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CHAPTER 1. 2

In this Chapter, the entire thesis writing began. Section 1.1 provides the abstract

of the thesis. Section 1.2 gives some key words. Section 1.3 presents a list of

abbreviations used in the thesis. Section 1.4 introduces some basic concepts and

definitions concerning the thesis. Section 1.5 presents the literature review in detail.

1.1 Motivation and Abstract of the Thesis

The transportation problem (TP) is a well-known optimization problem in opera-

tional research, in which two kinds of constraints are taken into consideration, i.e.,

source constraint and destination constraint. But in the real system, we always deal

with other constraints besides the source constraint and destination constraint, such

as product type constraint or transportation mode constraint.

If more than one objective is to be considered and optimized at the same time

in a STP, then the problem is called multi-objective solid transportation problem

(MOSTP). Besides the source, destination and conveyance capacity in an STP, there

may exist some other constraints. For example, budget constraints may arise due

to limited budget, space constraints may arise due to limited space in warehouses,

stores, etc.

Due to insufficient information, lack of evidence, fluctuating financial market,

the available data of a transportation system such as transportation costs, resources,

demands and conveyance capacities are not always crisp or precise. For example the

transportation cost depends upon fuel price, tax charges, labour charges, etc., each

of which are fluctuated from time to time. It will be more realistic to express those

parameters by fuzzy numbers.

Fuzzy set theory is a generalization of the conventional set theory to represent

vagueness or imprecision in everyday life. Thus, fuzzy sets have found applications
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in various fields such as Pattern Recognition, Optimization Techniques, etc. In fuzzy

set theory, an element x in a fuzzy set A has a degree of membership µA(x). The

range of the membership function is [0,1]. A fuzzy number is a convex normalized

fuzzy set of the real line R, with a piecewise continuous membership function.

In order to deal with the uncertain optimization problems, fuzzy and stochastic

approaches are commonly used to describe the imprecise characteristics. In stochas-

tic programming the uncertain coefficients were regarded as random variables and

their probability distributions are assumed to be known. In fuzzy programming the

constraints and objective function are viewed as fuzzy sets and their membership

functions also need to be known. In these two kinds of approaches, the member-

ship functions and probability distributions play an important roles. However, it

is sometimes difficult to specify an appropriate membership function or accurate

probability distribution in an uncertain environment.

The fixed charge solid transportation problem is an extension of classical trans-

portation problem in which a fixed profit is incurred, independent of the amount

transported, along with a variable profit that is proportional to the amount shipped.

The fixed charge solid transportation has two kinds of profits: direct profit and fixed

charge profit.

The entire thesis divided into nine chapters.

Chapter one is introductory in nature. Chapters two, three and four explored

the fuzzy solid transportation, fractional solid transportation and stochastic solid

transportation models with interval budget constraints respectively. Chapters five

and six study the multi-objective solid transportation problems through goal pro-

gramming approach in the presence of a defuzzification model. Chapters seven and

eight deal with Rough interval approach. Algorithms are given by Chapter two to

eight and study of comparisons with other methods are included in Chapter five and
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eight. Chapter nine gives the key findings and scope for future study.

The brief description of each chapter is given below.

The aim of the present thesis is to present numerical solutions for solid trans-

portation models with various conditions. In the real world, the parameters in the

models are seldom known exactly and have to be estimated.

Chapter - 1 is introductory in nature and gave motivation to the investigations

carried out in the thesis. A brief survey of relevant literature, notations, abstract

and keywords were drawn to exhibit the importance of the problems considered.

Chapter - 2, deals with fuzzy solid transportation problem with interval budget

constraint. The objective is to determine the optimal total cost of the solid trans-

portation problem with the supply, the demand and the conveyance satisfying the

transportation requirement. A method is proposed for the fuzzy objective value of

the fuzzy solid transportation problem. Based on the extension principle, the fuzzy

solid transportation problem is transformed into a pair of mathematical programs

that is employed to calculate the lower and upper bounds of the fuzzy total trans-

portation cost at possibility level α. From different values of α, the membership

function of the objective value is constructed. To illustrate the results of the pro-

posed model, we have given numerical example and presented the computational

result.

Chapter - 3, deals with the solid fractional transportation problem (SFTP).

Based on the α -cut representation of fuzzy sets and the extension principle, a

fractional program is formulated to find the fuzzy objective value of fuzzy SFTP

when, the cost coefficients, supply, demand quantities and conveyance capacities are

fuzzy numbers and the additional constraints on the total budget at each destination

which is an interval type. Under Zadeh’s extension principle, a pair of two level

mathematical programs is formulated to calculate the fuzzy objective value of SFTP
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with fuzzy parameters. By applying the dual formulation and variable substitution

techniques, the two-level mathematical programs are transformed into one level

linear program. Taking different values of α, the membership function of objective

value is constructed and a numerical example was given to illustrate the proposed

model.

In Chapter - 4, a fuzzy stochastic solid transportation problem (FSSTP) was

formulated with random demand and capacities of conveyances with budget con-

straints. Goal programming (GP) approach was applied to solve the said solid trans-

portation problem (STP). This chapter also presents fuzzy goal programming models

(FGP) for the stochastic aspect in STP. It was considered that the demand, con-

veyance capacities are random and expressed as fuzzy-stochastic constraints. Two

dimensional representation of a proposed FSSTP was derived and solved numeri-

cally. The optimum results of this model are compared with the solid transportation

model with different budgets.

Chapter - 5 considers the multi-objective solid transportation problem with

fuzzy coefficients for the objectives and constraints is modeled and then solved.

Fuzzy goal programming was used to the multi-objective solid transportation prob-

lem, and an optimal compromise solution obtained. Meanwhile, expected values of

the fuzzy objective functions are considered to derive crisp values. In this method,

a defuzzification model, which is an applications of fuzzy linear programming and

conditions for a solid transportation problem are imposed. Three numerical exam-

ples were presented using the above mentioned methodology and the appropriate

comparative study is also included.

In Chapter - 6, an attempt has been made to study the multi objective solid

transportation problem with L-R coefficients. As for the object with L-R coefficient

in the linear programming, the Researcher integrated the method, which could also
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be changed into to a fuzzy optimal solution to multi-object linear programming.

Meanwhile, determination of this model may cause the constraint field of linear

programming to be empty sets after subjectively the flexible indexes p1, p2, p3 were

given. Using this method and the classical algorithms solution could be obtained to

the problem. At the end, A numerical example is given to illustrate the proposed

model.

In Chapter - 7, the solid transportation problem with fuzzy coefficients for the

objectives and constraints with rough interval was modeled and solved. Here, the

researcher formulated two solid transportation problems with interval coefficients

considering the lower approximation and the upper approximation of the rough in-

tervals. From these two solid transportation problems four different classical solid

transportation problems were constituted. The concept of the completely satisfac-

tory solution, rather satisfactory solutions, surely optimal range, possibly optimal

range and rough optimal range are discussed. The proposed procedure is validated

with the help of a numerical example.

In Chapter - 8, the researcher present a study on rough interval approach

to determine the preferred compromise solution for fuzzy fixed charge solid trans-

portation problem. The proposed model is formulated as fuzzy coefficients for the

direct profit, fixed charge and constraints with rough interval. Here, researcher con-

structed two solid transportation problems with interval coefficients considering the

lower and upper approximation of the rough intervals. Moreover, from these two

solid transportation problems four different classical solid transportation problems

were constituted and solved. Expected values of the fuzzy objective functions (with

direct profit and fixed charge profit) were considered to derive the crisp values. Nu-

merical example was given in order to show applicability of the proposed model.

Sensitivity analysis and comparative study was included.
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Chapter - 9 presents the main conclusions of all the Chapters of the thesis

along with some directions for future research work.

1.2 Keywords

Single-objective and Multi-objective, Fixed Charge, Solid Transportation Problem,

Rough Interval, Stochastic, L-R coefficients, Membership Function, Fuzzy Number,

Fractional Programming, Fuzzy Goal Programming.
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1.3 Abbreviations

TP : Transportation Problem

STP : Solid Transportation Problem

TFN : Triangular Fuzzy Number

TrFN : Trapezoidal Fuzzy Number

FLP : Fuzzy Linear Programming

LFP : Linear Fractional Programming

SFTP : Solid Fractional Transportation Problem

MOSTP : Multi-Objective Solid Transportation Problem

FCSTP : Fixed Charge Solid Transportation Problem

GP : Goal Programming

FGP : Fuzzy Goal Programming

SSTP : Stochastic Solid Transportation Problem

FSSTP : Fuzzy Stochastic Solid Transportation Problem

RI : Rough Interval

FSFTP : Fuzzy Solid Fractional Transportation Problem

MOFSTP : Multi-Objective Fuzzy Solid Transportation Problem

STPIC : Solid Transportation Problem with Interval Coefficient

FCSTPIC : Fixed Charge Solid Transportation Problem with

Interval Coefficient

FCSTPRIC : Fixed Charge Solid Transportation Problem with Rough

Interval Coefficient
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1.4 Basic Definitions

The basic definitions are given as follows.

Definition 1.1. Fuzzy Set

Fuzzy sets introduced by Zadeh [108], as a mathematical tool to represent ambiguity

and vagueness are a generalization of the classical (crisp) set and it is a class of

objects with membership grades defined by a membership function.

Let U be a universal set. A fuzzy set Ã of U is defined by a membership function

µÃ(x) : U −→ [0, 1], (1.1)

where µÃ(x) denotes the membership grade (or degree) of x in Ã, and is called the

membership function.

In a classical set, an element of the universe either belongs to or does not belong

to the set while in a fuzzy set, the degree of membership of each element ranges

over the unit interval. A fuzzy set Ã on the given universal set U is a set of ordered

pairs:

Ã = {x, µÃ(x) : x ∈ U}, (1.2)

where the first element of which denotes the element and the second the degree of

membership.

Example: Ã = “Integers close to 10”. Then fuzzy set Ã can be written as

Ã = {x, µÃ(x) : x is an integer close to 10}

=(6, 0.2), (7, 0.4), (8, 0.7), (9, 0.8), (10, 1), (11, 0.6), (12, 0.2).

Definition 1.2. α-cut of a Fuzzy Set

An α-cut of Ã is defined by Aα = {x : µÃ(x) = α, α ≥ 0}.
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Definition 1.3. Fuzzy Number

A fuzzy set Ã on a universal set U is a fuzzy number iff Ã satisfies two conditions:

1. Ã is normal, i.e.,

supx∈UµÃ(x) = 1, (1.3)

2. Ã is convex, i.e.,

µÃ(λx+ (1− λ)y) ≥ min(µÃ(x), µÃ(y)),∀x, y ∈ U,∀ ∈ [0, 1]. (1.4)

Definition 1.4. Triangular Fuzzy Number (TFN)

A fuzzy number Ã = (a1, a2, a3), is called the triangular fuzzy number where a1 <

a2 < a3, if the membership function of Ã is defined by:

µÃ(x) =



x− a1
a2 − a1

, when a1 ≤ x ≤ a2

a3 − x
a3 − a2

, when a2 ≤ x ≤ a3

0, otherwise

Figure 1.1: Triangular fuzzy number
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Definition 1.5. Trapezoidal Fuzzy Number (TrFN)

A fuzzy number Ã = (a1, a2, a3, a4), is called the trapezoidal fuzzy number where

a1 < a2 < a3 < a4, if the membership function of Ã is defined by:

µÃ(x) =



x− a1
a2 − a1

, when a1 ≤ x ≤ a2

1, when a2 ≤ x ≤ a3

a4 − x
a4 − a3

, when a3 ≤ x ≤ a4

0, otherwise

Figure 1.2: Trapezoidal Fuzzy Number

Definition 1.6. Fuzzy Linear Programming (FLP) Problem

A Fuzzy Linear Programming Problem with m fuzzy equality constraints and n

fuzzy variables may be formulated as follows:

max (or min) (C̃T ⊗ X̃),

subject to Ã⊗ X̃(.,u∼= or &)b̃

X̃ is a non-negative fuzzy number,

where C̃T = [c̃j]1×n, X̃ = [x̃j]n×1, Ã = [ãij]m×n, b̃ = [b̃i]m×1,

and the parameters ãij, c̃j, x̃j, b̃i ∈ F (R)

where F (R) is the set of fuzzy numbers.
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Definition 1.7. Linear Fractional Programming (LFP) Problem

A Linear-fractional programming problem is one whose objective function is a ratio

of two linear functions satisfying some linear constraints.

Example:

max Z = f1(x)
f2(x)

,

subject to g1(x) ≤ 0, g2(x) ≤ 0, x ≥ 0,

f1, f2, g1, g2 are linear functions,

f2(x) 6= 0 for any x.

Definition 1.8. Solid Transportation Problem (STP)

Let us consider m sources, n destinations and k conveyance in a solid transportation

problem. At each source, let si be the amount of a homogeneous product we want

to transport to n destinations to satisfy the demand for dj units of the product.

Here ek called conveyance that denotes the units of this product that can be carried

by k different modes of transportation, such as the land transportation by car or

train, and ocean shipping. A penalty value of the unit shipping cost represented by

cijk of a product from origin to destination by means of the conveyance. We need

to determine a feasible way of shipping the available amounts to satisfy the demand

so that the total transportation cost is minimized.

Let xijk denote the number of units to be transported from source i to destination

j through conveyance capacities k. The mathematical form of the solid transporta-

tion problem with transportation costs, availabilities and conveyance capacities is

given below:
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min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥ dj j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ek k = 1, 2, . . . K

xijk ≥ 0, ∀i, j, k.

(1.5)

Definition 1.9. Multi-Objective Solid Transportation Problem (MOSTP)

A multi-objective fuzzy solid transportation problem is formulated as follows:

Zr = min
m∑
i=1

n∑
j=1

K∑
k=1

crijkxijk, r = 1, 2, . . . R

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

xijk ≥ 0,∀i, j, k.

(1.6)

Here, ek is called conveyance, that denotes units of this product which is carried

by k different modes of transportation and also the objectives of Zr(r = 1, 2, . . . R)

need to be minimized.

Remark 1.1: In a multi-objective optimization problem two or more objectives

are simultaneously optimized under some constraints. These objectives may be

in conflict with each other, or may not be. Further, there is no single optimum
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solution, but there is a solution set which would bring Pareto optimal solutions.

Pareto optimal solutions are a set of trade-offs between different objectives and are

nondominated solutions.

Definition 1.10. Goal Programming (GP) (Charnes and Cooper [13])

Goal programming (GP) Models were originally introduced by Charnes and Cooper

in 1961 for a linear programming (LP) model. Goal programming is a multi-criteria

decision making (MCDM) approach that allows the simultaneous solution of a sys-

tem of multiple and conflicting objectives.

In the simplest version of goal programming, the decision maker (DM) sets the

goal for each objective that he/she wishes to attain. The optimum solution is then

defined as the one that minimizes the total deviations from the set goals.

Thus, the goal programming formulation of multi-objective optimization problem

leads to

min [
n∑
j=1

(d+j + d−j )p]
1
p

subject to g(j)(X) ≤ 0,

Wj(X)− d+j + d−j = bj,

d+j d
−
j = 0,

d+j ≥ 0, d−j ≥ 0.

(1.7)

Here, g(j)(X) = jth constraint function (j = 1, 2, . . . n),

Wj = jth objective function,

bj goal set by the decision maker for Wj,

d−j = under-deviation from the jth goal,

d+j = over-deviation from the jth goal,

p = distance parameter 1 ≤ p ≤ ∞.
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Goal programming is used to perform three types of analysis:

1. To determine the required resources to achieve a desired set of objectives.

2. To determine the degree of attainment of the goals with the available resources.

3. To provide the best satisfying solution under a varying amount of resources

and priorities of the goals.

Definition 1.11. Rough Interval (Hamzeheea et al.[35])

The qualitative value A is called a rough interval when one can assign two closed

intervals A∗ and A∗ on R to it where A∗ ⊆ A∗. Moreover,

1. If x ∈ A∗ then A surely takes x (denoted by x ∈ A ).

2. If x ∈ A∗ then A possibly takes x.

3. If x /∈ A∗ then A surely does not take x (denoted by x /∈ A ).

A∗ and A∗ are called the lower approximation interval (LAI) and the upper approx-

imation interval (UAI) of A , respectively. Further, A is denoted by A = (A∗, A
∗).

For a rough variable A, the lower approximation interval means that the variable A

takes the values in that interval in normal cases but for a special case the variable

takes the value from the upper approximation interval, which imply, the variable is

bounded by the upper approximation interval as it cant take a value outside this.

Note that the intervals A∗ and A∗ are not complement to each other.

Definition 1.12. Rough Interval Arithmetic

Rough Interval, a special case of a rough set proposed by Rebolledo [90], satisfy

all the rough sets properties and basic concepts, including the upper and lower

approximation definitions.

According to Rebolledo some of these arithmetic operations of rough intervals are
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given below:

Let A = ([al, au], [āl, āu]) and B = ([bl, bu], [b̄l, b̄u]) are two rough intervals.

1.Addition : A+B = ([al + bl, au + bu], [āl + b̄l, āu + b̄u]).

2.Subtraction : A−B = ([al − bu, au − bl], [āl − b̄u, āu − b̄l]).

3.Negation : −A = ([−au,−al], [−āu,−āl]).

4.Union : A ∪B = ([min{al, bl},max{au, bu}], [min{āl, b̄l},max{āu, b̄u}]).

5.Intersection : A ∩B = ([max{al, bl},min{au, bu}], [max{āl, b̄l},min{āu, b̄u}]).

1.5 Literature Survey

There were many production systems with transportation operations where raw ma-

terials of the company are transported from source (origin) to demand (destination)

by different types of conveyances like trucks, ships, goods trains, cargo flights, etc.

This type of transportation problem, known as solid transportation problem (STP),

is the generalization of traditional transportation problem. The transportation prob-

lem (TP) is first defined by Hitchcock [38]. The solid transportation problem, first

stated by Schell [92] and Haley [34].

The fuzzy set theory, developed by Zadeh [108], is a generalization of the con-

ventional set theory to represent vagueness or imprecision in a strict mathematical

framework. The philosophy of fuzzy sets is very close to human thinking. Hence,

fuzzy sets have found applications in diverse fields. Bellman and Zadeh [6] applied

the notion of fuzzy sets for decision-making theory, considering conflicts between

constraint equation and objective equation of the general programming, and pro-

posed the max-min operation method in order to determine the optimal decision of

the two solutions.
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The technique of fuzzy linear programming enlarges the range of applications of

the linear programming problem. It allows the decision maker to consider tolerances

for values of decision model parameters in a natural and direct way. It is of a great

importance when it is not possible to determine the decision model parameters

exactly.

1.5.1 Literature on Transportation Problem (TP)

Since the transportation problem is essentially a linear program, one uniformly apply

the existing fuzzy linear programming techniques (Buckly [8], Chanas et al.[12] and

Hadi Basirzadeh [5]) to the fuzzy transportation problem.

Z = min
m∑
i=1

n∑
j=1

c̃ijxij,

subject to
n∑
j=1

xij = ãi, i = 1, 2, . . .m,

m∑
i=1

xijk = b̃j, j = 1, 2, . . . n,

xij ≥ 0,∀i, j.

(1.8)

in which the transportation costs c̃ij, supply ãi and demand b̃j quantities are fuzzy

quantities.

The method of Julien [47] and Parra et al.[84] is able to find the possibility distribu-

tion of the objective value, provided all the inequality constraints are of “ ≥′′ type

or “ ≤′′ type. Mondal [74] had studied transportation problem with a budgetary

constraint in the deterministic case. Dinagar and Palanivel [22] investigated fuzzy
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transportation problem, with the aid of trapezoidal fuzzy numbers.

Z = min
m∑
i=1

n∑
j=1

[c̃1ij, c̃
2
ij, c̃

3
ij, c̃

4
ij][x

1
ij, x

2
ij, x

3
ij, x

4
ij]

subject to
n∑
j=1

xij = [ã1i , ã
2
i , ã

3
i , ã

4
i ], i = 1, 2, . . .m,

m∑
i=1

xijk = [b̃1j , b̃
2
j , b̃

3
j , b̃

4
j ], j = 1, 2, . . . n,

[x1ij, x
2
ij, x

3
ij, x

4
ij] ≥ 0,∀i, j.

(1.9)

1.5.2 Literature on Solid Transportation Problem (STP)

However, in many realistic transportation situations the demands at various demand

points are random variables. the study on STP in uncertain environment was started

during last two decades. An STP with one or more random or fuzzy parameter is

defined as a stochastic solid transportation problem (SSTP). A bicriteria STP in

stochastic environment was solved by Yang and Feng [106]. Ojha et al.[79] using

the analytic hierarchy process for a stochastic discounted multi-objective STP for

breakable items. Bit et al.[7] developed a fuzzy programming model for a multi-

objective STP. Jimenez and Verdegay [45] presented an evolutionary algorithm based

on parametric approach to solve fuzzy STP. Li et al.[63] considered an improved

genetic algorithm to solve multi-objective STP in fuzzy environment, where total

fuzzy transportation cost is optimized.

The fixed charge solid transportation problem is an extension of classical trans-

portation problem. Kennington and Unger [51] have developed a new branch-and-

bound procedure specialized for the fixed-charge transportation problem.
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1.5.3 Literature on Multi-Objective Solid Transportation

Problem (MOSTP)

If optimized objective is more than one in the STP, then the problem is called

multi-objective solid transportation problem (MOSTP). Zimmermann [110] first in-

troduced fuzzy set theory into the conventional linear programming problem, and

combined the fuzzy linear programming (FLP) model with multi-objective pro-

gramming (MOP) into fuzzy multi-objective linear programming. The MOSTP

was solved by several investigators using various methods. Bit et al.[7] used fuzzy

programming approach, Ida et al.[41] presented a neural network method. Gao and

Liu [30] developed two-phase fuzzy algorithms to solve MOSTP. Kundu et al.[57]

presented a multi-objective, multi-item solid transportation problem. Pramanik et

al.[88] have developed a multi-objective STP in a fuzzy random environment. Li

et al.[63] presented a genetic algorithm for solving the MOSTP with coefficients of

the objective function as fuzzy numbers. Jimnez and Verdegay [46] applied an evo-

lutionary algorithm based on parametric approach to solve fuzzy STP. In addition,

Li et al.[63] designed a neural network approach for multi-criteria STP and they

also presented an improved genetic algorithm to solve MOSTP with fuzzy num-

bers. Gao and Liu [30] developed a two-phase fuzzy goal programming technique

for multi-objective transportation problem. Gen et al.[31] gave a genetic algorithm

for solving bicriteria fuzzy STP.

Ida et al.[41] presented a neural network method to solve a MOSTP. Gao and

Liu [30] developed two-phase fuzzy algorithms to solve multi-objective STP. Yang

and Liu [105] presented an algorithm for fuzzy fixed charge solid transportation

problem in minimization type, Tao and Xu [95] developed a class of rough multiple

objective programming and its application to a solid transportation problem. Li

et al.[63] designed a neural network approach for multicriteria STP. Hussein [40]



CHAPTER 1. 20

introduced the complete solutions of multi objective transportation problems with

possibilistic coefficients. Chakraborty et al.[9] used a fuzzy programming approach

to solve a MOSTP. Ojha et al.[78] formulated a STP with discounted costs, fixed

charges and vehicles costs as a linear programming problem. Ammar and Youness

[1] introduced the solution of MOTP with fuzzy objectives, fuzzy sources, and fuzzy

destinations. Recently, Pramanik et al.[88] have developed a multi-objective STP

in a fuzzy random environment.

The operations on fuzzy numbers could be founded in Dubois and Prade [25]. A

detailed introduction to the theory of fuzzy sets could be found in Kauffman [48] and

in Klir and Bo [53]. Over the past few decades, some researchers started to apply

fuzzy set theory in inventory management problems. Hannan [36, 37] formulated

the linear programming with multiple fuzzy goals.

