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ABSTRACT 
 

Centralized generation, which uses traditional generators, is the primary way of electric 

energy is made available to consumers. But there are a number of obstacles associated with 

centralized generation, including depletion of fossil fuels, greenhouse gas emissions, rapidly rising 

load needs, operational constraints, difficulties in expanding the current infrastructure, and high 

distribution and transmission losses due to long-distance transmission. Distributed generation (DG), 

a small-scale electric power generation becoming very famous these days due to rapid advancements 

in their technologies and advantages like quick response time and the ability to connect nearby load 

centers. Due to an increase in load demand brought by both conventional & plug-in electric vehicle’s 

loads as well as by radial topological structure, distribution networks, the last link in the electric 

supply chain, are experiencing technical problems like poor efficiency, voltage instability, low 

reliability, and capacity improvement concerns. Therefore, so much research is going on the efficient 

making of the existing distribution system by optimal planning of various DG technologies, which 

provides a solution to the obstacles associated with the centralized generation and rapidly increasing 

load demand.  

This dissertation presents a meta-heuristic-based butterfly optimization algorithm for 

enhancing distribution network efficiency and loadability using a Ɛ-constraint based multi-objective 

approach. Enhancement in the network’s efficiency is associated with active power loss reduction. In 

addition, the increase in future load demand can be effectively met by improving the system’s 

loadability which inturn improves the voltage stability margin and loading marginal factor. 

Therefore, the objective is to find out the injection of how much active power and reactive power by 

the DGs into the system at optimal locations satisfying operational constraints for the enhancement 

of the above metrics to the maximum extent. 

Further, this dissertation presents optimal planning of non-dispatchable photo-voltaic (PV) & 

wind-turbine (WT) units, dispatchable PV-BESS & WT-BIOMASS units in the distribution system 

for the mitigation of the system’s energy loss, total voltage deviation and annual economic cost 

using Pareto-based multi-objective chaotic velocity-based butterfly optimization algorithm 

(MOCVBOA). The above planning studies consider uncertainties in solar radiance, wind speed and 

electric load demand. Since PV & WT units are non-dispatchable in nature, the PV unit is assisted 
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by the BESS unit & WT unit is assisted by the BIOMASS unit to make them dispatchable. Detailed 

analysis of the outcomes between the optimal planning of non-dispatchable and dispatchable DGs is 

discussed. 

  Next, optimal planning of DGs in the presence of plug-in electric vehicles load demand 

charging under private charging scenario for the improvement of the system’s energy loss reduction 

and total voltage deviation using Pareto-based MOCVBOA is presented. Pareto MOCVBOA 

generates the final optimal Pareto front, and the most compromised solution is selected using the 

TOPSIS method. As load due to charging of PHEVs deteriorates the distribution system 

performance, optimal planning of DGs provides a relief measure due to the above problem. 

          Finally, optimal planning of PV & PV-BESS units in the distribution system considering 

both conventional and plug-in electric vehicle loads for improving the system’s energy loss 

reduction and total voltage deviation using MOCVBOA is presented. In this work, the charging of 

plug-in electric vehicles charging under two charging scenarios: private charging scenario and public 

charging scenario is considered. The PHEVs electric demand is derived from the probabilistic 

methods developed in the literature and imposed on the respective distribution system buses. 

Detailed analysis of the impact of PHEVs load on the distribution system metrics is analyzed, and 

the optimal planning of PV & PV-BESS units as a solution to the former discussed problem is 

addressed.  
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Chapter 1 

Introduction 

The centralized generation using traditional generators like thermal, hydro & nuclear, is the 

primary way electricity gets to people's homes. Then, the electricity is sent through a 

transmission & distribution system to distribution substations, where the voltage is stepped 

down before it is sent to homes and businesses. But there are problems with centralized 

generation, such as transmission and distribution losses, the depletion of fossil fuels, the 

increase in load demand, difficulties in expanding the current infrastructure, the high cost of 

fossil fuels, and the greenhouse effect. 

Distributed generation (DG) is the small-scale generation that usually ranges from a 

few kW to several MW, typically connected at the customer site or distribution and sub-

transmission substations [1]. DG technology can be divided into three categories: non-

renewable technologies (traditional), renewable technologies (green or sustainable) and 

storage technologies [2]. Renewable energy sources include wind, solar (PV and thermal), 

biomass, geothermal, tidal, and hydropower (small and micro). Micro-turbine, reciprocating 

engines, gas turbines, and combustion engines are examples of technologies that come under 

the non-renewable category. Battery energy storage systems, flywheels, supercapacitors, 

compressed air energy storage (CAES), and pumped storage come under the storage 

technologies category. Based on their ability to support active and reactive power, DG 

technologies are divided into four groups [3]. Type-1 DGs support only active power (e.g., 

Fuel cells & micro-turbines), Type-2 DGs support only reactive power (e.g., Synchronous 

Compensators), Type-3 DGs support both real & reactive power (e.g., photo-voltaic (PV) 

systems with voltage source inverters, wind turbines (WT) with doubly fed induction 

generators, and biomass generators based on synchronous generators) and Type-4 DGs 

support both active & reactive power but consume reactive power (e.g., wind turbines with 

induction generators). Based on the sizes of DGs, DG technologies are divided into four 

groups [3]: micro-DGs (1W – 5 kW), small-DGs (5 kW – 5 MW), medium-DGs (5 MW – 50 

MW) & large-DGs (50 MW – 500 MW). 

In recent days, distributed generation technologies are becoming increasingly popular 

as a solution to the problems caused by the depletion of fossil fuels, the increase in electric 

load demand and the pollution of the environment due to the generation of electric energy 
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from conventional energy sources. Furthermore, because of their small physical size and 

ability to be deployed at nearby load centres, the advantages [4] like technological 

advancements, reductions in installation costs, quick response time, no requirement for 

government approval for installing DGs, no need to consider the availability of land and the 

ability to track the changes in loads more closely have triggered the deployment of these 

technologies in the electricity market by offering a different way to fulfil customer load 

demand. The application of DG technologies includes as a backup source to provide the 

required electricity for delicate loads (like hospitals) during grid interruptions, as a standby 

source in remote locations like isolated and rural areas, to provide electricity for peak loads 

at peak hours to lower the cost of electricity, to strengthen the grid or power system network 

in the form of enhancing voltage profile, power quality and efficiency by supplying a portion 

of the load. As the electrical distribution system is the final stage of the power system, it is 

the system which is nearer to nearby load centres. Because of the distribution system's radial 

topological structure, losses in a distribution network [5] account for 70% of all losses in a 

power system network. 

In contrast, losses on transmission & sub-transmission lines made for 30% of the total 

power losses. Additionally, demand for future load enhancement initially impacts the 

distribution system. Therefore, much research is going on deploying DGs in the distribution 

system to improve its efficiency by mitigating network power losses and as a solution for 

future load demand enhancement. Deploying DG units in the distribution network decreases 

network losses and raises voltage profiles, strengthens voltage stability, delays network 

upgrades, and saves money for utilities. However, the output power from some DG 

technologies like PV & WT units is highly uncertain due to the probabilistic nature of wind 

speed & solar radiance. Identifying the suitable places and sizes of DG units in the distribution 

network by considering the uncertainty in their power output determines how well the 

technical metrics improve. The problem mentioned above is called optimal planning of DGs 

(OPDGs) in the distribution system. Therefore, the general framework for describing and 

resolving the issue as discussed above must consider the following factors: the significance 

and context of the problem; the modelling of DGs output power uncertainties, the modelling 

of load uncertainties; the choice of objective functions, and the approach for solving the 

optimization problem. 

The shift toward zero-emission plug-in hybrid electric vehicles (PHEVs), which are 

anticipated to play a significant role in the road transportation system [6], has been prompted 
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by growing concerns over the depletion of fossil fuels, CO2 emissions and the greenhouse 

impact. However, the objectives achieved due to the successful transition to plug-in electric 

vehicles can only be accomplished when non-conventional energy sources like DG 

technologies provide the required electric power for charging electric vehicles. The PHEVs 

charge their batteries under two charging scenarios: charging PHEVs at residential homes 

(private charging) and at public fast charging stations (public charging). Numerous power 

systems issues, such as economic dispatch, optimal power flow, and OPDG problems in radial 

distribution systems and microgrids, have been studied extensively in the literature by taking 

electric vehicle load demand on the system. The authors solved the dynamic economic 

dispatch issue in [7], [8] by incorporating PHEV load demand into the 24-hour load pattern. 

Authors in [9] tackled the optimal flow problem by considering the PV, WT and PHEV 

uncertainties. Due to the proximity of the distribution system to the load centres, it was the 

first power system to be affected by the demand due to electric vehicle load. Technical metrics 

of the distribution system, like real power loss and voltage profile, will worsen due to the 

system's extra electric power demand due to PHEVs. Therefore, several researchers addressed 

the optimal planning of DGs in the distribution system by considering electric vehicle load 

demand. 

This thesis focuses on the effective planning of various DG technologies in the 

distribution system to improve its performance. Four kinds of investigations – optimal 

planning of DGs in the optimal reconfigured distribution system for improvement of its 

efficiency and loadability - optimal planning of PV, WT, PV-BESS, WT-BIOMASS units in 

the distribution system for improvement of its efficiency and voltage profile – optimal 

planning of DGs in distribution system considering the load of PHEVs charging under private 

charging scenario – optimal planning of PV & PV-BESS units in distribution system 

considering the load of PHEVs charging under both private and public charging scenarios.  

1.1 Investigations on Optimal Planning of Distributed Generators in the 

Distributed system  

As mentioned in the introduction part, the optimal planning of DGs in the distribution 

system improves several technical metrics, such as the reduction of power loss, the 

improvement of the voltage profile, the improvement of the system's reliability and security, 

and the improvement of the system's ability to handle the load and maintain the voltage 

stability. Additionally, adequate DG planning in the distribution system will have a few 
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economic and environmental benefits [4]. Economic benefits include reducing operational & 

maintenance costs, deferrals of infrastructure investments, reduction in fuel costs due to 

renewable DG technologies, and installation & maintenance costs. Benefits to the environment 

include decreased health expenses and greenhouse gas emissions. To enhance the technical, 

economic and environmental metrics indicated above, various researchers have addressed the 

OPDG problem in distribution systems in many ways. Researchers have tackled the subject of 

optimal DG planning in the literature by considering different load uncertainties: the system's 

peak load level, the system's multi-load level, and the system's daily load profile. Researchers 

addressed several analytical, numerical and meta-heuristic-based optimization algorithms for 

the OPDG problem in the distribution system. In  [10], the authors discussed a detailed review 

of various analytical techniques for OPDG technologies problems in the distribution system. 

Analytical methodologies need an explicit model and can produce precise results within a 

short computational time; however, many simplifications and differentiations of complex 

equations are required. In [11]–[17], authors addressed the OPDG problem using various 

analytical methods based on exact loss formulae for distribution system power loss 

minimization, voltage profile improvement and reliability enhancement. The exact loss 

formula [10] establishes the overall system real power losses of as a mathematical function of 

active & reactive power demands at all buses. To lower the distribution network's power 

losses, the mathematical equation that represents most advantageous DG capacity at a bus is 

obtained by mathematical simplifications and operations on the exact loss formulae. The 

detailed step-by-step procedure for finding the optimal DG locations and DG sizes by using 

the analytical method based on exact loss formulae is found in  [3].  

In [11], the researchers suggested an analytical method based on an exact loss formula 

to assess the optimum DG location and size to minimize distribution network reactive & active 

power losses. The suggested method was efficient in terms of computing because it only 

needed to repeat the power flow twice. However, this method only applies to the optimal 

planning of a single DG unit. Due to the bus impedance matrix calculation required by this 

technique, this technique is computationally inefficient for distribution networks with a greater 

number of buses. The optimal planning of WT was done by the authors in [12] to reduce active 

power losses in distribution networks. The wind turbine type based on an induction generator 

that inject real power and consume reactive power was considered. The bus connected to the 

WT was first treated as a load bus, and the WT output was represented as mathematical 

equation. Then, the exact loss formula was employed for finding network power losses. In 
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[13], an analytical technique developed in [11] is improved that was confined to DG units with 

real power support and created analytical expressions for optimal DG planning of multiple 

types of DGs for power loss minimization. The subsequent work in [14] enhanced the 

analytical method in [13], which determined the various DG unit types for reducing power 

losses in distribution networks. In both studies [13], [14], the significance of DG operation 

was examined in terms of real & reactive power injection, and the optimal DG power factor 

was determined to reduce power losses. The findings revealed that when compared to DG 

units with real power generation, DG units with both real & reactive power generation 

dramatically mitigates power losses. 

The authors of [15] used an analytical technique to identify the best sizes, positions, 

and power factors of DG units to lessen power losses while considering the  load demand and 

renewable DGs uncertainties. The results of the above study revealed that dispatchable DG 

units minimise power losses to significant percentage compared to non-dispatchable DG units. 

The researchers of [16] proposed an analytical method based on a multi-objective index for 

the determination of  the optimum capacity PV-DG units. A weighted multi-objective function 

is mathematically formulated, which addresses the minimization of active and reactive power 

losses and voltage deviation. In [17], the authors combined a PV unit with BESS unit to make  

PV unit as dispatchable DG and formulated a multi-objective function for reducing power 

losses and improving voltage profile and developed analytical expressions based on exact loss 

formulae for the determination of the optimal capacity and power factor of such PV-BESS 

unit. However, in [16], [17], since optimal sizes of PV & PV-BESS units are determined based 

on the average load demand, the power loss might not be minimized to the optimal value. 

From the above discussions, it is observed that analytical methods that rely on the exact loss 

formula need to calculate bus impedance or Jacobian matrices, results in high computing 

complexity in the case of distribution networks with greater number of buses.  

The OPDG problem was addressed in [18]–[21] using loss sensitivity factor based 

analytical techniques for minimising distribution system power loss. The loss sensitivity factor 

based analytical methods decrease the number of viable solutions by limiting the solution 

search space to a few top-ranked buses. In these methods, at first, a initial load flow is 

performed without DGs on the system and then mathematically developed analytical 

expressions are used to determine the sensitivity factors at each bus; then, the buses are 

prioritised according to their sensitivity factors to create a priority list; Then, by gently 

increasing the DG capacity at the top priority bus until minimal system losses have been 
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attained— a process that is done for each priority bus —it is possible to determine the optimum 

DG size at that bus. Ultimately, the bus with the lowest power losses is selected as the best 

possible DG location. In [18], the authors presented a combined power loss sensitivity 

technique to identify the best positions and sizes for DG units operating at unity and fixed 

power factor. The outcomes showed that DG units running at the 0.9 fixed power factor 

significantly reduced active and reactive power losses and voltage deviation. In [19], the 

authors used a combination of the quadratic curve fitting technique and sensitivity analysis to 

determine the best location and capacity for a DG unit running at a fixed power factor and 

single capacitor. They subsequently expanded this method to integrate multiple DGs and 

capacitors, resulting in a more significant loss reduction and improved voltage stability 

compared to a single DG-capacitor combination. To determine the optimal locations, sizes, 

and power factors of DG units, the authors of [22] carried out a sensitivity study using an 

entirely novel formulation of the power flow solution. From the results, it was observed that 

the power losses could be reduced to the lowest value if the DGs are operating at the optimal 

power factor. To figure out the optimum capacity of various renewable DG types, a hybrid 

technique built on sensitivity analysis and continuous power flow was established by the 

authors in [21]. The suggested technique resulted in significant enhancements in loss reduction 

and voltage stability. However, as already discussed, analytical methods developed based on 

loss sensitivity factors requires numerous iterations of power flow calculation, which could 

lead to computational inefficiencies in the case of large-scale distribution networks. 

In [23]–[25], researchers addressed the optimal planning of DGs in distribution 

systems using analytical methods based on branch current loss formulae and branch power 

flow formulae. The authors of [23] presented an analytical method based on the branch's 

current formulae for the allocation of DG units with the objective of minimising network 

power loss. The authors of [24] evaluated planning of renewable DGs while considering the 

fluctuations associated with load demand and DGs. To reduce yearly electric energy losses, 

they determined the optimal locations, sizes and power factors of DGs. With the aim of 

minimising power losses, the authors of [25] presented an equivalent current injection 

analytical approach to choose the best optimal DG size and position. From the above 

discussions, the following drawbacks are associated with the optimal planning of DGs by 

using analytical methods. The analytical methods with exact loss formulae [11]–[17] and loss 

sensitivity factors [18]–[21] are inefficient for large scale distribution systems and there are 

few literature papers on optimal planning of DGs by using analytical methods based on branch 
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current loss formulae and branch power flow formulae. As previously mentioned, optimal DG 

planning enhances several technical, financial, and environmental factors. However, the 

majority of research focused on optimal DG planning by utilising analytical techniques for 

power loss mitigation and voltage profile improvement only.  

Therefore, several researchers addressed the OPDG problem using meta-heuristic 

optimization algorithms to overcome the drawbacks associated with analytical methods. The 

advantage of meta-heuristic algorithms is that they can efficiently solve very complicated 

tasks. The meta-heuristic algorithms use an iterative generation process that effectively locates 

near-optimal solutions using learning methodologies and intelligently integrating various 

concepts to explore and examine the search space. These algorithms employ randomized 

operators to look for the best outcomes based on exploration and exploitation [5]. The 

advantage of meta-heuristic algorithms is that they are problem independent. Another benefit 

of utilising meta-heuristic optimization algorithms is that they allow the use of any multi-

objective optimization technique instead of analytical techniques that only allow the use of the 

weighted sum approach for multiple objectives optimization. Meta-heuristics optimization 

algorithms can be broadly divided into two categories: population-based algorithms and single 

solution-based (or) trajectory-based algorithms. In single solution-based algorithms, a solution 

is randomly generated, and the solution is improved until they achieve the best outcome. In 

population-based algorithms, a collection of random solutions in a specified search space are 

generated first, and solutions are updated with the help of heuristics & intelligence gained 

during iterations until the best solution is produced. Population-based algorithms can escape 

local optima because of the presence of many searching agents. Population-based algorithms 

are divided into several categories: algorithms based on the theory of evolution (e.g., Genetic 

algorithm (GA), Differential Evolution (DE)), algorithms based on physical laws (e.g., 

Gravitational search algorithm (GSA), Black Hole optimization algorithm (BHOA) ) , 

algorithms that take inspiration from swarms of particles (e.g.,  Artificial Bee Colony (ABC), 

Particle Swarm Optimization (PSO)), and algorithms that mimic biological behaviour (e.g., 

Cuckoo search algorithm (CSA), Bat algorithm (BA)) [26]. In literature, several researchers 

addressed optimal DG planning using several meta-heuristic optimization algorithms for 

improving distribution system metrics using several single and multi-objective optimization 

techniques. 

Authors in [27] used loss-sensitive indexes to identify the best locations for DGs, and 

then a simulated annealing optimization algorithm was used for DGs sizing to reduce the 
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distribution system’s power loss. The outcomes revealed that the greatest reduction in power 

loss is observed when DGs are operating with a 0.866 power factor rather than DGs operating 

with a unity power factor. [28] used the artificial bee colony algorithm to identify the optimal 

DG size, location, and power factor for the minimization of the system’s power loss. However, 

the authors of [28] only discussed the optimal planning for a single DG unit. In [29], firefly 

and backtracking search algorithms are implemented for optimal planning of multi-DG units 

and determined optimal DGs' locations, sizes and power factors for the minimization of the 

system's power loss. From the outcomes, it was observed that DGs operating with optimal 

factor yield the most significant reduction in power loss compared to those operating with 

fixed power factor. From the articles [27]–[29] mentioned above, it has been observed that 

utilizing optimization algorithms to determine the optimal locations and sizes of DGs yields 

the most significant gain in power loss reduction. However, based on the complexity involved 

in the problem, researchers have been using both methods. In [30], the authors discussed the 

optimal planning for Type-3 DGs using the PSO algorithm for DGs generation cost reduction. 

From the results mentioned in [27]–[30], it has been found that multiple-DG unit planning in 

the distribution system, as opposed to single-DG unit planning, results in the highest reduction 

in distribution system power loss because of the significant changes in line power flows in the 

distribution system. In [31], authors addressed optimizing system maximum loadabilty using 

the HPSO algorithm. The authors of [32] addressed the hybrid genetic dragonfly optimization 

algorithm for minimization of the distribution system's EENS (electrical energy not supplied) 

technical metric's reliability index through the optimal planning of Type-I, Type-II, and Type-

III DGs. 

Several researchers have solved the OPDG problem and optimal network 

reconfiguration problem simultaneously for the improvement of distribution system metrics. 

Distribution networks are generally employed with two types of switches: section switches 

and tie switches. The tie switches are usually used for line reconfiguration. Meanwhile, the 

section switches are generally used to confine the fault damage. Therefore, these switches 

assist in isolating faulty subsystems from the original network and prevent disruption in the 

significant system's functionality [5]. In addition to the functionality mentioned above, several 

researchers have discussed network reconfiguration in the literature to improve technical 

distribution system metrics such as load balancing between feeders and branches, voltage 

profile improvement, and power loss reduction. Optimal distributed network reconfiguration 

(ODNR) problem is the process of finding the best topological structure of the network by 
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finding the network's switch states, which could either be usually open (for tie switches) or 

closed (sectionalizing switches) while maintaining the radiality of the network for the 

improvement of distribution system metrics by satisfying the several operational constraints. 

In the literature, authors tackled the network reconfiguration problem using various 

mathematical optimization approaches, heuristic optimization algorithms, and meta-heuristic 

optimization algorithms for enhancing distribution system metrics. 

The ODNR problem was initially solved in [33] using a branch and bound (B&B) 

algorithm. Even though the proposed method discovered an effective solution, its convergence 

was a sluggish process. Distribution feeders were divided into various networks as part of a 

binary integer programming strategy introduced in [34] for solving the ODNR problem. The 

proposed method, however, encountered computational issues with large-scale distribution 

systems. The Benders decomposition (BD), which separates separating the problem into a 

"master problem" and a "slave problem", was introduced in [35] to address the ODNR 

problem. The slave problem was used to examine these radial solutions' viability, while ideal 

radial topological structures with the lowest losses were determined in the master problem 

while considering power flows limits. The performance of BD decreases with a rise in 

nonlinear variables of the model, despite the findings showing the efficacy and robustness of 

the suggested methodology for ODNR problem. A MILP model with a two-stage 

decomposition approach was presented in [36] to address an ODNR problem. However, the 

piecewise linear approximations utilised in [36] diminish the accuracy of solutions for 

reconfiguring large distribution systems. From the above discussions, it was observed that 

solving the ODNR problem using mathematical approaches [33]–[36] typically takes a long 

time, and this problem worsens when more integer decision variables are considered. In [37], 

authors introduced the branch exchange (BE) heuristic method to address an ODNR problem. 

In BE, new radial topologies are produced by closing an open switch and opening a switch 

that is already closed on each planar loop until the best configuration is reached. 

Unfortunately, the time-consuming nature of BE's point-to-point searching process makes it a 

slow way to reconfigure big distribution systems. a heuristic approach based on the 

fundamental ideas of network partitioning for solving an ODNR problem was introduced in 

[38]  to overcome the size limitations. In this method, the distribution network was separated 

into bus groups, and the power losses between these groups were reduced. A novel BE-based 

heuristic strategy was proposed in [39] to solve the ODNR problem. The algorithm's precision 

was respectable despite the lengthy computation time. In [40], a dual-stage heuristic technique 
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for solving ODNR was proposed. In the first stage, switches with the least loss increase are 

opened, and BE chooses the best proposals in the second stage. Despite the proposed 

technique's high accuracy and simplicity, this process takes a lot of time due to repetitive load 

flows and checking all promising solutions. In place of BE in the second step of the suggested 

heuristic algorithm, [41] used the neighbour-chain updating process (NCUP) to boost the 

precision of the method described in [40]. Because heuristic algorithms must be developed for 

a particular application and time-consuming procedures, several authors solved the ODNR 

problem using meta-heuristic optimization algorithms. The genetic algorithm (GA), a well-

known metaheuristic technique, was used in [42] to solve the ODNR problem. 

However, reconfiguring large distribution networks using the usual GA is time-

consuming. Authors suggested an meta-heuristic evolutionary optimization algorithm (EA) in 

[43] to reduce network real power losses through ODNR problem. However, due to a subpar 

tree representation of the distribution network's graph, non-radial topological structures occur 

during algorithm search, severely reducing the algorithm's efficiency. In order to reduce the 

system's active power loss, a more effective selective BPSO algorithm [44] is used for the 

ODNR problem. Few researchers addressed ODNR problem with multi-objective 

optimization. To reduce active power loss and the system's voltage deviation index, authors in 

[45] addressed the ODNR problem using cuckoo search algorithm (CSA). To reduce active 

power loss, load balancing between branches and feeders, and the quantity of switching 

operations, a multi-objective Max-Min multi-objective strategy using runner root algorithm is 

suggested in [46] optimal network reconfiguration problem. A fuzzy adaptation of the 

evolutionary programming algorithm, the Discrete Artificial Bee Colony (DABC) algorithm, 

and a second-stage employee-improved harmony search algorithm, respectively, were used by 

the authors of  [47], [48], and [49] to address the ODNR problem to maximise the network's 

maximum loadability.  

