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ABSTRACT

In the classical flow problems, for the case of non-Newtonian fluids, the
oscillation problems are very important to study, since many of the elastic properties
of the dilute polymer solutions can be determined by the oscillation processes. In non-
Newtonian fluids, fluids with Couple stresses are having special status, since the
oscillations generated in these fluids exhibit effect of Couple stresses on the Drag or
Couple.

The problems of the different oscillations of symmetric bodies (like circular
cylinder or sphere) along/about its axis of symmetry in an incompressible Micro-polar
fluid/Couple-stress fluid and the flow generated due to these oscillations in the fluid is
considered. The Stokes flow is considered by neglecting nonlinear convective terms
in the equations of motion on the assumption that the flow is so slow that oscillations
Reynolds number is less than unity. The solution of this case cannot be obtained as
limiting case of non-resonance problem. The velocity and micro-rotation components
of the flow for the case of resonance and non-resonance are obtained. The Drag /
Couple / Skin friction are derived analytically and the effect of physical parameters
like Micro-polarity and Couple stress parameter on the Drag / Couple / Skin friction

due to oscillations is shown through graphs.

The thesis consists of twelve chapters and Four parts. Part - 1 and Chapter
one is introductory in nature. Part — Il is devoted to flows generated in Micro-
polar fluids and contains Five chapters ( Chapters two to six ). Part — Il is
devoted to flows in the Couple stress fluids and contains Five chapters ( Chapters
seven to eleven ). Part - IV and Chapter twelve gives concluding remarks of the

thesis and possible directions in which further work can be carried out.

In all these chapters, the expressions for the velocity, micro-rotation for
Micro-polar fluids and velocity field for Couple-stress fluids are obtained. The
Drag/Couple/Skin friction is derived analytically and the effect of physical
parameters like Reynolds number and Couple stress parameter on the Drag/Couple

/SKin friction are studied graphically.
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NOMENCLATURE

(R,6,2) Cylindrical co-ordinate system
(ér,ég€;)  Base vector in cylindrical co-ordinate system
(R,6,9) Spherical co-ordinate system

(ér,€p€s)  Base vector in spherical co-ordinate system

v,V Dimensional and Non-dimensional gradient operator

)
ﬁ

Dimensional and Non-dimensional Distance from origin (L)

0,9 Dimensional and Non-dimensional Fluid velocity vector (LT™)

1,D Dimensional and Non-dimensional Micro-rotation vector

uv,w Dimensional Velocity components (LT™)

u,v,w Non-dimensional Velocity components

A,B,C Dimensional Micro-rotation components

A B,C Non-dimensional Micro-rotation components

P,p Dimensional and Non-dimensional Fluid pressure at any point
(ML™'T?)

LA Dimensional and Non-dimensional Stream function

T,t = % Dimensional and Non-dimensional Time (T)

o, W = % Dimensional and Non-dimensional Frequency parameter (T™)

J.] Dimensional and Non-dimensional Gyration coefficient (MLT™)

D*,D Dimensional and Non-dimensional Drag

crC Dimensional and Non-dimensional Couple

Cr Skin friction

4 Non-dimensional Swirl

p Density of the fluid (ML)

m Viscosity coefficient (ML™*T™)
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Micro-viscosity coefficient (ML™T™)
Couple-stress viscosity coefficients (ML™T™)
Cauchy’s Stress components

Couple-stress components

Strain rate tensor
Couple-stress parameter for Micro-polar fluid

Couple-stress parameter for Couple-stress fluid

Cross viscosity coefficient or Micro-polarity parameter
Reynolds number and Ry, = Re(1 — ¢)

Another Couple stress parameter

Radius of the Sphere/Circular cylinder

Length of the Circular cylinder

Constants (for Micro-polar fluids)

Constants (for Couple-stress fluids)

Operators which are formed in cylinder problems

Operators which are formed in sphere problems

Modified Bessel functions of second kind of orders 0, 1, 3/2
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Chapter 1

Introduction

In the classical study of steady flow of fluids past bodies or flow due to
rotation of bodies, there exists vast literature to find the Drag or Couple acting on the
body. In nature many problems involve unsteady transient flows and oscillatory
flows. Oscillatory flows are very important to determine the properties of the fluid.
Stokes (1851) was one of the first scientists who provided an analytical solution for
motion pendulum and an unsteady, one-dimensional flow problem, namely the
solution for the fluid motion induced by the sudden movement of a plate. These one
dimensional problems on plate are referred to as Stokes first and second problems.
Latter many types of unsteady flow problems were investigated by several
researchers. The following works are a few to quote on different flow problems:
Rayleigh (1916) on revolving fluids, Benjamin (1957) on formation waves on inclined
plane, Benny (1966) on waves in liquid films, Schlichting (1968) on boundary layer
theory, Batchelor (1970) on slender body theory, Kim and Troesch (1989) on
oscillating cylinders. Many unsteady and oscillation problems can be found in famous
treatises by Happel and Brenner(1973) on low Reynold number flows, Van Dyke
(1975) on perturbation methods, Fung (1984) on Bio-dynamics, Pozrikidis (2009) on
singularity methods and numerical computations.

Many elastic properties of dilute polymers can be detected and measured
conveniently by a suitable choice of oscillatory flows. The problems that are
concerned with the effects of free stream oscillations are of physical significance. The
problems of unsteady flows were initiated by Lighthill (1954) by giving analytical
solution for stream function due to oscillating streaming flow past a cylinder and
proved that the amplitudes of heat transfer fluctuations are much reduced if the
frequency on coming stream flow is above a critical frequency. Thomas et al. (1966)
examined the flow due to the unsteady motion of a sphere with convective terms
present in a elastic viscous liquid using Laplace Transform technique. Later the paper
presented by Frater (1967) has got well recognition in which he has discussed the
problems of oscillating sphere in an elastic viscous fluid and discussed the effect of
relaxation time parameter on the Drag. Latter many authors have studied the

phenomena of oscillations of external flow over a non- zero mean velocity. Lai et al.
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(1978) have considered the flow due to oscillating sphere in an elastic-viscous fluid
by neglecting the nonlinear terms. In the same paper they considered the flow due to a
sphere accelerating with a periodic and arbitrary motion in the visco-elastic fluid
using Fourier Transform technique and obtained expressions for Drag experienced by
the sphere. Variable Viscosity and Inclined Magnetic Field on the Peristaltic Motion
of a Non-Newtonian fluid in an inclined asymmetric channel was studied by Afsar
Khan et al. (2016). Flow generated by slow steady rotation of a permeable sphere in a

Micro-polar fluid was analyzed by Aparna et al. (2012).

1.1 Literature Survey

In non-Newtonian fluids, several Stokes flow problems concerning Micro-
polar fluids have been studied by researchers over the past five decades ever since
Eringen (1966) introduced the Micro-polar fluid theory. Lakshmana Rao et al.
(1971, 1972, 1983, 1987) studied the oscillatory flows of sphere, circular cylinder,
spheroid and elliptic cylinder in incompressible Micro-polar fluids, the main thrust
of the investigation being the determination of the Drag or Couple as the case may
be on the oscillating body.

Oscillatory flow problems were first analysed by the analytical solution to
find the effect of elastic parameters on the Drag by Frater (1968) when the
oscillations of circular cylinder and sphere were examined in a visco-elastic fluid.
In non-Newtonian fluids, Micro-polar fluids and Couples-stress fluids which
support body Couples and exhibit Couple stresses are of a special type. As in the
case of other non-Newtonian fluids, the properties of Micro-polar and Couple-stress
fluids can be determined by generating the flows due to oscillations. Similarly,
Stokesian flows in the case of Couple-stress fluids were studied by Stokes (1966,
1968, 1971) and Jain et al. (1972). Ariman (1967) and Liu (1971) studied Micro-
polar fluid flows in annular region and their instabilities respectively. Latter very
good treatises on fluids exhibiting Couple stresses were written by Stokes (1984)
and Lukaszewicz (1999). In the pioneering works of Lakshmana Rao et al. (1980),
flows generated due to oscillations of circular cylinder, sphere, spheroid and elliptic
cylinder in Micro-polar fluids were analyzed.

The flow problems in Couple-stress fluids have been attracting many

researchers due their Mathematical simplicity and elegance and importance in many
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applications. Ramkissoon et al. (1990, 1991) and Rajagopal (1983) considered a
flow generated due to longitudinal and torsional oscillations of a uniform
cylindrical rod in polar fluids and non-Newtonian fluids. In these papers, the
authors derived a formula for Drag on the object using a limit on stream function.
The flows due to longitudinal and torsional oscillations of a cylinder in various
fluids were investigated by different authors namely Bandelli et al. (1994), Pontrelli
(1997), Calmelet-Eluhu et al. (1998). Ramana Murthy et al. (2009, 2010) studied
the flow of Micro-polar fluid under transverse magnetic field with suction.

However in all these problems, as far as the authors know, special cases,
which are branded as oscillatory flows of “Resonance” type that arise when the
material parameters of the fluids are constrained in a particular form ( to be stated
later ) have not been investigated until recently. The rare but distinct possibility of
resonance flows has been noticed in the works of Lakshmana Rao et al. (1983,
1987), Ramana Murthy et al. (2011), Aparna et al. (2012), Nagaraju et al. (2014)
and the investigation in this case is mathematically more complicated than in the
usual non-resonance type flows. But in these papers, the case of resonance was not
studied by the authors. This type of flows arise whenever oscillations of a body take
place in any non-Newtonian fluids.

Many natural fluids like blood, oils and paints are non-Newtonian fluids.
The fluids which exhibit Couple stresses and body Couples are called polar fluids.
In these type of fluids, the well-known fluids are 1) Micro-polar fluids 2) Couple-
stress fluids and 3) Polar fluids. These fluids exhibit length elongation property. In

this thesis, we consider two fluids viz, Micro-polar fluids and Couple-stress fluids.
1.2 Micro-polar Fluid Theory
The Micro-polar fluids introduced by Eringen (1966). It is well known fact

that in many of the real fluids, the shear behavior cannot be characterized by
Newtonian relationships and hence researchers have proposed diverse non-
Newtonian fluid theories to explain the deviation in the behavior of real fluids with
that of Newtonian fluids. One such theory is that of Micro-polar fluids. These fluids
are isotropic polar fluids in which deformation of molecules is neglected and these
contribute a subclass of the simple Micro-polar fluids. Physically, a Micro-polar
fluid model can represent fluids whose molecules can rotate independently of the

fluid stream function and its local vorticity.



Micro-polar fluid contributes a medium whose behavior during its flow is
affected by micro-rotation vector at any point, which represents the local rotational
motion of the fluid molecules contained in a given fluid volume element. The fluid
medium sustains Couple stress and micro-rotation. For Micro-polar fluids, stress
tensor is not symmetric. This fluid model constitutes a substantial generalization of
the Navier-Stokes model and can be used to analyze the behavior of lubricants,
liquid crystals and animal blood.

The field equations of the Micro-polar fluids are representable in terms of
the velocity vector Q and the micro-ratation vector [ associated with each particle in
the fluid medium. The micro-ratation vector [ represents the rotation in an average
sense of the rigid particles centered in a small volume element about the centroid of
the element.

The field equations for velocity and micro-rotation of an incompressible Micro-polar
fluid as derived by Eringen (1966) are given by:

%+ div(pQ) = 0 (1.1)
00, = o A - -

p(S2+Q.V,Q) = —ViP +kVy x I — (U + k)V; X V; X Q (1.2)

PICE+ QYD) = —2kl +kVy x § —yVy X Vy x [+ (@+ B+ 7)Yy (V1.D)  (L3)

where 1 is time, p is density of the fluid, u is coefficient of viscosity, k is coefficient

microviscosity, J is micro-gyration coefficient and o, y are coefficients of Couple

stress viscosities. These confirm to the inequality
k>02u+k=>031+2u+k=20y=0|B8<y,3a+B+y=0 (1.4)

The constitutive equations for the stress components T; and Couple stress

components M;; for Micro-polar fluids are given by
1
Tij = _Pgl] + E (2# + k)(ul,] + u]"i) + kel']'r (WT - lT) (15)

Mij = ali,i5i,j + ﬁli,j + ylj,i (16)

0 ifi=jorj=kork=i
where the permutation tensor e;;, =4 1 if i,j,k arecyclic (1.7)
—1if i,j,k areanti — cyclic

and w;, = r'" component of% (curl Q).



1.3 Couple-stress Fluid Theory

Another theory which appeared almost simultaneously in 1966 along with
Micro-polar fluid theory to explain the deviation in the behavior of real fluids with
that of Newtonian fluids in the theory of Couple-stress fluids. This theory initiated
by Stokes (1966), is a simple generalization of the classical theory of viscous fluids.
This theory allows for the presence of Couple stresses and body coupes in the fluid
medium. The concept of Couple stresses arises due to the way in which the
mechanical interactions in the fluid medium are modeled. In this theory, the
rotational field is defined in terms of the velocity field itself and the rotation vector
equals to half of the curl of the velocity vector. Here again, stress vector is not
symmetric. This theory also has several industrial and scientific applications which
comprise pumping fluids such as synthetic fluids, liquid crystals, animal blood etc.

Couple-stress fluids introduced by Stokes (1966), are fluids consisting of
rigid randomly oriented particles suspended in a viscous medium. The
characterizing features that distinguish the Couple-stress fluid theory from the
Newtonian fluid theory are the presence of the Couple-stresses and body Couples in
the fluid medium and the non symmetry of the stress tensor. In Micro-polar fluid
theory, the micro structure of the fluid is taken into account, and this accounts for
the polar effects that arise in the fluid. In Couple-stress fluid theory, the micro
structure is not taken into account. The polar effects are a consequence of assuming
that the mechanical interaction of one part of a body on another across a surface is
equivalent to a force together with a moment distribution. Here the rotation is
associated with each particle is the vorticity vector equals to half of the curl of the
velocity vector at any point in the fluid medium.

The Couple-stress fluid theory constitutes the simplest generalization of the
classical Newtonian viscous fluid theory that shows all the important features and
effects of the Couple stresses and results in equations that are similar to the Navier-
Stokes equations.

The basic equations of an incompressible Couple stress fluid introduced by Stokes

(1966) are given by:

divQ =0 (1.8)

W, 59 A — _
P(f"‘Q-WQ)=—V1P—MV1><V1><Q—77V1><V1xlevl><Q (1.9)



where Q is fluid velocity vector, p is density,  is time, p is viscosity coefficient.

For Couple stress fluids, the stress components T and Couple stress tensor M satisfy
the following constitutive equations.

T = =PI+ A(V1. Q) + p(V1Q + (V;Q)T) + 51 X (V,. M) (1.10)

M =ml + 20V, (V; X Q) + 21'[V,(V, x Q)17 (1.11)

The problems related to cylinder are to be solved in cylindrical polar coordinate
system and problems related to sphere are solved in spherical coordinate system.
Hence the expressions for strain rate tensors and stress tensors are given below.

Cowin et al. (1970) proposed boundary conditions suitable to polar fluids.

1.4 Cylindrical Co-ordinate System

Acylindrical coordinate systemis a three-dimensional coordinate
system. Which specifies a point position by the distance from a chosen reference
axis, the direction from the axis relative to a chosen reference direction, and the
distance from a chosen reference plane perpendicular to the axis. Generally,

cylindrical co-ordinate system is taken as (R, 8, Z).

1.4.1 Strain Rate Tensor in Cylindrical Co-ordinates

Strain rate tensor = E = [e; | =% [VQ + VQT] (1.12)
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Partial derivatives of basic unit vectors are given by
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Substituting (1.14) in (1.13), we get
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1.5 Spherical Co-ordinate System

A spherical coordinate systemis a three-dimensional coordinate system
where the position of a point is specified by three numbers: the radial distance of
that point from a fixed origin, its polar angle measured from a fixed zenith direction,
and the azimuth angle of its orthogonal projection on a reference plane that passes
through the origin and is orthogonal to the zenith, measured from a fixed reference

direction on that plane. Generally cylindrical co-ordinate system taken as (R, 8, ¢).
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1.5.1 Strain Rate Tensor in Spherical Co-ordinates

Strain rate tensor = E = [g; | = % [VQ + VQT] (1.18)
VQ=(e‘i+ii+ % )(Ue +Vey + Wey)
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Partial derivatives of basic unit vectors are given by
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1.6 Modified Bessel equation and functions

|
| (1.20)
|

]e'9+

(1.21)

The recurrence relations and other equations for Bessel functions are taken

from Andrei D. Polyanin and Valentin F Zaitsev (2003) and Sneddon (1956).

The Bessel differential equation is defined as

2d%y ay 2.2 _ 2\ —
xdx2+xdx+(kx n4)y =0
The solution of this equation is y=c; Jn(kXx) + c2Yn(kX)

The differential equation for modified Bessel functions is

d?y 1dy dy
=t (kz )y 0orx?—; +x;—(k2x2+n2)y=0
The solution of the above equation is y = c11,, (kx) + ¢, K, (kx)

K, (x) satisfies the following recurrence relations
—2K"% (x) = Ky 1 (%) + Ky 41 (%)
2K () = K1 (0) = K1 (%)
xK' (x) = —xKy 1 (x) — nK, (x)
xK' (x) = nK, (x) — xKy 11 (x)
0(x) = —Kqi(x)

The differential equation
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(1.22)

(1.23)

(1.24a)
(1.24b)

(1.24c)
(1.24d)

(1.24e)



d’y 1-2ady n? — a?
a2t 2 d_x_<1+ y=0

has a solution as y = x*K,, (x)

Ifa = % andn = % the above differential equation reduces to

2 dz_y _ 2 —

X (x“+2)y=0 (1.25)
1
This equation has a solution as y = x2K3(x) (1.26)
2

If « = 0andn =1 the differential equation and the corresponding solution are
given by

2d%y &y _ .2 —
Xt +x— x*+1y=0 (1.27)
And y = K;(x) (1.28)

The following formulae on Bessel functions are very much useful for simplications

Kg(/lr)

i[ﬁK;(h)]:— Z__ A, (A7) (1.29)
dr ) NG
d K3(Ar) K3(Ar)
== Zr% (1+4,01)) (1.30)
xK1(x) 2
_ 7 _ l4x+x
Where A;(x) =1+ Koy — 1t (1.31)
2
d 5k — L [(s2p2 43 _a
;[rzK%(Ar)] == [(A r?+3) K3 (ar) = 5 K1) (1.32)

1.7 Problems on Oscillations

The work on the oscillating flows in different geometries is listed below.

1.7.1 Oscillating flows in infinite plate geometry

Many authors studied several problems related to infinite plate geometry. Liu
(1966, 1967) studied flows in dusty gas generated by oscillation of an infinite flat
plate and impulsive motion of an infinite flat plate in a dusty gas. Baral (1967) studied
parallel plate problem of unsteady flow of conducting liquid between two parallel
plates. Soundalgekar et al. (1974) studied oscillatory flow past an infinite plate with
constant suction and investigated effects of Couple stresses on the flow. Jyotirmoy
Sinha Roy et al. (1981) investigated visco-elastic flow between two infinite parallel

porous plates where one plate oscillating and the other one is in uniform motion.
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Unsteady flow between two oscillating plates was studied by Evelyn et al. (1982).
Ramamurthy et al. (1987) studied the steady streaming generated between two infinite
parallel plates where one is vibrating plate and another one is a fixed plate in a dusty
fluid. Rashmi et al. (2007) also studied unsteady flow of a dusty fluid generated
between two oscillating plates under varying constant pressure gradient. Yanging
Wang et al. (2017) deliberated on analytical study for vibration of longitudinally

moving plate submerged in infinite liquid domain.
1.7.2 Oscillating flows through tubes

There is a vast literature for problems through tubes. Vijay Kumar Stokes
(1968) analysed effects of Couple stresses in fluids on hydromagnetic channel flows.
Owen et al. (2006) studied steady flow of Micro-polar fluid through a circular pipe, in
this he considered a transverse magnetic field with constant suction / injection. Owen
et al. (2006) studied an Oldroyd-B liquid flow generated due to performing
longitudinal and torsional oscillations of a straight circular tube with different
frequencies. Ramana Murthy et al. (2009, 2010) studied Steady and unsteady flow of
Micro-polar fluid through a circular pipe under a transverse magnetic field with
constant suction / injection. Ramana Murthy et al. (2011) studied steady flow of
Micro-polar fluid in a rectangular channel, in this transverse magnetic field with

suction considered.

1.7.3 Oscillating flows in spherical geometry

Stimson et al. (1926) studied viscous fluid flow due to the motion of two
spheres. Frater (1967, 1968) studied oscillatory flows in an elastico-viscous fluid, and
evaluated Drag on sphere, damping force on a body. Verma et al. (1971) studied
oscillating flow past a fixed porous sphere. Stokes (1971) analysed effects of Couple
stresses in fluids on the creeping flow past a sphere. Lai et al. (1978) studied elastic-
viscous fluid flow generated due to rectilinear oscillations of a sphere and evaluated
Drag on a sphere. Lakshmana Rao et al. (1970, 1971, 1981, 1983) studied slow
stationary flow past a sphere and the oscillatory flows of sphere and spheroid in
incompressible Micro-polar fluids, the main thrust of the investigation being the
determination of the Drag or Couple as the case may be on the oscillating body.
Iyengar et al. (2001) studied rectilinear oscillations, rotary oscillations of approximate

sphere in an incompressible viscous fluid and Micro-polar fluid respectively. lyengar
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et al. (1993, 2004) studied Stokes flow of an incompressible Micro-polar fluid past an
approximate sphere and oscillatory flow of a Micro-polar fluid generated due to rotary
oscillations of two concentric spheres. Aparna et al. (2012) studied incompressible
Micro-polar fluid flow of permeable sphere performing rotary oscillations. Recently
oscillatory flows of composite sphere and spherical particle were studied by
Ashmawy (2015, 2016).

1.7.4 Oscillating flows in cylindrical geometry

Flow of Micro-polar Fluid between two concentric Cylinders was studied by
Ariman et al. (1967). Frater (1968) studied oscillatory flow circular cylinder in an
elastico-viscous fluid and evaluated Drag on a circular cylinder. Lakshmana Rao et al.
(1972, 1987) studied the oscillatory flows of circular cylinder and elliptic cylinder in
an incompressible Micro-polar fluid. Ramkissoon et al. (1990) studied oscillatory
flow due to cylinder performing longitudinal and torsional oscillations. Rao et al.
(1992) computationally studied unsteady viscous fluid flow of circular cylinder
oscillating transversely and longitudinally in a uniform flow at high Reynolds
number. Calmelet-Eluhu et al. (1998), Fetecau et al. (2006), Nagaraju et al. (2014)
studied oscillatory flows of circular cylinder subject to longitudinal and torsional
Oscillations. Anwar et al. (2004), Mehrdad Massoudi et al. (2008), Ramana Murthy et
al. (2010) studied oscillatory flows mainly due to longitudinal and torsional

Oscillations of circular cylinder numerically.

1.8 Drag/Couple/Skin friction

Drag is a force acting on the entire body in the direction of fluid flow.
In fluid dynamics, Drag (may be due to air resistance or fluid resistance) refers
to forces which act on a solid object in the direction of the fluid velocity. Unlike
other resistive forces, such as dry friction, which is nearly independent of velocity,
drag forces depend on velocity. Drag forces always decrease fluid velocity relative
to free velocity when there is no body. If k is the direction of flow, then the
expression for Drag is

D = /k.T,ds = /k.T.nds (1.33)

Skin friction is a force per unit area. It is friction between a moving fluid and

surface of the body. The Drag is a force acting on the entire body where as Skin
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friction is force per unit area. When the body rotates or perform rotary oscillations,
moment of Couple is considered. This moment of force in the direction of axis
symmetry is taken as Couple. If k is axis of symmetry and f is force then Couple is
taken as

C=[ k.(rxf) ds =] k.(rxTn) ds= | k.(rxT. n) ds (1.34)

1.9 Operators

In this work, we come across some operators like E* and V2as follows.
When a circular cylinder performs rectilinear oscillations in incompressible Micro-

polar fluid or Couple-stress fluid, we get the following operators

2 2
O 410,10 adpz=L 4l L (1.35)

V2=
or2  ror r29e2 dr? rdr r

When a sphere performs rectilinear oscillations in incompressible Micro-polar fluid

or Couple-stress fluid, we get the following operators

2=l 0 agpz=t 2 (1.36)
Whenever a flow is generated in a Micro-polar fluid or Couple-stress fluid due to
rectilinear oscillations, the stream function y of the flow satisfies the following
equation

E*(E*- A1) (B*-23) y =0 (1.37)
By taking w = f(r) sin® for cylinder and w = f(r) sin’0 for sphere, the above
expression reduces to

DZ(DE- A1) (D2-73) f =0 (1.382)
Or

D (D3~ A1) (D2-73) f =0 (1.38b)
as the case may be, where E? is stoke stream function operator and A1, A, contain
material constants of the fluid. There arises a case A1 = A, = A and stream function
in this case follows the equation

E2(E?- 22"y = 0 (1.39)
This reduces to

p2(D2-22)'f = 0orto D2(D2-22)’f =0 (1.40)

The solution for in this case cannot be obtained by taking the limit A;—A,=A. Hence

special attention is to be taken in this case. This case is referred to as “ Resonance”.
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Similarly, whenever a flow is generated in a Micro-polar fluid or Couple-stress fluid
due to rotary oscillations, the toroidal velocity V of the flow satisfies the following
equation

(D2-13) (D2-25)V =0 (1.41)
where D? is stokes operator and A1 ,A, contain material constants of the fluid. There

arises a case A1 = A, = A and velocity V, in this case, follows the equation
2
(D2-22)v =0 (1.42)
The solution for in this case cannot be obtained by taking the limit A;—A,=A. Hence

special attention is to be taken in this case. This case is referred to as “ Resonance”.

1.10 Determination of Parameters
1.10.1 Micro-polar fluids

The material parameters in the Micro-polar fluids are related by the relation:
A2+ =02-c)s+i(J +wRy) = By and 213 = iwR,(2s + i) = C, (1.43)
When resonance occurs the parametres ¢, s, Row and J are related in the following
way
(2-¢)s = ]J-@Ryand (2- ¢)] = wRy(2 + ¢) (1.44)
Hence for resonance by fixing two parameters, the other two can be determined by
the above equations. Then solving quadratic equation

x%- Bgx + C, =0
for x we get the value of 12
When there is non-resonance, all the parameters c, s, Row and J can be chosen
independently. Then solving above equation for x, we get A%, A2°.
If we fix |A?|, then in the case of resonance we have

2 :(Z—C)

s(c+ 2i)

_ e
Hence s = oot @red)
If we fix, c and s, we get J and Row from the relations

2c] =s5(4—c?) and cRyw = s(2 — ¢)?

If c and J are fixed , then Ryw =129 qnd s = L=Fo@) (1.45)
2+4+c (2—c)
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When there is non-resonance, if |\? is fixed, s, ¢, J, Row are related by the following

Way (leta =2 —¢,b =] + Ryw, a=a’s*-b* + 4JR,w,
B= (2ab — 8Ryw)s andp = o + )

242 =as +ib + \/(as +ib)? + 4(J — i2s)R0w

= 22 = as + /@H(m =)

Taking modulus we get,

4124 — a®s? — b? = \/p +V2(as /\/ﬁ+a+b Jp—a)

Re-arranging and simplifying we get;( let R; =Row )
4R?(4R? — a®|2*|)s*

21,2
> >|/18| — R?(a?J? + 4b?)|2*| + 8]2R;*} 52

a
+ {—a2|/112| + <8R% +

+ A1 — b2|AY?| + 2JR;(J* + Ry + RP)IA®| — b?J*R{|A*| + J*R{ =0
Solving this we get s.

1.10.2 Couple-stress fluids

The parameters are related by (R1=Row, g=S* +16R;?)

