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ABSTRACT

The power distribution networks are becoming moyeadnic and complex structures
than before, because of the huge integration odwable sources, distributed energy storage,
intelligent electronic devices (IED) and Smart metSMs). Furthermore, distribution network
configuration is also changing dynamically to agkieminimum power loss and voltage
deviations. Due to lack of metering infrastructimedistribution networks, real time reliable
monitoring of the system becomes more challengiog gower engineers. Therefore, the
currently existing metering infrastructure of thistdbution network needs to be modeled for
reliable and secure operation of the system. Ttmespverall objective of the thesis is to design
an efficient optimization model and algorithm fagstional allocation of measurement devices to
improve the state estimation accuracy for real timenitoring and control of the smart
distribution networks.

The contributions of this thesis are as follows:

* A new multi-objective hybrid PSO-Krill Herd (KH) gbrithm is proposed to optimize
number and location of the measurement devicesafourate state estimation in smart
distribution networks. Three objectives that need e minimized are: i) the total
configuration costi{() the average relative percentage error (APE) sf \mitage magnitude
and (ii) APE of bus voltage angle. As the objective fumas$i conflict with respect to each
other, a multi-objective Pareto-based non-dominateding hybrid PSO-KH optimization
algorithm is proposed. In this approach, the randammation in loads and the metrological
error of the measurement devices are also takerastount. Furthermore, the impacts of DG
on state estimation performance have also beestigeéed.

* A new multi-objective hybrid Estimation of distritton algorithm (EDA)-interior point
method (IPM) algorithm is proposéd obtain the optimal location of measuring devit@s
state estimation in active distribution networkbeTobjective functions to be minimized are,
the total network configuration cost, the averaghkative percentage error (APE) of bus
voltage magnitude and angle estimates. As the tsgscare conflicting in nature, a multi-
objective Pareto-based non-dominated sorting ED# leen proposed. Moreover, due to
poor exploitation capability of the EDA, it is hytized with IPM to improve its local
searching ability in the search space. The hykattin of EDA and IPM brings a higher

degree of balance between the exploration and gafdm capability of the algorithm during
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the search process. Furthermore, the loads andajerseare treated as stochastic variable
and the impact of different types of DGs on staténetion performance has also been
investigated.

In distribution grids, due to the presence of défé kinds of actors such as distributed
generation (DG), energy storage devices systemsnieamore complex, dynamics and
uncertain in nature. Because of this changing behaf actors, real-time monitoring and
control becomes more challenging task for the pasystem engineers. Thus, PMUs are of
great interest because they provide synchronizeasunements of voltage and current. The
application of PMU for state estimation in transsios system has been widely used to
improve the performance of the state estimatorrdfbee it would be more advantageous to
use PMU in DSSETherefore, in this thesig, novel multi-objective optimization problem is
proposed to find trade-offs in deployment of phaseeasurement units (PMUs) and
intelligent electronic devices (IEDs) for stateimsition in active distribution networks. A
new hybrid estimation of distribution algorithm (BDhas been used to find the optimal
number and location of measurement devices sudAMids and IEDs for accurate state
estimation. The objective functions to be minimizedhis optimization problem are the total
cost of PMUs and IEDs, as well as RMS value ofeststimation error. Since, the objectives
are conflicting in nature, a multi-objective Parbsed non-dominated sorting EDA
algorithm is proposed. Moreover, to improve thealaearching capability of the traditional
EDA algorithm, the Interior point method (IPM) igbridized with EDA to get near global
optimal solution. Furthermore, the random variation loads and generators is also
considered to check the reliability of the proposester placement technique.

The robustness of the proposed multi-objective nogition model in presence of wind
generators is also carried out in this thesisti#d| DGs are considered as wind generators and
the output of each DG is modeled using Weibullrthstion function. Furthermore, trade-
offs in deployment of phasor measurement units (BMahd intelligent electronic devices
(IEDs) for state estimation in active distributioatworks is obtained. The objective functions
considered to be minimized are the total cost oflBMnd IEDs as well as the RMS value of
state estimation error. To get best optimal sofytimulti-objective hybrid PSO-Krill Herd
algorithm has been used. Moreover, the random ti@mian loads and generators is also

considered to check the reliability of the proposester placement technique.
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1.1 State Estimation Overview

The development of the State Estimation (SE) methiod electrical power systems
evolved in 1970s. The use of SE techniques wasifitcoduced by Fred Schweppe to estimate
the states of the transmission networks more atdyrfom available information. Schweppe
proposed that SE is a combination of load flow astimation theory based on statistics [1-3].
Fundamentally, SE is a data processing algorithrnitiwprocesses raw data obtained from the
field and network data such as line impedance amthectivity of the network etc., to produce
accurate estimation of the operating state of sesysAccording to Schweppe, the operating state
of an electrical power system can be determinest &ftowing the voltage magnitudes and angles
at all the buses of the network. As, the rest efghantities such as power flow in a line, losses
and voltage drops can be computed. It providesvanatl situational awareness of an electrical
power system.

Basically, SE provides a mathematical link betwdensystem states such as bus voltage
magnitudes and phase angles, and available measuteobtained from the meters deployed at
the field. These measurement data are collectedughr Supervisory Control and Data
Acquisition (SCADA) system installed at Energy Mgament System (EMS). In fact, these
measurements are prone to errors due to the limitedracy level of the measurement devices.
Furthermore, while transferring the measuremera ffaim the field to the control center, there
may be a chance of communication errors, loss lefntetry data, presence of bad data and
instrument failures. Therefore, the obtained measent data should not be processed directly
for taking controlling actions in a system. As aulg a suitable data processing technique is
needed to filter out the errors intrinsically asated with measurements, to handle the possibility
of communication failure and to remove any bad datsese are present in the measurement set.
Hence, SE plays a very crucial role in EMS for ri@le monitoring, control and protection of
electrical power systems. It acts as the heatte@fEhergy management systems.

Many researchers have proposed numerous statea@stintechniques to enhance the
estimation accuracy at the control centers. A camgnsive study on transmission system state
estimation can be found in [4-6].
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In general, the main function of the state estimaigpower system is shown in figure

1.1. The functions of an estimator are as follows:

1.

Topology Processor: The function of the topology processor is to thulie connectivity of
the network by using the information about theustadf the switches and circuit breakers in a
network. It represents current topology of the eyst

Observability analysis: The measurements obtained from the grid are tnbé/zed to see if
the system is observable with the available measemés. If sufficient measurements are not
available to make the system observable, then psewwhsurements are used to maintain the
redundancy level to make the system observablea®Ehen be run to determine the status
of the network.

State estimation algorithm: It is a digital filtering algorithm which process the raw data
obtained from the field and produces reliable dAfter estimating the states of the system
various control actions are initiated at the cdntemtre.

Bad data detection and identification: After SE, this step is to be carried out to degtec
identify and remove any bad data present in thesoreaent set. Basically, bad data are
present due to the malfunctioning of the measumstrument or communication errors. A
bad data checking can also be performed beforeirrgrthe state estimation algorithm to
immediately present the occurrence of bad measumsnrethe measurement set.

The flow chart of the typical power system statenestor is shown in Figure 1.1. Each of

the steps discussed above is an important funciictme state estimator and the sequence of

operation is shown in the flow chart. During thejsence of operation, if bad data or network

topological error is detected, then SE algorithrs t@mbe run repeatedly because these errors

drastically reduces the accuracy of the state asitam results. There is plenty of research going

on at each stages of the state estimator to acljeaéty SE results as well as for better

functionality such as monitoring, control and poti@n of the power system.

Figure 1.2 represents the schematic diagram oEtieegy Management Systems (EMS).

There are two functional blocks in every EMS cergech as state estimator and control

scheduling blocks. The SE block is the heart ofEMS which processes the input data such as

network parameter, measurements and status ofsibehes, circuit breaker to produce reliable

data for various controlling actions in power systd’he controlling actions such as automatic
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generation control, switching of capacitor, loadsl @ircuit breakers, security and contingency

analysis are carried out after the output obtafnaa the state estimator.

Network Data
(Lineimpedances L

Switches and
Breakers status

Shunt admittances)

»i
Real Time Topology Processor [«
measurements ¢
Bad Data Check |——P» Observat.nhty
analysis

Y

State Estimation
Algorithm

v

Bad data Detection
and Identification

are there Bad
Data ?

Topology Error
Identification

Yes

are there
opology errors 2

State Estimation
Results

Figure 1.1: Flow chart of the typical power syst&tiaite estimator
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Real Network Contracts Automatic Voltage
Measurements State Control
A
Y
- Loads
virtual S E— §tatg > Contrgl ——> Circuit Breakers
measurements Estimation Scheduling .
i Capacitors
Y
Pseudo- Measurement Contraints — Embedded Generators
measurements Variance

Figure 1.2: Schematic representation of Energy ament Systems (EMS)

1.2 Distribution System State Estimation (DSSE)
1.2.1 Evolution of distribution systems

In recent years there has been a growing intemesartls distribution automation to
operate the distribution systems more efficienthyl @conomically. The main function of the
distribution automation is real time monitoring,nt@| and protection of distribution systems.
The future growth of the distribution grids is leagl towards the use of sustainable and
environmental friendly energy sources. Thereforanyncountries are providing the facility in
terms of incentives for the installation of reneleabnergy sources such as photovoltaic cell and
wind generator etc. As a result, a large numbeenéwable energy sources have been installed
at the distribution level to the so called disttdém generators (DGs) to fulfill the customer load
demand. Furthermore, it is expected that in upcgriuture, there will be a massive deployment
of Electric Vehicles (EVs) and energy storage dewvithroughout the distribution networks for
electricity usage [7]. All these elements such &sPEVs and energy storage devices are called
distributed energy sources (DERs). The availabditypERs provides more flexible and efficient
use of electrical energy in a distribution network.

In recent times the distribution grids are moreatgit and complex in structures because
of the integration of renewable sources, distridgeergy storage as well as intelligent electronic
devices (IED) and Smart meters. The increasingymaten of distributed generation (DG) in a
distribution network will affect the planning op&oa and control of a distribution network
significantly. The active integration of DG resuhsbi-directional power flows from distribution
level to sub-transmission level as well as exadarhaoltage unbalance in distribution networks

[8]. Furthermore, the reconfiguration of the distion system is used to minimize the power
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loss, voltage deviations and restoration time. strof the cases the distribution networks are
weakly meshed structures. Thus, the states oflalitsn systems such as bus voltage magnitude
and angles have to be estimated more accuratelyefdstime monitoring and control of the
networks. To achieve this, real meters have beparajed in distribution systems to estimate the
states more accurately for other control actionshsas network reconfiguration, Volt/Var
control, generation control, restoration, voltaggulation, etc [9]. Actually, meters can be placed
at each and every point of the distribution netwoHowever, it would affect the total
configuration cost of the distribution system.

Basically, in distribution networks, pseudo-meamgnts are being used more
significantly than real measurements. Therefor@esestimation (SE) algorithm is employed to
estimate the state of a system more accurately fremoisy data available at the distribution
control centers [10]. However, in distribution syst sufficient real time measurements are not
available. Therefore, accurate SE is a more chgilhgntask for power engineers. So, a large
number of pseudo-measurements have been incorgdrateE algorithms to make the system
fully observable and also to avoid non-convergasfade state estimation algorithm. In fact, the
pseudo-measurements are comparatively less aceanasture because these are extracted from
the historical customer load data. As a conseqyanoee accurate state estimation cannot be
expected in this scenario. Therefore, adequate auwfbadditional real meters has to be located
at suitable locations in a distribution networkptoduce quality of state estimation solution.

In distribution grids, due to the presence of défé kinds of actors such as distributed
generation (DG), energy storage devices, the sy&tecomes more complex, dynamics and
uncertain in nature [11]. Because of this chandiabavior of actors, real-time monitoring and
control becomes a more challenging task for thegoosystem engineers. Thus, PMUs are of
great interest because they provide synchronizeasarements of voltage, current and power.
The application of PMU for state estimation in samssion system has been widely used to
improve the performance of the state estimatorrdfbee it would be more advantageous to use
PMU in DSSE. In transmission systems, PMUs haven hesed widely to improve the state
estimator performance using different approachekeréfore, utilization of the phasor
measurements in distribution network for statenestiion is of great interest. The PMU provides
synchronized measurements e.g. voltage and cupreagors, power and frequency along with

some indirect measurements. The measurements ettEom the PMUs are synchronized with
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the coordinated Universal Time (UTC). In transnasssystems, the synchronized measurements

obtained from PMUs along with the non-synchronigeghsurements from SCADA system have

been used by many researchers for improvising ¢ni@pmance of state estimator [12-17].

However, due to lack of sufficient direct measurataen distribution networks, locating

PMUs is economically unreasonable. Therefore, #whriiques used for locating PMUs in

transmission grids cannot be directly transformietthe@ distribution level. In order to compensate

this, a large number of pseudo-measurements defie@a historical customer load data are
being used for the state estimation in distribusgatems. But, as a result, the accuracy of state
estimation deteriorates to a very large extent. Wiaesearchers have proposed different
techniques to deploy PMUs in distribution grids.

1.2.2 Characteristics of Distribution Systems

Due to the peculiar characteristics of the distithusystems, state estimation algorithm
used in transmission system cannot be simply tearesf to distribution system. There are several
aspects under which distribution networks are chfié from transmission system. Typical

characteristics of distribution networks affectD§SE are as follows [18]:

1) Unbalanced Nature: Basically transmission and idisfion grids are three-phase networks.
Transmission networks are treated as balanced nsydtee to transposition and can be
modeled as single phase equivalent representingptisgive sequence of the network.
However, distribution grids are unbalanced in ratdwe to the presence of unbalance loads
as well as some two-phase and single-phase feadéne network. Therefore, distribution
grids rely on a three phase model. Moreover, langegration of small sized distribution
generation at distribution level again results oagain in imbalance in the grids [19-20].

2) Network Topology: Generally, transmission netwogte designed as meshed structure to
make the system more reliable whereas distribugjods are radial and weakly meshed
structures. Therefore, the state estimation algmstare differently designed for distribution
networks. For this reason branch current base@ sstimation algorithm has been used
instead of node voltage based state estimationuiation. It is faster and more efficient to
exploit a radial as well as weakly meshed netwbanta node voltage formulation.

3) Line Parameters: The transmission and distributinoes are designed differently due to
different voltage levels and physical propertias.tdfansmission lines, series resistance is

significantly smaller than reactance in the eq@aék model of the network. Therefore, the

7
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R/X ratio of the transmission line is very low. Hen series line resistance can be neglected
for all practical purposes. However, in distribatigrids the R/X ratio is too high and cannot
be neglected. Due to high R/X ratio, the decoupliagsion of the DSSE algorithm is not that
much easy to obtain.

4) Network Size: This plays a very critical role fastibution systems. Generally, in medium
voltage distribution grids, the number of nodeslasger than the number of nodes in
transmission grids. As a consequence, the compuotdtcost of the DSSE algorithm for state
estimation is increased to a great extent andsd demands data acquisition and storage at
the control centers. Therefore, an efficient DS$gorithm is needed for this. To reduce
computational burden, a Multi-area distributionteys state estimation offers an alternative
solution. In multi-area state estimation (MASE)e tiotal network is divided into sub areas
and DSSE is run for each sub area to estimataadbesof the whole network. Though MASE
technique reduces the execution time but careteinabn needs to be paired during the
formulation of MASE algorithms. However, MASE tedatpmes may lead to significant loss of
accuracy in the estimation process and also it @ap give rise to some additional
communication problem between the sub-areas.

5) Limited Measurement Devices: Basically, in disttibo grids, a very limited number of
measurement devices is placed due to the largeo$itee network. As a consequence, the
redundancy of measurements is not sufficient fatesestimation process and hence the
network becomes unobservable. To make the netwdrsergable, sufficient pseudo-
measurements have been used. These measuremeaésiaed from the historical customer
load data. To create pseudo-measurements, poweetions at all the buses are used. The use
of pseudo-measurement helps to observe the netagowell as to run DSSE algorithm [21-
23]. However, the main drawbacks in including pseotasurements in DSSE study is,
these measurements are associated with a large €nherefore, to improve the accuracy of
the state estimator, many researchers are usin@rnpacement technique for state
estimation. The optimal location of the metersagedmined to reduce configuration cost and

to produce quality of state estimation.
1.3 Weighted Least Square (WL S) based State Estimation

State estimation can be performed by using diftesatistical approaches such as

weighted least square (WLS), maximum likelihoodecra or minimum variance approach. All
8



Chapter 1 Introduction

the above methods use the same measurement medassid below. The measurement model
used for state estimation algorithm is shown as\i:

1.3.1 Measurement Model
For state estimation the commonly used measuremede! is:

zZ= h(x)+e (1.1)
where:

- z is the vector of available measurements at théra@ocenter which is used as input to the
state estimation algorithm. Different kinds of ma&asnents are obtained from the grid at the
control center such as voltage magnitude at thesiazlrrent, real and reactive power flows in
lines or injections at all the buses.

- X represents vector of state variables. Traditignathltage magnitude and angle are chosen as
state variables in a transmission system. Howedher state of a system represents a variable
through which all other quantities of a system bandetermined. Therefore, variables other
than voltage magnitude and angle can be chosemdgstem.

- h(X) indicates the vector of measurement functions whitablish a relationship between state

variable and measurements. It is a function oéstatiable x.
- € represents the vector of the measurement errbes; are assumed to be normal distribution
with zero mean.

1.3.2 Mathematical M odel of the WL S Method
Many alternative methods have been proposed fte s&timation in the literature, but in

most of the cases WLS method has been used batlariemission and distribution systems.
Because of its best performance in terms of carsigt and quality of estimation, it can be the

best choice for DSSE [24-29].
The main objective of WLS method is to minimize theighted sum of the square of the

difference between the measured and estimated wéltree quantity. Mathematically, it can be

defined as follows:

I(x) :;wi[zi - ()12 2.

where m represents the total number of measurements biaila;, is the weight associated
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with the i measurement. The terfiz, —h x ( )§ called measurement residual which is the

difference between the measured value and theastihwalue of the quantity.

The above equation can be written in matrix fornfiodews

3(¥) =[z-h()MW[z-h(x)]" (1.3)
wherew represents weighting matrix and consists of waighton the diagonal elements of the
mxm matrix. The weighting matrix plays a vital role WILS method. It consists of different
reliability of measurements.

The solution of the above objective function isambéd using an iterative method such as
Newton method to find a correction at each step folhows:

DX = G(Xk )_1lH (Xk )TW_lj[Z - h(xk )] (1.4)
x¥* = xK + AxK OL-5
X = % + G ) |H ()W [z () (1.6)
G(%) = H (% )" W H(x, ) (1.7)

where H is the Jacobian matrix of the measurement functipg, G(x) represents Gain matrix
and Ax is the correction ak™ iteration used to compute the new value of th&estariable for
the (k +2)™ iteration shown in equation (1.5). The Jacobiarrimas calculated by taking the

differentiation of each measurement function webkpect to each state variable. Mathematically

it can be expressed as follows:
H (X) - 6h(x)

ax (1.8)
In WLS method the iterative process is continuetll anspecified convergence criterion

is met. Basically, the largest value of the cormecvector obtained in each iteration is compared
with a pre-defined tolerance limit and the iteration count stops when the maximuraevaf the
absolute value of the correctiaxis within the specified threshold limit Mathematically this

can be defined as follows:
max{Ax) <0 (1.9)
1.4 Branch Current Based Distribution System State Estimation (BC-DSSE)
The distribution system has different features thamsmission system, therefore, the

state estimation algorithm used for transmissioseceannot be used at distribution level. In
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transmission system, traditionally, bus voltage miagle and angle is considered as state
variable. But, in distribution system the branchrent magnitude and angle is taken as state
variable to estimate the states efficiently. Mariteraative methods have been discussed in
literature for state estimation techniques in dstion system. A general form of DSSE
algorithm is discussed as follows:

1.4.1 M easurement functions h(x) and Jacobian Matrix For mulation H(x)

In BC-DSSE algorithm, the measurements used foe sstimation are, real and reactive
power flow in a line, voltage magnitude measuremeatirrent magnitude measurements, real
and reactive power injections at the buses etc.€ldments of the Jacobian matrix are calculated
by taking the differentiation of each measurememicfion with respect to each state variable
described in equation (1.8). In this work it iswaeed that the distribution system is a balanced
system, therefore the single-phase model of therilmiion network is presented. The
measurement functions and Jacobian entries areloe$@as follows:

1) Branch Power Measurements: The power flow in a kne at the end k is stated as
follows:
Ran *1Qn =Vi kml€OS@y — ) + ] SINGy — )] (1.10)

The corresponding Jacobian entries can be detetname

(@) When the state variable and the power flowsueaments are in the same line the

corresponding Jacobian elements are:

% =Vk c0sgy ~6im) (1.11)
km

Bon =Vl SinGy =) (1.12)
06,

anm :Vk Sil’l(dk — Hkm) (113)
0 km

oR,

0= Vel COS@y — Giem) (1.14)

06,

(b) When the branch power measurements anddte\siriables are not in the same line
segment then the Jacobian entries will be zero.

11
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2) Power injection measurements:
Suppose in a network power is injected at bus ktherk are n buses connected to bus k.
It is assumed that current is flowing from bus lbts 1..... m and it also flows from bus
m+1....n to bus k. Therefore, buses 1....m areiderexd as upstream buses of k bus and
buses m+1 to n are treated as downstream busebus. Khe total power injected at bus
k can be expressed as follows:

P +1Qy :Vk(th_Z'ki)* (1.15)
i1 '

m+1

Hence, three different cases are formed to findetieies of the Jacobian matrix given
below:
Case 1: When bus k is connected to its upstrearasbaisd the state variable are in the

same line segment then the Jacobian entries aemdeed as follows:

oP,
—% =V, cos@y —6i) 1
1.17
g%:vklik sin(b_k _9ik) ( )
ik

0 .

Qi =V, sin(dy, - 6;) (119
9Q _ -V, 1., cos@, —6,)
o (1.19)

Case 2: When bus k is connected to its downstrasasand the state variable are in the

same line segment then the Jacobian entries aemdeed as follows:

R _

3 -V, cos@, —6) (2.20)
ik

oR, .

—00:( = Vil sin(dy =6 ) (1.21)
0Qy .

—= ==V, sin(o, -6

alik k ( k |k) (1.22)
a& :Vkl ik COS(JK _Hik) (123)
006,

Case 3: If the line is not connected to the buwlath the power is injected, then the

corresponding Jacobian entries are taken as zero.
12
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3) Voltage magnitude measurements:
Suppose the magnitude of voltage is measured ak lassl there are n lines connecting
bus k to reference bus 0 and also it is assumedlhaes current are flowing away from
the reference node. Then, the voltage at bus beatetermined as follows:

The corresponol|irl19 Jacobian elements are determasied

Case 1: If the line is lying between the referenode and the bus where the voltage is
measured then the Jacobian elements are:

CALEES

= —C0SOp41.Zj_1j COSE_1; +@j_1; ) -SiNOpyy.Zi—q; SINE_y; +ai_1;) (1.24)
i-1,

.+_1 _ . .

g—n =COSDpg li-aj Zimaj SINGy; + iy )-SINGpugligj Zigj COSE g5 +05y;) (1.25)
1-Li

Case 2: If the line is not lying between the refieeenode and the bus where the voltage is

measured then the corresponding all Jacobian elsraem set to zero.

1.4.2 BC-DSSE Algorithm Steps
The BC-DSSE method is based on iterafipproach consists of three main steps are
discussed as follows:
1. Updated input measurements
2. Solution of the equation (1.4) of the WLS algorithm
3. Forward sweep method to calculate bus voltageaddt Bode of the network.
The BC-DSSE algorithm is based on the followingste
1) Initialization:
The initialization of the branch current phasor hagreat impact on the convergence of
the state estimation algorithm. Therefore, a tvep stpproach has been used to initialize
the state variables. In the first step, the voltagevery node is set at 1 pu and then by
using backward approach, the current at all theslis determined through injected power
at every node. In the second step, the forward gpwesthod is used to calculate the initial
value of voltage.

2) Updates the system states using equation (1.5).

WL = 3k 4 Ak
13
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X = X ¥ G(Xk )_1IH (Xk )TW_IJ[Z - h(xk )]

3) Use forward approach to calculate voltages at evede.
4) If the convergence criterion is met i.max(Ax]) < [ then stop. If it is not satisfied then

go to step 2 and repeat till the convergence igeaeld. If it is not satisfied the criterions

till the maximum number of generation then it doesconverge.
1.5 Meta-heuristic Optimization Algorithm

The meta-heuristic optimization algorithms haverbased often in various engineering
discipline to solve optimization problems. It gusda subordinate heuristic by intelligently
combining different concepts to explore and explioé& search space more efficiently. Different
learning strategies are being use to find an e¥Wecbptimal solution. These optimization
algorithms are classified into two categories:

)] Population-based methods (multiple solution basethads) and
i) Trajectory —based methods (single-solution basatiode)

Basically, the population based algorithms are inespfrom nature whereas trajectory
based method are inspired from physics. The padpuldtased algorithms such as Genetic
algorithm (GA), Particle Swarm Optimization (PS®@)nt Colony Optimization (ACO) etc., use
multiple solutions to search for an optimal solnti®n the other hand, trajectory based methods
such as Simulated Annealing (SA), Tabu search,seaech algorithms etc., use a single solution
move in a piece-wise manner in the search spadi@doan optimal solution. The steps of the
trajectory based methods trace a trajectory inst@ch space during the search process to find
an optimal solution. The general properties of tieta-heuristic optimization techniques are as
follows:

* These are straight forward and guide the searatepso

« The goal is to efficiently explore the search spercerder to find near global optimal
solutions.

» Techniques which constitute meta-heuristic algarittange from simple local search

procedures to complex learning processes.

