
   

 

RESONANCE TYPE FLOWS DUE TO OSCILLATIONS 

OF SYMMETRIC BODIES IN FLUIDS WITH 

COUPLE-STRESSES 

A THESIS 

SUBMITTED TO 

NATIONAL INSTITUTE OF TECHNOLOGY, WARANGAL, INDIA 

FOR THE AWARD OF THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN 

MATHEMATICS 

 

BY 

GOVINDARAO TANGUDU 

( Roll No.701153 ) 

UNDER THE SUPERVISION OF 

Prof. J. V. RAMANA MURTHY 

( NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL ) 

 

UNDER THE CO-SUPERVISION OF 

Prof. G. S. BHASKARA RAO 

( GUDLAVALLERU ENGINEERING COLLEGE, GUDLAVALLERU ) 

 
 

  

DEPARTMENT OF MATHEMATICS 

NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL 

WARANGAL-506 004 ( TELANGANA STATE ) INDIA 

 

JULY - 2018 



ii 
 

 

 

 

 

 

 

 

Dedicated 

To 

My Beloved Parents 

Sri Tangudu Narayana Rao 

& 

Smt. Tangudu Kalavathi 

For their infinite love and support 

 

 

 

 

 

 



iii 
 

DECLARATION 

 

This is to certify that the work presented in the thesis entitled “ RESONANCE TYPE 

FLOWS DUE TO OSCILLATIONS OF SYMMETRIC BODIES IN FLUIDS 

WITH COUPLE-STRESSES ”is a bonafide work done by me under the supervision 

of PROF. J.V. RAMANA MURTHY and co-supervision of PROF. G.S. BHASKARA 

RAO  was not submitted elsewhere for the award of any degree. 

I declare that this written submission represents my ideas in my own words. Where- 

ever others' ideas or words have been included, I have adequately cited and 

referenced the original sources. I also declare that I have adhered to all principles of 

academic honesty and integrity and have not misrepresented or fabricated or falsified 

any idea / data / fact /source in my submission. I understand that any violation of the 

above will be a cause for disciplinary action by the Institute and can also evoke penal 

action from the sources which have thus not been properly cited or from whom proper 

permission has not been taken when needed. 

 

 

GOVINDARAO TANGUDU 

Roll No. 701153 

Date: _______________ 

 

 

 

 

 

 



iv 
 

 

CERTIFICATE 

 

This is to certify that the thesis entitled “ RESONANCE TYPE FLOWS DUE TO 

OSCILLATIONS OF SYMMETRIC BODIES IN FLUIDS WITH COUPLE-

STRESSES” submitted to National Institute of Technology, Warangal for the award 

of the degree of DOCTOR OF PHILOSOPHY, is the bonafide research work done 

by Mr. GOVINDARAO TANGUDU under our supervision.  The contents of this 

thesis have not been submitted elsewhere for the award of any degree. 

 

 

 

 

G. S. BHASKARA RAO             J.V. RAMANA MURTHY 

(Co-Supervisor)               (Supervisor) 

Professor and HOD,                              Professor of Mathematics,  

Department of BS&H,                                                        Department of Mathematics, 

Gudlavalleru Engineering College,     National Institute of Technology, 

Gudlavalleru – 521 356, Krishna,              Warangal - 506 004,  

Andhra Pradesh, India.          Telangana State, India. 

 

Date: 

Place: Warangal. 

 

 

 

 



v 
 

ACKNOWLEDGEMENT 

 

I gratefully acknowledge my Supervisor, Prof. J. V. Ramana Murthy, 

Department of Mathematics, National Institute of Technology Warangal -506004, 

India, for his guidance, time, patience, invaluable discussions, continuous support and 

constant encouragement throughout the preparation of the thesis. With great patience 

and his insight, he has mentored me in developing my research abilities, critical 

thinking, and research writing skills at every stage of my research work. He inspired 

and motivated me, first for pursuing research and then encouraged me to work on this 

particular field.  Without him, it would not have been possible to achieve this work. I 

also thank his wife Smt. J. Prasanna Ramana Murthy for her hospitality and her 

patience during our elongated discussions. 

 

I express my sincere gratitude to my Co-Supervisor, Dr. G. S. Bhaskara Rao, 

Professor and HOD, Basic Sciences and Humanities, Gudlavalleru Engineering 

College, Gudlavalleru-521356, Krishna for his constant support and encouragement 

throughout the research. 

 

I wish to thank Prof. D. Srinivasacharya, Head of the Department, 

Department of Mathematics, for his constant moral support and encouragement at 

every stage. 

 

I extended my sincere thanks to the members of the Doctoral Scrutiny 

Committee, Prof.L. Ram Gopal Reddy, Department of Physics and Dean (Student 

Welfare), Dr. J. Pranitha, Assistant Professor, Department of Mathematics for 

spending their valuable time in providing suggestions, feedback, and support while 

my reviewing the progress of my work. 

 

I take this opportunity to express my thanks from the bottom of my heart to 

the dynamic personality, (Late) Prof. T. K. V. Iyengar, Retired Professor, 

Department of Mathematics, Prof. Y. N. Reddy, Department of Mathematics for 

giving me the opportunity to do research. And their affectionate support, 

encouragement and valuable suggestions. 



vi 
 

I would like to thank Prof. G. Radhakrishnamacharya, Retired Professor, 

Department of Mathematics, for his support, encouragement and valuable suggestions 

during my progress presentations. 

 

I am also grateful to thank Prof. K. N. S. Kasi Viswanadham, former Head, 

Department of Mathematics, Prof. D. Dutta, former Head, Department of 

Mathematics for their constant support and encouragement during my research work. 

   

I extended my thanks to Dr. P. Muthu, Dr. T. Kurmayya, Dr. Ch. Ram 

Reddy and Dr. D. Bhargavi for their moral support and encouragement throughout 

my stay in Warangal. 

 

I also thank Dr. H. P. Rani, Dr. A. Benerji Babu, and Dr. R. S. Selvaraj, for 

their concern and encouragement during my research. 

 

I would like to thank the office staff of the department Mr. S. Narayana, 

Mr.T.Kiran Kumar, Mr. J. Narasaiah and Mr. B. Sadanandam for their support 

and cooperation. 

 

I thank Prof. N. V. Ramana Rao, Director, National Institute of Technology, 

Warangal. 

 

I also wish to thank all co-research scholars of the Department of Mathematics 

and friends for their moral support and enthusiastic help throughout my stay at NIT 

Warangal. Special thanks to Dr. M. Phani Kumar, Dr. J. Srinivas, Dr. B. 

Srinivasulu, Mr. M. Pavan Kumar Reddy, Dr. Ch. Venkata Rao, Dr. T. Ramesh, 

Dr. Krishnaih, Dr. J. A. Ranga Babu, Mr. Ravi Chandra, Mr. Sudheer. 

 

I gratefully acknowledge the management members of Gudlavalleru 

Engineering College, Gudlavalleru, for their extended support and encouragement 

for carrying out my Ph.D. work. 

 

I also convey my heartful thanks to Prof. P. Ravindra Babu, Principal, 

Prof.G.V.S.N.R.V Prasad, Vice-Principal (Academics), Prof. B. Karuna Kumar, 

Vice-Principal (Administration), Prof. P. Nageswara Reddy, Director(AS&A), for 

their wholehearted support and cooperation. 



vii 
 

I express my sincere thanks to some of my colleagues and friends in 

Gudlavalleru Engineering College Mr. D. Surendra Babu, Dr. S. Suresh, 

Mr.S.Sivaram, Mr. D. K. Pavan Kumar, Mr. T. Babu Rao, Mr. V. Naveen 

Kumar, Mr. B. Akkayya, Mr. Sk. Abdul Mathin, Mr. Sk. Bajivali, 

Dr.P.S.V.Srinu Babu and all other faculty members of the department for their moral 

support and encouragement. 

 

I also convey my sincere thanks to all the teaching and non-teaching staff of 

Gudlavalleru Engineering College who are support directly or indirectly in various 

aspects like classwork adjustment while going on leave for research work, and 

technical aspects in documentation. 

 

I thank my gurus Mr. Ramesh, Mr. Suresh, Mr. Haribabu, Mr. K. Siva 

Prasad for their inspiring teaching, moral support and well-wishing in various stages 

of my studies. 

 

 I wish to express my sincere gratitude to my friends Mr. M. Satya Krishna, 

Mr. B. Rakesh, Mr. S. Ratna Kishore, Mr. A. Narayana, Mr. K. Suhash Chand, 

Mr. K. Chakradhar and all my friends for their memories. Especially their support 

for the completion of my studies.  

  

I owe special thanks to my parents Sri. Narayana Rao and Smt. Kalavathi, 

my brother Sri. Narasimha Raju and Smt. Sukanya, their children Chi. Abhishek, 

Chi. Karthik, my father in law Sri. Sadanandam and Smt. Bharathi for their moral 

support and love. 

 

Last but not least, there are no words to express thanks to my better half Smt. 

Sridevi and my children Chi. Sathwik, Chi. Kavya Sree, who have always been an 

endless source of love and support to me. And for her cooperation and understanding.  

 

 

GOVINDARAO TANGUDU 

 

 



viii 
 

ABSTRACT 

 

In the classical flow problems, for the case of non-Newtonian fluids, the 

oscillation problems are very important to study, since many of the elastic properties 

of the dilute polymer solutions can be determined by the oscillation processes. In non-

Newtonian fluids, fluids with Couple stresses are having special status, since the 

oscillations generated in these fluids exhibit effect of Couple stresses on the Drag or 

Couple. 

The problems of the different oscillations of symmetric bodies (like circular 

cylinder or sphere) along/about its axis of symmetry in an incompressible Micro-polar 

fluid/Couple-stress fluid and the flow generated due to these oscillations in the fluid is 

considered. The Stokes flow is considered by neglecting nonlinear convective terms 

in the equations of motion on the assumption that the flow is so slow that oscillations 

Reynolds number is less than unity. The solution of this case cannot be obtained as 

limiting case of non-resonance problem. The velocity and micro-rotation components 

of the flow for the case of resonance and non-resonance are obtained. The Drag / 

Couple / Skin friction are derived analytically and the effect of physical parameters 

like Micro-polarity and Couple stress parameter on the Drag / Couple / Skin friction 

due to oscillations is shown through graphs. 

The thesis consists of twelve chapters and Four parts. Part - I and Chapter 

one is introductory in nature. Part – II is devoted to flows generated in Micro-

polar fluids and contains Five chapters ( Chapters two to six ). Part – III is 

devoted to flows in the Couple stress fluids and contains Five chapters ( Chapters 

seven to eleven ). Part - IV and Chapter twelve gives concluding remarks of the 

thesis and possible directions in which further work can be carried out. 

In all these chapters, the expressions for the velocity, micro-rotation for 

Micro-polar fluids and velocity field for Couple-stress fluids are obtained. The 

Drag/Couple/Skin friction is derived analytically and the effect of physical 

parameters like Reynolds number and Couple stress parameter on the Drag/Couple 

/Skin friction are studied graphically. 
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NOMENCLATURE 

(𝑅, , 𝑍)  Cylindrical co-ordinate system 

(𝑒 𝑅 , 𝑒 , 𝑒 𝑍)  Base vector in cylindrical co-ordinate system 

(𝑅, , 𝜙)  Spherical co-ordinate system 

(𝑒 𝑅 , 𝑒 , 𝑒 𝜙)  Base vector in spherical co-ordinate system 

𝛻1, 𝛻   Dimensional and Non-dimensional gradient operator 

𝑅, 𝑟   Dimensional and Non-dimensional Distance from origin (L) 

𝑄 , 𝑞   Dimensional and Non-dimensional Fluid velocity vector (LT
-1

) 

𝑙  , 𝜐   Dimensional and Non-dimensional Micro-rotation vector 

𝑈, 𝑉,𝑊 Dimensional Velocity components (LT
-1

) 

𝑢, 𝑣, 𝑤  Non-dimensional Velocity components 

𝒜,ℬ, 𝒞 Dimensional Micro-rotation components 

𝐴, 𝐵, 𝐶  Non-dimensional Micro-rotation components 

𝑃, 𝑝  Dimensional and Non-dimensional Fluid pressure at any point  

(ML
-1

T
-2

) 

Ψ,𝜓   Dimensional and Non-dimensional Stream function 

𝜏, 𝑡 =
𝑈0

𝑎
 Dimensional and Non-dimensional Time (T) 

𝜍,𝜛 =
𝑎𝜍

𝑈0
 Dimensional and Non-dimensional Frequency parameter (T

-1
) 

𝒥, 𝐽  Dimensional and Non-dimensional Gyration coefficient (MLT
-1

) 

𝐷∗, 𝐷  Dimensional and Non-dimensional Drag  

𝐶∗, 𝐶  Dimensional and Non-dimensional Couple 

𝒄𝒇   Skin friction 

𝜁   Non-dimensional Swirl 

𝜌  Density of the fluid (ML
-3

)   

𝜇  Viscosity coefficient (ML
-1

T
-1

) 
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𝑘  Micro-viscosity coefficient (ML
-1

T
-1

) 

𝛼, 𝛽, 𝛾  Couple-stress viscosity coefficients (ML
-1

T
-1

) 

𝑇𝑖𝑗   Cauchy‟s Stress components 

𝑀𝑖𝑗   Couple-stress components 

𝑒𝑖𝑗    Strain rate tensor 

𝑠 =
𝑘𝑎2

𝛾
 Couple-stress parameter for Micro-polar fluid 

𝑆  Couple-stress parameter for Couple-stress fluid 

𝑐 =
𝑘

𝜇+𝑘
 Cross viscosity coefficient or Micro-polarity parameter 

𝑅𝑒 =
𝜌𝑈0𝑎

𝜇
 Reynolds number and 𝑅0 = 𝑅𝑒(1 − 𝑐) 

𝜖 =
𝛼+𝛽+𝛾

𝛾
  Another Couple stress parameter 

𝑎   Radius of the Sphere/Circular cylinder 

𝐿   Length of the Circular cylinder 

𝑎0, 𝑎1, 𝑎2   Constants (for Micro-polar fluids) 

𝐴0, 𝐴1, 𝐴2   Constants (for Couple-stress fluids) 

∇2, 𝐷𝑐
2   Operators which are formed in cylinder problems  

𝐸2 , 𝐷𝑠
2   Operators which are formed in sphere problems 

𝐾0, 𝐾1, 𝐾3

2

  Modified Bessel functions of second kind of orders 0, 1, 3/2 
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Chapter 1 

Introduction 

 

In the classical study of steady flow of fluids past bodies or flow due to 

rotation of bodies, there exists vast literature to find the Drag or Couple acting on the 

body. In nature many problems involve unsteady transient flows and oscillatory 

flows. Oscillatory flows are very important to determine the properties of the fluid. 

Stokes (1851) was one of the first scientists who provided an analytical solution for 

motion pendulum and an unsteady, one-dimensional flow problem, namely the 

solution for the fluid motion induced by the sudden movement of a plate. These one 

dimensional problems on plate are referred to as Stokes first and second problems. 

Latter many types of unsteady flow problems were investigated by several 

researchers. The following works are a few to quote on different flow problems: 

Rayleigh (1916) on revolving fluids, Benjamin (1957) on formation waves on inclined 

plane, Benny (1966) on waves in liquid films, Schlichting (1968) on boundary layer 

theory, Batchelor (1970) on slender body theory, Kim and Troesch (1989) on 

oscillating cylinders. Many unsteady and oscillation problems can be found in famous 

treatises by Happel and Brenner(1973) on low Reynold number flows, Van Dyke 

(1975) on perturbation methods, Fung (1984) on Bio-dynamics, Pozrikidis (2009) on 

singularity methods and numerical computations. 

Many elastic properties of dilute polymers can be detected and measured 

conveniently by a suitable choice of oscillatory flows. The problems that are 

concerned with the effects of free stream oscillations are of physical significance. The 

problems of unsteady flows were initiated by Lighthill (1954) by giving analytical 

solution for stream function due to oscillating streaming flow past a cylinder and 

proved that the amplitudes of heat transfer fluctuations are much reduced if the 

frequency on coming stream flow is above a critical frequency. Thomas et al. (1966) 

examined the flow due to the unsteady motion of a sphere with convective terms 

present in a elastic viscous liquid using Laplace Transform technique. Later the paper 

presented by Frater (1967) has got well recognition in which he has discussed the 

problems of oscillating sphere in an elastic viscous fluid and discussed the effect of 

relaxation time parameter on the Drag. Latter many authors have studied the 

phenomena of oscillations of external flow over a non- zero mean velocity.  Lai et al. 
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(1978) have considered the flow due to oscillating sphere in an elastic-viscous fluid 

by neglecting the nonlinear terms. In the same paper they considered the flow due to a 

sphere accelerating with a periodic and arbitrary motion in the visco-elastic fluid 

using Fourier Transform technique and obtained expressions for Drag experienced by 

the sphere. Variable Viscosity and Inclined Magnetic Field on the Peristaltic Motion 

of a Non-Newtonian fluid in an inclined asymmetric channel was studied by Afsar 

Khan et al. (2016). Flow generated by slow steady rotation of a permeable sphere in a 

Micro-polar fluid was analyzed by Aparna et al. (2012). 

 

1.1 Literature Survey 

In non-Newtonian fluids, several Stokes flow problems concerning Micro-

polar fluids have been studied by researchers over the past five decades ever since  

Eringen (1966)  introduced the Micro-polar fluid theory. Lakshmana Rao et al. 

(1971, 1972, 1983, 1987) studied the oscillatory flows of sphere, circular cylinder, 

spheroid and elliptic cylinder in incompressible Micro-polar fluids, the main thrust 

of the investigation being the determination of the Drag or Couple as the case may 

be on the oscillating body. 

Oscillatory flow problems were first analysed by the analytical solution to 

find the effect of elastic parameters on the Drag by Frater (1968) when the 

oscillations of circular cylinder and sphere were examined in a visco-elastic fluid. 

In non-Newtonian fluids, Micro-polar fluids and Couples-stress fluids which 

support body Couples and exhibit Couple stresses are of a special type. As in the 

case of other non-Newtonian fluids, the properties of Micro-polar and Couple-stress 

fluids can be determined by generating the flows due to oscillations. Similarly, 

Stokesian flows in the case of Couple-stress fluids were studied by Stokes (1966, 

1968, 1971) and Jain et al. (1972). Ariman (1967) and Liu (1971) studied Micro-

polar fluid flows in annular region and their instabilities respectively. Latter very 

good treatises on fluids exhibiting Couple stresses were written by Stokes (1984) 

and Lukaszewicz (1999). In the pioneering works of Lakshmana Rao et al. (1980), 

flows generated due to oscillations of circular cylinder, sphere, spheroid and elliptic 

cylinder in Micro-polar fluids were analyzed. 

The flow problems in Couple-stress fluids have been attracting many 

researchers due their Mathematical simplicity and elegance and importance in many 
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applications. Ramkissoon et al. (1990, 1991) and Rajagopal (1983) considered a 

flow generated due to longitudinal and torsional oscillations of a uniform 

cylindrical rod in polar fluids and non-Newtonian fluids. In these papers, the 

authors derived a formula for Drag on the object using a limit on stream function. 

The flows due to longitudinal and torsional oscillations of a cylinder in various 

fluids were investigated by different authors namely Bandelli et al. (1994), Pontrelli 

(1997), Calmelet-Eluhu et al. (1998). Ramana Murthy et al. (2009, 2010) studied 

the flow of Micro-polar fluid under transverse magnetic field with suction. 

However in all these problems, as far as the authors know, special cases, 

which are branded as oscillatory flows of “Resonance” type that arise when the 

material parameters of the fluids are constrained in a particular form ( to be stated 

later ) have not been investigated until recently. The rare but distinct possibility of 

resonance flows has been noticed in the works of Lakshmana Rao et al. (1983, 

1987), Ramana Murthy et al. (2011), Aparna et al. (2012), Nagaraju et al. (2014) 

and the investigation in this case is mathematically more complicated than in the 

usual non-resonance type flows. But in these papers, the case of resonance was not 

studied by the authors. This type of flows arise whenever oscillations of a body take 

place in any non-Newtonian fluids. 

Many natural fluids like blood, oils and paints are non-Newtonian fluids. 

The fluids which exhibit Couple stresses and body Couples are called polar fluids. 

In these type of fluids, the well-known fluids are 1) Micro-polar fluids 2) Couple-

stress fluids and 3) Polar fluids. These fluids exhibit length elongation property. In 

this thesis, we consider two fluids viz, Micro-polar fluids and Couple-stress fluids. 

1.2 Micro-polar Fluid Theory 

The Micro-polar fluids introduced by Eringen (1966). It is well known fact 

that in many of the real fluids, the shear behavior cannot be characterized by 

Newtonian relationships and hence researchers have proposed diverse non-

Newtonian fluid theories to explain the deviation in the behavior of real fluids with 

that of Newtonian fluids. One such theory is that of Micro-polar fluids. These fluids 

are isotropic polar fluids in which deformation of molecules is neglected and these 

contribute a subclass of the simple Micro-polar fluids. Physically, a Micro-polar 

fluid model can represent fluids whose molecules can rotate independently of the 

fluid stream function and its local vorticity.  
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Micro-polar fluid contributes a medium whose behavior during its flow is 

affected by micro-rotation vector at any point, which represents the local rotational 

motion of the fluid molecules contained in a given fluid volume element. The fluid 

medium sustains Couple stress and micro-rotation. For Micro-polar fluids, stress 

tensor is not symmetric. This fluid model constitutes a substantial generalization of 

the Navier-Stokes model and can be used to analyze the behavior of lubricants, 

liquid crystals and animal blood. 

The field equations of the Micro-polar fluids are representable in terms of 

the velocity vector 𝑄  and the micro-ratation vector 𝑙   associated with each particle in 

the fluid medium. The micro-ratation vector 𝑙   represents the rotation in an average 

sense of the rigid particles centered in a small volume element about the centroid of 

the element. 

The field equations for velocity and micro-rotation of an incompressible Micro-polar 

fluid as derived by Eringen (1966) are given by: 

𝜕𝜌

𝜕𝜏
+  𝑑𝑖𝑣 𝜌𝑄  = 0                  (1.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄             (1.2) 

𝜌𝒥(
𝜕𝑙  

𝜕𝜏
+ 𝑄 . ∇1𝑙) = −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )      (1.3) 

where  is time,   is density of the fluid,  is coefficient of viscosity, k is coefficient 

microviscosity,  J is micro-gyration coefficient and ,,  are coefficients of Couple 

stress viscosities. These confirm to the inequality  

𝑘 ≥ 0, 2𝜇 + 𝑘 ≥ 0, 3𝜆 + 2𝜇 + 𝑘 ≥ 0, 𝛾 ≥ 0,  𝛽 ≤ 𝛾, 3𝛼 + 𝛽 + 𝛾 ≥ 0           (1.4) 

 The constitutive equations for the stress components Tij and Couple stress 

components Mij for Micro-polar fluids are given by  

𝑇𝑖𝑗 = −𝑃𝛿𝑖𝑗 +
1

2
 2𝜇 + 𝑘  𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 + 𝑘𝑒𝑖𝑗𝑟 (𝑤𝑟 − 𝑙𝑟)            (1.5) 

𝑀𝑖𝑗 = 𝑙𝑖,𝑖𝛿𝑖,𝑗 + 𝛽𝑙𝑖,𝑗 + 𝛾𝑙𝑗 ,𝑖                 (1.6) 

where the permutation tensor 𝑒𝑖𝑗𝑘 =  
 0
 1
−1

if 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖
if    𝑖, 𝑗, 𝑘    are cyclic           

  if   𝑖, 𝑗, 𝑘    are anti − cyclic

            (1.7) 

and   wr = r
th 

component of 
1

2
( 𝑐𝑢𝑟𝑙 𝑸 ). 
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1.3 Couple-stress Fluid Theory 

Another theory which appeared almost simultaneously in 1966 along with 

Micro-polar fluid theory to explain the deviation in the behavior of real fluids with 

that of Newtonian fluids in the theory of Couple-stress fluids. This theory initiated 

by Stokes (1966), is a simple generalization of the classical theory of viscous fluids. 

This theory allows for the presence of Couple stresses and body coupes in the fluid 

medium. The concept of Couple stresses arises due to the way in which the 

mechanical interactions in the fluid medium are modeled. In this theory, the 

rotational field is defined in terms of the velocity field itself and the rotation vector 

equals to half of the curl of the velocity vector. Here again, stress vector is not 

symmetric. This theory also has several industrial and scientific applications which 

comprise pumping fluids such as synthetic fluids, liquid crystals, animal blood etc. 

Couple-stress fluids introduced by Stokes (1966), are fluids consisting of 

rigid randomly oriented particles suspended in a viscous medium. The 

characterizing features that distinguish the Couple-stress fluid theory from the 

Newtonian fluid theory are the presence of the Couple-stresses and body Couples in 

the fluid medium and the non symmetry of the stress tensor. In Micro-polar fluid 

theory, the micro structure of the fluid is taken into account, and this accounts for 

the polar effects that arise in the fluid. In Couple-stress fluid theory, the micro 

structure is not taken into account. The polar effects are a consequence of assuming 

that the mechanical interaction of one part of a body on another across a surface is 

equivalent to a force together with a moment distribution. Here the rotation is 

associated with each particle is the vorticity vector equals to half of the curl of the 

velocity vector at any point in the fluid medium. 

The Couple-stress fluid theory constitutes the simplest generalization of the 

classical Newtonian viscous fluid theory that shows all the important features and 

effects of the Couple stresses and results in equations that are similar to the Navier-

Stokes equations. 

The basic equations of an incompressible Couple stress fluid introduced by Stokes 

(1966) are given by: 

𝑑𝑖𝑣𝑄 = 0                   (1.8) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 − 𝜇∇1 × ∇1 × 𝑄 − 𝜂∇1 × ∇1 × ∇1 × ∇1 × 𝑄            (1.9) 
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where Q is fluid velocity vector,  is density,  is time,   is viscosity coefficient. 

For Couple stress fluids, the stress components Tij and Couple stress tensor M satisfy 

the following constitutive equations. 

𝑇 = −𝑃𝐼 + 𝜆 ∇1. 𝑄 𝐼 + 𝜇 ∇1𝑄 +  ∇1𝑄 
𝑇 +

1

2
𝐼 × (∇1. 𝑀)           (1.10) 

𝑀 = 𝑚𝐼 + 2𝜂∇1 ∇1 × 𝑄 + 2𝜂′ ∇1 ∇1 × 𝑄  𝑇            (1.11) 

The problems related to cylinder are to be solved in cylindrical polar coordinate 

system and problems related to sphere are solved in spherical coordinate system. 

Hence the expressions for strain rate tensors and stress tensors are given below. 

Cowin et al. (1970) proposed boundary conditions suitable to polar fluids. 

 

1.4 Cylindrical Co-ordinate System 

A cylindrical coordinate system is a three-dimensional coordinate 

system. Which specifies a point position by the distance from a chosen reference 

axis, the direction from the axis relative to a chosen reference direction, and the 

distance from a chosen reference plane perpendicular to the axis. Generally, 

cylindrical co-ordinate system is taken as (𝑅, 𝜃, 𝑍). 

1.4.1 Strain Rate Tensor in Cylindrical Co-ordinates 

Strain rate tensor = 𝐸 =  𝑒𝑖𝑗  =
1

2
 [∇𝑄 + ∇𝑄 𝑇]             (1.12) 

∇𝑄 =  𝑒 𝑟
𝜕

𝜕𝑅
+

𝑒 𝜃

𝑅

𝜕

𝜕𝜃
+ 𝑒 𝑧

𝜕

𝜕𝑍
 (𝑈𝑒𝑟 + 𝑉𝑒𝜃   + 𝑊𝑒𝑧 )   

∇𝑄 = 𝑒𝑟 𝑒𝑟 
𝜕𝑈

𝜕𝑅
+ 𝑒𝑟 𝑈

𝜕𝑒𝑟 

𝜕𝑅
+ 𝑒𝑟 𝑒𝜃     

𝜕𝑉

𝜕𝑅
+ 𝑉𝑒𝑟 

𝜕𝑒𝜃   

𝜕𝑅
+ 𝑒𝑟 𝑒∅   

𝜕𝑊

𝜕𝑅
+ 𝑊𝑒𝑟 

𝜕𝑒𝑧 

𝜕𝑅
 

+
𝑒𝜃   𝑒𝑟 

𝑅

𝜕𝑈

𝜕𝜃
+
𝑈𝑒𝜃   

𝑅

𝜕𝑒𝑟 

𝜕𝜃
+
𝑒𝜃   𝑒𝜃   

𝑅

𝜕𝑉

𝜕𝜃
+
𝑉𝑒𝜃   

𝑅

𝜕𝑒𝜃   

𝜕𝜃
+
𝑒𝜃   𝑒𝑧 

𝑅

𝜕𝑊

𝜕𝜃
+
𝑒𝜃   𝑊

𝑅

𝜕𝑒𝑧 

𝜕𝜃
 

+𝑒𝑧 𝑒𝑟 
𝜕𝑈

𝜕𝑍
+ 𝑈𝑒𝑧 

𝜕𝑒𝑟   

𝜕𝑍
+ 𝑒𝑧 𝑒𝜃   

𝜕𝑉

𝜕𝑍
+ 𝑉𝑒𝑧 

𝜕𝑒𝜃    

𝜕𝑍
+ 𝑒𝑧 𝑒𝑧 

𝜕𝑊

𝜕𝑍
+ 𝑊𝑒𝑧 

𝜕𝑒𝑧   

𝜕𝑍
            (1.13) 

 Partial derivatives of basic unit vectors are given by 
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𝜕𝑒𝑟   

𝜕𝑅
= 0,            

𝜕𝑒𝑟   

𝜕𝜃
= 𝑒𝜃   ,      

𝜕𝑒𝑟   

𝜕𝑍
= 0

𝜕𝑒𝜃    

𝜕𝑅
= 0,         

𝜕𝑒𝜃    

𝜕𝜃
= −𝑒𝑟 ,       

𝜕𝑒𝜃    

𝜕𝑍
= 0

𝜕𝑒𝑧   

𝜕𝑅
= 0,           

𝜕𝑒𝑧   

𝜕𝜃
= 0,          

𝜕𝑒𝑧   

𝜕𝑍
= 0  

 
 

 
 

              (1.14) 

Substituting (1.14) in (1.13), we get 

∇𝑄 = 𝑒𝑟 𝑒𝑟 
𝜕𝑈

𝜕𝑅
+ 𝑒𝑟 𝑒𝜃     

𝜕𝑉

𝜕𝑅
+ 𝑒𝑟 𝑒𝑧 

𝜕𝑊

𝜕𝑅
+

𝑒𝜃    𝑒𝑟   

𝑅

𝜕𝑈

𝜕𝜃
+ 𝑒𝜃   𝑒𝜃    

𝑈

𝑅
+

1

𝑅

𝜕𝑉

𝜕𝑅
  − 𝑒𝜃   𝑒𝑟 

𝑉

𝑅
 +

𝑒𝜃    𝑒𝑧   

𝑅

𝜕𝑊

𝜕𝜃
+ 𝑒𝑧 𝑒𝑟 

𝜕𝑈

𝜕𝑍
+ 𝑒𝑧 𝑒𝜃   

𝜕𝑉

𝜕𝑍
+  𝑒𝑧 𝑒𝑧 

𝜕𝑊

𝜕𝑍
                     

The same in matrix form can be written as 

∇𝑄 =

 
 
 
 
 

𝜕𝑈

𝜕𝑅

𝜕𝑉

𝜕𝑅

𝜕𝑊

𝜕𝑅
1

𝑅
 
𝜕𝑈

𝜕𝜃
− 𝑉 

1

𝑅
 
𝜕𝑉

𝜕𝜃
+ 𝑈 

1

𝑅

𝜕𝑊

𝜕𝜃
𝜕𝑈

𝜕𝑍

𝜕𝑉

𝜕𝑍

𝜕𝑊

𝜕𝑍  
 
 
 
 

              (1.15) 

The strain rate tensor 𝐸 =
1

2
 [∇𝑄 + ∇𝑄 𝑇] 

𝐸 =
1

2

 
 
 
 
 2

𝜕𝑈

𝜕𝑅
 
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝜃
−

𝑉

𝑅
  

𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍
 

 
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝜃
−

𝑉

𝑅
 

2

𝑅
 
𝜕𝑉

𝜕𝜃
+ 𝑈  

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍
 

 
𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍
  

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍
 2

𝜕𝑊

𝜕𝑍  
 
 
 
 

            (1.16) 

∇.𝑀 =  
1

𝑅

𝜕

𝜕𝑅
 𝑅𝑀𝑅𝑅 +

1

𝑅

𝜕

𝜕𝜃
𝑀𝜃𝑅 +

𝜕

𝜕𝑍
𝑀𝑍𝑅 −

𝑀𝑅𝜃

𝑅
 𝑒 𝑅 +  

1

𝑅2

𝜕

𝜕𝑅
 𝑅2 𝑀𝑅𝜃  +

1

𝑅

𝜕

𝜕𝜃
𝑀𝜃𝜃 +

𝜕

𝜕𝑍
𝑀𝑍𝜃 +

𝑀𝜃𝑍 −𝑀𝑅𝜃

𝑅
 𝑒 𝜃 +  

1

𝑅

𝜕

𝜕𝑅
 𝑅𝑀𝑅𝑍 +

1

𝑅

𝜕

𝜕𝜃
𝑀𝜃𝑍 +

𝜕

𝜕𝑍
𝑀𝑍𝑍 𝑒 𝑍       (1.17) 

 

 

1.5 Spherical Co-ordinate System 

A spherical coordinate system is a three-dimensional coordinate system 

where the position of a point is specified by three numbers: the radial distance of 

that point from a fixed origin, its polar angle measured from a fixed zenith direction, 

and the azimuth angle of its orthogonal projection on a reference plane that passes 

through the origin and is orthogonal to the zenith, measured from a fixed reference 

direction on that plane. Generally cylindrical co-ordinate system taken as (𝑅, 𝜃, 𝜙). 

https://en.wikipedia.org/wiki/Zenith
https://en.wikipedia.org/wiki/Azimuth
https://en.wikipedia.org/wiki/Orthogonal_projection
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1.5.1 Strain Rate Tensor in Spherical Co-ordinates 

Strain rate tensor = 𝐸 =  𝑒𝑖𝑗  =
1

2
 [∇𝑄 + ∇𝑄 𝑇]             (1.18) 

∇𝑄 =  𝑒 𝑟
𝜕

𝜕𝑅
+

𝑒 𝜃

𝑅

𝜕

𝜕𝜃
+

𝑒 ∅

𝑅𝑆𝑖𝑛𝜃

𝜕

𝜕∅
 (𝑈𝑒𝑟 + 𝑉𝑒𝜃   + 𝑊𝑒∅   )   

= 𝑒𝑟 𝑒𝑟 
𝜕𝑈

𝜕𝑅
+ 𝑒𝑟 𝑈

𝜕𝑒𝑟 

𝜕𝑅
+ 𝑒𝑟 𝑒𝜃     

𝜕𝑉

𝜕𝑅
+ 𝑉𝑒𝑟 

𝜕𝑒𝜃   

𝜕𝑅
+ 𝑒𝑟 𝑒∅   

𝜕𝑊

𝜕𝑅
+ 𝑊𝑒𝑟 

𝜕𝑒∅   

𝜕𝑅
 

+
𝑒𝜃   𝑒𝑟 

𝑅

𝜕𝑈

𝜕𝜃
+
𝑈𝑒𝜃   

𝑅

𝜕𝑒𝑟 

𝜕𝜃
+
𝑒𝜃   𝑒𝜃   

𝑅

𝜕𝑉

𝜕𝜃
+
𝑉𝑒𝜃   

𝑅

𝜕𝑒𝜃   

𝜕𝜃
+
𝑒𝜃   𝑒∅   

𝑅

𝜕𝑊

𝜕𝜃
+
𝑒𝜃   𝑊

𝑅

𝜕𝑒∅   

𝜕𝜃
 

+
𝑒∅   𝑒𝑟 

𝑅𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
+

𝑈𝑒∅   

𝑅𝑆𝑖𝑛𝜃

𝜕𝑒𝑟 

𝜕∅
+

𝑒∅   𝑒𝜃   

𝑅𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
+

𝑉𝑒∅     

𝑅𝑆𝑖𝑛𝜃

𝜕𝑒𝜃   

𝜕∅
+

𝑒∅   𝑒∅   

𝑅𝑆𝑖𝑛𝜃

𝜕𝑊

𝜕∅
+

𝑊𝑒∅   

𝑅𝑆𝑖𝑛𝜃

𝜕𝑒∅   

𝜕∅
 

 Partial derivatives of basic unit vectors are given by 

𝜕𝑒𝑟   

𝜕𝑅
= 0  

𝜕𝑒𝑟   

𝜕𝜃
= 𝑒𝜃     

𝜕𝑒𝑟   

𝜕∅
= 𝑒∅   𝑠𝑖𝑛𝜃 

𝜕𝑒𝜃    

𝜕𝑅
= 0  

𝜕𝑒𝜃    

𝜕𝜃
= −𝑒𝑟   

𝜕𝑒𝜃    

𝜕∅
= 𝑒∅   𝑐𝑜𝑠𝜃 

𝜕𝑒∅    

𝜕𝑅
= 0  

𝜕𝑒∅    

𝜕𝜃
= 0  

𝜕𝑒∅    

𝜕∅
= −𝑒𝑟  𝑠𝑖𝑛𝜃 − 𝑒𝜃   𝑐𝑜𝑠𝜃 

Substituting these in (1.18), we get 

∇𝑄 = 𝑒𝑟 𝑒𝑟 
𝜕𝑈

𝜕𝑅
+ 𝑒𝑟 𝑒𝜃     

𝜕𝑉

𝜕𝑅
+ 𝑒𝑟 𝑒∅   

𝜕𝑊

𝜕𝑅
+
𝑒𝜃   𝑒𝑟 

𝑅

𝜕𝑈

𝜕𝜃
+
𝑈𝑒𝜃   𝑒𝜃   

𝑅
 +

𝑒𝜃   𝑒𝜃   

𝑅

𝜕𝑉

𝜕𝜃
−
𝑉𝑒𝜃   

𝑅
𝑒𝑟 + 

+
𝑒∅   𝑒𝑟 

𝑅𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
+
𝑈𝑒∅   𝑒∅   

𝑅
+

𝑒∅   𝑒𝜃   

𝑅𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
+
𝑉𝑐𝑜𝑡𝜃

𝑅
𝑒∅   𝑒∅   +

𝑒∅   𝑒∅   

𝑅𝑆𝑖𝑛𝜃

𝜕𝑊

𝜕∅
−
𝑊

𝑅
𝑒∅   𝑒𝑟 

−
𝑊𝑐𝑜𝑡𝜃

𝑅
𝑒∅   𝑒𝜃   +

𝑒𝜃   𝑒∅   

𝑅

𝜕𝑊

𝜕𝜃
 

In the matrix, it is given by 

∇𝑄 =

 
 
 
 
 

𝜕𝑈

𝜕𝑅

𝜕𝑉

𝜕𝑅

𝜕𝑊

𝜕𝑅
1

𝑅
 
𝜕𝑈

𝜕𝜃
− 𝑉 

1

𝑅
 
𝜕𝑉

𝜕𝜃
+ 𝑈 

1

𝑅

𝜕𝑊

𝜕𝜃

1

𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
−𝑊 

1

𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
−𝑊𝐶𝑜𝑡𝜃 

1

𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑊

𝜕∅
+ 𝑉𝐶𝑜𝑡𝜃 + 𝑈  

 
 
 
 

        (1.19) 

𝐸 =
1

2
 [∇𝑄 + ∇𝑄 𝑇] 
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𝐸 =
1

2𝑅

 
 
 
 
 2𝑅

𝜕𝑈

𝜕𝑅

𝜕𝑈

𝜕𝜃
+ 𝑅

𝜕𝑉

𝜕𝑅
− 𝑉

1

𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
+ 𝑅

𝜕𝑊

𝜕𝑅
−𝑊

𝜕𝑈

𝜕𝜃
+ 𝑅

𝜕𝑉

𝜕𝑅
− 𝑉 2  

𝜕𝑉

𝜕𝜃
+ 𝑈 

1

𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
+

𝜕𝑊

𝜕𝜃
−𝑊𝐶𝑜𝑡𝜃

1

𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
+ 𝑅

𝜕𝑊

𝜕𝑅
−𝑊

1

𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
+

𝜕𝑊

𝜕𝜃
−𝑊𝐶𝑜𝑡𝜃 2  

1

𝑆𝑖𝑛𝜃

𝜕𝑊

𝜕∅
+ 𝑉𝐶𝑜𝑡𝜃 + 𝑈  

 
 
 
 

     (1.20) 

∇.𝑀 =  
1

𝑅2

𝜕

𝜕𝑅
 𝑅2𝑀𝑅𝑅 +

1

𝑅𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑀𝜃𝑅𝑠𝑖𝑛𝜃) +

1

𝑅𝑠𝑖𝑛𝜃

𝜕

𝜕∅
𝑀∅𝑅 −

𝑀𝜃𝜃 +𝑀∅∅

𝑅
 𝑒 𝑅 +

 
1

𝑅3

𝜕

𝜕𝑅
 𝑅3  𝑀𝑅𝜃  +

1

𝑅𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑀𝜃𝜃 𝑠𝑖𝑛𝜃) +

1

𝑅𝑠𝑖𝑛𝜃

𝜕

𝜕∅
𝑀∅∅ +

𝑀𝜃𝑅 −𝑀𝑅𝜃 −𝑀∅∅𝑐𝑜𝑡𝜃

𝑅
 𝑒 𝜃 +

 
1

𝑅3

𝜕

𝜕𝑅
 𝑅3𝑀𝑅∅ +

1

𝑅𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑀𝜃∅𝑠𝑖𝑛𝜃) +

1

𝑅𝑠𝑖𝑛𝜃

𝜕

𝜕∅
𝑀∅∅ +

𝑀∅𝑅−𝑀𝑅∅+𝑀∅𝜃 𝑐𝑜𝑡𝜃

𝑅
 𝑒 ∅     (1.21) 

 

1.6 Modified Bessel equation and functions 

The recurrence relations and other equations for Bessel functions are taken 

from Andrei D. Polyanin and Valentin F Zaitsev (2003) and Sneddon (1956). 

