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Abstract

Keywords: Linear operators, Closed operators, Bounded lin-

ear operators, Moore-Penrose inverse, Drazin inverse, Group

inverse, Proper splitting, B†-splitting, Gram operator, Acute

cone.

The main objective of this research work is to study the results related

to characterization of Drazin monotonicity, various splitting methods and

nonnegativity of Moore-Penrose inverse of unbounded Gram operators.

The results of this thesis are primarily motivated by theoretical consider-

ations. This thesis is divided into four chapters.

Chapter 1 is introductory in nature. It hits the bare essentials of the

introduction part with historical development. The theory on linear op-

erators is briefly outlined. The concepts on generalized inverses, ordering

on a vector space by a cone are presented. The theory on splitting of

operators and iterative schemes are explored with literature survey.

Chapter 2 deals with the Drazin monotonicity of bounded linear op-

erators over ordered Banach space. The methods of index splitting are

generalized to bounded linear operators over Banach space with index k

and iterative method is established for computing the solution of non-

invertible operator equation. The key aspect of this chapter is to char-

acterize the cone nonnegativity conditions for Drazin inverses (that is,

Drazin monotonicity) of operators over ordered Banach spaces.

The central theme of the Chapter 3 is to study B†-splitting of op-

erators over ordered Hilbert space. At first, the discussion on different



splitting methods, particularly the proper splitting of non-invertible op-

erators over Hilbert space is considered. This gives the foundation to

the study on B†-splitting. The main result involves the existence of B†-

splitting and construction methods to obtain B†-splitting for a singular

operator over ordered Hilbert space.

Chapter 4 treats the unbounded Gram operators over ordered Hilbert

space. In particular, closed and densely defined operators are considered.

Characterization of the cone nonnegativity of unbounded Gram operators

is provided and illustrated with examples. This characterization involves

acuteness and obtuseness of the cone in real ordered Hilbert space.

Finally, the summary of the thesis is presented with a list of references.
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Chapter 1

Introduction

“Life is a mathematical equation. In order to gain the most, you have to know how to
convert negatives into positives”

- Anonymous

1.1 General Introduction

Abstract mathematical modelling can be formed for many real world problems which
take the operator equation of the kind

Sx = b

where S is a bounded (or unbounded but closed) linear operator between certain
vector spaces and b is the element in the co-domain of S. The important concepts
in solving these system of operator equations are existence, uniqueness, stability and
method of finding a solution.

Finding the positive solution makes sense in realm. To study the positive solution
and it’s existence, positively invertible operators are of interest. If S : X → Y be a
positively invertible operator between the ordered normed spaces and b be a positive



1.2 Cones and Ordering

vector, then it is easy to obtain positive solution of the system Sx = b. But, it may
turn out that the operator S may not be invertible, or the system is inconsistent, or
even if the system is consistent, it may be difficult to find the exact solution of the
equation. In such cases, one may look for the least squares solution with minimal
norm. To find the solution of consistent system, the most appropriate computational
method is iterative method which is obtained by splitting of operators.

The theory of nonnegative splitting is useful tool in convergence analysis of the
iterative scheme and provides interesting comparison results. Nonnegative matri-
ces and operators have applications in convex optimization, linear complementary
problems and other mathematical problems. The convergence factor of the iterative
scheme depends on the fact that spectral radius of iteration matrix is less than one.
It is proved that, spectral radius of iteration matrix is less than one if and only if
the matrix is monotone. Invertible matrices are monotone if and only the inverse
of matrix is nonnegative. In addition, monotonicity of an operator is equivalent to
cone nonnegativity of inverse of an operator. Hence, it is important to study the
characterizations of cone nonnegativity of generalized inverses of operators.

This chapter gives a brief survey of the pertinent literature, some fundamental
concepts, definitions and preliminary results that are used in the thesis. In section
1.2, we study cones and ordering on a vector space by a cone. In section 1.3, we
collect the results on linear operators. The clear picture on bounded and unbounded
linear operators are given in the subsections 1.3.2 and 1.3.1, respectively. Section
1.4 contains generalized inverses and their properties with geometrical interpreta-
tion. In particular, we discuss about Moore-Penrose inverses, Drazin inverses and
group inverses with their historical development. In section 1.5, we provide a survey
on iterative methods using splitting, monotonicity of matrices and monotonicity of
operators. In section 1.6, we present an outline of the thesis.

1.2 Cones and Ordering

There are several ways of distinguishing elements by certain ordering properties.
For instance, vectors by their length, functions by smoothness properties, numerical

2



1.2 Cones and Ordering

sequences by their convergence speed, and matrices by their rank. We consider the
order relations of special type with special properties. These relations are similar to
the properties of real numbers ordering relation denoted by > and ≥ by their inherent
properties. In this subsection, we discuss the concepts related to cone and partial
ordering of a vector spaces.

Definition 1.2.1 A binary relation “ ≤ ” on a set X is said to be partial order on

X if the following assertions true.

(i) For x ∈ X, x ≤ x (reflexivity);

(ii) For x, y ∈ X, x ≤ y and y ≤ x imply x = y (antisymmetry);

(iii) For x, y, z ∈ X, x ≤ y and y ≤ z imply x ≤ z (transitivity).

A vector space X with a partial order “ ≤ ” is called partially ordered vector
space if the order relation “ ≤ ” is compatible with the vector space X. This means,
if x ≤ y implies x + z ≤ y + z for all x, y, z ∈ X and x ≤ y implies λx ≤ λy for λ ≥ 0.

Set X with order relation “ ≤ ” is denoted by (X, ≤).

For many occasions, we can express the convergence of vectors by the notion of
a norm, especially while discussing the solution of an algebraic system. A norm is
the generalization to real vector space of the intuitive notion of “length” in the real
world. Norm can be defined on a vector space in different ways. It is crucial to
select most suitable norm for the practical situation. A vector space with a norm
defined on it is called normed linear space. Some of the norms stem from an
inner product. These inner products give the intuitive notion of orthogonality and
angle in inner product space. An inner product space which is complete is called
Hilbert space. A complete normed linear space is known to be Banach space. In
this thesis, we denote the normed spaces and the Banach spaces with the notations
X, Y and Hilbert spaces with H, H1, H2. The inner product of x and y is noted by
⟨·, ·⟩. The norm function is noted by ||·||. If the norm is induced by an inner product

3



1.2 Cones and Ordering

then ||x||=
√

⟨x, x⟩ for every x ∈ H. Throughout the thesis, our results pertain to
the spaces are defined on the field of real numbers.

An ordered vector space X together with a norm is called an ordered normed
space. An ordered Banach space X is a complete ordered normed space. A com-
plete ordered inner product space is known to be ordered Hilbert space H. Now we
introduce the concept called cone, which is the backbone of this thesis.

Definition 1.2.2 Cone. A nonempty subset C of a real vector space X is called a

cone if

(i) x ∈ C, λ ∈ R, λ ≥ 0 =⇒ λx ∈ C

(ii) x, y ∈ C =⇒ x + y ∈ C.

A cone C is called pointed cone if C ∩ (−C) = ∅.

Example 1.2.1 Let Rn be the Euclidean space and Rn
+ be the nonnegative orthant

(generalization of the first quadrant in n-dimension) in Rn. Then Rn
+ is a closed and

pointed cone.

Example 1.2.2 Let Rn be the Euclidean space. The subset

C = {x ∈ Rn :
√

x2
2 + x2

3 + ... + x2
n ≤ x1, x1 ≥ 0}

is a cone.

Example 1.2.3 Let X = l2 be the sequence space. Consider C = l2
+ = {x ∈ l2 :

xj ≥ 0, ∀ j ∈ N}. The set C forms a cone in X.

4



1.2 Cones and Ordering

Example 1.2.4 Consider X = (L2[a, b], ⟨·, ·⟩), the space of square-integrable func-

tions on [a, b] with the inner product ⟨f, g⟩ =
∫ b

a
f(u)g(u)du. Then C = {f(u) :

f(u) ≥ 0, ∀ u ∈ [a, b]} forms a cone in L2[a, b].

Example 1.2.5 Let Sn×n be the space of n × n symmetric matrices. Then the set of

positive semi-definite matrices will form a cone in Sn×n.

Consider a real vector space X and cone C in X. Defined a relation by the
notion “ ≤ ” as: y − x ∈ C for every x, y ∈ X if and only if x ≤ y. It is simple
to observe that “ ≤ ” is an order relation which forms X an ordered vector space.
Conversely, suppose X is an ordered vector space with the order “ ≤ ”, then the
subset C = {x ∈ X : x ≥ 0} forms a positive cone in X.

Consider a normed linear space X. Let X∗ be the space of continuous linear
functionals defined on X. For a cone C in X, the dual cone is defined by C∗ = {f ∈
X∗ : f(x) ≥ 0, ∀ x ∈ C}. Moreover, the dual cone C∗ of the cone C in the Hilbert
space H is given by C∗ = {x ∈ H : ⟨x, u⟩ ≥ 0, ∀ u ∈ H}. A cone C is known to be
self-dual if C∗ = C.

Definition 1.2.3 A vector lattice X is called Dedekind complete (order complete)

if every subsets which are nonempty with a lower bound and upper bound has an

infimum and a supremum, respectively.

Definition 1.2.4 A cone C of an ordered vector space X is called generating (or

reproducing), if any element x ∈ X can be represented by x = u − v, for u, v ∈ C.

Cone C is generating if X = C − C, analogously.

Let the interior of C is denoted by C◦ in an ordered normed linear space X. In
finite dimensional space X, a cone C is reproducing cone implies and implied by the
condition C◦ ̸= ∅ [5]. But in case of an infinite dimensional ordered normed space, a
cone C is reproducing if C◦ ̸= ∅, but not conversely.

5



1.3 Linear Operators

Definition 1.2.5 A pointed cone C in X is called solid if it contains some ball of

positive radius. A cone C being solid means C◦ ̸= ∅.

Definition 1.2.6 The cone C is called normal if there exists the constant of normal-

ity δ such that ||x + y||≥ δ whenever x, y ∈ C with ||x||= ||y||= 1.

Definition 1.2.7 A cone C in X is called allow plastering if it can be imbedded into

another cone C1 of ordered space X in a way that each x0 ∈ C lies in C1 together

with a neighbourhood {x : ||x − x0||≤ b||x0||}, where b > 0 is independent of point x0.

In such case, C1 is called plastering of the cone C.

Definition 1.2.8 A linear functional f : X → R is said to uniformly positive func-

tional if there exists a λ > 0 such that λ||x||≤ f(x), for all x ∈ C.

1.3 Linear Operators

The purpose of this section is to lay out the features of the theory of linear operators.
The results of this section are basic and can be found in numerous classical textbooks
( [1],[61] and [12]).

The linear operators theory is an increasingly important area in mathematics.
Almost all operators encountered in quantum mechanics are linear operators. A
linear operator is not just a map between two vector spaces, it is a map that respects
the linear structure of the spaces and hence it has a nice properties compared to non-
linear operator. In this section, we discuss linear operators which are either bounded
or unbounded and it is mentioned specifically for each chapter. We begin this section
with the linear operator definition on vector space and discuss its properties.

6



1.3 Linear Operators

Definition 1.3.1 Linear operator. A function S : X → Y is said to be a linear

operator if

S(λx + βy) = λSx + βSy

for every x, y ∈ X and for scalars λ and β.

The space of all linear operators from X to Y is denoted by L(X, Y ) and if Y = X

then it is denoted by L(X). Suppose Y = R then S : X → R is known to be linear
functional. In some situations, the operator may be defined on the proper subspace
of a vector space rather than defining on a entire vector space. In this scenario, the
domain of definition (say, domain) is denoted by D(S).

Every linear operator naturally forms two important subspaces: range (or range
space) and null space. The definition of range and null space are given below.

Definition 1.3.2 Let S ∈ L(X, Y ). Then the range and null space of S are given

by R(S) = {y ∈ Y : Sx = y for some x ∈ X} and N(S) = {x ∈ D(S) : Sx = 0},

respectively. In addition, the carrier of S is denoted with Car(S) and is given by

Car(S) = D(S) ∩ N(S)⊥.

Next, define the norm of an operator. Let X and Y be normed linear spaces with
respective norms. Consider S ∈ L(X, Y ). Then the quantity

||S||= sup{||Sx||: ||x||= 1}

is called the norm of the operator S.

Let S ∈ L(X, Y ) is called bounded linear operator if ||S||< ∞ (finite norm).
We denote the class of all bounded operators on X to Y by B(X, Y ) which is the
subclass of L(X, Y ). If the norm of an operator is not finite, then the operator is
called unbounded linear operator.

7



1.3 Linear Operators

Example 1.3.1 (Differential operator): Consider the normed linear spaces C[0, 1]

and C1[0, 1] with supremum norm. Define first order linear differential operator

S : C1[0, 1] → C[0, 1] by

(Sx)(t) = x′(t), t ∈ [0, 1].

Take a sequence {xn(t)} = {tn} in such a way that ||Sxn||= n and ||xn||= 1. The

norm of the operator S is not a finite quantity. Hence S is an unbounded operator.

1.3.1 Unbounded Linear Operators

Unbounded linear operators appears in several applications, prominently in ordinary
and partial differential equations, quantum mechanics. Unbounded operators which
occur in the theory of partial differential equations, especially in potential theory, mo-
ment theory and other related areas, can be found in [26]. The theory of unbounded
operators is more intricate than that of bounded operators. In the year 1920, to
define the quantum mechanics on a strong mathematical foundation the unbounded
operators theory was established. Marshall H. Stone and John von Neumann de-
veloped the unbounded operators theory systematically. The natural launguage of
quantum mechanics is the self-adjoint operators on Hilbert space, it was an intuition
of J. von Neumann. Modern physics is developed with this idea. We limit ourselves
to Hilbert spaces for the discussion of unbounded linear operators since our focus
is on the generalized inverse, specifically, the Moore-Penrose inverse of unbounded
linear operator over Hilbert space.

Let H, H1 and H2 are Hilbert spaces over complex numbers field. Suppose M

and L are subsets of H. The closure of a subset L is denoted by L and orthogonal
complement is denoted by L⊥. Moreover, if M, L are linear subspaces of H then
M + L, M ⊕ L and M ⊕⊥ L denotes sum, direct sum and orthogonal direct sum,
respectively.

Next, we define the particular class of linear operators called densely defined
operators.

8



1.3 Linear Operators

Definition 1.3.3 (Page no.333, [4]) Consider S ∈ L(H1, H2). If D(S) = H1 then S

is called densely defined operator (simply, a dense operator).

Every operator S ∈ L(H1, H2) can be considered to be a densely defined operator
without loosing the generality since it can be seen as S ∈ L(D(S), H2). By Riesz
representation theorem, we can associate another operator S∗ related to S in the
following way.

Definition 1.3.4 (Page no. 348, [61]) Consider S ∈ L(H1, H2) be dense operator.

Then for all x ∈ D(S) and y ∈ D(S∗), there exists a unique operator S∗ satisfies

⟨Sx, y⟩ = ⟨x, S∗y⟩. This operator S∗ is called adjoint operator of S. In such case,

D(S∗) contain all y ∈ H2 for which the linear functional x → ⟨Sx, y⟩ is continuous

on D(S).

Example 1.3.2 Let S ∈ L(l2(N)) be forward shift operator. For a given x =

(x1, x2, ...) and y = (y1, y2, ...) in l2(N) we can compute

⟨Sx, y⟩ = ⟨(0, x1, x2, ...), (y1, y2, ...)⟩

= x1y2 + x2y3 + ...

= ⟨x, y∗⟩.

In this case, S∗y = y∗ = (y2, y3, ...). So, we can conclude that S∗ is the backward shift

operator.

Example 1.3.3 Consider a Lebesgue measurable function a(t) which is complex val-

ued and bounded on [a, b]. Let S ∈ B(L2([a, b])) defined by multiplication of functions,

(Sg)(t) = a(t)g(t).

9



1.3 Linear Operators

Let f, g ∈ L2([a, b]),

⟨Sf, f⟩ =
∫ b

a
a(t)g(t)f(t)dt = ⟨g, af⟩.

Thus (S∗f)(t) = a(t)f(t).

Next, the properties of an adjoint operator is collected in the following proposi-
tion. For more details on this, refer [25].

Proposition 1.3.1 Consider S ∈ L(H1, H2) be a dense operator with adjoint S∗ ∈

L(H2, H1).

(i) Then, S∗ is closed and linear operator.

(ii) Moreover, if S is invertible, then S∗ is invertible operator and (S∗)−1 = (S−1)∗.

