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ABSTRACT 
 

Continuous supply of electricity is the need of the hour in developing economies, more 

so in a rapidly industrializing country like India. The growing demand tends to change the 

conventional structure of power system to increase the flexibility of the existing system that 

generates power in bulk and deliver the power to the load centers through transmission 

network. To avoid transmission congestion and to assure continuous supply to scattered 

loads, Distributed Generations (DG) in small scale emerged as an alternative technology. 

Many of the DG technology sources include renewable energy sources such as wind power, 

photovoltaic cells, biogas, fuel cells, etc., in order to meet the environmental constraints. 

These DG technologies have been adopted to meet the future load with improved system 

efficiency, reliability, security and quality of service; they however have a critical impact on 

the system voltage, power quality, stability, fault level and protection coordination. In spite 

of promising improvement in reliable power supply with less green gas emission, the 

implementation of active distribution networks imposes a large number of technical and 

regulatory issues that need to be carefully evaluated. Hence, planning the DG plays a vital 

role in establishment of future smart grid. 

 It is essential to have suitable and efficient methods and models to plan an active 

distribution network operation, which involves many objectives and constraints. 

Conventional methods like analytical approaches and numeric methods have been 

adequately applied for DG planning in distribution network in various ways. But these 

methods sometimes arrive at local optimal solutions in spite of their computational burdens. 

They also lack handling multi-objective problem efficiently. Population based evolutionary 

algorithms have been found ideal in dealing with multi-objective DG planning. However, 

many such algorithms suffer from premature convergence due to limited exploration in the 

search space while a few algorithms have their own control parameters, which will influence 

the algorithm efficacy.  

Thus, in this thesis, a parameter less novel multi-objective based Peer enhanced 

Teaching-learning based optimization (PeMOTLBO) algorithm is proposed and employed 

to find a set Pareto optimal solutions for planning DG in distribution system and fuzzy 

theory approach has been used to find the best compromising DG location and size. The 
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pareto front obtained by the proposed PeMOTLBO has been compared with basic Multi-

Objective TLBO (MOTLBO) and Non-Dominated Sorting Genetic Algorithm –II (NSGA-

II). The comparisons show the superiority of the proposed algorithm in terms of both better 

objectives and diversity among the solutions in the optimal fronts obtained. Two 

performance metrics have been evaluated to ascertain the two goals of the multi-objective 

optimization and the proposed technique exhibited better metric value compared to NSGA-

II and MOTLBO.  

 It is well known that there are several DG technologies which are costlier and polluting, 

such as diesel and gas, as well as environment friendly technologies such as wind and solar. 

Planning the optimal operation of DGs to supply the load is the ultimate requirement of 

Active Distribution Network (ADN) operation. In view of this, a new hybrid Grid-based 

Harmony Search algorithm is proposed by incorporating the grid based strategy in the basic 

harmony search algorithm for multi-objective DERs planning model both in grid connected 

and autonomous microgrid operation with three conflicting objectives viz., i) Energy loss ii) 

voltage deviation and iii) cost of DG integration. A qualitative comparison is also made with 

two comparison metrics to ascertain the superiority of the proposed algorithm over robust 

NSGA-II and other form of multi-objective harmony search. A grid based multi-objective 

harmony search optimization is proposed to find the optimal mix of DG units for economic 

operation of grid connected distribution system and it has been extended to analyze 

autonomous operation of active distribution system in the presence of battery storage. 

While planning the DGs and their economic feasibility for operation in microgrid, the 

main purpose of microgrid operation should not be ignored i.e. the active management of 

load that is directly linked with the approximately constant frequency of operation in the 

system. Thus, load frequency control of an isolated microgrid is also attempted in this thesis 

with two types of control techniques:  first one with PI controller, whose gains are tuned 

with Levy-based spider monkey optimization algorithm. This method employs levy flights 

to explore the search space whereas spider monkey algorithm is utilized to intensify the 

search towards better optimal solution. And the second, a fuzzy adaptive Model Predictive 

Control (MPC), where the fuzzy controller is embedded into MPC algorithm for better 

adaptive performance of load frequency control in an isolated microgrid. 

  



ix 

Contents 
 

 

Acknowledgments ..................................................................................................................... v 

Abstract ................................................................................................................................... vii 

List of Figures ........................................................................................................................ xiii 

List of Tables ......................................................................................................................... xvii 

Abbreviations ......................................................................................................................... xix 

List of Symbols........................................................................................................................ xx 

1 Introduction ....................................................................................................................... 2 

1.1 General Overview ........................................................................................................ 2 

1.2 Distributed Generation and the Microgrid ................................................................... 3 

1.3 Need, Challenges and Solutions of Microgrid Operation ............................................ 3 

1.4 Optimization techniques and problem formulating domains ....................................... 4 

2 Literature Review ............................................................................................................. 7 

2.1 Distributed Generation (DG) Planning in Distribution Network ................................ 7 

2.2 Optimal planning of active distribution network in microgrid perspective ............... 10 

2.2.1 Planning of grid connected active distribution network ..................................... 11 

2.2.2 Autonomous mode of active distribution network operation ............................. 13 

2.3 Load frequency control methods in microgrid .......................................................... 14 

2.4 Motivation .................................................................................................................. 16 

2.5 Contribution ............................................................................................................... 17 

2.6 Thesis Organization ................................................................................................... 18 

2.7 Summary .................................................................................................................... 20 

3 Distribution Generation planning using Peer enhanced Multi-Objective Teaching 
–Learning based Optimization Algorithm ................................................................... 22 

3.1 Introduction ................................................................................................................ 22 

3.2 Modelling of DG in distribution system load flow .................................................... 22 

3.2.1 Backward and Forward Sweep load flow algorithm (BFS) ............................... 23 

3.2.2 DG as negative PQ model .................................................................................. 25 

3.3 Proposed Peer enhanced Multi-Objective Teaching-Learning Based Optimization 
(PeMOTLBO) Algorithm .......................................................................................... 25 



x 

3.4 Problem formulation .................................................................................................. 28 

3.5 Simulation results and discussions on the test systems ............................................. 29 

3.5.1 Performance Metrics Comparison of proposed PeMOTLBO with NSGA-II .... 35 

3.5.1.1 Set coverage metric .................................................................................. 36 

3.5.1.2 Spacing metric ......................................................................................... 38 

3.6 Summary .................................................................................................................... 40 

4 Optimal Planning of Active Distribution Network Operation with hybrid 
Distributed Energy Resources using Grid-based Multi-Objective Harmony Search 
Algorithm ......................................................................................................................... 42 

4.1 Introduction ................................................................................................................ 42 

4.2 Proposed Grid based Multi-Objective Harmony Search (GrMHS) Algorithm..... 43 

4.2.1 Definitions and concepts .................................................................................... 43 

4.2.2 Fitness calculation .............................................................................................. 44 

4.2.3 Framework of proposed Grid based Multi-Objective Harmony Search 
(GrMHS) algorithm ........................................................................................... 45 

4.3 Modeling of generation and load: uncertainties and certainties ................................ 46 

4.3.1 Wind speed modeling ......................................................................................... 47 

4.3.2 Solar irradiance modeling .................................................................................. 47 

4.3.3 Calculation of power output of the wind turbine and PV module ...................... 48 

4.3.3.1 Calculation of power output of wind turbine ........................................... 49 

4.3.3.2 Calculation of power output of PV module ............................................. 49 

4.3.4 Battery storage model ......................................................................................... 49 

4.3.5 Load and price modeling .................................................................................... 50 

4.4 Problem formulation .................................................................................................. 50 

4.5 Optimal operation strategy for grid connected and autonomous mode operation of 
active distribution network ........................................................................................ 51 

4.5.1 Optimal operation strategy for grid connected mode ......................................... 51 

4.5.2 Optimal operation strategy for autonomous mode ............................................. 53 

4.6 Simulation results and discussion .............................................................................. 54 

4.6.1 Two objectives: Minimization of active power loss and voltage deviation ....... 54 

4.6.2 Three objectives: Grid connected mode of operation with hybrid DERs .......... 57 



xi 

4.6.2.1 IEEE 33-bus system ................................................................................. 58 

4.6.2.2 Indian 85-bus system ............................................................................... 62 

4.6.3 Three objectives: Autonomous mode of operation with hybrid DERs .............. 65 

4.6.3.1 IEEE 33-bus system ................................................................................. 66 

4.6.3.2 Indian 85-bus system ............................................................................... 69 

4.6.4 Performance metrics comparison of proposed GrMHS algorithm with MOHS 
and NSGA-II ...................................................................................................... 72 

4.7 Summary .................................................................................................................... 75 

5 Load Frequency Control of an Isolated Microgrid using Levy based Spider 
Monkey Algorithm .......................................................................................................... 77 

5.1 Introduction ................................................................................................................ 77 

5.2 Proposed Eagle strategy using Levy flights with Spider Monkey Optimization 
Algorithm .................................................................................................................. 77 

5.2.1 Levy Flights ........................................................................................................ 78 

5.2.2 Spider Monkey Optimization (SMO) Algorithm ............................................... 79 

5.3 Problem formulation .................................................................................................. 82 

5.4 Simulation results and discussion .............................................................................. 82 

5.5 Summary .................................................................................................................... 89 

6 Fuzzy Adaptive Model Predictive Control for Load Frequency Regulation of an 
Isolated Microgrid .......................................................................................................... 92 

6.1 Introduction ................................................................................................................ 92 

6.2 Outline of model predictive control (MPC) ............................................................... 92 

6.3 MPC implementation for load frequency control of an isolated microgrid ............... 94 

6.4 Fuzzy inference system for parameter (Rw) tuning ................................................... 96 

6.4.1 Fuzzification ....................................................................................................... 97 

6.4.2 Fuzzy Inference System: Fuzzy Rules formulation ........................................... 97 

6.4.3 Defuzzification ................................................................................................... 98 

6.5 Simulation results and discussion .............................................................................. 99 

6.6 Summary .................................................................................................................. 106 

7 Conclusions .................................................................................................................... 108 

7.1 General ..................................................................................................................... 108 



xii 

7.2 Summary of important findings ............................................................................... 108 

7.3 Scope for Future Work ............................................................................................ 110 

References ............................................................................................................................. 111 

Appendix ............................................................................................................................... 120 

Publications ........................................................................................................................... 128 

Curriculum - Vitae ............................................................................................................... 129 

 

  



xiii 

List of Figures 
 

Figure 3.1: A simple resistive network ................................................................................23 

Figure 3.2:  Typical 6-bus radial distribution system ...........................................................24 

Figure 3.3:  IEEE 33-bus system: Voltage profile of the system for different DG case ......30 

Figure 3.4:  IEEE 69-bus system: Voltage profile of the system for different DG case ......30 

Figure 3.5:  Indian 85-bus system: Voltage profile of the system for different DG case. ....31 

Figure 3.6: IEEE 33- bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and 

NSGA-II ............................................................................................................31 

Figure 3.7: IEEE 69- bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and 

NSGA-II ............................................................................................................32 

Figure 3.8: Indian 85-Bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and 

NSGA-II ............................................................................................................32 

Figure 3.9:. IEEE 33-bus system - Box plot of C-metric value ............................................37 

Figure 3.10:  IEEE 69 -bus system - Box plot of C-metric value ...........................................37 

Figure 3.11:  Indian 85-bus system - Box plot of C-metric value ..........................................37 

Figure 3.12:  IEEE 33-bus system- Box plot of S-metric values ...........................................38 

Figure 3.13:  IEEE 69-bus system- Box plot of S-metric values ...........................................39 

Figure 3.14:  Indian 85-bus system- Box plot of S-metric values ..........................................39 

Figure 4.1:  The proposed planning strategy for grid connected mode of  operation ...........52 

Figure 4.2: The proposed planning and operational strategy for autonomous mode of 

operation ............................................................................................................53 

Figure 4.3:  IEEE 33-bus system: Comparison of voltage profile with the proposed GrMHS 

and PeMOTLBO ...............................................................................................54 

Figure 4.4:  IEEE 33-bus system: Comparison of pareto solutions obtained by GrMHS and 

PeMOTLBO ......................................................................................................55 

Figure 4.5: IEEE 69-bus system: Comparison of voltage profile with GrMHS and 

PeMOTLBO ......................................................................................................55 

Figure 4.6:  IEEE 69-bus system: Comparison of pareto solutions obtained by GrMHS and 

PeMOTLBO ......................................................................................................56 



xiv 

Figure 4.7:  Indian 85-bus system: Comparison of voltage profile with GrMHS and 

PeMOTLBO ......................................................................................................56 

Figure 4.8:  Indian 85-bus system: Comparison of pareto solutions obtained by GrMHS and 

PeMOTLBO ......................................................................................................57 

Figure 4.9:  Yearly profile of Load and generations of various DERS ................................58 

Figure 4.10:  IEEE 33-bus system: Bus voltage variation for different DG combinations. ...59 

Figure 4.11:  IEEE 33-bus system: Seasonal energy loss variation for all DG combinations59 

Figure 4.12:  IEEE 33-bus system: Comparison of pareto solutions of Proposed GrMHS with 

MOHS and NSGA-II ........................................................................................60 

Figure 4.13: Indian-85 bus system: Voltage variation at all buses for different DG 

combination. ......................................................................................................62 

Figure 4.14:  Indian-85 bus system: Seasonal energy loss variation for all DG combinations

 ...........................................................................................................................63 

Figure 4.15:  Indian 85-bus system: Comparison of pareto solutions of Proposed GrMHS 

with MOHS and NSGA-II ................................................................................63 

Figure 4.16:  IEEE 33-bus system: Variation of load and generation at first year of planning 

horizon for 9 DERs case ...................................................................................66 

Figure 4.17:  IEEE 33-bus system: Comparison of Energy loss for 9DERs case ..................67 

Figure 4.18:  IEEE 33-bus system: Comparison of voltage profile for 9DERs case..............67 

Figure 4.19:  IEEE 33-bus system: Comparison of pareto solutions of proposed GrMHS with 

MOHS ...............................................................................................................68 

Figure 4.20:  Indian 85-bus system: Variation of load and generation for 9 DERs case

 ...........................................................................................................................70 

Figure 4.21:  Indian 85-bus system: Comparison of Energy loss for 9DERs case .................70 

Figure 4.22:  Indian 85-bus system: Comparison of pareto optimal solutions of proposed 

GrMHS with MOHS .........................................................................................71 

Figure 4.23:  Indian 85-bus system: Comparison of voltage profile for 9DERs case ............71 

Figure 4.24:  IEEE 33-bus system – Comparison of C-metric values obtained with proposed 

GrMHS ..............................................................................................................73 

Figure 4.25:  Indian 85-bus system – Comparison of C-metric values obtained with proposed 

GrMHS ..............................................................................................................73 



xv 

Figure 4.26:  IEEE 33-bus system – Comparison of S-metric values obtained with proposed 

GrMHS ..............................................................................................................74 

Figure 4.27:  Indian 85-bus system – Comparison of S-metric values obtained with proposed 

GrMHS ..............................................................................................................74 

Figure 5.1:  Frequency control model of an isolated microgrid with PI controller ..............83 

Figure 5.2:  Case-1: System response with all micro sources ..............................................84 

Figure 5.3:  Case-1: Comparison of convergence plot .........................................................84 

Figure 5.4:  Frequency deviation response with dispatchable sources .................................85 

Figure 5.5:  Comparison of system response with diesel and fuel cell ................................86 

Figure 5.6:  Step load variation ............................................................................................86 

Figure 5.7:  Comparison of frequency deviation response for multiple load steps ..............87 

Figure 5.8:  Comparison of system response with wind perturbations for 6secs .................88 

Figure 5.9:  Comparison of system response for parametric variation .................................89 

Figure 6.1:  Load frequency control model of an isolated microgrid with fuzzy adaptive 

MPC ..................................................................................................................96 

Figure 6.2:  Inputs and output of fuzzy logic controller .......................................................97 

Figure 6.3:  Membership Functions a) Magnitude of Frequency Deviation (|FD|) ..............98 

Figure 6.4:  System response of the microgrid for different values of Rw .........................100 

Figure 6.5:  (a).Comparison of system response of the microgrid for case-1 (b). Response 

of Cost functions of MPC over simulation period for case-1 (c) & (d). 

Response of control inputs to diesel and fuel cell for case-1 ..........................101 

Figure 6.6:  (a).Comparison of system response of the microgrid for case-2 (b). Response 

of Cost functions of MPC over simulation period for case-2 (c) & (d). 

Response of control inputs to diesel and fuel cell for case-2 ..........................101 

Figure 6.7:  (a) Comparison of system response of the microgrid for case-3 (b). Response 

of Cost functions of MPC over simulation period for case-3 (c) & (d). 

Response of control inputs to diesel and fuel cell for case-3 ..........................102 

Figure 6.8:  (a) Comparison of system response of the microgrid for case-4 (b). Response 

of Cost functions of MPC over simulation period for case-4 (c) & (d). 

Response of control inputs to diesel and fuel cell for case-4 ..........................103 



xvi 

Figure 6.9:  (a) Comparison of system response of the microgrid for case-5 (b).Response of 

Cost functions of MPC over simulation period for case-5 (c) & (d). Response 

of control inputs to diesel and fuel cell for case-5 ..........................................104 

Figure 6.10:  (a) Comparison of system response of the microgrid for case-6 (b). Response 

of Cost functions of MPC over simulation period for case-6 (c) & (d). 

Response of control inputs to diesel and fuel cell for case-6 ..........................105 

Figure 6.11:  (a) Comparison of system response of the microgrid for case-7 (b). Response 

of Cost functions of MPC over simulation period for case-7 (c) & (d). 

Response of control inputs to diesel and fuel cell for case-7 ..........................106 

 
  



xvii 

List of Tables 
 

Table 3.1  Control parameters for TLBO and NSGA-II algorithms ....................................29 

Table 3.2  IEEE 33-Bus system: Comparison of proposed PeMOTLBO results without and 

with DG ...............................................................................................................33 

Table 3.3  IEEE 69-Bus system: Comparison of proposed PeMOTLBO results without and 

with DGs ..............................................................................................................34 

Table 3.4  Indian 85-Bus system: Comparison of proposed PeMOTLBO results without 

and with DGs .......................................................................................................34 

Table 3.5  IEEE 33-bus system: Comparison of proposed PeMOTLBO with MOTLBO and 

NSGA-II for 4 DG case .......................................................................................34 

Table 3.6  IEEE 69-bus system: Comparison of proposed PeMOTLBO with MOTLBO and 

NSGA-II for 4 DG case .......................................................................................35 

Table 3.7  Indian 85-Bus system: Comparison of proposed PeMOTLBO with MOTLBO 

and NSGA-II for 4 DG case ................................................................................35 

Table 3.8  C-Metric: Mean value, standard deviation of proposed PeMOTLBO and NSGA-

II ..........................................................................................................................36 

Table 3.9  S-Metric: Mean vale, standard deviation of Proposed PeMOTLBO and NSGA-II

 .............................................................................................................................39 

Table 4.1 Cost associated with various DER types .............................................................51 

Table 4.2  Consolidation and comparison of results for two objectives case .......................56 

Table 4.3  IEEE 33-bus system: Validation and comparison for optimal mix of dispatchable 

and non-dispatchable DG units ...........................................................................61 

Table 4.4  Indian 85-bus system: Validation and comparison for optimal mix of 

dispatchable and non-dispatchable DG units ......................................................64 

Table 4.5  IEEE 33-bus system: System Performance with various DERs combinations and 

renewable source bus limits .................................................................................68 

Table 4.6  Indian 85-bus system: System performance with various DERs combination and 

renewable source bus limits .................................................................................72 

Table 5.1  Performance metric ITSE value for case-1 .........................................................84 

Table 5.2  Performance metric ITSE value for case-2 .........................................................85 



xviii 

Table 5.3  Performance metric ITSE value for case-3 .........................................................87 

Table 5.4  Performance metric ITSE value for case-4 .........................................................88 

Table 5.5  Performance metric ITSE value for case-5 .........................................................89 

Table 6.1  Fuzzy rules for variation of ΔRw .........................................................................99 

Table 6.2  Comparison of performance index ....................................................................105 

 

  



xix 

Abbreviations 

 

ADN Active Distribution Network 

BFSA Backward-Forward Sweep Algorithm 

DG Distributed Generation 

DERs Distributed Energy Resources 

DEG Diesel Engine Generator 

COG Centre Of Gravity 

ESS Energy Storage Systems 
FA Firefly Algorithm 

FLC Fuzzy Logic Controller 

FAMPC Fuzzy Adaptive Model Predictive Control 

FC Fuel Cell 
GrMHS Grid based Multi-objective Harmony Search 

HSA Harmony Search Algorithm 

HMCR Harmony Memory Consideration Rate 

ITSE Integral Time Squared Error 

ISE Integral Squared Error 

LFC Load Frequency Control 

MPC Model Predictive Control 

NSGA-II Non-Dominated Sorting Genetic Algorithm – II 

ODGP Optimal Distributed Generation Planning 

PeMOTLBO Peer-enhanced Multi-Objective Teaching Learning Based Optimisation 

PAR Pitch Adjusting Rate 

PV Photo Voltaic 
PDF Probability Density Function 

PSO Particle Swarm Optimisation 

PI controller Proportional Integral Controller 

SMA Spider Monkey Algorithm 

TLBO Teaching Learning Based Optimization 

  



xx 

List of Symbols 
 

a, b and c Fuel cost coefficients 

 ,  Parameters of the Beta distribution function 

gasoilC  Price of the gasoil 

eiC  The penalty for eth pollution source 

iCI  Investment cost coefficient 

iCAP  Capacity of installed units 

D  Damping Coefficient 

div No. of divisions in the objective space 

id  Minimum distance between objectives in the objective space 



d  Mean of id  

htiDLF ,,  Demand Level Factor for typical daily load at every bus in year  t 

batE  Energy Status of the battery 

)(vfw  Weibull distribution of wind velocity 

)(sfb  Beta distribution function of solar irradiance 

FF  Fill factor 

f  Frequency deviation 

H Inertia of rotating masses of the micro grid 

cI  Set coverage metric 

scI  Short circuit current in A 

MPPI  Current at maximum power point in A 

J Cost function in MPC 

vK  Voltage temperature coefficient in V/˚C 

iK  Current temperature coefficient in A/˚C 

OMik  M&O costs coefficient 

WTK  Annual M&O cost (per kW) for wind turbine 



xxi 

PVK  Annual M&O cost (per kW) for solar cell 

Kp  Proportional controller gain 

iK  Integral controller gain 

kll  Lower limits of the grid in objective space 

M  No. of objectives 

ei  The coefficients of eth pollution source 

n  No. of buses in the system 

N  Population size 

OTN  Nominal operating temperature of cell in ˚C 

mN  Number of PV modules 

sn  No. of PV cells 

wn  No. of wind turbine generator 

ch  Charging efficiency of the battery 

disch  Discharging efficiency of the battery 

PN  Prediction horizon 

Nc  Control horizon 

P_loss  The total real power loss in the system 

DGP  Real power of DG 

loadP  Total load on the system 

max
DGP  Maximum power of DG 

 wv GP  Probability of the wind speed in state w 

 ys GP  Probability of the solar irradiance in state y 

wP  Output power of the wind turbine during state w 

sP  Total solar power output 

maxmin , mm PP  Minimum and maximum limits on mth objective in population P 

SyP  Output power of the PV module during state y 

LP  Change in load power 
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∆ ௦ܲ_௜௡௩ Change in power outputs from inverter circuit of solar unit 

