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ABSTRACT 

The power distribution networks are becoming more dynamic and complex structures 

than before, because of the huge integration of renewable sources, distributed energy storage, 

intelligent electronic devices (IED) and Smart meters (SMs). Furthermore, distribution network 

configuration is also changing dynamically to achieve minimum power loss and voltage 

deviations. Due to lack of metering infrastructure in distribution networks, real time reliable 

monitoring of the system becomes more challenging for power engineers. Therefore, the 

currently existing metering infrastructure of the distribution network needs to be modeled for 

reliable and secure operation of the system. Thus, the overall objective of the thesis is to design 

an efficient optimization model and algorithm for optimal allocation of measurement devices to 

improve the state estimation accuracy for real time monitoring and control of the smart 

distribution networks. 

The contributions of this thesis are as follows: 

• A new multi-objective hybrid PSO-Krill Herd (KH) algorithm is proposed to optimize 

number and location of the measurement devices for accurate state estimation in smart 

distribution networks. Three objectives that need to be minimized are: (i) the total 

configuration cost (ii) the average relative percentage error (APE) of bus voltage magnitude 

and (iii) APE of bus voltage angle. As the objective functions conflict with respect to each 

other, a multi-objective Pareto-based non-dominated sorting hybrid PSO-KH optimization 

algorithm is proposed. In this approach, the random variation in loads and the metrological 

error of the measurement devices are also taken into account. Furthermore, the impacts of DG 

on state estimation performance have also been investigated.  

• A new multi-objective hybrid Estimation of distribution algorithm (EDA)-interior point 

method (IPM) algorithm is proposed to obtain the optimal location of measuring devices for 

state estimation in active distribution networks. The objective functions to be minimized are, 

the total network configuration cost, the average relative percentage error (APE) of bus 

voltage magnitude and angle estimates. As the objectives are conflicting in nature, a multi-

objective Pareto-based non-dominated sorting EDA has been proposed. Moreover, due to 

poor exploitation capability of the EDA, it is hybridized with IPM to improve its local 

searching ability in the search space. The hybridization of EDA and IPM brings a higher 

degree of balance between the exploration and exploitation capability of the algorithm during 
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the search process. Furthermore, the loads and generators are treated as stochastic variable 

and the impact of different types of DGs on state estimation performance has also been 

investigated.  

• In distribution grids, due to the presence of different kinds of actors such as distributed 

generation (DG), energy storage devices systems become more complex, dynamics and 

uncertain in nature. Because of this changing behavior of actors, real-time monitoring and 

control becomes more challenging task for the power system engineers. Thus, PMUs are of 

great interest because they provide synchronized measurements of voltage and current. The 

application of PMU for state estimation in transmission system has been widely used to 

improve the performance of the state estimator. Therefore it would be more advantageous to 

use PMU in DSSE. Therefore, in this thesis, a novel multi-objective optimization problem is 

proposed to find trade-offs in deployment of phasor measurement units (PMUs) and 

intelligent electronic devices (IEDs) for state estimation in active distribution networks. A 

new hybrid estimation of distribution algorithm (EDA) has been used to find the optimal 

number and location of measurement devices such as PMUs and IEDs for accurate state 

estimation. The objective functions to be minimized in this optimization problem are the total 

cost of PMUs and IEDs, as well as RMS value of state estimation error. Since, the objectives 

are conflicting in nature, a multi-objective Pareto-based non-dominated sorting EDA 

algorithm is proposed. Moreover, to improve the local searching capability of the traditional 

EDA algorithm, the Interior point method (IPM) is hybridized with EDA to get near global 

optimal solution. Furthermore, the random variation in loads and generators is also 

considered to check the reliability of the proposed meter placement technique.  

• The robustness of the proposed multi-objective optimization model in presence of wind 

generators is also carried out in this thesis. All the DGs are considered as wind generators and 

the output of each DG is modeled using Weibull distribution function. Furthermore, trade-

offs in deployment of phasor measurement units (PMUs) and intelligent electronic devices 

(IEDs) for state estimation in active distribution networks is obtained. The objective functions 

considered to be minimized are the total cost of PMUs and IEDs as well as the RMS value of 

state estimation error. To get best optimal solution, multi-objective hybrid PSO-Krill Herd 

algorithm has been used. Moreover, the random variation in loads and generators is also 

considered to check the reliability of the proposed meter placement technique.  



 

ix 

 

Contents 
Acknowledgements ........................................................................................................................v 

Abstract .........................................................................................................................................vi 

List of Figures ............................................................................................................................xiii 

List of Tables ................................................................................................................................xx 

Abbreviations .............................................................................................................................xxii 

List of Symbols .........................................................................................................................xxiiv 

Chapter 1   Introduction ...............................................................................................................1 

          1.1 State Estimation Overview ........................................................................................2 

          1.2 Distribution System State Estimation (DSSE) ..........................................................5 

      1.2.1 Evolution of distribution systems .....................................................................5 

                      1.2.2 Characteristics of Distribution Systems ............................................................7 

               1.3 Weighted Least Square (WLS) based State Estimation .............................................8 

                      1.3.1 Measurement Model .........................................................................................9 

                      1.3.2 Mathematical Model of the WLS Method ........................................................9                         

               1.4  Branch Current Based Distribution System State Estimation(BC-DSSE) ..............10 

                      1.4.1 Measurement functions h(x) and Jacobian Matrix Formulation H(x) ............11 

                      1.4.2. BC-DSSE Algorithm .....................................................................................13 

               1.5 Meta-heuristic Optimization Algorithm……………………………………………14 

               1.6 Phasor Measurement Units (PMUs)…...…………………………………………...15 

               1.7 Intelligent Electronics Devices (IEDs)….………………………………………….15 

Chapter 2 Literature Review ......................................................................................................16 

               2.1 General Overview......................................................................................................17 

                     2.1.1 DSSE based on conventional WLS method ....................................................17 

                     2.1.2 DSSE based on load modeling.........................................................................18 

                     2.1.3 DSSE based on computational intelligence and heuristic techniques .............19 

                     2.1.4 DSSE based on meter placement technique ....................................................20 

               2.2 Motivation .................................................................................................................22 

               2.3 Contribution ..............................................................................................................23 

               2.4 Thesis Organization ..................................................................................................24 

               2.5 Summary …………………………………………………………………………...27 



 

x 

 

Chapter 3 Optimal Allocation of Measurement Devices for Distribution System State 

Estimation Using Multi-objective hybrid PSO-Krill H erd Algorithm ..............28 

                3.1 Introduction ..............................................................................................................29 

                3.2 Problem Formulation ...............................................................................................30 

                3.3 Krill Herd Algorithm (KHA) ...................................................................................32 

                      3.3.1 Lagrangian Model of the KHA .......................................................................32 

                               3.3.1.1 Induced movement of Krill individuals...............................................32 

                               3.3.1.2 Foraging motion...................................................................................32 

                               3.3.1.3 Physical diffusion................................................................................33 

                      3.3.2 Movement process in KHA.............................................................................33 

                      3.3.3 Genetic operator...............................................................................................33 

                               3.3.3.1 Cross over............................................................................................33 

                               3.3.3.2 Mutation ..............................................................................................34 

                3.4 Proposed Hybrid PSO-KH algorithm ......................................................................34 

                3.5 Proposed Multi-objective Hybrid PSO-KH algorithm ............................................35 

                      3.5.1 Non-dominated sorting approach ...................................................................35 

                      3.5.2 Crowding distance ..........................................................................................36 

                3.6 Robust Optimal Meter Placement in Distribution Networks ...................................39 

                3.7 Test and Simulation Conditions ...............................................................................40 

                      3.7.1 Fuzzy set theory……………………………………………………………...42 

                      3.7.1 IEEE 69 bus system ........................................................................................43 

                      3.7.2 Practical Indian 85 bus system .......................................................................51 

                3.8 Summary...................................................................................................................58 

Chapter 4 A Multi-objective Hybrid Estimation of Di stribution Algorithm-Interior Point 

Method based Meter Placement for Active Distribution State Estimation ........59 

                4.1 Introduction ..............................................................................................................60 

                4.2 Problem Formulation ...............................................................................................60 

                4.3 Solution Methodology .............................................................................................62 

                      4.3.1 Estimation of Distribution Algorithm (EDA) .................................................62 

                      4.3.2 Interior Point Method (IPM) ...........................................................................62 

                      4.3.3 Proposed Multi-objective Hybrid EDA-IPM algorithm .................................63 



 

xi 

 

                4.4 Test and Simulation Conditions………………........................................................67 

                       4.4.1. IEEE 69 bus system ......................................................................................69 

                          4.4.2 Practical Indian 85-bus System ..................................................................77 

                  4.5 Comparison results analysis ……………………………………………………..85 

                          4.5.1 Comparison results analysis of IEEE 69-bus system……………………..86 

                          4.5.2 Comparison result analysis of practical Indian 85-bus system……………92 

                  4.6 Summary……………………………………………………………………….....98 

Chapter 5 Trade-offs in PMU and IED Deployment for Active Distribution State    
Estimation Using Multi-objective Hybrid EDA-IPM Alg orithm ........................99 

                  5.1  Introduction .........................................................................................................100 

                  5.2  Distribution system state estimation in presence of PMUs and IEDs ................101 

                  5.3 Mathematical Model of the Proposed Multi-objective Optimization Problem 

(MOOP) ...........................................................................................................103 

                  5.4 Solution Methodology .........................................................................................104 

                         5.4.1 Estimation of Distribution Algorithm (EDA) ............................................104 

                         5.4.2 Interior Point Method (IPM) ......................................................................105 

                         5.4.3 Proposed Multi-objective Hybrid EDA-IPM algorithm ............................106 

                  5.5 Test and Simulation Conditions ...........................................................................109 

                          5.5.1 IEEE 69-bus system ..................................................................................112 

                          5.5.2 Practical Indian 85-bus System ................................................................118 

                   5.5 Summary………………………………………………………………………..124 

Chapter 6 Robust Meter Placement for Distribution System State Estimation in Presence of 
Wind Generators using Multi-objective Hybrid PSO-KH Algorithm………...126 

                                      6.1  Introduction ........................................................................................................127 

                                               6.2  Distribution system state estimation in presence of PMUs and IEDs ................110 

                  6.3  Mathematical model of the proposed meter placement technique .....................129 

                  6.4  Solution Methodology ........................................................................................130 

                          6.4.1 Krill Herd Algorithm (KHA) ....................................................................130 

                          6.4.2 Particle Swarm Optimization (PSO) .........................................................131 

                          6.4.3 Optimal placement of PMU and IED using Multi-objective Hybrid PSO-

KH Algorithm............................................................................................132 



 

xii 

 

                  6.5  Test and Simulation Conditions ..........................................................................134 

                         6.5.1 Modelling of wind generator output using Weibull distribution................136 

                         6.5.3 Simulation result and discussions...............................................................137 

                                  6.5.3.1 IEEE 69 bus system .......................................................................137 

                                  6.5.3.2 Practical Indian 85 bus System ......................................................144 

                  6.6 Comparison results analysis…………………………………………………….150 

                         6.6.1 Comparison results of IEEE 69-bus system……………………………...151 

                         6.6.2 Comparison results of Practical Indian 85-bus system…………………...157 

                  6.7 Summary………………………………………………………………………...157 

Chapter 7 Conclusions…………………...……………………………………………………159 

                   7.1 General…..……………………………………………………………………...160 

                   7.2 Summary of important findings………………………………………………...160 

                   7.2 Scope for Future Work…………………………………………………………162 

References ...................................................................................................................................164 

Appendix……..............................................................................................................................174 

Publications ................................................................................................................................184 

Curriculum Vitae .......................................................................................................................185 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

 

List of Figures 

Figure 1.1:            Flow chart of the typical power system state estimator………………………..4 

Figure 1.2:            Schematic representation of Energy Management System (EMS)…………….5 

Figure 3.1:            Flow chart of the proposed hybrid PSO-KH algorithm……………………....38 

Figure 3.2(a):     Optimal Pareto-front between no. of flow meters and 3F  for 1% error in real 

measurements and 50% in pseudo-measurements…………………………....44 

Figure 3.2(b):     Optimal Pareto-front between no. of flow meters and 2F  for 1% error in real 

measurements and 50% in pseudo-measurements…………………………....45 

Figure 3.2(c):   Optimal Pareto-front between objectives 2F  and 3F  for 1% error in real 

measurements and 50% in pseudo-measurements…………………………....45 

Figure 3.3(a):      Optimal Pareto-front between no. of flow meters and 2F  for 3% error in real 

measurements and 50% in pseudo-measurements…………………………....46 

Figure 3.3(b):     Optimal Pareto-front between no. of flow meters and 3F  for 3% error in real 

measurements and 50% in pseudo-measurements…………………………....46 

Figure 3.3(c):   Optimal Pareto-front between objectives 2F  and 3F  for 3% error in real 

measurements and 50% in pseudo-measurements…………………………....47 

Figure 3.4(a):     Optimal Pareto-front between no. of flow meters and 2F  for 5% error in real 

measurements and 50% in pseudo-measurements…………………………....47 

Figure 3.4(b):     Optimal Pareto-front between no. of flow meters and 3F  for 5% error in real 

measurements and 50% in pseudo-measurements…………………………....48 

Figure 3.4(c):   Optimal Pareto-front between objectives 2F  and 3F  for 5% error in real 

measurements and 50% in pseudo-measurements…………………………....48 

Figure 3.5(a):     Optimal Pareto-front between no. of flow meters and 2F  for 1% error in real 

measurements and 50% in pseudo-measurements…………………………....54 

Figure 3.5(b):     Optimal Pareto-front between no. of flow meters and 3F  for 1% error in real 

measurements and 50% in pseudo-measurements…………………………....54 

Figure 3.5(c):   Optimal Pareto-front between objectives 2F  and 3F  for 1% error in real 

measurements and 50% in pseudo-measurements…………………………....55 



 

xiv 

 

Figure 3.6(a):     Optimal Pareto-front between no. of flow meters and 2F  for 3% error in real 

measurements and 50% in pseudo-measurements…………………………....55 

Figure 3.6(b):     Optimal Pareto-front between no. of flow meters and 3F  for 3% error in real 

measurements and 50% in pseudo-measurements…………………………....56 

Figure 3.6(c):   Optimal Pareto-front between objectives 2F  and 3F  for 3% error in real 

measurements and 50% in pseudo-measurements…………………………....56 

Figure 3.7(a):     Optimal Pareto-front between no. of flow meters and 2F  for 5% error in real 

measurements and 50% in pseudo-measurements…………………………....57 

Figure 3.7(b):     Optimal Pareto-front between no. of flow meters and 3F  for 5% error in real 

measurements and 50% in pseudo-measurements…………………………....57 

Figure 3.7(c):   Optimal Pareto-front between objectives 2F  and 3F  for 5% error in real 

measurements and 50% in pseudo-measurements…………………………....58 

Figure 4.1:             Flowchart of the proposed multi-objective hybrid EDA-IPM algorithm…….65 

Figure 4.2(a):       Optimal Pareto front between objectives F3 and F2 (1% error in real and 50% in 

pseudo-measurements)……………………………………………………….71 

Figure 4.2(b):      Optimal Pareto front between number of flow meters and F2 (1% error in real 

and 50% in pseudo-measurements)…………………………………………..72 

Figure 4.2(c):      Optimal Pareto front between number of flow meters and F3 (1% error in real 

and 50% in pseudo-measurements)…………………………………………..72 

Figure 4.3(a):       Optimal Pareto front between objectives F3 and F2 (3% error in real and 50% in 

pseudo-measurements)……………………………………………………….73 

Figure 4.3(b):      Optimal Pareto front between number of flow meters and F2 (3% error in real 

and 50% in pseudo-measurements)…………………………………………..73 

Figure 4.3(c):      Optimal Pareto front between number of flow meters and F3 (3% error in real 

and 50% in pseudo-measurements)…………………………………………..74 

Figure 4.4(a):      Optimal Pareto front between number of flow meters and F2 (5% error in real 

and 50% in pseudo-measurements)…………………………………………..74 

Figure 4.4(b):      Optimal Pareto front between number of flow meters and F3 (5% error in real 

and 50% in pseudo-measurements)…………………………………………..75 



 

xv 

 

Figure 4.5(a):      Optimal Pareto front between number of flow meters and F2 (1% error in real 

and 50% in pseudo-measurements)…………………………………………..79 

Figure 4.5(b):      Optimal Pareto front between number of flow meters and F3 (1% error in real 

and 50% in pseudo-measurements)…………………………………………..79 

Figure 4.5(c)         Optimal Pareto front between objective F2 and F3 (1% error in real and 50% in 
pseudo-measurements)……………………………………………………….80 

Figure 4.6(a):      Optimal Pareto front between number of flow meters and F2 (3% error in real 

and 50% in pseudo-measurements)…………………………………………..80 

Figure 4.6(b):     Optimal Pareto front between number of flow meters and F3 (3% error in real 

and 50% in pseudo-measurements)…………………………………………..81 

Figure 4.6(c)         Optimal Pareto front between objective F2 and F3 (3% error in real and 50% in 
pseudo-measurements)……………………………………………………….81 

Figure 4.7(a):      Optimal Pareto front between number of flow meters and F2 (5% error in real 

and 50% in pseudo-measurements)…………………………………………..82 

Figure 4.7(b):      Optimal Pareto front between number of flow meters and F3 (5% error in real 

and 50% in pseudo-measurements)…………………………………………..82 

Figure 4.7(c)         Optimal Pareto front between objective F2 and F3 (5% error in real and 50% in 

pseudo-measurements)……………………………………………………….83 

Figure 4.8(a):    Optimal Pareto fronts between the objectives F2 and F3 for 1% error in real 

meters and 50% in pseudo-measurements……………………………………86 

Figure 4.8(b):      Optimal Pareto fronts between no. of power flow meters and the objective F2 

for 1% error in real meters and 50% in pseudo-measurements………………87 

Figure 4.8(c):      Optimal Pareto fronts between no. of power flow meters and the objective F3 

for 1% error in real meters and 50% in pseudo-measurements………………87 

Figure 4.9(a):    Optimal Pareto fronts between the objectives F2 and F3 for 3% error in real 

meters and 50% in pseudo-measurements……………………………………88 

Figure 4.9(b):      Optimal Pareto fronts between no. of power flow meters and the objective F2 

for 3% error in real meters and 50% in pseudo-measurements………………88 

Figure 4.9(c):      Optimal Pareto fronts between no. of power flow meters and the objective F3 

for 3% error in real meters and 50% in pseudo-measurements………………89 



 

xvi 

 

Figure 4.10(a):   Optimal Pareto fronts between the objectives F2 and F3 for 5% error in real 

meters and 50% in pseudo-measurements……………………………………89 

Figure 4.10(b):     Optimal Pareto fronts between no. of power flow meters and the objective F2 

for 5% error in real meters and 50% in pseudo-measurements………………90 

Figure 4.10(c):     Optimal Pareto fronts between no. of power flow meters and the objective F3 

for 5% error in real meters and 50% in pseudo-measurements………………90 

Figure 4.11(a):   Optimal Pareto fronts between the objectives F2 and F3 for 1% error in real 

meters and 50% in pseudo-measurements……………………………………92 

Figure 4.11(b):     Optimal Pareto fronts between no. of power flow meters and the objective F2 

for 1% error in real meters and 50% in pseudo-measurements………………92 

Figure 4.11(c):     Optimal Pareto fronts between no. of power flow meters and the objective F3 

for 1% error in real meters and 50% in pseudo-measurements………………93 

Figure 4.12(a):    Optimal Pareto fronts between the objectives F2 and F3 for 3% error in real 

meters and 50% in pseudo-measurements……………………………………93 

Figure 4.12(b):     Optimal Pareto fronts between no. of power flow meters and the objective F2 

for 3% error in real meters and 50% in pseudo-measurements………………94 

Figure 4.12(c):     Optimal Pareto fronts between no. of power flow meters and the objective F3 

for 3% error in real meters and 50% in pseudo-measurements………………94 

Figure 4.13(a):   Optimal Pareto fronts between the objectives F2 and F3 for 5% error in real 

meters and 50% in pseudo-measurements……………………………………95 

Figure 4.13(b):     Optimal Pareto fronts between no. of power flow meters and the objective F2 

for 5% error in real meters and 50% in pseudo-measurements………………95 

Figure 4.13(c):     Optimal Pareto fronts between no. of power flow meters and the objective F3 

for 5% error in real meters and 50% in pseudo-measurements………………96 

Figure 5.1(a):      Optimal Pareto front between objective J1 and J2 (1% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..113 

Figure 5.1(b):      Optimal Pareto front between objective J1 and J3 (1% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..114 

Figure 5.1(c):      Optimal Pareto front between objective J2 and J3 (1% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..114 



 

xvii 

 

Figure 5.2(a):      Optimal Pareto front between objective J1 and J2 (3% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..115 

Figure 5.2(b):      Optimal Pareto front between objective J1 and J3 (3% error in IEDs and 50% 

for Pseudo-measurements)………………………………………………. …115 

Figure 5.2(c):      Optimal Pareto front between objective J2 and J3 (3% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..116 

Figure 5.3(a):      Optimal Pareto front between objective J1 and J2 (5% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..116 

Figure 5.3(b):      Optimal Pareto front between objective J1 and J3 (5% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..117 

Figure 5.3(c):      Optimal Pareto front between objective J2 and J3 (5% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..117 

Figure 5.4(a):      Optimal Pareto front between objective J1 and J2 (1% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..119 

Figure 5.4(b):      Optimal Pareto front between objective J1 and J3 (1% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..120 

Figure 5.4(c):      Optimal Pareto front between objective J2 and J3 (1% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..120 

Figure 5.5(a):      Optimal Pareto front between objective J1 and J2 (3% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..121 

Figure 5.5(b):      Optimal Pareto front between objective J1 and J3 (3% error in IEDs and 50% 

for Pseudo-measurements)………………………………………………. ....121 

Figure 5.5(c):      Optimal Pareto front between objective J2 and J3 (3% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..122 

Figure 5.6(a):      Optimal Pareto front between objective J1 and J2 (5% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..122 

Figure 5.6(b):      Optimal Pareto front between objective J1 and J3 (5% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..123  

Figure 5.6(c):      Optimal Pareto front between objective J2 and J3 (5% error in IEDs and 50% 

for Pseudo-measurements)…………………………………………………..123 

Figure 6.1:             Variations of wind speed for (a) k=1 and (b) k=3…………………………..136 



 

xviii 

 

Figure 6.2(a):       Optimal Pareto fronts between the objectives J1 and J2 for 1% error IED and 

50% in pseudo-measurements………………………………………………138 

Figure 6.2(b):       Optimal Pareto fronts between the objectives J1 and J3 for 1% error IED and 

50% in pseudo-measurements………………………………………………138 

Figure 6.2(c):      Optimal Pareto fronts between the objectives J2 and J3 for 1% error IED and 

50% in pseudo-measurements………………………………………………139 

Figure 6.3(a):      Optimal Pareto fronts between the objectives J1 and J2 for 3% error IED and 

50% in pseudo-measurements………………………………………………139 

Figure 6.3(b):       Optimal Pareto fronts between the objectives J1 and J3 for 3% error IED and 

50% in pseudo-measurements………………………………………………140 

Figure 6.3(c):        Optimal Pareto fronts between the objectives J2 and J3 for 3% error IED and 

50% in pseudo-measurements………………………………………………140 

Figure 6.4(a):       Optimal Pareto fronts between the objectives J1 and J2 for 5% error IED and 

50% in pseudo-measurements………………………………………………141 

Figure 6.4(b):      Optimal Pareto fronts between the objectives J1 and J3 for 5% error IED and 

50% in pseudo-measurements………………………………………………141 

Figure 6.4(c):      Optimal Pareto fronts between the objectives J2 and J3 for 5% error IED and 

50% in pseudo-measurements………………………………………………142 

Figure 6.5(a):       Optimal Pareto fronts between the objectives J1 and J2 for 1% error IED and 

50% in pseudo-measurements………………………………………………144 

Figure 6.5(b):       Optimal Pareto fronts between the objectives J1 and J3 and for 1% error IED 

and 50% in pseudo-measurements………………………………………….145 

Figure 6.5(c):      Optimal Pareto fronts between the objectives J2 and J3 for 1% error IED and 

50% in pseudo-measurements………………………………………………145 

Figure 6.6(a):      Optimal Pareto fronts between the objectives J1 and J2 for 3% error IED and 

50% in pseudo-measurements………………………………………………146 

Figure 6.6(b):       Optimal Pareto fronts between the objectives J1 and J3 and for 3% error IED 

and 50% in pseudo-measurements…………………………………………..146 

Figure 6.6(c):      Optimal Pareto fronts between the objectives J2 and J3 for 3% error IED and 

50% in pseudo-measurements………………………………………………147 



 

xix 

 

Figure 6.7(a):       Optimal Pareto fronts between the objectives J1 and J2 for 5% error IED and 

50% in pseudo-measurements………………………………………………147 

Figure 6.7(b):      Optimal Pareto fronts between the objectives J1 and J3 for 5% error IED and 

50% in pseudo-measurements………………………………………………148 

Figure 6.7(c):      Optimal Pareto fronts between the objectives J2 and J3 for 5% error IED and 

50% in pseudo-measurements………………………………………………148 

Figure 6.8(a):      Optimal Pareto fronts between the objectives J1 and J2 for 1% error IED and 

50% in pseudo-measurements………………………………………………151 

Figure 6.8(b):       Optimal Pareto fronts between the objectives J1 and J3 and for 1% error IED 

and 50% in pseudo-measurements………………………………………….151 

Figure 6.8(c):      Optimal Pareto fronts between the objectives J2 and J3 for 1% error IED and 

50% in pseudo-measurements………………………………………………152 

Figure 6.9(a):     Optimal Pareto fronts between the objectives J1 and J2 for 3% error IED and 

50% in pseudo-measurements………………………………………………152 

Figure 6.9(b):      Optimal Pareto fronts between the objectives J1 and J3 and for 3% error IED 

and 50% in pseudo-measurements…………………………………………..153 

Figure 6.9(c):     Optimal Pareto fronts between the objectives J2 and J3 for 3% error IED and 

50% in pseudo-measurements………………………………………………153 

Figure 6.10(a):     Optimal Pareto fronts between the objectives J1 and J2 for 5% error IED and 

50% in pseudo-measurements………………………………………………154 

Figure 6.10(b):     Optimal Pareto fronts between the objectives J1 and J3 for 5% error IED and 

50% in pseudo-measurements………………………………………………154 

Figure 6.10(c):     Optimal Pareto fronts between the objectives J2 and J3 for 5% error IED and 

50% in pseudo-measurements………………………………………………155 

 

 

 

 

 

 



 

xx 

 

List of Tables 
Table 3.1      Parameter values of KH, PSO and NSGA-II Algorithm…………………………...42 

Table 3.2      DG installation bus and capacity…………………………………………………...42 

Table 3.3   IEEE-69-bus system: optimal location of the power flow meters under different 

loadings including metrological errors of the flow meters…………………………50 

Table 3.4   IEEE 69-bus system: optimal location of the power flow meters under different 

loadings   including metrological errors of the flow meters (with two DGs at bus no. 

50 and 61)…………………………………………………………………………..51 

Table 3.5   Indian 85-bus system: Optimal location of the power flow meters under different 

loadings including metrological errors of the flow meters…………………………53 

Table 3.6   Indian 85-bus system: Optimal location of the power flow meters under different 

loadings including metrological errors of the flow meters ( with DGs at bus no. 45 

and 61)……………………………………………………………………………...53 

Table 4.1      Parameter values of PSO, NSGA-II and EDA algorithm…………………………..69 

Table 4.2      Distribution generation (DG) installation bus and capacity………………………..69 

Table 4.3     IEEE 69-bus system: The number and location of the power flow meters of different 

meter accuracy (with no DG)………………………………………………………75 

Table 4.4     IEEE 69-bus system: The number and location of the power flow meters of different 

meter accuracy (Type 1 DG at bus 50 and 61)……………………………………..76 

Table 4.5     IEEE 69-bus system: The number and location of the power flow meters in presence 

of type 2 and 3 DGs at bus 50 and 61……………………………………………..77 

Table 4.3    Indian 85-bus system: The number and location of the power flow meters of different 

meter accuracy (with no DG)………………………………………………………83 

Table 4.7    Indian 85-bus system: The number and location of the power flow meters of different 

meter accuracy (Type 1 DG at bus 45 and 61)……………………………………..84 

Table 4.8    Indian 85-bus system: The number and location of the power flow meters in presence 

of type 2 and 3 DGs at bus 45 and 61……………………………………………...85 

Table 4.9     IEEE 69-bus system: The number and location of the power flow meters of different 

meter accuracy (without DG)………………………………………………………91 

Table 4.10  Indian 85-bus system: The number and location of the power flow meters of different 

meter accuracy (without DG)………………………………………………………97 



 

xxi 

 

Table 5.1      Parameters used in EDA, NSGA-II and SA algorithm ………………………….111 

Table 5.2      Distribution generation (DG) installation bus and capacity………………………111 

Table 5.3      Optimal location of PMU and IED in IEEE 69-bus active distribution system…..118 

Table 5.4      Optimal location of PMU and IED in Indian 85-bus active distribution system…124 

Table 6.1      Parameter values of KH, PSO and NSGA-II algorithm…………………………..135 

Table 6.2      Wind generators base case value and their locations……………………………..136 

Table 6.3      Parameters value for wind generators…………………………………………….136 

Table 6.4      Optimal location of PMU and IED in IEEE 69-bus active distribution system…..142 

Table 6.5      Optimal location of PMUs and IEDs in Indian 85-bus active distribution system.150 

Table 6.6 Optimal location of PMUs and IEDs in IEEE 69- bus active distribution 

system………………………………………………………………......................156 

Table 6.6 Optimal location of PMUs and IEDs in Indian 85- bus active distribution 

system………………………………………………………………......................157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xxii 

 

Abbreviations 

APE                   Average relative percentage Error 

BC-DSSE          Branch Current Based Distribution System State Estimation 

DER                   Distributed Energy Resources 

DG                     Distributed Generation 

DP                      Dynamic Programming 

DSE                    Distribution State Estimation 

DSSE                 Distribution System State Estimation 

EDA                   Estimation of Distribution Algorithm 

EMS                   Energy Management Systems 

EV                      Electric Vehicle 

GA                      Genetic Algorithm 

IED                     Intelligent Electronic Devices 

IPM                    Interior-Point Method 

KH                      Krill Herd 

KKT                   Karush-Kuhn Tucker 

MASE                Multi-area State Estimation 

MC                     Monte-Carlo 

MOO                  Multi-objective Optimization  

MOOP                Multi-objective Optimization Problem 

NC                      Number of operating Condition 

NSGA-II            Non-Dominated Sorting Genetic Algorithm 

OOA                  Ordinal Optimization Algorithm 

PMU                   Phasor Measurement Unit 

PSO                    Particle Swarm Optimization 

PSO-KH             Particle Swarm Optimization- Krill Herd 

RMS                   Root Mean Square 

RTU                   Remote Terminal Unit 

SCADA              Supervisory Control and Data Acquisition 

SE                       State Estimation 



 

xxiii 

 

UTC                  Coordinated Universal Time 

VMM                Voltage Magnitude Measurement 

WLS                  Weighted Least Square 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xxiv 

 

List of Symbols 

n  Number of buses 

z  Measurement vector 

)(xh  Non-linear measurement function 

e  Small Gaussian noise 

)(xJ  Objective function of the weighted least square method 

iw  Weight associated with thi  measurement 

M        Number of objective functions 

W Covariance matrix of the measurements 

kx∆  Corrections at thk  iteration 

( )kxG  Gain Matrix at thk   iteration 

( )kxH  Jacobian Matrix at thk iteration 

kx  Value of the state variable x  at thk  iteration 

1+kx  Value of the state variable x  at thk )1( +  iteration 

x∆  Absolute value of the change in x  

∈ Tolerance limit 

kmP  Magnitude of real power flow in a line km  

kmQ  Magnitude of reactive power flow in a line km  

kV  Voltage Magnitude at thk  bus 

kmI  Current Magnitude in line km  

kδ  Voltage angle at thk  bus 

kmα  Impedance angle of the line km  

kmθ  Branch current angle of the line km  

kV
r

 Voltage phasor at thk  bus 

kP  Injected real power at  thk  bus 

kQ  Injected reactive power at  thk  bus 



 

xxv 

 

1+nV
r

 Voltage phasor at thn )1( +  bus 

0V
r

 Voltage phasor at reference bus 

Z
r

 Impedance of a line in phasor form 

1F  Total cost of Power flow meters and voltage magnitude meters 

2F  Average relative percentage error in bus voltage magnitude 

3F  Average relative percentage error in bus voltage angle 

iF  Foraging motion of the thi  particle 

ipf,C  Cost of a power flow meter in pu 

ipf,P  A binary decision variable represents present or absence of a power flow meter 

VMM,iC  Cost of a voltage magnitude meter in pu 

VMM,iP  A binary decision variable represents present or absence of a power flow meter 

a
iV  Actual value of the voltage magnitude at thi  bus 

est
iV  Estimated value of the voltage magnitude at thi  bus 

a
iδ  Actual value of the bus voltage angle at thi  bus 

est
iδ  Estimated value of the bus voltage angle at thi  bus 

iL  Position of the thi particle 

iM  Induced motion of the thi  particle 

iD  Random diffusion of the thi  Krill individuals 

maxM  Maximum induced speed 

nw  Inertia weight of the induced motion 

iα  Direction of the motion induced by thi   krill individual 

local
iα  Local effect produced by the neighbors 

target
iα  Target direction produced by the best krill individual 

fv  Foraging speed 

fw  Inertia weight of the foraging motion 

food
iφ  Food attractiveness 



 

xxvi 

 

best
iφ  Effect of the best fitness of the thi  Krills 

maxD  Maximum diffusion speed 

d  Random directional vector 

t∆  Time interval 

tC  Constant number between [0, 2] 

iu  Upper limits of thi  Krill individuals 

il  Lower limits of thi  Krill individuals 

jiL ,  Position of the thi  Component of the thj  Krill individual 

pC  Crossover probability 

best,K i  Best previously visited position of the thi   Krill individual 

pM  Crossover probability 

popsize  Population size 

( )xps  Probability that an individual being among the selected population 

)(xf  Objective function 

Ty  Dual variables 

µ  Barrier parameter 

( )xg  Inequality constraint       

C1 Learning factors 

C2 Learning factors 

maxW  Maximum value of weight used in PSO 

minW  Minimum value of weight used in PSO 

Mc Mutation rate in NSGA-II algorithm 

Pc Crossover rate in NSGA-II algorithm 

IEDW  Covariance matrix of the uncertainty of the IED measurement 

SW  Covariance matrix of the measurements obtained from substation 

PMUW  Covariance matrix of the uncertainty of measurements obtained from PMU 

PW  Covariance matrix of the pseudo-measurements 



 

xxvii 

 

VW  Covariance matrix of the virtual-measurements 

Sz  Substation measurements 

( )xhS  Non-linear measurement function of the substation measurements 

IEDz  Measurement vector of IED measurements
 

( )xhIED  Non-linear measurement function of the IED measurements 

PMU,h  Non-linear measurement function of the PMU measurements 

PMUz  Measurement vector of PMU measurements
 

Pz  Measurement vector of pseudo-measurements
 

( )xhP  Non-linear measurement function of the pseudo-measurements 

Vz  Measurement vector of virtual-measurements
 

( )xhV  Non-linear measurement function of the virtual-measurements 

xxE  Error covariance matrix 

xE  Operator of statistical expectation 

J1 Total cost of IED 

J2 Total cost of PMU 

J3 Average value of the RMS value of state estimation error 

.C IED  Cost of a IED in pu 

IEDP  Binary representation of the presence or absence of a IED 

.CPMU  Cost of a PMU in pu 

PMUP  Binary representation of the presence or absence of a PMU 

ipbest  Personal best of ith particle in PSO 

gbest  Global best solution 

k
iv  Velocity of ith particle at kth iteration 

 

 



Chapter 1 

 

 

 

 

 

 

 

Introduction 

 

 

 

 

 

 

 

 



Chapter 1                                                                                                                        Introduction 

2 

 

Chapter 1 

Introduction 

1.1  State Estimation Overview 

The development of the State Estimation (SE) methods for electrical power systems 

evolved in 1970s. The use of SE techniques was first introduced by Fred Schweppe to estimate 

the states of the transmission networks more accurately from available information. Schweppe 

proposed that SE is a combination of load flow and estimation theory based on statistics [1-3]. 

Fundamentally, SE is a data processing algorithm which processes raw data obtained from the 

field and network data such as line impedance and connectivity of the network etc., to produce 

accurate estimation of the operating state of a system. According to Schweppe, the operating state 

of an electrical power system can be determined after knowing the voltage magnitudes and angles 

at all the buses of the network. As, the rest of the quantities such as power flow in a line, losses 

and voltage drops can be computed. It provides an overall situational awareness of an electrical 

power system. 

