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ABSTRACT

Centralized generation, which uses traditional generators, is the primary way of electric
energy is made available to consumers. But there are a number of obstacles associated with
centralized generation, including depletion of fossil fuels, greenhouse gas emissions, rapidly rising
load needs, operational constraints, difficulties in expanding the current infrastructure, and high
distribution and transmission losses due to long-distance transmission. Distributed generation (DG),
a small-scale electric power generation becoming very famous these days due to rapid advancements
in their technologies and advantages like quick response time and the ability to connect nearby load
centers. Due to an increase in load demand brought by both conventional & plug-in electric vehicle’s
loads as well as by radial topological structure, distribution networks, the last link in the electric
supply chain, are experiencing technical problems like poor efficiency, voltage instability, low
reliability, and capacity improvement concerns. Therefore, so much research is going on the efficient
making of the existing distribution system by optimal planning of various DG technologies, which
provides a solution to the obstacles associated with the centralized generation and rapidly increasing

load demand.

This dissertation presents a meta-heuristic-based butterfly optimization algorithm for
enhancing distribution network efficiency and loadability using a €-constraint based multi-objective
approach. Enhancement in the network’s efficiency is associated with active power loss reduction. In
addition, the increase in future load demand can be effectively met by improving the system’s
loadability which inturn improves the voltage stability margin and loading marginal factor.
Therefore, the objective is to find out the injection of how much active power and reactive power by
the DGs into the system at optimal locations satisfying operational constraints for the enhancement

of the above metrics to the maximum extent.

Further, this dissertation presents optimal planning of non-dispatchable photo-voltaic (PV) &
wind-turbine (WT) units, dispatchable PV-BESS & WT-BIOMASS units in the distribution system
for the mitigation of the system’s energy loss, total voltage deviation and annual economic cost
using Pareto-based multi-objective chaotic velocity-based butterfly optimization algorithm
(MOCVBOA). The above planning studies consider uncertainties in solar radiance, wind speed and
electric load demand. Since PV & WT units are non-dispatchable in nature, the PV unit is assisted

Vi



by the BESS unit & WT unit is assisted by the BIOMASS unit to make them dispatchable. Detailed
analysis of the outcomes between the optimal planning of non-dispatchable and dispatchable DGs is

discussed.

Next, optimal planning of DGs in the presence of plug-in electric vehicles load demand
charging under private charging scenario for the improvement of the system’s energy loss reduction
and total voltage deviation using Pareto-based MOCVBOA is presented. Pareto MOCVBOA
generates the final optimal Pareto front, and the most compromised solution is selected using the
TOPSIS method. As load due to charging of PHEVs deteriorates the distribution system
performance, optimal planning of DGs provides a relief measure due to the above problem.

Finally, optimal planning of PV & PV-BESS units in the distribution system considering
both conventional and plug-in electric vehicle loads for improving the system’s energy loss
reduction and total voltage deviation using MOCVBOA is presented. In this work, the charging of
plug-in electric vehicles charging under two charging scenarios: private charging scenario and public
charging scenario is considered. The PHEVs electric demand is derived from the probabilistic
methods developed in the literature and imposed on the respective distribution system buses.
Detailed analysis of the impact of PHEVs load on the distribution system metrics is analyzed, and
the optimal planning of PV & PV-BESS units as a solution to the former discussed problem is

addressed.
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Chapter 1

Introduction

The centralized generation using traditional generators like thermal, hydro & nuclear, is the
primary way electricity gets to people's homes. Then, the electricity is sent through a
transmission & distribution system to distribution substations, where the voltage is stepped
down before it is sent to homes and businesses. But there are problems with centralized
generation, such as transmission and distribution losses, the depletion of fossil fuels, the
increase in load demand, difficulties in expanding the current infrastructure, the high cost of
fossil fuels, and the greenhouse effect.

Distributed generation (DG) is the small-scale generation that usually ranges from a
few kW to several MW, typically connected at the customer site or distribution and sub-
transmission substations [1]. DG technology can be divided into three categories: non-
renewable technologies (traditional), renewable technologies (green or sustainable) and
storage technologies [2]. Renewable energy sources include wind, solar (PV and thermal),
biomass, geothermal, tidal, and hydropower (small and micro). Micro-turbine, reciprocating
engines, gas turbines, and combustion engines are examples of technologies that come under
the non-renewable category. Battery energy storage systems, flywheels, supercapacitors,
compressed air energy storage (CAES), and pumped storage come under the storage
technologies category. Based on their ability to support active and reactive power, DG
technologies are divided into four groups [3]. Type-1 DGs support only active power (e.g.,
Fuel cells & micro-turbines), Type-2 DGs support only reactive power (e.g., Synchronous
Compensators), Type-3 DGs support both real & reactive power (e.g., photo-voltaic (PV)
systems with voltage source inverters, wind turbines (WT) with doubly fed induction
generators, and biomass generators based on synchronous generators) and Type-4 DGs
support both active & reactive power but consume reactive power (e.g., wind turbines with
induction generators). Based on the sizes of DGs, DG technologies are divided into four
groups [3]: micro-DGs (1W — 5 kW), small-DGs (5 kW — 5 MW), medium-DGs (5 MW — 50
MW) & large-DGs (50 MW — 500 MW).

In recent days, distributed generation technologies are becoming increasingly popular
as a solution to the problems caused by the depletion of fossil fuels, the increase in electric

load demand and the pollution of the environment due to the generation of electric energy



from conventional energy sources. Furthermore, because of their small physical size and
ability to be deployed at nearby load centres, the advantages [4] like technological
advancements, reductions in installation costs, quick response time, no requirement for
government approval for installing DGs, no need to consider the availability of land and the
ability to track the changes in loads more closely have triggered the deployment of these
technologies in the electricity market by offering a different way to fulfil customer load
demand. The application of DG technologies includes as a backup source to provide the
required electricity for delicate loads (like hospitals) during grid interruptions, as a standby
source in remote locations like isolated and rural areas, to provide electricity for peak loads
at peak hours to lower the cost of electricity, to strengthen the grid or power system network
in the form of enhancing voltage profile, power quality and efficiency by supplying a portion
of the load. As the electrical distribution system is the final stage of the power system, it is
the system which is nearer to nearby load centres. Because of the distribution system's radial
topological structure, losses in a distribution network [5] account for 70% of all losses in a

power system network.

In contrast, losses on transmission & sub-transmission lines made for 30% of the total
power losses. Additionally, demand for future load enhancement initially impacts the
distribution system. Therefore, much research is going on deploying DGs in the distribution
system to improve its efficiency by mitigating network power losses and as a solution for
future load demand enhancement. Deploying DG units in the distribution network decreases
network losses and raises voltage profiles, strengthens voltage stability, delays network
upgrades, and saves money for utilities. However, the output power from some DG
technologies like PV & WT units is highly uncertain due to the probabilistic nature of wind
speed & solar radiance. Identifying the suitable places and sizes of DG units in the distribution
network by considering the uncertainty in their power output determines how well the
technical metrics improve. The problem mentioned above is called optimal planning of DGs
(OPDGs) in the distribution system. Therefore, the general framework for describing and
resolving the issue as discussed above must consider the following factors: the significance
and context of the problem; the modelling of DGs output power uncertainties, the modelling
of load uncertainties; the choice of objective functions, and the approach for solving the

optimization problem.

The shift toward zero-emission plug-in hybrid electric vehicles (PHEVS), which are

anticipated to play a significant role in the road transportation system [6], has been prompted
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by growing concerns over the depletion of fossil fuels, CO2 emissions and the greenhouse
impact. However, the objectives achieved due to the successful transition to plug-in electric
vehicles can only be accomplished when non-conventional energy sources like DG
technologies provide the required electric power for charging electric vehicles. The PHEVs
charge their batteries under two charging scenarios: charging PHEVs at residential homes
(private charging) and at public fast charging stations (public charging). Numerous power
systems issues, such as economic dispatch, optimal power flow, and OPDG problems in radial
distribution systems and microgrids, have been studied extensively in the literature by taking
electric vehicle load demand on the system. The authors solved the dynamic economic
dispatch issue in [7], [8] by incorporating PHEV load demand into the 24-hour load pattern.
Authors in [9] tackled the optimal flow problem by considering the PV, WT and PHEV
uncertainties. Due to the proximity of the distribution system to the load centres, it was the
first power system to be affected by the demand due to electric vehicle load. Technical metrics
of the distribution system, like real power loss and voltage profile, will worsen due to the
system's extra electric power demand due to PHEVs. Therefore, several researchers addressed
the optimal planning of DGs in the distribution system by considering electric vehicle load

demand.

This thesis focuses on the effective planning of various DG technologies in the
distribution system to improve its performance. Four kinds of investigations — optimal
planning of DGs in the optimal reconfigured distribution system for improvement of its
efficiency and loadability - optimal planning of PV, WT, PV-BESS, WT-BIOMASS units in
the distribution system for improvement of its efficiency and voltage profile — optimal
planning of DGs in distribution system considering the load of PHEVs charging under private
charging scenario — optimal planning of PV & PV-BESS units in distribution system
considering the load of PHEVs charging under both private and public charging scenarios.

1.1 Investigations on Optimal Planning of Distributed Generators in the

Distributed system

As mentioned in the introduction part, the optimal planning of DGs in the distribution
system improves several technical metrics, such as the reduction of power loss, the
improvement of the voltage profile, the improvement of the system's reliability and security,
and the improvement of the system's ability to handle the load and maintain the voltage
stability. Additionally, adequate DG planning in the distribution system will have a few



economic and environmental benefits [4]. Economic benefits include reducing operational &
maintenance costs, deferrals of infrastructure investments, reduction in fuel costs due to
renewable DG technologies, and installation & maintenance costs. Benefits to the environment
include decreased health expenses and greenhouse gas emissions. To enhance the technical,
economic and environmental metrics indicated above, various researchers have addressed the
OPDG problem in distribution systems in many ways. Researchers have tackled the subject of
optimal DG planning in the literature by considering different load uncertainties: the system's
peak load level, the system's multi-load level, and the system's daily load profile. Researchers
addressed several analytical, numerical and meta-heuristic-based optimization algorithms for
the OPDG problem in the distribution system. In [10], the authors discussed a detailed review
of various analytical techniques for OPDG technologies problems in the distribution system.
Analytical methodologies need an explicit model and can produce precise results within a
short computational time; however, many simplifications and differentiations of complex
equations are required. In [11]-[17], authors addressed the OPDG problem using various
analytical methods based on exact loss formulae for distribution system power loss
minimization, voltage profile improvement and reliability enhancement. The exact loss
formula [10] establishes the overall system real power losses of as a mathematical function of
active & reactive power demands at all buses. To lower the distribution network's power
losses, the mathematical equation that represents most advantageous DG capacity at a bus is
obtained by mathematical simplifications and operations on the exact loss formulae. The
detailed step-by-step procedure for finding the optimal DG locations and DG sizes by using

the analytical method based on exact loss formulae is found in [3].

In [11], the researchers suggested an analytical method based on an exact loss formula
to assess the optimum DG location and size to minimize distribution network reactive & active
power losses. The suggested method was efficient in terms of computing because it only
needed to repeat the power flow twice. However, this method only applies to the optimal
planning of a single DG unit. Due to the bus impedance matrix calculation required by this
technique, this technique is computationally inefficient for distribution networks with a greater
number of buses. The optimal planning of WT was done by the authors in [12] to reduce active
power losses in distribution networks. The wind turbine type based on an induction generator
that inject real power and consume reactive power was considered. The bus connected to the
WT was first treated as a load bus, and the WT output was represented as mathematical

equation. Then, the exact loss formula was employed for finding network power losses. In



[13], an analytical technique developed in [11] is improved that was confined to DG units with
real power support and created analytical expressions for optimal DG planning of multiple
types of DGs for power loss minimization. The subsequent work in [14] enhanced the
analytical method in [13], which determined the various DG unit types for reducing power
losses in distribution networks. In both studies [13], [14], the significance of DG operation
was examined in terms of real & reactive power injection, and the optimal DG power factor
was determined to reduce power losses. The findings revealed that when compared to DG
units with real power generation, DG units with both real & reactive power generation

dramatically mitigates power losses.

The authors of [15] used an analytical technique to identify the best sizes, positions,
and power factors of DG units to lessen power losses while considering the load demand and
renewable DGs uncertainties. The results of the above study revealed that dispatchable DG
units minimise power losses to significant percentage compared to non-dispatchable DG units.
The researchers of [16] proposed an analytical method based on a multi-objective index for
the determination of the optimum capacity PV-DG units. A weighted multi-objective function
is mathematically formulated, which addresses the minimization of active and reactive power
losses and voltage deviation. In [17], the authors combined a PV unit with BESS unit to make
PV unit as dispatchable DG and formulated a multi-objective function for reducing power
losses and improving voltage profile and developed analytical expressions based on exact loss
formulae for the determination of the optimal capacity and power factor of such PV-BESS
unit. However, in [16], [17], since optimal sizes of PV & PV-BESS units are determined based
on the average load demand, the power loss might not be minimized to the optimal value.
From the above discussions, it is observed that analytical methods that rely on the exact loss
formula need to calculate bus impedance or Jacobian matrices, results in high computing

complexity in the case of distribution networks with greater number of buses.

The OPDG problem was addressed in [18]-[21] using loss sensitivity factor based
analytical techniques for minimising distribution system power loss. The loss sensitivity factor
based analytical methods decrease the number of viable solutions by limiting the solution
search space to a few top-ranked buses. In these methods, at first, a initial load flow is
performed without DGs on the system and then mathematically developed analytical
expressions are used to determine the sensitivity factors at each bus; then, the buses are
prioritised according to their sensitivity factors to create a priority list; Then, by gently

increasing the DG capacity at the top priority bus until minimal system losses have been
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attained— a process that is done for each priority bus —it is possible to determine the optimum
DG size at that bus. Ultimately, the bus with the lowest power losses is selected as the best
possible DG location. In [18], the authors presented a combined power loss sensitivity
technique to identify the best positions and sizes for DG units operating at unity and fixed
power factor. The outcomes showed that DG units running at the 0.9 fixed power factor
significantly reduced active and reactive power losses and voltage deviation. In [19], the
authors used a combination of the quadratic curve fitting technique and sensitivity analysis to
determine the best location and capacity for a DG unit running at a fixed power factor and
single capacitor. They subsequently expanded this method to integrate multiple DGs and
capacitors, resulting in a more significant loss reduction and improved voltage stability
compared to a single DG-capacitor combination. To determine the optimal locations, sizes,
and power factors of DG units, the authors of [22] carried out a sensitivity study using an
entirely novel formulation of the power flow solution. From the results, it was observed that
the power losses could be reduced to the lowest value if the DGs are operating at the optimal
power factor. To figure out the optimum capacity of various renewable DG types, a hybrid
technique built on sensitivity analysis and continuous power flow was established by the
authors in [21]. The suggested technique resulted in significant enhancements in loss reduction
and voltage stability. However, as already discussed, analytical methods developed based on
loss sensitivity factors requires numerous iterations of power flow calculation, which could

lead to computational inefficiencies in the case of large-scale distribution networks.

In [23]-[25], researchers addressed the optimal planning of DGs in distribution
systems using analytical methods based on branch current loss formulae and branch power
flow formulae. The authors of [23] presented an analytical method based on the branch's
current formulae for the allocation of DG units with the objective of minimising network
power loss. The authors of [24] evaluated planning of renewable DGs while considering the
fluctuations associated with load demand and DGs. To reduce yearly electric energy losses,
they determined the optimal locations, sizes and power factors of DGs. With the aim of
minimising power losses, the authors of [25] presented an equivalent current injection
analytical approach to choose the best optimal DG size and position. From the above
discussions, the following drawbacks are associated with the optimal planning of DGs by
using analytical methods. The analytical methods with exact loss formulae [11]-[17] and loss
sensitivity factors [18]-[21] are inefficient for large scale distribution systems and there are

few literature papers on optimal planning of DGs by using analytical methods based on branch



current loss formulae and branch power flow formulae. As previously mentioned, optimal DG
planning enhances several technical, financial, and environmental factors. However, the
majority of research focused on optimal DG planning by utilising analytical techniques for

power loss mitigation and voltage profile improvement only.

Therefore, several researchers addressed the OPDG problem using meta-heuristic
optimization algorithms to overcome the drawbacks associated with analytical methods. The
advantage of meta-heuristic algorithms is that they can efficiently solve very complicated
tasks. The meta-heuristic algorithms use an iterative generation process that effectively locates
near-optimal solutions using learning methodologies and intelligently integrating various
concepts to explore and examine the search space. These algorithms employ randomized
operators to look for the best outcomes based on exploration and exploitation [5]. The
advantage of meta-heuristic algorithms is that they are problem independent. Another benefit
of utilising meta-heuristic optimization algorithms is that they allow the use of any multi-
objective optimization technique instead of analytical techniques that only allow the use of the
weighted sum approach for multiple objectives optimization. Meta-heuristics optimization
algorithms can be broadly divided into two categories: population-based algorithms and single
solution-based (or) trajectory-based algorithms. In single solution-based algorithms, a solution
is randomly generated, and the solution is improved until they achieve the best outcome. In
population-based algorithms, a collection of random solutions in a specified search space are
generated first, and solutions are updated with the help of heuristics & intelligence gained
during iterations until the best solution is produced. Population-based algorithms can escape
local optima because of the presence of many searching agents. Population-based algorithms
are divided into several categories: algorithms based on the theory of evolution (e.g., Genetic
algorithm (GA), Differential Evolution (DE)), algorithms based on physical laws (e.g.,
Gravitational search algorithm (GSA), Black Hole optimization algorithm (BHOA) ) ,
algorithms that take inspiration from swarms of particles (e.g., Artificial Bee Colony (ABC),
Particle Swarm Optimization (PSO)), and algorithms that mimic biological behaviour (e.qg.,
Cuckoo search algorithm (CSA), Bat algorithm (BA)) [26]. In literature, several researchers
addressed optimal DG planning using several meta-heuristic optimization algorithms for
improving distribution system metrics using several single and multi-objective optimization

techniques.

Authors in [27] used loss-sensitive indexes to identify the best locations for DGs, and

then a simulated annealing optimization algorithm was used for DGs sizing to reduce the
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distribution system’s power loss. The outcomes revealed that the greatest reduction in power
loss is observed when DGs are operating with a 0.866 power factor rather than DGs operating
with a unity power factor. [28] used the artificial bee colony algorithm to identify the optimal
DG size, location, and power factor for the minimization of the system’s power loss. However,
the authors of [28] only discussed the optimal planning for a single DG unit. In [29], firefly
and backtracking search algorithms are implemented for optimal planning of multi-DG units
and determined optimal DGs' locations, sizes and power factors for the minimization of the
system's power loss. From the outcomes, it was observed that DGs operating with optimal
factor yield the most significant reduction in power loss compared to those operating with
fixed power factor. From the articles [27]-[29] mentioned above, it has been observed that
utilizing optimization algorithms to determine the optimal locations and sizes of DGs yields
the most significant gain in power loss reduction. However, based on the complexity involved
in the problem, researchers have been using both methods. In [30], the authors discussed the
optimal planning for Type-3 DGs using the PSO algorithm for DGs generation cost reduction.
From the results mentioned in [27]-[30], it has been found that multiple-DG unit planning in
the distribution system, as opposed to single-DG unit planning, results in the highest reduction
in distribution system power loss because of the significant changes in line power flows in the
distribution system. In [31], authors addressed optimizing system maximum loadabilty using
the HPSO algorithm. The authors of [32] addressed the hybrid genetic dragonfly optimization
algorithm for minimization of the distribution system's EENS (electrical energy not supplied)
technical metric's reliability index through the optimal planning of Type-I, Type-Il, and Type-
11l DGs.

