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Abstract

Cryptography in the current digital world is a prime necessity for secure communica-
tion of sensitive data over an insecure channel. In the present day, modern cryptography
provides such security using computer algorithms which encrypt and decrypt informa-
tion at the sender and receiver terminals, respectively. In our study of the cryptographic
algorithms, it is observed that the multiplication in finite fields is the most extensively
used and also the most compute-intensive operation. In order to optimize this finite field
multiplication, several techniques to perform efficient finite field multiplications have been

proposed in the literature to reduce the computational complexity.

The cryptographic algorithms can also be realized in hardware to achieve enhanced
security and high speed compared to software implementations. Therefore, several opti-
mized hardware architectures to compute finite field multiplications have been proposed
in the literature over the years. Optimizations in hardware architectures are achieved
with respect to three performance parameters: area complexity, time delay and power
consumption. In the literature, these optimizations are achieved using several techniques.
Among such techniques, it is observed that the interleaved multiplication technique pro-

vides low computational complexity and low area complexity.

In this work, efficient hardware architectures for finite field multiplications are re-
alized by employing interleaved multiplication algorithms derived from a conventional
interleaved multiplication algorithm. The efficiency of these hardware architectures are
verified by employing them in realizing cryptographic applications such as the Advanced
Encryption Standard (AES) and Twofish. The HDL models of these AES and Twofish
algorithms are implemented using Xilinx Field Programmable Gate Array (FPGA) pro-
totype board and also synthesized using Synopsys Design Vision compiler which is an

Application Specific Integrated Circuit (ASIC) tool.



Abstract vii

In this research, some interleaved multiplication algorithms are derived from a con-
ventional interleaved multiplication algorithm available in the literature. Subsequently,
efficient multiplier architectures for finite field multiplications over GF'(2™) are realized
for the proposed algorithms. Firstly, a sequential multiplier architecture over G F'(2™) for
irreducible polynomials is proposed. It can perform multiplications over any field of order
m and for any irreducible polynomial of that field. In addition, a sequential multiplier
architecture over GF(28) for irreducible polynomials is derived from the proposed se-
quential architecture over GF'(2™). Two cryptographic algorithms, Advanced Encryption
Standard (AES) and Twofish, are developed employing this proposed architecture over
GF(2%). Secondly, a systolic multiplier architecture over GF(2™) for irreducible poly-
nomials is proposed that can also perform multiplications over any field of order m and
for any irreducible polynomial of that field. Moreover, a systolic multiplier architecture
over GF(2®) for irreducible polynomials is derived from the proposed systolic architecture
over GF'(2™). Two cryptographic algorithms, AES and Twofish, are developed employing
this proposed architecture over GF(2%). Thirdly, a systolic multiplier architecture over
GF(2™) for irreducible trinomials is proposed. This architecture can perform multipli-
cations over any field of order m. However, it may be noted that irreducible trinomials
should exist for that field. Lastly, a systolic multiplier architecture over GF'(2™) for ir-
reducible pentanomials is proposed. This architecture can also perform multiplications
over any field of order m with the similar condition that irreducible pentanomials should
exist for the field considered. The performance of these proposed architectures are veri-
fied analytically and also by implementing them using ASIC and FPGA technologies by
computing the area complexity, power consumption, area-delay product and power-delay
product. These results are compared with the performance of the existing architectures
available in the literature. It is observed from these performance comparisons that the

proposed architectures outperform the existing architectures.
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Chapter 1

Introduction

Cryptography is the study of hiding sensitive information and sending it on any
channel /medium to avoid any kind of unauthorized access by third parties. It involves
the process of converting an intelligible message into an unintelligible one by the sender.
This unintelligible message needs to be converted back by the receiver to retrieve the
original intelligible message. This ensures that only the sender and receiver have ac-
cess to the original intelligible message. Integrity, Confidentiality, Authentication and
Non-Repudiation are four pillars of cryptography, which collectively form an envelope of
information security to guard the sensitive data communicated between the sender and
receiver. Cryptography can be broadly classified into classical cryptography and modern
cryptography. Classical cryptography dates back to around 1900 B.C, where sensitive
messages were required to be communicated secretly using techniques such as substitu-
tion, transposition, pictorial representation, puzzles etc. Tangible information was stored

or transported secretly using mechanical devices such as cryptex, rotor machines etc.

With the advent of computers in mid 1900s, modern cryptography came into exis-
tence to provide security with the help of computers. Modern cryptography involves two
stages, namely, encryption and decryption. Encryption is performed on the original mes-
sage at the sender side using a secret key to obtain an unreadable cipher message that can
be sent over a communication channel. The receiver performs decryption of the received
cipher message to attain the original message using a secret key. Based on the key sharing
strategy, the techniques in modern cryptography can be divided into symmetric-key cryp-

tography and asymmetric-key cryptography [1]. The encryption and decryption performed
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using the same key is known as symmetric-key cryptography, whereas the encryption and
decryption performed using different keys is known as asymmetric-key cryptography. Few
techniques developed using the symmetric-key principle are Data Encryption Standard
(DES) [2] and Advanced Encryption Standard (AES) [3]. Few techniques developed using
the asymmetric-key principle are Elliptic Curve Cryptography (ECC) [4,5] and Rivest-
Shamir-Adleman (RSA) [6]. The encryption and decryption processes are performed
using computer algorithms designed based on the concepts of mathematics and computer
science. These cryptographic algorithms are impervious to almost any kind of external
attacks by third parties who try to steal or modify sensitive information being communi-

cated.

In our study, it is observed that these cryptographic algorithms involve the fol-
lowing operations such as multiplication in finite fields, modular addition, logical XOR,
logical AND, rotate/shift, exponentiation, modular reduction, Elliptic curve arithmetic
etc. Among these operations, the multiplication in finite fields is the most complex and
compute intensive operation, whereas other operations are very simple and straightfor-
ward. Moreover, multiplication operation is used extensively in almost all the crypto-
graphic algorithms due to its mathematical properties that are useful for the encryption

and decryption processes.

In abstract algebra [7], a field is a non-zero commutative ring that contains a mul-
tiplicative inverse for every non-zero element, or equivalently a ring whose non-zero ele-
ments form an abelian group under multiplication. As such, it is an algebraic structure
with notions of addition, subtraction, multiplication, and division satisfying the appro-
priate abelian group equations and distributive law. The properties of fields are closure
of field under addition and multiplication, associative property of addition and multipli-
cation, commutative property of addition and multiplication, existence of additive and
multiplicative identity elements, existence of additive inverses and multiplicative inverses,

distributive property of multiplication over addition.

A finite field is a field that contains finite number of elements. A finite field is a set on
which the operations of multiplication, addition, subtraction and division are defined and
it possesses the above properties. The most common example of finite fields is the ‘integers

mod m’, where m is a prime number. The number of elements of a finite field is called its
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order. A finite field of order ¢ exists if and only if the order ¢ is a prime power p* (where
p is a prime number and k is a positive integer). In a field of order p*, adding p copies of
any element always results in zero i.e. the characteristic of the field is p. The finite field
with p™ elements is denoted as GF'(p™) and is also called as the Galois Field, in honour
of the founder of finite field theory, Evariste Galois. GF (p) is simply a ring of integers
modulo p and is called a prime field of order p, where p is a prime number. That is, one
can perform operations (addition, subtraction, multiplication) using the usual operation
on integers, followed by reduction modulo p on this prime field. An m-dimensional vector
space, called the basis, allows for an extension field GF(2™) to exist over GF'(2), where
the elements of the field can be represented using polynomials whose coefficients belong
to GF(2). The basis of a field is given by the set {1,a,a? a?,---, a™}, where « is the
root of an irreducible polynomial of that field. Here, the irreducible polynomial of a finite
field can be defined as the polynomial that cannot be factored into the product of two or

more polynomials belonging to the said finite field.

Finite field operations can be performed using three basis representations, namely,
Polynomial, Normal and Dual Basis [7]. The multiplication operation in these bases are
performed as follows: both multiplier and multiplicand uses normal basis representation in
the realization of a normal basis multiplier; the multiplicand uses dual basis representation
and the multiplier uses polynomial basis representation in the realization of dual basis
multiplier; both the multiplier and multiplicand use polynomial basis representation in
the realization of a polynomial basis multiplier. The polynomial basis multiplier does
not require basis conversion and can be readily matched to any system, whereas basis
conversions are necessary for normal and dual basis multipliers. In polynomial basis
representation, elements of GF'(2™) can be represented as polynomials of degree strictly
less than m over GF'(2). All finite field operations involve the modulo reduction by R,
where R is an irreducible polynomial of degree m over GF(2). The addition of two
polynomials P and () is performed by usual polynomial addition. Multiplication can be
performed as follows: W = P.QQ is computed by usual polynomial multiplication followed
by modulo reduction of resultant polynomial W by the irreducible polynomial R using
polynomial long division. The remainder polynomial attained as a result of the long

division operation represents the final result of the finite field multiplication operation.
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Several techniques to realize these finite field multiplications have been proposed in
the literature. Karatsuba et al. [8] proposed the Karatsuba-Ofman multiplication method
in 1962. The hardware realizations of this method employ parallel architectures resulting
in high speed at the expense of more area complexity. Montgomery [9] proposed the
Montgomery multiplication method in 1985. This method is preferred for realization of
high speed multipliers as it simplifies modulo reduction. However, this method employs
parallel architectures resulting in high area complexity. Mastrovito [10] proposed the Mas-
trovito multiplication method in 1988. This method uses matrix computations to achieve
fast multiplications. However, this method requires high area complexity due to the 2-
dimensional multiplication characteristic of matrix computations. In 1989, Cantor [11]
proposed a multiplication method based on the fast fourier transform (FFT) method. This
method also achieves fast multiplications but requires high area complexity due to the
extra hardware required in realizing the FFT functions. The idea of interleaving the mod-
ular reduction with the polynomial multiplication was introduced by Blakely [12] in 1983.
This method is known as the interleaved modular multiplication, or simply interleaved
multiplication. Since the two steps involved in finite field multiplications are interleaved,
the computational complexity is significantly reduced. Hence, several multiplier architec-
tures are proposed in the literature for realizing this interleaved multiplication method to

achieve low area complexity.

1.1 Motivation and Objective

Recent advances in technology have enabled vast usage of portable devices in several
applications. Security, size of the portable device and power consumption are of major
concern in such devices. Moreover, there is a continuous demand for increase in secu-
rity, reduction in size and power consumption of these portable devices. Security can be
increased by implementing the cryptographic algorithms in hardware and by increasing
its bit-width. The performance metrics of hardware implementation of any security al-
gorithm are area complexity and power consumption i.e. the size of the device depends
on the area complexity; power consumption of the device also depends on the area com-

plexity and computational complexity. However, increasing the bit-width increases the




Introduction 5

computational complexity which in turn leads to increase in area complexity and power
consumption. Hence, there is a need to reduce the computational complexity of the cryp-
tographic algorithm to reduce area complexity and power consumption while maintaining
the same security. Since major portion of computational complexity of a cryptographic
algorithm is due to the finite field multiplications, reduction in area complexity and power
consumption of finite field multiplier architectures are imperative in order to reduce the

overall size and power consumption of the portable devices.

In this research, polynomial basis finite field multiplications are considered as they
are less complex and allow low hardware structures compared to the other two basis
representations. In order to achieve further reduction in the computational complexity of
finite field multiplications, several efficient techniques and algorithms were reported in the
literature. These algorithms are used to realize hardware architectures that require low
area complexity and/or low delay and/or low power consumption. In this work, we have
attempted to propose low-power and area-efficient sequential and systolic architectures

for realizing the finite field multiplications.

The objectives of this research are summarized as follows:

e Reduction in area complexity is imperative for reduction in device size and also to
achieve subsequent reduction in power consumption. Hence, an interleaved multipli-
cation algorithm is derived from a conventional interleaved algorithm. A sequential
multiplier architecture is designed based on the derived algorithm to reduce the
area complexity with minimum increase in delay. This sequential multiplier is im-
plemented using ASIC and FPGA technologies to compute area complexity, power

consumption and delay performance and compared with the existing works.

e Systolic architectures play an important role in high-speed circuits but they have the
drawback of high area overheads. Hence, an interleaved multiplication algorithm is
derived to design a systolic multiplier architecture which results in low area com-
plexity. This systolic architecture is implemented in ASIC and FPGA technologies
to compute its area, power consumption and delay performance and compared with

the existing works.

e Multiplier architectures based on special classes of polynomials, namely trinomials
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1.2

and pentanomials, are designed to achieve further reduction in area complexity
compared to systolic multiplier for irreducible polynomials. Hence, a novel Pre-
Computation technique is introduced to design systolic multiplier architectures for
trinomials and penatanomials. These architectures are implemented in ASIC and
FPGA technologies to compute area, power consumption and delay performance

and compared with the existing works.

Thesis Contributions

The contributions of the thesis are summarized as follows:

Low-Power and Area-Efficient Sequential Multipliers over Polynomial
Basis. A sequential multiplier architecture over polynomial basis that performs
multiplication of any two random finite field elements for any irreducible polynomial
is proposed. The performance of this proposed architecture is evaluated through the-
oretical analysis and practical hardware implementations. The contributions of this

work are briefly described as:

— Proposed Interleaved Multiplication Algorithm: A modified interleaved
multiplication algorithm is derived from a conventional interleaved multipli-
cation algorithm to perform finite field multiplications of any two arbitrary
elements over GF'(2™). This algorithm allows realization of a sequential mul-
tiplier architecture that achieves low area complexity compared to the existing

works.

— Proposed Sequential Multiplier Architecture over GF(2™) for Irre-
ducible Polynomials: A sequential multiplier architecture is developed based
on the proposed interleaved multiplication algorithm. Area complexity, delay
and area-delay product (ADP) analysis of the proposed architecture is per-
formed. The proposed architecture achieves a minimum reduction of about
28% in ADP compared to the previous works for the field of order m = 163.
The ASIC and FPGA implementations of the proposed architecture indicate a

minimum reduction of about 49% in area, 16% in power consumption, 13% in
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ADP and 45% in power-delay product (PDP) compared to the existing works.

— Proposed Sequential Multiplier Architecture over GF(2%) for Irre-
ducible Polynomials: A sequential multiplier architecture over GF(28) is de-
rived from the proposed sequential multiplier architecture over GF(2™). Area
complexity, delay and ADP analysis of the proposed architecture is performed.
The proposed architecture achieves a minimum reduction of about 29% in ADP
compared to the previous works. The FPGA implementation of two crypto-
graphic algorithms employing the proposed architecture achieves a minimum
reduction of 22% in area, 42% in power consumption, 34% in ADP and 41%

in PDP compared to the existing works.

e Low-Power and Area-Efficient Systolic Multipliers over Polynomial Basis.
A systolic multiplier architecture over polynomial basis that performs multiplication
of any two random finite field elements for any irreducible polynomial is proposed.
The performance of this proposed architecture is evaluated through theoretical anal-
ysis and practical hardware implementations. The contributions of this work are

briefly described as:

— Proposed Interleaved Multiplication Algorithm: A modified interleaved
multiplication algorithm is derived from a conventional interleaved multiplica-
tion algorithm to perform finite field multiplications of any two arbitrary ele-
ments over GF'(2™). This algorithm allows realization of a systolic multiplier

architecture that achieves low area complexity compared to the existing works.

— Proposed Systolic Multiplier Architecture over GF'(2™) for Irreducible
Polynomials: A systolic multiplier architecture is developed based on the pro-
posed interleaved multiplication algorithm. Area complexity, delay and ADP
analysis of the proposed architecture is performed. The proposed multiplier
achieves a minimum reduction of about 20% in area complexity compared to
previous works for the field of order m = 163. The ASIC and FPGA implemen-
tations of the proposed multiplier indicate a minimum reduction of about 35%
in area, 43% in power consumption, 73% in ADP and 76% in PDP compared

to the existing works.

— Proposed Systolic Multiplier Architecture over GF(2%) for Irreducible
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Polynomials: A systolic multiplier architecture is developed based on the pro-
posed interleaved multiplication algorithm. Area complexity, delay and ADP
analysis of the proposed architecture is performed. The proposed architecture
achieves a minimum reduction of about 21% in area complexity compared to
previous works. The FPGA implementation of two cryptographic algorithms
employing the proposed architecture achieves a minimum reduction of 24% in
area, 46% in power consumption, 33% in ADP and 41% in PDP compared to

the existing works.

e Low-Power and Area-Efficient Systolic Multipliers for Special Classes of
Irreducible Polynomials. Two systolic multiplier architectures over polynomial
basis for any irreducible trinomial or pentanomial are proposed to perform multi-
plication of any two random finite field elements. The performance of this proposed
architectures is evaluated through theoretical analysis and practical hardware im-

plementations. The contributions of this work are briefly described as:

— Proposed Interleaved Multiplication Algorithm for Irreducible Tri-
nomials and Pentanomials: A modified interleaved multiplication algorithm
is derived from a conventional interleaved multiplication algorithm based on a
novel Pre-Computation technique. This algorithm performs finite field multi-
plications of any two arbitrary elements over GF'(2™) and allows realization of
two systolic multiplier architectures that achieve low area complexity compared

to the existing works.

— Proposed Systolic Multiplier Architecture over GF'(2™) for Irreducible
Trinomials: A systolic multiplier architecture for irreducible trinomials is
developed based on the proposed interleaved multiplication algorithm. Area
complexity, delay and ADP analysis of the proposed architecture is performed.
The proposed architecture achieves a minimum reduction of about 28% in area
complexity and about 17% in ADP compared to previous works for the field
of order m = 233. The ASIC and FPGA implementations of the proposed
architecture indicates a minimum reduction of 40% in area, 31% in power con-

sumption, 44% in ADP and 36% in PDP compared to the existing works.

— Proposed Systolic Multiplier Architecture over GF(2™) for Irreducible
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Pentanomials: A systolic multiplier architecture for irreducible pentanomi-
als is developed based on the proposed interleaved multiplication algorithm.
Area complexity, delay and ADP analysis of the proposed architecture is per-
formed. The proposed architecture achieves a minimum reduction of about
28% in area complexity compared to previous works for the field of order m
= 283. The ASIC and FPGA implementations of the proposed architecture
indicates a minimum reduction of 40% in area and 59% in power consumption

compared to the existing works.

1.3 Thesis Organization

The rest of the thesis is structured as follows:
Chapter 2 presents a brief overview of the fundamental concepts of finite field theory.
First, the basic concepts of Groups, Rings and Fields are presented followed by the concept
of polynomial Rings. The construction of finite fields over GF'(p™) is presented followed
by the various basis representations over which a field can be constructed. Finally, the
multiplication operation is presented along with some algorithms that describe the oper-
ation in detail.
Chapter 3 presents the finite field multiplication architectures proposed in the litera-
ture. The chapter begins with sequential multiplier architectures for irreducible polyno-
mials followed by systolic multiplier architectures for irreducible polynomials and systolic
multiplier architectures for irreducible trinomials and pentanomials. The performance of
these architectures, i.e. area complexity, latency and critical path delay, are also discussed
in detail.
Chapter 4 presents a sequential multiplier architecture over GF'(2™) for irreducible
polynomials along with its analysis and hardware implementations and the results are
compared with existing works. It also presents the design of a sequential multiplier ar-
chitecture over GF(28) for irreducible polynomials derived from the proposed multiplier
over GF(2™). Two cryptographic algorithms employing the proposed architecture are
implemented on FPGA and the results are compared with existing works.

Chapter 5 presents a systolic multiplier architecture over G F'(2™) for irreducible polyno-
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mials along with its analysis and hardware implementations and the results are compared
with existing works. It also presents the design of a systolic multiplier architecture over
GF(2%) for irreducible polynomials derived from the proposed multiplier over GF(2™).
Two cryptographic algorithms employing the proposed architecture are implemented on
FPGA and the results are compared with existing works.

Chapter 6 presents a systolic multiplier architecture over GF'(2™) for irreducible trino-
mials along with its analysis and hardware implementations and the results are compared
with existing works. It also presents a systolic multiplier architecture over GF'(2™) for
irreducible pentanomials along with its analysis and hardware implementations and the
results are compared with existing works.

Chapter 7 concludes the thesis and presents some possible directions for future work.

1.4 Conclusion

In this chapter, a brief overview of the entire research work along with the motivation
behind this research and objectives are presented. The next chapter presents an overview

of the mathematical concepts of finite field theory.




Chapter 2

Finite Field Theory

This chapter presents the fundamental concepts of finite field theory [7] required
for implementing finite field multiplications. Firstly, the mathematical preliminaries of a
Group and its properties along with some examples are presented, followed by the concept
of Rings and Fields along with some examples. Secondly, different bases for finite fields
and their representations are presented followed by the concept of polynomials in a finite
field and its properties. Thirdly, the construction of finite fields over GF'(p™) using the
polynomial basis is presented. Finally, the multiplication process over polynomial basis

is presented along with some examples to describe the operation in detail.

2.1 Groups, Rings and Fields

This section presents the definitions, properties and examples of Groups, Rings and

Fields.

2.1.1 Groups

Definition 2.1. A set S is said to be a group if there exists a binary operation % on the
set satisfying the following properties:

(i) The operation * obeys associative law

a*x(bxc)=(axb)*c (2.1)
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for all a,b,c € S

(ii) An identity element e € S exists such that
exa=a*xe=a (2.2)

forallae S

(iii) For all a € S, there is an element a™' € S, such that
axal=altxa=¢e (2.3)

where, a~! is known as the inverse of a.

A group is said be an abelian group if it also satisfies the commutative property in addition
to the above i.e. axb = bxa for all a,b € S. It can be noted that the group notation used
for the group operation is multiplicative in nature. Additive group notation can also be
used for the group operation where the identity element is often associated with a zero

(0) element and —a is the inverse of the element a.

Ezample 2.1. (a) An example of a group under the addition operation with identity
element 0 and under the multiplication operation with identity element 1 is the set of real
numbers R.

(b) Another example of an additive group with identity element 0 is the set of integers Z.
(¢) An example of a group under addition modulo m with identity element 0 is the set of
integers modulo m, Z,,. However, the group Z,, does not have multiplicative inverses for

all its elements and hence is not a group under multiplication modulo m operation.

Corollary 2.1. A group S can have finite number of elements in it and its order is

denoted as |5)|.

Definition 2.2. A group S is cyclic if an element a € S exists such that there exists an
integer j and b = a’ for each b € S, then the group S is said to be cyclic and the element
a is called generator of S represented as S =< a > i.e. a must generate all the elements
in S. The order of b € S can be defined as the least positive integer / such that b' = e,

where e is an identity element in S. Here, the order of an element b € S is represented as

ord(B).

Ezample 2.2. A group of integers modulo 5, ZF = {1,2,3,4}, is a cyclic group with

generator 2 i.e. all the elements in the group can be generated under the multiplication
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modulo 5 operation using the generator 2. It can be shown as follows: 2 = 2mod 5,

22 =4modb, 23 =8 =3modb, 24 = 16 = 1 mod 5.

Corollary 2.2. In addition, if a € Z, is a generator element, then b is also a generator

element where b = a’ modm and gcd(j, f(m)) = 1.

2.1.2 Rings and Fields

Definition 2.3. A set R together with two binary operations + and % on R is said to be
a Ring if it satisfies the following properties:

(i) (R,+) must be an abelian group under the additive operation + having the identity
element 0.

(ii) The operation * obeys associative law
a*x(bxc)=(axb)*c (2.4)

for all a,b,c € R

(iii) There is a multiplicative identity element 1 such that
axl=1%xa=a (2.5)

where, 1 # 0 and a € R.

(iv) The operation * obeys distributive law over + operation

ax(b+c)=(axb)+ (ax*c)
(b+c)xa=(bxa)+ (cxa)
for all a,b,c € R

Ezample 2.3. (a) A commutative ring is the set of integers modulo m, Z,,, under the
addition and multiplication modulo m operations.

(b) Another example is the set of integers Z along under the usual addition and multipli-
cation operations can be considered as a commutative ring.

(c) Other examples of commutative rings are set of all rational numbers @, set of all real
numbers R, and set of all complex numbers C' under the usual addition and multiplication

operations.




Finite Field Theory 14

Corollary 2.3. A ring is said to be a ‘commutative ring’ if the operation * obeys

commutative law i.e., a x b = b * a.

Definition 2.4. A commutative ring in which all non-zero elements have multiplicative
inverses is said to be a field F. A field G' can be termed as the subfield of F' if G is a subset
of F' and G is also a field with respect to the operations in F. Here, F' is the extension

field of G.

Ezample 2.4. (a) Some examples of fields are the set of all real numbers R, set of all
complex numbers C, and the set of all rational numbers Q).
(b) Another example of a field is the set of all integers modulo m, Z,,, under the + and

* operations, where m is prime.

Definition 2.5. For any value of m > 1,if 14+ 1+ ---+ 1 (m times) is never equal to
0, then 0 is termed as the characteristic of the field. On the contrary, if " ;1 = 0 then
the least positive integer m is termed as the characteristic of the field.

It can be observed that Zs, Zs, Zs, - - - , Z, are fields having characteristic p, where p is a
prime. These fields have finite number of elements and hence they are termed as finite
fields, where the number of elements in the field is its order. It is also known as Galois

fields named after Evariste Galois who introduced the concept of finite fields.

Ezample 2.5. (a) The inverse of any integer amodp can be denoted as ‘a?®’ where
ged(a,p) = 1 and aP' = 1 modp, where p is a prime and a < p.