202 = s +./s% — 4iR;s

2 2 —S2 2
= 2/12=5+\/S+\2/5q+l.\/5+2w/5q

= This can be rewritten as: 4|A*| = S? +./S2q + V2S /52 + /S%q
Rearranging and simplifying we get: (L =|A*|)
Ri%(Ri? - L) $* — LA (L+2R;%)S? +L* =0

For resonance we have

S = 4iR, =2i*

1.11 Planning of Thesis

(1.46)

(1.47)

In this thesis, we propose to investigate this case of resonance type flows in

Micro-polar fluids generated due to rectilinear/rotary/longitudinal oscillations of

circular cylinder/sphere. The velocity and micro-rotation ( for Micro-polar fluid )

and Drag / Couple / Skin friction acting on the body is obtained. The effect of
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physical parameters like Reynolds number, Micro-polarity and Couple stress
parameter on the Drag / Couple / Skin friction due to oscillations is shown through
graphs. The problems attempted in this thesis for Micro-polar and Couple-stress

fluids are listed below:
1) Rectilinear Oscillations of a Circular Cylinder

i) Rotary oscillations of a Circular Cylinder

i) Longitudinal oscillations of a Circular Cylinder
Iv) Rectilinear Oscillations of a Sphere

V) Rotary Oscillations of a Sphere

The thesis consists of twelve chapters and Four parts. Part - | and Chapter one is
introductory in nature. Part — Il is devoted to flows generated in Micro-polar
fluids and contains Five chapters ( Chapters two to six ). Part — Il is devoted to
flows in the Couple stress fluids and contains Five chapters ( Chapters seven to
eleven ). Part - IV and Chapter twelve gives concluding remarks of the thesis and

possible directions in which further work can be carried out.
Chapter I : Introduction.

In this chapter, we introduce the two non-Newtonian fluid theories,
Micro-polar theory introduced by Eringen and Couple-stress fluid theory
introduced by Stokes and present a brief review of the problems related to the
thesis available in the existing literature.

Chapter Il : Rectilinear oscillations of a circular cylinder in a Micro-polar fluid.

The flow is assumed to be governed by Eringen’s Micro-polar fluid flow
equations. The flow of an incompressible Micro-polar fluid generated due to
rectilinear oscillations of a circular cylinder about a diameter of the cylinder is
considered. The flow is so slow that Oscillations Reynolds number is less than unity
and hence nonlinear convective terms in the equations of motion are neglected. A rare
but distinct special case in which material constants satisfy a resonance condition is
considered. The stream function and Drag acting on cylinder are obtained. The effect
of physical parameters like Micro-polarity and Couple stress parameter on the Drag

due to oscillations is shown through graphs.
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Chapter 111 :Rotary oscillations of a circular cylinder in a Micro-polar fluid.

The flow generated due to rotary oscillations of a circular cylinder about its
axis of symmetry in a Micro-polar fluid is considered. By taking Stokesian
assumptions, nonlinear convective terms of motion are dropped and hence equations
are made linear. The flow field for velocity and micro-rotation components are
investigated. The Skin friction acting on the cylinder is evaluated and the effects of
Micro-polarity and Couple stress parameter on the Skin friction are presented in form
of graphs. It is observed that for a Micro-polar fluid when the material constants

satisfies the resonance condition, the Skin friction reduces to a minimum.

Chapter IV :Longitudinal oscillations of a circular cylinder in a Micro-polar
fluid.

The problem of the longitudinal oscillations of a circular cylinder along its
axis of symmetry in an incompressible Micro-polar fluid and the flow generated due
to these oscillations in the fluid is considered. The Stokes flow is considered by
neglecting nonlinear convective terms in the equations of motion on the assumption
that the flow is so slow that oscillations Reynolds number is less than unity. The
solution of this case cannot be obtained as limiting case of non-resonance problem.
The velocity and micro-rotation components of the flow for the case of resonance and
non-resonance are obtained. The Skin friction acting on the cylinder is evaluated and
the effect of physical parameters like Micro-polarity and Couple stress parameter on

the Skin friction due to oscillations is shown through graphs.
Chapter V :Rectilinear oscillations of a sphere in a Micro-polar fluid.

The flow of an incompressible Micro-polar fluid generated due to rectilinear
oscillations of a sphere about a diameter of the sphere is considered. The flow is so
slow that Oscillations Reynolds number is less than unity and hence nonlinear
convective terms in the equations of motion are neglected. The stream function and
Drag acting on sphere are obtained for the case of resonance and non-resonance. The
effect of physical parameters like Micro-polarity and Couple stress parameter on the

Drag due to oscillations is shown through graphs.
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Chapter VI : Rotary oscillations of a sphere in a Micro-polar fluid.

The flow of an incompressible Micro-polar fluid generated due to rotary
oscillations of a sphere about the axis of symmetry of the sphere is considered. The
flow is so slow that nonlinear convective terms in the equations of motion are
neglected. The toroidal velocity and Couple acting on sphere are obtained for the case
of resonance and non-resonance. The effect of physical parameters like Micro-
polarity and Couple stress parameter on the Couple due to oscillations is shown
through graphs.

Part 111 deals with Couple-stress fluid flows. It consists of five Chapters 7 to 11. The
problems studied in this Part Il are analogous to those studied in Part Il with
Couple-stress fluid replacing the Micro-polar fluid.

Chapter VII : Rectilinear oscillations of a circular cylinder in a Couple-stress
fluid.

The flow due to a circular cylinder oscillating rectilinearly, about its axis of
symmetry in a Couple-stress fluid is considered. In this case, the flow is analyzed
under Stokesian approximation. The velocities in terms of stream function of the
flow are obtained. The effect of physical parameters like Reynolds number and
Couple stress parameter on the Drag is analyzed through graphs.

Chapter VIII :Rotary oscillations of a circular cylinder in a Couple-stress fluid.

The flow generated due to rotary oscillations of a circular cylinder about its
axis of symmetry in an incompressible Couple-stress fluid is considered. The
Oscillations Reynolds number is less than unity due to flow is very slow and hence
nonlinear convective terms in the equations of motion are neglected. The velocity
component for the flow derived. The Skin friction acting on the cylinder is
evaluated and the effect of physical parameters like Reynolds number and Couple

stress parameter on the Skin friction due to oscillations is shown through graphs.

Chapter IX : Longitudinal oscillations of a circular cylinder in a Couple-stress
fluid. The flow generated due to circular cylinder performing longitudinal
oscillations along its axis of symmetry in a Couple-stress fluid is considered.
Nonlinear convective terms in the equations of motion are neglected since the

Oscillations Reynolds number is less than unity due to very slow flow. The velocity
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components in terms of stream function for the flow are derived. The Skin friction
and Drag acting on the cylinder are evaluated and the effect of physical parameters
like Reynolds number and Couple stress parameter on the Skin friction and Drag is
shown through graphs.

Chapter X : Rectilinear oscillations of Sphere in a Couple-stress fluid.

The present problem, the flow arising due to rectilinear oscillations of a
sphere about its axis of symmetry in a Couple-stress fluid is considered. The flow is
analyzed under Stokesian approximation by ignoring nonlinear convective terms on
the assumption that the Oscillations Reynolds number is less than one. The velocity
components in terms of stream function of the flow are derived. The Drag acting on
the sphere evaluated and the effect of physical parameters like Reynolds number
and Couple stress parameter on the Drag are shown through graphs.

Chapter XI : Rotary oscillations of a sphere in a Couple-stress fluid.

Incompressible Couple-stress fluid flow generated due to rotary oscillations
of a sphere about the axis of symmetry of the sphere is considered. The flow is so
slow that nonlinear convective terms in the equations of motion are neglected. The
Couple on the sphere is evaluated. The effect of Couple stress parameter and
geometric parameter on the Couple are presented through graphs.

In all these chapters, the expressions for the velocity, micro-rotation for
micropolar fluids and velocity field for Couple-stress fluids are obtained. The
Drag/Couple/Skin friction is derived analytically and the effect of physical
parameters like Reynolds number and Couple stress parameter on the Drag/Couple
/Skin friction is studied graphically. It is observed that the Drag or Couple on the

body will be a minimum in the case of resonance.

Chapter XI1 : Conclusions.
Finally, chapter twelve concentrates on the overall conclusions drawn with
references to the problems discussed in the thesis. We also indicate the direction for

possible future work.

20



Part — 11

Micro-polar Fluid Flows
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Chapter 2

Rectilinear oscillations of a Circular Cylinder in a

Micro-polar fluid

The flow of an incompressible Micro-polar fluid generated due to rectilinear
oscillations of a circular cylinder about a diameter of the cylinder is considered. The
flow is so slow that Reynolds number of the flow is less than unity and hence
nonlinear convective terms in the equations of motion are neglected. A rare but
distinct special case in which material constants satisfy a resonance condition is
considered. The stream function and Drag acting on cylinder are obtained. The effect
of physical parameters like Micro-polarity and Couple stress parameter on the Drag
due to oscillations is shown through graphs.

2.1 Introduction

Several Stokes flow problems concerning Micro-polar fluids have been
studied by researchers over the past a half a century ever since Eringen (1966)
introduced the Micro-polar fluid theory. Eringen (1964) analysed simple Micro-polar
fluids. Ariman (1970) studied fluids with micro-structures. Liu (1971) Initiated
instability in Micro-polar Fluids. Stokes (1984) studied theories of fluids with micro-
structure Later on Lukaszewicz (1999) emphasized theory and applications of Micro-
polar Fluids. Lakshmana Rao et al. (1972, 1981, 1987) examined the oscillatory flows
generated due to circular cylinder, spheroid and elliptic cylinder in Micro-polar fluids
to determine the Drag or Couple on the oscillating body. The main thrust of the
investigation being the determination of the Drag or Couple as the case may be on the

oscillating body.

Ravindran (1972) examined simple oscillatory flow in polar fluids. Oscillatory
flows of circular cylinder in various fluids like Micro-polar fluids, Couple-stress

fluids, viscous fluids were investigated by many authors Kanwal (1955), Ariman et al.
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(1967), Frater (1968), Ramkissoon et al. (1990), Rao et al. (1992), Calmelet-Eluhu et
al. (1998), Anwar et al. (2004), Fetecau et al. (2006), Mehrdad Massoudi et al. (2008),
Ramana Murthy et al. (2010), Nagaraju et al. (2014) by computationally or
analytically. lyengar (2001) examined incompressible viscous fluid flow of
approximate sphere is performing rectilinear oscillations. Lai (1978) investigated
Drag on a sphere when the sphere rectilinearly oscillates in elastico-viscous fluid.

However, in all these problems, a special case, which is branded as oscillatory
flows of “Resonance” type that arise when the material parameters of the fluids are
constrained in a particular form( to be stated later) have not been investigated. The
rare but distinct possibility of resonance flows has been noticed by Lakshmana Rao et
al. (1983, 1987). And the investigation, in this case, is mathematically more

complicated than in the usual non-resonance type flows.

In this chapter, we propose to investigate this case of resonance type flow, in
Micro-polar fluids, due to rectilinear oscillations of a circular cylinder about its axis
of symmetry. Later on we discussed the similar problem of the Resonance type flow

due to a circular cylinder in Couple-stress fluid.

2.2 Basic Equations

The field equations for velocity and micro-rotation of an incompressible Micro-polar

fluid as derived by Eringen (1966) are given by:
ap .
ot div(pQ) =0 (2.1)

a_ — — —_ —
p(52+0Q.10) = V1P +kVy x = (u+k)V; X V; X (2.2)

PICE+ QYD) = —2kI+kV; x § —yVy X Vy x [+ (@+ B+ 7)Yy (V2.])  (23)

wheret is time, p is density of the fluid, p is coefficient of viscosity, k is coefficient
microviscosity, J is micro-gyration coefficient and a,f, y are coefficients of Couple
stress viscosities. Q, | are vectors for velocity and micro-rotation vectors The
constitutive equations for the stress components T;; and Couple stress components M;;

for Micro-polar fluids are given by
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1
Ty = =P8y + 5 Qu+ 1) (uy + ) + kegr (W, — 1) (2.4)

My =al;i6;; + Blij + vl (2.5)

0 ifi=jorj=kork=i
where the permutation tensor e;;, =4 1 ifi,j, k are cyclic
—1 ifi,j, k are anti — cyclic

and w; = r th component of %2( curl Q).
neglecting the nonlinear convective terms in (2.2) and (2.3), the linearised version of
the equations are given by,

divQ = 0 (2.6)
PZ—?=—V1P+kV1Xl_—(u+k)V1xle@ (2.7)
pJZ—Tl— = 2kl +kV, X Q —yVy X Vy X I+ (@ + B +)V1 (V.. D) (2.8)

2.3 Statement and Formulation of the Problem

A circular cylinder of radius a and of infinite length is performing rectilinear
oscillations with velocity Uyiet°® about its diameter in an infinite vat containing
incompressible Micro-polar fluid. A cylindrical coordinate system (R, 6, Z) with base
vectors (eg, ey, ez) with origin on the axis of the cylinder is considered. Hence the
fluid velocity will be in cross sectional planeof the cylinder containing the base

vectors (eg, ey). The velocity and micro-rotation are assumed in the form:

»

\J U *"

ANA

erimt

< » iot

er

€o
e,
/>( |
U ‘

(

Fig 2.1 Geometry of the oscillating cylinder
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Q =¢e""(U(R,0)eg +V(R,0)egand I = " C(R,0)e, (2.9)
The following non-dimensional scheme is introduced.

R=ar, U= U, V=Uy, Q=qUy, €=,

(2.10)

at

l=0ﬂ, ‘P=\|IUOCL, P=ppUg, T=—
a Ug

The following are non-dimensional parameters viz, | is gyration parameter, o is
frequency parameter, s is Couple stress parameter, c is cross viscosity or Micro-
polarity parameter and Re is oscillations Reynolds number for Micro-polar fluids.

pUpa

: 2 2
ca ac ka k o+p+
] 1P W = s = c= €= p Y,Re'—
Y

U
- =50 - v andR, =‘; oe (2.11)

+k
We can write Ry = Re(1 — ¢)
Substituting (2.9) in (2.1) we notice that stream function y can be introduced as
.

u=-—and v= —— e q=VX(Ye,) (2.12)
Using (2.9), (2.10), (2.11) in (2.7) and (2.8) we get

0q | — o=
Ro(32+3.93) = —Ro.Vp+cVxv—-VxVxq (2.12a)

Because flow is very slow i.e. |g| < 1,|Vg| < 1 which implies Ry|g.Vg| « 1. Hence
nonlinear convective terms can be neglected. This assumption is called Stokesian

approximation. Hence we get

Ro2l = —Rp.Vp+cVxv—-VxVxq (2.13)
L2 = 250+ 5Vxq—VXVXV+eV(V-V) (2.14)

We can write (2.13) and (2.14) as

iwRyq = —Ry.Vp+cVXv—-VXVXq (2.15)
Jv=—-25v+sVxq—-—VxVxv+eV(V-v) (2.16)
Eliminating p from equation (2.15) and using (2.9) and (2.12) we get,

iwRy.V2y = cV?C + Viy (2.17)
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92 19 1 92

2. Y 4,29 4, 29
where Vo= —— + - —+ = — (2.18)
Substituting (2.9) and (2.12) in (2.16) we get
(2s +i))C = V3C — sViy (2.19)

Eliminating C from (2.18) and (2.19), we obtained an equation for stream function as

VEVE- M) (VE- ) y=0 (2.20)
Where 22 + 23 = (2 —c)s + i(J + @R,) and 1213 = iwR,(2s + i]) (2.21)
Using (2.18) and (2.19)

c(2s +i)C =- V*'y + (iw.Ry - sc)Vy (2.22)
Using (2.21) in (2.22), the equation for C can be re-written as

cC = =g VA(V? — 4 — )y — V2 (2.23)

1113

The solution for v if 4,24, in (2.20) is given in Lakshmana Rao et al. (1971, 1972).
The solution for y for the case, A; = A, cannot be obtained as a limiting case of
A1 = A,. This case is referred to as “Resonance”. This resonance occurs if the

material coefficients follow the following relation:

Y _ Qu+k)(u+k) _ Qu+k)k+ypo
7T e A0 T =T (2.24)

In non-dimensional form, these are given by

(2-¢)s = J- wRyand (2- ¢)] = wRy(2 + ¢) (2.25)
In this chapter, we are interested in the solution for y for the case of resonance.

We have the equation for stream function y as

In the case of resonance:

v2(v2- 22) =0 (2.26)

26



In the case on non-resonance:

VEVE- A (V-2 y =0 (2.26b)
Th equation for the micro-rotation component C is as

In the case of resonance:

cC = =R VAV — 2020 — V) (2.27a)
And in the case of non-resonance:

cC = —ZAVA(VE - 2} — 1)y — V2 (2.27b)

1223
2.3.1 Boundary Conditions

The cylinder is oscillating in the direction of X-axis. Hence the non-dimensional

velocity of the cylinder " after removing e‘@¢ is given by

qr = i = cosBe,- sinfeywhich implies by no-slip condition

u = cosfand v =-sinfonr=1 (2.28)
By hyper-stick condition v = % (curl @)r

whichgivesC =0onr =1 (2.29)
2.4 Solution of the Problem

To match with the boundary conditions in (2.28) and (2.29), Stream function s,

micro-rotation component C are assumed in the form

w= f(r)sinfand C = g(r) siné (2.30)
Substituting (2.30) in (2.26a) and (2.26b) and cancelling sin@ we get

In the case of resonance:

p2(D2- 22)'f = 0 (2.31a)
In the case on non-resonance:
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DZ(D¢ - ) (D - 25) f =0 (2.31b)
Substituting (2.30) in (2.27a) and (2.27b) we get

In the case of resonance:

cg = =2 DZ(D? — 2A2)f — Df (2.32a)

In the case on non-resonance:

iw R
cg = =33 DE(DE — At — 2D)f — Dif (2:32b)
2
Where D? = :7 + %:—T — riz (2.33)

Substituting (2.30) in (2.28) and (2.29), the conditions on f and g are obtained as:

F() =f(@) = 1andg(1) =0 (2.34)

Since the equation for f is linear, the general solution for f is linear combination of

individual solutions of factors in the differential operator. Hence f is taken as

f = afo + aifi + azf; (2.34q)

In the case of resonance:

Dfy =0, (D2- /2)f = 0 and (D2- 22)'f, = 0 (2.352)
In the case of non-resonance:

Dify =0, (DZ-21)fi = 0 and (DZ- 23)f, = 0 (2.35b)
On solving (2.35a) and (2.35b) the solution for f is obtained as

In the case of resonance:

f(r) = —° + a; Ky (Ar) + aprK;'(Ar) (2.36a)
In the case of non-resonance:

fr) = ar_o + 21K (A1) + axK (A1) (2.36b)

The following results are useful to note.
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In the case of resonance:

Dify = Afrand Dify = (22fi + 2'fy) (2.373)
In the case of non-resonance:

Dfy = Mfi andDif, = Azfy (2.37b)
Substituting f along with (2.37a) in (2.32a), for the case of resonance we get

cg = ai(imRy - A*)fi + ay(imRg - A%)f, - 22,41 (2.38a)
Substituting f along with (2.37b) in (2.32b), for the case of non-resonance we get

cg = ai(imRg - A)fy + ay(imRg - A3)f; (2.38b)
The constants a,, a, a,are obtained from the boundary conditions (2.34) as follows:

In the case of resonance:

1 K1 () ey a1 1
2

-1 AK'y (D) K (A) [all = H (2,392)
0 (i@Ry — K, (D) (imRy — 22K (1) — 22K, ()] 421 10

In the case of non-resonance:
1 Kl (/11) Kl (AZ) ap 1

—1 /’llK’l (/11) /12](,1 (/12) [all = [1] (2,39b)
0 (iwRy—A)K1(A) (iwRy — 25)K; (1) [ 192 0

Hence from (2.36), (2.38) and (2.39) f and g are completely known and hence y and C

are known.
2.4.1 Pressure
From equation (2.15) pressure is obtained as follows.
_ _o P
dp = Vp.dr = e dr + ” do (2.40)
By comparing components in equation (2.15), we obtained

o _ _iwdp e €. 10
ar r 06 Rg.r 06 +R0.r a6 (V ll)) (241)
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o _ i c9C 10 2
ae_r<lwar Ro or Roar(v lp)) (2.42)

dp = Ri [(—iwf + D2f + cg)cosfL + rdi (iwf — D?f — cg)sinf dH] (2.43)
0 r r
Integrating on both sides of (2.43), we obtained pressure in non-dimensional form as

iGTA()

= TCOS@ (2.44)
2.4.2 Drag acting on the Cylinder per length L
Drag= D* = al fozn(T*rr cosf — T*,5sinf) | g, db (2.45)

Required tress components are obtained as follows:

1

Strain rate tensor = E = [g;; | = 3 [VQ + VQT]

We get strain rate tensor for this problem as

v 1lov 10U K] 0
oR 2 LOR R 06 R
E=|t[v 1ov _v]  1fav (2.46)
2 [BR R 06 R] R L6 + U] 0
0 0 0
Substituting required terms in (2.4), we get the stress components as
U
Trg = =P + Qu+k) (2.47)
_ v wmwov_ V.
TR9 = (,Ll + k) 3R + R 90 ,UR kC (248)
Stress components in non-dimensional form as
_ (u+k)Uy 1 0%y 1 oy
T = 00 Ry + (2 = 0) (7o — 750 (2.49)
k)U a2
Ty = 9% (e = 2) 20+ (1 - VP — cC]| (2.50)
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Substituting (2.49) and (2.50) in (2.45) we get the Drag D acting on the cylinder

(without the factor 't ) is given as
D* = L(u + k)Uyiw. Ry (1 — 2ay) (2.51)
Dividing D" by L(u+k)Uo ,hence the non-dimensional Drag D is given by

D = Real{iw.Ry. (1 - 2ay)e'” } (2.52)

2.5 Results and Discussions

The values of A are obtained from (2.21) by solving the following equation for x
x2-[(2-0¢)s +i(J +@Ry)]x + iwRy(2s+iJ]) = 0 (2.53)

Then for resonance case

A=V = %\[(2— ¢)s +i(J + wRy) (2.54)

This involves 5 parameters which are related by two equations in (2.25).
Hence we choose three parameters as independent. Here @, R, and c are selected
independently, with 0< ¢ < 1, Re«1 and o>1 such that @. R, is not negligibly small
(say>1). After selecting c, Ry and @, the values of s and J are obtained from (2.25)
and then A is obtained from (2.54). The values of A are complex. These values for A
are substituted in (2.39a), (2.39b) and the constants a,, a; and a, are obtained. Then
the stream function y, micro-rotation component C and Drag D are obtained from
(2.36), (2.38) and (2.52) respectively for both resonance and non-resonance cases.
Thus obtained y will have complex values. To get the physical picture, these values

are multiplied by e'' and its real part is taken.
2.5.1 Drag

From Fig 2.2, it is observed that as ¢ increases Drag decreases for resonance
and for non-resonance. But as |A| increases, Drag increases in vide range between 30
to 400 for resonance and decreases in small interval between 36 to 44 for non-

resonance.
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Rectilinear cylinder:Non-resonance
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Fig 2.2 Drag Vs |A| at different values of ¢ for the case of a) resonance

and b) non-resonance
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Fig 2.3 Drag Vs Couple stress parameter s for the case of a) resonance

and b) non-resonance
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From Fig 2.3, we observe that as s increases Drag increases for resonance and
non-resonance. But for resonance this variation of Drag is from 30 to 700 and non-
resonance it is in a small interval between 230 to 235.

2.5.2 Stream Function

By looking the stream function f, in Fig 2.4, it is observed that the function is
not effected by variation in s for non-resonance. But as s increases, stream function
values decreases. From Fig 2.4 it is observed that for resonance, the peak is little
lower to the peak corresponding to non-resonance and effect of s is clearly apparent.
But for non-resonance, effect of s is not noticeable on stream function. As s increases,

stream function values are decreasing.

From Fig 2.5, we note that the variation c is not noticeable for resonance. But
for non-resonance, as c increases stream function values decreases along distance
from 1.5 to 3.5 and stream function takes larger values for non-resonance at the

corresponding distances.

In Fig 2.6, the contours for stream function are shown. As c increases, the
values of stream function are increasing and the region of circulations becomes larger.

But for non-resonance this region of circulations is still wider.
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Rectilinaerly oscillating Cylinder: Resonance

1271

(a)

Rectilinaer oscillations-cylinder:Non-resonance

at Rw=5,J0=7
1.2r

Fig 2.4 Stream function f at different values of s for the case of

a) resonance and b) non-resonance
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> Rectilinaerly oscillating cylinder: Resonance
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Fig 2.5 Stream function at different values of ¢ for the case of

a) resonance and b) non-resonance
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Rectlinear cylinder:Resonance in MPF
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Fig 2.6 Contours for stream function for the case of a) resonance

and b) non-resonance

37



-1} -1

-2 -1 a 1

-z -1 i 1
Stream lines at time t =7/w

Stream lines at t=m/2w

Fig 2.7 Flow pattern at different times over a half time period for non-resonance
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Fig 2.8 Stream lines at different values of Reynolds numbers Re for non-resonance

-z -1 a 1 z -z -1 0 1
Stream lines at c=0.2 Stream lines c=0.8

Fig 2.9 The flow pattern for different values of cross viscosity parameter ¢
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From Fig 2.7, we note that as at lower times a small circulation symmetric to
the line joining the poles is found. But as time increases, this region of circulations
near the cylinder disappears.

From Fig 2.8, it is observed that as Reynolds number increases, flow
circulation near the cylinder decreases and disappears and merges into a second
circulation zone.

From Fig 2.9, it is obsereved that the variation in cross viscosity parameter ¢
for small values <0.6 does not effect much the flow paterren. But as ¢ —1, the flow is
sensitive to the values of c. In this case as c is increasing, the first zone of circulation

decreases and second zone of circulations comes near to the cylinder.
Physical Reasoning:

As ¢—0 and s—oo, we get Newtonian case. In the case of resonance ¢ and s
are connected by relation such that stream function gets lower values and hence it
offers less force and hence by Drag is less. In the case of non-resonance ¢ and s are

independent and Stream function gets larger values and Drag gets high values
2.6 Conclusions

From the above observations, we conclude that

i) Drag in the case of resonance, is more than the case of non-resonance.
i) Stream function in non-resonance has more circulations on the pole with

wider region of circulations.

Iili)  In the non-resonance, as Reynolds number increases, the circulation

regions near to the cylinder decrease and become thinner.
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Chapter 3
Rotary oscillations of a Circular Cylinder in a

Micro-polar fluid

The flow generated due to rotary oscillations of a circular cylinder about its
axis of symmetry in a Micro-polar fluid is considered. By taking Stokesian
assumptions, nonlinear convective terms of motion are dropped. In this situation,
there arises a rare particular special case when material constants satisfy a condition
referred to as resonance. The flow field for velocity and micro-rotation components is
investigated. The Skin friction acting on the cylinder is evaluated and the effects of
Micro-polarity and Couple stress parameter on the Skin friction are presented in the
form of graphs. It is observed that for a Micro-polarfluid when the material

constantssatisfy the resonance condition, the Skin friction reduces to a minimum.

3.1 Introduction

Many authors analysed oscillatory flows of different symmetric bodies like
circular cylinder, sphere, spheroid, approximate sphere performing rotary oscillations
in various non-Newtonian fluids. For example, Tekasakul et al. (1998, 2003), lyengar
et al. (2001, 2004), Anwar et al. (2004), Ashmawy (2015). In the pioneering works of
Lakshmana Rao et al.(1972, 1983, 1987), flows generated due to oscillations of
circular cylinder, spheroid and elliptic cylinder in Micro-polar fluids were analyzed.
The aim of their analysis was to determine the Drag or Couple, as the case may be,
acting on the oscillating body. Nevertheless in all these situations, as far as authors
know, a special case, referred to as “Resonance type flow”( which will be defined in
section3) has not been investigated till now. This type of flows can arise on every
occasion when the flow is generated by oscillations in a non-Newtonian fluid. For
example, this case of resonance can be observed in the papers Lakshmana Rao et al.
(1971, 1972, 1983, 1987), Ramana Murthy et al. (2011), Aparna et al. (2012),
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Nagaraju et al. (2014). But in these papers, the case of resonance was not studied by
the authors. Oscillatory flows of circular cylinder in various fluids were studied by
many authors like Frater (1968), Lakshmana rao (1972). Ramkissoon et al. (1990),
Rao et al. (1992), Calmelet-Eluhu et al. (1998), Anwar (2004), Fetecau et al. (2006),
Mehrdad Massoudi et al. (2008), Ramana Murthy et al. (2010).

