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A B S T R A C T

In recent years, among the diverse machine intelligence approaches, artificial neural net-

work (ANN) methods have emerged as powerful tools for solving differential equations ema-

nating from engineering challenges. In most of the studies on the boundary layer flows, the

authors used ANN to train the numerical values obtained by using computational methods

and to calculate the skin friction coefficient, Nusselt number, and Sherwood number. Here,

in this study we have not used predefined data in finding the solution. The purpose of this

thesis is to study the applicability of Artificial Neural Networks for the Casson fluid flow

over Radially stretching sheet.

This thesis consists four Parts and ten chapters. Part - I consists of a single chapter which

is devoted to the basic concepts and a review of the pertinent literature. Part-II contains four

chapters (i.e. chapters 2, 3, 4 and 5) and deals with the Casson fluid flow past an unsteady

radially stretching surface with Soret and Dufour effects, bioconvection effect and magnetic

field and chemical reaction on entropy generation. Part-III, which consists of the chapters 6,

7, 8 and 9, is devoted to study the Casson fluid flow across a steady radially stretching surface

in the presence of an magnetic field and thermal radiation, chemical reaction and viscous

dissipation, motile microorganisms bioconvection and magnetic field and viscous dissipation

on entropy generation.

In all the above chapters the partial differential equations governing the flow are trans-

formed into a system of non-linear ordinary differential equations via similarity transforma-

tions. Artificial neural networks are then used to compute the solution to these nonlinear

ordinary differential equations. A multi-layer perceptron neural network with adjustable

parameters (the biases and weights) is used in the trial functions. The Adam optimization

algorithm is adopted to determine adjustable parameters of the trial solution. The present

results are compared to the results of published works as well as the shooting method and

found to be in good agreement. An extensive quantitative analysis has been performed

based on numerical results in order to estimate the efects of pertinent parameters on various

physical quantities by means of their graphical representations

Part - IV consists of a single chapter, i.e. Chapter - 10, which consists of the main

conclusions of the thesis and the directions in which further investigations may be carried

out.
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N O M E N C L A T U R E

C Fluid concentration.

Cf Skin friction.

cp Specific heat capacity.

Cw Concentration at the surface

C∞ Free stream concentration.

Ds Diffusion coefficient.

Dm Motile diffusion coefficient.

f Dimensionless function.

g Acceleration due to gravity.

k Thermal conductivity.

N Bioconvection

Nu Nusselt number.

N∞ Free stream density of motile micror-
ganism.

Pe Bioconvection Peclet number.

Pr Prandtl number.

qm Mass flux.

qn Motile microorganism flux.

qw Heat flux.

Re Reynolds number.

S Suction/Injection parameter.

Sb Bioconvection Schmidth number.

Sc Schmidth number

Sh Sherwood number

T Fluid Temperature.

Tw Surface Temperature.

T∞ Free stream temperature.

Uw Stretching velocity.

Greek Symbols

β Casson fluid parameter.

βT Thermal expansion coeeficient.

βC Concentration expansion coefficient.

βN Bioconvection expansion coefficient.

χ Dimensionless Bioconvection vari-
able

η Non-dimensional variable.

λC Concentration buoyancy parameter.

λT Thermal buoyancy parameter.

λN Bioconvection buoyancy parameter.

ρ Density of the fluid.

σ Sigmoid activation function.

θ Dimensionless temperature.

µ Dynamic Viscosity of the fluid.

ν Kinematic viscosity.

τw Shear stress.

α Thermal Diffusivity

ψ Stream function.

ϕ Dimensionless Concentration

σb Dimensioless bioconvection con-
stant.

Subscripts

w wall condition.

∞ Ambient condition.
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Chapter 1

Preliminaries and Review

1.1 Introduction

Fluid mechanics deals with the behavior of liquids and gases at rest or in motion. It stands

central to much of science and engineering and impacts defense, transportation, manufactur-

ing, environment, medicine, energy, etc. It encompasses a vast variety of practical problems

ranging from the flow of blood in capillaries to flow of oil in huge pipelines and from the flight

of birds to supersonic flights of airplanes. This subject has established itself as a challenging

and exciting subject of modern sciences due to its applications in every aspect of our daily

lives. The pursuit of a profound knowledge about the topic has not only stimulated the de-

velopment of the subject itself but has additionally proposed the progress in the supporting

areas, such as applied mathematics, numerical computing, and experimental techniques.

Fluid flow problems are governed primarily by non-linear differential equations. It is

usually not possible to solve these non-linear differential equations analytically, necessitat-

ing the use of a special method. Unfortunately, not every non-linear differential equation

can be solved using a single numerical technique. Some of the popular methods that are
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available to solve these non-linear differential equations are Homotopy Perturbation Method

[28], Parameterized Perturbation Method [27] Homotopy Analysis Method [44], Adomian

Decomposition Method [2] , and Variational Iteration Method [26]. Although these methods

are extremely powerful and can deal with a wide range of nonlinear differential equations,

they have some limitations and drawbacks. Computational Fluid Dynamics (CFD) is a sub-

set of fluid dynamics research that focuses on modelling different types of fluid flows using

computer simulations and the aforementioned special techniques. It has been used to create

simulations of annealing, civil engineering, and weather predictions by utilizing the ability

of computers to achieve more efficient computation. Recently, researchers in the field of

fluid dynamics have been examining neural networks and their ability to solve challenging

problems quickly. The Feed Forward Neural Network has been the most widely used model

to date. This model takes several inputs, then passes the data through hidden layers to

generate an output. Backpropagation is a technique used by the network to optimise its

output. This method modifies the weights of specific ”neural pathways” to make them more

influential on the final output.

1.2 Artificial Neural Networks

An Artificial Neural network (ANN) is a mathematical model or computational model that

simulates the computational model like the biological neural networks. It consists of an

interconnected artificial neurons and processes information using a connectionist approach.

Neural networks, like human brains, can learn complex patterns by adjusting the strength

of connections between neurons. Neural networks, in principle, are large, parameterized

functions with some very useful properties. In most cases an ANN is an adaptive system

that changes its structure based on external or internal information that flows through the

network during the learning process.

2



1.2.1 Architecture

Neural networks are defined by the weights of the connections between neurons and the biases

of these neurons. ANNs perform factual computation by means of weighted connections,

which are hidden in one or more layers. Each neuron evaluates the weighted average of its

input neurons and weights, adds its bias to the result, and feeds the resulting value through

a nonlinear activation function. Other than these components, all neural networks also have

an input layer and an output layer.

Feed forward neural networks are the most basic type of artificial neural network. The

feed forward neural network was the very first and admittedly easiest kind of artificial network

developed. Neurons in a feed-forward neural network are organised in layers. Neurons in a

layer gain the previous layer’s input and send their results to the subsequent layer. Network

connections to the same or previous layers are not permitted. The data is fed from the input

node to the output node in an exclusively feed-forward manner. The outcome of any layer

doesn’t really influence the same layer. The following figure 1.1 shows the block diagram of

the feed-forward neural network.

3



Figure 1.1: Feed Forward Neural Network

The most frequent type of feed forward network is the multi-layer perceptron (MLP).

The multilayer perceptron is the most basic deep neural network configuration. All neurons

in such neural networks are arranged in ordered layers, and each neuron is connected to all

neurons in neighbouring layers. In ANNs, learning is accomplished using specific training

procedures that are expanded in line with the learning rules

1.2.2 Universal approximation

An artificial neural network can perform a nonlinear mapping from the inputs to the outputs

of the corresponding system of neurons, which is useful for analysing problems characterised

by initial/boundary value problems that have no analytical solutions or are difficult to com-
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pute. The global approximation of a real valued multi-variable function in a closed analytic

form is one of the applications of the multilayer feed forward neural network. Such neural

networks are known as universal approximators. It has been discovered in the literature

that multilayer feed forward neural networks with one hidden layer and arbitrary squashing

functions are capable of estimating any Borel measurable function with any desired degree

of accuracy from one finite dimensional space to another.

It has been shown that feedforward neural networks are able to approximate any function

arbitrarily well given sufficient neurons and when using certain activation functions [29]. This

property makes neural networks very powerful tools in theory. It has also been shown by

Hornik et al. [30] that when the activation function is sufficiently differentiable, then neural

networks can simultaneously approximate the function and its derivatives arbitrarily well .

This property is important in the setting of solving differential equations.

1.2.3 Loss function

The difficulty in using neural networks is determining weight sets that produce accurate

approximations. No direct methods to find such weights appear to exist. Hence, the problem

of finding good weights can be converted into a minimization problem by defining a kind of

distance measure between the parametrized function that a neural network defines and the

function one intends to approximate. Such distance measures are known as loss functions.

Let the input vector be x and θ be the set of weights and biases of the neurons. A neural

network defines a function f(x, θ), where f has same dimension as the number of neurons

int he output layer. Let g(x) be n− dimensional scalar function to be approximated and

known through the input-output pairs (xi, yi), i = 1, 2, · · ·N . Now, it is simple to obtain a

loss function by computing the mean square error as

L(θ) =
1

N

N∑
i=1

(f(xi, θ)− yi)
2

5



Minimizing such a loss function is called training. For notational convenience, let us arrange

the parameters contained in θ in a vector, denoted by θ. The only requirement for loss

functions is that their minima correspond to accurate approximations; they do not need

to be true distance measures. Although some of minimization algorithms, viz, Stochastic

Gradient Descent, ADAM, Broyden-Fletcher-Goldfarb-Shanno algorithm etc., are general-

purpose optimization algorithms and can be used in other contexts, they gained popularity

through neural networks. One among them is ADAM algorithm

1.2.4 ADAM Optimization

Adaptive Moment Estimation (ADAM) [38] is one of the most common training algorithms

for neural networks. It is first order gradient based optimization method. Adam uses an

exponential moving average of the gradients with respect to the network parameters to

update these parameters. Furthermore, the algorithm reduces the learning rate based on an

exponential moving average of the variance of these gradients, such that noisy loss functions

are more carefully traversed. Being computationally efficient, ADAM requires less memory

and outperforms on large datasets. It combines the advantages of AdaGrad(which works

well with sparse gradients) and RMSProp (which works well in non-stationary settings)

Let α denote the learning rate and mi denote the moving average of the gradients and

vi denote the moving average of the variance of the gradients, These moving averages decay

with rates β1 and β2 respectively. Then, the ith iteration of Adam takes the form

gi+1 = ∇L(θi),

mi+1 = β1mi + (1− β1)gi+1,

vi+1 = β2vi + (1− β2)gi+1 ⊙ gi+1,

m̂i+1 =
mi+1

(1 + βi+1
1 )

v̂i+1 =
vi+1

(1 + βi+1
2 )

θi+1 = θi − αm̂i+1 ⊘ (
√

v̂i+1 + ϵ)

(1.1)

6



Here ⊙ and ⊘ denote Hadamard multiplication and division respectively, whihc are elemen-

twise operations. The square root is also applied elementwise.

1.3 Artificial Neural Network Method for Solving Dif-

ferential Equations

1.3.1 Advantages in ANN method

A neural network study for differential equation provides some advantages over the existing

numerical methods. ANN can be seen as an effective alternative to analytical and numerical

approaches that do not involve the solution of complex mathematical concepts. It can be

used as a powerful tool to tackle complicated engineering challenges in a variety of real-world

applications with considerable cost and time savings

• Trial solutions of ANN include a single independent variable regardless of the dimension

of the problem.

• The method is general and can be applied to ordinary differential equations (ODEs),

systems of ODEs and to partial differential equations (PDEs) as well.

• The required number of model parameters is far less than any other solution technique

and therefore, compact solution models are obtained, with very low demand on memory

space.

• The method is general and can be applied to the systems defined on irregular arbitrary

shaped boundaries.

• The method can be realized in hardware, using neuroprocessors, and hence offer the

opportunity to tackle in real time difficult differential equation problems arising in

many engineering applications.

• The method can also be implemented on parallel architectures.

7



There are different neural network methods for the solutions of differential equations.

Feed forward neural networks [41] in which the information moves in only one direction

forward from the input nodes to output nodes. Recurrent neural networks [5, 43] in which

information can go back from output nodes to input nodes. Radial basis function networks

[42] in which three layers (input layer, basis function layer as hidden layer, output layer)

exist where each node in the hidden layer represents a Gaussian basis function for all nodes

and output node have a linear activation function Hopfield network [94, 90] in which a set

of neurons with unit delay is fully connected to each other and forming a feedback neural

network. Cellular network [15, 31] which features a multidimensional array of neurons and

local interconnections among cells. Finite element neural network [95] have the finite element

model converted into the parallel network form. Wavelet element network [47] which is an

alternative to feed forward neural network for approximating arbitrary nonlinear functions

as an alternative and have waveleons instead of neurons.

Among these neural network methods, feed forward neural networks are popular tools

due to their structural flexibility, good representation capabilities and availability of a large

number of training algorithms. The primary objective of ANNs is to simulate a trial solution

based on the function estimation competence of feed-forward neural networks and yields in

the development of the solution. The square of the difference between the exact solution

and constructed solution gives rise to an error and thus reflects some resemblance to the loss

function of a neural network. The parameters of the feed-forward neural network (biases

and weight) are to be modified or trained to minimize the error (loss). For this optimization

techniques are to be employed which involve error gradient calculation with respect to neural

network and inputs parameters.

We consider an artificial feedforward neural network (ANN) with n inputs, m outputs

and a single hidden layer with k units. The output of the network, Nm(η̄, {w, b̄}) can be

written as

Nm(η̄, {w, b̄}) = Σk,nw
f
mkσ{w

h
kηn + bhk}+ bfm (1.2)

where the activation function σ is the sigmoid activation function which is applied element

wise to each unit, and h and f are hidden and final layers, respectively. To forecast solutions

8



to m linked differential equations, we employ a single neural network with m outputs.

A set of m coupled jth order differential equations can be expressed in the general form,

Fm(x̄, ϕm(x̄),∇ϕm(x̄), ....,∇jϕm(x̄)) = 0 (1.3)

with boundary or initial conditions imposed on the solutions ϕ̂m(x̄). Writing the differential

equations in such a way allows us to easily convert the problem of finding a solution into an

optimization one. An approximate solution ϕ̂m(x̄) is one which approximately minimizes the

square of the left-hand side of (1.3), and thus the analogy can be made to the loss function

of a neural network.

In previous approaches ([41], [48], [40]) is the trial solution ϕ̂m(x̄) was considered as the

sum of two terms, the first of which satisfies the conditions on the boundary and the second of

which is related to the neural network parameters. This, however, necessitates the selection

of a specific type of initial solution that is reliant on the conditions on the boundary. For

certain boundary conditions, choosing such an initial/trial solution is very difficult. Instead,

Piscopo et al. [65] proposed the trial solution as the network output ϕ̂m(x̄) ≡ Nm(η̄, {w, b̄})

and included the boundary conditions in the loss function as additional terms. If the domain

is discretized into a finite number of training points x̄i, then approximations to the solutions,

ϕ̂m(x̄), can be obtained by finding the set of weights and biases, {w, b̄}, such that the neural

network loss function is minimized on the training points. For imax training examples, the

full loss function that we use is

E({w, b̄}) = 1

imax

∑
i,m

F̂m(x̄
i, ϕ̂m(x̄

i), .....,∇jϕ̂m(x̄
i))

2
+
∑
B.C

(∇pϕ̂m(x̄b)−K(x̄b))
2 (1.4)

where the second term represents the sum of the squares of the boundary conditions, defined

at the boundaries x̄b. These can be Dirichlet or Neumann, or they can be initial conditions

if defined at the initial part of the domain.

The problem is then to minimize E({w, b̄}) by optimizing the weights and biases in

the network, for a given choice of network setup. To calculate the loss, it is necessary to
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compute the derivatives of the network output with respect to its input. Since each part of

the network, including the activation functions, are differentiable, then the derivatives can

be obtained. The optimization can then proceed via backpropagation by further calculating

the derivatives of the loss itself with respect to the network parameters.

As with any neural network, the choice of hyperparameters will have an effect on the

performance. For our setup, the important parameters are the number of hidden layers, the

number of units in each hidden layer, the number of training points x̄i (corresponding to

the number of anchors in the discretization of the domain of the differential equation), the

sigmoid activation function in hidden layer, the optimization algorithm, and the learning

rate. The benefits of ANN is that the output of the network for selective number of points

can be used to find out the outcome for any other new point using the same parameters for

interpolation and extrapolation.

1.4 Casson fluid

Most of the fluids that encounter in industrial form or physical, other than water and air,

are non-Newtonian fluids. The research on non-Newtonian fluid flow stimulated the interest

of various investigators owing to its application to a wide range of engineering challenges,

including crude oil extraction from petroleum products, the creation of plastic materials,

material processing, crystal growing, cooling of nuclear reactors, movement of biological

fluids, and the production of syrup medications. There is no unique fluid model that accu-

rately depicts all non-Newtonian fluid properties. Therefore, during the last century, several

fluid models, including power-law fluids, Williamson fluid, Jaffery fluid, couple stress fluids,

micro-polar fluids, and so on to characterize the real fluid behavior were being reported in

the literature. The governing equations for Non-Newtonian fluid flows are much more com-

plex, and modeling the flows of such fluids yields higher order, nonlinear, coupled partial

differential equations when compared to the analogous flows of a viscous fluid.

The Casson fluid model, proposed by Casson in 1959 [13], belongs to the category of
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non-Newtonian fluid models. Casson fluid is a shear-thinning fluid with a yield stress below

which no flow occurs, infinite viscosity at zero shear rate, and a no viscosity at an infinite

shear rate. It gives a convenient approach for determining the two parameters, apparent yield

stress and Casson viscosity, for practical applications. Over the last few years, a wide range of

theoretical and computational research has been reported using the Casson fluid model owing

to its vast applications in drilling operations, metallurgy, food processing, manufacturing of

pharmaceutical products, synthetic lubricants, polymer processing industries, preparation of

printing ink, biomedical field, etc.

1.5 Basic Terminology

Convective Heat Transfer

The exchange of internal energy between particular constituents or regions of the medium

under consideration is referred to as heat transfer. It always happens in a downward direction

from a higher to a lower temperature location. There are three modes by which heat transfer

occurs. They are conduction, convection, and radiation. The molecular transport of heat

in bodies or between bodies in the thermodynamical system is referred to as conduction.

Heat transfer caused by the movement of fluid from one region of the medium to another is

called convection. Radiation heat transfer is a mechanism in which the internal energy of

a substance is converted into radiant energy. The transport of heat by convection together

with conduction is known as “convective heat transfer”. Forced, free, and mixed convections

are the three types of convective heat transfer. Forced convection is caused by an external

agent unrelated to heating effects that causes fluid to flow over the heated body. Natural

forces such as buoyancy forces, which originate from density variations in a fluid, cause

free or natural convection. The temperature gradients within the fluid cause these density

variances. In Mixed Convection the order magnitude of the buoyancy force is comparable

with the externally maintained pressure drop to force the flow.
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Dufour and Soret Effects

In simultaneous heat and mass transfer mechanisms, density differences brought on by tem-

perature or concentration gradients, as well as material composition, all act simultaneously

to drive the flow. The term “Dufour effect”, often referred to as the “diffusion-thermo effect”

refers to the heat flux produced by the concentration gradient. The term “thermal diffusion”,

which is also known as “thermo-diffusion” or “the Soret effect” [86] refers to the process by

which species interactions emerge in an initially homogenous fluid subjected to a tempera-

ture gradient. These effects are classified as 2nd order influences and have the potential to

be significant in fields such as geosciences, hydrology, and petrology. Many instances of the

Dufour effect were explored by Eckert and Drake [18]. The Soret effect had been used to

discriminate between isotopes and mixtures of gases with medium (N2, air) and very light

(H2, He) molecular weights.

Bioconvection

Microorganisms, such as microalgae and bacteria, have a higher density than water and so

move upwards against gravity. A density distribution that is unstable is produced when

microbe accumulation makes the top layer of suspension denser than the bottom layer. Con-

vective instability occurs as a result, which may result in convection patterns. The spon-

taneous and unpredictable movement patterns of microorganisms in suspension are referred

to as “bioconvection”. The term bioconvection pertains to a macroscopic convection mo-

tion of fkuid-induced by a density gradient generated by motile microorganisms swimming

together. These selfpropelled motile microorganisms cause bioconvection by increasing the

density of the base fluid by swimming in a specific direction. Chemical processes have a vital

role in bioconvection in the occurrence of motile bacteria due to their importance in food

processing, material synthesis, polymer creation, bioreactors, fuel cells, and biodiesel fuels.
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Viscous dissipation and Chemical Reaction

The viscous dissipation is defined as mechanical energy which is irreversibly converted to

thermal energy due to viscous effects in the fluid. It is critical in viscous fluids such as

polymers and oils. It has numerous uses in industry and technology. Viscous dissipation is

commonly used in electrical equipment like light bulbs, electric heaters, electric stoves, and

electric fuses.

Chemical reaction is the reaction in which the rate of reaction is directly proportional

to the species concentration. Depending on the occurrence at an interface or as a single-

phase volume reaction, the chemical reaction can be termed as either heterogeneous or

homogeneous. In many fields of engineering, industry, and research, the influence of chemical

processes plays a critical role in the investigation of heat and mass transfer.

Entropy generation

Entropy and entropy generation are fundamental quantities. They play essential role in

understanding of many diverse phenomena ranging from cosmology to biology. A physical

quantity termed entropy defined in the second law of thermodynamics is a measure of ir-

reversibility of systems. Entropy generation is not a property because it depends upon the

process path. To comprehend the function of entropy generation mechanism, it makes prac-

ticality to concentrate on the irreversibility of fluid flow and heat transfer procedures. To

optimize the performance of engineering systems containing devices in which simultaneous

heat and mass exchange occur, their irreversibilities of individual devices must be minimized.

This approach was suggested by Bejan[11, 12]. Since the total irreversibility of a system is

the sum of the component irreversibilities, this procedure improves the system performance.

The factors that cause irreversibilities include friction, inelastic deformation of solids, unre-

strained expansion, heat transfer across a finite temperature difference, electric resistance,

mixing of two fluids, and chemical reactions. The second law of thermodynamics can be com-

bined with the principles of fluid mechanics and heat transfer to acquire knowledge about

irreversibilities that influence the working efficiency of the system and processes.
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Radiation

Thermal radiation is the transfer of heat caused by the emission of electromagnetic waves.

The importance of radiation becomes intensified at high absolute temperature levels. It

is well known that the thermal radiation heat transfer does not require any intermediate

medium by electromagnetic waves, or photons, which may travel a long distance without

interacting with medium. Thus thermal radiation is of great importance in vacuum and space

applications. The transfer of energy by radiation depends on differences of the individual

absolute temperature of the bodies.

Using the Rosseland approximation [87], the radiation heat flux qr is given by

qr = −4σ∗

3k∗
∂T 4

∂y
(1.5)

where σ∗ denotes Stefan-Boltzman constant and k∗ denotes the mean absorption coefficient.

This approximation is good only for intensive absorption and is valid at points optically

far from the bounding surface,i.e., for an optically thick boundary layer. We assume the

variation in the temperature of the fluid to be appropriately minimum such that T̃ 4 may be

shown as a linearly continuous function of the temperatures and enlarged in a Taylor Series

around Tm and removing highest order terms, we get T 4 = 4T 3
m T − 3T 4

m.

Magnetohydrodynamics

The branch of continuum mechanics known as “Magnetohydrodynamics (MHD)” examines

how the magnetic field and an electrically conducting fluid interact with one another. A

magnetic field interacts with a fluid through body force and body coupl peer unit mass

when the fluid is electrically conductive and incompressible. In the absence of gravitational

effects, the regular magneto-fluid dynamics assumption is ρf⃗ = ρeE⃗+ J⃗ × B⃗, where ρe, E⃗ B⃗

are the free charge density, the electric field and the total magnetic field, respectively. J⃗ is

the current density and given by the Ohm’s law J⃗ = σ
[
E⃗ + q⃗ × B⃗

]
. Since J⃗× B⃗ ≫ ρeE, the

later can be neglected. Hence, by adding the electromagnetic force term to the momentum
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equation of the fluid, the fluid dynamical aspects of MHD can be studied.