14
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* They can incorporate mechanism to avoid gettingped in confined areas of the search
space.
* Meta-heuristic algorithms are non-problem specific.
* Meta-heuristic algorithms are non-deterministio&ture.
* These algorithms can make use of domain specifowvledge in the form of heuristics
that are controlled by upper level strategy.
1.6 Phasor M easur ement Units (PM Us)

PMU is a device which measures the electrical wamesan electricity grid using a
common time source for synchronization. Time syonlmation allows synchronized real time
measurements of multiple remote measurement poimtbe grid. The resulting measurement is
called as a synchrophasor. It is used to measutageoand current phasors, frequency and other
indirect measurements in an electrical network. easurements obtained from the PMUs are
synchronized with the coordinated Universal Time.transmission systems, the synchronized
measurements obtained from PMUs along with the symchronized measurements from
Supervisory Control and Data Acquisition (SCADAsw®mM have been used by many researchers

for improvising the performance of state estimator
1.7 Intelligent Electronics Devices (IEDs)

An Intelligent Electronic Device (IED) is a micramessor-based controller of power
system equipment such as circuit breakers, tramgfiar and capacitor banks. It has the ability to
monitor processes and can communicate directly ®CADA system. It can be used as a
measuring device which can measure real and reagtiwer flow in a feeder. Mainly, it is used
as a protecting device in power system. In thiskwidris considered that it measures real and

reactive power flow in a line. It provides non-shraized measurements.
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2.1 Introduction
State estimation (SE) technique is generally used to find the system state variables under

different operating condition of the power system. It brings a mathematical relation between
measurements and system variables to make secure operations in power system. Most of the field
measurements are subjected to some errors. So, SE is used to process the unreliable or noisy data
to produce reliable data which can be used for system anaysis. There are various functions of
state estimator such as network topology processor, observability analysis, state estimation and
bad data detection and identification. The function of the topology processor is to ensure that the
network parameters given to the estimator are correct and also ensure that the network model is
accurate. The obsevability analysis ensures that sufficient measurements are available for SE or
else sufficient Pseudo-measurements like real power flow and injections are used to make the
system observable. The function of SE is to estimate the system states accurately using available
measurement data. Finally, bad data processor is used to identify and remove any bad data
present in system measurements. There are numerous techniques developed for power system
state estimation. Because of the peculiar characteristics of distribution networks such as high r/x
ratio, unbalanced nature, radial structure and limited available measurements, SE techniques used
in transmission system cannot be applied to distribution systems directly. The techniques
developed for distribution system state estimation are discussed as follows.
2.1.1 DSSE based on conventional WL S method

In [31], Baran and Kelly proposed a three-phase SE agorithm based on node voltage
formulation using weighted least square (WLS) approach. The authors considered bus voltage
magnitudes and phase angles as state variables. A three-phase model of the distribution feeder
has been developed and the coupling effect between the feeders taken into consideration. In [32],
the authors have proposed branch current based SE in distribution network which is more
efficient and reliable than node voltage formulation method because it is computationally more
efficient. Furthermore, this approach considers a few loops in a network. In [33], a three-phase
DSSE algorithm is proposed. A current based formulation is proposed which considers a

rectangular form of branch current as state variable. In [34]-[35], DSSE based on WL S approach
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and three-phase modeling of distribution network is proposed. In [36], a probabilistic approach
for state estimation in distribution network is proposed. It takes into account the real-time
measurements as solution constraints and also includes load diversity concept in order to account
for the non-normally distributed load in state estimation.

A robust three-phase state estimation algorithm is proposed for unbalanced distribution
network [37]. In [38], a highly efficient agorithm for using current measurements for state
estimation in distribution network is proposed. The authors have developed a new agorithm
which makes the gain matrix constant and also decouples it on phase basis. Therefore, the
computational time is reduced. In [39], a branch estimation based SE for distribution network is
proposed. It decomposes the whole WLS problem into a series of sub problems and each sub
problem deals with a single branch state estimation only. An efficient branch current based state
estimation technique is proposed using WLS approach [40]. The authors have used magnitude
and phase angles of branch currents as state variables for SE. An efficient branch current based
DSSE is introduced using synchronized measurements data [41]. The authors have considered
both radial and weakly meshed topology for state estimation. The state variables are expressed
both in polar and rectangular coordinates including slack bus voltage as state variables. In [42], a
state estimation method based on power summation method is proposed for three-phase balanced
and unbalanced distribution system.

All the methods discussed above are based on network topology modeling to develop new
efficient agorithm for SE. The next section will discuss state estimation techniques based on load
modeling approach.

2.1.2 DSSE based on load modeling

Load modeling and estimation plays a very important role in improvement of the
accuracy of the distribution state estimator. In the absence of loads which are highly diverse and
distributed in nature, pseudo measurements with appropriate mean and standard deviations are
used for state estimation. The pseudo-measurements are naturally modeled through Gaussian
distribution because it is more compatible with WLS based maximum likelihood estimation.
Many researchers have used the concept of load modeling to improve the performance of the
state estimator in a distribution network. In [43], a rea-time load modeling technique is

introduced in distribution state estimation. It incorporates customer class load curves for
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estimation purpose. In this paper the load modeling technique is combined with state estimation
based on probabilistic approach to estimate the states of a distribution circuit.

A load allocation model is proposed which generates a fuzzy load allocation and then
corrected by afuzzy state estimator procedure in order to generate a crisp power flow compatible
with a set of load allocations and correlated with available real measurements available from the
SCADA [44]. In [45]-[46], because of limited rea-time measurements, a load modeling
technique is used which estimates the real-time customer load profile. This can be used as
pseudo-measurements for SE in distribution networks. In [47]-[48], WLS method and sensitivity
method based |oad estimation in unbalanced distribution network is discussed. [49], introduces a
method which can estimate the unavailable measurements due to metering problems in a
distribution network. A regression based model has been used along with correlated loads which
are geographically very close to each other to improve SE performance. From the results it is
found that this method gives acceptable performance for measurement loss of up to aweek.

2.1.3 DSSE based on computational intelligence and heuristic techniques

Many alternative methods have been developed for advance control and monitoring of the
distribution networks. Some of the SE methods are based on the statistical and load modeling
formulation. The former methods of SE are usually based on Newton method i.e. iterative
convergence methods and load estimation methods are based on sensitivity analysis. The
objective functions of the conventiona DSE methods are assumed as continuous and
differentiable. However, when non-linear practica equipments are present in distribution
systems, the objective functions cannot be differentiable and continuous. In that case it is more
difficult to apply conventional DSE methods to estimate the state of the systems. Therefore,
Meta-heuristic methods are widely used to solve non-linear optimization problem. It does not
require the objective functions to be contiguous and differentiable. Some of the DSSE methods
based on heuristic techniques are discussed as follows.

In [50], a hybrid particle swarm optimization (PSO) agorithm is used for state estimation
in practical distribution network. This method can estimate distributed generation (DG) output
and load by minimizing the difference between the measured and cal culated values of bus voltage
magnitudes and branch currents. In [51], a three phase state estimation in practical distribution
network using hybrid particle swarm optimization agorithm is proposed. In SE, bus voltage
magnitude, angle and transformer taps are considered as state variables to control the voltage i.e.
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the state vector includes both continuous and discrete variables. In [52], ordinal optimization
algorithm based state estimation in unbalanced distribution network is proposed. The authors
have considered the combination of continuous and discrete variable in state vector. The discrete
variables are on-load transformer taps. The performance of the OOA is found to be better than
conventional WL S method in estimating the state and losses in a distribution network.

2.1.4 DSSE based on meter placement technique

SE isadigita filtering algorithm which can accurately determine the states of the system
from noisy data. However, due to the limited number of real time measurements, accurate SE in
distribution systems is more challenging. So, alarge number of pseudo-measurements (historical
data) retrieved from a priori knowledge are necessary to maintain obsevability of the network and
convergence of SE agorithm. Additionally, the accuracy of pseudo-measurements is
comparatively low. As a consegquence, estimation accuracy iS not as much accurate as is
expected. Therefore, some additional meters need to be appended at appropriate locations in the
distribution systems to achieve better estimation accuracy. In recent years, many alternative
methods have been proposed by various researchers for enhancement of state estimation accuracy
using meter placement techniques in distribution networks. In [53], Baran et al. introduced arule
based meter placement strategy and proposed three empirical rules based on observations i.e.
meters have to be placed at all the main switches and fuse locations that have to be monitored,
meters have to be placed at feeder line sections and on normally open tie switches used for feeder
reconfiguration. This method of meter placement gives a good compromise between the accuracy
and computational complexity but it does not guarantee optimal number of meters with minimum
cost.

In [54], a heuristic technique based meter placement method is introduced. The
optimization problem is designed as a nonlinear combinatorial constraint optimization problem
and the objective function minimizes the mean of the weighted sum of the variance of the
estimated quantities. The constraints imposed on this optimization problem is that the system
would be observable with established accuracy with minimum number of meters. The authors
have proposed dynamic programming (DP) following a step by step approach to find the optimal
number of meters with required accuracy level.

In [55], J. Liu et a. proposed a meter placement technique in SE using Genetic algorithm

(GA). The objective function considered for this optimization problem is the minimization of the
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total cost combined with the specified accuracy index of the state estimation. The authors have
used relative voltage and phase angle deviation as performance index for the optimization
problem. Furthermore, an optimal trade-off solution is obtained between phasor measurement
units and smart metering devices using GA. Pegoraro and Sulis [56], proposed a dynamic
programming (DP) based meter placement technique to find the optimal placement of the
measuring devices. The authors have considered both the network parameter uncertainty and
decay of metrologica characteristic of the measurement devices in distribution system state
estimation. Sing et al. [57], addressed an ordina optimization algorithm based meter placement
scheme in distribution network. In this approach, the meters are placed progressively until the
errors are below the pre-specified thresholds in 95% of the ssimulated cases. However, the
solution obtained using ordinal optimization algorithm (OOA) may not be a globa optimal
solution, but it resultsin at least one of the suboptimal solutions. Shafiu et a. [58], have used a
heuristic technique to deploy certain number of voltage measurements to reduce the standard
deviations in estimated voltage at unmonitored buses. This method only reduces error in voltage
magnitude not in phase angle. In [60], a circuit representation model was proposed for the
optimal deployment of current and voltage measurements to represent estimation errors. The
authors have transformed the optimization problem to a mixed integer linear programming
problem. M.G. Damavandi et a. [62], proposed a robust meter placement in active distribution
network for state estimation. A robust sub-modular saturation algorithm has been used to find
the optimal location of PMUs and voltage magnitude meters in active distribution systems. The
authors considered a fixed number of meters to find their optimal location. The maor
disadvantage of these optimization algorithms is that the solution obtained may not guarantee a
global optimal solution because these are based on sequential placement of measurement devices
to achieve the required state estimation accuracy. The sequential meter placement techniques may
not achieve minimum number of meters with required accuracy level.

In distribution grids, due to the presence of different kinds of actors such as distributed
generation (DG) and energy storage devices, the system becomes more complex, dynamics and
uncertain in nature. Because of this changing behavior of actors, real-time monitoring and control
becomes a more challenging task for the power system engineers. Thus, PMUs are of great
interest because they provide synchronized measurements of voltage, current and power. The
application of PMU for state estimation in transmission system has been widely used to improve
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the performance of the state estimator. Therefore it would be more advantageous to use PMU in
DSSE. In transmission systems, PMUs have been used widely to improve the state estimator
performance using different approaches [62]-[70]. Therefore, utilization of the phasor
measurements in distribution network for state estimation is of great interest. The PMU provides
synchronized measurements e.g. voltage and current phasors, power and frequency along with
some indirect measurements. The measurements obtained from the PMUs are synchronized with
the coordinated Universal Time (UTC). In transmission systems, the synchronized measurements
obtained from PMUs aong with the non-synchronized measurements from Supervisory Control
and Data Acquisition (SCADA) system have been used by many researchers for improvising the
performance of state estimator [72]-[83].
2.2 Mativation

This thesis presents an extensive review of the research topic and optimal location of
measurement devices for distribution system state estimation using meta-heuristic techniques.
State estimation is the heart of energy management systems, which is used for real time
monitoring, alarming and control of distribution networks. Therefore, accurate estimation of

system states is more challenging for power system engineers.

e The quality of SE suffers because of alarge number of pseudo-measurements which have
very high variances. This can be improved by placing additional real measurements which
have very low variances. Therefore, the design of an efficient algorithm for solving meter
placement problem in distribution networks is needed.

e A multi-objective problem formulation is required instead of single-objective to establish a
trade-off solution between objectives such as configuration cost of the network and state
estimation accuracy.

*  Due to high penetration of renewable energy sources, electric power system operation and
control has become a complex and challenging issue for Energy Management Centers.
Amongst al renewable energy sources, wind energy is the most proven around the world.
Therefore, there is scope to develop a robust meter placement technique to enhance the

estimation accuracy in presence of wind generators.

The thesis in general addressed the optimal allocation of measurement devices for

distribution system state estimation using multi-objective hybrid evolutionary a gorithms.
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2.3 Contributions

The overal objective of the thesis is to design an efficient optimization model and

algorithm for optimal allocation of measurement devices to improve the state estimation accuracy

for online monitoring and control of the distribution networks.

The contributions made in the thesis are as follows:

A new multi-objective hybrid PSO-Krill Herd Pareto based optimization algorithm to
optimize number and location of the measurement devices for accurate state estimation in
smart distribution networks is proposed. The idea is to minimize the following: (i) totd
network configuration cost (ii) average relative percentage error (APE) of bus voltage
magnitude and (iii) APE of bus voltage angle. As the objective functions conflict with respect
to each other, a multi-objective Pareto-based non-dominated sorting hybrid PSO-KH
optimization algorithm is proposed. In this approach, the random variation in loads and the
metrological error of the measurement devices are also taken into account. Furthermore, the
impacts of DG on state estimation performance is also investigated.

A new multi-objective hybrid Estimation of distribution algorithm (EDA)-interior point
method (1PM) algorithm is proposed to obtain the optimal location of measuring devices for
state estimation in active distribution networks. The objective functions to be minimized are,
the total network configuration cost, the average relative percentage error (APE) of bus
voltage magnitude and angle estimates. As the objectives seem to in conflict with each other,
a multi-objective Pareto-based non-dominated sorting EDA has been proposed. Moreover,
due to the poor exploitation capability of EDA, it is hybridized with IPM to improve its loca
searching ability in the search space. The hybridization of EDA and IPM brings a higher
degree of balance between the exploration and exploitation capability of the algorithm during
the search process. Furthermore, the loads and generators are treated as stochastic variables
and the impact of different types of DGs on state estimation performance has also been
investigated.

A novel multi-objective optimization problem to find trade-offs in deployment of phasor
measurement units (PMUs) and intelligent electronic devices (IEDs) for state estimation in
active distribution networks is proposed. A new hybrid estimation of distribution algorithm
(EDA) has been used to find the optima number and location of measurement devices such
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as PMUs and |EDs for accurate state estimation. The objective functions to be minimized in
this optimization problem are the total cost of PMUs and IEDs, as well as the RMS value of
state estimation error. Since the objectives are conflicting in nature, a multi-objective Pareto-
based non-dominated sorting EDA agorithm is proposed. Moreover, to improve the local
searching capability of the traditional EDA agorithm, Interior point method (IPM) is
hybridized with EDA to get near global optimal solution. Furthermore, the random variation
in loads and generators is also considered to check the reliability of the proposed meter
placement technique.

e A novel multi-objective optimization model is developed to find trade-offs in deployment of
phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for state
estimation in active distribution networks. All DGs are taken to be wind generator and the
output of each DG is modeled using Weibull distribution function. The objective functions
that require to be minimized are the total cost of PMUs and IEDs as well as the RMS value of
state estimation error. To get best optimal solution, multi-objective hybrid PSO-Krill Herd
algorithm has been used. Furthermore, the random variations in loads and generators are also
considered to check the reliability of the proposed meter placement technique in presence of

wind generators.
2.4 Thesis Organization

Thethesisis organized as follows:

Chapter 1 introduces the basic to power system state estimation with relevant terms and various
challenges posed for distribution system state estimation. It also explainsin brief the need of state
estimation techniques and the peculiar characteristics of distribution network. It also discusses
the method used for estimation of system states in a distribution network.

Chapter 2 presents a detailed literature review on the research topic with past and present
research. The literature reviewes various methods/ techniques used for distribution system state
estimation such as load modeing, heuristic techniques based state estimation in distribution
network and conventional WLS method based state estimation in distribution system. Later, the
literature on meter placement techniques based distribution system state estimation is also

reviewed with relevant analysis.
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Following an extensive literature survey on the topic, motivation for the proposed research work
is presented and then the contributions and organization of the thesis.

Chapter 3 begins with an introduction to distribution system state estimation. The multi-
objective optimization model is designed. New multi-objective hybrid PSO-Krill Herd Pareto
based optimization agorithm is presented to optimize the number and location of the
measurement devices for accurate state estimation in smart distribution networks. Three
objectives require to be minimized: (i) the total network configuration cost (ii) the average
relative percentage error (APE) of bus voltage magnitude and (iii) APE of bus voltage angle. As
the objective functions are conflicting with respect to each other, a multi-objective Pareto-based
non-dominated sorting hybrid PSO-KH optimization algorithm is proposed. Furthermore, the
impacts of DG on state estimation performance are aso investigated. The feasibility of the
proposed agorithm is demonstrated on IEEE 69-bus system and practical Indian 85-bus radia
distribution network. The results obtained are compared with conventional Krill Herd (KH)
algorithm, Particle swarm Optimization (PSO), with well known multi-objective non-dominated
sorting genetic algorithm (NSGA-I1) for validation.

Chapter 4 proposes a new multi-objective hybrid Estimation of distribution algorithm (EDA)-
interior point method (IPM) algorithm to obtain the optimal location of measuring devices for
state estimation in active distribution networks. The objective functions to be minimized are, the
total network configuration cost, the average relative percentage error (APE) of bus voltage
magnitude and angle estimates. As the objectives are conflicting in nature, a multi-objective
Pareto-based non-dominated sorting EDA has been proposed in this chapter. Moreover, due to
poor exploitation capability of the EDA, it is hybridized with IPM to improve its local searching
ability in the search space. The hybridization of EDA and IPM brings a higher degree of balance
between the exploration and exploitation capability of the agorithm during the search process.
Furthermore, the loads and generators are treated as stochastic variables and the impact of
different type of DGs on state estimation performance has also been investigated. The efficiency
of the proposed agorithm is tested on IEEE 69-bus system and Indian 85-bus radia distribution
network. The results thus obtained are compared with conventiona EDA, PSO and non-
dominated sorting genetic algorithm (NSGA-I1).

Chapter 5 addresses a new multi-objective optimization problem to find trade-offs in
deployment of phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for
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state estimation in active distribution networks. A new hybrid estimation of distribution
algorithm (EDA-IPM) has been used to find the optima number and location of measurement
devices such as PMUs and IEDs for accurate state estimation. The objective functions to be
minimized in this optimization problem are the total cost of PMUs and IEDs, and the root mean
square (RMS) value of state estimation error. Since, the objectives are conflicting in nature, a
multi-objective Pareto-based non-dominated sorting EDA agorithm is proposed. Moreover, to
improve the local searching capability of the traditional EDA algorithm, the Interior point method
(IPM) is hybridized with EDA to get near global optimal solution. The viability of the proposed
algorithm has been tested on IEEE 69-bus system and Indian 85-bus system to validate the
results. The obtained results have been compared with conventional EDA algorithm, non-
dominated sorting genetic algorithm (NSGA-I1) and also with hybrid EDA-simulated annealing
algorithm existing in the literature.

Chapter 6 presents the inclusion of wind generation in a distribution network for state
estimation. A new multi-objective optimization model is developed to find trade-offs in
deployment of phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for
state estimation in active distribution networks. The objective functions considered to be
minimized are the total cost of PMUs and IEDs as well as the RMS value of state estimation
error. Since the objectives are conflicting, a multi-objective Pareto-based non-dominated sorting
algorithm has been employed to get a compromised solution. To get the best optimal solution,
multi-objective hybrid PSO-Krill Herd algorithm has been used. Furthermore, the random
variation in loads and generators is also considered to check the reliability of the proposed meter
placement technique. All DGs are considered as wind generator and output of each DG is
modeled using Weibull distribution function. The viability of the proposed agorithm has been
tested on IEEE 69-bus system and Indian 85-bus system to validate the results. The obtained
results have been compared with Particle Swarm Optimization (PSO), Krill herd (KH) algorithm
and a so with well known Non-dominated sorting genetic algorithm (NSGA-I1).

Chapter 7 summarizes the research contribution, findings and observations on the present

research. It then presents the scope for future work based on what has gone before.
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2.5 Summary

In this chapter a general discussion on existing work relevant to the distribution system
state estimation is presented. Power system state estimation is an extensive research area of
interest; however distribution system state estimation is comparatively a new area of research.
Due to the peculiar characteristics of distribution systems, the development of distribution system
state estimation (DSSE) is more challenging. Existing research proposes various classica
optimization methods as well as some novel estimation techniques for DSSE solutions. This
chapter has included discussion on various DSSE techniques proposed for state estimation in

distribution networks.

Current distribution networks do not have sufficient real time measurements. To achieve
quality state estimation, enhanced real time meter placement is essentia in distribution networks.
Similar to state estimation in distribution network, the existing meter placement techniques used
for transmission network cannot be directly used for distribution systems. The typica challenges
and the relevant literature on the development of meter placement algorithms for distribution
networks have been presented in this chapter. Furthermore, the motivation, contribution and

organization of the thesis are presented in this chapter.
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Chapter 3

Optimal Allocation of M easurement Devices for Distribution
System State Estimation Using M ulti-Objective Hybrid PSO-
Krill Herd Algorithm

3.1 Introduction

Recently, distribution systems have been incredsirsyibjected to integration of
distributed generation (DG) and frequent changeseitwork configuration which are creating
new problems of monitoring, control and reliabilisgues in smart grid environment. The active
injections of renewable sources and loading cooniitiresult in bi-directional power flow and
exacerbation of voltage unbalance in a distributietwork. The bi-directional power flow occurs
when the DG generation exceeds local load andsitstanger impact on voltage profile of the
distribution network. Furthermore, the network éguafation of the smart distribution network
will be changing dynamically to achieve minimum mowoss and voltage deviations. The real
time monitoring of distribution network is becomirigcreasingly challenging due to the
increasing dynamics and changing behavior of actargdistribution systems. Therefore,
knowledge about the system states are required raocerately and reliably for online
monitoring and control of the distribution networki®o resolve these issues, meter placement
techniques have been used widely in distributiatesys for state estimation.

This chapter proposes a new multi-objective hybR8O-Krill Herd Pareto based
optimization algorithm to optimize number and lecatof the measurement devices for accurate
state estimation in smart distribution networksteEhobjectives are considered to be minimized:
(i) the total configuration costi( the average relative percentage error (APE) &f \mltage
magnitude andiii) APE of bus voltage angle. As the objective fumtsi are in conflict with
respect to each other, a multi-objective Paret@dason-dominated sorting hybrid PSO-KH
optimization algorithm is proposed. Furthermoree trandom variation in loads and the
metrological error of the measurement devices dse #aken into account. The proposed
algorithm minimizes the cost and enhances the acguof the distribution state estimator for
better monitoring and control of the system. Moexouhe impact of DG on state estimation

performance is also investigated. The feasibilitythee proposed algorithm is demonstrated on
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IEEE 69-bus system and Practical Indian 85-busatatistribution network. The results obtained
are compared with conventional Krill Herd (KH) atjom, Particle swarm Optimization (PSO),
with well known multi-objective non-dominated sadi genetic algorithm (NSGA-II) for

validation.

3.2 Problem Formulation

The main objectives of this chapter are to deteentie optimal number and position of
measurement devices to be placed in a given disibib network to achieve an observable
system with minimum cost and ensure the state bl@sato be in compliance with predefined
accuracy. Three objective functions have been densd for minimizing: i) the total costi()
the average relative percentage error (APE) of \mlsage magnitude andiii) APE of bus
voltage angle. By trial and error basis it is fodhdt, if the number of power flow measurements
is higher, then the relative deviation in bus vgp#tanagnitude and angle is lower and vice-versa
i.e., the objective functions described above ecniith respect to each other. Hence, the meter
placement problem can be formulated as a multietive Pareto based optimization problem
which can be solved by using fast non-dominatedirgprapproach. This chapter proposed a
hybridized algorithm for placing minimum numbermagéters for ensuring the relative deviations
of voltage magnitudes and angles within the preifipd thresholds for 95% of the simulated
cases. Hence, the meter placement problem is basetthe minimization of the following

objective functions:

nl n
F :ZCpf,i' P +ZC\/MM,i' R (3.1)
i=1 i=1
11{&Ve-veE
Fo= D ol 2 e ] ]*100 3.2
: =l &) v (32)
1-1l({&[62 -6
Fo=—) — ———— |x100 33
: mzm: n ,Z:; 52 j (3.3)
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Subjected to constraints: In 95% of the simulatedes, the maximum relative percentage
deviation in voltage magnitude and phase anglel&eand 5% respectively and this can be

expressed as:

\VAEVAS

x100< 1 (3.4)

5t =67

x100 < 5 (3.5)

where F, F,and F; are three objective functions to be minimizedand nl are the number of
buses and lines in a networ&,; and C,,,, are respectively, the relative costs of a poaw f

(PF) measurement device and voltage magnitude mesasat (VMM) device normalized with
respect to a conventional unitary cost. Since geltmeasurement devices are treated as default
measurements, the cost of a power flow meter and/Mikter are assumed to be same in the
optimization process. Throughout the iterative psscthe location and the number of default
measurements are same for all algorithms usedismnwtbrk. Therefore, it would not affect the
cost function. However, different costs can alsabsgigned to power flow meters or to voltage

meters. In practice, the cost of a measuring dedepends on specific investment and

application scenarios?; and R, represents the binary decision vectors, if a mstpresent
in a line or at node then it becomes one or etsedtue is zeroV,"and J° are the actual bus

voltage magnitude and phase anglei'dfbus respectivelyV® and J*are the estimated bus

voltage magnitude and phase anglé"dbus respectively.

The quality of state estimation solution deteriesatlue to most of the measurements are
pseudo-measurements with high variances. But,ntb@improved by placing some additional
real meters with low variances. In this work, oplgwer flow meters and voltage magnitude

meters have been used for SE in distribution nédsvdeurthermore, branch current based state
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estimation (BC-DSSE) is used for estimation of eysstates where branch current magnitudes

and their phase angles are considered as sta&blesi40].

3.3Krill Herd Algorithm (KHA)

KHA is a new bio-inspired swarm intelligence aldgionn, which takes its inspiration from
the herding behavior of the krill swarms in seamghfior food in nature [84]. The fitness of each
krill individual depends on its distances from fbed position and the density of krill particles.
The movement of each krill within the search spgadesed on three actions:

a) Induced movement of krill individuals,
b) Foraging motion, and
c) Random diffusion.
3.3.1Lagrangian Model of theKHA
The Lagrangian model of the Krill herd algorithmam dimensional decision space can

be expressed as:
——=M;+F +D (36)

where m | is the induced motion of each krill individudt, is the foraging motion an@®, is the

random diffusion of the krill individuals.
3.3.1.1 Induced movement of Krill individuals
The direction of motion induced is expressed bydheffects: local effect, target effect

and repulsive effect. For each krill individual tivement can be expressed as:

M ™ =M ™ g, +w, Mo (3.7)
where
ai :ailocal +aitarget (3.8)

M ™*is the maximum induced speed, is the inertia weight and its value lies betweenl]],
a, direction of motion induced by" Kirill individual, a'*® is the local effect produced by the

neighbors andr'** is the target direction produced by the best Kilividual.
3.3.1.2 Foraging motion
The foraging motion of krill individual depends bmo parameters, one is food location

and the second one is previous food location. ®haging motion fori™ krill individual can be
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expressed as:

F=vip +w, Fi0|d (3.9)
Where
o =9+ (3.10)

wherev;, is the foraging speedy, is the inertia weight of the foraging motion liestween [0, 1],

@> is the food attractiveness agF* is the effect of the best fitness of tt# Krills.
3.3.1.3 Physical diffusion
It is a random process of the krill individualsitaprove the population diversity within

the search space. This motion can be expressed as,
D, =D™d (3.11)

where D™ is the maximum diffusion speed anddis the random directional vector, lies between
[-1, 1].
3.3.2 Movement processin KHA

Based on the above mentioned movements, the pusitibthei™ Krill individual in the

time intervalt to t + At can be expressed as:

L, (t+At) = L, (t) + At % (3.12)

At represents the time interval can be defined as:
r]V

A=C>(u -l (3.13)
i=1

wheren, is the number of variables arg] is a constant number between [0, 2] andl, are the

upper and lower limits of"™ Krill individuals.
3.3.3 Genetic operator

To improve the performance of KH algorithm genefperators are incorporated into the
algorithm. The genetic operators are crossovemaumgtion process which are derived from DE
algorithm.
3.3.3.1 Crossover

The crossover process is controlled by using ampeter called crossover probability

(Cp). The position of a krill can be modified, by irdeting each krill individuals with other. In
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this process, the position of thg™ component of thei™ Krill can be expressed as:
L :{Lm,j ifrand < C,
1]

L. ifrand =~ C,

]

(3.14)
C, = 02K, (3.15)

where mD{ 1,2,3,..i-1,i+1,.... N}, L. represents thej™ component of thei™ Krill

m,j
individual, C is the crossover probability artd; . is the best previously visited position of the
i"™ Krill individual.