∆ ௦ܲ_௙௜௟௧ Change in power outputs of filter circuit of solar unit 

∆ ௠ܲௗ  Change in turbine mechanical power output from the diesel unit 

∆ ௚ܲௗ Change in governor output of diesel unit 

∆ ௙ܲ_௙௜௟௧ Change in power from filter circuit of fuel cell 

∆ ௙ܲ_௜௡௩ Change in power from filter circuit of fuel cell 

∆ ௙ܲ௖ Change in power output from fuel cell 

∆ ௕ܲ௔௧  Change in the battery power 

∆ ஼ܲௗ Control inputs given to the diesel 

∆ ஼ܲ௙ Control inputs given to the fuel cell 

Q  No. of solutions in the pareto front 

R Frequency droop 

r(k) Reference input signal 

wR  Input tuning parameter in MPC 

pS  Space metric value 

s  Solar irradiance in kW/m2 

D
baseiS ,  Base load at each bus in the system 

D
htiS ,,  Demand level at each hour in the planning period 

ays  Average solar irradiance of state y 

21 yy   ss  Solar irradiation limits  in state y 

FT  Teaching –Learning factor 

CyT  Cell temperature in ˚C during state y 

AT  Ambient temperature in ˚C 

௧ܶ Turbine time constant  

௚ܶ Governor time constant 

௙ܶ௜௟௧ Time constant of filter circuit 

௜ܶ௡௩ Time constant of inverter circuit 

௙ܶ௖ Time constant of the fuel cell 

௕ܶ Time constant of the battery 
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kul  Upper limits of the grid in objective space  

U  Control input vector 

iV  Voltage magnitude at bus i 

maxmin , ii VV  Minimum and maximum limits on voltage at ith bus 

awv  
Average wind speed 

civ , cov  
Cut-in and cut-out wind speed 

1wv , 2wv  
Wind speed limits at state w 

ocV  Open circuit voltage in V 

MPPV  Voltage at maximum power point in V 

kw  Width of hyper boxes in the objective space 

Y Output in the state space model of MPC 
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  Chapter 1 

1 Introduction 

1.1 General Overview 

The future electrical network is required to be flexible, accessible, reliable and cost-

effective to become a smart grid, despite the changing regulatory and economic scenarios 

amidst the growing demand and its gap with the generation. The next generation electricity 

grid is expected to address major shortcomings of the existing grid. The required grid 

smartness is achieved by applying information technology, communication power electronics 

and digital technologies, tools and techniques to the existing grid to make it intelligent to 

tackle the future challenges [1] leading to smart grid operation. In short, Smart grid is defined 

as “Integrating advances in digital and information technology into the nation’s electric 

delivery network for enhanced operational intelligence and connectivity” [2]. The keen 

interest on anticipated challenges in power grid proved that the roots of the power system 

issues might be found in the electrical distribution system, while the point of departure for 

grid overhaul is firmly placed at the bottom of the chain [3]. Thus, the initiatives taken to 

improve the smartness in the grid must start from the lower stream of the electrical grid i.e. 

distribution network. As one among the various future smart grid initiative worldwide, 

microgrid operation has emerged as one of the promising solutions to the active management 

of loads in distribution and remote networks [4] and it has claimed to be the building block of 

future smart grid.  

There are several definitions for microgrid in many contexts [5], and these have 

evolved in various forms, such as Active Distribution Network (ADN), Cognitive Microgrid 

(CMG) and Virtual Power Plant (VPP) etc. The terms are interchangeably used in various 

research attempts in recent times. Candidates of microgrid operation are institute/campus, 

commercial/industrial facilities, remote “off grid” communities and military bases, data 

centers and municipalities etc. In this thesis, microgrid is conceived as an active distribution 

network and the medium voltage distribution networks are considered for the microgrid 

planning, control and management studies undertaken in this thesis. 
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1.2 Distributed Generation and the Microgrid 

 Distributed Generation (DG) is an approach that employs small-scale technologies to 

generate electricity close to the end users of power. This has become the driving factor of 

microgrid operation. DG technologies include Distributed Energy Resources (DERs) along 

with storage assets. DERs embody both modular conventional generating sources such as 

diesel, micro turbines, fuel cells, hydrothermal units etc., and the environmental friendly 

generations such as wind, solar, biogas etc. Apart from the generating sources, storage assets 

such as batteries, small pumped hydro units, flywheels, super capacitors etc., also contribute 

to DG technologies. The Department of Energy, US, defines Distributed Generation as 

“Distributed Generation is the small scale power generation technologies located close to the 

load being served, capable of lowering costs, improving reliability, reducing emission and 

expanding energy options”. 

The best way to realize the emerging potential of DGs is to take a system approach 

that treats generation, associated loads and controls as an integrated system or Microgrid 

operation. Thus, extended operation of DG technologies with the necessary controls and 

communication with the utility grid and the customized loads leads to microgrid operation. In 

brief, a microgrid is an integrated energy system consisting of interconnected loads and 

distributed energy resources, which as an integrated system, can operate in parallel with the 

grid or in an intentional island mode [2].  

1.3 Need, Challenges and Solutions of Microgrid Operation 

The microgrid can provide a large variety of technical, environmental and socio- 

economic benefits to the utility and the consumers depending on its operational strategies. 

The microgrid operation with distributed generations close to the loads eliminates central 

bulk power generation, which in turn relieves transmission and distribution network costs, 

saving of fossil fuels, reduction of pollution and greenhouse gases as well as technical 

advantages like loss reduction, peak shaving, voltage profile and load factor improvements 

and power quality enhancement. During disturbances, it can disconnect the generation and 

load from the rest of the system to retain the overall system integrity. It has the potential of 

improving local reliability that supports the overall system performance. Despite 
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technological advancements in electrical power grid and practically immature microgrid 

operation still imposes various technical challenges. The challenges are: 

 Since microgrid involves renewable energy resources which are intermittent in 

nature, continuous supply to the load is uncertain.  

 The hybrid energy system operation demands complicated control and management.  

 Dominant use of power electronic interfaced DERs that lead to severe voltage and 

frequency fluctuation in the system due to less inertia.  

 The conventional distribution of power is from one end where the protection is 

relatively simple; in contrast, microgrid operates with many energy sources placed at 

various places where the coordination of protection devices is tedious. 

 The real and reactive power injection and absorption is directly related to frequency 

and voltage in the system respectively. Higher penetration of DERs will results in 

voltage rise in the system. 

   In case of undesired system faults, it requires fast detection of islanding condition to 

guarantee safety and reliability of the system.  

However, these challenges can be overcome by judicious planning, use of proper design and 

control techniques in the microgrid operation. Some such solutions to tackle these challenges 

are: 

 Strategic deployment of DERs with respect to their location, size and technology to 

suit the requirement. 

 Proper control techniques to manage the operation of all components in the microgrid 

i.e. proper scheduling of DERs output to control the voltage and frequency. 

 Use of energy storage to balance the load demand and generation, which indirectly 

smoothen the frequency regulation. 

 Proper schemes for protection of system. 

1.4 Optimization techniques and problem formulating domains 

Optimization is the procedure of finding the optimal solution to a problem. The 

optimality of a solution is evaluated in terms of an objective. Even though there has been a 

significant amount of research to deal with a single objective, the real world problem 

involves multiple objectives, which mostly conflict with each other. Classical optimization is 
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still a good way to find one best solution in one simulation run but not in handling multi-

objective problem as there exists a set of trade-off solution of multiple objectives instead of a 

single solution. In such case, meta-heuristic algorithms are ideal for dealing with multi-

objective optimization problems because of their population search based approach. 

Moreover, this multi-objective optimization can have two approaches: 

i) Weighted sum approach – A simple method that would form a composite 

objective function based on the preference factor assigned to each objective. 

Optimizing the single composite objective function will result in one solution 

from the trade-off solution set.  

ii) Pareto based approach – Ideal multi-objective approach that would treat each 

objective individually in the optimization procedure and result in a set of Pareto 

solutions where there would be a provision for decision-making based on the 

application. 

Hence, the second method of optimization procedure is preferred for the advantage of 

visualizing all possible combination of objective values that exist in the trade-off solution 

between two conflicting objectives. In case of optimization methods, meta-heuristic 

algorithms are predominantly applied and they are of two types:  

1. Gradient search method (Trajectory based) – Search one solution at one time 

2.  Population search method – Process a group of solutions at a time. 

 Between the above methods, the former is a slow process because of single solution 

search; one such example is Simulated Annealing (SA), Tabu Search (TS) whereas the latter 

is efficient and fast in finding the optimal solution as it processes a group of solutions in the 

search process, making it easier in finding the optimal solution. The population-based 

methods are better in exploring the optimal solutions at a faster rate. Some such Evolutionary 

and Meta-heuristic algorithms are: Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Ant Colony Optimization (ACO), Ant Bee Colony (ABC), Bacterial Foraging 

Optimization (BFO) etc. 

Thus, the problem of active distribution network planning in this thesis is formulated 

as a multi-objective problem and load frequency control of a microgrid is treated as a single 

objective problem. Both the problems are optimized using proposed efficient meta-heuristic 

algorithms. 
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Chapter 2 

2 Literature Review 

2.1 Distributed Generation (DG) Planning in Distribution Network 

The prerequisite of the microgrid operation is the optimal Distributed Generation 

planning. Distributed generation (often called as decentralized generation, dispersed 

generation and embedded generation) is a small scale generation connected either in the 

distribution network or in the sub-transmission network in the range from (1-10 MW). 

Hence, typical Optimal DG Planning (ODGP) deals with finding the location and sizing of 

the DG units to be installed in the existing network subject to various operational and 

investment constraints. Even though the installation of DGs in distribution network offers a 

variety of benefits, it may also impose some problems and limitations at higher penetration 

level if they are not placed at proper location with correct penetration level (sizing). The 

aspects that are influenced by the connection of DG units are as follows [6]: Voltage 

deviations, Grid losses, Power quality, Fault level, Protection system and Reliability. 

Therefore, the location and the sizing of DG become a challenging task for active distribution 

system planning and operation.  

Even though there is relatively large research on ODGP [7]-[9] on different 

perspective related to technical and economic issues of DG operation, for an active 

distribution network operation planning, little research on DG location and size have to be 

carried out. The mathematical formulation of DG planning can be attempted as single or 

multi-objective problem either with single DG or with multiple DG units considering 

technical and economic constraints. The representative objective functions considered in the 

DG planning are: 1) minimization of the total power loss of the system; 2) minimization of 

energy losses; 3) minimization of system average interruption duration index (SAIDI); 4) 

Cost minimization; 5) Minimization of voltage deviation; 6) Maximization of DG capacity; 

7) maximization of profit; 8) maximization of a benefit/cost ratio; and 9) maximization of 

voltage limit loadability [8]. The solution techniques for ODGP have been evolving and 

number of approaches have been developed, each with its particular mathematical and 

computational characteristics. The techniques discussed are classified as one of the three 
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categories: Conventional methods, intelligent search-based methods and fuzzy set based 

method. Conventional method includes analytical and numerical approaches.  

DG planning has been attempted with several analytical approaches [10]-[15]. 

Acharya et al. proposed an analytical method, based on the exact loss formula, to optimally 

site and size a single DG [10]. Lee and Park [11] proposed an analytical method for finding 

the optimal locations of multiple DGs in combination with Kalman filter algorithm for 

determining their optimal size. T. Gözel and M. H. Hocaoglu [12] developed an analytical 

method using a loss sensitivity factor based on the equivalent current injection to find the 

optimum size and location of a single DG.  Hung et al. [13] suggested analytical expressions 

for finding optimal size and power factor of different types of DGs. The same has been 

extended in [14]  to compute the optimal location and size of multiple DGs for different types 

of DGs. Tah et al. [15] proposed a novel analytical expression for optimum DG size at each 

bus by eliminating the use of bus impedance matrix for loss reduction in the system.  

In case of numeric approach, there are several methods of optimization adopted in DG 

planning problem such as gradient approach [16], linear programming [17], sequential 

quadratic programming [18], Non-linear programming [19]-[23], dynamic programming 

[24], Ordinal optimization [25]. P. Vovos and J. Bialek [16], proposed a gradient search for 

the optimal sizing of DGs in meshed networks considering fault level constraints. Keane and 

Malley [17] proposed a methodology based on linear programming to obtain optimal 

allocation and sizing of embedded generation considering technical constraints for 

accommodating maximum DG power penetration on the distribution network. AlHajri et al. 

[18] applied Sequential Quadratic Programming (SQP) to solve ODGP without considering 

the fault level constraints. Atwa et al. [19] proposed a methodology to convert discrete 

probabilistic generation-load model with all possible operating conditions into a deterministic 

model and solved it using a mixed integer nonlinear programming (MINLP) technique for 

optimally allocating either only wind DG units  or different types of DG units [20] . Porkar et 

al. [21] employed MINLP for optimal allocation of different types of DG units considering 

electricity market price fluctuation. Kumar et al. [22] evaluated an ODGP model in hybrid 

electricity market using MINLP. Similarly, Abri et al. [23], proposed MINLP for optimally 

placing and sizing the electronically interfaced DG units, with an objective of improving the 

voltage stability margin. Esmaili et al. [24] proposed a method for optimal placement of DGs 
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to maximize VSM simultaneously minimizing the grid power losses using the dynamic 

programming search technique to find the global optimal solution. Jabr and Pal [25]  

developed an ordinal optimization method for specifying the locations and sizes of multiple 

DGs such that a tradeoff between loss minimization and DG capacity maximization is 

achieved. The fuzzy set based methods are mostly used in conjunction either with 

conventional or heuristic techniques. 

Analytical methods are easy to implement and fast to execute. However, their results 

are only indicative, since they make simplified assumptions including the consideration of 

only one power system loading snapshot. Among the available numerical methods for 

ODGP, the most efficient are nonlinear programming, sequential quadratic programming and 

ordinal optimization methods. Heuristic methods are usually robust and provide near-optimal 

solutions for large, complex ODGP problems. These methods are comparatively efficient 

than conventional techniques irrespective of complexity of the problem.  Generally, they 

require high computational effort. However, this limitation is not necessarily critical in DG 

placement applications. 

A set of DG planning methods is proposed using GA presented in [26]-[28]. Gampa et 

al. [26] proposed a novel sensitivity index based method for optimal placement where the 

size of DGs is optimized using multi-objective GA considering both technical and investment 

costs. Ogunjuyigbe et al. [27] proposed a dynamic GA based multi-objective optimization 

depending on the variability of equipment cost for a tri-objective hybrid system. They also 

justified the replacement of large diesel generators with small (split) ones to reduce LCC, 

carbon dioxide emissions and dumped energy by 46%, 82% and 94% respectively. Whereas, 

Singh et al. [28] evaluated the optimal placement of different DG types in distribution 

network using a variety of load models using GA. Optimized DG system design improved 

with regard to security, technical, economic and environmental viewpoints. Muttaqi et al. 

[29] proposed a cost based DG sizing and placement using PSO technique. An economic 

approach was implemented to evaluate system reliability. Kowsalya [30] used Bacterial 

Foraging Optimization Algorithm (BFOA) to find the optimal size of DG whereas loss 

sensitivity factor is used to identify the optimal locations for installation of DG units with an 

objective of minimizing network power losses, operational costs and improving voltage 

stability. Mitra et al. [31] investigated suitable mix of micro turbine and solar PV penetration 
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in microgrid for optimal operation using Simulated Annealing (SA), with trade-off between 

high upfront cost of solar PV system and fuel cost of micro turbine system. Prabha and 

Jayabarathi [32] applied Invasive Weed Optimization (IWO) method to optimally size DG 

whereas optimal DG placement was based on power loss factor sensitivity approach. IWO 

resulted in more cost-effective DG configuration. Sultana et al. [33] investigated a complex 

combinatorial problem of locating and sizing of DG for real power loss/energy loss 

minimization of electric radial distribution networks. The Krill Herd Algorithm was 

employed to determine the optimal size and location of DG. Hybrid approach led to greater 

power loss reduction, better stability index compared to individual conventional and heuristic 

approaches. Such hybrid algorithms used for DG planning are presented in [34]- [36].  

The above reviewed heuristic algorithms are mostly population based and dependent 

on algorithmic specific parameters and other controlling parameters, which may affect the 

effectiveness of the algorithm. The difficulty of this parameter selection may increase with 

modifications and hybridization techniques. Rao et al. [37] proposed a new optimization 

technique called Teaching-Learning Based Optimization (TLBO), which is free from 

algorithm specific parameters and has been utilized for single objective optimization 

problems. Niknam et al. [38] proposed a new multi-objective teaching-learning-based 

optimization algorithm in order to solve the optimal location of automatic voltage regulators 

(AVRs) in distribution systems with distributed generators (DGs). Nayak et al.  [39] 

presented a non-domination based sorting multi-objective teaching-learning-based 

optimization algorithm, for solving the optimal power flow (OPF) problem which is a 

nonlinear constrained multi-objective optimization problem where the fuel cost, transmission 

losses and L-index are to be minimized. One of the variants of this parameter less TLBO 

algorithm is proposed in multi-objective frame for DG planning studies in this thesis.  

2.2 Optimal planning of active distribution network in microgrid perspective 

The location and size of conventional Distributed Generations connected in the 

distribution network have to be planned for active management of load. However, 

continuously increasing demand and depleting fuel-based generation urged the need of 

including renewable energy source integration in the system. In such situations, optimally 

planning the favorable combination of energy sources along with their best location and size 
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is extremely important both in technical and economic terms. This is especially relevant in 

the presence of inherently intermittent and environment dependent resources such as wind 

and solar power which introduce significant uncertainty and variability in the system. Apart 

from this, large-scale integration of renewable sources demands better smart grid 

technologies to address various challenges ahead of its operation.  Thus, dynamically 

planning the resource mix for optimal and cost effective operation of the active distribution 

network both in case of grid tied mode and autonomous mode of operation, is required for 

timely exploration in this area of research. 

2.2.1 Planning of grid connected active distribution network 

The evolving active distribution network can operate both in the grid-connected mode 

and in autonomous mode depending on the need. Diligent planning of Distributed Energy 

Resources for the required mode of operation is a challenging task in the pace of network 

characteristics changes [41]. The optimal mix and location of renewable and non-renewable 

DG sources have to be identified for reaping the potential benefits of their connection in the 

distribution network. In particular, connecting intermittent sources like wind turbine or solar 

power will lead to various technical challenges to sustain operation of active distribution 

system [42] in a reliable and secure manner.  

So far, DG planning models were reported in two major ways. They are static and 

dynamic planning models. These planning models can be attempted both with single and 

multi-objective approaches. In static model, all the investment decisions are made at the 

starting of the planning horizon [43]. Even though exhaustive work has been done in 

optimizing the location and sizing of DG units in the distribution network, substantial amount 

of research addresses this problem by considering dispatchable DG sources [44] such as gas 

turbine, diesel generator and fuel cell etc., with a single objective [45], [46]. It is also 

attempted as single objective problems of DG planning with stochastic models that include 

uncertain power generating sources such as wind and PV [47], [48]. Similarly, static planning 

models were also attempted in multi-objective frame. Harrison et al. in [49] studied the DNO 

loss reduction incentives with optimal location and capacities using multi-objective OPF and 

has been shown that the identified incentive has greater impact on the network deferral 

reinforcement whereas a multi-objective model using NSGA-II is proposed in [50] for 
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minimizing monetary cost index, technical and economic risk factors. The authors have used 

fuzzy domain for modeling various uncertainties such as load, voltage and loading 

constraints and the electricity price. Though the work attempted DG planning as a multi-

objective problem, they have utilized weighted sum multi-objective approach in which two 

or more objectives are converted to a single composite objective by assigning preference 

vector to each objective and thereby not serving the actual purpose. 

In dynamic planning model, some of the work considered simultaneous investment of 

both DG and network but the work does not deal with uncertainties associated with the DG 

planning problem. Maria et al. in [51]  proposed a multi-objective framework with two shell 

process i.e. design and optimal operation of microgrid. Internal process includes optimal 

management of microgrid using NSGA-II whereas external procedure implements design 

features through glow-worm swarm optimization. On the other hand, Li guo et al. in [52] 

presented a multi-objective stochastic optimal planning method for standalone microgrid 

considering uncertainties by using chance-constrained programming algorithm. Mohammadi 

et al. in [53] investigated the optimal operation and management of microgrid in a stochastic 

framework by generating several stochastic scenarios and later reducing and converting them 

into a deterministic problem. These deterministic problems were solved using new 

optimization strategy based on Adaptive Modified Firefly Algorithm (AMFA). A two scale 

dynamic programming is proposed in [54] to avoid conflicts between short term and long 

term planning benefits pertaining to wind and battery respectively. A dynamic optimization 

scheme has been presented for optimal energy management of wind-battery hybrid system. 

The capacity and operation of DGs are optimized in [55] in a microgrid by proposing a new 

hybrid optimization, that combines Quadratic Programming and PSO. Investments in the 

microgrid are justified in terms of Net Present value (NPV) and uncertainties are 

incorporated using fuzzy set theory. Smart energy management system is proposed in [56] to 

minimize the operational cost of microgrids by optimally coordinating the power production 

of DG sources and energy storage systems. Though the above discussed work formulated 

dynamic planning model on multi-objective frame, one way or other it has compromised 

either multi-objective approach or system dynamics and factoring in uncertainties. 
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As an effort to bridge the above possibilities, a pareto optimal based multi-objective 

planning model is proposed for grid connected active distribution network by manifesting all 

possible system dynamics and uncertainties associated with generation and load.  

