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ABSTRACT

Continuous supply of electricity is the need of the hour in developing economies, more
so in a rapidly industrializing country like India. The growing demand tends to change the
conventional structure of power system to increase the flexibility of the existing system that
generates power in bulk and deliver the power to the load centers through transmission
network. To avoid transmission congestion and to assure continuous supply to scattered
loads, Distributed Generations (DG) in small scale emerged as an alternative technology.
Many of the DG technology sources include renewable energy sources such as wind power,
photovoltaic cells, biogas, fuel cells, etc., in order to meet the environmental constraints.
These DG technologies have been adopted to meet the future load with improved system
efficiency, reliability, security and quality of service; they however have a critical impact on
the system voltage, power quality, stability, fault level and protection coordination. In spite
of promising improvement in reliable power supply with less green gas emission, the
implementation of active distribution networks imposes a large number of technical and
regulatory issues that need to be carefully evaluated. Hence, planning the DG plays a vital
role in establishment of future smart grid.

It is essential to have suitable and efficient methods and models to plan an active
distribution network operation, which involves many objectives and constraints.
Conventional methods like analytical approaches and numeric methods have been
adequately applied for DG planning in distribution network in various ways. But these
methods sometimes arrive at local optimal solutions in spite of their computational burdens.
They also lack handling multi-objective problem efficiently. Population based evolutionary
algorithms have been found ideal in dealing with multi-objective DG planning. However,
many such algorithms suffer from premature convergence due to limited exploration in the
search space while a few algorithms have their own control parameters, which will influence
the algorithm efficacy.

Thus, in this thesis, a parameter less novel multi-objective based Peer enhanced
Teaching-learning based optimization (PeMOTLBO) algorithm is proposed and employed
to find a set Pareto optimal solutions for planning DG in distribution system and fuzzy

theory approach has been used to find the best compromising DG location and size. The
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pareto front obtained by the proposed PeMOTLBO has been compared with basic Multi-
Objective TLBO (MOTLBO) and Non-Dominated Sorting Genetic Algorithm —II (NSGA-
IT). The comparisons show the superiority of the proposed algorithm in terms of both better
objectives and diversity among the solutions in the optimal fronts obtained. Two
performance metrics have been evaluated to ascertain the two goals of the multi-objective
optimization and the proposed technique exhibited better metric value compared to NSGA-
I and MOTLBO.

It is well known that there are several DG technologies which are costlier and polluting,
such as diesel and gas, as well as environment friendly technologies such as wind and solar.
Planning the optimal operation of DGs to supply the load is the ultimate requirement of
Active Distribution Network (ADN) operation. In view of this, a new hybrid Grid-based
Harmony Search algorithm is proposed by incorporating the grid based strategy in the basic
harmony search algorithm for multi-objective DERs planning model both in grid connected
and autonomous microgrid operation with three conflicting objectives viz., 1) Energy loss ii)
voltage deviation and iii) cost of DG integration. A qualitative comparison is also made with
two comparison metrics to ascertain the superiority of the proposed algorithm over robust
NSGA-II and other form of multi-objective harmony search. A grid based multi-objective
harmony search optimization is proposed to find the optimal mix of DG units for economic
operation of grid connected distribution system and it has been extended to analyze
autonomous operation of active distribution system in the presence of battery storage.

While planning the DGs and their economic feasibility for operation in microgrid, the
main purpose of microgrid operation should not be ignored i.e. the active management of
load that is directly linked with the approximately constant frequency of operation in the
system. Thus, load frequency control of an isolated microgrid is also attempted in this thesis
with two types of control techniques: first one with PI controller, whose gains are tuned
with Levy-based spider monkey optimization algorithm. This method employs levy flights
to explore the search space whereas spider monkey algorithm is utilized to intensify the
search towards better optimal solution. And the second, a fuzzy adaptive Model Predictive
Control (MPC), where the fuzzy controller is embedded into MPC algorithm for better

adaptive performance of load frequency control in an isolated microgrid.

viil



Contents

ACKNOWICAGIMENLS.......coooiiiiiiiiiiiiiiiiee et e e e et e e et e e e s sabaeeeesabeeee s v
ADSTIACT ...ttt ettt et h e et et e et e e bt e enbe e bt eenteenneennee vii
LISt Of FRGUI@S ..o ettt ettt ettt e et e saeeens xiil
LISt Of TADIES.........ooiiiiiiie ettt ettt ettt e st e ebeesaeeens Xvii
ADDIEVIAIONS ..ottt ettt st et st e st Xix
List 0f SYMDBOIS.......o.oooiiiiii e e e XX
T INErOAUCTION ...ttt ettt st e st e e s 2
L1 GeNETAl OVETVIEW ...ttt ettt ettt ettt et et e e i e ebee e 2
1.2 Distributed Generation and the Microgrid..........ccccuieeiiiieriiiieiiieecie e 3
1.3 Need, Challenges and Solutions of Microgrid Operation.............cceevveeerveeecveerineeenns 3
1.4  Optimization techniques and problem formulating domains............cccceeeeveeeeveennnens 4
2 LIterature REVICW .........coooiiiiiiiiiiii et 7
2.1 Distributed Generation (DG) Planning in Distribution Network ...........c.ccccvevveenneenee. 7
2.2 Optimal planning of active distribution network in microgrid perspective............... 10
2.2.1  Planning of grid connected active distribution network...........cocceververienennnn. 11
2.2.2  Autonomous mode of active distribution network operation..............cccccuvenne.en. 13
2.3 Load frequency control methods in Microgrid ...........ccceecvverieeciienieeiiieiieeieesee e 14
2.4 MOLIVATION. ...ttt ettt ettt ettt st b et e bt e bt et sat e bt entesatenbeenteeanens 16
2.5 CONIIDULION ..c..eitieitiiiiecieeie ettt sttt ettt et e bt et saeesbeeresinens 17
2.6 Thesis OrganizZation ...........ccceeeieeiuienieritieniieeieesite et esteeeteesaeesbeesseeebeeseessseenseesnseens 18
2.7 SUINIMATY .eeeitiieiiieeeiee ettt ete ettt e ettt e st e e s bt e esabee e et eessabeesssaeesnsseesanaeesnseeesnseeenaseeennses 20

3 Distribution Generation planning using Peer enhanced Multi-Objective Teaching
—Learning based Optimization Algorithm ..., 22
3.1 INEOAUCTION. ¢ttt sttt sttt et et e e b 22
3.2 Modelling of DG in distribution system load flow...........c.ccocevviiniininiiniininenene 22
3.2.1  Backward and Forward Sweep load flow algorithm (BFS) ..........cccccceriinniin. 23
3.2.2 DG asnegative PQ model .........cccoouiiiiiiiniiiiiiiiieceecceee e 25

3.3 Proposed Peer enhanced Multi-Objective Teaching-Learning Based Optimization
(PEMOTLBO) ALZOTTtRM ....ccuiiiiiiiiieiieciiee et s 25

X



3.4  Problem formulation............ccooioiiiiiiiiiiie e 28
3.5 Simulation results and discussions on the test Systems ..........cccceeveeerveeeiveencreeennnnn. 29

3.5.1 Performance Metrics Comparison of proposed PeMOTLBO with NSGA-II.... 35

3.5.1.1  Set COVETage MELTIC. ..cccuveiiieiieeiieiieeiieiieeteeeteeeteeseeeebeeseeeeseesnaeeaeeeens 36
3.5.1.2  SPACING MELIIC ..eeeiviieeiieeeiieeeiieeeiee et e et e e rteeesereeeeaeesareeeaaeesnneeesnseees 38
3.0 SUIMIMATY ..eiiiiiiiiiieeeeiiteeeeeitee e e et ee e e ettt e e sstteeeesnteeeessasseeeeesssseeeeasseeesannssaeesansnseeennnes 40

4 Optimal Planning of Active Distribution Network Operation with hybrid
Distributed Energy Resources using Grid-based Multi-Objective Harmony Search

ALGOTIERIMN. ...ttt ettt et e et et e e s 42
i T 113 (o7 L 1o 10 ) s DO SRRSO 42
4.2  Proposed Grid based Multi-Objective Harmony Search (GrMHS) Algorithm..... 43

4.2.1 Definitions and CONCEPLS ...ccvvieriiieeiiiieeiieeeieeeeiee et e eeeveeesereeesaaeeeaeeeeraeesreee e 43

4.2.2  Fitness CalCulation ..........coiuiiiiiiiiiiiieieee s 44

4.2.3  Framework of proposed Grid based Multi-Objective Harmony Search

(GIMHS) alOTTtRIM ....oeiiiiiiciecceeeee e e 45
4.3 Modeling of generation and load: uncertainties and certainties .............cccccveerveennee. 46

43.1 Wind speed MOAEIING .......ccccuiiiiiiieeiie et eee e 47

4.3.2  Solar irradiance MOAEIING .......cceeeeeuiiiriiiieiiieecie ettt 47

4.3.3  Calculation of power output of the wind turbine and PV module...................... 48

4.3.3.1 Calculation of power output of wind turbine.............ccceeceeeevierierireeenne. 49
4.3.3.2 Calculation of power output of PV module..........cccoevvvriinviiinieniiennne, 49

4.3.4  Battery storage moOdel...........cooiiiiiiiiieiiieee e 49

4.3.5 Load and price MOdEIING........cccueeriuiiiriiiieiiieeciee et 50
4.4 Problem formulation.............cooiiiiiiiiiiiieieeee e 50

4.5  Optimal operation strategy for grid connected and autonomous mode operation of

active distribution NETWOTK ...........eiiuiiiiiiiiiii e 51

4.5.1 Optimal operation strategy for grid connected mode...........cccvveevveereiiennnenne. 51
4.5.2  Optimal operation strategy for autonomous mode............cceeevveereieercrreercreeennne. 53
4.6  Simulation results and diSCUSSION ........ccouieriirierieiirieiceie et 54
4.6.1  Two objectives: Minimization of active power loss and voltage deviation....... 54
4.6.2  Three objectives: Grid connected mode of operation with hybrid DERs .......... 57



4.6.2.1 TEEE 33-DUS SYSteIM....cccviiiiiiiiieiieeiieriie ettt eiee et sae e eee 58

4.6.2.2 Indian 85-DUS SYSIEM......ccviiriiieriieiieeiieeieeeee et e e eaveeaee e 62
4.6.3  Three objectives: Autonomous mode of operation with hybrid DERs............... 65
4.6.3.1 TEEE 33-DUS SYSteIM....ccuiiiiiiiiiiiieeiiesiie ettt sae e e 66
4.6.3.2 Indian 85-DUS SYSTEIM ....uveieeiiiiiiiiieeiieeeiieceiee et e 69
4.6.4  Performance metrics comparison of proposed GrMHS algorithm with MOHS
ANA NSGA-TL.c.oiiiiii ettt st 72
4.7 SUINMATY c..oeiiiiiieiieeeteeee ettt ettt ettt et st et e saseete e st e eneeseneeneenaneens 75
Load Frequency Control of an Isolated Microgrid using Levy based Spider
Monkey AIGOrithm............coooiiiiiiiii et 77
5.1 INEPOAUCTION. ...ttt ettt ettt et e st e et e s nteebeesnaeens 77
5.2 Proposed Eagle strategy using Levy flights with Spider Monkey Optimization
ALZOTTERIM L.ttt ettt e s aaeebeessbeesaesnaaens 77
521 LeVY FIGIES ..ottt ettt ettt ens 78
5.2.2  Spider Monkey Optimization (SMO) Algorithm .......c...coccoveviininiiniininnennns 79
5.3 Problem formulation.............cocioiiiiiiiiiiiiee e 82
5.4  Simulation results and diSCUSSION........ceeviuiiriiiiiieiii ettt 82
5.5 SUIMMATY .ottt ettt st ettt e bt sare e s e e esneeseneeneenaneeas 89
Fuzzy Adaptive Model Predictive Control for Load Frequency Regulation of an
Isolated MICIOGIId ............cooiiiiiiiiiiiii ettt et s 92
6.1 INITOAUCTION. ...ccutiiiiiiiie et ettt ettt et e st e et eseaeebeesaaeens 92
6.2 Outline of model predictive control (MPC)..........coceiiiiiiiiiiiiiiiieeee e 92
6.3 MPC implementation for load frequency control of an isolated microgrid............... 94
6.4  Fuzzy inference system for parameter (Rw) tuning ..........c.ceecvveevieeeciieecieesieeene, 96
0.4.1  FUzZzZifICatION.....oc.iiiiiiii e 97
6.4.2  Fuzzy Inference System: Fuzzy Rules formulation .............ccccoeevveviiencneennen.. 97
0.4.3  DefuZZITICAtION . ..eeiiiiiiii ettt 98
6.5 Simulation results and diSCUSSION .......cc.eeiiuiiiiiiiiieiii e 99
6.0 SUMMATY ....eviiiiiieiiee ettt e et e st e e s te e e ebee e sbeeeabeeesseeensseeensseesnseeennnes 106
COMCIUSIONS ...ttt ettt ettt s e b 108
Tl GNETAL ..ttt et aeas 108

xi



7.2 Summary of important findINgS........cccvreeiiiieeiiieeie et 108

7.3 Scope for Future Work ........coooiiioiiieieee e 110
REFCICIICES ...ttt et et sbe e e st e st e e 111
FLN 1) 1) 111 L. GO PSR 120
PubLICAtioNS .......oooeiiiiii e 128
Curriculum - VIEA .......oooiiiiiiiii e 129

xii



Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 3.9:.

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:

Figure 4.1:
Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

List of Figures

A SIMPIe reSiStiVe NETWOTK.........eevuieiiieiiicieeie ettt ens 23
Typical 6-bus radial distribution SYStE€M ..........cccveeviieerieeeriieeiee e 24
IEEE 33-bus system: Voltage profile of the system for different DG case ......30
IEEE 69-bus system: Voltage profile of the system for different DG case ......30
Indian 85-bus system: Voltage profile of the system for different DG case.....31
IEEE 33- bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and
INSGA-ILL ettt 31
IEEE 69- bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and
INSGA-IL ettt 32
Indian 85-Bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and
INSGA-ILL ettt 32
IEEE 33-bus system - Box plot of C-metric value..........cccccocveveriiniininicnnnne. 37
IEEE 69 -bus system - Box plot of C-metric value..........c.cccceveiieriieniieeniennnn. 37
Indian 85-bus system - Box plot of C-metric value.........cccccceevvieeiienciieniiennnene 37
IEEE 33-bus system- Box plot of S-metric values ..........cccccceeeeiieiciiencieene. 38
IEEE 69-bus system- Box plot of S-metric values .........cccccoceeverviniencnicnnne 39
Indian 85-bus system- Box plot of S-metric values.........cccccceeviierienieeniiennnne 39
The proposed planning strategy for grid connected mode of operation........... 52

The proposed planning and operational strategy for autonomous mode of
0] o3 21 2 o) 1 OO U TP SOPRRPPRRPIO 53
IEEE 33-bus system: Comparison of voltage profile with the proposed GrMHS
ANd PEMOTLBO ......ooiiiieiieieee ettt 54
IEEE 33-bus system: Comparison of pareto solutions obtained by GrMHS and
PEMOTLBO ..ottt ettt beenaessaenseennens 55
IEEE 69-bus system: Comparison of voltage profile with GrMHS and
PEMOTLBO ...ttt sttt st sa e 55
IEEE 69-bus system: Comparison of pareto solutions obtained by GrMHS and
PEMOTLBO ... .ottt st sbe e ssaensenneens 56

xiil



Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19:

Figure 4.20:

Figure 4.21:
Figure 4.22:

Figure 4.23:
Figure 4.24:

Figure 4.25:

Indian 85-bus system: Comparison of voltage profile with GrMHS and

PEMOTLBO ...ttt 56
Indian 85-bus system: Comparison of pareto solutions obtained by GrMHS and
PEMOTLBO ...ttt st st 57
Yearly profile of Load and generations of various DERS ..............c.ccoceiii. 58
IEEE 33-bus system: Bus voltage variation for different DG combinations....59
IEEE 33-bus system: Seasonal energy loss variation for all DG combinations59
IEEE 33-bus system: Comparison of pareto solutions of Proposed GrMHS with
MOHS and NSGA-IT ...ttt 60
Indian-85 bus system: Voltage variation at all buses for different DG
COMBDINALION. ...ttt eiite ettt eite ettt ee et et e et estte et e e sate e bt e ssteenbeesabeenbeasnneenseesnseans 62
Indian-85 bus system: Seasonal energy loss variation for all DG combinations
........................................................................................................................... 63
Indian 85-bus system: Comparison of pareto solutions of Proposed GrMHS
with MOHS and NSGA-IL ..ot 63
IEEE 33-bus system: Variation of load and generation at first year of planning
horizon for 9 DERS CASE ...c..eeviriieiieieiiieieeiesei et 66
IEEE 33-bus system: Comparison of Energy loss for 9DERs case................... 67
IEEE 33-bus system: Comparison of voltage profile for 9DERs case.............. 67
IEEE 33-bus system: Comparison of pareto solutions of proposed GrMHS with
IMOHS L.ttt ettt sttt sbe et 68
Indian 85-bus system: Variation of load and generation for 9 DERs case
........................................................................................................................... 70
Indian 85-bus system: Comparison of Energy loss for 9DERs case................. 70
Indian 85-bus system: Comparison of pareto optimal solutions of proposed
GrMHS With MOHS ... 71
Indian 85-bus system: Comparison of voltage profile for 9DERs case............ 71
IEEE 33-bus system — Comparison of C-metric values obtained with proposed
GIMHS L.ttt 73
Indian 85-bus system — Comparison of C-metric values obtained with proposed

X1V



Figure 4.26:

Figure 4.27:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 6.1:

Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:

Figure 6.6:

Figure 6.7:

Figure 6.8:

IEEE 33-bus system — Comparison of S-metric values obtained with proposed

GIMHS ..t 74
Frequency control model of an isolated microgrid with PI controller.............. 83
Case-1: System response with all micro SOUICES .........cccvveevvieeeiieecieeeieeee. 84
Case-1: Comparison of convergence plot.........ccceecveveeveriienienenieneeneeieneene 84
Frequency deviation response with dispatchable sources..........cccceecverieniennne. 85
Comparison of system response with diesel and fuel cell ............ccocevveineninnn. 86
Step 10ad VATTAtioN .......cc.eeeeiieiiiieeiie et e e eae e e snree e 86
Comparison of frequency deviation response for multiple load steps.............. 87
Comparison of system response with wind perturbations for 6secs.................. 88
Comparison of system response for parametric variation............cceccveereveeennenn. 89

Load frequency control model of an isolated microgrid with fuzzy adaptive

IMPC ..ottt b et ettt et e st e aeeteententeenneenaens 96
Inputs and output of fuzzy logic controller.............ccoevirvviiiiieniieniiiieeiieee 97
Membership Functions a) Magnitude of Frequency Deviation (|[FD)).............. 98
System response of the microgrid for different values of Rw .......cccceveeeneee. 100

(a).Comparison of system response of the microgrid for case-1 (b). Response
of Cost functions of MPC over simulation period for case-1 (c) & (d).
Response of control inputs to diesel and fuel cell for case-1
(a).Comparison of system response of the microgrid for case-2 (b). Response
of Cost functions of MPC over simulation period for case-2 (c) & (d).
Response of control inputs to diesel and fuel cell for case-2...........cccceeuee.e. 101
(a) Comparison of system response of the microgrid for case-3 (b). Response
of Cost functions of MPC over simulation period for case-3 (c) & (d).
Response of control inputs to diesel and fuel cell for case-3.........cceeeeneee. 102
(a) Comparison of system response of the microgrid for case-4 (b). Response
of Cost functions of MPC over simulation period for case-4 (c) & (d).

Response of control inputs to diesel and fuel cell for case-4.........ccccceeeneeee. 103

XV



Figure 6.9:

Figure 6.10:

Figure 6.11:

(a) Comparison of system response of the microgrid for case-5 (b).Response of
Cost functions of MPC over simulation period for case-5 (¢) & (d). Response
of control inputs to diesel and fuel cell for case-5........ccceviiiiiiiiineninen. 104
(a) Comparison of system response of the microgrid for case-6 (b). Response
of Cost functions of MPC over simulation period for case-6 (c) & (d).
Response of control inputs to diesel and fuel cell for case-6.............cc........... 105
(a) Comparison of system response of the microgrid for case-7 (b). Response
of Cost functions of MPC over simulation period for case-7 (c) & (d).