Basically, SE provides a mathematical link between the system states such as bus voltage 

magnitudes and phase angles, and available measurements obtained from the meters deployed at 

the field. These measurement data are collected through Supervisory Control and Data 

Acquisition (SCADA) system installed at Energy Management System (EMS). In fact, these 

measurements are prone to errors due to the limited accuracy level of the measurement devices. 

Furthermore, while transferring the measurement data from the field to the control center, there 

may be a chance of communication errors, loss of telemetry data, presence of bad data and 

instrument failures. Therefore, the obtained measurement data should not be processed directly 

for taking controlling actions in a system. As a result, a suitable data processing technique is 

needed to filter out the errors intrinsically associated with measurements, to handle the possibility 

of communication failure and to remove any bad data if these are present in the measurement set. 

Hence, SE plays a very crucial role in EMS for real time monitoring, control and protection of 

electrical power systems. It acts as the heart of the energy management systems. 

Many researchers have proposed numerous state estimation techniques to enhance the 

estimation accuracy at the control centers. A comprehensive study on transmission system state 

estimation can be found in [4-6]. 
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In general, the main function of the state estimator in power system is shown in figure 

1.1. The functions of an estimator are as follows: 

1. Topology Processor: The function of the topology processor is to build the connectivity of 

the network by using the information about the status of the switches and circuit breakers in a 

network. It represents current topology of the system. 

2. Observability analysis: The measurements obtained from the grid are to be analyzed to see if 

the system is observable with the available measurements. If sufficient measurements are not 

available to make the system observable, then pseudo-measurements are used to maintain the 

redundancy level to make the system observable. SE can then be run to determine the status 

of the network. 

3. State estimation algorithm: It is a digital filtering algorithm which processes the raw data 

obtained from the field and produces reliable data. After estimating the states of the system 

various control actions are initiated at the control centre. 

4. Bad data detection and identification: After SE, this step is to be carried out to detect, 

identify and remove any bad data present in the measurement set. Basically, bad data are 

present due to the malfunctioning of the measuring instrument or communication errors. A 

bad data checking can also be performed before running the state estimation algorithm to 

immediately present the occurrence of bad measurements in the measurement set. 

The flow chart of the typical power system state estimator is shown in Figure 1.1. Each of 

the steps discussed above is an important function of the state estimator and the sequence of 

operation is shown in the flow chart. During the sequence of operation, if bad data or network 

topological error is detected, then SE algorithm has to be run repeatedly because these errors 

drastically reduces the accuracy of the state estimation results. There is plenty of research going 

on at each stages of the state estimator to achieve quality SE results as well as for better 

functionality such as monitoring, control and protection of the power system. 

Figure 1.2 represents the schematic diagram of the Energy Management Systems (EMS). 

There are two functional blocks in every EMS center such as state estimator and control 

scheduling blocks. The SE block is the heart of the EMS which processes the input data such as 

network parameter, measurements and status of the switches, circuit breaker to produce reliable 

data for various controlling actions in power system. The controlling actions such as automatic 
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generation control, switching of capacitor, loads and circuit breakers, security and contingency 

analysis are carried out after the output obtained from the state estimator.  
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Figure 1.1: Flow chart of the typical power system state estimator 
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Figure 1.2: Schematic representation of Energy Management Systems (EMS) 

 

1.2   Distribution System State Estimation (DSSE) 

1.2.1 Evolution of distribution systems 

In recent years there has been a growing interest towards distribution automation to 

operate the distribution systems more efficiently and economically. The main function of the 

distribution automation is real time monitoring, control and protection of distribution systems. 

The future growth of the distribution grids is leading towards the use of sustainable and 

environmental friendly energy sources. Therefore, many countries are providing the facility in 

terms of incentives for the installation of renewable energy sources such as photovoltaic cell and 

wind generator etc. As a result, a large number of renewable energy sources have been installed 

at the distribution level to the so called distributed generators (DGs) to fulfill the customer load 

demand. Furthermore, it is expected that in upcoming future, there will be a massive deployment 

of Electric Vehicles (EVs) and energy storage devices throughout the distribution networks for 

electricity usage [7]. All these elements such as DGs, EVs and energy storage devices are called 

distributed energy sources (DERs). The availability of DERs provides more flexible and efficient 

use of electrical energy in a distribution network.  

In recent times the distribution grids are more dynamic and complex in structures because 

of the integration of renewable sources, distributed energy storage as well as intelligent electronic 

devices (IED) and Smart meters. The increasing integration of distributed generation (DG) in a 

distribution network will affect the planning operation and control of a distribution network 

significantly. The active integration of DG results in bi-directional power flows from distribution 

level to sub-transmission level as well as exacerbating voltage unbalance in distribution networks 

[8]. Furthermore, the reconfiguration of the distribution system is used to minimize the power 
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loss, voltage deviations and restoration time. In most of the cases the distribution networks are 

weakly meshed structures. Thus, the states of distribution systems such as bus voltage magnitude 

and angles have to be estimated more accurately for real-time monitoring and control of the 

networks. To achieve this, real meters have been appended in distribution systems to estimate the 

states more accurately for other control actions such as network reconfiguration, Volt/Var 

control, generation control, restoration, voltage regulation, etc [9]. Actually, meters can be placed 

at each and every point of the distribution network. However, it would affect the total 

configuration cost of the distribution system.  

Basically, in distribution networks, pseudo-measurements are being used more 

significantly than real measurements. Therefore, state estimation (SE) algorithm is employed to 

estimate the state of a system more accurately from the noisy data available at the distribution 

control centers [10]. However, in distribution system sufficient real time measurements are not 

available. Therefore, accurate SE is a more challenging task for power engineers. So, a large 

number of pseudo-measurements have been incorporated in SE algorithms to make the system 

fully observable and also to avoid non-convergence of the state estimation algorithm. In fact, the 

pseudo-measurements are comparatively less accurate in nature because these are extracted from 

the historical customer load data. As a consequence, more accurate state estimation cannot be 

expected in this scenario. Therefore, adequate number of additional real meters has to be located 

at suitable locations in a distribution network to produce quality of state estimation solution. 

In distribution grids, due to the presence of different kinds of actors such as distributed 

generation (DG), energy storage devices, the system becomes more complex, dynamics and 

uncertain in nature [11]. Because of this changing behavior of actors, real-time monitoring and 

control becomes a more challenging task for the power system engineers. Thus, PMUs are of 

great interest because they provide synchronized measurements of voltage, current and power. 

The application of PMU for state estimation in transmission system has been widely used to 

improve the performance of the state estimator. Therefore it would be more advantageous to use 

PMU in DSSE. In transmission systems, PMUs have been used widely to improve the state 

estimator performance using different approaches. Therefore, utilization of the phasor 

measurements in distribution network for state estimation is of great interest. The PMU provides 

synchronized measurements e.g. voltage and current phasors, power and frequency along with 

some indirect measurements. The measurements obtained from the PMUs are synchronized with 
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the coordinated Universal Time (UTC). In transmission systems, the synchronized measurements 

obtained from PMUs along with the non-synchronized measurements from SCADA system have 

been used by many researchers for improvising the performance of state estimator [12-17].  

However, due to lack of sufficient direct measurements in distribution networks, locating 

PMUs is economically unreasonable. Therefore, the techniques used for locating PMUs in 

transmission grids cannot be directly transformed at the distribution level. In order to compensate 

this, a large number of pseudo-measurements derived from historical customer load data are 

being used for the state estimation in distribution systems. But, as a result, the accuracy of state 

estimation deteriorates to a very large extent. Many researchers have proposed different 

techniques to deploy PMUs in distribution grids. 

1.2.2 Characteristics of Distribution Systems 

Due to the peculiar characteristics of the distribution systems, state estimation algorithm 

used in transmission system cannot be simply transferred to distribution system. There are several 

aspects under which distribution networks are different from transmission system. Typical 

characteristics of distribution networks affecting DSSE are as follows [18]: 

1) Unbalanced Nature: Basically transmission and distribution grids are three-phase networks. 

Transmission networks are treated as balanced system due to transposition and can be 

modeled as single phase equivalent representing the positive sequence of the network. 

However, distribution grids are unbalanced in nature due to the presence of unbalance loads 

as well as some two-phase and single-phase feeders in the network. Therefore, distribution 

grids rely on a three phase model. Moreover, large integration of small sized distribution 

generation at distribution level again results once again in imbalance in the grids [19-20].  

2) Network Topology: Generally, transmission networks are designed as meshed structure to 

make the system more reliable whereas distribution grids are radial and weakly meshed 

structures. Therefore, the state estimation algorithms are differently designed for distribution 

networks. For this reason branch current based state estimation algorithm has been used 

instead of node voltage based state estimation formulation. It is faster and more efficient to 

exploit a radial as well as weakly meshed network than a node voltage formulation.   

3) Line Parameters: The transmission and distribution lines are designed differently due to 

different voltage levels and physical properties. In transmission lines, series resistance is 

significantly smaller than reactance in the equivalent π model of the network. Therefore, the 
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R/X ratio of the transmission line is very low. Hence, series line resistance can be neglected 

for all practical purposes. However, in distribution grids the R/X ratio is too high and cannot 

be neglected. Due to high R/X ratio, the decoupling version of the DSSE algorithm is not that 

much easy to obtain.  

4) Network Size: This plays a very critical role for distribution systems. Generally, in medium 

voltage distribution grids, the number of nodes is larger than the number of nodes in 

transmission grids. As a consequence, the computational cost of the DSSE algorithm for state 

estimation is increased to a great extent and it also demands data acquisition and storage at 

the control centers. Therefore, an efficient DSSE algorithm is needed for this. To reduce 

computational burden, a Multi-area distribution system state estimation offers an alternative 

solution. In multi-area state estimation (MASE), the total network is divided into sub areas 

and DSSE is run for each sub area to estimate the states of the whole network. Though MASE 

technique reduces the execution time but careful attention needs to be paired during the 

formulation of MASE algorithms. However, MASE techniques may lead to significant loss of 

accuracy in the estimation process and also it may also give rise to some additional 

communication problem between the sub-areas. 

5) Limited Measurement Devices: Basically, in distribution grids, a very limited number of 

measurement devices is placed due to the large size of the network. As a consequence, the 

redundancy of measurements is not sufficient for state estimation process and hence the 

network becomes unobservable. To make the network observable, sufficient pseudo-

measurements have been used. These measurements are derived from the historical customer 

load data. To create pseudo-measurements, power injections at all the buses are used. The use 

of pseudo-measurement helps to observe the network as well as to run DSSE algorithm [21-

23]. However, the main drawbacks in including pseudo-measurements in DSSE study is, 

these measurements are associated with a large error. Therefore, to improve the accuracy of 

the state estimator, many researchers are using meter placement technique for state 

estimation. The optimal location of the meters is determined to reduce configuration cost and 

to produce quality of state estimation. 

1.3 Weighted Least Square (WLS) based State Estimation  

State estimation can be performed by using different statistical approaches such as 

weighted least square (WLS), maximum likelihood criteria or minimum variance approach. All 
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the above methods use the same measurement model discussed below. The measurement model 

used for state estimation algorithm is shown as follows: 

1.3.1 Measurement Model 

For state estimation the commonly used measurement model is: 

( ) exhz +=
                                                                                                                                          (1.1)                                                                                                                                                

where: 

- z  is the vector of available measurements at the control center which is used as input to the 

state estimation algorithm. Different kinds of measurements are obtained from the grid at the 

control center such as voltage magnitude at the nodes, current, real and reactive power flows in 

lines or injections at all the buses.  

- x  represents vector of state variables. Traditionally, voltage magnitude and angle are chosen as 

state variables in a transmission system. However, the state of a system represents a variable 

through which all other quantities of a system can be determined. Therefore, variables other 

than voltage magnitude and angle can be chosen for a system. 

- )(xh  indicates the vector of measurement functions which establish a relationship between state 

variable and measurements. It is a function of state variable x.  

-  e  represents the vector of the measurement errors. They are assumed to be normal distribution 

with zero mean. 

1.3.2 Mathematical Model of the WLS Method                              

Many alternative methods have been proposed for state estimation in the literature, but in 

most of the cases WLS method has been used both in transmission and distribution systems. 

Because of its best performance in terms of consistency and quality of estimation, it can be the 

best choice for DSSE [24-29].  

The main objective of WLS method is to minimize the weighted sum of the square of the 

difference between the measured and estimated value of the quantity. Mathematically, it can be 

defined as follows: 

∑
=

−=
m

i
iii xhzwxJ

1

2)]([)(                                                                                                    (1.2) 

where m  represents the total number of measurements available, iw  is the weight associated 
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with the thi  measurement. The term )]([ xhz i −  is called measurement residual which is the 

difference between the measured value and the estimated value of the quantity. 

The above equation can be written in matrix form as follows 

TxhzWxhzxJ )]([)]([)( −−=                                                                                                 (1.3) 

where W  represents weighting matrix and consists of weights w  on the diagonal elements of the 

mm ×  matrix. The weighting matrix plays a vital role in WLS method. It consists of different 

reliability of measurements.  

The solution of the above objective function is obtained using an iterative method such as 

Newton method to find a correction at each step k as follows: 

( ) ( )[ ] ( )[ ]k
T

kk
k xhzWxHxGx −=∆ −−  11

                                                                                    (1.4) 

                                                                                                                                                     (1.5) 

                                                                                                                                                    (1.6) 

  

                                                                                                                                        (1.7) 

where H  is the Jacobian matrix of the measurement function )(xh , )(xG  represents Gain matrix 

and  x∆  is the correction at thk  iteration used to compute the new value of the state variable for 

the thk )1( +  iteration shown in equation (1.5). The Jacobian matrix is calculated by taking the 

differentiation of each measurement function with respect to each state variable. Mathematically 

it can be expressed as follows:   

                                                                                                                                                    (1.8) 

In WLS method the iterative process is continued until a specified convergence criterion 

is met. Basically, the largest value of the correction vector obtained in each iteration is compared 

with a pre-defined tolerance limit ∈  and the iteration count stops when the maximum value of the 

absolute value of the correction x∆ is within the specified threshold limit∈. Mathematically this 

can be defined as follows: 

                                                               ∈≤∆  )max( x                                                                (1.9) 

1.4 Branch Current Based Distribution System State Estimation (BC-DSSE) 

The distribution system has different features than transmission system, therefore, the 

state estimation algorithm used for transmission case cannot be used at distribution level. In 

kkk xxx ∆+=+1
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transmission system, traditionally, bus voltage magnitude and angle is considered as state 

variable. But, in distribution system the branch current magnitude and angle is taken as state 

variable to estimate the states efficiently. Many alternative methods have been discussed in 

literature for state estimation techniques in distribution system. A general form of DSSE 

algorithm is discussed as follows: 

1.4.1 Measurement functions h(x) and Jacobian Matrix Formulation H(x) 

In BC-DSSE algorithm, the measurements used for state estimation are, real and reactive 

power flow in a line, voltage magnitude measurements, current magnitude measurements, real 

and reactive power injections at the buses etc. The elements of the Jacobian matrix are calculated 

by taking the differentiation of each measurement function with respect to each state variable 

described in equation (1.8). In this work it is assumed that the distribution system is a balanced 

system, therefore the single-phase model of the distribution network is presented. The 

measurement functions and Jacobian entries are described as follows: 

1) Branch Power Measurements: The power flow in a line km at the end k is stated as 

follows:  

                                           (1.10) 

The corresponding Jacobian entries can be determined as  

(a)  When the state variable and the power flow measurements are in the same line the 

corresponding Jacobian elements are:  

                                                                                                                                       (1.11) 

 

                                                                                                                                                  (1.12) 

 

                                                                                                                                                  (1.13) 

 

                                                                                                                                                              (1.14) 

(b)   When the branch power measurements and the state variables are not in the same line 
segment then the Jacobian entries will be zero. 
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2) Power injection measurements:  

Suppose in a network power is injected at bus k and there are n buses connected to bus k. 

It is assumed that current is flowing from bus k to bus 1..... m and it also flows from bus 

m+1....n to bus k. Therefore, buses 1....m are considered as upstream buses of k bus and 

buses m+1 to n are treated as downstream buses of k bus. The total power injected at bus 

k can be expressed as follows: 

 

                         (1.15) 

Hence, three different cases are formed to find the entries of the Jacobian matrix given 

below: 

Case 1: When bus k is connected to its upstream buses and the state variable are in the 

same line segment then the Jacobian entries are determined as follows: 

 

                                                                                    (1.16) 

                                                                                                                (1.17) 

 

                                                                                                                                               (1.18) 

 

                                                                                                                                                (1.19) 

Case 2: When bus k is connected to its downstream buses and the state variable are in the 

same line segment then the Jacobian entries are determined as follows: 

                                                                                                                                      (1.20) 

                                                                                                                                                  (1.21) 

 

                                                                         (1.22)  

                                                                                                                                                 (1.23) 

Case 3: If the line is not connected to the bus at which the power is injected, then the 

corresponding Jacobian entries are taken as zero. 
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3) Voltage magnitude measurements: 

Suppose the magnitude of voltage is measured at bus k and there are n lines connecting 

bus k to reference bus 0 and also it is assumed that all lines current are flowing away from 

the reference node. Then, the voltage at bus k can be determined as follows: 

  

 

The corresponding Jacobian elements are determined as: 

Case 1: If the line is lying between the reference node and the bus where the voltage is 

measured then the Jacobian elements are:  

          (1.24) 

 

        (1.25) 

Case 2: If the line is not lying between the reference node and the bus where the voltage is 

measured then the corresponding all Jacobian elements are set to zero. 

1.4.2 BC-DSSE Algorithm Steps 

          The BC-DSSE method is based on iterative approach consists of three main steps are 

discussed as follows: 

1. Updated input measurements 

2. Solution of the equation (1.4) of the WLS algorithm 

3. Forward sweep method to calculate bus voltages at each node of the network. 

The BC-DSSE algorithm is based on the following steps: 

1) Initialization: 

The initialization of the branch current phasor has a great impact on the convergence of 

the state estimation algorithm. Therefore, a two step approach has been used to initialize 

the state variables. In the first step, the voltage at every node is set at 1 pu and then by 

using backward approach, the current at all the lines is determined through injected power 

at every node. In the second step, the forward sweep method is used to calculate the initial 

value of voltage.  

2) Updates the system states using equation (1.5). 
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3) Use forward approach to calculate voltages at every node. 

4) If the convergence criterion is met i.e. ∈≤∆   )max( x  then stop. If it is not satisfied then 

go to step 2 and repeat till the convergence is achieved. If it is not satisfied the criterions 

till the maximum number of generation then it does not converge. 

1.5 Meta-heuristic Optimization Algorithm  

The meta-heuristic optimization algorithms have been used often in various engineering 

discipline to solve optimization problems. It guides a subordinate heuristic by intelligently 

combining different concepts to explore and exploit the search space more efficiently. Different 

learning strategies are being use to find an effective optimal solution. These optimization 

algorithms are classified into two categories: 

i) Population-based methods (multiple solution based methods) and 

ii)  Trajectory –based methods (single-solution based methods)  

Basically, the population based algorithms are inspired from nature whereas trajectory 

based method are inspired from physics. The population based algorithms such as Genetic 

algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) etc., use 

multiple solutions to search for an optimal solution. On the other hand, trajectory based methods 

such as Simulated Annealing (SA), Tabu search, tree search algorithms etc., use a single solution 

move in a piece-wise manner in the search space to find an optimal solution. The steps of the 

trajectory based methods trace a trajectory in the search space during the search process to find 

an optimal solution. The general properties of the meta-heuristic optimization techniques are as 

follows: 

• These are straight forward and guide the search process. 

• The goal is to efficiently explore the search space in order to find near global optimal 

solutions. 

• Techniques which constitute meta-heuristic algorithm range from simple local search 

procedures to complex learning processes. 

( ) ( )[ ] ( )[ ]k
T
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• They can incorporate mechanism to avoid getting trapped in confined areas of the search 

space. 

• Meta-heuristic algorithms are non-problem specific.  

• Meta-heuristic algorithms are non-deterministic in nature. 

• These algorithms can make use of domain specific knowledge in the form of heuristics 

that are controlled by upper level strategy.  

1.6 Phasor Measurement Units (PMUs)  

PMU is a device which measures the electrical waves on an electricity grid using a 

common time source for synchronization. Time synchronization allows synchronized real time 

measurements of multiple remote measurement points on the grid. The resulting measurement is 

called as a synchrophasor. It is used to measure voltage and current phasors, frequency and other 

indirect measurements in an electrical network. The measurements obtained from the PMUs are 

synchronized with the coordinated Universal Time. In transmission systems, the synchronized 

measurements obtained from PMUs along with the non-synchronized measurements from 

Supervisory Control and Data Acquisition (SCADA) system have been used by many researchers 

for improvising the performance of state estimator 

1.7 Intelligent Electronics Devices (IEDs) 

An Intelligent Electronic Device (IED) is a microprocessor-based controller of power 

system equipment such as circuit breakers, transformers and capacitor banks. It has the ability to 

monitor processes and can communicate directly to a SCADA system. It can be used as a 

measuring device which can measure real and reactive power flow in a feeder. Mainly, it is used 

as a protecting device in power system. In this work, it is considered that it measures real and 

reactive power flow in a line. It provides non-synchronized measurements.  
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Chapter 2 

Literature Review 

2.1 Introduction 

State estimation (SE) technique is generally used to find the system state variables under 

different operating condition of the power system. It brings a mathematical relation between 

measurements and system variables to make secure operations in power system. Most of the field 

measurements are subjected to some errors. So, SE is used to process the unreliable or noisy data 

to produce reliable data which can be used for system analysis. There are various functions of 

state estimator such as network topology processor, observability analysis, state estimation and 

bad data detection and identification. The function of the topology processor is to ensure that the 

network parameters given to the estimator are correct and also ensure that the network model is 

accurate. The obsevability analysis ensures that sufficient measurements are available for SE or 

else sufficient Pseudo-measurements like real power flow and injections are used to make the 

system observable. The function of SE is to estimate the system states accurately using available 

measurement data. Finally, bad data processor is used to identify and remove any bad data 

present in system measurements. There are numerous techniques developed for power system 

state estimation. Because of the peculiar characteristics of distribution networks such as high r/x 

ratio, unbalanced nature, radial structure and limited available measurements, SE techniques used 

in transmission system cannot be applied to distribution systems directly. The techniques 

developed for distribution system state estimation are discussed as follows. 

2.1.1 DSSE based on conventional WLS method 

In [31], Baran and Kelly proposed a three-phase SE algorithm based on node voltage 

formulation using weighted least square (WLS) approach. The authors considered bus voltage 

magnitudes and phase angles as state variables. A three-phase model of the distribution feeder 

has been developed and the coupling effect between the feeders taken into consideration. In [32], 

the authors have proposed branch current based SE in distribution network which is more 

efficient and reliable than node voltage formulation method because it is computationally more 

efficient. Furthermore, this approach considers a few loops in a network. In [33], a three-phase 

DSSE algorithm is proposed. A current based formulation is proposed which considers a 

rectangular form of branch current as state variable. In [34]-[35], DSSE based on WLS approach 
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and three-phase modeling of distribution network is proposed. In [36], a probabilistic approach 

for state estimation in distribution network is proposed. It takes into account the real-time 

measurements as solution constraints and also includes load diversity concept in order to account 

for the non-normally distributed load in state estimation.   

A robust three-phase state estimation algorithm is proposed for unbalanced distribution 

network [37]. In [38], a highly efficient algorithm for using current measurements for state 

estimation in distribution network is proposed. The authors have developed a new algorithm 

which makes the gain matrix constant and also decouples it on phase basis. Therefore, the 

computational time is reduced. In [39], a branch estimation based SE for distribution network is 

proposed. It decomposes the whole WLS problem into a series of sub problems and each sub 

problem deals with a single branch state estimation only. An efficient branch current based state 

estimation technique is proposed using WLS approach [40]. The authors have used magnitude 

and phase angles of branch currents as state variables for SE. An efficient branch current based 

DSSE is introduced using synchronized measurements data [41]. The authors have considered 

both radial and weakly meshed topology for state estimation. The state variables are expressed 

both in polar and rectangular coordinates including slack bus voltage as state variables. In [42], a 

state estimation method based on power summation method is proposed for three-phase balanced 

and unbalanced distribution system. 

All the methods discussed above are based on network topology modeling to develop new 

efficient algorithm for SE. The next section will discuss state estimation techniques based on load 

modeling approach.  

2.1.2 DSSE based on load modeling 

Load modeling and estimation plays a very important role in improvement of the 

accuracy of the distribution state estimator. In the absence of loads which are highly diverse and 

distributed in nature, pseudo measurements with appropriate mean and standard deviations are 

used for state estimation. The pseudo-measurements are naturally modeled through Gaussian 

distribution because it is more compatible with WLS based maximum likelihood estimation. 

Many researchers have used the concept of load modeling to improve the performance of the 

state estimator in a distribution network. In [43], a real-time load modeling technique is 

introduced in distribution state estimation. It incorporates customer class load curves for 
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estimation purpose. In this paper the load modeling technique is combined with state estimation 

based on probabilistic approach to estimate the states of a distribution circuit.  

A load allocation model is proposed which generates a fuzzy load allocation and then 

corrected by a fuzzy state estimator procedure in order to generate a crisp power flow compatible 

with a set of load allocations and correlated with available real measurements available from the 

SCADA [44]. In [45]-[46], because of limited real-time measurements, a load modeling 

technique is used which estimates the real-time customer load profile. This can be used as 

pseudo-measurements for SE in distribution networks. In [47]-[48], WLS method and sensitivity 

method based load estimation in unbalanced distribution network is discussed. [49], introduces a 

method which can estimate the unavailable measurements due to metering problems in a 

distribution network. A regression based model has been used along with correlated loads which 

are geographically very close to each other to improve SE performance. From the results it is 

found that this method gives acceptable performance for measurement loss of up to a week.  

2.1.3 DSSE based on computational intelligence and heuristic techniques 

Many alternative methods have been developed for advance control and monitoring of the 

distribution networks. Some of the SE methods are based on the statistical and load modeling 

formulation. The former methods of SE are usually based on Newton method i.e. iterative 

convergence methods and load estimation methods are based on sensitivity analysis. The 

objective functions of the conventional DSE methods are assumed as continuous and 

differentiable. However, when non-linear practical equipments are present in distribution 

systems, the objective functions cannot be differentiable and continuous. In that case it is more 

difficult to apply conventional DSE methods to estimate the state of the systems. Therefore, 

Meta-heuristic methods are widely used to solve non-linear optimization problem. It does not 

require the objective functions to be contiguous and differentiable. Some of the DSSE methods 

based on heuristic techniques are discussed as follows.  

In [50], a hybrid particle swarm optimization (PSO) algorithm is used for state estimation 

in practical distribution network. This method can estimate distributed generation (DG) output 

and load by minimizing the difference between the measured and calculated values of bus voltage 

magnitudes and branch currents. In [51], a three phase state estimation in practical distribution 

network using hybrid particle swarm optimization algorithm is proposed. In SE, bus voltage 

magnitude, angle and transformer taps are considered as state variables to control the voltage i.e. 
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the state vector includes both continuous and discrete variables. In [52], ordinal optimization 

algorithm based state estimation in unbalanced distribution network is proposed. The authors 

have considered the combination of continuous and discrete variable in state vector. The discrete 

variables are on-load transformer taps. The performance of the OOA is found to be better than 

conventional WLS method in estimating the state and losses in a distribution network.   

2.1.4 DSSE based on meter placement technique 

SE is a digital filtering algorithm which can accurately determine the states of the system 

from noisy data. However, due to the limited number of real time measurements, accurate SE in 

distribution systems is more challenging. So, a large number of pseudo-measurements (historical 

data) retrieved from a priori knowledge are necessary to maintain obsevability of the network and 

convergence of SE algorithm. Additionally, the accuracy of pseudo-measurements is 

comparatively low. As a consequence, estimation accuracy is not as much accurate as is 

expected. Therefore, some additional meters need to be appended at appropriate locations in the 

distribution systems to achieve better estimation accuracy. In recent years, many alternative 

methods have been proposed by various researchers for enhancement of state estimation accuracy 

using meter placement techniques in distribution networks. In [53], Baran et al. introduced a rule 

based meter placement strategy and proposed three  empirical rules based on observations i.e. 

meters  have to be placed at all the main switches and fuse locations that have to be monitored, 

meters have to be placed at feeder line sections and on normally open tie switches used for feeder 

reconfiguration. This method of meter placement gives a good compromise between the accuracy 

and computational complexity but it does not guarantee optimal number of meters with minimum 

cost. 

In [54], a heuristic technique based meter placement method is introduced. The 

optimization problem is designed as a nonlinear combinatorial constraint optimization problem 

and the objective function minimizes the mean of the weighted sum of the variance of the 

estimated quantities. The constraints imposed on this optimization problem is that the system 

would be observable with established accuracy with minimum number of meters. The authors 

have proposed dynamic programming (DP) following a step by step approach to find the optimal 

number of meters with required accuracy level. 

In [55], J. Liu et al. proposed a meter placement technique in SE using Genetic algorithm 

(GA). The objective function considered for this optimization problem is the minimization of the 
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total cost combined with the specified accuracy index of the state estimation. The authors have 

used relative voltage and phase angle deviation as performance index for the optimization 

problem. Furthermore, an optimal trade-off solution is obtained between phasor measurement 

units and smart metering devices using GA. Pegoraro and Sulis [56], proposed a dynamic 

programming (DP) based meter placement technique to find the optimal placement of the 

measuring devices. The authors have considered both the network parameter uncertainty and 

decay of metrological characteristic of the measurement devices in distribution system state 

estimation. Sing et al. [57], addressed an ordinal optimization algorithm based meter placement 

scheme in distribution network. In this approach, the meters are placed progressively until the 

errors are below the pre-specified thresholds in 95% of the simulated cases. However, the 

solution obtained using ordinal optimization algorithm (OOA) may not be a global optimal 

solution, but it results in at least one of the suboptimal solutions. Shafiu et al. [58], have used a 

heuristic technique to deploy certain number of voltage measurements to reduce the standard 

deviations in estimated voltage at unmonitored buses. This method only reduces error in voltage 

magnitude not in phase angle. In [60], a circuit representation model was proposed for the 

optimal deployment of current and voltage measurements to represent estimation errors. The 

authors have transformed the optimization problem to a mixed integer linear programming 

problem. M.G.  Damavandi et al. [62], proposed a robust meter placement in active distribution 

network for state estimation.  A robust sub-modular saturation algorithm has been used to find 

the optimal location of PMUs and voltage magnitude meters in active distribution systems.  The 

authors considered a fixed number of meters to find their optimal location. The major 

disadvantage of these optimization algorithms is that the solution obtained may not guarantee a 

global optimal solution because these are based on sequential placement of measurement devices 

to achieve the required state estimation accuracy. The sequential meter placement techniques may 

not achieve minimum number of meters with required accuracy level.  

In distribution grids, due to the presence of different kinds of actors such as distributed 

generation (DG) and energy storage devices, the system becomes more complex, dynamics and 

uncertain in nature. Because of this changing behavior of actors, real-time monitoring and control 

becomes a more challenging task for the power system engineers. Thus, PMUs are of great 

interest because they provide synchronized measurements of voltage, current and power. The 

application of PMU for state estimation in transmission system has been widely used to improve 
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the performance of the state estimator. Therefore it would be more advantageous to use PMU in 

DSSE. In transmission systems, PMUs have been used widely to improve the state estimator 

performance using different approaches [62]-[70]. Therefore, utilization of the phasor 

measurements in distribution network for state estimation is of great interest. The PMU provides 

synchronized measurements e.g. voltage and current phasors, power and frequency along with 

some indirect measurements. The measurements obtained from the PMUs are synchronized with 

the coordinated Universal Time (UTC). In transmission systems, the synchronized measurements 

obtained from PMUs along with the non-synchronized measurements from Supervisory Control 

and Data Acquisition (SCADA) system have been used by many researchers for improvising the 

performance of state estimator [72]-[83]. 

2.2 Motivation 

This thesis presents an extensive review of the research topic and optimal location of 

measurement devices for distribution system state estimation using meta-heuristic techniques. 

State estimation is the heart of energy management systems, which is used for real time 

monitoring, alarming and control of distribution networks. Therefore, accurate estimation of 

system states is more challenging for power system engineers. 

• The quality of SE suffers because of a large number of pseudo-measurements which have 

very high variances. This can be improved by placing additional real measurements which 

have very low variances. Therefore, the design of an efficient algorithm for solving meter 

placement problem in distribution networks is needed. 

• A multi-objective problem formulation is required instead of single-objective to establish a 

trade-off solution between objectives such as configuration cost of the network and state 

estimation accuracy. 

• Due to high penetration of renewable energy sources, electric power system operation and 

control has become a complex and challenging issue for Energy Management Centers. 

Amongst all renewable energy sources, wind energy is the most proven around the world. 

Therefore, there is scope to develop a robust meter placement technique to enhance the 

estimation accuracy in presence of wind generators. 

The thesis in general addressed the optimal allocation of measurement devices for 

distribution system state estimation using multi-objective hybrid evolutionary algorithms. 
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2.3 Contributions 

The overall objective of the thesis is to design an efficient optimization model and 

algorithm for optimal allocation of measurement devices to improve the state estimation accuracy 

for online monitoring and control of the distribution networks. 

The contributions made in the thesis are as follows: 

• A new multi-objective hybrid PSO-Krill Herd Pareto based optimization algorithm to 

optimize number and location of the measurement devices for accurate state estimation in 

smart distribution networks is proposed. The idea is to minimize the following: (i) total 

network configuration cost (ii) average relative percentage error (APE) of bus voltage 

magnitude and (iii) APE of bus voltage angle. As the objective functions conflict with respect 

to each other, a multi-objective Pareto-based non-dominated sorting hybrid PSO-KH 

optimization algorithm is proposed. In this approach, the random variation in loads and the 

metrological error of the measurement devices are also taken into account. Furthermore, the 

impacts of DG on state estimation performance is also investigated.  

• A new multi-objective hybrid Estimation of distribution algorithm (EDA)-interior point 

method (IPM) algorithm is proposed to obtain the optimal location of measuring devices for 

state estimation in active distribution networks. The objective functions to be minimized are, 

the total network configuration cost, the average relative percentage error (APE) of bus 

voltage magnitude and angle estimates. As the objectives seem to in conflict with each other, 

a multi-objective Pareto-based non-dominated sorting EDA has been proposed. Moreover, 

due to the poor exploitation capability of EDA, it is hybridized with IPM to improve its local 

searching ability in the search space. The hybridization of EDA and IPM brings a higher 

degree of balance between the exploration and exploitation capability of the algorithm during 

the search process. Furthermore, the loads and generators are treated as stochastic variables 

and the impact of different types of DGs on state estimation performance has also been 

investigated.  

• A novel multi-objective optimization problem to find trade-offs in deployment of phasor 

measurement units (PMUs) and intelligent electronic devices (IEDs) for state estimation in 

active distribution networks is proposed. A new hybrid estimation of distribution algorithm 

(EDA) has been used to find the optimal number and location of measurement devices such 



 

Chapter 2                                                                                                                Literature Review 

24 

 

as PMUs and IEDs for accurate state estimation. The objective functions to be minimized in 

this optimization problem are the total cost of PMUs and IEDs, as well as the RMS value of 

state estimation error. Since the objectives are conflicting in nature, a multi-objective Pareto-

based non-dominated sorting EDA algorithm is proposed. Moreover, to improve the local 

searching capability of the traditional EDA algorithm, Interior point method (IPM) is 

hybridized with EDA to get near global optimal solution. Furthermore, the random variation 

in loads and generators is also considered to check the reliability of the proposed meter 

placement technique.  

• A novel multi-objective optimization model is developed to find trade-offs in deployment of 

phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for state 

estimation in active distribution networks. All DGs are taken to be wind generator and the 

output of each DG is modeled using Weibull distribution function. The objective functions 

that require to be minimized are the total cost of PMUs and IEDs as well as the RMS value of 

state estimation error. To get best optimal solution, multi-objective hybrid PSO-Krill Herd 

algorithm has been used. Furthermore, the random variations in loads and generators are also 

considered to check the reliability of the proposed meter placement technique in presence of 

wind generators.  

2.4 Thesis Organization 

The thesis is organized as follows: 

Chapter 1 introduces the basic to power system state estimation with relevant terms and various 

challenges posed for distribution system state estimation. It also explains in brief the need of state 

estimation techniques and the peculiar characteristics of distribution network. It also discusses 

the method used for estimation of system states in a distribution network. 

Chapter 2 presents a detailed literature review on the research topic with past and present 

research. The literature reviewes various methods/ techniques used for distribution system state 

estimation such as load modeling, heuristic techniques based state estimation in distribution 

network and conventional WLS method based state estimation in distribution system. Later, the 

literature on meter placement techniques based distribution system state estimation is also 

reviewed with relevant analysis. 
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Following an extensive literature survey on the topic, motivation for the proposed research work 

is presented and then the contributions and organization of the thesis. 

