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Abstract

Cryptography in the current digital world is a prime necessity for secure communica-

tion of sensitive data over an insecure channel. In the present day, modern cryptography

provides such security using computer algorithms which encrypt and decrypt informa-

tion at the sender and receiver terminals, respectively. In our study of the cryptographic

algorithms, it is observed that the multiplication in finite fields is the most extensively

used and also the most compute-intensive operation. In order to optimize this finite field

multiplication, several techniques to perform efficient finite field multiplications have been

proposed in the literature to reduce the computational complexity.

The cryptographic algorithms can also be realized in hardware to achieve enhanced

security and high speed compared to software implementations. Therefore, several opti-

mized hardware architectures to compute finite field multiplications have been proposed

in the literature over the years. Optimizations in hardware architectures are achieved

with respect to three performance parameters: area complexity, time delay and power

consumption. In the literature, these optimizations are achieved using several techniques.

Among such techniques, it is observed that the interleaved multiplication technique pro-

vides low computational complexity and low area complexity.

In this work, efficient hardware architectures for finite field multiplications are re-

alized by employing interleaved multiplication algorithms derived from a conventional

interleaved multiplication algorithm. The efficiency of these hardware architectures are

verified by employing them in realizing cryptographic applications such as the Advanced

Encryption Standard (AES) and Twofish. The HDL models of these AES and Twofish

algorithms are implemented using Xilinx Field Programmable Gate Array (FPGA) pro-

totype board and also synthesized using Synopsys Design Vision compiler which is an

Application Specific Integrated Circuit (ASIC) tool.



Abstract vii

In this research, some interleaved multiplication algorithms are derived from a con-

ventional interleaved multiplication algorithm available in the literature. Subsequently,

efficient multiplier architectures for finite field multiplications over GF (2m) are realized

for the proposed algorithms. Firstly, a sequential multiplier architecture over GF (2m) for

irreducible polynomials is proposed. It can perform multiplications over any field of order

m and for any irreducible polynomial of that field. In addition, a sequential multiplier

architecture over GF (28) for irreducible polynomials is derived from the proposed se-

quential architecture over GF (2m). Two cryptographic algorithms, Advanced Encryption

Standard (AES) and Twofish, are developed employing this proposed architecture over

GF (28). Secondly, a systolic multiplier architecture over GF (2m) for irreducible poly-

nomials is proposed that can also perform multiplications over any field of order m and

for any irreducible polynomial of that field. Moreover, a systolic multiplier architecture

over GF (28) for irreducible polynomials is derived from the proposed systolic architecture

over GF (2m). Two cryptographic algorithms, AES and Twofish, are developed employing

this proposed architecture over GF (28). Thirdly, a systolic multiplier architecture over

GF (2m) for irreducible trinomials is proposed. This architecture can perform multipli-

cations over any field of order m. However, it may be noted that irreducible trinomials

should exist for that field. Lastly, a systolic multiplier architecture over GF (2m) for ir-

reducible pentanomials is proposed. This architecture can also perform multiplications

over any field of order m with the similar condition that irreducible pentanomials should

exist for the field considered. The performance of these proposed architectures are veri-

fied analytically and also by implementing them using ASIC and FPGA technologies by

computing the area complexity, power consumption, area-delay product and power-delay

product. These results are compared with the performance of the existing architectures

available in the literature. It is observed from these performance comparisons that the

proposed architectures outperform the existing architectures.
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Chapter 1

Introduction

Cryptography is the study of hiding sensitive information and sending it on any

channel/medium to avoid any kind of unauthorized access by third parties. It involves

the process of converting an intelligible message into an unintelligible one by the sender.

This unintelligible message needs to be converted back by the receiver to retrieve the

original intelligible message. This ensures that only the sender and receiver have ac-

cess to the original intelligible message. Integrity, Confidentiality, Authentication and

Non-Repudiation are four pillars of cryptography, which collectively form an envelope of

information security to guard the sensitive data communicated between the sender and

receiver. Cryptography can be broadly classified into classical cryptography and modern

cryptography. Classical cryptography dates back to around 1900 B.C, where sensitive

messages were required to be communicated secretly using techniques such as substitu-

tion, transposition, pictorial representation, puzzles etc. Tangible information was stored

or transported secretly using mechanical devices such as cryptex, rotor machines etc.

With the advent of computers in mid 1900s, modern cryptography came into exis-

tence to provide security with the help of computers. Modern cryptography involves two

stages, namely, encryption and decryption. Encryption is performed on the original mes-

sage at the sender side using a secret key to obtain an unreadable cipher message that can

be sent over a communication channel. The receiver performs decryption of the received

cipher message to attain the original message using a secret key. Based on the key sharing

strategy, the techniques in modern cryptography can be divided into symmetric-key cryp-

tography and asymmetric-key cryptography [1]. The encryption and decryption performed
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using the same key is known as symmetric-key cryptography, whereas the encryption and

decryption performed using different keys is known as asymmetric-key cryptography. Few

techniques developed using the symmetric-key principle are Data Encryption Standard

(DES) [2] and Advanced Encryption Standard (AES) [3]. Few techniques developed using

the asymmetric-key principle are Elliptic Curve Cryptography (ECC) [4, 5] and Rivest-

Shamir-Adleman (RSA) [6]. The encryption and decryption processes are performed

using computer algorithms designed based on the concepts of mathematics and computer

science. These cryptographic algorithms are impervious to almost any kind of external

attacks by third parties who try to steal or modify sensitive information being communi-

cated.

In our study, it is observed that these cryptographic algorithms involve the fol-

lowing operations such as multiplication in finite fields, modular addition, logical XOR,

logical AND, rotate/shift, exponentiation, modular reduction, Elliptic curve arithmetic

etc. Among these operations, the multiplication in finite fields is the most complex and

compute intensive operation, whereas other operations are very simple and straightfor-

ward. Moreover, multiplication operation is used extensively in almost all the crypto-

graphic algorithms due to its mathematical properties that are useful for the encryption

and decryption processes.

In abstract algebra [7], a field is a non-zero commutative ring that contains a mul-

tiplicative inverse for every non-zero element, or equivalently a ring whose non-zero ele-

ments form an abelian group under multiplication. As such, it is an algebraic structure

with notions of addition, subtraction, multiplication, and division satisfying the appro-

priate abelian group equations and distributive law. The properties of fields are closure

of field under addition and multiplication, associative property of addition and multipli-

cation, commutative property of addition and multiplication, existence of additive and

multiplicative identity elements, existence of additive inverses and multiplicative inverses,

distributive property of multiplication over addition.

A finite field is a field that contains finite number of elements. A finite field is a set on

which the operations of multiplication, addition, subtraction and division are defined and

it possesses the above properties. The most common example of finite fields is the ‘integers

mod m’, where m is a prime number. The number of elements of a finite field is called its
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order. A finite field of order q exists if and only if the order q is a prime power pk (where

p is a prime number and k is a positive integer). In a field of order pk, adding p copies of

any element always results in zero i.e. the characteristic of the field is p. The finite field

with pm elements is denoted as GF (pm) and is also called as the Galois Field, in honour

of the founder of finite field theory, Évariste Galois. GF (p) is simply a ring of integers

modulo p and is called a prime field of order p, where p is a prime number. That is, one

can perform operations (addition, subtraction, multiplication) using the usual operation

on integers, followed by reduction modulo p on this prime field. An m-dimensional vector

space, called the basis, allows for an extension field GF (2m) to exist over GF (2), where

the elements of the field can be represented using polynomials whose coefficients belong

to GF (2). The basis of a field is given by the set {1, α, α2, α3, · · · , αm}, where α is the

root of an irreducible polynomial of that field. Here, the irreducible polynomial of a finite

field can be defined as the polynomial that cannot be factored into the product of two or

more polynomials belonging to the said finite field.

Finite field operations can be performed using three basis representations, namely,

Polynomial, Normal and Dual Basis [7]. The multiplication operation in these bases are

performed as follows: both multiplier and multiplicand uses normal basis representation in

the realization of a normal basis multiplier; the multiplicand uses dual basis representation

and the multiplier uses polynomial basis representation in the realization of dual basis

multiplier; both the multiplier and multiplicand use polynomial basis representation in

the realization of a polynomial basis multiplier. The polynomial basis multiplier does

not require basis conversion and can be readily matched to any system, whereas basis

conversions are necessary for normal and dual basis multipliers. In polynomial basis

representation, elements of GF (2m) can be represented as polynomials of degree strictly

less than m over GF (2). All finite field operations involve the modulo reduction by R,

where R is an irreducible polynomial of degree m over GF (2). The addition of two

polynomials P and Q is performed by usual polynomial addition. Multiplication can be

performed as follows: W = P.Q is computed by usual polynomial multiplication followed

by modulo reduction of resultant polynomial W by the irreducible polynomial R using

polynomial long division. The remainder polynomial attained as a result of the long

division operation represents the final result of the finite field multiplication operation.
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Several techniques to realize these finite field multiplications have been proposed in

the literature. Karatsuba et al. [8] proposed the Karatsuba-Ofman multiplication method

in 1962. The hardware realizations of this method employ parallel architectures resulting

in high speed at the expense of more area complexity. Montgomery [9] proposed the

Montgomery multiplication method in 1985. This method is preferred for realization of

high speed multipliers as it simplifies modulo reduction. However, this method employs

parallel architectures resulting in high area complexity. Mastrovito [10] proposed the Mas-

trovito multiplication method in 1988. This method uses matrix computations to achieve

fast multiplications. However, this method requires high area complexity due to the 2-

dimensional multiplication characteristic of matrix computations. In 1989, Cantor [11]

proposed a multiplication method based on the fast fourier transform (FFT) method. This

method also achieves fast multiplications but requires high area complexity due to the

extra hardware required in realizing the FFT functions. The idea of interleaving the mod-

ular reduction with the polynomial multiplication was introduced by Blakely [12] in 1983.

This method is known as the interleaved modular multiplication, or simply interleaved

multiplication. Since the two steps involved in finite field multiplications are interleaved,

the computational complexity is significantly reduced. Hence, several multiplier architec-

tures are proposed in the literature for realizing this interleaved multiplication method to

achieve low area complexity.

1.1 Motivation and Objective

Recent advances in technology have enabled vast usage of portable devices in several

applications. Security, size of the portable device and power consumption are of major

concern in such devices. Moreover, there is a continuous demand for increase in secu-

rity, reduction in size and power consumption of these portable devices. Security can be

increased by implementing the cryptographic algorithms in hardware and by increasing

its bit-width. The performance metrics of hardware implementation of any security al-

gorithm are area complexity and power consumption i.e. the size of the device depends

on the area complexity; power consumption of the device also depends on the area com-

plexity and computational complexity. However, increasing the bit-width increases the
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computational complexity which in turn leads to increase in area complexity and power

consumption. Hence, there is a need to reduce the computational complexity of the cryp-

tographic algorithm to reduce area complexity and power consumption while maintaining

the same security. Since major portion of computational complexity of a cryptographic

algorithm is due to the finite field multiplications, reduction in area complexity and power

consumption of finite field multiplier architectures are imperative in order to reduce the

overall size and power consumption of the portable devices.

In this research, polynomial basis finite field multiplications are considered as they

are less complex and allow low hardware structures compared to the other two basis

representations. In order to achieve further reduction in the computational complexity of

finite field multiplications, several efficient techniques and algorithms were reported in the

literature. These algorithms are used to realize hardware architectures that require low

area complexity and/or low delay and/or low power consumption. In this work, we have

attempted to propose low-power and area-efficient sequential and systolic architectures

for realizing the finite field multiplications.

The objectives of this research are summarized as follows:

• Reduction in area complexity is imperative for reduction in device size and also to

achieve subsequent reduction in power consumption. Hence, an interleaved multipli-

cation algorithm is derived from a conventional interleaved algorithm. A sequential

multiplier architecture is designed based on the derived algorithm to reduce the

area complexity with minimum increase in delay. This sequential multiplier is im-

plemented using ASIC and FPGA technologies to compute area complexity, power

consumption and delay performance and compared with the existing works.

• Systolic architectures play an important role in high-speed circuits but they have the

drawback of high area overheads. Hence, an interleaved multiplication algorithm is

derived to design a systolic multiplier architecture which results in low area com-

plexity. This systolic architecture is implemented in ASIC and FPGA technologies

to compute its area, power consumption and delay performance and compared with

the existing works.

• Multiplier architectures based on special classes of polynomials, namely trinomials
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and pentanomials, are designed to achieve further reduction in area complexity

compared to systolic multiplier for irreducible polynomials. Hence, a novel Pre-

Computation technique is introduced to design systolic multiplier architectures for

trinomials and penatanomials. These architectures are implemented in ASIC and

FPGA technologies to compute area, power consumption and delay performance

and compared with the existing works.

1.2 Thesis Contributions

The contributions of the thesis are summarized as follows:

• Low-Power and Area-Efficient Sequential Multipliers over Polynomial

Basis. A sequential multiplier architecture over polynomial basis that performs

multiplication of any two random finite field elements for any irreducible polynomial

is proposed. The performance of this proposed architecture is evaluated through the-

oretical analysis and practical hardware implementations. The contributions of this

work are briefly described as:

– Proposed Interleaved Multiplication Algorithm: A modified interleaved

multiplication algorithm is derived from a conventional interleaved multipli-

cation algorithm to perform finite field multiplications of any two arbitrary

elements over GF (2m). This algorithm allows realization of a sequential mul-

tiplier architecture that achieves low area complexity compared to the existing

works.

– Proposed Sequential Multiplier Architecture over GF (2m) for Irre-

ducible Polynomials: A sequential multiplier architecture is developed based

on the proposed interleaved multiplication algorithm. Area complexity, delay

and area-delay product (ADP) analysis of the proposed architecture is per-

formed. The proposed architecture achieves a minimum reduction of about

28% in ADP compared to the previous works for the field of order m = 163.

The ASIC and FPGA implementations of the proposed architecture indicate a

minimum reduction of about 49% in area, 16% in power consumption, 13% in
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ADP and 45% in power-delay product (PDP) compared to the existing works.

– Proposed Sequential Multiplier Architecture over GF (28) for Irre-

ducible Polynomials: A sequential multiplier architecture over GF (28) is de-

rived from the proposed sequential multiplier architecture over GF (2m). Area

complexity, delay and ADP analysis of the proposed architecture is performed.

The proposed architecture achieves a minimum reduction of about 29% in ADP

compared to the previous works. The FPGA implementation of two crypto-

graphic algorithms employing the proposed architecture achieves a minimum

reduction of 22% in area, 42% in power consumption, 34% in ADP and 41%

in PDP compared to the existing works.

• Low-Power and Area-Efficient Systolic Multipliers over Polynomial Basis.

A systolic multiplier architecture over polynomial basis that performs multiplication

of any two random finite field elements for any irreducible polynomial is proposed.

The performance of this proposed architecture is evaluated through theoretical anal-

ysis and practical hardware implementations. The contributions of this work are

briefly described as:

– Proposed Interleaved Multiplication Algorithm: A modified interleaved

multiplication algorithm is derived from a conventional interleaved multiplica-

tion algorithm to perform finite field multiplications of any two arbitrary ele-

ments over GF (2m). This algorithm allows realization of a systolic multiplier

architecture that achieves low area complexity compared to the existing works.

– Proposed Systolic Multiplier Architecture over GF (2m) for Irreducible

Polynomials: A systolic multiplier architecture is developed based on the pro-

posed interleaved multiplication algorithm. Area complexity, delay and ADP

analysis of the proposed architecture is performed. The proposed multiplier

achieves a minimum reduction of about 20% in area complexity compared to

previous works for the field of order m = 163. The ASIC and FPGA implemen-

tations of the proposed multiplier indicate a minimum reduction of about 35%

in area, 43% in power consumption, 73% in ADP and 76% in PDP compared

to the existing works.

– Proposed Systolic Multiplier Architecture over GF (28) for Irreducible
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Polynomials: A systolic multiplier architecture is developed based on the pro-

posed interleaved multiplication algorithm. Area complexity, delay and ADP

analysis of the proposed architecture is performed. The proposed architecture

achieves a minimum reduction of about 21% in area complexity compared to

previous works. The FPGA implementation of two cryptographic algorithms

employing the proposed architecture achieves a minimum reduction of 24% in

area, 46% in power consumption, 33% in ADP and 41% in PDP compared to

the existing works.

• Low-Power and Area-Efficient Systolic Multipliers for Special Classes of

Irreducible Polynomials. Two systolic multiplier architectures over polynomial

basis for any irreducible trinomial or pentanomial are proposed to perform multi-

plication of any two random finite field elements. The performance of this proposed

architectures is evaluated through theoretical analysis and practical hardware im-

plementations. The contributions of this work are briefly described as:

– Proposed Interleaved Multiplication Algorithm for Irreducible Tri-

nomials and Pentanomials: A modified interleaved multiplication algorithm

is derived from a conventional interleaved multiplication algorithm based on a

novel Pre-Computation technique. This algorithm performs finite field multi-

plications of any two arbitrary elements over GF (2m) and allows realization of

two systolic multiplier architectures that achieve low area complexity compared

to the existing works.

– Proposed Systolic Multiplier Architecture over GF (2m) for Irreducible

Trinomials: A systolic multiplier architecture for irreducible trinomials is

developed based on the proposed interleaved multiplication algorithm. Area

complexity, delay and ADP analysis of the proposed architecture is performed.

The proposed architecture achieves a minimum reduction of about 28% in area

complexity and about 17% in ADP compared to previous works for the field

of order m = 233. The ASIC and FPGA implementations of the proposed

architecture indicates a minimum reduction of 40% in area, 31% in power con-

sumption, 44% in ADP and 36% in PDP compared to the existing works.

– Proposed Systolic Multiplier Architecture over GF (2m) for Irreducible
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Pentanomials: A systolic multiplier architecture for irreducible pentanomi-

als is developed based on the proposed interleaved multiplication algorithm.

Area complexity, delay and ADP analysis of the proposed architecture is per-

formed. The proposed architecture achieves a minimum reduction of about

28% in area complexity compared to previous works for the field of order m

= 283. The ASIC and FPGA implementations of the proposed architecture

indicates a minimum reduction of 40% in area and 59% in power consumption

compared to the existing works.

1.3 Thesis Organization

The rest of the thesis is structured as follows:

Chapter 2 presents a brief overview of the fundamental concepts of finite field theory.

First, the basic concepts of Groups, Rings and Fields are presented followed by the concept

of polynomial Rings. The construction of finite fields over GF (pm) is presented followed

by the various basis representations over which a field can be constructed. Finally, the

multiplication operation is presented along with some algorithms that describe the oper-

ation in detail.

Chapter 3 presents the finite field multiplication architectures proposed in the litera-

ture. The chapter begins with sequential multiplier architectures for irreducible polyno-

mials followed by systolic multiplier architectures for irreducible polynomials and systolic

multiplier architectures for irreducible trinomials and pentanomials. The performance of

these architectures, i.e. area complexity, latency and critical path delay, are also discussed

in detail.

Chapter 4 presents a sequential multiplier architecture over GF (2m) for irreducible

polynomials along with its analysis and hardware implementations and the results are

compared with existing works. It also presents the design of a sequential multiplier ar-

chitecture over GF (28) for irreducible polynomials derived from the proposed multiplier

over GF (2m). Two cryptographic algorithms employing the proposed architecture are

implemented on FPGA and the results are compared with existing works.

Chapter 5 presents a systolic multiplier architecture over GF (2m) for irreducible polyno-
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mials along with its analysis and hardware implementations and the results are compared

with existing works. It also presents the design of a systolic multiplier architecture over

GF (28) for irreducible polynomials derived from the proposed multiplier over GF (2m).

Two cryptographic algorithms employing the proposed architecture are implemented on

FPGA and the results are compared with existing works.

Chapter 6 presents a systolic multiplier architecture over GF (2m) for irreducible trino-

mials along with its analysis and hardware implementations and the results are compared

with existing works. It also presents a systolic multiplier architecture over GF (2m) for

irreducible pentanomials along with its analysis and hardware implementations and the

results are compared with existing works.

Chapter 7 concludes the thesis and presents some possible directions for future work.

1.4 Conclusion

In this chapter, a brief overview of the entire research work along with the motivation

behind this research and objectives are presented. The next chapter presents an overview

of the mathematical concepts of finite field theory.



Chapter 2

Finite Field Theory

This chapter presents the fundamental concepts of finite field theory [7] required

for implementing finite field multiplications. Firstly, the mathematical preliminaries of a

Group and its properties along with some examples are presented, followed by the concept

of Rings and Fields along with some examples. Secondly, different bases for finite fields

and their representations are presented followed by the concept of polynomials in a finite

field and its properties. Thirdly, the construction of finite fields over GF (pm) using the

polynomial basis is presented. Finally, the multiplication process over polynomial basis

is presented along with some examples to describe the operation in detail.

2.1 Groups, Rings and Fields

This section presents the definitions, properties and examples of Groups, Rings and

Fields.

2.1.1 Groups

Definition 2.1. A set S is said to be a group if there exists a binary operation ∗ on the

set satisfying the following properties:

(i) The operation ∗ obeys associative law

a ∗ (b ∗ c) = (a ∗ b) ∗ c (2.1)
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for all a, b, c ∈ S

(ii) An identity element e ∈ S exists such that

e ∗ a = a ∗ e = a (2.2)

for all a ∈ S

(iii) For all a ∈ S, there is an element a−1 ∈ S, such that

a ∗ a−1 = a−1 ∗ a = e (2.3)

where, a−1 is known as the inverse of a.

A group is said be an abelian group if it also satisfies the commutative property in addition

to the above i.e. a∗ b = b∗a for all a, b ∈ S. It can be noted that the group notation used

for the group operation is multiplicative in nature. Additive group notation can also be

used for the group operation where the identity element is often associated with a zero

(0) element and −a is the inverse of the element a.

Example 2.1. (a) An example of a group under the addition operation with identity

element 0 and under the multiplication operation with identity element 1 is the set of real

numbers R.

(b) Another example of an additive group with identity element 0 is the set of integers Z.

(c) An example of a group under addition modulo m with identity element 0 is the set of

integers modulo m, Zm. However, the group Zm does not have multiplicative inverses for

all its elements and hence is not a group under multiplication modulo m operation.

Corollary 2.1. A group S can have finite number of elements in it and its order is

denoted as |S|.

Definition 2.2. A group S is cyclic if an element a ∈ S exists such that there exists an

integer j and b = aj for each b ∈ S, then the group S is said to be cyclic and the element

a is called generator of S represented as S =< a > i.e. a must generate all the elements

in S. The order of b ∈ S can be defined as the least positive integer l such that bl = e,

where e is an identity element in S. Here, the order of an element b ∈ S is represented as

ord(β).

Example 2.2. A group of integers modulo 5, Z∗5 = {1, 2, 3, 4}, is a cyclic group with

generator 2 i.e. all the elements in the group can be generated under the multiplication
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modulo 5 operation using the generator 2. It can be shown as follows: 2 ≡ 2mod 5,

22 ≡ 4mod 5, 23 ≡ 8 ≡ 3mod 5, 24 ≡ 16 ≡ 1mod 5.

Corollary 2.2. In addition, if a ∈ Z∗m is a generator element, then b is also a generator

element where b ≡ aj modm and gcd(j, f(m)) = 1.

2.1.2 Rings and Fields

Definition 2.3. A set R together with two binary operations + and ∗ on R is said to be

a Ring if it satisfies the following properties:

(i) (R,+) must be an abelian group under the additive operation + having the identity

element 0.

(ii) The operation ∗ obeys associative law

a ∗ (b ∗ c) = (a ∗ b) ∗ c (2.4)

for all a, b, c ∈ R

(iii) There is a multiplicative identity element 1 such that

a ∗ 1 = 1 ∗ a = a (2.5)

where, 1 6= 0 and a ∈ R.

(iv) The operation ∗ obeys distributive law over + operation

a ∗ (b+ c) = (a ∗ b) + (a ∗ c)

(b+ c) ∗ a = (b ∗ a) + (c ∗ a)
(2.6)

for all a, b, c ∈ R

Example 2.3. (a) A commutative ring is the set of integers modulo m, Zm, under the

addition and multiplication modulo m operations.

(b) Another example is the set of integers Z along under the usual addition and multipli-

cation operations can be considered as a commutative ring.

(c) Other examples of commutative rings are set of all rational numbers Q, set of all real

numbers R, and set of all complex numbers C under the usual addition and multiplication

operations.
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Corollary 2.3. A ring is said to be a ‘commutative ring’ if the operation ∗ obeys

commutative law i.e., a ∗ b = b ∗ a.

Definition 2.4. A commutative ring in which all non-zero elements have multiplicative

inverses is said to be a field F. A field G can be termed as the subfield of F if G is a subset

of F and G is also a field with respect to the operations in F. Here, F is the extension

field of G.

Example 2.4. (a) Some examples of fields are the set of all real numbers R, set of all

complex numbers C, and the set of all rational numbers Q.

(b) Another example of a field is the set of all integers modulo m, Zm, under the + and

∗ operations, where m is prime.

Definition 2.5. For any value of m ≥ 1, if 1 + 1 + · · · + 1 (m times) is never equal to

0, then 0 is termed as the characteristic of the field. On the contrary, if
∑m

i=0 1 = 0 then

the least positive integer m is termed as the characteristic of the field.

It can be observed that Z2, Z3, Z5, · · · , Zp are fields having characteristic p, where p is a

prime. These fields have finite number of elements and hence they are termed as finite

fields, where the number of elements in the field is its order. It is also known as Galois

fields named after Évariste Galois who introduced the concept of finite fields.

Example 2.5. (a) The inverse of any integer amod p can be denoted as ‘ap2’ where

gcd(a, p) = 1 and ap1 = 1mod p, where p is a prime and a < p.

(b) The inverse of 3 modulo 7 i.e. 3−1mod 7, can be found as 35 = 243 ≡ 5mod 7. Hence,

5 is the inverse of 3 modulo 7 i.e. 3.5 = 15 ≡ 1mod 7.