Response of control inputs to diesel and fuel cell for case-7.........cccceevennenee. 106

XVi



Table 3.1
Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 5.1
Table 5.2

List of Tables

Control parameters for TLBO and NSGA-II algorithms .........cccccevivienienencne 29
IEEE 33-Bus system: Comparison of proposed PeMOTLBO results without and
WILH DG ottt 33
IEEE 69-Bus system: Comparison of proposed PeMOTLBO results without and
WIh DIGS oot 34
Indian 85-Bus system: Comparison of proposed PeMOTLBO results without

ANA WIth DIGS .t 34
IEEE 33-bus system: Comparison of proposed PeMOTLBO with MOTLBO and
NSGA-IT {01 4 DG CASC..uvenviiieriiiieeieeieete ettt 34
IEEE 69-bus system: Comparison of proposed PeMOTLBO with MOTLBO and
NSGA-ILFOT 4 DG CASEC...uveeniieeiiieiieeieeiie ettt ettt st 35
Indian 85-Bus system: Comparison of proposed PeMOTLBO with MOTLBO
and NSGA-IL fOr 4 DG CASE ....c.vevueeriieiiriienieeierieeie ettt 35
C-Metric: Mean value, standard deviation of proposed PeMOTLBO and NSGA-
0 O OO P STV SOUSOUPRPRUPRPRPROON 36
S-Metric: Mean vale, standard deviation of Proposed Pe MOTLBO and NSGA-II
............................................................................................................................. 39
Cost associated with various DER types.......cccccveeiieiieiiieiienieeiece e 51
Consolidation and comparison of results for two objectives case............ccuu.... 56

IEEE 33-bus system: Validation and comparison for optimal mix of dispatchable
and non-dispatchable DG UNits ..........ccceeriiiiieiiiniieieeie e 61
Indian 85-bus system: Validation and comparison for optimal mix of
dispatchable and non-dispatchable DG Units ...........cccoeeevveevveeeiieescieeeie e 64
IEEE 33-bus system: System Performance with various DERs combinations and
renewable source bus HMItS.......c..coeveviiiiieiiiiiiiiineeceeeeese e 68

Indian 85-bus system: System performance with various DERs combination and

TENEWADIE SOUICE DUS LTINS ..ceeteeeieeeee ettt e e e e e eeeeeeenas 72
Performance metric ITSE value for Case-1 .....uuooeeeeeeeieieeeeeeeeeeeeeeeee e 84
Performance metric ITSE value for Case-2 .....ooovviviiiiiiiiiiii 85

Xvil



Table 5.3
Table 5.4
Table 5.5
Table 6.1
Table 6.2

Performance metric ITSE value for case-3 .........cccoceviviiinenienenieeeeeeee, 87
Performance metric ITSE value for case-4 .........ccoooeeiiiiiiiniiiiicieeee 88
Performance metric ITSE value for case-5 ........ccceeoiieeiiiicieeceeeeeeeeeee s 89
Fuzzy rules for variation of ARw ......ccoecuiiiiiiiiiiiiieieeeeeee e 99
Comparison of performance iNdeX ..........ccceevveeviierieerieenieeieeree e 105

XViii



ADN
BFSA

DG
DERs
DEG

COG

ESS
FA

FLC
FAMPC

FC
GrMHS

HSA

HMCR
ITSE

ISE

LFC

MPC
NSGA-II
ODGP
PeMOTLBO
PAR

PV
PDF

PSO

PI controller
SMA

TLBO

Abbreviations

Active Distribution Network

Backward-Forward Sweep Algorithm
Distributed Generation

Distributed Energy Resources

Diesel Engine Generator

Centre Of Gravity

Energy Storage Systems
Firefly Algorithm

Fuzzy Logic Controller

Fuzzy Adaptive Model Predictive Control

Fuel Cell
Grid based Multi-objective Harmony Search

Harmony Search Algorithm

Harmony Memory Consideration Rate

Integral Time Squared Error

Integral Squared Error

Load Frequency Control

Model Predictive Control

Non-Dominated Sorting Genetic Algorithm — I1

Optimal Distributed Generation Planning

Peer-enhanced Multi-Objective Teaching Learning Based Optimisation

Pitch Adjusting Rate

Photo Voltaic
Probability Density Function

Particle Swarm Optimisation
Proportional Integral Controller
Spider Monkey Algorithm

Teaching Learning Based Optimization

X1X



List of Symbols

a,bandc Fuel cost coefficients
a,pf Parameters of the Beta distribution function
C o Price of the gasoil
C, The penalty for eth pollution source
CI, Investment cost coefficient
CAP, Capacity of installed units
D Damping Coefficient
div No. of divisions in the objective space
d. Minimum distance between objectives in the objective space
d Mean of d,
DLE,, Demand Level Factor for typical daily load at every bus in year t
E,, Energy Status of the battery
£, Weibull distribution of wind velocity
£, (s) Beta distribution function of solar irradiance
FF Fill factor
Af Frequency deviation
H Inertia of rotating masses of the micro grid
. Set coverage metric
I, Short circuit current in A
Lpp Current at maximum power point in A
J Cost function in MPC

Voltage temperature coefficient in V/°C

~ A

Current temperature coefficient in A/°C

M&O costs coefficient

e
Q
5

Annual M&O cost (per kW) for wind turbine

ke

XX



min max
P, P
P,

AP,

Annual M&O cost (per kW) for solar cell

Proportional controller gain

Integral controller gain
Lower limits of the grid in objective space

No. of objectives

The coefficients of eth pollution source

No. of buses in the system
Population size

Nominal operating temperature of cell in °C
Number of PV modules

No. of PV cells

No. of wind turbine generator

Charging efficiency of the battery
Discharging efficiency of the battery
Prediction horizon

Control horizon
The total real power loss in the system

Real power of DG

Total load on the system

Maximum power of DG

Probability of the wind speed in state w

Probability of the solar irradiance in state y

Output power of the wind turbine during state w

Total solar power output

Minimum and maximum limits on m™ objective in population P

Output power of the PV module during state y

Change in load power

XX1



AP iny Change in power outputs from inverter circuit of solar unit

AP gy Change in power outputs of filter circuit of solar unit
AP, 4 Change in turbine mechanical power output from the diesel unit
APyq Change in governor output of diesel unit
APf fiy¢ Change in power from filter circuit of fuel cell
APr iny Change in power from filter circuit of fuel cell
APs. Change in power output from fuel cell
APy gt Change in the battery power
APcq Control inputs given to the diesel
AP¢s Control inputs given to the fuel cell
‘Q No. of solutions in the pareto front
R Frequency droop
(k) Reference input signal
R, Input tuning parameter in MPC
S, Space metric value
N Solar irradiance in kW/m?
fb » Base load at each bus in the system
iDt , Demand level at each hour in the planning period
S o Average solar irradiance of state y
Sy Sy, Solar irradiation limits in state y
T, Teaching —Learning factor
T, Cell temperature in °C during state y
T, Ambient temperature in °C
T, Turbine time constant
T, Governor time constant
Trie Time constant of filter circuit
Tinv Time constant of inverter circuit
Trc Time constant of the fuel cell
Ty Time constant of the battery

xxil



ul, Upper limits of the grid in objective space

AU Control input vector
|4 Voltage magnitude at bus i
V..V Minimum and maximum limits on voltage at i" bus
imin?® " imax
V Average wind speed
aw
v Cut-in and cut-out wind speed
ci> " co
V v Wind speed limits at state w
wls “w2
V. Open circuit voltage in V
VMPP Voltage at maximum power point in V
W, Width of hyper boxes in the objective space
Y Output in the state space model of MPC

XXiii



Chapter 1

Introduction



Chapter 1 Introduction

Chapter 1

1 Introduction

1.1 General Overview

The future electrical network is required to be flexible, accessible, reliable and cost-
effective to become a smart grid, despite the changing regulatory and economic scenarios
amidst the growing demand and its gap with the generation. The next generation electricity
grid is expected to address major shortcomings of the existing grid. The required grid
smartness is achieved by applying information technology, communication power electronics
and digital technologies, tools and techniques to the existing grid to make it intelligent to
tackle the future challenges [1] leading to smart grid operation. In short, Smart grid is defined
as “Integrating advances in digital and information technology into the nation’s electric
delivery network for enhanced operational intelligence and connectivity” [2]. The keen
interest on anticipated challenges in power grid proved that the roots of the power system
issues might be found in the electrical distribution system, while the point of departure for
grid overhaul is firmly placed at the bottom of the chain [3]. Thus, the initiatives taken to
improve the smartness in the grid must start from the lower stream of the electrical grid i.e.
distribution network. As one among the various future smart grid initiative worldwide,
microgrid operation has emerged as one of the promising solutions to the active management
of loads in distribution and remote networks [4] and it has claimed to be the building block of
future smart grid.

There are several definitions for microgrid in many contexts [5], and these have
evolved in various forms, such as Active Distribution Network (ADN), Cognitive Microgrid
(CMG) and Virtual Power Plant (VPP) etc. The terms are interchangeably used in various
research attempts in recent times. Candidates of microgrid operation are institute/campus,
commercial/industrial facilities, remote “off grid” communities and military bases, data
centers and municipalities etc. In this thesis, microgrid is conceived as an active distribution
network and the medium voltage distribution networks are considered for the microgrid

planning, control and management studies undertaken in this thesis.
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1.2 Distributed Generation and the Microgrid

Distributed Generation (DG) is an approach that employs small-scale technologies to
generate electricity close to the end users of power. This has become the driving factor of
microgrid operation. DG technologies include Distributed Energy Resources (DERs) along
with storage assets. DERs embody both modular conventional generating sources such as
diesel, micro turbines, fuel cells, hydrothermal units etc., and the environmental friendly
generations such as wind, solar, biogas etc. Apart from the generating sources, storage assets
such as batteries, small pumped hydro units, flywheels, super capacitors etc., also contribute
to DG technologies. The Department of Energy, US, defines Distributed Generation as
“Distributed Generation is the small scale power generation technologies located close to the
load being served, capable of lowering costs, improving reliability, reducing emission and
expanding energy options”.

The best way to realize the emerging potential of DGs is to take a system approach
that treats generation, associated loads and controls as an integrated system or Microgrid
operation. Thus, extended operation of DG technologies with the necessary controls and
communication with the utility grid and the customized loads leads to microgrid operation. In
brief, a microgrid is an integrated energy system consisting of interconnected loads and
distributed energy resources, which as an integrated system, can operate in parallel with the

grid or in an intentional island mode [2].

1.3 Need, Challenges and Solutions of Microgrid Operation

The microgrid can provide a large variety of technical, environmental and socio-
economic benefits to the utility and the consumers depending on its operational strategies.
The microgrid operation with distributed generations close to the loads eliminates central
bulk power generation, which in turn relieves transmission and distribution network costs,
saving of fossil fuels, reduction of pollution and greenhouse gases as well as technical
advantages like loss reduction, peak shaving, voltage profile and load factor improvements
and power quality enhancement. During disturbances, it can disconnect the generation and
load from the rest of the system to retain the overall system integrity. It has the potential of

improving local reliability that supports the overall system performance. Despite



Chapter 1 Introduction

technological advancements in electrical power grid and practically immature microgrid

operation still imposes various technical challenges. The challenges are:

Since microgrid involves renewable energy resources which are intermittent in
nature, continuous supply to the load is uncertain.
The hybrid energy system operation demands complicated control and management.
Dominant use of power electronic interfaced DERs that lead to severe voltage and
frequency fluctuation in the system due to less inertia.
The conventional distribution of power is from one end where the protection is
relatively simple; in contrast, microgrid operates with many energy sources placed at
various places where the coordination of protection devices is tedious.
The real and reactive power injection and absorption is directly related to frequency
and voltage in the system respectively. Higher penetration of DERs will results in
voltage rise in the system.

In case of undesired system faults, it requires fast detection of islanding condition to

guarantee safety and reliability of the system.

However, these challenges can be overcome by judicious planning, use of proper design and

control techniques in the microgrid operation. Some such solutions to tackle these challenges

arc:

Strategic deployment of DERs with respect to their location, size and technology to
suit the requirement.

Proper control techniques to manage the operation of all components in the microgrid
i.e. proper scheduling of DERs output to control the voltage and frequency.

Use of energy storage to balance the load demand and generation, which indirectly
smoothen the frequency regulation.

Proper schemes for protection of system.

1.4 Optimization techniques and problem formulating domains

Optimization is the procedure of finding the optimal solution to a problem. The

optimality of a solution is evaluated in terms of an objective. Even though there has been a

significant amount of research to deal with a single objective, the real world problem

involves multiple objectives, which mostly conflict with each other. Classical optimization is
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still a good way to find one best solution in one simulation run but not in handling multi-
objective problem as there exists a set of trade-off solution of multiple objectives instead of a
single solution. In such case, meta-heuristic algorithms are ideal for dealing with multi-
objective optimization problems because of their population search based approach.
Moreover, this multi-objective optimization can have two approaches:

1) Weighted sum approach — A simple method that would form a composite
objective function based on the preference factor assigned to each objective.
Optimizing the single composite objective function will result in one solution
from the trade-off solution set.

i1) Pareto based approach — Ideal multi-objective approach that would treat each
objective individually in the optimization procedure and result in a set of Pareto
solutions where there would be a provision for decision-making based on the
application.

Hence, the second method of optimization procedure is preferred for the advantage of
visualizing all possible combination of objective values that exist in the trade-off solution
between two conflicting objectives. In case of optimization methods, meta-heuristic
algorithms are predominantly applied and they are of two types:

1. Gradient search method (Trajectory based) — Search one solution at one time

2. Population search method — Process a group of solutions at a time.

Between the above methods, the former is a slow process because of single solution
search; one such example is Simulated Annealing (SA), Tabu Search (TS) whereas the latter
is efficient and fast in finding the optimal solution as it processes a group of solutions in the
search process, making it easier in finding the optimal solution. The population-based
methods are better in exploring the optimal solutions at a faster rate. Some such Evolutionary
and Meta-heuristic algorithms are: Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO), Ant Bee Colony (ABC), Bacterial Foraging
Optimization (BFO) etc.

Thus, the problem of active distribution network planning in this thesis is formulated
as a multi-objective problem and load frequency control of a microgrid is treated as a single
objective problem. Both the problems are optimized using proposed efficient meta-heuristic

algorithms.



Chapter 2

Literature Review



Chapter 2 Literature Review

Chapter 2

2 Literature Review

2.1 Distributed Generation (DG) Planning in Distribution Network

The prerequisite of the microgrid operation is the optimal Distributed Generation
planning. Distributed generation (often called as decentralized generation, dispersed
generation and embedded generation) is a small scale generation connected either in the
distribution network or in the sub-transmission network in the range from (1-10 MW).
Hence, typical Optimal DG Planning (ODGP) deals with finding the location and sizing of
the DG units to be installed in the existing network subject to various operational and
investment constraints. Even though the installation of DGs in distribution network offers a
variety of benefits, it may also impose some problems and limitations at higher penetration
level if they are not placed at proper location with correct penetration level (sizing). The
aspects that are influenced by the connection of DG units are as follows [6]: Voltage
deviations, Grid losses, Power quality, Fault level, Protection system and Reliability.
Therefore, the location and the sizing of DG become a challenging task for active distribution
system planning and operation.

Even though there is relatively large research on ODGP [7]-[9] on different
perspective related to technical and economic issues of DG operation, for an active
distribution network operation planning, little research on DG location and size have to be
carried out. The mathematical formulation of DG planning can be attempted as single or
multi-objective problem either with single DG or with multiple DG units considering
technical and economic constraints. The representative objective functions considered in the
DG planning are: 1) minimization of the total power loss of the system; 2) minimization of
energy losses; 3) minimization of system average interruption duration index (SAIDI); 4)
Cost minimization; 5) Minimization of voltage deviation; 6) Maximization of DG capacity;
7) maximization of profit; 8) maximization of a benefit/cost ratio; and 9) maximization of
voltage limit loadability [8]. The solution techniques for ODGP have been evolving and
number of approaches have been developed, each with its particular mathematical and

computational characteristics. The techniques discussed are classified as one of the three
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categories: Conventional methods, intelligent search-based methods and fuzzy set based
method. Conventional method includes analytical and numerical approaches.

DG planning has been attempted with several analytical approaches [10]-[15].
Acharya et al. proposed an analytical method, based on the exact loss formula, to optimally
site and size a single DG [10]. Lee and Park [11] proposed an analytical method for finding
the optimal locations of multiple DGs in combination with Kalman filter algorithm for
determining their optimal size. T. Gézel and M. H. Hocaoglu [12] developed an analytical
method using a loss sensitivity factor based on the equivalent current injection to find the
optimum size and location of a single DG. Hung et al. [13] suggested analytical expressions
for finding optimal size and power factor of different types of DGs. The same has been
extended in [14] to compute the optimal location and size of multiple DGs for different types
of DGs. Tah et al. [15] proposed a novel analytical expression for optimum DG size at each
bus by eliminating the use of bus impedance matrix for loss reduction in the system.

In case of numeric approach, there are several methods of optimization adopted in DG
planning problem such as gradient approach [16], linear programming [17], sequential
quadratic programming [18], Non-linear programming [19]-[23], dynamic programming
[24], Ordinal optimization [25]. P. Vovos and J. Bialek [16], proposed a gradient search for
the optimal sizing of DGs in meshed networks considering fault level constraints. Keane and
Malley [17] proposed a methodology based on linear programming to obtain optimal
allocation and sizing of embedded generation considering technical constraints for
accommodating maximum DG power penetration on the distribution network. AlHajri et al.
[18] applied Sequential Quadratic Programming (SQP) to solve ODGP without considering
the fault level constraints. Atwa et al. [19] proposed a methodology to convert discrete
probabilistic generation-load model with all possible operating conditions into a deterministic
model and solved it using a mixed integer nonlinear programming (MINLP) technique for
optimally allocating either only wind DG units or different types of DG units [20] . Porkar et
al. [21] employed MINLP for optimal allocation of different types of DG units considering
electricity market price fluctuation. Kumar et al. [22] evaluated an ODGP model in hybrid
electricity market using MINLP. Similarly, Abri et al. [23], proposed MINLP for optimally
placing and sizing the electronically interfaced DG units, with an objective of improving the

voltage stability margin. Esmaili et al. [24] proposed a method for optimal placement of DGs
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to maximize VSM simultaneously minimizing the grid power losses using the dynamic
programming search technique to find the global optimal solution. Jabr and Pal [25]
developed an ordinal optimization method for specifying the locations and sizes of multiple
DGs such that a tradeoff between loss minimization and DG capacity maximization is
achieved. The fuzzy set based methods are mostly used in conjunction either with
conventional or heuristic techniques.

Analytical methods are easy to implement and fast to execute. However, their results
are only indicative, since they make simplified assumptions including the consideration of
only one power system loading snapshot. Among the available numerical methods for
ODGP, the most efficient are nonlinear programming, sequential quadratic programming and
ordinal optimization methods. Heuristic methods are usually robust and provide near-optimal
solutions for large, complex ODGP problems. These methods are comparatively efficient
than conventional techniques irrespective of complexity of the problem. Generally, they
require high computational effort. However, this limitation is not necessarily critical in DG
placement applications.

A set of DG planning methods is proposed using GA presented in [26]-[28]. Gampa et
al. [26] proposed a novel sensitivity index based method for optimal placement where the
size of DGs is optimized using multi-objective GA considering both technical and investment
costs. Ogunjuyigbe et al. [27] proposed a dynamic GA based multi-objective optimization
depending on the variability of equipment cost for a tri-objective hybrid system. They also
justified the replacement of large diesel generators with small (split) ones to reduce LCC,
carbon dioxide emissions and dumped energy by 46%, 82% and 94% respectively. Whereas,
Singh et al. [28] evaluated the optimal placement of different DG types in distribution
network using a variety of load models using GA. Optimized DG system design improved
with regard to security, technical, economic and environmental viewpoints. Muttaqi et al.
[29] proposed a cost based DG sizing and placement using PSO technique. An economic
approach was implemented to evaluate system reliability. Kowsalya [30] used Bacterial
Foraging Optimization Algorithm (BFOA) to find the optimal size of DG whereas loss
sensitivity factor is used to identify the optimal locations for installation of DG units with an
objective of minimizing network power losses, operational costs and improving voltage

stability. Mitra et al. [31] investigated suitable mix of micro turbine and solar PV penetration
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in microgrid for optimal operation using Simulated Annealing (SA), with trade-off between
high upfront cost of solar PV system and fuel cost of micro turbine system. Prabha and
Jayabarathi [32] applied Invasive Weed Optimization (IWO) method to optimally size DG
whereas optimal DG placement was based on power loss factor sensitivity approach. IWO
resulted in more cost-effective DG configuration. Sultana et al. [33] investigated a complex
combinatorial problem of locating and sizing of DG for real power loss/energy loss
minimization of electric radial distribution networks. The Krill Herd Algorithm was
employed to determine the optimal size and location of DG. Hybrid approach led to greater
power loss reduction, better stability index compared to individual conventional and heuristic
approaches. Such hybrid algorithms used for DG planning are presented in [34]- [36].

The above reviewed heuristic algorithms are mostly population based and dependent
on algorithmic specific parameters and other controlling parameters, which may affect the
effectiveness of the algorithm. The difficulty of this parameter selection may increase with
modifications and hybridization techniques. Rao et al. [37] proposed a new optimization
technique called Teaching-Learning Based Optimization (TLBO), which is free from
algorithm specific parameters and has been utilized for single objective optimization
problems. Niknam et al. [38] proposed a new multi-objective teaching-learning-based
optimization algorithm in order to solve the optimal location of automatic voltage regulators
(AVRs) in distribution systems with distributed generators (DGs). Nayak et al. [39]
presented a non-domination based sorting multi-objective teaching-learning-based
optimization algorithm, for solving the optimal power flow (OPF) problem which is a
nonlinear constrained multi-objective optimization problem where the fuel cost, transmission
losses and L-index are to be minimized. One of the variants of this parameter less TLBO

algorithm is proposed in multi-objective frame for DG planning studies in this thesis.

2.2 Optimal planning of active distribution network in microgrid perspective
The location and size of conventional Distributed Generations connected in the
distribution network have to be planned for active management of load. However,
continuously increasing demand and depleting fuel-based generation urged the need of
including renewable energy source integration in the system. In such situations, optimally

planning the favorable combination of energy sources along with their best location and size
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is extremely important both in technical and economic terms. This is especially relevant in
the presence of inherently intermittent and environment dependent resources such as wind
and solar power which introduce significant uncertainty and variability in the system. Apart
from this, large-scale integration of renewable sources demands better smart grid
technologies to address various challenges ahead of its operation. Thus, dynamically
planning the resource mix for optimal and cost effective operation of the active distribution
network both in case of grid tied mode and autonomous mode of operation, is required for

timely exploration in this area of research.

2.2.1 Planning of grid connected active distribution network

The evolving active distribution network can operate both in the grid-connected mode
and in autonomous mode depending on the need. Diligent planning of Distributed Energy
Resources for the required mode of operation is a challenging task in the pace of network
characteristics changes [41]. The optimal mix and location of renewable and non-renewable
DG sources have to be identified for reaping the potential benefits of their connection in the
distribution network. In particular, connecting intermittent sources like wind turbine or solar
power will lead to various technical challenges to sustain operation of active distribution
system [42] in a reliable and secure manner.

So far, DG planning models were reported in two major ways. They are static and
dynamic planning models. These planning models can be attempted both with single and
multi-objective approaches. In static model, all the investment decisions are made at the
starting of the planning horizon [43]. Even though exhaustive work has been done in
optimizing the location and sizing of DG units in the distribution network, substantial amount
of research addresses this problem by considering dispatchable DG sources [44] such as gas
turbine, diesel generator and fuel cell etc., with a single objective [45], [46]. It is also
attempted as single objective problems of DG planning with stochastic models that include
uncertain power generating sources such as wind and PV [47], [48]. Similarly, static planning
models were also attempted in multi-objective frame. Harrison et al. in [49] studied the DNO
loss reduction incentives with optimal location and capacities using multi-objective OPF and
has been shown that the identified incentive has greater impact on the network deferral

reinforcement whereas a multi-objective model using NSGA-II is proposed in [50] for
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minimizing monetary cost index, technical and economic risk factors. The authors have used
fuzzy domain for modeling various uncertainties such as load, voltage and loading
constraints and the electricity price. Though the work attempted DG planning as a multi-
objective problem, they have utilized weighted sum multi-objective approach in which two
or more objectives are converted to a single composite objective by assigning preference
vector to each objective and thereby not serving the actual purpose.