Decision makers sometimes set such goals, even when they are unattainable

within the available resources. Such problems were tackled with the help of the

techniques of goal programming. Whether the goals are attainable or not, the ob-

jective function is stated in such a way that it’s optimization means “as close as

possible” to the indicated goals. The concept of Goal Programming was introduced

by Charnes and Cooper [13]. Some extensions of linear goal programming for multi-

objective analysis could be found in Ignizio [42, 43], Lee [61], Ijiri [44]. The goal

programming was applied in a fuzzy environment by Narasimhan [75, 76]. Charnes

and Cooper [14, 15] introduced the concept of goal programming for multiple lin-

ear fractional optimization problems which was extended by Kornbluth and Steuer

[54, 55]. Tiwari et al.[96] proposed fuzzy goal programming as an additive model.

The GP approach to fuzzy programming problems introduced by Mohamed [72]

is extended to solve fuzzy multi-objective fractional linear programming problems.

Using trapezoidal membership function the objectives are transformed into fuzzy
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goals by means of assigning an aspiration level to each of them. Several researchers

considered transportation problem in stochastic environments (Chalam [11], Cooper

[17, 18]) and fuzzy environments (Kaur and Kumar [49], [50]).

1.5.4 Literature on Fractional Programming

The linear and nonlinear models of fractional programming problems had been ini-

tially studied by Charnes et al.[14] and Dinkelbach [23]. The fractional programming

problems have been studied extensively by many researchers. Mjelde [71] maximized

the ratio of the return and the cost in resource allocation problems, Kydland [60] on

the other hand maximized the profit per unit time in a cargo-loading problem. Arora

et al.[3] discussed a fractional bulk transportation problem in which the numerator

is quadratic in nature and the denominator is linear.

Lin [64] proposed iterative labeling algorithms to determine the sensitivity ranges

of the fractional assignment problem. Xu et al.[103] utilize a new algorithm to deal

with the linear fractional minimal cost flow problem on network. Wang et al.[98]

solve the bi-level linear fractional programming problem by means of an optimization

algorithm based on the duality gap of the lower level problem.

Dutta et al.[26, 28] developed a fuzzy set theoretic approach for the multiple

objective linear fractional programming, and then presented the comments over it.

The effect of tolerance in fuzzy fractional programming was presented by Dutta et

al.[27]. A restricted class of multi-objective linear fractional programming problems

were developed by Dutta et al.[29]. Mohamed [72] had studied the relationship

between goal programming and fuzzy programming. Chen and Tzeng [16] applied

the fuzzy multi-objective approach to the supply chain model. Kumar et al.[56]

applied fuzzy goal programming approach for vendor selection problem in a supply

chain.
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Mohanty et al.[73] proposed a fuzzy approach for multi-objective programming

problem and its equivalent goal programming problem with appropriate priorities

and aspiration levels. Pal and Basu [82] presented a goal programming method for

solving fractional programming problems via dynamic programming. Pal et al.[83]

formulated a goal programming procedure for fuzzy multi-objective linear fractional

programming problem. Pramanik and Roy [89] used the fuzzy goal programming ap-

proach to multilevel programming problems. Chakraborty and Chatterjee [10] used

multi-criteria decision-making methods for the selection of materials with minimum

data.

1.5.5 Literature on Expected value operator

Liu and Liu [69] presented the expected value model for fuzzy programming. Yang

and Liu [105] applied expected value model, chance-constrained programming model

and dependent-chance programming in fixed charge solid transportation problem in

fuzzy environment. Li and Wang [62] presented generalized expected value model

for stochastic programming in transportation problems. Cui and Sheng [20] pre-

sented the expected-constrained programming for an uncertain solid transportation

problem was given based on uncertainty theory. Baidya and Maiti [4] studied a

STP with safety factor under different uncertain environments. Halder and Maiti

[33] investigated some special fixed charge multi-item solid transportation problems

in crisp and fuzzy environments.

In recent years, the interval analysis method was developed to model the un-

certainty in uncertain inventory optimization problems, in which the bounds of the

uncertain coefficients are only required, not necessarily knowing the probability dis-

tributions or membership functions. Charnes et al.[15] proposed an idea for solving

the linear programming problems in which the constraints were assumed as closed
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intervals.

Tong [97] studied interval number and fuzzy number linear programming where

the coefficients of the objective function and constraints were all interval numbers,

and the possible interval of the solution was obtained by taking the maximum

value range and minimum value range inequalities as constraint conditions. The

KarushKuhnTucker (KKT) optimality conditions play an important role in the area

of optimization theory and has been studied for over a century.

Many approaches to interval-valued optimization problems have been explored

in considerable details, while few papers studied the KKT optimality conditions for

interval-valued optimization problems. Wu [100, 101, 102] studied the KKT optimal-

ity conditions in an optimization problem with interval-valued objective function.

Oliveira et al.[80] presented an overview of multiple objective linear programming

models with interval coefficients. Liu [70] applied geometric programming to profit

maximization with interval coefficients and quantity discount.

1.5.6 Literature on Rough Intervals (RI)

In literature there were so many works in which TP/STP minimizes the correspond-

ing transportation cost. But the profit maximizing transportation problems have

been investigated by only few researchers. In many real life situations it was found

that the main objective of the problem is to maximize under some conditions.

Pawlak [85] was the first person to present the Rough set theory. The relation-

ships of rough set theory to many other theories have been extensively investigated

by Pawlak and Skowron [86, 87]. In particular, its relationships with fuzzy set the-

ory, the theory of evidence, Boolean reasoning methods and statistical methods.

Rough set theory has a great application in different fields, for example presented

Greco et al.[32] multi-criteria decision analysis, Nasiri and Mashinchi [77] presented
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decision analysis, machine learning, knowledge acquisition, and knowledge discovery

from a database. Weigou [99] developed decision algorithms. Arabani and Nashaei

[2] presented civil engineering problems (New approach to simplify dams location)

and other areas. In the recent era, some interesting work has been developed in

theoretical aspect and applied into many practical fields such as Data Envelop-

ment Analysis (DEA) (Shafiee and Shams-e-alam [93], Xu et al.[104]), Lin [65] has

presented data mining, some other researchers have presented multi-criteria decision

analysis, signal processing etc. Liu [67] proposed the concept of rough variable which

was a measurable function from rough space to the set of real numbers. Liu [68]

discussed some inequalities of rough variables and convergence concept of sequence

of rough variables. Robolledo [90] has presented the rough interval (RI). Youness

[107] proposed a type of rough programming, in which two optimal solutions (surely

optimal solution and possibly optimal solution) were defined and solution are well

discussed by Osman et al.[81]. Kundu et al.[58] developed a solid transportation

model considering crisp and rough cost. Tao et al.[95] presented an application of

rough multiple objective programming in solid transportation problem.
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2.1 Introduction

Transportation models have wide applications in logistics and supply chain manage-

ment for improving service and reduce the cost.

In this chapter, the researcher investigated a solution for the fuzzy solid trans-

portation problem with interval valued budget at each destination. An assessment

of different results of the model was presented. The researcher considered solution

procedure that was able to calculate the fuzzy objective value of the fuzzy solid

transportation problem. The idea is to apply Zadeh’s extension principle [109]. A

pair of two-level mathematical programs was formulated to calculate the lower and

upper bounds of the α-level cut of the objective value. Researcher introduced the

crisp conversion of the constraints of the respective model and made use of Hu and

Wangs [39] approach based on interval ranking. Based on the extension principle,

the fuzzy solid transportation problem was transformed into a pair of mathematical

programs that was employed to calculate the lower and upper bounds of the fuzzy

total transportation cost at possibility level α. From different values of α, the mem-

bership function of the objective value is constructed. Since the objective value was

fuzzy, the values of the decision variables derived in this paper are fuzzy as well. An

example was illustrated for this model.

Section 2.2 gives the formulation of the problem in fuzzy solid transportation

problem. Section 2.3 deals with the solution procedure of the problem deriving the

membership function. An algorithm is given in section 2.4. Section 2.5 presents a

numerical example to explain the proposed method.
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2.2 Formulation of the Problem

STP is a problem of transporting goods from some sources to some destinations

through some conveyances (modes of transportation), and the main objective is

to find the optimal transportation plan so that the total transportation cost is

minimum. Let us consider the m sources, n destinations and k conveyance in a solid

transportation problem. At each source, let si be the amount of a homogeneous

product we want to transport to n destinations to satisfy the demand for dj units of

the product. Here ek called conveyance denotes the units of this product that could

be carried by k different modes of transportation, interval budget at the destination,

such as the land transportation by car or train, and sea voyage. A penalty value

of the unit shipping cost represents by cijk of a product from origin to destination

by means of the conveyance. We need to determine a feasible way of shipping the

available amounts to satisfy the demand so that the total transportation cost is

minimized.

The mathematical form of the solid transportation problem with interval budget

constraints, transportation costs, availabilities and conveyance capacities is given

below:

min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

m∑
i=1

K∑
k=1

cijkxijk ≤ [bLj , b
R
j ], j = 1, 2, . . . n,

(2.1)
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xijk ≥ 0, ∀ i, j, k.

Intuitively, if any of the parameters xijk,si, dj or ek is fuzzy, the total transportation

cost becomes fuzzy. Then the Model (2.1) turns into the fuzzy solid transportation

problem with interval budget constraints.

Suppose the unit shipping cost cijk, supply si, demand dj, conveyance capacity

ek and budget intervals were approximately known. They can be represented by the

convex fuzzy numbers Cijk, Si, Dj and Ek respectively, with membership functions

µC̃ijk
,µS̃i

, µD̃j
and µẼk

:

C̃ijk = {(cijk, µC̃ijk
(cijk))|cijk ∈ S(C̃ijk)}

S̃i = {(si, µS̃i
(si))|si ∈ S(S̃i)}

D̃j = {(di, µD̃j
(dj))|dj ∈ S(D̃j)}

Ẽk = {(ek, µẼk
(ek))|ek ∈ S(Ẽk)}

(2.2)

where S(C̃ijk), S(S̃i), S(D̃j) and S(Ẽk) were the supports of C̃ijk, S̃i, D̃j and Ẽk

which denote the universe sets of the unit shipping cost, the quantity supplied by

the origin, the quantity required by the destination, and the capacity carried by the

conveyance, respectively.

The fuzzy objective function Z̃ =
∑m

i=1

∑n
j=1

∑K
k=1 C̃ijkxijk, which is to be min-

imized, together with the following constraints, constitutes the fuzzy solid trans-

portation problem:

Using Hu and Wang’s approach [39] on budget constraint crisp conversion was fol-

lowed.
m∑
i=1

K∑
k=1

Cijkxijk ≤
bLj + bRj

2
, j = 1, 2, . . . n (2.3)

Without the loss of generality, all the supply and demand quantities and conveyance
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capacities were assumed to be convex fuzzy numbers as the crisp values could be

represented by degenerated membership functions which have only one value in their

domains. In the next section, the solution procedure for fuzzy solid transportation

problem with fuzzy supply, requirement and conveyance capacity was developed.

2.3 Solution Methodology

The focus had been laid on deriving the membership function of the total trans-

portation cost Z̃. Since Z̃ is a fuzzy number, instead of a crisp number and it can’t

be minimized directly. To tackle this problem, one can transform the fuzzy solid

transportation problem, which is based on Zadeh’s extension principle to a family

of mathematical programs to be solved.

Based on the extension principle, the membership function µz̃ could be defined as:

µz̃(z) = supmin{µC̃ijk
(cijk), µS̃i

(si), µD̃j
(dj), µẼk

(ek)∀i, j, k|z = Z(c, s, d, e)} (2.4)

viewed as the application of this extension principle to the α -cuts of Z̃. Let us

denote the α -cuts of C̃ijk, S̃i, D̃j and Ẽk as

(C̃ijk)α ={cijk ∈ S(C̃ijk)|µC̃ijk
(cijk) ≥ α} = [(C̃ijk)

L
α, (C̃ijk)

U
α ], (2.5.1)

(S̃i)α ={si ∈ S(S̃i)|µS̃i
(si) ≥ α} = [(S̃i)

L
α, (S̃i)

U
α ], (2.5.2)

(D̃j)α ={dj ∈ S(D̃j)|µD̃j
(dj) ≥ α} = [(D̃j)

L
α, (D̃j)

U
α ], (2.5.3)

(Ẽk)α ={ek ∈ S(Ẽk)|µẼi
(ek) ≥ α} = [(Ẽk)

L
α, (Ẽk)

U
α ], (2.5.4)

These intervals indicate where the unit shipping cost, supply, demand, and con-

veyance lie at possibility level α. In (2.4), several membership functions were in-

volved. To derive µz̃ in closed form is hardly possible. According to (2.4), µz̃ is
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the minimum of µC̃ijk
, µS̃i

, µD̃j
and µẼk

, ∀i, j, k. We need µC̃ijk
(cijk) ≥ α, µS̃i

(si) ≥

α, µD̃j
(dj) ≥ α or µẼk

(ek) ≥ α and at least one µC̃ijk
(cijk), µS̃i

(si), µD̃j
(dj), µẼk

(ek)∀i, j, k

equal to α such that z = Z(c, s, d, e) to satisfy µz̃ = α. To find the membership

function µz̃, it suffices to find the left shape function and right shape function of

µz̃, which is equivalent to finding the lower bound ZL
α and upper bound ZU

α of the

α-cuts of z̃. Since ZL
α is the minimum of z = Z(c, s, d, e) and ZU

α is the maximum

of z = Z(c, s, d, e), they can be expressed as:

ZL
α = min{Z(c, s, d, e)|(C̃ijk)Lα ≤ cijk ≤ (C̃ijk)

U
α , (Si)

L
α ≤ si ≤ (S̃i)

U
α , (D̃j)

L
α ≤

dj ≤ (D̃j)
U
α , (Ẽk)

L
α ≤ ek ≤ (Ẽk)

U
α ∀ i, j, k},

ZU
α = max{Z(c, s, d, e)|(C̃ijk)Lα ≤ cijk ≤ (C̃ijk)

U
α , (Si)

L
α ≤ si ≤ (S̃i)

U
α , (D̃j)

L
α ≤

dj ≤ (D̃j)
U
α , (Ẽk)

L
α ≤ ek ≤ (Ẽk)

U
α ∀ i, j, k},

This could be reformulated as the following pair of two-level mathematical pro-

grams:

ZL
α = min

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

∀ i, j, k.



min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K

m∑
i=1

K∑
k=1

cLijkxijk ≤
bLj + bRj

2
, j = 1, 2, . . . n

xijk ≥ 0, ∀i, j, k.
(2.6.1)



CHAPTER 2. 31

ZU
α = max

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

∀ i, j, k.



min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

m∑
i=1

K∑
k=1

cUijkxijk ≤
bLj + bRj

2
, j = 1, 2, . . . n,

xijk ≥ 0,∀i, j, k.
(2.6.2)

In Model (2.6.1), the inner program calculates the objective value for each cijk, si, dj

and ek specified by the outer program, while the outer program determines the val-

ues of cijk, si, djandek that generate the smallest objective value ZL. The objective

value is the lower bound of the objective value for Model (2.3).

By the same token, the inner program of Model (2.6.2) calculated the objective

value for each given value of cijk, si, djand ek, while the outer program determines

the values of cijk, si, dj and ek that produce the largest objective value. The objec-

tive value is the upper bound of the objective value for Model (2.3). Since the value

of α varies in Model (2.6.1 and 2.6.2), it can also be regarded as a pair of parametric

programming model.

A necessary and sufficient condition for Model (2.6.1 and 2.6.2) to have feasible

solutions is
∑m

i=1 si ≥
∑n

j=1 dj and
∑l

k=1 ek ≥
∑n

j=1 dj. In the first level of Model

(2.6.1 and 2.6.2) si, dj and ek are allowed to vary in the range of [(S̃i)
L
α, (S̃i)

U
α ],

[(D̃j)
L
α, (D̃j)

U
α ] and [(Ek)

L
α, (Ek)

U
α ], respectively. However, to ensure the transporta-

tion problem of the second level to be feasible, it felt necessary that the constraint∑m
i=1 si ≥

∑n
j=1 dj and

∑l
k=1 ek ≥

∑n
j=1 dj was imposed in the outer program.
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Here Bj =
bLj +b

R
j

2
, j = 1, 2, . . . n.

Hence, Models (2.6.1 and 2.6.2) becomes:

ZL
α = min

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

m∑
i=1

si ≥
n∑
j=1

dj,

K∑
k=1

ek ≥
n∑
j=1

dj,

∀i, j, k.



min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K

m∑
i=1

K∑
k=1

cijkxijk ≤ Bj, j = 1, 2, . . . n

xijk ≥ 0,∀i, j, k.

(2.7.1)

ZU
α = max

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

m∑
i=1

si ≥
n∑
j=1

dj,

K∑
k=1

ek ≥
n∑
j=1

dj,

∀i, j, k.



min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K

m∑
i=1

K∑
k=1

cijkxijk ≤ Bj, j = 1, 2, . . . n

xijk ≥ 0, ∀i, j, k.

(2.7.2)

In above Models (2.7.1 and 2.7.2) are infeasible when
∑m

i=1 S
U
α=0 ≤

∑n
j=1D

L
α=0

for any α level. In other words, a fuzzy transportation problem is feasible when
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upper bound of the total fuzzy supply is greater than or equal to the lower bound

of the total fuzzy demand. To derive the lower bound of the objective value in

Model (2.7.1), we can directly set cijk to its lower bound (Cijk)
L
α,∀i, j, k to find the

minimum objective value.

Hence, Model (2.7.1) could be reformulated as:

ZL
α = min

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

m∑
i=1

si ≥
n∑
j=1

dj,

K∑
k=1

ek ≥
n∑
j=1

dj,

∀i, j, k.



min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

m∑
i=1

K∑
k=1

cijkxijk ≤ Bj, j = 1, 2, . . . n,

xijk ≥ 0, ∀i, j, k.

(2.8)

Since Model (2.8) is to find the minimum of all the minimum objective values,

one can combine the constraints of inner program and outer program together and

simplify the two-level mathematical program to the conventional one-level program

as follows:

ZL
α = min

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n,

(2.9)
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m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

m∑
i=1

K∑
k=1

C̃L
ijkxijk ≤ Bj, j = 1, 2, . . . n,

m∑
i=1

si ≥
n∑
j=1

dj,

K∑
k=1

ek ≥
n∑
j=1

dj,

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

xijk ≥ 0, ∀ i, j, k.

This model is a linear program which could be solved easily. In this model, since

all cijk have been set to the lower bounds of their α-cuts, that is,µC̃ijk
(cijk) = α this

assures µz̃(z) = α as required by (2.4).

To solve Model (2.7.2), the outer program and inner program have different di-

rections for optimization, one for maximization and another for minimization. A

transformation is required to make a solution obtainable. The dual of inner program

is formulated to become a maximization problem to be consistent with the maxi-

mization operation of outer program. It is well known from the duality theorem

of linear programming that the primal model and the dual model have the same

objective value. Thus, Model (2.7.2) becomes:



CHAPTER 2. 35

ZU
α = max

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

m∑
i=1

si ≥
n∑
j=1

dj,

K∑
k=1

ek ≥
n∑
j=1

dj, ∀ i, j, k.



max −
m∑
i=1

siui +
n∑
j=1

djvj −
K∑
k=1

ekwk −
n∑
j=1

Bjyj

subject to − ui + vj − wk − yj ≤ cijk,

i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2, . . . K,

ui, vj, wk, yj ≥ 0, ∀ i, j, k.

(2.10)

Since (Cijk)
L
α ≤ cijk ≤ (Cijk)

U
α , in Model (2.10), ∀i, j, k one can derive the upper

bound of the objective value by setting cijk to its upper bound because this gives

the largest feasible region. Thus, we can reformulate Model (2.10) as:

ZU
α = max

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

m∑
i=1

si ≥
n∑
j=1

dj,

K∑
k=1

ek ≥
n∑
j=1

dj,∀ i, j, k.



max −
m∑
i=1

siui +
n∑
j=1

djvj −
K∑
k=1

ekwk −
n∑
j=1

Bjyj

subject to − ui + vj − wk ≤ (C̃ijk)
L,

i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2, . . . K,

ui, vj, wk ≥ 0, ∀i, j, k.

(2.11)

Now, since both outer program and inner program perform the same maximiza-

tion operation, their constraints could be combined to form the following one-level
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mathematical program:

ZU
α = max −

m∑
i=1

siui +
n∑
j=1

djvj −
K∑
k=1

ekwk −
n∑
j=1

Bjyj

subject to − ui + vj − wk ≤ (C̃ijk)
L,

i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2, . . . K

m∑
i=1

si ≥
n∑
j=1

dj,

K∑
k=1

ek ≥
n∑
j=1

dj,

i = 1, 2, . . .m

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α , j = 1, 2, . . . n

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α , j = 1, 2, . . . n

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α , k = 1, 2, . . . K

xijk ≥ 0,∀ i, j, k.

(2.12)

This model is a linearly constrained nonlinear program. There were several effective

and efficient methods for solving this Model (2.12). Similar to Model (2.9), since all

cijk have been set to the upper bounds of their α-cuts, that is, µC̃ijk
(C̃ijk) = α this

assures µz̃(z) = α as required by (2.4).

If the total supply and the total conveyance capacity were greater than the to-

tal demand at all α values, respectively, i.e.,
∑m

i=1 si ≥
∑n

j=1 dj,
∑m

i=1(S̃i)
L
α=0 ≥∑n

j=1 (D̃j)
U

α=0 and
∑K

k=1(Ẽk)
L
α=0 ≥

∑n
j=1 (D̃j)

U

α=0 then the constraints
∑m

i=1 si ≥∑n
j=1 dj could be deleted from Model (2.12). Multiplying constraints (2.12) by

ui, vj and wk respectively, and substituting siui by pi, djvj by qj, and ekwk by rk,
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Model (2.12) was transformed into the following linear program:

ZU
α = max −

m∑
i=1

pi +
n∑
j=1

qj −
K∑
k=1

rk

subject to − ui + vj − wk ≤ (C̃ijk)
L,

i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2 . . . K

(S̃i)
L
αui ≤ pi ≤ (S̃i)

U
αui, i = 1, 2, . . .m

(D̃j)
L
αvj ≤ qj ≤ (D̃j)

U
αvj, j = 1, 2, . . . n

(Ẽk)
L
αwk ≤ rk ≤ (Ẽk)

U
αwk, k = 1, 2, . . . K

pi, qj, rk ≥ 0, ∀ i, j, k.

(2.13)

In this case, the upper bound of the total transportation cost ZL
α at α level could

be found more easily. Problems (2.7.1) and (2.7.2) were assured to be feasible if the

lower bound of the total fuzzy demand is smaller than both of the upper bound of

the total fuzzy supply and the upper bound of the total conveyance capacity, i.e.,∑n
j=1 (D̃j)

L

α=0 ≤
∑m

i=1(S̃i)
U
α=0 and

∑n
j=1 (D̃j)

L

α=0 ≤
∑K

k=1(Ẽk)
U
α=0.

2.4 Algorithm

Step 1 Consider a STP model as given in (2.1).

Step 2 Formulate the pair of two level mathematical problems as shown in (2.6.1)

and (2.6.2).

Step 3 Transform (2.6.1) as (2.9) and solve for different α values ranging from 0

to 1 with step length 0.1.

Step 4 Transform (2.6.2) as (2.13) and solve for different α values ranging from 0

to 1 with step length 0.1.
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Step 5 For different α values, analyze the optimal solutions with lower and upper

bound.