Several researchers have solved the OPDG problem and optimal network
reconfiguration problem simultaneously for the improvement of distribution system metrics.
Distribution networks are generally employed with two types of switches: section switches
and tie switches. The tie switches are usually used for line reconfiguration. Meanwhile, the
section switches are generally used to confine the fault damage. Therefore, these switches
assist in isolating faulty subsystems from the original network and prevent disruption in the
significant system'’s functionality [5]. In addition to the functionality mentioned above, several
researchers have discussed network reconfiguration in the literature to improve technical
distribution system metrics such as load balancing between feeders and branches, voltage
profile improvement, and power loss reduction. Optimal distributed network reconfiguration

(ODNR) problem is the process of finding the best topological structure of the network by



finding the network's switch states, which could either be usually open (for tie switches) or
closed (sectionalizing switches) while maintaining the radiality of the network for the
improvement of distribution system metrics by satisfying the several operational constraints.
In the literature, authors tackled the network reconfiguration problem using various
mathematical optimization approaches, heuristic optimization algorithms, and meta-heuristic

optimization algorithms for enhancing distribution system metrics.

The ODNR problem was initially solved in [33] using a branch and bound (B&B)
algorithm. Even though the proposed method discovered an effective solution, its convergence
was a sluggish process. Distribution feeders were divided into various networks as part of a
binary integer programming strategy introduced in [34] for solving the ODNR problem. The
proposed method, however, encountered computational issues with large-scale distribution
systems. The Benders decomposition (BD), which separates separating the problem into a
"master problem" and a "slave problem”, was introduced in [35] to address the ODNR
problem. The slave problem was used to examine these radial solutions' viability, while ideal
radial topological structures with the lowest losses were determined in the master problem
while considering power flows limits. The performance of BD decreases with a rise in
nonlinear variables of the model, despite the findings showing the efficacy and robustness of
the suggested methodology for ODNR problem. A MILP model with a two-stage
decomposition approach was presented in [36] to address an ODNR problem. However, the
piecewise linear approximations utilised in [36] diminish the accuracy of solutions for
reconfiguring large distribution systems. From the above discussions, it was observed that
solving the ODNR problem using mathematical approaches [33]-[36] typically takes a long
time, and this problem worsens when more integer decision variables are considered. In [37],
authors introduced the branch exchange (BE) heuristic method to address an ODNR problem.
In BE, new radial topologies are produced by closing an open switch and opening a switch
that is already closed on each planar loop until the best configuration is reached.
Unfortunately, the time-consuming nature of BE's point-to-point searching process makes it a
slow way to reconfigure big distribution systems. a heuristic approach based on the
fundamental ideas of network partitioning for solving an ODNR problem was introduced in
[38] to overcome the size limitations. In this method, the distribution network was separated
into bus groups, and the power losses between these groups were reduced. A novel BE-based
heuristic strategy was proposed in [39] to solve the ODNR problem. The algorithm's precision

was respectable despite the lengthy computation time. In [40], a dual-stage heuristic technique



for solving ODNR was proposed. In the first stage, switches with the least loss increase are
opened, and BE chooses the best proposals in the second stage. Despite the proposed
technique's high accuracy and simplicity, this process takes a lot of time due to repetitive load
flows and checking all promising solutions. In place of BE in the second step of the suggested
heuristic algorithm, [41] used the neighbour-chain updating process (NCUP) to boost the
precision of the method described in [40]. Because heuristic algorithms must be developed for
a particular application and time-consuming procedures, several authors solved the ODNR
problem using meta-heuristic optimization algorithms. The genetic algorithm (GA), a well-

known metaheuristic technique, was used in [42] to solve the ODNR problem.

However, reconfiguring large distribution networks using the usual GA is time-
consuming. Authors suggested an meta-heuristic evolutionary optimization algorithm (EA) in
[43] to reduce network real power losses through ODNR problem. However, due to a subpar
tree representation of the distribution network's graph, non-radial topological structures occur
during algorithm search, severely reducing the algorithm's efficiency. In order to reduce the
system's active power loss, a more effective selective BPSO algorithm [44] is used for the
ODNR problem. Few researchers addressed ODNR problem with multi-objective
optimization. To reduce active power loss and the system's voltage deviation index, authors in
[45] addressed the ODNR problem using cuckoo search algorithm (CSA). To reduce active
power loss, load balancing between branches and feeders, and the quantity of switching
operations, a multi-objective Max-Min multi-objective strategy using runner root algorithm is
suggested in [46] optimal network reconfiguration problem. A fuzzy adaptation of the
evolutionary programming algorithm, the Discrete Artificial Bee Colony (DABC) algorithm,
and a second-stage employee-improved harmony search algorithm, respectively, were used by
the authors of [47], [48], and [49] to address the ODNR problem to maximise the network's

maximum loadability.

Researchers in [50] and [51] addressed the optimal network reconfiguration problem
and optimal allocation of Type-1 DGs to minimize the active power loss of the system by
considering different scenarios. Harmony search and adaptive cuckoo search algorithms have
been used to find the optimal DG sizes, DG locations and open switch positions to achieve the
desired result. Authors in [52] addressed the optimal allocation of Type-3 DGs with optimal
power factor to minimize the network active power loss using the UVDA-based heuristic

method. From the outcomes observed in [50]-[52], it can be concluded that the most
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significant improvement in technical metrics of the distribution system is obtained when DGs

are optimally planned in the optimal reconfigured network.

As mentioned earlier, optimal DG integration allows for improving several technical
distribution system aspects. The works mentioned above, however, considered single-
objective optimization only. As a result, the improvement in the other objectives is not up to
par owing to the conflicting nature between the objectives. Numerous studies have employed
multi-objective optimization techniques to find the solution (i.e., determining the best
locations and sizes for DGs) that optimally balances several objectives. In [53], the authors
discussed a weighted multi-objective technique employing the Harmony search optimization
algorithm (HSA) for minimising network power loss and total hormonic distortion, improving
the system voltage profile, and enhancing system security. The optimal placement of DGs in
the distribution system was discussed in [54] using a weighted multi-objective particle swarm
optimization technique to reduce power loss and increase reliability. Using a weighted multi-
objective genetic algorithm, authors of [55] discussed the optimal way to plan DGs for
minimising system power loss, maximising system loadability, and enhancing voltage profile.
The authors of [56] discussed inertia-weighted PSO for maximising system loadability and
minimising power loss through optimal DG planning utilising a weighted multi-objective
method. In [57], authors discussed a hybrid sequential Monte Carlo simulation analytical
hierarchical approach for the optimal DG planning in a distribution system to reduce system
power loss, voltage variation, SAIDI, CAIDI, and EENS utilising a weighted-based multi-
objective technique. In [58], authors discussed the weighted-based multi-objective hybrid
SFLA (shuffled frog leap algorithm) and DE (differential evolution) algorithms for the optimal
placement of DGs in distribution systems to reduce power loss, operational power costs, and
emission costs. To optimize power loss, voltage deviation, and voltage stability technical
metrics, researchers used a multi-objective weighted technique-based quasi-oppositional
teaching learning-based optimization algorithm [59]. To reduce power loss and improve
loadability, epsilon artificial bee colony optimization [60] and multi-objective techniques are
employed. In [61], an analytical hierarchy weighted based multi-objective hybrid multiverse
optimization algorithm is used to improve four distribution system technical metrics: reduction
of system’s energy loss & node voltage deviation metrics, enhancement of voltage stability
and reliability metrics. With the intent to decrease loss and increasing reliability, authors in
[62] implemented a hybrid multi-objective TLBO-GWO optimization algorithm for optimal
planning of DGs in distribution system.
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The Pareto-based Harris hawk optimization algorithm is implemented in [63] to
improve the system's technical parameters. Numerous researchers have considered economic
factors while planning of DGs in distribution networks to reduce DGs' installation,
maintenance, and operational expenses. Authors in [64] addressed improving technical and
economic objectives using a Pareto-based muti-objective differential evolution optimization
algorithm. The authors of the studies mentioned above [27-32], [53-62] used numerous single-
and multi-objective strategies to handle the OPDG problem in the distribution system at its
peak load level to improve various technical & economic metrics. The idea behind addressing
the OPDG issue at the system’s peak load level is that DGs have to inject how much active
and reactive power into the system at optimal locations for the improvement of systems
technical & economic metrics to the maximum extent. Then similar system performance is
achieved at other load levels other than system’s peak load if DGs adjust its power output
following load changes. The above methodology works only if optimal planning of
dispatchable DGs like BIOMASS, Micro-Turbine and DSTATCOM in the distribution system
is addressed. However, optimal planning of non-dispatchable units like PV & WT units should

be done by taking load data of a particular time frame.

Several researchers addressed the optimal planning of non-dispatchable renewable-
based PV and WT units in the distribution system by considering the system's p.u typical daily
load profile. The average p.u. daily load profile is generated using historical load demand.
Probabilistic approaches that consider the intermittency nature of solar radiance & wind speed
must first be explored for the optimal design of PV and WT units in the distribution system.
Authors in [65] concluded that the Beta & Weibull probability distribution functions were the
most fitted distributed function in coping with the probabilistic nature of solar radiance &
wind speed. Based on this, a few researchers developed [66],[67]-[70] various probabilistic
methods using beta PDF. However, dealing with the uncertainty involved in PV unit output
power is made simpler by applying the probabilistic method developed in [70], which
determines the typical p.u PV output power curve from historical solar irradiance data. To
enhance system performance, authors in [66], and [71] addressed the optimal integration of
PV (Photo-Voltaic) and WT (Wind Turbine) units in electrical distribution networks by taking
daily load demand, solar radiance, and wind speed uncertainty into consideration. However,
if DGs dispatch/inject power into the system optimally during each hour of the day, the
system's performance (energy loss reduction, enhancement of the system's voltage profile,

etc.) would be improved more. Therefore, to overcome the non-dispatchable nature of PV, the
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PV unit is assisted by BESS so that the combined PV-BESS would act like dispatchable DG.
Similarly, in the case of the WT-Biomass unit, the difference of power between the required
power from the WT-Biomass unit and the WT unit will be supplied by the Biomass unit.
Optimal integration of PV-BESS units is addressed in [72], [73] for the mitigation of
distribution network energy loss, and in [74], optimal integration of either PV-BESS or WT-

Biomass units in the distribution system for the mitigation of energy loss is addressed.

1.2 Investigations on optimal planning of Distributed Generators in the
distribution system in the presence of plug-in hybrid electric vehicles load

demand

Numerous studies have focused on the appropriate planning of DGs in the distribution
system to reduce the impact of PHEVs load demand and enhance its performance. Few
researchers [75], [76] handled optimal planning and scheduling of RDGs in the distribution
system by integrating PHEVs load demand with the 24-hour load demand of the system. In
the previous works, PDFs address the probabilistic nature of arrival time and trip distances of
PHEVs. However, the methodology considered in the earlier papers addressed night-time
charging of electric vehicles at residential buses, i.e., charging of electric cars at home, which
is coined as private charging. However, the effective transfer of car owners from conventional
to electrical vehicle technology depends on creating an adequate public charging
infrastructure. Because in Public Fast Charging Station (PFCS), an electric vehicle's battery
can be charged in 20 to 30 minutes. Many countries worldwide are developing regulations
and providing incentives to encourage the installation of charging stations.

Therefore, few researchers addressed the optimal placement of PFCS in radial
distribution systems. In [77], the authors proposed investment, operation, maintenance, and
network loss costs as the objectives for problem formulation that were gained by the modified
primal-dual interior-point algorithm for the optimal placement of PFCS. Considering the costs
of PFCS equipment, land, PFCS electrification, electric grid loss, and EV loss for charging, a
mixed-integer nonlinear problem (MINLP) is described in [78], and the MINLP optimization
problem was addressed using GA. In [79], the genetic algorithm (GA) technique is used to
solve the suggested model of the optimal placement for PFCS, which includes two objective
functions, such as the cost of PFCS construction and the cost of charging station access. The
fuzzy-based multi-objective grasshopper optimization algorithm is implemented in [80] for

optimal planning of RDGs and PFCS to improve the technical metrics of the distribution
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system. In [81], the authors discussed the best location for PFCS and RDGs utilizing the
HPSO-GWO optimization algorithm in the distribution system, taking land costs and the
population of electric vehicles. In [82], the authors examined the optimal placement for
parking lots by maximising parking lot revenue, considering the cost of parking lots,
reliability, power loss, and voltage improvements as the objective functions. The GA was then
used to determine the best outcomes. The authors in [83] proposed land cost, station
equipment cost, operating and maintenance cost, real power loss cost, and voltage profile
improvement as objective functions for the placement of CS, and the proposed problem is
resolved by an advanced GA and PSO algorithm. In [84], the authors used the investment cost
of CS, operation and maintenance costs, electricity cost for battery charging, electricity cost
for travelling to charge the battery, time cost for driving, waiting time cost, and charging time
cost as the objective for problem formulation. The integrated planning problem was solved
by the PSO algorithm. The placement of the PFCS is studied in [85] with the goal of
minimising power loss and maximising the stability of the distribution system, with APSO
solving the optimization problem. A multi-objective mixed integer nonlinear problem
(MINLP) with FCS development costs, EV specific energy consumption costs, electrical
network power loss costs, DGs costs, and voltage deviation was developed by the authors in
[86], [87]. The NSGA-Il & SFL-TLBO was used in this study to address the formulation
problem for placing PFCSs and DGs in the distribution network. The 118-bus distribution
system served as an evaluation system for the suggested technique. But authors have not
considered the optimal placement of PV or WT-based RDGs. Using a Pareto-based WOAGA
algorithm, authors in [88] examined the best way to connect RDG, PFCS, and BESS to

improve distribution systems' technical, fiscal, and environmental metrics.

1.3 Motivation and dissertation objectives

As discussed in the introduction, due to the advantages of DG technologies like
compact in size, advancements in DG technologies and reduction in installation costs, so much
research is going on how an electrical distribution system should be made efficient by the
deployment of DGs optimally. From the literature review on optimal planning or deployment
of DGs in the distribution system at its peak load level, several researchers addressed the
improvement of several metrics using single and multi-objective optimization techniques by
various analytical and meta-heuristic optimization algorithms. However, the literature does
not discuss employing a suitable multi-objective method to bring the balanced solution in

improving power loss reduction and lodability technical metrics. And also, from the literature
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review on optimal deployment of PV, WT, PV-BESS and WT-BIOMASS units in the
distribution network, it was observed that researchers addressed the minimization of systems’
energy loss only and not considered other technical metrics & economic aspects. From the
literature review on optimal planning of DGs in the presence of PHEVs load demand, only a
few papers hardly addressed optimal planning of PV & PV-BESS units in distribution systems
by considering both private and public charging.

Therefore, the succeeding objectives are deduced based on the observations made from

the literature review.

1. To determine the best trade-off solution between the active power loss reduction and
maximum loadability enhancement through proper planning of DGs in the distribution
system.

2. To obtain the best compromise solution between energy loss reduction, voltage profile
improvement and annual installation & maintenance costs of DGs through optimal
planning of dispatchable DGs (PV-BESS, WT-BIOMASS) units in the distribution
system by considering solar radiance, wind speed and load uncertainties.

3. To look for the optimal planning of DGs in the distribution system for energy loss
reduction and voltage profile improvement considering PHEVs load demand charging
under private charging scenario.

4. To look for the optimal planning of dispatchable DGs (PV-BESS, WT-BIOMASS) units
in the distribution system for energy loss reduction, voltage profile improvement and
annual installation & maintenance costs of DGs considering PHEVs load demand

charging under both private & public charging scenarios.
By working on the objectives mentioned above, the following contributions are made:

1. €-constraint-based multi-objective approach for optimal network reconfiguration and
optimal allocation of DGs in radial distribution systems using the butterfly optimizer.

2. Probabilistic optimal planning of dispatchable distributed generator units in distribution
systems using a Pareto-based multi-objective chaotic velocity-based butterfly
optimization algorithm.

3. Optimal integration of DGs into radial distribution network in the presence of plug-in
electric vehicles to minimize energy loss and to improve the voltage profile of the system
using a pareto-based multi-objective chaotic velocity-based butterfly optimization

algorithm.
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4. Probabilistic optimal allocation of Solar PV units and Battery Energy Storage System in
the distribution system in the presence of plug-in electric vehicles using a multi-objective
chaotic velocity-based butterfly optimization algorithm.

1.4 Organization of dissertation

The dissertation is structured as follows:

Chapter 1 briefly overview Distributed Generators (DGs) nomenclature,
classification, and applications. Along with a brief overview of PHEVs and their charging
behaviour. Investigations on DG planning in distribution systems without and with PHEVs
load, their outlines, the thesis's research goals, its contributions, and its structuring are

described.

Chapter 2 presents the €-constraint-based multi-objective approach for optimal
network reconfiguration and optimal allocation of DGs in radial distribution systems using
the butterfly optimizer with the objective of increasing loadability and reducing power loss.

Chapter 3 presents the probabilistic optimal planning of non-dispatchable PV &
WT units and dispatchable PV-BESS, WT-BIOMASS distributed generator units in
distribution systems using a Pareto-based multi-objective chaotic velocity-based butterfly
optimization algorithm with the objective of reducing energy loss and enhancing voltage
profile.

Chapter 4 describes the optimal integration of DGs into a radial distribution
network in the presence of plug-in electric vehicles charging under private charging scenarios
to minimize energy loss and improve the system's voltage profile using a Pareto-based multi-

objective chaotic velocity-based butterfly optimization algorithm.

Chapter 5 details the Probabilistic optimal allocation of Inverter based Solar PV
units and Battery Energy Storage Systems in the distribution system in the presence of plug-
in electric vehicles charging under private and public charging scenarios using a multi-

objective chaotic velocity-based butterfly optimization algorithm.

Chapter 6 presents the conclusions and future scope of the thesis.
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Chapter 2

&-constraint-based multi-objective approach for optimal
network reconfiguration and optimal allocation of DGs In

radial distribution systems using the butterfly optimizer
2.1 Introduction

This chapter presents the optimal planning of DGs in the distribution system for the
improvement of its efficiency and maximum loadability. Maximum loadability (4,,,4,) of the
system is defined as the maximum increase in power system load till the voltage instability
occurs. Loading margin factor (4,,) of the system is defined as the maximum increase in power
system load until the system buses violate maximum and minimum bus voltage limits. Figure
2.1 shows that the system with better maximum lodability (curve B) has better loading
marginal factor and voltage profile at each loading. From the description above, it can be
inferred that enhancing the system's maximum loadability also increases its maximum loading
factor, allowing for the effective fulfilment of growing load demand without exceeding

permitted bus voltage levels.
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Figure 2.1 Impact of DGs placement and Network reconfiguration on system loadability

In the literature, few researchers addressed enhancing the maximum loadability of the
distribution system via optimal planning of DGs and optimal network reconfiguration.

Authors in [31] presented a hybrid PSO meta-heuristic algorithm for enhancing maximum
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loadability of the distribution system by optimal planning of Type-Il1l DGs. To improve the
maximum loadability of the distribution system, authors in [47]-[49] examined the optimal
network reconfiguration problem, and findings revealed that the maximum loadability has
been improved in the optimal reconfigured network. Authors in [60] discussed simultaneous
optimal planning of DGs and optimal network reconfiguration problem for enhancing
distribution system maximum loadability using an artificial bee colony (ABC) optimization
algorithm, and from the outcomes, it has been revealed that better improvement in system
maximum loadability is achieved in case of when DGs are optimally planned in the optimal
reconfigured network. From the outcomes in [31], [60], it was observed that even though the
system maximum loadability is improved to maximum value but the percentage of active
power loss reduction is very less. Based on the description above, it can be concluded that
there exists a conflicting nature between the objectives of active power loss reduction and
maximum loadability enhancement.