(b) The inverse of 3 modulo 7 i.e. 37*mod 7, can be found as 3°> = 243 = 5mod 7. Hence,
5 is the inverse of 3 modulo 7 i.e. 3.5 =15 = 1mod?7.

(c) Consider two integers v and w such that a.w + p.v = h = ged(a,p). The inverse

-1 —

of amodp can be computed as a.w +pv =1 = aw = lmodp = a wmodp, if

gcd(a,p) = 1. This is the extended Euclidean algorithm for finding inverse of an element.

Some basic properties of finite fields are as follows:

(i) (Existence and uniqueness of finite fields) If F' is a finite field then F' contains p™
elements for some prime p and positive integer m > 1. For every prime power p™, there
is a unique finite field of order p™. Informally speaking, two finite fields are isomorphic
if they are structurally the same, although the representation of their field elements may

be different.




Finite Field Theory 15

(ii) If GF(q) is a finite field of order ¢ = p™, p a prime, then the characteristic of GF(q)
is p. In addition, GF'(q) contains a copy of GF(p) as a subfield. Hence, GF(q) can be
viewed as an extension of GF(p) of degree m.

(iii) Let GF(q) a finite field of order ¢ = p™, then every subfield of GF(q) has order p"
for some positive divisor n of m. Conversely, if n is a positive divisor of m, then there
is exactly one subfield of GF(q) of order p". An element A € GF(q) is in the subfield
GF(p") if and only if A?" = A. The non-zero elements of GF(q) form a group under
multiplication called the multiplicative group of GF'(q), denoted GF(q)*. In fact GF(q)*
is a cyclic group of order ¢ — 1. Thus, A? = A for all A € GF(q).

(iv) Let A € GF(q), with ¢ = p™, then the multiplicative inverse of A can be computed as
A~1 = A2 Alternatively, one can use the extended Euclidean algorithm for polynomials
to find S(«) and T'(«) such that S(«)A(«) + T () P(a) = 1, where P(x) is an irreducible
polynomial of degree m over GF(p). Then, the multiplicative inverse A~ = S(«).

(v) If A, B € GF(q), with GF(q) a finite field of characteristic p, then

(A+ B)Y = A" + B” (2.7)

for all t > 0.

2.2 Polynomial Rings

Definition 2.6. Let R be a commutative ring, then a polynomial over R can be expressed
as: P(z) = pp2"+pp_12" 1+ -+ pox?+prw+po where each p; € R, z is an indeterminate
value and n > 0. The element p; is the coefficient of z* in P(x) and the degree of P(z) is
the largest n for which the leading coefficient p, # 0 and is denoted by deg(P(z)). P(x)
is known as monic polynomial if p, = 1. P(z) is known as constant polynomial if there
exists only one constant term in the polynomial i.e. ag, where degree the of the polynomial

is zero. P(z) is known as zero polynomial if all the coefficients of the polynomial are zero.

Ezample 2.6. (i) The addition of two polynomials can be computed using the expression

n

Alw) + B(r) = Y (a + b) 28)

=0

(i) The product of two polynomials A(z) = > a;z" and B(x) = > b;x’ over R is defined
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as

C(z) = A(z).B(z) = Z cpa® (2.9)

Here, ¢; is computed using the expression ¢, = Y a;b; where i +j = k, 0 < i < n,
0 < j < m and the addition and multiplication of coefficients is performed in R. Together
with the operations of addition and multiplication defined as above it is easily seen that

the set of polynomials over R forms a ring.

Corollary 2.4. Consider a commutative ring R. Then the polynomial ring R[z| repre-
sents the set of polynomials over R with addition and multiplication of polynomials (see

Example 2.6).

Definition 2.7. Consider a polynomial T'(z) € F[z] having a positive degree and T'(x) =
A(z).B(x), where A(x) or B(x) are constant polynomials. Then 7'(z) can be termed as
an irreducible polynomial over F. If either A(z) or B(z) is not a constant polynomial,

then T'(x) is a reducible polynomial.

Corollary 2.5. Consider a polynomial P(z) € F[z]| and if P(«) = 0 then « is known as
the root of P(x), where o € F.

2.3 Construction of Finite Fields GF(p™)

Definition 2.8. Let m be a positive integer and P(x) be an irreducible polynomial of
degree m over GF(p). Moreover, let a be a root of P(z), i.e., P(a) = 0. Then, the Galois
field of order p™ and characteristic p, denoted GF(p™) or F,m, is the set of polynomials
U1+ 0™ 2 - - ana® +aja+ag, with a; € GF(p) together with the addition
and multiplication operations defined as follows. Let A(«), B(a),C(«a) € GF(p™), with
A(a) =3 a;af, B(a) = > ba’, and C(a) = Y ¢;a, where a;, b, ¢; € GF(p) then:

(i) Addition: C(a) = A(a) + B(a) =3 (a; + b;) o

(ii) Multiplication: Let C'(«) to be the result of multiplying A(«) by B(«) via standard
polynomial multiplication as described in Example 2.6. Thus, C'(«) is a polynomial with
deg(C(a)) < 2m — 1. Then, D(«) is computed using the expression C(«) modulo P(a),
i.e.,, D(a) = C(a)mod P(a). This modulo operation can be computed if C(«) can be
written as C'(a) = P(a)Q(a) + D(a), where Q(«) € GF(p™) and deg(D(«)) < m. Here,
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D(«) is the final result of the multiplication operation.

Ezample 2.7. Let p = 2 and P(z) = 2* + x + 1. Then, P(z) is irreducible over GF(2).
Let a be a root of P(z), i.e., P(a) = 0, then the Galois field GF(2%) is defined by
GF(2") = {aza® + asa® + aja + agla; € GF(2)} together with addition and multiplica-
tion as defined in Definition 2.8. The field GF(2') is of characteristic 2 and it has order
2% = 16, in other words, it has 16 elements. The elements of GF(2*) can be written as

shown in Table 2.1.

Table 2.1: Representation of GF(2*) elements.

As a 4-tuple H As a polynomial H As a power of «

0000 0 0
0001 1 a®=1
0010 « o
0011 a+1 at
0100 a? a?
0101 a? +1 a®
0110 e a®
0111 a?+a+1 al?
1000 a’ ad
1001 a®+1 alt
1010 ad + a’
1011 o +a+1 a’
1100 ad + a? ab
1101 ad+a?+1 al?
1110 ad+a+a all
1111 ad+al+a+1 al?

To add o® + 1 and o® + a? + 1 we simply perform polynomial addition and reduce the
coefficients of the resulting polynomial modulo 2. Thus, (a® + 1) + (a® + a? + 1) = o

Similarly, a® + 1 multiplied by (a3 + o + 1) is obtained as

@@+ D). (*+a?+1) =+’ + >+’ +a* +1 (2.10)
Ezample 2.8. Let p = 3. Then P(z) = x3+2z+2 is irreducible over GF'(3). Let 8 be a root
of P(x). Then, the elements of GF(3%) can be written as polynomials as3% + a1 + ag
with a; € GF(3). The order of GF(3%) is 3% = 27 and the elements of GF(3%) are
0,1,2,8,28,8+1,8+2,26+1,26+2,6% 6+ 1,5 +2,8°+ 8,8+ 28,8+ 6+ 1,5+
B+2,02+26+1,5+26+2,26% 26" +1,26° +2,26° + 8,26 + 26,26" + B+ 1,26° +
B+2,282+26+1,26%+ 28+ 2.
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2.4 Basis Representations

It can be observed from Table 2.1 that two different representations of the elements of
GF(2') are shown. In one case, the elements of GF(2?) are represented as polynomials,
in the other case the elements are represented as powers of a suitable element, say a
primitive element. In this sub-section, we describe different types of bases that can be

used to represent the elements of a finite field GF(¢™).

Definition 2.9. Let GF(¢™) be an extension of GF'(q) and let « € GF(¢™). Then the
elements a4, a?, - ,a?" " are called the conjugates of a with respect to GF (q). Different
basis can be used to represent the elements of a finite field as evident from Example 2.8. In
particular, the two different representations from Table 2.1 lead to the ideas of polynomial

basis and normal basis.

Definition 2.10. Let £ = GF(¢™) and F' = GF(q) be two fields. Then a basis of E over
F of the form {1,a,a? -+ ,a™ 2 a™ '} is called a polynomial basis, where a € GF(¢™)
and it is often taken to be a primitive element. Similarly, a basis of £ over F' of the
form {a, ad, a?, .- ,aqm_l} receives the name of a normal basis for a suitable element
a € GF(q™). Tt can be shown that for any field GF(¢q) and any extension field GF(¢™),
there exists always a normal basis of GF(¢™) over GF(q) (see Theorem 2.35 in Ref. [13]).
A lot of research is carried out on finding normal bases that are optimal to perform
arithmetic operations. Such normal bases have received the name of optimal normal
bases [14] because they allow efficient implementations of arithmetic operations in fields
GF(q™). It may be observed that although there exist always a normal basis for every
field, the same is not true in the case of optimal normal bases. Another type of basis

which has received attention in the literature is the dual basis.

Definition 2.11. F = GF(¢™) and F = GF(q). Then two bases {ag, a1, -+ ,am_1}
and {5, f1,- -+, Bm_1} of E over F are said to be dual or complementary bases if for
0<i,5 <m—1 we have

0 fori#y
TT'E/F (Oéiﬁj) = OrZ#j (211)

1 fori=j

m—1

Here, T'rp/p(a) = a+ai+a? +.--4+a
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References [15,16] define the concept of a weakly dual basis as follows:

Definition 2.12. Let EF and F be defined as in Definition 2.11. Then two bases
{ag, a1, - ,am,_1} and {B, 51, , Bm-1} of E over F are said to be weakly dual to

each other if for 0 <, 7 < m — 1 we have

0 fori#j
TTE/F (Wazﬂj) = (2-12)

1 fori=j
for v € E\ {0}. Reference [17] used weakly dual basis to build finite field multipliers
for fields GF(¢™), where ¢ is an odd prime power. Finally, it is important to point out
that given a basis {ag, aq, -+, am_1} of GF(¢™) over GF(q), one can always represent

an element g € GF(q™) as
B = boOéQ + blOél + -+ bm_lam_l (213)

where, b; € GF(q).

2.5 Multiplication using Polynomial Basis

Multiplication in finite fields can be performed in different ways by viewing finite
fields as vector spaces over sub-fields. In order to specify a multiplication rule, it is neces-
sary to choose a basis. Polynomial basis is a better choice than normal basis for software
implementations. Hence, some algorithms available in the literature for multiplication in

finite fields using polynomial basis are presented in the following sub-sections.

2.5.1 Standard Field Multiplication

Let a,b € GF(2") be two polynomials represented as a(z) = Y. a;z" and b(z) =
Z?:_Ol b;z', where a;,b; € GF(2) or, equivalently, as vectors a = (a,_1,--+ ,a1,ag) and
b= (bp_1, -+ ,b1,bo). Let p(x) = 2™ + r(x) be an irreducible polynomial of degree n over
GF(2). The simplest algorithm for field multiplication using polynomial representation
is the shift-and-add method. This method is based on the observation that a(z)b(z) =

ap 12" b(x) +- - -+ ayzb(x) +aghb(z). Thus, x'b(x) mod p(x) can be successively computed
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Algorithm 2.1: Right-to-Left Shift-and-Add Field Multiplication
1 Input: a(z) = Y20y ar’, b(z) = Y200 birt, ai, b € GF(2)
Output: ¢(z) = a(x)b(x)(mod p(x)) = 214 cia’, ¢; € GF(2)

3 [F ag =1 THEN

c(x) < b(x)

5 ELSE

N

'y

6 c(z)«0

7 END IF

8 FOR:=0---n—1DO
b(r) < b(z)e (mod (p(z))
10 IF a; =1 THEN

©

11 c(x) < b(x) + c(x)
12 ENDIF
13 END FOR

14 return c(x)

for all 1 <4 < n — 1 and all the results are added for which a; = 1. If b(x) = b, 12" +

cee 4 bg[L’Q —+ bllL’ —+ bo, then

b(x)xr = by_12" + -+ + box® + byz® + box
(2.14)
= by17(@) + (bpoz™ 4 -+ - 4 box® 4 bia® + boz) (mod p(x))
Therefore, b(x)x(modp(x)) can be computed by a left-shift of the vector representation
of b(x), followed by the addition of r(z) to b(z), if the most significant bit b,,_; is 1. This
algorithm is presented as Algorithm 2.1. The shift-and-add method is not particularly

suitable for software implementations as the bit-wise shifts are costly to implement for

processor architectures that are based on fixed-length words.

2.5.2 Polynomial Multiplication

This sub-section presents two fast algorithms available in the literature for per-
forming finite field multiplications by multiplying the two polynomials of the finite field
followed by modulo reduction using irreducible polynomial P(x). The representation of

polynomials in software is given as follows: Let w be the word-length of the processor
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Algorithm 2.2: Right-to-Left Comb Method for Polynomial Multiplication
1 Input: a(z) = Y20y ar’, b(z) = Y200 birt, ai, b € GF(2)

2 Output: c(z) = a(z)b(z) = 3.7 cirl, ¢; € GF(2)

3C+0

4 FOR7t=0---w—-1DO

5 FORj—=0---t—1DO

6 IF A[j][:] = 1 THEN
7 C{i}=C{j}+B
8 END IF

9 END FOR

10 IFi¢# w—1THEN

11 B < Bz

12 ENDIF

13 END FOR

14 return C

(usually w is a multiple of 8) and ¢ = |(n/w)], where n is the degree of the polynomial.
Thus, the vector a = (a,_1,--+ ,a1,a9) may be stored in an array of ¢ w-bit words as

shown

A= (At —1],---, A[1], A[0]) (2.15)

where, the rightmost bit is ag and the leftmost (wt — n) bits are set to 0. The i*" bit of
the j*® word is denoted by A[][d].

An efficient method for polynomial multiplication is presented i.e. the comb method.
Here, multiplication is implemented in two separate steps: polynomial multiplication is
performed to obtain a 2n bit-length polynomial followed by reducing it with the reduction
polynomial. The right-to-left comb method for polynomial multiplication is based on the
observation that if b(z)x’ has been computed for some 7 € {0, -+ ,w — 1}, then b(x)zw*
can be easily computed by appending j zero words to the right of the vector representation

of b(z)z*. Algorithm 2.2 processes the bits of the words of A from right to left.

Here, C {j} = (CIn],--- ,C[j + 1], C[j]). It can be observed that Algorithm 2.2 can
also be improved. The left-to right comb method which processes the bits of a from left
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Algorithm 2.3: Left-to-Right Comb Method for Polynomial Multiplication with
Windows of Width w’

1 Input: a(z) = Y0 g ar’, b(z) = S0 birt, ai, b € GF(2)

2 Output: c(z) = a(z)b(z) = 37" % cia', ¢; € GF(2)

3 Precompute B, = u(z)b(x) for all polynomials u(x) of degree at most w’ — 1

4 FORALL:=*%---0DO

w

5 FORALLj=0---t—1DO

6 U4 (U1, -+ ,u1, ug) where uy, = Alj][w'i + k]
7 C{j} < C{j} +Bu

8 END FOR

o 1IF i+ 0 THEN

10 C + Cz"'

11 ENDIF

12 END FOR

13 return C

to right is one such method given as follows:
a(x)b(z) = (- ((an—1b(x)x + (an—2b(x))x + (@n_3b(z))x + - - -+ a1b(z))x + apb(x) (2.16)

It may be noted that the left-to right comb method can be considerably accelerated at the
expense of some storage overhead by first computing u(x)b(z) for all polynomials u(z) of
degree less than some fixed w’, and then processing the bits of A[j] one at a time. This
modified method is called the left-to-right comb method with windows of width w’. The

corresponding algorithm is presented as Algorithm 2.3.

The maximal degree of the output polynomial ¢(x) is (2n — 2). In some cases, the
modular reduction required for field multiplication is done separately. In other cases, the
irreducible polynomial p(z) is included as an input to the algorithm and reduction is done
mid-step. Such multiplications are also known as interleaved multiplication method. For
example, Algorithm 2.3 can be modified to calculate (u(z)b(z)(mod p(z))) using optimiza-

tion, and will be presented in the following sub-section.
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Algorithm 2.4: Bit-Level Modular Reduction

1 Input: c(z) = N7 % eiat, ¢ € GF(2),p(x) = 2™ + r(x)
Output: ¢(z) (mod p(x))

N

Precompute uy,(z) = xFr(z) for all zr(z), 0 <k <w —1

FOR ALL i = (2n—2)---n DO
5 IF ¢ =1THEN

w

'y

6 J %

7 k<« (i—n)—wj

s Oyt e O+ ul)
9 ENDIF

10 END FOR

11 return (C[t —1],---,C[0])

2.5.3 Field Reduction

In this section, efficient reduction of polynomials of degree (2n — 2) is presented in
Algorithm 2.4. Let p(x) = 2™ +r(z) be an irreducible polynomial of degree n over GF'(2)
and c(z) = 32" % c;x?, where ¢; € GF(2). The algorithm 2.4 is based on the observation
that

n

z" = r(z) (modp(z)),

(2.17)
2" = r(z)2" (modp(x))
and thus ¢(z) can be computed as
c(z) = copox®™ 2+ er o
(2.18)

The reduction modulo p(z) is done one bit at a time, starting from the leftmost bit as
shown in Algorithm 2.4. In order to accelerate reduction, polynomials x*r(x) are pre-
computed, where 0 < k < w — 1. Moreover, it may be noted that Algorithm 2.4 involves

operations performed at bit-level.

Multiplication in a finite field is simply the product of two field polynomials, modulo
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reduced by p(x), but there are some polynomials whose modulo reduction is more efficient

than other polynomials.

Specifically, the reduction of polynomials modulo p(x) is particularly efficient if p(z)
has a small number of terms. The irreducible polynomials with the least number of terms
are the trinomials given by the expression z" + x* + 1. Thus, it is common practice
to choose a trinomial for the field polynomial, provided that one exists. For example,
Algorithm 2.4 can be accelerated even more when using trinomials, because the space

requirements will be smaller and the additions involving x*r(x) become faster.

If an irreducible trinomial of degree n does not exist, then the next best polynomials
are the pentanomials 2" + % + 2° + 2+ 1. In binary fields, for every n up to 1000, there
exists either an irreducible trinomial or pentanomial of degree n. Such polynomials are
widely recommended in all major standards, such as the IEEE Standard Specifications

and National Institute of Standards and Technology (NIST).

2.6 Conclusion

In this chapter, a brief overview of the fundamental concepts of Groups, Rings,
Fields, polynomial Rings, construction of finite fields, representation of finite fields using
basis and the description of multiplication operation are presented. The next chapter
presents the review of finite field multiplication architectures over GF(2™) available in

the literature.




Chapter 3

Finite Field Multiplication Architectures over

GF(2™)

This chapter presents the details of different architectures proposed in the literature
for finite field multiplications. Firstly, the sequential multipliers proposed in the literature
over GF'(2™) for irreducible polynomials are presented. Secondly, the systolic multipliers
proposed in the literature over GF'(2™) for irreducible polynomials are presented. Finally,
the systolic multipliers proposed in the literature over GF(2™) for irreducible trinomials
and pentanomials are presented. In addition, the performance improvements achieved
by these multipliers in terms of area complexity, latency and critical path delay are also

presented.

3.1 Sequential Multipliers over GF(2™) for Irreducible Polyno-

mials

Several sequential multipliers proposed in the literature for the finite field multiplica-
tions over GF'(2™) for irreducible polynomials are reviewed and the performance of these
multipliers are presented in Table 3.1. Hasan et al. [18] proposed a bit-serial sequential
multiplier in 1998 having a maximum field dimension M to support multiplication over
GF(2™) for any irreducible polynomial of degree m, where 1 < m < M. The multiplier
uses triangular basis representation in addition to polynomial basis and the input or out-

put can be represented with respect to any of these two bases. The architecture proposed
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Table 3.1: Performance comparison of sequential multipliers available in the literature.

Multipliers | #XOR || #AND #MUX #Registers || Latency Critical Path Delay
[18] 2m 3m m m? 3m (Ta + T + To)logam + Tx
[19] m 2m (m — 1) +m° 3m m Tx +2Ta+ Ty + (m+ 1)To
[20] m m 2m+1 3m 2m Tx +Ty
[21] 2m 4dm m® 4+ m¢ 3m m Tx + Ty
[22] 6m + 18 0 14m + 26 6m+7 m/4 4T + 2T

20OR gates; ?1-to-2 DMUX; “Inverter.

for this pipelined multiplier requires an area complexity of 2m exclusive-OR (XOR) gates,
3m AND gates, m 2-to-1 Multiplexers (MUX) and m? 1-bit registers. The critical path
delay of this architecture is given by the expression ((74 + Ty + To)logam + Tx) with
latency of 3m clock cycles, where Ty, T, To, Tx, Ty and Ty represents the propaga-
tion delays of a 2-input AND gate, inverter, 2-input OR gate, 2-input XOR gate, 2-to-1
MUX and 4-to-1 MUX, respectively. These notations are used to compute the delays of
all architectures presented in this thesis. This multiplier achieves reduction in area com-
plexity compared to the sequential multipliers proposed in the literature. However, this
multiplier requires the operands to be transformed from polynomial basis to triangular
basis or vice-versa. Moreover, to support variable field size, serial-in serial-out registers,m
number of m:1 multiplexers are used resulting in an increase of the clock cycles and area

complexity required for performing multiplication.

A sequential polynomial basis multiplier over GF(2™) was proposed in 2003 by
Kitsos et al. [19] based on an MSB-first technique having a maximum field dimension M,
where 1 < m < M. This multiplier requires an area complexity of m XOR gates, 2m
AND gates, (m —1) OR gates, m 1-to-2 De-Multiplexers (DMUX) and 3m 1-bit registers.
The critical path delay is given by the expression (Tx +274+Tn+(m+1)Tp) with latency
of m clock cycles. The multiplier achieves reduction in area complexity compared to the
sequential multiplier [18] due to MSB-first multiplication method and achieves low power
consumption due to the gated clock technique. However, it’s speed is reduced compared

to the previous multipliers due to its sequential architecture.

A sequential multiplier designed based on a modified Montgomery multiplication

method was proposed by Fournaris et al. [20] in 2008. This multiplier algorithm is derived
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from a Montgomery multiplication algorithm available in the literature. This multiplier
requires m XOR gates, m AND gates, (2m+ 1) MUX and 3m 1-bit registers. The critical
path delay is given by the expression (Tx+74) with latency of 2m clock cycles. This multi-
plier achieves reduction in area complexity compared to the sequential multipliers [18,19].
The latency of this multiplier is double than that of the multiplier [19], while requiring
low latency compared to the sequential multiplier [18]. However, the Montgomery multi-
pliers require additional computations to transform operands to Montgomery domain and

vice-versa which increases it’s area complexity compared to previous multipliers.

Zakerolhosseini et al. [21] proposed a bit-serial sequential multiplier in 2013 based on
an efficient MSB-first method for different operand lengths with the condition 1 < m < M,
where M is the maximum order of the field. This architecture requires 2m XOR gates, 4m
AND gates, m OR gates, m inverters and 3m 1-bit registers. The critical path delay is
given by the expression (Tx +74) with latency of m clock cycles. This multiplier achieves
reduction in area complexity compared to the sequential multiplier [18]. However, it has
high area complexity compared to the sequential multiplier [19,20]. In addition, this
architecture also achieves improvement in latency compared to the sequential multipliers

[18,20], while requiring same latency as that of the sequential multiplier [19].

A sequential multiplier was proposed by Ho [22] in 2014 based on the condition
m > k; + 4, where k; is the degree of the second leading term of the irreducible poly-
nomial. This architecture requires (6m + 18) XOR gates, (14m + 26) Multiplexers and
(6m + 7) 1-bit registers. The critical path delay is given by the expression (47x + 27Ty;)
with latency of (m/4) clock cycles. This multiplier achieves reduction in latency com-
pared to the sequential multiplier [18-21]. However, this architecture requires high area
complexity compared to the sequential multipliers [19-21], while requiring low area com-
plexity compared to the sequential multiplier [18]. Although this multiplier has achieved
low latency, the area complexity is high which is not useful for low power and area-efficient

applications.
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3.2 Systolic Multipliers over GF(2™) for Irreducible Polynomi-

als

Several systolic multipliers proposed in the literature for finite field multiplication
over GF(2™) based on irreducible polynomials are reviewed and the performance of these
multipliers are presented in Table 3.2. In 1984, Yeh et.al. designed the first systolic
multiplier [23] using a bit-parallel 2-dimensional design to achieve simple control, regular
interconnection pattern, modular structure and concurrency of operations. This multiplier
requires 2m? XOR gates, 2m? AND gates and 7m? 1-bit registers. The critical path delay
is given by the expression (T4 + Tx) with latency of 3m clock cycles. However, this
multiplier utilizes contraflowing datastreams in it’s systolic structure which degrades the

chip’s cascadability and fault tolerance.

Wang et al. [24] realized a bit-parallel systolic structure in 1991 having unidirectional
dataflow. This architecture requires 2m? XOR gates, 2m? AND gates and 7m? 1-bit
registers. The critical path delay is given by the expression (T4 + Tsx) with latency
of 3m clock cycles. This multiplier achieves better chip cascadability and fault tolerance
compared to the systolic multiplier [23], while requiring same area and delay complexities.

Moreover, it requires higher critical path delay than the the systolic multiplier [23].