The aim of the present chapter is to study the flow due to circular cylinder
performing rotary oscillations in a Micro-polar fluid when the material resonance
occurs. These results may be useful in conducting experiments to examine rheological

properties of Micro-polar fluids.

3.2 Basic Equations

The field equations for velocity and micro-rotation of an incompressible Micro-polar
fluid as derived by Eringen (1966) are given by:

Z—': + div(pQ) =0 (3.1)

p(S2+Q.V,1Q) = —ViP + kVy x I — (u+ k)V; X V; X Q (3.2)

PICE+Q.V,D) = —2kl +kV; x § —yVy X Vy x [+ (@+ B+ 7)Yy (V1.)  (33)

wheret is time, p is density of the fluid, p is coefficient of viscosity, k is coefficient
microviscosity, J is micro-gyration coefficient and o3, y are coefficients of Couple
stress viscosities. Q, | are vectors for velocity and micro-rotation vectors The
constitutive equations for the stress components T;; and Couple stress components M;;

for Micro-polar fluids are given by
1
Tij = —P5U + E (2# + k)(ul,] + u]"i) + kel']'r (WT - lT) (34)

Mij = ali,i5i,j + ﬁli,j + Vlj,i (35)

0 ifi=jorj=kork=i
where the permutation tensore;;;,, =4 1 ifi,j, k are cyclic
—1 ifi,j, k are anti — cyclic

andw; = r th component of “2(curl Q).
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Neglecting the nonlinear convective terms in (3.2) and (3.3), the linearised version of
the equations are given by,

divQ = 0 (3.6)
P2 = VP +kV, x T (u+ KV, X Vy X Q (3.7)
pgz_f = 2kl+kV; X Q—yVy; XV; X1+ (a+ B +y)V,i(V:.D) (3.8)

3.3 Statement and Formulation of the Problem

An infinite circular cylinder of radius a is under torsional (rotary) oscillations
with velocity V,ege'°" about its axis of symmetry in an incompressible Micro-polar
fluid. A polar coordinate frame (R, 6, Z) with origin on the axis of the cylinder and
with base vectors (eg, ey e,) is taken. The flow is two dimensional and is
independent of Z coordinate. Hence the velocity field is in the plane of the base
vectors (eg, ey). Micro-rotation will be parallel to e, ( in general will be parallel to

curl g). Hence the vectors for velocity and micro-rotation are assumed in the form:

=0

Ve - €y

> A Vet

Fig 3.1 Geometry of the oscillating cylinder

Q =V(R)ege* and L = C(R)e,e'’" (3.6)

The following non-dimensional scheme is taken. Physical quantities are on left

handside with capitals. The non-dimensional variables are in small letters on RHS.
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P=ppV§, Py =popV§ and ==

0

R=ar, V=vl,, Q = qV,, C = Co, = v

G} (3.7)
The non-dimensional parameters viz, | is gyration parameter, @ is frequency
parameter, s is Couple stress parameter, ¢ is cross viscosity or Micro-polarity
parameter, Ry is oscillations Reynolds number for Micro-polar fluids and Re is the
usual Reynolds number are defined below.

. 2 2
ca ac ka k voa = 2%

_] 1P , @ ) » €= +k’ Re =0 andRO - % (38)
% ) Y 3 H H

By substituting velocity and micro-rotation vectors of (3.6) in the equation (3.7), we
get

iopV = =2 — k== + (u+ k)D"2V (3.9)

where Py constant pressure gradient along 6 direction.
2 2
Ad D, =—S+-———= (3.10)

Similarly equation (3) simplifies (3.8)

ko

(iop] + 2k)C = =R

(RV) +y(D*2C + (3.11)

Using non dimensional schemes (3.7) and (3.8) in (3.9) and (3.11) we get

iwRyv = —@—63—5+va (3.12)

(i] +25)C = 2= (rv) + DZC + = C (3.13)
d? 1d 1

Where Dcz = m + T_; — T_Z (314)

From (3.12) cC’ = [D? — imRy Jv — =2 (3.15)

Eliminating C from (3.12) and (3.13) we get
(DZ = AD(DZ = A3)v = —(iJ +25)Ry 22 (3.16)

Where 22 + 23 = 2 —c)s+ i(J + @Ry) and 323 = iwRy(2s + iJ) (3.17)
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The solution for v if 4,24, in (3.16) is given in Lakshmana Rao (1971). The solution
for v for the case, 4; = A,cannot be obtained as a limiting case of .; = A,. This
case 44 = A, is called as “Material Resonance” or simply as “Resonance”. This

situation occurs if the material constants (coefficients) satisfy the relation given by

v _ @utk)(utk)

_ Qu+k)k+ypo
; Py = —— (3.18)

and po ==

The same equations in non-dimensional form are given by
2—-c¢)s=]—Ryw and (2—-c¢c)] = 2+ c)wR, (3.19)

Our interest is to obtainv when resonance occurs. In this situation, the velocity v is

given by

(D2 - 2%)'v == (25 + DRy (3.20a)
For the case of non-resonance

(D2 = 2)(DZ = 23)v = —(iJ + 25)Ry ™ (3.20b)
Micro-rotation C is obtained interms of v from (3.12) and (13) as below.

c(i] + 2s)C = %:—r [rD?v + (cs — iwR,)Tv] (3.21)

From (3.17), we note that for non-resonance

. 2§23 : — 92 2 _ M
2s+i] = p— and iRyw —cs = A7 + A5 — Row (3.21a)
and for resonance,

oAt . a2 M
2s+i] = P and iRyw — cs = 2A° — oo (3.21b)

4
Hence (D% — 23)(D% — 3)v = —L%pr—o
2 (d 1 2 2 d | 1

cC = — i Ro (; + ;) [DCU — 21 U] - (; + ;) v (321C)

3.3.1 Boundary Conditions

The usual no-slip condition for velocity is taken on the surface of the circular
cylinder.

on I'(i.er=1),v =1 (3.22)
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By hyper-stick condition for micro-rotation component C on T is given by,

1

Cr = 2 Curl Q along z direction, which yields that

onl (ier=1), C=1 (3.23)

3.4 Solution of the Problem
Velocity v is obtained in the form

Pbo

V= avy tapvy - (3.24)
where, for resonance, (D? —A?)v; =0and (DZ — A?)?v, =0 (3.25a)
and for non-resonance, (D? — A3)v,; = 0and(D? — A3)v =0 (3.25b)

(3.25a) will yields the solutions as for the case of resonance,

v, = K;(Ar) and v, = rK;(Ar) (3.26a)
(3.25b) will yields the solutions as for the case of non-resonance,

v = Ki(4yr) and v, = Kq(A,7) (3.26b)
The results given below are important to observe.

In the case of resonance:

D2y; = A*v; and D2v, = 2Av; + A*v, (3.273)
In the case of non-resonance:

D2y, = My, andD?v, = Asv, (3.27b)
From (3.21), micro-rotation is given by

In the case of resonance:

2t _(d 1 2t 2
el = (=+3) <(ino —22)v+ azz,m) (3.28a)
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For the case of resonance, this reduces to:

Ry 14 2272 2iR,@
cC = ( P 1) @AKo (A1) — ay ——— K1 (Ar) { — ay —5— Ko (A7)

In the case of non-resonance:

2323

- _{q (A 17 _ B) hKo(hr) + @z ( = 23) 22Ky (A7) (3.28h)

The coefficients a; ,a, are obtained with the help of boundary conditions (3.22) and
(3.23) as below

In the case of resonance:

Po

Kl (A) Kll (A) [al] iw 329

2 = .2Ya
codko() — K () — 222k, ()| L) T |22 (5250

iwRy—A1
In the case of non-resonance:

Kl(/h) Kl(/lz) [ — .

3.29
( P )AZKO(Al) ( Ky(A) |12 25 /12 ( )

iw Ry

Hence from (3.29) we can calculate a; and a, and hence velocity v and micro-

rotation C are known.
3.4.1 Skin friction acting on the cylinder per length L

Skin friction acting on the circular cylinder is

_ 2Ty
&= %

(3.30)

T, is obtained as follows

From (3.4), for Micro-polar fluids stress component is

1
Ty = —Pé; + E(ZM + k)(qi,j + qj,i) + key (W, — 1)
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In cylindrical co-ordinate system,

au av 10U v aw au
| 2% wtRm r wtar
a 10U 14 2 av 10w av
ui,j+ujl—|a—R+Ea—R—E E(U+£) Eﬁ-l-ﬁi (3.31)
ow au 10w av ow
| 2.2 lm,Z o2 ]
dR azZ R 06 azZ azZ
o Z_Y o
dR R
For this present problem, u; ; +w;; = |V _V 0 0 (3.32)
dR R
0 0 0
Substituting (3.32) in (3.4) we get
av 14
TR@ = (’u+k)6_R_’uE_kC (333)
By using non-dimensional scheme (3.7) and (3.8), we get
(u+kVy (d ;
T, =0l ()l cclem (3.34)

Substituting (3.34) in (3.30), the Skin friction acting on the circular cylinder (after

removing the factor ™) is obtained as

o = RZ—O (£-1) (3.35)

which for the case of resonance gives

O gy () +22 1] (3.368)

2 1
o = 7 [al/lKl D) +a,
and the case of non-resonance case,

& = o [a12aK; (A) + 2K (2) + 22— 1] (3.36h)

3.5 Results and Discussions

In the case of material resonance, the value of Acannot be assumed randomly.
In this case, the values of A are obtained from (3.17) by solving the following

equation for x.
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x2—[(2=0c)s+i(j + @Ry)]x + iwR,(ij + 2s) = 0 (3.37)

Hence the values of A for resonance are given by

2 =\/§=\[(2—c)s+i2(i+m.Ro) (338)

The above equation (3.37) consists of 5 parameters related by two equations as
in (3.19). Hence three parameters can be chosen arbitrary, i.e. independent. Here @,
Ro and c are taken arbitrarily, with 0< ¢<1 , Ro«1 and @>1 so that @w.Rg is not
negligibly small (say>1). With this choice of values of Ry, the convective terms can
be neglected by keeping local time derivative as it is. By assuming the values of ¢, Ry
and @, the values of s and J are obtained from (3.19) and then the value of A is
obtained from (3.38). In the case of non-resonance, all 5 parameters are independent.
The values of the constants a; and a, are obtained by substituting the values of
A(complex in general) in (3.38). The solutions obtained here are in agreement with the
results of [10] as a special case when the longitudinal oscillations are not present. It
can be noted that the case of resonance will not occur for viscous fluids.

By keeping |A| fixed, the restriction on the parameters c, s increases. We can
observe from the Fig 3.2 that the values of s for the case of resonance are much

smaller than the case of non-resonance for a particular |A| value.

3.5.1 Skin friction

Skin friction (after removing the oscillation factor e®) acting on the surface
of the cylinder is shown in Fig 3.3 and 3.4. From Fig 3.3, we note that when the
Reynolds number R is small, Skin friction is high and as R, increases Skin friction
drastically decreases. Again the Skin friction for non-resonance case is much higher
the Skin friction in the case of resonance. From Fig 3.4, when |A| is fixed, in the case
of non-resonance, the Skin friction is very high and is almost a constant for a given
cross viscosity parameter c. But in the case of resonance, the skin fiction increases as
|\| increases. Whether |A| is fixed or not, in any case, the Skin friction for the case of
resonance is much less than the case of non-resonance. This is one important
observation which may be useful for industrial applications. By varying the
concentration of additives, the material parameters can be adjusted in such way that
resonance case can be created and Skin friction on the surfaces can be reduced

drastically.

48



3.5.2 Velocity

Velocity profiles (after removing the oscillation factor €') are shown in the
Fig 3.5 and Fig 3.6. In Fig 3.5, it is observed that the variation in velocity is very
negligible with respect to the case of non-resonace, i.e the velocity field is almost
same for the case of resonance and non-resonance. But we can observe that in both
cases as Reynolds number increases, velocity increases. But from Fig 3.6, it can be
observed that the velocity is numerically much higher in case of non-resonance than
in the case of resonance. This may be reason that Skin friction is high in the case of

non-resonance.

3.5.3 Micro-rotation

From Fig 3.7, it can be observed that in the case of non-resonance, micro-
rotation near to the cylinder is more than one and decreases to a minimum and then
goes to zero as distance r increases. But in the case of resonance, micro-rotation never
exceeds one and decreases as Reynolds number increases and goes to zero very fast.
In Fig 3.8, it can be observed that, in the case of non-resonance, micro-rotation shoots
up near to the surface of the cylinder when |A| is fixed. But in the case of resonance,
micro-rotation drastically decreases as |A| increases and vanishes very near to the
surface. This may be reason that Skin friction is much smaller in the case of

resonance.
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Case of Resonancw
at R0=0.1,p0=10

Case of Non-resonance
atR0=0.1, p0=10

350 -
c=0.2
c=0.4
300 - ——¢=0.6
""""" c=0.8
250
200
(7]
150
100
50
0
A
(b)

Fig 3.2 Couple-stress parameter s Vs length ( or geometric) parameter

|A| in the the case of (a) resonance and (b) non- resonance.
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Case of Resonance
at =10, p0=10

180

c=0.15
¢=0.30
—— ¢=0.45
”””” ¢=0.60
—*—¢=0.75

160 |-

140

120 |-

skinfriction |Cf|

60

40

201

Case of Nonresonance
at o=p0=J=10

450

400

350

300

250

200

skin friction |Cf]

150

100

50

(b)

Fig 3.3 Skin friction Vs Reynolds number in the the case of (a) resonance

and (b) non- resonance.
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Cf

Case of Resonance

(a)
Case of Non-Resonance
415
c=0.2
410 - c=0.4
——¢=0.6
”””” c=0.8
405-
400 +
395
390 o -
385 -
380 -
375 | | | | | | | | |
5 10 15 20 25 30 35 40 45 50

I
(b)
Fig 3.4 Skin friction Vs length ( or geometric) parameter |A| in the case

of (a) resonance and (b) non- resonance.
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Case of Resonance
atc=0.2,»=10, p0=10

velocity V

Case of Nonresonance
¢=0.2,®=p0=J=10

Re=0.15
Re=0.30
—— Re=0.45

_15 1 1 1 1

(b)

Fig 3.5 Real value of velocity Vs distance r at different Reynolds

numbers for the case of (a) resonance and (b) non- resonance.
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Case of Resonance
¢=0.2,®=10, p0=10

-0.6

08 | | | | |
1 1.5 2 2.5 3 3.5 4
r

(@)

Case of Non-resonance
atc=0.2, R0=0.1, p0=10

Velocity V

1.5 2 2.5 3 3.5 4

(b)

Fig 3.6 Real values of velocity at different values of length parameter

|A| for the case of (a) resonance and (b) non- resonance.
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Case of Resonance
atc=0.2,»=10, p0=10

micro-rotation C

.02 | | | | | J
1

Case of Nonresonance
atc=0.2,0=p0=J=10

(b)

Fig 3.7 Real part of Micro-rotation at different values of Reynolds

numbers for the case of (a) resonance and (b) non- resonance.
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Case of Resonance
¢=0.2,®=10, p0=10

1.4¢
[A[=2
1.2F =4
——— =6
"""" =8
—e— =10
3.5 4

(@)

Case of Non-resonance

atc=0.2, R0=0.1, p0=10

Micro-rotation C

(b)

Fig 3.8 Real part of Micro-rotation at different values of length

parameter |A| for the case of (a) resonance and (b) non- resonance.
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3.6 Conclusions

In this chapter, rotary oscillations of a circular cylinder about its axis in an
incompressible micro-polar fluid are considered, when the physical parameters satisfy
a “resonance” condition. Clearly there is much difference between the case of non-

resonance and resonance. It is observed that (after removing the oscillation factor ™).

1. Skin friction is much smaller in the case of resonance than in the case of non-
resonance.

2. The velocity field is similar in the case of non-resonance and resonance.

3. The micro-rotation field vanishes quickly near to the surface in the case of
resonance. But in the case of non-resonance, micro-rotation shoots up near to

the cylinder.
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Chapter 4

Longitudinal oscillations of a Circular Cylinder in

Micro-polar fluid

The problem of the longitudinal oscillations of a circular cylinder along its
axis of symmetry in an incompressible Micro-polar fluid and the flow generated due
to these oscillations in the fluid is considered. The Stokes flow is considered by
neglecting nonlinear convective terms in the equations of motion on the assumption
that the flow is so slow that Reynolds number is less than unity. Here we get a rare,
but distinct special case referred to as resonance in which material constants are
inter related in a particular way. The velocity and micro-rotation components of the
flow for the case of resonance and non-resonance are obtained. The Skin friction
acting on the cylinder is evaluated and the effect of physical parameters like Micro-
polarity and Couple stress parameter on the Skin friction due to oscillations is

shown through graphs.

4.1 Introduction

There is a vast literature available on Stokesian flows generated in Micro-
polar fluids over the past half a century ever since the classical theory of Micro-polar
fluids was formulated by Eringen (1966). Ariman (1967, 1970) studied Micro-polar
fluid flows between two concentric cylinders and fluids with micro-structures.
Eringen (1964, 1990) studied theory of simple Micro-polar fluids, theory of thermo-
microstretch fluids and bubbly liquids. Liu (1971) initiated instability in Micro-polar
fluids. Ramkissoon (1976, 1977) examined Micro-polar fluid flow of axially
symmetric body. Ravidran (1972) studied simple oscillatory flows in polar fluids.
Later Vijay Kumar Stokes (1984) explained the theories of fluids with micro-
structures in this book. Oscillatory flows of circular cylinder in various fluids were

studied by many authors like Frater (1968), Lakshmana rao (1972). Ramkissoon et al.
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(1990), Rao et al. (1992), Calmelet-Eluhu et al. (1998), Anwar (2004), Fetecau et al.
(2006), Mehrdad Massoudi et al. (2008), Ramana Murthy et al. (2010).

With the aim of obtaining Drag or Couple, Lakshmana Rao et al. in (1971,
1972, 1983, 1987) studied the oscillatory flows in the case of a circular cylinder,
sphere, spheroid and elliptic cylinder in incompressible Micro-polar fluids. However,
in all these above problems, a special case, named as “Resonance” type flow that
arises when the material parameters of the fluids are related in a special form (will be
defined later) have not been investigated until recently. The rare but distinct
possibility of this type of resonance flows has been noticed in Lakshmana Rao et al. in
(1983, 1987). This case arises in the papers of Ramana Murthy (2011), Aparna
(2012), Nagaraju (2014), but the case of Resonance was not attempted by the authors.
In the present chapter, we propose to investigate this case of resonance type flow, in
Micro-polar fluids, due to longitudinal oscillations of a circular cylinder along its axis
of symmetry.

4.2 Basic Equations

The basic equations of motion for incompressible Micro-polar fluids as introduced by

Eringen (1966), are given by

ap . =

pa div(pQ) =0 (4.1)
00, = o A - -

p(S2+Q.V,Q) = —ViP+kVy x I — (U + k)V; X V; X Q (4.2)

I +Q.V,D = 2kl +kVy x § =y, X Vy x [+ (@ + B+ DV (V) (43)

The constitutive equations for the stress components T;; and Couple stress components

M;; for an incompressible Micro-polar fluid are given by
1
Tij == —P5l] + E (2,“ + k)(ul,] + uj'i) + keijr (WT - lT) (44)

My = ali;6i; +Bli; + vl (4.5)
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where w; = r th component of %( curl Q) and eijr IS permutation tensor = 0 if any two
indices are equal and = 1 if i,j, r are cyclic and = -1 if i,j,r are acyclic. Neglecting the
nonlinear convective terms in (6.2) and (6.3), the linearised version of the equations

are given by,

divQ =0 (4.6)
P2 = VP + KV, xT= (u+K)V; xV; X (4.7)
ij—Tl_ = 2kl +kVy X § —yVy X Vy X [+ (@ + f + 1)V, (V4. D) (4.8)

4.3 Statement and Formulation of the Problem

A circular cylinder of radius a and, of infinite length is performing
longitudinal oscillations with velocity W,e,e'°” along its axis of symmetry in an
infinite vat containing incompressible Micro-polar fluid. A cylindrical coordinate
system (R, 6, Z) with base vectors (eg, ey, e,) with origin on the axis of the cylinder
is considered. Since the flow is generated by these oscillations, the fluid velocity will
be in cross sectional plane of the cylinder containing the base vectors (eg,e,). We
assume the flow is axially symmetric and hence the velocity and micro-rotation are

assumed in the following form:

Z A
Y
N |
Woeic‘r
Vv
X &7
N

Fig 4.1 Geometry of the oscillating cylinder
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Q = qW, = e“"W(R)e, and I = v=2 = e“" B(R)e (4.9)

The following non-dimensional scheme is introduced. Capitals and LHS terms
indicate physical quantities and small letters and RHS terms indicate the

corresponding non-dimensional quantities.

R=ar,W=wwy,B=B=2P=ppw}Z=az, 1 == (4.10)

Wo

The following non-dimensional parameters are introduced viz, J is gyration
parameter, @ is frequency parameter, s is Couple stress parameter, ¢ is Cross viscosity
or Micro-polarity parameter and Ry is oscillations Reynolds number for Micro-polar
fluids.

jpwoa ac ka? k woa
J= 5 =2 s=", c=—andR, =2
7 wo Y ptk u+k

(4.11)

Substituting this non-dimensional scheme (4.10) and non-dimensional parameters
(4.11), the equations of motion (4.7) and (4.8) are reduced to

Ro3l = —RoVp+ VX5 —VXVXg (4.12)
JE LR - ;
= 2sU+sVXqg—VXVX0 (4.13)

Further, by the choice of the velocity field in (4.9), the equations of motion are

reduced to

) d 1d d

iRyww = —Ryp, + E; (rB) + e (r %) (4.14)
) d d 1d

i/B==2sB —s—+— (-—(B)) (4.15)

dp . . .
where = 22 s constant pressure gradient along z direction.
Po a7

From (4.14)
—E%(rB) = —Rgpy +w" + %W'— iwRyw (4.16)
From (4.15)
(2s +ij)B = —sw'+ D?B (4.17)
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where D? = j—:z + %% — riz (4.18)
Differentiating on (4.16) to eliminate po, we get

—cD?B = :—r (W”+ %W') — iwRyw' (4.19)
Substituting (4.19) in (4.17), we get

c(2s+i])B = —:—T(W” + %W) + (iwRy — cs)w' (4.20)
We can write (4.19) and (4.20) as

—cD2B = D2w' — iwRyw' (4.21)
c(2s+iJ)B = —D}w'+ (iwR, — cs)w' (4.22)
Eliminating B from (4.21) and (4.22) we get

(DZ —23)(DZ - 25)w'=0 (4.23)
Where 22 + 23 = (2 —c)s+ i(J + @R,) and 1225 = i@Ry(2s + if) (4.24)

The solution for w'if A1#A, in (4.23) is given in Nagaraju (2014) (which can be
obtained as a special case). The solution for w’ for the case, 4; = A, cannot be

obtained as a limiting case of 4; — A,. This case is referred to as “Resonance”. This

resonance occurs if the material coefficients follow the following relation:

Y _ Qu+k)(u+k) Qu+k)k+ypo

; T andpo = o (4.25)
In non-dimensional form, these conditions are given by
(2—-c¢)s=]—Rywand(2 — c)] = (2 + c)mR, (4.26)

In this chapter, we are interested in the solution for w and B for the case of resonance.

In this case, the equations for w and B are given by

iw Ry
-

(D? — 2?)?w'and ¢B = (D? = 222w’ —w' (4.274)

and for the case of non-resonance
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(D2 = 2,%)(D? — 2,*)w’ =0 and cB = — 20 (D2 — 22 — A2)w'— w' (4.27h)

2313
Substituting these equations in (4.14), we get

In the case of resonance:

imRy d

In the case of non-resonance:

l"(D'RO i
A2 A3r dr

iRymw = —Rypy — {r(D? — 22 — 23w’} (4.28b)

4.3.1 Boundary conditions

By no-slip condition, (the non-dimensional velocity of a fluid particle on the circular
cylinder T" is same as the velocity of cylinder i.e w=1) and by hyper-stick condition,

(the micro-rotation vector of a particle on the cylinder is ¥z of angular velocity of the
particle on the cylinder i.e B = %(Curl Q) (where the suffix represents the

component along that direction 6 ) i.e B=0 and hence we have;

Onr=1, w=1andB =0 (4.29)

4.4 Solution of the Problem

Since the equation for w'is linear, the general solution for w' is linear combination of
individual solutions of factors in the differential operator. Solution for w' is assumed

in the form

w o= qwi +awh (4.30)
Where w* and w,are satisfies the following equations

In the case of resonance:

(D? — 2wy =0and (DZ — 22)’w%, =0 (4.314)

In the case of non-resonance:
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(D? — 2w, =0and (D? —A3)w’, =0 (4.31b)
These will yields the solutions as below

In the case of resonance:

wi= K (Ar)andw?% = rK';(Ar) (4.32a)
In the case of non-resonance:

wi =K (4r)andw’, = K (A,1) (4.32b)
The following results are useful to note.

DEw4 = 2*whand D2w’, = (2 iw), + A*wh) (4.33a)
The following results are useful to note in case of non resonance.

Diw’ = 22w’ and D?w% = 3w’ (4.33h)
Substituting (4.32a) in (4.28a) we get w for the case of resonance as

w=—E — LK () + 2 (K, () + Ko () (4.34a)

Substituting (4.32b) in (4.28b) we get w for the case of non-resonance as

_Po _ o KeGur) o Ko(ar) (4.34b)

w =
iw 1 Al 2 ﬂz

Substituting (4.32a) in (4.27a) we get B for the case of resonance as

cB = ("‘jf‘) - 1) (a1 Ky (Ar) + aprK’ (Ar)) — 22320 Ky (Ar) (4.35a)

Substituting (4.32b) in (4.27b) we get B for the case of non-resonance as

cB = (izjgo — 1) alKl(Alr) + (inO - 1) azKl(/lzT') (435b)

13

The constants a,, a, are obtained from the boundary conditions (4.29) as follows:

In the case of resonance:

—AKo, (1) AK1(2) + Ko(2) a (1
K1 (%) K'1(1)+%K1(,1) [a2]= [ ( 0 w)l (4.36a)
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In the case of non-resonance:

_ Ko(1) _ Ko(12) [al] Il _ip_ol
Al AZ = w
a
aKi(4) K (1)) 0

iw R iw R
Where ¢; = =2 —1 and ¢, = 2 —1
A1 43

From (4.36a) and (4.36b), we can calculate a;and a, for both the cases.

Hence velocity component w and micro-rotation component B are known.