2.2.2  Autonomous mode of active distribution network operation 

The active distribution network either can be in grid-connected mode or 

independently operated based on the renewable generation capacity and the load demand 

[57]. In the former mode of operation, the deficit or excess power can be supplied or traded 

with the readily available main grid. Whereas in the latter mode of operation, the real and 

reactive power is generated and managed within the network including temporary power 

exchanges with storage units if it exists. However, planning the operation and management 

of such an active network with random and intermittent renewable sources coupled with 

uncertain load in two modes of network operation is tough, and is a complex process due to 

the goals, constraints and uncertainties. The microgrid operation must be addressed towards 

challenges like power quality, reliability, supply and demand balancing, environment impact 

and various economic and stability aspects. Dealing with these challenges in an autonomous 

mode of operation with renewable sources demands an added effort towards technology 

handling. To address this problem, use of conventional generation and the storage assets to 

support its power fluctuation will be an appealing solution improving system reliability. 

Thus, the optimally planned microgrid operation plays an important role in taking the 

existing grid operation to a smarter level in so many ways, particularly when electrifying a 

remote and isolated area. 

It is generally accepted that conventional islanding of any microgrid predominantly 

operates with diesel units, which involves high costs and emission due to high fuel 

consumption unlike load shedding in unintentional islanding. To bring down the fuel cost of 

diesel operated islanded microgrid and to reduce the environmental impact, the diesel units 

are supplemented with renewable power generations such as solar, wind, biogas etc. 

However, the uncertain generation especially with solar and wind will introduce fluctuation 

in supply which in turn would lead to unstable operation [58] of the grid, thereby increasing 

costs for flexible operation of the diesel back up. In such conditions, energy storage systems 

play a vital role in reducing the overall system cost by smoothening load peaks thereby 
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overcoming the operating burden of diesel generators and cost constraints. Therefore, ESS 

can make robust and flexible system operation economical. 

Ritwik et al. [59] proposed an ANN based controller for battery storage is based on 

the required power to be injected from the battery storage in case of power shortage to 

maintain the grid voltage. The proposed controller is trained off line and tested online with 

different loading conditions for power quality improvement and stable system for variable 

test conditions. Jin et al. [60] proposed a compensation control strategy with modified droop 

and wind power compensation for damping system frequency and power fluctuations. In 

[61]-[63] computational methods  for optimal sizing of an off grid hybrid solar wind electric 

power generation system have been proposed and optimal configuration of the system has 

been identified to achieve minimum annualized cost of the system with the presence of 

battery storage. System reliability is enforced in terms of Loss of Power Supply and its 

relation with the system configuration has been studied completely by making use of 

probability density functions by processing weather data. Xinda et al. [64] developed three 

control algorithms and sizing strategies for batteries to minimize the hourly generation 

imbalance due to wind generation.   

Zhao et al. [65] proposed GA based optimization to optimize the size of real world 

standalone microgrid at Donghfushan island to achieve minimum life cycle cost and emission 

simultaneously maximizing the renewable source penetration. Ting et al. [66] examined the 

operation and control of standalone hybrid power system by implementing controller to each 

sources so as to extract the maximum from them. Hussain et al. [67] developed a model for 

autonomous microgrid with optimal mix of DGs and the performance was analyzed through 

small signal analysis. The unstable operation was also studied with large penetration of wind 

and solar sources. Various stability aspects of microgrid operation both in the grid connected 

and standalone mode have been discussed in [68]-[71]. 

2.3  Load frequency control methods in microgrid 

The main variables used to control the operation of power system are voltage, 

frequency, real and reactive power. The voltage and frequency are regulated by adjusting 

the reactive and real power respectively in the system. The power frequency control 

becomes a challenging task if load and source of power generation fluctuate in the system. 
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Hence, the load frequency control is an important function of modern power system which 

is dispersed geographically over a large scale and interconnected with multiple generations. 

This load frequency control equally requires greater attention in case of isolated small-scale 

microgrid operation. In grid connected microgrid operation, the infinite main grid regulates 

the frequency deviation due to variations in the load and renewable sources, whereas in case 

of islanded operation, it involves greater challenge and demands advanced control strategies 

to balance supply and demand with available generations. In case of islanded operation, 

there is no grid support for the frequency regulation in the system; it depends solely on the 

dispatchable sources such as diesel and storage units. These storage units play a vital role in 

the economic and smooth operation of islanded microgrid with excess renewable sources. 

Even though there are several research work on the microgrid control and management over 

the past decade [72]-[73], load frequency control in such an active distribution system still 

needs improved controls due to strong coupling between real and reactive power in the 

network operation.  This may lead to poor performance of conventional droop control due 

to inability to control frequency and voltage magnitude [74] independently.  

There are several LFC schemes reported in the literature from classical droop controls 

to various advanced control strategies in the past decades. Those schemes for conventional 

and distributed generation power system are comprehensively summarized in [75]. Authors 

[76]-[79] proposed improvements in conventional droop control for load frequency control of 

microgrids.  Guerrero et al. [76] developed a generalized hierarchal droop control for both 

AC and DC microgrid whereas authors [77]-[79] shown the benefits of various energy 

storage systems in frequency support of microgrid operation, especially in the autonomous 

mode with droop control. Apart from this conventional control techniques and methods 

employing droop characteristics, intelligent algorithms based control techniques are also 

growing equally in frequency regulation studies in  power systems [80]-[83].  Application of 

inteligent algorithms is not only confined to PI controller tuning applied for conventional 

generations in frequency regulation studies, but also applied to tune gains of the PI 

controllers employed in pitch control of wind energy conversion systems [84]. Bevrani et 

al.[85] proposed an online intelligent technique by combining fuzzy logic and PSO algorithm 

for frequency regulation in an isolated microgrid. The frequency control has been 

implemented by tuning PI controller gains for different case studies. Keeping apart various 
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techniques applied to load frequency control of microgrid, the challenges such as uncertainty 

in intermittent renewable generation, low inertia associated with power electronic interfaced 

DERs, dynamics and nonlinear complexities necessitates robust control technique. These 

techniques helps to get tradeoff between the robust system performance and stability in the 

closed loop system response against system uncertainties, such type of techniques are 

discussed in [86]-[89]. 

In addition to these schemes, model predictive control is slowly getting into control 

applications of power industry and is also applied to Load Frequency Control (LFC) / 

Automatic Generation Control (AGC) problem in recent times due to its simple and fast 

implementation. MPC has proved efficient in the process industry due to its modeling 

flexibility that involves straightforward design procedure, acceptable computational time and 

easy constraints handling, it is well received in all control application, and it is widely 

adopted in industries such as petrochemical industry, electrochemical, power and water 

management etc. 

Although so many variants of MPC have been proposed by the authors for different 

applications, the classical dynamic matrix control (DMC) of MPC is predominantly applied 

to the load frequency control problem. Some researches that applied MPC to load frequency 

control are presented [90]-[95].   

To explore the efficiency of intelligent techniques for load frequency control of 

microgrid, a novel strategy using levy flights and spider monkey optimization algorithm is 

proposed and an adaptive model predictive control is proposed to overcome the limitations in 

the MPC for load frequency control of microgrid. 

2.4 Motivation  

The thesis presented an extensive review on the research topic for planning and 

control of an active distribution system through a microgrid perspective. Distributed 

Generation is at the heart of microgrid operation and planning their location and sizing plays 

a primary objective in any active distribution system operation. There is enough literature 

available for tackling the problem DG planning: some have used conventional programming 

while others have attempted population based meta-heuristic optimization methods. 

Irrespective of the technique used, the unanimous objective of primary DG planning is to 
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achieve the objective of minimized system loss and improved voltage profile. Keeping this in 

mind, a variant of an existing optimization algorithm, which is parameter independent, is 

proposed to improve the objectives. 

The next level of planning in a microgrid operation is, its cost management. It is well 

known that there are several DG technologies like costlier and polluting dispatchable sources 

such as diesel and gas, and environment friendly technologies such as wind and solar. 

Planning the optimal and economic operation of DG units to supply the load is the ultimate 

requirement of microgrid operation. In view of this, a new multi-objective optimization 

technique is proposed to find the optimal mix of DG units for economic operation of a grid 

connected distribution system and it has been extended to autonomous operation of active 

distribution system in the presence of storage units. 

While planning the DGs and their economics of operation in a microgrid, the main 

purpose of microgrid operation should not be ignored i.e. the active management of load 

which is directly linked with the frequency of operation. Thus, load frequency control of 

isolated microgrid is also attempted in this thesis with two types of control techniques. The 

first one uses PI controllers whose gains are tuned with a meta-heuristic technique called levy 

based spider monkey algorithm and the second one uses model predictive control where 

fuzzy controller is embedded into it for better adaptive performance of load frequency 

control in microgrid. 

 The thesis addresses the overall planning of optimal and economic operation of DGs 

in the active distribution system and the load frequency control in an isolated microgrid, 

which needs to be analyzed. These problems are analyzed using the proposed meta-heuristic 

optimization algorithms.  

2.5 Contribution 

The contributions made in the thesis are as follows: 

  A Multi-objective based Peer enhanced Teaching-Learning Based Optimization 

(PeMOTLBO) algorithm is proposed to find a set of pareto optimal solutions for 

planning DG in distribution system. The proposed algorithm is parameter less and has 

performed better for multi-objective optimization in DG planning compared to 

conventional multi-objective techniques. Optimal location and size of DG units are 
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found with minimum active power loss and voltage deviation in the distribution 

system.  A fuzzy set theory approach has been used to find best compromising DG 

location and size from the set of trade-off solutions. 

 New hybrid Grid-based Multi-objective Harmony Search algorithm (GrMHS) is 

proposed for optimizing the active distribution network operation. In the proposed 

method, a grid-based strategy is used as a secondary selection criterion in non-

dominating sorting procedure of pareto based multi-objective optimization. The 

harmony search algorithm is employed for optimization purpose. The optimal 

resource mix of Distributed Energy Resources has been identified for both grid 

connected and autonomous mode of active distribution system operation. The 

planning model considered three conflicting objectives viz., i) energy loss ii) voltage 

deviation and iii) cost of DG operation. 

 A novel eagle strategy by combining levy flights with Spider Monkey Optimization 

Algorithm (SMA) is proposed for load frequency control of an isolated microgrid. 

The proposed algorithm has been used for tuning gains of the PI controller employed 

in controllable generation such as diesel unit for load frequency control of an isolated 

microgrid. The results of the proposed algorithm have been compared with other 

prominent algorithm such as PSO, Firefly Algorithm (FA), and Harmony Search (HS) 

algorithm. 

 A fuzzy adaptive Model Predictive Control (MPC) has been proposed for load 

frequency control of isolated microgrid. Rule based fuzzy controller is employed 

within MPC algorithm to fuzzify the tuning parameter present in the cost function of 

MPC.  The proposed method improved the adaptive performance of the MPC for 

better frequency control in the microgrid. The results of the proposed method have 

been compared with PI controller response in the system. 

2.6 Thesis Organization  

The thesis is organized into seven chapters, with a summary of each chapter given as 

follows: 

Chapter-1 introduces DG and its need in the distribution network operation. It briefly 

outlines the planning of active distribution network with relevant terms and topics. The 
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frequency regulation in the system operation is also emphasized. In short, an overview of the 

problem addressed in this thesis is presented.  

Chapter-2 presents a detailed literature survey on the research topic with past and 

ongoing research. The literature review presents various techniques and approaches of DG 

placement and sizing in the distribution network followed by elaborate discussion of dynamic 

planning of optimally placed DGs for economic grid operation. Later, the load frequency 

control of microgrid is also reviewed with relevant analysis. Following an extensive survey 

on the topic, the motivation for the proposed research work, contribution, and organization of 

the thesis are also presented. 

Chapter-3 presents the DG modeling and its incorporation in the backward-forward 

sweep distribution load flow. The formulated objectives and constraints for DG placement 

and sizing problem are explained. Non-dominated sorting based multi-objective Teaching 

Learning based Optimization (TLBO) algorithm is discussed and a variant of TLBO called 

Peer enhanced Multi-objective TLBO (PeMOTLBO) is proposed for optimizing the location 

and sizing of DGs. Simulation results and discussions of the proposed algorithm are 

presented. The comparison metrics evaluation to support the superiority of the proposed 

algorithm is also shown. 

Chapter-4 proceeds with the uncertainty modeling of load and generation such as 

wind and solar power. A new hybrid Grid-based Harmony Search algorithm is proposed by 

incorporating the grid based strategy in the basic harmony search algorithm. DG planning 

model to find the optimal mix of DG units is proposed for non-autonomous microgrid 

operation with three conflicting objectives viz., i) energy loss ii) voltage deviation and iii) 

cost of DG operation. The same model and algorithm is extended to plan the autonomous 

operation of active distribution network by enforcing the renewable bus available limits with 

optimal DG units. The quality of results obtained by the proposed methodology is ascertained 

with the help of performance metrics evaluation for both the cases. 

Chapter-5 presents the load frequency control of an isolated microgrid. First of all, 

the need and means of the load frequency regulation in a microgrid is explained and a new 

eagle strategy for optimizing the gains of proportional and integral (PI) controller is proposed 

and the advantage of the proposed eagle strategy that combines levy flights with spider 

monkey optimization algorithm is explained. Finally, the results of the proposed method are 
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compared with other algorithms such as PSO, Firefly Algorithm (FA), and Harmony Search 

(HS) algorithm and validated. 

Chapter-6 explains fuzzy adaptive model predictive control for the load frequency 

control of an isolated microgrid.  The MPC algorithm is simple and more efficient in 

frequency control without employing PI controllers. The fuzzy tuned model predictive 

control is proposed with necessary justifications. The results obtained by the proposed 

method are compared with PI controller and are validated. 

Chapter-7 summarizes the salient features of the reported research work in this thesis 

and suggests the future scope of the work. 

2.7 Summary 

This chapter presented a detailed and extensive review on planning of active distribution 

network on multi-objective frame and on the load frequency control of autonomous microgrid 

operation. The need and reason behind multi-objective problem formulation for DG planning and 

the limitations involved in various multi-objective approaches were highlighted. The necessity of 

faster and more efficient controllers in load frequency control of microgrid has been discussed. 

Finally, the motivation and contribution of the research work have been presented. 
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Chapter 3 

3 Distribution Generation planning using Peer enhanced 
Multi-Objective Teaching –Learning based 

Optimization Algorithm 

3.1 Introduction 

This chapter intends to present a new variant of Teaching Learning based 

Optimization algorithm in multi-objective frame called Peer enhanced Multi-objective 

Teaching Learning Based Optimization (PeMOTLBO) algorithm for optimizing DG location 

and sizing in the distribution network. TLBO algorithm is chosen as there is no algorithmic 

parameter that affects the optimization process of the problem. The problem is attempted 

with pareto based multi-objective approach as it deals with two conflicting objectives of the 

planning problem, such as real power loss and voltage deviation. The DG planning problem 

is subjected to voltage limits and maximum penetration level of DG constraints in 

distribution network, whereas the decision variables are location and size of the DG units. 

DGs are modeled as negative load model and considered to be operating at a constant power 

factor of 0.85 lead. The fuzzy set theory is also applied to choose the best solution from the 

obtained pareto set. 

3.2 Modelling of DG in distribution system load flow 

The load flow studies are common procedures applied to get the steady state operating 

characteristics of the power system, especially the voltage profile in the system. However, 

the load flow methods used in transmission system viz., Gauss-Seidel and Newton-Raphson 

and Fast Decoupled methods are not valid in distribution Systems due to the well-known 

characteristics of an electric distribution system. The characteristics are: 

 Radial or weakly meshed structure; 

 Multiphase and unbalanced operation; 

 Unbalanced distributed load; 

 Extremely large number of branches and nodes; 

 Wide-ranging resistance and reactance values, low X/R ratio (   1). 
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There are distribution load flow methods, which can be applied to distribution 

network for analyzing distribution system planning and operation studies like load 

scheduling, DG incorporation, demand side management etc. There are different distribution 

load flow methods available in the literature: 

– Direct distribution load flow (DDLF) 

– Backward forward sweep distribution load flow(BFS)        

– Vector based distribution load flow(VDLF)                             

– Primitive impedance based distribution load flow   

– Current injection based load flow                                   

In the distribution system load flow, first three can be applied only to the radial 

system whereas the primitive impedance and current injection methods can be applied to 

both radial and meshed distribution system. In this thesis, Backward Forward Sweep (BFS) 

distribution load flow is used for the analysis because it is simple and easy to implement and 

takes less computational time. 

3.2.1 Backward and Forward Sweep load flow algorithm (BFS) 

The BSF distribution load flow method includes two steps [104]: Backward sweep 

and the forward sweep. 

The backward sweep is based on KCL for finding each branch currents 

The forward sweep is based on KVL for finding the voltage for each upstream bus of a 

line or a transformer branch. 

 
Figure 3.1:  A simple resistive network 

 
This method can be explained by above simple network. During backward sweep, line 

currents are calculated by the equations given below: 

Let m=4 nodes 
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ସܫ ൌ
௏ర
ோర

           (3.1) 

ଷସܫ ൌ  ସ           (3.2)ܫ

ଷܫ ൌ
௏య
ோయ

           (3.3) 

ଶଷܫ ൌ ଷସܫ ൅  ଷ          (3.4)ܫ

ଶܫ ൌ
௏మ
ோమ

           (3.5) 

ଵଶܫ ൌ ଶଷܫ ൅  ଶ          (3.6)ܫ

Then in general 

௜ܫ ൌ
௏೔
ோ೔

           (3.7) 

௜,௜ାଵܫ ൌ ௜ାଵ,௜ାଶܫ ൅  ௜ାଵ         (3.8)ܫ

The line currents are calculated from last node to first node. So it is known as 

backward sweep. During forward sweep, voltages are calculated by the equation below: 

ଶܸ ൌ ଵܸ െ  ଵଶܴଵଶ          (3.9)ܫ

ଷܸ ൌ ଶܸ െ  ଶଷܴଶଷ          (3.10)ܫ

ସܸ ൌ ଷܸ െ  ଷସܴଷସ          (3.11)ܫ

Then in general 

௜ܸାଵ ൌ ௜ܸ െ  ௜,௜ାଵܴ௜,௜ାଵ         (3.12)ܫ

The voltages are calculated from second node to last node. So it is known as forward 

sweep. For a typical 6-bus radial distribution system shown in Figure 3.2. 

 
Figure 3.2: Typical 6-bus radial distribution system 
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Assuming a flat voltage profile as initial voltages, during backward sweep 

 

I36=I6 

I45=I5 

I34=I45-I4          (3.13) 

I23=I34+I36-I3 

I12=I23-I2 

 

The above equations can be written in general form as 

ሺ݇ሻܬ ൌ ∑ ሺ݉ሻ௠ୀ௔ௗ௝௟ሺ௤ሻܬ െ  ሻ       (3.14)ݍሺܫ

Where J (k) =branch current in line k. I (q) =current injection at bus-q. 

During forward sweep, the voltages are calculated from equation (3.12). Backward 

and Forward sweeps are repeated until convergence is achieved. 

3.2.2 DG as negative PQ model 

The DGs can be classified into four types based on the real and reactive power 

injections and absorption. In this chapter, DG is considered as capable of injecting real and 

reactive power to the distribution network and the operating power factor is taken as 0.85 

lead [98]. To incorporate the generation in the distribution load flow, it is considered as 

negative load at a particular bus. Thus, the DG is modeled as negative PQ in the load flow. 

3.3 Proposed Peer enhanced Multi-Objective Teaching-Learning Based 

Optimization (PeMOTLBO) Algorithm 

The proposed optimization method is based on the fact that along with influence of a 

teacher, learners also put in effort in improving the output in a class. A group of learners 

constitutes the population in basic TLBO. The different design variables in TLBO are 

analogous to different subjects offered to learners and the result is analogous to the fitness. 

The teacher is considered as the most learned person, the best solution so far is analogous to 

the Teacher in TLBO. The process of TLBO is divided into two parts. The “Teacher Phase” 

means learning from the teacher and the “Learner Phase” means learning through the 

interaction among learners. The implementation of TLBO algorithm is as follows [37]: 
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 Initialization 

Population X is randomly initialized by a search space bounded by matrix of N rows 

and D columns. The jth parameter of the ith learner is assigned values randomly using the 

equation 

ሺ௜,௝ሻݔ	 
଴ ൌ ௝ݔ

௠௜௡ ൅ ݀݊ܽݎ ∗ ൫ݔ௝
௠௔௫ െ ௝ݔ

௠௜௡൯												     (3.15) 

N: number of learners in a class i.e. “class size”. 

D: number of courses offered to the learners. 

G: maximum number of iterations. 

‘rand’ represents a uniformly distributed random variable within the range (0, 1),	ݔ௝
௠௜௡ 

and  ݔ௝
௠௔௫ represent the minimum and maximum value for jth parameter. The parameters of 

ith learner for the generation g are given by 

ܺሺ௜ሻ
௚ ൌ ቂݔሺ௜,ଵሻ

௚ , ሺ௜,ଶሻݔ
௚ , ሺ௜,ଷሻݔ

௚ , …… . , ሺ௜,௝ሻݔ
௚ , … , ሺ௜,஽ሻݔ

௚ ቃ      (3.16) 

The objective values at a given generation form a column vector. In dual objective 

scenario, two objective values are present for the same row vector. The two objectives (a and 

b) can be evaluated as: 

൤
௒௔೔

೒

௒௕೔
೒൨ ൌ ቈ

௙௔ቀ௑ሺ೔ሻ
೒ ቁ

௙௕ቀ௑ሺ೔ሻ
೒ ቁ
቉																																					      (3.17)  

For all the equations used in the algorithm, ݅ ൌ 1,2,3…ܰ and݃ ൌ 1,2,3, … . ,  The .ܩ

random distribution followed by all the rand values is the uniform distribution. 

 Teacher Phase 

The mean parameter ܯ௚of each subject of the learners in the class at generation g is 

given as: 

௚ܯ ൌ ൦

௠௘௔௡ቀቂ௫ሺభ,భሻ
೒ ,….,௫ሺ೔,మሻ

೒ ,…,௫ሺಿ,భሻ
೒ ቃቁ

௠௘௔௡ቀቂ௫ሺభ,ೕሻ
೒ ,….,௫ሺ೔,ೕሻ

೒ ,…,௫ሺಿ,ೕሻ
೒ ቃቁ

݉݁ܽ݊ ቀቂݔሺଵ,஽ሻ
௚ , … . , ሺ௜,஽ሻݔ

௚ , … , ሺே,஽ሻݔ
௚ ቃቁ

൪

்

						    (3.18) 



Chapter 3                                          DG Planning using PeMOTLBO Optimization Algorithm 

  27 

This is effectively given as: 

௚ܯ   ൌ ൣ݉ଵ
௚,݉ଶ

௚, …… , ௝݉
௚, … ,݉஽

௚൧		      (3.19) 

The learner with the minimum objective function value is considered as the teacher. 

The teacher phase makes the algorithm proceed by shifting the mean of the learners towards 

its teacher. To obtain a new set of improved learners, a random weighted differential vector 

is formed from the current mean and the desired mean parameters and added to the existing 

population of learners. 