Chapter 3 begins with an introduction to distribution system state estimation. The multi-

objective optimization model is designed. New multi-objective hybrid PSO-Krill Herd Pareto 

based optimization algorithm is presented to optimize the number and location of the 

measurement devices for accurate state estimation in smart distribution networks. Three 

objectives require to be minimized: (i) the total network configuration cost (ii) the average 

relative percentage error (APE) of bus voltage magnitude and (iii) APE of bus voltage angle. As 

the objective functions are conflicting with respect to each other, a multi-objective Pareto-based 

non-dominated sorting hybrid PSO-KH optimization algorithm is proposed. Furthermore, the 

impacts of DG on state estimation performance are also investigated. The feasibility of the 

proposed algorithm is demonstrated on IEEE 69-bus system and practical Indian 85-bus radial 

distribution network. The results obtained are compared with conventional Krill Herd (KH) 

algorithm, Particle swarm Optimization (PSO), with well known multi-objective non-dominated 

sorting genetic algorithm (NSGA-II) for validation. 

Chapter 4 proposes a new multi-objective hybrid Estimation of distribution algorithm (EDA)-

interior point method (IPM) algorithm to obtain the optimal location of measuring devices for 

state estimation in active distribution networks. The objective functions to be minimized are, the 

total network configuration cost, the average relative percentage error (APE) of bus voltage 

magnitude and angle estimates. As the objectives are conflicting in nature, a multi-objective 

Pareto-based non-dominated sorting EDA has been proposed in this chapter. Moreover, due to 

poor exploitation capability of the EDA, it is hybridized with IPM to improve its local searching 

ability in the search space. The hybridization of EDA and IPM brings a higher degree of balance 

between the exploration and exploitation capability of the algorithm during the search process. 

Furthermore, the loads and generators are treated as stochastic variables and the impact of 

different type of DGs on state estimation performance has also been investigated. The efficiency 

of the proposed algorithm is tested on IEEE 69-bus system and Indian 85-bus radial distribution 

network. The results thus obtained are compared with conventional EDA, PSO and non-

dominated sorting genetic algorithm (NSGA-II). 

Chapter 5 addresses a new multi-objective optimization problem to find trade-offs in 

deployment of phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for 
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state estimation in active distribution networks. A new hybrid estimation of distribution 

algorithm (EDA-IPM) has been used to find the optimal number and location of measurement 

devices such as PMUs and IEDs for accurate state estimation. The objective functions to be 

minimized in this optimization problem are the total cost of PMUs and IEDs, and the root mean 

square (RMS) value of state estimation error. Since, the objectives are conflicting in nature, a 

multi-objective Pareto-based non-dominated sorting EDA algorithm is proposed. Moreover, to 

improve the local searching capability of the traditional EDA algorithm, the Interior point method 

(IPM) is hybridized with EDA to get near global optimal solution. The viability of the proposed 

algorithm has been tested on IEEE 69-bus system and Indian 85-bus system to validate the 

results. The obtained results have been compared with conventional EDA algorithm, non-

dominated sorting genetic algorithm (NSGA-II) and also with hybrid EDA-simulated annealing 

algorithm existing in the literature. 

Chapter 6 presents the inclusion of wind generation in a distribution network for state 

estimation. A new multi-objective optimization model is developed to find trade-offs in 

deployment of phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for 

state estimation in active distribution networks. The objective functions considered to be 

minimized are the total cost of PMUs and IEDs as well as the RMS value of state estimation 

error. Since the objectives are conflicting, a multi-objective Pareto-based non-dominated sorting 

algorithm has been employed to get a compromised solution. To get the best optimal solution, 

multi-objective hybrid PSO-Krill Herd algorithm has been used. Furthermore, the random 

variation in loads and generators is also considered to check the reliability of the proposed meter 

placement technique. All DGs are considered as wind generator and output of each DG is 

modeled using Weibull distribution function. The viability of the proposed algorithm has been 

tested on IEEE 69-bus system and Indian 85-bus system to validate the results. The obtained 

results have been compared with Particle Swarm Optimization (PSO), Krill herd (KH) algorithm 

and also with well known Non-dominated sorting genetic algorithm (NSGA-II). 

Chapter 7 summarizes the research contribution, findings and observations on the present 

research. It then presents the scope for future work based on what has gone before.  
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2.5 Summary 

In this chapter a general discussion on existing work relevant to the distribution system 

state estimation is presented. Power system state estimation is an extensive research area of 

interest; however distribution system state estimation is comparatively a new area of research. 

Due to the peculiar characteristics of distribution systems, the development of distribution system 

state estimation (DSSE) is more challenging. Existing research proposes various classical 

optimization methods as well as some novel estimation techniques for DSSE solutions. This 

chapter has included discussion on various DSSE techniques proposed for state estimation in 

distribution networks. 

Current distribution networks do not have sufficient real time measurements. To achieve 

quality state estimation, enhanced real time meter placement is essential in distribution networks. 

Similar to state estimation in distribution network, the existing meter placement techniques used 

for transmission network cannot be directly used for distribution systems. The typical challenges 

and the relevant literature on the development of meter placement algorithms for distribution 

networks have been presented in this chapter.  Furthermore, the motivation, contribution and 

organization of the thesis are presented in this chapter. 
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Chapter 3 

Optimal Allocation of Measurement Devices for Distribution 
System State Estimation Using Multi-Objective Hybrid PSO-

Krill Herd Algorithm 
3.1 Introduction 

Recently, distribution systems have been increasingly subjected to integration of 

distributed generation (DG) and frequent changes in network configuration which are creating 

new problems of monitoring, control and reliability issues in smart grid environment. The active 

injections of renewable sources and loading conditions result in bi-directional power flow and 

exacerbation of voltage unbalance in a distribution network. The bi-directional power flow occurs 

when the DG generation exceeds local load and it has stronger impact on voltage profile of the 

distribution network. Furthermore, the network configuration of the smart distribution network 

will be changing dynamically to achieve minimum power loss and voltage deviations. The real 

time monitoring of distribution network is becoming increasingly challenging due to the 

increasing dynamics and changing behavior of actors in distribution systems. Therefore, 

knowledge about the system states are required more accurately and reliably for online 

monitoring and control of the distribution networks. To resolve these issues, meter placement 

techniques have been used widely in distribution systems for state estimation.  

This chapter proposes a new multi-objective hybrid PSO-Krill Herd Pareto based 

optimization algorithm to optimize number and location of the measurement devices for accurate 

state estimation in smart distribution networks. Three objectives are considered to be minimized: 

( i ) the total configuration cost (ii ) the average relative percentage error (APE) of bus voltage 

magnitude and (iii ) APE of bus voltage angle. As the objective functions are in conflict with 

respect to each other, a multi-objective Pareto-based non-dominated sorting hybrid PSO-KH 

optimization algorithm is proposed. Furthermore, the random variation in loads and the 

metrological error of the measurement devices are also taken into account. The proposed 

algorithm minimizes the cost and enhances the accuracy of the distribution state estimator for 

better monitoring and control of the system. Moreover, the impact of DG on state estimation 

performance is also investigated. The feasibility of the proposed algorithm is demonstrated on 
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IEEE 69-bus system and Practical Indian 85-bus radial distribution network. The results obtained 

are compared with conventional Krill Herd (KH) algorithm, Particle swarm Optimization (PSO), 

with well known multi-objective non-dominated sorting genetic algorithm (NSGA-II) for 

validation. 

3.2 Problem Formulation 

The main objectives of this chapter are to determine the optimal number and position of 

measurement devices to be placed in a given distribution network to achieve an observable 

system with minimum cost and ensure the state variables to be in compliance with predefined 

accuracy. Three objective functions have been considered for minimizing: (i ) the total cost (ii ) 

the average relative percentage error (APE) of bus voltage magnitude and (iii ) APE of bus 

voltage angle. By trial and error basis it is found that, if the number of power flow measurements 

is higher, then the relative deviation in bus voltage magnitude and angle is lower and vice-versa 

i.e., the objective functions described above conflict with respect to each other. Hence, the meter 

placement problem can be formulated as a multi-objective Pareto based optimization problem 

which can be solved by using fast non-dominated sorting approach. This chapter proposed a 

hybridized algorithm for placing minimum number of meters for ensuring the relative deviations 

of voltage magnitudes and angles within the pre-specified thresholds for 95% of the simulated 

cases. Hence, the meter placement problem is based on the minimization of the following 

objective functions: 
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Subjected to constraints:  In 95% of the simulated cases, the maximum relative percentage 

deviation in voltage magnitude and phase angle are 1% and 5% respectively and  this can be 

expressed as: 
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where 1F , 2F and 3F  are three objective functions to be minimized, n  and nl  are the number of 

buses and lines in a network, pfC  and VMMC   are respectively, the relative costs of a power flow 

(PF) measurement device and voltage magnitude measurement (VMM) device normalized with 

respect to a conventional unitary cost. Since voltage measurement devices are treated as default 

measurements, the cost of a power flow meter and VMM meter are assumed to be same in the 

optimization process. Throughout the iterative process the location and the number of default 

measurements are same for all algorithms used in this work. Therefore, it would not affect the 

cost function. However, different costs can also be assigned to power flow meters or to voltage 

meters. In practice, the cost of a measuring device depends on specific investment and 

application scenarios. pfP  and VMMP  represents the binary decision vectors, if a meter is present 

in a line or at node then it becomes one or else its value is zero, a
iV and a

iδ  are the actual bus 

voltage magnitude and phase angle of thi  bus respectively, est
iV  and est

iδ are the estimated bus 

voltage magnitude and phase angle of thi  bus respectively. 

The quality of state estimation solution deteriorates due to most of the measurements are 

pseudo-measurements with high variances. But, it can be improved by placing some additional 

real meters with low variances. In this work, only power flow meters and voltage magnitude 

meters have been used for SE in distribution networks. Furthermore, branch current based state 
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estimation (BC-DSSE) is used for estimation of system states where branch current magnitudes 

and their phase angles are considered as state variables [40]. 

3.3 Krill Herd Algorithm (KHA) 

KHA is a new bio-inspired swarm intelligence algorithm, which takes its inspiration from 

the herding behavior of the krill swarms in searching for food in nature [84].  The fitness of each 

krill individual depends on its distances from the food position and the density of krill particles. 

The movement of each krill within the search space is based on three actions: 

a) Induced movement of krill individuals, 

b) Foraging motion, and  

c) Random diffusion. 

3.3.1 Lagrangian Model of the KHA 

The Lagrangian model of the Krill herd algorithm in a n  dimensional decision space can 

be expressed as: 

iDFM
dt

dL
ii

i ++=                                                                                                           (3.6)                                                                                           

where 
iM is the induced motion of each krill individual, iF  is the foraging motion and iD  is the 

random diffusion of the krill individuals. 

3.3.1.1 Induced movement of Krill individuals 

The direction of motion induced is expressed by three effects: local effect, target effect 

and repulsive effect. For each krill individual the movement can be expressed as: 
old
ii

maxnew
i MMM nw+= α                                                                                                              (3.7)                                                    

where 

ett
i

local
ii ααα arg+=                                                                                                                   (3.8)                         

maxM is the maximum induced speed, nw  is the inertia weight and its value lies between [0, 1], 

iα direction of motion induced by thi   Krill individual, localα  is the local effect produced by the 

neighbors and ett argα  is the target direction produced by the best Krill individual. 

3.3.1.2 Foraging motion 

The foraging motion of krill individual depends on two parameters, one is food location 

and the second one is previous food location. The foraging motion for thi  krill individual can be 
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expressed as: 

old
iFwφvF fifi +=                                                                                                                (3.9)                                                                                                

Where 

    best
i

food
ii φφφ +=                                                                                                                 (3.10)                                                                                                 

where fv is the foraging speed, fw  is the inertia weight of the foraging motion lies between [0, 1], 

food
iφ  is the food attractiveness and best

iφ  is the effect of the best fitness of the thi  Krills. 

3.3.1.3 Physical diffusion 

 It is a random process of the krill individuals to improve the population diversity within 

the search space. This motion can be expressed as, 

         dDDi
max=                                                                                                                    (3.11)                                                                              

where maxD  is the maximum diffusion speed and d  is the random directional vector, lies between 

[-1, 1]. 

3.3.2 Movement process in KHA 

Based on the above mentioned movements, the positions of the thi  Krill individual in the 

time interval t  to  tt ∆+  can be expressed as: 

dt

dL
ttLttL i

ii ∆+=∆+ )()(                                                                                                            (3.12)                                                                                          

 t∆  represents the time interval can be defined as: 
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where vn  is the number of variables and 
tC is a constant number between [0, 2] and iu , il  are the 

upper and lower limits of thi  Krill individuals. 

3.3.3 Genetic operator 

To improve the performance of KH algorithm genetic operators are incorporated into the 

algorithm. The genetic operators are crossover and mutation process which are derived from DE 

algorithm. 

3.3.3.1 Crossover 

The crossover process is controlled by using a parameter called crossover probability 

(Cp). The position of a krill can be modified, by interacting each krill individuals with other. In 
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this process, the position of the thj  component of the thi  Krill can be expressed as:
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where { }Niim ...... , 1 1,-..., 3, , 2 , 1  +∈ , jmL ,  represents the thj  component of the thi  Krill 

individual, pC
 
is the crossover probability and best,K i  is the best previously visited position of the 

thi  Krill individual.  

3.3.3.2 Mutation  

The mutation operation is controlled by a parameter called mutation probability ( pM ). 

The mutation process can be formulated as: 
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where best,K i  is the best previously visited position of the thi  Krill individual and µ  is a number 

lies between 0 and 1. 

3.4 Proposed Hybrid PSO-KH algorithm 

In all modern meta-heuristic algorithms, the balance between the intensification and 

diversification plays a crucial role for better performance of the algorithms. Intensification refers 

to a local search around the neighborhood of an optimal or near optimal solution and 

diversification refers to the complete exploration of the search space efficiently and effectively. 

Exhaustive search or excessive diversification increases the convergence time of the searching as 

well as causing the solution to move around the near optimal solution. On the other hand 

excessive exploitation causes the algorithm to trap into a local optima point and it may not reach 

global optimal solution. Therefore, a proper balance between the exploration and exploitation is 

required to ensure faster convergence characteristics and good quality of solution. 

The Krill herd (KH) algorithm has proven its capability to find the global regions in a 

reasonable amount of time. However, it is seen that the conventional KH algorithm is not 
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efficient in performing the local searches effectively. Therefore, hybrid KH algorithm is proposed 

to improve the local search capability of the KH algorithm and also to achieve better balance 

between the intensification and diversification during the searching process. In order to achieve 

improvisation in local searching process, the KH algorithm is hybridized with the PSO algorithm 

to get near global optimal solution. 

Basically, PSO is a population based multi-point evolutionary algorithm. The searching 

process in PSO starts with a population of particles that move in a search space by following the 

current optimum particles and changing their positions and velocity to find the best particle 

position. During its movement particles distribute information among them to search for a good 

area in search space. The local search capability and the neighborhood search ability provides 

hybrid KH algorithm to search for good area of the search space. These two features are added to 

the hybrid KH algorithm to get near global optimal solution. 

3.5 Proposed Multi-Objective Hybrid PSO-KH algorithm 

The simultaneous optimization of the multiple objectives needs a compromised solution 

because no solution can improve itself in one objective without worsening the other objectives. In 

order to get a better compromised solution, non-dominated sorting approach i.e., Pareto-

optimality principle has been adopted [88], [89].  This principle states that, in a non-dominated 

Pareto front all solutions are equally important i.e. no solution is inferior to other. In multi-

objective optimization problem, the solution relies on a set of solutions rather than a single 

solution like single objective optimization problem.  In this work, non-dominated sorting 

approach has been incorporated with hybrid PSO-KH in order to achieve the best trade-offs 

solution between the objective functions.  

In this chapter, hybrid multi-objective PSO-KH algorithm is proposed. In PSO-KH 

algorithm, the Krills individuals are ranked based on the non-dominated sorting approach and to 

get good spread in the Pareto optimal solution, crowding distance operator has been used [88]. 

Both the strategies are described below: 

3.5.1 Non-dominated sorting approach 

 For the meter placement problem three objectives function have been considered to be 

optimized, they are: (i ) the total configuration cost (ii ) average percentage error (APE) of bus 

voltage magnitude and (iii ) APE of voltage phase angle. Since the objective functions (i ), ( ii ) 
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and (i ), ( iii ) are conflicting with one another, so a compromised solution has to be established to 

find the best optimal solution. Therefore, non-dominated sorting technique has been incorporated 

in this optimization problem [88]. In multi-objective case, each solution is compared with others 

to check its dominating nature. For a solution s(1) to be dominating other solution s(2) if : 

1) The solution s(1) is better than s(2) in all objectives. 

2) The solution s(1) is strictly better than s(2) in at least one   objective. 

If any of the above condition is satisfied then, the solution s(2) is said to be dominated by 

s(1). 

3.5.2 Crowding distance 

The crowding distance operator is used to find the density of solutions that are 

surrounding a particular solution [89].  

From the above two definitions, it can be stated that, a solution s(1) is said to be better than 

another solution  s(2) (krill individuals), if it has satisfied any one of the following criteria: (a) the 

rank of solution s(1) has to be smaller than the solution s(2), or (b) if both the solutions belong to 

same front (same rank), then the crowding distance of solution s(1) has to be larger than that of 

solution s(2). 

The steps of the proposed algorithm are described as follows: 

Step1. Initialization: initialize the parameters of the algorithms 

          maxD , maxM , fW , maxw , minw , 1C  and 2C   

Step 2. Fitness evaluation:  

1) Randomly generate number of power flow meters and their locations for each krill 

individuals in the population.  

2) Evaluate the fitness functions using weighting approach for each krill individual. 

3) Rank the evaluated population based on the non-dominated sorting scheme. 

4) Sort the population according to their fitness values and calculate the best and worst 

fitness value i.e. best and worst Krills among the population.            

Step 3.  Generate new Krills using PSO. 

Step 4.  For each Krill individual calculate the following motions:   

1) Induced motions 

2) Foraging motions 

3) Physical diffusions 
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Step 5. Update the position of the Krill individuals in the search space. 

Step 6. Genetic operator: Apply crossover and mutation operator to the updated positions. 

Step 7. Evaluate the objective functions based on the new positions of the krill individuals and 

sort them based on the non-dominated sorting scheme. 

Step 8.  Calculate the current best and worst krill. 

Step 9.  Repeat steps 3-8 for maximum generation times.  

Step10. Use fuzzy theory to find the best compromised solution [24]. 

The initial value of the parameters used in the proposed algorithm is decided based on the 

nature of the optimization problem. For unimodal cost functions smaller value for maximum 

induced speed ( maxM ) and inertia weight ( fW ) is recommended and for multimodal case higher 

values is recommended for better performance of the algorithm. The value of maxM  and fW  is 

considered as 0.025 and 0.9 respectively. The other parameters are decided based upon the 

repeated trial of tests. In PSO, the appropriate value of maxw  and minw  is 0.9 and 0.4 and the 

values are independent to problems as recommended by many papers. The most appropriate 

value of C1 and C2 (i.e. C1=C2) is 2 [86]-[87].  For population size of different values like 

popsize  =10, 20 and 50 have been tried. For the IEEE 69-bus system and Indian 85-bus system 

there is no much variation in results for taking different population sizes (popsize ) is observed. 

Finally, it is found that, popsize =20 is sufficient for getting near optimal value. The parameter 

values are provided in Table 3.1. 

After the initialization of the parameters and positions of the Krill particles, the fitness 

value of the Krill is evaluated using weighting sum approach. The weighting sum method has 

been used extensively for multi-objective optimization (MOO) to provide multiple solution points 

by varying the weights consistently. The value of weights is significant relative to other weights 

and also relative to its corresponding objective function value. It is also stated that if the weights 

are representing the trade-off between the objective function (paired comparison method), then it 

is better to retain the original units of the objectives without transferring them between 0 and 1. 

This approach only provides a basic approximation of one’s preference function. Even if the 

weights are acceptable a priori but the final solution may not reflect accurately the initial 

preferences. Therefore, the decision maker has to choose an appropriate combination of weights 
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to reproduce a representative part of the optimal Pareto front. The flow chart of the proposed 

hybrid PSO-KH algorithm is shown in Figure 3.1. 

 

Start

Initialize the parameters of the algorithm and generate 

random number of power flow meters for each 

solution in the population

Iter=0

Evaluate the objective functions Eqs.(3.1)-(3.3) algong 

with the constraints violation checking by using Eqs 

(3.4)-(3.5) for each individual in the population

Evaluate the fitness function using weighting approach 

and sort the population according to their fitness value

Calculate the best and worst Krills among the 

population

Generate new Krill particles using PSO

Calculate three motions for each Krill individual in the 

population by using eq.(3.7)-(3.11)

Update the position of the Krill individual by using Eq. 

(3.12)-(3.13)

Update the positions using genetic operator by using 

eq. (3.14)-(3.17)

Is the criterion 

Satisfied

?

Stop

Iter=Iter+1

No

Yes

 

Figure 3.1: Flow chart of the proposed multi-objective hybrid PSO-KH algorithm 
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Each objective function represented in eq. (3.1), (3.2) and (3.3) are evaluated based upon 

the initial position of the power flow meters for all the Krill individuals using DSE algorithm. 

The obtained fitness values are ranked using non-dominated sorting technique. Then the best and 

worst Krills are determined based upon the overall fitness value of each Krill. In order to achieve 

better performance, the position of the Krills is first updated using PSO discussed in Section 3. 

After the first updation, KH algorithm is implemented to find the new updated position of the 

Krill particles. During the evaluation of the fitness the constraints violation checking is also 

carried out. For each Monte Carlo step, the relative percentage error in bus voltage magnitude 

and angle is determined at each bus. For a particular number of meters and their locations, if in 

95% of the simulated cases, the relative errors in voltage and phase angle estimates are brought 

down below the pre-specified thresholds, then the value of the objective functions are determined 

and stored. On the contrary, if in 95% of the cases, the estimation errors are not below the 

specified thresholds, then for that particular meter location a higher value of the objective 

functions is assigned. So that in the next immediate generation of the algorithm this particular 

solution will be removed from the list because of non-dominated sorting and crowding distance 

approach. Then the above procedure is repeated until the convergence is achieved. 

3.6 Robust Optimal Meter Placement in Distribution Networks 

The multi-objective hybrid PSO-KH algorithm is based on the fact that the selected 

optimal solution of different alternatives in a decision space is robust with respect to estimation 

noise. In view of this, the meter placement problem is formulated as multi-objective Pareto based 

optimization problem. The most interesting application of the proposed approach is that a trade-

off solution between the relative errors in voltage magnitude and phase angle is established with 

respect to the total cost of meters to achieve best compromised solution between the cost and 

state estimation accuracy. The hybrid PSO-KH algorithm is applied to address the whole problem 

of robustness of the DSE technique to obtain an optimal meter placement that takes into account 

different metrological characteristics of the measurement devices, random load variations and 

measurement uncertainties. This algorithm does not enumerate all feasible solutions due to the 

computational complexity and is possible because of its efficient exploration and exploitation 

capability. Therefore, this algorithm is able to find the near global optimal solution. Furthermore, 

an overall optimization is performed in which each combination of default meters and power 
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flow meters under random load variations as well as for different metrological characteristic of 

the real meters is reported. Additionally, it is observed that the maximum deviations in voltage 

and phase angle estimates are significantly lower than the other algorithms used in this work for 

comparison purpose. 

The robustness of the proposed approach of meter placement is also tested in presence of 

DGs in distribution network. In the simulation study, it is assumed that the DGs output is a 

random variable following Gaussian distribution. The optimal location and number of meters in 

presence of DGs under various operating scenarios has been tested to find a robust meter 

placement that can guarantee a desired level of accuracy for state estimation. 

3.7 Test and Simulation Conditions 

To analyze the effectiveness of the proposed algorithm, the following test and simulation 

conditions have been considered in MATLAB 2014b environment. 

Branch current based state estimation (BC-DSSE) algorithm is used for the estimation of 

system states [40]. For testing, the base case load flow is run to obtain the reference or true values 

of the quantities to be measured. The uncertainty of the measurements is obtained by adding 

errors following the normal distribution to the reference values obtained from base case load flow 

solution. In SE, four types of measurements with different accuracies are considered such as: 

substation measurements, real measurements, pseudo-measurements (historical data) and virtual 

measurements [75]. The measurement uncertainties are considered based on maximum 

percentage of error associated with the measurements. The following conditions are considered 

for the measurement uncertainties: 

1) Substation Measurements: These measurements are called default measurements because 

these are already present in the substation. In this, one voltage magnitude measurement meter and 

one power flow meter are assumed to be present at the substation. The maximum error of 1% is 

considered for substation measurements. 

2) Real measurements: For real measurements power flow meters are used which measures 

both real and reactive power in a line. Different metrological errors in real measurement devices 

are considered such as 1%, 3% and 5% to observe the impact of metrological error on state 

estimation accuracy and number of devices required. 
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3) Pseudo-measurements: The accuracy of the pseudo measurements is relatively low 

because it is derived from the historical load data. Therefore, the maximum percentage error 

considered for this is 50% [75].  

4) Virtual-measurements: The zero injection buses are modeled as virtual measurements 

with low variance of 10-7 [94]. 

In this work, the stochastic nature of loads and generators are taken into consideration for 

better visualization of the proposed technique. Different network conditions are simulated by 

considering the load demands and generator output as stochastic variables following the Gaussian 

distribution around the mean values with prefixed standard deviation. Additionally, Monte Carlo 

algorithm is used to study the impacts of measurement uncertainties on state estimation 

performance. In order to consider the measurement uncertainties, Monte Carlo algorithm has 

been used to generate 1000 number of different network state from each network condition by 

applying the instrument uncertainty to the measured data. Thus, total number of cases considered 

in this simulation is 100×1000.  

Furthermore, the results obtained using various methods considered in this work is not 

optimized with respect to the position of the voltage meters. Because voltage meters is treated as 

a default measurements available at the substation and DG locations. Therefore, it is not 

optimized but the power flow meters are considered in the optimization process for better 

estimation of system states. The power flow measurements are better as compared to only current 

magnitude, voltage magnitude and pseudo-measurements in estimating the system states. 

Moreover, in order to improve the accuracy of the voltage phase angle, power flow meters are 

appended in distribution network at appropriate locations. 

The test conditions assumed in this work are summarized as follows: 

1) The number of operating conditions, NC= 100. 

2) The standard deviation assumed for the NC operating conditions is ±10% of the base 

value. 

3) Number of Monte Carlo trials MC=1000  

4) Metrological errors of measurement device: 1%, 3% and 5% and 

5) The total test cases of 100×1000 have been studied. 

The number of power flow meters required and their positions in presence of DGs are also 

investigated in this work. In the simulation study, the location of DGs is kept fixed [97],[98] and 
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it is assumed that the DGs output is a stochastic variable following the Gaussian distribution with 

prefixed standard deviation and moreover, all DGs are generating real power to the network. The 

impacts of DG on state estimation accuracy are presented in the next section. Moreover, the 

results reported considering DG refer only to a particular case and the impact of possible power 

flow inversion has not been considered in this work. 

To validate the performance of the proposed hybrid PSO-KH algorithm, the results are 

compared with some well known existing algorithm such as conventional KH, PSO and NSGA-

II. 

Table 3.1 Parameter values of KH, PSO and NSGA-II Algorithm 

KHA PSO NSGA-II 
Population size=20 Population size=20 Population size=20 

maxD  (maximum diffusion speed)∈
[0.002 0.01] 

C1=2,C2=2 Crossover rate 
(Pc)=0.8 

Ct∈ [0, 2] maxw =0.9, minw =0.4 Mutation rate 
(Mc)=0.02 

fV  (foraging speed)=0.02ms-1 Maximum 
generations=50 

Maximum 
generations=50 

fW  (inertia of the foraging motion) =0.9 - - 
maxM =0.025ms-1 

Maximum generations=50 
- - 

 

Table 3.2 DG installation bus and capacity 

Test System Bus Number DG capacity in MW 
(Base value) 

IEEE 69-bus System          50 
61 

0.180 
0.270 

Practical Indian 85-bus 
System 

45 
61 

0.277                           
0.290 

 

3.7.1 Fuzzy Set theory  

Fuzzy set theory has been used to find best optimal solution among all solution obtained 

in an optimal Pareto-front [95]. The procedure is discussed as follows: 

• At first the maximum and minimum value of each objective function is obtained. 

•  µ  is calculated for each objective function as  
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The membership function for each solution is calculated using the equation given below: 
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where M is the number of Pareto solutions (population size), oN  is the number of objectives. The 

best compromise solution is the one achieving the maximum membership function.  maxF  and 

minF  are the maximum and minimum values of the objective functionF . 

3.7.2 IEEE 69 bus system 

In order to highlight the performance of the proposed algorithm, IEEE 69-bus, 12.66kV 

radial distribution network has been taken into account. This system comprises of 69 buses and 

68 lines, 48 loads and two DGs. The system load information and line parameters are given in 

[99]. The total load of this system is 3.802MW and 2.692Mvar respectively. Furthermore, this 

system includes 21 number of zero injection buses. The real and reactive power injections at 

these buses are considered as virtual measurements with higher accuracy level. In addition, there 

are two real meters kept at the substation which are called as default measurements (one voltage 

and one power flow meter), provided in Table 3.3. Distribution system can be of 1, 2 or 3 phase. 

But in this thesis only single phase balanced system model has been considered. Therefore, 

feeder modeling and unbalanced load has not taken into consideration. 

The obtained results using the proposed algorithm have been reported in Table 3.3 and the 

optimal Pareto-front plots are shown in Figure 3.2, 3.3 and 3.4 under different operating 

scenarios such as load variations, generator output variations and different metrological 

characteristics of measurement devices. It is worth noticing that, the total number of power flow 

meters required is 5 using the proposed PSO-KH algorithm when the meter accuracy is 

considered as 1%. But in case of KH, PSO and NSGA-II, the total number of flow measurements 
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required is 9, 8 and 5 respectively. The average relative percentage error in bus voltage 

magnitude and phase angle is obtained as 0.0028% and 0.4947% using PSO-KH whereas in case 

of KH and PSO these are 0.0052%, 0.7837% and 0.0112%, 1.8731% respectively. Though same 

number of meters is obtained for NSGA-II and PSO-KH but the average relative percentage of 

error obtained using NSGA-II is 0.0037% and 0.6273% which is more as compared to PSO-KH. 

The results shown in Table 3.3, are obtained at the final iteration of the iterative process i.e., at 

the optimal Pareto-front. From the optimal Pareto front, the best compromised solution is 

obtained using fuzzy theory [95].  The competitive results are shown in Table 3.3, which shows 

the superiority of the proposed algorithm over other existing algorithm and techniques considered 

in this work. Furthermore, the minimum and maximum relative percentage errors in voltage 

magnitude and angle estimates are also reported in Table 3.3 for different methods. The 

maximum deviations in voltage and angle estimates are found to be significantly lower than the 

PSO, KH and NSGA-II algorithms. 

 

Figure 3.2(a): Optimal Pareto-front between no. of flow meters and 3F  for 1% error in 

real measurements and 50% in pseudo-measurements. 
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Figure 3.2(b): Optimal Pareto-front between no. of flow meters and 2F  for 1% error in 

real measurements and 50% in pseudo-measurements. 

 

 

 

Figure 3.2(c): Optimal Pareto-front between objectives 2F  and 3F  for 1% error in real 

measurements and 50% in pseudo-measurements. 
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Figure 3.3(a): Optimal Pareto-front between no. of flow meters and 2F  for 3% error in 

real measurements and 50% in pseudo-measurements. 

 

 

Figure 3.3(b): Optimal Pareto-front between no. of flow meters and 3F  for 3% error in 

real measurements and 50% in pseudo-measurements. 
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Figure 3.3(c): Optimal Pareto-front between objectives 2F  and 3F  for 3% error in real 

measurements and 50% in pseudo-measurements. 

  

 

Figure 3.4(a): Optimal Pareto-front between no. of flow meters and 2F  for 5% error in 

real measurements and 50% in pseudo-measurements. 
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Figure 3.4(b): Optimal Pareto-front between no. of flow meters and 3F  for 5% error in 

real measurements and 50% in pseudo-measurements. 

 

 

Figure 3.4(c): Optimal Pareto-front between objectives 2F  and 3F  for 5% error in real 

measurements and 50% in pseudo-measurements. 

 

For meter accuracy of 3% and 5%, the optimal Pareto-front between different objectives 

has been shown in Figure 3.3 and 3.4. It can be observed from the figures that the number of 

meters requirement is increased compare to previous case i.e. when 1% accuracy of the meter 

was considered. Moreover, the objectives 2F and 3F  values are also increased due to large error 
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incorporated into real measurements i.e. in power flow measurements. From this, it can be 

concluded that if the error in power flow measurements is more then it influences the estimation 

accuracy of the state estimator and also on number of meter requirements. It is important to note 

that both metrological errors and the location of the measurement devices significantly affecting 

the accuracy of the state estimator. From the figures, it is observed that even though the number 

of meters are same but SE accuracies are different because the location of meters also influencing 

the estimation accuracy. The obtained results are reported in Table 3.3 and the optimal Pareto-

front between objectives 2 and 3 is shown in Figure 3.2. It is noticed that the two objectives are 

not conflicting with each other rather these are correlated. Therefore, the Pareto front curve is not 

possible between the objectives 2F  and 3F . 

   The result provided in Table 3.3 refers to a passive distribution network i.e. when there 

is no DG installed in the network. There are two observation can be made by analyzing the 

results provided in Table 3.3. The first one is, as the accuracy of the measurements decreases the 

number of power flow meters have to be increased for better state estimation. The second one is 

the performance of the proposed PSO-KH algorithm is found to be better due to its efficient 

searching capability. The hybridization of PSO and KH algorithm brings a higher degree of 

balance between the intensification and diversification during the search process. Therefore, a 

new hybrid PSO-KH algorithm has been proposed for the distribution state estimation in multi-

objective environment to solve the meter placement problem. The obtained results are also 

compared with PSO, KH and NSGA-II algorithms to check superiority of the proposed 

algorithm.  

 Furthermore, the proposed methodology has also been applied in active distribution 

network. Two DGs of 0.270 MW and 0.180 MW are installed at nodes 50 and 61 and it is 

assumed that both are injecting only real power to the network.  Moreover, the results reported 

considering DG refer only to a particular case because the location of DGs is based on to achieve 

minimum power loss and voltage deviations [97]. The results obtained in presence of DGs are 

reported in Table 3.4. It is worth noticing that, the number of power flow meters requirement is 

reduced as compared to the passive case and moreover, the objective function F3 value is reduced 

as compared to without DG case. The reason behind is that the DG supplying power to the local 

load connected to that bus. Therefore, the power drawn by that load from the feeder section is 

reduced i.e. the current in the lines get reduce. As a consequence, the magnitude of error 



Chapter 3        Optimal Allocation of Measurement Devices Using Hybrid PSO-KH algorithm 

 

50 

 

 

associated with the flow measurements will reduce. Furthermore, the presence of DG provides 

more real-time measurements and increases the redundancy level of the system which helps in 

getting more accurate results.  

From the location of the power flow meters shown in Table 3.4, it can be stated that, if the 

flow meters are placed nearer to the sources and in the main feeder, then much better results can 

be expected than the meters at the laterals or far away from sources. Therefore, in the 

optimization process, some real meters like power flow meters and voltage meters are kept at the 

substation and DG location for further improvement in state estimation accuracy. 