In dynamic planning model, some of the work considered simultaneous investment of
both DG and network but the work does not deal with uncertainties associated with the DG
planning problem. Maria et al. in [51] proposed a multi-objective framework with two shell
process i.e. design and optimal operation of microgrid. Internal process includes optimal
management of microgrid using NSGA-II whereas external procedure implements design
features through glow-worm swarm optimization. On the other hand, Li guo et al. in [52]
presented a multi-objective stochastic optimal planning method for standalone microgrid
considering uncertainties by using chance-constrained programming algorithm. Mohammadi
et al. in [53] investigated the optimal operation and management of microgrid in a stochastic
framework by generating several stochastic scenarios and later reducing and converting them
into a deterministic problem. These deterministic problems were solved using new
optimization strategy based on Adaptive Modified Firefly Algorithm (AMFA). A two scale
dynamic programming is proposed in [54] to avoid conflicts between short term and long
term planning benefits pertaining to wind and battery respectively. A dynamic optimization
scheme has been presented for optimal energy management of wind-battery hybrid system.
The capacity and operation of DGs are optimized in [55] in a microgrid by proposing a new
hybrid optimization, that combines Quadratic Programming and PSO. Investments in the
microgrid are justified in terms of Net Present value (NPV) and uncertainties are
incorporated using fuzzy set theory. Smart energy management system is proposed in [56] to
minimize the operational cost of microgrids by optimally coordinating the power production
of DG sources and energy storage systems. Though the above discussed work formulated
dynamic planning model on multi-objective frame, one way or other it has compromised

either multi-objective approach or system dynamics and factoring in uncertainties.
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As an effort to bridge the above possibilities, a pareto optimal based multi-objective
planning model is proposed for grid connected active distribution network by manifesting all

possible system dynamics and uncertainties associated with generation and load.

2.2.2 Autonomous mode of active distribution network operation

The active distribution network either can be in grid-connected mode or
independently operated based on the renewable generation capacity and the load demand
[57]. In the former mode of operation, the deficit or excess power can be supplied or traded
with the readily available main grid. Whereas in the latter mode of operation, the real and
reactive power is generated and managed within the network including temporary power
exchanges with storage units if it exists. However, planning the operation and management
of such an active network with random and intermittent renewable sources coupled with
uncertain load in two modes of network operation is tough, and is a complex process due to
the goals, constraints and uncertainties. The microgrid operation must be addressed towards
challenges like power quality, reliability, supply and demand balancing, environment impact
and various economic and stability aspects. Dealing with these challenges in an autonomous
mode of operation with renewable sources demands an added effort towards technology
handling. To address this problem, use of conventional generation and the storage assets to
support its power fluctuation will be an appealing solution improving system reliability.
Thus, the optimally planned microgrid operation plays an important role in taking the
existing grid operation to a smarter level in so many ways, particularly when electrifying a
remote and isolated area.

It is generally accepted that conventional islanding of any microgrid predominantly
operates with diesel units, which involves high costs and emission due to high fuel
consumption unlike load shedding in unintentional islanding. To bring down the fuel cost of
diesel operated islanded microgrid and to reduce the environmental impact, the diesel units
are supplemented with renewable power generations such as solar, wind, biogas etc.
However, the uncertain generation especially with solar and wind will introduce fluctuation
in supply which in turn would lead to unstable operation [58] of the grid, thereby increasing
costs for flexible operation of the diesel back up. In such conditions, energy storage systems

play a vital role in reducing the overall system cost by smoothening load peaks thereby
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overcoming the operating burden of diesel generators and cost constraints. Therefore, ESS
can make robust and flexible system operation economical.

Ritwik et al. [59] proposed an ANN based controller for battery storage is based on
the required power to be injected from the battery storage in case of power shortage to
maintain the grid voltage. The proposed controller is trained off line and tested online with
different loading conditions for power quality improvement and stable system for variable
test conditions. Jin et al. [60] proposed a compensation control strategy with modified droop
and wind power compensation for damping system frequency and power fluctuations. In
[61]-[63] computational methods for optimal sizing of an off grid hybrid solar wind electric
power generation system have been proposed and optimal configuration of the system has
been identified to achieve minimum annualized cost of the system with the presence of
battery storage. System reliability is enforced in terms of Loss of Power Supply and its
relation with the system configuration has been studied completely by making use of
probability density functions by processing weather data. Xinda et al. [64] developed three
control algorithms and sizing strategies for batteries to minimize the hourly generation
imbalance due to wind generation.

Zhao et al. [65] proposed GA based optimization to optimize the size of real world
standalone microgrid at Donghfushan island to achieve minimum life cycle cost and emission
simultaneously maximizing the renewable source penetration. Ting et al. [66] examined the
operation and control of standalone hybrid power system by implementing controller to each
sources so as to extract the maximum from them. Hussain et al. [67] developed a model for
autonomous microgrid with optimal mix of DGs and the performance was analyzed through
small signal analysis. The unstable operation was also studied with large penetration of wind
and solar sources. Various stability aspects of microgrid operation both in the grid connected

and standalone mode have been discussed in [68]-[71].

2.3 Load frequency control methods in microgrid
The main variables used to control the operation of power system are voltage,
frequency, real and reactive power. The voltage and frequency are regulated by adjusting
the reactive and real power respectively in the system. The power frequency control

becomes a challenging task if load and source of power generation fluctuate in the system.
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Hence, the load frequency control is an important function of modern power system which
is dispersed geographically over a large scale and interconnected with multiple generations.
This load frequency control equally requires greater attention in case of isolated small-scale
microgrid operation. In grid connected microgrid operation, the infinite main grid regulates
the frequency deviation due to variations in the load and renewable sources, whereas in case
of islanded operation, it involves greater challenge and demands advanced control strategies
to balance supply and demand with available generations. In case of islanded operation,
there is no grid support for the frequency regulation in the system; it depends solely on the
dispatchable sources such as diesel and storage units. These storage units play a vital role in
the economic and smooth operation of islanded microgrid with excess renewable sources.
Even though there are several research work on the microgrid control and management over
the past decade [72]-[73], load frequency control in such an active distribution system still
needs improved controls due to strong coupling between real and reactive power in the
network operation. This may lead to poor performance of conventional droop control due
to inability to control frequency and voltage magnitude [74] independently.

There are several LFC schemes reported in the literature from classical droop controls
to various advanced control strategies in the past decades. Those schemes for conventional
and distributed generation power system are comprehensively summarized in [75]. Authors
[76]-[79] proposed improvements in conventional droop control for load frequency control of
microgrids. Guerrero et al. [76] developed a generalized hierarchal droop control for both
AC and DC microgrid whereas authors [77]-[79] shown the benefits of various energy
storage systems in frequency support of microgrid operation, especially in the autonomous
mode with droop control. Apart from this conventional control techniques and methods
employing droop characteristics, intelligent algorithms based control techniques are also
growing equally in frequency regulation studies in power systems [80]-[83]. Application of
inteligent algorithms is not only confined to PI controller tuning applied for conventional
generations in frequency regulation studies, but also applied to tune gains of the PI
controllers employed in pitch control of wind energy conversion systems [84]. Bevrani et
al.[85] proposed an online intelligent technique by combining fuzzy logic and PSO algorithm
for frequency regulation in an isolated microgrid. The frequency control has been

implemented by tuning PI controller gains for different case studies. Keeping apart various
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techniques applied to load frequency control of microgrid, the challenges such as uncertainty
in intermittent renewable generation, low inertia associated with power electronic interfaced
DERs, dynamics and nonlinear complexities necessitates robust control technique. These
techniques helps to get tradeoff between the robust system performance and stability in the
closed loop system response against system uncertainties, such type of techniques are
discussed in [86]-[89].

In addition to these schemes, model predictive control is slowly getting into control
applications of power industry and is also applied to Load Frequency Control (LFC) /
Automatic Generation Control (AGC) problem in recent times due to its simple and fast
implementation. MPC has proved efficient in the process industry due to its modeling
flexibility that involves straightforward design procedure, acceptable computational time and
easy constraints handling, it is well received in all control application, and it is widely
adopted in industries such as petrochemical industry, electrochemical, power and water
management etc.

Although so many variants of MPC have been proposed by the authors for different
applications, the classical dynamic matrix control (DMC) of MPC is predominantly applied
to the load frequency control problem. Some researches that applied MPC to load frequency
control are presented [90]-[95].

To explore the efficiency of intelligent techniques for load frequency control of
microgrid, a novel strategy using levy flights and spider monkey optimization algorithm is
proposed and an adaptive model predictive control is proposed to overcome the limitations in

the MPC for load frequency control of microgrid.

2.4 Motivation

The thesis presented an extensive review on the research topic for planning and
control of an active distribution system through a microgrid perspective. Distributed
Generation is at the heart of microgrid operation and planning their location and sizing plays
a primary objective in any active distribution system operation. There is enough literature
available for tackling the problem DG planning: some have used conventional programming
while others have attempted population based meta-heuristic optimization methods.

Irrespective of the technique used, the unanimous objective of primary DG planning is to
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achieve the objective of minimized system loss and improved voltage profile. Keeping this in
mind, a variant of an existing optimization algorithm, which is parameter independent, is
proposed to improve the objectives.

The next level of planning in a microgrid operation is, its cost management. It is well
known that there are several DG technologies like costlier and polluting dispatchable sources
such as diesel and gas, and environment friendly technologies such as wind and solar.
Planning the optimal and economic operation of DG units to supply the load is the ultimate
requirement of microgrid operation. In view of this, a new multi-objective optimization
technique is proposed to find the optimal mix of DG units for economic operation of a grid
connected distribution system and it has been extended to autonomous operation of active
distribution system in the presence of storage units.

While planning the DGs and their economics of operation in a microgrid, the main
purpose of microgrid operation should not be ignored i.e. the active management of load
which is directly linked with the frequency of operation. Thus, load frequency control of
isolated microgrid is also attempted in this thesis with two types of control techniques. The
first one uses PI controllers whose gains are tuned with a meta-heuristic technique called levy
based spider monkey algorithm and the second one uses model predictive control where
fuzzy controller is embedded into it for better adaptive performance of load frequency
control in microgrid.

The thesis addresses the overall planning of optimal and economic operation of DGs
in the active distribution system and the load frequency control in an isolated microgrid,
which needs to be analyzed. These problems are analyzed using the proposed meta-heuristic

optimization algorithms.

2.5 Contribution

The contributions made in the thesis are as follows:

® A Multi-objective based Peer enhanced Teaching-Learning Based Optimization
(PeMOTLBO) algorithm is proposed to find a set of pareto optimal solutions for
planning DG in distribution system. The proposed algorithm is parameter less and has
performed better for multi-objective optimization in DG planning compared to

conventional multi-objective techniques. Optimal location and size of DG units are
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found with minimum active power loss and voltage deviation in the distribution
system. A fuzzy set theory approach has been used to find best compromising DG

location and size from the set of trade-off solutions.

® New hybrid Grid-based Multi-objective Harmony Search algorithm (GrMHS) is
proposed for optimizing the active distribution network operation. In the proposed
method, a grid-based strategy is used as a secondary selection criterion in non-
dominating sorting procedure of pareto based multi-objective optimization. The
harmony search algorithm is employed for optimization purpose. The optimal
resource mix of Distributed Energy Resources has been identified for both grid
connected and autonomous mode of active distribution system operation. The
planning model considered three conflicting objectives viz., i) energy loss ii) voltage

deviation and iii) cost of DG operation.

® A novel eagle strategy by combining levy flights with Spider Monkey Optimization
Algorithm (SMA) is proposed for load frequency control of an isolated microgrid.
The proposed algorithm has been used for tuning gains of the PI controller employed
in controllable generation such as diesel unit for load frequency control of an isolated
microgrid. The results of the proposed algorithm have been compared with other
prominent algorithm such as PSO, Firefly Algorithm (FA), and Harmony Search (HS)

algorithm.

® A fuzzy adaptive Model Predictive Control (MPC) has been proposed for load
frequency control of isolated microgrid. Rule based fuzzy controller is employed
within MPC algorithm to fuzzify the tuning parameter present in the cost function of
MPC. The proposed method improved the adaptive performance of the MPC for
better frequency control in the microgrid. The results of the proposed method have

been compared with PI controller response in the system.

2.6 Thesis Organization

The thesis is organized into seven chapters, with a summary of each chapter given as
follows:

Chapter-1 introduces DG and its need in the distribution network operation. It briefly

outlines the planning of active distribution network with relevant terms and topics. The
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frequency regulation in the system operation is also emphasized. In short, an overview of the
problem addressed in this thesis is presented.

Chapter-2 presents a detailed literature survey on the research topic with past and
ongoing research. The literature review presents various techniques and approaches of DG
placement and sizing in the distribution network followed by elaborate discussion of dynamic
planning of optimally placed DGs for economic grid operation. Later, the load frequency
control of microgrid is also reviewed with relevant analysis. Following an extensive survey
on the topic, the motivation for the proposed research work, contribution, and organization of
the thesis are also presented.

Chapter-3 presents the DG modeling and its incorporation in the backward-forward
sweep distribution load flow. The formulated objectives and constraints for DG placement
and sizing problem are explained. Non-dominated sorting based multi-objective Teaching
Learning based Optimization (TLBO) algorithm is discussed and a variant of TLBO called
Peer enhanced Multi-objective TLBO (PeMOTLBO) is proposed for optimizing the location
and sizing of DGs. Simulation results and discussions of the proposed algorithm are
presented. The comparison metrics evaluation to support the superiority of the proposed
algorithm is also shown.

Chapter-4 proceeds with the uncertainty modeling of load and generation such as
wind and solar power. A new hybrid Grid-based Harmony Search algorithm is proposed by
incorporating the grid based strategy in the basic harmony search algorithm. DG planning
model to find the optimal mix of DG units is proposed for non-autonomous microgrid
operation with three conflicting objectives viz., 1) energy loss ii) voltage deviation and iii)
cost of DG operation. The same model and algorithm is extended to plan the autonomous
operation of active distribution network by enforcing the renewable bus available limits with
optimal DG units. The quality of results obtained by the proposed methodology is ascertained
with the help of performance metrics evaluation for both the cases.

Chapter-5 presents the load frequency control of an isolated microgrid. First of all,
the need and means of the load frequency regulation in a microgrid is explained and a new
eagle strategy for optimizing the gains of proportional and integral (PI) controller is proposed
and the advantage of the proposed eagle strategy that combines levy flights with spider

monkey optimization algorithm is explained. Finally, the results of the proposed method are
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compared with other algorithms such as PSO, Firefly Algorithm (FA), and Harmony Search
(HS) algorithm and validated.

Chapter-6 explains fuzzy adaptive model predictive control for the load frequency
control of an isolated microgrid. The MPC algorithm is simple and more efficient in
frequency control without employing PI controllers. The fuzzy tuned model predictive
control is proposed with necessary justifications. The results obtained by the proposed
method are compared with PI controller and are validated.

Chapter-7 summarizes the salient features of the reported research work in this thesis

and suggests the future scope of the work.

2.7 Summary
This chapter presented a detailed and extensive review on planning of active distribution
network on multi-objective frame and on the load frequency control of autonomous microgrid
operation. The need and reason behind multi-objective problem formulation for DG planning and
the limitations involved in various multi-objective approaches were highlighted. The necessity of
faster and more efficient controllers in load frequency control of microgrid has been discussed.

Finally, the motivation and contribution of the research work have been presented.
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Chapter 3

3 Distribution Generation planning using Peer enhanced
Multi-Objective Teaching —Learning based
Optimization Algorithm

3.1 Introduction

This chapter intends to present a new variant of Teaching Learning based
Optimization algorithm in multi-objective frame called Peer enhanced Multi-objective
Teaching Learning Based Optimization (PeMOTLBO) algorithm for optimizing DG location
and sizing in the distribution network. TLBO algorithm is chosen as there is no algorithmic
parameter that affects the optimization process of the problem. The problem is attempted
with pareto based multi-objective approach as it deals with two conflicting objectives of the
planning problem, such as real power loss and voltage deviation. The DG planning problem
is subjected to voltage limits and maximum penetration level of DG constraints in
distribution network, whereas the decision variables are location and size of the DG units.
DGs are modeled as negative load model and considered to be operating at a constant power
factor of 0.85 lead. The fuzzy set theory is also applied to choose the best solution from the

obtained pareto set.

3.2 Modelling of DG in distribution system load flow

The load flow studies are common procedures applied to get the steady state operating
characteristics of the power system, especially the voltage profile in the system. However,
the load flow methods used in transmission system viz., Gauss-Seidel and Newton-Raphson
and Fast Decoupled methods are not valid in distribution Systems due to the well-known
characteristics of an electric distribution system. The characteristics are:

e Radial or weakly meshed structure;

e Multiphase and unbalanced operation;

e Unbalanced distributed load;

e Extremely large number of branches and nodes;

e Wide-ranging resistance and reactance values, low X/R ratio (< 1).
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There are distribution load flow methods, which can be applied to distribution
network for analyzing distribution system planning and operation studies like load
scheduling, DG incorporation, demand side management etc. There are different distribution
load flow methods available in the literature:

— Direct distribution load flow (DDLF)

— Backward forward sweep distribution load flow(BFS)
— Vector based distribution load flow(VDLF)

— Primitive impedance based distribution load flow

— Current injection based load flow

In the distribution system load flow, first three can be applied only to the radial
system whereas the primitive impedance and current injection methods can be applied to
both radial and meshed distribution system. In this thesis, Backward Forward Sweep (BFS)
distribution load flow is used for the analysis because it is simple and easy to implement and

takes less computational time.

3.2.1 Backward and Forward Sweep load flow algorithm (BFS)

The BSF distribution load flow method includes two steps [104]: Backward sweep
and the forward sweep.
The backward sweep is based on KCL for finding each branch currents
The forward sweep is based on KVL for finding the voltage for each upstream bus of a

line or a transformer branch.
R] 5 V, R 23 V3 VM W R M-1M VM
— S W——— *r=

I / ‘(M—I.M]
M—Ig R, y‘é R,,

Figure 3.1: A simple resistive network

This method can be explained by above simple network. During backward sweep, line
currents are calculated by the equations given below:

Let m=4 nodes

23



Chapter 3 DG Planning using PeMOTLBO Optimization Algorithm

I, = Z—i 3.1)
Iy = I, (3.2)
I, = Z—z (3.3)
I3 =134 + 13 (3.4)
I, = Z—z (3.5)
Iy = Ly + I, (3.6)

Then in general
Vi
=
Liivr = Livaiva + liga (3.8)

The line currents are calculated from last node to first node. So it is known as

I (3.7)

backward sweep. During forward sweep, voltages are calculated by the equation below:

Vo =V = 12Ry (3.9)
V3 = VZ - 123R23 (3.10)
Vy =V3 —1I34R34 (3.11)

Then in general
Vier =Vi = LiiyaRijiva (3.12)
The voltages are calculated from second node to last node. So it is known as forward

sweep. For a typical 6-bus radial distribution system shown in Figure 3.2.

5

Z3s

Figure 3.2: Typical 6-bus radial distribution system
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Assuming a flat voltage profile as initial voltages, during backward sweep

[36=l6
I45=I5
[34=145-14 > (3.13)

I23=I34+136-13

Li=Is-12

The above equations can be written in general form as
J(k) = Xm=aajiqJ (M) —1(q) (3.14)
Where J (k) =branch current in line k. I (q) =current injection at bus-q.

During forward sweep, the voltages are calculated from equation (3.12). Backward

and Forward sweeps are repeated until convergence is achieved.

3.2.2 DG as negative PQ model

The DGs can be classified into four types based on the real and reactive power
injections and absorption. In this chapter, DG is considered as capable of injecting real and
reactive power to the distribution network and the operating power factor is taken as 0.85
lead [98]. To incorporate the generation in the distribution load flow, it is considered as

negative load at a particular bus. Thus, the DG is modeled as negative PQ in the load flow.

3.3 Proposed Peer enhanced Multi-Objective Teaching-Learning Based
Optimization (PeMOTLBO) Algorithm

The proposed optimization method is based on the fact that along with influence of a
teacher, learners also put in effort in improving the output in a class. A group of learners
constitutes the population in basic TLBO. The different design variables in TLBO are
analogous to different subjects offered to learners and the result is analogous to the fitness.
The teacher is considered as the most learned person, the best solution so far is analogous to
the Teacher in TLBO. The process of TLBO is divided into two parts. The “Teacher Phase”
means learning from the teacher and the “Learner Phase” means learning through the

interaction among learners. The implementation of TLBO algorithm is as follows [37]:

25



Chapter 3 DG Planning using PeMOTLBO Optimization Algorithm

e Initialization

Population X is randomly initialized by a search space bounded by matrix of N rows
and D columns. The jth parameter of the ith learner is assigned values randomly using the

equation

x%jy = X" + rand * (x]" — x") (3.15)

N: number of learners in a class i.e. “class size”.
D: number of courses offered to the learners.
G: maximum number of iterations.

‘rand’ represents a uniformly distributed random variable within the range (0, 1), x}”i"

and x;"** represent the minimum and maximum value for jth parameter. The parameters of

ith learner for the generation g are given by
g _|[,9 g g g g
X(i) = [x(i,l)’ X(i2yr X(i3) e w2 X1 jyr oo x(i,D)] (3.16)

The objective values at a given generation form a column vector. In dual objective
scenario, two objective values are present for the same row vector. The two objectives (a and

b) can be evaluated as:

[] _ lfa(xe‘i-))] (3.17)

ot = [lg)

For all the equations used in the algorithm, i = 1,2,3...N andg = 1,2,3, ....,G. The

random distribution followed by all the rand values is the uniform distribution.

e Teacher Phase

The mean parameter M9of each subject of the learners in the class at generation g is

given as:
g g g T
mean([x(ljl),....,x(l.’z),...,x(N‘l) )
g 9 9
MY = mean([xf, 2, X)) (3.18)
g g g
mean ([x(LD), N x(N,D)D
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This is effectively given as:
MI = [md,md, ..., mJ, .., mJ] (3.19)

The learner with the minimum objective function value is considered as the teacher.
The teacher phase makes the algorithm proceed by shifting the mean of the learners towards
its teacher. To obtain a new set of improved learners, a random weighted differential vector
is formed from the current mean and the desired mean parameters and added to the existing
population of learners.