Remark 1.3.1

(i) An element S∗y in ⟨Sx, y⟩ = ⟨x, S∗y⟩ will be uniquely determined if and only if

D(S) is dense subspace of H.

(ii) For an operator S∗ ∈ L(H2, H1) the domain D(S∗) is a subspace of H2.

(iii) If S ∈ B(H1, H2), then we have D(S∗) = H2 and S∗ ∈ B(H2, H1).

John von Neumann introduced graphs to analyse unbounded operators in 1936.
Graph of an operator provides information about the domain, null space, range space,
inverse and adjoint.

Definition 1.3.5 (Page no. 347, [61]) Let S ∈ L(H1, H2). The graph G(S) of an

operator S is the linear subspace of H1 × H2 that includes ordered pairs given by

(x, Sx), for x ∈ D(S).

10



1.3 Linear Operators

Definition 1.3.6 (Page no. 332, [4]) Let S ∈ L(H1, H2). If G(S) is a closed linear

subspace of H1 ×H2 then operator S is called closed operator. In other words, S is

closed linear operator if a sequence xn ∈ D(S), such that xn → x0, Sxn → y0 implies

x0 ∈ D(S) and Sx0 = y0, where → indicates strong convergence of a sequence.

In L(H1, H2), the subclass of closed operators is represented by C(H1, H2). A
bounded operator S ∈ B(H1, H2) is closed linear operator if and only if D(S) is
closed subspace. Hence, it can be written as B(H1, H2) ⊂ C(H1, H2). Conversely,
suppose D(S) is entire space H1 then S ∈ C(H1, H2) is bounded linear operator.
This assertion gives the closed graph theorem. In addition, a closed operator has a
closed null space.

Definition 1.3.7 If an operator S ∈ L(H1, H2) be dense operator and S ∈ C(H1, H2)

then S is referred as densely defined closed linear operator.

Example 1.3.4 Consider H = l2(N) and domain

D(S) = {x = (x1, x2, ..., xn, ...) ∈ H :
∞∑

j=1
|jxj|2< ∞}

Define

Sx = S(x1, x2, x3, ..., nxn, ...) = (x1, 2x2, 3x3, ...) ∀ x ∈ (x1, x2, ...) ∈ D(S)

Let {en : n ∈ N} be separable basis of H such that en(m) = δnm be the Kronecker

delta function. Then Sen = nen. So, S is unbounded operator. Since the space of

sequences with at most finitely many non-zero terms c00, contained in D(S); we have

D(S) = H. Hence S is dense operator.

Let (xn) ∈ D(S) be a cauchy sequence. Hence there exists x ∈ D(S) and y ∈ H in

such a way that xn → x and Sxn → y. Completeness of l2(N) gives Sx = y. So, S is

11



1.3 Linear Operators

closed linear operator.

The adjoint of operator S is given below: For x ∈ D(S) and y ∈ D(S∗), we have

⟨Sx, y⟩ = ⟨x, S∗y⟩

⟨x, S∗y⟩ = ⟨Sx, y⟩

= ⟨S(x1, x2, x3, ...), (y1, y2, ...)⟩

= ⟨(x1, 2x2, 3x3, ...), (y1, y2, ...)⟩

= x1y1 + 2x2y2 + 3x3y3 + ...

= ⟨(x1, x2, x3, ...), (y1, 2y2, 3y3, ...)⟩.

This implies S∗y = S∗(y1, y2, ...) = (y1, 2y2, 3y3, ...).

Among all unbounded operators, the class of closed densely defined operators
have nice properties similar to bounded linear operators. So, it is our interest of
study in upcoming chapters. The following proposition gives the basic properties of
densely defined closed operators.

Proposition 1.3.2 (Chapter 9, [4]) If S ∈ C(H1, H2) be a dense operator. Then

(i) S∗ ∈ L(H2, H1) is densely defined and S∗∗ = S.

(ii) N(S∗S) = N(S), N(S) = R(S∗)⊥.

(iii) N(SS∗) = N(S∗), N(S∗) = R(S)⊥.

(iv) R(S) = R(SS∗), R(S) = N(S∗)⊥

(v) R(S∗) = R(S∗S), R(S∗) = N(S)⊥.

Definition 1.3.8 (Page no. 332, [4]) Let S, T ∈ L(H1, H2) with the domains D(S) ⊂

D(T ). If Tx = Sx for each x ∈ D(S), then T is referred as an extension of S and S is

referred as a restriction of T. These relations are shown by S ⊂ T or by S = T
∣∣∣
D(S)

.

12



1.3 Linear Operators

Next, we give the definition of some class of operators for which H = H1 = H2.

Definition 1.3.9 (Page no. 334, [4]) A dense operator S ∈ L(H) is said to be

symmetric if

S ⊂ S∗

and self-adjoint if

S = S∗.

Example 1.3.5 Let p, p′, q, w are functions defined on [a, b] ⊂ R which are real val-

ued and continuous. Let w(t) > 0, for all t ∈ [a, b]. Consider the Hilbert space

H = {v :
∫ b

a
|v(x)|2w(x)dx < ∞}

with the inner product

⟨v, u⟩ =
∫ b

a
v(x)u(x)w(x)dx.

Let S be the Sturm-Liouville operator given by

Su = 1
w

[−(p′v)′ + qv]

where

D(S) = {v ∈ C2[a, b] : αjv(t) + βjv
′(t) = 0, t ∈ {a, b}, |αj|+|βj|> 0, j ∈ {1, 2}}.

Then, S is symmetric and densely defined operator.

Fix a symmetric operator S and consider a symmetric extension T of S, that is
S ⊂ T. We can notice that T ∗ ⊂ S∗. Since T ⊂ T ∗, we get S ⊂ T ⊂ T ∗ ⊂ S∗. Thus
every symmetric extension of S is a restriction of S∗.

13



1.3 Linear Operators

Projection operators are the simplest non-scalar operators. Projection operators
play an important role while defining the generalized inverses. These projections
enable us to decompose the operator into sum of restriction operators which have
the same property as the original operator and easy to work with. There is a close
connection between the closed linear subspaces of a Hilbert space and the projection
operators. The geometric properties of the subspaces can be obtained through the
algebraic properties of the projection operators.

Next, we give the definition of projection operator and discuss its properties.
More details on these results can be found in [30], [75] and [25].

Definition 1.3.10 Consider an operator S ∈ L(H). Then S is said to be a projec-

tion(or idempotent, in general) if and only if S2 = S.

In the forthcoming chapters, the operator PM,L denotes projection operator onto
subspace M along subspace L where X = M ⊕ L. The following lemma gives the
conditions on subspaces to have equal projections.

Lemma 1.3.1 Let M and L be linear subspaces of the space X which allow the

algebraic direct sum decomposition such that X = M ⊕ L. Consider the associated

projector P with R(P ) = M and N(P ) = R(I − P ) = L. Then for S ∈ B(X)

(i) SPM,L = S ⇐⇒ N(S) ⊃ L.

(ii) PM,LS = S ⇐⇒ R(S) ⊂ M.

The following proposition gives the algebraic operations involving linear opera-
tors:

Proposition 1.3.3 Let S, T ∈ L(H1, H2) and U ∈ L(H2, H3). Then the following

rules hold good:

14
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(i) Sum: For an operator S + T ∈ L(H1, H2) the sum rule is given by (S + T )x =

Sx+Tx for all x ∈ D(S +T ) and defined domain is D(S +T ) = D(S)∩D(T ).

(ii) Product: For an operator US ∈ L(H1, H3) the product rule is given by (US)x =

U(Sx) for all x ∈ D(US) and defined domain is D(US) = {x ∈ D(S) : Sx ∈

D(U)}.

(iii) Scalar multiplication: For β ∈ C − {0}, βS ∈ L(H1, H2) with scalar multi-

plication (βS)x = βSx for all x ∈ D(S) and domain D(βS) = D(S).

The following theorem gives the properties of adjoint operator.

Theorem 1.3.11 (Theorem 13.2, [61])) Suppose S, T and ST are dense and linear

operators defined over H. Then

T ∗S∗ ⊂ (ST )∗

Additionally, if S ∈ B(H) then

T ∗S∗ = (ST )∗.

Definition 1.3.12 Suppose S ∈ C(H) be a dense operator. Then S is called normal

operator if S∗S = SS∗ and unitary operator if SS∗ = I = S∗S.

Definition 1.3.13 Let S ∈ L(H1, H2) be one-to-one. Then the inverse of S is de-

noted by S−1 and S−1 : R(S) → H1 is defined by S−1(Sx) = x for all x ∈ D(S).

It is very important to know whether a bounded operator S : X → Y has a
bounded inverse or not. For example, assume that the equation

Sx = b

15
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has unique solution x for b ∈ Y. Suppose that the above equation is very difficult to
solve numerically for a given b0, but easy to solve for a value b̂ near b0. Then, if S−1

is continuous, i.e. bounded, then the corresponding solutions x0 and x̂ are also near.
Since

||x0 − x̂||= ||S−1b0 − S−1b̂||≤ ||S−1||||b0 − b̂||.

Therefore we can solve the equation for a near value b̂ without obtaining a significant
error. The next theorem states Banach’s celebrated theorem on the inverse mapping.

Theorem 1.3.14 Consider X, Y be complete spaces and S ∈ B(X, Y ). If S is one-

to-one and onto then S−1 is continuous (that is, S−1 is bounded).

The necessary and sufficient conditions for a closed linear operator to have a
bounded inverse is provided in the following lemma.

Lemma 1.3.2 (Page no. 95, [26]) Consider X, Y be complete spaces and S ∈

C(X, Y ). Then operator S has a bounded inverse if and only if S is one-one and has

a closed range.

The main idea of convergence of iterative scheme lies on the fact that the spectral
radius of iterative operator/matrix is less than one. Given an operator S with domain
and range in X, consider the operators of the form λI − S, where λ is a scalar and I

is an identity operator.

Definition 1.3.1 ([64]) Let S ∈ L(X). Then the set ρ(S) ⊂ C of all scalars λ such

that the range of λI − S is dense subspace of X and λI − S has a continuous inverse

is called the resolvent set of S. For λ ∈ ρ(S), the operator Rλ = (λI − S)−1 is known

to be the resolvent operator. The spectrum of S is the set σ(S) = {λ : λ /∈ ρ(S)}.

If S is defined on n dimensional space X, then S and λI − S can be represented
by a n × n matrices. The spectrum of S is composed of scalars λ that are roots of
the equation

det(λI − S) = 0.
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If λ ∈ σ(S), then λ will be eigenvalue of S; that is, there exists a vector x ̸= 0, called
an eigenvector associated with λ, such that Sx = λx, and hence (λI − S)x = 0. In
the infinite dimensional case, σ(S) may contain scalars that are not eigenvalues of S.

The maximum absolute value of the spectrum σ(S) is called spectral radius
and it is denoted by r(S).

Example 1.3.6 Let (λn) be a bounded sequence of scalars. Consider S ∈ L(X) be a

diagonal operator defined by

(Sx)j = λjxj, x ∈ X; j ∈ N

For λ ∈ R, the equation Sx = λx is satisfied for a nonzero vector x ∈ X whenever

λ = λj for some j ∈ N. Hence,

σ(S) = {λ1, λ2, ...}.

For n ∈ N, en ∈ X be defined by Kronecker delta function en(j) = δnj and it is an

eigenvector of the operator S for the eigenvalue λn. In such case, the spectral radius

of operator S is r(S) = max{(|λj|)}.

Next, we see some class of linear operators which can be either bounded or un-
bounded depending on the domain of definition.

Definition 1.3.15 Consider an operator S ∈ L(X). It is said to be nilpotent if

Sk = 0 for some k.

Another essential point, we discuss below is ascent and descent of linear operators.
This is helpful to define index of an operator.

Ascent and Descent of Linear Operators: To define ascent and descent of
linear operator, we consider the case of operators in which domain and co-domain be
the same vector space X. The considerations here are all algebraic in nature.
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Consider S ∈ L(X). We define the iterates S2, S3, ... of S. We follow the conven-
tion that S0 = I where I is an identity on X, S1 = S and Snx = S(Sn−1x). Then
D(S) = X and for n ≥ 1, D(Sn) be the set of all x ∈ D(Sn−1) such that Sn−1x is
in D(S). If D(S) ̸= X, then D(Sn) is usually a proper subset of D(Sn−1). Operator
Sn with null space N(Sn) = {x ∈ D(Sn) : Snx = 0}. For this replayed operator, the
relation among null spaces as below.

{0} = N(S0) ⊂ N(S1) ⊂ N(S2) ⊂ ...

We observe that
N(Sn+1) = {x ∈ D(S) : Sx ∈ N(Sn)}.

If N(Sn) coincides with N(Sn+1), then it coincides with all N(Sk) for k > n.

Definition 1.3.16 ([64]) Let S ∈ L(X). The smallest natural number k which satis-

fies N(Sk) = N(Sk+1) is the ascent of S and denoted by α(S). If there is no such k

exists, then we assume α(S) = ∞. Note that α(S) = 0 if and only if S is one-to-one.

Similarly, for n = 0, 1, 2, ... the range spaces R(Sn) of the iterates of S form a
nested chain of subspaces:

X = R(S0) ⊃ R(S1) ⊃ R(S2) ⊃ ...

Evidently,
R(Sn+1) = S{R(Sn) ∩ D(S)}.

If R(Sn) = R(Sn+1), then it follows that R(Sn) = R(Sk) for k > n.

Definition 1.3.17 ([64]) Let S ∈ L(X). The smallest natural number k which sat-

isfies R(Sk) = R(Sk+1) is the descent of S and denoted by δ(S). If R(Sn+1) is a

proper subspace of R(Sn) then we set δ(S) = ∞. Note that δ(S) = 0 if and only if

R(S) = X.
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Lemma 1.3.3 Suppose that δ(S) = 0 and α(S) < ∞. Then α(S) = 0.

The following lemma describes the case of equality of descent and ascent of an
operator.

Lemma 1.3.4 (Lemma 2.21, [1]) If S ∈ L(X) has finite descent and ascent, then

they must coincide, that is α(S) = δ(S) = p < ∞. The space X has the direct sum

decomposition

X = R(Sp) ⊕ N(Sp).

Moreover, R(Sp) is a closed linear subspace of X.

Example 1.3.7 Each S ∈ Rm×n has finite descent and ascent.

Example 1.3.8 If a nilpotent operator S : X → X has a index of nilpotency k then

δ(S) = α(S) = k.

Example 1.3.9 Let S ∈ L(H) be defined by

S(ej) =


0, if j = 0

ej−1, j ≥ 1.

where (ej)j∈N is an orthonormal basis of separable Hilbert space H. The range space

R(S) is spanned by (ej)j∈N, δ(S) = 0. There is no k such that N(Sk) = N(Sk+1),

hence α(S) = ∞.

1.3.2 Bounded Linear Operators

As we have seen, the primary gap between bounded and unbounded operators is the
domain of definition. In this subsection, we discuss the properties of bounded linear
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1.3 Linear Operators

operators. In particular, we give the properties which hold good for bounded linear
operators but not for densely defined closed operators.

Definition 1.3.18 (Chapter 9, [4]) A projection operator P ∈ B(H) is an orthog-

onal projector if

P = P 2 = P ∗.

In this scenario, R(P ) is closed linear subspace and

H = R(P )⊥ ⊕ N(P ).

Example 1.3.10 Let P : R2 → R2 be defined by

P (x1, x2) = (x1, x1), ∀ (x1, x2) ∈ R2.

The subspaces R(P ) = {(x, x) : x ∈ R} and N(P ) = {(0, x) : x ∈ R} are not

orthogonal with each other. Thus P is not an orthogonal projection.

Example 1.3.11 Consider S be a measurable subset of [0, 1] and H = L2[0, 1]. Let

P ∈ B(H) given by

(Px)(t) = x(t)χ
S
(t), for all x ∈ H

where χ
S

is the characteristic function of S. Here P is the orthogonal projection

because R(P ) = {x ∈ H : x(t) = 0 ∀ t /∈ S} and N(P ) = {x ∈ H : x(t) = 0, ∀ t ∈

S} are orthogonal to each other.

The below proposition states the properties of adjoint of a bounded operator
defined on Hilbert space.
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Proposition 1.3.4 Consider S, T ∈ B(H). Then each of the following assertions are

true:

(i) (λS)∗ = λS∗

(ii) ||S∗||= ||S||

(iii) ||S∗S||= ||SS∗||= ||S||2

(iv) (S + T )∗ = S∗ + T ∗

The next theorem establishes fundamental relationships between the range, null
space and adjoint operator and these are helpful in upcoming chapters.