2.5 Numerical Example

As an illustration of the proposed approach, consider a fuzzy solid transportation

problem with two fuzzy supplies, three fuzzy demands, two conveyance capacities

and three budget intervals in nature. The notations used in this example is (a, b, c, d)

for a trapezoidal fuzzy number with a, b, cand d as the coordinates of the four vertices

of the trapezoid and (x, y, z) for the triangular fuzzy number with x, y, z as the

coordinates of the three vertices of the triangle. The problem has the following

mathematical form:

min (20, 30, 40)x111 + 70x112 + 60x121 + 60x122 + 50x131 + 30x132

+ (10, 20, 30)x211 + 40x212 + 20x221 + 50x222 + 40x231 + 50x232

subject to x111 + x112 + x121 + x122 + x131 + x132 ≤ (70, 80, 100, 120),

x211 + x212 + x221 + x222 + x231 + x232 ≤ (60, 70, 90),

x111 + x112 + x211 + x212 ≥ (10, 30, 40, 50),

x121 + x122 + x221 + x222 ≥ (40, 50, 60),

x131 + x132 + x231 + x232 ≥ (30, 40, 60, 70),

x111 + x121 + x131 + x211 + x231 ≤ (70, 80, 100),

x112 + x122 + x132 + x212 + x222 + x232 ≤ (60, 70, 90),

20x111 + 70x112 + 10x211 + 40x212 ≤ [3450, 3750],

60x121 + 20x122 + 30x221 + 50x222 ≤ [2585, 2615],

50x131 + 30x132 + 40x231 + 50x232 ≤ [2860, 2940],

xijk ≥ 0, i = 1, 2, j = 1, 2, 3, k = 1, 2.

(2.14)

The total Supply S = S̃1 + S̃2 + S̃3 = (130, 150, 170, 210) the total demand D =

D̃1 + D̃2 + D̃3 = (80, 120, 150, 180) and the total conveyance capacity E = Ẽ1 + Ẽ2 +
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Ẽ3 = (130, 150, 190) and the intervals of budgets are [3450, 3750], [2585, 2615] and

[2860, 2940]. Since S
⋂
D
⋂
E 6= Ø Problem has feasible solutions.

ZLα = min

70 + 10α ≤ s1 ≤ 120− 20α,

60 + 10α ≤ s2 ≤ 90− 20α,

10 + 10α ≤ d1 ≤ 50− 10α,

40 + 10α ≤ d2 ≤ 60− 10α,

30 + 10α ≤ d3 ≤ 70− 10α,

70 + 10α ≤ e1 ≤ 100− 20α,

60 + 10α ≤ e2 ≤ 90− 20α,

s1 + s2 ≥ d1 + d2 + d3,

e1 + e2 ≥ d1 + d2 + d3,

xijk ≥ 0, i = 1, 2, j = 1, 2, 3,

k = 1, 2.



min (20, 30, 40)x111 + 70x112 + 60x121 + 60x122 + 50x131 + 30x132

+(10, 20, 30)x211 + 40x212 + 20x221 + 50x222 + 40x231 + 50x232

subject to

x111 + x112 + x121 + x122 + x131 + x132 ≤ (70, 80, 100, 120),

x211 + x212 + x221 + x222 + x231 + x232 ≤ (60, 70, 90),

x111 + x112 + x211 + x212 ≥ (10, 30, 40, 50),

x121 + x122 + x221 + x222 ≥ (40, 50, 60),

x131 + x132 + x231 + x232 ≥ (30, 40, 60, 70),

x111 + x121 + x131 + x211 + x231 ≤ (70, 80, 100),

x112 + x122 + x132 + x212 + x222 + x232 ≤ (60, 70, 90),

20x111 + 70x112 + 10x211 + 40x212 ≤ [3450, 3750],

60x121 + 20x122 + 30x221 + 50x222 ≤ [2585, 2615],

50x131 + 30x132 + 40x231 + 50x232 ≤ [2860, 2940],

xijk ≥ 0, i = 1, 2, j = 1, 2, 3, k = 1, 2.

(2.15.1)
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ZUα = max

70 + 10α ≤ s1 ≤ 120− 20α,

60 + 10α ≤ s2 ≤ 90− 20α,

10 + 10α ≤ d1 ≤ 50− 10α,

40 + 10α ≤ d2 ≤ 60− 10α,

30 + 10α ≤ d3 ≤ 70− 10α,

70 + 10α ≤ e1 ≤ 100− 20α,

60 + 10α ≤ e2 ≤ 90− 20α,

s1 + s2 ≥ d1 + d2 + d3,

e1 + e2 ≥ d1 + d2 + d3,

xijk ≥ 0, i = 1, 2, j = 1, 2, 3,

k = 1, 2.



min (20, 30, 40)x111 + 70x112 + 60x121 + 60x122 + 50x131 + 30x132

+(10, 20, 30)x211 + 40x212 + 20x221 + 50x222 + 40x231 + 50x232

subject to

x111 + x112 + x121 + x122 + x131 + x132 ≤ (70, 80, 100, 120),

x211 + x212 + x221 + x222 + x231 + x232 ≤ (60, 70, 90),

x111 + x112 + x211 + x212 ≥ (10, 30, 40, 50),

x121 + x122 + x221 + x222 ≥ (40, 50, 60),

x131 + x132 + x231 + x232 ≥ (30, 40, 60, 70),

x111 + x121 + x131 + x211 + x231 ≤ (70, 80, 100),

x112 + x122 + x132 + x212 + x222 + x232 ≤ (60, 70, 90),

20x111 + 70x112 + 10x211 + 40x212 ≤ [3450, 3750],

60x121 + 20x122 + 30x221 + 50x222 ≤ [2585, 2615],

50x131 + 30x132 + 40x231 + 50x232 ≤ [2860, 2940],

xijk ≥ 0, i = 1, 2, j = 1, 2, 3, k = 1, 2.

(2.15.2)

According to Models (2.9) and (2.13), the lower and upper bounds of Z̃ at possibility

level α could be formulated as:

ZL
α = min (20, 30, 40)x111 + 70x112 + 60x121 + 60x122 + 50x131 + 30x132

+ (10, 20, 30)x211 + 40x212 + 20x221 + 50x222 + 40x231 + 50x232

subject to x111 + x112 + x121 + x122 + x131 + x132 ≤ s1,

x211 + x212 + x221 + x222 + x231 + x232 ≤ s2,

x111 + x112 + x211 + x212 ≥ d1,

x121 + x122 + x221 + x222 ≥ d2,

x131 + x132 + x231 + x232 ≥ d3,

(2.16)
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x111 + x121 + x131 + x211 + x231 ≤ e1,

x112 + x122 + x132 + x212 + x222 + x232 ≤ e2,

20x111 + 70x112 + 10x211 + 40x212 ≤ 3600,

60x121 + 20x122 + 30x221 + 50x222 ≤ 2600,

50x131 + 30x132 + 40x231 + 50x232 ≤ 2900,

s1 + s2 ≥ d1 + d2 + d3,

e1 + e2 ≥ d1 + d2 + d3,

70 + 10α ≤ s1 ≤ 120− 20α,

60 + 10α ≤ s2 ≤ 90− 20α,

10 + 10α ≤ d1 ≤ 50− 10α,

40 + 10α ≤ d2 ≤ 60− 10α,

30 + 10α ≤ d3 ≤ 70− 10α,

70 + 10α ≤ e1 ≤ 100− 20α,

60 + 10α ≤ e2 ≤ 90− 20α,

xijk ≥ 0, i = 1, 2, j = 1, 2, 3, k = 1, 2.

ZU
α = max − s1u1 − s2u2 + d1v1 + d2v2 + d3v3 − e1w1 − e2w2

− 3600y1 − 2600y2 − 2900y3

subject to − u1 + v1 − w1 − 20y1 ≤ 40− 10α,

− u1 + v1 − w2 − 70y1 ≤ 70,

− u1 + v2 − w1 − 60y2 ≤ 60,

− u1 + v2 − w2 − 20y2 ≤ 20,

− u1 + v3 − w1 − 50y3 ≤ 50,

− u1 + v3 − w2 − 30y3 ≤ 30,
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− u2 + v1 − w1 − (30− 10α)y1 ≤ (30− 10α),

− u2 + v1 − w2 − 40y1 ≤ 40,

− u2 + v2 − w1 − 30y2 ≤ 30,

− u2 + v2 − w2 − 50y2 ≤ 50,

− u2 + v3 − w1 − 40y3 ≤ 40,

− u2 + v3 − w2 − 50y3 ≤ 50,

s1 + s2 ≥ d1 + d2 + d3,

e1 + e2 ≥ d1 + d2 + d3,

70 + 10α ≤ s1 ≤ 120− 20α,

60 + 10α ≤ s2 ≤ 90− 20α,

10 + 10α ≤ d1 ≤ 50− 10α,

40 + 10α ≤ d2 ≤ 60− 10α,

30 + 10α ≤ d3 ≤ 70− 10α,

70 + 10α ≤ e1 ≤ 100− 20α,

60 + 10α ≤ e2 ≤ 90− 20α,

u1, u2, v1, v2, v3, w1, w2 ≥ 0.

The researcher solved the above two problems by using Lingo, Table-2.1 lists the

α-cuts of the total transportation cost at 11 distinct α values: 0, 0.1, 0.2, 0.3, . . . 1.0

and Fig.2.1 depict the membership function of the total transportation cost of this

example.

The α value indicates level of possibility and degree of uncertainty for the obtained

information. The greater the α value, the greater the level of possibility and the

lower the degree of uncertainty is.

Since the fuzzy total transportation cost lied in a range, its most likely value falls
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Lower bound 

Upper bound 
 

Figure 2.1: The membership function of the total trans-
portation cost

Table 2.1: The α -cuts of the total transportation cost
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ZL
α 1800 1860 1920 1980 2040 2100 2200 2300 2400 2500 2600

ZU
α 5700 5543 5392 5247 5108 4975 4848 4727 4612 4503 4100

between 2600 and 4100, and its value impossible to falls outside the range of 1800

and 5700. For α =0, the lower bound of Z∗ =1800 occurs at x∗122=40, x∗132 =30,

x∗211 =10 with s1= 120, s2 =90, d1 =10, d2 =40, d3 =30, e1 =100, e2 =90, and the

other decision variables are 0. The upper bound of Z∗ =5700 occurs at x∗111 =40,

x∗122 =10, x∗132 =70, x∗211 =10, x∗221 =50 with s1 = 120, s2 =60, d1 =50, d2 =60, d3

=70, e1 =100, e2 =80, and the other decision variables are zero. At other extreme

end of α =1, the lower bound of Z∗ =2600 occurs at x∗122 =30, x∗132 =40, x∗211 =20,

x∗221 =20 with s1 = 80, s2 =70, d1 =20, d2 =50, d3 =40, e1 =80, e2 =70, and the

other decision variables are 0. The upper bound of =4100 occurs at x∗111 =10, x∗122

=10, x∗132 =60, x∗211 =30, x∗221 =40 with s1 = 80, s2 =70, d1 =40, d2 =50, d3 =60,

e1 =80, e2 =70, and the other decision variables are zero.
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3.1 Introduction

In real life the trasportation cost and labor cost plays an impotent role in trans-

portation network. In this Chapter, the researcher worked on the Solid fractional

transportation problem (SFTP) with fuzzy parameters. Based on Zadeh’s extension

principle, utilized a pair of two-level mathematical programs to find the α-cuts of the

fuzzy objective value of the SFTP. With the application of the dual formulation and

variable substitution techniques, the pair of two-level mathematical programs were

transformed into a pair of ordinary one-level linear programs to solve. At specific

α-cut, solving the pair of linear programs produces the bounds of the objective value

of the fuzzy SFTP. By enumerating various values of α, the membership function of

Z̃ was approximated numerically.

Section 3.2 gives the nature of SFTP, followed with a two-level mathematical

programming formulation for deriving the bounds of the fuzzy objective values.

Section 3.3 describes how to transform the two-level mathematical program into

the conventional one-level linear programming problem. An algorithm is given in

section 3.4. Section 3.5 presents a numerical example.

3.2 Formulation of the Problem

It is assumed that a company has m sources and n destinations in a solid trans-

portation problem. Here ek called conveyance denotes the units of this product that

could be carried by k different modes of transportation, interval budget at the jth

destination, such as the land transportation by car or train, and the ocean shipping.

A penalty value of the unit shipping cost represented by cijk. If a product from ith

origin to jth destination by means of the kth conveyance, and the values of θ and

β are given in fixed costs. We need to determine a feasible way of shipping the
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available amounts to satisfy the demand such that the total transportation cost to

total labor cost is minimized.

The given xijk denotes the number of units to be transported from source i to des-

tination j through conveyance capacities k. The mathematical form of the solid frac-

tional transportation problem with interval valued budget constraint, transportation

costs, availabilities and conveyance capacities given below:

Z = min

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk + θ

m∑
i=1

n∑
j=1

K∑
k=1

aijkxijk + β

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . . ,m

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . , n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . , K

m∑
i=1

K∑
k=1

fijkxijk ≤ [bLj , b
R
j ], j = 1, 2, . . . , n

xijk ≥ 0, ∀i, j, k.

(3.1)

Intuitively, if any of the given parameters xijk, si, dj or ek is fuzzy, the total trans-

portation cost becomes fuzzy as well and budget constraint is taken with interval.

Then the Model (3.1) turns into the fuzzy solid transportation problem with interval

valued budget constraint.

Suppose the unit shipping cost cijk & aijk, supply si, demand dj, conveyance ca-

pacity ek and budget intervals are approximately known. They can be represented

by the convex fuzzy numbers C̃ijk, S̃i, D̃j and Ẽk respectively, with membership

functions µC̃ijk
, µÃijk

, µS̃i
, µD̃j

and µẼk
:
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C̃ijk = {(cijk, µC̃ijk
(cijk))|cijk ∈ S(C̃ijk)}

Ãijk = {(aijk, µÃijk
(aijk))|aijk ∈ S(Ãijk)}

S̃i = {(si, µS̃i
(si))|si ∈ S(S̃i)}

D̃j = {(di, µD̃j
(dj))|dj ∈ S(D̃j)}

Ẽk = {(ek, µẼk
(ek))|ek ∈ S(Ẽk)}

(3.2)

where S(C̃ijk), S(Ãijk), S(S̃i),S(D̃j) and S(Ẽk) are the supports of C̃ijk ,S̃i ,D̃j and

Ẽk which denote the universe sets of the unit shipping cost, the quantity supplied

by the origin, the quantity required by the destination, and the capacity carried by

the conveyance, respectively.

Using Hu and Wang’s approach [39] on budget constraint the following crisp

conversion was executed.

m∑
i=1

K∑
k=1

cijkxijk ≤
bLj + bRj

2
, j = 1, 2, . . . , n (3.3)

Without the loss of generality, all the supply and demand quantities and conveyance

capacities are assumed to be convex fuzzy numbers as the crisp values could be

represented by degenerated membership functions which have only one value in their

domains. In the next section, the solution procedure for fuzzy solid transportation

problem with fuzzy supply, requirement and conveyance capacity was developed.

3.3 Solution Methodology

Researcher endeavored in deriving the membership function of the total transporta-

tion cost Z̃. Since Z̃ was a fuzzy number, instead of a crisp number, it couldn’t

be minimized directly. To tackle this problem, one could transform the fuzzy solid
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transportation problem, which was based on Zadeh’s extension principle to a family

of mathematical programs to be solved.

Based on the extension principle, the membership function µz̃ can be defined as:

µz̃(z) = supmin{µC̃ijk
(cijk), µS̃i

(si), µD̃j
(dj), µẼk

(ek)∀i, j, k|z = Z(c, s, d, e)} (3.4)

viewed as the application of this extension principle to the α -cuts of Z̃. Following

Dong and Wong [24] let us denote the α -cuts of C̃ijk, S̃i, D̃j and Ẽk as:

(C̃ijk)α ={cijk ∈ S(C̃ijk)|µC̃ijk
(cijk) ≥ α} = [(C̃ijk)

L
α, (C̃ijk)

U
α ], (3.5.1)

(Ãijk)α ={aijk ∈ S(Ãijk)|µÃijk
(aijk) ≥ α} = [(Ãijk)

L
α, (Ãijk)

U
α ], (3.5.2)

(S̃i)α ={si ∈ S(S̃i)|µS̃i
(si) ≥ α} = [(S̃i)

L
α, (S̃i)

U
α ], (3.5.3)

(D̃j)α ={dj ∈ S(D̃j)|µD̃j
(dj) ≥ α} = [(D̃j)

L
α, (D̃j)

U
α ], (3.5.4)

(Ẽk)α ={ek ∈ S(Ẽk)|µẼi
(ek) ≥ α} = [(Ẽk)

L
α, (Ẽk)

U
α ], (3.5.5)

These intervals indicate where the unit shipping cost, supply, demand, and con-

veyance lie at possibility level α. In (3.4), several membership functions were in-

volved. To derive µz̃ in closed form is hardly possible. According to (3.4), µz̃ is the

supmin of µC̃ijk
, µS̃i

, µD̃j
and µẼk

, ∀i, j, k. It required µC̃ijk
(cijk) ≥ α, µÃijk

(aijk) ≥ α,

µS̃i
(si) ≥ α , µD̃j

(dj) ≥ α or µẼk
(ek) ≥ α and at least one µC̃ijk

(cijk), µÃijk
(aijk),

µS̃i
(si), µD̃j

(dj), µẼk
(ek),∀i, j, k equal to α such that z = Z(c, a, s, d, e) to satisfy

µz̃ = α. To find the membership function µz̃ , it suffices to find the left shape

function and right shape function of µz̃, which is equivalent to finding the lower

bound ZL
α and upper bound ZU

α of the α-cuts of Z̃. Since ZL
α is the minimum of

z = Z(c, a, s, d, e) and ZU
α is the maximum of z = Z(c, a, s, d, e), they could be
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expressed as:

ZL
α = min{Z(c, a, s, d, e)|(C̃ijk)Lα ≤ cijk ≤ (C̃ijk)

U
α , (Aijk)

L
α ≤ aijk ≤ (Aijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α , (D̃j)

L
α ≤ dj ≤ (D̃j)

U
α , (Ẽk)

L
α ≤ ek ≤ (Ẽk)

U
α ∀ i, j, k} (3.6)

ZU
α = max{Z(c, a, s, d, e)|(C̃ijk)Lα ≤ cijk ≤ (C̃ijk)

U
α , (Aijk)

L
α ≤ aijk ≤ (Aijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α , (D̃j)

L
α ≤ dj ≤ (D̃j)

U
α , (Ẽk)

L
α ≤ ek ≤ (Ẽk)

U
α ∀ i, j, k} (3.7)

This could be reformulated as the following pair of two-level mathematical programs:

Where z = Z(c, a, s, d, e) is defined in (3.1) note that z = Z(c, a, s, d, e) is a math-

ematical program with minimization as the objective function. Therefore, models

(3.6) and (3.7) are two level programs, with z = Z(c, a, s, d, e) as the linear program.

For each set of cost cijk, supply si, demand dj, conveyance capacity ek values de-

fined by respective α -cuts in the outer program (first level), the objective value was

calculated in the inner program (second level). The set of cijk, si, dj, and ek Values,

which produced the largest and smallest objective values were determined at the

first level by models (3.6) and (3.7), respectively. By enumerating various values

of α, the membership function of Z̃ was approximated numerically. This could be

reformulated as the following pair of two-level mathematical programs:
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ZL
α = min

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(Ãijk)
L
α ≤ aijk ≤ (Ãijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

∀ i, j, k.



Z = min

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk + θ

m∑
i=1

n∑
j=1

K∑
k=1

aijkxijk + β

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K

m∑
i=1

K∑
k=1

C̃L
ijkxijk ≤

bLj + bRj
2

, j = 1, 2, . . . n

xijk ≥ 0, ∀ i, j, k.
(3.8)

ZU
α = max

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(Ãijk)
L
α ≤ aijk ≤ (Ãijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

∀ i, j, k.



Z = min

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk + θ

m∑
i=1

n∑
j=1

K∑
k=1

aijkxijk + β

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K

m∑
i=1

K∑
k=1

C̃U
ijkxijk ≤

bLj + bRj
2

, j = 1, 2, . . . n

xijk ≥ 0, ∀ i, j, k.
(3.9)

In, Model (3.8), the inner program calculates the objective value of each cijk, si, dj

and ek specified by the outer program, while the outer program determines the values
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of cijk, si, dj and ek that generated the smallest objective value ZL. The objective

value was the lower bound of the objective value for Model (3.3).

By the same token, the inner program of Model (3.9) calculated the objective

value for each given value of cijk, si, dj and ek, while the outer program determined

the values of cijk, si, dj and ek that produce the largest objective value. The objective

value ZU was the upper bound of the objective value for Model (3.3). Since the value

of α varies in, Models (3.8 and 3.9), it could also be regarded as a pair of parametric

programming model.

A necessary and sufficient condition was provided for Model (3.8 and 3.9) to

have feasible solutions
∑m

i=1 si ≥
∑n

j=1 dj and
∑K

k=1 ek ≥
∑n

j=1 dj. In the first

level of the model (3.8 and 3.9), dj and ek were allowed to vary in the range of

[(Si)
L
α, (Si)

U
α ], [(Dj)

L
α, (Dj)

U
α ], and [(Ek)

L
α, (Ek)

U
α ] respectively. However, to ensure

the transportation problem of the second level to be feasible, it felt necessary that

the constraint
∑m

i=1 si ≥
∑n

j=1 dj and
∑l

k=1 ek ≥
∑n

j=1 dj be imposed in the outer

program.

The interval [ZL
α , Z

U
α ] in the α- cut of Z̃, and {ZL

α , 0 ≤ α ≤ 1} and {ZU
α , 0 ≤

α ≤ 1} are the left and right-shape functions ofµZ̃ , respectively, from which fuzzy

number Z̃ is formed.

3.3.1 Construction of Upper Bound

In the previous section it was shown that to find the upper bound of the objective

value of fuzzy FTP described in the Model (3.1), it was required to solve the two-level

mathematical program of Model (3.9). Since the outer program and inner program

have different directions for optimization, that is, one for maximization and one for

minimization, solving Model (3.8) were not so straightforward. We could solve more

easily if we transform the inner program of (3.6).
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Since
∑m

i=1

∑n
j=1

∑K
k=1 aijkxijk

+ β > 0 for every feasible x
ijk

in (3.8), according

to Charnes and Cooper [14], let t = 1/(
∑m

i=1

∑n
j=1

∑K
k=1 aijkxijk

+ β), and yijk =

xijkt, it made possible transform the inner program of (3.8) into the following linear

program:

min
m∑
i=1

n∑
j=1

K∑
k=1

cijkyijk
+ θt

subject to−
n∑
j=1

K∑
k=1

yijk + sit ≥ 0, i = 1, 2, . . . ,m,

m∑
i=1

K∑
k=1

yijk − djt ≥ 0, j = 1, 2, . . . , n,

−
m∑
i=1

n∑
j=1

yijk + ekt ≥ 0, k = 1, 2, . . . , K,

−
m∑
i=1

K∑
k=1

fijkyijk +Bjt ≥ 0, j = 1, 2, . . . , n,

∑m

i=1

∑n

j=1

∑K

k=1
aijkyijk

+ βt = 1,

t > 0, yijk ≥ 0, ∀ i, j, k.

(3.10)

Here Bj =
bLj +b

R
j

2
, j = 1, 2, . . . n.

By the duality theorem, if both primal and dual problems are feasible, then they

both have optimal solutions owning the same objective value. Craven and Mond

[19], Schaile [91] and Sherali [94] have discussed the duality relationship of the linear

fractional program. The dual formulation of (3.10) is given by

maxλ

subject to− ui + vj − wk −Bj + aijkλ ≤ cijk,

i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2, . . . K.

(3.11)
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m∑
i=1

siui −
n∑
j=1

djvj +
K∑
k=1

ekwk +
n∑
j=1

Bjgj + βλ ≤ θ,

ui, vj, wk ≥ 0, ∀ i, j, k, λ unrestricted in sign.