Wu et al. [25] realized a systolic multiplier in 1995 based on an MSB-first algorithm.
This architecture requires 2m? XOR gates, (2m? — m) AND gates and (8m? — 7m) 1-bit
registers. The critical path delay is given by the expression (T4 + T'x) with latency of
(2m — 1) clock cycles. This multiplier achieves reduction in latency compared to the
systolic multipliers [23,24], while requiring approximately m? additional 1-bit registers.

However, this multiplier is unable to reduce the critical path delay to a major extent.

A pipelined parallel-in/parallel-out structure was proposed by Jain et al. [26] in
1995. This multiplier requires 2m? XOR gates, 2m? AND gates and 3m? 1-bit registers.
The critical path delay is given by the expression (74 + Tx) with latency of (m + 1) clock
cycles. This multiplier achieves low hardware complexity and low latency compared to the
systolic multipliers [23-25]. Although this multiplier achieved reduction in the number
of registers and latency compared to previous multipliers, it has not reduced the number

of XOR gates and AND gates. Such reductions in the number of XOR gates and AND
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Table 3.2: Performance comparison of systolic multipliers for irreducible polynomials

available in the literature.

Multipliers #AND #XOR #MUX #Registers | Latency || Critical Path Delay
[23] 2m? 2m? 0 m? 3m Ty+Tx
[24] 2m? 2m? 0 Tm? 3m Ta+ Tsx
[25] 2m? —m 2m? 0 8m? —Tm 2m —1 Ta+Tx
[26] 2m? 2m? 0 3m? m+1 Ta+Tx
[27] 2m? 2m? 0 3m? m+1 Ta+Tx
[28] 2m? 2m? 0 4m? 2m Th+Tx
[29] 2m? 2m? 0 m? 3m Th+Tx
[30] m 2m? 4+ 2m (m?/2)e 6m? + 8m 3m/2 Taar +Tx
[31] 2m? 2m? 0 m? 3m Ty +Tx
[32] 2m? + 3m (m? +m)® 0 3m? +4m m+1 Ta+Tsx
[33]a m? m? + 2m 0 4m? + 3m 3m Ta+Tx
[33]b m? m? 0 5m? 4m Ta+Tx
[34] 2m? 2m? 0 3m? m Ta+Tx
[35]a m? m? +2m 0 4m? + 3m 3m Ty+Tx
[35]b m? m? 0 5m? 4m Ta+Tx
[36] m 2m + (m?/2)" | (m?+m/2)" m? 3m/2 Tam +Tsx
[20] m?*—m+1 m? —1 2m? +m—3 | 2m*—m 2m Ta+Tx
[37] 2m? 2m? 2m? +m — 3 m? 3m Th+Tx
[38] 2m? + 2m 2m? + 3m 0 3m? +4m | |m/2] +1 Th+Tx

@4-to-1 MUX; ®3-input XOR. gate.

gates can be observed in the multipliers proposed later.

In 1998, Jain et.al. [27] developed a pipelined semi-systolic structure based on an
LSB (Least Significant Bit)-first algorithm. This multiplier requires 2m? XOR gates, 2m?
AND gates and 3m? 1-bit registers. The critical path delay is given by the expression
(T'x+Tx ) with latency of (m+1) clock cycles. This multiplier achieves low area complexity
and low latency compared to the systolic multipliers [23-25], while requiring same area
complexity and same latency compared to the systolic multiplier [26]. It can be observed
that this multiplier has not achieved any change in the area complexity or delay compared

to the previous multiplier [26].

In 1998, Ko¢ et al. [28] introduced a Montgomery based multiplication method. This
multiplier requires 2m? XOR gates, 2m? AND gates and 4m? 1-bit registers. The critical
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path delay is given by the expression (T4 + Tx) with latency of 2m clock cycles. This
architecture achieves reduction in area complexity compared to the systolic multipliers
[23-25], while requiring more area complexity compared to the systolic multipliers [26,27].
Moreover, it achieves reduction in latency compared to the systolic multipliers [23, 24],
while requiring same latency compared to the systolic multiplier [25] and high latency

compared to the systolic multipliers [26,27].

A systolic design based on LSB-first method was proposed by Kwon et.al. [29] in
2003. This multiplier requires 2m? XOR gates, 2m? AND gates and 7m? 1-bit registers.
The critical path delay is given by the expression (T4 + Tx) with latency of 3m clock
cycles. This multiplier requires same area complexity and latency as that of the systolic
multipliers [23,24]. Moreover, it requires high area complexity and latency compared to
the systolic multipliers [26-28]. However, it achieves low area complexity and high latency
compared to the systolic multiplier [25]. It can be observed that this multiplier does not

show significant improvement in area complexity or delay than the previous multipliers.

In 2006, Lee et.al. [30] proposed a systolic multiplexer-based structure using iterative
arrays based on modified Booth’s algorithm. This multiplier requires (m? + 2m) XOR
gates, m AND gates, (m?/2) 4:1 Multiplexers and (6m?+ 8m) 1-bit registers. The critical
path delay is given by the expression (T4 +7x) with latency of (3m/2) clock cycles. This
multiplier achieves low area complexity compared to the systolic multipliers [23-25,29],
while requiring low latency compared to the systolic multipliers [23-25,28,29]. However,
it requires high area complexity due to extra multiplexers and also requires high latency

compared to the systolic multipliers [26,27].

Kwon et.al. [31] developed a two-dimensional systolic multiplier in 2006 based on an
LSB-first algorithm. This multiplier requires 2m? XOR gates, 2m? AND gates and 7m?
1-bit registers. The critical path delay is given by the expression (T4 + Tx) with latency
of 3m clock cycles. This multiplier achieves same area complexity and latency as that of
the systolic multipliers [23,24,29]. Moreover, it requires more area complexity and higher
latency compared to the systolic multipliers [26-28,30]. However, it achieves low area
complexity while requiring high latency compared to the systolic multiplier [25]. Tt can
be observed that this multiplier does not show significant improvement in area complexity

or delay than previous multipliers.
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A systolic multiplier was realized by Chiou et.al. [32] in 2006 based on a time-
independent Montgomery multiplication algorithm. This multiplier requires (m? + m)
3-input XOR gates, (2m? + 3m) AND gates and (3m? + 4m) 1-bit registers. The critical
path delay is given by the expression (T4 + T3x) with latency of (m + 1) clock cycles.
This multiplier achieves reduction in area complexity and latency compared to the systolic
multipliers [23-25,28-31]. Moreover, it requires same area complexity and latency as that
of the systolic multipliers [26,27] with high critical path delay which effectively reduces

its frequency of operation.

Two multipliers were proposed by Lee et.al. [33] in 2006 using MSB-first time-
independent and time-dependent algorithms based on a conventional interleaved multipli-
cation and a folded technique. The time-independent multiplier requires (m?+ 2m) XOR
gates, m? AND gates and (4m? + 3m) 1-bit registers and the time-dependent multiplier
requires m? XOR gates, m? AND gates and 5m? 1-bit registers. The critical path delay is
given by the expression (T4 +T'x) for both the designs with latency of 3m clock cycles for
the time-independent multiplier and latency of 4m clock cycles for the time-dependent
multiplier. The time-independent multiplier achieves reduction in area complexity com-
pared to the systolic multipliers [23-32]. However, it requires higher latency compared
to the systolic multipliers [25-28,30, 32|, while requiring same latency as that of the sys-
tolic multipliers [23,24,29,31]. The time-dependent multiplier achieves reduction in area
complexity compared to the systolic multipliers [23-25,29-31]. However, it requires high
latency compared to the systolic multipliers [23-32].

In 2007, a linear two-dimensional systolic structure based on a linear feedback shift
register (LFSR) was proposed by Chiou et.al. [34]. This multiplier requires 2m? XOR
gates, 2m? AND gates and 3m? 1-bit registers. The critical path delay is given by the
expression (T4 + Tx) with latency of m clock cycles. This multiplier achieves reduction
in area complexity compared to the systolic multipliers [23-25, 28-33], while requiring
same area complexity as that of the systolic multipliers [26,27] and requiring high area
complexity compared to the systolic multipliers [33]. Moreover, it achieves low latency
compared to the systolic multipliers [23,24,26-33]. However, this multiplier does not show

significant improvement in area complexity compared to the previous multipliers.

Lee [35] proposed a time-independent and time-dependent algorithm in 2008 and
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realized two bit-parallel systolic multipliers by employing these algorithms. The time-
independent multiplier requires (m?+2m) XOR gates, m* AND gates and (4m?+3m) 1-bit
registers and the time-dependent multiplier required m? XOR gates, m? AND gates and
5m? 1-bit registers. The critical path delay is given by the expression (T4 + Tx) for both
the designs with latency of 3m clock cycles for the time-independent multiplier and latency
of 4m clock cycles for the time-dependent multiplier. This time-independent multiplier
achieves reduction in area complexity compared to the systolic multipliers [23-34] and
requires same area complexity as that of the systolic multiplier [33]. However, it requires
high latency compared to the systolic multipliers [25-28, 30,32, 34], while requiring same
latency as that of the systolic multipliers [23, 24,29, 31, 33] and low latency compared
to the systolic multiplier [33]. The time-dependent multiplier achieves reduction in area
complexity compared to the systolic multipliers [23-25,29-31, 33], while requiring high
area complexity compared to the systolic multipliers [26-28,32-34]. However, it requires

high latency compared to the systolic multipliers [23-34].

In 2008, Lee [36] developed a multiplexer-based systolic architecture using an algo-
rithm that employs cut-set systolization and modified Booths recoding technique. This
multiplier requires 2m XOR gates, m AND gates, (m?/2) 3-input XOR gates, (m?+m/2)
4:1 Multiplexer and (6m? + 8m) 1-bit registers. The critical path delay is given by the
expression (Tyys + Tsx) with latency of (3m/2) clock cycles. This multiplier achieves low
area complexity compared to the systolic multipliers [23-25,29, 31] while requiring high
area complexity compared to the systolic multipliers [26-28, 30, 32-35]. It achieves low
latency compared to the systolic multipliers [23-25,28,29,31,33,35], while requiring high
latency compared to the systolic multipliers [26,27,32,34] and requires same latency as
that of the previous multiplier [30]. Although, this multiplier reduces the AND gate count,
4:1 multiplexers and 3-input XOR gates were used which increased the area complexity

compared to previous multipliers.

Fournaris et al. [20] proposed a systolic Montgomery multiplier from an optimized
Montgomery multiplication algorithm. This multiplier requires (m? — 1) XOR gates,
(m? —m + 1) AND gates, (2m? + m — 3) Multiplexers and (2m? — m) 1-bit registers.
The critical path delay is given by the expression (T4 + Tx) with latency of 2m clock

cycles. This multiplier achieves reduction in area complexity compared to the systolic
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multipliers [23-32,36]. It also achieves low latency compared to the systolic multipliers
[23,24,29, 31, 33, 35], while requiring high latency compared to the systolic multipliers
(26,27, 30, 32, 34, 36] and same latency as that of the systolic multipliers [25,28]. This
multiplier has high latency when compared to previous multipliers but achieved significant

improvement in area complexity.

A systolic multiplier is proposed by Kwon et.al. [37] in 2009 based on an LSB-first
algorithm. This multiplier require 2m? XOR gates, 2m? AND gates, (2m? + m — 3)
Multiplexers and 7m? 1-bit registers. The critical path delay is given by the expression
(T'a+Tx) with latency of 3m clock cycles. This multiplier requires same area complexity as
that of the systolic multipliers [23-25,29,31] and requires high area complexity compared
to the systolic multipliers [20,26-28, 30,32-36]. Moreover, it has same latency as that of
the systolic multipliers [23,24, 29, 31,33, 35] and requires high latency compared to the
systolic multipliers [20,25-28,30, 32,34, 36]. On the whole, this multiplier has very high

area complexity and also more delay compared to previous multipliers.

In 2014, Kim et al. [38] presented a cellular array multiplier based on Montgomery
multiplication using a qualified Montgomery factor to divide the algorithm into two parts
in order to reduce the delay. This multiplier requires (2m? +3m) XOR gates, (2m? +2m)
AND gates and (3m? + 4m) 1-bit registers. The critical path delay is given by the
expression (T4 + T'x) with latency of ((m/2) + 1) clock cycles. This multiplier achieves
reduction in area complexity compared to the systolic multipliers [23-25,28-31,33,35-37],
while requiring high area complexity compared to the systolic multipliers [20, 26,27, 33—
35] and same area complexity as that of the systolic multiplier [32]. Even though this
multiplier shows significant improvement in latency, the area complexity is high which

needs to be reduced further in order to be used in area and power constrained applications.

3.3 Systolic Multipliers over GF(2™) for Irreducible Trinomials

Irreducible polynomials can be classified into equally spaced polynomials, all-one
polynomials, trinomials, and pentanomials. The equally spaced polynomials and all-one
polynomials are not widely used due to their scarcity. However, up to 5148 irreducible

trinomials were identified for field orders of m < 10,000 [39] which is approximately
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Table 3.3: Performance comparison of systolic multipliers for irreducible trinomials avail-

able in the literature.

Multipliers H #AND H #XOR H #MUX H #Registers H Latency H Critical Path Delay
[40] m? m2+1im 0 4m? + 2lm m+l+1 Ta+Tx
[41] m? m24+m—1 0 3m?2 4 2m —2 2m — 1 Ty + Tsx
[42] m? + Ny m2+m 0 4m? +m m+1 Ty + Ty
[43] m? m2+m—1 0 2m? 2m —1 Ta+ Ty
[44] m? m2+m m 3m?+m m-+n Ty +Tx
[45] m? m?4+m—1 0 2m? 2m —1 Ta+ Tx
[46] (m?)a m?—1 (m? —2m)® 2m? —m m Tyva+Tx
[47] m? m2+m m? 3.5m? + 3m m+ 2 T+ Tx
[48] m? m2+m m 2m? + 3m m-+1 Ta+Tx + Ty
[49] (m»)® || 1.5m?+0.5m || (1.5m? —2.5m +3)® || 1.5m? +2m — 1 m+2 Tya+Tx

@NAND gates; *Inverter.

half of the m values. Moreover, trinomials are recommended by the National Institute
of Standards and Technology (NIST) for use in cryptographic applications since they
allow realisation of efficient hardware structures with low area complexity and low power
consumption. Therefore, several systolic multipliers are proposed in the literature over
GF(2™) for irreducible trinomials and the performance of these multipliers is presented

in Table 3.3.

Lee [40] presented a systolic multiplier for trinomials in 2003 based on the condition
gced(m,n) = 1, where n is the degree of the second term of the trinomial. This multiplier
requires (m?+Im) XOR gates, m?> AND gates and (4m?+2Im) 1-bit registers. The critical
path delay is given by the expression (T4 + Tx) with latency of (m + [ + 1) clock cycles,
where [ is the number of reductions that can be applied on the polynomial of degree

(2m — 2) which is obtained after the polynomial multiplication step and is given by the

m—2
m—n

expression [ = L J + 1. This multiplier achieves low area complexity and low latency
compared to the generic polynomial multipliers proposed in the literature. However, this
multiplier had high area complexity and more latency compared to the multipliers for

trinomials and significant reduction in area complexity and delay were necessary.

In 2003, Lee [41] introduced the importance of trinomials in finite field multiplica-
tions and proposed a low-complexity systolic multiplier for irreducible trinomials. This

multiplier requires (m? + m — 1) XOR gates, m®* AND gates and (3m? + 2m — 2) 1-bit
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registers. The critical path delay is given by the expression (T4 + T'x) with latency of
(2m — 1) clock cycles. This multiplier achieves reduction in area complexity but has high

latency compared to the systolic multiplier [40].

A compact systolic multiplier for trinomials was designed by Lee et.al. [42] in 2005
based on Montgomery multiplication algorithm employing a Hankel matrix-vector rep-
resentation. This multiplier requires (m? + m) XOR gates, (m? + Ny) AND gates and

) and n

(4m? +m) 1-bit registers, where Ny is given by the expression (mfn)(mfngfl)”(”ﬂ
represents n-term Hankel matrix-vector representation. The critical path delay is given
by the expression (T4 + Ty ) with latency of (m+ 1) clock cycles. This multiplier achieves
low area complexity compared to the systolic multipliers [40,41]. However, it has high

latency compared to the systolic multiplier [40], while requiring same latency as that of

the systolic multiplier [41].

A systolic multiplier for trinomials based on a transformation method applied on
conventional Montgomery multiplication was proposed by Lee et.al. [43] in 2006. This
multiplier requires (m? +m — 1) XOR gates, m? AND gates and 2m? 1-bit registers. The
critical path delay is given by the expression (T4 + T'x) with latency of (2m — 1) clock
cycles. This multiplier requires similar latency compared to the systolic multiplier [40],
while requiring same latency as that of the systolic multipliers [41,42]. However, it requires

significantly high area complexity compared to the systolic multipliers [40-42] .

In 2007, Lee et.al. [44] proposed a systolic multiplier for trinomials by employing
Hankel matrix-vector multiplications. This multiplier requires (m? + m) XOR gates, m?
AND gates, m Multiplexers and (3m?+m) 1-bit registers. The critical path delay is given
by the expression (T4 + Tx) with latency of (m + n) clock cycles, where n represents n-
term Hankel matrix-vector representation. This architecture achieves reduction in area
complexity compared to the systolic multipliers [40,43], while requiring same area com-
plexity as that of the systolic multiplier [41]. However, it requires high area complexity
compared to the systolic multiplier [42]. In addition, this multiplier achieves low latency
compared to the systolic multipliers [41-43], while requiring same latency as that of the
systolic multiplier [40]. Overall, this multiplier has low lantecy but significantly high area

complexity than the previous multipliers.

Lee et.al. [45] proposed a scalable and systolic multiplier for trinomials in 2007.
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This is designed employing the Hankel matrix-vector multiplications on the Montgomery
multiplication algorithm. This multiplier requires (m? + m — 1) XOR gates, m? AND
gates and 2m? 1-bit registers. The critical path delay is given by the expression (T4 +Tx)
with latency of (2m — 1) clock cycles. This multiplier achieves low area complexity
compared to the systolic multipliers [40,41,43, 44|, while requiring same area complexity
as that of the systolic multiplier [42]. It requires high latency compared to the systolic
multipliers [40,44], while requiring same latency as that of the systolic multipliers [41-43].

In 2008, Meher [46] proposed a pipelined systolic multiplier for trinomials employing
a suitable cut-set retiming technique. This multiplier requires (m? — 1) XOR gates, m?
NAND gates, (m?—2m) Inverters and (2m?—m) 1-bit registers. The critical path delay is
given by the expression (T 447y ) with latency of m clock cycles. This multiplier achieves
low area complexity and low latency compared to the systolic multipliers [40-45]. The

latency of this multiplier is low but the area complexity is moderate and can be improved

further.

A systolic architecture designed by employing the Toeplitz matrix-vector represen-
tation on Montgomery multiplication was proposed by Lee [47] in 2008. This multiplier
requires (m? + m) XOR gates, m* AND gates, m* Multiplexers and (3.5m? + 3m) 1-bit
registers. The critical path delay is given by the expression (T + Tx) with latency of
(m + 2) clock cycles. This multiplier achieves reduction in area complexity compared
to the systolic multipliers [40,43] while requiring high area complexity compared to the
systolic multipliers [41,42,44-46]. Moreover, it achieves low latency compared to the
systolic multipliers [41-43,45] while requiring same latency as that of the systolic multi-
pliers [40,44,46]. On the whole, this multiplier utilizes extra multiplexers which increased

it’s area complexity significantly compared to the previous multipliers.

Chiou et.al. [48] proposed a systolic multiplier for trinomials in 2011, based on
Mastrovito multiplication method. This multiplier requires (m* + m) XOR gates, m?
AND gates, m Multiplexers and (2m? + 3m) 1-bit registers. The critical path delay is
given by the expression (T4 +7Tx+T)) with latency of (m+1) clock cycles. This multiplier
achieves low area complexity compared to the systolic multipliers [40,41,43,44,47], while

requiring same area complexity as that of the systolic multiplier [42,45,46]. Moreover,

it achieves low latency compared to the systolic multipliers [41-43,45], while requiring
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same latency as that of the systolic multipliers [40,44,46,47]. This multiplier had high
critical path delay and the area complexity is also moderately high compared to previous

multipliers.

Bayat-Sarmadi and Farmani [49] proposed a systolic multiplier for trinomials in 2015
based on Montgomery multiplication algorithm. This multiplier requires (1.5m? + 0.5m)
XOR gates, m* NAND gates, (1.5m? — 2.5m + 3) Inverters and (1.5m? + 2m — 1) 1-bit
registers. The critical path delay is given by the expression (Tx4 + Tx) with latency
of (m + 2) clock cycles. This multiplier achieves low area complexity compared to the
systolic multipliers [40, 41,43, 44,47, 48], while requiring same area complexity as that
of the systolic multiplier [42, 45, 46]. Moreover, it achieves low latency compared to
the systolic multipliers [41-43, 45], while requiring same latency as that of the systolic
multipliers [40, 44, 46-48|. This multiplier has moderate area complexity compared to
previous multipliers which needs to be reduced further in order to be used in area and

power constrained applications.

3.4 Systolic Multipliers over GF(2™) for Irreducible Pentanomi-

als

Pentanomials are special class of irreducible polynomials that are recommended by
NIST to be used for defining a binary field when trinomials in that field are absent. Along
with trinomials, pentanomials also have a vital role in the design of some cryptographic
algorithms because efficient hardware structures can be realized with low area complexity
and low power consumption. Hence, some systolic multipliers are proposed in the litera-
ture over GF'(2™) for irreducible pentanomials and the performance of these multipliers

are presented in Table 3.4.

A systolic multiplier for pentanomials was presented by Lee [47] in 2008, based
on Montgomery multiplication method using Toeplitz matrix-vector representation. This
multiplier requires (m?+m) XOR gates, m* AND gates, m* Multiplexers and (3.5m*+3m)
1-bit registers. The critical path delay is given by the expression (T); + Tx) with latency

of (m + 2) clock cycles. This multiplier achieves reduction in area complexity compared
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Table 3.4: Performance comparison of systolic multipliers for irreducible pentanomials

available in the literature.

Multipliers | #AND #XOR #MUX #Registers Latency Critical Path Delay

m m° + om + m om°+1im m + X
47 2 243 2 3.5m2+7 4 T
[50] (m2)® || m*>+2m—1| (m??° 2m? — 2m m Tna+Tx
5} m m-° +2m m m - + X
51 2 2 2 2\b 2 2 ZL 2 2T

2m + 2lm 3m? —2m — 2lm a1
[52] (m?)* (m?)° Tna+Txn
+20 + 2 —20 -2 +log2(20 + 2)

aNAND gates; PInverter; S XNOR gate.

to multiplier architectures for generic irreducible polynomials. However, it had very high

area complexity compared to the multipliers for pentanomials.

In 2009, Meher [50] proposed a systolic multiplier for pentanomials using an efficient
modular reduction algorithm to realize efficient Reed-Solomon codecs. This multiplier
requires (m? + 2m — 1) XOR gates, m* NAND gates, m? inverters and (2m? — 2m) 1-bit
registers. The critical path delay is given by the expression (Tv4 + Tx) with latency of
m clock cycles. This multiplier achieves reduction in area complexity and reduction in
latency of 4 clock cycles compared to the systolic multiplier [47]. However, the reduction
in area complexity is not much significant and further reduction can be made to the area

complexity.

A digit-serial systolic multiplier for pentanomials was designed by Xie et.al. [51] in
2012, based on a novel decomposition technique to divide the multiplier into two parallel
units. This multiplier requires (m? + 2m) XOR gates, m* AND gates, m? Inverters and
2m? 1-bit registers. The critical path delay is given by the expression 27x with latency
of ((m/2) + 2) clock cycles. This multiplier achieves low area complexity compared to
the systolic multiplier [47], while requiring slightly high area complexity compared to
the systolic multiplier [50]. Moreover, it also achieves about 50% reduction in latency
compared to the systolic multipliers [47,50]. The improvement in delay obtained due to
the digit-serial design causes a penalty on area complexity, which is not suitable for area

and power constrained applications.

A digit-serial systolic Montgomery multiplier for pentanomials by employing a novel

pre-computation technique was proposed by Xie et.al. [52] in 2013. This multiplier re-
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quires (2m + 2lm + 21 + 2) XOR gates, m?> XNOR gates, m? NAND gates and (3m?* —
2m — 2lm — 2] — 2) 1-bit registers, where [ is the decomposition factor given by the ex-
pression | = min {m — ki, k1 — ka, ko — ks, k3} for pentanomials of the form (z™ + z*' +
xk2 + 2% 4+ 1). The critical path delay is given by the expression (T4 + Txy) with la-
tency of ((m/(20 4 2)) + 1+ loga(21 + 2)) clock cycles. This multiplier achieves low area
complexity compared to the systolic multiplier [47], while requiring high area complexity
compared to the systolic multipliers [50,51]. Moreover, it also achieves reduction in la-
tency compared to the systolic multipliers [47,50,51]. Although it achieves reduction in

delay due to latency improvement, the area complexity is high for this digit-serial design.

3.5 Conclusion

In this chapter, a survey of different architectures of finite field multipliers available
in the literature and the improvements achieved is presented. The next chapter presents

the design of the proposed sequential multiplier for irreducible polynomials.