Researchers in [50] and [51] addressed the optimal network reconfiguration problem 

and optimal allocation of Type-1 DGs to minimize the active power loss of the system by 

considering different scenarios. Harmony search and adaptive cuckoo search algorithms have 

been used to find the optimal DG sizes, DG locations and open switch positions to achieve the 

desired result. Authors in [52] addressed the optimal allocation of Type-3 DGs with optimal 

power factor to minimize the network active power loss using the UVDA-based heuristic 

method. From the outcomes observed in [50]–[52], it can be concluded that the most 
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significant improvement in technical metrics of the distribution system is obtained when DGs 

are optimally planned in the optimal reconfigured network. 

As mentioned earlier, optimal DG integration allows for improving several technical 

distribution system aspects. The works mentioned above, however, considered single-

objective optimization only. As a result, the improvement in the other objectives is not up to 

par owing to the conflicting nature between the objectives. Numerous studies have employed 

multi-objective optimization techniques to find the solution (i.e., determining the best 

locations and sizes for DGs) that optimally balances several objectives. In [53], the authors 

discussed a weighted multi-objective technique employing the Harmony search optimization 

algorithm (HSA) for minimising network power loss and total hormonic distortion, improving 

the system voltage profile, and enhancing system security. The optimal placement of DGs in 

the distribution system was discussed in [54] using a weighted multi-objective particle swarm 

optimization technique to reduce power loss and increase reliability. Using a weighted multi-

objective genetic algorithm, authors of [55] discussed the optimal way to plan DGs for 

minimising system power loss, maximising system loadability, and enhancing voltage profile. 

The authors of [56] discussed inertia-weighted PSO for maximising system loadability and 

minimising power loss through optimal DG planning utilising a weighted multi-objective 

method. In [57], authors discussed a hybrid sequential Monte Carlo simulation analytical 

hierarchical approach for the optimal DG planning in a distribution system to reduce system 

power loss, voltage variation, SAIDI, CAIDI, and EENS utilising a weighted-based multi-

objective technique. In [58], authors discussed the weighted-based multi-objective hybrid 

SFLA (shuffled frog leap algorithm) and DE (differential evolution) algorithms for the optimal 

placement of DGs in distribution systems to reduce power loss, operational power costs, and 

emission costs.  To optimize power loss, voltage deviation, and voltage stability technical 

metrics, researchers used a multi-objective weighted technique-based quasi-oppositional 

teaching learning-based optimization algorithm [59]. To reduce power loss and improve 

loadability, epsilon artificial bee colony optimization [60] and multi-objective techniques are 

employed. In [61], an analytical hierarchy weighted based multi-objective hybrid multiverse 

optimization algorithm is used to improve four distribution system technical metrics: reduction 

of system’s energy loss & node voltage deviation metrics, enhancement of voltage stability 

and reliability metrics. With the intent to decrease loss and increasing reliability, authors in 

[62] implemented a hybrid multi-objective TLBO-GWO optimization algorithm for optimal 

planning of DGs in distribution system. 
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The Pareto-based Harris hawk optimization algorithm is implemented in [63] to 

improve the system's technical parameters. Numerous researchers have considered economic 

factors while planning of DGs in distribution networks to reduce DGs' installation, 

maintenance, and operational expenses. Authors in [64] addressed improving technical and 

economic objectives using a Pareto-based muti-objective differential evolution optimization 

algorithm. The authors of the studies mentioned above [27-32], [53-62] used numerous single- 

and multi-objective strategies to handle the OPDG problem in the distribution system at its 

peak load level to improve various technical & economic metrics. The idea behind addressing 

the OPDG issue at the system’s peak load level is that DGs have to inject how much active 

and reactive power into the system at optimal locations for the improvement of systems 

technical & economic metrics to the maximum extent. Then similar system performance is 

achieved at other load levels other than system’s peak load if DGs adjust its power output 

following load changes. The above methodology works only if optimal planning of 

dispatchable DGs like BIOMASS, Micro-Turbine and DSTATCOM in the distribution system 

is addressed. However, optimal planning of non-dispatchable units like PV & WT units should 

be done by taking load data of a particular time frame.  

Several researchers addressed the optimal planning of non-dispatchable renewable-

based PV and WT units in the distribution system by considering the system's p.u typical daily 

load profile. The average p.u. daily load profile is generated using historical load demand. 

Probabilistic approaches that consider the intermittency nature of solar radiance & wind speed 

must first be explored for the optimal design of PV and WT units in the distribution system. 

Authors in [65] concluded that the Beta & Weibull probability distribution functions were the 

most fitted distributed function in coping with the probabilistic nature of solar radiance & 

wind speed. Based on this, a few researchers developed [66],[67]–[70] various probabilistic 

methods using beta PDF. However, dealing with the uncertainty involved in PV unit output 

power is made simpler by applying the probabilistic method developed in [70], which 

determines the typical p.u PV output power curve from historical solar irradiance data. To 

enhance system performance, authors in [66], and [71] addressed the optimal integration of 

PV (Photo-Voltaic) and WT (Wind Turbine) units in electrical distribution networks by taking 

daily load demand, solar radiance, and wind speed uncertainty into consideration. However, 

if DGs dispatch/inject power into the system optimally during each hour of the day, the 

system's performance (energy loss reduction, enhancement of the system's voltage profile, 

etc.) would be improved more. Therefore, to overcome the non-dispatchable nature of PV, the 
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PV unit is assisted by BESS so that the combined PV-BESS would act like dispatchable DG. 

Similarly, in the case of the WT-Biomass unit, the difference of power between the required 

power from the WT-Biomass unit and the WT unit will be supplied by the Biomass unit. 

Optimal integration of PV-BESS units is addressed in [72], [73] for the mitigation of 

distribution network energy loss, and in [74], optimal integration of either PV-BESS or WT-

Biomass units in the distribution system for the mitigation of energy loss is addressed.  

1.2 Investigations on optimal planning of Distributed Generators in the 

distribution system in the presence of plug-in hybrid electric vehicles load 

demand 

Numerous studies have focused on the appropriate planning of DGs in the distribution 

system to reduce the impact of PHEVs load demand and enhance its performance. Few 

researchers [75], [76] handled optimal planning and scheduling of RDGs in the distribution 

system by integrating PHEVs load demand with the 24-hour load demand of the system. In 

the previous works, PDFs address the probabilistic nature of arrival time and trip distances of 

PHEVs. However, the methodology considered in the earlier papers addressed night-time 

charging of electric vehicles at residential buses, i.e., charging of electric cars at home, which 

is coined as private charging. However, the effective transfer of car owners from conventional 

to electrical vehicle technology depends on creating an adequate public charging 

infrastructure. Because in Public Fast Charging Station (PFCS), an electric vehicle's battery 

can be charged in 20 to 30 minutes. Many countries worldwide are developing regulations 

and providing incentives to encourage the installation of charging stations. 

Therefore, few researchers addressed the optimal placement of PFCS in radial 

distribution systems. In [77], the authors proposed investment, operation, maintenance, and 

network loss costs as the objectives for problem formulation that were gained by the modified 

primal-dual interior-point algorithm for the optimal placement of PFCS. Considering the costs 

of PFCS equipment, land, PFCS electrification, electric grid loss, and EV loss for charging, a 

mixed-integer nonlinear problem (MINLP) is described in [78], and the MINLP optimization 

problem was addressed using GA. In [79], the genetic algorithm (GA) technique is used to 

solve the suggested model of the optimal placement for PFCS, which includes two objective 

functions, such as the cost of PFCS construction and the cost of charging station access. The 

fuzzy-based multi-objective grasshopper optimization algorithm is implemented in [80] for 

optimal planning of RDGs and PFCS to improve the technical metrics of the distribution 
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system. In [81], the authors discussed the best location for PFCS and RDGs utilizing the 

HPSO-GWO optimization algorithm in the distribution system, taking land costs and the 

population of electric vehicles. In [82], the authors examined the optimal placement for 

parking lots by maximising parking lot revenue, considering the cost of parking lots, 

reliability, power loss, and voltage improvements as the objective functions. The GA was then 

used to determine the best outcomes. The authors in [83] proposed land cost, station 

equipment cost, operating and maintenance cost, real power loss cost, and voltage profile 

improvement as objective functions for the placement of CS, and the proposed problem is 

resolved by an advanced GA and PSO algorithm. In [84], the authors used the investment cost 

of CS, operation and maintenance costs, electricity cost for battery charging, electricity cost 

for travelling to charge the battery, time cost for driving, waiting time cost, and charging time 

cost as the objective for problem formulation. The integrated planning problem was solved 

by the PSO algorithm. The placement of the PFCS is studied in [85] with the goal of 

minimising power loss and maximising the stability of the distribution system, with APSO 

solving the optimization problem. A multi-objective mixed integer nonlinear problem 

(MINLP) with FCS development costs, EV specific energy consumption costs, electrical 

network power loss costs, DGs costs, and voltage deviation was developed by the authors in 

[86], [87]. The NSGA-II & SFL-TLBO was used in this study to address the formulation 

problem for placing PFCSs and DGs in the distribution network. The 118-bus distribution 

system served as an evaluation system for the suggested technique. But authors have not 

considered the optimal placement of PV or WT-based RDGs. Using a Pareto-based WOAGA 

algorithm, authors in [88] examined the best way to connect RDG, PFCS, and BESS to 

improve distribution systems' technical, fiscal, and environmental metrics.  

1.3 Motivation and dissertation objectives 

As discussed in the introduction, due to the advantages of DG technologies like 

compact in size, advancements in DG technologies and reduction in installation costs, so much 

research is going on how an electrical distribution system should be made efficient by the 

deployment of DGs optimally. From the literature review on optimal planning or deployment 

of DGs in the distribution system at its peak load level, several researchers addressed the 

improvement of several metrics using single and multi-objective optimization techniques by 

various analytical and meta-heuristic optimization algorithms. However, the literature does 

not discuss employing a suitable multi-objective method to bring the balanced solution in 

improving power loss reduction and lodability technical metrics. And also, from the literature 
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review on optimal deployment of PV, WT, PV-BESS and WT-BIOMASS units in the 

distribution network, it was observed that researchers addressed the minimization of systems’ 

energy loss only and not considered other technical metrics & economic aspects. From the 

literature review on optimal planning of DGs in the presence of PHEVs load demand, only a 

few papers hardly addressed optimal planning of PV & PV-BESS units in distribution systems 

by considering both private and public charging.  

Therefore, the succeeding objectives are deduced based on the observations made from 

the literature review. 

1. To determine the best trade-off solution between the active power loss reduction and 

maximum loadability enhancement through proper planning of DGs in the distribution 

system.  

2. To obtain the best compromise solution between energy loss reduction, voltage profile 

improvement and annual installation & maintenance costs of DGs through optimal 

planning of dispatchable DGs (PV-BESS, WT-BIOMASS) units in the distribution 

system by considering solar radiance, wind speed and load uncertainties. 

3.  To look for the optimal planning of DGs in the distribution system for energy loss 

reduction and voltage profile improvement considering PHEVs load demand charging 

under private charging scenario. 

4.  To look for the optimal planning of dispatchable DGs (PV-BESS, WT-BIOMASS) units 

in the distribution system for energy loss reduction, voltage profile improvement and 

annual installation & maintenance costs of DGs considering PHEVs load demand 

charging under both private & public charging scenarios. 

By working on the objectives mentioned above, the following contributions are made: 

1. Ɛ-constraint-based multi-objective approach for optimal network reconfiguration and 

optimal allocation of DGs in radial distribution systems using the butterfly optimizer. 

2. Probabilistic optimal planning of dispatchable distributed generator units in distribution 

systems using a Pareto-based multi-objective chaotic velocity-based butterfly 

optimization algorithm. 

3. Optimal integration of DGs into radial distribution network in the presence of plug-in 

electric vehicles to minimize energy loss and to improve the voltage profile of the system 

using a pareto-based multi-objective chaotic velocity-based butterfly optimization 

algorithm. 
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4. Probabilistic optimal allocation of Solar PV units and Battery Energy Storage System in 

the distribution system in the presence of plug-in electric vehicles using a multi-objective 

chaotic velocity-based butterfly optimization algorithm. 

1.4 Organization of dissertation 

The dissertation is structured as follows: 

       Chapter 1 briefly overview Distributed Generators (DGs) nomenclature, 

classification, and applications. Along with a brief overview of PHEVs and their charging 

behaviour. Investigations on DG planning in distribution systems without and with PHEVs 

load, their outlines, the thesis's research goals, its contributions, and its structuring are 

described. 

      Chapter 2 presents the Ɛ-constraint-based multi-objective approach for optimal 

network reconfiguration and optimal allocation of DGs in radial distribution systems using 

the butterfly optimizer with the objective of increasing loadability and reducing power loss. 

                 Chapter 3 presents the probabilistic optimal planning of non-dispatchable PV & 

WT units and dispatchable PV-BESS, WT-BIOMASS distributed generator units in 

distribution systems using a Pareto-based multi-objective chaotic velocity-based butterfly 

optimization algorithm with the objective of reducing energy loss and enhancing voltage 

profile. 

                 Chapter 4 describes the optimal integration of DGs into a radial distribution 

network in the presence of plug-in electric vehicles charging under private charging scenarios 

to minimize energy loss and improve the system's voltage profile using a Pareto-based multi-

objective chaotic velocity-based butterfly optimization algorithm. 

                 Chapter 5 details the Probabilistic optimal allocation of Inverter based Solar PV 

units and Battery Energy Storage Systems in the distribution system in the presence of plug-

in electric vehicles charging under private and public charging scenarios using a multi-

objective chaotic velocity-based butterfly optimization algorithm.  

     Chapter 6 presents the conclusions and future scope of the thesis. 
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Chapter 2 

Ɛ-constraint-based multi-objective approach for optimal 

network reconfiguration and optimal allocation of DGs in 

radial distribution systems using the butterfly optimizer 

 2.1 Introduction 

This chapter presents the optimal planning of DGs in the distribution system for the 

improvement of its efficiency and maximum loadability. Maximum loadability (𝜆𝑚𝑎𝑥) of the 

system is defined as the maximum increase in power system load till the voltage instability 

occurs. Loading margin factor (𝜆𝑣) of the system is defined as the maximum increase in power 

system load until the system buses violate maximum and minimum bus voltage limits. Figure 

2.1 shows that the system with better maximum lodability (curve B) has better loading 

marginal factor and voltage profile at each loading. From the description above, it can be 

inferred that enhancing the system's maximum loadability also increases its maximum loading 

factor, allowing for the effective fulfilment of growing load demand without exceeding 

permitted bus voltage levels. 

 

Figure 2.1 Impact of DGs placement and Network reconfiguration on system loadability 

 

In the literature, few researchers addressed enhancing the maximum loadability of the 

distribution system via optimal planning of DGs and optimal network reconfiguration. 

Authors in [31] presented a hybrid PSO meta-heuristic algorithm for enhancing maximum 
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loadability of the distribution system by optimal planning of Type-III DGs. To improve the 

maximum loadability of the distribution system, authors in [47]–[49] examined the optimal 

network reconfiguration problem, and findings revealed that the maximum loadability has 

been improved in the optimal reconfigured network. Authors in [60] discussed simultaneous 

optimal planning of DGs and optimal network reconfiguration problem for enhancing 

distribution system maximum loadability using an artificial bee colony (ABC) optimization 

algorithm, and from the outcomes, it has been revealed that better improvement in system 

maximum loadability is achieved in case of when DGs are optimally planned in the optimal 

reconfigured network.  From the outcomes in [31], [60], it was observed that even though the 

system maximum loadability is improved to maximum value but the percentage of active 

power loss reduction is very less. Based on the description above, it can be concluded that 

there exists a conflicting nature between the objectives of active power loss reduction and 

maximum loadability enhancement.  

 Therefore, this chapter presents Ɛ-constraint multi-objective butterfly optimization 

algorithm (MOBOA) to bring the balanced solution between the improvement in two metrics 

of the distribution system (i.e., active power loss reduction and maximum loadability 

enhancement) by optimal planning of DGs and optimal network reconfiguration. In this work, 

improvement in above-two mentioned objectives of the distribution system is addressed at the 

peak load level of the system without considering load and DGs uncertainties. Hence, this 

work addresses the determination of the injection of how much active & reactive power into 

the distribution system by identifying the optimal DGs locations, DGs sizes, DGs power 

factors & optimal switch positions for the improvement of the above-cited metrics. 

  2.2 Problem Formulation 

2.2.1 Active Power Loss of the system 

Active power loss (𝑃𝑙𝑜𝑠𝑠) of the system should be minimized to improve the distribution 

system efficiency. 

𝑓1 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑃𝑙𝑜𝑠𝑠)                (2.1) 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐽𝑖
2 ∗ 𝑅𝑖

𝑛𝑏𝑟
𝑖=1      (2.2) 

Where, 𝐽𝑖 is the ith branch current and 𝑅𝑖 is the resistance of the ith branch.  

2.2.2 Maximum loadability of the system 

Maximum loadability of the system (𝜆𝑚𝑎𝑥) should be maximized to meet the future load 

growth of the system.  

𝑓2 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝜆𝑚𝑎𝑥)    (2.3) 
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To obtain the 𝜆𝑚𝑎𝑥 of the system in [31], [60], [89], the system load level is increased from 0 

in step size of  0.01 until the load flow diverges and the corresponding load level at which the 

load flow has diverged is considered as 𝜆𝑚𝑎𝑥 of the system. 

2.2.3 Constraints 

The optimal allocation of DGs in the distribution system and optimal network reconfiguration 

of the distribution system problem needs to satisfy the following constraints: 

a. Bus voltage limit constraints: The voltage magnitude of each bus should be within the 

minimum and maximum limits.   

         |𝑉𝑚𝑖𝑛| < |𝑉𝑗| < |𝑉𝑚𝑎𝑥|   𝑗 = 1,2… . . 𝑛𝑏    (2.4) 

       where nb is the number of buses in the distribution system. 

b. Thermal limit constraints: The current flowing through each branch should be less than 

the current rating of the respective branch. 

                  𝐽𝑖 ≤  𝐽𝑖
𝑚𝑎𝑥                          𝑖 = 1,2…… . 𝑛𝑏𝑟                          (2.5) 

Where, nbr is the number of branches in the system. 

c. Active power limit of DGs: Active power generated by each DG (𝑃𝐷𝐺,𝑘) should be less 

than the maximum active power limit of DGs. 

               𝑃𝐷𝐺,𝑘 ≤ 𝑃𝐷𝐺,𝑘
𝑚𝑎𝑥                      𝑘 = 1,2… . 𝑛𝑑𝑔    (2.6) 

Where, ndg is the number of DGs to be placed in the system. 

d. The power factor of DGs: power factor of each DG should be within the minimum 

(𝑝𝑓𝑘
𝑚𝑖𝑛) and unity power factor limits. 

             𝑝𝑓𝑘
𝑚𝑖𝑛 ≤ 𝑝𝑓𝑘 ≤ 1          𝑘 = 1,2…𝑛𝑑𝑔     (2.7) 

e. Total active power (𝑃𝑇,𝐷𝐺) and reactive power generated (𝑄𝑇,𝐷𝐺) by DGs should be less 

than the total active (𝑃𝑙𝑜𝑎𝑑) and reactive power (𝑄𝑙𝑜𝑎𝑑) demand of the system respectively. 

∑ 𝑃𝐷𝐺,𝑘
𝑛𝑑𝑔
𝑘=1 = 𝑃𝑇,𝐷𝐺 ≤ 𝑃𝑙𝑜𝑎𝑑      (2.8) 

∑ 𝑄𝐷𝐺,𝑘
𝑛𝑑𝑔
𝑘=1 = 𝑄𝑇,𝐷𝐺 ≤ 𝑄𝑙𝑜𝑎𝑑      (2.9) 

f. Active Power and Reactive power balance constraints. 

𝑃𝑠𝑢𝑏 + 𝑃𝑇,𝐷𝐺 = 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠      (2.10) 

𝑄𝑠𝑢𝑏 + 𝑄𝑇,𝐷𝐺 = 𝑄𝑙𝑜𝑎𝑑 + 𝑄𝑙𝑜𝑠𝑠      (2.11)    

where  𝑃𝑠𝑢𝑏, 𝑄𝑠𝑢𝑏 are the active and reactive power generated by substations. 

g. The optimal network reconfiguration problem requires checking of radiality of the 

reconfigured network. In this work, spanning tree technique is utilized for checking the 

radiality of the reconfigured network [89]. 
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2.2.4 Multi-objective optimization- Ɛ-constraint method 

Ɛ-constraint method [90] is one of the methods to optimize two or more objectives at a time. 

In the Ɛ-constraint method, multi-objective optimization is redeveloped as taking one of the 

objectives as an objective function and other objectives are limited within the specified limits 

by converting them into constraints. The mathematical formulation of the multi-objective Ɛ-

constraint method is formulated as follows 

Minimize 𝑓𝜇(𝑥)                    (2.12) 

subjected to 𝑓𝑚(𝑥)  ≤   𝜀𝑚        𝑚 = 1,2, …… ,𝑀 𝑎𝑛𝑑 𝑚 ≠ 𝜇   (2.13) 

𝑔𝑗(𝑥)   ≥   0            𝑗 =   1,2, … . . . 𝐽       (2.14) 

ℎ𝑘(𝑥) = 0                𝑘 = 1,2, ……𝐾       (2.15) 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈          𝑖 = 1,2… . . . 𝑛       (2.16) 

 

Where, 𝜀𝑚 is the upper bound limit of the mth objective function 𝑓𝑚(𝑥).𝑔𝑗(𝑥)  , ℎ𝑘(𝑥), 𝑥𝑖are 

the jth inequality constraint, kth equality constraint, and ith decision variable. 𝑥𝑖
𝐿,𝑥𝑖

𝑈are lower 

bound and upper bound limits of the decision variables. 

2.3  Butterfly Optimization Algorithm 

In the literature, various researchers have taken several optimization algorithms for the 

OPDG and ODNR problems. According to the “No Free lunch theorem,” no optimization 

algorithm gives exceptional results for all optimization problems. An optimization algorithm 

may give admirable results for some set of optimization problems and may give inferior 

results for another set of optimization problems. Performance-wise, all optimization 

algorithms are indistinguishable while solving a whole set of optimization problems. 

However, while choosing an optimization problem of, few things are considered like since 

finding the loadability of the distribution system is a very tedious process, authors try to avoid 

optimization algorithms with a two-stage evolutionary process like in cuckoo search 

algorithm, TLBO algorithm, etc., and algorithm should be easy in implementation. Since the 

Butterfly optimization (BO) algorithm is a new one and advantages like ease in 

implementation have driven the authors to use this algorithm [91], [92]. 

Butterfly optimization (BO) algorithm is a new meta-heuristic optimization algorithm 

developed by Sankalap Arora and Satvir Singh in 2018 [93]. The BO algorithm is developed 

based on the food foraging behaviour and mating behaviour of the butterflies. In the real 

world, butterflies use their sense of smell to find food and mating partner. During the search 
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process for food, each butterfly will emit fragrance with some intensity, and the intensity of 

the fragrance is proportional to the quality or quantity of food sources at the neighbourhood 

of that butterfly. The fragrance emitted by the butterfly will propagate over some distance. If 

the other butterflies in the group were able to sense the fragrance, they would move towards 

it. In this way, butterflies will move in the real world until they find a good food source 

position. 

In developing the BO algorithm, all butterflies are treated as searching agents. Each agent 

has a position and associated fragrance. The fragrance of each agent is correlated with the 

fitness of the objective function. The mathematical modelling of the fragrance is given in 

Eq.2.17. 

f = cIa           (2.17) 

where f is the perceived magnitude of the fragrance, I is the stimulus intensity, c is the sensor 

modality and a is the power exponent. In BO algorithm, I is the fitness of the searching agent 

or butterfly. In BO algorithm c and a are the control parameters of the algorithm and the 

detailed analysis of the algorithm control parameters were given in [93]. 

All agents will move to the new positions in the search space based on the global best 

agent, magnitudes of the fragrances of all the agents and a switch probability p. The switch 

probability p decides whether the agent to go for local search or global search. The equations 

for position updating are given below. 

Perform a global search using Eq. 2 if 𝑟𝑎𝑛𝑑 < 𝑃  

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + (𝑟2 ∗ 𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑑(𝑡)) ∗ 𝑓𝑖                 (2.18) 

or local search using Eq. 2 if 𝑟𝑎𝑛𝑑 >  𝑃  

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + (𝑟2 ∗ 𝑥𝑗
𝑑(𝑡) − 𝑥𝑘

𝑑(𝑡)) ∗ 𝑓𝑖                (2.19) 

Where 𝑥𝑗
𝑑(𝑡)and 𝑥𝑘

𝑑(𝑡)are Jth and kth butterflies from the solution space which belongs to 

the same swarm and r is a random number in [0, 1]. The detailed flowchart is given in 

APPENDIX-A. 