3.3.3.2 Mutation

The mutation operation is controlled by a parametdied mutation probability N ).
The mutation process can be formulated as:

L _ Lbest,m +/U(Lp,m - I—q,m) rar]di,m = M p
m L ese

i,m

(3.16)

M, = 005K, . 617

where K, .. is the best previously visited position of tH# Krill individual and x is a number

lies between 0 and 1.
3.4 Proposed Hybrid PSO-KH algorithm

In all modern meta-heuristic algorithms, the batarmetween the intensification and
diversification plays a crucial role for better fmemance of the algorithms. Intensification refers
to a local search around the neighborhood of anmaptor near optimal solution and
diversification refers to the complete exploratminthe search space efficiently and effectively.
Exhaustive search or excessive diversificationgases the convergence time of the searching as
well as causing the solution to move around ther mgdimal solution. On the other hand
excessive exploitation causes the algorithm to itmapa local optima point and it may not reach
global optimal solution. Therefore, a proper batbetween the exploration and exploitation is
required to ensure faster convergence charactsristid good quality of solution.

The Kirill herd (KH) algorithm has proven its cagabito find the global regions in a

reasonable amount of time. However, it is seen thatconventional KH algorithm is not
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efficient in performing the local searches effeelyv Therefore, hybrid KH algorithm is proposed
to improve the local search capability of the Kigaalthm and also to achieve better balance
between the intensification and diversificationidgrthe searching process. In order to achieve
improvisation in local searching process, the Kgbathm is hybridized with the PSO algorithm
to get near global optimal solution.

Basically, PSO is a population based multi-poindlettonary algorithm. The searching
process in PSO starts with a population of pagithat move in a search space by following the
current optimum particles and changing their posgi and velocity to find the best particle
position. During its movement particles distributéormation among them to search for a good
area in search space. The local search capabildytlze neighborhood search ability provides
hybrid KH algorithm to search for good area of search space. These two features are added to
the hybrid KH algorithm to get near global optirsalution.

3.5 Proposed M ulti-Objective Hybrid PSO-KH algorithm

The simultaneous optimization of the multiple olies needs a compromised solution
because no solution can improve itself in one dbjeavithout worsening the other objectives. In
order to get a better compromised solution, nonidated sorting approach i.e., Pareto-
optimality principle has been adopted [88], [89]his principle states that, in a non-dominated
Pareto front all solutions are equally importaet ino solution is inferior to other. In multi-
objective optimization problem, the solution relies a set of solutions rather than a single
solution like single objective optimization problemin this work, non-dominated sorting
approach has been incorporated with hybrid PSO-KHbrder to achieve the best trade-offs
solution between the objective functions.

In this chapter, hybrid multi-objective PSO-KH alglom is proposed. In PSO-KH
algorithm, the Kirills individuals are ranked basedthe non-dominated sorting approach and to
get good spread in the Pareto optimal solutionwdnog distance operator has been used [88].
Both the strategies are described below:

3.5.1 Non-dominated sorting approach

For the meter placement problem three objectivestion have been considered to be

optimized, they are:i() the total configuration costi( average percentage error (APE) of bus

voltage magnitude andii) APE of voltage phase angle. Since the objectivections (), (ii)
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and (), (iii) are conflicting with one another, so a comprouhiselution has to be established to
find the best optimal solution. Therefore, non-deatéd sorting technique has been incorporated
in this optimization problem [88]. In multi-objee& case, each solution is compared with others
to check its dominating nature. For a solutihts be dominating other solutioffsf :

1) The solutiors™ is better than‘@ in all objectives.

2) The solution ¥ is strictly better than@ in at least one objective.

If any of the above condition is satisfied there #olution & is said to be dominated by
s,

3.5.2 Crowding distance

The crowding distance operator is used to find temsity of solutions that are
surrounding a particular solution [89].

From the above two definitions, it can be statex, th solutiond is said to be better than
another solution @ (krill individuals), if it has satisfied any oné the following criteria: (a) the
rank of solution ¥ has to be smaller than the solutiéf, r (b) if both the solutions belong to
same front (same rank), then the crowding distaricslution & has to be larger than that of
solution €.

The steps of the proposed algorithm are describddllaws:

Stepl. Initialization: initialize the parameterstio¢ algorithms

D™M™ W, w__,w_., ClandC2

Step 2. Fitness evaluation:
1) Randomly generate number of power flow meters drar tlocations for each krill
individuals in the population.
2) Evaluate the fitness functions using weighting apph for each krill individual.
3) Rank the evaluated population based on the non+dded sorting scheme.
4) Sort the population according to their fitness ealand calculate the best and worst
fitness value i.e. best and worst Krills amongpbpulation.
Step 3. Generate new Krills using PSO.
Step 4. For each Kirill individual calculate thédaving motions:
1) Induced motions
2) Foraging motions

3) Physical diffusions
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Step 5. Update the position of the Krill individsah the search space.

Step 6. Genetic operator: Apply crossover and nautatperator to the updated positions.

Step 7. Evaluate the objective functions basedhennew positions of the krill individuals and
sort them based on the non-dominated sorting scheme

Step 8. Calculate the current best and worst krill

Step 9. Repeat steps 3-8 for maximum generatioesti

Stepl10. Use fuzzy theory to find the best comprechsolution [24].
The initial value of the parameters used in theopsed algorithm is decided based on the

nature of the optimization problem. For unimodastctunctions smaller value for maximum

induced speedM ™) and inertia weight\W; ) is recommended and for multimodal case higher
values is recommended for better performance ofatherithm. The value ov ™ and w; is

considered as 0.025 and 0.9 respectively. The qthemmeters are decided based upon the

repeated trial of tests. In PSO, the appropriataevaf w,,, and w,,;, is 0.9 and 0.4 and the

values are independent to problems as recommengleday papers. The most appropriate
value of C1 and C2 (i.e. C1=C2) is 2 [86]-[87]. rRmpulation size of different values like
popsize =10, 20 and 50 have been tried. For the IEEE @&9dystem and Indian 85-bus system

there is no much variation in results for takingedent population sizesfopsize) is observed.
Finally, it is found that,popsize=20 is sufficient for getting near optimal valuéhelparameter

values are provided in Table 3.1.

After the initialization of the parameters and piosis of the Krill particles, the fithess
value of the Kirill is evaluated using weighting s@approach. The weighting sum method has
been used extensively for multi-objective optimiaat(MOO) to provide multiple solution points
by varying the weights consistently. The value @ights is significant relative to other weights
and also relative to its corresponding objectivaction value. It is also stated that if the weights
are representing the trade-off between the objedtinction (paired comparison method), then it
IS better to retain the original units of the olipes without transferring them between 0 and 1.
This approach only provides a basic approximatibrore’s preference function. Even if the
weights are acceptable a priori but the final sofutmay not reflect accurately the initial

preferences. Therefore, the decision maker habdose an appropriate combination of weights
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to reproduce a representative part of the optinaaket® front. The flow chart of the proposed
hybrid PSO-KH algorithm is shown in Figure 3.1.

Initialize the parameters of the algorithm and generate
random number of power flow meters for each
solution in the population

v

| Iter=0

>¢

Evaluate the objective functions Eqgs.(3.1)-(3.3) algong
with the constraints violation checking by using Eqgs
(3.4)-(3.5) for each individual in the population

v

Evaluate the fithess function using weighting approach
and sort the population according to their fitness value

|

Calculate the best and worst Krills among the
Iter=Iter+1 population

$ v

Generate new Krill particles using PSO

v

Calculate three motions for each Krill individual in the
population by using eq.(3.7)-(3.11)

Update the position of the Krill individual by using Eq.
(3.12)-(3.13)

v

Update the positions using genetic operator by using
eq. (3.14)-(3.17)

Is the criterion
Satisfied

Figure 3.1: Flow chart of the proposed multi-objeethybrid PSO-KH algorithm

38



Chapter 3 Optimal Allocation of Measurement Devices Using Hybrid PSO-KH algorithm

Each objective function represented in eq. (332)(and (3.3) are evaluated based upon
the initial position of the power flow meters fdt ehe Krill individuals using DSE algorithm.
The obtained fitness values are ranked using nomsdaied sorting technique. Then the best and
worst Krills are determined based upon the ovéitakkss value of each Krill. In order to achieve
better performance, the position of the Krills iirstfupdated using PSO discussed in Section 3.
After the first updation, KH algorithm is implemext to find the new updated position of the
Krill particles. During the evaluation of the fits® the constraints violation checking is also
carried out. For each Monte Carlo step, the redaiercentage error in bus voltage magnitude
and angle is determined at each bus. For a paticwimber of meters and their locations, if in
95% of the simulated cases, the relative errorltage and phase angle estimates are brought
down below the pre-specified thresholds, then #igesof the objective functions are determined
and stored. On the contrary, if in 95% of the cases estimation errors are not below the
specified thresholds, then for that particular mdteation a higher value of the objective
functions is assigned. So that in the next immedgeneration of the algorithm this particular
solution will be removed from the list because ohslominated sorting and crowding distance

approach. Then the above procedure is repeatddhmtonvergence is achieved.

3.6 Robust Optimal Meter Placement in Distribution Networks

The multi-objective hybrid PSO-KH algorithm is bdsen the fact that the selected
optimal solution of different alternatives in a @&an space is robust with respect to estimation
noise. In view of this, the meter placement probisformulated as multi-objective Pareto based
optimization problem. The most interesting applaatof the proposed approach is that a trade-
off solution between the relative errors in voltagagnitude and phase angle is established with
respect to the total cost of meters to achieve bastpromised solution between the cost and
state estimation accuracy. The hybrid PSO-KH algoriis applied to address the whole problem
of robustness of the DSE technique to obtain amapbtmeter placement that takes into account
different metrological characteristics of the meament devices, random load variations and
measurement uncertainties. This algorithm doesenamerate all feasible solutions due to the
computational complexity and is possible becausésoéfficient exploration and exploitation
capability. Therefore, this algorithm is able todithe near global optimal solution. Furthermore,

an overall optimization is performed in which eamdmbination of default meters and power
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flow meters under random load variations as weltoaglifferent metrological characteristic of
the real meters is reported. Additionally, it issebved that the maximum deviations in voltage
and phase angle estimates are significantly lothen the other algorithms used in this work for
comparison purpose.

The robustness of the proposed approach of medeeiplent is also tested in presence of
DGs in distribution network. In the simulation syudt is assumed that the DGs output is a
random variable following Gaussian distribution.eTtptimal location and number of meters in
presence of DGs under various operating scenarss bieen tested to find a robust meter
placement that can guarantee a desired level ofacy for state estimation.

3.7 Test and Simulation Conditions

To analyze the effectiveness of the proposed dlgurithe following test and simulation
conditions have been considered in MATLAB 2014biemment.

Branch current based state estimation (BC-DSSHEyi#hgn is used for the estimation of
system states [40]. For testing, the base casefllmads run to obtain the reference or true values
of the quantities to be measured. The uncertaihtth® measurements is obtained by adding
errors following the normal distribution to theeegnce values obtained from base case load flow
solution. In SE, four types of measurements witlfiecknt accuracies are considered such as:
substation measurements, real measurements, pegaurements (historical data) and virtual
measurements [75]. The measurement uncertainties cansidered based on maximum
percentage of error associated with the measuremé&he following conditions are considered
for the measurement uncertainties:

1) Substation Measurements: These measurements k@ dafault measurements because
these are already present in the substation. $ndhie voltage magnitude measurement meter and
one power flow meter are assumed to be preseheaubstation. The maximum error of 1% is
considered for substation measurements.

2) Real measurements: For real measurements powemfketers are used which measures
both real and reactive power in a line. Differerdgtralogical errors in real measurement devices
are considered such as 1%, 3% and 5% to observamipeect of metrological error on state

estimation accuracy and number of devices required.
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3) Pseudo-measurements: The accuracy of the pseudsurageents is relatively low
because it is derived from the historical load ddtaerefore, the maximum percentage error
considered for this is 50% [75].

4) Virtual-measurements: The zero injection busesmaogleled as virtual measurements
with low variance of 10 [94].

In this work, the stochastic nature of loads andegators are taken into consideration for
better visualization of the proposed technique fdb&nt network conditions are simulated by
considering the load demands and generator ouspstbahastic variables following the Gaussian
distribution around the mean values with prefixeahdard deviation. Additionally, Monte Carlo
algorithm is used to study the impacts of measuntmmcertainties on state estimation
performance. In order to consider the measuremeoértainties, Monte Carlo algorithm has
been used to generate 1000 number of differentarktatate from each network condition by
applying the instrument uncertainty to the measulagd. Thus, total number of cases considered
in this simulation is 100x1000.

Furthermore, the results obtained using varioushawt considered in this work is not
optimized with respect to the position of the vgétaneters. Because voltage meters is treated as
a default measurements available at the substatwh DG locations. Therefore, it is not
optimized but the power flow meters are consideredhe optimization process for better
estimation of system states. The power flow measengs are better as compared to only current
magnitude, voltage magnitude and pseudo-measursniantestimating the system states.
Moreover, in order to improve the accuracy of tiodtage phase angle, power flow meters are
appended in distribution network at appropriatatmns.

The test conditions assumed in this work are sumzet@as follows:

1) The number of operating conditions, NC= 100.

2) The standard deviation assumed for the NC operatamglitions is +10% of the base

value.

3) Number of Monte Carlo trials MC=1000

4) Metrological errors of measurement device: 1%, 3fbh %06 and

5) The total test cases of 100x1000 have been studied.

The number of power flow meters required and tpesitions in presence of DGs are also

investigated in this work. In the simulation stuthg location of DGs is kept fixed [97],[98] and
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it is assumed that the DGs output is a stochasti@ble following the Gaussian distribution with
prefixed standard deviation and moreover, all D&sgenerating real power to the network. The
impacts of DG on state estimation accuracy areepted in the next section. Moreover, the
results reported considering DG refer only to aipalar case and the impact of possible power
flow inversion has not been considered in this work

To validate the performance of the proposed hyB&D-KH algorithm, the results are
compared with some well known existing algorithnetsias conventional KH, PSO and NSGA-
I.
Table 3.1 Parameter values of KH, PSO and NSGAgbAthm

KHA PSO NSGA-II
Population size=20 Population size=P0 Populatiae=20
D™ (maximum diffusion speed) C1=2,C2=2 Crossover rate
[0.002 0.01] (P.)=0.8
c:U[o, 2] Wnax =0.9, w,;,=0.4 Mutation rate
(Mg)=0.02
v, (foraging speed)=0.02ris Maximum Maximum

generations=50 generations=50
w; (inertia of the foraging motion) =0.p - -

M "*=0,025m3 - -
Maximum generations=50

Table 3.2 DG installation bus and capacity

Test System Bus Numbef DG capacity in MW
(Base value)
IEEE 69-bus System 50 0.180
61 0.270
Practical Indian 85-bus 45 0.277
System 61 0.290

3.7.1 Fuzzy Set theory
Fuzzy set theory has been used to find best opswiation among all solution obtained
in an optimal Pareto-front [95]. The procedureigcdssed as follows:
* At first the maximum and minimum valwé each objective function is obtained.

* u is calculated for each objective function as
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1 Fi‘j - ijin
(- ) ijaX_Fi,i Fmin <F <[ M
HUL )= max min j i i
F™ ~F,
o F = ijax

1]

(3.18)
The membership function for each solution is calted using the equation given below:

N,
Z H.p
j=1
M N,

2, 2 Ha

==t (3.19)

whereM is the number of Pareto solutions (population)sizg, is the number of objectives. The

Hi =

best compromise solution is the one achieving tlagimum membership function.F ™ and

F™" are the maximum and minimum values of the objedtimctionF .

3.7.2 |EEE 69 bus system

In order to highlight the performance of the pragabslgorithm, IEEE 69-bus, 12.66kV
radial distribution network has been taken intocact. This system comprises of 69 buses and
68 lines, 48 loads and two DGs. The system loagrimétion and line parameters are given in
[99]. The total load of this system is 3.802MW d&h@92Mvar respectively. Furthermore, this
system includes 21 number of zero injection bu3ée real and reactive power injections at
these buses are considered as virtual measuremgntsigher accuracy level. In addition, there
are two real meters kept at the substation whielcalled as default measurements (one voltage
and one power flow meter), provided in Table 3.&tilbution system can be of 1, 2 or 3 phase.
But in this thesis only single phase balanced systeodel has been considered. Therefore,
feeder modeling and unbalanced load has not takerconsideration.

The obtained results using the proposed algoritane lbeen reported in Table 3.3 and the
optimal Pareto-front plots are shown in Figure 3323 and 3.4 under different operating
scenarios such as load variations, generator owgauitions and different metrological
characteristics of measurement devices. It is wodtiicing that, the total number of power flow
meters required is 5 using the proposed PSO-KHrighmo when the meter accuracy is

considered as 1%. But in case of KH, PSO and NSIG#hé total number of flow measurements
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required is 9, 8 and 5 respectively. The averadative percentage error in bus voltage
magnitude and phase angle is obtained as 0.0028%.4847% using PSO-KH whereas in case
of KH and PSO these are 0.0052%, 0.7837% and 009118731% respectively. Though same
number of meters is obtained for NSGA-Il and PSO-Bi the average relative percentage of
error obtained using NSGA-II is 0.0037% and 0.6278Btch is more as compared to PSO-KH.
The results shown in Table 3.3, are obtained afitia iteration of the iterative process i.e., at
the optimal Pareto-front. From the optimal Paretonf, the best compromised solution is
obtained using fuzzy theory [95]. The competitresults are shown in Table 3.3, which shows
the superiority of the proposed algorithm over otagsting algorithm and techniques considered
in this work. Furthermore, the minimum and maximuehative percentage errors in voltage
magnitude and angle estimates are also reportedable 3.3 for different methods. The

maximum deviations in voltage and angle estimated@und to be significantly lower than the

PSO, KH and NSGA-II algorithms.
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Figure 3.2(a): Optimal Pareto-front between ndlaf meters and-, for 1% error in

real measurements and 50% in pseudo-measurements.
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For meter accuracy of 3% and 5%, the optimal Pdretd between different objectives
has been shown in Figure 3.3 and 3.4. It can beroed from the figures that the number of

meters requirement is increased compare to previass i.e. when 1% accuracy of the meter

was considered. Moreover, the objectidesand F, values are also increased due to large error
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incorporated into real measurements i.e. in pod@v fmeasurements. From this, it can be
concluded that if the error in power flow measurategs more then it influences the estimation
accuracy of the state estimator and also on nuwibereter requirements. It is important to note
that both metrological errors and the locationh&f measurement devices significantly affecting
the accuracy of the state estimator. From the diguit is observed that even though the number
of meters are same but SE accuracies are diffeematuse the location of meters also influencing
the estimation accuracy. The obtained results gperted in Table 3.3 and the optimal Pareto-
front between objectives 2 and 3 is shown in Figuig It is noticed that the two objectives are

not conflicting with each other rather these ameatated. Therefore, the Pareto front curve is not

possible between the objectives andF,.

The result provided in Table 3.3 refers to aspasdistribution network i.e. when there
iIs no DG installed in the network. There are twsedation can be made by analyzing the
results provided in Table 3.3. The first one isttesaccuracy of the measurements decreases the
number of power flow meters have to be increasedbétter state estimation. The second one is
the performance of the proposed PSO-KH algorithrfoisid to be better due to its efficient
searching capability. The hybridization of PSO dfid algorithm brings a higher degree of
balance between the intensification and diverdibcaduring the search process. Therefore, a
new hybrid PSO-KH algorithm has been proposedHerdistribution state estimation in multi-
objective environment to solve the meter placenmoblem. The obtained results are also
compared with PSO, KH and NSGA-II algorithms to ahesuperiority of the proposed
algorithm.

Furthermore, the proposed methodology has also bgglied in active distribution
network. Two DGs of 0.270 MW and 0.180 MW are ifisthat nodes 50 and 61 and it is
assumed that both are injecting only real powah&network. Moreover, the results reported
considering DG refer only to a particular case bheeahe location of DGs is based on to achieve
minimum power loss and voltage deviations [97]. Tésults obtained in presence of DGs are
reported in Table 3.4. It is worth noticing thdte thumber of power flow meters requirement is
reduced as compared to the passive case and mordwvebjective functionfvalue is reduced
as compared to without DG case. The reason behititht the DG supplying power to the local
load connected to that bus. Therefore, the powawnlrby that load from the feeder section is

reduced i.e. the current in the lines get reduce.aAconsequence, the magnitude of error
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associated with the flow measurements will reddeethermore, the presence of DG provides
more real-time measurements and increases the dadoy level of the system which helps in
getting more accurate results.

From the location of the power flow meters showiable 3.4, it can be stated that, if the
flow meters are placed nearer to the sources atiteimain feeder, then much better results can
be expected than the meters at the laterals orafeay from sources. Therefore, in the
optimization process, some real meters like povasy fneters and voltage meters are kept at the
substation and DG location for further improvemardtate estimation accuracy.

Table 3.3: IEEE-69 bus system: optimal locationtlud power flow meters under different

loadings including metrological errors of the floveters

Max. Max.
No. of error in bus | errorin
Metrological | Algorithm Default location of flow flow Objective functions voltage bus
Errors Measurements meters(Line meters value magnitude | voltage
(node/line number) ) angle
number) Fy Fa Fs (%) (5)
(%)
Proposed 171 1,7,24,54,66 5 6 0.0028 0.4947 0.0381 5.7922
PSO-KH
KH 11 1,9,17,23,32,47, 9 10 0.0052 0.7837 0.0399 6.9994
56,61,63
1% PSO 11 1,18,28,37,56, 8 9 0.0112 1.8731 0.0475 7.9249
65,42, 49
NSGA-II 1/1 1,5,19,27,54 5 6 0.0037 0.62143 0.0772 .3092
Proposed 171 1,11,18,43,52 5 6 0.0053 0.9782 0.0417 5.9154
PSO-KH
KH 11 1,2,4,12,21,24, 9 10 0.0084 1.6767| 0.0479 7.8239
30,59,67
3% PSO 11 1,13,17,25,31,39, 11 12 0.0091 1.7990 0.0638 11.6239
45,51,59,64,65
NSGA-II 11 1,3,10,19,27,30, 12 13 0.0077 1.6130 0.0488 10.3332
32,4,45,49,54,65
Proposed 171 1,7,14,21,28, 9 10 0.0058 1.1491 0.0523 6.3172
PSO-KH 33,49,53,61
KH 11 1,5,11,30,35, 9 10 0.0102 1.9423 0.0927 9.671y
41,47,52,61
PSO 11 1,5,18,30,34,35,| 12 13 0.0109 2.8704 0.0838 12.7865
5% 44,47,50,56,63,67
NSGA-II 1/1 1,4,9,14,20,32,38 13 14 0.0075 1.7001 0.0776 12.4533
40,43,45,51,57,65]
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Table 3.4 IEEE 69 bus system: optimal location leé power flow meters under different

loadings including metrological errors of the floweters (with two DGs at bus no. 50 and 61)

Max. Max.
No. of error in error in
Metrological | Algorithm Default location of flow flow Objective functions bus bus
Errors Measurementy meters(Line number) | meters value voltage voltage
(nodelline magnitude| angle
number) = = Fs V) (5)
(%)
(%)
Proposed 1,50,61/1 1,49,52,59,67 5 8 0.0011 | 0.2653 0.0289 5.3122
PSO-KH
1% KH 1,50,61/1 1,27,34,37,51,62,67 7 10 0.0087 0.61230.0371 8.7895
PSO 1,50,61/1 1,13,24,30,34,49,67 7 10 0.0093 4.622 0.0421 8.0123
NSGA-II 1,50,61/1 1,9,18,29,51 5 8 0.0034 0.58R7 0569 9.4322
Proposed 1,50,61/1 1,29,41,53,66 5 8 0.0025 | 0.5386 0.0411 5.8923
PSO-KH
KH 1,50,61/: 1,29,32,33,41,61, 7 10 | 0.007: | 1.160« 0.056" 8.221:
PSO 1,50,61/1 1,14,41,43,44,51, 9 12 0.0060 1.0535 0.0422 9.1325
3% 56,62,67
NSGA-II 1,50,61/1 1,9,21,23,37,38,42, 9 12 | 0.0060| 1.0211 0.0612 9.1009
44,66
Proposed 1,50,61/1 1,3,17,25,34,42,50,63 8 11 | 0.0063 | 1.0587 0.0499 6.5122
PSO-KH
KH 1,50,61/1 1,4,22,36,47,54,61,64 8 11 0.0064 @706 0.0733 10.6567
PSO 1,50,61/1 1,2,5,24,29,33,34,41 10 13 | 0.0060( 1.9560 0.0645 12.2564
5% 43,63
NSGA-II 1,50,61/1 1,10,21,24,28,33, 11 14 0.0061 1.7509 0.0614 11.0011
34,36,46,49

3.7.3 Practical Indian 85-bus system

To demonstrate the effectiveness of the proposgdridim, in a large scale practical
distribution system, Indian 85-bus, 11kV radialtalmition network has been considered in this
study. The system comprises of 85 nodes and 84lhearwith two DG sources. The total load of
the system is 2.574MW and 2.622MVar respectivelyrtttermore, the total number of zero
injection buses it includes is 26. The network &oatl data for Indian 85 bus system are taken
from [100]. The parameters of the algorithms memawin Table 3.1 are also applicable for this
test system.

The results obtained using the proposed algoritasideen shown in Table 3.5. When 1%
error in power flow meter and 50% error in pseudmasurements are considered, the total
number of power flow meters required is 7 using pheposed PSO-KH algorithm whereas in
case of PSO, KH and NSGA-II, the total number awfl meters required is 8, 8 and 8
respectively. The respective objective functionsigas also provided in Table 3.5. Furthermore,
the optimal Pareto fronts between objective fumgibave been shown in Figure 3.5, 3.6 and 3.7
respectively, for different metrological errors thie power flow meters. From the results it is

observed that as the accuracy of the meter is asetde more number of real meters have to be
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placed to get better estimation performance becthesguality of the estimates decreases with
the increase in the error in measurements anddénisease in quality is significant with the
increase in error in the real measurements as aaapa the pseudo-measurements. Therefore,
more meters are needed to bring down the relatin@<ein voltage and phase angle estimates
below the pre-specified thresholds which is regbite Table 3.5. It is proven that the solution
obtained using hybrid PSO-KH is a near global optisolution.