4.4.1 Skin friction acting on the cylinder per length L

Skin friction acting on the circular cylinder is

2Ty,

Cr =
' pw

T,, obtained as follows:

In cylindrical co-ordinate system,

au av 10U 14 aw au
| 2% wtimor awta |
— T_ [V, 10 V2 v low , ov
E=VQ+(VQ) _ia TRk R R(U+69) R69+6Zi
| ow U Low , ov o W |
oR a0z R 06 az 0z
ow
0 0 —
oR
For this present problem, E=]10 0 0
ow
— 0 0
oR

Substituting (4.40) in (4.4) we get
By using non-dimensional scheme (4.10), we get

_ tk)Wo
a

T,, {‘Z—‘: + CB} el@t

(4.36b)

(4.37)

(4.38)

(4.39)

(4.40)

(4.42)

(4.42)

Substituting (4.42) in (4.38), we get the Skin friction acting on the circular cylinder

(after deleting the factor €'™) is obtained as:
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2 (dw
o = o (?)m (4.43)
In the case of resonance:

& = o la Ky () + a2k 'y ()] (4.442)

In the non-resonance case:

& = o [a1K (A1) + a2k (32)] (4.44b)

4.5 Results and Discussions

For resonance case, the value of A cannot be taken randomly. In the case of resonance

the values of A are obtained from (4.26) by solving the following equation for x.
x2—[2—=0c)s+i(J + @Ry)]x + iwRy (i +25) =0 (4.45)

Then in resonance case, the values of A are given by

1 =\/;=\/(2—c)s+i2(]+m.R0) (4.46)

This equation involves 5 parameters which are related by two equations in
(4.26). Hence we choose three parameters as an independent. Here @, Ry and c are
selected independently, with 0< ¢ < 1, Ro«<1 and @ >1 such that @.Ry is not
negligibly small (say>1). For this range of values of Ro, the nonlinear convective
terms can be neglected but local derivative is retained. After selecting ¢, Roand @, the
values of s and J are obtained from (4.26) and then A is obtained from (4.46). In the
case of non-resonance, all 5 parameters are independent. The values of A are
complex. These values for A are substituted in (4.36a) and (4.36b) and then constants

a;anda, are obtained.
4.5.1 Velocity

Velocity w in the direction Z axis is computed by using Eq. (30.1).

From Fig 4.2, it can be observed that as Reynolds number increases, the velocity

w decreases near to the cylinder and then increases slightly and tends to zero at a
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distance four times the radius of the cylinder. In the case of resonance, the velocity w
becomes zero at a longer distance than in the case of non-resonance. Hence observe
that an increase in Reynolds number, in the case of resonance, decreases the velocity
w near to the cynilder and velocity vanishes at a longer distance than in the case of

non-resonance.

Similarly, from Fig 4.3, as Micro-polarity parameter c increases, in the case of
resonance, velocity w increases in the range of distance 0.5 to 2.5. Whereas the effect
of Micro-polarity c is negligible in the case of non-resonance. Hence, the conclusion
is that micropolarity parameter increases the velocity in the case of resonance and
has no effect on velocity in non-resonance case.

4.5.2 Micro-rotation

It is observed that Micro-rotation component B is positive, in the case of
resonance, and becomes zero at a long distance from the cylinder. From Fig 4.4, we
notice that as, Reynolds number increases, in the case of resonance, micro-rotation
increases near to the cylinder. But in the case of non-resonance, as Reynolds number
increases, micro-rotation increases from negative values to positive values and then
soon becomes zero. It can be concluded that in the case of resonance, micro-rotation
vanishes at a long distance from the cylinder and in the case of non-resonace, it

vanishes relatively near to the cylinder.

From Fig 4.5, it is observed that, in the case of resonance, as Micro-polarity increases,
micro-rotation increases and is always positive. But in the case of non-resonance,
micro-rotation decreases and increases from negative values to positive values and the

effect of Micro-polarity on micro-rotation is almost negligible.
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1.2

1.2

Case of Resonance

Re=0.15
— — —Re=0.30

¢=0.2, ©=10, p,=10

Case of Non-resonance

Re=0.15

— — —Re=0.30

(b)

Fig 4.2 Velocity at different values of Reynolds numbers for the case of

a) resonance and b) non-resonance
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Case of Resonance
121

J=10, @=10, p0=10

Case of Non-resonance

1.2

Re=0.2, v=10, p,=10, J=10

(b)

Fig 4.3 Velocity at different values of Micro-polarity parameter c for the

case of a) resonance and b) non-resonance
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Case of Resonance
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Fig 4.4 Micro-rotation at different values of Reynolds number for the case of

a) resonance and b) non-resonance
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Case of Resonance
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Fig 4.5 Micro-rotation at different values of Micro-polarity parameter c for

the case of a) resonance and b) non-resonance
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4.5.3 Skin friction

From Fig 4.6, we can observe that resonance flow occurs only a particular
range of gyration parameter J and Re. Skin friction is much smaller in the case of
resonance and as Gyration parameter increases, Skin friction decreases. But in the
case of non-resonance, as gyration parameter increases, Skin friction also increases.
Resonance decreases the Skin friction drastically to a low value (from 500 in non-
resonance case to 30 in resonance ) It is noticed that as gyration parameter |
increases, in the case of resonance, Skin friction decreases and in the case resonance,

Skin friction increases.

From the Fig 4.7, it is observed that Skin friction is not affected much by
variation in Micro-polarity in the case of resonance. But opposite to this in the case of
non-resonance, as Micro-polarity increases, Skin friction decreases drastically. From
Fig 4.8, as Reynolds number increases, Skin friction decreases. This is expected, since
in the formula Eq. (4.34), Reynolds number is in the denominator. It is very
interesting to note that the Skin friction in the case of resonance is much smaller than

in the case of non-resonance.

Hence the conclusion is that as Reynolds number or Micro-polarity increases,
Skin friction decreases but the case of resonance offers less resistance for the flow and

hence Skin friction is very much lesser than the case of non-resonance.
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Fig 4.6 Skin friction at different values of gyration parameter J for the case of

a) resonance and b) non-resonance

73



Case of Resonance

24r

22r

181

Cf
N

121

J=10, 0=10, p0=10

4 |
0 0.5 1 1.5 2 25 3 3.5 4 4.5

Case of Non-resonance
600

500

400

S 300

2001

100

=10, p,=10, J=10

0 | | | |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

Re
(b)

Fig 4.7 Skin friction at different values of Micro-polarity ¢ for the case of

a) resonance and b) non-resonance
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Case of Resonance
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Fig 4.8 Skin friction at different values of Reynolds number Re for the

case of a) resonance and b) non-resonance
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4.6 Conlusions

1. Case of resonance makes the micro-rotation as unidirectional ( i.e positive
only). In non-resonance micro-rotation raises from negative values to positive
values and then vanishes.

2. The case of resonance offers less resistance to the flow and hence decreases
Skin friction.

These two observations are very important to focus our attention on the case
of “resonance”. They may have Industrial application, for producing a suitable Micro-

polar fluid to get minimum Skin friction.

76



Chapter 5

Rectilinear oscillations of Sphere in a Micro-polar
fluid

The flow of an incompressible Micro-polar fluid generated due to rectilinear
oscillations of a sphere about a diameter of the sphere is considered. The flow is so
slow that the Reynolds number is less than unity and hence nonlinear convective
terms in the equations of motion are neglected. A rare but distinct special case in
which material constants satisfy a resonance condition is considered. The stream
function and Drag acting on sphere are obtained. The effect of physical parameters
like Micro-polarity and Couple stress parameter on the Drag due to oscillations is
shown through graphs.

5.1 Introduction

Lakshmana Rao et al. (1970) studied slow stationary flow of a Micro-polar
fluid past a sphere. Lakshmana Rao et al. (1971, 1981, 1987) studied the oscillatory
flows generated due to oscillations of sphere, spheroid and elliptic cylinder in Micro-
polar fluids, with the aim of determining of the Drag or Couple on the oscillating

body.

Ravindran (1972) studied simple oscillatory flow in polar fluids. Frater (1967
and 1968) studied oscillatory flows in elastico-viscous fluid, and evaluated Drag on
sphere, damping force on a body. Analytical and Computational studies in Couple
stress fluid flows examined by Lakshmana Rao et al. (1980). lyengar et al. (1993,
2001 and 2004) examined oscillatory flows due to oscillating of approximate sphere,
two concentric spheres in Micro-polar fluid and approximate sphere in viscous fluid.
Lai et al. (1978) examined an elastico viscous fluid flow of sphere performing
rectilinear oscillations and evaluated Drag on a sphere. The problems regarding

oscillatory flows in various fluids generated due to rectilinear oscillations of different
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symmetric bodies like circular cylinder, elliptic cylinder, sphere, approximate sphere,
sphereoid have been studied by many researchers. Some are quoted here as example,
Liu (1978), Lakshmana Rao (1981, 1987), lyengar (2001). Stimson et al. (1926)
examined the viscous fluid motion of two spheres. Verma et al. (1971) studied slow
oscillatory flow past a fixed porous sphere. Aparna et al. (2012) examined the flow of
micropolar fluid due to rotary oscillations of a permeable sphere. Ashmawy (2015 and
2016) examined oscillatory flows of composite sphere in a concentric spherical cavity
and spherical particle moving in a Couple-stress fluid.

In this chapter we intend to investigate this case of resonance type flow due to
rectilinear oscillations of a sphere about its axis of symmetry in Micro-polar fluids.
Later on we discussed similar problem in Couple-stress fluids.

5.2 Basic Equations

The basic equations of motion for incompressible Micro-polar fluids as introduced by

Eringen (1966), are given by

ap .

ot div(pQ) =0 (5.1)
00 , = o A - -

p(S2+Q.V,Q) = —ViP+kVy x I — (u+ k)V; X V; X Q (5.2)

PICE+ QYD) = —2kI+kV; x § —yVy X Vy x [+ (@+ B+ Vy(V1.)  (5.3)
The constitutive equations for the stress components T;; and Couple stress components

M;; for an incompressible Micro-polar fluid are given by

T, = —P&; + % Qu+ ) (u +,) + ke (W, — 1) (5.4)

My = ali;6;; + Bl + vl (5.5)
0 ifi=jorj=kork=1i

where the permutation tensor e, =4 1 ifi,j, k are cyclic

—1 ifi,j, k are anti — cyclic

and w; = r th component of %( curl Q).
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Neglecting the nonlinear convective terms in (6.2) and (6.3), the linearised version of

the equations are given by,

divQ = 0 (5.6)
pJ 5 = —2kI+ kVy X Q = yVy x Vy x [+ (@+ B +1)Vi(V3.D) (5.8)

5.3 Statement and Formulation of the Problem

A sphere of radius a is performing rectilinear oscillations with velocity
Uyke'°" about its diameter in an infinite vat containing incompressible Micro-polar
fluid. Spherical coordinate system (R, 6, ¢) with base vectors (eg, €4, e4) With origin
at the centre of the sphere and Z axis along direction of oscillations of the sphere is
considered. The flow is axially symmetric, hence the velocity field is independent of
toroidal coordinate ¢ and the flow will be in cross sectional plane of the sphere

containing the base vectors (eg, €,). The velocity and micro-rotation are assumed in

the form:
€o
e.
-
< 0 > iot
U -
Fig 5.1 Geometry of the oscillating Sphere
Q = e {U(R,0)e, + V(R,0)ey} and L = ei°” (@) e, (5.9)
3
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The following non-dimensional scheme is introduced. Capitals and LHS terms
indicate physical quantities and small letters and RHS terms indicate corresponding

non-dimensional quantities.

R=ar, Q = Uyq, U= Uyu, V=Uyp,l = L
“ (5.10)

at

¢ ==LC,W=ylpa P = ppU§, r==

0

The following are non-dimensional parameters viz, | is gyration parameter, o is
frequency parameter, s is Couple stress parameter, c is cross viscosity or Micro-
polarity parameter and Re is oscillations Reynolds number for Micro-polar fluids.

. 2 2
ca ac ka k Upa Upa
]_]p , W= . s = L c= ,Re_pO,RO_pO
14 Ug Y n+k u u+k

=Re(1—c¢) (5.11)

By the choice of velocity field in (5.9) and incompressibility condition in (5.1), we

notice that stream function y can be introduced as

— 1 % _ 1 % . _ i
U= osime a0 andv = rsing or € q=VX (h3 ep) (5.12)

Using non-dimensional scheme (5.10) and (5.11) in (5.7) and (5.8) we get

Ro2l=—Rp.Vp+cVxv—-VxVxgq (5.13)
];Z—:z—st+sV><q—V><V><v+6V(V-v) (5.14)

We can write (5.13) and (5.14) as
iwRyq = —Ry.Vp+cVXv—-VXVXq (5.15)
Jv=—-25v+sVxq—-VXxVxv+eV(V-v) (5.16)

By taking curl to (5.15) pressure p can be eliminated and then using (5.9) and (5.12)

we get,

iwRy.E*y = cE*C +E*y (5.17)
92 1 a2 t0 9

where E? = ﬁ-l_r_zm_a;—z% (518)

similarly by using (5.9) and (5.12) in (5.16), we get
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(2s +iJ)C = E?C - sE*y (5.19)
Substitute (5.17) in (5.19), we get

c(2s+i))C = —E*y + (iwR, — cs)E2Y (5.20)
Taking E? operation to (5.20) and then eliminating EC using (5.17) we get,

E2(E%- D) (E2- 25y =0 (5.21)
Where 22 + 23 = (2 —c)s + i(J + @R,) and 2213 = iwR,(2s + if) (5.22)

Using (5.22) in (5.20), the equation for C can be re-written as

cC = —FREX(E? — 2§ — 25)y — EXY (5:23)

1113

The solution for  if 4,24, in (5.21) is given in Lakshmana Rao et al. (1971, 1972).
The solution for  for the case, 4; = A, cannot be obtained as a limiting case of
A1 = A,. This case is referred to as “Resonance”. This resonance occurs if the

material coefficients follow the following relation:

_ Qu+k)k+ypo

Y _ Qutk)(u+k)

ST e A0 PO =TT (524)
In non-dimensional form, these conditions are given by

(2 - c)s = |- @w.Ry and (2 - c)] = @w.Ry(2 + ¢) (5.25)

In this chapter, we are interested in the solution for y for the case of resonance.

We have the equation for stream function y as

In the case of resonance:

E2(E2- %) y=0 (5.262)
In the case on non-resonance:

EZ(E2- A5 (E2- ) y=0 (5.26b)

And we have equation for the micro-roation component C as
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In the case of resonance:
cC = — T E2(E? - 24%)y — E%y (5.27a)
In the case on non-resonance:

cC = _MEZ(EZ — 22— 22y —E2y (5.27b)

1323
5.3.1 Boundary Conditions

The sphere is oscillating in the direction of Z-axis. Hence the non-dimensional

velocity of the spherel” after removing e@¢ is given by

qr = i = cos0Be,- sinfe, which implies by no-slip condition

u = cosfand v =-sinfdonr=1 (5.28)
By hyper-stick condition v = % (curl @)y

which reducesto C = 0onr =1 (5.29)

5.4 Solution of the Problem

To match with the boundary conditions in (5.28) and (5.29), Stream function w,

micro-rotation component C are assumed in the form
w=f(r)sin?@and C = g(r)sin® 0 (5.30)
Substituting (5.30) in (5.26a) and (5.26b) and cancelling sin? 8 we get

In the case of resonance:

p2(D2- 22)°f = 0 (5.31a)
In the case on non-resonance:

D(D?- A1) (D2- 43) f =0 (5.31b)

Substituting (5.30) in (5.27a) and (5.27b) we get
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In the case of resonance:
cg = =2 D2(D? — 2A2)f — Df (5.32a)

In the case on non-resonance:

cg = —S73 D2(D} = 4 = 23)f — Dif (5.32b)

d? 2
Where D? = =3 (5.33)
Substituting (2.30) in (2.28) and (2.29), the conditions on f and g are obtained as:
fW =3, f(1) = 1and g(1) =0 (5.34)

Since the equation for f is linear, the general solution for f is linear combination of

individual solutions of factors in the differential operator. Hence f is taken as

f = afo + aifi + ayf; (5.34q)

In the case of resonance:

Dy =0, (D2- 2)f; = 0and (D2- 22)'f, = 0 (5.352)
In the case of non-resonance:

Dify =0, (DI-21)fy = 0 and (DI- 23)f, = 0 (5.35b)
On solving (5.35a) and (5.35b) the solution for f is obtained as

In the case of resonance:

f(r) = —° + alx/?K;(Ar) + azr;K'%(Ar) (5.36a)
In the case of non-resonance:

f(r) = —° + aVrKzs(4r) + apVrKz(A,r) (5.36h)

The following results are useful to note.

In the case of resonance:
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Df, = 2*fiand D2f, = 2Af; + A%f, (5.37a)
In the case of non-resonance:

Dif; = Mfi andDif; = 23f; (5.37b)
Substituting f along with (5.37a) in (5.32a), we get

cg = a,(iowRg - A*)fy + ay(iwRg - A°)fy - 2a,0f; (5.38a)
Substituting f along with (5.37b) in (5.32b), we get

cg = a,(iowRg - A)fy + a,(iwRy - A3)fs (5.38b)
The constants a, a;, a, are obtained from the boundary conditions (5.34) as follows:

In the case of resonance:

[ Ks (1) K;’(A) 1 )
| , , | ao -
| -1 %K%(/l) FAUGA) S+ (S +2) K3(2) | [all -3 (5.39)
2 2
[0 @Ry —F)Ks@)  (iwRy — K5 (1) = 22K ()| “ o
2
In the case of non-resonance:
[1 K1) K3(22)) ] .
| , , | aO el
i—l %K%(/h) + AlK;(Al) %K%(ﬂz) + AZK%(AZ) | [%] = i (5.39b)
a
[0 GaoRy = ADKs() (@R = DK [ 10

Hence from (5.36), (5.38) and (5.39) f and g are completely known and hence stream

function y and micro-rotation component C are known.
5.4.1 Pressure

From equation (5.15) pressure is obtained as follows.
dp = Vp.dr =dr +£.de (5.40)

By comparing components in equation (5.15), we obtained
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g _ 1 9 2
P =a { 2 (—iwRyp + cC +E zp)} (5.41)

o _-1( 1 o 2
2= {Sme 2 (~iwRotp + cC +E zp)} (5.42)

Substituting (5.41) and (5.42) in (5.40), we get

dp = —{——— 2 (—iwRo + C + E)dr — —— (—iwRgtp + cC + E*)db}
Ro \r2sing 96

dp = RLO [(—inOf + D2f + cg)ZCOSQf—Z + :_r(inOf — D2f —cg)siné de] (5.43)

Integrating on both sides of (5.43), we obtained pressure in non-dimensional form as

lwAO

p =—3 cost (5.44)

5.4.2 Drag acting on the Sphere of radius a
Drag= D* = 2ma? fon(T*rr cos@ — T*,sinf)sinb |z_,do (5.45)

Required tress components are obtained as follows:

Strain rate tensor = [el]] = VQ +VQT]
u 1 11 au
|[ R 2R log R__ V] 2R [Sln9 29 TR ] ]l
1 [ou 171 ov
E= | __+RE_V] ——+U] E[ﬁ%-l'——WCOtH”
1 au L[, [ 1 aw
l2 [5m9 Fri R_ N W] 2R [Sm@ a0 ¥ WCot@] R [ﬁ% +VCotf + U] J

We get strain rate tensor for this problem as

au 1 Jou av
= i los + R~V 0]
| L[|, pd _ i
E_|2R [aa +RaR V] R 69+U] 0 | (5.46)
| 0 0 ~[VCott + U]

Substituting required terms in (5.4), we get the stress components as

T = —P + (2u+ k)5 (5.47)
— o , ko V. kC
Tro = (u + k) + Roo MR T Reme (5.48)
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Stress components in non-dimensional form as

— W+l [ _ _ 1L oy 2w

Trr - a [ pRO + (2 C) (rzsine aroo r3sing 96 )] (549)
_ etV 1 e oyO% oy 10 — A\F24) —

Tog =900 L [(c—2)2% — (c-2).22L + (1 - )E? — cC]| (5.50)

Substituting (5.30) in (5.49) and (5.50) we get

T., = —(“Jr:)uo [—pRO +(2-0¢) (zriz - j—];) cos@] (5.51)
T = @% [(c - 2) (i—’; - f:) — D2f — cg] sinf (5.52)

On boundary r=1, stress components are
Trr == (H-I-aﬂpRO (553)
T,y = =422 D2 fsing (5.54)

Substituting (5.53) and (5.54) in (5.45), we get the Drag on the sphere (for resonance

and non-resonance cases without the factor et ) as

Drag —D* = 4 (u+k)Upa

Dividing Dby 6m(x + k)Uya, hence the non-dimensional Drag D is given by
2 .
D = Real {2 Roim(1 — 3A,)] (5.56)

5.5 Results and Discussions

The values of A are obtained from (5.22) by solving the following equation for x

x2-[(2-0¢)s +i(J + @Ry)]x + i@Ry(2s +iJ) = 0 (5.57)
Then for resonance case
= V% = J[(Z—c)s +Zi(]+wR0)] (5.58)

This involves 5 parameters which are related by two equations in (5.25).
Hence we choose three parameters as independent. Here @, R, and c are selected

independently, with 0< ¢ < 1, Re«1 and ®>1 such that @. R is not negligibly small
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(say>1). After selecting c, Ry and @, the values of s and J are obtained from (5.25)
and then A is obtained from (5.58). The values of A are complex. These values for A
are substituted in (5.39a), (5.39b) and the constants a,, a; and a, are obtained. Then
the stream function , micro-rotation component C and Drag D are obtained from
(5.36), (5.38) and (5.56) respectively for both resonance and non-resonance cases.
Thus obtained y will have complex values. To get the physical picture, these values

are multiplied by "' and its real part is taken.
5.5.1 Drag

From Fig 5.2, it is observed that as |A| is increasing, the Drag D is almost
constant. But for resonance, the values of Drag are small in comparison with non-
resonance. The variation of Drag with s is same with |A| but the corresponding s

values are very large in the range of 100s.

From Fig 5.3 Drag variation with J, the gyration parameter is shown. We note
that for resonance Drag is smaller than the case of nonresonance. In nonresonance,

behaviour of Drag is not constant and range of Drage in limited to 85 to 95 only.
5.5.2 Stream Function

From Fig 5.4, we note that as ¢ increases the values of stream function are also
increasing for resonance. But for non-resonance, as c increases, values of stream
function are decreasing. Effect of ¢ is not very much effective for non-resonance.
From Fig 5.5, we notice that the effect of s on stream function is not much for non-

resonance. Again the stream function takes larger values than the case of resonance.

From Fig 5.6, we note that for resonance, formation of circulations is not observed.
Since for resonance no circulations are seen we take stream lines for the case of non-
resonance for the variation of Micro-polarity parameter. Since for resonance no
circulations are seen we take stream lines for the case of non-resonance for the
variation of Micro-polarity parameter c. this is shown in Fig 5.7. As c increases, the
circulations started near the sides of sphere spread in region and by value. At large
values of ¢ near to 0.8 or more, only near the sphere we see black region i.e only near

to the sphere values are less than 0.5.

87



Rechlsroy spheyr ooy

a2 R.~5
=
weS0 —
=l
i
w=40
=
=]
[a1] W w30 -
= A e
Q
s
w2
N e e
AF w=i0
z i i i i i
5 ] = = = =
14
Rectilinear sphere Non-resonance
atd=3R,=5
0T ezteD
L
an

[}
TR
i
&
15 m ———————————————————————
30
25 ]
20 :
2 5 20 25 30
Drag C Vs s at Re=0.2
60
T T T T
55)
so| R %« * *
45 =30 i
“L\_’__.*
Q
> 40
8 L i
qQ
3B =20 _ _ _ _
O ____
30[ ]
25| =10 i
OO OO
20 \
0 100 200 300 400 500 600

Fig 5.2 Drag Vs |A| or s for resonance and non-resonance

88



Resonance:sphere-Rectilinear
Drag D Vs J

90 T T T

80k i

10 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
J
(a)
Mon-Resonance: Sphere-Rectilinear
DOrag DO Vs Re at R jw=20
EE T T T T T T T T
a6 B T
34+ o 1
oy oo F ____.——-_"__Fd__. -
g - ==
WL - ; o 5=5
5=10
- 5=158
88 —¥—35=20
3 5=25
25 r 1
34 L L A L L A L L
2 = ] 2 10 12 14 15 18 20

Fig 5.3 Drag Vs J for case of the case of a) resonance and b) non-resonance

89



Resonance:sphere Rectilinear
f for fixed Re at S=10, =10

0.8 T T

Non-Resonance:sphere Rectilinear
f at S=10,w=10
T T T

0.7 T T T

T T T

0 3 1 1 1 1 1 1 1 1 1

(b)

Fig 5.4 Stream function at different values of c for the case of

a) resonance and b) non-resonance
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Fig 5.5 Stream function at different values of s for the case of
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Resonance:sphere-Rectilinear
streamlines at s=10, R.ue..r:m

Non-Resonance:s phere-Rectilinear
stream lines at s=10, Rﬂ =20

Fig 5.6 Stream lines for the case of a) resonance and b) non-resonance
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Fig 5.7. Stream lines at different values of Micro-polarity parameter ¢ for

non-resonance.

Conclusions

From the above graphs and observations we can conclude that

i)

Drag in the case of resonance is much smaller than the case of non-
resonance. i.e resonance offers less friction or helps to reduce the friction.
For resonance, circulations near sphere disappear. For non-resonance, the
effect of Micro-polarity parameter changes the pattern of stream function

according as c is small or big.
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Chapter -6

Rotary oscillations of a sphere in a Micro-polar fluid

The flow of an incompressible micro-polar fluid generated due to rotary
oscillations of a sphere about the axis of symmetry of the sphere is considered. The
flow is so slow that nonlinear convective terms in the equations of motion are
neglected. A rare but distinct special case in which material constants satisfy a

resonance condition is considered.

6.1 Introduction

Several such flow problems concerning with micro-polar fluids have been
studied by many authors over the past five decades, ever since Eringen (1966)
introduced the micro-polar fluid theory. And we have vast literature regarding micro-
polar fluid theory as I introduced in previous chapters. Stokes (1968, 1971) studied
effects of couple stresses in fluids on hydro magnetic channel flows and creeping flow
past a sphere. Frater (1967, 1968) studied the elastico-viscous fluid flows generated
due to oscillations of sphere and evaluated drag and damping force on the body.
Ariman et al. (1967) examined micro-polar fluid flow between two concentric
cylinders. lyengar (1993, 2001) investigated flow of approximate sphere in
incompressible micro-polar fluid and in incompressible viscous fluid. Lakshman Rao
et al. (1971, 1981, 1983) have studied the micro-polar fluid flows generated due to
oscillations of different symmetric bodies like sphere and spheroid. These problems

were attempted to obtained drag or couple on the symmetric body.

The problems related to oscillatory Stokes flow are very common in non-
Newtonian fluid flow and are of much interest to the investigators. Ravindran (1972)
studied simple oscillatory flow in polar fluids. Verma (1971) studied oscillatory fluid
flow past a fixed porous sphere. There is a vast literature regarding problems of
oscillatory flows of sphere in different fluids. For example, Stimson (1926), Frater
(1967, 1968), Lakshman Rao (1970, 1971), Lai(1978). Many researchers examined
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oscillatory flows of different objects generated due to rotary oscillations. Lakshmana
Rao et al. (1983), Tekasakul et al. (1998, 2003), lyengar et al. (2001, 2004), Aparna et
al. (2012), Ashmawy (2015) are some of problems related to rotary oscillatory flows.
Anwar (2004) studied micro-polar fluid flow of circular cylinder rotating and
oscillating.

In all these problems, some authors found that a distinct flow exists which is
technically termed as resonance flow and there lies a relation between material
constants (to be stated later). Till now this has not been investigated by many
researchers. This case arises in Lakshmana Rao (1971, 1981, 1983), but resonance
case was not attempted by the authors. Aparna (2012) examined oscillatory fluid flow
of permeable sphere oscillating rotary oscillations in an incompressible micro-polar
fluid. In all above problems, the case of resonance if exists was not studied. In this
chapter we propose to investigate this case of resonance type flow, in micro-polar
fluids, due to rotary oscillations of a sphere about its axis of symmetry. Later the

similar case investigated in couple-stress fluid.