The detailed steps for implementation of BO algorithm are as follows 

Step 1: Initialize algorithm parameters such as the number of agents N, the dimension of the  

problem d, the maximum number of iterations Itermax, probability switch P, power 

exponent PE and sensor modality SM. 

Step 2: Generate initial random solution 𝑥𝑖 between minimum (𝑥min ) and maximum  
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(𝑥𝑚𝑎𝑥) limits.  

𝑥𝑖 = 𝑥𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) ∗ 𝑟𝑎𝑛𝑑                                  (2.20) 

Where, 𝑥𝑖represent the position of the ith agent or butterfly. 

For optimal allocation of DGs unit’s problem, the  𝑥𝑖 constitute 

𝑥𝑖 = [𝐿𝑖
1, 𝐿𝑖

2 ……𝐿𝑖
𝑑   𝑃𝐷𝐺𝑖

1, 𝑃𝐷𝐺𝑖
2, …… . 𝑃𝐷𝐺𝑖

𝑑𝑝𝑓𝑖
1, 𝑝𝑓𝑖

2, …… . 𝑝𝑓𝑖
𝑑]  𝑖 = 1,2… .𝑁  

(2.21) 

Where N is the number of agents and d is the number of DGs to be placed, 𝐿𝑖
𝑑   , 𝑃𝐷𝐺𝑖

𝑑, 

𝑝𝑓𝑖
𝑑represents location (integer number), size (real value) and power factor (real 

value) of Nth agent of dth DG unit. During the simulation, location value is round-off to 

the nearest integer value.  

For optimal network reconfiguration problem, the  𝑥𝑖 constitute 

𝑥𝑖 = [𝑆𝑊𝑖
1, 𝑆𝑊𝑖

2 ……𝑆𝑊𝑖
𝑑   ]  𝑖 = 1,2… .𝑁                 (2.22) 

Where N is the number of agents and d is the number of tie switches in the distribution 

system,𝑆𝑊𝑖
𝑑   represents the dth switch position of Nth agent. 

Step 3: Evaluate the fitness (objective functions) of agents using Eq. 2.1, Eq. 2.3 &  

             Eq. 2.12. Record the best solution as gbest. 

Step 4: Set iteration count t as zero. 

Step 5: Calculate the fragrance 𝑓𝑁 for each agent or butterfly using Eq. 2.17.  

Step 6: Update the positions of the agents using the equations Eq. 2.18 and Eq. 2.19. 

For optimal network reconfiguration problem, the updated position is rounded to the 

nearest integer value. 

Step 7: Evaluate the fitness of each agent in the new population using Eq. 2.1, Eq. 2.3 &  

             Eq. 2.12. 

Step 8: Update the gbest vector 

Compare each new solution with the previous solution. If the new solution is better 

than the previous solution, record the new otherwise discard the new solution and 

preserve the previous solution as it is. Find out the gbest vector from updated 

population. 

Step 9: Stopping criterion 

Increment the iteration count by 1. If the iteration count reaches the maximum number 

of iterations (itermax) computation is terminated. Otherwise, Step 5 to Step 9 is 

repeated. 

Step 10: Print out the results. 
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2.4 Results and Discussion 

In this section, the proposed BO algorithm for improving the 𝜆𝑚𝑎𝑥 and active power loss 

reduction is applied on standard 33 and 69 bus test systems for the following scenarios. 

1. Single objectives optimization, i.e., Minimization of active power loss of the system 

and maximization of Maximum loadability of the system, are discussed in scenario-1. 

2. Ɛ-constraint MOBOA (Multi-objective butterfly optimization algorithm) approach: 

Taking 𝜆𝑚𝑎𝑥 as objective function and active power loss as a constraint.  

Each scenario consists of two cases: Optimal placement of DGs in the initial configured 

network (Case-1) and Optimal Network reconfiguration followed by DGs allocation (Case-

2). The tuned parameters of the BO algorithm are given in Table 2.1. Distribution systems 

with DGs installed at more than two buses have been found to have significant changes in 

power flows, which is responsible for the more significant improvement in technical 

parameters. Additionally, it was noted that there was little improvement in technical metrics 

between DGs put at 3 buses and 4 buses. This may have been because we used the 33 & 69 

bus systems as our test systems. Therefore, it is assumed that number of DGs to be placed is 

fixed 3. The lower and upper bound limits for location decision variables are 2 & 33 for 33 

bus system, 2 & 69 for 69 bus system respectively. The lower and upper bound limits for DGs 

are 200 kW & 3000 kW respectively for both the test systems. 

Table 2.1 BO Algorithm Parameters 

Parameter Description Assigned Value 

Number of Agents (N) 80 

Dimension (dim) Scenario and Case dependent 

Maximum number of iterations (maxit) 50 

Modular modality ‘c’ 0.01 

Power exponent ‘a’ 0.1 to 0.3 

Probability switch ‘P’ 0.5 

 

2.4.1 33 Bus System 

The network data of the system is given in [31]. The system consists of 33 buses, 37 branches 

and 5 tie switches. The nominal voltage rating of the system is 12.66 kV. The nominal load 
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on the system is 3715 kW and 2300 kVar. Initial open tie switch positions are 33,34,35,36 

and 37. Single line diagram of 33-bus system is depicted in Figure 2.2. The base case active 

power loss and maximum loadability of an uncompensated system are 210.98 kW and 3.4 

respectively. For optimal network reconfiguration problem, the switch positions given by BO 

algorithm for active power loss minimization are 7,9,14,32 and 37, the active power loss of 

the system is reduced to 138.5513 kW and maximum loadability of the system is improved to 

4.87. The switch positions given by BO algorithm for maximization of  𝜆𝑚𝑎𝑥 are 7,9,14,28 

and 32, the maximum loadability of the system is improved to 5.23 and active power loss of 

the system is reduced to 139.9782 kW. Since both objectives are improved in the case of 𝜆𝑚𝑎𝑥 

maximization, the switch positions obtained for loadability maximization are taken for case-

2 in all scenarios.  

 

Figure 2.2 Single line diagram of 33-Bus system 

Table 2.2 shows the various technical parameters of the system, DGs locations, DGs sizes, 

DGs power factors for optimal planning of DGs in scenario-1. In this work number of DGs to 

be placed in the 33-bus system is fixed to three due to the maximum enhancement in technical 

parameters of the system is observed in when Three DGs are placed optimally in the system. 

From Table 2.2, the following points are observed. In the case of active power loss 

minimization, the active power loss of the system is reduced to 12.74 kW (accounts 93.95 % 

of active power loss reduction), 18.75 kW (accounts 91.11 % of active power loss reduction 

with respect to the base case) when DGs are placed in case-1 and case-2 respectively. In the 

case of maximization of maximum loadability of the system, 𝜆𝑚𝑎𝑥 improved to 5.1, 7.23 in 

case-1 and case-2, respectively. And it is also observed that in the case of maximization of 
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maximum loadability of the system, the active power loss of the system is reduced to 86.5804 

kW, 91.8943 kW in case-1 & 2 respectively accounts 58.96%, 56.44% reduction only. 

Therefore, from scenario-1 it is concluded that a multi-objective approach is needed to 

improve both the objectives, i.e., active power loss reduction and 𝜆𝑚𝑎𝑥. 

Table 2.2 Simulation results of 33-bus system for scenario-1 

Parameters  

Initial configured network Optimal Reconfigured Network 

Power Loss 

Minimization 

Maximum 

Loading 

Maximization 

Power Loss 

Minimization 

Maximum 

Loading 

Maximization 

Active power 

loss (in kW) 
12.7458 86.5804 18.7531 98.8904 

𝝀𝒎𝒂𝒙 4.4 5.1 6.15 7.23 

Minimum and 

Maximum 

voltage (in 

p.u) 

0.9916 & 

1.0007 

0.9853 & 

1.0498 

0.9884 & 

1.001 

0.978 & 

1.0495 

% KVA DG 

INJECTION 
79.17 84.97 68.4 99.6 

% PLR 93.95 58.96 91.11 53.12 

% MLI 29.41 50 80.88 112.64 

DGs sizes (in 

kW)/Bus/ 

power factor  

0737/14/0.88 

1044/24/0.88 

1156/30/0.80 

0792/14/0.82 

0550/17/1.00 

1832/31/0.80 

0573/12/0.88 

1520/29/0.80 

0414/33/0.92 

2519/30/0.83 

0356/32/0.80 

0828/33/0.93 

 

According to Ɛ-constraint method, the Ɛ value has to be chosen in such a way that it should 

be lies within the minimum and maximum values of the individual objective function [90]. 

Therefore, in scenario-2, Ɛ value has to choose between 12.12 kW, 86.5804 kW for case-1 

and between 17.4779 kW, 91.8943 kW for case-2. In this work, to keep the active power loss 

reduction of the system to more than 70% (i.e., to reduce the active power loss of the system 

to below 63.29 kW) and to analyze the impact of different values of Ɛ on both objectives, we 

have chosen Ɛ values of 60 kW, 50 kW and 40 kW in scenario-2. The simulation outcomes of 

Ɛ-constraint MOBOA for different values of Ɛ is depicted in Figure 2.3. From the outcomes 

depicted in Figure 2.3, it can be concluded that both objectives are conflicting in nature. 
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Figure 2.3 Simulation outcomes of 33-bus system for scenario-2 cases (Ɛ-constraint 

MOBOA) (a) Without reconfiguration (b) With reconfiguration 

Due to the importance of minimization of active power loss to the lowest value, the value of 

Ɛ is taken as 40 kW is chosen to determine the optimal DGs locations, DGs sizes & DGs 

optimal power factors. Table 2.3 shows the various technical parameters, DGs locations, DGs 

sizes, DGs power factors for optimal placement of DGs in scenario 2. 

Table 2.3 Simulation outcomes of 33-bus system for scenario-2 (Ɛ-constraint MOBOA) 

 

Parameters 

  

Initial reconfigured 

network  

Optimal Reconfigured 

Network  

Ɛ= 40 kW Ɛ= 40 kW 

Active power loss (in kW) 39.6135 39.1406 

𝝀𝒎𝒂𝒙 4.87 6.78 

𝝀𝑽 1.9 2 

Min voltage (in p.u) 0.9944 0.9917 

Max voltage (in p.u) 1.042 1.028 

DGs sizes (in kW)/ 

DGs location/ 

DGs power factor 

1187/15/0.90 

0739/25/0.86 

1542/30/0.78 

0583/12/0.93 

0567/16/0.90 

2138/30/0.78 

 

From Table 2.3 shows a remarkable improvement of 𝜆𝑚𝑎𝑥  and active power loss reduction 

is observed in case-2 rather in case-1, i.e., 𝜆𝑚𝑎𝑥 is improved from 3.4 to 6.78, the active power 
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loss of the system is reduced to 39.1406 kW. The voltage profile graphs and the maximum 

loading curve for both cases in scenario-2 are shown the Figure 2.4 & Figure 2.5 respectively. 

 

Figure 2.4 Voltage profiles of 33-bus system for Scenario-2  

(Ɛ- Constraint MOBOA method when Ɛ = 40 kW) 

 

 

Figure 2.5 Maximum Loading curves of 33-bus system for Scenario-2  

(Ɛ- Constraint MOBOA method when Ɛ = 40 kW) 

From Figure 2.5, due to the consideration of maximum loadability as one of the objectives, it 

is observed that the loading marginal factor of the system is improved to 2, which indicates 

system bus voltages are within the permissible limits even though the system load increased 

by 100%.  
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To check the effectiveness of the proposed algorithm, the results of scenario 1 are compared 

in Table 2.4 with the suitable results available in the literature. And also, to get a greater 

number of comparisons, simulations for optimal placement of one DG & two DGs placement 

have been carried for scenario-1 and the comparisons are given in Table 2.4. Table 2.4 shows 

that the proposed methodology, i.e., the concept of using DGs with optimal power factor, 

gives better results than DGs with fixed power factor. And also, it is observed that the 

Proposed BO algorithm performs in achieving the desired objectives compared to HLTBO-

GWO, HPSO and DABC algorithms in respective cases. 

2.4.2 69 Bus System 

The network data of the system is given in [31]. The system consists of 69 buses, 73 branches 

and 5 tie switches. The nominal voltage rating of the system is 12.66 kV. The nominal load 

on the system is 3801.4 kW and 2693.6 kVar. Initial tie switch open positions are 69,70,71,72 

and 73. Single line diagram of the 69-bus system is depicted in Figure 2.6. The base case 

active power loss and maximum loadability of an uncompensated system are 224.9515 kW 

and 3.21, respectively. For optimal network reconfiguration problem, the optimal switch 

positions given by BO algorithm for active power loss minimization and loadability 

maximization are 14,58,61,69 and 70, the active power loss of the system is reduced to 98.55 

kW and the maximum loadability of the system is improved to 5.49 from 3.21.  

 

Figure 2.6 Single line diagram of 69-Bus system 
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Table 2.4 Comparison results of 33 bus system 

Scenarios Method Open switch 

Positions 

DGs sizes in 

kW/BUS/ p.f 

Active 

power loss 

(kW) 

𝝀𝒎𝒂𝒙 

Scenario-1 (Power loss Minimization) 

Case-1 Proposed BO 

Algorithm 

33,34,35,36,37 0737/14/0.88 

1044/24/0.88 

1156/30/0.80 

12.75 4.4 

 HTLBO-

GWO[62] 

33,34,35,36,37 997/30/0.8659 

1000/13/0.8122 

789/24/0.8726 

13.68 --- 

 HSA-PABC[94] 33,34,35,36,37 862/12/0.85 

1159/30/0.85 

816/25/0.85 

15.91 --- 

Case-2 Proposed 

Algorithm 

7,9,14,28,32 0573/12/0.88 

1520/29/0.80 

0414/33/0.92 

18.753 6.25 

 UVDA Heuristic 

Method[52] 

7,9,14,32,37 1.125+j1.034/30 

0.592+j0.252/15 

0.526+j0.280/12 

25.346 ---- 

Scenario-1 (Loadability Maximization) 

Case-1 Proposed BO 

Algorithm 

33,34,35,36,37 3353/8/0.9 141.71 4.31 

 HPSO 

Algorithm[31] 

33,34,35,36,37 3080/8/0.85 131.85 4.31 

 MOCTLBO 

Algorithm[89] 

33,34,35,36,37 3017/8/3017 130.86 4.31 

 Proposed BO 

Algorithm 

33,34,35,36,37 347/15/0.9594 

2100/30/0.7800 

94.64 5.07 

 HPSO 

Algorithm[31] 

33,34,35,36,37 1117/16/0.85 

1880/22/0.85 

98.65 5.00 

 CTLBO 

Algorithm[89] 

33,34,35,36,37 1373/15/0.959 

1944/30/0.7569 

86.57 5.06 

 DABC 

Algorithm[60] 

33,34,35,36,37 1968/32/0.95 

1555/14/0.95 

90.63 4.99 

 Proposed BO 

Algorithm 

33,34,35,36,37 1832/31/0.7998 

550/17/1 

792/14/0.8201 

86.5804 5.1 

 HPSO 

Algorithm[31] 

33,34,35,36,37 377/29/0.85 

1159/15/0.85 

1677/31/0.85 

84.16 5.04 

 CTLBO 

Algorithm[89] 

33,34,35,36,37 938/13/0.9692 

522/16/0.9265 

1936/30/0.7729 

83.39 5.07 

Case-2 Proposed BO 

Algorithm 

7,9,14,28,32 843/17/0.8309 

2275/31/0.800 

92.7889 7.06 

 DABC 

Algorithm[60] 

7,10,14,28,32 2962/25/0.95 

909/9/0.95 

58.86 6.31 
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Table 2.5 shows the various technical parameters, DGs locations, DGs sizes, power factors 

for optimal placement of DGs in scenario 1. From Table-2.5, the following points are 

observed. In the case of active power loss minimization, active power loss of the system is 

reduced to 4.2657 kW (accounts for 98.10 % of active power loss reduction), 5.2978 kW 

(accounts for 97.64 % of active power loss reduction with respect to the base case) when DGs 

are placed in case-1 and case-2 respectively. In the case of maximization of maximum 

loadability of the system, 𝜆𝑚𝑎𝑥 improved to 4.91 and 7.73 in case-1 and case-2, respectively. 

And it is also observed that in the case of maximization of maximum loadability of the system, 

active power loss of the system is reduced to 89.8601 kW and 93.9651 kW in case-1 & 2, 

respectively, accounts for 60 % & 58.52 % reduction only. Therefore, from scenario-1, it is 

concluded that a multi-objective approach is needed to improve both the objectives, i.e., active 

power loss reduction and 𝜆𝑚𝑎𝑥. 

Table 2.5 Simulation results of 69-bus system for scenario-1 

Parameters  Initial configured network 

 

Optimal reconfigured network 

Power loss 

Minimization 

(f1) 

Maximum 

Loading 

Maximization 

(f2) 

Power loss 

Minimization 

(f1) 

Maximum 

Loading 

Maximization 

(f2) 

Active power loss 

(in kW) 

4.2657 89.8601 5.2978 93.9651 

𝝀𝒎𝒂𝒙 4.21 4.91 6.49 7.73 

Minimum and 

Maximum 

voltage (in p.u) 

0.9943 & 

1.0047 

0.9818 & 

1.0497 

0.9938 & 

1 

0.9899 & 

1.05 

% KVA DG 

INJECTION 

68.79 93.56 64.45 98.58 

% PLR 98.10 60.05 97.64 58.22 

% MLI 30.84 52.95 102.18 140.18 

DGs sizes (in 

kW)/Bus/power 

factor  

0495/11/0.81 

1675/61/0.81 

0378/18/0.83 

2292/61/0.80 

0500/36/0.80 

0724/62/0.84 

1418/61/0.81 
0488/64/0.82 
0536/11/0.81 

0214/69/0.83 

0378/62/0.80 

3207/61/0.83 
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The simulation outcomes of Ɛ-constraint MOBOA for different values of Ɛ is depicted in 

Figure 2.7. 

 

 

 

 

 

 

 

Figure 2.7 Simulation outcomes of 69-bus system for scenario-2 cases (Ɛ-constraint 

MOBOA) (a) Without reconfiguration (b) With reconfiguration 

From the outcomes depicted in Figure 2.7, it can be concluded that both objectives are 

conflicting in nature. Due to the importance of minimization of active power loss to the lowest 

value, the value of Ɛ is taken as 40 kW is chosen to determine the optimal DGs locations, DGs 

sizes & DGs optimal power factors. Table 2.6 shows the various technical parameters, DGs 

locations, sizes and power factors for optimal placement of DGs in scenario 2. 

Table 2.6 Simulation results of 69-bus system for scenario-2 

 

Parameters  

Initial reconfigured 

network  

Optimal Reconfigured 

Network  

Ɛ = 40 kW Ɛ = 40 kW 

Active power loss 

(in kW) 
37.62 38.87 

𝝀𝒎𝒂𝒙 4.69 7.22 

Min voltage (in 

p.u) 
0.9943 0.9921 

Max voltage (in 

p.u) 
1.0348 1.0293 

DGs sizes (in 

kW)/ 

DGs location/ 

DGs power factor 

0211/64/0.78 

0481/18/0.80 

2433/61/0.86 

0309/68/0.87 

2436/61/0.81 

0539/25/0.78 
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From Table 2.6, it is observed that a remarkable improvement of 𝜆𝑚𝑎𝑥 and active power loss 

reduction is observed in case-2 instead in case-1, i.e., 𝜆𝑚𝑎𝑥 is improved from 3.21 to 7.22, the 

active power loss of the system is reduced to 38.87 kW. The voltage profile graphs and the 

maximum loading curve for both cases in scenario-2 are shown the Figure 2.8 & Figure 2.9, 

respectively. 

 

Figure 2.8 Voltage profiles of 69-bus system for Scenario-2  

(Ɛ- Constraint MOBOA method when Ɛ = 40 kW) 

 

 

Figure 2.9 Maximum Loading curves of 69-bus system for Scenario-2  

(Ɛ- Constraint MOBOA method when Ɛ = 40 kW) 

From Figure 2.9, due to the consideration of maximum loadability as one of the objectives, it 

is observed that the loading marginal factor of the system is improved to 2.18, which indicates 

system bus voltages are within the permissible limits even though system load increased by 
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118%. To check the effectiveness of the proposed algorithm and proposed methodology, the 

results of scenario-1 are compared in Table 2.7. The BO algorithm performs well in 

compassion to other HTLBO-GWO, DABC and HPSO algorithms.   

Table 2.7 Comparison results of 69 Bus system 

Scenarios Method 
Open switch 

Positions 

DGs sizes in 

kW/BUS/ p.f 

Active 

power 

loss (kW) 

𝝀𝒎𝒂𝒙 

Scenario-1 (Power Loss Minimization) 

Case-1 
Proposed BO 

Algorithm 
69,70,71,72,73 

0495/11/0.81 

1675/61/0.81 

0378/18/0.83 

4.2657 4.21 

 HLTBO-GWO[62] 69,70,71,72,73 

523/18/0.8294 

1000/61/0.8191 

723/62/0.8020 

7.27 --- 

 
UVDA Heuristic 

Method[52] 
69,70,71,72,73 

1.41+j1/61 

0.604+j0.432/11 

0.417+j0.27/17 

7.676 --- 

Case-2 
Proposed BO 

Algorithm 
14,58,61,69,70 

1418/61/0.81 
0488/64/0.82 
0536/11/0.81 

5.2978 --- 

 
UVDA Heuristic 

Method[52] 
14,58,61,69,70 

1.378+j0.984/61 

0.62+j0.443/11 

0.722+j0.514/64 

9.3493 --- 

Scenario-2 (Loadability maximization) 

Case-1 
Proposed BO 

Algorithm 
69,70,71,72,73 2878/61/0.75 103.3991 4.92 

 HPSO Algorithm[31] 69,70,71,72,73 3161/61/0.85 104.86 4.91 

 DABC Algorithm[60] 69,70,71,72,73 3453/61/0.95 86.56 4.83 

 
Proposed BO 

Algorithm 
69,70,71,72,73 

2292/61/0.80 

0500/36/0.80 

0724/62/0.84 

89.8601 4.91 

 HPSO Algorithm [31] 69,70,71,72,73 

3104/61/0.85 

27.3/63/0.85 

130/46/0.85 

87 4.91 

Case-2 
Proposed BO 

Algorithm 
14,58,61,69,70 3317/61/0.8553 115.3704 7.73 

 DABC Algorithm[60] 13,17,38,57,63 3454/61/0.95 91.85 7.53 

 
Proposed BO 

Algorithm 
14,58,61,69,70 

200/26/0.995 

3085/61/0.7994 
105.8002 7.73 

 
CLTBO 

Algorithm[89] 
14,58,61,69,70 

382/25/0.99929 

3389/61/0.8707 
113.961 7.73 

 
Proposed BO 

Algorithm 
14,58,61,69,70 

200/25/0.987 

3104/61/0.804 

264/11/0.950 

102.149 7.73 

 
CLTBO 

Algorithm[89] 
14,58,61,69,70 

122/32/0.8112 

3087/61/0.7999 

338//65/0.9987 

102.149 7.73 
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Figure 2.10 and Figure 2.11 depicts the convergence graphs given by BO & Ɛ- Constraint 

MOBOA for scenario-1 & 2 of 33 bus respectively. Figure 2.12 and Figure 2.13 depicts the 

convergence graphs given by BO & Ɛ- Constraint MOBOA for scenario-1 & 2 of 69 bus 

respectively.  

 

Figure 2.10 convergence graphs given by BO algorithm for 33 bus system simulation 

outcomes (a) Power loss minimization case (b) Maximum loadability enhancement case 

 

 

Figure 2.11 convergence graphs given by Ɛ- Constraint MOBOA for 33 bus system 

simulation outcomes (a) Without reconfiguration case (b) with reconfiguration case 
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Figure 2.12 convergence graphs given by BO algorithm for 69 bus system simulation 

outcomes (a) Power loss minimization case (b) Maximum loadability enhancement case 

 

 

Figure 2.13 convergence graphs given by Ɛ- Constraint MOBOA for 69 bus system 

simulation outcomes (a) Without reconfiguration case (b) With reconfiguration case 
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2.5 Summary and comments 

This work presented optimal planning of DGs and optimal network reconfiguration of radial 

distribution network problems for improving network’s efficiency and maximum loadability 

Improvement in above-two mentioned objectives of the distribution system is addressed at 

peak load level of the system without considering load and DGs uncertainties. Therefore, this 

work corresponds to finding the injection of how much active and reactive power by DGs 

optimally into the system at optimal locations with respect to systems' peak load level for the 

improvement of above-two mentioned objectives to maximum extent. To achieve the 

objectives, two scenarios with two cases per scenario have considered. BO algorithm has been 

selected to optimize the desired objective functions and implemented on 33 & 69 Bus standard 

test systems. To optimize both the objective functions, Ɛ-constraint method has been used. 

obtained results show the improvement in all the objectives i.e., maximum system loadability 

and active power loss reduction has observed in case-2 of scenario-2 i.e., in case of multi-

objective optimization using Ɛ-constraint method by optimal planning of DGs in optimal 

reconfigured network. The test systems' active power loss is reduced to around 80%, 

maximum loadability is improved to around (100-120) %. From the outcomes, it is also 

observed that loading marginal factor of the system is also improved due to the consideration 

of maximum loadability as one of the objectives which indicates a future load growth can be 

effectively met by the system without violating system bus voltages permissible limits. 

