

n = 1 . 5 , θe = 1 . 5 , 2 . 0 , 2 . 5
n = 1 . 0 , θe = 1 . 5 , 2 . 0 , 2 . 5

n = 0 . 5 , θe = 1 . 5 , 2 . 0 , 2 . 5

 

 

η

f ’

(a)

0 1 2 3 4 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
B = 1 . 0 , L e = 1 . 0 , M = 1 . 0 , R = 0 . 5 , β = 0 . 5 , G = 0 . 1 ,  λ = 1 . 0

 

 

 θ

η

n = 1 . 0 , θe = 1 . 5 ,
         2 . 0 , 2 . 5

n = 1 . 5 , θe = 1 . 5 ,
         2 . 0 , 2 . 5

n = 0 . 5 , θe = 1 . 5 ,
         2 . 0 , 2 . 5

  

 

(b)

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 

 

 

B = 1 . 0 , L e = 1 . 0 , M = 1 . 0 , R = 0 . 5 , β = 0 . 5 , G = 0 . 1 ,  λ = 1 . 0

η

φ

n = 1 . 5 , θe = 1 . 5 ,
         2 . 0 , 2 . 5

n = 1 . 0 , θe = 1 . 5 ,
         2 . 0 , 2 . 5

n = 0 . 5 , θe = 1 . 5 ,
         2 . 0 , 2 . 5

  

 

(c)

Figure 8.1: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of θe and n.
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Figure 8.2: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of β and n.

135



0 1 2 3 4 5
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

2 . 2

2 . 4

 

 
 

n = 1 . 5 , R = 0 . 0 , 0 . 5 , 1 . 0
n = 1 . 0 , R = 0 . 0 , 0 . 5 , 1 . 0

n = 0 . 5 , R = 0 . 0 , 0 . 5 , 1 . 0

B = 1 . 0 , θe = 2 . 0 , L e = 1 . 0 , M = 1 . 0 , β = 0 . 5 , G = 0 . 1 ,  λ = 1 . 0

η

f ’

(a)

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 

  

n = 1 . 5 , R = 0 . 0 , 0 . 5 , 1 . 0
n = 1 . 0 , R = 0 . 0 , 0 . 5 , 1 . 0

n = 0 . 5 , R = 0 . 0 , 0 . 5 , 1 . 0

B = 1 . 0 , θe = 2 . 0 , L e = 1 . 0 , M = 1 . 0 , β = 0 . 5 , G = 0 . 1 ,  λ = 1 . 0

η

θ

(b)

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 

  

B = 1 . 0 , θe = 2 . 0 , L e = 1 . 0 , M = 1 . 0 , β = 0 . 5 , G = 0 . 1 ,  λ = 1 . 0

η

φ

  

 

n = 0 . 5 , R = 0 . 0 ,
     0 . 5 , 1 . 0

n = 1 . 0 , R = 0 . 0 ,
     0 . 5 , 1 . 0

n = 1 . 5 , R = 0 . 0 ,
     0 . 5 , 1 . 0

(c)

Figure 8.3: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of R and n.
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Figure 8.4: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of M and n.
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Figure 8.5: (a) velocity profile (b) temperature profile and (c) concentration profile for
various value of G and n.
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Table 8.1: The heat and mass transfer coefficients for varying values of n, θe, β, R, M and
G.

n θe β R G M −
(
1 + 4R

3

)
θ′(0) −φ′(0)

0.5 2.0 0.5 0.5 1.0 0.1 0.838589 0.802625
1.0 2.0 0.5 0.5 1.0 0.1 0.773878 0.733599
1.5 2.0 0.5 0.5 1.0 0.1 0.733564 0.690834
0.5 1.0 0.5 0.5 1.0 0.1 0.963603 0.942952
0.5 1.5 0.5 0.5 1.0 0.1 0.863049 0.828684
0.5 2.5 0.5 0.5 1.0 0.1 0.827000 0.790533
0.5 2.0 0.0 0.5 1.0 0.1 0.999089 0.796610
0.5 2.0 1.0 0.5 1.0 0.1 0.733239 0.807343
0.5 2.0 1.5 0.5 1.0 0.1 0.657877 0.811142
0.5 2.0 0.5 0.0 1.0 0.1 0.598852 0.792743
0.5 2.0 0.5 1.0 1.0 0.1 1.029872 0.808876
0.5 2.0 0.5 1.5 1.0 0.1 1.192422 0.813286
0.5 2.0 0.5 0.5 0.0 0.1 0.915635 0.878206
0.5 2.0 0.5 0.5 1.0 0.1 0.864916 0.828747
0.5 2.0 0.5 0.5 1.5 0.1 0.822488 0.786514
0.5 2.0 0.5 0.5 1.0 0.0 0.868591 0.834579
0.5 2.0 0.5 0.5 1.0 0.2 0.818284 0.781197
0.5 2.0 0.5 0.5 1.0 0.3 0.803242 0.765404
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8.4 Conclusions

The mixed convective transport over the vertical surface of a power-law fluid saturated with

non-Darcy porous medium with thermal radiation, MHD and variable properties effects are,

analyzed in this chapter.The main findings are summarized as follows:

• An enhancement in the variable viscosity decreases the velocity, heat and mass transfer

but enhances temperature and concentration profiles.