(c) Consider two integers v and w such that a.w + p.v = h = gcd(a, p). The inverse

of amod p can be computed as a.w + p.v = 1 ⇒ a.w ≡ 1mod p ⇒ a−1 ≡ wmod p, if

gcd(a, p) = 1. This is the extended Euclidean algorithm for finding inverse of an element.

Some basic properties of finite fields are as follows:

(i) (Existence and uniqueness of finite fields) If F is a finite field then F contains pm

elements for some prime p and positive integer m ≥ 1. For every prime power pm, there

is a unique finite field of order pm. Informally speaking, two finite fields are isomorphic

if they are structurally the same, although the representation of their field elements may

be different.



Finite Field Theory 15

(ii) If GF (q) is a finite field of order q = pm, p a prime, then the characteristic of GF (q)

is p. In addition, GF (q) contains a copy of GF (p) as a subfield. Hence, GF (q) can be

viewed as an extension of GF (p) of degree m.

(iii) Let GF (q) a finite field of order q = pm, then every subfield of GF (q) has order pn

for some positive divisor n of m. Conversely, if n is a positive divisor of m, then there

is exactly one subfield of GF(q) of order pn. An element A ∈ GF (q) is in the subfield

GF (pn) if and only if Apn ≡ A. The non-zero elements of GF (q) form a group under

multiplication called the multiplicative group of GF (q), denoted GF (q)∗. In fact GF (q)∗

is a cyclic group of order q − 1. Thus, Aq = A for all A ∈ GF (q).

(iv) Let A ∈ GF (q), with q = pm, then the multiplicative inverse of A can be computed as

A−1 ≡ Aq−2. Alternatively, one can use the extended Euclidean algorithm for polynomials

to find S(α) and T (α) such that S(α)A(α) +T (α)P (α) = 1, where P (x) is an irreducible

polynomial of degree m over GF (p). Then, the multiplicative inverse A−1 = S(α).

(v) If A,B ∈ GF (q), with GF (q) a finite field of characteristic p, then

(A+B)p
t

= Apt +Bpt (2.7)

for all t ≥ 0.

2.2 Polynomial Rings

Definition 2.6. Let R be a commutative ring, then a polynomial over R can be expressed

as: P (x) = pnx
n+pn−1x

n−1+· · ·+p2x2+p1x+p0 where each pi ∈ R , x is an indeterminate

value and n ≥ 0. The element pi is the coefficient of xi in P (x) and the degree of P (x) is

the largest n for which the leading coefficient pn 6= 0 and is denoted by deg(P (x)). P (x)

is known as monic polynomial if pn = 1. P (x) is known as constant polynomial if there

exists only one constant term in the polynomial i.e. a0, where degree the of the polynomial

is zero. P (x) is known as zero polynomial if all the coefficients of the polynomial are zero.

Example 2.6. (i) The addition of two polynomials can be computed using the expression

A(x) +B(x) =
n∑

i=0

(ai + bi)x
i (2.8)

(ii) The product of two polynomials A(x) =
∑
aix

i and B(x) =
∑
bix

i over R is defined
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as

C(x) = A(x).B(x) =
n+m∑
k=0

ckx
k (2.9)

Here, ck is computed using the expression ck =
∑
aibj where i + j = k, 0 ≤ i ≤ n,

0 ≤ j ≤ m and the addition and multiplication of coefficients is performed in R. Together

with the operations of addition and multiplication defined as above it is easily seen that

the set of polynomials over R forms a ring.

Corollary 2.4. Consider a commutative ring R. Then the polynomial ring R[x] repre-

sents the set of polynomials over R with addition and multiplication of polynomials (see

Example 2.6).

Definition 2.7. Consider a polynomial T (x) ∈ F [x] having a positive degree and T (x) =

A(x).B(x), where A(x) or B(x) are constant polynomials. Then T (x) can be termed as

an irreducible polynomial over F. If either A(x) or B(x) is not a constant polynomial,

then T (x) is a reducible polynomial.

Corollary 2.5. Consider a polynomial P (x) ∈ F [x] and if P (α) = 0 then α is known as

the root of P (x), where α ∈ F .

2.3 Construction of Finite Fields GF(pm)

Definition 2.8. Let m be a positive integer and P (x) be an irreducible polynomial of

degree m over GF (p). Moreover, let α be a root of P (x), i.e., P (α) = 0. Then, the Galois

field of order pm and characteristic p, denoted GF (pm) or Fpm , is the set of polynomials

am−1α
m−1+am−2α

m−2+ · · ·+a2α
2+a1α+a0, with ai ∈ GF (p) together with the addition

and multiplication operations defined as follows. Let A(α), B(α), C(α) ∈ GF (pm), with

A(α) =
∑
aiα

i, B(α) =
∑
biα

i, and C(α) =
∑
ciα

i, where ai, bi, ci ∈ GF (p) then:

(i) Addition: C(α) = A(α) +B(α) =
∑

(ai + bi)α
i

(ii) Multiplication: Let C(α) to be the result of multiplying A(α) by B(α) via standard

polynomial multiplication as described in Example 2.6. Thus, C(α) is a polynomial with

deg(C(α)) ≤ 2m− 1. Then, D(α) is computed using the expression C(α) modulo P (α),

i.e., D(α) ≡ C(α)modP (α). This modulo operation can be computed if C(α) can be

written as C(α) = P (α)Q(α) +D(α), where Q(α) ∈ GF (pm) and deg(D(α)) < m. Here,
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D(α) is the final result of the multiplication operation.

Example 2.7. Let p = 2 and P (x) = x4 + x + 1. Then, P (x) is irreducible over GF (2).

Let α be a root of P (x), i.e., P (α) = 0, then the Galois field GF (24) is defined by

GF (24) = {a3α3 + a2α
2 + a1α + a0|ai ∈ GF (2)} together with addition and multiplica-

tion as defined in Definition 2.8. The field GF (24) is of characteristic 2 and it has order

24 = 16, in other words, it has 16 elements. The elements of GF (24) can be written as

shown in Table 2.1.

Table 2.1: Representation of GF (24) elements.

As a 4-tuple As a polynomial As a power of α

0000 0 0

0001 1 α15 ≡ 1

0010 α α

0011 α + 1 α4

0100 α2 α2

0101 α2 + 1 α8

0110 α2 + α α5

0111 α2 + α + 1 α10

1000 α3 α3

1001 α3 + 1 α14

1010 α3 + α α9

1011 α3 + α + 1 α7

1100 α3 + α2 α6

1101 α3 + α2 + 1 α13

1110 α3 + α2 + α α11

1111 α3 + α2 + α + 1 α12

To add α3 + 1 and α3 + α2 + 1 we simply perform polynomial addition and reduce the

coefficients of the resulting polynomial modulo 2. Thus, (α3 + 1) + (α3 + α2 + 1) ≡ α2.

Similarly, α3 + 1 multiplied by (α3 + α2 + 1) is obtained as

(α3 + 1).(α3 + α2 + 1) = α6 + α5 + α3 + α3 + α2 + 1 (2.10)

Example 2.8. Let p = 3. Then P (x) = x3+2x+2 is irreducible overGF (3). Let β be a root

of P (x). Then, the elements of GF (33) can be written as polynomials a2β
2 + a1β + a0

with ai ∈ GF (3). The order of GF (33) is 33 = 27 and the elements of GF (33) are

0, 1, 2, β, 2β, β + 1, β + 2, 2β + 1, 2β + 2, β2, β2 + 1, β2 + 2, β2 + β, β2 + 2β, β2 + β + 1, β2 +

β + 2, β2 + 2β + 1, β2 + 2β + 2, 2β2, 2β2 + 1, 2β2 + 2, 2β2 + β, 2β2 + 2β, 2β2 + β + 1, 2β2 +

β + 2, 2β2 + 2β + 1, 2β2 + 2β + 2.
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2.4 Basis Representations

It can be observed from Table 2.1 that two different representations of the elements of

GF (24) are shown. In one case, the elements of GF (24) are represented as polynomials,

in the other case the elements are represented as powers of a suitable element, say a

primitive element. In this sub-section, we describe different types of bases that can be

used to represent the elements of a finite field GF (qm).

Definition 2.9. Let GF (qm) be an extension of GF (q) and let α ∈ GF (qm). Then the

elements αq, αq2 , · · · , αqm−1
are called the conjugates of α with respect to GF (q). Different

basis can be used to represent the elements of a finite field as evident from Example 2.8. In

particular, the two different representations from Table 2.1 lead to the ideas of polynomial

basis and normal basis.

Definition 2.10. Let E = GF (qm) and F = GF (q) be two fields. Then a basis of E over

F of the form {1, α, α2, · · · , αm−2, αm−1} is called a polynomial basis, where α ∈ GF (qm)

and it is often taken to be a primitive element. Similarly, a basis of E over F of the

form
{
α, αq, αq2 , · · · , αqm−1

}
receives the name of a normal basis for a suitable element

α ∈ GF (qm). It can be shown that for any field GF (q) and any extension field GF (qm),

there exists always a normal basis of GF (qm) over GF (q) (see Theorem 2.35 in Ref. [13]).

A lot of research is carried out on finding normal bases that are optimal to perform

arithmetic operations. Such normal bases have received the name of optimal normal

bases [14] because they allow efficient implementations of arithmetic operations in fields

GF (qm). It may be observed that although there exist always a normal basis for every

field, the same is not true in the case of optimal normal bases. Another type of basis

which has received attention in the literature is the dual basis.

Definition 2.11. E = GF (qm) and F = GF (q). Then two bases {α0, α1, · · · , αm−1}

and {β0, β1, · · · , βm−1} of E over F are said to be dual or complementary bases if for

0 ≤ i, j ≤ m− 1 we have

TrE/F (αiβj) =

0 for i 6= j

1 for i = j

(2.11)

Here, TrE/F (α) = α + αq + αq2 + · · ·+ αqm−1
.
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References [15,16] define the concept of a weakly dual basis as follows:

Definition 2.12. Let E and F be defined as in Definition 2.11. Then two bases

{α0, α1, · · · , αm−1} and {β0, β1, · · · , βm−1} of E over F are said to be weakly dual to

each other if for 0 ≤ i, j ≤ m− 1 we have

TrE/F (γαiβj) =

0 for i 6= j

1 for i = j

(2.12)

for γ ∈ E \ {0}. Reference [17] used weakly dual basis to build finite field multipliers

for fields GF (qm), where q is an odd prime power. Finally, it is important to point out

that given a basis {α0, α1, · · · , αm−1} of GF (qm) over GF (q), one can always represent

an element β ∈ GF (qm) as

β = b0α0 + b1α1 + · · ·+ bm−1αm−1 (2.13)

where, bi ∈ GF (q).

2.5 Multiplication using Polynomial Basis

Multiplication in finite fields can be performed in different ways by viewing finite

fields as vector spaces over sub-fields. In order to specify a multiplication rule, it is neces-

sary to choose a basis. Polynomial basis is a better choice than normal basis for software

implementations. Hence, some algorithms available in the literature for multiplication in

finite fields using polynomial basis are presented in the following sub-sections.

2.5.1 Standard Field Multiplication

Let a, b ∈ GF (2n) be two polynomials represented as a(x) =
∑n−1

i=0 aix
i and b(x) =∑n−1

i=0 bix
i, where ai, bi ∈ GF (2) or, equivalently, as vectors a = (an−1, · · · , a1, a0) and

b = (bn−1, · · · , b1, b0). Let p(x) = xn + r(x) be an irreducible polynomial of degree n over

GF (2). The simplest algorithm for field multiplication using polynomial representation

is the shift-and-add method. This method is based on the observation that a(x)b(x) =

an−1x
n−1b(x)+· · ·+a1xb(x)+a0b(x). Thus, xib(x)mod p(x) can be successively computed
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Algorithm 2.1: Right-to-Left Shift-and-Add Field Multiplication

1 Input: a(x) =
∑n−1

i=0 aix
i, b(x) =

∑n−1
i=0 bix

i, ai, bi ∈ GF (2)

2 Output: c(x) = a(x)b(x)(mod p(x)) =
∑n−1

i=0 cix
i, ci ∈ GF (2)

3 IF a0 = 1 THEN

4 c(x)← b(x)

5 ELSE

6 c(x)← 0

7 END IF

8 FOR i = 0 · · ·n− 1 DO

9 b(x)← b(x)x (mod (p(x))

10 IF ai = 1 THEN

11 c(x)← b(x) + c(x)

12 END IF

13 END FOR

14 return c(x)

for all 1 ≤ i ≤ n− 1 and all the results are added for which ai = 1. If b(x) = bn−1x
n−1 +

· · ·+ b2x
2 + b1x+ b0, then

b(x)x = bn−1x
n + · · ·+ b2x

3 + b1x
2 + b0x

≡ bn−1r(x) +
(
bn−2x

n−1 + · · ·+ b2x
3 + b1x

2 + b0x
)

(mod p(x))
(2.14)

Therefore, b(x)x(mod p(x)) can be computed by a left-shift of the vector representation

of b(x), followed by the addition of r(x) to b(x), if the most significant bit bn−1 is 1. This

algorithm is presented as Algorithm 2.1. The shift-and-add method is not particularly

suitable for software implementations as the bit-wise shifts are costly to implement for

processor architectures that are based on fixed-length words.

2.5.2 Polynomial Multiplication

This sub-section presents two fast algorithms available in the literature for per-

forming finite field multiplications by multiplying the two polynomials of the finite field

followed by modulo reduction using irreducible polynomial P (x). The representation of

polynomials in software is given as follows: Let w be the word-length of the processor
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Algorithm 2.2: Right-to-Left Comb Method for Polynomial Multiplication

1 Input: a(x) =
∑n−1

i=0 aix
i, b(x) =

∑n−1
i=0 bix

i, ai, bi ∈ GF (2)

2 Output: c(x) = a(x)b(x) =
∑2n−2

i=0 cix
i, ci ∈ GF (2)

3 C ← 0

4 FOR i = 0 · · ·w − 1 DO

5 FOR j = 0 · · · t− 1 DO

6 IF A[j][i] = 1 THEN

7 C {j} = C {j}+B

8 END IF

9 END FOR

10 IF i 6= w − 1 THEN

11 B ← Bx

12 END IF

13 END FOR

14 return C

(usually w is a multiple of 8) and t = b(n/w)c, where n is the degree of the polynomial.

Thus, the vector a = (an−1, · · · , a1, a0) may be stored in an array of t w -bit words as

shown

A = (A[t− 1], · · · , A[1], A[0]) (2.15)

where, the rightmost bit is a0 and the leftmost (wt − n) bits are set to 0. The i th bit of

the j th word is denoted by A[j][i].

An efficient method for polynomial multiplication is presented i.e. the comb method.

Here, multiplication is implemented in two separate steps: polynomial multiplication is

performed to obtain a 2n bit-length polynomial followed by reducing it with the reduction

polynomial. The right-to-left comb method for polynomial multiplication is based on the

observation that if b(x)xi has been computed for some i ∈ {0, · · · , w − 1}, then b(x)xwj+i

can be easily computed by appending j zero words to the right of the vector representation

of b(x)xi. Algorithm 2.2 processes the bits of the words of A from right to left.

Here, C {j} = (C[n], · · · , C[j + 1], C[j]). It can be observed that Algorithm 2.2 can

also be improved. The left-to right comb method which processes the bits of a from left
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Algorithm 2.3: Left-to-Right Comb Method for Polynomial Multiplication with

Windows of Width w′

1 Input: a(x) =
∑n−1

i=0 aix
i, b(x) =

∑n−1
i=0 bix

i, ai, bi ∈ GF (2)

2 Output: c(x) = a(x)b(x) =
∑2n−2

i=0 cix
i, ci ∈ GF (2)

3 Precompute Bu = u(x)b(x) for all polynomials u(x) of degree at most w′ − 1

4 FOR ALL i = w
w′
· · · 0 DO

5 FOR ALL j = 0 · · · t− 1 DO

6 u← (uw′−1, · · · , u1, u0) where uk = A[j][w′i+ k]

7 C {j} ← C {j}+Bu

8 END FOR

9 IF i 6= 0 THEN

10 C ← Cxw
′

11 END IF

12 END FOR

13 return C

to right is one such method given as follows:

a(x)b(x) = (· · · ((an−1b(x)x+ (an−2b(x))x+ (an−3b(x))x+ · · ·+ a1b(x))x+ a0b(x) (2.16)

It may be noted that the left-to right comb method can be considerably accelerated at the

expense of some storage overhead by first computing u(x)b(x) for all polynomials u(x) of

degree less than some fixed w′, and then processing the bits of A[j] one at a time. This

modified method is called the left-to-right comb method with windows of width w′. The

corresponding algorithm is presented as Algorithm 2.3.

The maximal degree of the output polynomial c(x) is (2n − 2). In some cases, the

modular reduction required for field multiplication is done separately. In other cases, the

irreducible polynomial p(x) is included as an input to the algorithm and reduction is done

mid-step. Such multiplications are also known as interleaved multiplication method. For

example, Algorithm 2.3 can be modified to calculate (u(x)b(x)(mod p(x))) using optimiza-

tion, and will be presented in the following sub-section.
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Algorithm 2.4: Bit-Level Modular Reduction

1 Input: c(x) =
∑2n−2

i=0 cix
i, ci ∈ GF (2), p(x) = xn + r(x)

2 Output: c(x) (mod p(x))

3 Precompute uk(x) = xkr(x) for all xnr(x), 0 ≤ k ≤ w − 1

4 FOR ALL i = (2n− 2) · · ·n DO

5 IF ci = 1 THEN

6 j ← i−n
w

7 k ← (i− n)− wj

8 C {j} ← C {j}+ uk(x)

9 END IF

10 END FOR

11 return (C[t− 1], · · · , C[0])

2.5.3 Field Reduction

In this section, efficient reduction of polynomials of degree (2n− 2) is presented in

Algorithm 2.4. Let p(x) = xn + r(x) be an irreducible polynomial of degree n over GF (2)

and c(x) =
∑2n−2

i=0 cix
i, where ci ∈ GF (2). The algorithm 2.4 is based on the observation

that

xn ≡ r(x) (mod p(x)),

xn+k ≡ r(x)xk (mod p(x))
(2.17)

and thus c(x) can be computed as

c(x) = c2n−2x
2n−2 + · · ·+ c1x+ c0

≡ (c2n−2x
2n−2 + cn)r(x) + cn−1x

n−1 + · · ·+ c1x+ c0 (mod p(x))
(2.18)

The reduction modulo p(x) is done one bit at a time, starting from the leftmost bit as

shown in Algorithm 2.4. In order to accelerate reduction, polynomials xkr(x) are pre-

computed, where 0 ≤ k ≤ w − 1. Moreover, it may be noted that Algorithm 2.4 involves

operations performed at bit-level.

Multiplication in a finite field is simply the product of two field polynomials, modulo
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reduced by p(x), but there are some polynomials whose modulo reduction is more efficient

than other polynomials.

Specifically, the reduction of polynomials modulo p(x) is particularly efficient if p(x)

has a small number of terms. The irreducible polynomials with the least number of terms

are the trinomials given by the expression xn + xa + 1. Thus, it is common practice

to choose a trinomial for the field polynomial, provided that one exists. For example,

Algorithm 2.4 can be accelerated even more when using trinomials, because the space

requirements will be smaller and the additions involving xkr(x) become faster.

If an irreducible trinomial of degree n does not exist, then the next best polynomials

are the pentanomials xn + xa + xb + xc + 1. In binary fields, for every n up to 1000, there

exists either an irreducible trinomial or pentanomial of degree n. Such polynomials are

widely recommended in all major standards, such as the IEEE Standard Specifications

and National Institute of Standards and Technology (NIST).

2.6 Conclusion

In this chapter, a brief overview of the fundamental concepts of Groups, Rings,

Fields, polynomial Rings, construction of finite fields, representation of finite fields using

basis and the description of multiplication operation are presented. The next chapter

presents the review of finite field multiplication architectures over GF (2m) available in

the literature.



Chapter 3

Finite Field Multiplication Architectures over

GF(2m)

This chapter presents the details of different architectures proposed in the literature

for finite field multiplications. Firstly, the sequential multipliers proposed in the literature

over GF (2m) for irreducible polynomials are presented. Secondly, the systolic multipliers

proposed in the literature over GF (2m) for irreducible polynomials are presented. Finally,

the systolic multipliers proposed in the literature over GF (2m) for irreducible trinomials

and pentanomials are presented. In addition, the performance improvements achieved

by these multipliers in terms of area complexity, latency and critical path delay are also

presented.

3.1 Sequential Multipliers over GF(2m) for Irreducible Polyno-

mials

Several sequential multipliers proposed in the literature for the finite field multiplica-

tions over GF (2m) for irreducible polynomials are reviewed and the performance of these

multipliers are presented in Table 3.1. Hasan et al. [18] proposed a bit-serial sequential

multiplier in 1998 having a maximum field dimension M to support multiplication over

GF (2m) for any irreducible polynomial of degree m, where 1 < m ≤ M . The multiplier

uses triangular basis representation in addition to polynomial basis and the input or out-

put can be represented with respect to any of these two bases. The architecture proposed
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Table 3.1: Performance comparison of sequential multipliers available in the literature.

Multipliers #XOR #AND #MUX #Registers Latency Critical Path Delay

[18] 2m 3m m m2 3m (TA + TN + TO)log2m+ TX

[19] m 2m (m− 1)a +mb 3m m TX + 2TA + TN + (m+ 1)TO

[20] m m 2m+ 1 3m 2m TX + TA

[21] 2m 4m ma +mc 3m m TX + TA

[22] 6m+ 18 0 14m+ 26 6m+ 7 m/4 4TX + 2TM

aOR gates; b1-to-2 DMUX; cInverter.

for this pipelined multiplier requires an area complexity of 2m exclusive-OR (XOR) gates,

3m AND gates, m 2-to-1 Multiplexers (MUX) and m2 1-bit registers. The critical path

delay of this architecture is given by the expression ((TA + TN + TO)log2m + TX) with

latency of 3m clock cycles, where TA, TN , TO, TX , TM and T4M represents the propaga-

tion delays of a 2-input AND gate, inverter, 2-input OR gate, 2-input XOR gate, 2-to-1

MUX and 4-to-1 MUX, respectively. These notations are used to compute the delays of

all architectures presented in this thesis. This multiplier achieves reduction in area com-

plexity compared to the sequential multipliers proposed in the literature. However, this

multiplier requires the operands to be transformed from polynomial basis to triangular

basis or vice-versa. Moreover, to support variable field size, serial-in serial-out registers,m

number of m:1 multiplexers are used resulting in an increase of the clock cycles and area

complexity required for performing multiplication.

A sequential polynomial basis multiplier over GF (2m) was proposed in 2003 by

Kitsos et al. [19] based on an MSB-first technique having a maximum field dimension M,

where 1 < m ≤ M . This multiplier requires an area complexity of m XOR gates, 2m

AND gates, (m−1) OR gates, m 1-to-2 De-Multiplexers (DMUX) and 3m 1-bit registers.

The critical path delay is given by the expression (TX +2TA+TN +(m+1)TO) with latency

of m clock cycles. The multiplier achieves reduction in area complexity compared to the

sequential multiplier [18] due to MSB-first multiplication method and achieves low power

consumption due to the gated clock technique. However, it’s speed is reduced compared

to the previous multipliers due to its sequential architecture.

A sequential multiplier designed based on a modified Montgomery multiplication

method was proposed by Fournaris et al. [20] in 2008. This multiplier algorithm is derived



Finite Field Multiplication Architectures over GF(2m) 27

from a Montgomery multiplication algorithm available in the literature. This multiplier

requires m XOR gates, m AND gates, (2m+1) MUX and 3m 1-bit registers. The critical

path delay is given by the expression (TX+TA) with latency of 2m clock cycles. This multi-

plier achieves reduction in area complexity compared to the sequential multipliers [18,19].

The latency of this multiplier is double than that of the multiplier [19], while requiring

low latency compared to the sequential multiplier [18]. However, the Montgomery multi-

pliers require additional computations to transform operands to Montgomery domain and

vice-versa which increases it’s area complexity compared to previous multipliers.

Zakerolhosseini et al. [21] proposed a bit-serial sequential multiplier in 2013 based on

an efficient MSB-first method for different operand lengths with the condition 1 < m ≤M ,

where M is the maximum order of the field. This architecture requires 2m XOR gates, 4m

AND gates, m OR gates, m inverters and 3m 1-bit registers. The critical path delay is

given by the expression (TX +TA) with latency of m clock cycles. This multiplier achieves

reduction in area complexity compared to the sequential multiplier [18]. However, it has

high area complexity compared to the sequential multiplier [19, 20]. In addition, this

architecture also achieves improvement in latency compared to the sequential multipliers

[18,20], while requiring same latency as that of the sequential multiplier [19].

A sequential multiplier was proposed by Ho [22] in 2014 based on the condition

m ≥ kt + 4, where kt is the degree of the second leading term of the irreducible poly-

nomial. This architecture requires (6m + 18) XOR gates, (14m + 26) Multiplexers and

(6m + 7) 1-bit registers. The critical path delay is given by the expression (4TX + 2TM)

with latency of (m/4) clock cycles. This multiplier achieves reduction in latency com-

pared to the sequential multiplier [18–21]. However, this architecture requires high area

complexity compared to the sequential multipliers [19–21], while requiring low area com-

plexity compared to the sequential multiplier [18]. Although this multiplier has achieved

low latency, the area complexity is high which is not useful for low power and area-efficient

applications.
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3.2 Systolic Multipliers over GF(2m) for Irreducible Polynomi-

als

Several systolic multipliers proposed in the literature for finite field multiplication

over GF (2m) based on irreducible polynomials are reviewed and the performance of these

multipliers are presented in Table 3.2. In 1984, Yeh et.al. designed the first systolic

multiplier [23] using a bit-parallel 2-dimensional design to achieve simple control, regular

interconnection pattern, modular structure and concurrency of operations. This multiplier

requires 2m2 XOR gates, 2m2 AND gates and 7m2 1-bit registers. The critical path delay

is given by the expression (TA + TX) with latency of 3m clock cycles. However, this

multiplier utilizes contraflowing datastreams in it’s systolic structure which degrades the

chip’s cascadability and fault tolerance.