The motion of a conducting liquid in an applied magnetic field causes an induced magnetic

field, which is added to the applied magnetic field to produce the total magnetic field in the

medium. The magnetic Reynolds number describes the relative strength of the induced

magnetic field. When the magnetic Reynolds number is modest, it is reasonable to ignore

the induced magnetic field. The motion of a conducting fluid through a magnetic field

induces electric currents and the fluid experiences a force. This force is called Lorenz force

(J⃗ × B⃗) and it alters the motion of the fluid.

1.6 Literature Review

The convective heat and mass transfer caused by a contiguously stretching surface is of

considerable practical and theoretical importance because of their broader applications in

polymer technology and metallurgy. Applications include the wire and fiber coating, extru-

sion process, foodstuff processing, polymer processing, crystal growing, production of glass

fiber, drying/cooling of paper and/or textiles, continuous casting, hot rolling, fiber spinning,

equipment for chemical processing and the design of different types of heat exchangers and

so on. Stretching will give the extrudate a single direction orientation, therefore the heat

transfer rate and collection may have an effect on both the quality of the final product

and the cost of production. As a result, analyzing momentum, energy, and solute transfers

within a fluid on a continuously stretching surface is critical for acquiring a basic knowledge

of such processes. Further, the flow past a linear / exponential / radial stretching sheets, on

the other hand, is of considerable significance and presents many challenges to researchers,

engineers, and mathematicians. The first researcher to examine boundary layer behaviour

on a constantly moving solid surface, or the Blasius type of flow, was Sakiadis[77, 78]. The

concept of boundary layer flow was then extended for the first time by Crane [16], by taking

stretching surfaces into account. For the viscous fluid across a planar stretched sheet, he

developed an analytical solution. Later, several investigations have been reported on the

boundary layer flows past planer stretching sheet by considering different types of fluids sub-
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ject to diverse physical conditions. For the flow and stability of the Casson fluid across an

extended sheet, Hamid et al. [24] obtained two solutions Awais et al. [8] examined the energy

and solute transport characteristics in a Casson fluid-saturated porous media over a shrink-

ing sheet in the existence of a heat sink/source and a transverse magnetic field. Sohail et al.

[85] discussed the entropy generation in a Casson fluid flow across a nonlinear bi-directional

stretching surface exhibiting variable heat conductance and thermal conductivity.

The research on flow across a radially stretching sheet is of great significance in view of

its applications in metallurgy, chemical engineering, and biomedical engineering. Wang [94]

was the first to consider the natural convection on a vertical radially stretching surface. Ariel

[7] investigated the axisymmetric flow over a radially stretching sheet with slip effects and

obtained exact and numerical solutions. Since then, numerous investigators have examined

the flow, energy and solutal transfer characteristics over a radially stretched sheet. Khan

et al. [35] examined the flow and heat transfer of cross fluid on a radially stretching sheet.

Sreelakshmi et al. [88] considered the unsteady flow of a Jeffrey nanofluid over a radially

stretching surface with convective thermal conditions. Shahzad et al. [81, 82] studied the

time-dependent axially symmetric flow and heat transfer across a time-dependent radially

stretched surface.

In recent years, significant advancements have been made in the investigation of mag-

netohydrodynamic (MHD) flow and heat transfer because of the impact of magnetic fields

on the regulation of boundary layer flow and the effectiveness of numerous systems using

electrically conducting fluids. The majority of the boundary layer studies that are currently

in existence have been relooked by numerous researchers to incorporate magnetic field effects

into consideration. The significance of an oblique magnetic force and radiation on the flow

of Sisko fluid across a radially stretched sheet was examined by Ahmed et al. [4]. El-Aziz

et al. [19] used the Casson fluid model to analyze the MHD stagnation point flow across

a stretching surface. The consequence of Newtonian heating on the magneto Casson fluid

flow on a sheet which was stretching nonlinearly was quantitatively examined by Hussanan

et al. [32]. Gireesha et al. [23] explored the characteristics of MHD flow and melting heat

transfer of a dusty Casson fluid over a stretching sheet. Devi et al. [17] examined the steady
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flow of 2D non-orthogonally electrically conducting Casson fluid on a stretching sheet with

orthogonal and inclined outer velocity flow.

The presence of thermal radiation on heat transfer phenomena has numerous applications

in a wide range of technological operations, such as gas turbines, solar power technology,

nuclear power plants, satellites, missiles, space vehicles, different aircraft propulsion systems

and other industrial areas. The relevance of radiation on the stagnation-point flow of an

upper convected Maxwell Casson fluid across a stretching/shrinking sheet was examined

numerically by Alkasasbeh et al. [6] Zhou et al. [97] reported the impact of radiation and

heat source on the unsteady stagnation point flow of a Casson fluid across a permeable

stretched surface.

The study of heat and mass transfer with chemical reactions has gained significant at-

tention due to its relevance in chemical and hydro-metallurgical manufacturing polymer

production, and so on. Kumar et al. [39] conducted a thorough investigation on the coupled

viscous and Joule dissipation impacts on MHD stagnation point flow of a Casson fluid via

a permeable stretched surface with chemical reaction, multiple slips and thermal radiation.

Khan et al. [37] analyzed the nanofluid flow across a stretching sheet with chemical reaction,

multiple slips, magnetic effects, and radiation. Nayak et al. [58] considered the effect of

chemical reaction with mass transfer on the flow across a radially stretched sheet. Vijaya et

al. [93] studied binary chemical reaction along with activation energy of MHD Casson fluid

flow induced due to stretching surface. Reza-E-Rabbi et al. [74] analyzed the heat and mass

transfer of Casson nanofluid flow across a stretching surface along with magnetohydrody-

namics, chemical reaction and thermal radiation effects. Nagaraja et al. [52] reported the

significance of chemical reaction and a magnetic force on Casson fluid flow on a curved

stretched sheet under convective heat and mass flux circumstances.

The mechanism of changing the energy obtained from the motion of the fluid by viscosity

into internal energy, that is partially irreversible, is known as viscous dissipation. It is critical

in viscous fluids such as polymers and oils. It has numerous uses in industry and technology.

Shateyi et al. [84] explored the free convection in a Casson fluid towards a time dependent

permeable stretched sheet featuring thermal radiation, viscous dissipation, and chemical
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reaction. Afify et al. [3] quantitatively explored the effects of viscous dissipation along with

multiple slips on the boundary layer flow of a Casson nanofluid over a stretching surface.

Ibrahim et al. [33] reported a boundary layer study of Casson nanofluid MHD flow over a

nonlinear stretching sheet with viscous dissipation and chemical reaction effects. Nawaz et al.

[57] explored the influence of viscous dissipation, joule heating, and time-dependent thermal

conductivity on a stretching sheet in a flow of Casson fluid. Reddy et al. [71] reported that

the Eckert number has a significant effect on the heat transfer rate of Casson fluid when

compared to Maxwell fluid. The contribution of viscous dissipation on naturally convective

chemically reacting flow through a porous medium past an exponential stretching sheet was

investigated by Reddy et al. [72]

The interactions between the fluxes and driving potentials get complex when heat and

mass transfer occur simultaneously in a fluid motion. Cross diffusion effects (Dufour and

Soret) refer to how mass flux affects temperature gradients and how energy flux affects

concentration. There has been a significant amount of study that has been reported on

viscous and non-Newtonian fluid flows in different configurations, with an emphasis on cross

diffusion effects. Pal et al. [61] numerically investigated the importance of the Dufour and

Soret effect on the mixed convection of nanofluids over a non-linear shrinking and stretching

sheets with the thermal radiation effect. Oyelakin et al. [60] analyzed the impact of corss

diffusion on the flow of a Casson nanofluid toward an unstable stretched sheet while heat

generation and thermal radiation are present. Venkateswarlu et al. [55] reported the effect

of cross diffusion, viscous dissipation, chemical reaction and variable thermal conductivity

on the MHD flow of a Casson fluid past a stretching sheet. Ullah et al. [91] investigated the

unsteady flow of Casson fluid towards a nonlinearly stretching sheet with convective thermal

conditions and slip under the influence of heat generation/absorption, Soret, Dufour, and

viscous dissipation. Narayan et al. [54] studied the combined effects of Soret and Dufour

on magnetohydrodynamics boundary layer flow of a Jeffrey fluid past a stretching surface

with chemical reaction and heat source. Raza et al. [70] scrutinized the simultaneous impact

of radiation and velocity slip across a convectively heated elongated sheet. Saravana et al.

[80] inspected the effects of an aligned magnetic field, diffusion-thermo and thermal-diffusion
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on Casson fluid flow over a stretching sheet with varying thicknesses. Faraz et al. [22, 21]

studied the unsteady flow of a Casson over a radially stretching surface with Soret, chemical

reaction, multiple slips, and magnetic effects. Mouli et al. [50] considered the influence of

cross diffusion on the steady, viscous dissipative Casson fluid flow along a linear stretching

sheet. Venkata Ramudu et al. [66] addressed the impact of diffusion-thermo and thermal-

diffusion on the magneto Casson liquid motion towards a convective sheet.

Bioconvection is a phenomenon that occurs when convection instability is induced by up-

swimming microorganisms that are heavier than their suspending medium (5 - 10% denser).

Due to upswimming, the microorganisms involved, such as gyrotactic microorganisms like

algae, tend to concentrate in the upper portion of the fluid layer thus causing a top-heavy

density stratification that often becomes unstable. It appears in dense cultures of free-

swimming micro-organisms in appropriate aqueous environments, such as oceans and rivers,

puddles, and droplets. Its characteristic feature is the spontaneous self-organization or self-

concentration of swimmers into a macroscopic pattern. Pal et al. [62] analyzed the impact

of thermal radiation on the heat transport of a water-based nanofluid containing motile gy-

rotactic microrganisms over an exponentially stretching sheet. Pedley [63] coined the term

bioconvection to describe tiny convection caused by motile microorganisms. Pal [62] ex-

plored the role of radiation and motile gyrotactic microbes on a water-based nanofluid on an

exponentially elongating sheet. Ray [69] numerically considered the consequences of viscous

dissipation and magnetic field on the bioconvection flow of a Casson thin film with uniform

thickness over a flat elastic surface evolving from a slit. Sabir [75] explored the effects of

gyrotactic microorganisms and chemical reactions on the Casson nanofluid over a permeable

stretching sheet. Magagula [46] studied the Casson nanofluid bioconvection flow across a

nonlinearly expanding double dispersed sheet. Sankad [79] considered bioconvection flow of

a Casson fluid embracing gyrotactic microorganisms above a surface stretching linearly with

magnetic field. Kumaraswamy [53] focused on the consequence of thermal heat flux and

motile gyrotactic microorganisms on the flow of a Casson nanoliquid across an elongated

plate.

Among the various machine learning methodologies, artificial neural network (ANN)
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methodologies have been developed as viable tools for solving differential equations arising

from engineering issues in recent years. Because of their operational flexibility, excellent

modeling competences, and access to a broad range of training processes, feed forward neural

networks are significant tools among them [41]. The ability of feed forward neural networks to

analyze differential equations, whether ordinary or partial, is based on their parameterization

abilities [40]. The multi-layer perceptron (MLP) has become the most prevalent form of feed

forward network [64]. Yadav [96] gave an in-depth summary of neural networks in a book, in

addition to a detailed discussion of neural network - based methods for resolving differential

equations. A book by Chakravarty and Susmita [14] described newly established innovative

ANN models for handling a variety forms of differential equations. Meade [49] utilized

FFNN to deal with non-linear differential equations. Lagaris [40] employed ANN to find the

solution of ordinary and partial differential equations by using two factors in the trail solution,

one associated with the initial/boundary condition and the other with the neural network

parameters. In most of the studies on the boundary layer flows the authors used ANN to

train the numerical values obtained by using computational methods and to calculate the

skin friction factor, Nusselt number, and the Sherwood. Behrang [10] used a hybrid neural

network and particle swarm optimization to solve a nonlinear differential equation deriving

from the similarity solution of an inverted cone immersed in a porous medium subject to wall

temperature boundary conditions. Shahri [76] solved equations governing the flow and heat

transfer from a porous plate in a power-law fluid in the existence of a magnetic field using the

Keller - Box method. An ANN framework was developed and trained using these numeric

data using the MATLAB neural network toolkit to acquire the values of skin friction and

Nusselt number. Ziaei-Rad [98] employed a double precision Euler’s procedure to solve the

governing equation for flow over a horizontal permeable stretching flat plate in the presence of

a magnetic field. An effective multilayer ANN was applied to calculate the skin friction factor

and Nusselt number. Reddy [73] employed the shooting technique to solve the non-linear

equations governing the flow over a permeable stretching cylinder with magnetic, chemical

reaction, and slip effects. The ANN was trained using the numerical values obtained for

all of the parameters, and then the backpropagation was used to forecast the skin friction

coefficient, Nusselt number, and Sherwood. Elayarani [20] applied the shooting technique in
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conjunction with Runge-Kutta fourth-order method to solve the governing boundary layer

equations of stagnation point flow past a permeable stretching sheet with heat generation

and magnetic effects. The skin friction coefficient and Nusselt number are then predicted

using ANN. Mutuk [51] considered the solution of the Blasius equation using feed forward

neural networks and presented a complete comparison with earlier investigations. Rashidi

et al. [68] stated that intelligent methods, such as ANNs, are preferred in terms of accuracy

compared with the correlation for modeling the properties of hybrid nanofluids. Rashidi et

al. [67] modeled thermal conductivity of EG-Water-based nanofluids with alumina particles

by utilizing Multi-Layer Perceptron (MLP) and Group Method of Data Handling (GMDH)

as two efficient intelligent approaches. Nazari et al. [59] provided applications of data-driven

methods in solar desalination system modeling.

1.7 Aim and Scope

The aim of the present thesis is to utilize artificial neural networks to study the flow, heat

and mass transfer due to laminar and incompressible Casson fluid flow over a steady and

unsteady radially stretching surface. The influence of magnetic field, radiation, viscous

dissipation, chemical reaction, Soret number, Dufour number and bioconvection on the flow

characteristics such as coefficient of skin friction, the rates of heat and mass transfer rate

are analyzed numerically.

The novelty of this work is to use of neural networks for solving the governing differ-

ential equations. Instead of constructing the trial solution separately such that it satisfies

the boundary conditions of the given problem, here we have taken the neural network out-

put consisting of weights and bias terms as parameters as the trial solution itself for the

simultaneous nonlinear differential equations. The mean square error is then calculated and

the parameters are updated to minimize the error term using the ADAMS optimization

technique.
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1.8 Overview of the Thesis

This thesis consists of FOUR parts and TEN chapters

Part - I consists of single chapter i.e. Chapter - 1. This chapter serves as an introduction

and motivation for the research conducted throughout the thesis. A review of relevant liter-

ature is provided, emphasising the significance of the problems presented in the thesis. The

rheological equation for an incompressible and isotropic flow of a Casson fluid are presented

in this chapter.

Part-II deals with deals with the Casson fluid flow past an unsteady radially stretching

surface. This consists of four Chapters i.e. chapter 2 to chapter 5 . In each of these chap-

ters, suitable transformations are used to derive the set of non-linear ordinary differential

equations from the equations describing the flow. Artificial neural networks are used to find

the solutions of these differential equations. A multi-layer perceptron neural network with

adjustable parameters is used for the trial functions (biases and weights). The trial solu-

tion’s adjustable parameters are determined using the Adams (Adaptive Moment Estimation

method) optimization technique.

In Chapter - 2, the incompressible and laminar Casson fluid flow over an unsteady radially

stretching sheet is considered. The non-dimensional coefficient of skin friction and Nusselt

number for distinct values of unsteadiness parameter, Prandtl number, suction/injection

parameter and Casson fluid parameter were studied through graphs. The findings are in

good accord with those that have already been published and have also been compared with

shooting method.

Chapter - 3 deals with the cross diffusion effects on the unsteady Casson fluid flow over a

radially stretched sheet. Artificial neural networks are utilized to compute the solution of the

problem. Graphs are used to show how important parameters affect physical quantities. In

order to corroborate our conclusions, a comparison based on published research is provided.

An excellent comparison is discovered, supporting the findings of our research..

The bioconvection in an unsteady Casson fluid flow across a radially elongated sheet is
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presented in Chapter - 4. The solution of this problem is computed utilising Artificial Neural

Networks. The prevailing approach’s outcomes are confirmed using the shooting method.

the analysis revealed that the performance of the ANN-based method strengthens as the

number of neurons in neural network’s hidden layer intensifies. In addition, graphs illustrate

the effect of major considerations on physical quantities.

Chapter - 5 investigates the impacts of magnetic field and chemical reaction on entropy

generation throughout boundary layer flow and heat transfer due to a unsteady radially

extending sheet. The impact of relevant parameters on skin friction coefficient, rates of heat

and mass transfer, and entropy generation is displayed through graphs.

Part-III deals with the Casson fluid flow across a steady radially stretching surface. This

consists of four chapters i.e. Chapter 6 to Chapter 9. Using similarity transformations, the

governing equations of the flow were converted to ODE in all of these chapters. Artificial

neural networks are used to compute the solution to these problems. A multi-layer perceptron

neural network with adjustable parameters is used for the trial functions (biases and weights).

Chapter - 6 deals with Casson fluid flow past a radially stretching sheet with the impacts

of magnetic field and thermal radiation. Artificial neural networks are used to compute

the solution of the flow. The results of the current method are validated utilizing shooting

method in conjunction with the Runge-Kutta fourth-order method.

In Chapter - 7, the flow and heat transmission of a Casson fluid towards a steady radially

stretched sheet in the presence of chemical reaction and viscous dissipation, is presented.

Similarity transformations are implemented on the flow’s equations to get a system of non-

linear ODEs. Then the solution is computed using ANN .

Chapter - 8 considers the bioconvection in a Casson fluid flow over a steady radially

extending sheet. A multi-layer perceptron neural network is used to obtain the solution

of the governing equations. The effect of unsteadiness parameter, bio convection Peclet

number, suction / injection parameter, bioconvection Schmidth number, Schmidt number

and bioconvection constant on the coefficient of skin friction, rates of heat and mass transfer,

and motile microorganism rate is displayed through graphs.
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The impacts of magnetic field and viscous dissipation on the generation of the entropy

throughout boundary layer flow and heat transfer due to a steady radially extending sheet

is presented in Chapter - 9. The impact of relevant parameters on skin friction coefficient,

rate of heat transfer coefficient and Entropy generation is displayed through graphs.

Part - IV consists of single chapter i.e. Chapter - 10. The key conclusions of the previous

chapters are summarised in this chapter, along with possible future research directions.

A bibliography is provided at the end of the thesis and is organised alphabetically.

A considerable part of the work in the thesis is published/accepted for publication in

reputed International Journals. The remaining part is communicated for publications. The
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Chapter 2

Study Of Casson Fluid Flow Over A

Time-Dependent Radially Stretching

Sheet Using Artificial Neural

Networks 1

2.1 Introduction

2.2 Introduction

The analysis of flow over a radially stretching sheet is important because of its applications

in paper production, polymer extrusion, liquid metal, and glass fiber, among others. Several

researchers have analyzed the heat and mass transfer features of the flow of Newtonian

and non-Newtonian fluids. Khan et al. [35] anlayzed the cross fluid flow across a radially

stretching sheet. Ahmed et al. [4] studied the consequence of inclined magnetic field and

radiation on the flow of Sisko fluid over a radially stretching sheet. Sreelakshmi et al. [88]

1Communicated to“Engineering Transactions”
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considered the unsteady flow of a Jeffrey nanofluid on a radially stretching surface with

convective boundary conditions. Khan et al. [37] analyzed the axisymmetric flow of the

nanofluid past a stretching sheet with multiple slips, magnetic effects, chemical reaction,

and radiation. Nayak et al. [58] considered the effect of chemical reaction with mass transfer

flow through a radially stretched sheet. Most of the investigations on the radially stretching

sheet are restricted to steady-state. However, when flow depends on time, unsteadiness

becomes an important component of study in a variety of engineering procedures. Shahzad

et al. [81, 82] analyzed the unsteady axially symmetric flow and heat transfer across a time-

dependent radially stretched surface.

In this chapter, we investigate the flow and energy transfer of a Casson fluid on a time-

dependent radially stretched sheet. The equations of the flow are transfigured into a set

of non-linear ODEs by employing suitable transformations. Artificial neural networks are

used to compute the solution to these nonlinear differential equations. Comparisons are

made between the findings of the current method and those obtained using the Runge-Kutta

method of fourth order. The findings demonstrate that the ANN-based method provides

significant accuracy. As the neural network’s number of neurons increases, the solution

becomes more effective. Graphs are also used to show the effect of relevant parameters on

physical quantities.

2.3 Mathematical Formulation

Consider the flow of Casson fluid over unsteady radially stretching sheet as shown in fig-

ure 2.1. In formulating the problem following assumptions are made and are considered

throughout the thesis

• The flow is unsteady, incompressible and two-dimensional.

• Cylindrical polar coordinate system (r, θ, z) is chosen by taking r-direction along the

stretching sheet and z-direction is vertical to it with origin fixed.
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Figure 2.1: “Geometry and coordinate system of the problem.”

• The stretching velocity Uw(r, t) =
ar

1− ct
.

• Surface temperature of the sheet is Tw(r, t)= T∞ +
br

1− ct
, where T∞ is the ambient

temperature of the medium with Tw > T∞, where a, b and c are positive constants

with dimension per time with ct < 1.

• All physiological quantities do not depend on θ because of rotational symmetry of the

flow.

With the above assertions, the equations describing the flow are given by [81, 22]

∂u

∂r
+
u

r
+
∂w

∂z
= 0 (2.1)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= ν

(
1 +

1

β

)
∂2u

∂z2
(2.2)

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z
= α

∂2T

∂z2
(2.3)

where u(r, z, t) represents the velocity components in r direction, w(r, z, t) represents the

velocity components in z direction, T (r, z, t) represents the temperature, ν represents the

kinematic viscosity, β =
µβ

√
2πc

τy
represents the Casson fluid parameter and α represents the
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thermal diffusivity.

The associated boundary conditions are

At z = 0 : u = Uw(r, t) =
ar

1− ct
; w = W0 T = Tw(r, t) = T∞ +

br

1− ct

As z → ∞ : u→ 0; T → T∞.

 (2.4)

where W0 = −2S

(
νUw

r

)1/2

. Here, W0 < 0 (S > 0) indicates suction and W0 > 0 (S < 0)

indicates injection.

In order to get dimensionless form of Eqs. (2.1) – (2.3), introduce the stream function

u = −1

r

∂ψ

∂z
and w =

1

r

∂ψ

∂r
and the following similarity transformations [81]

ψ(r, z) = −r2UwRe
−1/2f(η), η =

z

r
Re1/2 and θ =

T − T∞
Tw − T∞

(2.5)

where Re =
rUw

ν
represents the local Reynolds number.

Putting Eq, (2.5) in Eqs. (2.1)-(2.3), we obtain

(1 +
1

β
)f ′′′ + 2ff ′′ − f ′2 − A(f ′ +

1

2
ηf ′′) = 0 (2.6)

1

Pr
θ′′ + 2fθ′ − f ′θ + A(θ +

1

2
ηθ′) = 0 (2.7)

The dimensionless form of conditions (2.4) are:

f(0) = S, f ′(0) = 1, θ(0) = 1 ; f ′(∞) → 0, θ(∞) → 0 (2.8)

where A =
a

c
represents the unsteadiness parameter and Pr =

µcp
k

denotes the Prandtl num-

ber.

The parameters of the engineering interest are the coefficient of skin friction and heat
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transfer rate (Nusselt number), which are defined as

Cf =
2µ

ρU2

(
∂u

∂z

)∣∣∣∣
z=0

and Nu =
r

k(Tw − T∞)

(
∂T

∂z

)∣∣∣∣
z=0

(2.9)

In non-dimensional form these quantities are given by

1

2
Re

1/2Cf = f ′′(0) and Re
−1/2Nu = −θ′(0) (2.10)

2.4 Method of Solution

Consider a multilayered perceptron consisting of 3 – layers namely Input layer - consisting of

’n’ inputs η̄=(η1, η2, ...ηn), hidden layer - consisting of ’k’ neurons and output layer consisting

of two neurons to estimate the solutions to two coupled ordinary differential equations as

shown in the Fig. 2.2.