ሺ௜ሻݓ݁݊ܺ
௚ ൌ ቂݔሺ௜ሻ

௚ ൅ ݀݊ܽݎ ∗ ൫ܺ௧௘௔௖௛௘௥
௚ െ       (3.20)	௚൯ቃܯ

The superior learners in the matrix ܺ݊݁ݓ replace the inferior learners in the matrix ܺ 

using the non-dominated sorting algorithm [29]. 

 Proposed Modification in MOTLBO algorithm 

The modification is done in this phase (Teacher phase) of MOTLBO based on the fact 

that along with teacher, learners also put in effort in improving the mean result of class. This 

will improve the convergence in getting good optimal solutions. 

ሺ௜ሻݓ݁݊ܺ
௚ ൌ ቂݔሺ௜ሻ

௚ ൅ ݀݊ܽݎ ∗ ൫ܺ௧௘௔௖௛௘௥
௚ െ ிܶܯ௚൯ ൅ ൅݀݊ܽݎ ∗	ሺݔሺ௜ሻ

௚ 				െ      (3.21)	ቃ		௚ܯ	

 Learner phase 

In this phase, the process of mutual interaction tends to increase the knowledge of the 

learner. For a given learner ሺܺ௜ሻ
௚ , another learner ܺሺ௥ሻ

௚  is randomly selected	ሺ݅ ്  ሻ. Theݎ

 :in the learner phase is given as ݓ݁݊ܺ parameter of the matrix	݄ݐ݅

ሺ௜ሻݓ݁݊ܺ
௚ ൌ ቊ

௑ሺ೔ሻ
೒ ା௥௔௡ௗ∗ቀ௑ሺ೔ሻ

೒ ି௑ሺೝሻ
೒ ቁ												௜௙ሺ௒೔

೒ழ௒ೝ
೒ሻ

௑ሺ೔ሻ
೒ ା௥௔௡ௗ∗ቀ௑ሺೝሻ

೒ ି௑ሺ೔ሻ
೒ ቁ								௢௧௛௘௥௪௜௦௘																

ቋ		     (3.22) 

The PeMOTLBO algorithm, due to the multi-objective requirements, adapts to the 

scenario by having multiple ܺ݊݁ݓ  matrices in the learner phase, one for each objective. So, 

the learner phase operations for a dual objective problem are as shown in equations below.  
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ሺ௜ሻݓ݁݊ܺ
௚ ቚ

௔
ൌ ቊ

௑ሺ೔ሻ
೒ ା௥௔௡ௗ∗ቀ௑ሺ೔ሻ

೒ ି௑ሺೝሻ
೒ ቁ												௜௙൫௒௔೔

೒ழ௒௔ೝ
೒൯

௑ሺ೔ሻ
೒ ା௥௔௡ௗ∗ቀ௑ሺ೔ሻ

೒ ି௑ሺೝሻ
೒ ቁ								௢௧௛௘௥௪௜௦௘																

ቋ	     (3.23)  

ሺ௜ሻݓ݁݊ܺ
௚ ቚ

௕
ൌ ቊ

௑ሺ೔ሻ
೒ ା௥௔௡ௗ∗ቀ௑ሺ೔ሻ

೒ ି௑ሺೝሻ
೒ ቁ												௜௙൫௒௕೔

೒ழ௒௕ೝ
೒൯

௑ሺ೔ሻ
೒ ା௥௔௡ௗ∗ቀ௑ሺೝሻ

೒ ି௑ሺ೔ሻ
೒ ቁ								௢௧௛௘௥௪௜௦௘																

ቋ      (3.24) 

The ܺ	and ܺ݊݁ݓ matrices are passed together to the non-dominated sorting algorithm 

and only the best learners are selected for the next iteration. The algorithm is terminated after 

G iterations. Final set of learners represent the pareto optimal solutions.  

 Best compromise solution based on fuzzy set theory 

For the purpose of decision-making, a best compromise solution is computed using a 

technique based on fuzzy set theory.  

௜ߤ ൌ

ە
۔

ۓ ௜ܨ								,1 ൌ ௜ܨ
௠௜௡

ி೔
೘ೌೣିி೔

ி೔
೘ೌೣିி೔

೘೔೙ , ௜ܨ	
௠௜௡ ൏ ௜ܨ ൏ ௜ܨ

௠௔௫

௜ܨ							,0
௠௔௫ ൌ 		௜ܨ

             (3.25)   

The above equation gives a measure of the degree of satisfaction for each objective 

function for a particular solution. The corresponding membership function for the non-

dominated solution k is calculated as follows: 

௞ߤ ൌ
∑ ఓ೔

ೖ೚ಿ೚
೔సభ

∑ ∑ ఓ೔
ೖಿ೚

೔సభ
ಾ
ೖసభ

				        (3.26)  

Where 

M: Number of Pareto solutions; No: Number of objectives. 

The best compromise solution is the one achieving the maximum member ship function. 

3.4 Problem formulation 

The pareto-based multi-objective technique is used to find trade-off solutions among 

conflicting objectives. In this chapter, the conflicting objectives considered are active power 

loss and voltage deviation. The active power loss is reduced with increase in DG size but it 

may raise the voltage which in turn increase the voltage deviation. Thus , DG planning is 

formulated as multi-objective problem with  location and size of DGs as decision variables.  
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1݂	݊݅ܯ ൌ ሺ݌௟௢௦௦ሻ           (3.27) 

2݂	݊݅ܯ ൌ ∑ ሺ ௜ܸ െ 1ሻଶ௡
௜ୀଵ               (3.28) 

Subject to 

0 ൑ ஽ܲீ ൑ ஽ܲீ
	௠௔௫							                  (3.29)                            

௜ܸ௠௜௡ ൑ ௜ܸ ൑ ௜ܸ௠௔௫        (3.30) 

Where, ݌௟௢௦௦ is the total real power loss in the system, ݊	is the total number of buses, 

௜ܸ is the voltage magnitude at bus	݅. ஽ܲீ is the real power of DG and ஽ܲீ
௠௔௫ is the maximum 

power of DG. ஽ܲீ
௠௔௫ is 1.2 MW for IEEE 33-bus system and IEEE 69 bus system whereas 2 

MW for Indian 85-bus systems [105] to account for higher loss in the system. 

3.5 Simulation results and discussions on the test systems 

The proposed PeMOTLBO algorithm has been tested on IEEE 33-bus system, IEEE 

69-bus system and Indian 85-bus system. The line data and bus data of these systems are 

given in Appendix. The single line diagrams of these systems are also shown in Appendix. In 

all cases, negative PQ model is considered for DG and assumed to be working at a power 

factor of 0.85 lead. The results of proposed method have been compared with prominent 

multi-objective technique called Non-dominated Sorting Genetic Algorithm (NSGA-II) and 

basic multi-objective TLBO (MOTLBO). The superiority of the proposed PeMOTLBO has 

been validated. Various control parameters used in proposed PeMOTLBO and NSGA-II 

algorithm are given in Table 3.1. For ease of comparison the same population size and 

iterations are considered in NSGA-II, MOTLBO and PeMOTLBO algorithms. The proposed 

algorithm for DERs planning model is coded using MATLAB programming and all the 

simulations are carried out on a personal computer with an i5 processor, speed of 2.53GHz 

and memory of 4GB RAM. 

Table 3.1  Control parameters for TLBO and NSGA-II algorithms 

TLBO [37] NSGA-II [40] 
Population size=30 
Maximum no. of iterations=150 
Max. runs=30 

Population size=30 
Maximum no. of iterations=150 
Max. runs=30 
Cross over probability-0.9 
Mutation probability-0.1 
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Figure 3.3, Figure 3.4 and Figure 3.5 shows the improvement in voltage profile with 

increase in DG units in the IEEE 33-bus, IEEE 69-bus system and Indian 85-bus system 

respectively.  It is observed that the voltage at the buses tends to increase with the increase in 

penetration level of DG power in the systems considered. The maximum penetration of each 

DG is considered to be same for respective system. In case of four DG, average voltage 

profile of the system is reached nearly to the sub-station’s voltage i.e., 1p.u. 

 

Figure 3.3: IEEE 33-bus system: Voltage profile of the system for different DG case 
 

 
 

Figure 3.4: IEEE 69-bus system: Voltage profile of the system for different DG case 
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               Figure 3.5: Indian 85-bus system: Voltage profile of the system for different DG case. 
 

 

 

      Figure 3.6: IEEE 33- bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and NSGA-II 
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Figure 3.7: IEEE 69- bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and NSGA-II 

 
 

 

Figure 3.8: Indian 85-Bus system: Pareto optimal fronts of PeMOTLBO, MOTLBO and NSGA-II 
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and 12, the system gives better voltage profile of 0.9744 p.u. with loss reduction of 79.2%. 

However, connecting 1 MW or 2 MW at one or two places with any DG technology imposes 

difficulty as they generate power on a small scale. Therefore, it is better to go for a 

reasonable number of DG units with limited size, which may reduce the cost. For analysis 

purpose, the system is tested by connecting 3 DGs and 4 DGs and there is considerable 

reduction in total real power loss and further improvement in voltage profile. Similarly in 

Table 3.3, it is observed that with one DG of capacity 1.9534 MW at bus 61, the IEEE 69-bus 

system gives better voltage profile of 0.9730p.u with loss reduction of 89.3% and Table 3.4 

shows the comparative study for Indian 85-bus system where with one DG of capacity 2 MW 

at bus 28 gives a voltage profile of 0.9551 and with loss reduced to 73.1%. IEEE 69-bus 

system and Indian 85-bus system are also analyzed for up to four DG cases.  The pareto 

optimal solutions of PeMOTLBO, MOTLBO and NSGA-II for four DG case have been 

compared and it is shown in Figure 3.6, Figure 3.7 and Figure 3.8 for IEEE 33-bus system, 

IEEE 69-bus system and Indian 85-bus system respectively. It is perceived that the pareto 

front of PeMOTLBO dominates the base algorithm MOTLBO and NSGA-II. This shows the 

superiority of the proposed algorithm in terms of both better objectives and diversity among 

the solutions within the optimal fronts. Among the 30 pareto optimal solutions obtained, one 

solution with the best compromise between the two functions is explored by using fuzzy set 

theory approach from the pareto front. Based on its output, the solutions are selected and 

tabulated in Table 3.5, Table 3.6 and Table 3.7 for comparison with NSGA-II and MOTLBO 

methods. 

Table 3.2 IEEE 33-Bus system: Comparison of proposed PeMOTLBO results without and with DG 

Performance 
Quality 

Without 
DG 

With 
1 DG 

With 
2 DG 

With 
3 DG 

With 
4 DG 

DG location  
(Bus number) 

- 31 30,12 30,14,7 7,30,16,25 

DG size (MW) - 1.2 
1.2 

1.0083 

1.0241 
0.5268 
0.9965 

0.8563 
1.0050 
0.4802 
0.7426 

Ploss(p.u) 0.2027 0.1129 0.0422 0.0298 0.0128 

% loss reduction - 44.3 79.2 85.3 93.6 

Worst voltage (p.u) 0.9131 0.9173 0.9744 0.9768 0.9922 
Best voltage (p.u) 1.0000 1.0000 1.0048 1.0038 1.0036 

Voltage deviation(p.u) 0.1171 0.0650 0.0024 0.0011 0.0003 
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Table 3.3  IEEE 69-Bus system: Comparison of proposed PeMOTLBO results without and with DGs 

Performance 
Quality 

Without 
DG 

With 
1 DG 

With 
2 DG 

With 
3 DG 

With 
4DG 

DG location 
(Bus number) 

- 61 13,61 51,17,62 21,67,61,12 

DG size (MW) - 1.9534
0.8068 
1.7787

0.6207 
0.4871 
1.7073 

0.3130 
0.2994 
1.7547 
0.3007 

Ploss(p.u) 0.2247 0.0240 0.0097 0.0077 0.0048 
% loss reduction - 89.3 95.7 96.6 97.9 
Worst voltage (p.u) 0.9092 0.9730 0.9924 0.9943 0.9943 
Best voltage (p.u) 1.0000 1.0026 1.0010 1.0011 1.0012 

Voltage deviation(p.u) 0.0992 0.0113 0.0004 0.0001 0.0001 

 

Table 3.4  Indian 85-Bus system: Comparison of proposed PeMOTLBO results without and with DGs 

Performance 
Quality 

Without 
DG 

With 
1 DG 

With 
2 DG 

With 
3 DG 

With 
4DG 

DG location 
(Bus number) 

- 28 48,58 77,85,48 64,34,26,82

DG size (MW) - 2 
0.8230 
1.6266

0.9443 
0.5755 
0.8431 

0.7661 
0.7010 
0.6656 
0.3868 

Ploss(p.u) 0.3163 0.0851 0.0458 0.0398 0.0269 
% loss reduction - 73.1 85.5 87.4 91.5 
Worst voltage (p.u) 0.8713 0.9551 0.9826 0.9897 0.9907 
Best voltage (p.u) 1.0000 1.0062 1.0030 1.0068 1.0029 

Voltage deviation(p.u) 0.1287 0.0538 0.0039 0.0024 0.0008 

  

Table 3.5  IEEE 33-bus system: Comparison of proposed PeMOTLBO with MOTLBO and NSGA-II for 4 DG 

case 

Method 
DG location (bus number) and size 

(MW) 

Worst 
voltage 

(p.u) 

Ploss 
(p.u) 

NSGA-II [40] 
31 14 8 25 

0.9178 0.0151
0.9178 0.4688 0.8602 0.8361 

MOTLBO [37] 
8 14 30 25 

0.9921 0.0132
0.6511 0.5070 1.0508 0.7565 

Proposed PeMOTLBO 
7 30 16 25 

0.9922 0.0129
0.8563 1.0050 0.4802 0.7426 
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Table 3.6  IEEE 69-bus system: Comparison of proposed PeMOTLBO with MOTLBO and NSGA-II for 4 DG 

case 

Method DG location (bus number) and size (MW) 
Worst 
voltage 

(p.u) 

Ploss 
(p.u) 

NSGA-II [40] 
61 50 51 25 

0.9944 0.0057
1.7304 0.7916 0.7202 0.3928 

MOTLBO [37] 
49 15 26 61 

0.9965 0.0053
0.8441 0.5013 0.0926 1.8261 

Proposed PeMOTLBO 
21 67 61 12 

0.9943 0.0048
0.3130 0.2994 1.7547 0.3007 

 
 

Table 3.7  Indian 85-Bus system: Comparison of proposed PeMOTLBO with MOTLBO and NSGA-II for 4 DG 

case 

Method DG location (bus number) and size (MW) 
Worst 
voltage 
(p.u) 

Ploss 
(p.u) 

NSGA-II [40] 
12 19 68 34 

0.9941 0.0281
0.6252 0.4173 0.8060 0.9151 

MOTLBO [37] 
79 8 34 80 

0.9898 0.0278
0.5625 0.9378 0.7791 0.3421 

Proposed PeMOTLBO 
64 34 26 82 

0.9907 0.0269
0.7661 0.7010 0.6656 0.3868 

 

3.5.1 Performance Metrics Comparison of proposed PeMOTLBO with NSGA-II 

In any multi-objective optimization, the basic goals to be achieved are i) To find 

solutions close to the pareto optimal and ii) To identify a solution as diverse as possible in 

the non-dominated front.  The performance of the proposed algorithm is evaluated with two 

metrics (one evaluating the progress towards the true pareto-optimal front and the other 

evaluating the spread of solutions) that tests both the goals. True pareto front for most of the 

engineering problems are not defined, the better pareto solutions set on comparison is 

considered as true pareto front. In this thesis, set coverage metric for first goal and spacing 

metric for second have been considered. To compare the proposed PeMOTLBO method with 

robust NSGA-II, both the algorithms are executed for 30 independent runs. Box plot is used 

to show the quality of results obtained with these metrics. 
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3.5.1.1 Set coverage metric 

This metric can be used to get an idea of the relative spread of solutions between two 

sets of solution vectors A and B. The set coverage metric ܥሺܣ,  ሻ calculates the proportion ofܤ

solutions in B, which are weakly dominated by solutions of A: 

,ܣሺܥ ሻܤ ൌ
|ሼ௕∈஻∃௔∈஺:௔≼௕ሽ|

|஻|
			        (3.31) 

Since the domination operator is not a symmetric operator ܥሺܣ,  ሻ is not necessarilyܤ

equal to 1-	ܥሺܤ, ,ܣሺܥ	ሻ . Thus, it is necessary to calculate bothܣ ,ܤሺܥ ሻ andܤ  ሻ to calculateܣ

how many solutions of A are covered by B and vice-versa. 

Box plot: For a pair of ܥሺܣ,  .there are 30 C-metric values for 30 independent runs	ሻܤ

This box plot can be used to visualize the distribution of C-metric values. The upper and 

lower end of the box corresponds to 75th and 25th percentiles and central portion is the 

median. Figure 3.9, Figure 3.10 and Figure 3.11 are the box plot of C-metric values for IEEE 

33-bus, IEEE 69-bus and Indian 85-bus systems respectively. The left boxes in the box plot 

correspond to average distribution of C-metric values of proposed method i.e.  Ic 

(PeMOTLBO, NSGA-II) where C-metric values of PeMOTLBO are not weakly dominated 

by NSGA-II and it shows the probability of PeMOTLBO dominating NSGA-II is more, 

which shows the superiority of proposed algorithm. Table 3.8 reveals that there is significant 

difference of average coverage metric values (Ic) between PeMOTLBO and NSGA-II in all 

the systems considered. 

Table 3.8  C-Metric: Mean value, standard deviation of proposed PeMOTLBO and NSGA-II 

Test systems Methods Mean 
Standard 
deviation 

IEEE 33-Bus system Proposed 
PeMOTLBO 

0.7211 0.3982 

NSGA-II [40] 0.1833 0.3758 
IEEE 69- Bus system Proposed 

PeMOTLBO 
0.7744 0.3984 

NSGA-II [40] 0.1267 0.2970 
Indian 85-Bus system Proposed 

PeMOTLBO 
0.6067 0.3572 

NSGA-II [40] 0.1233 0.2811 
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Figure 3.9: IEEE 33-bus system - Box plot of C-metric value 

 
 

Figure 3.10: IEEE 69 -bus system - Box plot of C-metric value 
 

 
 

Figure 3.11: Indian 85-bus system - Box plot of C-metric value 
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3.5.1.2 Spacing metric 

This metric is to find the diversity among the non-dominated solutions. This measures 

the relative distance between consecutive solutions in the obtained non-dominated set. 

ܵ ൌ ට
ଵ

|ொ|
∑ ൫݀௜ െ ݀̅൯

ଶ|ொ|
ூୀଵ 				        (3.32) 

Where ݀௜ ൌ ݉݅݊௞∈ொ˄௞ஷ௜ ∑ ห ௠݂௜ െ ௠݂
௞หெ

௠ୀଵ   and ݀̅ is the mean value of the above 

distance measure	݀̅ ൌ ∑ ݀௜/|ܳ|
|ொ|
௜ୀଵ . The distance is the minimum value of the sum of the 

absolute difference in objective function values between the ith solution and any other 

solution in the obtained non-dominated set.  If S value is zero, it shows that all the non-

dominated solutions in the pareto front are equidistantly spaced. Figure 3.12, Figure 3.13 and 

Figure 3.14 show the distribution of space metric values for IEEE 33-bus system, IEEE 69-

bus system and Indian 85-bus systems respectively and the difference noted is highly 

significant in favor of the proposed PeMOTLBO method. The spread of space metric values 

is close to the zero in case of proposed method which implies, the solutions in the pareto 

obtained are equidistantly placed with each other. The comparison of s-metric values of 

proposed PeMOTLBO and NSGA-II methods are tabulated in Table 3.9. 

 

 

Figure 3.12: IEEE 33-bus system- Box plot of S-metric values 
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Figure 3.13: IEEE 69-bus system- Box plot of S-metric values 
 

 

Figure 3.14: Indian 85-bus system- Box plot of S-metric values 
 

Table 3.9  S-Metric: Mean vale, standard deviation of Proposed PeMOTLBO and NSGA-II 

Test systems Methods Mean 
Standard 
deviation 

IEEE 33-Bus system Proposed 
PeMOTLBO 

9.945*10-5 1.2099*10-4 

NSGA-II [40] 7.5987*10-4 0.0014 
IEEE 69-Bus system Proposed 

PeMOTLBO 
9.5077*10-6 1.1202*10-5 

NSGA-II [40] 5.2652*10-4 7.8914*10-4 
Indian 85-Bus system Proposed 

PeMOTLBO 
3.1151*10-4 2.8314*10-4 

NSGA-II [40] 0.0019 0.0028 
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3.6 Summary  

In conclusion, to consolidate the contribution made, this chapter attempted to answer 

the problem of optimal placement and sizing of DG units on distribution systems as multi-

objective problem with new algorithm. A new variant of TLBO algorithm has been proposed 

for optimization purpose. The proposed peer enhanced teaching-learning based optimization 

(PeMOTLBO) is employed to find a set of pareto optimal solutions for planning of DG in a 

distribution system and fuzzy set theory approach has been used to find the best 

compromising DG location and size. The effectiveness of the proposed method is tested on 

IEEE 33-bus, IEEE 69-bus distribution system and Indian 85-bus distribution system. The 

pareto front obtained by the proposed PeMOTLBO has been compared with basic MOTLBO 

and NSGA-II and a qualitative comparison is also made with well-known NSGA-II method. 

The comparison shown the superiority of the proposed algorithm in terms of both better 

objectives and diversity among the solutions in the optimal fronts obtained. Two 

performance metrics have been evaluated to ascertain two goals of the multi-objective 

optimization and the proposed technique exhibited better metric value compared to NSGA-II. 