Theorem 1.3.19 (Theorem 1.2.1, [28]) Consider S ∈ B(H1, H2). Then,

R(S∗)⊥ = N(S); N(S∗)⊥ = R(S);

R(S)⊥ = N(S∗); N(S)⊥ = R(S∗)

where the bar denotes the closure of the given subspace.

Definition 1.3.20 (Page no.63, [25]) Let S ∈ B(H1, H2). If range of S is finite

dimensional, then S is finite-rank operator. Specifically, if the dimension of the range

space is one, then such operator is called rank-one operator.

Next, we introduce the concept called cone nonnegativity of operators which plays
a vital role in this thesis. Consider a real vector spaces X, Y with cones C1 and C2,

respectively. Let S ∈ L(X, Y ). Suppose a cone C1 is mapped into the set SC1, it can
be easily seen as a cone because of the linearity property of the operator S. The cone
nonnegativity of an operator S is defined below:
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Definition 1.3.21 Consider a real vector spaces X, Y with cones C1 and C2, respec-

tively. An operator S ∈ L(X, Y ) is cone nonnegative (or positive) if SC1 ⊆ C2

(or SC1 ⊂ C2) and is denoted by S ≥ 0 (or S > 0.)

The class of all positive bounded linear operators forms a cone in B(X, Y ) and is
denoted by B+(X, Y ). The following definition gives rise to a cone nonnegativity of
generalized inverses of linear operators.

Definition 1.3.22 Consider a real vector spaces X, Y with cone C1 and C2, respec-

tively. An operator S ∈ B(X, Y ) is said to be positive invertible if S−1 exist and

S−1C2 ⊆ C1.

In the following example, we illustrate the application of positive invertibility.

Example 1.3.12 In the study of differential equations [63], for the discrete approx-

imations of the maximum principle of a matrix S = (aij) is given as follows: Let

Sx = b with b = (b1, b2, ...) ∈ Rn. From the assertions b ≥ 0, b ̸= 0 it follows that

x ≥ 0. Also,

max
i∈N

xi = max
i∈N+(y)

xi,

for N = {1, 2, ..., n} and N+(b) = {i ∈ N : bi > 0}. If S is a matrix with negative-off-

diagonal and has a positive inverse (M-Matrix) and Se ∈ Rn
+, where e = (1, 1, ..., 1)T ,

then S satisfies above maximum condition. If S is positively invertible and satisfies

maximum condition then S−1 is weakly diagonally dominant of its column entries.

1.4 Generalized Inverses

The linear system of algebraic equations Sx = b, where S is either a matrix or an
operator, may be used to formulate many real-world problems. This system has a
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solution x = S−1b, if the matrix S is square and invertible. The criteria for the matrix
S to have an inverse is matrix should be non-singular, tantamount to matrix have
non-zero determinant. However in practical problems,there has been a requirement of
some kind of partial inverse of a matrix which is either non-invertible or rectangular.
To fulfil this need, it was discovered that even if a matrix is non-invertible, there is
still either a left or right sided inverse of that matrix. A matrix S ∈ Cm×n is left
invertible if there is a left inverse L ∈ Cn×m such that

LS = In.

Similarly, matrix S ∈ Cm×n is right invertible if there is a right inverse R ∈ Cn×m

such that
SR = Im.

The property, where every matrix has some inverse-like matrix, shown way to define
the generalized inverses. When matrix is invertible and possesses some properties of
the ordinary inverse, these generalized inverses reduces to ordinary inverse. Moreover,
the class of invertible matrices contained in the class of matrices having generalized
inverses. Though the generalized inverse is frequently not used, as it is supplanted
through various restrictions to create different generalized inverses for specific pur-
poses. For instance, let X be the inner inverse of a matrix S satisfying SXS = S

alone used to analyze the solutions of the linear system of algebraic equations Sx = b.

But inner inverse is not unique. If least squares properties are concerned, we have to
look for Moore-Penrose inverse. If we are interested in spectral properties, we have
to consider only square matrix which have eigenvalues and eigenvectors. With this
strategy, we have to go for Drazin inverse. We give the definition with historical
development of generalized inverses which we are used in this thesis.

1.4.1 Moore-Penrose Inverse of Operator

The literature on generalized inverses has enormous growth in the last several decades.
Some authors used the phrase “pseudo inverse” instead of “generalized inverse”. In
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the year 1903, Fredholm [18] discussed the concept of a generalized inverse for the
first time. He gave a generalized inverses of integral operators. In 1912, Hurwitz [34]
characterized the class of all pseudo inverses by using the finite dimensionality of the
null spaces of Fredholm operators.

The generalised inverses of matrices were preceded by the generalised inverses of
integral and differential operators. The note on this is initially given by an American
mathematician Eliakim Hastings Moore (1862–1932). In 1920, E.H. Moore published
the paper on the reciprocal of the general algebraic matrix [52]. This was rediscovered
by 91 years old English Mathematical Physicist and Nobel laureate, Sir Roger Penrose
[57]. Hence this particular unique generalized inverse is called Moore-Penrose inverse.
This can be considered as a new era in the development of generalized inverses and
matrix analysis. The fact that Moore and Penrose defined actually the same notion
was recognized by Richard Rado [60]. Ben-Israel [3] made an attempt to identify the
reasons on why no noticeable reaction was kindled by Moore’s paper [52] whereas
the response caused by the article Penrose [57] was notable. The broad definition of
generalized inverses of operators on Hilbert space was given by Tseng [65]. Later, it
was found that the maximal Tseng inverse of an operator is the Moore-Penrose inverse.
The monographs [4], [6], [36], [28] are for further readings on generalized inverse of
matrices and operators with historical developments. Now, we define maximal Tseng
inverse of linear operator on Hilbert space.

Definition 1.4.1 (Page no. 339, [4] ) Let S ∈ L(H1, H2) satisfy D(S) = N(S) ⊕⊥

Car(S). Then Sg ∈ L(H2, H1) is a Tseng inverse of operator S if the following

assertions hold true:

(i) R(S) ⊂ D(Sg)

(ii) R(Sg) ⊂ D(S)

(iii) SgSx = PR(Sg)x, for all x ∈ D(S)

(iv) SSgy = PR(S)y, for all y ∈ D(Sg)
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The maximal Tseng inverse of S, denoted by S†, is the Moore-Penrose inverse of S

with domain and null space given by

D(S†) = R(S) ⊕⊥ R(S)⊥

and N(S†) = R(S)⊥, respectively.

The following theorems are due to operators with closed range.

Theorem 1.4.2 (Page no. 343, [4] ) Consider S ∈ C(H1, H2). Then S† ∈ L(H2, H1)

is bounded operator if and only if R(S) is closed linear subspace.

Theorem 1.4.3 (Page no. 343, [4] ) Let S ∈ B(H1, H2) have closed range. Then

S† = (S∗S)†S∗ = S∗(SS∗)†

Next, discuss the geometrical meaning of the Moore-Penrose inverse of the bounded
linear operators between Hilbert spaces. Consider the Hilbert spaces H1, H2 and op-
erator S ∈ B(H1, H2) with closed range. For a given b ∈ H2, consider the linear
operator equation Sx = b. If b /∈ R(S) then the equation does not have a solution
and if N(S) ̸= ∅ then a solution may not be unique even though it exists. When
b /∈ R(S), it is still desirable to investigate a solution as a generalized solution of the
system Sx = b, in certain sense. Thus, in place of exact solution we look for the
closet solution with geometric approach. Consider PR(S) be the orthogonal projec-
tion of H2 on to R(S) along N(S)⊥. If the equation Sx = b does not have a solution,
an appropriate solution of the consistent system Sx = PR(S)b may be accepted as
a generalized solution. Assume that a minimizer functional exists and x0 ∈ H1 is
minimizer of the residual functional

πb(x) = ||Sx − b||, x ∈ H1.
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Then it makes sense to call x0 as a generalized solution. These two definitions are
equivalent and they are equivalent to another condition given in the next result.

Theorem 1.4.4 (Theorem 2.1.1,[28]) Suppose S ∈ B(H1, H2) has closed range and

b ∈ H2. Then the following statements are equivalent.

i) Sx0 = PR(S)b,

ii) ||Sx0 − b||≤ ||Sx − b||, ∀ x ∈ H1,

iii) S∗Sx0 = S∗b.

If a vector x0 ∈ H1 satisfies one of the above condition, then it is called least
squares solution of the system Sx = b. The set of all least squares solutions of Sx = b

is denoted by
Lb = {x0 ∈ H1 : S∗Sx0 = S∗b}.

The set Lb contains a unique vector of minimal norm and Lb is a closed convex set.
Define a linear operator S† : H2 → H1 by

S†b = x0, for b ∈ H2,

where S† is a continuous operator. Moreover, S† is the unique solution of the operator
equations mentioned below:

SXS = S;

XSX = X;

(SX)∗ = SX;

(XS)∗ = XS.

This operator S† is called the Moore–Penrose inverse of operator S.

The further discussion on the properties of Moore-Penrose inverse of bounded
and unbounded operators are considered in later chapters.
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1.4.2 Drazin Inverse

In this subsection, we brief about Drazin inverse with its historical developments and
applications.

A key feature of generalized inverse is to provide some type of solution or least
squares solution linear system. In recent decades, there is a great deal of interest
in generalized inverses of matrices, specifically Drazin inverse. Drazin inverse is the
important tool in the study of ring theory [31]. However, the Drazin inverse will not
provide solutions of linear algebraic equations, it will provide solutions for systems
of linear differential equation and linear difference equations [7]. The Drazin inverse
is useful tool in matrix theory and computations primarily because it has a very
desirable spectral property: “The nonzero eigenvalues of the Drazin inverse are the
reciprocals of the nonzero eigenvalues of the given matrix, and the corresponding
generalized eigenvectors have the same multiplicity” [27].

The algebraic definition of Drazin inverse was first given by M.P. Drazin in 1958
[13] while setting of an abstract rings and semigroups, which does not have the re-
flexive property, but commutes with the element. For the bounded operators and
elements of Banach algebra Ben-Israel [4], Caradus [8], King [42], Koliha [44] and
several other researchers introduced and studied the Drazin inverse. Also, in [50],
Marek and Z̆itný discused the Drazin inverse of operators as well as for elements
of a Banach algebra in detail. The investigation on the Drazin inverse of closed
linear operators and its application to singular evolution equations and partial dif-
ferential equations carried by Nashed and Zhao [55]. In [14], Drazin studied the
extremal definition of generalized inverses which gives a generalization of the original
Drazin inverse. Studies shown that the Drazin inverse has application in analyz-
ing Markov chains ([6], Chap.8), difference equation and differential equations([6],
Chap.9), Cauchy problems, investigation of Cesaro-Neumann iterations [32], cryp-
tography [33], and iterative procedures in numerical analysis.

In [8], Caradus proved S ∈ B(X), where X is a complex Banach space has a
Drazin inverse SD whenever 0 is a pole of the resolvent (λI − S)−1 of S; and the
order of the pole is equal to the index of operator S. If 0 is a simple pole, then SD is
called the Group Inverse and denoted by S#.
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The Drazin inverse definition is not restricted to Hilbert space, it is defined over
Banach space. Similar to the matrix case, the Drazin inverse of bounded operators
is defined for space X to X itself. To define the Drazin inverse, first we define index
of an operator. In section 1.3.1, we have discussed the descent and ascent of an
operator.

Descent and ascent of an operator are important to define the index of an op-
erator. The following theorem gives the condition on subspace for a bounded linear
operator to be invertible.

Theorem 1.4.5 (Theorem 2.23, [1]) Consider S ∈ B(X). There exists a finite ascent

and descent if and only if S has a reducing pair of closed linear subspaces (M, L) such

that S ∈ B(M) is nilpotent and S ∈ B(L) is invertible. In addition, if p = α(S) =

δ(S) < ∞, then the pair (M, L), where M = N(Sp) and L = R(Sp), is the only

reducing pair for the operator S such that S is nilpotent on M and invertible on L.

Next, we define the Drazin inverse of S ∈ B(X) with R(Sk) is closed for some
nonnegative integer k.

Definition 1.4.6 (Definition 12.1.1, [68]) Drazin Inverse: Let S ∈ B(X). If there

exists T ∈ B(X) which satisfies the following conditions

STSk = Sk

TST = T

ST = TS

for some nonnegative integer k. Then T is said to be Drazin inverse of S and it is

denoted by SD. Also, such a smallest integer k is called index of S and denoted by

ind(S).
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Lemma 1.4.1 (Lemma 2.1, [10]) Consider S ∈ B(X). If S has a Drazin inverse

SD then it has finite descent as well as finite ascent, and vice versa. Also, k is the

smallest nonnegative integer such that k = ind(S) = α(S) = δ(S) which satisfies the

conditions of Drazin inverse.

Example 1.4.1 ([44]) Consider the Banach space X = l1(N). Let S ∈ B(l1) defined

by an infinite matrix

S =



0 0 0 0 · · ·

1 0 0 0 · · ·

0 1
2 0 0 · · ·

0 0 1
3 0 · · ·

0 0 0 1
4 · · ·

· · · · · · · · ·


Observe that S is not a nilpotent element of B(l1(N)). Thus, we can not find any

non zero operator which satisfies the conditions of Drazin inverse. Hence, we may

conclude that SD, the Drazin inverse of S is zero operator.

Example 1.4.2 ([64]) Let S ∈ B(l1(N)) be defined by a diagonal operator which can

be represented by infinite matrix as shown below:



0 0 0 0 · · ·

0 β2 0 0 · · ·

0 0 β3 0 · · ·

0 0 0 β4 · · ·

· · · · · · · · ·


where 0 < ϵ ≤ |βn| for n ≥ 2. Then the spectrum of S is the set σ(S) = {0} ∪ cl{βn :

n ≥ 2}. Consider the set of all complex valued functions f ∈ H(S) where f is
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holomorphic in an open neighbourhood ∆(f) ⊂ σ(S). Thus, for f ∈ H(S),

f(S)(ζn) =
∞∑

n=2
βnζnen

where {en : n ∈ N} be the standard Schauder basis of l1(N). It can be verified that 0

is a simple pole of S. Thus, SD = S# is which is given by SD = f(S), where f(ζ) is

0 in a neighbourhood of 0 and ζ−1 in the neighbourhood of σ(S)\{0}. Therefore, SD

is the matrix defined by 

0 0 0 0 · · ·

0 β−1
2 0 0 · · ·

0 0 β−1
3 0 · · ·

0 0 0 β−1
4 · · ·

· · · · · · · · ·



Proposition 1.4.1 (Page no. 166, [4]) Let S ∈ B(X) with the Drazin inverse SD.

Then, the following assertions are true for SD:

(i) (SD)∗ = (S∗)D

(ii) (SD)l = (Sl)D for l ∈ N

(iii) If Sl with index 1 and S has index k, then (Sl)# = (SD)l

(iv)) SD has index 1, and (SD)# = S2SD.

(v) If ind(S) = k, then R(Sl) = R(SD) and N(Sl) = N(SD) for l ≥ k.

1.4.3 Group Inverse

The name group inverse was opted by I. Erdélyi [17] because the powers of a given
operator S, together with S# as a inverse element of S and the projection operator
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S#S as a unit element, forms an Abelian group. Englefield [16] highlighted the
spectral properties of the group inverse and named it as commuting reciprocal inverse.
For the given operator S, if N(S) and R(S) are complementary subspaces then the
group inverse exists. Also, it is equivalent to index of the operator S is one. If group
inverse exists then it is unique. An element S ∈ B(H) is group invertible if and
only if there is a projection (in general, idempotent) P ∈ B(H) such that S + P is
invertible, SP = 0 and SP = PS. If these conditions are satisfied, the group inverse
S# of S is given by S# = (S + P )−1(I − P ), and the idempotent P = Sπ = I − SS#.

The general definition of group inverse is given below.

Definition 1.4.7 Let S ∈ B(H) with ind(S) = 1. Then the group inverse S# exists

uniquely and that satisfies the operator equations mentioned below:

SS#S = S;

S#SS# = S#;

SS# = S#S.

Proposition 1.4.2 Let S ∈ B(H) with the group inverse S# ∈ B(H). Then the

following properties hold true for S#.

(i) If S is invertible then S# = S−1.

(ii) ST # = S#T .

(iii) S∗# = S#∗.

(iv) (S#)# = S.