The results obtained in presence of DGs at bus sudthand 61 are also shown in Table
3.6. It can also be visualized that the presenc®®$ impacts on accuracy of the estimated
quantities. It reduces the phase angle error bec&®G supplies power to the local loads
connected to that bus therefore, the power drawthbyload from the main feeder section is
reduced. In Table 3.6, the results obtained usiegptoposed hybrid PSO-KH algorithm has been
reported. From the Table 3.5 and 3.6, it is obskthat both the location and metrological error
of the measurement devices significantly affectimg state estimation accuracy. Therefore, it is
necessary to consider these items into accounsdora that the state variables comply within
predefined thresholds. A best compromised soluietween relative percentage error in voltage
magnitude and angle with the cost of meter is éstadal which is the main advantage of using
this Pareto based multi-objective optimization teghe.
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Table 3.5 Indian 85-bus system: Optimal locationtlod power flow meters under different
loadings including metrological errors of the floweters

Max. error Max.
No. of in bus error in
Metrological | Algorithm Default location of flow flow Objective functions voltage bus
Errors Measurementy  meters(Line meters value magnitude | voltage
(node/line number) V) angle
number) F F Fs (%) (5)
(%)
Proposed 171 1,13,18,26, 75 7 8 0.0385 | 1.1077 0.1853 51722
PSO-KH 79,84
KH 11 1,28,32,35,42,43 8 9 0.0390 | 1.2449 0.2891 6.33211
,60,68
PSO 11 1,8,15,32,48,56, 8 9 0.0387 | 1.2911 0.2786 6.6143
1% 70,71
NSGA-II 11 1,18,28,31,40,52 8 9 0.0390 | 1.2641 0.2399 7.8259
,64,70
Proposed 171 1,17,22,30,36,73 7 8 0.0438 | 1.3355 0.2347 55217
PSO-KH ,81
KH 11 1,28 ,42,52,58, 9 10 | 0.0430| 1.3255 0.4011 6.7162
73,78,81,84
PSO 11 1,20,34,40,54,58 8 9 0.0452 | 1.4298 0.3217 7.3192
3% ,71,81
NSGA-II 11 1,13,14,21,26,5(
,58,60,65,77 10 11 | 0.0431 | 1.1851 0.3019 9.8822
Proposed 171 1,16,21,24,33,69 8 9 0.0439 | 1.2855 0.2896 5.9407
PSO-KH 77,79
KH 11 1,9,19,24,37,53| 9 10 | 0.0467| 1.5213 0.3342 7.6721
63,67,74
PSO 11 1,6,23,32,68,70, 11 12 | 0.0468| 1.5478§ 0.3211 8.6434
5% 72,76,79,81,84
NSGA-II 11 1,20,28,38,40,41 10 11| 0.0459| 1.383f 0.2898 8.6315
,43,68,73,76

Table 3.6 Indian 85-bus system: Optimal locationtlod power flow meters under different
loadings including metrological errors of the floweters (with DGs at bus no. 45 and 61)

Max. Max.
Default No. of error in error in
Metrological | Measurements| Location of flow flow Objective functions bus bus
Errors (node/line meters(Line meters value voltage voltage
number) number) magnitude angle
Fi F Fs (V) (5)
(%)
(%)
1% 1,45,61/1 1,9,27,33,44 5 8 0.034f 1.0013 @162 5.1137
3% 1,45,61/1 1,9,34,51,79,81 6 9 0.041)1 1.1220 8121 5.377
5% 1,45,61/1 1,9,19,28,46,62,79 7 10 0.0419 1.2]1240.2214 5.5231
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Figure 3.5(a): Optimal Pareto-front between ndlaf meters andr, for 1% error in

real measurements and 50% in pseudo-measurements.
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Figure 3.5(b): Optimal Pareto-front between ndl@# meters and-, for 1% error in

real measurements and 50% in pseudo-measurements.
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measurements and 50% in pseudo-measurements.
3.8 Summary

This chapter proposed a multi-objective optimizatimethodology that optimizes the
number and location of measurement devices foe sistimation in distribution networks. A new
hybrid PSO-KH optimization algorithm has been prsgmb which considers variation in load
power demand as well as the uncertainty of the oreasent devices using Monte Carlo
algorithm. A trade-off solution between the relaterrors in voltage and phase angle estimates is
established with the total cost of meters in a Rulifective framework to achieve best
compromised solution between the cost and statmasin errors. Furthermore, the impacts of
DG on state estimation accuracy have also beenstied.

The proposed hybrid PSO-KH algorithm is testedBEE 69-bus system and Indian 85-
bus distribution network. The competitive resulistained using the proposed algorithm is
compared with the existing algorithm such as PS8,a0d NSGA-II algorithm under various
operating scenarios of the distribution networksislverified that the proposed algorithm is
reliable and robust with respect to different mieigecal characteristics of the devices and load
variation. Moreover, it can guarantee in gettingbgl optimal solution. Therefore, the proposed

approach of meter placement technique can be usedhé planning study of the Smart
distribution networks.
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Chapter 4

A Multi-Objective Hybrid Estimation of Distribution Algorithm-
Interior Point Method based Meter Placement for Disribution
System State Estimation

4.1 Introduction

This chapter proposed a new multi-objective hybEdtimation of distribution
algorithm (EDA)-interior point method (IPM) algdmih to obtain the optimal location of
power flow meters for state estimation in distribntnetworks. The objective functions to be
minimized are, i} the total configuration cost of the distributioetwork, (i) the average
relative percentage error (APE) of bus voltage ntaga and ifji) APE of bus voltage angle.
As the objectives are conflicting in nature, a molijective hybrid Pareto-based non-
dominated sorting EDA-IPM algorithm has been pregosMoreover, due to poor
exploitation capability of the EDA, it is hybrididewith IPM to improve its local searching
ability in the search space. The hybridization @AEand IPM brings a higher degree of
balance between the exploration and exploitatigralgity of the algorithm during the search
process. Furthermore, the loads and generatorsitoatp treated as stochastic variable and
the impact of different type of DGs on state estiom performance has also been
investigated. The efficiency of the proposed aloni is tested on IEEE 69-bus system and
Practical Indian 85-bus radial distribution netwoile obtained results are compared with
conventional EDA, PSO and NSGA-II.

4.2 Problem Formulation

The proposed multi-objective based meter placemgtimization problem considered
three objective functions to minimize: (1) the totast of meters (2) the average relative
percentage error (APE) of bus voltage magnitude @)dAPE of voltage angle. From the
observation it is found that the above three objestare conflicting in nature because if more
number of meter are placed then estimation errdigyet reduce and vice-versa. Therefore,
the concept of optimal Pareto front and fast nomidated sorting approach have been
incorporated in this multi-objective optimizatiorroplem to find the best compromised
solution [88]-[89].
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The objectives to be minimized are described devi!
nl n

Fy :ZCpf,i' Pui +ZC\/MM,i' R (4.1)
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Subjected to constraints: The constraints impaesdribe in Eq. (4.4)-(4.5) considers for 95

% of the simulated cases [54]-[56] and is expressed
(VA YA

a
i

x100< 1 (4.4)

5t -5

x100< 5 (4.5)

where F;, F, and F, represents three objective functionsand nl are the number of nodes
and lines in a distribution networky is the number of operating scenarlog, and C,,

indicates the relative cost of power flow and vp#tanagnitude meter respectively. The cost
of these meters is normalized to unity.

In the optimization process, the cost value assigoeboth power flow meter and
VMM are supposed to be equal because VMM are cersibto be as default measurements.
In this chapter, the location and number of VMM #&aken as same for all optimization
algorithm considered. Different cost values carabgumed for both the meters. But in actual
practice, the cost of a measuring instrument dependspecific application scenarios. In the

above equationP, and R,, represents the binary decision variables i.e. iheter is

situated in a bus or lines then its value becoones else its value will be treated as zere,
and 67 indicates the actual voltage magnitude and phagke arfi™ bus. Similarly,V.* and

5:5‘ are denoted as estimated voltage magnitude and ahig! bus respectively.

The performance of state estimator deterioratedatiee presence of more number of
pseudo-measurements with high variances. But, #donmance can be improved by
deploying additional real meters at suitable lanai In this chapter, the optimal number of
VMM and power flow meters has been considered toe tlesign of measurement

infrastructure of an active distribution system.r Btate estimation, branch current based
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distribution system state estimation (BC-DSSE) algm is used for estimating the states of
the system such as branch current magnitudes amdatigles [40]. The next section of this
chapter describes the solution methodology for Himve proposed multi-objective
optimization problem.
4.3 Solution Methodology

For the solution of the multi-objective optimizatiproblem, a new hybrid EDA-IPM
algorithm has been proposed in this chapter. Toezefn this section, a brief introduction to

traditional EDA and Interior point method (IPM) hasen presented as follows.
4.3.1 Estimation of Distribution Algorithm (EDA)

The EDA is a population based evolutionary optimaaalgorithm which employs a
probabilistic model to generate new individuals ftbhe next generation [90]-[91]. It has
efficient diversification capability to explore tlsearch space to achieve prominent solutions
for the optimization problem. In EDA, new solutioage generated without using crossover
and mutation operators like in genetic algorithnAJGA probabilistic model is estimated in
order to sample the new individuals from the dadabeontaining previous generation data
and some selected population. The movement ofiedolidual in the population is predicted
by the probability model used in EDA. The pseuddecof EDA is described as follows:

Begin

1. Initialization: Generate Rinitial population randomly within limits.

While termination criteria not met Do

2. Evaluation: Calculate the fitness value of R individuals.

3. Selection: By using any selection method select N<R individuals.

4. Probabilistic model: Estimate the probability p(x) that an individual being

among the selected popul ation.

5. Sampling: Sample Rindividuals from p,(x) using sampling technique.

End while

End
4.3.2Interior Point Method (IPM)

The primal dual IPM is basically used to solve fhioear constraint optimization
problem [92]-[93]. The Lagrange multipliers are doyed to deal with the equality and
inequality constraints of the optimization probldmorder to avoid the negativity conditions

of the slack variables the logarithmic barrier fuioies are added to the objective function. In
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this method, the decision variables are considerdze continuous. The non-linear constraint
optimization problem can be transformed to unceaimstr optimization problem of the
following Lagrange function:

L@z, y.l,u,v,w) = F(X) =vT (X=1 = Xpay) = Y 9(X)

FWOXHU= Xingy) =Y (IN1; +Inu;) (46)

whereu andl are the slack variableg, v andw are the Lagrange multipliers; and the barrier
parameter is represented by

In order to satisfy the Karush-Kuhn-Tucker (KKT)nclitions, first order derivatives
of a set of non-linear algebraic equations havenbieemed and then Newton-Raphson
method is employed to solve the above first ordéfer@ntial equations [92]. During the
iterative procedure of the IPM, if the KKT condit® shown below are satisfied then the

algorithm will stop. The KKT conditions are des@&tbas follows:

L] =”Df (x)—DgT(x)y—v+V\,ﬂ <€ 4.7)
Lyl =lot) <& (4.8)
Il =[x +u=xu] <& (4.9)
L= x=1=Xu|< € (4.10)

According to primal-dual theoryx is the primal variablel, andu is the slack variablg, v

andw are the dual variables respectively. The equati@n®)-(4.10) are called the primal
feasible conditions and eq. (4.7) is known as @easible conditions. If the solution satisfies
the above conditions then it is an optimal solufmmthe optimization problem.
4.3.3Proposed Multi-objective Hybrid EDA-IPM algorithm

In this work, the meter placement problem is forawed as multi-objective
optimization problem. The main advantage of usimg approach is, a best compromised
solution can be established between the variousctigs described in section 2.
Simultaneously, the impacts of meter location oatestestimation accuracy can be
investigated. Therefore, a trade-off solution iseedial between the objectives to reduce the
cost and state estimation error. In order to a&hiegst compromised solution among the
objectives, hybrid EDA-IPM algorithm has been prega. The reason for this hybridization
of two algorithms is described as follows.

EDA has been used widely in variety of engineerapplications because of its
efficient exploration capability in the search spaélthough, EDA has good exploration

ability but it suffers from poor exploitation capidly to get global optimal solution. However,
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the local searching capability of IPM algorithmmiere effective. Therefore, the conventional
EDA is hybridized with IPM to enhance the expladat capability of the algorithm to get
near global optimal solutions. The solution obtdifrem EDA is taken as inputs to IPM.

In multi-objective optimization case if objectivanictions are conflicting in nature,
then no solution can be improved itself in one oliye without worsening the other
objectives. Since the objectives are conflictingn4lominated sorting principle has been
incorporated to get the best optimal Pareto fr@#].[ All solutions in a non-dominated
Pareto front are treated as best optimal solufitwis, in this approach, the solution is not a
single optimal solution like single objective opimation case rather it is a set of optimal
solution. In this chapter, non-dominated sortipgraach has been employed with hybrid
EDA-IPM algorithm to achieve best trade-off solutibetween different objectives such as
cost, ARPE in voltage magnitude and phase angle.

In the proposed algorithm, initially solutions agenerated randomly using seeding
approach within the search space. Each solutioresepts number of power flow meters as
well as their locations. Based on their locatiohse bbjective functions [Eq. (1)-(3)] are
evaluated using BC-DSSE algorithm [40]. Then, telection mechanism has been used to
select some of the best solutions obtained solfagse selected solutions are updated using
IPM algorithm to obtain best neighborhood solutidfiter updating the selected solutions,
probabilistic Bayesian model has been incorporatedredict the new solutions for future
generation based on the selected solution. Aftatuating the fitness, constraints violation
checking has been carried out. To satisfy the caimés, Monte Carlo simulation is used and
relative deviations in voltage magnitude and angldetermined at each bus for all Monte
Carlo trials. In 95% of cases, if the relative esrare within the pre-specified limits, then that
solution is stored for the next generation. On ttieer hand, if it is not, then a higher
objective value is to be assigned to that solusiorthat this solution can be eliminated from
the next generation. After that sampling techniiguatilized. Then, this procedure is repeated
till the convergence criterion is met. To get thestosolution in optimal Pareto front, fuzzy
theory [95] has been used.

In the optimization process different populatiomesiike 20, 30 and 50 have been
tried. But, it has been found that there is no ssigmificant variation in result for taking
different population sizes for both the test systé&mmerefore, population size of 20 has been
fixed for evaluating the performance of the propbgptimization algorithm. The flowchart of
the proposed method has been shown in Figure 4uthdfmore, the pseudo code of the
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proposed multi-objective hybrid EDA-IPM algorithrasibeen presented as follows:

Initialize algorithm parameters and generate random
number of power flow meters and their locationain
distribution network for each individual in the pdgtion

Evaluate the objective functions Eq.(1)-(3) aldng
with the constrains violation checking by using
Eqg. (4)-(5) for each individual in the population

Y

SelectN individuals less than the population siE (
of the solution set using Non-dominated selectioategy

—] i=1 ]
L2
For each selected individuiahpply IPM toj
find the best neighborhood solution)y(

v

Evaluate the fitness functions Eq. (1)-(B)
along with the constraints Eq. (4)-(5) us|ng
weighting approach

| iter = iter+1 |

i =i+1

itness (Y()) < fitness( xi)

No
Updation

>

Update the solutid
x(i)=y(i)

|
—
Y
Estimate probability distribution of the previou

and selected solution to generate new solutiorgysin
Gaussian Bayesian network (Eqg. 11)

V)

Use sampling technique to sample
solutions (Gaussian UnivModel)

S maximu
generation

reached
?

Figure 4.1: Flowchart of the proposed multi-objpeehybrid EDA-IPM algorithm
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The steps of the proposed algorithm are as follows:
Stepl. Initialization: Generate random number ofig@oflow meters and their locations for
each individual in the populatioRgp).
Do while (“Stopping criterion is not satisfied”)
Step 2. Fitness evaluation: Evaluate the fitnesstfans for each individual in tHeop.
Step 3. Selection: Seledi<R solutions fromPop using Non-dominated sorting selection
strategyR is the size of the population ahds a number less thdh
Begin
Do while (“Stopping criterion is not satisfied”)
For i = 1: s, (Number of selected solutions.)
1. Use each solutionas initial point in IPM to find the best optimallston for each.
2. Evaluation: Calculate fitness value gf) using weighting approach.
3. Update solution:
if Fitness(y(i)) < Fitness(x(i))
& & if solution y dominates x
then x(i) = y(i)
End for i
End Do

End
Step 4. Probabilistic graphical model: Estimate pinebability distribution of the previous

solutions and selected solution to predict new faifmn for the next generation using

Gaussian Bayesian network. Mathematically, it camxpressed as:

PO |pa(X; ) = N+ D wy (% = 44),v7)
X;OPa(X;) (411)

where y, represents the mean of the variahlg, is the standard deviation of the
distribution andw; is the weight associated with each of the parents the value of
the variableX ; in pa(X;).

Step 5. Sampling technique: Samenumber of solutions from the Gaussian Bayesian
network using sample Gaussian UnivModel.
End Do
End
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4.4 Test and Simulation Conditions

To analyze the efficiency of the proposed statamegion formulation and algorithm,
several test conditions and network operating stendave been considered in MATLAB
2014b environment. For state estimation in radetlmork, BC-DSSE algorithm has been
employed. In BC-DSSE, the magnitude of branch ciisrand their angles are treated as state
variables [40]. In order to generate the measurémata for state estimation, first backward
forward sweep method has been used to obtain the flow solution of a distribution
network. This load flow solution is treated as th&erence or actual values of the measured
guantities. Then, the measurement data is genebgtetiding random noise following the
Gaussian distribution to the actual values of tlangties obtained from the load flow
solution. Mainly, there are four types of measunentiata are considered for state estimation
such as: substation measurements, real measurenpseisdo-measurements and virtual
measurements [75]. The error associated with egmhdf measurement data is based on the
maximum percentage of error assumed for that meammnt. The following conditions are
considered for the measurement uncertainties:

1) Substation Measurements: In this work, it is assithat the maximum percentage of
error associated with substation measurement isTI#. measurement is called as
default measurement.

2) Real measurements: Generally, the real measurerasntsiore accurate. Therefore,
the maximum error assumed for this is 1%, 3% and B power flow meters are
assumed as real meters and it measures both ceegdactive power flows in a line.

3) Pseudo-measurements: Basically, the pseudo-measnt®rmare obtained from the
historical customer load data. Therefore, thesesoreanents are less accurate than
other types of measurements. The maximum percewntfageor assumed for pseudo-
measurements is 50% [75].

4) Virtual-measurements: The virtual measurementobtained from the zero-injection
buses and these measurements are highly accueateother measurements with a
variance value of 10[94].

Furthermore, the load and generators are considerexiochastic variable to analyze
the performance of the proposed meter placemenenseh Different measurement
uncertainties for better analysis of the propogetinique have been considered. In simulation
study, it is considered that the load and generatiputs are stochastic in nature and it is

assumed to be distributed normally around the medne with fixed standard deviation.
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Moreover, the Monte Carlo trials have been utilizedstudy the effects of measurement
uncertainties on state estimation performance. &laee 100 number of different network
operating conditions are generated. From eachanktaperating condition, 600 number of
different network states are generated by using tMdDarlo simulation. Thus, in this
simulation study, the total number of network scEsaconsidered is 100x600. A standard
deviation of +10% around the base value has besanmesd for each operating condition.
Different measurement uncertainties considered réal meters are 1%, 3% and 5%
respectively.

The number of meters required and their locationsrésence of different type of DG
has also been investigated in this chapter. Momeatves assumed that the locations of DGs
are fixed [97], [98] and their output is a stoci@sh nature. Various types of network
scenarios such as meter placement impacts on paasiwell as active distribution networks
have been considered. Further, the active netwankists of DG only producing real power
to the networks, DG producing real power as wellabsorbing reactive power, and DG
producing both real power as well as reactive pdwéie network. Since, the DG outputs are
not controlled in this case so these belong todispatchable type. In presence of these kinds
of DGs, the meter placement impact on state estmatccuracy in a multi-objective
environment has been discussed in this work. Tpestpf DG and their capacity are provided
in Table 4.2.

The parameters used for PSO, NSGA-II and EDA apgiged in Table 4.1. In PSO,

the parameters used are inertia weighit( ,W,;,) and the learning factoS1 andC2. The

value of inertia weight decides the balance betwegroration and exploitation capability of
the PSO algorithm. It is found that the best penfamce is obtained by setting initially to
some relatively high value (e.g. 0.9) to perfornteesive exploration in the search space.
Whenw is reduced gradually to a lower value (e.g. Gl9,system becomes more dissipative
and exploitative. This will improve the local seairg capability of the algorithm. Therefore,
the appropriate values ofv,,and w,;,, chosen is 0.9 and 0.4 respectively [86]-[87].
Furthermore, the paramet€fl andC2 represents the speed of flying of particles torttwest
optimize position of the swarm in the search sgaw® its own best position. It regulates the
length and time taken by particle to reach mosinoh position. So that, the particle land in
an appropriate position. For example if too bigadue of acceleration constants is selected,
then the particle may fly past the appropriatesitomn and for too small value, the particle

will not be able to reach the target position. Galy, each of these constants are set to 2 to
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make the times taken to move towards the partigetrsonal best and swarm’s global best as
equal.
Table 4.1 Parameter values of PSO, NSGA-Il and BRjarithm

Population size=20, C1=2,C2=2

PSO Wiax =0.9W,,;, =0.4

Maximum number of generations=50,

Population size=20

NSGA-Il | Crossover rate r=0.8, Mutation rate

(M¢) =0.02, Maximum number of generations=50

Population size: 20

Learning method : Learn Gaussian Bayesian Model,
Sampling method: Sample Gaussian Universal Model
EDA Replacement method: Pareto Rank ordering
Selection method : Non-Dominated selection
Repairing method: Set In Bounds repairing

Table 4.2 Distribution generation (DG) installatioms and capacity

DG type and capacity( in MW) Base Value
Test System Bus Type-1 Type-2 Type-3
Number| (P) (P-iQ) (P+Q)
IEEE 69-bus 50 0.180 | 0.180-j0.087 0.180+j0.087
System 61 0.270 | 0.270-j0.13( 0.270+j0.130
Indian 85- Bus 45 0.277 | 0.235-j0.145% 0.235+j0.145
System 61 0.290 | 0.246-j0.152 0.246+j0.152

4.4.1 |EEE 69 Bus System

The performance of the proposed algorithm has l@esstigated on standard IEEE
69-bus, 12.66kV radial distribution network. Thestwork consists of 69 buses, 68 lines along
with 48 loads and DGs at bus number 50 and 61sysem line and load data are taken from
[99].The total load of the system is 3.802MW an@92Mvar respectively. In this system,
there are 21 number of zero injection buses. Tihiali measurements are obtained from
these zero injection buses. One VMM and a powaev fleeter are kept at the substation which
is treated as default meters.

From the simulation result it is observed that whiee meter accuracy is 1%, the
number of flow meter needed is 5 using the propdsduid EDA-IPM algorithm. On the
other hand the number of power flow meters requised, 9 and 7 using EDA, PSO and
NSGA-II respectively. In Table 4.3, the APE of \age magnitude and phase angle are
specified. It is observed that APE of voltage magie and angle using proposed hybrid
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EDA-IPM algorithm is 0.0025% and 0.4821%. In cas&DA and PSO these are 0.0081%,
1.3421% and 0.0053%, 0.8985% and using NSGA-H @.0060% and 0.9352% respectively.
The optimal Pareto front of all the algorithms®wn in Figure 4.2 when the meter accuracy
is 1%. Among all the solution in the Pareto frote best optimal solution is selected by
using fuzzy theory [95]. Moreover, the maximum tek percentage error using different

methods in voltage and angle estimates are alsemied in Table 4.3. It is worth noticing

that the maximum deviations in state variablesgidiie proposed algorithm are significantly

lower than using PSO, EDA and NSGA-II.

The optimal Pareto-front for meter accuracy of 3%d &% between different

objectives has also been shown in Figure 4.3 a#dld.this case the objectives, and F,

values are little higher than 1% case because reeter considered is higher than 1%. It is
observed that if the errors are more in direct mesmsents then its impacts on the state
estimation accuracy is significant and also metegsiirement is more. Moreover, it is worth
noticing that the impact of measurement uncertsnéind meter locations on state estimator
performance is more significant. In Table 4.3 sitseen that, for EDA, the total number of

power flow meters required is 7. Figure 4.2 showes dptimal Pareto-front betweds, and
F;. It is observed thaE, and F; are correlated to each other. Thus, the optimadtBas not

established between the two objectives.

The results shown in Table 4.3 refer to a passistiloution network. From these two
observations can be made, first as the accuratyeometers decreases the number of power
flow meters needed is more for better state esimaterformance. Secondly, the efficiency
of the proposed hybrid EDA-IPM algorithm is foura lde better due to its higher degree of
balance between the exploration and exploitatigralodity. This results in efficient searching
ability of the proposed algorithm in the searchcgpd hus, a new hybrid EDA-IPM algorithm
has been employed for the distribution state esiimain multi-objective framework to
resolve the meter placement issues. The resulgsnalot using PSO, EDA and NSGA-II are
compared with the proposed algorithm to test hi&s efficiency.