Therefore, this chapter presents €-constraint multi-objective butterfly optimization
algorithm (MOBOA) to bring the balanced solution between the improvement in two metrics
of the distribution system (i.e., active power loss reduction and maximum loadability
enhancement) by optimal planning of DGs and optimal network reconfiguration. In this work,
improvement in above-two mentioned objectives of the distribution system is addressed at the
peak load level of the system without considering load and DGs uncertainties. Hence, this
work addresses the determination of the injection of how much active & reactive power into
the distribution system by identifying the optimal DGs locations, DGs sizes, DGs power

factors & optimal switch positions for the improvement of the above-cited metrics.

2.2 Problem Formulation

2.2.1 Active Power Loss of the system
Active power loss (P;,s) Of the system should be minimized to improve the distribution
system efficiency.
fi = minimize (Pjyss) (2.1)
Pioss = X121 J7 * R; (2.2)
Where, J; is the it branch current and R; is the resistance of the i'" branch.
2.2.2 Maximum loadability of the system
Maximum loadability of the system (4,,4,) Should be maximized to meet the future load
growth of the system.

fo = maximize (A,qy) (2.3)
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To obtain the A,,,, of the system in [31], [60], [89], the system load level is increased from 0

in step size of 0.01 until the load flow diverges and the corresponding load level at which the

load flow has diverged is considered as A,,,, of the system.
2.2.3 Constraints

The optimal allocation of DGs in the distribution system and optimal network reconfiguration

of the distribution system problem needs to satisfy the following constraints:

a.

Bus voltage limit constraints: The voltage magnitude of each bus should be within the
minimum and maximum limits.
[Vinin| < |[Vi| < Vinaxl j=12....mb (2.4)
where nb is the number of buses in the distribution system.
Thermal limit constraints: The current flowing through each branch should be less than
the current rating of the respective branch.
Ji < i=12.....nbr (2.5)
Where, nbr is the number of branches in the system.
Active power limit of DGs: Active power generated by each DG (Ppg k) should be less
than the maximum active power limit of DGs.
Ppor < Ppci k=12...ndg (2.6)
Where, ndg is the number of DGs to be placed in the system.
The power factor of DGs: power factor of each DG should be within the minimum
(pfi™™) and unity power factor limits.
pffn <pfi, <1  k=12..ndg (2.7)
Total active power (Pr pg) and reactive power generated (Qr pg) by DGs should be less

than the total active (P;,,4) and reactive power (Q;,.4) demand of the system respectively.

Zi‘? Ppgx = Prpc < Proaa (2.8)
d
res Qpe ke = Qrpe < Quoad (2.9)
Active Power and Reactive power balance constraints.
Psup + Prpe = Proaa + Pross (2.10)
Qsup + QT,DG = Qioaa T Qioss (2.11)

where Pg,;,, Qsyup are the active and reactive power generated by substations.
The optimal network reconfiguration problem requires checking of radiality of the
reconfigured network. In this work, spanning tree technique is utilized for checking the

radiality of the reconfigured network [89].
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2.2.4 Multi-objective optimization- €-constraint method

€-constraint method [90] is one of the methods to optimize two or more objectives at a time.
In the €-constraint method, multi-objective optimization is redeveloped as taking one of the
objectives as an objective function and other objectives are limited within the specified limits
by converting them into constraints. The mathematical formulation of the multi-objective €-

constraint method is formulated as follows

Minimize f,, (x) (2.12)
subjected to f,,(x) < &, m=12,.... ,Mandm # u (2.13)
gix) =2 0 j= 12,.....] (2.14)
h (x) = 0 k=12, ...K (2.15)
xkF<x<xf i=12....n (2.16)

Where, &,, is the upper bound limit of the m" objective function fm(x).g;(x) , hy(x), x;are

the j™ inequality constraint, k™ equality constraint, and i"" decision variable. x},x” are lower

bound and upper bound limits of the decision variables.

2.3 Butterfly Optimization Algorithm

In the literature, various researchers have taken several optimization algorithms for the
OPDG and ODNR problems. According to the “No Free lunch theorem,” no optimization
algorithm gives exceptional results for all optimization problems. An optimization algorithm
may give admirable results for some set of optimization problems and may give inferior
results for another set of optimization problems. Performance-wise, all optimization
algorithms are indistinguishable while solving a whole set of optimization problems.
However, while choosing an optimization problem of, few things are considered like since
finding the loadability of the distribution system is a very tedious process, authors try to avoid
optimization algorithms with a two-stage evolutionary process like in cuckoo search
algorithm, TLBO algorithm, etc., and algorithm should be easy in implementation. Since the
Butterfly optimization (BO) algorithm is a new one and advantages like ease in

implementation have driven the authors to use this algorithm [91], [92].

Butterfly optimization (BO) algorithm is a new meta-heuristic optimization algorithm
developed by Sankalap Arora and Satvir Singh in 2018 [93]. The BO algorithm is developed
based on the food foraging behaviour and mating behaviour of the butterflies. In the real

world, butterflies use their sense of smell to find food and mating partner. During the search
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process for food, each butterfly will emit fragrance with some intensity, and the intensity of
the fragrance is proportional to the quality or quantity of food sources at the neighbourhood
of that butterfly. The fragrance emitted by the butterfly will propagate over some distance. If
the other butterflies in the group were able to sense the fragrance, they would move towards
it. In this way, butterflies will move in the real world until they find a good food source

position.

In developing the BO algorithm, all butterflies are treated as searching agents. Each agent
has a position and associated fragrance. The fragrance of each agent is correlated with the
fitness of the objective function. The mathematical modelling of the fragrance is given in
Eq.2.17.

f=cl? (2.17)
where f is the perceived magnitude of the fragrance, 1 is the stimulus intensity, c is the sensor
modality and a is the power exponent. In BO algorithm, I is the fitness of the searching agent
or butterfly. In BO algorithm c and a are the control parameters of the algorithm and the

detailed analysis of the algorithm control parameters were given in [93].

All agents will move to the new positions in the search space based on the global best
agent, magnitudes of the fragrances of all the agents and a switch probability p. The switch
probability p decides whether the agent to go for local search or global search. The equations

for position updating are given below.

Perform a global search using Eq. 2 if rand < P

xf(t+1) =x4(t) + (rz * gbest — xid(t)) * f (2.18)
or local search using Eq. 2 if rand > P

xd(t+1) = x4(t) + (r2 x(6) - xg(t)) * f, (2.19)
Where xjd (t)and xZ(t)are Jth and kth butterflies from the solution space which belongs to

the same swarm and r is a random number in [0, 1]. The detailed flowchart is given in

APPENDIX-A.

The detailed steps for implementation of BO algorithm are as follows

Step 1: Initialize algorithm parameters such as the number of agents N, the dimension of the
problem d, the maximum number of iterations Itermax, probability switch P, power
exponent PE and sensor modality SM.

Step 2: Generate initial random solution x; between minimum (x.,;, ) and maximum
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Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

(Xmaz) limits.
Xi = Xmin + (Cmax — Xmin) * rand (2.20)
Where, x;represent the position of the i agent or butterfly.
For optimal allocation of DGs unit’s problem, the x; constitute
x; = [LH L2 o L Pl Pogls e o Pog iDL D2 P i= 12N
(2.21)

Where N is the number of agents and d is the number of DGs to be placed, L¢ | PDGf,

pf:%represents location (integer number), size (real value) and power factor (real
value) of N™agent of d™ P® unit. During the simulation, location value is round-off to
the nearest integer value.

For optimal network reconfiguration problem, the x; constitute

x; = [SWESWE....SWE ] i=12...N (2.22)

Where N is the number of agents and d is the number of tie switches in the distribution
system,SW2 represents the d™ switch position of N agent.

Evaluate the fitness (objective functions) of agents using Eg. 2.1, Eq. 2.3 &

Eg. 2.12. Record the best solution as gbest.

Set iteration count t as zero.

Calculate the fragrance fy for each agent or butterfly using Eq. 2.17.

Update the positions of the agents using the equations Eq. 2.18 and Eq. 2.19.

For optimal network reconfiguration problem, the updated position is rounded to the
nearest integer value.

Evaluate the fitness of each agent in the new population using Eq. 2.1, Eq. 2.3 &

Eq. 2.12.

Update the gbest vector

Compare each new solution with the previous solution. If the new solution is better
than the previous solution, record the new otherwise discard the new solution and
preserve the previous solution as it is. Find out the gbest vector from updated
population.

Stopping criterion

Increment the iteration count by 1. If the iteration count reaches the maximum number
of iterations (itermax) computation is terminated. Otherwise, Step 5 to Step 9 is

repeated.

Step 10: Print out the results.
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2.4 Results and Discussion

In this section, the proposed BO algorithm for improving the 4,,,, and active power loss

reduction is applied on standard 33 and 69 bus test systems for the following scenarios.

1. Single objectives optimization, i.e., Minimization of active power loss of the system
and maximization of Maximum loadability of the system, are discussed in scenario-1.
2. €-constraint MOBOA (Multi-objective butterfly optimization algorithm) approach:
Taking 2,4, as objective function and active power loss as a constraint.
Each scenario consists of two cases: Optimal placement of DGs in the initial configured
network (Case-1) and Optimal Network reconfiguration followed by DGs allocation (Case-
2). The tuned parameters of the BO algorithm are given in Table 2.1. Distribution systems
with DGs installed at more than two buses have been found to have significant changes in
power flows, which is responsible for the more significant improvement in technical
parameters. Additionally, it was noted that there was little improvement in technical metrics
between DGs put at 3 buses and 4 buses. This may have been because we used the 33 & 69
bus systems as our test systems. Therefore, it is assumed that number of DGs to be placed is
fixed 3. The lower and upper bound limits for location decision variables are 2 & 33 for 33
bus system, 2 & 69 for 69 bus system respectively. The lower and upper bound limits for DGs
are 200 kW & 3000 kW respectively for both the test systems.

Table 2.1 BO Algorithm Parameters

Parameter Description Assigned Value
Number of Agents (N) 80
Dimension (dim) Scenario and Case dependent
Maximum number of iterations (maxit) 50
Modular modality ‘c’ 0.01
Power exponent ‘a’ 0.1t00.3
Probability switch ‘P’ 0.5

2.4.1 33 Bus System

The network data of the system is given in [31]. The system consists of 33 buses, 37 branches
and 5 tie switches. The nominal voltage rating of the system is 12.66 kV. The nominal load
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on the system is 3715 kW and 2300 kVar. Initial open tie switch positions are 33,34,35,36
and 37. Single line diagram of 33-bus system is depicted in Figure 2.2. The base case active
power loss and maximum loadability of an uncompensated system are 210.98 kW and 3.4
respectively. For optimal network reconfiguration problem, the switch positions given by BO
algorithm for active power loss minimization are 7,9,14,32 and 37, the active power loss of
the system is reduced to 138.5513 kW and maximum loadability of the system is improved to
4.87. The switch positions given by BO algorithm for maximization of A,,,, are 7,9,14,28
and 32, the maximum loadability of the system is improved to 5.23 and active power loss of
the system is reduced to 139.9782 kW. Since both objectives are improved in the case of 4,
maximization, the switch positions obtained for loadability maximization are taken for case-

2 in all scenarios.
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Figure 2.2 Single line diagram of 33-Bus system

Table 2.2 shows the various technical parameters of the system, DGs locations, DGs sizes,
DGs power factors for optimal planning of DGs in scenario-1. In this work number of DGs to
be placed in the 33-bus system is fixed to three due to the maximum enhancement in technical
parameters of the system is observed in when Three DGs are placed optimally in the system.
From Table 2.2, the following points are observed. In the case of active power loss
minimization, the active power loss of the system is reduced to 12.74 kW (accounts 93.95 %
of active power loss reduction), 18.75 kW (accounts 91.11 % of active power loss reduction
with respect to the base case) when DGs are placed in case-1 and case-2 respectively. In the
case of maximization of maximum loadability of the system, A,,,,, improved to 5.1, 7.23 in

case-1 and case-2, respectively. And it is also observed that in the case of maximization of
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maximum loadability of the system, the active power loss of the system is reduced to 86.5804
kw, 91.8943 kW in case-1 & 2 respectively accounts 58.96%, 56.44% reduction only.
Therefore, from scenario-1 it is concluded that a multi-objective approach is needed to

improve both the objectives, i.e., active power loss reduction and 4, -

Table 2.2 Simulation results of 33-bus system for scenario-1

Initial configured network Optimal Reconfigured Network
Parameters Power Loss Maxm_1um Power Loss 'V'ax'”.‘”m
S Loading AP Loading
Minimization s Minimization L2
Maximization Maximization
Active power 12.7458 86.5804 18.7531 98.8904
loss (in kW)
Amax 4.4 5.1 6.15 7.23
Minimum and
Maximum 0.9916 & 0.9853 & 0.9884 & 0.978 &
voltage (in 1.0007 1.0498 1.001 1.0495
p.u)
% KVA DG
INJECTION 79.17 84.97 68.4 99.6
% PLR 93.95 58.96 91.11 53.12
% MLI 29.41 50 80.88 112.64
DGs sizes (in 0737/14/0.88 0792/14/0.82 0573/12/0.88 2519/30/0.83
kW)/Bus/ 1044/24/0.88 0550/17/1.00 1520/29/0.80 0356/32/0.80
power factor 1156/30/0.80 1832/31/0.80 0414/33/0.92 0828/33/0.93

According to €-constraint method, the € value has to be chosen in such a way that it should
be lies within the minimum and maximum values of the individual objective function [90].
Therefore, in scenario-2, € value has to choose between 12.12 kW, 86.5804 kW for case-1
and between 17.4779 kW, 91.8943 kW for case-2. In this work, to keep the active power loss
reduction of the system to more than 70% (i.e., to reduce the active power loss of the system
to below 63.29 kW) and to analyze the impact of different values of € on both objectives, we
have chosen € values of 60 kW, 50 kW and 40 kW in scenario-2. The simulation outcomes of
€-constraint MOBOA for different values of € is depicted in Figure 2.3. From the outcomes

depicted in Figure 2.3, it can be concluded that both objectives are conflicting in nature.
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Figure 2.3 Simulation outcomes of 33-bus system for scenario-2 cases (€-constraint
MOBOA) (a) Without reconfiguration (b) With reconfiguration

Due to the importance of minimization of active power loss to the lowest value, the value of
€ is taken as 40 KW is chosen to determine the optimal DGs locations, DGs sizes & DGs
optimal power factors. Table 2.3 shows the various technical parameters, DGs locations, DGs

sizes, DGs power factors for optimal placement of DGs in scenario 2.

Table 2.3 Simulation outcomes of 33-bus system for scenario-2 (€-constraint MOBOA)

Initial reconfigured | Optimal Reconfigured
Parameters network Network
€= 40 kW €= 40 kW
Active power loss (in kW) 39.6135 39.1406
Amax 4.87 6.78
Ay 1.9 2
Min voltage (in p.u) 0.9944 0.9917
Max voltage (in p.u) 1.042 1.028
DGs sizes (in kW)/ 1187/15/0.90 0583/12/0.93
DGs location/ 0739/25/0.86 0567/16/0.90
DGs power factor 1542/30/0.78 2138/30/0.78

From Table 2.3 shows a remarkable improvement of 1,,,, and active power loss reduction

is observed in case-2 rather in case-1, i.e., 4,4, 1S improved from 3.4 to 6.78, the active power
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loss of the system is reduced to 39.1406 kW. The voltage profile graphs and the maximum

loading curve for both cases in scenario-2 are shown the Figure 2.4 & Figure 2.5 respectively.
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Figure 2.4 Voltage profiles of 33-bus system for Scenario-2
(€- Constraint MOBOA method when € =40 kW)

T L T

— Base Case
DGs planning in gptimal reconfigured network |

=_ e DGs planning in Initial configured network

=
0=

5 -
e

=

h—

1= -
on

«

f—

-

y —
=1

<

=

2 -
-

i i
0 1 2 3 4 S 6 7

i..oading Factor

Figure 2.5 Maximum Loading curves of 33-bus system for Scenario-2
(€- Constraint MOBOA method when € =40 kW)
From Figure 2.5, due to the consideration of maximum loadability as one of the objectives, it
is observed that the loading marginal factor of the system is improved to 2, which indicates
system bus voltages are within the permissible limits even though the system load increased
by 100%.

27



To check the effectiveness of the proposed algorithm, the results of scenario 1 are compared
in Table 2.4 with the suitable results available in the literature. And also, to get a greater
number of comparisons, simulations for optimal placement of one DG & two DGs placement
have been carried for scenario-1 and the comparisons are given in Table 2.4. Table 2.4 shows
that the proposed methodology, i.e., the concept of using DGs with optimal power factor,
gives better results than DGs with fixed power factor. And also, it is observed that the
Proposed BO algorithm performs in achieving the desired objectives compared to HLTBO-
GWO, HPSO and DABC algorithms in respective cases.

2.4.2 69 Bus System

The network data of the system is given in [31]. The system consists of 69 buses, 73 branches
and 5 tie switches. The nominal voltage rating of the system is 12.66 kV. The nominal load
on the system is 3801.4 kW and 2693.6 kVar. Initial tie switch open positions are 69,70,71,72
and 73. Single line diagram of the 69-bus system is depicted in Figure 2.6. The base case
active power loss and maximum loadability of an uncompensated system are 224.9515 kW
and 3.21, respectively. For optimal network reconfiguration problem, the optimal switch
positions given by BO algorithm for active power loss minimization and loadability
maximization are 14,58,61,69 and 70, the active power loss of the system is reduced to 98.55

kW and the maximum loadability of the system is improved to 5.49 from 3.21.
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Figure 2.6 Single line diagram of 69-Bus system
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Table 2.4 Comparison results of 33 bus system

Scenarios Method Open switch DGs sizes in Active | Aax
Positions kW/BUS/ p.f power loss
(kW)
Scenario-1 (Power loss Minimization)
Case-1 Proposed BO 33,34,35,36,37 0737/14/0.88 12.75 4.4
Algorithm 1044/24/0.88
1156/30/0.80
HTLBO- 33,34,35,36,37 997/30/0.8659 13.68
GWOI62] 1000/13/0.8122
789/24/0.8726
HSA-PABC[94] | 33,34,35,36,37 862/12/0.85 15.91
1159/30/0.85
816/25/0.85
Case-2 Proposed 7,9,14,28,32 0573/12/0.88 18.753 6.25
Algorithm 1520/29/0.80
0414/33/0.92
UVDA Heuristic | 7,9,14,32,37 1.125+j1.034/30 25.346
Method[52] 0.592+j0.252/15
0.526+j0.280/12
Scenario-1 (Loadability Maximization)
Case-1 Proposed BO 33,34,35,36,37 3353/8/0.9 141.71 4.31
Algorithm
HPSO 33,34,35,36,37 3080/8/0.85 131.85 4.31
Algorithm[31]
MOCTLBO 33,34,35,36,37 3017/8/3017 130.86 4.31
Algorithm[89]
Proposed BO 33,34,35,36,37 347/15/0.9594 94.64 5.07
Algorithm 2100/30/0.7800
HPSO 33,34,35,36,37 1117/16/0.85 98.65 5.00
Algorithm[31] 1880/22/0.85
CTLBO 33,34,35,36,37 1373/15/0.959 86.57 5.06
Algorithm[89] 1944/30/0.7569
DABC 33,34,35,36,37 1968/32/0.95 90.63 4.99
Algorithm[60] 1555/14/0.95
Proposed BO 33,34,35,36,37 | 1832/31/0.7998 86.5804 51
Algorithm 550/17/1
792/14/0.8201
HPSO 33,34,35,36,37 377/29/0.85 84.16 5.04
Algorithm[31] 1159/15/0.85
1677/31/0.85
CTLBO 33,34,35,36,37 938/13/0.9692 83.39 5.07
Algorithm[89] 522/16/0.9265
1936/30/0.7729
Case-2 Proposed BO 7,9,14,28,32 843/17/0.8309 92.7889 | 7.06
Algorithm 2275/31/0.800
DABC 7,10,14,28,32 2962/25/0.95 58.86 6.31
Algorithm[60] 909/9/0.95
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Table 2.5 shows the various technical parameters, DGs locations, DGs sizes, power factors
for optimal placement of DGs in scenario 1. From Table-2.5, the following points are
observed. In the case of active power loss minimization, active power loss of the system is
reduced to 4.2657 kW (accounts for 98.10 % of active power loss reduction), 5.2978 kW
(accounts for 97.64 % of active power loss reduction with respect to the base case) when DGs
are placed in case-1 and case-2 respectively. In the case of maximization of maximum
loadability of the system, A,,,,, improved to 4.91 and 7.73 in case-1 and case-2, respectively.
And it is also observed that in the case of maximization of maximum loadability of the system,
active power loss of the system is reduced to 89.8601 kW and 93.9651 kW in case-1 & 2,
respectively, accounts for 60 % & 58.52 % reduction only. Therefore, from scenario-1, it is

concluded that a multi-objective approach is needed to improve both the objectives, i.e., active

power loss reduction and A,

Table 2.5 Simulation results of 69-bus system for scenario-1

Parameters Initial configured network Optimal reconfigured network
Power loss Maximum Power loss Maximum
Minimization Loading Minimization Loading
(f1) Maximization (f1) Maximization
(f2) (f2)
Active power loss 4.2657 89.8601 5.2978 93.9651
(in kW)
Amax 4.21 491 6.49 7.73
Minimum and 0.9943 & 0.9818 & 0.9938 & 0.9899 &
Maximum 1.0047 1.0497 1 1.05
voltage (in p.u)
% KVA DG 68.79 93.56 64.45 98.58
INJECTION
% PLR 98.10 60.05 97.64 58.22
% MLI 30.84 52.95 102.18 140.18
DGs sizes (in 0495/11/0.81 | 2292/61/0.80 | 1418/61/0.81 | 0214/69/0.83
kW)/Bus/power | 1675/61/0.81 | 0500/36/0.80 | 0488/64/0.82 | 0378/62/0.80
factor 0378/18/0.83 0724/62/0.84 0536/11/0.81 3207/61/0.83
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Maximum Loading

The simulation outcomes of €-constraint MOBOA for different values of € is depicted in

Figure 2.7.
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Figure 2.7 Simulation outcomes of 69-bus system for scenario-2 cases (€-constraint

MOBOA) (a) Without reconfiguration (b) With reconfiguration

From the outcomes depicted in Figure 2.7, it can be concluded that both objectives are

conflicting in nature. Due to the importance of minimization of active power loss to the lowest

value, the value of € is taken as 40 kKW is chosen to determine the optimal DGs locations, DGs

sizes & DGs optimal power factors. Table 2.6 shows the various technical parameters, DGs

locations, sizes and power factors for optimal placement of DGs in scenario 2.