Wang et al. [24] realized a bit-parallel systolic structure in 1991 having unidirectional

dataflow. This architecture requires 2m2 XOR gates, 2m2 AND gates and 7m2 1-bit

registers. The critical path delay is given by the expression (TA + T3X) with latency

of 3m clock cycles. This multiplier achieves better chip cascadability and fault tolerance

compared to the systolic multiplier [23], while requiring same area and delay complexities.

Moreover, it requires higher critical path delay than the the systolic multiplier [23].

Wu et al. [25] realized a systolic multiplier in 1995 based on an MSB-first algorithm.

This architecture requires 2m2 XOR gates, (2m2 −m) AND gates and (8m2 − 7m) 1-bit

registers. The critical path delay is given by the expression (TA + TX) with latency of

(2m − 1) clock cycles. This multiplier achieves reduction in latency compared to the

systolic multipliers [23, 24], while requiring approximately m2 additional 1-bit registers.

However, this multiplier is unable to reduce the critical path delay to a major extent.

A pipelined parallel-in/parallel-out structure was proposed by Jain et al. [26] in

1995. This multiplier requires 2m2 XOR gates, 2m2 AND gates and 3m2 1-bit registers.

The critical path delay is given by the expression (TA +TX) with latency of (m+ 1) clock

cycles. This multiplier achieves low hardware complexity and low latency compared to the

systolic multipliers [23–25]. Although this multiplier achieved reduction in the number

of registers and latency compared to previous multipliers, it has not reduced the number

of XOR gates and AND gates. Such reductions in the number of XOR gates and AND
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Table 3.2: Performance comparison of systolic multipliers for irreducible polynomials

available in the literature.

Multipliers #AND #XOR #MUX #Registers Latency Critical Path Delay

[23] 2m2 2m2 0 7m2 3m TA + TX

[24] 2m2 2m2 0 7m2 3m TA + T3X

[25] 2m2 −m 2m2 0 8m2 − 7m 2m− 1 TA + TX

[26] 2m2 2m2 0 3m2 m+ 1 TA + TX

[27] 2m2 2m2 0 3m2 m+ 1 TA + TX

[28] 2m2 2m2 0 4m2 2m TA + TX

[29] 2m2 2m2 0 7m2 3m TA + TX

[30] m 2m2 + 2m (m2/2)a 6m2 + 8m 3m/2 T4M + TX

[31] 2m2 2m2 0 7m2 3m TA + TX

[32] 2m2 + 3m (m2 +m)b 0 3m2 + 4m m+ 1 TA + T3X

[33]a m2 m2 + 2m 0 4m2 + 3m 3m TA + TX

[33]b m2 m2 0 5m2 4m TA + TX

[34] 2m2 2m2 0 3m2 m TA + TX

[35]a m2 m2 + 2m 0 4m2 + 3m 3m TA + TX

[35]b m2 m2 0 5m2 4m TA + TX

[36] m 2m+ (m2/2)b (m2 +m/2)a 7m2 3m/2 T4M + T3X

[20] m2 −m+ 1 m2 − 1 2m2 +m− 3 2m2 −m 2m TA + TX

[37] 2m2 2m2 2m2 +m− 3 7m2 3m TA + TX

[38] 2m2 + 2m 2m2 + 3m 0 3m2 + 4m bm/2c+ 1 TA + TX

a4-to-1 MUX; b3-input XOR gate.

gates can be observed in the multipliers proposed later.

In 1998, Jain et.al. [27] developed a pipelined semi-systolic structure based on an

LSB (Least Significant Bit)-first algorithm. This multiplier requires 2m2 XOR gates, 2m2

AND gates and 3m2 1-bit registers. The critical path delay is given by the expression

(TA+TX) with latency of (m+1) clock cycles. This multiplier achieves low area complexity

and low latency compared to the systolic multipliers [23–25], while requiring same area

complexity and same latency compared to the systolic multiplier [26]. It can be observed

that this multiplier has not achieved any change in the area complexity or delay compared

to the previous multiplier [26].

In 1998, Koć et al. [28] introduced a Montgomery based multiplication method. This

multiplier requires 2m2 XOR gates, 2m2 AND gates and 4m2 1-bit registers. The critical
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path delay is given by the expression (TA + TX) with latency of 2m clock cycles. This

architecture achieves reduction in area complexity compared to the systolic multipliers

[23–25], while requiring more area complexity compared to the systolic multipliers [26,27].

Moreover, it achieves reduction in latency compared to the systolic multipliers [23, 24],

while requiring same latency compared to the systolic multiplier [25] and high latency

compared to the systolic multipliers [26,27].

A systolic design based on LSB-first method was proposed by Kwon et.al. [29] in

2003. This multiplier requires 2m2 XOR gates, 2m2 AND gates and 7m2 1-bit registers.

The critical path delay is given by the expression (TA + TX) with latency of 3m clock

cycles. This multiplier requires same area complexity and latency as that of the systolic

multipliers [23, 24]. Moreover, it requires high area complexity and latency compared to

the systolic multipliers [26–28]. However, it achieves low area complexity and high latency

compared to the systolic multiplier [25]. It can be observed that this multiplier does not

show significant improvement in area complexity or delay than the previous multipliers.

In 2006, Lee et.al. [30] proposed a systolic multiplexer-based structure using iterative

arrays based on modified Booth’s algorithm. This multiplier requires (m2 + 2m) XOR

gates, m AND gates, (m2/2) 4:1 Multiplexers and (6m2 +8m) 1-bit registers. The critical

path delay is given by the expression (T4M +TX) with latency of (3m/2) clock cycles. This

multiplier achieves low area complexity compared to the systolic multipliers [23–25, 29],

while requiring low latency compared to the systolic multipliers [23–25,28,29]. However,

it requires high area complexity due to extra multiplexers and also requires high latency

compared to the systolic multipliers [26,27].

Kwon et.al. [31] developed a two-dimensional systolic multiplier in 2006 based on an

LSB-first algorithm. This multiplier requires 2m2 XOR gates, 2m2 AND gates and 7m2

1-bit registers. The critical path delay is given by the expression (TA + TX) with latency

of 3m clock cycles. This multiplier achieves same area complexity and latency as that of

the systolic multipliers [23,24,29]. Moreover, it requires more area complexity and higher

latency compared to the systolic multipliers [26–28, 30]. However, it achieves low area

complexity while requiring high latency compared to the systolic multiplier [25]. It can

be observed that this multiplier does not show significant improvement in area complexity

or delay than previous multipliers.
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A systolic multiplier was realized by Chiou et.al. [32] in 2006 based on a time-

independent Montgomery multiplication algorithm. This multiplier requires (m2 + m)

3-input XOR gates, (2m2 + 3m) AND gates and (3m2 + 4m) 1-bit registers. The critical

path delay is given by the expression (TA + T3X) with latency of (m + 1) clock cycles.

This multiplier achieves reduction in area complexity and latency compared to the systolic

multipliers [23–25,28–31]. Moreover, it requires same area complexity and latency as that

of the systolic multipliers [26, 27] with high critical path delay which effectively reduces

its frequency of operation.

Two multipliers were proposed by Lee et.al. [33] in 2006 using MSB-first time-

independent and time-dependent algorithms based on a conventional interleaved multipli-

cation and a folded technique. The time-independent multiplier requires (m2 + 2m) XOR

gates, m2 AND gates and (4m2 + 3m) 1-bit registers and the time-dependent multiplier

requires m2 XOR gates, m2 AND gates and 5m2 1-bit registers. The critical path delay is

given by the expression (TA +TX) for both the designs with latency of 3m clock cycles for

the time-independent multiplier and latency of 4m clock cycles for the time-dependent

multiplier. The time-independent multiplier achieves reduction in area complexity com-

pared to the systolic multipliers [23–32]. However, it requires higher latency compared

to the systolic multipliers [25–28,30, 32], while requiring same latency as that of the sys-

tolic multipliers [23,24,29,31]. The time-dependent multiplier achieves reduction in area

complexity compared to the systolic multipliers [23–25,29–31]. However, it requires high

latency compared to the systolic multipliers [23–32].

In 2007, a linear two-dimensional systolic structure based on a linear feedback shift

register (LFSR) was proposed by Chiou et.al. [34]. This multiplier requires 2m2 XOR

gates, 2m2 AND gates and 3m2 1-bit registers. The critical path delay is given by the

expression (TA + TX) with latency of m clock cycles. This multiplier achieves reduction

in area complexity compared to the systolic multipliers [23–25, 28–33], while requiring

same area complexity as that of the systolic multipliers [26, 27] and requiring high area

complexity compared to the systolic multipliers [33]. Moreover, it achieves low latency

compared to the systolic multipliers [23,24,26–33]. However, this multiplier does not show

significant improvement in area complexity compared to the previous multipliers.

Lee [35] proposed a time-independent and time-dependent algorithm in 2008 and
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realized two bit-parallel systolic multipliers by employing these algorithms. The time-

independent multiplier requires (m2+2m) XOR gates, m2 AND gates and (4m2+3m) 1-bit

registers and the time-dependent multiplier required m2 XOR gates, m2 AND gates and

5m2 1-bit registers. The critical path delay is given by the expression (TA + TX) for both

the designs with latency of 3m clock cycles for the time-independent multiplier and latency

of 4m clock cycles for the time-dependent multiplier. This time-independent multiplier

achieves reduction in area complexity compared to the systolic multipliers [23–34] and

requires same area complexity as that of the systolic multiplier [33]. However, it requires

high latency compared to the systolic multipliers [25–28, 30, 32, 34], while requiring same

latency as that of the systolic multipliers [23, 24, 29, 31, 33] and low latency compared

to the systolic multiplier [33]. The time-dependent multiplier achieves reduction in area

complexity compared to the systolic multipliers [23–25, 29–31, 33], while requiring high

area complexity compared to the systolic multipliers [26–28,32–34]. However, it requires

high latency compared to the systolic multipliers [23–34].

In 2008, Lee [36] developed a multiplexer-based systolic architecture using an algo-

rithm that employs cut-set systolization and modified Booths recoding technique. This

multiplier requires 2m XOR gates, m AND gates, (m2/2) 3-input XOR gates, (m2 +m/2)

4:1 Multiplexer and (6m2 + 8m) 1-bit registers. The critical path delay is given by the

expression (T4M + T3X) with latency of (3m/2) clock cycles. This multiplier achieves low

area complexity compared to the systolic multipliers [23–25, 29, 31] while requiring high

area complexity compared to the systolic multipliers [26–28, 30, 32–35]. It achieves low

latency compared to the systolic multipliers [23–25,28,29,31,33,35], while requiring high

latency compared to the systolic multipliers [26, 27, 32, 34] and requires same latency as

that of the previous multiplier [30]. Although, this multiplier reduces the AND gate count,

4:1 multiplexers and 3-input XOR gates were used which increased the area complexity

compared to previous multipliers.

Fournaris et al. [20] proposed a systolic Montgomery multiplier from an optimized

Montgomery multiplication algorithm. This multiplier requires (m2 − 1) XOR gates,

(m2 − m + 1) AND gates, (2m2 + m − 3) Multiplexers and (2m2 − m) 1-bit registers.

The critical path delay is given by the expression (TA + TX) with latency of 2m clock

cycles. This multiplier achieves reduction in area complexity compared to the systolic
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multipliers [23–32, 36]. It also achieves low latency compared to the systolic multipliers

[23, 24, 29, 31, 33, 35], while requiring high latency compared to the systolic multipliers

[26, 27, 30, 32, 34, 36] and same latency as that of the systolic multipliers [25, 28]. This

multiplier has high latency when compared to previous multipliers but achieved significant

improvement in area complexity.

A systolic multiplier is proposed by Kwon et.al. [37] in 2009 based on an LSB-first

algorithm. This multiplier require 2m2 XOR gates, 2m2 AND gates, (2m2 + m − 3)

Multiplexers and 7m2 1-bit registers. The critical path delay is given by the expression

(TA+TX) with latency of 3m clock cycles. This multiplier requires same area complexity as

that of the systolic multipliers [23–25,29,31] and requires high area complexity compared

to the systolic multipliers [20, 26–28, 30, 32–36]. Moreover, it has same latency as that of

the systolic multipliers [23, 24, 29, 31, 33, 35] and requires high latency compared to the

systolic multipliers [20, 25–28, 30, 32, 34, 36]. On the whole, this multiplier has very high

area complexity and also more delay compared to previous multipliers.

In 2014, Kim et al. [38] presented a cellular array multiplier based on Montgomery

multiplication using a qualified Montgomery factor to divide the algorithm into two parts

in order to reduce the delay. This multiplier requires (2m2 + 3m) XOR gates, (2m2 + 2m)

AND gates and (3m2 + 4m) 1-bit registers. The critical path delay is given by the

expression (TA + TX) with latency of ((m/2) + 1) clock cycles. This multiplier achieves

reduction in area complexity compared to the systolic multipliers [23–25,28–31,33,35–37],

while requiring high area complexity compared to the systolic multipliers [20, 26, 27, 33–

35] and same area complexity as that of the systolic multiplier [32]. Even though this

multiplier shows significant improvement in latency, the area complexity is high which

needs to be reduced further in order to be used in area and power constrained applications.

3.3 Systolic Multipliers over GF(2m) for Irreducible Trinomials

Irreducible polynomials can be classified into equally spaced polynomials, all-one

polynomials, trinomials, and pentanomials. The equally spaced polynomials and all-one

polynomials are not widely used due to their scarcity. However, up to 5148 irreducible

trinomials were identified for field orders of m ≤ 10, 000 [39] which is approximately
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Table 3.3: Performance comparison of systolic multipliers for irreducible trinomials avail-

able in the literature.

Multipliers #AND #XOR #MUX #Registers Latency Critical Path Delay

[40] m2 m2 + lm 0 4m2 + 2lm m+ l + 1 TA + TX

[41] m2 m2 +m− 1 0 3m2 + 2m− 2 2m− 1 TA + T3X

[42] m2 +NV m2 +m 0 4m2 +m m+ 1 TA + TX

[43] m2 m2 +m− 1 0 2m2 2m− 1 TA + TX

[44] m2 m2 +m m 3m2 +m m+ n TA + TX

[45] m2 m2 +m− 1 0 2m2 2m− 1 TA + TX

[46] (m2)a m2 − 1 (m2 − 2m)b 2m2 −m m TNA + TX

[47] m2 m2 +m m2 3.5m2 + 3m m+ 2 TM + TX

[48] m2 m2 +m m 2m2 + 3m m+ 1 TA + TX + TM

[49] (m2)a 1.5m2 + 0.5m (1.5m2 − 2.5m+ 3)b 1.5m2 + 2m− 1 m+ 2 TNA + TX

aNAND gates; bInverter.

half of the m values. Moreover, trinomials are recommended by the National Institute

of Standards and Technology (NIST) for use in cryptographic applications since they

allow realisation of efficient hardware structures with low area complexity and low power

consumption. Therefore, several systolic multipliers are proposed in the literature over

GF (2m) for irreducible trinomials and the performance of these multipliers is presented

in Table 3.3.

Lee [40] presented a systolic multiplier for trinomials in 2003 based on the condition

gcd(m,n) = 1, where n is the degree of the second term of the trinomial. This multiplier

requires (m2+lm) XOR gates, m2 AND gates and (4m2+2lm) 1-bit registers. The critical

path delay is given by the expression (TA + TX) with latency of (m+ l + 1) clock cycles,

where l is the number of reductions that can be applied on the polynomial of degree

(2m − 2) which is obtained after the polynomial multiplication step and is given by the

expression l =
⌊
m−2
m−n

⌋
+ 1. This multiplier achieves low area complexity and low latency

compared to the generic polynomial multipliers proposed in the literature. However, this

multiplier had high area complexity and more latency compared to the multipliers for

trinomials and significant reduction in area complexity and delay were necessary.

In 2003, Lee [41] introduced the importance of trinomials in finite field multiplica-

tions and proposed a low-complexity systolic multiplier for irreducible trinomials. This

multiplier requires (m2 + m − 1) XOR gates, m2 AND gates and (3m2 + 2m − 2) 1-bit
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registers. The critical path delay is given by the expression (TA + TX) with latency of

(2m− 1) clock cycles. This multiplier achieves reduction in area complexity but has high

latency compared to the systolic multiplier [40].

A compact systolic multiplier for trinomials was designed by Lee et.al. [42] in 2005

based on Montgomery multiplication algorithm employing a Hankel matrix-vector rep-

resentation. This multiplier requires (m2 + m) XOR gates, (m2 + NV ) AND gates and

(4m2 +m) 1-bit registers, where NV is given by the expression (m−n)(m−n−1)+n(n+1)
2

and n

represents n-term Hankel matrix-vector representation. The critical path delay is given

by the expression (TA +TX) with latency of (m+ 1) clock cycles. This multiplier achieves

low area complexity compared to the systolic multipliers [40, 41]. However, it has high

latency compared to the systolic multiplier [40], while requiring same latency as that of

the systolic multiplier [41].

A systolic multiplier for trinomials based on a transformation method applied on

conventional Montgomery multiplication was proposed by Lee et.al. [43] in 2006. This

multiplier requires (m2 +m− 1) XOR gates, m2 AND gates and 2m2 1-bit registers. The

critical path delay is given by the expression (TA + TX) with latency of (2m − 1) clock

cycles. This multiplier requires similar latency compared to the systolic multiplier [40],

while requiring same latency as that of the systolic multipliers [41,42]. However, it requires

significantly high area complexity compared to the systolic multipliers [40–42] .

In 2007, Lee et.al. [44] proposed a systolic multiplier for trinomials by employing

Hankel matrix-vector multiplications. This multiplier requires (m2 + m) XOR gates, m2

AND gates, m Multiplexers and (3m2+m) 1-bit registers. The critical path delay is given

by the expression (TA + TX) with latency of (m+ n) clock cycles, where n represents n-

term Hankel matrix-vector representation. This architecture achieves reduction in area

complexity compared to the systolic multipliers [40, 43], while requiring same area com-

plexity as that of the systolic multiplier [41]. However, it requires high area complexity

compared to the systolic multiplier [42]. In addition, this multiplier achieves low latency

compared to the systolic multipliers [41–43], while requiring same latency as that of the

systolic multiplier [40]. Overall, this multiplier has low lantecy but significantly high area

complexity than the previous multipliers.

Lee et.al. [45] proposed a scalable and systolic multiplier for trinomials in 2007.
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This is designed employing the Hankel matrix-vector multiplications on the Montgomery

multiplication algorithm. This multiplier requires (m2 + m − 1) XOR gates, m2 AND

gates and 2m2 1-bit registers. The critical path delay is given by the expression (TA +TX)

with latency of (2m − 1) clock cycles. This multiplier achieves low area complexity

compared to the systolic multipliers [40, 41, 43, 44], while requiring same area complexity

as that of the systolic multiplier [42]. It requires high latency compared to the systolic

multipliers [40,44], while requiring same latency as that of the systolic multipliers [41–43].

In 2008, Meher [46] proposed a pipelined systolic multiplier for trinomials employing

a suitable cut-set retiming technique. This multiplier requires (m2 − 1) XOR gates, m2

NAND gates, (m2−2m) Inverters and (2m2−m) 1-bit registers. The critical path delay is

given by the expression (TNA+TX) with latency of m clock cycles. This multiplier achieves

low area complexity and low latency compared to the systolic multipliers [40–45]. The

latency of this multiplier is low but the area complexity is moderate and can be improved

further.

A systolic architecture designed by employing the Toeplitz matrix-vector represen-

tation on Montgomery multiplication was proposed by Lee [47] in 2008. This multiplier

requires (m2 + m) XOR gates, m2 AND gates, m2 Multiplexers and (3.5m2 + 3m) 1-bit

registers. The critical path delay is given by the expression (TM + TX) with latency of

(m + 2) clock cycles. This multiplier achieves reduction in area complexity compared

to the systolic multipliers [40, 43] while requiring high area complexity compared to the

systolic multipliers [41, 42, 44–46]. Moreover, it achieves low latency compared to the

systolic multipliers [41–43, 45] while requiring same latency as that of the systolic multi-

pliers [40,44,46]. On the whole, this multiplier utilizes extra multiplexers which increased

it’s area complexity significantly compared to the previous multipliers.

Chiou et.al. [48] proposed a systolic multiplier for trinomials in 2011, based on

Mastrovito multiplication method. This multiplier requires (m2 + m) XOR gates, m2

AND gates, m Multiplexers and (2m2 + 3m) 1-bit registers. The critical path delay is

given by the expression (TA+TX+TM) with latency of (m+1) clock cycles. This multiplier

achieves low area complexity compared to the systolic multipliers [40,41,43,44,47], while

requiring same area complexity as that of the systolic multiplier [42, 45, 46]. Moreover,

it achieves low latency compared to the systolic multipliers [41–43, 45], while requiring
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same latency as that of the systolic multipliers [40, 44, 46, 47]. This multiplier had high

critical path delay and the area complexity is also moderately high compared to previous

multipliers.

Bayat-Sarmadi and Farmani [49] proposed a systolic multiplier for trinomials in 2015

based on Montgomery multiplication algorithm. This multiplier requires (1.5m2 + 0.5m)

XOR gates, m2 NAND gates, (1.5m2 − 2.5m + 3) Inverters and (1.5m2 + 2m − 1) 1-bit

registers. The critical path delay is given by the expression (TNA + TX) with latency

of (m + 2) clock cycles. This multiplier achieves low area complexity compared to the

systolic multipliers [40, 41, 43, 44, 47, 48], while requiring same area complexity as that

of the systolic multiplier [42, 45, 46]. Moreover, it achieves low latency compared to

the systolic multipliers [41–43, 45], while requiring same latency as that of the systolic

multipliers [40, 44, 46–48]. This multiplier has moderate area complexity compared to

previous multipliers which needs to be reduced further in order to be used in area and

power constrained applications.

3.4 Systolic Multipliers over GF(2m) for Irreducible Pentanomi-

als

Pentanomials are special class of irreducible polynomials that are recommended by

NIST to be used for defining a binary field when trinomials in that field are absent. Along

with trinomials, pentanomials also have a vital role in the design of some cryptographic

algorithms because efficient hardware structures can be realized with low area complexity

and low power consumption. Hence, some systolic multipliers are proposed in the litera-

ture over GF (2m) for irreducible pentanomials and the performance of these multipliers

are presented in Table 3.4.

A systolic multiplier for pentanomials was presented by Lee [47] in 2008, based

on Montgomery multiplication method using Toeplitz matrix-vector representation. This

multiplier requires (m2+m) XOR gates, m2 AND gates, m2 Multiplexers and (3.5m2+3m)

1-bit registers. The critical path delay is given by the expression (TM + TX) with latency

of (m + 2) clock cycles. This multiplier achieves reduction in area complexity compared
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Table 3.4: Performance comparison of systolic multipliers for irreducible pentanomials

available in the literature.

Multipliers #AND #XOR #MUX #Registers Latency Critical Path Delay

[47] m2 m2 + 3m+ 2 m 3.5m2 + 7m m+ 4 TX

[50] (m2)a m2 + 2m− 1 (m2)b 2m2 − 2m m TNA + TX

[51] m2 m2 + 2m (m2)b 2m2 m
2

+ 2 2TX

[52] (m2)a
2m+ 2lm

(m2)c
3m2 − 2m− 2lm m

2l+2
+ 1

TNA + TXN
+2l + 2 −2l − 2 +log2(2l + 2)

aNAND gates; bInverter; cXNOR gate.

to multiplier architectures for generic irreducible polynomials. However, it had very high

area complexity compared to the multipliers for pentanomials.

In 2009, Meher [50] proposed a systolic multiplier for pentanomials using an efficient

modular reduction algorithm to realize efficient Reed-Solomon codecs. This multiplier

requires (m2 + 2m− 1) XOR gates, m2 NAND gates, m2 inverters and (2m2 − 2m) 1-bit

registers. The critical path delay is given by the expression (TNA + TX) with latency of

m clock cycles. This multiplier achieves reduction in area complexity and reduction in

latency of 4 clock cycles compared to the systolic multiplier [47]. However, the reduction

in area complexity is not much significant and further reduction can be made to the area

complexity.

A digit-serial systolic multiplier for pentanomials was designed by Xie et.al. [51] in

2012, based on a novel decomposition technique to divide the multiplier into two parallel

units. This multiplier requires (m2 + 2m) XOR gates, m2 AND gates, m2 Inverters and

2m2 1-bit registers. The critical path delay is given by the expression 2TX with latency

of ((m/2) + 2) clock cycles. This multiplier achieves low area complexity compared to

the systolic multiplier [47], while requiring slightly high area complexity compared to

the systolic multiplier [50]. Moreover, it also achieves about 50% reduction in latency

compared to the systolic multipliers [47, 50]. The improvement in delay obtained due to

the digit-serial design causes a penalty on area complexity, which is not suitable for area

and power constrained applications.

A digit-serial systolic Montgomery multiplier for pentanomials by employing a novel

pre-computation technique was proposed by Xie et.al. [52] in 2013. This multiplier re-
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quires (2m + 2lm + 2l + 2) XOR gates, m2 XNOR gates, m2 NAND gates and (3m2 −

2m − 2lm − 2l − 2) 1-bit registers, where l is the decomposition factor given by the ex-

pression l = min {m− k1, k1 − k2, k2 − k3, k3} for pentanomials of the form (xm + xk1 +

xk2 + xk3 + 1). The critical path delay is given by the expression (TNA + TXN) with la-

tency of ((m/(2l + 2)) + 1 + log2(2l + 2)) clock cycles. This multiplier achieves low area

complexity compared to the systolic multiplier [47], while requiring high area complexity

compared to the systolic multipliers [50, 51]. Moreover, it also achieves reduction in la-

tency compared to the systolic multipliers [47, 50, 51]. Although it achieves reduction in

delay due to latency improvement, the area complexity is high for this digit-serial design.