 



 

Chapter 4 

 

 

 

Optimal Planning of Active Distribution Network 
Operation with hybrid Distributed Energy 

Resources using Grid-based Multi-Objective 
Harmony Search Algorithm 

 

 

 

 

 

 



Chapter 4     Optimal planning of ADN operation with hybrid DERs using GrMHS Algorithm 

  42 

Chapter 4 

4 Optimal Planning of Active Distribution Network 
Operation with hybrid Distributed Energy Resources 
using Grid-based Multi-Objective Harmony Search 

Algorithm 

4.1 Introduction 

In this chapter, an efficient Grid-based Multi-objective Harmony Search (GrMHS) 

algorithm is proposed for planning and operation of Distributed Generation (DG) in active 

distribution network. This grid based multi-objective algorithms establishes coordinate 

system (grid) with dimension of number of considered objectives for plotting the locations of 

objective values in the objective plane. These DG technologies include both dispatchable and 

non-dispatchable (renewable) distributed energy resources. The optimal mix of these DERs 

and location of renewable and non-renewable DG sources has to be identified to make use of 

the potential benefits of their connection in the distribution network. Particularly, when 

connecting intermittent sources like wind and solar will lead to various technical challenges 

to sustain the reliable and secured operation of distribution system. The location and size of 

fuel based distributed generation are optimized using proposed grid based harmony search 

algorithm where a grid-based strategy has been embedded in multi-objective optimization as 

a secondary selection criterion instead of crowding distance.  The proposed algorithm is 

tested for two and three objective cases of DERs planning in distribution network. The 

planning model identifies the optimal mix of renewable and dispatchable DGs by minimizing 

three conflicting objectives viz., i) Energy loss, ii) Voltage deviation and iii) Cost of DG 

integration in the distribution network.  Moreover, the proposed model serves to be more 

realistic for planning as it considered all uncertainties associated with load, electricity price, 

wind speed and solar irradiance. This chapter also analysed the limitation on locating the 

renewable sources in the autonomous active distribution network operation. This has been 

enforced by adding constraints on the bus limits for renewable source connection. The 

autonomous operation of active distribution network operation is analysed with additional 
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battery storage sources connected to the system to support the loads, as there is no grid 

support in the autonomous system operation. 

4.2 Proposed Grid based Multi-Objective Harmony Search (GrMHS) 

Algorithm 

Harmony Search (HS) algorithm is a Meta heuristic optimization algorithm inspired 

from the improvisation process of music in search of perfect harmony [96]. HS algorithm is 

simple, converges faster and more efficient in searching optimal solution among other 

heuristic algorithms. On the other side, a grid-based dominance strategy has been proposed 

as secondary selection criterion in multi-objective formulation using GA [97] and it is 

claimed to be better in terms of convergence and diversity of solutions when compared to 

NSGA-II and SPEA (Strength Pareto Evolutionary Algorithm) techniques. Since multi-

objective form of harmony search algorithm is found to be better when compared with 

NSGA-II [98] for DG planning problem, the idea of applying grid based dominance strategy 

in multi-objective optimisation using harmony search algorithm is attempted and Grid based 

Multi-objective Harmony Search (GrMHS) algorithm is proposed for DG planning in this 

chapter. The results are found promising in terms of better optimal solutions. Before entering 

the procedural steps of proposed GrMHS algorithm, a few necessary definitions and concepts 

are introduced below: 

4.2.1 Definitions and concepts 

In GrMHS, grid coordinates are used to locate individuals in the objective space. To 

set the grid structure of thk  objective, minimum and maximum values of thk  objective are 

found in the entire population P and it is denoted as min
mP and max

mP  respectively. Then, the 

lower and upper limits of the grid in the kth  objective are determined as follows: 

)*2/()( minmaxmin divPPPll mmmk       (4.1) 

)*2/()( minmaxmax divPPPul mmmk       (4.2) 

Where div  refers to the number of divisions of the objective space (generally user 

defined). If there are M objectives, then objective space will be divided into Mdiv hyper 

boxes.  Thus, the width kw  of hyper box in the thk  objective can be given as: 
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divllulw kkk /)(         (4.3) 

The grid coordinates of individual in the thk  objective is calculated as: 

 kkkk wllxfxG /))(()(               (4.4) 

Where  .  denotes the floor function, )(xGk  is the grid coordinates of individual x  in 

the thk  objective and )(xfk  is the actual objective value in the thk  objective. 

Grid dominance: Let  :,, yxPyx grid  

  )()(:),....,2,1( yGxGMi ii  

  
)()(:),....,2,1( yGxGMj jj        (4.5) 

Where yx grid  denotes that x  grid-dominates y , M  is the number of objectives.  

Grid difference: Let Pyx , , the grid difference between them is denoted as 

 
1

( , ) ( ) ( )
M

k k
k

G D x y G x G y


        (4.6) 

4.2.2 Fitness calculation 

Unlike single secondary selection criterion, in NSGA-II, for evolving populations to 

have an optimum value, GrMHS considers three grid-based criteria to select individual with 

better fitness. They are grid ranking (GR), grid crowding distance (GCD) and the grid 

coordinate point distance (GCPD). GR and GCPD are used to evaluate convergence of the 

pareto solutions while GCD is concerned with the diversity of individuals within the pareto 

front. 

GR is defined as the summation of its grid coordinates in each objective 

1

( ) ( )
M

k
k

G R x G x


         (4.7) 

Density estimation of solutions is taken care of by the GCD by considering the 

distribution of neighbours of a solution and it is given by 

( )

( ) ( ( , ))
y N x

GCD x M GD x y


        (4.8) 
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Where )(xN  is the set of neighbours of x and solution y  is regarded as neighbour 

of solution x  if grid difference, ),( yxGD < M . 

The Euclidian distance between an individual and the best corner solution of its hyper 

box is called GCPD and it is calculated as follows: 

 2

1

( ) (( ( ) ( ( ) )) / )
M

k

GC PD x k k k k kF x lb G x d d


      (4.9) 

4.2.3 Framework of proposed Grid based Multi-Objective Harmony Search (GrMHS) 

algorithm 

The framework of the proposed GrMHS algorithm is explained in the following steps: 

Step 1: Input algorithm parameters such as the Harmony Memory Considering Rate 

(HMCR), distance bandwidth (bw) and Pitch Adjusting Rate (PAR) and limits on decision 

variables. 

Step 2: Initialization of randomly generated population. 

   DNPInitializeP *   

Where, N-Population size; D-Number of decision variable. 

Step 3: Evaluate the objectives for the initialized population 

Step 4: While termination criteria is not met do 

Step 5: Harmony search improvisation process on the decision variables. 

For  all p P  
For all d D  
Generate random number rand () 
 If rand () < HMCR 

select a solution ix  from the existing population 

   If rand () < PAR 

 bwrandxx i
new
i *()  

 End if 
else 

new
ix is randomly generated 

End if 
End for  
End for 

newP is new population 

Step 6: Intermediate population formation 
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 newPPP '  

Step 7: Environmental selection )'(P  /* Detailed procedure can be referred in [97]*/ 

Step 8: end while   /* Step 4 */ 

Step 9: Return final population P i.e. pareto optimal solutions 

Step 10: Fuzzy set theory is used to select the best solution from the pareto solutions. 
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                 (4.10) 

 Where,  i  gives the degree of satisfaction of each objective function. 
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
        (4.11) 

The best solution is the one with maximum membership function.  

4.3 Modeling of generation and load: uncertainties and certainties 

The uncertainty models of renewable resources and load are modeled using 

probability density function (pdf) based on five year wind speed and solar irradiance data 

[99]. For the ease of computation, each year of the planning period (five years) is divided 

into four seasons with each season represented by any day within the season presuming 

similar weather conditions throughout the season. From each season, a typical day’s 

probability distribution of hourly wind speed and solar irradiance is generated using Weibull 

and beta probability density function respectively. The day representing each season is again 

divided into 24-hour time segments. So, each year contains 96 time segments (24 hours per 

day, 1day per season and 4 seasons per year) and for each year, every time segment has to 

process 90 wind speeds and irradiance data (30 days per month and 3 months per season). 

For each time segment the mean and standard deviation of those data is calculated and from 

them the beta and Weibull probability density functions are generated for each hour. These 

continuous pdfs generated at each segment are further divided into different states to evaluate 

the power available from each state and summed up to get the total power extracted from 

wind and solar at the particular hour. The load profile is assumed to follow IEEE-Reliability 



Chapter 4     Optimal planning of ADN operation with hybrid DERs using GrMHS Algorithm 

  47 

Test System profile [106]. The cost of power ($/MW) purchased from the main grid is 

assumed constant and hence, it depends only on the amount of load supplied from the main 

grid.  The sections that follow present the detailed modeling and processing of probability 

density functions. 

4.3.1 Wind speed modeling 

There are various methods to model the wind speed behavior but very often, the 

recommended expression for wind speed modeling is the Weibull probability density 

function, which is based on the comparison of actual wind speed profiles at different sites. 

The wind speed profile estimated using Weibull pdf ))(( vfw  is given by 



























 kk

w c

v

c

v

c

k
vf exp)(

1

       (4.12) 

Where, k is called the shape factor and c is called the scale factor. If k=2 is 

considered, the corresponding pdf is called Rayleigh pdf. In this work, since the pdf has been 

built for each time segment, scale and shape factor have to be calculated from the mean (u̅) 

and standard deviation (σ) of wind speed data at each time segment. The expressions for k 

and c are as follows: 

086.1









u
k


         (4.13) 

uc 12.1           (4.14)  

4.3.2 Solar irradiance modeling 

The random phenomenon of solar irradiance data is described using Beta probability 

density function, which is given by the following: 


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  (4.15) 

To calculate the parameters of the Beta distribution function, the mean (µ) and 

standard deviation (σ) of the random variable i.e. solar irradiance s are utilized as follows: 







 


 1

)1(*
*)1(

2
        (4.16) 
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





1

*          (4.17) 

These Weibull and Beta probability distribution functions evaluated at each time 

segments are utilized to calculate the power available from wind and solar respectively. 

4.3.3 Calculation of power output of the wind turbine and PV module 

In order to incorporate the output power of wind-based DG and solar DG units in the 

planning problem formulation, the continuous pdf generated at each hour has been divided 

into states (periods), where in each state the solar irradiance and wind speed have been within 

certain limits. In other words, for each time segment there will be a number of states. In this 

work, the step is adjusted to be 1m/s for wind speed and 0.1kW/m2 for solar irradiance since 

more number of steps will increase complexity in computation while fewer numbers of steps 

affects accuracy. In this section, the output power of the wind turbine and PV module 

corresponding to each state will be calculated using the wind turbine power performance 

curve and PV characteristics respectively. For the sake of simplicity, the average value of 

each state is utilized to calculate the output power for this state (e.g. for the wind speed, if the 

2nd state has the limits 1 m/s and 2 m/s, hence, the average value of this state (va2) =1.5 

m/s).  

The probability of the wind speed and solar irradiance of DG units for each state 

during any specific hour is calculated using the following: 

  
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wwv dvvfGP         (4.18) 
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S
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bys dssfGP         (4.19)

 The hourly average output power of a PV module or a wind turbine is the summation 

of the power produced at all possible states for this hour multiplied by the corresponding 

probability of each state. Once the average output power is calculated for each time segment, 

the average output power is calculated for the typical day in a season and hence, the output of 

the entire planning period. 
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4.3.3.1 Calculation of power output of wind turbine 

The output power of the wind turbine depends on the wind speed of the site, as well as 

the parameters of the power performance curve. Therefore, once Weibull pdf is generated for 

a time segment; the output power during the different states of this segment can be calculated 

using the following equation. 
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4.3.3.2 Calculation of power output of PV module 

The output power of the PV module is dependent on the solar irradiance and ambient 

temperature of the site as well as the characteristics of the module itself. Depending upon the 

required amount of solar power penetration, the number of modules are added to the PV 

panel. Here it is 16000 modules for 1.2 MW of power. The output power during each state in 

the generated beta pdf is calculated using the following equations: 


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Cyvocy TKVV *          (4.23) 

yyaySy IVFFNsP ***)(         (4.24) 
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4.3.4 Battery storage model 

Lithium Ion battery is considered in this work as frequent switching from charging 

and discharging does not impose any limitation.  At any time, the state of the battery is 

related to the previous state of the battery irrespective of discharging and charging of the 

battery. The battery is charged up to SOCmax only when the total generation from the 

renewable sources is greater than the load in the systems and it is mathematically written as: 

   chtPloadtPsnstPwnwtEbattEbat *)()(*)(*)1()(    (4.26) 
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On the other hand, when the load is greater than the available energy generated, the 

battery will discharge provided its State of Charge (SOC) is greater than SOCmin and is given 

by: 

   dischtPsnstPwnwtPloadtEbattEbat *)(*)(*)()1()(    (4.27) 

Where, )(tEbat and )1( tEbat are the available battery capacity at time t and (t-1). The 

charging and discharging efficiency of the battery are 0.85 and 0.95 respectively.   

4.3.5 Load and price modeling 

Daily load curve is modelled for each season using the typical demand level factor 

(DLF) as a percentage of the particular peak load at each bus. The planning period is 

considered to be 5 years and it is assumed to be a certain percentage of load growth g

every year. The demand level at every hour of the planning period is modeled as: 

 tghti
D
basei

D
hti DLFSS  1** ,,,,,        (4.28) 

Where, htiDLF ,,  is demand level factor for a typical daily load at every bus in year t. 

D
baseiS , is the base load at each bus. The electricity price changes with market operation, which 

in turn change with the demand level so it is assumed that the electricity price follows the 

changes in the demand level.  

4.4 Problem formulation 

This section presents the formulation of the distributed generation planning problem 

for optimizing three conflicting objectives in an active distribution network. The processing 

of season wise data and modeling of wind turbine and solar panel can be looked up in [48]. 

DGs are modelled as a negative load [100]. It can be inferred from section 4.3 that each time 

segment represents 90h (30 days per month*3 months per season) so, the objective functions 

and constraints are formulated as follows: 
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Where,  

)..(*)( 2 cPbPaCPf DEDEgasoilDEDE       (4.32) 

DEOMiDEi PkPOM *)(         (4.33) 

BatBatPVPVWTWT CKCKCKrenOM ***)(      (4.34) 
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Equality Constraints: 

batpvwinddieselload PPPPP        (4.37) 

In-equality constraints: 

max0 DGDG PP           (4.38) 

maxmin iii VVV           (4.39) 

Table 4.1 Cost associated with various DER types 

DER type 
Initial 

Investment 
($/kW) 

Annual M&O 
cost ($/kW) 

Emission cost 
($/kg) 

NOx CO2 CO SO2 

DE 500 - 0.28 0.013 0.022 0.131

WT 1600 50 - 

PV 6000 35 - 

4.5 Optimal operation strategy for grid connected and autonomous mode 

operation of active distribution network 

4.5.1 Optimal operation strategy for grid connected mode 

The operation strategy procedure for identifying optimum solution in grid-connected 

mode of operation is depicted in the form of flowchart is shown in Figure 4.1. The cost 

associated with each DG technology has been presented in Table 4.1. 
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Figure 4.1: The proposed planning strategy for grid connected mode of  operation 
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4.5.2 Optimal operation strategy for autonomous mode 

The proposed planning strategy is explained in the flowchart depicted in Figure 4.2 It 

is clearly perceived from the flowchart that the diesel generator is least preferred to supply 

the load as its power generating cost is very high due to fuel consumption. 

 
 

Figure 4.2: The proposed planning and operational strategy for autonomous mode of operation 
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4.6 Simulation results and discussion 

In this section, the active distribution network planning is analyzed for two cases: i) 

Two objectives: Minimization of active power loss and voltage deviation and ii) Three 

objectives: Minimization of real power loss, voltage deviation and total cost of DG 

integration. The proposed GrMHS algorithm is tested on IEEE 33-bus system, IEEE 69-bus 

system and Indian 85-bus radial distribution system. The proposed algorithm for DERs 

planning is coded using MATLAB programming and all the simulations are carried out on a 

personal computer with an i5 processor, speed of 2.53GHz and memory of 4GB RAM. The 

proposed GrMHS algorithm is executed with 30 populations for a maximum of 100 iterations 

for all the cases. 

4.6.1 Two objectives: Minimization of active power loss and voltage deviation 

The proposed GrMHS algorithm is applied for minimizing two conflicting objectives 

such as active power loss and voltage deviation (similar to section 3.4). For this case, DG is 

modelled as negative load and assumed to supply real and reactive power to the distribution 

network. The power factor of DG is assumed as 0.85 lead.  

 

Figure 4.3: IEEE 33-bus system: Comparison of voltage profile with the proposed GrMHS 
and PeMOTLBO 

The effectiveness of the proposed algorithm is demonstrated with IEEE 33-bus 

system, IEEE 69-bus system and Indian 85-bus distribution respectively. The computation 

time for the proposed algorithm is also less and it is almost half of the time taken by the 

PeMOTLBO algorithm proposed in the chapter 3. 
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Figure 4.4: IEEE 33-bus system: Comparison of pareto solutions obtained by GrMHS and PeMOTLBO 

 

 
 

Figure 4.5: IEEE 69-bus system: Comparison of voltage profile with GrMHS and PeMOTLBO 
 

The comparison of voltage profile and the pareto solutions between voltage deviation 

and active power loss are shown in Figure 4.3 and Figure 4.4 respectively, for IEEE 33-bus 

system. Similarly, the same for IEEE 69-bus system and Indian 85-bus system are shown in 

Figure 4.5, Figure 4.6 and Figure 4.7, Figure 4.8 respectively. The consolidation and 

comparison of results for all the three systems are shown in Table 4.2. The optimal location 

and size obtained by proposed algorithm is giving better active power loss reduction. 
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Figure 4.6: IEEE 69-bus system: Comparison of pareto solutions obtained by GrMHS and PeMOTLBO 

 
Figure 4.7: Indian 85-bus system: Comparison of voltage profile with GrMHS and PeMOTLBO 

 
Table 4.2  Consolidation and comparison of results for two objectives case 

 
IEEE 33-bus system IEEE 69-bus system Indian 85-bus system 

Proposed 
GrMHS 

PeMOTLBO 
Proposed 
GrMHS 

PeMOTLBO 
Proposed 
GrMHS 

PeMOTLBO 

L
oc

at
io

n 
(B

us
 

nu
m

be
r)

 

S
iz

e 
(M

W
) 14 0.5791 7 0.8563 11 0.5248 21 0.3130 26 0.6415 64 0.7661 

30 0.9874 30 1.0050 50 0.7610 67 0.2994 35 0.6391 34 0.7010 
6 0.8168 16 0.4802 18 0.3944 61 1.7547 67 0.6831 26 0.6656 

25 0.7411 25 0.7426 61 1.7498 12 0.3007 11 0.5716 82 0.3868 
Real power 
loss (p.u.) 

0.00963 0.0129 0.002742 0.0048 0.0262 0.0269 

Voltage 
deviation 

0.0002 0.0003 0.3525e-4 0.0001 0.0006 0.0008 

Worst voltage 
(p.u.) 

0.9941 0.9922 0.9984 0.9943 0.9909 0.9907 

CPU time (s) 17.477 34.567 22.706 89.22 38.53 131.8803 
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Figure 4.8: Indian 85-bus system: Comparison of pareto solutions obtained by GrMHS and PeMOTLBO 

 

4.6.2 Three objectives: Grid connected mode of operation with hybrid DERs 

The planning of grid connected active distribution network is studied with three 

objectives: 1. Energy loss 2. Voltage deviation 3. Cost of DG integration in this section.  

These objectives are conflicting with each other. So they are formulated multi-objective 

problem. As the IEEE 33-bus and IEEE 69-bus systems have nearly the same load and active 

power loss and behave in a similar manner as reported in the previous DG planning studies, 

the performance of the proposed GrMHS algorithm in this planning model is evaluated with 

IEEE 33-bus system and Indian 85-bus distribution system shown in Appendix.  The DG 

technologies include both dispatchable and non-dispatchables (renewable sources) DERs. 

Daily load profile is assumed to follow the load curve of IEEE-RTS system [106] for 5 years 

with 5% of annual load growth for both the system. To avoid computational complexity, one-

day profile of load and generation has been taken from each season. Thus, only 96 time 

segments are processed for one year where each time segment corresponds to 90 hours 

approximately in all season [48]. Connecting distributed generations to the grid connected 

distribution network will transform them to operate as non-autonomous mode of a microgrid. 

The various DGs considered here are wind turbine, solar and diesel generator.  Figure 4.9 

shows the load variation of IEEE 33-bus system in the first year of the planning horizon 
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along with typical generation profile of each DER. The hourly profile of wind speed and 

solar radiation data for five years have been accessed from [99]. 

 

Figure 4.9: Yearly profile of Load and generations of various DERS 
 

4.6.2.1 IEEE 33-bus system 

This system is assumed to be connected to the main grid (grid connected micro-grid 

operation) with hourly load variation and DG sources. Since the planning period is 

considered as 5 years, the objective functions such as energy loss, costs are evaluated for the 

whole planning period in iterative process. By doing so, the aggregated demand and energy 

loss of the system are obtained as (113.18+j70.073) GVA and (4638.1+j3093.7) MVA 

respectively when there is no DG connected in the system. Four combinatorial scenarios 

were analysed with different DG type to validate the objective values. The number of DGs is 

fixed as three as their total ratings are equal to the base demand. Figure 4.10 shows the 

voltage profile of the IEEE 33-bus system obtained by the proposed GrMHS algorithm for 

different combinations of DGs in the system. It is observed that even though the number of 

DGs is same, there is variation in the voltage profile of the system with respect to the DG 

type. A better voltage profile is noticed obviously for 3 diesel generators case as it is the only 

controllable generation among all three DG types. Figure 4.11 shows the seasonal variation 

of total energy loss of the system for various combinations of the DGs. It is perceived that the 

energy loss reduction is significant if all three DGs are diesel generators and there is 
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reasonable energy loss reduction where all three are DG technologies. However, if DGs are 

either PV or wind technologies, the energy loss reduction is not any better than in cases 

involving diesel generators. 

 

Figure 4.10: IEEE 33-bus system: Bus voltage variation for different DG combinations. 
 

 

Figure 4.11: IEEE 33-bus system: Seasonal energy loss variation for all DG combinations 
 

Figure 4.12 shows the comparison of the pareto solutions found by GrMHS with basic 

MOHS and NSGA-II technique. For validating the superiority of the proposed grid based 

multi-objective harmony search algorithm over basic MOHS and NSGA-II method, all three 
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diesel generator case has been compared in Figure 4.12. It is evident from the figure that 

efficient searching has been done by the proposed GrMHS over MOHS and NSGA-II to find 

out better optimal solutions with respect to all objectives. The spread of the solutions is found 

to be wide in case of GrMHS. 