Figure 2.2: “Feed Forward Neural Network.”
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The output of the network, Nm(η̄, {w, b̄}) can be written as

Nm(η̄, {w, b̄}) = Σk,nw
f
mkσ{w

h
kηn + bhk}+ bfm (2.11)

where σ is the activation function which is applied on each unit element by element, super-

script h is for hidden layer and f is for final layer. To determine the solutions of system of

m differential equations, a single neural network with m outputs can be used.

Since we have two coupled differential equations we have considered two outputsN1(ηi, P1)

and N2(ηi, P2). These Network outputs N1(ηi, P1) and N2(ηi, P2) denote the trial solution

for f and θ respectively with the adjustable parameters P1 and P2 respectively, which are

given by the expressions

N1(ηi, P1) =
k∑

j=1

ϖf
1jσ{ϖh

j ηi + bhj }+ bf1

N2(ηi, P2) =
k∑

j=1

ϖf
2jσ{ϖh

j ηi + bhj }+ bf2


(2.12)

where, ϖh
j represents the weights from the input layer to the jth hidden neuron, bhj is the bias

term in the hidden layer, ϖf
1j is the weight from the jth hidden neuron to the first output

neuron, bf1 is the bias term and ϖf
2j is the weight from the jth hidden neuron to the second

output neuron, bf2 is the bias term. P1 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
1j, b

f
1 and P2

corresponds to the parameters ϖh
j , b

h
j , ϖ

f
2j and b

f
2 respectively.

Since no data has been collected to learn from the differential equation, we have to insert

Eq. (2.12) in the differential equations Eq.(2.6) and Eq. (2.7). Hence, we get

Ef =

(
1 +

1

β

)
N1

′′′(ηi, P1) + 2N1(ηi, P1)N1
′′(ηi, P1)−N1

2(ηi, P1)− A(N1
′(ηi, P1)

+
1

2
ηiN1

′′(ηi, P1))

(2.13)

Eθ =
1

Pr
N2

′′(ηi, P2) + 2N1(ηi, P1)N2(ηi, P2)−N1
′(ηi, P1)N2(ηi, P2)− A(N2(ηi, P2)

+
1

2
ηiN2

′(ηi, P2))
(2.14)
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where Ef and Eθ represents the errors or residuals with respect to the equations Eq. (2.6)

and Eq. (2.7) respectively. If the trial/constructed solutions for f and θ given in Eq. (2.12)

are close to exact solution then the errors Ef and Eθ tend to zero.

Similarly, the errors in the boundary conditions are given by:

N1(η1, P1) = S; N ′
1(η1, P1) = 1; N2(η1, P2) = 1; N ′

1(ηn, P1) = 0; N2(ηn, P2) = 0.

(2.15)

The mean square of error (MSE) is calculated by taking 1/n times the sum of the squared

errors of differential equations (Eqs. (2.13) - (2.14)) along with the error in the boundary

conditions Eqs. (2.15) on the training set and then minimized. The solution produced by

determining a set of biases and weights that minimizes the MSE (or loss function) after

training is the final solution of the problem. Hence, the MSE or loss function E(P1, P2) is

given by

E(P1, P2) =
1

n

n∑
i=1

(Ef )
2 + (Eθ)

2 + [N1(η1, P1)− S]2

+ [N ′
1(η1, P1)− 1]

2
+ [N ′

1(ηn, P1)]
2
+ [N2(η1, P2)− 1]2 + [N2(ηn, P2)]

2

(2.16)

where 3rd – 7th terms represent error terms corresponding to the boundary conditions.

The problem is to minimize E(P1, P2) by optimizing the biases and weights in the network

for a given network configuration. The derivatives of the network output with respect to its

input must be computed in order to compute the error E(P1, P2). The derivative of networks

output N1(ηi, P1) and N2(ηi, P2) with respect to input vector ηi are calculated using Python

package called autograd. Backpropagation can then be used to pursue the optimization by

evaluating the derivatives of the loss function with respect to the network parameters. Here

in this paper, we used a single hidden layer, Sigmoid activation function, the Adam optimizer

[38] with an initial learning rate of 0.01.

To apply this method the semi-infinite domain of the given problem i.e. [0,∞] is reduced

to [η1, η∞] where η1 = 0, η∞ is the parameter used to recover the boundary conditions at
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infinity. We start with training points that are chosen from the domain of the given problem

i.e. [0, η∞ = 10] and the weights and bias terms, which are generated randomly and we train

the model to modify the parameters in the given domain of the problem.To ensure that the

boundary conditions in the loss are integrated into each network parameter update, we use

the entire set of training points. In general, we find that a single hidden layer with a small

number of units is enough to get very exact results.

To check the convergence of the solution of the method, the dimensionless coefficient of

skin friction (f ′′(0)) and rate of heat transfer (θ′(0)) at the surface for A=0.5, S=-1.0,Pr=1.0

are calculated by choosing different number of training points 30, 50 and 100 and different

number of neurons 5, 10 and 15 in the hidden layer and. The computed results are presented

in the Tables 2.1 and 2.2. It is evident from the Tables 2.1 and 2.2 that the solution has

convergence of 10−4 when the Data points are 50 and Hidden neurons are 10.

Number Of training points f ′′(0) θ′(0)
30 -0.62046424 -0.62045657
50 -0.62040682 -0.62044375
100 -0.62040601 -0.62041189

Table 2.1: “Convergence analysis for the values of f ′′(0) and θ′(0) for A=0.5, S=-1.0,Pr=1.0
by the present method with different number of Data points and number of Neurons as 10”.

Number Of Neurons f ′′(0) θ′(0)
5 -0.62058754 -0.62049965
10 -0.62040682 -0.62044375
15 -0.62040513 -0.62044375

Table 2.2: “Convergence analysis for the values of f ′′(0) and θ′(0) for A=0.5, S=-1.0,Pr=1.0
by the present method with different number of Hidden neurons and number of Data points
fixed as 50”.

2.5 Computational Results and Discussion

In the present study, the coefficient of skin friction Cf and Nusselt Number Nu are computed

for different values of Casson fluid parameter β, the unsteadiness parameter A, Prandtl

number Pr and suction/injection parameter S and depicted graphically.
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The method’s correctness is validated by comparing the current numerical values of the

coefficient of skin friction and the Nusselt number with the reported data of Shahzad et al.

[81] for distinct values of unsteadiness parameter A, suction/injection parameter S, Prandtl

number Pr and for large values of Casson fluid parameter β. The computed results are

presented in Table 2.3. It is apparent from Table 2.3 that the existing values are in accordance

with the findings of Shahzad et al. [81].

A S Pr
f ′′(0) θ′(0)

Present Value Shahzad et al. [81] Present Value Shahzad et al. [81]
0.5 -1 1 -0.620406 -0.620400 -0.620443 -0.620400
0.5 -0.5 1 -0.887208 -0.887200 -0.887623 -0.887200
0.5 0 1 -1.308334 -1.308999 -1.308925 -1.308999
0.5 0.5 1 -1.906700 -1.907999 -1.908495 -1.907999
0.5 1 1 -2.653536 -2.655999 -2.656215 -2.655999
0 0.5 1 -1.798938 -1.798999 -1.799092 -1.798999
1 0.5 1 -2.015453 -2.016999 -2.017439 -2.016999
0.5 0.5 0.5 -1.906859 -1.907999 -1.121147 -1.119999
0.5 0.5 0.7 -1.907159 -1.907999 -1.450060 -1.450000

Table 2.3: “Comparative analysis for the values of f ′′(0) and θ′(0) by the present method
with the results of Shahzad et al. . [81]”.

The effectiveness of the method is also validated by relating the current numerical results

of skin friction coefficient and Nusselt number are calculated using the shooting method in

conjunction with the Runge-Kutta fourth order method for A = 0.5, S = −1.0 and Pr = 1.0.

The computed results are presented in the Table 2.4. It is evident from the Table 2.4 that

the present results are consistent with the results obtained by using shooting method.

A S Pr
f ′′(0) θ′(0)

Present method Shooting method Present method Shooting method

0.5 -1 1 -0.62040682 -0.620400 -0.62044375 -0.620400

Table 2.4: “Comparative analysis for the values of f ′′(0) and θ′(0) at the surface by the

present method with the results of Shooting method”.

Fig. 2.3 illustrates the plot of error (between ANN method and Shooting technique

results) in the values of f ′(η) and θ(η) for 7 equispaced positions in [0, 6]. The present
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method’s (ANN method) conclusions are in perfect accord with those produced by Shooting

method. as shown in Figure 2.3.

Figure 2.3: “Error plot between the results obtained by Artificial Neural Network method
and Shooting method for the values of velocity and temperature profiles”.

Figure 2.4 refers the significance of unsteadiness parameter A on the velocity and tem-

perature profiles for fixed values of other parameters. It is observed from figures 2.4(a) and

2.4(b) that, both the velocity and temperature are decreasing in the beginning and enhancing

afterwards for a growth in the unsteadiness parameter A.

The impact of Casson fluid parameter β on the velocity and temperature is portrayed

in Figure 2.5. It is perceived from the figure 2.5(a) that, the velocity is decreasing with an

enhancement in the Casson fluid parameter. A rise in the value of β causes the temperature

to rise as shown in figure 2.5(b).

The impact of Prandtl number Pr on the velocity and temperature is portrayed in Figure

2.6. It is perceived from the Figure 2.6(b) that, the temperature is decreasing with an

enhancement in Prandtl number.

The variation of the velocity and temperature with suction/injunction parameter S is

displayed in figures 2.7(a) - 2.7(b). It has been shown that increasing the suction/injunction

parameter reduces both velocity and temperature values.
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Figure 2.8 provides the influence of the unsteadiness parameter A on the skin friction

and Nusselt number. As the unsteadiness parameter A increases, the skin friction coeffi-

cient decreases as shown in the figure 2.8(a). According to figure 2.8(b), the rate of heat

transmission increases as the unsteadiness parameter A rises.

The effect of Prandtl number Pr on the skin friction and Nusselt number is presented in

Figure 2.9. Nusselt number is increasing with an increase in the Prandtl number Pr and

there is no significance on skin friction, as shown in the figures 2.9(a) and 2.9(b).

The impact of suction/injection parameter S on the skin friction and Nusselt number is

depicted in Figure 2.10. It is noticed from the figures 2.10(a) and 2.10(b) that, skin friction

is decreasing and Nusselt number is increasing for the increasing values of suction / injection

parameter S.

2.6 Conclusions

The primary objective of this research was to use the Artificial Neural Network approach to

solve coupled nonlinear differential equations emerging from the flow of a Casson fluid over a

radially expanding sheet with the influence of suction/injection at the surface. The Adams

optimization method was used to minimize the error function and to determine the optimal

values for the trial function’s adjustable parameters. The numerical results achieved show ex-

tremely good precision when compared to those acquired utilizing the shooting method. Fur-

thermore, the accuracy of the neural network improves as the number of neurons increases.

The influences of A, β, Pr and S on the relevant physical quantities are investigated.

• The velocity reduces as the Casson fluid and suction/injection parameters increase.

• The temperature rises as the Casson fluid parameter rises, while it falls as the Prandtl

number and suction / injection parameter rise.

• The skin friction coefficient reduces when the suction/injunction parameter and un-

steadiness parameter increases.
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(a) (b)

Figure 2.4: “The variation of velocity and temperature profiles with unsteadiness parameter.”

• The rate of heat transfer enhances as unsteadiness parameter, Prandtl number and

suction / injection parameter increases.
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(a) (b)

Figure 2.5: “The variation of velocity and temperature profiles with Casson fluid parameter”.

(a) (b)

Figure 2.6: “The variation of velocity and temperature profiles with Prandtl number”.
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(a) (b)

Figure 2.7: “The variation of velocity and temperature profiles with suction / injection
parameter”.

(a) (b)

Figure 2.8: “Plot of skin friction coefficient and heat transfer rate for distinct values of
Casson fluid parameter”.
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(a) (b)

Figure 2.9: “Plot of skin friction coefficient and heat transfer rate for distinct values of
Prandtl number”.

(a) (b)

Figure 2.10: “Plot of skin friction coefficient and heat transfer rate for distinct values suction
/ injection parameter”.
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Chapter 3

Artificial Neural Network Modeling of

The Casson Fluid Flow Over

Unsteady Radially Stretching Sheet

With Soret and Dufour Effects 1

3.1 Introduction

The relationships amongst the fluxes and the driving potentials are complex when heat and

mass transfer exist at the same time in a flowing fluid. Both concentration and temperature

gradients have been found to induce energy fluxes. The Dufour effect can be described as the

heat flux produced by a concentration gradient. The Soret effect takes place when species

interact in a fluid subjected to a temperature gradient [86]. These aspects are generally

ignored in heat and mass transfer research as they have a lower order of magnitude than be-

haviour defined by Fourier’s and Fick’s laws. There has been a significant number of papers

presented in the literature on the fluid flows in different cross sections, with a emphasis on

the Soret and Dufour effects. Hayat et al. [25] considered the Soret, Dufour and magnetic

1Published in “Journal of Thermal Analysis and Calorimetry”, 22 (2021): 100830
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effects on the flow of the Casson fluid across a stretched surface. In the framework of Soret

and Dufour impacts, Kameswaran et al. [34] investigated the flow of a Casson fluid over

a elongated sheet. Sharad [83] dealt the impacts of Soret and Dufour, thermal radiation

and chemical reaction on MHD mixed convection flow of a Casson fluid over an exponen-

tially elongated sheet. Oyelakin et al. [60] presented the Dufour and Soret effects on the

Casson nanofluid flow over a stretched sheet with thermal radiation and heat generation.

Venkateswarlu et al. [55] reported the effect of Soret and Dufour, viscous dissipation, vari-

able thermal conductivity and chemical reaction on the MHD flow of a Casson fluid past a

stretching sheet. Khan et al. [36] addressed MHD stagnation point flow of Casson fluid to-

wards a stretching sheet. Raza et al. [70] analyzed the simultaneous impact of radiation and

velocity slip across a convectively heated stretching sheet. Saravana et al. [80] inspected the

effects of an aligned magnetic field and cross diffusion on Casson fluid flow over a stretched

surface with varying thicknesses. Mouli et al. [50] studied the influences of Soret and Dufour

on steady, viscous dissipative Casson fluid flow along a linear stretching surface.

In this chapter, the current research examines the applicability of the ANN technique

for unsteady axisymmetric flow across a radially stretched sheet while taking into account

the Soret and Dufour effects. The influences of pertinant parameters governing the flow

and geometry on the skin friction coefficient, Nusselt number and Sherwood number are

discussed in detail.

3.2 Formulation of the Problem

Consider a unsteady two dimensional and laminar flow of a Casson fluid over a stretching

surface z = 0 as shown in Fig. 2.1. In addition to the assumptions made in Chapter 2, here

we assume that the concentration at the stretching surface is Cw = C∞ +
dr

1− ct
, where C∞

(Cw > C∞) is the ambient concentration.
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The equations describing the flow are given by [81, 22],

1

r

∂

∂r
(ru) +

∂w

∂z
= 0 (3.1)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= ν(1 +

1

β
)
∂2u

∂z2
(3.2)

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z
= α

∂2T

∂z2
+DTC

∂2C

∂z2
(3.3)

∂C

∂t
+ u

∂C

∂r
+ w

∂C

∂z
= DS

∂2C

∂z2
+DCT

∂2T

∂z2
(3.4)

where C(r, z, t) is the concentration, DTC is Dufour type diffusivity, DCT is Soret type

diffusivity and the solutal diffusivity is represented by DS

The corresponding boundary conditions are:

u = Uw =
ar

1− ct
, w = W0, T = Tw = T∞ +

br

1− ct
,

C = Cw = C∞ +
dr

1− ct
at z = 0

u→ 0, T → T∞, C → C∞ as z → ∞


(3.5)

where W0 = −2S

(
νUw

r

)1/2

and Uw the stretching velocity. Here at the surface, W0 > 0

(S < 0) represents injection and W0 < 0 (S > 0) represents suction.

In order to non-dimensionalize the Eqs. (3.1)-(3.4), define the following similarity trans-

formations

ψ(r, z) = −r2UwRe
−1/2f(η), η =

z

r
Re1/2, θ(η) =

T − T∞
Tw − T∞

andϕ(η) =
C − C∞

Cw − C∞
(3.6)

where, ψ(r, z) denote the stream function given by ru = −∂ψ
∂z

, rw =
∂ψ

∂r
and Re =

rUw

ν
denote the local Reynolds number.

43



Putting Eq, (3.6) in Eqs. (3.1)-(3.4), we obtain the the following dimensionless equations:

(1 +
1

β
)f ′′′ + 2ff ′′ − f ′2 − A(f ′ +

1

2
ηf ′′) = 0 (3.7)

1

Pr

θ′′ +Dfϕ
′′ − f ′θ + 2fθ′ − A(θ +

η

2
θ′) = 0 (3.8)

1

Sc
ϕ′′ + Srθ

′′ − f ′ϕ+ 2fϕ′ − A(ϕ+
η

2
ϕ′) = 0 (3.9)

where Sr =
DCT

ν
Tw−T∞
Cw−C∞

represent Soret number and Df = DTC

ν
Cw−C∞
Tw−T∞

represent the Dufour

number.

The boundary conditions given in Eq. (3.5) are transformed into the following form[81]:

f(η) = S, f ′(η) = θ(η) = ϕ(η) = 1 at η = 0,

f ′(η) → 0, θ(η) → 0 ϕ(η) → 0 as η → ∞

 (3.10)

The non-dimensional form of the skin friction coefficient Cf , Nusselt number Nu, and

Sherwood number Sh are given by

1

2
Re

1/2Cf = (1 +
1

β
)f ′′(0), Re

−1/2Nu = −θ′(0) andRe
−1/2Sh = −ϕ′(0) (3.11)

3.3 Method of Solution

Consider a multilayered perceptron consisting of three layers namely input layer consisting of

’n’ inputs η̄=(η1, η2, ...ηn), hidden layer - consisting of ’k’ neurons and output layer consisting

of ’m’ neurons to estimate the solutions to ’m’ coupled ordinary differential equations.

The output of the network, Nm(η̄, {w, b̄}) can be written as

Nm(η̄, {w, b̄}) = Σk,nw
f
mkσ{w

h
kηn + bhk}+ bfm (3.12)

where σ is the activation function which is applied on each unit element by element, super-
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Figure 3.1: “Feed Forward Neural Network.”

script h is for the hidden layer and f is for the final layer. To determine the solutions of a

system of m differential equations, a single neural network with m outputs can be used.

Since we have three coupled non-linear differential equations, we have considered three

outputs N1(ηi, P1), N2(ηi, P2) and N3(ηi, P3) as shown in Fig. (3.1). These Network outputs

N1(ηi, P1), N2(ηi, P2) and N3(ηi, P3) denote the trial solution for f , θ and ϕ respectively with

the adjustable parameters P1, P2 and P3 respectively, which are given by the expressions.

N1(ηi, P1) =
k∑

j=1

ϖf
1jσ{ϖh

j ηi + bhj }+ bf1

N2(ηi, P2) =
k∑

j=1

ϖf
2jσ{ϖh

j ηi + bhj }+ bf2

N3(ηi, P3) =
k∑

j=1

ϖf
3jσ{ϖh

j ηi + bhj }+ bf3


(3.13)

where, ϖh
j represents the weights from the input layer to the jth hidden neuron, bhj is the bias

term in the hidden layer, ϖf
1j is the weight from the jth hidden neuron to the first output
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neuron, bf1 is the bias term and ϖf
2j is the weight from the jth hidden neuron to the second

output neuron, bf3 is the bias term and ϖf
3j is the weight from the jth hidden neuron to the

third output neuron bf3 is the bias term. P1 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
1j, b

f
1 ,

P2 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
2j and b

f
2 respectively and P3 corresponds to the

parameters ϖh
j , b

h
j , ϖ

f
3j, b

f
3 .

Substituting Eq. (3.13) in the differential equations Eq. (3.7) - Eq. (3.9), we get

Ef = (1 +
1

β
)N1

′′′(ηi, P1) + 2N1(ηi, P1)N1
′′(ηi, P1)− (N1

′(ηi, P1))
2 − A(N1

′(ηi, P1)

+
ηi
2
N1

′′(ηi, P1))

(3.14)

Eθ =
1

Pr
N2

′′(ηi, P2) +DfN3
′′(ηi, P3)−N1

′(ηi, P1)N2(ηi, P2) + 2N1(ηi, P1)N2
′(ηi, P2)

− A(N2(ηi, P2) +
ηi
2
N2

′(ηi, P2))
(3.15)

Eϕ =
1

Sc
N3

′′(ηi, P3) + SrN2
′′(ηi, P2)−N1

′(ηi, P1)N3(ηi, P3) + 2N1(ηi, P1)N3
′(ηi, P3)

− A(N3(ηi, P3) +
ηi
2
N3

′(ηi, P3))
(3.16)

where Ef , Eθ and Eϕ represents the errors or residuals with respect to the equations Eq.

(3.7), Eq. (3.8) and Eq. (3.4) respectively. If the trial/constructed solutions for f , θ and ϕ

given in Eq. (3.13) are close to exact solution then the errors Ef , Eθ and Eϕtend to zero.

The corresponding boundary conditions are transformed to:

N1(η1, P1) = S; N ′
1(η1, P1) = 1; N2(η1, P2) = 1; N3(η1, P3) = 1

N ′
1(ηn, P1) = 0; N2(ηn, P2) = 0 andN3(ηn, P3) = 0

 (3.17)

The mean square of error (MSE) is calculated by taking 1/n times the sum of the squared

errors of differential equations (Eqs. (3.14) - (3.16)) along with the error in the boundary

conditions Eqs. (3.17) on the training set and then minimized. The solution produced by

determining a set of biases and weights that minimizes the MSE (or loss function) after

training is the final solution of the problem. Hence, the MSE or loss function E(P1, P2, P3)
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is given by

E(P1, P2, P3) =
1

n

n∑
i=1

(Ef )
2 + (Eθ)

2 + (Eϕ)
2 + [N1(η1, P1)− S]2 + [N ′

1(η1, P1)− 1]
2

++[N ′
1(ηn, P1)]

2
+ [N2(η1, P2)− 1]2 + [N2(ηn, P2)]

2 + [N3(η1, P3)− 1]2 + [N3(ηn, P3)]
2

(3.18)

where 4th - 11th terms in the above expression represents represent error terms corresponding

to the boundary conditions.

The goal is to reduce E(P1, P2, P3) by optimising the weights and biases of the network

for a particular network configuration. The derivatives of the network output with respect

to its input must be computed in order to compute the error E(P1, P2, P3). The derivative

of networks output N1(ηi, P1), N2(ηi, P2) and N3(ηi, P3) with respect to input vector ηi are

calculated using Python package called autograd. Backpropagation can then be used to

pursue the optimization by evaluating the derivatives of the loss function with respect to the

network parameters. Here in this paper, we used a single hidden layer, Sigmoid activation

function, the Adam optimizer [38] with an initial learning rate of 0.01.

To apply this method the semi-infinite domain of the given problem i.e. [0,∞] is reduced

to [0, η∞] where η∞ is the parameter used to recover the boundary conditions at infinity.We

start with training points that are chosen from the domain of the given problem i.e. [0, η∞],

where (η∞ = 6.0) and the weights and bias terms, which are generated randomly and we train

the model to modify the parameters in the given domain of the problem. We use the entire

set of training points to ensure that the boundary conditions in the loss are incorporated into

each network parameter update. In general, we find that a single hidden layer with a small

number of units is enough to get very exact results. Here in this paper, we used a single

hidden layer, Sigmoid activation function, the Adam optimizer [38] with an initial learning

rate of 0.01.

To check the convergence of the solution of the method, the dimensionless coefficient of

skin friction (f ′′(0)), rate of heat transfer (θ′(0)) and Sherwood number (ϕ′(0)) are calculated

by choosing different number of training points 30, 50 and 100 and different number of
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neurons 5, 10, 15 and 30 in the hidden layer.The computed results are presented in Tables

(3.1) and (3.2). It is evident from Tables (3.1) and (3.2) that the solution has convergence

of 10−4 when the data points are 50 and hidden neurons are 10.