3.5 Conclusion

In this chapter, a survey of different architectures of finite field multipliers available

in the literature and the improvements achieved is presented. The next chapter presents

the design of the proposed sequential multiplier for irreducible polynomials.



Chapter 4

Low-power and Area-Efficient Sequential Multipliers

over Polynomial Basis

This chapter presents an interleaved multiplication algorithm derived from a con-

ventional interleaved multiplication algorithm available in the literature. A sequential

multiplier architecture over GF (2m) for irreducible polynomials is designed based on the

proposed algorithm. The performance of the proposed sequential multiplier architecture

is computed analytically and compared with the multiplier architectures available in the

literature. In addition, the analytical results are also verified by implementing the pro-

posed architecture on Field Programmable Gate Array (FPGA) and Application Specific

Integrated Circuit (ASIC) technologies and the results are compared with the existing ar-

chitectures available in the literature. Moreover, the Verilog models of two cryptographic

algorithms, AES and Twofish, are developed employing the proposed sequential multiplier

and the multipliers available in the literature. These Verilog models are implemented on

FPGA to compute the performance improvement achieved by the proposed multiplier

compared to the sequential multipliers available in the literature.

4.1 Introduction

Finite field arithmetic over GF (2m) is used in a variety of applications such as cryp-

tography, coding theory and computer algebra. Finite field multiplication is an important

and complex operation mainly used in cryptographic applications. Many algorithms and
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architectures are proposed in the literature to realize efficient multiplication operation in

both hardware and software and the implementation of these Cryptographic algorithms

in hardware achieves better security and low resource utilizations. In addition, the design

of finite field multipliers using sequential architecture allows further reduction in area

complexity and power consumption as the computations are carried out iteratively using

the same hardware. In spite of these sequential multipliers being slow, they are used in

several applications such as medical implants, wireless sensors, Internet of Things etc., due

to their extremely low area and low power requirements. All the sequential architectures

proposed in the literature [18–22] were aimed at reducing the area complexity or delay

when compared to the previous multipliers. This reduction in area complexity & power

consumption or the delay is essential to fulfil the ever increasing demand to miniaturize

the VLSI device, to reduce it’s power consumption and to increase it’s speed. Hence,

there is a never ending need to reduce the area complexity & power consumption and also

to increase the speed of any VLSI hardware device.

In this work, a modified interleaved multiplication algorithm is derived from a con-

ventional interleaved multiplication algorithm to realize the proposed sequential multi-

plier. Subsequently, an efficient sequential polynomial basis multiplier, that supports

multiplication of any two arbitrary finite field elements over GF (2m) for generic irre-

ducible polynomials, is designed based on the proposed algorithm. The area complexity

and delay of the proposed sequential multiplier over GF (2m) is estimated and its perfor-

mance is compared with existing sequential multipliers [18–22]. It is observed that the

proposed sequential multiplier achieves reduction in area complexity and area-delay prod-

uct (ADP) over the existing sequential multipliers verified for a field of order m = 163.

The proposed multiplier and some existing multipliers are implemented using ASIC and

FPGA technologies and the implementation results shows that the proposed sequential

multiplier achieves reduction in area complexity, power consumption, ADP and power-

delay product (PDP) over existing multipliers.

In addition, a sequential multiplier architecture over GF (28) is derived from the

proposed sequential multiplier architecture over GF (2m) as an example. The area com-

plexity and delay of the proposed multiplier are estimated and performance comparison

with existing sequential multipliers [18–22] is also presented. The proposed architecture
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achieves reduction in area complexity and ADP over the best of existing multipliers for

m = 8. In order to evaluate the performance of the proposed multiplier in a cryptographic

application, the Verilog models of Advanced Encryption Standard (AES) and Twofish al-

gorithms are developed employing the proposed sequential multiplier and other multipliers

available in the literature. These models are implemented on FPGA device and the device

utilization summary shows that the proposed multiplier achieves low area complexity, low

power consumption, less ADP and PDP compared to the existing multipliers.

4.2 Proposed Interleaved Multiplication Algorithm

GF (2m) is an extension field of GF (2) having an m-dimensional vector space over

it, where GF (2) is a binary field having only two elements {0, 1} [53]. The addition and

subtraction operations can be performed by the logical exclusive-OR (XOR) operation

and the multiplication operation can be performed by the logical AND operation over

GF (2). However, the multiplication over GF (2m) is performed by multiplying the two

polynomials and modular reduction of the result using the irreducible polynomial.

Definition 4.1. Let T (x) be the irreducible polynomial of degree m over GF (2) which

defines the field GF (2m). Then,

T (x) = xm + tm−1x
m−1 + · · ·+ t1x+ t0 (4.1)

where, t0, t1, · · · , tm−1 ∈ GF (2) are the coefficients of the irreducible polynomial T (x).

Definition 4.2. Let α ∈ GF (2m) be a root of T (x). Then the following set constitutes

the polynomial basis in GF (2m)

ω =
{

1, α, α2, · · · , αm−1} (4.2)

Definition 4.3. In the polynomial basis ω, the elements of GF (2m) are polynomials

of degree ≤ m − 1 over GF (2) and the set of all polynomial elements over GF (2m) is

represented as

GF (2m) = {f(x) | f(x) = am−1x
m−1 + · · ·+ a2x

2 + a1x+ a0} (4.3)
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where, ai ∈ GF (2); for i = 0, 1, 2, · · · ,m− 1.

Definition 4.4. Let f(x) = am−1x
m−1+ · · ·+a2x

2+a1x+a0 be a polynomial in GF (2m),

then the binary representation of this polynomial is

a = (am−1, · · · , a2, a1, a0) (4.4)

where, ai ∈ GF (2) and am−1 is the most significant bit (MSB) and a0 is the least significant

bit (LSB); for i = 0, 1, 2, · · · ,m − 1. Let the polynomials A(x), B(x) and T (x) be two

polynomials and the irreducible polynomial, respectively and D(x) be the final product

polynomial. Then,

D(x) = (A(x)×B(x)) mod T (x) (4.5)

Polynomial multiplication: The product of A(x) and B(x), each of degree at most m− 1,

results in an intermediate polynomial given by

C(x) = A(x)×B(x)

= (a0 + a1x+ · · ·+ am−1x
m−1)× (b0 + b1x+ · · ·+ bm−1x

m−1)

= c0 + c1x+ · · ·+ c2m−2x
2m−2

(4.6)

Modular reduction: The intermediate polynomial C(x) of degree at most (2m − 2) is

modular reduced by a degree m irreducible polynomial T (x) resulting in the polynomial

D(x) of degree at most (m− 1), which is the final result of the multiplication operation.

D(x) = C(x)× T (x)

= (c0 + c1x+ · · ·+ c2m−2x
2m−2)× (t0 + t1x+ · · ·+ tm−1x

m−1 + xm)

= d0 + d1x+ · · ·+ dm−1x
m−1

(4.7)

Thus the multiplication of two polynomials of degree (m − 1) results in a polynomial of

degree (m− 1) such that the resultant polynomial resides in the given field GF (2m).

Let a = (am−1, · · · , a1, a0) and b = (bm−1, · · · , b1, b0) be the binary representations

of the two elements, A(x) and B(x), over GF (2m), respectively. Let t = (tm−1, · · · , t1, t0)

be the binary representation of the field defining irreducible polynomial T (x) of degree at

most m, and let p = (pm−1, · · · , p1, p0) be the accumulator of the intermediate calculations.
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The derivation of the proposed algorithm from a conventional interleaved multiplication

algorithm [54] is given as follows:

The two arbitrary elements A(x) and B(x) in GF (2m) can be expressed as

A =
m∑
i=0

aix
i B =

m∑
i=0

bix
i (4.8)

Let C(x) ∈ GF (2m) be the product polynomial of the two elements A(x) and B(x).

C(x) = A(x)×B(x)

= A(x)×
m∑
i=0

bix
i

= b0A(x) + b1xA(x) + b2x
2A(x) + · · ·+ bm−1x

m−1A(x)

(4.9)

It may be observed from Eqn. (4.9) that C(x) is the summation of the multiplication

result of bi and A(x)xi; for all i = 0, 1, · · · ,m−1 i.e. the entire summation can be carried

out in m iterations. A(x)xi is calculated by the modular reduction step which is then

multiplied with bi using AND operation; for all i = 0, 1, · · · ,m − 1. Contrary to the

generic case of summation by addition, the exclusive-OR (XOR) operation is considered

for the summation of each biA(x)xi; for all i = 0, 1, · · · ,m − 1, since the addition is

simply an XOR operation over GF (2). Hence, the calculation of C(x) in Eqn. (4.9) is

transformed as Steps 3, 4, 8 in Algorithm 4.1. Here, p = (pm−1, · · · , p1, p0) acts as the

accumulator of A(x)xi and is initialized to zero at the beginning of each multiplication

operation.

The modular reduction of the conventional interleaved multiplication algorithm [54]

is performed as shown

A(x) =
(
A(x)× xi

)
mod T (x) (4.10)

Eqn. (4.10) is evaluated for each i as follows

For i = 0:

C(x) = A(x) mod T (x)

=
(
a0 + a1x+ · · ·+ am−1x

m−1) mod (t0 + t1x+ · · ·+ tm−1x
m−1 + xm)

(4.11)

A degree m polynomial cannot modulo divide a degree (m− 1) polynomial. Hence, this

step can be skipped.
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For i = 1:

C(x) = (A(x)× x) mod T (x)

=
(
a0 + a1x

2 + · · ·+ am−1x
m
)
mod (t0 + t1x+ · · ·+ tm−1x

m−1 + xm)

= am−1t0 + (am−1t1 + a0)x+ (am−1t2 + a1)x
2 + · · ·+ (am−1tm−1 + am−2)x

m−1

(4.12)

It is revealed from Eqn. (4.12) that the modular reduction is reduced to the summation

of am−1T (x) and A(x)xi. The A(x)xi is computed by left shifting A(x) by i times; for

all i = 0, 1, 2, · · · ,m− 1. The am−1T (x) is computed by bit-wise AND operation of am−1

with the binary representation of T (x) i.e. (tm−1, · · · , t1, t0). The summation is carried

out in m iterations using the XOR operation. Therefore, the modular reduction step can

be transformed as Steps 5, 6, 7 as shown in Algorithm 4.1.

Both the polynomial multiplication and modular reduction steps occur simultane-

ously resulting in an interleaved algorithm. The two modified equations, Eqn. (4.9) and

(4.12), results in the derivation of Algorithm 4.1.

Algorithm 4.1: Proposed interleaved multiplication algorithm over GF (2m)

1 Initialization: p = 0, counter = 0

2 FOR counter = 0 TO 7 DO

3 a = a & b0

4 p = p⊕ a

5 t = t & am−1

6 a = a� 1

7 a = a⊕ t

8 b = b� 1

9 END FOR

4.3 Proposed Sequential Multiplier Architecture over GF(2m)

for Irreducible Polynomials

This sub-section presents the design of the proposed sequential multiplier archi-

tecture over GF (2m) for irreducible polynomials. The estimations of area complexity
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and delay of this architecture are computed analytically and compared with the existing

multipliers available in the literature. The functionality of the proposed architecture is

implemented using FPGA and ASIC technologies. These analytical and implementation

results of the proposed architectures and the architectures available in the literature are

also presented in the following sub-sections.

4.3.1 Design of Proposed Sequential Multiplier Architecture over GF(2m) for Ir-

reducible Polynomials

The design of the proposed sequential multiplier over finite fields of an arbitrary

field order m is presented in this sub-section. Fig. 4.1 shows the block diagram of the

proposed sequential polynomial basis multiplier over GF (2m) realized using the proposed

algorithm (Section 4.2). This architecture consists of two main modules A and B and

three m-bit registers. The multiplier takes one m-bit input t ; where, t denotes the

binary representation of the irreducible polynomial. Module A computes the polynomial

multiplication and module B computes the modular reduction. The logic diagrams of the

modules A and B are shown in Fig. 4.2(a) and (b) respectively.

The inputs of module A are a, b0, p and output is pout. In module A, an AND

operation is performed on a with the LSB of b i.e. b0, to attain an m-bit result aa. The

m-bit signal aa is bit-wise XORed with the m-bit signal p resulting in the output pout.

The inputs of module B are a, b, t and outputs are anew and bnew. In module B, b is right

shifted by one bit resulting in the output bnew. a is left shifted by one bit to obtain an

m-bit result al. Logical AND operation is performed on t with am−1 to obtain an m-bit

result tt. This m-bit signal tt is XORed with al resulting in the output anew. Before

the multiplication operation begins, the registers Reg2 and Reg3 are initialized with the

multiplicands b and a, respectively, and Reg1 is cleared. For every clock cycle, module

A updates p value given by pout and module B updates the a and b values given by anew

and bnew respectively. The final multiplication result is given by res after m clock cycles.
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Figure 4.1: Block diagram of the proposed sequential multiplier architecture.

(a) Module A (b) Module B

Figure 4.2: Internal circuit details of the proposed architecture.

4.3.2 Analytical Results

As discussed in previous section, the proposed sequential multiplier consists of three

m-bit registers, one module A and one module B. Each of the modules A and B consists of
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m 2-input XOR gates and m 2-input AND gates each. An m-bit register can be realized

using m 1-bit registers. Since the proposed architecture requires three m-bit registers,

the total 1-bit registers required are 3m. The shifting blocks, SL and SR, are consists of

only re-wiring and hence do not contribute to any complexity. Therefore, the total area

complexity of the proposed architecture is 2m XOR gates, 2m AND gates and 3m 1-bit

registers. The critical path delay of the proposed multiplier is the maximum of delays of

either module A or module B. It can be observed from the architecture that the delays of

module A and module B are equal and is given by the expression (TX + TA), where TX

and TA are the delays of the XOR gate and AND gate, respectively. Hence, the critical

path delay of the multiplier is computed as (TX + TA). As established by the proposed

algorithm, the multiplication of two m-bit elements is computed over m iterations. Hence,

the resultant latency is m clock cycles.

Table 4.1: Area complexity and delay comparison of the proposed architecture with ex-

isting architectures over GF (2m).

Multipliers #XOR #AND #MUX #Registers Latency Critical Path Delay

[18] 2m 3m m m2 3m (TA + TN + TO)log2m+ TX

[19] m 2m (m− 1)a +mb 3m m TX + 2TA + TN + (m+ 1)TO

[20] m m 2m+ 1 3m 2m TX + TA

[21] 2m 4m ma +mc 3m m TX + TA

[22] 6m+ 18 0 14m+ 26 6m+ 7 m/4 4TX + 2TM

Proposed 2m 2m 0 3m m TX + TA

aOR gates; b1-to-2 DMUX; cInverter.

Table 4.1 presents the comparison of area complexity (in terms of gate count),

latency (#clock cycles) and critical path delay of the proposed architecture with other

sequential architectures [18–22] available in the literature. It may be noted that TN , TO

and TM denote the delays of an inverter, OR gate and 2:1 MUX, respectively. In order

to highlight the differences among various multiplier designs, the irreducible polynomial

with field order m = 163, i.e. f(x) = x163 + x7 + x6 + x3 + 1 recommended by National

Institute of Standards and Technology (NIST), is considered as an example. Since the

comparison of area complexity expressed in terms of gate count cannot provide a clear

difference among the multipliers considered. A better area complexity comparison can be

achieved using the transistor count parameter. Moreover, latency alone cannot achieve a
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fair comparison of computation time; total delay as a product of latency and critical path

must be considered.

Table 4.2: Comparison of transistor count, latency, critical path delay, total delay, area-

delay product, % reduction in area and % reduction in ADP of the proposed architecture

with existing architectures over GF (2163).

Multipliers #Transistors Latency
CP Total Delay ADP %Reduction %Reduction

(ns) (ns) (×106) in Area in ADP

[18] 217442 489 174 85086 18501 96% 99%

[19] 8796 163 1344 219072 1927 11% 98%

[20] 7830 326 18 5868 46 0.08% 50%

[21] 11084 163 18 2934 32 29% 28%

[22] 27704 41 60 2460 68 71% 66%

Proposed 7824 163 18 2934 23 - -

Table 4.2 provides the comparison of area complexity (in terms of total transistor

count), total delay (latency × critical path) and area-delay product (#transistors × ns).

In order to estimate the transistor count of individual gates, traditional CMOS logic

transistor counts [55] are used: six transistors for a 2-input XOR gate, six for a 1-bit 2:1

MUX, six for a 1-bit 1:2 DMUX, six for a 2-input OR gate, six for a 2-input AND gate

and eight for a 1-bit register. The critical path delay of the multipliers are estimated using

the real time circuits from STMicroelectronics [56]. The typical values of the propagation

delays (tPD) is considered for all the gates to ensure fair comparison. The circuits used

are M74HC86 (XOR gate, tPD = 12ns), M74HC257 (MUX, tPD = 11ns), M74HC08

(AND gate, tPD = 6ns), M74HC32 (OR gate, tPD = 8ns) and M74HC04 (INVERTER,

tPD = 8ns). It can be observed from Table 4.2 that the proposed architecture requires

low area complexity and low area-delay product compared to the sequential architectures

available in the literature. This table also provides the percentage reduction in area

complexity and area-delay product achieved by the proposed architecture compared to

the architectures available in the literature. It can be noted that the proposed architecture

achieves significant reduction in area complexity of about 96% and 71% and reduction in

ADP of about 99% and 66% compared to the architectures [18,22], respectively. Moreover,

the proposed architecture achieves about 11% and 29% reduction in area complexity while
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achieving 98% and 28% reduction in ADP compared to the architectures [19, 21]. The

proposed architecture requires the same area complexity as that of the architecture [20].

However, the ADP of the proposed architecture achieves 50% reduction in ADP compared

to the sequential architecture [20].

Figure 4.3: Area complexity comparison of sequential multipliers.

Figure 4.4: Area-Delay Product comparison of sequential multipliers.

Fig. 4.3 and 4.4 shows the area complexity and ADP comparison of the sequential
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multipliers over a range of m values. As the order of the finite field increases from m = 2

to m = 600 in Fig. 4.3, it can be observed that the proposed architecture achieves low

area complexity compared to the sequential architectures [18, 19, 21, 22], while requiring

equal area complexity compared to the sequential architecture [20]. Furthermore, Fig.

4.4 shows that the proposed architecture achieves low ADP compared to the sequential

architectures [18–22]. Moreover, it can also be observed that the delay of the proposed

architecture is comparable to other architectures.

4.3.3 Implementation Results

The performance of the proposed sequential multiplier architecture and the sequen-

tial multiplier architectures available in the literature are verified by implementing them

on ASIC and FPGA platforms. The implementation results of these architectures are

presented in the following sub-sections.

4.3.3.1 ASIC Implementation Results

Table 4.3: ASIC implementation results of sequential multipliers.

PPPPPPPPPPPPPP
Metrics

Multipliers
[20] [22] Proposed

m
=

8

Total Delay (ns) 1.582 1.482 1.493

Area (µm2) 8.17 14.418 7.48

Power (µW ) 25.282 14.866 8.035

ADP (µm2 × ns) 12.925 21.368 11.168

PDP (µW × ns) 39.99 22.031 11.996

m
=

16
3

Total Delay (ns) 1.717 1.731 1.615

Area (µm2) 177.594 372.276 87.48

Power (µW ) 811.769 404.839 95.282

ADP (µm2 × ns) 304.929 644.410 141.28

PDP (µW × ns) 1393.807 700.776 153.88

The sequential multipliers [20,22] are considered for hardwarea implementation and
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 4.5: ASIC implementation results of sequential multipliers for m = 8.

comparison since the sequential multiplier [20] requires same area complexity as the pro-

posed multiplier and the sequential multiplier [22] requires low ADP among existing mul-

tipliers. Therefore, the proposed multiplier along with the multipliers in [20, 22] are

modelled in Verilog and synthesized with Cadence Encounter RTL Compiler Tool which

uses UMC 0.18µm technology for m = 8 and m = 163. The field orders m = 8 and

m = 163 are considered for implementation as m = 8 is used in AES and m = 163 is

recommended by NIST. The delay, area complexity, power consumption, ADP and PDP

of the all the architectures are computed from the device utilization summary generated

by the synthesis tool (see Table 4.3). The area complexity, power consumption, ADP and

PDP results are also plotted for m = 8 and m = 163 as shown in Fig. 4.5(a)-(d) and Fig.

4.6(a)-(d), respectively.

It is clear from the histogram (see Fig. 4.5 and Fig. 4.6) that the proposed multiplier
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 4.6: ASIC implementation results of sequential multipliers for m = 163.

requires the least area complexity, power consumption, ADP and PDP among existing

multipliers. More specifically, it can be observed that the proposed multiplier achieves

reduction of about 8.5%, 68%, 13.6% & 70% in area complexity, power consumption, ADP

and PDP, respectively, when compared to the multiplier [20] for m = 8. Similarly, the

proposed multiplier achieves reduction of about 48%, 45%, 47% & 45% in area complexity,

power consumption, ADP and PDP, respectively, when compared to the multiplier [22]

for m = 8. The proposed multiplier achieves reduction of about 50%, 88%, 53% & 88%

in area complexity, power consumption, ADP and PDP, respectively, when compared to

the multiplier [20] for m = 163. Similarly, the proposed multiplier achieves reduction of

about 76%, 76%, 78% & 78% in area complexity, power consumption, ADP and PDP,

respectively, when compared to the multiplier [22] for m = 163. Moreover, the proposed

multiplier also achieves reduction in delay compared to the multipliers [20,22] for m = 163.

These improvements in area complexity, power consumption, ADP and PDP achieved by
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the proposed multiplier indicate an efficient design in terms of both area complexity and

power consumption without much increase in delay.

4.3.3.2 FPGA Implementation Results

Table 4.4: FPGA implementation results of sequential multipliers.

PPPPPPPPPPPPPP
Metrics

Multipliers
[20] [22] Proposed

m
=

8

Total Delay (ns) 1.691 1.455 0.791

Area (#Slices) 23 47 23

Power (W ) 0.511 0.262 0.225

ADP (#Slices× ns) 38.893 68.385 18.193

PDP (W × ns) 0.864 0.381 0.178

m
=

16
3

Total Delay (ns) 9.131 11.686 4.105

Area (#Slices) 326 850 165

Power (W ) 0.923 0.713 0.599

ADP (#Slices× ns) 2976.706 9933.1 677.325

PDP (W × ns) 8.428 8.33 2.459

In addition to the ASIC implementation, the functionality of the proposed multiplier

are also verified by implementing the Verilog models on FPGA platform. The Verilog

models of the proposed multiplier and the multipliers [20,22] are simulated and synthesized

using Xilinx Vivado 2014.2 tool. The synthesized netlist is implemented on a Xilinx

Virtex-7 (XC7VX1140TFLG1930-1) FPGA prototype board. The delay, area, power

consumption, ADP and PDP of the all the architectures are computed from the device

utilization summary generated by the synthesis tool (see Table 4.4). The area complexity,

power consumption, ADP and PDP results are also plotted for m = 8 and m = 163 as

shown in Fig. 4.7(a)-(d) and Fig. 4.8(a)-(d), respectively.

It is clear from the histogram (see Fig. 4.7 and Fig. 4.8) that the proposed multiplier

requires the least area complexity, power consumption, ADP and PDP among existing

multipliers. More specifically, it can be observed that the proposed multiplier achieves
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 4.7: FPGA implementation results of sequential multipliers for m = 8.

same area complexity and reduction of about 56%, 53% & 79% in power consumption,

ADP and PDP, respectively, when compared to the multiplier [20] for m = 8. Simi-

larly, the proposed multiplier achieves reduction of about 51%, 14%, 73% & 53% in area

complexity, power consumption, ADP and PDP, respectively, when compared to the mul-

tiplier [22] for m = 8. For m = 163, the proposed multiplier achieves reduction of about

49%, 35%, 77% & 70% in area complexity, power consumption, ADP and PDP, respec-

tively, when compared to the multiplier [20]. Similarly, the proposed multiplier achieves

reduction of about 80%, 16%, 93% & 70% in area complexity, power consumption, ADP

and PDP, respectively, when compared to the multiplier [22] for m = 163. Moreover, the

proposed multiplier also achieves reduction in delay compared to the multipliers [20, 22]

for m = 163. In addition, the proposed multiplier achieves reduction in delay compared

to the multipliers [20, 22]. These improvements in area complexity, power consumption,

ADP and PDP achieved by the proposed multiplier indicate an efficient design in terms
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 4.8: FPGA implementation results of sequential multipliers for m = 163.

of both area and power without much increase in delay.

4.4 Proposed Sequential Multiplier Architecture over GF(28)

for Irreducible Polynomials

This sub-section presents the design of the proposed sequential multiplier architec-

ture over GF (28) for irreducible polynomials. AES and Twofish encryption algorithms

are realized using the proposed sequential multiplier architecture and implemented on an

FPGA platform. These implementation results of the proposed architecture are compared

with the results achieved by the multiplier architectures available in the literature.
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4.4.1 Design of Proposed Sequential Multiplier Architecture over GF(28) for Ir-

reducible Polynomials

Fig. 4.9 shows the block diagram of the sequential multiplier architecture over

GF (28) derived from the proposed sequential multiplier architecture over GF (2m) (section

4.3). The block diagram consists of two modules A and B and three 8-bit registers.