After this replacement, both the linear and outer programs have the same direction

for optimization:

ZU
α = max

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(Ãijk)
L
α ≤ aijk ≤ (Ãijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α ,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α ,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α ,

∀ i, j, k



max λ

−
m∑
i=1

siui +
n∑
j=1

djvj −
K∑
k=1

ekwk −
n∑
j=1

Bjyj

subject to− ui + vj − wk − yj ≤ cijk

i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2, . . . K

m∑
i=1

siui −
n∑
j=1

djvj +
K∑
k=1

ekwk +
n∑
j=1

Bjgj + βλ ≤ θ,

ui, vj, wk ≥ 0, ∀ i, j, k, λ unrestricted in sign.

(3.12)

Because the linear program and outer program have the same maximization opera-

tion, they could be merged into a one-level program with the constraints at the two

levels considered simultaneously.

ZU
α = max λ (3.13.1)

subject to− ui + vj − wk −Bj + aijkλ ≤ cijk,

i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2, . . . K. (3.13.2)

m∑
i=1

siui −
n∑
j=1

djvj +
K∑
k=1

ekwk +
n∑
j=1

Bjgj + βλ ≤ θ, (3.13.3)

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α , (3.13.4)
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(Ãijk)
L
α ≤ aijk ≤ (Ãijk)

U
α , (3.13.5)

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α , (3.13.6)

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α , (3.13.7)

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α , (3.13.8)

ui, vj, wk ≥ 0, ∀ i, j, k, λ unrestricted in sign.

In (3.13.4) directed (C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α , i = 1, 2, . . .m, j = 1, 2, . . . n, k =

1, 2, . . . K from which it was possible to obtain the upper bound of the objective

value by setting cijk its bounds (C̃ijk)
U
α ,∀i, j, in (3.13.2) Because this gave the largest

feasible region, now Model (3.13.1) could be reformulated as

ZU
α = max λ (3.14.1)

subject to− ui + vj − wk −Bj + aijkλ ≤ (C̃ijk)
U
α ,

i = 1, 2, . . .m, j = 1, 2, . . . .n, k = 1, 2, . . . K. (3.14.2)

m∑
i=1

siui −
n∑
j=1

djvj +
K∑
k=1

ekwk +
n∑
j=1

Bjgj + βλ ≤ θ, (3.14.3)

(Ãijk)
L
α ≤ aijk ≤ (Ãijk)

U
α , (3.14.4)

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α i = 1, 2, . . .m, (3.14.5)

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α j = 1, 2, . . . n, (3.14.6)

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α k = 1, 2, . . . K, (3.14.7)

ui, vj, wk ≥ 0,∀i, j, k, λ unrestricted in sign.

Because cijk, aijk, θ and β were shipping costs and fixed costs, this implies that the

objective value in Model (3.8) is positive one. Based on the dual relationship, the

objective value of Model (3.14.1), the dual of Model (3.8), needed to be a positive
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one as well. It implies that the variable λ > 0. Model (3.14.1) is a nonlinear program

due to the aijkλ, siui, vjdj and ekwk. However, the variable substitutions of δijk =

aijkλ, pi = siui, qj = vjdj, rk = ekwk and oj = Bjgj, could be applied to transform

the nonlinear program into a linear one since λ > 0, ui ≥ 0, vj ≥ 0, and wk ≥ 0.

It made possible to multiply constraints (3.14.4), (3.14.5), (3.14.6) and (3.14.7) by

λ, ui, vj and wk respectively, for i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2, . . . K. The

resulted linear program is

ZU
α = max λ

subject to− ui + vj − wk −Bj + δijk ≤ (C̃ijk)
U
α ,

i = 1, 2, . . .m, j = 1, 2, . . . n, k = 1, 2, . . . K.

m∑
i=1

pi −
n∑
j=1

qj +
K∑
k=1

rk +
n∑
j=1

oj + βλ ≤ θ,

(Ãijk)
L
α ≤ δijk ≤ (Ãijk)

U
α ,

(S̃i)
L
αui ≤ pi ≤ (S̃i)

U
αui i = 1, 2, . . .m,

(D̃j)
L
αvj ≤ qj ≤ (D̃j)

U
αvj j = 1, 2, . . . n,

(Ẽk)
L
αwk ≤ rk ≤ (Ẽk)

U
αwk k = 1, 2, . . . K,

ui, vj, wk ≥ 0,∀i, j, k, λ unrestricted in sign.

(3.15)

The upper bound of the objective value, ZU
α of the fuzzy solid fractional transporta-

tion problem could be obtained by Solving Model (3.15).
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3.3.2 Construction of Lower Bound

Since both the inner program and the outer program of (3.9) have the same direction,

minimization, for optimization, they could be merged into a conventional one-level

mathematical program with the constraints of the two programs considered at the

same time.

Z = min

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk + θ

m∑
i=1

n∑
j=1

K∑
k=1

aijkxijk + β

subject to
n∑
j=1

K∑
k=1

xijk ≤ si i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dj j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ek k = 1, 2, . . . K,

m∑
i=1

K∑
k=1

fijkxijk ≤
(bLj + bRj )

2
, j = 1, 2, . . . n,

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α ,

(Ãijk)
L
α ≤ aijk ≤ (Ãijk)

U
α ,

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α , i = 1, 2, . . .m,

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α , j = 1, 2, . . . n,

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α , k = 1, 2, . . . K,

xijk ≥ 0, ∀ i, j, k.

(3.16)
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Similar to (3.9), based on the rule of Charnes and Cooper [14], one can transform

(3.16) into the following mathematical program

ZL
α = min

m∑
i=1

n∑
j=1

K∑
k=1

cijkyijk
+ θt (3.17.1)

subject to −
n∑
j=1

K∑
k=1

yijk + sit ≥ 0, i = 1, 2, . . .m, (3.17.2)

m∑
i=1

K∑
k=1

yijk − djt ≥ 0, j = 1, 2, . . . n, (3.17.3)

−
m∑
i=1

n∑
j=1

yijk + ekt ≥ 0, k = 1, 2, . . . K, (3.17.4)

−
m∑
i=1

K∑
k=1

fijkyijk +Bjt ≥ 0, j = 1, 2, . . . n, (3.17.5)

∑m

i=1

∑n

j=1

∑K

k=1
aijkyijk

+ βt = 1, (3.17.6)

(C̃ijk)
L
α ≤ cijk ≤ (C̃ijk)

U
α , (3.17.7)

(Ãijk)
L
α ≤ aijk ≤ (Ãijk)

U
α , (3.17.8)

(S̃i)
L
α ≤ si ≤ (S̃i)

U
α , i = 1, 2, . . .m, (3.17.9)

(D̃j)
L
α ≤ dj ≤ (D̃j)

U
α , j = 1, 2, . . . n, (3.17.10)

(Ẽk)
L
α ≤ ek ≤ (Ẽk)

U
α , k = 1, 2, . . . K, (3.17.11)

xijk ≥ 0, ∀i, j, k.

For nonnegative yijk, they had (C̃ijk)
L
αyijk ≤ cijkyijk ≤ (C̃ijk)

U
αyijk. In searching for

the minimal value of the objective function, the fuzzy parametercijk, must reach its

lower bound. Consequently, we haveZL
α = min

m∑
i=1

n∑
j=1

K∑
k=1

CL
ijkyijk

+ θt. The variable

transformation technique was utilized to the nonlinear termssit, djt, wkt, gjt and

aijkyijk. The constraints (3.17.9), (3.17.10) and (3.17.11) could be multiplied by t

and constraint (3.17.7) could be multiplied by yijk. We substituted Pi, Qj, Rk, Gj
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and ξijk for sit, djt, ekt and Aijkyijk respectively. Now, it could be rewrite (3.1) as

the following mathematical formulations

ZL
α = min

m∑
i=1

n∑
j=1

K∑
k=1

(C̃ijk)
L
y
ijk

+ θt

subject to −
n∑
j=1

K∑
k=1

yijk + Pi ≥ 0, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

yijk −Qj ≥ 0, j = 1, 2, . . . n,

−
m∑
i=1

n∑
j=1

yijk +Rk ≥ 0, k = 1, 2, . . . K,

−
m∑
i=1

K∑
k=1

yijk +Gj ≥ 0, j = 1, 2, . . . n,

∑m

i=1

∑n

j=1

∑K

k=1
ξijk + βt = 1,

(Ãijk)
L
αyijk ≤ ξijk ≤ (Ãijk)

U
αyijk,

(S̃i)
L
αt ≤ si ≤ (S̃i)

U
α t i = 1, 2, . . .m,

(D̃j)
L
αt ≤ dj ≤ (D̃j)

U
α t j = 1, 2, . . . n,

(Ẽk)
L
αt ≤ ek ≤ (Ẽk)

U
α t k = 1, 2, . . . K,

t > 0, yijk ≥ 0, ∀i, j, k.

(3.18)

This model is a linear programming problem, and it is possible to obtain lower

bound of the objective value ZL
α , by solving (3.18). Together with ZL

α was solved

from (3.5), [ZL
α ,ZU

α ] constitutes the interval that the objective value of the Fuzzy

SFTP.

For two possibility levels α1 and α2 such that 0 < α2 < α1 ≤ 1, the feasible

regions defined by α1 in Model (3.8 and 3.9) were smaller to those defined by α2,

respectively, as a result ZU
α1
≤ ZU

α2
and ZL

α1
≥ ZL

α2
; in other words, the right shape

function was non increasing and the left shape function is non decreasing. This
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property, based on the definition of “convex fuzzy set” (Zimmermann [111]), assures

the convexity of Z̃. If both ZL
α , ZU

α were invertible with respect to α, then a right

shape function of R(z) = (ZU
α )
−1

and left shape function of L(z) = (ZL
α )
−1

could be

obtained. From R(z) and L(z) the membership function µZ̃ was constructed as:

µz̃ =


L(z), ZL

α=0 ≤ z ≤ ZL
α=1

1, ZL
α=1 ≤ z ≤ ZU

α=1

R(z), ZU
α=1 ≤ z ≤ ZL

α=0

In most cases, the values of ZL
α and ZU

α may not be solved analytically. However,

numerical solutions for ZU
α and ZL

α at different possibility level α could be collected

to depict the shapes of R(z) and L(z), respectively.

3.4 Algorithm

Step 1 Consider a SFTP model as given in (3.1).

Step 2 Formulate the pair of two level mathematical problems as shown in (3.8)

and (3.9).

Step 3 Transform (3.8) as (3.15) and solve for different α values ranging from 0 to

1 with step length 0.1.

Step 4 Transform (3.9) as (3.18) and and solve for different α values ranging from

0 to 1 with step length 0.1.

Step 5 For different α values, analyze the optimal solutions with lower and upper

bound.
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3.5 Numerical Example

As an illustration of the proposed approach, consider a fuzzy solid fractional trans-

portation problem with two fuzzy supplies, three fuzzy demands, two conveyance

capacities and three budget intervals in nature. The notations used in this example

are trapezoidal fuzzy number and triangular fuzzy numbers. Let

Z̃ = min

 (15, 16, 17)x111 + 18x112 + 12x121(20, 21, 22)x122 + 10x131 + (4, 5, 6)x132

+ 17x211 + 20x212 + (21, 22, 23)x221 + 20x222 + 21x231 + (19, 20, 21)x232 + 650


 6x111 + (7, 8, 9, 10)x112 + 10x1216x122 + (11, 12, 13)x131 + 3x132

+ 13x211 + (8, 9, 10)x212 + 12x221 + (2, 3, 4)x222 + 20x231 + 15x232 + 700


subject to x111 + x112 + x121 + x122 + x131 + x132 ≤ (60, 70, 80),

x211 + x212 + x221 + x222 + x231 + x232 ≤ (20, 40, 60),

x111 + x112 + x211 + x212 ≥ (10, 30, 40),

x121 + x122 + x221 + x222 ≥ (20, 30, 40),

x131 + x132 + x231 + x232 ≥ (40, 50, 60, 70),

x111 + x121 + x131 + x211 + x221 + x231 ≤ (20, 30, 40),

x112 + x212 + x132 + x212 + x222 + x232 ≤ (30, 40, 60),

(15, 16, 17)x111 + 18x112 + 17x211 + 20x212 ≥ [15, 25],

12x121 + (20, 21, 22)x122 + (21, 22, 23)x221 + 20x222 ≥ [17, 21],

10x131 + (4, 5, 6)x132 + 21x231 + (19, 20, 21)x232 ≥ [11, 31],

xijk ≥ 0, i = 1, 2, j = 1, 2, 3, k = 1, 2.

(3.19)

The total Supply S = S̃1+ S̃2 = (80, 110, 140),the total demandD = D̃1+D̃2+D̃3 =

(70, 110, 120, 150), and the total conveyance capacity E = Ẽ1 + Ẽ2 = (50, 70, 100)

and the intervals of budgets are [15, 25], [17, 21] and [11, 31]. Since S
⋂
D
⋂
E 6= ∅,
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problem has feasible solutions.

ZUα = max

(60 + 10α) ≤ s1 ≤ (80− 10α),

(20 + 20α) ≤ s2 ≤ (60− 20α),

(10 + 20α) ≤ d1 ≤ (40− 10α),

(20 + 10α) ≤ d2 ≤ (40− 10α),

(40 + 10α) ≤ d3 ≤ (70− 10α),

(20 + 10α) ≤ e1 ≤ (40− 10α),

(30 + 10α) ≤ e2 ≤ (60− 10α),

∀ i, j, k.



min


(15, 16, 17)x111 + 18x112 + 12x121(20, 21, 22)x122 + 10x131

+ (4, 5, 6)x132 + 17x211 + 20x212 + (21, 22, 23)x221

+ 20x222 + 21x231 + (19, 20, 21)x232 + 650




6x111 + (7, 8, 9, 10)x112 + 10x1216x122 + (11, 12, 13)x131

+ 3x132 + 13x211 + (8, 9, 10)x212

+ 12x221 + (2, 3, 4)x222 + 20x231 + 15x232 + 700


subject to

x111 + x112 + x121 + x122 + x131 + x132 ≤ (60, 70, 80),

x211 + x212 + x221 + x222 + x231 + x232 ≤ (20, 40, 60),

x111 + x112 + x211 + x212 ≥ (10, 30, 40),

x121 + x122 + x221 + x222 ≥ (20, 30, 40),

x131 + x132 + x231 + x232 ≥ (40, 50, 60, 70),

x111 + x121 + x131 + x211 + x221 + x231 ≤ (20, 30, 40),

x112 + x212 + x132 + x212 + x222 + x232 ≤ (30, 40, 60),

(15, 16, 17)x111 + 18x112 + 17x211 + 20x212 ≥ [15, 25],

12x121 + (20, 21, 22)x122 + (21, 22, 23)x221 + 20x222 ≥ [17, 21],

10x131 + (4, 5, 6)x132 + 21x231 + (19, 20, 21)x232 ≥ [11, 31],

xijk ≥ 0, i = 1, 2, j = 1, 2, 3, k = 1, 2.

(3.20)
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ZLα = min

(60 + 10α) ≤ s1 ≤ (80− 10α),

(20 + 20α) ≤ s2 ≤ (60− 20α),

(10 + 20α) ≤ d1 ≤ (40− 10α),

(20 + 10α) ≤ d2 ≤ (40− 10α),

(40 + 10α) ≤ d3 ≤ (70− 10α),

(20 + 10α) ≤ e1 ≤ (40− 10α),

(30 + 10α) ≤ e2 ≤ (60− 10α),

∀ i, j, k.



min


(15, 16, 17)x111 + 18x112 + 12x121(20, 21, 22)x122 + 10x131

+ (4, 5, 6)x132 + 17x211 + 20x212 + (21, 22, 23)x221

+ 20x222 + 21x231 + (19, 20, 21)x232 + 650




6x111 + (7, 8, 9, 10)x112 + 10x1216x122 + (11, 12, 13)x131

+ 3x132 + 13x211 + (8, 9, 10)x212

+ 12x221 + (2, 3, 4)x222 + 20x231 + 15x232 + 700


subject to

x111 + x112 + x121 + x122 + x131 + x132 ≤ (60, 70, 80),

x211 + x212 + x221 + x222 + x231 + x232 ≤ (20, 40, 60),

x111 + x112 + x211 + x212 ≥ (10, 30, 40),

x121 + x122 + x221 + x222 ≥ (20, 30, 40),

x131 + x132 + x231 + x232 ≥ (40, 50, 60, 70),

x111 + x121 + x131 + x211 + x221 + x231 ≤ (20, 30, 40),

x112 + x212 + x132 + x212 + x222 + x232 ≤ (30, 40, 60),

(15, 16, 17)x111 + 18x112 + 17x211 + 20x212 ≥ [15, 25],

12x121 + (20, 21, 22)x122 + (21, 22, 23)x221 + 20x222 ≥ [17, 21],

10x131 + (4, 5, 6)x132 + 21x231 + (19, 20, 21)x232 ≥ [11, 31],

xijk ≥ 0, i = 1, 2, j = 1, 2, 3, k = 1, 2.

(3.21)

According to models (3.15) and (3.18), the lower and upper bounds of Z̃at the

possibility level α could be formulated as:
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ZUα = max λ

subject to − u1 + v1 − w1 − (15 + α)g1 + δ111 ≤ (17− α),

− u1 + v1 − w2 − 18g1 + δ112 ≤ 18,

− u1 + v2 − w1 − 12g2 + δ121 ≤ 12,

− u1 + v2 − w2 − (20 + α)g2 + δ122 ≤ (22− α),

− u1 + v3 − w1 − 21g3 + δ131 ≤ 10,

− u1 + v3 − w2 − (4 + α)g3 + δ132 ≤ (6− α),

− u2 + v1 − w1 − 17g1 + δ211 ≤ 17,

− u2 + v1 − w2 − 20g1 + δ212 ≤ 20,

− u2 + v2 − w1 − (21 + α)g2 + δ221 ≤ (23− α),

− u2 + v2 − w2 − 20g2 + δ222 ≤ 20,

− u2 + v3 − w1 − 21g3 + δ231 ≤ 21,

− u2 + v3 − w2 − (19 + α)g3 + δ232 ≤ (21− α),

p1 + p2 − q1 − q2 − q3 + r1 + r2 + 700λ ≤ 650,

δ111 = 6λ, (7 + α)λ ≤ δ112 ≤ (10− α)λ,

δ121 = 10λ, δ122 = 6λ,

(10 + α)λ ≤ δ131 ≤ (13− α)λ,

δ132 = 3λ, δ211 = 13λ,

(8 + α)λ ≤ δ212 ≤ (10− α)λ,

δ221 = 12λ, (2 + α)λ ≤ δ222 ≤ (4− α)λ,

δ231 = 20λ, δ232 = 15λ,

(60 + 10α)u1 ≤ p1 ≤ (80− 10α)u1, (20 + 20α)u2 ≤ p2 ≤ (60− 20α)u2,

(10 + 20α)v1 ≤ q1 ≤ (40− 10α)v1, (20 + 10α)v2 ≤ q2 ≤ (40− 10α)v2,

(40 + 10α)v3 ≤ q3 ≤ (70− 10α)v3,

(20 + 10α)w1 ≤ r1 ≤ (40− 10α)w1, (30 + 10α)w2 ≤ r2 ≤ (60− 10α)w2,

λ > 0,

u1, u2, v1, v2, v3, w1, w2 ≥ 0.

(3.22)
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ZLα = min(15 + α)y111 + 18y112 + 12x121(20 + α)y122 + 10y131 + (4 + α)y132

+ 17y211 + 20y212 + (21 + α)y221 + 20y222 + 21y231 + (19 + α)y232 + 650t

subject to − y111 − y112 − y121 − y122 − y131 − y132 + s1 ≥ 0,

− y211 − y212 − y221 − y222 − y231 − y232 + s2 ≥ 0,

y111 + y112 + y211 + y212 − d1 ≥ 0,

y121 + y122 + y221 + y222 − d2 ≥ 0,

y131 + y132 + y231 + y232 − d3 ≥ 0,

− y111 − y121 − y131 − y211 − y221 − y231 + e1 ≥ 0,

− y112 − y212 − y132 − y212 − y222 − y232 + e2 ≥ 0,

− (15 + α)y111 − 18y112 − 17y211 − 20y212 + b1 ≥ 0,

− 12y121 − (20 + α)y122 − (21 + α)y221 − 20y222 + b2 ≥ 0,

− 10y131 − (4 + α)y132 − 21y231 − (19 + α)y232 + b3 ≥ 0,

ξ111 + ξ112 + ξ121 + ξ122 + ξ131 + ξ132 + ξ211 + ξ212 + ξ221 + ξ222 + ξ231 + ξ232 + 700t = 1,

ξ111 = 6y111, (7 + α)y112 ≤ ξ112 ≤ (10− α)y112,

ξ121 = 10y121, ξ122 = 6y122,

(10 + α)y131 ≤ ξ131 ≤ (13− α)y131,

ξ132 = 3y132, ξ211 = 13y211,

(8 + α)y212 ≤ ξ212 ≤ (10− α)y212,

ξ221 = 12y221, (2 + α)y222 ≤ ξ222 ≤ (4− α)y222,

ξ231 = 20y231, ξ232 = 15y232,

(60 + 10α)t ≤ s1 ≤ (80− 10α)t, (20 + 20α)t ≤ s2 ≤ (60− 20α)t,

(10 + 20α)t ≤ d1 ≤ (40− 10α)t, (20 + 10α)t ≤ d2 ≤ (40− 10α)t,

(40 + 10α)t ≤ d3 ≤ (70− 10α)t,

(20 + 10α)t ≤ e1 ≤ (40− 10α)t, (30 + 10α)t ≤ e2 ≤ (60− 10α)t,

λ > 0,

yijk ≥ 0, i = 1, 2., j = 1, 2, 3., k = 1, 2.

(3.23)
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Table 3.1 lists the α-cuts if the value of total transportation cost of 11 distinct α

values: 0, 0.1, 0.2, 0.3, . . . 1.0 and Figure 3.1 depict the membership function of the

total transportation cost of this example. The α-cuts of Z represents the possibility

that the value of the game would appear in the associated range. Since the fuzzy

objective value lied in the range, different α-cuts show different interval and the

uncertainty level of yet lowest possibility, indicating that the objective value would

never fall outside of this range. Most likely the value fell between 0.5930 and 0.9890.

The membership function of Z̃, as constructed from 100 α-cuts, is depicted in the

Figure 3.1.

At α-cuts=0, the lower bound ZL
α=0 was solved as 0.5930, occurring at x∗121 =

30, x∗132 = 10 , x∗211=40, x∗131 = 60, x∗111 = x∗112 = x∗122 = x∗212 = x∗221 = x∗222 = x∗231 =

x∗232 = 0 and the total supply is 140. The upper bound ZU
α=0 was solved as 0.9890,

which occursed at x∗121 = 10, x∗132 = 30, x∗211=20, x∗131 = 20, x∗111 = x∗112 = x∗122 =

x∗212 = x∗221 = x∗222 = x∗231 = x∗232 = 0. In this case, the total amount being shipped

was 80. At α-cut=1, the lower bound ZL
α=1=0.9645 occurs at x∗121 = 10, x∗132 = 30,

x∗211=20, x∗131 = 20, x∗111 = x∗112 = x∗122 = x∗212 = x∗221 = x∗222 = x∗231 = x∗232 = 0, and

the total transportation quantity was 150. Notably, the objective value associated

with the largest total quantity being shipped need not be the highest. In this

example, the largest possible amount to be shipped is 140, which is the largest total

supply. The objective value for this amount is Z∗=0.5930. However, the highest

objective value is Z∗=0.9890, occurring at the total amount of 80.

Table 3.1: The α -cuts of the total transportation cost
α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ZUα 0.9890 0.9858 0.9825 0.9791 0.9755 0.9719 0.9681 0.9643 0.9604 0.9564 0.9524
ZLα 0.5930 0.6134 0.6310 0.6515 0.6753 0.7045 0.7474 0.8058 0.8614 0.9141 0.9645
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Figure 3.1: Membership function of total transportation cost
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4.1 Introduction

In real life the demand of an item may not be crisp. So in this chapter, a fuzzy

stochastic solid transportation problem (FSSTP) is formulated with random demand

and capacities of conveyances with budget constraints. Goal programming (GP) ap-

proach was applied to solve the said solid transportation problem (STP) under sev-

eral constraints. This chapter also presents fuzzy goal programming models (FGP)

for the stochastic aspect in STP. The researcher considered demand, conveyance

capacities are random and expressed as fuzzy-stochastic constraints. Moreover, as

a particular case three dimensional representation of an existing model Chalam [11]

is also presented. The optimum results of this model were compared with the solid

transportation model with different budgets.