Table 2.6 Simulation results of 69-bus system for scenario-2

Initial reconfigured

Optimal Reconfigured

Parameters network Network
£ = 40 KW €= 40 KW
Active power loss
A 37.62 38.87
Ao 4.69 722
Min voltage (in 0.9943 0.9921
p.u) _
Max voltage (in 1.0348 1.0293
p._u) _
DGski/'cff (in 0211/64/0.78 0309/68/0.87
ek 0481/18/0.80 2436/61/0.81
2433/61/0.86 0539/25/0.78

DGs power factor
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From Table 2.6, it is observed that a remarkable improvement of A,,,, and active power loss

reduction is observed in case-2 instead in case-1, i.e., A4, IS iMmproved from 3.21 to 7.22, the

active power loss of the system is reduced to 38.87 kW. The voltage profile graphs and the

maximum loading curve for both cases in scenario-2 are shown the Figure 2.8 & Figure 2.9,

respectively.
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Figure 2.8 Voltage profiles of 69-bus system for Scenario-2
(€- Constraint MOBOA method when € =40 kW)
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Figure 2.9 Maximum Loading curves of 69-bus system for Scenario-2
(€- Constraint MOBOA method when € =40 kW)

From Figure 2.9, due to the consideration of maximum loadability as one of the objectives, it

is observed that the loading marginal factor of the system is improved to 2.18, which indicates

system bus voltages are within the permissible limits even though system load increased by
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118%. To check the effectiveness of the proposed algorithm and proposed methodology, the

results of scenario-1 are compared in Table 2.7. The BO algorithm performs well in
compassion to other HTLBO-GWO, DABC and HPSO algorithms.

Table 2.7 Comparison results of 69 Bus system

. o Active
Scenarios Method Og(e;rsli;v(\)/:]t:h kDV(\?f’BSl'JZg/S |nf power | Apax
P loss (kW)
Scenario-1 (Power Loss Minimization)
Proposed BO 0495/11/0.81
Case-1 Algorithm 69,70,71,72,73 | 1675/61/0.81 | 4.2657 | 4.21
0378/18/0.83
523/18/0.8294
HLTBO-GWO[62] | 69,70,71,72,73 | 1000/61/0.8191 7.27
723/62/0.8020
i 1.41+j1/61
U\@ﬁ]g'de[‘gz'?“c 60,70,71,72,73 | 0.604+j0.432/11 | 7676 | -
0.417+j0.27/17
1418/61/0.81
Case-2 Pf%%sreifhao 14,558.61,69,70 | 0488/64/0.82 | 52978 | -
0536/11/0.81
n 1.378+j0.984/61
Umﬁ]g'de[‘gz'i“c 14,58,6160,70 | 0.62+j0.443/11 | 9.3493 | -
0.722+j0.514/64
Scenario-2 (Loadability maximization)
Case-1 Proposed BO 69,70,71,72,73 | 2878/61/0.75 | 103.3991 | 4.92
Algorithm
HPSO Algorithm[31] | 69,70,71,72,73 | 3161/61/0.85 104.86 | 4.91
DABC Algorithm[60] | 69,70,71,72,73 | 3453/61/0.95 86.56 | 4.83
Proposed BO 2292/61/0.80
Algorithm 69,70,71,72,73 | 0500/36/0.80 | 89.8601 | 4.91
0724/62/0.84
3104/61/0.85
HPSO Algorithm [31] | 69,70,71,72,73 |  27.3/63/0.85 87 4.91
130/46/0.85
Case-2 Proposed BO | 1 56 6169,70 | 3317/61/0.8553 | 1153704 | 7.73
Algorithm
DABC Algorithm[60] | 13,17,38,57,63 | 3454/61/0.95 91.85 | 7.53
Proposed BO 200/26/0.995
Algorithm 1458,61,69,70 | ao0cict /0700, | 105:8002 | 7.73
CLTBO 382/25/0.99929
Algorithm[89] 14,58,61.69,70 | 5389/61/0.8707 | 113961 | 773
Proposed BO 200/25/0.987
Algorithm 14,58,61,69,70 | 3104/61/0.804 | 102.149 | 7.73
264/11/0.950
122/32/0.8112
Algccilr_i;l;w?r?[%] 14,58,61,60.70 | 3087/61/0.7999 | 102.149 | 7.73
338//65/0.9987
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Figure 2.10 and Figure 2.11 depicts the convergence graphs given by BO & &€- Constraint
MOBOA for scenario-1 & 2 of 33 bus respectively. Figure 2.12 and Figure 2.13 depicts the
convergence graphs given by BO & €&- Constraint MOBOA for scenario-1 & 2 of 69 bus

respectively.
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2.5 Summary and comments

This work presented optimal planning of DGs and optimal network reconfiguration of radial
distribution network problems for improving network’s efficiency and maximum loadability
Improvement in above-two mentioned objectives of the distribution system is addressed at
peak load level of the system without considering load and DGs uncertainties. Therefore, this
work corresponds to finding the injection of how much active and reactive power by DGs
optimally into the system at optimal locations with respect to systems' peak load level for the
improvement of above-two mentioned objectives to maximum extent. To achieve the
objectives, two scenarios with two cases per scenario have considered. BO algorithm has been
selected to optimize the desired objective functions and implemented on 33 & 69 Bus standard
test systems. To optimize both the objective functions, €-constraint method has been used.
obtained results show the improvement in all the objectives i.e., maximum system loadability
and active power loss reduction has observed in case-2 of scenario-2 i.e., in case of multi-
objective optimization using €-constraint method by optimal planning of DGs in optimal
reconfigured network. The test systems' active power loss is reduced to around 80%,
maximum loadability is improved to around (100-120) %. From the outcomes, it is also
observed that loading marginal factor of the system is also improved due to the consideration
of maximum loadability as one of the objectives which indicates a future load growth can be
effectively met by the system without violating system bus voltages permissible limits.
However, the improvement in objectives to that extent is due to the (80-85) % of kVA
injection by DGs into the distribution system. The above system performance is achieved by
the injection of optimal active and reactive powers at optimal locations with the help of single
DG unit (or) combination of multiple DG units (Micro-Turbines & synchronous
compensators). The similar system performance is achieved at other load levels other than
system’s peak load if DGs adjust its power output in accordance with load changes provided
DGs are dispatchable (BIOMASS, Micro-Turbine etc.) in nature. But, in the case of optimal
planning of non-dispatchable PV & WT units, modelling of DGs at peak load level and their
adjustment of output power in accordance with load changes is not possible. Therefore, in the
next chapter, optimal planning of non-dispatchable PV & WT units & dispatchable PV-BESS

& WT-BIOMASS units by considering load and generation uncertainties is discussed.
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Chapter 3

Probabilistic optimal planning of dispatchable distributed
generator units in distribution systems using a Pareto-
based multi-objective chaotic velocity-based butterfly

optimization algorithm

3.1 Introduction

This chapter primarily covers the optimal planning of non-dispatchable PV & WT units,
dispatchable PV-BESS, and WT-BIOMASS units in the distribution system. In literature,
several authors addressed the optimal injection of active & reactive powers at the peak load
level of the distribution system for improving the system performance, and the system
performs similarly at load levels other than its peak load if DGs adjust their power output in
accordance with variations in load, provided DGs are dispatchable. In literature, several
researchers addressed optimal planning of non-dispatchable units (usually can’t adjust their
output power in accordance with the needs, e.g., PV & WT units) by considering load and
generation uncertainties. Authors in [66], [71], [95] addressed the optimal integration of PV
(Photo-Voltaic) and WT (Wind Turbine) units in electrical distribution networks by
considering daily load demand, solar radiance & wind speed uncertainties for the
improvement of system performance. From the above papers, it has been observed that both
PV and WT units are non-dispatchable, i.e., they don’t have complete control over the amount
of active power & reactive power injection into the system due to the dependency of DGs
output power on solar radiance & wind speed. Better enhancement in system performance
(energy loss reduction, enhancement of system’s voltage profile etc.) is achieved if DGs
dispatch/inject power optimally into the system during each hour of the day. Therefore, to
overcome the non-dispatchable nature of PV, the PV unit is assisted by BESS so that during
the day time PV unit will supply power to both the grid & BESS, and during nighttime, the
battery will supply power to the grid. Similarly, in the case of the WT-Biomass unit, the
difference of power between the required power from the WT-Biomass unit and the WT unit
at that time will be supplied by the Biomass unit. Authors in [72] addressed the optimal
integration of PV-BESS units in the distribution system to mitigate energy loss, and authors

in [74] addressed the optimal integration of either PV-BESS or WT-Biomass units in the
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distribution system for the mitigation of energy loss. In the above papers, researchers
addressed the optimal planning of DGs for energy loss minimization only. And also, it is
observed that energy loss of the system is reduced to the utmost value by dispatching more
power into the system by DGs (PV-BESS, WT-Biomass), which increases the DGs sizes and
the corresponding installation and maintenance costs. Therefore, to create a balance between
the amount of power injected by DGs into the system and improvement in technical
parameters, in this work, economic aspects of DGs are taken as one of the objectives along
with the objective’s energy loss reduction & voltage deviation index. Pareto-based multi-
objective optimization generates a set of non-dominant solutions between the competing
objectives, whereas other multi-objective techniques (such as the weighted sum method and
the -constraint method) reduce multi-objective optimisation to single-objective optimisation.
Additionally, there is no need to give weights to the objective functions in pareto-based multi-
objective optimisation. Therefore, in this work, the above-cited three objectives are optimized
with an improved version of BOA, i.e., Pareto-based multi-objective chaotic velocity-based

butterfly optimization algorithm.
To summarise, this chapter main contributions are as follows

1. Optimal integration of dispatchable distributed generations (DDG): PV-BESS
(Photovoltaic System-Battery energy storage system), WT-Biomass (Wind Turbine)
in the distribution system that is optimally restructured.

2. This study's aims include enhancing the voltage profile of the system, lowering the

installation & maintenance costs of DGs, and slashing the system's energy loss.

3. A multi-Objective Pareto-based chaotic velocity butterfly optimization algorithm
(MOCVBOA) is taken to optimize the objectives.

4. The TOPSIS method, recently becoming a famous method among the other available
methods for selecting the most compromised solution from the Pareto front is used in

this work.

5. To achieve the desired outcomes, five scenarios are considered in this work and a

detailed analysis of the outcomes is presented.

The remainder of this chapter is articulated as follows; Section 2 focuses on PV and WT unit

uncertainty modelling, a mathematical description of this work is introduced in Section 3,
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Section 4 will give brief insights into the BOA & VBOA optimization technique and specific
implementation aspects of it, Section-5 will illustrate the scenarios taken in this work and the

associated results.

3.2 Modelling of PV and WT units

Statistical techniques that employ probability density functions (PDFs) are typically used to
deal with any random variable's intermittent or probabilistic nature. Authors in [96] concluded
that the Beta probability distribution function was the most fitted distributed function in
coping with the probabilistic nature of solar radiance. Similarly, researchers concluded that
Weibull PDF was the most fitted distributed function in coping with the probabilistic nature
of wind speed. Based on this, a few researchers developed [66], [70], [97]-[99] various
probabilistic methods using beta & Weibull PDFs. The probabilistic method used in [70], [71]
for dealing with the uncertainty involved in PV & WT units output powers is employed in
this work, which determines the typical p.u PV & WT output power curves from historical

solar irradiance data.

3.2.1 Modelling of solar radiation

Solar irradiance's probabilistic or intermittency nature follows the Beta PDF [71]. The Beta
PDF function ( f,,(s*)) for calculating the probability of solar radiance at particular time
interval (st) is given below

T(a'+BY) ¢(a'-1) -
fr(st) = r(at)rm‘)st a- St)(a v, 0s5'<1d, B2 0

(3.1)
0, otherwise

where (ab), (BHare the shape parameters of Beta PDF, T' is the gamma function. Shape

parameters of the Beta PDF are calculated from the standard deviation (¢*), mean (u*) and

their corresponding equations for calculation are given below

pr=(1— (32— 1) (32)
_ phxpt
o =527 (3.3)

3.2.2 Modelling of wind speed

Wind speed's probabilistic or intermittency nature follows the Weibull PDF [71]. The Weibull
PDF function f,,(v%) for calculating the probability of wind speed at particular time interval

(vY) is given below
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f) =5 () ey (— ((—)k>> &9

Where (kY), (c!) are the Shape parameters of the Weibull PDF calculated from the mean (ut),

standard deviation (o*) and their corresponding equations for calculation are given below

kt-1

Gt
Kt = (F) (3.5)
ot = (3.6)
r(1+1/kt '

3.2.3 Modelling of the output power generated by PV and WT units

To determine the PV and WT output power generation for each hour of the day, samples of
solar radiance and wind speed for three years are collected from a specific site. Afterwards,
from (3*365) samples for every hour, the standard deviation and mean of solar radiance &
wind speed for a typical day are determined. After that, each hour is divided into several
n, States. Afterwards, during each interval, an average of solar radiation & wind speed is
calculated (Consider the case when the number of states is fixed to 20, then for the first
interval, the limits of solar radiation are 0 & 0.05kW/m? then the average solar radiation for
the first state is 0.025 kW/m?). Then, the hourly average output power from the PV and WT
from the above-obtained data is calculated from the following mathematical formulations

The hourly average output power from the PV (Pf,) [95] during the time interval ‘t’ is

obtained from the following equation
PPFV = Z;lszl PPVO (S&gvg) * fp (S&gvg) (3.7)

where ng represents the number of states, Ppy, (s;f,,g) represents the power generation from
the PV unit with average solar radiation in the g™ state and the corresponding equations for

the calculation of Ppy, (sfvg) are given below

PPVO(S&gvg) = Npy moa * FF x Vg x I, (3.8)

FF = Ympp*Impp (3.9)
Voc*Isc

Vg == VOC - kV * Tcg (310)
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Iy = Sgygllsc + ki * (T — 25)] (3.11)

Nor—20

TcngA+S&gvg*( 08 )

(3.12)

where Npy modas FF, Iypp, Vupp, Iscy Voc, ki kvy Tegy Tey Nor, T4 represents the number of

g’
PV modules, fill factor, current (A) and voltage (V) at the maximum power point, short circuit
current (A) and open-circuit voltage (V), current and voltage coefficients in V/°C, A/°C, PV
module temperature, cell temperature, Nominal operating temperature & ambient temperature

respectively.

Similarly, the hourly average output power from the WT (Pj,;) [95] during the time interval

‘t’ is obtained from the following equation

PVtVT = ZZS=1 PWTO (v&gvg) * fb (v&gvg) (3-13)
where (vc‘lg,,g) represents the WT power generation with average wind velocity in the g™" state
and the corresponding equations for the calculation of Py, (vgf’vg) are given below

0 vavg < VUein OT vavg > Vcout
PWTo(vavg) =q(A* Ugvg + B* B) vgn < Vavg < Uy (3.14)

Pr,WTvcin < vavg < VUcout

Py,
= —(vg_;”é;) (3.15)
3
Vcin
= vk (319)

where vy, Vein, Veour Prwr are the rated speed, cut-in speed, cut-out speed, and rated power

of wind turbine respectively.

3.2.4 Modelling of Battery energy storage system (BESS)

The discharging and charging mode of batteries are modelled using the following equations
[70]

disch

Epgs(t +1) = Epps(6) = At » 22 (317)
d
Epps(t + 1) = Epgs(t) + At * P§gg 1. (3.18)
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where Eggq(t) represents the energy in the battery in kWh during t™ time interval, PZLch,
PSP, n4. m. are the discharging power & charging power (kW), discharging & charging

efficiency of the batteries, respectively.

BESS must satisfy the following charging power & discharging power constraint limits, and
energy storage limit constraints.

0 < PESM < pgpeme (3.19)
0 < Pghg < Pypd"™™ (3.20)
Eggs,in < Epes(t) < Epgs,,, (3.21)
where Pypg’ "™, Pgpd"™ | Epgs,  &Epgs, . are the maximum discharge & charge limits of

the battery, minimum and maximum energy storage limit constraints.

3.2.5 Modelling of Biomass Output power

Since the output from the Biomass unit is dispatchable in nature, and also in this work biomass
unit acts as a backup for WT, the maximum size of the biomass unit and its dispatchable
hourly output is determined to form the procedure explained in the latter section of this paper.

3.3 Problem Formulation

Optimal integration of DDGs in the system improves the efficiency, voltage profile,
loadability, EENS, Economic aspects etc. In this work, enhancement of the system’s
maximum loadability is not considered because the improvement of this technical metric to
the extent quoted in chapter-2 associated with a huge injection of active & power reactive
power into the system, which requires large sizes of DGs and the associated huge annual
installation costs of DDGs. Therefore, in this work, the improvement of three objectives is
considered: minimization of energy loss for the improvement of system efficiency,
minimization of total voltage deviation for the improvement of system voltage profile, and

annual economic cost, which deals with the annual & maintenance costs of DDGs.

Apart from that, the following assumptions are made in this work
1) The Optimal integration of DDGs (PV-BESS, WT-BIOMASS) in the 33 & 69 bus

distribution systems is considered in this work.
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2) The distributed generator will supply reactive power with the help of a grid-connected
inverter [100]-[102]. If the KVA rating of the DG Inverter is oversized by the suitable
percentage of the maximum kW rating of the distributed generator, then the DG
system will have the capability to supply reactive power with a constant power factor.
Hence in this work, it is assumed that the DDGs are working at 0.9 power factor by
oversizing the DG inverters with a suitable percentage.