The multiplier takes one 8-bit input t, where t denotes the binary representation of the

irreducible polynomial over GF (28). Module A computes the polynomial multiplication

and module B computes the modular reduction. The logic diagrams of the modules A

and B are shown in Fig. 4.10(a) and (b), respectively. The inputs of module A are a, b0, p

and output is pout. In module A, an AND operation is performed on a with the LSB of

b i.e. b0 to attain 8-bit result aa. The 8-bit signal aa is bit-wise XORed with the input

p resulting in the output pout. The inputs of module B are a, b, t and outputs are anew

and bnew. In module B, b is right shifted by one bit to attain the output bnew. a is left

shifted by one bit to attain an 8-bit result al. An AND operation is performed on t with

a7 to attain an 8-bit result tt. The 8-bit signal tt is XORed with al to obtain anew. Before

the multiplication operation begins, the registers Reg2 and Reg3 are initialized with the

multiplicands b and a respectively and Reg1 is cleared. For every clock cycle, module A

computes the new p value given by pout and module B computes the new a and b values

given by anew and bnew respectively. The final multiplication result is given by res after 8

clock cycles.

4.4.2 Analytical Results

As presented in previous section, the proposed multiplier requires three 8-bit regis-

ters, one module A and one module B. Both module A and module B consists of eight

2-input XOR gates and eight 2-input AND gates. An 8-bit register can be realized using

eight 1-bit registers. Since the proposed architecture requires three 8-bit registers, the to-

tal 1-bit registers required is twenty-four. The shifting blocks, SL and SR, are comprised

of only re-wiring and hence do not contribute to any complexity. Hence, the total area

complexity of the proposed architecture is sixteen 2-input XOR gates, sixteen 2-input

AND gates and twenty-four 1-bit registers. The critical path delay of the proposed multi-
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Figure 4.9: Block diagram of the proposed sequential multiplier architecture over GF (28).

(a) Module A (b) Module B

Figure 4.10: Internal circuit details of the proposed architecture.

plier is the maximum of delays of either module A or module B. It can be observed from

the architecture that the delays of module A and module B are equal i.e. (TX + TA) ,

where TX and TA are the delays of a 2-input XOR gate and a 2-input AND gate, respec-
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Table 4.5: Area complexity and delay comparison of the proposed architecture with ex-

isting architectures over GF (28).

Multipliers #XOR #AND #MUX #Registers Latency Critical Path Delay

[18] 16 24 8 64 24 (TA + TN + TO)3 + TX

[19] 8 16 7a + 8b 24 8 TX + 2TA + TN + 9TO

[20] 8 8 17 24 16 TX + TA

[21] 16 32 8a + 8c 24 8 TX + TA

[22] 66 0 138 55 2 4TX + 2TM

Proposed 16 16 0 24 8 TX + TA

aOR gates; b1-to-2 DMUX; cInverter.

tively. Hence, the critical path delay of the multiplier is computed as (TX +TA). Since the

multiplication of two 8-bit elements can be computed over eight iterations, the resultant

latency is eight clock cycles.

Table 4.5 presents the comparison of number of gates, latency and critical path of

the proposed architecture compared to other multiplier architectures [18–22] available in

the literature. It may be noted that TN , TO and TM denotes the delay of an inverter,

2-input OR gate and 2:1 MUX, respectively. The comparison of area complexity in terms

of gate count cannot provide a clear difference among the multipliers considered. A better

area-complexity comparison can be achieved using the transistor count parameter. Since

latency alone cannot achieve a fair comparison of computation time, total delay as a

product of latency and critical path is considered.

Table 4.6 provides the comparison of area complexity(number of transistors), total

delay (latency × critical path) and ADP (#Transistors × ns). In order to estimate the

transistor count of individual gates, traditional CMOS logic transistor counts [55] are

used: six transistors for a 2-input XOR gate, six for a 1-bit 2:1 MUX, six for a 1-bit

1:2 DMUX, six for a 2-input OR gate, six for a 2-input AND gate and eight for a 1-bit

register. Some real time circuits from STMicroelectronics [56] are considered to estimate

the critical path delay of the multipliers. The typical propagation delay (tPD) of the

respective gates is considered to ensure fair comparison. The circuits used are M74HC86

(XOR gate, tPD = 12ns), M74HC257 (MUX, tPD = 11ns), M74HC08 (AND gate, tPD =
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Table 4.6: Comparison of transistor count, latency, critical path delay, total delay, area-

delay product, % reduction in area and % reduction in ADP of the proposed architecture

with existing architectures over GF (28).

Multipliers #Transistors Latency
CP Total Delay ADP %Reduction %Reduction

(ns) (ns) (×103) in Area in ADP

[18] 800 24 78 1872 1497.6 52% 96%

[19] 384 8 104 832 319.488 Equal 82%

[20] 390 16 18 288 112.32 Equal 50%

[21] 544 8 18 144 78.336 29% 29%

[22] 1664 2 60 118 196.352 77% 71%

Proposed 384 8 18 144 55.296 - -

Figure 4.11: Area complexity comparison of the proposed architecture with existing ar-

chitectures over GF (28).

6ns), M74HC32 (OR gate, tPD = 8ns) and M74HC04 (INVERTER, tPD = 8ns).

Fig. 4.11 and Fig. 4.12 illustrates the histograms plotted for area complexity and

ADP, respectively, of the proposed multiplier and various multipliers reported in the

literature. It can be observed from the results that the proposed multiplier achieves low

ADP compared to existing sequential multipliers available in the literature. It may also

be noted that the area complexity is low for the proposed architecture compared to the

multipliers [18, 21, 22] while its same as that of the multipliers [19, 20]. However, the

proposed multiplier achieves low ADP compared to all the multipliers [18–22]. Moreover,
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Figure 4.12: Area-Delay Product comparison of the proposed architecture with existing

architectures over GF (28).

the delay of the proposed multiplier is low compared to the sequential multipliers [18–21]

while requiring slightly more delay compared to the sequential multiplier [22]. The critical

path delay of the proposed design is also low compared to multipliers [18,19,22] indicating

that it can operate at higher frequencies.

4.4.3 Implementation Results

The performance of the proposed sequential multiplier architecture is verified by

designing AES and Twofish cryptographic algorithms and implementing them on FPGA

platform. The implementation results of these two algorithms are presented in the fol-

lowing sub-sections.

4.4.3.1 FPGA implementation of AES

The proposed sequential multiplier architecture over GF (28) is employed to realize

the AES algorithm and is implemented on an FPGA platform. The AES is a symmetric-

key cryptographic algorithm developed based on a substitution-permutation structure

using block-cipher technique. The block size of the plaintext to be encrypted is 128 bits

with the key size options of 128, 192 and 256 bits. In this work, the key size of 128

bits is used for the hardware implementation on the FPGA device [57] and hence the
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Table 4.7: FPGA implementation results of AES.

PPPPPPPPPPPPPP
Metrics

Multipliers
[20] [22] Proposed

Total Delay (ns) 78.371 58.693 60.327

Area (#Slices) 12981 15793 10097

Power (W ) 0.917 0.459 0.263

ADP (#Slices× ns)(×103) 1017.334 926.939 609.122

PDP (W × ns) 71.87 26.94 15.87

algorithm is performed for 10 rounds. The Verilog models for AES encryptor-decryptor

are developed employing the proposed sequential multiplier and the sequential multi-

pliers [20, 22] available in the literature to perform finite field multiplications. These

Verilog models are simulated and synthesized using Xilinx Vivado 2014.2 software tool

to verify their functionality. The synthesized netlist is implemented on a Xilinx Virtex-7

(XC7VX1140TFLG1930-1) FPGA prototype board. The experimental setup of the FPGA

implementation of AES is shown in Fig. 4.13(a). The AES encryption and decryption is

performed with Plaintext and Key values as 0x00112233445566778899AABBCCDDEEFF

and 0x000102030405060708090A0B0C0D0E0F and the Ciphertext obtained is 0x69C4E

0D86A7B0430D8CDB78070B4C55A and the simulation waveforms are shown in Fig.

4.13(b) and (c).

The delay, area, power consumption, ADP and PDP results are computed using

the device utilization summary and presented in Table 4.7. The area complexity, power

consumption, ADP and PDP results are also plotted as shown in Fig. 4.14(a)-(d), re-

spectively. It is clear from the histogram (see Fig. 4.14) that the proposed multiplier

requires low area complexity, power consumption, ADP and PDP compared to the ex-

isting multipliers. More specifically, the proposed multiplier achieves reduction of about

22%, 71%, 40% & 77% in area complexity, power consumption, ADP and PDP compared

to the multiplier [20]. Similarly, the proposed multiplier also achieves reduction of about

36%, 42%, 34% & 41% in area complexity, power consumption, ADP and PDP compared

to the multiplier [22]. These improvements achieved by the proposed multiplier in area

complexity, power consumption, ADP and PDP indicates an efficient design in both area
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(a) Experimental setup

(b) FPGA simulation waveform of AES encryption

(c) FPGA simulation waveform of AES decryption

(d) FPGA ChipscopePro implementation waveform of AES encryption

(e) FPGA ChipscopePro implementation waveform of AES decryption

Figure 4.13: Experimental setup and simulation of AES.
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 4.14: FPGA implementation results of AES.

and power without much increase in delay.

4.4.3.2 FPGA implementation of Twofish

Table 4.8: FPGA implementation results of Twofish.

PPPPPPPPPPPPPP
Metrics

Multipliers
[20] [22] Proposed

Total Delay (ns) 106.009 85.359 91.870

Area (#Slices) 15805 19805 15148

Power (W ) 0.654 0.274 0.171

ADP (#Slices× ns)(×103) 1675.472 1690.535 1391.647

PDP (W × ns) 69.33 23.39 15.71
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(a) Experimental setup

(b) FPGA simulation waveform of Twofish encryption

(c) FPGA simulation waveform of Twofish decryption

(d) FPGA ChipscopePro implementation waveform of Twofish encryption

(e) FPGA ChipscopePro implementation waveform of Twofish decryption

Figure 4.15: Experimental setup and simulation of Twofish.
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 4.16: FPGA implementation results of Twofish.

The Twofish cryptographic algorithm is developed based on Fiestel structure and the

block cipher encryption technique. The block size of the plaintext to be encrypted is 128

bits with the key size options of 128, 192 and 256 bits. In this work, the key size of 128 bits

is used for the hardware implementation on the FPGA device [58]. The Verilog models for

Twofish encryptor-decryptor are developed employing the proposed sequential multiplier

and the sequential multipliers [20, 22] available in the literature to perform finite field

multiplications. These Verilog models are simulated and synthesized using Xilinx Vivado

2014.2 software tool to verify their functionality. The synthesized netlist is implemented

on a Xilinx Virtex-7 (XC7VX1140TFLG1930-1) FPGA prototype board. The experimen-

tal setup of the FPGA implementation of Twofish algorithm is shown in Fig. 4.15(a).

The Twofish encryption and decryption is performed with Plaintext and Key values

as 0x00112233445566778899AABBCCDDEEFF and 0x0000000000000000000000000000

0000 and the Ciphertext obtained is 0x1242FAE0702A08D0903708274A6831D7 and the
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simulation waveforms are shown in Fig. 4.15(b) and (c).

The delay, area, power consumption, ADP and PDP results are computed using

the device utilization summary and presented in Table 4.8. The area complexity, power

consumption, ADP and PDP results are also plotted as shown in Fig. 4.16(a)-(d), re-

spectively. It is clear from the histogram (see Fig. 4.16) that the proposed multiplier

requires low area complexity, power consumption, ADP and PDP compared to the ex-

isting multipliers. More specifically, the proposed multiplier achieves reduction of about

4.2%, 73%, 16% & 77% in area complexity, power consumption, ADP and PDP compared

to the multiplier [20]. Similarly, the proposed multiplier also achieves reduction of about

23%, 37%, 17% & 32% in area complexity, power consumption, ADP and PDP compared

to the multiplier [22]. These improvements achieved by the proposed multiplier in area

complexity, power consumption, ADP and PDP indicates an efficient design in both area

and power without much increase in delay.

4.5 Conclusion

In this chapter, a sequential polynomial basis multiplier architecture over GF (2m)

is realized for the proposed algorithm. The area complexity and delay of the proposed

multiplier are estimated and performance is compared with other sequential multipliers

available in the literature. It may be concluded from the comparisons of the estimated

results that the proposed multiplier achieves low area complexity for generic irreducible

polynomials of degree m. The resultant area-delay product of the proposed multiplier

is also low when compared to other multipliers, indicating an efficient multiplier design

in terms of both area and delay. From the ASIC and FPGA synthesis results of the

multipliers, it can be concluded that the proposed sequential multiplier achieves low area

complexity, power consumption, area-delay product and power-delay product compared

to the existing multipliers. In addition, a sequential multiplier architecture over GF (28) is

derived from the sequential multiplier architecture over GF (2m). The area complexities

and delay of the proposed multiplier is estimated and performance is compared with

other sequential multipliers available in the literature for m = 8. The Verilog models of

two cryptographic algorithms, AES and Twofish, are developed employing the proposed
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multiplier and the multipliers available in the literature. From the FPGA synthesis results

of AES and Twofish algorithms, it can be concluded that the proposed multiplier achieves

low area complexity, power consumption, area-delay product and power-delay product

compared to the existing multipliers. The next chapter presents the design of the proposed

systolic multiplier for irreducible polynomials.



Chapter 5

Low-power and Area-Efficient Systolic Multipliers

over Polynomial Basis

This chapter presents an interleaved multiplication algorithm derived from a conven-

tional interleaved multiplication algorithm available in the literature. A systolic multiplier

architecture over GF (2m) for irreducible polynomials is designed based on the proposed

algorithm. The performance of the proposed systolic multiplier architecture is computed

analytically and compared with the multiplier architectures available in the literature.

In addition, the analytical results are also verified by implementing the proposed archi-

tecture on Field Programmable Gate Array (FPGA) and Application Specific Integrated

Circuit (ASIC) technologies and the results are compared with the existing architectures

available in the literature. Moreover, the Verilog models of two cryptographic algorithms,

AES and Twofish, are developed employing the proposed systolic multiplier and the mul-

tipliers available in the literature. These verilog models are implemented on FPGA to

compute the performance improvement achieved by the proposed multiplier compared to

the systolic multipliers available in the literature.

5.1 Introduction

The design of finite field multipliers employing systolic architectures tend to achieve

high speeds since same hardware blocks are replicated to obtain a parallel structure.

Hence, these architectures are preferred for applications with strict speed constraints
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such as defence, network servers, etc. However, the area complexity of these systolic

architectures is high and there is a need to reduce the area complexity.

In this work, a modified interleaved multiplication algorithm is derived from a con-

ventional interleaved multiplication algorithm to realize systolic multipliers. Subsequently,

an efficient systolic polynomial basis multiplier, that supports multiplication of any two

arbitrary finite field elements over GF (2m) for irreducible polynomials, is designed based

on the proposed algorithm. The area complexity and delay of the proposed systolic

multiplier over GF (2m) is estimated and its performance is compared with existing sys-

tolic multipliers [20, 23–38]. It is observed that the proposed systolic multiplier achieves

reduction in area complexity and area-delay product (ADP) over the existing systolic

multipliers for a field of order m = 163. The proposed multiplier and some existing

multipliers are implemented using ASIC and FPGA technologies and the implementation

results shows that the proposed systolic multiplier achieves reduction in area complexity,

power consumption, ADP and power-delay product (PDP) over existing multipliers.

In addition, a systolic multiplier architecture over GF (28) is designed for irreducible

polynomials as an example. The area complexity and delay of the proposed multiplier

are estimated and performance comparison with the existing systolic multipliers [20, 23–

38] is also presented. The proposed architecture achieves reduction in area complexity

and ADP over the best of existing multipliers for m = 8. In order to evaluate the

performance of the proposed multiplier in a cryptographic application, the Verilog models

of Advanced Encryption Standard (AES) and Twofish algorithms are developed employing

the proposed systolic multiplier and other multipliers available in the literature. These

models are implemented on FPGA device and the device utilization summary shows that

the proposed multiplier achieves low area complexity, low power consumption, less ADP

and PDP over existing multipliers.

5.2 Proposed Interleaved Multiplication Algorithm

Let A(x) and B(x) be two arbitrary elements of GF (2m) expressed as

A =
m∑
i=0

aix
i B =

m∑
i=0

bix
i (5.1)
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Let C(x) ∈ GF (2m) be the product polynomial of the two elements A(x) and B(x).

C(x) = A(x)×B(x)

= A(x)×
m∑
i=0

bix
i

= b0A(x) + b1xA(x) + b2x
2A(x) + · · ·+ bm−1x

m−1A(x)

(5.2)

It may be observed from Eqn. (5.2) that C(x) is the summation of the multiplication

result of bi and A(x)xi; for all i = 0, 1, · · · ,m − 1 and the entire summation can be

carried out in m iterations. A(x)xi is calculated in the modular reduction step which is

then accumulated in each iteration if bi = 1. On the contrary, A(x)xi is not considered

for the summation if bi = 0. Here, the summation is performed using the exclusive-OR

(XOR) operation of each biA(x)xi; for all i = 0, 1, · · · ,m− 1, since the addition is simply

an XOR operation over GF (2). Hence, the calculation of C(x) in Eqn. (5.2) can be

transformed into Steps 3, 4, 5 & 6 in Algorithm 5.1. Here, p = (pm−1, · · · , p1, p0) acts as

the accumulator of A(x)xi and is initialized to zero at the beginning of each multiplication

operation.

The modular reduction of the conventional interleaved multiplication algorithm [54]

is performed as shown

A(x) =
(
A(x)× xi

)
mod T (x) (5.3)

Eqn. (5.3) is evaluated for each i as follows

For i = 0:

C(x) = A(x) mod T (x)

=
(
a0 + a1x+ · · ·+ am−1x

m−1) mod (t0 + t1x+ · · ·+ tm−1x
m−1 + xm)

(5.4)

A degree m polynomial cannot modulo divide a degree (m− 1) polynomial. Hence, this

step can be skipped.

For i = 1:

C(x) = (A(x)× x) mod T (x)

=
(
a0 + a1x

2 + · · ·+ am−1x
m
)
mod (t0 + t1x+ · · ·+ tm−1x

m−1 + xm)

= am−1t0 + (am−1t1 + a0)x+ (am−1t2 + a1)x
2 + · · ·+ (am−1tm−1 + am−2)x

m−1

(5.5)

It can be observed that the summation in Eqn. (5.5) can be performed over m iterations.

In each iteration, T (x) and A(x)xi are XORed and accumulated to the previous result if
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am−1 = 1; for all i = 0, 1, · · · ,m−1. On the contrary, T (x) is not considered in the above

accumulation if am−1 = 0. Here, A(x)xi is computed by left shifting A(x) by i times; for

all i = 0, 1, 2, · · · ,m − 1. This result is also used in the polynomial multiplication step

given above. Therefore, the modular reduction step can be transformed as Steps 7, 8, 9

& 10 in Algorithm 5.1.

Both the polynomial multiplication and modular reduction steps occur simultane-

ously resulting in an interleaved algorithm which is presented in Algorithm 5.1.

Algorithm 5.1: Proposed interleaved multiplication algorithm over GF (2m)

1 Initialization: p = 0, counter = 0

2 FOR counter = 0 TO m− 1 DO

3 IF(b0 == 1)

4 p = p⊕ a

5 END IF

6 b = b� 1

7 amsb = am−1

8 a = a� 1

9 IF(amsb == 1)

10 a = a⊕ t

11 END IF

12 END FOR

5.3 Proposed Systolic Multiplier Architecture over GF(2m) for

Irreducible Polynomials

This sub-section presents the design of the proposed systolic multiplier architecture

over GF (2m) for irreducible polynomials. The estimations of area complexity and delay

of this architecture are computed analytically and compared with the existing multipliers

available in the literature. The functionality of the proposed architecture is implemented

using FPGA and ASIC technologies. These analytical and implementation results of the

proposed architectures and multipliers available in the literature are also presented in the

following sub-sections.
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5.3.1 Design of Proposed Systolic Multiplier Architecture over GF(2m) for Irre-

ducible Polynomials

(a) The Signal Flow Graph (SFG)

(b) Logic function of Y (j) node (c) Logic function

of X(j) node

(d) Logic function of Z(j)

node

Figure 5.1: SFG derived from the proposed algorithm.

A signal flow graph (SFG) is realized from Algorithm 5.1, as shown in Fig. 5.1(a).

The SFG consists of m addition nodes X(j), m decision nodes Y (j), and (m−1) modular

reduction nodes Z(j). The logic functionality of these nodes are shown in Fig. 5.1(b)-(d).

Here, A0 is the binary representation of A(x), Aj+1 is the result of the modular reduction

of Aj for the j th iteration, Pj+1 is the result of the decision node for the j th iteration, Xj

is the result of the addition node X(j) for the j th iteration, T is the binary representation

of the irreducible polynomial T (x), bi is the i th coefficient of B(x), and C is the binary

representation of the final product C(x). Node X(j) performs a bit-addition operation on

the partial results Pj and Aj using the XOR operation. Node Y (j) performs the decision

(or selection) operation where it selects between the partial results Pj and Xj using the
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(a) Proposed cut-set Retiming

(b) Realization of PE

Figure 5.2: Cut-set retiming of the SFG.

selection input bi. Node Z(j) performs the modular reduction of the degree of Aj by one,

and Aj+1 gives the result. Here, i denotes the index of the coefficient of the polynomial

under consideration, and j denotes the iteration count.

Figure 5.2(a) shows the proposed cut-set retiming [59] of the SFG, which is per-

formed to obtain a pipelined structure with reduced critical path delay. The proposed

cut-set retiming allows one addition node, one decision node, and one modular reduction

node in each iteration of the cut-set, thus enabling a reduced critical path. It also elim-

inates the data dependency between the addition node and the modular reduction node

by performing them in a single iteration. The critical path after the proposed cut-set

retiming amounts to max {TXN , TY N , TZN}, where TXN , TY N , and TZN are the computa-

tion times of the addition node, decision node, and modular reduction node, respectively.
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(a) Proposed systolic multiplier

(b) Logic of the regular PE (PE0 to PEm−2) (c) Logic of PEm−1

Figure 5.3: Proposed systolic multiplier using PEs realized from the SFG.

Other variations of the cut-set retiming have been considered, and the cut-set retiming

proposed in Fig. 5.2(a) is found to provide a good trade-off between the critical path and

the latency. Further, the achieved trade-off is found to be comparable to, or better than

similar structures that are reported in the literature. Each iteration of the proposed cut-

set is wrapped into a single entity called a processing element (PE). Figure 5.2(b) shows

the grouping of the nodes of the retimed SFG into PEs based on the proposed cut-set.

It can be observed that the PEs obtained from such a grouping of the nodes enables the

realization of a regular and modular design consisting of one addition node, one decision

node, and one modular reduction node in each PE. The addition node is realized using

one XOR operation, the decision node is realized using one 2:1 MUX operation, and the

modular reduction node is realized using one XOR operation and one 2:1 MUX operation.

Figure 5.3(a) shows the systolic design consisting of m PEs realized from the pro-

posed cut-set retimed SFG given in Fig. 5.2(b). The (m − 1) regular PEs (i.e. PE0 to
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Figure 5.4: Proposed systolic multiplier design using U-cells over GF (2m) for irreducible

polynomials.

PEm−2) perform the addition, decision, and modular reduction operations concurrently,

whereas the mth PE (i.e. PEm−1) performs only the addition and decision operations

concurrently, which is in accordance with the proposed cut-set retimed SFG. The func-

tions of these two types of PEs are shown in Fig. 5.3(b) & (c). Each regular PE receives

Aj, Pj, bi and T as inputs, and computes the new Aj+1 and Pj+1 values for the next

iteration. The mth PE receives Am−1, Pm−1, and bm−1 from the (m − 1)th regular PE,

and produces the final result of the finite-field multiplication C. The regular PE and

PEm−1 are further decomposed into 2m U-cells and m U-cells, respectively, to derive

a regular, scalable structure, and is much simpler for implementation and optimization.

The decomposed systolic structure realized using the U-cells is shown in Fig. 5.4.
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The first set of m U-cells (corresponding to the addition and decision nodes) of a

regular PE are represented column-wise in the upper block, and the second set of m

U-cells (corresponding to the modular reduction nodes) of the same PE are represented

column-wise in the lower block. The m U-cells (corresponding to the addition and decision

nodes) of the mth PE are represented in the upper block in the rightmost column. The first

set of m2 U-cells perform the polynomial multiplication operation corresponding to Eqn.

(5.2), and the second set of (m2 −m) U-cells perform the modular reduction operation

corresponding to Eqn. (5.5). The inputs to each cell are pi,j, ai,j, bi, and ai,j, ti, am−2,j for

the upper and lower blocks, respectively. The values pi,j, ai,j and ti are the i th bit values

of the m-bit Pj, Aj and T, respectively, and am−2,j is the (m−2)th bit value of Aj. Here, i

denotes the index of the coefficient of the polynomial under consideration, and j denotes

the iteration count. It may be noted that the ai,j in the modular reduction block is left

shifted by one bit according to Eqn. (5.5).

Figure 5.5: Internal circuit detail and logic functionality of U-cell.

The details of the circuit and the function of a U-cell are shown in Fig. 5.5. Each

U-cell consists of one XOR gate and one 2:1 MUX. According to Eqn. (5.2), the XOR

and MUX in the U-cell for the upper block are derived from the addition node and the

decision node, respectively. According to Eqn. (5.5), the XOR and MUX in the U-cell

for the lower block are derived from the modular reduction node. It can be observed that

the pipelining registers applied for the systolic structure in Fig. 5.4 enable concurrent

operations such that the critical path is minimized to (TX + TM), where TX and TM are

the delays of an XOR gate and a 2:1 MUX, respectively. The gate count of the structure

is (2m2 −m) XOR gates, (2m2 −m) MUX gates, and m2 1-bit registers. The multiplier

produces the first output with an initial latency of m clock cycles followed by one output

for every clock cycle. Hence, the throughput is one output per clock cycle, with an initial
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latency of m clock cycles.

5.3.2 Analytical Results

The proposed systolic multiplier requires (2m2−m) XOR gates, (2m2−m) MUXs,

and m2 1-bit registers. The critical path and latency of the proposed systolic multiplier

are (TX + TM) and m clock cycles, respectively. It may be noted that the proposed

multiplier gives one output in every clock cycle, with an initial latency of m clock cycles.