Section 4.1 gives the introduction. Section 4.2 gives the formulation of the prob-

lem in the goal programming (GP) formulation. Section 4.3 deals with stochastic

aspects of transportation problem. Section 4.4 deals with fuzzy goal programming

(FGP) formulation of the problem with random demands. The algorithm is given

in section 4.5. Section 4.6 presents a numerical example.

4.2 Goal Programming (GP) Formulation

Let us consider a transportation situation where si, dj and ek be the quantities of

a commodity available, demand and conveyance at the ith origin (i = 1, 2, . . . ,m),

jth destination through the kth conveyances (k = 1, 2, . . . , K), respectively. Let

cijk be the per unit transportation cost for transporting one unit from ith origin

to jth destination by kth conveyance. Further B is the budget allotted for the

transportation which is less than the minimum total cost of transportation. Hence,

the problem is to find the optimum values of xijk (where xijk is the number of
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units of the commodity to be transported from ith origin to jth destination by kth

conveyance).

Z = min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . . ,m

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . , n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . , K

xijk ≥ 0, ∀i, j, k.

(4.1)

This model is applicable only when all the data is deterministic.

Z = min
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk
≤ B

When the budgetary constraint is operating in the system, the demand needs at all

the demand points cannot be fulfilled simultaneously and each demand point tries

to realize its demand requirement competing with the others. Thus the problem is

to be viewed as a multiple objective goal programming problem.

The GP version of problem (4.1) is expressed as

min Z(g) =
n∑
j=1

g−j

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk − g+j + g−j = dj, j = 1, 2, . . . , n,

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk ≤ B

(4.2)
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g+j .g
−
j = 0, j = 1, 2, . . . n.

xijk, g
+
j , g

−
j ≥ 0, ∀ i, j, k.

Here, g+j , g
−
j are deviational variables from the jth goal.

4.3 Stochastic aspect of Solid Transportation

Problem

We know that if Y be a normal variate with mean m and standard deviation σ, then

it satisfies the following relations.

P [m− σ < Y < m+ σ] = 0.6826

P [m− 2σ < Y < m+ 2σ] = 0.9544

P [m− 3σ < Y < m+ 3σ] = 0.9973

The above probabilities furnished that if there was a normal distribution of 10,000

cases, then 6826, 9544 and 9973 cases were expected to be between the ranges(m−

σ,m+ σ), (m− 2σ,m+ 2σ) and (m− 3σ,m+ 3σ) respectively. The general rule is

that in a normal distribution, m± 3σ will give us the range within which a normal

mean (m) is expected to vary. These are the limitation within which the actual

mean would be vary. Using these properties of a normal variate, the above problem

could be reduced to equivalence crisp problems as discussed below.



CHAPTER 4. 71

4.4 Fuzzy Goal Programming Formulation of

Stochastic Solid Transportation Problem (SSTP)

The FGP formulation of SSTP with Budgetary constraint was given in the following.

Find xijk

such that
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥
∼
dj, j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk ≤ B,

xijk ≥ 0, ∀ i, j, k.

(4.3)

Where the deterministic equivalent of the fuzzy stochastic constraint symbol ”≥
∼

”

stood approximately or fuzzily greater than or equal to. As such, problems cannot

be solved in this form, for that crisp equivalents models were required.

Here it has been discussed the three minimum levels of fulfillments by all the demand

points simultaneously viz., lower bound σj, lower bound 2σj, lower bound 3σj. Let

Aj be the fuzzy set corresponding to the jth demand constraint
m∑
i=1

K∑
k=1

xijk ≥ dj,

j = 1, 2, . . . , n.
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Following Zimmermann [110] it could be defined the membership function of Aj as

µAj
=



1, if
m∑
i=1

K∑
k=1

xijk ≥ dj,

m∑
i=1

K∑
k=1

xijk − d∗j

dj − d∗j
, if d∗j <

m∑
i=1

K∑
k=1

xijk < dj

0 if
m∑
i=1

K∑
k=1

xijk ≤ d∗j ,

(4.4)

Where d∗j is the lower tolerance limit of
m∑
i=1

K∑
k=1

xijk ≥ dj.

Initially we took d∗j as (dj − σj) with this membership function, if the solution is

infeasible relax its value by taking d∗j = (dj − 2σj) and if the corresponding solution

is found still infeasible then further relax it by d∗j = (dj − 3σj).

The situation here is one of competitiveness since all the demand points compete

with each other to realize the minimum level of fulfillment prescribed. Thus we define

the overall decision function D by the intersection operator as D =
⋂n
j=1Aj. The

membership function of D becomes

µD =
n∧
j=1

µAj
= Min{µAj

}

The crisp equivalent of (4.3) can now be defined as

max µD

Subject to µD ≤ µAj

λ = min
j

 m∑
i=1

K∑
k=1

xijk−d∗j

dj−d∗j


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It is formulated the above expression as equivalent to

max λ

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m

λ ≤


m∑
i=1

K∑
k=1

xijk − d∗j

dj − d∗j

 , j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . , K

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk ≤ B,

λ, xijk ≥ 0, ∀ i, j, k.

(4.5)

4.5 Algorithm

Step 1 Consider the solid transportation problem with budget constraint as given

in (4.1).

Step 2 Solve (4.1) using the given data and fix the goal in (4.3).

Step 3 For fuzzy goal programming of stochastic STP formulate the membership

function as given in (4.4).

Step 4 By using simplex method or by any standard solve the problem (4.5)

4.6 Numerical Example

Ganga Distributor, a well known sugar brand in South India (Telangana State)

dispatches its product from two sources to three destinations through two specific
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conveyances. It has some main stocking depots and distribution centers in different

cities of Telangana. Here two sources (i.e., m=2), three destinations (i.e., n=3),

two conveyances (i.e., K=2) are considered from its two stocking deports; three

distribution centers cost against two types of conveyances by road (small and big size

truck) for 12 months were collected. Source (s1, s2), demands (d1, d2, d3), capacities

of conveyances (e1, e2) and goals and total transportation cost presented in Table-

4.1. We consider the normal distribution curves of the raw data approximately 68%,

95% and 99% data between (m− σ,m+ σ), (m− 2σ,m+ 2σ) and (m− 3σ,m+ 3σ)

respectively.

Table 4.1: Cost matrix (in $)
cij1 cij2
10 8 12 14 8 10
13 10 15 17 12 15

i.e.,

min 10x111 + 14x112 + 8x121 + 8x122 + 12x131 + 10x132

+ 13x211 + 17x212 + 10x221 + 12x222 + 15x231 + 15x232

subject to x111 + x121 + x131 + x112 + x122 + x132 ≤ 24,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 32,

x111 + x211 + x112 + x212 ≥ 18,

x121 + x221 + x122 + x222 ≥ 21,

x131 + x132 + x231 + x232 ≥ 17,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 46,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 52,

xijk ≥ 0, ∀ i, j, k.

(4.6)
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Using the raw data from the above Table-4.1, optimum results were found as x111=

7, x132= 17, x211=11 and x221= 21 with minimum transportation cost of $593.

4.6.1 Goal Programming model

When the budget is assuming $500, the goal programming model follow as

min Z =
3∑
j=1

g−j

subject to x111 + x121 + x131 + x112 + x122 + x132 ≤ 24,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 32,

x111 + x211 + x112 + x212 + g−1 − g+1 = 18,

x121 + x221 + x122 + x222 + g−2 − g+2 = 21,

x131 + x132 + x231 + x232 + g−3 − g+3 = 17,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 46,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 52,

10x111 + 8x121 + 12x131 + 14x112 + 8x122 + 10x132

+ 13x211 + 10x221 + 15x231 + 17x212 + 12x222 + 15x232 ≤ 500,

xijk ≥ 0, ∀ i, j, k,

g+j , g
−
j ≥ 0,

g+j .g
−
j = 0.

(4.7)

Since all goals have an equal priority, solving the above problem using Lingo software,

it made possible to get the deficit achievement function as 7.1538 (shown in Table-

4.2).



CHAPTER 4. 76

Table 4.2: Result of model 4.7
Conveyance 1 Demand

Supply
1 0 0

3.84615 21 0
Conveyance 2 Demand

Supply
0 0 17
0 0 0

Existing Demand 18 21 17 56
Fulfillment demand 10.846154 21 17 48.846154

Deficit 7.153846 0 0 7.153846

4.6.2 Fuzzy Goal programming formulation of SSTP model

For the present numerical problem, among the four parameters-transportation goal

cost, supply, demand and conveyance capacities, some may be picked random and

others are crisp. So different models could be formulated with several combinations

of these parameters as random and crisp.

Here it was considered demand as random and expressed as fuzzy-stochastic

constraints. Y1 ∼ N(18, 3), Y2 ∼ N(21, 3) and Y3 ∼ N(17, 2) The left parts of the

1σj intervals, i.e., (d∗j , dj), for Y1, Y2 andY3 are (15, 18), (18, 21), (15, 17) respectively.

However, with these (d∗j , dj) values, Model-(4.8) has no feasible solution.

Therefore, relax the d∗j values by taking the left part 2σj intervals. Now Y1, Y2 andY3

values are (12, 18), (15, 21), (13, 17) respectively. Even with these (d∗j , dj) values,

Model (4.8) has no feasible solution.

Hence, further relax the d∗j values by taking the left part of 3σj intervals. Now

Y1, Y2 and Y3 values are (9, 18), (12, 21), (11, 17) respectively.

Similarly, it was considered demand, conveyance capacities as random and expressed
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as fuzzy-stochastic constraints.

LetY1 ∼ N(18, 3), Y2 ∼ N(21, 3) and Y3 ∼ N(17, 2)

E1 ∼ N(46, 3), E2 ∼ N(52, 2)

If only demand parameters were random, Model (4.7) becomes:

max λ

subject to x111 + x121 + x131 + x112 + x122 + x132 ≤ 24,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 32,

x111 + x211 + x112 + x212 − 9λ ≥ 9,

x121 + x221 + x122 + x222 − 9λ ≥ 12,

x131 + x132 + x231 + x232 − 6λ ≥ 11,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 46,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 52,

10x111 + 8x121 + 12x131 + 14x112 + 8x122 + 10x132

+ 13x211 + 10x221 + 15x231 + 17x212 + 12x222 + 15x232 ≤ 500,

λ, xijk ≥ 0, ∀ i, j, k.

(4.8)

Solving the above model the optimum results were obtained and presented in

Table-4.3. It was also observed that the distributor has total demand of sugar 56

tons fulfilling the total mean demand was 48.168428 tons for this model. Thus

the pattern of distribution controlled and the total deficit of 7.831572 tons were

distributed among all the demand points.

Now let it be consider that the demand and conveyance parameters are random,
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Model (4.6) becomes

max λ

subject to x111 + x121 + x131 + x112 + x122 + x132 ≤ 24,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 32,

x111 + x211 + x112 + x212 − 9λ ≥ 9,

x121 + x221 + x122 + x222 − 9λ ≥ 12,

x131 + x132 + x231 + x232 − 6λ ≥ 11,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 37,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 46,

10x111 + 8x121 + 12x131 + 14x112 + 8x122 + 10x132

+ 13x211 + 10x221 + 15x231 + 17x212 + 12x222 + 15x232 ≤ 500,

λ, xijk ≥ 0, ∀ i, j, k.

(4.9)

Table 4.3: Result of model 4.8
Conveyance 1 (CC1) Demand (CC1) Existing Fulfillment Deficit

Supply
8.957895 0 0

46 33.126 12.874
6.105263 18.06316 0

Conveyance 2 (CC2) Demand (CC2)

Supply
0 0 15.04211

52 15.042 36.958
0 0 0

Existing demand 18 21 17 56 98 48.168 49.832

Fulfillment demand 15.063158 18.06316 15.04211 48.168428
Deficit 2.936842 2.93684 1.95789 7.831572

By applying the GP approach to the numerical example, it has been observed

that the total deficit of 7.153846 tons of sugar borne alone (shown in Table-4.2).

This is due to the fact that GP is based on the principle of minimizing the sum of

the deviations from goal values, as the deviations are unrestricted. However, in FGP

approach, the deviations were restricted to lie in a pre-specified interval at all goals.
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Thus the pattern of distribution was controlled and the total deficit of 7.831572 tons

which was distributed among all the demand points shown in Table-4.3. The fuzzy

intersection operator ensured fulfillment of a certain amount of demand by all the

demand points.

The results of Model 4.8 in Table- 4.4 were represented in a budget values 530

and 550 by applying (4.2) and (4.5) models, i.e., when two random conveyances were

used for Model 4.8. It was interesting to note that through total demand deficit in

GP model (4.846154 tons) was much less than that (5.305263 tons) FGP model.

Similarly, we can observe that demand deficit when budget is 550 in GP and FGP

models (shown in Table-4.4). This was because when two random conveyances were

available, in the minimization of total cost.
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5.1 Introduction

To the best of the author’s knowledge, it might be noticed that previous studies did

not include the goal programming approach for solving multi-objective fuzzy solid

transportation problem based on expected value models. It was shown that the

optimal solution of the (MOFSTP) could be found simply by solving an equivalent

crisp LP problem.

So in this chapter, a fuzzy goal programming approach for solving multi-objective

fuzzy solid transportation problem (MOFSTP) with fuzzy constraints is presented.

The objective is to determine the crisp model with corresponding defuzzified values

under the conditions and the expected value models in objective functions for tri-

angular and trapezoidal membership functions. Then multi-objective problems are

solved by the fuzzy goal programming approach and three numerical examples were

given to illustrate the proposed model.

Section 5.2 introduces the preliminaries and notations. Section 5.3 gives the for-

mulation of the problem. Section 5.4 provides a defuzzification process. Section 5.5,

deals with the solution methodology. Section 5.6 presents three numerical examples

with analysis of results. Section 5.7 gives the comparative study.

5.2 Preliminaries

5.2.1 Expected value operator on fuzzy number

Liu et al.[67] presented a novel definition of expected value of fuzzy variable and pro-

posed a new class of fuzzy programming called fuzzy expected value models. Yang

and Liu [105] applied expected value model, chance-constrained programming model

and dependent-chance programming in fixed charge solid transportation problem in
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fuzzy environment. kundu et al.[59] presented MOSTP under various uncertain en-

vironments. In this chapter, we develop a goal programming approach and consider

the MOFSTP based on expected value model. Also, we consider sources, demands,

and conveyance capacities as fuzzy.

Definition 5.1. (Liu et al.[67]) Let ξ̃ be a fuzzy variable. Then the expected value

of ξ̃ is defined as

E [ξ] =

∫ ∞
0

Cr {ξ ≥ r}dr −
∫ 0

−∞
Cr {ξ ≤ r}dr,

(where Cr stands for credibility measure)

provided that at least one of the two integral is finite. If ξ̃ is a triangular fuzzy

variable (r1, r2, r3), then the expected value of ξ̃ is (1/4)(r1 + 2r2 + r3). If ξ̃ is a

trapezoidal fuzzy variable (r1, r2, r3, r4), then the expected value of ξ̃ is (1/4)(r1 +

r2 + r3 + r4).

5.2.2 Defuzzification

Kikuchi [52] proposed a defuzzification method to find the most appropriate set of

crisp numbers. For each of many possible sets of values that satisfy the relationships

the lowest membership grade was checked and the set whose lowest membership

grade was the highest chosen as the best set of values for the problem. This process

is performed using the fuzzy linear programming method.

Let the membership function for each value as µA (x), µB (y) and µC (z) where

A, B, C are the fuzzy set of approximate numbers, if there was corresponding crisp

values x, y, z. But each of them satisfy the relationship Rj (x), j ∈ N among them.

Then the following defuzzified model is formulated:
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max λ,

subject to µA (x) ≥ λ, µB (y) ≥ λ, µC (z) ≥ λ,

and the relationship Rj (x) , j ∈ N,

λ ≥ 0, A,B,C ≥ 0.

where λ is the minimum degree of membership that one of the values A, B, C takes,

i.e., λ∗ = Max λ = Max Min [µA (x) , µB (y) , µC (z)].

Kikuchi [52] applied this method to a traffic volume consistency problem taking

all observed values as triangular fuzzy numbers. Dey and Yadav [21] modified this

method with trapezoidal fuzzy numbers.

5.3 Problem Formulation

A multi-objective fuzzy solid transportation problem (MOFSTP) is formulated,

where crijk, si, dj and ek are all fuzzy numbers:

Zr = min
m∑
i=1

n∑
j=1

K∑
k=1

c̃rijkxijk, r = 1, 2, . . . R

subject to
n∑
j=1

K∑
k=1

xijk ≤ s̃i, i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥ d̃j, j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ẽk, k = 1, 2, . . . K

xijk ≥ 0,∀i, j, k

(5.1)
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Consider a product to be transported from m sources to n destinations in a STP.

At each source, let si be the amount of a homogeneous product we wanted to be

transported to n destinations to satisfy the demand for dj units of the product. Here

ek, called conveyance, denotes the units of this product that can be carried by k

different modes of transportation and also the objectives Zr(r = 1, 2, . . . R) are to

be minimized.

5.4 Defuzzification

We considered si, dj and ek (∀i, j, k) are any triangular or trapezoidal fuzzy numbers

( here triangular fuzzy numbers were denoted by si = (s1i , s
2
i , s

3
i ), dj = (d1j , d

2
j , d

3
j)

and ek = (e1k, e
2
k, e

3
k), whereas trapezoidal fuzzy numbers were denoted by si =

(s1i , s
2
i , s

3
i , s

4
i ), dj = (d1j , d

2
j , d

3
j , d

4
j) and ek = (e1k, e

2
k, e

3
k, e

4
k)) with their membership

functions as µsi , µdjandµek respectively. Now to solve the above problem, first find

the corresponding crisp numbers, say, sic, djc and ekc(∀i, j, k) so that for each item,

total available resources greater than or equal to the total demands and also total

conveyance capacities greater than or equal to the total demands for all items, i.e.

m∑
i=1

sic ≥
n∑
j=1

djc,
K∑
k=1

ekc ≥
n∑
j=1

djc (5.2)

For this purpose the defuzzification method based on fuzzy linear programming was

applied. The method is to introduce an auxiliary variable and formulate the follow-

ing linear programming: where λ is the minimum degree of membership that one of

the values of the variables sic, djc, ekc takes, i.e.

maxλ = λ∗ = MaxMin[µsi(sic), µdj(djc), µek(ekc)], where for triangular fuzzy num-
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bers:

µsi (sic) =



si − s1i
s2i − s1i

, when s1i ≤ sic ≤ s2i ;

s1i − si
s3i − s2i

, when s2i ≤ sic ≤ s3i ;

0, otherwise.

and for trapezoidal fuzzy numbers:

µsi (sic) =



si − s1i
s2i − s1i

, when s1i ≤ sic ≤ s2i ;

1, when s2i ≤ sic ≤ s3i ;

s4i − si
s4i − s3i

, when s3i ≤ sic ≤ s4i ;

0, otherwise.

and similarly for µdj (djc), µek (ekc).

Now if it was denoted the right and the left sides of membership functions µsi (sic)

by µlsi (sic) and µrsi (sic) respectively and so on for µdj (djc), µek (ekc). Then the

following auxiliary model is formulated

max λ,

subject to µlsi (sic) ≥ λ, µrsi (sic) ≥ λ,

µldj (djc) ≥ λ, µrdj (djc) ≥ λ,

µlek (ekc) ≥ λ, µrek (ekc) ≥ λ,

m∑
i=1

sic ≥
n∑
j=1

djc,

K∑
k=1

ekc ≥
n∑
j=1

djc,

λ ≥ 0, ∀i, j, k.

(5.3)
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5.5 Solution Methodology

After obtaining the defuzzified values sic, djc and ekc(∀i, j, k) through the above

procedure, problem 5.1 became as,

minZr =
m∑
i=1

n∑
j=1

K∑
k=1

c̃rijkxijk, r = 1, 2, 3 . . . , R

subject to
n∑
j=1

K∑
k=1

xijk ≤ sic, i = 1, 2, . . .m

m∑
i=1

K∑
k=1

xijk ≥ djc, j = 1, 2, . . . n

m∑
i=1

n∑
j=1

xijk ≤ ekc, k = 1, 2, . . . K

xijk ≥ 0, ∀i, j, k.

(5.4)

Now, we use the following method to solve the problem.

5.5.1 Using Expected Value

Here we minimize the expected value of the objective functions and then the above

problem becomes

minE [Zr] =
m∑
i=1

n∑
j=1

K∑
k=1

E
[
c̃rijkxijk

]
, r = 1, 2, 3 . . . , R (5.5.1)

subject to
n∑
j=1

K∑
k=1

xijk ≤ sic, i = 1, 2, . . .m (5.5.2)

m∑
i=1

K∑
k=1

xijk ≥ djc, j = 1, 2, . . . , n (5.5.3)

m∑
i=1

n∑
j=1

xijk ≤ ekc, k = 1, 2, . . . , K (5.5.4)



CHAPTER 5. 88

xijk ≥ 0,∀i, j, k.

which is equivalently written as (using Liu et al.[67])

minE [Zr] =
m∑
i=1

n∑
j=1

K∑
k=1

E
[
c̃rijk
]
xijk, r = 1, 2, 3 . . . , R (5.6)

subject to the constraints (5.5.2) - (5.5.4), xijk ≥ 0, ∀ i, j, k.

The expected value model could be formulated for the model (5.1) by using ex-

pected value to both the objective functions and the constraints. But here the crisp

equivalence form (the deterministic values of supplies E [s̃i], demands E[d̃j] and con-

veyance capacities E [ẽk]) might not satisfy the required conditions (5.2). So this

method gave a feasible solution only when the fuzzy supplies, demands and con-

veyance capacities are so that their respective expected values automatically satisfy

those conditions.

5.5.2 Algorithm

The procedure to solve MOFSTP based on fuzzy goal programming techniques is

given below:

Step 1 Solve (5.3) to obtain the defuzzified values.

Step 2 Formulate the model (5.6).

Step 3 Solve multi-objective problem as a single objective problem each time using

only one objective (r = 1, 2, . . . R) ignore all other objectives, to obtain the

optimal solution Xr∗ of R different single objective problems.

Step 4 Calculate the values of all the R objective functions at all these R op-

timal solutions Xr∗(r = 1, 2, . . . R) and find the lower bound and upper
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bound for each objective function given by Lt = Z̄r(X
t∗), t = 1, 2, ...R and

Ut = Max{Z̄r(X1∗), Z̄r(X
2∗), . . . Z̄r(X

R∗)}, respectively.

Step 5 Define a membership function µt for the Rth objective function as follows:

µt
(
Z̄t(x)

)
=


1, if Z̄t ≤ Lt

Ut − Z̄t
Ut − Lt

, if Lt ≤ Z̄r(x) ≤ Ut

0, if Z̄t ≥ Lt

Then the linear goal programming model for MOFSTP can be formulated as:

max λ,

subject to
Ut − Z̄t
Ut − Lt

+ d−r − d+r = 1,

λ ≥ d−r , r = 1, 2, . . . , R,

d−r d
+
r = 0,

n∑
j=1

K∑
k=1

xijk ≤ sic, i = 1, 2, . . . ,m

m∑
i=1

K∑
k=1

xijk ≥ djc, j = 1, 2, . . . , n

m∑
i=1

n∑
j=1

xijk ≤ ekc, k = 1, 2, . . . , K

d−r , d
+
r ≥ 0,

λ ≤ 1, λ ≥ 0,

xijk ≥ 0, ∀i, j, k

Step 6 Solve this crisp model and the obtained solution will be the optimal com-

promise solution of MOFSTP.
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5.6 Numerical Example

Example 1

It was considered two objective functions with triangular and trapezoidal fuzzy num-

bers given in Table-5.1 and Table-5.2 to illustrate the proposed method.