Chapter 4

Low-power and Area-Efficient Sequential Multipliers

over Polynomial Basis

This chapter presents an interleaved multiplication algorithm derived from a con-
ventional interleaved multiplication algorithm available in the literature. A sequential
multiplier architecture over GF'(2™) for irreducible polynomials is designed based on the
proposed algorithm. The performance of the proposed sequential multiplier architecture
is computed analytically and compared with the multiplier architectures available in the
literature. In addition, the analytical results are also verified by implementing the pro-
posed architecture on Field Programmable Gate Array (FPGA) and Application Specific
Integrated Circuit (ASIC) technologies and the results are compared with the existing ar-
chitectures available in the literature. Moreover, the Verilog models of two cryptographic
algorithms, AES and Twofish, are developed employing the proposed sequential multiplier
and the multipliers available in the literature. These Verilog models are implemented on
FPGA to compute the performance improvement achieved by the proposed multiplier

compared to the sequential multipliers available in the literature.

4.1 Introduction

Finite field arithmetic over GF'(2™) is used in a variety of applications such as cryp-
tography, coding theory and computer algebra. Finite field multiplication is an important

and complex operation mainly used in cryptographic applications. Many algorithms and
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architectures are proposed in the literature to realize efficient multiplication operation in
both hardware and software and the implementation of these Cryptographic algorithms
in hardware achieves better security and low resource utilizations. In addition, the design
of finite field multipliers using sequential architecture allows further reduction in area
complexity and power consumption as the computations are carried out iteratively using
the same hardware. In spite of these sequential multipliers being slow, they are used in
several applications such as medical implants, wireless sensors, Internet of Things etc., due
to their extremely low area and low power requirements. All the sequential architectures
proposed in the literature [18-22] were aimed at reducing the area complexity or delay
when compared to the previous multipliers. This reduction in area complexity & power
consumption or the delay is essential to fulfil the ever increasing demand to miniaturize
the VLSI device, to reduce it’s power consumption and to increase it’s speed. Hence,
there is a never ending need to reduce the area complexity & power consumption and also

to increase the speed of any VLSI hardware device.

In this work, a modified interleaved multiplication algorithm is derived from a con-
ventional interleaved multiplication algorithm to realize the proposed sequential multi-
plier. Subsequently, an efficient sequential polynomial basis multiplier, that supports
multiplication of any two arbitrary finite field elements over GF(2™) for generic irre-
ducible polynomials, is designed based on the proposed algorithm. The area complexity
and delay of the proposed sequential multiplier over GF'(2™) is estimated and its perfor-
mance is compared with existing sequential multipliers [18-22]. It is observed that the
proposed sequential multiplier achieves reduction in area complexity and area-delay prod-
uct (ADP) over the existing sequential multipliers verified for a field of order m = 163.
The proposed multiplier and some existing multipliers are implemented using ASIC and
FPGA technologies and the implementation results shows that the proposed sequential
multiplier achieves reduction in area complexity, power consumption, ADP and power-

delay product (PDP) over existing multipliers.

In addition, a sequential multiplier architecture over GF(2%) is derived from the
proposed sequential multiplier architecture over GF'(2™) as an example. The area com-
plexity and delay of the proposed multiplier are estimated and performance comparison

with existing sequential multipliers [18-22] is also presented. The proposed architecture
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achieves reduction in area complexity and ADP over the best of existing multipliers for
m = 8. In order to evaluate the performance of the proposed multiplier in a cryptographic
application, the Verilog models of Advanced Encryption Standard (AES) and Twofish al-
gorithms are developed employing the proposed sequential multiplier and other multipliers
available in the literature. These models are implemented on FPGA device and the device
utilization summary shows that the proposed multiplier achieves low area complexity, low

power consumption, less ADP and PDP compared to the existing multipliers.

4.2 Proposed Interleaved Multiplication Algorithm

GF(2™) is an extension field of GF(2) having an m-dimensional vector space over
it, where GF(2) is a binary field having only two elements {0, 1} [53]. The addition and
subtraction operations can be performed by the logical exclusive-OR (XOR) operation
and the multiplication operation can be performed by the logical AND operation over
GF(2). However, the multiplication over GF(2™) is performed by multiplying the two

polynomials and modular reduction of the result using the irreducible polynomial.

Definition 4.1. Let T'(z) be the irreducible polynomial of degree m over GF'(2) which
defines the field GF(2™). Then,

T(x) =2 +tp2™ 4+ -+t + 1 (4.1)

where, tg,t1, - ,t;m—1 € GF(2) are the coefficients of the irreducible polynomial 7'(x).
Definition 4.2. Let a € GF(2™) be a root of T'(z). Then the following set constitutes
the polynomial basis in GF(2™)

W= {1,04,042,~~ ,amfl} (4.2)

Definition 4.3. In the polynomial basis w, the elements of GF(2™) are polynomials
of degree < m — 1 over GF(2) and the set of all polynomial elements over GF(2™) is

represented as

GF2™) ={f(x) | f(z) = apmr2™ ' + -+ apr® + a1z + ap} (4.3)
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where, a; € GF(2); fori =0,1,2,--- ,m — 1.
Definition 4.4. Let f(z) = 1™ "+ -+ as2® + a1z +ag be a polynomial in GF(2™),

then the binary representation of this polynomial is

a = (am—lv s, Qr,01, ao) (4-4)

where, a; € GF(2) and a,,_1 is the most significant bit (MSB) and ay is the least significant
bit (LSB); for i = 0,1,2,--- ,m — 1. Let the polynomials A(z), B(z) and T'(x) be two
polynomials and the irreducible polynomial, respectively and D(x) be the final product
polynomial. Then,

D(z) = (A(x) x B(x)) mod T (z) (4.5)

Polynomial multiplication: The product of A(x) and B(x), each of degree at most m — 1,

results in an intermediate polynomial given by

C(z) = A(z) x B(x)
= (ag+ a1z + -+ amo12™ ) X (bg + b1z + - A bpp_™ ) (4.6)

2m—2
=cot+ i+ + copmor™

Modular reduction: The intermediate polynomial C(z) of degree at most (2m — 2) is
modular reduced by a degree m irreducible polynomial 7'(z) resulting in the polynomial

D(xz) of degree at most (m — 1), which is the final result of the multiplication operation.

D(z) =C(z) x T'(x)
=(co+c1x+ 4 Comar® ) X (o + 1z + -+ + Ly + 2™) (4.7)
= do + dlflf + -+ dm_ll’m_l

Thus the multiplication of two polynomials of degree (m — 1) results in a polynomial of

degree (m — 1) such that the resultant polynomial resides in the given field GF(2™).

Let a = (am-1," -+ ,a1,a0) and b = (by,—1,--- ,b1,by) be the binary representations
of the two elements, A(z) and B(x), over GF(2™), respectively. Let t = (t,—1, - ,t1,t0)
be the binary representation of the field defining irreducible polynomial T'(x) of degree at

most m, and let p = (pp—1, -+, p1, Po) be the accumulator of the intermediate calculations.
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The derivation of the proposed algorithm from a conventional interleaved multiplication
algorithm [54] is given as follows:

The two arbitrary elements A(x) and B(z) in GF(2™) can be expressed as

A= Z a;x’ B = Z bix' (4.8)

= A(z) x > b (4.9)
= by A(z) + bizA(x) + by’ A(x) + - - 4 bpy_12™ T A(x)

It may be observed from Eqn. (4.9) that C'(x) is the summation of the multiplication
result of b; and A(z)x’; for alli =0,1,--- ,m—1i.e. the entire summation can be carried
out in m iterations. A(z)z’ is calculated by the modular reduction step which is then
multiplied with b; using AND operation; for all : = 0,1,--- ,;m — 1. Contrary to the
generic case of summation by addition, the exclusive-OR (XOR) operation is considered
for the summation of each b;A(x)z"; for all i = 0,1,--- ,m — 1, since the addition is
simply an XOR operation over GF(2). Hence, the calculation of C'(z) in Eqn. (4.9) is
transformed as Steps 3, 4, 8 in Algorithm 4.1. Here, p = (pj_1,-- ,P1,P0) acts as the
accumulator of A(z)z’ and is initialized to zero at the beginning of each multiplication

operation.

The modular reduction of the conventional interleaved multiplication algorithm [54]

is performed as shown

A(z) = (A(z) x z') mod T'(z) (4.10)
Eqn. (4.10) is evaluated for each i as follows
For + = 0:

C(x) = A(x) mod T (x)
(4.11)
= (ao +ax+ -+ am_lxm_l) mod (ty +t,x + - 4ty 2™+ ™)

A degree m polynomial cannot modulo divide a degree (m — 1) polynomial. Hence, this

step can be skipped.
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For ¢+ = 1:
C(z) = (A(x) x ) mod T(x)
= (ap + a2 + -+ + apm_12™) mod (to + iz + -+ + L™ 4 2™)

= am_1t0 —+ (am_1t1 —+ CL())ZE + (am_th + (11)1'2 + -+ ((lm_ltm_l + (lm_g)l’m_l
(4.12)

It is revealed from Eqn. (4.12) that the modular reduction is reduced to the summation
of apm_1T(x) and A(x)z’. The A(z)z’ is computed by left shifting A(z) by ¢ times; for
alli=0,1,2,--- ;m —1. The a,,_1T(x) is computed by bit-wise AND operation of a,, 1
with the binary representation of T'(x) i.e. (1, ,t1,%0). The summation is carried
out in m iterations using the XOR operation. Therefore, the modular reduction step can

be transformed as Steps 5, 6, 7 as shown in Algorithm 4.1.

Both the polynomial multiplication and modular reduction steps occur simultane-
ously resulting in an interleaved algorithm. The two modified equations, Eqn. (4.9) and

(4.12), results in the derivation of Algorithm 4.1.

Algorithm 4.1: Proposed interleaved multiplication algorithm over G F'(2™)

1 Initialization: p = 0, counter = 0
2 FOR counter =0 TO 7 DO

3 a=a& by

a p=pda

5 t=t& am_1

6 a=a<k1

7 a=adt
8 b=b>1
9 END FOR

4.3 Proposed Sequential Multiplier Architecture over GF(2™)

for Irreducible Polynomials

This sub-section presents the design of the proposed sequential multiplier archi-

tecture over GF'(2™) for irreducible polynomials. The estimations of area complexity
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and delay of this architecture are computed analytically and compared with the existing
multipliers available in the literature. The functionality of the proposed architecture is
implemented using FPGA and ASIC technologies. These analytical and implementation
results of the proposed architectures and the architectures available in the literature are

also presented in the following sub-sections.

4.3.1 Design of Proposed Sequential Multiplier Architecture over GF(2™) for Ir-

reducible Polynomials

The design of the proposed sequential multiplier over finite fields of an arbitrary
field order m is presented in this sub-section. Fig. 4.1 shows the block diagram of the
proposed sequential polynomial basis multiplier over GF(2™) realized using the proposed
algorithm (Section 4.2). This architecture consists of two main modules A and B and
three m-bit registers. The multiplier takes one m-bit input ¢; where, ¢ denotes the
binary representation of the irreducible polynomial. Module A computes the polynomial
multiplication and module B computes the modular reduction. The logic diagrams of the

modules A and B are shown in Fig. 4.2(a) and (b) respectively.

The inputs of module A are a, by, p and output is p,y;. In module A, an AND
operation is performed on a with the LSB of b i.e. by, to attain an m-bit result aa. The
m-bit signal aa is bit-wise XORed with the m-bit signal p resulting in the output pyy:.
The inputs of module B are a, b,t and outputs are a,, and b,e,. In module B, b is right
shifted by one bit resulting in the output b,.,. a is left shifted by one bit to obtain an
m-bit result al. Logical AND operation is performed on ¢ with a,, 1 to obtain an m-bit
result ¢t¢. This m-bit signal ¢t is XORed with al resulting in the output a,..,. Before
the multiplication operation begins, the registers Reg2 and Reg3 are initialized with the
multiplicands b and a, respectively, and Regl is cleared. For every clock cycle, module
A updates p value given by p,,; and module B updates the a and b values given by a,c.

and b,.,, respectively. The final multiplication result is given by res after m clock cycles.
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Figure 4.1: Block diagram of the proposed sequential multiplier architecture.
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Figure 4.2: Internal circuit details of the proposed architecture.

4.3.2 Analytical Results

As discussed in previous section, the proposed sequential multiplier consists of three

m-bit registers, one module A and one module B. Each of the modules A and B consists of




Low-power and Area-Efficient Sequential Multipliers over Polynomial Basis 48

m 2-input XOR gates and m 2-input AND gates each. An m-bit register can be realized
using m 1-bit registers. Since the proposed architecture requires three m-bit registers,
the total 1-bit registers required are 3m. The shifting blocks, SL and SR, are consists of
only re-wiring and hence do not contribute to any complexity. Therefore, the total area
complexity of the proposed architecture is 2m XOR gates, 2m AND gates and 3m 1-bit
registers. The critical path delay of the proposed multiplier is the maximum of delays of
either module A or module B. It can be observed from the architecture that the delays of
module A and module B are equal and is given by the expression (Tx + T4), where Tx
and T4 are the delays of the XOR gate and AND gate, respectively. Hence, the critical
path delay of the multiplier is computed as (T'x + T4). As established by the proposed
algorithm, the multiplication of two m-bit elements is computed over m iterations. Hence,

the resultant latency is m clock cycles.

Table 4.1: Area complexity and delay comparison of the proposed architecture with ex-

isting architectures over GF'(2™).

Multipliers | #XOR || #AND #MUX #Registers || Latency Critical Path Delay
[18] 2m 3m m m? 3m (Ta+ Tn + To)logam + Tx
[19] m 2m (m—1)*+mb 3m m Tx +2Ta+ Ty + (m+ 1)To
[20] m m 2m+1 3m 2m Tx + Ty
[21] 2m 4dm m® + m¢ 3m m Tx + Ty
[22] 6m + 18 0 14m + 26 6m +7 m/4 ATx + 2Ty
Proposed 2m 2m 0 3m m Tx + T4

2OR gates; ?1-to-2 DMUX; “Inverter.

Table 4.1 presents the comparison of area complexity (in terms of gate count),
latency (#clock cycles) and critical path delay of the proposed architecture with other
sequential architectures [18-22] available in the literature. It may be noted that T, To
and T); denote the delays of an inverter, OR gate and 2:1 MUX, respectively. In order
to highlight the differences among various multiplier designs, the irreducible polynomial
with field order m = 163, i.e. f(z) = z'% + 2" 4+ 2% + 23 + 1 recommended by National
Institute of Standards and Technology (NIST), is considered as an example. Since the
comparison of area complexity expressed in terms of gate count cannot provide a clear
difference among the multipliers considered. A better area complexity comparison can be

achieved using the transistor count parameter. Moreover, latency alone cannot achieve a
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fair comparison of computation time; total delay as a product of latency and critical path

must be considered.

Table 4.2: Comparison of transistor count, latency, critical path delay, total delay, area-
delay product, % reduction in area and % reduction in ADP of the proposed architecture

with existing architectures over GF(2'63).

CP | Total Delay | ADP | %Reduction | %Reduction
Multipliers || #Transistors | Latency .

(ns) (ns) (x109) in Area in ADP
[18] 217442 489 174 85086 18501 96% 99%
[19] 8796 163 1344 219072 1927 11% 98%
[20] 7830 326 18 5868 46 0.08% 50%
[21] 11084 163 18 2934 32 29% 28%
[22] 27704 41 60 2460 68 1% 66%

Proposed 7824 163 18 2934 23 - -

Table 4.2 provides the comparison of area complexity (in terms of total transistor
count), total delay (latency x critical path) and area-delay product (#transistors X ns).
In order to estimate the transistor count of individual gates, traditional CMOS logic
transistor counts [55] are used: six transistors for a 2-input XOR gate, six for a 1-bit 2:1
MUX, six for a 1-bit 1:2 DMUX, six for a 2-input OR gate, six for a 2-input AND gate
and eight for a 1-bit register. The critical path delay of the multipliers are estimated using
the real time circuits from STMicroelectronics [56]. The typical values of the propagation
delays (tpp) is considered for all the gates to ensure fair comparison. The circuits used
are M74HC86 (XOR gate, tpp = 12ns), M74HC257 (MUX, tpp = 1lns), M74HCOS8
(AND gate, tpp = 6ns), M7T4HC32 (OR gate, tpp = 8ns) and M74HC04 (INVERTER,
tpp = 8ns). It can be observed from Table 4.2 that the proposed architecture requires
low area complexity and low area-delay product compared to the sequential architectures
available in the literature. This table also provides the percentage reduction in area
complexity and area-delay product achieved by the proposed architecture compared to
the architectures available in the literature. It can be noted that the proposed architecture
achieves significant reduction in area complexity of about 96% and 71% and reduction in

ADP of about 99% and 66% compared to the architectures [18,22], respectively. Moreover,

the proposed architecture achieves about 11% and 29% reduction in area complexity while
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achieving 98% and 28% reduction in ADP compared to the architectures [19,21]. The
proposed architecture requires the same area complexity as that of the architecture [20].
However, the ADP of the proposed architecture achieves 50% reduction in ADP compared

to the sequential architecture [20].
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Figure 4.4: Area-Delay Product comparison of sequential multipliers.

Fig. 4.3 and 4.4 shows the area complexity and ADP comparison of the sequential
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multipliers over a range of m values. As the order of the finite field increases from m = 2
to m = 600 in Fig. 4.3, it can be observed that the proposed architecture achieves low
area complexity compared to the sequential architectures [18,19,21,22], while requiring
equal area complexity compared to the sequential architecture [20]. Furthermore, Fig.
4.4 shows that the proposed architecture achieves low ADP compared to the sequential
architectures [18-22]. Moreover, it can also be observed that the delay of the proposed

architecture is comparable to other architectures.

4.3.3 Implementation Results

The performance of the proposed sequential multiplier architecture and the sequen-
tial multiplier architectures available in the literature are verified by implementing them
on ASIC and FPGA platforms. The implementation results of these architectures are

presented in the following sub-sections.

4.3.3.1 ASIC Implementation Results

Table 4.3: ASIC implementation results of sequential multipliers.

Multipliers
[20] [22] Proposed
Metrics
Total Delay (ns) 1.582 1.482 1.493
Area (um?) 8.17 14.418 7.48

oo
IEl Power (uW) 25.282 14.866 8.035

ADP (um? x ns) 12.925 21.368 11.168

PDP (uW x ns) 39.99 22.031 11.996

Total Delay (ns) 1.717 1.731 1.615
3 Area (um?) 177.594 || 372.276 87.48
T Power (uW) 811.769 | 404.839 | 95.282
g

ADP (um? x ns) 304.929 || 644.410 || 141.28

PDP (uWW x ns) 1393.807 || 700.776 || 153.88

The sequential multipliers [20,22] are considered for hardwarea implementation and
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Figure 4.5: ASIC implementation results of sequential multipliers for m = 8.

comparison since the sequential multiplier [20] requires same area complexity as the pro-

posed multiplier and the sequential multiplier [22] requires low ADP among existing mul-

tipliers.

Therefore, the proposed multiplier along with the multipliers in [20, 22| are

modelled in Verilog and synthesized with Cadence Encounter RTL Compiler Tool which

uses UMC 0.18um technology for m = 8 and m = 163. The field orders m = 8 and

m = 163 are considered for implementation as m = 8 is used in AES and m = 163 is

recommended by NIST. The delay, area complexity, power consumption, ADP and PDP

of the all the architectures are computed from the device utilization summary generated

by the synthesis tool (see Table 4.3). The area complexity, power consumption, ADP and

PDP results are also plotted for m = 8 and m = 163 as shown in Fig. 4.5(a)-(d) and Fig.

4.6(a)-(d), respectively.

It is clear from the histogram (see Fig. 4.5 and Fig. 4.6) that the proposed multiplier
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Figure 4.6: ASIC implementation results of sequential multipliers for m = 163.

requires the least area complexity, power consumption, ADP and PDP among existing
multipliers. More specifically, it can be observed that the proposed multiplier achieves
reduction of about 8.5%, 68%, 13.6% & 70% in area complexity, power consumption, ADP
and PDP, respectively, when compared to the multiplier [20] for m = 8. Similarly, the
proposed multiplier achieves reduction of about 48%, 45%, 47% & 45% in area complexity,
power consumption, ADP and PDP, respectively, when compared to the multiplier [22]
for m = 8. The proposed multiplier achieves reduction of about 50%, 88%, 53% & 88%
in area complexity, power consumption, ADP and PDP, respectively, when compared to
the multiplier [20] for m = 163. Similarly, the proposed multiplier achieves reduction of
about 76%, 76%, 78% & 78% in area complexity, power consumption, ADP and PDP,
respectively, when compared to the multiplier [22] for m = 163. Moreover, the proposed
multiplier also achieves reduction in delay compared to the multipliers [20,22] for m = 163.

These improvements in area complexity, power consumption, ADP and PDP achieved by
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the proposed multiplier indicate an efficient design in terms of both area complexity and

power consumption without much increase in delay.

4.3.3.2 FPGA Implementation Results

Table 4.4: FPGA implementation results of sequential multipliers.

Multipliers [20] [22] Proposed
Metrics
Total Delay (ns) 1.691 1.455 0.791
Area (#Slices) 23 47 23
Og Power (W) 0511 || 0.262 || 0.225
ADP (#Slices x ns) 38.893 | 68.385 18.193
PDP (W x ns) 0.864 | 0.381 | 0.178
Total Delay (ns) 9.131 11.686 4.105
2 Area (#Slices) 326 850 165
T Power (W) 0.923 | 0.713 | 0.599
: ADP (#Slices x ns) || 2976.706 | 9933.1 | 677.325
PDP (W x ns) 8428 | 833 | 2459

In addition to the ASIC implementation, the functionality of the proposed multiplier
are also verified by implementing the Verilog models on FPGA platform. The Verilog
models of the proposed multiplier and the multipliers [20,22] are simulated and synthesized
using Xilinx Vivado 2014.2 tool. The synthesized netlist is implemented on a Xilinx
Virtex-7 (XC7TVX1140TFLG1930-1) FPGA prototype board. The delay, area, power
consumption, ADP and PDP of the all the architectures are computed from the device
utilization summary generated by the synthesis tool (see Table 4.4). The area complexity,
power consumption, ADP and PDP results are also plotted for m = 8 and m = 163 as

shown in Fig. 4.7(a)-(d) and Fig. 4.8(a)-(d), respectively.

It is clear from the histogram (see Fig. 4.7 and Fig. 4.8) that the proposed multiplier
requires the least area complexity, power consumption, ADP and PDP among existing

multipliers. More specifically, it can be observed that the proposed multiplier achieves
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Figure 4.7: FPGA implementation results of sequential multipliers for m = 8.

same area complexity and reduction of about 56%, 53% & 79% in power consumption,
ADP and PDP, respectively, when compared to the multiplier [20] for m = 8. Simi-
larly, the proposed multiplier achieves reduction of about 51%, 14%, 73% & 53% in area
complexity, power consumption, ADP and PDP, respectively, when compared to the mul-
tiplier [22] for m = 8. For m = 163, the proposed multiplier achieves reduction of about
49%, 35%, 77% & 70% in area complexity, power consumption, ADP and PDP, respec-
tively, when compared to the multiplier [20]. Similarly, the proposed multiplier achieves
reduction of about 80%, 16%, 93% & 70% in area complexity, power consumption, ADP
and PDP, respectively, when compared to the multiplier [22] for m = 163. Moreover, the
proposed multiplier also achieves reduction in delay compared to the multipliers [20, 22]
for m = 163. In addition, the proposed multiplier achieves reduction in delay compared
to the multipliers [20,22]. These improvements in area complexity, power consumption,

ADP and PDP achieved by the proposed multiplier indicate an efficient design in terms
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Figure 4.8: FPGA implementation results of sequential multipliers for m = 163.

of both area and power without much increase in delay.

4.4 Proposed Sequential Multiplier Architecture over GF(28%)

for Irreducible Polynomials

This sub-section presents the design of the proposed sequential multiplier architec-

ture over GF(28) for irreducible polynomials. AES and Twofish encryption algorithms

are realized using the proposed sequential multiplier architecture and implemented on an

FPGA platform. These implementation results of the proposed architecture are compared

with the results achieved by the multiplier architectures available in the literature.
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4.4.1 Design of Proposed Sequential Multiplier Architecture over GF(28) for Ir-

reducible Polynomials

Fig. 4.9 shows the block diagram of the sequential multiplier architecture over
GF(2%) derived from the proposed sequential multiplier architecture over GF'(2™) (section
4.3). The block diagram consists of two modules A and B and three 8-bit registers.
The multiplier takes one 8-bit input ¢, where ¢ denotes the binary representation of the
irreducible polynomial over GF(28). Module A computes the polynomial multiplication
and module B computes the modular reduction. The logic diagrams of the modules A
and B are shown in Fig. 4.10(a) and (b), respectively. The inputs of module A are a, by, p
and output is pyy:. In module A, an AND operation is performed on a with the LSB of
b i.e. by to attain 8-bit result aa. The 8-bit signal aa is bit-wise XORed with the input
p resulting in the output p,.:. The inputs of module B are a,b,t and outputs are a,e,
and b,e. In module B, b is right shifted by one bit to attain the output b,e,. a is left
shifted by one bit to attain an 8-bit result al. An AND operation is performed on ¢ with
a7 to attain an 8-bit result ¢t. The 8-bit signal ¢t is XORed with al to obtain a,.,,. Before
the multiplication operation begins, the registers Reg2 and Reg3 are initialized with the
multiplicands b and a respectively and Regl is cleared. For every clock cycle, module A
computes the new p value given by p,,; and module B computes the new a and b values
given by e, and by, respectively. The final multiplication result is given by res after 8

clock cycles.