The Bessel differential equation is defined as 

𝑥2
𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
+  𝑘2𝑥2 − 𝑛2 𝑦 = 0               (1.22) 

The solution of this  equation is y=c1 Jn(kx) + c2Yn(kx) 

The differential equation for modified Bessel functions is 

𝑑2𝑦

𝑑𝑥2
+

1

𝑥

𝑑𝑦

𝑑𝑥
−  𝑘2 +

𝑛2

𝑥2
 𝑦 = 0 or 𝑥2

𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
−  𝑘2𝑥2 + 𝑛2 𝑦 = 0          (1.23) 

The solution of the above equation is 𝑦 = 𝑐1𝐼𝑛 𝑘𝑥 + 𝑐2𝐾𝑛(𝑘𝑥) 

𝐾𝑛 𝑥  satisfies the following  recurrence relations  

−2𝐾′𝑛 𝑥 = 𝐾𝑛−1 𝑥 + 𝐾𝑛+1(𝑥)             (1.24a) 

2𝑛

𝑥
𝐾𝑛 𝑥 = 𝐾𝑛+1 𝑥 − 𝐾𝑛−1(𝑥)            (1.24b) 

𝑥𝐾′𝑛 𝑥 = −𝑥𝐾𝑛−1 𝑥 − 𝑛𝐾𝑛(𝑥)             (1.24c) 

𝑥𝐾′𝑛 𝑥 = 𝑛𝐾𝑛 𝑥 − 𝑥𝐾𝑛+1 𝑥             (1.24d) 

𝐾′0 𝑥 = −𝐾1(𝑥)                (1.24e) 

The differential equation  
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𝑑2𝑦

𝑑𝑥2
+

1 − 2𝛼

𝑥

𝑑𝑦

𝑑𝑥
−  1 +

𝑛2 − 𝛼2

𝑥2
 𝑦 = 0 

has a solution as 𝑦 = 𝑥𝛼𝐾𝑛(𝑥) 

If 𝛼 =
1

2
 𝑎𝑛𝑑 𝑛 =

3

2
  the above differential equation reduces to 

𝑥2 𝑑2𝑦

𝑑𝑥2 −  𝑥2 + 2 𝑦 = 0                 (1.25) 

This equation has a solution as 𝑦 = 𝑥
1

2𝐾3

2

(𝑥)             (1.26) 

If 𝛼 = 0 𝑎𝑛𝑑 𝑛 = 1  the differential equation and the corresponding solution are 

given by 

𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
−  𝑥2 + 1 𝑦 = 0               (1.27) 

And 𝑦 = 𝐾1(𝑥)                 (1.28) 

The following formulae on Bessel functions are very much useful for simplications 

𝑑

𝑑𝑟
  𝑟𝐾3

2

 𝜆𝑟  = −
𝐾3

2

 𝜆𝑟  

 𝑟
Δ1(𝜆𝑟)                (1.29) 

𝑑

𝑑𝑟
 
𝐾3

2

 𝜆𝑟  

 𝑟
 = −

𝐾3
2

 𝜆𝑟  

𝑟
3
2

 1 + Δ1 𝜆𝑟                  (1.30) 

Where Δ1 𝑥 = 1 +
𝑥K1

2

 𝑥 

𝐾3
2

 𝑥 
=

1+𝑥+𝑥2

1+𝑥
               (1.31) 

𝑑

𝑑𝑟
 𝑟

3

2𝐾′3
2

 𝜆𝑟  =
1

𝜆 𝑟
  𝜆2𝑟2 +

3

2
 𝐾3

2

 𝜆𝑟 −
𝜆𝑟

2
𝐾1

2

 𝜆𝑟               (1.32) 

 

1.7 Problems on Oscillations 

The work on the oscillating flows in different geometries is listed below. 

1.7.1 Oscillating flows in  infinite  plate geometry 

Many authors studied several problems related to infinite plate geometry. Liu 

(1966, 1967) studied flows in dusty gas generated by oscillation of an infinite flat 

plate and impulsive motion of an infinite flat plate in a dusty gas. Baral (1967) studied 

parallel plate problem of unsteady flow of conducting liquid between two parallel 

plates. Soundalgekar et al. (1974) studied oscillatory flow past an infinite plate with 

constant suction and investigated effects of Couple stresses on the flow. Jyotirmoy 

Sinha Roy et al. (1981) investigated visco-elastic flow between two infinite parallel 

porous plates where one plate oscillating and the other one is in uniform motion. 
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Unsteady flow between two oscillating plates was studied by Evelyn et al. (1982).  

Ramamurthy et al. (1987) studied the steady streaming generated between two infinite 

parallel plates where one is vibrating plate and another one is a fixed plate in a dusty 

fluid. Rashmi et al. (2007) also studied unsteady flow of a dusty fluid generated 

between two oscillating plates under varying constant pressure gradient. Yanqing 

Wang et al. (2017) deliberated on analytical study for vibration of longitudinally 

moving plate submerged in infinite liquid domain. 

1.7.2 Oscillating flows through tubes 

There is a vast literature for problems through tubes. Vijay Kumar Stokes 

(1968) analysed effects of Couple stresses in fluids on hydromagnetic channel flows. 

Owen et al. (2006) studied steady flow of Micro-polar fluid through a circular pipe, in 

this he considered a transverse magnetic field with constant suction / injection. Owen 

et al. (2006) studied an Oldroyd-B liquid flow generated due to performing 

longitudinal and torsional oscillations of a straight circular tube with different 

frequencies. Ramana Murthy et al. (2009, 2010) studied Steady and unsteady flow of 

Micro-polar fluid through a circular pipe under a transverse magnetic field with 

constant suction / injection. Ramana Murthy et al. (2011) studied steady flow of 

Micro-polar fluid in a rectangular channel, in this transverse magnetic field with 

suction considered. 

1.7.3 Oscillating flows in spherical geometry 

Stimson et al. (1926) studied viscous fluid flow due to the motion of two 

spheres. Frater (1967, 1968) studied oscillatory flows in an elastico-viscous fluid, and 

evaluated Drag on sphere, damping force on a body. Verma et al. (1971) studied 

oscillating flow past a fixed porous sphere. Stokes (1971) analysed effects of Couple 

stresses in fluids on the creeping flow past a sphere. Lai et al. (1978) studied elastic-

viscous fluid flow generated due to rectilinear oscillations of a sphere and evaluated 

Drag on a sphere. Lakshmana Rao et al. (1970, 1971, 1981, 1983) studied slow 

stationary flow past a sphere and the oscillatory flows of sphere and spheroid in 

incompressible Micro-polar fluids, the main thrust of the investigation being the 

determination of the Drag or Couple as the case may be on the oscillating body. 

Iyengar et al. (2001) studied rectilinear oscillations, rotary oscillations of approximate 

sphere in an incompressible viscous fluid and Micro-polar fluid respectively. Iyengar 
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et al. (1993, 2004) studied Stokes flow of an incompressible Micro-polar fluid past an 

approximate sphere and oscillatory flow of a Micro-polar fluid generated due to rotary 

oscillations of two concentric spheres. Aparna et al. (2012) studied incompressible 

Micro-polar fluid flow of permeable sphere performing rotary oscillations. Recently 

oscillatory flows of composite sphere and spherical particle were studied by 

Ashmawy (2015, 2016). 

1.7.4 Oscillating flows in cylindrical geometry 

Flow of Micro-polar Fluid between two concentric Cylinders was studied by 

Ariman et al. (1967). Frater (1968) studied oscillatory flow circular cylinder in an 

elastico-viscous fluid and evaluated Drag on a circular cylinder. Lakshmana Rao et al. 

(1972, 1987) studied the oscillatory flows of circular cylinder and elliptic cylinder in 

an incompressible Micro-polar fluid. Ramkissoon et al. (1990) studied oscillatory 

flow due to cylinder performing longitudinal and torsional oscillations. Rao et al. 

(1992) computationally studied unsteady viscous fluid flow of circular cylinder 

oscillating transversely and longitudinally in a uniform flow at high Reynolds 

number. Calmelet-Eluhu et al. (1998), Fetecau et al. (2006), Nagaraju et al. (2014) 

studied oscillatory flows of circular cylinder subject to longitudinal and torsional 

Oscillations. Anwar et al. (2004), Mehrdad Massoudi et al. (2008), Ramana Murthy et 

al. (2010) studied oscillatory flows mainly due to longitudinal and torsional 

Oscillations of circular cylinder numerically. 

 

1.8 Drag/Couple/Skin friction 

Drag is a force acting on the entire body in the direction of fluid flow. 

In fluid dynamics, Drag (may be due to air resistance or fluid resistance) refers 

to forces which act on a solid object in the direction of the fluid velocity. Unlike 

other resistive forces, such as dry friction, which is nearly independent of velocity, 

drag forces depend on velocity. Drag forces always decrease fluid velocity relative 

to free velocity when there is no body. If k is the direction of flow, then the 

expression for Drag is  

𝐷 =  𝒌. 𝑻𝒏𝑑𝑠 =  𝒌. 𝑻. 𝒏𝑑𝑠               (1.33) 

Skin friction is a force per unit area. It is friction between a moving fluid and 

surface of the body. The Drag is a force acting on the entire body where as Skin 

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Solid
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Flow_velocity
http://en.wikipedia.org/wiki/Friction
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friction is force per unit area. When the body rotates or perform rotary oscillations, 

moment of Couple is considered. This moment of force in the direction of axis 

symmetry is taken as Couple. If k is axis of symmetry and f is force then Couple is 

taken as  

C= k.(rf) ds = k.(rTn ) ds=  k.(rT. n) ds            (1.34) 

 

1.9 Operators 

In this work, we come across some operators like E
2
 and  ∇2as follows. 

When a circular cylinder performs rectilinear oscillations in incompressible Micro-

polar fluid or Couple-stress fluid, we get the following operators 

∇2=
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2  
 and 𝐷𝑐

2 =
𝑑2

𝑑𝑟2 +
1

𝑟

𝑑

𝑑𝑟
−

1

𝑟2             (1.35) 

When a sphere performs rectilinear oscillations in incompressible Micro-polar fluid 

or Couple-stress fluid, we get the following operators 

E2 =
𝜕2

𝜕𝑟2 +
1

𝑟2

𝜕2

𝜕𝜃2 −
𝑐𝑜𝑡𝜃

𝑟2

𝜕

𝜕𝜃
 and 𝐷𝑠

2 =
𝑑2

𝑑𝑟2 −
2

𝑟2             (1.36) 

Whenever a flow is generated in a Micro-polar fluid or Couple-stress fluid due to 

rectilinear oscillations, the stream function  of the flow satisfies the following 

equation 

    𝐸2(𝐸2– 1
2) (𝐸2– 2

2)  = 0              (1.37) 

By taking  = f(r) sin for cylinder and  = f(r) sin
2
 for sphere, the above 

expression reduces to 

    𝐷𝑐
2(𝐷𝑐

2– 1
2) (𝐷𝑐

2– 2
2) 𝑓 = 0                  (1.38a) 

Or 

    𝐷𝑠
2(𝐷𝑠

2– 1
2) (𝐷𝑠

2– 2
2) 𝑓 = 0          (1.38b) 

as the case may be, where E
2
 is stoke stream function operator and 1, 2 contain 

material constants of the fluid. There arises a case 1 = 2 =  and stream function 

in this case follows the equation 

    𝐸2 𝐸2– 2 
2
 = 0              (1.39) 

This reduces to  

   𝐷𝑐
2 𝐷𝑐

2– 2 
2
𝑓 = 0 or to  𝐷𝑠

2 𝐷𝑠
2– 2 

2
𝑓 = 0           (1.40) 

The solution for in this case cannot be obtained by taking the limit 12=. Hence 

special attention is to be taken in this case. This case is referred to as “ Resonance”. 
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Similarly, whenever a flow is generated in a Micro-polar fluid or Couple-stress fluid 

due to rotary oscillations, the toroidal velocity V of the flow satisfies the following 

equation 

   (𝐷𝑐
2– 1

2) (𝐷𝑐
2– 2

2) 𝑉 = 0              (1.41) 

where 𝐷𝑐
2 is stokes operator and 1 ,2 contain material constants of the fluid. There 

arises a case 1 = 2 =  and velocity V, in this case, follows the equation 

     𝐷𝑐
2– 2 

2
𝑉 = 0              (1.42) 

The solution for in this case cannot be obtained by taking the limit 12=. Hence 

special attention is to be taken in this case. This case is referred to as “ Resonance”. 

 

1.10 Determination of Parameters 

1.10.1  Micro-polar fluids 

The material parameters in the Micro-polar fluids are related by the relation: 

𝜆1
2 + 𝜆2

2 =  2 − 𝑐 𝑠 + 𝑖 𝐽 + 𝜛𝑅0 = 𝐵0 and 𝜆1
2𝜆2

2 = 𝑖𝜛𝑅0 2𝑠 + 𝑖𝐽 = 𝐶0          (1.43) 

When resonance occurs the parametres c, s, R0 and J are related in the following 

way 

(2 –  𝑐)𝑠 =  𝐽–  𝜛𝑅0 and (2 –  𝑐)𝐽 =  𝜛𝑅0(2 +  𝑐)             (1.44) 

Hence for resonance by fixing two parameters, the other two can be determined by 

the above equations. Then solving quadratic equation 

 𝑥2– 𝐵0𝑥 +  𝐶0  = 0 

for x we get the value of 
2
 

When there is non-resonance, all the parameters c, s, R0 and J can be chosen  

independently. Then solving above equation for x, we get 1
2
,  2

2
. 

If we fix |
2
|, then in the case of resonance we have  


2  =

 2 − 𝑐 

2𝑐
𝑠(𝑐 + 2𝑖)  

Hence 𝑠 =   
4𝑐2 2 

 2−𝑐 2(4+𝑐2)
 

If we fix, c and s, we get J and R0 from the relations 

2𝑐 𝐽 = 𝑠 4 − 𝑐2   𝑎𝑛𝑑 𝑐𝑅0𝜛 = 𝑠 2 − 𝑐 2 

If c and J are fixed , then  𝑅0𝜛 =
𝐽  2−𝑐 

2+𝑐
 𝑎𝑛𝑑 𝑠 =

 𝐽−𝑅0𝜛 

 2−𝑐 
            (1.45) 
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When there is non-resonance, if |
2
| is fixed, s, c, J, R0 are related by the following 

Way (let 𝑎 = 2 − 𝑐, 𝑏 = 𝐽 + 𝑅0𝜛,  = 𝑎2𝑠2– 𝑏2 + 4𝐽𝑅0𝜛, 

  =  2𝑎𝑏 − 8𝑅0𝜛 𝑠  and 𝑝 = 2 + 
2 )   

2𝜆2 = 𝑎𝑠 + 𝑖𝑏 +   𝑎𝑠 + 𝑖𝑏 2 + 4 𝐽 − 𝑖2𝑠 R0 

 2𝜆2 = 𝑎𝑠 +   𝑝+𝛼

2
+ 𝑖(𝑏 +   𝑝−𝛼

2
) 

Taking modulus we get, 

4 𝜆4 − 𝑎2𝑠2 − 𝑏2 =  𝑝 +  2(𝑎𝑠  𝑝 + 𝛼 + 𝑏  𝑝 − 𝛼) 

Re-arranging and simplifying we get;( let R1 =R0 ) 

4𝑅1
2 4𝑅1

2 − 𝑎2 𝜆4  𝑠4 

+ −𝑎2 𝜆12 +  8𝑅1
2 +

𝑎2𝑏2

2
  𝜆8 − 𝑅1

2 𝑎2𝐽2 + 4𝑏2  𝜆4 + 8𝐽2𝑅1
4 𝑠2 

+ 𝜆16 − 𝑏2 𝜆12 + 2𝐽𝑅1 𝐽
2 + 𝐽𝑅1 + 𝑅1

2  𝜆8 − 𝑏2𝐽2𝑅1
2 𝜆4 + 𝐽4𝑅1

4 =0 

Solving this we get s. 

1.10.2  Couple-stress fluids 

The parameters are related by (R1=R0,  q=S
2
 +16R1

2
) 

2𝜆2 = 𝑠 +  𝑠2 − 4𝑖𝑅1𝑠 

 2𝜆2 = 𝑆 +  𝑆2+ 𝑆2𝑞

2
+ 𝑖 

−𝑆2+ 𝑆2𝑞

2
 

 This can be rewritten as: 4|𝜆4| = 𝑆2 +  𝑆2𝑞 +  2𝑆 𝑆2 +  𝑆2𝑞 

Rearranging and simplifying we get: (L =|
4
| ) 

R1
2
(R1

2
 – L) S

4
 – L

2
(L+2R1

2
)S

2
 +L

4
 =0           (1.46) 

For resonance we have  

   𝑆 =  4𝑖𝑅1  = 22
              (1.47) 

 

1.11 Planning of Thesis 

In this thesis, we propose to investigate this case of resonance type flows in 

Micro-polar fluids generated due to rectilinear/rotary/longitudinal oscillations of 

circular cylinder/sphere. The velocity and micro-rotation ( for Micro-polar fluid ) 

and Drag / Couple / Skin friction acting on the body is obtained. The effect of 
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physical parameters like Reynolds number, Micro-polarity and Couple stress 

parameter on the Drag / Couple / Skin friction due to oscillations is shown through 

graphs. The problems attempted in this thesis for Micro-polar and Couple-stress 

fluids are listed below: 

i) Rectilinear Oscillations of a Circular Cylinder 

ii) Rotary oscillations of a Circular Cylinder 

iii) Longitudinal oscillations of a Circular Cylinder 

iv) Rectilinear Oscillations of a Sphere  

v) Rotary Oscillations of a Sphere 

 

The thesis consists of twelve chapters and Four parts. Part - I and Chapter one is 

introductory in nature. Part – II is devoted to flows generated in Micro-polar 

fluids and contains Five chapters ( Chapters two to six ). Part – III is devoted to 

flows in the Couple stress fluids and contains Five chapters ( Chapters seven to 

eleven ). Part - IV and Chapter twelve gives concluding remarks of the thesis and 

possible directions in which further work can be carried out. 

Chapter I : Introduction.  

In this chapter, we introduce the two non-Newtonian fluid theories, 

Micro-polar theory introduced by Eringen and Couple-stress fluid theory 

introduced by Stokes and present a brief review of the problems related to the 

thesis available in the existing literature. 

Chapter II : Rectilinear oscillations of a circular cylinder in a Micro-polar fluid. 

The flow is assumed to be governed by Eringen‟s Micro-polar fluid flow 

equations. The flow of an incompressible Micro-polar fluid generated due to 

rectilinear oscillations of a circular cylinder about a diameter of the cylinder is 

considered. The flow is so slow that Oscillations Reynolds number is less than unity 

and hence nonlinear convective terms in the equations of motion are neglected. A rare 

but distinct special case in which material constants satisfy a resonance condition is 

considered. The stream function and Drag acting on cylinder are obtained. The effect 

of physical parameters like Micro-polarity and Couple stress parameter on the Drag 

due to oscillations is shown through graphs. 
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Chapter III :Rotary oscillations of a circular cylinder in a Micro-polar fluid.  

The flow generated due to rotary oscillations of a circular cylinder about its 

axis of symmetry in a Micro-polar fluid is considered. By taking Stokesian 

assumptions, nonlinear convective terms of motion are dropped and hence equations 

are made linear. The flow field for velocity and micro-rotation components are 

investigated. The Skin friction acting on the cylinder is evaluated and the effects of 

Micro-polarity and Couple stress parameter on the Skin friction are presented in form 

of graphs. It is observed that for a Micro-polar fluid when the material constants 

satisfies the resonance condition, the Skin friction reduces to a minimum. 

Chapter IV :Longitudinal oscillations of a circular cylinder in a Micro-polar 

fluid.  

The problem of the longitudinal oscillations of a circular cylinder along its 

axis of symmetry in an incompressible Micro-polar fluid and the flow generated due 

to these oscillations in the fluid is considered. The Stokes flow is considered by 

neglecting nonlinear convective terms in the equations of motion on the assumption 

that the flow is so slow that oscillations Reynolds number is less than unity. The 

solution of this case cannot be obtained as limiting case of non-resonance problem. 

The velocity and micro-rotation components of the flow for the case of resonance and 

non-resonance are obtained. The Skin friction acting on the cylinder is evaluated and 

the effect of physical parameters like Micro-polarity and Couple stress parameter on 

the Skin friction due to oscillations is shown through graphs. 

Chapter V :Rectilinear oscillations of a sphere in a Micro-polar fluid. 

The flow of an incompressible Micro-polar fluid generated due to rectilinear 

oscillations of a sphere about a diameter of the sphere is considered. The flow is so 

slow that Oscillations Reynolds number is less than unity and hence nonlinear 

convective terms in the equations of motion are neglected. The stream function and 

Drag acting on sphere are obtained for the case of resonance and non-resonance. The 

effect of physical parameters like Micro-polarity and Couple stress parameter on the 

Drag due to oscillations is shown through graphs. 
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Chapter VI : Rotary oscillations of a sphere in a Micro-polar fluid. 

The flow of an incompressible Micro-polar fluid generated due to rotary 

oscillations of a sphere about the axis of symmetry of the sphere is considered. The 

flow is so slow that nonlinear convective terms in the equations of motion are 

neglected. The toroidal velocity and Couple acting on sphere are obtained for the case 

of resonance and non-resonance. The effect of physical parameters like Micro-

polarity and Couple stress parameter on the Couple due to oscillations is shown 

through graphs. 

Part III deals with Couple-stress fluid flows. It consists of five Chapters 7 to 11. The 

problems studied in this Part III are analogous to those studied in Part II with 

Couple-stress fluid replacing the Micro-polar fluid. 

Chapter VII : Rectilinear oscillations of a circular cylinder in a Couple-stress 

fluid.  

The flow due to a circular cylinder oscillating rectilinearly, about its axis of 

symmetry in a Couple-stress fluid is considered. In this case, the flow is analyzed 

under Stokesian approximation. The velocities in terms of stream function of the 

flow are obtained. The effect of physical parameters like Reynolds number and 

Couple stress parameter on the Drag is analyzed through graphs. 

Chapter VIII :Rotary oscillations of a circular cylinder in a Couple-stress fluid. 

The flow generated due to rotary oscillations of a circular cylinder about its 

axis of symmetry in an incompressible Couple-stress fluid is considered. The 

Oscillations Reynolds number is less than unity due to flow is very slow and hence 

nonlinear convective terms in the equations of motion are neglected. The velocity 

component for the flow derived. The Skin friction acting on the cylinder is 

evaluated and the effect of physical parameters like Reynolds number and Couple 

stress parameter on the Skin friction due to oscillations is shown through graphs. 

 

Chapter IX : Longitudinal oscillations of a circular cylinder in a Couple-stress 

fluid. The flow generated due to circular cylinder performing longitudinal 

oscillations along its axis of symmetry in a Couple-stress fluid is considered. 

Nonlinear convective terms in the equations of motion are neglected since the 

Oscillations Reynolds number is less than unity due to very slow flow. The velocity 
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components in terms of stream function for the flow are derived. The Skin friction 

and Drag acting on the cylinder are evaluated and the effect of physical parameters 

like Reynolds number and Couple stress parameter on the Skin friction and Drag is 

shown through graphs. 

Chapter X : Rectilinear oscillations of Sphere in a Couple-stress fluid. 

The present problem, the flow arising due to rectilinear oscillations of a 

sphere about its axis of symmetry in a Couple-stress fluid is considered. The flow is 

analyzed under Stokesian approximation by ignoring nonlinear convective terms on 

the assumption that the Oscillations Reynolds number is less than one. The velocity 

components in terms of stream function of the flow are derived. The Drag acting on 

the sphere evaluated and the effect of physical parameters like Reynolds number 

and Couple stress parameter on the Drag are shown through graphs. 

Chapter XI : Rotary oscillations of a sphere in a Couple-stress fluid. 

Incompressible Couple-stress fluid flow generated due to rotary oscillations 

of a sphere about the axis of symmetry of the sphere is considered. The flow is so 

slow that nonlinear convective terms in the equations of motion are neglected. The 

Couple on the sphere is evaluated. The effect of Couple stress parameter and 

geometric parameter on the Couple are presented through graphs. 

In all these chapters, the expressions for the velocity, micro-rotation for 

micropolar fluids and velocity field for Couple-stress fluids are obtained. The 

Drag/Couple/Skin friction is derived analytically and the effect of physical 

parameters like Reynolds number and Couple stress parameter on the Drag/Couple 

/Skin friction is studied graphically. It is observed that the Drag or Couple on the 

body will be a minimum in the case of resonance. 

 

Chapter XII : Conclusions. 

Finally, chapter twelve concentrates on the overall conclusions drawn with 

references to the problems discussed in the thesis. We also indicate the direction for 

possible future work. 
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Chapter  2 

Rectilinear oscillations of a Circular Cylinder in a 

Micro-polar fluid 

 

The flow of an incompressible Micro-polar fluid generated due to rectilinear 

oscillations of a circular cylinder about a diameter of the cylinder is considered. The 

flow is so slow that Reynolds number of the flow is less than unity and hence 

nonlinear convective terms in the equations of motion are neglected. A rare but 

distinct special case in which material constants satisfy a resonance condition is 

considered. The stream function and Drag acting on cylinder are obtained. The effect 

of physical parameters like Micro-polarity and Couple stress parameter on the Drag 

due to oscillations is shown through graphs. 

 

2.1 Introduction 

Several Stokes flow problems concerning Micro-polar fluids have been 

studied by researchers over the past a half a century ever since Eringen (1966) 

introduced the Micro-polar fluid theory. Eringen (1964) analysed simple Micro-polar 

fluids. Ariman (1970) studied fluids with micro-structures. Liu (1971) Initiated 

instability in Micro-polar Fluids. Stokes (1984) studied theories of fluids with micro-

structure Later on Lukaszewicz (1999) emphasized theory and applications of Micro-

polar Fluids. Lakshmana Rao et al. (1972, 1981, 1987) examined the oscillatory flows 

generated due to circular cylinder, spheroid and elliptic cylinder in Micro-polar fluids 

to determine the Drag or Couple on the oscillating body. The main thrust of the 

investigation being the determination of the Drag or Couple as the case may be on the 

oscillating body.  

Ravindran (1972) examined simple oscillatory flow in polar fluids. Oscillatory 

flows of circular cylinder in various fluids like Micro-polar fluids, Couple-stress 

fluids, viscous fluids were investigated by many authors Kanwal (1955), Ariman et al. 
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(1967), Frater (1968), Ramkissoon et al. (1990), Rao et al. (1992), Calmelet-Eluhu et 

al. (1998), Anwar et al. (2004), Fetecau et al. (2006), Mehrdad Massoudi et al. (2008), 

Ramana Murthy et al. (2010), Nagaraju et al. (2014) by computationally or 

analytically. Iyengar (2001) examined incompressible viscous fluid flow of 

approximate sphere is performing rectilinear oscillations. Lai (1978) investigated 

Drag on a sphere when the sphere rectilinearly oscillates in elastico-viscous fluid. 

However, in all these problems, a special case, which is branded as oscillatory 

flows of “Resonance” type that arise when the material parameters of the fluids are 

constrained in a particular form( to be stated later) have not been investigated. The 

rare but distinct possibility of resonance flows has been noticed by Lakshmana Rao et 

al. (1983, 1987). And the investigation, in this case, is mathematically more 

complicated than in the usual non-resonance type flows. 

In this chapter, we propose to investigate this case of resonance type flow, in 

Micro-polar fluids, due to rectilinear oscillations of a circular cylinder about its axis 

of symmetry.  Later on we discussed the similar problem of the Resonance type flow 

due to a circular cylinder in Couple-stress fluid. 

 

2.2 Basic Equations 

The field equations for velocity and micro-rotation of an incompressible Micro-polar 

fluid as derived by Eringen (1966) are given by: 

𝜕𝜌

𝜕𝜏
+  𝑑𝑖𝑣 𝜌𝑸 = 0                            (2.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄             (2.2) 

𝜌𝒥(
𝜕𝑙  

𝜕𝜏
+ 𝑄 . ∇1𝑙) = −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )      (2.3) 

where is time,   is density of the fluid,    is coefficient of viscosity, k is coefficient 

microviscosity,  J is micro-gyration coefficient and ,,  are coefficients of Couple 

stress viscosities. Q, l are vectors for velocity and micro-rotation vectors The 

constitutive equations for the stress components Tij and Couple stress components Mij 

for Micro-polar fluids are given by  
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𝑇𝑖𝑗 = −𝑃𝛿𝑖𝑗 +
1

2
 2𝜇 + 𝑘  𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 + 𝑘𝑒𝑖𝑗𝑟 (𝑤𝑟 − 𝑙𝑟)             (2.4) 

𝑀𝑖𝑗 = 𝑙𝑖,𝑖𝛿𝑖,𝑗 + 𝛽𝑙𝑖,𝑗 + 𝛾𝑙𝑗 ,𝑖                  (2.5) 

where the permutation tensor 𝑒𝑖𝑗𝑘 =  
 0
 1
−1

   if 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖
   if 𝑖, 𝑗, 𝑘 are cyclic              
  if 𝑖, 𝑗, 𝑘 are anti − cyclic

  

and wr = r th  component of ½( curl Q ). 

neglecting the nonlinear convective terms in (2.2) and (2.3), the linearised version of 

the equations are given by, 

𝑑𝑖𝑣𝑄 = 0                   (2.6) 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄               (2.7) 

𝜌𝒥
𝜕𝑙  

𝜕𝜏
= −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )            (2.8) 

 

2.3 Statement and Formulation of the Problem 

A circular cylinder of radius a and of infinite length is performing rectilinear 

oscillations with velocity 𝑈0𝒊𝑒
𝑖  about its diameter in an infinite vat containing 

incompressible Micro-polar fluid. A cylindrical coordinate system (𝑅,, 𝑍) with base 

vectors (𝒆𝑹, 𝒆, 𝒆𝒁) with origin on the axis of the cylinder is considered. Hence the 

fluid velocity will be in cross sectional planeof the cylinder containing the base 

vectors (𝒆𝑹, 𝒆). The velocity and micro-rotation are assumed in the form: 

 

 

U0eit 

ez 

Fig 2.1 Geometry of the oscillating cylinder 
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𝑸 = 𝑒𝑖𝜍𝜏 (𝑈 𝑅, 𝜃 𝒆𝑹 + 𝑉 𝑅, 𝜃 𝒆𝜽and 𝒍 = 𝑒𝑖𝜍𝜏𝒞 𝑅, 𝜃 𝒆𝒛             (2.9) 

The following non-dimensional scheme is introduced. 

 
R = 𝑎𝑟, U = U0𝑢, V = U0𝑣, 𝐐 = 𝐪U0 , 𝒞 =

C𝑈0

𝑎
,

𝒍 = 
𝑈0

𝑎
,  = U0𝑎, P = 𝑝U0

2 ,  =
at

U0

                     (2.10) 

The following are non-dimensional parameters viz,  j is gyration parameter,  is  

frequency parameter, s is Couple stress parameter, c is cross viscosity or Micro-

polarity parameter and Re is oscillations Reynolds number for Micro-polar fluids. 

𝐽 =
j 𝑎2


, 𝜛 =

𝑎σ

U0
, 𝑠 =

k𝑎2

γ
, 𝑐 =

k

μ+k
, ϵ =

α+β+γ

γ
, Re =

ρU0𝑎

𝜇
and𝑅0 =

𝜌U0𝑎

𝜇+𝑘
           (2.11) 

We can write 𝑅0 = 𝑅𝑒(1 − 𝑐) 

Substituting (2.9) in (2.1) we notice that stream function  can be introduced as 

𝑢 =
1

𝑟

𝜕𝜓

𝜕𝜃
  𝑎𝑛𝑑  𝑣 =  −

𝜕𝜓

𝜕𝑟
   i.e       𝒒 = ∇ × (𝜓𝒆𝑧)            (2.12) 

Using (2.9), (2.10), (2.11) in (2.7) and (2.8) we get 

𝑅0  
𝜕𝒒

𝜕𝑡
+ 𝑞 . ∇q  = −𝑅0 . ∇𝑝 + 𝑐 ∇ × 𝝊 − ∇ × ∇ × 𝒒           (2.12a) 

Because flow is very slow i.e.  𝑞  < 1,  ∇𝑞  < 1 which implies 𝑅0 𝑞 . ∇𝑞  ≪ 1. Hence 

nonlinear convective terms can be neglected. This assumption is called Stokesian 

approximation. Hence we get 

𝑅0
𝜕𝒒

𝜕𝑡
= −𝑅0. ∇𝑝 + 𝑐 ∇ × 𝝊 − ∇ × ∇ × 𝒒             (2.13) 

𝐽

𝝕

𝜕𝝊

𝜕𝑡
= −2𝑠𝝊 + 𝑠∇ × 𝒒 − ∇ × ∇ × 𝝊 + 𝜖∇(∇ ∙ 𝝊)            (2.14) 

We can write (2.13) and (2.14) as 

𝑖𝜛𝑅0𝒒 = −𝑅0 . ∇𝑝 + 𝑐 ∇ × 𝝊 − ∇ × ∇ × 𝒒             (2.15) 

𝑖𝐽𝝊 = −2𝑠𝝊 + 𝑠∇ × 𝒒 − ∇ × ∇ × 𝝊 + 𝜖∇(∇ ∙ 𝝊)            (2.16) 

Eliminating p from equation (2.15) and using (2.9) and (2.12) we get, 

𝑖𝜛𝑅0. ∇2 =  𝑐∇2𝐶 + ∇4               (2.17) 
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where ∇2=
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2               (2.18) 

Substituting (2.9) and (2.12) in (2.16) we get 

 2𝑠 + 𝑖𝐽 𝐶 =  ∇2𝐶 −  𝑠∇2               (2.19) 

Eliminating C from (2.18) and (2.19), we obtained an equation for stream function as 


2(2 – 1

2) (2 – 2
2)  = 0              (2.20) 

Where 𝜆1
2 + 𝜆2

2 =  2 − 𝑐 𝑠 + 𝑖(𝐽 + 𝜛𝑅0) and 𝜆1
2𝜆2

2 = 𝑖𝜛𝑅0(2𝑠 + 𝑖𝐽)                 (2.21) 

Using (2.18) and (2.19) 

𝑐(2𝑠 + 𝑖𝐽)𝐶 =– 4 +   𝑖𝜛. 𝑅0  –  𝑠𝑐 2             (2.22) 

Using (2.21) in (2.22), the equation for C can be re-written as 

𝑐𝐶 = −
𝑖𝜛𝑅0

𝜆1
2𝜆2

2 ∇
2 ∇2 − 𝜆1

2 − 𝜆2
2 𝜓 − ∇2𝜓             (2.23) 

The solution for  if 12 in (2.20) is given in Lakshmana Rao et al. (1971, 1972). 

The solution for  for the case,  1 =  2  cannot be obtained as a limiting case of  

1  →  2 . This case is referred to as “Resonance”. This resonance occurs if the 

material coefficients follow the following relation: 

𝛾

𝐽
=

 2𝜇+𝑘 (𝜇+𝑘)

2𝜇+3𝑘
and  𝜌𝜍 =

 2𝜇+𝑘 𝑘+𝛾𝜌𝜍

𝐽(𝜇+𝑘)
             (2.24) 

In non-dimensional form, these are given by 

(2 –  𝑐)𝑠 =  𝐽–  𝜛𝑅0 and (2 –  𝑐)𝐽 =  𝜛𝑅0(2 +  𝑐)            (2.25) 

In this chapter, we are interested in the solution for  for the case of resonance. 