3) Distribution network buses are subjected to identical wind and solar irradiance
conditions.

4) For load flow studies, DDGs are modelled as negative PQ-Load modelling in the

system.

3.3.1 Objective Functions
3.3.1.1 Energy Loss

Optimal integration of DDGs in the system improves the system's efficiency by reducing the
system’s energy loss (Ej,ss). Energy loss of the system for a 24-hour daily load pattern is
obtained by adding all the distribution system active power losses in each hour of that day.
The mathematical formulation of the system’s energy loss is given below.

Minimize f; = Ejoes = Y72, X727 J2; * R; (3.22)

where nb , ], ;, R; are the number of buses, branch current and branch resistance, respectively.
3.3.1.2 Total Voltage Deviation

The goal of voltage profile enhancement is to align all the bus voltage magnitudes as closely
as possible to offer uniform voltage profiles for the customers. To achieve this, Total Voltage
Deviation (TVD), a mathematically formulated function, is used as one of the objectives. At
first, for each hour in a day, Voltage Deviation (VD) is obtained by taking the sum of the
squares of the voltage deviations of all the buses concerning 1 p.u. After that, the Total
Voltage Deviation (TVD) for a day is obtained by adding all the VD’s. Therefore, the system's
total voltage deviation (TVD) must be decreased to enhance the system voltage profile.
Mathematical formulations of the VD and TVD are given below

VD, = ¥NIS(1 -V, )2t =12,...24 (3.23)
Minimize f, = TVD = Y22, VD, (3.24)
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3.3.1.3 Annual Economic Cost (AEC)

As the integration of DDGs in the distribution system reduces energy loss, the cost associated
with buying that reduced energy loss from the distribution system operator is saved. However,
the integration of DDGs in the system is related to annual installation and maintenance costs.
And also, the reduction in the system’s energy loss due to the integration of DDGs depends
on the amount of power injected by the DDGs into the system optimally. Higher penetration
of power by DDGs into the system results in higher energy loss reduction but higher annual
installation & maintenance costs of DDGs and vice-versa. Therefore, to create a balance
between yearly installation & maintenance costs of DDGs and energy loss reduction, an
objective function named Annual Economic Cost (AEC) is mathematically formulated as
shown below

Minimize f; = AEC =k, * (Ejpss) * 365+ (Alppg + OMppe) (3.25)
where k, Alppg, OMppe are the electricity price in $/kW-hr, annual installation costs and
maintenance costs in $ respectively.
Alppg = (Npy * INCpy * Prpy + Nyye ¥ INCyye * Pryyr + Npio % INChig * Pr i) * CRFpg +
(Nggss * INCggss) * CRFgggs (3.26)

OMDDG = 365 * gil(OMva * Pt,PV + OMCWt * Pt,wt + OMCbio * Pt,bio + OMCbess *

NBESS (327)
k+(1+k)"PG
CRFDG = m (328)
" nBESS
CRFpgss = k) — (3.29)

(1+k)nBESS_1

Where N

oo Nwe, Npio, Npgssrepresents the number of respective DDG units,INC

o INCye,

INCy,;,, INCpEss are respective installation costs of individual DDG units, Py py, Prwr, Pr pio
are rated power of respective DDG units, OMC represents the operational and maintenance
cost, Py py, Pyt Pepio rEPresents the power dispatched by respective DDGs in the t™ hour,
CREF represents the capital recovery factor of respective DDGs, k, nDG, nBESS represents

the rate of interest, and number of years for the annual payment of respective DDGs.
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3.3.1.4 Constraints

i)  Power balance constraints: During each hour in a day, Combined power delivered by the

substation and DDGs (P; sy + P 7.pg) Must be equal to total system demand and losses

(Ptioaa + Peloss)
Pesub + Peroc = Prioaa + Pross (3.30)
Qtsup + Q1,06 = Qtioad + Qt loss (3.31)

i) The voltage magnitude of the buses in the system must be within the permissible

minimum and maximum limits.
[Vininl < |[Vej| < Vmax|l — j=12....Nbus (3.32)
In this paper, |Viinl =0.95 p.u. and |V;,4,| =1.05 p.u. are considered.
i) Each branch's total current should be less than the branch's maximum current rating.
I < I j=12.....Nbus —1 (3.33)

iv) Total real power (P; 1 p¢) and reactive power injected (Q. 7 p) by DDGs in the t™ hour
must be less than a certain percentage (k,.,) of distribution system real (P; ;,44) and
reactive power (Q;0qq) demand in that hour.

Pirpc < (Kper) * Prioaa (3.34)
Qe¢rpe < (kper) * Qtoaa (3.35)

3.3.2 Sizing of PV-BESS and WT-Biomass units

This work considers the optimal integration of two DDGs (PV-BESS & WT-Biomass) units

operating with 0.9 pf in the distribution system. As shown in Figures 3.1 & Figure 3.2, WT

& PV units alone cannot deliver power according to the daily load curve because of the

intermittency nature of wind speed and solar radiation. If the distributed generators provide

power optimally each hour in the day, there is much improvement in the above-mentioned
objective functions. Therefore, the PV unit is aided by the BESS unit & the Biomass unit aids
the WT unit to make them dispatchable. And both hybrid units will deliver power according

to the load curve.
3.3.2.1 Sizing of PV-BESS unit

Figure 3.1 shows the conceptual design of the PV-BESS dispatchable unit [70]. As shown in
Figure 3.1, during the daytime (during the abundance of solar radiation), the PV unit will
deliver power to both the grid & BESS (charging mode). And during the night-time, the BESS
unit (discharging mode) will provide power to the grid. Mathematical formulations for the

sizing of PV and BESS are given below.
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Let us say the PV-BES unit is installed on bus-g in the system, and the energy delivered by
the combination of the PV-BESS unit to the distribution system via bus q (Epy 4+ pgss) for the

24 hours is the summation of power delivered by the PV-BESS unit to the grid (P, py+5Es))

during each hour

Epy+Ess = 221 Pt,(PV+BES) (3.36)

The total output energy from the PV-BESS unit includes energy supplied by PV and BESS to
the system via bus q (ES5™@, ERESh), the total output energy supplied by the PV unit includes

energy provided to the system via bus q and BESS (ES5*, ESh.s),
Epyipiss = Epp'® + ERESS: (3.37)

Epy = Egtcid + Efgss (3.38)

BESS in
Charging Mode

=7z
EBESS

EPV."*BESS -

PV unit injecting
power to Grid

Output Figure of PV & PV-BESS Units

RO
RBESS

BESS in BESS in
Discharging Discharging
a  lode $ 8 8 3 3 3 3 3 3 3 Muodds
b2

1 2 3 4 5 o6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour)

Figure 3.1 Conceptual design of PV-BESS unit

The relation between the total discharging and charging energy of the battery with the round-

trip efficiency of nggs IS expressed as
EgEsCh = NBEs * EEZ—S (3.39)

Then from the above three equations, Epy is derived as
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Epy = Epy+pEss—(1-NpEs)*ESy® (3.40)

NBES

The maximum PV unit power generation over 24 hours with a PV module maximum power

output (PE*%), energy delivered by PV module over 24 hours (E¥H) is expressed as

unit

PPV,Max -

Epy (3.41)

I;‘;Lit *
Epy

To determine the unknown quantity ES7*4in Eq.3.40, by assuming nggs = 1,Epy4pess 1S

determined using Eq.3.36, then Epy=FEpy 4 ggss, then the initial maximum PV unit power is

Punit I i i
= Ll Epy, and Egy'™ is calculated from Figure 2, then the final
PV

determined as Ppy prax "

maximum PV unit power generation is estimated as

PEP  Epyippss—(1-NpEs)*Epy * "
PV x 4 (3.42)

unit
Epy NBES

PPVJWax'_

Then the final PV unit size (Ppy) and the number of PV units (N, ) are determined as

Pr,PV

Ppy = W * Ppy Max (3.43)
N,. = Prv. (3.44)
pv Py py ’

The size of the BESS unit is obtained using Eq .3.45

EPV+BESS_E}§1;id
Eggs =————— (3.45)
NBES

3.3.2.2 Sizing of WT-Biomass unit

Figure 3.2 shows the conceptual design of the WT-Biomass dispatchable unit [70]. As
depicted in Figure 3.2, the difference in power between the combined WT-Biomass unit

(Pt (wr+Biomass)) and WT unit (P, 7)) Will be supplied by the Biomass unit.
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Figure 3.2 Conceptual design of WT-BIOMASS unit

The steps for finding the sizes of WT, Biomass units are

i)

Finding the maximum output power of the WT unit (Pyrmax) from the
hourly P wr+piomass) CUrve on the condition that output power from the wind
turbine will never be greater than the power output of the combined WT &
Biomass unit.

Then calculate the hourly output power from the wind turbine P, 7y from the
Pyt max& Per unit curve of WT turbine.

Then Pgiomass,max 1S the maximum of difference of all powers between the
combined WT-Biomass unit (P yr+piomass)) ahd WT unit (P, ).

Then the final WT unit size (Py), the number of WT & Biomass units is

determined using

Py,
Pyr = # * Pwr max (3.46)
P
NWT = Prwwle (347)
Npio = —pome (3.48)
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3.4 Optimization Algorithm

3.4.1 Chaotic Velocity-based Butterfly Optimization Algorithm (CVBOA)

To overcome BOA's problems during the local and global search phases, the authors in the
paper [103] have developed a velocity-based butterfly optimization algorithm by taking
inspiration from the velocity update equations in the PSO. The position update equations in

the global & local search phases of VBOA are as follows

th

update the position of i agent for local search using Eg. 349 & 350 if

random value[0,1] > P
vt + 1) = W(t) * 0 (6) + by * 1 * (Poese () — x;(8)) + (11 % 1+ 22 (8) — 2 (1)) #

fi i=1...N (3.49)

where P, (t) is the personal best position of the particle, b5 is the coefficient factor,

r, 1, & 15 are the uniform random numbers between 0 & 1, w(t) is the inertia weight.

Update the position of i agent for global search using Eg. 351 & 3.52 if
random value [0,1] < P

xi(t+1) =x() + (r1 * 1y * gbest — xl-(t)) * fi i=1.... N (3.51)
To avoid the solution getting trapped at local optima, a refraction-based learning strategy is
applied to the global best position with a certain probability g.

The equation for RBL strategy on the global best position as follows

gbest! = (a; + b;) — gbest] (3.52)

Where a;, b; are the lower and upper bound limits of variable x;.
Apart from the above modifications made in VBOA, the cubic map chaotic sequence is also

applied on the random variable r, and r; for better exploration capability [104], [105].

r(t+1) = p*ry(t) * (1 —1(t)?)
r(t+1) = p*r3(t) * (1 —13()?) (3.53)

where p is a control parameter, r,(t), r3(t)is a chaotic variable at t™ step. In this work p, r(0)
[105] are set to 2.595, 0.315 respectively.

3.4.2 Pareto-based MOVBOA
In multi-objective Pareto-based optimization algorithms, a set of non-dominated solutions are

determined from the combined updated & previous iteration population in every optimization
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algorithm evolution procedure iteration. A solution x;dominates solution x, only if all
objectives of x, are worse than x; and at least one objective of x, is better than x,.

Mathematically it can be formulated as [106]
Vk € {1,2,...,Nop;} = fre(x1) < fi(x2) (3.54)
A3k e {1,2,...,Nopj} = fi(x1) < fre(x2) (3.59)

If the solution x;dominates all the solutions in the merged population, then x; enters a non-
dominant solution set. Pareto fronts are collections of non-dominant solutions, and the goal

of multi-objective optimization is to find the best Pareto front for the given problem.
3.4.3 Cubic Map Chaos Initialization

For the generation of the initial set of solutions in the meta-heuristic optimization algorithms,
different types of initialization methods are available in the literature [107]: uniformly random
distribution, oppositional-based learning, and chaotic-based initialization. In this work cubic
map-based, chaotic initialization method is used for the generation of the initial set of

solutions to get a more uniform spreading of initial population positions in the search space.
The mathematical formulation [105] for cubic mapping is given by
H(t+1)=p=*H(t)*(1—H(t)? (3.56)

where p is a control parameter, H(t) is a chaotic variable at t step. In this work p, H(0)
[105] are set to 2.595, 0.315 respectively.

3.4.4 Crowding Distance Metric

The primary goals in pareto based multi-objective optimization are (i) finding the set of
solutions as close as possible to Pareto optimal front and (ii) finding set of solutions as diverse
as possible. Therefore, to limit the number of solutions in the Pareto front to a predefined
number say REP,,,, for preserving the diversity among the solutions, the crowding distance
metric is calculated for all the solutions in the Pareto front and the solutions with the highest
crowding distance metric are stored in a set called a repository with the size of REP,,,,. The

mathematical formulation for crowding distance metric for the nth solution (C,, ) in Pareto

front is given as [105], [106]

. en+l_ -1
(€)= Tyl L~ - (3.57)

k=1 f’:nax_f’:nin
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3.4.5 Determination of the most-comprised solution using TOPSIS Method

To obtain the optimal compromised solution from the Pareto front, the fuzzy set theory-based
method, game theory max-min method and TOPSIS (Technique for order preference by
similarity to ideal solution) method are widely used in the literature. One of the advantages
of the TOPSIS method is that there is a provision for assigning weights to the objectives in
Pareto solutions for selecting the final compromised solution from the Pareto front. The
above-cited advantage of the TOPSIS method motivates the authors of the paper to use this
method. The final compromised solution in the TOPSIS method is obtained by measuring the
Euclidian distances between the normalized weighted solution of each alternative concerning
the positive ideal solution and the negative ideal solution in the Pareto front. The step-by-step

procedure for finding the compromised solution using TOPSIS [108] method is as follows.

1. A decision matrix (D) of size m X n is created.

l[fll 2. ln]l
1 2 n
D — f2 2 ............ f2 | (3.58)
firofE. f,,’{J
where £, represents the n'" objective function value of the m™ alternative.
2. A normalized decision matrix (ND) is obtained from the decision matrix (D).
i ok
e T i, r n
ND=|?% ?" 2 where ;) = L (3.59)
: /Ziilf#l
T O rn

3. A weighted normalized decision matrix (WND) is obtained from the decision matrix

(ND).
rwi rwi.. rwl
WY TWE........... rwy

WND = . (3.60)
TWh TWE. ... Twh

where Twlt = (wy * 1L + w2+l W) w, represents the

assigned weight of the n'" objective. In this work, equal weight is assigned to three
objectives i.e. (Energy loss, Total voltage deviation index, annual economic cost) by
meeting the constraint that the sum of all the weights is equal to one.

4. The positive ideal solution (PIS) and negative ideal solution (NIS) are determined

from the weighted normalized decision matrix (WND).

51



PIS ={p} pf............ P} (3.61)

NIS ={p] Pz ieveeeer.. P}
pr =min{rw rwl............ rwit}
where Pn = max{rwl® rwi............ rwy} (3.62)
5. Calculation of Euclidian distance of a solution i from the PIS (d}").
; 2
df = J(Z}LJW{ —pf)i=1..m (3.63)
Calculation of Euclidian distance of a solution i from the NIS (d;).
: 2
d; = J(Z}l:l‘fwi’ —-pj)i=1l..m (3.64)
6. Calculation of relative closeness index (RCI) of each solution i, s;is defines as
s, = d__dfd* i=1..... m (3.65)

7. Asolution with the highest value of RCI is chosen as the most compromised solution.

3.4.6 Implementation of MOCVBOA

The step-by-step procedure for MOCVBOA for optimal integration of DDGs for the

improvement of the objectives as mentioned earlier are given below

1. Determination of PV and WT units’ p.u. output power curves.
In this step, P{, and PS, vector values are determined by reading the three-year solar
radiance and wind speed data with the time interval of 10 min, necessary PV unit data
& WT data. Then, p.u PV and WT units’ output curves are determined from P, and
Pt,.

2. Read the distribution system line and load data, typical p.u 24-hour load curve data.

3. Initialization of parameters of the algorithm such as the population of agents (N), the

maximum number of iterations (maxiter), repository size etc.

4. Generation of the initial set of solutions between the minimum and maximum limits.
In this work, since only the optimal integration of two DDG’s considered, four
decision  variables are there for each agent: DDGs locations
(Li,pv-BEss: Liwr-piomass), DDGS izes (P, py—pEss,qpr PiwT-Biomasmaz)-

5. Finding objective function values for each agent.
By using P py_pEss,,, PiwT-Biomasn,, & typical p.u 24-hour load curve,
P; ¢ pv—BEsss Pit wr-piomass Vector data for 24-hour data is determined and then

objective functions are determined by the load-flow run.

52



© o N o

10.

11.

12.

Set iteration count =0.

Update the aroma/fragrance of butterflies.

Update the solutions of each agent using Eq.3.49, Eq.3.50, Eq..51 & Eq.3.52.

Calculate each updated agent's objective function or fitness value using the sequential
process followed in Step 5.

Merge updated agents and previous iteration agents and find the non-dominated solutions
using the techniques explained in sections 3.4.2 & 3.4.3 and update the solutions in the
repository set using the methods explained in section 3.4.4.

Find the gbest solution using the fuzzy-based technique from the repository set. i.e.,

Lgbest,PV—BESSmaxr Lgbest,WT—Biomass ’ Pgbest,PV—BESSmax' Pgbest,WT—Biomassmax-

max
Repeat steps 6-11 when iterations fall below the maximum number; otherwise, print out
results like the global best solution and objective function values.

The detailed flowchart is given in APPENDIX-B.

3.5 Results and Discussion

This section applies the MOCVBOA technique for minimization of the system energy

loss, total voltage deviation, and annual economic cost using the proposed method on IEEE

33 & 69 bus distribution test systems. The tuned algorithm parameters are given in Table 3.1.

Table 3.1 MOCBOA parameters

Parameters Value
Number of searching Agents (N) | 100
Repository size 60
Maximum number of iterations 300
Modular modality ‘¢’ 0.01
Power exponent ‘a’ 0.3
Probability switch ‘P’ 0.7

The wind speed and solar radiance data are taken from [70]. In this work PV module with the
characteristics [95] of Vj,pp=28.36 V, Iy;pp =7.76 A, V=36.96 V, [;-=8.38 A, N,=43 °C,
ky=0.1278 V/°C, k;=0.00545 A/°C and PV unit with Npy ,,,q = 600, rated capacity of 132
KW is considered in this paper, WT unit with a rated capacity [95] of 250 kW, v,;,, = 3 m/s,
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Veour =25 M/s and v, = 12 m/s is considered. And, battery unit size [109] of 400 kWh,
maximum charging and discharging power of 133.33 kW is considered. The typical daily load
curve, p.u PV & WT output power curves obtained from the respective units’ data are depicted
in Figure 3.3. Installation and operational costs of PV, WT, BESS & Biomass units [110],
[111] are given in Table 3.2. The line & load data of 33 & 69 bus systems are taken from [31].
The 33-bus system total load demand is (3715+j*2300), 69-bus system total demand is
(3801.5+j*2694.6). The base MVA & kV of both systems are 100 & 12.66. The hourly load
demand at each bus in the system is obtained from the daily load curve [70]. In this work, to
optimize the proposed objectives, four scenarios are considered; in each scenario, two cases
are considered: optimal integration of DGs in the initial configured system/network and
optimal integration of DGs in the optimal restructured system/network. All the simulations
are implemented in MATLAB R2017a platform and carried out on a computer having Core

i7 7200U 3.10 GHz, 16GB RAM. The lower and upper bound limits for DGs sizes are 500kW
and 2000kW respectively.
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Figure 3.3 Typical p.u daily load curve, p.u. PV and WT output power curves

The base case energy loss and total voltage deviation of the 33-bus system without integration
of DDGs are 2044 kWh,1.2936 p.u., for 69 bus system are 2173 kWh,0.9603 p.u. And for the
optimal restructured network of 33 bus systems without DGs, energy loss & total deviation
index are 1372 kWh, 0.4325 p.u. and for 69 bus system, energy loss & total deviation index
are 967.59 kWh, 0.2069 p.u. Table 3.3 shows the best-compromised solution and the
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corresponding PV & WT sizes given by the MOCVBOA algorithm for the scenario-1

outcomes.