Xnewg) = [xg) + rand * (Xg Mg)] (3.20)

teacher —

The superior learners in the matrix Xnew replace the inferior learners in the matrix X

using the non-dominated sorting algorithm [29].

e Proposed Modification in MOTLBO algorithm

The modification is done in this phase (Teacher phase) of MOTLBO based on the fact
that along with teacher, learners also put in effort in improving the mean result of class. This

will improve the convergence in getting good optimal solutions.

teacher

Xnewg) = [xg) +rand * (X2 — TgM9) + +rand * (xg) - MY ] (3.21)

e Learner phase

In this phase, the process of mutual interaction tends to increase the knowledge of the

learner. For a given learner Xg), another learner X(gr) is randomly selected (i # r). The

ith parameter of the matrix Xnew in the learner phase is given as:

(3.22)

g g g : g g
Xnew?. = { xGyrana=(xf)-xf,)) i<y }
@

Xg)+rand*(ng—Xg)) otherwise
The PeMOTLBO algorithm, due to the multi-objective requirements, adapts to the
scenario by having multiple Xnew matrices in the learner phase, one for each objective. So,

the learner phase operations for a dual objective problem are as shown in equations below.
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x g _ Xg)+rand*(xg)—xg)) if(Ya‘ig<Yaf) 393

NeWH | =1y g 49 . (3.23)
a X(i)+rand*(X(i)—X(r)) otherwise

x g Xg.)+rand*(Xg)—Xg)) if(Ybiq<Yb,‘?) 304

neww|, = 149 9 .9 . (3.24)
b X(i)+rand*(X(r)_X(i)) otherwise

The X and Xnew matrices are passed together to the non-dominated sorting algorithm
and only the best learners are selected for the next iteration. The algorithm is terminated after

G iterations. Final set of learners represent the pareto optimal solutions.

e Best compromise solution based on fuzzy set theory

For the purpose of decision-making, a best compromise solution is computed using a

technique based on fuzzy set theory.

( 1, Fi — Fimin

= E pmin < Fy < pex 325
Wi = Fmax_pmin’ i 14 i ( . )
i i
0, Fl_max — Fi

The above equation gives a measure of the degree of satisfaction for each objective
function for a particular solution. The corresponding membership function for the non-

dominated solution % is calculated as follows:

No , ko

k _ _ Ziz1 K
=M vNo &
Y1 Lim K

" (3.26)

Where

M: Number of Pareto solutions; No: Number of objectives.

The best compromise solution is the one achieving the maximum member ship function.

3.4 Problem formulation

The pareto-based multi-objective technique is used to find trade-off solutions among
conflicting objectives. In this chapter, the conflicting objectives considered are active power
loss and voltage deviation. The active power loss is reduced with increase in DG size but it
may raise the voltage which in turn increase the voltage deviation. Thus , DG planning is

formulated as multi-objective problem with location and size of DGs as decision variables.
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Min f1 = (pioss) (3.27)

Min f2 =Y, (V; — 1) (3.28)
Subject to

0 < Ppg < Ppe™* (3.29)

Vimin < Vi < Vimax (3.30)

Where, p;,ss 1s the total real power loss in the system, n is the total number of buses,
V; is the voltage magnitude at bus i. Pp is the real power of DG and P is the maximum
power of DG. Pji** is 1.2 MW for IEEE 33-bus system and IEEE 69 bus system whereas 2
MW for Indian 85-bus systems [105] to account for higher loss in the system.

3.5 Simulation results and discussions on the test systems

The proposed PeMOTLBO algorithm has been tested on IEEE 33-bus system, [EEE
69-bus system and Indian 85-bus system. The line data and bus data of these systems are
given in Appendix. The single line diagrams of these systems are also shown in Appendix. In
all cases, negative PQ model is considered for DG and assumed to be working at a power
factor of 0.85 lead. The results of proposed method have been compared with prominent
multi-objective technique called Non-dominated Sorting Genetic Algorithm (NSGA-II) and
basic multi-objective TLBO (MOTLBO). The superiority of the proposed PeMOTLBO has
been validated. Various control parameters used in proposed PeMOTLBO and NSGA-II
algorithm are given in Table 3.1. For ease of comparison the same population size and
iterations are considered in NSGA-II, MOTLBO and PeMOTLBO algorithms. The proposed
algorithm for DERs planning model is coded using MATLAB programming and all the
simulations are carried out on a personal computer with an 15 processor, speed of 2.53GHz

and memory of 4GB RAM.

Table 3.1 Control parameters for TLBO and NSGA-II algorithms

TLBO [37] NSGA-II [40]
Population size=30 Population size=30
Maximum no. of iterations=150 Maximum no. of iterations=150
Max. runs=30 Max. runs=30

Cross over probability-0.9
Mutation probability-0.1

29




Chapter 3 DG Planning using PeMOTLBO Optimization Algorithm

Figure 3.3, Figure 3.4 and Figure 3.5 shows the improvement in voltage profile with
increase in DG units in the IEEE 33-bus, IEEE 69-bus system and Indian 85-bus system
respectively. It is observed that the voltage at the buses tends to increase with the increase in
penetration level of DG power in the systems considered. The maximum penetration of each
DG is considered to be same for respective system. In case of four DG, average voltage

profile of the system is reached nearly to the sub-station’s voltage i.e., 1p.u.
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Figure 3.3: IEEE 33-bus system: Voltage profile of the system for different DG case
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Figure 3.4: IEEE 69-bus system: Voltage profile of the system for different DG case
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Figure 3.5: Indian 85-bus system: Voltage profile of the system for different DG case.
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Figure 3.6: IEEE 33- bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and NSGA-II
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Figure 3.7: IEEE 69- bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and NSGA-II
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Figure 3.8: Indian 85-Bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and NSGA-II

The variation in voltage profile and the losses have been studied by increasing DG
from one unit to four units. Table 3.2 shows the comparative study of proposed PeMOTLBO
algorithm for different DG cases for IEEE 33-bus system. The locations and size of DGs for
various DG numbers have been optimized by proposed PEMOTLBO algorithm and it is
shown in Table 3.2. It is observed that with two DGs of capacity 2.20083 MW at buses 30
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and 12, the system gives better voltage profile of 0.9744 p.u. with loss reduction of 79.2%.
However, connecting 1 MW or 2 MW at one or two places with any DG technology imposes
difficulty as they generate power on a small scale. Therefore, it is better to go for a
reasonable number of DG units with limited size, which may reduce the cost. For analysis
purpose, the system is tested by connecting 3 DGs and 4 DGs and there is considerable
reduction in total real power loss and further improvement in voltage profile. Similarly in
Table 3.3, it is observed that with one DG of capacity 1.9534 MW at bus 61, the IEEE 69-bus
system gives better voltage profile of 0.9730p.u with loss reduction of 89.3% and Table 3.4
shows the comparative study for Indian 85-bus system where with one DG of capacity 2 MW
at bus 28 gives a voltage profile of 0.9551 and with loss reduced to 73.1%. IEEE 69-bus
system and Indian 85-bus system are also analyzed for up to four DG cases. The pareto
optimal solutions of PeMOTLBO, MOTLBO and NSGA-II for four DG case have been
compared and it is shown in Figure 3.6, Figure 3.7 and Figure 3.8 for IEEE 33-bus system,
IEEE 69-bus system and Indian 85-bus system respectively. It is perceived that the pareto
front of PeMOTLBO dominates the base algorithm MOTLBO and NSGA-II. This shows the
superiority of the proposed algorithm in terms of both better objectives and diversity among
the solutions within the optimal fronts. Among the 30 pareto optimal solutions obtained, one
solution with the best compromise between the two functions is explored by using fuzzy set
theory approach from the pareto front. Based on its output, the solutions are selected and
tabulated in Table 3.5, Table 3.6 and Table 3.7 for comparison with NSGA-II and MOTLBO

methods.

Table 3.2 IEEE 33-Bus system: Comparison of proposed PeMOTLBO results without and with DG

Performance Without With With With With
Quality DG 1 DG 2 DG 3 DG 4 DG
DG location ; 31 30,12 | 30,14,7 | 7,30,16,25
(Bus number)
o | 102 |G
DG size (MW) - 1.2 1.0083 83322 0.4802
) 0.7426
Pioss(p-u) 0.2027 0.1129 0.0422 0.0298 0.0128
% loss reduction - 44.3 79.2 85.3 93.6
Worst voltage (p.u) 0.9131 0.9173 0.9744 0.9768 0.9922
Best voltage (p.u) 1.0000 1.0000 1.0048 1.0038 1.0036
Voltage deviation(p.u) 0.1171 0.0650 | 0.0024 | 0.0011 0.0003
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Table 3.3 1IEEE 69-Bus system: Comparison of proposed PeMOTLBO results without and with DGs

Performance Without | With | With With With
Quality DG 1 DG | 2DG 3 DG 4DG
DG location : 61 | 13,61 | 51,17,62 | 21,67,61,12
(Bus number)
0.3130
0.6207
DG size (MW) - 1.9534 0.8068 0.4871 0.2994
1.7787 17073 1.7547
) 0.3007
Ploss(p.u) 0.2247 | 0.0240 | 0.0097 | 0.0077 0.0048
% loss reduction - 89.3 95.7 96.6 97.9
Worst voltage (p.u) 0.9092 | 0.9730 | 0.9924 | 0.9943 0.9943
Best voltage (p.u) 1.0000 | 1.0026 | 1.0010 | 1.0011 1.0012
Voltage deviation(p.u) 0.0992 | 0.0113 | 0.0004 | 0.0001 0.0001

Table 3.4 Indian 85-Bus system: Comparison of proposed PeMOTLBO results without and with DGs

Performance Without | With With With With
Quality DG 1DG | 2DG 3 DG 4DG
DG location ; 28 | 48,58 | 77,85,48 | 64,34,26,82
(Bus number)
0.7661
0.9443
) 0.8230 0.7010
DG size (MW) ” 2 | 16266 g'gzg 0.6656
’ 0.3868
Ploss(p.u) 0.3163 | 0.0851 | 0.0458 | 0.0398 0.0269
% loss reduction - 73.1 85.5 87.4 91.5
Worst voltage (p.u) 0.8713 | 0.9551 | 0.9826 | 0.9897 0.9907
Best voltage (p.u) 1.0000 | 1.0062 | 1.0030 | 1.0068 1.0029

Voltage deviation(p.u) | 0.1287 | 0.0538 | 0.0039 | 0.0024 0.0008

Table 3.5 IEEE 33-bus system: Comparison of proposed PeMOTLBO with MOTLBO and NSGA-II for 4 DG

case

DG location (bus number) and size Worst Ploss
Method (MW) voltage (p.u)
(p-w) '
31 14 8 25
NSGA-IT[40] 0.9178 0.4688 | 0.8602 | 0.8361 09178 1 0.0151
8 14 30 25
MOTLBO [37] 0.6511 0.5070 | 1.0508 | 0.7565 0.9921 1 0.0132
7 30 16 25
Proposed PeMOTLBO 0.8563 10050 104802 107426 0.9922 | 0.0129
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Table 3.6 IEEE 69-bus system: Comparison of proposed PeMOTLBO with MOTLBO and NSGA-II for 4 DG

case

Worst P
Method DG location (bus number) and size (MW) | voltage | , %

61 50 51 25

NSGA-IT[40] 17304 107916 | 0.7202 | 0.3028 | 09944 | 0.0057
49 15 26 61

MOTLBO [37] 0.8441 0.5013 0.0926 1.8261 0.9965 1 0.0053
21 67 61 12

Proposed PeMOTLBO 03130 102994 17547 103007 0.9943 | 0.0048

Table 3.7 Indian 85-Bus system: Comparison of proposed PeMOTLBO with MOTLBO and NSGA-II for 4 DG

case

Worst P
Method DG location (bus number) and size (MW) | voltage foss
(p.u) (p.-w)
12 19 68 34
NSGA-IT[40] 0.6252 [ 0.4173 | 0.8060 |0.9151 0.9941 1 0.0281
79 8 34 80
MOTLBO [37] 0.5625 10.9378 |0.7791 | 0.3421 0.9898 1 0.0278
64 34 26 82
Proposed PeMOTLBO 0.7661 0.7010 1 0.6656 10.3363 0.9907 | 0.0269

3.5.1 Performance Metrics Comparison of proposed PeMOTLBO with NSGA-II

In any multi-objective optimization, the basic goals to be achieved are i) To find
solutions close to the pareto optimal and ii) To identify a solution as diverse as possible in
the non-dominated front. The performance of the proposed algorithm is evaluated with two
metrics (one evaluating the progress towards the true pareto-optimal front and the other
evaluating the spread of solutions) that tests both the goals. True pareto front for most of the
engineering problems are not defined, the better pareto solutions set on comparison is
considered as true pareto front. In this thesis, set coverage metric for first goal and spacing
metric for second have been considered. To compare the proposed PeMOTLBO method with
robust NSGA-II, both the algorithms are executed for 30 independent runs. Box plot is used

to show the quality of results obtained with these metrics.
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3.5.1.1 Set coverage metric

This metric can be used to get an idea of the relative spread of solutions between two
sets of solution vectors A and B. The set coverage metric C (4, B) calculates the proportion of

solutions in B, which are weakly dominated by solutions of A:

C(4,B) = l{beBIacA:a<b}| (3.31)

|B|

Since the domination operator is not a symmetric operator C (4, B) is not necessarily
equal to 1- C(B,A) . Thus, it is necessary to calculate both C(4, B) and C(B, A) to calculate

how many solutions of A are covered by B and vice-versa.

Box plot: For a pair of C(A4, B) there are 30 C-metric values for 30 independent runs.
This box plot can be used to visualize the distribution of C-metric values. The upper and
lower end of the box corresponds to 75" and 25 percentiles and central portion is the
median. Figure 3.9, Figure 3.10 and Figure 3.11 are the box plot of C-metric values for IEEE
33-bus, IEEE 69-bus and Indian 85-bus systems respectively. The left boxes in the box plot
correspond to average distribution of C-metric values of proposed method ie. Ic
(PeMOTLBO, NSGA-II) where C-metric values of PeMOTLBO are not weakly dominated
by NSGA-II and it shows the probability of PeMOTLBO dominating NSGA-II is more,
which shows the superiority of proposed algorithm. Table 3.8 reveals that there is significant
difference of average coverage metric values (Ic) between PeMOTLBO and NSGA-II in all

the systems considered.

Table 3.8 C-Metric: Mean value, standard deviation of proposed PeMOTLBO and NSGA-II

Test systems Methods Mean Stal.lde.lrd
deviation
IEEE 33-Bus system Proposed 0.7211 | 0.3982
PeMOTLBO
NSGA-II [40] |0.1833 ] 0.3758
IEEE 69- Bus system Proposed 0.7744 | 0.3984
PeMOTLBO
NSGA-II [40] | 0.1267 | 0.2970
Indian 85-Bus system Proposed 0.6067 | 0.3572
PeMOTLBO
NSGA-IT [40] | 0.1233 | 0.2811
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Figure 3.9: IEEE 33-bus system - Box plot of C-metric value
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Figure 3.10: IEEE 69 -bus system - Box plot of C-metric value
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Figure 3.11: Indian 85-bus system - Box plot of C-metric value
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3.5.1.2 Spacing metric

This metric is to find the diversity among the non-dominated solutions. This measures

the relative distance between consecutive solutions in the obtained non-dominated set.

sl
|o| 2 (d; — d)* (3.32)

Where d; = minkEQ,\k#Z%:df,fl —frﬂ and d is the mean value of the above

distance measure d = ZlQl d;/|Q|. The distance is the minimum value of the sum of the
absolute difference in objective function values between the i solution and any other
solution in the obtained non-dominated set. If S value is zero, it shows that all the non-
dominated solutions in the pareto front are equidistantly spaced. Figure 3.12, Figure 3.13 and
Figure 3.14 show the distribution of space metric values for IEEE 33-bus system, IEEE 69-
bus system and Indian 85-bus systems respectively and the difference noted is highly
significant in favor of the proposed PeMOTLBO method. The spread of space metric values
is close to the zero in case of proposed method which implies, the solutions in the pareto
obtained are equidistantly placed with each other. The comparison of s-metric values of

proposed PeMOTLBO and NSGA-II methods are tabulated in Table 3.9.
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Figure 3.12: IEEE 33-bus system- Box plot of S-metric values
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Figure 3.13: IEEE 69-bus system- Box plot of S-metric values
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Figure 3.14: Indian 85-bus system- Box plot of S-metric values

Table 3.9 S-Metric: Mean vale, standard deviation of Proposed PeMOTLBO and NSGA-II

Test systems Methods Mean Stapdgrd
deviation
IEEE 33-Bus system | Proposed 9.945*10° | 1.2099*10*
PeMOTLBO
NSGA-II [40] 7.5987*10 | 0.0014
IEEE 69-Bus system | Proposed 9.5077*10° | 1.1202%10°°
PeMOTLBO
NSGA-II [40] 5.2652*10™ | 7.8914*10*
Indian 85-Bus system | Proposed 3.1151*%10* | 2.8314*10*
PeMOTLBO
NSGA-II [40] 0.0019 0.0028
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3.6 Summary

In conclusion, to consolidate the contribution made, this chapter attempted to answer
the problem of optimal placement and sizing of DG units on distribution systems as multi-
objective problem with new algorithm. A new variant of TLBO algorithm has been proposed
for optimization purpose. The proposed peer enhanced teaching-learning based optimization
(PeMOTLBO) is employed to find a set of pareto optimal solutions for planning of DG in a
distribution system and fuzzy set theory approach has been used to find the best
compromising DG location and size. The effectiveness of the proposed method is tested on
IEEE 33-bus, IEEE 69-bus distribution system and Indian 85-bus distribution system. The
pareto front obtained by the proposed PeMOTLBO has been compared with basic MOTLBO
and NSGA-II and a qualitative comparison is also made with well-known NSGA-II method.
The comparison shown the superiority of the proposed algorithm in terms of both better
objectives and diversity among the solutions in the optimal fronts obtained. Two
performance metrics have been evaluated to ascertain two goals of the multi-objective

optimization and the proposed technique exhibited better metric value compared to NSGA-II.
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Chapter 4

4 Optimal Planning of Active Distribution Network
Operation with hybrid Distributed Energy Resources
using Grid-based Multi-Objective Harmony Search
Algorithm

4.1 Introduction

In this chapter, an efficient Grid-based Multi-objective Harmony Search (GrMHS)
algorithm is proposed for planning and operation of Distributed Generation (DG) in active
distribution network. This grid based multi-objective algorithms establishes coordinate
system (grid) with dimension of number of considered objectives for plotting the locations of
objective values in the objective plane. These DG technologies include both dispatchable and
non-dispatchable (renewable) distributed energy resources. The optimal mix of these DERs
and location of renewable and non-renewable DG sources has to be identified to make use of
the potential benefits of their connection in the distribution network. Particularly, when
connecting intermittent sources like wind and solar will lead to various technical challenges
to sustain the reliable and secured operation of distribution system. The location and size of
fuel based distributed generation are optimized using proposed grid based harmony search
algorithm where a grid-based strategy has been embedded in multi-objective optimization as
a secondary selection criterion instead of crowding distance. The proposed algorithm is
tested for two and three objective cases of DERs planning in distribution network. The
planning model identifies the optimal mix of renewable and dispatchable DGs by minimizing
three conflicting objectives viz., i) Energy loss, ii) Voltage deviation and iii) Cost of DG
integration in the distribution network. Moreover, the proposed model serves to be more
realistic for planning as it considered all uncertainties associated with load, electricity price,
wind speed and solar irradiance. This chapter also analysed the limitation on locating the
renewable sources in the autonomous active distribution network operation. This has been
enforced by adding constraints on the bus limits for renewable source connection. The

autonomous operation of active distribution network operation is analysed with additional
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battery storage sources connected to the system to support the loads, as there is no grid

support in the autonomous system operation.

4.2 Proposed Grid based Multi-Objective Harmony Search (GrMHS)
Algorithm

Harmony Search (HS) algorithm is a Meta heuristic optimization algorithm inspired
from the improvisation process of music in search of perfect harmony [96]. HS algorithm is
simple, converges faster and more efficient in searching optimal solution among other
heuristic algorithms. On the other side, a grid-based dominance strategy has been proposed
as secondary selection criterion in multi-objective formulation using GA [97] and it is
claimed to be better in terms of convergence and diversity of solutions when compared to
NSGA-II and SPEA (Strength Pareto Evolutionary Algorithm) techniques. Since multi-
objective form of harmony search algorithm is found to be better when compared with
NSGA-II [98] for DG planning problem, the idea of applying grid based dominance strategy
in multi-objective optimisation using harmony search algorithm is attempted and Grid based
Multi-objective Harmony Search (GrMHS) algorithm is proposed for DG planning in this
chapter. The results are found promising in terms of better optimal solutions. Before entering
the procedural steps of proposed GrMHS algorithm, a few necessary definitions and concepts

are introduced below:

4.2.1 Definitions and concepts

In GrMHS, grid coordinates are used to locate individuals in the objective space. To

set the grid structure of 4" objective, minimum and maximum values of k" objective are
found in the entire population P and it is denoted as P™"and P™ respectively. Then, the
lower and upper limits of the grid in the Atk objective are determined as follows:

I, = P™ —(P™ — P™ )/(2*div) 4.1)

ul, = P™ + (P™ — P™ ) /(2 *div) (4.2)

Where div refers to the number of divisions of the objective space (generally user
defined). If there are M objectives, then objective space will be divided into div  hyper

boxes. Thus, the width W} of hyper box in the k" objective can be given as:
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w, = (ul, =Il,)/div (4.3)

The grid coordinates of individual in the k" objective is calculated as:

G (x) = (/) =1) w, ] (44)
Where I_J denotes the floor function, Gk(X) is the grid coordinates of individual X in

the k™ objective and f, (%) is the actual objective value in the k” objective.

Grid dominance: Let X,y € P,x < grid V<<
Vie(,2,...M):G,(x)<G,(y)A
Vje (1,2, M):G,(x) <G, () (4.5)
Where X=,,,; V denotes that X grid-dominates y , M is the number of objectives.