(v) For l ∈ N, (Sl)# = (S#)l.
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1.5 Iterative Methods using Splitting of Operators and Monotonicity

Example 1.4.3 Consider the subset of class of matrices Rn×n as defined below.

G = {S ∈ Rn×n : S = βT, 0 ̸= β ∈ R, T = (aij), aij = 1, i, j ∈ 1, 2, ..., n}

In this case, G forms a multiplicative group. The multiplicative identity of G is

E = 1
n
T. If S = βT, β ̸= 0, then the group inverse of S is S# = 1

βn2 T.

1.5 Iterative Methods using Splitting of Operators

and Monotonicity

In the study of general system theory, mechanics, control theory, applied mathemat-
ics, economics et cetera, an important role is to solve linear systems of algebraic
equations. Iterative methods are the most popular methods used to solve linear sys-
tems Sx = b. This idea was proposed by Gauss in 1823. The history of iterative
techniques was given by Varga (see pages 1-2, [66]). For a matrix S, there are sev-
eral iterative methods available, direct method like Gaussian elimination; iterative
methods such as Jacobi method and Gauss-Seidel method which depend on de-
composition of S into diagonal, lower triangular, upper triangular matrices to get
iteration matrix. Initially, iterative methods are developed to solve integral opera-
tors. Gradually, it is extended to find the solution via generalized inverses of operator
equations on Hilbert space and Banach space. To name few, steepest descent method
[53], conjugate gradient method [28], and iterative methods by splitting of operator
were discussed in [41]. A large and growing body of literature has investigated that
for any iterative method, the standard convergence condition is the spectral radius
of the iteration matrix/operator is less than one.

Suppose the matrix S is large in size and sparse, we prefer to apply iterative
method rather than direct method. The iterative method has an advantage that
during the computation, the initial matrix S is not altered. Hence the roundoff error
is much less serious. Simplicity is another advantage of such method because in
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1.5 Iterative Methods using Splitting of Operators and Monotonicity

computation we have to do only vector addition and matrix-vector multiplication.
The drawback with these methods are the rate of convergence may be slow or the
method may even diverge, and in such case we need to find a stopping test. The
theory of splittings is the major topic in the study of iterative approches. Therefore,
it is essential to study the theory of splittings. Consider a real n×n matrix S which is
decomposed to S = U −V. If U is invertible then a decomposition S = U −V is called
splitting. But, in this thesis, splitting means simply a decomposition of operator into
difference of two operators. In analysis of iterative methods, splitting of a matrix is
considered to study the convergence of iterative schemes to get the solutions of linear
systems.

Let Sx = b be the linear system of algebraic equation. Consider the splitting
S = U − V, with U invertible. This splitting is used to associate S to an iterative
method

Uxk+1 = V xk + b, k ∈ N0

where N0 = N ∪ {0}. This can be modified to iteration scheme

xk+1 = (U−1V )xk + U−1b, k ∈ N0.

In the above method, we call U−1V as iteration matrix/operator. The above iteration
scheme converges to the solution if the spectral radius of iteration matrix U−1V is
less than one and vice versa. Many results in literature shows that for certain kind of
splittings of S, spectral radius of U−1V is less than one if and only if S is monotone.
A real square matrix S is monotone if Sx ≥ 0 implies x ≥ 0. Here x = (xj) ≥ 0
means that xj ≥ 0 for all j ∈ {1, 2, ..., n}. If the matrix is rectangular or singular, the
analogous iterative scheme is obtained for the system Sx = b as follows: Let S† be
the generalized inverse of S, and with the splitting S = U − V. Then, we can write

Uxk+1 = V xk + b, k ∈ N0

Since U is non-invertible, we can simplify as below:

xk+1 = (U †V )xk + U †b, k ∈ N0.
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1.6 Outline of the Thesis

Above iterative methods are governed by convergence factor of the spectral radius
of an iteration matrix r(U †V ) = max{|λ|, λ ∈ σ(U †V ), λ ̸= 1}. The history of above
scheme goes back to Berman and Plemmons [5], who proved that the above iterative
scheme converges to the solution if spectral radius of r(U †V ) < 1 and vice versa. Also,
it is shown that r(U †V ) < 1 if and only if S is monotone operator. Monotonicity
plays an important role in convex optimization, stochastic processes and numerical
analysis (ref. [5],[66],[11]).

The first systematic study of monotone matrix was reported by Collatz in [11]
while discussing the initial and boundary value problems. He points out that, a
matrix is monotone if and only if matrix is invertible and the inverse of the matrix
is nonnegative. Equivalently, matrix S is monotone if and only if S is positively
invertible. Gil investigated the case of positive invertibility of integral operators over
separable Hilbert lattices ( [22], [20] ). To obtain the necessary and/or sufficient
conditions for the monotonicity of matrices much work has been made by several
authors [21], [45], [19], [5]. Positive invertibility of matrices is characterized by Peris
[58] which involve the splitting of matrices. Later it is called B-splitting. In addition
to this result, Weber ([69], [70]) proved condition for positive invertibility of the
operator with certain spectral property and positive splittings of an operator on
ordered Banach space. This idea is used to obtain the cone nonnegativity of the
Moore-Penrose inverses for operators on Hilbert spaces by authors Kurmayya and
Sivakumar [49]. The topics discussed in the current thesis are motivated by the
above mentioned problems.

1.6 Outline of the Thesis

The thesis is organized in the following way: In chapter 2, we discuss the Drazin
inverse of bounded linear operators over Banach space. Nonnegative Drazin inverse
with historical note are discussed in 2.1. Some basic results to define the index
splitting and results on cone nonnegative operators are given in 2.2, which are used
in the main part of the chapter. Next, in section 2.3 we introduce the index splitting
of an operator and Drazin monotonicity. We categorize the index splitting of “first
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1.6 Outline of the Thesis

type ” and “second type .” Theorem 2.3.2 gives the convergence conditions for the
solution of algebraic linear system of equations with the help of first type method
of index splitting. In section 2.4, the main characterization of Drazin monotonicity
is given. Further, in Theorem 2.4.1 we present the main results on characterization
of Drazin monotonicity of bounded linear operator over ordered Banach space where
order is being induced by a cone. We illustrate them with suitable examples in section
2.5.

In chapter 3, we present the different types of splittings of non-invertible bounded
linear operator on Hilbert space with closed range. Section 3.1, deals with the intro-
duction to the chapter. Section 3.2 contains the preliminary results of the chapter.
In section 3.3, we give definition of proper splitting on Hilbert space, different con-
ditions for splitting of non-invertible operator S and conditions to form B†-splitting.
In section 3.4, we present the construction methods to obtain the B†-splitting of an
operator with suitable examples. We provide the analogous theorem for group inverse
of bounded operators.

In chapter 4, we discuss the unbounded Gram operators and cone nonnegativity
characterizations of Moore–Penrose inverses. In particular, we consider the closed
densely defined linear operator on ordered Hilbert space. This characterization is
based on acuteness and obtuseness of a cone. Section 4.1 gives the introduction to
the chapter with related literature review. In section 4.2 we present the preliminary
results of the chapter. In section 4.3 we prove the main result with the help of
sequence of lemmas. Illustrative examples are provided in section 4.4.

Finally, we summarize the contents of the thesis with conclusion, future work and
present a list of references.
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Chapter 2

A Characterization of Drazin

Monotonicity of operators on

Banach space

2.1 Introduction

In this chapter1, we focus on the index splitting of a bounded linear operator on
Banach space and characterize the cone nonnegativity of Drazin inverse of bounded
linear operators defined on an ordered Banach space.

The theory of splitting of operators and matrices, apart from being a useful tool
in convergence analysis of the iterative scheme, also provides interesting comparison
results. Pye [59] investigated the class of nonnegative matrices which have a nonneg-
ative Drazin inverse, obtained necessary and sufficient conditions for a real matrix
to have nonnegative Drazin inverse. An interesting result derived by Eiermann et
al. [15], for a square matrix S, where (I − S) is possibly singular, the necessary and

1The contents of this chapter have been published as a research article under the same title, in
The Journal of Analysis, 2023, https://doi.org/10.1007/s41478-023-00567-6



2.2 Preliminary Results

sufficient conditions implying that a semiiterative method tends to a solution vector
which can be described in terms of the Drazin inverse of (I − S). In [2], authors in-
troduced a few matrix spliting arising from index-proper splittings and studied their
convergence results as well as applications to multisplitting theory. Jena and Pani
[38] introduced the notion of interval Drazin monotonicity. Then characterized in-
terval Drazin monotonicity using the notion of interval boundedness. Also, proved
that nonnegative decomposition satisfying an eigenvalue property implies that non-
negativity of Drazin inverse. In [43], one can see different applications of nonnegative
Drazin inverse and Group inverse.

Wei [73] introduced the method of index splitting to solve the non-invertible linear
system Sx = b where S ∈ Rn×n. He continued the same study to characterize the
nonnegativity conditions for Drazin inverse based on the index splitting of matrices
[74].

In [10], the method of index splitting was generalized to bounded linear operator
over Banach space where the index of an operator is assumed to be k. For this
type of splitting, iterative method can be established for computing the solution
of non-invertible operator equation Sx = b, b ∈ R(Sk) and ind(S) = k. In [10],
index splittings with different conditions on range and null space of an operator with
index k are observed. Since this type of splittings occur frequently, these are called
“First type” method of index splittings. In this chapter, we consider both types of
method of index splittings which are defined on Banach space. These findings further
support the idea of characterization of the cone nonnegativity condition for Drazin
inverse (that is, Drazin monotonicity) over ordered Banach space. The motivation
for this characterization comes from the classical results of [5]. The results from the
monograph [45], helped to understand the ordered Banach space and prove the results
of this chapter.

2.2 Preliminary Results

In this chapter, we consider the ordered Banach space X = (X, C) with order being
induced by the cone C. An operator S ∈ B(X) be bounded linear operator from X
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into itself with closed range R(Sk) and ind(S) = k. We recall the definition of Drazin
inverse of bounded operator over Banach space.

Definition 2.2.1 Drazin Inverse: Let S ∈ B(X). For some nonnegative integer

k, If there exists X ∈ B(X) which satisfies the conditions: SXSk = Sk; XSX = X;

SX = XS; then such operator B is said to be Drazin inverse of S and denoted by

SD. The smallest such integer k is called index of S and denoted by ind(S) = k. If

ind(S) = 1 then Drazin inverse is called group inverse and denoted by S#.

If S ∈ B(X) has a Drazin inverse, then it is unique. The following lemma gives the
conditions for the existence of the Drazin inverse of bounded operator over Banach
space.

Lemma 2.2.1 (Lemma 2.1, [10]) An operator S ∈ B(X) has a Drazin inverse SD

if it has finite ascent and finite descent, vice versa. In this case, α(S) = δ(S) = k =

ind(S) is the smallest nonnegative integer which satisfies the conditions of Drazin

inverse.

The following proposition gives the conditions for Drazin inverse to be continuous
operator(that is, bounded linear operator).

Proposition 2.2.1 (Chapter 12, [68]) Let S ∈ B(X) with ind(S) = k which is

finite. Then there exists Drazin inverse SD ∈ L(X). If R(Sk) is closed subspace then

SD ∈ B(X). Moreover, N(Sk) = N(SD) and R(Sk) = R(SD).

In the rest of this section, we collect some results that will be used in the main
results of this chapter.

Lemma 2.2.2 Suppose S ∈ B(X). Then for nonnegative integers i, j there exists an

algebraic isomorphism ∼= between subspaces such that

R(Si)
R(Si+j)

∼=
X

R(Sj) + N(Si)
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Theorem 2.2.2 (Theorem 2.1, [10]) Let S ∈ B(X). For operator S, ind(S) = k if

k = min{l : R(Sl) ⊕ N(Sl) = X} and vice versa.

Proof If ind(S) = k, then from Lemma 1.3.4 and Lemma 2.2.1 we have

R(Sk) ⊕ N(Sk) = X.

Then there is a nonnegative integer p ≤ k such that

R(Sp) ⊕ N(Sp) = X.

From this, N(Sp) = N(Sp+1). Suppose a contrary that N(Sp) ̸= N(Sp+1). We have
N(Sp) ⊂ N(Sp+1), so there exists a x ∈ X such that x ∈ N(Sp+1) but x /∈ N(Sp),
that is Sp+1x = 0 but Spx ̸= 0. Let b = Spx ∈ R(Sp), then Spb = S2pb = 0. That
is b ∈ N(Sp). Thus 0 ̸= b = Spx ∈ R(Sp) ∩ N(Sp) = {0} is a contradiction. From
N(Sp) = N(Sp+1) we have N(Sp) = N(Sp+l), for all l ∈ N. Consequently, α(S) ≤
p ≤ k. Meanwhile, from the Lemma 2.2.1, α(S) = ind(S) = k ≥ p. Hence, either
k is the minimum non-negative integer or p = k which satisfies the decomposition
R(Sk) ⊕ N(Sk) = X.

Conversely, assume k = min{l : R(Sl) ⊕ N(Sl) = X}. By reiterating the above,
we get α(S) ≤ k. In Lemma 2.2.2, consider the equality of k = i = j, we obtain

R(Sk)
R(S2k)

∼=
X

R(Sk) + N(Sk)

Since N(Sk) + R(Sk) = X, we get R(Sk) = R(S2k). Note that R(Sk) ⊃ R(Sk+1) ⊃
R(Sk+2) ⊃ ... ⊃ R(S2k). So, R(Sk) = R(Sk+1) = R(Sk+2) = ... = R(S2k). Hence
R(Sk) = R(Sk+l) for l ∈ N. So, δ(S) ≤ k. From Lemma 2.2.1, we obtain k =
ind(S) = α(S) = δ(S). If ind(S) = p < k, then R(Sp) ⊕ N(Sp) = X, which is a
contradiction to the given definition of k. Hence ind(S) = k.

The following lemma describes the Drazin inverse solution to the singular operator
equation.
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Lemma 2.2.3 Consider S ∈ B(X) be non-invertible operator with ind(S) = k. Then

x = SDb is the unique solution of the linear system

Sx = b, x ∈ R(Sk).

Proof Consider a solution x given by an equation x = Sky for some y. We can write
Sk+1y = b, and

x = Sky = Sk+1SDy

= SDSk+1y

= SDb.

Uniqueness of the solution is follows from R(Sk) ∩ N(Sk) = {0}.

We discussed the positive invertible operator over ordered vector space in Defi-
nition 1.3.22. Suppose the operator S ∈ B(X) is singular and there exists a Drazin
inverse SD ∈ B(X) as a generalized inverse of S. Then similar to the positive invert-
ibility, the definition of Drazin monotonicity will be given as follows:

Definition 2.2.3 Drazin Monotonicity. Consider a Banach space X = (X, C)

be ordered by a cone C. An operator S ∈ B(X) with ind(S) = k and SD exists.

Operator S is said to be Drazin monotone with respect to the cone C in H if SDC ⊆ C.

Taylor and Lay [64] proved that r(S) = limn→∞|Sn| 1
n , where S ∈ B(X). By using

this fact, the following lemma can be derived.

Lemma 2.2.4 Suppose S ∈ B(X). Then lim
n→∞

Sn = 0 if and only if r(S) < 1.

Next, we state two theorems from [45], which will be helpful to prove the main
results of this chapter.
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Theorem 2.2.4 Consider X = (X, C) be a Banach space ordered by a cone C.

Defined an operator S ∈ B(X) such that S ≥ 0. Then r(S) < 1 implies (I −S)−1 ≥ 0.

Moreover, if the cone C is normal and generating, the existence of (I − S)−1 and

(I − S)−1 ≥ 0 implies that r(S) < 1.

Theorem 2.2.5 Consider a Banach space X = (X, C) ordered by a cone C which is

normal and reproducing. Let S, T ∈ B(X) such that

−Tx ≤ Sx ≤ Tx for x ∈ C.

Then r(S) ≤ r(T ).

2.3 Index Splitting of Operators over Banach Space

In this section, we define the two types of index splittings of bounded linear operators
and the relevant results. Let S ∈ B(X) be non-invertible operator with ind(S) = k

and R(Sk) be closed subspace of X. Consider the splitting S = U − V of S such that
U, V ∈ B(X). This splitting can be classified into two types depending on ind(U).
The following is the definition of first type.

Definition 2.3.1 First type method of Index splitting: Let S ∈ B(X) with

ind(S) = k. The splitting S = U − V is called first type method of Index splitting, if

it satisfies the conditions R(Uk) = R(Sk) and N(Uk) = N(Sk).

The following theorem [10] gives the Drazin inverse formula for first type method
of index splitting. This is used to prove the main result.