Table 3.2 Installation Costs and Operational Costs of DGs
Parameters Value
Installation cost of PV unit (INC,,) in $/kW 1100
Operational & Maintenance cost of PV unit (OMC,,,) in $/kWh 0.01
Installation cost of WT unit (INC,,;) in $/kW 1100
Operational & Maintenance cost of WT unit (OMC,,;) in $/kWh 0.01
Installation cost of Biomass unit (INC;,) in $/kW 3000
Operational & Maintenance cost of Biomass unit (OMCy;,) in $/kWh | 0.012
Installation cost of 400 kWh BESS unit (INCggss) in $ 128000
Operational & Maintenance cost of BESS unit (OMCy.,) in $/year | 10666.67
Number of years for DG planning (nDG) 20
Number of years for BESS planning (nBESS) 8
Rate of interest in % (k) 10
Electricity price in $/kWh (k,) 0.2

Table 3.3 Simulation outcomes of scenario 1

Parameters

Without Network restructuring

With Network restructuring

33 Bus System

69 Bus system

33 Bus System

69 Bus system

Energy Loss in kWh 835.227 823.11 662.63 374.28
TVD inp.u 0.3589 0.2951 0.1742 0.076
Minimum Voltage
_ 0.9507 0.9411 0.9614 0.9653
in p.u
P in KW/Bus
P Max . 945/32 1327/64 1186/30 1250/61
0
P in KW/Bus
wmax 841/15 500/23 600/33 578/64
No
Poyin KW 1560 2190 1942 2025
Py in KW 1236 735 897 883
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3.5.1 Scenario-1: Minimization of E;,;¢ & TVD (PV & WT units)

To observe the difference between the integration of non-dispatchable & dispatchable units
in the distribution system on the improvement of proposed objectives, in scenario-1, the
minimization of E;,.; & TVD of the test systems by optimal integration of non-dispatchable
WT, PV units are addressed. Figure 3.4 depicts the optimal Pareto front given by the
MOCVBOA technique for case-1 & case-2 of 33 & 69 bus test systems, respectively. For
case-1 of 33 bus system, the system's energy loss is reduced to 835.227 kWh (accounts for
59% loss reduction), TVD reduced to 0.3589 & for case-2, energy loss is reduced to 662.63
kWh (accounts for 67.6 % loss reduction), TVD is reduced to 0.1742 p.u. For case-1 of 69
bus system, energy loss is reduced to 823.11 kWh (accounts for 62% loss reduction) & TVD
reduced to 0.2951 p.u and for case-2, energy loss is reduced to 374 kWh (accounts for 82%
loss reduction) & TVD reduced to 0.0767 p.u. From the outcomes, it is noticed that both the
objectives are well improved by optimal integration of non-dispatchable PV & WT units in

the optimal reconfigured case, i.e., in case-2.

= "Ta y y = 018
& . 2 0.176} \\‘
= 3
= 031 % = ®
a X a 0172} \
Eo3 waoce, . 2 o0.168} ) - o
~810 840 870 900 640 670 700
Energy loss in KkWhr Energy loss in KWhr
(a) 33 bus system case-1 (b) 33 bus system case-2
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Figure 3.4 Optimal pareto fronts given by MOVBOA for scenario-1 cases

Figure 3.5 depicts the hourly power output of PV and WT units in 33 & 69 bus for the
scenario-1 cases. Figure 3.6 illustrates the hourly power taken from the substation, hourly

active power loss & average voltage profile of the system for both cases of the third scenario.
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From Figure 3.6, it can be observed that the optimal integration of PV & WT units in the
system improves the voltage profile and reduces power loss. And also, from Figure 3.6, it can
be noticed that there is a significant reduction in substation power between the 5™ hour and
17" hour because of the considerable injection of power by PV & WT units into the system

due to the availability of an abundance of solar radiance and wind speed.
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Figure 3.5 Hourly power output curves of PV, WT, units for scenario-1 cases
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Figure 3.6 Daily substation power, power loss and average voltage profile curves for

scenario-1 cases
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However, in the remaining period, there is an insignificant reduction in substation power due

to the absence of solar radiance and wind speed. Hence, in scenario 2, the minimization of

E,ss & TVD by optimal integration of dispatchable DGs units in the distribution system is

addressed. Table 3.4 & Table 3.5 shows the best-compromised solution and the corresponding
DDG:s sizes given by the MOCVBOA algorithm for scenarios 2-4 outcomes of the 33 & 69

bus test systems, respectively.

Table 3.4 Simulation outcomes of 33 bus system for scenarios 2,3 & 4

Without Network restructuring

With network restructuring

Parameters
Scenario-2 | Scenario-3 | Scenario-4 | Scenario-2 | Scenario-3 Scenario-4
Energy Loss in
406 461 453 358 424.70 398
kWh
Annual Economic
) 878249 671493 704118 793596 649676 701699
Costin $
TVDinp.u 0.045 0.1337 0.1075 0.0609 0.0951 0.0754
Minimum Voltage
during peak load 0.9787 0.9725 0.9728 0.974 0.9712 0.9717
inp.u
Ppy_gEss,,,, IN
826/14 541/15 500/17 630/16 500/16 522/33
kW/Bus No
PWT—Biomasmax in
1027/31 1062/30 1214/30 1223/30 1017/30 1173/30
kW/Bus No
Ppy max I KW 1702 1116 1030 1300 1030 1075
Py max iN KW 487 502 584 583 488 563
Pp; in
BlomassMax 815 843 961 969 806 929
kW
Ppyin KW 2808 1842 1700 2145 1700 1774
Py in kW 716 738 859 857 717 828
Eggs in kWh 5359 3515 3244 4093 3244 3387
Pggs in kW 922 605 558 704 558 583
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Table 3.5 Simulation outcomes of 69 bus system for scenarios 2,3 & 4

Without Network restructuring With Network restructuring
Parameters
Scenario-2 Scenario-3 | Scenario-4 | Scenario-2 | Scenario-3 | Scenario-4
Energy Loss in kWh 260 352 297 152 207 196
Annual Economic
_ 725646 651827 707359 781098 637932 647000
Costin $
TVDinp.u 0.056 0.1809 0.0734 0.0199 0.0352 0.0284
Minimum Voltage
during peak load in 0.9794 0.9692 0.9731 0.9883 0.9812 0.9811
p.u
Ppy_BESS 0, IN
500/23 500/64 500/21 618/27 500/27 536/64
kW/Bus No
PWT—Biomasmax in
1400/63 1057/61 1291/62 1282/61 1040/61 1038/61
kW/Bus No
Ppy max I KW 1031 1030 1030 1273 1030 1103
Pyt max in KW 670 507 621 613 500 499
Pgiomassmax 1N KW 1109 837 1022 1016 823 822
Ppyin kW 1701 1700 1700 2101 1700 1821
Py in KW 986 746 913 901 736 734
Eggs in kWh 3247 3244 3244 4010 3244 3475
Pggs in KW 559 558 558 690 558 598

3.5.2 Scenario-2: Minimization of E;,ss & TVD (PV-BESS & WT-BIOMASS units)

In scenario 2, the minimization of E;,;; & TV D of the test systems by optimal integration of
dispatchable WT-BIOMASS and PV-BESS units are addressed. Figure 3.7 depicts the
optimal Pareto front given by the MOCVBOA technique for case-1 & case-2 of 33 & 69 bus
test systems, respectively. For case-1 of the 33 bus system, the system's energy loss is reduced
to 406 kWh (accounts for 80% loss reduction), TVD is reduced to 0.045 & for case-2, energy
loss is reduced to 358 kWh (accounts for 82.4 % loss reduction), TVD is reduced to 0.0609.

For case-1 of 69 bus system, energy loss is reduced to 260 kWh (accounts for 88% loss
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reduction) & TVD reduced to 0.05 and for case-2, energy loss is reduced to 152 kWh

(accounts 93% loss reduction) & TVD reduced to 0.0199.
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Figure 3.7 Optimal pareto fronts given by MOCVBOA for scenario-2 cases

Figure 3.8 depicts the comparison between outcomes (E;,ss & TVD) for scenario-1 & 2
cases. From the Figure-3.8, it can be noticed that improvement in the reduction of both the

objectives E;,ss & TVD are comparably higher in scenario-2 than in scenario-1.
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Figure 3.8 Comparison between the outcomes of scenario-1 & 2 cases
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This is a result of the fact that optimal dispatch of power by DDGs (WT-BIOMASS, PV-
BESS) follows the hourly load demand. And also, it is observed that due to the consideration
of only technical aspects in this scenario, the percentage injection of real power by the DDGs
into the 33 & 69 bus systems at any time during the day stood at a maximum injection
consideration level of 50 % for all the solutions in the Pareto front. However, due to the
consideration of all the DG units (PV, WT, BESS, BIOMASS), there is a need to study the
AEC along with E;,s¢ & TVD.

3.5.3 Scenario-3: Minimization of E;,;; & AEC (PV-BESS & WT-BIOMASS units)

In scenario 3, the minimization of E;,ss & AEC of the test systems by optimal integration of
dispatchable WT-BIOMASS and PV-BESS units are addressed. Figure 3.9 depicts the
optimal Pareto front given by the MOVBOA technique for scenario-3 cases.
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Figure 3.9 Optimal pareto fronts given by MOVBOA for scenario-3 cases

For case-1 of the 33-bus system, energy loss is lessened to 461 kWh, the annual economic
cost is reduced to $ 671493 and for case-2, energy loss is lessened to 424 kWh, the annual
economic cost is reduced to $ 649676. For case-1 of the 69-bus system, energy loss is
mitigated to 352 kWh, the annual economic cost is reduced to $ 651827 and for case-2 energy,

the loss is mitigated to 207 kWh, and annual economic cost is reduced to $ 637932. From the
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outcomes, it can be noticed that there is a tremendous improvement in both objectives by
optimal integration of DDGs in both test systems. And also, it is noticed that both objectives
are well improved by optimal integration of DDGs in the optimal reconfigured case, i.e., in
case-2. It can also be observed that the percentage of real power injection by the DDGs into
the 33 & 69 bus systems at any time during the day stood at around 50% for the left-most
solution in the Pareto front, (41-43) % for the compromised solution in the Pareto front, (28-
30) % for the rightmost solutions in the Pareto front in both the cases against maximum
injection consideration level of 50 %. This is because AEC is considered as one of the
objectives in this scenario. In scenario 4, all the objectives (E,ss,TVD & AEC) are

considered for the balanced optimized solution between three goals.

3.5.4 Scenario-4: Minimization of E;,.,TVD & AEC (PV-BESS & WT-BIOMASS
units)

In scenario 4, the minimization of E;,.,,AEC & TVD are considered as main objectives.
Figure 3.10 depicts the optimal Pareto front given by MOCVBOA, MOBOA & NSGA-II

techniques for case-1 & case-2 of 33 & 69 bus test systems, respectively.

~ 8.5
= 4
2 10 ".l?‘ 3
‘ 9 <
= MOCVBOA =)
- g MOBOA — 1.5
= NSGA-TI Lo
=27 = S
g ¢ =
< 5 4:5
100 04 35
0.150.2 :
‘n P z 0.1 A ne
lﬂb‘s ,',, 900 0 0.05 VD ““) rg‘ 1093
k Vi

(a) 33 bus system case-1

§ 8
4 e
7.5 § MOCVBOA o~
= 8 MOBOA n
= 7 + NSGA-lI <1 L
~" = —t 7
= 65 X 65
o 6 e E 6
;'z-’ s% O 55
= 400 = s
> 6‘0xuuloﬂﬂ o2 0.25 0.3 035 04 <
ergy o 1200 ¢ 005 %179 "
< 1088 in g, TVD in p.u
'“,h
v
(c) 69 bus system case-1 (d) 69 bus system case-2

Figure 3.10 Optimal pareto fronts given by MOCVBOA, MOBOA & NSGA-II for scenario-
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In the case of optimal integration of DDGs in the initial configured network,
Eioss , TVD & AEC of 33 bus system are reduced to 453 kWh, (accounts 77 % loss reduction)
0.1075 p.u & $ 704118 respectively and E;,ss , TVD & AEC of 69 bus system are reduced to
297 kWh (accounts 86.3 % loss reduction), 0.0734 p.u & $ 707359 respectively. In case of
optimal integration of DDGs in the optimal reconfigured network, E; s , TVD & AEC of 33
bus system are reduced to 398 kWh (accounts for 80.5 % loss reduction), 0.0754 p.u & $
701699 respectively and Ej s, TVD & AEC of 69 bus system are reduced to 196 kWh
(accounts 91 % loss reduction), 0.0284 p.u & $ 647000 respectively. From the outcomes of
scenario 4, it can also be seen that the percentage injection of real power by the DDGs into
the 33 & 69 bus systems at any time during the day stood at (42-45) %. From Tables 3.4 &
3.5, it is observed that the objectives are considerably enhanced when DDGs are optimally
integrated into the optimally reconstructed network. Furthermore, during the optimization of
all three objectives, i.e., in scenario 4, the negotiated solution among all three objectives is
attained. Figure 3.11 depicts the hourly power output of PV-BES, PV, BESS, WT-BIOMASS,
WT, and BIOMASS units in 33 & 69 bus for the scenario-4 cases.
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In Figure 3.11, the negative value of BESS power indicates discharging mode of the BESS,
supplying power to the grid & positive value of BESS power indicates the charging mode of
the BESS, drawing power from the PV unit. To regulate the output power of the BESS unit
in accordance with the curves depicted in Figure 3.11, a converter with advanced controlling
mechanisms is necessary. Figure 3.12 illustrates the hourly power taken from the substation,
hourly active power loss & average voltage profile of the system’s/network’s for both cases
of the fourth scenario. From Figure 3.12, it can be observed that optimal integration of DDGs

in the system improves the voltage profile and reduces power loss.
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Figure 3.12 Daily substation power, power loss and average voltage profile curves for
scenario-4 cases
From the above discussions, it can be concluded that better improvement in technical metrics
of the distribution system is observed during optimal planning of dispatchable DGs units (i.e.,
PV-BESS, WT-BIOMASS). However, in the case of PV-BESS unit, a converter with

sophisticated controlling techniques is required to regulate the BESS unit's output power in
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line with the optimal curves. And also, from the outcomes of the WT-BIOMASS unit, it is
observed that almost an equal size of BIOMASS unit on par with the WT unit is required
while making the WT-BIOMASS unit as dispatchable DG. Since biomass units are also
deployable, they can be used in place of PV-BESS & WT-BIOMASS units. The optimal

power output curves of DDGs can be used to determine the size of BIOMASS units.

To check the efficacy of the MOCVBOA, the outcomes of MOCVBOA are contrasted
with the MOBOA & NSGA-II algorithms. From Figure 3.10, it's clear that the dominance of
optimal Pareto given by the MOCVBOA algorithm over MOBOA and NSGA-II. Table 3.6
shows the comparison of outcomes between MOCVBOA, MOBOA and NSGA-II algorithms.
From this table, it can be noticed that the compromised solutions given by the MOCVBOA
algorithm dominate the MOBOA and NSGA-11 solutions.

Table 3.6 Comparative study of the MOCVBOA, MOBOA & NSGA-II algorithms' outputs

. Energy Loss Annual Economic .
Algorithms in%\/Nh Costin $ TVDinp.u
33 Bus system, Scenario-4, Case-1
MOCVBOA 453 704118 0.1075
MOBOA 457 704236 0.1101
NSGA-II 462 704484 0.1112
33 Bus system, Scenario-4, Case-2
MOCVBOA 398 701699 0.0754
MOBOA 403 701873 0.0763
NSGA-II 408 701927 0.0781
69 Bus system, Scenario-4, Case-1
MOCVBOA 297 707359 0.0734
MOBOA 299 707396 0.0743
NSGA-II 306 707498 0.0824
69 Bus system, Scenario-4, Case-2
MOCVBOA 196 647000 0.0284
MOBOA 201 647098 0.0310
NSGA-II 210 647226 0.0356

3.6 Summary and Comments

The optimal integration of PV-BESS and WT-BIOMASS dispatchable DDG units into the 33
& 69 distribution systems in the presence of network restructuring is dealt with in this work.
MOCVBOA is used to determine the ideal sizes of PV, BESS, WT, and biomass units in

minimising energy loss, total voltage deviation, and annual economic cost. Four scenarios are

65



considered to fulfil the objectives. For the 33 & 69 bus test systems, improvement in energy
loss reduction and voltage profile enhancement is observed in both cases: Optimal integration
of non-dispatchable DGs (scenario-1) and dispatchable DGs (scenario-2). However, when
dispatchable DGs are connected with the system, better enhancement in objectives is seen.
The negotiated solution for the 33 & 69 bus test systems among all three objectives is attained
during the optimization of all three objectives in scenario 4. The 33-bus system energy loss is
reduced to (77-80) %, 69-bus system energy loss is reduced to (86-91) % in scenario-4 by the
injection of a maximum of (42-45) % load demand into the system via DDGs. The objectives
are considerably enhanced when DDGs are optimally integrated with the optimally
reconstructed network. However, a converter with sophisticated controlling techniques is
required to regulate the BESS unit's output power in line with the optimal curves. Since
biomass units are also deployable, they can be used in place of PV-BESS units & WT-
BIOMASS units. The optimal power output curves of DDGs can be used to determine the
size of biomass units. MOCVBOA performs better in achieving the results than MOBOA and
NSGA-II optimization algorithms. In chapter 2 & 3, improvement of distribution system
metrics by optimal planning of DGs is addressed without considering PHEVs load demand
on the system. As PHEVs load demand deteriorates the distribution system performance, in
the next chapter, optimal planning of DGs in the distribution system by considering

conventional load demand and PHEVs load demand is addressed.
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Chapter 4

Optimal integration of DGs into radial distribution
network in the presence of plug-in electric vehicles to
minimize energy loss and to improve the voltage profile of
the system using a pareto-based multi-objective chaotic

velocity-based butterfly optimization algorithm
4.1 Introduction

The increase in plug-in hybrid electric vehicles (PHEVS) is likely to see a noteworthy impact
on the distribution system due to high electric power consumption during charging and
uncertainty in charging behavior. This chapter mainly focuses on the improvement of
distribution technical metrics energy loss reduction and voltage profile by optimal integration
of distributed generators (DGs) into radial distribution system considering PHEVs load
demand. In this work, charging of PHEVs under a private charging scenario, i.e., charging of
electric vehicles at residential houses, is considered. Therefore, in this chapter, a distribution
system with residential, commercial and industrial buses is considered. 24-hour load demand
of the buses is generated with the help of typical p.u daily load curves of different types of
buses. The daily electric demand raised due to the charging of PHEVSs is generated using the
charging time probability distribution functions developed in the literature and imposed on
the residential buses of the distribution system. As PHEVs load demand deteriorates the
distribution system performance, a pareto-based chaotic velocity-based butterfly optimization
algorithm is employed for generating the optimal pareto front between the cited objective
functions and then the TOPSIS method is employed for finding the optimal locations and

optimal sizes of DGs.

4.2 Modelling of DGs

For load flow studies, DGs can be modelled as either PV mode or PQ mode. In this work, DG
is modelled as PQ mode. In this type of modelling, DG is modelled as generating source
(negative load model) with constant active power (Pp¢) and reactive power output Qpg. In
this type of modelling, the active power and power factor (PF) of the DG is mentioned. The

reactive power of the DG is calculated by using Eq. 4.1.
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Qp¢ = Ppg * (tan(cos™! PF)) 4.1)
The effective load at any bus with the integration of DG unit can be expressed as
Pioaa = Pioaa — Ppe (4.2)

Qioad = Qioaa — Cpe (4.3)
Where P;,q4, Qioaa @re active and reactive power demands at the bus.