 

Figure 4.12: IEEE 33-bus system: Comparison of pareto solutions of Proposed GrMHS with MOHS and 
NSGA-II 

 

The consolidated result of the planning problem using GrMHS in IEEE 33-bus system 

for different combinations of DG has been summarized and compared with MOHS and 

NSGA-II, which is shown in Table 4.3. It shows that, despite hourly variation in the power 

output of renewable resources, the total power contributed by each renewable resource such 

as wind and solar in the entire planning period is fixed based on modelled wind speed and 

solar irradiance for five years. Therefore, whatever power available from them is utilized and 

only the firm generation from diesel is altered. It is ascertained from the table that among all 

four combinations of DGs, if all 3 DGs are diesel, an appreciable energy loss reduction 

around 72.13% is achieved with a voltage deviation of 0.00032 p.u but the cost is found to be 

2006.33 million$ which is predominantly very high compared to other cases. On the other 

hand, if all 3 DGs are renewable, being either wind or solar power, the percentage of loss 

reductions and voltage deviations are about 45.19%, 34.04% and 0.0012 p.u 0.03023 p.u 

respectively  and the cost involved is about 11.1507 million$  for wind and 22.2914 million$  

for solar, far cheaper compared diesel based DG. 
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The results reveal that the optimal renewable resource mix with firm power generation 

is necessary for obtaining the optimal operation with considerable energy loss reduction and 

the cost. For instance, if all DG technology is considered, the loss reduction is found to be 

65.33% with voltage deviation of 0.00018 p.u. and the total cost is around 688.7479 million$ 

which is reasonable when compared to other cases. Similar analyses have been carried out 

with NSGA-II technique and MOHS for the purpose of comparison. It is found to be 

performing in a similar fashion like GrMHS for all cases but the objective values are found to 

be inferior to GrMHS.  

4.6.2.2 Indian 85-bus system 

Indian 85-bus distribution system with a base demand of (2.54703+j2.622) MVA has 

been modified by incorporating daily load variation using IEEE RTS system [106] over 5 

years with an annual load growth of 5%. Thus, the total demand and energy loss of the 

system over 5 years is found to be (78.307+j79.889) GVA and (7141.5+j4486.8) MVA 

respectively. Renewable DGs modelling is adopted in the same way as that of the IEEE 33-

bus system.  Figure 4.13 shows the voltage profile of the Indian 85-bus system for all DGs 

combination. It shows the effect of connecting the renewable resources and firm generating 

source such as diesel on voltage profile in the system.  The voltage profile in the system 

found better in case of diesel generator. Figure 4.14 presents the seasonal energy loss 

variation of the system for different DGs combinations.  

 
Figure 4.13: Indian-85 bus system: Voltage variation at all buses for different DG combination. 
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Figure 4.14: Indian-85 bus system: Seasonal energy loss variation for all DG combinations 
 

 

 

Figure 4.15: Indian 85-bus system: Comparison of pareto solutions of Proposed GrMHS with MOHS and 
NSGA-II 

 

Figure 4.15 shows the comparison of the pareto solutions obtained by GrMHS with 

MOHS and NSGA-II technique for Indian 85-bus system for all DG cases. Moreover, the 

pareto solution obtained by NSGA-II techniques are with two fronts, which introduces 

ambiguity in the decision making process. In this system, the pareto optimal front obtained 

by GrMHS method is little close to the basic MOHS method but the best solution given by 

proposed method is superior to two other methods. 
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Table 4.4 provides the comparative results of the proposed model in Indian 85-bus 

system for all DG combinations. It is interpreted from the table that when the system is 

operating only with diesel, it is almost operating close to the autonomous mode operation of 

the microgrid as the power generated is found to be 98.34% of demand. This results in 

74.09% energy loss reduction from the base case with a voltage deviation of 0.0080p.u. 

which due to cost constraints of around 2006.06 million$, resulted in the need for renewable 

resource mix with diesel technology. Since this system’s demand is less when compared to 

other above discussed systems, the contribution from renewable energy seems to be high and 

has reduced the amount of power purchased from the main grid. Even then, only with 

renewable DGs, it failed to boost up the percentage of loss reduction and improve voltage 

deviation in the system. Thus, a mix of DG technology is quite preferred for better optimal 

operation in the system. For example, one diesel, one wind turbine and one PV in the system 

resulted in 60.52% loss reduction with voltage deviation of 0.00365p.u and a cost of 624.721 

million$. The same analysis has been undertaken by using MOHS and NSGA-II technique to 

validate the results obtained by GrMHS algorithm. It is clear from Table 4.4 that the 

objective values are superior in GrMHS compared to MOHS and NSGA-II technique.  

4.6.3 Three objectives: Autonomous mode of operation with hybrid DERs 

The proposed operation strategy has been implemented in IEEE 33-bus distribution 

test system and Indian85-bus distribution system using proposed GrMHS algorithm. For both 

the systems, load profile has been assumed to follow IEEE-RTS system load curve [106] 

with 5% annual load growth throughout the planning period of 5 years. The systems are 

installed with 3 diesel generators of 1.2 MW, each capable of meeting the total demand in the 

system and the renewable resources such as wind and solar generations of each 2 MW and 

1.2 MW respectively. The impact of excess renewable resources penetration in the system is 

analyzed for economic and stable autonomous operation of the active distribution system. Li-

ion battery of 2 MW rating is assumed to be fully charged. Initially, with Depth of Discharge 

(DOD), 15% of its rating is considered and is allowed to charge only when there is excess 

renewable generation after meeting the load demand at particular hour. The maximum 

charging efficiency of the battery is considered 0.95. 
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4.6.3.1 IEEE 33-bus system 

The base case load of this system is (3.72+j2.3) MVA and is assumed as peak load of 

the system. The sum of hourly demand over 5 years is found to be (113.18+j70.07) GVA 

with total energy loss of (4638.1+j3093.7) MVA. This system is studied for its standalone 

microgrid operation with DERs with no constraints on renewable sources location and the 

impact on the objective functions is observed by enforcing available renewable source bus 

limits.  16 buses have been assumed and are included as a constraint for solar and wind 

turbine placement. The assumed bus limits for this system are [7 8 9 10 11 12 13 14 26 27 28 

30 31 32 33]. 

 
Figure 4.16: IEEE 33-bus system: Variation of load and generation at first year of planning horizon for 9 DERs 

case 
 

Figure 4.16 shows the load and generations in the system during starting year of 

planning period for 9 DERs case. The existence of dumped energy in the system is clearly 

visible when there is excess renewable power generation after meeting load. At the same 

time, it should be noted that the diesel and battery are not supplying any power to the system 

as total load being supplied by renewable sources. When the available renewable source bus 

limits are enforced on the system, the energy loss in the system is increased due to unsuitable 

location of the renewable sources. This comparison is shown in Figure 4.17. The comparison 

of voltage profile in the system with and without renewable bus available limits is shown in 

Figure 4.18. 
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 Figure 4.19 shows the comparison of the pareto optimal solutions of the objective 

functions before and after enforcing renewable bus limits.  It is noticed that the pareto 

solutions obtained when there are no bus limits enforced is giving better solution when 

compared to the solution obtained when it is subject to bus limits constraint. When the bus 

limits are imposed on the system, the solutions are superimposed with each other, thereby 

making no provision for decision-making. 

 
Figure 4.17: IEEE 33-bus system: Comparison of Energy loss for 9DERs case 

 

 
Figure 4.18: IEEE 33-bus system: Comparison of voltage profile for 9DERs case 
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Figure 4.19: IEEE 33-bus system: Comparison of pareto solutions of proposed GrMHS with MOHS 

 
 

Table 4.5 IEEE 33-bus system: System Performance with various DERs combinations and renewable source 

bus limits 

    Total no. of 
       DERs 
 
DERs 
Type 

Proposed GrMHS MOHS [98] 

Without bus limits 
With renewable bus 

limits 
Without bus limits 

6 DERs 9 DERs 6DERs 9 DERs 6 DERs 9 DERs 

 
Loc. 

Size 
(MWh) 

Loc. 
Size 

(MWh) 
Loc. Loc. Loc. 

Size 
(MWh) 

Loc. 
Size 

(MWh) 

Diesel 
7 564.0 8 218.54 27 24 5 564.0 29 218.6 
30 271.7 30 99.21 24 30 32 271.7 7 99.21 
25 66.30 25 10.057 30 10 9 66.30 25 10.06 

Wind 

24 202.33 25 202.33 13 28 15 202.3 14 202.3 
  15 202.33  14   25 202.3 
  32 202.33  32   8 202.3 
  6 202.33  7   31 202.3 

PV 3 148.6 19 148.6 7 7 24 148.6 3 148.6 

Battery 23 1.8 5 22.60 3 4 3 1.8 6 22.59 

Total energy loss  
(MWh) 

828 1188 981 1672.2 954.0 1250.9 

Voltage deviation (p.u) 2.164e-4 0.0002 4.22e-4 0.0004 2.5126e-4 0.0002 

Cost (Million $) 2685.6 859.94 2685.6 859.94 2685.6 859.94 

Pdumped (MWh) 0 125.84 0 125.84 0 125.84 

Battery charged power 
(MWh) 

0 -23.79 0 
-

23.79 
0 -23.79 

*Loc. – Location 

Table 4.5 shows the comparison of  system performance in autonomous mode operation 

of IEEE 33-bus system  for two different DERs combination. One case considers less RES 

and another excess RES. Since power generation by wind is relatively of less cost when 

compared to  PV, increase in renewable source integration is considered only for wind. When 
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the wind turbine is considered excess in the system, the overall cost is decreased from 2685.6 

million$ to 859.94 million$ but energy loss over planning horizon increased from 828 MWh 

to 1188 MWh while maintaining better voltage deviation in both the cases. As the battery is 

assumed to be charged only when there is excess renewable power generation after supplying 

load, battery charging is made possible only in case of excess wind turbines. On the other 

hand, if excess wind turbines are connected, the amount of dumped energy i.e energy 

generated but not used  is increased  in the system. To avoid these discrepencies, enough 

batteries can be accomodated and operated optimally with a limitted number of wind 

turbines. To incorporate the practicality, renewable  bus  limits are enforced in this thesis  

and due to fixed number of  units and assumed uniform wind speed and solar irradiation at all 

buses, the optimal location alone disturbed as the generation is scheduled based on the load 

in the system.  Thus, from Table 4.5 it is seen that if location constraints are included,  the 

system losses increased from 1188 MWh to 1672.2 MWh in case of 9 DERs with 4 wind 

turbines, even with same generation due to non-optimally located renewable sources. 

4.6.3.2 Indian 85-bus system 

An Indian 85-bus distribution network with a maximum demand of (2.5703+j2.622) 

MVA with a base distribution line loss of (316.7+j198.7) kVA is also considered for 

autonomous operation with DERs. The total demand over 5 years is found to be 

(78.307.18+j79.889) GVA with total energy loss of (7141.5+j4486.6) MVA for this system. 

The constraint for solar and wind resource integration is enforced by considering 28 bus 

location for their connections for this system. The assumed bus limits for this system are [8 9 

10 11 12 13 14 15 25 78 80 81 82 85 57 58 59 60 61 62 44 45 46 47 24 38 83 84]. 

Figure 4.20 shows the variation of load on the Indian 85-bus system and various 

source of generation for 9 DERs case. It is observed that the battery reaches its maximum 

charged state when there is excess energy available from the renewable sources due to less 

demand in the system. It clearly depicts the increase in dumped energy in the system when 

there is excess renewable power generation after supplying load.  The energy loss profile 

obtained by GrMHS algorithm before and after enforcing bus limits has been shown in 

Figure 4.21. Imposing the renewable source bus available limits has worsened the system 

loss  as shown in Figure 4.21. The Figure 4.22 shows comparison of pareto optimal solutions 

of the objective functions before and after enforcing renewable bus limits. It is noticed that 
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the pareto solutions are better when they are not subjected to any bus limits constraint. The 

voltage profile of Indian 85-bus system without renewable bus available limits is compared 

with enforced bus limits in Figure 4.23. 

 

 

Figure 4.20: Indian 85-bus system: Variation of load and generation for 9 DERs case 
 

 

Figure 4.21: Indian 85-bus system: Comparison of Energy loss for 9DERs case 
 

 

 

A
ct

iv
e 

P
ow

er
 (

M
W

)
E

ne
rg

y 
lo

ss
 (

M
W

h)



Chapter 4     Optimal planning of ADN operation with hybrid DERs using GrMHS Algorithm 

  71 

 

 

 

 

 
Figure 4.22: Indian 85-bus system: Comparison of pareto optimal solutions of proposed GrMHS with MOHS 

 

 
Figure 4.23: Indian 85-bus system: Comparison of voltage profile for 9DERs case 

 

Even though same operational strategy has been adopted for Indian 85-bus system as 

that of IEEE 33-bus system, it is observed from Table 4.6 that due to less load on the system, 

the amount of dumped energy i.e. wasted energy is 624.0282 MWh in 5 years. The total cost 

is reduced from 1339 million$ to 272.825 million$ due to excess wind turbine integration in 

the system at the cost of increase in system energy loss from 1764 MWh to 3038.73 MWh. 
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The voltage deviation also increased in the system with increase in the wind turbine in the 

system. As there is less demand in the system, simply increasing the number of wind turbines 

has resulted in tremendous increase in the amount of dumped energy in the system. While it 

has avoided the operation of diesel generators, thereby reducing the operating fuel cost. 

When the renewable bus limits are imposed, there is much increase in the system energy loss 

with same amount of generation as that of the case with no bus constraints. 

 

Table 4.6  Indian 85-bus system: System performance with various DERs combination and renewable source 

bus limits 

     Total no.  
         of DERs 
DERs        
Type 

Proposed GrMHS MOHS [98] 

Without bus limits 
With renewable 

bus limits 
Without bus limits 

6DERs 9DERs 6DERs 9DERs 6DERs 9DERs 

 
Loc. 

Size 
(MWh) 

Loc. 
Size 

(MWh) 
Loc. Loc. Loc. 

Size 
(MWh) 

Loc. 
Size 

(MWh) 

Diesel 
29 424.7 29 105.81 29 31 29 424.7 30 105.81 
60 81.0 64 6.793 64 70 64 81.0 71 6.793 
52 1.7 51 0 52 11 53 1.7 77 0 

Wind 

68 202.33 67 202.33 60 12 68 202.33 35 202.33 
  35 202.33  44   26 202.33 
  3 202.33  60   11 202.33 
  12 202.33  25   67 202.33 

PV 6 148.6 4 148.6 8 24 9 148.6 5 148.6 

Battery 8 1.8 2 16.25 25 1 25 1.8 1 16.25 

Total energy loss 
(MWh) 

1764.0 3038.733 1836 3503.24 1791 3327.58 

Voltage deviation 
(p.u) 

0.0019 0.0117 0.0031 0.0021 0.0019 0.0010 

Cost (Million $) 1339 272.83 1339 272.83 1339.0 272.825 

Pdumped (MWh) 0 624.0282 0 624.028 0 624.0282 

Battery charged 
power (MWh) 

0 -19.65 0 
-

19.65 
0 -19.65 

*loc. - Location 

4.6.4 Performance metrics comparison of proposed GrMHS algorithm with MOHS 

and NSGA-II 

The performance of the proposed algorithm is compared with two metrics (i) Set 

coverage metric (ii) Space metric (one evaluating the progress towards the pareto-optimal 

front and the other evaluating the spread of solutions) that tests both the goals. These metrics 
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evaluation and the comparative study using box plot are followed in similar way as that in 

chapter 3. Proposed GrMHS method is compared with NSGA-II and MOHS methods by 

executing each of them independently 25 times.  

 

 
 

Figure 4.24: IEEE 33-bus system – Comparison of C-metric values obtained with proposed GrMHS 
 

 

 
 

Figure 4.25: Indian 85-bus system – Comparison of C-metric values obtained with proposed GrMHS 

 
The box plot for distribution of coverage metric (Ic) values obtained by proposed 

GrMHS algorithm has been compared individually with NSGA-II and MOHS methods. The 

comparison of plots prove the superiority of proposed GrMHS algorithm is shown in Figure 
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4.24 and Figure 4.25 respectively for IEEE 33-bus system and Indian 85-bus system 

respectively. It is clearly understood from the graph that the convergence by proposed 

GrMHS is better when compared to MOHS and NSGA-II. 

 

 
 

Figure 4.26: IEEE 33-bus system – Comparison of S-metric values obtained with proposed GrMHS 
 

 

 
 

Figure 4.27: Indian 85-bus system – Comparison of S-metric values obtained with proposed GrMHS 
 

Figure 4.26 and Figure 4.27 shows the comparison of S-metric values obtained by 

GrMHS method with MOHS and NSGA-II for IEEE 33-bus system and Indian 85-bus 

system respectively. The plots depict that the solutions obtained by GrMHS and MOHS are 
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equidistantly placed when compared to NSGA-II and MOHS methods as the S-metric values 

obtained by GrMHS method is close to zero compared to MOHS and NSGA-II method. This 

ensures better diversity among the solutions in the pareto front. 

4.7 Summary  

In this chapter, a novel multi-objective algorithm called Grid based Multi-objective 

Harmony Search algorithm (GrMHS) has been proposed for active distribution network 

operation planning. A secondary selection criterion i.e. grid setting strategy in objective 

space is embedded in harmony search algorithm for better performance in multi-objective 

frame. Optimal resource mix of renewable and fuel based DGs have been identified for 

economic and efficient operation of active distribution network. It has been analyzed for both 

grid-connected and autonomous mode of operation with energy storage systems. The limit on 

location of renewable DGs is also incorporated in the formulation to assess its impact on 

system energy losses and the voltage profile. 
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Chapter 5 

5 Load Frequency Control of an Isolated Microgrid 
using Levy based Spider Monkey Algorithm 

5.1 Introduction  

Frequency and voltage controls are the two main challenges in microgrid operation in 

grid connected mode and autonomous mode due to the presence of uncertain renewable 

sources and negligible inertia. Since economic microgrid operation relies on fluctuating 

renewable sources such as wind and solar, the task of maintaining frequency within the limits 

for smooth operation of microgrid demands advanced controller action. Keeping this in mind, 

this chapter proposes eagle strategy where a panoptic exploration to search space has been 

accomplished for optimizing the gains of PI controller employed in controllable generating 

units in the islanded microgrid. In the proposed strategy, the search process is of two fold i.e., 

coarse search by levy flights and an intensive local search by spider monkey algorithm. The 

proposed strategy has been tested on a typical microgrid test system and its effectiveness is 

validated with performance index Integral Time Squared Error (ITSE). 

5.2 Proposed Eagle strategy using Levy flights with Spider Monkey 

Optimization Algorithm 

Eagle strategy is a methodology rather than algorithm is inspired from the foraging 

behavior of eagle where eagle search for prey in free random manner. Once the prey is found, 

it will intensify its hunting process by chasing the prey. Eagle strategy was first developed by 

Yang et al.[101]. The two main components of eagle hunting strategy include: 

i. A coarse global search with enough randomness so as to explore a diverse search 

space and 

ii.  Intensive local search using any efficient algorithm.  

In this chapter, this strategy first explores the search space globally using levy flight 

random walk whose step length is not fixed which ensures promising solutions and then an 

intensive local search is carried out with efficient spider monkey optimization algorithm. 

This strategy has explored a vast search space to find an optimal solution. 
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5.2.1  Levy Flights 

Random walk whose step length follows a non-Gaussian distribution such as levy 

distribution is called levy flights. 

 It is often given in terms of simple power law 1
~)( ssL where 20   is levy 

index. Mathematically, a simple version of levy distribution is given by [102]: 
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Where  is shift parameter, 0   is scale parameter. This is the special case of 

generalized levy distribution.  

In general, levy distribution should be defined in terms of Fourier transform: 

]exp[
β

kαF(k)               20           (5.2) 

Where, is the scale parameter in range (0, 1). Inverse of the above Fourier transform 

is not possible except for few special cases when 2  corresponds to Gaussian distribution 

and 1  corresponds to Cauchy distribution. 

In general, the inverse integral is given by 
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It can be estimated only when s  
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The gamma function )(z  is given by 





0

1)( dtetz tz          (5.5) 

Where z  is an integer. Levy flights are more efficient than Brownian random walk in 

exploring the unknown, large-scale search space. This is due to its variance 
 32 ~)( tt  

which increases much faster than the linear relationship tt ~)(2 of Brownian walk. 
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Implementation of levy walk: 

There are two steps in generation of random walk with levy flights: choice of random 

direction that is drawn from normal distribution and generation of random steps, which obeys 

levy distribution.  The latter is achieved by efficient Mantegna algorithm and step length is 

given by: 

/1
v

u
step           (5. 6) 

Where u and v  are drawn from normal distribution. 
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5.2.2 Spider Monkey Optimization (SMO) Algorithm 

Spider Monkey Optimization algorithm proposed by JC Bansal et al. [103] is a 

recently emerging algorithm in the family of nature inspired Meta heuristic algorithms. This 

algorithm is inspired from the foraging behavior of spider monkeys, which follow certain 

fission-fusion social structure (FFSS) for their effective foraging action.  

Features of Fission Fusion Social Structure: 

 Initially spider monkeys survive in single group with 30-60 monkeys and are led 

by a female leader (global leader) who is responsible for all sorts of decision-

making. 

 In the foraging process, the group keeps being divided into smaller sub-groups 

until the group members reach a minimum of 3-5 members in different directions 

each lead by individual female leaders (local leaders). 

 At the end of foraging process all groups are combined together as single group to 

share the food. This type of foraging movement will increase the effective search 

for food without foraging competition. The SMO algorithm is inspired from this 

social structure behavior and it involves the following seven steps: 
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Step 1: Initialization of population 

Populations of P spider monkeys are initialized with D dimensional vectors.  

)(*()),(),( minmax jj SpMSpMrandjiSpMjiSpM     

 (5.9) 

Where, Pi ........3,2,1 , Dj ........3,2,1 . jSpMmax and jSpMmin  are the maximum and minimum 

limits on the corresponding 
thj decision variable. 

Step 2: Local Leader Phase (LLP) 

The position of each member of each group is updated based on the local leader 

experience and other group member’s knowledge 

)(*]1,1[                                                                    
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Where, ),( jiSpM is the 
thj decision variable of thi SpM (spider monkey). 

kjLL  is the 
thj  

decision variable of the local leader in thk  group. 
rjSpM is the 

thj  decision variable of 

randomly chosen thr  spider monkey from the thk  group where ir . 

Step 3: Global Leader Phase (GLP) 

Based on the experience of the global leader and other members of local group, the 

position of SpM is modified.  

)(*]1,1[                                                                  
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Where, 
jGL  is the 

thj  decision variable of the global leader and the 
thj  variable is randomly 

chosen from (1, 2, 3…D). The position update is done with the help of probabilities ip . 

1.0*9.0
max


fitness

fitness
p i

i        (5.12) 

Step 4: Global Leader Learning Phase (GLLP) 

Greedy selection is applied on the new population and existing population and a 

population of size P is selected. The position with best fitness within updated population is 



Chapter 5                          Load Frequency Control of an Isolated Microgrid using Levy-SMA  

  81 

considered as new global leader position. Meanwhile if the position of global leader has not 

changed for certain number of iterations (Global Leader Limit) then, the global limit count is 

incremented by one. 

Step 5: Local Leader Learning Phase 

In this phase, the local leaders in each group are updated in a similar fashion as that of 

the global leader by applying greedy selection by comparing the group members of existing 

and new population. The one with best fitness is updated as local leader of that particular 

group and if it is not updating its position for local leader limit, then local leader count is 

incremented by one. 