6.2 Basic Equations

The basic equations of motion for incompressible micro-polar fluids as introduced by

Eringen (1966), are given by

ap .

pa div(pQ) =0 (6.1)
0, =9 A 7 0

p(¥+Q.V1Q)= —V,P +kV; X[ — (u+k)V; xV; X Q (6.2)

PICE+ QYD) = —2kI+kV; x § —yVy X Vy x [+ (@+ B+ 7)Yy (V1.])  (63)

The constitutive equations for the stress components Tj; and couple stress components

M;; for an incompressible micro-polar fluid are given by
1
Tij = —P5l] + E (2,“ + k)(ul,] + uj'i) + keijr (WT - lT) (64)

Mij = ali,i5i,j + ﬁli,j + Vlj,i (65)
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0 ifi=jorj=kork=1i
where the permutation tensore;;; =4 1 ifi,j, k are cyclic
—1 ifi,j, k are anti — cyclic

and w; = r th component of %2( curl Q).
Neglecting the nonlinear convective terms in (6.2) and (6.3), the linearised version of
the equations are given by,

divQ = 0 (6.6)

6.3 Statement and Formulation of the Problem

A sphere of radius a is performing rotary oscillations with velocity Woe'®
about its axis of symmetry in an infinite vat containing incompressible micro-polar
fluid. Spherical coordinate system (R, 0, ¢) with base vectors (e, e, €5) With origin at
the centre of the sphere is considered. The flow is axially symmetric, hence it is

independent of toroidal coordinate ¢. The velocity and micro-rotation are assumed in

the form:
€o e.
/‘Y )
m > iot
NIk
Fig 6.1 Geometry of the oscillating Sphere
Q =e"W(R,0)ezand I = " {A(R,0)e, + B(R,0)e,} (6.9)

The following non-dimensional scheme is introduced. Capitals and LHS terms
indicate physical quantities and small letters and RHS terms indicate corresponding

non-dimensional quantities.



R=ar, Q = Wyq, W= Wyw, Ll = %y
¢ (6.10)

— " ) - 2 a9
A =-tA B =B, P= ppWi, v= -
The following are non-dimensional parameters viz, J is gyration parameter, o is
frequency parameter, s is couple stress parameter, ¢ is Cross viscosity or micro-

polarity parameter and Re is oscillations Reynolds number for micro-polar fluids.

]_jp0a2 ID'_E S_kaz C_k
oy Wo' v’ utk
Woa pWoa a+f+y (611)
Re =" Ry =2 =Re(1—-c¢), e =L
u u+k 14

By the choice of the velocity field in (6.9) and non-dimensional scheme (6.10) and
(6.11), the equations of motion (6.2) and (6.3) are reduced to

ioRyq + Ryq.Vq = —Ry.Vp+cVXv—-VXVXq (6.12)
ijU+Lq.Vo =250+ sV X q—VXVXV+eV(V-) (6.13)
Neglecting the nonlinear convective terms in (6.12) and (6.13), the linearised version

of the equations are given by,

ioRyq = —Ry.Vp+cVXv—-VXVXq (6.14)

(i +259)v=sVxq—-VxVxv+eV(V-v) (6.15)

Let us consider Vx v = hied, and V-v=F(r0) (6.16)
3

Now assuming ( is known as swirl ),
q=we; = ;—3e¢ (6.17)

Using (6.16) and (6.17) in (6.14) we get

(E? —iRyw){ = —cG (6.18)
2_ 0% 10 coth 8
where EX = —— + = -5 — —— (6.19)
Using (6.16) and (6.17) in (6.15) we get
; — £ — &
(i] +2s)v =sV x (h3 e¢) V X (h3 e¢) + eVF (6.20)

By comparing the components in (6.20) we get
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. _ s % _ 1 6_6 6_F
(25 + l])A " r2sing " 96 rZsing " 90 tE ar (621)
iNB = —_5_ % 109G, e0oF
(25 + l])B - rsin® " or rsind ~ or r 00 (622)
To eliminate G taking divergence to (6.20) we get
(V-pHF =0 (6.23)
with p,? == (6.24)
ith v2— 02,20 1 ,9° 9
with V<= ettt (a‘92 + COte'ae) (6.25)
Taking Curl to (6.20) we get
(E? — (25 +i]))G = sE*( (6.26)
Taking (E? — (2s + iJ)) on both sides of (6.18) then substituting (6.26)
(E2- 2D (E*- A) (=0 (6.27)
Where 22 + 23 = 2 —c)s+i(J + @Ry) and 2212 = i@Ry(2s + i)) (6.28)

The solution for ¢ if A1#A, in (6.27) is given in Lakshmana Rao et al. (1971). The
solution for {for the case, A4; = A, cannot be obtained as a limiting case of 4, —
A,. This case is referred to as“Resonance”. This resonance occurs if the material

coefficients follow the following relation:

v _ Qutk)(utk) Qu+k)k+ypo

; = and po = TG0 (6.29)
in non-dimensional form
(2-¢)s = J—Rywand (2 — c)] = @R, (2 +¢) (6.30)

In this chapter we are interested in the solution for ¢ for the case of resonance. In this

case the equations for ¢ is given by

(E2- 22’ =0 (6.31a)
In the case of non-resonance the equations for ¢ is given by

(E?- A1) (E-25) (=0 (6.31b)
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6.3.1 Boundary Conditions

By no-slip condition, the non-dimensional swirl ¢ and by hyper-stick condition, the
micro-rotation components A and B are given by

{ =sin?@ and A = cosf ,B =- sinf onr=1 (6.32)

6.4 Solution of the Problem

To match with the boundary conditions in (6.32), The swirl function ¢ and the

divergence function F are assumed in the form

{=f(r)sin?fand F = g(r)cosf (6.33)
Substituting (6.33) in (6.27) we get

(D%- A1) (D2- A))f =0 (6.34)
Where D? = dd% — r% (6.35)

Substituting (6.33) in (6.23) we get

ag | 24y 2

oty 29=0 (6:36)
Equation for f for the case of resonance is given by

(D? - 21) (DF - 25)f =0 (6.37a)
In the case of non-resonance

(D2 —22)’f =0 (6.37b)

The solutions for f(r) is given by

In the case of resonance:

flr) = alx/?K;(/lr) + azr;K’;(Ar) =a,fi +ayfo (6.38a)
In the case of non-resonance:

flr) = alx/?K;(/llr) + aZ\/?K;(AZr) =a,fi +ayfo (6.38h)
The solutions for g(r ) by (6.36) is given

gr) = a\/—;K%(Pﬂ) = a3g3 (6.39)
We can write (6.20) as

s(—G

(] +25)v =V x ( > ep) + EVF (6.40)

By substituting (6.18) in (6.40) we get
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(i +25)v =2V x ((E? - (iRyw — cs))h%e(,,) + eVF (6.41)

By comparing the components in (6.41)

c(2s+iJ)A = m %( E? — (iRyw — ¢s)){ + csa—F (6.42)
c(25+1))B = ———. 2 (E? = (iRyw — cs)){ + =2 (6.43)

Substituting (6.33) in (6.42) and (6.43) we get

ZCOSH

c(2s+ A= (D2 — (iRyw — ¢s))f + ceg'cosB (6.44)
c(2s+iJ)B = —Sme d (D2 — (iRyw — ¢s))f — —gsm@ (6.45)
Now assuming A = A(r)cos@ and B = B(r)sinf (6.46)

Now (6.44) and (6.45) becomes

In the case of resonance:

-2 a4 ,
c A=r—2(D52—2/12+F)f+ceg

l'R()ZD'

6.47a)
M p__1d(p2_og2 _ (
¢ iRyw B= r dr (DS 22 lR w)f g
In the case of non-resonance:
292 _

C?IJA;A —%(D2 A2—23 + 1 Az)f+ceg

’1%’1%0_ 2 _)2_32 + /11/12 ce (6.47b)
L R A e U

XKl(x)
We denote A;(x) =1+ T (x) (6.48)
2

We notice that
d Kg(lr) 3\
— \/_K3(/1r)] Al(/lr)
d [K3(Ar) Kz(lr) > (6 49)
— |2 — __2 .
o | |7 3 (1+A,(n)
4 -r%K’ ()11”)] =L (/121”2 + E) K:(r) — Z k()
ar L' 77372 W 2) 3 273 J
Substituting (6.38a), (6.38b), (6.39) and (6.49) in (6.47a) and (6.47b), we get,
In the case of resonance:

A - 2 22(A%—-iR 42
T R s I CUI LRy o) (6.502)
At s _ AZ(AZ—lRow) az 2.2 , 3 A
B = — 0 Ks(Ar)A () + ((A 2+ Z)K;(Ar) S Kaar)

K3(4r)
+2Aa, L — A (Ar) + 2‘?1{3 (p7) (6.51a)

r2
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In the case of non-resonance:

= 2323 ,
lRowA " LR L(ah + axfo) — (A3f + a2/11f2)] T ceazg, (6.50b)
1313 5 d [2325
B p=—1L[M (., + au) — (@Mfy + A )] - Zasgs (6.51b)
Now the condition at r=1 are given by
fl)=1, A=1,B=-1 (6.52)

Substituting the above formulae (6.49), we get on r=1;

a;K3(A) + a,K3(1;) =1 (6.53)
2 2
2L Ka(A) + 22 K3 (1) + 2% K3 (p)[1 + Ay (p)] =- (6.54)
AT 3 A5 3 A1A5 3 iRgw
2 _iRne 2_iRow iRgyw
‘11-/11 C/éo -K%(/M)A(/h) + Clz-/12 C/éo -K%(Az)A(Az) ase 20 7 K3(P1) = -
(6.55)

The constants aq, a, and a; are obtained from the boundary conditions (6.32) or
(6.52) as follows:

In the case of resonance:

I[ K; ) K3(1) 0 1|
2
| 0 41K3() ceKy @)1+ 84 () I[Z;l
| 2iRyw 1 3 A iRyw [Las
l— ((c— 2)/12 + 21R0w)] (6.56a)

In the case of non-resonance:
[ Ko K3(A2) 0 1
| : [ 121 1
| —K3(/11) %K;(Az) ;Rz(;? K3(P1)(1+A1(P1))|[a2] = —<

iRy

L w a —

lK% (A)A; (Mg K;(Az)Aﬂ}Mz)Cz fz(;z K3(P1) J ’ 1

(6.56b)

Hence from (6..56a) and (6.56b), we can calculate a;, a, and a; And hence ¢

and F are known.
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6.4.1 Couple Acting on the Sphere of radius a

Couple acting on the sphere due to Cauchy’s stresses is

Ci = 2ma® [ (T*,9sin? 0) |p_, dO (6.57)
Trg = Qu+K)E.y + keyz (wy — v3) (6.58)
Wy, = — ZsilnG Z—i = —%f’ (r)siné (6.59)
By =5 (f ) =) sing (6.60)

After substituting (6.59) and (6.60) in (6.58) we get
onr=1, T,y = [(u+K)f (1) = @u+ k)f(1) + kB(1D)]sind (6.61)

Substituting (6.61) in (6.57), we get

C* =2ma?Wo(u+ k) (f (1) - 2) (6.62)

For resonance, non-dimensional Couple is
C* =Zma?Wo(u+ k) {alKg(A)Al(A) +2 [(,12 + g) Ks(A) — %Kl(l)] - 2} (6.63a)
2 2 2

For non-resonance, non-dimensional Couple is

C* = ng’CIZWO (u+k) {alK;(Al)Al (4) + azK%(Az)M (12) — 2} (6.63b)

Dividing by 4mua®W, we dimensional Couple as
For resonance case,

1

cr=2_L
3"1—c

{alKg(/l)Al(A) +2|(2+3) K60 - iK;(A)] - 2} (6.64a)
2 z 2/ 3 2 3
For non-resonance case,

¢ = g-ﬁ{alf(;@l)ﬂl(ﬂl) + azK3(A2)81 (2) — 2} (6.64b)
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6.5 Results and Discussions

For resonance case, the value of A cannot be taken randomly. In the case of resonance

the values of A are obtained from (6.28) by solving the following equation for x.
x2=[2=0c)s+i(J + wRy)]x + i@wRy(i] +25) =0 (6.65)

Then in resonance case, the values of A are given by

A=+x= \[(Z—C)Sﬂzw (6.66)

This equation involves 5 parameters which are related by two equations in
(6.28). Hence we choose three parameters as an independent. Here @, Ry and c are
selected independently, with 0< ¢ < 1, Rkl and @ >1 such that @.Ry is not
negligibly small (say>1). For this range of values of Ry, the nonlinear convective
terms can be neglected but local derivative is retained. After selecting ¢, Roand @, the
values of s and Jare obtained from (6.28) and then A is obtained from (6.66). In the
case of non-resonance, all 5 parameters are independent. The values of A are
complex. These values for A are substituted in (4.38a) and (4.38b) and then constants

a;anda,are obtained.

6.5.1 Couple

Couple is effected by all the five parameters. The effects of Reynolds number
Re, couple stress parameter s and Gyro-viscosity parameter J on the couple are shown

in the figures.

From Fig 6.2, it is observed that as |A| increases, for resonance, couple
increases drastically and takes very large values. Bur for non-resonance couple

decreases within a small interval and is almost constant.

From Fig 6.3, we note that in the case of non-resonance, variation of couple
stress parameter s will not effect couple. But for the case of resonance, as s increases
couple also increases. In both cases of resonance and non-resonance, as ¢ increases,

couple also increases.

From Fig 6.4, we note that frequency parameter effects the couple very much.

As @ increases, couple decreases.
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Fig 6.2 Couple Vs |A| at different values of ¢ for the case of a) resonance

and b) non-resonance
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Resonance:Rotary-Sphere

Couple C Vs Re
300 T T T T T

Couple C

Rotary Sphere: Nonresonance

Couple C Vs c at Q,(u=20
22 T T T T T

Fig 6.3 Couple Vs cross-viscosity parameter for the case of

a) resonance and b) non-resonance
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Rotary sphere:Non-resonance
at J0=30, c=0.3

3 —
2.8r
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241
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22r
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1.8 — — —w=20
————— w =30
16 | . . N IRSEEEEEEEE w=40
0 5 10 15 20 25 30
S
Fig 6.4 Couple vs couple stress parameter s for non-resonance
6.5.2 Velocity

The toroidal velocity W is found in terms of swirl ¢ which is defined in terms

of function f.

Form Fig 6.5, we observe that for resonance velocity raises more than 1 and
negative in a small range of r for small values of Reynolds number Re. But for non-

resonance, velocity is always less than 1 and negative for larger range of r.

From Fig 6.6 and Fig 6.7, it is observed that as couple stress parameter s and
micro-polarity parameter cdo not show effect on wvelocity in the case of non-
resonance. But in the case of resonance as s increases, velocity decreases and as ¢

increases, velocity also increases.
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Resonance:Rotary-Sphere
f for fixed Re atw =10

1.2 T T T

_02 1 1 1 1 1 1 1 1 1
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
r
(@)
Rotary sphere: Nonresonance
] stream function f

Fig 6.5 Velocity f at different values of Re for the case of a) resonance

and b) non-resonance
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Fig 6.6 Velocity f for variations in s for the case of a) resonance

Resonance:Rotary-Sphere

f for fixed c=0.3

Non-Resonance:sphere Rotary
f for fixed Re at S=10w =10
T T T T

and b) non-resonance
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Resonance:Rotary-Sphere
f for fixed s=10

Rotary sphere: Nonresonance
stream function f

1 T T T T T T T T T

(b)
Fig 6.7 Velocity f for variations in ¢ for the case of a) resonance

and b) non-resonance
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Case of Resonance:sphere
Rotary oscillations at Re=0.2

245

(a)

Non-resonance:sphere-Rotary
streamlines at s=10, Rﬂe..r=2c|'

2.5 T T T T T T T T 2
V4

(b)

Fig 6.8 Velocity contours for the case of a) resonance and b) non-resonance
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From Fig 6.8 of the contour lines of velocity, we confirm the observations
made above in fig6.5 i.e for non-resonance near to the cap or pole of the sphere
toroidal velocity forms circulations with negative values (red and yellow colour). For

resonance, all circulations are positive.(blue colour).

6.6 Conclusions

From the above observations we conclude that in the case of rotary oscillations

i) For resonance couple is very high and for non-resonance it is low.
i) For resonance, velocity is positive in the entire range. For non-resonance

velocity at the pole is negative.

111



Part — 111

Couple-stress Fluid Flows

112



Chapter 7

Rectilinear oscillations of a Circular Cylinder in a

Couple-stress fluid

The flow due to a circular cylinder oscillating rectilinearly about its axis of
symmetry in a Couple-stress fluid is considered. There occurs a rare but an important
special case referred to as Resonance flow. The material constants satisfy a specific
relation called resonance condition. In this case, the flow is analyzed under Stokesian
approximation. The velocity component of the flow is derived. The effect of physical
parameters like Reynolds number and Couple stress parameter on the Drag is
analyzed through graphs.

7.1 Introduction

The flow problems in Couple stress fluids have been attracting many
researchers due their Mathematical simplicity and beauty and importance in many
applications. Oscillatory flows of circular cylinder in various fluids like Micro-polar
fluids, Couple-stress fluids, viscous fluids were investigated by many authors Kanwal
(1955), Ariman et al. (1967), Ramkissoon et al. (1990), Rao et al. (1992), Calmelet-
Eluhu et al. (1998), Anwar et al. (2004), Fetecau et al. (2006), Mehrdad Massoudi et
al. (2008), Ramana Murthy et al. (2010), Nagaraju et al. (2014) by computationally or
analytically. An incompressible viscous flow due to rectilinear oscillations of an
approximate sphere was studied by lyengar et al. (2001). Oscillatory flow of a sphere
due to rectilinear oscillations in an elastic-viscous fluid was investigated by Lai et al.

(1978). In these papers, the authors analyzed Drag on the object.

In this chapter, we propose to investigate this case of resonance type flow, in
Couple-stress fluids, due to rectilinear oscillations of a circular cylinder about its axis
of symmetry. In chapter 2 the similar problem of the Resonance type flow due to a

circular cylinder in Micro-polar fluid is investigated.
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7.2 Basic Equations

The basic equations of motion for an incompressible Couple stress fluid introduced by
Stokes (1966) are given by:

divQ =0 (7.1)
00 , A~ o A = =
’0(0_1+QV1Q)= _le—l/lvlXV1XQ—T’V1XV1XV1XV1 XQ (72)

where Q is fluid velocity vector, p is density, T is time, p is viscosity coefficient.

By neglecting nonlinear convective terms in (7.2) we get

P2 = —V,P —uVy X V; X @ — 11y X V; X V; XV X Q (7.3)

The (Cauchy’s) stress tensor T and Couple stress tensor M satisfy the constitutive

equations as below:
T = =PI+ A(V1. Q) + p(V1Q + (V;Q)") + 351 X (V,. M) (7.4)

M =ml + 2nV,(V; X Q) + 2n'[V,(V; x Q] (7.5)

7.3 Statement and Formulation of the Problem

A circular cylinder of radius a and of infinite length is performing rectilinear
oscillations with velocity U,e'°” about its diameter in an incompressible Couple-stress
fluid. A cylindrical coordinate system (R, 6, Z) with origin on the axis of the cylinder
is considered. The fluid flow is assumed to be in cross-sectional plane with the base

vectors (e,., ey). The velocity and pressure are assumed as:

Q = (UR,0)e, +V(R,0)ep) and P, = Peicr (7.6)
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Fig 7.1 Geometry of the oscillating cylinder

The following non-dimensional scheme is introduced.

R=ar, U=Uyu V=Uyw, Q=qUpe, P=ppU2e, 1= ;—t (7.7)
0

The following are non-dimensional parameters viz, ® is frequency parameter, S is
Couple stress parameter, and Re is oscillations Reynolds number for Couple-stress
fluids.

2 2

oca a Upga ca

=2, 5= Re=222 Reg="1 (7.8)
Up Ul U U

Substituting (7.6) in (7.1) we notice that stream function y can be introduced as

_ 1% - W —
u=-— andv = 5. e q= VX (ye,) (7.9)

Using (7.6), (7.7) and (7.8) in (7.3) we get

Re.S%1 = —Re.S.Vpy —SUXVXq-VXVxVxVxq (7.10)
Using (7.6), we get

Re.S.imq = —Re.S.Vp—SVX VXxq— VX VXVXVXq (7.11)

To eliminate pressure, applying curl to (7.11) and substituting (7.9) we get,

VA(VE-AD) (V-2 w =0 (7.12)
2_ 0% 12 1 9%

Where Vo= — +~—+ = — (7.13)

2 +23=Sand 2213 = Re.S.iw (7.14)
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The solution for ywif 4,24, in (7.12) is given in Lakshmana Rao et al. (1971). The
solution for  for the case, 4; = A, cannot be obtained as a limiting case of 4; —
A,. This case is referred to as “Resonance”. This resonance occurs if the material

coefficients follow the following relation in dimensional form.
S = 4Re.iw (7.15)

In this chapter we are interested in the solution for y for the case of resonance
11 = 12 = l

In this case of resonance, the equations for v is given by

v2(v2- 22) y=0 (7.16a)
For the case of non-resonance, the equations for v is given by

VE(V2-0D) (V=) w =0 (7.16b)
7.3.1 Boundary Conditions

The cylinder is oscillating in the direction of X axis. Hence the non-dimensional

velocity of cylinder T after removing e™®* is given by
qr = i = cosBe,- sinfe, which implies by no-slip condition
u= cosf@andv =-sinf onr =1 (7.17)

By hyper-stick condition v = %(curl qQ)r=0onr=1 (7.18)

7.4 Solution of the Problem

To match with the boundary conditions, stream function v is assumed in the form
w= f(r)sinf (7.19)
Substituting (7.19) in (7.16), we get an equation for f in the case of Resonance as
p2(D2-22)°f = 0 (7.20a)
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In the case of non-resonance equation for f is

D2(D2- 22)(D%- 25)f = 0 (7.20b)
with D2 = & 414 L (7.21)

From the boundary conditions in (7.17) and (7.18), the conditions on f are obtained as:

B.C-1:f(1) = 1 (7.22)
B.C-2:f'(1) = 1 (7.23)
B.C-3:Df =0onr =1 (7.24)

Since the equation for f is linear, the general solution for f is linear combination of
individual solutions of factors in the differential operator. Hence f is taken as

f = Afo + Afi + A2fy (7.25)
In the case of resonance,

Dy =0, (D2-2%)f, = 0 and (D2-22)'f, = 0 (7.262)
In the case of non-resonance,

Dify =0, (DZ-1)fp = 0 and (DZ- 23)f, = 0 (7.26b)
On solving (7.26a), the solution for f for the case of resonance is obtained as

f) =22 + AK () + AprK'y (0r) (7.27a)
On solving (7.26b), the solution for f for the case of non-resonance is obtained as

f) =22 + K () + AgK (ar) (7.27b)
We notice that, for the case of resonance

Dify = 0, Dify = A'fiand D2f, = A*(2fi +f3) (7.282)
This implies that at r=1, D2f = A*(Af, + 4,2f; +£2)) =0

this reducesto 1 — Ay + 24,f; = 0or Ay — 2A,K1 (1) =1
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In the case of non-resonance
Dfy = 0, D}fy = Aifi and DZf, = A3f; (7.28b)

The constants A ,A1 , A, are obtained from the boundary conditions (7.23), (7.24)
and (7.25) in matrix form for the case of resonance as:

1 K@) AK'1 (1)

Ay 1
, A2+1 _
-1 AK'1 (1) TK1(/1) Al = [1] (7.29a)
1 0 —2Kk, ) M 11
For the case of non-resonance,
1 K (4) Ki(12) 114, 1
_1 AlKrl (Al) AzK& (/12) A1 = [1] (729b)
0 AK(A) 3Ki(4p) |14z 0

On solving the equation (7.29a) and (7.29b) for Ao, A1, A, we get completely f and

hence y for both the cases.

7.4.1 Pressure
_ _ o 9P
dp = Vp.dr = pm dr + " do (7.30)

By comparing components in equation (7.11), pressure is obtained as follows.

o _ _ g L0 1S5S0 g2y 19 (y4

Re.S—== —Re.Siw——~+-— (Vey) - (V*y) (7.31)
ap _ . 61/; _ d 2 a 4

Re.S—_ = Re.Siwr—=— Sr— (Vey) + r— (V*y) (7.32)

Substituting (7.31) and (7.32) in (7.30) and integrating, we get pressure in non-

dimensional form

iwAop

= ——cosf (7.33)
7.4.2 Drag acting on the Cylinder per length L

Drag = D* = aL [, (T*,,cos6 — T*,4sin0) |p_od0 (7.34)

Required tress components are obtained as follows:
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1

Strain rate tensor = E = [g; | = > [VQ +VQT]

We get strain rate tensor for this problem as

a_u LIRS
OR aR R 06 R
E= 1oV 10U 174 v
z[a—R m—ﬁ] __9+U] 0
0 0 0

Form (7.5) Couple stress tensor M obtained as

I o
10C
, 0C ,1aC
|27 " M5 m |
Where V; X Q = Ce,
And VlM = m3e_Z
Where m; = 2nV2C
0 —2nV%C 0
Ix (V1. M) = |29V2C 0 0
0 0 0

By substituting (7.35) and (7.40) in (7.4) and simplifying we get

au
TRR =—P+ 2/15

= [+ 422

In non-dimensional form are
uu £ f
T =2 [—Re. p+2 (7 — r_Z) cos@]
Atr=1,T, =— “aﬂ (Re.iwAg)cosO
U 1 ff .
Tog =“2[|-D2f +1D¢f +2 (L - L)|sine

,uU()l

Atr=1,T, = T Dfsinf = (1 Ay + 44,K;(1))sind
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We note that at r=1; D} f = (D? — 22)?f — A*f = 2*(4,— 1)

Substituting (7.43) and (7.44) in (7.34) we get the Drag D" on the cylinder (without

the factor e'®* ) is given as for resonance
D* = LuUyinwRe(1 — 24,) = —LuUyinwRe(1 + 44,K, (1)) (7.453)

For non-resonance

. . A A3
D* = L,LonlT[fD'Re(l - 2A0) = —L,U,Uolﬂ"(D'Re AO + A_ZAIKI(AI) + A_ZAZKl(AZ)
2 1

(7.45b)
By dividing LuU,, we get the entire Drag in non-dimensional form for both cases as

D = inwRe(1 — 24,) (7.46)

7.5 Results and Discussions

The roots of x2 - Sx + iwReS = 0 are taken as the values of A2.

[ |s+Vs7=4sRe i

{ ffor non resonance
S

k \E for resonance

Here @, S and Re are choosen independently, with Re«1 and »>1 such

Hencek = vVx = (7.47)

that w.Re is not negligibly small (say>1) then A is obtained from (7.47). Then Ao, Ay
and A; and hence y and Drag are obtained. To get physical quantities, the

corresponding real part of the quantities are taken.
7.5.1 Stream function

In Fig 7.2 stream function f at different values of Reynolds number Re is
shown. For resonance we notice that stream function takes smaller values than the
case of non-resonance and vanishes at relatively nearer to the cylinder than in the case

of non-resonance. (i.e stream function vanishes at larger distances from the cylinder.)
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In Fig 7.3 stream function f at different values of frequency parameter @ is
shown. For resonance we notice that stream function takes smaller values than the
case of non-resonance and vanishes at relatively nearer to the cylinder than in the case
of non-resonance. (i.e stream function vanishes at larger distances from the cylinder

as in the case of Fig 7.2 for Reynolds number Re.)

In Fig 7.4 we notice that for non-resonance internal circulations near to the
pole of cross sectional circle are found. As we move into the center of this internal
circulations, the value of stream function increases (goes from red to blue). For
resonance this internal circulations are not found. As we move from pole of the cross
sectional circle, the values of the stream function are decreasing (goes from green to

yellow.)

7.5.2 Drag

Drag has two different formulas in (7.45). But by using boundary conditions,
it will reduce to one simple formula for resonance and non-resonance. From fig 7.5,
we observe that when |A| is fixed, we get only one curve for resonance, since Re.w is
fixed. The distinct feature in this is that as |A| increases, Drag also increases for
resonance but for non-resonance opposite behavior is observed. i.e as |A| increases, for
non-resonance, Drag decreases and becomes constant for large values of |A| at a
particular @w. Again, when |A| is less than 4, abrupt behavior is observed. This
tendency increases as w increases. Mathematically this happens because, at this value

of w, the value of S goes to negative values.