However, the improvement in objectives to that extent is due to the (80-85) % of kVA 

injection by DGs into the distribution system. The above system performance is achieved by 

the injection of optimal active and reactive powers at optimal locations with the help of single 

DG unit (or) combination of multiple DG units (Micro-Turbines & synchronous 

compensators). The similar system performance is achieved at other load levels other than 

system’s peak load if DGs adjust its power output in accordance with load changes provided 

DGs are dispatchable (BIOMASS, Micro-Turbine etc.) in nature. But, in the case of optimal 

planning of non-dispatchable PV & WT units, modelling of DGs at peak load level and their 

adjustment of output power in accordance with load changes is not possible. Therefore, in the 

next chapter, optimal planning of non-dispatchable PV & WT units & dispatchable PV-BESS 

& WT-BIOMASS units by considering load and generation uncertainties is discussed. 
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Chapter 3 

Probabilistic optimal planning of dispatchable distributed 

generator units in distribution systems using a Pareto-

based multi-objective chaotic velocity-based butterfly 

optimization algorithm 

  3.1 Introduction 

  This chapter primarily covers the optimal planning of non-dispatchable PV & WT units, 

dispatchable PV-BESS, and WT-BIOMASS units in the distribution system. In literature, 

several authors addressed the optimal injection of active & reactive powers at the peak load 

level of the distribution system for improving the system performance, and the system 

performs similarly at load levels other than its peak load if DGs adjust their power output in 

accordance with variations in load, provided DGs are dispatchable. In literature, several 

researchers addressed optimal planning of non-dispatchable units (usually can’t adjust their 

output power in accordance with the needs, e.g., PV & WT units) by considering load and 

generation uncertainties. Authors in [66], [71], [95] addressed the optimal integration of PV 

(Photo-Voltaic) and WT (Wind Turbine) units in electrical distribution networks by 

considering daily load demand, solar radiance & wind speed uncertainties for the 

improvement of system performance. From the above papers, it has been observed that both 

PV and WT units are non-dispatchable, i.e., they don’t have complete control over the amount 

of active power & reactive power injection into the system due to the dependency of DGs 

output power on solar radiance & wind speed. Better enhancement in system performance 

(energy loss reduction, enhancement of system’s voltage profile etc.) is achieved if DGs 

dispatch/inject power optimally into the system during each hour of the day. Therefore, to 

overcome the non-dispatchable nature of PV, the PV unit is assisted by BESS so that during 

the day time PV unit will supply power to both the grid & BESS, and during nighttime, the 

battery will supply power to the grid. Similarly, in the case of the WT-Biomass unit, the 

difference of power between the required power from the WT-Biomass unit and the WT unit 

at that time will be supplied by the Biomass unit. Authors in [72] addressed the optimal 

integration of PV-BESS units in the distribution system to mitigate energy loss, and authors 

in  [74] addressed the optimal integration of either PV-BESS or WT-Biomass units in the 
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distribution system for the mitigation of energy loss. In the above papers, researchers 

addressed the optimal planning of DGs for energy loss minimization only. And also, it is 

observed that energy loss of the system is reduced to the utmost value by dispatching more 

power into the system by DGs (PV-BESS, WT-Biomass), which increases the DGs sizes and 

the corresponding installation and maintenance costs. Therefore, to create a balance between 

the amount of power injected by DGs into the system and improvement in technical 

parameters, in this work, economic aspects of DGs are taken as one of the objectives along 

with the objective’s energy loss reduction & voltage deviation index. Pareto-based multi-

objective optimization generates a set of non-dominant solutions between the competing 

objectives, whereas other multi-objective techniques (such as the weighted sum method and 

the -constraint method) reduce multi-objective optimisation to single-objective optimisation. 

Additionally, there is no need to give weights to the objective functions in pareto-based multi-

objective optimisation. Therefore, in this work, the above-cited three objectives are optimized 

with an improved version of BOA, i.e., Pareto-based multi-objective chaotic velocity-based 

butterfly optimization algorithm.  

To summarise, this chapter main contributions are as follows 

1.  Optimal integration of dispatchable distributed generations (DDG): PV-BESS 

(Photovoltaic System-Battery energy storage system), WT-Biomass (Wind Turbine) 

in the distribution system that is optimally restructured.  

2. This study's aims include enhancing the voltage profile of the system, lowering the 

installation & maintenance costs of DGs, and slashing the system's energy loss.  

3.  A multi-Objective Pareto-based chaotic velocity butterfly optimization algorithm 

(MOCVBOA) is taken to optimize the objectives.  

4. The TOPSIS method, recently becoming a famous method among the other available 

methods for selecting the most compromised solution from the Pareto front is used in 

this work. 

5.  To achieve the desired outcomes, five scenarios are considered in this work and a 

detailed analysis of the outcomes is presented. 

  The remainder of this chapter is articulated as follows; Section 2 focuses on PV and WT unit 

uncertainty modelling, a mathematical description of this work is introduced in Section 3, 
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Section 4 will give brief insights into the BOA & VBOA optimization technique and specific 

implementation aspects of it, Section-5 will illustrate the scenarios taken in this work and the 

associated results. 

  3.2 Modelling of PV and WT units 

  Statistical techniques that employ probability density functions (PDFs) are typically used to 

deal with any random variable's intermittent or probabilistic nature. Authors in [96] concluded 

that the Beta probability distribution function was the most fitted distributed function in 

coping with the probabilistic nature of solar radiance. Similarly, researchers concluded that 

Weibull PDF was the most fitted distributed function in coping with the probabilistic nature 

of wind speed. Based on this, a few researchers developed [66], [70], [97]–[99] various 

probabilistic methods using beta & Weibull PDFs. The probabilistic method used in [70], [71]  

for dealing with the uncertainty involved in PV & WT units output powers is employed in 

this work, which determines the typical p.u PV  & WT output power curves from historical 

solar irradiance data. 

 3.2.1 Modelling of solar radiation 

Solar irradiance's probabilistic or intermittency nature follows the Beta PDF [71]. The Beta 

PDF function ( 𝑓𝑏(𝑠
𝑡))  for calculating the probability of solar radiance at particular time 

interval (𝑠𝑡) is given below 

𝑓𝑏(𝑠
𝑡) = {

𝚪(𝛂𝒕+𝛃𝒕)

𝚪(𝛂𝒕)𝚪(𝛃𝒕)
𝑠𝑡(𝛂𝒕−1)

(1 − 𝑆𝑡)(𝛂𝒕−1)   ,     0 ≤  𝑆𝑡 ≤ 1, 𝛂𝒕, 𝛃𝒕 ≥ 0 

0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                 (3.1) 

where (𝛂𝒕), (𝛃𝒕)are the shape parameters of Beta PDF, 𝚪 is the gamma function. Shape 

parameters of the Beta PDF are calculated from the standard deviation (σ𝑡), mean (µ𝑡) and 

their corresponding equations for calculation are given below 

𝛃𝒕 = (1 − µ𝑡)(
µ𝑡 (1+µ𝑡)

σ𝑡2
− 1)                       (3.2) 

𝛂𝒕 =
µ𝑡 ∗ 𝛃𝒕

1−µ𝑡                          (3.3) 

3.2.2 Modelling of wind speed 

Wind speed's probabilistic or intermittency nature follows the Weibull PDF [71]. The Weibull 

PDF function 𝑓𝑣(𝑣
𝑡)  for calculating the probability of wind speed at particular time interval 

(𝑣𝑡) is given below 
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𝑓𝑣(𝑣
𝑡) =

𝑘𝑡

𝑐𝑡 ∗ (
𝑣𝑡

𝑐𝑡)
𝑘𝑡−1

∗ 𝑒𝑥𝑝(−((
𝑣𝑡

𝑐𝑡)
𝑘𝑡−1

))                                         (3.4) 

Where  (k𝑡), (c𝑡) are the Shape parameters of the Weibull PDF calculated from the mean (µ𝑡), 

standard deviation (σ𝑡) and their corresponding equations for calculation are given below 

𝑘𝑡 = (
 σ𝑡

µ𝑡)
𝑘𝑡−1

                 (3.5) 

𝑐𝑡 =
µ𝑡

𝚪(𝟏+𝟏/𝑘𝑡)
                 (3.6) 

3.2.3 Modelling of the output power generated by PV and WT units 

To determine the PV and WT output power generation for each hour of the day, samples of 

solar radiance and wind speed for three years are collected from a specific site. Afterwards, 

from (3*365) samples for every hour, the standard deviation and mean of solar radiance & 

wind speed for a typical day are determined. After that, each hour is divided into several 

𝑛𝑠 States. Afterwards, during each interval, an average of solar radiation & wind speed is 

calculated (Consider the case when the number of states is fixed to 20, then for the first 

interval, the limits of solar radiation are 0 & 0.05kW/m2, then the average solar radiation for 

the first state is 0.025 kW/m2). Then, the hourly average output power from the PV and WT 

from the above-obtained data is calculated from the following mathematical formulations 

The hourly average output power from the PV (𝑃𝑃𝑉
𝑡 ) [95] during the time interval ‘t’ is 

obtained from the following equation  

𝑃𝑃𝑉
𝑡 = ∑   𝑃𝑃𝑉0

(𝑠𝑎𝑣𝑔
𝑔

) ∗ 𝑓𝑏(𝑠𝑎𝑣𝑔
𝑔

)
𝑛𝑠
𝑔=1              (3.7) 

where 𝑛𝑠 represents the number of states,  𝑃𝑃𝑉0
(𝑠𝑎𝑣𝑔

𝑔
) represents the power generation from 

the PV unit with average solar radiation in the gth state and the corresponding equations for 

the calculation of  𝑃𝑃𝑉0
(𝑠𝑎𝑣𝑔

𝑔
)  are given below 

 𝑃𝑃𝑉0
(𝑠𝑎𝑣𝑔

𝑔
) = 𝑁𝑃𝑉 𝑚𝑜𝑑 ∗ 𝐹𝐹 ∗ 𝑉𝑔 ∗ 𝐼𝑔            (3.8) 

𝐹𝐹 =
𝑉𝑀𝑃𝑃∗𝐼𝑀𝑃𝑃

𝑉𝑂𝐶∗𝐼𝑆𝐶
              (3.9) 

𝑉𝑔 = 𝑉𝑂𝐶 − 𝑘𝑉 ∗ 𝑇𝑐𝑔              (3.10) 
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𝐼𝑔 = 𝑠𝑎𝑣𝑔
𝑔 [𝐼𝑆𝐶 + 𝑘𝑖 ∗ (𝑇𝑐 − 25)]            (3.11) 

𝑇𝑐𝑔 = 𝑇𝐴 + 𝑠𝑎𝑣𝑔
𝑔

∗ (
𝑁𝑂𝑇−20

0.8
)             (3.12) 

where 𝑁𝑃𝑉 𝑚𝑜𝑑, 𝐹𝐹, 𝐼𝑀𝑃𝑃 , 𝑉𝑀𝑃𝑃 , 𝐼𝑆𝐶 , 𝑉𝑂𝐶,  𝑘𝑖, 𝑘𝑉, 𝑇𝑐𝑔, 𝑇𝑐, 𝑁𝑂𝑇, 𝑇𝐴 represents the number of 

PV modules, fill factor, current (A) and voltage (V) at the maximum power point, short circuit 

current (A) and open-circuit voltage (V), current and voltage coefficients in V/oC, A/oC, PV 

module temperature, cell temperature, Nominal operating temperature & ambient temperature 

respectively. 

Similarly, the hourly average output power from the WT (𝑃𝑊𝑇
𝑡 ) [95] during the time interval 

‘t’ is obtained from the following equation  

𝑃𝑊𝑇
𝑡 = ∑   𝑃𝑊𝑇0

(𝑣𝑎𝑣𝑔
𝑔

) ∗ 𝑓𝑏(𝑣𝑎𝑣𝑔
𝑔

)
𝑛𝑠
𝑔=1           (3.13) 

where  (𝑣𝑎𝑣𝑔
𝑔

)  represents the WT power generation with average wind velocity in the gth state 

and the corresponding equations for the calculation of   𝑃𝑊𝑇0
(𝑣𝑎𝑣𝑔

𝑔
)  are given below 

  𝑃𝑊𝑇0
(𝑣𝑎𝑣𝑔) = {

0      𝑣𝑎𝑣𝑔 < 𝑣𝑐𝑖𝑛   𝑜𝑟  𝑣𝑎𝑣𝑔 > 𝑣𝑐𝑜𝑢𝑡

(𝐴 ∗ 𝑣𝑎𝑣𝑔
3  +  𝐵 ∗   𝑃𝑟)  𝑣𝑐𝑖𝑛 ≤ 𝑣𝑎𝑣𝑔 ≤ 

  𝑃𝑟,𝑊𝑇𝑣𝑐𝑖𝑛 ≤ 𝑣𝑎𝑣𝑔 ≤ 𝑣𝑐𝑜𝑢𝑡

𝑣𝑟        (3.14) 

𝐴 =
  𝑃𝑟,𝑊𝑇

(𝑣𝑟
3−𝑣𝑐𝑖𝑛

3 )
             (3.15) 

𝐵 =
𝑣𝑐𝑖𝑛

3

(𝑣𝑟
3−𝑣𝑐𝑖𝑛

3 )
             (3.16) 

where   𝑣𝑟, 𝑣𝑐𝑖𝑛, 𝑣𝑐𝑜𝑢𝑡, 𝑃𝑟,𝑊𝑇  are the rated speed, cut-in speed, cut-out speed, and rated power 

of wind turbine respectively. 

3.2.4 Modelling of Battery energy storage system (BESS) 

The discharging and charging mode of batteries are modelled using the following equations 

[70] 

𝐸𝐵𝐸𝑆(𝑡 + 1) = 𝐸𝐵𝐸𝑆(𝑡) − ∆𝑡 ∗
𝑃𝐵𝐸𝑆

𝑑𝑖𝑠𝑐ℎ

𝜂𝑑
          (3.17) 

𝐸𝐵𝐸𝑆(𝑡 + 1) = 𝐸𝐵𝐸𝑆(𝑡) + ∆𝑡 ∗ 𝑃𝐵𝐸𝑆
𝑐𝑏 ∗ 𝜂𝑐         (3.18) 
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where 𝐸𝐵𝐸𝑆(𝑡) represents the energy in the battery in kWh during tth time interval,  𝑃𝐵𝐸𝑆
𝑑𝑖𝑠𝑐ℎ, 

𝑃𝐵𝐸𝑆
𝑐𝑏 , 𝜂𝑑, 𝜂𝑐 are the discharging power & charging power (kW), discharging & charging 

efficiency of the batteries, respectively. 

BESS must satisfy the following charging power & discharging power constraint limits, and 

energy storage limit constraints. 

0 ≤ 𝑃𝐵𝐸𝑆
𝑑𝑖𝑠𝑐ℎ ≤ 𝑃𝐵𝐸𝑆

𝑑𝑖𝑠𝑐ℎ,𝑚𝑎𝑥
            (3.19) 

0 ≤ 𝑃𝐵𝐸𝑆
𝑐𝑏 ≤ 𝑃𝐵𝐸𝑆

𝑐𝑏,𝑚𝑎𝑥
             (3.20) 

𝐸𝐵𝐸𝑆𝑚𝑖𝑛
≤ 𝐸𝐵𝐸𝑆(𝑡) ≤  𝐸𝐵𝐸𝑆𝑚𝑎𝑥

           (3.21) 

where 𝑃𝐵𝐸𝑆
𝑑𝑖𝑠𝑐ℎ,𝑚𝑎𝑥

, 𝑃𝐵𝐸𝑆
𝑐𝑏,𝑚𝑎𝑥

 , 𝐸𝐵𝐸𝑆𝑚𝑖𝑛
&𝐸𝐵𝐸𝑆𝑚𝑎𝑥

 are the maximum discharge & charge limits of 

the battery, minimum and maximum energy storage limit constraints. 

3.2.5 Modelling of Biomass Output power 

Since the output from the Biomass unit is dispatchable in nature, and also in this work biomass 

unit acts as a backup for WT, the maximum size of the biomass unit and its dispatchable 

hourly output is determined to form the procedure explained in the latter section of this paper. 

3.3 Problem Formulation 

Optimal integration of DDGs in the system improves the efficiency, voltage profile, 

loadability, EENS, Economic aspects etc. In this work, enhancement of the system’s 

maximum loadability is not considered because the improvement of this technical metric to 

the extent quoted in chapter-2 associated with a huge injection of active & power reactive 

power into the system, which requires large sizes of DGs and the associated huge annual 

installation costs of DDGs. Therefore, in this work, the improvement of three objectives is 

considered: minimization of energy loss for the improvement of system efficiency, 

minimization of total voltage deviation for the improvement of system voltage profile, and 

annual economic cost, which deals with the annual & maintenance costs of DDGs. 

Apart from that, the following assumptions are made in this work 

1) The Optimal integration of DDGs (PV-BESS, WT-BIOMASS) in the 33 & 69 bus 

distribution systems is considered in this work. 
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2) The distributed generator will supply reactive power with the help of a grid-connected 

inverter [100]–[102]. If the kVA rating of the DG Inverter is oversized by the suitable 

percentage of the maximum kW rating of the distributed generator, then the DG 

system will have the capability to supply reactive power with a constant power factor. 

Hence in this work, it is assumed that the DDGs are working at 0.9 power factor by 

oversizing the DG inverters with a suitable percentage. 

3) Distribution network buses are subjected to identical wind and solar irradiance 

conditions. 

4) For load flow studies, DDGs are modelled as negative PQ-Load modelling in the 

system. 

3.3.1 Objective Functions 

3.3.1.1  Energy Loss 

Optimal integration of DDGs in the system improves the system's efficiency by reducing the 

system’s energy loss (𝐸𝑙𝑜𝑠𝑠). Energy loss of the system for a 24-hour daily load pattern is 

obtained by adding all the distribution system active power losses in each hour of that day. 

The mathematical formulation of the system’s energy loss is given below. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1 = 𝐸𝑙𝑜𝑠𝑠 = ∑ ∑ 𝐽𝑡,𝑗
2 ∗ 𝑅𝑗

𝑛𝑏−1
𝑗=1

24
𝑡=1                  (3.22) 

where 𝑛𝑏 , 𝐽𝑡,𝑗 , 𝑅𝑗 are the number of buses, branch current and branch resistance, respectively. 

3.3.1.2 Total Voltage Deviation 

The goal of voltage profile enhancement is to align all the bus voltage magnitudes as closely 

as possible to offer uniform voltage profiles for the customers. To achieve this, Total Voltage 

Deviation (TVD), a mathematically formulated function, is used as one of the objectives. At 

first, for each hour in a day, Voltage Deviation (VD) is obtained by taking the sum of the 

squares of the voltage deviations of all the buses concerning 1 p.u. After that, the Total 

Voltage Deviation (TVD) for a day is obtained by adding all the VD’s. Therefore, the system's 

total voltage deviation (TVD) must be decreased to enhance the system voltage profile. 

Mathematical formulations of the VD and TVD are given below 

𝑉𝐷𝑡 = ∑ (1 − 𝑉𝑡,𝑖) 
2 𝑡 = 1,2, . . .24𝑁𝑏𝑢𝑠

𝑖=1       (3.23) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓2 = 𝑇𝑉𝐷 = ∑ 𝑉𝐷𝑡
24
𝑡=1        (3.24) 
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3.3.1.3 Annual Economic Cost (AEC) 

As the integration of DDGs in the distribution system reduces energy loss, the cost associated 

with buying that reduced energy loss from the distribution system operator is saved. However, 

the integration of DDGs in the system is related to annual installation and maintenance costs. 

And also, the reduction in the system’s energy loss due to the integration of DDGs depends 

on the amount of power injected by the DDGs into the system optimally. Higher penetration 

of power by DDGs into the system results in higher energy loss reduction but higher annual 

installation & maintenance costs of DDGs and vice-versa. Therefore, to create a balance 

between yearly installation & maintenance costs of DDGs and energy loss reduction, an 

objective function named Annual Economic Cost (AEC) is mathematically formulated as 

shown below  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓3 = 𝐴𝐸𝐶 = 𝑘𝑒 ∗ (𝐸𝑙𝑜𝑠𝑠)  ∗ 365 + (𝐴𝐼𝐷𝐷𝐺 + 𝑂𝑀𝐷𝐷𝐺)        (3.25) 

where 𝑘𝑒,𝐴𝐼𝐷𝐷𝐺 , 𝑂𝑀𝐷𝐷𝐺 are the electricity price in $/kW-hr, annual installation costs and 

maintenance costs in $ respectively. 

𝐴𝐼𝐷𝐷𝐺 = (𝑁𝑝𝑣 ∗ 𝐼𝑁𝐶𝑝𝑣 ∗ 𝑃𝑟,𝑃𝑉 + 𝑁𝑤𝑡 ∗ 𝐼𝑁𝐶𝑤𝑡 ∗ 𝑃𝑟,𝑊𝑇 + 𝑁𝑏𝑖𝑜 ∗ 𝐼𝑁𝐶𝑏𝑖𝑜 ∗ 𝑃𝑟,𝑏𝑖𝑜) ∗ 𝐶𝑅𝐹𝐷𝐺 +

(𝑁𝐵𝐸𝑆𝑆 ∗ 𝐼𝑁𝐶𝐵𝐸𝑆𝑆) ∗ 𝐶𝑅𝐹𝐵𝐸𝑆𝑆        (3.26) 

 

𝑂𝑀𝐷𝐷𝐺 = 365 ∗ ∑ (𝑂𝑀𝐶𝑝𝑣 ∗24
𝑖=1 𝑃𝑡,𝑃𝑉 + 𝑂𝑀𝐶𝑤𝑡 ∗ 𝑃𝑡,𝑤𝑡 + 𝑂𝑀𝐶𝑏𝑖𝑜 ∗ 𝑃𝑡,𝑏𝑖𝑜 + 𝑂𝑀𝐶𝑏𝑒𝑠𝑠 ∗

𝑁𝐵𝐸𝑆𝑆           (3.27) 

𝐶𝑅𝐹𝐷𝐺 =
𝑘∗(1+𝑘)𝑛𝐷𝐺

(1+𝑘)𝑛𝐷𝐺−1
         (3.28) 

𝐶𝑅𝐹𝐵𝐸𝑆𝑆 =
𝑘∗(1+𝑘)𝑛𝐵𝐸𝑆𝑆

(1+𝑘)𝑛𝐵𝐸𝑆𝑆−1
        (3.29) 

 

Where 𝑁𝑝𝑣, 𝑁𝑤𝑡, 𝑁𝑏𝑖𝑜 , 𝑁𝐵𝐸𝑆𝑆represents the number of respective DDG units,𝐼𝑁𝐶𝑝𝑣, 𝐼𝑁𝐶𝑤𝑡, 

𝐼𝑁𝐶𝑏𝑖𝑜, 𝐼𝑁𝐶𝐵𝐸𝑆𝑆 are respective installation costs of individual DDG units, 𝑃𝑟,𝑃𝑉, 𝑃𝑟,𝑊𝑇, 𝑃𝑟,𝑏𝑖𝑜 

are rated power of respective DDG units, OMC represents the operational and maintenance 

cost, 𝑃𝑡,𝑃𝑉, 𝑃𝑡,𝑤𝑡, 𝑃𝑡,𝑏𝑖𝑜 represents the power dispatched by respective DDGs in the tth hour, 

CRF represents the capital recovery factor of respective DDGs, k, nDG, nBESS represents 

the rate of interest, and number of years for the annual payment of respective DDGs. 
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3.3.1.4 Constraints 

i) Power balance constraints: During each hour in a day, Combined power delivered by the 

substation and DDGs (𝑃𝑡,𝑠𝑢𝑏 + 𝑃𝑡,𝑇,𝐷𝐺) must be equal to total system demand and losses 

(𝑃𝑡,𝑙𝑜𝑎𝑑 + 𝑃𝑡,𝑙𝑜𝑠𝑠) 

𝑃𝑡,𝑠𝑢𝑏 + 𝑃𝑡,𝑇,𝐷𝐺 = 𝑃𝑡,𝑙𝑜𝑎𝑑 + 𝑃𝑡,𝑙𝑜𝑠𝑠             (3.30) 

𝑄𝑡,𝑠𝑢𝑏 + 𝑄𝑡,𝑇,𝐷𝐺 = 𝑄𝑡,𝑙𝑜𝑎𝑑 + 𝑄𝑡,𝑙𝑜𝑠𝑠             (3.31) 

ii) The voltage magnitude of the buses in the system must be within the permissible 

minimum and maximum limits.   

|𝑉𝑚𝑖𝑛| < |𝑉𝑡,𝑗| < |𝑉𝑚𝑎𝑥|         𝑗 = 1,2… . . 𝑁𝑏𝑢𝑠                         (3.32)  

In this paper,  |𝑉𝑚𝑖𝑛| = 0.95 p.u. and |𝑉𝑚𝑎𝑥| =1.05 p.u. are considered. 

iii) Each branch's total current should be less than the branch's maximum current rating. 