Number Of Data points f ′′(0) θ′(0) ϕ′(0)
30 -1.45817261 -1.17214455 -0.57090268
50 -1.45802749 -1.17205221 -0.57088971
100 -1.45790606 -1.17202807 -0.57087213

Table 3.1: “Convergence analysis for the values of f ′′(0), θ′(0) and ϕ′(0) at the surface for
A = 0.5, S = 0.5, Pr = 1.0, Sc = 0.2, Df = 0.5 and Sr = 0.2 with different number of Data
points.”

Number of neurons f ′′(0) θ′(0) ϕ′(0)
5 -1.45817261 -1.17214455 -0.57090268
10 -1.45785345 -1.17215167 -0.57096305
15 -1.45806307 -1.17195968 -0.5709956
30 -1.4579798 -1.17220332 -0.57086201

Table 3.2: “Convergence analysis for the values of f ′′(0), θ′(0) and ϕ′(0) at the surface
A = 0.5, S = 0.5, Pr = 1.0, Sc = 0.2, Df = 0.5 and Sr = 0.2 with different number of
hidden neurons”.

3.4 Computational Results and Discussion

In present study, the coefficient of skin friction Cf , Nusselt Number Nu and Sherwood

number Sh are computed for different values of unsteadiness parameter A, Casson fluid

parameter β, Prandtl number Pr, suction / injection parameter S, Schmidth number Sc,

Dufour number Df and Soret number Sr and depicted graphically. To evaluate the impact

of factors involved, numerical computations are done with A = 0.5, S = 0.5, Pr = 1.0,

β = 1.0, Sc = 0.2, Sr = 0.2 and Df = 0.5 unless otherwise stipulated. The Artificial Neural

Network method (ANN) along with Adam optimization is applied to solve the Eqs. (3.7) -

(3.9) The code is written in Python and executed for different parameters.

The effectiveness of the method is also validated by relating the current numerical results

of coefficient of skin friction, heat transfer coefficient and mass transfer coefficient with bvp4c

routine of MATLAB for A = 0.5, S = 0.5, Pr = 1.0, Sc = 0.2, Df = 0.5 and Sr = 0.2. The
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computed results are presented in Table 3.3. It is evident from Table (3.3) that the present

results are are consistent with the results obtained by using bvp4c method.

f ′′(0) θ′(0) ϕ′(0)
Present bvp4c Present bvp4c Present bvp4c

-1.45806307 -1.45776561 -1.17195968 -1.17114305 -0.5709956 -0.55784575

Table 3.3: “Comparative analysis for the values of f ′′(0), θ′(0) and ϕ′(0) at the surface by
the present method with the results of bvp4c method”.

A comparison of obtained results is established for Skin friction coefficient and Nusselt

number with existing works for β = ∞, Df = 0.0, Sc = 0.0 and Sr = 0.0. Table 3.4 shows

a well justifying comparisons of our results and [81] results for f ′′(0) and θ′(0).

A S Pr
f ′′(0) θ′(0)

Present Value Shahzad et al. [81] Present Value Shahzad et al. [81]
0.5 -1 1 -0.620406 -0.620400 -0.620443 -0.620400
0.5 -0.5 1 -0.887208 -0.887200 -0.887623 -0.887200
0.5 0 1 -1.308334 -1.308999 -1.308925 -1.308999
0.5 0.5 1 -1.906700 -1.907999 -1.908495 -1.907999
0.5 1 1 -2.653536 -2.655999 -2.656215 -2.655999
0 0.5 1 -1.798938 -1.798999 -1.799092 -1.798999
1 0.5 1 -2.015453 -2.016999 -2.017439 -2.016999
0.5 0.5 0.5 -1.906859 -1.907999 -1.121147 -1.119999
0.5 0.5 0.7 -1.907159 -1.907999 -1.450060 -1.450000

Table 3.4: “Comparative analysis for the values of f ′′(0) and θ′(0) by the present method
with the results of Shahzad et al. [81]”.

Fig. 3.2 illustrates the plot of error (between ANN method and Shooting technique

results) in the values of f ′(η), θ(η), and ϕ(η) for 7 equi-spaced positions in [0, 6]. The

present method’s (ANN method) conclusions are in perfect accord with those produced by

Shooting method. as shown in Figure 3.2.

The impact of unsteadiness parameter on the coefficient of skin friction (f ′′(0)), rate

of heat transfer (−θ′(0)) and rate of mass transfer (−ϕ′(0)) is presented in Figs. 3.3. An

escalate in the parameter A declines the skin friction coefficient f ′′(0) as shown in Fig. 3.3(a).

It is observed from Figs. 3.3(b) and 3.3(c) that θ′(0) and (ϕ′(0)) are enhancing as the value

of the parameter A enhances.
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Figure 3.2: “Error plot between the results obtained by Artificial Neural Network method
and Shooting method for the values of velocity, temperature and concentration profiles.”

Figure 3.4 provides the impact of Dufour number Df on f ′′(0), −θ′(0) and −ϕ′(0). As

shown in Fig. 3.4(a), the skin friction coefficient appears to be unaffected by changes in Df .

Figures 3.4(b) and 3.4(c) show that as Df increases, the Nusselt number decreases and the

Sherwood number increases.

In Fig. 3.5, the significance of the Prandtl number Pr on the coefficient of skin friction

f ′′(0), heat transfer rate (−θ′(0)) and mass transfer rate (−ϕ′(0)) is presented. The Nusselt

number rises and the Sherwood number falls when the Prandtl number Pr rises, as seen in

Figs. 3.5(b) and 3.5(c), although Skin friction remains constant as given in Fig. 3.5(b)

The impact of suction/injection parameter S on f ′′(0), −θ′(0) and −ϕ′(0) is presented in

Fig. 3.6. It is seen from Fig.3.6(a) that the skin friction is decreasing as the as the values of

S increases. The values of −θ′(0) and −ϕ′(0) are increasing as the values of S is increasing

as depicted in Figs.3.6(b) and 3.6(c).

In Fig. 3.7 the effect of Schmidth number Sc on the coefficient of skin friction f ′′(0),

Nusselt number (−θ′(0)) and Sherwood number (−ϕ′(0)) is discussed. It is observed that

skin friction coefficient remains unchanged with the change in Sc as given in Fig.3.7(a). It

is observed from the Figs. 3.7(b) and 3.7(c) thatt the Nusselt number diminishes and the
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Sherwood number rises as Sc increases respectively.

In Fig. 3.8 the effect of Soret number Sr on the coefficient of skin friction f ′′(0), Nusselt

number (−θ′(0)) and Sherwood number (−ϕ′(0)) is presented. The skin friction coefficient

does not vary with the change in Sr, as seen in Fig.3.8(a). As Sr rises, the Nusselt number

rises and the Sherwood number falls, as shown in 3.8(b) and 3.8(c).

3.5 Conclusions

The coupled nonlinear differential equations emerging from the boundary layer flow of a

Casson fluid over a radially expanding sheet with the influence of suction/injection at the

surface, Soret and Dufor is solved Artificial Neural Network approach. The Adams optimiza-

tion method was used to minimize the error function and to determine the optimal values for

the trial function’s adjustable parameters. The numerical results achieved show extremely

good precision when compared to those acquired utilizing the shooting method. Further-

more, the accuracy of the neural network improves as the number of neurons increases. The

influences of the parameters A, β, Pr, Sc, Df , Sr and S on the relevant physical quantities

are investigated. The important findings are presented below.

• The skin friction decreases with the enhancement in unsteadiness parameter and suc-

tion/injection parameter.

• The Nusselt number increases when unsteadiness parameter, Prandtl number, suc-

tion/injection parameter and Soret number increases and there is a decrement in it

with the increased values of Dufour number and Schmdith number.

• The Sherwood number rises as unsteadiness parameter, Dufour parameter, suction/injection

parameter and Schmidth number increases and reduced when Prandtl number and

Soret number increased.
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(a) (b)

(c)

Figure 3.3: “Variation of f ′′(0), −θ′(0) and −ϕ′(0) with unsteadiness parameter A”.
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(a) (b)

(c)

Figure 3.4: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for various values of the Dufour number Df .”
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(a) (b)

(c)

Figure 3.5: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for various values of the Prandtl number Pr.”
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(a) (b)

(c)

Figure 3.6: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for various values of the Suction/Injection

parameter S.”
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(a) (b)

(c)

Figure 3.7: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for various values of the Schmidth number

Sc.”
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(a) (b)

(c)

Figure 3.8: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for various values of the Soret number Sr.”
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Chapter 4

Artificial Neural Networks Based

Computational Method for

Bioconvection in a Casson Fluid Flow

Past an Unsteady Radially Stretching

Sheet 1

4.1 Introduction

Microorganisms, such as microalgae and bacteria, have a higher density than water and so

move upwards against gravity. Microbe accumulation causes the top layer of suspension to

be denser than the bottom layer, resulting in an unstable density distribution. Convective

instability occurs as a result, which may result in convection patterns. The spontaneous and

unpredictable movement patterns of microorganisms in suspension are referred to as biocon-

vection. Chemical processes have a critical role in bioconvection in the presence of motile

bacteria due to their importance in food processing, material synthesis, polymer creation,

1Communicated to”Heat Transfer”
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bioreactors, fuel cells, and biodiesel fuels. Pedley et al. [63] coined the term bioconvection

to describe tiny convection caused by motile microorganisms. Babu et al. [9] demonstrated

bioconvective non-aligned magnetohydrodynamic stagnation point flow across a stretching

sheet. Pal et al. [62] explored the impact of thermal radiation on the water-based nanofluid

flow over an exponentially stretching sheet in the presence of motile gyrotactic microor-

ganisms . Ray et al. [69] numerically investigated the unsteady bioconvection in a Casson

thin film with uniform thickness over a horizontal elastic sheet emerging from a slit in the

presence of viscous dissipation and magnetic effect. Sabir et al. [75] explored the two-phase

Casson nanofluid passing through a stretching sheet along a permeable surface with the

effects of chemical reactions and gyrotactic microorganisms. Magagula et al. [46] studied

the double dispersed bioconvection phenomena for a Casson nanofluid flow over a nonlinear

stretching sheet. Sankad et al. [79] considered bioconvection of MHD flow, heat and mass

exchange of Casson fluid containing gyrotactic microorganisms above a linearly stretching

surface. Kumaraswamy et al. [53] focused on the impact of motile gyrotactic microorganisms

and thermal heat flux on three-dimensional convective flow of a Casson nanoliquid over an

elongated surface.

The bioconvection in a Casson fluid flow across a time radial sheet with time dependent

stretching velocity is examined in this chapter. ANN is used to calculate the problem’s

solution. Graphs are used to show how important parameters affect the flow properties.

4.2 Mathematical Formulation

Consider a unsteady two dimensional and laminar flow of a Casson fluid over a stretching

surface z = 0 as shown in Fig. (2.1). In addition to the assumptions made in Chapter 2,

here we assume that the the concentration of the motile microorganisms at the surface is

Nw = N∞ +
br

1− ct
, where N∞ is the concentration of the microbes at the ambient medium.

Hence, the equations describing the flow are given by
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∂u

∂r
+
u

r
+
∂w

∂z
= 0 (4.1)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= ν(1 +

1

β
)
∂2u

∂z2
(4.2)

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z
= α

∂2T

∂z2
(4.3)

∂C

∂t
+ u

∂C

∂r
+ w

∂C

∂z
= Ds

∂2C

∂z2
(4.4)

∂N
∂t

+ u
∂N
∂r

+ w
∂N
∂z

+
bWc

Cw − C∞
(
∂

∂z
(N
∂C

∂z
)) = Dm

∂2N
∂z2

(4.5)

where N(r, z, t) denotes the density of the motile microorganisms, the microorganism dif-

fusivity is represented by Dm, c is the Chemotaxis constant and Wc is the maximum cell

swimming speed.

The boundary conditions are:

u = Uw, w = W0, T = Tw = T∞ +
br

1− ct
, C = Cw +

br

1− ct
,N = Nw +

br

1− ct
atz = 0

u→ 0, T → T∞, C → C∞,N → N∞ as z → ∞
(4.6)

whereW0 = −2S

(
νUw

r

)1/2

, Uw the stretching velocity. Here at the surface, W0 > 0 (S < 0)

represents injection and W0 < 0 (S > 0) represents suction.

Introducing the stream function ψ(r, z) through

u = −1

r

∂ψ

∂z
and w =

1

r

∂ψ

∂r
(4.7)

and the following similarity transformations

ψ(r, z) = −r2UwRe
−1/2f(η), η =

z

r
Re1/2, θ =

T − T∞
Tw − T∞

,

ϕ(η) =
C − C∞

Cw − C∞
and χ(η) =

N− N∞

Nw − N∞

 (4.8)

into equations 4.1 - 4.5, we get
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(1 +
1

β
)f ′′′ + 2ff ′′ − (f ′)

2 − A(f ′ +
η

2
f ′′) = 0 (4.9)

1

Pr
θ′′ + 2fθ′ − f ′θ − A(θ +

η

2
θ′) = 0 (4.10)

1

Sc
ϕ′′ + 2fϕ′ − f ′ϕ− A(ϕ+

η

2
ϕ′) = 0 (4.11)

χ′′ − Sb(A(χ+
η

2
χ′) + f ′χ− 2fχ′)− Pe(ϕ

′χ′ + σbϕ
′′ + χϕ′′) = 0 (4.12)

where Sb = ν
Dm

is bioconvection Schmidth number, σb =
N∞

Nw−N∞
is dimensionless bioconvec-

tion constant and Pe =
bWc

Dm
is bioconvection Peclet number. The remaining parameters are

defined in the previous chapters

The corresponding conditions on the surface are:

f(η) = S, f ′(η) = 1, θ(η) = 1, ϕ(η) = 1, χ(η) = 1 at η = 0

f ′(η) → 0, θ(η) → 0, ϕ(η) → 0, χ(η) → 0 as η → ∞

 (4.13)

The coefficient of skin friction Cf , the rate of heat transfer (Nusselt number) Nu, the rate

of mass transfer (Sherwood number) Sh and local density number of the motile microorgan-

ism Nn in dimensionless form are given by

1

2

√
ReCf = (1 +

1

β
)f ′′(0),

Nu√
Re

= −θ′(0) Sh√
Re

= −ϕ′(0) and
Nn√
Re

= −χ′(0) (4.14)

4.3 Method of Solution

Consider a multilayered perceptron consisting of 3– layers namely input layer - consisting of

’n’ inputs η̄=(η1, η2, ...ηn), hidden layer - consisting of ’k’ neurons and output layer consisting

of 4 – neurons N1(ηi, P1), N2(ηi, P2), N3(ηi, P3) and N4(ηi, P4) to estimate the solutions of

four coupled nonlinear ordinary differential equations as shown in the Fig.4.1.
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Figure 4.1: “Feed Forward Neural Network.”

We take the Network outputs N1(ηi, P1), N2(ηi, P2), N3(ηi, P3) and N4(ηi, P4) as the trial

solution for f , θ, ϕ and χ with the adjustable parameters P1, P2, P3 and P4 respectively,

which are given by the expressions.

N1(ηi, P1) =
k∑

j=1

ϖf
1jσ{ϖh

j ηi + bhj }+ bf1 ; N2(ηi, P2) =
k∑

j=1

ϖf
2jσ{ϖh

j ηi + bhj }+ bf2

N3(ηi, P3) =
k∑

j=1

ϖf
3jσ{ϖh

j ηi + bhj }+ bf3 ; N4(ηi, P4) =
k∑

j=1

ϖf
4jσ{ϖh

j ηi + bhj }+ bf4


(4.15)

where, ϖh
j represents the weights from the input layer to the jth hidden neuron, bhj is the

bias term in the hidden layer, ϖf
1j is the weight from the jth hidden neuron to the first

output neuron, bf1 is the bias term, ϖf
2j is the weight from the jth hidden neuron to the
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second output neuron, bf2 is the bias term, ϖf
3j is the weight from the jth hidden neuron to

the third output neuron bf3 is the bias term, ϖf
4j is the weight from the jth hidden neuron to

the fourth output neuron bf4 is the bias term, P1 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
1j,

bf1 , P2 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
2j and b

f
2 respectively, P3 corresponds to the

parameters ϖh
j , b

h
j , ϖ

f
3j, b

f
3 and P4 corresponds to the parameters ϖh

j , b
h
j , ϖ

f
4j, b

f
4 .

Since there are no data available in order to learn from the differential equation, we have

to substitute Eq. (4.15) in the differential equations Eq. (4.9) - Eq. (4.12). Hence, we get

Ef = (1 +
1

β
)N1

′′′(ηi, P1) + 2N1(ηi, P1)N1
′′(ηi, P1)−N1(ηi, P1)

2 − A(N1
′(ηi, P1)

+
ηi
2
N1

′′(ηi, P1))

(4.16)

Eθ =
1

Pr
N2

′′(ηi, P2) + 2N1(ηi, P1)N2
′(ηi, P2)−N1

′(ηi, P1)N2(ηi, P2)− A(N2(ηi, P2)

+
ηi
2
N2

′(ηi, P2))
(4.17)

Eϕ =
1

Sc
N3

′′(ηi, P3) + 2N1(ηi, P1)N3
′(ηi, P3)−N1

′(ηi, P1)N3(ηi, P3)− A(N3(ηi, P3)

+
ηi
2
N3

′(ηi, P3))
(4.18)

Eχ = N4
′′(ηi, P4)− Sb(A((N4(ηi, P4) +

η

2
N4

′(ηi, P4)) +N1
′(ηi, P1)N4(ηi, P4)

− 2N1(ηi, P1)N4
′(ηi, P4))− Pe(N3

′(ηi, P3)N4
′(ηi, P4) + σbN4

′′(ηi, P4)

+N4(ηi, P4)N4
′′(ηi, P4))

(4.19)

where Ef , Eθ, Eϕ and Eχ represents the errors or residuals with respect to the equations

Eq. (4.9) - Eq. (4.12) respectively. If the trial/constructed solutions for f , θ, ϕ and χ given

in Eq. (4.15) are close to exact solution then the errors Ef , Eθ Eϕ and Eχ tend to zero.

Similarly, the errors in the boundary conditions are given by:

N1(η1, P1) = S; N ′
1(η1, P1) = 1; N2(η1, P2) = 1; N3(η1, P3) = 1; N4(η1, P4) = 1

N ′
1(ηn, P1) = 0; N2(ηn, P2) = 0; N3(ηn, P3) = 0; and N4(ηn, P4) = 0

 (4.20)
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The mean square of error (MSE) is calculated by taking 1/n times the sum of the squared

errors of differential equations (Eqs. (4.16) - (4.19)) along with the error in the boundary

conditions Eqs. (4.20) on the training set and then minimized. The solution produced

by determining a set of biases and weights that minimizes the MSE (or loss function) after

training is the final solution of the problem. Hence, the MSE or loss function E(P1, P2, P3, P4)

is given by

E(P1, P2, P3, P4) =
1

n

n∑
i=1

(Ef )
2 + (Eθ)

2 + (Eϕ) + (Eχ)
2 + [N1(η1, P1)− S]2

+ [N ′
1(η1, P1)− 1]

2
+ [N ′

1(ηn, P1)]
2
+ [N2(η1, P2)− 1]2 + [N2(ηn, P2)]

2

+ [N3(η1, P3)− 1]2 + [N3(ηn, P3)]
2 + [N4(η1, P3)− 1]2 + [N4(ηn, P3)]

2

(4.21)

where 5th - 13th terms in the above expression represent the sum of squares of the boundary

conditions.

The problem is to minimize E(P1, P2, P3, P4) by optimizing the biases and weights in the

network for a given network configuration. The derivatives of the network output with re-

spect to its input must be calculated in order to compute the error function E(P1, P2, P3, P4).

The derivatives of networks output N1(ηi, P1), N2(ηi, P2), N3(ηi, P3) and N4(ηi, P3) with re-

spect to input vector ηi are calculated using Python package called autograd. Backpropa-

gation can then be used to pursue the optimization by evaluating the derivatives of the loss

function with respect to the network parameters. Here in this paper, we used a single hidden

layer, Sigmoid activation function, the Adam optimizer [38] with an initial learning rate of

0.01.

To apply this method the semi-infinite domain of the given problem i.e. [0,∞] is reduced

to [η1, η∞] where η1 = 0, η∞ is the parameter used to recover the boundary conditions at

infinity. We start with training points that are chosen from the domain of the given problem

i.e. [0, η∞ = 10] and the weights and bias terms, which are generated randomly and we train

the model to modify the parameters in the given domain of the problem.To ensure that the

boundary conditions in the loss are integrated into each network parameter update, we use

the entire set of training points. In general, we find that a single hidden layer with a small

64



number of units is enough to get very exact results.

To check the convergence of the solution of the method, the dimensionless coefficient of

skin friction (f ′′(0)), rate of heat transfer (θ′(0)), Sherwood number (ϕ′(0)) and motile micro

organism rate (χ′(0)) at the surface for beta = 1.0, A = 0.5, S = 0.5, Pr = 1.0, Sc = 0.2, Sb

= 0.1, Pe = 0.1 and σb = 0.1 are calculated by choosing different number of training points

50, 100 and 200 and different number of neurons 10, 20 and 30 in the hidden layer and the

computed results are presented in the Tables 4.1 and 4.2. It is evident from the Tables 4.1

and 4.2 that the solution has convergence of 10−4 when the Data points are 50 and Hidden

neurons are 10.

Number Of training points f ′′(0) θ′(0) ϕ′(0) χ′(0)
50 -1.212728 -2.013013 -0.623263 -0.390674
100 -1.212658 -2.012435 -0.623001 -0.389668
200 -1.212571 -2.012150 -0.622169 -0.390758

Table 4.1: “Convergence analysis for the values of f ′′(0), θ′(0) (ϕ′(0)), (χ′(0)) for A = 0.5,
S = 0.5, Pr = 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1 and σb = 0.1 by the present method with
different number of Data points and number of Neurons as 10.”

Number Of Neurons f ′′(0) θ′(0) ϕ′(0) χ′(0)
10 -1.212728 -2.013013 -0.623263 -0.390674
20 -1.215316 -2.012105 -0.622723 -0.390086
30 -1.212531 -2.012195 -0.622899 -0.383008

Table 4.2: “Convergence analysis for the values of f ′′(0), θ′(0) (ϕ′(0)), (χ′(0)) for A = 0.5,
S = 0.5, Pr = 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1 and σb = 0.1 by the present method with
different number of Hidden neurons and number of Data points fixed as 50.”

4.4 Computational Results and Discussion

The effectiveness of the method is also validated by relating the current numerical results of

the dimensionless coefficient of skin friction (f ′′(0)), rate of heat transfer (θ′(0)), Sharewood

number (ϕ′(0)) and motile micro organism rate (χ′(0)) are calculated using the shooting
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method in conjunction with the Runge-Kutta fourth order method. for A = 0.5, S = 0.5,

Pr = 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1 and σb = 0.1. The computed results are presented

in the Table 4.3. It is evident from the Table 4.3 that the present results are consistent with

the results obtained by using shooting method.

Present method Shooting method Relative error

f ′′(0) -1.21272813 -1.21259476 1.25× 10−4

θ′(0) -2.01301378 -2.01221582 3.96× 10−4

ϕ′(0) -0.62326329 -0.62294825 5.05× 10−4

χ′(0) -0.39067426 -0.38890631 4.54× 10−3

Table 4.3: “Comparative analysis for the values of f ′′(0), θ′(0), (ϕ′(0)) and (χ′(0))at the

surface by the present method with the results of Shooting method for A = 0.5, S = 0.5, Pr

= 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1 and σb = 0.1.”

Fig.4.2 illustrates the plot of error (between ANN method and Shooting technique results)

in the values of f ′, θ, ϕ and χ for 11 equispaced positions in [0, 10]. The findings acquired

by the current approach are in excellent agreement with those obtained by the Shooting

method, as shown in Fig.4.2.
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Figure 4.2: “Error plot between the results obtained by Artificial Neural Network method and

Shooting method for the values of velocity, temperature, concentration and bioconvection

profiles.”