We have the equation for stream function  as 

In the case of resonance: 

∇2 ∇2 – 2 
2
 = 0               (2.26a) 
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In the case on non-resonance: 


2(2 – 1

2) (2 – 2
2)  = 0            (2.26b) 

Th equation for the micro-rotation component C is as 

In the case of resonance: 

𝑐𝐶 = −
𝑖𝜛𝑅0

𝜆4 ∇2 ∇2 − 2𝜆2 𝜓 − ∇2𝜓             (2.27a) 

And in the case of non-resonance: 

𝑐𝐶 = −
𝑖𝜛𝑅0

𝜆1
2𝜆2

2 ∇
2 ∇2 − 𝜆1

2 − 𝜆2
2 𝜓 − ∇2𝜓                                                              (2.27b) 

2.3.1 Boundary Conditions 

The cylinder is oscillating in the direction of X-axis. Hence the non-dimensional 

velocity of the cylinder  after removing 𝑒𝑖𝜛𝑡  is given by 

𝒒  =  𝒊 =  𝑐𝑜𝑠𝒆𝑟–  𝑠𝑖𝑛𝒆  which implies by no-slip condition 

𝑢 =  𝑐𝑜𝑠 𝑎𝑛𝑑 𝑣 = – 𝑠𝑖𝑛 on r=1             (2.28) 

By hyper-stick condition   =
1

2
 curl 𝒒  

which gives 𝐶 = 0 𝑜𝑛 𝑟 = 1               (2.29) 

2.4 Solution of the Problem 

To match with the boundary conditions in (2.28) and (2.29), Stream function , 

micro-rotation component C are assumed in the form 

 =  𝑓(𝑟) 𝑠𝑖𝑛 and 𝐶 =  𝑔(𝑟) 𝑠𝑖𝑛              (2.30) 

Substituting (2.30) in (2.26a) and (2.26b) and cancelling 𝑠𝑖𝑛  we get 

In the case of resonance: 

𝐷𝑐
2 𝐷𝑐

2– 2 
2
𝑓 =  0               (2.31a) 

In the case on non-resonance: 
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𝐷𝑐
2(𝐷𝑐

2 – 1
2) (𝐷𝑐

2  – 2
2) 𝑓 = 0            (2.31b) 

Substituting (2.30) in (2.27a) and (2.27b) we get 

In the case of resonance: 

𝑐𝑔 = −
𝑖𝜛𝑅0

𝜆4 𝐷𝑐
2 𝐷𝑐

2 − 2𝜆2 𝑓 − 𝐷𝑐
2𝑓             (2.32a) 

In the case on non-resonance: 

𝑐𝑔 = −
𝑖𝜛𝑅0

𝜆1
2𝜆2

2 𝐷𝑐
2 𝐷𝑐

2 − 𝜆1
2 − 𝜆2

2 𝑓 − 𝐷𝑐
2𝑓           (2.32b) 

Where 𝐷𝑐
2 =

𝑑2

𝑑𝑟2 +
1

𝑟

𝑑

𝑑𝑟
−

1

𝑟2               (2.33) 

Substituting (2.30) in (2.28) and (2.29), the conditions on f and g are obtained as: 

𝑓(1)  = 𝑓 ′(1)  =  1 and 𝑔(1)  = 0              (2.34) 

Since the equation for f is linear, the general solution for f is linear combination of 

individual solutions of factors in the differential operator. Hence f is taken as 

𝑓 =  𝑎0𝑓0  +  𝑎1𝑓1  +  𝑎2𝑓2                 (2.34a) 

In the case of resonance: 

𝐷𝑐
2𝑓0  = 0,      𝐷𝑐

2– 2 𝑓1  =  0  and      𝐷𝑐
2– 2 

2
𝑓2  =  0          (2.35a) 

In the case of non-resonance: 

𝐷𝑐
2𝑓0  = 0,      𝐷𝑐

2– 1
2 𝑓1  =  0  and      𝐷𝑐

2– 2
2 𝑓2  =  0         (2.35b) 

On solving (2.35a) and (2.35b) the solution for f is obtained as  

In the case of resonance: 

𝑓 r =
a0

r
  +  a1K1(r) +  a2rK1(r)            (2.36a) 

In the case of non-resonance: 

𝑓 r =
a0

r
  +  a1K1(1r)  +  a2K1(2r)           (2.36b) 

The following results are useful to note. 
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In the case of resonance: 

𝐷𝑐
2𝑓1  =  2𝑓1  and 𝐷𝑐

2𝑓2  = (2𝑓1 +  2𝑓2)            (2.37a) 

In the case of non-resonance: 

Dc
2𝑓1  =  1

2𝑓1     andDc
2𝑓2  =  2

2𝑓2            (2.37b) 

Substituting  f  along with (2.37a) in (2.32a), for the case of resonance we get 

𝑐𝑔 =   a1 iϖR0 – 2 𝑓1 + a2 iϖR0  – 2 𝑓2  – 2a2𝑓1           (2.38a) 

Substituting  f  along with (2.37b) in (2.32b), for the case of non-resonance we get 

𝑐𝑔 =   a1 iϖR0 – 1
2 𝑓1 + a2 iϖR0  – 2

2 𝑓2                       (2.38b) 

The constants 𝑎0, 𝑎1, 𝑎2are obtained from the boundary conditions (2.34) as follows: 

In the case of resonance: 

 

1 𝐾1(𝜆) 𝐾′1(𝜆)

−1 𝜆𝐾′1(𝜆)
𝜆2+1

𝜆
𝐾1(𝜆)

0 (𝑖𝜛𝑅0 − 𝜆2)𝐾1(𝜆)  𝑖𝜛𝑅0 − 𝜆2 𝐾 ′
1 𝜆 − 2𝜆𝐾1(𝜆)

  

𝑎0

𝑎1

𝑎2

 =  
1
1
0
           (2,39a) 

In the case of non-resonance: 

 

1 𝐾1(𝜆1) 𝐾1(𝜆2)

−1 𝜆1𝐾
′
1(𝜆1) 𝜆2𝐾

′
1(𝜆2)

0 (𝑖𝜛𝑅0 − 𝜆1
2)𝐾1(𝜆1) (𝑖𝜛𝑅0 − 𝜆2

2)𝐾1(𝜆2)

  

𝑎0

𝑎1

𝑎2

 =  
1
1
0
         (2,39b) 

Hence from (2.36), (2.38) and (2.39) f and g are completely known and hence  and C 

are known. 

2.4.1 Pressure 

From equation (2.15) pressure is obtained as follows. 

𝑑𝑝 = 𝑝𝒅𝒓 =
𝜕𝑝

𝜕𝑟
𝑑𝑟 +

𝜕𝑝

𝜕𝜃
𝑑𝜃              (2.40) 

By comparing components in equation (2.15), we obtained 

𝜕𝑝

𝜕𝑟
= −

𝑖𝜛

𝑟

𝜕𝜓

𝜕𝜃
+

𝑐

𝑅0 .𝑟

𝜕𝐶

𝜕𝜃
+

1

𝑅0 .𝑟

𝜕

𝜕𝜃
 𝛻2𝜓              (2.41) 
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𝜕𝑝

𝜕𝜃
= 𝑟  𝑖𝜛

𝜕𝜓

𝜕𝑟
−

𝑐

𝑅0

𝜕𝐶

𝜕𝑟
−

1

𝑅0

𝜕

𝜕𝑟
 𝛻2𝜓               (2.42) 

Substituting (2.41) and (2.42) in (2.40), we get  

𝑑𝑝 =  −
𝑖𝜛

𝑟

𝜕𝜓

𝜕𝜃
+

𝑐

𝑅0 .𝑟

𝜕𝐶

𝜕𝜃
+

1

𝑅0 .𝑟

𝜕

𝜕𝜃
 𝛻2𝜓  𝑑𝑟 + 𝑟  𝑖𝜛

𝜕𝜓

𝜕𝑟
−

𝑐

𝑅0

𝜕𝐶

𝜕𝑟
−

1

𝑅0

𝜕

𝜕𝑟
 𝛻2𝜓  𝑑𝜃  

𝑑𝑝 =
1

𝑅0
  −𝑖𝜛𝑓 + 𝐷𝑐

2𝑓 + 𝑐𝑔 𝑐𝑜𝑠𝜃
𝑑𝑟

𝑟
+ 𝑟

𝑑

𝑑𝑟
 𝑖𝜛𝑓 − 𝐷𝑐

2𝑓 − 𝑐𝑔 𝑠𝑖𝑛𝜃 𝑑𝜃           (2.43) 

Integrating on both sides of (2.43), we obtained pressure in non-dimensional form as 

𝑝 =
𝑖𝜛𝐴0

𝑟
𝑐𝑜𝑠𝜃                (2.44) 

2.4.2 Drag acting on the Cylinder per length L 

Drag= 𝐷∗ = 𝑎𝐿  𝑇∗𝑟𝑟 𝑐𝑜𝑠𝜃 − 𝑇∗𝑟𝜃 𝑠𝑖𝑛𝜃 
2𝜋

0
  𝑅=𝑎𝑑𝜃           (2.45) 

Required tress components are obtained as follows: 

Strain rate tensor = 𝐸 =  𝑒𝑖𝑗  =
1

2
 [∇𝑄 + ∇𝑄 𝑇] 

We get strain rate tensor for this problem as 

𝐸 =  

𝜕𝑈

𝜕𝑅

1

2
 
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝜃
−

𝑉

𝑅
 0

1

2
 
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝜃
−

𝑉

𝑅
 

1

𝑅
 
𝜕𝑉

𝜕𝜃
+ 𝑈 0

0 0 0

             (2.46) 

Substituting required terms in (2.4), we get the stress components as 

𝑇𝑅𝑅 = −𝑃 +  2𝜇 + 𝑘 
𝜕𝑈

𝜕𝑅
               (2.47) 

𝑇𝑅𝜃 =  𝜇 + 𝑘 
𝜕𝑉

𝜕𝑅
+

𝜇

𝑅

𝜕𝑈

𝜕𝜃
− 𝜇

𝑉

𝑅
− 𝑘𝐶              (2.48) 

Stress components in non-dimensional form as 

𝑇𝑟𝑟 =
 𝜇+𝑘 𝑈0

𝑎
 −𝑝𝑅0 +  2 − 𝑐  

1

𝑟

𝜕2𝜓

𝜕𝑟𝜕𝜃
−

1

𝑟2

𝜕𝜓

𝜕𝜃
              (2.49) 

𝑇𝑟𝜃 =
 𝜇+𝑘 𝑈0

𝑎
  𝑐 − 2 

𝜕2𝜓

𝜕𝑟2 +  1 − 𝑐 ∇2𝜓 − 𝑐𝐶             (2.50) 
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Substituting (2.49) and (2.50) in (2.45) we get the Drag D
*
acting on the cylinder 

(without the factor eit  ) is given as 

𝐷∗ = 𝐿 𝜇 + 𝑘 𝑈0𝑖𝜛. 𝑅0𝜋(1 − 2𝑎0)              (2.51) 

Dividing D
*
 by L(+k)U0 ,hence the non-dimensional Drag D is given by 

𝐷 =  𝑅𝑒𝑎𝑙{𝑖𝜛. 𝑅0 . 1 –  2𝑎0 𝑒
𝑖𝑡  }              (2.52) 

 

2.5 Results and Discussions 

The values of  are obtained from (2.21) by solving the following equation for x 

𝑥2 – [(2 –  𝑐)𝑠 + 𝑖(𝐽 + 𝜛𝑅0)]𝑥 +  𝑖𝜛𝑅0(2𝑠 + 𝑖𝐽)  =  0           (2.53) 

Then for resonance case 

 =  x  =
1

 2
  2 –  𝑐 𝑠 + i 𝐽 + 𝜛R0              (2.54) 

This involves 5 parameters which are related by two equations in (2.25). 

Hence we choose three parameters as independent. Here  𝜛, 𝑅0 and c are selected 

independently, with 0≤ c ≤ 1, Re≪1 and ≫1 such that 𝜛. 𝑅0 is not negligibly small 

(say>1). After selecting c, 𝑅0 𝑎𝑛𝑑 𝜛, the values of s and J are obtained from (2.25) 

and then  is obtained from (2.54).  The values of  are complex. These values for  

are substituted in (2.39a), (2.39b) and the constants 𝑎0 , 𝑎1  𝑎𝑛𝑑 𝑎2 are obtained. Then 

the stream function , micro-rotation component C and Drag D are obtained from 

(2.36), (2.38) and (2.52) respectively for both resonance and non-resonance cases. 

Thus obtained  will have complex values. To get the physical picture, these values 

are multiplied by e
it

 and its real part is taken. 

2.5.1 Drag  

From Fig 2.2, it is observed that as c increases Drag decreases for resonance 

and for non-resonance. But as || increases, Drag increases in vide range between 30 

to 400 for resonance and decreases in small interval between 36 to 44 for non-

resonance. 
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(a) 

(b) 

Fig 2.2 Drag Vs || at different values of c for the case of  a) resonance 

and b) non-resonance 

D
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(a) 

(b) 

Fig 2.3 Drag Vs Couple stress parameter s for the case of  a) resonance 

and b) non-resonance 

D
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From Fig 2.3, we observe that as s increases Drag increases for resonance and 

non-resonance. But for resonance this variation of Drag is from 30 to 700 and non-

resonance it is in a small interval between 230 to 235. 

2.5.2 Stream Function 

By looking the stream function f, in Fig 2.4, it is observed that the function is 

not effected by variation in s for non-resonance. But as s increases, stream function 

values decreases. From Fig 2.4 it is observed that for resonance, the peak is little 

lower to the peak corresponding to non-resonance and effect of s is clearly apparent. 

But for non-resonance, effect of s is not noticeable on stream function. As s increases, 

stream function values are decreasing. 

From Fig 2.5, we note that the variation c is not noticeable for resonance. But 

for non-resonance, as c increases stream function values decreases along distance 

from 1.5 to 3.5 and stream function takes larger values for non-resonance at the 

corresponding distances. 

In Fig 2.6, the contours for stream function are shown. As c increases, the 

values of stream function are increasing and the region of circulations becomes larger. 

But for non-resonance this region of circulations is still wider. 

 

 

 

 

 

 

 



35 
 

 

 

 

 

 

(a) 

(b) 

Fig 2.4 Stream function f at different values of s for the case of  

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 2.5 Stream function at different values of c for the case of  

a) resonance and b) non-resonance 



37 
 

 

 

 

 

 

(a) 

(b) 

Fig 2.6 Contours for stream function for the case of  a) resonance 

and b) non-resonance 
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Fig 2.7 Flow pattern at different times over a half time period for non-resonance 

Fig 2.8 Stream lines at different values of Reynolds numbers Re for non-resonance 

 

Fig 2.9 The flow pattern for different values of cross viscosity parameter c 
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From Fig 2.7, we note that as at lower times a small circulation symmetric to 

the line joining the poles is found. But as time increases, this region of circulations 

near the cylinder disappears.  

From Fig 2.8, it is observed that as Reynolds number increases, flow 

circulation near the cylinder decreases and disappears and merges into a second 

circulation zone. 

From Fig 2.9, it is obsereved that the variation in cross viscosity parameter c 

for small values <0.6 does not effect much the flow paterren. But as c 1, the flow is 

sensitive to the values of c. In this case as c is increasing, the first zone of circulation 

decreases and second zone of circulations comes near to the cylinder. 

Physical Reasoning:   

As c→0 and s→∞, we get Newtonian case. In the case of resonance c and s 

are connected by relation such that stream function gets lower values and hence it 

offers less force and hence by Drag is less. In the case of non-resonance c and s are 

independent and Stream function gets larger values and Drag gets high values 

2.6 Conclusions 

From the above observations, we conclude that 

i) Drag in the case of resonance, is more than the case of non-resonance.  

ii) Stream function in non-resonance has more circulations on the pole with 

wider region of circulations. 

iii) In the non-resonance, as Reynolds number increases, the circulation 

regions near to the cylinder decrease and become thinner. 
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Chapter  3 

Rotary oscillations of a Circular Cylinder in a  

Micro-polar fluid 

 

The flow generated due to rotary oscillations of a circular cylinder about its 

axis of symmetry in a Micro-polar fluid is considered. By taking Stokesian 

assumptions, nonlinear convective terms of motion are dropped. In this situation, 

there arises a rare particular special case when material constants satisfy a condition 

referred to as resonance. The flow field for velocity and micro-rotation components is 

investigated. The Skin friction acting on the cylinder is evaluated and the effects of 

Micro-polarity and Couple stress parameter on the Skin friction are presented in the 

form of graphs.  It is observed that for a Micro-polarfluid when the material 

constantssatisfy the resonance condition, the Skin friction reduces to a minimum. 

 

3.1 Introduction 

Many authors analysed oscillatory flows of different symmetric bodies like 

circular cylinder, sphere, spheroid, approximate sphere performing rotary oscillations 

in various non-Newtonian fluids. For example, Tekasakul et al. (1998, 2003), Iyengar 

et al. (2001, 2004), Anwar et al. (2004), Ashmawy (2015). In the pioneering works of 

Lakshmana Rao et al.(1972, 1983, 1987), flows generated due to oscillations of 

circular cylinder, spheroid and elliptic cylinder in Micro-polar fluids were analyzed. 

The aim of their analysis was to determine the Drag or Couple, as the case may be, 

acting on the oscillating body. Nevertheless in all these situations, as far as authors 

know, a special case, referred to as “Resonance type flow”( which will be defined in 

section3) has not been investigated till now. This type of flows can arise on every 

occasion when the flow is generated by oscillations in a non-Newtonian fluid.  For 

example, this case of resonance can be observed in the papers Lakshmana Rao et al. 

(1971, 1972, 1983, 1987), Ramana Murthy et al. (2011), Aparna et al. (2012), 
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Nagaraju et al. (2014). But in these papers, the case of resonance was not studied by 

the authors. Oscillatory flows of circular cylinder in various fluids were studied by 

many authors like Frater (1968), Lakshmana rao (1972). Ramkissoon et al. (1990), 

Rao et al. (1992), Calmelet-Eluhu et al. (1998), Anwar (2004), Fetecau et al. (2006), 

Mehrdad Massoudi et al. (2008), Ramana Murthy et al. (2010).  

The aim of the present chapter is to study the flow due to circular cylinder 

performing rotary oscillations in a Micro-polar fluid when the material resonance 

occurs. These results may be useful in conducting experiments to examine rheological 

properties of Micro-polar fluids. 

 

3.2 Basic Equations 

The field equations for velocity and micro-rotation of an incompressible Micro-polar 

fluid as derived by Eringen (1966) are given by: 

𝜕𝜌

𝜕𝜏
+  𝑑𝑖𝑣 𝜌𝑸 = 0                  (3.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄             (3.2) 

𝜌𝒥(
𝜕𝑙  

𝜕𝜏
+ 𝑄 . ∇1𝑙) = −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )      (3.3) 

where is time,   is density of the fluid,    is coefficient of viscosity, k is coefficient 

microviscosity,  J is micro-gyration coefficient and ,,  are coefficients of Couple 

stress viscosities. Q, l are vectors for velocity and micro-rotation vectors The 

constitutive equations for the stress components Tij and Couple stress components Mij 

for Micro-polar fluids are given by  

𝑇𝑖𝑗 = −𝑃𝛿𝑖𝑗 +
1

2
 2𝜇 + 𝑘  𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 + 𝑘𝑒𝑖𝑗𝑟 (𝑤𝑟 − 𝑙𝑟)             (3.4) 

𝑀𝑖𝑗 = 𝑙𝑖,𝑖𝛿𝑖,𝑗 + 𝛽𝑙𝑖,𝑗 + 𝛾𝑙𝑗 ,𝑖                  (3.5) 

where the permutation tensor𝑒𝑖𝑗𝑘 =  
 0
 1
−1

   if 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖
   if 𝑖, 𝑗, 𝑘 are cyclic              
  if 𝑖, 𝑗, 𝑘 are anti − cyclic

  

andwr = r th  component of ½(curl Q).  
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Neglecting the nonlinear convective terms in (3.2) and (3.3), the linearised version of 

the equations are given by, 

𝑑𝑖𝑣𝑄 = 0                   (3.6) 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄               (3.7) 

𝜌𝒥
𝜕𝑙  

𝜕𝜏
= −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )            (3.8) 

 

3.3 Statement and Formulation of the Problem 

An infinite circular cylinder of radius a is under torsional (rotary) oscillations 

with velocity 𝑉0𝒆𝑒
𝑖 about its axis of symmetry in an incompressible Micro-polar 

fluid. A polar coordinate frame (𝑅, , 𝑍) with origin on the axis of the cylinder and 

with base vectors (𝒆𝑹, 𝒆, 𝒆𝑧)  is taken. The flow is two dimensional and is 

independent of Z coordinate. Hence the velocity field is in the plane of the base 

vectors (𝒆𝑹, 𝒆). Micro-rotation will be parallel to 𝒆𝒛  ( in general will be parallel to 

curl q). Hence the vectors for velocity and micro-rotation are assumed in the form: 

 

 

𝑸 = 𝑉 𝑅 𝒆𝜽𝒆
𝑖𝜍𝜏  and 𝒍 = 𝒞 𝑅 𝒆z𝒆

𝑖𝜍𝜏                (3.6) 

The following non-dimensional scheme is taken. Physical quantities are on left 

handside with capitals. The non-dimensional variables are in small letters on RHS. 

Fig 3.1 Geometry of the oscillating cylinder 
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R = 𝑎𝑟, V =  𝑣𝑉0 , 𝐐 =  𝐪V0, 𝒞 =  C𝜍, 𝒍 =  

P =  𝑝V0
2 , P0 = 𝑝0V0

2    and   =
𝑎𝑡

V0

                          (3.7) 

The non-dimensional parameters viz,  j is gyration parameter, 𝜛  is frequency 

parameter, s is Couple stress parameter, c is cross viscosity or Micro-polarity 

parameter, R0 is oscillations Reynolds number for Micro-polar fluids and Re is the 

usual Reynolds number are defined below. 

𝐽 =
j 𝑎2


, 𝜛 =

𝑎σ

v0
, 𝑠 =

k𝑎2

γ
,   𝑐 =

k

μ+k
,   Re =

ρv0𝑎

𝜇
and𝑅0 =

𝜌v0𝑎

𝜇+𝑘
            (3.8) 

By substituting velocity and micro-rotation vectors of (3.6) in the equation (3.7), we 

get  

𝑖𝜍𝜌𝑉 = −
𝑃0

𝑅
− 𝑘

 𝜕𝒞

𝜕𝑅
+  𝜇 + 𝑘 𝐷∗

𝑐
2𝑉                (3.9) 

where P0 constant pressure gradient along  direction. 

And 𝐷∗
𝑐
2 =

𝑑2

𝑑𝑅2 +
1

𝑅 

𝑑

𝑑𝑅
−

1

𝑅2                (3.10) 

Similarly equation (3) simplifies (3.8) 

 𝑖𝜍𝜌𝐽 + 2𝑘 𝒞 =
𝑘

𝑅

𝜕

𝜕𝑅
 𝑅𝑉 + 𝛾(𝐷∗

𝑐
2𝒞 +

𝒞

𝑅2)             (3.11) 

Using non dimensional schemes (3.7) and (3.8) in (3.9) and (3.11) we get 

𝑖𝜛𝑅0𝑣 = −
𝑅0𝑝0

𝑟
− 𝑐

𝜕𝐶

𝜕𝑟
+ 𝐷𝑐

2𝑣              (3.12) 

 𝑖𝐽 + 2𝑠 𝐶 =
𝑠

𝑟

𝜕

𝜕𝑟
 𝑟𝑣 + 𝐷𝑐

2𝐶 +
1

𝑟2 𝐶              (3.13) 

Where 𝐷𝑐
2 =

𝑑2

𝑑𝑟2 +
1

𝑟 

𝑑

𝑑𝑟
−

1

𝑟2               (3.14) 

From (3.12) 𝑐𝐶 ′ =  𝐷𝑠
2 − 𝑖𝜛𝑅0 𝑣 −

𝑅0𝑝0

𝑟
             (3.15) 

Eliminating C from (3.12) and (3.13) we get 

 𝐷𝑐
2 − 𝜆1

2  𝐷𝑐
2 − 𝜆2

2 𝑣 = − 𝑖𝐽 + 2𝑠 𝑅0
𝑝0

𝑟
             (3.16) 

Where 𝜆1
2 + 𝜆2

2 =  2 − 𝑐 𝑠 + 𝑖(𝐽 + 𝜛𝑅0)  and   𝜆1
2𝜆2

2 = 𝑖𝜛𝑅0(2𝑠 + 𝑖𝐽)          (3.17) 
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The solution for v if  12 in (3.16) is given in Lakshmana Rao (1971). The solution 

for v for the case, 1 =  2cannot be obtained as a limiting case of 1  →  2. This 

case 1 =  2   is called as “Material Resonance” or simply as “Resonance”. This 

situation occurs if the material constants (coefficients) satisfy the relation given by 

𝛾

𝑗
=

 2𝜇+𝑘 (𝜇+𝑘)

2𝜇+3𝑘
and    𝜌𝜍 =

 2𝜇+𝑘 𝑘+𝛾𝜌𝜍

𝑗 (𝜇+𝑘)
             (3.18) 

The same equations in non-dimensional form are given by 

 2 − 𝑐 𝑠 = 𝐽 − 𝑅0𝜛  𝑎𝑛𝑑   2 − 𝑐 𝐽 = (2 + 𝑐)𝜛𝑅0            (3.19) 

Our interest is to obtainv when resonance occurs. In this situation, the velocity v is 

given by 

 𝐷𝑐
2  – 2 

2
𝑣 = –  2𝑠 + 𝑖𝐽 𝑅0

𝑝0

𝑟
             (3.20a) 

For the case of non-resonance 

 𝐷𝑐
2 − 𝜆1

2  𝐷𝑐
2 − 𝜆2

2 𝑣 = − 𝑖𝐽 + 2𝑠 𝑅0
𝑝0

𝑟
           (3.20b) 

Micro-rotation C is obtained interms of v from (3.12) and (13) as below. 

𝑐 𝑖𝐽 + 2𝑠 𝐶 =
1

𝑟

𝑑

𝑑𝑟
  𝑟𝐷𝑐

2𝑣 +  𝑐𝑠 − 𝑖𝜛𝑅0 𝑟𝑣             (3.21) 

From (3.17), we note that for non-resonance 

2𝑠 + 𝑖𝐽 =
𝜆1

2𝜆2
2

𝑖𝜛𝑅0
    𝑎𝑛𝑑 𝑖𝑅0𝜛 − 𝑐𝑠 = 𝜆1

2 + 𝜆2
2 −

𝜆1
2𝜆2

2

𝑖𝑅0𝜛
            (3.21a) 

and for resonance,  

2𝑠 + 𝑖𝐽 =
𝜆4

𝑖𝜛𝑅0
    𝑎𝑛𝑑 𝑖𝑅0𝜛 − 𝑐𝑠 = 2𝜆2 −

𝜆4

𝑖𝑅0𝜛
            (3.21b) 

Hence             𝐷𝑐
2 − 𝜆1

2  𝐷𝑐
2 − 𝜆2

2 𝑣 = −
𝜆4

𝑖𝜛

𝑝0

𝑟
 

𝑐𝐶 = −
𝜆4

𝑖𝜛𝑅0
 
𝑑

𝑑𝑟
+

1

r
 [𝐷𝑐

2𝑣 − 2𝜆2𝑣] −  
𝑑

𝑑𝑟
+

1

r
 𝑣            (3.21c) 

3.3.1 Boundary Conditions 

The usual no-slip condition for velocity is taken on the surface of the circular 

cylinder.  

𝑜𝑛   ( 𝑖. 𝑒 𝑟 = 1), 𝑣 = 1               (3.22) 
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By hyper-stick condition for micro-rotation component C on   is given by,  

𝐶  =
1

2
𝐶𝑢𝑟𝑙 𝑸  along z direction, which yields that  

𝑜𝑛   (𝑖. 𝑒  𝑟 = 1),    𝐶 = 1               (3.23) 

 

3.4 Solution of the Problem 

Velocity v is obtained in the form 

𝑣 =  𝑎1𝑣1 + 𝑎2𝑣2 −
𝑝0

𝑟𝑖𝜛
               (3.24) 

where, for resonance,   𝐷𝑐
2 − 𝜆2 𝑣1 = 0 and     𝐷𝑐

2 − 𝜆2 2𝑣2 = 0          (3.25a) 

and for non-resonance,  𝐷𝑐
2 − 𝜆1

2 𝑣1 = 0 and 𝐷𝑐
2 − 𝜆2

2 𝑣 = 0        (3.25b) 

(3.25a) will yields the solutions as for the case of resonance, 

𝑣1 =  𝐾1(𝜆𝑟) and 𝑣2 =  𝑟𝐾1
′(𝜆𝑟)             (3.26a) 

(3.25b) will yields the solutions as for the case of non-resonance, 

𝑣1 =  𝐾1(𝜆1𝑟) and 𝑣2 =  𝐾1(𝜆2𝑟)            (3.26b) 

The results given below are important to observe. 

In the case of resonance: 

Dc
2𝑣1  =  2𝑣1    and   Dc

2𝑣2  =   2 𝑣1  +  2𝑣2           (3.27a) 

In the case of non-resonance: 

Dc
2𝑣1  =  1

2𝑣1    andDc
2𝑣2  =  2

2𝑣2                 (3.27b) 

From (3.21), micro-rotation is given by 

In the case of resonance: 

𝜆4

𝑖𝜛𝑅0
𝑐𝐶 =  

𝑑

𝑑𝑟
+

1

r
   

𝜆4

𝑖𝜛𝑅0
− 𝜆2 𝑣 + 𝑎22𝜆𝑣1            (3.28a) 
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For the case of resonance, this reduces to: 

𝑐𝐶 =  
𝑖𝑅0𝜛

𝜆2
− 1  𝑎1𝜆𝐾0 𝜆𝑟 − 𝑎2

1 + 𝜆2𝑟2

𝜆𝑟
𝐾1 𝜆𝑟  − 𝑎2

2𝑖𝑅0𝜛

𝜆2
𝐾0(𝜆𝑟) 

In the case of non-resonance: 

𝑐𝐶 = −{𝑎1  
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
− 𝜆2

2 𝜆1𝐾0(𝜆1𝑟) + 𝑎2  
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
− 𝜆1

2 𝜆2𝐾0(𝜆2𝑟)        (3.28b) 

The coefficients  𝑎1  , 𝑎2 are obtained with the help of boundary conditions (3.22) and 

(3.23) as below  

In the case of resonance: 

 
𝐾1(𝜆) 𝐾1

′(𝜆)

𝑐0𝜆𝐾0(𝜆) −
 1+𝜆2 

𝜆
𝐾1 𝜆 − 2𝜆2𝐾0(𝜆)

  
𝑎1

𝑎2
 =  

1 +
𝑝0

𝑖𝜛

𝑐𝜆2

𝑖𝜛𝑅0−𝜆
2

           (3.29a) 

In the case of non-resonance: 

 
𝐾1(𝜆1) 𝐾1(𝜆2)

 1 −
𝜆1

2

𝑖𝜛𝑅0
 𝜆2𝐾0(𝜆1)  1 −

𝜆2
2

𝑖𝜛𝑅0
 𝜆1𝐾0(𝜆2)

  
𝑎1

𝑎2
 =  

1 +
𝑝0

𝑖𝜛

𝑐𝜆1
2𝜆2

2

𝑖𝜛𝑅0

         (3.29b) 

Hence from (3.29) we can calculate 𝑎1 𝑎𝑛𝑑 𝑎2  and hence velocity v and micro-

rotation C are known. 

3.4.1 Skin friction acting on the cylinder per length L 

Skin friction acting on the circular cylinder is 

𝑐𝑓 =
2𝑇𝑟𝜃

𝜌𝑉0
2                  (3.30) 

𝑇𝑟𝜃  is obtained as follows 

From (3.4), for Micro-polar fluids stress component is 

𝑇𝑖𝑗 = −𝑃𝛿𝑖𝑗 +
1

2
 2𝜇 + 𝑘  𝑞𝑖,𝑗 + 𝑞𝑗 ,𝑖 + 𝑘𝑒𝑖𝑗𝑟 (𝑤𝑟 − 𝑙𝑟) 
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In cylindrical co-ordinate system,  

𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 =

 
 
 
 
 2

𝜕𝑈

𝜕𝑅

𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅
−

𝑉

𝑅

𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅
−

𝑉

𝑅

2

𝑅
 𝑈 +

𝜕𝑉

𝜕𝜃
 

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍

𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍
2
𝜕𝑊

𝜕𝑍  
 
 
 
 

           (3.31) 

For this present problem, 𝑢𝑖 ,𝑗 + 𝑢𝑗 ,𝑖 =  

0
𝜕𝑉

𝜕𝑅
−

𝑉

𝑅
0

𝜕𝑉

𝜕𝑅
−

𝑉

𝑅
0 0

0 0 0

           (3.32) 

Substituting (3.32) in (3.4) we get 

𝑇𝑅𝜃 =  𝜇 + 𝑘 
𝜕𝑉

𝜕𝑅
− 𝜇

𝑉

𝑅
− 𝑘𝐶               (3.33) 

By using non-dimensional scheme (3.7) and (3.8), we get 

𝑇𝑟𝑧 =
 𝜇+𝑘 𝑉0

𝑎
 
𝑑𝑣

𝑑𝑟
−  1 − 𝑐 

𝑣

𝑟
− 𝑐𝐶 𝑒𝑖𝜛𝑡              (3.34) 

Substituting (3.34) in (3.30), the Skin friction acting on the circular cylinder (after 

removing the factor e
it

) is obtained as 

𝑐𝑓 =
2

𝑅0
 
𝑑𝑣

𝑑𝑟
− 1                 (3.35) 

which for the case of resonance gives 

𝑐𝑓 =
2

𝑅0
 𝑎1𝜆𝐾1

′ 𝜆 + 𝑎2
 1+𝜆2 

𝜆
𝐾1 𝜆 +

𝑝0

𝑖𝜛
− 1            (3.36a) 

and the case of  non-resonance case, 

𝑐𝑓 =
2

𝑅0
 a1𝜆1𝐾1

′ 𝜆1 + a2𝜆2𝐾1
′ 𝜆2 +

𝑝0

𝑖𝜛
− 1            (3.36b) 

 

3.5 Results and Discussions 

 In the case of material resonance, the value of cannot be assumed randomly. 

In this case, the values of  are obtained from (3.17) by solving the following 

equation for x. 
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𝑥2 − [ 2 − 𝑐 𝑠 + 𝑖 𝑗 + 𝜛𝑅0) 𝑥 + 𝑖𝜛𝑅0 𝑖𝑗 + 2𝑠 = 0           (3.37) 

Hence the values of  for resonance are given by 

𝜆 =  𝑥 =  
(2−𝑐)𝑠+𝑖 𝑗+.𝑅0 

2
               (3.38) 

The above equation (3.37) consists of 5 parameters related by two equations as 

in (3.19). Hence three parameters can be chosen arbitrary, i.e. independent. Here  𝜛, 

R0 and c are taken arbitrarily, with  0≤ c≤1 ,  R0≪1 and 𝜛≫1 so that ϖ.R0 is not 

negligibly small (say>1). With this choice of values of R0, the convective terms can 

be neglected by keeping local time derivative as it is. By assuming the values of c, R0 

and 𝜛, the values of s and J are obtained from (3.19) and then the value of  is 

obtained from (3.38). In the case of non-resonance, all 5 parameters are independent.  

The values of the constants a1 and a2 are obtained by substituting the values of 

(complex in general) in (3.38). The solutions obtained here are in agreement with the 

results of [10] as a special case when the longitudinal oscillations are not present. It 

can be noted that the case of resonance will not occur for viscous fluids. 

By keeping || fixed, the restriction on the parameters c, s increases. We can 

observe from the Fig 3.2 that the values of s for the case of resonance are much 

smaller than the case of non-resonance for a particular || value. 

3.5.1 Skin friction 

Skin friction (after removing the oscillation factor  e
iσt

) acting on the surface 

of the cylinder is shown in Fig 3.3 and 3.4. From Fig 3.3, we note that when the 

Reynolds number R0 is small, Skin friction is high and as R0 increases Skin friction 

drastically decreases. Again the Skin friction for non-resonance case is much higher 

the Skin friction in the case of resonance. From Fig 3.4, when || is fixed, in the case 

of non-resonance, the Skin friction is very high and is almost a constant for a given 

cross viscosity parameter c. But in the case of resonance, the skin fiction increases as 

|| increases. Whether || is fixed or not, in any case, the Skin friction for the case of 

resonance is much less than the case of non-resonance. This is one important 

observation which may be useful for industrial applications. By varying the 

concentration of additives, the material parameters can be adjusted in such way that 

resonance case can be created and Skin friction on the surfaces can be reduced 

drastically. 
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3.5.2 Velocity 

Velocity profiles (after removing the oscillation factor e
iσt

) are shown in the 

Fig 3.5 and Fig 3.6.  In Fig 3.5, it is observed that the variation in velocity is very 

negligible with respect to the case of non-resonace, i.e the velocity field is almost 

same for the case of resonance and non-resonance. But we can observe that in both 

cases as Reynolds number increases, velocity increases. But from Fig 3.6, it can be 

observed that the velocity is numerically much higher in case of non-resonance than 

in the case of resonance.  This may be reason that Skin friction is high in the case of 

non-resonance. 

3.5.3 Micro-rotation 

From Fig 3.7, it can be observed that in the case of non-resonance, micro-

rotation near to the cylinder is more than one and decreases to a minimum and then 

goes to zero as distance r increases. But in the case of resonance, micro-rotation never 

exceeds one and decreases as Reynolds number increases and goes to zero very fast. 

In Fig 3.8, it can be observed that, in the case of non-resonance, micro-rotation shoots 

up near to the surface of the cylinder when || is fixed. But in the case of resonance, 

micro-rotation drastically decreases as || increases and vanishes very near to the 

surface. This may be reason that Skin friction is much smaller in the case of 

resonance. 
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Fig 3.2 Couple-stress parameter s Vs length ( or geometric) parameter 

|| in the the case of (a)  resonance and (b) non- resonance. 
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Fig 3.3 Skin friction Vs Reynolds number in the the case of (a)  resonance 

and (b) non- resonance. 
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Fig 3.5 Real value of velocity Vs distance r at different Reynolds 

numbers for the case of  (a)  resonance  and  (b) non- resonance. 
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Fig 3.7 Real part of Micro-rotation at different values of Reynolds 

numbers for the case of (a)  resonance  and  (b) non- resonance. 
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Fig 3.8 Real part of Micro-rotation at different values of length 
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3.6 Conclusions 

In this chapter, rotary oscillations of a circular cylinder about its axis in an 

incompressible micro-polar fluid are considered, when the physical parameters satisfy 

a “resonance” condition. Clearly there is much difference between the case of non-

resonance and resonance. It is observed that (after removing the oscillation factor e
iσt

). 

1. Skin friction is much smaller in the case of resonance than in the case of non-

resonance. 