4.3. Objective functions

4.3.1 Energy Loss

Optimal integration of DDGs in the system improves the system's efficiency by reducing the
system’s energy loss (E;,ss). Energy loss of the system for a 24-hour daily load pattern is
obtained by adding all the distribution system active power losses in each hour of that day.
The mathematical formulation of the system’s energy loss is given below.

Minimize f; = Ejoss = Y22, X727 2 * R; (4.4)
where nb, J, ;, R; are the number of buses, branch current and branch resistance, respectively.

4.3.2 Total Voltage Deviation

Optimal integration of DDGs in the network improves its voltage profile. Better enhancement
in the voltage profile of the system/network is achieved by taking a mathematically
formulated function named Total Voltage Deviation (TVD) as one of the objectives.
Mathematical formulations of the VD and TVD are given below

VD, = YNS(1-V,,) t=12,...24 (4.5)
Minimize f, = TVD = Y24, VD, (4.6)
4.3.3 Constraints

1. Active power and reactive power balance constraints.

Pisub + Pirpc = Pip + Pjross (4.7)
Qjsup + Qjrpc = Qjp + Qlegss (4.8)
Where  P;p = 32 (Pous i + Peev ji) (4.9)

Qip = X2 (Qpus i) (4.10)

Where P; o, is the j™ hour active power demand supplied by the sub-station in kW,
Pipis j™ hour total active power demand of the system with PHEVs in kW, Qjsub 1S

the j™ hour reactive power supplied by the sub-station in kVar, Qjpis the j™ hour total
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reactive power demand of the system with PHEVs inkVar, , Py, ;; isthe i bus active
power demand during j hour, Ppgy j,i is the i bus active power demand due to

PHEVs in j* hour.

2. Voltage magnitude of each bus should be within minimum and maximum voltage

limits.

Vininl < Vil < [Vinax! i=12......nb (4.11)
3. Sizes of DGs to be placed should be within minimum and maximum kW limit.

Ppemin < Prpe < Ppemax k=12.....ndg (4.12)

4. Total active power compensation by DGs should be less than or equal to the maximum
total capacity of DGs (P7'57) which is user-defined variable and minimum total active
power demand throughout the day.

PT,DG < ’r[‘rfg)é < min(leD) (413)

4.3 Optimization Algorithm

Section 3.4 of Chapter 3 provides a detailed discussion of the chaotic velocity-based
optimization algorithm, Pareto-based multi-objective optimization technique and TOPSIS

method.

4.5 PHEVSs charging scenario

Based on the charging behaviour of PHEVSs, various researchers modelled different types of
charging scenarios. They are peak charging scenario (PCS), off-peak charging scenario
(OPCS) and stochastic charging scenario (SCS). In the peak charging scenario case, all the
PHEVs come home after working hours and go for charging as soon as they return from the
working place. This charging behaviour of PHEVs leads to an increase in peak demand of the
system because the load on the system is already peaky during those hours. In the case of
OPCS, due to electricity prices implemented by the system operator, the active power demand
due to PHEVs shift towards the light demand hours, generally at midnight. In SCS, PHEVs
go for charging at any time in the day. In this work, PCS is considered for inclusion of PHEVs
electric demand in the system. The charging time probability distribution of PCS is taken from
[112] and given in Figure 4.1. The PCS charging time probability functions are measured with
a certain number of PHEVs to obtain Ppgy ;; and then integrated into daily load pattern of the

distribution system which consists of residential, commercial, and industrial buses.
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Figure 4.1 PHEVs probability distribution of PCS scenario
4.6 Results and Discussion

An IEEE 33 bus system has been taken for the analysis of the proposed method. The base
values of the system are 100 MVVA and 12.66 kV. Out of the 33 buses: 17 buses are residential
buses, 5 buses are commercial buses, and 9 buses are industrial buses. The data of the
grouping of buses is given in Table 4.1. Active and reactive power demands of the buses taken
from bus data are considered as peak demands of the respective buses. Hourly active and
reactive power demands for a day for each bus is obtained from typical daily load pattern of
different type of buses in p.u with respect to peak demand 1 p.u is shown in Figure 4.2 [113].
From Figure 4.2 it has been observed that for a residential bus load demand requirement is
high during the period 15.00-20.00 hr.

Table 4.1 Grouping of Buses data

Bus Type Bus Numbers
Residential buses | 2,3,5,6,7,8,9,10,13,14,15,16,17,20,21,23,24
Commercial buses 4,11,12,18,19
Industrial buses 22,25,26,27,28,29,30,31,32,33
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Figure 4.2 Daily load pattern of different types of buses

4.6.1 Analysis of the system without PHEVs load and without DGs

After the initial load flow run, i.e., before load due to electric vehicles, the following points
has been observed. Daily active power demand from all the buses is 64510 kW. The daily
energy loss of the system is 3053 kWh, total voltage deviation of the system is 31.21 p.u. The
lowest voltage of the system is 0.8945 p.u at 18" bus occurred during 17" hour of the day.

4.6.2 Analysis of the system with PHEV load and without DGs

To study the effect of additional electric power demand duo to PHEVs in the electric
distribution system, it has been assumed that 50 PHEVSs per residential bus with a total of
17*50=850 PHEVs have been considered, where 45% of these PHEVs are low hybrid
vehicles equipped with 15 kWh batteries, 25% PHEVs are medium hybrid vehicles with
25kwh batteries and 30% PHEVSs are pure battery vehicles with 40 kWh batteries [112]. It is
also assumed that all electric vehicles return to the home with a SOC of 50%. Therefore, the
total electric demand due to PHEVs per residential bus per day is
50*(15*45%+25*25%+40*30%) *0.5= 625 kW and the total electric demand needed per day
due to PHEVS is 625*17 = 10625 kW.

4.6.3 Analysis of the system with PHEVs charging under PCS

The electric demand of 625 kW due to 50 PHEVs for each residential bus has been consumed
from the slack bus (bus-1) as per the probability distribution of the charging scenario of PCS
depicted in Figure 4.1. Figure 4.3 shows the hourly active power demand of the distribution
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system for a day without PHEVs and with PHEVs under PCS case obtained from the daily
load pattern of buses and charging scenario.

[ Without PHEVs
[ With PHEVs

w
|

Real Power in MW

Time (Hour)

Figure 4.3 Hourly active power demand of the system without and with PHEVs load

Table 4.2 shows the comparison between various parameters between without PHEVs load
and with PHEVs load on the distribution system. From the Table 4.2, it has been observed
that due to PHEV's electric active power demand of 10625 kW, the distribution system is
overloaded by 16.47% with respect to the daily active power demand requirement. In the case
of PCS due to extra PHEVs active power demand, energy loss of the system is increased to
4346 kwh from 3053 kWh, which shows a 42.35% increase in daily active power loss. Also,
the total voltage deviation index is increased to 36.07 p.u. The system's lowest voltage is
0.8398 p.u occurred at 18" bus during 16" hour of the day.

Table 4.2 Comparison between without and with PHEVs load on test system

Parameters Without PHEV | With PHEV load
load

Energy loss (in kWh) 3053 4346

Total Voltage Deviation (in p.u) 31.21 36.07
Lowest voltage magnitude (in p.u) 0.8945 (1 Sth bus 0.8398 (1 8th bus
th ’ T ’

17 hour) 16 hour)
Active power demand from the buses 64510 75135
for a day (in kW)
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4.6.4 Optimal placement of DGs in distribution system with consideration of PHEVs

As it was found in the previous part that PHEVs have a negative impact on the efficiency and
voltage profile of the distribution system, this section addresses the optimal planning of DGs
operating at 0.9 pf for enhancing the distribution system performance. From Figure 4.3, it is
also observed that the lowest active power demand with PHEVs load under PCS case is
around 1500 kW occurred during 6™ hour of the day; therefore, maximum active power
injection by DGs into the distribution system is fixed to 1500 kKW. Figure 4.4 depicts the
optimal Pareto front given by MOCVBOA & MOBOA techniques.
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Figure 4.4 Optimal Pareto fronts given by MOCVBOA, MOBOA techniques

Table 4.3 shows the optimal locations, DGs (0.9 pf) sizes and various technical parameters of
the best-compromised solution yielded by the TOPSIS-MOCVBOA technique. From Table
4.3, it is observed that the energy loss of the system is reduced to 1383 kWh accounts 58.39%
loss reduction, and the voltage deviation index is reduced to approximately 14.71 p.u. The

system lowest voltage improved to 0.9249 p.u.

73



Table 4.3 Simulation outcomes yielded by TOPSIS-MOCVBOA technique

Scenarios DG size (kW) Energy Total voltage | Lowest voltage

& Bus loss (in Deviation (in of the system
number kWh) p.u) (in p.u)
th
Base Case |  --—--- 4346 36.07 0.8398 (18
th
bus, 16 hour)
: : th
DGs sizes (in 473 /14 1383 14.71 0.9249 (18
kW)/DGs 204 /18

th
locations 713 /32 bus, 16 hour))

Voltage profile characteristics of the system without DGs & with DGs is shown in Figure 4.5.
From Figure 4.5 it is observed that obtained optimal locations and sizes of DGs results fairly

good voltage improvement at each and every bus of the system.
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Figure 4.5 Mean voltage profile of the system without PHEVs & with PHEVs
load demand
To check the efficacy of the MOCVBOA, the outcomes of the MOCVBOA are contrasted
with the MOBOA algorithm. From Figure 4.3, it's clear that the dominance of optimal Pareto
is given by the MOCVBOA algorithm over MOBOA.
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4.7 Summary and Comments

In this chapter, 33 bus test system consisting of residential buses, commercial buses and
industrial buses is considered. The 24-hour load pattern of the whole test system is obtained
from the load pattern of different types of buses. PCS charging scenarios had taken for the
inclusion of PHEVs load demand on the system. The impact of PHEVs load demand on the
system's technical parameters is analysed. A combined 24-hour load pattern of the system,
including PHEVs load demand with PCS charging scenario, has been considered for the
optimal placement of the DGs in the system. Pareto-based chaotic velocity-based butterfly
optimization algorithm has been applied to produce the optimal Pareto front between the
mentioned energy loss and voltage deviation objective functions, and the TOPSIS approach
has been subsequently applied to determine the optimal positions and sizes of DGs. From the
obtained results, it can be concluded that the radial distribution system performance (reduction
in system energy loss and improvement in system voltage profile) in the presence of PHEVs
loads has improved with the optimal integration of DGs by the proposed approach. However,
in this chapter, optimal planning of DGs is addressed without considering their uncertainties
and dispatchable nature. And charging of PHEVs charging under only private charging
scenario is only considered. Therefore, in the next chapter, optimal planning of DGs
(considering their uncertainties & dispatchable nature) in the distribution system considering

PHEVs load demand charging under both private & public charging scenario is addressed.
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Chapter 5

Probabilistic optimal allocation of Solar PV units and
Battery Energy Storage System in the distribution system
in the presence of plug-in electric vehicles using a multi-
objective chaotic velocity-based butterfly optimization
algorithm

5.1 Introduction

This work investigates the combined effect of PHEVS' private and public charging behaviour
on the technical metrics of the distribution system. The private charging behaviour of PHEVs
is taken from the method developed in [76] and imposed on the residential buses of the
distribution system. Additionally, the public charging behaviour is imposed on the few buses
on the distribution system using a methodology established in [86]. To improve the efficiency
of the distribution system, optimal planning of PV and PV-BESS units is considered. Pareto-
based MOCVBOA multi-objective meta-heuristic optimization algorithm is considered to

obtain the desired objectives.

5.2Modelling of DGs and PHEV charging scenarios
5.2.1 Modelling of PV units and BESS units

Section 3.2 of Chapter 3 provides a detailed discussion about the modelling of solar radiance
uncertainty using Beta PDF, modelling of PV unit output power and modelling of Battery

energy storage system (BESS) output power.

5.2.2 Sizing of PV and BESS units

Section 3.3.2 of Chapter 3 provides a detailed discussion about the sizing of PV and BESS

units.

5.2.3 Modelling of PHEVs private charging scenario

Numerous studies have predicted various charging scenarios based on the charging behaviour

of PHEVs [76]. In particular, there are two charging scenarios for private charging of electric
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vehicles: peak and off-peak charging scenarios. In the case of a peak charging scenario, all
PHEVs arrive at their homes after office hours and immediately start charging. Because the
system is already under peak load during those hours, this type of PHEVs charging behaviour
increases peak demand. In the case of the off-peak charging scenario, the active power
demand caused by PHEVs shifts towards the light demand hours, typically at midnight, as a
result of electricity tariffs put in place by the system operator. For any type of charging
scenario, it is initially necessary to model various PHEV parameters to estimate the electrical
demand caused by PHEV charging when linked to the distribution system. As noted in the
introduction, the variables arrival time and distance travelled of PHEVs are stochastic in
nature. The mathematical modelling of PHEV characteristics, represented by equations 5.1 to
5.4, includes arrival time, trip distance, initial soc, and the amount of energy needed each day
to charge the PHEV to 100% SOC.

The arrival time of a PHEV is represented as a random variable with a normal probability
distribution function and the corresponding mathematical formulation for estimating the

probability of the arrival of n'" PHEV at time 't' is calculated using

[(Ta—u%aﬂ]
e
;t * e 2 (aTa)

FHTD) = 7 51

Where u7_and of. are the mean and standard deviation of the daily arrival instant of PHEV.

The random nature of distance travelled by PHEV is modelled using the log-normal

probability distribution function

(n dn—uan]

fuldn) = G o T

T*0 g, *dn

(5.2)

Where py sw & oy, are the mean & standard deviation of the daily distance travel of PHEV.

The initial SOC of the battery in a PHEV before the beginning of the trip depends on the daily

distance covered, all-electric range of that PHEV.

dn
SoC = {1 ~ 2k d, < AER,
0 d, > AER,

(5.3)

The total energy required to charge a battery from initial soc to fully charged condition is

estimated as
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L_soc
Eq = < 100) * Cpart (5.4)

NBatt

Where ngq:: and Cp,; are the efficacy and capacity of the battery.

In this study, only PHEVs charging under peak charging scenario is considered. And also, it
is assumed that the electric vehicles will charge at their homes with a constant charging power
rate of 3.3 KW or 6.6 kW. The battery capacity of the PHEVs used in this study ranges from
7.8 kWh to 27.6 kWh [76]. The average distance driven by electric vehicles is 28.556 miles,
with a standard variation of 12.524 miles. The detailed process for calculating the 24-hour

electric consumption caused by PHEV charging is provided below.

1. With the use of the PDFs outlined above, the arrival time and distance travelled for
all-electric vehicles are generated. Additionally, each electric vehicle is randomly
assigned a battery rating from the ranges mentioned above.

2. From the outcomes of step 1, the SOC and E, of all the vehicles is determined.

3. The 24-hour electrical power consumption necessary for charging electric vehicles is
calculated using the arrival times, charging rate, and E,.

4. The total daily electric power demand from all-electric vehicles is then calculated by
summing all individual electric vehicles' daily electric power demand.

5. A 1000-time Monte Carlo simulation is performed on the steps mentioned above.

6. The mean of the previous simulation results provides the final electric power
consumption profile owing to all-electric vehicles.

7. The distribution system's residential buses are all given an equal share of the final

electric power demand profile.

5.2.4 Modelling of PFCS

The rating of PFCS depends on the number of connectors (NC(j)) at the station. The
mathematical modelling for the capacity of PFCS (CPFCS(j)) [87] is given below

NC(j) = NPHEV(j) * max (CPEV) (5.5)
CPFCS(j) = NC(j) * PC (5.6)

Where NPHEYV () represents the total number of electric vehicles charging through station j,

CPHEV/(h) represents the vector having probabilities of electric vehicles coming for charging
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in the hour h of a day, PC represents the power rating of the connector. The power rating of

the connector typically ranges from 50 to 250 kW and depends on the technology being used.

5.3 Modelling of DGs in load flows

Section 4.4.2 of Chapter 4 provides a detailed discussion about the sizing of PV and BESS

units.

5.4 Objective Functions
5.4.1 Energy Loss

Through a reduction in energy loss (E;,ss), optimal RDG integration increases system
efficiency. The system's energy loss for the day is calculated by adding up all the real power
losses experienced by the distribution system throughout that day's hours. The system's energy
loss is mathematically formulated as follows.

Minimize f; = Ejoes = Y72, X727 J2; * R; (5.7)
where R;,nb, ], ; are the j™ branch resistance, number of buses in distribution system and j*"

branch current in time interval ‘t’ respectively.

5.4.2 Total Voltage Deviation

The goal of voltage profile enhancement is to align all the bus voltage magnitudes as closely
as possible to offer uniform voltage profiles for the customers. To achieve this, Total VVoltage
Deviation (TVD), a mathematically formulated function, is used as one of the objectives.
Voltage Deviation (VD) is initially calculated for each hour of the day by adding the voltage
deviations of all buses with respect to one p.u. The Total Voltage Deviation (TVD) is then
calculated by combining all of the VDs. To improve the system voltage profile, the TVD must
be reduced. Below are the mathematical formulations for the TVD and VD.

VD, = YNPS(1-V,) t=12,...24 (5.8)
Minimize f, = TVD = Y22, VD, (5.9)

5.4.3 Annual Economic Cost (AEC)

The annual installation and maintenance expenditures of both units are involved in integrating
PV-BESS RDGs units into the distribution grid. Thus, a mathematically constructed objective

function called Annual Economic Cost (AEC) is developed to find a balance between annual
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PV-BESS installation and operational expenses and the improvement in technical metrics, as
shown below.

Minimize f; = AEC = k, * (Ejpss) * 365+ (Alppg + OMppe) (5.10)
where Alppe, OMppe & k. are, respectively, the annual installation expenses and
maintenance costs in $ and the price of electricity in $/kW-hr.

where k, OMppe, Alppe are the electricity price in $/kW-hr, annual maintenance &

istallation costs in $ respectively.

Alppg = (va * INCpy, * r,PV) * CRFpg + (Npgss * INCpgss) * CRFggss (5.11)
OMpgpg = 365 * leil(OMva * Py py + OMCpess * Npgss) (5.12)
kx(14+k)"DG
CRFDG = m (513)
k*(1+k)nBESS
CRFBESS = WTS—l (514)

Where the respective RDG unit numbers are denoted by N, & Nggss, INC,y,, INCpgss are
installation expenses of individual RDG units, P, py, are rated power of PV units, the
operations & maintenance cost is represented by OMC., P;py, represents the power
dispatched by PV units in the t" hour, k denotes the rate of interest, NnBESS & nDG denotes
the number of years.

5.4.4 Constraints

i) Active power and reactive power balance constraints.

Prsup + Perrpg = Pep + X2y ?Izbiis_ljtz,j * R; (5.15)
Qesub + Qerrpe = Qep + Xies ijﬂw—lftz,j * Xj (5.16)
Where Pep = Y12 (Pousti + Peuev ¢i) (5.17)

Qt,D = Z?:b1(QBus t,i) (5-18)

Where P, ¢, is the substation's t™ hour active power demand supplied in KW, P, j, is
the system's hourly active power demand expressed in kW, Q; s, is the substation's
t™ hour reactive power demand supplied in kVar, Q. is the system's hourly active
power demand expressed in kVar, Pg,s.; is the i bus active during the t"
hour, Ppyy ¢ is the hour's active power demand for the i bus caused by PHEVs..

i) The system's buses' voltage levels must fall between the permitted minimum and

maximum ranges during any time in the day.

Vininl < |Vej| < Vimaxl  j=12....Nbus (5.19)
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iii) At any point during the day, the total current drawn by each branch must be less than
the maximum current rating of that branch.