Step 6: Local leader decision Phase 

Suppose the local leader count reaches the local leader limit, then all the members of 

the group are either randomly initialized or updated with the help of global leader and local 

leaders. 

)(*())(*()),(),( kjijijj LLSpMrandSpMGLrandjiSpMjiSpMnew   (5.13) 

Step 7: Global leader decision Phase 

In this phase, the global limit count is checked for its threshold global leader limit, if it 

hits the threshold, then global leader will divide the group into two, then three and so on till it 

reaches the minimum members requirement in the group. Once the maximum number of 

groups are formed and the position of global leader is not updated, sub groups are combined 

to form a single group by the global leader. 

 

Eagle strategy: Levy flights with Spider Monkey Optimization Algorithm 
1. Initialize population, X 
2. Evaluate objective function f(X) 
3. While (iter<itermax) 

3.1 Coarse global search by levy flights 
                    Stepsize=0.01*step*(step-best)          /*using equation 5.6*/ 
                    X=X+α*stepsize 
                    Evaluate the objective function        /* using equation 5.14*/ 
                   Update population with better fitness 
            3.2  Intensive local search by SMO algorithm 
                    Updated population in (3.1) undergoes all seven phases of  SMO algorithm 
                     Global and local leaders are updated 
           iter=iter+1 

4. Processing of results and validation 
 



Chapter 5                          Load Frequency Control of an Isolated Microgrid using Levy-SMA  

  82 

5.3 Problem formulation 

In conventional power systems, the secondary control is required to regulate the 

frequency by tracking the power mismatch between generation and load. In traditional 

practice, it is done by conventional PI controllers. For effective frequency regulation in case 

of change in operating conditions, the PI controller gains have to be tuned properly to 

achieve the desired performance. This chapter proposed Levy based Spider Monkey 

Algorithm (Levy-SMA) to tune the PI gains for better performance in tracking the power 

deviations to zero and to test the effectiveness of the proposed algorithm, it has been 

evaluated and compared with performance metric Integral Time Squared Error (ITSE) value 

and given by the following equations: 

     
Tsim

dtftITSE
0

2
*        (5.14) 

Subject to: 

max,min, pp KKpK   

max,min, iii KKK          (5.15) 

Where min,pK , min,iK and max,pK , max,iK  are the minimum and maximum values of PI 

controller gains. f  and Tsim are the absolute values of the frequency deviation and total 

simulation time respectively. The optimization problem is formulated as minimization 

problem with ITSE as objective function by optimizing Kp and Ki values as the decision 

variables. 

5.4 Simulation results and discussion 

This section presents the simulation and discussion on various cases considered for 

load frequency control of as isolated microgrid. The proposed strategy has been tested on 

typical microgrid test system shown in Figure 5.1. Frequency control model of the systems is 

developed in SIMULINK/MATLAB. The cases include the load and generation variation and 

parametric variation in the system. The sampling period for all cases of simulation is taken as 

0.01sec. 

 

PI controllers 
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Figure 5.1: Frequency control model of an isolated microgrid with PI controller 

Case-1: Base case system response with all DERs 

The load frequency control of a microgrid with all sources such as PV, Wind, fuel 

cell, diesel and battery storage is simulated in this case. This case presents the frequency 

deviation response of the system with step of 0.02p.u. load change and solar power change 

i.e. ΔPs taken as 0.2p.u. The mean wind velocity for this case is taken as 7m/s. The frequency 

regulation is achieved by tuning PI controller gains which are optimized by the proposed 

algorithm. PI controllers are placed only for the controllable units i.e., diesel units and fuel 

cell. There are two PI controllers for this system and the corresponding gains are Kp1, Ki1 and 

Kp2, Ki2 respectively for diesel unit and fuel cell. Figure 5.2 shows the comparison of system 

response for case-1.  

It is clearly understood that the system response with kp and ki values obtained by the 

proposed strategy shows better results when compared to other algorithms. The simulation is 

carried out with other prominent algorithms such as PSO, Firefly algorithm, Harmony Search 

algorithm and Spider Monkey Algorithms and the comparison of results validated the 

superiority of the proposed algorithm. Figure 5.3 shows the comparison of the convergence 

plot obtained by proposed algorithm with other algorithms. The ITSE value obtained by the 

proposed algorithm is small and it shows better convergence with less number of iterations 

whereas other algorithms exhibit premature convergence.  
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Figure 5.2: Case-1: System response with all micro sources 

 

 
Figure 5.3: Case-1: Comparison of convergence plot 

 

Table 5.1  Performance metric ITSE value for case-1 

Algorithms 
PI gains Performance metric 

(ITSE) Kp1 Ki1 Kp2 Ki2 
Proposed Levy-SMA 0.6356 5.0000 4.6589 5.0000 0.00991 
SMA 0.3349 5.0000 5.0000 5.0000 0.01033 
PSO 4.4925 5.0000 5.0000 5.0000 0.01484 
HS Algorithm 0.3509 5.0000  5.0000 4.8480 0.04335 
Firefly Algorithm 3.0265 5.0000 4.0738 4.0248 0.1158 
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Table 5.1 provides the consolidated optimized values of Kp and Ki values of PI 

controllers obtained by each individual algorithm. ITSE values obtained by the proposed 

algorithm are found to be better when compared to other algorithms. 

Case -2: System response with dispatchable DERs 

 This case studies the frequency regulation in the system when there are only 

dispatchable units like diesel unit, fuel cell and battery in the system. The load change is 

taken as 0.02p.u. Here two cases have been examined for frequency control, one with Diesel 

Engine Generator (DEG) alone and the other including fuel cell contribution in the frequency 

control. It can be understood that the frequency deviation is considerably reduced with fuel 

cell participation in the frequency control loop.  The system response obtained by the 

proposed algorithm is compared with other algorithms as shown in Figure 5.4 and the 

corresponding ITSE values are tabulated in Table 5.2. The contribution of fuel cell in 

frequency regulation is shown in Figure 5.5. 

 

Figure 5.4: Frequency deviation response with dispatchable sources 
 

Table 5.2  Performance metric ITSE value for case-2 

Algorithms 
PI gains Performance 

metric (ITSE) Kp1 Ki1 Kp2 Ki2 
Proposed Levy-SMA 0.5508 5.0000 4.6573 5.0000 2.039*e-5 
SMA 3.5120 4.2121 2.6975 4.3328 2.546*e-5 
PSO 4.8661 5.0000 5 5.0000 2.981*e-5 
HS Algorithm 1.1496 3.9802 4 5.0000 2.256*e-5 
Firefly Algorithm 1.5657 5.0000 4.4981 5.0000 4.327*e-5 
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Figure 5.5: Comparison of system response with diesel and fuel cell 

 

Case-3: System response with series of step load variation 

In this case, the response of the system is obtained for series step changes in the load. 

This case demonstrates the robustness of the proposed algorithm for successive changes that 

exist in the system. The load changes are implemented with subsequent increase and decrease 

in the value of ΔPL as shown in Figure 5.6. The system response obtained for this case has 

been shown in Figure 5.7 and it compares the response obtained by other algorithm. The 

evaluating performance index values are also compared and tabulated in Table 5.3. 

 
Figure 5.6: Step load variation 
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Figure 5.7: Comparison of frequency deviation response for multiple load steps 

 

Table 5.3  Performance metric ITSE value for case-3 

Algorithms 
PI gains Performance 

metric (ITSE) Kp1 Ki1 Kp2 Ki2 
Proposed Levy-SMA 3.1946 5.0000 5.0000 5.0000 0.0083 
SMA 5.0000 3.5846 4.0706 3.5935 0.0090 
PSO 5.0000 5.0000 5.0000 4.1999 0.0085 
Firefly Algorithm 3.1822 5.0000 4.9910 4.9073 0.01122 

Case-4:  System response with wind perturbation of 2m/s 

This case presents the system response for sudden wind perturbations of 2m/s from its 

mean wind velocity that exists for 6s in the system. The wind gust component of magnitude 

2m/s is introduced for 6s in the wind velocity and the mean velocity of the wind is taken as 

6.5m/s. The change in solar power is maintained constant at 0.05p.u. and load change of 

0.02p.u. The system response by the proposed levy-SMA and the comparison with other 

algorithms are shown in Figure 5.8. The performance metric, integral time squared error 

(ITSE) is evaluated for all algorithm and compared in Table 5.4. The table shows that the 

value of ITSE is better in case of proposed algorithm. 



Chapter 5                          Load Frequency Control of an Isolated Microgrid using Levy-SMA  

  88 

 
Figure 5.8: Comparison of system response with wind perturbations for 6secs 

 

Table 5.4  Performance metric ITSE value for case-4 

 

Case-5: Parametric variation in the system 

This case presents system response with parametric variation and studies the 

superiority of the proposed levy-SMA method by comparing with other algorithms.  The 

parametric variation is incorporated as follows: R=+30%; D=-40%; H=+50%; Tt= -50%; 

Tg=+50%; Tb=-45%. The change is solar power is kept as 0.05p.u. and the load change is 

taken as 0.02p.u. whereas the wind velocity is maintained at 6.5m/s. The frequency deviation 

response is shown in Figure 5.9 and corresponding ITSE value comparison is presented in 

Table 5.5. The comparison shows that proposed levy-SMA is better when compared to all 

other algorithm presented in this chapter. 

Algorithms 
PI gains Performance 

metric 
(ITSE) 

Kp1 Ki1 Kp2 Ki2 

Proposed Levy-SMA 3.6360 5.0000 5.0000 5.0000 0.0570 
SMA 4.3291 4.3265 2.4781 4.1848 0.0653 
PSO 2.4130 5.0000 5.0000 5.0000 0.0575 
Firefly Algorithm 5.0000 5.0000 5.0000 5.0000 0.1225 
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Figure 5.9: Comparison of system response for parametric variation 

 

Table 5.5  Performance metric ITSE value for case-5 

Algorithms 
PI gains Performance 

metric (ITSE) Kp1 Ki1 Kp2 Ki2 
Proposed Levy-SMA 5.000 0.1000 5.0000 4.4093 0.0050 
SMA 2.2014 4.0216 4.7123 0.0619 0.0054 
PSO 5.0000 4.7975 5.0000 0.1000 0.0051 
Firefly Algorithm 5.0000 0.1 5.0000 5.0000 0.00617 
 

5.5 Summary 

In this chapter, a new eagle strategy by combining levy flights and spider monkey 

algorithm is proposed. The proposed strategy is utilized for optimizing the gains of PI 

controllers employed in the frequency control of the microgrid. The PI controllers are 

employed only for the dispatchable sources such as diesel engine and fuel cells. The 

proposed strategy implementation is a two-fold search process i.e., coarse search by levy 

flights and an intensive local search by spider monkey algorithm. The system response 

for different cases have been simulated and simulation results for various instances 

confirms the better performance of proposed algorithm compared with a few existing 

prominent algorithms. The performance index ITSE value is evaluated over simulation 

time to ascertain the superiority of the proposed strategy with few prominent algorithms 
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such PSO, Firefly Algorithm, and Harmony Search. This optimization algorithm is 

inspired from the foraging behavior of the spider monkey that includes the seven steps of 

implementation in the search procedure, which intensifies the search process resulting in 

promising solutions. 
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Chapter 6 

6 Fuzzy Adaptive Model Predictive Control for Load 
Frequency Regulation of an Isolated Microgrid 

6.1 Introduction  

This chapter presents a novel approach of fuzzy adaptive model prediction based load 

frequency control of an isolated microgrid. A generalized state space model of a typical 

isolated microgrid having controllable and uncontrollable generating power sources is 

derived and the same has been utilized to predict the future output and control inputs for the 

microgrid frequency control. The Model Predictive Control (MPC) is implemented with 

single input multi-output system model based on the controllable Distributed Energy 

Resources (DERs) in the microgrid. Apart from this, rule based fuzzy controller is employed 

to fuzzify the tuning parameter present in the cost function of MPC, which plays an 

important role in minimizing the frequency deviation in the system. The effectiveness of this 

proposed control has been evaluated with performance index ITSE (Integral time square 

error) value. 

6.2 Outline of model predictive control (MPC)  

An MPC is a model based advanced control strategy that employs an optimization 

procedure at each sampling time over prediction horizon to calculate the optimal control 

actions. As there is extensive literature on MPC, this section intends to presents only the 

outline of MPC [107]. 

The general discrete state-space model representation is given by: 

)()()()1( kwEkuBkxAkx ddd       (6.1) 

)()()( kuDkxCky dd          (6.2) 

Where, u - input variable vector; y - Process output vector; x - State variable 

vector; since moving horizon control requires current information of the plant for the 

prediction and control, it is implicitly assumed that )(ku  cannot affect output )(ky  but )1( ku  

at the thk  instant can. So, on taking difference on both sides of (6.1) and rearranging, we 

obtain 
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Where A , B  and C  are augmented state space model used in the design of predictive 

control.  Since the disturbance in current step is not reflected in the future, the disturbance 

matrix is omitted in the predicting window. ]0000[
 m

do   and m is the number of state 

variables. 

The difference of future control trajectory at sampling instant ik  is given by 

)1(,,,),1(),(  Nckukuku iii      (6.5) 

The rest of )(ku  for NpNcNck ,......,1,   is assumed to be zero. Where Nc is the 

control horizon, it gives the number of future control inputs to be predicted. With given )x(ki

, future state variables and output are predicted for Np number of samples.  The output is 

represented in compact form [107]. 
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For a given reference signal )( ikr at sample ik , the objective is to predict an output 

close to the reference signal. Moreover, this )( ikr  remains constant in the optimization 

window. The control objective is given by: 
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Then the optimal control vector U has been computed using ;0
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6.3 MPC implementation for load frequency control of an isolated microgrid 

The simplified load frequency model of a typical microgrid is considered in this thesis 

is shown in Figure 6.1. The microgrid consists of a diesel unit, fuel cell, wind, solar and 

battery storage of ratings given in [85]. The frequency control in the microgrid is achieved by 

predicting the future outputs and control signals i.e. frequency deviation and control actions 

to the controllable units respectively. The renewable sources are assumed to be operated at 

maximum power point. Hence, diesel unit and fuel cell are considered as controllable units in 

the microgrid. The prediction was accomplished by using model predictive control (MPC) 

design where a state space model of the system is used. From the model of the system shown 

in Figure 6.1, the dynamics of the system is defined with nine state equations with nine state 

variables for the microgrid considered. The nine state variables for the microgrid are 

explained with system dynamics in equations (6.10) - (6.18): 
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In compact form, the state space model of above system dynamics and the output equation 

can be given as: 
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The frequency regulation is achieved only through the controllable generating units in 

the system, therefore, the diesel unit and the fuel cell inputs are taken as controlled variables 

in the MPC formulation to minimize a control objective function to measure the predicted 

performance. Mathematically, it is formulated as follows: 
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The first term in the objective function expression refers to the minimization of error 

between predicted output and the reference point whereas the second term considers the 

impact of predicted control input vectors in making J  as small as possible. NcNcwin IRR ** , 

is a diagonal matrix where wR is tuning parameter for the desired closed loop performance. 

The prediction horizon for the output is taken as 10 time steps and the control horizon for the 
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control input is taken as 2 time steps with a sampling time step of 0.01s. These values are 

considered from the literature of typical load frequency problems using MPC. 
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Figure 6.1: Load frequency control model of an isolated microgrid with fuzzy adaptive MPC  
 

6.4 Fuzzy inference system for parameter (Rw) tuning 

MPC is a simple and straightforward procedure with less computational efforts. 

However, it is parameter driven and it needs to be properly chosen for better performance of 

MPC. In MPC algorithm, we have some parameters - Prediction horizon (Np), Control 

horizon (Nc), Sampling time (Ts) and Input parameter (Rw). Adaptability of the MPC is 

achieved only through the extensive analysis of the qualitative and quantitative relationship 

of these parameters with the behavior of the control algorithm of MPC. 

 The impact of these parameters on MPC behavior is randomly studied by trial and error 

method for load frequency control. It is found that optimal values of these parameters for 

ideal behavior of MPC remains unchanged for different case studies except Rw. Thus, the 

idea of fuzzy adaptive MPC is proposed in the chapter where ‘Rw’ is a scalar and 

dynamically adjusted by the fuzzy controller over each prediction window of MPC keeping 

other procedures unchanged. 

Three main components of fuzzy logic control are Fuzzification, Fuzzy inference 

engine (fuzzy rules) and defuzzification, which are described in the following subsections: 
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Figure 6.2: Inputs and output of fuzzy logic controller 

6.4.1 Fuzzification 

Fuzzification process is mapping the crisp value of inputs to linguistic variables using 

membership functions. Here inputs to fuzzification block are: Magnitude of Frequency 

Deviation (FD) and input parameter (Rw) and the output is the change in input parameter 

(ΔRw) shown in Figure 6.2. The triangular memberships functions are considered for fuzzy 

mapping and the five linguistic variables are considered for each input variable. such as VS 

(very small), S (small), M (medium, B (big), VB (very big) whereas the output variable 

(ΔRw) is represented in five linguistic values such as ZE (zero error), PS (positive small), PM 

(positive medium), PB (positive big), PL (positive large). The membership functions for 

inputs and outputs are shown in Figure 6.3. The universe of discourse for the magnitude of 

frequency deviation is taken as 0-0.25Hz whereas for Rw and ΔRw it is taken as 1-75 and 1-25 

respectively. 

6.4.2 Fuzzy Inference System: Fuzzy Rules formulation 

Fuzzy rules are formulated using Mamdani-type fuzzy rules which comprise 

“IF/THEN” conditional statements. In this work, a total of 25 (5×5=25) rules are formulated 

using “IF/THEN” statements with the membership functions of  two input variables and one 

output variable, which are tabulated in  Table 6.1. 

In this chapter, the impact of parameter Rw in the cost function of MPC formulation is 

studied on load frequency control by trial and error method. The system response for 

different values of Rw is shown in Figure 6.4. Thus, based on the relationship of parameter 

Rw with the behaviour of the control algorithm of MPC, the logic for the rule base is 

established. Accuracy in solution is achieved by using more tuning rules at the cost of 

computational complexity. Since frequency deviation is expected to be tracked closely to the 

minimum value as far as possible, 25 rules are designed to determine the change in input 

parameter (ΔRw). For example: 
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Rule 1: IF |FD| is S (small) AND Rw is S (small) THEN the output ΔRw is PS (positive 

small). As the frequency deviation is small, it can still be reduced to very small values by 

increasing Rw to a small extent that corresponds to PS (positive small) in output of ΔRw. 

Rule 2: IF |FD| is B (big) AND Rw is S (small) THEN the output ΔRw is PL (positive 

large). The frequency deviation is big and it demands a higher increment in Rw that 

corresponds to PS (positive small) in the output ΔRw. All other rules are similarly fixed based 

on the logic established between the inputs and outputs. 

 

 

Figure 6.3: Membership Functions a) Magnitude of Frequency Deviation (|FD|) 

b) Input parameter (Rw )  c) Change in Rw (ΔRw) 

6.4.3 Defuzzification 

There are two input variables, Rw and ΔRw, with triangular membership functions, So, 

among the 25 designed rules, at any instant, a maximum of four rules may fire and a 

minimum of one rule will fire. The output i.e. frequency deviation |FD| obtained from the 

fuzzy controller is fuzzy in nature, so defuzzification is required to convert from fuzzy to 

crisp value. Centroid method is used here for defuzzification of inputs and output. The 

defuzzified value of output denoted using Center Of Gravity (COG) is defined as: 

1
VS MS B VB

μ(FD)

VS MS B VB

μ(Rw)

(a) (b)

ZE PMPS PB PL

μ(ΔRw)

(c)

1

1

FD Rw
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 where,  *
wR - Defuzzified value of output;  )( wR - Membership function of output 

n- number of sample element. 

     

Table 6.1  Fuzzy rules for variation of ΔRw 

Rules         Input variables Output 
ΔRw  |FD| Rw 

1 VS VS ZE 

2 S VS PS 

3 M VS PM 

4 B VS PB 

5 VB VS PL 

6 VS S ZE 

7 S S PS 

8 M S PM 

9 B S PB 

10 VB S PL 

11 VS M ZE 

12 S M PS 

13 M M PM 

14 B M PB 

15 VB M PL 

16 VS B ZE 

17 S B PS 

18 M B PM 

19 B B PB 

20 VB B PL 

21 VS VB ZE 

22 S VB PS 

23 M  PM 

24 B VB PB 

25 VB VB PL 

6.5 Simulation results and discussion 

This section presents the simulation and discussion of various cases of load frequency 

control in a typical isolated microgrid. The cases include the load and generation variation 

and parametric variation in the system. All the cases have been compared to the system 

response with constant Rw value of 15, which is chosen randomly from Figure 6.4. 
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Figure 6.4: System response of the microgrid for different values of Rw 

Case-1: Base case system response with all DERs 

 The load frequency control of a microgrid with all sources such as PV, Wind, fuel 

cell, diesel and battery storage is simulated in this case. This case presents the frequency 

deviation response of the system with step of 0.02 p.u load change and solar power change 

i.e. ΔPs taken as 0.2 p.u. The mean wind velocity for this case is taken as 7m/s. Appropriate 

value of Rw is selected by the fuzzy controller using rule base system. The comparison of 

frequency deviation response is shown in Figure 6.5(a). The proposed fuzzy MPC gives 

better and faster response when compared to PI controller. Figure 6.5(b) shows the response 

of cost function evaluated in the MPC procedure, which has to be minimized to achieve the 

desired frequency response in the system. Since it is an isolated microgrid, the frequency 

regulation is supposed to be taken care of by the dispatchable diesel unit and the fuel cell and 

thus become the controlled outputs from the MPC block. The response of control inputs i.e. 

change in diesel and fuel cell units is shown in Figure 6.5(c) and (d) respectively. The 

simulation period and sampling time are taken as 10s and 0.01s respectively. The prediction 

horizon and the control horizon are taken as 10 and 2 time steps respectively. The optimal Rw 

value from the proposed MPC is 38.5 for this case. 
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Figure 6.5: (a).Comparison of system response of the microgrid for case-1 (b). Response of Cost functions of 
MPC over simulation period for case-1 (c) & (d). Response of control inputs to diesel and fuel cell for case-1 

 
Figure 6.6: (a).Comparison of system response of the microgrid for case-2 (b). Response of Cost functions of 
MPC over simulation period for case-2 (c) & (d). Response of control inputs to diesel and fuel cell for case-2 
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Case-2: System response with dispatchable DERs 

This case studies the frequency regulation in the system when there are only 

dispatchable units such as diesel unit, fuel cell and battery in the system. The load change is 

0.02p.u. The comparison of system response is shown in Figure 6.6(a). Since there are only 

two dispatchable generation units in this case, the response shows the negative frequency 

deviation for the load change.  The corresponding response of cost function and the change in 

control inputs are respectively shown in Figure 6.6(b) and Figure 6.6(c) and (d) respectively. 