The impact of unsteadiness parameter A on the skin friction coefficient (f ′′(0)), Nusselt

number (−θ′(0)), Sherwood number (−ϕ′(0)) and density number of motile microorganisms

(−χ′(0)) is presented in Figure 4.3. It is observed from Figure 4.3 that the skin friction is

decreasing and Nusselt number, shear stress, density number of motile microorganisms are

increasing with the increasing values of the unsteadiness parameter.

Figure 4.4 presents the influence of bioconvection Peclet Pe number on the skin friction

coefficient (f ′′(0)), rate of heat transfer (−θ′(0)), rate of mass transfer (−ϕ′(0)) and density

number of motile microorganisms (−χ′(0)). It is evident from Figure 4.4 that the impact

of Pe on skin friction coefficient is negligible, whereas the rate of heat transfer, the rate of

mass transfer are decreasing slightly and the density number of motile microorganisms is

increasing as Pe is increasing.

Figure illustrates how the suction/injection parameter S affects f”(0), −theta′(0), −phi′(0),

and −chi′(0). When the values of the suction/injection parameter S increase, it can be seen

from Figure 4.5 that skin friction is reducing, while the Nusselt number, Sherwood number,
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and density number of motile microorganisms are growing.

The impact of bioconvection Schmidth number Sb, on skin friction coefficient (f ′′(0)),

Nusselt number (−θ′(0)), Sherwood number (−ϕ′(0)) and density number of motile microor-

ganisms (−χ′(0)) is presented in Figure 4.6. It is noticed from Figure 4.6 that there is slight

variation in the skin friction and heat transfer rate as the value of Sb is increasing. Also, it

demonstrates that the mass transfer rate is rising close to the sheet and falling away from

the sheet, and it also shows that the density of motile mocrobes is rising quickly along with

rising values of the bioconvection Schmidth number Sb.

The changes in the skin friction coefficient (f ′′(0)), Nusselt number (−θ′(0)), Sherwood

number (−ϕ′(0)) and density number of motile microorganisms (−χ′(0)) with Schmidt num-

ber Sc is displayed in Figure 4.7. Figure 4.7 indicates that when the value of Sc rises, there is

an improvement in skin friction, the rate of mass transfer, and the density number of motile

microorganisms, although the influence of the Schmidth number Sc on the Nusselt number

is negligible.

The effect of bioconvection constant σb on skin friction coefficient (f ′′(0)), Nusselt number

(−θ′(0)), Sherwood number (−ϕ′(0)) and density number of motile microorganisms (−χ′(0))

is depicted in Figure 4.8. The density of motile microbes is growing as the value of sigmab

rises, as can be shown in Figure 4.8.

4.5 Conclusions

The primary intension of this research is to use the Artificial Neural Network approach to

solve coupled nonlinear differential equations emerging from bioconvection in axisymmet-

ric flow of Casson fluid over unsteady radially stretched sheet. Trial solutions were not

constructed separately. Network outputs considered as the trial solutions of the non-linear

ordinary differential equations involved in the problem. The Adams optimization method

was used in minimizing the error function and to determine the optimal values for the trial

function’s adjustable parameters. The numerical results achieved show extremely good pre-
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cision when compared to those acquired utilizing the shooting method. It was discovered

that employing a small number of hidden neurons might produce adequate precision. The

influence of parameters A, S, Pr, Sc, Sb, Pe and σb. The important findings are presented

below.

• The skin friction coefficient diminishes with the rising values of unsteadiness factor,

suction/injection factor and there is a slight increment in it for the increasing values

of bioconvection Schmidth number and Schmidth number.

• Nusselt number increases when unsteadiness parameter, suction/injection parameter,

bioconvection Schmidth number increases and it decreases as Peclet number increase.

• At higher values of the Schmidth number, suction/injection parameter, and unsteadi-

ness parameter, the Sherwood number rises; for higher values of the Peclet number, it

falls.

• Density number of the motile microorganism increases for all the parameters stated in

the problem.
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(a) (b)

(c) (d)

Figure 4.3: “Plot of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for various values of the unsteadiness

parameter A.”
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(a) (b)

(c) (d)

Figure 4.4: “Plot of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for various values of the Peclet number

Pe.”
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(a) (b)

(c) (d)

Figure 4.5: “Plot of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for various values of the suction /

injection parameter S.”
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(a) (b)

(c) (d)

Figure 4.6: “Plot of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for various values of the bioconvection

Schmidth number Sb.”

73



(a) (b)

(c) (d)

Figure 4.7: “Plot of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for various values of the Schmidth

number Sc.”
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(a) (b)

(c) (d)

Figure 4.8: “Plot of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for various values of the dimensionless

bioconvection constant σb.”
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Chapter 5

Simultaneous Effects of Chemical

Reaction and Magnetic Field on

Entropy Generation in a Casson Fluid

Flow Over a Radially Stretching

Sheet: A Neural Network based

Analysis 1

5.1 Introduction

Second law of thermodynamics states that, all flow and heat transfer processes experience

irreversible modifications. The energy losses during the processes are often responsible for

these irreversible modifications. Although actions can be taken to mitigate these irreversible

impacts, recovering all of the lost energy is difficult. The entropy of the system increases as a

result of this process. As a result, the entropy production rate has become a common metric

1Communicated to ”Mathematical Methods in the Applied Sciences”
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for studying irreversibility impacts. The entropy generation in most industrial and technical

phenomena results in the destruction of the available energy of the system. The entropy

generation has a significant impact on the functioning of thermal equipment such as heat

engines, power plants, heat pumps, refrigerators, and air conditioners.Hence, determining

the rate of entropy generated for a system is critical in order to maximise the energy in the

system for efficient operation. This aspect was proposed by Bejan[11, 12]. Many studies

on the applicability of the second law of thermodynamics and entropy generation have been

published in the literature. Sreenadhet al. [89] presented a numerical analysis treatment

for entropy generation over MHD Jeffrey fluid flow across a non-linear radially expanded

sheet. The influences of entropy production and Hall current on MHD Casson fluid across a

stretched surface with velocity slip factor have been quantitatively investigated by El-Aziz

et al. [1]. Narlaet al. [56] analyzed the effect of magnetic filed on the entropy generation in

an incompressible viscous fluid flow past a curved stretching surface.

In this chapter the impacts of magnetic field and chemical reaction on the entropy gen-

eration in an unsteady Casson fluid flow due to radially extending sheet are investigated.

5.2 Formulation of the Problem

Consider a two dimensional unsteady, laminar flow of a Casson fluid over a radially stretched

surface at z = 0 as shown in Figure. 2.1. The stretching velocity of the surface in the radial

direction is Uw =
ar

1− ct
, where a > 0.

The equations describing the flow are given by

∂u

∂r
+
u

r
+
∂w

∂z
= 0 (5.1)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= ν(1 +

1

β
)
∂2u

∂z2
− σ B2

0

ρ
u (5.2)

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z
=

k

ρcp

∂2T

∂z2
(5.3)
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∂C

∂t
+ u

∂C

∂r
+ w

∂C

∂z
= DS

∂2C

∂z2
+ k1(C − C∞) (5.4)

The boundary conditions are as follows:

u = Uw, w = 0, T = Tw = T∞ +
br

1− ct
, C = Cw = C∞ +

br

1− ct
at z = 0

u→ 0, T → T∞, C → C∞ as z → ∞

 (5.5)

where B0 is applied magnetic field, k1 is the chemical reaction rate. The remaining quantities

are defined in the previous chapters.

Introducing the stream function ψ(r, z) through u = −1

r

∂ψ

∂z
and w =

1

r

∂ψ

∂r
and the

following similarity transformations

η =
z

r
Re1/2, ψ(r, z) = −r2UwRe

−1/2f(η)

T − T∞ = Tw − T∞θ(η) and C − C∞ = Cw − C∞ϕ(η)

(5.6)

Putting Eq, (5.6) in Eqs. (5.1) - (5.4), we obtain

(1 +
1

β
)f ′′′ + 2ff ′′ − (f ′)

2 − A(f ′ +
η

2
f ′′)−Mf ′ = 0 (5.7)

1

Pr
θ′′ + 2fθ′ − f ′θ − A(θ +

η

2
θ′) = 0 (5.8)

1

Sc
ϕ′′ + 2fϕ′ − f ′ϕ− A(ϕ+

η

2
ϕ′)−Krϕ = 0 (5.9)

The boundary conditions given in Eq. (5.5) are transformed into the following form:

f(η) = 0, f ′(η) = 1, θ(η) = 1, ϕ(η) = 1 at η = 0

f ′(η) → 0, θ(η) → 0 , ϕ(η) → 0 as η → ∞
(5.10)

where M =
σ B2

0

ρ

(
1−ct
a

)
is the magnetic parameter, Kr = k1(1−ct)

a
is the chemical reaction

parameter.
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The non-diemaional form of the skin friction coefficient Cf , the Nusselt number Nu and

the Sherwood number Sh. hanged to the following form:

1

2

√
ReCf = (1 +

1

β
)f ′′(0),

Nu√
Re

= −θ′(0) and Sh√
Re

= −ϕ′(0) (5.11)

5.3 Entropy generation

The investigation of entropy generation is essential for understanding the irreversibility of

thermal energy in a certain system. As per the second law of thermodynamics the relation

for the entropy generation of the scheme associated with unsteady Casson fluid flow across

the radially stretched sheet in the presence of a magnetic field and chemical reaction is given

by.

SG =
k

T 2
∞

(
∂T

∂z

)2

+
µ

T∞

(
1 +

1

β

)(
∂u

∂z

)2

+
σ B2

0

T∞
u2+

µ

C∞

(
∂C

∂z

)2

+
µ

C∞

(
∂T

∂z

)(
∂C

∂z

)
(5.12)

The first term in the above expression reflects the entropy effect due to heat transfer, the

second term denotes the entropy effect due to fluid friction, the third term symbolises the

entropy impact caused by the magnetic field, the fourth term represents the entropy effect

due to pure concentration gradient, and the fifth term represents the entropy effect due to

the mixed product of concentration and thermal gradients.

In terms of dimensionless variables the entropy generation ha sthe form

Ns = Re

[
(θ′)

2
+
Br

Ω

(
1 +

1

β

)
(f ′′)

2
+
Br

Ω
M(f ′)

2
+ λ

( ς
Ω

)2

(ϕ′)
2
+ λ

( ς
Ω

)
θ′ϕ′

]
(5.13)

where Ns = SGr2 T 2
∞

k(Tw−T∞)2
is the dimensionless entropy generation number, Br = µU2

w

k(Tw−T∞)

is the Brinkman number, Ω = Tw−T∞
T∞

is the dimensionless temperature, ς = Cw−C∞
C∞

is the

dimensionless concentration and λ = C∞
k

is the diffusive constant parameter.
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5.4 Method of Solution

Consider a multilayered perceptron consisting of 3 – layers namely input layer - consisting of

’n’ inputs η̄=(η1, η2, ...ηn), hidden layer consisting of ’k’ neurons and output layer consisting

of 3 – neurons N1(ηi, P1), N2(ηi, P2) and N3(ηi, P3) to estimate the solutions of three coupled

ordinary differential equations as shown in the Fig.5.1.

Figure 5.1: “Feed Forward Neural Network.”

The trial solutions for f ,θ and ϕ respectively with the adjustable parameters P1, P2 and

P3, which are given by the following expressions

N1(ηi, P1) =
k∑

j=1

ϖf
1jσ{ϖh

j ηi + bhj }+ bf1

N2(ηi, P2) =
k∑

j=1

ϖf
2jσ{ϖh

j ηi + bhj }+ bf2

N3(ηi, P3) =
k∑

j=1

ϖf
3jσ{ϖh

j ηi + bhj }+ bf3


(5.14)
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where, σ is the sigmoid activation function, ϖh
j represents the weights from the input layer to

the jth hidden neuron, bhj is the bias term in the hidden layer, ϖf
1j, ϖ

f
2j, ϖ

f
3j are the weights

from the jth hidden neuron to the first, second and third output neurons respectively, bf1 , b
f
2 ,

bf3 are the bias terms in the output layer, Pi corresponds to the parameters ϖh
j , b

h
j , ϖ

f
ij, b

f
i

for i = 1, 2, 3. Since no data has been collected to learn from the differential equation, we

have to insert Eq. (5.14) in the differential equations Eq. (5.7) - Eq. (5.9). Hence, we get

Ef = (1 +
1

β
)N1

′′′(ηi, P1) + 2N1(ηi, P1)N1
′′(ηi, P1)− (N1

′(ηi, P1))
2 − A(N1

′(ηi, P1)

+
ηi
2
N1

′′(ηi, P1))−M((N1
′(ηi, P1)))

(5.15)

Eθ =
1

Pr
N2

′′(ηi, P2) + 2N1(ηi, P1)N2
′(ηi, P2)−N1

′(ηi, P1)N2(ηi, P2)− A(N2(ηi, P2)

+
ηi
2
N2

′(ηi, P2))
(5.16)

Eϕ =
1

Sc
N3

′′(ηi, P3) + 2N1(ηi, P1)N3
′(ηi, P3)−N1

′(ηi, P1)N3(ηi, P3)− A(N3(ηi, P3)

+
ηi
2
N3

′(ηi, P3))−Kr((N3(ηi, P3)))
(5.17)

where Ef, Eθ and Eϕ represents the errors with repsect to the equations Eq. (5.7) - Eq. (5.9)

respectively. If the trial/constructed solutions for f , θ and ϕ given in Eq. (5.14) are close to

exact solution then the errors Ef, Eθ and Eϕ tend to zero.

Similarly, the errors in the boundary conditions are given by:

N1(η1, P1) = 0; N ′
1(η1, P1) = 1;N ′

1(ηn, P1) = 0

N2(η1, P2) = 1; N2(ηn, P2) = 0

N3(η1, P3) = 1; N3(ηn, P3) = 0

 (5.18)

The mean square of error (MSE) is calculated by taking 1/n times the sum of the squared

errors of differential equations (Eqs. (5.15) - (5.17)) along with the error in the boundary

conditions Eqs. (5.18) on the training set and then minimized. The solution produced by

determining a set of biases and weights that minimizes the MSE (or loss function) after

training is the final solution of the problem. Hence, the MSE or loss function E(P1, P2, P3)
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is given by

E(P1, P2, P3) =
1

n

n∑
i=1

(Ef)
2 + (Eθ)

2 + (Eϕ)
2 + [N1(η1, P1)]

2 + [N ′
1(η1, P1)− 1]

2

+ [N2(η1, P2)− 1]2 + [N3(η1, P3)− 1]2 + [N ′
1(ηn, P1)]

2
+ [N2(ηn, P2)]

2 + [N3(ηn, P3)]
2

(5.19)

where 4th - 10th terms in the above expression represents the sum of squares of the boundary

conditions.

The problem is to minimize E(P1, P2, P3) by optimizing the biases and weights in the

network for a given network configuration. The derivatives of the network output with

respect to its input must be calculated in order to compute the error function E(P1, P2, P3).

The derivatives of networks output N1(ηi, P1), N2(ηi, P2) and N3(ηi, P3) with respect to input

vector ηi are calculated using Python package called autograd. Backpropagation can then

be used to pursue the optimization by evaluating the derivatives of the loss function with

respect to the network parameters. Here in this paper, we used a single hidden layer, Sigmoid

activation function, the Adam optimizer [38] with an initial learning rate of 0.01.

To apply this method the semi-infinite domain of the given problem i.e. [0,∞] is reduced

to [η1, η∞], where η1 = 0 and η∞ is the parameter used to recover the boundary conditions at

infinity. We start with training points that are chosen from the domain of the given problem

i.e. [0, η∞ = 10] and the weights and bias terms, which are generated randomly and we train

the model to modify the parameters in the given domain of the problem.To ensure that the

boundary conditions in the loss are integrated into each network parameter update, we use

the entire set of training points. In general, we find that a single hidden layer with a small

number of units is enough to get very exact results.

To check the convergence of the solution of the method, the dimensionless coefficient of

skin friction (f ′′(0)), rate of heat transfer (θ′(0)) and Sherwood number (ϕ′(0)) at the surface

for β = 1.0,Kr = 0.2,A = 0.5,M = 1.0,Pr = 1.0,Sc = 1.0,Re = 1.0,Br
Ω

= 1.0, ς
Ω
= 3.0 and

λ = 1.0 are calculated by choosing different number of training points 50, 100, 200 and 300

and different number of neurons 5, 8, 10 and 15 in the hidden layer and the computed results
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are presented in the Tables 5.1 and 5.2. It is evident from the Tables 5.1 and 5.2 that the

solution has convergence of 10−4 when the Data points are 50 and Hidden neurons are 8.

Number Of Data points f ′′(0) θ′(0) ϕ′(0)
50 -1.164716 -1.339806 -1.421653
100 -1.164554 -1.339291 -1.421721
200 -1.164511 -1.339268 -1.421674
300 -1.164501 -1.339257 -1.421662

Table 5.1: “Convergence analysis for the values of skin friction coefficient, Nusselt number
and Sherwood number at the surface for β = 1.0,Kr = 0.2,A = 0.5,M = 1.0,Pr = 1.0,Sc =
1.0,Re = 1.0,Br

Ω
= 1.0, ς

Ω
= 3.0 and λ = 1.0 by the present method with different number of

Data points.”

Number Of Neurons f ′′(0) θ′(0) ϕ′(0)

5 -1.165003 -1.339354 -1.421679

8 -1.164716 -1.339806 -1.421653

10 -1.165275 -1.339176 -1.421472

15 -1.165394 -1.338839 -1.421543

Table 5.2: “Convergence analysis for the values of skin friction coefficient, Nusselt number

and Sherwood number at the surface for β = 1.0,Kr = 0.2,A = 0.5,M = 1.0,Pr = 1.0,Sc =

1.0,Re = 1.0,Br
Ω

= 1.0, ς
Ω
= 3.0 and λ = 1.0 by the present method with different number of

Hidden neurons.”

5.5 Computational Results and Discussion

The ANN approach’s efficacy is demonstrated by comparing the present numerical findings

for skin friction coefficient, rate of heat transfer coefficient, and concentration gradient to

the values obtained utilising shooting method in association with the Runge-Kutta fourth

order method for β = 1.0,Kr = 0.2,A = 0.5,M = 1.0,Pr = 1.0,Sc = 1.0,Re = 1.0,

Br
Ω

= 1.0, ς
Ω
= 3.0 and λ = 1.0.

Fig.5.2 illustrates the plot of error (between ANN method and Shooting technique results)

in the values of f ′, θ and ϕ for 11 equispaced positions in [0, 10]. The findings acquired by the
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Present method Shooting method Relative error
f ′′(0) -1.164716 -1.16448329 1.99× 10−4

θ′(0) -1.339806 -1.33919406 4.56× 10−4

ϕ′(0) -1.421653 -1.42161008 3.02× 10−5

Table 5.3: “Comparative analysis for the values of f ′′(0), θ′(0), (ϕ′(0)) and (χ′(0))at the
surface by the present method with the results of Shooting method for A = 0.5, S = 0.5, Pr
= 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1 and σb = 0.1.”

current approach are in excellent agreement with those obtained by the Shooting method,

as shown in Fig.5.2.

Figure 5.2: “Error plot between the results obtained by Artificial Neural Network method

and Shooting method for the values of velocity, temperature and concentration profiles.”

Fig. 5.3 displays the impact of the unsteadiness parameter A on the Entropy genera-

tion (Ns), skin friction coefficient (f ′′(0)), Nusselt number (−θ′(0)) and Sherwood number

(−ϕ′(0)). Fig. 5.3(a) shows that Entropy generation is increasing initially and then there is

a decrement in it for the increasing values of A. Fig. 5.3(b) demonstrates that skin friction

is decreasing for increasing values of A. It is observed from Figures 5.3(c)–5.3(d) that both

the Nusselt number and Sherwood number are increasing with the increasing values of A.

Fig. 5.4 displays the effect of magnetic parameter M on Ns, f ′′(0),−θ′(0) and −ϕ′(0).
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Fig. 5.4(a) reveals that Entropy Generation is increasing initially and then there is a decre-

ment for increasing values of magnetic parameter. Fig. 5.4(b)-5.4(d) shows that skin friction,

Nusselt number and Sherwood number are decreasing for increasing values of magnetic pa-

rameter.

Figure 5.5(a) reveals that Entropy Generation is increasing initially and then there is a

decrement for enahancing values of chemical reaction parameter. Fig. 5.5(b) shows that skin

friction coefficient is decreasing initially and increasing later for the rising values of chemical

reaction parameter. Also from figures 5.5(c) and 5.5(d) it is observed that Nusselt number is

decreasing and Sherwood number is increasing for the increasing values of chemical reaction

parameter.

Fig. 5.6 reveals how the entropy generation has been effected by Casson fluid parameter

β, Reynolds number Re, Brinkman number Br
Ω

and dimensionless concentration ς
Ω
. As the

values of Brinkman number, dimensionless concentration, Reynolds number increase entropy

generation is increasing, whereas entropy generation is decreasing for the increasing values

if Casson fluid parameter.

5.6 Conclusions

The analysis of entropy generation in the flow of a Casson fluid across a radially stretched

sheet in the presence of magnetic and chemical reaction effects using an Artificial Neural

Network technique is presented. The influences of the parameters β, Kr, A, M , Pr, Sc, Re,

Br
Ω
, ς

Ω
and λ on the relevant physical quantities are investigated. The important findings are

presented below:

• For rising levels of the unsteadiness parameter, magnetic parameter, and chemical

reaction parameter, entropy production increases first and eventually decreases.

• Skin friction decreases with rising values of the unsteadiness parameter as well as

magnetic parameter, and it decreases firstly later increasing with increase in the values
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of the chemical reaction parameter.

• With increasing values of the unsteadiness parameter, the Nusselt number rises, how-

ever for rising values of the magnetic and chemical reaction parameters, it diminishes.

• The concentration gradient improves as the unsteadiness and chemical reaction param-

eters increase, but somehow it decreases as the magnetic parameter increases.
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(a) (b)

(c) (d)

Figure 5.3: “The variation of skin friction coefficient, Nusselt number, Sherwood number
and Entropy Generation with unsteadiness parameter A.”
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(a) (b)

(c) (d)

Figure 5.4: “The variation of skin friction coefficient, Nusselt number, Sherwood number
and Entropy Generation with Magnetic parameter M .”
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(a) (b)

(c) (d)

Figure 5.5: “The variation of skin friction coefficient, Nusselt number, Sherwood number
and Entropy Generation with chemical reaction parameter Kr.”
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(a) (b)

(c) (d)

Figure 5.6: “The variation of Entropy Generation with β, Br
Ω
, ς

Ω
and Re.”
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Chapter 6

An Artificial Neural Network Solution

For The Casson Fluid Flow Past a

Radially Stretching Sheet with

Magnetic and Radiation Effects 1

6.1 Introduction

The effect of magnetic field on the heat transfer characteristics and fluid flow has attracted

several researchers in view of its applications in many engineering problems. Several re-

searchers, to mention a few, Ullah et al. [92], El-Aziz et al. [19], Hussanan et al. [32], Hamid

et al. [24], Gireesha et al. [23], Renu et al. [17] have investigated the impacts of magnetic

field on the Casson fluid flow across linear / nonlinear / radially stretching sheet.

The study of the influences of thermal radiation on convective heat and mass transport

processes has grown in prominence due to its applications in nuclear power plants, steel

rolling, gas turbines, design fins, aircraft, space vehicles, and satellites. Radiation within

1Communicated to “Arabian Journal for Science and Engineering”
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these systems is typically caused by discharge from hot walls and operational fluid. Alka-

sasbeh et al. [6] studied the effect of thermal radiation on the stagnation-point flow of an

upper-convected Maxwell Casson fluid over a stretching/shrinking sheet numerically. Ma-

bood et al. [45] analyzed the impact of thermal radiation on the characteristics of melting

heat transport based on MHD Casson fluid flow in a porous media. Zhou et al. [97] reported

the impact of radiation and uniform heat source on the unsteady stagnation point flow of a

Casson fluid past a permeable stretched surface.