From Fig 7.6, we observe that as Re increases, Drag also increases, but for

resonance Drag is lesser than in the case of non-resonance.

From Fig 7.7, we notice that as S increases, Drag increases for resonance. But for
non-resonance as S increases, Drag decreases. But the values of Drag are smaller in
comparison with the case of non-resonance. At particular value of S, for resonance,

Drag is almost constant.
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Resonance:Cylinder-Rectlinear
velocity f atw =20

1.2 T T T

Y
r
(a)
Non-Resonance:Cylinder-Rectilinear
15 f for fixed Re at S=10, =10
Y

Fig.7.2 Stream function f at different values of Reynolds number for the case of
a) resonance and b) non-resonance
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Resonance:Cylinder Rectilinear
f at Re=0.2

1.3 T T T T

Non-Resonance:Cylinder-Rectilinear
f for fixed Re at S=10, Re=0.2

1.5 T T

(b)

Fig 7.3 Stream function f at fixed Reynolds number for the case of
a) resonance and b) non-resonance
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Resonance:Cylinder-Rectilinear
at .=20, Re=0.2

2.5

Non-Resonance:Cylinder-Rectilinear
stream lines at s=10, Re=0.2

24 5
2
15
14
= 1
1
: 05
o —

]

Fig 7.4 Stream lines at Re=0.2 for the case of a) resonance and b) non-resonance
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Resonance:Cylinder-Rectlinear

Drag D Vs
140 T 9 Al T
120
100}
Q 8ot
=)
g
Q
60[
40
20
0
0
2}
(a)
Non-Resonance:Cylinder-Rectlinear
20 Drag C Vs ]\ | at Re=0.2

10 1 1 1 1 1
4 6 8 10 12 14 16

(b)

Fig 7.5 Drag Vs | A| at different values of frequency parameter for the case of
a) resonance and b) non-resonance
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Drag D

Drag D

Resonance:Cylinder-Rectlinear

Drag D Vs Re
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90T
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20t

Re
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Non-Resonance:Cylinder-Rectrilinear

Drag D Vs Re at S=20
120 T T T T

Re
(b)

Fig 7.6 Drag Vs Reynolds number Re for different values of  for
the case of a) resonance and b) non-resonance
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Resonance:Cylinder-Rectlinear

DragDVsRe | ......... -
22 T T T T g T T T |S| 10
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|S|=30
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|S|=50
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S 14} 1
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B e )
6 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(a)
Non-Resonance:Cylinder-Rectilinear
40 Drag D Vs Re atw =20

Drag D

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Re

(b)

Fig 7.7 Drag Vs Re at different values of S for the case of a) resonance

and b) non-resonance
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7.6 Conclusions

We observe that when resonance occurs:

) Stream function values decrease from a high value to a low value from the
cylinder and vanishes near to the cylinder.
i) Drag takes less values in comparison with non-resonance for variation in

@ and S.
when there is non resonance:

i) Stream function forms a circulation near to the surface of the cylinder. as
move go near to the center of the circulation, the value of stream function
increases

i) Drag is very high in comparison to resonance for the variation of = and S.
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Chapter 8
Rotary oscillations of a Circular Cylinder in a

Couple-stress fluid

The flow generated due to rotary oscillations of a circular cylinder about its
axis of symmetry in an incompressible Couple-stress fluid is considered. The
Reynolds number for the flow is less than unity due to very slow flow and hence
nonlinear convective terms in the equations of motion are neglected. A rare but
distinct special case in which material constants satisfy a resonance condition is
considered. The velocity component for the flow derived. The Skin friction acting on
the cylinder is evaluated and the effect of physical parameters like Reynolds number
and Couple stress parameter on the Skin friction due to oscillations is shown through
graphs.

8.1 Introduction

Many authors investigated the flow of Couple-stress fluids in cylindrical
geometry. Ariman et al. (1967) studied Couple-stress fluids and flow of Micro-polar
fluids between two concentric cylinders. Kanwal (1955) studied viscous fluid flow of
axisymmetric bodies generated due to rotary and longitudinal oscillations. Frater
(1968) evaluated Drag on a circular cylinder oscillating in an elastico-viscous
fluid. Ravindran (1972) Studied simple oscillatory flow in polar fluids. Soundalgekar
et al. (1974) analysed effects of Couple stresses on the oscillatory flow past an infinite
plate with constant suction. Lakshmana Rao et al. (1972, 1983, 1987) studied the
oscillatory flows of circular cylinder, spheroid and elliptic cylinder in incompressible
Micro-polar fluids, the main thrust of the investigation being the determination of the
Drag or Couple as the case may be on the oscillating body. Lakshmana Rao et al.
(1980) examined Couple-stress fluid flows by analytically and computationally.

Iyengar et al. (2001, 2004) studied oscillatory flow of Micro-polar fluid generated by
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the rotary oscillations of approximate sphere and two concentric spheres. Calmelet-
Eluhu et al. (1998) studied Micro-polar fluid flow of circular cylinder generated due
to longitudinal and torsional oscillations. Fetecau et al. (2006) found solutions for the
motion of second grade fluid due to longitudinal and torsional oscillations of circular
cylinder. Anwar et al. (2004), Aparna et al. (2012) examined rotary oscillations of
circular cylinder, permeable sphere in an incompressible Micro-polar fluid. Mehrdad
Massoudi et al. (2008) numerically studied the motion of second grade fluid due to
longitudinal and torsional oscillations of a cylinder. Ramkissoon et al. (1990), Rao et
al. (1992), Ramana Murthy et al. (2010), Nagaraju et al. (2014) studied oscillatory
flows of circular cylinder due to performing longitudinal and torsional oscillations in
viscous fluid, Couple-stress fluid, Micro-polar fluid.

In this chapter we propose to investigate incompressible Couple-stress fluid
flow due to Circular Cylinder performing rotary oscillations.

8.2 Basic Equations

The basic equations of an incompressible Couple stress fluid introduced by Stokes

(1966) are given by:

divQ =0 (8.1)
p (24 Q.v1Q) = —ViP — u¥y X V; X @ — 119y X V; X V; X V; X § (8.2)
where Q is fluid velocity vector, p is density, t is time, p is viscosity coefficient.

By neglecting non linear convective terms in (8.2) we get
pa—=—V1P—#V1><V1><(_2—77V1><V1><V1><V1X(_? (8.3)

For Couple stress fluids, the stress components Tj; and Couple stress tensor M satisfy

the following constitutive equations.
T =—Pl +2(V,. QI + u(V,Q + (V;Q)") + %1 X (Vy. M) (8.4)

M =ml +2nV;(Vy x Q) + 20 [V, (V; x Q)]” (8.5)
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8.3 Statement and Formulation of the Problem

A circular cylinder of radius a and of infinite length is performing rotary
oscillations with velocity Vye!"egabout its axis of symmetry in an infinite vat
containing incompressible Couple-stress fluid. A cylindrical coordinate system
(R, 6,Z) with base vectors (eg, ey €e7) with origin on the axis of the cylinder is
considered. Hence the fluid velocity will be in cross sectional plane of the cylinder

containing the base vectors (eg, e,). The velocity is assumed in the form:

=2

ot
Ve e,

> A Ve

Fig 8.1 Geometry of the oscillating cylinder

Q =V(R)ege'" (8.6)

The following non-dimensional scheme is introduced. Capitals and LHS terms
indicate physical quantities and small letters and RHS terms indicate corresponding

non-dimensional quantities.
R=ar, V=v.ao, Q =qvy,, P=ppv3, 1= :—t (8.7)
0

The following are non-dimensional parameters viz, @ is frequency parameter, S is

Couple stress parameter and Re is Reynolds number for Couple-stress fluids.

2 2
o= 5= Re=pv—oawhichgivesRe.wzﬁ (8.8)
Vo n 2 U
By the choice of velocity field in (8.6) the equations of motion (8.3) is reduced to

iopV = — =+ uD2V — D¢V (8.9)

oP
where - = P,
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Using non dimensional scheme (8.7) and (8.8) in (8.9) we get
Dv — SD?v + iwRe.sv = —pr—ORe.S (8.10)

This equation (8.10) can be written as

(D2 = 2D)(DZ = 23)v = —E2Re.S (8.11)
d> 1d 1
where D? = ﬁ + :d_r - r_2 (812)
A2+ 25 = Sand 4525 = ioRe. S (8.13)
1 1/t2

The solution for v if 1;#4, in (8.11) is given in Lakshmana Rao et al. (1971). The
solution for v for the case, A; = A, cannot be obtained as a limiting case of 4; —
A,. This case is referred to as “Resonance”. This resonance occurs if the material

coefficients follow the following relation in dimensional form.

202 = S = 4iwRe (8.14)
Now the equations for v for the case of resonance is given by

(D% — %)%y = —pr—ORe.S (8.15a)
For the case of non-resonance

(DZ- A5 (DZ-AH)v= ~PRe.S (8.15b)
8.3.1 Boundary Conditions

By no-slip condition, the non-dimensional velocity of the circular cylinder T" is given
byv=1 (8.16)

By hyper-stick condition,

Curl Qr = 2¢&, which yields onr=1, Z—: =1 (8.17)
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8.4 Solution of the Problem

The solution of (8.15a), velocity function v is assumed in the form

v=Av; + Av, — %pORe.s (8.18a)
With (D2 — A2)v; = 0and(D? — 2%)?v, = 0 (8.19a)
these will yield the solutions as

v, = K{(Ar) and v, = rK{(Ar) (8.20a)
For the case of non-resonance, the corresponding solution will be

1
v = A1v1 + szz - %po Re.s (818b)

With (D? - A{)v; = 0 and (D2 - A5)v, = 0 (8.19b)
these will yield the solutions as for non-resonance case as

v = Ki(4yr) and v, = K (A,71) (8.20b)
The following results are useful to note.

D%v; = A*vyandD?v, = 2Av; + A*v, (8.21a)
In case of non-resonance,

DZv, = A2viandD?v, = 5v, (8.21h)

The constantsA,, A,are obtained by applying the boundary conditions (8.16) and
(8.17) to (8.18a) as follows:

ipo

Al _ |7 @
-k
w

K (2) K ()

ey B

In the case of non-resonance, the conditions for A, A, are given by

ipo
Ki()  Ki(4) ”Al]: 1_? (8.22h)
LK) K101 Al T | 4 e |
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Hence we can calculate A;andA,from (8.22a) and (8.22b) for both the cases.
Hence velocity v is known.
8.4.1 Skin friction acting on the Cylinder per length L

Skin friction acting on the circular cylinder is given by

— 2Tyg

o =-3. (8.23)

For Couple stress fluids, the constitutive equations for stress and Couple stresses are
given by (8.4) and (8.5) as

T = =PI+ A(V1. Q) + p(V1Q + (V;Q)) + 51 X (V,. M)

And M =ml+2nV,(V; X Q) +2n[V,(V; x Q)]"

Strain rate tensor is given by

au 1 .0V 10U 14 1 0w au
% Getr R Gt |
—Ywo ATy = | LV 13U _ V. 1 v 1ow oV
E_Z(VlQ-I—VlQ)_iZ(aR-I_RaR R ;U +59) 2 Gae Tor) i(8'24)
1 0w au 1. 10w av ow
L Gt 2Gat) w
For this present problem, we get strain rate tensor as
1 0V %4
0 G O
E=|1,00 v (8.25)
2(6R R) 0 0
0 0 0
m 0 2776—6
R w v
M=]| 0 m 0 |whereC = P (8.26)
Zn’g—; 0 m
m 9 (,0CY -
V.M =22 (R (8.27)
2n 0 ac
0 ~ 2 (r) o
And I x (V{.M) = 2_ni(R0_C) 0 (8.28)
R OR dR
0 0
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By substituting (8.26), (8.27) and (8.28) in (8.4) and simplifying we get

o = {u (G =) =i (R (5 + ) ) e (829

Using non dimensional scheme (8.7) and (8.8) in (8.29) we get

1% a 10
T =t Gr=3) ~ 15 opew] (8:30)
The Skin friction acting on the circular cylinder (after deleting the factor €™ is
obtained as:
=L |g(x_¥\_1p2, 2 p2
Cf " ReS [S (ar r) r DC v oar DC U]
Onr=1, ¢ = —[D2v + - D2v] (8.31)

We note that for Resonance:

DZv = A? {Allq (Ar) + % (2K, (Ar) + ArK’l(Ar))}

d , A , y ,
—Div =7 {AMK L) + 72(2,11( L) + 2K (Ar) + K 1(Ar))}

2192
=2 {AMK'l(Ar) + % <2/1K'1(/1r) ST Arm w))}

Hence on r=1;

D?v = A2 {AlKl ) + % (2K () + AK’l(A))}

d , A
Do =2 {Alw D+ 222K (D + (1 + AZ)Kl(A))}

Using the boundary conditions and 1K; (1) + K; (1) = —AK,(A) we have ;

In the resonance case, the Skin friction is given by
= p 8.32
¢r = —[1—AK, (D] (8.32q)

In the non-resonance case, the Skin friction is given by
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¢ = — [Ko(01)) A1 + 23K, (1)) 4, (8.:32)

8.5 Results and Discussions

The roots of x2 - Sx + iwReS = 0 are taken as the values of A2

StV S2_4SRe.iw
2

Hence for non-resonancei = and for resonance A = \E (8.33)

Here w and Re are choosen independently, with Re«1 and o>1 such that
.Re is not negligibly small (say>1) then A is obtained from (8.33). Then A; and A;
and hence V and Drag are obtained. To get physical quantities, the corresponding real

part of the quantities are taken.
8.5.1 Velocity

When |A| is fixed, for resonance Re and @ cannot vary independently. From
Fig 8.2, for resonance we observe that as |A| increases, velocity drastically decreases
near to the cylinder and takes negative values. But for non-resonance, as |A| increases,

velocity decreases slowly and takes positive values only.

From Fig 8.3, we note that as @ increases, velocity decreases near to the
cylinder. But for resonance, this variation in velocity is drastic at r=1 (near to the
cylinder) and near r=2. Velocity takes first increases and then decreases to negative

vales and again increases and goes to zero.

From Fig.8.4, for resonance the behavior of velocity is same as in fig 8.3 for
variation in w. But for variation in Re, the change in velocity is clear even as near as

1.5 times the radius of the cylinder.
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Resonance:Cylinder-Rotary
V at Re=0.2

1.2 T T T T

(@)

NonResonance:Cylinder-Rotary

12r velocity V at fixed ] |

Fig 8.2 Velocity at fixed values of |A| for the case of (a) resonance and

(b) non-resonance
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Resonance: Cylinder-Rotary
V at Re=0.2

velocity V

(@)

NonResonance:Cylonder Rotary
1o V for fixed Re at S=10, Re=0.2

Fig 8.3 Velocity at fixed values of @ for the case of (a) resonance and (b) non-
resonance
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Resonance:Cylinder-Rotary
velocity V atw=20

1.2 T T T

NonResonance:Cylinder Rotary
V for fixed Re at S=10, =10

1.2 T T

(b)

Fig 8.4 Velocity at different values of Re for the case of (a) resonance
and (b) non-resonance
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8.5.2 Skin friction

From Fig 8.5, we note that as |A| increases, Skin friction decreases. But for
resonance, Skin friction is very small in comparison with the values of Skin friction in

the case of non-resonance.

From Fig 8.6, the Skin friction is almost same for resonance and non-

resonance.

Form Fig 8.7, we notice that Skin friction at lower values of Re, is more for
resonance but at values near to Re=1, Skin friction for resonance is less than the

corresponding values of non-resonance case.

From Fig 8.8, we notice that as m increases, skin-friction also increases. But
when Re increases, skin-friction decreases, since Rew comes as a unit in the Skin
friction. In this case for resonance and non-resonance, Skin friction is almost same.

This is because @ does not appear explicitly in the formula for skin-friction.
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Resonance:Cylinder-Rotary
C,Vs\|atw=10
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(a)
Non-Resonance:Cylinder-Rotay
Skin friction Cf Vs )|
35
0&

10 1 1 1 1 1 1

(b)

Fig 8.5 Skin friction Vs |A| for the case of (a) resonance and (b) non-resonance

141



Resonance:Cylinder-Rotary
Skin friction Cf Vs Re

(&)
(a)
Non-Resonance:Cylinder-Rotary
Skinfriction C, Vs Re at $=20
50 T T T T T T T
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<
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X
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Fig 8.6 Skin friction Vs Re for the case of (a) resonance and (b) non-resonance
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Fig 8.7 Skin friction Vs Reynolds number Re at different values of Couple stress
parameter S, for the case of (a) resonance and (b) non-resonance.
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Fig 8.8 Skin friction Vs frequency parameter w different values of Reynolds
number Re for the case of (a) resonance and (b) non-resonance.
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8.6 Conclusions

We observe that for resonance,

) When || is fixed, the skin-friction decreases drastically in comparison
with non-resonance.
i) Velocity changes from positive values to negative values near to the

cylinder. for non-resonance, velocity takes positive values only.
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Chapter 9

Longitudinal oscillations of a Circular Cylinder in

Couple-stress fluid

This chapter aims at the flow generated due to Circular cylinder performing
longitudinal oscillations along its axis of symmetry in a Couple-stress fluid. There
arises a rare but distinct case which is referred to as Resonance flow. In this special
case material constants satisfy a resonance condition. Nonlinear convective terms in
the equations of motion are neglected since the Oscillations Reynolds number is less
than unity due to very slow flow. The velocity component for the flow is derived. The
Skin friction acting on the cylinder is evaluated and the effect of physical parameters
like Reynolds number and Couple stress parameter on the Skin friction are shown
through graphs.

9.1 Introduction

Several researchers examined the flow of non-Newtonian fluids in
cylindrical geometry. Frater (1968) studied an elastic-viscous fluid flow of
circular cylinder performing oscillations and obtained Drag on a circular
cylinder. Ravindran (1972) studied simple oscillatory flow in polar fluids. Ariman
(1967) analysed Couple-stress fluid flows and Micro-polar fluid flows between two
concentric cylinders. Lakshmana Rao (1980) studied Couple-stress fluid flows by
analytically and computationally. Lakshmana Rao et al. (1972, 1987) in studied the
oscillatory flows due to circular cylinder and elliptic cylinder in an incompressible
Micro-polar fluid, the main thrust of the investigation being the determination of the

Drag or Couple as the case may be on the oscillating body.

The flows due to longitudinal and torsional oscillations of various objects like
cylinder, rod, sphere in various fluids were investigated by different authors Kanwal
et al. (1955), Casarella et al. (1969), Rajagopal (1983), Ramkissoon et al. (1990,
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1991), Rao et al. (1992), Bandelli et al. (1994), Pontrelli (1997), Calmelet-Eluhu et al.
(1998), Akyildiz (1998), Fetecau et al. (2006), Owen et al. (2006), Mehrdad Massoudi
et al. (2008), Ramana Murthy et al. (2010), Nagaraju et al. (2014) by numerically or
analytically. In all these problems authors evaluated Drag or Couple acting on the
body. Ramana Murthy et al. (2009, 2010, 2011) studied a flow of Micro-polar fluid
under transverse magnetic field with suction. The rare but distinct possibility of
resonance flows has been noticed and the investigation.

In this chapter, we propose to investigate this case of resonance type flow, in
Couple-stress fluids, due to longitudinal oscillations of a circular cylinder about its
axis of symmetry. In chapter 4 similar oscillatory flow in Micro-polar fluid was
discussed.

9.2 Basic Equations

The basic equations of an incompressible Couple stress fluid introduced by Vijay

Kumar Stokes (1966) are given by:

divQ =0 9.1)
p (24 Q.v1Q) = —ViP — u¥y X V; X @ — 119y X V; X V; X V; X § (9.2)
where Q is fluid velocity vector, p is density, t is time, p is viscosity coefficient.

By neglecting non linear convective terms in (9.2) we get
pa—=—V1P—#V1><V1><(_2—77V1><V1><V1><V1X(_? (9.3)

For Couple stress fluids, the stress components Tj; and Couple stress tensor M satisfy

the following constitutive equations.
T =—Pl +2(V,. QI + u(V,Q + (V;Q)") + %1 X (Vy. M) (9.4)

M =ml + 29V, (V; X Q) + 2n'[V,(V; x Q] (9.5)

147



9.3 Statement and Formulation of the Problem

A circular cylinder of radius a and of infinite length is performing longitudinal
oscillations with velocity Wye°"along its axis of symmetry in an infinite vat
containing incompressible Couple-stress fluid. A cylindrical coordinate system
(R, 6,Z) with base vectors (eg, ey €z) with origin on the axis of the cylinder is
considered. Since the flow is axially symmetric, the fluid velocity will be in cross-
sectional plane of the cylinder containing the base vectors (e, e;). The velocity is

assumed in the form:

RS
Y

Woelc

\
AL

X ]

N~

Fig 9.1 Geometry of the oscillating cylinder

Q = W(R)e,e'" (9.6)

The following non-dimensional scheme is introduced. Capitals and LHS terms
indicate physical quantities and small letters and RHS terms indicate corresponding

non-dimensional quantities.

R =ar,W =wW,,Q = qW,,P, = pppac?,andt = ;/—t (9.7)

0

The non-dimensional parameters @ frequency parameter, s Couple stress parameter

and Ry oscillations Reynolds number for Couple-stress fluids are defined as below.

2 2
wzﬂ, S:&, Re:Msothat zIf.Re=ﬂ (9-8)
Wy n u H
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By the choice of the velocity field in (9.6), by taking curl the equation (9.3) is reduced

to

iocpW' = uD*W' —nDiwW’ (9.9)
d? 1d 1

Where D? = d? + r_d_r — r_2 (910)

Using non dimensional scheme (9.7) and (9.8) in (9.9) we get

D}w' — SD?w' + iwRe.Sw' = 0 (9.11)
This equation (9.11) can be written as

(DZ = 2D(DZ — 25w’ =0 (9.12)
Where 22 + 23 =S and 1213 = iwRe.S (9.13)

The solution for w' in (9.12) if A;#4, is given in Lakshmana Rao et al. (1972) for a
similar case of Micro-polar fluids. The solution for w' for the case, A, = A, cannot
be obtained as a limiting case of 4; — A,. This case is referred to as “Resonance”.
This resonance occurs if the material coefficients follow the following relation in non-

dimensional form as;

21> =S = 4iwRe (9.14)
In this case of resonance, the equations for w' is given by

(D2 —22)2w' = 0 (9.153)
In the case of non-resonance, the equation for w' is given by

(DZ = 28)(D¢ = 25)w' =0 (9.15b)
By the choice of the velocity field in (9.6), the equation (9.3) is reduced to

iopW = — Z—g +1 {(% + %) (—DCZ + %) W'} (9.16)

Using non dimensional scheme (9.7) and (9.8), the above equation (9.16) reduces to

iwRe.Sw = —pyRe. S — (:—r + %) (D? — SHw' (9.17)
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This can be written for the case of resonance as

. _ d 1 2 2 ’

iwRe.Sw = —pg.Re.S — (- + ) (D — 24%)w (9.18a)
And in the case of non-resonance as

. a 1 2 2 21,/

iwRe.Sw = —py.Re. S — (d—r + ;) (D — A — A5)w (9.18b)
9.3.1 Boundary conditions

By no-slip condition, the non-dimensional velocity on the circular cylinder T is

given by

lew=1lonr=1 (9.19)
By hyper-stick condition, Curl Q- =0

which yields Z—V: =0onboundary r=1

iew =0onr=1 (9.20)

9.4 Solution of the Problem

Solution for (9.15a) or (19.15b), the general solution for w' is linear combination of
individual solutions of factors in the differential operator. Hence w' is assumed in the

form

w = Aw) +Aw) (9.21)
Where w; and w, satisfies the following equations for the case of resonance

(DZ — 2wy =0and (DZ — 22)’w%, =0 (9.22a)
In the case of non-resonance

(D2- A1)w; = 0and (D2- 25)w, = 0 (9.22b)

Thus the solutions for (9.22a) and (9.22b) as follows
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In the case of resonance:

wi = K,(Ar) andw’ = ArK,'(Ar) (9.233)
In the case of non-resonance:

wi = Ki(A4r)andw’b = K{(A,71) (9.23b)
Hence from (9.21)

In the case of resonance:

w = A K (Ar) + A,r K, '(Ar) (9.242)
In the case of non-resonance:

w'(r) = A K; (1) + A,K (A1) (9.24b)
The following results are useful to note.

D2w; = 22w, and D2w, = 2w, + 12w, (9.25a)
The following results are useful to note in case of non resonance.

DZw’ = 23w’ and DZw % = 5w (9.25h)
xK, (x) + nK, (x) = - xK,_;(x) and x%K,, (x) + xK, (x) = (n? + x*)K, (x) (9.25c)
The condition on w(1) = 1 can be obtained from (9.18a) and (9.18b) as

For resonance:

wRe.S (i + %) w(r) = — (% + %) (DZ = 229w’ (1)

d 1 ’ 4 ! ! '
- (E " ;) (AW + Ay (PP wy + 22wy) — 222 (41w 1 + Aaws))

’ ’

2 " Wi " W2 " W]_
=1 (Al W1 +7 +A2 Wy +7 ) —2/1142 41 +T

We simplify 2™ term as below:

I

n W " ! 1 " !
wy + Tz = ArK; (Ar) + 2K, (Ar) = ;(szl + 2xK;) with x = Ar
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A+ xDK () +xKy (K + xKy)
x

Now we have

+ xKl ES _KO + xKl

wRe.S (i + %) w(r) = (A2 — 244, (=AKy (A1) + A2 (ArK, (A7) — Ko(Ar))

Evaluating this at r=1, we get

Po

wRe.S (i + g) = —A 3Ky(A) + A 22 (MK, (D) + Ko (1))

or 2 (1=22) = —2,2K, (D) + A (AK, (D) + Ko (A))

For non-resonance:

wRe.S (i + %) w(r) = - (% + %) (D2 — 22 = 25w (1)

d 1 , ,
= - (E + ;) (—A1 5w 1 — Ay Aiwy)

= —AM%MKO(AW) - AzlﬁflzKo(/lzr)
Evaluating this at r=1, we get

wRe.S(i + py) = =44, (412, Ko (A1) + A2, Kp (A7)

Or A1, (1 = ipy) = — (A1, Ko (Ay) + A4, Ky (A7)

Now the constantsA;, A,are obtained by applying the boundary conditions as follows:

“AKe (D) AK (D) + Ky (A)] 4] - [AZ(l - “’f)l
K, (L) Ky’ (W) Az 0

In the case of non-resonance, the conditions for A;, A, are given by

~A2Ko (A1) —/MKo(ﬂz)] [Al] _ lmzu - %)l
Ki (M) K (hy) 114, 0

From (9.26a) and (9.26b) we can calculate A;andA, for both the cases.

By using w' from (9.18a) we get w for the case of resonance as
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i

w(r) = % — i—l Ky(Ar) + ;1—5 (ArKl (Ar) + K, (/17*))
By using w' from (9.18b) we get w for the case of non-resonance as

_ipo  Ko(A17) Ko(Ap1)
o T A
@ 1

9.4.1 Skin friction acting on the cylinder per length L

Skin friction acting on the circular cylinder ¢, = 532
0

The Drag acting on the cylinder (r=a) per unit length (z=0 to z=1) is given by

D= [T, krdédz = T,.2na = c; napWy

Hence Drag is given in terms of Skin friction.

(9.273)

(9.27h)

(9.28)

(9.29)

For Couple stress fluids, the constitutive equations for stress and Couple stresses are

given by (9.4) and (9.5).
The strain rate tensor E is given by E = %(Vlé + Q")

In cylindrical co-ordinate system, E is given as below.