Table 3.3: IEEE-69 bus system: optimal location of the power flow meters under different 

loadings including metrological errors of the flow meters 

 
 

Metrological 
Errors 

 
 

Algorithm 

 
 

Default 
Measurements 

(node/line 
number) 

 
 

location of flow 
meters(Line 

number) 

 
No. of 
flow 

meters 

 
 

Objective functions 
value 

Max.  
error in bus 

voltage 
magnitude 

(V) 
(%) 

Max.  
error in 

bus 
voltage 
angle 

( )δ  

 (%) 

 
F1 

 
F2 

 
F3 

 
 
 
 

1% 

Proposed  
PSO-KH 

1/1 1,7,24,54,66 5 6 0.0028 0.4947 0.0381 5.7922 

KH 1/1 1,9,17,23,32,47, 
56,61,63 

9 10 0.0052 0.7837 0.0399 6.9994 

PSO 1/1 1,18,28,37,56, 
65,42, 49 

8 9 0.0112 1.8731 0.0475 7.9249 

NSGA-II 1/1 1,5,19,27,54 5 6 0.0037 0.6273 0.0772 9.3022 
 
 
 
 

3% 

Proposed  
PSO-KH 

1/1 1,11,18,43,52 5 6 0.0053 0.9782 0.0417 5.9154 

KH 1/1 1,2,4,12,21,24, 
30,59,67 

9 10 0.0084 1.6767 0.0479 7.8239 

PSO 1/1 1,13,17,25,31,39, 
45,51,59,64,65 

11 12 0.0091 1.7990 0.0638 11.6239 

NSGA-II 1/1 1,3,10,19,27,30, 
32,4,45,49,54,65 

12 13 0.0077 1.6130 0.0488 10.3332 

 
 
 
 
 

5% 

Proposed  
PSO-KH 

1/1 1,7,14,21,28, 
33,49,53,61 

9 10 0.0058 1.1491 0.0523 6.3172 

KH 1/1 1,5,11,30,35, 
41,47,52,61 

9 10 0.0102 1.9423 0.0927 9.6717 

PSO 1/1 1,5,18,30,34,35, 
44,47,50,56,63,67 

12 13 0.0109 2.8704 0.0838 12.7865 

NSGA-II 1/1 1,4,9,14,20,32,38, 
40,43,45,51,57,65 

13 14 0.0075 1.7001 0.0776 12.4533 
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Table 3.4 IEEE 69 bus system: optimal location of the power flow meters under different 

loadings including metrological errors of the flow meters (with two DGs at bus no. 50 and 61) 

 
 

Metrological 
Errors 

 
 

Algorithm 

 
 

Default 
Measurements 

(node/line 
number) 

 
 

location of flow 
meters(Line number) 

 
No. of 
flow 

meters 

 
 

Objective functions 
value 

Max. 
error in 

bus 
voltage 

magnitude 
(V) 
(%) 

Max.  
error in 

bus 
voltage 
angle 

( )δ  

(%) 

 
F1 

 
F2 

 
F3 

 
 

1% 

Proposed  
PSO-KH 

1,50,61/1 1,49,52,59,67 5 8 0.0011 0.2653 0.0289 5.3122 

KH 1,50,61/1 1,27,34,37,51,62,67 7 10 0.0037 0.6123 0.0371 8.7895 
PSO 1,50,61/1 1,13,24,30,34,49,67 7 10 0.0093 1.6224 0.0421 8.0123 

NSGA-II 1,50,61/1 1,9,18,29,51 5 8 0.0034 0.5827 0.0569 9.4322 
 
 
 
 

3% 

Proposed  
PSO-KH 

1,50,61/1 1,29,41,53,66 5 8 0.0025 0.5386 0.0411 5.8923 

KH 1,50,61/1 1,29,32,33,41,61,66 7 10 0.0072 1.1604 0.0567 8.2213 
PSO 1,50,61/1 1,14,41,43,44,51, 

56,62,67 
9 12 0.0060 1.0535 0.0422 9.1325 

NSGA-II 1,50,61/1 1,9,21,23,37,38,42, 
44,66 

9 12 0.0060 1.0211 0.0612 9.1009 

 
 
 
 

5% 

Proposed  
PSO-KH 

1,50,61/1 1,3,17,25,34,42,50,63 8 11 0.0063 1.0587 0.0499 6.5122 

KH 1,50,61/1 1,4,22,36,47,54,61,64 8 11 0.0064 1.0667 0.0733 10.6567 
PSO 1,50,61/1 1,2,5,24,29,33,34,41 

,43,63 
10 13 0.0060 1.9560 0.0645 12.2564 

NSGA-II 1,50,61/1 1,10,21,24,28,33, 
34,36,46,49 

11 14 0.0061 1.7509 0.0614 11.0011 

3.7.3 Practical Indian 85-bus system 

To demonstrate the effectiveness of the proposed algorithm, in a large scale practical 

distribution system, Indian 85-bus, 11kV radial distribution network has been considered in this 

study. The system comprises of 85 nodes and 84 branches with two DG sources. The total load of 

the system is 2.574MW and 2.622MVar respectively. Furthermore, the total number of zero 

injection buses it includes is 26. The network and load data for Indian 85 bus system are taken 

from [100]. The parameters of the algorithms mentioned in Table 3.1 are also applicable for this 

test system.  

The results obtained using the proposed algorithm has been shown in Table 3.5. When 1% 

error in power flow meter and 50% error in pseudo-measurements are considered, the total 

number of power flow meters required is 7 using the proposed PSO-KH algorithm whereas in 

case of PSO, KH and NSGA-II, the total number of flow meters required is 8, 8 and 8 

respectively. The respective objective functions value is also provided in Table 3.5. Furthermore, 

the optimal Pareto fronts between objective functions have been shown in Figure 3.5, 3.6 and 3.7 

respectively, for different metrological errors of the power flow meters. From the results it is 

observed that as the accuracy of the meter is decreased, more number of real meters have to be 
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placed to get better estimation performance because the quality of the estimates decreases with 

the increase in the error in measurements and this decrease in quality is significant with the 

increase in error in the real measurements as compared to the pseudo-measurements. Therefore, 

more meters are needed to bring down the relative errors in voltage and phase angle estimates 

below the pre-specified thresholds which is reported in Table 3.5. It is proven that the solution 

obtained using hybrid PSO-KH is a near global optimal solution. 

The results obtained in presence of DGs at bus number 45 and 61 are also shown in Table 

3.6. It can also be visualized that the presence of DGs impacts on accuracy of the estimated 

quantities. It reduces the phase angle error because DG supplies power to the local loads 

connected to that bus therefore, the power drawn by the load from the main feeder section is 

reduced. In Table 3.6, the results obtained using the proposed hybrid PSO-KH algorithm has been 

reported. From the Table 3.5 and 3.6, it is observed that both the location and metrological error 

of the measurement devices significantly affecting the state estimation accuracy. Therefore, it is 

necessary to consider these items into account to assure that the state variables comply within 

predefined thresholds.  A best compromised solution between relative percentage error in voltage 

magnitude and angle with the cost of meter is established which is the main advantage of using 

this Pareto based multi-objective optimization technique. 
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Table 3.5 Indian 85-bus system: Optimal location of the power flow meters under different 

loadings including metrological errors of the flow meters 

 
 

Metrological 
Errors 

 
 

Algorithm 

 
 

Default 
Measurements 

(node/line 
number) 

 
 

location of flow 
meters(Line 

number) 

 
No. of 
flow 

meters 

 
 

Objective functions 
value 

Max. error 
in bus 
voltage 

magnitude 
(V) 
(%) 

Max.  
error in 

bus 
voltage 
angle 

( )δ  

(%) 

 
F1 

 
F2 

 
F3 

 
 
 
 
 

1% 

Proposed  
PSO-KH 

1/1 1,13,18,26, 75    
79,84 

7 8 0.0385 1.1077 0.1853 5.1722 

KH 1/1 1,28,32,35,42,43
,60,68 

8 9 0.0390 1.2449 0.2891 6.3321 

PSO 1/1 1,8,15,32,48,56,
70,71 

8 9 0.0387 1.2911 0.2786 6.6143 

NSGA-II 1/1 1,18,28,31,40,52
,64,70 

8 9 0.0390 1.2641 0.2399 7.8259 

 
 
 
 
 

3% 

Proposed  
PSO-KH 

1/1 1,17,22,30,36,73
,81 

7 8 0.0438 1.3355 0.2347 5.5217 

KH 1/1 1,28 ,42,52,58,  
73,78,81,84   

9 10 0.0430 1.3255 0.4011 6.7162 

PSO 1/1 1,20,34,40,54,58
,71,81 

8 9 0.0452 1.4298 0.3217 7.3192 

NSGA-II 1/1 1,13,14,21,26,50
,58,60,65,77 

 
10 

 
11 

 
0.0431 

 
1.1851 

 
0.3019 

 
9.8822 

 
 
 
 
 

5% 

Proposed  
PSO-KH 

1/1 1,16,21,24,33,69
,77,79 

8 9 0.0439 1.2855 0.2896 5.9407 

KH 1/1 1,9,19,24,37,53,
63,67,74 

9 10 0.0467 1.5213 0.3342 7.6721 

PSO 1/1 1,6,23,32,68,70,
72,76,79,81,84 

11 12 0.0468 1.5478 0.3211 8.6434 

NSGA-II 1/1 1,20,28,38,40,41
,43,68,73,76 

10 11 0.0459 1.3836 0.2898 8.6315 

 

Table 3.6 Indian 85-bus system: Optimal location of the power flow meters under different 

loadings including metrological errors of the flow meters (with DGs at bus no. 45 and 61) 

 

 
 

Metrological 
Errors 

 
Default 

Measurements 
(node/line 
number) 

 

 
 

Location of flow 
meters(Line 

number) 

 
No. of 
flow 

meters 
 

 
 

Objective functions 
value 

Max. 
error in 

bus 
voltage 

magnitude 
(V) 
(%) 

Max.  
error in 

bus 
voltage 
angle 

( )δ   

(%) 

 
F1 

 
F2 

 
F3 

1% 1,45,61/1 1,9,27,33,44 5 8   0.0347 1.0013 0.1622 5.1137 
3% 1,45,61/1 1,9,34,51,79,81 6 9 0.0411 1.1220 0.2181 5.377 
5% 1,45,61/1 1,9,19,28,46,62,79 7 10 0.0419 1.2124 0.2214 5.5231 
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Figure 3.5(a): Optimal Pareto-front between no. of flow meters and 2F  for 1% error in 

real measurements and 50% in pseudo-measurements. 

 

Figure 3.5(b): Optimal Pareto-front between no. of flow meters and 3F  for 1% error in 

real measurements and 50% in pseudo-measurements. 
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Figure 3.5(c): Optimal Pareto-front between objectives 2F  and 3F  for 1% error in real 

measurements and 50% in pseudo-measurements. 

 

Figure 3.6(a): Optimal Pareto-front between no. of flow meters and 2F  for 3% error in 

real measurements and 50% in pseudo-measurements. 
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Figure 3.6(b): Optimal Pareto-front between no. of flow meters and 3F  for 3% error in 

real measurements and 50% in pseudo-measurements. 

 

Figure 3.6(c): Optimal Pareto-front between objectives 2F  and 3F  for 3% error in real 

measurements and 50% in pseudo-measurements. 
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Figure 3.7(a): Optimal Pareto-front between no. of flow meters and 2F  for 5% error in 

real measurements and 50% in pseudo-measurements. 

 

Figure 3.7(b): Optimal Pareto-front between no. of flow meters and 3F  for 5% error in 

real measurements and 50% in pseudo-measurements. 
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Figure 3.7(c): Optimal Pareto-front between objectives 2F  and 3F  for 5% error in real 

measurements and 50% in pseudo-measurements. 

3.8 Summary  

This chapter proposed a multi-objective optimization methodology that optimizes the 

number and location of measurement devices for state estimation in distribution networks. A new 

hybrid PSO-KH optimization algorithm has been proposed which considers variation in load 

power demand as well as the uncertainty of the measurement devices using Monte Carlo 

algorithm. A trade-off solution between the relative errors in voltage and phase angle estimates is 

established with the total cost of meters in a multi-objective framework to achieve best 

compromised solution between the cost and state estimation errors. Furthermore, the impacts of 

DG on state estimation accuracy have also been discussed.  

The proposed hybrid PSO-KH algorithm is tested on IEEE 69-bus system and Indian 85-

bus distribution network. The competitive results obtained using the proposed algorithm is 

compared with the existing algorithm such as PSO, KH and NSGA-II algorithm under various 

operating scenarios of the distribution networks. It is verified that the proposed algorithm is 

reliable and robust with respect to different metrological characteristics of the devices and load 

variation. Moreover, it can guarantee in getting global optimal solution. Therefore, the proposed 

approach of meter placement technique can be used for the planning study of the Smart 

distribution networks.  
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Chapter 4 

A Multi-Objective Hybrid Estimation of Distribution  Algorithm-
Interior Point Method based Meter Placement for Distribution 

System State Estimation 

4.1 Introduction 

This chapter proposed a new multi-objective hybrid Estimation of distribution 

algorithm (EDA)-interior point method (IPM) algorithm to obtain the optimal location of 

power flow meters for state estimation in distribution networks. The objective functions to be 

minimized are, (i) the total configuration cost of the distribution network, (ii) the average 

relative percentage error (APE) of bus voltage magnitude and (iii) APE of bus voltage angle. 

As the objectives are conflicting in nature, a multi-objective hybrid Pareto-based non-

dominated sorting EDA-IPM algorithm has been proposed. Moreover, due to poor 

exploitation capability of the EDA, it is hybridized with IPM to improve its local searching 

ability in the search space. The hybridization of EDA and IPM brings a higher degree of 

balance between the exploration and exploitation capability of the algorithm during the search 

process. Furthermore, the loads and generators output are treated as stochastic variable and 

the impact of different type of DGs on state estimation performance has also been 

investigated. The efficiency of the proposed algorithm is tested on IEEE 69-bus system and 

Practical Indian 85-bus radial distribution network. The obtained results are compared with 

conventional EDA, PSO and NSGA-II. 

4.2 Problem Formulation 

The proposed multi-objective based meter placement optimization problem considered 

three objective functions to minimize: (1) the total cost of meters (2) the average relative 

percentage error (APE) of bus voltage magnitude and (3) APE of voltage angle. From the 

observation it is found that the above three objectives are conflicting in nature because if more 

number of meter are placed then estimation errors will get reduce and vice-versa. Therefore, 

the concept of optimal Pareto front and fast non-dominated sorting approach have been 

incorporated in this multi-objective optimization problem to find the best compromised 

solution [88]-[89].  
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The objectives to be minimized are described as follows: 
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Subjected to constraints:  The constraints imposed describe in Eq. (4.4)-(4.5) considers for 95 

% of the simulated cases [54]-[56] and is expressed as: 
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where 1F , 2F  and 3F  represents three objective functions, n  and nl  are the number of nodes 

and lines in a distribution network, m  is the number of operating scenarios,pfC and  VMMC

indicates the relative cost of power flow and voltage magnitude meter respectively. The cost 

of these meters is normalized to unity.  

In the optimization process, the cost value assigned to both power flow meter and 

VMM are supposed to be equal because VMM are considered to be as default measurements. 

In this chapter, the location and number of VMM are taken as same for all optimization 

algorithm considered. Different cost values can be assumed for both the meters. But in actual 

practice, the cost of a measuring instrument depends on specific application scenarios. In the 

above equation, pfP  and VMMP  represents the binary decision variables i.e. if a meter is 

situated  in a bus or lines then its value becomes one, else its value will be treated as zero, a
iV

and a
iδ  indicates the actual voltage magnitude and phase angle of thi  bus. Similarly, est

iV and 

est
iδ are denoted as estimated voltage magnitude and angle of thi  bus respectively. 

The performance of state estimator deteriorates due to the presence of more number of 

pseudo-measurements with high variances. But, the performance can be improved by 

deploying additional real meters at suitable locations. In this chapter, the optimal number of 

VMM and power flow meters has been considered for the design of measurement 

infrastructure of an active distribution system. For state estimation, branch current based 
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distribution system state estimation (BC-DSSE) algorithm is used for estimating the states of 

the system such as branch current magnitudes and their angles [40]. The next section of this 

chapter describes the solution methodology for the above proposed multi-objective 

optimization problem.  

4.3 Solution Methodology  

For the solution of the multi-objective optimization problem, a new hybrid EDA-IPM 

algorithm has been proposed in this chapter. Therefore, in this section, a brief introduction to 

traditional EDA and Interior point method (IPM) has been presented as follows. 

4.3.1 Estimation of Distribution Algorithm (EDA) 

The EDA is a population based evolutionary optimization algorithm which employs a 

probabilistic model to generate new individuals for the next generation [90]-[91]. It has 

efficient diversification capability to explore the search space to achieve prominent solutions 

for the optimization problem. In EDA, new solutions are generated without using crossover 

and mutation operators like in genetic algorithm (GA). A probabilistic model is estimated in 

order to sample the new individuals from the database containing previous generation data 

and some selected population. The movement of each individual in the population is predicted 

by the probability model used in EDA. The pseudo-code of EDA is described as follows: 

Begin 

1. Initialization: Generate R initial population randomly within limits. 

       While termination criteria not met Do 

2. Evaluation: Calculate the fitness value of R individuals. 

3. Selection: By using any selection method select N<R individuals. 

4. Probabilistic model: Estimate the probability ( )xps  that an individual being 

among the selected population. 

5. Sampling: Sample R individuals from ( )xps  using sampling technique. 

End while 

End 

4.3.2 Interior Point Method (IPM) 

The primal dual IPM is basically used to solve non-linear constraint optimization 

problem [92]-[93]. The Lagrange multipliers are employed to deal with the equality and 

inequality constraints of the optimization problem. In order to avoid the negativity conditions 

of the slack variables the logarithmic barrier functions are added to the objective function. In 
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this method, the decision variables are considered to be continuous. The non-linear constraint 

optimization problem can be transformed to unconstraint optimization problem of the 

following Lagrange function: 
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where u and l are the slack variables; y, v and w are the Lagrange multipliers; and the barrier 

parameter is represented byµ .  

In order to satisfy the Karush-Kuhn-Tucker (KKT) conditions, first order derivatives 

of a set of non-linear algebraic equations have been formed and then Newton-Raphson 

method is employed to solve the above first order differential equations [92]. During the 

iterative procedure of the IPM, if the KKT conditions shown below are satisfied then the 

algorithm will stop. The KKT conditions are described as follows: 

( ) ( ) ε pwvyxgxfL T
x +−∇−∇=                                                                                            (4.7)

( ) εpxgLy =                                                                                                                         (4.8) 

ε≤−+= maxxuxLw                                                                                                               (4.9) 

ε≤−−= minxlxLv                                                                                                               (4.10) 

According to primal-dual theory, x  is the primal variable, l  and u  is the slack variabley , v  

andw are the dual variables respectively. The equations (4.8)-(4.10) are called the primal 

feasible conditions and eq. (4.7) is known as dual feasible conditions. If the solution satisfies 

the above conditions then it is an optimal solution for the optimization problem.  

4.3.3 Proposed Multi-objective Hybrid EDA-IPM algorithm  

In this work, the meter placement problem is formulated as multi-objective 

optimization problem. The main advantage of using this approach is, a best compromised 

solution can be established between the various objectives described in section 2. 

Simultaneously, the impacts of meter location on state estimation accuracy can be 

investigated. Therefore, a trade-off solution is essential between the objectives to reduce the 

cost and state estimation error. In order to achieve best compromised solution among the 

objectives, hybrid EDA-IPM algorithm has been proposed. The reason for this hybridization 

of two algorithms is described as follows. 

EDA has been used widely in variety of engineering applications because of its 

efficient exploration capability in the search space. Although, EDA has good exploration 

ability but it suffers from poor exploitation capability to get global optimal solution. However, 
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the local searching capability of IPM algorithm is more effective. Therefore, the conventional 

EDA is hybridized with IPM to enhance the exploitation capability of the algorithm to get 

near global optimal solutions. The solution obtained from EDA is taken as inputs to IPM. 

In multi-objective optimization case if objective functions are conflicting in nature, 

then no solution can be improved itself in one objective without worsening the other 

objectives. Since the objectives are conflicting, non-dominated sorting principle has been 

incorporated to get the best optimal Pareto front [88].  All solutions in a non-dominated 

Pareto front are treated as best optimal solution. Thus, in this approach, the solution is not a 

single optimal solution like single objective optimization case rather it is a set of optimal 

solution.  In this chapter, non-dominated sorting approach has been employed with hybrid 

EDA-IPM algorithm to achieve best trade-off solution between different objectives such as 

cost, ARPE in voltage magnitude and phase angle.  

In the proposed algorithm, initially solutions are generated randomly using seeding 

approach within the search space. Each solution represents number of power flow meters as 

well as their locations. Based on their locations the objective functions [Eq. (1)-(3)] are 

evaluated using BC-DSSE algorithm [40]. Then, the selection mechanism has been used to 

select some of the best solutions obtained so far. These selected solutions are updated using 

IPM algorithm to obtain best neighborhood solution. After updating the selected solutions, 

probabilistic Bayesian model has been incorporated to predict the new solutions for future 

generation based on the selected solution. After evaluating the fitness, constraints violation 

checking has been carried out. To satisfy the constraints, Monte Carlo simulation is used and 

relative deviations in voltage magnitude and angle is determined at each bus for all Monte 

Carlo trials. In 95% of cases, if the relative errors are within the pre-specified limits, then that 

solution is stored for the next generation. On the other hand, if it is not, then a higher 

objective value is to be assigned to that solution so that this solution can be eliminated from 

the next generation. After that sampling technique is utilized. Then, this procedure is repeated 

till the convergence criterion is met. To get the best solution in optimal Pareto front, fuzzy 

theory [95] has been used.  

In the optimization process different population size like 20, 30 and 50 have been 

tried. But, it has been found that there is no such significant variation in result for taking 

different population sizes for both the test system. Therefore, population size of 20 has been 

fixed for evaluating the performance of the proposed optimization algorithm. The flowchart of 

the proposed method has been shown in Figure 4.1. Furthermore, the pseudo code of the 
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proposed multi-objective hybrid EDA-IPM algorithm has been presented as follows: 

Start

Initialize algorithm parameters and generate random 
number of power flow meters and their locations in a 

distribution network for each individual in the population

Evaluate the objective functions Eq.(1)-(3) along 
with the constrains violation checking by using 
Eq. (4)-(5) for each individual in the population

Select N individuals less than the population size (R) 
of the solution set using Non-dominated selection strategy 

i =1

For each selected individual i apply IPM to 
find the best neighborhood solution y(i) 

Evaluate the fitness functions Eq. (1)-(3) 
along with the constraints Eq. (4)-(5) using 

weighting approach

Update the solution 
x(i)=y(i)

Estimate  probability distribution of the previous 
and selected solution to generate new solution using

 Gaussian Bayesian network (Eq. 11)

Use sampling technique to sample R 
solutions (Gaussian UnivModel)

Is maximum 
generation 
reached

?

Stop

Yes

No

iter = iter+1
is

fitness (y(i)) < fitness( x(i))

Yes No 
Updationi =i+1

iter = 0

No

 

Figure 4.1:  Flowchart of the proposed multi-objective hybrid EDA-IPM algorithm 
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The steps of the proposed algorithm are as follows: 

Step1. Initialization: Generate random number of power flow meters and their locations for 

each individual in the population (Pop).  

Do while (“Stopping criterion is not satisfied”) 

Step 2. Fitness evaluation: Evaluate the fitness functions for each individual in the Pop. 

Step 3. Selection: Select N<R solutions from Pop using Non-dominated sorting selection 

strategy. R is the size of the population and N is a number less than R. 

Begin 

    Do while (“Stopping criterion is not satisfied”) 

        For =i  1: lnsoS  (Number of selected solutions.) 

1. Use each solution i as initial point in IPM to find the best optimal solution for eachi . 

2. Evaluation: Calculate fitness value of ( )iy  using weighting approach. 

3. Update solution:  

                if   Fitness ( )( )iy  < Fitness ( )( )ix  

                  && if solution y dominates x 

                   then  )()( iyix =  

        End  for i  

   End Do 

End 

Step 4. Probabilistic graphical model: Estimate the probability distribution of the previous 

solutions and selected solution to predict new population for the next generation using 

Gaussian Bayesian network. Mathematically, it can be expressed as: 

                              )),(())((
)(

2∑
∈

−+Ν=
ij XPaX

ijjijiii vxwXpaxp µµ
                                     (4.11)         

 

           where iµ represents the mean of the variableiX , iv is the standard deviation of the 

distribution and ijw is the weight associated with each of the parents. jx is the value of 

the variable jX in ( )iXpa . 

Step 5. Sampling technique: Sample R number of solutions from the Gaussian Bayesian 

network using sample Gaussian UnivModel. 

    End Do 

End 
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4.4 Test and Simulation Conditions 

To analyze the efficiency of the proposed state estimation formulation and algorithm, 

several test conditions and network operating scenarios have been considered in MATLAB 

2014b environment. For state estimation in radial network, BC-DSSE algorithm has been 

employed. In BC-DSSE, the magnitude of branch currents and their angles are treated as state 

variables [40]. In order to generate the measurement data for state estimation, first backward 

forward sweep method has been used to obtain the load flow solution of a distribution 

network. This load flow solution is treated as the reference or actual values of the measured 

quantities. Then, the measurement data is generated by adding random noise following the 

Gaussian distribution to the actual values of the quantities obtained from the load flow 

solution. Mainly, there are four types of measurement data are considered for state estimation 

such as: substation measurements, real measurements, pseudo-measurements and virtual 

measurements [75]. The error associated with each type of measurement data is based on the 

maximum percentage of error assumed for that measurement. The following conditions are 

considered for the measurement uncertainties: 

1) Substation Measurements: In this work, it is assumed that the maximum percentage of 

error associated with substation measurement is 1%. This measurement is called as 

default measurement. 

2) Real measurements: Generally, the real measurements are more accurate. Therefore, 

the maximum error assumed for this is 1%, 3% and 5%. The power flow meters are 

assumed as real meters and it measures both real and reactive power flows in a line.  

3) Pseudo-measurements: Basically, the pseudo-measurements are obtained from the 

historical customer load data. Therefore, these measurements are less accurate than 

other types of measurements. The maximum percentage of error assumed for pseudo-

measurements is 50% [75].  

4) Virtual-measurements: The virtual measurements are obtained from the zero-injection 

buses and these measurements are highly accurate than other measurements with a 

variance value of 10-7 [94]. 

Furthermore, the load and generators are considered as stochastic variable to analyze 

the performance of the proposed meter placement scheme. Different measurement 

uncertainties for better analysis of the proposed technique have been considered. In simulation 

study, it is considered that the load and generator outputs are stochastic in nature and it is 

assumed to be distributed normally around the mean value with fixed standard deviation. 
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Moreover, the Monte Carlo trials have been utilized to study the effects of measurement 

uncertainties on state estimation performance. There are 100 number of different network 

operating conditions are generated.  From each network operating condition, 600 number of 

different network states are generated by using Monte Carlo simulation. Thus, in this 

simulation study, the total number of network scenarios considered is 100×600. A standard 

deviation of ±10% around the base value has been assumed for each operating condition. 

Different measurement uncertainties considered for real meters are 1%, 3% and 5% 

respectively. 

The number of meters required and their locations in presence of different type of DG 

has also been investigated in this chapter. Moreover, it is assumed that the locations of DGs 

are fixed [97], [98] and their output is a stochastic in nature. Various types of network 

scenarios such as meter placement impacts on passive as well as active distribution networks 

have been considered. Further, the active network consists of DG only producing real power 

to the networks, DG producing real power as well as absorbing reactive power, and DG 

producing both real power as well as reactive power to the network. Since, the DG outputs are 

not controlled in this case so these belong to non-dispatchable type. In presence of these kinds 

of DGs, the meter placement impact on state estimation accuracy in a multi-objective 

environment has been discussed in this work. The types of DG and their capacity are provided 

in Table 4.2.   

The parameters used for PSO, NSGA-II and EDA are provided in Table 4.1. In PSO, 

the parameters used are inertia weight (maxW , minW ) and the learning factors C1 and C2. The 

value of inertia weight decides the balance between exploration and exploitation capability of 

the PSO algorithm. It is found that the best performance is obtained by setting w  initially to 

some relatively high value (e.g. 0.9) to perform extensive exploration in the search space. 

When w is reduced gradually to a lower value (e.g. 0.4), the system becomes more dissipative 

and exploitative. This will improve the local searching capability of the algorithm. Therefore, 

the appropriate values of maxW and minW  chosen is 0.9 and 0.4 respectively [86]-[87]. 

Furthermore, the parameter C1 and C2 represents the speed of flying of particles to the most 

optimize position of the swarm in the search space and its own best position. It regulates the 

length and time taken by particle to reach most optimum position. So that, the particle land in 

an appropriate position. For example if too big a value of acceleration constants is selected, 

then the  particle may fly past the appropriate  position and for too small value, the particle 

will not be able to reach the target position. Generally, each of these constants are set to 2 to 
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make the times taken to move towards the particle’s personal best and swarm’s global best as 

equal.  

Table 4.1 Parameter values of PSO, NSGA-II and EDA algorithm 

 
PSO 

Population size=20, C1=2,C2=2 
maxW =0.9, minW  =0.4 

Maximum number of generations=50,  
 

NSGA-II 
Population size=20 
Crossover rate (Pc)=0.8, Mutation rate  
(Mc) =0.02, Maximum number of generations=50 
 

 
 
 

EDA 

Population size: 20 
Learning method : Learn Gaussian Bayesian Model,  
Sampling method: Sample Gaussian Universal Model 
Replacement method: Pareto Rank ordering 
Selection method : Non-Dominated selection 
Repairing method: Set In Bounds repairing 

 

Table 4.2 Distribution generation (DG) installation bus and capacity 

 
Test System 

 
Bus 

Number 

DG type and capacity( in MW) Base Value 
Type-1   

(P) 
Type-2 
(P-jQ) 

Type-3 
(P+jQ) 

IEEE 69-bus 
System 

50 0.180 0.180-j0.087 0.180+j0.087 
61 0.270 0.270-j0.130 0.270+j0.130 

Indian 85- Bus 
System 

45 0.277 0.235-j0.145 0.235+j0.145 
61 0.290 0.246-j0.152 0.246+j0.152 

 

4.4.1  IEEE 69 Bus System 

The performance of the proposed algorithm has been investigated on standard IEEE 

69-bus, 12.66kV radial distribution network. This network consists of 69 buses, 68 lines along 

with 48 loads and DGs at bus number 50 and 61. The system line and load data are taken from 

[99].The total load of the system is 3.802MW and 2.692Mvar respectively. In this system, 

there are 21 number of zero injection buses. The virtual measurements are obtained from 

these zero injection buses. One VMM and a power flow meter are kept at the substation which 

is treated as default meters. 

From the simulation result it is observed that when the meter accuracy is 1%, the 

number of flow meter needed is 5 using the proposed hybrid EDA-IPM algorithm. On the 

other hand the number of power flow meters required is 7, 9 and 7 using EDA, PSO and 

NSGA-II respectively. In Table 4.3, the APE of voltage magnitude and phase angle are 

specified. It is observed that APE of voltage magnitude and angle using proposed hybrid 
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EDA-IPM algorithm is 0.0025% and 0.4821%. In case of EDA and PSO these are 0.0081%, 

1.3421% and 0.0053%, 0.8985% and using NSGA-II it is 0.0060% and 0.9352% respectively. 

The optimal Pareto front of all the algorithms is shown in Figure 4.2 when the meter accuracy 

is 1%. Among all the solution in the Pareto front, the best optimal solution is selected by 

using fuzzy theory [95]. Moreover, the maximum relative percentage error using different 

methods in voltage and angle estimates are also presented in Table 4.3. It is worth noticing 

that the maximum deviations in state variables using the proposed algorithm are significantly 

lower than using PSO, EDA and NSGA-II. 

The optimal Pareto-front for meter accuracy of 3% and 5% between different 

objectives has also been shown in Figure 4.3 and 4.4. In this case the objectives 2F and 3F

values are little higher than 1% case because meter error considered is higher than 1%. It is 

observed that if the errors are more in direct measurements then its impacts on the state 

estimation accuracy is significant and also meters requirement is more. Moreover, it is worth 

noticing that the impact of measurement uncertainties and meter locations on state estimator 

performance is more significant. In Table 4.3, it is seen that, for EDA, the total number of 

power flow meters required is 7. Figure 4.2 shows the optimal Pareto-front between 2F  and   

3F . It is observed that 2F  and 3F  are correlated to each other. Thus, the optimal Pareto is not 

established between the two objectives. 

The results shown in Table 4.3 refer to a passive distribution network. From these two 

observations can be made, first as the accuracy of the meters decreases the number of power 

flow meters needed is more for better state estimation performance. Secondly, the efficiency 

of the proposed hybrid EDA-IPM algorithm is found to be better due to its higher degree of 

balance between the exploration and exploitation capability. This results in efficient searching 

ability of the proposed algorithm in the search space. Thus, a new hybrid EDA-IPM algorithm 

has been employed for the distribution state estimation in multi-objective framework to 

resolve the meter placement issues. The results obtained using PSO, EDA and NSGA-II are 

compared with the proposed algorithm to test it’s the efficiency.  

Furthermore, the proposed methodology has also been tested in presence of DG. There 

are different kinds of DG considered are provided in Table 4.2. Two DGs of type 1 are 

installed at bus number 50 and 61.  To get minimum power loss and voltage deviation, the 

two DGs are placed at these buses. The obtained results are provided in Table 4.4. It is 

observed that, there is a reduction in number of power flow meter requirement as compared to 

passive case. The phase angle error is also reduced. The reason is, DG provides power to the 
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local bus. Therefore, the real power drawn by that load from the feeder section is reduced i.e. 

the magnitude of current in the lines will go down. As a result, the magnitude of error 

associated with power flow measurements will get reduce. Moreover, due to the presence of 

DGs, the redundancy level of measurement is increased which helps to improve the accuracy 

of the estimator to a further extent. The presence of type 2 and 3 DG has been studied and the 

results obtained are provided in Table 4.5. It is observed that, in all the cases, the proposed 

algorithm outperforms all other algorithms used. In case of type 2 and 3 DGs, it is assumed 

that the DGs are generating both real and reactive power to the network. In one case DG 

supplying reactive power and in other case it is absorbing reactive power from the network. 