Grid difference: Let X, y € P the grid difference between them is denoted as

M
GD(x,y) = ]G, (x)-G, ()] (4.6)
k=1
4.2.2 Fitness calculation

Unlike single secondary selection criterion, in NSGA-II, for evolving populations to
have an optimum value, GrMHS considers three grid-based criteria to select individual with
better fitness. They are grid ranking (GR), grid crowding distance (GCD) and the grid
coordinate point distance (GCPD). GR and GCPD are used to evaluate convergence of the
pareto solutions while GCD is concerned with the diversity of individuals within the pareto
front.

GR is defined as the summation of its grid coordinates in each objective
M

GR(x) =) G,(x) 4.7)
k=1

Density estimation of solutions is taken care of by the GCD by considering the

distribution of neighbours of a solution and it is given by

GCD(x)= Y. (M -GD(x,y)) (4.8)

YEN (x)
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Where NV(X) is the set of neighbours of X and solution ) is regarded as neighbour

of solution X if grid difference, GD(x,y) <M.

The Euclidian distance between an individual and the best corner solution of its hyper

box is called GCPD and it is calculated as follows:

6ePD( = 3 (Fy (x)= (b + G, (x)xd,))/d, ) (49)

4.2.3 Framework of proposed Grid based Multi-Objective Harmony Search (GrMHS)

algorithm

The framework of the proposed GrMHS algorithm is explained in the following steps:
Step 1: Input algorithm parameters such as the Harmony Memory Considering Rate
(HMCR), distance bandwidth (bw) and Pitch Adjusting Rate (PAR) and limits on decision
variables.
Step 2: Initialization of randomly generated population.

P « Initialize (P),.,

Where, N-Population size; D-Number of decision variable.
Step 3: Evaluate the objectives for the initialized population
Step 4: While termination criteria is not met do
Step 5: Harmony search improvisation process on the decision variables.

For allpe P

For allde D

Generate random number rand ()
If rand () < HMCR

select a solution X; from the existing population
If rand () < PAR

new

x" =x,+rand () *bw

1

End if
else

xinEW
End if
End for

End for

is randomly generated

P™" is new population

Step 6: Intermediate population formation
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P'« PUP™
Step 7: Environmental selection (p') /* Detailed procedure can be referred in [97]*/
Step 8: end while /* Step 4 */
Step 9: Return final population P i.e. pareto optimal solutions

Step 10: Fuzzy set theory is used to select the best solution from the pareto solutions.

1 E :Emin
Fmax _F .
M — # F;mm <Fl' <F;max (4.10)
F;max _En’lll’l
O Fl' :F;max

Where, # gives the degree of satisfaction of each objective function.

NO

> ou

! (4.11)

M NO
ZZ/lik

k=1 i=1

The best solution is the one with maximum membership function.

4.3 Modeling of generation and load: uncertainties and certainties

The uncertainty models of renewable resources and load are modeled using
probability density function (pdf) based on five year wind speed and solar irradiance data
[99]. For the ease of computation, each year of the planning period (five years) is divided
into four seasons with each season represented by any day within the season presuming
similar weather conditions throughout the season. From each season, a typical day’s
probability distribution of hourly wind speed and solar irradiance is generated using Weibull
and beta probability density function respectively. The day representing each season is again
divided into 24-hour time segments. So, each year contains 96 time segments (24 hours per
day, 1day per season and 4 seasons per year) and for each year, every time segment has to
process 90 wind speeds and irradiance data (30 days per month and 3 months per season).
For each time segment the mean and standard deviation of those data is calculated and from
them the beta and Weibull probability density functions are generated for each hour. These
continuous pdfs generated at each segment are further divided into different states to evaluate
the power available from each state and summed up to get the total power extracted from

wind and solar at the particular hour. The load profile is assumed to follow IEEE-Reliability
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Test System profile [106]. The cost of power ($/MW) purchased from the main grid is
assumed constant and hence, it depends only on the amount of load supplied from the main
grid. The sections that follow present the detailed modeling and processing of probability

density functions.

4.3.1 Wind speed modeling

There are various methods to model the wind speed behavior but very often, the
recommended expression for wind speed modeling is the Weibull probability density

function, which is based on the comparison of actual wind speed profiles at different sites.

The wind speed profile estimated using Weibull pdf (f, (v)) is given by

£.) =§Gj 7 exl{— Gj } (4.12)

Where, k is called the shape factor and ¢ is called the scale factor. If k=2 is
considered, the corresponding pdf is called Rayleigh pdf. In this work, since the pdf has been
built for each time segment, scale and shape factor have to be calculated from the mean (u)
and standard deviation (o) of wind speed data at each time segment. The expressions for k

and c are as follows:

k= (ij | (4.13)
u
c=1.12u (4.14)

4.3.2 Solar irradiance modeling

The random phenomenon of solar irradiance data is described using Beta probability

density function, which is given by the following:

F(Ol-i—ﬂ)* a-1) % -1
fb(S){F(a)F(ﬂ) sV EAQ-5)PV 0<s<1, @20, 20 (4.15)
0

, otherwise

To calculate the parameters of the Beta distribution function, the mean (p) and

standard deviation (o) of the random variable i.e. solar irradiance s are utilized as follows:

ﬂ=(1—ﬂ)*(”*(”2+1)—1j (4.16)
(e
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o= HP 4.17)
1—p

These Weibull and Beta probability distribution functions evaluated at each time

segments are utilized to calculate the power available from wind and solar respectively.

4.3.3 Calculation of power output of the wind turbine and PV module

In order to incorporate the output power of wind-based DG and solar DG units in the
planning problem formulation, the continuous pdf generated at each hour has been divided
into states (periods), where in each state the solar irradiance and wind speed have been within
certain limits. In other words, for each time segment there will be a number of states. In this
work, the step is adjusted to be 1m/s for wind speed and 0.1kW/m? for solar irradiance since
more number of steps will increase complexity in computation while fewer numbers of steps
affects accuracy. In this section, the output power of the wind turbine and PV module
corresponding to each state will be calculated using the wind turbine power performance
curve and PV characteristics respectively. For the sake of simplicity, the average value of
each state is utilized to calculate the output power for this state (e.g. for the wind speed, if the
2nd state has the limits 1 m/s and 2 m/s, hence, the average value of this state (va2) =1.5
m/s).

The probability of the wind speed and solar irradiance of DG units for each state

during any specific hour is calculated using the following:

PiG,}= [f.(v)dv .18)
P{G,}= ffb(s).ds (4.19)

The hourly average output power of a PV module or a wind turbine is the summation
of the power produced at all possible states for this hour multiplied by the corresponding
probability of each state. Once the average output power is calculated for each time segment,
the average output power is calculated for the typical day in a season and hence, the output of

the entire planning period.
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4.3.3.1 Calculation of power output of wind turbine

The output power of the wind turbine depends on the wind speed of the site, as well as
the parameters of the power performance curve. Therefore, once Weibull pdf is generated for
a time segment; the output power during the different states of this segment can be calculated

using the following equation.

0 0<v, <v,
(Vo = V)
_ PVated * (m‘ U) v('i < Vaw < vr
Pw(vaw) - Ve = Ve
})mted vr < va v < vcu
0 Veo < Vaw (4.20)

4.3.3.2 Calculation of power output of PV module

The output power of the PV module is dependent on the solar irradiance and ambient
temperature of the site as well as the characteristics of the module itself. Depending upon the
required amount of solar power penetration, the number of modules are added to the PV
panel. Here it is 16000 modules for 1.2 MW of power. The output power during each state in

the generated beta pdf is calculated using the following equations:

I, =T, +Say(z\706%;20j (4.21)
1,=s,|I, + K (T, —25)| (4.22)
V,=V,—K,*T, (4.23)
Py (s,)=N*FF*V, %] (4.24)
= Ve ™ Lupr (4.25)

K)C * ]SC
4.3.4 Battery storage model

Lithium Ion battery is considered in this work as frequent switching from charging
and discharging does not impose any limitation. At any time, the state of the battery is
related to the previous state of the battery irrespective of discharging and charging of the
battery. The battery is charged up to SOC™ only when the total generation from the

renewable sources is greater than the load in the systems and it is mathematically written as:

Ebat (t) = Ebat (t —1) + ((nw * Pw(t) + ns * Ps(t)) - Pload (t))*n,, (4.26)
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On the other hand, when the load is greater than the available energy generated, the
battery will discharge provided its State of Charge (SOC) is greater than SOC™" and is given
by:

Ebat (1) = Ebat (t = 1) + (Pload (t) — (nw * Pw (¢) + ns * Ps (£)))* 1 o1 (4.27)

Where, Ebar (1) and Ebat (¢ —1)are the available battery capacity at time t and (t-1). The

charging and discharging efficiency of the battery are 0.85 and 0.95 respectively.

4.3.5 Load and price modeling

Daily load curve is modelled for each season using the typical demand level factor
(DLF) as a percentage of the particular peak load at each bus. The planning period is

considered to be 5 years and it is assumed to be a certain percentage of load growth «,

every year. The demand level at every hour of the planning period is modeled as:
S5y =Shue *DLF,,, *(+a, ) (4.28)

Where, DLF,,, is demand level factor for a typical daily load at every bus in year t.

sh

i,base

is the base load at each bus. The electricity price changes with market operation, which

in turn change with the demand level so it is assumed that the electricity price follows the

changes in the demand level.

4.4 Problem formulation
This section presents the formulation of the distributed generation planning problem
for optimizing three conflicting objectives in an active distribution network. The processing
of season wise data and modeling of wind turbine and solar panel can be looked up in [48].
DGs are modelled as a negative load [100]. It can be inferred from section 4.3 that each time
segment represents 90h (30 days per month*3 months per season) so, the objective functions

and constraints are formulated as follows:
ny 96 nl
Fl = Z Z (Z Ploss j* 90 (429)

F,=Y(V,-1) (4.30)
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ny 96
F; = LZ(Z Soe (Ppp) +C (p) +OM (p )j + OM(”en)J +C,, (4.31)
y=1 \_h=1
Where,
Foe(Pog) = Copopy ¥ (@Pp” +b.Ppy +) (4.32)
OM(PDE) :kOMi *PDE (4.33)
OM(ren) =KWT*Q4,T+KPV*CPV—I—KBm*CBm (4.34)
m  ndg
Ce(p)ZZZ/ue[*Ce[*Pei (4'35)
e=1 i=1
C,, = ng: CI, * CAP, (4.36)

i=1

Equality Constraints:

Powi = Piioser + Pia + P, T By, (4.37)
In-equality constraints:

0< B, . <Ppc"" (4.38)

Vimin SV, <V iinay (4.39)

Table 4.1 Cost associated with various DER types

Initial Emission cost
DER type Investment Annual M&O ($/kg)
$/KW) cost ($/kW) %
( NOX COZ CO b
DE 500 - 0.28 |0.013 | 0.022 | 0.131
WT 1600 50 -
PV 6000 35 B

4.5 Optimal operation strategy for grid connected and autonomous mode
operation of active distribution network

4.5.1 Optimal operation strategy for grid connected mode

The operation strategy procedure for identifying optimum solution in grid-connected
mode of operation is depicted in the form of flowchart is shown in Figure 4.1. The cost

associated with each DG technology has been presented in Table 4.1.
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Input system input data: load curve, electricity price, fuel price,
wind Qpnnd and solar irradiance

l

Input DG parameters: Fuel and emission cost coefficient, M&O
and investment cost and limits

L

Harmony search algorithm initiated with population of random DG
locations (renewable and conventional)

L

Calculation of investment cost of all DGs and O&M cost of renewable DGs
(since they are independent of hourly generation)

l
Set iter=1
I

L
With available power from wind and PV and optimal generation from the diesel
generator, calculate the following three objectives
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Figure 4.1: The proposed planning strategy for grid connected mode of operation
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4.5.2 Optimal operation strategy for autonomous mode

The proposed planning strategy is explained in the flowchart depicted in Figure 4.2 It
is clearly perceived from the flowchart that the diesel generator is least preferred to supply

the load as its power generating cost is very high due to fuel consumption.

Read load curve, electricity price, fuel price, hourly wind speed
and solar irradiation

L

Input DG parameters: fuel consumption, emission coefficient,
investments, M&O cost and DG maximum limits

L

Enter the number and type of DG units to be placed
L

Initialize the optimization procedure i.e location of DG units

Set iter=1

1

| Initialize Pdiesel=0 |

Calculate Pw and Ps i.e Total power from the renewable
sources (Pren)

Yes No
If Pren > Pload
Ebat > Ebatmax Ebat < Ebatmin
Yes No No Yes

Pdump=Pren- Calculate Ebatie Calculate Ebati.e
Pload Charging proces discharging process

No
Ebat > Ebatmax Ebat < Ebatmin
Yes

Yes
Pdump=Pren-Pload- Pdiesel=Pload-Pren-

(Ebat-Ebatmax) (Ebatmin-Ebat)

)
| Ebat=Ebatmax |
|

I
| Calculate all the objectives |

If iter < itermax

Figure 4.2: The proposed planning and operational strategy for autonomous mode of operation

Pdiesel=Pload-Pren

1l
| Ebat=Ebatmin

Iter =Iter+1

Optimally planned
economic solution
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4.6 Simulation results and discussion

In this section, the active distribution network planning is analyzed for two cases: 1)
Two objectives: Minimization of active power loss and voltage deviation and ii) Three
objectives: Minimization of real power loss, voltage deviation and total cost of DG
integration. The proposed GrMHS algorithm is tested on IEEE 33-bus system, IEEE 69-bus
system and Indian 85-bus radial distribution system. The proposed algorithm for DERs
planning is coded using MATLAB programming and all the simulations are carried out on a
personal computer with an i5 processor, speed of 2.53GHz and memory of 4GB RAM. The
proposed GrMHS algorithm is executed with 30 populations for a maximum of 100 iterations

for all the cases.

4.6.1 Two objectives: Minimization of active power loss and voltage deviation

The proposed GrMHS algorithm is applied for minimizing two conflicting objectives
such as active power loss and voltage deviation (similar to section 3.4). For this case, DG is
modelled as negative load and assumed to supply real and reactive power to the distribution

network. The power factor of DG is assumed as 0.85 lead.
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Figure 4.3: IEEE 33-bus system: Comparison of voltage profile with the proposed GrMHS
and PeMOTLBO

The effectiveness of the proposed algorithm is demonstrated with IEEE 33-bus
system, IEEE 69-bus system and Indian 85-bus distribution respectively. The computation
time for the proposed algorithm is also less and it is almost half of the time taken by the

PeMOTLBO algorithm proposed in the chapter 3.
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Figure 4.5: IEEE 69-bus system: Comparison of voltage profile with GrMHS and PeMOTLBO

The comparison of voltage profile and the pareto solutions between voltage deviation
and active power loss are shown in Figure 4.3 and Figure 4.4 respectively, for IEEE 33-bus
system. Similarly, the same for IEEE 69-bus system and Indian 85-bus system are shown in
Figure 4.5, Figure 4.6 and Figure 4.7, Figure 4.8 respectively. The consolidation and
comparison of results for all the three systems are shown in Table 4.2. The optimal location

and size obtained by proposed algorithm is giving better active power loss reduction.
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Figure 4.6: IEEE 69-bus system: Comparison of pareto solutions obtained by GrMHS and PeMOTLBO
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Figure 4.7: Indian 85-bus system: Comparison of voltage profile with GrMHS and PeMOTLBO
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Table 4.2 Consolidation and comparison of results for two objectives case

IEEE 33-bus system

IEEE 69-bus system

Indian 85-bus system

Proposed Proposed Proposed

Cohis | PeMOTLBO | "S9Pt | PeMOTLBO | " 22 | PeMOTLBO
¢ | 2| 14705791 7 T08563 [ 11052481 21 [ 0.3130 |26 [0.6415 | 64 [ 0.7661
£ 28| 5[30[09874 ] 30 | 1.0050 | 50 [0.7610 [ 67 | 0.2994 [35]0.6391 [ 34 [ 0.7010
SQE| g 6 [08168] 16 [ 04802 | 18 | 03944 | 61 | 1.7547 | 67 [ 0.6831 | 26 | 0.6656
= S| @[ 2507411 | 25 | 07426 | 61 | 1.7498 | 12 | 03007 | 11 ] 0.5716 | 82 | 0.3868
Real power 0.00963 0.0129 0.002742 0.0048 0.0262 0.0269
loss (p.u.)
Voltage 0.0002 0.0003 0.3525¢-4 0.0001 0.0006 0.0008
deviation
Wor(slt)‘l’lo)“age 0.9941 0.9922 0.9984 0.9943 0.9909 0.9907
CPU time (s) 17.477 34.567 22.706 89.22 38.53 131.8803
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Figure 4.8: Indian 85-bus system: Comparison of pareto solutions obtained by GrMHS and PeMOTLBO

4.6.2 Three objectives: Grid connected mode of operation with hybrid DERs

The planning of grid connected active distribution network is studied with three
objectives: 1. Energy loss 2. Voltage deviation 3. Cost of DG integration in this section.
These objectives are conflicting with each other. So they are formulated multi-objective
problem. As the IEEE 33-bus and IEEE 69-bus systems have nearly the same load and active
power loss and behave in a similar manner as reported in the previous DG planning studies,
the performance of the proposed GrMHS algorithm in this planning model is evaluated with
IEEE 33-bus system and Indian 85-bus distribution system shown in Appendix. The DG
technologies include both dispatchable and non-dispatchables (renewable sources) DERs.
Daily load profile is assumed to follow the load curve of IEEE-RTS system [106] for 5 years
with 5% of annual load growth for both the system. To avoid computational complexity, one-
day profile of load and generation has been taken from each season. Thus, only 96 time
segments are processed for one year where each time segment corresponds to 90 hours
approximately in all season [48]. Connecting distributed generations to the grid connected
distribution network will transform them to operate as non-autonomous mode of a microgrid.
The various DGs considered here are wind turbine, solar and diesel generator. Figure 4.9

shows the load variation of IEEE 33-bus system in the first year of the planning horizon
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along with typical generation profile of each DER. The hourly profile of wind speed and

solar radiation data for five years have been accessed from [99].
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Figure 4.9: Yearly profile of Load and generations of various DERS

4.6.2.1 IEEE 33-bus system

This system is assumed to be connected to the main grid (grid connected micro-grid
operation) with hourly load variation and DG sources. Since the planning period is
considered as 5 years, the objective functions such as energy loss, costs are evaluated for the
whole planning period in iterative process. By doing so, the aggregated demand and energy
loss of the system are obtained as (113.18+j70.073) GVA and (4638.1+j3093.7) MVA
respectively when there is no DG connected in the system. Four combinatorial scenarios
were analysed with different DG type to validate the objective values. The number of DGs is
fixed as three as their total ratings are equal to the base demand. Figure 4.10 shows the
voltage profile of the IEEE 33-bus system obtained by the proposed GrMHS algorithm for
different combinations of DGs in the system. It is observed that even though the number of
DGs is same, there is variation in the voltage profile of the system with respect to the DG
type. A better voltage profile is noticed obviously for 3 diesel generators case as it is the only
controllable generation among all three DG types. Figure 4.11 shows the seasonal variation
of total energy loss of the system for various combinations of the DGs. It is perceived that the

energy loss reduction is significant if all three DGs are diesel generators and there is
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reasonable energy loss reduction where all three are DG technologies. However, if DGs are
either PV or wind technologies, the energy loss reduction is not any better than in cases

involving diesel generators.
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Figure 4.10: IEEE 33-bus system: Bus voltage variation for different DG combinations.
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Figure 4.11: IEEE 33-bus system: Seasonal energy loss variation for all DG combinations

Figure 4.12 shows the comparison of the pareto solutions found by GrMHS with basic
MOHS and NSGA-II technique. For validating the superiority of the proposed grid based
multi-objective harmony search algorithm over basic MOHS and NSGA-II method, all three
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diesel generator case has been compared in Figure 4.12. It is evident from the figure that
efficient searching has been done by the proposed GrMHS over MOHS and NSGA-II to find
out better optimal solutions with respect to all objectives. The spread of the solutions is found

to be wide in case of GrMHS.
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& B NSGA-I
c 4000 o
E 2000 .
§ 120(())
O 1400

1800 0.01 ) .
2000 Voltage deviation (p.u)

Energy loss (MWh) 2200 O

Figure 4.12: IEEE 33-bus system: Comparison of pareto solutions of Proposed GrMHS with MOHS and
NSGA-II

The consolidated result of the planning problem using GrMHS in IEEE 33-bus system
for different combinations of DG has been summarized and compared with MOHS and
NSGA-II, which is shown in Table 4.3. It shows that, despite hourly variation in the power
output of renewable resources, the total power contributed by each renewable resource such
as wind and solar in the entire planning period is fixed based on modelled wind speed and
solar irradiance for five years. Therefore, whatever power available from them is utilized and
only the firm generation from diesel is altered. It is ascertained from the table that among all
four combinations of DGs, if all 3 DGs are diesel, an appreciable energy loss reduction
around 72.13% is achieved with a voltage deviation of 0.00032 p.u but the cost is found to be
2006.33 million$ which is predominantly very high compared to other cases. On the other
hand, if all 3 DGs are renewable, being either wind or solar power, the percentage of loss
reductions and voltage deviations are about 45.19%, 34.04% and 0.0012 p.u 0.03023 p.u
respectively and the cost involved is about 11.1507 million$ for wind and 22.2914 million$

for solar, far cheaper compared diesel based DG.
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The results reveal that the optimal renewable resource mix with firm power generation
is necessary for obtaining the optimal operation with considerable energy loss reduction and
the cost. For instance, if all DG technology is considered, the loss reduction is found to be
65.33% with voltage deviation of 0.00018 p.u. and the total cost is around 688.7479 million$
which is reasonable when compared to other cases. Similar analyses have been carried out
with NSGA-II technique and MOHS for the purpose of comparison. It is found to be
performing in a similar fashion like GrMHS for all cases but the objective values are found to

be inferior to GrMHS.
4.6.2.2 Indian 85-bus system

Indian 85-bus distribution system with a base demand of (2.54703+j2.622) MVA has
been modified by incorporating daily load variation using IEEE RTS system [106] over 5
years with an annual load growth of 5%. Thus, the total demand and energy loss of the
system over 5 years is found to be (78.307+j79.889) GVA and (7141.5+j4486.8) MVA
respectively. Renewable DGs modelling is adopted in the same way as that of the IEEE 33-
bus system. Figure 4.13 shows the voltage profile of the Indian 85-bus system for all DGs
combination. It shows the effect of connecting the renewable resources and firm generating
source such as diesel on voltage profile in the system. The voltage profile in the system
found better in case of diesel generator. Figure 4.14 presents the seasonal energy loss

variation of the system for different DGs combinations.
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Figure 4.13: Indian-85 bus system: Voltage variation at all buses for different DG combination.
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Figure 4.14: Indian-85 bus system: Seasonal energy loss variation for all DG combinations
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Figure 4.15: Indian 85-bus system: Comparison of pareto solutions of Proposed GrMHS with MOHS and
NSGA-II
Figure 4.15 shows the comparison of the pareto solutions obtained by GrMHS with
MOHS and NSGA-II technique for Indian 85-bus system for all DG cases. Moreover, the
pareto solution obtained by NSGA-II techniques are with two fronts, which introduces
ambiguity in the decision making process. In this system, the pareto optimal front obtained
by GrMHS method is little close to the basic MOHS method but the best solution given by

proposed method is superior to two other methods.
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Table 4.4 provides the comparative results of the proposed model in Indian 85-bus
system for all DG combinations. It is interpreted from the table that when the system is
operating only with diesel, it is almost operating close to the autonomous mode operation of
the microgrid as the power generated is found to be 98.34% of demand. This results in
74.09% energy loss reduction from the base case with a voltage deviation of 0.0080p.u.
which due to cost constraints of around 2006.06 million$, resulted in the need for renewable
resource mix with diesel technology. Since this system’s demand is less when compared to
other above discussed systems, the contribution from renewable energy seems to be high and
has reduced the amount of power purchased from the main grid. Even then, only with
renewable DGs, it failed to boost up the percentage of loss reduction and improve voltage
deviation in the system. Thus, a mix of DG technology is quite preferred for better optimal
operation in the system. For example, one diesel, one wind turbine and one PV in the system
resulted in 60.52% loss reduction with voltage deviation of 0.00365p.u and a cost of 624.721
million$. The same analysis has been undertaken by using MOHS and NSGA-II technique to
validate the results obtained by GrMHS algorithm. It is clear from Table 4.4 that the

objective values are superior in GrMHS compared to MOHS and NSGA-II technique.