The tuned Rw value for this case is 41. There is increase in the control inputs to reduce the 

frequency deviation in the system. The simulation period and sampling time is taken as 10s 

and 0.01s respectively. 

 

Figure 6.7: (a) Comparison of system response of the microgrid for case-3 (b). Response of Cost functions of 
MPC over simulation period for case-3 (c) & (d). Response of control inputs to diesel and fuel cell for case-3

Case-3: System response with series of step load variation 

This case evaluates the system response of the microgrid with series step changes in 

the load. The load changes are implemented with increase and decrease in value of ΔPL. The 

system response for this case is shown in Figure 6.7(a). Figure 6.7(b) and Figure 6.7(c) and 

(d) shows the response of cost function and control inputs respectively for the step load 



Chapter 7                                                 Conclusions 

103 

variation in the system. The control inputs are accordingly varied by MPC to meet the load 

changes for minimum frequency deviation in the system. The optimal value of Rw is found to 

be 30 for this case. 

Case-4:  System response with wind perturbation of 2m/s 

In this case, the wind gust component of magnitude 2m/s is introduced for 6s in the 

wind velocity and the mean velocity of the wind is taken as 6.5m/s. The change in solar 

power is maintained constant at 0.05p.u. and load change of 0.02p.u.  The system response 

for this case is shown in Figure 6.8(a). The performance of the proposed method is better and 

faster than PI controller. Corresponding cost function and the control inputs are shown in 

Figure 6.8(b) and Figure 6.8(c) and (d) respectively. The control inputs to diesel and fuel cell 

are lowered by MPC when there is an increase in wind power generation due to increase in 

wind velocity in the system. The optimized value of Rw is found to be 16.5 for this case. 

 

Figure 6.8: (a) Comparison of system response of the microgrid for case-4 (b). Response of Cost functions of 
MPC over simulation period for case-4 (c) & (d). Response of control inputs to diesel and fuel cell for case-4 

Case-5:  System response with step Changes in solar power (ΔPs) 

This case considers a series step increase in solar power. In this case, the wind power 

change (ΔPw) is simply taken as 0.05p.u. throughout the simulation and the load change of 
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0.02p.u. The corresponding system response is shown in Figure 6.9(a). The cost function of 

MPC and the control inputs to the controllable units are shown in Figure 6.9(b) and Figure 

6.9(c) and (d) respectively. As there is increasing step change in solar power, the control 

inputs to diesel and fuel cells are lowered accordingly by MPC so as to maintain zero 

frequency deviation. The obtained value of Rw for this case is 28. 

 

Figure 6.9: (a) Comparison of system response of the microgrid for case-5 (b).Response of Cost functions of 
MPC over simulation period for case-5 (c) & (d). Response of control inputs to diesel and fuel cell for case-5 

Case-6:  All disturbances such as ΔPL, ΔPw and ΔPs in the Systems 

This case presents the system response when all possible disturbances exist in the 

system. This case applies the disturbance considered in case-3, case-4 and case-5 

simultaneously. The frequency deviation response of the microgrid for this case is shown in 

Figure 6.10(a). The cost function of MPC and the control inputs to diesel and fuel cell are 

shown in Figure 6.10(b) and Figure 6.10(c) and (d) respectively. The optimal value of Rw for 

this case is found to be 19.5. The comparison of proposed fuzzy MPC with PI controller is 

assessed by comparing the performance index ITSE value for all cases of simulation and has 

been tabulated in Table 6.2. It is evident that the optimal value of Rw obtained in each case of  
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simulation is unique and has to be optimally selected for different operating conditions of the 

system. Hence, the proposed method is found to be efficient for load frequency control. 

 

Figure 6.10: (a) Comparison of system response of the microgrid for case-6 (b). Response of Cost functions of 
MPC over simulation period for case-6 (c) & (d). Response of control inputs to diesel and fuel cell for case-6 

Table 6.2  Comparison of performance index 

Cases 
Without 

controller
PI 

controller
MPC 

controller
Proposed 

Fuzzy MPC 
Case -1   (ITSE) 0.3472 0.02871 0.01702 0.009268 
Case – 2 (ITSE) 0.00709 5.578e-5 3.594e-5 1.835e-5 
Case –3 (ITSE) 0.1874 0.009652 0.007288 0.00674 
Case – 4 (ITSE) 4.1130 0.04772 0.04336 0.03714 
Case – 5 (ITSE)    1.3010 0.00769 0.005746 0.00535 
Case – 6(ITSE) 5.286 0.04508 0.03961 0.03193 
Case – 7(ITSE) 0.9282 0.0101 0.00554 0.0036 

Case-7: Parametric variation in the system 

This case introduces the parametric variation and studies the system response by the 

proposed fuzzy MPC method.  The parametric variation is incorporated as follows: R=+30%; 

D=-40%; H=+50%; Tt= -50%; Tg=+50%; Tb=-45%. The change in solar power is kept as 

0.05p.u. and the load is 0.02p.u. whereas the wind velocity is maintained as 6.5m/s. The 

response comparison is shown in Figure 6.11(a) The respective cost function and the control 
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inputs are shown in Figure 6.11(b) and Figure 6.11 (c) and (d) respectively. The optimal Rw 

is found to 27.5 for this case. 

 
Figure 6.11: (a) Comparison of system response of the microgrid for case-7 (b). Response of Cost functions of 
MPC over simulation period for case-7 (c) & (d). Response of control inputs to diesel and fuel cell for case-7 

 

6.6 Summary  

This chapter has proposed a fuzzy adaptive MPC for effective and faster load 

frequency control for an isolated microgrid. The impact of tuning parameter Rw on the 

performance of the model predictive control is discussed in this chapter for the load 

frequency regulation. The adaptability of MPC is achieved by tuning parameter ‘Rw’ using 

fuzzy controller. The parameter Rw has been dynamically adjusted with fuzzy “IF/THEN” 

rule base to make it robust control irrespective of different scenarios of the problem. The 

proposed fuzzy adaptive MPC is implemented for load frequency control of a typical 

microgrid, while results and comparison show that the proposed method of control is 

effective in obtaining better and faster system response with damped oscillations for different 

case studies. Thus, the proposed fuzzy MPC can be used for effective frequency regulation in 

smart grid applications. 
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Chapter 7 

7 Conclusions  

7.1 General  

In this thesis, the planning of active distribution network operation is optimized 

using proposed meta-heuristic optimization algorithms in multi-objective frame. Apart 

from this, load frequency control of an isolated microgrid is also analyzed using PI 

controller and model predictive controller. This chapter briefs the important findings 

proposed in this thesis and future extension of the proposed research work. 

7.2 Summary of important findings 

This chapter presents the overall conclusions of the research work presented in this 

thesis and future scope of the research work.  The following conclusions have been arrived at 

from research work carried out and reported in the earlier chapters in this thesis.  

(i) The overall objective of the research work is to plan the optimal and economical 

operation of active distribution system and to analyze the load frequency control of 

isolated microgrid.  

 First of all, basic planning of active distribution network i.e. optimally locating 

and sizing the distributed generation in a distribution network is attempted to 

minimize active power loss and voltage deviation in the system.  

 For optimizing the location and sizing the DG units, a new form of Teaching 

Learning Based Optimization (TLBO) algorithm i.e. Peer enhanced Multi-

objective TLBO (PeMOTLBO) is proposed.  

 To prove effectiveness of the proposed algorithm, it was tested on IEEE 33-bus 

system, IEEE 69-bus system and Indian 85-bus distributed system and results 

were compared with well-known multi-objective NSGA-II technique and with the 

basic multi-objective TLBO algorithm.  

 A statistical comparison and significance of the proposed PeMOTLBO algorithm 

was also evaluated with performance metrics and demonstrated with box plots. 
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(ii) While planning the DG location and size, cost of investment and operation are also to 

be considered for economic operation of active distribution network. This cost may 

vary with different DG technologies such as dispatchable units like diesel and gas 

engines and environment friendly non-dispatchable sources such as wind and solar 

DGs.  

 Hence, in this thesis, the planning of optimal and economic operation of DGs in 

distribution networks was analyzed by considering different DG technologies.  

  Multi-objective problem has been formulated to minimize simultaneously the 

active power loss, voltage deviation and the cost of DG integration in the system. 

 For this planning, a new Grid based Multi-Objective Harmony search (GrMHS) 

was proposed. In the proposed GrMHS algorithm, the grid strategy has been 

incorporated as secondary selection criterion in the objective space to improve the 

efficiency of the optimization process. 

 The proposed GrMHS algorithm has been tested on IEEE 33-bus system, IEEE 

69-bus system and Indian 85-bus system. The results were validated with 

extensive comparison with prominent multi-objective NSGA-II and multi-

objective harmony search algorithm. 

 

(iii) The active management of load in the distribution grid is directly linked with the 

frequency of operation in this system. Thus load frequency control of isolated 

microgrid is also attempted in this thesis.  

 The load frequency control of the isolated microgrid is attempted with 

Proportional Integral (PI) controller. 

 The PI controller gains are tuned using the proposed levy based spider monkey 

algorithm (Levy-SMA). 

 The performance of the proposed algorithm has been evaluated with the 

integral time square error (ITSE) and has been compared with other algorithms 

such as Particle Swarm Optimization (PSO), Harmony Search (HS), Firefly 

Algorithm (FA). 
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 The obtained system response has been compared with other algorithms and 

results are found better with less ITSE value for the proposed Levy-Spider 

Monkey Algorithm. 

(iv)  The load frequency control is the one which needs a simple and faster control. One 

such simple straightforward control is the model predictive control (MPC).  

  In this thesis, a fuzzy adaptive Model Predictive Control has been proposed 

for better load frequency control. A fuzzy controller is embedded into MPC 

block to tune its input parameter which improves the system performance. 

  The performance of load frequency control in microgrid is evaluated with 

ITSE value. 

 The system response obtained using the proposed method has been compared 

with PI controller response and the MPC control with constant input parameter 

value and the results found better in fuzzy MPC. 

7.3 Scope for Future Work 

In this thesis, distributed generation planning and their optimal resource mix has been 

identified for economical operation of active distribution networks and load frequency 

control of a typical isolated microgrid is also attempted. The future work can be extended on 

the following aspects: 

 Voltage and frequency stability studies can be implemented with large penetrations of 

renewable energy sources into active distribution network operation.  

 Coordinated control of electrically distanced Distributed Energy Resources and loads 

for better frequency regulation in the active distribution network operation for both 

grid connected and islanded mode of operation can be explored. 

 In the planning of active distribution network operation, meta-heuristic algorithms 

were dominantly applied, so investigations can be carried out on the new hybrid 

methods for better convergence and for exploring the diversified search space. 
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Appendix 
 

IEEE 33-bus Distribution System Data 

Number of Buses: 33 

Number of lines: 32 

Base voltage: 12.66kV 

Total active power load: 3.715 MW 

Total reactive power load: 2.3 MVAR 

System active power loss: 0.202 MW 

System reactive power loss: 0.134 MVAR 

Minimum voltage bus in the system: 0.9132 at 18th Bus 

 

 
Figure A. 1: IEEE 33-bus distribution system 

 

Table A. 1 Input data of IEEE 33-bus distribution system 

Line 
number 

From 
Bus 

To 
Bus 

R 
(Ohms) 

X 
(Ohms) 

Pload  
(kW) 

Qload 
(kVAR) 

1 1 2 0.0922 0.0477 100 60 

2 2 3 0.493 0.2511 90 40 

3 3 4 0.366 0.1864 120 80 

4 4 5 0.3811 0.1941 60 30 

5 5 6 0.819 0.707 60 20 

6 6 7 0.1872 0.6188 200 100 
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7 7 8 0.7114 0.2351 200 100 

8 8 9 1.03 0.74 60 20 

9 9 10 1.04 0.74 60 20 

10 10 11 0.1966 0.065 45 30 

11 11 12 0.3744 0.1238 60 35 

12 12 13 1.468 1.155 60  35 

13 13 14 0.5416 0.7129 120 80 

14 14 15 0.591 0.526 60 10 

15 15 16 0.7463 0.545 60 20 

16 16 17 1.289 1.721 60 20 

17 17 18 0.732 0.574 90 40 

18 2 19 0.164 0.1565 90 40 

19 19 20 1.5042 1.3554 90 40 

20 20 21 0.4095 0.4784 90 40 

21 21 22 0.7089 0.9373 90 40 

22 3 23 0.4512 0.3083 90 50 

23 23 24 0.898 0.7091 420 200 

24 24 25 0.896 0.7011 420 200 

25 6 26 0.203 0.1034 60 25 

26 26 27 0.2842 0.1447 60 25 

27 27 28 1.059 0.9337 60 20 

28 28 29 0.8042 0.7006 120 70 

29 29 30 0.5075 0.2585 200 600 

30 30 31 0.9744 0.963 150 70 

31 31 32 0.3105 0.3619 210 100 

32 32 33 0.341 0.5302 60 40 

 

 

IEEE 69-bus Distribution System Data 

Number of Buses: 69 

Number of lines: 68 

Base voltage: 12.66 kV 

Total active power load: 3.80 MW 

Total reactive power load: 2.69 MVAR 

System active power loss: 0.226 MW 

System reactive power loss: 0.098 MVAR 

Minimum voltage bus in the system: 0.908 p.u. at 65th Bus 
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Figure A. 2: IEEE 69-bus distribution system 

 

Table A. 2 Input data of IEEE 69-bus distribution system 

Line 
number 

From 
Bus 

To 
 Bus 

R 
(Ohms) 

X 
(Ohms) 

Pload 
(kW) 

Qload 
(kVAR) 

1 1 2 0.0005 0.0012 0 0 

2 2 3 0.0005 0.0012 0 0 

3 3 4 0.0015 0.0036 0 0 

4 4 5 0.0251 0.0294 0 0 

5 5 6 0.366 0.1864 2.6 2.20 

6 6 7 0.3811 0.1941 40.4 30.00 

7 7 8 0.0922 0.047 75 54.00 

8 8 9 0.0493 0.0251 30 22.00 

9 9 10 0.819 0.2707 28 19.00 

10 10 11 0.1872 0.0619 145 104.0 

11 11 12 0.7114 0.2351 145 104.0 

12 12 13 1.03 0.34 8 5.50 

13 13 14 1.044 0.345 8 5.50 

14 14 15 1.058 0.3496 0 0 

15 15 16 0.1966 0.065 45.5 30.0 

16 16 17 0.3744 0.1238 60 35.0 

17 17 18 0.0047 0.0016 60 35.0 

18 18 19 0.3276 0.1083 0 0 

19 19 20 0.2106 0.069 1 0.6 

20 20 21 0.3416 0.1129 114 81.0 

21 21 22 0.014 0.0046 5.3 3.5 

22 22 23 0.1591 0.0526 0 0 

23 23 24 0.3463 0.1145 28 20.0 

24 24 25 0.7488 0.2475 0 0 
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25 25 26 0.3089 0.1021 14 10.0 

26 26 27 0.1732 0.0572 14 10.0 

27 3 28 0.0044 0.0108 26 18.6 

28 28 29 0.064 0.1565 26 18.6 

29 29 30 0.3978 0.1315 0 0 

30 30 31 0.0702 0.0232 0 0 

31 31 32 0.351 0.116 0 0 

32 32 33 0.839 0.2816 14 10.0 

33 33 34 1.708 0.5646 19.5 14.0 

34 34 35 1.474 0.4873 6 4.0 

35 3 36 0.0044 0.0108 26 18.55 

36 36 37 0.064 0.1565 26 18.55 

37 37 38 0.1053 0.123 0 0 

38 38 39 0.0304 0.0355 24 17.00 

39 39 40 0.0018 0.0021 24 17.00 

40 40 41 0.7283 0.8509 1.2 1.00 

41 41 42 0.31 0.3623 0 0 

42 42 43 0.041 0.0478 6 4.30 

43 43 44 0.0092 0.0116 0 0 

44 44 45 0.1089 0.1373 39.22 26.3 

45 45 46 0.0009 0.0012 39.22 26.30 

46 4 47 0.0034 0.0084 0 0 

47 47 48 0.0851 0.2083 79 56.40 

48 48 49 0.2898 0.7091 384.7 274.5 

49 49 50 0.0822 0.2011 384.7 274.5 

50 8 51 0.0928 0.0473 40.5 28.30 

51 51 52 0.3319 0.1114 3.6 2.70 

52 9 53 0.174 0.0886 4.35 3.50 

53 53 54 0.203 0.1034 26.4 19.00 

54 54 55 0.2842 0.1447 24 17.20 

55 55 56 0.2813 0.1433 0 0 

56 56 57 1.59 0.5337 0 0 

57 57 58 0.7837 0.263 0 0 

58 58 59 0.3042 0.1006 100 72.00 

59 59 60 0.3861 0.1172 0 0 

60 60 61 0.5075 0.2585 1244 888.0 

61 61 62 0.0974 0.0496 32 23.00 

62 62 63 0.145 0.0738 0 0 

63 63 64 0.7105 0.3619 227 162.0 

64 64 65 1.041 0.5302 59 42.00 

65 11 66 0.2012 0.0611 18 13.00 
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66 66 67 0.0047 0.0014 18 13.00 

67 12 68 0.7394 0.2444 28 20.00 

68 68 69 0.0047 0.0016 28 20.00 

 

 

Indian 85 - bus Distribution System Data 

Number of Buses: 85 

Number of lines: 84 

Base voltage: 11 kV 

Total active power load: 2.5708 MW 

Total reactive power load: 2.6218 MVAR.  

System active power loss: 0.3163 MW 

System reactive power loss: 0.134 MVAR 

Minimum voltage bus in the system: 0.8713 at 56th Bus 

 

 

 
Figure A. 3: Indian 85-bus distribution system 
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Table A. 3 Input data for Indian 85-bus distribution system 

Line 
Number 

From 
bus 

To 
bus 

R 
(ohms) 

X 
(ohms) 

Pload 
(kw) 

Qload 
(kVAR) 

1 1 2 0.108 0.075 0 0 

2 2 3 0.163 0.112 0 0 

3 3 4 0.217 0.149 0 0 

4 4 5 0.108 0.074 56 57.1312 

5 5 6 0.435 0.298 0 0 

6 6 7 0.272 0.186 35.28 35.99266 

7 7 8 1.197 0.82 0 0 

8 8 9 0.108 0.074 35.28 35.99266 

9 9 10 0.598 0.41 0 0 

10 10 11 0.544 0.373 0 0 

11 11 12 0.544 0.373 56 57.1312 

12 12 13 0.598 0.41 0 0 

13 13 14 0.272 0.186 0 0 

14 14 15 0.326 0.223 35.28 35.99266 

15 2 16 0.728 0.302 35.28 35.99266 

16 3 17 0.455 0.189 35.28 35.99266 

17 5 18 0.82 0.34 112 114.2624 

18 18 19 0.637 0.264 56 57.1312 

19 19 20 0.455 0.189 56 57.1312 

20 20 21 0.819 0.34 35.28 35.99266 

21 21 22 1.548 0.642 35.28 35.99266 

22 19 23 0.182 0.075 35.28 35.99266 

23 7 24 0.91 0.378 56 57.1312 

24 8 25 0.455 0.189 35.28 35.99266 

25 25 26 0.364 0.151 35.28 35.99266 

26 26 27 0.546 0.226 56 57.1312 

27 27 28 0.273 0.113 0 0 

28 28 29 0.546 0.226 56 57.1312 

29 29 30 0.546 0.226 0 0 

30 30 31 0.273 0.113 35.28 35.99266 

31 31 32 0.182 0.075 35.28 35.99266 

32 32 33 0.182 0.075 0 0 

33 33 34 0.819 0.34 14 14.2828 

34 34 35 0.637 0.264 0 0 

35 35 36 0.182 0.075 0 0 

36 26 37 0.364 0.151 35.28 35.99266 

37 27 38 1.002 0.416 56 57.1312 

38 29 39 0.546 0.226 56 57.1312 

39 32 40 0.455 0.189 56 57.1312 
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40 40 41 1.002 0.416 35.28 35.99266 

41 41 42 0.273 0.113 0 0 

42 41 43 0.455 0.189 35.28 35.99266 

43 34 44 1.002 0.416 35.28 35.99266 

44 44 45 0.911 0.378 35.28 35.99266 

45 45 46 0.911 0.378 35.28 35.99266 

46 46 47 0.546 0.226 35.28 35.99266 

47 35 48 0.637 0.264 14 14.2828 

48 48 49 0.182 0.075 0 0 

49 49 50 0.364 0.151 0 0 

50 50 51 0.455 0.189 36.28 37.01286 

51 48 52 1.366 0.567 56 57.1312 

52 52 53 0.455 0.189 0 0 

53 53 54 0.546 0.226 35.28 35.99266 

54 52 55 0.546 0.226 56 57.1312 

55 49 56 0.546 0.226 56 57.1312 

56 9 57 0.273 0.113 14 14.2828 

57 57 58 0.819 0.34 56 57.1312 

58 58 59 0.182 0.075 0 0 

59 58 60 0.546 0.226 56 57.1312 

60 60 61 0.728 0.302 0 0 

61 61 62 1.002 0.415 112 114.2624 

62 60 63 0.182 0.075 56 57.1312 

63 63 64 0.728 0.302 14 14.2828 

64 64 65 0.182 0.075 0 0 

65 65 66 0.182 0.075 0 0 

66 64 67 0.455 0.189 56 57.1312 

67 67 68 0.91 0.378 0 0 

68 68 69 1.092 0.453 0 0 

69 69 70 0.455 0.189 56 57.1312 

70 70 71 0.546 0.226 0 0 

71 67 72 0.182 0.075 35.28 35.99266 

72 68 73 1.184 0.491 56 57.1312 

73 73 74 0.273 0.113 0 0 

74 73 75 1.002 0.416 56 57.1312 

75 70 76 0.546 0.226 35.28 35.99266 

76 65 77 0.091 0.037 56 57.1312 

77 10 78 0.637 0.264 14 14.2828 

78 67 79 0.546 0.226 56 57.1312 

79 12 80 0.728 0.302 35.28 35.99266 

80 80 81 0.364 0.151 56 57.1312 
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81 81 82 0.091 0.037 0 0 

82 81 83 1.092 0.453 56 57.1312 

83 83 84 1.002 0.416 35.28 35.99266 

84 13 85 0.819 0.34 14 14.2828 

35.28 35.99266 
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