𝐼𝑡,𝐽 ≤  𝐼𝑡,𝐽
𝑚𝑎𝑥                          𝑗 = 1,2…… .𝑁𝑏𝑢𝑠 − 1          (3.33) 

iv) Total real power (𝑃𝑡,𝑇,𝐷𝐺) and reactive power injected (𝑄𝑡,𝑇,𝐷𝐺) by DDGs in the tth hour 

must be less than a certain percentage (𝑘𝑝𝑒𝑟) of distribution system real (𝑃𝑡,𝑙𝑜𝑎𝑑) and 

reactive power (𝑄𝑡.𝑙𝑜𝑎𝑑) demand in that hour. 

𝑃𝑡,𝑇,𝐷𝐺 ≤ (𝑘𝑝𝑒𝑟) ∗ 𝑃𝑡,𝑙𝑜𝑎𝑑                (3.34)  

𝑄𝑡,𝑇,𝐷𝐺 ≤ (𝑘𝑝𝑒𝑟) ∗ 𝑄𝑡,𝑙𝑜𝑎𝑑            (3.35) 

3.3.2 Sizing of PV-BESS and WT-Biomass units 

This work considers the optimal integration of two DDGs (PV-BESS & WT-Biomass) units 

operating with 0.9 pf in the distribution system. As shown in Figures 3.1 & Figure 3.2, WT 

& PV units alone cannot deliver power according to the daily load curve because of the 

intermittency nature of wind speed and solar radiation. If the distributed generators provide 

power optimally each hour in the day, there is much improvement in the above-mentioned 

objective functions. Therefore, the PV unit is aided by the BESS unit & the Biomass unit aids 

the WT unit to make them dispatchable. And both hybrid units will deliver power according 

to the load curve. 

3.3.2.1 Sizing of PV-BESS unit 

Figure 3.1 shows the conceptual design of the PV-BESS dispatchable unit [70]. As shown in 

Figure 3.1, during the daytime (during the abundance of solar radiation), the PV unit will 

deliver power to both the grid & BESS (charging mode). And during the night-time, the BESS 

unit (discharging mode) will provide power to the grid. Mathematical formulations for the 

sizing of PV and BESS are given below. 
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Let us say the PV-BES unit is installed on bus-q in the system, and the energy delivered by 

the combination of the PV-BESS unit to the distribution system via bus q (𝐸𝑃𝑉+𝐵𝐸𝑆𝑆) for the 

24 hours is the summation of power delivered by the PV-BESS unit to the grid (𝑃𝑡,(𝑃𝑉+𝐵𝐸𝑆)) 

during each hour 

𝐸𝑃𝑉+𝐵𝐸𝑆𝑆 = ∑ 𝑃𝑡,(𝑃𝑉+𝐵𝐸𝑆)
24
𝑡=1         (3.36) 

The total output energy from the PV-BESS unit includes energy supplied by PV and BESS to 

the system via bus q (𝐸𝑃𝑉
𝐺𝑟𝑖𝑑 , 𝐸𝐵𝐸𝑆𝑆

𝐷𝑖𝑠𝑐ℎ), the total output energy supplied by the PV unit includes 

energy provided to the system via bus q and BESS (𝐸𝑃𝑉
𝐺𝑟𝑖𝑑 , 𝐸𝐵𝐸𝑆𝑆

𝐶ℎ ),  

𝐸𝑃𝑉+𝐵𝐸𝑆𝑆 = 𝐸𝑃𝑉
𝐺𝑟𝑖𝑑 + 𝐸𝐵𝐸𝑆𝑆

𝐷𝑖𝑠𝑐ℎ        (3.37) 

𝐸𝑃𝑉 = 𝐸𝑃𝑉
𝐺𝑟𝑖𝑑 + 𝐸𝐵𝐸𝑆𝑆

𝑐ℎ          (3.38) 

 

 

Figure 3.1 Conceptual design of PV-BESS unit 

The relation between the total discharging and charging energy of the battery with the round-

trip efficiency of 𝜂𝐵𝐸𝑆 is expressed as 

𝐸𝐵𝐸𝑆
𝐷𝑖𝑠𝑐ℎ = 𝜂𝐵𝐸𝑆 ∗ 𝐸𝐵𝐸𝑆

𝑐𝑏               (3.39) 

Then from the above three equations, 𝐸𝑃𝑉 is derived as 
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𝐸𝑃𝑉 =
𝐸𝑃𝑉+𝐵𝐸𝑆𝑆−(1−𝜂𝐵𝐸𝑆)∗𝐸𝑃𝑉

𝐺𝑟𝑖𝑑

𝜂𝐵𝐸𝑆
           (3.40) 

The maximum PV unit power generation over 24 hours with a PV module maximum power 

output (𝑃𝑃𝑉
𝑢𝑛𝑖𝑡), energy delivered by PV module over 24 hours (𝐸𝑃𝑉

𝑢𝑛𝑖𝑡) is expressed as  

𝑃𝑃𝑉,𝑀𝑎𝑥 =
𝑃𝑃𝑉

𝑢𝑛𝑖𝑡

𝐸𝑃𝑉
𝑢𝑛𝑖𝑡 ∗ 𝐸𝑃𝑉             (3.41) 

To determine the unknown quantity 𝐸𝑃𝑉
𝐺𝑟𝑖𝑑in Eq.3.40, by assuming 𝜂𝐵𝐸𝑆 = 1,𝐸𝑃𝑉+𝐵𝐸𝑆𝑆 is 

determined using Eq.3.36, then  𝐸𝑃𝑉=𝐸𝑃𝑉+𝐵𝐸𝑆𝑆, then the initial maximum PV unit power is 

determined as 𝑃𝑃𝑉,𝑀𝑎𝑥
𝑖𝑛 =

𝑃𝑃𝑉
𝑢𝑛𝑖𝑡

𝐸𝑃𝑉
𝑢𝑛𝑖𝑡 ∗ 𝐸𝑃𝑉, and 𝐸𝑃𝑉

𝐺𝑟𝑖𝑑,𝑖𝑛
 is calculated from Figure 2, then the final 

maximum PV unit power generation is estimated as 

𝑃𝑃𝑉,𝑀𝑎𝑥 =
𝑃𝑃𝑉

𝑢𝑛𝑖𝑡

𝐸𝑃𝑉
𝑢𝑛𝑖𝑡 ∗

𝐸𝑃𝑉+𝐵𝐸𝑆𝑆−(1−𝜂𝐵𝐸𝑆)∗𝐸𝑃𝑉
𝐺𝑟𝑖𝑑,𝑖𝑛

𝜂𝐵𝐸𝑆
                    (3.42) 

Then the final PV unit size (𝑃𝑃𝑉) and the number of PV units (𝑁𝑝𝑣) are determined as 

𝑃𝑃𝑉 =
𝑃𝑟,𝑃𝑉

𝑃𝑃𝑉
𝑢𝑛𝑖𝑡 ∗ 𝑃𝑃𝑉,𝑀𝑎𝑥                  (3.43) 

𝑁𝑝𝑣 =
𝑃𝑃𝑉

𝑃𝑟,𝑃𝑉
                  (3.44) 

The size of the BESS unit is obtained using Eq .3.45 

EBES =
𝐸𝑃𝑉+𝐵𝐸𝑆𝑆−𝐸𝑃𝑉

𝐺𝑟𝑖𝑑

𝜂𝐵𝐸𝑆
                (3.45) 

3.3.2.2  Sizing of WT-Biomass unit 

Figure 3.2 shows the conceptual design of the WT-Biomass dispatchable unit [70]. As 

depicted in Figure 3.2, the difference in power between the combined WT-Biomass unit 

(𝑃𝑡,(𝑊𝑇+𝐵𝑖𝑜𝑚𝑎𝑠𝑠)) and WT unit (𝑃𝑡,(𝑊𝑇)) will be supplied by the Biomass unit.  
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Figure 3.2 Conceptual design of WT-BIOMASS unit 

 

The steps for finding the sizes of WT, Biomass units are  

i) Finding the maximum output power of the WT unit (𝑃𝑊𝑇,𝑚𝑎𝑥) from the 

ℎ𝑜𝑢𝑟𝑙𝑦 𝑃𝑡,(𝑊𝑇+𝐵𝑖𝑜𝑚𝑎𝑠𝑠) curve on the condition that output power from the wind 

turbine will never be greater than the power output of the combined WT & 

Biomass unit. 

ii) Then calculate the hourly output power from the wind turbine 𝑃𝑡,(𝑊𝑇) from the 

𝑃𝑊𝑇,𝑚𝑎𝑥& per unit curve of WT turbine. 

iii) Then 𝑃𝐵𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝑎𝑥 is the maximum of difference of all powers between the 

combined WT-Biomass unit (𝑃𝑡,(𝑊𝑇+𝐵𝑖𝑜𝑚𝑎𝑠𝑠)) and WT unit (𝑃𝑡,(𝑊𝑇)). 

iv) Then the final WT unit size (𝑃𝑊𝑇), the number of WT & Biomass units is 

determined using 

𝑃𝑊𝑇 =
𝑃𝑟,𝑊𝑇

𝑃𝑊𝑇
𝑢𝑛𝑖𝑡 ∗ 𝑃𝑊𝑇,𝑀𝑎𝑥        (3.46) 

𝑁𝑊𝑇 =
𝑃𝑊𝑇

𝑃𝑟,𝑊𝑇
         (3.47) 

𝑁𝐵𝑖𝑜 =
𝑃𝐵𝐼𝑜,𝑚𝑎𝑥

𝑃𝑟,𝐵𝐼𝑜
         (3.48) 
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3.4 Optimization Algorithm 

  3.4.1 Chaotic Velocity-based Butterfly Optimization Algorithm (CVBOA) 

To overcome BOA's problems during the local and global search phases, the authors in the 

paper [103] have developed a velocity-based butterfly optimization algorithm by taking 

inspiration from the velocity update equations in the PSO. The position update equations in 

the global & local search phases of VBOA are as follows 

update the position of ith agent for local search using Eq. 3.49 & 3.50 if 

𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒[0,1] > 𝑃 

𝑣𝑖(t + 1) = w(t) ∗ 𝑣𝑖(t) + 𝑏3 ∗ 𝑟3 ∗ (𝑃𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + (𝑟1 ∗ 𝑟2 ∗ 𝑥𝑗
𝑑(𝑡) − 𝑥𝑘

𝑑(𝑡)) ∗

𝑓𝑖         i = 1… . . N                         (3.49) 

𝑥𝑖(t + 1) = 𝑥𝑖(t) + 𝑣𝑖(t + 1)            (3.50) 

where 𝑃𝑏𝑒𝑠𝑡(𝑡) is the personal best position of the particle, 𝑏3 is the coefficient factor, 

𝑟1, 𝑟2 & 𝑟3 are the uniform random numbers between 0 & 1, w(t) is the inertia weight. 

Update the position of ith agent for global search using Eq. 3.51 & 3.52 if 

𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 [0,1] < 𝑃 

𝑥𝑖(t + 1) = 𝑥𝑖(t) + (𝑟1 ∗ 𝑟2 ∗ 𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(t)) ∗ 𝑓𝑖           𝑖 = 1……𝑁  (3.51) 

To avoid the solution getting trapped at local optima, a refraction-based learning strategy is 

applied to the global best position with a certain probability q. 

The equation for RBL strategy on the global best position as follows 

𝑔𝑏𝑒𝑠𝑡𝑖
𝑗
= (𝑎𝑗 + 𝑏𝑗) − 𝑔𝑏𝑒𝑠𝑡𝑖

𝑗
                                 (3.52) 

Where 𝑎𝑗 , 𝑏𝑗 are the lower and upper bound limits of variable 𝑥𝑖. 

Apart from the above modifications made in VBOA, the cubic map chaotic sequence is also 

applied on the random variable 𝑟2 and 𝑟3  for better exploration capability [104], [105]. 

𝑟2(𝑡 + 1) = 𝜌 ∗ 𝑟2(𝑡) ∗ (1 − 𝑟2(𝑡)
2)

𝑟3(𝑡 + 1) = 𝜌 ∗ 𝑟3(𝑡) ∗ (1 − 𝑟3(𝑡)
2)

                                                                           (3.53) 

where 𝜌 is a control parameter, 𝑟2(𝑡), 𝑟3(𝑡)is a chaotic variable at tth step. In this work 𝜌, 𝑟(0) 

[105] are set to 2.595, 0.315 respectively.  

3.4.2 Pareto-based MOVBOA  

In multi-objective Pareto-based optimization algorithms, a set of non-dominated solutions are 

determined from the combined updated & previous iteration population in every optimization 
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algorithm evolution procedure iteration. A solution 𝑥1dominates solution 𝑥2 only if all 

objectives of  𝑥2 are worse than 𝑥1 and at least one objective of 𝑥1 is better than 𝑥2. 

Mathematically it can be formulated as [106] 

∀k ∈  {1, 2, . . . , 𝑁𝑜𝑏𝑗} → 𝑓𝑘(𝑥1) ≤ 𝑓𝑘(𝑥2)      (3.54) 

∧ ∃k ∈  {1, 2, . . . , 𝑁𝑜𝑏𝑗} → 𝑓𝑘(𝑥1) < 𝑓𝑘(𝑥2)      (3.55) 

If the solution 𝑥1dominates all the solutions in the merged population, then 𝑥1 enters a non-

dominant solution set. Pareto fronts are collections of non-dominant solutions, and the goal 

of multi-objective optimization is to find the best Pareto front for the given problem. 

3.4.3 Cubic Map Chaos Initialization 

For the generation of the initial set of solutions in the meta-heuristic optimization algorithms, 

different types of initialization methods are available in the literature [107]: uniformly random 

distribution, oppositional-based learning, and chaotic-based initialization. In this work cubic 

map-based, chaotic initialization method is used for the generation of the initial set of 

solutions to get a more uniform spreading of initial population positions in the search space.   

The mathematical formulation [105] for cubic mapping is given by 

𝐻(𝑡 + 1) = 𝜌 ∗ 𝐻(𝑡) ∗ (1 − 𝐻(𝑡)2)                                                                           (3.56) 

where 𝜌 is a control parameter, 𝐻(𝑡) is a chaotic variable at tth step. In this work 𝜌, 𝐻(0) 

[105] are set to 2.595, 0.315 respectively.  

3.4.4 Crowding Distance Metric 

The primary goals in pareto based multi-objective optimization are (i) finding the set of 

solutions as close as possible to Pareto optimal front and (ii) finding set of solutions as diverse 

as possible. Therefore, to limit the number of solutions in the Pareto front to a predefined 

number say 𝑅𝐸𝑃𝑚𝑎𝑥 for preserving the diversity among the solutions, the crowding distance 

metric is calculated for all the solutions in the Pareto front and the solutions with the highest 

crowding distance metric are stored in a set called a repository with the size of 𝑅𝐸𝑃𝑚𝑎𝑥. The 

mathematical formulation for crowding distance metric for the nth solution (𝐶𝑟𝑛) in Pareto 

front is given as [105], [106]  

(𝐶𝑟𝑛) = ∑
𝑓𝑘

𝑛+1−𝑓𝑘
𝑛−1

𝑓𝑘
𝑚𝑎𝑥−𝑓𝑘

𝑚𝑖𝑛

𝑁𝑜𝑏𝑗
𝑘=1          (3.57) 
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3.4.5 Determination of the most-comprised solution using TOPSIS Method 

To obtain the optimal compromised solution from the Pareto front, the fuzzy set theory-based 

method, game theory max-min method and TOPSIS (Technique for order preference by 

similarity to ideal solution) method are widely used in the literature. One of the advantages 

of the TOPSIS method is that there is a provision for assigning weights to the objectives in 

Pareto solutions for selecting the final compromised solution from the Pareto front. The 

above-cited advantage of the TOPSIS method motivates the authors of the paper to use this 

method. The final compromised solution in the TOPSIS method is obtained by measuring the 

Euclidian distances between the normalized weighted solution of each alternative concerning 

the positive ideal solution and the negative ideal solution in the Pareto front. The step-by-step 

procedure for finding the compromised solution using TOPSIS [108] method is as follows. 

1. A decision matrix (D) of size 𝑚 × 𝑛 is created. 

𝐷 =

[
 
 
 
 
𝑓1

1   𝑓1
2 . . . . . . . . . . . . 𝑓1

𝑛

𝑓2
1   𝑓2

2 . . . . . . . . . . . . 𝑓2
𝑛

.

.
𝑓𝑚

1    𝑓𝑚
2 . . . . . . . . . . . . 𝑓𝑚

𝑛]
 
 
 
 

                                                                                 (3.58) 

where 𝑓𝑚
𝑛 represents the nth objective function value of the mth alternative. 

2. A normalized decision matrix (ND) is obtained from the decision matrix (D). 

𝑁𝐷 =

[
 
 
 
 
𝑟1

1   𝑟1
2 . . . . . . . . . . . . 𝑟1

𝑛

𝑟2
1   𝑟2

2 . . . . . . . . . . . . 𝑟2
𝑛

.

.
𝑟𝑚

1    𝑟𝑚
2 . . . . . . . . . . . . 𝑟𝑚

𝑛]
 
 
 
 

            where 𝑟𝑚
𝑛 =

𝑓𝑚
𝑛

√∑ 𝑓𝑚
𝑖𝑚

𝑖=1

                                   (3.59) 

3. A weighted normalized decision matrix (WND) is obtained from the decision matrix 

(ND). 

𝑊𝑁𝐷 =

[
 
 
 
 
𝑟𝑤1

1   𝑟𝑤1
2 . . . . . . . . . . . . 𝑟𝑤1

𝑛

𝑟𝑤2
1   𝑟𝑤2

2 . . . . . . . . . . . . 𝑟𝑤2
𝑛

.

.
𝑟𝑤𝑚

1    𝑟𝑤𝑚
2 . . . . . . . . . . . . 𝑟𝑤𝑚

𝑛 ]
 
 
 
 

                                                                  (3.60) 

where 𝑟𝑤𝑚
𝑛 = (𝑤1 ∗ 𝑟𝑚

1   + 𝑤2∗𝑟𝑚
2 +. . . . . . . . . . . . +𝑤𝑛∗𝑟𝑚

𝑛) ,     𝑤𝑛  represents the 

assigned weight of the nth objective. In this work, equal weight is assigned to three 

objectives i.e. (Energy loss, Total voltage deviation index, annual economic cost) by 

meeting the constraint that the sum of all the weights is equal to one. 

4. The positive ideal solution (PIS) and negative ideal solution (NIS) are determined 

from the weighted normalized decision matrix (WND). 
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 𝑃𝐼𝑆 = {𝑝1
+   𝑝2

+. . . . . . . . . . . . 𝑝𝑛
+}

𝑁𝐼𝑆 = {𝑝1
−   𝑝2

−. . . . . . . . . . . . 𝑝𝑛
−}

                                                                             (3.61) 

𝑤ℎ𝑒𝑟𝑒 
𝑝𝑛

+ = 𝑚𝑖𝑛{𝑟𝑤1
𝑛   𝑟𝑤2

𝑛. . . . . . . . . . . . 𝑟𝑤𝑚
𝑛 }

𝑝𝑛
− = 𝑚𝑎𝑥{𝑟𝑤1

𝑛   𝑟𝑤2
𝑛. . . . . . . . . . . . 𝑟𝑤𝑚

𝑛 }
                                                    (3.62) 

5. Calculation of Euclidian distance of a solution i from the PIS (𝑑𝑖
+). 

𝑑𝑖
+ = √(∑ 𝑟𝑤𝑖

𝑗𝑛
𝑗=1 − 𝑝𝑗

+)
2
𝑖 = 1. . . . 𝑚                                                                 (3.63) 

Calculation of Euclidian distance of a solution i from the NIS (𝑑𝑖
−). 

𝑑𝑖
− = √(∑ 𝑟𝑤𝑖

𝑗𝑛
𝑗=1 − 𝑝𝑗

−)
2
𝑖 = 1. . . . 𝑚                                                                 (3.64) 

6. Calculation of relative closeness index (RCI) of each solution i, 𝑠𝑖is defines as 

𝑠𝑖 =
𝑑𝑖

−

𝑑𝑖
−+𝑑𝑖

+    𝑖 = 1. . . . . 𝑚                                                                                     (3.65)                         

7. A solution with the highest value of RCI is chosen as the most compromised solution.  

 

3.4.6 Implementation of MOCVBOA 

The step-by-step procedure for MOCVBOA for optimal integration of DDGs for the 

improvement of the objectives as mentioned earlier are given below 

1. Determination of PV and WT units’ p.u. output power curves. 

In this step, 𝑃𝑊𝑇
𝑡  and 𝑃𝑃𝑉

𝑡  vector values are determined by reading the three-year solar 

radiance and wind speed data with the time interval of 10 min, necessary PV unit data 

& WT data. Then, p.u PV and WT units’ output curves are determined from 𝑃𝑊𝑇
𝑡  and 

𝑃𝑃𝑉
𝑡 . 

2. Read the distribution system line and load data, typical p.u 24-hour load curve data. 

3. Initialization of parameters of the algorithm such as the population of agents (N), the 

maximum number of iterations (maxiter), repository size etc. 

4. Generation of the initial set of solutions between the minimum and maximum limits. 

In this work, since only the optimal integration of two DDG’s considered, four 

decision variables are there for each agent: DDGs locations 

(𝐿𝑖,𝑃𝑉−𝐵𝐸𝑆𝑆, 𝐿𝑖,𝑊𝑇−𝐵𝑖𝑜𝑚𝑎𝑠𝑠), DDGs sizes (𝑃𝑖,𝑃𝑉−𝐵𝐸𝑆𝑆𝑚𝑎𝑥
, 𝑃𝑖,𝑊𝑇−𝐵𝑖𝑜𝑚𝑎𝑠𝑚𝑎𝑥

). 

5. Finding objective function values for each agent. 

By using 𝑃𝑖,𝑃𝑉−𝐵𝐸𝑆𝑆𝑚𝑎𝑥
, 𝑃𝑖,𝑊𝑇−𝐵𝑖𝑜𝑚𝑎𝑠𝑚𝑎𝑥

 & typical p.u 24-hour load curve, 

𝑃𝑖,𝑡,𝑃𝑉−𝐵𝐸𝑆𝑆, 𝑃𝑖,𝑡,𝑊𝑇−𝐵𝑖𝑜𝑚𝑎𝑠𝑠 vector data for 24-hour data is determined and then 

objective functions are determined by the load-flow run. 
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6. Set iteration count =0. 

7. Update the aroma/fragrance of butterflies. 

8. Update the solutions of each agent using Eq.3.49, Eq.3.50, Eq..51 & Eq.3.52. 

9. Calculate each updated agent's objective function or fitness value using the sequential 

process followed in Step 5.  

10. Merge updated agents and previous iteration agents and find the non-dominated solutions 

using the techniques explained in sections 3.4.2 & 3.4.3 and update the solutions in the 

repository set using the methods explained in section 3.4.4. 

11. Find the gbest solution using the fuzzy-based technique from the repository set. i.e., 

𝐿𝑔𝑏𝑒𝑠𝑡,𝑃𝑉−𝐵𝐸𝑆𝑆𝑚𝑎𝑥
, 𝐿𝑔𝑏𝑒𝑠𝑡,𝑊𝑇−𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑚𝑎𝑥

, 𝑃𝑔𝑏𝑒𝑠𝑡,𝑃𝑉−𝐵𝐸𝑆𝑆𝑚𝑎𝑥
, 𝑃𝑔𝑏𝑒𝑠𝑡,𝑊𝑇−𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑚𝑎𝑥

.  

12. Repeat steps 6-11 when iterations fall below the maximum number; otherwise, print out 

results like the global best solution and objective function values.  

The detailed flowchart is given in APPENDIX-B. 

3.5 Results and Discussion 

This section applies the MOCVBOA technique for minimization of the system energy 

loss, total voltage deviation, and annual economic cost using the proposed method on IEEE 

33 & 69 bus distribution test systems. The tuned algorithm parameters are given in Table 3.1.  