• Increase in the thermal conductivity parameter leads to increase in the velocity, tem-

perature and mass transfer but a decrease in the concentration profile.

• An increase in the values of the radiation parameter results an increase in the velocity,

temperature, heat and mass transfer but decrease in the concentration profile.

• The temperature and concentration rises but the velocity, heat and mass transfer rates

decreases with increasing values of magnetic field parameter.

• Increasing the non-Darcy parameter decreases the velocity, heat and mass transfer

rates increases the temperature and concentration profiles.
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Chapter 9

Summary and Conclusions

In this thesis, an analysis of convective heat and mass transfer over a vertical plate in

a power-law fluid saturated Darcy/non-Darcy porous medium and linear stability of the

vertical throughflow in a horizontal porous layer saturated by a power-law fluid, is discussed.

The objective of this thesis is to study the effects of variable properties, double dis-

persion, Soret, thermophoresis, MHD and thermal radiation in a Darcy/non-Darcy porous

medium saturated with power-law fluid on mixed convection flow. The Lie scaling group

transformations are applied to get the similarity representation for the system of partial

differential equations and then the resulting systems of equations are solved using shoot-

ing method. In addition, the linear stability analysis of the Darcy-Bénard convection of a

power-law fluid with local thermal non-equilibrium is studied. The linearized disturbance

equations are reduced to a eigenvalue problem by assuming a periodic train of convection

cells. This eigenvalue problem is solved using finite differences and a matrix-based method.

The important observations made from this study are listed below.

• Enhancement in the value of variable viscosity (θe) increases the velocity and decreases

in temperature, concentration, heat and mass transfer rates in Darcy flow. Further,

these results are opposite to the results of non-Darcy flow with respect to variable

viscosity.
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• An increase in the value of thermal conductivity (β) decreases the concentration, heat

and mass transfer rates and increases the velocity and temperature in both Darcy and

non-Darcy flows.

• The behaviour of the Darcy and non-Darcy flows: Higher values of the thermal dis-

persion parameter (Peγ) result in higher velocity, temperature and mass transfer dis-

tributions but lower concentration and heat transfer rate.

• Velocity, concentration and heat transfer rate increases with the increase in solutal

dispersion parameter (Peζ), whereas opposite results are reported for temperature and

mass transfer rate. It is observed that these results are same in Darcy and non-Darcy

porous medium.

• A rise in the value of thermophoresis parameter (τ) monotonically decreases the ve-

locity, concentration gradients and heat transfer rate, but it increases the temperature

and mass transfer rate. Here, the influence of thermophoresis is same in nature for

both Darcy and non-Darcy flow cases.

• The effect of the radiation parameter (R) reduces the velocity and concentration pro-

files, but enhances the temperature, heat and mass transfer rates in both Darcy and

non-Darcy flows.

• An increasing the value of Soret parameter (Sr) decreases the temperature and mass

transfer rates, but increases the velocity, concentration and heat transfer rate.

• An increase in the values of the mixed convection parameter (λ) results in higher

velocity, heat and mass transfer rates but lower temperature and concentration profiles.

• The influence of the non-Darcy parameter (G) enhances the temperature and concen-

tration, but reduces the velocity, heat and mass transfer rates.

• The higher values of the magnetic field (M) result in lower velocity, heat and mass

transfer rates, but higher temperature and concentration.
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• The neutral stability curve is affected by both n and Pe, while it is unaffected by the

sign of Pe. The effect of an increasing n for a given Pe is different for either smaller

or larger values of Pe. Generally speaking, pseudo-plastic fluids n < 1 are more stable

than dilatant fluids n > 1 when Pe is small, while they become more unstable if Pe is

large.

• The effect of increasing Ω is to decrease the Rac and hence the effect of increasing Ω is

to destabilize the system. The effect is more pronounced for very small Ω. The critical

Rayleigh number is independent of Ω for very small H while for large H,it decreases

with increasing Ω

• It is found that the critical Rayleigh number RacΩ
(1+Ω)

based on the mean properties of the

media vary monotonically with H and approaches a common limit as H → ∞. It is

also observed that the critical wave number kc approaches a common limit as H → 0

and H →∞ in the Darcy limit while it approaches two different limits, one as H → 0

and another as H →∞ in the Brinkman regime.

Future Scope :

The work presented in the thesis can be extended to analyze the different effects consid-

ering viscosity variation with temperature, viscous dissipation, magnetic field, exothermic

and endothermic reactions, and to different geometries using linear and non-linear stability

analysis. Such an exhaustive study can be a rewarding experience though it is challenging

as well as time consuming.
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