The supplies, demands and conveyance capacities are given as s̃1=(21, 23, 25),

Table 5.1: Penalties/costs c̃1ijk
k=1 k=2

i j j

1 2 3 1 2 3

1 (8, 9, 11) (4, 6, 9, 11) (10, 12, 14, 16) (9, 11, 13, 15) (6, 8, 10) (7, 9, 12, 14)
2 (8, 10, 13, 15) (6, 7, 8, 9) (11, 13, 15, 17) (10, 11, 13,15) (6, 8, 10, 12) (14, 16, 18, 20)

Table 5.2: Penalties/costs c̃2ijk
k=1 k=2

i j j

1 2 3 1 2 3

1 (9, 10, 12) (5, 8, 10, 12) (10, 11, 12, 13) (11, 13, 14, 15) (6, 7, 9, 11) (8, 10, 11, 13)
2 (11, 13, 14, 16) (7, 9, 12, 14) (12,14, 16, 18) (14, 16, 20) (9, 11, 13, 14) (13, 14, 15, 16)

s̃2=(28, 32, 35, 37), d̃1= (14, 16, 19), d̃2= (17, 20, 22, 25), d̃3 = (12, 15, 18, 21),

ẽ1= (21, 24, 26), ẽ2= (24, 26, 27, 30). Then apply fuzzy programming in (5.3) and

obtained defuzzified values are s1c= 22.27, s2c = 30.54, d1c = 17.09, d2c = 21.82, d3c

= 13.90, e1c = 24.73, e2c = 28.09. In the following the proposed steps of the previous

section (i.e., step 3 to 6) was applied and the results are: λ = 0.80985, x1111= 17.09,

x1122= 4.4951, x1132= 0.6849, x1221= 7.64, x2111= 22.7, x2222= 9.6849, x2232= 13.2151,

d−1 = 0.80985, d−2 = 0.80985, Z̄1= 574.1754 and Z̄2= 605.085.
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5.7 Comparative Study

Example 1

The following numerical example presented by Kundu et al.[57] was considered to

explain the efficiency of the proposed Method. The data was given in Table 5.3–5.6.

Table 5.3: Penalties/costs c̃1ijk
k=1 k=2

i j j

1 2 3 1 2 3

1 (5, 8, 9, 11) (4, 6, 9, 11) (10, 12, 14, 16) (9, 11, 13, 15) (6, 8, 10) (7, 9, 12, 14)
2 (8, 10, 13, 15) (6, 7, 8, 9) (11, 13, 15, 17) (10, 11, 13,15) (6, 8, 10, 12) (14, 16, 18, 20)

Table 5.4: Penalties/costs c̃2ijk
k=1 k=2

i j j

1 2 3 1 2 3

1 (9, 10, 12) (5, 8, 10, 12) (10, 11, 12, 13) (11, 13, 14, 15) (6, 7, 9, 11) (8, 10, 11, 13)
2 (11, 13, 14, 16) (7, 9, 12, 14) (12,14, 16, 18) (14, 16, 20) (9, 11, 13, 14) (13, 14, 15, 16)

Table 5.5: Penalties/costs c̃3ijk
k=1 k=2

i j j

1 2 3 1 2 3

1 (4, 5, 7, 8) (3, 5, 6, 8) (7, 9, 10, 12) (6, 7, 8, 9) (4, 6, 7, 9) (5, 7, 9, 11)
2 (6, 8, 9, 11) (5, 6, 7, 8) (6, 7, 9, 10) (4, 6, 8, 10) (7, 9,11, 13) (9,10, 11, 12)

Table 5.6: Penalties/costs c̃4ijk
k=1 k=2

i j j

1 2 3 1 2 3

1 (5, 7, 9, 10) (4, 6, 7, 9) (9, 11, 12, 13) (7, 8, 9, 10) (4, 5, 7, 8) (8,10, 11, 12)
2 (10, 11, 13, 14) (6, 7, 8, 9) (7, 9, 11, 12) (6, 8, 10, 12) (5, 7, 9, 11) (9, 10, 12, 14)

s̃11=(21, 24, 26, 28), s̃12=(28, 32, 35, 37), d̃11= (14, 16, 19, 22), d̃12= (17, 20, 22,

25), d̃13=(12, 15, 18, 21), s̃21=(32, 34, 37, 39), s̃22=(25, 28, 30, 33), d̃21=(20, 23, 25,
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28), d̃22=(16,18, 19, 22), d̃23=(15, 17, 19, 21), ẽ1=(46, 49, 51, 53), ẽ2=(51, 53, 56, 59).

Then applying the proposed method, we get the following result λ = 0.1133810,

x1111= 15.8, x1221= 19.7, x1231= 6.8, x1132= 7.90, x2111= 22.7, x2122= 2.41, x2132= 8.685,

x2221= 15.385, x2231= 8.1145, d−1 = 0.1133, d−2 = 0.1133, Z̄1= 1110.183 and Z̄2= 814.396.

The other variables that are not in the above have a zero value. Table-5.7 shows

Table 5.7: Comparisons of optimal solutions
Kundu et al. [57] Proposed method

Fuzzy linear programming Global criterion method Goal programming approach

1139.536 1144.894 1110.183
837.4808 832.1250 814.396

the comparison of the results of the objective values of Z̄1 and Z̄2 of the present ex-

ample with the results obtained by Kundu et al.[57]. It was shown that the optimal

solution of the proposed problem gave better results by using fuzzy Goal program-

ming approach when compared to Fuzzy linear programming and Global criterion

method.

Example 2 (Bit, A. K. et al.[7])

Let us consider a multi-objective solid transportation problem with mixed con-

straints.

min Zr =
3∑
i=1

3∑
j=1

3∑
k=1

crijkxijk, r = 1, 2, 3.

subject to
3∑
j=1

3∑
k=1

xijk = 8,
3∑
j=1

3∑
k=1

x2jk ≥ 9,
3∑
j=1

3∑
k=1

x3jk ≤ 5,

3∑
i=1

3∑
k=1

xi1k = 7,
3∑
i=1

3∑
k=1

xi2k ≥ 6,
3∑
i=1

3∑
k=1

xi3k ≤ 5,

3∑
i=1

3∑
j=1

xij1 = 10,
3∑
i=1

3∑
j=1

xij2 ≥ 5,
3∑
i=1

3∑
j=1

xij3 ≤ 6,

xijk ≥ 0, ∀i, j, k.
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Table 5.8: Data for Three objective functions
j 1 2 3

i. k 1 2 3 1 2 3 1 2 3

1 (8, 9, 10) (10,12,14) (7, 9, 11) (3, 6, 9) (8, 9, 10) (5, 7, 9) (2, 3, 4) (6, 7, 8) (5, 7, 9)
c1 2 (4, 5, 6) (5, 6, 7) (3, 5, 7) (7,9, 11) (8, 11, 14) (1, 3, 5) (5, 6, 7) (6, 8, 10) (5, 6, 7)

3 (1, 2, 3) (1, 2, 3) (1, 1, 1) (1, 2, 3) (6, 7, 8) (6, 7, 8) (1, 1, 1) (8, 9, 10) (1, 3, 5)

1 (1, 2, 3) (8, 9, 10) (6, 8, 10) (1, 1, 1) (2, 4, 6) (1, 1, 1) (7, 9, 11) (7, 9, 11) (4, 5, 6)
c2 2 (1, 2, 3) (7, 8, 9) (1, 1, 1) (3, 4, 5) (3, 5, 7) (1, 2, 3) (6, 8, 10) (5, 6, 7) (8, 9, 10)

3 (4, 5, 6) (1, 2, 3) (5, 7, 9) (6, 8, 10) (8, 9, 10) (6, 7, 8) (3, 5, 7) (1, 2, 3) (3, 5, 7)

1 (1, 2, 3) (2, 4, 6) (5, 6, 7) (2, 3, 4) (4, 6, 8) (3, 4, 5) (6, 8, 10) (2, 4, 6) (7, 9, 11)
c3 2 (1, 2, 3) (3, 5, 7) (1, 3, 5) (3, 5, 7) (4, 6, 8) (4, 6, 8) (7, 9, 11) (4, 6, 8) (1, 3, 5)

3 (1, 1, 1) (8, 9, 10) (1, 1, 1) (7, 8, 9) (2, 3, 4) (7, 9, 11) (3, 5, 7) (5, 7, 9) (10, 11, 12)

By using the proposed method, we get the following optimal compromise solution as

λ = 0.3322039, x121= 7.17, x122= 0.8295, x211= 2.82, x212= 2.77, x223= 3.39, x312=

1.39136, d−1 = 0.3322, d−2 = 0.3322, d−3 = 0.3322 Z̄1= 94.2678, Z̄2= 47.9457 and Z̄3=

78.91. The other variables that are not in the above have a zero value.

It was observed from the Table-5.9 the objective values of Z̄1, Z̄2 and Z̄3 of the

Table 5.9: Comparisons of optimal solutions
Bit, A. K. et al. [7] Li, Y. et al. [63] Proposed method

Fuzzy programming improved GA Goal programming approach

Z1 = 94.271 Z1 = 94.5 Z1 = 94.2678
Z2 = 47.952 Z2 = 57.5 Z2 = 47.9457
Z3 = 78.94 Z3 = 67.0 Z3 = 78.91

above example were in good agreement with the results obtained by Bit, A. K. et

al.[7] and Li, Y. et al.[63].
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6.1 Introduction

In this chapter, a solution procedure has been given for the multi objective solid

transportation problem with L-R coefficients in the objective function. When the

objective function with L-R coefficient in the linear programming is integrated the

method, that can be changed into a fuzzy optimal solution to multi-object linear

programming. Meanwhile, determination of this model might cause the constraint

field of linear programming to be empty sets after the flexible indexes p1, p2, p3 are

given subjectively. The new method is a systematic procedure, easy to apply and

could be utilized for all types of solid transportation problems either maximize or

minimize objective function.

The rest of this chapter is organized as follows. In Section 6.2, preliminary

knowledge about fuzzy linear programming is provided. Section 6.3 deals with

formulation of STP problem. Section 6.4 describes the model formulation of fuzzy

LP in MOSTP with LR-coefficients. The algorithm is given in 6.5. Section 6.6

presents a numerical example.

6.2 Fuzzy Linear Programming and its Algorithm

Suppose that x = (x1, x2, . . . xn)T is an n-dimensional decision vector, c = (c1, c2, . . . cn)

is an n-dimensional objective coefficient vector, A = aij(1 ≤ i ≤ m, 1 ≤ j ≤ n)is

an m × n-dimensional constraint coefficient matrix, b = (b1, b2, . . . bm)T is an m-

dimensional constant vector, and fuzzified objective and constraint function in the
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ordinary linear programming, then

m̃ax( or m̃in)z = cx

subject to Ax ≤
∼
b (6.1)

∀x ≥ 0

It could be as fuzzy linear programming. Let the rank (A) = m. “≤
∼

” denotes

the fuzzy version of “≤” and has the linguistic interaction “essentially smaller

than or equal to” (Zimmermann [110]). m̃ax represents fuzzy maximizing, where

cx =
n∑
j=1

cjxjAx = (
n∑
j=1

aijxj) (i = 1, 2, . . .m). The membership function of fuzzy

objective g̃(x) is

µG̃(x) = g̃(
n∑
j=1

cjxj)

=



0, when
n∑
j=1

cjxj ≤ z0,

1
p0

(
n∑
j=1

cjxj − z0), when z0 <
n∑
j=1

cjxj ≤ z0 + p0,

1, when
n∑
j=1

cjxj > z0 + p0,

Let t0 =
n∑
j=1

cjxj then the membership function of g̃(t0) is shown as figure 6.1.

Figure 6.1: Membership function of g̃(t0).
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The membership function of fuzzy constraints is written as below:

µS̃(x) = f̃(
n∑
j=1

cjxj)

=



1, when
n∑
j=1

aijxj ≤ bi,

1− 1
p i

(
n∑
j=1

aijxj − bj), when bi <
n∑
j=1

aijxj ≤ bi + pi,

0, when
n∑
j=1

aijxj > bi + pi

Let ti =
n∑
j=1

aijxj then f(ti) membership function shown in the figure 6.2 where as

Figure 6.2: Membership function of f(ti).

pi ≥ 0 (1 ≤ i ≤ m) is a flexible index by an appropriate choice.

Consider a symmetric form fuzzy linear programming (6.1), written as µS̃ = S̃f

and µG̃ = M̃f , and we call it condition and unconditional fuzzy superiority set of f

concerning constraint S̃, respectively.

Theorem 6.1 If x̄∗ = (x∗1, x
∗
2, . . . , x

∗
n)T is an optimal solution in (6.1), then

x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T is an optimal solution in ((6.1)) and they have constrained

optimal level of α.

Zimmermann [110] initiated arithmetic to Problem (6.1).
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Here we introduced its solution procedure in the following. First to find an

ordinary linear programming:

max z = cx

subject to Ax ≤ b (6.2)

x ≥ 0

and

max z = cx

subject to Ax ≤ b+ p,

x ≥ 0.

It is obtained a maximum value z0 and z0+p0, where b+p = (b1 + p1, b2 + p2, . . . bn + pn)T .

Here, z0 is a function maximum under the constraint condition Ax ≤ b obeyed

strictly (the membership degree is µS̃(x) = 1 at this time). z0 + p0 is a function

maximum when the constraint condition to be relaxed as Ax ≤ b+ p (the member-

ship degree is µS̃(x) = 0 at this time). z0 and z0 + p0 corresponds to two extreme

cases µS̃(x) = 1 and µS̃(x) = 0, which could adequate lower membership degree

µS̃(x), so that the optimal value improved, lying between z0 and z0 + p0.

max G = α

subject to
n∑
j=1

aijxj + piα ≤ bi + pi(1 ≤ i ≤ m), (6.3)

n∑
j=1

cjxj − p0α ≥ z0,

0 ≤ α ≤ 1,∀xj ≥ 0, j = 1, 2, . . . n.
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The researcher found its optimal solution x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T by using simplex

method, thus optimal point x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T in (6.1) was obtained by Theorem

6.1 and the objective function value is µD̃(x∗) = α∗.

6.3 Problem Formulation

For instance when considered a product is to be transported from m sources to n

destinations in a STP, at each source, let si be the amount of a product expected to

be transported to n destinations to satisfy the demand for dj units of the product.

Here ek, called conveyance, denotes the units of this product that could be carried

by k different modes of transportation.

A multi-objective fuzzy solid transportation problem is formulated in the follow-

ing example.

max Z̃r =
m∑
i=1

n∑
j=1

K∑
k=1

c̃rijkxijk, r = 1, 2, . . . R

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n, (6.4)

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

xijk ≥ 0,∀i, j, k.
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6.4 Fuzzy Linear Programming in MOSTP with

L-R Coefficients

Consider

max Z̃ = c̃x

subject to Ax ≤ b

x ≥ 0.

Where c̃ = (cijk, cijk, c̄ijk)LR and

Z̃ = (Z,Z, Z̄)LR =

(
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk,
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk,
m∑
i=1

n∑
j=1

K∑
k=1

c̄ijkxijk

)
LR

are all L-R numbers in (6.4) is approximately equivalent to a linear programming

with three objectives

max

(
Z =

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

)
,

min

(
Z̄ =

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk

)
,

max

(
Z̄ =

m∑
i=1

n∑
j=1

K∑
k=1

c̄ijkxijk

)
,

subject to
n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m, (6.5)

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

xijk ≥ 0, ∀i, j, k
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Find an optimal solution to each objective individually with respect to the con-

straints.

Here, researcher considered a three-objective, and the membership functions, are

given by

µG̃(x) = f1(Z)

=


0, when z ≤ z0,

1− 1
p0

(z1 − Z), when z0 < z ≤ z0 + p0,

1, when z > z0 + p0

(6.6)

Where z =
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk, z1 = z0 + p0 and p0 is flexible index value.

Now, using the Theorem 6.1, presented the equivalent crisp linear programming of

Model (6.4) as follows:

Z = max α

subject to
m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk − p1α ≥ z1,

m∑
i=1

n∑
j=1

K∑
k=1

cijkxijk − p2α ≥ z2,

m∑
i=1

n∑
j=1

K∑
k=1

c̄ijkxijk − p3α ≥ z3 (6.7)

n∑
j=1

K∑
k=1

xijk ≤ si, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dj, j = 1, 2, . . . n,
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m∑
i=1

n∑
j=1

xijk ≤ ek, k = 1, 2, . . . K,

0 ≤ α ≤ 1,∀xijk ≥ 0.

6.5 Algorithm

Step 1 Input the data in (6.4), assume as level (0).

Step 2 Find the optimal solutions for each objective individually with given con-

straints as given in (6.5).

Step 3 For fuzzy goal programming of stochastic STP formulate the membership

function as given in (6.6).

Step 4 Formulate the model (6.7).

Step 5 Solve (6.7) which will give solution for (6.4) with LR-coefficients at level

(0).

Step 6 For level (-1), take -1 value at each point in L-R numbers then goto Step 2.

Step 7 For level (+1), add +1 value at each point in L-R numbers then goto Step

2.

6.6 Numerical Example

To demonstrate the potentiality of the proposed model, it felt necessary to present an

example of coal transportation problem. Coal is a kind of crucial energy source in the

development of economy and society. Accordingly, economically coal transportation

is also an important issue in the coal transport from mines to the different areas. For
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the convenience of description, it was summarized the problem as follows. Suppose

that there were two coal mines to supply the coal for three cities. During the process

of transportation, two kinds of conveyances were available to be selected, i.e., train

and cargo ship. In the beginning of this task, the decision maker needs to obtain

the basic data, since the transportation plan is made in advance, it is not possible

get this data exactly.

Table 6.1: Profit matrix
cij1 cij2
(11, 6, 4) (10, 3, 4) (11, 5, 2) (18, 5, 3) (11, 4, 2) (12, 6, 1)
(13, 7, 3) (11, 4, 6) (10, 4, 1) (12, 3, 4) (13, 5, 2) (15, 7, 4)

subject to x111 + x121 + x131 + x112 + x122 + x132 ≤ 35,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 30,

x111 + x211 + x112 + x212 ≥ 9,

x121 + x221 + x122 + x222 ≥ 7,

x131 + x132 + x231 + x232 ≥ 8,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 25,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 26,

xijk ≥ 0,∀i, j, k.

Level (0): This problem is equivalent to

maxZ = 11x111 + 18x112 + 10x121 + 11x122 + 11x131 + 12x132

+ 13x211 + 12x212 + 11x221 + 13x222 + 10x231 + 15x232
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minZ = 6x111 + 5x112 + 3x121 + 4x122 + 5x131 + 6x132

+ 7x211 + 3x212 + 4x221 + 5x222 + 4x231 + 7x232

max Z̄ = 4x111 + 3x112 + 4x121 + 2x122 + 2x131 + 1x132

+ 3x211 + 4x212 + 6x221 + 2x222 + 1x231 + 4x232

subject to x111 + x121 + x131 + x112 + x122 + x132 ≤ 35,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 30,

x111 + x211 + x112 + x212 ≥ 9,

x121 + x221 + x122 + x222 ≥ 7,

x131 + x132 + x231 + x232 ≥ 8,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 25,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 26,

xijk ≥ 0, ∀ i, j, k.

Now solving each objective individually with respect to the given constraints, we

obtain x
(1)
112 = 26, x

(1)
131 = 8, x

(1)
211 = 10, x

(1)
221 = 7,Z(1) = 763 when Z(1) = 268, Z̄(1) =

166. Similarly, we obtain the optimum solution for second and third objective as

follows.

The optimum solution of second objective is: x
(2)
121 = 7, x

(2)
212 = 9, x

(2)
231 = 8,Z(2) = 258

when Z(2) = 80, Z̄(2) = 72.

The optimum solution of third objective is: x
(3)
111 = 3, x

(3)
112 = 18, x

(3)
221 = 22,

x
(3)
232 = 8, Z(3) = 719 when Z(3) = 252, Z̄(3) = 230 and all other variables are zero.

Here, given flexible index for p1 = 3, p2 = 8 and p3 = 9 for fuzzy objective sets,

let us construct the membership functions as given below:
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µm1(x) = f1(Z) =


0, z < 760

1− 1
3
(763− Z), 760 ≤ z < 763

1, z ≥ 763

µm2(x) = f2(Z) =


1, z ≤ 258

1− 1
8
(Z − 250), 258 < z < 266

0, z ≥ 266

µm3(x) = f3(Z) =


0, z < 710

1− 1
9
(719− Z), 710 ≤ z < 719

1, z ≥ 719

Then the problem is changed into an ordinarily linear programming problem.

max α

subject to 1− 1

3
(763−

2∑
i=1

3∑
j=1

2∑
k=1

cijkxijk) ≥ α,

1− 1

8
(

2∑
i=1

3∑
j=1

2∑
k=1

c ijkxijk − 258) ≥ α,

1− 1

9
(719−

2∑
i=1

3∑
j=1

2∑
k=1

c̄ijkxijk) ≥ α,

x111 + x121 + x131 + x112 + x122 + x132 ≤ 35,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 30,

x111 + x211 + x112 + x212 ≥ 9,

x121 + x221 + x122 + x222 ≥ 7,
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x131 + x132 + x231 + x232 ≥ 8,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 25,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 26,

xijk ≥ 0, ∀ i, j, k.

(6.8)

i.e.,

max α

subject to 11x111 + 18x112 + 10x121 + 11x122 + 11x131 + 12x132

+ 13x211 + 12x212 + 11x221 + 13x222 + 10x231 + 15x232 − 3α ≥ 760,

6x111 + 5x112 + 3x121 + 4x122 + 5x131 + 6x132

+ 7x211 + 3x212 + 4x221 + 5x222 + 4x231 + 7x232 + 8α ≤ 266,

4x111 + 3x112 + 4x121 + 2x122 + 2x131 + 1x132

+ 3x211 + 4x212 + 6x221 + 2x222 + 1x231 + 4x232 − 9α ≥ 710,

x111 + x121 + x131 + x112 + x122 + x132 ≤ 35,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 30,

x111 + x211 + x112 + x212 ≥ 9,

x121 + x221 + x122 + x222 ≥ 7,

x131 + x132 + x231 + x232 ≥ 8,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 25,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 26,

xijk ≥ 0,∀i, j, k.

The optimal solution is obtained as α∗ = 0.2, x∗112 = 26, x∗131 = 8, x∗211 = 8.8, x∗221 =

8.2 correspondingly Z = 760.6, Z = 264.4, Z̄ = 169.6. Then the approximately
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fuzzy optimal value is Z̃∗ = (760.6, 264.4, 169.6)LR.

Level (-1): To solve the above considered problem, convert the problem as

in profit matrix and take -1 value at each point (left level) in L-R numbers with

flexible index values p1 = 3, p2 = 8, p3 = 9 (as we concentrate more in maximizing

and minimizing).

max Z = 11x111 + 18x112 + 10x121 + 11x122 + 11x131 + 12x132

+ 13x211 + 12x212 + 11x221 + 13x222 + 10x231 + 15x232

min Z = 5x111 + 4x112 + 2x121 + 3x122 + 4x131 + 5x132

+ 6x211 + 2x212 + 3x221 + 4x222 + 3x231 + 6x232

max Z̄ = 3x111 + 2x112 + 3x121 + 1x122 + 1x131 + 1x132

+ 2x211 + 3x212 + 5x221 + 1x222 + 1x231 + 3x232

subject to x111 + x121 + x131 + x112 + x122 + x132 ≤ 35,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 30,

x111 + x211 + x112 + x212 ≥ 9,

x121 + x221 + x122 + x222 ≥ 7,

x131 + x132 + x231 + x232 ≥ 8,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 25,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 26,

xijk ≥ 0, ∀ i, j, k.