Furthermore, the proposed methodology has also teséed in presence of DG. There
are different kinds of DG considered are providedTable 4.2. Two DGs of type 1 are
installed at bus number 50 and 61. To get mininpower loss and voltage deviation, the
two DGs are placed at these buses. The obtainedtseme provided in Table 4.4. It is
observed that, there is a reduction in number afgsdlow meter requirement as compared to

passive case. The phase angle error is also redlibedeason is, DG provides power to the
70



Chapter 4  Optimal Allocation of Measurement Bes using Hybrid EDA-IPM Algorithm

local bus. Therefore, the real power drawn by tbadl from the feeder section is reduced i.e.
the magnitude of current in the lines will go dowks a result, the magnitude of error
associated with power flow measurements will gdtioe. Moreover, due to the presence of
DGs, the redundancy level of measurement is ineceadiich helps to improve the accuracy
of the estimator to a further extent. The presaridgpe 2 and 3 DG has been studied and the
results obtained are provided in Table 4.5. Ithsavved that, in all the cases, the proposed
algorithm outperforms all other algorithms usedcése of type 2 and 3 DGs, it is assumed
that the DGs are generating both real and reagiweer to the network. In one case DG

supplying reactive power and in other case it sodhing reactive power from the network.
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Figure 4.4(b) Optimal Pareto front between numlidioav meters and £(5% error in real
and 50% in pseudo-measurements)

Table 4.3 IEEE 69-bus system: The number and lomcatf the power flow meters of

different meter accuracy (without DG)

Maximum Maximum
Number Objective functions value error in bus | error in bus
Metrological | Algorithm location of flow of flow voltage voltage
Errors meters(Line number) | meters magnitude angle
Fi | o | Fs & ()
(%)
Proposed 1,7,24,3,51 5 6 0.0024 0.4821 0.0201 5.213)
EDA-IPM
EDA 1,11,17,23,41,47,56 7 8 0.0081 1.3421 0.031§ 978
PSO 1,10,21,27,30,32,33, 9 10 0.0053 0.8985 0.0375 8.4249
1% 49,67
NSGA-II 1,5,17,20,25,56,67 7 8 0.0060 0.9352 0.0272 9.2313
Proposed 1,11,19,43,52 5 6 0.0051 0.9657 0.0317 5.7321
EDA-IPM
EDA 1,9,17,23,29,36,44,57 8 0.0072 1.2950 0.047% 7.9238
2% PSO 1,4,37,39,44,49,54586 9 10 0.0102 1.9119 0.0338 10.789¢
0 8
NSGA-II 1,3,4,14,17,21,43,47, 13 14 0.0063 1.3083 0.0434 9.9812
48,53,57,61,63
Proposed | 1,7,14,19,28,33,47,53,6 9 10 0.0056 1.1273 0.0513 6.2379
EDA-IPM | 1
EDA 1,11,19,26,33,39,44, 12 13 0.0055 1.1289 0.07543 9.3417
47,53,57,61,65
PSO 1,2,11,17,18,28,32, 14 15 0.0074 1.7642 0.0538 13.2314
5% 40,45,47,51,57,66,67
NSGA-II 1,4,13,14,16,25,30,3, 12 13 0.0078 1.7876 0.0673 12.2324
45,56,63,66
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Table 4.4 IEEE 69-bus system: The number and lmcatf the power flow meters of

Optimal Allocation of Measurement Des using Hybrid EDA-IPM Algorithm

different meter accuracy (Type 1 DG at bus 50 &al)d 6

Maximum Maximum
Number Objective functions error in bus | error in bus
Metrological Algorithm location of flow of flow value voltage voltage angle
Errors meters(line number) meters magnitude (5)
Fo| F2 Fs V) 0
(%) (%)
Proposed 1,49,52,60,68 5 8 0.0018 0.3125 0.0130 5.2983
EDA-IPM
1% EDA 1,28,33,37,51,62 6 9 0.0068  1.1021 0.020Q %193
PSO 1,13,24,27,30,33,49,6 8 11 0.0047 0.7985 0.034 7.9243
NSGA-II 1,7,19,29,34,59,67 7 1 0.0062  0.81%2 08027 9.2713
Proposed 1,19,23,29,53 5 8 0.0043  0.8357 0.0204 6.0125
EDA-IPM
EDA 1,5,11,19,24,33,41, 7 10 | 0.0068| 1.1027 0.0321 10.2773
44,49,51,65,67
3% PSO 1,7,17,39,41, 9 12 | 0.0110| 1.3411 0.0438 10.1324
49,57,59,63
NSGA-II 1,5,9,15,19,28, 11 14 | 0.0049| 1.0830 0.0374 9.1119
49,57,59,61,63
Proposed 1,3,17,24,33, 9 12 | 0.0051| 1.1122 0.0230 6.9124
EDA-IPM 41,50,63
EDA 1,4,24,36,47, 11 14 | 0.0049| 1.1113 0.0319 10.0087
54,63,64,67
5% PSO 1,7,15,17,26,37,43,44 14 17 | 0.0072| 1.0642 0.0317 13.9342
49,51,58,62,65
NSGA-II 1,6,9,11,15,20,22, 11 14 | 0.0120| 1.1834 0.0713 11.9807
41,54,63,65
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Table 4.5 IEEE 69-bus systeiithe number and location of the power flow metergresence
of type 2 and 3 DGs at bus 50 and 61

Measurement] Objective functions Maximum | Maximum
error Location of flow Number value error in error
DG Algorithm meters(Line number) of bus in bus
Type power voltage voltage
flow = Fs Fs magnitude|  angle
meters V) (9)
(%) (%)
Proposed 1,5,24,37,42 5 8| 0.0069 1.1807 0.0291 5.8912
EDA-
Type 2 IPM
(P-iQ) EDA 1,4,14,61,65,66 6 9 0.0086  1.6091 0.031¢4 6.3782
PSO 1,2,4,14,28,43,51,68 8 11 0.0098 1.8856 0.0377 6.8123
1% NSGA-II 1,5,30,39,44,58 6 9 0.0097 1.8651 0.0299 9987
Proposed 1,11,32,45,51 5 8 0.0067 0.9864 0.0326 5.6734
EDA-
Type 3 IPM
(P+Q) EDA 1,13,34,49,51,52,60 7 10  0.0096 1.5240 0.0541 342
PSO 1,8,9,25,35,45,49,55 8 11 0.0098 1.4713 0.04P1 6.4532
NSGA-II 1,11,32,50,51,54,60 7 10 0.0106 1.6617 0306 6.2459
Proposed 1,3,5,18,19,21,25,26,51 9 10 0.00643 1.3490 0.0328 5.9978
EDA-
Type 2 IPM
(P-iQ) EDA 1,6,20,28,32,35,40,45,48 12 13| 0.0071| 1.5294 0.0537 6.897(
63,65,68
PSO 1,4,15,21,24,31,33,36,44, 12 13| 0.0073| 1.596¢ 0.0768 6.984¢
47,51,66
3%
NSGA-II 1,3,15,20,22,27,28,29,32 14 15| 0.0073| 1.838¢ 0.0712 6.8874
38,42,43,62,65
Proposed 1,12,33,42,50 5 6 0.0067  1.1509 0.0311 6.0125
EDA-
Type 3 IPM
(P+Q) EDA 1,8,14,32,36,41,60,68 8 11 0.0063 1.2030 0.0527 7.1112
PSO 1,7,11,17,22,28,30,33, 13 16 | 0.0075| 1.448¢4 0.0492 6.9864
49,51,61,65,67
NSGA-II 1,3,22,23,41,47,65,67, 9 12 | 0.0077| 1.3544 0.0512 6.8823
68
Proposed 1,2,4,11,14,33,43,44, 13 16 | 0.0065| 1.6044 0.04351 6.3724
EDA- 46,51,65,66,68
Type 2 IPM
(P-iQ) EDA 1,6,9,16,18,26,28,40,43, 15 18 | 0.0063| 1.4943 0.0543 7.0103
49,50,60,61,65,68
PSO 1,17,25,31,33,34,35,37, 14 17 | 0.0081| 1.8434 0.0612 7.8717
42,44,49,55,62,66
NSGA-Il | 1,5,7,17,18,23,26,29,36,37, 15 18 | 0.0071| 1.7004 0.0666 8.0129
5% 38,40,41,45,67
Proposed 1,12,13,23,25,26,39,50, 10 13| 0.0071| 1.329§ 0.0626 6.8934
EDA- 56,64
Type 3 IPM
(P+Q) EDA 1,13,14,22,23,26,30,36,40, 12 15| 0.0066| 1.3544 0.0666 9.0127
41,62,65
PSO 1,5,8,19,21,22,23,25,29,34, 15 18 | 0.0083| 1.662§ 0.0686 8.9997
40,43,54,63,68
NSGA-II 1,6,11,14,21,37,47,50,67 9 12 0.0100 1.83460.0712 9.0128

4.4.2 Practical Indian 85-bus System

To investigate the performance of the proposedriigo, in practical distribution
network, Indian 85-bus, 11kV radial distributionsegm has been taken into consideration.

This system consists of 85 nodes and 84 numbelised. The total load of the system is
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2.574MW and 2.622MVAr respectively. This systemdiets of 21 zero injection buses. The
network line and load data are obtained from [1@®]rthermore, the parameters of the
algorithms specified in Table 4.1, can also beiapple for this test system.

The results obtained for this system have beenrteghan Table 4.6. It is seen that
when meter error is 1% and pseudo-measurementigrb0fb, the number of meters required
is 7 by using proposed hybrid EDA-IPM algorithm wess in case of PSO, EDA and NSGA-
II, the number of meters required is 8, 8 and Yeesvely. The corresponding objective
functions value is also provided in Table 4.6. Tdmimal Pareto front curve between the
objectives has been shown in Figure 4.5, 4.6 andespectively, for different measurement
uncertainties of the power flow meters. It is netichat if meter accuracy is decreased from
1% to 3 or 5%, then the network needs more numbereters to improve the quality of state
estimation. Therefore, more real meters are emgldgebring down the relative errors in
voltage and angle estimates below the pre-spedifiegholds.

The performance of the proposed algorithm in preseof different kind of DGs at
bus number 45 and 61 has also been tested. THesrelstained using type 1, 2 and 3 DGs are
provided in Table 4.6, 4.7 and 4.8 respectivelpnirthe results shown in Table 4.6, 4.7 and
4.8, the impact of different types of DGs on sed@mation accuracy is clearly visualised. In
case of type 1 DG, the phase angle error is rediadgreat extent because of DG supplies
only real power to the local loads where it is aected. Therefore, the magnitude of power
flow in the main feeder section is getting reducable 4.7 represents the results obtained
using the proposed hybrid EDA-IPM algorithm. Frone tresults reported in Table 4.6, 4.7
and 4.8, it is observed that both the location ar@hsurement uncertainties significantly
affecting the state estimation accuracy. The tesabitained using DG type 2 and 3 are also
reported in Table 4.7 and 4.8 respectively. Thenmaotive of using this Pareto based multi-
objective optimization technique is to obtain atbesmpromised solution between the
objectives such as relative percentage error itagelmagnitude and angle with respect to the

total cost of meter.
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Figure 4.5(a) Optimal Pareto front between numlbéior meters and £(1% error in real
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Figure 4.7(a) Optimal Pareto front between numlhdéiow meters and (5% error in real
and 50% in pseudo-measurements)
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Figure 4.7(c) Optimal Pareto front between objecfivand k (5% error in real and 50% in
pseudo-measurements)

Table 4.6 Indian 85-bus system: The number andtiotaf the power flow meters of

different meter accuracy (without DG)

Maximum | Maximum
Number Objective functions error in bus error
Metrological | Algorithm location of flow of flow value voltage in bus
Errors meters(Line number) meters magnitude | voltage
F F F V) angle
1 2 3 %) (5)
(%)
Proposed 1,13,19,25, 75, 78,84 7 8 0.0383 1.0952 0.169p 60.06
EDA-IPM
EDA 1,30,32,35,36,42, 8 9 0.0387 1.2323 0.2797 6.4132
1% 43,60,68
PSO 1,30,32,35,36,42, 8 9 0.0407 1.4739 0.2593 6.6143
43,60,68
NSGA-II 1,16,34,37,40,42, 9 10 | 0.0411 1.4289 0.2897 7.7394
43,50,55
Proposed 1, 34, 40,46,52, 8 9 0.0427 1.0433 0.2117 5.2305
EDA-IPM 53,67,69
EDA 1,28 ,42,52,53,58,71,74 8 9 0.0431 1.2486 01398 6.0022
3% PSO 1,15,18,20,23, 11 12 | 0.0468 1.5478 0.3041 7.1194
39,45,50,77
NSGA-II 1,10,15,17,26,42,58, 8 9 0.0438 1.3478 0.2999 9.9812
70,71,74,26,84
Proposed 1,12, 20, 43,50, 8 9 0.0452 1.4298 0.2896 5.4821
EDA-IPM 68,75,83
EDA 1,9,17,23,37,53, 9 10 | 0.0464 1.5088 0.3342 6.7623
5% 61,67,73
PSO 1,17,19,20,30,40, 8 9 0.0461 1.4893 0.3211 8.3421
43,49,58,66,71
NSGA-II 1,6,21,32,68,69, 70,76 12 18 0.0482 1.5740 0.2898 8.4359
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Table 4.7 Indian 85-bus system: The number anditotaf the power flow meters of different
meter accuracy (Type 1 DG at bus 45 and 61)

Objective functions Maximum Maximum
Metrological Location of flow Number of value error in bus error
errors Algorithm meters(Line number) power voltage in bus
flow magnitude (V) voltage
meters F, F, Fs (%) angle
(9)
(%)
Proposed 1,9,23,28,44 5 8 0.0367 1.0473 0.1423 5.0237
EDA-IPM
EDA 1,8,21,32,68,69,76 7 10 0.0574 1.0585 0.2427 98728
1% PSO 1,25,39,55,65,73 6 9 0.0583 1.3910 0.2137 3.124
NSGA-II 1,16,30,33,44 8 11 0.0575 1.1165 0.1998 6.1123
,51,68,73
Proposed 1,11,37,51,79,84 6 9 0.0333 1.037p 0.2073 5.3241
EDA-IPM
EDA 1,26,32,57,64, 7 10 0.0636 1.0223 0.3231 6.1226
3% 71,7¢
PSO 1,23,26,36,43, 7 10 0.0644 1.2166 0.2981 6.8799
55,83
NSGA-II 1,23,26,36,43, 7 10 0.0646 1.2105 0.2861 7.1981
,83
Proposed 1,9,17,28,42,62,79 7 10 0.0400 1.1001 0.2441 5.51B4
EDA-IPM
EDA 1,14,33,37,41, 8 11 0.0696 1.4032 0.3244 6.5312
5% 65,83,8:
PSO 1,11,19,28,42, 9 12 0.0589 1.3891 0.4523 7.2213
51,57,71,79
NSGA-II 1,13,14,17,20,42, 10 13 0.0661 1.3588 0.4129 7.4517
44,54,56,57
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Table 4.8 Indian 85-bus system: The number anditotaf the power flow meters in presence
of type 2 and 3 DGs at bus 45 and 61

Objective functions Maximum | Maximum
Number value error in error
DG Measurement| Algorithm Location of flow of power bus in bus
Type error meters(Line number) flow voltage voltage
meters | F, F, Fs magnitude angle
(V) (9)
(%) (%)
Proposed 1,17,25,29,34,58,80 7 1( 0.0386 1.1584 0.2741 9.46[7
EDA-IPM
Type 2 EDA 1,14,21,26,56,65,75,84 8 11 0.0388 1.3619 @471 5.7417
P9 PSO 1,11,12,17,20,27,41,71,74 9 12 0.0396 1.2677 3930. 5.9923
1% NSGA-II 1,17,20,24,27,37,68,69 8 11 0.0395 1.3121 .34P8 6.1798
Proposed 1,23,31,49,58,59,61 7 1q 0.0500 1.1191 0.2998 6.73p
EDA-IPM
Type 3 EDA 1,28,31,50,68,79 6 9 0.0686 1.1611 0.388)7 D967
(P+Q) PSO 1,14,33,37,41,65,83,84 8 11 0.05p5  1.3B06 0.392 6.8324
NSGA-II 1,10,13,26,48,60,73,74,80,42 10 13 0.0506.1375 0.4713 6.9813
Proposed 1,9,25,28,30,31,40,49 9 12 0.0574 1.1773 0.2998 328.7
EDA-IPM
Type 2 EDA 1,2,8,14,37,59,60,64,74 9 12 0.0597 1.2696 &|47| 6.0147
(PQ) PSO 1,7,19,21,36,65,75,77,79,40 10 13 0.0405 1.49291.7782 6.2231
NSGA-II 1,14,30,36,44,58,61,69, 12 15 | 0.0598| 1.269% 3.9874 6.7923
73,74,76,80
3%
Proposed 1,24,33,38,43,73,76,81 8 11 0.0589 1.1878 0.3427 0126
EDA-IPM
Type 3 EDA 1,12,24,29,32,53,54,64,71,713 10 13 0.0607 B1B0 0.4129 6.7790
(P+iQ) PSO 1,16,18,39,41,46,50,75,81 9 1P 0.0578  1.3732 43860. 6.8931
NSGA-II 1,26,28,31,40,45,49,55, 11 14 | 0.05925 1.2789 0.5513 7.0127
61,80,83
Proposed 1,12,50,52,59,67,70,73,76 9 1p 0.0589  1.2057 0.4317 6.6823
EDA-IPM
Type 2 EDA 1,19,27,37,38,45,48,53,62 11 14 | 0.0608| 1.2684 0.4738 8.0134
(P-iQ) 68,81
PSO 1,13,20,24,33,43,55,71, 10 13 | 0.0610| 1.234f 0.5542 7.8817
74,79
5% NSGA-II 1,10,26,40,46,50,61,72,77 11 14 | 0.0629| 1.267] 0.6898 7.4326
80,81
Proposed 1,11,21,27,72,74,83,84 8 11 0.05718  1.2113 0.5328 3867.
EDA-IPM
Type 3 EDA 1,16,29,35,38,50,54,61,66 10 13 | 0.0602| 1.346] 0.5621 7.4782
(P+iQ) 81
PSO 1,17,26,29,30,36,37,41,44, 11 14 0.0635 1.285% 0.5561 7.3111
45,70
NSGA-II 1,19,25,36,38,42,44,53,57 13 16 | 0.0617| 1.3536 0.6104 7.8901
58,59,70,84

4.5 Comparison Results Analysis

In this section, a comparison study has been choug between all the algorithms used in
this thesis such as proposed hybrid PSO-KH andidhyDA-IPM algorithm, PSO, KH, EDA
and NSGA-Il. The performance of all the algorithisstested on IEEE 69-bus system and

practical Indian 85-bus distribution systems. Totamber of operating condition considered is
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100x1000. The optimal Pareto-fronts for three dbjesF,, F, and F; is provided in Figure 4.8-

4.13 respectively. The obtained results are alsavsehin Table 4.9 and 4.10. It is seen that in
most of the cases the proposed algorithms are superior than the conventional algorithms
considered in this thesis for comparison purposesdme of the cases it is also seen that
proposed EDA-IPM algorithm is dominating hybrid R8@8 algorithm. Therefore, the proposed
algorithms can be used for the planning study efdistribution networks.

4.5.1 Comparison results analysis of IEEE 69-bus stem
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Figure 4.8(a): Optimal Pareto fronts between thedailves F, and F for 1% error in real

meters and 50% in pseudo-measurements
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Table 4.9 IEEE 69-bus system: The number and locadf the power flow meters of different

meter accuracy (without DG)

Max. Max.
No. of error in bus | errorin
Metrological | Algorithm Default location of flow flow Objective functions voltage bus
Errors Measurementg meters(Line meters value magnitude | voltage
(node/line number) V) angle
number) F. F, Fs (%) (5)
(%)
Proposed 11 1,7,24,54,66 5 6 0.0028 0.4947 0.0381 5.79p2
PSO-KH
KH 11 1,9,17,23,32,47, 9 10 0.0052 0.7837 0.0399 6.9994
56,61,63
PSO 11 1,18,28,37,56, 8 9 0.0112 1.8731 0.0475 7.9249
1% 65,42, 49
NSGA-II 1/1 1,5,19,27,5 5 6 0.003" 0.627: 0.077: 9.302:
Proposed 11 1,2,20,26,27 5 6 0.0039 0.6618 0.0413 5.8215
EDA-
IPM
EDA 11 1,2,10,20,21,23,3 8 9 0.0083 1.3871 0.0739 6.0127
41
Proposed 11 1,11,18,43,52 5 6 0.0053 0.9782 0.0417 5.9154
PSO-KH
KH 11 1,2,4,12,21,24, 9 10 0.0084 1.6767| 0.0479 7.8239
30,59,67
PSO 11 1,13,17,25,31,39, 11 12 0.0091 1.7990 0.0638 11.6239
3% 45,51,59,64,6
NSGA-II 11 1,3,10,19,27,30, 12 13 0.0077 1.613(0 0.0488 10.3332
32,4,45,49,54,65
Proposed 11 1,14,23,26,67 5 6 0.006(Q 1.1098 0.0523 6.2198
EDA-
IPM
EDA 11 1,7,12,24,32,34,4 12 13 0.0060 1.3036 0.0412 6.3214
,58,61,65,66,67
Proposed 11 1,7,14,21,28, 9 10 0.0058 1.1491 0.0523 6.3172
PSO-KH 33,49,53,61
KH 11 1,5,11,30,35, 9 10 0.0102 1.9423 0.0927 9.671y
41,47,52,6
PSO 11 1,5,18,30,34,35, 12 13 0.0109 2.8704 0.0838 12.7865
44,47,50,56,63,67|
5% NSGA-II 11 1,4,9,14,20,32,38] 13 14 0.0075 | 1.7001 0.0776 12.4533
40,43,45,51,57,65
Proposed 11 1,7,18,23,33,60,63 9 10 0.0070 1.4178 0.06781 6.9998
EDA- ,65,66
IPM
EDA 11 1,7,28,33,34,42,44 11 12 0.0090 1.8684 0.0823 8.3927
,45,59,67,68
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4.5.2 Comparison result analysis of Practical India 85-bus system
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Figure 4.11(a): Optimal Pareto fronts between thieaives F; and F for 1% error in

real meters and 50% in pseudo-measurements
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Figure 4.11(b): Optimal Pareto fronts between tigpoaver flow meters and the objective

F, for 1% error in real meters and 50% in pseudo-oneasents
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Table 4.10 Indian 85-bus system: The number aratitmt of the power flow meters of different
meter accuracy (without DG)

Max. error Max.
No. of in bus error in
Metrological | Algorithm Default location of flow | flow Objective functions voltage bus
Errors Measurementy  meters(Line meters value magnitude | voltage
(node/line number) V) angle
number) = = Fs (%) (5)
(%)
Proposed 11 1,13,18,26, 75 7 8 0.0385 1.1077, 0.1853 5.172p
PSO-KH 79,84
KH 11 1,28,32,35,42,43 8 9 0.0390 | 1.2449 0.2891 6.3321
,60,68
PSO 11 1,8,15,32,48,56, 8 9 0.0387 | 1.2911 0.2786 6.6143
1% 70,71
NSGA-II 11 1,18,28,31,40,52 8 9 0.0390 | 1.2641 0.2399 7.8259
,64,70
Proposed 11 1,8,21,32,68,69, 7 8 0.0380| 1.1033 0.2104 5.3573
EDA- 76
IPM
EDA 11 1,31,43,54,60,69 8 9 0.0384 | 1.1452 0.2978 6.1327
,75,80
Proposed 11 1,17,22,30,36,73 7 8 0.0438 | 1.3355 0.2347 5.5217
PSO-KH ,81
KH 11 1,28 ,42,52,58, 9 10 | 0.0430| 1.3255 0.4011 6.7162
73,78,81,84
PSO 11 1,20,34,40,54,58 8 9 0.0452 | 1.4298 0.3217 7.3192
3% ,71,81
NSGA-II 11 1,13,14,21,26,5(
,58,60,65,77 10 11 | 0.0431 | 1.1851 0.3019 9.8822
Proposed 11 1,12,13,20,44,55 8 9 0.0423 | 1.1219 0.2814 6.2865
EDA- ,75,79
IPM
EDA 11 1,11,13,28,33,36 8 9 0.0425| 1.2280 0.3427 6.983p
,37,69
Proposed 11 1,16,21,24,33,69 8 9 0.0439| 1.2855 0.2896 5.9407
PSO-KH 77,79
KH 11 1,9,19,24,37,53| 9 10 | 0.0467| 1.5213 0.3342 7.6721
63,67,74
PSO 11 1,6,23,32,68,70, 11 12 | 0.0468| 1.5478§ 0.3211 8.6434
5% 72,76,79,81,84
NSGA-II 11 1,20,28,38,40,41 10 11| 0.0459| 1.383f 0.2898 8.6315
,43,68,73,76
Proposed 11 1,18,19,23,42,44 8 9 0.0434 | 1.3240 0.3124 6.3415
EDA- ,64,82,84
IPM
EDA 11 1,9,26,27,31,47 10 11 0.0465 1.5498 0.4128 7.9865
48,52,53,54
4.6 Summary

This chapter proposed a Pareto based multi-obgcptimization technique that optimizes
the number and location of measuring devices fateststimation in smart distribution network.
To find the optimal placement of meters a new l/lEEDA-IPM algorithm has been proposed.
The hybridization of traditional EDA with IPM is de to improve the local searching capability
of the EDA. In state estimation metrological chéedstics of meters as well as the load
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variations have also taken into consideration t&t the efficiency of the proposed meter
placement technique. The best optimal trade-ofitsmi between the objective functions such as
cost and state estimation error is established eMaar, the impact of different kind of DGs on

state estimation accuracy has also been presentaddctive distribution network.

The proposed hybrid EDA-IPM algorithm based metecement technique is tested on
IEEE 69-bus system and practical Indian 85-bugildigion network. The obtained result using
the proposed hybrid EDA-IPM algorithm has been careg with some existing algorithm in
literature such as PSO, EDA and NSGA-II under uggioperating conditions of the distribution
systems. It is reported that the proposed algorithnmobust, reliable and more superior than

existing algorithms considered in this chapter.
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Chapter 5

Trade-offs in PMU and IED Deployment for Active
Distribution System State Estimation Using Multi-Olgective
Hybrid EDA-IPM Algorithm

5.1 Introduction

In distribution grids, due to the presence of défe kinds of actors such as distributed
generation (DG), energy storage devices, systemnbes more complex, dynamic and uncertain
in nature. Because of this changing behavior afracteal-time monitoring and control becomes
more challenging task for the power system engsmeéedius, PMUs are of great interest because
it provides synchronized measurements of voltagecamrent phasors. The application of PMU
for state estimation in transmission system has bédely used to improve the performance of
the state estimator. Therefore it would be moreaathgeous to use PMUs in DSSE. In
transmission systems, PMUs have been used widempoove the state estimator performance
using different approaches. Therefore, utilizatminthe phasor measurements in distribution
network for state estimation is of great interd$te PMU provides synchronized measurements
e.g. voltage, current phasors and frequency aloitlg some indirect measurements [71]. The
measurements obtained from the PMUs are synchmaé the coordinated Universal Time.
In transmission systems, the synchronized measutsnabtained from PMUs along with the
non-synchronized measurements from Supervisory rGloind Data Acquisition (SCADA)
system have been used by many researchers forvigimg the performance of state estimator.

However, due to lack of sufficient direct measuretaen distribution networks, locating
PMUs is economically unreasonable. Therefore, #ehrtiques used for locating PMUs in
transmission grids cannot be directly transfornetthe distribution level. In order to compensate
this, a large number of pseudo-measurements defroea historical customer load data are
being used for the state estimation in distributsystems. But, as a result, it deteriorates the
accuracy of state estimation to a very large extdfany researchers have been proposed
different techniques to deploy PMUs in distributgnids [77],[79], [82].