 

 
Figure 4.2(a) Optimal Pareto front between objectives F3 and F2 (1% error in real and 50% in 

pseudo-measurements) 
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Figure 4.2(b) Optimal Pareto front between number of flow meters and F2 (1% error in real 
and 50% in pseudo-measurements) 

 
Figure 4.2(c) Optimal Pareto front between number of flow meters and F3 (1% error in real 

and 50% in pseudo-measurements) 
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Figure 4.3(a) Optimal Pareto front between the objectives F2 and F3 (3% error in real and 50% 
in pseudo-measurements) 

 
Figure 4.3(b) Optimal Pareto front between number of flow meters and F2 (3% error in real 

and 50% in pseudo-measurements) 
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Figure 4.3(c) Optimal Pareto front between number of flow meters and F3 (3% error in real 

and 50% in pseudo-measurements) 

 

 
Figure 4.4(a) Optimal Pareto front between number of flow meters and F2 (5% error in real 

and 50% in pseudo-measurements) 
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Figure 4.4(b) Optimal Pareto front between number of flow meters and F3 (5% error in real 
and 50% in pseudo-measurements) 

Table 4.3 IEEE 69-bus system: The number and location of the power flow meters of 

different meter accuracy (without DG) 

 
 

Metrological 
Errors 

 
 

Algorithm 

 
 

location of flow 
meters(Line number) 

 
Number 
of flow 
meters 

 
Objective functions value 

Maximum  
error in bus 

voltage 
magnitude 

(V) 
(%) 

Maximum 
error in bus 

voltage 
angle 

( )δ  

 (%) 

 
F1 

 
F2 

 
F3 

 
 
 
 

1% 

Proposed  
EDA-IPM 

1,7,24,3, 51 5 6 0.0025 0.4821 0.0201 5.2137 

EDA 1,11,17,23,41,47,56 7 8 0.0081 1.3421 0.0318 6.9784 
PSO 1,10,21,27,30,32,33, 

49,67 
9 10 0.0053 0.8985 0.0375 8.4249 

NSGA-II 1,5,17,20,25,56,67 7 8 0.0060 0.9352 0.0272 9.2313 
 
 
 
 

3% 

Proposed  
EDA-IPM 

1,11,19,43,52 5 6 0.0051 0.9657 0.0317 5.7321 

EDA 1,9,17,23,29,36,44,57 8 9 0.0072 1.2950 0.0475 7.9238 
PSO 1,4,37,39,44,49,54,58,6

8 
9 10 0.0102 1.9119 0.0338 10.7899 

NSGA-II 1,3,4,14,17,21,43,47, 
48,53,57,61,63 

13 14 0.0063 1.3083 0.0434 9.9812 

 
 
 
 
 

5% 

Proposed  
EDA-IPM 

1,7,14,19,28,33,47,53,6
1 

9 10 0.0056 1.1273 0.0513 6.2379 

EDA 1,11,19,26,33,39,44, 
47,53,57,61,65 

12 13 0.0055 1.1289 0.07543 9.3417 

PSO 1,2,11,17,18,28,32, 
40,45,47,51,57,66,67 

14 15 0.0074 1.7642 0.0538 13.2314 

NSGA-II 1,4,13,14,16,25,30,3, 
45,56,63,66 

12 13 0.0078 1.7876 0.0673 12.2324 
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Table 4.4 IEEE 69-bus system: The number and location of the power flow meters of 

different meter accuracy (Type 1 DG at bus 50 and 61) 

 
 
 

Metrological 
Errors 

 
 

Algorithm 

 
 

location of flow 
meters(line number) 

 
Number 
of flow 
meters 

 
Objective functions 

value 

Maximum 
error in bus 

voltage 
magnitude 

(V) 
(%) 

Maximum  
error in bus 

voltage angle 

( )δ   

(%) 
F1 F2 F3 

 
 

1% 

Proposed  
EDA-IPM 

1,49,52,60,68 5 8 0.0018 0.3125 0.0130 5.2983 

EDA 1,28,33,37,51,62 6 9 0.0063 1.1021 0.0200 9.1936 
PSO 1,13,24,27,30,33,49,67 8 11 0.0047 0.7985 0.0347 7.9243 

NSGA-II 1,7,19,29,34,59,67 7 10 0.0062 0.8152 0.0278 9.2713 
 
 
 
 

3% 

Proposed  
EDA-IPM 

1,19,23,29,53 5 8 0.0043 0.8357 0.0204 6.0125 

EDA 1,5,11,19,24,33,41, 
44,49,51,65,67 

7 10 0.0068 1.1027 0.0321 10.2773 

PSO 1,7,17,39,41, 
49,57,59,63 

9 12 0.0110 1.3411 0.0438 10.1324 

NSGA-II 1,5,9,15,19,28, 
49,57,59,61,63 

11 14 0.0049 1.0830 0.0374 9.1119 

 
 
 
 

5% 

Proposed  
EDA-IPM 

1,3,17,24,33, 
41,50,63 

9 12 0.0051 1.1122 0.0230 6.9124 

EDA 1,4,24,36,47, 
54,63,64,67 

11 14 0.0049 1.1113 0.0319 10.0087 

PSO 1,7,15,17,26,37,43,45, 
49,51,58,62,65 

14 17 0.0072 1.0642 0.0317 13.9342 

NSGA-II 1,6,9,11,15,20,22, 
41,54,63,65 

11 14 0.0120 1.1834 0.0713 11.9807 
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Table 4.5 IEEE 69-bus system: The number and location of the power flow meters in presence 
of type 2 and 3 DGs at bus 50 and 61 

 
 

 
DG 

Type 

Measurement  
error 

 
 

Algorithm 

 
Location of flow 

meters(Line number) 

 
Number 

of 
power 
flow 

meters 

Objective functions 
value 

Maximum  
error in 

bus 
voltage 

magnitude 
(V) 
(%) 

Maximum 
error 
in bus 
voltage 
angle 
( δ ) 
(%) 

 
F1 

 
F2 

 
F3 

 
 

Type 2 
(P-jQ) 

 
 
 

 
 
 
 
 
 

1% 

Proposed 
EDA-
IPM 

1,5,24,37,42 5 8 0.0069 1.1807 0.0291 5.8912 

EDA 1,4,14,61,65,66 6 9 0.0086 1.6091 0.0314 6.3732 
PSO 1,2,4,14,28,43,51,68 8 11 0.0098 1.8356 0.0377 6.8123 

NSGA-II 1,5,30,39,44,58 6 9 0.0097 1.8651 0.0299 5.9927 

 
 

Type 3 
(P+jQ) 

Proposed 
EDA-
IPM 

1,11,32,45,51 5 8 0.0067 0.9864 0.0326 5.6734 

EDA 1,13,34,49,51,52,60 7 10 0.0096 1.5240 0.0541 6.3422 
PSO 1,8,9,25,35,45,49,55 8 11 0.0098 1.4713 0.0491 6.4532 

NSGA-II 1,11,32,50,51,54,60 7 10 0.0106 1.6617 0.0613 6.2459 
 
 

Type 2 
(P-jQ) 

 
 
 

 
 
 
 
 
 
 

3% 

Proposed 
EDA-
IPM 

1,3,5,18,19,21,25,26,51 9 10 0.00643 1.3490 0.0328 5.9978 

EDA 1,6,20,28,32,35,40,45,48, 
63,65,68 

12 13 0.0071 1.5294 0.0537 6.8970 

PSO 1,4,15,21,24,31,33,36,44, 
47,51,66 

 

12 13 0.0073 1.5966 0.0768 6.9846 

NSGA-II 1,3,15,20,22,27,28,29,32, 
38,42,43,62,65 

14 15 0.0073 1.8386 0.0712 6.8878 

 
 

Type 3 
(P+jQ) 

Proposed 
EDA-
IPM 

1,12,33,42,50 5 6 0.0067 1.1509 0.0311 6.0125 

EDA 1,8,14,32,36,41,60,68 8 11 0.0063 1.2030 0.0527 7.1112 
PSO 1,7,11,17,22,28,30,33, 

49,51,61,65,67 
13 16 0.0075 1.4489 0.0492 6.9864 

NSGA-II 1,3,22,23,41,47,65,67, 
68 

9 12 0.0077 1.3544 0.0512 6.8823 

 
 

Type 2 
(P-jQ) 

 
 
 

 
 
 
 
 
 
 
 

5% 

Proposed 
EDA-
IPM 

1,2,4,11,14,33,43,44, 
46,51,65,66,68 

13 16 0.0065 1.6044 0.04351 6.3724 

EDA 1,6,9,16,18,26,28,40,43, 
49,50,60,61,65,68 

15 18 0.0063 1.4943 0.0543 7.0103 

PSO 1,17,25,31,33,34,35,37, 
42,44,49,55,62,66 

14 17 0.0081 1.8438 0.0612 7.8712 

NSGA-II 1,5,7,17,18,23,26,29,36,37, 
38,40,41,45,67 

15 18 0.0071 1.7005 0.0666 8.0128 

 
 

Type 3 
(P+jQ) 

Proposed 
EDA-
IPM 

1,12,13,23,25,26,39,50, 
56,64 

10 13 0.0071 1.3298 0.0626 6.8934 

EDA 1,13,14,22,23,26,30,36,40, 
41,62,65 

12 15 0.0066 1.3549 0.0666 9.0127 

PSO 1,5,8,19,21,22,23,25,29,34, 
40,43,54,63,68 

15 18 0.0083 1.6628 0.0686 8.9997 

NSGA-II 1,6,11,14,21,37,47,50,67 9 12 0.0100 1.8346 0.0712 9.0128 
 

4.4.2 Practical Indian 85-bus System 

To investigate the performance of the proposed algorithm, in practical distribution 

network, Indian 85-bus, 11kV radial distribution system has been taken into consideration. 

This system consists of 85 nodes and 84 numbers of lines. The total load of the system is 
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2.574MW and 2.622MVAr respectively. This system consists of 21 zero injection buses. The 

network line and load data are obtained from [100]. Furthermore, the parameters of the 

algorithms specified in Table 4.1, can also be applicable for this test system.  

The results obtained for this system have been reported in Table 4.6. It is seen that 

when meter error is 1% and pseudo-measurement error is 50%, the number of meters required 

is 7 by using proposed hybrid EDA-IPM algorithm whereas in case of PSO, EDA and NSGA-

II, the number of meters required is 8, 8 and 9 respectively. The corresponding objective 

functions value is also provided in Table 4.6. The optimal Pareto front curve between the 

objectives has been shown in Figure 4.5, 4.6 and 4.7 respectively, for different measurement 

uncertainties of the power flow meters. It is noticed that if meter accuracy is decreased from 

1% to 3 or 5%, then the network needs more number of meters to improve the quality of state 

estimation. Therefore, more real meters are employed to bring down the relative errors in 

voltage and angle estimates below the pre-specified thresholds.  

The performance of the proposed algorithm in presence of different kind of DGs at 

bus number 45 and 61 has also been tested. The results obtained using type 1, 2 and 3 DGs are 

provided in Table 4.6, 4.7 and 4.8 respectively. From the results shown in Table 4.6, 4.7 and 

4.8, the impact of different types of DGs on state estimation accuracy is clearly visualised. In 

case of type 1 DG, the phase angle error is reduced to a great extent because of DG supplies 

only real power to the local loads where it is connected. Therefore, the magnitude of power 

flow in the main feeder section is getting reduced. Table 4.7 represents the results obtained 

using the proposed hybrid EDA-IPM algorithm. From the results reported in Table 4.6, 4.7 

and 4.8, it is observed that both the location and measurement uncertainties significantly 

affecting the state estimation accuracy.  The results obtained using DG type 2 and 3 are also 

reported in Table 4.7 and 4.8 respectively. The main motive of using this Pareto based multi-

objective optimization technique is to obtain a best compromised solution between the 

objectives such as relative percentage error in voltage magnitude and angle with respect to the 

total cost of meter.  
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Figure 4.5(a) Optimal Pareto front between number of flow meters and F2 (1% error in real 

and 50% in pseudo-measurements) 

 
Figure 4.5(b) Optimal Pareto front between number of flow meters and F3 (1% error in real 

and 50% in pseudo-measurements) 
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Figure 4.5(c) Optimal Pareto front between objective F2 and F3 (1% error in real and 50% in 
pseudo-measurements) 

 

 
Figure 4.6(a) Optimal Pareto front between number of flow meters and F2 (3% error in real 

and 50% in pseudo-measurements) 
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Figure 4.6(b) Optimal Pareto front between number of flow meters and F3 (3% error in real 
and 50% in pseudo-measurements) 

 

 

Figure 4.6(c) Optimal Pareto front between objective F2 and F3 (3% error in real and 50% in 
pseudo-measurements) 



 
Chapter 4     Optimal Allocation of Measurement Devices using Hybrid EDA-IPM Algorithm 
 

82 

 

 

Figure 4.7(a) Optimal Pareto front between number of flow meters and F2 (5% error in real 
and 50% in pseudo-measurements) 

 

Figure 4.7(b) Optimal Pareto front between number of flow meters and F3 (5% error in real 
and 50% in pseudo-measurements) 
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Figure 4.7(c) Optimal Pareto front between objective F2 and F3 (5% error in real and 50% in 
pseudo-measurements) 

 

Table 4.6 Indian 85-bus system: The number and location of the power flow meters of 

different meter accuracy (without DG) 

  

 
 

Metrological 
Errors 

 
 

Algorithm 

 
 

location of flow  
meters(Line number) 

 
Number  
of flow 
meters 

 
Objective functions 

value 

Maximum 
error in bus 

voltage 
magnitude 

(V) 
(%) 

Maximum  
error 
in bus 
voltage 
angle 
( δ ) 
(%) 

F1 F2 F3 

 
 
 

1% 

Proposed  
EDA-IPM 

1,13,19,25, 75, 78,84 7 8 0.0383 1.0952 0.1692 5.0660 

EDA 1,30,32,35,36,42, 
43,60,68 

8 9 0.0387 1.2323 0.2797 6.4132 

PSO 1,30,32,35,36,42, 
43,60,68 

8 9 0.0407 1.4739 0.2593 6.6143 

NSGA-II 1,16,34,37,40,42, 
43,50,55 

9 10 0.0411 1.4289 0.2897 7.7394 

 
 
 

3% 

Proposed  
EDA-IPM 

1, 34, 40,46,52, 
53,67,69 

8 9 0.0427 1.0433 0.2117 5.2305 

EDA 1,28 ,42,52,53,58,71,74 8 9 0.0431 1.2486 0.3984 6.0022 
PSO 1,15,18,20,23, 

39,45,50,77 
11 12 0.0468 1.5478 0.3041 7.1198 

NSGA-II 1,10,15,17,26,42,58, 
70,71,74,26,84 

8 9 0.0438 1.3478 0.2999 9.9812 

 
 
 

5% 

Proposed  
EDA-IPM 

1,12, 20, 43,50, 
68,75,83 

8 9 0.0452 1.4298 0.2896 5.4821 

EDA 1,9,17,23,37,53,  
61,67,73 

9 10 0.0464 1.5088 0.3342 6.7623 

PSO 1,17,19,20,30,40, 
43,49,58,66,71 

8 9 0.0461 1.4893 0.3211 8.3421 

NSGA-II 1,6,21,32,68,69, 70,76 12 13 0.0482 1.5740 0.2898 8.4359 
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Table 4.7 Indian 85-bus system: The number and location of the power flow meters of different 
meter accuracy (Type 1 DG at bus 45 and 61) 

 
Metrological 

errors 

 
 

Algorithm 

 
Location of flow 

meters(Line number) 

 
Number of 

power 
flow 

meters 

Objective functions 
value 

Maximum  
error in bus 

voltage 
magnitude (V) 

(%) 

Maximum 
error 
in bus 
voltage 
angle 
( δ ) 
(%) 

 
F1 

 
F2 

 
F3 

 
 
 

1% 
 
 
 

Proposed 
EDA-IPM 

1,9,23,28,44 5 8   0.0367 1.0473 0.1423 5.0237 

EDA 1,8,21,32,68,69,76 7 10 0.0574 1.0585 0.2427 5.9823 
PSO 1,25,39,55,65,73 6 9 0.0583 1.3910 0.2137 5.1242 

NSGA-II 1,16,30,33,44 
,51,68,73 

8 11 0.0575 1.1165 0.1998 6.1123 

 
 
 

3% 

Proposed 
EDA-IPM 

1,11,37,51,79,84 6 9 0.0333 1.0372 0.2073 5.3241 

EDA 1,26,32,57,64, 
71,79 

7 10 0.0636 1.0223 0.3231 6.1226 

PSO 1,23,26,36,43, 
55,83 

7 10 0.0644 1.2166 0.2981 6.8799 

NSGA-II 1,23,26,36,43, 
,83 

7 10 0.0646 1.2105 0.2861 7.1981 

 
 
 

5% 

Proposed 
EDA-IPM 

1,9,17,28,42,62,79 7 10 0.0400 1.1001 0.2441 5.5134 

EDA 1,14,33,37,41, 
65,83,84 

8 11 0.0696 1.4032 0.3244 6.5312 

PSO 1,11,19,28,42, 
51,57,71,79 

9 12 0.0589 1.3891 0.4523 7.2213 

NSGA-II 1,13,14,17,20,42, 
44,54,56,57 

10 13 0.0661 1.3588 0.4129 7.4512 
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Table 4.8 Indian 85-bus system: The number and location of the power flow meters in presence 
of type 2 and 3 DGs at bus 45 and 61 

 
 

DG 
Type 

 
 

Measurement  
error 

 
 

Algorithm 

 
 

Location of flow 
meters(Line number) 

 
Number 
of power 

flow 
meters 

Objective functions 
value 

Maximum  
error in 

bus 
voltage 

magnitude 
(V) 
(%) 

Maximum 
error 
in bus 
voltage 
angle 
( δ ) 
(%) 

 
F1 

 
F2 

 
F3 

 
 

Type 2 
(P-jQ) 

 
 
 

 
 
 
 
 
 

1% 

Proposed 
EDA-IPM 

1,17,25,29,34,58,80 7 10 0.0386 1.1584 0.2741 5.4671 

EDA 1,14,21,26,56,65,75,84 8 11 0.0388 1.3619 0.4714 5.7417 

PSO 1,11,12,17,20,27,41,71,74 9 12 0.0396 1.2677 0.3939 5.9923 

NSGA-II 1,17,20,24,27,37,68,69 8 11 0.0395 1.3121 0.3428 6.1798 

 
 

Type 3 
(P+jQ) 

Proposed 
EDA-IPM 

1,23,31,49,58,59,61 7 10 0.0500 1.1191 0.2998 5.7326 

EDA 1,28,31,50,68,79 6 9 0.0686 1.1611 0.3887 5.9679 
PSO 1,14,33,37,41,65,83,84 8 11 0.0525 1.3306 0.3924 6.8324 

NSGA-II 1,10,13,26,48,60,73,74,80,82 10 13 0.0506 1.1375 0.4713 6.9813 
 
 

Type 2 
(P-jQ) 

 
 
 

 
 
 
 
 
 

3% 

Proposed 
EDA-IPM 

1,9,25,28,30,31,40,49 9 12 0.0574 1.1773 0.2998 5.7324 

EDA 1,2,8,14,37,59,60,64,74 9 12 0.0597 1.2696 3.4761 6.0147 
PSO 1,7,19,21,36,65,75,77,79,80 10 13 0.0605 1.2929 4.7782 6.2231 

NSGA-II 1,14,30,36,44,58,61,69, 
73,74,76,80 

12 15 0.0598 1.2695 3.9874 6.7923 

 
 

Type 3 
(P+jQ) 

Proposed 
EDA-IPM 

1,24,33,38,43,73,76,81 8 11 0.0559 1.1878 0.3427 6.0125 

EDA 1,12,24,29,32,53,54,64,71,73 10 13 0.0607 1.1306 0.4129 6.7790 
PSO 1,16,18,39,41,46,50,75,81 9 12 0.0578 1.3732 0.4389 6.8931 

NSGA-II 1,26,28,31,40,45,49,55, 
61,80,83 

11 14 0.05925 1.2789 0.5513 7.0127 

 
 

Type 2 
(P-jQ) 

 
 
 

 
 
 
 
 
 

5% 

Proposed 
EDA-IPM 

1,12,50,52,59,67,70,73,76 9 12 0.0589 1.2057 0.4317 6.6823 

EDA 1,19,27,37,38,45,48,53,62, 
68,81 

11 14 0.0608 1.2685 0.4738 8.0134 

PSO 1,13,20,24,33,43,55,71, 
74,79 

10 13 0.0610 1.2345 0.5542 7.8812 

NSGA-II 1,10,26,40,46,50,61,72,77, 
80,81 

11 14 0.0629 1.2677 0.6898 7.4326 

 
 

Type 3 
(P+jQ) 

Proposed 
EDA-IPM 

1,11,21,27,72,74,83,84 8 11 0.0578 1.2113 0.5328 7.3867 

EDA 1,16,29,35,38,50,54,61,66, 
81 

10 13 0.0602 1.3467 0.5621 7.4782 

PSO 1,17,26,29,30,36,37,41,44, 
45,70 

11 14 0.0635 1.2852 0.5561 7.3111 

NSGA-II 1,19,25,36,38,42,44,53,57, 
58,59,70,84 

13 16 0.0617 1.3536 0.6104 7.8901 

 

4.5 Comparison Results Analysis 

In this section, a comparison study has been carried out between all the algorithms used in 

this thesis such as proposed hybrid PSO-KH and hybrid EDA-IPM algorithm, PSO, KH, EDA 

and NSGA-II. The performance of all the algorithms is tested on IEEE 69-bus system and 

practical Indian 85-bus distribution systems.  Total number of operating condition considered is 
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100×1000. The optimal Pareto-fronts for three objectives 1F , 2F  and 3F  is provided in Figure 4.8- 

4.13 respectively. The obtained results are also shown in Table 4.9 and 4.10. It is seen that in 

most of the cases the proposed algorithms are more superior than the conventional algorithms 

considered in this thesis for comparison purpose. In some of the cases it is also seen that 

proposed EDA-IPM algorithm is dominating hybrid PSO-KH algorithm. Therefore, the proposed 

algorithms can be used for the planning study of the distribution networks. 

4.5.1 Comparison results analysis of IEEE 69-bus system  

 

Figure 4.8(a): Optimal Pareto fronts between the objectives F2 and F3 for 1% error in real 

meters and 50% in pseudo-measurements 
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Figure 4.8(b): Optimal Pareto fronts between no. of power flow meters and the objective 

F2 for 1% error in real meters and 50% in pseudo-measurements 

 

 

Figure 4.8(c): Optimal Pareto fronts between no. of power flow meters and the objective 

F3 for 1% error in real meters and 50% in pseudo-measurements 
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Figure 4.9(a): Optimal Pareto fronts between the objectives F2 and F3 for 3% error in real 

meters and 50% in pseudo-measurements 

 

 

Figure 4.9(b): Optimal Pareto fronts between no. of power flow meters and the objective 

F2 for 3% error in real meters and 50% in pseudo-measurements 
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Figure 4.9(c): Optimal Pareto fronts between no. of power flow meters and the objective 

F3 for 3% error in real meters and 50% in pseudo-measurements 

 

 

Figure 4.10(a): Optimal Pareto fronts between the objectives F2 and F3 for 5% error in 

real meters and 50% in pseudo-measurements 

 



 
Chapter 4     Optimal Allocation of Measurement Devices using Hybrid EDA-IPM Algorithm 
 

90 

 

 

Figure 4.10(b): Optimal Pareto fronts between no. of power flow meters and the objective 

F2 for 5% error in real meters and 50% in pseudo-measurements 

 

 

Figure 4.10(c): Optimal Pareto fronts between no. of power flow meters and the objective 

F3 for 5% error in real meters and 50% in pseudo-measurements 
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Table 4.9 IEEE 69-bus system: The number and location of the power flow meters of different 

meter accuracy (without DG) 

 
 

Metrological 
Errors 

 
 

Algorithm 

 
 

Default 
Measurements 

(node/line 
number) 

 
 

location of flow 
meters(Line 

number) 

 
No. of 
flow 

meters 

 
 

Objective functions 
value 

Max.  
error in bus 

voltage 
magnitude 

(V) 
(%) 

Max.  
error in 

bus 
voltage 
angle 

( )δ  

 (%) 

 
F1 

 
F2 

 
F3 

 
 
 
 
 

1% 

Proposed  
PSO-KH 

1/1 1,7,24,54,66 5 6 0.0028 0.4947 0.0381 5.7922 

KH 1/1 1,9,17,23,32,47, 
56,61,63 

9 10 0.0052 0.7837 0.0399 6.9994 

PSO 1/1 1,18,28,37,56, 
65,42, 49 

8 9 0.0112 1.8731 0.0475 7.9249 

NSGA-II  1/1 1,5,19,27,54 5 6 0.0037 0.6273 0.0772 9.3022 
Proposed

EDA-
IPM 

1/1 1,2,20,26,27 5 6 0.0039 0.6678 0.0413 5.8215 

EDA 1/1 1,2,10,20,21,23,36
,41 

8 9 0.0083 1.3871 0.0739 6.0127 

 
 
 
 
 

3% 

Proposed  
PSO-KH 

1/1 1,11,18,43,52 5 6 0.0053 0.9782 0.0417 5.9154 

KH 1/1 1,2,4,12,21,24, 
30,59,67 

9 10 0.0084 1.6767 0.0479 7.8239 

PSO 1/1 1,13,17,25,31,39, 
45,51,59,64,65 

11 12 0.0091 1.7990 0.0638 11.6239 

NSGA-II 1/1 1,3,10,19,27,30, 
32,4,45,49,54,65 

12 13 0.0077 1.6130 0.0488 10.3332 

Proposed  
EDA-
IPM 

1/1 1,14,23,26,67 5 6 0.0060 1.1098 0.0523 6.2198 

EDA 1/1 1,7,12,24,32,34,48
,58,61,65,66,67 

12 13 0.0060 1.3036 0.0412 6.3214 

 
 
 
 
 
 

5% 

Proposed  
PSO-KH 

1/1 1,7,14,21,28, 
33,49,53,61 

9 10 0.0058 1.1491 0.0523 6.3172 

KH 1/1 1,5,11,30,35, 
41,47,52,61 

9 10 0.0102 1.9423 0.0927 9.6717 

PSO 1/1 1,5,18,30,34,35, 
44,47,50,56,63,67 

12 13 0.0109 2.8704 0.0838 12.7865 

NSGA-II 1/1 1,4,9,14,20,32,38, 
40,43,45,51,57,65 

13 14 0.0075 1.7001 0.0776 12.4533 

Proposed  
EDA-
IPM 

1/1 1,7,18,23,33,60,63
,65,66 

9 10 0.0070 1.4178 0.06781 6.9993 

EDA 1/1 1,7,28,33,34,42,44
,45,59,67,68 

11 
 
 

12 0.0090 1.8684 0.0823 8.3927 
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4.5.2 Comparison result analysis of Practical Indian 85-bus system 

 

Figure 4.11(a): Optimal Pareto fronts between the objectives F2 and F3 for 1% error in 

real meters and 50% in pseudo-measurements 

 

 

Figure 4.11(b): Optimal Pareto fronts between no. of power flow meters and the objective 

F2 for 1% error in real meters and 50% in pseudo-measurements 
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Figure 4.11(c): Optimal Pareto fronts between no. of power flow meters and the objective F3 for 

1% error in real meters and 50% in pseudo-measurements 

 

 

Figure 4.12(a): Optimal Pareto fronts between the objectives F2 and F3 for 3% error in 

real meters and 50% in pseudo-measurements 
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Figure 4.12(b): Optimal Pareto fronts between no. of power flow meters and the objective 

F2 for 3% error in real meters and 50% in pseudo-measurements 

 

 

Figure 4.12(c): Optimal Pareto fronts between no. of power flow meters and the objective F3 for 

3% error in real meters and 50% in pseudo-measurements 
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Figure 4.13(a): Optimal Pareto fronts between the objectives F2 and F3 for 5% error in 

real meters and 50% in pseudo-measurements 

 

 

Figure 4.13(b): Optimal Pareto fronts between no. of power flow meters and the objective 

F2 for 5% error in real meters and 50% in pseudo-measurements 
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Figure 4.13(c): Optimal Pareto fronts between no. of power flow meters and the objective F3 for 

5% error in real meters and 50% in pseudo-measurements 
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Table 4.10 Indian 85-bus system: The number and location of the power flow meters of different 

meter accuracy (without DG) 

 
 

Metrological 
Errors 

 
 

Algorithm 

 
 

Default 
Measurements 

(node/line 
number) 

 
 

location of flow 
meters(Line 

number) 

 
No. of 
flow 

meters 

 
 

Objective functions 
value 

Max. error 
in bus 
voltage 

magnitude 
(V) 
(%) 

Max.  
error in 

bus 
voltage 
angle 

( )δ  

(%) 

 
F1 

 
F2 

 
F3 

 
 
 
 
 

1% 

Proposed  
PSO-KH 

1/1 1,13,18,26, 75    
79,84 

7 8 0.0385 1.1077 0.1853 5.1722 

KH 1/1 1,28,32,35,42,43
,60,68 

8 9 0.0390 1.2449 0.2891 6.3321 

PSO 1/1 1,8,15,32,48,56,
70,71 

8 9 0.0387 1.2911 0.2786 6.6143 

NSGA-II 1/1 1,18,28,31,40,52
,64,70 

8 9 0.0390 1.2641 0.2399 7.8259 

Proposed
EDA-
IPM 

1/1 1,8,21,32,68,69,
76 

7 8 0.0380 1.1033 0.2104 5.3573 

EDA 1/1 1,31,43,54,60,69
,75,80 

8 9 0.0384 1.1452 0.2978 6.1327 

 
 
 
 
 

3% 

Proposed  
PSO-KH 

1/1 1,17,22,30,36,73
,81 

7 8 0.0438 1.3355 0.2347 5.5217 

KH 1/1 1,28 ,42,52,58,  
73,78,81,84   

9 10 0.0430 1.3255 0.4011 6.7162 

PSO 1/1 1,20,34,40,54,58
,71,81 

8 9 0.0452 1.4298 0.3217 7.3192 

NSGA-II 1/1 1,13,14,21,26,50
,58,60,65,77 

 
10 

 
11 

 
0.0431 

 
1.1851 

 
0.3019 

 
9.8822 

Proposed
EDA-
IPM 

1/1 1,12,13,20,44,55
,75,79 

8 9 0.0423 1.1219 0.2814 6.2865 

EDA 1/1 1,11,13,28,33,36
,37,69 

8 9 0.0425 1.2280 0.3427 6.9832 

 
 
 
 
 

5% 

Proposed  
PSO-KH 

1/1 1,16,21,24,33,69
,77,79 

8 9 0.0439 1.2855 0.2896 5.9407 

KH 1/1 1,9,19,24,37,53,
63,67,74 

9 10 0.0467 1.5213 0.3342 7.6721 

PSO 1/1 1,6,23,32,68,70,
72,76,79,81,84 

11 12 0.0468 1.5478 0.3211 8.6434 

NSGA-II 1/1 1,20,28,38,40,41
,43,68,73,76 

10 11 0.0459 1.3836 0.2898 8.6315 

Proposed
EDA-
IPM 

1/1 1,18,19,23,42,44
,64,82,84 

8 9 0.0434 1.3240 0.3124 6.3415 

EDA 1/1 1,9,26,27,31,47,
48,52,53,54 

10 11 0.0465 1.5498 0.4128 7.9865 

 

4.6 Summary  

This chapter proposed a Pareto based multi-objective optimization technique that optimizes 

the number and location of measuring devices for state estimation in smart distribution network. 

To find the optimal placement of meters a new hybrid EDA-IPM algorithm has been proposed. 

The hybridization of traditional EDA with IPM is done to improve the local searching capability 

of the EDA. In state estimation metrological characteristics of meters as well as the load 
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variations have also taken into consideration to test the efficiency of the proposed meter 

placement technique. The best optimal trade-off solution between the objective functions such as 

cost and state estimation error is established. Moreover, the impact of different kind of DGs on 

state estimation accuracy has also been presented in an active distribution network. 

The proposed hybrid EDA-IPM algorithm based meter placement technique is tested on 

IEEE 69-bus system and practical Indian 85-bus distribution network. The obtained result using 

the proposed hybrid EDA-IPM algorithm has been compared with some existing algorithm in 

literature such as PSO, EDA and NSGA-II under various operating conditions of the distribution 

systems. It is reported that the proposed algorithm is robust, reliable and more superior than 

existing algorithms considered in this chapter.  
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Chapter 5 

Trade-offs in PMU and IED Deployment for Active 
Distribution System State Estimation Using Multi-Objective 

Hybrid EDA-IPM  Algorithm 

5.1 Introduction 

In distribution grids, due to the presence of different kinds of actors such as distributed 

generation (DG), energy storage devices, system becomes more complex, dynamic and uncertain 

in nature. Because of this changing behavior of actors, real-time monitoring and control becomes 

more challenging task for the power system engineers. Thus, PMUs are of great interest because 

it provides synchronized measurements of voltage and current phasors. The application of PMU 

for state estimation in transmission system has been widely used to improve the performance of 

the state estimator. Therefore it would be more advantageous to use PMUs in DSSE. In 

transmission systems, PMUs have been used widely to improve the state estimator performance 

using different approaches. Therefore, utilization of the phasor measurements in distribution 

network for state estimation is of great interest. The PMU provides synchronized measurements 

e.g. voltage, current phasors and frequency along with some indirect measurements [71]. The 

measurements obtained from the PMUs are synchronized with the coordinated Universal Time. 

In transmission systems, the synchronized measurements obtained from PMUs along with the 

non-synchronized measurements from Supervisory Control and Data Acquisition (SCADA) 

system have been used by many researchers for improvising the performance of state estimator.  

However, due to lack of sufficient direct measurements in distribution networks, locating 

PMUs is economically unreasonable. Therefore, the techniques used for locating PMUs in 

transmission grids cannot be directly transformed at the distribution level. In order to compensate 

this, a large number of pseudo-measurements derived from historical customer load data are 

being used for the state estimation in distribution systems. But, as a result, it deteriorates the 

accuracy of state estimation to a very large extent. Many researchers have been proposed 

different techniques to deploy PMUs in distribution grids [77],[79], [82]. 

In chapter 3 and 4, meter placement problem has been formulated as a multi-objective 

optimization problem to find optimal number and location of power flow meters. A trade-off 
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solution is established between total configuration cost, voltage magnitude and phase angle 

errors. Only power flow meters have been considered to find the best optimal solution. This 

chapter proposes a new multi-objective optimization problem to find trade-offs in deployment of 

phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for state estimation 

in active distribution networks. A new hybrid estimation of distribution algorithm (EDA) has 

been used to find the optimal number and location of measurement devices such as PMU and 

IED for accurate state estimation. The objective functions to be minimized in this optimization 

problem are the total cost of PMUs and IEDs, and the RMS value of state estimation error. Since, 

the objectives are conflicting nature, a multi-objective Pareto-based non-dominated sorting EDA 

algorithm is proposed. Moreover, to improve the local searching capability of the traditional EDA 

algorithm, the Interior point method (IPM) is hybridized with EDA to get near global optimal 

solution. The hybridization of EDA with IPM brings a higher degree of balance between the 

exploration and exploitation capability of the traditional EDA during the search process. 

Furthermore, the random variation in loads and generators is also considered to check the 

reliability of proposed meter placement technique. The viability of the proposed algorithm has 

been tested on IEEE 69-bus system and Practical Indian 85-bus system to validate the results. 

The obtained results have been compared with the conventional EDA algorithm, non-dominated 

sorting genetic algorithm (NSGA-II) and also with hybrid EDA-simulated annealing algorithm 

existing in the literature.  

5.2 Distribution system state estimation in presence of PMUs and IEDs 

The state estimation is a mathematical relation between the system state variables and 

available measurements that can estimate the system states accurately from the noisy 

measurement data. The well established weighted Least Square (WLS) algorithm has been 

employed to minimize the following objective function:                                           

                      ( )[ ] ( )[ ]xz-hWxz-hJ -T 1=                                                                           (5.1)                                              

Subjected to: ( ) rxhz +=                                                                (5.2)                                                                           

where z is the measurement vector, x is the system state vector, consisting of magnitude and 

phase angle of all branch current, ( )xh  is a nonlinear measurement function of system state 

variables and r  represents a small noise following the Gaussian distribution and W  is the 

covariance matrix of the measurement errors. 
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To improve the state estimation accuracy, PMUs have been employed along with the 

existing IEDs, for online monitoring of the distribution networks [82]-[83]. Therefore, in this 

chapter a mixed approach has been considered which includes measurements from PMUs and 

traditional measurements from IEDs to estimate the states of an active distribution network. A 

mathematical model for state estimation based on PMU and IED data is described below. 

There are different types of measurement such as substation measurement, pseudo-

measurement, virtual measurement, smart meter measurement and phasor measurement obtained 

from PMU have been utilized for state estimation in distribution network. Additionally, it is 

assumed that, PMU installed at a particular bus provides voltage phasor measurements of that 

bus. 

For state estimation, BC-DSSE algorithm has been used where branch current magnitude 

and their phase angle are considered as state of the distribution system [40]. The initial values for 

the state variables are assumed as discussed in [41] and the WLS based iterative process has been 

conducted to estimate the state variables. 

The estimated value of the state variable x at thk )1( + iteration can be expressed as follows:  

( ) ( )[ ] ( )[ ]k
T

kkkk xhzWxHxGxx −+= −−
+  11
1                                                                (5.3)                                                                           

where H represents the Jacobian matrix and it is calculated by taking the partial derivative of 

each non-linear measurement function h(x) with respect to state variable x and G represents the 

gain matrix given by  

( ) )H(xWxH)G(x k
-T

kk
1=                                                                                       (5.4)                          

The inverse of the covariance matrix W can be defined as 
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The subscripts in equation (5.5) S, IED, P and V represent substation measurement, IED 

measurement, pseudo-measurement and virtual measurement respectively. In equation (5) IEDW  

and PMUW  represents the covariance matrix of the uncertainty of the IED measurement and phasor 

measurements obtained from PMU. The error vector r can be expressed as: 
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                                                                                            (5.6)                                                    

In state estimation, it is assumed that IEDs are used to measure real and reactive power 

flows in a line and PMUs are incorporated to measure voltage phasors at a bus. According to 

state estimation theory, the diagonal elements of the error covariance matrix represent the 

estimation variances of the states and this can be expressed as follows: 

1)( −= xGExx                                                                                                                    (5.7)                                                                                                                        

Furthermore, the above equation can be expressed as 2
^

)().( xxExxEE x

T

xxx −==
−−

. 

where Ex is the operator of statistical expectation. It includes both state estimation error variance 

of bus voltage magnitude and phase angle. The error vector is represented as
^

xxx −=
−

. 

5.3 Mathematical Model of the Proposed Multi-objective Optimization 

Problem (MOOP) 

The proposed meter placement technique is designed as a three objective optimization 

problem. The main objective is to determine the optimal deployment of PMU and IED in a 

distribution network to achieve minimum cost as well as it ensures that state variables are 

estimated within the predefined accuracy limit. The objective functions considered to be 

minimized are: (1) the total cost of PMUs (2) the total cost of IEDs and (3) RMS value of state 

estimation error. Since, the objectives considered here are conflicting in nature, the meter 

placement problem can be designed as multi-objective Pareto based optimization problem [88]-

[89]. Furthermore, to find the optimal trade-off solution, a hybrid EDA-IPM algorithm has been 

utilized to find the optimal position of PMU and IED ensuring the relative deviations in voltage 

and angle estimates to be within the pre-specified thresholds for 95% of the test cases.  

 

 

 

 



Chapter 5                                                Trade-offs between PMU and IED Deployment for DSSE  

104 

 

Mathematically, the proposed MOOP can be expressed as:  

Minimize 

                          
∑
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1                                                                                (5.8)                                       

                          
∑

=

=
n

i
PMU,iPMU,i. PCJ

1
2                                                                             (5.9)                                                                                                                             

                        
∑ ∑

= =

∧








 −=
m

j

n

i
iix

v

v

xxE
nm

J
1

2

1
3

11
                         (5.10)                                                                                                                             

Subjected to constraints:  In 95% of the operating scenarios the maximum relative deviations in 

voltage and angle estimates are to be within the specified limits given as follows: 
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where the three objective functions are represented as J1, J2 and J3, vn  and nl  represents number 

of state variables and lines in a distribution network, x is the state variable and 
∧
x  is the 

estimated value of the state variable x , IEDC   and PMUC   are respectively, the relative cost of a 

IED and PMU and m denotes total number of operating scenarios. IEDP and PMUP  are treated as 

binary decision vectors i.e. the presence and absence of a meter in a line or at a bus is indicated 

by 1 or 0, 
a

iV  and a
iδ  are the actual or true value of the voltage magnitude and angle of thi bus 

and est
iV and est

iδ represents the estimated bus voltage magnitude and angle at thi  bus respectively. 