2. The velocity field is similar in the case of non-resonance and resonance. 

3. The micro-rotation field vanishes quickly near to the surface in the case of 

resonance. But in the case of non-resonance, micro-rotation shoots up near to 

the cylinder. 
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Chapter  4 

Longitudinal oscillations of a Circular Cylinder in 

Micro-polar fluid 

 

The problem of the longitudinal oscillations of a circular cylinder along its 

axis of symmetry in an incompressible Micro-polar fluid and the flow generated due 

to these oscillations in the fluid is considered. The Stokes flow is considered by 

neglecting nonlinear convective terms in the equations of motion on the assumption 

that the flow is so slow that Reynolds number is less than unity. Here we get a rare, 

but distinct special case referred to as resonance in which material constants are 

inter related in a particular way.  The velocity and micro-rotation components of the 

flow for the case of resonance and non-resonance are obtained. The Skin friction 

acting on the cylinder is evaluated and the effect of physical parameters like Micro-

polarity and Couple stress parameter on the Skin friction due to oscillations is 

shown through graphs. 

 

 

4.1 Introduction 

There is a vast literature available on Stokesian flows generated in Micro-

polar fluids over the past half a century ever since the classical theory of Micro-polar 

fluids was formulated by Eringen (1966). Ariman (1967, 1970) studied Micro-polar 

fluid flows between two concentric cylinders and fluids with micro-structures. 

Eringen (1964, 1990) studied theory of simple Micro-polar fluids, theory of thermo-

microstretch fluids and bubbly liquids. Liu (1971) initiated instability in Micro-polar 

fluids. Ramkissoon (1976, 1977) examined Micro-polar fluid flow of axially 

symmetric body. Ravidran (1972) studied simple oscillatory flows in polar fluids. 

Later Vijay Kumar Stokes (1984) explained the theories of fluids with micro-

structures in this book. Oscillatory flows of circular cylinder in various fluids were 

studied by many authors like Frater (1968), Lakshmana rao (1972). Ramkissoon et al. 
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(1990), Rao et al. (1992), Calmelet-Eluhu et al. (1998), Anwar (2004), Fetecau et al. 

(2006), Mehrdad Massoudi et al. (2008), Ramana Murthy et al. (2010). 

With the aim of obtaining Drag or Couple, Lakshmana Rao et al. in (1971, 

1972, 1983, 1987) studied the oscillatory flows in the case of a circular cylinder, 

sphere, spheroid and elliptic cylinder in incompressible Micro-polar fluids. However, 

in all these above problems, a special case, named as “Resonance” type flow that 

arises when the material parameters of the fluids are related in a special form (will be 

defined later) have not been investigated until recently. The rare but distinct 

possibility of this type of resonance flows has been noticed in Lakshmana Rao et al. in 

(1983, 1987). This case arises in the papers of Ramana Murthy (2011), Aparna 

(2012), Nagaraju (2014), but the case of Resonance was not attempted by the authors. 

In the present chapter, we propose to investigate this case of resonance type flow, in 

Micro-polar fluids, due to longitudinal oscillations of a circular cylinder along its axis 

of symmetry. 

 

4.2 Basic Equations 

The basic equations of motion for incompressible Micro-polar fluids as introduced by 

Eringen (1966), are given by 

𝜕𝜌

𝜕𝜏
+  𝑑𝑖𝑣 𝜌𝑄  = 0                  (4.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄             (4.2) 

𝜌𝑗(
𝜕𝑙  

𝜕𝜏
+ 𝑄 . ∇1𝑙) = −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )       (4.3) 

The constitutive equations for the stress components Tij and Couple stress components 

Mij for an incompressible Micro-polar fluid are given by 

𝑇𝑖𝑗 = −𝑃𝛿𝑖𝑗 +
1

2
 2𝜇 + 𝑘  𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 + 𝑘𝑒𝑖𝑗𝑟 (𝑤𝑟 − 𝑙𝑟)                                         (4.4) 

𝑀𝑖𝑗 = 𝑙𝑖,𝑖𝛿𝑖,𝑗 + 𝛽𝑙𝑖,𝑗 + 𝛾𝑙𝑗 ,𝑖                  (4.5) 
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where wr = r th  component of ½( curlQ) and eijr is permutation tensor = 0 if any two 

indices are equal and = 1 if i,j, r are cyclic and = –1 if i,j,r are acyclic. Neglecting the 

nonlinear convective terms in (6.2) and (6.3), the linearised version of the equations 

are given by, 

𝑑𝑖𝑣𝑄 = 0                   (4.6) 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄               (4.7) 

𝜌j
𝜕𝑙  

𝜕𝜏
= −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )            (4.8) 

 

4.3 Statement and Formulation of the Problem 

 A circular cylinder of radius a and, of infinite length is performing 

longitudinal oscillations with velocity 𝑊0𝒆𝒛𝑒
𝑖  along its axis of symmetry in an 

infinite vat containing incompressible Micro-polar fluid. A cylindrical coordinate 

system (𝑅, , 𝑍) with base vectors (𝒆𝑅 , 𝒆, 𝒆𝑧) with origin on the axis of the cylinder 

is considered. Since the flow is generated by these oscillations, the fluid velocity will 

be in cross sectional plane of the cylinder containing the base vectors (𝒆𝑹, 𝒆𝑧). We 

assume the flow is axially symmetric and hence the velocity and micro-rotation are 

assumed in the following form: 

 

W0ei 

X 

Y 

Z 

Fig 4.1 Geometry of the oscillating cylinder 
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𝑸 = 𝒒𝑊0 = 𝑒𝑖𝜍𝜏𝑊 𝑅 𝒆𝒛 and 𝒍 = 𝒗
𝑊0

𝑎
= 𝑒𝑖𝜍𝜏ℬ 𝑅 𝒆θ             (4.9) 

The following non-dimensional scheme is introduced. Capitals and LHS terms 

indicate physical quantities and small letters and RHS terms indicate the 

corresponding non-dimensional quantities. 

R = 𝑎𝑟, W =  𝑤w0, ℬ = B
𝑊0

𝑎
, P =  𝑝w0

2 , Z = 𝑎z ,  =
𝑎t

w0
          (4.10) 

The following non-dimensional parameters are introduced viz,  J is gyration 

parameter, 𝜛 is frequency parameter, s is Couple stress parameter, c is cross viscosity 

or Micro-polarity parameter and R0 is oscillations Reynolds number for Micro-polar 

fluids. 

𝐽 =
jw0𝑎


, 𝜛 =

𝑎σ

w0
, 𝑠 =

k𝑎2

γ
, 𝑐 =

k

μ+k
and𝑅0 =

𝜌𝑤0𝑎

𝜇+𝑘
           (4.11) 

Substituting this non-dimensional scheme (4.10) and non-dimensional parameters 

(4.11), the equations of motion (4.7) and (4.8) are reduced to 

𝑅0
𝜕𝑞 

𝜕𝑡
= −𝑅0∇𝑝 + 𝑐∇ × 𝜐 − ∇ × ∇ × 𝑞               (4.12) 

𝑗

𝜛

𝜕𝜐 

𝜕𝑡
= −2𝑠𝜐 + 𝑠∇ × 𝑞 − ∇ × ∇ × 𝜐               (4.13) 

Further, by the choice of the velocity field in (4.9), the equations of motion are 

reduced to  

𝑖𝑅0𝜛𝑤 = −𝑅0𝑝0 +
𝑐

𝑟

𝑑

𝑑𝑟
 𝑟𝐵 +

1

𝑟

𝑑

𝑑𝑟
 (𝑟

𝑑𝑤

𝑑𝑟
)             (4.14) 

𝑖𝐽𝐵 = −2𝑠𝐵 − 𝑠
𝑑𝑤

𝑑𝑟
+

𝑑

𝑑𝑟
 (

1

𝑟

𝑑

𝑑𝑟
 𝑟𝐵 )              (4.15) 

where  𝑝0 =
𝑑𝑝

𝑑𝑧
 is constant pressure gradient along z direction. 

From (4.14) 

–
𝑐

𝑟

𝑑

𝑑𝑟
 𝑟𝐵 = −𝑅0𝑝0 + 𝑤′′ +

1

𝑟
𝑤′− 𝑖𝜛𝑅0𝑤             (4.16) 

From (4.15) 

 2𝑠 + 𝑖𝑗 𝐵 = −𝑠𝑤′ + 𝐷𝑐
2𝐵              (4.17) 
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where 𝐷𝑐
2 =

𝑑2

𝑑𝑟2 +
1

𝑟

𝑑

𝑑𝑟
−

1

𝑟2               (4.18) 

Differentiating  on  (4.16) to eliminate p0, we get 

−𝑐𝐷𝑐
2𝐵 =

𝑑

𝑑𝑟
 𝑤′′ +

1

𝑟
𝑤′ − 𝑖𝜛𝑅0𝑤′             (4.19) 

Substituting (4.19) in (4.17), we get 

𝑐 2𝑠 + 𝑖𝐽 𝐵 = −
𝑑

𝑑𝑟
 𝑤 ′′ +

1

𝑟
𝑤 ′ +  𝑖𝜛𝑅0 − 𝑐𝑠 𝑤′            (4.20) 

We can write (4.19) and (4.20) as 

−𝑐𝐷𝑐
2𝐵 = 𝐷𝑐

2𝑤′− 𝑖𝜛𝑅0𝑤′             (4.21) 

𝑐 2𝑠 + 𝑖𝐽 𝐵 = −𝐷𝑐
2𝑤′ +  𝑖𝜛𝑅0 − 𝑐𝑠 𝑤′             (4.22) 

Eliminating B from (4.21) and (4.22) we get 

 𝐷𝑐
2 − 𝜆1

2  𝐷𝑐
2 − 𝜆2

2 𝑤′ = 0              (4.23) 

Where 𝜆1
2 + 𝜆2

2 =  2 − 𝑐 𝑠 + 𝑖(𝐽 + 𝑅0) and 𝜆1
2𝜆2

2 = 𝑖𝑅0(2𝑠 + 𝑖𝐽)         (4.24) 

The solution for 𝑤′ if 12 in (4.23) is given in Nagaraju (2014) (which can be 

obtained as a special case). The solution for w for the case, 1 =  2  cannot be 

obtained as a limiting case of 1  →  2. This case is referred to as “Resonance”. This 

resonance occurs if the material coefficients follow the following relation: 

𝛾

𝑗
=

 2𝜇+𝑘 (𝜇+𝑘)

2𝜇+3𝑘
and𝜌𝜍 =

 2𝜇+𝑘 𝑘+𝛾𝜌𝜍

𝑗 (𝜇+𝑘)
             (4.25) 

In non-dimensional form, these conditions are given by 

 2 − 𝑐 𝑠 = 𝐽 − 𝑅0𝜛and 2 − 𝑐 𝐽 = (2 + 𝑐)𝜛𝑅0            (4.26) 

In this chapter, we are interested in the solution for w and B for the case of resonance.  

In this case, the equations for w and B are given by 

 𝐷𝑐
2 − 𝜆2 2𝑤′ and 𝑐𝐵 = −

𝑖𝜛𝑅0

𝜆4 (𝐷𝑐
2 − 2𝜆2)𝑤′−𝑤′            (4.27a) 

and for the case of non-resonance 
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 𝐷𝑐
2 − 𝜆1

2  𝐷𝑐
2 − 𝜆2

2 𝑤 ′ = 0 and 𝑐𝐵 = −
𝑖𝜛𝑅0

𝜆1
2𝜆1

2 (𝐷𝑐
2 − 𝜆1

2 − 𝜆2
2)𝑤′−𝑤′       (4.27b) 

Substituting these equations in (4.14), we get 

In the case of resonance: 

𝑖𝑅0𝜛𝑤 = −𝑅0𝑝0 −
𝑖𝜛𝑅0

𝜆4𝑟

𝑑

𝑑𝑟
{𝑟 𝐷𝑐

2 − 2𝜆2 𝑤′}                                           (4.28a) 

In the case of non-resonance: 

𝑖𝑅0𝜛𝑤 = −𝑅0𝑝0 −
𝑖𝜛𝑅0

𝜆1
2𝜆2

2𝑟

𝑑

𝑑𝑟
{𝑟 𝐷𝑐

2 − 𝜆1
2 − 𝜆2

2 𝑤′}          (4.28b) 

4.3.1 Boundary conditions 

By no-slip condition, (the non-dimensional velocity of a fluid particle on the circular 

cylinder    is same as the velocity of cylinder i.e w=1) and by hyper-stick condition, 

(the micro-rotation vector of a particle on the cylinder is ½ of angular velocity of the 

particle on the cylinder i.e 𝐵 =
1

2
 𝐶𝑢𝑟𝑙 𝑄   (where the suffix represents the 

component along that direction  )  i.e B=0 and hence we have; 

𝑂𝑛𝑟 = 1;     𝑤 = 1 and𝐵 = 0              (4.29) 

 

4.4 Solution of the Problem 

Since the equation for 𝑤′ is linear, the general solution for 𝑤′ is linear combination of 

individual solutions of factors in the differential operator. Solution for 𝑤′ is assumed 

in the form 

𝑤 ′ =  𝑎1𝑤1 + 𝑎2𝑤2                 (4.30) 

Where 𝑤1 𝑎𝑛𝑑 𝑤
2
are satisfies the following equations 

In the case of resonance: 

 𝐷𝑐
2 − 𝜆2 𝑤1 = 0 and  𝐷𝑐

2 − 𝜆2 2𝑤2 = 0                    (4.31a) 

In the case of non-resonance: 



64 
 

 𝐷𝑐
2 − 𝜆1

2 𝑤1 = 0 and  𝐷𝑐
2 − 𝜆2

2 𝑤2 = 0            (4.31b) 

These will yields the solutions as below 

In the case of resonance: 

𝑤1 =  𝐾1(𝜆𝑟) and 𝑤2 =  𝑟𝐾′1(𝜆𝑟)             (4.32a) 

In the case of non-resonance: 

𝑤1 =  𝐾1(𝜆1𝑟) and 𝑤2 =  𝐾1(𝜆2𝑟)                  (4.32b) 

The following results are useful to note. 

𝐷𝑐
2𝑤1  =  2𝑤1  and 𝐷𝑐

2𝑤2  =   ( 2 𝑤1  +  2𝑤2)          (4.33a) 

The following results are useful to note in case of non resonance. 

𝐷𝑐
2𝑤1 = 𝜆1

2𝑤1 and 𝐷𝑐
2𝑤2 = 𝜆2

2𝑤2            (4.33b) 

Substituting (4.32a) in (4.28a) we get w for the case of resonance as 

𝑤 = −
𝑝0

𝑖𝜛
−

𝑎1

𝜆
𝐾0 𝜆𝑟 +

𝑎2

𝜆2
 𝜆𝑟𝐾1 𝜆𝑟 + 𝐾0 𝜆𝑟             (4.34a) 

Substituting (4.32b) in (4.28b) we get w for the case of non-resonance as 

𝑤 = −
𝑝0

𝑖𝜛
− 𝑎1

𝐾0 𝜆1𝑟 

𝜆1
− 𝑎2

𝐾0 𝜆2𝑟 

𝜆2
            (4.34b) 

Substituting (4.32a) in (4.27a) we get B for the case of resonance as 

𝑐𝐵 =  
𝑖𝜛𝑅0

𝜆2 − 1  𝑎1𝐾1 𝜆𝑟 + 𝑎2𝑟𝐾′1(𝜆𝑟) −
2𝑎2𝑖𝜛𝑅0

𝜆3 𝐾1(𝜆𝑟)         (4.35a) 

Substituting (4.32b) in (4.27b) we get B for the case of non-resonance as 

𝑐𝐵 =  
𝑖𝜛𝑅0

𝜆1
2 − 1 𝑎1𝐾1 𝜆1𝑟 +  

𝑖𝜛𝑅0

𝜆2
2 − 1 𝑎2𝐾1 𝜆2𝑟          (4.35b) 

The constants 𝑎1, 𝑎2 are obtained from the boundary conditions (4.29) as follows: 

In the case of resonance: 

 
−𝜆𝐾0 𝜆 𝜆𝐾1 𝜆 + 𝐾0 𝜆 

𝐾1(𝜆) 𝐾′1 𝜆 +
2𝑖𝜛𝑅0

𝜆(𝜆2−𝑖𝜛𝑅0 )
𝐾1 𝜆 

  
𝑎1

𝑎2
 =   

𝜆2  1 −
𝑖𝑝0

𝜛
 

0
          (4.36a) 
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In the case of non-resonance: 

 
−

𝐾0 𝜆1 

𝜆1
−

𝐾0 𝜆2 

𝜆2

𝑐1𝐾1 𝜆1 𝑐2𝐾1 𝜆2 
  
𝑎1

𝑎2
 =  1 −

𝑖𝑝0

𝜛

0
            (4.36b) 

Where 𝑐1 =
𝑖𝜛𝑅0

𝜆1
2 − 1  and 𝑐2 =

𝑖𝜛𝑅0

𝜆2
2 − 1             (4.37) 

From (4.36a) and (4.36b), we can calculate 𝑎1and 𝑎2 for both the cases. 

Hence velocity component w and micro-rotation component B are known. 

4.4.1 Skin friction acting on the cylinder per length L 

Skin friction acting on the circular cylinder is 

𝑐𝑓 =
2𝑇𝑟𝑧

𝜌𝑤0
2                 (4.38) 

𝑇𝑟𝑧  obtained as follows: 

In cylindrical co-ordinate system,  

E = ∇Q +  ∇Q T =

 
 
 
 
 2

𝜕𝑈

𝜕𝑅

𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅
−

𝑉

𝑅

𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅
−

𝑉

𝑅

2

𝑅
 𝑈 +

𝜕𝑉

𝜕𝜃
 

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍

𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍
2
𝜕𝑊

𝜕𝑍  
 
 
 
 

          (4.39) 

For this present problem, 𝐸 =  

0 0
𝜕𝑊

𝜕𝑅

0 0 0
𝜕𝑊

𝜕𝑅
0 0

              (4.40) 

Substituting (4.40) in (4.4) we get 

𝑇𝑅𝑍 =  𝜇 + 𝑘 
𝜕𝑊

𝜕𝑅
+ 𝑘𝐵               (4.41) 

By using non-dimensional scheme (4.10), we get 

𝑇𝑟𝑧 =
 𝜇+𝑘 𝑊0

𝑎
 
𝑑𝑤

𝑑𝑟
+ 𝑐𝐵 𝑒𝑖𝜛𝑡                (4.42) 

Substituting (4.42) in (4.38), we get the Skin friction acting on the circular cylinder 

(after deleting the factor e
it

) is obtained as: 
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𝑐𝑓 =
2

𝑅𝑜
 
𝑑𝑤

𝑑𝑟
 
𝑟=1

                (4.43) 

In the case of resonance: 

𝑐𝑓 =
2

𝑅0
 𝑎1𝐾1 𝜆 + 𝑎2𝐾′1 𝜆               (4.44a) 

In the non-resonance case: 

𝑐𝑓 =
2

𝑅0
[𝑎1K1 𝜆1 + a2𝐾1 𝜆2 ]            (4.44b) 

 

4.5 Results and Discussions 

For resonance case, the value of  cannot be taken randomly. In the case of resonance 

the values of  are obtained from (4.26) by solving the following equation for x.  

𝑥2 − [ 2 − 𝑐 𝑠 + 𝑖 𝐽 + 𝜛𝑅0) 𝑥 + 𝑖𝜛𝑅0 𝑖𝐽 + 2𝑠 = 0           (4.45) 

Then in resonance case, the values of    are given by 

𝜆 =  𝑥 =  
(2−𝑐)𝑠+𝑖 𝐽+.𝑅0 

2
               (4.46)  

This equation involves 5 parameters which are related by two equations in 

(4.26). Hence we choose three parameters as an independent. Here 𝜛, R0 and c are 

selected independently, with 0≤ c ≤ 1, R0≪1 and 𝜛≫1 such that ϖ.R0 is not 

negligibly small (say>1). For this range of values of R0, the nonlinear convective 

terms can be neglected but local derivative is retained. After selecting c, R0 and 𝜛, the 

values of s and J are obtained from (4.26) and then  is obtained from (4.46). In the 

case of non-resonance, all 5 parameters are independent.  The values of  are 

complex. These values for  are substituted in (4.36a) and (4.36b) and then constants 

𝑎1𝑎𝑛𝑑𝑎2  are obtained. 

4.5.1 Velocity 

Velocity w in the direction Z axis is computed by using Eq. (30.1). 

From Fig 4.2, it can be observed that as Reynolds number increases, the velocity 

w decreases near to the cylinder and then increases slightly and tends to zero at a 
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distance four times the radius of the cylinder. In the case of resonance, the velocity w 

becomes zero at a longer distance than in the case of non-resonance. Hence observe 

that an increase in Reynolds number, in the case of resonance, decreases the velocity 

w near to the cynilder and velocity vanishes at a longer distance than in the case of 

non-resonance. 

Similarly, from Fig 4.3, as Micro-polarity parameter c increases, in the case of 

resonance, velocity w increases in the range of distance 0.5 to 2.5. Whereas the effect 

of Micro-polarity c is negligible in the case of non-resonance. Hence, the conclusion 

is that micropolarity parameter increases the velocity in the case of resonance and 

has no effect on velocity in non-resonance case. 

4.5.2 Micro-rotation 

It is observed that Micro-rotation component B is positive, in the case of 

resonance, and becomes zero at a long distance from the cylinder.  From Fig 4.4, we 

notice that as, Reynolds number increases, in the case of resonance, micro-rotation 

increases near to the cylinder. But in the case of non-resonance, as Reynolds number 

increases, micro-rotation increases from negative values to positive values and then 

soon becomes zero.  It can be concluded that in the case of resonance, micro-rotation 

vanishes at a long distance from the cylinder and in the case of non-resonace, it 

vanishes relatively near to the cylinder. 

From Fig 4.5, it is observed that, in the case of resonance, as Micro-polarity increases, 

micro-rotation increases and is always positive. But in the case of non-resonance, 

micro-rotation decreases and increases from negative values to positive values and the 

effect of Micro-polarity on micro-rotation is almost negligible. 
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(a) 

(b) 

Fig 4.2 Velocity at different values of Reynolds numbers for the case of 

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 4.3 Velocity at different values of Micro-polarity parameter c for the 

case of a) resonance and b) non-resonance 
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(b) 

(a) 

(b) 

Fig 4.4 Micro-rotation at different values of Reynolds number for the case of 

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 4.5 Micro-rotation at different values of Micro-polarity parameter c for 

the case of  a) resonance  and b) non-resonance 
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4.5.3 Skin friction 

From Fig 4.6, we can observe that resonance flow occurs only a particular 

range of gyration parameter J and Re. Skin friction is much smaller in the case of 

resonance and as Gyration parameter increases, Skin friction decreases. But in the 

case of non-resonance, as gyration parameter increases, Skin friction also increases. 

Resonance decreases the Skin friction drastically to a low value (from 500 in non-

resonance case to 30 in resonance ) It is noticed that as gyration parameter j 

increases, in the case of resonance, Skin friction decreases and in the case resonance, 

Skin friction increases. 

From the Fig 4.7, it is observed that Skin friction is not affected much by 

variation in Micro-polarity in the case of resonance. But opposite to this in the case of 

non-resonance, as Micro-polarity increases, Skin friction decreases drastically. From 

Fig 4.8, as Reynolds number increases, Skin friction decreases. This is expected, since 

in the formula Eq. (4.34), Reynolds number is in the denominator. It is very 

interesting to note that the Skin friction in the case of resonance is much smaller than 

in the case of non-resonance.  

 Hence the conclusion is that as Reynolds number or Micro-polarity increases, 

Skin friction decreases but the case of resonance offers less resistance for the flow and 

hence Skin friction is very much lesser than the case of non-resonance. 
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(a) 

(b) 

Fig 4.6 Skin friction at different values of gyration parameter J for the case of 

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 4.7 Skin friction at different values of Micro-polarity c for the case of 

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 4.8 Skin friction at different values of Reynolds number Re for the 

case of a) resonance and b) non-resonance 

 



76 
 

4.6 Conlusions 

1. Case of resonance makes the micro-rotation as unidirectional ( i.e positive 

only). In non-resonance micro-rotation raises from negative values to positive 

values and then vanishes.  

2. The case of resonance offers less resistance to the flow and hence decreases 

Skin friction. 

  These two observations are very important to focus our attention on the case 

of “resonance”. They may have Industrial application, for producing a suitable Micro-

polar fluid to get minimum Skin friction. 
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Chapter  5 

Rectilinear oscillations of Sphere in a Micro-polar 

fluid 

 

The flow of an incompressible Micro-polar fluid generated due to rectilinear 

oscillations of a sphere about a diameter of the sphere is considered. The flow is so 

slow that the Reynolds number is less than unity and hence nonlinear convective 

terms in the equations of motion are neglected. A rare but distinct special case in 

which material constants satisfy a resonance condition is considered. The stream 

function and Drag acting on sphere are obtained. The effect of physical parameters 

like Micro-polarity and Couple stress parameter on the Drag due to oscillations is 

shown through graphs.  

 

5.1 Introduction 

Lakshmana Rao et al. (1970) studied slow stationary flow of a Micro-polar 

fluid past a sphere. Lakshmana Rao et al. (1971, 1981, 1987) studied the oscillatory 

flows generated due to oscillations of sphere, spheroid and elliptic cylinder in Micro-

polar fluids, with the aim of  determining  of the Drag or Couple on the oscillating 

body. 

Ravindran (1972) studied simple oscillatory flow in polar fluids. Frater (1967 

and 1968) studied oscillatory flows in elastico-viscous fluid, and evaluated Drag on 

sphere, damping force on a body. Analytical and Computational studies in Couple 

stress fluid flows examined by Lakshmana Rao et al. (1980). Iyengar et al. (1993, 

2001 and 2004) examined oscillatory flows due to oscillating of approximate sphere, 

two concentric spheres in Micro-polar fluid and  approximate sphere in viscous fluid. 

Lai et al. (1978) examined an elastico viscous fluid flow of sphere performing 

rectilinear oscillations and evaluated Drag on a sphere. The problems regarding 

oscillatory flows in various fluids generated due to rectilinear oscillations of different 
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symmetric bodies like circular cylinder, elliptic cylinder, sphere, approximate sphere, 

sphereoid have been studied by many researchers. Some are quoted here as example, 

Liu (1978), Lakshmana Rao (1981, 1987), Iyengar (2001). Stimson et al. (1926) 

examined the viscous fluid motion of two spheres. Verma et al. (1971) studied slow 

oscillatory flow past a fixed porous sphere. Aparna et al. (2012) examined the flow of 

micropolar fluid due to rotary oscillations of a permeable sphere. Ashmawy (2015 and 

2016) examined oscillatory flows of composite sphere in a concentric spherical cavity 

and spherical particle moving in a Couple-stress fluid. 

 In this chapter we intend to investigate this case of resonance type flow due to 

rectilinear oscillations of a sphere about its axis of symmetry in Micro-polar fluids. 

Later on we discussed similar problem in Couple-stress fluids. 

 

5.2 Basic Equations 

The basic equations of motion for incompressible Micro-polar fluids as introduced by 

Eringen (1966), are given by 

𝜕𝜌

𝜕𝜏
+  𝑑𝑖𝑣 𝜌𝑸 = 0                            (5.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄              (5.2) 

𝜌𝒥(
𝜕𝑙  

𝜕𝜏
+ 𝑄 . ∇1𝑙) = −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  ) (5.3) 

The constitutive equations for the stress components Tij and Couple stress components 

Mij for an incompressible Micro-polar fluid are given by 

𝑇𝑖𝑗 = −𝑃𝛿𝑖𝑗 +
1

2
 2𝜇 + 𝑘  𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 + 𝑘𝑒𝑖𝑗𝑟 (𝑤𝑟 − 𝑙𝑟)                                         (5.4) 

𝑀𝑖𝑗 = 𝑙𝑖,𝑖𝛿𝑖,𝑗 + 𝛽𝑙𝑖,𝑗 + 𝛾𝑙𝑗 ,𝑖                  (5.5) 

where the permutation tensor      𝑒𝑖𝑗𝑘 =  
 0
 1
−1

   if 𝑖 = 𝑗 𝑜𝑟 𝑗 = 𝑘 𝑜𝑟 𝑘 = 𝑖
   if 𝑖, 𝑗, 𝑘 are cyclic              
  if 𝑖, 𝑗, 𝑘 are anti − cyclic

  

and wr = r th  component of ½( curl Q ). 
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Neglecting the nonlinear convective terms in (6.2) and (6.3), the linearised version of 

the equations are given by, 

𝑑𝑖𝑣𝑄 = 0                   (5.6) 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄               (5.7) 

𝜌𝒥
𝜕𝑙  

𝜕𝜏
= −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )            (5.8) 

 

5.3 Statement and Formulation of the Problem 

A sphere of radius a is performing rectilinear oscillations with velocity 

𝑈0𝒌𝑒
𝑖 about its diameter in an infinite vat containing incompressible Micro-polar 

fluid. Spherical coordinate system (𝑅,, ) with base vectors (𝒆𝑹, 𝒆𝜃 , 𝒆𝝓) with origin 

at the centre of the sphere and Z axis along direction of oscillations of the sphere is 

considered. The flow is axially symmetric, hence the velocity field is independent of 

toroidal coordinate  and the flow will be in cross sectional plane of the sphere 

containing the base vectors (𝒆𝑹, 𝒆). The velocity and micro-rotation are assumed in 

the form: 

 

𝑸 = 𝑒𝑖𝜍𝜏 {𝑈 𝑅, 𝜃 𝒆𝒓 + 𝑉 𝑅, 𝜃 𝒆𝜽} and 𝒍 = 𝑒𝑖𝜍𝜏  
𝒞 𝑅,𝜃 

𝒉𝟑
 𝒆             (5.9) 

 

er 

k 

U0eit 

e 

Fig 5.1 Geometry of the oscillating Sphere 
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The following non-dimensional scheme is introduced. Capitals and LHS terms 

indicate physical quantities and small letters and RHS terms indicate corresponding 

non-dimensional quantities. 

 
𝑅 = 𝑎𝑟, 𝑸 =  𝑈0𝒒, 𝑈 =  𝑈0𝑢, V = U0𝑣, 𝒍 =  

𝑈0

𝑎


𝒞 =
𝑊0

𝑎
𝐶,Ψ = 𝜓𝑈0𝑎  𝑃 =  𝑝𝑈0

2 ,  =
𝑎𝑡

𝑈0

            (5.10) 

The following are non-dimensional parameters viz,  j is gyration parameter,  is 

frequency parameter, s is Couple stress parameter, c is cross viscosity or Micro-

polarity parameter and Re is oscillations Reynolds number for Micro-polar fluids. 

𝐽 =
j𝑎2


, 𝜛 =

aσ

U0
, 𝑠 =

k𝑎2

γ
,   𝑐 =

k

μ+k
,   Re =

ρU0𝑎

𝜇
, R0 =

ρU0𝑎

𝜇+𝑘
= 𝑅𝑒(1 − 𝑐)    (5.11) 

By the choice of velocity field in (5.9) and incompressibility condition in (5.1), we 

notice that stream function  can be introduced as 

𝑢 =
1

𝑟2𝑆𝑖𝑛𝜃

𝜕𝜓

𝜕𝜃
𝑎𝑛𝑑𝑣 =  −

1

𝑟𝑆𝑖𝑛𝜃

𝜕𝜓

𝜕𝑟
   i.e       𝒒 = ∇ × (

𝜓

𝑕3
𝒆∅)           (5.12) 

Using non-dimensional scheme (5.10) and (5.11) in (5.7) and (5.8) we get 

𝑅0
𝜕𝒒

𝜕𝑡
= −𝑅0. ∇𝑝 + 𝑐 ∇ × 𝝊 − ∇ × ∇ × 𝒒             (5.13) 

𝐽

𝝕

𝜕𝝊

𝜕𝑡
= −2𝑠𝝊 + 𝑠∇ × 𝒒 − ∇ × ∇ × 𝝊 + 𝜖∇(∇ ∙ 𝝊)            (5.14) 

We can write (5.13) and (5.14) as 

𝑖𝜛𝑅0𝒒 = −𝑅0 . ∇𝑝 + 𝑐 ∇ × 𝝊 − ∇ × ∇ × 𝒒             (5.15) 

𝑖𝐽𝝊 = −2𝑠𝝊 + 𝑠∇ × 𝒒 − ∇ × ∇ × 𝝊 + 𝜖∇(∇ ∙ 𝝊)            (5.16) 

By taking curl to (5.15) pressure p can be eliminated and then using (5.9) and (5.12) 

we get, 

𝑖𝜛𝑅0. 𝐸2 =  𝑐𝐸2𝐶 + 𝐸4               (5.17) 

where E2 =
𝜕2

𝜕𝑟2 +
1

𝑟2

𝜕2

𝜕𝜃2 −
𝑐𝑜𝑡𝜃

𝑟2

𝜕

𝜕𝜃
              (5.18) 

similarly by using (5.9) and (5.12) in (5.16), we get 
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(2𝑠 + 𝑖𝐽)𝐶 =  𝐸2𝐶 –  𝑠𝐸2𝜓               (5.19) 

Substitute (5.17) in (5.19), we get 

𝑐 2𝑠 + 𝑖𝐽 𝐶 =  −𝐸4𝜓 + (𝑖𝜛𝑅0 − 𝑐𝑠)𝐸2𝜓                     (5.20) 

Taking E
2
 operation to (5.20) and then eliminating E

2
C using (5.17) we get, 

𝐸2(𝐸2 – 1
2) (𝐸2 – 2

2) 𝜓 = 0              (5.21) 

Where 𝜆1
2 + 𝜆2

2 =  2 − 𝑐 𝑠 + 𝑖(𝐽 + 𝜛𝑅0)  and 𝜆1
2𝜆2

2 = 𝑖𝜛𝑅0(2𝑠 + 𝑖𝐽)                (5.22) 

Using (5.22) in (5.20), the equation for C can be re-written as 

𝑐𝐶 = −
𝑖𝜛𝑅0

𝜆1
2𝜆2

2 E2 E2 − 𝜆1
2 − 𝜆2

2 𝜓 − E2𝜓             (5.23) 

The solution for  if 12 in (5.21) is given in Lakshmana Rao et al. (1971, 1972). 

The solution for  for the case,  1 =  2 cannot be obtained as a limiting case of  

1  →  2 . This case is referred to as “Resonance”. This resonance occurs if the 

material coefficients follow the following relation: 

𝛾

𝐽
=

 2𝜇+𝑘 (𝜇+𝑘)

2𝜇+3𝑘
and    𝜌𝜍 =

 2𝜇+𝑘 𝑘+𝛾𝜌𝜍

𝐽(𝜇+𝑘)
             (5.24) 

In non-dimensional form, these conditions are given by 

 2 –  𝑐 𝑠 =  𝐽–  𝜛. 𝑅0  𝑎𝑛𝑑  2 –  𝑐 𝐽 =  𝜛. 𝑅0(2 +  𝑐)           (5.25) 

In this chapter, we are interested in the solution for  for the case of resonance. 

We have the equation for stream function  as 

In the case of resonance: 

E2 E2 – 2 
2
 = 0               (5.26a) 

In the case on non-resonance: 

E2(E2 – 1
2) (E2 – 2

2)  = 0            (5.26b) 

And we have equation for the micro-roation component C as 
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In the case of resonance: 

𝑐𝐶 = −
𝑖𝜛𝑅0

𝜆4 E2 E2 − 2𝜆2 𝜓 − 𝐸2𝜓             (5.27a) 

In the case on non-resonance: 

𝑐𝐶 = −
𝑖𝜛𝑅0

𝜆1
2𝜆2

2 E2 E2 − 𝜆1
2 − 𝜆2

2 𝜓 − E2𝜓           (5.27b) 

5.3.1 Boundary Conditions 

The sphere is oscillating in the direction of Z-axis. Hence the non-dimensional 

velocity of the sphere after removing 𝑒𝑖𝜛𝑡  is given by 

𝒒  =  𝒊 =  𝑐𝑜𝑠𝒆𝑟–  𝑠𝑖𝑛𝒆   which implies by no-slip condition 

𝑢 =  𝑐𝑜𝑠 𝑎𝑛𝑑 𝑣 = – 𝑠𝑖𝑛 on r=1              (5.28) 

By hyper-stick condition   =
1

2
 curl 𝒒  

which reduces to 𝐶 = 0 𝑜𝑛 𝑟 = 1              (5.29) 

 

5.4 Solution of the Problem 

To match with the boundary conditions in (5.28) and (5.29), Stream function , 

micro-rotation component C are assumed in the form 

 = 𝑓 𝑟 sin2 𝜃 𝑎𝑛𝑑 𝐶 = 𝑔 𝑟 sin2 𝜃             (5.30) 

Substituting (5.30) in (5.26a) and (5.26b) and cancelling sin2 𝜃 we get 

In the case of resonance: 

𝐷𝑠
2 𝐷𝑠

2– 2 
2
𝑓 =  0               (5.31a) 

In the case on non-resonance: 

𝐷𝑠
2(𝐷𝑠

2 – 1
2) (𝐷𝑠

2  – 2
2) 𝑓 = 0            (5.31b) 

Substituting (5.30) in (5.27a) and (5.27b) we get 
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In the case of resonance: 

𝑐𝑔 = −
𝑖𝜛𝑅0

𝜆4 𝐷𝑠
2 𝐷𝑠

2 − 2𝜆2 𝑓 − 𝐷𝑠
2𝑓             (5.32a) 

In the case on non-resonance: 

𝑐𝑔 = −
𝑖𝜛𝑅0

𝜆1
2𝜆2

2 𝐷𝑠
2 𝐷𝑠

2 − 𝜆1
2 − 𝜆2

2 𝑓 − 𝐷𝑠
2𝑓                                                             (5.32b) 

Where 𝐷𝑠
2 =

𝑑2

𝑑𝑟2 −
2

𝑟2                (5.33) 

Substituting (2.30) in (2.28) and (2.29), the conditions on f and g are obtained as: 

𝑓 1 =
1

2
, 𝑓′  1 =  1and 𝑔(1)  = 0              (5.34) 

Since the equation for f is linear, the general solution for f is linear combination of 

individual solutions of factors in the differential operator. Hence f is taken as 

𝑓 =  𝑎0𝑓0  +  𝑎1𝑓1  +  𝑎2𝑓2               (5.34a) 

In the case of resonance: 

𝐷𝑠
2𝑓0  = 0,    𝐷𝑠

2– 2 𝑓1  =  0 and  𝐷𝑠
2– 2 

2
𝑓2  =  0          (5.35a) 

In the case of non-resonance: 

𝐷𝑠
2𝑓0  = 0,      𝐷𝑠

2– 1
2 𝑓1  =  0  and      𝐷𝑠

2– 2
2 𝑓2  =  0         (5.35b) 

On solving (5.35a) and (5.35b) the solution for f is obtained as  

In the case of resonance: 

𝑓 r =
a0

r
  +  a1 𝑟𝐾3

2

 𝜆𝑟  + a2𝑟
3

2𝐾′3
2

(𝜆𝑟)            (5.36a) 

In the case of non-resonance: 

𝑓 r =
a0

r
  +  a1 𝑟𝐾3

2

 𝜆1𝑟 +  a2 𝑟𝐾3

2

 𝜆2𝑟           (5.36b) 

The following results are useful to note. 