In chapter 3 and 4, meter placement problem has fwewulated as a multi-objective

optimization problem to find optimal number anddton of power flow meters. A trade-off
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solution is established between total configuratemst, voltage magnitude and phase angle
errors. Only power flow meters have been considéoetind the best optimal solution. This
chapter proposes a new multi-objective optimizapooblem to find trade-offs in deployment of
phasor measurement units (PMUs) and intelligendtedric devices (IEDs) for state estimation
in active distribution networks. A new hybrid essition of distribution algorithm (EDA) has
been used to find the optimal number and locatibmeasurement devices such as PMU and
IED for accurate state estimation. The objectivecfions to be minimized in this optimization
problem are the total cost of PMUs and IEDs, amdRMS value of state estimation error. Since,
the objectives are conflicting nature, a multi-alijge Pareto-based non-dominated sorting EDA
algorithm is proposed. Moreover, to improve theal@earching capability of the traditional EDA
algorithm, the Interior point method (IPM) is hydided with EDA to get near global optimal
solution. The hybridization of EDA with IPM brings higher degree of balance between the
exploration and exploitation capability of the titamhal EDA during the search process.
Furthermore, the random variation in loads and gdoes is also considered to check the
reliability of proposed meter placement technigliee viability of the proposed algorithm has
been tested on IEEE 69-bus system and Practicanrgb-bus system to validate the results.
The obtained results have been compared with theectional EDA algorithm, non-dominated
sorting genetic algorithm (NSGA-II) and also witlgbinid EDA-simulated annealing algorithm
existing in the literature.
5.2 Distribution system state estimation in presemcof PMUs and IEDs

The state estimation is a mathematical relationvéen the system state variables and
available measurements that can estimate the systimmes accurately from the noisy
measurement data. The well established weightedtL8quare (WLS) algorithm has been

employed to minimize the following objective furani

J =[zh(x)]'W[zh(x)] (5.1)
Subjected to:z = h(x) + r (5.2)
where zis the measurement vectox,s the system state vector, consisting of magnitamoie
phase angle of all branch curreni(x) is a nonlinear measurement function of systene stat

variables andr represents a small noise following the Gaussiatridution andw is the

covariance matrix of the measurement errors.
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To improve the state estimation accuracy, PMUs Haeen employed along with the
existing IEDs, for online monitoring of the distutton networks [82]-[83]. Therefore, in this
chapter a mixed approach has been considered winttides measurements from PMUs and
traditional measurements from IEDs to estimatedtia¢es of an active distribution network. A
mathematical model for state estimation based ok RN IED data is described below.

There are different types of measurement such &staion measurement, pseudo-
measurement, virtual measurement, smart meter megasat and phasor measurement obtained
from PMU have been utilized for state estimationdistribution network. Additionally, it is
assumed that, PMU installed at a particular buyiges voltage phasor measurements of that
bus.

For state estimation, BC-DSSE algorithm has beed wshere branch current magnitude
and their phase angle are considered as state aigtribution system [40]. The initial values for
the state variables are assumed as discussed]iarjdthe WLS based iterative process has been
conducted to estimate the state variables.

The estimated value of the state variabl (k +1)"iteration can be expressed as follows:

Xy = X + G(xk)'llH (%, )TW‘lj[z —h(x, )] (5.3)
whereH represents the Jacobian matrix and it is calodilate taking the partial derivative of
each non-linear measurement functigr) with respect to state varialbkeandG represents the
gain matrix given by

G(x,)=H(x, )W *H(x,) (5.4)

The inverse of the covariance matvikcan be defined as

wgt 0 0 0 0 0
0 (VES 0 0 0 0
1
o T S ol P
MU ,imag
0 0 0 0 Wt 0
0 0 0 0 0 W'

The subscripts in equation (5.5)IED, P andV represent substation measurement, IED
measurement, pseudo-measurement and virtual measuireéespectively. In equation (9,
andw,,,, represents the covariance matrix of the uncegtahthe IED measurement and phasor

measurements obtained from PMU. The error vectan be expressed as:
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zs—hg (X)
Zigp ~ h| ED (X)
Zomu,real hPMU,reaI (X)

(5.6)

Zoy,imag ~ hPMU,imag(X)
z, ~hp (X)
z,-h,(x)

In state estimation, it is assumed that IEDs aeslus measure real and reactive power

flows in a line and PMUs are incorporated to measwlitage phasors at a bus. According to
state estimation theory, the diagonal elementshef drror covariance matrix represent the
estimation variances of the states and this caxpeessed as follows:

E, =G(X™ (5.7)

- _T A
Furthermore, the above equation can be expres€gg as€, (x.x ) = E, (x—X)?.

whereE; is the operator of statistical expectation. Ifuies both state estimation error variance

of bus voltage magnitude and phase angle. The eegtor is represented RS X— x
5.3 Mathematical Model of the Proposed Multi-objedtve Optimization
Problem (MOOP)

The proposed meter placement technique is desigaedsl three objective optimization
problem. The main objective is to determine theinoglt deployment of PMU and IED in a
distribution network to achieve minimum cost as Iwad it ensures that state variables are
estimated within the predefined accuracy limit. Tblejective functions considered to be
minimized are: (1) the total cost of PMUs (2) tbhéat cost of IEDs and (3) RMS value of state
estimation error. Since, the objectives considenede are conflicting in nature, the meter
placement problem can be designed as multi-obedareto based optimization problem [88]-
[89]. Furthermore, to find the optimal trade-offigmn, a hybrid EDA-IPM algorithm has been
utilized to find the optimal position of PMU andDEensuring the relative deviations in voltage

and angle estimates to be within the pre-specthessholds for 95% of the test cases.
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Mathematically, the proposed MOOP can be expreased
Minimize

nl
‘J1 = ZCIED,i' PIED,i (5-8)

i=1

n

‘Jz = ZCPMU,i' PPMU,i (5.9)

i=1

m n, O 2
J, :iz\/iz Ex(xi—xij (5.10)

M=y N, =
Subjected to constraints: In 95% of the operasiognarios the maximum relative deviations in
voltage and angle estimates are to be within tkeeiBpd limits given as follows:

V2 -v&

x100< 1 (5.11)

6% =67
o7

x100 < 5 (5.12)

where the three objective functions are represesdd J, andJs, n, and nl represents number

of state variables and lines in a distribution reky X is the state variable angt is the
estimated value of the state variable C ., andC,,,, are respectively, the relative cost of a
IED and PMU andn denotes total number of operating scenarl®g,and F,,,, are treated as
binary decision vectors i.e. the presence and a@bseha meter in a line or at a bus is indicated
by 1 or 0,V,* and O are the actual or true value of the voltage mageitand angle of"bus
andV®and J represents the estimated bus voltage magnitudaragid ati"™ bus respectively.

5.4. Solution Methodology
To find the optimal solution of the proposed MOG@Phybrid EDA-IPM algorithm has
been used which has been discussed in Chapteedefdhe, a brief introduction to the traditional
EDA and IPM algorithm has been discussed as follows
5.4.1 Estimation of Distribution Algorithm (EDA)
In conventional genetic algorithm (GA), crossowand mutation operators are being

used for generating new solutions as well as tdoegghe search space for finding near global

104



Chapter 5 Trade-offs between PMU and IED DeploymentD&SE

optimal solutions. However, these operators magugdisthe good solutions during the evolution
process and also obstructing to get the optimaltieols. This situation is more likely to occur
when the problem variables are correlated. Thesefstimation of distribution algorithm (EDA)
has been using widely in various field of enginegriapplications to overcome these
shortcomings of traditional GA [90]-[91]. It is aopulation based evolutionary optimization
algorithm which employs a probabilistic model tongete new solutions for the immediate
generation. Moreover, the sampling of new individus based on the probabilistic model
estimated from the database consisting of sometseléndividuals from the previous generation.
Therefore, the EDA algorithm is good at explorihg search space to find prominent solutions.

The basic steps of a traditional EDA algorithm heen provided below. First, the initial
solutions are generated randomly within the spatifiimits. Then, the fitness function is
evaluated for each individual solution. Out of tb&al populatiorr, N <P solutions are selected
as best solutions using any selection mechanisnsedBaipon the selected individuals, a
probabilistic model is estimated to lead the sdarcprocess toward the regions contains better
fitness values. However, the choice of probabdistiodel influences the performance and
efficiency of the EDA algorithms. Then, the offspggiis created using different sampling
techniques. The above steps are repeated untéetsithe stopping criteria. The pseudo-code of
the above procedure is provided as follows:
— Begin

Initialization: GeneratP initial population randomly within the search spac

— Do While (termination criteria is not met)
Evaluation: Calculate the fitneskiesof P individuals.
Selection: By using any selectiorthod, selectN < P individuals.

Probabilistic model: Estimate theolmability p,(x) that an individual being

among the selected population.

Sampling: Sample individuals from p(x) using sampling technique.

End Do
- End
5.4.2 Interior Point Method (IPM)
The interior point method is basically used to solnear and non-linear convex

optimization problems [92]. In this, the Lagrangeltipliers are employed to deal with the
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equality and inequality constraints of the optini@a problem. In order to avoid the negativity
conditions of the slack variables the logarithméertker functions has been added to the objective
function [93]. The decision variables are consideie be continuous. The proposed non-linear
constraint optimization problem can be transformedunconstraint optimization problem as
follows:

L@z,y,luv,w)=f(x)-v (x-1-x_.)-y g(xX

W (X U= Xy) ~ 23 (1, +Inu) (5.13)

whereu andl are the slack variabley; v andw are the Lagrange multipliers; and the barrier
parameter is represented fy

In order to satisfy the Karush-Kuhn-Tucker (KKT)nclitions, first order derivatives of a
set of non-linear algebraic equations have to bmdéd and then Newton-Raphson method is
employed to solve the above first order differdnéiguations. During the iterative procedure of
the IPM, if the KKT conditions shown below are shé&d then the algorithm will stop. The KKT

conditions are described as follows:

I = |of (9-0g™ (x)y-v+w| <& (5.14)
IL|=lo(x) <& (5.15)
[l =x+u=xp ] <€ (5.16)
I =[x =1 =X | < & (B)1

According to primal-dual theory is the primal variabld, andu are the slack variableg,v and
w are the dual variables respectively ang a very small number. The equations (15)-(17) are
called the primal feasible conditions and eq. (4known as dual feasible conditions. If the
solution satisfies the above conditions then @&rioptimal solution for the optimization problem.
5.4.3 Proposed multi-objective hybrid EDA-IPM algoiithm

The EDA algorithm has been used widely in varidtgmgineering applications because it
is efficient in exploring search space more effitie Although, EDA has good exploration
ability but it suffers from poor exploitation capidly [90]. Therefore, the optimal solutions
obtained using EDA may not be a global optimal solu On the other hand, local searching
capability of IPM algorithm is more effective [93{ence, the traditional EDA algorithm has
been hybridized with IPM to enhance the balance/det exploration and exploitation capability
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of the traditional EDA algorithm to obtain near lg&b optimal solutions.

First of all the objective functions considered aredeled as a MOOP. Moreover, since
the objectives are conflicting nature, the simudtaus optimization needs a compromised
solution because each objective in the model idlicing to one another. Therefore, to achieve
better compromised solution between the objectivegteto based non-dominated sorting
approach has been implemented [88], [89]. It stétat, in a non-dominated Pareto front all
solutions are equally important because no solusatominating the other in the population. In
MOOP, solution relies on a set of solutions unlgiagle objective optimization problem.
Therefore, Pareto based non-dominated sorting igagérhave been employed with hybrid EDA-
IPM to achieve best trade-offs solution between rthdtiple objectives. A trade-off solution
between the total cost of PMU and IED needed ferdbcurate estimation of system states is
determined using multi-objective hybrid EDA-IPM atghm. The pseudo code of the proposed
Bayesian network based probabilistic hybrid EDA-IBMorithm is presented below.

The Pseudo-code of the proposed multi-objective hyid EDA-IPM algorithm

Stepl. Initialization: Generate random number anchtion of IEDs and PMUs for each
individual solution in the populatiorP@p) within the limits. WherePop represents size of the
population
Do while (“Stopping criterion is not met”)
Step 2. Fitness evaluation: Evaluate the objedtinetions J;,J, and J; for each solution based
on the position of PMUs and IEDs.
Step 3. Selection: Seleat < Pop solutions fromPop using Non-dominated sorting selection
strategyPop is the size of the population amd is a number less thdop.
Begin
Do while (“*Stopping criterion is not met”)
For i=1:N (number of selected solutions)

1. Use each selected solutiaii) as initial point in IPM algorithm to find a best

solutiony(i)  (location of PMU and IED) for that solution
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2. Evaluation: Calculate the objective functionsi, andJ, and evaluate the fitness
value for each using weighting approach.

3. Update solution:

if Fitnessy(i)< Fitnesss(i)
&& if solution y(i) dominates s(i)
thes(i) = y(i)
End for i
End Do
End

Step 4. Probabilistic graphical model: Estimate firebability distribution of the previous
solutions and selected solution to predict new fain for the next generation using Gaussian

Bayesian network. Mathematically, it can be exprdsss:

p(xi|pa(xi)):N(lui + zwij (Xj _/uj)’viz)

X;OPa(X;)
where u represents the mean of the variak|ev, is the standard deviation of the distribution

and w; is the weight associated with each of the paremdsxais the value of the variablX ; in

pa(xi)'
Step 5. Sampling technique: Samplep number of solutions from the Gaussian Bayesian
network using sample Gaussian UnivModel.
End Do
Post-procession of the results

In most of EDAs, it is a common practice to estien#tie probabilistic model of the
selected solution obtained from the previous geimeraand there after sampling algorithm is
expected to use for the generation of new soluttmsed upon the statistics obtained from the
selected solutions. In this work, Gaussian Bayesiawork has been used as a probabilistic
model to estimate the new solution for the nextegation during the optimization process. The
proposed hybrid EDA-IPM algorithm uses this proliatic model to study the characteristics of
the selected solutions to generate new individtalshe optimization problem in searching for

the optimal Pareto front. In case of MOOP, onehef tnost commonly used ranking methods is
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non-dominated sorting (NDS) technique to rank eadividual for the selection purpose [88]. In
NDS, the solutions are sorted into non-dominategetBafronts and then each solution in the
same Pareto front is sorted based upon their craywdiistances in the objective space. The new
solutions are sampled from the probability disttitbn employed in the Bayesian network.
Basically, sample Gaussian UnivModel has been tessdmple the solutions.

In the beginning of the optimization process, thiédl solutions are generated randomly
using seeding approach within the search spaceh E@lation represents the combinations of
number of PMUs and IEDs as well as their locatiddesed on each combination of PMUs and
IEDs, the objective functions are evaluated usif@DBSE algorithm. Then, the selection
mechanism is used to select some of the best sofutso far. In order to achieve better
performance, the selected solutions are updateugu§iM algorithm. After the update, the
probabilistic Bayesian model has been used to grrétui2 new solutions for the future generation
by using the selected solution. During fitness waliton, the constraints violation checking has
to be carried out. In each Monte Carlo trial, th@ein bus voltage magnitude and angle estimate
is determined. For each combination of PMUs andsliEDa solution, if in 95% of the simulated
cases, the estimated errors are below the thredimoid, then for that solution the objective
functions are evaluated and stored. On the contifaityis not within the threshold limit, then for
that particular solution, a higher value of objeetis been assign. Hence, this particular solution
can be eliminated during next immediate generafldren, the above steps are repeated until all
the solutions in a given population size are istfiiront. The convergence criterion for the
algorithm to stop is, when all the solutions aracheed in optimal Pareto-front curve. To get the
best solution in the optimal Pareto front fuzzydityehas been used. In the optimization process
population size of different values like 20, 30 &tdhave been tried. But, it has been found that
there is no such significant variation in result faking different population sizes for the IEEE
69-bus system and Indian 85-bus system reporteall¥;i population size of 20 has been fixed
for evaluating the performance of the proposednaigttion algorithm.

5.5 Test and Simulation Conditions

The following test and simulation conditions haveeib considered for analyzing the
performance of the proposed state estimation fatimrd and algorithm in MATLAB 2014b
environment. To estimate the system state (bramgchert magnitude and angle) BC-DSSE

algorithm has been utilized. The measurement datgenerated by adding small Gaussian noise
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of 1%, 3% and 5% to the actual or reference vafubeoquantity of interest to be measure. There
are different kinds of measurements have been deresl for state estimation such as: substation
measurement, pseudo-measurement, real measuremeénvirdual measurement [75]. It is
assumed that, the former two types of measurenggreshe information about real and reactive
power injections at the buses. The real measurenagatobtained from IEDs and PMUSs, and it is
assumed that IED gives the information about redl ractive power flows in a line and PMU
provides the information about bus voltage phadeusthermore, the measurement uncertainties
are considered based upon the maximum percentaggraf associated with each type of
measurement [75]. The information about the measeint data are provided below:

1) Substation Measurements: The measurements thaoleeted from the substation are
called as default measurements. Generally, thetatidos measurements are considered to
have high accuracy and therefore, in this test ifér énas been chosen for substation
measurements.

2) Real measurements: The measurements obtained ED® &and PMUs are assumed as
real measurements. In this test, different accunadyes have been chosen for IEDs
measurements. For IEDs, the maximum allowable @wosidered is 1%, 3% and 5%. In
case of PMU (synchronized measurements), the maiailowable error of 0.7% have
been considered [75].

3) Pseudo-measurements: Basically, the pseudo-measntenare obtained from the
historical customer load data and the error astatiwith the pseudo-measurements is
relatively very high. Thus, the maximum percentafjerror assumed for this is 50%.

4) Virtual-measurements: The measurements at theizeaion buses are treated as virtual
measurements with a low variance of' 194].

Furthermore, in this study, for better visualizaticandom variations in load and
generator have been considered. Different operaegarios are simulated by considering the
load demands and generator output as stochasti@blerfollowing the Gaussian distribution
around the mean value with prefixed standard diewiaMoreover, the impacts of measurement
uncertainties on state estimation performance heen studied using Monte-Carlo simulation.
There are 1000 number of different network statesganerated from each network condition to
study the impacts of measurement uncertainties tate estimation performance. The total
number of operating condition considered is 10dde the total number of operating scenarios
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considered in this study is 100x1000. A standakdadien of +10% of the base value is assumed
for each operating condition.

The number of IEDs and PMUs required and theirtlona in an active distribution
network is presented. It is assumed that the D@uius stochastic in nature and following
normal distribution. Furthermore, it is specifiddht all DGs are injecting only real power to the
buses where it is integrated. The base values op®&er output and their locations are provided
in Table 5.2 [97], [98]. All the parameters usedEIDA and NSGA-I1I algorithm have been shown
in Table 5.1. Different parameters used in EDA gt for probabilistic learning, sampling,
selection and repairing process are provided iferad.

For the simulation study, the relative cost of eBdU is assumed as 1pu and for an IED,
the cost is 0.6pu. Actually, in practice, the costthe measurement devices depends on the
application scenarios. Generally, the cost of a AMkiore than the IED, therefore, in this study,
the relative cost of PMU and IED are considered@ms and 0.6pu respectively. To obtain the
optimal trade-off solution, fuzzy theory has besediand is discussed in [95].

Table 5.1 Parameters used in EDA, NSGA-II and Sy@dhm

EDA NSGA-II Simulated
Annealing (SA)
Population size = 20, Population size=20| Initial Temperature
Learning method -Learn Gaussian (Te) =100

Bayesian Model
Sampling method- Sample Gaussian Cross over rate = 0.8 Scheduling factor

Universal Model (a)=0.99
Replacement method- Pareto Rank Mutation rate = 0.02

ordering

Selection method - Non-Dominated Maximum

selection generations = 20

Repairing method-Set In Bounds repairing
Maximum generations=20

Table 5.2 Distribution generation (DG) installatimns and capacity

Test System Bus Number DG capacity( in MW) Basau¥al
IEEE 69-bus System 50 0.180
61 0.270
Practical Indian 85- 45 0.277
bus System 61 0.290
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5.5.1 IEEE 69-bus system

A standard IEEE 69-bus, 12.66kV radial distributietwork has been considered to test
the effectiveness of the proposed algorithm. Tégt system includes 69 buses, 68 lines along
with 48 loads and two DGs integrated at bus 50@&hdrhe load and line parameters of the test
system are obtained from [99].The total load of #Hystem is 3.802MW and 2.692MVAr
respectively. In this system there are 21 busegevtieere is no source or load is connected.
Therefore, these are treated as zero injectionsj9€g. The real and reactive power injections at
the zero injection buses are assumed as virtuabunements with higher degree of accuracy
level.

The obtained results using the proposed algorithmdeu different measurement
uncertainties have been shown in Table 5.3. Thal twaimber of PMU and IED require to
obtained quality state estimation results are ptewided in Table 5.3. It is seen that when 1%
error is considered for IED measurements and 50% pgeudo-measurement, the total
configuration cost is 2.8 using hybrid EDA-IPM atigoms and the RMS value of state
estimation error is 0.0103pu. Similarly, in caseElA-SA, EDA and NSGA-II, the total cost
obtained is 5, 4.8 and 4. The RMS values of ststienation error obtained using EDA-SA, EDA
and NSGA-Il are 0.0144, 0.0183 and 0.0144pu resmdygt Furthermore, the optimal Pareto
fronts between the objectivdg J, andJ; have been shown in Figure 5.1. The optimal number
and location of PMUs and IEDs are obtained fromdjpemal Pareto fronts for their respective
algorithms using fuzzy theory discussed in [95prRrthe figures, it is worth noticing that the
global optimal Pareto fronts has been achievedguiie proposed algorithm due its higher
degree of balance between the exploration and gafm during the search process. In most of
the cases it is seen that, IEDs are placed at feaders to reduce the state estimation error and
the combination of IEDs and PMUs provide betterusoh to improve the state estimation
accuracy in the modern active distribution networkglditionally, the maximum relative
percentage error in voltage magnitude and phaske amgler all the measurement uncertainty
cases is also provided in Table 5.3 to check thahibty of the respective algorithm.

Furthermore, the test has been carried out by densg 3% and 5% error in IEDs along
with 50% error in pseudo-measurements and the aptiareto-fronts are shown in Figure 5.2
and 5.3 respectively. The obtained results hava begorted in Table 5.3. It is seen that, the total

cost of the configuration is slightly increased duese of more noise has been added to IEDs. In
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these cases also, the performance of the propogaitd EDA-IPM algorithm is found to be
better than all other algorithm used in this chapldie main advantage of using this multi-
objective meter placement technique is that theatpe can obtain a best compromised or a
trade-off solution between the objectives to mizienthe cost as well as the state estimation
error. Basically, the selection of optimal solutidepends on the decision maker. However, fuzzy
theory has been used to find the best compromiskdian between the objectives. Generally,
meter placement techniques are used for plannundy sof the distribution systems. Therefore,
computational cost and complexity of the propossthhique does not have significant impact on
planning study of the distribution system. The catapional cost can be reduced if less number
of Monte-Carlo trials is considered in simulatidndy. However, if MC value is high then more

accurate results can be expected.
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Figure 5.2(c) Optimal Pareto front between objextlt and J3 (3% error in IEDs and
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Figure 5.3(b) Optimal Pareto front between objextl¥ and J3 (5% error in IEDs and

Figure 5.3(c) Optimal Pareto front between objextlt and J3 (5% error in IEDs and
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Table 5.3 Optimal location of PMU and IED in IEEE Bus active distribution system

Maximum Maximum
Metrological Objective functions relative relative
Error of Algorithm PMUs IEDs location value percentage percentage
IEDs location error in voltage error in
J X Js magnitude (%) | voltage angle
(%)
Proposed
EDA-IPM 27 1,2,10 1.8 1 0.0103 0.2777 6.1936
EDA-SA 27,67 1,4,8,10,18,20 3 2 0.014 0.4962 81321
1% EDA 45,48,59 1,354 1.8 3 0.01843 0.3211 10.8978
NSGA-II 68 1,2,48,56,61 3 1 0.0144 0.3786 9.4631
Proposed | 15,27,36,50,58 14,8 1.8 5 0.010 0.3645 7.3719
EDA-IPM
EDA-SA 50,64 1,3,4,13,16,19,23,
3% 30,34,50,56 6.6 2 0.013 0.4216 8.7546
EDA 20,23,50,53,
59,64 1,2,5,10,11,13,54 4.2 6 0.0153 0.4056 11.9871
NSGA-II 43,48,68 1,3,4,8,11,15,27,62 4. B 0.014 .3997 9.7632
Proposed 45,67 1,3,23,25,29,57,65 4.7 2 0.015 0.3625 8.191d
EDA-IPM
EDA-SA 43,65,67 1,3,6,7,16,20,38,| 7.2 3 0.0170 0.5089 9.0935
5% 49,56,58,60,63
EDA 52,64 1,3,4,6,13,14,17,| 7.8 2 0.0198 0.5897 11.0124
19,21,23,29,41,*
NSGA-II 60,62,65 1,3,6,10,38,50,52 6 3 0.0173 0.6083 10.5739
54,56,57

5.5.2 Practical Indian 85-bus system

The effectiveness of the proposed algorithm, hes laéen tested on a large scale practical
Indian 85-bus, 11kV radial distribution network.ersystem includes of 85 buses, 84 lines along
with two DG at bus number 45 and 61 respectivelys Bystem carries a total load of 2.574 MW
and 2.622 MVAr. Furthermore, it includes 26 numbérzero injection buses. The single line
diagram of this test system has been shown in Ei§u2. The network load and line data are
taken from [100].