[ Ul l(a_V la_U_K) l(a_W a_U)]
| oR 2 \0R R OR R 2 \0OR ¥4 |
1/0V 10U 74 1 av 1/10W av
E—ia(wrm—ﬁ) 2(U+5) E(EEJF&)i
1 /0w ou 1/10W av ow
L G+ G5 ) 7z |
10w
| 0o o i
For this present problem, E=| 0 0 0
10w
-—— 0 0
2 0R

Form (9.5) Couple stress tensor M is obtained as

B ' B
m 2775—2775 0
M = 0B B
2n 5_2775 m 0
0 0 m
where B = -2 = _p
R
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(9.33)



V..M = —2nD2W'é, (9.34)
0 0 —2nDW'
And I x (V{.M) = 0 0 0 (9.35)
2nDZW' 0 0
By substituting (9.31) and (9.35) in (9.4) and simplifying we get
Tpz = {12 — qDZW' } i (9.36)

Using non dimensional scheme (9.7) and (9.8) in (9.36) we get

T., = ZL[Sw' — D2w']ei®t (9.37)

a2

The Skin friction acting on the circular cylinder (after deleting the factor e@t) is

obtained as:
_ @ ow 2 1 _ @ 2. 7
¢ = ‘E{Sa_r — D?w }rzl = Z D2w'|,_, (9.38)

In the resonance case, the Skin friction is given by
¢ = % 224,K, (1) (9.39a)
In the non-resonance case, the Skin friction is given by

¢ = == {A14K (1) + A2 45K1 (1)} (9.39b)

9.5 Results and Discussions

The roots of x2 - Sx + i@wReS = 0 are taken as the values of A%. Hence

L=+x = Wfor nonresonance, 1 =./S/2 for resonance (9.40)

Here @w and Re are choosen independently, with Re<«1 and o>1 such that
o.Re is not negligibly small (say>1) then A is obtained from (9.40). Then A; and A;
and hence w and Skin friction are obtained. To get physical quantities, the

corresponding real part of the quantities are taken.
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In this chapter analytical expressions for velocity component w and Skin
friction ¢, are obtained as (9.27a), (9.27b), (9.39a) and (9.39b). The numerical results
are presented in the form of graphs for different Re, @, S values from Fig 9.2 t0 9.7. In
every figure upper graph (a) is for the case of resonance and lower graph (b) for non-

resonance case.
9.5.1 Velocity

When we fix |A| in the case of resonance, it means we fix |S| also. Hence in
this case, variation of Re and ® cannot be found separately. But for non-resonance,
since there are two A values namely A; andA,, Re and o can vary independently even
if || is fixed. Because of this reason, if |A| is fixed, velocity and Skin friction show

distinct behavior for the case of resonance.

In Fig 9.2, we observe that in the case of resonance, velocity goes to negative
values (flow reversal takes place) near to the cylinder and within a short range
vanishes. But in the case of non-resonance, the small flow reversal takes place at a

larger distance and flow then flow vanishes.

In Fig 9.3 we observe that in the case of resonance, at different values of
frequency parameter w, velocity takes negative values in a larger range of r and
vanishes. But in the case of non-resonance, velocity becomes negative in a short range
of r and vanishes. As @ increases, the velocity curve goes nearer to the cylinder in

both the cases and this is clearly visible for the case of resonance.

In Fig 9.4 we observe that in the case of resonance, at different values of
Reynolds numbers Re, velocity takes negative values in a larger range of r and
vanishes. But in the case of non-resonance, velocity becomes negative in a short range
of r and vanishes. As Re increases, the velocity curve is nearer to the cylinder in both

the cases and in particular for resonance.
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Fig 9.2 Velocity for fixed values of |A| for the case of (a) resonance

and (b) non-resonance
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Fig 9.3 Velocity w at different values of @ for the case (a) resonance
and (b) non-resonance
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12 T T T T T T

NonResonance:Cylinder Longitudinal
w for fixed Re at S=10w =10

0.8
0.6
= 0.4r
0.2
oF
0.2 1 1 1 1 1 1 1 1 1
1 1.2 1.4 1.6 1.8 2 2.2 24 2.6 2.8 3
r
(b)

Fig 9.4 Velocity w at different values of Re for the case of (a) resonance

and (b) non-resonance
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9.5.2 Skin friction

In Fig 9.5 effect of |A| on Skin friction is shown. Since |A| is fixed, there will
be no variations in @ and Re for the case of resonance. But for non-resonance w or Re
can vary. We can observe that the Skin friction is very smaller for resonance than in
the case of non-resonance. For small values of |A| <4 Skin friction is very high and is

not shown in figures.

In Fig 9.6, we observe that, the Skin friction for resonance and non-resonance
is almost same. We note that as frequency parameter increases, Skin friction
increases. But in Fig 9.7, we observe that as Re increases, Skin friction also decreases.
This behavior is opposite to the effect of frequency parameter . This is because, the
product of Re and @ is constant and this product come as an unit for calculation of A.

The Skin friction for the case of resonance is lesser than the case of non-resonance.
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Fig 9.5 Skin friction Vs |A| for the case of (a) resonance and (b) non-resonance
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Fig 9.6 Skin friction Vs Reynolds number Re for the case of (a) resonance
and (b) non-resonance
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Fig 9.7 Skin friction Vs frequency @ for the case of (a) resonance
and (b) non-resonance
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9.6 Conclusions

In the case resonance we ohserve that

) Velocity changes are very high near to the cylinder and vanishes far from
the cylinder.

i) Skin friction increases as frequency parameter increases and decreases as
Reynolds number increases.

i) When [A| is fixed Skin friction will be minimum (reduces to very low

values)
In the case of non-resonance

i) Velocity changes occur far from the cylinder in comparison with
resonance and vanish relatively near to the cylinder.

i) Skin friction is of same order as in the case of resonance when frequency
parameter is fixed. But takes greater values when Reynolds number is
fixed.

iii) When 2] is fixed Skin friction will be very high.
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Chapter 10

Rectilinear oscillations of Sphere in a Couple-stress
fluid

The present chapter deals with the flow arising due to rectilinear oscillations
of a sphere about its axis of symmetry in a Couple-stress fluid. Due these oscillations,
there occurs a attenuate but an important appropriate case which is referred to as
Resonance flow. In this case material constants are related by a resonance condition.
The flow is analyzed under Stokesian approximation by ignoring nonlinear convective
terms, under the assumption that the Reynolds number is less than one due to very
slow flow. The velocity components of the flow in terms of stream function are
derived. The Drag acting on the sphere evaluated and the effect of physical
parameters like Reynolds number and Couple stress parameter on the Drag are shown

through graphs.

10.1 Introduction

Several researchers investigated the flow of non-Newtonian fluids in Spherical
geometry. Vijay Kumar Stokes (1968, 1971) analysed effects of Couple-stresses in
fluids on hydromagnetic channel flows and on the creeping flow past a Sphere. Frater
(1967, 1968) studied oscillatory flows in elastico-viscous fluid, and evaluated Drag on
sphere, damping force on a body. Lakshmana Rao et al. (1970) studied slow
stationary flow of a Micro-polar fluid past a sphere. Analytical and Computational
studies in Couple stress fluid flows examined by Lakshmana Rao et al. (1980).
Lakshmana Rao et al. (1971, 1981, 1987) studied the oscillatory flows generated due
to oscillations of sphere, spheroid and elliptic cylinder in Micro-polar fluids, with the
aim of determining of the Drag or Couple on the oscillating body. Lai et al. (1978)
examined an elastic-viscous fluid flow of sphere performing rectilinear oscillations

and evaluated Drag on a sphere.
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lyengar et al. (1993, 2001, 2004) examined oscillatory flows due to oscillating
of approximate sphere, two concentric spheres in Micro-polar fluid and approximate
sphere in viscous fluid. Stimson et al. (1926) examined the viscous fluid motion of
two spheres. Verma et al. (1971) studied slow oscillatory flow past a fixed porous
sphere. Aparna et al. (2012) examined the flow of micro-polar fluid due to rotary
oscillations of a permeable sphere. Ashmawy (2015, 2016) examined oscillatory
flows of composite sphere in a concentric spherical cavity and spherical particle
moving in a Couple-stress fluid.

In this chapter we intend to investigate this case of resonance type flow due to
rectilinear oscillations of a sphere about its axis of symmetry in Couple-stress fluids.
In chapter 4 similar case investigated in Micro-polar fluids.

10.2 Basic Equations

The governing equations of an incompressible Couple stress fluid introduced by
Stokes (1966) are given by:

divQ =0 (10.1)
Q , Av A 0 0

where Q, p, 7 1, nand P are fluid velocity, density, time, viscosity coefficient,
Couple stress viscosity and pressure respectively and V; is dimensional gradient
operator . For Couple stress fluids, the stress tensor T and Couple stress tensor M

satisfy the following constitutive equations.
T =—PI +2(V. QI + u(V,Q + (V;Q)") + %1 X (Vy. M) (10.3)

M =ml + 21V, (V; X Q) + 21 [V, (V; x Q] (10.4)
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10.3 Statement and Formulation of the Problem

A Sphere of radius a is performing rectilinear oscillations with velocity U,e‘°* about
its diameter in an infinite vat containing incompressible Couple-stress fluid. A
spherical coordinate system (R, 6, @) with base vectors (e,, eq ez) with origin at the
centre of the sphere is considered. The flow is axially symmetric and hence the fluid
velocity will be independent of @ and will be in plane containing the base vectors

(e,, ep). The velocity is assumed in the form:

Fig 10.1 Geometry of the oscillating Sphere

Q = e" (U(R,0)e, + V(R,0)ep) (10.5)

The following non-dimensional scheme is introduced.

R=ar; U=Upu; V="Uw; Q=qUy P=ppU§ 1= (10.6)
0

The following are non-dimensional parameters @ is frequency parameter, S is Couple

stress parameter and Re is Reynolds number for Couple-stress fluids.

2

2
w s=2 Rezpu—oa, Re.w = &% (10.7)
n u n

_E'

Substituting (10.5) in (10.1), we notice that stream function y can be introduced as

__1 - __L w — ¥
"~ r2Sing 46 and v = rSing or € 1= VX (hg e(b) (108)
Using (10.5), (10.6) and (10.7) in (10.2) we get

Re.S%1= —Re.S.Up—SVx Vxq— Vx VxVxVxq (10.9)
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Substituting (10.8) in equation (10.9) and then eliminating pressure we get,

E2(E2- A3) (E2- Ay =0 (10.10)
292 [ 19% Cotd 9

where E* = -5 + 55 — —— (10.11)

where A2 + 13 =S and 1243 = Re.S.iw (10.12)

The solution for v if 4,24, in (10.10) was given by Lakshmana Rao et al. (1971) for
the case of Micro-polar fluids. The solution for y for the case, 4, = A, cannot be
obtained as a limiting case of A; = A,. This case is referred to as “Resonance”. This
resonance occurs if the material coefficients follow the following relation in non-

dimensional form.
S = 4Re.iw (10.13)

In this chapter we are interested in the solution for y for the case of resonance

A1 = A, = A. Inthis case, the equation for v is given by

E2(E2- 2%) =0 (10.14a)
For the case of non-resonance

E2(E2 - A))(E%- 25)w=0 (10.14b)
10.3.1 Boundary Conditions

The sphere is oscillating in the direction of X axis. Hence the non-dimensional

velocity of sphere 7~after removing et is given by
qr = i = cosBe,- sinfe, which implies by no-slip condition
u= cosf@andv =-sind onr =1 (10.15)

By hyper-stick condition vy = %(curl g)r=0onr=1 (10.16)
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10.4 Solution of the Problem

To match with the boundary conditions, stream function y is assumed in the form
w= f(r)Sin*0 (10.17)

Substituting (10.17) in (10.14a) and (10.14b) we get equation for f for Resonance and

non-resonance cases as below
DZ(D2- zz)zf =0 (10.18a)
D2(D2- 27)(D2- 25)f = 0 (10.18b)

2 d? 2
Where DS = d? — r_z

From the boundary conditions in (10.15) and (10.16), the conditions on f are obtained

as:
f() = % f'(1) = 1and D2f =0 onr=1 (10.19)
Since the equation for f is linear, f is considered as

f = 4Afo + Aii + Azfo

with D2f, =0, (D2- 2%)f; = 0 and (D2- 22)°f, = 0 (10.20a)
for the case of resonance and

Dify =0, (DI-21)fy =0 and (DI-123)f, = 0 (10.20b)
for the case of non-resonance.

On solving (10.20a), the solution for f is obtained for resonance case as

3
F) =2 4+ AVIKs(Ar) + AyrzK'a(Ar) (10.21a)
r 2 2

and for non-resonance case as

f@) =22+ Aﬂ/ﬂ(%(xlr) + AZ\/FK;(KZr) (10.21b)
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The following results are useful to note in the case of resonance and non-resonance.
Dify = 2°fi and Dify =2ifi+ 2’f, (10.22a)
Dify = 2ify and Dif, = Xf; (10.22b)

The constants Ay , A1, A, are obtained from the boundary conditions (10.19) as
follows:

In case of resonance

[ 1 K3(4) K’ 3(/1)
2 1
|—1 —K3 (1) + AK' 3(/1) —K (/1) + AK”z(A)I i (10.23a)
| o K3(2) 2K3(,1)+1< W | A, 0
| 2 e
And in case of non-resonance
[ 1 K3(Al) K3(Az) A 1
| [TAo =
i—l _K3(/11) + LK 3(/11) -K3(/12) + 1K' 3(/12)I Al = i (10.23b)
A
| 0 K (A) ZLETCEY N I

On solving the equation (10.23) for Ay, A1, A, we get f completely and hence v is

known.

10.4.1 Pressure

From equation (10.9) pressure is obtained as follows.

dp = Vp.dr = dr +£de (10.24)

By comparing components in (10.9), we get

LW s

o _ _ ; 9 (g2 9 (g4
Re'SOr - Re'SlwrZSine a6 r 2sing 00 (E l/)) r2sing 00 ( ll}) (1025)
S _ o __S E2 9 (g4
R r 06 Re.Siw rsinf Or rsinf or ( l/)) rsinf or ( l/)) (1026)

By substituting (10.25) and (10.26) in (10.24), we get
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AgA323
Re.Sp = =5~ coso

iw

0 cosh (10.27)

Hencep =

10.4.2 Drag acting on the sphere of radius a

Drag = D* = 2ma? f(;r(T*rr cosO — T*, sinf)sind |p—, dO (10.28)
T =2 Re.p + % (f' ~ L cost] (10.29)
Ty =22 [ (2 ptf - D2f +2(f = 2))|sing (10.30)

Substitute (10.29) and (10.30) in (10.28), we get
D* = 2mulya [; { (—Re.p cos®) — (5 Dif — DZf) sin? 8 }sinél,_, do (10.31)

Substitute (10.27) in (10.31), we get the Drag on the sphere (for resonance and non-
resonance cases — without the factor e't ) after dividing it by 2rxuUoa in the following

non-dimensional form as

For resonance Drag = D* = Real%{Re. iw(1l—A4y) — 2} (10.32a)

For non-resonance D* = Real {% [Re. Ay — 2 — §<A1x1‘Kg () + Ay05Ks (k2)>l }
2 2

(10.32b)

10.5 Results and Discussions

The values of A are obtained from (10.16) by solving x? - Sx + iwReS = 0 for x.

Then for resonance case

[ [s+Vs7=45Reion
=== """ for nonresonance
=R =]

2
S
k \E for resonance

In the case of resonance, S = 4i.Re.w

(10.33)

Here @w and Re are choosen independently, with Re << 1 and @ > 1 such

that @. Re is not negligibly small (say>1) then A is obtained from (10.33). Then
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Ay, A1 and A, and hence stream function y and Drag are obtained. To get physical

quantities, the corresponding real part of the quantities are taken.

20 = S+\[¢ﬁ+52 —i\[ 52’2’+Szwhere p = S* + 16Rw? and Rw = Re.w
Taking modulus on bothsides we get, 4|2, |* = S + S\/p + S /2(,/52;9 + 52)

4_c2
This can be Rearranged as N = w =/p+ /2(5\/5 + 52)

4
Squaring and reaaranging we get, N%?+p—25%= 2\/5(5 +f) = 8‘/5%

Again squaring and rearranging we get, S?(N? + 16Rw?- 52)2 = 64p|A,|®
This equation can be rearranged as a polynomial in S as below:

Rw?(Rw? — L)S* — L>(L + 2Rw?)S? + L* = 0 where L = |A]|* (10.34a)
From this by fixing L and Rw we can find S or by fixing S and L we can find Rw.

In the case of resonance (10.34) reduces to: S = 24* = 4i Re.w (10.34b)
10.5.1 Stream function

The stream function for the flow is obtained from (10.21). It is presented in
terms of function f in the form of figures below in Fig 10.2 and Fig 10.3. It is
observed that stream function raises near the sphere. But for resonance its peak is
obtained at a hight less than the case of non-resonance. Again we observe that stream
function vanishes at a longer distance from origin of the sphere for non-resonance.
From stream line pattern we observe circulations at the cap (pole of the sphere). For
resonance the values of the stream lines are less than 0.8 (entire region is in green or
yellow in color indicating values less than 0.8). For non-resonance, the stream lines
take values more than 1.5 also. In this case of non-resonance, we can find stream lines
again in small circulations on left and right side ways also with values near to 2. This
may be due to twisting effect of Couple stresses. This effect is reduced to minimum

for the case of resonance.
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Fig 10.2 Stream function f at different Re for the case of

(a) resonance and (b) non-resonance
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Fig 10.3 Stream function f at different @ for the case of
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Fig 10.4 Stream line pattern for the case of (a) resonance and

(b) non-resonance

10.5.2 Drag

When |A| is fixed S is obtained as polynomial of degree 4 (eq. 10.34a). This
will not contain Re for resonance case (see 10.34b). Hence for resonance we get only
one curve as in Fig 10.5. When |A| is fixed we get high values for Drag. When Re
increases, Drag increases, in both the cases. But for the case of resonance, Drag will
be reduced to minimum. ( In non-resonance Drag is from 6 to 14, but for resonance it
is in 4 to 7.5. Again in the case of non-resonance as |A| increases, Drag decreases and

reaches a constant value for fixed value of Reynolds number.
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10.6 Conclusions

Hence from above observations, we conclude that

1. For resonance, values of Stream function decrease and form small circulations on
the cap of the sphere. For non-resonance stream function takes higher values and

forms large circulations.

2. Drag is minimum for the case of resonance. This observation is very important to
prepare fluids with minimum Drag or design machines to adjust for oscillations to

meet resonance condition and then to get minimum Drag.
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Chapter 11

Rotary oscillations of a Sphere in a Couple-stress
fluid

This chapter concerns an analytic study of an incompressible Couple-stress
fluid flow. The flow generated due to rotary oscillations of a sphere about its axis of
symmetry. By taking Stokesian assumptions, nonlinear convective terms of motion
are neglected and hence equations are made linear. In this situation, a special case, in
which material constants satisfy a relation, is considered and the flow is technically
termed as resonance flow. No-slip condition and hyper stick condition are used as
boundary conditions. The mathematical expression for the velocity is obtained in
terms of modified Bessel’s functions. The Couple acting on the sphere is evaluated.
The effect of physical parameters like Reynolds number and Couple stress parameter
on the Couple due to oscillations is shown through graphs. It is observed that Couple

acting on the sphere is minimum for the resonance case.

11.1 Introduction

The flow of non-Newtonian/Newtonian fluids to Sphere were studied by many
authors. Frater (1967, 1968) studied the elastico-viscous fluid flows generated due to
oscillations of sphere and evaluated Drag and damping force on the body. Ravindran
(1972) studied simple oscillatory flow in polar fluids. Tekasakul et al. (1998, 2003)
investigated axi-symmetric viscous flow generated due to rotary oscillations of
arbitrary axi-symmetric bodies and obtained the solution by using green function
technique. Ashmawy (2015, 2016) studied incompressible viscous fluid flow in which
the author considered rotary oscillations of a composite sphere and Couple-stress fluid
flow generated due to creeping motion of a rigid slip sphere wherein author obtained

Drag acting on the slip sphere.
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Lakshman Rao et al. (1971, 1981, 1983) have studied the Micro-polar fluid
flows generated due to oscillations of different symmetric bodies like sphere and
spheroid. These problems were attempted to obtained Drag or Couple on the
symmetric body. In these studies, the effects of physical parameters on Drag or
Couple were found. Lakshmana Rao et al. (1970, 1980) studied Micro-polar fluid
flow past a sphere, Couple-stress fluid flow by analytically and computationally. In all
these problems, authors found that a distinct flow exists which is technically termed
as resonance. Till now this has not been investigated by many researchers. This case
arises in Lakshmana Rao (1971, 1981, 1983), but resonance case was not attempted
by the authors. lyengar et al. (2001) studied rectilinear oscillations, rotary oscillations
of approximate sphere in an incompressible viscous fluid and Micro-polar fluid
respectively. lyengar et al. (1993, 2004) studied Stokes flow of an incompressible
Micro-polar fluid past an approximate sphere and oscillatory flow of a Micro-polar
fluid generated due to rotary oscillations of two concentric spheres. Verma (1971)
studied oscillatory fluid flow past a fixed porous sphere. Lai (1978) investigated
elastic-viscous fluid flow generated due to rectilinear oscillations of sphere and
evaluated Drag on the sphere. Anwar (2004) studied Micro-polar fluid flow of
circular cylinder rotating and oscillating. Aparna (2012) examined oscillatory fluid
flow of permeable sphere oscillating rotary oscillations in an incompressible Micro-

polar fluid.

In all above problems, the case of resonance if exists was not studied. In this
chapter we propose to investigate this case of resonance type flow, in Couple-stress
fluids, due to rotary oscillations of a sphere about its axis of symmetry. The similar

case investigated in Micro-polar fluid as chapter 6.

11.2 Basic Equations

The basic equations of an incompressible Couple stress fluid introduced by Stokes

(1966) are given by:
divQ =0 (11.1)

p(g—f_+é.vé)=—VP—MV><V><()—77V><V><V><V><Q (11.2)
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where Q is fluid velocity vector, p is density, P is pressure,t is time and p is viscosity

coefficient.

By neglecting non linear convective terms from (11.2), we get

a—TQ_z—VP—'LLVXVXG—T]VXVXVXVXé (11.3)

p a
For Couple stress fluids, the stress tensor T and Couple stress tensor M satisfy the
following constitutive equations.

T = =PI+ A(V1. Q) + p(V1Q + (V;Q)") + 51 X (V,. M) (11.4)

M =ml + 219V, (V; x Q) + 21’ [V, (V; x Q)17 (11.5)

11.3 Statement and Formulation of the Problem

A sphere of radius a is performing rotary oscillations with velocity Woe"“e¢
about its axis of symmetry in an infinite vat containing incompressible Couple stress
fluid. A spherical coordinate system (R, 6 @) with base vectors (eg, ey, ey) With
origin at the center of the sphere and axis of symmetry along egis considered. The
flow is axially symmetric, hence it is independent of toroidal coordinate ¢. Hence the
fluid velocity will be in cross sectional plane of the sphere containing the base vectors

(er, ep). The velocity is assumed in the form:

k

N

Figll.1 Geometry of Rotary oscillations of a sphere

iot

Q =e""W(R,0)ey (11.6)
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The following non-dimensional scheme is introduced. Capitals and LHS terms
indicate physical quantities and small letters and RHS terms indicate corresponding

non-dimensional quantities.

R =ar,W=Wyw,Q=qW,,P =ppWZ,t= W—t (11.7)
0

The following are non-dimensional parameters viz, @ is frequency parameter, S is

Couple stress parameter and Re is Reynolds number for Couple-stress fluids.

2 2
w=2 5= Re=""02 Reg="0% (11.8)
Wo n jz U
Using non dimensional scheme (11.7), (11.8) in (11.3) we get
Re.SZ—Z=—Re.S.Vp—SVx Vxq— VX VXVXVXq (11.9)

Swirl ¢ (moment of velocity) is defined as { = why (11.10)

By the choice of velocity field (11.6) and swirl (11.10), the equations of motion (11.9)

is reduced to
(L - _ L, _ Lpazs
Re.S.iw (h3 es) =—Re.S.Up+S B ey — BN e (11.11)

92 1 92 cotd d

Where E? = 5,2 +r—2m—r—2£ (1112)
dp
Let 70 0

By comparing coefficients ofe,in (11.11), we get

(E* — SE2 4+ Re.S.iw){ = 0 (11.13)
This equation (11.13) can be written in the form as

(E?- A (E2-23){ =0 (11.14)
Where 23 + 23 =S and 2213 = Re.S.iw (11.15)

The solution for ¢ if Ai#k, in (11.14) is given Lakshmana Rao et al. (1971). The

solution for ¢ for the case, 4; = A, = A cannot be obtained as a limiting case of
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A1 = A,. This case is referred to as “Resonance”. This resonance occurs if the

material coefficients follow the following relation in non-dimensional form:
212 = S = 4iwRe (11.16)

In this chapter we are interested in the solution for ¢ for the case of resonance

A1 = A, = A. Inthis case the equation for ¢ is given by

(E2- 22)'¢=0 (11.17a)
For the case of non-resonance

(E2- A (E2-25)7=0 (11.17b)

To match the boundary conditions,Swirl ¢ is assumed in the form

{ = f(r)sin? 6 (11.18)
Hence E2?¢ = D2f(r)sin?6 (11.19)
Where D2 = -~ 2 (11.20)
Now we notice that the equations for ¢ (11.17a) and (11.17b) are reduced to :

For Resonance case: (D2- /’Lz)z f(r)=0 (11.21a)
For non-resonance case: (D2~ A7)(D2- A3)f(r) = 0 (11.21b)
11.3.1 Boundary Conditions

The non-dimensional swirl on the sphere I" is given by

No-slip condition: { =sin’0 onr=1

Hyper-stick condition: Z—i =2sin?f onr=1

Hence the boundary conditions in terms of f at r=1 are obtained as:

By no-slip condition f)=1 (11.22a)
By hyper-stick condition f'(1) = 2 (11.22b)

182



11.4 Solution of the Problem

Since the equation for f is linear, the general solution for f is linear combination of
individual solutions of factors in the differential operator. Hence f is considered as

f = AiHi + Afy (11.23)
where for the case of resonance:

(D2- 22)f, = 0 and  (D2- 22)°f, = 0 (11.24a)
and for the case of non-resonance:

(D2- 13)f, = 0 and (D2- 25)f, = 0 (11.24b)
On solving (11.24a), the solution for f is obtained for resonance case as

f(r) = AVTK:s(Ar) + Azr%K’i(Ar) (11.25a)

On solving (11.24b), the solution for f is obtained for non-resonance case as

f@r) = A1\/7K%(117”) + Az\/?K%(AZT) (11.25b)
The following results are useful to note in the case of resonance and non-resonance.
Df, = A*fiand D2f, = 2if; + A*f; (11.26a)
In case of non-resonance,

Dif, = Aifiand DZf, = A3f; (11.26b)

The constants A;and A, are obtained from the boundary conditions (11.22a) and
(11.22Db) as follows:

In the case of resonance

K3() K'(2)

K's(2) (1+— K3(2) ] Il (11.272)

In the case of non-resonance, the conditions for A;andA, are given by
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K3(4y) K3(4;)
2 2
MK3(A)  K'3(2p)
2 2

) 1
[ Az] -|: (11.27b)
Hence from (11.27a) and (11.27b) we can calculate A;andA, And hence ¢ is known.