4.4.2 Analytical Results

As presented in previous section, the proposed multiplier requires three 8-bit regis-
ters, one module A and one module B. Both module A and module B consists of eight
2-input XOR gates and eight 2-input AND gates. An 8-bit register can be realized using
eight 1-bit registers. Since the proposed architecture requires three 8-bit registers, the to-
tal 1-bit registers required is twenty-four. The shifting blocks, SL. and SR, are comprised
of only re-wiring and hence do not contribute to any complexity. Hence, the total area
complexity of the proposed architecture is sixteen 2-input XOR gates, sixteen 2-input

AND gates and twenty-four 1-bit registers. The critical path delay of the proposed multi-
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Figure 4.10: Internal circuit details of the proposed architecture.

plier is the maximum of delays of either module A or module B. It can be observed from

the architecture that the delays of module A and module B are equal i.e. (Tx + T4) ,

where T'x and T4 are the delays of a 2-input XOR gate and a 2-input AND gate, respec-
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Table 4.5: Area complexity and delay comparison of the proposed architecture with ex-

isting architectures over GF(28).

Multipliers | #XOR, | #AND || #MUX | #Registers || Latency Critical Path Delay
[18] 16 24 8 64 24 (Ta+ Ty +To)3 + Tx
[19] 8 16 7% 4 8 24 8 Tx + 2Ty + Ty + 9Tp
[20] 8 8 17 24 16 Tx + Ty
[21] 16 32 8 + 8¢ 24 8 Tx + T4
[22] 66 0 138 55 2 ATx + 2Ty

Proposed 16 16 0 24 8 Tx +Ty

20OR gates; P1-to-2 DMUX; “Inverter.

tively. Hence, the critical path delay of the multiplier is computed as (Tx +74). Since the
multiplication of two 8-bit elements can be computed over eight iterations, the resultant

latency is eight clock cycles.

Table 4.5 presents the comparison of number of gates, latency and critical path of
the proposed architecture compared to other multiplier architectures [18-22] available in
the literature. It may be noted that Ty, Tp and T); denotes the delay of an inverter,
2-input OR gate and 2:1 MUX, respectively. The comparison of area complexity in terms
of gate count cannot provide a clear difference among the multipliers considered. A better
area-complexity comparison can be achieved using the transistor count parameter. Since
latency alone cannot achieve a fair comparison of computation time, total delay as a

product of latency and critical path is considered.

Table 4.6 provides the comparison of area complexity(number of transistors), total
delay (latency x critical path) and ADP (#Transistors x ns). In order to estimate the
transistor count of individual gates, traditional CMOS logic transistor counts [55] are
used: six transistors for a 2-input XOR gate, six for a 1-bit 2:1 MUX, six for a 1-bit
1:2 DMUX, six for a 2-input OR gate, six for a 2-input AND gate and eight for a 1-bit
register. Some real time circuits from STMicroelectronics [56] are considered to estimate
the critical path delay of the multipliers. The typical propagation delay (tpp) of the
respective gates is considered to ensure fair comparison. The circuits used are M7T4HC86

(XOR gate, tpp = 12ns), M7T4HC257 (MUX, tpp = 11ns), M74HCO8 (AND gate, tpp =
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Table 4.6: Comparison of transistor count, latency, critical path delay, total delay, area-

delay product, % reduction in area and % reduction in ADP of the proposed architecture

with existing architectures over GF(2%).

CP || Total Delay | ADP | %Reduction | %Reduction
Multipliers || #Transistors || Latency
(ns) (ns) (x10%) in Area in ADP
[18] 800 24 78 1872 1497.6 52% 96%
[19] 384 8 104 832 319.488 Equal 82%
[20] 390 16 18 288 112.32 Equal 50%
[21] 544 8 18 144 78.336 29% 20%
[22] 1664 2 60 118 196.352 7% 1%
Proposed 384 8 18 144 55.296 - -
1600 - I (18]
1 I (19]
1400 I (20]
—_ 1 I (21
o 12001 — 12
.-8 10004 [ Proposed
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& 800-
P 4
¥ 600+
g ]
200 A
04

Multipliers

Figure 4.11: Area complexity comparison of the proposed architecture with existing ar-

chitectures over GF(2%).

6ns), M74HC32 (OR gate, tpp = 8ns) and M74HC04 (INVERTER, tpp = 8ns).

Fig. 4.11 and Fig. 4.12 illustrates the histograms plotted for area complexity and
ADP, respectively, of the proposed multiplier and various multipliers reported in the
literature. It can be observed from the results that the proposed multiplier achieves low
ADP compared to existing sequential multipliers available in the literature. It may also
be noted that the area complexity is low for the proposed architecture compared to the
multipliers [18, 21, 22| while its same as that of the multipliers [19,20]. However, the

proposed multiplier achieves low ADP compared to all the multipliers [18-22]. Moreover,
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the delay of the proposed multiplier is low compared to the sequential multipliers [18-21]
while requiring slightly more delay compared to the sequential multiplier [22]. The critical
path delay of the proposed design is also low compared to multipliers [18,19,22] indicating

that it can operate at higher frequencies.

4.4.3 Implementation Results

The performance of the proposed sequential multiplier architecture is verified by
designing AES and Twofish cryptographic algorithms and implementing them on FPGA
platform. The implementation results of these two algorithms are presented in the fol-

lowing sub-sections.

4.4.3.1 FPGA implementation of AES

The proposed sequential multiplier architecture over GF(28) is employed to realize
the AES algorithm and is implemented on an FPGA platform. The AES is a symmetric-
key cryptographic algorithm developed based on a substitution-permutation structure
using block-cipher technique. The block size of the plaintext to be encrypted is 128 bits
with the key size options of 128, 192 and 256 bits. In this work, the key size of 128
bits is used for the hardware implementation on the FPGA device [57] and hence the
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Table 4.7: FPGA implementation results of AES.

Multipliers
[20] [22] Proposed
Metrics

Total Delay (ns) 78.371 || 58.693 60.327
Area (#Slices) 12981 15793 10097
Power (V) 0917 | 0459 | 0.263

ADP (#Slices x ns)(x103) || 1017.334 || 926.939 | 609.122
PDP (W X ns) 71.87 26.94 15.87

algorithm is performed for 10 rounds. The Verilog models for AES encryptor-decryptor
are developed employing the proposed sequential multiplier and the sequential multi-
pliers [20, 22] available in the literature to perform finite field multiplications. These
Verilog models are simulated and synthesized using Xilinx Vivado 2014.2 software tool
to verify their functionality. The synthesized netlist is implemented on a Xilinx Virtex-7
(XC7VX1140TFLG1930-1) FPGA prototype board. The experimental setup of the FPGA
implementation of AES is shown in Fig. 4.13(a). The AES encryption and decryption is
performed with Plaintext and Key values as 0x00112233445566778899AABBCCDDEEFF
and 0x000102030405060708090A0BOCODOEOF and the Ciphertext obtained is 0x69C4E
0D86A7B0430D8CDB78070B4C55A and the simulation waveforms are shown in Fig.
4.13(b) and (c).

The delay, area, power consumption, ADP and PDP results are computed using
the device utilization summary and presented in Table 4.7. The area complexity, power
consumption, ADP and PDP results are also plotted as shown in Fig. 4.14(a)-(d), re-
spectively. It is clear from the histogram (see Fig. 4.14) that the proposed multiplier
requires low area complexity, power consumption, ADP and PDP compared to the ex-
isting multipliers. More specifically, the proposed multiplier achieves reduction of about
22%, 1%, 40% & T7% in area complexity, power consumption, ADP and PDP compared
to the multiplier [20]. Similarly, the proposed multiplier also achieves reduction of about
36%, 42%, 34% & 41% in area complexity, power consumption, ADP and PDP compared
to the multiplier [22]. These improvements achieved by the proposed multiplier in area

complexity, power consumption, ADP and PDP indicates an efficient design in both area
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Figure 4.13: Experimental setup and simulation of AES.
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Figure 4.14: FPGA implementation results of AES.

4.4.3.2 FPGA implementation of Twofish

Table 4.8: FPGA implementation results of Twofish.

Multipliers
[20] [22] Proposed
Metrics

Total Delay (ns) 106.009 85.359 91.870
Area (#Slices) 15805 19805 15148
Power (W) 0.654 0.274 0.171

ADP (#Slices x ns)(x10?) || 1675.472 || 1690.535 | 1391.647
PDP (W x ns) 69.33 23.39 15.71
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Figure 4.15: Experimental setup and simulation of Twofish.
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Figure 4.16: FPGA implementation results of Twofish.

The Twofish cryptographic algorithm is developed based on Fiestel structure and the
block cipher encryption technique. The block size of the plaintext to be encrypted is 128
bits with the key size options of 128, 192 and 256 bits. In this work, the key size of 128 bits
is used for the hardware implementation on the FPGA device [58]. The Verilog models for
Twofish encryptor-decryptor are developed employing the proposed sequential multiplier
and the sequential multipliers [20, 22] available in the literature to perform finite field
multiplications. These Verilog models are simulated and synthesized using Xilinx Vivado
2014.2 software tool to verify their functionality. The synthesized netlist is implemented
on a Xilinx Virtex-7 (XC7VX1140TFLG1930-1) FPGA prototype board. The experimen-
tal setup of the FPGA implementation of Twofish algorithm is shown in Fig. 4.15(a).
The Twofish encryption and decryption is performed with Plaintext and Key values
as 0x00112233445566778899AABBCCDDEEFFE and 0x0000000000000000000000000000
0000 and the Ciphertext obtained is 0x1242FAE0702A08D0903708274A6831D7 and the
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simulation waveforms are shown in Fig. 4.15(b) and (c).

The delay, area, power consumption, ADP and PDP results are computed using
the device utilization summary and presented in Table 4.8. The area complexity, power
consumption, ADP and PDP results are also plotted as shown in Fig. 4.16(a)-(d), re-
spectively. It is clear from the histogram (see Fig. 4.16) that the proposed multiplier
requires low area complexity, power consumption, ADP and PDP compared to the ex-
isting multipliers. More specifically, the proposed multiplier achieves reduction of about
4.2%, 73%, 16% & 77% in area complexity, power consumption, ADP and PDP compared
to the multiplier [20]. Similarly, the proposed multiplier also achieves reduction of about
23%, 37%, 17% & 32% in area complexity, power consumption, ADP and PDP compared
to the multiplier [22]. These improvements achieved by the proposed multiplier in area
complexity, power consumption, ADP and PDP indicates an efficient design in both area

and power without much increase in delay.

4.5 Conclusion

In this chapter, a sequential polynomial basis multiplier architecture over GF(2™)
is realized for the proposed algorithm. The area complexity and delay of the proposed
multiplier are estimated and performance is compared with other sequential multipliers
available in the literature. It may be concluded from the comparisons of the estimated
results that the proposed multiplier achieves low area complexity for generic irreducible
polynomials of degree m. The resultant area-delay product of the proposed multiplier
is also low when compared to other multipliers, indicating an efficient multiplier design
in terms of both area and delay. From the ASIC and FPGA synthesis results of the
multipliers, it can be concluded that the proposed sequential multiplier achieves low area
complexity, power consumption, area-delay product and power-delay product compared
to the existing multipliers. In addition, a sequential multiplier architecture over GF(28) is
derived from the sequential multiplier architecture over GF(2™). The area complexities
and delay of the proposed multiplier is estimated and performance is compared with
other sequential multipliers available in the literature for m = 8. The Verilog models of

two cryptographic algorithms, AES and Twofish, are developed employing the proposed
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multiplier and the multipliers available in the literature. From the FPGA synthesis results
of AES and Twofish algorithms, it can be concluded that the proposed multiplier achieves
low area complexity, power consumption, area-delay product and power-delay product
compared to the existing multipliers. The next chapter presents the design of the proposed

systolic multiplier for irreducible polynomials.




Chapter 5

Low-power and Area-Efficient Systolic Multipliers

over Polynomial Basis

This chapter presents an interleaved multiplication algorithm derived from a conven-
tional interleaved multiplication algorithm available in the literature. A systolic multiplier
architecture over GF(2™) for irreducible polynomials is designed based on the proposed
algorithm. The performance of the proposed systolic multiplier architecture is computed
analytically and compared with the multiplier architectures available in the literature.
In addition, the analytical results are also verified by implementing the proposed archi-
tecture on Field Programmable Gate Array (FPGA) and Application Specific Integrated
Circuit (ASIC) technologies and the results are compared with the existing architectures
available in the literature. Moreover, the Verilog models of two cryptographic algorithms,
AES and Twofish, are developed employing the proposed systolic multiplier and the mul-
tipliers available in the literature. These verilog models are implemented on FPGA to
compute the performance improvement achieved by the proposed multiplier compared to

the systolic multipliers available in the literature.

5.1 Introduction

The design of finite field multipliers employing systolic architectures tend to achieve
high speeds since same hardware blocks are replicated to obtain a parallel structure.

Hence, these architectures are preferred for applications with strict speed constraints
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such as defence, network servers, etc. However, the area complexity of these systolic

architectures is high and there is a need to reduce the area complexity.

In this work, a modified interleaved multiplication algorithm is derived from a con-
ventional interleaved multiplication algorithm to realize systolic multipliers. Subsequently,
an efficient systolic polynomial basis multiplier, that supports multiplication of any two
arbitrary finite field elements over GF'(2™) for irreducible polynomials, is designed based
on the proposed algorithm. The area complexity and delay of the proposed systolic
multiplier over GF'(2™) is estimated and its performance is compared with existing sys-
tolic multipliers [20,23-38]. It is observed that the proposed systolic multiplier achieves
reduction in area complexity and area-delay product (ADP) over the existing systolic
multipliers for a field of order m = 163. The proposed multiplier and some existing
multipliers are implemented using ASIC and FPGA technologies and the implementation
results shows that the proposed systolic multiplier achieves reduction in area complexity,

power consumption, ADP and power-delay product (PDP) over existing multipliers.

In addition, a systolic multiplier architecture over GF(28) is designed for irreducible
polynomials as an example. The area complexity and delay of the proposed multiplier
are estimated and performance comparison with the existing systolic multipliers [20, 23—
38] is also presented. The proposed architecture achieves reduction in area complexity
and ADP over the best of existing multipliers for m = 8. In order to evaluate the
performance of the proposed multiplier in a cryptographic application, the Verilog models
of Advanced Encryption Standard (AES) and Twofish algorithms are developed employing
the proposed systolic multiplier and other multipliers available in the literature. These
models are implemented on FPGA device and the device utilization summary shows that
the proposed multiplier achieves low area complexity, low power consumption, less ADP

and PDP over existing multipliers.

5.2 Proposed Interleaved Multiplication Algorithm

Let A(x) and B(x) be two arbitrary elements of GF(2™) expressed as
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Let C(x) € GF(2™) be the product polynomial of the two elements A(z) and B(x).

C(z) = A(z) x B(x)
= A(z) x be (5.2)

= boA(x) + bz A(x) + box? A(x) + - + by12™ T A(2)
It may be observed from Eqn. (5.2) that C'(z) is the summation of the multiplication
result of b; and A(z)z’; for all i« = 0,1,--- ;m — 1 and the entire summation can be
carried out in m iterations. A(x)z’ is calculated in the modular reduction step which is
then accumulated in each iteration if b; = 1. On the contrary, A(z)z® is not considered
for the summation if b; = 0. Here, the summation is performed using the exclusive-OR
(XOR) operation of each b; A(z)x’; for alli = 0,1,--- ,m — 1, since the addition is simply
an XOR operation over GF'(2). Hence, the calculation of C'(z) in Eqn. (5.2) can be
transformed into Steps 3, 4, 5 & 6 in Algorithm 5.1. Here, p = (pj—1,- -+ ,P1,P0) acts as
the accumulator of A(x)x® and is initialized to zero at the beginning of each multiplication

operation.

The modular reduction of the conventional interleaved multiplication algorithm [54]
is performed as shown
A(z) = (A(z) x z*) mod T (x) (5.3)
Eqn. (5.3) is evaluated for each i as follows
For 7 = O:
C(z) = A(z) mod T(x) (5.4)
= (ap+ @z + -+ amaa™ ") mod (to+ tix + - + tygz™ !+ 2™)
A degree m polynomial cannot modulo divide a degree (m — 1) polynomial. Hence, this
step can be skipped.
For + = 1:
C(z) = (A(z) x &) mod T (x)
= (ap + a2 + -+ - + ap_12™) mod (to + t1x + - -+ + tp_12™ " 4 2™)
= am_1to + (@m—1t1 + a0)x + (am-1ts + a1)x> + -+ + (am-1tm—1 + am_z)2™ "
(5.5)
It can be observed that the summation in Eqn. (5.5) can be performed over m iterations.

In each iteration, T'(x) and A(x)x" are XORed and accumulated to the previous result if
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am-1=1;foralli =0,1,--- ,m—1. On the contrary, T'(x) is not considered in the above
accumulation if a,,_; = 0. Here, A(z)x® is computed by left shifting A(x) by i times; for
all i = 0,1,2,--- ,m — 1. This result is also used in the polynomial multiplication step
given above. Therefore, the modular reduction step can be transformed as Steps 7, 8, 9

& 10 in Algorithm 5.1.

Both the polynomial multiplication and modular reduction steps occur simultane-

ously resulting in an interleaved algorithm which is presented in Algorithm 5.1.

Algorithm 5.1: Proposed interleaved multiplication algorithm over GF(2™)

1 Initialization: p = 0, counter = 0
2 FOR counter =0 TO m — 1 DO
3 IF(bp==1)

4 p=pDa
5 END IF
6 b=b>1

7 Amshb = Am—1
8 a=a<1
9 IF(amsb == 1)

10 a=a®t
11 END IF
12 END FOR

5.3 Proposed Systolic Multiplier Architecture over GF(2™) for

Irreducible Polynomials

This sub-section presents the design of the proposed systolic multiplier architecture
over GF'(2™) for irreducible polynomials. The estimations of area complexity and delay
of this architecture are computed analytically and compared with the existing multipliers
available in the literature. The functionality of the proposed architecture is implemented
using FPGA and ASIC technologies. These analytical and implementation results of the
proposed architectures and multipliers available in the literature are also presented in the

following sub-sections.
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5.3.1 Design of Proposed Systolic Multiplier Architecture over GF(2™) for Irre-

ducible Polynomials

A() Al AZ

l)j+1=bj-1')j+bj-AX}’ ‘X}=PJ-+AJ~ Aj+1=Ajm0dT
(b) Logic function of Y (j) node (¢) Logic function (d) Logic function of Z(j)
of X(j) node node

Figure 5.1: SFG derived from the proposed algorithm.

A signal flow graph (SFG) is realized from Algorithm 5.1, as shown in Fig. 5.1(a).
The SFG consists of m addition nodes X (j), m decision nodes Y (j), and (m — 1) modular
reduction nodes Z(j). The logic functionality of these nodes are shown in Fig. 5.1(b)-(d).
Here, Ay is the binary representation of A(x), A;1; is the result of the modular reduction
of A; for the j™ iteration, P;; is the result of the decision node for the j™ iteration, X;
is the result of the addition node X (j) for the j'" iteration, T is the binary representation
of the irreducible polynomial T'(x), b; is the i*™® coefficient of B(x), and C is the binary
representation of the final product C'(x). Node X (j) performs a bit-addition operation on
the partial results P; and A; using the XOR operation. Node Y'(j) performs the decision

(or selection) operation where it selects between the partial results P; and X using the
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(b) Realization of PE

Figure 5.2: Cut-set retiming of the SFG.

selection input b;. Node Z(j) performs the modular reduction of the degree of A; by one,
and A;i; gives the result. Here, ¢ denotes the index of the coefficient of the polynomial

under consideration, and j denotes the iteration count.

Figure 5.2(a) shows the proposed cut-set retiming [59] of the SFG, which is per-
formed to obtain a pipelined structure with reduced critical path delay. The proposed
cut-set retiming allows one addition node, one decision node, and one modular reduction
node in each iteration of the cut-set, thus enabling a reduced critical path. It also elim-
inates the data dependency between the addition node and the modular reduction node
by performing them in a single iteration. The critical path after the proposed cut-set
retiming amounts to max {Txn, Tyn, Tzn}, where Txn, Ty n, and Ty are the computa-

tion times of the addition node, decision node, and modular reduction node, respectively.
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Figure 5.3: Proposed systolic multiplier using PEs realized from the SFG.

Other variations of the cut-set retiming have been considered, and the cut-set retiming
proposed in Fig. 5.2(a) is found to provide a good trade-off between the critical path and
the latency. Further, the achieved trade-off is found to be comparable to, or better than
similar structures that are reported in the literature. Each iteration of the proposed cut-
set is wrapped into a single entity called a processing element (PE). Figure 5.2(b) shows
the grouping of the nodes of the retimed SFG into PFE's based on the proposed cut-set.
It can be observed that the PEs obtained from such a grouping of the nodes enables the
realization of a regular and modular design consisting of one addition node, one decision
node, and one modular reduction node in each PE. The addition node is realized using
one XOR operation, the decision node is realized using one 2:1 MUX operation, and the

modular reduction node is realized using one XOR operation and one 2:1 MUX operation.

Figure 5.3(a) shows the systolic design consisting of m PFE's realized from the pro-

posed cut-set retimed SFG given in Fig. 5.2(b). The (m — 1) regular PEs (i.e. PEj to
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Figure 5.4: Proposed systolic multiplier design using U-cells over GF'(2™) for irreducible

polynomials.

PE,, 5) perform the addition, decision, and modular reduction operations concurrently,
whereas the m*® PE (i.e. PE,,_;) performs only the addition and decision operations
concurrently, which is in accordance with the proposed cut-set retimed SFG. The func-
tions of these two types of PEs are shown in Fig. 5.3(b) & (¢). Each regular PE receives
Aj, P;, by and T as inputs, and computes the new A;;; and P;;; values for the next
iteration. The m'" PE receives A,,_1, Pn_1, and b,,_; from the (m — 1) regular PE,
and produces the final result of the finite-field multiplication C. The regular PE and
PE,, 1 are further decomposed into 2m U-cells and m U-cells, respectively, to derive
a regular, scalable structure, and is much simpler for implementation and optimization.

The decomposed systolic structure realized using the U-cells is shown in Fig. 5.4.




Low-power and Area-Efficient Systolic Multipliers over Polynomial Basis 7

The first set of m U-cells (corresponding to the addition and decision nodes) of a
regular PE are represented column-wise in the upper block, and the second set of m
U-cells (corresponding to the modular reduction nodes) of the same PFE are represented
column-wise in the lower block. The m U-cells (corresponding to the addition and decision
nodes) of the m'™ PE are represented in the upper block in the rightmost column. The first
set of m? U-cells perform the polynomial multiplication operation corresponding to Eqn.
(5.2), and the second set of (m? — m) U-cells perform the modular reduction operation
corresponding to Eqn. (5.5). The inputs to each cell are p; ;, a; ;, b;, and a; j,t;, apm—o ; for
the upper and lower blocks, respectively. The values p; ;,a; ; and ¢; are the " bit values
of the m-bit P;, A; and T, respectively, and a,,_»; is the (m —2)™ bit value of A;. Here, i
denotes the index of the coefficient of the polynomial under consideration, and j denotes
the iteration count. It may be noted that the a;; in the modular reduction block is left

shifted by one bit according to Eqn. (5.5).

>0
b = MUX At
q—— %)D—’l

! }

r=p.sel+(pdq).sel

sel

Figure 5.5: Internal circuit detail and logic functionality of U-cell.

The details of the circuit and the function of a U-cell are shown in Fig. 5.5. Each
U-cell consists of one XOR gate and one 2:1 MUX. According to Eqn. (5.2), the XOR
and MUX in the U-cell for the upper block are derived from the addition node and the
decision node, respectively. According to Eqn. (5.5), the XOR and MUX in the U-cell
for the lower block are derived from the modular reduction node. It can be observed that
the pipelining registers applied for the systolic structure in Fig. 5.4 enable concurrent
operations such that the critical path is minimized to (Tx + Ts), where Tx and T); are
the delays of an XOR gate and a 2:1 MUX, respectively. The gate count of the structure
is (2m? —m) XOR gates, (2m? —m) MUX gates, and m? 1-bit registers. The multiplier
produces the first output with an initial latency of m clock cycles followed by one output

for every clock cycle. Hence, the throughput is one output per clock cycle, with an initial
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latency of m clock cycles.

5.3.2 Analytical Results

The proposed systolic multiplier requires (2m? —m) XOR gates, (2m?* —m) MUXs,
and m? 1-bit registers. The critical path and latency of the proposed systolic multiplier
are (T'x + Tys) and m clock cycles, respectively. It may be noted that the proposed

multiplier gives one output in every clock cycle, with an initial latency of m clock cycles.

Table 5.1: Area complexity and delay comparison of the systolic multipliers over GF'(2™).