In the case of resonance: 
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𝐷𝑠
2𝑓1  =  2𝑓1  and 𝐷𝑠

2𝑓2  =  2𝜆𝑓1 + 𝜆2𝑓2            (5.37a) 

In the case of non-resonance: 

Ds
2𝑓1  =  1

2𝑓1     andDs
2𝑓2  =  2

2𝑓2            (5.37b) 

Substituting f along with (5.37a) in (5.32a), we get 

𝑐𝑔 =   a1 iϖR0 – 2 𝑓1 + a2 iϖR0 –  2 𝑓2  – 2a2𝑓1           (5.38a) 

Substituting f along with (5.37b) in (5.32b), we get 

𝑐𝑔 =   a1 iϖR0 – 1
2 𝑓1 + a2 iϖR0 –  2

2 𝑓2           (5.38b) 

The constants 𝑎0, 𝑎1, 𝑎2  are obtained from the boundary conditions (5.34) as follows: 

In the case of resonance: 

 
 
 
 
 

1 𝐾3

2

(𝜆) 𝐾3

2

′(𝜆)

−1
1

2
𝐾3

2

 𝜆 + 𝜆𝐾3

2

′(𝜆)
1

2
𝐾3

2

′ 𝜆 +  
9

4𝜆
+ 𝜆 𝐾3

2

(𝜆)

0  𝑖𝜛𝑅0 − 𝜆2 𝐾3

2

(𝜆)  𝑖𝜛𝑅0 − 𝜆2 𝐾3

2

′ 𝜆 − 2𝐾3

2

(𝜆)
 
 
 
 
 

 

𝑎0

𝑎1

𝑎2

 =  

1

2

1
0

             (5.39a) 

In the case of non-resonance: 

 
 
 
 
 

1 𝐾3

2

(𝜆1) 𝐾3

2

(𝜆2))

−1
1

2
𝐾3

2

 𝜆1 + 𝜆1𝐾3

2

′(𝜆1)
1

2
𝐾3

2

 𝜆2 + 𝜆2𝐾3

2

′(𝜆2)

0  𝑖𝜛𝑅0 − 𝜆1
2 𝐾3

2

(𝜆1)  𝑖𝜛𝑅0 − 𝜆2
2 𝐾3

2

(𝜆2)
 
 
 
 
 

 

𝑎0

𝑎1

𝑎2

 =  

1

2

1
0

         (5.39b) 

Hence from (5.36), (5.38) and (5.39) f and g are completely known and hence stream 

function  and micro-rotation component C are known. 

5.4.1 Pressure 

From equation (5.15) pressure is obtained as follows. 

𝑑𝑝 = 𝑝𝒅𝒓 =
𝜕𝑝

𝜕𝑟
𝑑𝑟 +

𝜕𝑝

𝜕𝜃
𝑑𝜃              (5.40) 

By comparing components in equation (5.15), we obtained 
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𝜕𝑝

𝜕𝑟
=

1

𝑅0
 

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 −𝑖𝜛𝑅0𝜓 + 𝑐𝐶 + 𝐸2𝜓               (5.41) 

𝜕𝑝

𝜕𝜃
=

−1

𝑅0
 

1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝑟
 −𝑖𝜛𝑅0𝜓 + 𝑐𝐶 + 𝐸2𝜓               (5.42) 

Substituting (5.41) and (5.42) in (5.40), we get  

𝑑𝑝 =
1

𝑅0
 

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 −𝑖𝜛𝑅0𝜓 + 𝑐𝐶 + 𝐸2𝜓 𝑑𝑟 −

1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝑟
 −𝑖𝜛𝑅0𝜓 + 𝑐𝐶 + 𝐸2𝜓 𝑑𝜃   

𝑑𝑝 =
1

𝑅0
  −𝑖𝜛𝑅0𝑓 + 𝐷𝑠

2𝑓 + 𝑐𝑔 2𝑐𝑜𝑠𝜃
𝑑𝑟

𝑟2 +
𝑑

𝑑𝑟
 𝑖𝜛𝑅0𝑓 − 𝐷𝑠

2𝑓 − 𝑐𝑔 𝑠𝑖𝑛𝜃 𝑑𝜃  (5.43) 

Integrating on both sides of (5.43), we obtained pressure in non-dimensional form as 

𝑝 =
𝑖𝜛𝐴0

𝑟2 𝑐𝑜𝑠𝜃                (5.44) 

5.4.2 Drag acting on the Sphere of radius a 

Drag= 𝐷∗ = 2𝜋𝑎2   𝑇∗𝑟𝑟 𝑐𝑜𝑠𝜃 − 𝑇∗𝑟𝜃 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃
𝜋

0
  𝑅=𝑎𝑑𝜃           (5.45) 

Required tress components are obtained as follows: 

Strain rate tensor = 𝐸 =  𝑒𝑖𝑗  =
1

2
 [∇𝑄 + ∇𝑄 𝑇] 

E=

 
 
 
 
 

𝜕𝑈

𝜕𝑅

1

2𝑅
 
𝜕𝑈

𝜕𝜃
+ 𝑅

𝜕𝑉

𝜕𝑅
− 𝑉 

1

2𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
+ 𝑅

𝜕𝑊

𝜕𝑅
−𝑊 

1

2𝑅
 
𝜕𝑈

𝜕𝜃
+ 𝑅

𝜕𝑉

𝜕𝑅
− 𝑉 

1

𝑅
 
𝜕𝑉

𝜕𝜃
+ 𝑈 

1

2𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
+

𝜕𝑊

𝜕𝜃
−𝑊𝐶𝑜𝑡𝜃 

1

2𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
+ 𝑅

𝜕𝑊

𝜕𝑅
−𝑊 

1

2𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
+

𝜕𝑊

𝜕𝜃
−𝑊𝐶𝑜𝑡𝜃 

1

𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑊

𝜕∅
+ 𝑉𝐶𝑜𝑡𝜃 + 𝑈  

 
 
 
 

 

We get strain rate tensor for this problem as 

𝐸 =

 
 
 
 
 

𝜕𝑈

𝜕𝑅

1

2𝑅
 
𝜕𝑈

𝜕𝜃
+ 𝑅

𝜕𝑉

𝜕𝑅
− 𝑉 0

1

2𝑅
 
𝜕𝑈

𝜕𝜃
+ 𝑅

𝜕𝑉

𝜕𝑅
− 𝑉 

1

𝑅
 
𝜕𝑉

𝜕𝜃
+ 𝑈 0

0 0
1

𝑅
 𝑉𝐶𝑜𝑡𝜃 + 𝑈  

 
 
 
 

          (5.46) 

Substituting required terms in (5.4), we get the stress components as 

𝑇𝑅𝑅 = −𝑃 +  2𝜇 + 𝑘 
𝜕𝑈

𝜕𝑅
               (5.47) 

𝑇𝑅𝜃 =  𝜇 + 𝑘 
𝜕𝑉

𝜕𝑅
+

𝜇

𝑅

𝜕𝑈

𝜕𝜃
− 𝜇

𝑉

𝑅
−

𝑘𝐶

𝑅𝑠𝑖𝑛𝜃
             (5.48) 
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Stress components in non-dimensional form as 

𝑇𝑟𝑟 =
 𝜇+𝑘 𝑈0

𝑎
 −𝑝𝑅0 +  2 − 𝑐  

1

𝑟2𝑠𝑖𝑛𝜃

𝜕2𝜓

𝜕𝑟𝜕𝜃
−

2

𝑟3𝑠𝑖𝑛𝜃

𝜕𝜓

𝜕𝜃
             (5.49) 

𝑇𝑟𝜃 =
 𝜇+𝑘 𝑈0

𝑎
.

1

𝑟𝑠𝑖𝑛𝜃
  𝑐 − 2 

𝜕2𝜓

𝜕𝑟2 −  𝑐 − 2 .
1

𝑟

𝜕𝜓

𝜕𝑟
+  1 − 𝑐 E2𝜓 − 𝑐𝐶          (5.50) 

Substituting (5.30) in (5.49) and (5.50) we get 

𝑇𝑟𝑟 =
 𝜇+𝑘 𝑈0

𝑎
 −𝑝𝑅0 +  2 − 𝑐  

2𝑓 ′

𝑟2 −
4𝑓

𝑟3 𝑐𝑜𝑠𝜃             (5.51) 

𝑇𝑟𝜃 =
 𝜇+𝑘 𝑈0

𝑎
.

1

𝑟
  𝑐 − 2  

2𝑓

𝑟2 −
𝑓 ′

𝑟
 − 𝐷𝑠

2𝑓 − 𝑐𝑔 𝑠𝑖𝑛𝜃           (5.52) 

On boundary r=1, stress components are 

𝑇𝑟𝑟 = −
 𝜇+𝑘 𝑈0

𝑎
𝑝𝑅0                (5.53) 

𝑇𝑟𝜃 = −
 𝜇+𝑘 𝑈0

𝑎
𝐷𝑠

2𝑓𝑠𝑖𝑛𝜃               (5.54) 

Substituting (5.53) and (5.54) in (5.45), we get the Drag on the sphere (for resonance 

and non-resonance cases without the factor eit  ) as 

𝐷𝑟𝑎𝑔 = 𝐷∗ =
4𝜋(𝜇+𝑘)𝑈0𝑎

3
𝑅0𝑖𝜛(1 − 3𝐴0)             (5.55) 

Dividing D
*
by 6𝜋  + 𝑘 𝑈0𝑎, hence the non-dimensional Drag D is given by 

D =  Real  
2

9
R0iϖ 1 − 3A0                            (5.56) 

5.5 Results and Discussions 

The values of  are obtained from (5.22) by solving the following equation for x 

𝑥2 – [(2 –  𝑐)𝑠 + 𝑖(𝐽 + 𝜛𝑅0)]𝑥 +  𝑖𝜛𝑅0(2𝑠 + 𝑖𝐽)  =  0           (5.57) 

Then for resonance case 

 =  x  =    2 – 𝑐 𝑠 +i 𝐽+𝜛R0  

2
              (5.58) 

This involves 5 parameters which are related by two equations in (5.25). 

Hence we choose three parameters as independent. Here  𝜛, 𝑅0 and c are selected 

independently, with 0≤ c ≤ 1, Re≪1 and ≫1 such that 𝜛. 𝑅0 is not negligibly small 



87 
 

(say>1). After selecting c, 𝑅0 𝑎𝑛𝑑 𝜛, the values of s and J are obtained from (5.25) 

and then  is obtained from (5.58).  The values of  are complex. These values for  

are substituted in (5.39a), (5.39b) and the constants 𝑎0 , 𝑎1  𝑎𝑛𝑑 𝑎2 are obtained. Then 

the stream function , micro-rotation component C and Drag D are obtained from 

(5.36), (5.38) and (5.56) respectively for both resonance and non-resonance cases. 

Thus obtained  will have complex values. To get the physical picture, these values 

are multiplied by e
it

 and its real part is taken. 

5.5.1 Drag 

From Fig 5.2, it is observed that as || is increasing, the Drag D is almost 

constant. But for resonance, the values of Drag are small in comparison with non-

resonance.  The variation of Drag with s is same with || but the corresponding s 

values are very large in the range of 100s.  

From Fig 5.3 Drag variation with  J, the gyration parameter is shown. We note 

that for  resonance Drag is smaller than the case of nonresonance. In nonresonance,  

behaviour of Drag is not constant and range of Drage in limited to 85 to 95 only. 

5.5.2 Stream Function 

From Fig 5.4, we note that as c increases the values of stream function are also 

increasing for resonance. But for non-resonance, as c increases, values of stream 

function are decreasing. Effect of c is not very much effective for non-resonance. 

From Fig 5.5, we notice that the effect of s on stream function is not much for non-

resonance. Again the stream function takes larger values than the case of resonance. 

From Fig 5.6, we note that for resonance, formation of circulations is not observed. 

Since for resonance no circulations are seen we take stream lines for the case of non-

resonance for the variation of Micro-polarity parameter. Since for resonance no 

circulations are seen we take stream lines for the case of non-resonance for the 

variation of Micro-polarity parameter c. this is shown in Fig 5.7. As c increases, the 

circulations started near the sides of sphere spread in region and by value. At large 

values of c near to 0.8 or more, only near the sphere we see black region i.e only near 

to the sphere values are less than 0.5. 
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Fig 5.2 Drag Vs || or s for resonance and non-resonance 
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(a) 

(b) 

Fig 5.3 Drag Vs J for case of the case of  a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 5.4 Stream function at different values of  c for the case of  

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 5.5 Stream function at different values of s for the case of  

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 5.6 Stream lines for the case of a) resonance and b) non-resonance 
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5.6 Conclusions 

From the above graphs and observations we can conclude that  

i) Drag in the case of resonance is much smaller than the case of non-

resonance. i.e resonance offers less friction or helps to reduce  the friction. 

ii) For resonance, circulations near sphere disappear. For non-resonance, the 

effect of Micro-polarity parameter changes the pattern of stream function 

according as c is small or big. 

 

Fig 5.7. Stream lines at different values of Micro-polarity parameter c for 

non-resonance. 
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Chapter – 6 

Rotary oscillations of a sphere in a Micro-polar fluid 

 

The flow of an incompressible micro-polar fluid generated due to rotary 

oscillations of a sphere about the axis of symmetry of the sphere is considered. The 

flow is so slow that nonlinear convective terms in the equations of motion are 

neglected. A rare but distinct special case in which material constants satisfy a 

resonance condition is considered. 

 

6.1 Introduction 

Several such flow problems concerning with micro-polar fluids have been 

studied by many authors over the past five decades, ever since Eringen (1966) 

introduced the micro-polar fluid theory. And we have vast literature regarding micro-

polar fluid theory as I introduced in previous chapters. Stokes (1968, 1971) studied 

effects of couple stresses in fluids on hydro magnetic channel flows and creeping flow 

past a sphere. Frater (1967, 1968) studied the elastico-viscous fluid flows generated 

due to oscillations of sphere and evaluated drag and damping force on the body. 

Ariman et al. (1967) examined micro-polar fluid flow between two concentric 

cylinders. Iyengar (1993, 2001) investigated flow of approximate sphere in 

incompressible micro-polar fluid and in incompressible viscous fluid. Lakshman Rao 

et al. (1971, 1981, 1983) have studied the micro-polar fluid flows generated due to 

oscillations of different symmetric bodies like sphere and spheroid. These problems 

were attempted to obtained drag or couple on the symmetric body. 

The problems related to oscillatory Stokes flow are very common in non-

Newtonian fluid flow and are of much interest to the investigators. Ravindran (1972) 

studied simple oscillatory flow in polar fluids. Verma (1971) studied oscillatory fluid 

flow past a fixed porous sphere. There is a vast literature regarding problems of 

oscillatory flows of sphere in different fluids. For example, Stimson (1926), Frater 

(1967, 1968), Lakshman Rao (1970, 1971), Lai(1978). Many researchers examined 
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oscillatory flows of different objects generated due to rotary oscillations. Lakshmana 

Rao et al. (1983), Tekasakul et al. (1998, 2003), Iyengar et al. (2001, 2004), Aparna et 

al. (2012), Ashmawy (2015) are some of problems related to rotary oscillatory flows. 

Anwar (2004) studied micro-polar fluid flow of circular cylinder rotating and 

oscillating.  

In all these problems, some authors found that a distinct flow exists which is 

technically termed as resonance flow and there lies a relation between material 

constants (to be stated later). Till now this has not been investigated by many 

researchers. This case arises in Lakshmana Rao (1971, 1981, 1983), but resonance 

case was not attempted by the authors. Aparna (2012) examined oscillatory fluid flow 

of permeable sphere oscillating rotary oscillations in an incompressible micro-polar 

fluid. In all above problems, the case of resonance if exists was not studied. In this 

chapter we propose to investigate this case of resonance type flow, in micro-polar 

fluids, due to rotary oscillations of a sphere about its axis of symmetry. Later the 

similar case investigated in couple-stress fluid. 

 

6.2 Basic Equations 

The basic equations of motion for incompressible micro-polar fluids as introduced by 

Eringen (1966), are given by 

𝜕𝜌

𝜕𝜏
+  𝑑𝑖𝑣 𝜌𝑸 = 0                  (6.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄             (6.2) 

𝜌𝒥(
𝜕𝑙  

𝜕𝜏
+ 𝑄 . ∇1𝑙) = −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )      (6.3) 

The constitutive equations for the stress components Tij and couple stress components 

Mij for an incompressible micro-polar fluid are given by 

𝑇𝑖𝑗 = −𝑃𝛿𝑖𝑗 +
1

2
 2𝜇 + 𝑘  𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 + 𝑘𝑒𝑖𝑗𝑟 (𝑤𝑟 − 𝑙𝑟)             (6.4) 

𝑀𝑖𝑗 = 𝑙𝑖,𝑖𝛿𝑖,𝑗 + 𝛽𝑙𝑖,𝑗 + 𝛾𝑙𝑗 ,𝑖                  (6.5) 
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where the permutation tensor𝑒𝑖𝑗𝑘 =  
 0
 1
−1

   if 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖
   if 𝑖, 𝑗, 𝑘 are cyclic              
  if 𝑖, 𝑗, 𝑘 are anti − cyclic

  

and wr = r th  component of ½( curl Q ). 

Neglecting the nonlinear convective terms in (6.2) and (6.3), the linearised version of 

the equations are given by, 

𝑑𝑖𝑣𝑄 = 0                   (6.6) 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇1𝑃 + 𝑘∇1 × 𝑙  −  𝜇 + 𝑘 ∇1 × ∇1 × 𝑄               (6.7) 

𝜌𝒥
𝜕𝑙  

𝜕𝜏
= −2𝑘𝑙  + 𝑘∇1 × 𝑄 − 𝛾∇1 × ∇1 × 𝑙  +  𝛼 + 𝛽 + 𝛾 ∇1(∇1. 𝑙  )            (6.8) 

 

6.3 Statement and Formulation of the Problem 

A sphere of radius a is performing rotary oscillations with velocity W0e
i

 

about its axis of symmetry in an infinite vat containing incompressible micro-polar 

fluid. Spherical coordinate system (R, , ) with base vectors (er, e, e) with origin at 

the centre of the sphere is considered. The flow is axially symmetric, hence it is 

independent of toroidal coordinate . The velocity and micro-rotation are assumed in 

the form: 

 

𝑸 = 𝑒𝑖𝜍𝜏𝑊 𝑅, 𝜃 𝒆 and 𝒍 = 𝑒𝑖𝜍𝜏  {𝒜 𝑅, 𝜃 𝒆𝑟 + ℬ 𝑅, 𝜃 𝒆𝜃 }            (6.9) 

The following non-dimensional scheme is introduced. Capitals and LHS terms 

indicate physical quantities and small letters and RHS terms indicate corresponding 

non-dimensional quantities. 

 

er 

k

i 

Fig 6.1 Geometry of the oscillating Sphere 

W0 ei 

e 
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𝑅 = 𝑎𝑟, 𝑸 =  𝑊0𝒒, 𝑊 =  𝑊0𝑤, 𝒍 =  

𝑊0

𝑎


𝒜 =
𝑊0

𝑎
𝐴, ℬ =

𝑊0

𝑎
𝐵, 𝑃 =  𝑝𝑊0

2 ,  =
𝑎𝑡

𝑊0

             (6.10) 

The following are non-dimensional parameters viz,  J is gyration parameter,  is 

frequency parameter, s is couple stress parameter, c is cross viscosity or micro-

polarity parameter and Re is oscillations Reynolds number for micro-polar fluids. 

 
J =

j𝑎2


, 𝜛 =

𝑎𝜍

𝑊0
, 𝑠 =

k𝑎2

γ
,   𝑐 =

k

μ+k

Re =
ρW 0𝑎

𝜇
, R0 =

ρW 0𝑎

𝜇+𝑘
= 𝑅𝑒(1 − 𝑐), 𝜀 =

𝛼+𝛽+𝛾

𝛾

             (6.11) 

By the choice of the velocity field in (6.9) and non-dimensional scheme (6.10) and 

(6.11), the equations of motion (6.2) and (6.3) are reduced to 

𝑖𝑅0𝒒 + 𝑅0𝒒. ∇𝒒 = −𝑅0. ∇𝑝 + 𝑐 ∇ × 𝝊 − ∇ × ∇ × 𝒒           (6.12) 

𝑖𝑗𝝊 +
𝐽

𝜛
𝒒. ∇𝝊 = −2𝑠𝝊 + 𝑠∇ × 𝒒 − ∇ × ∇ × 𝝊 + 𝜖∇ ∇ ∙ 𝝊            (6.13) 

Neglecting the nonlinear convective terms in (6.12) and (6.13), the linearised version 

of the equations are given by, 

𝑖𝑅0𝒒 = −𝑅0. ∇𝑝 + 𝑐 ∇ × 𝝊 − ∇ × ∇ × 𝒒             (6.14) 

(𝑖𝐽 + 2𝑠)𝝊 = 𝑠∇ × 𝒒 − ∇ × ∇ × 𝝊 + 𝜖∇ ∇ ∙ 𝝊             (6.15) 

Let us consider ∇ × 𝝊 =
𝐺

𝑕3
𝒆𝜙   and     ∇ ∙ 𝝊 = 𝐹(𝑟, 𝜃)           (6.16) 

Now assuming (  is known as swirl ),  

𝒒 = 𝑤𝑒𝜙  =
𝜁

𝑕3
𝑒𝜙                 (6.17) 

Using (6.16) and (6.17) in (6.14) we get 

 𝐸2 − 𝑖𝑅0𝜛 𝜁 = −𝑐𝐺               (6.18) 

where E2 =
𝜕2

𝜕𝑟2 +
1

𝑟2

𝜕2

𝜕𝜃2 −
𝑐𝑜𝑡𝜃

𝑟2

𝜕

𝜕𝜃
              (6.19) 

Using (6.16) and (6.17) in (6.15) we get 

 𝑖𝐽 + 2𝑠 𝝊 = 𝑠∇ ×  
𝜁

𝑕3
𝑒𝜙 − ∇ ×  

𝐺

𝑕3
𝒆𝜙 + 𝜀∇𝐹            (6.20) 

By comparing the components in (6.20) we get 
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 2𝑠 + 𝑖𝐽 𝐴 =
𝑠

𝑟2𝑠𝑖𝑛𝜃
.
𝜕𝜁

𝜕𝜃
−

1

𝑟2𝑠𝑖𝑛𝜃
.
𝜕𝐺

𝜕𝜃
+ 𝜀

𝜕𝐹

𝜕𝑟
             (6.21) 

 2𝑠 + 𝑖𝐽 𝐵 = −
𝑠

𝑟𝑠𝑖𝑛𝜃
.
𝜕𝜁

𝜕𝑟
+

1

𝑟𝑠𝑖𝑛𝜃
.
𝜕𝐺

𝜕𝑟
+

𝜀

𝑟

𝜕𝐹

𝜕𝜃
             (6.22) 

To eliminate G taking divergence to (6.20) we get 

(2 – 𝑝1
2)𝐹 = 0                (6.23) 

with 𝑝1
2  =

2𝑠 +𝑖𝐽

𝜀
                (6.24) 

with  ∇2=
𝜕2

𝜕𝑟2 +
2

𝑟
.
𝜕

𝜕𝑟
+

1

𝑟2 (
𝜕2

𝜕𝜃2 + cot𝜃.
𝜕

𝜕𝜃
)             (6.25) 

Taking Curl to (6.20) we get 

(𝐸2 − (2𝑠 + 𝑖𝐽))𝐺 = 𝑠𝐸2𝜁               (6.26) 

Taking (𝐸2 − (2𝑠 + 𝑖𝐽))  on both sides of (6.18) then substituting (6.26) 

(𝐸2 – 1
2) (𝐸2 – 2

2) 𝜁 = 0               (6.27) 

Where 𝜆1
2 + 𝜆2

2 =  2 − 𝑐 𝑠 + 𝑖(𝐽 + 𝑅0)  and   𝜆1
2𝜆2

2 = 𝑖𝑅0(2𝑠 + 𝑖𝐽)         (6.28) 

The solution for 𝜁 if 12 in (6.27) is given in Lakshmana Rao et al. (1971). The 

solution for 𝜁for the case,  1 =  2 cannot be obtained as a limiting case of  1  →

 2 . This case is referred to as“Resonance”. This resonance occurs if the material 

coefficients follow the following relation: 

𝛾

𝑗
=

 2𝜇+𝑘 (𝜇+𝑘)

2𝜇+3𝑘
and  𝜌𝜍 =

 2𝜇+𝑘 𝑘+𝛾𝜌𝜍

𝐽(𝜇+𝑘)
             (6.29) 

in non-dimensional form 

 2 –  𝑐 𝑠 =  𝐽 − 𝑅0 and  2 − 𝑐 𝐽 = 𝜛𝑅0(2 + 𝑐)            (6.30) 

In this chapter we are interested in the solution for 𝜁 for the case of resonance.  In this 

case the equations for 𝜁 is given by 

 𝐸2  – 2 
2

 𝜁 = 0               (6.31a) 

In the case of non-resonance the equations for 𝜁 is given by 

(𝐸2 – 1
2) (𝐸2 – 2

2) 𝜁 = 0             (6.31b) 
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6.3.1 Boundary Conditions 

By no-slip condition, the non-dimensional swirl 𝜁 and by hyper-stick condition, the 

micro-rotation components A and B are given by 

𝜁 = sin2 𝜃 and 𝐴 =  𝑐𝑜𝑠  , 𝐵 = –  𝑠𝑖𝑛  on r=1                       (6.32) 

 

6.4 Solution of the Problem 

To match with the boundary conditions in (6.32), The swirl function  𝜁  and the 

divergence function F are assumed in the form 

𝜁 = 𝑓 𝑟 sin2 𝜃 and 𝐹 =  𝑔(𝑟)𝑐𝑜𝑠              (6.33) 

Substituting (6.33) in (6.27) we get 

(𝐷𝑠
2 –  1

2) (𝐷𝑠
2 – 2

2)𝑓 = 0               (6.34) 

Where 𝐷𝑠
2 =

𝑑2

𝑑𝑟2 −
2

𝑟2                (6.35) 

Substituting (6.33) in (6.23) we get 

𝑑2𝑔

𝑑𝑟2 +
2

𝑟

𝑑𝑔

𝑟
−

2

𝑟2 𝑔 = 0                (6.36) 

Equation for f for the case of resonance is given by 

(𝐷𝑠
2 –  1

2) (𝐷𝑠
2 – 2

2)𝑓 = 0              (6.37a) 

In the case of non-resonance 

 𝐷𝑠
2 − 𝜆2 2𝑓 = 0              (6.37b) 

The solutions for f(r) is given by 

In the case of resonance: 

𝑓 r = a1 𝑟𝐾3

2

 𝜆𝑟  + a2𝑟
3

2𝐾′3
2

 𝜆𝑟 = 𝑎1𝑓1 + 𝑎2𝑓2                      (6.38a) 

In the case of non-resonance: 

𝑓 r = a1 𝑟𝐾3

2

 𝜆1𝑟 +  a2 𝑟𝐾3

2

 𝜆2𝑟 = 𝑎1𝑓1 + 𝑎2𝑓2         (6.38b) 

The solutions for g(r ) by (6.36) is given 

𝑔 𝑟 =
𝑎3

 𝑟
𝐾3

2

 𝑝1𝑟 = 𝑎3𝑔3               (6.39) 

We can write (6.20) as 

 𝑖𝐽 + 2𝑠 𝝊 = ∇ ×  
𝑠𝜁−𝐺

𝑕3
𝑒𝜙 + 𝜀∇𝐹              (6.40) 

By substituting (6.18) in (6.40) we get 
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 𝑖𝐽 + 2𝑠 𝝊 =
1

𝑐
∇ ×  (𝐸2 − (𝑖𝑅0𝜛 − 𝑐𝑠))

𝜁

𝑕3
𝑒𝜙 + 𝜀∇𝐹           (6.41) 

By comparing the components in (6.41) 

𝑐 2𝑠 + 𝑖𝐽 𝐴 =
1

𝑟2𝑠𝑖𝑛𝜃
.
𝜕

𝜕𝜃
(𝐸2 − (𝑖𝑅0𝜛 − 𝑐𝑠))𝜁 + 𝑐𝜀

𝜕𝐹

𝜕𝑟
           (6.42) 

𝑐 2𝑠 + 𝑖𝐽 𝐵 = −
1

𝑟𝑠𝑖𝑛𝜃
.
𝜕

𝜕𝑟
(𝐸2 − (𝑖𝑅0𝜛 − 𝑐𝑠))𝜁 +

𝑐𝜀

𝑟

𝜕𝐹

𝜕𝜃
           (6.43) 

Substituting (6.33) in (6.42) and (6.43) we get 

𝑐 2𝑠 + 𝑖𝐽 𝐴 =
2𝑐𝑜𝑠𝜃

𝑟2 (𝐷𝑠
2 − (𝑖𝑅0𝜛 − 𝑐𝑠))𝑓 + 𝑐𝜀𝑔′𝑐𝑜𝑠𝜃           (6.44) 

𝑐 2𝑠 + 𝑖𝐽 𝐵 = −
𝑠𝑖𝑛𝜃

𝑟
.
𝑑

𝑑𝑟
(𝐷𝑠

2 − (𝑖𝑅0𝜛 − 𝑐𝑠))𝑓 −
𝑐𝜀

𝑟
𝑔𝑠𝑖𝑛𝜃           (6.45) 

Now assuming 𝐴 = 𝐴  𝑟 𝑐𝑜𝑠𝜃 𝑎𝑛𝑑 𝐵 = 𝐵  𝑟 𝑠𝑖𝑛𝜃            (6.46) 

Now (6.44) and (6.45) becomes 

In the case of resonance: 

 
𝑐

𝜆4

𝑖𝑅0𝜛
𝐴 =

2

𝑟2  𝐷𝑠
2 − 2𝜆2 +

𝜆4

𝑖𝑅0𝜛
 𝑓 + 𝑐𝜀𝑔′

𝑐
𝜆4

𝑖𝑅0𝜛
𝐵 = −

1

𝑟
.
𝑑

𝑑𝑟
 𝐷𝑠

2 − 2𝜆2 +
𝜆4

𝑖𝑅0𝜛
 𝑓 −

𝑐𝜀

𝑟
𝑔
            (6.47a) 

In the case of non-resonance: 

 
𝑐
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
𝐴 =

2

𝑟2  𝐷𝑠
2 − 𝜆1

2−𝜆2
2 +

𝜆1
2𝜆2

2

𝑖𝑅0𝜛
 𝑓 + 𝑐𝜀𝑔′

𝑐
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
𝐵 = −

1

𝑟
.
𝑑

𝑑𝑟
 𝐷𝑠

2 − 𝜆1
2−𝜆2

2 +
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
 𝑓 −

𝑐𝜀

𝑟
𝑔
           (6.47b) 

We denote Δ1 𝑥 = 1 +
𝑥𝐾1

2

 𝑥 

𝐾3
2

 𝑥 
              (6.48) 

We notice that 

 

𝑑

𝑑𝑟
  𝑟𝐾3

2

 𝜆𝑟  = −
𝐾3

2

 𝜆𝑟  

 𝑟
Δ1 𝜆𝑟                                           

𝑑

𝑑𝑟
 
𝐾3

2

 𝜆𝑟  

 𝑟
 = −

𝐾3
2

 𝜆𝑟  

𝑟
3
2

(1 + Δ
1
(𝜆𝑟))                                       

𝑑

𝑑𝑟
 𝑟

3

2𝐾′3/2 𝜆𝑟  =
1

𝜆 𝑟
  𝜆2𝑟2 +

3

2
 𝐾3

2

 𝜆𝑟 −
𝜆𝑟

2
𝐾1

2

 𝜆𝑟  
 
  
 

  
 

           (6.49) 

Substituting (6.38a), (6.38b), (6.39) and (6.49) in (6.47a) and (6.47b), we get,  

In the case of resonance: 

𝑐𝜆4

𝑖𝑅0𝜛
𝐴 =

2

𝑟2

𝜆2 𝜆2−𝑖𝑅0𝜛 

𝑖𝑅0𝜛
𝑓 +

4𝜆𝑎2

𝑟2 𝑓1 −
𝜀𝑐𝑎3

𝑟
3
2

𝐾3

2

 𝑝1𝑟  1 + Δ1 𝑝1𝑟           (6.50a) 

𝑐𝜆4

𝑖𝑅0𝜛
𝐵 =

𝜆2 𝜆2−𝑖𝑅0𝜛 

𝑖𝑅0𝜛𝑟
3
2

 𝑎1𝐾3

2

 𝜆𝑟 Δ1 𝜆𝑟 +
𝑎2

𝜆
  𝜆2𝑟2 +

3

2
 𝐾3

2

 𝜆𝑟 −
𝜆𝑟

2
𝐾1

2

 𝜆𝑟    

   +2𝜆𝑎2

𝐾3
2

 𝜆𝑟  

𝑟 𝑟
Δ1 𝜆𝑟 +

𝑐𝜀𝑎3

𝑟
3
2

𝐾3

2

 𝑝1𝑟            (6.51a)                   
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In the case of non-resonance: 

𝑐
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
𝐴 =

2

𝑟
 
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
(𝑎1𝑓1 + 𝑎2𝑓2) − (𝑎1𝜆2

2𝑓1 + 𝑎2𝜆1
2𝑓2) + 𝑐𝜀𝑎3𝑔′

3
        (6.50b) 

𝑐
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
𝐵 = −

1

𝑟

𝑑

𝑑𝑟
 
𝜆1

2𝜆2
2

𝑖𝑅0𝜛
 𝑎1𝑓1 + 𝑎2𝑓2 −  𝑎1𝜆2

2𝑓1 + 𝑎2𝜆1
2𝑓2  −

𝒄𝜺

𝒓
𝑎3𝑔3             (6.51b) 

Now the condition at r=1 are given by 

f(1) = 1,  𝐴 = 1, 𝐵 = −1               (6.52) 

Substituting the above formulae (6.49), we get on r=1;  

𝑎1𝐾3

2

 𝜆1 + 𝑎2𝐾3

2

 𝜆2 = 1                (6.53) 

2𝑎1

𝜆1
2 𝐾3

2

 𝜆1 +
2𝑎2

𝜆2
2 𝐾3

2

 𝜆2 +
𝑎3𝑐𝜀

𝜆1
2𝜆2

2 . 𝐾3

2

 𝑝1  1 + Δ1 𝑝1  =
2−𝑐

𝑖𝑅0𝜛
           (6.54) 

𝑎1.
𝜆1

2−𝑖𝑅0𝜛

𝑐𝜆1
2 . 𝐾3

2

 𝜆1 Δ 𝜆1 + 𝑎2.
𝜆2

2−𝑖𝑅0𝜛

𝑐𝜆2
2 . 𝐾3

2

 𝜆2 Δ 𝜆2 − 𝑎3𝜀
𝑖𝑅0𝜛

𝜆1
2𝜆2

2 . 𝐾3

2

 𝑝1 = −1   

                  (6.55) 

The constants 𝑎1, 𝑎2 and 𝑎3  are obtained from the boundary conditions (6.32) or 

(6.52) as follows: 

In the case of resonance: 

 
 
 
 
 
 𝐾3

2

 𝜆 𝐾3
2

′  𝜆 0

0 4𝜆𝐾3
2

 𝜆 𝑐𝜀𝐾3
2

 𝑝1 (1 + Δ1 𝑝1 

𝐾3
2

 𝜆 Δ1 λ 
2𝑖𝑅0𝜛

𝜆 𝜆2 − 𝑖𝑅0𝜛 
𝐾3

2

 𝜆 Δ1 𝜆 −
1

𝜆
  𝜆2 +

3

2
 𝐾3

2

 𝜆 −
𝜆

2
𝐾1

2
 𝜆  𝑐𝜀𝐾3

2

 𝑝1 .
𝑖𝑅0𝜛

𝜆2 𝜆2 − 𝑖𝑅0𝜛  
 
 
 
 
 

 

𝑎1

𝑎2

𝑎3

  

 

= 

1
𝜆2

𝑖𝑅0𝜛
( 𝑐 − 2 𝜆2 + 2𝑖𝑅0𝜛)

−1

                (6.56a) 

In the case of non-resonance: 

 
 
 
 
 

𝐾3

2

(𝜆1) 𝐾3

2

(𝜆2) 0

2

𝜆1
2 𝐾3

2

(𝜆1)
2

𝜆2
2 𝐾3

2

(𝜆2) −𝜀
𝑖𝑅0𝜛

𝜆1
2𝜆2

2 𝐾3

2

 𝑝1 (1 + Δ1 𝑝1) 

𝐾3

2

 𝜆1 Δ1 λ1 c1 𝐾3

2

 𝜆2 Δ1 λ2 c2 𝜀
𝑖𝑅0𝜛

𝜆1
2𝜆2

2 𝐾3

2

 𝑝1  
 
 
 
 

 

𝑎1

𝑎2

𝑎3

 =  

1
2−𝑐

𝑖𝑅0𝜛

−1

 

                           (6.56b) 

Hence from (6..56a) and (6.56b), we can calculate 𝑎1, 𝑎2 and 𝑎3 .And hence 𝜁 

and F are  known. 
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6.4.1 Couple  Acting on the Sphere of radius a 

Couple acting on the sphere due to Cauchy‟s stresses is  

𝐶1
∗ = 2𝜋𝑎3   𝑇∗𝑟∅ sin2 𝜃 

𝜋

0
  𝑅=𝑎𝑑𝜃              (6.57) 

𝑇𝑟∅ =  2𝜇 + 𝑘 𝐸𝑟𝜙 + 𝑘𝜖132 (𝜔2 − 𝑣2)             (6.58) 

𝜔2 = −
1

2𝑠𝑖𝑛𝜃

𝜕𝜁

𝜕𝑟
= −

1

2
𝑓′  𝑟 𝑠𝑖𝑛𝜃              (6.59) 

𝐸𝑟𝜙 =
1

2𝑟
 𝑓′ 𝑟 −

2𝑓

𝑟
 𝑠𝑖𝑛𝜃               (6.60) 

After substituting (6.59) and (6.60) in (6.58) we get 

On r=1, 𝑇𝑟𝜙 =   𝜇 + 𝑘 𝑓′ 1 −  2𝜇 + 𝑘 𝑓 1 + 𝑘𝐵 1  𝑠𝑖𝑛𝜃          (6.61) 

Substituting (6.61) in (6.57), we get 

𝐶∗ =
8

3
𝜋𝑎2𝑊0 𝜇 + 𝑘  𝑓′ 1 − 2               (6.62) 

For resonance, non-dimensional Couple is 

𝐶∗ =
8

3
𝜋𝑎2𝑊0 𝜇 + 𝑘  𝑎1𝐾3

2

(𝜆)Δ1 𝜆 +
𝑎2

𝜆
  𝜆2 +

3

2
 𝐾3

2

 𝜆 −
𝜆

2
𝐾1

2

 𝜆  − 2    (6.63a) 

For non-resonance, non-dimensional Couple is 

𝐶∗ =
8

3
𝜋𝑎2𝑊0 𝜇 + 𝑘  𝑎1𝐾3

2

(𝜆1)Δ1 𝜆1 + 𝑎2𝐾3

2

(𝜆2)Δ1 𝜆2 − 2         (6.63b) 

Dividing by 4𝜋𝜇𝑎2𝑊0 we dimensional Couple as 

For resonance case,  

𝐶∗ =
2

3
.