11.4.1 Couple acting on the Sphere of radius a
Couple acting on sphere C* = 2ma® f(;r(T*rw sin? 0) |g=, d6 (11.28)

For Couple-stress fluids, the constitutive equations for stress and Couple stresses are
given by (11.4) and (11.5) as

T = =PI+ A(V,. Q) + 2uE + 31 X (V;. M)

and M =ml+2nV,(V; X Q) +2n[V,(V; x Q)]"

1 _ _
E= E(VlQ + Q")

ou 1[ +R6V ] 1[ 1 oU R6W W] 1
aR 2R 106 OR 2R LSin@ 6@
_ 1 V] 1[6V+U] 1[ 1 6V+6W we 1:9]
“| 2R ae R |26 2R sin6 99 0
1 1 6U+R6W W 1[ 1 6V+6W we w] 1[ 1 aW+VC t9+U]
2R [Sin6 3¢ 2R ISin6 99 0 Sind 09 °
(11.29)

For this present problem, we get strain rate tensor as,

w w
| o 0 25 %] ]
‘s | ° 0 2R [— —Wco t9]| (11.30)
1[ow W
lE [_ 2R [_ —Wceo te] 0 |
And M is given by
= 2n+2n° 0 (197
Mpr =m + =000 (RZ ae) (11.31)
0 (Logy  2niflo (1 o, 1 %
Mro = = o o8 (R 0R) * R [R 20 (sin9 ae) t e R (11.32)
Mpo =0 (11.33)
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My = Zn%[li(;ﬂ) +L6_<'] _Z_Tfi(la_{) (11.34)

R 06 \sin6 00 sin@ OR sin@ O0R \R OR
. 2n42n'[0 (1 3¢ 10
Mgo = m + R2 [ae ( sinf (’)R) + Rsind ae] (11.35)
Myg =0 (11.36)
Mgg = 0 (11.37)
— o 4 20t [ _cotf 0C | 13
Mgp =m + Rsin0 [ R R T R2 ae] (11.39)

Hence we get

_ v _w L [yp2g _ 19°¢_ coto 3¢ 0% ﬂ]
TRQ’_“[aR R]+77R25in9 [ZE{ Roma T R omoe  Ramd 26R2 (11.40)

Using non dimensional scheme (11.7), (11.8) in (11.40) on the boundary r=1 we get

Ty = — L0 frging (11.41)
ro = T 5.2 f"'sin :

The Couple acting on the sphere (after deleting the factor e™") is obtained as:

cr = —2mato o (11.42)

3S
Non dimensional Couple C is obtained by dividing C* by 4muaW,
C=——f"(1) (11.43)

In the resonance case, the Couple is given by

C=— [2/12 + A (% Ks() + AKé(A)) Azl (11.44a)
2 2

In the non-resonance case, the Couple is given by

C=- % I/l% (% K3(49) + /11K§,(/11)> A+ 243 <% K3(2;) + Az@&z)) Azl (11.44b)
2 2 2 2
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11.4.2 Pressure

By the choice of velocity field in (11.6), we get
2

q.Vq = —fl—z (sinBe, + cosbey) (11.45)
3

By comparing components along e, and e, in equation (11.45), pressure is obtained

as follows.
2
Re.SZ =% sing (11.46)
or h3
w _ ¢
Re.S o = w2 cosf (11.47)
We know that dp = Vp.dr = = dr +2-do (11.48)

Substituting (11.46) and (11.47) in (11.48) and integrating we get

2

Pressure p = ﬁ’% sin® 6 (11.49)

11.5 Results and Discussions

For resonance case, A value cannot be taken randomly. In the case of
resonance, the values of A are obtained from (11.11) by solving the following

equation for x.

x% - Sx + iwReS = 0
Then the roots of this equation gives the values of A2 and 1% and for resonance case,

the values of A are obtained if

S= 4imReand 1 = x = \E (11.50)
When |A4] is fixed, S can be obtained from the equation:

S = 4iR, = 24° for resonance (11.51a)
R3(R3 — L)S* — L3(L + 2R3)S? + L* = 0, for non-resonance (11.51b)

Here with Ry = Re.w and L = |A]]
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11.5.1 Couple

The coefficient of friction C; is evaluated and presented in the form of graphs
for various values of Re, S and w. From the figures we can conclude that for the case
of Resonance, the coefficient of friction is lesser for the case of Resonance than the
case of non-resonance when |A| is fixed. In this case, if Re and @ are known then S
and A are known. But in the case of non-resonance all parameters can be chosen
independently. From Fig 11.2, we observe the following. In the case of non-
resonance, for small values of ||, Couple is high and as |A| increases, Couple becomes
constant for a particular value of @ . But the values of C; are less than the
corresponding Cr values of Resonance.

We can clearly observe from Fig 11.3 that coefficient of friction C; is lower
for the case of resonance than in the case of non-resonance. Again we see that effect
of || is dominating all other parameters. For fixed value of | A |, C; ranges upto 20
in non-resonance case while it ranges upto 10 in resonance case. Hence we conclude
that the case of resonance reduces the Couple on the body. From Fig 11.4, we note

that as Re increases, C; also increases for non-resonance case. In Fig 11.4, |A | is not

fixed. Hence values of Re, S and @ are taken randomly and A values are found.

11.5.2 Velocity

From Fig 11.5 and 11.6, we observe that, in the case resonance, velocity
vanishes near to r=5 and takes negative values near to sphere and then increase and
then vanish after some distance. But in the case of non-resonance it f vanishes near to
r=7 and variation in f from positive to negative and negative to positive values is not
drastic. Hence we conclude that fluid will not be disturbed much far from the body
only near to the body we can see high velocity for the case of resonance. In the case
of non-resonance effect of oscillations will be present to more distances than the case

of resonance.

From Fig 11.7, we see that for the case of resonance, circulations near to
sphere at the pole are present with low values (colour does not change). In the case of
non-resonance, circulations near to pole we can observe with more positive values

(colour changes).
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Fig 11.2 C; Vs |A| for the case of (a) resonance and (b) non-resonance

188



Resonance:Rotary-Sphere
Couple C Vs Re

‘1D T T T T T
.......... |)||=5
— — —[Al=10
9r [A[=15
—#— |5|=20
a_ kY kY kY kY ' k' k' k' |)'|:25
o T l
z
2 6
o
Q
5_ -
4 — -
B ]
2 1 1 1 1 1 1 1 1
01 02 03 0.4 05 06 07 08 09 1
Re
(@)
Non-Resonance: Sphere
18 Couple C Vs Re at =10
.......... |.-!'||=5
16 F — — —|A]=10
|Al=15
141 —&— | A|=20
* * * * * * # | 4[=25
O 12
L
% 1071 .
Q
QO gt ]
E_ ____________-________
4 - -5
2 1 1 1 1
0 02 0.4 0.6 0.8 1
Re
(b)

Fig 11.3 C; Vs Re for the case of (a) resonance and (b) non-resonance
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Fig 11.4 Cr Vs Re for the case of non-resonance (a) at different @ values
and (b) at different S values

190



Resonance:Rotary-Sphere
f for fixed Re at «w=10

1.6 T T T

Non-Resonance:sphere Rotary
f for fixed Re at S=10, w=10

1.4 T T
.......... RE=DDE
— — — Re=0.10
121 Re=0.15
—#— Re=0.20
1 Re=0.25

0.8
*~ 06
0.4
0.2
0
o
_DZ 1 1 1 1 1 1 1 1 1
1 12 14 16 18 2 22 24 26 28 3
r
(b)
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11.6 Conclusions

In this chapter, we derived the velocity in term of swirl for the se of resonance and
non-resonance. Our important observation is that Couple stresses offer less Couple on

the body when resonance occurs.
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Conclusions
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Chapter 12

Conclusions

The thesis aims at analyzing the flows generated due to oscillations of
symmetric bodies (cylinder or sphere) about a symmetric axis in fluids with Couple
stresses, namely micro-polar fluids and Couple stress fluids. These two theories are
developed independently. The theory of Couple stress fluid does not require
independent rotation vector as in the case of micro-polar fluids. The flows generated
in both the fluids appear same when we see the equations of motion. But when they
are solved only, the differences and similarities can be known.

We observe the following similarities and differences in the flows of these
fluids.

i) Rectilinear oscillations of cylinder resonance yields less Drag than non-
resonance for micro-polar fluids. Similarly resonance offers less Drag in
the case of Couple stress fluids.

i) In the case of rotary oscillation of cylinder, resonance offers less Couple
for Couple stress fluids. The same observations we find for micro-polar
fluids also

iii) In the case of longitudinal oscillations of a cylinder, resonance offers less
Skin friction for both the fluids.

iv) In the case of rectilinear oscillations of a sphere, for resonance micro-polar
fluids offer less Drag. Similarly Couple fluids offer less Drag for non-
resonance case.

V) In the case of rotary oscillations of a sphere, for resonance Couple stress
fluids offer less Couple. Whereas micro-polar fluids offer less Couple for

the case of non-resonance.

From the above observations, we note that the case of resonance has distinct

behavior for problem to problem.

Main observation in the case of Couple stress fluids is that, in the case of

resonance, the parameters are related by a simple equation given by
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S = 4iRy@

This means Couple stress parameter takes imaginary values. If it is to take real
values then either Re or @ must be imaginary, which is not correct. Here we are
unable to give a physical meaning to this situation. This case of imaginary values to a
physical parameter will not occur for micro-polar fluids. Hence we feel micro-polar
fluid theory is more realistic, though some other believe that Couple stress fluids are
more realistic.

The flows generated due to external applied magnetic field for similar
situation of flows is one major area where we can pay very good attention. The
problems related to heat transfer and mass transfer are also of interest for the case of

resonance flows. These problems will have very high value for industrial applications.

197



References

10.

11.

Afsar Khan A, Sohail A, Rashid S, Mehdi Rashidi M and Alam Khan N
(2016) : Effects of Slip Condition, Variable Viscosity and Inclined Magnetic
Field on the Peristaltic Motion of a Non-Newtonian Fluid in an Inclined
Asymmetric Channel, Journal of Applied Fluid Mechanics , Vol. 9(3), pp. 1381-
1393.

Akyildiz F. T (1998) : Logitudinal and torsional oscillations of a rod in a
viscoelastic fluid, Rheol. Acta, Vol. 37, pp. 508-511.

Andrie D. Polyanin, Valentin F. Zaitsev (2003) : Handbook of Exact solutions
for ordinary differential equations, Chapman & Hall/CRC.

Anwar Kamal M, Abu Zar A. Siddiqui (2004) : Micropolar fluid flow due to
rotating and oscillating circular cylinder: 6™ order numerical study, Z. Angew.
Math. Mech. 84(2), 96-113.

Aparna P and Ramana Murthy J. V (2012) : Rotary Oscillations of a
Permeable Sphere in an Incompressible Micro-polar Fluid, Int. J. of Appl. Math.
and Mech., Vol. 8(16), pp. 79-91.

Ariman T (1970) : Fluids with micro-structures, Rheol. Acta, Vol. 9, pp. 542-
549.

Ariman T, Cakmak A. S, and Ahmet (1967) : Couple-stress fluids, The
physics of fluids, Vol. 10(11), pp. 2497-2499.

Ariman T, Cakmak A. S, and Hill L. R (1967) : Flow of Micropolar Fluids
between Two Concentric Cylinders, Physics of Fluids, Vol. 10, pp. 2545 — 2550.
Ashmawy E. A (2015) : Rotary oscillation of a composite sphere in a
concentric spherical cavity using slip and stress jump conditions, The European
Physical Journal Plus, Vol. 130 (163), pp.1-11.

Ashmawy E. A (2016) : Drag on a slip spherical particle moving in a couple-
stress fluid, Alexandria Engineering Journal, Vol. 55, pp. 1159-1164, 2016.
Bandelli R, Lapczyk | and Li H (1994) : Longitudinal and torsional
oscillations of a rod in a third grade fluid, Int. J. Non-linear Mech., Vol. 29, pp.
397-408.

198



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

Baral M. C (1967) : On the unsteady flow of conducting liquid between two
parallel plates, Vol. 35(3), pp. 422-427.

Batchelor G. K (1970) : Slender-body theory for particles of arbitrary cross-
section in Stokes flow, J. Fluid Mech., Vol. 44, pp. 419-440.

Benjamin T. B (1957) : Wave formation in laminar flow down an inclined
plane, J. Fluid Mech., Vol. 2, pp. 554-574.

Benney D. J (1966) : Long waves in liquid films, J. Math. Phys., Vol. 45, pp.
150-155.

Calmelet-Eluhu C and Majumdar S. R (1998) : Flow of a Micro-polar Fluid
through a Circular Cylinder Subject to Longitudinal and Torsional Oscillations,
Mathl. Comput. Modelling, Vol. 27 (8), pp. 69-78.

Casarella M. J, Laura P. A (1969) : Drag on oscillating rod with longitudinal
and torsional motion, J. Hydronaut, Vol. 3, pp. 180-183.

Cowin S. C and Pennigton C. J (1970) : On the steady rotational motion of
polar fluids, Rheol. Acta, Vol. 9, pp. 307-312.

Eringen A. C (1964) : Simple Microfluids, Int. J. Engg. Sci., Vol. 2, pp. 205-
217.

Eringen A. C (1966) : Theory of micropolar fluids; J. Math. Mech., Vol. 16, pp.
1-18.

Eringen A. C (1990) : Theory of thermo-microstretch fluids and bubbly liquids,
Int. J. Engg. Sci., Vol. 28, pp. 133-143.

Evelyn Chandra Sekharan and Ramanaiah G (1982) : Unsteady Flow
Between Two Oscillating Plates, Def. Sci. J, Vol. 32(2), pp. 99-104.

Fetecau C and Corina Fetecau (2006) : Starting solutions for the motion of
second grade fluid due to longitudinal and torsional oscillations of circular
cylinder, Int. J. Engg. Sci., Vol. 44, pp. 788-796.

Frater K. R (1967) : Drag on s sphere Oscillating in an elastico-viscous
fluid,ZAMP, Vol. 18, pp. 798-803.

Frater K. R (1968) : Drag on a circular cylinder oscillating in an elastico-
viscous fluid, ZAMP, Vol. 19(3), pp. 510 — 512.

Frater K. R (1968) : The damping force on a body oscillating in an
elastico-viscous fluid, ZAMP, Vol. 19(4), pp. 665 — 668.

Fung Y. C (1984) : Biodynamics: Circulation, Springer.

199



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Grzegorz Lukaszewicz ( 1999) : Micropolar Fluids Theory and Applications,
Birkhauser, Boston. ISBN 0-8176-4008-8.

Happel J and Brenner H (1983) : Low Reynolds number Hydrodynamics (
with special applications to particular media ), Martinus Nijhoff Publications.
lyengar T. K. V and Geetha Vani (2004) : Oscillatory flow of a micropolar
fluid generated by the rotary oscillations of two concentric spheres, Int. J. Engg.
Sci., Vol. 42, pp. 1035-1059.

lyengar T. K. V and Srinivasacharya D (1993) : Stokes flow of an
incompressible micropolar fluid past an approximate sphere, Int.J.Engg.Sci.,
Vol. 31(1), pp. 115-123.

lyengar T. K. V and Srinivasacharya D (2001) : Rectilinear oscillations of an
approximate sphere in an incompressible viscous fluid, Pure Appl. Math. Sci.,
Vol. 53, pp. 63-72.

lyengar T. K. V and Srinivasacharya D (2001) : Rotary oscillations of an
approximate sphere in an incompressible micropolar fluid, Ind. J. Math. Sci.,
Vol. 43, pp. 129-144.

Jai Kumar Jain and Vijay Kumar Stokes (1972) : Effects of Couple Stresses
on the Stability of Plane Poiseuille Flow, Phy. Fluids, Vol. 15, pp. 977 — 980.
Jyotirmoy Sinha Roy and Padmanava Nayak (1981) : Viscoelastic Flow
Between Two Infinite Parallel Porous Plates, One Plate Oscillating And The
Other Plate In Uniform Motion, Elsevier Sequoia S.A., Lausanne, Wear, Vol.
71, pp. 211 — 222.

Kanwal R. P (1955) : Rotary and Longitudinal oscillations of axisymmetric
bodies in a viscous fluid, The Quart. J. Mech. & Appl. Math., Vol. 8(2), pp. 146-
163.

Kim S. K and Troesch A. W (1989) : Streaming flows generated by high-
frequency small amplitude oscillations of arbitrarily shaped cylinders, Phys.
Fluids A, Vol. 1, pp. 975-985.

King M. J and Waters N. D (1972) : The unsteady motion of a sphere in an
elastico viscous liquid, J. Phys. D: Appl.Phys., Vol. 5, pp. 141-150.

Lai R. Y. Sand Fan C. P (1978) : Drag on a sphere accelerating rectilinearly in
an elastico viscous fluid, 1.J.E.S., Vol. 16, pp. 303-311.

Lakshmana Rao S. K and Bhuganga Rao P (1971) : Oscillations of a sphere
in a micro-polar fluid, 1.J.E.S., Vol. 9, pp. 651 — 672.

200



41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

o1.

52.

53.

54,

Lakshmana Rao S. K and Bhujanga Rao P (1970) : Slow stationary flow of a
micropolar fluid past a sphere, J.Engg.Maths, Vol. 4(3), pp. 209-217.
Lakshmana Rao S. K and Bhujanga Rao P (1972) : Circular cylinder
oscillating about a mean position in an incompressible micro-polar fluid,
1.J.E.S., Vol. 10, pp. 185-191.

Lakshmana Rao S. K and lyengar T. K. V (1980) : Analytical and
Computational studies in couple stress fluid flows ( a UGC research project no.
C8-4/82 SR 111).

Lakshmana Rao S. K and lyengar T. K. V (1981) : The rectilinear
oscillations of a spheroid in a micro-polar fluid, 1.J.E.S., Vol. 19, pp. 161-188.
Lakshmana Rao S. K and lyengar T. K. V (1983) : Rotary oscillations of a
spheroid in an incompressible Micro-polar fluid, 1.J.E.S., Vol. 21, pp. 973 — 987.
Lakshmana Rao S. K, lyengar T. K. V and Venkatapathi Raju K (1987) :
The rectilinear oscillations of an elliptic cylinder in an incompressible micro-
polar fluid, I.J.E.S., Vol. 25, pp. 531-548.

Leonov A. I (1962) : The slow stationary flow of viscous fluid about a porous
sphere, (PMM) J.App.Maths. & Mech., Vol. 26, pp. 564-566.

Lighthill M. J (1954) : The Response of Laminar Skin Friction and Heat
Transfer to Fluctuations in the Stream Velocity, Proc. R. Soc. Lond. A, Vol. 224,
pp. 1-23.

Liu C. Y (1971) : Initiation of Instability in Micropolar Fluids, Physics of
Fluids, Vol. 14, pp. 1808 — 1809.

Liu J. T. C (1966) : Flow Induced by an Oscillating Infinite Flat Plate in a
Dusty Gas, The Physics of Fluids, Vol. 9(9), pp. 1716-1720.

Liu J. T. C (1967) : Flow Induced by the Impulsive Motion of an Infinite Flat
Plate in a Dusty Gas, Astronautica Acta, Vol. 13, pp. 369-377.

Manohar G. Palekar (1965) : Slow rotation of a sphere in a slightly visco
elastic fluid contained in an infinite cylinder, ZAMP, Vol. 16, pp. 502-515.
Mehrdad Massoudi and Tran X. Phouc (2008) : On the motion of second
grade fluid due to longitudinal and torsional oscillations of a cylinder-A
numerical study, Appl. Math. Comput., VVol. 203, pp. 471-481.

Nagaraju G and Ramana Murthy J. V (2014) : Unsteady flow of a
Micropolar fluid Generated by a Circular Cylinder subject to Longitudinal and
Torsional Oscillations, Theoret. Appl. Mech. TEOPM7, Vol. 41(1), pp. 71 — 91.

201



55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Owen D and Rahaman K (2006) : On the flow of an Oldroyd-B liquid through
a straight circular tube performing longitudinal and torsional oscillations of
different frequencies, Mathematicas, Vol. 14, pp. 35-43.

Pontrelli G (1997) : Longitudinal and torsional oscillations of a rod in an
Oldroyd-B fluid with suction or injection, Acta Mech., Vol. 123, pp. 57-68.
Pozrikidis C (2009) : Fluid Dyanmics: Theory, Computation, and Numerical
Simulation, second edition, Springer.

Pozrikidis C (2011) : Shape of hexagonal hydrostatic menisci, Int. J. Num.
Meth. Fluids,

Rajagopal K. R (1983) : Longitudinal and Torsional oscillation of a rod in a
non-Newtonian fluid, Acta. Mech., Vol. 49, pp. 281-285.

Ramamurthy P (1961) : Flow between concentric rotating cylinders with a
radial magnetic field, Phys. Fluids, Vol. 4, pp. 1444

Ramamurthy V and Rao U.S (1987) : The steady streaming generated by a
vibrating plate parallel to a fixed plate in a dusty fluid, Fluid Dynamics
Research, Vol. 2, pp. 47-63.

Ramana Murthy J. V and Bahali N. K (2009) : Steady flow of micro-polar
fluid through a circular pipe under a transverse magnetic field with constant
suction / injection, Int. J. of Appl. Math. and Mech., Vol. 5(3), pp. 1-10.
Ramana Murthy J. V, Bahali N. K and Srinivasacharya D (2010) : Unsteady
Flow of Micropolar Fluid through a Circular Pipe under a Transverse Magnetic
Field with Suction/Injection, Selcuk Journal of Applied Mathematics, Vol.
11(2), pp. 13-25.

Ramana Murthy J. V, Nagaraju G and Muthu P (2010) : Numerical solution
of longitudinal and torsional oscillations of a circular cylinder with suction in a
couple stress fluid, ARPN Journal of Engineering and Applied Sciences, Vol. 5,
pp. 51-63.

Ramana Murthy J. V, Sai K. S and Bahali N. K (2011) : Steady flow of
micro-polar fluid in a rectangular channel under transverse magnetic field with
suction, AIP ADVANCES 1, 032123, pp. 1-10.

Ramkissoon H (1977) : Slow steady rotation of an axially symmetric body in
micro-polar fluid, Appl. Sci. Res., Vol. 33, pp. 243-257.

202



67.

68.

69.

70.

71.

72.

73.

74.
75.

76.

77.

78.

79.

Ramkissoon H and Majumdar S. R (1976) : Drag on an axially symmetric
body in the Stokes flow of micro-polar fluids, Physics of Fluids, Vol. 19, pp. 16-
21.

Ramkissoon H and Majumdar S. R (1990) : Flow due to the longitudinal and
torsional oscillations of a cylinder, ZAMP, Vol. 41, pp. 598-603.

Ramkissoon H, Easwaran C. V and Majumdar S. R (1991) : Longitudinal
and torsional oscillations of a rod in a polar fluid, Int. J. Engg. Sci., Vol. 29(2),
pp. 215-221.

Rao P. M, Kuwahara K and Tsuboi K (1992) : Computational study of
unsteady viscous flow around a transversely and longitudinally oscillating
circular cylinder in a uniform flow at high Reynolds number, Comput. Mech.,
Vol. 10, pp. 414-428.

Rashmi S, Kavitha V, Saba Roohi B, Gurumurthy, Gireesha B. J and
Bagewadi C. S (2007) : Unsteady Flow Of A Dusty Fluid Between Two
Oscillating Plates Under Varying Constant Pressure Gradient, Novi Sad J.
Math., Vol. 37(2), pp. 25-34.

Ravindran R (1972) : Study of simple oscillatory flow in polar fluids, Rheol.
Acta, Vol. 11, pp. 93-98.

Rayleigh L (1916) : On the dynamics of resolving fluids, Proc. R. Soc. Lond. A,
Vol. 93, pp. 148-154.

Schlichting H (1968) : Boundary Layer Theory, McGraw-Hill.

Sneddon I. N (1956) : Special functions of mathematical physics and chemistry,
Oliver and Boyd,Edinburgh and London,New york: Interscience publishers, Inc.
Soundalgekar V. M and Aranake R. N (1974) : Effects of couple stresses on
the oscillatory flow past an infinite plate with constant suction, Meccanica, pp.
194-197.

Stimson M and Jeffery G. B (1926) : The motion of two spheres in a viscous
fluid, Proceedings Roy.Soc.London, Vol. 4, pp. 110-116.

Stokes G. G (1851) : On the effect of the internal friction of fluids on the
motion of pendulum, Trans. Camb. Phil. Soc., Vol. 9, pp. 1-86.

Stokes G. G (1886) : On the effect of rotation of cylinders and spheres about
their own axes in increasing the logarithmic decrement of the arc of vibration (
Mathematical and Philosophical Papers 5), Cambridge:Cambridge University
Press, England, pp. 207-214.

203



80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Tekasakul P and Loyalka S. K (2003): Rotary oscillations of axi-symmetric
bodies in an axi-symmetric viscous flow with slip: Numerical solutions for
sphere and spheroids, International Journal For Numerical Methods In Fluids,
Vol.41, pp.823-840.

Tekasakul P, Tompson R. V, and Loyalka S. K (1998) : Rotatory oscillations
of arbitrary axi-symmetric bodies in an axi-symmetric viscous flow: Numerical
solutions, Physics of Fluids, Vol. 10, pp. 2797-2818.

Thomas R. H and Walters K (1964) : The motion of an elastico — viscous
liduid due to a sphere rotating about its diameter, Q.J.M.A.M., Vol. 17, pp. 39-
53.

Thomas R. H and Walters K (1966) : The unsteady motion of a sphere in an
elastic-viscous liquid, Rheologic Acta, Band 5, Heft 1, pp. 23-27.

Van Dyke M. D (1975) : Perturbation Methods in Fluid Mechanics, Academic
Press. Vol. 65, pp. 625-637.

Verma P. D and Gaur Y. N (1971) : Slow oscillating flow past a fixed porous
sphere, 1.J.P.A.M, Vol. 8, pp. 815-820.

Verma P. D and Gaur Y. N (1971) : Slow oscillating flow past a fixed porous
sphere, 1.J.P.A.M., Vol. 8, pp. 815-820.

Vijay Kumar Stokes (1966) : Couple Stresses in Fluids, Physics of Fluids,
Vol. 9, pp. 1709 — 1715.

Vijay Kumar Stokes (1968) : Effects of Couple Stresses in Fluids on
Hydromagnetic Channel Flows, Phy. Fluids, Vol.11, pp.1131 - 1133; doi:
10.1063/1.1692056.

Vijay Kumar Stokes (1971) : Effects of Couple Stresses in Fluids on the
Creeping Flow Past a Sphere,Phy. Fluids, Vol.14, pp.1580 — 1582, doi:
10.1063/1.1693645.

Vijay Kumar Stokes (1984) : Theories of Fluids With Micro Structure- An
Introduction, Springer — Verlag, Berlin.

Yanqging Wang and Zu J. W (2017) : Analytical analysis for vibration of
longitudinally moving plate submerged in infinite liquid domain, Appl. Math.
Mech. -Engl., Vol. 38(5), pp. 625-646.

204



List of Publications

Considerable material presented in this thesis has been published / accepted /
commnicated for publication in the form of following research papers:
PAPERS PUBLISHED / ACCEPTED

I.  Resonance Flow Due to Rectilinear Oscillations of a Circular Cylinder In A
Micro-polar Fluid, 59" proceedings of ISTAM, 2014.

ii.  Resonance Type Flow Due to Rectilinear Oscillations of a Sphere In A Micro-
polar Fluid, Journal of Physics: Conference Series 662 (2015) 012015.(10P)

iii.  Resonance Type Flow Due to Rotary Oscillations of a Sphere In A Micro-polar
Fluid, Procedia Engineering, 127 (2015), 1323-1329, (Elsevier).

iv.  Couple-stress fluid flow due to rectilinear oscillations of a circular cylinder: case
of resonance, Lecture Notes in Mechanical Engineering (2019), 978-981-13-
1903-7, https://doi.org/10.1007/978-981-13-1903-7_65(Springer).

v.  Longitudinal oscillations of a circular cylinder in a micro-polar fluid: case of
resonance. (Accepted for Publication in ‘Sadhana - Academy Proceedings in
Engineering Sciences’), (Springer).

PAPERS COMMUNICATED

vi.  Rotary oscillations of a circular cylinder in a micro-polar fluid-material resonance.
(Communicated to a peer reviewed Journal ‘Journal of Mathematical Analysis and
Applications’ Elsevier)

vii.  Couple-stress fluid flow due to rotary oscillations of a sphere: case of resonance.
(Communicated to a peer reviewed Journal ‘Applied Mathematical Modelling’,

Elsevier).

205