4.6.3 Three objectives: Autonomous mode of operation with hybrid DERs

The proposed operation strategy has been implemented in IEEE 33-bus distribution
test system and Indian85-bus distribution system using proposed GrMHS algorithm. For both
the systems, load profile has been assumed to follow IEEE-RTS system load curve [106]
with 5% annual load growth throughout the planning period of 5 years. The systems are
installed with 3 diesel generators of 1.2 MW, each capable of meeting the total demand in the
system and the renewable resources such as wind and solar generations of each 2 MW and
1.2 MW respectively. The impact of excess renewable resources penetration in the system is
analyzed for economic and stable autonomous operation of the active distribution system. Li-
ion battery of 2 MW rating is assumed to be fully charged. Initially, with Depth of Discharge
(DOD), 15% of its rating is considered and is allowed to charge only when there is excess
renewable generation after meeting the load demand at particular hour. The maximum

charging efficiency of the battery is considered 0.95.
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4.6.3.1 IEEE 33-bus system

The base case load of this system is (3.72+j2.3) MVA and is assumed as peak load of
the system. The sum of hourly demand over 5 years is found to be (113.18+j70.07) GVA
with total energy loss of (4638.1+j3093.7) MVA. This system is studied for its standalone
microgrid operation with DERs with no constraints on renewable sources location and the
impact on the objective functions is observed by enforcing available renewable source bus
limits. 16 buses have been assumed and are included as a constraint for solar and wind
turbine placement. The assumed bus limits for this system are [7 8 9 10 11 12 13 14 26 27 28
3031 32 33].
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Figure 4.16: IEEE 33-bus system: Variation of load and generation at first year of planning horizon for 9 DERs
case

Figure 4.16 shows the load and generations in the system during starting year of
planning period for 9 DERs case. The existence of dumped energy in the system is clearly
visible when there is excess renewable power generation after meeting load. At the same
time, it should be noted that the diesel and battery are not supplying any power to the system
as total load being supplied by renewable sources. When the available renewable source bus
limits are enforced on the system, the energy loss in the system is increased due to unsuitable
location of the renewable sources. This comparison is shown in Figure 4.17. The comparison
of voltage profile in the system with and without renewable bus available limits is shown in

Figure 4.18.
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Figure 4.19 shows the comparison of the pareto optimal solutions of the objective
functions before and after enforcing renewable bus limits. It is noticed that the pareto
solutions obtained when there are no bus limits enforced is giving better solution when
compared to the solution obtained when it is subject to bus limits constraint. When the bus
limits are imposed on the system, the solutions are superimposed with each other, thereby

making no provision for decision-making.
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Figure 4.17: IEEE 33-bus system: Comparison of Energy loss for 9DERs case
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Figure 4.18: IEEE 33-bus system: Comparison of voltage profile for 9DERs case
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Figure 4.19: IEEE 33-bus system: Comparison of pareto solutions of proposed GrMHS with MOHS

Table 4.5 IEEE 33-bus system: System Performance with various DERs combinations and renewable source

bus limits
Total no. of Proposed GrMHS MOHS [98]
DERs With ble b
Without bus limits 1t renewable bus Without bus limits
DERs limits
Type 6 DERs 9 DERs 6DERs 9 DERs 6 DERs 9 DERs
Size Size Size Size
Loc. (MWh) Loc. (MWh) Loc. Loc. Loc. (MWh) Loc. (MWh)
7 564.0 8 218.54 27 24 5 564.0 29 218.6
Diesel 30 271.7 30 99.21 24 30 32 271.7 7 99.21
25 66.30 25 10.057 30 10 9 66.30 25 10.06
24 202.33 25 202.33 13 28 15 202.3 14 202.3
Wind 15 202.33 14 25 202.3
32 202.33 32 8 202.3
6 202.33 7 31 202.3
PV 3 148.6 19 148.6 7 7 24 148.6 3 148.6
Battery 23 1.8 5 22.60 3 4 3 1.8 6 22.59
Total energy loss
(MWh) 828 1188 981 1672.2 954.0 1250.9
Voltage deviation (p.u) 2.164e-4 0.0002 4.22e-4 0.0004 2.5126e-4 0.0002
Cost (Million $) 2685.6 859.94 2685.6 859.94 2685.6 859.94
Pdumped (MWh) 0 125.84 0 125.84 0 125.84
Battery charged power -
(MWh) 0 -23.79 0 23.79 0 -23.79

*Loc. — Location

Table 4.5 shows the comparison of system performance in autonomous mode operation

of IEEE 33-bus system for two different DERs combination. One case considers less RES
and another excess RES. Since power generation by wind is relatively of less cost when

compared to PV, increase in renewable source integration is considered only for wind. When
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the wind turbine is considered excess in the system, the overall cost is decreased from 2685.6
million$ to 859.94 million$ but energy loss over planning horizon increased from 828 MWh
to 1188 MWh while maintaining better voltage deviation in both the cases. As the battery is
assumed to be charged only when there is excess renewable power generation after supplying
load, battery charging is made possible only in case of excess wind turbines. On the other
hand, if excess wind turbines are connected, the amount of dumped energy i.e energy
generated but not used is increased in the system. To avoid these discrepencies, enough
batteries can be accomodated and operated optimally with a limitted number of wind
turbines. To incorporate the practicality, renewable bus limits are enforced in this thesis
and due to fixed number of units and assumed uniform wind speed and solar irradiation at all
buses, the optimal location alone disturbed as the generation is scheduled based on the load
in the system. Thus, from Table 4.5 it is seen that if location constraints are included, the
system losses increased from 1188 MWh to 1672.2 MWh in case of 9 DERs with 4 wind

turbines, even with same generation due to non-optimally located renewable sources.
4.6.3.2 Indian 85-bus system

An Indian 85-bus distribution network with a maximum demand of (2.5703+j2.622)
MVA with a base distribution line loss of (316.7+j198.7) kVA 1is also considered for
autonomous operation with DERs. The total demand over 5 years is found to be
(78.307.18+j79.889) GV A with total energy loss of (7141.5+j4486.6) MVA for this system.
The constraint for solar and wind resource integration is enforced by considering 28 bus
location for their connections for this system. The assumed bus limits for this system are [8 9
1011121314 152578 80 81 82 8557 58 59 60 61 62 44 45 46 47 24 38 83 84].

Figure 4.20 shows the variation of load on the Indian 85-bus system and various
source of generation for 9 DERs case. It is observed that the battery reaches its maximum
charged state when there is excess energy available from the renewable sources due to less
demand in the system. It clearly depicts the increase in dumped energy in the system when
there is excess renewable power generation after supplying load. The energy loss profile
obtained by GrMHS algorithm before and after enforcing bus limits has been shown in
Figure 4.21. Imposing the renewable source bus available limits has worsened the system
loss as shown in Figure 4.21. The Figure 4.22 shows comparison of pareto optimal solutions

of the objective functions before and after enforcing renewable bus limits. It is noticed that
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the pareto solutions are better when they are not subjected to any bus limits constraint. The
voltage profile of Indian 85-bus system without renewable bus available limits is compared

with enforced bus limits in Figure 4.23.
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Figure 4.20: Indian 85-bus system: Variation of load and generation for 9 DERs case
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Figure 4.21: Indian 85-bus system: Comparison of Energy loss for 9DERs case
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Figure 4.22: Indian 85-bus system: Comparison of pareto optimal solutions of proposed GrMHS with MOHS
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Figure 4.23: Indian 85-bus system: Comparison of voltage profile for 9DERs case

Even though same operational strategy has been adopted for Indian 85-bus system as
that of IEEE 33-bus system, it is observed from Table 4.6 that due to less load on the system,
the amount of dumped energy i.e. wasted energy is 624.0282 MWh in 5 years. The total cost
is reduced from 1339 million$ to 272.825 million$ due to excess wind turbine integration in

the system at the cost of increase in system energy loss from 1764 MWh to 3038.73 MWh.
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The voltage deviation also increased in the system with increase in the wind turbine in the

system. As there is less demand in the system, simply increasing the number of wind turbines

has resulted in tremendous increase in the amount of dumped energy in the system. While it

has avoided the operation of diesel generators, thereby reducing the operating fuel cost.

When the renewable bus limits are imposed, there is much increase in the system energy loss

with same amount of generation as that of the case with no bus constraints.

Table 4.6 Indian 85-bus system: System performance with various DERs combination and renewable source

bus limits
Total no. Proposed GrMHS MOHS [98]
of DERs . .. With renewable . ..
DERS Without bus limits bus limits Without bus limits
Type 6DERs 9DERs 6DERs | 9DERs 6DERs 9DERs
Size Size Size Size
Loc. (MWh) Loc. (MWh) Loc. Loc. Loc. (MWh) Loc. (MWh)
29 4247 29 105.81 29 31 29 424.7 30 105.81
Diesel 60 81.0 64 6.793 64 70 64 81.0 71 6.793
52 1.7 51 0 52 11 53 1.7 77 0
68 202.33 67 202.33 60 12 68 202.33 35 202.33
Wind 35 202.33 44 26 202.33
3 202.33 60 11 202.33
12 202.33 25 67 202.33
PV 6 148.6 4 148.6 8 24 9 148.6 5 148.6
Battery 8 1.8 2 16.25 25 1 25 1.8 1 16.25
Total energy loss
(MWh) 1764.0 3038.733 1836 3503.24 1791 3327.58
?;"lllt)age deviation 0.0019 0.0117 | 0.0031 | 0.0021 0.0019 0.0010
Cost (Million $) 1339 272.83 1339 272.83 1339.0 272.825
Pdumped (MWh) 0 624.0282 0 | 624.028 0 624.0282
Battery charged -
power (MWh) 0 -19.65 0 19.65 0 -19.65

*loc. - Location

4.6.4 Performance metrics comparison of proposed GrMHS algorithm with MOHS
and NSGA-IT

The performance of the proposed algorithm is compared with two metrics (i) Set

coverage metric (ii) Space metric (one evaluating the progress towards the pareto-optimal

front and the other evaluating the spread of solutions) that tests both the goals. These metrics
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evaluation and the comparative study using box plot are followed in similar way as that in
chapter 3. Proposed GrMHS method is compared with NSGA-II and MOHS methods by

executing each of them independently 25 times.
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Figure 4.24: IEEE 33-bus system — Comparison of C-metric values obtained with proposed GrMHS
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Figure 4.25: Indian 85-bus system — Comparison of C-metric values obtained with proposed GrMHS

The box plot for distribution of coverage metric (Ic) values obtained by proposed
GrMHS algorithm has been compared individually with NSGA-II and MOHS methods. The

comparison of plots prove the superiority of proposed GrMHS algorithm is shown in Figure
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4.24 and Figure 4.25 respectively for IEEE 33-bus system and Indian 85-bus system
respectively. It is clearly understood from the graph that the convergence by proposed

GrMHS is better when compared to MOHS and NSGA-II.
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Figure 4.26: IEEE 33-bus system — Comparison of S-metric values obtained with proposed GrMHS
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Figure 4.27: Indian 85-bus system — Comparison of S-metric values obtained with proposed GrMHS

Figure 4.26 and Figure 4.27 shows the comparison of S-metric values obtained by
GrMHS method with MOHS and NSGA-II for IEEE 33-bus system and Indian 85-bus
system respectively. The plots depict that the solutions obtained by GrMHS and MOHS are
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equidistantly placed when compared to NSGA-II and MOHS methods as the S-metric values
obtained by GrMHS method is close to zero compared to MOHS and NSGA-II method. This

ensures better diversity among the solutions in the pareto front.

4.7 Summary

In this chapter, a novel multi-objective algorithm called Grid based Multi-objective
Harmony Search algorithm (GrMHS) has been proposed for active distribution network
operation planning. A secondary selection criterion i.e. grid setting strategy in objective
space is embedded in harmony search algorithm for better performance in multi-objective
frame. Optimal resource mix of renewable and fuel based DGs have been identified for
economic and efficient operation of active distribution network. It has been analyzed for both
grid-connected and autonomous mode of operation with energy storage systems. The limit on
location of renewable DGs is also incorporated in the formulation to assess its impact on

system energy losses and the voltage profile.
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Chapter 5

5 Load Frequency Control of an Isolated Microgrid
using Levy based Spider Monkey Algorithm

5.1 Introduction

Frequency and voltage controls are the two main challenges in microgrid operation in
grid connected mode and autonomous mode due to the presence of uncertain renewable
sources and negligible inertia. Since economic microgrid operation relies on fluctuating
renewable sources such as wind and solar, the task of maintaining frequency within the limits
for smooth operation of microgrid demands advanced controller action. Keeping this in mind,
this chapter proposes eagle strategy where a panoptic exploration to search space has been
accomplished for optimizing the gains of PI controller employed in controllable generating
units in the islanded microgrid. In the proposed strategy, the search process is of two fold i.e.,
coarse search by levy flights and an intensive local search by spider monkey algorithm. The
proposed strategy has been tested on a typical microgrid test system and its effectiveness is

validated with performance index Integral Time Squared Error (ITSE).

5.2 Proposed Eagle strategy using Levy flights with Spider Monkey
Optimization Algorithm
Eagle strategy is a methodology rather than algorithm is inspired from the foraging
behavior of eagle where eagle search for prey in free random manner. Once the prey is found,
it will intensify its hunting process by chasing the prey. Eagle strategy was first developed by

Yang et al.[101]. The two main components of eagle hunting strategy include:

1. A coarse global search with enough randomness so as to explore a diverse search
space and
11. Intensive local search using any efficient algorithm.

In this chapter, this strategy first explores the search space globally using levy flight
random walk whose step length is not fixed which ensures promising solutions and then an
intensive local search is carried out with efficient spider monkey optimization algorithm.

This strategy has explored a vast search space to find an optimal solution.
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5.2.1 Levy Flights

Random walk whose step length follows a non-Gaussian distribution such as levy

distribution is called levy flights.
It is often given in terms of simple power law L(s) ~ |s|_1_ﬂ where 0< <2 is levy

index. Mathematically, a simple version of levy distribution is given by [102]:

200 T 2 I S .
L(s,y, 1) = \/;exp[ 2(S—y)}(s—,u)3/2 JoOsus<s< (5. 1)
0 if s<0

Where g is shift parameter, y > 0 is scale parameter. This is the special case of

generalized levy distribution.

In general, levy distribution should be defined in terms of Fourier transform:
Fk) = exp[ —a|k|ﬁ] 0<p<2 (5.2)

Where, & is the scale parameter in range (0, 1). Inverse of the above Fourier transform
is not possible except for few special cases when g =2 corresponds to Gaussian distribution
and g =1 corresponds to Cauchy distribution.

In general, the inverse integral is given by

L(s) = %j cos( ks ) exp[ —alk|” Jdk (5.3)

0

It can be estimated only when § —00

_ af T (B)sin( zf)/2 (5.4)

1+p

L(s)

75|
The gamma function I(z) is given by
I'(z)= j e dt (5.5)
0

Where Z is an integer. Levy flights are more efficient than Brownian random walk in

exploring the unknown, large-scale search space. This is due to its variance O'z(t)~l‘3_'8

which increases much faster than the linear relationship o’ (t) ~t of Brownian walk.
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Implementation of levy walk:
There are two steps in generation of random walk with levy flights: choice of random
direction that is drawn from normal distribution and generation of random steps, which obeys

levy distribution. The latter is achieved by efficient Mantegna algorithm and step length is

given by:

step = A (5.6)

%

Where U and V are drawn from normal distribution.

u~N(@©,0)) ; v~N(©00)) (5.7)
Where,

1B
ra+p) sin(”fj

o, = , o,=1 (5.8)

N0+ p)21p2707

5.2.2 Spider Monkey Optimization (SMO) Algorithm

Spider Monkey Optimization algorithm proposed by JC Bansal et al. [103] is a
recently emerging algorithm in the family of nature inspired Meta heuristic algorithms. This
algorithm is inspired from the foraging behavior of spider monkeys, which follow certain
fission-fusion social structure (FFSS) for their effective foraging action.

Features of Fission Fusion Social Structure:

e [Initially spider monkeys survive in single group with 30-60 monkeys and are led
by a female leader (global leader) who is responsible for all sorts of decision-
making.

e In the foraging process, the group keeps being divided into smaller sub-groups
until the group members reach a minimum of 3-5 members in different directions
each lead by individual female leaders (local leaders).

e At the end of foraging process all groups are combined together as single group to
share the food. This type of foraging movement will increase the effective search
for food without foraging competition. The SMO algorithm is inspired from this

social structure behavior and it involves the following seven steps:
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Step 1: Initialization of population

Populations of P spider monkeys are initialized with D dimensional vectors.

SpM (i, j) = SpM (i, j) + rand () * (SpM - SpM

max j min j)

(5.9)

Where,i =1,2,3........ P,j=123.... D . SpM.

maxj

and SpM,; . are the maximum and minimum

in,
limits on the corresponding j decision variable.

Step 2: Local Leader Phase (LLP)
The position of each member of each group is updated based on the local leader

experience and other group member’s knowledge

SpMnew (i, j) = SpM (i, j) + rand () * (LL,, — SpM ;) +

(5.10)
rand [—-L11* (SpM ,, — SpM )

Where, SpM (i, j)is the j”decision variable of i* spar (spider monkey). 17 , is the b

decision variable of the local leader in k" group. g,y r/is the jth decision variable of
randomly chosen »” spider monkey from the " group where r#i.

Step 3: Global Leader Phase (GLP)

Based on the experience of the global leader and other members of local group, the
position of Spy is modified.

SpMnew (i, j) = SpM (i, j) + rand () * (GL, — SpM ;) +

(5.11)
rand [-1,1]* (SpM ,, — SpM ;)

Where, ;1 ) is the jth decision variable of the global leader and the jth variable is randomly

chosen from (1, 2, 3...D). The position update is done with the help of probabilities p, .

fitness;,

p,=09* +0.1 (5.12)

fitness,_.

Step 4: Global Leader Learning Phase (GLLP)
Greedy selection is applied on the new population and existing population and a

population of size P is selected. The position with best fitness within updated population is
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considered as new global leader position. Meanwhile if the position of global leader has not
changed for certain number of iterations (Global Leader Limit) then, the global limit count is

incremented by one.

Step 5: Local Leader Learning Phase

In this phase, the local leaders in each group are updated in a similar fashion as that of
the global leader by applying greedy selection by comparing the group members of existing
and new population. The one with best fitness is updated as local leader of that particular
group and if it is not updating its position for local leader limit, then local leader count is
incremented by one.
Step 6: Local leader decision Phase

Suppose the local leader count reaches the local leader limit, then all the members of
the group are either randomly initialized or updated with the help of global leader and local
leaders.

SpMnew(i, j) = SpM (i, j) + rand () *(GL, = SpM ;) + rand () * (SpM ;; —LL,;) ~ (5.13)

Step 7: Global leader decision Phase

In this phase, the global limit count is checked for its threshold global leader limit, if it
hits the threshold, then global leader will divide the group into two, then three and so on till it
reaches the minimum members requirement in the group. Once the maximum number of
groups are formed and the position of global leader is not updated, sub groups are combined

to form a single group by the global leader.

Eagle strategy: Levy flights with Spider Monkey Optimization Algorithm
1. Initialize population, X
2. Evaluate objective function f(X)
3. While (iter<itermax)

3.1 Coarse global search by levy flights
Stepsize=0.01*step*(step-best) /*using equation 5.6*/
X=X+o*stepsize
Evaluate the objective function /* using equation 5.14*/
Update population with better fitness

3.2 Intensive local search by SMO algorithm
Updated population in (3.1) undergoes all seven phases of SMO algorithm

Global and local leaders are updated
iter=iter+1
4. Processing of results and validation
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5.3 Problem formulation

In conventional power systems, the secondary control is required to regulate the
frequency by tracking the power mismatch between generation and load. In traditional
practice, it is done by conventional PI controllers. For effective frequency regulation in case
of change in operating conditions, the PI controller gains have to be tuned properly to
achieve the desired performance. This chapter proposed Levy based Spider Monkey
Algorithm (Levy-SMA) to tune the PI gains for better performance in tracking the power
deviations to zero and to test the effectiveness of the proposed algorithm, it has been
evaluated and compared with performance metric Integral Time Squared Error (ITSE) value

and given by the following equations:

Tsim

ITSE = [t*|af] at (5.14)
0
Subject to:
K . <Kp<K
P pma PI controllers
Ki,min < Ki < Ki,max (5-15)
Where K, .., K, ., and Kp,max, K, ..« are the minimum and maximum values of PI

controller gains. |Af | and Tsim are the absolute values of the frequency deviation and total

simulation time respectively. The optimization problem is formulated as minimization
problem with ITSE as objective function by optimizing K, and Ki values as the decision

variables.