1

1−𝑐
 𝑎1𝐾3

2

(𝜆)Δ1 𝜆 +
𝑎2

𝜆
  𝜆2 +

3

2
 𝐾3

2

 𝜆 −
𝜆

2
𝐾1

2

 𝜆  − 2          (6.64a) 

For non-resonance case, 

𝐶∗ =
2

3
.

1

1−𝑐
 𝑎1𝐾3

2

(𝜆1)Δ1 𝜆1 + 𝑎2𝐾3

2

(𝜆2)Δ1 𝜆2 − 2          (6.64b) 
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6.5 Results and Discussions 

For resonance case, the value of  cannot be taken randomly. In the case of resonance 

the values of  are obtained from (6.28) by solving the following equation for x.  

𝑥2 − [ 2 − 𝑐 𝑠 + 𝑖 𝐽 + 𝜛𝑅0) 𝑥 + 𝑖𝜛𝑅0 𝑖𝐽 + 2𝑠 = 0           (6.65) 

Then in resonance case, the values of    are given by 

𝜆 =  𝑥 =  
(2−𝑐)𝑠+𝑖 𝐽+.𝑅0 

2
               (6.66)  

This equation involves 5 parameters which are related by two equations in 

(6.28). Hence we choose three parameters as an independent. Here 𝜛, R0 and c are 

selected independently, with 0≤ c ≤ 1, R0≪1 and 𝜛≫1 such that ϖ.R0 is not 

negligibly small (say>1). For this range of values of R0, the nonlinear convective 

terms can be neglected but local derivative is retained. After selecting c, R0and 𝜛, the 

values of s and Jare obtained from (6.28) and then  is obtained from (6.66). In the 

case of non-resonance, all 5 parameters are independent.  The values of  are 

complex. These values for  are substituted in (4.38a) and (4.38b) and then constants 

𝑎1𝑎𝑛𝑑𝑎2are obtained. 

6.5.1 Couple  

Couple is effected by all the five parameters. The effects of Reynolds number 

Re, couple stress parameter s and Gyro-viscosity parameter J on the couple are shown 

in the figures.  

From Fig 6.2, it is observed that as || increases, for resonance, couple 

increases drastically and takes very large values. Bur for non-resonance couple 

decreases within a small interval and is almost constant. 

From Fig 6.3, we note that  in the case of non-resonance, variation of couple 

stress parameter s will not effect couple. But for the case of resonance, as s increases 

couple also increases. In both cases of resonance and non-resonance, as c increases, 

couple also increases. 

From Fig 6.4, we note that frequency parameter effects the couple very much. 

As  increases, couple decreases. 
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(a) 

(b) 

Fig 6.2 Couple Vs || at different values of c for the case of a) resonance 

and b) non-resonance 
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(a) 

(b) 

Fig 6.3 Couple Vs cross-viscosity parameter for the case of 

a) resonance and b) non-resonance 
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6.5.2 Velocity 

The toroidal velocity W is found in terms of swirl  which is defined in terms 

of function f. 

Form Fig 6.5, we observe that for resonance velocity raises more than 1 and 

negative in a small range of r for small values of Reynolds number Re. But for non-

resonance, velocity is always less than 1 and negative for larger range of r. 

From Fig 6.6 and Fig 6.7,  it is observed that as couple stress parameter s and 

micro-polarity parameter cdo not show effect on velocity in the case of non-

resonance. But in the case of resonance as s increases, velocity decreases and as c 

increases, velocity also increases. 

 

 

 

Fig 6.4 Couple vs couple stress parameter s for non-resonance 
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(a) 

(b) 

Fig 6.5 Velocity f at different values of Re for the case of a) resonance 

and b) non-resonance 
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(a) 

(b) 

Fig 6.6 Velocity f for variations in s for the case of a) resonance 

and b) non-resonance 
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(a) 

(b) 

Fig 6.7 Velocity f for variations in c for the case of a) resonance 

and b) non-resonance 
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(a) 

(b) 

Fig 6.8 Velocity contours for the case of a) resonance and b) non-resonance 
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From Fig 6.8 of the contour lines of velocity, we confirm the observations 

made above in fig6.5 i.e for non-resonance near to the cap or pole of the sphere 

toroidal velocity forms circulations with negative values (red and yellow colour). For 

resonance, all circulations are positive.(blue colour). 

 

6.6 Conclusions 

From the above observations we conclude that in the case of rotary oscillations  

i) For resonance couple is very high and for non-resonance it is low. 

ii) For resonance, velocity is positive in the entire range. For non-resonance 

velocity at the pole is negative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 
 

 

 

 

 

 

 

 

Part – III 

Couple-stress Fluid Flows 
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Chapter  7 

Rectilinear oscillations of a Circular Cylinder in a 

Couple-stress fluid 

 

The flow due to a circular cylinder oscillating rectilinearly about its axis of 

symmetry in a Couple-stress fluid is considered. There occurs a rare but an important 

special case referred to as Resonance flow. The material constants satisfy a specific 

relation called resonance condition. In this case, the flow is analyzed under Stokesian 

approximation. The velocity component of the flow is derived. The effect of physical 

parameters like Reynolds number and Couple stress parameter on the Drag is 

analyzed through graphs. 

 

7.1 Introduction  

The flow problems in Couple stress fluids have been attracting many 

researchers due their Mathematical simplicity and beauty and importance in many 

applications. Oscillatory flows of circular cylinder in various fluids like Micro-polar 

fluids, Couple-stress fluids, viscous fluids were investigated by many authors Kanwal 

(1955), Ariman et al. (1967), Ramkissoon et al. (1990), Rao et al. (1992), Calmelet-

Eluhu et al. (1998), Anwar et al. (2004), Fetecau et al. (2006), Mehrdad Massoudi et 

al. (2008), Ramana Murthy et al. (2010), Nagaraju et al. (2014) by computationally or 

analytically. An incompressible viscous flow due to rectilinear oscillations of an 

approximate sphere was studied by Iyengar et al. (2001). Oscillatory flow of a sphere 

due to rectilinear oscillations in an elastic-viscous fluid was investigated by Lai et al. 

(1978). In these papers, the authors analyzed Drag on the object. 

  In this chapter, we propose to investigate this case of resonance type flow, in 

Couple-stress fluids, due to rectilinear oscillations of a circular cylinder about its axis 

of symmetry.  In chapter 2 the similar problem of the Resonance type flow due to a 

circular cylinder in Micro-polar fluid is investigated. 
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7.2 Basic Equations 

The basic equations of motion for an incompressible Couple stress fluid introduced by 

Stokes (1966) are given by: 

𝑑𝑖𝑣𝑄 = 0                   (7.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 − 𝜇∇1 × ∇1 × 𝑄 − 𝜂∇1 × ∇1 × ∇1 × ∇1 × 𝑄            (7.2) 

whereQ is fluid velocity vector,  is density,  is time,   is viscosity coefficient. 

By neglecting nonlinear convective terms in (7.2) we get 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇1𝑃 − 𝜇∇1 × ∇1 × 𝑄 − 𝜂∇1 × ∇1 × ∇1 × ∇1 × 𝑄              (7.3)  

The (Cauchy‟s) stress tensor T and Couple stress tensor M satisfy the constitutive 

equations as below: 

𝑇 = −𝑃𝐼 + 𝜆 ∇1. 𝑄 𝐼 + 𝜇 ∇1𝑄 +  ∇1𝑄 
𝑇 +

1

2
𝐼 × (∇1. 𝑀)             (7.4) 

𝑀 = 𝑚𝐼 + 2𝜂∇1 ∇1 × 𝑄 + 2𝜂′ ∇1 ∇1 × 𝑄  𝑇              (7.5) 

 

7.3 Statement and Formulation of the Problem 

A circular cylinder of radius a and of infinite length is performing rectilinear 

oscillations with velocity 𝑈0𝑒
𝑖 about its diameter in an incompressible Couple-stress 

fluid. A cylindrical coordinate system (𝑅, , 𝑍) with origin on the axis of the cylinder 

is considered. The fluid flow is assumed to be in cross-sectional plane with the base 

vectors (𝒆𝑟 , 𝒆). The velocity and pressure are assumed as: 

𝑸 = (𝑈 𝑅, 𝜃 𝒆𝒓 + 𝑉 𝑅, 𝜃 𝒆𝜽) and 𝑃0  =  𝑃𝑒𝑖              (7.6) 
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The following non-dimensional scheme is introduced. 

R = 𝑎𝑟, U = U0𝑢, V = U0𝑣, 𝐐 = 𝐪U0𝑒
𝑖𝜍𝜏 , P = 𝑝U0

2𝑒𝑖𝜍𝜏 ,  =
at

𝑈0
           (7.7) 

The following are non-dimensional parameters viz,   is frequency parameter, S is 

Couple stress parameter, and Re is oscillations Reynolds number for Couple-stress 

fluids. 

𝜛 =
σa

U0
, 𝑠 =

μ𝑎2

η
, Re =

ρU0𝑎

𝜇
 , Re. ϖ =

ρσ𝑎2

𝜇
               (7.8) 

Substituting (7.6) in (7.1) we notice that stream function  can be introduced as 

𝑢 =
1

𝑟

𝜕𝜓

𝜕𝜃
𝑎𝑛𝑑𝑣 =  −

𝜕𝜓

𝜕𝑟
   i.e       𝒒 = ∇ × (𝜓𝒆𝑧)              (7.9) 

Using (7.6), (7.7) and (7.8) in (7.3) we get 

𝑅𝑒. 𝑆
𝜕𝒒

𝝏𝒕
= −𝑅𝑒. 𝑆. ∇𝑝0 − 𝑆∇ × ∇ × 𝒒 − ∇ × ∇ × ∇ × ∇ × 𝒒           (7.10) 

Using (7.6), we get 

𝑅𝑒. 𝑆. 𝑖𝜛𝒒 = −𝑅𝑒. 𝑆. ∇𝑝 − 𝑆 ∇ ×  ∇ × 𝒒 − ∇ × ∇ × ∇ × ∇ × 𝒒          (7.11) 

To eliminate pressure, applying curl to (7.11) and substituting (7.9) we get, 


2(2– 1

2) (2–2
2)  = 0                          (7.12) 

Where ∇2=
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2               (7.13) 

𝜆1
2 + 𝜆2

2 = 𝑆 and 𝜆1
2𝜆2

2 =  𝑅𝑒. 𝑆. 𝑖𝜛              (7.14) 

U0eit 

ez 

 

er 

i 

U0eit 

𝑒𝜃  

Fig 7.1 Geometry of the oscillating cylinder 
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The solution for  if 12 in (7.12) is given in Lakshmana Rao et al. (1971). The 

solution for  for the case, 1 =  2 cannot be obtained as a limiting case of  1  →

 2. This case is referred to as “Resonance”. This resonance occurs if the material 

coefficients follow the following relation in dimensional form.   

𝑆 = 4𝑅𝑒. 𝑖𝜛                 (7.15) 

In this chapter we are interested in the solution for   for the case of resonance 

1  =  2  =  .   

In this case of resonance, the equations for  is given by 

∇2 ∇2– 2 
2
 = 0                      (7.16a) 

For the case of non-resonance, the equations for  is given by 


2(2– 1

2) (2–2
2)  = 0                   (7.16b) 

7.3.1 Boundary Conditions 

The cylinder is oscillating in the direction of X axis. Hence the non-dimensional 

velocity of cylinder  after removing 𝑒𝑖𝜛𝑡  is given by 

𝒒  =  𝒊 =  𝑐𝑜𝑠𝒆𝑟–  𝑠𝑖𝑛𝒆   which implies by no-slip condition  

𝑢 =  𝑐𝑜𝑠  𝑎𝑛𝑑 𝑣 = –  𝑠𝑖𝑛  𝑜𝑛 𝑟 = 1             (7.17) 

By hyper-stick condition   =
1

2
 curl 𝒒  = 0 on r=1           (7.18) 

 

7.4 Solution of the Problem 

To match with the boundary conditions, stream function  is assumed in the form 

 =  𝑓(𝑟) 𝑠𝑖𝑛                (7.19) 

Substituting (7.19) in (7.16), we get an equation for f  in the case of Resonance  as 

𝐷𝑐
2 𝐷𝑐

2–2 
2
𝑓 =  0               (7.20a) 
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In the case of non-resonance equation for f  is 

𝐷𝑐
2 𝐷𝑐

2– 1
2  𝐷𝑐

2– 2
2 𝑓 =  0                   (7.20b) 

With 𝐷𝑐
2 =

𝑑2

𝑑𝑟2 +
1

𝑟

𝑑

𝑑𝑟
−

1

𝑟2               (7.21) 

From the boundary conditions in (7.17) and (7.18), the conditions on f are obtained as: 

B.C-1:𝑓(1)  =  1                (7.22) 

B.C-2:𝑓 ′(1)  =  1                (7.23) 

B.C-3:𝐷𝑐
2𝑓 = 0 𝑜𝑛 𝑟 = 1               (7.24) 

Since the equation for f is linear, the general solution for f is linear combination of 

individual solutions of factors in the differential operator. Hence f is taken as 

𝑓 =  𝐴0𝑓0  +  𝐴1𝑓1  + 𝐴2𝑓2               (7.25) 

In the case of resonance, 

𝐷𝑐
2𝑓0  = 0,    𝐷𝑐

2–2 𝑓1  =  0  and    𝐷𝑐
2– 2 

2
𝑓2  =  0          (7.26a) 

In the case of non-resonance, 

𝐷𝑐
2𝑓0  = 0,    𝐷𝑐

2– 1
2 𝑓1  =  0  and      𝐷𝑐

2– 2
2 𝑓2  =  0         (7.26b) 

On solving (7.26a), the solution for f for the case of resonance is obtained as 

𝑓 r =
A0

r
  +  A1K1(r) +  A2𝑟𝐾′1(r)            (7.27a) 

On solving (7.26b), the solution for f for the case of non-resonance is obtained as 

𝑓 r =
A0

r
  +  A1K1(1r)  +  A2K1(2r)           (7.27b) 

We notice that, for the case of resonance 

𝐷𝑐
2𝑓0  =  0, 𝐷𝑐

2𝑓1  =  2𝑓1  and 𝐷𝑐
2𝑓2  =  2(2𝑓1 + 𝑓2)          (7.28a) 

This implies that at r=1,  𝐷𝑐
2𝑓 =  2 𝐴1𝑓1 + 𝐴2 2𝑓1 + 𝑓2  = 0 

this reduces to 1 − 𝐴0 + 2𝐴2𝑓1 = 0 𝑜𝑟 𝐴0 − 2𝐴2𝐾1 𝜆 = 1 
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In the case of non-resonance 

𝐷𝑐
2𝑓0  =  0,   𝐷𝑐

2𝑓1  =  1
2𝑓1    and   𝐷𝑐

2𝑓2  =  2
2𝑓2          (7.28b) 

The constants A0 ,A1 , A2 are obtained from the boundary conditions (7.23), (7.24) 

and (7.25) in matrix form for the case of resonance as: 

 

1 𝐾1(𝜆) 𝜆𝐾′1(𝜆)

−1 𝜆𝐾′1(𝜆)
𝜆2 +1

𝜆
𝐾1(𝜆)

1 0 −2𝐾1(𝜆)

  
𝐴0

𝐴1

𝐴2

 =  
1
1
1
             (7.29a) 

For the case of non-resonance, 

 

1 𝐾1(𝜆1) 𝐾1(𝜆2)

−1 𝜆1𝐾
′
1(𝜆1) 𝜆2𝐾

′
1(𝜆2)

0 𝜆1
2𝐾1(𝜆1) 𝜆2

2𝐾1(𝜆2)

  
𝐴0

𝐴1

𝐴2

 =  
1
1
0
            (7.29b) 

On solving the equation (7.29a) and (7.29b) for A0, A1, A2 we get completely f and 

hence  for both the cases. 

7.4.1 Pressure 

𝑑𝑝 = 𝑝𝒅𝒓 =
𝜕𝑝

𝜕𝑟
𝑑𝑟 +

𝜕𝑝

𝜕𝜃
𝑑𝜃              (7.30) 

By comparing components in equation (7.11), pressure is obtained as follows. 

𝑅𝑒. 𝑆
𝜕𝑝

𝜕𝑟
= −𝑅𝑒. 𝑆𝑖𝜛

1

𝑟

𝜕𝜓

𝜕𝜃
+

𝑆

𝑟

𝜕

𝜕𝜃
 ∇2𝜓 −

1

𝑟

𝜕

𝜕𝜃
 ∇4𝜓            (7.31) 

𝑅𝑒. 𝑆
𝜕𝑝

𝜕𝜃
= 𝑅𝑒. 𝑆𝑖𝜛𝑟

𝜕𝜓

𝜕𝑟
− 𝑆𝑟

𝜕

𝜕𝑟
 ∇2𝜓 + 𝑟

𝜕

𝜕𝑟
 ∇4𝜓             (7.32) 

Substituting (7.31) and (7.32) in (7.30) and integrating, we get pressure in non-

dimensional form 

𝑝 =
𝑖𝜔𝐴0

𝑟
𝑐𝑜𝑠𝜃                 (7.33) 

7.4.2 Drag acting on the Cylinder per length L 

Drag = 𝐷∗ = 𝑎𝐿   𝑇∗𝑟𝑟 𝑐𝑜𝑠𝜃 − 𝑇∗𝑟𝜃 𝑠𝑖𝑛𝜃 
2𝜋

0
  𝑅=𝑎𝑑𝜃           (7.34) 

Required tress components are obtained as follows: 
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Strain rate tensor = 𝐸 =  𝑒𝑖𝑗  =
1

2
 [∇𝑄 + ∇𝑄 𝑇] 

We get strain rate tensor for this problem as 

𝐸 =  

𝜕𝑈

𝜕𝑅

1

2
 
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝜃
−

𝑉

𝑅
 0

1

2
 
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝜃
−

𝑉

𝑅
 

1

𝑅
 
𝜕𝑉

𝜕𝜃
+ 𝑈 0

0 0 0

             (7.35) 

Form (7.5) Couple stress tensor M obtained as 

𝑀 =

 
 
 
 
 𝑚 0 2𝜂

𝜕𝐶

𝜕𝑅

0 𝑚 2𝜂
1

𝑅

𝜕𝐶

𝜕𝜃

2𝜂′
𝜕𝐶

𝜕𝑅
2𝜂′

1

𝑅

𝜕𝐶

𝜕𝜃
𝑚  

 
 
 
 

              (7.36) 

Where ∇1 × 𝑄 = 𝐶𝑒 𝑧                 (7.37) 

And ∇1.𝑀 = 𝑚3𝑒 𝑍                (7.38) 

Where 𝑚3 = 2𝜂∇2𝐶                (7.39) 

I × (∇1. 𝑀) =  
0 −2𝜂∇2𝐶 0

2𝜂∇2𝐶 0 0
0 0 0

              (7.40) 

By substituting (7.35) and (7.40) in (7.4) and simplifying we get 

𝑇𝑅𝑅 = −𝑃 + 2𝜇
𝜕𝑈

𝜕𝑅
                (7.41) 

𝑇𝑅𝜃 = 𝜇  
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝜃
−

𝑉

𝑅
 − 𝜂∇2𝐶              (7.42) 

In non-dimensional form are 

𝑇𝑟𝑟 =
𝜇𝑈0

𝑎
 −𝑅𝑒. 𝑝 + 2  

𝑓 ′

𝑟
−

𝑓

𝑟2 𝑐𝑜𝑠𝜃             (7.41a) 

At r=1, 𝑇𝑟𝑟 = −
𝜇𝑈0

𝑎
(𝑅𝑒. 𝑖𝜛𝐴0)𝑐𝑜𝑠𝜃              (7.43) 

𝑇𝑟𝜃 =
𝜇𝑈0

𝑎
 −𝐷𝑐

2𝑓 +
1

𝑆
𝐷𝑐

4𝑓 + 2  
𝑓 ′

𝑟
−

𝑓

𝑟2  𝑠𝑖𝑛𝜃           (7.42a) 

At r=1, 𝑇𝑟𝜃 =
𝜇𝑈0

𝑎

1

𝑆
𝐷𝑐

4𝑓𝑠𝑖𝑛𝜃 =
𝜇𝑈0

𝑎

𝜆4

𝑆
 1 − 𝐴0 + 4𝐴2𝐾1 𝜆  𝑠𝑖𝑛𝜃          (7.44) 
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We note that at r=1; 𝐷𝑐
4𝑓 =  𝐷𝑐

2 − 𝜆2 2𝑓 − 𝜆4𝑓 = 𝜆4(𝐴0 − 1) 

Substituting (7.43) and (7.44) in (7.34) we get the Drag D
*
 on the cylinder (without 

the factor eit  ) is given as for resonance 

𝐷∗ = 𝐿𝜇𝑈0𝑖𝜋𝜛𝑅𝑒 1 − 2𝐴0 = −𝐿𝜇𝑈0𝑖𝜋𝜛𝑅𝑒(1 + 4𝐴2𝐾1 𝜆 )         (7.45a) 

For non-resonance  

𝐷∗ = 𝐿𝜇𝑈0𝑖𝜋𝜛𝑅𝑒 1 − 2𝐴0 = −𝐿𝜇𝑈0𝑖𝜋𝜛𝑅𝑒  𝐴0 +
𝜆1

2

𝜆2
2 𝐴1𝐾1 𝜆1 +

𝜆2
2

𝜆1
2 𝐴2𝐾1 𝜆2   

                (7.45b)  

By dividing  𝐿𝜇𝑈0, we get the entire Drag in non-dimensional form for both cases as 

𝐷 =  𝑖𝜋𝜛𝑅𝑒(1 − 2𝐴0)               (7.46) 

 

7.5 Results and Discussions 

The roots of 𝑥2 –  𝑆𝑥 +  𝑖𝜛𝑅𝑒𝑆 =  0 are taken as the values of 
2
. 

Hence =  x  =

 
 

  S± S2−4S.Re .iω

2
for non resonance

 
S

2
                     for resonance

            (7.47) 

Here 𝜛, 𝑆 𝑎𝑛𝑑 𝑅𝑒   are choosen independently, with Re≪1 and ≫1 such 

that .Re is not negligibly small (say>1) then  is obtained from (7.47).  Then A0, A1 

and A2 and hence  and Drag are obtained. To get physical quantities, the 

corresponding real part of the quantities are taken. 

7.5.1 Stream function 

In Fig 7.2 stream function f at different values of Reynolds number Re is 

shown. For resonance we notice that stream function takes smaller values than the 

case of non-resonance and vanishes at relatively nearer to the cylinder than in the case 

of non-resonance. (i.e stream function vanishes at larger distances from the cylinder.) 
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In Fig 7.3 stream function f at different values of frequency parameter  is 

shown. For resonance we notice that stream function takes smaller values than the 

case of non-resonance and vanishes at relatively nearer to the cylinder than in the case 

of non-resonance. (i.e stream function vanishes at larger distances from the cylinder 

as in the case of Fig 7.2 for Reynolds number Re.) 

In Fig 7.4 we notice that for non-resonance internal circulations near to the 

pole of cross sectional circle are found. As we move into the center of this internal 

circulations, the value of stream function increases (goes from red to blue). For 

resonance this internal circulations are not found. As we move from pole of the cross 

sectional circle, the values of the stream function are decreasing (goes from green to 

yellow.) 

7.5.2 Drag 

Drag has two different formulas in (7.45). But by using boundary conditions, 

it will reduce to one simple formula for resonance and non-resonance. From fig 7.5, 

we observe that when || is fixed, we get only one curve for resonance, since Re. is 

fixed. The distinct feature in this is that as || increases, Drag also increases for 

resonance but for non-resonance opposite behavior is observed. i.e as || increases, for 

non-resonance, Drag decreases and becomes constant for large values of || at a 

particular . Again, when || is less than 4, abrupt behavior is observed. This 

tendency increases as  increases.  Mathematically this happens because, at this value 

of , the value of S goes to negative values. 

From Fig 7.6, we observe that as Re increases, Drag also increases, but for 

resonance Drag is lesser than in the case of non-resonance. 

From Fig 7.7, we notice that as S increases, Drag increases for resonance. But for 

non-resonance as S increases, Drag decreases. But the values of Drag are smaller in 

comparison with the case of non-resonance. At particular value of S, for resonance, 

Drag is almost constant. 
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(a) 

(b) 

Fig.7.2 Stream function f  at different values of Reynolds number for the case of  

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 7.3 Stream function f at fixed Reynolds number for the case of 

a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 7.4 Stream lines at Re=0.2 for the case of a) resonance and b) non-resonance 
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(a) 

(b) 

Fig 7.5 Drag Vs | | at different values of frequency parameter for the case of 

a) resonance and b) non-resonance  
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(a) 

(b) 

Fig 7.6 Drag Vs Reynolds number Re for different values of  for 

the case of a) resonance and  b) non-resonance 
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(a) 

(b) 

Fig 7.7 Drag Vs Re at different values of S for the case of a) resonance 

and b) non-resonance 
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7.6 Conclusions 

We observe that when resonance occurs: 

i) Stream function values decrease from a high value to a low value from the 

cylinder and vanishes near to the cylinder. 

ii) Drag takes less values in comparison with non-resonance for variation in 

 and S. 

when there is non resonance: 

i) Stream function forms a circulation near to the surface of the cylinder. as 

move go near to the center of the circulation, the value of stream function 

increases 

ii) Drag is very high in comparison to resonance for the variation of  and S. 
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Chapter  8 

Rotary oscillations of a Circular Cylinder in a  

Couple-stress fluid 

 

The flow generated due to rotary oscillations of a circular cylinder about its 

axis of symmetry in an incompressible Couple-stress fluid is considered. The 

Reynolds number for the flow is less than unity due to very slow flow and hence 

nonlinear convective terms in the equations of motion are neglected. A rare but 

distinct special case in which material constants satisfy a resonance condition is 

considered. The velocity component for the flow derived. The Skin friction acting on 

the cylinder is evaluated and the effect of physical parameters like Reynolds number 

and Couple stress parameter on the Skin friction due to oscillations is shown through 

graphs. 

 

8.1 Introduction 

Many authors investigated the flow of Couple-stress fluids in cylindrical 

geometry. Ariman et al. (1967) studied Couple-stress fluids and flow of Micro-polar 

fluids between two concentric cylinders. Kanwal (1955) studied viscous fluid flow of 

axisymmetric bodies generated due to rotary and longitudinal oscillations. Frater 

(1968) evaluated Drag on a circular cylinder oscillating in an elastico-viscous 

fluid. Ravindran (1972) Studied simple oscillatory flow in polar fluids. Soundalgekar 

et al. (1974) analysed effects of Couple stresses on the oscillatory flow past an infinite 

plate with constant suction. Lakshmana Rao et al. (1972, 1983, 1987) studied the 

oscillatory flows of circular cylinder, spheroid and elliptic cylinder in incompressible 

Micro-polar fluids, the main thrust of the investigation being the determination of the 

Drag or Couple as the case may be on the oscillating body. Lakshmana Rao et al. 

(1980) examined Couple-stress fluid flows by analytically and computationally. 

Iyengar et al. (2001, 2004) studied oscillatory flow of Micro-polar fluid generated by 
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the rotary oscillations of approximate sphere and two concentric spheres. Calmelet-

Eluhu et al. (1998) studied Micro-polar fluid flow of circular cylinder generated due 

to longitudinal and torsional oscillations. Fetecau et al. (2006) found solutions for the 

motion of second grade fluid due to longitudinal and torsional oscillations of circular 

cylinder. Anwar et al. (2004), Aparna et al. (2012) examined rotary oscillations of 

circular cylinder, permeable sphere in an incompressible Micro-polar fluid. Mehrdad 

Massoudi et al. (2008) numerically studied the motion of second grade fluid due to 

longitudinal and torsional oscillations of a cylinder. Ramkissoon et al. (1990), Rao et 

al. (1992), Ramana Murthy et al. (2010), Nagaraju et al. (2014) studied oscillatory 

flows of circular cylinder due to performing longitudinal and torsional oscillations in 

viscous fluid, Couple-stress fluid, Micro-polar fluid.  

 In this chapter we propose to investigate incompressible Couple-stress fluid 

flow due to Circular Cylinder performing rotary oscillations.  

 

8.2 Basic Equations 

The basic equations of an incompressible Couple stress fluid introduced by Stokes 

(1966) are given by: 

𝑑𝑖𝑣𝑄 = 0                   (8.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 − 𝜇∇1 × ∇1 × 𝑄 − 𝜂∇1 × ∇1 × ∇1 × ∇1 × 𝑄            (8.2) 

whereQ is fluid velocity vector,  is density,  is time,   is viscosity coefficient. 

By neglecting non linear convective terms in (8.2) we get 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇1𝑃 − 𝜇∇1 × ∇1 × 𝑄 − 𝜂∇1 × ∇1 × ∇1 × ∇1 × 𝑄              (8.3) 

For Couple stress fluids, the stress components Tij and Couple stress tensor M satisfy 

the following constitutive equations. 

𝑇 = −𝑃𝐼 + 𝜆 ∇1. 𝑄 𝐼 + 𝜇 ∇1𝑄 +  ∇1𝑄 
𝑇 +

1

2
𝐼 × (∇1. 𝑀)             (8.4) 

𝑀 = 𝑚𝐼 + 2𝜂∇1 ∇1 × 𝑄 + 2𝜂′ ∇1 ∇1 × 𝑄  𝑇              (8.5) 
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8.3 Statement and Formulation of the Problem 

A circular cylinder of radius a and of infinite length is performing rotary 

oscillations with velocity 𝑉0𝑒
𝑖𝒆 about its axis of symmetry in an infinite vat 

containing incompressible Couple-stress fluid. A cylindrical coordinate system 

(𝑅, , 𝑍)  with base vectors (𝒆𝑅 , 𝒆, 𝒆𝑍)  with origin on the axis of the cylinder is 

considered. Hence the fluid velocity will be in cross sectional plane of the cylinder 

containing the base vectors (𝒆𝑅 , 𝒆). The velocity is assumed in the form: 

 

𝑸 = 𝑉 𝑅 𝒆𝜽𝒆
𝑖𝜍𝜏                   (8.6) 

The following non-dimensional scheme is introduced. Capitals and LHS terms 

indicate physical quantities and small letters and RHS terms indicate corresponding 

non-dimensional quantities. 

𝑅 = 𝑎𝑟,   𝑉 = 𝑣. 𝑎𝜍,   𝑸 = 𝒒v0 ,   𝑃 = 𝑝𝜌v0
2 ,   𝜏 =

𝑎𝑡

v0
              (8.7) 

The following are non-dimensional parameters viz,  𝜛 is frequency parameter, S is 

Couple stress parameter and Re is Reynolds number for Couple-stress fluids. 

𝜛 =
𝜍𝑎

V0
, 𝑆 =

μ𝑎2

η
, Re =

ρV0𝑎

𝜇
which gives Re. ϖ =

ρσ𝑎2

𝜇
             (8.8) 

By the choice of velocity field in (8.6) the equations of motion (8.3) is reduced to 

𝑖𝜍𝜌𝑉 = −
𝑃0

𝑅
+ 𝜇𝐷𝑐

2𝑉 − 𝜂𝐷𝑐
4𝑉                (8.9) 

where  
𝜕𝑃

𝜕𝜃
= 𝑃0 

Fig 8.1 Geometry of the oscillating cylinder 
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Using non dimensional scheme (8.7) and  (8.8) in (8.9) we get 

𝐷𝑐
4𝑣 − 𝑆𝐷𝑐

2𝑣 + 𝑖𝜛𝑅𝑒. 𝑠𝑣 = −
𝑝0

𝑟
𝑅𝑒. 𝑆             (8.10) 

This equation (8.10) can be written as 

 𝐷𝑐
2 − 𝜆1

2  𝐷𝑐
2 − 𝜆2

2 𝑣 = −
𝑝0

𝑟
𝑅𝑒. 𝑆              (8.11) 

where 𝐷𝑐
2 =

𝑑2

𝑑𝑟2 +
1

𝑟

𝑑

𝑑𝑟
−

1

𝑟2               (8.12) 

𝜆1
2 + 𝜆2

2 = 𝑆 and 𝜆1
2𝜆2

2 = 𝑖𝑅𝑒. 𝑆              (8.13) 

The solution for 𝑣 if 12 in (8.11) is given in Lakshmana Rao et al. (1971). The 

solution for 𝑣  for the case, 1 =  2  cannot be obtained as a limiting case of  1  →

 2. This case is referred to as “Resonance”. This resonance occurs if the material 

coefficients follow the following relation in dimensional form. 

2𝜆2 = 𝑆 = 4𝑖𝜛𝑅𝑒                (8.14) 

Now the equations for v for the case of resonance is given by 

 𝐷𝑐
2 − 𝜆2 2𝑣 = −

𝑝0

𝑟
𝑅𝑒. 𝑆              (8.15a) 

For the case of non-resonance 

(Dc
2 –  1

2) (Dc
2 – 2

2) v = −
𝑝0

𝑟
𝑅𝑒. 𝑆            (8.15b) 

8.3.1 Boundary Conditions 

By no-slip condition, the non-dimensional velocity of the circular cylinder    is given 

by 𝑣 = 1                 (8.16) 

By hyper-stick condition,  

Curl Q = 2ez  which yields   on r=1,     
𝜕𝑣

𝜕𝑟
= 1             (8.17) 
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8.4 Solution of the Problem 

The solution of (8.15a), velocity function v is assumed in the form 

𝑣 = 𝐴1𝑣1 + 𝐴2𝑣2 −
1

𝜆4𝑟
𝑝0𝑅𝑒. 𝑠            (8.18a) 

With  𝐷𝑐
2 − 𝜆2 𝑣1 = 0 and 𝐷𝑐

2 − 𝜆2 2𝑣2 = 0           (8.19a) 

these will yield the solutions as 

𝑣1 =  𝐾1(𝜆𝑟) and 𝑣2 =  𝑟𝐾1
(𝜆𝑟)             (8.20a) 

For the case of non-resonance, the corresponding solution will be 

𝑣 = 𝐴1𝑣1 + 𝐴2𝑣2 −
1

𝜆1
2𝜆2

2𝑟
𝑝0 𝑅𝑒. 𝑠            (8.18b) 

With  Dc
2  – 1

2 𝑣1 = 0 and  Dc
2  – 2

2 𝑣2 = 0          (8.19b) 

these will yield the solutions as for non-resonance case as 

𝑣1 =  𝐾1(𝜆1𝑟) and 𝑣2 =  𝐾1(𝜆2𝑟)             (8.20b) 

The following results are useful to note. 

𝐷𝑐
2𝑣1 = 𝜆2𝑣1𝑎𝑛𝑑𝐷𝑐

2𝑣2 = 2𝜆𝑣1 + 𝜆2𝑣2            (8.21a) 

In case of non-resonance, 

𝐷𝑐
2𝑣1 = 𝜆1

2𝑣1𝑎𝑛𝑑𝐷𝑐
2𝑣2 = 𝜆2

2𝑣2            (8.21b) 

The constants𝐴1, 𝐴2are obtained by applying the boundary conditions (8.16) and 

(8.17) to (8.18a) as follows: 

 
𝐾1(𝜆) 𝐾′1(𝜆)

𝜆𝐾′1(𝜆)
 1+𝜆2 

𝜆
𝐾1 𝜆 

  
𝐴1

𝐴2
 =  

1 −
𝑖𝑝0

𝜛

1 +
𝑖𝑝0

𝜛

             (8.22a) 

In the case of non-resonance, the conditions for 𝐴1, 𝐴2 are given by   

 
𝐾1(𝜆1) 𝐾1(𝜆2)

𝜆1𝐾′1(𝜆1) 𝜆2𝐾′1(𝜆2)
  
𝐴1

𝐴2
 =  

1 −
𝑖𝑝0

𝜛

1 +
𝑖𝑝0

𝜛

            (8.22b) 



134 
 

Hence we can calculate 𝐴1𝑎𝑛𝑑𝐴2from (8.22a) and (8.22b) for both the cases. 

Hence velocity v is known. 