The simulation results for Indian 85 bus systenrmgidhe proposed algorithm under
different operating conditions have been shown abld@ 5.4. When the IEDs accuracy is
considered as 1%, the total configuration cost.&su%ing proposed EDA-IPM algorithm. The
RMS value of state estimation error is 0.0096pucdse of EDA-SA, EDA and NSGA-II, the
total cost is 2.8, 4.8 and 5 and the average RM&vaf estimation errors obtained are 0.0143,
0.0129 and 0.0160pu respectively. Furthermorepfitenal Pareto fronts between the objectives
Ji, J» andJ; have been shown in Figure 5.4. From the figuiteis, $een that the global optimal
Pareto fronts has been achieved using the propalgedthm due its higher degree of balance

between the exploration and exploitation during #earch process. Moreover, to test the
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efficiency of the proposed algorithm, different no&tgical error of the IEDs have been
considered such as 3% and 5% along with 50% emrpseudo-measurements and the obtained
results have been reported in Table 5.4. Furthexmitve optimal Pareto-fronts are shown in
Figure 5.5 and 5.6 respectively. It is observed the total configuration cost is increased
because of more noise has been added in IED meassoi® It is worth noticing that the
performance of the proposed hybrid EDA-IPM algaritis found to be more superior than all
other algorithms used in this chapter due to itghéi degree of balance between the
intensification and diversification capability. Bhis possible due to the hybridization of IPM

algorithm of higher exploitation level with traditial EDA of having better exploration ability.
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Figure 5.5(a) Optimal Pareto front between objeciit and J2 (3% error in IEDs and

Figure 5.5(b) Optimal Pareto front between objextl2 and J3 (3% error in IEDs and
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Table 5.4 Optimal location of PMU and IED in Indi&h bus active distribution system

Maximum Maximum
Objective functions value relative relative
Metrological | Algorithm PMUs location IEDs location percentage | percentage
Error of (Bus number) (Line number) error in error in
IEDs 3 X Js voltage voltage
magnitude angle
(%) (%)
Proposed
EDA-IPM 50,54 1,7 1.2 2 0.0096 0.3179 7.5437
EDA-SA 81 1,5,27 1.8 1 0.0143 0.3672 8.9821
1%
EDA 40,57,62 1,6,32 1. 3 0.012¢ 0.3781 10.8239
NSGA-II 72,76 1,4,5,26,34 3 2 0.0160 0.3364 8.4772
Proposed 1,4,5,25,67
EDA-IPM 36,67,71 1.8 3 0.0126 0.3649 6.9723
1,7,8,10,12,29,32,
EDA-SA 42,68,70 34,36,46,60,65 7.2 3 0.0155 0.3438 8.2674
3% 1,3,6,7,15,30,
EDA 77 38,41,48,72 6 1 0.0188 0.4126 11.3037
1,4,5,16,28,42,
NSGA-II 49,76 57,68 4.8 2 0.0178 0.3986 9.9721
Proposed
EDA-IPM 42,74 1,3,5,8,31,60 3.6 2 0.0144 0.4023 8.0593
1,4,5,13,20,
EDA-SA 78,83 22,26,66,75 5.4 2 0.0186 0.4821 7.7331
5% 1,2,3,7,12,15,
EDA 67,73,78,83 21,32,48,49 6 4 0.0197 0.4872 11.0241
1,3,4,5,6,9,11,12,23
NSGA-II 76,81,84 25,33,51,67,71,74 9 3 0.0152 0.5673 12.7671
5.6 Summary

This chapter formulated a new multi-objective opt@tion problem to find an optimal
trade-offs in PMUs and IEDs deployment for statinestion in active distribution networks. A
new hybrid estimation of distribution algorithm pgoposed to find the optimal number and
location of PMUs and IEDs for accurate state edtona The local searching capability of the
classical EDA algorithm is improved by hybridizimgth the Interior point method (IPM). The
hybridization of EDA and IPM brings a balance betwexploration and exploitation capability
of the algorithm during the search process. Fumiloee, different uncertainties level of
measurement devices and load variations are algentanto consideration for testing the
reliability of the state estimator. The performawtehe hybrid EDA-IPM algorithm is tested on
a standard IEEE 69-bus as well as Indian 85-bugissysThe obtained results using hybrid EDA-
IPM algorithm are compared with the conventionallEDNSGA-II and also with EDA-simulated
annealing algorithm existing in the literature.idtfound that the proposed algorithm is more

efficient, reliable and robust under various opatatonditions and metrological characteristics
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of the measurement devices. Moreover, the perfocmahthe proposed algorithm is found to be
more superior than all other algorithms used is thapter. Hence, the proposed multi-objective
based meter placement technique can be used fptahring study and monitoring of the smart
distribution networks.
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Chapter 6

Robust Meter Placement for Distribution System State
Estimation in presence of Wind Generators Using New
Multi-Objective Hybrid PSO-KH Algorithm

6.1 Introduction

In this chapter, trade-offs in deployment of phaswasurement units (PMUs) and
intelligent electronic devices (IEDs) for stateiragition in distribution networks in presence
of wind generators are presented. Due to the sstichaature, the output of each wind
generator is modeled using Weibull distributiondtion. In the optimization problem the
objective functions considered to be minimized theetotal cost of PMUs and IEDs as well
as the root mean square (RMS) value of state etstimarror. Since the objectives are in
conflict, a multi-objective Pareto-based non-dortedasorting algorithm has been employed
to get a compromise solution. To get the best agtsolution, multi-objective hybrid PSO-
Krill Herd algorithm has been used. Furthermoreg ttandom variation in loads and
generators is also considered to check the rahabaf the proposed meter placement
technique. The viability of the proposed algorithas been tested on IEEE 69-bus system and
Practical Indian 85-bus system to validate the Iltesiarhe results obtainettave been
compared with Particle Swarm Optimization (PSOJ)|lkterd (KH) algorithm and also with
well known Non-dominated sorting genetic algorittSGA-I1).
6.2 Distribution system state estimation in presence of PMUsand | EDs

Basically, distribution networks are monitored iy due to insufficient real time
measurement data. Therefore, the knowledge abeutsyktem is obtained from a priori
information along with some limited real time mea&suents. The a priori information is
nothing but historical customer load data and knoasnpseudo-measurement. The real
measurements are obtained from PMUs and IEDs. tate sstimation, the well established
Weighted Least Square (WLS) algorithm has been @yepl to minimize the following

objective function:
J = [zh (X)]"W [zh(x)] 6.1)
Subjectto:z = h(x)+r 2.

where z is the measurement vectox,represents system state vector consisting of branch
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current magnitudes and phase angla(sg) is a nonlinear measurement function of system

state variables and represents a small Gaussian noise\dhds the covariance matrix.

For better estimation accuracy, PMUs have been@raglalong with IEDs for online
monitoring of the distribution networks. Therefoeemixed approach has been considered
which includes measurements from PMUs and IEDs\t@ece the state estimation accuracy
of an active distribution network. A mathematicadael for state estimation based on PMUs
and IEDs data is described below.

There are different types of measurements suchulastation measurement, pseudo-
measurement; virtual measurement, smart meter mement and phasor measurement
obtained from PMU which have been utilized for stastimation in distribution networks.
Additionally, it is assumed that, PMU installed aaparticular bus provides voltage phasor
measurements of that bus.

For state estimation, branch current based stditea®on (BC-DSSE) algorithm has
been used where branch current magnitudes andptih@se angles are considered as states of
the distribution system [40]. The initial values tbe state variables are assumed as discussed
in [41] and the WLS based iterative process has bmmnducted to estimate the state
variables.

The estimated value of the state variablat (k +1)"iteration can be expressed as
follows:

X1 = X + G (X, )_1|_H (xi )TW_lJ[Z‘h(Xk )| (6.3)
whereH represents the Jacobian matrix, which is calcdlbtetaking the partial derivative of
each non-linear measurement functib{x) with respect to each state variabdeand G
represents the gain matrix given by

Glxy ) = H (% )" WH(x, ) (6.4)

The inverse of the covariance matvikcan be defined as

s 0 0 0 0 0
0 Wis 0 0 0 0
wiz O 0 Wowure 0 0 0
0 0 0 Wowimg O 0
0 0 0 0 s 0
0 0 0 0 0 W' 6.5)

The subscripts in eq. (6.55 IED, P and V represent substation measurement, IED

128



Chapter 6 Rdbuster Placement using Hybrid PSO-KH Algorithm

measurement, pseudo-measurement and virtual measureespectively. In eq. (6.5,
and W,,, represent the covariance matrix of the IED measargs and phasor

measurementdV represents the covariance matrix. The error vectan be expressed as:

zs —hg (X) |
Zgp ~higp (X)
[ = Zpomureal ~ hPMU,reaI (X)
Zomuimag hPMU,imag (X) (6.6)
Zp = e (x)
z,~h, (x)

In this work, it is assumed that IEDs are used éasuare real and reactive power flows
in a line and PMUs are incorporated to measureagelfphasors at a bus. According to state
estimation theory [23], the diagonal elements @& #mror covariance matrix represent the
estimation variances of the states and mathemigtitéd can be expressed as follows:

Ep =G (&)

_ _T A
Furthermore, this can be expressedasE,(x.x )=E,(x -x)?. Where E,, is the error

covariance matrix,E,is the operator of statistical expectatidh,is the gain matrix and

A

X=X—-X.

6.3 Mathematical model of the proposed meter placement technique

The proposed meter placement problem is designedM®OP. The objective is to
determine the optimal number and location of PMW #8D in a distribution network to
achieve minimum cost as well as ensure error withim predefined threshold limit. The
objective functions considered ar@:the total cost of PMUs angi) IEDs, and(iii) the RMS
value of state estimation error. Since, the objesticonsidered are conflicting in nature, the
meter placement problem can be designed as muyéicte Pareto based optimization

problem [88]-[89]. Mathematically, it can be exmed as:

Minimize
nl
‘]1 :ZCIED,i' PIED,i (6-8)
i=1
"]2 = ZCPMU,i' I:)PMU,i (@')

i=1
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2

L L o
J3—E;\/n—ZEX(X xij (6.10)

vV oj=1
The constraints considered for this optimizatioobbem is the maximum relative deviations

in voltage and the angle estimates are to be witl@rspecified limits in 95% of the operating

scenarios as follows:

VARSVAS
ST 1x100< 1 (6.11)

a
i

5'6\_ est

o7

x100 < 5 (6.12)

whereJ;, J, andJ; are the three objectives, represents number of state variables and

[}
indicates the total number of lines in a distribatnetwork, x is the state variable anxlis

the estimated value of the state variableIn eq. (6.8) and (6.9)C,, and CpMU are
respectively, the relative cost of an IED and PMR),and B,,, are treated as binary

decision vectors i.e. the presence and absencenetex in a line or at a bus is indicated by 1

or 0,v.2and g2 is the actual or true value of bus voltage magnitude and angles and ¢ =

represents the estimated valud "tbus respectively and in eg. (6.11) and (6.h2)jenotes
total number of operating scenarios.

In practice, the cost of the measurement devicpsrais on the application scenarios.
Generally, the cost of a PMU is more than thaheflED; therefore, in this study, the relative
cost of PMU and IED are considered as 1.0pu anguO.@&spectively.

6.4 Solution methodology

To find the optimal solution of the proposed MOG#3ctibed in Section 6.3, a hybrid
PSO-KH algorithm has been used and is describéullawss.

6.4.1 Krill Herd Algorithm (KHA)

The Krill Herd algorithm is a population based Imgpired algorithm. It is based on
the herding behavior of the Krill swarms searcHmgfood. The fitness of each Kirill particle
depends on the distance of it from food locatiod density of the swarms in the search space
[84]. According to the theory, the Krill swarms ays try to build high density in the search
space and move their positions due to mutual efféldtiree effects are produced which are
local effect due to local Krill density, a targéteet and finally a repulsive effect during their

movement towards the optimal solution. The movenoérgach Krill particle in the search
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space is based on three actions:

a) Induced motion

b) Foraging motion and

C) Random diffusion of the Krill individuals

The Lagrangian model of the Krill herd algorithman n dimensional decision space
can be described as:

ﬁz'VIi"'Fi"'Di
dt

whereL; is the position of i" particle, M,is the induced motionF represents foraging

motion and D is the random diffusion of thé" particle. The details about the Krill herd
algorithm have been discussed in chapter 3.
6.4.2 PSO

The PSO algorithm is a population based swarmligésice algorithm. It mimics the
behavior of birds flocking in search of food in arficular area. Initially no bird has
information about the exact location of the foodthe search area [50]-[51]. The flock of
birds follows the bird nearest to the food locatwinich is called the best solution among all
birds looking for food. Each solution in PSO reg@s a bird which is called as a particle in
the search space. In each generation of the optiioiz algorithm the fithess value of each
individual is evaluated using a fitness functioheTvelocity of each particle is updated based
on the current best position of the particle ingdbarch space. Each individual particle knows

its best position so far callepbest and each individual knows also the informationulibe
best value so far in the group calpest. Each particle tries to update its position udimg
information provided below:

. The distannce betweempbest and current position of the particle

. The distance betweegbest and current position of the same particle

Based on this the modification in the velocity atk particle is expressed as follows:

vi™ = wv/ +Cjrand, x (pbest, - p) + C,rand, x (gbest - p{) (6.13)

Pt = e+ ()1

where

V-k

¥ Velocity of i" particle atk™ iteration
W Weighting function
C,, C, Learning factors
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rand Random number between 0 and 1

pk Position of" particle atk™iteration

pbest  Personal best af" particle atk™iteration

goest  Best position of the group

6.4.3 Optimal placement of PMU and IED using multi-objective hybrid PSO-KH
algorithm
Since the objectives are conflicting in nature; siiaultaneous optimization needs a
compromised solution because each objective imtbdel is conflicting with one another.
Therefore, to achieve a better compromise soldigtween the objectives, Pareto based non-
dominated sorting approach has been implementestates that, in a non-dominated Pareto
front all solutions are equally important becausesnlution is dominating the other in the
population. In MOOP, the solution relies on a detther solutions. Therefore, Pareto based
non-dominated sorting technique has been employgd kybrid PSO-KH algorithm to
achieve best trade-offs solution between the obgxt Furthermore, a trade-off solution
between the total cost of PMU and IED needed fer dbcurate state estimation is to be
determined using multi-objective hybrid PSO-KH algon. The pseudo code of the hybrid
PSO-KH algorithm is presented as follows.
Stepl. Initialization: Initialize the parameterstioé PSO and KH algorithm such as:
D™ Maximum diffusion speed
M M Maximum induced speed

W, Inertia of the foraging motion
Vv Foraging speed
C,, C, Learning factors

Step 2. Initialize random solutions:

1) Randomly generate number and location of PMU aml ftif each solution in
the population.
Step 3. Objective functions evaluation:

1) Evaluate the objectives);,J, and J,for each solution based on the position of

PMUs and IEDs
2) Calculate the fitness value of each solution usieghting approach.
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3) Use non-dominated sorting (NDS) and crowding distaf€D) method to sort
the solution in ascending order.
4) Calculate the best and worst particles in the patpn.
Step 4. Generate new Kiill individuals using PSO.
Step 5. Calculate the following motions for eaclilkmdividual such as:
1) Induced motions
2) Foraging motions
3) Physical diffusions
Step 6. Update position of the Krill individuals.
Step 7. Genetic operator: For further improvementthe solution apply crossover and
mutation operator to update the solutions.
Step 8. Repeat steps 3-7 for maximum number Katitans.
Step 9. Use fuzzy theory to obtain best compronssdation between the objectives [95].

Post-procession of the results

In the beginning of the optimization process, thigial solutions i.e. the number and
locations of PMUs and IEDs are generated randonitlyinvthe search space. Each solution
represents the combinations of a number of PMUsIEbg as well as their locations. Based

on each combination of PMUs and IEDs, the objediimetions),, J,are evaluated and, is

calculated using BC-DSSE algorithm. Then, amongptiygulation the best and worst Krill is
obtained using weighting approach. Basically, € tteights represent the trade-offs between
the objective functions, then the original unitstd objective functions are retained. It is not
required to transfer them between 0 and 1. Indase all weights are assumed to be equal to
1. All objective values are retained with theirgomal units without transferring them between
0 and 1. Furthermore, the sum of all the objectigedetermined to know the best and worst
solutions. In order to achieve better performaribe, solutions are updated using PSO
algorithm. In PSO, the PMU and IED’s positions apelated using equations (13)-(14). After
the positions are updated using PSO, three mosachk as induced motion, foraging and
diffusion motion are calculated for each Krill pele using Krill herd algorithm.
Furthermore, during fitness evaluation, the comstisaviolation checking needs to be carried
out. For each combination of PMU and IED, the reéafpercentage error in bus voltage
magnitude and angle estimate is determined usingté&/Garlo trial. For each combination of
PMUs and IEDs in a solution, if in 95% of the siameld cases, the estimated relative errors
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are below the threshold limits, then for that solutthe objective functions are evaluated and
stored. On the contrary, if it is not within thegkhold limit, then for that particular solution,
a higher value of objective is to be assigned. plamicular solution can be eliminated during
the next immediate generation. Then, genetic operare used to update the solutions. After
updating the solutions, the above steps are rapeatdil all the solutions in a given
population size are in first front. The convergendeerion for the algorithm to stop is, when
all the solutions are reached in optimal Paretotfrmurve. To get the best solution in the
optimal Pareto front fuzzy theory has been usedl [[@5the optimization process population
sizes of different values like 20, 30 and 50 haserbtried. But, it has been found that there is
no such significant variation in the result whekirig different population sizes for IEEE 69-
bus system and Indian 85-bus system. Finally, allatipn size of 20 has been fixed for to
reduce the computational time of the algorithm.
6.5 Test and Simulation Conditions

The following test and simulation conditions haweeb considered for analyzing the
performance of the proposed state estimation fatimr and algorithm in MATLAB 2014b
environment. To estimate the system state (braoctert magnitude and angle) BCDSSE
algorithm has been employed. The measurement datgeaerated by adding small Gaussian
noise of 1%, 3% and 5% to the actual or refereradlaevof the quantity of interest to be
measured. There are different kinds of measurenuamisidered for state estimation such as:
substation measurement, pseudo-measurement, reelureenent and virtual measurement
[75]. It is assumed that, the former two types @fasurements give information about real
and reactive power injections at the buses. ThHemeasurements are obtained from IEDs and
PMUs, and it is assumed that IED gives informatabiout real and reactive power flows in a
line and PMU provides the information about bustagé phasors. Furthermore, the
measurement uncertainties are considered based tiigomaximum percentage of error
associated with each type of measurement [75].iffloemation about the measurement data
are provided below:

1) Substation Measurements: The measurements thablieted from the substation are
called as default measurements. Generally, theatidis measurements are considered
to have high accuracy and therefore, in this tésetror has been chosen for substation
measurements.

2) Real measurements: The measurements obtained ED® and PMUs are taken as

real measurements. In this test, different accuraatyes have been chosen for IEDs
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measurements. For IEDs, the maximum allowable ewasidered is 1%, 3% and 5%
respectively. In case of PMU (synchronized measargg), the maximum allowable
error of 0.7% have been considered.

3) Pseudo-measurements: Basically, the pseudo-measntenare obtained from the
historical customer load data and the errors astatiwith the pseudo-measurements
are relatively very high. Thus, the maximum peraget of error assumed for this is
50% [75].

4) Virtual-measurements: The measurements at the ingrotion buses are treated as
virtual measurements with a low variance of 194].

In this study, for better visualization, randomiatons in loads and generators have
been considered. Different operating scenariosianalated by considering the load demands
and generators output as stochastic variable fotigwuhe Gaussian distribution around the
mean value with prefixed standard deviation. Moeepvthe impact of measurement
uncertainties on state estimation performance basa btudied using Monte-Carlo simulation.
There are 1000 different network states generasgtguMonte-Carlo simulation from each
network condition to study the impact of measuremamcertainties on state estimation
performance. The total number of operating conditionsidered is 100. A standard deviation
of £10% of the base value is assumed for each tipgreondition. All parameter values used
for specific algorithms are provided in Table 6ridalso the DG capacities are shown in
Table 6.2 respectively [97]-[98]. The parametersi®aised for model the wind generators are
provided in Table 6.3. The Weibull distribution fuion has been used for predicting the
wind speed based on the data collected from théoiNdt Renewable Energy laboratory
(NREL) site [101].

Table 6.1 Parameter values of KH, PSO and NSGAgtrghm

KHA PSO NSGA-II
Population size=20 Population size=20 Populatine=20
D™ (maximum diffusion speed) C,=2, C,=2 Crossover rate (»=0.8
(1[0.002 0.01]
C:O[0, 2] W,=0.9, W, =0.4 | Mutation rate (M)=0.02
v, (foraging speed)=0.02rils Maximum Maximum
generations=20 generations=20
w; (inertia of the foraging - -
motion) =0.9
M ™ (maximum induced - -
speed)=0.025ns
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Table 6.2 Wind generators base case value anddcations

Test system Bus Number DG capacity in MW
(Base value)
IEEE 69-bus system 50 0.180
61 0.270
Practical Indian 85+ 45 0.277
bus system 61 0.290

Table 6.3 Parameters value for wind generators

Parameters
Cut-in speedy;,) = 3m/sec
Cut out speedy, )= 25m/sec
Rated speedv( )= 10.28m/sec

6.5.1 Modelling of wind generator output using Weibull distribution

In this work, all DGs are considered as wind getoerand output of each DG is
modeled using Weibull distribution function, sinaénd speed is stochastic in nature [96].
Furthermore, it is assumed that DGs are producimy ceal power to the network. The

Weibull probability density function over a periofitime is expressed as follows:

f) =N exp @, 0<v<m
c’'c (6)15

where k and ¢ are indicated as shape and scale factor of thd speed respectively. The
wind speed is representedVasFor different value of k and ¢ the PDF of the Wi

distribution function is shown in Figure 6.1.
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(a) (b)
Figure 6.1 Variations of wind speed for (a) k=1 @npk=3
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The value of the shape and scale factor of a wertkator depends on the location
and geographical condition where it is situatedesehparameters are determined using mean
and variance of the wind speed over a period o ti@nce the characteristic of wind speed is
known, the output of wind generator can be deteedhinsing the following transformation

discussed below:

0; O<v<y,
_ Pr[v_v"‘ J vV, SV<V,
P = V. = Vi,
r? r < SVO
0; V>V, (6.16)

In the above equationy,, v,and v, are indicated as cut-in speed, cut-out speed and

rated speed of the wind respectively and theirevdtw a specific data has been provided in

Table 6.3. The rated output power of the wind gatoers represented Bs Several methods

are available to determine the value &fand c. One of the widely used approximations is
mean wind speed and standard deviation approachsify this approach the value &fand
c is determined as follows:
o,

k=)

c=112u (6.18)
where g represents standard deviation and the mean wind speed respectively.
6.5.2 Simulation result and discussions

The optimal location of PMU and IED is determinadaistandard IEEE 69 bus system
and also in a practical distribution network sushiradian 85 bus radial distribution network
discussed below.
6.5.2.1 |EEE 69 bus system

A standard IEEE 69-bus, 12.66kV radial distributioetwork has been considered to
test the effectiveness of the proposed algorithirimcludes 69 buses, 68 lines along with 48
loads and two DGs injected at bus number 50 and’b&.DGs locations are selected based
on to achieve minimum power loss in the networke Tretwork data are obtained from
[99].The total load of the system is 3.802MW an@92MVAr respectively. In this system
there are 21 buses where there is no source oridoemhnected. Therefore, these are treated
as zero injection buses. The real and reactive pavections at the zero injection buses are
assumed as virtual measurements with higher dedraecuracy level.
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Table 6.4 Optimal location of PMU and IED in IEEE Bus active distribution system.

Maximum Maximum relative
Metrological Objective functions relative percentage error in
Error of Algorithm | PMUs location IEDs location value percentage | voltage angle (%)
IEDs (Bus number) (Line number) error in
] J, Js voltage
magnitude (%)
Proposed 4,14,21,36 1,13
PSO_KH 12 4 0.0099 0.3037 6.0436
KH 68 1,4,9,12,21,43,51,53,66 5.4 | 0.0101 0.4435 .8210
1% PSO 29,30,34,48, 67 1,2,4,17,23 K 5 0.01p4 0.3911 .0118
NSGA-Il | 31,64 1,3,4,5,9,21,26 4.2 2 0.010p 0.4679 .6661
Proposed 43,61,68 1,2,4,15,40 3 3 0.0114 0.3645 7.1719
PSO_KH
KH 40 1,2,4,6,13,16,20,22,
3% 27,33,62 6.6 1 0.0129 0.4911 8.7581
PSO 22,28,35,45,63, 1,2,4,6,1012,18
65 4.2 6 0.0126 0.4111 10.9431
NSGA-II 12,14,43 1249 2.4 3 0.0144 0.4723 9.2314
Proposed 9,35 1,35 18 2 0.0135 0.3956 7.3410
PSO_KH
KH 63 1,3,26,35,38,53,62 4.2 1 0.014p 0.5567 8.9465
5%
PSO 54,63,64 1,2,21,25,30,46,51,5 5.4 3 0.0161 310.5 10.0124
NSGA-II 12,14,43 1249 2.4 3 0.015 0.6077 9.5469

The obtained results using the PSO-KH algorithm eandifferent measurement

uncertainties have been shown in Table 6.4. Tre tatmber of PMU and IED required for

guality state estimation results are also providet@iable 6.4. It is seen that when 1% error is
considered for IED measurements and 50% for pseusksurement, the total configuration
cost is 5.2pu using hybrid PSO-KH and the RMS valustate estimation error is 0.0099pu.
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Similarly, in case of KH, PSO and NSGA-II, the {atast obtained is 6.4pu, 8pu and 6.2pu.
The RMS values of state estimation error obtainethgy KH, PSO and NSGA-II are
0.0101pu, 0.0124pu and 0.0105pu respectively. Eurtbre, the optimal Pareto fronts
between the objectivekl, J, andJ; have been shown in Figure 6.2. The optimal nuraber
location of PMUs and IEDs are obtained from theropt Pareto fronts for their respective
algorithms using fuzzy theory [36]. From the figsirét is worth noticing that the global
optimal Pareto fronts has been achieved using tyB8O-KH algorithm due to its higher
degree of balance between the exploration and gapém during the search process. In most
of the cases it is seen that, IEDs are placed at feaders to reduce the state estimation error
and the combination of IEDs and PMUs provide be#elution to improve the state
estimation accuracy in the modern active distrdouthetworks. Additionally, the maximum
relative percentage error in voltage magnitude pinase angle under all the measurement
uncertainty cases is also provided in Table 6.&heck the reliability of the respective
algorithm.

The test has been carried out by considering 3%b&aérror in IEDs along with 50%
error in pseudo-measurements. The obtained rdsaNes been reported in Table 6.4 and also
the optimal Pareto front plots are shown in Fighu®and 6.4 respectively. It is seen that, the
total cost of the configuration is slightly incredsbecause of more noise has been added to
IEDs. In 3% error case, the total number of PMU #8l0 required is 3 and 5 respectively.
The RMS value of state estimation error obtainddl@4.14pu using hybrid PSO-KH. Though,
the total meter cost using NSGA-II is slightly lekan hybrid PSO-KH, but the RMS value of
state estimation error is 0.0144pu which is moemthybrid PSO-KH. This is due to the fact
that the locations of meters also have an impacstate estimation accuracy. Similarly, in
case of 5% error also the total cost of metersgubiybrid PSO-KH algorithm is less than
other algorithms considered in this chapter. Furtloge the state estimation error is less as
compared to other algorithms. In these cases atwo,performance of hybrid PSO-KH
algorithm is found to be better than all other alipon used in this work. The main advantage
of using this multi-objective meter placement taghe is that the operator can obtain a best
compromised or a trade-off solution between thedhbjes to minimize the cost as well as the
state estimation error. Basically, the selectioropfimal solution depends on the decision
maker. Fuzzy theory has been used to find the bastpromised solution between the
objectives. Generally, meter placement techniques wsed for planning study of the
distribution systems. Therefore, computational es&t complexity of the proposed technique
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does not have significant impact on planning stuafythe distribution system. The
computational cost can be reduced if less numb&tarfte-Carlo (MC) trials is considered in
simulation study. However, if MC value is high th@ere accurate results can be expected.
6.5.2.2 Practical Indian 85 Bus System

The effectiveness of the proposed algorithm, hae bken tested on a large scale
practical Indian 85-bus, 11kV radial distributioatwork. The system includes of 85 nodes,
84 lines along with two wind generators at bus nemdb and 61 respectively. The DGs
locations are selected based on to achieve minipaonver loss in the network. This system
carries a total load of 2.574 MW and 2.622 MVArrtRermore, it includes 26 zero injection

buses. The line and load data of the system asenaat from [100].
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Figure 6.6(c) Optimal Pareto fronts between thedbjes d and J for 3% error IED

Figure 6.7(a) Optimal Pareto fronts between thedabjes J and J for 5% error IED
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The simulation results for Indian 85 bus systermgighe hybrid PSO-KH algorithm under
different operating conditions have been shown abld@ 6.5. When the IEDs accuracy is
considered as 1%, the total configuration costd4ed using hybrid PSO-KH. The RMS value of
state estimation error is 0.0105pu. In case of RBO and NSGA-II, the total cost is 4.8pu,

8.2pu and 4.4pu and the average RMS value of estimarrors obtained are 0.0123pu,
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0.0105pu and 0.0142pu respectively. Furthermore, dptimal Pareto fronts between the
objectives);, J, andJ; have been shown in Figure 6.5. From the figutds,seen that the global
optimal Pareto fronts has been achieved using tbpoged algorithm due its higher degree of
balance between the exploration and exploitatioinduhe search process.