The current chapter emphasizes the application of the ANN approach to the analysis of

a steady Casson fluid flow and heat transfer across a vertical radially stretching sheet in the

presence of magnetic and radiation effects.

6.2 Formulation of the problem

Consider a two-dimensional, steady Casson fluid flow over a radially stretching sheet as

shown in Figure 6.1. In formulating the problem the following assumptions are made and

are considered.

• A uniform magnetic field B0 is applied normal to the flow.

• The induced magnetic field can be disregarded since the magnetic Reynolds number is

so low.

• The flow phenomena generated as a result of radial stretching of sheet.

• The stretching velocity of the form Uw = ar, where a is stretching constant.

• Convection from the hot fluid at temperature Tw heats the sheet’s surface, which is

given by Tw = T∞ + br. Here b is constant and T∞ is the ambient temperature of the

fluid.

• All these physiological quantities do not depend on θ because of rotational symmetry

of the flow.
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Figure 6.1: “Geometry of the problem.”

With these assertions, the equations describing the flow are given by

∂u

∂r
+
u

r
+
∂w

∂z
= 0 (6.1)

u
∂u

∂r
+ w

∂u

∂z
= ν(1 +

1

β
)
∂2u

∂z2
+ gβT (T − T∞)− σB0

2

ρ
u (6.2)

u
∂T

∂r
+ w

∂T

∂z
=

k

ρcp

∂2T

∂z2
− 1

ρcp

∂qr
∂z

(6.3)

The corresponding boundary conditions are

u = Uw = ar; w = W0; T = Tw = T∞ + br at z = 0

u→ 0, T → T∞ as z → ∞

 (6.4)

where the radiative heat flux is represented by the quantity qr on the right side of the

temperature equation (6.3), which is given by the relation qr =
−4σ∗

3k∗
∂T 4

∂z
, where T 4 =

4T∞
3 T − 3T∞

4.

In order to get dimensionless form of Eqs. (6.1) - (6.3), we introduce the ensuing trans-

93



formations

η =

√
a

ν
z u(r, z) = arf ′(η), w(r, z) = −2

√
aνf(η), and θ(η) =

T − T∞
Tw − T∞

(6.5)

Putting Eq (6.5),in Eqs. (6.1)-(6.3), we obtain

(1 +
1

β
)f ′′′ + 2ff ′′ − (f ′)

2
+ λT θ −Mf ′ = 0 (6.6)

(1 +Rd)θ
′′ + Pr(2fθ′ − f ′θ) = 0 (6.7)

The dimensionless form of boundary conditions Eq. (6.4) are

f(0) = S, f ′(0) = 1, θ(0) = 1 ; f ′(∞) → 0, θ(∞) → 0 (6.8)

where λT =
Gr

Re
2 is buoyancy parameter, Gr = gβT (Tf − T∞)

r3

ν2
is local Grashoff number,

M =
σB0

2

ρa
is magnetic parameter (Hartman number) and Rd =

16σ∗T∞
3

3kk∗
is radiation pa-

rameter.

In terms of dimensionless variables defined in Eq.(6.5), the skin friction coefficient Cf

and the Nusselt number Nu are :

Re
1/2Cf = (1 +

1

β
)f ′′(0) and Re

−1/2Nu = −θ′(0) (6.9)

6.3 Method of Solution

Consider a multilayered perceptron consisting of 3 – layers namely input layer - consisting of

’n’ inputs η̄=(η1, η2, ...ηn), hidden layer - consisting of ’k’ neurons and output layer consisting

of two neurons N1(ηi, P1) and N2(ηi, P2) to estimate the solutions to two coupled ordinary

differential equations as shown in the Fig. 6.2.

We take the network outputs N1(ηi, P1) and N2(ηi, P2) as the trial solution for f and θ
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Figure 6.2: “Feed Forward Neural Network.”

respectively with the adjustable parameters P1 and P2 respectively, which are given by the

expressions

N1(ηi, P1) =
k∑

j=1

ϖf
1jσ{ϖh

j ηi + bhj }+ bf1

N2(ηi, P2) =
k∑

j=1

ϖf
2jσ{ϖh

j ηi + bhj }+ bf2


(6.10)

where, ϖh
j represents the weights from the input layer to the jth hidden neuron, bhj is the bias

term in the hidden layer, ϖf
1j is the weight from the jth hidden neuron to the first output

neuron, bf1 is the bias term and ϖf
2j is the weight from the jth hidden neuron to the second

output neuron, bf2 is the bias term. P1 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
1j, b

f
1 and P2

corresponds to the parameters ϖh
j , b

h
j , ϖ

f
2j and b

f
2 respectively.

Since no data has been collected to learn from the differential equation, we have to insert
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Eq. (6.10) in the differential equations Eq.(6.6) and Eq. (6.7). Hence, we get

Ef = (1 +
1

β
)N1

′′′(ηi, P1) + 2N1(ηi, P1)N1
′′(ηi, P1)− (N1

′(ηi, P1))
2
+ λTN2(ηi, P2)

−MN1
′(ηi, P1)

(6.11)

Eθ = (1 +Rd)N2
′′(ηi, P2) + Pr(2N1(ηi, P1)N2

′(ηi, P2)−N1
′(ηi, P1)N2(ηi, P2)) (6.12)

where Ef and Eθ represents the errors or residuals with respect to the equations Eq. (6.6)

and Eq. (6.7) respectively. If the trial/constructed solutions for f and θ given in Eq. (6.10)

are close to exact solution then the errors Ef and Eθ tend to zero. Similarly, the errors in

the boundary conditions are given by:

N1(η1, P1) = S; N ′
1(η1, P1) = 1; N2(η1, P2) = 1; N ′

1(ηn, P1) = 0; N2(ηn, P2) = 0 (6.13)

The mean square of error (MSE) is calculated by taking 1/n times the sum of the squared

errors of differential equations (Eqs.(6.11) - (6.12)) along with the error in the boundary

conditions Eq.(6.13) on the training set and then minimized. The solution produced by

determining a set of biases and weights that minimizes the MSE (or loss function) after

training is the final solution of the problem. Hence, the MSE or loss function E(P1, P2) is

given by

E(P1, P2) =
1

n

n∑
i=1

(Ef )
2 + (Eθ)

2 + [N1(η1, P1)− S]2 + [N ′
1(η1, P1)− 1]

2

+[N ′
1(ηn, P1)]

2
+ [N2(η1, P2)− 1]2 + [N2(ηn, P2)]

2

(6.14)

where 3rd – 7th terms represent error terms corresponding to the boundary conditions.

The problem is to minimize E(P1, P2) by optimizing the biases and weights in the network

for a given network configuration. The derivatives of the network output with respect to its

input must be computed in order to compute the error E(P1, P2). The derivative of networks

output N1(ηi, P1) and N2(ηi, P2) with respect to input vector ηi are calculated using Python

package called autograd. Backpropagation can then be used to pursue the optimization by
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evaluating the derivatives of the loss function with respect to the network parameters. Here

in this paper, we used a single hidden layer, Sigmoid activation function, the Adam optimizer

[38] with an initial learning rate of 0.01.

To apply this method the semi-infinite domain of the given problem i.e. [0,∞] is reduced

to [0, η∞] where η∞ is a constant used to recover the conditions at infinity. We start with

training points that are chosen from the domain of the given problem i.e. [0, η∞] and the

bias terms and weights, which are generated arbitrarily and train the model to modify

the parameters in the given domain of the problem. An ADAM optimizer [38] with an

initial learning rate of 0.01 and one hidden layer is employed here along with the a Sigmoid

activation function. The entire set of training points is used to ensure that the boundary

conditions in the loss function are accounted for in the updating of each network parameter.

It is found that one hidden layer with a minimal number of units is adequate for getting

very exact results.

To check the convergence of the solution of the method, the dimensionless coefficient of

skin friction f ′′(0) and rate of heat transfer θ′(0) at the surface for M = 1.0, Rd = 0.5,

Pr = 1.0, S = 0.5, λT = 1.0 and β = 1.0 are calculated by choosing a different number of

training points 50, 100, and 150 and a different number of neurons 5, 10, 20 and 30 in the

hidden layer and the computed results are presented in the Tables 6.1 and 6.2. Tables 6.1

and 6.2 demonstrates that the solution has the convergence of 10−4 when the Data points

are 50 and Hidden neurons are 10.

Number Of training points f ′′(0) θ′(0)
50 -1.163898 -1.399067
100 -1.163375 -1.398469
150 -1.163726 -1.398835

Table 6.1: “Convergence table for the values of f ′′(0) and θ′(0) for M = 1.0, Rd = 0.1,
S = 0.5, λ = 1.2 and β = 1.0 by the present method with different number of Hidden
neurons and number of Data points fixed as 50.”
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Number Of Neurons f ′′(0) θ′(0)
5 -1.163186 -1.397693
10 -1.163898 -1.399067
20 -1.165101 -1.398619
30 -1.164058 -1.398811

Table 6.2: “Convergence table for the values of f ′′(0) and θ′(0) for M = 1.0, Rd = 0.1,
S = 0.5, λ = 1.2 and β = 1.0 by the present method with different number of Data points
and number of Neurons as 10.”

6.4 Computational Results and Discussion

The present study computes the Nusselt Number Nu, and the coefficient of skin friction Cf ,

for different parameters and depicted graphically. The Artificial Neural Network method

(ANN) along with ADAM optimization is used to solve the equations 6.6 and 6.7 along

with the boundary conditions 6.8. The code written is executed for different parameters in

Python.

Additionally, the efficiency of the approach is confirmed by comparing the present findings

of the skin friction coefficient and rate of heat transfer coefficient computed using the shooting

method in conjunction with the Runge-Kutta fourth order method for M = 1.0, Rd = 0.1,

S = 0.5, λ = 1.2 and β = 1.0. The computed results are presented in the Table 6.3. Table

6.3 demonstrate that the present results are consistent with the results obtained by using

shooting method.

f ′′(0) θ′(0)

Present method Shooting method Present method Shooting method

-1.163898 -1.16399608 -1.399067 -1.39904492

Table 6.3: “Comparison of the present method with the results of Shooting method.”

Fig. 6.3 illustrates the plot of error (between ANN method and Shooting technique

results) in the values of f ′(η) and θ(η) for 11 equispaced positions in [0, 10]. The present

method’s (ANN method) conclusions are in perfect accord with those produced by Shooting

method. as shown in Figure 6.3.
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Figure 6.3: “Error plot between the results obtained by Artificial Neural Network method
and Shooting method for the values of velocity and temperature profiles.”

The impact of suction/injection parameter S on the velocity, temperature profile, coeffi-

cient of skin friction and rate of heat transfer for fixed values of other parameters is presented

in Fig.6.4. It is observed from Figs.6.4(a) and 6.4(b) that, both the velocity and tempera-

ture are diminishing for growth in the suction/injection parameter S. It is perceived from

Figs.6.4(c) and 6.4(d) that skin friction is decreasing and Nusselt number is increasing for

the enhancing values of suction/injection parameter S.

The significance of the magnetic parameter M on the velocity, temperature, coefficient

of skin friction and rate of heat transfer is depicted in Fig.6.5. It is clear from figures 6.5(a)

and 6.5(b) that velocity is reducing and temperature is enhancing for the enhancing values

of M . Figures 6.5(c) and 6.5(d) show that as M increases, skin friction and the Nusselt

number decrease. This is because the Lorentz force, a drag force that tends to resist flow,

is induced when there is a transverse magnetic field that is normal to the direction of the

flow. This type of resistive force increases friction between the fluid’s layers, which tends to

delay the flow and causes the fluid to encounter resistance. The skin friction coefficient at

the wall will be lessened as a result.

The variation of velocity profile, temperature profile, coefficient of skin friction and rate
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of heat transfer with radiation parameter Rd is depicted in Fig.6.6. It is observed from Figs.

6.6(a) and 6.6(b) that both the velocity and temperature are increasing for the increasing

values of the radiation parameter Rd. This may occur as a result of Rosseland radiation

dominance, which causes the thickness of momentum and thermal boundary layers to rise.

It is found from the Figs. 6.6(c) and 6.6(d) that the coefficient of skin friction and heat

transfer rate are increasing as Rd is increasing. The radiative energy is proportional to the

fourth power of absolute temperature and inversely proportional to emissivity on the surface.

Hence, modifies the temperature even for quite small values of emissivity.

6.5 Conclusions

The primary objective of this chapter was to employ the Artificial Neural Network approach

to solve coupled nonlinear differential equations emerging from the boundary layer flow of a

Casson fluid over a vertical stretching sheet in the presence of magnetic and radiation effects.

The influences of the parameters β, λT , M , Pr, Rd and S on the relevant physical quantities

are investigated. The important findings are presented below.

• As the Radiation parameter rises, the skin friction enhances, but as the suction/injection

parameter, magnetic parameter, buoyancy parameter, and Prandtl number increases,

the skin friction declines.

• The temperature is increasing with the intensifying values of buoyancy parameter,

Prandtl number, Radiation parameter and suction / injection parameter, whereas there

is a decrement in temperature gradient for the increased values of magnetic parameter.
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Figure 6.4: “Effect of the suction/injection parameter S on the profiles of f ′(η), θ(η), f ′′(0)
and −θ′(0).
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Figure 6.5: “Effect of the Magnetic parameter M on the profiles of f ′(η), θ(η), f ′′(0) and
−θ′(0).”
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Figure 6.6: “Effect of the Radiation parameter Rd on the profiles of f ′(η), θ(η), f ′′(0) and
−θ′(0).”
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Chapter 7

Artificial Neural Network Treatment

for Natural Convective Casson Fluid

Flow and Heat Transfer Over a

Radially Stretching Sheet with

Chemical Reaction and Viscous

dissipation Effect 1

7.1 Introduction

The temperature of the fluid rises as a result of flow-induced friction at the surface. This

phenomenon, known as viscous dissipation, is essential in viscous fluids such as oils and

polymers. It has numerous applications in industry and technology. Viscous dissipation is

commonly used in electrical equipment like light bulbs, electric stoves, electric heaters, and

electric fuses. Furthermore, the influence of chemical reactions on heat and mass transfer is a

1Communicated to “Journal of Applied Mathematics and Computing”
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crucial aspect in many disciplines of science and engineering. Shateyi et al. [84] explored the

free convection towards a time dependent permeable stretched surface immersed in the Cas-

son fluid flow featuring thermal radiation, viscous dissipation, and chemical reaction. Afify

et al. [3] quantitatively explored the consequences of multiple slips with viscous dissipation

on the flow and heat transfer of a Casson nanofluid over a stretching surface. Ibrahim et al.

[33] reported the study of MHD flow of Casson naofluid over a nonlinearly stretched sheet

in the presence of viscous dissipation and chemical reaction. Kumar et al. [39] conducted a

thorough investigation of the coupled joule and viscous dissipation impacts on MHD stagna-

tion point flow of viscous incompressible Casson fluid a p over a ermeable stretched surface

with multiple slips, thermal radiation, and first order chemical reaction. Reddy et al. [71] re-

ported that the Eckert number substantially affects the rate of heat transmission for Casson

fluid when compared to Maxwell fluid. Nagaraja et al. [52] analyzed the impact of chemical

reaction along with magnetic effect on Casson fluid flow over a curved stretched sheet under

convective heat and mass flux circumstances.

The current chapter focuses on the application of the ANN approach to the analysis of an

steady Casson fluid flow and heat transfer over vertical stretching sheet. The trial solutions

for the coupled nonlinear differential equations are taken from the neural network output,

which consists of weights and bias terms as parameters. Using the optimization technique,

these parameters are changed to reduce the error term.

7.2 Formulation of the problem

Consider a steasdy two-dimensional flow of Casson fluid over a radially stretching sheet as

shown in Figure 6.1. In addition to the assumptions made in Chapter 6, here we assume

that the concentration at the surface is given by Cw = C∞ + br, where Cw is the uniform

concentration at the wall.
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Hence, the equations describing the flow are given by

∂u

∂r
+
u

r
+
∂w

∂z
= 0 (7.1)

u
∂u

∂r
+ w

∂u

∂z
= ν(1 +

1

β
)
∂2u

∂z2
+ g((T − T∞βT ) + (C − C∞)βC) (7.2)

u
∂T

∂r
+ w

∂T

∂z
=

k

ρcp

∂2T

∂z2
+
µ

cp
(1 +

1

β
)(
∂u

∂z
)
2

(7.3)

u
∂C

∂r
+ w

∂C

∂z
= Ds

∂2C

∂z2
− k1(C − C∞) (7.4)

following are the associated boundary conditions:

u = Uw, w = W0, T = Tw = T∞ + br, C = Cw = C∞ + br at z = 0

u→ 0, T → T∞, C → C∞ as z → ∞

 (7.5)

All the symbols in the above equations are defined in previous chapters.

In order to get dimensionless form of equations (7.1) - (7.4), we use the transformations

given below.

η = z(
a

ν
)
1
2 , u = arf ′(η), w = −2f(η)(νa)

1
2 ,

T = T∞ + θ(Tw − T∞) and C = C∞ + ϕ(Cw − C∞)

 (7.6)

Putting Eq (7.6),in Eqs. (7.1) - (7.4), we obtain

(1 +
1

β
)f ′′′ + 2ff ′′ − (f ′)

2
+ λT θ + λCϕ = 0 (7.7)

1

Pr
θ′′ + 2fθ′ − f ′θ + (1 +

1

β
)Ec(f ′′)

2
= 0 (7.8)

1

Sc
ϕ′′ + 2fϕ′ − f ′ϕ−Krϕ = 0 (7.9)

The non-dimensional form of the boundary conditions. (7.5) are

f(0) = S, f ′(0) = 1, f ′(∞) = 0; θ(0) = 1, θ(∞) = 0; ϕ(0) = 1, ϕ(∞) = 0 (7.10)
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where λT = gβT b
a2

is the thermal buoyancy parameter, λC = gβCb
a2

is the concentration buoy-

ancy parameter, Ec = Uw
2

cp(Tw−T∞)
is the Eckert number, Kr = k1

a
is the chemical reaction

parameter.

The non-dimensional form of the physical quantities, the skin friction coefficient Cf ,

Nusselt number Nu and Sherwood number Sh are given by:

Re1/2Cf = (1 +
1

β
)f ′′(0),

Nu√
Re

= −θ′(0) and Sh√
Re

= −ϕ′(0) (7.11)

7.3 Method of Solution

As explained in the previous chapters, we consider a multilayered perceptron consisting of 3

– layers namely input layer - consisting of ’n’ inputs η̄=(η1, η2, ...ηn), hidden layer - consisting

of ’k’ neurons and output layer consisting of 3 – neurons N1(ηi, P1), N2(ηi, P2) and N3(ηi, P3)

to estimate the solutions of three coupled ordinary differential equations as demonstrated in

the Figure 7.1.

Figure 7.1: “A Simple Neural Network.”

107



Here, we take the these Network outputs N1(ηi, P1), N2(ηi, P2) and N3(ηi, P3) as the trial

solution for f , θ and ϕ with the adjustable parameters P1, P2 and P3 respectively, which are

given by the expressions

N1(ηi, P1) =
k∑

j=1

ϖf
1jσ{ϖh

j ηi + bhj }+ bf1

N2(ηi, P2) =
k∑

j=1

ϖf
2jσ{ϖh

j ηi + bhj }+ bf2

N3(ηi, P3) =
k∑

j=1

ϖf
3jσ{ϖh

j ηi + bhj }+ bf3


(7.12)

where, ϖh
j represents the weights from the input layer to the jth hidden neuron, bhj is the

bias term in the hidden layer, ϖf
1j, ϖ

f
2j, ϖ

f
3j are the weights from the jth hidden neuron

to the first, second and third output neurons respectively, bf1 , b
f
2 , b

f
3 are the bias terms in

the output layer, P1 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
1j, b

f
1 , P2 corresponds to the

parameters ϖh
j , b

h
j , ϖ

f
2j and bf2 respectively and P3 corresponds to the parameters ϖh

j , b
h
j ,

ϖf
3j, b

f
3 .

Since there are no data available in order to learn from the differential equation, we have

to substitute Eq. (7.12) in the differential equations Eq. (7.7) - Eq. (7.9). Hence, we get

Ef = (1 +
1

β
)N1

′′′(ηi, P1) + 2N1(ηi, P1)N1
′′(ηi, P1)− (N1

′(ηi, P1))
2

+ λTN2(ηi, P2) + λCN3(ηi, P3)

(7.13)

Eθ =
1

Pr
N2

′′(ηi, P2) + 2N1(ηi, P1)N2
′(ηi, P2)−N1

′(ηi, P1)N2(ηi, P2)

+ (1 +
1

β
)Ec(N1

′′(ηi, P1))
2

(7.14)

Eϕ =
1

Sc
N3

′′(ηi, P3) + 2N1(ηi, P1)N3
′(ηi, P3)−N1

′(ηi, P1)N3(ηi, P3)

−KrN3(ηi, P3)

(7.15)

where Ef , Eθ and Eϕ represents the errors or residuals with respect to the equations Eq.

(7.7) - Eq. (7.9) respectively. If the trial/constructed solutions for f , θ and ϕ given in Eq.
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(7.12) are close to exact solution then the errors Ef , Eθ and Eϕ tend to zero.

Similarly, the errors in the boundary conditions are given by:

N1(η1, P1) = S; N ′
1(η1, P1) = 1; N2(η1, P2) = 1; N3(η1, P3) = 1

N ′
1(ηn, P1) = 0; N2(ηn, P2) = 0; N3(ηn, P3) = 0

 (7.16)

The mean square of error (MSE) is calculated by taking 1/n times the sum of the squared

errors of differential equations (Eqs. (7.13) - (7.15)) along with the error in the boundary

conditions Eqs. (7.16) on the training set and then minimized. The solution produced by

determining a set of biases and weights that minimizes the MSE (or loss function) after

training is the final solution of the problem. Hence, the MSE or loss function E(P1, P2, P3)

is given by

E(P1, P2, P3) =
1

n

n∑
i=1

(Ef )
2 + (Eθ)

2 + (Eϕ)
2

+ [N1(η1, P1)− S]2 + [N ′
1(η1, P1)− 1]

2
+ [N2(η1, P2)− 1]2

+ [N3(η1, P3)− 1]2 + [N ′
1(ηn, P1)]

2
+ [N2(ηn, P2)]

2 + [N3(ηn, P3)]
2

(7.17)

The problem is to minimize E(P1, P2, P3) by optimizing the biases and weights in the

network for a given network configuration. The derivatives of the network output with

respect to its input must be evaluated in order to determine the error function E(P1, P2, P3).

The derivatives of networks output N1(ηi, P1), N2(ηi, P2) and N3(ηi, P3) with respect to input

vector ηi are calculated using Python package called autograd. Backpropagation may then

be utilised to further optimise the loss function by assessing its derivatives with respect to

the network parameters. We employed a single hidden layer, Sigmoid activation function,

and the Adam optimizer [38] with an initial learning rate of 0.01 in this study.

To apply this method the semi-infinite domain of the given problem i.e. [0,∞] is reduced

to [η1, η∞] where η1 = 0, η∞ is the parameter used to recover the boundary conditions at

infinity. We start with training points that are chosen from the domain of the given problem

i.e. [0, η∞ = 8] and the weights and bias terms, which are generated randomly and we train
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the model to modify the parameters in the given domain of the problem.To ensure that the

boundary conditions in the loss are integrated into each network parameter update, we use

the entire set of training points. In general, we find that a single hidden layer with a small

number of units is enough to get very exact results.

To check the convergence of the solution of the method, the dimensionless coefficient of

skin friction (f ′′(0)), rate of heat transfer (θ′(0)) and Sherwood number (ϕ′(0)) at the surface

for β = 1.0, Ec = 0.2, Kr = 0.2, λC = 1.0, λT = 1.0, S = 0.5, Pr = 1.0, Sc = 0.2 and are

calculated by choosing different number of training points 50, 100, 200 and 300 and different

number of neurons 5, 10 and 20 in the hidden layer and the computed results are presented

in the Tables 7.1 and 7.2. It is evident from the Tables 7.1 and 7.2 that the solution has

convergence of 10−4 when the Data points are 50 and Hidden neurons are 10.