 

                                Table 3.1 MOCBOA parameters 

Parameters Value 

Number of searching Agents (N) 100 

Repository size 60 

Maximum number of iterations 300 

Modular modality ‘c’ 0.01 

Power exponent ‘a’ 0.3 

Probability switch ‘P’ 0.7 

 

The wind speed and solar radiance data are taken from [70]. In this work PV module with the 

characteristics [95] of 𝑉𝑀𝑃𝑃=28.36 V, 𝐼𝑀𝑃𝑃 =7.76 A, 𝑉𝑂𝐶=36.96 V, 𝐼𝑆𝐶=8.38 A, 𝑁𝑂𝑇=43 oC,  

𝑘𝑉=0.1278 V/oC, 𝑘𝑖=0.00545 A/oC  and PV unit with 𝑁𝑃𝑉 𝑚𝑜𝑑 = 600, rated capacity of 132 

kW is considered in this paper, WT unit with a rated capacity [95] of 250 kW, 𝑣𝑐𝑖𝑛 = 3 𝑚/𝑠, 
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𝑣𝑐𝑜𝑢𝑡 =25 m/s and 𝑣𝑟 = 12 m/s is considered. And, battery unit size [109] of 400 kWh, 

maximum charging and discharging power of 133.33 kW is considered. The typical daily load 

curve, p.u PV & WT output power curves obtained from the respective units’ data are depicted 

in Figure 3.3. Installation and operational costs of PV, WT, BESS & Biomass units [110], 

[111] are given in Table 3.2. The line & load data of 33 & 69 bus systems are taken from [31]. 

The 33-bus system total load demand is (3715+j*2300), 69-bus system total demand is 

(3801.5+j*2694.6). The base MVA & kV of both systems are 100 & 12.66. The hourly load 

demand at each bus in the system is obtained from the daily load curve [70]. In this work, to 

optimize the proposed objectives, four scenarios are considered; in each scenario, two cases 

are considered: optimal integration of DGs in the initial configured system/network and 

optimal integration of DGs in the optimal restructured system/network. All the simulations 

are implemented in MATLAB R2017a platform and carried out on a computer having Core 

i7 7200U 3.10 GHz, 16GB RAM. The lower and upper bound limits for DGs sizes are 500kW 

and 2000kW respectively. 

 

Figure 3.3 Typical p.u daily load curve, p.u. PV and WT output power curves 

The base case energy loss and total voltage deviation of the 33-bus system without integration 

of DDGs are 2044 kWh,1.2936 p.u., for 69 bus system are 2173 kWh,0.9603 p.u. And for the 

optimal restructured network of 33 bus systems without DGs, energy loss & total deviation 

index are 1372 kWh, 0.4325 p.u. and for 69 bus system, energy loss & total deviation index 

are 967.59 kWh, 0.2069 p.u. Table 3.3 shows the best-compromised solution and the 
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corresponding PV & WT sizes given by the MOCVBOA algorithm for the scenario-1 

outcomes.  

Table 3.2 Installation Costs and Operational Costs of DGs 

Parameters Value 

Installation cost of PV unit (𝐼𝑁𝐶𝑝𝑣) in $/kW 1100 

Operational & Maintenance cost of PV unit (𝑂𝑀𝐶𝑝𝑣) in $/kWh 0.01 

Installation cost of WT unit (𝐼𝑁𝐶𝑤𝑡) in $/kW 1100 

Operational & Maintenance cost of WT unit (𝑂𝑀𝐶𝑤𝑡) in $/kWh 0.01 

Installation cost of Biomass unit (𝐼𝑁𝐶𝑏𝑖𝑜) in $/kW 3000 

Operational & Maintenance cost of Biomass unit (𝑂𝑀𝐶𝑏𝑖𝑜) in $/kWh 0.012 

Installation cost of 400 kWh BESS unit (𝐼𝑁𝐶𝐵𝐸𝑆𝑆) in $ 128000 

Operational & Maintenance cost of BESS unit (𝑂𝑀𝐶𝑏𝑒𝑠𝑠) in $/year 10666.67 

Number of years for DG planning (nDG) 20 

Number of years for BESS planning (nBESS) 8 

Rate of interest in % (k) 10 

Electricity price in $/kWh (𝑘𝑒) 0.2 

 

Table 3.3 Simulation outcomes of scenario 1 

 

Parameters  

 

Without Network restructuring With Network restructuring 

33 Bus System 69 Bus system 33 Bus System 69 Bus system 

Energy Loss in kWh 835.227 823.11 662.63 374.28 

TVD in p.u 0.3589 0.2951 0.1742 0.076 

Minimum Voltage 

in p.u 
0.9507 0.9411 0.9614 0.9653 

𝑃𝑃𝑉,𝑀𝑎𝑥 in kW/Bus 

No 
945/32 1327/64 1186/30 1250/61 

𝑃𝑊𝑇,𝑚𝑎𝑥 in kW/Bus 

No 
841/15 500/23 600/33 578/64 

𝑃𝑃𝑉in kW 1560 2190 1942 2025 

𝑃𝑊𝑇 in kW 1236 735 897 883 
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3.5.1 Scenario-1: Minimization of  𝑬𝒍𝒐𝒔𝒔 &  𝑻𝑽𝑫 (PV & WT units) 

To observe the difference between the integration of non-dispatchable & dispatchable units 

in the distribution system on the improvement of proposed objectives, in scenario-1, the 

minimization of  𝐸𝑙𝑜𝑠𝑠 &  𝑇𝑉𝐷 of the test systems by optimal integration of non-dispatchable 

WT, PV units are addressed. Figure 3.4 depicts the optimal Pareto front given by the 

MOCVBOA technique for case-1 & case-2 of 33 & 69 bus test systems, respectively. For 

case-1 of 33 bus system, the system's energy loss is reduced to 835.227 kWh (accounts for 

59% loss reduction), TVD reduced to 0.3589 & for case-2, energy loss is reduced to 662.63 

kWh (accounts for 67.6 % loss reduction), TVD is reduced to 0.1742 p.u. For case-1 of 69 

bus system, energy loss is reduced to 823.11 kWh (accounts for 62% loss reduction) & TVD 

reduced to 0.2951 p.u and for case-2, energy loss is reduced to 374 kWh (accounts for 82% 

loss reduction) & TVD reduced to 0.0767 p.u. From the outcomes, it is noticed that both the 

objectives are well improved by optimal integration of non-dispatchable PV & WT units in 

the optimal reconfigured case, i.e., in case-2.  

 

 

 

Figure 3.4 Optimal pareto fronts given by MOVBOA for scenario-1 cases 

 

Figure 3.5 depicts the hourly power output of PV and WT units in 33 & 69 bus for the 

scenario-1 cases. Figure 3.6 illustrates the hourly power taken from the substation, hourly 

active power loss & average voltage profile of the system for both cases of the third scenario. 
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From Figure 3.6, it can be observed that the optimal integration of PV & WT units in the 

system improves the voltage profile and reduces power loss. And also, from Figure 3.6, it can 

be noticed that there is a significant reduction in substation power between the 5th hour and 

17th hour because of the considerable injection of power by PV & WT units into the system 

due to the availability of an abundance of solar radiance and wind speed.  

 

 

Figure 3.5 Hourly power output curves of PV, WT, units for scenario-1 cases 

 

 

Figure 3.6 Daily substation power, power loss and average voltage profile curves for 

scenario-1 cases 
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However, in the remaining period, there is an insignificant reduction in substation power due 

to the absence of solar radiance and wind speed. Hence, in scenario 2, the minimization of  

𝐸𝑙𝑜𝑠𝑠  &  𝑇𝑉𝐷 by optimal integration of dispatchable DGs units in the distribution system is 

addressed. Table 3.4 & Table 3.5 shows the best-compromised solution and the corresponding 

DDGs sizes given by the MOCVBOA algorithm for scenarios 2-4 outcomes of the 33 & 69 

bus test systems, respectively.  

Table 3.4 Simulation outcomes of 33 bus system for scenarios 2,3 & 4 

 

 

 

 

Parameters 
Without Network restructuring 

 
With network restructuring 

 

Scenario-2 Scenario-3 Scenario-4 Scenario-2 Scenario-3 Scenario-4 

Energy Loss in 

kWh 
406 461 453 358 424.70 398 

Annual Economic 

Cost in $ 
878249 671493 704118 793596 649676 701699 

TVD in p.u 0.045 0.1337 0.1075 0.0609 0.0951 0.0754 

Minimum Voltage 

during peak load 

in p.u 

0.9787 0.9725 0.9728 0.974 0.9712 0.9717 

𝑃𝑃𝑉−𝐵𝐸𝑆𝑆𝑚𝑎𝑥
 in 

kW/Bus No 
826/14 541/15 500/17 630/16 500/16 522/33 

𝑃𝑊𝑇−𝐵𝑖𝑜𝑚𝑎𝑠𝑚𝑎𝑥
 in 

kW/Bus No 
1027/31 1062/30 1214/30 1223/30 1017/30 1173/30 

𝑃𝑃𝑉,𝑀𝑎𝑥 in kW 1702 1116 1030 1300 1030 1075 

𝑃𝑊𝑇,𝑚𝑎𝑥 in kW 487 502 584 583 488 563 

𝑃𝐵𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝑎𝑥   in 

kW 
815 843 961 969 806 929 

𝑃𝑃𝑉in kW 2808 1842 1700 2145 1700 1774 

𝑃𝑊𝑇 in kW 716 738 859 857 717 828 

EBES  in kWh 5359 3515 3244 4093 3244 3387 

𝑃BES in kW 922 605 558 704 558 583 
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Table 3.5 Simulation outcomes of 69 bus system for scenarios 2,3 & 4 

 

 

3.5.2 Scenario-2: Minimization of  𝑬𝒍𝒐𝒔𝒔  &  𝑻𝑽𝑫 (PV-BESS & WT-BIOMASS units) 

In scenario 2, the minimization of 𝐸𝑙𝑜𝑠𝑠 &  𝑇𝑉𝐷 of the test systems by optimal integration of 

dispatchable WT-BIOMASS and PV-BESS units are addressed. Figure 3.7 depicts the 

optimal Pareto front given by the MOCVBOA technique for case-1 & case-2 of 33 & 69 bus 

test systems, respectively. For case-1 of the 33 bus system, the system's energy loss is reduced 

to 406 kWh (accounts for 80% loss reduction), TVD is reduced to 0.045 & for case-2, energy 

loss is reduced to 358 kWh (accounts for 82.4 % loss reduction), TVD is reduced to 0.0609. 

For case-1 of 69 bus system, energy loss is reduced to 260 kWh (accounts for 88% loss 

Parameters 
Without Network restructuring 

 
With Network restructuring 

 
Scenario-2 Scenario-3 Scenario-4 Scenario-2 Scenario-3 Scenario-4 

Energy Loss in kWh 260 352 297 152 207 196 

Annual Economic 

Cost in $ 
725646 651827 707359 781098 637932 647000 

TVD in p.u 0.056 0.1809 0.0734 0.0199 0.0352 0.0284 

Minimum Voltage 

during peak load in 

p.u 

0.9794 0.9692 0.9731 0.9883 0.9812 0.9811 

𝑃𝑃𝑉−𝐵𝐸𝑆𝑆𝑚𝑎𝑥
 in 

kW/Bus No 
500/23 500/64 500/21 618/27 500/27 536/64 

𝑃𝑊𝑇−𝐵𝑖𝑜𝑚𝑎𝑠𝑚𝑎𝑥
 in 

kW/Bus No 
1400/63 1057/61 1291/62 1282/61 1040/61 1038/61 

𝑃𝑃𝑉,𝑀𝑎𝑥 in kW 1031 1030 1030 1273 1030 1103 

𝑃𝑊𝑇,𝑚𝑎𝑥 in kW 670 507 621 613 500 499 

𝑃𝐵𝑖𝑜𝑚𝑎𝑠𝑠,𝑀𝑎𝑥   in kW 1109 837 1022 1016 823 822 

𝑃𝑃𝑉in kW 1701 1700 1700 2101 1700 1821 

𝑃𝑊𝑇 in kW 986 746 913 901 736 734 

EBES  in kWh 3247 3244 3244 4010 3244 3475 

𝑃BES in kW 559 558 558 690 558 598 
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reduction) & TVD reduced to 0.05 and for case-2, energy loss is reduced to 152 kWh 

(accounts 93% loss reduction) & TVD reduced to 0.0199.  

 

Figure 3.7 Optimal pareto fronts given by MOCVBOA for scenario-2 cases 

Figure 3.8 depicts the comparison between outcomes (𝐸𝑙𝑜𝑠𝑠  &  𝑇𝑉𝐷)  for scenario-1 & 2 

cases. From the Figure-3.8, it can be noticed that improvement in the reduction of both the 

objectives 𝐸𝑙𝑜𝑠𝑠 &  𝑇𝑉𝐷 are comparably higher in scenario-2 than in scenario-1.  

 

Figure 3.8 Comparison between the outcomes of scenario-1 & 2 cases 



                             

61 
 

This is a result of the fact that optimal dispatch of power by DDGs (WT-BIOMASS, PV-

BESS) follows the hourly load demand. And also, it is observed that due to the consideration 

of only technical aspects in this scenario, the percentage injection of real power by the DDGs 

into the 33 & 69 bus systems at any time during the day stood at a maximum injection 

consideration level of 50 % for all the solutions in the Pareto front. However, due to the 

consideration of all the DG units (PV, WT, BESS, BIOMASS), there is a need to study the 

AEC along with 𝐸𝑙𝑜𝑠𝑠  &  𝑇𝑉𝐷.  

3.5.3 Scenario-3: Minimization of  𝑬𝒍𝒐𝒔𝒔 & 𝐀𝐄𝐂 (PV-BESS & WT-BIOMASS units) 

In scenario 3, the minimization of 𝐸𝑙𝑜𝑠𝑠 & AEC of the test systems by optimal integration of 

dispatchable WT-BIOMASS and PV-BESS units are addressed. Figure 3.9 depicts the 

optimal Pareto front given by the MOVBOA technique for scenario-3 cases.  

 

Figure 3.9 Optimal pareto fronts given by MOVBOA for scenario-3 cases 

For case-1 of the 33-bus system, energy loss is lessened to 461 kWh, the annual economic 

cost is reduced to $ 671493 and for case-2, energy loss is lessened to 424 kWh, the annual 

economic cost is reduced to $ 649676. For case-1 of the 69-bus system, energy loss is 

mitigated to 352 kWh, the annual economic cost is reduced to $ 651827 and for case-2 energy, 

the loss is mitigated to 207 kWh, and annual economic cost is reduced to $ 637932. From the 
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outcomes, it can be noticed that there is a tremendous improvement in both objectives by 

optimal integration of DDGs in both test systems. And also, it is noticed that both objectives 

are well improved by optimal integration of DDGs in the optimal reconfigured case, i.e., in 

case-2. It can also be observed that the percentage of real power injection by the DDGs into 

the 33 & 69 bus systems at any time during the day stood at around 50% for the left-most 

solution in the Pareto front, (41-43) % for the compromised solution in the Pareto front, (28-

30) % for the rightmost solutions in the Pareto front in both the cases against maximum 

injection consideration level of 50 %. This is because AEC is considered as one of the 

objectives in this scenario. In scenario 4, all the objectives (𝐸𝑙𝑜𝑠𝑠 , 𝑇𝑉𝐷  &  AEC) are 

considered for the balanced optimized solution between three goals. 

3.5.4 Scenario-4: Minimization of  𝑬𝒍𝒐𝒔𝒔 , 𝑻𝑽𝑫  &  𝐀𝐄𝐂 (PV-BESS & WT-BIOMASS 

units) 

In scenario 4, the minimization of  𝐸𝑙𝑜𝑠𝑠 , AEC  &  𝑇𝑉𝐷 are considered as main objectives. 

Figure 3.10 depicts the optimal Pareto front given by MOCVBOA, MOBOA & NSGA-II 

techniques for case-1 & case-2 of 33 & 69 bus test systems, respectively.  

 

 

 

Figure 3.10 Optimal pareto fronts given by MOCVBOA, MOBOA & NSGA-II for scenario-

4 cases 
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In the case of optimal integration of DDGs in the initial configured network, 

𝐸𝑙𝑜𝑠𝑠 , 𝑇𝑉𝐷 & AEC of 33 bus system are reduced to 453 kWh, (accounts 77 % loss reduction) 

0.1075 p.u & $ 704118 respectively and 𝐸𝑙𝑜𝑠𝑠 , 𝑇𝑉𝐷 & AEC of 69 bus system are reduced to 

297 kWh (accounts 86.3 % loss reduction), 0.0734 p.u & $ 707359 respectively. In case of 

optimal integration of DDGs in the optimal reconfigured network, 𝐸𝑙𝑜𝑠𝑠 , 𝑇𝑉𝐷 & AEC of 33 

bus system are reduced to 398 kWh (accounts for 80.5 % loss reduction), 0.0754 p.u & $ 

701699 respectively and 𝐸𝑙𝑜𝑠𝑠 , 𝑇𝑉𝐷 & AEC of 69 bus system are reduced to 196 kWh 

(accounts 91 % loss reduction), 0.0284 p.u & $ 647000 respectively. From the outcomes of 

scenario 4, it can also be seen that the percentage injection of real power by the DDGs into 

the 33 & 69 bus systems at any time during the day stood at (42-45) %. From Tables 3.4 & 

3.5, it is observed that the objectives are considerably enhanced when DDGs are optimally 

integrated into the optimally reconstructed network. Furthermore, during the optimization of 

all three objectives, i.e., in scenario 4, the negotiated solution among all three objectives is 

attained. Figure 3.11 depicts the hourly power output of PV-BES, PV, BESS, WT-BIOMASS, 

WT, and BIOMASS units in 33 & 69 bus for the scenario-4 cases.  

 

Figure 3.11 Hourly power output curves of PV, BESS, PV-BESS, WT, BIOMASS, WT- 

BIOMASS units for scenario-4 cases 
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In Figure 3.11, the negative value of BESS power indicates discharging mode of the BESS, 

supplying power to the grid & positive value of BESS power indicates the charging mode of 

the BESS, drawing power from the PV unit. To regulate the output power of the BESS unit 

in accordance with the curves depicted in Figure 3.11, a converter with advanced controlling 

mechanisms is necessary. Figure 3.12 illustrates the hourly power taken from the substation, 

hourly active power loss & average voltage profile of the system’s/network’s for both cases 

of the fourth scenario. From Figure 3.12, it can be observed that optimal integration of DDGs 

in the system improves the voltage profile and reduces power loss.  

 

 

Figure 3.12 Daily substation power, power loss and average voltage profile curves for 

scenario-4 cases 

  From the above discussions, it can be concluded that better improvement in technical metrics 

of the distribution system is observed during optimal planning of dispatchable DGs units (i.e., 

PV-BESS, WT-BIOMASS). However, in the case of PV-BESS unit, a converter with 

sophisticated controlling techniques is required to regulate the BESS unit's output power in 
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line with the optimal curves. And also, from the outcomes of the WT-BIOMASS unit, it is 

observed that almost an equal size of BIOMASS unit on par with the WT unit is required 

while making the WT-BIOMASS unit as dispatchable DG. Since biomass units are also 

deployable, they can be used in place of PV-BESS & WT-BIOMASS units. The optimal 

power output curves of DDGs can be used to determine the size of BIOMASS units. 

To check the efficacy of the MOCVBOA, the outcomes of MOCVBOA are contrasted 

with the MOBOA & NSGA-II algorithms.  From Figure 3.10, it's clear that the dominance of 

optimal Pareto given by the MOCVBOA algorithm over MOBOA and NSGA-II. Table 3.6 

shows the comparison of outcomes between MOCVBOA, MOBOA and NSGA-II algorithms. 

From this table, it can be noticed that the compromised solutions given by the MOCVBOA 

algorithm dominate the MOBOA and NSGA-II solutions. 

Table 3.6 Comparative study of the MOCVBOA, MOBOA & NSGA-II algorithms' outputs 

 

Algorithms  
Energy Loss 

in kWh 

Annual Economic 

Cost in $ 
TVD in p.u 

33 Bus system, Scenario-4, Case-1 

MOCVBOA 453 704118 0.1075 

MOBOA 457 704236 0.1101 

NSGA-II 462 704484 0.1112 

33 Bus system, Scenario-4, Case-2 

MOCVBOA 398 701699 0.0754 

MOBOA 403 701873 0.0763 

NSGA-II 408 701927 0.0781 

69 Bus system, Scenario-4, Case-1 

MOCVBOA 297 707359 0.0734 

MOBOA 299 707396 0.0743 

NSGA-II 306 707498 0.0824 

69 Bus system, Scenario-4, Case-2 

MOCVBOA 196 647000 0.0284 

MOBOA 201 647098 0.0310 

NSGA-II 210 647226 0.0356 

 

3.6 Summary and Comments 

  The optimal integration of PV-BESS and WT-BIOMASS dispatchable DDG units into the 33 

& 69 distribution systems in the presence of network restructuring is dealt with in this work. 

MOCVBOA is used to determine the ideal sizes of PV, BESS, WT, and biomass units in 

minimising energy loss, total voltage deviation, and annual economic cost. Four scenarios are 
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considered to fulfil the objectives. For the 33 & 69 bus test systems, improvement in energy 

loss reduction and voltage profile enhancement is observed in both cases: Optimal integration 

of non-dispatchable DGs (scenario-1) and dispatchable DGs (scenario-2). However, when 

dispatchable DGs are connected with the system, better enhancement in objectives is seen. 

The negotiated solution for the 33 & 69 bus test systems among all three objectives is attained 

during the optimization of all three objectives in scenario 4. The 33-bus system energy loss is 

reduced to (77-80) %, 69-bus system energy loss is reduced to (86-91) % in scenario-4 by the 

injection of a maximum of (42-45) % load demand into the system via DDGs. The objectives 

are considerably enhanced when DDGs are optimally integrated with the optimally 

reconstructed network. However, a converter with sophisticated controlling techniques is 

required to regulate the BESS unit's output power in line with the optimal curves. Since 

biomass units are also deployable, they can be used in place of PV-BESS units & WT-

BIOMASS units. The optimal power output curves of DDGs can be used to determine the 

size of biomass units. MOCVBOA performs better in achieving the results than MOBOA and 

NSGA-II optimization algorithms. In chapter 2 & 3, improvement of distribution system 

metrics by optimal planning of DGs is addressed without considering PHEVs load demand 

on the system. As PHEVs load demand deteriorates the distribution system performance, in 

the next chapter, optimal planning of DGs in the distribution system by considering 

conventional load demand and PHEVs load demand is addressed.    
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Chapter 4 

Optimal integration of DGs into radial distribution 

network in the presence of plug-in electric vehicles to 

minimize energy loss and to improve the voltage profile of 

the system using a pareto-based multi-objective chaotic 

velocity-based butterfly optimization algorithm 

  4.1 Introduction 

  The increase in plug-in hybrid electric vehicles (PHEVs) is likely to see a noteworthy impact 

on the distribution system due to high electric power consumption during charging and 

uncertainty in charging behavior. This chapter mainly focuses on the improvement of 

distribution technical metrics energy loss reduction and voltage profile by optimal integration 

of distributed generators (DGs) into radial distribution system considering PHEVs load 

demand. In this work, charging of PHEVs under a private charging scenario, i.e., charging of 

electric vehicles at residential houses, is considered. Therefore, in this chapter, a distribution 

system with residential, commercial and industrial buses is considered. 24-hour load demand 

of the buses is generated with the help of typical p.u daily load curves of different types of 

buses. The daily electric demand raised due to the charging of PHEVs is generated using the 

charging time probability distribution functions developed in the literature and imposed on 

the residential buses of the distribution system. As PHEVs load demand deteriorates the 

distribution system performance, a pareto-based chaotic velocity-based butterfly optimization 

algorithm is employed for generating the optimal pareto front between the cited objective 

functions and then the TOPSIS method is employed for finding the optimal locations and 

optimal sizes of DGs. 

4.2 Modelling of DGs 

For load flow studies, DGs can be modelled as either PV mode or PQ mode. In this work, DG 

is modelled as PQ mode. In this type of modelling, DG is modelled as generating source 

(negative load model) with constant active power (𝑃𝐷𝐺) and reactive power output 𝑄𝐷𝐺. In 

this type of modelling, the active power and power factor (PF) of the DG is mentioned. The 

reactive power of the DG is calculated by using Eq. 4.1.  
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𝑄𝐷𝐺 = 𝑃𝐷𝐺 ∗ (tan(cos−1 𝑃𝐹))                              (4.1) 

The effective load at any bus with the integration of DG unit can be expressed as 

𝑃𝑙𝑜𝑎𝑑 = 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝐷𝐺                         (4.2) 

𝑄𝑙𝑜𝑎𝑑 = 𝑄𝑙𝑜𝑎𝑑 − 𝑄𝐷𝐺                        (4.3) 

Where 𝑃𝑙𝑜𝑎𝑑 , 𝑄𝑙𝑜𝑎𝑑 are active and reactive power demands at the bus.  

4.3. Objective functions 

4.3.1 Energy Loss 

Optimal integration of DDGs in the system improves the system's efficiency by reducing the 

system’s energy loss (𝐸𝑙𝑜𝑠𝑠). Energy loss of the system for a 24-hour daily load pattern is 

obtained by adding all the distribution system active power losses in each hour of that day. 