Multipliers #AND #XOR #MUX #Registers | Latency || Critical Path Delay
(23] 2m? 2m? 0 Tm? 3m Ta+Tx
[24] (m?)? 2m? 0 m? 3m T+ Tax
[25] 2m? —m 2m? 0 8m? —Tm 2m —1 Ty+Tx
[26] 2m? 2m? 0 3m? m+1 Ta+Tx
27] 2m? 2m? 0 3m? m+1 Ta+Tx
(28] 2m? 2m? 0 4m? 2m T+ Tx
[29] 2m? 2m? 0 m? 3m Ta+Tx
(30] m 2m? + 2m (m?/2)* 6m? + 8m 3m/2 Tap + Ty
[31] 2m? 2m? 0 Tm? 3m Ty+Tx
[32] 2m? + 3m (m? +m)® 0 3m? +4m m+1 Ty + Tsx
[33]a m? m?+2m 0 4m? + 3m 3m Ta+Tx

[33]b m? m? 0 5m? dm Ta+Tx
[34] 2m? 2m? 0 3m? m Ty+Tx
[35]a m?2 m?+2m 0 4m? + 3m 3m Ty+Tx
[35]b m? m? 0 5m? 4dm Ta+Tx
(36] m 2m + (m?/2)% | (m? 4+ m/2)* Tm? 3m/2 Tinr + Tx
[20] m2—m+1 m2—1 2m?+m—3| 2m*—m 2m Ta+Tx
[37] 2m? 2m? 2m?+m —3 m? 3m Ty+Tx
[38] 2m? + 2m 2m? + 3m 0 3m2+4m || [m/2] +1 Ty+Tx
Proposed 0 2m? —m 2m? —m m? m Ty +Tx

@4-to-1 MUX; ®3-input XOR. gate.

Table 5.1 shows a comparison of the hardware complexity, latency, and critical path
of the proposed systolic multiplier with existing systolic multipliers [20,23-38] available
in the literature. Here, T, Tx, Ty, T3x, Tiy denote the delays of a 2-input AND

gate, 2-input XOR gate, 2:1 MUX, 3-input XOR gate, and 4:1 MUX, respectively. The
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Table 5.2: Comparison of total transistor count, number of clock cycles, total delay, %
reduction in area and % reduction in ADP of the proposed systolic multiplier with existing

multipliers over GF(2'63).

CP || Total Delay | ADP | %Reduction || %Reduction
Multipliers || #Transistors || Latency
(ns) (ns) (x109) in Area in ADP
(23] 2125520 489 19 9291 19.75 60 83
[24] 2125520 489 31 15159 32.22 60 90
[25] 2326988 325 19 6175 14.37 63 7
[26] 1275312 164 19 3116 3.97 33 19
[27] 1275312 164 19 3116 3.97 33 19
[28] 1487864 326 19 6194 9.22 42 65
[29] 2125520 489 19 9291 19.75 60 83
[30] 1660644 245 28 6860 11.39 48 71
[31] 2125520 489 19 9291 19.75 60 83
[32] 1285418 164 31 5084 6.54 34 50
[33]a 1175882 489 19 9291 10.93 27 70
[33]b 1541002 489 19 9291 19.09 44 7
[34] 1275312 163 19 3097 3.95 33 19
[35]a 1175882 489 19 9291 10.93 27 70
[35]b 1382566 652 19 12388 17.13 38 81
[36] 2076620 245 40 9800 20.35 59 84
[20] 1061438 326 19 6194 6.58 20 51
[37] 2445308 489 19 9291 22.72 65 85
(38] 1284114 82 19 1558 2 33 37*
Proposed 848252 163 23 3749 3.22 - -

*%Increase in ADP; CP is the Critical Path Delay.

polynomial f(z) = 2% + 2"+ 254 23 + 1 (recommended by NIST) is taken as an example
to compare the area complexity and delay of the systolic multipliers available in the
literature. Traditional CMOS logic is used to estimate the hardware complexity, wherein
the transistor counts are six transistors for a 2-input XOR gate, 2-input AND gate, and
a 1-bit 2:1 MUX, 16 transistors for a 1-bit 4:1 MUX, and eight transistors for a 1-bit
register [55]. To estimate the delay, real-time circuits from STMicroelectronics [56] are

considered, where the typical propagation delays of gates used in the various designs are:
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2-input XOR gate (M74HCS86) tpp = 12ns, 2-input AND gate (M74HCO8) tpp = Tns,
2:1 MUX (M74HC257) tpp = 1lns, and 4:1 MUX (M74HC153) tpp = 16ns. A 3-input
XOR gate is realized using two 2-input XOR gates. Therefore, the hardware complexity
and propagation delay of a 3-input XOR gate are estimated as twelve transistors and tpp

= 24 ns, respectively.

Table 5.2 shows the hardware complexity (total transistor count), latency (number
of clock cycles), critical path delay (CP), total delay, and percentage reduction in the
hardware complexity of all the multipliers considered. Here, the total delay is obtained
as the product of the latency and critical path delay. From Table 5.2, it may be observed
that the proposed multiplier achieves low hardware complexity when compared to existing
systolic structures that are available in the literature. Specifically, it achieves reduction
in area complexity of about 60%, 60%, 63%, 33%, 33%, 42%, 60%, 48%, 60%, 34%, 27%,
44%, 33%, 27%, 38%, 59%, 20%, 65%, and 33% for m = 163 compared to existing multipli-
ers [20,23-38], respectively. Similarly, the proposed multiplier achieves about 83%, 90%,
7%, 19%, 19%, 65%, 83%, 71%, 83%, 50%, 70%, 77%, 19%, 70%, 81%,84%, 51% and
85% compared to the systolic multipliers [20,23-37]. Moreover, the systolic multiplier [38]
requires 37% less ADP compared to the proposed multiplier due to the savings achieved
in number of clock cycles. These savings are due to the appropriate Montgomery factor
chosen by the authors to attain the lowest possible delay. However, it may be observed
that the delay of the systolic multiplier [38] increases for other Montgomery factors and
hence the delay comparison with the proposed multiplier is not totally fair. Moreover, the
proposed multiplier achieves 33% reduction in area complexity compared to the systolic

multiplier [38].

Figs. 5.6 and 5.7 shows the comparison of the area complexity and ADP, respectively,
of the proposed systolic multiplier with existing systolic multipliers for field orders m = 2
to m = 600. From Fig. 5.6, it is observed that the proposed multiplier achieves low area
complexity compared to the existing multipliers [20,23-38]. It can also be observed that
the difference in the area complexities between the proposed multiplier and the existing
multipliers increases as the order of the finite field increases. Hence, the proposed systolic
multiplier achieves better area complexity for higher-order finite fields. Moreover, the

ADP comparison depicted in Fig. 5.7 indicates that the proposed multiplier achieves
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Figure 5.7: Area-Delay Product comparison of sequential multipliers.

reduction in area complexity without much increase in delay.
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5.3.3 Implementation Results

The performance of the proposed systolic multiplier architecture and the systolic
multiplier architectures available in the literature are verified by implementing them on
ASIC and FPGA platforms. The implementation results of these architectures are pre-

sented in the following sub-sections.

5.3.3.1 ASIC Implementation Results

Table 5.3: ASIC implementation results of systolic multipliers.

Multipliers
[35] [20] Proposed
Metrics
Total Delay (ns) 13.68 7.41 3.2
Area (um?)(x10%) 12.055 | 7.057 | 4.381
0
g Power (mW) 0.7277 0.6931 0.2527
ADP (um? x ns)(x10?) 164.912 52.298 14.019
PDP (mW x ns) 9.955 5.136 0.823
Total Delay (ns) 303.51 157.78 65.2
2 Area (um?)(x10%) 4953.948 || 2985.735 || 1917.372
i Power (mW) 1755645 | 167.3967 | 95.1454
S 2 6
ADP (um* x ms)(x10°) || 1503.573 || 471.089 125.013
PDP (mW x ns)(x10%) | 53.286 | 26.412 | 6.204

The proposed systolic multiplier and the systolic multipliers [20,35] are considered
for hardware implementations since they require low area complexity compared to the
existing systolic multipliers. These multipliers are modelled in Verilog for m = 8 and
m = 163 and synthesized using Synopsys Design Vision Compiler and Synopsys 90nm
Generic Library. The delay, area complexity, power consumption, ADP and PDP of the
all the architectures are computed from the device utilization summary generated by the
synthesis tool (see Table 5.3). The area complexity, power consumption, ADP and PDP
results are also plotted for m = 8 and m = 163 as shown in Fig. 5.8(a)-(d) and Fig.
5.9(a)-(d), respectively.
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Figure 5.8: ASIC implementation results of systolic multipliers for m = 8.

It is clear from the histogram (see Fig. 5.8 and Fig. 5.9) that the proposed multi-
plier requires low area complexity, power consumption, ADP and PDP compared to the
existing multipliers. More specifically, it can be observed that the proposed multiplier
achieves reduction of about 63%, 65%, 91% & 91% in area complexity, power consump-
tion, ADP and PDP, respectively, when compared to the systolic multiplier [35] for m = 8.
Similarly, the proposed multiplier achieves reduction of about 37%, 62%, 73% & 83% in
area complexity, power consumption, ADP and PDP, respectively, when compared to the
systolic multiplier [20] for m = 8. The proposed multiplier achieves reduction of about
61%, 45%, 91% & 88% in area complexity, power consumption, ADP and PDP, respec-
tively, when compared to the systolic multiplier [35] for m = 163. Similarly, the proposed
multiplier achieves reduction of about 35%, 43%, 73% & 76% in area complexity, power
consumption, ADP and PDP, respectively, when compared to the systolic multiplier [20)]

for m = 163. Moreover, the proposed multiplier also achieves reduction in delay com-
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Figure 5.9: ASIC implementation results of systolic multipliers for m = 163.

pared to the systolic multipliers [20, 35] for m = 163. These improvements achieved by
the proposed multiplier in area complexity, power consumption, ADP and PDP indicates

an efficient design in both area and power without much increase in delay.

5.3.3.2 FPGA Implementation Results

In addition to the ASIC implementation, the functionality of the proposed multiplier
is also verified by implementing the Verilog models on FPGA platform. The Verilog
models of the proposed multiplier and the multipliers [20,35] are simulated and synthesized
using Xilinx Vivado 2014.2 tool. The synthesized netlist is implemented on a Xilinx
Virtex-7 (XC7VX1140TFLG1930-1) FPGA prototype board. The delay, area, power
consumption, ADP and PDP of the all the architectures are computed from the device
utilization summary generated by the synthesis tool (see Table 5.4). The area complexity,

power consumption, ADP and PDP results are also plotted for m = 8 and m = 163 as
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Table 5.4: FPGA implementation results of systolic multipliers.

Multipliers 35] 20] | Proposed
Metrics
Total Delay (ns) 363.36 || 96.672 || 10.552
Area (#Slices) 190 139 98
Olg Power () 0.771 | 0.692 || 0.517
ADP (#Slices x ns)(x10%) || 69.038 | 13.437 | 1.034
PDP (W x ns) 280.151 | 66.897 | 5.455
Total Delay (ms) 7.403 1.970 0.215
3 Area (#Slices) 154635 || 105787 66434
i Power (W) 3.6 6.187 2.848
= app (#Slices x ns)(x10%) || 1144.763 || 208.4 | 14.283
PDP (W x ms) 26.651 12.188 0.612

shown in Fig. 5.10(a)-(d) and Fig. 5.11(a)-(d), respectively.

It is clear from the histogram (see Fig. 5.10 and Fig. 5.11) that the proposed mul-
tiplier achieves low area complexity, power consumption, ADP and PDP among existing
multipliers. More specifically, it can be observed that the proposed multiplier achieves
reduction of about 48%, 32%, 98% & 98% in area complexity, power consumption, ADP
and PDP, respectively, when compared to the multiplier [35] for m = 8. Similarly, the
proposed multiplier achieves reduction of about 29%, 25%, 92% & 91% in area complexity,
power consumption, ADP and PDP, respectively, when compared to the multiplier [20)]
for m = 8. For m = 163, the proposed multiplier achieves reduction of about 57%, 48%,
98% & 97% in area complexity, power consumption, ADP and PDP, respectively, when
compared to the multiplier [35]. Similarly, the proposed multiplier achieves reduction of
about 37%, 53%, 93% & 94% in area complexity, power consumption, ADP and PDP,
respectively, when compared to the multiplier [20] for m = 163. Moreover, the pro-
posed multiplier also achieves reduction in delay compared to the multipliers [20, 35] for
m = 163. These improvements achieved by the proposed multiplier in area complexity,
power consumption, ADP and PDP indicates an efficient design in both area and power

without much increase in delay.
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Figure 5.10: FPGA implementation results of systolic multipliers for m = 8.

5.4 Proposed Systolic Multiplier Architecture over GF(28) for

Irreducible Polynomials

This sub-section presents the design of the proposed systolic multiplier architecture
over GF(28) for irreducible polynomials. AES and Twofish encryption algorithms are
realized using the proposed systolic multiplier architecture and implemented on an FPGA
platform. These implementation results of the proposed architecture are compared with

the results achieved by the multiplier architectures available in the literature.
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Figure 5.11: FPGA implementation results of systolic multipliers for m = 163.

5.4.1 Design of Proposed Systolic Multiplier Architecture over GF(28) for Irre-

ducible Polynomials

Figure 5.12(a) shows the proposed systolic multiplier architecture over GF(2%) de-
rived from the proposed systolic multiplier architecture over GF'(2™) (section 5.3). It
consists of 8 PEs, where seven of them are regular PE's (i.e. PEy to PFEg) that perform
polynomial multiplication and modular reduction operations concurrently whereas the 8%
PE (PE;) performs only the polynomial multiplication operation. The logic functionality
of these two types of PEs are shown in Fig. 5.12(b)-(c). PE; and the regular PEs are
decomposed into 8 V-cells and 16 V-cells, respectively, to derive a more simple, scalable
architecture. The proposed systolic multiplier realized using these V-cells is shown in Fig-
ure 5.13. Figure 5.14 shows the internal circuit detail and logic function of a V-cell. The
first set of 64 V-cells performs the polynomial multiplication operation and the second

set of 56 V-cells performs the modular reduction operation. The inputs to each cell are
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Figure 5.12: Proposed systolic multiplier realized using PFE's.

Dij, @i j, by and a; j,t;, ag ;, respectively; where ¢ denotes the index of the coefficient of the

polynomial under consideration and j denotes iteration count.

5.4.2 Analytical Results

Since the V-cell consists of an Exclusive-OR (XOR) gate and a 2:1 Multiplexer
(MUX), the gate count of the entire proposed structure can be computed as 120 XOR
gates, 120 MUX gates and 64 registers. The critical path is given by the expression
(Tx+Th), where T'x and Ty, are the delays of the XOR gate and the 2:1 MUX respectively.
The total clock cycles required by the multiplier to give the first output is 8 and thereafter
gives outputs for every clock cycle. Therefore, the throughput is 1 with an initial latency

of 8 clock cycles.
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Figure 5.14: Internal circuit detail and logic functionality of V-cell.

Table 5.5 presents the comparison of number of gates, latency and critical path of
the proposed architecture with other systolic multiplier architectures [20,23-38] available

in the literature. It may be noted that T4, T5x and Tyy; denotes the delay of a 2-input
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Table 5.5: Area complexity and delay comparison of the systolic multipliers over GF'(2%).

Multipliers || #AND #XOR #MUX || #Registers || Latency || Critical Path Delay
23] 128 128 0 448 24 Ta+ Ty
[24] (64)° 128 0 448 24 Ta+ Tsx
[25] 120 128 0 456 15 Th+Tx
[26] 128 128 0 192 9 Tyh+Tx
[27] 128 128 0 192 9 Ty +Tx
[28] 128 128 0 256 16 Ty +Tx
[29] 128 128 0 448 24 Th+Tx
[30] 8 144 (32)* 448 12 Tap +Tx
[31] 128 128 0 448 24 Ta+Tx
[32] 152 (72)° 0 224 9 T+ T3x
[33]a 64 80 0 280 24 Ta+Tx

[33]b 64 64 0 320 32 Ta+Tx
[34] 128 128 0 192 8 Ta+Tx
[35]a 64 80 0 280 24 Ta+Tx
[35]b 64 64 0 320 32 Th+Tx
(36] 8 16 + (32)° | (68)¢ 448 12 Tynr + Tx
[20] o7 63 133 120 16 Ty +Tx
[37] 128 128 133 448 24 Ty +Tx
[38] 144 152 0 224 5 Ty +Tx
Proposed 0 120 120 64 8 Ty +Tx

a4-to-1 MUX; b3-input XOR gate.

AND gate, 3-input XOR gate and 4:1 multiplexer (MUX), respectively. The comparison

of area complexity in terms of gate count cannot provide a clear difference among the

multipliers considered. A better hardware complexity comparison can be achieved using

the transistor count parameter. Moreover, latency alone cannot achieve a fair comparison

of computation time; total delay as a product of latency and critical path must be con-

sidered. In order to estimate the area complexity, traditional CMOS logic is used wherein

the transistor counts are six transistors for 2-input XOR gate, 2-input AND gate, 1-bit

2:1 MUX, sixteen transistors for 1-bit 4:1 MUX| eight transistors for a 1-bit register.
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Table 5.6: Comparison of total transistor count, number of clock cycles, total delay, %
reduction in area and % reduction in ADP of the proposed systolic multiplier with existing

multipliers over GF(2%).

CP || Total Delay | ADP | %Reduction || %Reduction
Multipliers || #Transistors || Latency
(ns) (ns) (x10°) in Area in ADP
(23] 5120 24 19 456 2.33 61 84
[24] 5632 24 31 744 4.19 65 91
[25] 5088 15 19 285 1.45 61 75
[26] 3072 9 19 171 0.53 36 32
[27] 3072 9 19 171 0.53 36 32
[28] 3584 16 19 304 1.09 45 67
[29] 5120 24 19 456 2.33 61 84
[30] 4624 12 28 336 1.55 57 76
[31] 5120 24 19 456 2.33 61 84
[32] 4144 9 31 279 1.16 52 69
[33]a 3152 24 19 456 1.44 38 75
[33]b 3376 32 19 608 2.05 42 82
[34] 3072 8 19 152 0.47 36 23
[35]a 3152 24 19 456 1.44 38 75
[35]b 3376 32 19 608 2.05 42 82
[36] 5456 12 40 480 2.62 64 86
[20] 2478 16 19 304 0.75 21 52
[37] 5918 24 19 456 2.7 67 86
(38] 3568 5 19 95 0.34 45 5*
Proposed 1952 8 23 184 0.36 - -

*%Increase in ADP; CP is the Critical Path Delay.

Real-time circuits from STMicroelectronics are considered to estimate the delay
using the typical propagation delays of gates; XOR gate tpp = 12ns (M74HC86), AND
gate tpp = Tns (M74HCO08), 2:1 MUX tpp = 1lns (M74HC257), 4:1 MUX tpp = 16ns
(M74HC153). The 3-input XOR gate can be realized by two 2-input XOR gates. Hence,
the propagation delay is computed as tpp = 24ns and the transistor count is twelve. Table
5.6 shows the area complexity, latency, critical path delay, total delay and ADP of the
proposed systolic multiplier compared to the systolic multipliers [20,23-38] available in
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the literature for m = 8.

Fig. 5.15 and Fig. 5.16 illustrates the histograms plotted for area complexity and
ADP, respectively, of the proposed multiplier and other systolic multipliers available in
the literature. From Table 5.6, it can be observed that the proposed multiplier achieves

low area complexity compared to other systolic designs. Specifically, it achieves about

61%, 65%, 61%, 36%, 36%, 45%, 61%, 57%, 61%, 52%, 38%, 42%, 36%, 38%, 42%,
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64%, 21%, 67%, and 45% reduction in hardware complexity when compared with existing
multipliers [20,23-38], respectively. Similarly, the proposed multiplier achieves about 84%,
91%, 75%, 32%, 32%, 67%, 84%, 76%, 84%, 69%, 75%, 82%, 23%, 75%, 82%, 86%, 52%
and 86% compared to the multipliers [20,23-37]. Moreover, the multiplier [38] achieves
5% less ADP compared to the proposed multiplier due to the savings achieved in number
of clock cycles. However, the decrease in number clock cycles puts extra requirement of
hardware and hence the proposed multiplier achieves very low area complexity compared
to the multiplier [38]. The improvement achieved in area complexity and also in ADP
indicates that the proposed multiplier is an efficient design in terms of area and without

much increase in delay.

5.4.3 Implementation Results

The performance of the proposed systolic multiplier architecture is verified by de-
signing AES and Twofish cryptographic algorithms and implementing them on FPGA
platform. The implementation results of these two algorithms are presented in the fol-

lowing sub-sections.

5.4.3.1 FPGA implementation of AES

Table 5.7: FPGA implementation results of AES.

Multipliers
[27] [34] 20] Proposed
Metrics

Total Delay (ns) 66.175 || 58.159 | 119.856 | 70.557
Area (#Slices) 452871 || 575882 || 374933 279055
Power (W) 5.749 6.177 7.583 2.976

ADP (#Slices x ns)(x10%) || 29.97 33.49 44.94 19.69
PDP (W x ns) 380.44 | 359.25 | 908.87 209.98

The proposed sequential multiplier architecture over GF(28) is employed to realize
the AES algorithm and implemented on FPGA platform. The AES is a symmetric-key

cryptographic algorithm developed based on a substitution-permutation structure using
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Figure 5.17: FPGA implementation results of AES.

block-cipher technique. The block size of the plaintext to be encrypted is 128 bits with the
key size options of 128, 192 and 256 bits. In this work, the key size of 128 bits is used for the
hardware implementation on the FPGA device [57] and hence the algorithm is performed
for 10 rounds. The Verilog models for AES encryptor-decryptor are developed employing
the proposed sequential multiplier and the sequential multipliers [20,27,34] available in
the literature to perform finite field multiplications. These Verilog models are simulated
and synthesized using Xilinx Vivado 2014.2 software tool to verify their functionality.
The synthesized netlist is implemented on a Xilinx Virtex-7 (XC7VX1140TFLG1930-1)
FPGA prototype board. The experimental setup of the FPGA implementation of AES
is same as described in the previous chapter. The AES encryption and decryption is
performed with Plaintext and Key values as 0x00112233445566778899AABBCCDDEEFF
and 0x000102030405060708090A0BOCODOEOF and the Ciphertext obtained is 0x69C4E
0D86A7B0430D8CDB78070B4CH5A.
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The delay, area, power consumption, ADP and PDP results are computed using
the device utilization summary and presented in Table 5.7. The area complexity, power
consumption, ADP and PDP results are also plotted as shown in Fig. 5.17(a)-(d), re-
spectively. It is clear from the histogram (see Fig. 5.17) that the proposed multiplier
requires low area complexity, power consumption, ADP and PDP compared to the exist-
ing multipliers. More specifically, it can be observed that the proposed systolic multiplier
achieves about 48%, 51% & 60% less power and about 38%, 51% & 25% less area when
compared to the systolic multipliers [20,27,34], respectively. Moreover, the proposed mul-
tiplier achieves about 34%, 41% & 56% less ADP and about 44%, 41% & 76% less PDP
when compared to the systolic multipliers [20,27, 34], respectively. These improvements
achieved by the proposed multiplier in area complexity, power consumption, ADP and

PDP indicates an efficient design in both area and power without much increase in delay.

5.4.3.2 FPGA implementation of Twofish

Table 5.8: FPGA implementation results of Twofish.

Multipliers
[27] [34] 20] Proposed
Metrics

Total Delay (ns) 81.471 || 73.311 | 134.758 | 85.117
Area (#Slices) 516712 || 616823 || 435979 328553
Power (W) 6.699 7.286 8.651 3.589

ADP (#Slices x ns)(x10°) || 42.1 45.22 58.75 27.97
PDP (W x ns) 045.77 || 534.14 || 1165.79 305.49

The Twofish cryptographic algorithm is developed based on Fiestel structure and
the block cipher encryption technique. The block size of the plaintext to be encrypted
is 128 bits with the key size options of 128, 192 and 256 bits. In this work, the key
size of 128 bits is used for the hardware implementation on the FPGA device [58]. The
Verilog models for Twofish encryptor-decryptor are developed employing the proposed
sequential multiplier and the sequential multipliers [20,27,34] available in the literature
to perform finite field multiplications. These Verilog models are simulated and synthe-

sized using Xilinx Vivado 2014.2 software tool to verify their functionality. The syn-




Low-power and Area-Efficient Systolic Multipliers over Polynomial Basis 96

6x10° -
I [27] 8 - 27]
5x10° I [34] 7 I [34]
I (20] I [20]
= 4x10°- B Proposed 6 I Proposed
k] gs
= . £
g 3x10° 1 § 4
©
g 2x10° - e 3
2
1x10°
1
0 04
Multipliers Multipliers
(a) Area Complexity (b) Power consumption
6x107 - 1200 -
i 1000 [27]
5x10" I [27] | I [34]
. I [34] I [20]
@ 7 I [20] 800 I Proposed
c 4x10 —_
» I Proposed 2
7]
8 3x10" X 5004
2 z
7]
#* . o
= i 400
o 2x10 Q 400
< 1x10" 1 200+
0 0
Multipliers Multipliers
(¢) Area-Delay Product (d) Power-Delay Product

Figure 5.18: FPGA implementation results of Twofish.

thesized netlist is implemented on a Xilinx Virtex-7 (XC7VX1140TFLG1930-1) FPGA
prototype board. The experimental setup of the FPGA implementation of Twofish is
same as described in the previous chapter. The Twofish encryption and decryption is
performed with Plaintext and Key values as 0x00112233445566778399AABBCCDDEEFF
and 0x000102030405060708090A0BOCODOEOF and the Ciphertext obtained is 0x1242FAE
0702A08D0903708274A6831D7.