Theorem 2.3.2 Consider S ∈ B(X) with ind(S) = k. The splitting S = U − V

being an index splitting of S satisfies R(Uk) = R(Sk), N(Uk) = N(Sk). Then
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2.3 Index Splitting of Operators over Banach Space

(a) ind(U) = k.

(b) SD = (I − UDV )−1UD.

(c) There is an iteration scheme

x(n+1) = UDV x(n) + UDb, for n ≥ 0

which converges to SDb for all initial vector x(0) ∈ X if and only if r(UDV ) < 1.

Proof (a) Given that R(Uk) = R(Sk) and ind(S) = k. From Theorem 2.2.2, we get
ind(U) = ind(S) = k.

(b) First we show that I −UDV is invertible. Assume that for p ∈ X, (I −UDV )p = 0.

Then p = UDV p ∈ R(UD) = R(Uk) = R(Sk). Meanwhile, we get

0 = UDU(I − UDV )p
= (UDU − UDUUDV )p
= UD(U − V )p
= UDSp

which gives Sp ∈ N(UD) = N(Uk) = N(Sk) and gives p ∈ N(Sk+1). Note that
α(S) = ind(S) = k, which gives N(Sk) = N(Sk+1). Hence p ∈ N(Sk). Therefore
p ∈ N(Sk) ∩ R(Sk) = {0}, that is, p = 0. So N(I − UDV ) = {0}. Hence I − UDV is
invertible. Now consider

(I − UDV )SD =SD − UD(U − S)SD

=SD − UDUSD + UDSSD

=SD − SD + UD

=UD

Hence we obtain the expression for Drazin inverse SD = (I − UDV )−1UD.
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(c) The iteration scheme

x(n+1) = UDV x(n) + UDb, for n ≥ 0

will converge to the solution SDb for every initial vector x(0) ∈ X. The solution is

SDb = UDV SDb + UDb.

The error term is given by

x(n+1) − SDb =UDV x(n) + UDb − (UDV SDb + UDb)
=UDV (x(n) − SDb)
=(UDV )n+1(x(0) − SDb).

By assumption, we have for each initial vector x(0), the nth iteration term x(n) con-
verges to SDb. Hence we obtain lim

n→∞
(UDV )n = 0. Then by Lemma 2.2.4, we get

r(UDV ) < 1.

Conversely, by reiterating the scheme, we get

x(n+1) = UDV x(n) + UDb = ... = (UDV )n+1x(0) +
n∑

i=0
(UDV )iUDb.

By Lemma 2.2.4, if r(UDV ) < 1, then lim
n+1→∞

(UDV )n+1 = 0 and ∑∞
i=0(UDV )i =

(I − UDV )−1. So x(n+1) converges to (I − UDV )−1UDb = SDb for each x(0) ∈ X.

The special case S is invertible, that is for ind(S) = α(S) = δ(S) = 0 is given in
the corollary.

Corollary 2.3.1 Let S ∈ B(X) be invertible. Consider the splitting S = U − V be

such that U is invertible. Then,

S−1 = (I − U−1V )−1U−1
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2.3 Index Splitting of Operators over Banach Space

and the iteration

x(n+1) = U−1V x(n) + UDb, for n ≥ 0

converges to S−1b for each initial vector x(0) ∈ X if and only if r(U−1V ) < 1.

Remark 2.3.1 The case of above Theorem 2.3.2 reduces to well known proper split-

ting when ind(S) = α(S) = δ(S) = 1 and the operator S ∈ B(H).

Next, we give the definition of second type method of index splitting. In this
type of splitting, operator S has index k but the operator U has the index 1.

Definition 2.3.3 Second type method of index splitting: Let S ∈ B(X) with

ind(S) = k. The splitting S = U − V is called second type method of Index splitting,

if it satisfies the conditions R(U) = R(Sk) and N(U) = N(Sk).

The following theorem gives the convergence criteria of the iterative scheme and
explicit formula for Drazin inverse of an operator S having a second type method of
index splitting. Since, ind(U) = 1, operator U involves with group inverse.

Theorem 2.3.4 Let S ∈ B(X) with ind(S) = k. A splitting

S = U − V

be second type index splitting such that R(U) = R(Sk), N(U) = N(Sk). Then the

following conditions are true.

(a) ind(U) = 1;

(b) SD = (I − U#V )−1U#;
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(c) The iteration scheme

x(n+1) = U#V x(n) + U#b, for n ≥ 0

converges to the solution SDb for every initial vector x(0) ∈ X if and only if

r(U#V ) < 1.

Proof The proof of the theorem is analogous to proof of Theorem 2.3.2.

In the following example, we observe the case of second type of index splitting
for operator on finite dimensional case.

Example 2.3.1 Consider a linear operator S ∈ B(R4), which can be represented by

a matrix

S =



2 4 6 5

1 4 5 4

0 −1 −1 0

−1 −2 −3 −3


where ind(S) = 2, rank(S2) = 2. Choose

U =



1 0 1 1

0 1 1 1

−1
5 −1

5 −2
5 −2

5

−1
5 −1

5 −2
5 −2

5



45



2.4 A Characterization of Drazin Monotonicity

and V = U − S. Since the ind(U) = 1, we get the group inverse of U as

U# =



13 12 25 25

12 13 25 25

−5 −5 −10 −10

−5 −5 −10 −10



and hence SD = (I − U#V )−1U#. So,

SD =



3 −1 2 2

2 1 3 3

−1 0 −1 −1

−1 0 −1 −1



2.4 A Characterization of Drazin Monotonicity

In this section, we state and prove the equivalent conditions for characterization of
the cone nonnegativity of Drazin inverse of bounded linear operators over ordered
Banach space, where order is induced by a cone. The details on the concept of a cone
was discussed in section 1.2.

The Drazin monotonicity seen in the Definition 2.2.3 is characterized for first
type method of index splitting in the following theorem:

Theorem 2.4.1 Consider an ordered Banach space X = (X, C) with normal and

reproducing cone C. Let S ∈ B(X) with ind(S) = k. Let S = U−V be first type method

of Index splitting such that R(Uk) = R(Sk) and N(Uk) = N(Sk). If UD(C) ⊆ C and

UDV ≥0 then the following statements are equivalent:

(i) SD(C) ⊆ C.
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2.4 A Characterization of Drazin Monotonicity

(ii) SDV ≥0.

(iii) r(UDV ) < 1.

Proof We prove the above equivalent conditions as below:

(iii) =⇒ (ii) =⇒ (i) =⇒ (iii).

(iii) =⇒ (ii) : Let r(UDV ) < 1. From Theorem 2.3.2, we have SD = (I −
UDV )−1UD. Consider,

SDV =(I − UDV )−1UDV

=
∞∑

i=0
(UDV )iUDV

=
∞∑

i=1
(UDV )i

Since UDV ≥0 which gives (UDV )i≥0 for all i = 1, 2, 3, .... Hence SDV = ∑∞
i=1(UDV )i≥0.

(ii) =⇒ (i) : Let SDV ≥0. i.e. SDV (C) ⊆ C. Using the given UD(C) ⊆ C and
UDV (C) ⊆ C we obtain

SD(C) =(I − UDV )−1UD(C)

=
∞∑

i=0
(UDV )iUD(C)

⊆
∞∑

i=0
(UDV )i(C)

⊆(C).

Hence SD(C) ⊆ (C) which is merely SD≥0.

(i) =⇒ (iii) : Given that SD≥0. To prove r(UDV ) < 1, first we show that
(I − UDV )−1≥0. Then by the Theorem 2.2.4 we arrive at conclusion. From Theorem
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2.4 A Characterization of Drazin Monotonicity

2.3.2, we have SD = (I −UDV )−1UD. Using the given fact, (I −UDV )−1UD≥0. Since
UD≥0 we get (I − UDV )−1≥0. The identity

(1 − ϵ)I − UDV = (I − UDV )[I − ϵ(I − UDV )−1]

implies that the operator (1 − ϵ)I − UDV is positively invertible for a small ϵ > 0.

So,
[(1 − ϵ)I − UDV ]−1 =

∞∑
i=0

(1 − ϵ)−1(UDV )i

Moreover, the relation

n∑
i=0

(1 − ϵ)−i(UDV )i = (1 − ϵ)[(1 − ϵ)I − UDV ]−1[I − (1 − ϵ)−n−1(UDV )n+1]

implies that
0 ≤ (1 − ϵ)−n(UDV )n ≤ (1 − ϵ)[(1 − ϵ)I − UDV ]−1

for n = 1, 2, ... and small ϵ > 0. From these estimates and Theorem 2.2.5, it follows
that

r[(1 − ϵ)−n(UDV )n] ≤ (1 − ϵ)r{[(1 − ϵ)I − UDV ]−1} = a(ϵ)

Consequently, r(UDV ) ≤ (1−ϵ)[a(ϵ)] 1
n for n = 1, 2, ... Therefore r(UDV ) ≤ 1−ϵ < 1.

Hence all the conditions are equivalent.

Remark 2.4.1 In article [10], we observed second type method of index splitting.

We discuss the results of second type method of index splitting below.

Next, we state the theorem that characterize Drazin monotonicity of bounded
linear operator over ordered Banach space with second type method of Index splitting.

Theorem 2.4.2 Consider an ordered Banach space X = (X, C) with normal and

reproducing cone C. Let S ∈ B(X) with ind(S) = k. Let S = U − V be second type

method of index splitting such that R(U) = R(Sk) and N(U) = N(Sk). If U#(C) ⊆ C

and U#V ≥0 then the following conditions are equivalent.
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(i) SD(C) ⊆ C

(ii) SDV ≥0

(iii) r(U#V ) < 1.

Proof We omit the proof since it is similar to the proof of Theorem 2.4.1.

2.5 Illustrations

In the following example, we illustrate Theorem 2.4.1 for an operator defined on
infinite dimensional ordered Banach space.

Example 2.5.1 Let X = l1(N) = {(xi) : xi ∈ R,
∑∞

i=1|xi|< ∞} be real Banach

space with ||·||1. Define operator S : l1(N) → l1(N) by

S(x1, x2, x3, ...) = (x1, 0, x3, 0, x5, ...)

i.e. (Sx)j =


xj if j odd

0 otherwise
We see that null space N(S) = {(0, x2, 0, x4, ...) ∈ X : xi ∈ R} ̸= ∅ and range space

R(S) = {(x1, 0, x3, 0, x5, ...) ∈ X : xi ∈ R}. We observe that S is a non-invertible

operator and range space is proper closed subspace. From range space and null space

of iterative operator Sn, we have R(S) = R(S2) = R(S3) = ... and N(S) = N(S2) =

N(S3) = ..., respectively. Hence α(S) = δ(S) = ind(S) = 1. By direct computation,

we have SD = S# = S. Consider the cone C = l1
+(N) = {x = (x1, x2, ...) ∈ X : xn ≥

0, ∀ n ∈ N } and C is normal and reproducing cone. With respect to this cone,

X = (l1(N), l1
+(N), ||·||1) is ordered Banach space.
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Next, consider the index splitting S = U − V with Ux = (3x1, 0, x3, 0, x5, 0, ...)

and V = U − S. Then, UDx = UD(x1, x2, x3, ...) = (1
3x1, 0, x3, 0, x5, ...) and

UDV x = UDV (x1, x2, x3, ...)

= (2
3x1, 0, 0, 0, ...).

Hence we can verify that UDV (C) ⊆ C and UD(C) ⊆ C. Also by computation, we get

r(UDV ) = 2
3 < 1. Hence by the equivalent conditions of Theorem 2.4.1, we conclude

that SD(C) ⊆ C that is SD ≥ 0, Drazin monotonicity of S.

Illustration of Theorem 2.4.1 is comparatively easy in the finite dimensional case.
The following example gives the illustration of Theorem 2.4.1 for an operator defined
on finite dimensional ordered Banach space.

Example 2.5.2 Consider the finite dimensional Banach space (R4,R4
+, ||·||2) where

R4
+ be standard positive cone in R4. Define S : R4 → R4 which have a matrix repre-

sentation as shown below.

S =



0 0 1 1

0 5 0 0

0 0 5 0

0 0 0 0


Here ind(S) = 2. Consider first type method of Index splitting, by taking

U =



0 0 2 2

0 10 0 0

0 0 10 0

0 0 0 0



and V = U −S. Here R(U2) = R(S2) and N(U2) = N(S2). Computing UD and UDV
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we get, UD =



0 0 1
50 0

0 1
10 0 0

0 0 1
10 0

0 0 0 0


and UDV =



0 0 1
10 0

0 1
2 0 0

0 0 1
2 0

0 0 0 0


, respectively.

We observe that UD ≥ 0 and UDV ≥ 0. Moreover, r(UDV ) = 1
2 < 1. Hence by

equivalent conditions of Theorem 2.4.1, we conclude that SD(R4
+) ⊆ R4

+ i.e. SD ≥ 0.
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Chapter 3

On B†− Splitting and

Nonnegativity of Moore-Penrose

Inverses of operators

3.1 Introduction

The problem of characterizing positively invertible matrices has been abundantly
studied in the literature (referred here and there in [5]). For instance, Johnson et al.,
([39],[40]) characterized the positive invertibility and inverse nonnegative matrices in
terms of sign patterns of the matrices. The positive invertibility of the matrix S

can be characterized in terms of all positive splittings of S which satisfies eigenvalue
property. Peris [58] investigated the particular positive splitting (which is called
B-splitting) to characterize positively invertible matrix S. Also, he shown that a
matrix is positively invertible if and only if it has a B-splitting satisfying the certain
eigenvalue property.

Theorem 3.1.1 (Theorem 5, [58]) Let S ∈ Rn×n. Then the following assertions are

equivalent:



3.2 Preliminaries

(i) S is inverse-positive.

(ii) S = U − V is the B-splitting such that r(U−1V ) < 1.

Note that, the term “inverse-positive” is used in the literature by many authors.
This term is equivalent to “positive invertibility”. The later term is used in the present
thesis.

Weber [71] considered the more general case of [58]. He considered the positive
splitting of an invertible operator acting on ordered normed space with certain kind of
spectral property; shown the sufficient condition for the operator to be positively in-
vertible and with additional requirements on the operator, it is necessary. Kurmayya
and Sivakumar [49] extended the spectral property result of positive invertible oper-
ators [71] to non-invertible operators in the light of Moore-Penrose inverse as a gen-
eralized inverse. Later, over ordered Banach space, Weber [72] proved that positively
invertible operator S possesses a B-decomposition if there exists a uniformly positive
functional. Mishra and Sivakumar [51] defined the B†-splitting as a generalization of
B-splitting for the non-invertible operators on finite dimensional space ordered by a
standard cone and proved the analogous results [72]. In this article, B−splitting is
generalized from finite dimensional to infinite dimensional and from classical inverses
to generalized inverses. The generalized splitting is called B†−splitting. We discuss
the existence of B†−splitting by characterizing the nonnegativity of Moore-Penrose
inverse of bounded operator over ordered Hilbert space, where order is being induced
by a cone.

3.2 Preliminaries

In this section, we recall the relevant results that will be used in the later sections.
First, we discuss the finite-rank operators.

Definition 3.2.1 (Page no.63,[24]) Let S ∈ B(H1, H2). If range of S is finite di-

mensional, then S is called finite-rank operator. Specifically, if the dimension of the

range space is one, then such operator is called rank-one operator.
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Now, we recall the concepts on non-invertible bounded linear operators over
Hilbert space. For more details on these results refer [4]. For an operator S ∈
B(H1, H2) with closed range, there exists a unique generalized inverse in B(H2, H1),
called the Moore-Penrose inverse and it is denoted by S†.

Definition 3.2.2 Let S ∈ B(H1, H2) with closed range. Then the Moore-Penrose

inverse S† ∈ B(H2, H1) satisfies the following four equations.

SS†S = S

S†SS† = S†

(SS†)∗ = SS†

(S†S)∗ = S†S

Equivalently, SS† = PR(S), S†S = PR(S∗) where P is the projection operator.

The following result is fundamental in the study of operator equation and the
proof follows from the existing results in [4].

Lemma 3.2.1 Let S ∈ B(H1, H2) and b ∈ H2. The system Sx = b has a solution if

and only if SS†b = b. In that case, the general solution is given by x = S†b + z for

some z ∈ N(S).

In the following lemma, the formula for Moore-Penrose inverse of S is given,
which follows the reverse order law with certain conditions.