Moreover, to test the efficiency of the proposegbathm, different metrological error of
the IEDs have been considered such as 3% and 5%g aldth 50% error in pseudo-
measurements and the obtained results have beerte@gpn Table 6.5 and Figure 6.6 to 6.7
shows the optimal Pareto fronts between the olestilt is observed that the total configuration
cost is increased because of more noise has béed adlED measurements. It is worth noticing
that the performance of the proposed hybrid PSOaljdrithm is found to be more superior than
all other algorithms used in this work due to itgher degree of balance between the
intensification and diversification capability. 8% error case, the total number of PMU and IED
required is 3 and 6 respectively. The RMS valustafe estimation error obtained is 0.0113pu
using hybrid PSO-KH. Though, the total meter cashg KH is slightly less than hybrid PSO-
KH, but the RMS value of state estimation errdd.i3126pu which is more than hybrid PSO-KH.
This is due to the fact that the locations of ngetalso have an impact on state estimation
accuracy. Similarly, in case of 5% error also tbh&alt cost of meter using hybrid PSO-KH
algorithm is less than other algorithms consideasdwvell as the state estimation error is less
compared to other algorithms used. The main adgané this meter placement model is trade-
offs between the PMU and IED can be determinecttince the total configuration cost of the

distribution network.
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Table 6.5 Optimal location of PMUs and IEDs in bai85-bus active distribution system

Maximum Maximum
Metrological Objective functions relative relative
Error of Algorithm PMUs location IEDs location value percentage percentage
IEDs (Bus number) (Line number) error in error in
Ji N J3 voltage voltage
magnitude angle
(%) (%)
Proposed 34,84 1,35,33
PSO_KH 24 2 0.0105 0.2731 5.7831
KH 22,77,81 1,3,36 1.8 3 0.0128 0.4743 9.1354
1% PSO 33,61,79,82 1,2,6,9,19,27,39 42 4 0.0104 ©.387 9.3199
NSGA-II 42,54 1,4,11,24 2.4 2| 0.0142 0.2981 9.4891
Proposed 69,70,76 1,6,8,21,32,68 3.6 3 0.0113 0.3213 6.9834
PSO_KH
KH 33,68 1,4,6,9,25,30
3% 3.6 2 0.0126 0.3987 9.6646
PSO 9,42,54,71,76,82 1,2,6,8
2.4 6 0.0141 0.4011 11.0341
NSGA-II 66,72,79 1,2,4,18,24,28,30,3Y, 6 3 0.0138 0.3887 8.3455
41,44
Proposed 31,50,56 1,2,6,10,26 3 3 0.0132 0.3665 8.0103
PSO_KH
KH 1,6,8,18,21,32,68, 76 6 1 0.0148 0.5121 9.0245
5% 69,70,75
PSO 81 1,5,17,29,31,49,68,18 5|4 1 0.0147 0.5769 .3421
NSGA-Il | 8,26,29,36,47,69,7 1,3 1.2 r 0.0153 0.6613| 10.8759

6.6 Comparison Resultsanalysis

In this section, a comparison study has been choug between all the algorithms used in
this thesis such as proposed hybrid PSO-KH andich{DA-IPM, PSO, KH, EDA and NSGA-
[l algorithms. The performance of all the algorithris tested on IEEE 69-bus system and
practical Indian 85-bus system. It is assumed #llaDGs are generating real power to the
network and two DGs are injected at bus 50 an61HEE 69-bus system and at bus 45 and 61
for Indian 85-bus system. Furthermore a trade-offiteon is obtained between PMU and IED
deployment in both the test cases. The optimalt®dirents for three objectivess, J, and J; is
provided in Figure 6.8, 6.9 and 6.10 respectiv&lye obtained results are also shown in Table
6.6 and 6.7 respectively. It is seen that in mdghe cases the proposed algorithms are more
superior than the conventional algorithms consdierethis thesis for comparison purpose. In
some the cases it is also seen that proposed EDAdRorithm is dominating PSO-KH

algorithm in objectives, andJj,. Therefore, the proposed algorithms can be usedthe

planning study of the distribution networks.
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6.6.1 Comparison resultsanalysis of |EEE 69-bus system
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Figure 6.10(a): Optimal Pareto fronts between thjeaives J and J for 5% error in IED

Figure 6.10(b): Optimal Pareto fronts between thieaives J and J for 5% error in IED
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Table 6.6 Optimal location of PMUs and IEDs in IEE® bus active distribution system

Maximum Maximum
relative relative
Metrological PMUs location Objective function(s) | percentage errof percentage
errors Algorithm (Bus number) IEDs location value in voltage error in
(Line number) RN b % magnitude voltage
(%) angle (%)
EDA-IPM
27 1,2,10 1.8 1 | 0.0103 0.2777 6.1936
EDA-SA 27,67 1,4,8,10,18,20 3 P 0.0144 0.4962 81321
EDA 45,48,59 1,3,54 1.8 K 0.018B 0.3211 10.897B
1% NSGA-II 68 1,2,48,56,61 3 4 0.0144 0.3786 9.4631
PSO-KH 41,43 1,2,4,29 24 2 | 0.0097 0.2947 5.9761
KH 37,38,50,54,57, 1,3,4,26 2.4 6| 0.0142 0.3762 6.8746
59
PSO 3,14,20,32,35,38 4 16 6.6 2| 0.0152 0.4827 7.3241
7,49,59,60,66
EDA-IPM 15,27,36,50,58 1,48 1.8 5 | 0.0106 0.3645 7.3719
EDA-SA 50,64 1,3,4,13,16,19, 0.4216 8.7546
23,30,34,50,56 6.6 4 0.013p
EDA 20,23,50,53,59,64 1,2,5,10,11,13, 0.4056 11.9871
54 4.2 6| 0.0153
NSGA-II 43,48,68 1,3,4,8,11,15,24, 4.8 3| 0.0143 0.3927 9.7632
3% 62
PSO-KH 56 1,3,39,48,49 3 1 | 0.0109 0.3216 7.1243
KH 58,62 1,3,18,32,56 3 . 0.015[ 0.4312 7.4374
PSO 49,56,59,64 1,3,5,8,11,15,1f7, 5.4 4| 0.0173 0.4139 8.4612
39,41
EDA-IPM 45,67 1,3,23,25,29,57,6 42 2 | 0.0152 0.3625 8.1910
5
EDA-SA 43,65,67 1,3,6,7,16,20,| 7.2 3 | 0.0170 0.5089 9.0935
38,49,56,58,60,
63
EDA 52,64 1,3,4,6,13,14,17, 7.8 2 0.0198 0.5897 11.0124
19,21,23,29,41,
5% 56
NSGA-II 60,62,65 1,3,6,10,38,50 6 3 | 0.0173 0.6083 10.5739
52,54,56,57
PSO-KH 61,68 1,2,3,7,10,18,33, 4.8 2 | 0.0152 0.4437 7.9537
54
KH 30,37,62,65 1,2,3,15,27, 3 4 0.018B 0.5139 9B34
PSO 27,29,35 1,3,5,7,9,11,21 4.3 3 0.0205 0.5823 8.0482
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6.6.2 Comparison results analysis of Practical Indian 85-bus system

Table 6.7 Optimal location of PMU and IED irdian 85-bus active distribution system

Maximum Maximum
Objective functions value relative relative
Metrological | Algorithm PMUs location |IEDs location percentage | percentage
Error of (Bus number) (Line number) error in error in
IEDs N J Js voltage voltage
magnitude angle
(%) (%)
Proposed
EDA-IPM 50,54 1,7 1.2 2 0.0096 0.3179 7.5437
EDA-SA 81 15,27 1.6 1 0.014¢ 0.367: 8.982:
1% EDA 40,57,62 1,6,32 1.8 3 0.0129 0.3781 10.8239
NSGA-II 72,76 1,4,5,26,34 3 2 0.0160 0.3364 8.4772
PSO-KH 76 1,2,53,56 24 1 0.0094 0.3341 6.9823
KH 11,53,66 1,3 1.2 3 0.0143 0.4127 8.1124
Proposed
EDA-IPM 36,67,71 1,4,5,25,67 18 3 0.0126 0.3649 6.9723
1,7,8,10,12,29,32,
EDA-SA 42,68,70 34,36,46,60,65 7.2 3 0.0155 0.3438 8.2674
1,3,6,7,15,30,
EDA 77 38,41,48,72 6 1 0.0188 0.4126 11.3037
3% 1,4,5,16,28,42,
NSGA-II 49,76 57,68 4.8 2 0.0178 0.3986 9.9721
PSO-KH 53,56,73,77 1,2 1.2 0.013p 0.3708 7.012
KH 27,31,58,60 1,4,7,12 24 0.0158 0.4498 8.88¢
Proposed
EDA-IPM 42,74 1,3,5,8,31,60 3.6 2 0.0144 0.4023 8.0593
1,4,5,13,20,
EDA-SA 78,83 22,26,66,75 5.4 2 0.0186 0.4821 7.7331
1,2,3,7,12,15,
50 EDA 67,73,78,83 21,32,48,49 6 4 0.0197 0.4872 11.0241
’ 1,345,69,11,12,23
NSGA-II 76,81,84 25,33,51,67,71,74 9 3 0.0152 0.5673 12.7671
PSO-KH 23,25,71 1,459 24 0.0144 0.4629 7.892
KH 34,56,60,67,69,71 1,2,5,6,24 3 0.0160 0.5371 4531
6.7 Summary

This chapter formulated a new MOOP to find an optitnade-offs in PMUs and IEDs
deployment for state estimation in active disthittnetworks. A hybrid PSO-KH algorithm has
been used to find the optimal number and locatibrP®IUs and IEDs for accurate state
estimation. Furthermore, different uncertaintiegeleof measurement devices, load variations as
well as presence of wind generators are takendatwsideration for testing the robustness and
reliability of the state estimator. The performante¢he hybrid PSO-KH algorithm is tested on a
standard IEEE 69-bus system as well as Indian 85slgstem. The obtained results using hybrid
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PSO-KH algorithm are compared with the conventidfidl algorithm, NSGA-II and also with
PSO algorithm. It is found that the PSO-KH algaritis more efficient, reliable and robust under
various operating conditions and metrological cbemastics of the measurement devices.
Moreover, the performance of the proposed algorithfiound to be more superior than all other
algorithms used in this work in most of the caddsnce, the proposed multi-objective based
meter placement technique can be used for the iplgramd monitoring of the smart distribution
networks.
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Chapter 7

Conclusions

7.1 General

In this thesis, an optimal allocation of measurement devices such as power flow meters,
Phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for distribution
system state estimation has been investigated using new multi-objective hybrid evolutionary
algorithms. Furthermore, the optimal locations of the measurement devices are obtained both in
passive as well as active distribution network under various operating scenarios. This chapter
presents in brief the important findings proposed in this thesis while also discussing future

extension of the proposed research work.
7.2 Summary of important findings

This chapter presents the overall conclusion of the research work presented in this thesis
and future scope of the research work. The following conclusions have been arrived at from the

research carried out and reported in previous chaptersin this thesis.

(i) The overall objective of the research is to find the optima number and location of the power
flow meters to improve the estimation accuracy of the state estimator in distribution

networks.

» First of al, a multi-objective optimization model is designed to find optima number and
location of power flow meters to improve the accuracy of the state estimator in passive as
well as active distribution networks.

* A new hybrid PSO-KH optimization algorithm has been proposed to find the optimal
number and location of the power flow metersin distribution networks.

» Various operating scenarios are considered in this optimization problem, such as
variations in load power demand, generator output and metrological characteristics of the
measurement devices.

» A trade-off solution between the relative errors in voltage and phase angle estimates is
established with the tota cost of meters in a multi-objective framework to achieve best

compromise solution between the cost and state estimation errors.
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Furthermore, the impacts of DG on state estimation accuracy has also been discussed.
The effectiveness of the proposed hybrid PSO-KH algorithm is tested on IEEE 69-bus
system and Indian 85-bus distribution system. The competitive results obtained using the
proposed algorithm is compared with the existing agorithm such as PSO, KH and
NSGA-II under various operating scenarios of the distribution networks.

It has been verified that the proposed algorithm is reliable and robust with respect to
different metrological characteristics of the devices and load variations. Moreover, it can
guarantee getting a near globa optimal solution. Therefore, the proposed approach of
meter placement technique can be used for planning the study of smart distribution

networks.

(i) A new hybrid EDA-IPM agorithm has been proposed to find optimal number and locations

of power flow metersin presence of various kinds of DGsin distribution networks.

The hybridization of traditional EDA with IPM is done to improve the local searching
capability of the EDA.

The best optimal trade-off solution between the objective functions such as cost and state
estimation error is established. Moreover, the impact of different kinds of DGs on state
estimation accuracy has also been presented under various operating scenarios such as
variations in load power demand, generator output and metrological characteristics of the
measurement devices.

The proposed multi-objective hybrid EDA-IPM agorithm based meter placement
technique is tested on IEEE 69-bus system and practical Indian 85-bus distribution
network. The results obtained using the proposed hybrid EDA-IPM agorithm have been
compared with some existing algorithm in literature such as PSO, EDA and NSGA-II
under various operating conditions of the distribution systems.

It is reported that the proposed algorithm is robust, reliable and much superior to existing

algorithms considered in this research.

(iii) To further improve the estimation accuracy of the state estimator, advance measuring

devices such as PMU and |ED have been considered in this thesis.

A new multi-objective optimization model has been developed to find an optimal trade-
offsin PMUs and | EDs deployment for state estimation in active distribution networks.
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A new hybrid EDA-IPM agorithm is proposed to find the optimal number and location
of PMUs and IEDs required for accurate state estimation. The local searching capability
of the classical EDA agorithm is improved by hybridizing the Interior point method
(IPM). The hybridization of EDA and IPM brings a balance between exploration and
exploitation capability of the a gorithm during the search process.

Various operating scenarios are considered, such as variations in load power demand,
generator output and metrological characteristics of the measurement devices.

The performance of the proposed hybrid EDA-IPM agorithm has been tested on IEEE
69-bus system as well as on Indian 85-bus system. The results obtained using hybrid
EDA-IPM agorithm are compared with the conventional EDA, NSGA-II and also with
EDA-simulated annealing a gorithm available in the literature.

(iv) The robustness of the proposed meter placement technique in presence of wind generators

in distribution networks has a so been investigated in this thesis.

The optimal trade-offs in PMUs and 1EDs deployment for accurate state estimation in
distribution networks is proposed.

A hybrid PSO-KH algorithm has been used to find the optimal number and location of
PMUs and |IEDs for accurate state estimation.

Furthermore, different levels of uncertainty of measurement devices, load variations as
well as presence of wind generators have been taken into consideration for testing the
robustness and reliability of the state estimator. The output of wind generators is modeled
using Weibull probability distribution function.

The performance of the hybrid PSO-KH agorithm is tested on IEEE 69-bus system as
well as on Indian 85-bus system. The results obtained using the proposed hybrid PSO-KH
algorithm are compared with the conventional KH agorithm, NSGA-II and aso with
PSO. It is found that the PSO-KH algorithm is more efficient, reliable and robust under

various operating conditions and metrological characteristics of the measurement devices.

7.3 Scope for futurework

In this thesis, the optimal allocation of measurement devices such as power flow meters,

PMU and IED for distribution system state estimation has been investigated using multi-

objective hybrid evolutionary agorithms. My research in future can be extended on the

following aspects:
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» Accurate, adaptive and efficient feeder modeling and DSSE methodol ogies for wide area
monitoring and coping with the active nature of the distribution network can be
investigated in future.

» Data synergy and fusion techniques for exploiting a large amount of heterogeneous data
in DM S environment can be incorporated in DSSE study.

» Communication infrastructures, big data and edge computing techniques to tackle the
problem of efficiently collecting and coordinating the measurement results in state
estimation can be contemplated for future research.

* A globa and multi-level state estimation concept can be utilized for better interaction

between distribution and transmission system operators.
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Appendix
| EEE 69-bus Distribution System Data
Number of buses: 69
Number of lines: 68
Bus voltage: 12.66kV
Tota active power load: 3.80MW
Tota reactive power load: 2.69 MW
System active power loss: 0.226MW

System reactive power loss: 0.098MVAR
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Figure A.1 Single-line diagram of | EEE 69-bus system

Table A.1 Line data of |EEE 69-bus distribution system

Line No. From To R X
(inpu) | (inpu)
1 1 2 3.12E-06 | 7.49E-06
2 2 3 3.12E-06 | 7.49E-06
3 3 4 9.36E-06 | 2.25E-05
4 4 5 0.00016 | 0.00018
5 5 6 0.00228 | 0.00116
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6 6 7 0.00238 | 0.00121
7 7 8 0.00058 | 0.00029
8 8 9 0.00031 | 0.00016
9 9 10 0.00511 | 0.00169
10 10 11 0.00117 | 0.00039
11 11 12 0.00444 | 0.00147
12 12 13 0.00643 | 0.00212
13 13 14 0.00651 | 0.00215
14 14 15 0.0066 0.00218
15 15 16 0.00123 | 0.00041
16 16 17 0.00234 | 0.00077
17 17 18 2.93E-05 | 9.98E-06
18 18 19 0.00204 | 0.00068
19 19 20 0.00131 | 0.00043
20 20 21 0.00213 0.0007
21 21 22 8.73E-05 | 2.87E-05
22 22 23 0.00099 | 0.00033
23 23 24 0.00216 | 0.00071
24 24 25 0.00467 | 0.00154
25 25 26 0.00193 | 0.00064
26 26 27 0.00108 | 0.00036
27 3 28 2.75E-05 | 6.74E-05
28 28 29 0.0004 0.00098
29 29 30 0.00248 | 0.00082
30 30 31 0.00044 | 0.00015
31 31 32 0.00219 | 0.00072
32 32 33 0.00524 | 0.00176
33 33 34 0.01066 | 0.00352
34 34 35 0.0092 0.00304
35 3 36 2.75E-05 | 6.74E-05
36 36 37 0.0004 0.00098
37 37 38 0.00066 | 0.00077
38 38 39 0.00019 | 0.00022
39 39 40 1.12E-05 | 1.31E-05
40 40 41 0.00454 | 0.00531
41 41 42 0.00193 | 0.00226
42 42 43 0.00026 0.0003
43 43 44 5.74E-05 | 7.24E-05
44 44 45 0.00068 | 0.00086
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45 45 46 5.62E-06 | 7.49E-06
46 4 47 2.12E-05 | 5.24E-05
47 47 48 0.00053 0.0013
48 48 49 0.00181 | 0.00442
49 49 50 0.00051 | 0.00126
50 8 51 0.00058 0.0003
51 51 52 0.00207 0.0007
52 9 53 0.00109 | 0.00055
53 53 54 0.00127 | 0.00065
54 54 55 0.00177 0.0009
55 55 56 0.00176 | 0.00089
56 56 57 0.00992 | 0.00333
57 57 58 0.00489 | 0.00164
58 58 59 0.0019 0.00063
59 59 60 0.00241 | 0.00073
60 60 61 0.00317 | 0.00161
61 61 62 0.00061 | 0.00031
62 62 63 0.00091 | 0.00046
63 63 64 0.00443 | 0.00226
64 64 65 0.0065 0.00331
65 11 66 0.00126 | 0.00038
66 66 67 2.93E-05 | 8.73E-06
67 12 68 0.00461 | 0.00153
68 68 69 2.93E-05 | 9.98E-06

Table A.2 Load data of |EEE 69-bus distribution system

Bus P Q
No. (inpu) | (inpu)
1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0.0026 | 0.0022
7 0.0404 0.03
8 0.075 0.054
9 0.03 0.022
10 0.028 0.019
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11 0.145 0.104
12 0.145 0.104
13 0.008 | 0.0055
14 0.008 | 0.0055
15 0 0
16 0.0455 0.03
17 0.06 0.035
18 0.06 0.035
19 0 0
20 0.001 | 0.0006
21 0.114 0.081
22 0.0053 | 0.0035
23 0 0
24 0.028 0.02
25 0 0
26 0.014 0.01
27 0.014 0.01
28 0.026 | 0.0186
29 0.026 | 0.0186
30 0 0
31 0 0
32 0 0
33 0.014 0.01
34 0.0195 | 0.014
35 0.006 0.004
36 0.026 | 0.0186
37 0.026 | 0.0186
38 0 0
39 0.024 0.017
40 0.024 0.017
41 0.0012 | 0.001
42 0 0
43 0.006 | 0.0043
44 0 0
45 0.0392 | 0.0263
46 0.0392 | 0.0263
47 0 0
48 0.079 | 0.0564
49 0.3847 | 0.2745
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50 0.3847 | 0.2745
51 0.0405 | 0.0283
52 0.0036 | 0.0027
53 0.0043 | 0.0035
54 0.0264 | 0.019
55 0.024 | 0.0172
56 0 0
57 0 0
58 0 0
59 0.1 0.072
60 0 0
61 1.244 0.888
62 0.032 0.023
63 0 0
64 0.227 0.162
65 0.059 0.042
66 0.018 0.013
67 0.018 0.013
68 0.028 0.02
69 0.028 0.02

Practical Indian 85-bus Distribution System Data

Number of buses: 85

Number of lines: 84

Busvoltage: 11kV

Tota active power load: 2.5708MW
Tota reactive power load: 2.6218 MW

System active power loss: 0.3136MW

System reactive power loss: 0.134MVAR
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Figure A.2 Single-line diagram of Indian 85-bus system

Table A.3 Line data of Indian 85-bus distribution system

Line From To R X
No. (inpu) | (inpu)
1 1 2 0.0009 | 0.0006
2 2 3 0.0013 | 0.0009
3 3 4 0.0018 | 0.0012
4 4 5 0.0009 | 0.0006
5 5 6 0.0036 | 0.0025
6 6 7 0.0022 | 0.0015
7 7 8 0.0099 | 0.0068
8 8 9 0.0009 | 0.0006
9 9 10 0.0049 | 0.0034
10 10 11 0.0045 | 0.0031
11 11 12 0.0045 | 0.0031
12 12 13 0.0049 | 0.0034
13 13 14 0.0022 | 0.0015
14 14 15 0.0027 | 0.0018
15 2 16 0.006 | 0.0025
16 3 17 0.0038 | 0.0016
17 5 18 0.0068 | 0.0028
18 18 19 0.0053 | 0.0022
19 19 20 0.0038 | 0.0016
20 20 21 0.0068 | 0.0028
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21 21 22 0.0128 | 0.0053
22 19 23 0.0015 | 0.0006
23 7 24 0.0075 | 0.0031
24 8 25 0.0038 | 0.0016
25 25 26 0.003 | 0.0012
26 26 27 0.0045 | 0.0019
27 27 28 0.0023 | 0.0009
28 28 29 0.0045 | 0.0019
29 29 30 0.0045 | 0.0019
30 30 31 0.0023 | 0.0009
31 31 32 0.0015 | 0.0006
32 32 33 0.0015 | 0.0006
33 33 34 0.0068 | 0.0028
34 34 35 0.0053 | 0.0022
35 35 36 0.0015 | 0.0006
36 26 37 0.003 | 0.0012
37 27 38 0.0083 | 0.0034
38 29 39 0.0045 | 0.0019
39 32 40 0.0038 | 0.0016
40 40 41 0.0083 | 0.0034
41 41 42 0.0023 | 0.0009
42 41 43 0.0038 | 0.0016
43 34 44 0.0083 | 0.0034
44 44 45 0.0075 | 0.0031
45 45 46 0.0075 | 0.0031
46 46 47 0.0045 | 0.0019
47 35 48 0.0053 | 0.0022
48 48 49 0.0015 | 0.0006
49 49 50 0.003 | 0.0012
50 50 51 0.0038 | 0.0016
51 48 52 0.0113 | 0.0047
52 52 53 0.0038 | 0.0016
53 53 54 0.0045 | 0.0019
54 52 55 0.0045 | 0.0019
55 49 56 0.0045 | 0.0019
56 9 57 0.0023 | 0.0009
57 57 58 0.0068 | 0.0028
58 58 59 0.0015 | 0.0006
59 58 60 0.0045 | 0.0019
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60 60 61 0.006 | 0.0025
61 61 62 0.0083 | 0.0034
62 60 63 0.0015 | 0.0006
63 63 64 0.006 | 0.0025
64 64 65 0.0015 | 0.0006
65 65 66 0.0015 | 0.0006
66 64 67 0.0038 | 0.0016
67 67 68 0.0075 | 0.0031
68 68 69 0.009 | 0.0037
69 69 70 0.0038 | 0.0016
70 70 71 0.0045 | 0.0019
71 67 72 0.0015 | 0.0006
72 68 73 0.0098 | 0.0041
73 73 74 0.0023 | 0.0009
74 73 75 0.0083 | 0.0034
75 70 76 0.0045 | 0.0019
76 65 77 0.0008 | 0.0003
77 10 78 0.0053 | 0.0022
78 67 79 0.0045 | 0.0019
79 12 80 0.006 | 0.0025
80 80 81 0.003 | 0.0012
81 81 82 0.0008 | 0.0003
82 81 83 0.009 | 0.0037
83 83 84 0.0083 | 0.0034
84 13 85 0.0068 | 0.0028

Table A.3 Load data of Indian 85-bus distribution system

Bus P Q
No. (inpu) | (inpu)
1 0 0

2 0 0

3 0 0

4 0.056 | 0.0571
5 0 0

6 0.0353 | 0.036
7 0 0

8 0.0353 | 0.036
9 0 0
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10 0 0

11 0.056 | 0.0571
12 0 0

13 0 0

14 0.0353 | 0.036
15 0.0353 | 0.036
16 0.0353 | 0.036
17 0.112 | 0.1143
18 0.056 | 0.0571
19 0.056 | 0.0571
20 0.0353 | 0.036
21 0.0353 | 0.036
22 0.0353 | 0.036
23 0.056 | 0.0571
24 0.0353 | 0.036
25 0.0353 | 0.036
26 0.056 | 0.0571
27 0 0

28 0.056 | 0.0571
29 0 0

30 0.0353 | 0.036
31 0.0353 | 0.036
32 0 0

33 0.014 | 0.0143
34 0 0

35 0 0

36 0.0353 | 0.036
37 0.056 | 0.0571
38 0.056 | 0.0571
39 0.056 | 0.0571
40 0.0353 | 0.036
41 0 0

42 0.0353 | 0.036
43 0.0353 | 0.036
44 0.0353 | 0.036
45 0.0353 | 0.036
46 0.0353 | 0.036
47 0.014 | 0.0143
48 0 0
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49 0 0

50 0.0363 | 0.037
51 0.056 | 0.0571
52 0 0

53 0.0353 | 0.036
54 0.056 | 0.0571
55 0.056 | 0.0571
56 0.014 | 0.0143
57 0.056 | 0.0571
58 0 0

59 0.056 | 0.0571
60 0 0

61 0.112 | 0.1143
62 0.056 | 0.0571
63 0.014 | 0.0143
64 0 0

65 0 0

66 0.056 | 0.0571
67 0 0

68 0 0

69 0.056 | 0.0571
70 0 0

71 0.0353 | 0.036
72 0.056 | 0.0571
73 0 0

74 0.056 | 0.0571
75 0.0353 | 0.036
76 0.056 | 0.0571
77 0.014 | 0.0143
78 0.056 | 0.0571
79 0.0353 | 0.036
80 0.056 | 0.0571
81 0 0

82 0.056 | 0.0571
83 0.0353 | 0.036
84 0.014 | 0.0143
85 0.0353 | 0.036
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