8.4.1 Skin friction acting on the Cylinder per length L 

Skin friction acting on the circular cylinder is given by 

𝑐𝑓 =
2𝑇𝑟𝜃

𝜌𝑣0
2 .                 (8.23) 

For Couple stress fluids, the constitutive equations for stress and Couple stresses are 

given by (8.4) and (8.5) as 

𝑇 = −𝑃𝐼 + 𝜆 ∇1. 𝑄 𝐼 + 𝜇 ∇1𝑄 +  ∇1𝑄 
𝑇 +

1

2
𝐼 × (∇1. 𝑀)   

And 𝑀 = 𝑚𝐼 + 2𝜂∇1 ∇1 × 𝑄 + 2𝜂′ ∇1 ∇1 × 𝑄  𝑇 

Strain rate tensor is given by 

𝐸 =
1

2
 ∇1𝑄 + 1𝑄 

𝑇 =

 
 
 
 
 

𝜕𝑈

𝜕𝑅

1

2
(
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅
−

𝑉

𝑅
) 

1

2
(
𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍
)

1

2
(
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅
−

𝑉

𝑅
)

1

2
(𝑈 +

𝜕𝑉

𝜕𝜃
)

1

2
(

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍
) 

1

2
(
𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍
)

1

2
(

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍
)

𝜕𝑊

𝜕𝑍  
 
 
 
 

(8.24) 

For this present problem, we get strain rate tensor as 

𝐸 =  

0
1

2
(
𝜕𝑉

𝜕𝑅
−

𝑉

𝑅
) 0

1

2
(
𝜕𝑉

𝜕𝑅
−

𝑉

𝑅
) 0 0

0 0 0

               (8.25) 

𝑀 =  

𝑚 0 2𝜂
𝜕𝐶

𝜕𝑅

0 𝑚 0

2𝜂′
𝜕𝐶

𝜕𝑅
0 𝑚

 𝑤𝑕𝑒𝑟𝑒 𝐶 =
𝜕𝑉

𝜕𝑅
+

𝑉

𝑅
            (8.26) 

∇1. 𝑀 =
2𝜂

𝑅

𝜕

𝜕𝑅
 𝑅

𝜕𝐶

𝜕𝑅
 𝑒 𝑍               (8.27) 

And I × (∇1.𝑀) =  

0 −
2𝜂

𝑅

𝜕

𝜕𝑅
 𝑅

𝜕𝐶

𝜕𝑅
 0

2𝜂

𝑅

𝜕

𝜕𝑅
 𝑅

𝜕𝐶

𝜕𝑅
 0 0

0 0 0

            (8.28) 
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By substituting (8.26), (8.27) and (8.28) in (8.4) and simplifying we get 

𝑇𝑅𝜃 =  𝜇  
𝜕𝑉

𝜕𝑅
−

𝑉

𝑅
 − 𝜂

1

𝑅

𝜕

𝜕𝑅
 𝑅

𝜕

𝜕𝑅
 
𝜕𝑉

𝜕𝑅
+

𝑉

𝑅
   𝑒𝑖𝜛𝑡             (8.29) 

Using non dimensional scheme (8.7) and (8.8) in (8.29) we get 

𝑇𝑟𝜃 =
𝑉0𝜂

𝑎3
 𝑆  

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
 −

1

𝑟

𝜕

𝜕𝑟
 (𝑟𝐷𝑐

2𝑣) .             (8.30) 

The Skin friction acting on the circular cylinder (after deleting the factor e
it

) is 

obtained as: 

𝑐𝑓 =
1

𝑅𝑒 .𝑆
 𝑆  

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
 −

1

𝑟
𝐷𝑐

2𝑣 −
𝜕

𝜕𝑟
𝐷𝑐

2𝑣       

On r=1, 𝑐𝑓 =
−1

𝑅𝑒.𝑆
[𝐷𝑐

2𝑣 +
𝜕

𝜕𝑟
𝐷𝑐

2𝑣]              (8.31) 

We note that for Resonance:  

𝐷𝑐
2𝑣 = 𝜆2  𝐴1𝐾1 𝜆𝑟 +

𝐴2

𝜆
 2𝐾1 𝜆𝑟 + 𝜆𝑟𝐾 ′

1 𝜆𝑟    

𝑑

𝑑𝑟
𝐷𝑐

2𝑣 = 𝜆2  𝐴1𝜆𝐾
′
1 𝜆𝑟 +

𝐴2

𝜆
 2𝜆𝐾 ′

1 𝜆𝑟 + 𝑟𝜆2𝐾 ′ ′
1 𝜆𝑟 + 𝜆𝐾 ′

1 𝜆𝑟    

= 𝜆2  𝐴1𝜆𝐾
′
1 𝜆𝑟 +

𝐴2

𝜆
 2𝜆𝐾 ′

1 𝜆𝑟 +
 1 + 𝑟2𝜆2 𝐾1 𝜆𝑟 

𝑟
   

Hence on r=1;  

𝐷𝑐
2𝑣 = 𝜆2  𝐴1𝐾1 𝜆 +

𝐴2

𝜆
 2𝐾1 𝜆 + 𝜆𝐾 ′

1 𝜆    

𝑑

𝑑𝑟
𝐷𝑐

2𝑣 = 𝜆2  𝐴1𝜆𝐾
′
1 𝜆 +

𝐴2

𝜆
 2𝜆𝐾 ′

1 𝜆 +  1 + 𝜆2 𝐾1 𝜆    

Using the boundary conditions and 𝜆𝐾1
′ 𝜆 + 𝐾1 𝜆 = −𝜆𝐾0(𝜆)  we have ; 

In the resonance case, the Skin friction is given by 

𝑐𝑓 =
2𝜆2

𝑅𝑒 .𝑆
[1 − 𝐴2𝐾0 𝜆 ]              (8.32a) 

In the non-resonance case, the Skin friction is given by 
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𝑐𝑓 =
1

𝑅𝑒 .𝑆
 𝜆1

3𝐾0 𝜆1  𝐴1 + 𝜆2
3𝐾0 𝜆2 )𝐴2]           (8.32b) 

 

8.5 Results and Discussions 

The roots of 𝑥2 –  𝑆𝑥 +  𝑖𝜛𝑅𝑒𝑆 =  0 are taken as the values of 
2
. 

Hence for non-resonance =  S± S2−4S.Re .iω

2
and for resonance  =  

S

2
              (8.33) 

Here 𝜛 𝑎𝑛𝑑 𝑅𝑒  are choosen independently, with Re≪1 and ≫1 such that 

.Re is not negligibly small (say>1) then  is obtained from (8.33).  Then A1 and A2 

and hence V and Drag are obtained. To get physical quantities, the corresponding real 

part of the quantities are taken. 

8.5.1 Velocity 

When || is fixed, for resonance Re and  cannot vary independently. From 

Fig 8.2, for resonance we observe that as || increases, velocity drastically decreases 

near to the cylinder and takes negative values. But for non-resonance, as || increases, 

velocity decreases slowly and takes positive values only. 

From Fig 8.3, we note that as  increases, velocity decreases near to the 

cylinder. But for resonance, this variation in velocity is drastic at r=1 (near to the 

cylinder) and near r=2. Velocity takes first increases and then decreases to negative 

vales and again increases and goes to zero. 

From Fig.8.4, for resonance the behavior of velocity is same as in fig 8.3 for 

variation in . But for variation in Re, the change in velocity is clear even as near as 

1.5 times the radius of the cylinder. 
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(a) 

(b) 

Fig 8.2 Velocity at fixed values of || for the case of (a) resonance and  

(b) non-resonance 
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(a) 

(b) 

Fig 8.3 Velocity at fixed values of 𝜛 for the case of (a) resonance and (b) non-

resonance 



139 
 

 

 

 

 

 

 

(a) 

(b) 

Fig 8.4 Velocity at different values of Re for the case of (a) resonance 

and (b) non-resonance 
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8.5.2 Skin friction 

From Fig 8.5, we note that as || increases, Skin friction decreases. But for 

resonance, Skin friction is very small in comparison with the values of Skin friction in 

the case of non-resonance. 

From Fig 8.6, the Skin friction is almost same for resonance and non-

resonance. 

Form Fig 8.7, we notice that Skin friction at lower values of Re, is more for 

resonance but at values near to Re=1, Skin friction for resonance is less than the 

corresponding values of non-resonance case. 

From Fig 8.8, we notice that as  increases, skin-friction also increases. But 

when Re increases, skin-friction decreases, since Re comes as a unit in the Skin 

friction. In this case for resonance and non-resonance, Skin friction is almost same. 

This is because  does not appear explicitly in the formula for skin-friction. 
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(a) 

(b) 

Fig 8.5 Skin friction Vs || for the case of (a) resonance and (b) non-resonance 
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.  

 

 

 

 

 

(a) 

(b) 

Fig 8.6 Skin friction Vs Re for the case of (a) resonance and (b) non-resonance 
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(a) 

(b) 

Fig 8.7 Skin friction Vs Reynolds number Re at different values of Couple stress 

parameter S, for the case of (a) resonance and (b) non-resonance. 
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(a) 

(b) 

Fig 8.8 Skin friction Vs frequency parameter  different values of Reynolds 

number Re for the case of (a) resonance and (b) non-resonance. 
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8.6 Conclusions 

 We observe that for resonance, 

i) When || is fixed, the skin-friction decreases drastically in comparison 

with non-resonance. 

ii) Velocity changes from positive values to negative values near to the 

cylinder. for non-resonance, velocity takes positive values only. 
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Chapter  9 

Longitudinal oscillations of a Circular Cylinder in 

Couple-stress fluid 

 

This chapter aims at the flow generated due to Circular cylinder performing 

longitudinal oscillations along its axis of symmetry in a Couple-stress fluid. There 

arises a rare but distinct case which is referred to as Resonance flow. In this special 

case material constants satisfy a resonance condition. Nonlinear convective terms in 

the equations of motion are neglected since the Oscillations Reynolds number is less 

than unity due to very slow flow. The velocity component for the flow is derived. The 

Skin friction acting on the cylinder is evaluated and the effect of physical parameters 

like Reynolds number and Couple stress parameter on the Skin friction are shown 

through graphs. 

 

9.1 Introduction 

Several researchers examined the flow of non-Newtonian fluids in 

cylindrical geometry. Frater (1968) studied an elastic-viscous fluid flow of 

circular cylinder performing oscillations and obtained Drag on a circular 

cylinder. Ravindran (1972) studied simple oscillatory flow in polar fluids. Ariman 

(1967) analysed Couple-stress fluid flows and Micro-polar fluid flows between two 

concentric cylinders. Lakshmana Rao (1980) studied Couple-stress fluid flows by 

analytically and computationally. Lakshmana Rao et al. (1972, 1987) in studied the 

oscillatory flows due to circular cylinder and elliptic cylinder in an incompressible 

Micro-polar fluid, the main thrust of the investigation being the determination of the 

Drag or Couple as the case may be on the oscillating body.  

The flows due to longitudinal and torsional oscillations of various objects like 

cylinder, rod, sphere in various fluids were investigated by different authors Kanwal 

et al. (1955), Casarella et al. (1969), Rajagopal (1983), Ramkissoon et al. (1990, 
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1991), Rao et al. (1992), Bandelli et al. (1994), Pontrelli (1997), Calmelet-Eluhu et al. 

(1998), Akyildiz (1998), Fetecau et al. (2006), Owen et al. (2006), Mehrdad Massoudi 

et al. (2008), Ramana Murthy et al. (2010), Nagaraju et al. (2014) by numerically or 

analytically. In all these problems authors evaluated Drag or Couple acting on the 

body. Ramana Murthy et al. (2009, 2010, 2011) studied a flow of Micro-polar fluid 

under transverse magnetic field with suction. The rare but distinct possibility of 

resonance flows has been noticed and the investigation.   

In this chapter, we propose to investigate this case of resonance type flow, in 

Couple-stress fluids, due to longitudinal oscillations of a circular cylinder about its 

axis of symmetry. In chapter 4 similar oscillatory flow in Micro-polar fluid was 

discussed. 

 

9.2 Basic Equations 

The basic equations of an incompressible Couple stress fluid introduced by Vijay 

Kumar Stokes (1966) are given by: 

𝑑𝑖𝑣𝑄 = 0                   (9.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 − 𝜇∇1 × ∇1 × 𝑄 − 𝜂∇1 × ∇1 × ∇1 × ∇1 × 𝑄            (9.2) 

whereQ is fluid velocity vector,  is density,  is time,   is viscosity coefficient. 

By neglecting non linear convective terms in (9.2) we get 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇1𝑃 − 𝜇∇1 × ∇1 × 𝑄 − 𝜂∇1 × ∇1 × ∇1 × ∇1 × 𝑄              (9.3) 

For Couple stress fluids, the stress components Tij and Couple stress tensor M satisfy 

the following constitutive equations. 

𝑇 = −𝑃𝐼 + 𝜆 ∇1. 𝑄 𝐼 + 𝜇 ∇1𝑄 +  ∇1𝑄 
𝑇 +

1

2
𝐼 × (∇1. 𝑀)             (9.4) 

𝑀 = 𝑚𝐼 + 2𝜂∇1 ∇1 × 𝑄 + 2𝜂′ ∇1 ∇1 × 𝑄  𝑇              (9.5) 
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9.3 Statement and Formulation of the Problem 

A circular cylinder of radius a and of infinite length is performing longitudinal 

oscillations with velocity 𝑊0𝑒
𝑖 along its axis of symmetry in an infinite vat 

containing incompressible Couple-stress fluid. A cylindrical coordinate system 

(𝑅, , 𝑍)  with base vectors (𝒆𝑅 , 𝒆, 𝒆𝒁)  with origin on the axis of the cylinder is 

considered. Since the flow is axially symmetric, the fluid velocity will be in cross-

sectional plane of the cylinder containing the base vectors (𝒆𝑅 , 𝒆𝑍). The velocity is 

assumed in the form: 

 

𝑸 = 𝑊 𝑅 𝒆𝒛𝑒
𝑖𝜍𝜏                   (9.6) 

The following non-dimensional scheme is introduced. Capitals and LHS terms 

indicate physical quantities and small letters and RHS terms indicate corresponding 

non-dimensional quantities. 

𝑅 = 𝑎𝑟,𝑊 = 𝑤W0, 𝑸 = 𝒒𝑊0  , 𝑃0 = 𝑝0𝜌𝑎𝜍
2 , 𝑎𝑛𝑑𝜏 =

𝑎𝑡

𝑊0
             (9.7) 

The non-dimensional parameters  𝜛 frequency parameter, s Couple stress parameter 

and R0 oscillations Reynolds number for Couple-stress fluids are defined as below. 

𝜛 =
𝑎σ

w0
, 𝑆 =

μ𝑎2

η
,     Re =

ρw0𝑎

𝜇
sothat   𝜛. 𝑅𝑒 =

𝜌𝜍 𝑎2

𝜇
             (9.8) 

W0ei

 

X 

Y 

Z 

Fig 9.1 Geometry of the oscillating cylinder 



149 
 

By the choice of the velocity field in (9.6), by taking curl the equation (9.3) is reduced 

to 

𝑖𝜍𝜌𝑊′ = 𝜇𝐷𝑐
2𝑊′ − 𝜂𝐷𝑐

4𝑊′                 (9.9) 

Where 𝐷𝑐
2 =

𝑑2

𝑑𝑟2 +
1

𝑟 

𝑑

𝑑𝑟
−

1

𝑟2               (9.10) 

Using non dimensional scheme (9.7) and (9.8) in (9.9) we get 

𝐷𝑐
4𝑤′ − 𝑆𝐷𝑐

2𝑤′ + 𝑖𝜛𝑅𝑒. 𝑆𝑤′ = 0              (9.11) 

This equation (9.11) can be written as 

 𝐷𝑐
2 − 𝜆1

2  𝐷𝑐
2 − 𝜆2

2 𝑤′ = 0               (9.12) 

Where 𝜆1
2 + 𝜆2

2 = 𝑆  and   𝜆1
2𝜆2

2 = 𝑖𝑅𝑒. 𝑆             (9.13) 

The solution for 𝑤′ in (9.12) if 12 is given in Lakshmana Rao et al. (1972) for a 

similar case of Micro-polar fluids. The solution for 𝑤′ for the case,  1 =  2  cannot 

be obtained as a limiting case of  1  →  2. This case is referred to as “Resonance”. 

This resonance occurs if the material coefficients follow the following relation in non-

dimensional form as; 

2𝜆2 = 𝑆 = 4𝑖𝜛𝑅𝑒                 (9.14) 

In this case of resonance, the equations for 𝑤′ is given by 

 𝐷𝑐
2 − 𝜆2 2𝑤′ = 0               (9.15a) 

In the case of non-resonance, the equation for w is given by 

 𝐷𝑐
2 − 𝜆1

2  𝐷𝑐
2 − 𝜆2

2 𝑤′ = 0             (9.15b) 

By the choice of the velocity field in (9.6), the equation (9.3) is reduced to 

𝑖𝜍𝜌𝑊 = −
𝜕𝑃

𝜕𝑍
+ 𝜂   

𝜕

𝜕𝑅
+

1

𝑅
  −𝐷𝑐

2 +
𝜇

𝜂
 𝑊′              (9.16) 

Using non dimensional scheme (9.7) and (9.8), the above equation (9.16) reduces to 

𝑖𝜛𝑅𝑒. 𝑆𝑤 = −𝑝0𝑅𝑒. 𝑆 −  
𝑑

𝑑𝑟
+

1

𝑟
  𝐷𝑐

2 − 𝑆 𝑤′            (9.17) 
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This can be written for the case of resonance as 

𝑖𝜛𝑅𝑒. 𝑆𝑤 = −𝑝0 . 𝑅𝑒. 𝑆 −  
𝑑

𝑑𝑟
+

1

𝑟
  𝐷𝑐

2 − 2𝜆2 𝑤′           (9.18a) 

And in the case of non-resonance as 

𝑖𝜛𝑅𝑒. 𝑆𝑤 = −𝑝0 . 𝑅𝑒. 𝑆 −  
𝑑

𝑑𝑟
+

1

𝑟
  𝐷𝑐

2 − 𝜆1
2 − 𝜆2

2 𝑤′         (9.18b) 

9.3.1 Boundary conditions 

By no-slip condition, the non-dimensional velocity on the circular cylinder    is 

given by  

i.e 𝑤 = 1 𝑜𝑛 𝑟 = 1                (9.19)  

By hyper-stick condition,  Curl Q = 0 

which yields  
𝑑𝑤

𝑑𝑟
= 0 on boundary 𝑟 = 1 

i.e 𝑤 ′ = 0 𝑜𝑛 𝑟 = 1                (9.20) 

 

9.4 Solution of the Problem 

Solution for (9.15a) or (19.15b), the general solution for 𝑤′ is linear combination of 

individual solutions of factors in the differential operator. Hence 𝑤′ is assumed in the 

form 

𝑤′ =  𝐴1𝑤1 + 𝐴2𝑤2                (9.21) 

Where 𝑤1
′  𝑎𝑛𝑑 𝑤2

′  satisfies the following equations for the case of resonance 

 𝐷𝑐
2 − 𝜆2 𝑤1 = 0 and  𝐷𝑐

2 − 𝜆2 2𝑤2 = 0             (9.22a) 

In the case of non-resonance 

 𝐷𝑐
2– 1

2 𝑤1
′  =  0 and  𝐷𝑐

2– 2
2 𝑤2

′ =  0           (9.22b) 

Thus the solutions for (9.22a) and (9.22b) as follows 
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In the case of resonance: 

𝑤1 =  𝐾1 𝜆𝑟  and 𝑤2 =  𝜆𝑟𝐾1′(𝜆𝑟)            (9.23a) 

In the case of non-resonance: 

𝑤1 =  𝐾1 𝜆1𝑟  and 𝑤2 =  𝐾1(𝜆2𝑟)                  (9.23b) 

Hence from (9.21) 

In the case of resonance: 

𝑤′ =  A1K1(r)  +  A2r K1(r)             (9.24a) 

In the case of non-resonance: 

𝑤′ r = A1K1(1r) +  A2K1(2r)            (9.24b) 

The following results are useful to note. 

𝐷𝑐
2𝑤1

′ = 𝜆2𝑤1
′  and 𝐷𝑐

2𝑤2
′ = 2𝜆𝑤1

′ + 𝜆2𝑤2
′             (9.25a) 

The following results are useful to note in case of non resonance. 

𝐷𝑐
2𝑤1 = 𝜆1

2𝑤1 and 𝐷𝑐
2𝑤2 = 𝜆2

2𝑤2            (9.25b) 

𝑥𝐾𝑛
′  𝑥 + 𝑛𝐾𝑛 𝑥 = – 𝑥𝐾𝑛−1(𝑥) and 𝑥2𝐾𝑛

′′  𝑥 + 𝑥𝐾𝑛
′ (𝑥) =  𝑛2 + 𝑥2 𝐾𝑛(𝑥)  (9.25c) 

The condition on 𝑤(1)  = 1 can be obtained from (9.18a) and (9.18b) as 

For resonance: 

𝜛𝑅𝑒. 𝑆  𝑖 +
𝑝0

𝜛
 𝑤 𝑟 = − 

𝑑

𝑑𝑟
+

1

𝑟
  𝐷𝑐

2 − 2𝜆2 𝑤 ′ 𝑟  

= − 
𝑑

𝑑𝑟
+

1

𝑟
  𝐴1𝜆

2𝑤 ′
1 + 𝐴2(𝜆2𝑤2

′ + 2𝜆𝑤1
′ ) − 2𝜆2(𝐴1𝑤

′
1 + 𝐴2𝑤2

′  ) 

= 𝜆2(𝐴1  𝑤1
′′ +

𝑤1
′

𝑟
 + 𝐴2  𝑤2

′′ +
𝑤2
′

𝑟
 )  − 2𝜆𝐴2  𝑤1

′′ +
𝑤1
′

𝑟
    

We simplify 2
nd

 term as below: 

𝑤2
′′ +

𝑤2
′

𝑟
= 𝜆𝑟𝐾1

′′  𝜆𝑟 + 2𝐾1
′ 𝜆𝑟 =

1

𝑥
 𝑥2𝐾1

′′ + 2𝑥𝐾1
′  with  𝑥 = 𝜆𝑟 
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=
 1 + 𝑥2 𝐾1 𝑥 + 𝑥𝐾1

′

𝑥
=
 𝐾1 + 𝑥𝐾1

′ 

𝑥
+ 𝑥𝐾1 = −𝐾0 + 𝑥𝐾1 

Now we have  

𝜛𝑅𝑒. 𝑆  𝑖 +
𝑝0

𝜛
 𝑤 𝑟 = (𝐴1𝜆

2 − 2𝜆𝐴2)(−𝜆𝐾0(𝜆𝑟)) + 𝐴2𝜆
2(𝜆𝑟𝐾1 𝜆𝑟 − 𝐾0(𝜆𝑟)) 

Evaluating this at r=1, we get 

𝜛𝑅𝑒. 𝑆  𝑖 +
𝑝0

𝜛
 = −𝐴1𝜆

3𝐾0(𝜆) + 𝐴2𝜆
2(𝜆𝐾1 𝜆 + 𝐾0(𝜆)) 

Or              𝜆2  1 −
𝑖𝑝0

𝜛
 = −𝐴1𝜆𝐾0(𝜆) + 𝐴2(𝜆𝐾1 𝜆 + 𝐾0(𝜆)) 

For non-resonance: 

𝜛𝑅𝑒. 𝑆  𝑖 +
𝑝0

𝜛
 𝑤 𝑟 = − 

𝑑

𝑑𝑟
+

1

𝑟
  𝐷𝑐

2 − 𝜆1
2 − 𝜆2

2 𝑤 ′ 𝑟  

= − 
𝑑

𝑑𝑟
+

1

𝑟
  −𝐴1𝜆2

2𝑤 ′
1 − 𝐴2𝜆1

2𝑤2
′   

= −𝐴1𝜆2
2𝜆1𝐾0(𝜆1𝑟) − 𝐴2𝜆1

2𝜆2𝐾0(𝜆2𝑟) 

Evaluating this at r=1, we get 

𝜛𝑅𝑒. 𝑆 𝑖 + 𝑝0 = −𝜆1𝜆2(𝐴1𝜆2𝐾0 𝜆1 + 𝐴2𝜆1𝐾0(𝜆2)) 

Or                   𝜆1𝜆2 1 − 𝑖𝑝0 = −(𝐴1𝜆2𝐾0 𝜆1 + 𝐴2𝜆1𝐾0(𝜆2)) 

Now the constants𝐴1, 𝐴2are obtained by applying the boundary conditions as follows: 

 
−𝜆𝐾0 𝜆 𝜆𝐾1 𝜆 + 𝐾0 𝜆 

K1  K1  
  
𝐴1

𝐴2
 =  𝜆

2(1 −
𝑖𝑝0

𝜛
)

0
            (9.26a) 

In the case of non-resonance, the conditions for 𝐴1, 𝐴2 are given by 

 
−𝜆2𝐾0 𝜆1 −𝜆1𝐾0 𝜆2 

K1 1 K1 2 
  
𝐴1

𝐴2
 =  𝜆1𝜆2(1 −

𝑖𝑝0

𝜛
)

0
           (9.26b) 

From (9.26a) and (9.26b) we can calculate 𝐴1and𝐴2 for both the cases. 

By using 𝑤′ from (9.18a) we get w for the case of resonance as 
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𝑤 𝑟 =
𝑖𝑝0

𝜛
−

𝐴1

𝜆
𝐾0 𝜆𝑟 +

𝐴2

𝜆2
 𝜆𝑟𝐾1 𝜆𝑟 + 𝐾0 𝜆𝑟             (9.27a) 

By using 𝑤′ from (9.18b) we get w for the case of non-resonance as 

𝑤 =
𝑖𝑝0

𝜛
−

𝐾0 𝜆1𝑟 

𝜆1
𝐴1 −

𝐾0 𝜆2𝑟 

𝜆2
𝐴2            (9.27b) 

9.4.1 Skin friction acting on the cylinder per length L 

Skin friction acting on the circular cylinder 𝑐𝑓 =
2𝑇𝑟𝑧

𝜌𝑊0
2           (9.28) 

The Drag acting on the cylinder (r=a) per unit length (z=0 to z=1) is given by 

D =  𝑻𝒏. 𝒌 rddz =  Trz . 2ᴨ𝑎 =  c𝑓  ᴨ𝑎𝑊0
2             (9.29) 

Hence Drag is given in terms of Skin friction. 

For Couple stress fluids, the constitutive equations for stress and Couple stresses are 

given by (9.4) and (9.5). 

The strain rate tensor E is given by 𝐸 =
1

2
 ∇1𝑄 + 1𝑄 

𝑇  

In cylindrical co-ordinate system, E is given as below. 

𝐸 =

 
 
 
 
 

𝜕𝑈

𝜕𝑅

1

2
 
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅
−

𝑉

𝑅
 

1

2
 
𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍
 

1

2
 
𝜕𝑉

𝜕𝑅
+

1

𝑅

𝜕𝑈

𝜕𝑅
−

𝑉

𝑅
 

1

2
 𝑈 +

𝜕𝑉

𝜕𝜃
 

1

2
 

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍
 

1

2
 
𝜕𝑊

𝜕𝑅
+

𝜕𝑈

𝜕𝑍
 

1

2
 

1

𝑅

𝜕𝑊

𝜕𝜃
+

𝜕𝑉

𝜕𝑍
 

𝜕𝑊

𝜕𝑍  
 
 
 
 

          (9.30) 

For this present problem, 𝐸 =  

0 0
1

2

𝜕𝑊

𝜕𝑅

0 0 0
1

2

𝜕𝑊

𝜕𝑅
0 0

             (9.31) 

Form (9.5) Couple stress tensor M is obtained as 

𝑀 =  

𝑚 2𝜂
𝜕𝐵

𝜕𝑅
− 2𝜂′

𝐵

𝑅
0 

2𝜂′
𝜕𝑩

𝜕𝑅
− 2𝜂

𝐵

𝑅
𝑚 0

0 0 𝑚

              (9.32) 

where 𝐵 = −
𝜕𝑊

𝜕𝑅
= −𝑊′               (9.33) 
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∇1. 𝑀 = −2𝜂𝐷𝑐
2𝑊′𝑒 𝜃                 (9.34) 

And I × (∇1.𝑀) =  
0 0 −2𝜂𝐷𝑐

2𝑊′

0 0 0
2𝜂𝐷𝑐

2𝑊′ 0 0
             (9.35) 

By substituting (9.31) and (9.35) in (9.4) and simplifying we get 

𝑇𝑅𝑍 =  𝜇
𝜕𝑊

𝜕𝑅
− 𝜂𝐷𝑐

2𝑊′  𝑒𝑖𝜛𝑡                (9.36) 

Using non dimensional scheme (9.7) and (9.8) in (9.36) we get 

𝑇𝑟𝑧 =
𝜍𝜂

𝑎2
 𝑆𝑤′ − 𝐷𝑐

2𝑤′ 𝑒𝑖𝜛𝑡                (9.37) 

The Skin friction acting on the circular cylinder (after deleting the factor 𝑒𝑖𝜛𝑡 ) is 

obtained as: 

𝑐𝑓 = −
𝜛

𝑆.𝑅𝑒
 𝑆

𝜕𝑤

𝜕𝑟
− 𝐷𝑐

2𝑤 ′ 
𝑟=1

=
𝜛

𝑆.𝑅𝑒
𝐷𝑐

2𝑤 ′ |𝑟=1            (9.38) 

In the resonance case, the Skin friction is given by 

𝑐𝑓 =
𝜛

𝑆𝑅𝑒
2𝜆𝐴2𝐾1 𝜆                (9.39a) 

In the non-resonance case, the Skin friction is given by 

𝑐𝑓 =
𝜛

𝑆.𝑅𝑒
{𝐴1𝜆1

2K1 𝜆1 + 𝐴2𝜆2
2K1 𝜆2 }            (9.39b) 

 

9.5 Results and Discussions 

 The roots of 𝑥2 –  𝑆𝑥 +  𝑖𝜛𝑅𝑒𝑆 =  0 are taken as the values of 
2
. Hence 

 =  x  =  S± S2−4S.Re .iω

2
 for nonresonance,  𝜆 =  𝑆/2  for resonance         (9.40) 

Here 𝜛 𝑎𝑛𝑑 𝑅𝑒  are choosen independently, with Re≪1 and ≫1 such that 

.Re is not negligibly small (say>1) then  is obtained from (9.40).  Then A1 and A2 

and hence w and Skin friction are obtained. To get physical quantities, the 

corresponding real part of the quantities are taken. 
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In this chapter analytical expressions for velocity component w and Skin 

friction 𝑐𝑓  are obtained as (9.27a), (9.27b), (9.39a) and (9.39b). The numerical results 

are presented in the form of graphs for different 𝑅𝑒,𝜛, 𝑆 values from Fig 9.2 to 9.7. In 

every figure upper graph (a) is for the case of resonance and lower graph (b) for non-

resonance case. 

9.5.1 Velocity 

When we fix || in the case of resonance, it means we fix |S| also. Hence in 

this case, variation of Re and  cannot be found separately. But for non-resonance, 

since there are two  values namely 1 and2, Re and  can vary independently even 

if || is fixed. Because of this reason, if || is fixed, velocity and Skin friction show 

distinct behavior for the case of resonance. 

In Fig 9.2, we observe that in the case of resonance, velocity goes to negative 

values (flow reversal takes place) near to the cylinder and within a short range 

vanishes. But in the case of non-resonance, the small flow reversal takes place at a 

larger distance and flow then flow vanishes. 

In Fig 9.3 we observe that in the case of resonance, at different values of 

frequency parameter , velocity takes negative values in a larger range of r and 

vanishes. But in the case of non-resonance, velocity becomes negative in a short range 

of r and vanishes. As  increases, the velocity curve goes nearer to the cylinder in 

both the cases and this is clearly visible for the case of resonance. 

In Fig 9.4 we observe that in the case of resonance, at different values of 

Reynolds numbers Re, velocity takes negative values in a larger range of r and 

vanishes. But in the case of non-resonance, velocity becomes negative in a short range 

of r and vanishes. As Re increases, the velocity curve is nearer to the cylinder in both 

the cases and in particular for resonance. 
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(a) 

(b) 

Fig 9.2 Velocity for fixed values of || for the case of (a) resonance  

and (b) non-resonance 
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(a) 

(b) 

Fig 9.3 Velocity w at different values of  for the case (a) resonance 

and (b) non-resonance 
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(a) 

(b) 

Fig 9.4 Velocity w at different values of Re for the case of (a) resonance 

and (b) non-resonance 
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9.5.2 Skin friction 

In Fig 9.5 effect of || on Skin friction is shown. Since || is fixed, there will 

be no variations in  and Re for the case of resonance. But for non-resonance  or Re 

can vary. We can observe that the Skin friction is very smaller for resonance than in 

the case of non-resonance. For small values of || <4 Skin friction is very high and is 

not shown in figures. 

In Fig 9.6, we observe that, the Skin friction for resonance and non-resonance 

is almost same. We note that as frequency parameter increases, Skin friction 

increases. But in Fig 9.7, we observe that as Re increases, Skin friction also decreases. 

This behavior is opposite to the effect of frequency parameter . This is because, the 

product of Re and  is constant and this product come as an unit for calculation of . 

The Skin friction for the case of resonance is lesser than the case of non-resonance.  
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(a) 

(b) 

Fig 9.5 Skin friction Vs || for the case of (a) resonance and (b) non-resonance 
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(a) 

(b) 

Fig 9.6 Skin friction Vs Reynolds number Re for the case of (a) resonance 

and (b) non-resonance 
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(a) 

(b) 

Fig 9.7 Skin friction Vs frequency  for the case of (a) resonance 

and (b) non-resonance 
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9.6 Conclusions 

In the case resonance we observe that 

i) Velocity changes are very high near to the cylinder and vanishes far from 

the cylinder. 

ii) Skin friction increases as frequency parameter increases and decreases as 

Reynolds number increases. 

iii) When || is fixed Skin friction will be minimum (reduces to very low 

values) 

In the case of non-resonance 

i) Velocity changes occur far from the cylinder in comparison with 

resonance and vanish relatively near to the cylinder. 

ii) Skin friction is of same order as in the case of resonance when frequency 

parameter is fixed. But takes greater values when Reynolds number is 

fixed. 

iii) When || is fixed Skin friction will be very high. 
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Chapter  10 

Rectilinear oscillations of Sphere in a Couple-stress 

fluid 

 

The present chapter deals with the flow arising due to rectilinear oscillations 

of a sphere about its axis of symmetry in a Couple-stress fluid. Due these oscillations, 

there occurs a attenuate but an important appropriate case which is referred to as 

Resonance flow. In this case material constants are related by a resonance condition. 

The flow is analyzed under Stokesian approximation by ignoring nonlinear convective 

terms, under the assumption that the Reynolds number is less than one due to very 

slow flow. The velocity components of the flow in terms of stream function are 

derived. The Drag acting on the sphere evaluated and the effect of physical 

parameters like Reynolds number and Couple stress parameter on the Drag are shown 

through graphs. 

 

10.1 Introduction  

Several researchers investigated the flow of non-Newtonian fluids in Spherical 

geometry. Vijay Kumar Stokes (1968, 1971) analysed effects of Couple-stresses in 

fluids on hydromagnetic channel flows and on the creeping flow past a Sphere. Frater 

(1967, 1968) studied oscillatory flows in elastico-viscous fluid, and evaluated Drag on 

sphere, damping force on a body. Lakshmana Rao et al. (1970) studied slow 

stationary flow of a Micro-polar fluid past a sphere. Analytical and Computational 

studies in Couple stress fluid flows examined by Lakshmana Rao et al. (1980). 

Lakshmana Rao et al. (1971, 1981, 1987) studied the oscillatory flows generated due 

to oscillations of sphere, spheroid and elliptic cylinder in Micro-polar fluids, with the 

aim of  determining  of the Drag or Couple on the oscillating body. Lai et al. (1978) 

examined an elastic-viscous fluid flow of sphere performing rectilinear oscillations 

and evaluated Drag on a sphere. 
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Iyengar et al. (1993, 2001, 2004) examined oscillatory flows due to oscillating 

of approximate sphere, two concentric spheres in Micro-polar fluid and approximate 

sphere in viscous fluid. Stimson et al. (1926) examined the viscous fluid motion of 

two spheres. Verma et al. (1971) studied slow oscillatory flow past a fixed porous 

sphere. Aparna et al. (2012) examined the flow of micro-polar fluid due to rotary 

oscillations of a permeable sphere. Ashmawy (2015, 2016) examined oscillatory 

flows of composite sphere in a concentric spherical cavity and spherical particle 

moving in a Couple-stress fluid. 

 In this chapter we intend to investigate this case of resonance type flow due to 

rectilinear oscillations of a sphere about its axis of symmetry in Couple-stress fluids. 

In chapter 4 similar case investigated in Micro-polar fluids. 

 

10.2 Basic Equations 

The governing equations of an incompressible Couple stress fluid introduced by 

Stokes (1966) are given by: 

𝑑𝑖𝑣 𝑄 = 0                 (10.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇1𝑄  = −∇1𝑃 − 𝜇∇1 × ∇1 × 𝑄 − 𝜂∇1 × ∇1 × ∇1 × ∇1 × 𝑄          (10.2) 

where𝑄, , , , 𝜂 𝑎𝑛𝑑 𝑃  are fluid velocity, density, time, viscosity coefficient, 

Couple stress viscosity and pressure respectively and 1  is dimensional gradient 

operator .  For Couple stress fluids, the stress tensor T and Couple stress tensor M 

satisfy the following constitutive equations. 

𝑇 = −𝑃𝐼 + 𝜆 ∇1. 𝑄 𝐼 + 𝜇 ∇1𝑄 +  ∇1𝑄 
𝑇 +

1

2
𝐼 × (∇1. 𝑀)           (10.3) 

𝑀 = 𝑚𝐼 + 2𝜂∇1 ∇1 × 𝑄 + 2𝜂′  ∇1 ∇1 × 𝑄  𝑇            (10.4) 
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10.3 Statement and Formulation of the Problem 

A Sphere of radius a is performing rectilinear oscillations with velocity 𝑈0𝑒
𝑖 about 

its diameter in an infinite vat containing incompressible Couple-stress fluid. A 

spherical coordinate system (𝑅, , ∅) with base vectors (𝒆𝑟 , 𝒆, 𝒆∅) with origin at the 

centre of the sphere is considered. The flow is axially symmetric and hence the fluid 

velocity will be independent of ∅ and will be in plane containing the base vectors 

(𝒆𝑟 , 𝒆). The velocity is assumed in the form:  

 

𝑸 = 𝑒𝑖𝜍𝜏 (𝑈 𝑅, 𝜃 𝒆𝒓 + 𝑉 𝑅, 𝜃 𝒆𝜽)               (10.5) 

The following non-dimensional scheme is introduced. 

R = 𝑎𝑟;  U = U0𝑢;   V = U0𝑣;    𝐐 = 𝐪U0;   P = 𝑝U0
2 ,    =

at

𝑈0
          (10.6) 

The following are non-dimensional parameters 𝜛 is frequency parameter, S is Couple 

stress parameter and Re is Reynolds number for Couple-stress fluids. 

𝜛 =
σa

U0
, 𝑠 =

μ𝑎2

η
, Re =

ρU0𝑎

𝜇
 , Re.ϖ =

ρσ𝑎2

𝜇
            (10.7) 

Substituting (10.5) in (10.1), we notice that stream function  can be introduced as 

𝑢 =
1

𝑟2𝑆𝑖𝑛𝜃

𝜕𝜓

𝜕𝜃
  𝑎𝑛𝑑  𝑣 =  −

1

𝑟𝑆𝑖𝑛𝜃

𝜕𝜓

𝜕𝑟
   i.e       𝒒 = ∇ × (

𝜓

𝑕3
𝒆∅)          (10.8) 

Using (10.5), (10.6) and (10.7) in (10.2) we get 

𝑅𝑒. 𝑆
𝜕𝒒

𝜕𝑡
= −𝑅𝑒. 𝑆. ∇𝑝 − 𝑆 ∇ ×  ∇ × 𝒒 − ∇ × ∇ × ∇ × ∇ × 𝒒          (10.9) 

 

er 

k 

U0 eit 

e 

Fig 10.1 Geometry of the oscillating Sphere 
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Substituting (10.8) in equation (10.9) and then eliminating pressure we get, 

E2(E2 – 1
2) (E2 – 2

2)  = 0            (10.10) 

where E2 =
𝜕2

𝜕𝑟2 +
1

𝑟2

𝜕2

𝜕𝜃2 −
𝐶𝑜𝑡𝜃

𝑟2

𝜕

𝜕𝜃
            (10.11) 

where 𝜆1
2 + 𝜆2

2 = 𝑆     and  𝜆1
2𝜆2

2 =  𝑅𝑒. 𝑆. 𝑖𝜛           (10.12) 

The solution for  if 12 in (10.10) was given by Lakshmana Rao et al. (1971) for 

the case of Micro-polar fluids. The solution for  for the case,  1 = 2  cannot be 

obtained as a limiting case of  1 → 2. This case is referred to as “Resonance”. This 

resonance occurs if the material coefficients follow the following relation in non-

dimensional form. 