Now solving each objective individually with respect to the given constraints, we

obtain x
(1)
112 = 26, x

(1)
131 = 8, x

(1)
211 = 10, x

(1)
221 = 7,Z(1) = 763 whenZ(1) = 217, Z̄(1) =

115. x
(2)
121 = 7, x

(2)
212 = 9, x

(2)
231 = 8,Z(2) = 258 when Z(2) = 56, Z̄(2) = 56. x

(3)
111 =

3, x
(3)
112 = 18, x

(3)
221 = 22, x

(3)
232 = 8, Z(3) = 719 when Z(3) = 192, Z̄(3) = 179 and all
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other variables are zero.

Here, flexible index values p1 = 3, p2 = 8, p3 = 9 are given for fuzzy objective

sets and applying above procedure. Meanwhile, it could not be found find any

feasible solution for this numerical example. However for any other example with

suitable data set, this method could provide feasible solution.

Level (+1): Similarly, reseracher considered problem as in the cost matrix and

took +1 value at each point (right level) of L-R coefficients with flexible index values

are p1 = 16, p2 = 24, p3 = 22. The profit matrix becomes

max Z = 11x111 + 18x112 + 10x121 + 11x122 + 11x131 + 12x132

+ 13x211 + 12x212 + 11x221 + 13x222 + 10x231 + 15x232

min Z = 7x111 + 6x112 + 4x121 + 5x122 + 6x131 + 7x132

+ 8x211 + 4x212 + 5x221 + 6x222 + 5x231 + 8x232

max Z̄ = 5x111 + 4x112 + 5x121 + 3x122 + 3x131 + 3x132

+ 4x211 + 5x212 + 7x221 + 2x222 + 3x231 + 5x232

subject to x111 + x121 + x131 + x112 + x122 + x132 ≤ 35,

x211 + x221 + x231 + x212 + x222 + x232 ≤ 30,

x111 + x211 + x112 + x212 ≥ 9,

x121 + x221 + x122 + x222 ≥ 7,

x131 + x132 + x231 + x232 ≥ 8,

x111 + x211 + x131 + x121 + x221 + x231 ≤ 25,

x112 + x212 + x132 + x122 + x222 + x232 ≤ 26,

xijk ≥ 0, ∀ i, j, k.

Now solving each objective individually with respect to the system constraints with
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flexible index values p1 = 16, p2 = 24, p3 = 22 the values of objective functions are

calculated as follows:

The optimal solution is obtained as α∗ = 0.7, x∗112 = 26, x∗131 = 8, x∗211 = 8.167,x∗221 =

8.834 correspondingly Z = 759.35, Z = 313.5, Z̄ = 222.5. The corresponding results

are listed in the Table 6.2 with different flexible index values. Suppose that when the

optimal solution of membership function, the decision maker is satisfied, then the

interactive process is stopped, so we set flexible index values (16, 24, 22), obtain that

the satisfied solutions were detailed as α∗ = 0.7, x∗112 = 26, x∗131 = 8, x∗211 = 8.167,

x∗221 = 8.834. The corresponding optimal values are Z̃∗ = (759.35, 313.5, 222.5)LR.

Table 6.2: Results for different flexible index values
Level Each objective individually results Flexible index value Optimal solutions

0 (763, 268, 116) (3, 8, 9) (760.6, 315.4, 220.6)
-1 (763, 217, 115) (3, 8, 9) Infeasible solution
-1 (763, 217, 115) (16, 24, 22) Infeasible solution

+1 (763, 319, 217) (16, 24, 22) (759.35, 313.5, 222.5)

+1 (763, 319, 217) (33, 78, 89) (739.35, 313.89, 255.5)
+1 (763, 319, 217) (33, 85, 81) (748.03, 296.55, 239.45)
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7.1 Introduction

In this chapter, the researcher presents a new fuzzy solid transportation problem

(i.e. Sources, demands and conveyance capacities are fuzzy) with expected cost

value and rough interval constraints that maximized the profit. Through research,

it showed that the optimal solution of the fuzzy solid transportation problem could

be found simply by solving proposed models and our model discussed some concepts

like as surely optimal range, possibly optimal range, completely satisfactory solu-

tions, rather satisfactory solutions, rough interval range. In order to solve the model

conveniently, researcher had discussed the crisp model with corresponding expected

value models in objective functions for triangular and trapezoidal membership func-

tions, here it was showed that the problem could be converted into two different

solid transportation problems with interval coefficients, and then further each of

these two solid transportation problem can be regenerated into four classical solid

transportation problem. A numerical example was given to illustrate the proposed

model.

Section 7.2 introduces some preliminaries and notations. Section 7.3 gives the

problem formulation of fuzzy STP with rough interval coefficients. Section 7.4 pro-

vides description of the proposed model. Section 7.5 gives solution procedure (algo-

rithm). Section 7.6 presents a numerical example.

7.2 Preliminaries

In this section, the basic knowledge of rough set theory is recalled. As Rough

intervals, rough interval arithmetic and ordering of rough interval were introduced

briefly in Chapter 1 (definition 1.11 and 1.12). The expected value operator is

discussed below.
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Expected value of triangular and trapezoidal fuzzy numbers:

Definition 7.1. (Liu et al. [67]) Let ξ̃ be a fuzzy variable. Then the expected value

of ξ̃ is defined as

E [ξ] =

∫ ∞
0

Cr {ξ ≥ r}dr −
∫ 0

−∞
Cr {ξ ≤ r}dr (7.1)

provided that at least one of the two integral is finite. If ξ̃ is a triangular fuzzy

variable (r1, r2, r3), then the expected value of ξ̃is (1/4)(r1 + 2r2 + r3). If ξ̃ is a

trapezoidal fuzzy variable (r1, r2, r3, r4), , then the expected value of ξ̃is (1/4)(r1 +

r2 + r3 + r4). Here Cr is called credibility measure.

7.3 Problem Formulation

It is assumed that a product is to be transported from m sources to n destinations

in a STP, at each source, let si be the amount of a homogeneous product we want to

transport to n destinations to satisfy the demand for dj units of the product. Here

ek, called conveyance, denotes the units of this product that could be carried by k

different modes of transportation and also the objectives Z is to be maximized.

A solid transportation problem is formulated with fuzzy objective functions and
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different types of constraints with rough interval coefficients could be written as.

Z = max
m∑
i=1

n∑
j=1

K∑
k=1

c̃ijkxijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ ([sli, s
u
i ], [s̄

l
i, s̄

u
i ]), i = 1, 2, . . . .m,

m∑
i=1

K∑
k=1

xijk ≥ ([dlj, d
u
j ], [d̄

l
j, d̄

u
j ]), j = 1, 2, . . . .n,

m∑
i=1

n∑
j=1

xijk ≤ ([elk, e
u
k ], [ē

l
k, ē

u
k ]), k = 1, 2, . . . K,

where xijk ≥ 0,∀ i, j, k.

(7.2)

A value of the unit shipping cost c̃ijk is associated with fuzzy transportation from

ith origin to jth destination by the kth conveyance. We need to determine a feasible

way of shipping the available amounts to satisfy the demand such that the profit is

maximized.

Remark 7.1: Using the rough interval properties given in section 7.2, we have the

followings proposals:

[sli, s
u
i ] ⊆ [s̄li, s̄

u
i ]⇒ s̄li ≤ sli ≤ sui ≤ s̄ui

[dlj, d
u
j ] ⊆ [d̄lj, d̄

u
j ]⇒ d̄lj ≤ dlj ≤ duj ≤ d̄uj

[elk, e
u
k ] ⊆ [ēlk, ē

u
k ]⇒ ēlk ≤ elk ≤ euk ≤ ēuk

where i=1,2,. . . m, j=1,2,. . . n and k=1,2,. . . K.

Here we define some sets which will help to develop the methodology and theoretical

background that leads us to solve the proposed solid transportation problem under

rough interval approximation.
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Definition 7.2. In Problem (7.2), we define the following sets:

1. Ū l =


x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ s̄li , i = 1, 2, . . . ,m;

∑m

i=1

∑K

k=1
xijk ≥ d̄uj , j = 1, 2, . . . , n;∑m

i=1

∑n

j=1
xijk ≤ ēlk, k = 1, 2, . . . ,Kandxijk ≥ 0,∀i, j, k


2. U l =


x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ sli , i = 1, 2, . . . ,m;

∑m

i=1

∑K

k=1
xijk ≥ duj , j = 1, 2, . . . , n;∑m

i=1

∑n

j=1
xijk ≤ elk, k = 1, 2, . . . ,Kandxijk ≥ 0,∀i, j, k


3. Ūu =


x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ s̄ui , i = 1, 2, . . . ,m;

∑m

i=1

∑K

k=1
xijk ≥ d̄lj , j = 1, 2, . . . , n;∑m

i=1

∑n

j=1
xijk ≤ ēuk , k = 1, 2, . . . ,Kandxijk ≥ 0,∀i, j, k


4. Uu =


x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ sui , i = 1, 2, . . . ,m;

∑m

i=1

∑K

k=1
xijk ≥ dlj , j = 1, 2, . . . , n;∑m

i=1

∑n

j=1
xijk ≤ euk , k = 1, 2, . . . ,Kandxijk ≥ 0,∀i, j, k


Where p = m× n×K.

Proposition 7.2.1:

Here we propose that for the sets Ū l, Ūu, U l and Uu that we define by definitions are

(according to Hamzeheea et al.[35]) have the following property:

Ū l ⊆ U l ⊆ Uu ⊆ Ūu

Proof: Using remark 7.1 we have, Let x ∈ Ū l which implies,

(
x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ s̄li ,

∑m

i=1

∑K

k=1
xijk ≥ d̄uj ,

∑m

i=1

∑n

j=1
xijk ≤ ēlk

)
(
⇒ x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ sli ,

∑m

i=1

∑K

k=1
xijk ≥ duj ,

∑m

i=1

∑n

j=1
xijk ≤ elk

)
⇒ x ∈ U l,

(
⇒ x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ sui ,

∑m

i=1

∑K

k=1
xijk ≥ dlj ,

∑m

i=1

∑n

j=1
xijk ≤ euk

)
⇒ x ∈ Uu,

(
⇒ x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ s̄ui ,

∑m

i=1

∑K

k=1
xijk ≥ d̄lj ,

∑m

i=1

∑n

j=1
xijk ≤ ēuk

)
⇒ x ∈ Ūu,

for all i = 1, 2, . . .m, j = 1, 2, . . . n, and k = 1, 2, . . .K where p = m× n×K.

So it is proved that for any x ∈ Ū l we find that x ∈ U l, x ∈ Uu, x ∈ Ūu.

Therefore,
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A. Ū l ⊆ U l

B. Ū l ⊆ Uu

C. Uu ⊆ Ūu

D. U l ⊆ Ūu

E. U l ⊆ Ūu

Now combining the above we can say that,Ū l ⊆ U l ⊆ Uu ⊆ Ūu . Hence proved.

7.4 Solution Methodology

Now, we use the following method to solve the problem given in (7.2).

Using Expected Value:

Here we minimize the expected value of the objective functions and then the above

problem become as:

max E[Z]= E

[
m∑
i=1

n∑
j=1

K∑
k=1

c̃ijkxijk

]

subject to
n∑
j=1

K∑
k=1

xijk ≤ ([sli, s
u
i ], [s̄

l
i, s̄

u
i ]), i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ ([dlj, d
u
j ], [d̄

l
j, d̄

u
j ]), j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ([elk, e
u
k ], [ē

l
k, ē

u
k ]), k = 1, 2, . . . K,

where xijk ≥ 0,∀i, j, k.
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This is equivalently written as:

max E[Z] =
m∑
i=1

n∑
j=1

K∑
k=1

E [c̃ijk]xijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ ([sli, s
u
i ], [s̄

l
i, s̄

u
i ]), i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ ([dlj, d
u
j ], [d̄

l
j, d̄

u
j ]), j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ([elk, e
u
k ], [ē

l
k, ē

u
k ]), k = 1, 2, . . . K,

where xijk ≥ 0,∀i, j, k.

(7.3)

The expected value model (Liu et al.[67]) could be formulated for the model (7.3) by

using expected value to both (the objective functions). But here the crisp equiva-

lence may not satisfy the required conditions (total available resources greater than

or equal to the total demands and also total conveyance capacities greater than

or equal to the total demands for all items). So this method gave a feasible so-

lution only when the rough interval coefficients supplies, demands and conveyance

capacities were rough interval coefficients so that their respective expected values

automatically satisfy those conditions.

Solid transportation problem with interval coefficient-7.1

(STPIC-7.1):

In order to solve the Model (7.3), here we have a solid transportation problem with

interval coefficient which we denote as STPIC-7.1.
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max E[Z] =
m∑
i=1

n∑
j=1

K∑
k=1

E [c̃ijk]xijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ ([sli, s
u
i ]), i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ ([dlj, d
u
j ]), j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ([elk, e
u
k ]), k = 1, 2, . . . K,

where xijk ≥ 0,∀i, j, k.

(7.4)

Solid transportation problem with interval coefficient-7.2

(STPIC-7.2):

In order to solve the Model (7.3), here we have another solid transportation problem

with interval coefficient which we denote as STPIC-2.

max E[Z] =
m∑
i=1

n∑
j=1

K∑
k=1

E [c̃ijk]xijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ ([s̄li, s̄
u
i ]), i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ ([d̄lj, d̄
u
j ]), j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ([ēlk, ē
u
k ]), k = 1, 2, . . . K,

(7.5)

where xijk ≥ 0,∀i, j, k.

Theorem 7.1[Hamzeheea et al.[35]]

Suppose the optimal range of STPIC-7.1 exists, then it is equal to the surely optimal

range of the Model (7.3).

The optimal range of the STPIC-1 could be obtained by solving two classical trans-
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portation problem given by STP-7.1.1 and STP-7.1.2.

Solid Transportation Problem-7.1.1 (STP-7.1.1):

max Z l =
m∑
i=1

n∑
j=1

K∑
k=1

E [c̃ijk]xijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ sli, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ duj , j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ elk, k = 1, 2, . . . K,

where xijk ≥ 0,∀i, j, k.

(7.6)

Solid Transportation Problem-7.1.2 (STP-7.1.2):

max Z l =
m∑
i=1

n∑
j=1

K∑
k=1

E [c̃ijk]xijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ sui , i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ dlj, j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ euk , k = 1, 2, . . . K,

where xijk ≥ 0,∀i, j, k.

(7.7)

Now from definition 7.1, the feasible set of STP-7.1.1 and STP-7.1.2 is equal to U l

and Uu respectively. Hence the optimal range of STPIC-7.1 by the interval [zl, zu].

Theorem 7.2 [Hamzeheea et al.[35]]

Suppose the optimal range of STPIC-7.2 exists, then it is equal to the surely optimal

range of the Model (7.3).
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The optimal range of the STPIC-7.2 could be obtained by solving two classical solid

transportation problems given by STP-7.2.1 and STP-7.2.2.

Solid Transportation Problem-7.2.1 (STP-7.2.1):

max Z̄ l =
m∑
i=1

n∑
j=1

K∑
k=1

E [c̃ijk]xijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ s̄li, i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ d̄uj , j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ēlk, k = 1, 2, . . . K,

where xijk ≥ 0, ∀i, j, k.

(7.8)

Solid Transportation Problem-7.2.2 (STP-7.2.2):

max Z̄u =
m∑
i=1

n∑
j=1

K∑
k=1

E [c̃ijk]xijk

subject to
n∑
j=1

K∑
k=1

xijk ≤ s̄ui , i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ d̄lj, j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ēuk , k = 1, 2, . . . K,

where xijk ≥ 0,∀i, j, k.

(7.9)

Now from definition 7.1 the feasible sets of STP-7.2.1 and STP-7.2.2 are equal to

Ū l and Ūu respectively. Hence the optimal range of STPIC-7.2 was given by the

interval [z̄l, z̄u].

Now we can claim that the interval [z̄l, z̄u] and possibly optimal range of the Model
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(7.3) both are equal and we have to show it. We need to prove [zl, zu] ⊆ [z̄l, z̄u] or

equivalently z̄l ≤ zl ≤ zu ≤ z̄u. In order to show it, we need to prove Ū l ⊆ U l and

Uu ⊆ Ūu. The remaining proof is given in proposition 7.1.

7.5 Algorithm

Input As an input is considered one solid transportation problem with rough in-

terval coefficient (STPRIC) given by the Model (7.3).

Step 1 Break down the Model (7.3) into two transportation problem with interval

coefficients given by STPIC-7.1 and STPIC-7.2.

Step 2 Find out the surely optimal range [zsl, zsu] by solving STPIC-7.1 by breaking

down them to two classical transportation problem given by STP-7.1.1 and

STP-7.1.2.

Step 3 In a similar process with step 2, we have to find the possibly optimal range

[z̄pl, z̄pu] by solving the STPIC-7.2.

Step 4 In this step we may have three possible outcomes depending on the set of

decision variables. The three possible outcomes are as follows.

1. If STPIC-7.1 and STPIC-7.2 have their optimal ranges, then the main

problem i.e. STPRIC has a rough ranges and it is given by ( [zsl, zsu][z̄pl, z̄pu]).

2. If STPIC-7.1 and STPIC-7.2 has unbounded range then the STPRIC has

unbounded range.

3. The infeasibility of STPIC-1 and STPIC-2 directly implies the infeasibil-

ity of STPRIC.
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7.6 Numerical Example

We considered objective functions with triangular and trapezoidal fuzzy numbers

to illustrate the proposed method to show the effectiveness and efficiency. Supply,

demand and conveyance capacities are taken as rough interval form.

max Profit =(1, 3, 7)x111 + (2, 5, 8, 9)x121 + (4, 7, 9, 11)x112 + (3, 5, 6, 8)x211

+ (3, 4, 5, 6)x221 + (5, 7, 8, 9)x122 + (1, 2, 3)x222 + (4, 5, 6, 7)x212

subject to x111 + x121 + x112 + x122 ≤ ([5, 10], [4, 18]),

x211 + x221 + x212 + x222 ≤ ([5.5, 8], [3, 9]),

x111 + x211 + x112 + x212 ≥ ([3, 3.5], [2, 3.5]),

x121 + x221 + x122 + x222 ≥ ([2, 2.5], [1, 2.5]),

x111 + x211 + x121 + x221 ≤ ([2.5, 6.5], [2, 8]),

x112 + x212 + x122 + x222 ≤ ([4, 7.5], [4, 10]),

where xijk ≥ 0,∀ i, j, k.
Now following the proposed methodology discussed in theorems 7.1 and 7.2. We

have four classical solid transportation problem like as STP-7.1.1, STP-7.1.2, STP-

7.2.1 and STP-7.2.2, given in section 7.3. We solve these STPs of the model using

LINGO software.

After solving the problems we got optimal results and they were given as follows.

STP-7.1.1 Optimal value zl=44.5, optimal solution x121=1, x112=2.5, x211=1.5,

x122=1.5 and all other variables are zero.

STP-7.1.2 Optimal value zu=95.125, optimal solution x121=2.5, x112=7.5, x211=4

and all other variables are zero.

STP-7.2.1 Optimal value z̄l=40.75, optimal solution x112=1.5, x211=2, x122=2.5
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and all other variables are zero.

STP-7.2.2 Optimal value z̄u=125.5, optimal solution x121=8, x112=10 and all other

variables are zero.

With these optimal values we have the following solution for the problem as follows,

[zl, zu]=[44.5, 95.125] is the surly optimal range and these optimal solutions are two

rather satisfactory solutions, [z̄l, z̄u]=[40.75, 125.5] is the possibly optimal range

and these optimal solutions are completely satisfactory solutions and [44.5, 95.125],

[40.75, 125.5] is the rough optimal range. Here the obtained results are involved

in the transportation system regarding quantity of production of respective goods.

Using the expected value operator and rough interval. In all the cases we managed

to reach the optimal solution. As we know that using the rough interval tool, we

were make the solution space or feasible region of the problem more flexible.
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8.1 Introduction

In this chapter, the researcher presents a new fuzzy fixed charge solid transporta-

tion problem with rough interval constraints. The fixed charge solid transportation

problem is an extension of classical transportation problem in which a fixed profit is

incurred, independent of the amount transported, along with a variable profit that

is proportionate to the amount shipped. The fixed charge solid transportation has

two kinds of profits: direct profit and fixed charge profit. Here, we could construct

two solid transportation problems with interval coefficients considering the lower

approximation and the upper approximation of the rough intervals. The researcher

finds that the optimal solution of the fuzzy solid transportation problem could be

found simply by solving proposed models and our model discussed some concepts like

as surely optimal range, possibly optimal range, completely satisfactory solutions,

rather satisfactory solutions, rough interval range. A numerical example is given

to illustrate the proposed model. Our results are compared with those obtained by

Pardip Kundu et al.[58], using the proposed models for the same numerical example.

Section 8.2 introduces some preliminaries. Section 8.3 gives the problem formu-

lation of fuzzy STP with rough interval coefficients. Section 8.4 provides description

of the proposed model. Section 8.5 gives solution procedure (algorithm). Section

8.6 presents a numerical example. Section 8.7 presents two numerical examples and

sensitivity analysis. Section 8.8 gives the comparative study.

8.2 Preliminaries

The Rough intervals, rough interval arithmetic and ordering of rough interval have

given in Chapter 1 (definition 1.11 and 1.12). The expected value of triangular and

trapezoidal fuzzy numbers have given in Chapter 5 (definition 5.1).
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8.3 Problem Formulation

It is assumed that a product is to be transported from m sources to n destinations

in a STP. At each source, let si be the amount of a homogeneous product we want

to transport to n destinations to satisfy the demand for dj units of the product.

Here ek called conveyance, denotes the units of this product that can be carried by

k different modes of transportation and also the objectives Z should be maximized.

A solid transportation problem is formulated with fuzzy objective functions,

fuzzy fixed charge and different types of constraints with rough interval coefficients

could be written as.

Z = max
m∑
i=1

n∑
j=1

K∑
k=1

(c̃ijkxijk + η̃ijkyijk)

subject to
n∑
j=1

K∑
k=1

xijk ≤ ([sli, s
u
i ], [s̄

l
i, s̄

u
i ]), i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ ([dlj, d
u
j ], [d̄

l
j, d̄

u
j ]), j = 1, 2, . . . n, (8.1)

m∑
i=1

n∑
j=1

xijk ≤ ([elk, e
u
k ], [ē

l
kē
u
k ]), k = 1, 2, . . . K,

where xijk ≥ 0, ∀ i, j, k,

yijk = 0 if xijk = 0,

yijk = 1 if xijk ≥ 0.

A value of the unit shipping cost c̃ijk is associated with fuzzy transportation from

ith origin to jth destination by the kth conveyance. We need to determine a feasible

way of shipping the available amounts to satisfy the demand such that the profit is

maximized.
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Remark 8.1: Using the rough interval properties as given in section 8.2, the

following proposals are made:

[sli, s
u
i ] ⊆ [s̄li, s̄

u
i ]⇒ s̄li ≤ sli ≤ sui ≤ s̄ui

[dlj, d
u
j ] ⊆ [d̄lj, d̄

u
j ]⇒ d̄lj ≤ dlj ≤ duj ≤ d̄uj

[elk, e
u
k ] ⊆ [ēlk, ē

u
k ]⇒ ēlk ≤ elk ≤ euk ≤ ēuk

where i = 1, 2, . . .m, j = 1, 2, . . . n and k = 1, 2, . . . K.

Here, researcher tried to define some sets which would help to developing the

methodology and theoretical background that would lead to solve the proposed

solid transportation problem under rough interval approximation.