Lemma 3.2.2 (Page no. 223, [35]) Consider S1 ∈ B(H3, H2) and S2 ∈ B(H1, H3)

with R(S2) = H3 = R(S∗
1). Define S ∈ B(H1, H2) by S = S1S2. Then

S† = S∗
2(S2S

∗
2)−1(S∗

1S1)−1S∗
1

= S†
2S†

1
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A sufficient condition for B+(X, Y ) to be a generating cone is given in the follow-
ing theorem.

Theorem 3.2.3 ([67]) Consider ordered normed spaces X, Y with closed and normal

cones C1, C2 respectively. Suppose Y is a Dedekind complete vector lattice and C2 is

solid. Then the pointed cone B+(X, Y ) is generating in B(X, Y ).

The following theorem gives the condition for the pointed cone B+(X, Y ) to be
solid.

Theorem 3.2.4 ([67]) Consider ordered normed spaces X, Y . The pointed cone

B+(X, Y ) to have a nonempty interior if and only if the cone C2 has interior points

and the cone C1 allow plastering.

Theorem 3.2.5 (Theorem 25.1, [45]) Let X be an ordered Banach space. Consider

S ∈ B(X) be such that S ≥ 0. Then r(S) < 1 implies (I − S)−1 ≥ 0, and conversely,

if cone C is normal and reproducing then the existence of (I −S)−1 and (I −S)−1 ≥ 0

guarantee that r(S) < 1.

Theorem 3.2.6 (Theorem 25.4, [45]) Consider an ordered Banach space X with a

normal cone C which satisfies C◦ ̸= ∅. Let S, T : X → X be two bounded operators

such that T is positively invertible and S ≤ T. Then S is positively invertible if and

only if S(C) ∩ C◦ ̸= ∅.

Remark 3.2.1 Let f is a uniformly positive functional on H1 with δ > 0. That is

f(x) ≥ δ||x|| for all x ∈ C1 and u ∈ C2. For some ϵ > 0 consider the ball B(u, ϵ) ⊂ C2.

Then the ball B(f ⊗ u, δϵ) belongs to B+(H1, H2). As a result, the rank one operator

f ⊗u is an interior point of B+(H1, H2). Additionally, for any operator T ∈ B(H1, H2)

there is a number ζ > 0 such that ±T ≤ ζ(f ⊗u) because any interior point of a cone

is order unit.
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3.3 Splittings of Non-invertible Bounded Opera-

tors over Hilbert Spaces

In this section we introduce B†-splittings for non-invertible bounded linear operator S

defined on ordered real Hilbert space, and prove some results related to such splittings.
First, we recall the definition of proper splitting.

Definition 3.3.1 (Page no. 278, [29]) An operator S ∈ B(H1, H2) with closed range.

A splitting S = U−V is said to be proper splitting if R(S) = R(U) and N(S) = N(U).

Theorem 3.3.2 Let S ∈ B(H1, H2) with closed range. Consider a proper splitting

S = U − V. Then

(i) SS† = UU †; S†S = U †U

(ii) S = (I − V U †)U

(iii) (I − V U †) is invertible.

(iv) S† = U †(I − V U †)−1.

Proof (i) Since R(S) = R(U), we get

SS† = PR(S) = PR(U) = UU †

and
S†S = PR(S∗) = PN(S)⊥ = PN(U)⊥ = U †U

(ii) Since N(S) = N(U) we have N(S) ⊆ N(V ). i.e. R(S∗)⊥ ⊆ R(V ∗)⊥. From this
we obtain R(V ∗) ⊆ R(S∗) = N(S)⊥ = N(U)⊥ = R(U∗). Hence R(V ∗) ⊆ R(U∗)
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implies U †UV ∗ = V ∗. Taking adjoint on both side gives V U †U = V. This
deduces

S = U − V = U − V U †U = (I − V U †)U

The proof of result (iii) is available in [29]. However, for the completeness, the
proof is given here.

(iii) To show (I − V U †) is invertible, it is sufficient to show that ’1‘ is not an
eigenvalue of V U †. If (I − V U †)x = 0 for some nonzero vector x, then x =
V U †x ∈ R(V ) ⊆ R(S) = R(U). Also, x ∈ R(U) implies that x = UU †x.

Therefore, x = V U †x = (U − S)U †x = UU †x − SU †x = x − SU †x which
gives x = x − SU †x. Hence SU †x = 0. This implies U †x ∈ N(S) = N(U). So,
UU †x = x = 0 which is a contradiction for x is an eigenvector with eigenvalue
1. Hence (I − V U †) is invertible.

(iv) Let S = S1S2 where S1 = (I − V U †) and S2 = U. Since R((I − V U †)∗) = H2 =
R(U) = R(S) and from Lemma 3.2.2 we get

S† = S†
2S†

1

= U †(I − V U †)−1

We begin with the definition of B†-splitting.

Definition 3.3.3 Let S ∈ B(H1, H2) with closed range and H1 = (H1, C1) and H2 =

(H2, C2). A proper splitting S = U − V is called a B†-splitting if it satisfies the

following conditions.

(i) U ≥ 0 i.e. UC1 ⊆ C2

(ii) V ≥ 0 i.e. V C1 ⊆ C2

(iii) V U † ≥ 0 i.e. V U †C2 ⊆ C2

(iv) Sx, Ux ∈ C2 + N(S∗) and x ∈ R(S∗) =⇒ x ∈ C1.
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Theorem 3.3.4 Let S ∈ B(H1, H2) with closed range and H1 = (H1, C1), H2 =

(H2, C2) with cone C1 be solid and normal cone. Consider the following conditions.

(i) S†C2 ⊆ C1

(ii) Sx ∈ C2 + N(S∗), x ∈ R(S∗) =⇒ x ∈ C1.

(iii) C2 ⊆ SC1 + N(S∗)

(iv) ∃ x0 ∈ C1 ∩ R(S∗) and z0 ∈ N(S∗) such that Sx0 + z0 ∈ C◦
2 .

Then we have (i) ⇐⇒ (ii) =⇒ (iii) =⇒ (iv).

Suppose S has a B†-splitting, then each of the above is equivalent to the following.

(v) r(V U †) < 1.

Proof (i) =⇒ (ii): Let Sx ∈ C2 + N(S∗), x ∈ R(S∗). Given that S†C2 ⊆ C1.

x = S†Sx = S†(u + v) = S†u + S†v where u ∈ C2, v ∈ N(S∗). Since N(S∗) = N(S†)
we get x = S†Sx = S†u ∈ C1. Hence S†Sx = x ∈ C1.

(ii) =⇒ (i): Let Sx = u + v, u ∈ C2, v ∈ N(S∗). Take u = Sx − v and operate
S† on both side, we get S†u = S†(Sx − v) = S†Sx − S†v = x − 0 = x ∈ C1. Hence
S†C2 ∈ C1.

(ii) =⇒ (iii): Let y ∈ C2 and set x ∈ S†y. Then x ∈ R(S∗). By Lemma 3.2.1,
the general solution of S†y = x is y = Sx + r, r ∈ N(S∗). So, Sx = y − r ∈
C2 + N(S∗). From (ii), x ∈ R(S∗) and x ∈ C1. Hence, y ∈ SC1 + N(S∗). Therefore,
C2 ⊆ SC1 + N(S∗).
(iii) =⇒ (iv): Let u0 ∈ C◦

2 implies u0 ∈ C2. By hypothesis (iii), ∃ x0 ∈ C1 and
z0 ∈ N(S∗) such that Sx0 + z0 = u0. Hence, Sx0 + z0 ∈ C◦

2 .

(iv) =⇒ (v): Let S = U − V be a B†-splitting of S. Then, R(S) = R(U), N(S) =
N(U) and U ≥ 0, V ≥ 0, V U † ≥ 0 and Sx, Ux ∈ C2 + N(S∗) and x ∈ R(S∗)
implies x ∈ C1. We have I ∈ B(H2) and it is positively invertible and I − V U † ≤ I.

Now, if we show (I − V U †)C2 ∩ C◦
2 ̸= ∅ then by Theorem 3.2.6, we get I − V U † is

58



3.3 Splittings of Non-invertible Bounded Operators over Hilbert Spaces

positively invertible. From given (iv), ∃ some x0 ∈ C1 and z0 ∈ N(S∗) such that
Sx0 + z0 ∈ C◦

2 ⊆ C2. Set w0 = Ux0 + z0 where z0 ∈ N(S∗) = N(U∗). Then

w0 = Ux0 + z0

= (S + V )x0 + z0

= Sx0 + z0 + V x0

Since V ≥ 0, x0 ∈ C1 implies V x0 ∈ C2 and Sx0 + z0 ∈ C2 gives w0 ∈ C2. Further,
from z0 ∈ N(S∗) = N(U∗) = N(U †) we have (I − V U †)z0 = z0. Hence,

(I − V U †)w0 = (I − V U †)(Ux0 + z0)
= (I − V U †)Ux0 + (I − V U †)z0

= Sx0 + z0 ∈ C◦
2 .

Thus, (I − V U †)C2 ∩ C◦
2 ̸= ∅. This shows operator (I − V U †) is positively invertible.

From V U † ≥ 0, (I−V U †)−1 ≥ 0 and by Theorem 3.2.5, we conclude that r(V U †) < 1.

(v) =⇒ (ii): Given that r(V U †) < 1. Suppose Sx ∈ C2 + N(S∗) and x ∈ R(S∗). If
we show Ux ∈ C2 + N(S∗), then from condition (iv) of B†-splitting we get x ∈ C1.

Let Sx = p + q, p ∈ C2, q ∈ N(S∗). From S = (I − V U †)U and (I − V U †) invertible,
we have U = (I − V U †)−1S.

Ux = (I − V U †)−1Sx

= (I − V U †)−1(p + q)
= (I − V U †)−1p + (I − V U †)−1q

= r + s

Since (I − V U †)−1 ≥ 0 and p ∈ C2 we get r = (I − V U †)−1p ∈ C2. Also, q ∈ N(S∗) =
N(U∗) = N(U †) yields

0 = S†q = U †(I − V U †)−1q = U †s
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which implies s ∈ N(U †) = N(U∗). Thus, we conclude Ux = r + s ∈ C2 + N(U∗) ∈
C2 + N(S∗) Therefore, Sx, Ux ∈ C2 + N(S∗), x ∈ R(S∗) implies x ∈ C1.

3.4 Construction Method of B†-Splitting with Ex-

amples

The following theorem provide the conditions for an operator to have a B†-splitting
and in proof we can see the construction of B†-splitting.

Theorem 3.4.1 Let S ∈ B(H1, H2) with closed range and H1 = (H1, C1), H2 =

(H2, C2) where cone C1 be closed, normal, allows plastering and cone C2 be normal,

reproducing, C◦
2 ∩ R(S) ̸= ∅. Further, S = U − V be a proper splitting with S† ≥ 0

and S†S ≥ 0. Then S possesses a B†-splitting such that r(V U †) < 1.

Proof Let u ∈ C◦
2 ∩ R(S) be fixed interior point and f ∈ H

′
1 be fixed uniformly

positive functional on H1. Define an operator f ⊗ u : H1 → H2 by f ⊗ u = uT · f

which is a rank-one operator. The conditions on the cone in ordered Hilbert space
gives that a positive operator f ⊗ u is an interior point of B(H1, H2). For some real
scalar α > 0, define an arbitrary operator T : H2 → H2 by

T = 1
α + f(S†uT )(f ⊗ u)S†

Since α > 0, f(S†uT ) > 0 and S† ≥ 0 we get TC2 ⊆ C2. Now, to show r(T ) < 1, for
eigenvalue λ ̸= 0, consider Tx = λx.

1
α + f(S†uT )(f ⊗ u)S†x = λx

which implies
uT · f(S†x)
α + f(S†uT ) = λx.

60



3.4 Construction Method of B†-Splitting with Examples

Hence f(S†x)
α+f(S†uT )u

T = λx. i.e. βuT = λx where β = f(S†x)
α+f(S†uT ) . Substitute x = β

λ
uT in

β expression to deduce eigenvalue λ, we get λ = f(S†uT )
α+f(S†uT ) and 0 < λ < 1. Hence all

the eigenvalues less than one and so r(T ) < 1.

From T ≥ 0, r(T ) < 1, we can apply Theorem 3.2.5 and obtain (I − T )−1 ≥ 0. Also,
(I − T )−1 = ∑∞

k=0 T k. Using the method of induction, we have T k+1 = λkT for k ≥ 0.

So,
(I − T )−1 =

∞∑
k=0

T = I +
∞∑

k=0
λkT.

Since λ < 1, using the sum of geometric series we get ∑∞
k=0 λk = α+f(S†uT )

α
.

(I − T )−1 = I + α + f(S†uT )
α

T

(I − T )−1S = (I + α + f(S†uT )
α

T )S

= S + 1
α

(f ⊗ u)S†S

Choose α such that αζ ≤ 1 and from Remark 3.2.1, ±S ≤ ζ(f ⊗ u) and this implies
0 ≤ S+ζ(f ⊗u)S†S. Hence, (I −T )−1S = S+ζ(f ⊗u)S†S ≥ 0. Set U = (I −T )−1S =
S + 1

α
(f ⊗ u)S†S ≥ 0 and V = TU ≥ 0. With the above setting of U and V , the

splitting S = U −V is a positive splitting. Also, R(T ) ⊆ R(S). Let x0 ∈ R(U), Uy0 =
x0. Hence (I − T )x0 = (I − T )Uy0 = Sy0 implies x0 ∈ R(S). i.e. R(U) ⊆ R(S). From
U = (I − T )−1S we get R(S) ⊆ R(U) which follows R(S) = R(U). To verify the
condition N(S) = N(U), consider x0 ∈ N(S) i.e. Sx0 = (U −V )x0 = (I −T )Ux0 = 0.

implies x0 ∈ N(U) which gives N(S) ⊆ N(U). Similarly, N(U) ⊆ N(S). Hence
R(U) = R(S) and N(U) = N(S), the splitting S = U − V is a proper splitting with
this setting.
We have R(T ∗) ⊆ R(S) = R(U). This implies UU †T ∗ = T ∗. Taking adjoint of
operators on both side, we get TUU † = T. i.e. V U † = T ≥ 0. Therefore V U †C2 ⊆ C2.

This proves V U † ≥ 0.

From Theorem 3.4.1, S† ≥ 0 gives Sx ∈ C2 +N(S∗), x ∈ R(S∗) implies x ∈ C1. Since
R(S) = R(U), Ux ∈ C2 + N(S∗). Hence the last condition of B†-splitting Sx, Ux ∈
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C2 + N(S∗), x ∈ R(S∗) implies x ∈ C1 is satisfied. Moreover, r(V U †) = r(T ) < 1.

Hence with the above splitting operator S possesses a B†-splitting with r(V U †) < 1.

Next, we give examples for B†-splitting based on above Theorem 3.4.1, which is
constructive in nature.

Example 3.4.1 Consider the Hilbert spaces H1 = l2, H2 = Rn, respectively. The

cone on H1 and H2 be C1 = l2
+ = {x ∈ l2 : xi ≥ 0, ∀i} and C2 = Rn

+, respectively. An

operator S : l2 → Rn be defined by

S(x1, x2, ..., xn, ...) =
n∑

i=1
xi(1, 1, ..., 1)

The range is finite dimensional, so it is closed subspace and S is non-invertible op-

erator. The adjoint S∗ : Rn → l2 defined by

S∗(x1, x2, ..., xn) =
n∑

i=1
xi(1, 1, ..., 1, 0, 0, ...)

By computation, the Moore-Penrose inverse of operator S is S† = 1
n2 S∗. Also, S†Rn

+ ⊆

l2
+ and S†S ≥ 0. Cone C1 is closed, normal, allows plastering and C2 is normal,

reproducing with C◦
2 ∩ R(S) ̸= ∅.

Since Rn
+ is solid cone, we have u = (1, 1, ..., 1) is a point in interior of (Rn

+) and

R(S).

Define uniformly positive functional f : l2 → R by

f(x1, x2, ..., xn, ...) = x1 + x2 + ... + xn.
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Hence we can represent f as f = (1, 1, ..., 1).

S†uT = 1
n2 S∗uT

= 1
n2 S∗(1, 1, ..., 1)T

= 1
n

(1, 1, ..., 1, 0, 0, ...)T

f(S†uT ) = f( 1
n
(1, 1, ..., 1, 0, 0, ...)T ) = n

n
= 1.

The rank-one operator f ⊗ u : l2 → Rn is given by

f ⊗ u = uT · f =



1

1
...