Number of training points f ′′(0) θ′(0) ϕ′(0)

50 -0.575529 -1.90737 -0.669203

100 -0.575645 -1.907452 -0.669127

200 -0.575564 -1.907352 -0.669126

300 -0.575609 -1.907315 -0.669117

Table 7.1: “Convergence table for the values of f ′′(0),θ′(0) and ϕ′(0) for β=1.0, Ec=0.2,

Kr=0.2, λC=1.0, λT=1.0, S=0.5, Pr=1.0, Sc=0.2 by the present method with different

number of Data points and number of Neurons as 10.”

Number of Hidden Neurons f ′′(0) θ′(0) ϕ′(0)

5 -0.577569 -1.909601 -0.66961

10 -0.575529 -1.90737 -0.669203

20 -0.575955 -1.90618 -0.669158

Table 7.2: “Convergence table for the values of f ′′(0),θ′(0) and ϕ′(0) for β=1.0, Ec=0.2,

Kr=0.2, λC=1.0, λT=1.0, S=0.5, Pr=1.0, Sc=0.2 by the present method with different

number of Hidden neurons and number of Data points fixed as 50.”
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7.4 Computational Results and Discussion

The efficiency of the approach is confirmed by comparing the present findings of the skin

friction coefficient and rate of heat transfer coefficient computed using the shooting method

in conjunction with the Runge-Kutta fourth order method for β = 1.0, Ec = 0.2, Kr = 0.2,

λC = 1.0, λT = 1.0, S = 0.5, Pr = 1.0, Sc = 0.2. The computed results are presented in

the Table 7.3. Table 7.3 demonstrate that the present results are consistent with the results

obtained by using shooting method.

Present method Shooting method Relative error

f ′′(0) -0.575529 -0.5754464 1.44× 10−4

θ′(0) -1.90737 -1.90636356 5.28× 10−4

ϕ′(0) -0.669203 0.6691361 9.99× 10−5

Table 7.3: “Comparison of the present method with Shooting method.”

A comparison of acquired results is established for Skin friction coefficient and Nusselt

number with existing works for β=∞, λC = 0.0, λT = 0.0, Kr = 0.0, A = 0.0 and Sc = 0.0.

Table 7.4 provides a well-justified comparison of our results with Shahzad et al. [81] for

f ′′(0) and θ′(0).

Present method Shahzad et al. [81] Relative error

f ′′(0) -1.798938 -1.798999 3.39× 10−5

θ′(0) -1.799092 -1.798999 5.17× 10−5

Table 7.4: “Comparison of the present method with the results of Shahzad et al. [81].”

Fig. 7.2 illustrates the plot of error (between ANN method and Shooting technique

results) in the values of f ′(η), θ(η), and ϕ(η) for 9 equispaced positions in [0, 8]. The present

method’s (ANN method) conclusions are in perfect accord with those produced by Shooting

method. as shown in Figure 7.2.
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Figure 7.2: “Error plot between the results obtained by Artificial Neural Network method
and Shooting method for the values of velocity, temperature and concentration profiles.”

The effect of Eckert number Ec on f ′′(0)), −θ′(0)) and −ϕ′(0))) was discussed in figures

7.3. Figures 7.3(a), 7.3(b) and 7.3(c) show that at increased values of the Eckert number

Ec, skin friction, the Sherwood number, and the Nusselt number all decrease.

The consequence of chemical reaction parameter Kr on skin friction (f ′′(0)), Nusselt

number (−θ′(0)) and Sherwood number (−ϕ′(0))) was discussed in figures 7.4. It is observed

from figures 7.4(a), 7.4(b) and 7.4(c) that skin friction, Nusselt number are decreasing and

Sherwood number is increasing for an increase in chemical reaction parameter Kr.

The effect of concentration buoyancy parameter λC was discussed in figures 7.5. It is

observed from figures 7.5(a)–7.5(c) that skin friction, Nusselt number and Sherwood number

are increasing with the increased values of concentration buoyancy parameter λC .

The effect of thermal buoyancy parameter λT was discussed in figures 7.6. It is observed

from figures 7.6(a), 7.6(b) and 7.6(c) that skin friction, Nusselt number and Sherwood num-

ber are increasing with the increased values of thermal buoyancy parameter λT .

The effect of suction/injection parameter S was discussed in figures 7.7. It is observed

from figures 7.7(a)–7.7(c) that skin friction is decreasing and Nusselt number, Sherwood
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number are increasing with the increasing values of suction / injection parameter S.

The effect of Schmidth number Sc was discussed in figures 7.8. It is observed from figures

7.8(a), 7.8(b) and 7.8(c) that skin friction, Nusselt number are decreasing and Sherwood

number is increasing with the increasing values of Schmidth number Sc.

7.5 Conclusions

The boundary layer flow of a Casson fluid over a vertical stretched sheet in the presence

of chemical reaction and viscous dissipation is analysed using Artificial Neural Network

approach . The influences of the parameters α, β, Ec, λ, Nc, Pr, S and Sc on the relevant

physical quantities are investigated. The important findings are presented below:

• TSkin friction rises as we raise Eckert number, thermal buoyancy parameter, and

concentration buoyancy parameter, but decreases with increasing Prandtl number,

suction/injection parameter, Schmidth number, and chemical reaction parameter.

• Nusselt number is increasing for the increased values of concentration buoyancy param-

eter, thermal buoyancy parameter, Prandtl number and suction / injection parameter,

whereas it is decreased when the values of Eckert number, chemical reaction parameter

and Schmidth number Sc were increased.

• Sherwood number decreases when Prandtl number increases, but it increases for all

other factors stated in the problem.

113



(a) (b)

(c)

Figure 7.3: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for distinct values of Eckert number Ec.”
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(a) (b)

(c)

Figure 7.4: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for distinct values of chemical reaction param-

eter Kr.”
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(a) (b)

(c)

Figure 7.5: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for distinct values of concentration buoyancy

parameter λC .”
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(a) (b)

(c)

Figure 7.6: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for distinct values of thermal buoyancy pa-

rameter λT .”
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(a) (b)

(c)

Figure 7.7: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for distinct values of the suction/injection

parameter S.”
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(a) (b)

(c)

Figure 7.8: “Plot of f ′′(0), −θ′(0) and −ϕ′(0) for distinct values of Schmidth number Sc.”
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Chapter 8

A Neural Network Analysis for

Bioconvection in a Casson Fluid Over

a Vertical Radially extending sheet 1

8.1 Introduction

Microorganisms, such as microalgae and bacteria, have a higher density than water and so

move upwards against gravity. Microbe accumulation causes the top layer of suspension to

be denser than the bottom layer, resulting in an unstable density distribution. Convective

instability occurs as a result, which may result in convection patterns. The spontaneous and

unpredictable movement patterns of microorganisms in suspension are referred to as biocon-

vection. Chemical processes have a critical role in bioconvection in the presence of motile

bacteria due to their importance in food processing, material synthesis, polymer creation,

bioreactors, fuel cells, and biodiesel fuels. Pedley et al. [63] coined the term bioconvection to

describe tiny convection caused by motile microorganisms. Several researchers, to mention

a few, Pal et al. [62], Ray et al. [69], Sabir et al. [75], Magagula et al. [46], Sankad et al.

[79], Kumaraswamy et al. [53] etc have analyzed the impact of thermal radiation on the bio-

1Communicated to “International journal of Applied and Computational Mathematics”
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convection of Casson fluid containing motile gyrotactic microrganisms over an exponential

/ linear / nonlinear / radially stretching sheet.

The current chapter focuses on the application of the ANN approach to the analysis of a

bioconvection flow over steady radially stretched sheet. The trial solutions for the coupled

nonlinear differential equations are taken from the neural network output, which consists of

weights and bias terms as parameters. Using the optimization technique, these parameters

are changed to reduce the error term.

8.2 Formulation of the problem

Consider the two-dimensional, steady Casson fluid flow over a radially stretching sheet as

shown in Figure 6.1. In addition to the assumptions made in Chapter 6, here we assume

that the concentration of microorganisms at the surface is given by Nw = N∞ + br, where

N∞ is the concentration of the micoorganisms in the ambient medium.

The equations describing the flow are given by

∂u

∂r
+
u

r
+
∂w

∂z
= 0 (8.1)

u
∂u

∂r
+ w

∂u

∂z
= ν(1 +

1

β
)
∂2u

∂z2
+ gβT (T − T∞) + gβC(C − C∞) + gβN(N −N∞)) (8.2)

u
∂T

∂r
+ w

∂T

∂z
=

k

ρcp

∂2T

∂z2
(8.3)

u
∂C

∂r
+ w

∂C

∂z
= Ds

∂2C

∂z2
(8.4)

u
∂N
∂r

+ w
∂N
∂z

+
b∗Wc

Cw − C∞

[
∂

∂z
(N
∂C

∂z
)

]
= Dm

∂2N
∂z2

(8.5)
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The corresponding boundary conditions are as follows:

u = Uw = ar, w = W0, T = Tw = T∞ + br,

C = Cw = C∞ + br,N = Nw = N∞ + br at z = 0

u→ 0, T → T∞, C → C∞ and N → N∞ as z → ∞

 (8.6)

where βN is bioconvection expansion coefficient, and Dm is the motile microorganism diffu-

sion coefficient. The remaining variables are already defined in the previous chapters.

In order to get dimensionless form of Equations (8.1) - (8.5), we introduce the following

transformations

u(r, z) = arf ′(η), w(r, z) = −2
√
aνf(η), η =

√
a

ν
z, T = T∞ + (Tw − T∞) θ(η)

C = T∞ + (Cw − C∞)ϕ(η), N = N∞ + (Nw − N∞)χ(η)

 (8.7)

After using similarity transformation defined in (8.7), the momentum, energy, concentra-

tion and bioconvection equations (8.2) – (8.5) in their dimensionless from are

(1 +
1

β
)f ′′′ + 2ff ′′ − (f ′)

2
+ λT θ + λCϕ+ λNχ = 0 (8.8)

1

Pr
θ′′ + 2fθ′ − f ′θ = 0 (8.9)

1

Sc
ϕ′′ + 2fϕ′ − f ′ϕ = 0 (8.10)

1

Sb
χ′′ + 2fχ′ − f ′χ− Pe(ϕ′χ′ + σbϕ

′′ + χϕ′′) = 0 (8.11)

the boundary conditions given in Eq. (8.6) are transformed into the following form:

f(0) = S, f ′(0) = 1, θ(0) = ϕ(0) = χ(0) = 1

f ′(∞) → 0, θ(∞) → 0, ϕ(∞) → 0 andχ(∞) → 0

 (8.12)

where λC = gβCb
a2

is the concentration buoyancy parameter, λN = gβN b
a2

is the bioconvection

buoyancy parameter, λT = gβT b
a2

is the temperature buoyancy parameter, and σb =
N∞

Nw−N∞
is
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dimensionless bioconvection constant.

The dimensionless form of the physical quantities of the interest i.e. the skin friction

coefficient Cf , the Nusselt number Nu, the Sherwood number Sh and density number of the

motile microorganisms Nn are:

1

2
Re

1/2Cf = (1 +
1

β
)f ′′(0), Re

−1/2Nu = −θ′(0), Re
−1/2Sh = −ϕ′(0) andRe

−1/2Nn = −χ′(0)

(8.13)

8.3 Method of Solution

Consider a multilayered perceptron consisting of 3-layers namely input layer - consisting of

’n’ inputs η̄=(η1, η2, ...ηn), hidden layer - consisting of ’k’ neurons and output layer consisting

of 4 – neurons N1(ηi, P1), N2(ηi, P2), N3(ηi, P3) and N4(ηi, P4) to estimate the solutions of

four coupled nonlinear ordinary differential equations as shown in the Fig.8.1.
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Figure 8.1: “Feed Forward Neural Network.”

We take the Network outputs N1(ηi, P1), N2(ηi, P2), N3(ηi, P3) and N4(ηi, P4) as the trial

solution for f , θ, ϕ and χ with the adjustable parameters P1, P2, P3 and P4 respectively,

which are given by the expressions.

N1(ηi, P1) =
k∑

j=1

ϖf
1jσ{ϖh

j ηi + bhj }+ bf1 ; N2(ηi, P2) =
k∑

j=1

ϖf
2jσ{ϖh

j ηi + bhj }+ bf2

N3(ηi, P3) =
k∑

j=1

ϖf
3jσ{ϖh

j ηi + bhj }+ bf3 ; N4(ηi, P4) =
k∑

j=1

ϖf
4jσ{ϖh

j ηi + bhj }+ bf4


(8.14)

where, ϖh
j represents the weights from the input layer to the jth hidden neuron, bhj is the

bias term in the hidden layer, ϖf
1j, ϖ

f
2j, ϖ

f
3j and ϖf

4j are the weights from the jth hidden

neuron to the first, second, third and fourth output neurons respectively, bf1 , b
f
2 , b

f
3 and bf4

are the bias terms in the output layer, P1 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
1j, b

f
1 ,
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P2 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
2j and bf2 respectively, P3 corresponds to the

parameters ϖh
j , b

h
j , ϖ

f
3j, b

f
3 and P4 corresponds to the parameters ϖh

j , b
h
j , ϖ

f
4j, b

f
4 .

Ef = (1 +
1

β
)N1

′′′(ηi, P1) + 2N1(ηi, P1)N1
′′(ηi, P1)− (N1

′(ηi, P1))
2

+ λTN2(ηi, P2) + λCN3(ηi, P3) + λNN4(ηi, P3)

(8.15)

Eθ =
1

Pr
N2

′′(ηi, P2) + 2N1(ηi, P1)N2
′(ηi, P2)−N1

′(ηi, P1)N2(ηi, P2) (8.16)

Eϕ =
1

Sc
N3

′′(ηi, P3) + 2N1(ηi, P1)N3
′(ηi, P3)−N1

′(ηi, P1)N3(ηi, P3) (8.17)

Eχ =
1

Sb
N4

′′(ηi, P4) + 2N1(ηi, P1)N4
′(ηi, P4))−N1

′(ηi, P1)N4(ηi, P4)

− Pe(N3
′(ηi, P3)N4

′(ηi, P4) + σbN3
′′(ηi, P4) +N4(ηi, P4)N3

′′(ηi, P4))

(8.18)

where Ef , Eθ, Eϕ and Eχ represents the errors or residuals with respect to the equations

Eq. (8.8) - Eq. (8.11) respectively. If the trial/constructed solutions for f , θ, ϕ and χ given

in Eq. (8.14) are close to exact solution then the errors Ef , Eθ Eϕ and Eχ tend to zero.

Similarly, the errors in the boundary conditions are given by:

N1(η1, P1) = S; N ′
1(η1, P1) = 1; N2(η1, P2) = 1; N3(η1, P3) = 1; N4(η1, P4) = 1

N ′
1(ηn, P1) = 0; N2(ηn, P2) = 0; N3(ηn, P3) = 0; and N4(ηn, P4) = 0

 (8.19)

The mean square of error (MSE) is calculated by taking 1/n times the sum of the squared

errors of differential equations (Eqs. (8.15) - (8.17)) along with the error in the boundary

conditions Eqs. (8.18) on the training set and then minimized. The solution produced

by determining a set of biases and weights that minimizes the MSE (or loss function) after

training is the final solution of the problem. Hence, the MSE or loss function E(P1, P2, P3, P4)

is given by
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E(P1, P2, P3, P4) =
1

n

n∑
i=1

(Ef )
2 + (Eθ)

2 + (Eϕ) + (Eχ)
2 + [N1(η1, P1)− S]2

+ [N ′
1(η1, P1)− 1]

2
+ [N ′

1(ηn, P1)]
2
+ [N2(η1, P2)− 1]2 + [N2(ηn, P2)]

2

+ [N3(η1, P3)− 1]2 + [N3(ηn, P3)]
2 + [N4(η1, P3)− 1]2 + [N4(ηn, P3)]

2

(8.20)

where 5th - 13th terms in the above expression represent the sum of squares of the boundary

conditions.

The problem is to minimize E(P1, P2, P3, P4) by optimizing the biases and weights in the

network for a given network configuration. The derivatives of the network output with re-

spect to its input must be calculated in order to compute the error function E(P1, P2, P3, P4).

The derivatives of networks output N1(ηi, P1), N2(ηi, P2), N3(ηi, P3) and N4(ηi, P3) with re-

spect to input vector ηi are calculated using Python package called autograd. Backpropa-

gation can then be used to pursue the optimization by evaluating the derivatives of the loss

function with respect to the network parameters. Here in this paper, we used a single hidden

layer, Sigmoid activation function, the Adam optimizer [38] with an initial learning rate of

0.01.

To apply this method the semi-infinite domain of the given problem i.e. [0,∞] is reduced

to [η1, η∞] where η1 = 0, η∞ is the parameter used to recover the boundary conditions at

infinity. We start with training points that are chosen from the domain of the given problem

i.e. [0, η∞ = 10] and the weights and bias terms, which are generated randomly and we train

the model to modify the parameters in the given domain of the problem.To ensure that the

boundary conditions in the loss are integrated into each network parameter update, we use

the entire set of training points. In general, we find that a single hidden layer with a small

number of units is enough to get very exact results.

To check the convergence of the solution of the method, the dimensionless coefficient

of skin friction (f ′′(0)), rate of heat transfer (θ′(0)), Sherwood number (ϕ′(0)) and density

number of motile microorganisms (χ′(0)) at the surface for β = 1.0, λC = 1.0, λN = 1.0,

λT = 1.0, Pr = 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1, σb = 0.1 and S = 0.5 are calculated by
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choosing different number of training points 50, 100 and 200 and different number of neurons

5, 8, 15 and 30 in the hidden layer and the computed results are presented in the Tables 8.1

and 8.2. It is evident from the Tables 8.1 and 8.2 that the solution has convergence of 10−4

when the Data points are 50 and Hidden neurons are 10.

Number Of Data Points f ′′(0) θ′(0) ϕ′(0) χ′(0)
50 -0.15715565 -2.07466087 -0.69044626 -0.43214642
100 -0.15771369 -2.07352940 -0.69020583 -0.43241304
200 -0.16166460 -2.07419755 -0.69210441 -0.43234071

Table 8.1: “Convergence table for the values of f ′′(0), θ′(0), ϕ′(0) and χ′(0) for β = 1.0,
λC = 1.0, λN = 1.0, λT = 1.0, Pr = 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1, σb = 0.1 and S = 0.5
by the present method with different number of Hidden neurons and number of Data points
fixed as 50.”

Number Of Hidden Neurons f ′′(0) θ′(0) ϕ′(0) χ′(0)
5 -0.22805518 -2.07872635 -0.70821418 -0.47023342
10 -0.15715565 -2.07466088 -0.69044626 -0.43214642
30 -0.15521094 -2.07464603 -0.69096449 -0.43062852

Table 8.2: “Convergence table for the values of f ′′(0), θ′(0), ϕ′(0) and χ′(0) for β = 1.0,
λC = 1.0, λN = 1.0, λT = 1.0, Pr = 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1, σb = 0.1 and S = 0.5
by the present method with different number of Data points and number of Neurons as 10.”

8.4 Computational Results and Discussion

The effectiveness of the method is also validated by relating the current numerical results of

the dimensionless coefficient of skin friction (f ′′(0)), rate of heat transfer (θ′(0)), Sherwood

number (ϕ′(0)) and motile micro organism rate (χ′(0)) are calculated using the shooting

method in conjunction with the Runge-Kutta fourth order method. for A = 0.5, S = 0.5,

Pr = 1.0, Sc = 0.2, Sb = 0.1, Pe = 0.1 and σb = 0.1. The computed results are presented

in the Table 8.3. It is evident from the Table 8.3 that the present results are consistent with

the results obtained by using shooting method.
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Present method Shooting method

f ′′(0) -0.15715565 -0.15333449

θ′(0) -2.07466087 -2.07500180

ϕ′(0) -0.69044625 -0.69021368

χ′(0) -0.43214642 -0.43037037

Table 8.3: “Comparison of the present method with the results of Shooting method.”

Fig.8.2 illustrates the plot of error (between ANN method and Shooting technique results)

in the values of f ′, θ, ϕ and χ for 11 equispaced positions in [0, 10]. The findings acquired

by the current approach are in good agreement with the results obtained by the Shooting

method, as shown in Fig.8.2.
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Figure 8.2: “Error plot between the results obtained by Artificial Neural Network method and

Shooting method for the values of velocity, temperature, concentration and bioconvection

profiles.”

Figure 8.3 presents the effects of the concentration buoyancy parameter λC on the skin

friction coefficient (f ′′(0)), Nusselt number (−θ′(0)), Sherwood number (−ϕ′(0)), and density

number of motile microorganisms (−χ′(0)) at fixed values of the other parameters discussed
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above. Figures 8.3(a), 8.3(b), 8.3(c) and 8.3(d) show that as the concentration buoyancy pa-

rameter λC increases, skin friction, Nusselt number, Sherwood number, and density number

of motile microorganisms increases.

Figure 8.4 illustrates the effects of the bioconvection buoyancy parameter λN on f ′′(0),

−θ′(0), −ϕ′(0) and (−χ′(0)) with fixed values of the other factors discussed above. Figures

8.4(a), 8.4(b), 8.4(c) and 8.4(d) show that with rising values of the bioconvection buoyancy

parameter λN , skin friction, Nusselt number, Sherwood number, and density number of

motile microorganisms increases.

Figure 8.5 refers the influence of thermal buoyancy parameter λT on the coefficient of skin

friction, Nusselt number, Sherwood number, and density number of motile microorganisms

for fixed values of other parameters in the discussion as mentioned above. It is observed

from figures 8.5(a), 8.5(b), 8.5(c) and 8.5(d) that skin friction, Nusselt number, Sherwood

number, and density number of motile microorganisms are increasing for the increasing values

of thermal buoyancy parameter λT .

The impacts of the bioconvection Peclet number Pe on f
′′(0), −θ′(0), −ϕ′(0), and −χ′(0))

for fixed values of the other parameters in the analysis are shown in Figure reffig6. Figures

8.6(a), 8.6(b), 8.6(c) and 8.6(d) reveal that for increasing values of bioconvection Peclet

number Pe, skin friction, Nusselt number, Sherwood number are dropping, while density

number of motile microorganisms is growing.

The effect of the parameter S on the skin friction coefficient, Nusselt number, Sher-

wood number, and density number of motile microorganisms under fixed values of the other

constants in the conversation as indicated above are shown in Figure 8.7. Figures 8.7(a),

8.7(b), 8.7(c) and 8.7(d) show that for rising values of the suction / injection parameter S,

skin friction is decreasing and Nusselt number, Sherwood number, density number of motile

microorganisms are increasing.

Figure 8.8 depicts the impact of the bioconvection Schmith number Sb on f ′′(0), −θ′(0),

−ϕ′(0), and −χ′(0) at fixed values of the other parameters discussed above. Figures 8.8(a),

8.8(b), 8.8(c) and 8.8(d) show that with rising values of bioconvection Schmidth number
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Sb skin friction, Nusselt number, Sherwood number reduce, while density number of motile

microorganisms increase.

The consequences of the Schmith number Sc on skin friction (f ′′(0)), Nusselt number

(−θ′(0)), and Sherwood number (−ϕ′(0)) given fixed values of the other parameters in the

discussion as indicated above are shown in Figure 8.9. Figures 8.9(a), 8.9(b), and 8.9(c) show

that for increasing values of Schmidth number Sc skin friction, Nusselt number decrease,

while Sherwood number increase.

The influence of the non - dimensional bioconvection constant σb on skin friction (f ′′(0)),

Nusselt number (−θ′(0)), Sherwood number (−ϕ′(0)), and density number of motile microor-

ganisms (−χ′(0)) with fixed values of all the other components in the study as indicated prior

are shown in Figure 8.10. Figures 8.10(a), 8.10(b), 8.10(c) and 8.10(d) exhibit that for ris-

ing values of the dimensionless bioconvection constant σb, skin friction, Sherwood number,

Nusselt number are reducing, while density number of motile microorganisms is growing.