The delay, area, power consumption, ADP and PDP results are computed using
the device utilization summary and presented in Table 5.8. The area complexity, power
consumption, ADP and PDP results are also plotted as shown in Fig. 5.18(a)-(d), respec-
tively. It is clear from the histogram (see Fig. 5.18) that the proposed multiplier requires
low area complexity, power consumption, ADP and PDP compared to the existing multi-
pliers. More specifically, it can be observed that the proposed systolic multiplier achieves

about 46%, 50% & 58% less power and about 36%, 46% & 24% less area when compared
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to the systolic multipliers [20, 27, 34], respectively. Moreover, the proposed multiplier
achieves about 33%, 38% & 52% less ADP and about 44%, 42% & 73% less PDP when
compared to systolic multipliers [20,27,34], respectively. These improvements achieved by
the proposed multiplier in area complexity, power consumption, ADP and PDP indicates

an efficient design in both area and power without much increase in delay.

5.5 Conclusion

In this chapter, a systolic polynomial basis multiplier architecture over GF(2™) is
realized for the proposed algorithm. The area complexities and delay of the proposed
multiplier are estimated and performance is compared with other systolic polynomial ba-
sis multipliers available in the literature. It may be concluded from the comparisons of
the estimated results that the proposed architecture over GF(2™) for irreducible polyno-
mials achieves low area complexity compared to the existing multipliers. The area-delay
product of the proposed multiplier is also low when compared to other multipliers, in-
dicating an efficient multiplier design in terms of both area and delay. From the ASIC
and FPGA synthesis results of the multipliers, it can be concluded that the proposed
systolic multiplier achieves low area complexity, power consumption, area-delay product
and power-delay product compared to the existing multipliers. A systolic multiplier archi-
tecture over GF'(2%) is derived from the sequential multiplier architecture over GF(2™).
The area complexity and delay of the proposed multiplier are estimated and performance
is compared with other systolic multipliers available in the literature. The Verilog models
of two cryptographic algorithms, AES and Twofish, are developed employing the pro-
posed multiplier and the multipliers available in the literature. From the FPGA synthesis
results of AES and Twofish algorithms realized using the proposed multiplier, it can be
concluded that the proposed multiplier achieves low area complexity, power consumption,
area-delay product and power-delay product compared to the existing multipliers. The
next chapter presents the design of the proposed systolic multipliers for special classes of

polynomials, i.e. trinomials and pentanomials.




Chapter 6

Low-power and Area-Efficient Systolic Multipliers for

Special Classes of Irreducible Polynomials

This chapter presents the Pre-Computation (PC) technique proposed to reduce the
computational complexity of the interleaved multiplication algorithm presented in chap-
ter 5. The proposed PC technique can be applied for any special classes of irreducible
polynomials such as trinomials, pentanomials, all-one polynomials and equally-spaced
polynomials. However, since trinomials and pentanomials are widely used for real-time
applications, systolic multiplier architectures for these special polynomials are developed.
Two systolic multiplier architectures over GF'(2™) for irreducible trinomials and pen-
tanomials, respectively, are designed based on the proposed PC technique. The perfor-
mance of these proposed systolic multiplier architectures are computed analytically and
compared with their respective multiplier architectures available in the literature. In ad-
dition, the functionality of these proposed architectures are verified by implementing on
FPGA prototype board using Xilinx Vivado Design Suite. The proposed architectures
are also synthesized on ASIC using Synopsys Design Vision Compiler for 90nm technol-
ogy library. These implementation results are compared with the results obtained for the

systolic architectures available in the literature.
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6.1 Introduction

In polynomial basis representation, extended binary fields GF'(2™) are generated
using irreducible polynomials. An irreducible polynomial in the field GF(2™) is defined
as a polynomial that cannot be factored into two or more polynomials. These irreducible
polynomials can be classified into equally spaced polynomials, all-one polynomials, tri-
nomials and pentanomials. The equally spaced polynomials and all-one polynomials are
not widely used due to their scarcity. However, up to 5148 irreducible trinomials were
identified for field orders of m < 10,000 [39] which is approximately half of the m values
and pentanomials exist for all the fields in which trinomials are absent. Moreover, efficient
realization of hardware structures is possible when employing trinomials and pentanomi-
als. Hence, multipliers designed for trinomials and pentanomials are recommended by
NIST for use in cryptographic applications and hence there is a need to design efficient

multiplier architectures for these special classes of polynomials.

In the previous chapter, a modified interleaved multiplication algorithm is derived for
performing multiplications over GF'(2™) for irreducible polynomials. The computational
complexity of this multiplication algorithm for irreducible trinomials and pentanomials
can be further reduced by employing a novel pre-computation (PC) technique proposed
in this chapter. Subsequently, two systolic multiplier architectures over GF'(2™) for irre-
ducible trinomials and pentanomials are developed for the proposed algorithm. The area
complexity and delay of the two proposed systolic multipliers is estimated and their perfor-
mance is compared with systolic multipliers available in the literature for trinomials and
pentanomials. It is observed that the proposed systolic multiplier for trinomials achieves
reduction in area complexity and ADP compared to the systolic multipliers [40-49] for
the trinomial 223 + 2™ 4 1. Similarly, the proposed systolic multiplier for pentanomi-
als achieves reduction in area complexity compared to the systolic multipliers [47,50-52]
for the pentanomial 228 + z'2 + 27 + 2% + 1. These trinomials and pentanomials are
recommended by NIST to be used in cryptographic applications. In order to verify the
functionality, the proposed multipliers and some of the existing multipliers are imple-

mented on ASIC and FPGA technologies.
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6.2 Proposed Interleaved Multiplication Algorithm for Irreducible

Trinomials and Pentanomials

In this sub-section, the modified interleaved multiplication algorithm employing the
proposed Pre-Computation (PC) technique is presented. The generic expressions of tri-
nomials and pentanomials that are used for the derivation of the proposed algorithm are

filr) =a™ + 28 + 1 and fo(z) = 2™ + 2% + 2% + 2k + 1.

Algorithm 6.1: Interleaved multiplication algorithm over GF(2™) for irreducible
polynomials

1 Inputs: A;, B;, T

2 Result: P,

3 Initialization: Py = {0,0,0,---,0}

4 FOR j=0TO m—1DO

5 IF(b; ==1)

6 Pi1= P& A,
7  ELSE

8 P 1 =P;

9 END IF

0w A=A4«1
11 IF(CLm,Lj == 1)

12 Ajy = Aj eT
13 ELSE

14 Ajp = Aj

15 ENDIF

16 END FOR

Algorithm 5.1 derived in the previous chapter is rewritten as shown in Algorithm
6.1. The modifications proposed for Algorithm 6.1 for the iterations j = 0,7 =1 tom—2

and j = m — 1 are described as follows.
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For 3 = O:
Consider the Steps 3-7 of Algorithm 6.1 given as

IF by=1
P =PFy® Aq
ELSE (6.1)
P =P
ENDIF

P is initialized to zero at the beginning of the algorithm i.e. Py = (0,0,0,---,0). The
[F-ELSE condition in Eqn. (6.1) can be realized using MUX operation having Py =
(0,0,0,---,0) and Ay = (apo,@1,0,020, - ,am-1,0) as inputs with by as the selection

input given as

(bO&PO) OR (by & (P @ Ay))
=(0,0,0,---,0)OR (by & Ap) |

=by & Ay

In Eqn. (6.2), the logical AND operation of by with Ay is performed in a bitwise manner

i.e. logical AND operation of b is performed with each a;, for : =0,1,2,--- ;m — 1.

In Step 8 of Algorithm 6.1, A is shifted left by one bit to obtain Ay = (Go,0,G1,0, G20,
75%—1,07 dk,o; &k+1,0, ce 7&m—2,0a &m—l,()) = (07 0,0, 1,0, " ** 5 Ak—2,0, Ak—1,0, @k,0, " ", Am—3,0,

am—2,0). Here, it may be noted that k& can be the middle term of the trinomial f;(x) or it

can be ki, ko, k3 of the pentanomial fy(x).

Consider the Steps 9-13 of Algorithm 6.1 given as

IF ap10=1
A =Ay®T
ELSE (6.3)
A = A
ENDIF

In Eqn. (6.3), T' can be an irreducible trinomial or pentanomial which is represented as

T = (tp,0,0,- -+ ,t,,0,0,--- ,t,,), where tg = t;, = t,, = 1. The IF-ELSE condition in
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Eqn. (6.3) is evaluated for three cases as illustrated below.
Case — I: For 1+ = 0 (i.e. computation of the z° coefficient), the IF-ELSE condition in
Eqn. (6.3) can be computed using MUX operation having ago = 0 and ¢, = 1 as inputs

with a,,—1 0 as the selection input given as

a1 = (Apm-1,0& Go,0) OR (-1, & (a0 ® to))
= (am_l,o & 0) OR (am_l’o & (O @ 1))

(6.4)
— (0)OR (apm-10& 1)

= Qm-1,0

Case — II: For i = k , the IF-ELSE condition in Eqn. (6.3) can be computed using MUX
operation having ayo = ax—10 and ?; = 1 as inputs with a,,_10 as the selection input

given as

ap,1 = (Tm—1,0 & ar0) OR (am—10& (aro B tr))
= (Am—1,0 & a_10) OR (am—10& (ak_10® 1))

(6.5)
= (m-1,0& ar—1,0) OR (aym—10 & k1)

= Qpm-1,0 D Ax—1p0

Case — III: For all 4, where ¢ # 0, ¢ # k and i # m (i.e. computation of all coefficients
except the 20 coefficient, 2* coefficient and 2™ coefficient), the IF-ELSE condition in Eqn.
(6.3) can be computed using MUX operation having a;o = a;—10 and t; = 0 as inputs

with a,,—1 0 as the selection input given as

01 = (Am-1,0& Gi0) OR (ay—_10& (a;0 B t;))
= (Am-10& ai—10) OR (am-10 & (ai—10 © 0))
(6.6)
= (@m-10& a;—10) OR (am-10& a;_1p)
= Qi-1,0
The computations for i = m coefficient of T" are ommitted since there are no computations

for this coefficient in Algorithm 6.1.
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For 3 =1,2,3,---, m-2:

Consider the Steps 3-7 of Algorithm 6.1 given as

[F b =1
P =P ®© A4
ELSE (6.7)
Pini =1
ENDIF

The IF-ELSE condition in Eqn. (6.7) can be realized using the MUX operation having
Pj = (poj,Prj>P2js "+ »Pm—1,5) and Aj = (ao, a1,5, a2, , Gm—1,) as inputs with b; as

the selection input given as
Py = (5,& P) OR (b, & (P & A))) (6.5)

In Eqn. (6.8), the logical AND operation of b; with P; and b; with (P; @ A;) is performed

in a bitwise manner i.e. logical AND operation of l_)j is performed with each p; ;, for all

i=0,1,2,--- ,m— 1 and logical AND operation of b, is performed with each (p; ; ® a; ;),

foralli=0,1,2,--- ,m— 1.

In Step 8, Ay is shifted left by one bit to obtain Aj = (Goj, (14, A2, ,Ak—1,0, Qk,0; Akt1,0,
: adm—Z,Oa dm—l,o) = (0, 0,0, 1,05 ** » Ak—2,0, Ak—1,0, Ak,0, " " * » Am—3,0, am—z,o)-

Consider the Steps 9-13 of Algorithm 6.1 given as

IF ap1;=1
A=A 0T
ELSE (6.9)
Ajir = 4
ENDIF

The IF-ELSE condition in Eqn. (6.9) is evaluated for three cases, i.e. i = 0, i = k and
for remaining ¢ values, in a similar manner as derived for the 7 = 0 case.
Therefore, for i = 0 (i.e. computation of the 2° coefficient), the resultant expression can

be written as
0,11 = Qm—1,j (6.10)

For + = k, the resultant expression can be written as

Ak j+1 = Am—1,5 D Af—1,5 (6.11)
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For all i, where i # 0, 1 # k and 7 # m (i.e. computation of all coefficients except the z°

coefficient, z* coefficient and 2™ coefficient), the resultant expression can be written as
@iyl = Gim1 (6.12)

For 3 = m-1:

Consider the Steps 3-7 of Algorithm 6.1 given as

IF by y =1
Pp=Ppu 1 ® Ay
ELSE (6.13)
P =Pn
ENDIF

where, P, = (Dom, Plims P2ms*** s Pm—1.m) is the final result of the finite field multiplica-
tion operation. The IF-ELSE condition of Eqn. (6.13) can be realized using the MUX op-

eration having P, 1 = (Po.m—1, P11, P2m—15" " s Pm—1m—1) and Ay 1 = (Aom_1, @1m—1,
A2m—15° " »Qm—1,m—1) as inputs with b,,_; as the selection input given as
Py = (b1 & Pr1) OR(by—1 & (Pt @ Apy1)) (6.14)

In Eq. (6.14), the logical AND operation of b,,_; with P,,_; and the logical AND operation
of by,—1 with (P,,_1 ® A,,_1) is performed in a bitwise manner i.e. logical AND operation
of b,,_y is performed with each Dim-1, for all ¢ = 0,1,2,--- ,m — 1 and logical AND

operation of b,,_; is performed with each (p; -1 ® a;m-1), for all i =0,1,2,--- ,m — 1.

The modified interleaved multiplication algorithm over GF(2™) for trinomials and
pentanomials is proposed based on the above derivations as shown in Algorithm 6.2. It
can be observed from Eqn. (6.2), Eqn. (6.4), Eqn. (6.5), Eqn. (6.6), Eqn. (6.10), Eqn.
(6.11) and Eqn. (6.12) that they require either a single logical AND operation or a single
XOR operation or a simple rewiring as opposed to requiring one logical XOR operation,
two logical AND operations and one logical OR operation as evident in Algorithm 6.1.

This indicates reduction in computational complexity achieved by the proposed algorithm.
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Algorithm 6.2: Proposed interleaved multiplication algorithm over GF(2™) for
irreducible trinomials and pentanomials

1 Inputs: A;, B;, T

2 Result: P,

3 Initialization: Py = {0,0,0,---,0}

4 FOR7=0TO m—-1DO

s IF(j==0)

6 biga = Gi,o&bo

7 Ay=4p< 1

8 ap,1 = Am-1,0

9 g1 = Am—1,0 D Ar—10

10 a1 = Qip

11 ELSEIF(j ==m—1)

12 Pim—1 = (l_?m—l &pi,m—l) OR (by—1&(Pim—1 B Gim—1))
13 ELSE

14 Pijr1 = (b &pi;) OR (& (pij © aiy))
15 A=A <1

16 @0,j+1 = Am—15

17 Ak jt1 = Am—1,j D Ar—1,j

18 Qi j+1 = di,j

19 END FOR

6.3 Proposed Systolic Multiplier Architecture over GF(2™) for

Irreducible Trinomials

This sub-section presents the proposed architecture for systolic multiplier over G F'(2™)
for irreducible trinomials. The area complexity and delay of this architecture are estimated
analytically and compared with the existing multipliers available in the literature. The
functionality of the proposed architecture is implemented using ASIC and FPGA tech-
nologies. These analytical and implementation results of the proposed architecture are

compared with the results of the existing multipliers that are presented in the following
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sub-sections.

6.3.1 Design of Proposed Systolic Multiplier Architecture over GF(2™) for Irre-

ducible Trinomials

A

P1=b0.A0 )(j=l)j+Aj Pj+1=bi.Pj+bi.AX} Aj+1=Ajm0dT
(b) Logic function (c) Logic function of (d) Logic function of Y'(j) (e) Logic function of
of W(0) node X(j) node node Z(j) node

Figure 6.1: SF'G derived from the proposed algorithm.

The computations in Algorithm 6.2 are represented by a Signal Flow Graph (SFG)
shown in Fig. 6.1(a). The computations for j = 0 are represented using the nodes, W (0)
and Z(0), the computations for j = 1,2,3,--- ,m — 2 are represented using the nodes,
X(7), Y(j) and Z(j) and the computations for j = m — 1 is represented using the nodes,
X(m—1)and Y (m—1). Here, W(j) is the multiplication node wherein the multiplication
operation is performed by a logical AND operation, X (j) is the addition node wherein
the addition operation is performed by a logical XOR operation, Y'(j) is the decision
node wherein the decision operation is performed by a MUX operation and Z(j) is the
reduction node wherein the modular reduction operation is performed by a logical XOR

and MUX operations. The logical functionality of these nodes are shown in Fig. 6.1(b)-
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(e). Here, Ag is the binary representation of A(x), by is the LSB of the B(z), P; is the
result of the multiplication node W (0) which performs the multiplication of by and Ao, P;
is the binary representation of P(z) in the j* iteration, A; is the binary representation of
A(z) in the j*™ iteration, X; is the result of the addition node X (j) for the j™ iteration
which performs the addition of P; and A; , b; is the i** coefficient of B(z), Pj;1 is the
result of the decision node for the j™ iteration which performs decision between the P;
and X; using b; as the selection input, 7" is the binary representation of the irreducible
polynomial T'(z), A;;; is the result of the modular reduction of A; for the j™ iteration
which performs the reduction of A; by 7', and C' is the binary representation of the final
product C(z).

A]I

(b) SFG showing the formation of PEs

Figure 6.2: Cut-set retiming of the SFG.

The critical path can be reduced by employing appropriate cut-set retiming tech-
nique [59] on the SFG as shown in Fig. 6.2(a). Based on the cut-set retiming, the nodes
of the SFG are grouped together to form processing elements as shown in Fig. 6.2(b).
The nodes, W(0) and Z(0), are grouped together to form the processing element P Ej.
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The nodes, X(j),Y(j) and Z(j), are grouped together to form a regular PE (PE; to
PE,, ), where j =1,2,3,--- ;m — 2. The nodes, X(m — 1) and Y(m — 1), are grouped
together to form PFE,, ;.

o
%y 4 vV 4, VvV 4 Ay, YV Ay
A 1 2 3
0 m m m m m m P,
PEO PE1 PE2 : PEm_2 PEm_l i
P, m m m m m m

%1 P, ?1 7j 2 ?1 j 3 P, %1 P, %1

bo b1 b] bm-l bm_1
(a) Systolic structure
T i m T i m
Ao 7> PE A Aj 5> Regular| m™ A
m O | m m | PE |m
PO — P %Pl PJ — P > j+1
l?bo ! ?bj
P1=P0.b_0+(A0@P0).b0 I)j+1=I)j.Bj+(Aj®I)j).bj
A=Ay Ay + (ADT). ap.1y Aj = Aj. Gy, j+ (A;DT) . ayy,j
(b) Logic function of PEj (c) Logic function of Regular PE
Am_l 7’?’ m
PEm_1 %Pm
P,
1?bm-l

Pm = Pm-I . Em-l + (Am-I('DP -1) . bm-]

(d) Logic function of PE,,_;

Figure 6.3: Proposed systolic multiplier using PEs.

The systolic multiplier architecture using processing elements derived from the cut-
set retimed SFG is shown in Fig. 6.3(a). In PEy, W(0) is realized using m Y-cells and
Z(0) is realized using one V-cell, one W-cell and (m — 2) Z-cells. Here, each Y-cell uses
one AND gate, each V-cell uses rewiring to forward the selection input of the decision
node a,,_1 0 to the output, each W-cell uses one XOR gate and each Z-cell uses rewiring to
forward an input of the decision node a;_; ¢ to the output. In regular PE, X (j) and Y (j)
are realized using m U-cells and Z(j) is realized using one V-cell, one W-cell and (m — 2)

Z-cells. Here, each U-cell uses one XOR gate and one MUX, each V-cell uses rewiring to
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forward the selection input of the decision node a,,_; ; to the output, each W-cell uses one
XOR gate and each Z-cell uses rewiring to forward an input of the decision node a;_ ;
to the output. In PE,, 1, X(m — 1) and Y (m — 1) are together realized using m U-cells,
where each U-cell uses one XOR gate and one MUX. The logical functionality of each PE

is shown in Fig. 6.3(b)-(d).
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Figure 6.4: Proposed systolic multiplier architecture for trinomials using fundamental

cells

This architecture is decomposed into a scalable, regular and simple structure realized
using fundamental cells as shown in Fig. 6.4. The cells in each PFE is represented column-
wise. The upper block computes the polynomial multiplication and the lower block com-
putes the modular reduction. The inputs to each cell are p; ;, a; ;,b; and a; ;,t;, @2 ; for
upper and lower blocks, respectively, where i denotes the index of the coefficient of the
polynomial under consideration and j denotes the iteration count. The internal circuit

detail and logical functionality of U-cell, V-cell, W-cell, Y-cell and Z-cell are shown in
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Pi, j1= PDi, j b + (a; @P: ) & b; Ao, j+1 = Am-1,j
(a) U-cell

ai, j+1= akj@amlj pl,l_alO&bO a; j+1= Qi j
(c) W-cell (d) Y-cell (e) Z-cell

Figure 6.5: Internal circuit detail and logic functionality of fundamental cells.

Fig. 6.5(a)-(e). The optimizations achieved in the proposed algorithm for trinomials and
pentanomials are transformed into logic gates i.e. Eqn. (6.2) is transformed into Y-cell,
Eqn. (6.4) is transformed into V-cell, Eqn. (6.5) is transformed into W-cell, Eqn. (6.6)
is transformed into Z-cell, Eqn. (6.8) is transformed into U-cell. These optimized cells
replace the U-cells in the lower modular reduction block of the systolic structure. These
cells translate the algorithmic optimizations achieved in the previous sub-section into ar-
chitectural hardware optimizations. As a result, from Fig. 6.4 and Fig. 6.5, it can be
observed that the proposed architecture requires a total of (m? —1) XOR gates, (m? —m)
MUXs, m AND gates and m? latches. The critical path of the proposed architecture is
given by the expression max {Tx + T, Tx, T4} with latency of m clock cycles.

6.3.2 Analytical Results

The proposed architecture requires (m? — 1) XOR gates, (m? —m) MUXs, m AND
gates and m? latches. The critical path of the proposed architecture is (Tx + Tj) and

the latency is m clock cycles as illustrated in previous section.

Table 6.1 presents the area complexity, latency and critical path of the proposed
architecture and the existing multiplier architectures [40-49] available in the literature.
Here, Ty, Tx,Thr, T3x, Tna denote the delays of 2-input AND gate, 2-input XOR gate,
2:1 MUX, 3-input XOR gate and 2-input NAND gate, respectively. The trinomial f(x) =
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Table 6.1: Area complexity and delay comparison of the systolic multipliers for trinomials

over GF'(2™).

‘ Multipliers ‘ #AND H #XOR H #MUX H #Registers H Latency H Critical Path Delay
[40] m? m2+1im 0 am? 4+2lm | m+1+1 Ta+Tx
[41] m?2 m2+m—1 0 3m?+2m—21 2m-—1 Ta + Tax
[42] m2+N, m24+m 0 4m2++m m+1 Ty+Tx
[43] m? m2+m-1 0 2m? 2m-1 Ty+Tx
[44] m? m?+m m 3m*+m m+n Ta+Tx
[45] m? m2+m-1 0 2m? 2m-1 Ta+Tx
[46] (m?)" m21 (m2-2m)t 2m2m m Tya+Tx
[47] m? m2+m m? 3.5m2+-3m m—+2 Ty +Tx
48] m? m?+m m 2m2+3m m+1 Ta+Tx + Tar
[49] (m?)" | L5m?+0.5m | (1.5m2-2.5m+3)" | 1.5m2+2m-1 m+2 Tna+Tx

Proposed m m2-1 m2-m m? m Ty +Tx

*NAND gates; fInverter; | = Mz:z” +1; Ny = (m_k)<m_k2_l)+k(k+1);

n = n-term Hankel matrix representation.

Table 6.2: Comparison of area complexity, latency, critical path delay, total delay, ADP
and % reduction in area of the proposed systolic multiplier for trinomials with existing

systolic multipliers over GF(2233).

CP || Delay | ADP | %Reduction || %Reduction
Multipliers || #Transistors | Latency
(ns) || (ns) || (x10') || in hardware in ADP
[40] 2,398,968 236 19 || 4,484 | 1.0757 54 45
[41] 1,959,508 465 19 | 8,835 || 1.7312 44 66
[42] 1,521,484 465 19 || 8,835 || 1.3442 28 56
[43] 2,483,994 234 19 || 4,446 | 1.1044 56 47
[44] 1,959,064 236 19 || 4,484 | 0.8784 44 33
[45] 1,521,484 465 19 || 8,835 || 1.3442 28 56
[46] 1,517,290 233 20 || 4,660 || 0.7071 28 17
[47] 2,179,952 235 23 || 5,405 || 1.1783 50 50
[48] 1,528,480 234 30 || 7,020 1.073 28 45
[49] 1,523,356 235 20 || 4,700 0.716 28 18
Proposed 1,085,774 233 23 | 5,359 || 0.5819 - -

2233 + 2™ 4 1 recommended by NIST is considered as an example to compare the area

complexity and delay of the proposed architecture with the existing multipliers. The area
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complexity is estimated using traditional CMOS logic transistor counts [55]: six transistors
for 2-input XOR gate, 2-input AND gate, 1-bit 2:1 MUX, four transistors for a 2-input
NAND gate, two transistors for an inverter, eight transistors for a 1-bit register. Some
real-time circuits from STMicroelectronics [56] are considered to estimate the critical path
delay and their propagation delays are: tpp = 12ns [2-input XOR gate (M74HCS86)], tpp
= Tns [2-input AND gate (M74HCO08)], tpp = 1lns [2:1 MUX (M74HC257)], tpp = 8ns
[2-input NAND gate (M74HCO00)].