1


·

[
1 1 · · · 1 0 0 · · ·

]
=



1 1 · · · 1 0 0 · · ·

1 1 · · · 1 0 0 · · ·

... ... . . . ... ... ... ...

1 1 · · · 1 0 0 · · ·


Choose the value of ζ such that −S ≤ ζ(f ⊗ u) is satisfied.

We decompose operator S satisfies the B†-splitting using the following construction

method. Define Tα : Rn → Rn by

Tα = 1
f(S†u) + α

(f ⊗ u)S†

where the constant α satisfies the condition αζ ≤ 1. In particular, let ζ = 1
2 and

hence α = 2. The representation of Tα=2 with respect to standard basis of Rn is

Tα=2 =



1
3n

1
3n

· · · 1
3n

1
3n

1
3n

· · · 1
3n

... . . . ... ...
1

3n
1

3n
· · · 1

3n


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Then

I − Tα=2 =



1 − 1
3n

1
3n

· · · 1
3n

1
3n

1 − 1
3n

· · · 1
3n

... . . . ... ...
1

3n
1

3n
· · · 1 − 1

3n


(I − Tα=2) is invertible and its inverse is given by

(I − Tα=2)−1 =



2n+1
2n

2n+1
2n

· · · 2n+1
2n

2n+1
2n

2n+1
2n

· · · 2n+1
2n

... . . . ... ...
2n+1

2n
2n+1

2n
· · · 2n+1

2n



Let U = (I − Tα=2)−1S and V = Tα=2U

U = (I − Tα=2)−1S

=



2n+1
2n

2n+1
2n

· · · 2n+1
2n

2n+1
2n

2n+1
2n

· · · 2n+1
2n

... . . . ... ...
2n+1

2n
2n+1

2n
· · · 2n+1

2n


(

n∑
i=1

xi)



1

1
...

1



= 3
2

n∑
i=1

xi



1

1
...

1


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V = Tα=2U =



1
3n

1
3n

· · · 1
3n

1
3n

1
3n

· · · 1
3n

... . . . ... ...
1

3n
1

3n
· · · 1

3n


(3
2

n∑
i=1

xi)



1

1
...

1



= 3
2(

n∑
i=1

xi)



1
3n

+ 1
3n

+ · · · + 1
3n

1
3n

+ 1
3n

+ · · · + 1
3n

...
1

3n
+ 1

3n
+ · · · + 1

3n



= 1
2(

n∑
i=1

xi)



1

1
...

1



So, S = U − V with U ≥ 0, V ≥ 0, and V U † ≥ 0 and Sx, Ux ∈ C2 + N(S∗) x ∈ C1.

Therefore S possesses a B†-splitting with r(V U †) < 1.

Remark 3.4.1 It is noted that, we can obtain different U and V which satisfies the

B†-splitting of S with different choices of α satisfies the condition αζ ≤ 1.

Example 3.4.2 Let H = l2(N). Define operator S : l2(N) → l2(N) by

S(x1, x2, x3, ...) = (x1, 0, x3, 0, x5, ...)

i.e. (Sx)j =


xj if j odd

0 otherwise
The null space and range are N(S) = {(0, x2, 0, x4, ...) ∈ H : Sx = 0} ≠ ∅ and
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R(S) = {(x1, 0, x3, 0, x5, ...) ∈ H}, respectively. Operator S is non-invertible operator

and range space is closed subspace. Also, by computation S = S†. Consider a cone

C = {x ∈ H : x1 ≥ xn, xn ≥ 0 ∀ n ≥ 2, }. Cone C is solid, normal and allow

plastering. Also, S†C ⊆ C, S†S ≥ 0. Hence the conditions for S to possess B†-

splitting are satisfied. Let the point u = (1, 0, 0, 0, ...) ∈ C◦. Define uniformly positive

functional f : l2(N) → R by

f(x1, x2, .., xn, ...) = x1 + x2 + ... + xn.

It can be represented by f = (1, 1, 1, ..., 1, 0, 0, ...). Hence the rank-one operator

f ⊗ u = uT · f

=



1

0

0
...


[
1 1 1 · · · 1 0 0 · · ·

]

We represent rank-one operator by orthonormal basis.

f ⊗ u =
[
e1 e1 e1 · · · e1 0 0 · · ·

]

Consider α such that −S ≤ ζ(f ⊗ u) and αζ ≤ 1. Take ζ = 2 and so α = 1
2 .

For α = 1
2 , define operator T : l2(N) → l2(N) by

Tα = T 1
2

= 1
f(S†uT ) + α

(f ⊗ u)S†

Computing S†uT = S†(1, 0, 0, ...)T = (1, 0, 0, ...)T and

f(S†uT ) = f(1, 0, 0, ...) = 1.
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After substitution of values in T 1
2

we get

T 1
2

= 1
1 + 1

2

[
e1 e1 e1 · · · e1 0 0 · · ·

] [
e1 0 e3 0 e5 0 · · ·

]

= 2
3

[
e1 0 0 · · ·

]

I − T 1
2

=
[
e1 e2 e3 · · ·

]
−

[
2
3e1 0 0 · · ·

]
=

[
1
3e1 e2 e3 · · ·

]

Hence (I − T 1
2
)−1 =

[
3e1 e2 e3 · · ·

]
Computing U and V with orthonormal basis representation we get,

U = (I − T 1
2
)−1S

=
[
3e1 e2 e3 · · ·

] [
e1 0 e3 0 e5 · · ·

]
=

[
3e1 0 e3 0 e5 · · ·

]

and

V = T 1
2
U

=
[

2
3e1 0 0 · · ·

] [
3e1 0 e3 0 e5 · · ·

]

Hence U − V = S with this construction. We see that U ≥ 0, V ≥ 0, and V U † ≥ 0.

The condition Sx, Ux ∈ C2 + N(S∗) implies x ∈ C1 is satisfied. Hence S = U − V is

a B†-splitting with r(V U †) = 2
3 ≤ 1.
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Chapter 4

Cone Nonnegativity of

Moore–Penrose Inverses of

Unbounded Gram Operators

4.1 Introduction

In this chapter1, we characterize the cone nonnegativity of the Moore-Penrose inverse
of Gram operators which are linear and unbounded. This characterization extends
the results of [62] from bounded linear operators to unbounded linear operators.

Let us review the results which provide a motivation to the results of this chapter.
The obtuseness of the standard cone in Rn was first provided by Goffin [23]. Novikoff
proposed the notion of acute and obtuse cone in [56]. The terminology is motivated
by the fact that, in two dimension vector space, a cone is acute if and only if its
central angle is at most π

2 . In two dimensions, a cone is obtuse if and only if its
central angle is at least π

2 .

1The contents of this chapter have been published as a research article under the same title, in
Positivity, Vol.26, Article no.67, 2022, https://doi.org/10.1007/s11117-022-00908-y



4.1 Introduction

Recently, the concept of the cone positivity (or nonnegativity) of the generalized
inverse of Gram operators and Gram matrices has received a high attention. It is
due to the applications in convex optimization theory. More specifically, when the
operator equation Sx = b is inconsistent, the normal equation S∗Sx = S∗b can be
employed to find the least squares solution of minimal norm. In solving the normal
equation, the nature of the Gram operator S∗S plays a vital role.

In 2001, Cegielski [9] characterized the monotonicity of Gram matrices in terms
of acuteness (or obtuseness) of certain cones which are polyhedral. This results
have been generalized to characterize the nonnegativity of Moore-Penrose inverse of
Gram matrices in [48]. This characterization was extended to Gram operators which
are bounded and defined on infinite dimensional real Hilbert spaces in [47]. This
characterization is stated in the following theorem:

Theorem 4.1.1 (Theorem 3.6,[47]) Consider an operator S ∈ B(H1, H2) with closed

linear subspace R(S). Suppose a convex closed cone C of H1 with S†SC ⊆ C with

cones C1 = SC and C2 = (S†)∗C
′
, respectively. Then the assertions below are equiv-

alent:

(i) (S∗S)†(−C
′) ⊆ C.

(ii) C
′
1 ∩ R(S) ⊆ −C1.

(iii) C2 is acute.

(iv) C1 is obtuse.

(v) S∗Sx ∈ −C
′, x ∈ R(S∗) =⇒ x ∈ C.

(vi) S∗Sx ∈ PR(S∗)(−C
′), x ∈ R(S∗) =⇒ x ∈ C.

where C
′ = {x ∈ H1 : ⟨x, u⟩ ≤ 0, ∀ u ∈ C} called polar of a cone C.
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Kurmayya and Ramesh [46] generalized the existing results due to Sivakumar and
Kurmayya [47] for densely defined closed operators. On the other hand, Sivakumar
[62] has characterized the nonnegativity of Moore-Penrose inverses of Gram operators
over infinite dimensional real Hilbert spaces, based on the results of Novikoff [56]. In
this chapter, the results of [62] are generalized to the unbounded Gram operators, in
particular to the closed and densely defined operators over real Hilbert spaces. It is
relevant to mention that several concepts from the theory of unbounded operators and
its Moore-Penrose inverses are being used to prove the main results of this chapter.

This chapter is organized as follows. Section 4.2 contains preliminary results on
Moore-Penrose inverses of closed dense operators and introduction to acute, obtuse
cone which are used in this chapter. Section 4.3 contains a series of lemmas and the
main theorem on the characterization of the cone nonnegativity of the Moore-Penrose
invese of unbounded Gram operators. The final section contains some examples.

4.2 Preliminaries

As we mentioned in the Introduction 1, L(H1, H2) denotes the space of linear oper-
ators on H1 to H2. For any S ∈ L(H1, H2), the notions domain of S by D(S), the
range of S by R(S), closure of R(S) by R(S), the null space of S by N(S), and the
carrier of S by Car(S), where Car(S) = D(S) ∩ N(S)⊥ are followed. Next, we move
on to some basic definitions which will be used in further results. For more details of
these concepts, one can refer [4] and [26].

The following result collects some basic properties of densely defined closed op-
erators.

Proposition 4.2.1 (Chapter 9, [4]) If S ∈ C(H1, H2) is densely defined linear oper-

ator then

(i) S∗ ∈ L(H2, H1) is densely defined and S∗∗ = S.
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(ii) N(S∗) = R(S)⊥, N(SS∗) = N(S∗).

(iii) N(S∗S) = N(S), N(S) = R(S∗)⊥.

(iv) R(S∗) = N(S)⊥, R(S∗) = R(S∗S).

(v) R(S) = N(S∗)⊥, R(S) = R(SS∗).

Next, we recall the most important definition namely the Moore-Penrose inverse,
and we collect its basic properties in the subsequent propositions.

Definition 4.2.1 Moore-Penrose Inverse (Chapter 9, [4]) Let S ∈ C(H1, H2).

The Moore-Penrose inverse of S is the map S† : R(S) ⊕⊥ R(S)⊥ → H1 defined as

follows:

S†y =


S−1

0 y, if y ∈ R(S)

0, if y ∈ R(S)⊥,

where S0 = S|Car(S). i.e. S0 is the restriction of S on Car(S).

Proposition 4.2.2 (Theorem 2, Chapter 9, [4]) Let S ∈ C(H1, H2) be densely de-

fined. Then

(i) D(S†) = R(S) ⊕⊥ R(S)⊥, N(S†) = N(S∗).

(ii) R(S†) = Car(S).

(iii) S† is densely defined and S† ∈ C(H2, H1).

(iv) S† is bounded if and only if R(S) is closed.

(v) (S∗S)† = S†(S∗)† and (SS∗)† = (S∗)†S†.
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Proposition 4.2.3 (Theorem 5.7, [54]) Let S ∈ C(H1, H2) be dense operator. Then

each of the following set of conditions characterize the Moore-Penrose inverse:

(i) (a) S†Sx = P(R(S†))x for all x ∈ D(S).

(b) S†SS†y = S†y for all y ∈ D(S†).

(c) SS†y = P(R(S))y for all y ∈ D(S†).

(ii) (a) SS†Sx = Sx for all x ∈ D(S).

(b) S†SS†y = S†y for all y ∈ D(S†).

(c) S†S and SS† are symmetric operators. That is S†S ⊂ (S†S)∗ and SS† ⊂

(SS†)∗.

Note:

(1) For bounded operators over Hilbert space S†S and SS† are self-adjoint opera-
tors. But for closed and densely defined operators over Hilbert space S†S and
SS† are symmetric operators.

(2) Suppose S : H1 → H2 is a closed dense operator with closed range then (S∗)† =
(S†)∗.

(3) We can obtain the inclusion R((S†)∗) ⊆ D(S∗) from the following:

R((S†)∗) = R((S∗)†) = Car(S∗) = D(S∗) ∩ N(S∗)⊥

= D(S∗) ∩ R(S)
= D(S∗) ∩ R(S).

Next, we give a result which is fundamental in the study of linear equations and
it can be proved easily from the existing results in ([54], page 63).
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Lemma 4.2.1 Let S ∈ C(H1, H2) be dense operator with range closed and y ∈ H2.

Then for all x ∈ D(S), the linear system of equations Sx = b has a solution whenever

b ∈ R(S). In this case the general solution is given by x = Tb+z for some T satisfying

STSx = Sx for all x ∈ D(S) and for any z ∈ N(S).

Remark 4.2.1 Specifically, suppose Sx = b is consistent, then x = S†b + z for some

z ∈ N(S).

According to the Defined 1.2.2, consider C be a closed convex cone on real Hilbert
space H and C∗ be the dual cone of C. In addition to this, the definition of acute
cone and obtuse cone are stated below:

Definition 4.2.2 Consider a cone C on H. If ⟨x, y⟩ ≥ 0, for x, y ∈ C then C is said

to be acute cone. If C∗ ∩ {spanC} is acute, then C said to be obtuse where span C

is the linear subspace spanned by C.

According to [56], on real Hilbert space H the acuteness C is given by the inclusion
C ⊆ C∗ and the obtuseness of C is given by the inclusion C∗ ⊆ C. For more details
on a cone in infinite dimensional Banach space and its properties, one may refer to
[45].

4.3 Cone Nonnegativity of Moore-Penrose Inverses

This section deals with the main results of the article. As we mentioned in the Chapter
1, let S ∈ L(H1, H2). The operator S∗S is called the Gram operator of S. Here, we
derive some results which characterize the cone nonnegativity of the Moore-Penrose
inverse of unbounded Gram operators. We reiterate that the results of this section
are extensions of [62] from bounded operators to unbounded operators. However,
these results are new and the proof techniques are also very interesting. We now
begin this section with a series of lemmas which lead to the main theorem.
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Throughout the section, we assume that S ∈ C(H1, H2) is densely defined linear
operator with closed range and C is a closed cone in D(S∗S) such that C∗ ⊂ D(S∗S).

Lemma 4.3.1 Consider S ∈ C(H1, H2) be dense operator with closed range and C

be a closed cone in H1. Then the following conditions hold:

(i) u ∈ (SC)∗ ∩ D(S∗) ⇐⇒ S∗u ∈ C∗.

(ii) S†SC ⊆ C ⇐⇒ S†SC∗ ⊆ C∗.

Proof (i) Let u ∈ (SC)∗ ∩ D(S∗) and r ∈ C. Then 0 ≤ ⟨u, Sr⟩ = ⟨S∗u, r⟩. Thus
S∗u ∈ C∗. Conversely, let S∗u ∈ C∗ and r ∈ C. Then 0 ≤ ⟨S∗u, r⟩ = ⟨u, Sr⟩. Thus
u ∈ (SC)∗ ∩ D(S∗).

(ii) Let y = S†Sx with x ∈ C∗. By proposition 2.9, we have S†S ⊂ (S†S)∗. So,
∀u ∈ C, S†Su = (S†S)∗u and since S†SC ⊆ C, u′ = S†Su ∈ C. Now ⟨y, u⟩ =
⟨S†Sx, u⟩ = ⟨x, (S†S)∗u⟩ = ⟨x, S†Su⟩ = ⟨x, u′⟩ ≥ 0. i.e. ⟨y, u⟩ ≥ 0, ∀ u ∈ S.

This implies that y ∈ C∗. Converse part can be proved similarly using the fact that
C∗∗ = C.

Theorem 4.3.1 Consider S ∈ C(H1, H2) be dense operator with range closed and C

be a closed cone in H1 such that S†SC ⊆ C. Then (SC)∗ ∩D(S∗) = (S†)∗C∗ +N(S∗).

Proof Let y ∈ (SC)∗∩D(S∗). Then by Lemma 4.3.1, z = S∗y ∈ C∗. Now, by Lemma
4.2.1, y = (S†)∗z + w for some w ∈ N(S∗). i.e. y ∈ (S†)∗C∗ + N(S∗). Therefore,
(SC)∗ ∩ D(S∗) ⊆ (S†)∗C∗ + N(S∗).