8.5 Conclusions

The main goal of this study was to solve coupled nonlinear differential equations arising

from the boundary layer flow of a Casson fluid across a vertically stretched sheet in the

presence of bioconvection using an Artificial Neural Network technique. The influences of

the parameters β, λC , λN , λT , Sc, Sb, Pe, σb and S on the relevant physical quantities are

investigated. The important findings are presented below:

• With higher values of bioconvection Peclet number, suction / injection parameter,

bioconvection Schmidth number, Schmidth number, and dimensionless bioconvection

constant, skin friction coefficient decreases. It rises as the concentration buoyancy

parameter, thermal buoyancy parameter, and bioconvection buoyancy parameter all

rise in value.

• Nusselt number grows as concentration buoyancy parameter, thermal buoyancy pa-
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rameter, bioconvection buoyancy parameter, and suction / injection parameter rise.

It is reduced with increased values of the bioconvection Peclet number, bioconvection

Schmidth number, Schmidth number, and dimensionless bioconvection constant.

• Sherwood number grows as concentration buoyancy parameter, thermal buoyancy pa-

rameter, bioconvection buoyancy parameter, Schmidth number and suction / injection

parameter rise. It is reduced with increased values of the bioconvection Peclet number,

bioconvection Schmidth number and dimensionless bioconvection constant.

• For all of the parameters specified in the study, the density number of motile microor-

ganisms increases.
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(a) (b)

(c) (d)

Figure 8.3: “Plots of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for distinct values of concentration
buoyancy parameter λC .”
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(a) (b)

(c) (d)

Figure 8.4: “Plots of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for distinct values of bioconvection
buoyancy parameter λN .”

133



(a) (b)

(c) (d)

Figure 8.5: “Plots of f ′′(0), −θ′(0), −ϕ′(0) and−χ′(0) for distinct values of thermal buoyancy
parameter λT .”
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(a) (b)

(c) (d)

Figure 8.6: “Plots of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for distinct values of bioconvection
Peclet number Pe.”
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(a) (b)

(c) (d)

Figure 8.7: “Plots of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for distinct values of suction/injection
parameter S.”
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(a) (b)

(c) (d)

Figure 8.8: “Plots of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for distinct values of bioconvection
Schmidth number Sb.”
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(a) (b)

(c) (d)

Figure 8.9: “Plots of f ′′(0), −θ′(0) and −ϕ′(0) for distinct values of Schmidth number Sc.”
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(a) (b)

(c) (d)

Figure 8.10: “Plots of f ′′(0), −θ′(0), −ϕ′(0) and −χ′(0) for distinct values of dimensionless
bioconvection constant σb.”

139



Chapter 9

A Neural Network Method For

Analyzing Entropy Generation in a

Casson fluid Flow Over Radially

Expanding Sheet With Magnetic and

Viscous Dissipation Effects 1

9.1 Introduction

The entropy generation in most industrial and technical phenomena results in the destruc-

tion of the available energy of the system. The entropy generation has a significant impact

on the functioning of thermal equipment such as heat engines, power plants, heat pumps,

refrigerators, and air conditioners.Hence, determining the rate of entropy generated for a

system is critical in order to maximise the energy in the system for efficient operation. This

aspect was proposed by Bejan[11, 12]. Many studies on the applicability of the second law

of thermodynamics and entropy generation have been published in the literature.

1Communicated to “Engineering Applications of Computational Fluid Mechanics”
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In this chapter the impacts of magnetic field and viscous dissipation on the entropy

generation in a Casson fluid flow due to a radially extending sheet are investigated.

9.2 Formulation of the problem

Consider a steady, two dimensional, incompressible and laminar flow of a Casson fluid over

a radially stretched surface at z = 0 as shown in Figure. 6.1.

The equations governing the flow are given by

∂u

∂r
+
u

r
+
∂w

∂z
= 0 (9.1)

u
∂u

∂r
+ w

∂u

∂z
= ν(1 +

1

β
)
∂2u

∂z2
− σ B2

0

ρ
u+ g(βT (T − T∞) (9.2)

u
∂T

∂r
+ w

∂T

∂z
=

k

ρcp

∂2T

∂z2
+
ν

cp
(1 +

1

β
)(
∂u

∂z
)
2

(9.3)

The associated boundary conditions are as follows:

u = Uw, w = 0, T = Tw = T∞ + br at z = 0

u→ 0, T → T∞ as z → ∞

 (9.4)

The quantities used in the above equations are defined in the previous chapters,

Introducing the stream function ψ(r, z) through

u = −1

r

∂ψ

∂z
and w =

1

r

∂ψ

∂r
(9.5)

and the following similarity transformations

ψ(r, z) = −r2UwRe
−1/2f(η), η =

z

r
Re1/2, and θ =

T − T∞
Tw − T∞

(9.6)
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Putting Eq, (9.6) in Eqs. (9.1) – (9.3), we obtained the momentum and heat equations

(9.2) – (9.3) in their dimensionless from as follows

(1 +
1

β
)f ′′′ + 2ff ′′ − (f ′)

2 −Mf ′ + λT θ = 0 (9.7)

1

Pr
θ′′ + 2fθ′ − f ′θ + (1 +

1

β
)Ec(f ′′)

2
= 0 (9.8)

The boundary conditions given in Eq. (9.4) are transformed into the following form:

f(η) = 0, f ′(η) = 1, θ(η) = 1 at η = 0

f ′(η) → 0 and θ(η) → 0 as η → ∞
(9.9)

where M =
σ B2

0

aρ
is the magnetic parameter, Ec = Uw

2

cp(Tw−T∞)
is the Eckret number,

The physical quantities of interest are the skin friction coefficient Cf and the Nusselt

number Nu. In terms of dimensionless variables defined in Eq.(9.6) these quantities were

changed to the following form:

1

2

√
ReCf = (1 +

1

β
)f ′′(0) and

Nu√
Re

= −θ′(0) (9.10)

9.3 Entropy generation

The investigation of entropy creation is essential for understanding the irreversibility of

thermal energy in a certain system. Entropy generation in most industrial and technical

operations results in the destruction of the system’s available energy. Thus, entropy forma-

tion has a significant impact on the functioning of thermal equipment such as heat engines,

power plants, heat pumps, refrigerators, and air conditioners. Because of this, determining

the rate of entropy generated for a system is critical in order to maximise the energy in the

system for efficient operation. As per the second law of thermodynamics the relation for

the entropy generation of the scheme associated with unsteady Casson fluid flow across the
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radially stretched sheet in the presence of a magnetic field and chemical reaction is given by.

SG =
k

T 2
∞

(
∂T

∂z

)2

+
µ

T∞

(
1 +

1

β

)(
∂u

∂z

)2

+
σ B2

0

T∞
u2 (9.11)

The first term in the above expression reflects the entropy effect due to heat transfer, the

second term denotes the entropy effect due to fluid friction, the third term symbolises the

entropy impact caused by the magnetic field.

In terms of dimensionless variables the entropy generation has the form

Ns = Re

[
(θ′)

2
+
Br

Ω

(
1 +

1

β

)
(f ′′)

2
+
Br

Ω
M(f ′)

2

]
(9.12)

where Ns = SGr2 T 2
∞

k(Tw−T∞)2
is the dimensionless entropy generation number, Br = µU2

w

k(Tw−T∞)

is the Brinkman number, Ω = Tw−T∞
T∞

is the dimensionless temperature.

9.4 Method of Solution

Consider a multilayered perceptron consisting of 3 – layers namely input layer - consisting of

’n’ inputs η̄=(η1, η2, ...ηn), hidden layer - consisting of ’k’ neurons and output layer consisting

of two neurons N1(ηi, P1) and N2(ηi, P2) to estimate the solutions to two coupled ordinary

differential equations as shown in the Fig. 9.1.

We take the network outputs N1(ηi, P1) and N2(ηi, P2) denote the trial solution for f and

θ respectively with the adjustable parameters P1 and P2 respectively, which are given by the

expressions

N1(ηi, P1) =
k∑

j=1

ϖf
1jσ{ϖh

j ηi + bhj }+ bf1

N2(ηi, P2) =
k∑

j=1

ϖf
2jσ{ϖh

j ηi + bhj }+ bf2


(9.13)
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Figure 9.1: “Feed Forward Neural Network.”

where, ϖh
j represents the weights from the input layer to the jth hidden neuron, bhj is the bias

term in the hidden layer, ϖf
1j is the weight from the jth hidden neuron to the first output

neuron, bf1 is the bias term and ϖf
2j is the weight from the jth hidden neuron to the second

output neuron, bf2 is the bias term. P1 corresponds to the parameters ϖh
j , b

h
j , ϖ

f
1j, b

f
1 and P2

corresponds to the parameters ϖh
j , b

h
j , ϖ

f
2j and b

f
2 respectively.

Since no data has been collected to learn from the differential equation, we have to insert

Eq. (9.13) in the differential equations Eq.(9.7) and Eq. (9.8). Hence, we get

Ef = (1 +
1

β
)N1

′′′(ηi, P1) + 2N1(ηi, P1)N1
′′(ηi, P1)− (N1

′(ηi, P1))
2
+ λTN2(ηi, P2)

−MN1
′(ηi, P1)

(9.14)

Eθ =
1

Pr
N2

′′(ηi, P2) + 2N1(ηi, P1)N2
′(ηi, P2)−N1

′(ηi, P1)N2(ηi, P2) + Ec(1 +
1

β
)N2(ηi, P2)

2

(9.15)

where Ef and Eθ represents the errors or residuals with respect to the equations Eq. (9.7)
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and Eq. (9.8) respectively. If the trial/constructed solutions for f and θ given in Eq. (9.13)

are close to exact solution then the errors Ef and Eθ tend to zero. Similarly, the errors in

the boundary conditions are given by:

N1(η1, P1) = 0; N ′
1(η1, P1) = 1; N2(η1, P2) = 1; N ′

1(ηn, P1) = 0; N2(ηn, P2) = 0 (9.16)

The mean square of error (MSE) is calculated by taking 1/n times the sum of the squared

errors of differential equations (Eqs.(9.14) - (9.15)) along with the error in the boundary

conditions Eq.(9.16) on the training set and then minimized. The solution produced by

determining a set of biases and weights that minimizes the MSE (or loss function) after

training is the final solution of the problem. Hence, the MSE or loss function E(P1, P2) is

given by

E(P1, P2) =
1

n

n∑
i=1

(Ef )
2 + (Eθ)

2 + [N1(η1, P1)]
2 + [N ′

1(η1, P1)− 1]
2

+[N ′
1(ηn, P1)]

2
+ [N2(η1, P2)− 1]2 + [N2(ηn, P2)]

2

(9.17)

where 3rd – 7th terms represent error terms corresponding to the boundary conditions.

The problem is to minimize E(P1, P2) by optimizing the biases and weights in the network

for a given network configuration. The derivatives of the network output with respect to its

input must be computed in order to compute the error E(P1, P2). The derivative of networks

output N1(ηi, P1) and N2(ηi, P2) with respect to input vector ηi are calculated using Python

package called autograd. Backpropagation can then be used to pursue the optimization by

evaluating the derivatives of the loss function with respect to the network parameters. Here

in this paper, we used a single hidden layer, Sigmoid activation function, the Adam optimizer

[38] with an initial learning rate of 0.01.

To apply this method the semi-infinite domain of the given problem i.e. [0,∞] is reduced

to [0, η∞] where η∞ is a constant used to recover the conditions at infinity. We start with

training points that are chosen from the domain of the given problem i.e. [0, η∞] and the

bias terms and weights, which are generated arbitrarily and train the model to modify
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the parameters in the given domain of the problem. An ADAM optimizer [38] with an

initial learning rate of 0.01 and one hidden layer is employed here along with the a Sigmoid

activation function. The entire set of training points is used to ensure that the boundary

conditions in the loss function are accounted for in the updating of each network parameter.

It is found that one hidden layer with a minimal number of units is adequate for getting

very exact results.

To check the convergence of the solution of the method, the dimensionless coefficient of

skin friction (f ′′(0)) and rate of heat transfer (θ′(0)) at the surface for β = 1.0, Ec = 1.0,

M = 1.0, Pr = 1.0, Re = 1.0, Br
Ω

= 1.0 and λT = 1.0 are calculated by choosing different

number of training points 50, 100 and 200 and different number of neurons 5, 10, 15 and

20 in the hidden layer and the computed results are presented in the Tables 9.1 and 9.2. It

is evident from the Tables 9.1 and 9.2 that the solution has convergence of 10−4 when the

Data points are 50 and Hidden neurons are 10.

Number Of Data points f ′′(0) θ′(0)
50 -0.841338 -0.637062
100 -0.841312 -0.636997
200 -0.841283 -0.636962

Table 9.1: “Convergence table for the values of skin friction coefficient and Nusselt number
at the surface for β = 1.0, Ec = 1.0, M = 1.0, Pr = 1.0, Re = 1.0, Br

Ω
= 1.0 and λT = 1.0

by the present method with different number of Data points.”

Number Of Neurons f ′′(0) θ′(0)

5 -0.8416367 -0.637278

10 -0.841338 -0.637062

15 -0.841303 -0.636998

20 -0.841324 -0.636878

Table 9.2: “Convergence table for the values of skin friction coefficient and Nusselt number

at the surface for β = 1.0, Ec = 1.0, M = 1.0, Pr = 1.0, Re = 1.0, Br
Ω

= 1.0 and λT = 1.0

by the present method with different number of Hidden neurons.”
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9.5 Computational Results and Discussion

The efficacy of the ANN approach is demonstrated by comparing the present numerical

findings for skin friction coefficient and rate of heat transfer coefficient to the values obtained

utilising shooting method in association with the Runge-Kutta fourth order method for

β = 1.0, Ec = 1.0, M = 1.0, Pr = 1.0, Re = 1.0, Br
Ω

= 1.0 and λT = 1.0. and presented in

Table 9.3.

Present method Shooting method Relative error
f ′′(0) -0.841338 -0.84121022 1.27× 10−4

θ′(0) -0.637062 -0.63692850 1.33× 10−4

Table 9.3: “Comparison of the present method with the results of Shooting method.”

Fig.9.2 illustrates the plot of error (between ANN method and Shooting technique results)

in the values of f ′ and θ for 9 equispaced positions in [0, 8]. The findings acquired by the

current approach are in excellent agreement with those obtained by the Shooting method,

as shown in Fig.9.2.

Figure 9.2: “Error plot between the results obtained by Artificial Neural Network method

and Shooting method for the values of velocity and temperature profiles.”

Figure 9.3 depicts the effects of Eckert number Ec on skin friction (f ′′(0)), Nusselt number
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and entropy generation (−θ′(0)) at fixed values of the other parameters discussed above.

Figures 9.3(a) and 9.3(b) shows that as the thermal buoyancy parameter λT increases, skin

friction is increasing and Nusselt number is decreasing. Whereas 9.3(c) reveals that the

entropy generation is decreasing initially and increasing later for the increasing values of

thermal buoyancy parameter.

Figure 9.4 illustrates the effects of the thermal buoyancy parameter λT on skin friction

(f ′′(0)), Nusselt number (−θ′(0)) and entropy generation with fixed values of the other

factors discussed above. Figures 9.4(a), 9.4(b) shows that both skin friction, Nusselt number

are increasing for the increasing values of thermal buoyancy parameter. 9.4(c) reveals that

entropy generation is decreasing initially and increasing later with the increasing values of

thermal buoyanvy parameter.

Figure 9.5 refers the effects of magnetic parameter M on skin friction (f ′′(0)), Nusselt

number (−θ′(0)) and entropy generation. It is observed from Figure 9.5(a) that entropy

generation increasing initially and decreasing afterwards for the increase in magnetic param-

eter. Also Figures 9.5(b) and 9.5(c) shows that both skin friction and Nusselt number are

decreasing for the increase in magnetic parameter M .

The consequences of the Prandtl number Pr on skin friction (f ′′(0)), Nusselt number

(−θ′(0)) and entropy generation given fixed values of the other parameters in the discussion

as indicated above are shown in Figure 9.6. Figures 9.6(a) shows that entropy generation

increasing initially and then decreasing later for the increasing values of Prandtl number

Pr. Whereas skin friction is decreasing and Nusselt number is increasing for the increasing

values of Prandtl number Pr as shown in Figure 9.6(b) and 9.6(c).

Fig. 9.7 reveals how the entropy generation has been effected by Casson fluid parameter

β, Reynolds number Re and Brinkman number Br
Ω
. As the Brinkman number, Reynolds

number increases entropy generation increases and it decreases when Casson fluid parameter

β increase.
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9.6 Conclusions

The entropy generation in a boundary layer flow of a Casson fluid across a radially stretching

sheet in the presence of magnetic field and viscous dissipation effect using an Artificial Neural

Network technique is presented. The influences of the parameters β, M , Pr, Ec, Re, Br
Ω

and

λT on the relevant physical quantities are investigated. The important findings are presented

below:

• Skin friction is increasing for the increasing values of thermal buoyancy parameter,

Eckert number and it decreases as the magnetic parameter, Prandtl number increase.

• Nusselt number increases as the thermal buoyancy parameter, Prandtl number increase

and it decreases as the magnetic parameter, Eckert number increase.

• For rising values of thermal buoyancy parameter, Eckert number entropy generation

decreases initially and eventually increases and the reverse trend is observed when

magnetic parameter, Prandtl number increase.
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(a) (b)

(c)

Figure 9.3: “The variation of skin friction coefficient, Nusselt number and Entropy Genera-
tion with Eckert number Ec.”
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(a) (b)

(c)

Figure 9.4: “The variation of skin friction coefficient, Nusselt number and Entropy Genera-
tion with thermal buoyancy parameter λT .”
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(a) (b)

(c)

Figure 9.5: “The variation of skin friction coefficient, Nusselt number and Entropy Genera-
tion with magnetic parameter M .”
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(a) (b)

(c)

Figure 9.6: “The variation of skin friction coefficient, Nusselt number and Entropy Genera-
tion with Prandtl number Pr.”
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(a) (b)

(c)

Figure 9.7: “The variation of Entropy Generation with β, Br
Ω

and Re.”
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Chapter 10

Summary and Conclusions

In this thesis, the artificial neural network method is used to study the flow of a Casson fluid

over a radially expanding sheet under both steady and unstable conditions.

Employing similarity transformations, the equations describing the flow in Chapters 2

through Chapter 9 are reduced into a set of nonlinear ODEs. The resulting non-linear ODEs

were solved using Artificial Neural Network method. The impacts of different geometrical

and hydrodynamic parameters are illustrated in graphs and analysed with regard to the

coefficient of skin friction, heat transfer rate (in terms of Nusselt number), mass transfer

rate (in terms of Sherwood number) and density number of motile microorganisms.

Part II investigates the Casson fluid flow across an unsteady radially stretched sheet by

including the effectsof suction / injection, magnetic field, cross diffusion, viscou dissipation

and chemical reaction. The important observations made from this study are listed below :

• Unsteadiness parameter decreases the skin friction, whereas it increases the Nusselt

number, Sherwood number and density number of motile microorganisms. Entropy

generation enhances initially later decreases for the unsteadiness parameter.

• An increase in Dufour number rises the Sherwood number but decreases the Nusselt

number.
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• As chemical reaction parameter increase Nusselt number decreases and Sherwood num-

ber increase. Entropy generation enhances initially later decreases for the chemical

reaction parameter.

• The magnetic parameter decreases skin friction coefficient, heat transfer rate as well

as the mass transfer rate. Entropy generation enhances initially later decreases for the

magnetic parameter.

• As the bioconvection Peclet number increase, both the heat and mass transfer rates

decrease, whereas the density number of motile microorganisms increase.

• The Nusselt number, Sherwood number and density number of motile microorgan-

isms increases with the suction / injection parameter, but the skin friction coefficient

decreases.

• An enhancement in bioconvection Schmidth number enhances the skin friction co-

efficient, Nusselt number and density number of motile microorganisms, whereas the

Sherwood number increases initially and reduces later with the bioconvection Schmidth

number.

• The Soret number increases the Nusselt number and decreases the Sherwood number.

Part-III deals with the flow of the fluid over a steady radially stretching sheet. The ob-

jective of this part is to study the effects of Casson fluid parameter, Eckret number, suction /

injection parameter, magnetic parameter, radiation parameter, chemical reaction parameter,

thermal buoyancy parameter, concentration buoyancy parameter, bioconvection buoyancy

parameter, Schmidth number, bioconvection Schmidth number, dimensionless bioconvec-

tion constant and bioconvection Peclet number on velocity, temperature, concentration, skin

friction coefficient, Nusselt number, Sherwood number, density number of motile microor-

ganisms and entropy generation. The important observations made from this study are listed

below :

• Eckert number improves the skin friction coefficient but it declines the Nusselt number.
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• The chemical reaction parameter reduces the skin friction coefficient as well as Nusselt

number.

• The enhancement in thermal buoyancy parameter, concentration buoyancy parameter,

bioconvection buoyancy parameter causes the increment in skin friction coefficient,

Nusselt number, Sherwood number and density number of motile microorganisms.

• Skin friction and the Nusselt number both diminish when a magnetic parameter is

enhanced..

• The bioconvection Peclet number reduces skin friction, Nusselt number and Sherwood

number, but it improves the density number of motile microorganisms.

• An increment in radiation parameter raises both the skin friction and Nusselt number.

• The suction / injection parameter enhances the Nusselt number, Sherwood number

and density number of motile microorganisms, whereas it reduces the skin friction.

• For the increased values of Schmidth number the Sherwood number increases while

skin friction and Nusselt number decreases.

• The bioconvection Schmidth number declines the skin friction, Nusselt number and

Sherwood number,but it improves the density number of motile microorganisms.

The work presented in the thesis can be extended to analyze the various effects like Hall

effect, Hall and Ion slip, etc. Further, this work can be extended by studying the analysis

in other non-Newtonian fluids like Jeffrey fluids, Power-law fluids, and the geometry can be

changed to an oscillatory vertical plate, inclined plate, and through pipes. This work can

also be extended to porous media.

In the recent past, the study of Physics Informed Neural Networks (PINN) has attracted

the curiosity of many researchers. Thus, the work presented in the thesis can be extended

to use the PINNs to solve the fluid flow problems.
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[90] Talaván, P. M., and Yáñez, J. A continuous hopfield network equilibrium points

algorithm. Computers & Operations Research 32, 8 (2005), 2179–2196.

[91] Ullah, I., Khan, I., and Shafie, S. Soret and dufour effects on unsteady mixed

convection slip flow of casson fluid over a nonlinearly stretching sheet with convective

boundary condition. Scientific Reports 7 (2017).

[92] Ullah, I., Shafie, S., and Khan, I. Effects of slip condition and newtonian heating

on mhd flow of casson fluid over a nonlinearly stretching sheet saturated in a porous

medium. Journal of King Saud University-Science 29, 2 (2017), 250–259.

[93] Vijaya, N., Arifuzzaman, S. M., Sai, N. R., and Rao, C. M. Analysis of

arrhenius activation energy in electrically conducting casson fluid flow induced due to

permeable elongated sheet with chemical reaction and viscous dissipation. Frontiers in

Heat and Mass Transfer (FHMT) 15, 1 (2020).

168



[94] Wang, Q. F. Theoretical and computational issues of optimal control for distributed

hopfield neural network equations with diffusion term. SIAM Journal on Scientific

Computing 29, 2 (2007), 890–911.

[95] Xu, C., Wang, C., Ji, F., and Yuan, X. Finite-element neural network-based

solving 3-d differential equations in mfl. IEEE Transactions on Magnetics 48, 12 (2012),

4747–4756.

[96] Yadav, N., Yadav, A., Kumar, M., et al. An introduction to neural network

methods for differential equations, vol. 1. Springer, 2015.

[97] Zhou, J.-C., Abidi, A., Shi, Q.-H., Khan, M. R., Rehman, A., Issakhov,

A., and Galal, A. M. Unsteady radiative slip flow of mhd casson fluid over a

permeable stretched surface subject to a non-uniform heat source. Case Studies in

Thermal Engineering 26 (2021), 101141.

[98] Ziaei-Rad, M., Saeedan, M., and Afshari, E. Simulation and prediction of

mhd dissipative nanofluid flow on a permeable stretching surface using artificial neural

network. Applied Thermal Engineering 99 (2016), 373–382.

169