Table 5.1: Area complexity and delay comparison of the systolic multipliers over GF (2m).

Multipliers #AND #XOR #MUX #Registers Latency Critical Path Delay

[23] 2m2 2m2 0 7m2 3m TA + TX

[24] (m2)b 2m2 0 7m2 3m TA + T3X

[25] 2m2 −m 2m2 0 8m2 − 7m 2m− 1 TA + TX

[26] 2m2 2m2 0 3m2 m+ 1 TA + TX

[27] 2m2 2m2 0 3m2 m+ 1 TA + TX

[28] 2m2 2m2 0 4m2 2m TA + TX

[29] 2m2 2m2 0 7m2 3m TA + TX

[30] m 2m2 + 2m (m2/2)a 6m2 + 8m 3m/2 T4M + TX

[31] 2m2 2m2 0 7m2 3m TA + TX

[32] 2m2 + 3m (m2 +m)b 0 3m2 + 4m m+ 1 TA + T3X

[33]a m2 m2 + 2m 0 4m2 + 3m 3m TA + TX

[33]b m2 m2 0 5m2 4m TA + TX

[34] 2m2 2m2 0 3m2 m TA + TX

[35]a m2 m2 + 2m 0 4m2 + 3m 3m TA + TX

[35]b m2 m2 0 5m2 4m TA + TX

[36] m 2m+ (m2/2)b (m2 +m/2)a 7m2 3m/2 T4M + T3X

[20] m2 −m+ 1 m2 − 1 2m2 +m− 3 2m2 −m 2m TA + TX

[37] 2m2 2m2 2m2 +m− 3 7m2 3m TA + TX

[38] 2m2 + 2m 2m2 + 3m 0 3m2 + 4m bm/2c+ 1 TA + TX

Proposed 0 2m2 −m 2m2 −m m2 m TM + TX

a4-to-1 MUX; b3-input XOR gate.

Table 5.1 shows a comparison of the hardware complexity, latency, and critical path

of the proposed systolic multiplier with existing systolic multipliers [20, 23–38] available

in the literature. Here, TA, TX , TM , T3X , T4M denote the delays of a 2-input AND

gate, 2-input XOR gate, 2:1 MUX, 3-input XOR gate, and 4:1 MUX, respectively. The
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Table 5.2: Comparison of total transistor count, number of clock cycles, total delay, %

reduction in area and % reduction in ADP of the proposed systolic multiplier with existing

multipliers over GF (2163).

Multipliers #Transistors Latency
CP Total Delay ADP %Reduction %Reduction

(ns) (ns) (×109) in Area in ADP

[23] 2125520 489 19 9291 19.75 60 83

[24] 2125520 489 31 15159 32.22 60 90

[25] 2326988 325 19 6175 14.37 63 77

[26] 1275312 164 19 3116 3.97 33 19

[27] 1275312 164 19 3116 3.97 33 19

[28] 1487864 326 19 6194 9.22 42 65

[29] 2125520 489 19 9291 19.75 60 83

[30] 1660644 245 28 6860 11.39 48 71

[31] 2125520 489 19 9291 19.75 60 83

[32] 1285418 164 31 5084 6.54 34 50

[33]a 1175882 489 19 9291 10.93 27 70

[33]b 1541002 489 19 9291 19.09 44 77

[34] 1275312 163 19 3097 3.95 33 19

[35]a 1175882 489 19 9291 10.93 27 70

[35]b 1382566 652 19 12388 17.13 38 81

[36] 2076620 245 40 9800 20.35 59 84

[20] 1061438 326 19 6194 6.58 20 51

[37] 2445308 489 19 9291 22.72 65 85

[38] 1284114 82 19 1558 2 33 37∗

Proposed 848252 163 23 3749 3.22 - -

∗%Increase in ADP; CP is the Critical Path Delay.

polynomial f(x) = x163 +x7 +x6 +x3 +1 (recommended by NIST) is taken as an example

to compare the area complexity and delay of the systolic multipliers available in the

literature. Traditional CMOS logic is used to estimate the hardware complexity, wherein

the transistor counts are six transistors for a 2-input XOR gate, 2-input AND gate, and

a 1-bit 2:1 MUX, 16 transistors for a 1-bit 4:1 MUX, and eight transistors for a 1-bit

register [55]. To estimate the delay, real-time circuits from STMicroelectronics [56] are

considered, where the typical propagation delays of gates used in the various designs are:
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2-input XOR gate (M74HC86) tPD = 12ns, 2-input AND gate (M74HC08) tPD = 7ns,

2:1 MUX (M74HC257) tPD = 11ns, and 4:1 MUX (M74HC153) tPD = 16ns. A 3-input

XOR gate is realized using two 2-input XOR gates. Therefore, the hardware complexity

and propagation delay of a 3-input XOR gate are estimated as twelve transistors and tPD

= 24 ns, respectively.

Table 5.2 shows the hardware complexity (total transistor count), latency (number

of clock cycles), critical path delay (CP), total delay, and percentage reduction in the

hardware complexity of all the multipliers considered. Here, the total delay is obtained

as the product of the latency and critical path delay. From Table 5.2, it may be observed

that the proposed multiplier achieves low hardware complexity when compared to existing

systolic structures that are available in the literature. Specifically, it achieves reduction

in area complexity of about 60%, 60%, 63%, 33%, 33%, 42%, 60%, 48%, 60%, 34%, 27%,

44%, 33%, 27%, 38%, 59%, 20%, 65%, and 33% form = 163 compared to existing multipli-

ers [20, 23–38], respectively. Similarly, the proposed multiplier achieves about 83%, 90%,

77%, 19%, 19%, 65%, 83%, 71%, 83%, 50%, 70%, 77%, 19%, 70%, 81%,84%, 51% and

85% compared to the systolic multipliers [20,23–37]. Moreover, the systolic multiplier [38]

requires 37% less ADP compared to the proposed multiplier due to the savings achieved

in number of clock cycles. These savings are due to the appropriate Montgomery factor

chosen by the authors to attain the lowest possible delay. However, it may be observed

that the delay of the systolic multiplier [38] increases for other Montgomery factors and

hence the delay comparison with the proposed multiplier is not totally fair. Moreover, the

proposed multiplier achieves 33% reduction in area complexity compared to the systolic

multiplier [38].

Figs. 5.6 and 5.7 shows the comparison of the area complexity and ADP, respectively,

of the proposed systolic multiplier with existing systolic multipliers for field orders m = 2

to m = 600. From Fig. 5.6, it is observed that the proposed multiplier achieves low area

complexity compared to the existing multipliers [20, 23–38]. It can also be observed that

the difference in the area complexities between the proposed multiplier and the existing

multipliers increases as the order of the finite field increases. Hence, the proposed systolic

multiplier achieves better area complexity for higher-order finite fields. Moreover, the

ADP comparison depicted in Fig. 5.7 indicates that the proposed multiplier achieves
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Figure 5.6: Area complexity comparison of sequential multipliers.

Figure 5.7: Area-Delay Product comparison of sequential multipliers.

reduction in area complexity without much increase in delay.
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5.3.3 Implementation Results

The performance of the proposed systolic multiplier architecture and the systolic

multiplier architectures available in the literature are verified by implementing them on

ASIC and FPGA platforms. The implementation results of these architectures are pre-

sented in the following sub-sections.

5.3.3.1 ASIC Implementation Results

Table 5.3: ASIC implementation results of systolic multipliers.

PPPPPPPPPPPPPP
Metrics

Multipliers
[35] [20] Proposed

m
=

8

Total Delay (ns) 13.68 7.41 3.2

Area (µm2)(×103) 12.055 7.057 4.381

Power (mW ) 0.7277 0.6931 0.2527

ADP (µm2 × ns)(×103) 164.912 52.298 14.019

PDP (mW × ns) 9.955 5.136 0.823

m
=

16
3

Total Delay (ns) 303.51 157.78 65.2

Area (µm2)(×103) 4953.948 2985.735 1917.372

Power (mW ) 175.5645 167.3967 95.1454

ADP (µm2 ×ms)(×106) 1503.573 471.089 125.013

PDP (mW × ns)(×103) 53.286 26.412 6.204

The proposed systolic multiplier and the systolic multipliers [20, 35] are considered

for hardware implementations since they require low area complexity compared to the

existing systolic multipliers. These multipliers are modelled in Verilog for m = 8 and

m = 163 and synthesized using Synopsys Design Vision Compiler and Synopsys 90nm

Generic Library. The delay, area complexity, power consumption, ADP and PDP of the

all the architectures are computed from the device utilization summary generated by the

synthesis tool (see Table 5.3). The area complexity, power consumption, ADP and PDP

results are also plotted for m = 8 and m = 163 as shown in Fig. 5.8(a)-(d) and Fig.

5.9(a)-(d), respectively.
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 5.8: ASIC implementation results of systolic multipliers for m = 8.

It is clear from the histogram (see Fig. 5.8 and Fig. 5.9) that the proposed multi-

plier requires low area complexity, power consumption, ADP and PDP compared to the

existing multipliers. More specifically, it can be observed that the proposed multiplier

achieves reduction of about 63%, 65%, 91% & 91% in area complexity, power consump-

tion, ADP and PDP, respectively, when compared to the systolic multiplier [35] for m = 8.

Similarly, the proposed multiplier achieves reduction of about 37%, 62%, 73% & 83% in

area complexity, power consumption, ADP and PDP, respectively, when compared to the

systolic multiplier [20] for m = 8. The proposed multiplier achieves reduction of about

61%, 45%, 91% & 88% in area complexity, power consumption, ADP and PDP, respec-

tively, when compared to the systolic multiplier [35] for m = 163. Similarly, the proposed

multiplier achieves reduction of about 35%, 43%, 73% & 76% in area complexity, power

consumption, ADP and PDP, respectively, when compared to the systolic multiplier [20]

for m = 163. Moreover, the proposed multiplier also achieves reduction in delay com-
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 5.9: ASIC implementation results of systolic multipliers for m = 163.

pared to the systolic multipliers [20, 35] for m = 163. These improvements achieved by

the proposed multiplier in area complexity, power consumption, ADP and PDP indicates

an efficient design in both area and power without much increase in delay.

5.3.3.2 FPGA Implementation Results

In addition to the ASIC implementation, the functionality of the proposed multiplier

is also verified by implementing the Verilog models on FPGA platform. The Verilog

models of the proposed multiplier and the multipliers [20,35] are simulated and synthesized

using Xilinx Vivado 2014.2 tool. The synthesized netlist is implemented on a Xilinx

Virtex-7 (XC7VX1140TFLG1930-1) FPGA prototype board. The delay, area, power

consumption, ADP and PDP of the all the architectures are computed from the device

utilization summary generated by the synthesis tool (see Table 5.4). The area complexity,

power consumption, ADP and PDP results are also plotted for m = 8 and m = 163 as
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Table 5.4: FPGA implementation results of systolic multipliers.

PPPPPPPPPPPPPP
Metrics

Multipliers
[35] [20] Proposed

m
=

8

Total Delay (ns) 363.36 96.672 10.552

Area (#Slices) 190 139 98

Power (W ) 0.771 0.692 0.517

ADP (#Slices× ns)(×103) 69.038 13.437 1.034

PDP (W × ns) 280.151 66.897 5.455

m
=

16
3

Total Delay (ms) 7.403 1.970 0.215

Area (#Slices) 154635 105787 66434

Power (W ) 3.6 6.187 2.848

ADP (#Slices× ns)(×103) 1144.763 208.4 14.283

PDP (W ×ms) 26.651 12.188 0.612

shown in Fig. 5.10(a)-(d) and Fig. 5.11(a)-(d), respectively.

It is clear from the histogram (see Fig. 5.10 and Fig. 5.11) that the proposed mul-

tiplier achieves low area complexity, power consumption, ADP and PDP among existing

multipliers. More specifically, it can be observed that the proposed multiplier achieves

reduction of about 48%, 32%, 98% & 98% in area complexity, power consumption, ADP

and PDP, respectively, when compared to the multiplier [35] for m = 8. Similarly, the

proposed multiplier achieves reduction of about 29%, 25%, 92% & 91% in area complexity,

power consumption, ADP and PDP, respectively, when compared to the multiplier [20]

for m = 8. For m = 163, the proposed multiplier achieves reduction of about 57%, 48%,

98% & 97% in area complexity, power consumption, ADP and PDP, respectively, when

compared to the multiplier [35]. Similarly, the proposed multiplier achieves reduction of

about 37%, 53%, 93% & 94% in area complexity, power consumption, ADP and PDP,

respectively, when compared to the multiplier [20] for m = 163. Moreover, the pro-

posed multiplier also achieves reduction in delay compared to the multipliers [20, 35] for

m = 163. These improvements achieved by the proposed multiplier in area complexity,

power consumption, ADP and PDP indicates an efficient design in both area and power

without much increase in delay.
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 5.10: FPGA implementation results of systolic multipliers for m = 8.

5.4 Proposed Systolic Multiplier Architecture over GF(28) for

Irreducible Polynomials

This sub-section presents the design of the proposed systolic multiplier architecture

over GF (28) for irreducible polynomials. AES and Twofish encryption algorithms are

realized using the proposed systolic multiplier architecture and implemented on an FPGA

platform. These implementation results of the proposed architecture are compared with

the results achieved by the multiplier architectures available in the literature.
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 5.11: FPGA implementation results of systolic multipliers for m = 163.

5.4.1 Design of Proposed Systolic Multiplier Architecture over GF(28) for Irre-

ducible Polynomials

Figure 5.12(a) shows the proposed systolic multiplier architecture over GF (28) de-

rived from the proposed systolic multiplier architecture over GF (2m) (section 5.3). It

consists of 8 PEs, where seven of them are regular PEs (i.e. PE0 to PE6) that perform

polynomial multiplication and modular reduction operations concurrently whereas the 8th

PE (PE7) performs only the polynomial multiplication operation. The logic functionality

of these two types of PEs are shown in Fig. 5.12(b)-(c). PE7 and the regular PEs are

decomposed into 8 V-cells and 16 V-cells, respectively, to derive a more simple, scalable

architecture. The proposed systolic multiplier realized using these V-cells is shown in Fig-

ure 5.13. Figure 5.14 shows the internal circuit detail and logic function of a V-cell. The

first set of 64 V-cells performs the polynomial multiplication operation and the second

set of 56 V-cells performs the modular reduction operation. The inputs to each cell are
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(a) Proposed systolic multiplier

(b) Circuit detail and function of Regular PE

(PE0 to PE6)

(c) Circuit detail and function of

PE7

Figure 5.12: Proposed systolic multiplier realized using PEs.

pi,j, ai,j, bi and ai,j, ti, a6,j, respectively; where i denotes the index of the coefficient of the

polynomial under consideration and j denotes iteration count.

5.4.2 Analytical Results

Since the V-cell consists of an Exclusive-OR (XOR) gate and a 2:1 Multiplexer

(MUX), the gate count of the entire proposed structure can be computed as 120 XOR

gates, 120 MUX gates and 64 registers. The critical path is given by the expression

(TX+TM), where TX and TM are the delays of the XOR gate and the 2:1 MUX respectively.

The total clock cycles required by the multiplier to give the first output is 8 and thereafter

gives outputs for every clock cycle. Therefore, the throughput is 1 with an initial latency

of 8 clock cycles.
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Figure 5.13: Proposed systolic multiplier design using V-cells over GF (28) for irreducible

polynomials.

Figure 5.14: Internal circuit detail and logic functionality of V-cell.

Table 5.5 presents the comparison of number of gates, latency and critical path of

the proposed architecture with other systolic multiplier architectures [20,23–38] available

in the literature. It may be noted that TA, T3X and T4M denotes the delay of a 2-input
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Table 5.5: Area complexity and delay comparison of the systolic multipliers over GF (28).

Multipliers #AND #XOR #MUX #Registers Latency Critical Path Delay

[23] 128 128 0 448 24 TA + TX

[24] (64)b 128 0 448 24 TA + T3X

[25] 120 128 0 456 15 TA + TX

[26] 128 128 0 192 9 TA + TX

[27] 128 128 0 192 9 TA + TX

[28] 128 128 0 256 16 TA + TX

[29] 128 128 0 448 24 TA + TX

[30] 8 144 (32)a 448 12 T4M + TX

[31] 128 128 0 448 24 TA + TX

[32] 152 (72)b 0 224 9 TA + T3X

[33]a 64 80 0 280 24 TA + TX

[33]b 64 64 0 320 32 TA + TX

[34] 128 128 0 192 8 TA + TX

[35]a 64 80 0 280 24 TA + TX

[35]b 64 64 0 320 32 TA + TX

[36] 8 16 + (32)b (68)a 448 12 T4M + T3X

[20] 57 63 133 120 16 TA + TX

[37] 128 128 133 448 24 TA + TX

[38] 144 152 0 224 5 TA + TX

Proposed 0 120 120 64 8 TM + TX

a4-to-1 MUX; b3-input XOR gate.

AND gate, 3-input XOR gate and 4:1 multiplexer (MUX), respectively. The comparison

of area complexity in terms of gate count cannot provide a clear difference among the

multipliers considered. A better hardware complexity comparison can be achieved using

the transistor count parameter. Moreover, latency alone cannot achieve a fair comparison

of computation time; total delay as a product of latency and critical path must be con-

sidered. In order to estimate the area complexity, traditional CMOS logic is used wherein

the transistor counts are six transistors for 2-input XOR gate, 2-input AND gate, 1-bit

2:1 MUX, sixteen transistors for 1-bit 4:1 MUX, eight transistors for a 1-bit register.
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Table 5.6: Comparison of total transistor count, number of clock cycles, total delay, %

reduction in area and % reduction in ADP of the proposed systolic multiplier with existing

multipliers over GF (28).

Multipliers #Transistors Latency
CP Total Delay ADP %Reduction %Reduction

(ns) (ns) (×106) in Area in ADP

[23] 5120 24 19 456 2.33 61 84

[24] 5632 24 31 744 4.19 65 91

[25] 5088 15 19 285 1.45 61 75

[26] 3072 9 19 171 0.53 36 32

[27] 3072 9 19 171 0.53 36 32

[28] 3584 16 19 304 1.09 45 67

[29] 5120 24 19 456 2.33 61 84

[30] 4624 12 28 336 1.55 57 76

[31] 5120 24 19 456 2.33 61 84

[32] 4144 9 31 279 1.16 52 69

[33]a 3152 24 19 456 1.44 38 75

[33]b 3376 32 19 608 2.05 42 82

[34] 3072 8 19 152 0.47 36 23

[35]a 3152 24 19 456 1.44 38 75

[35]b 3376 32 19 608 2.05 42 82

[36] 5456 12 40 480 2.62 64 86

[20] 2478 16 19 304 0.75 21 52

[37] 5918 24 19 456 2.7 67 86

[38] 3568 5 19 95 0.34 45 5∗

Proposed 1952 8 23 184 0.36 - -

∗%Increase in ADP; CP is the Critical Path Delay.

Real-time circuits from STMicroelectronics are considered to estimate the delay

using the typical propagation delays of gates; XOR gate tPD = 12ns (M74HC86), AND

gate tPD = 7ns (M74HC08), 2:1 MUX tPD = 11ns (M74HC257), 4:1 MUX tPD = 16ns

(M74HC153). The 3-input XOR gate can be realized by two 2-input XOR gates. Hence,

the propagation delay is computed as tPD = 24ns and the transistor count is twelve. Table

5.6 shows the area complexity, latency, critical path delay, total delay and ADP of the

proposed systolic multiplier compared to the systolic multipliers [20, 23–38] available in
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Figure 5.15: Area complexity comparison of systolic multipliers over GF (28)

Figure 5.16: Area-Delay Product comparison of systolic multipliers over GF (28)

the literature for m = 8.

Fig. 5.15 and Fig. 5.16 illustrates the histograms plotted for area complexity and

ADP, respectively, of the proposed multiplier and other systolic multipliers available in

the literature. From Table 5.6, it can be observed that the proposed multiplier achieves

low area complexity compared to other systolic designs. Specifically, it achieves about

61%, 65%, 61%, 36%, 36%, 45%, 61%, 57%, 61%, 52%, 38%, 42%, 36%, 38%, 42%,
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64%, 21%, 67%, and 45% reduction in hardware complexity when compared with existing

multipliers [20,23–38], respectively. Similarly, the proposed multiplier achieves about 84%,

91%, 75%, 32%, 32%, 67%, 84%, 76%, 84%, 69%, 75%, 82%, 23%, 75%, 82%, 86%, 52%

and 86% compared to the multipliers [20, 23–37]. Moreover, the multiplier [38] achieves

5% less ADP compared to the proposed multiplier due to the savings achieved in number

of clock cycles. However, the decrease in number clock cycles puts extra requirement of

hardware and hence the proposed multiplier achieves very low area complexity compared

to the multiplier [38]. The improvement achieved in area complexity and also in ADP

indicates that the proposed multiplier is an efficient design in terms of area and without

much increase in delay.

5.4.3 Implementation Results

The performance of the proposed systolic multiplier architecture is verified by de-

signing AES and Twofish cryptographic algorithms and implementing them on FPGA

platform. The implementation results of these two algorithms are presented in the fol-

lowing sub-sections.

5.4.3.1 FPGA implementation of AES

Table 5.7: FPGA implementation results of AES.

PPPPPPPPPPPPPP
Metrics

Multipliers
[27] [34] [20] Proposed

Total Delay (ns) 66.175 58.159 119.856 70.557

Area (#Slices) 452871 575882 374933 279055

Power (W ) 5.749 6.177 7.583 2.976

ADP (#Slices× ns)(×106) 29.97 33.49 44.94 19.69

PDP (W × ns) 380.44 359.25 908.87 209.98

The proposed sequential multiplier architecture over GF (28) is employed to realize

the AES algorithm and implemented on FPGA platform. The AES is a symmetric-key

cryptographic algorithm developed based on a substitution-permutation structure using
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 5.17: FPGA implementation results of AES.

block-cipher technique. The block size of the plaintext to be encrypted is 128 bits with the

key size options of 128, 192 and 256 bits. In this work, the key size of 128 bits is used for the

hardware implementation on the FPGA device [57] and hence the algorithm is performed

for 10 rounds. The Verilog models for AES encryptor-decryptor are developed employing

the proposed sequential multiplier and the sequential multipliers [20, 27, 34] available in

the literature to perform finite field multiplications. These Verilog models are simulated

and synthesized using Xilinx Vivado 2014.2 software tool to verify their functionality.

The synthesized netlist is implemented on a Xilinx Virtex-7 (XC7VX1140TFLG1930-1)

FPGA prototype board. The experimental setup of the FPGA implementation of AES

is same as described in the previous chapter. The AES encryption and decryption is

performed with Plaintext and Key values as 0x00112233445566778899AABBCCDDEEFF

and 0x000102030405060708090A0B0C0D0E0F and the Ciphertext obtained is 0x69C4E

0D86A7B0430D8CDB78070B4C55A.
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The delay, area, power consumption, ADP and PDP results are computed using

the device utilization summary and presented in Table 5.7. The area complexity, power

consumption, ADP and PDP results are also plotted as shown in Fig. 5.17(a)-(d), re-

spectively. It is clear from the histogram (see Fig. 5.17) that the proposed multiplier

requires low area complexity, power consumption, ADP and PDP compared to the exist-

ing multipliers. More specifically, it can be observed that the proposed systolic multiplier

achieves about 48%, 51% & 60% less power and about 38%, 51% & 25% less area when

compared to the systolic multipliers [20,27,34], respectively. Moreover, the proposed mul-

tiplier achieves about 34%, 41% & 56% less ADP and about 44%, 41% & 76% less PDP

when compared to the systolic multipliers [20, 27, 34], respectively. These improvements

achieved by the proposed multiplier in area complexity, power consumption, ADP and

PDP indicates an efficient design in both area and power without much increase in delay.

5.4.3.2 FPGA implementation of Twofish

Table 5.8: FPGA implementation results of Twofish.

PPPPPPPPPPPPPP
Metrics

Multipliers
[27] [34] [20] Proposed

Total Delay (ns) 81.471 73.311 134.758 85.117

Area (#Slices) 516712 616823 435979 328553

Power (W ) 6.699 7.286 8.651 3.589

ADP (#Slices× ns)(×106) 42.1 45.22 58.75 27.97

PDP (W × ns) 545.77 534.14 1165.79 305.49

The Twofish cryptographic algorithm is developed based on Fiestel structure and

the block cipher encryption technique. The block size of the plaintext to be encrypted

is 128 bits with the key size options of 128, 192 and 256 bits. In this work, the key

size of 128 bits is used for the hardware implementation on the FPGA device [58]. The

Verilog models for Twofish encryptor-decryptor are developed employing the proposed

sequential multiplier and the sequential multipliers [20, 27, 34] available in the literature

to perform finite field multiplications. These Verilog models are simulated and synthe-

sized using Xilinx Vivado 2014.2 software tool to verify their functionality. The syn-
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 5.18: FPGA implementation results of Twofish.

thesized netlist is implemented on a Xilinx Virtex-7 (XC7VX1140TFLG1930-1) FPGA

prototype board. The experimental setup of the FPGA implementation of Twofish is

same as described in the previous chapter. The Twofish encryption and decryption is

performed with Plaintext and Key values as 0x00112233445566778899AABBCCDDEEFF

and 0x000102030405060708090A0B0C0D0E0F and the Ciphertext obtained is 0x1242FAE

0702A08D0903708274A6831D7.