Conversely, let u = u1 + u2 where u1 = (S†)∗l with l ∈ C∗ and u2 ∈ N(S∗). Let
v = St for some t ∈ C. Set t′ = S†St ∈ S†SC ⊆ C. Then ⟨u, v⟩ = ⟨u1 + u2, v⟩ =
⟨u1, v⟩ + ⟨u2, v⟩ = ⟨(S†)∗l, St⟩ + ⟨S∗u2, t⟩ = ⟨l, (S†)∗∗St⟩ + 0 = ⟨l, S†St⟩ = ⟨l, t′⟩ ≥ 0.

Thus ∀ v = St, t ∈ C, ⟨u, v⟩ ≥ 0 which gives u ∈ (SC)∗. So, (S†)∗C∗ + N(S∗) ⊆
(SC)∗ ∩ D(S∗).
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Lemma 4.3.2 Consider S ∈ C(H1, H2) be densely operator with range closed and let

C be a closed cone in H1 such that S†SC ⊆ C. Then the following conditions are

true.

(i) ((S†)∗C∗)∗ ∩ D(S†) = SC + N(S∗).

(ii) (SC)∗ ∩ D(S∗) ∩ R(S) = (S†)∗C∗.

Proof (i) In Theorem 4.3.1, replacing S by (S†)∗ and C by C∗. We obtain

((S†)∗C∗)∗ ∩ D(S†) = SC + N(S†)

which gives
((S†)∗C∗)∗ ∩ D(S†) = SC + N(S∗).

(ii) Let y = Sx ∈ (SC)∗ ∩D(S∗)∩R(S). By Lemma 4.3.1, S∗y ∈ C∗. Since y = Sx ∈
R(S) we can write y = PR(S)y = PR(S)y = SS†y = (SS†)∗y = (S†)∗S∗y ∈ (S†)∗C∗.

Thus y ∈ (S†)∗C∗. Therefore, (SC)∗ ∩ D(S∗) ∩ R(S) ⊆ (S†)∗C∗.

Conversely, let x = (S†)∗u for u ∈ C∗. Since R((S†)∗) = D(S∗) ∩ R(S) we have
x ∈ R((S†)∗) = D(S∗) ∩ R(S). Now, for w ∈ C, Sw = v ∈ SC and set w′ = S†Sw.

Then w′ ∈ C by S†SC ⊆ C. So, ⟨x, v⟩ = ⟨(S†)∗u, Sw⟩ = ⟨u, S†Sw⟩ = ⟨u, w′⟩ ≥ 0.

Hence x ∈ (SC)∗ ∩ D(S∗) ∩ R(S). So, (S†)∗C∗ ⊆ (SC)∗ ∩ D(S∗) ∩ R(S).

The next lemma gives necessary and sufficient conditions for the cone nonnegativity
of the Moore-Penrose inverse of Gram operator S∗S with respect to the cones C∗ and
C in terms of acuteness of the cone (S†)∗C∗.

Lemma 4.3.3 Consider S ∈ C(H1, H2) be densely operator with range closed and C

be a cone in H1 such that S†SC ⊆ C. Then the following conditions are equivalent.

(i) (S†)∗C∗ ⊆ SC + N(S∗)
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4.3 Cone Nonnegativity of Moore-Penrose Inverses

(ii) (S∗S)†C∗ ⊆ C + N(S)

(iii) (S∗S)†C∗ ⊆ C

Proof (i) =⇒ (ii) : By proposition 2.8, we have (S∗S)† = S†(S†)∗ = S†(S∗)†. Let
x ∈ C∗ ∩ D(S), and y = (S∗S)†x = S†(S†)∗x. Then

Sy = SS†(S†)∗x

= PR(S)(S
†)∗x

= (S†)∗x ∈ (S†)∗C∗ ⊆ SC + N(S∗)

Since Sy ∈ SC + N(S∗) we write Sy = Sv + w for w ∈ N(S∗) and v ∈ C. So
S(y − v) ∈ R(S) ∩ N(S∗) = {0}. i.e. S(y − v) = 0 which implies y − v ∈ N(S).
One can take y = v + u, for some u ∈ N(S) which gives y ∈ C + N(S). Hence
(S∗S)†C∗ ⊆ C + N(S).

(ii) =⇒ (i) : Let y = (S†)∗x, x ∈ C∗. Then S†y = S†(S†)∗x = (S∗S)†x ∈ C + N(S).
Set S†y = u + v where u ∈ C, v ∈ N(S). So S†y − u ∈ N(S). i.e. S(S†y − u) = 0.

which gives SS†y − Su = 0. Since y ∈ R((S†)∗) = D(S∗) ∩ R(S), by proposition 2.9,
we get SS†y = y. Thus, y = Su. Then it follows that y = Su + w for w ∈ N(S∗).
Hence y ∈ (S†)∗C∗ ⊆ SC + N(S∗).

(ii) =⇒ (iii) : Let x ∈ C∗ ∩ D(S) and y = (S∗S)†x. By hypothesis, we can write
y = u + v for some u ∈ C and v ∈ N(S). The linear equation y = (S∗S)†x gives
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x = S∗Su by Lemma 4.2.1. Then

y = (S∗S)†x

= (S∗S)†(S∗S)u
= PR(S∗S)∗u

= PR(S∗S)u

= PR(S∗)u

= PR(S∗)u

= S†Su ∈ C

Similarly, we can prove (iii) =⇒ (ii).

Lemma 4.3.4 Consider S ∈ C(H1, H2) be dense operator with range closed and a

closed cone C be in H1. Then the following implication holds.

(S†)∗C∗ ⊆ SC =⇒ (S∗S)†C∗ ⊆ C + N(S).

Proof Let y ∈ (S∗S)†C∗. By proposition 2.8, we have (S∗S)† = S†(S†)∗ = S†(S∗)†.

For x ∈ C∗, y = (S∗S)†x = S†(S∗)†x. Then,

Sy = SS†(S∗)†x

= SS†(S†)∗x

= (S†)∗x ∈ (S†)∗C∗ ⊆ SC

Writing Sy = Sv + w for v ∈ C and w ∈ R(S)⊥ = N(S∗). Thus Sy − Sv ∈
N(S∗). S∗(Sy − Sv) = 0 implies that S∗S(y − v) = 0. Thus y − v ∈ N(S∗S) = N(S)
which gives y = v + u for u ∈ N(S), v ∈ C. Hence the proof.
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Lemma 4.3.5 Consider S ∈ C(H1, H2) be densely operator with range closed and a

closed cone C be in H1 such that S†SC ⊆ C. Then

(S∗S)†C∗ ⊆ C + N(S) ⇐⇒ C∗ ∩ R(S∗) ⊆ S∗SC + N(S).

Proof To prove the necessary condition, consider y = S∗x ∈ C∗ ∩ R(S∗).
Then (S∗S)†y ∈ (S∗S)†C∗ ⊆ C + N(S). So, (S∗S)†y ∈ C + N(S). Write (S∗S)†y =
u + v for u ∈ C, v ∈ N(S).

y = (S∗S)††(u + v)
= (S∗S)u + (S∗S)v

for u ∈ C, v ∈ N(S∗S) = N(S). This implies, y ∈ S∗SC +N(S). Hence C∗ ∩R(S∗) ⊆
S∗SC + N(S).

To prove the converse part, consider y = (S∗S)†x, for x ∈ C∗. Applying S∗S on
both side.

S∗Sy = (S∗S)(S∗S)†x

= PR(S∗S)x

= PR(S∗)x

= S†Sx ∈ S†SC∗ ⊆ C∗ (From given S†SC ⊆ C)

So z = S∗Sy ∈ C∗ ∩ R(S∗) ⊆ S∗SC + N(S). Writing z = (S∗S)u + w for some
u ∈ C, w ∈ N(S∗S) = N(S).

y = (S∗S)†z

= (S∗S)†(S∗S)u + (S∗S)†w

= PR(S∗S)u + (S∗S)†w

= PR(S∗)u + v

= u + v for u ∈ C and v ∈ N((S∗S)†) = N(S).
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Hence C∗ ∩ R(S∗) ⊆ S∗SC + N(S) if and only if (S∗S)†C∗ ⊆ C + N(S), whenever
S†SC ⊆ C.

So far, we have proved a series of lemmas which will be used in proving the main
result of this chapter. The main result follows next.

Theorem 4.3.2 (Main Theorem)

Consider S ∈ C(H1, H2) be densely operator with range closed and a closed cone C

be in D(S∗S) such that C∗ ⊂ D(S∗S) and S†SC ⊆ C. Then the following conditions

are equivalent:

(i) (S†)∗
C∗ is acute.

(ii) (S∗S)†C∗ ⊆ C + N(S)

(iii) (SC)∗ ∩ D(S∗) ∩ R(S) ⊆ SC

Proof (i) ⇐⇒ (ii) : Let (S†)∗
C∗ is acute. Then (S†)∗

C∗ ⊆ ((S†)∗
C∗)∗. By Lemma

4.3.2, (S†)∗
C∗ ⊆ ((S†)∗

C∗)∗ ∩ D(S†) = SC + N(S∗). So, (S†)∗
C∗ ⊆ SC + N(S∗).

From Lemma 4.3.3, it follows that (S∗S)†C∗ ⊆ C + N(S). Similarly, converse also
can be proved.

(ii) =⇒ (iii) : Let y ∈ (SC)∗ ∩ D(S∗) ∩ R(S). For y = Sx, by Lemma 4.3.1,
S∗y ∈ C∗. Also S∗y ∈ R(S∗). So S∗y ∈ C∗ ∩ R(S∗). By Lemma 4.3.4, it can be writ-
ten S∗y = S∗Su + z for u ∈ C, z ∈ N(S). Since S∗y, S∗Su are in R(S∗), it follows
that z = 0. So S∗y = S∗Su, u ∈ C. Then we have solution y = (S∗)†S∗Su + w for
some w ∈ N(S∗). Then y = (SS†)∗Su + w = SS†Su + w = Su + w. Since y, Su both
belong to R(S), it follows that w = 0. That is y ∈ SC.

(iii) =⇒ (ii) : Let (SC)∗ ∩ D(S∗) ∩ R(S) ⊆ SC. Then by Lemma 4.3.2, we get
(S†)∗C∗ ⊆ SC. Now, by Lemma 4.3.4, it follows that (S∗S)†C∗ ⊆ C + N(S).
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4.4 Illustrations

In this section, we discuss two examples which illustrate the main results.

Example 4.4.1 Consider H = l2 (N) with the domain of operator S be

D(S) = {(x1, x2, ..., xn, ...) :
∞∑

j=1
|jxj|2< ∞}.

Define the operator S : D(S) → H by S(x1, x2, ..., xn, ...) = (0, 2x2, ..., nxn, ...) for all

(x1, x2, ..., xn, ...) ∈ D(S). Note that S is dense and closed operator. Also, R(S) is

closed and N(S) = {(x1, 0, 0, ...) : x1 ∈ R}.

S†(y1, y2, y3, ...) = (0,
y2

2 ,
y3

3 , ...)

where (yn) ∈ l2 (N). Observe that S = S∗ and D(S∗S) = D(S2) = {(xn) ∈ H :∑∞
n=1 n4|xn|4< ∞}. Let C = {(xn) ∈ D(S2) : xn ≥ 0 for all n ∈ N} One can verify

that C∗ = C and S†SC ⊆ C. Consider D = (S†)∗(C∗) = S†(C). Let x, y ∈ D.

Then x = S†u, y = S†v for some u, v ∈ H. Consider the standard orthonormal basis

{en : n ∈ N} of l2 (N). Then, we can have u = ∑∞
n=1⟨u, en⟩en and v = ∑∞

n=1⟨v, en⟩en.

Since ⟨u, en⟩ ≥ 0, ⟨v, en⟩ ≥ 0, we get

⟨x, y⟩ = ⟨S†u, S†v⟩

=
∞∑

n=2

1
n2 ⟨u, en⟩⟨v, en⟩

≥ 0

Hence D = (S†)∗(C∗) is acute. Therefore, by Theorem 4.3.2, it follows that (S∗S)†

is cone nonnegative.

Example 4.4.2 Consider H = L2[0, π] be the space of real valued functions. H
′ =
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{f ∈ AC[0, π] : f
′ ∈ H} where AC[0, π] be the space of real functions on [0, π] which

are absolutely continuous. H
′′ = {f ∈ H

′ : f
′ ∈ H

′} be the subspace of H
′
. Define

the differential operator S by d

dt
with D(S) = {x ∈ H

′ : f(0) = f(π) = 0}. By

the fundamental theorem of integral calculus, it is observed that S ∈ C(H). Take

fn = sin(nt), n ∈ N. Then {fn : n ∈ N} is an orthonormal basis of the space H and

functions {fn : n ∈ N} contained in D(S). Hence S is dense operator. Moreover,

Car(S) = D(S). So, S is one-one operator. Note that R(S) = {y ∈ H :
∫ π

0
y(t)dt =

0} = span{1}⊥. Thus, D(S†) = H. Suppose gn =
√

2
π

cos(nt), t ∈ [0, π], n ∈ N.

Then an orthonormal basis for R(S) is given by {gn : n ∈ N}. So, S∗S = − d2

dt2 with

D(S∗S) = {f ∈ H
′′ : f(0) = 0 = f(π)} (refer [46]). By using projection method, it

can be shown that S†(y) =
∞∑

n=1

1
n

⟨y, gn⟩fn. Let C = {f ∈ D(S∗S) : ⟨f, fn⟩ ≥ 0, ∀ n ∈

N}. Then C forms a cone and C∗ = C. To check the second condition of the Theorem

4.3.2, let ϕ ∈ C and consider

(S∗S)†(ϕ) = S†(S†)∗(ϕ) =
∞∑

n=1

1
n2 ⟨ϕ, fn⟩fn.

Since ϕ ∈ C, we have ⟨ϕ, fn⟩ ≥ 0 for all n ∈ N and hence 1
n2 ⟨ϕ, fn⟩ ≥ 0 for n ∈ N.

Thus, (S∗S)† is cone nonnegative.
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Chapter 5

Conclusions

In this chapter, we summarize the key findings of the investigation carried out in this
thesis and provide concluding remarks from our work. Moreover, we also mention
few problems that give scope for further research.

5.1 Concluding Remarks

The thesis comprises of results on cone nonnegativity of generalized inverses of linear
operators. The following is its summary:

Methods of index splitting are discussed in Chapter 2. The iteration schemes
to solve the operator equation of the type Sx = b, b ∈ R(Sk), k = ind(S) are
discussed based on these methods of index splitting and convergence results are given.
The Drazin monotonicity of bounded linear operators over ordered Banach space is
characterized in the main results Theorem 2.4.1 and Theorem 2.4.2 with examples.

The splitting of non-invertible bounded linear operators into difference of oper-
ators over ordered Hilbert space is discussed in Chapter 3.4. The special class of
operators which have B†-splitting are represented with their existence conditions and



5.2 Future Scope of Work

constructions methods in Theorem 3.3.4 and Theorem 3.4 respectively. Examples are
given to illustrate the B†-splitting.

For unbounded Gram operators, the cone nonnegativity of Moore-Penrose inverse
is characterized in Chapter 4. Specifically, a subclass of closed densely defined linear
operators is considered in this chapter. This characterization involves acuteness of
the cone. The equivalent conditions for the characterization of cone nonnegativity
of Moore-Penrose inverse of unbounded Gram operators are given in Theorem 4.3.2
and these are proved with the help of sequence of lemmas given in the section 4.3.
Examples are provided to show the cone nonnegativity of Moore-Penrose inverse of
unbounded Gram operators.

5.2 Future Scope of Work

The scope of the present study lies in the applicability of results in many problems
of operator theory as well as applied linear algebra. Specifically, we would like to
highlight the following:

• The defintion of B†-splitting is given in Chapter 3. In [37], BD−splitting of
matrix is introduced by assuming the existence of Drazin inverse of a marix.
This BD-splitting can be studied on the class of operators for which Drazin
inverse exists.

• The study on B†-splitting can be extended to the class of closed densely defined
operators. For this one has to investigate whether the class of positive closed
densely defined operators forms a cone or not; in the class of densely defined
closed linear operators.

• To analyse the solution of the linear system, several comparison results can be
studied for B†-splitting and index splitting methods.

• The characterization given in Chapter 4 can be discussed for an arbitrary op-
erator in place of Gram operator.
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