5.4 Simulation results and discussion

This section presents the simulation and discussion on various cases considered for
load frequency control of as isolated microgrid. The proposed strategy has been tested on
typical microgrid test system shown in Figure 5.1. Frequency control model of the systems is
developed in SIMULINK/MATLAB. The cases include the load and generation variation and
parametric variation in the system. The sampling period for all cases of simulation is taken as

0.01sec.
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Figure 5.1: Frequency control model of an isolated microgrid with PI controller

Case-1: Base case system response with all DERs

The load frequency control of a microgrid with all sources such as PV, Wind, fuel
cell, diesel and battery storage is simulated in this case. This case presents the frequency
deviation response of the system with step of 0.02p.u. load change and solar power change
i.e. APs taken as 0.2p.u. The mean wind velocity for this case is taken as 7m/s. The frequency
regulation is achieved by tuning PI controller gains which are optimized by the proposed
algorithm. PI controllers are placed only for the controllable units i.e., diesel units and fuel
cell. There are two PI controllers for this system and the corresponding gains are Kp1, Kii and
Kp2, Ki2 respectively for diesel unit and fuel cell. Figure 5.2 shows the comparison of system

response for case-1.

It is clearly understood that the system response with kp and ki values obtained by the
proposed strategy shows better results when compared to other algorithms. The simulation is
carried out with other prominent algorithms such as PSO, Firefly algorithm, Harmony Search
algorithm and Spider Monkey Algorithms and the comparison of results validated the
superiority of the proposed algorithm. Figure 5.3 shows the comparison of the convergence
plot obtained by proposed algorithm with other algorithms. The ITSE value obtained by the
proposed algorithm is small and it shows better convergence with less number of iterations

whereas other algorithms exhibit premature convergence.
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Figure 5.3: Case-1: Comparison of convergence plot
Table 5.1 Performance metric ITSE value for case-1
. PI gains Performance metric
Algorithms Koy @ K., Ki2 (ITSE)
Proposed Levy-SMA | 0.6356 5.0000 4.6589 5.0000 0.00991
SMA 0.3349 5.0000 5.0000 5.0000 0.01033
PSO 4.4925 5.0000 5.0000 5.0000 0.01484
HS Algorithm 0.3509 5.0000 5.0000 4.8480 0.04335
Firefly Algorithm 3.0265 5.0000 4.0738 4.0248 0.1158
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Table 5.1 provides the consolidated optimized values of K, and Ki values of PI
controllers obtained by each individual algorithm. ITSE values obtained by the proposed
algorithm are found to be better when compared to other algorithms.

Case -2: System response with dispatchable DERs

This case studies the frequency regulation in the system when there are only
dispatchable units like diesel unit, fuel cell and battery in the system. The load change is
taken as 0.02p.u. Here two cases have been examined for frequency control, one with Diesel
Engine Generator (DEG) alone and the other including fuel cell contribution in the frequency
control. It can be understood that the frequency deviation is considerably reduced with fuel
cell participation in the frequency control loop. The system response obtained by the
proposed algorithm is compared with other algorithms as shown in Figure 5.4 and the
corresponding ITSE values are tabulated in Table 5.2. The contribution of fuel cell in

frequency regulation is shown in Figure 5.5.
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Figure 5.4: Frequency deviation response with dispatchable sources
Table 5.2 Performance metric ITSE value for case-2
i PI gains Performance
Algorith
gortthms Kol K Koo Ko | metric (ITSE)
Proposed Levy-SMA 0.5508 5.0000 4.6573 5.0000 2.039%*e-5
SMA 3.5120 4.2121 2.6975 4.3328 2.546*e-5
PSO 4.8661 5.0000 5 5.0000 2.981%*e-5
HS Algorithm 1.1496 3.9802 4 5.0000 2.256%*e-5
Firefly Algorithm 1.5657 5.0000 4.4981 5.0000 4.327*e-5
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Case-3: System response with series of step load variation

In this case, the response of the system is obtained for series step changes in the load.
This case demonstrates the robustness of the proposed algorithm for successive changes that
exist in the system. The load changes are implemented with subsequent increase and decrease
in the value of APL as shown in Figure 5.6. The system response obtained for this case has
been shown in Figure 5.7 and it compares the response obtained by other algorithm. The

evaluating performance index values are also compared and tabulated in Table 5.3.
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Figure 5.6: Step load variation
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Table 5.3 Performance metric ITSE value for case-3
. PI gains Performance
Algorithms Kpi Ki1 Kp2 Ki2 metric (ITSE)
Proposed Levy-SMA 3.1946 5.0000 5.0000 5.0000 0.0083
SMA 5.0000 3.5846 4.0706 3.5935 0.0090
PSO 5.0000 5.0000 5.0000 4.1999 0.0085
Firefly Algorithm 3.1822 5.0000 4.9910 4.9073 0.01122

Case-4: System response with wind perturbation of 2m/s

This case presents the system response for sudden wind perturbations of 2m/s from its

mean wind velocity that exists for 6s in the system. The wind gust component of magnitude

2m/s is introduced for 6s in the wind velocity and the mean velocity of the wind is taken as

6.5m/s. The change in solar power is maintained constant at 0.05p.u. and load change of

0.02p.u. The system response by the proposed levy-SMA and the comparison with other

algorithms are shown in Figure 5.8. The performance metric, integral time squared error

(ITSE) is evaluated for all algorithm and compared in Table 5.4. The table shows that the

value of ITSE is better in case of proposed algorithm.
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Figure 5.8: Comparison of system response with wind perturbations for 6secs

Table 5.4 Performance metric ITSE value for case-4

PI gains Performance
Algorithms Kp1 Ki1 Kp2 Kiz (T;tsr];
Proposed Levy-SMA | 3.6360 5.0000 5.0000 5.0000 0.0570
SMA 4.3291 4.3265 24781 4.1848 0.0653
PSO 2.4130 5.0000 5.0000 5.0000 0.0575
Firefly Algorithm 5.0000 5.0000 5.0000 5.0000 0.1225

Case-5: Parametric variation in the system

This case presents system response with parametric variation and studies the
superiority of the proposed levy-SMA method by comparing with other algorithms. The
parametric variation is incorporated as follows: R=+30%; D=-40%; H=+50%; T= -50%;
Tg=+50%; Tb=-45%. The change is solar power is kept as 0.05p.u. and the load change is
taken as 0.02p.u. whereas the wind velocity is maintained at 6.5m/s. The frequency deviation
response is shown in Figure 5.9 and corresponding ITSE value comparison is presented in
Table 5.5. The comparison shows that proposed levy-SMA is better when compared to all

other algorithm presented in this chapter.
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Table 5.5 Performance metric ITSE value for case-5
) PI gains Performance
Algorith .
gorithms Kp! Kt Kp2 Ko | metric (ITSE)
Proposed Levy-SMA | 5.000 0.1000 5.0000 4.4093 0.0050
SMA 2.2014 | 4.0216 4.7123 0.0619 0.0054
PSO 5.0000 | 4.7975 5.0000 0.1000 0.0051
Firefly Algorithm 5.0000 | 0.1 5.0000 5.0000 0.00617

5.5 Summary

In this chapter, a new eagle strategy by combining levy flights and spider monkey
algorithm is proposed. The proposed strategy is utilized for optimizing the gains of PI
controllers employed in the frequency control of the microgrid. The PI controllers are
employed only for the dispatchable sources such as diesel engine and fuel cells. The
proposed strategy implementation is a two-fold search process i.e., coarse search by levy
flights and an intensive local search by spider monkey algorithm. The system response
for different cases have been simulated and simulation results for various instances
confirms the better performance of proposed algorithm compared with a few existing
prominent algorithms. The performance index ITSE value is evaluated over simulation

time to ascertain the superiority of the proposed strategy with few prominent algorithms
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such PSO, Firefly Algorithm, and Harmony Search. This optimization algorithm is
inspired from the foraging behavior of the spider monkey that includes the seven steps of
implementation in the search procedure, which intensifies the search process resulting in

promising solutions.
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Chapter 6

6 Fuzzy Adaptive Model Predictive Control for Load
Frequency Regulation of an Isolated Microgrid

6.1 Introduction

This chapter presents a novel approach of fuzzy adaptive model prediction based load
frequency control of an isolated microgrid. A generalized state space model of a typical
isolated microgrid having controllable and uncontrollable generating power sources is
derived and the same has been utilized to predict the future output and control inputs for the
microgrid frequency control. The Model Predictive Control (MPC) is implemented with
single input multi-output system model based on the controllable Distributed Energy
Resources (DERSs) in the microgrid. Apart from this, rule based fuzzy controller is employed
to fuzzify the tuning parameter present in the cost function of MPC, which plays an
important role in minimizing the frequency deviation in the system. The effectiveness of this
proposed control has been evaluated with performance index ITSE (Integral time square

error) value.

6.2 Outline of model predictive control (MPC)

An MPC is a model based advanced control strategy that employs an optimization
procedure at each sampling time over prediction horizon to calculate the optimal control
actions. As there is extensive literature on MPC, this section intends to presents only the
outline of MPC [107].

The general discrete state-space model representation is given by:

x(k+1)= A,x(k)+ Bu(k) + E w(k) 6.1)

y(k)=C,x(k)+ D, u(k) (6.2)
Where, U - input variable vector; y - Process output vector; X - State variable

vector; since moving horizon control requires current information of the plant for the

prediction and control, it is implicitly assumed that »(k) cannot affect output y(k) but u(k —1)

at the £” instant can. So, on taking difference on both sides of (6.1) and rearranging, we

obtain
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{Ax(k ¥ l)} _ {Ax(k )} + BAu(k) + EAw(K) 63

y(k+1) y(k)

(k) = C{Ax”‘)} (6.4
y (k) '

Where,

A o, B, E
A: d d . B: . — d . C — T 1
|:CdAd 1 :|a |:CdBdi|a E |:CdEd:| ’ [Od ]

Where A ,B and C are augmented state space model used in the design of predictive
control. Since the disturbance in current step is not reflected in the future, the disturbance
matrix is omitted in the predicting window. , - (o _OJ“ o o] and m is the number of state
variables.

The difference of future control trajectory at sampling instantk; is given by
Au(k,),Au(k, +1),, ,,Au(k, + Nc-1) (6.5)
The rest of Au(k) for k = Nc,Ne +1......, Np 1s assumed to be zero. Where Nc is the

control horizon, it gives the number of future control inputs to be predicted. With given x(k )
, future state variables and output are predicted for Np number of samples. The output is

represented in compact form [107].

Y = Fx(k,)+ DA U (6.6)
o CB 0 0 .. 0 |
¢4 CAB CB 0 0
CA 2 0 0
. c£B CAB CB 0
CA . d=
F = > s
éA Np cA'B cA"*B cA"B . . CcA"B

For a given reference signal 7(k;)at samplek,, the objective is to predict an output

close to the reference signal. Moreover, this 7(k;) remains constant in the optimization

window. The control objective is given by:
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Min J =(Y,-Y) (Y, -Y)+AU"R, AU (6.7)

oJ

Then the optimal control vector AU has been computed using =

B

AU =(@"® +R)'®" (Y, - Fx(k,)) (6.8)

En :Rw *]NC*NC; Yv = [1 1 : I]T r(ki) (69)

6.3 MPC implementation for load frequency control of an isolated microgrid
The simplified load frequency model of a typical microgrid is considered in this thesis
is shown in Figure 6.1. The microgrid consists of a diesel unit, fuel cell, wind, solar and
battery storage of ratings given in [85]. The frequency control in the microgrid is achieved by
predicting the future outputs and control signals i.e. frequency deviation and control actions
to the controllable units respectively. The renewable sources are assumed to be operated at
maximum power point. Hence, diesel unit and fuel cell are considered as controllable units in
the microgrid. The prediction was accomplished by using model predictive control (MPC)
design where a state space model of the system is used. From the model of the system shown
in Figure 6.1, the dynamics of the system is defined with nine state equations with nine state
variables for the microgrid considered. The nine state variables for the microgrid are

explained with system dynamics in equations (6.10) - (6.18):

. 1
A.f:E(Aljsfﬁlt_{—A])md_f—A])w_AI)L+AE'7fIlt_APIJat_D*M) (6.10)
g 1
A})s_inv :T_(A})s _A})s_inv) (611)
° 1
APs_ﬁzx _(APS_inv _APc_ﬁzt) (6-12)
filt
AP, = TL(APM - A}-Tf— AP, j (6.13)
AP, = TL(APgd —AP,,) (6.14)
. 1 Af‘
AP, ZT—ﬁ(Aqu _?_Mﬁr] (6.15)
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y 1
AP, = T—(AP AP, ) (6.16)
. |
Af)f',ﬁlf =7(AP/J‘HV _Af_)f'iﬁlt) (617)
T’ﬁlt
AP,, = TL(Af AP, ) (6.18)
b

In compact form, the state space model of above system dynamics and the output equation

can be given as:

A[A;f_ [-DI2H 0 1V2H 0 1/2H 0 0 12H -12H] & ][0 0] [-1/2H 1/2H 0
0 -vL, O 0 0 0 0 0 0o |ar,, 0 0 0 0 VT,
AL 0 UL, -Ur, 0 0 0 0 0 o [a,[]0o o 0o 0 o0
AR, | |-URT, 0 0 -1, O 0 0 0 0 | A, | |UT, O | 0 0 0 [ap
AP, 50 0 0 UL -UL 0 0 0 0 | A, |+ 0 0 A};”+ 0 0 0 AP]
N'Dﬁ ~-l/RT, 0 0 0 0 -V, 0 0 0 AP, 0 VT 7 0 0 0 [AP
. 0 0 0 0 o Vvr, -UL, 0 0 |AZ [ |0 0 0 0 0
A m 0 o 0 0 0 0 UT, -UT, 0 AP, ,|]|o0 o 0 0
AP, w| | VT, 0 0 0 0 0 0 0 -UL | AR, |[O | | 0 0 0 |
L Afl)ml i
...... (6.19)
A=l 0000000 O AF, 4 AE e AR, AR, AP AP AP 4, AR, ]"
....... (6.20)

The frequency regulation is achieved only through the controllable generating units in
the system, therefore, the diesel unit and the fuel cell inputs are taken as controlled variables
in the MPC formulation to minimize a control objective function to measure the predicted

performance. Mathematically, it is formulated as follows:

T
AP, T _ [AP
Min J = (AF" =AY (A —AF Y+ LR 6.21
in J=(A" A7) (A AT ap, | Bol ap, (6.21)

The first term in the objective function expression refers to the minimization of error

between predicted output and the reference point whereas the second term considers the

impact of predicted control input vectors in making J as small as possible. I_Qi,7 =R, *1 >

is a diagonal matrix where R is tuning parameter for the desired closed loop performance.

The prediction horizon for the output is taken as 10 time steps and the control horizon for the
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control input is taken as 2 time steps with a sampling time step of 0.01s. These values are

considered from the literature of typical load frequency problems using MPC.

Rw
Fuzzy
APS AIDs_inv
::I|Af| controller l [ =y : TP it
l l 1+sTinv l l 1+ sTHilt

ARW model
model
Estimator o >
APc 1 APgd 1

ot Sates ans + Y [ 1+5Tg = l 1+ sTt

Afrof=0 aPfc AP i AP e
- L 1 1 1 |

Optimizer Apcf' 1+ sTfc l l 1+sTinv| : l 1+ sTHilt | (_L+sTb

@

Figure 6.1: Load frequency control model of an isolated microgrid with fuzzy adaptive MPC

6.4 Fuzzy inference system for parameter (Rw) tuning

MPC is a simple and straightforward procedure with less computational efforts.
However, it is parameter driven and it needs to be properly chosen for better performance of
MPC. In MPC algorithm, we have some parameters - Prediction horizon (Np), Control
horizon (Nc), Sampling time (Ts) and Input parameter (Rw). Adaptability of the MPC is
achieved only through the extensive analysis of the qualitative and quantitative relationship
of these parameters with the behavior of the control algorithm of MPC.

The impact of these parameters on MPC behavior is randomly studied by trial and error
method for load frequency control. It is found that optimal values of these parameters for
ideal behavior of MPC remains unchanged for different case studies except Rw. Thus, the
idea of fuzzy adaptive MPC is proposed in the chapter where ‘Rw’ is a scalar and
dynamically adjusted by the fuzzy controller over each prediction window of MPC keeping
other procedures unchanged.

Three main components of fuzzy logic control are Fuzzification, Fuzzy inference

engine (fuzzy rules) and defuzzification, which are described in the following subsections:
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IFD| ——™
Fuzzy Logic Controller (FLC) |——» AR,
Ry ——»

Figure 6.2: Inputs and output of fuzzy logic controller

6.4.1 Fuzzification

Fuzzification process is mapping the crisp value of inputs to linguistic variables using
membership functions. Here inputs to fuzzification block are: Magnitude of Frequency
Deviation (FD) and input parameter (Rw) and the output is the change in input parameter
(ARw) shown in Figure 6.2. The triangular memberships functions are considered for fuzzy
mapping and the five linguistic variables are considered for each input variable. such as VS
(very small), S (small), M (medium, B (big), VB (very big) whereas the output variable
(ARw) is represented in five linguistic values such as ZE (zero error), PS (positive small), PM
(positive medium), PB (positive big), PL (positive large). The membership functions for
inputs and outputs are shown in Figure 6.3. The universe of discourse for the magnitude of
frequency deviation is taken as 0-0.25Hz whereas for Rwand ARw it is taken as 1-75 and 1-25

respectively.

6.4.2 Fuzzy Inference System: Fuzzy Rules formulation

Fuzzy rules are formulated using Mamdani-type fuzzy rules which comprise
“IF/THEN” conditional statements. In this work, a total of 25 (5x5=25) rules are formulated
using “IF/THEN” statements with the membership functions of two input variables and one
output variable, which are tabulated in Table 6.1.

In this chapter, the impact of parameter Rw in the cost function of MPC formulation is
studied on load frequency control by trial and error method. The system response for
different values of Rw is shown in Figure 6.4. Thus, based on the relationship of parameter
Rw with the behaviour of the control algorithm of MPC, the logic for the rule base is
established. Accuracy in solution is achieved by using more tuning rules at the cost of
computational complexity. Since frequency deviation is expected to be tracked closely to the
minimum value as far as possible, 25 rules are designed to determine the change in input

parameter (ARw). For example:
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Rule 1: IF |FD| is S (small) AND Rw is S (small) THEN the output ARw is PS (positive
small). As the frequency deviation is small, it can still be reduced to very small values by
increasing Rw to a small extent that corresponds to PS (positive small) in output of ARw.

Rule 2: IF |FD| is B (big) AND Rw is S (small) THEN the output ARvw is PL (positive
large). The frequency deviation is big and it demands a higher increment in Rw that
corresponds to PS (positive small) in the output ARw. All other rules are similarly fixed based

on the logic established between the inputs and outputs.

w(FD) H(Rv)
VS S M B VB Vs S M B VB

 J
 J

FD

(a) A (b)
H(ARwW)

ZE PSPMPB PL

[
-

(©) AR,

Figure 6.3: Membership Functions a) Magnitude of Frequency Deviation (|FD|)
b) Input parameter (R, ) c¢) Change in R, (ARy)

6.4.3 Defuzzification

There are two input variables, Rw and ARw, with triangular membership functions, So,
among the 25 designed rules, at any instant, a maximum of four rules may fire and a
minimum of one rule will fire. The output i.e. frequency deviation |[FD| obtained from the
fuzzy controller is fuzzy in nature, so defuzzification is required to convert from fuzzy to
crisp value. Centroid method is used here for defuzzification of inputs and output. The

defuzzified value of output denoted using Center Of Gravity (COG) is defined as:
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D AR, * u(AR,)
AR = =1 (6.22)

Y u(AR,)

where, ARW* - Defuzzified value of output; (AR, ) - Membership function of output

n- number of sample element.

Table 6.1 Fuzzy rules for variation of ARy

Rules Input variables Output
[FD| Ry ARy,

1 VS VS ZE
2 S VS PS
3 M VS PM
4 B VS PB
5 VB VS PL
6 VS S ZE
7 S S PS
8 M S PM
9 B S PB
10 VB S PL
11 VS M ZE
12 S M PS
13 M M PM
14 B M PB
15 VB M PL
16 VS B ZE
17 S B PS
18 M B PM
19 B B PB
20 VB B PL
21 VS VB ZE
22 S VB PS
23 M PM
24 B VB PB
25 VB VB PL

6.5 Simulation results and discussion

This section presents the simulation and discussion of various cases of load frequency
control in a typical isolated microgrid. The cases include the load and generation variation
and parametric variation in the system. All the cases have been compared to the system

response with constant Rw value of 15, which is chosen randomly from Figure 6.4.