Definition 8.1. In problem (8.1), we define the following sets:

1.Ū l =


x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ s̄li , i = 1, 2, . . .m;

∑m

i=1

∑K

k=1
xijk ≥ d̄uj , j = 1, 2, . . . n;∑m

i=1

∑n

j=1
xijk ≤ ēlk, k = 1, 2, . . .K and xijk ≥ 0,∀i, j, k



2.U l =


x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ sli , i = 1, 2, . . .m;

∑m

i=1

∑K

k=1
xijk ≥ duj , j = 1, 2, . . . n;∑m

i=1

∑n

j=1
xijk ≤ elk, k = 1, 2, . . .K and xijk ≥ 0,∀i, j, k.



3.Ūu =


x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ s̄ui , i = 1, 2, . . .m;

∑m

i=1

∑K

k=1
xijk ≥ d̄lj , j = 1, 2, . . . n;∑m

i=1

∑n

j=1
xijk ≤ ēuk , k = 1, 2, . . .K and xijk ≥ 0,∀i, j, k.



4.Uu =


x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ sui , i = 1, 2, . . .m;

∑m

i=1

∑K

k=1
xijk ≥ dlj , j = 1, 2, . . . n;∑m

i=1

∑n

j=1
xijk ≤ euk , k = 1, 2, . . .K and xijk ≥ 0,∀i, j, k.


where p = m× n×K.
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Proposition 8.1

Here, researcher proposed that for the sets Ū l, Ūu, U l and Uu that we define by

definitions are (according to Hamzeheea et al.[35]) have the following property: Ū l ⊆
U l ⊆ Uu ⊆ Ūu

Proof: Using remark 8.1 we have, Let x ∈ Ū lwhich implies,

(
x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ s̄li ,

∑m

i=1

∑K

k=1
xijk ≥ d̄uj ,

∑m

i=1

∑n

j=1
xijk ≤ ēlk

)
 ⇒ x ∈ Rp

∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ sli ,

∑m

i=1

∑K

k=1
xijk ≥ duj ,∑m

i=1

∑n

j=1
xijk ≤ elk

⇒ x ∈ U l,

 ⇒ x ∈ Rp
∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ sui ,

∑m

i=1

∑K

k=1
xijk ≥ dlj ,∑m

i=1

∑n

j=1
xijk ≤ euk

⇒ x ∈ Uu,

 ⇒ x ∈ Rp
∣∣∣∣∑n

j=1

∑K

k=1
xijk ≤ s̄ui ,

∑m

i=1

∑K

k=1
xijk ≥ d̄lj ,∑m

i=1

∑n

j=1
xijk ≤ ēuk

⇒ x ∈ Ūu,

for all

i = 1, 2, . . .m, j = 1, 2, . . . n and k = 1, 2, . . . K,

where p = m× n×K.

So we prove that for any x ∈ Ū l we find that x ∈ U l, x ∈ Uu, x ∈ Ūu. Therefore,

A. Ū l ⊆ U l

B. Ū l ⊆ Uu

C. Uu ⊆ Ūu

D. U l ⊆ Ūu

E. U l ⊆ Ūu

Now combining the above we can say that Ū l ⊆ U l ⊆ Uu ⊆ Ūu . Hence proved.
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8.4 Solution Methodology

Now, The following method is used to solve the problem given in (8.1).

Using Expected Value

Here when the researcher minimizes the expected value of the objective functions

and fixed charges, then the above problem becomes as:

max E[Z] = E

[
m∑
i=1

n∑
j=1

K∑
k=1

(c̃ijkxijk + η̃ijkyijk)

]

subject to
n∑
j=1

K∑
k=1

xijk ≤ ([sli, s
u
i ], [s̄

l
i, s̄

u
i ]), i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ ([dlj, d
u
j ], [d̄

l
j, d̄

u
j ]), j = 1, 2, . . . n,

m∑
i=1

n∑
j=1

xijk ≤ ([elk, e
u
k ], [ē

l
k, ē

u
k ]) , k = 1, 2, . . . K,

xijk ≥ 0, ∀ i, j, k

yijk = 0 if xijk = 0,

yijk = 1 if xijk > 0.

This is equivalently written as:

max E[Z] =
m∑
i=1

n∑
j=1

K∑
k=1

(E[cijk]xijk + E[ηijk]yijk)

subject to
n∑
j=1

K∑
k=1

xijk ≤ ([sli, s
u
i ], [s̄

l
i, s̄

u
i ]), i = 1, 2, . . .m,

m∑
i=1

K∑
k=1

xijk ≥ ([dlj, d
u
j ], [d̄

l
j, d̄

u
j ]), j = 1, 2, . . . n,

(8.2)
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m∑
i=1

n∑
j=1

xijk ≤ ([elk, e
u
k ], [ē

l
k, ē

u
k ]), k = 1, 2, . . . K,

xijk ≥ 0, ∀ i, j, k

yijk = 0 if xijk = 0,

yijk = 1 if xijk > 0.

The expected value model (Liu et al.[67]) could be formulated for the model (8.2)

by using expected value to both the objective functions. But here the crisp equiv-

alence might not satisfy the required conditions (total available resources greater

than or equal to the total demands and also total conveyance capacities greater

than or equal to the total demands for all items). So this method provides a feasible

solution only when the rough interval coefficients supplies, demands and conveyance

capacities are rough interval coefficients. So that their respective expected values

automatically satisfy those conditions.

Fixed charge solid transportation problem with interval

coefficient-8.1 (FCSTPIC-8.1):

In order to solve the problem (8.2), here we have a fixed charge solid transportation

problem with interval coefficient which we denote as FCSTPIC-8.1.

max E[Z] =
m∑
i=1

n∑
j=1

K∑
k=1

(E[cijk]xijk + E[ηijk]yijk)

subject to
n∑
j=1

K∑
k=1

xijk ≤ [sli, s
u
i ], i = 1, 2, . . .m.

m∑
i=1

K∑
k=1

xijk ≥ [dlj, d
u
j ], j = 1, 2, . . . n.

(8.3)
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m∑
i=1

n∑
j=1

xijk ≤ [elk, e
u
k ], k = 1, 2, . . . K.

xijk ≥ 0,∀ i, j, k,

yijk = 0 if xijk = 0,

yijk = 1 if xijk > 0.

Fixed charge solid transportation problem with interval

coefficient-8.2 (FCSTPIC-8.2):

In order to solve the problem (8.2), here we have another fixed charge solid trans-

portation problem with interval coefficient which we denote as FCSTPIC-8.2.

max E[Z] =
m∑
i=1

n∑
j=1

K∑
k=1

(E[cijk]xijk + E[ηijk]yijk)

subject to
n∑
j=1

K∑
k=1

xijk ≤ [s̄li, s̄
u
i ], i = 1, 2, . . .m.

m∑
i=1

K∑
k=1

xijk ≥ [d̄lj, d̄
u
j ], j = 1, 2, . . . n.

m∑
i=1

n∑
j=1

xijk ≤ [ēlk, ē
u
k ], k = 1, 2, . . . K.

xijk ≥ 0,∀ i, j, k

yijk = 0, if xijk = 0,

yijk = 1, if xijk > 0.

(8.4)

Remark 8.2(Using Hamzeheea et al.[35])

Suppose that the optimal range of FCSTPIC-8.1 exists. Then it is equal to the surely

optimal range of the Model (8.2). The optimal range of the FCSTPIC-8.1 could be

obtained by solving two classical transportation problems given by FCSTP-8.1.1
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and FCSTP-8.1.2.

Fixed Charge Solid Transportation Problem-8.1.1

(FCSTP-8.1.1):

zl = max
m∑
i=1

n∑
j=1

K∑
k=1

(E[cijk]xijk + E[ηijk]yijk)

subject to
n∑
j=1

K∑
k=1

xijk ≤ sli, i = 1, 2, . . .m.

m∑
i=1

K∑
k=1

xijk ≥ duj , j = 1, 2, . . . n.

m∑
i=1

n∑
j=1

xijk ≤ elk, k = 1, 2, . . . K.

xijk ≥ 0,∀ i, j, k,

yijk = 0, if xijk = 0,

yijk = 1, if xijk > 0.

(8.5)

Fixed Charge Solid Transportation Problem-8.1.2

(FCSTP-8.1.2):

zu = max
m∑
i=1

n∑
j=1

K∑
k=1

(E[cijk]xijk + E[ηijk]yijk)

subject to
n∑
j=1

K∑
k=1

xijk ≤ sui , i = 1, 2, . . .m.

m∑
i=1

K∑
k=1

xijk ≥ dlj, j = 1, 2, . . . n.

m∑
i=1

n∑
j=1

xijk ≤ euk , k = 1, 2, . . . K.

xijk ≥ 0,∀i, j, k,

(8.6)



CHAPTER 8. 132

yijk = 0, if xijk = 0,

yijk = 1, if xijk > 0.

Now from the definition 8.1, the feasible set of FCSTP-8.1.1 and FCSTP-8.1.2

is equal to U l and Uu respectively. Hence the optimal range of FCSTPIC-8.1 was

given by the interval [zl, zu]. Now we could claim that the interval was surly optimal

range of the problem (8.2).

Remark 8.3(Using Hamzeheea et al.[35])

Suppose that the optimal range of FCSTPIC-8.2 exists. Then it is equal to the

surely optimal range of the Model (8.2). The optimal range of the FCSTPIC-8.2

could be obtained by solving two classical solid transportation problems given by

FCSTP-8.2.1 and FCSTP-8.2.2.

Fixed Charge Solid Transportation Problem-8.2.1

(FCSTP-8.2.1):

z̄l = max
m∑
i=1

n∑
j=1

K∑
k=1

(E[cijk]xijk + E[ηijk]yijk)

subject to
n∑
j=1

K∑
k=1

xijk ≤ s̄li, i = 1, 2, . . .m.

m∑
i=1

K∑
k=1

xijk ≥ d̄uj , j = 1, 2, . . . n.

m∑
i=1

n∑
j=1

xijk ≤ ēlk, k = 1, 2, . . . K.

xijk ≥ 0, ∀ i, j, k,

yijk = 0, if xijk = 0,

yijk = 1, if xijk > 0.

(8.7)
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Fixed Charge Solid Transportation Problem-8.2.2

(FCSTP-8.2.2):

z̄u = max
m∑
i=1

n∑
j=1

K∑
k=1

(E[cijk]xijk + E[ηijk]yijk)

subject to
n∑
j=1

K∑
k=1

xijk ≤ s̄ui , i = 1, 2, . . .m.

m∑
i=1

K∑
k=1

xijk ≥ d̄lj, j = 1, 2, . . . n.

m∑
i=1

n∑
j=1

xijk ≤ ēuk , k = 1, 2, . . . K.

xijk ≥ 0, ∀i, j, k,

yijk = 0 if xijk = 0,

yijk = 1 if xijk > 0.

(8.8)

Now from the definition (8.1) the feasible sets of FCSTP-8.2.1 and FCSTP 8.2.2

are equal to Ū l and Ūu respectively. Hence the optimal range of FCSTPIC-8.2

was given by the interval[z̄l, z̄u]. Now we could claim that the interval [z̄l, z̄u] was

possibly optimal range of the problem (8.2) both are equal and we have to show it.

We need to prove [zl, zu] ⊆ [z̄l, z̄u] or equivalently

z̄l ≤ zl ≤ zu ≤ z̄u.

In order to show it, one need to prove Ū l ⊆ U l andUu ⊆ Ūu. The remaining proof

is given in proposition (8.1).

Algorithm 8.5 solves a more general form of problem (8.1). The process is summa-

rized as follows:
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8.5 Algorithm

Input As an input consider one fixed charge solid transportation problem with

rough interval coefficient (FCSTPRIC) given by the Model (8.2).

Step 1 Break down the given Model (8.2) into two transportation problems with

interval coefficients given as FCSTPIC-8.1 and FCSTPIC-8.2.

Step 2 Find out the surely optimal range [zsl, zsu] by solving FCSTPIC-8.1 by

breaking down them into two classical transportation problems given as FCSTP-

8.1.1 and FCSTP-8.1.2.

Step 3 In a similar process with step 2, we have to find the possibly optimal range

[z̄pl, z̄pu] by solving the FCSTPIC-8.2.

Step 4 In this step we might have three possible outcomes depending on the set of

decision variables.

The two possible outcomes are as follows:

A. If FCSTPIC-8.1 and FCSTPIC-8.2 have their optimal ranges, then the main

problem i.e, FCSTPRIC has a rough ranges and it is given by ([zsl, zsu][z̄pl, z̄pu]).

B. The infeasibility of FCSTPIC-8.1 and FCSTPIC-8.2 directly implies the infeasi-

bility of FCSTPRIC.

The above outcomes are validated in the next section.
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8.6 Numerical Example

We considered objective functions with triangular and trapezoidal fuzzy numbers

to illustrate the proposed method to show the effectiveness and efficiency. Supply,

demand and conveyance capacities were taken as rough interval form.

Table 8.1: Profit matrix c̃ijk for numerical example
c̃ij1 c̃ij2
(1,3,7) (2,5,8,9) (4,7,9,11) (5,7,8,9)

(3,5,6,8) (3,4,5,6) (4,5,6,7) (1,2,3)

Table 8.2: Fixed charge matrix c̃ijk for numerical example
η̃ij1 η̃ij2

(15,20,30) (20,24,30) (20,26,32) (25,30,35,40)
(10,16,20,24) (20,27,30,35) (15,20,24,28) (22,26,30,34)

subject to x111 + x121 + x112 + x122 ≤ ([5, 10], [4, 18]),

x211 + x221 + x212 + x222 ≤ ([5.5, 8], [3, 9]),

x111 + x211 + x112 + x212 ≥ ([3, 3.5], [2, 3.5]),

x121 + x221 + x122 + x222 ≥ ([2, 2.5], [1, 2.5]),

(8.9)

x111 + x211 + x121 + x221 ≤ ([2.5, 6.5], [2, 8]),

x112 + x212 + x122 + x222 ≤ ([4, 7.5], [4, 10]),

where xijk ≥ 0, ∀ i, j, k,

yijk = 0 if xijk = 0,

yijk = 1 if xijk > 0.

Now following the proposed methodology discussed in remarks 8.1 and 8.2, we have

four classical fixed charge solid transportation problem like as
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FCSTP-8.1.1, FCSTP-8.1.2, FCSTP-8.2.1 and FCSTP-8.2.2, given in section 8.3

and solve these FCSTP model. After solving the problems we got optimal results

and they were given below.

FCSTP-8.1.1 Optimal value zl=145.1, optimal solution x121=1, x112=2.5, x211=1.5,

x122=1.5 and all other variables are zero.

FCSTP-8.1.2 Optimal value zu=163.225, optimal solution x121=2.5, x112=7.5,

x211=4 and all other variables are zero.

FCSTP-8.2.1 Optimal value z̄l=116.75, optimal solution x112=1.5, x211=2, x122=2.5

and all other variables are zero.

FCSTP-8.2.2 Optimal value z̄u=176.1, optimal solution x121=8, x112=10 and all

other variables are zero.

With these optimal values we derived the following solution for the problem they

are, [zl, zu] = [145.1, 163.225] the surly optimal range and these optimal solutions

are two rather satisfactory solutions, [z̄l, z̄u]=[116.75, 176.1] is the possible optimal

range and these optimal solutions are two completely satisfactory solutions [145.1,

163.225], [116.75, 176.1] is the rough optimal range, which validates the outcome “A”

of the previous section. Here the obtained results are involved in the transportation

system regarding quantity of production of respective goods. Using the expected

value operator and rough interval, in all the case we reached the optimal solution.

As it was clear that using the rough interval tool we make the solution space or

feasible region of the problem more flexible.
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8.7 Sensitivity Analysis

Here, the right side constraints of numerical example was changed (-1 level)(given

in above section 8.6 (0 level)) to ([4, 9], [3, 17]), ([4.5, 7], [2, 8]), ([2, 2.5], [1, 1.5]),

([1, 1.5], [0, 1.5]), ([1.5, 5.5], [1, 7]), ([3, 6.5], [3, 9]) in the proposed methodology.

Table 8.3: Profit matrix c̃ijk for numerical example
c̃ij1 c̃ij2
(1,3,7) (2,5,8,9) (4,7,9,11) (5,7,8,9)

(3,5,6,8) (3,4,5,6) (4,5,6,7) (1,2,3)

Table 8.4: Fixed charge matrix c̃ijk for numerical example
η̃ij1 η̃ij2

(15,20,30) (20,24,30) (20,26,32) (25,30,35,40)
(10,16,20,24) (20,27,30,35) (15,20,24,28) (22,26,30,34)

subject to x111 + x121 + x112 + x122 ≤ ([4, 9], [3, 17]),

x211 + x221 + x212 + x222 ≤ ([4.5, 7], [2, 8]),

x111 + x211 + x112 + x212 ≥ ([2, 2.5], [1, 1.5]),

x121 + x221 + x122 + x222 ≥ ([1, 1.5], [0, 1.5]),

x111 + x211 + x121 + x221 ≤ ([1.5, 5.5], [1, 7]),

x112 + x212 + x122 + x222 ≤ ([3, 6.5], [3, 9]),

(8.10)

wherexijk ≥ 0, ∀ i, j, k,

yijk = 0 if xijk = 0,

yijk = 1 if xijk > 0.

Now following the proposed methodology discussed in remarks 8.1 and 8.2, we have

four classical fixed charge solid transportation problem like, FCSTP-8.1.1, FCSTP-

8.1.2, FCSTP-8.2.1 and FCSTP-8.2.2, given in section 8.3. After solving the prob-
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lems we get optimal results and they are two completely satisfactory solutions [114.6,

149.975], [104, 162.35] is the rough optimal range.

Similarly here, take the right side constraints for numerical example (+2 level) to

([7, 12], [6, 20]), ([7.5, 10], [5, 11]), ([5, 5.5], [4, 5.5]), ([4, 4.5], [3, 4.5]), ([4.5, 8.5], [4,

10]), ([6, 9.5], [6, 12]) and these optimal solutions are two completely satisfactory

solutions [170.6, 188.975], [142.5, 220.1] is the rough optimal range, considered to

explain the proposed Methods’ efficiency.

Here, it is observed that the results are involved in the transportation system

regarding quantity of production of respective goods. Using the expected value

operator and rough interval, in all the cases the optimal solutions are reached. As

it was hypothesised that using the rough interval tool we make the solution space

or feasible region of the problem more flexible.

Table-8.5 shows that the comparison of the results of the present examples. It is

shown that the optimal solution of the proposed problem gives better results.

Table 8.5: Sensitivity analysis of (8.10)

Level
Surely

optimal range
Possibly

optimal range
Rough

interval ranges
-1 [114.6, 149.975] [104, 162.35] ([114.6, 149.975], [104, 162.35])
0 [145.1, 163.225] [116.75, 176.1] ([145.1, 163.225], [116.75, 176.1])

+2 [170.6, 188.975] [142.5, 220.1] ([170.6, 188.975], [142.5, 220.1])

It is also to be noted that Model (8.10) does not have optimal range at level +1

due to infeasibility. Thus it validates outcome “B” of the previous section.
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8.8 Comparative Study

In this section, let us consider a numerical example presented by Pradeep Kundu

et al.[58]. Table 8.6 and Figure 8.1 presents the comparison analysis between the

results obtained using rough interval approximation and the results of Pradip Kundu

et al.[58] using chance-constrained programming. Figure 8.1 represents the surly

optimal ranges and possibly optimal ranges. Here, both the ranges obtained by

Pradeep Kundu et al.[58] are subset of proposed method.

Table 8.6: Comparisons of optimal solutions
Pradip Kundu et al. [58]

Chance-constrained programming
Proposed method

([572.54,579.536],[471.427,630.2688]) ([474, 581.80], [408.60, 670.2])

Figure 8.1: Optimal values represented as a Rough Interval.
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This Chapter presents the main conclusions of all the chapters in the thesis

(section 9.1) and some directions for future research work (section 9.2).

9.1 Conclusions

Thesis is devoted to study on fuzzy solid transportation problems with rough inter-

vals, stochastic and budget constraints. Chapter-wise conclusions of the thesis are

as follows:

Chapter 1 is introductory in nature. This chapter includes the abstract of the

thesis, key words, some definitions, literature survey of 111 references and list of

notations used throughout the work.

In Chapter 2, a solution procedure has been developed for a fuzzy solid trans-

portation problem with fuzzy supply, requirement, conveyance capacity and budget

interval using Hu and Wang’s approach and fuzzy programming approach. In a

frame work at genuine field problem, the technique could be used in an effective

way.

In Chapter 3, developed a method to find the fuzzy objective value of fuzzy solid

fractional transportation problem (SFTP). A two level mathematical programming

technique to find the α-cuts of the fuzzy SFTP problem. At a specific α-cut, solving

the pair of linear program produced the bounds of the objective value of the SFTP.

The objective value of SFTP is expressed by approximating membership function

rather than by a point value, more information was provided for making better

decisions. The α-cuts of different possibility levels could be used to approximate

the membership function. An example was given to illustrates the proposed model.

With the ability of calculating the objective value of the SFTP under the fuzzy

environment, it might help initiate wider applications.
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In Chapter 4, FSSTP Has been formulated with the fuzzy-random environ-

ment and solved by GP and FGP approaches. Here, fuzzy constraints with random

demand and conveyance parameters have been transformed into crisp forms using a

new technique assuming normal distribution to the demand variants with different

limits. We considered two different budgetary constraints and observed the effects

on demand deficits and capacities deficits. The present model also could be extended

to include some restrictions on the conveyances and on the unit transportation cost

with respect to the amount to be transported.

In Chapter 5, presented a fuzzy Goal programming approach for solving MOSTP

with fuzzy constraints (i.e., sources, demands and conveyance capacities are fuzzy).

In order to solve the model conveniently, we have discussed the crisp model with

corresponding defuzzified values under the conditions and the expected value models

in objective functions for triangular and trapezoidal membership functions. Then

multi-objective problems were solved using the fuzzy goal programming approach

and three numerical examples are given to illustrate the proposed model. The op-

timal solution of the proposed problem gave better results by using fuzzy Goal

programming approach when compared to Fuzzy linear programming and Global

criterion method.

In Chapter 6, a solution procedure for the fuzzy linear programming MOSTP

model with L-R coefficients has developed. The flexible indexes were given in objec-

tive function. In order to sustain the existence of an optimal solution. The model

was illustrated with a numerical example and results were compared at level of -1,

0 and +1. In this regard the decision maker might choose the best among those

results according to the requirement. So this helps the decision maker.
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Chapter 7 presented a new fuzzy solid transportation problem with expected

profit value and rough interval constraints (i.e. Sources, demands and conveyance

capacities are fuzzy) that maximized the profit. In order to solve the model conve-

niently, we have discussed the crisp model with corresponding expected value models

with objective functions in triangular and trapezoidal membership functions. An

algorithm is proposed. A numerical example was given to illustrate the proposed

model. As part of solution of the problems some concepts on optimal solutions were

discussed.

In Chapter 8, a new fuzzy fixed charge solid transportation problem with

expected profit value and rough interval constraints with sensitivity analysis was

presented. We have discussed the crisp model with corresponding expected value

models in objective functions for triangular and trapezoidal membership functions.

We have shown the problem that could be converted into two different solid trans-

portation problems with interval coefficients, and then further each of these two solid

transportation problems could be regenerated into four classical solid transportation

problems. A numerical example was given to illustrate the proposed model, sensi-

tivity and comparative study was included.

9.2 Future Directions

This thesis mainly focuses on solid transportation problems with rough intervals,

stochastic and budget constraints models in fuzzy environment. There are several

interesting opportunities for future researches in this area. The extension of fuzzy

solid transportation problem models could be done for stochastic with different

parameters like demand rate, varies time were concerning to the real life problem.

For future researches, the following areas are recommended:
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• Extending some models to multi-item case is another direction for further

work.

• The models presented in the thesis could be extended or applied to other

similar uncertain models in other areas such as inventory control, ecology,

sustainable form management, etc.

• Some Evolutionary Techniques like Genetic Algorithm (GA) & Particle Swarm

Optimization (PSO) may be applied.

• Demand function may be considered as Ramp Type function.

• Case studies with real life problems.
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