𝑆 = 4𝑅𝑒. 𝑖𝜛                (10.13) 

In this chapter we are interested in the solution for  for the case of resonance 

1 =  2 = .  In this case, the equation for  is given by 

E2 E2 – 2 
2
 = 0             (10.14a) 

For the case of non-resonance 

E2 E2 – 1
2  E2 – 2

2  = 0           (10.14b)  

10.3.1   Boundary Conditions 

The sphere is oscillating in the direction of X axis. Hence the non-dimensional 

velocity of sphere  after removing 𝑒𝑖𝜛𝑡  is given by 

𝒒  =  𝒊 =  𝑐𝑜𝑠𝒆𝑟–  𝑠𝑖𝑛𝒆  which implies by no-slip condition  

𝑢 =  𝑐𝑜𝑠  𝑎𝑛𝑑 𝑣 = –  𝑠𝑖𝑛  on 𝑟 = 1           (10.15) 

By hyper-stick condition   =
1

2
 curl 𝒒  = 0 on r=1         (10.16) 
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10.4 Solution of the Problem 

To match with the boundary conditions, stream function  is assumed in the form 

 =  𝑓 𝑟 𝑆𝑖𝑛2              (10.17) 

Substituting (10.17) in (10.14a) and (10.14b) we get equation for f for Resonance and 

non-resonance cases as below 

𝐷𝑠
2 𝐷𝑠

2– 2 
2
𝑓 =  0             (10.18a) 

𝐷𝑠
2 𝐷𝑠

2– 1
2  𝐷𝑠

2– 2
2 𝑓 =  0           (10.18b) 

Where 𝐷𝑠
2 =

𝑑2

𝑑𝑟2 −
2

𝑟2 

From the boundary conditions in (10.15) and (10.16), the conditions on f are obtained 

as: 

𝑓 1 =
1

2
, 𝑓′ (1)  =  1 and 𝐷𝑠

2𝑓 = 0  on r=1           (10.19) 

Since the equation for f is linear, f is considered as 

𝑓 =  𝐴0𝑓0  +  𝐴1𝑓1  + 𝐴2𝑓2   

with  𝐷𝑠
2𝑓0  = 0,      𝐷𝑠

2– 2 𝑓1  =  0  and      𝐷𝑠
2– 2 

2
 𝑓2  =  0       (10.20a) 

for the case of resonance and  

𝐷𝑠
2𝑓0  = 0,      𝐷𝑠

2– 1
2 𝑓1  =  0  and      𝐷𝑠

2– 2
2  𝑓2  =  0       (10.20b) 

for the  case of non-resonance. 

On solving (10.20a), the solution for f is obtained for resonance case as 

𝑓 r =
A0

r
  +  A1 rK3

2

(r)  +  A2r
3

2K′3
2

(r)          (10.21a) 

and for non-resonance case as 

𝑓 r =
A0

r
  +  A1 rK3

2

 1r + A2 rK3

2

(2r)        (10.21b) 
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The following results are useful to note in the case of resonance and non-resonance. 

𝐷𝑠
2𝑓1  =  2𝑓1    and   𝐷𝑠

2𝑓2  = 2𝑓1 +  2𝑓2          (10.22a) 

𝐷𝑠
2𝑓1  =  1

2𝑓1    and   𝐷𝑠
2𝑓2  =  2

2𝑓2          (10.22b) 

The constants A0 , A1 , A2   are obtained from the boundary conditions (10.19) as 

follows: 

In case of resonance 

 
 
 
 
 

1 𝐾3

2

(𝜆) 𝐾′3
2

(𝜆)

−1
1

2
𝐾3

2

 𝜆 + 𝜆𝐾′3
2

(𝜆)
3

2
𝐾′3

2

 𝜆 + 𝜆𝐾′′3
2

(𝜆)

0 𝐾3

2

(𝜆) 2𝐾3

2

 𝜆 + 𝐾 ′
3

2

 𝜆 
 
 
 
 
 

 
𝐴0

𝐴1

𝐴2

 =  

1

2

1
0

        (10.23a) 

And in case of non-resonance 

 
 
 
 
 

1 𝐾3

2

(𝜆1) 𝐾3

2

(𝜆2)

−1
1

2
𝐾3

2

 𝜆1 + 𝜆1𝐾
′

3

2

(𝜆1)
1

2
𝐾3

2

 𝜆2 + 𝜆2𝐾
′

3

2

(𝜆2)

0 𝜆1
2𝐾3

2

(𝜆1) 𝜆2
2𝐾3

2

(𝜆2)
 
 
 
 
 

 
𝐴0

𝐴1

𝐴2

 =  

1

2

1
0

       (10.23b) 

On solving the equation (10.23) for A0, A1, A2 we get f completely and hence  is 

known. 

10.4.1    Pressure 

From equation (10.9) pressure is obtained as follows. 

𝑑𝑝 = 𝑝𝒅𝒓 =
𝜕𝑝

𝜕𝑟
𝑑𝑟 +

𝜕𝑝

𝜕𝜃
𝑑𝜃            (10.24) 

By comparing components in (10.9), we get 

𝑅𝑒. 𝑆
𝜕𝑝

𝜕𝑟
= −𝑅𝑒. 𝑆𝑖𝜛

1

𝑟2𝑠𝑖𝑛𝜃

𝜕𝜓

𝜕𝜃
+

𝑆

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 E2𝜓 −

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
 E4𝜓         (10.25) 

𝑅𝑒.
𝑆

𝑟

𝜕𝑝

𝜕𝜃
=   𝑅𝑒. 𝑆𝑖𝜛

1

𝑟𝑠𝑖𝑛𝜃

𝜕𝜓

𝜕𝑟
−

𝑆

𝑟𝑠𝑖𝑛𝜃

𝜕

𝜕𝑟
 E2𝜓 +

1

𝑟𝑠𝑖𝑛𝜃

𝜕

𝜕𝑟
 E4𝜓         (10.26) 

By substituting  (10.25) and (10.26) in (10.24), we get 
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𝑅𝑒. 𝑆𝑝 =
𝐴0𝜆1

2𝜆2
2

𝑟2 𝑐𝑜𝑠𝜃  

Hence 𝑝 =
𝑖𝜔𝐴0

𝑟2 𝑐𝑜𝑠𝜃              (10.27) 

10.4.2   Drag acting on the sphere of radius a 

Drag = 𝐷∗ = 2𝜋𝑎2   𝑇∗𝑟𝑟 𝑐𝑜𝑠𝜃 − 𝑇∗𝑟𝜃  𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜃
𝜋

0
  𝑅=𝑎  𝑑𝜃        (10.28) 

𝑇∗𝑟𝑟 =
𝜇𝑈0

𝑎
 −𝑅𝑒. 𝑝 +

4

𝑟2 (𝑓 ′ −
2𝑓

𝑟2  )𝑐𝑜𝑠𝜃            (10.29) 

𝑇𝑟𝜃
∗ =

𝜇𝑈0

𝑎
  

1

𝑟
  

1

𝑆
 𝐷𝑠

4𝑓 − 𝐷𝑠
2𝑓 +

2

𝑟
(𝑓 ′ −

2𝑓

𝑟
 )  𝑠𝑖𝑛𝜃           (10.30) 

Substitute (10.29) and (10.30) in (10.28), we get 

𝐷∗ = 2𝜋𝜇𝑈0𝑎  { (−𝑅𝑒. 𝑝 𝑐𝑜𝑠𝜃) − (
1

𝑆
𝐷𝑠

4𝑓 − 𝐷𝑠
2𝑓) sin2 𝜃 }𝑠𝑖𝑛𝜃  𝑟=1 𝑑𝜃

𝜋

0
          (10.31) 

Substitute (10.27) in (10.31), we get the Drag on the sphere (for resonance and non-

resonance cases – without the factor eit  ) after dividing it by 2U0a in the following 

non-dimensional form as 

For resonance 𝐷𝑟𝑎𝑔 = 𝐷∗ = 𝑅𝑒𝑎𝑙
2

3
{𝑅𝑒. 𝑖𝜛 1 − 𝐴0 − 2}        (10.32a) 

For non-resonance D∗ =  Real  
2

3
 Re. iϖA0 − 2 −

2

S
 A1λ1

4K3

2

 λ1 + A2λ2
4K3

2

 λ2      

(10.32b) 

10.5 Results and Discussions 

The values of  are obtained from (10.16) by solving 𝑥2 –  𝑆𝑥 +  𝑖𝜛𝑅𝑒𝑆 = 0 for x. 

Then for resonance case 

    =  x  =

 
 

  S± S2−4S.Re .iω

2
for nonresonance

 
S

2
                     for resonance

          (10.33) 

In the case of resonance, 𝑆 =  4𝑖. 𝑅𝑒. 𝜛 

Here 𝜛 𝑎𝑛𝑑 𝑅𝑒   are choosen independently, with 𝑅𝑒 ≪ 1  and 𝜛 ≫ 1  such 

that 𝜛.𝑅𝑒 is not negligibly small (say>1) then  is obtained from (10.33).  Then 
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𝐴0, 𝐴1 𝑎𝑛𝑑 𝐴2  and hence stream function 𝜓 and Drag are obtained. To get physical 

quantities, the corresponding real part of the quantities are taken. 

 

21
2 =  S +   𝑆2𝑝+𝑆2

2
− 𝑖 

 𝑆2𝑝+𝑆2

2
where  𝑝 =  𝑆2  +  16𝑅𝑤2  and 𝑅𝑤 =  𝑅𝑒. 𝜛 

Taking modulus on bothsides we get, 4 𝜆1 
4 = 𝑆2 + 𝑆 𝑝 + 𝑆 2( 𝑆2𝑝 + 𝑆2) 

This can be Rearranged as   𝑁 =
4 𝜆1  

4−𝑆2

𝑆
=  𝑝 +  2(𝑆 𝑝 + 𝑆2) 

Squaring and reaaranging we get,   𝑁2 + 𝑝 − 2𝑆2 = 2 𝑝 𝑆 + 𝑓 =
8 𝑝 𝜆1  

4

𝑆
 

Again squaring and rearranging we get,  𝑆2 𝑁2 + 16𝑅𝑤2– 𝑆2 
2

 =  64𝑝 1 
8  

This equation can be rearranged as a polynomial in S as below: 

𝑅𝑤2 𝑅𝑤2 − 𝐿 𝑆4 − 𝐿2 𝐿 + 2𝑅𝑤2 𝑆2 + 𝐿4 = 0  𝑤𝑕𝑒𝑟𝑒 𝐿 =  𝜆1 
4       (10.34a) 

From this by fixing L and Rw we can find S or by fixing S and L we can find Rw. 

In the case of resonance (10.34) reduces to: 𝑆 = 22  = 4𝑖 𝑅𝑒.𝜛      (10.34b) 

10.5.1  Stream function 

The stream function for the flow is obtained from (10.21). It is presented in 

terms of function f in the form of figures below in Fig 10.2 and Fig 10.3. It is 

observed that stream function raises near the sphere. But for resonance its peak is 

obtained at a hight less than the case of non-resonance. Again we observe that stream 

function vanishes at a longer distance from origin of the sphere for non-resonance. 

From stream line pattern we observe circulations at the cap (pole of the sphere). For 

resonance the values of the stream lines are less than 0.8 (entire region is in green or 

yellow in color indicating values less than 0.8). For non-resonance, the stream lines 

take values more than 1.5 also. In this case of non-resonance, we can find stream lines 

again in small circulations on left and right side ways also with values near to 2. This 

may be due to twisting effect of Couple stresses. This effect is reduced to minimum 

for the case of resonance. 
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(a) 

(b) 

Fig 10.2 Stream function f at different Re for the case of 

 (a) resonance and (b) non-resonance 

 

 



173 
 

 

 

 

 

(a) 

(b) 

Fig 10.3 Stream function f at different 𝜛 for the case of 

 (a) resonance and (b) non-resonance 
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10.5.2  Drag 

When || is fixed S is obtained as polynomial of degree 4 (eq. 10.34a). This 

will not contain Re for resonance case (see 10.34b).  Hence for resonance we get only 

one curve as in Fig 10.5. When || is fixed we get high values for Drag. When Re 

increases, Drag increases, in both the cases. But for the case of resonance, Drag will 

be reduced to minimum. ( In non-resonance Drag is from 6 to 14, but for resonance it 

is in 4 to 7.5. Again in the case of non-resonance as || increases, Drag decreases and 

reaches a constant value for fixed value of Reynolds number. 

(a) 

(b) 

Fig 10.4 Stream line pattern for the case of (a) resonance and 

(b) non-resonance 
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(a) 

(b) 

Fig 10.5 D Vs || for the case of the case of (a) resonance and (b) non-resonance 
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(a) 

(b) 

Fig 10.6 D Vs Re for the case of (a) resonance and (b) non-resonance 
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10.6 Conclusions 

Hence from above observations, we conclude that 

 1. For resonance, values of Stream function decrease  and form small circulations on 

the cap of the sphere. For non-resonance stream function takes higher values and 

forms large circulations.  

2. Drag is minimum for the case of resonance. This observation is very important to 

prepare fluids with minimum Drag or design machines to adjust for oscillations to 

meet resonance condition and then to get minimum Drag. 
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Chapter  11 

Rotary oscillations of a Sphere in a Couple-stress 

fluid 

 

This chapter concerns an analytic study of an incompressible Couple-stress 

fluid flow. The flow generated due to rotary oscillations of a sphere about its axis of 

symmetry. By taking Stokesian assumptions, nonlinear convective terms of motion 

are neglected and hence equations are made linear. In this situation, a special case, in 

which material constants satisfy a relation, is considered and the flow is technically 

termed as resonance flow. No-slip condition and hyper stick condition are used as 

boundary conditions. The mathematical expression for the velocity is obtained in 

terms of modified Bessel‟s functions. The Couple acting on the sphere is evaluated. 

The effect of physical parameters like Reynolds number and Couple stress parameter 

on the Couple due to oscillations is shown through graphs. It is observed that Couple 

acting on the sphere is minimum for the resonance case. 

 

11.1 Introduction 

The flow of non-Newtonian/Newtonian fluids to Sphere were studied by many 

authors. Frater (1967, 1968) studied the elastico-viscous fluid flows generated due to 

oscillations of sphere and evaluated Drag and damping force on the body. Ravindran 

(1972) studied simple oscillatory flow in polar fluids. Tekasakul et al. (1998, 2003) 

investigated axi-symmetric viscous flow generated due to rotary oscillations of 

arbitrary axi-symmetric bodies and obtained the solution by using green function 

technique. Ashmawy (2015, 2016) studied incompressible viscous fluid flow in which 

the author considered rotary oscillations of a composite sphere and Couple-stress fluid 

flow generated due to creeping motion of a rigid slip sphere wherein author obtained 

Drag acting on the slip sphere. 



179 
 

Lakshman Rao et al. (1971, 1981, 1983) have studied the Micro-polar fluid 

flows generated due to oscillations of different symmetric bodies like sphere and 

spheroid. These problems were attempted to obtained Drag or Couple on the 

symmetric body. In these studies, the effects of physical parameters on Drag or 

Couple were found.  Lakshmana Rao et al. (1970, 1980) studied Micro-polar fluid 

flow past a sphere, Couple-stress fluid flow by analytically and computationally. In all 

these problems, authors found that a distinct flow exists which is technically termed 

as resonance. Till now this has not been investigated by many researchers. This case 

arises in Lakshmana Rao (1971, 1981, 1983), but resonance case was not attempted 

by the authors. Iyengar et al. (2001) studied rectilinear oscillations, rotary oscillations 

of approximate sphere in an incompressible viscous fluid and Micro-polar fluid 

respectively. Iyengar et al. (1993, 2004) studied Stokes flow of an incompressible 

Micro-polar fluid past an approximate sphere and oscillatory flow of a Micro-polar 

fluid generated due to rotary oscillations of two concentric spheres. Verma (1971) 

studied oscillatory fluid flow past a fixed porous sphere. Lai (1978) investigated 

elastic-viscous fluid flow generated due to rectilinear oscillations of sphere and 

evaluated Drag on the sphere. Anwar (2004) studied Micro-polar fluid flow of 

circular cylinder rotating and oscillating. Aparna (2012) examined oscillatory fluid 

flow of permeable sphere oscillating rotary oscillations in an incompressible Micro-

polar fluid. 

In all above problems, the case of resonance if exists was not studied. In this 

chapter we propose to investigate this case of resonance type flow, in Couple-stress 

fluids, due to rotary oscillations of a sphere about its axis of symmetry. The similar 

case investigated in Micro-polar fluid as chapter 6. 

 

11.2 Basic Equations 

The basic equations of an incompressible Couple stress fluid introduced by Stokes 

(1966) are given by: 

𝑑𝑖𝑣 𝑄 = 0                 (11.1) 

𝜌  
𝜕𝑄 

𝜕𝜏
+ 𝑄 . ∇𝑄  = −∇𝑃 − 𝜇∇ × ∇ × 𝑄 − 𝜂∇ × ∇ × ∇ × ∇ × 𝑄           (11.2) 
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whereQ is fluid velocity vector,  is density, P is pressure, is time and  is viscosity 

coefficient. 

By neglecting non linear convective terms from (11.2), we get 

𝜌
𝜕𝑄 

𝜕𝜏
= −∇𝑃 − 𝜇∇ × ∇ × 𝑄 − 𝜂∇ × ∇ × ∇ × ∇ × 𝑄             (11.3) 

For Couple stress fluids, the stress tensor T and Couple stress tensor M satisfy the 

following constitutive equations. 

𝑇 = −𝑃𝐼 + 𝜆 ∇1. 𝑄 𝐼 + 𝜇 ∇1𝑄 +  ∇1𝑄 
𝑇 +

1

2
𝐼 × (∇1. 𝑀)           (11.4) 

𝑀 = 𝑚𝐼 + 2𝜂∇1 ∇1 × 𝑄 + 2𝜂′  ∇1 ∇1 × 𝑄  𝑇            (11.5) 

 

11.3 Statement and Formulation of the Problem 

A sphere of radius a is performing rotary oscillations with velocity 𝑊0𝑒
𝑖𝒆

 

about its axis of symmetry in an infinite vat containing incompressible Couple stress 

fluid. A spherical coordinate system (𝑅, , ∅)  with base vectors (𝒆𝑹, 𝒆 , 𝒆∅)  with 

origin at the center of the sphere and axis of symmetry along 𝒆∅is considered. The 

flow is axially symmetric, hence it is independent of toroidal coordinate . Hence the 

fluid velocity will be in cross sectional plane of the sphere containing the base vectors 

(𝒆𝑹, 𝒆). The velocity is assumed in the form:  

 

𝑸 = 𝑒𝑖𝜍𝜏𝑊 𝑅, 𝜃 𝒆∅                (11.6) 

 

er 

k

i 

Fig11.1 Geometry of Rotary oscillations of a sphere 

W0ei 

e 
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The following non-dimensional scheme is introduced. Capitals and LHS terms 

indicate physical quantities and small letters and RHS terms indicate corresponding 

non-dimensional quantities. 

R = 𝑎𝑟, W = W0𝑤,𝐐 = 𝐪W0, P = 𝑝W0
2,  =

at

𝑊0
            (11.7) 

The following are non-dimensional parameters viz, 𝜛 is frequency parameter, S is 

Couple stress parameter and Re is Reynolds number for Couple-stress fluids. 

𝜛 =
𝑎𝜍

𝑊0
, 𝑆 =

μ𝑎2

η
, Re =

ρW 0𝑎

𝜇
 , Re. ϖ =

ρσ𝑎2

𝜇
             (11.8) 

Using non dimensional scheme (11.7), (11.8) in (11.3) we get 

𝑅𝑒. 𝑆
𝜕𝒒

𝝏𝒕
= −𝑅𝑒. 𝑆. ∇𝑝 − 𝑆 ∇ ×  ∇ × 𝒒 − ∇ × ∇ × ∇ × ∇ × 𝒒          (11.9) 

Swirl 𝜁 (moment of velocity) is defined as 𝜁 = 𝑤𝑕3          (11.10) 

By the choice of velocity field (11.6) and swirl (11.10), the equations of motion (11.9) 

is reduced to 

𝑅𝑒. 𝑆. 𝑖𝜛  
𝜁

𝑕3
𝑒𝜙 = −𝑅𝑒. 𝑆. ∇𝑝 + 𝑆 

1

𝑕3
𝐸2𝜁 𝑒 ∅ − 

1

𝑕3
𝐸4𝜁 𝑒 ∅          (11.11) 

Where 𝐸2 =
𝜕2

𝜕𝑟2 +
1

𝑟2

𝜕2

𝜕𝜃2 −
𝑐𝑜𝑡𝜃

𝑟2

𝜕

𝜕𝜃
            (11.12) 

Let 
𝜕𝑝

𝜕∅
= 0 

By comparing coefficients of𝑒𝜙 in (11.11), we get 

(E4 − 𝑆E2 + 𝑅𝑒. 𝑆. 𝑖𝜛)𝜁 = 0             (11.13) 

This equation (11.13) can be written in the form as 

(E2 – 1
2) (E2 – 2

2) 𝜁 = 0             (11.14) 

Where 𝜆1
2 + 𝜆2

2 = 𝑆   and  𝜆1
2𝜆2

2 =  𝑅𝑒. 𝑆. 𝑖𝜛            (11.15) 

The solution for 𝜁  if 12 in (11.14) is given Lakshmana Rao et al. (1971). The 

solution for 𝜁  for the case, 1 =  2 =   cannot be obtained as a limiting case of 
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1  →  2 . This case is referred to as “Resonance”. This resonance occurs if the 

material coefficients follow the following relation in non-dimensional form:     

2𝜆2 = 𝑆 = 4𝑖𝜛𝑅𝑒               (11.16) 

In this chapter we are interested in the solution for 𝜁  for the case of resonance 

1  =  2  =  .  In this case the equation for 𝜁 is given by 

 E2 –  2 
2

 𝜁 = 0             (11.17a) 

For the case of non-resonance 

(E2 – 1
2) (E2 – 2

2) 𝜁 = 0           (11.17b) 

To match the boundary conditions,Swirl  𝜁 is assumed in the form 

 𝜁 = 𝑓 𝑟 sin2               (11.18) 

Hence     E2𝜁 = 𝐷𝑠
2𝑓 𝑟 sin2 𝜃            (11.19) 

Where 𝐷𝑠
2 =

𝑑2

𝑑𝑟2 −
2

𝑟2              (11.20) 

Now we notice that the equations for 𝜁 (11.17a) and (11.17b) are reduced to : 

For Resonance case:    𝐷𝑠
2– 2 

2
𝑓 𝑟 = 0         (11.21a) 

For non-resonance case:  𝐷𝑠
2– 1

2  𝐷𝑠
2– 2

2 𝑓 𝑟  =  0       (11.21b) 

11.3.1  Boundary Conditions 

The non-dimensional swirl on the sphere   is given by 

No-slip condition:      𝜁 = sin2 𝜃   𝑜𝑛 𝑟 = 1 

Hyper-stick condition:  
𝜕𝜁

𝜕𝑟
= 2 sin2 𝜃  𝑜𝑛 𝑟 = 1 

Hence the boundary conditions in terms of f at r=1 are obtained as: 

By no-slip condition          𝑓 1 = 1           (11.22a) 

By hyper-stick condition    𝑓 ′(1)  = 2         (11.22b) 
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11.4 Solution of the Problem 

Since the equation for f is linear, the general solution for f is linear combination of 

individual solutions of factors in the differential operator. Hence  f  is considered as  

𝑓 =   𝐴1𝑓1  +  𝐴2𝑓2               (11.23) 

where for the case of resonance: 

 𝐷𝑠
2– 2 𝑓1  =  0  and      𝐷𝑠

2– 2 
2
𝑓2  =  0          (11.24a) 

and for the case of non-resonance: 

 𝐷𝑠
2– 1

2 𝑓1  =  0  and      𝐷𝑠
2– 2

2 𝑓2  =  0         (11.24b) 

On solving (11.24a), the solution for f is obtained for resonance case as 

𝑓 r = A1 𝑟𝐾3

2

 𝜆𝑟  +  A2𝑟
3

2𝐾′3
2

(𝜆𝑟)          (11.25a) 

On solving (11.24b), the solution for f is obtained for non-resonance case as 

𝑓 r = A1 𝑟𝐾3

2

 𝜆1𝑟 +  A2 𝑟𝐾3

2

 𝜆2𝑟          (11.25b) 

The following results are useful to note in the case of resonance and non-resonance. 

𝐷𝑠
2𝑓1  =  2𝑓1  and 𝐷𝑠

2𝑓2  =  2𝑓1 + 
2𝑓2          (11.26a) 

In case of non-resonance, 

𝐷𝑠
2𝑓1  =  1

2𝑓1 and 𝐷𝑠
2𝑓2  =  2

2𝑓2          (11.26b) 

The constants 𝐴1and 𝐴2 are obtained from the boundary conditions (11.22a) and 

(11.22b) as follows: 

In the case of resonance 

 

𝐾3

2

(𝜆) 𝐾′3
2

(𝜆)

𝐾′3
2

(𝜆)  1 +
9

4𝜆2 𝐾3

2

(𝜆)
  
𝐴1

𝐴2
 =  

1
3

2𝜆

           (11.27a) 

In the case of non-resonance, the conditions for 𝐴1and𝐴2 are given by 
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𝐾3

2

(𝜆1) 𝐾3

2

(𝜆2)

𝜆1𝐾
′
3

2

(𝜆1) 𝜆2𝐾
′
3

2

(𝜆2)
  
𝐴1

𝐴2
 =  

1
3

2

           (11.27b) 

Hence from (11.27a) and (11.27b) we can calculate 𝐴1and𝐴2 .And hence 𝜁 is known. 

11.4.1  Couple acting on the Sphere of radius a 

Couple acting on sphere 𝐶∗ = 2𝜋𝑎3   𝑇∗𝑟∅ sin2 𝜃 
𝜋

0
  𝑅=𝑎  𝑑𝜃        (11.28) 

For Couple-stress fluids, the constitutive equations for stress and Couple stresses are 

given by (11.4) and (11.5) as 

 𝑇 = −𝑃𝐼 + 𝜆 ∇1. 𝑄 𝐼 + 2𝜇𝐸 +
1

2
𝐼 × (∇1. 𝑀)  

and 𝑀 = 𝑚𝐼 + 2𝜂∇1 ∇1 × 𝑄 + 2𝜂′ ∇1 ∇1 × 𝑄  𝑇 

𝐸 =
1

2
 ∇1𝑄 + 1𝑄 

𝑇 

=

 
 
 
 
 
 
 

𝜕𝑈

𝜕𝑅

1

2𝑅
 
𝜕𝑈

𝜕𝜃
+ 𝑅

𝜕𝑉

𝜕𝑅
− 𝑉 

1

2𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
+ 𝑅

𝜕𝑊

𝜕𝑅
−𝑊 

1

2𝑅
 
𝜕𝑈

𝜕𝜃
+ 𝑅

𝜕𝑉

𝜕𝑅
− 𝑉 

1

𝑅
 
𝜕𝑉

𝜕𝜃
+ 𝑈 

1

2𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
+
𝜕𝑊

𝜕𝜃
−𝑊𝐶𝑜𝑡𝜃 

1

2𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑈

𝜕∅
+ 𝑅

𝜕𝑊

𝜕𝑅
−𝑊 

1

2𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑉

𝜕∅
+
𝜕𝑊

𝜕𝜃
−𝑊𝐶𝑜𝑡𝜃 

1

𝑅
 

1

𝑆𝑖𝑛𝜃

𝜕𝑊

𝜕∅
+ 𝑉𝐶𝑜𝑡𝜃 + 𝑈 

 
 
 
 
 
 
 

 

                           (11.29) 

For this present problem, we get strain rate tensor as, 

𝐸 =

 
 
 
 
 0 0

1

2
 
𝜕𝑊

𝜕𝑅
−

𝑊

𝑅
 

0 0
1

2𝑅
 
𝜕𝑊

𝜕𝜃
−𝑊𝐶𝑜𝑡𝜃 

1

2
 
𝜕𝑊

𝜕𝑅
−

𝑊

𝑅
 

1

2𝑅
 
𝜕𝑊

𝜕𝜃
−𝑊𝐶𝑜𝑡𝜃 0  

 
 
 
 

          (11.30) 

And M is given by 

𝑀𝑅𝑅 = 𝑚 +
2𝜂+2𝜂 ′

𝑠𝑖𝑛𝜃

𝜕

𝜕𝑅
 

1

𝑅2

𝜕𝜁

𝜕𝜃
              (11.31) 

𝑀𝑅𝜃 = −
2𝜂

𝑠𝑖𝑛𝜃

𝜕

𝜕𝑅
 

1

𝑅

𝜕𝜁

𝜕𝑅
 +

2𝜂 ′

𝑅2
 

1

𝑅

𝜕

𝜕𝜃
 

1

𝑠𝑖𝑛𝜃

𝜕𝜁

𝜕𝜃
 +

1

𝑠𝑖𝑛𝜃

𝜕𝜁

𝜕𝑅
           (11.32) 

𝑀𝑅∅ = 0               (11.33) 
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𝑀𝜃𝑅 = 2𝜂
1

𝑅2
 

1

𝑅

𝜕

𝜕𝜃
 

1

𝑠𝑖𝑛𝜃

𝜕𝜁

𝜕𝜃
 +

1

𝑠𝑖𝑛𝜃

𝜕𝜁

𝜕𝑅
 −

2𝜂 ′

𝑠𝑖𝑛𝜃

𝜕

𝜕𝑅
 

1

𝑅

𝜕𝜁

𝜕𝑅
           (11.34) 

𝑀𝜃𝜃 = 𝑚 +
2𝜂+2𝜂 ′

𝑅2
 
𝜕

𝜕𝜃
 −

1

𝑠𝑖𝑛𝜃

𝜕𝜁

𝜕𝑅
 +

1

𝑅𝑠𝑖𝑛𝜃

𝜕𝜁

𝜕𝜃
            (11.35) 

𝑀𝜃∅ = 0               (11.36) 

𝑀∅𝑅 = 0               (11.37) 

𝑀∅𝜃 = 0               (11.38) 

𝑀∅∅ = 𝑚 +
2𝜂+2𝜂 ′

𝑅𝑠𝑖𝑛𝜃
 −

𝑐𝑜𝑡𝜃

𝑅

𝜕𝜁

𝜕𝑅
+

1

𝑅2

𝜕𝜁

𝜕𝜃
             (11.39) 

Hence we get 

𝑇𝑅∅ = 𝜇  
𝜕𝑊

𝜕𝑅
−

𝑊

𝑅
 + 𝜂

1

𝑅2𝑠𝑖𝑛𝜃
 2𝐸2𝜁 −

1

𝑅

𝜕3𝜁

𝜕𝑅𝜕𝜃2 +
𝑐𝑜𝑡𝜃

𝑅

𝜕2𝜁

𝜕𝑅𝜕𝜃
− 𝑅

𝜕3𝜁

𝜕𝑅3 − 2
𝜕2𝜁

𝜕𝑅2         (11.40) 

Using non dimensional scheme (11.7), (11.8) in (11.40) on the boundary r=1 we get 

𝑇𝑟∅ = −
𝜇𝑊0

𝑆𝑎2 𝑓′′′𝑠𝑖𝑛𝜃              (11.41) 

The Couple acting on the sphere (after deleting the factor e
it

) is obtained as: 

𝐶∗ = −
8𝜋𝜇𝑎 𝑊0

3𝑆
𝑓′′′              (11.42) 

Non dimensional Couple C is obtained by dividing 𝐶∗ by 4𝜋𝜇𝑎𝑊0 

𝐶 = −
2

3𝑆
𝑓′′′(1)              (11.43) 

In the resonance case, the Couple is given by 

𝐶 = −
2

3𝑆
 2𝜆2 + 𝜆  

1

2
𝐾3

2

 𝜆 + 𝜆𝐾3

2

′ 𝜆  𝐴2           (11.44a) 

In the non-resonance case, the Couple is given by 

𝐶 = −
2

3𝑆
 𝜆1

2  
1

2
𝐾3

2

 𝜆1 + 𝜆1𝐾3

2

′ 𝜆1  𝐴1 + 𝜆2
2  

1

2
𝐾3

2

 𝜆2 + 𝜆2𝐾3

2

′ 𝜆2  𝐴2       (11.44b) 
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11.4.2  Pressure 

By the choice of velocity field in (11.6), we get 

𝐪. 𝛁𝒒 =  −
𝜁2

𝑕3
2 (𝑠𝑖𝑛𝜃𝑒 𝑟 + 𝑐𝑜𝑠𝜃𝑒 𝜃)            (11.45) 

By comparing components along 𝒆𝑟  and 𝒆  in equation (11.45), pressure is obtained 

as follows. 

𝑅𝑒. 𝑆
𝜕𝑝

𝜕𝑟
=

𝜁2

𝑕3
2 𝑠𝑖𝑛𝜃              (11.46) 

𝑅𝑒. 𝑆
𝜕𝑝

𝜕𝜃
= 𝑟

𝜁2

𝑕3
2 𝑐𝑜𝑠𝜃              (11.47) 

We know that 𝑑𝑝 = 𝑝𝒅𝒓 =
𝜕𝑝

𝜕𝑟
𝑑𝑟 +

𝜕𝑝

𝜕𝜃
𝑑𝜃           (11.48) 

Substituting (11.46) and (11.47) in (11.48) and integrating we get 

Pressure 𝑝 =
1

3𝑅𝑒 .𝑆

𝑓2

𝑟
sin3 𝜃             (11.49) 

 

11.5 Results and Discussions 

 For resonance case,  value cannot be taken randomly. In the case of 

resonance, the values of  are obtained from (11.11) by solving the following 

equation for x.  

𝑥2 –  𝑆𝑥 +  𝑖𝜛𝑅𝑒𝑆 =  0  

Then the roots of this equation gives the values of 𝜆1 
2  and 𝜆2

2 and for resonance case, 

the values of  are obtained if  

𝑆 =  4𝑖. 𝑅𝑒 and 𝜆 =  𝑥 =  
𝑆

2
            (11.50) 

When |1| is fixed, S can be obtained from the equation: 

𝑆 = 4𝑖𝑅0 = 22
              for resonance        (11.51a) 

𝑅0
2 𝑅0

2 − 𝐿 𝑆4 − 𝐿3 𝐿 + 2𝑅0
2 𝑆2 + 𝐿4 = 0,  for non-resonance      (11.51b) 

Here with 𝑅0 = 𝑅𝑒.𝜛 and 𝐿 = |𝜆1
4| 
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11.5.1  Couple 

The coefficient of friction 𝐶𝑓  is evaluated and presented in the form of graphs 

for various values of 𝑅𝑒, 𝑆 𝑎𝑛𝑑 𝜛. From the figures we can conclude that for the case 

of Resonance, the coefficient of friction is lesser for the case of Resonance than the 

case of non-resonance when || is fixed.  In this case, if 𝑅𝑒 𝑎𝑛𝑑 𝜛 are known then S 

and  are known. But in the case of non-resonance all parameters can be chosen 

independently. From Fig 11.2, we observe the following.  In the case of non-

resonance, for small values of ||, Couple is high and as || increases, Couple becomes 

constant for a particular value of 𝜛 . But the values of 𝐶𝑓  are less than the 

corresponding 𝐶𝑓  values of Resonance. 

We can clearly observe  from Fig 11.3 that coefficient of friction 𝐶𝑓  is lower 

for the case of resonance  than in the case of non-resonance. Again we see that effect 

of  || is dominating all other parameters. For fixed value of |  |,   𝐶𝑓  ranges upto 20 

in non-resonance case while it ranges upto 10 in resonance case. Hence we conclude 

that the case of resonance reduces the Couple on the body. From Fig 11.4, we note 

that as Re increases, 𝐶𝑓  also increases for non-resonance case. In Fig 11.4,  | | is not 

fixed. Hence values of Re, S and 𝜛 are taken randomly and  values are found. 

11.5.2 Velocity 

From Fig 11.5 and 11.6, we observe that, in the case resonance, velocity 

vanishes near to r=5 and takes negative values near to sphere and then increase and 

then vanish after some distance. But in the case of non-resonance it f vanishes near to 

r=7 and variation in f from positive to negative and negative to positive values is not 

drastic. Hence we conclude that fluid will not be disturbed much far from the body 

only near to the body we can see high velocity for the case of resonance. In the case 

of non-resonance effect of oscillations will be present to more distances than the case 

of resonance. 

            From Fig 11.7, we see that for the case of resonance, circulations near to 

sphere at the pole are present with low values (colour does not change). In the case of 

non-resonance, circulations near to pole we can observe with more positive values 

(colour changes). 
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  Fig 11.2 𝐶𝑓  Vs || for the case of  (a) resonance and (b) non-resonance 

 

(a) 

(b) 

C
 

C
 



189 
 

 

 

 

 

 

(a) 

(b) 

Fig 11.3 𝐶𝑓  Vs Re for the case of (a) resonance and (b) non-resonance 
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(a) 

(b) 

Fig 11.4 𝐶𝑓   Vs Re for the case of non-resonance (a) at different  𝜛 values 

and (b) at different S values 
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(a) 

(b) 

Fig 11.5 Velocity f at different Re for the case of (a) resonance 

and (b) non-resonance 
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(a) 

(b) 

Fig 11.6 Velocity f for the case of non-resonance at different  

(a) S values and (b)  𝜛 values 
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(a) 

(b) 

Fig 11.7 Velocity contours for the case of (a) resonance and (b) non-resonance 
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11.6   Conclusions 

In this chapter, we derived the velocity in term of swirl for the se of resonance and 

non-resonance. Our important observation is that Couple stresses offer less Couple on 

the body when resonance occurs. 
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Part – IV 

Conclusions 
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Chapter 12 

Conclusions  

  

The thesis aims at analyzing the flows generated due to oscillations of 

symmetric bodies (cylinder or sphere) about a symmetric axis in fluids with Couple 

stresses, namely micro-polar fluids and Couple stress fluids. These two theories are 

developed independently. The theory of Couple stress fluid does not require 

independent rotation vector as in the case of micro-polar fluids. The flows generated 

in both the fluids appear same when we see the equations of motion. But when they 

are solved only, the differences and similarities can be known.  

 We observe the following similarities and differences in the flows of these 

fluids. 

i) Rectilinear oscillations of cylinder resonance yields less Drag than non-

resonance for micro-polar fluids. Similarly resonance offers less Drag in 

the case of Couple stress fluids. 

ii) In the case of rotary oscillation of cylinder, resonance offers less Couple 

for Couple stress fluids. The same observations we find for micro-polar 

fluids also 

iii) In the case of longitudinal oscillations of a cylinder, resonance offers less 

Skin friction for both the fluids. 

iv) In the case of rectilinear oscillations of a sphere, for resonance micro-polar 

fluids offer less Drag. Similarly Couple fluids offer less Drag for non-

resonance case. 

v) In the case of rotary oscillations of a sphere, for resonance Couple stress 

fluids offer less Couple. Whereas micro-polar fluids offer less Couple for 

the case of non-resonance. 

From the above observations, we note that the case of resonance has distinct 

behavior for problem to problem.  

Main observation in the case of Couple stress fluids is that, in the case of 

resonance, the parameters are related by a simple equation given by 
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    𝑆 = 4𝑖𝑅0 

This means Couple stress parameter takes imaginary values. If it is to take real 

values then either Re or  must be imaginary, which is not correct. Here we are 

unable to give a physical meaning to this situation. This case of imaginary values to a 

physical parameter will not occur for micro-polar fluids. Hence we feel micro-polar 

fluid theory is more realistic, though some other believe that Couple stress fluids are 

more realistic. 

The flows generated due to external applied magnetic field for similar 

situation of flows is one major area where we can pay very good attention. The 

problems related to heat transfer and mass transfer are also of interest for the case of 

resonance flows. These problems will have very high value for industrial applications. 
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