Joj < Jmex j=12.....Nbus —1 (5.20)

5.5 Optimization Algorithm

Section 3.4 of Chapter 3 provides a detailed discussion of the chaotic velocity-based
optimization algorithm, Pareto-based multi-objective optimization technique and TOPSIS

method.
5.5.1 Implementation of MOCVBOA

The procedure for finding the optimal sizes and locations of PV and PV-BESS units in the
distribution system for the enhancement of the objectives using the MOCVBOA algorithm

are given below

1. In this step, with the help of methods developed in section 5.2.1, p.u P; pyvector values
are obtained by reading the historical solar irradiance data and necessary PV unit data
such as Npy moa, Vurp, Iupp, FF, Voc, Isc + kv, ki, Te, Teg, Ta, Nor-

2. Read the distribution network load & line data and data of a typical p.u, twenty - four -
hour electrical load for different bus types.

3. Initialization of algorithm parameters such as N, Maxiter & REP,,,, €tc.

4. Generation of the initial set of solutions between the minimum and maximum limits.

For optimal planning of PV units, the decision matrix for the planning of one PV unit
is shown below

Ll,PV Pl,PV

LZ,PV PZ,PV

Xini = (5.21)

Lypv Pnpyv
Where Ly py & Py py are the location and PV unit size of N™ agent. The hourly power
output from Ly pyis obtained by multiplying Py py size is with p.u PV curve
For optimal planning of PV-BESS units, the decision matrix for the planning of one
PV-BESS unit is shown below

Ll,PV—BESS Pl,l,PV—BESS Pt,l,PV—BESS P24-,1,PV—BESS

LZ,PV—BESS P1,2,PV—BESS Pt,Z,PV—BESS P24—,2,PV—BESS (5 22)

Xini =
Ly pv-gess Pinpv-BEss - Ptnpv—-BESs -+ P2an pv-BEss
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Where Ly py_ggss iS the location of N™ agent, P,y py_gess is the N™ agent output
power from PV-BESS unit during t™ hour of the day.
5. Finding objective function values for each agent.
By using the above initial data, the values of objective functions are evaluated by the
load-flow simulations.
Set the iteration count to zero.
Update the butterfly's fragrance.
Update each agent's positions.

© o N o

The sequential method used in Step 5 should be used to calculate the objective function

values for each updated agent.

10. Combine updated agents with agents from prior iterations, then use the methods described
in sections 5.5 to identify the non-dominated solutions and use the technique outlined in
section 5.5 to update the repository set's solutions.

11. By Utilizing the TOPSIS technique, find the gbest solution from the repository set.

12. If the number of iterations is less than the maximum, repeat steps 6-11; if not, output

outcomes such as the global best solution and objective function values.

5.6 Results and Discussion

In this work, an IEEE-33 bus radial distribution system has been used to verify the
suggested method. Base values for the system are 100 MVA and 12.66 kV. The 33 buses are
grouped into 17 residential buses, 5 commercial buses, and 9 industrial buses. The active and
reactive power demands mentioned in the system's bus data are considered as the peak
demands of the respective buses. Hourly reactive and active power demands of the buses for
a day are obtained by multiplying the peak demand of the respective buses with the p.u daily
load curves. An initial load flow is carried out to obtain the distribution system technical
metrics without PHEVs load. For load flow investigations, backward/forward sweep-based
load flow [114] has been employed. The system's energy loss and voltage deviation index are
3053 kW and 31.2158 p.u. The total daily active electricity requirement from the buses is
64510 kW. The system's lowest voltage of 0.8945 p.u. at bus number 18 occurred during the

day's seventeenth hour.

To investigate the impact of increased electric power consumption due to PHEVs on
the electrical distribution system technical metrics, it has assumed that 200 PHEVs will charge

their vehicles at homes and 300 PHEVs will charge in the PFCS's connected to the buses 12,
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19, 24, 27 & 33. The daily charging profile of the PHEVs are generated using the
methodologies developed in section 2.5 & 2.6 and imposed on the abovementioned buses of
the distribution system. The following points are observed from the load flow results. The
total daily active electricity requirement from the buses is increased to 73556 kW, the energy
loss and voltage deviation index are increased to 3777 kW and 34.88 p.u. The system's lowest
voltage is 0.8839 p.u. The distribution system's hourly active power consumption for a day

from the slack bus without PHEVs and with PHEVSs is shown in Figure 5.1 for comparison.

5 | |

[ Without PHEV's
[ With PHEVs

s
|
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— L
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Time (Hour)

Figure 5.1 Hourly active power demand of the system without and with PHEVs load

From Figure 5.1, it is observed that peak power demand of the system occurred during the
17" hour of the day is increased by 11% due to the PHEVs load. From the discussions above,
it is certain that the distribution network’s technical parameters worsen due to PHEVS'
electrical demand. Therefore, to improve the distribution system's technical metrics, optimal
planning of PV and PV-BESS units are considered in this work. The data about the solar
radiance is taken from [31]. This study considered a PV module with the following
specifications: Vypp=28.36 V, Iypp =7.76 A, V=36.96 V, [;,=8.38 A, N,r=43 °C,
k,=0.1278 V/°C, k;=0.00545 A/°C and PV unit with Npy ,,,qa = 600, 132 kW rated capacity.
Table 5.1 provides operational and installation expenses for PV and BESS units[110], [111].
Figure 5.2 (a) & (b) depicts PDF curves of solar radiance & the p.u PV output curve derived
from the methodology discussed in section 5.2.
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Table 5.1 Installation and operational expenses for PV and BESS units

Parameters Value
Installation cost of PV unit (INC,,) in $/kW 1100

Maintenance & Operational cost of PV unit (OMC,,) in $/kWhr 0.01
Installation cost of 400 kWhr BESS unit (INCggss) in $ 128000
Maintenance & Operational cost of BESS unit (OMC,,..) in $/year | 10666.67

Number of years for DG planning (nDG) 20
Number of years for BESS planning (nBESS) 8
Rate of interest in % (k) 10
Electricity price in $/kWhr (k,) 0.2
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Figure 5.2 PDF curves of solar radiance and p.u unit curve of PV unit

In this work, the following two scenarios to improve the proposed objectives.

1) Optimal planning of PV units.

2) Optimal planning of PV-BESS units.

In scenario 1, the minimization of the distribution system's energy loss and voltage
deviation is considered. Due to the consideration of both PV and BESS units in scenario 2,
mitigation of the distribution system's total voltage deviation, energy loss and AEC are

considered. By oversizing inverter ratings relative to the ratings of RDGs units, it is assumed
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in scenarios 1 and 2 that PV and PV-BESS units will operate at a constant 0.9 pf. In this work,
the total number of RDGs to be optimally placed in the distribution system is fixed at three.
Figure 5.3 (a) & (b) depicts the optimal Pareto front provided by the MOCVBOA algorithm
for scenarios 1 & 2, respectively. In the TOPSIS method, by following the restriction that the
sum of all weights equals one, all objectives are assigned equal values for picking one solution
from the optimal Pareto front. Table 5.2 shows the optimal sizes of PV units, BESS units and

distribution system parameters for all scenarios outcomes.

goe B g W]
S 212835 * E 122 § iz > O, =
e g: O . * 0.; k%%"’*‘* 30
Figure 5.3 Optimal pareto fronts of two scenarios
Table 5.2 Simulation outcomes of all scenarios
Parameters Scenario-1 Scenario-2
Epss iIn KWhr 1934 1332
TVD inp.u 21.2 16.188
AECin$ | - 1511549
Lowest magnitude of bus 0.8839 0.95
voltage in p.u
PV units’ sizes in KW & 1458/13 802/16
locations 2943/30 2407/18
1412/25 2382/33
BESS units’ sizesin kWh & | --—---—--- 1983/16
locations 5948/18
5888/33

From Table 5.2, the following points are observed. In scenario-1, the network’s energy loss
is mitigated to 1934 kW (accounts 49% loss mitigation), and VDI is reduced to 21.28 p.u. The

hourly slack bus power & power output of the PV units in scenarios 1 is shown in Figure 5.4
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(@) & (b), respectively. From Figure 5.4 (a), it has been observed that system’s slack bus
power is zero. This is because output power from PV units is maximum during midday.
However, in scenarios 1 & 2, there was no improvement in the distribution system's lowest
voltage and reduction in the system's peak power. This is because, during the 17" hour of the

day, when system demand is at its highest, the output power from PV units is zero.
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Figure 5.4 Daily slack bus power & PV units output power curves in scenario 1

In scenario 2, the system'’s energy loss and VDI are mitigated to 1332 kW (accounts for 44.69
% loss mitigation) & 16.188 p.u, respectively. The system’s lowest voltage is enhanced to
0.95 p.u in scenario 2. The hourly dispatch of the PV unit's output power, BESS unit's output
power, and PV-BESS unit's output power for scenarios 3 & 4 cases are depicted in Figure 5.5.
The -ve sign of the BESS unit’s output power indicates discharging mode (i.e., supplying
power to the grid), +ve sign indicates the charging mode of BESS units. The combined PV-
BESS units will inject power at the respective buses as per the PV-BESS units' output power
curves, as seen from Figure 5.5, provided the output from BESS units is controlled in
accordance with their curves. To regulate the output power of the BESS unit in accordance
with the curves depicted in Figure 5.5, a converter with advanced controlling mechanisms is
necessary. Figure 5.6 illustrates the power drawn from the substation in scenario’s 3 & 4,
respectively. And from Figure 5.6 slack bus powers, it is also observed that there is a
significant reduction in the distribution system's peak power. The discussions have led to the
conclusion that when PV-BESS units are located optimally, the distribution system

performance improves in all respects
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Figure 5.6 Daily slack bus power curves in scenarios 3 case

In substitution of PV-BESS units, dispatchable biomass units can also be deployed. The PV-

BESS unit curves shown in Figure 5.5 are used to calculate the maximum optimal sizes of the

biomass units. Then, identical system performance can be attained if the biomass units' output
is regulated in accordance with the ideal PV-BESS unit curves shown in Figure 5.5.

5.7 Summary and Comments

This work has analysed the effect of PHEVs' electric load on the distribution system's

technical parameters. The 33-bus system, which comprises residential, commercial, and
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industrial buses, is considered in this study. Two charging scenarios are considered: charging
of PHEVs at home during night-time of the day and charging of PHEVs in PFCS. Using the
probabilistic methodologies and Monte-Carlo simulation, the daily electric power
requirement caused by charging PHEVs in two scenarios is determined. The electrical demand
generated in scenario 1 is imposed on the residential buses on the 33-bus distribution system.
The PFCSs connected to the few buses in the distribution system are subject to the electrical
demand generated in scenario 2. Based on the results of the load flow studies, the system's
technical metrics, such as energy loss and voltage profile, have gotten worse as a result of the
PHEVs' load demand. The system has also seen an increase in peak power demand. To
mitigate the effect on above metrics, optimal planning of PV units operating with is addressed
at first. Results shows that the system's energy loss and voltage deviation index have
decreased. But there was no improvement in the reduction of system’s peak power and
improvement in the system’s lowest voltage magnitude. This is as a result of the PV units'
non-dispatchable nature i.e., dependency of PV units output power on solar irradiance. To
address the improvement in all aspects of technical parameters and to overcome the non-
dispatchable nature of units, optimal planning of PV-BESS units is addressed in the later
stage. The optimum PV-BESS units planning results have shown an improvement in every
technical metric related to the distribution system. However, a converter with sophisticated
controlling techniques is required to regulate the BESS unit's output power in line with the
optimal curves. Since biomass units are also deployable, they can be used in place of PV-
BESS units. The optimal power output curves of RDGs can be used to determine the size of

biomass units.
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Chapter 6

Conclusions and Future Scope

6.1 Conclusions

Numerous issues challenge distribution networks, including increasing load needs,
environmental concerns, operating limitations, infrastructure development restrictions, and
poor efficiency. The optimal integration and planning of distributed generation in distribution
networks can result in several advantages, including improved power quality, supply security,
voltage stability, reliability, and loss reduction. However, the above-mentioned distribution
networks metrics might suffer from improper distributed generation planning. Furthermore,
optimal planning of distributed generation in the distribution network gives a viable solution
for the increased load demand due to plug-in hybrid electric vehicles. The thesis's objectives
are i) Optimal planning of distributed generation and optimal reconfigured network for
improving system’s efficiency and loadabilty (ii) Optimal planning of non-dispatchable PV &
WT units, dispatchable PV-BESS, WT-BIOMASS units by considering solar radiance, wind
speed and load uncertainties for mitigating system’s energy loss and enhancing voltage profile.
(iii) Optimal planning of distributed generation in the presence of PHEVs load demand
charging under private charging scenario (iv) Optimal planning of PV & PV- BESS units in the

presence of PHEVs load demand charging under private and public charging scenarios.

In Chapter 2, the improvement of two distribution system metrics: enhancement of
loadability and minimization of power loss reduction, is addressed. Mitigation of the system’s
power loss improves its efficiency, and an increase in future load can be effectively met by
enhancement in loadability, which enhances the system’s voltage stability margin & loading
marginal factor. The enhancement in the above two metrics is addressed at the system’s peak
load level without considering load uncertainties. The idea behind the above assumption is DGs
have to inject how much active and reactive power into the system at optimal locations by
satisfying operational limits for the improvement of the above-cited metrics to the maximum
extent. 33-Bus and 69-Bus radial distribution test systems are considered in this study. At first,
the optimization of individual objective functions using the latest butterfly optimizer is
addressed. From the outcomes of single objective optimization, it is observed that there exists
a conflicting nature between the two objectives. Then a €-constraint multi-objective technique
using the butterfly optimizer technique is developed to bring the compromised solution between

the two objectives. From the outcomes of the €-constraint multi-objective approach, the
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succeeding points are observed. The most significant improvement in both objectives is
achieved when DGs are optimally placed in the reconfigured distribution network. The optimal
percentage injection of total kVA by the DGs into the system is around 85 % for getting the
benefits mentioned above, which are only possible with the enormous sizes of the combination
of multiple DG types. Similar system performance is achieved if DGs inject power into the

system in accordance with load changes, provided that DGs are dispatchable in nature.

In Chapter 3, optimal planning of non-dispatchable PV & WT units, dispatchable PV-
BESS & WT-BIOMASS units for the enhancement of distribution system efficiency and
voltage profile by considering solar radiance, wind speed and load uncertainties are addressed.
Two theoretically objective functions, energy loss and total voltage deviation, are taken for the
improvement of the two metrics mentioned above. 33-Bus and 69-Bus radial distribution test
systems are considered in this study. In contrast to other multi-objective techniques: the
weighted sum method, weighted product method, max-min method, Fuzzy method & ¢€-
constraint method (used in Chapter 2), which reduce multi-objective optimization into a single
optimization strategy, the Pareto-based multi-objective approach produces a collection of
optimal non-dominant solutions between the competing objectives. Due to the above-cited
advantage, we used a Pareto-based multi-objective velocity-based butterfly optimization
algorithm (MOVBOA) to bring the optimal Pareto front between the competing objectives and
a TOPSIS method was chosen for selecting the most compromised solution. The most
significant improvement in both objectives is observed when dispatchable DGs are placed
optimally in the optimal reconfigured distribution system. However, a converter with
sophisticated controlling techniques is required to regulate the BESS unit's output power in line
with the optimal curves. Due to the consideration of all the DGs: PV, BESS, WT & BIOMASS,
minimization of the distribution system's energy loss, voltage deviation and AEC are

considered, and the final compromised solution is determined.

In Chapter 4, the effect of PHEVs electric load on the distribution system's technical
parameters due to charging of PHEVs at home during night-time of the day is studied first. The
33-bus system, which comprises residential, commercial, and industrial buses, is considered in
this study. Using the probabilistic curves taken from the literature, the 24-hour electrical
demand was generated using the probabilistic curve and imposed on the residential buses on
the 33-bus distribution system. Based on the results of the load flow studies, the system's
technical metrics, such as energy loss and voltage profile, have gotten worse as a result of the

PHEVSs' load demand. The system has also seen an increase in peak power demand. To mitigate
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the effect on above metrics, optimal planning of DG units is addressed. MOVBOA is used for
deriving the final optimal Pareto front between the competing objectives. Results show that the

system's energy loss and voltage deviation index have decreased.

In Chapter 5, the effect of PHEV's electric load on the distribution system's technical
parameters due to two charging scenarios: charging of PHEVs at home during night-time of
the day and charging of PHEVs in PFCS is studied first. The 33-bus system, which comprises
residential, commercial, and industrial buses, is considered in this study. Using the
probabilistic methodologies and Monte-Carlo simulation, the daily electric power
requirement caused by charging PHEVs in two scenarios is determined. The electrical demand
generated in scenario-1 is imposed on the residential buses on the 33-bus distribution system.
The PFCSs connected to the few buses in the distribution system are subject to the electrical
demand generated in scenario 2. Based on the results of the load flow studies, the system's
technical metrics, such as energy loss and voltage profile, have gotten worse as a result of the
PHEVs' load demand. The system has also seen an increase in peak power demand. To
mitigate the effect on above metrics, optimal planning of PV units is addressed first. Results
show that the system's energy loss and voltage deviation index have decreased. But there was
no improvement in the reduction of the system’s peak power and improvement in the system’s
lowest voltage magnitude. This is due to the PV units' non-dispatchable nature i.e.,
dependency of PV units' output power on solar irradiance. To address the improvement in all
aspects of technical parameters and to overcome the non-dispatchable nature of units, optimal
planning of PV-BESS units is addressed in the later stage. The optimum PV-BESS unit
planning results have shown an improvement in every technical metric related to the
distribution system. However, a converter with sophisticated controlling techniques is

required for the regulation of the BESS unit's output power in line with the optimal curves.

6.2 Future Scope
e Optimal Planning of PV, WT and distributed BESS units in a distribution network for

improving metrics like maximization of DGs power penetration, power loss reduction,

and voltage profile improvement.

e Determination of Optimal sizing of BESS in a distribution network with pre-installed

PV and WT units for the improvement of metrics like operating cost minimization,
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power loss minimization, voltage profile improvement, peak load shaving, and load

balancing.
Simultaneous Optimal planning of Public Fast Charging Stations (PFCS), and DGs in

a distribution network by considering uncertainties of DGs and transportation network
of PHEVs.
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APPENDIX-A

Initialize algorithm parameters such as the number of agents N, the dimension of the
problem d, the maximum number of iterations /termax, probability switch P, power

exponent PE and sensor modality SM.

Generate initial random solution between decision variables minimum

L. mavimiim limit vualiiac

Evaluate the fitness (objective functions) of agents using Eq. 2.1, Eq. 2.3 & Eq. 2.12. Record

thao hact cnliitinn ac nhoct

Set iteration count iter=0

iter=iter+1

Calculate the fragrance fy for each agent or butterfly using Eq. 2.17.

Update the positions of the agents using the equations Eq. 2.18 and Eq. 2.19.

Evaluate the fitness of each agent in the new population using Eq. 2.1, Eq. 2.3 &
Eq. 2.12.

Update the gbest vector

Check stopping criteria if

iter<itermax




APPENDIX-B

Determination of PV and WT units’ p.u.
output power curves

Read the distribution system line
and load data, typical p.u 24-hour
load curve data.

\4

Initialization of parameters of the
algorithm such as the population of
agents (N), the maximum number of

iterations (maxiter), repository size etc.

Y

Generation of the initial set of solutions
between the minimum and maximum
limits.

Finding objective function values
for each agent. Record the gbest
solution.

A\ 4

Set iteration count =0

Update the aroma/fragrance of
butterflies.

A 4

iter=iter+1

A4

Update the solutions of each
agent using Eq.3.49, Eq.3.50,
Eq..51 & Eq.3.52.

Find objective function
values for each updated
agent.

A4

Merge updated agents and
previous iteration agents and
find the non-dominated
solutions

Update the solutions in the
repository set

\4

Find the gbest solution
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l

Yes

Check stopping criteria
if iter<itermax

l NO

Print the
gbest solution
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