Based on these estimations, the area complexity (# Transistors), latency (#clock
cycles), critical path delay (ns), total delay (ns), ADP, % reduction in area and % re-
duction in ADP are computed for m = 233 as shown in Table 6.2. The area complexity
and ADP estimations are also plotted as shown in Fig. 6.6(a)-(b), respectively. It can
be observed from Fig. 6.6(a) that the proposed architecture achieves low area complexity
compared to the existing multipliers available in the literature. Specifically, it achieves up
to 54%, 44%, 28%, 56%, 44%, 28%, 28%, 50%, 28% and 28% reduction in area complexity
for m = 233 compared to the existing multipliers [40-49], respectively. Moreover, the pro-
posed architecture also achieves low ADP as evident from Fig. 6.6(b). It achieves about
45%, 66%, 56%, 47%, 33%, 56%, 17%, 50%, 45% and 18% reduction in ADP compared
to the existing multipliers available in the literature. The reduction in ADP metric shows
that the proposed architecture achieves reduction in area complexity without much in-
crease in delay compared to the existing multipliers and hence is suitable for low-hardware

cryptographic applications.

6.3.3 Implementation Results

The performance of the proposed multiplier architecture for trinomials and the sys-
tolic multipliers available in the literature are verified by implementing them on ASIC
and FPGA platforms. The implementation results of these architectures are presented in

the following sub-sections.
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Figure 6.6: Comparison of systolic multipliers over GF(2?33) for irreducible trinomials.

6.3.3.1 ASIC Implementation Results

The proposed systolic multiplier and the systolic multipliers [46,49] are considered
for hardware implementations since they require low ADP compared to the existing sys-
tolic multipliers. These multipliers are modelled in Verilog for m = 233 and synthesized

using Synopsys Design Vision Compiler and Synopsys 90nm Generic Library. The de-
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Table 6.3: ASIC implementation results of systolic multipliers over GF(2%3) for irre-

ducible trinomials.

Multipliers

[46] [49] Proposed

Metrics
Total Delay (ns) 99.491 104.81 120.927
Area (um?)(x10%) | 6939.995 | 6850.603 | 2899.179

Power (W) 2.99 2.19 1.16

ADP (um? x ns)(x10%) || 690.169 | 718.011 | 350.589
PDP (W x ns) 298.214 || 230.121 141.412

lay, area complexity, power consumption, ADP and PDP of the all the architectures are
computed from the device utilization summary generated by the synthesis tool (see Table

6.3).

The area complexity, power consumption, ADP and PDP results are also plotted
as shown in Fig. 6.7(a)-(d), respectively. It is clear from the histogram (see Fig. 6.7)
that the proposed multiplier requires low area complexity, power consumption, ADP and
PDP compared to the existing multipliers. More specifically, it can be observed that the
proposed multiplier achieves reduction of about 58%, 61%, 49% & 52% in area complexity,
power consumption, ADP and PDP, respectively, compared to the systolic multiplier [46].
Similarly, the proposed multiplier achieves reduction of about 57%, 51%, 47% & 38% in
area complexity, power consumption, ADP and PDP, respectively, when compared to the
systolic multiplier [49]. Moreover, it can also be observed that the delay of the proposed
architecture is slightly higher than existing designs but it has lower ADP and PDP which
indicates that the proposed architecture achieve improvement in area complexity and

power consumption without much increase in delay.

6.3.3.2 FPGA Implementation Results

In addition to the ASIC implementation, the functionality of the proposed multiplier
is also verified by implementing the Verilog models on FPGA platform. The Verilog
models of the proposed multiplier and the multipliers [46,49] are simulated and synthesized
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Figure 6.7: ASIC implementation results of systolic multipliers over GF(2233) for irre-

ducible trinomials.

Table 6.4: FPGA implementation results of systolic multipliers over GF(2?3) for irre-

ducible trinomials.

Multipliers
[46] [49] | Proposed
Metrics
Total Delay (ns 724.397 || 732.73 || 839.732
Area (#Slices)(x10%) 115.606 || 94.498 | 56.233
Power (W) 3.501 2.148 1.192
ADP (#Slices x ns)(x10%) || 83.745 || 69.242 || 47.221
PDP (W x ns)(x10%) 2.536 1.574 1.001

using Xilinx Vivado 2014.2 tool. The synthesized netlist is implemented on a Xilinx
Virtex-7 (XC7VX1140TFLG1930-1) FPGA prototype board. The delay, area, power
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Figure 6.8: FPGA implementation results of systolic multipliers over GF(2233) for irre-

ducible trinomials.

consumption, ADP and PDP of the all the architectures are computed from the device

utilization summary generated by the synthesis tool (see Table 6.4).

The area complexity, power consumption, ADP and PDP results are also plotted
as shown in Fig. 6.8(a)-(d), respectively. It is clear from the histogram (see Fig. 6.8)
that the proposed multiplier achieves low area complexity, power consumption, ADP
and PDP among existing multipliers. More specifically, it can be observed that the
proposed multiplier achieves reduction of about 51%, 43%, 65% & 60% in area complexity,
power consumption, ADP and PDP, respectively, when compared to the multiplier [46].
Similarly, the proposed multiplier achieves reduction of about 40%, 31%, 44% & 36%
in area complexity, power consumption, ADP and PDP, respectively, when compared to
the multiplier [49]. Moreover, it can also be observed that the delay of the proposed
architecture is slightly higher than existing designs but it has lower ADP and PDP which
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indicates that the proposed architecture achieve improvement in area complexity and

power consumption without much increase in delay.

6.4 Proposed Systolic Multiplier Architecture over GF(2™) for

Irreducible Pentanomaials

This sub-section presents the proposed arch for systolic multiplier over GF'(2™) for
irreducible pentanomials. The area complexity and delay of this architecture are estimated
analytically and compared with the existing multipliers available in the literature. The
functionality of the proposed architecture is implemented using ASIC and FPGA tech-
nologies. These analytical and implementation results of the proposed architecture and

the multipliers available in the literature are also presented in the following sub-sections.

6.4.1 Design of Proposed Systolic Multiplier Architecture over GF(2™) for Irre-

ducible Pentanomials

The computations in Algorithm 6.2 are represented by a Signal Flow Graph (SFG)
shown in Fig. 6.9(a). The computations for j = 0 are represented using the nodes,
W(0) and Z(0), the computations for j = 1,2,3,--- ,m — 2 are represented using the
nodes, X(j), Y(j) and Z(j) and the computations for j = m — 1 is represented using
the nodes, X(m — 1) and Y (m — 1). Here, W(j) is the multiplication node wherein the
multiplication operation is performed by a logical AND operation, X (j) is the addition
node wherein the addition operation is performed by a logical XOR operation, Y (j) is
the decision node wherein the decision operation is performed by a MUX operation and
Z(j) is the reduction node wherein the modular reduction operation is performed by a
logical XOR and MUX operations. The logical functionality of these nodes are shown
in Fig. 6.9(b)-(e). Here, Ay is the binary representation of A(x), by is the LSB of the
B(x), Py is the result of the multiplication node W (0) which performs the multiplication
of by and Ag, P; is the binary representation of P(x) in the j* iteration, A; is the binary
representation of A(x) in the j™ iteration, X is the result of the addition node X (j) for

the j™ iteration which performs the addition of P; and A; , b; is the i coefficient of
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Py =by. Ay X;=P;+4; Py =b;. Pj+b;. X; Ajr1 =A; mod T

(b) Logic function (c) Logic function of (d) Logic function of Y(i) (e) Logic function of
of W(0) node X (i) node node Z (i) node

Figure 6.9: SF'G derived from the proposed algorithm.

B(z), Pj11 is the result of the decision node for the j™ iteration which performs decision
between the P; and X; using b; as the selection input, 7" is the binary representation of
the irreducible polynomial 7'(z), A4 is the result of the modular reduction of A; for the
4™ iteration which performs the reduction of A; by T, and C'is the binary representation
of the final product C'(x). The critical path can be reduced by employing appropriate
cut-set retiming technique [59] on the SFG as shown in Fig. 6.10(a). Based on the cut-set
retiming, the nodes of the SFG are grouped together to form processing elements as shown
in Fig. 6.10(b). The nodes, W (0) and Z(0), are grouped together to form the processing
element PFEy. The nodes, X (j),Y(j) and Z(j), are grouped together to form a regular
PE (PE; to PE,, 5), where j = 1,2,3,--- ;m — 2. The nodes, X(m — 1) and Y (m — 1),
are grouped together to form PE,, .

The systolic multiplier architecture using processing elements derived from the cut-
set retimed SFG is shown in Fig. 6.11(a). In PEy, W(0) is realized using m Y-cells and
Z(0) is realized using one V-cell, one W-cell and (m — 2) Z-cells. Here, each Y-cell uses

one AND gate, each V-cell uses rewiring to forward the selection input of the decision
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Ayl

(b) SFG showing the formation of PEs

Figure 6.10: Cut-set retiming of the SFG.

node a,,_1, to the output, each W-cell uses one XOR gate and each Z-cell uses rewiring to
forward an input of the decision node a;_; o to the output. In regular PE, X (j) and Y (j)
are realized using m U-cells and Z(j) is realized using one V-cell, one W-cell and (m — 2)
Z-cells. Here, each U-cell uses one XOR gate and one MUX, each V-cell uses rewiring to
forward the selection input of the decision node a,,_; ; to the output, each W-cell uses one
XOR gate and each Z-cell uses rewiring to forward an input of the decision node a;_1 ;
to the output. In PE,, 1, X(m —1) and Y (m — 1) are together realized using m U-cells,
where each U-cell uses one XOR gate and one MUX. The logical functionality of each PE
is shown in Fig. 6.11(b)-(d).

This architecture is decomposed into a scalable, regular and simple structure re-
alized using fundamental cells as shown in Fig. 6.12. The cells in each PFE is repre-
sented column-wise. The upper block computes the polynomial multiplication and the

lower block computes the modular reduction. The inputs to each cell are p; ;, a; ;,b; and
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Figure 6.11: Proposed systolic structure using PEs.

@; j,ti, @m—2; for upper and lower blocks, respectively, where 7 denotes the index of the

coefficient of the polynomial under consideration and j denotes the iteration count. The

internal circuit detail and logical functionality of U-cell, V-cell, W-cell, Y-cell and Z-cell

are shown in Fig. 6.13(a)-(e).

These cells are realized in the same manner as in the

case of trinomials described in the previous section. From Fig. 6.12 and Fig. 6.13, it

can be observed that the proposed architecture requires a total of (m? + 2m — 3) XOR

gates, (m? —m) MUXs, m AND gates and m? latches. The critical path of the proposed

architecture is given by the expression maz {Tx + Tw, Tx,Ta} with latency of m clock

cycles.
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Figure 6.12: Proposed systolic multiplier architecture for pentanomials using fundamental

cells.
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Figure 6.13: Internal circuit detail and logic functionality of fundamental cells.
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Table 6.5: Area complexity and delay comparison of the systolic multipliers for pen-

tanomials over GF(2™).

Multipliers | #AND #XOR #MUX #Registers Latency Critical Path Delay
[47] m? m?+3m + 2 m 3.5m?* +7Tm m+4 Tx
[50] (m»)* | m*+2m—1| (m?)° 2m? — 2m m Tya+Tx
51 m? m? + 2m m?)? 2m? 42 2T'x
2
2m + 2lm 3m? — 2m — 2lm s 1
[52] (m?)® (m?)° Tna+Txn
+20 42 —20 -2 +loga(21 4 2)

aNAND gates; PInverter; °XNOR gate.

6.4.2 Analytical Results

The proposed architecture requires (m? + 2m — 3) XOR gates, (m? —m) MUXs, m
AND gates and m? latches. The critical path of the proposed architecture is (Tx + Ths)

and the latency is m clock cycles as illustrated in previous section.

Table 6.5 presents the area complexity, latency and critical path of the proposed
architecture and the existing multiplier architectures [47,50-52] available in the literature.
Here, Tx, Tx, Ty, T5x, Ty denote the delays of 2-input AND gate, 2-input XOR gate,
2:1 MUX, 3-input XOR gate and 2-input NAND gate, respectively. The pentanomial
f(z) = 2% + 212 + 27 + 25 + 1 recommended by NIST is considered as an example to
compare the area complexity and delay of the proposed architecture with the existing
multipliers. The area complexity is estimated using traditional CMOS logic transistor
counts [55]: six transistors for 2-input XOR gate, 2-input AND gate, 1-bit 2:1 MUX, four
transistors for a 2-input NAND gate, two transistors for an inverter, eight transistors for
a 1-bit register. Some real-time circuits from STMicroelectronics [56] are considered to
estimate the critical path delay and their propagation delays are: tpp = 12ns [2-input
XOR gate (M74HCS86)], tpp = Tns [2-input AND gate (M74HCO8)], tpp = 11ns [2:1 MUX
(M74HC257)], tpp = 8ns [2-input NAND gate (M74HCO00)], tpp = 10ns [2-input XNOR
gate (M74HC266)].

Based on these estimations, the area complexity and delay are computed for m = 283
as shown in Table 6.6. The area complexity and ADP estimations are also plotted as shown

in Fig. 6.14(a) and (b), respectively. It can be observed from this figure that the proposed
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Table 6.6: Comparison of area complexity, latency, critical path delay, total delay, ADP
and % reduction in area of the proposed systolic multiplier for pentanomials with existing

systolic multipliers over GF(22%3).

CP || Delay | ADP || %Reduction
Multipliers || #Transistors || Latency
(ns) || (ns) || (x101%) | in hardware
[47] 3,226,212 287 23 | 6,601 || 21.296 50
[50] 2,241,354 283 18 5,094 || 11.417 28
[51] 2,406,066 144 24 | 3,456 || 8.315 33
[52] 2,879,796 51 18 918 2.644 44
Proposed 1,605,158 283 23 || 6,509 || 10.448 -

architecture achieves low area complexity compared to the existing multipliers available
in the literature. Specifically, it achieves up to 50%, 28%, 33% and 44% reduction in
hardware for m = 283 when compared to similar multipliers [47,50-52], respectively, and
hence suitable for low-hardware cryptographic applications. It can also be observed that
the multipliers [51, 52] require low ADP and the multipliers [47, 50] require high ADP

compared to the proposed architecture.

6.4.3 Implementation Results

The performance of the proposed systolic multiplier architecture and the systolic
multiplier architectures available in the literature are verified by implementing them on
ASIC and FPGA platforms. The implementation results of these architectures are pre-

sented in the following sub-sections.

6.4.3.1 ASIC Implementation Results

The proposed systolic multiplier and the systolic multipliers [51,52] are considered
for hardware implementations since they require low ADP compared to the existing sys-
tolic multipliers. These multipliers are modelled in Verilog for m = 283 and synthesized

using Synopsys Design Vision Compiler and Synopsys 90nm Generic Library. The de-
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Figure 6.14: Comparison of systolic multipliers over GF'(2?%3) for irreducible pentanomi-

als.

lay, area complexity, power consumption, ADP and PDP of the all the architectures are
computed from the device utilization summary generated by the synthesis tool (see Table

6.7).

The area complexity, power consumption, ADP and PDP results are also plotted
as shown in Fig. 6.15(a)-(d), respectively. It is clear from the histogram (see Fig. 6.15)

that the proposed multiplier requires low area complexity, power consumption, ADP and
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Table 6.7: ASIC implementation results of systolic multipliers over GF(2%3) for irre-

ducible pentanomials.
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Metrics
Total Delay (ns) 76.32 23.97 113.2
Area (um?)(x109) 7.035 7.319 4.233
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Figure 6.15: ASIC implementation results of systolic multipliers over GF(2%3) for irre-

ducible pentanomials.

PDP compared to the existing multipliers. More specifically, it can be observed that the

proposed multiplier achieves reduction of about 39%, 61%, 10% & 42% in area complexity
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and power consumption, respectively, compared to the systolic multiplier [51]. Similarly,
the proposed multiplier achieves reduction of about 42% & 63% in area complexity and
power consumption, respectively, when compared to the systolic multiplier [52]. It can
be observed that the proposed multiplier requires more ADP and PDP compared to the
systolic multiplier [52]. However, the proposed multiplier achieves substantial decrease
in area complexity and power consumption than the systolic multiplier [52] and hence is

suitable for applications with strict area and power constraints.

6.4.3.2 FPGA Implementation Results

Table 6.8: FPGA implementation results of systolic multipliers over GF(2%?) for irre-

ducible pentanomials.

Multipliers
[51] [52] Proposed

Metrics
Total Delay (ns) 658.8 | 203.388 | 803.72
Area (#Slices) 159,754 || 138,676 70,988
Power (W) 5.527 5.392 2.204
ADP (#Slices x ns)(x10%) || 105.246 || 28.205 57.054
PDP (W x ns)(x10?) 3.641 | 1097 | 1771

The proposed systolic multiplier and the systolic multipliers [51,52] are considered
for hardware implementations since they require low ADP compared to the existing sys-
tolic multipliers. These multipliers are modelled in Verilog for m = 283 and synthesized
using Synopsys Design Vision Compiler and Synopsys 90nm Generic Library. The de-
lay, area complexity, power consumption, ADP and PDP of the all the architectures are
computed from the device utilization summary generated by the synthesis tool (see Table

6.8).

The area complexity, power consumption, ADP and PDP results are also plotted
as shown in Fig. 6.16(a)-(d), respectively. It is clear from the histogram (see Fig. 6.16)
that the proposed multiplier requires low area complexity, power consumption, ADP

and PDP compared to the existing multipliers. More specifically, it can be observed
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Figure 6.16: FPGA implementation results of systolic multipliers over GF(2?%3) for irre-

ducible pentanomials.

that the proposed multiplier achieves reduction of about 49%, 60%, 45% & 51% in area
complexity, power consumption, ADP and PDP respectively, compared to the systolic
multiplier [51]. Similarly, the proposed multiplier achieves reduction of about 55% & 59%
in area complexity and power consumption, respectively, when compared to the systolic
multiplier [52]. Similar to the ASIC implementation results, it can be observed that the
proposed multiplier requires more ADP and PDP compared to the systolic multiplier
[52] but the proposed multiplier is suitable for applications with strict area and power

constraints due to low area and power requirements.
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6.5 Conclusion

In this chapter, systolic multiplier over GF(2™) for irreducible trinomials and pen-
tanomials are realized for the proposed algorithm. The area complexity and delay of
the proposed architectures are estimated and performance is compared with other sys-
tolic polynomial basis multipliers available in the literature. It may be concluded from the
comparisons of the estimated results that the proposed architecture for trinomials achieves
low area complexity compared to other systolic multipliers for trinomials available in the
literature. Moreover, the area-delay product of the proposed architecture is also low when
compared to other multipliers, indicating an efficient multiplier design in terms of both
area and delay. From the ASIC and FPGA synthesis results of the multipliers realized
using trinomials, it can be concluded that the proposed architecture achieves low area
complexity, power consumption, ADP and PDP compared to the existing multipliers.
Similarly, it is observed from the comparisons of the estimated results that the proposed
architecture for pentanomials achieves low area complexity compared to other systolic
multipliers for pentanomials available in the literature. From the ASIC and FPGA syn-
thesis results of the multipliers realized using pentanomials, it can be concluded that the
proposed architecture achieves low area complexity and power consumption compared to
the existing multipliers. The next chapter presents the conclusions of this thesis and some

possible directions for future work.




Chapter 7

Conclusions and Future Scope

This chapter concludes the thesis by underlining the main contributions. It also

discusses the possible directions of future work.

7.1 Conclusions

Cryptography is a prime necessity for secure communication of sensitive data over
an insecure channel. Several algorithms are available in the literature to provide security
for such insecure data communications. In our study of these cryptographic algorithms,
it is observed that the multiplication in finite fields is the most extensively used and also
the most compute-intensive operation. Several techniques to perform efficient finite field
multiplications have been proposed in the literature to reduce the computational complex-
ity of these finite field multiplications. Among these techniques, it is observed that the
interleaved multiplication technique provides low computational complexity. In this work,
modified interleaved multiplication algorithms are proposed to reduce the computational

complexity.

The finite field multiplications can also be realized in hardware to achieve enhanced
security and high speed compared to software implementations. Hence, several architec-
tures are proposed in the literature to implement these finite field multiplications. The
performance of these architectures can be improved with respect to area complexity, time

delay and power consumption using optimized interleaved multiplication algorithms.
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In this work, efficient sequential and systolic architectures are proposed for the im-
plementation of finite field multiplications employing the proposed interleaved multipli-
cation algorithms. The efficiency of these architectures are verified by employing them in
realizing cryptographic algorithms such as the Advanced Encryption Standard (AES) and
Twofish. The HDL models of these AES and Twofish algorithms are implemented using
Xilinx Field Programmable Gate Array (FPGA) prototype board and also synthesized

using Synopsys Design Vision compiler tool.

A modified interleaved multiplication algorithm is derived from a conventional inter-
leaved multiplication algorithm to perform finite field multiplications of any two arbitrary
elements over GF'(2™). This algorithm allows realization of a sequential multiplier archi-
tecture that achieves low area complexity compared to previous works. A sequential
multiplier architecture over GF'(2™) is developed based on the proposed interleaved mul-
tiplication algorithm. The performance of this architecture is verified by computing area
complexity, delay and ADP for the field of order m = 163. It is observed that this ar-
chitecture achieves a minimum reduction of about 28% in ADP compared to the existing
works. The ASIC and FPGA implementations of the proposed architecture indicate a
minimum reduction of about 49% in area, 16% in power consumption, 13% in ADP and
45% in PDP compared to the existing works. Since the AES and Twofish cryptographic
algorithms use finite field multiplications of order m = 8, a sequential multiplier archi-
tecture over GF(28) is developed for the proposed algorithm. The performance of this
architecture is verified by computing area complexity, delay and ADP for the field of
order m = 8. The proposed architecture achieves a minimum reduction of about 29% in
ADP compared to the existing works. The FPGA implementation of two cryptographic
algorithms, AES and Twofish, employing the proposed architecture achieves a minimum
reduction of 22% in area, 42% in power consumption, 34% in ADP and 41% in PDP

compared to the existing works.

A modified interleaved multiplication algorithm is derived from a conventional inter-
leaved multiplication algorithm to perform finite field multiplications of any two arbitrary
elements over GF'(2™). This algorithm is derived to realize a systolic multiplier archi-
tecture that achieves low area complexity compared to the existing works. A systolic

multiplier architecture over GF'(2™) is developed based on the proposed interleaved mul-
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tiplication algorithm. The performance of this architecture is verified by computing area
complexity, delay and ADP for the field of order m = 163. It is observed that this ar-
chitecture achieves a minimum reduction of about 20% in area complexity compared to
the existing works. The ASIC and FPGA implementations of the proposed multiplier
indicate a minimum reduction of about 35% in area, 43% in power consumption, 73% in
ADP and 76% in PDP compared to the existing works. Since the AES and Twofish cryp-
tographic algorithms use finite field multiplications of order m = 8, a systolic multiplier
architecture over GF(2%) is developed for the proposed algorithm. The performance of
this architecture is verified by computing area complexity, delay and ADP for the field
of order m = 8. The proposed architecture achieves a minimum reduction of about 21%
in area complexity compared to the existing works. The FPGA implementation of the
two cryptographic algorithms, AES and Twofish, employing the proposed architecture
achieves a minimum reduction of 24% in area, 46% in power consumption, 33% in ADP

and 41% in PDP compared to the existing works.

A modified interleaved multiplication algorithm is derived from a conventional in-
terleaved multiplication algorithm based on a novel Pre-Computation technique. This
algorithm performs finite field multiplications of any two arbitrary elements over GF'(2™)
and allows realization of two systolic multiplier architectures to achieve low area com-
plexity compared to the existing works. A systolic multiplier architecture over GF'(2™)
for irreducible trinomials is developed based on the proposed interleaved multiplication
algorithm. The performance of this architecture is verified by computing area complexity,
delay and ADP for the field of order m = 233. The proposed architecture achieves a mini-
mum reduction of about 28% in area complexity and about 17% in ADP compared to the
existing works. The ASIC and FPGA implementations of this proposed architecture indi-
cate a minimum reduction of 40% in area, 31% in power consumption, 44% in ADP and
36% in PDP compared to the existing works. Moreover, a systolic multiplier architecture
over GF(2™) for irreducible pentanomials is developed based on the proposed interleaved
multiplication algorithm. The performance of this architecture is verified by computing
area complexity, delay and ADP for the field of order m = 283. This architecture achieves
a minimum reduction of about 28% in area complexity compared to the existing works.
The ASIC and FPGA implementations of the proposed architecture indicate a minimum

reduction of 40% in area and 59% in power consumption compared to the existing works.
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7.2 Future Scope

The work proposed in this thesis can be extended for future research. Some of the

possible directions in which the problems can be further pursued are:

e The multipliers in this thesis are developed using bit-level approach. In future,
a digit-serial approach can be used to design these architectures. The digit-serial
approach can be easily explained as: when the digit size is 1, then the design becomes
a bit-level design whereas the design changes into a bit-parallel design when digit
size is equal to the field order m. Hence, this approach provides flexibility to the
designer to chose an appropriate digit size for a particular application. The bit-level
designs offer very low area complexity with low speeds while the bit-parallel designs
offer high speeds with high area complexity. However, a digit-serial design can
achieve optimal trade-off between area complexity and delay due to the provision

of variable bit-width.

e The proposed systolic multipliers can be further optimized and tested for applica-
tions where irreducible polynomials are already known in advance using the MUX-
based operations developed in this thesis for systolic multipliers. In addition, digit-
serial approach can be used to design these multipliers to further achieve improve-

ments in area complexity and power consumption.

e The architectures proposed in this thesis achieve reduction in power consumption
using algorithmic and architectural optimizations. Hence, an important future ex-
tension would be to implement low-power techniques into the designs to achieve

further reduction in power.
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