The mathematical formulation of the system’s energy loss is given below. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1 = 𝐸𝑙𝑜𝑠𝑠 = ∑ ∑ 𝐽𝑡,𝑗
2 ∗ 𝑅𝑗

𝑛𝑏−1
𝑗=1

24
𝑡=1                                (4.4) 

where 𝑛𝑏, 𝐽𝑡,𝑗 , 𝑅𝑗 are the number of buses, branch current and branch resistance, respectively. 

4.3.2 Total Voltage Deviation 

Optimal integration of DDGs in the network improves its voltage profile. Better enhancement 

in the voltage profile of the system/network is achieved by taking a mathematically 

formulated function named Total Voltage Deviation (TVD) as one of the objectives. 

Mathematical formulations of the VD and TVD are given below 

𝑉𝐷𝑡 = ∑ (1 − 𝑉𝑡,𝑖)    𝑡 = 1,2, . . .24𝑁𝑏𝑢𝑠
𝑖=1          (4.5) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓2 = 𝑇𝑉𝐷 = ∑ 𝑉𝐷𝑡
24
𝑡=1           (4.6) 

4.3.3 Constraints 

1. Active power and reactive power balance constraints. 

𝑃𝑗,𝑠𝑢𝑏 + 𝑃𝑗,𝑇,𝐷𝐺 = 𝑃𝑗,𝐷 + 𝑃𝑗𝑙𝑜𝑠𝑠         (4.7) 

𝑄𝑗,𝑠𝑢𝑏 + 𝑄𝑗,𝑇,𝐷𝐺 = 𝑄𝑗,𝐷 + 𝑄𝑗𝑙𝑜𝑠𝑠
𝐷𝐺            (4.8) 

Where     𝑃𝑗,𝐷 = ∑ (𝑃𝑏𝑢𝑠 𝑗,𝑖 + 𝑃𝑃𝐸𝑉 𝑗,𝑖)
𝑛𝑏
𝑖=1                                       (4.9) 

               𝑄𝑗,𝐷 =  ∑ (𝑄𝑏𝑢𝑠 𝑗,𝑖)
𝑛𝑏
𝑖=1                              (4.10) 

Where 𝑃𝑗,𝑠𝑢𝑏 is the jth hour active power demand supplied by the sub-station in kW, 

𝑃𝑗,𝐷 is jth hour total active power demand of the system with PHEVs in kW, 𝑄𝑗,𝑠𝑢𝑏 is 

the jth hour reactive power supplied by the sub-station in kVar, 𝑄𝑗,𝐷 is the jth hour total 
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reactive power demand of the system with PHEVs in kVar, , 𝑃𝑏𝑢𝑠 𝑗,𝑖 is the ith bus active 

power demand during jth hour, 𝑃𝑃𝐸𝑉 𝑗,𝑖 is the ith bus active power demand due to 

PHEVs in jth hour. 

2. Voltage magnitude of each bus should be within minimum and maximum voltage 

limits. 

 |𝑉𝑚𝑖𝑛| < |𝑉𝑖| < |𝑉𝑚𝑎𝑥|              𝑖 = 1,2…… . . 𝑛𝑏                   (4.11) 

3. Sizes of DGs to be placed should be within minimum and maximum kW limit. 

𝑃𝐷𝐺𝑚𝑖𝑛 < 𝑃𝑘,𝐷𝐺 < 𝑃𝐷𝐺𝑚𝑎𝑥          𝑘 = 1,2…… . 𝑛𝑑𝑔                        (4.12) 

4. Total active power compensation by DGs should be less than or equal to the maximum 

total capacity of DGs (𝑃𝑇,𝐷𝐺
𝑚𝑎𝑥) which is user-defined variable and minimum total active 

power demand throughout the day. 

            𝑃𝑇,𝐷𝐺 ≤ 𝑃𝑇,𝐷𝐺
𝑚𝑎𝑥 < 𝑚𝑖𝑛(𝑃𝑗,𝐷)                        (4.13) 

4.3  Optimization Algorithm 

Section 3.4 of Chapter 3 provides a detailed discussion of the chaotic velocity-based 

optimization algorithm, Pareto-based multi-objective optimization technique and TOPSIS 

method.  

4.5 PHEVs charging scenario 

Based on the charging behaviour of PHEVs, various researchers modelled different types of 

charging scenarios. They are peak charging scenario (PCS), off-peak charging scenario 

(OPCS) and stochastic charging scenario (SCS). In the peak charging scenario case, all the 

PHEVs come home after working hours and go for charging as soon as they return from the 

working place. This charging behaviour of PHEVs leads to an increase in peak demand of the 

system because the load on the system is already peaky during those hours. In the case of 

OPCS, due to electricity prices implemented by the system operator, the active power demand 

due to PHEVs shift towards the light demand hours, generally at midnight. In SCS, PHEVs 

go for charging at any time in the day. In this work, PCS is considered for inclusion of PHEVs 

electric demand in the system. The charging time probability distribution of PCS is taken from 

[112] and given in Figure 4.1. The PCS charging time probability functions are measured with 

a certain number of PHEVs to obtain 𝑃𝑃𝐸𝑉 𝑗,𝑖 and then integrated into daily load pattern of the 

distribution system which consists of residential, commercial, and industrial buses. 
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Figure 4.1 PHEVs probability distribution of PCS scenario 

4.6 Results and Discussion 

An IEEE 33 bus system has been taken for the analysis of the proposed method. The base 

values of the system are 100 MVA and 12.66 kV. Out of the 33 buses: 17 buses are residential 

buses, 5 buses are commercial buses, and 9 buses are industrial buses. The data of the 

grouping of buses is given in Table 4.1. Active and reactive power demands of the buses taken 

from bus data are considered as peak demands of the respective buses. Hourly active and 

reactive power demands for a day for each bus is obtained from typical daily load pattern of 

different type of buses in p.u with respect to peak demand 1 p.u is shown in Figure 4.2 [113]. 

From Figure 4.2 it has been observed that for a residential bus load demand requirement is 

high during the period 15.00-20.00 hr. 

Table 4.1 Grouping of Buses data 

Bus Type Bus Numbers 

Residential buses 2,3,5,6,7,8,9,10,13,14,15,16,17,20,21,23,24 

Commercial buses 4,11,12,18,19 

Industrial buses 22,25,26,27,28,29,30,31,32,33 
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Figure 4.2 Daily load pattern of different types of buses 

4.6.1 Analysis of the system without PHEVs load and without DGs 

After the initial load flow run, i.e., before load due to electric vehicles, the following points 

has been observed. Daily active power demand from all the buses is 64510 kW. The daily 

energy loss of the system is 3053 kWh, total voltage deviation of the system is 31.21 p.u. The 

lowest voltage of the system is 0.8945 p.u at 18th bus occurred during 17th hour of the day.   

4.6.2 Analysis of the system with PHEV load and without DGs 

To study the effect of additional electric power demand duo to PHEVs in the electric 

distribution system, it has been assumed that 50  PHEVs per residential bus with a total of 

17*50=850 PHEVs have been considered, where 45% of these PHEVs are low hybrid 

vehicles equipped with 15 kWh batteries, 25% PHEVs are medium hybrid vehicles with 

25kwh batteries and 30% PHEVs are pure battery vehicles with 40 kWh batteries [112]. It is 

also assumed that all electric vehicles return to the home with a SOC of 50%. Therefore, the 

total electric demand due to PHEVs per residential bus per day is 

50*(15*45%+25*25%+40*30%) *0.5= 625 kW and the total electric demand needed per day 

due to PHEVs is 625*17 = 10625 kW. 

4.6.3 Analysis of the system with PHEVs charging under PCS  

The electric demand of 625 kW due to 50 PHEVs for each residential bus has been consumed 

from the slack bus (bus-1) as per the probability distribution of the charging scenario of PCS 

depicted in Figure 4.1. Figure 4.3 shows the hourly active power demand of the distribution 
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system for a day without PHEVs and with PHEVs under PCS case obtained from the daily 

load pattern of buses and charging scenario.  

 

Figure 4.3 Hourly active power demand of the system without and with PHEVs load 

Table 4.2 shows the comparison between various parameters between without PHEVs load 

and with PHEVs load on the distribution system. From the Table 4.2, it has been observed 

that due to PHEV's electric active power demand of 10625 kW, the distribution system is 

overloaded by 16.47% with respect to the daily active power demand requirement. In the case 

of PCS due to extra PHEVs active power demand, energy loss of the system is increased to 

4346 kWh from 3053 kWh, which shows a 42.35% increase in daily active power loss. Also, 

the total voltage deviation index is increased to 36.07 p.u.  The system's lowest voltage is 

0.8398 p.u occurred at 18th bus during 16th hour of the day. 

Table 4.2 Comparison between without and with PHEVs load on test system 

Parameters Without PHEV 
load 

With PHEV load 

  

Energy loss (in kWh) 3053 4346 

Total Voltage Deviation (in p.u) 31.21 36.07 

Lowest voltage magnitude (in p.u) 
0.8945 (18

th

 bus, 

17
th

 hour) 

0.8398 (18
th

 bus, 

16
th

 hour) 

Active power demand from the buses 
for a day (in kW) 

64510 75135 
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4.6.4 Optimal placement of DGs in distribution system with consideration of PHEVs 

As it was found in the previous part that PHEVs have a negative impact on the efficiency and 

voltage profile of the distribution system, this section addresses the optimal planning of DGs 

operating at 0.9 pf for enhancing the distribution system performance. From Figure 4.3, it is 

also observed that the lowest active power demand with PHEVs load under PCS case is 

around 1500 kW occurred during 6th hour of the day; therefore, maximum active power 

injection by DGs into the distribution system is fixed to 1500 kW. Figure 4.4 depicts the 

optimal Pareto front given by MOCVBOA & MOBOA techniques.  

 

 

Figure 4.4 Optimal Pareto fronts given by MOCVBOA, MOBOA techniques 

Table 4.3 shows the optimal locations, DGs (0.9 pf) sizes and various technical parameters of 

the best-compromised solution yielded by the TOPSIS-MOCVBOA technique. From Table 

4.3, it is observed that the energy loss of the system is reduced to 1383 kWh accounts 58.39% 

loss reduction, and the voltage deviation index is reduced to approximately 14.71 p.u. The 

system lowest voltage improved to 0.9249 p.u.  
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Table 4.3 Simulation outcomes yielded by TOPSIS-MOCVBOA technique 

Scenarios DG size (kW) 

& Bus 

number 

Energy 

loss (in 

kWh)  

Total voltage 

Deviation (in 

p.u) 

  

Lowest voltage 

of the system 

(in p.u) 

  

Base Case ------- 4346 36.07 
0.8398 (18

th

 

bus, 16
th

 hour) 

DGs sizes (in 

kW)/DGs 

locations 

473 /14 

204 /18 

713 /32 

1383 14.71 
0.9249 (18

th

 

bus, 16
th

 hour)) 

 

Voltage profile characteristics of the system without DGs & with DGs is shown in Figure 4.5. 

From Figure 4.5 it is observed that obtained optimal locations and sizes of DGs results fairly 

good voltage improvement at each and every bus of the system.  

 

 

Figure 4.5 Mean voltage profile of the system without PHEVs & with PHEVs  

load demand 

To check the efficacy of the MOCVBOA, the outcomes of the MOCVBOA are contrasted 

with the MOBOA algorithm. From Figure 4.3, it's clear that the dominance of optimal Pareto 

is given by the MOCVBOA algorithm over MOBOA. 
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4.7  Summary and Comments 

  In this chapter, 33 bus test system consisting of residential buses, commercial buses and 

industrial buses is considered. The 24-hour load pattern of the whole test system is obtained 

from the load pattern of different types of buses. PCS charging scenarios had taken for the 

inclusion of PHEVs load demand on the system. The impact of PHEVs load demand on the 

system's technical parameters is analysed. A combined 24-hour load pattern of the system, 

including PHEVs load demand with PCS charging scenario, has been considered for the 

optimal placement of the DGs in the system. Pareto-based chaotic velocity-based butterfly 

optimization algorithm has been applied to produce the optimal Pareto front between the 

mentioned energy loss and voltage deviation objective functions, and the TOPSIS approach 

has been subsequently applied to determine the optimal positions and sizes of DGs. From the 

obtained results, it can be concluded that the radial distribution system performance (reduction 

in system energy loss and improvement in system voltage profile) in the presence of PHEVs 

loads has improved with the optimal integration of DGs by the proposed approach. However, 

in this chapter, optimal planning of DGs is addressed without considering their uncertainties 

and dispatchable nature. And charging of PHEVs charging under only private charging 

scenario is only considered. Therefore, in the next chapter, optimal planning of DGs 

(considering their uncertainties & dispatchable nature) in the distribution system considering 

PHEVs load demand charging under both private & public charging scenario is addressed.    
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Chapter 5 

Probabilistic optimal allocation of Solar PV units and 

Battery Energy Storage System in the distribution system 

in the presence of plug-in electric vehicles using a multi-

objective chaotic velocity-based butterfly optimization 

algorithm 

5.1 Introduction 

This work investigates the combined effect of PHEVs' private and public charging behaviour 

on the technical metrics of the distribution system. The private charging behaviour of PHEVs 

is taken from the method developed in [76] and imposed on the residential buses of the 

distribution system. Additionally, the public charging behaviour is imposed on the few buses 

on the distribution system using a methodology established in [86]. To improve the efficiency 

of the distribution system, optimal planning of PV and PV-BESS units is considered. Pareto-

based MOCVBOA multi-objective meta-heuristic optimization algorithm is considered to 

obtain the desired objectives. 

5.2 Modelling of DGs and PHEV charging scenarios 

5.2.1 Modelling of PV units and BESS units 

Section 3.2 of Chapter 3 provides a detailed discussion about the modelling of solar radiance 

uncertainty using Beta PDF, modelling of PV unit output power and modelling of Battery 

energy storage system (BESS) output power. 

5.2.2 Sizing of PV and BESS units 

Section 3.3.2 of Chapter 3 provides a detailed discussion about the sizing of PV and BESS 

units. 

5.2.3 Modelling of PHEVs private charging scenario 

Numerous studies have predicted various charging scenarios based on the charging behaviour 

of PHEVs [76]. In particular, there are two charging scenarios for private charging of electric 
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vehicles: peak and off-peak charging scenarios. In the case of a peak charging scenario, all 

PHEVs arrive at their homes after office hours and immediately start charging. Because the 

system is already under peak load during those hours, this type of PHEVs charging behaviour 

increases peak demand. In the case of the off-peak charging scenario, the active power 

demand caused by PHEVs shifts towards the light demand hours, typically at midnight, as a 

result of electricity tariffs put in place by the system operator. For any type of charging 

scenario, it is initially necessary to model various PHEV parameters to estimate the electrical 

demand caused by PHEV charging when linked to the distribution system. As noted in the 

introduction, the variables arrival time and distance travelled of PHEVs are stochastic in 

nature. The mathematical modelling of PHEV characteristics, represented by equations 5.1 to 

5.4, includes arrival time, trip distance, initial soc, and the amount of energy needed each day 

to charge the PHEV to 100% SOC. 

The arrival time of a PHEV is represented as a random variable with a normal probability 

distribution function and the corresponding mathematical formulation for estimating the 

probability of the arrival of nth PHEV at time 't' is calculated using 

𝑓𝑛
𝑡(𝑇𝑎) =

1

√2𝜋∗𝜎𝑇𝑎
𝑡 ∗ 𝑒

−[
(𝑇𝑎−𝜇𝑇𝑎

𝑡 )2

2∗(𝜎𝑇𝑎
𝑡 )2

]

                                                                                        (5.1) 

Where 𝜇𝑇𝑎

𝑡  and  𝜎𝑇𝑎

𝑡  are the mean and standard deviation of the daily arrival instant of PHEV. 

The random nature of distance travelled by PHEV is modelled using the log-normal 

probability distribution function 

𝑓𝑛(𝑑𝑛) =
1

√2𝜋∗𝜎𝑑𝑛∗𝑑𝑛
∗ 𝑒

−[
(ln𝑑𝑛−𝜇𝑑𝑛

)2

2∗(𝜎𝑑𝑛
)2

]
                                                                                (5.2) 

Where 𝜇𝑑𝑛
𝑠𝑤 &  𝜎𝑑𝑛

 are the mean & standard deviation of the daily distance travel of PHEV. 

The initial SOC of the battery in a PHEV before the beginning of the trip depends on the daily 

distance covered, all-electric range of that PHEV. 

𝑆𝑂𝐶 = {
1 −

𝑑𝑛

𝐴𝐸𝑅𝑛
𝑑𝑛 < 𝐴𝐸𝑅𝑛 

0 𝑑𝑛 > 𝐴𝐸𝑅𝑛

                                                                                      (5.3) 

The total energy required to charge a battery from initial soc to fully charged condition is 

estimated as  
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𝐸𝑔 = (
1−

𝑆𝑂𝐶

100

𝜂𝐵𝑎𝑡𝑡
) ∗ 𝐶𝐵𝑎𝑡𝑡                                                                                                        (5.4) 

Where 𝜂𝐵𝑎𝑡𝑡  and 𝐶𝐵𝑎𝑡𝑡 are the efficacy and capacity of the battery. 

In this study, only PHEVs charging under peak charging scenario is considered. And also, it 

is assumed that the electric vehicles will charge at their homes with a constant charging power 

rate of 3.3 kW or 6.6 kW. The battery capacity of the PHEVs used in this study ranges from 

7.8 kWh to 27.6 kWh [76]. The average distance driven by electric vehicles is 28.556 miles, 

with a standard variation of 12.524 miles. The detailed process for calculating the 24-hour 

electric consumption caused by PHEV charging is provided below. 

1. With the use of the PDFs outlined above, the arrival time and distance travelled for 

all-electric vehicles are generated. Additionally, each electric vehicle is randomly 

assigned a battery rating from the ranges mentioned above. 

2. From the outcomes of step 1, the 𝑆𝑂𝐶 and 𝐸𝑔 of all the vehicles is determined. 

3. The 24-hour electrical power consumption necessary for charging electric vehicles is 

calculated using the arrival times, charging rate, and 𝐸𝑔. 

4. The total daily electric power demand from all-electric vehicles is then calculated by 

summing all individual electric vehicles' daily electric power demand. 

5. A 1000-time Monte Carlo simulation is performed on the steps mentioned above. 

6. The mean of the previous simulation results provides the final electric power 

consumption profile owing to all-electric vehicles. 

7. The distribution system's residential buses are all given an equal share of the final 

electric power demand profile. 

5.2.4 Modelling of PFCS 

The rating of PFCS depends on the number of connectors (𝑁𝐶(𝑗)) at the station. The 

mathematical modelling for the capacity of PFCS (𝐶𝑃𝐹𝐶𝑆(𝑗)) [87] is given below 

𝑁𝐶(𝑗) = 𝑁𝑃𝐻𝐸𝑉(𝑗) ∗ max (𝐶𝑃𝐸𝑉)                                                                                 (5.5) 

𝐶𝑃𝐹𝐶𝑆(𝑗) = 𝑁𝐶(𝑗) ∗ 𝑃𝐶                                                                                                   (5.6) 

Where 𝑁𝑃𝐻𝐸𝑉(𝑗) represents the total number of electric vehicles charging through station j, 

CPHEV(h) represents the vector having probabilities of electric vehicles coming for charging 
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in the hour h of a day, PC represents the power rating of the connector. The power rating of 

the connector typically ranges from 50 to 250 kW and depends on the technology being used.  

5.3 Modelling of DGs in load flows 

Section 4.4.2 of Chapter 4 provides a detailed discussion about the sizing of PV and BESS 

units. 

5.4 Objective Functions 

5.4.1 Energy Loss 

Through a reduction in energy loss (𝐸𝑙𝑜𝑠𝑠), optimal RDG integration increases system 

efficiency. The system's energy loss for the day is calculated by adding up all the real power 

losses experienced by the distribution system throughout that day's hours. The system's energy 

loss is mathematically formulated as follows. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1 = 𝐸𝑙𝑜𝑠𝑠 = ∑ ∑ 𝐽𝑡,𝑗
2 ∗ 𝑅𝑗

𝑛𝑏−1
𝑗=1

24
𝑡=1                                   (5.7) 

where 𝑅𝑗 , 𝑛𝑏, 𝐽𝑡,𝑗 are the jth branch resistance, number of buses in distribution system and jth 

branch current in time interval ‘t’ respectively. 

5.4.2 Total Voltage Deviation 

The goal of voltage profile enhancement is to align all the bus voltage magnitudes as closely 

as possible to offer uniform voltage profiles for the customers. To achieve this, Total Voltage 

Deviation (TVD), a mathematically formulated function, is used as one of the objectives. 

Voltage Deviation (VD) is initially calculated for each hour of the day by adding the voltage 

deviations of all buses with respect to one p.u. The Total Voltage Deviation (TVD) is then 

calculated by combining all of the VDs. To improve the system voltage profile, the TVD must 

be reduced. Below are the mathematical formulations for the TVD and VD. 

𝑉𝐷𝑡 = ∑ (1 − 𝑉𝑡,𝑖)  𝑡 = 1,2, . . .24𝑁𝑏𝑢𝑠
𝑖=1                                (5.8) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓2 = 𝑇𝑉𝐷 = ∑ 𝑉𝐷𝑡
24
𝑡=1                      (5.9) 

5.4.3 Annual Economic Cost (AEC) 

The annual installation and maintenance expenditures of both units are involved in integrating 

PV-BESS RDGs units into the distribution grid. Thus, a mathematically constructed objective 

function called Annual Economic Cost (AEC) is developed to find a balance between annual 
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PV-BESS installation and operational expenses and the improvement in technical metrics, as 

shown below. 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓3 = 𝐴𝐸𝐶 = 𝑘𝑒 ∗ (𝐸𝑙𝑜𝑠𝑠)  ∗ 365 + (𝐴𝐼𝐷𝐷𝐺 + 𝑂𝑀𝐷𝐷𝐺)                    (5.10) 

where 𝐴𝐼𝐷𝐷𝐺 , 𝑂𝑀𝐷𝐷𝐺 & 𝑘𝑒 are, respectively, the annual installation expenses and 

maintenance costs in $ and the price of electricity in $/kW-hr. 

where 𝑘𝑒,𝑂𝑀𝐷𝐷𝐺 , 𝐴𝐼𝐷𝐷𝐺 are the electricity price in $/kW-hr, annual maintenance & 

istallation costs in $ respectively. 

𝐴𝐼𝑅𝐷𝐺 = (𝑁𝑝𝑣 ∗ 𝐼𝑁𝐶𝑝𝑣 ∗ 𝑃𝑟,𝑃𝑉) ∗ 𝐶𝑅𝐹𝐷𝐺 + (𝑁𝐵𝐸𝑆𝑆 ∗ 𝐼𝑁𝐶𝐵𝐸𝑆𝑆) ∗ 𝐶𝑅𝐹𝐵𝐸𝑆𝑆                   (5.11) 

𝑂𝑀𝑅𝐷𝐺 = 365 ∗ ∑ (𝑂𝑀𝐶𝑝𝑣 ∗24
𝑖=1 𝑃𝑡,𝑃𝑉 + 𝑂𝑀𝐶𝑏𝑒𝑠𝑠 ∗ 𝑁𝐵𝐸𝑆𝑆)                     (5.12) 

𝐶𝑅𝐹𝐷𝐺 =
𝑘∗(1+𝑘)𝑛𝐷𝐺

(1+𝑘)𝑛𝐷𝐺−1
               (5.13) 

𝐶𝑅𝐹𝐵𝐸𝑆𝑆 =
𝑘∗(1+𝑘)𝑛𝐵𝐸𝑆𝑆

(1+𝑘)𝑛𝐵𝐸𝑆𝑆−1
              (5.14) 

Where the respective RDG unit numbers are denoted by 𝑁𝑝𝑣, & 𝑁𝐵𝐸𝑆𝑆, 𝐼𝑁𝐶𝑝𝑣, 𝐼𝑁𝐶𝐵𝐸𝑆𝑆 are 

installation expenses of individual RDG units, 𝑃𝑟,𝑃𝑉, are rated power of PV units, the 

operations & maintenance cost is represented by OMC., 𝑃𝑡,𝑃𝑉, represents the power 

dispatched by PV units in the tth hour, k denotes the rate of interest,  nBESS & nDG denotes 

the number of years. 

5.4.4 Constraints 

i) Active power and reactive power balance constraints. 