5.4. Solution Methodology 

To find the optimal solution of the proposed MOOP, a hybrid EDA-IPM algorithm has 

been used which has been discussed in Chapter 4. Therefore, a brief introduction to the traditional 

EDA and IPM algorithm has been discussed as follows.   

5.4.1 Estimation of Distribution Algorithm (EDA) 

    In conventional genetic algorithm (GA), crossover and mutation operators are being 

used for generating new solutions as well as to explore the search space for finding near global 
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optimal solutions. However, these operators may disrupt the good solutions during the evolution 

process and also obstructing to get the optimal solutions. This situation is more likely to occur 

when the problem variables are correlated. Therefore, estimation of distribution algorithm (EDA) 

has been using widely in various field of engineering applications to overcome these 

shortcomings of traditional GA [90]-[91]. It is a population based evolutionary optimization 

algorithm which employs a probabilistic model to generate new solutions for the immediate 

generation. Moreover, the sampling of new individuals is based on the probabilistic model 

estimated from the database consisting of some selected individuals from the previous generation. 

Therefore, the EDA algorithm is good at exploring the search space to find prominent solutions.  

The basic steps of a traditional EDA algorithm have been provided below. First, the initial 

solutions are generated randomly within the specified limits. Then, the fitness function is 

evaluated for each individual solution. Out of the total populationP , PN <  solutions are selected 

as best solutions using any selection mechanism. Based upon the selected individuals, a 

probabilistic model is estimated to lead the searching process toward the regions contains better 

fitness values. However, the choice of probabilistic model influences the performance and 

efficiency of the EDA algorithms. Then, the offspring is created using different sampling 

techniques. The above steps are repeated until it meets the stopping criteria. The pseudo-code of 

the above procedure is provided as follows: 

      Begin 

    Initialization: Generate P initial population randomly within the search space. 

               Do While (termination criteria is not met)  

               Evaluation: Calculate the fitness value of P individuals. 

               Selection: By using any selection method, select PN <  individuals. 

               Probabilistic model: Estimate the probability ( )xps  that an individual being 

among the selected population. 

              Sampling: Sample P  individuals from ( )xps  using sampling technique. 

       End Do 

      End 

5.4.2 Interior Point Method (IPM) 

The interior point method is basically used to solve linear and non-linear convex 

optimization problems [92]. In this, the Lagrange multipliers are employed to deal with the 
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equality and inequality constraints of the optimization problem. In order to avoid the negativity 

conditions of the slack variables the logarithmic barrier functions has been added to the objective 

function [93]. The decision variables are considered to be continuous. The proposed non-linear 

constraint optimization problem can be transformed to unconstraint optimization problem as 

follows: 

∑ +−−++

−−−−=

i
ii

T

TT

ulxuxw

xgyxlxvxfwvulyzL

) ln (ln)(                             

)()()(),,,,,(

max

min

µ                                        (5.13)                   

where u and l are the slack variables; y, v and w are the Lagrange multipliers; and the barrier 

parameter is represented byµ .  

In order to satisfy the Karush-Kuhn-Tucker (KKT) conditions, first order derivatives of a 

set of non-linear algebraic equations have to be formed and then Newton-Raphson method is 

employed to solve the above first order differential equations. During the iterative procedure of 

the IPM, if the KKT conditions shown below are satisfied then the algorithm will stop. The KKT 

conditions are described as follows: 

( ) ( ) ε pwvyxgxfL T
x +−∇−∇=                                                                             (5.14)                                                                     

( ) εpxgL y =                                                                                                             (5.15)                                                                        

ε≤−+= maxxuxLw                                                                                                 (5.16)                                                                      

ε≤−−= minxlxLv                                                                                                   (5.17)                                                           

According to primal-dual theory, x is the primal variable, l and u are the slack variables, y, v and 

w are the dual variables respectively and ε is a very small number. The equations (15)-(17) are 

called the primal feasible conditions and eq. (14) is known as dual feasible conditions. If the 

solution satisfies the above conditions then it is an optimal solution for the optimization problem.  

5.4.3 Proposed multi-objective hybrid EDA-IPM algorithm 

The EDA algorithm has been used widely in variety of engineering applications because it 

is efficient in exploring search space more efficiently. Although, EDA has good exploration 

ability but it suffers from poor exploitation capability [90]. Therefore, the optimal solutions 

obtained using EDA may not be a global optimal solution. On the other hand, local searching 

capability of IPM algorithm is more effective [93]. Hence, the traditional EDA algorithm has 

been hybridized with IPM to enhance the balance between exploration and exploitation capability 
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of the traditional EDA algorithm to obtain near global optimal solutions.  

First of all the objective functions considered are modeled as a MOOP. Moreover, since 

the objectives are conflicting nature, the simultaneous optimization needs a compromised 

solution because each objective in the model is conflicting to one another. Therefore, to achieve 

better compromised solution between the objectives, Pareto based non-dominated sorting 

approach has been implemented [88], [89].  It states that, in a non-dominated Pareto front all 

solutions are equally important because no solution is dominating the other in the population. In 

MOOP, solution relies on a set of solutions unlike single objective optimization problem.  

Therefore, Pareto based non-dominated sorting technique have been employed with hybrid EDA-

IPM to achieve best trade-offs solution between the multiple objectives. A trade-off solution 

between the total cost of PMU and IED needed for the accurate estimation of system states is 

determined using multi-objective hybrid EDA-IPM algorithm. The pseudo code of the proposed 

Bayesian network based probabilistic hybrid EDA-IPM algorithm is presented below. 

 

The Pseudo-code of the proposed multi-objective hybrid EDA-IPM algorithm 

 

Step1. Initialization: Generate random number and location of IEDs and PMUs for each 

individual solution in the population (Pop) within the limits. Where Pop represents size of the 

population  

Do while (“Stopping criterion is not met”) 

Step 2. Fitness evaluation: Evaluate the objective functions 21,JJ  and 3J for each solution based 

on the position of PMUs and IEDs. 

Step 3. Selection: Select PopN <  solutions from Pop using Non-dominated sorting selection 

strategy. Pop is the size of the population and N  is a number less than Pop. 

 Begin 

          Do while (“Stopping criterion is not met”) 

                 For i = 1:N  (number of selected solutions) 

1. Use each selected solution )(is  as initial point in IPM algorithm to find a best 

solution ( )iy      (location of PMU and IED) for that solutioni . 



Chapter 5                                                Trade-offs between PMU and IED Deployment for DSSE  

108 

 

2. Evaluation: Calculate the objective functions 21,JJ  and 3J  and evaluate the fitness 

value for each i  using weighting approach. 

3. Update solution:  

                if   Fitness ( )iy < Fitness )(is  

                  && if solution ( )iy  dominates )(is  

                       then )(is = ( )iy         

                                                 End  for i  

                                    End Do 

                                End 

Step 4. Probabilistic graphical model: Estimate the probability distribution of the previous 

solutions and selected solution to predict new population for the next generation using Gaussian 

Bayesian network. Mathematically, it can be expressed as: 

                )),(())((
)(

2∑
∈

−+Ν=
ij XPaX

ijjijiii vxwXpaxp µµ
 

where iµ represents the mean of the variableiX , iv  is the standard deviation of the distribution 

and ijw is the weight associated with each of the parents and jx is the value of the variable jX
 
in

( )iXpa . 

Step 5. Sampling technique: Sample Pop number of solutions from the Gaussian Bayesian 

network using sample Gaussian UnivModel. 

                 End Do 

Post-procession of the results 

 

In most of EDAs, it is a common practice to estimate the probabilistic model of the 

selected solution obtained from the previous generation and there after sampling algorithm is 

expected to use for the generation of new solutions based upon the statistics obtained from the 

selected solutions. In this work, Gaussian Bayesian network has been used as a probabilistic 

model to estimate the new solution for the next generation during the optimization process. The 

proposed hybrid EDA-IPM algorithm uses this probabilistic model to study the characteristics of 

the selected solutions to generate new individuals for the optimization problem in searching for 

the optimal Pareto front. In case of MOOP, one of the most commonly used ranking methods is 
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non-dominated sorting (NDS) technique to rank each individual for the selection purpose [88]. In 

NDS, the solutions are sorted into non-dominated Pareto fronts and then each solution in the 

same Pareto front is sorted based upon their crowding distances in the objective space. The new 

solutions are sampled from the probability distribution employed in the Bayesian network. 

Basically, sample Gaussian UnivModel has been used to sample the solutions. 

In the beginning of the optimization process, the initial solutions are generated randomly 

using seeding approach within the search space. Each solution represents the combinations of 

number of PMUs and IEDs as well as their locations. Based on each combination of PMUs and 

IEDs, the objective functions are evaluated using BCDSSE algorithm. Then, the selection 

mechanism is used to select some of the best solutions so far. In order to achieve better 

performance, the selected solutions are updated using IPM algorithm. After the update, the 

probabilistic Bayesian model has been used to predict the new solutions for the future generation 

by using the selected solution. During fitness calculation, the constraints violation checking has 

to be carried out. In each Monte Carlo trial, the error in bus voltage magnitude and angle estimate 

is determined. For each combination of PMUs and IEDs in a solution, if in 95% of the simulated 

cases, the estimated errors are below the threshold limits, then for that solution the objective 

functions are evaluated and stored. On the contrary, if it is not within the threshold limit, then for 

that particular solution, a higher value of objective is been assign. Hence, this particular solution 

can be eliminated during next immediate generation. Then, the above steps are repeated until all 

the solutions in a given population size are in first front. The convergence criterion for the 

algorithm to stop is, when all the solutions are reached in optimal Pareto-front curve. To get the 

best solution in the optimal Pareto front fuzzy theory has been used. In the optimization process 

population size of different values like 20, 30 and 50 have been tried. But, it has been found that 

there is no such significant variation in result for taking different population sizes for the IEEE 

69-bus system and Indian 85-bus system reported. Finally, population size of 20 has been fixed 

for evaluating the performance of the proposed optimization algorithm. 

5.5 Test and Simulation Conditions 

The following test and simulation conditions have been considered for analyzing the 

performance of the proposed state estimation formulation and algorithm in MATLAB 2014b 

environment. To estimate the system state (branch current magnitude and angle) BC-DSSE 

algorithm has been utilized. The measurement data are generated by adding small Gaussian noise 
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of 1%, 3% and 5% to the actual or reference value of the quantity of interest to be measure. There 

are different kinds of measurements have been considered for state estimation such as: substation 

measurement, pseudo-measurement, real measurement and virtual measurement [75]. It is 

assumed that, the former two types of measurements give the information about real and reactive 

power injections at the buses. The real measurements are obtained from IEDs and PMUs, and it is 

assumed that IED gives the information about real and reactive power flows in a line and PMU 

provides the information about bus voltage phasors. Furthermore, the measurement uncertainties 

are considered based upon the maximum percentage of error associated with each type of 

measurement [75]. The information about the measurement data are provided below: 

1) Substation Measurements: The measurements that are collected from the substation are 

called as default measurements. Generally, the substation measurements are considered to 

have high accuracy and therefore, in this test 1% error has been chosen for substation 

measurements. 

2) Real measurements: The measurements obtained from IEDs and PMUs are assumed as 

real measurements. In this test, different accuracy values have been chosen for IEDs 

measurements. For IEDs, the maximum allowable error considered is 1%, 3% and 5%. In 

case of PMU (synchronized measurements), the maximum allowable error of 0.7% have 

been considered [75].    

3) Pseudo-measurements: Basically, the pseudo-measurements are obtained from the 

historical customer load data and the error associated with the pseudo-measurements is 

relatively very high. Thus, the maximum percentage of error assumed for this is 50%.  

4) Virtual-measurements: The measurements at the zero injection buses are treated as virtual 

measurements with a low variance of 10-7 [94]. 

Furthermore, in this study, for better visualization, random variations in load and 

generator have been considered. Different operating scenarios are simulated by considering the 

load demands and generator output as stochastic variable following the Gaussian distribution 

around the mean value with prefixed standard deviation. Moreover, the impacts of measurement 

uncertainties on state estimation performance have been studied using Monte-Carlo simulation. 

There are 1000 number of different network states are generated from each network condition to 

study the impacts of measurement uncertainties on state estimation performance. The total 

number of operating condition considered is 100. Hence, the total number of operating scenarios 
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considered in this study is 100×1000. A standard deviation of ±10% of the base value is assumed 

for each operating condition.  

The number of IEDs and PMUs required and their locations in an active distribution 

network is presented. It is assumed that the DG output is stochastic in nature and following 

normal distribution. Furthermore, it is specified that all DGs are injecting only real power to the 

buses where it is integrated. The base values of DG power output and their locations are provided 

in Table 5.2 [97], [98]. All the parameters used in EDA and NSGA-II algorithm have been shown 

in Table 5.1. Different parameters used in EDA algorithm for probabilistic learning, sampling, 

selection and repairing process are provided in Table 5.1.  

For the simulation study, the relative cost of each PMU is assumed as 1pu and for an IED, 

the cost is 0.6pu. Actually, in practice, the cost of the measurement devices depends on the 

application scenarios. Generally, the cost of a PMU is more than the IED, therefore, in this study, 

the relative cost of PMU and IED are considered as 1pu and 0.6pu respectively. To obtain the 

optimal trade-off solution, fuzzy theory has been used and is discussed in [95]. 

Table 5.1 Parameters used in EDA, NSGA-II and SA algorithm  

EDA NSGA-II Simulated 
Annealing (SA) 

Population size = 20, 
Learning method -Learn Gaussian 
Bayesian Model 

Population size=20 Initial Temperature 
(Te) = 100 

Sampling method- Sample Gaussian 
Universal Model 

Cross over rate = 0.8 Scheduling factor  
(α ) =0.99 

Replacement method- Pareto Rank 
ordering 

Mutation rate = 0.02 

Selection method - Non-Dominated 
selection 

Maximum 
generations = 20 

Repairing method-Set In Bounds repairing 
Maximum generations=20 

 

Table 5.2 Distribution generation (DG) installation bus and capacity 

Test System Bus Number DG capacity( in MW) Base Value 
IEEE 69-bus System 50 

61 
0.180 
0.270 

Practical Indian 85-
bus System 

45 
61 

0.277                           
0.290 
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5.5.1 IEEE 69-bus system 

A standard IEEE 69-bus, 12.66kV radial distribution network has been considered to test 

the effectiveness of the proposed algorithm. This test system includes 69 buses, 68 lines along 

with 48 loads and two DGs integrated at bus 50 and 61. The load and line parameters of the test 

system are obtained from [99].The total load of the system is 3.802MW and 2.692MVAr 

respectively. In this system there are 21 buses where there is no source or load is connected. 

Therefore, these are treated as zero injection buses [94]. The real and reactive power injections at 

the zero injection buses are assumed as virtual measurements with higher degree of accuracy 

level. 

The obtained results using the proposed algorithm under different measurement 

uncertainties have been shown in Table 5.3. The total number of PMU and IED require to 

obtained quality state estimation results are also provided in Table 5.3. It is seen that when 1% 

error is considered for IED measurements and 50% for pseudo-measurement, the total 

configuration cost is 2.8 using hybrid EDA-IPM algorithms and the RMS value of state 

estimation error is 0.0103pu. Similarly, in case of EDA-SA, EDA and NSGA-II, the total cost 

obtained is 5, 4.8 and 4. The RMS values of state estimation error obtained using EDA-SA, EDA 

and NSGA-II are 0.0144, 0.0183 and 0.0144pu respectively. Furthermore, the optimal Pareto 

fronts between the objectives J1, J2 and J3 have been shown in Figure 5.1. The optimal number 

and location of PMUs and IEDs are obtained from the optimal Pareto fronts for their respective 

algorithms using fuzzy theory discussed in [95]. From the figures, it is worth noticing that the 

global optimal Pareto fronts has been achieved using the proposed algorithm due its higher 

degree of balance between the exploration and exploitation during the search process. In most of 

the cases it is seen that, IEDs are placed at main feeders to reduce the state estimation error and 

the combination of IEDs and PMUs provide better solution to improve the state estimation 

accuracy in the modern active distribution networks. Additionally, the maximum relative 

percentage error in voltage magnitude and phase angle under all the measurement uncertainty 

cases is also provided in Table 5.3 to check the reliability of the respective algorithm. 

Furthermore, the test has been carried out by considering 3% and 5% error in IEDs along 

with 50% error in pseudo-measurements and the optimal Pareto-fronts are shown in Figure 5.2 

and 5.3 respectively. The obtained results have been reported in Table 5.3. It is seen that, the total 

cost of the configuration is slightly increased because of more noise has been added to IEDs. In 
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these cases also, the performance of the proposed hybrid EDA-IPM algorithm is found to be 

better than all other algorithm used in this chapter. The main advantage of using this multi-

objective meter placement technique is that the operator can obtain a best compromised or a 

trade-off solution between the objectives to minimize the cost as well as the state estimation 

error. Basically, the selection of optimal solution depends on the decision maker. However, fuzzy 

theory has been used to find the best compromised solution between the objectives. Generally, 

meter placement techniques are used for planning study of the distribution systems. Therefore, 

computational cost and complexity of the proposed technique does not have significant impact on 

planning study of the distribution system. The computational cost can be reduced if less number 

of Monte-Carlo trials is considered in simulation study. However, if MC value is high then more 

accurate results can be expected. 

 

Figure 5.1(a) Optimal Pareto front between objective J1 and J2 (1% error in IEDs and 

50% for Pseudo-measurements). 



Chapter 5                                                Trade-offs between PMU and IED Deployment for DSSE  

114 

 

 

Figure 5.1(b) Optimal Pareto front between objective J1 and J3 (1% error in IEDs and 

50% for Pseudo-measurements). 

 

Figure 5.1(c) Optimal Pareto front between objective J2 and J3 (1% error in IEDs and 50% for 

Pseudo-measurements). 
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Figure 5.2(a) Optimal Pareto front between objective J1 and J2 (3% error in IEDs and 

50% for Pseudo-measurements). 

 

Figure 5.2(b) Optimal Pareto front between objective J2 and J3 (3% error in IEDs and 

50% for Pseudo-measurements). 
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Figure 5.2(c) Optimal Pareto front between objective J1 and J3 (3% error in IEDs and 

50% for Pseudo-measurements) 

 

Figure 5.3(a) Optimal Pareto front between objective J1 and J2 (5% error in IEDs and 

50% for Pseudo-measurements) 
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Figure 5.3(b) Optimal Pareto front between objective J1 and J3 (5% error in IEDs and 

50% for Pseudo-measurements) 

 

Figure 5.3(c) Optimal Pareto front between objective J1 and J3 (5% error in IEDs and 

50% for Pseudo-measurements) 
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Table 5.3 Optimal location of PMU and IED in IEEE 69 bus active distribution system 

 
Metrological 

Error of 
IEDs 

 
 

Algorithm 

 
 

PMUs 
location 

 
 

IEDs location 

 
Objective functions 

value 

Maximum 
relative 

percentage 
error in voltage 
magnitude (%) 

Maximum 
relative 

percentage 
error in 

voltage angle 
(%) 

 
J1 

 
J2 

 
J3 

 
 
 
 

1% 

Proposed 
EDA-IPM 

 
27 

 
1,2,10 1.8 1 0.0103 

 
0.2777 

 
6.1936 

EDA-SA 27,67 1,4,8,10,18,20 3 2 0.0144 0.4962 8.3211 

EDA 45,48,59 1,3,54 1.8 3 0.0183 0.3211 10.8978 

NSGA-II 68 1,2,48,56,61 3 1 0.0144 0.3786 9.4631 

 
 
 

3% 

Proposed 
EDA-IPM 

15,27,36,50,58 1,4,8 1.8 5 0.0106 0.3645 7.3719 

EDA-SA 50,64 1,3,4,13,16,19,23, 
30,34,50,56  6.6 2 0.0132 

 
0.4216 

 
8.7546 

EDA 20,23,50,53, 
59,64 

 
1,2,5,10,11,13,54 4.2 6 0.0153 

 
0.4056 

 
11.9871 

NSGA-II 43,48,68 1,3,4,8,11,15,27,62 4.8 3 0.0143 0.3927 9.7632 

 
 
 

5% 

Proposed 
EDA-IPM 

45,67 1,3,23,25,29,57,65 4.2 2 0.0152 0.3625 8.1910 

EDA-SA 43,65,67 1,3,6,7,16,20,38, 
49,56,58,60,63 

7.2 3 0.0170 0.5089 9.0935 

EDA 52,64 1,3,4,6,13,14,17, 
19,21,23,29,41,56 

7.8 2 0.0198 0.5897 11.0124 

NSGA-II 60,62,65 1,3,6,10,38,50,52, 
54,56,57 

6 3 0.0173 0.6083 10.5739 

 

5.5.2  Practical Indian 85-bus system 

The effectiveness of the proposed algorithm, has also been tested on a large scale practical 

Indian 85-bus, 11kV radial distribution network. The system includes of 85 buses, 84 lines along 

with two DG at bus number 45 and 61 respectively. This system carries a total load of 2.574 MW 

and 2.622 MVAr. Furthermore, it includes 26 number of zero injection buses. The single line 

diagram of this test system has been shown in Figure 5.2. The network load and line data are 

taken from [100].  

The simulation results for Indian 85 bus system using the proposed algorithm under 

different operating conditions have been shown in Table 5.4. When the IEDs accuracy is 

considered as 1%, the total configuration cost is 3.2 using proposed EDA-IPM algorithm. The 

RMS value of state estimation error is 0.0096pu. In case of EDA-SA, EDA and NSGA-II, the 

total cost is 2.8, 4.8 and 5 and the average RMS value of estimation errors obtained are 0.0143, 

0.0129 and 0.0160pu respectively. Furthermore, the optimal Pareto fronts between the objectives 

J1, J2 and J3 have been shown in Figure 5.4. From the figures, it is seen that the global optimal 

Pareto fronts has been achieved using the proposed algorithm due its higher degree of balance 

between the exploration and exploitation during the search process. Moreover, to test the 
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efficiency of the proposed algorithm, different metrological error of the IEDs have been 

considered such as 3% and 5% along with 50% error in pseudo-measurements and the obtained 

results have been reported in Table 5.4. Furthermore, the optimal Pareto-fronts are shown in 

Figure 5.5 and 5.6 respectively. It is observed that the total configuration cost is increased 

because of more noise has been added in IED measurements. It is worth noticing that the 

performance of the proposed hybrid EDA-IPM algorithm is found to be more superior than all 

other algorithms used in this chapter due to its higher degree of balance between the 

intensification and diversification capability. This is possible due to the hybridization of IPM 

algorithm of higher exploitation level with traditional EDA of having better exploration ability.    

 

Figure 5.4(a) Optimal Pareto front between objective J1 and J2 (1% error in IEDs and 

50% for Pseudo-measurements). 
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Figure 5.4(b) Optimal Pareto front between objective J1 and J3 (1% error in IEDs and 

50% for Pseudo-measurements).                                    

 

Figure 5.4(c) Optimal Pareto front between objective J2 and J3 (1% error in IEDs and 

50% for Pseudo-measurements). 
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Figure 5.5(a) Optimal Pareto front between objective J1 and J2 (3% error in IEDs and 

50% for Pseudo-measurements). 

 

Figure 5.5(b) Optimal Pareto front between objective J2 and J3 (3% error in IEDs and 

50% for Pseudo-measurements). 
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Figure 5.5(c) Optimal Pareto front between objective J1 and J3 (3% error in IEDs and 

50% for Pseudo-measurements). 

 

Figure 5.6(a) Optimal Pareto front between objective J1 and J3 (5% error in IEDs and 

50% for Pseudo-measurements). 
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Figure 5.6(b) Optimal Pareto front between objective J1 and J2 (5% error in IEDs and 

50% for Pseudo-measurements). 

 

Figure 5.6(c) Optimal Pareto front between objective J2 and J3 (5% error in IEDs and 

50% for Pseudo-measurements). 
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Table 5.4 Optimal location of PMU and IED in Indian 85 bus active distribution system 

 
 

Metrological 
Error of 

IEDs 

 
 

Algorithm 

 
 

PMUs location     
(Bus number) 

 
 

IEDs location 
(Line number) 

 

 
Objective functions value 

Maximum 
relative 

percentage 
error in 
voltage 

magnitude 
(%) 

Maximum 
relative 

percentage 
error in 
voltage 
angle  
(%) 

 
J1 

 
J2 

 
J3 

 
 
 
 
       1% 
 
 

 

Proposed 
EDA-IPM 

 
50,54 

 
1,7 1.2 2 0.0096 

 
0.3179 

 
7.5437 

 
EDA-SA 

 
             81 

 
             1,5,27    1.8     1 0.0143 

 
0.3672 

 
8.9821 

 
EDA 

 
40,57,62 

 
1,6,32 1.8 3 0.0129 

 
0.3781 

 
10.8239 

 
NSGA-II 

 
72,76 

 
1,4,5,26,34 3 2 0.0160 

 
0.3364 

 
8.4772 

 
 
 
 

3% 

Proposed 
EDA-IPM 

 
36,67,71 

1,4,5,25,67  
1.8 

 
3 

 
0.0126 

 
0.3649 

 
6.9723 

 
EDA-SA 

 
42,68,70 

1,7,8,10,12,29,32, 
34,36,46,60,65 

 
7.2 

 
3 

 
0.0155 

 
0.3438 

 
8.2674 

 
EDA 

 
77 

1,3,6,7,15,30, 
38,41,48,72 

 
6 

 
1 

 
0.0188 

 
0.4126 

 
11.3037 

 
NSGA-II 

 
            49,76 

1,4,5,16,28,42, 
57,68 

 
4.8 

 
2 

 
0.0178 

 
0.3986 

 
9.9721 

 
 
 
 

5% 

Proposed 
EDA-IPM 

 
42,74 

 
1,3,5,8,31,60 

 
3.6 

 
2 

 
0.0144 

 
0.4023 

 
8.0593 

 
EDA-SA 

 
         78,83 

1,4,5,13,20, 
22,26,66,75 

 
5.4 

 
2 

 
0.0186 

 
0.4821 

 
7.7331 

 
EDA 

 
      67,73,78,83 

1,2,3,7,12,15, 
21,32,48,49 

 
6 

 
4 

 
0.0197 

 
0.4872 

 
11.0241 

 
NSGA-II 

 
76,81,84 

1,3,4,5,6,9,11,12,23, 
25,33,51,67,71,74 

 
9 

 
3 

 
0.0152 

 
0.5673 

 
12.7671 

 

5.6 Summary 

This chapter formulated a new multi-objective optimization problem to find an optimal 

trade-offs in PMUs and IEDs deployment for state estimation in active distribution networks. A 

new hybrid estimation of distribution algorithm is proposed to find the optimal number and 

location of PMUs and IEDs for accurate state estimation. The local searching capability of the 

classical EDA algorithm is improved by hybridizing with the Interior point method (IPM). The 

hybridization of EDA and IPM brings a balance between exploration and exploitation capability 

of the algorithm during the search process. Furthermore, different uncertainties level of 

measurement devices and load variations are also taken into consideration for testing the 

reliability of the state estimator. The performance of the hybrid EDA-IPM algorithm is tested on 

a standard IEEE 69-bus as well as Indian 85-bus system. The obtained results using hybrid EDA-

IPM algorithm are compared with the conventional EDA, NSGA-II and also with EDA-simulated 

annealing algorithm existing in the literature. It is found that the proposed algorithm is more 

efficient, reliable and robust under various operating conditions and metrological characteristics 
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of the measurement devices. Moreover, the performance of the proposed algorithm is found to be 

more superior than all other algorithms used in this chapter. Hence, the proposed multi-objective 

based meter placement technique can be used for the planning study and monitoring of the smart 

distribution networks.  
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Chapter 6 

Robust Meter Placement for Distribution System State 
Estimation in presence of Wind Generators Using New 

Multi-Objective Hybrid PSO-KH Algorithm 

6.1 Introduction 

In this chapter, trade-offs in deployment of phasor measurement units (PMUs) and 

intelligent electronic devices (IEDs) for state estimation in distribution networks in presence 

of wind generators are presented. Due to the stochastic nature, the output of each wind 

generator is modeled using Weibull distribution function. In the optimization problem the 

objective functions considered to be minimized are the total cost of PMUs and IEDs as well 

as the root mean square (RMS) value of state estimation error. Since the objectives are in 

conflict, a multi-objective Pareto-based non-dominated sorting algorithm has been employed 

to get a compromise solution. To get the best optimal solution, multi-objective hybrid PSO-

Krill Herd algorithm has been used. Furthermore, the random variation in loads and 

generators is also considered to check the reliability of the proposed meter placement 

technique. The viability of the proposed algorithm has been tested on IEEE 69-bus system and 

Practical Indian 85-bus system to validate the results. The results obtained have been 

compared with Particle Swarm Optimization (PSO), Krill Herd (KH) algorithm and also with 

well known Non-dominated sorting genetic algorithm (NSGA-II). 

6.2 Distribution system state estimation in presence of PMUs and IEDs  

Basically, distribution networks are monitored partially due to insufficient real time 

measurement data. Therefore, the knowledge about the system is obtained from a priori 

information along with some limited real time measurements. The a priori information is 

nothing but historical customer load data and known as pseudo-measurement. The real 

measurements are obtained from PMUs and IEDs. For state estimation, the well established 

Weighted Least Square (WLS) algorithm has been employed to minimize the following 

objective function:                                           

( )[ ] ( )[ ]xz-hWxz-hJ -T 1=                                                                                                         (6.1)                                                         

Subject to: ( ) rxhz +=                                                                                              (6.2)                                                              

where z  is the measurement vector, x represents system state vector consisting of branch 
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current magnitudes and phase angles, ( )xh  is a nonlinear measurement function of system 

state variables and r  represents a small Gaussian noise and W  is the covariance matrix. 

For better estimation accuracy, PMUs have been employed along with IEDs for online 

monitoring of the distribution networks. Therefore, a mixed approach has been considered 

which includes measurements from PMUs and IEDs to enhance the state estimation accuracy 

of an active distribution network. A mathematical model for state estimation based on PMUs 

and IEDs data is described below. 

There are different types of measurements such as substation measurement, pseudo-

measurement; virtual measurement, smart meter measurement and phasor measurement 

obtained from PMU which have been utilized for state estimation in distribution networks. 

Additionally, it is assumed that, PMU installed at a particular bus provides voltage phasor 

measurements of that bus. 

For state estimation, branch current based state estimation (BC-DSSE) algorithm has 

been used where branch current magnitudes and their phase angles are considered as states of 

the distribution system [40]. The initial values for the state variables are assumed as discussed 

in [41] and the WLS based iterative process has been conducted to estimate the state 

variables. 

The estimated value of the state variable x at thk )1( + iteration can be expressed as 

follows:  

( ) ( )[ ] ( )[ ]k
T

kkkk xhzWxHxGxx −+= −−
+  11

1                  (6.3)                                                              

where H represents the Jacobian matrix, which is calculated by taking the partial derivative of 

each non-linear measurement function h(x) with respect to each state variable x and G 

represents the gain matrix given by  

( ) )H(xWxH)G(x k
-T

kk
1=                               (6.4)                                                                                                                  

The inverse of the covariance matrix W can be defined as 
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The subscripts in eq. (6.5) S, IED, P and V represent substation measurement, IED 
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measurement, pseudo-measurement and virtual measurement respectively. In eq. (6.5), IEDW  

and PMUW  represent the covariance matrix of the IED measurements and phasor 

measurements. W  represents the covariance matrix. The error vector r can be expressed as: 
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                                                                                 (6.6)                            

In this work, it is assumed that IEDs are used to measure real and reactive power flows 

in a line and PMUs are incorporated to measure voltage phasors at a bus. According to state 

estimation theory [23], the diagonal elements of the error covariance matrix represent the 

estimation variances of the states and mathematically this can be expressed as follows: 

1)( −= xGExx                                                                      (6.7)                                                                                                                           

Furthermore, this can be expressed as 2
^

)().( xxExxEE x

T

xxx −==
−−

. Where xxE  is the error 

covariance matrix, xE is the operator of statistical expectation, G is the gain matrix and

^

xxx −=
−

. 

6.3 Mathematical model of the proposed meter placement technique 

The proposed meter placement problem is designed as a MOOP. The objective is to 

determine the optimal number and location of PMU and IED in a distribution network to 

achieve minimum cost as well as ensure error within the predefined threshold limit. The 

objective functions considered are: )(i the total cost of PMUs and )(ii  IEDs, and )(iii  the RMS 

value of state estimation error. Since, the objectives considered are conflicting in nature, the 

meter placement problem can be designed as multi-objective Pareto based optimization 

problem [88]-[89]. Mathematically, it can be expressed as:  

      Minimize                                                                                                                                                                            

                     
∑

=

=
nl

i
IED,iIED,i. PCJ

1
1                                                                         (6.8)  

                                  
∑

=

=
n

i
PMU,iPMU,i. PCJ

1
2                                                                        (6.9)                                                                                                                           
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The constraints considered for this optimization problem is the maximum relative deviations 

in voltage and the angle estimates are to be within the specified limits in 95% of the operating 

scenarios as follows: 

1100  
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VV
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i

est
i

a
i ≤×

−
                                                                                               (6.11) 

5100   
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δδ

a
i
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i

a
i ≤×

−
                                                                                              (6.12) 

where J1, J2 and J3 are the three objectives, vn  represents number of state variables and nl

indicates the total number of  lines in a distribution network, x is the state variable and 
∧
x is 

the estimated value of the state variable x . In eq. (6.8) and (6.9), IEDC   and PMUC    are 

respectively, the relative cost of an IED and PMU, IEDP and PMUP  are treated as binary 

decision vectors i.e. the presence and absence of a meter in a line or at a bus is indicated by 1 

or 0, a
iV and a

iδ is the actual or true value of thi  bus voltage magnitude and angle, est
iV and est

iδ

represents the estimated value at thi  bus respectively and in eq. (6.11) and (6.12), m denotes 

total number of operating scenarios. 

In practice, the cost of the measurement devices depends on the application scenarios. 

Generally, the cost of a PMU is more than that of the IED; therefore, in this study, the relative 

cost of PMU and IED are considered as 1.0pu and 0.6pu respectively. 

6.4 Solution methodology 

To find the optimal solution of the proposed MOOP described in Section 6.3, a hybrid 

PSO-KH algorithm has been used and is described as follows. 

6.4.1 Krill Herd Algorithm (KHA)  

The Krill Herd algorithm is a population based bio-inspired algorithm. It is based on 

the herding behavior of the Krill swarms searching for food.  The fitness of each Krill particle 

depends on the distance of it from food location and density of the swarms in the search space 

[84]. According to the theory, the Krill swarms always try to build high density in the search 

space and move their positions due to mutual effects. Three effects are produced which are 

local effect due to local Krill density, a target effect and finally a repulsive effect during their 

movement towards the optimal solution. The movement of each Krill particle in the search 
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space is based on three actions: 

a) Induced motion  

b) Foraging motion and  

c) Random diffusion of the Krill individuals 

The Lagrangian model of the Krill herd algorithm in an n  dimensional decision space 

can be described as: 

iii DFM ++=
dt

dL i                                                                                                                                            

where Li is the position of  thi  particle, 
iM is the induced motion, iF  represents foraging 

motion and iD is the random diffusion of the thi  particle. The details about the Krill herd 

algorithm have been discussed in chapter 3. 

6.4.2 PSO 

The PSO algorithm is a population based swarm intelligence algorithm. It mimics the 

behavior of birds flocking in search of food in a particular area. Initially no bird has 

information about the exact location of the food in the search area [50]-[51]. The flock of 

birds follows the bird nearest to the food location which is called the best solution among all 

birds looking for food. Each solution in PSO represents a bird which is called as a particle in 

the search space. In each generation of the optimization algorithm the fitness value of each 

individual is evaluated using a fitness function. The velocity of each particle is updated based 

on the current best position of the particle in the search space.  Each individual particle knows 

its best position so far called pbest  and each individual knows also the information about the 

best value so far in the group calledgbest . Each particle tries to update its position using the 

information provided below: 

• The distannce between  pbest   and current position of the particle 

• The distance between  gbest  and current position of the same particle 

Based on this the modification in the velocity of each particle is expressed as follows: 

                   )()( 2211
1 k

i
k
ii

k
i

k
i pgbestrandCppbestrandCwvv −×+−×+=+

       (6.13) 

      
k
i

k
i

k
i vpp +=+1                                                                                                   (6.14) 

where  

k
iv    Velocity of thi  particle at thk  iteration 

w     Weighting function 

           1C , 2C     Learning factors 
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            rand       Random number between 0 and 1 

          
k
ip            Position of thi particle at thk iteration 

          ipbest       Personal best of thi particle at thk iteration 

          gbest        Best position of the group 

 

6.4.3 Optimal placement of PMU and IED using multi-objective hybrid PSO-KH 

algorithm 

Since the objectives are conflicting in nature; the simultaneous optimization needs a 

compromised solution because each objective in the model is conflicting with one another. 