99



Chapter 7 Conclusions

Af (Hz)

Af (Hz)

0 2 4 6 8 10 0 2 4 6 8 10
Time (sec) Time (sec)

Figure 6.4: System response of the microgrid for different values of Ry,

Case-1: Base case system response with all DERs

The load frequency control of a microgrid with all sources such as PV, Wind, fuel
cell, diesel and battery storage is simulated in this case. This case presents the frequency
deviation response of the system with step of 0.02 p.u load change and solar power change
i.e. APs taken as 0.2 p.u. The mean wind velocity for this case is taken as 7m/s. Appropriate
value of Rw is selected by the fuzzy controller using rule base system. The comparison of
frequency deviation response is shown in Figure 6.5(a). The proposed fuzzy MPC gives
better and faster response when compared to PI controller. Figure 6.5(b) shows the response
of cost function evaluated in the MPC procedure, which has to be minimized to achieve the
desired frequency response in the system. Since it is an isolated microgrid, the frequency
regulation is supposed to be taken care of by the dispatchable diesel unit and the fuel cell and
thus become the controlled outputs from the MPC block. The response of control inputs i.e.
change in diesel and fuel cell units is shown in Figure 6.5(c) and (d) respectively. The
simulation period and sampling time are taken as 10s and 0.01s respectively. The prediction
horizon and the control horizon are taken as 10 and 2 time steps respectively. The optimal Rw

value from the proposed MPC is 38.5 for this case.
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Figure 6.6: (a).Comparison of system response of the microgrid for case-2 (b). Response of Cost functions of
MPC over simulation period for case-2 (¢) & (d). Response of control inputs to diesel and fuel cell for case-2
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Case-2: System response with dispatchable DERs

This case studies the frequency regulation in the system when there are only
dispatchable units such as diesel unit, fuel cell and battery in the system. The load change is
0.02p.u. The comparison of system response is shown in Figure 6.6(a). Since there are only
two dispatchable generation units in this case, the response shows the negative frequency
deviation for the load change. The corresponding response of cost function and the change in
control inputs are respectively shown in Figure 6.6(b) and Figure 6.6(c) and (d) respectively.
The tuned Rw value for this case is 41. There is increase in the control inputs to reduce the
frequency deviation in the system. The simulation period and sampling time is taken as 10s

and 0.01s respectively.
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Figure 6.7: (a) Comparison of system response of the microgrid for case-3 (b). Response of Cost functions of
MPC over simulation period for case-3 (c) & (d). Response of control inputs to diesel and fuel cell for case-3

Case-3: System response with series of step load variation

This case evaluates the system response of the microgrid with series step changes in
the load. The load changes are implemented with increase and decrease in value of APL. The
system response for this case is shown in Figure 6.7(a). Figure 6.7(b) and Figure 6.7(c) and

(d) shows the response of cost function and control inputs respectively for the step load
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variation in the system. The control inputs are accordingly varied by MPC to meet the load
changes for minimum frequency deviation in the system. The optimal value of Rw is found to

be 30 for this case.
Case-4: System response with wind perturbation of 2m/s

In this case, the wind gust component of magnitude 2m/s is introduced for 6s in the
wind velocity and the mean velocity of the wind is taken as 6.5m/s. The change in solar
power is maintained constant at 0.05p.u. and load change of 0.02p.u. The system response
for this case is shown in Figure 6.8(a). The performance of the proposed method is better and
faster than PI controller. Corresponding cost function and the control inputs are shown in
Figure 6.8(b) and Figure 6.8(c) and (d) respectively. The control inputs to diesel and fuel cell
are lowered by MPC when there is an increase in wind power generation due to increase in

wind velocity in the system. The optimized value of Rw is found to be 16.5 for this case.
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Figure 6.8: (a) Comparison of system response of the microgrid for case-4 (b). Response of Cost functions of
MPC over simulation period for case-4 (¢) & (d). Response of control inputs to diesel and fuel cell for case-4

Case-5: System response with step Changes in solar power (APs)

This case considers a series step increase in solar power. In this case, the wind power

change (APw) 1s simply taken as 0.05p.u. throughout the simulation and the load change of

103



Chapter 7 Conclusions

0.02p.u. The corresponding system response is shown in Figure 6.9(a). The cost function of
MPC and the control inputs to the controllable units are shown in Figure 6.9(b) and Figure
6.9(c) and (d) respectively. As there is increasing step change in solar power, the control
inputs to diesel and fuel cells are lowered accordingly by MPC so as to maintain zero

frequency deviation. The obtained value of Rw for this case is 28.
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Figure 6.9: (a) Comparison of system response of the microgrid for case-5 (b).Response of Cost functions of
MPC over simulation period for case-5 (c) & (d). Response of control inputs to diesel and fuel cell for case-5

Case-6: All disturbances such as APL, APw and APs in the Systems

This case presents the system response when all possible disturbances exist in the
system. This case applies the disturbance considered in case-3, case-4 and case-5
simultaneously. The frequency deviation response of the microgrid for this case is shown in
Figure 6.10(a). The cost function of MPC and the control inputs to diesel and fuel cell are
shown in Figure 6.10(b) and Figure 6.10(c) and (d) respectively. The optimal value of Rw for
this case is found to be 19.5. The comparison of proposed fuzzy MPC with PI controller is
assessed by comparing the performance index ITSE value for all cases of simulation and has

been tabulated in Table 6.2. It is evident that the optimal value of Rw obtained in each case of
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simulation is unique and has to be optimally selected for different operating conditions of the

system. Hence, the proposed method is found to be efficient for load frequency control.
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Figure 6.10: (a) Comparison of system response of the microgrid for case-6 (b). Response of Cost functions of
MPC over simulation period for case-6 (c¢) & (d). Response of control inputs to diesel and fuel cell for case-6

Table 6.2 Comparison of performance index

Cases Without PI MPC Proposed
controller | controller | controller | Fuzzy MPC

Case -1 (ITSE) 0.3472 0.02871 | 0.01702 0.009268
Case —2 (ITSE) 0.00709 | 5.578e-5 | 3.594e-5 1.835e-5
Case —3 (ITSE) 0.1874 | 0.009652 | 0.007288 0.00674
Case — 4 (ITSE) 4.1130 0.04772 | 0.04336 0.03714
Case — 5 (ITSE) 1.3010 | 0.00769 | 0.005746 0.00535
Case — 6(ITSE) 5.286 0.04508 | 0.03961 0.03193
Case — 7(ITSE) 0.9282 0.0101 0.00554 0.0036

Case-7: Parametric variation in the system

This case introduces the parametric variation and studies the system response by the
proposed fuzzy MPC method. The parametric variation is incorporated as follows: R=+30%;
D=-40%; H=+50%; T= -50%; Tg=+50%; Tb=-45%. The change in solar power is kept as
0.05p.u. and the load is 0.02p.u. whereas the wind velocity is maintained as 6.5m/s. The

response comparison is shown in Figure 6.11(a) The respective cost function and the control
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inputs are shown in Figure 6.11(b) and Figure 6.11 (c) and (d) respectively. The optimal Rw

1s found to 27.5 for this case.
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Figure 6.11: (a) Comparison of system response of the microgrid for case-7 (b). Response of Cost functions of
MPC over simulation period for case-7 (c) & (d). Response of control inputs to diesel and fuel cell for case-7

6.6 Summary

This chapter has proposed a fuzzy adaptive MPC for effective and faster load
frequency control for an isolated microgrid. The impact of tuning parameter Rw on the
performance of the model predictive control is discussed in this chapter for the load
frequency regulation. The adaptability of MPC is achieved by tuning parameter ‘Rw’ using
fuzzy controller. The parameter Rw has been dynamically adjusted with fuzzy “IF/THEN”
rule base to make it robust control irrespective of different scenarios of the problem. The
proposed fuzzy adaptive MPC is implemented for load frequency control of a typical
microgrid, while results and comparison show that the proposed method of control is
effective in obtaining better and faster system response with damped oscillations for different
case studies. Thus, the proposed fuzzy MPC can be used for effective frequency regulation in

smart grid applications.
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Chapter 7

7 Conclusions

7.1 General
In this thesis, the planning of active distribution network operation is optimized
using proposed meta-heuristic optimization algorithms in multi-objective frame. Apart
from this, load frequency control of an isolated microgrid is also analyzed using PI
controller and model predictive controller. This chapter briefs the important findings

proposed in this thesis and future extension of the proposed research work.

7.2 Summary of important findings
This chapter presents the overall conclusions of the research work presented in this
thesis and future scope of the research work. The following conclusions have been arrived at

from research work carried out and reported in the earlier chapters in this thesis.

(1) The overall objective of the research work is to plan the optimal and economical
operation of active distribution system and to analyze the load frequency control of
isolated microgrid.

e First of all, basic planning of active distribution network i.e. optimally locating
and sizing the distributed generation in a distribution network is attempted to
minimize active power loss and voltage deviation in the system.

e For optimizing the location and sizing the DG units, a new form of Teaching
Learning Based Optimization (TLBO) algorithm i.e. Peer enhanced Multi-
objective TLBO (PeMOTLBO) is proposed.

e To prove effectiveness of the proposed algorithm, it was tested on IEEE 33-bus
system, IEEE 69-bus system and Indian 85-bus distributed system and results
were compared with well-known multi-objective NSGA-II technique and with the
basic multi-objective TLBO algorithm.

e A statistical comparison and significance of the proposed PeMOTLBO algorithm

was also evaluated with performance metrics and demonstrated with box plots.
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(i) While planning the DG location and size, cost of investment and operation are also to
be considered for economic operation of active distribution network. This cost may
vary with different DG technologies such as dispatchable units like diesel and gas
engines and environment friendly non-dispatchable sources such as wind and solar
DGs.

e Hence, in this thesis, the planning of optimal and economic operation of DGs in
distribution networks was analyzed by considering different DG technologies.

e  Multi-objective problem has been formulated to minimize simultaneously the
active power loss, voltage deviation and the cost of DG integration in the system.

e For this planning, a new Grid based Multi-Objective Harmony search (GrMHS)
was proposed. In the proposed GrMHS algorithm, the grid strategy has been
incorporated as secondary selection criterion in the objective space to improve the
efficiency of the optimization process.

e The proposed GrMHS algorithm has been tested on IEEE 33-bus system, IEEE
69-bus system and Indian 85-bus system. The results were validated with
extensive comparison with prominent multi-objective NSGA-II and multi-

objective harmony search algorithm.

(ii1) The active management of load in the distribution grid is directly linked with the
frequency of operation in this system. Thus load frequency control of isolated
microgrid is also attempted in this thesis.

e The load frequency control of the isolated microgrid is attempted with
Proportional Integral (PI) controller.

e The PI controller gains are tuned using the proposed levy based spider monkey
algorithm (Levy-SMA).

e The performance of the proposed algorithm has been evaluated with the
integral time square error (ITSE) and has been compared with other algorithms
such as Particle Swarm Optimization (PSO), Harmony Search (HS), Firefly
Algorithm (FA).
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e The obtained system response has been compared with other algorithms and
results are found better with less ITSE value for the proposed Levy-Spider
Monkey Algorithm.

(iv) The load frequency control is the one which needs a simple and faster control. One
such simple straightforward control is the model predictive control (MPC).

e In this thesis, a fuzzy adaptive Model Predictive Control has been proposed
for better load frequency control. A fuzzy controller is embedded into MPC
block to tune its input parameter which improves the system performance.

e The performance of load frequency control in microgrid is evaluated with
ITSE value.

e The system response obtained using the proposed method has been compared
with PI controller response and the MPC control with constant input parameter

value and the results found better in fuzzy MPC.

7.3 Scope for Future Work

In this thesis, distributed generation planning and their optimal resource mix has been
identified for economical operation of active distribution networks and load frequency
control of a typical isolated microgrid is also attempted. The future work can be extended on
the following aspects:

e Voltage and frequency stability studies can be implemented with large penetrations of
renewable energy sources into active distribution network operation.

e Coordinated control of electrically distanced Distributed Energy Resources and loads
for better frequency regulation in the active distribution network operation for both
grid connected and islanded mode of operation can be explored.

e In the planning of active distribution network operation, meta-heuristic algorithms
were dominantly applied, so investigations can be carried out on the new hybrid

methods for better convergence and for exploring the diversified search space.
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Appendix

IEEE 33-bus Distribution System Data

Number of Buses: 33

Number of lines: 32

Base voltage: 12.66kV

Total active power load: 3.715 MW

Total reactive power load: 2.3 MVAR

System active power loss: 0.202 MW

System reactive power loss: 0.134 MVAR

Minimum voltage bus in the system: 0.9132 at 18" Bus
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Figure A. 1: IEEE 33-bus distribution system

Table A. 1 Input data of IEEE 33-bus distribution system

Line From To R X Pload Qload
number | Bus Bus | (Ohms) (Ohms) (kW) | (kVAR)
1 1 2 0.0922 | 0.0477 100 60
2 2 3 0.493 0.2511 90 40
3 3 4 0.366 0.1864 120 80
4 4 5 0.3811 0.1941 60 30
5 5 6 0.819 0.707 60 20
6 6 7 0.1872 | 0.6188 200 100
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7 7 8 0.7114 | 0.2351 200 100
8 8 9 1.03 0.74 60 20
9 10 1.04 0.74 60 20
10 10 11 0.1966 | 0.065 45 30
11 11 12 0.3744 | 0.1238 60 35
12 12 13 1.468 1.155 60 35
13 13 14 0.5416 | 0.7129 120 80
14 14 15 0.591 0.526 60 10
15 15 16 0.7463 | 0.545 60 20
16 16 17 1.289 1.721 60 20
17 17 18 0.732 0.574 90 40
18 2 19 0.164 0.1565 90 40
19 19 20 1.5042 1.3554 90 40
20 20 21 0.4095 | 0.4784 90 40
21 21 22 0.7089 | 0.9373 90 40
22 3 23 0.4512 | 0.3083 90 50
23 23 24 0.898 0.7091 420 200
24 24 25 0.896 0.7011 420 200
25 6 26 0.203 0.1034 60 25
26 26 27 0.2842 | 0.1447 60 25
27 27 28 1.059 0.9337 60 20
28 28 29 0.8042 | 0.7006 120 70
29 29 30 0.5075 | 0.2585 200 600
30 30 31 0.9744 | 0.963 150 70
31 31 32 0.3105 | 0.3619 210 100
32 32 33 0.341 0.5302 60 40

IEEE 69-bus Distribution System Data

Number of Buses: 69

Number of lines: 68

Base voltage: 12.66 kV

Total active power load: 3.80 MW

Total reactive power load: 2.69 MVAR

System active power loss: 0.226 MW

System reactive power loss: 0.098 MVAR

Minimum voltage bus in the system: 0.908 p.u. at 65 Bus
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Figure A. 2: IEEE 69-bus distribution system

Table A. 2 Input data of IEEE 69-bus distribution system

Line From To R X Pload Qload
number Bus Bus (Ohms) (Ohms) (kW) (kVAR)

1 1 2 0.0005 0.0012 0 0
2 2 3 0.0005 0.0012 0 0
3 3 4 0.0015 0.0036 0 0
4 4 5 0.0251 0.0294 0 0
5 5 6 0.366 0.1864 2.6 2.20
6 6 7 0.3811 0.1941 40.4 30.00
7 7 8 0.0922 0.047 75 54.00
8 8 9 0.0493 0.0251 30 22.00
9 9 10 0.819 0.2707 28 19.00
10 10 11 0.1872 0.0619 145 104.0
11 11 12 0.7114 0.2351 145 104.0
12 12 13 1.03 0.34 8 5.50
13 13 14 1.044 0.345 8 5.50
14 14 15 1.058 0.3496 0 0
15 15 16 0.1966 0.065 45.5 30.0
16 16 17 0.3744 0.1238 60 35.0
17 17 18 0.0047 0.0016 60 35.0
18 18 19 0.3276 0.1083 0 0
19 19 20 0.2106 0.069 1 0.6
20 20 21 0.3416 0.1129 114 81.0
21 21 22 0.014 0.0046 5.3 3.5
22 22 23 0.1591 0.0526 0 0
23 23 24 0.3463 0.1145 28 20.0
24 24 25 0.7488 0.2475 0 0
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25 25 26 0.3089 0.1021 14 10.0
26 26 27 0.1732 0.0572 14 10.0
27 3 28 0.0044 0.0108 26 18.6
28 28 29 0.064 0.1565 26 18.6
29 29 30 0.3978 0.1315 0
30 30 31 0.0702 0.0232 0
31 31 32 0.351 0.116 0
32 32 33 0.839 0.2816 14 10.0
33 33 34 1.708 0.5646 19.5 14.0
34 34 35 1.474 0.4873 6 4.0
35 3 36 0.0044 0.0108 26 18.55
36 36 37 0.064 0.1565 26 18.55
37 37 38 0.1053 0.123 0 0
38 38 39 0.0304 0.0355 24 17.00
39 39 40 0.0018 0.0021 24 17.00
40 40 41 0.7283 0.8509 1.2 1.00
41 41 42 0.31 0.3623 0
42 42 43 0.041 0.0478 4.30
43 43 44 0.0092 0.0116 0
44 44 45 0.1089 0.1373 39.22 26.3
45 45 46 0.0009 0.0012 39.22 26.30
46 4 47 0.0034 0.0084 0 0
47 47 48 0.0851 0.2083 79 56.40
48 48 49 0.2898 0.7091 384.7 274.5
49 49 50 0.0822 0.2011 384.7 274.5
50 8 51 0.0928 0.0473 40.5 28.30
51 51 52 0.3319 0.1114 3.6 2.70
52 9 53 0.174 0.0886 4.35 3.50
53 53 54 0.203 0.1034 26.4 19.00
54 54 55 0.2842 0.1447 24 17.20
55 55 56 0.2813 0.1433 0 0
56 56 57 1.59 0.5337 0 0
57 57 58 0.7837 0.263

58 58 59 0.3042 0.1006 100 72.00
59 59 60 0.3861 0.1172 0 0
60 60 61 0.5075 0.2585 1244 888.0
61 61 62 0.0974 0.0496 32 23.00
62 62 63 0.145 0.0738 0 0
63 63 64 0.7105 0.3619 227 162.0
64 64 65 1.041 0.5302 59 42.00
65 11 66 0.2012 0.0611 18 13.00
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66 66 67 0.0047 0.0014 18 13.00
67 12 68 0.7394 0.2444 28 20.00
68 68 69 0.0047 0.0016 28 20.00

Indian 85 - bus Distribution System Data
Number of Buses: 85

Number of lines: 84
Base voltage: 11 kV

Total active power load: 2.5708 MW
Total reactive power load: 2.6218 MVAR.

System active power loss: 0.3163 MW

System reactive power loss: 0.134 MVAR

Minimum voltage bus in the system: 0.8713 at 56" Bus
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Figure A. 3: Indian 85-bus distribution system
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Table A. 3 Input data for Indian 85-bus distribution system

Line From To R X Pload Qload

Number bus bus (ohms) (ohms) (kw) (kVAR)

1 1 2 0.108 0.075 0 0

2 2 3 0.163 0.112 0 0

3 3 4 0.217 0.149 0 0

4 4 5 0.108 0.074 56 57.1312

5 5 6 0.435 0.298 0 0

6 6 7 0.272 0.186 3528 | 35.99266

7 7 8 1.197 0.82 0 0

8 8 9 0.108 0.074 3528 | 35.99266

9 9 10 0.598 0.41 0 0

10 10 11 0.544 0.373 0 0

11 11 12 0.544 0.373 56 57.1312

12 12 13 0.598 0.41 0 0

13 13 14 0.272 0.186 0 0

14 14 15 0.326 0.223 35.28 | 35.99266

15 2 16 0.728 0.302 3528 | 35.99266

16 3 17 0.455 0.189 35.28 | 35.99266

17 5 18 0.82 0.34 112 114.2624

18 18 19 0.637 0.264 56 57.1312

19 19 20 0.455 0.189 56 57.1312

20 20 21 0.819 0.34 3528 | 35.99266

21 21 22 1.548 0.642 35.28 | 35.99266

22 19 23 0.182 0.075 3528 | 35.99266

23 24 0.91 0.378 56 57.1312

24 25 0.455 0.189 35.28 | 35.99266

25 25 26 0.364 0.151 3528 | 35.99266

26 26 27 0.546 0.226 56 57.1312

27 27 28 0.273 0.113 0 0

28 28 29 0.546 0.226 56 57.1312

29 29 30 0.546 0.226 0 0

30 30 31 0.273 0.113 3528 | 35.99266

31 31 32 0.182 0.075 35.28 | 35.99266

32 32 33 0.182 0.075 0 0

33 33 34 0.819 0.34 14 14.2828

34 34 35 0.637 0.264 0 0

35 35 36 0.182 0.075 0 0

36 26 37 0.364 0.151 35.28 | 35.99266

37 27 38 1.002 0.416 56 57.1312

38 29 39 0.546 0.226 56 57.1312

39 32 40 0.455 0.189 56 57.1312
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40 40 41 1.002 0.416 35.28 | 35.99266
41 41 42 0.273 0.113 0 0

42 41 43 0.455 0.189 35.28 | 35.99266
43 34 44 1.002 0.416 35.28 | 35.99266
44 44 45 0.911 0.378 35.28 | 35.99266
45 45 46 0.911 0.378 35.28 | 35.99266
46 46 47 0.546 0.226 35.28 | 35.99266
47 35 48 0.637 0.264 14 14.2828
48 48 49 0.182 0.075 0 0

49 49 50 0.364 0.151 0 0

50 50 51 0.455 0.189 36.28 | 37.01286
51 48 52 1.366 0.567 56 57.1312
52 52 53 0.455 0.189 0 0

53 53 54 0.546 0.226 35.28 | 35.99266
54 52 55 0.546 0.226 56 57.1312
55 49 56 0.546 0.226 56 57.1312
56 9 57 0.273 0.113 14 14.2828
57 57 58 0.819 0.34 56 57.1312
58 58 59 0.182 0.075 0 0

59 58 60 0.546 0.226 56 57.1312
60 60 61 0.728 0.302 0 0

61 61 62 1.002 0.415 112 114.2624
62 60 63 0.182 0.075 56 57.1312
63 63 64 0.728 0.302 14 14.2828
64 64 65 0.182 0.075 0 0

65 65 66 0.182 0.075 0 0

66 64 67 0.455 0.189 56 57.1312
67 67 68 0.91 0.378 0 0

68 68 69 1.092 0.453 0 0

69 69 70 0.455 0.189 56 57.1312
70 70 71 0.546 0.226 0 0

71 67 72 0.182 0.075 35.28 | 35.99266
72 68 73 1.184 0.491 56 57.1312
73 73 74 0.273 0.113 0 0

74 73 75 1.002 0.416 56 57.1312
75 70 76 0.546 0.226 35.28 | 35.99266
76 65 77 0.091 0.037 56 57.1312
77 10 78 0.637 0.264 14 14.2828
78 67 79 0.546 0.226 56 57.1312
79 12 80 0.728 0.302 35.28 | 35.99266
80 80 81 0.364 0.151 56 57.1312

126




81 81 82 0.091 0.037 0 0

82 81 83 1.092 0.453 56 57.1312

83 83 84 1.002 0.416 35.28 | 35.99266

84 13 85 0.819 0.34 14 14.2828
35.28 | 35.99266
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