The delay, area, power consumption, ADP and PDP results are computed using

the device utilization summary and presented in Table 5.8. The area complexity, power

consumption, ADP and PDP results are also plotted as shown in Fig. 5.18(a)-(d), respec-

tively. It is clear from the histogram (see Fig. 5.18) that the proposed multiplier requires

low area complexity, power consumption, ADP and PDP compared to the existing multi-

pliers. More specifically, it can be observed that the proposed systolic multiplier achieves

about 46%, 50% & 58% less power and about 36%, 46% & 24% less area when compared
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to the systolic multipliers [20, 27, 34], respectively. Moreover, the proposed multiplier

achieves about 33%, 38% & 52% less ADP and about 44%, 42% & 73% less PDP when

compared to systolic multipliers [20,27,34], respectively. These improvements achieved by

the proposed multiplier in area complexity, power consumption, ADP and PDP indicates

an efficient design in both area and power without much increase in delay.

5.5 Conclusion

In this chapter, a systolic polynomial basis multiplier architecture over GF (2m) is

realized for the proposed algorithm. The area complexities and delay of the proposed

multiplier are estimated and performance is compared with other systolic polynomial ba-

sis multipliers available in the literature. It may be concluded from the comparisons of

the estimated results that the proposed architecture over GF (2m) for irreducible polyno-

mials achieves low area complexity compared to the existing multipliers. The area-delay

product of the proposed multiplier is also low when compared to other multipliers, in-

dicating an efficient multiplier design in terms of both area and delay. From the ASIC

and FPGA synthesis results of the multipliers, it can be concluded that the proposed

systolic multiplier achieves low area complexity, power consumption, area-delay product

and power-delay product compared to the existing multipliers. A systolic multiplier archi-

tecture over GF (28) is derived from the sequential multiplier architecture over GF (2m).

The area complexity and delay of the proposed multiplier are estimated and performance

is compared with other systolic multipliers available in the literature. The Verilog models

of two cryptographic algorithms, AES and Twofish, are developed employing the pro-

posed multiplier and the multipliers available in the literature. From the FPGA synthesis

results of AES and Twofish algorithms realized using the proposed multiplier, it can be

concluded that the proposed multiplier achieves low area complexity, power consumption,

area-delay product and power-delay product compared to the existing multipliers. The

next chapter presents the design of the proposed systolic multipliers for special classes of

polynomials, i.e. trinomials and pentanomials.



Chapter 6

Low-power and Area-Efficient Systolic Multipliers for

Special Classes of Irreducible Polynomials

This chapter presents the Pre-Computation (PC) technique proposed to reduce the

computational complexity of the interleaved multiplication algorithm presented in chap-

ter 5. The proposed PC technique can be applied for any special classes of irreducible

polynomials such as trinomials, pentanomials, all-one polynomials and equally-spaced

polynomials. However, since trinomials and pentanomials are widely used for real-time

applications, systolic multiplier architectures for these special polynomials are developed.

Two systolic multiplier architectures over GF (2m) for irreducible trinomials and pen-

tanomials, respectively, are designed based on the proposed PC technique. The perfor-

mance of these proposed systolic multiplier architectures are computed analytically and

compared with their respective multiplier architectures available in the literature. In ad-

dition, the functionality of these proposed architectures are verified by implementing on

FPGA prototype board using Xilinx Vivado Design Suite. The proposed architectures

are also synthesized on ASIC using Synopsys Design Vision Compiler for 90nm technol-

ogy library. These implementation results are compared with the results obtained for the

systolic architectures available in the literature.
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6.1 Introduction

In polynomial basis representation, extended binary fields GF (2m) are generated

using irreducible polynomials. An irreducible polynomial in the field GF (2m) is defined

as a polynomial that cannot be factored into two or more polynomials. These irreducible

polynomials can be classified into equally spaced polynomials, all-one polynomials, tri-

nomials and pentanomials. The equally spaced polynomials and all-one polynomials are

not widely used due to their scarcity. However, up to 5148 irreducible trinomials were

identified for field orders of m ≤ 10, 000 [39] which is approximately half of the m values

and pentanomials exist for all the fields in which trinomials are absent. Moreover, efficient

realization of hardware structures is possible when employing trinomials and pentanomi-

als. Hence, multipliers designed for trinomials and pentanomials are recommended by

NIST for use in cryptographic applications and hence there is a need to design efficient

multiplier architectures for these special classes of polynomials.

In the previous chapter, a modified interleaved multiplication algorithm is derived for

performing multiplications over GF (2m) for irreducible polynomials. The computational

complexity of this multiplication algorithm for irreducible trinomials and pentanomials

can be further reduced by employing a novel pre-computation (PC) technique proposed

in this chapter. Subsequently, two systolic multiplier architectures over GF (2m) for irre-

ducible trinomials and pentanomials are developed for the proposed algorithm. The area

complexity and delay of the two proposed systolic multipliers is estimated and their perfor-

mance is compared with systolic multipliers available in the literature for trinomials and

pentanomials. It is observed that the proposed systolic multiplier for trinomials achieves

reduction in area complexity and ADP compared to the systolic multipliers [40–49] for

the trinomial x233 + x74 + 1. Similarly, the proposed systolic multiplier for pentanomi-

als achieves reduction in area complexity compared to the systolic multipliers [47, 50–52]

for the pentanomial x283 + x12 + x7 + x5 + 1. These trinomials and pentanomials are

recommended by NIST to be used in cryptographic applications. In order to verify the

functionality, the proposed multipliers and some of the existing multipliers are imple-

mented on ASIC and FPGA technologies.
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6.2 Proposed Interleaved Multiplication Algorithm for Irreducible

Trinomials and Pentanomials

In this sub-section, the modified interleaved multiplication algorithm employing the

proposed Pre-Computation (PC) technique is presented. The generic expressions of tri-

nomials and pentanomials that are used for the derivation of the proposed algorithm are

f1(x) = xm + xk + 1 and f2(x) = xm + xk1 + xk2 + xk3 + 1.

Algorithm 6.1: Interleaved multiplication algorithm over GF (2m) for irreducible

polynomials

1 Inputs: Aj, Bj, T

2 Result: Pm

3 Initialization: P0 = {0, 0, 0, · · · , 0}

4 FOR j = 0 TO m− 1 DO

5 IF(bj == 1)

6 Pj+1 = Pj ⊕ Aj

7 ELSE

8 Pj+1 = Pj

9 END IF

10 Âj = Aj � 1

11 IF(am−1,j == 1)

12 Aj+1 = Âj ⊕ T

13 ELSE

14 Aj+1 = Âj

15 END IF

16 END FOR

Algorithm 5.1 derived in the previous chapter is rewritten as shown in Algorithm

6.1. The modifications proposed for Algorithm 6.1 for the iterations j = 0, j = 1 to m−2

and j = m− 1 are described as follows.
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For j = 0:

Consider the Steps 3-7 of Algorithm 6.1 given as

IF b0 = 1

P1 = P0 ⊕ A0

ELSE

P1 = P0

ENDIF

(6.1)

P is initialized to zero at the beginning of the algorithm i.e. P0 = (0, 0, 0, · · · , 0). The

IF-ELSE condition in Eqn. (6.1) can be realized using MUX operation having P0 =

(0, 0, 0, · · · , 0) and A0 = (a0,0, a1,0, a2,0, · · · , am−1,0) as inputs with b0 as the selection

input given as

P1 =
(
b0 &P0

)
OR (b0 & (P0 ⊕ A0))

=
(
b0 & (0, 0, 0, · · · , 0)

)
OR (b0 & ((0, 0, 0, · · · , 0)⊕ A0))

= (0, 0, 0, · · · , 0)OR (b0 &A0)

= b0 &A0

(6.2)

In Eqn. (6.2), the logical AND operation of b0 with A0 is performed in a bitwise manner

i.e. logical AND operation of b0 is performed with each ai,0, for i = 0, 1, 2, · · · ,m− 1.

In Step 8 of Algorithm 6.1, A0 is shifted left by one bit to obtain Â0 = (â0,0, â1,0, â2,0,

· · · , âk−1,0, âk,0, âk+1,0, · · · , âm−2,0, âm−1,0) = (0, a0,0, a1,0, · · · , ak−2,0, ak−1,0, ak,0, · · · , am−3,0,

am−2,0). Here, it may be noted that k can be the middle term of the trinomial f1(x) or it

can be k1, k2, k3 of the pentanomial f2(x).

Consider the Steps 9-13 of Algorithm 6.1 given as

IF am−1,0 = 1

A1 = Â0 ⊕ T

ELSE

A1 = Â0

ENDIF

(6.3)

In Eqn. (6.3), T can be an irreducible trinomial or pentanomial which is represented as

T = (t0, 0, 0, · · · , tk, 0, 0, · · · , tm), where t0 = tk = tm = 1. The IF-ELSE condition in
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Eqn. (6.3) is evaluated for three cases as illustrated below.

Case – I: For i = 0 (i.e. computation of the x0 coefficient), the IF-ELSE condition in

Eqn. (6.3) can be computed using MUX operation having â0,0 = 0 and t0 = 1 as inputs

with am−1,0 as the selection input given as

a0,1 = (am−1,0 & â0,0)OR (am−1,0 & (â0,0 ⊕ t0))

= (am−1,0 & 0)OR (am−1,0 & (0⊕ 1))

= (0)OR (am−1,0 & 1)

= am−1,0

(6.4)

Case – II: For i = k , the IF-ELSE condition in Eqn. (6.3) can be computed using MUX

operation having âk,0 = ak−1,0 and tk = 1 as inputs with am−1,0 as the selection input

given as

a0,1 = (am−1,0 & âk,0)OR (am−1,0 & (âk,0 ⊕ tk))

= (am−1,0 & ak−1,0)OR (am−1,0 & (ak−1,0 ⊕ 1))

= (am−1,0 & ak−1,0)OR (am−1,0 & ak−1,0)

= am−1,0 ⊕ ak−1,0

(6.5)

Case – III: For all i, where i 6= 0, i 6= k and i 6= m (i.e. computation of all coefficients

except the x0 coefficient, xk coefficient and xm coefficient), the IF-ELSE condition in Eqn.

(6.3) can be computed using MUX operation having âi,0 = ai−1,0 and ti = 0 as inputs

with am−1,0 as the selection input given as

a0,1 = (am−1,0 & âi,0)OR (am−1,0 & (âi,0 ⊕ ti))

= (am−1,0 & ai−1,0)OR (am−1,0 & (ai−1,0 ⊕ 0))

= (am−1,0 & ai−1,0)OR (am−1,0 & ai−1,0)

= ai−1,0

(6.6)

The computations for i = m coefficient of T are ommitted since there are no computations

for this coefficient in Algorithm 6.1.



Low-power and Area-Efficient Systolic Multipliers for Special Classes 103

For j = 1, 2, 3, · · · , m-2:

Consider the Steps 3-7 of Algorithm 6.1 given as

IF bj = 1

Pj+1 = Pj ⊕ Aj

ELSE

Pj+1 = Pj

ENDIF

(6.7)

The IF-ELSE condition in Eqn. (6.7) can be realized using the MUX operation having

Pj = (p0,j, p1,j, p2,j, · · · , pm−1,j) and Aj = (a0,j, a1,j, a2,j, · · · , am−1,j) as inputs with bj as

the selection input given as

Pj+1 =
(
bj &Pj

)
OR (bj & (Pj ⊕ Aj)) (6.8)

In Eqn. (6.8), the logical AND operation of bj with Pj and bj with (Pj⊕Aj) is performed

in a bitwise manner i.e. logical AND operation of bj is performed with each pi,j, for all

i = 0, 1, 2, · · · ,m− 1 and logical AND operation of bj is performed with each (pi,j ⊕ ai,j),

for all i = 0, 1, 2, · · · ,m− 1.

In Step 8, A0 is shifted left by one bit to obtain Âj = (â0,j, â1,j, â2,j, · · · , âk−1,0, âk,0, âk+1,0,

· · · , âm−2,0, âm−1,0) = (0, a0,0, a1,0, · · · , ak−2,0, ak−1,0, ak,0, · · · , am−3,0, am−2,0).

Consider the Steps 9-13 of Algorithm 6.1 given as

IF am−1,j = 1

Aj+1 = Âj ⊕ T

ELSE

Aj+1 = Âj

ENDIF

(6.9)

The IF-ELSE condition in Eqn. (6.9) is evaluated for three cases, i.e. i = 0, i = k and

for remaining i values, in a similar manner as derived for the j = 0 case.

Therefore, for i = 0 (i.e. computation of the x0 coefficient), the resultant expression can

be written as

a0,j+1 = am−1,j (6.10)

For i = k, the resultant expression can be written as

ak,j+1 = am−1,j ⊕ ak−1,j (6.11)
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For all i, where i 6= 0, i 6= k and i 6= m (i.e. computation of all coefficients except the x0

coefficient, xk coefficient and xm coefficient), the resultant expression can be written as

ai,j+1 = ai−1,j (6.12)

For j = m-1:

Consider the Steps 3-7 of Algorithm 6.1 given as

IF bm−1 = 1

Pm = Pm−1 ⊕ Am−1

ELSE

Pm = Pm−1

ENDIF

(6.13)

where, Pm = (p0,m, p1,m, p2,m, · · · , pm−1,m) is the final result of the finite field multiplica-

tion operation. The IF-ELSE condition of Eqn. (6.13) can be realized using the MUX op-

eration having Pm−1 = (p0,m−1, p1,m−1, p2,m−1, · · · , pm−1,m−1) and Am−1 = (a0,m−1, a1,m−1,

a2,m−1, · · · , am−1,m−1) as inputs with bm−1 as the selection input given as

Pm =
(
bm−1 &Pm−1

)
OR(bm−1 & (Pm−1 ⊕ Am−1)) (6.14)

In Eq. (6.14), the logical AND operation of bm−1 with Pm−1 and the logical AND operation

of bm−1 with (Pm−1⊕Am−1) is performed in a bitwise manner i.e. logical AND operation

of bm−1 is performed with each pi,m−1, for all i = 0, 1, 2, · · · ,m − 1 and logical AND

operation of bm−1 is performed with each (pi,m−1 ⊕ ai,m−1), for all i = 0, 1, 2, · · · ,m− 1.

The modified interleaved multiplication algorithm over GF(2m) for trinomials and

pentanomials is proposed based on the above derivations as shown in Algorithm 6.2. It

can be observed from Eqn. (6.2), Eqn. (6.4), Eqn. (6.5), Eqn. (6.6), Eqn. (6.10), Eqn.

(6.11) and Eqn. (6.12) that they require either a single logical AND operation or a single

XOR operation or a simple rewiring as opposed to requiring one logical XOR operation,

two logical AND operations and one logical OR operation as evident in Algorithm 6.1.

This indicates reduction in computational complexity achieved by the proposed algorithm.
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Algorithm 6.2: Proposed interleaved multiplication algorithm over GF (2m) for

irreducible trinomials and pentanomials

1 Inputs: Aj, Bj, T

2 Result: Pm

3 Initialization: P0 = {0, 0, 0, · · · , 0}

4 FOR j = 0 TO m− 1 DO

5 IF(j == 0)

6 pi,1 = ai,0&b0

7 Â0 = A0 � 1

8 a0,1 = am−1,0

9 ak,1 = am−1,0 ⊕ âk−1,0
10 ai,1 = âi,0

11 ELSE IF(j == m− 1)

12 pi,m−1 =
(
bm−1 & pi,m−1

)
OR (bm−1&(pi,m−1 ⊕ ai,m−1))

13 ELSE

14 pi,j+1 =
(
bj & pi,j

)
OR (bj& (pi,j ⊕ ai,j))

15 Âj = Aj � 1

16 a0,j+1 = am−1,j

17 ak,j+1 = am−1,j ⊕ âk−1,j
18 ai,j+1 = âi,j

19 END FOR

6.3 Proposed Systolic Multiplier Architecture over GF(2m) for

Irreducible Trinomials

This sub-section presents the proposed architecture for systolic multiplier overGF (2m)

for irreducible trinomials. The area complexity and delay of this architecture are estimated

analytically and compared with the existing multipliers available in the literature. The

functionality of the proposed architecture is implemented using ASIC and FPGA tech-

nologies. These analytical and implementation results of the proposed architecture are

compared with the results of the existing multipliers that are presented in the following
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sub-sections.

6.3.1 Design of Proposed Systolic Multiplier Architecture over GF(2m) for Irre-

ducible Trinomials

(a) The Signal Flow Graph (SFG)

(b) Logic function

of W (0) node

(c) Logic function of

X(j) node

(d) Logic function of Y (j)

node

(e) Logic function of

Z(j) node

Figure 6.1: SFG derived from the proposed algorithm.

The computations in Algorithm 6.2 are represented by a Signal Flow Graph (SFG)

shown in Fig. 6.1(a). The computations for j = 0 are represented using the nodes, W (0)

and Z(0), the computations for j = 1, 2, 3, · · · ,m − 2 are represented using the nodes,

X(j), Y (j) and Z(j) and the computations for j = m− 1 is represented using the nodes,

X(m−1) and Y (m−1). Here, W (j) is the multiplication node wherein the multiplication

operation is performed by a logical AND operation, X(j) is the addition node wherein

the addition operation is performed by a logical XOR operation, Y (j) is the decision

node wherein the decision operation is performed by a MUX operation and Z(j) is the

reduction node wherein the modular reduction operation is performed by a logical XOR

and MUX operations. The logical functionality of these nodes are shown in Fig. 6.1(b)-
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(e). Here, A0 is the binary representation of A(x), b0 is the LSB of the B(x), P1 is the

result of the multiplication node W (0) which performs the multiplication of b0 and A0, Pj

is the binary representation of P (x) in the j th iteration, Aj is the binary representation of

A(x) in the j th iteration, Xj is the result of the addition node X(j) for the j th iteration

which performs the addition of Pj and Aj , bi is the i th coefficient of B(x), Pj+1 is the

result of the decision node for the j th iteration which performs decision between the Pj

and Xj using bi as the selection input, T is the binary representation of the irreducible

polynomial T (x), Aj+1 is the result of the modular reduction of Aj for the j th iteration

which performs the reduction of Aj by T , and C is the binary representation of the final

product C(x).

(a) Proposed cut-set retimed SFG

(b) SFG showing the formation of PEs

Figure 6.2: Cut-set retiming of the SFG.

The critical path can be reduced by employing appropriate cut-set retiming tech-

nique [59] on the SFG as shown in Fig. 6.2(a). Based on the cut-set retiming, the nodes

of the SFG are grouped together to form processing elements as shown in Fig. 6.2(b).

The nodes, W (0) and Z(0), are grouped together to form the processing element PE0.
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The nodes, X(j), Y (j) and Z(j), are grouped together to form a regular PE (PE1 to

PEm−2), where j = 1, 2, 3, · · · ,m− 2. The nodes, X(m− 1) and Y (m− 1), are grouped

together to form PEm−1.

(a) Systolic structure

(b) Logic function of PE0 (c) Logic function of Regular PE

(d) Logic function of PEm−1

Figure 6.3: Proposed systolic multiplier using PEs.

The systolic multiplier architecture using processing elements derived from the cut-

set retimed SFG is shown in Fig. 6.3(a). In PE0,W (0) is realized using m Y-cells and

Z(0) is realized using one V-cell, one W-cell and (m − 2) Z-cells. Here, each Y-cell uses

one AND gate, each V-cell uses rewiring to forward the selection input of the decision

node am−1,0 to the output, each W-cell uses one XOR gate and each Z-cell uses rewiring to

forward an input of the decision node ai−1,0 to the output. In regular PE, X(j) and Y (j)

are realized using m U-cells and Z(j) is realized using one V-cell, one W-cell and (m− 2)

Z-cells. Here, each U-cell uses one XOR gate and one MUX, each V-cell uses rewiring to
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forward the selection input of the decision node am−1,j to the output, each W-cell uses one

XOR gate and each Z-cell uses rewiring to forward an input of the decision node ai−1,j

to the output. In PEm−1, X(m− 1) and Y (m− 1) are together realized using m U-cells,

where each U-cell uses one XOR gate and one MUX. The logical functionality of each PE

is shown in Fig. 6.3(b)-(d).

Figure 6.4: Proposed systolic multiplier architecture for trinomials using fundamental

cells

This architecture is decomposed into a scalable, regular and simple structure realized

using fundamental cells as shown in Fig. 6.4. The cells in each PE is represented column-

wise. The upper block computes the polynomial multiplication and the lower block com-

putes the modular reduction. The inputs to each cell are pi,j, ai,j, bi and ai,j, ti, am−2,j for

upper and lower blocks, respectively, where i denotes the index of the coefficient of the

polynomial under consideration and j denotes the iteration count. The internal circuit

detail and logical functionality of U-cell, V-cell, W-cell, Y-cell and Z-cell are shown in
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(a) U-cell (b) V-cell

(c) W-cell (d) Y-cell (e) Z-cell

Figure 6.5: Internal circuit detail and logic functionality of fundamental cells.

Fig. 6.5(a)-(e). The optimizations achieved in the proposed algorithm for trinomials and

pentanomials are transformed into logic gates i.e. Eqn. (6.2) is transformed into Y-cell,

Eqn. (6.4) is transformed into V-cell, Eqn. (6.5) is transformed into W-cell, Eqn. (6.6)

is transformed into Z-cell, Eqn. (6.8) is transformed into U-cell. These optimized cells

replace the U-cells in the lower modular reduction block of the systolic structure. These

cells translate the algorithmic optimizations achieved in the previous sub-section into ar-

chitectural hardware optimizations. As a result, from Fig. 6.4 and Fig. 6.5, it can be

observed that the proposed architecture requires a total of (m2−1) XOR gates, (m2−m)

MUXs, m AND gates and m2 latches. The critical path of the proposed architecture is

given by the expression max {TX + TM , TX , TA} with latency of m clock cycles.

6.3.2 Analytical Results

The proposed architecture requires (m2 − 1) XOR gates, (m2 −m) MUXs, m AND

gates and m2 latches. The critical path of the proposed architecture is (TX + TM) and

the latency is m clock cycles as illustrated in previous section.

Table 6.1 presents the area complexity, latency and critical path of the proposed

architecture and the existing multiplier architectures [40–49] available in the literature.

Here, TA, TX , TM , T3X , TNA denote the delays of 2-input AND gate, 2-input XOR gate,

2:1 MUX, 3-input XOR gate and 2-input NAND gate, respectively. The trinomial f(x) =
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Table 6.1: Area complexity and delay comparison of the systolic multipliers for trinomials

over GF (2m).

Multipliers #AND #XOR #MUX #Registers Latency Critical Path Delay

[40] m2 m2 + lm 0 4m2 + 2lm m+ l + 1 TA + TX

[41] m2 m2 +m− 1 0 3m2 + 2m− 2 2m− 1 TA + T3X

[42] m2+Nv m2+m 0 4m2+m m+1 TA + TX

[43] m2 m2+m-1 0 2m2 2m-1 TA + TX

[44] m2 m2+m m 3m2+m m+n TA + TX

[45] m2 m2+m-1 0 2m2 2m-1 TA + TX

[46] (m2)* m2-1 (m2-2m)† 2m2-m m TNA + TX

[47] m2 m2+m m2 3.5m2+3m m+2 TM + TX

[48] m2 m2+m m 2m2+3m m+1 TA + TX + TM

[49] (m2)* 1.5m2+0.5m (1.5m2-2.5m+3)† 1.5m2+2m-1 m+2 TNA + TX

Proposed m m2-1 m2-m m2 m TM + TX

∗NAND gates; †Inverter; l =
⌊
(m−2)
(m−k)

⌋
+ 1; NV =

(m−k)(m−k−1)+k(k+1)
2

; n = n-term Hankel matrix representation.

Table 6.2: Comparison of area complexity, latency, critical path delay, total delay, ADP

and % reduction in area of the proposed systolic multiplier for trinomials with existing

systolic multipliers over GF (2233).

Multipliers #Transistors Latency
CP Delay ADP %Reduction %Reduction

(ns) (ns) (×1010) in hardware in ADP

[40] 2,398,968 236 19 4,484 1.0757 54 45

[41] 1,959,508 465 19 8,835 1.7312 44 66

[42] 1,521,484 465 19 8,835 1.3442 28 56

[43] 2,483,994 234 19 4,446 1.1044 56 47

[44] 1,959,064 236 19 4,484 0.8784 44 33

[45] 1,521,484 465 19 8,835 1.3442 28 56

[46] 1,517,290 233 20 4,660 0.7071 28 17

[47] 2,179,952 235 23 5,405 1.1783 50 50

[48] 1,528,480 234 30 7,020 1.073 28 45

[49] 1,523,356 235 20 4,700 0.716 28 18

Proposed 1,085,774 233 23 5,359 0.5819 - -

x233 + x74 + 1 recommended by NIST is considered as an example to compare the area

complexity and delay of the proposed architecture with the existing multipliers. The area



Low-power and Area-Efficient Systolic Multipliers for Special Classes 112

complexity is estimated using traditional CMOS logic transistor counts [55]: six transistors

for 2-input XOR gate, 2-input AND gate, 1-bit 2:1 MUX, four transistors for a 2-input

NAND gate, two transistors for an inverter, eight transistors for a 1-bit register. Some

real-time circuits from STMicroelectronics [56] are considered to estimate the critical path

delay and their propagation delays are: tPD = 12ns [2-input XOR gate (M74HC86)], tPD

= 7ns [2-input AND gate (M74HC08)], tPD = 11ns [2:1 MUX (M74HC257)], tPD = 8ns

[2-input NAND gate (M74HC00)].

Based on these estimations, the area complexity (# Transistors), latency (#clock

cycles), critical path delay (ns), total delay (ns), ADP, % reduction in area and % re-

duction in ADP are computed for m = 233 as shown in Table 6.2. The area complexity

and ADP estimations are also plotted as shown in Fig. 6.6(a)-(b), respectively. It can

be observed from Fig. 6.6(a) that the proposed architecture achieves low area complexity

compared to the existing multipliers available in the literature. Specifically, it achieves up

to 54%, 44%, 28%, 56%, 44%, 28%, 28%, 50%, 28% and 28% reduction in area complexity

for m = 233 compared to the existing multipliers [40–49], respectively. Moreover, the pro-

posed architecture also achieves low ADP as evident from Fig. 6.6(b). It achieves about

45%, 66%, 56%, 47%, 33%, 56%, 17%, 50%, 45% and 18% reduction in ADP compared

to the existing multipliers available in the literature. The reduction in ADP metric shows

that the proposed architecture achieves reduction in area complexity without much in-

crease in delay compared to the existing multipliers and hence is suitable for low-hardware

cryptographic applications.