Therefore, to achieve a better compromise solution between the objectives, Pareto based non-

dominated sorting approach has been implemented.  It states that, in a non-dominated Pareto 

front all solutions are equally important because no solution is dominating the other in the 

population. In MOOP, the solution relies on a set of other solutions.  Therefore, Pareto based 

non-dominated sorting technique has been employed with hybrid PSO-KH algorithm to 

achieve best trade-offs solution between the objectives. Furthermore, a trade-off solution 

between the total cost of PMU and IED needed for the accurate state estimation is to be 

determined using multi-objective hybrid PSO-KH algorithm. The pseudo code of the hybrid 

PSO-KH algorithm is presented as follows. 

Step1. Initialization: Initialize the parameters of the PSO and KH algorithm such as:  

         maxD   Maximum diffusion speed  

         maxM   Maximum induced speed 

         fW       Inertia of the foraging motion 

         fV        Foraging speed 

        1C , 2C  Learning factors 

Step 2. Initialize random solutions: 

1) Randomly generate number and location of PMU and IED for each solution in 

the population.  

Step 3. Objective functions evaluation:  

1) Evaluate the objectives  21,JJ  and 3J for each solution based on the position of 

PMUs and IEDs  

2) Calculate the fitness value of each solution using weighting approach. 
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3) Use non-dominated sorting (NDS) and crowding distance (CD) method to sort 

the solution in ascending order. 

4) Calculate the best and worst particles in the population.            

Step 4.  Generate new Krill individuals using PSO. 

Step 5. Calculate the following motions for each Krill individual such as:   

1) Induced motions 

2) Foraging motions 

3) Physical diffusions 

Step 6. Update position of the Krill individuals. 

Step 7. Genetic operator: For further improvement in the solution apply crossover and 

mutation operator to update the solutions. 

Step 8.  Repeat steps 3-7 for maximum number of iterations.  

Step 9. Use fuzzy theory to obtain best compromised solution between the objectives [95]. 

Post-procession of the results 

 

In the beginning of the optimization process, the initial solutions i.e. the number and 

locations of PMUs and IEDs are generated randomly within the search space. Each solution 

represents the combinations of a number of PMUs and IEDs as well as their locations. Based 

on each combination of PMUs and IEDs, the objective functions 1J , 2J are evaluated and 3J is 

calculated using BC-DSSE algorithm. Then, among the population the best and worst Krill is 

obtained using weighting approach. Basically, if the weights represent the trade-offs between 

the objective functions, then the original units of the objective functions are retained. It is not 

required to transfer them between 0 and 1. In this case all weights are assumed to be equal to 

1. All objective values are retained with their original units without transferring them between 

0 and 1. Furthermore, the sum of all the objectives is determined to know the best and worst 

solutions. In order to achieve better performance, the solutions are updated using PSO 

algorithm. In PSO, the PMU and IED’s positions are updated using equations (13)-(14). After 

the positions are updated using PSO, three motions such as induced motion, foraging and 

diffusion motion are calculated for each Krill particle using Krill herd algorithm. 

Furthermore, during fitness evaluation, the constraints violation checking needs to be carried 

out. For each combination of PMU and IED, the relative percentage error in bus voltage 

magnitude and angle estimate is determined using Monte Carlo trial.  For each combination of 

PMUs and IEDs in a solution, if in 95% of the simulated cases, the estimated relative errors 
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are below the threshold limits, then for that solution the objective functions are evaluated and 

stored. On the contrary, if it is not within the threshold limit, then for that particular solution, 

a higher value of objective is to be assigned. This particular solution can be eliminated during 

the next immediate generation. Then, genetic operators are used to update the solutions. After 

updating the solutions, the above steps are repeated until all the solutions in a given 

population size are in first front. The convergence criterion for the algorithm to stop is, when 

all the solutions are reached in optimal Pareto-front curve. To get the best solution in the 

optimal Pareto front fuzzy theory has been used [95]. In the optimization process population 

sizes of different values like 20, 30 and 50 have been tried. But, it has been found that there is 

no such significant variation in the result when taking different population sizes for IEEE 69-

bus system and Indian 85-bus system. Finally, a population size of 20 has been fixed for to 

reduce the computational time of the algorithm. 

6.5 Test and Simulation Conditions 

The following test and simulation conditions have been considered for analyzing the 

performance of the proposed state estimation formulation and algorithm in MATLAB 2014b 

environment. To estimate the system state (branch current magnitude and angle) BCDSSE 

algorithm has been employed. The measurement data are generated by adding small Gaussian 

noise of 1%, 3% and 5% to the actual or reference value of the quantity of interest to be 

measured. There are different kinds of measurements considered for state estimation such as: 

substation measurement, pseudo-measurement, real measurement and virtual measurement 

[75]. It is assumed that, the former two types of measurements give information about real 

and reactive power injections at the buses. The real measurements are obtained from IEDs and 

PMUs, and it is assumed that IED gives information about real and reactive power flows in a 

line and PMU provides the information about bus voltage phasors. Furthermore, the 

measurement uncertainties are considered based upon the maximum percentage of error 

associated with each type of measurement [75]. The information about the measurement data 

are provided below: 

1) Substation Measurements: The measurements that are collected from the substation are 

called as default measurements. Generally, the substation measurements are considered 

to have high accuracy and therefore, in this test 1% error has been chosen for substation 

measurements. 

2) Real measurements: The measurements obtained from IEDs and PMUs are taken as 

real measurements. In this test, different accuracy values have been chosen for IEDs 



 
Chapter 6                                     Robust meter Placement using Hybrid PSO-KH Algorithm 
 

135 

 

measurements. For IEDs, the maximum allowable error considered is 1%, 3% and 5% 

respectively. In case of PMU (synchronized measurements), the maximum allowable 

error of 0.7% have been considered.    

3) Pseudo-measurements: Basically, the pseudo-measurements are obtained from the 

historical customer load data and the errors associated with the pseudo-measurements 

are relatively very high. Thus, the maximum percentage of error assumed for this is 

50% [75].  

4) Virtual-measurements: The measurements at the zero injection buses are treated as 

virtual measurements with a low variance of 10-7 [94]. 

In this study, for better visualization, random variations in loads and generators have 

been considered. Different operating scenarios are simulated by considering the load demands 

and generators output as stochastic variable following the Gaussian distribution around the 

mean value with prefixed standard deviation. Moreover, the impact of measurement 

uncertainties on state estimation performance has been studied using Monte-Carlo simulation. 

There are 1000 different network states generated using Monte-Carlo simulation from each 

network condition to study the impact of measurement uncertainties on state estimation 

performance. The total number of operating condition considered is 100. A standard deviation 

of ±10% of the base value is assumed for each operating condition. All parameter values used 

for specific algorithms are provided in Table 6.1 and also the DG capacities are shown in 

Table 6.2 respectively [97]-[98]. The parameters value used for model the wind generators are 

provided in Table 6.3. The Weibull distribution function has been used for predicting the 

wind speed based on the data collected from the National Renewable Energy laboratory 

(NREL) site [101].  

Table 6.1 Parameter values of KH, PSO and NSGA-II algorithm 

KHA  PSO NSGA-II 
Population size=20 Population size=20 Population size=20 

maxD  (maximum diffusion speed)
∈[0.002 0.01] 

1C =2, 2C =2         Crossover rate (Pc)=0.8 

Ct∈[0, 2] maxW =0.9, minW =0.4 Mutation rate (Mc)=0.02 

fV  (foraging speed)=0.02ms-1 Maximum 
generations=20 

Maximum 
generations=20 

fW  (inertia of the foraging 

motion) =0.9 

- - 

maxM  (maximum induced 
speed)=0.025ms-1 

- - 
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Table 6.2 Wind generators base case value and their locations 

Test system Bus Number DG capacity in MW  
(Base value) 

IEEE 69-bus system          50 
61 

0.180 
0.270 

Practical Indian 85-
bus system 

45 
61 

0.277                           
0.290 

 

Table 6.3 Parameters value for wind generators 

Parameters 
Cut-in speed(inv ) = 3m/sec 

Cut out speed (ov )= 25m/sec 

Rated speed (rv )= 10.28m/sec 
 

6.5.1 Modelling of wind generator output using Weibull distribution 

In this work, all DGs are considered as wind generator and output of each DG is 

modeled using Weibull distribution function, since wind speed is stochastic in nature [96]. 

Furthermore, it is assumed that DGs are producing only real power to the network. The 

Weibull probability density function over a period of time is expressed as follows:  

∞<<=
−− v

c

v

c

k
vf

k

c

v
k 0            ,exp))(()(

)(
)1(

                                              (6.15)
 

where k  and c  are indicated as shape and scale factor of the wind speed respectively. The 

wind speed is represented asv. For different value of k and c the PDF of the Weibull 

distribution function is shown in Figure 6.1. 

 

                 (a)                                                                         (b) 

Figure 6.1 Variations of wind speed for (a) k=1 and (b) k=3 
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The value of the shape and scale factor of a wind generator depends on the location 

and geographical condition where it is situated. These parameters are determined using mean 

and variance of the wind speed over a period of time. Once the characteristic of wind speed is 

known, the output of wind generator can be determined using the following transformation 

discussed below: 
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In the above equation, inv , ov and rv  are indicated as cut-in speed, cut-out speed and 

rated speed of the wind respectively and their value for a specific data has been provided in 

Table 6.3. The rated output power of the wind generator is represented asrP . Several methods 

are available to determine the value of  k  and c . One of the widely used approximations is 

mean wind speed and standard deviation approach. By using this approach the value of  k  and 

c  is determined as follows: 

                     12.1

              )( 086.1

uc
u

k

=

= −σ

                                                                                           (6.18)

 

where σ  represents standard deviation and u  is the mean wind speed respectively. 

6.5.2 Simulation result and discussions 

The optimal location of PMU and IED is determined in a standard IEEE 69 bus system 

and also in a practical distribution network such as Indian 85 bus radial distribution network 

discussed below. 

6.5.2.1 IEEE 69 bus system 

A standard IEEE 69-bus, 12.66kV radial distribution network has been considered to 

test the effectiveness of the proposed algorithm. It includes 69 buses, 68 lines along with 48 

loads and two DGs injected at bus number 50 and 61. The DGs locations are selected based 

on to achieve minimum power loss in the network. The network data are obtained from 

[99].The total load of the system is 3.802MW and 2.692MVAr respectively. In this system 

there are 21 buses where there is no source or load is connected. Therefore, these are treated 

as zero injection buses. The real and reactive power injections at the zero injection buses are 

assumed as virtual measurements with higher degree of accuracy level. 



 
Chapter 6                                     Robust meter Placement using Hybrid PSO-KH Algorithm 
 

138 

 

 

 

 

Figure 6.2(a) Optimal Pareto fronts between the objectives J1 and J2 for 1% error IED 

measurements and 50% in pseudo-measurements 

 

 

Figure 6.2(b) Optimal Pareto fronts between the objectives J1 and J3 for 1% error IED 

measurements and 50% in pseudo-measurements 
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Figure 6.2(c) Optimal Pareto fronts between the objectives J2 and J3 for 1% error IED 

measurements and 50% in pseudo-measurements 

 

 
 

 

Figure 6.3(a) Optimal Pareto fronts between the objectives J1 and J2 for 3% error IED 

measurements and 50% in pseudo-measurements. 
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Figure 6.3(b) Optimal Pareto fronts between the objectives J1 and J3 for 3% error IED 

measurements and 50% in pseudo-measurements. 

 

 

Figure 6.3(c) Optimal Pareto fronts between the objectives J2 and J3 for 3% error IED 

measurements and 50% in pseudo-measurements. 
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Figure 6.4(a) Optimal Pareto fronts between the objectives J1 and J2 for 5% error IED 

measurements and 50% in pseudo-measurements 

 

Figure 6.4(b) Optimal Pareto fronts between the objectives J1 and J3 for 5% error IED 

measurements and 50% in pseudo-measurements 
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Figure 6.4(c) Optimal Pareto fronts between the objectives J2 and J3 for 5% error IED 

measurements and 50% in pseudo-measurements 

Table 6.4 Optimal location of PMU and IED in IEEE 69 bus active distribution system. 

 
Metrological 

Error of 
IEDs 

 
 

Algorithm 

 
 

PMUs location 
(Bus number) 

 
 

IEDs location 
(Line number) 

 
Objective functions 

value 

Maximum 
relative 

percentage 
error in 
voltage 

magnitude (%) 

Maximum relative 
percentage error in 
voltage angle (%) 

 
J1 

 
J2 

 
J3 

 
 
 

1% 

Proposed 
PSO_KH 

4,14,21,36 1, 13 
  1.2 4 0.0099 

 
0.3037 

 
6.0436 

KH 68 1,4,9,12,21,43,51,53,65 5.4 1 0.0101 0.4435 7.8210 

PSO 29,30,34,48, 67 1,2,4,17,23 3 5 0.0124 0.3911 9.0118 

NSGA-II 31,64 1,3,4,5,9,21,26 4.2 2 0.0105 0.4679 9.6661 

 
 
 

3% 

Proposed 
PSO_KH 

43,61,68 1,2,4,15,40 3 3 0.0114 0.3645 7.1719 

KH 40 1,2,4,6,13,16,20,22, 
27,33,62 6.6 1 0.0129 

 
0.4911 

 
8.7581 

PSO 22,28,35,45,63, 
65 

1,2,4,6,1012,18 
4.2 6 0.0126 

 
0.4111 

 
10.9431 

NSGA-II 12,14,43 1,2,4,9 2.4 3 0.0144 0.4723 9.23142 

 
 
 

5% 

Proposed 
PSO_KH 

9, 35 1,3,5 1.8 2 0.0135 0.3956 7.3410 

KH 63 1,3,26,35,38,53,62 4.2 1 0.0146 0.5567 8.9465 

PSO 54,63,64 1,2,21,25,30,46,51,56 5.4 3 0.0161 0.5312 10.0124 

NSGA-II 12,14,43 1,2,4,9 2.4 3 0.0150 0.6077 9.5469 

 

The obtained results using the PSO-KH algorithm under different measurement 

uncertainties have been shown in Table 6.4. The total number of PMU and IED required for 

quality state estimation results are also provided in Table 6.4. It is seen that when 1% error is 

considered for IED measurements and 50% for pseudo-measurement, the total configuration 

cost is 5.2pu using hybrid PSO-KH and the RMS value of state estimation error is 0.0099pu. 



 
Chapter 6                                     Robust meter Placement using Hybrid PSO-KH Algorithm 
 

143 

 

Similarly, in case of KH, PSO and NSGA-II, the total cost obtained is 6.4pu, 8pu and 6.2pu. 

The RMS values of state estimation error obtained using KH, PSO and NSGA-II are 

0.0101pu, 0.0124pu and 0.0105pu respectively. Furthermore, the optimal Pareto fronts 

between the objectives J1, J2 and J3 have been shown in Figure 6.2. The optimal number and 

location of PMUs and IEDs are obtained from the optimal Pareto fronts for their respective 

algorithms using fuzzy theory [36]. From the figures, it is worth noticing that the global 

optimal Pareto fronts has been achieved using hybrid PSO-KH algorithm due to its higher 

degree of balance between the exploration and exploitation during the search process. In most 

of the cases it is seen that, IEDs are placed at main feeders to reduce the state estimation error 

and the combination of IEDs and PMUs provide better solution to improve the state 

estimation accuracy in the modern active distribution networks. Additionally, the maximum 

relative percentage error in voltage magnitude and phase angle under all the measurement 

uncertainty cases is also provided in Table 6.4 to check the reliability of the respective 

algorithm.  

The test has been carried out by considering 3% and 5% error in IEDs along with 50% 

error in pseudo-measurements. The obtained results have been reported in Table 6.4 and also 

the optimal Pareto front plots are shown in Figure 6.3 and 6.4 respectively. It is seen that, the 

total cost of the configuration is slightly increased because of more noise has been added to 

IEDs. In 3% error case, the total number of PMU and IED required is 3 and 5 respectively. 

The RMS value of state estimation error obtained is 0.0114pu using hybrid PSO-KH. Though, 

the total meter cost using NSGA-II is slightly less than hybrid PSO-KH, but the RMS value of 

state estimation error is 0.0144pu which is more than hybrid PSO-KH. This is due to the fact 

that the locations of meters also have an impact on state estimation accuracy. Similarly, in 

case of 5% error also the total cost of meters using hybrid PSO-KH algorithm is less than 

other algorithms considered in this chapter. Furthermore the state estimation error is less as 

compared to other algorithms. In these cases also, the performance of hybrid PSO-KH 

algorithm is found to be better than all other algorithm used in this work. The main advantage 

of using this multi-objective meter placement technique is that the operator can obtain a best 

compromised or a trade-off solution between the objectives to minimize the cost as well as the 

state estimation error. Basically, the selection of optimal solution depends on the decision 

maker. Fuzzy theory has been used to find the best compromised solution between the 

objectives. Generally, meter placement techniques are used for planning study of the 

distribution systems. Therefore, computational cost and complexity of the proposed technique 
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does not have significant impact on planning study of the distribution system. The 

computational cost can be reduced if less number of Monte-Carlo (MC) trials is considered in 

simulation study. However, if MC value is high then more accurate results can be expected. 

6.5.2.2 Practical Indian 85 Bus System 

The effectiveness of the proposed algorithm, has also been tested on a large scale 

practical Indian 85-bus, 11kV radial distribution network. The system includes of 85 nodes, 

84 lines along with two wind generators at bus number 45 and 61 respectively. The DGs 

locations are selected based on to achieve minimum power loss in the network. This system 

carries a total load of 2.574 MW and 2.622 MVAr. Furthermore, it includes 26 zero injection 

buses. The line and load data of the system are obtained from [100].  

 

 

 

Figure 6.5(a) Optimal Pareto fronts between the objectives J1 and J2 for 1% error IED 

measurements and 50% in pseudo-measurements 
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Figure 6.5(b) Optimal Pareto fronts between the objectives J1 and J3 for 1% error IED 

measurements and 50% in pseudo-measurements 

 

Figure 6.5(c) Optimal Pareto fronts between the objectives J2 and J3 for 1% error IED 

measurements and 50% in pseudo-measurements 
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Figure 6.6(a) Optimal Pareto fronts between the objectives J1 and J2 for 3% error IED 

measurements and 50% in pseudo-measurements 

 

Figure 6.6(b) Optimal Pareto fronts between the objectives J1 and J3 for 3% error IED 

measurements and 50% in pseudo-measurements 
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Figure 6.6(c) Optimal Pareto fronts between the objectives J2 and J3 for 3% error IED 

measurements and 50% in pseudo-measurements 

 

Figure 6.7(a) Optimal Pareto fronts between the objectives J1 and J2 for 5% error IED 

measurements and 50% in pseudo-measurements 
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Figure 6.7(b) Optimal Pareto fronts between the objectives J1 and J3 for 5% error IED 

measurements and 50% in pseudo-measurements 

 

Figure 6.7(c) Optimal Pareto fronts between the objectives J2 and J3 for 5% error IED 

measurements and 50% in pseudo-measurements 

The simulation results for Indian 85 bus system using the hybrid PSO-KH algorithm under 

different operating conditions have been shown in Table 6.5. When the IEDs accuracy is 

considered as 1%, the total configuration cost is 4.4pu using hybrid PSO-KH. The RMS value of 

state estimation error is 0.0105pu. In case of KH, PSO and NSGA-II, the total cost is 4.8pu, 

8.2pu and 4.4pu and the average RMS value of estimation errors obtained are 0.0123pu, 
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0.0105pu and 0.0142pu respectively. Furthermore, the optimal Pareto fronts between the 

objectives J1, J2 and J3 have been shown in Figure 6.5. From the figures, it is seen that the global 

optimal Pareto fronts has been achieved using the proposed algorithm due its higher degree of 

balance between the exploration and exploitation during the search process.  

Moreover, to test the efficiency of the proposed algorithm, different metrological error of 

the IEDs have been considered such as 3% and 5% along with 50% error in pseudo-

measurements and the obtained results have been reported in Table 6.5 and Figure 6.6 to 6.7 

shows the optimal Pareto fronts between the objectives. It is observed that the total configuration 

cost is increased because of more noise has been added in IED measurements. It is worth noticing 

that the performance of the proposed hybrid PSO-KH algorithm is found to be more superior than 

all other algorithms used in this work due to its higher degree of balance between the 

intensification and diversification capability. In 3% error case, the total number of PMU and IED 

required is 3 and 6 respectively. The RMS value of state estimation error obtained is 0.0113pu 

using hybrid PSO-KH. Though, the total meter cost using KH is slightly less than hybrid PSO-

KH, but the RMS value of state estimation error is 0.0126pu which is more than hybrid PSO-KH. 

This is due to the fact that the locations of meters also have an impact on state estimation 

accuracy. Similarly, in case of 5% error also the total cost of meter using hybrid PSO-KH 

algorithm is less than other algorithms considered as well as the state estimation error is less 

compared to other algorithms used. The main advantage of this meter placement model is trade-

offs between the PMU and IED can be determined to reduce the total configuration cost of the 

distribution network. 
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Table 6.5 Optimal location of PMUs and IEDs in Indian 85-bus active distribution system 

 
Metrological 

Error of 
IEDs 

 
 

Algorithm 

 
 

PMUs location 
(Bus number) 

 
 

IEDs location 
(Line number) 

 
Objective functions 

value 

Maximum 
relative 

percentage 
error in 
voltage 

magnitude 
(%) 

Maximum 
relative 

percentage 
error in 
voltage 
angle  
(%) 

 
J1 

 
J2 

 
J3 

 
 
 
        1% 

Proposed 
PSO_KH 

34,84 1,3,5,33 
2.4 2 0.0105 

 
0.2731 

 
5.7831 

KH 22,77,81 1,3,36 1.8 3 0.0123 0.4743 9.1354 

PSO 33,61,79,82 1,2,6,9,19,27,39 4.2 4 0.0104 0.3877 9.3199 

NSGA-II 42,54 1,4,11,24 2.4 2 0.0142 0.2981 9.4891 

 
 
 

3% 

Proposed 
PSO_KH 

69,70,76 1,6,8,21,32,68 3.6 3 0.0113 0.3213 6.9834 

KH 33,68 1,4,6,9,25,30 
3.6 2 0.0126 

 
0.3987 

 
9.6646 

PSO 9,42,54,71,76,82 1,2,6,8 
2.4 6 0.0141 

 
0.4011 

 
11.0341 

NSGA-II 66,72,79 1,2,4,18,24,28,30,37, 
41,44 

6 3 0.0138 0.3887 8.3455 

 
 
 

5% 

Proposed 
PSO_KH 

31,50,56 1,2,6,10,26 3 3 0.0132 0.3665 8.0103 

KH 1,6,8,18,21,32,68, 
69,70,75 

76 6 1 0.0148 0.5121 9.0245 

PSO 81 1,5,17,29,31,49,68,78 5.4 1 0.0147 0.5769 11.3421 

NSGA-II 8,26,29,36,47,69,79 1,3 1.2 7 0.0153 0.6613 10.8759 

 

6.6 Comparison Results analysis 

In this section, a comparison study has been carried out between all the algorithms used in 

this thesis such as proposed hybrid PSO-KH and hybrid EDA-IPM, PSO, KH, EDA and NSGA-

II algorithms. The performance of all the algorithms is tested on IEEE 69-bus system and 

practical Indian 85-bus system. It is assumed that all DGs are generating real power to the 

network and two DGs are injected at bus 50 and 61 for IEEE 69-bus system and at bus 45 and 61 

for Indian 85-bus system. Furthermore a trade-off solution is obtained between PMU and IED 

deployment in both the test cases. The optimal Pareto-fronts for three objectives1J , 2J  and 3J  is 

provided in Figure 6.8, 6.9 and 6.10 respectively. The obtained results are also shown in Table 

6.6 and 6.7 respectively. It is seen that in most of the cases the proposed algorithms are more 

superior than the conventional algorithms considered in this thesis for comparison purpose. In 

some the cases it is also seen that proposed EDA-IPM algorithm is dominating PSO-KH 

algorithm in objectives1J  and 2J . Therefore, the proposed algorithms can be used for the 

planning study of the distribution networks.   
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6.6.1 Comparison results analysis of IEEE 69-bus system 

 
Figure 6.8(a): Optimal Pareto fronts between the objectives J1 and J2 for 1% error in IED 

and 50% in pseudo-measurements 

 

 
Figure 6.8(b): Optimal Pareto fronts between the objectives J1 and J3 for 1% error in IED 

and 50% in pseudo-measurements 
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Figure 6.8(c): Optimal Pareto fronts between the objectives J2 and J3 for 1% error in IED 

and 50% in pseudo-measurements 

 

 
Figure 6.9(a): Optimal Pareto fronts between the objectives J1 and J2 for 3% error in IED 

and 50% in pseudo-measurements 
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Figure 6.9(b): Optimal Pareto fronts between the objectives J1 and J3 for 3% error in IED 

and 50% in pseudo-measurements 

 
Figure 6.9(c): Optimal Pareto fronts between the objectives J2 and J3 for 3% error in IED 

and 50% in pseudo-measurements 
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Figure 6.10(a): Optimal Pareto fronts between the objectives J1 and J2 for 5% error in IED 

and 50% in pseudo-measurements 

 

 
Figure 6.10(b): Optimal Pareto fronts between the objectives J1 and J3 for 5% error in IED 

and 50% in pseudo-measurements 
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Figure 6.10(c): Optimal Pareto fronts between the objectives J2 and J3 for 5% error in IED 

and 50% in pseudo-measurements 
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Table 6.6 Optimal location of PMUs and IEDs in IEEE 69- bus active distribution system 

 

 

 

 

 

 

 

 

 

 
 
Metrological 

errors 

 
 
 
Algorithm  

 
 

PMUs location 
(Bus number) 

 
 
 

IEDs location 
(Line number) 

 
 
Objective function(s) 

value 

Maximum 
relative 

percentage error 
in voltage 
magnitude 

 (%) 

Maximum 
relative 

percentage 
error in 
voltage 

angle (%) 
J1 J2 J3 

 
 
 
 
 
 

1% 

EDA-IPM  
27 

 
1,2,10 1.8 1 0.0103 

 
0.2777 

 
6.1936 

EDA-SA 27,67 1,4,8,10,18,20 3 2 0.0144 0.4962 8.3211 

EDA 45,48,59 1,3,54 1.8 3 0.0183 0.3211 10.8978 

NSGA-II 68 1,2,48,56,61 3 1 0.0144 0.3786 9.4631 
PSO-KH 41,43 1,2,4,29 2.4 2 0.0097 0.2947 5.9761 

KH 37,38,50,54,57, 
59 

1,3,4,26 2.4 6 0.0142 0.3762 6.8746 

PSO 3,14,20,32,35,38,4
7,49,59,60,66 

1,6 6.6 2 0.0152 0.4827 7.3241 

 
 
 
 
 
 
 

3% 

EDA-IPM 15,27,36,50,58 1,4,8 1.8 5 0.0106 0.3645 7.3719 
EDA-SA 50,64 1,3,4,13,16,19, 

23,30,34,50,56 6.6 2 0.0132 
0.4216 8.7546 

EDA 20,23,50,53,59,64 1,2,5,10,11,13, 
54 4.2 6 0.0153 

0.4056 11.9871 

NSGA-II 43,48,68 1,3,4,8,11,15,27,
62 

4.8 3 0.0143 0.3927 9.7632 

PSO-KH 56 1,3,39,48,49 3 1 0.0109 0.3216 7.1243 

KH 58,62 1,3,18,32,56 3 2 0.0151 0.4312 7.4379 

PSO 49,56,59,64 1,3,5,8,11,15,17,
39,41 

5.4 4 0.0173 0.4139 8.4612 

5% 

EDA-IPM 45,67 1,3,23,25,29,57,6
5 

4.2 2  0.0152  0.3625 8.1910 

EDA-SA 43,65,67 1,3,6,7,16,20, 
38,49,56,58,60, 

63 

7.2 3 0.0170 0.5089 9.0935 

EDA 52,64 1,3,4,6,13,14,17, 
19,21,23,29,41, 

56 

7.8 2 0.0198 0.5897 11.0124 

NSGA-II 60,62,65 1,3,6,10,38,50, 
52,54,56,57 

6 3 0.0173 0.6083 10.5739 

PSO-KH 61,68 1,2,3,7,10,18,33,
54 

4.8 2  0.0152  0.4437 7.9537 

KH 30,37,62,65 1,2,3,15,27, 3 4  0.0183  0.5139 8.4923 
PSO 27,29,35 1,3,5,7,9,11,25 4.2 3  0.0205  0.5823 8.0482 
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6.6.2 Comparison results analysis of Practical Indian 85-bus system 

    Table 6.7 Optimal location of PMU and IED in Indian 85-bus active distribution system 

 
 

Metrological 
Error of 
IEDs 

 
 

Algorithm 

 
 

PMUs location     
(Bus number) 

 
 

IEDs location 
(Line number) 

 

 
Objective functions value 

Maximum 
relative 

percentage 
error in 
voltage 

magnitude 
(%) 

Maximum 
relative 

percentage 
error in 
voltage 
angle  
(%) 

 
J1 

 
J2 

 
J3 

 
 
 
 
        

1% 
 
 

 

Proposed 
EDA-IPM 

 
50,54 

 
1,7 1.2 2 0.0096 

 
0.3179 

 
7.5437 

 
EDA-SA 

 
             81 

 
             1,5,27    1.8     1 0.0143 

 
0.3672 

 
8.9821 

 
EDA 

 
40,57,62 

 
1,6,32 1.8 3 0.0129 

 
0.3781 

 
10.8239 

 
NSGA-II 

 
72,76 

 
1,4,5,26,34 3 2 0.0160 

 
0.3364 

 
8.4772 

PSO-KH 76 1,2,53,56 2.4 1 0.0094 0.3341 6.9823 

KH 11,53,66 1,3 1.2 3 0.0143 0.4127 8.1124 

 
 
 
 

 
 

3% 

Proposed 
EDA-IPM 

 
36,67,71 

 
1,4,5,25,67 

 
1.8 

 
3 

 
0.0126 

 
0.3649 

 
6.9723 

 
EDA-SA 

 
42,68,70 

1,7,8,10,12,29,32, 
34,36,46,60,65 

 
7.2 

 
3 

 
0.0155 

 
0.3438 

 
8.2674 

 
EDA 

 
77 

1,3,6,7,15,30, 
38,41,48,72 

 
6 

 
1 

 
0.0188 

 
0.4126 

 
11.3037 

 
NSGA-II 

 
            49,76 

1,4,5,16,28,42, 
57,68 

 
4.8 

 
2 

 
0.0178 

 
0.3986 

 
9.9721 

PSO-KH 53,56,73,77 1,2 1.2 4 0.0130 0.3708 7.0122 

KH 27,31,58,60 1,4,7,12 2.4 4 0.0158 0.4498 8.889 

 
 
 
 
 
 

5% 

Proposed 
EDA-IPM 

 
42,74 

 
1,3,5,8,31,60 

 
3.6 

 
2 

 
0.0144 

 
0.4023 

 
8.0593 

 
EDA-SA 

 
         78,83 

1,4,5,13,20, 
22,26,66,75 

 
5.4 

 
2 

 
0.0186 

 
0.4821 

 
7.7331 

 
EDA 

 
      67,73,78,83 

1,2,3,7,12,15, 
21,32,48,49 

 
6 

 
4 

 
0.0197 

 
0.4872 

 
11.0241 

 
NSGA-II 

 
76,81,84 

1,3,4,5,6,9,11,12,23, 
25,33,51,67,71,74 

 
9 

 
3 

 
0.0152 

 
0.5673 

 
12.7671 

PSO-KH 23,25,71 1,4,5,9 2.4 3 0.0144 0.4629 7.8924 

KH 34,56,60,67,69,71 1,2,5,6,24 3 6 0.0160 0.5371 9.4534 

 

6.7 Summary   

This chapter formulated a new MOOP to find an optimal trade-offs in PMUs and IEDs 

deployment for state estimation in active distribution networks. A hybrid PSO-KH algorithm has 

been used to find the optimal number and location of PMUs and IEDs for accurate state 

estimation. Furthermore, different uncertainties level of measurement devices, load variations as 

well as presence of wind generators are taken into consideration for testing the robustness and 

reliability of the state estimator. The performance of the hybrid PSO-KH algorithm is tested on a 

standard IEEE 69-bus system as well as Indian 85-bus system. The obtained results using hybrid 
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PSO-KH algorithm are compared with the conventional KH algorithm, NSGA-II and also with 

PSO algorithm. It is found that the PSO-KH algorithm is more efficient, reliable and robust under 

various operating conditions and metrological characteristics of the measurement devices. 

Moreover, the performance of the proposed algorithm is found to be more superior than all other 

algorithms used in this work in most of the cases. Hence, the proposed multi-objective based 

meter placement technique can be used for the planning and monitoring of the smart distribution 

networks.  
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Chapter 7 

Conclusions 

7.1 General 

In this thesis, an optimal allocation of measurement devices such as power flow meters, 

Phasor measurement units (PMUs) and intelligent electronic devices (IEDs) for distribution 

system state estimation has been investigated using new multi-objective hybrid evolutionary 

algorithms. Furthermore, the optimal locations of the measurement devices are obtained both in 

passive as well as active distribution network under various operating scenarios. This chapter 

presents in brief the important findings proposed in this thesis while also discussing future 

extension of the proposed research work. 

7.2 Summary of important findings 

This chapter presents the overall conclusion of the research work presented in this thesis 

and future scope of the research work. The following conclusions have been arrived at from the 

research carried out and reported in previous chapters in this thesis. 

(i) The overall objective of the research is to find the optimal number and location of the power 

flow meters to improve the estimation accuracy of the state estimator in distribution 

networks.  

• First of all, a multi-objective optimization model is designed to find optimal number and 

location of power flow meters to improve the accuracy of the state estimator in passive as 

well as active distribution networks.  

• A new hybrid PSO-KH optimization algorithm has been proposed to find the optimal 

number and location of the power flow meters in distribution networks. 

• Various operating scenarios are considered in this optimization problem, such as 

variations in load power demand, generator output and metrological characteristics of the 

measurement devices.  

• A trade-off solution between the relative errors in voltage and phase angle estimates is 

established with the total cost of meters in a multi-objective framework to achieve best 

compromise solution between the cost and state estimation errors.  
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• Furthermore, the impacts of DG on state estimation accuracy has also been discussed.  

• The effectiveness of the proposed hybrid PSO-KH algorithm is tested on IEEE 69-bus 

system and Indian 85-bus distribution system. The competitive results obtained using the 

proposed algorithm is compared with the existing algorithm such as PSO, KH and 

NSGA-II under various operating scenarios of the distribution networks.  

• It has been verified that the proposed algorithm is reliable and robust with respect to 

different metrological characteristics of the devices and load variations. Moreover, it can 

guarantee getting a near global optimal solution. Therefore, the proposed approach of 

meter placement technique can be used for planning the study of smart distribution 

networks. 

(ii)  A new hybrid EDA-IPM algorithm has been proposed to find optimal number and locations 

of power flow meters in presence of various kinds of DGs in distribution networks.  

• The hybridization of traditional EDA with IPM is done to improve the local searching 

capability of the EDA.   

• The best optimal trade-off solution between the objective functions such as cost and state 

estimation error is established. Moreover, the impact of different kinds of DGs on state 

estimation accuracy has also been presented under various operating scenarios such as 

variations in load power demand, generator output and metrological characteristics of the 

measurement devices.   

• The proposed multi-objective hybrid EDA-IPM algorithm based meter placement 

technique is tested on IEEE 69-bus system and practical Indian 85-bus distribution 

network. The results obtained using the proposed hybrid EDA-IPM algorithm have been 

compared with some existing algorithm in literature such as PSO, EDA and NSGA-II 

under various operating conditions of the distribution systems.  

• It is reported that the proposed algorithm is robust, reliable and much superior to existing 

algorithms considered in this research.  

(iii) To further improve the estimation accuracy of the state estimator, advance measuring 

devices such as PMU and IED have been considered in this thesis. 

• A new multi-objective optimization model has been developed to find an optimal trade-

offs in PMUs and IEDs deployment for state estimation in active distribution networks.  
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• A new hybrid EDA-IPM algorithm is proposed to find the optimal number and location 

of PMUs and IEDs required for accurate state estimation. The local searching capability 

of the classical EDA algorithm is improved by hybridizing the Interior point method 

(IPM). The hybridization of EDA and IPM brings a balance between exploration and 

exploitation capability of the algorithm during the search process.  