𝑃𝑡,𝑠𝑢𝑏 + 𝑃𝑡,𝑇,𝑅𝐷𝐺 = 𝑃𝑡,𝐷 + ∑ ∑ 𝐽𝑡,𝑗
2 ∗ 𝑅𝑗

𝑁𝑏𝑢𝑠−1
𝑗=1

24
𝑡=1                                (5.15) 

𝑄𝑡,𝑠𝑢𝑏 + 𝑄𝑡,𝑇,𝑅𝐷𝐺 = 𝑄𝑡,𝐷 + ∑ ∑ 𝐽𝑡,𝑗
2 ∗ 𝑋𝑗

𝑁𝑏𝑢𝑠−1
𝑗=1

24
𝑡=1                      (5.16) 

Where           𝑃𝑡,𝐷 = ∑ (𝑃𝐵𝑢𝑠 𝑡,𝑖 + 𝑃𝑃𝐻𝐸𝑉 𝑡,𝑖)
𝑛𝑏
𝑖=1                            (5.17)                                  

                     𝑄𝑡,𝐷 = ∑ (𝑄𝐵𝑢𝑠 𝑡,𝑖)
𝑛𝑏
𝑖=1                      (5.18) 

Where 𝑃𝑡,𝑠𝑢𝑏 is the substation's tth hour active power demand supplied in kW, 𝑃𝑡,𝐷 is 

the system's hourly active power demand expressed in kW, 𝑄𝑡,𝑠𝑢𝑏 is the substation's 

tth hour reactive power demand supplied in kVar, 𝑄𝑡,𝐷 is the system's hourly active 

power demand expressed in kVar, 𝑃𝐵𝑢𝑠 𝑡,𝑖 is the ith bus active during the tth 

hour, 𝑃𝑃𝐻𝐸𝑉 𝑡,𝑖 is the hour's active power demand for the ith bus caused by PHEVs.. 

ii)  The system's buses' voltage levels must fall between the permitted minimum and 

maximum ranges during any time in the day. 

|𝑉𝑚𝑖𝑛| < |𝑉𝑡,𝑗| < |𝑉𝑚𝑎𝑥|         𝑗 = 1,2… . . 𝑁𝑏𝑢𝑠                                        (5.19) 
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iii) At any point during the day, the total current drawn by each branch must be less than 

the maximum current rating of that branch. 

          𝐽𝑡,𝑗 ≤  𝐽𝑡,𝑗
𝑚𝑎𝑥                         𝑗 = 1,2…… . 𝑁𝑏𝑢𝑠 − 1                     (5.20) 

5.5 Optimization Algorithm  

Section 3.4 of Chapter 3 provides a detailed discussion of the chaotic velocity-based 

optimization algorithm, Pareto-based multi-objective optimization technique and TOPSIS 

method.  

5.5.1 Implementation of MOCVBOA 

The procedure for finding the optimal sizes and locations of PV and PV-BESS units in the 

distribution system for the enhancement of the objectives using the MOCVBOA algorithm 

are given below 

1. In this step, with the help of methods developed in section 5.2.1, p.u  𝑃𝑡,𝑃𝑉vector values 

are obtained by reading the historical solar irradiance data and necessary PV unit data 

such as 𝑁𝑃𝑉 𝑚𝑜𝑑, 𝑉𝑀𝑃𝑃 , 𝐼𝑀𝑃𝑃 , 𝐹𝐹, 𝑉𝑂𝐶 , 𝐼𝑆𝐶  , 𝑘𝑉, 𝑘𝑖, 𝑇𝑐, 𝑇𝑐𝑔, 𝑇𝐴, 𝑁𝑂𝑇. 

2. Read the distribution network load & line data and data of a typical p.u, twenty - four - 

hour electrical load for different bus types. 

3. Initialization of algorithm parameters such as N, Maxiter & 𝑅𝐸𝑃𝑚𝑎𝑥  etc. 

4. Generation of the initial set of solutions between the minimum and maximum limits. 

For optimal planning of PV units, the decision matrix for the planning of one PV unit 

is shown below 

𝑋𝑖𝑛𝑖 =

[
 
 
 
 
𝐿1,𝑃𝑉  𝑃1,𝑃𝑉

𝐿2,𝑃𝑉  𝑃2,𝑃𝑉
.
.

𝐿𝑁,𝑃𝑉  𝑃𝑁,𝑃𝑉]
 
 
 
 

                                                                                            (5.21) 

Where 𝐿𝑁,𝑃𝑉 & 𝑃𝑁,𝑃𝑉 are the location and PV unit size of Nth agent. The hourly power 

output from 𝐿𝑁,𝑃𝑉is obtained by multiplying 𝑃𝑁,𝑃𝑉 size is with p.u PV curve  

For optimal planning of PV-BESS units, the decision matrix for the planning of one 

PV-BESS unit is shown below 

𝑋𝑖𝑛𝑖 =

[
 
 
 
 
𝐿1,𝑃𝑉−𝐵𝐸𝑆𝑆  𝑃1,1,𝑃𝑉−𝐵𝐸𝑆𝑆 …  𝑃𝑡,1,𝑃𝑉−𝐵𝐸𝑆𝑆 …  𝑃24,1,𝑃𝑉−𝐵𝐸𝑆𝑆

𝐿2,𝑃𝑉−𝐵𝐸𝑆𝑆  𝑃1,2,𝑃𝑉−𝐵𝐸𝑆𝑆 …  𝑃𝑡,2,𝑃𝑉−𝐵𝐸𝑆𝑆 …  𝑃24,2,𝑃𝑉−𝐵𝐸𝑆𝑆
.
.

𝐿𝑁,𝑃𝑉−𝐵𝐸𝑆𝑆  𝑃1,𝑁,𝑃𝑉−𝐵𝐸𝑆𝑆 …  𝑃𝑡,𝑁,𝑃𝑉−𝐵𝐸𝑆𝑆 …  𝑃24,𝑁,𝑃𝑉−𝐵𝐸𝑆𝑆]
 
 
 
 

                     (5.22) 
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Where 𝐿𝑁,𝑃𝑉−𝐵𝐸𝑆𝑆 is the location of Nth agent, 𝑃𝑡,𝑁,𝑃𝑉−𝐵𝐸𝑆𝑆 is the Nth agent output 

power from PV-BESS unit during tth hour of the day.  

5. Finding objective function values for each agent. 

By using the above initial data, the values of objective functions are evaluated by the 

load-flow simulations. 

6. Set the iteration count to zero. 

7. Update the butterfly's fragrance. 

8. Update each agent's positions. 

9. The sequential method used in Step 5 should be used to calculate the objective function 

values for each updated agent. 

10. Combine updated agents with agents from prior iterations, then use the methods described 

in sections 5.5 to identify the non-dominated solutions and use the technique outlined in 

section 5.5 to update the repository set's solutions. 

11. By Utilizing the TOPSIS technique, find the gbest solution from the repository set.  

12. If the number of iterations is less than the maximum, repeat steps 6–11; if not, output 

outcomes such as the global best solution and objective function values. 

5.6 Results and Discussion 

In this work, an IEEE-33 bus radial distribution system has been used to verify the 

suggested method. Base values for the system are 100 MVA and 12.66 kV. The 33 buses are 

grouped into 17 residential buses, 5 commercial buses, and 9 industrial buses. The active and 

reactive power demands mentioned in the system's bus data are considered as the peak 

demands of the respective buses. Hourly reactive and active power demands of the buses for 

a day are obtained by multiplying the peak demand of the respective buses with the p.u daily 

load curves. An initial load flow is carried out to obtain the distribution system technical 

metrics without PHEVs load. For load flow investigations, backward/forward sweep-based 

load flow [114] has been employed. The system's energy loss and voltage deviation index are 

3053 kW and 31.2158 p.u. The total daily active electricity requirement from the buses is 

64510 kW. The system's lowest voltage of 0.8945 p.u. at bus number 18 occurred during the 

day's seventeenth hour. 

To investigate the impact of increased electric power consumption due to PHEVs on 

the electrical distribution system technical metrics, it has assumed that 200 PHEVs will charge 

their vehicles at homes and 300 PHEVs will charge in the PFCS's connected to the buses 12, 
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19, 24, 27 & 33. The daily charging profile of the PHEVs are generated using the 

methodologies developed in section 2.5 & 2.6 and imposed on the abovementioned buses of 

the distribution system. The following points are observed from the load flow results. The 

total daily active electricity requirement from the buses is increased to 73556 kW, the energy 

loss and voltage deviation index are increased to 3777 kW and 34.88 p.u. The system's lowest 

voltage is 0.8839 p.u. The distribution system's hourly active power consumption for a day 

from the slack bus without PHEVs and with PHEVs is shown in Figure 5.1 for comparison.  

 

Figure 5.1 Hourly active power demand of the system without and with PHEVs load 

From Figure 5.1, it is observed that peak power demand of the system occurred during the 

17th hour of the day is increased by 11% due to the PHEVs load. From the discussions above, 

it is certain that the distribution network's technical parameters worsen due to PHEVs' 

electrical demand. Therefore, to improve the distribution system's technical metrics, optimal 

planning of PV and PV-BESS units are considered in this work. The data about the solar 

radiance is taken from [31]. This study considered a PV module with the following 

specifications: 𝑉𝑀𝑃𝑃=28.36 V, 𝐼𝑀𝑃𝑃 =7.76 A, 𝑉𝑂𝐶=36.96 V, 𝐼𝑆𝐶=8.38 A, 𝑁𝑂𝑇=43 oC,  

𝑘𝑉=0.1278 V/oC, 𝑘𝑖=0.00545 A/oC  and PV unit with 𝑁𝑃𝑉 𝑚𝑜𝑑 = 600, 132 kW rated capacity. 

Table 5.1 provides operational and installation expenses for PV and BESS units[110], [111]. 

Figure 5.2 (a) & (b) depicts PDF curves of solar radiance & the p.u PV output curve derived 

from the methodology discussed in section 5.2.  
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Table 5.1 Installation and operational expenses for PV and BESS units 

Parameters Value 

Installation cost of PV unit (𝐼𝑁𝐶𝑝𝑣) in $/kW 1100 

Maintenance & Operational cost of PV unit (𝑂𝑀𝐶𝑝𝑣) in $/kWhr 0.01 

Installation cost of 400 kWhr BESS unit (𝐼𝑁𝐶𝐵𝐸𝑆𝑆) in $ 128000 

Maintenance & Operational cost of BESS unit (𝑂𝑀𝐶𝑏𝑒𝑠𝑠) in $/year 10666.67 

Number of years for DG planning (nDG) 20 

Number of years for BESS planning (nBESS) 8 

Rate of interest in % (k) 10 

Electricity price in $/kWhr (𝑘𝑒) 0.2 

 

 

Figure 5.2 PDF curves of solar radiance and p.u unit curve of PV unit 

In this work, the following two scenarios to improve the proposed objectives. 

1) Optimal planning of PV units. 

2) Optimal planning of PV-BESS units. 

In scenario 1, the minimization of the distribution system's energy loss and voltage 

deviation is considered. Due to the consideration of both PV and BESS units in scenario 2, 

mitigation of the distribution system's total voltage deviation, energy loss and AEC are 

considered. By oversizing inverter ratings relative to the ratings of RDGs units, it is assumed 



                             

85 
 

in scenarios 1 and 2 that PV and PV-BESS units will operate at a constant 0.9 pf. In this work, 

the total number of RDGs to be optimally placed in the distribution system is fixed at three. 

Figure 5.3 (a) & (b) depicts the optimal Pareto front provided by the MOCVBOA algorithm 

for scenarios 1 & 2, respectively. In the TOPSIS method, by following the restriction that the 

sum of all weights equals one, all objectives are assigned equal values for picking one solution 

from the optimal Pareto front. Table 5.2 shows the optimal sizes of PV units, BESS units and 

distribution system parameters for all scenarios outcomes. 

 

Figure 5.3 Optimal pareto fronts of two scenarios 

Table 5.2 Simulation outcomes of all scenarios 

 

Parameters Scenario-1 Scenario-2 

𝑬𝒍𝒐𝒔𝒔 in kWhr 1934 1332 

𝑻𝑽𝑫 in p.u 21.2 16.188 

𝑨𝑬𝑪 in $ ---------- 1511549 

Lowest magnitude of bus 

voltage in p.u 

0.8839 0.95 

PV units’ sizes in kW & 

locations 

1458/13 

2943/30 

1412/25 

802/16 

2407/18 

2382/33 

BESS units’ sizes in kWh & 

locations 

-------- 1983/16 

5948/18 

5888/33 

 

From Table 5.2, the following points are observed. In scenario-1, the network’s energy loss 

is mitigated to 1934 kW (accounts 49% loss mitigation), and VDI is reduced to 21.28 p.u. The 

hourly slack bus power & power output of the PV units in scenarios 1 is shown in Figure 5.4 
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(a) & (b), respectively. From Figure 5.4 (a), it has been observed that system’s slack bus 

power is zero. This is because output power from PV units is maximum during midday. 

However, in scenarios 1 & 2, there was no improvement in the distribution system's lowest 

voltage and reduction in the system's peak power. This is because, during the 17th hour of the 

day, when system demand is at its highest, the output power from PV units is zero.  

 

Figure 5.4 Daily slack bus power & PV units output power curves in scenario 1 

In scenario 2, the system's energy loss and VDI are mitigated to 1332 kW (accounts for 44.69 

% loss mitigation) & 16.188 p.u, respectively. The system’s lowest voltage is enhanced to 

0.95 p.u in scenario 2. The hourly dispatch of the PV unit's output power, BESS unit's output 

power, and PV-BESS unit's output power for scenarios 3 & 4 cases are depicted in Figure 5.5. 

The -ve sign of the BESS unit’s output power indicates discharging mode (i.e., supplying 

power to the grid), +ve sign indicates the charging mode of BESS units. The combined PV-

BESS units will inject power at the respective buses as per the PV-BESS units' output power 

curves, as seen from Figure 5.5, provided the output from BESS units is controlled in 

accordance with their curves. To regulate the output power of the BESS unit in accordance 

with the curves depicted in Figure 5.5, a converter with advanced controlling mechanisms is 

necessary. Figure 5.6 illustrates the power drawn from the substation in scenario’s 3 & 4, 

respectively. And from Figure 5.6 slack bus powers, it is also observed that there is a 

significant reduction in the distribution system's peak power. The discussions have led to the 

conclusion that when PV-BESS units are located optimally, the distribution system 

performance improves in all respects  
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Figure 5.5 output curves of PV-BESS units in scenarios 2 case 

 

Figure 5.6 Daily slack bus power curves in scenarios 3 case 

In substitution of PV-BESS units, dispatchable biomass units can also be deployed. The PV-

BESS unit curves shown in Figure 5.5 are used to calculate the maximum optimal sizes of the 

biomass units. Then, identical system performance can be attained if the biomass units' output 

is regulated in accordance with the ideal PV-BESS unit curves shown in Figure 5.5.  

5.7 Summary and Comments 

   This work has analysed the effect of PHEVs' electric load on the distribution system's 

technical parameters. The 33-bus system, which comprises residential, commercial, and 
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industrial buses, is considered in this study. Two charging scenarios are considered: charging 

of PHEVs at home during night-time of the day and charging of PHEVs in PFCS. Using the 

probabilistic methodologies and Monte-Carlo simulation, the daily electric power 

requirement caused by charging PHEVs in two scenarios is determined. The electrical demand 

generated in scenario 1 is imposed on the residential buses on the 33-bus distribution system. 

The PFCSs connected to the few buses in the distribution system are subject to the electrical 

demand generated in scenario 2. Based on the results of the load flow studies, the system's 

technical metrics, such as energy loss and voltage profile, have gotten worse as a result of the 

PHEVs' load demand. The system has also seen an increase in peak power demand. To 

mitigate the effect on above metrics, optimal planning of PV units operating with is addressed 

at first. Results shows that the system's energy loss and voltage deviation index have 

decreased. But there was no improvement in the reduction of system’s peak power and 

improvement in the system’s lowest voltage magnitude. This is as a result of the PV units' 

non-dispatchable nature i.e., dependency of PV units output power on solar irradiance. To 

address the improvement in all aspects of technical parameters and to overcome the non-

dispatchable nature of units, optimal planning of PV-BESS units is addressed in the later 

stage. The optimum PV-BESS units planning results have shown an improvement in every 

technical metric related to the distribution system. However, a converter with sophisticated 

controlling techniques is required to regulate the BESS unit's output power in line with the 

optimal curves. Since biomass units are also deployable, they can be used in place of PV-

BESS units. The optimal power output curves of RDGs can be used to determine the size of 

biomass units. 
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Chapter 6 

Conclusions and Future Scope 

6.1 Conclusions 

Numerous issues challenge distribution networks, including increasing load needs, 

environmental concerns, operating limitations, infrastructure development restrictions, and 

poor efficiency. The optimal integration and planning of distributed generation in distribution 

networks can result in several advantages, including improved power quality, supply security, 

voltage stability, reliability, and loss reduction. However, the above-mentioned distribution 

networks metrics might suffer from improper distributed generation planning. Furthermore, 

optimal planning of distributed generation in the distribution network gives a viable solution 

for the increased load demand due to plug-in hybrid electric vehicles. The thesis's objectives 

are i) Optimal planning of distributed generation and optimal reconfigured network for 

improving system’s efficiency and loadabilty (ii) Optimal planning of non-dispatchable PV & 

WT units, dispatchable PV-BESS, WT-BIOMASS units by considering solar radiance, wind 

speed and load uncertainties for mitigating system’s energy loss and enhancing voltage profile. 

(iii) Optimal planning of distributed generation in the presence of PHEVs load demand 

charging under private charging scenario (iv) Optimal planning of PV & PV- BESS units in the 

presence of PHEVs load demand charging under private and public charging scenarios. 

            In Chapter 2, the improvement of two distribution system metrics: enhancement of 

loadability and minimization of power loss reduction, is addressed. Mitigation of the system’s 

power loss improves its efficiency, and an increase in future load can be effectively met by 

enhancement in loadability, which enhances the system’s voltage stability margin & loading 

marginal factor. The enhancement in the above two metrics is addressed at the system’s peak 

load level without considering load uncertainties. The idea behind the above assumption is DGs 

have to inject how much active and reactive power into the system at optimal locations by 

satisfying operational limits for the improvement of the above-cited metrics to the maximum 

extent. 33-Bus and 69-Bus radial distribution test systems are considered in this study. At first, 

the optimization of individual objective functions using the latest butterfly optimizer is 

addressed. From the outcomes of single objective optimization, it is observed that there exists 

a conflicting nature between the two objectives. Then a Ɛ-constraint multi-objective technique 

using the butterfly optimizer technique is developed to bring the compromised solution between 

the two objectives. From the outcomes of the Ɛ-constraint multi-objective approach, the 
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succeeding points are observed. The most significant improvement in both objectives is 

achieved when DGs are optimally placed in the reconfigured distribution network. The optimal 

percentage injection of total kVA by the DGs into the system is around 85 % for getting the 

benefits mentioned above, which are only possible with the enormous sizes of the combination 

of multiple DG types. Similar system performance is achieved if DGs inject power into the 

system in accordance with load changes, provided that DGs are dispatchable in nature.  

          In Chapter 3, optimal planning of non-dispatchable PV & WT units, dispatchable PV-

BESS & WT-BIOMASS units for the enhancement of distribution system efficiency and 

voltage profile by considering solar radiance, wind speed and load uncertainties are addressed. 

Two theoretically objective functions, energy loss and total voltage deviation, are taken for the 

improvement of the two metrics mentioned above. 33-Bus and 69-Bus radial distribution test 

systems are considered in this study. In contrast to other multi-objective techniques: the 

weighted sum method, weighted product method, max-min method, Fuzzy method & Ɛ-

constraint method (used in Chapter 2), which reduce multi-objective optimization into a single 

optimization strategy, the Pareto-based multi-objective approach produces a collection of 

optimal non-dominant solutions between the competing objectives. Due to the above-cited 

advantage, we used a Pareto-based multi-objective velocity-based butterfly optimization 

algorithm (MOVBOA) to bring the optimal Pareto front between the competing objectives and 

a TOPSIS method was chosen for selecting the most compromised solution. The most 

significant improvement in both objectives is observed when dispatchable DGs are placed 

optimally in the optimal reconfigured distribution system. However, a converter with 

sophisticated controlling techniques is required to regulate the BESS unit's output power in line 

with the optimal curves. Due to the consideration of all the DGs: PV, BESS, WT & BIOMASS, 

minimization of the distribution system's energy loss, voltage deviation and AEC are 

considered, and the final compromised solution is determined. 

              In Chapter 4, the effect of PHEVs electric load on the distribution system's technical 

parameters due to charging of PHEVs at home during night-time of the day is studied first. The 

33-bus system, which comprises residential, commercial, and industrial buses, is considered in 

this study. Using the probabilistic curves taken from the literature, the 24-hour electrical 

demand was generated using the probabilistic curve and imposed on the residential buses on 

the 33-bus distribution system. Based on the results of the load flow studies, the system's 

technical metrics, such as energy loss and voltage profile, have gotten worse as a result of the 

PHEVs' load demand. The system has also seen an increase in peak power demand. To mitigate 
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the effect on above metrics, optimal planning of DG units is addressed. MOVBOA is used for 

deriving the final optimal Pareto front between the competing objectives. Results show that the 

system's energy loss and voltage deviation index have decreased.  

In Chapter 5, the effect of PHEV's electric load on the distribution system's technical 

parameters due to two charging scenarios: charging of PHEVs at home during night-time of 

the day and charging of PHEVs in PFCS is studied first. The 33-bus system, which comprises 

residential, commercial, and industrial buses, is considered in this study. Using the 

probabilistic methodologies and Monte-Carlo simulation, the daily electric power 

requirement caused by charging PHEVs in two scenarios is determined. The electrical demand 

generated in scenario-1 is imposed on the residential buses on the 33-bus distribution system. 

The PFCSs connected to the few buses in the distribution system are subject to the electrical 

demand generated in scenario 2. Based on the results of the load flow studies, the system's 

technical metrics, such as energy loss and voltage profile, have gotten worse as a result of the 

PHEVs' load demand. The system has also seen an increase in peak power demand. To 

mitigate the effect on above metrics, optimal planning of PV units is addressed first. Results 

show that the system's energy loss and voltage deviation index have decreased. But there was 

no improvement in the reduction of the system’s peak power and improvement in the system’s 

lowest voltage magnitude. This is due to the PV units' non-dispatchable nature i.e., 

dependency of PV units' output power on solar irradiance. To address the improvement in all 

aspects of technical parameters and to overcome the non-dispatchable nature of units, optimal 

planning of PV-BESS units is addressed in the later stage. The optimum PV-BESS unit 

planning results have shown an improvement in every technical metric related to the 

distribution system. However, a converter with sophisticated controlling techniques is 

required for the regulation of the BESS unit's output power in line with the optimal curves.  

6.2 Future Scope 

• Optimal Planning of PV, WT and distributed BESS units in a distribution network for 

improving metrics like maximization of DGs power penetration, power loss reduction, 

and voltage profile improvement. 

 

• Determination of Optimal sizing of BESS in a distribution network with pre-installed 

PV and WT units for the improvement of metrics like operating cost minimization, 
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power loss minimization, voltage profile improvement, peak load shaving, and load 

balancing. 

 

• Simultaneous Optimal planning of Public Fast Charging Stations (PFCS), and DGs in 

a distribution network by considering uncertainties of DGs and transportation network 

of PHEVs.  
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APPENDIX-A 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Initialize algorithm parameters such as the number of agents N, the dimension of the 

problem d, the maximum number of iterations Itermax, probability switch P, power 

exponent PE and sensor modality SM. 

Generate initial random solution between decision variables minimum  

& maximum limit values 

Evaluate the fitness (objective functions) of agents using Eq. 2.1, Eq. 2.3 & Eq. 2.12. Record 

the best solution as gbest. 

Set iteration count iter=0  

 

Calculate the fragrance 𝑓𝑁 for each agent or butterfly using Eq. 2.17. 

Update the positions of the agents using the equations Eq. 2.18 and Eq. 2.19. 

 

iter=iter+1 

Evaluate the fitness of each agent in the new population using Eq. 2.1, Eq. 2.3 & 

Eq. 2.12. 

 

Update the gbest vector  

Check stopping criteria if 

iter<itermax 

End 
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APPENDIX-B 

 

 

 

Start 

Determination of PV and WT units’ p.u. 

output power curves 

Read the distribution system line 

and load data, typical p.u 24-hour 

load curve data. 
 

Initialization of parameters of the 

algorithm such as the population of 

agents (N), the maximum number of 

iterations (maxiter), repository size etc. 
 

Generation of the initial set of solutions 

between the minimum and maximum 

limits. 
 

Finding objective function values 

for each agent. Record the gbest 
solution. 

 

Set iteration count =0 

 

Update the aroma/fragrance of 

butterflies. 
     

Update the solutions of each 

agent using Eq.3.49, Eq.3.50, 

Eq..51 & Eq.3.52. 
 

Find objective function 

values for each updated 

agent. 
 

Merge updated agents and 

previous iteration agents and 

find the non-dominated 

solutions  

Update the solutions in the 

repository set 

Find the gbest solution 

Check stopping criteria 

if iter<itermax 

 

Print the 

gbest solution 

iter=iter+1 

NO 

Yes 
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