6.3.3 Implementation Results

The performance of the proposed multiplier architecture for trinomials and the sys-

tolic multipliers available in the literature are verified by implementing them on ASIC

and FPGA platforms. The implementation results of these architectures are presented in

the following sub-sections.
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(a) Area complexity

(b) Area-Delay Product

Figure 6.6: Comparison of systolic multipliers over GF (2233) for irreducible trinomials.

6.3.3.1 ASIC Implementation Results

The proposed systolic multiplier and the systolic multipliers [46, 49] are considered

for hardware implementations since they require low ADP compared to the existing sys-

tolic multipliers. These multipliers are modelled in Verilog for m = 233 and synthesized

using Synopsys Design Vision Compiler and Synopsys 90nm Generic Library. The de-
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Table 6.3: ASIC implementation results of systolic multipliers over GF (2233) for irre-

ducible trinomials.

PPPPPPPPPPPPPP
Metrics

Multipliers
[46] [49] Proposed

Total Delay (ns) 99.491 104.81 120.927

Area (µm2)(×103) 6939.995 6850.603 2899.179

Power (W ) 2.99 2.19 1.16

ADP (µm2 × ns)(×106) 690.169 718.011 350.589

PDP (W × ns) 298.214 230.121 141.412

lay, area complexity, power consumption, ADP and PDP of the all the architectures are

computed from the device utilization summary generated by the synthesis tool (see Table

6.3).

The area complexity, power consumption, ADP and PDP results are also plotted

as shown in Fig. 6.7(a)-(d), respectively. It is clear from the histogram (see Fig. 6.7)

that the proposed multiplier requires low area complexity, power consumption, ADP and

PDP compared to the existing multipliers. More specifically, it can be observed that the

proposed multiplier achieves reduction of about 58%, 61%, 49% & 52% in area complexity,

power consumption, ADP and PDP, respectively, compared to the systolic multiplier [46].

Similarly, the proposed multiplier achieves reduction of about 57%, 51%, 47% & 38% in

area complexity, power consumption, ADP and PDP, respectively, when compared to the

systolic multiplier [49]. Moreover, it can also be observed that the delay of the proposed

architecture is slightly higher than existing designs but it has lower ADP and PDP which

indicates that the proposed architecture achieve improvement in area complexity and

power consumption without much increase in delay.

6.3.3.2 FPGA Implementation Results

In addition to the ASIC implementation, the functionality of the proposed multiplier

is also verified by implementing the Verilog models on FPGA platform. The Verilog

models of the proposed multiplier and the multipliers [46,49] are simulated and synthesized
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 6.7: ASIC implementation results of systolic multipliers over GF (2233) for irre-

ducible trinomials.

Table 6.4: FPGA implementation results of systolic multipliers over GF (2233) for irre-

ducible trinomials.

PPPPPPPPPPPPPP
Metrics

Multipliers
[46] [49] Proposed

Total Delay (ns) 724.397 732.73 839.732

Area (#Slices)(×103) 115.606 94.498 56.233

Power (W ) 3.501 2.148 1.192

ADP (#Slices× ns)(×106) 83.745 69.242 47.221

PDP (W × ns)(×103) 2.536 1.574 1.001

using Xilinx Vivado 2014.2 tool. The synthesized netlist is implemented on a Xilinx

Virtex-7 (XC7VX1140TFLG1930-1) FPGA prototype board. The delay, area, power



Low-power and Area-Efficient Systolic Multipliers for Special Classes 116

(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 6.8: FPGA implementation results of systolic multipliers over GF (2233) for irre-

ducible trinomials.

consumption, ADP and PDP of the all the architectures are computed from the device

utilization summary generated by the synthesis tool (see Table 6.4).

The area complexity, power consumption, ADP and PDP results are also plotted

as shown in Fig. 6.8(a)-(d), respectively. It is clear from the histogram (see Fig. 6.8)

that the proposed multiplier achieves low area complexity, power consumption, ADP

and PDP among existing multipliers. More specifically, it can be observed that the

proposed multiplier achieves reduction of about 51%, 43%, 65% & 60% in area complexity,

power consumption, ADP and PDP, respectively, when compared to the multiplier [46].

Similarly, the proposed multiplier achieves reduction of about 40%, 31%, 44% & 36%

in area complexity, power consumption, ADP and PDP, respectively, when compared to

the multiplier [49]. Moreover, it can also be observed that the delay of the proposed

architecture is slightly higher than existing designs but it has lower ADP and PDP which
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indicates that the proposed architecture achieve improvement in area complexity and

power consumption without much increase in delay.

6.4 Proposed Systolic Multiplier Architecture over GF(2m) for

Irreducible Pentanomials

This sub-section presents the proposed arch for systolic multiplier over GF (2m) for

irreducible pentanomials. The area complexity and delay of this architecture are estimated

analytically and compared with the existing multipliers available in the literature. The

functionality of the proposed architecture is implemented using ASIC and FPGA tech-

nologies. These analytical and implementation results of the proposed architecture and

the multipliers available in the literature are also presented in the following sub-sections.

6.4.1 Design of Proposed Systolic Multiplier Architecture over GF(2m) for Irre-

ducible Pentanomials

The computations in Algorithm 6.2 are represented by a Signal Flow Graph (SFG)

shown in Fig. 6.9(a). The computations for j = 0 are represented using the nodes,

W (0) and Z(0), the computations for j = 1, 2, 3, · · · ,m − 2 are represented using the

nodes, X(j), Y (j) and Z(j) and the computations for j = m − 1 is represented using

the nodes, X(m − 1) and Y (m − 1). Here, W (j) is the multiplication node wherein the

multiplication operation is performed by a logical AND operation, X(j) is the addition

node wherein the addition operation is performed by a logical XOR operation, Y (j) is

the decision node wherein the decision operation is performed by a MUX operation and

Z(j) is the reduction node wherein the modular reduction operation is performed by a

logical XOR and MUX operations. The logical functionality of these nodes are shown

in Fig. 6.9(b)-(e). Here, A0 is the binary representation of A(x), b0 is the LSB of the

B(x), P1 is the result of the multiplication node W (0) which performs the multiplication

of b0 and A0, Pj is the binary representation of P (x) in the j th iteration, Aj is the binary

representation of A(x) in the j th iteration, Xj is the result of the addition node X(j) for

the j th iteration which performs the addition of Pj and Aj , bi is the i th coefficient of
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(a) The Signal Flow Graph (SFG)

(b) Logic function

of W (0) node

(c) Logic function of

X(i) node

(d) Logic function of Y (i)

node

(e) Logic function of

Z(i) node

Figure 6.9: SFG derived from the proposed algorithm.

B(x), Pj+1 is the result of the decision node for the j th iteration which performs decision

between the Pj and Xj using bi as the selection input, T is the binary representation of

the irreducible polynomial T (x), Aj+1 is the result of the modular reduction of Aj for the

j th iteration which performs the reduction of Aj by T , and C is the binary representation

of the final product C(x). The critical path can be reduced by employing appropriate

cut-set retiming technique [59] on the SFG as shown in Fig. 6.10(a). Based on the cut-set

retiming, the nodes of the SFG are grouped together to form processing elements as shown

in Fig. 6.10(b). The nodes, W (0) and Z(0), are grouped together to form the processing

element PE0. The nodes, X(j), Y (j) and Z(j), are grouped together to form a regular

PE (PE1 to PEm−2), where j = 1, 2, 3, · · · ,m− 2. The nodes, X(m− 1) and Y (m− 1),

are grouped together to form PEm−1.

The systolic multiplier architecture using processing elements derived from the cut-

set retimed SFG is shown in Fig. 6.11(a). In PE0,W (0) is realized using m Y-cells and

Z(0) is realized using one V-cell, one W-cell and (m − 2) Z-cells. Here, each Y-cell uses

one AND gate, each V-cell uses rewiring to forward the selection input of the decision
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(a) Proposed cut-set retimed SFG

(b) SFG showing the formation of PEs

Figure 6.10: Cut-set retiming of the SFG.

node am−1,0 to the output, each W-cell uses one XOR gate and each Z-cell uses rewiring to

forward an input of the decision node ai−1,0 to the output. In regular PE, X(j) and Y (j)

are realized using m U-cells and Z(j) is realized using one V-cell, one W-cell and (m− 2)

Z-cells. Here, each U-cell uses one XOR gate and one MUX, each V-cell uses rewiring to

forward the selection input of the decision node am−1,j to the output, each W-cell uses one

XOR gate and each Z-cell uses rewiring to forward an input of the decision node ai−1,j

to the output. In PEm−1, X(m− 1) and Y (m− 1) are together realized using m U-cells,

where each U-cell uses one XOR gate and one MUX. The logical functionality of each PE

is shown in Fig. 6.11(b)-(d).

This architecture is decomposed into a scalable, regular and simple structure re-

alized using fundamental cells as shown in Fig. 6.12. The cells in each PE is repre-

sented column-wise. The upper block computes the polynomial multiplication and the

lower block computes the modular reduction. The inputs to each cell are pi,j, ai,j, bi and
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(a) Systolic structure

(b) Logic function of PE0 (c) Logic function of Regular PE

(d) Logic function of PEm−1

Figure 6.11: Proposed systolic structure using PEs.

ai,j, ti, am−2,j for upper and lower blocks, respectively, where i denotes the index of the

coefficient of the polynomial under consideration and j denotes the iteration count. The

internal circuit detail and logical functionality of U-cell, V-cell, W-cell, Y-cell and Z-cell

are shown in Fig. 6.13(a)-(e). These cells are realized in the same manner as in the

case of trinomials described in the previous section. From Fig. 6.12 and Fig. 6.13, it

can be observed that the proposed architecture requires a total of (m2 + 2m − 3) XOR

gates, (m2 −m) MUXs, m AND gates and m2 latches. The critical path of the proposed

architecture is given by the expression max {TX + TM , TX , TA} with latency of m clock

cycles.
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Figure 6.12: Proposed systolic multiplier architecture for pentanomials using fundamental

cells.

(a) U-cell (b) V-cell

(c) W-cell (d) Y-cell (e) Z-cell

Figure 6.13: Internal circuit detail and logic functionality of fundamental cells.
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Table 6.5: Area complexity and delay comparison of the systolic multipliers for pen-

tanomials over GF (2m).

Multipliers #AND #XOR #MUX #Registers Latency Critical Path Delay

[47] m2 m2 + 3m+ 2 m 3.5m2 + 7m m+ 4 TX

[50] (m2)a m2 + 2m− 1 (m2)b 2m2 − 2m m TNA + TX

[51] m2 m2 + 2m (m2)b 2m2 m
2

+ 2 2TX

[52] (m2)a
2m+ 2lm

(m2)c
3m2 − 2m− 2lm m

2l+2
+ 1

TNA + TXN
+2l + 2 −2l − 2 +log2(2l + 2)

aNAND gates; bInverter; cXNOR gate.

6.4.2 Analytical Results

The proposed architecture requires (m2 + 2m− 3) XOR gates, (m2 −m) MUXs, m

AND gates and m2 latches. The critical path of the proposed architecture is (TX + TM)

and the latency is m clock cycles as illustrated in previous section.

Table 6.5 presents the area complexity, latency and critical path of the proposed

architecture and the existing multiplier architectures [47,50–52] available in the literature.

Here, TA, TX , TM , T3X , TNA denote the delays of 2-input AND gate, 2-input XOR gate,

2:1 MUX, 3-input XOR gate and 2-input NAND gate, respectively. The pentanomial

f(x) = x283 + x12 + x7 + x5 + 1 recommended by NIST is considered as an example to

compare the area complexity and delay of the proposed architecture with the existing

multipliers. The area complexity is estimated using traditional CMOS logic transistor

counts [55]: six transistors for 2-input XOR gate, 2-input AND gate, 1-bit 2:1 MUX, four

transistors for a 2-input NAND gate, two transistors for an inverter, eight transistors for

a 1-bit register. Some real-time circuits from STMicroelectronics [56] are considered to

estimate the critical path delay and their propagation delays are: tPD = 12ns [2-input

XOR gate (M74HC86)], tPD = 7ns [2-input AND gate (M74HC08)], tPD = 11ns [2:1 MUX

(M74HC257)], tPD = 8ns [2-input NAND gate (M74HC00)], tPD = 10ns [2-input XNOR

gate (M74HC266)].

Based on these estimations, the area complexity and delay are computed for m = 283

as shown in Table 6.6. The area complexity and ADP estimations are also plotted as shown

in Fig. 6.14(a) and (b), respectively. It can be observed from this figure that the proposed
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Table 6.6: Comparison of area complexity, latency, critical path delay, total delay, ADP

and % reduction in area of the proposed systolic multiplier for pentanomials with existing

systolic multipliers over GF (2283).

Multipliers #Transistors Latency
CP Delay ADP %Reduction

(ns) (ns) (×1010) in hardware

[47] 3,226,212 287 23 6,601 21.296 50

[50] 2,241,354 283 18 5,094 11.417 28

[51] 2,406,066 144 24 3,456 8.315 33

[52] 2,879,796 51 18 918 2.644 44

Proposed 1,605,158 283 23 6,509 10.448 -

architecture achieves low area complexity compared to the existing multipliers available

in the literature. Specifically, it achieves up to 50%, 28%, 33% and 44% reduction in

hardware for m = 283 when compared to similar multipliers [47,50–52], respectively, and

hence suitable for low-hardware cryptographic applications. It can also be observed that

the multipliers [51, 52] require low ADP and the multipliers [47, 50] require high ADP

compared to the proposed architecture.

6.4.3 Implementation Results

The performance of the proposed systolic multiplier architecture and the systolic

multiplier architectures available in the literature are verified by implementing them on

ASIC and FPGA platforms. The implementation results of these architectures are pre-

sented in the following sub-sections.

6.4.3.1 ASIC Implementation Results

The proposed systolic multiplier and the systolic multipliers [51, 52] are considered

for hardware implementations since they require low ADP compared to the existing sys-

tolic multipliers. These multipliers are modelled in Verilog for m = 283 and synthesized

using Synopsys Design Vision Compiler and Synopsys 90nm Generic Library. The de-



Low-power and Area-Efficient Systolic Multipliers for Special Classes 124

(a) Area Complexity

(b) Area-Delay Product

Figure 6.14: Comparison of systolic multipliers over GF (2283) for irreducible pentanomi-

als.

lay, area complexity, power consumption, ADP and PDP of the all the architectures are

computed from the device utilization summary generated by the synthesis tool (see Table

6.7).

The area complexity, power consumption, ADP and PDP results are also plotted

as shown in Fig. 6.15(a)-(d), respectively. It is clear from the histogram (see Fig. 6.15)

that the proposed multiplier requires low area complexity, power consumption, ADP and



Low-power and Area-Efficient Systolic Multipliers for Special Classes 125

Table 6.7: ASIC implementation results of systolic multipliers over GF (2283) for irre-

ducible pentanomials.

PPPPPPPPPPPPPP
Metrics

Multipliers
[51] [52] Proposed

Total Delay (ns) 76.32 23.97 113.2

Area (µm2)(×106) 7.035 7.319 4.233

Power (W ) 1.116 1.182 0.435

ADP (µm2 × ns)(×106) 536.911 175.436 479.176

PDP (W × ns) 85.173 28.333 49.242

(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 6.15: ASIC implementation results of systolic multipliers over GF (2283) for irre-

ducible pentanomials.

PDP compared to the existing multipliers. More specifically, it can be observed that the

proposed multiplier achieves reduction of about 39%, 61%, 10% & 42% in area complexity
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and power consumption, respectively, compared to the systolic multiplier [51]. Similarly,

the proposed multiplier achieves reduction of about 42% & 63% in area complexity and

power consumption, respectively, when compared to the systolic multiplier [52]. It can

be observed that the proposed multiplier requires more ADP and PDP compared to the

systolic multiplier [52]. However, the proposed multiplier achieves substantial decrease

in area complexity and power consumption than the systolic multiplier [52] and hence is

suitable for applications with strict area and power constraints.

6.4.3.2 FPGA Implementation Results

Table 6.8: FPGA implementation results of systolic multipliers over GF (2283) for irre-

ducible pentanomials.

PPPPPPPPPPPPPP
Metrics

Multipliers
[51] [52] Proposed

Total Delay (ns) 658.8 203.388 803.72

Area (#Slices) 159,754 138,676 70,988

Power (W ) 5.527 5.392 2.204

ADP (#Slices× ns)(×106) 105.246 28.205 57.054

PDP (W × ns)(×103) 3.641 1.097 1.771

The proposed systolic multiplier and the systolic multipliers [51, 52] are considered

for hardware implementations since they require low ADP compared to the existing sys-

tolic multipliers. These multipliers are modelled in Verilog for m = 283 and synthesized

using Synopsys Design Vision Compiler and Synopsys 90nm Generic Library. The de-

lay, area complexity, power consumption, ADP and PDP of the all the architectures are

computed from the device utilization summary generated by the synthesis tool (see Table

6.8).

The area complexity, power consumption, ADP and PDP results are also plotted

as shown in Fig. 6.16(a)-(d), respectively. It is clear from the histogram (see Fig. 6.16)

that the proposed multiplier requires low area complexity, power consumption, ADP

and PDP compared to the existing multipliers. More specifically, it can be observed
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(a) Area Complexity (b) Power consumption

(c) Area-Delay Product (d) Power-Delay Product

Figure 6.16: FPGA implementation results of systolic multipliers over GF (2283) for irre-

ducible pentanomials.

that the proposed multiplier achieves reduction of about 49%, 60%, 45% & 51% in area

complexity, power consumption, ADP and PDP respectively, compared to the systolic

multiplier [51]. Similarly, the proposed multiplier achieves reduction of about 55% & 59%

in area complexity and power consumption, respectively, when compared to the systolic

multiplier [52]. Similar to the ASIC implementation results, it can be observed that the

proposed multiplier requires more ADP and PDP compared to the systolic multiplier

[52] but the proposed multiplier is suitable for applications with strict area and power

constraints due to low area and power requirements.
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6.5 Conclusion

In this chapter, systolic multiplier over GF (2m) for irreducible trinomials and pen-

tanomials are realized for the proposed algorithm. The area complexity and delay of

the proposed architectures are estimated and performance is compared with other sys-

tolic polynomial basis multipliers available in the literature. It may be concluded from the

comparisons of the estimated results that the proposed architecture for trinomials achieves

low area complexity compared to other systolic multipliers for trinomials available in the

literature. Moreover, the area-delay product of the proposed architecture is also low when

compared to other multipliers, indicating an efficient multiplier design in terms of both

area and delay. From the ASIC and FPGA synthesis results of the multipliers realized

using trinomials, it can be concluded that the proposed architecture achieves low area

complexity, power consumption, ADP and PDP compared to the existing multipliers.

Similarly, it is observed from the comparisons of the estimated results that the proposed

architecture for pentanomials achieves low area complexity compared to other systolic

multipliers for pentanomials available in the literature. From the ASIC and FPGA syn-

thesis results of the multipliers realized using pentanomials, it can be concluded that the

proposed architecture achieves low area complexity and power consumption compared to

the existing multipliers. The next chapter presents the conclusions of this thesis and some

possible directions for future work.



Chapter 7

Conclusions and Future Scope

This chapter concludes the thesis by underlining the main contributions. It also

discusses the possible directions of future work.

7.1 Conclusions

Cryptography is a prime necessity for secure communication of sensitive data over

an insecure channel. Several algorithms are available in the literature to provide security

for such insecure data communications. In our study of these cryptographic algorithms,

it is observed that the multiplication in finite fields is the most extensively used and also

the most compute-intensive operation. Several techniques to perform efficient finite field

multiplications have been proposed in the literature to reduce the computational complex-

ity of these finite field multiplications. Among these techniques, it is observed that the

interleaved multiplication technique provides low computational complexity. In this work,

modified interleaved multiplication algorithms are proposed to reduce the computational

complexity.

The finite field multiplications can also be realized in hardware to achieve enhanced

security and high speed compared to software implementations. Hence, several architec-

tures are proposed in the literature to implement these finite field multiplications. The

performance of these architectures can be improved with respect to area complexity, time

delay and power consumption using optimized interleaved multiplication algorithms.
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In this work, efficient sequential and systolic architectures are proposed for the im-

plementation of finite field multiplications employing the proposed interleaved multipli-

cation algorithms. The efficiency of these architectures are verified by employing them in

realizing cryptographic algorithms such as the Advanced Encryption Standard (AES) and

Twofish. The HDL models of these AES and Twofish algorithms are implemented using

Xilinx Field Programmable Gate Array (FPGA) prototype board and also synthesized

using Synopsys Design Vision compiler tool.

A modified interleaved multiplication algorithm is derived from a conventional inter-

leaved multiplication algorithm to perform finite field multiplications of any two arbitrary

elements over GF (2m). This algorithm allows realization of a sequential multiplier archi-

tecture that achieves low area complexity compared to previous works. A sequential

multiplier architecture over GF (2m) is developed based on the proposed interleaved mul-

tiplication algorithm. The performance of this architecture is verified by computing area

complexity, delay and ADP for the field of order m = 163. It is observed that this ar-

chitecture achieves a minimum reduction of about 28% in ADP compared to the existing

works. The ASIC and FPGA implementations of the proposed architecture indicate a

minimum reduction of about 49% in area, 16% in power consumption, 13% in ADP and

45% in PDP compared to the existing works. Since the AES and Twofish cryptographic

algorithms use finite field multiplications of order m = 8, a sequential multiplier archi-

tecture over GF (28) is developed for the proposed algorithm. The performance of this

architecture is verified by computing area complexity, delay and ADP for the field of

order m = 8. The proposed architecture achieves a minimum reduction of about 29% in

ADP compared to the existing works. The FPGA implementation of two cryptographic

algorithms, AES and Twofish, employing the proposed architecture achieves a minimum

reduction of 22% in area, 42% in power consumption, 34% in ADP and 41% in PDP

compared to the existing works.

A modified interleaved multiplication algorithm is derived from a conventional inter-

leaved multiplication algorithm to perform finite field multiplications of any two arbitrary

elements over GF (2m). This algorithm is derived to realize a systolic multiplier archi-

tecture that achieves low area complexity compared to the existing works. A systolic

multiplier architecture over GF (2m) is developed based on the proposed interleaved mul-
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tiplication algorithm. The performance of this architecture is verified by computing area

complexity, delay and ADP for the field of order m = 163. It is observed that this ar-

chitecture achieves a minimum reduction of about 20% in area complexity compared to

the existing works. The ASIC and FPGA implementations of the proposed multiplier

indicate a minimum reduction of about 35% in area, 43% in power consumption, 73% in

ADP and 76% in PDP compared to the existing works. Since the AES and Twofish cryp-

tographic algorithms use finite field multiplications of order m = 8, a systolic multiplier

architecture over GF (28) is developed for the proposed algorithm. The performance of

this architecture is verified by computing area complexity, delay and ADP for the field

of order m = 8. The proposed architecture achieves a minimum reduction of about 21%

in area complexity compared to the existing works. The FPGA implementation of the

two cryptographic algorithms, AES and Twofish, employing the proposed architecture

achieves a minimum reduction of 24% in area, 46% in power consumption, 33% in ADP

and 41% in PDP compared to the existing works.

A modified interleaved multiplication algorithm is derived from a conventional in-

terleaved multiplication algorithm based on a novel Pre-Computation technique. This

algorithm performs finite field multiplications of any two arbitrary elements over GF (2m)

and allows realization of two systolic multiplier architectures to achieve low area com-

plexity compared to the existing works. A systolic multiplier architecture over GF (2m)

for irreducible trinomials is developed based on the proposed interleaved multiplication

algorithm. The performance of this architecture is verified by computing area complexity,

delay and ADP for the field of order m = 233. The proposed architecture achieves a mini-

mum reduction of about 28% in area complexity and about 17% in ADP compared to the

existing works. The ASIC and FPGA implementations of this proposed architecture indi-

cate a minimum reduction of 40% in area, 31% in power consumption, 44% in ADP and

36% in PDP compared to the existing works. Moreover, a systolic multiplier architecture

over GF (2m) for irreducible pentanomials is developed based on the proposed interleaved

multiplication algorithm. The performance of this architecture is verified by computing

area complexity, delay and ADP for the field of order m = 283. This architecture achieves

a minimum reduction of about 28% in area complexity compared to the existing works.

The ASIC and FPGA implementations of the proposed architecture indicate a minimum

reduction of 40% in area and 59% in power consumption compared to the existing works.
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7.2 Future Scope

The work proposed in this thesis can be extended for future research. Some of the

possible directions in which the problems can be further pursued are:

• The multipliers in this thesis are developed using bit-level approach. In future,

a digit-serial approach can be used to design these architectures. The digit-serial

approach can be easily explained as: when the digit size is 1, then the design becomes

a bit-level design whereas the design changes into a bit-parallel design when digit

size is equal to the field order m. Hence, this approach provides flexibility to the

designer to chose an appropriate digit size for a particular application. The bit-level

designs offer very low area complexity with low speeds while the bit-parallel designs

offer high speeds with high area complexity. However, a digit-serial design can

achieve optimal trade-off between area complexity and delay due to the provision

of variable bit-width.

• The proposed systolic multipliers can be further optimized and tested for applica-

tions where irreducible polynomials are already known in advance using the MUX-

based operations developed in this thesis for systolic multipliers. In addition, digit-

serial approach can be used to design these multipliers to further achieve improve-

ments in area complexity and power consumption.

• The architectures proposed in this thesis achieve reduction in power consumption

using algorithmic and architectural optimizations. Hence, an important future ex-

tension would be to implement low-power techniques into the designs to achieve

further reduction in power.
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