• Various operating scenarios are considered, such as variations in load power demand, 

generator output and metrological characteristics of the measurement devices.  

• The performance of the proposed hybrid EDA-IPM algorithm has been tested on IEEE 

69-bus system as well as on Indian 85-bus system. The results obtained using hybrid 

EDA-IPM algorithm are compared with the conventional EDA, NSGA-II and also with 

EDA-simulated annealing algorithm available in the literature.  

(iv)  The robustness of the proposed meter placement technique in presence of wind generators 

in distribution networks has also been investigated in this thesis. 

• The optimal trade-offs in PMUs and IEDs deployment for accurate state estimation in 

distribution networks is proposed. 

• A hybrid PSO-KH algorithm has been used to find the optimal number and location of 

PMUs and IEDs for accurate state estimation.  

• Furthermore, different levels of uncertainty of measurement devices, load variations as 

well as presence of wind generators have been taken into consideration for testing the 

robustness and reliability of the state estimator. The output of wind generators is modeled 

using Weibull probability distribution function.   

• The performance of the hybrid PSO-KH algorithm is tested on IEEE 69-bus system as 

well as on Indian 85-bus system. The results obtained using the proposed hybrid PSO-KH 

algorithm are compared with the conventional KH algorithm, NSGA-II and also with 

PSO. It is found that the PSO-KH algorithm is more efficient, reliable and robust under 

various operating conditions and metrological characteristics of the measurement devices.  

7.3 Scope for future work 

In this thesis, the optimal allocation of measurement devices such as power flow meters, 

PMU and IED for distribution system state estimation has been investigated using multi-

objective hybrid evolutionary algorithms. My research in future can be extended on the 

following aspects: 
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• Accurate, adaptive and efficient feeder modeling and DSSE methodologies for wide area 

monitoring and coping with the active nature of the distribution network can be 

investigated in future.  

• Data synergy and fusion techniques for exploiting a large amount of heterogeneous data 

in DMS environment can be incorporated in DSSE study.  

• Communication infrastructures, big data and edge computing techniques to tackle the 

problem of efficiently collecting and coordinating the measurement results in state 

estimation can be contemplated for future research. 

• A global and multi-level state estimation concept can be utilized for better interaction 

between distribution and transmission system operators. 

 

 

 



 

164 

 

References 

[1] F. C. Schweppe and J. Wildes, "Power system static -state estimation, part I: Exact model," 

IEEE Trans. on Power Apparatus and Systems, vol. PAS-89, no. 1, pp. 120-125, Jan. 1970. 

[2]  F. C. Schweppe and D. B. Rom, "Power system static-state estimation, part-II: 

Approximate model," IEEE Trans. on Power Apparatus and Systems, vol. PAS-89, no. 1, 

pp. 125-130, Jan. 1970.  

[3] F. C. Schweppe, "Power system static -state estimation, part-III: Implementation", IEEE 

Trans. on Power Apparatus and Systems," vol. PAS-89, no. 1, pp. 130-135, Jan. 1970.  

[4] A. Abur and A. Gomez-Expositon, Power System State Estimation. Theory and 

Implementation. Mar el Dekker, New York, 2004. 

[5]  A. Montielli, "Electric power system state estimation," Proceedings of the IEEE, vol. 88, 

no. 2, pp. 262-282, Feb. 2000. 

[6]  G. T. Heydt, "The next generation of power distribution systems", IEEE Trans. on Smart 

Grid, vol. 1, no. 3, pp. 225-235, Dec. 2010. 

[7] L. Pieltain Fernandez, T. G. S. Roman, R. Cossent, C. M. Domingo, and P. Frias, 

"Assessment of the impact of plug-in electric vehicles on distribution networks, IEEE 

Trans. on Power Systems, vol. 26, no. 1, pp. 206-213, Feb. 2011. 

[8] D. A. Haughton and G. T. Heydt, ‘A linear state estimation formulation for smart 

distribution systems,’ IEEE Trans. on Power Systems, vol. 28, no. 2, pp. 1187-1195, 2013. 

[9] A.T. Saric, R.M. Ciric, ‘Integrated fuzzy state estimation and load flow analysis in 

distribution networks’, IEEE Trans. on Power Systems, 2003, 18, (2), pp. 571-578. 

[10] M. Pau, P.A. Pegoraro, S. Sulis, ‘Efficient branch-current –based distribution system state 

estimation including synchronized measurement’, IEEE Trans. on Instrumentation and 

Measurement, 2013, vol. 62, no. 9, pp. 2419-2429. 

[11] M. Baran, J. Zhu, A. Kelly, ‘Meter placement for real time monitoring of distribution 

feeders’, IEEE Trans. on Power Systems, 1996, vol. 11, no. 1, pp. 332-337.  

[12] J. De, L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor 

measurement applications in power systems,” IEEE Trans. on Smart Grid, vol. 1, no. 1, pp. 

20–27, June 2010.  



 

165 

 

[13]  J. Thorp, A. Abur, M. Begovic, J. Giri, and R. Avila-Rosales, “Gaining a wider 

perspective,” IEEE Power and Energy Magazine, vol. 6, no. 5, pp. 43–51, Sept. 2008. 

[14]  A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and Their 

Applications. : Springer Science, 2008.  

[15] M. Pau, A. Pegoraro  and S. Sulis, “ Efficient branch current based distribution system state 

estimation including synchronized measurements,” IEEE Transactions on Instrumentation 

and Measurement, vol. 62, no. 9, pp. 2419-2429, June 2009.  

[16]  M. Albu, G. T. Heydt, and S. C. Cosmescu, “Versatile platforms for wide area 

synchronous measurements in power distribution systems,” in North American Power 

Symposium (NAPS), Sept. 2010. 

[17] M. Paolone, A. Borghetti, and C. A. Nucci, “Development of an RTU for synchrophasors 

estimation in active distribution networks,” IEEE Bucharest in Power Tech, 2009, July 2, 

2009, pp. 1–6. 

[18] D. Della Giustina, M. Pau, P. A. Pegoraro, F. Ponci, and S. Sulis, "Electrical distribution 

system state estimation: measurement issues and challenges", IEEE Instrumentation 

Measurement Magazine, vol. 17, no. 6, pp. 36-42, Dec. 2014.  

[19] W. H. Kersting, Distribution System Modeling and Analysis. Bo a Raton, Florida, 2001.  

[20] W. H. Kersting and R. K. Green, "The application of Carson's equation to the steady-state 

analysis of distribution feeders, IEEE International Conference on Power Systems 

Conference and Exposition (PSCE), 2011 IEEE/PES, Mar. 2011, pp. 1-6.  

[21] E. Manitsas, R. Sing, B.C.Pal, and G. Strbas, “Distribution system state estimation using an 

artificial neural network approach for pseudo measurement modeling,” IEEE Trans. On 

Power Systems, vol. 27, no. 4, pp. 1888-1896, November 2012. 

[22] R. Singh, B. C. Pal, and R. A. Jabr, "Distribution system state estimation through Gaussian 

mixture model of the load as pseudo-measurement", IET Generation, Transmission 

Distribution, vol. 4, no. 1, pp. 50-59, Jan. 2010.  

[23] T. Schlosser, A. Angioni, F. Ponci, and A. Monti, "Impact of pseudo-measurements from 

new load profiles on state estimation in distribution grids, IEEE International in 

Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014, 

May 2014, pp. 625-630. 



 

166 

 

[24] M. R. Irving, R. C. Owen, and M. J. H. Sterling, "Power-system state estimation using 

linear programming", Electrical Engineers, Proceedings of the Institution of, vol. 125, no. 

9, pp. 879-885, Sep. 1978.  

[25] A. Garcia, A. Monti elli, and P. Abreu, "Fast decoupled state estimation and bad data 

processing", IEEE Trans. on Power Apparatus and Systems, vol. PAS-98, no. 5, pp. 1645-

1652, Sep. 1979.  

[26] M. K. Celik and A. Abur, "A robust WLAV state estimator using transformations", IEEE 

Trans on Power Systems, vol. 7, no. 1, pp. 106-113, Feb. 1992.  

[27] A. Abur and M. K. Celik, "Least absolute value state estimation with equality and 

inequality constraints", IEEE Trans. on Power Systems, vol. 8, no. 2, pp. 680-686, May 

1993.  

[28] H. Singh and F. L. Alvarado, "Weighted least absolute value state estimation using interior 

point methods", IEEE Trans. on Power Systems, vol. 9, no. 3, pp. 1478-1484, Aug. 1994.  

[29] R. Baldi k, K. A. Clements, Z. Pinjo-Dzigal, and P. W. Davis, "Implementing non-

quadratic objective functions for state estimation and bad data rejection", IEEE Trans. on 

Power System, vol. 12, no. 1, pp. 376-382, Feb. 1997. 

[30] J. Roytelman and S. Shahidehpour, ‘State estimation for electric power distribution systems 

in quasi real-time conditions’, IEEE Trans. on Power Deliv., vol. 8, no. 4, pp. 2009-2015, 

1993. 

[31] M. E. Baran and A. W. Kelly, “ State estimation for real time monitoring of distribution 

systems,” IEEE Trans. on Power systems, vol. 9, no. 3, pp. 1601-1609, Aug. 1994. 

[32] M. E. Baran  and A. W. Kelly, “ A branch-current based state estimation method for 

distribution systems,” IEEE Trans. on Power Systems, vol. 10, no. 1, pp. 483-491,Feb. 

1995. 

[33] C. N. Lu, J. H. Teng and W.H.E. Liu, “ Distribution system state estimation,” IEEE Trans. 

on Power Syst., vol. 10, no. 1,pp. 229-240, Feb. 1995. 

[34] K. Li, “ State estimation for power distribution system and measurement impacts,”  IEEE 

Trans. on Power Systems, vol. 11, no. 2, pp. 911-916, May 1996. 

[35] W. M. Lin, and J. H. Teng, “State estimation for distribution systems with zero-injection 

constraints,” IEEE Trans. on Power Systems, vol. 11, no. 1, pp. 518-524, Feb. 1996. 



 

167 

 

[36] A. K. Ghosh, D. L. Lubkeman, M.J. Downey, and R.H. Jones, “ Distribution circuit state 

estimation using a probabilistic approach,”  IEEE Trans. on Power systems, vol. 12, no. 

1,pp. 45-51,Feb.1997. 

[37] D. Thukaram, J. Jerome, and C. Surapong, “A robust three-phase state estimation algorithm 

for distribution networks,” Electric Power systems Research, vol. 55, no. 3, pp. 191-200, 

Sept. 2000. 

[38] W.M. Lin, J.H. Teng, and S.J. Chen, “ A highly efficient algorithm in treating current 

measurements for branch-current-based distribution state estimation,” IEEE Trans. on 

Power Delivery, vol. 16, no. 3, pp. 433-439, July 2001. 

[39] Y. Deng, Y. He, and B.  Zhang, “A branch estimation based state estimation method for 

radial distribution systems,” IEEE Trans. on Power Delivery, vol. 17, no. 4, pp. 1057-1062, 

Oct. 2002. 

[40] H. Wang, and N. Schulz, “ A revised branch current based distribution system state 

estimation algorithm and meter placement impact,” IEEE Trans. Power Syst., vol. 19,no. 

1,pp. 207-213, Feb. 2004.  

[41] M. Pau, P.A. Pegoraro, and S. Sulis, “ Efficient branch-current-based distribution system 

state estimation including synchronized measurements,” IEEE Trans. on Instrumentation 

and Measurements, vol. 62, no. 9, pp. 2419-2429, Sept. 2013. 

[42] M. F. Medeiros Junior, M.A.D. Almeida, M.C.S. Cruz, R.V.F. Monteiro, and  A.B. 

Oliveira, “ A three-phase algorithm for state estimation in power distribution feeders based 

on the powers summation load flow method,” Electric Power systems Research,vol.123, 

pp.76-84, Jun. 2015. 

[43] A. K. Ghosh, D. L. Lubkeman and R. H. Jones, “Load modeling for distribution circuit 

state estimation,” IEEE Trans. on Power systems, vol. 12, no. 2, pp. 999-1005, Apr. 1997. 

[44] V. Miranda, J. Pereira and J.T. Saraiva, “Load allocation in DMS with a fuzzy state 

estimator,” IEEE Trans. on Power systems, vol. 15, no. 2, pp.529-534, May 2000. 

[45] H. Wang and N. N. Schulz, “A load modeling algorithm for distribution system state 

estimation,” in Proc. 2001 IEEE/Power Eng. Society Transmission and Distribution 

Conference and Exposition, pp. 102-106. 



 

168 

 

[46] E. Puthooran, and Biswarup Das, “Load estimation in balanced radial distribution system 

with reduced measurements,” Electric Power Components and Systems, vol. 37, no. 5, pp 

547-559, April 2009. 

[47] J. Wan and K.N. Miu, “ A WLS method for load estimation in unbalanced distribution 

networks,” in Proc. 2002 IEEE Power Eng. Soc. Winter Meeting, New York, Jan. 2002. 

[48] Jie Wan and K. N. Miu, “ Weighted least square methods for load estimation in distribution 

networks,” IEEE Trans. on Power Systems, vol. 18, no. 4, pp. 1338-1345, Nov. 2003. 

[49] M. E. Baran, L.A.A. Freeman, F. Hanson and V. Ayers, “ Load estimation for load 

monitoring at distribution substations,” IEEE Trans. on Power Systems, vol. 20, no. 1, pp. 

164-170, 2005. 

[50] S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “ A hybrid particle swarm optimization for 

distribution state estimation,” IEEE Trans. on Power Systems, vol. 18, no. 1,pp. 60-68, Feb. 

2003. 

[51] S. Nanchian, A. Mazumdar and B.C. Pal, “Three-phase state estimation using hybrid 

particle swarm optimization,” IEEE Trans. on Smart Grid, vol. 8, no. 3, May 2017. 

[52] S. Nanchian, A. Mazumdar and B.C. Pal, “Ordinal optimization technique for three-phase 

distribution network state estimation including discrete variables,” IEEE Trans. on 

Sustainable Energy, vol. 8, no. 4, pp. 1528-1535, May 2017. 

[53] M. Baran, J. Zhu and A. Kelly, “ Meter placement for real time monitoring of distribution 

feeders,” IEEE Trans. on Power Systems, vol. 11, no. 1, pp. 332-337, Feb. 1996.  

[54] C. Muscas, F. Pilo, G. Pisano and S. Sulis, “ Optimal allocation of multichannel 

measurement devices for distribution state estimation,” IEEE Trans. on Instrumentation 

and Measurement, vol. 58, no. 6, pp. 1929-1937, June 2009. 

[55] J. Liu, J. Tang, F. Ponci, A. Monti, C. Muscas and P.A. Pegoraro, “ Trade-offs in PMU 

deployment for state estimation in active distribution grids, “ IEEE Trans. on Smart Grid, 

vol. 3, no. 2, pp. 915-924, June 2012. 

[56] P.A. Pegoraro and S. Sulis, “Robustness-oriented meter placement for distribution system 

state estimation in presence of network parameter uncertainty,” IEEE Trans. on 

Instrumentation and Measurement, vol. 62, no. 5, pp. 954-962, May 2013. 



 

169 

 

[57] R. Sing, B. C. Pal, R. A. Jabr and R. B. Vinter, “ Meter placement for distribution system 

state estimation: An ordinal optimization approach,” IEEE Trans. on Power Systems, vol. 

26, no. 4, pp. 2328-2335, Nov. 2011. 

[58] A. Shafiu, N. Jenkins and G. Strbac, “Measurement location for state estimation of 

distribution networks with generation,” IEE Proc. Gener. Transm. Distrib., vol. 152, no. 2, 

pp. 240-246, March 2005. 

[59] R. Sing, B. C. Pal and R. B. Vinter, “Measurement placement in distribution system state 

estimation,” IEEE Trans. on Power Systems, vol. 24, no. 2, pp. 668-675, May 2009. 

[60] X. Chen, J. Lin, C. Wan and Y. Song, " Optimal Meter Placement for Distribution 

Network State Estimation: A Circuit Representation Based MILP Approach" 

IEEE Trans. on Power Systems, vol. 31,no. 6, pp. 4357-4370, 2016. 

[61] P. A. Pegoraro, J. Tang, J. Liu, F. Ponci, A. Monti, and C. Muscas, "PMU and smart 

metering deployment for state estimation in active distribution grids, in Energy Conference 

and Exhibition (ENERGYCON), 2012 IEEE International, Sep. 2012, pp. 873-878.  

[62] M.G. Damavandi, V. Krishnamurthy and J.R. Marti, “Robust meter placement for state 

estimation in active distribution systems”, IEEE Trans on Smart Grids, vol. 6, no. 4, pp. 

1972-1982, 2015. 

[63] P. Janssen, T. Sezi, and J. C. Maun, "Meter placement impact on distribution system state 

estimation," in Electricity Distribution (CIRED 2013), 22nd International Conference and 

Exhibition on, Jun. 2013, pp. 1-4.  

[64] C. Muscas, S. Sulis, A. Angioni, F. Ponci, and A. Monti, "Impact of different uncertainty 

sources on a three-phase state estimator for distribution networks," IEEE Transactions on 

Instrumentation and Measurement, vol. 63, no. 9, pp. 2200-2209, Sep. 2014.  

[65] M. Pau, P. A. Pegoraro, S. Sulis, and C. Muscas, "Uncertainty sources affecting voltage 

profile in distribution system state estimation, in Instrumentation and Measurement 

Technology Conference (I2MTC), 2015 IEEE International, pp. 1-6. 

[66] A. K. Ghosh, D. L. Lubkeman, M. J. Downey, and R. H. Jones, Distribution circuit state 

estimation using a probabilistic approach, "Power Systems, IEEE Trans. on, vol. 12, no. 1, 

pp. 45-51, Feb. 1997.  



 

170 

 

[67] J. M. Morales, L. Baringo, A. J. Conejo, and R. Minguez, "Probabilistic power flow with 

correlated wind sources," Generation, Transmission Distribution, IET, vol. 4, no. 5, pp. 

641-651, May 2010.  

[68] G. Valverde, A. T. Sari , and V. Terzija, Stochastic monitoring of distribution networks 

including correlated input variables," Power Systems, IEEE Trans. on, vol. 28, no. 1, pp. 

246-255, Feb. 2013.  

[69] E. Caro, A. J. Conejo, and R. Minguez, "Power system state estimation considering 

measurement dependencies," IEEE Trans. on Power Systems, vol. 24, no. 4, pp. 18751885, 

Nov. 2009.  

[70] E. Caro and G. Valverde, Impact of transformer correlations in state estimation using the 

unscented transformation," IEEE Trans. on Power Systems, vol. 29, no. 1, pp. 368-376, 

Jan. 2014.  

[71] Y. Chakhchoukh, V. Vittal, and G. T. Heydt, PMU based state estimation by integrating 

correlation," IEEE Trans. on Power Systems, vol. 29, no. 2, pp. 617-626, Mar. 2014.  

[72] C. Muscas, M. Pau, P. A. Pegoraro, and S. Sulis, Effects of measurements and pseudo-

measurements correlation in distribution system state estimation, "IEEE Trans. on 

Instrumentation and Measurement, vol. 63, no. 12, pp. 2813-2823, Dec. 2014.  

[73] Evaluation of data - Guide to the expression of uncertainty in measurement, JCGM 

100:2008, Sep. 2008. 

[74] M. E. Baran, “Challenges in state estimation on distribution systems,” IEEE Conference on 

Power Engineering Society Summer Meeting, vol. 1, pp. 429-433, 2001. 

[75] R. Singh, B. C. Pal, and R. A. Jabr, “Choice of estimator for distribution system state 

estimation,” IET Generation, Transmission & Distribution, vol. 3, no. 7, pp. 666–678, 

2009. 

[76] R. Madlener, J. Liu, A. Monti, C. Muscas, and C. Rosen, Measurement and Metering 

Facilities as Enabling Technologies for Smart Electricity Grids in Europe Oct. 2009, 

Special Study No. 1/2009, Sectoral e-Business Watch. 

[77] J. De, L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor 

measurement applications in power systems,” IEEE Trans. on Smart Grid, vol. 1, no. 1, pp. 

20–27, 2010. 



 

171 

 

[78]  F.G. Duque, L.W. de Oliveira, E.J. de Oliveira and A. A. Augusto, “ State estimation for 

electrical distribution systems based on an optimization model,” Electric Power System 

Research, Elsevier, vol. 152, pp. 122-129, 2017. 

[79]  A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and Their Applications. 

: Springer Science, 2008.  

[80] M. Pau, A. Pegoraro and S. Sulis, “Efficient branch current based distribution system state 

estimation including synchronized measurements,” IEEE Trans. on Instrumentation and 

Measurement, vol. 62, no. 9, pp. 2419-2429, 2013.  

[81]  G. T. Heydt, “The next generation of power distribution systems,” IEEE Trans. on Smart 

Grid, vol. 1, no. 3, pp. 225-235, 2010. 

[82] M.Rashidi and E. Farjah, “Lyapunov exponent-based optimal PMU placement approach 

with application to transient stability assessment,” IET Science, Measurement and 

Technology, vol. 10, no. 5, pp. 492-497, 2016. 

[83] M. Paolone, A. Borghetti, and C. A. Nucci, “Development of an RTU for synchrophasors 

estimation in active distribution networks,” in PowerTech, 2009 IEEE Bucharest, July 2, 

2009, pp. 1–6. 

[84] A. H. Gandomi and A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,” 

Commun Nonlinear Sci Numer Simulat, Elsevier, vol. 17, pp. 4831-4845, 2012. 

[85] P. Angelov, K.T. Atanassow, L. Doukovska, M. Hadjiski, V. Jotsov, J. Kacprzyk, E. 

Szmidz and S. Zadrozny, “ Advances in intelligent systems and computing,” Springer 

International Publishing Switzerland, 2015. 

[86] S. Naka, T. Genji, T. Yura and Y. Fukuyama, “A Hybrid particle swarm optimization for 

distribution state estimation,” IEEE Trans. on Power Systems, vol. 18, no. 1, pp.60-68, 

2003. 

[87] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. 

Neural Networks, vol. 4, Perth, Australia, pp. 1942-1948, 1995. 

[88] K. Deb, “Multi-objective optimization using evolutionary algorithms,” Wiley India Pvt. 

Ltd, New Delhi, India, 2001. 

[89] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multi-objective genetic 

algorithm: NSGA-II,” IEEE Trans. on Evolutionary Computation, vol. 6, no. 2, pp. 182-

197, April 2002. 



 

172 

 

[90] V.A. Shim, K.C. Tan and C.Y. Cheong, “A hybrid estimation of distribution algorithm with 

decomposition for solving the multi-objective multiple traveling salesman problems,” IEEE 

Trans. on systems Man and Cybernetics-Part C: Applications and Reviews, vol. 42, No. 5, 

pp. 682-691, Sept. 2012. 

[91] H. Karshenas, R. Santana and P. Larranaga, “Multi-objective estimation of distribution 

algorithm based on joint modeling of objectives and variables,” IEEE Trans. on 

Evolutionary computation, vol. 18, no.4, pp. 519-542, Aug. 2014. 

[92] W. Yan, F. Liu, C.Y. Chung, and K. P. Wong, “A hybrid genetic algorithm-Interior point 

method for optimal reactive power flow, IEEE Trans. on Power Systems, vol. 21, no. 3, pp. 

1163-1169, Aug. 2006. 

[93] Y. Wang and Q. Jiang, “Reactive power optimization of distribution network based on 

primal dual interior point method and simplified branch and bound method,” IEEE PES 

T&D conference and Exposition, pp. 1-4, 2004. 

[94] W. M. Lin and J. H. Teng, “State estimation for distribution systems with zero-injection 

constraints,” IEEE Trans. on Power Systems, vol. 11, no. 1, pp. 518-524, 1996. 

[95] S. Kayalvizhi and D. M. Vinod Kumar, “Dispatchable DG planning in distribution 

networks considering costs,” IEEE international conference on Recent Development in 

Control, Automation and Power Engineering (RDCAPE), 2015. 

[96] Kiran Teeparthi and D.M.Vinod Kumar, “Security-constrained optimal power flow with 

wind and thermal power generators using fuzzy adaptive artificial physics optimization 

algorithm,” Neural Computing and Application, July 2016. 

[97] B. Avandin, R. Hooshmand and E. Gholipour, “ Decreasing activity cost of a distribution 

system company, by reconfiguration and power generation control of DGs based on 

shuffled frog leaping algorithm,” International Journal of Electrical Power and Energy 

Systems, vol. 61, pp. 48-55, 2014. 

[98] G. V. N. Lakshmi, A. Jaya Laxmi and S. V. Reddy, “Optimal allocation and sizing of 

distributed generation in distribution network using ant colony search algorithm,” Proc. Of 

Int. Conf. on Advances in Communication, Network, and Computing, CNC, Elsevier, 2014.  

[99] J. S. Savier and D. Das, “ Impact of network reconfiguration on loss allocation of radial 

distribution systems,” IEEE Trans. on Power Delivery, vol. 22, no. 4, pp. 2473-2480, 2007. 



 

173 

 

[100] D. Das, D.P. Kothari and A.  Kalam, “Simple and efficient method for load flow solution 

of radial distribution network,” International Journal of Electrical Power and Energy 

Systems, vol. 17, no. 5, pp. 335-346, Oct. 1995.   

 

 
 



174 

 

Appendix 

IEEE 69-bus Distribution System Data 

Number of buses: 69 

Number of lines: 68 

Bus voltage: 12.66kV 

Total active power load: 3.80MW  

Total reactive power load: 2.69 MW 

System active power loss: 0.226MW 

System reactive power loss: 0.098MVAR 
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Figure A.1 Single-line diagram of IEEE 69-bus system 

Table A.1 Line data of IEEE 69-bus distribution system 

Line No. 
  

From 
  

To 
  

R 
(in pu) 

X 
(in pu) 

1 1 2 3.12E-06 7.49E-06 

2 2 3 3.12E-06 7.49E-06 

3 3 4 9.36E-06 2.25E-05 

4 4 5 0.00016 0.00018 

5 5 6 0.00228 0.00116 
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6 6 7 0.00238 0.00121 

7 7 8 0.00058 0.00029 

8 8 9 0.00031 0.00016 

9 9 10 0.00511 0.00169 

10 10 11 0.00117 0.00039 

11 11 12 0.00444 0.00147 

12 12 13 0.00643 0.00212 

13 13 14 0.00651 0.00215 

14 14 15 0.0066 0.00218 

15 15 16 0.00123 0.00041 

16 16 17 0.00234 0.00077 

17 17 18 2.93E-05 9.98E-06 

18 18 19 0.00204 0.00068 

19 19 20 0.00131 0.00043 

20 20 21 0.00213 0.0007 

21 21 22 8.73E-05 2.87E-05 

22 22 23 0.00099 0.00033 

23 23 24 0.00216 0.00071 

24 24 25 0.00467 0.00154 

25 25 26 0.00193 0.00064 

26 26 27 0.00108 0.00036 

27 3 28 2.75E-05 6.74E-05 

28 28 29 0.0004 0.00098 

29 29 30 0.00248 0.00082 

30 30 31 0.00044 0.00015 

31 31 32 0.00219 0.00072 

32 32 33 0.00524 0.00176 

33 33 34 0.01066 0.00352 

34 34 35 0.0092 0.00304 

35 3 36 2.75E-05 6.74E-05 

36 36 37 0.0004 0.00098 

37 37 38 0.00066 0.00077 

38 38 39 0.00019 0.00022 

39 39 40 1.12E-05 1.31E-05 

40 40 41 0.00454 0.00531 

41 41 42 0.00193 0.00226 

42 42 43 0.00026 0.0003 

43 43 44 5.74E-05 7.24E-05 

44 44 45 0.00068 0.00086 
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45 45 46 5.62E-06 7.49E-06 

46 4 47 2.12E-05 5.24E-05 

47 47 48 0.00053 0.0013 

48 48 49 0.00181 0.00442 

49 49 50 0.00051 0.00126 

50 8 51 0.00058 0.0003 

51 51 52 0.00207 0.0007 

52 9 53 0.00109 0.00055 

53 53 54 0.00127 0.00065 

54 54 55 0.00177 0.0009 

55 55 56 0.00176 0.00089 

56 56 57 0.00992 0.00333 

57 57 58 0.00489 0.00164 

58 58 59 0.0019 0.00063 

59 59 60 0.00241 0.00073 

60 60 61 0.00317 0.00161 

61 61 62 0.00061 0.00031 

62 62 63 0.00091 0.00046 

63 63 64 0.00443 0.00226 

64 64 65 0.0065 0.00331 

65 11 66 0.00126 0.00038 

66 66 67 2.93E-05 8.73E-06 

67 12 68 0.00461 0.00153 

68 68 69 2.93E-05 9.98E-06 

 

Table A.2 Load data of IEEE 69-bus distribution system 

Bus 
No. 

 

P 
(in pu) 

 

Q 
(in pu) 

 
1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 0 0 

6 0.0026 0.0022 

7 0.0404 0.03 

8 0.075 0.054 

9 0.03 0.022 

10 0.028 0.019 
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11 0.145 0.104 

12 0.145 0.104 

13 0.008 0.0055 

14 0.008 0.0055 

15 0 0 

16 0.0455 0.03 

17 0.06 0.035 

18 0.06 0.035 

19 0 0 

20 0.001 0.0006 

21 0.114 0.081 

22 0.0053 0.0035 

23 0 0 

24 0.028 0.02 

25 0 0 

26 0.014 0.01 

27 0.014 0.01 

28 0.026 0.0186 

29 0.026 0.0186 

30 0 0 

31 0 0 

32 0 0 

33 0.014 0.01 

34 0.0195 0.014 

35 0.006 0.004 

36 0.026 0.0186 

37 0.026 0.0186 

38 0 0 

39 0.024 0.017 

40 0.024 0.017 

41 0.0012 0.001 

42 0 0 

43 0.006 0.0043 

44 0 0 

45 0.0392 0.0263 

46 0.0392 0.0263 

47 0 0 

48 0.079 0.0564 

49 0.3847 0.2745 
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50 0.3847 0.2745 

51 0.0405 0.0283 

52 0.0036 0.0027 

53 0.0043 0.0035 

54 0.0264 0.019 

55 0.024 0.0172 

56 0 0 

57 0 0 

58 0 0 

59 0.1 0.072 

60 0 0 

61 1.244 0.888 

62 0.032 0.023 

63 0 0 

64 0.227 0.162 

65 0.059 0.042 

66 0.018 0.013 

67 0.018 0.013 

68 0.028 0.02 

69 0.028 0.02 

 

Practical Indian 85-bus Distribution System Data 

Number of buses: 85 

Number of lines: 84 

Bus voltage: 11kV 

Total active power load: 2.5708MW  

Total reactive power load: 2.6218 MW 

System active power loss: 0.3136MW 

System reactive power loss: 0.134MVAR 
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Figure A.2 Single-line diagram of Indian 85-bus system 

Table A.3 Line data of Indian 85-bus distribution system 

Line 
No. 

From 
 

To 
 

R 
(in pu) 

X 
(in pu) 

1 1 2 0.0009 0.0006 

2 2 3 0.0013 0.0009 

3 3 4 0.0018 0.0012 

4 4 5 0.0009 0.0006 

5 5 6 0.0036 0.0025 

6 6 7 0.0022 0.0015 

7 7 8 0.0099 0.0068 

8 8 9 0.0009 0.0006 

9 9 10 0.0049 0.0034 

10 10 11 0.0045 0.0031 

11 11 12 0.0045 0.0031 

12 12 13 0.0049 0.0034 

13 13 14 0.0022 0.0015 

14 14 15 0.0027 0.0018 

15 2 16 0.006 0.0025 

16 3 17 0.0038 0.0016 

17 5 18 0.0068 0.0028 

18 18 19 0.0053 0.0022 

19 19 20 0.0038 0.0016 

20 20 21 0.0068 0.0028 
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21 21 22 0.0128 0.0053 

22 19 23 0.0015 0.0006 

23 7 24 0.0075 0.0031 

24 8 25 0.0038 0.0016 

25 25 26 0.003 0.0012 

26 26 27 0.0045 0.0019 

27 27 28 0.0023 0.0009 

28 28 29 0.0045 0.0019 

29 29 30 0.0045 0.0019 

30 30 31 0.0023 0.0009 

31 31 32 0.0015 0.0006 

32 32 33 0.0015 0.0006 

33 33 34 0.0068 0.0028 

34 34 35 0.0053 0.0022 

35 35 36 0.0015 0.0006 

36 26 37 0.003 0.0012 

37 27 38 0.0083 0.0034 

38 29 39 0.0045 0.0019 

39 32 40 0.0038 0.0016 

40 40 41 0.0083 0.0034 

41 41 42 0.0023 0.0009 

42 41 43 0.0038 0.0016 

43 34 44 0.0083 0.0034 

44 44 45 0.0075 0.0031 

45 45 46 0.0075 0.0031 

46 46 47 0.0045 0.0019 

47 35 48 0.0053 0.0022 

48 48 49 0.0015 0.0006 

49 49 50 0.003 0.0012 

50 50 51 0.0038 0.0016 

51 48 52 0.0113 0.0047 

52 52 53 0.0038 0.0016 

53 53 54 0.0045 0.0019 

54 52 55 0.0045 0.0019 

55 49 56 0.0045 0.0019 

56 9 57 0.0023 0.0009 

57 57 58 0.0068 0.0028 

58 58 59 0.0015 0.0006 

59 58 60 0.0045 0.0019 
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60 60 61 0.006 0.0025 

61 61 62 0.0083 0.0034 

62 60 63 0.0015 0.0006 

63 63 64 0.006 0.0025 

64 64 65 0.0015 0.0006 

65 65 66 0.0015 0.0006 

66 64 67 0.0038 0.0016 

67 67 68 0.0075 0.0031 

68 68 69 0.009 0.0037 

69 69 70 0.0038 0.0016 

70 70 71 0.0045 0.0019 

71 67 72 0.0015 0.0006 

72 68 73 0.0098 0.0041 

73 73 74 0.0023 0.0009 

74 73 75 0.0083 0.0034 

75 70 76 0.0045 0.0019 

76 65 77 0.0008 0.0003 

77 10 78 0.0053 0.0022 

78 67 79 0.0045 0.0019 

79 12 80 0.006 0.0025 

80 80 81 0.003 0.0012 

81 81 82 0.0008 0.0003 

82 81 83 0.009 0.0037 

83 83 84 0.0083 0.0034 

84 13 85 0.0068 0.0028 

 

Table A.3 Load data of Indian 85-bus distribution system 

Bus 
No. 

P 
(in pu) 

Q 
(in pu) 

1 0 0 

2 0 0 

3 0 0 

4 0.056 0.0571 

5 0 0 

6 0.0353 0.036 

7 0 0 

8 0.0353 0.036 

9 0 0 
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10 0 0 

11 0.056 0.0571 

12 0 0 

13 0 0 

14 0.0353 0.036 

15 0.0353 0.036 

16 0.0353 0.036 

17 0.112 0.1143 

18 0.056 0.0571 

19 0.056 0.0571 

20 0.0353 0.036 

21 0.0353 0.036 

22 0.0353 0.036 

23 0.056 0.0571 

24 0.0353 0.036 

25 0.0353 0.036 

26 0.056 0.0571 

27 0 0 

28 0.056 0.0571 

29 0 0 

30 0.0353 0.036 

31 0.0353 0.036 

32 0 0 

33 0.014 0.0143 

34 0 0 

35 0 0 

36 0.0353 0.036 

37 0.056 0.0571 

38 0.056 0.0571 

39 0.056 0.0571 

40 0.0353 0.036 

41 0 0 

42 0.0353 0.036 

43 0.0353 0.036 

44 0.0353 0.036 

45 0.0353 0.036 

46 0.0353 0.036 

47 0.014 0.0143 

48 0 0 
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49 0 0 

50 0.0363 0.037 

51 0.056 0.0571 

52 0 0 

53 0.0353 0.036 

54 0.056 0.0571 

55 0.056 0.0571 

56 0.014 0.0143 

57 0.056 0.0571 

58 0 0 

59 0.056 0.0571 

60 0 0 

61 0.112 0.1143 

62 0.056 0.0571 

63 0.014 0.0143 

64 0 0 

65 0 0 

66 0.056 0.0571 

67 0 0 

68 0 0 

69 0.056 0.0571 

70 0 0 

71 0.0353 0.036 

72 0.056 0.0571 

73 0 0 

74 0.056 0.0571 

75 0.0353 0.036 

76 0.056 0.0571 

77 0.014 0.0143 

78 0.056 0.0571 

79 0.0353 0.036 

80 0.056 0.0571 

81 0 0 

82 0.056 0.0571 

83 0.0353 0.036 

84 0.014 0.0143 

85 0.0353 0.036 
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