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ABSTRACT

The transportation sector’s increased use of conventional gasoline led to fossil fuel’s
quick exhaustion. Consequently, the electrification of the transportation sector served as
the primary study focus throughout the decade. Electric vehicles (EVs) have supplanted
fossil-fueled vehicles due to the rising cost of fossil fuels and related environmental
problems. It is anticipated that their utilisation will increase considerably within a short
time. However, several technological and operational difficulties will be brought on by
the widespread usage of EVs and their deep integration with the power system.

Interestingly, current academics have been looking at the optimal places to deploy Elec-
tric Vehicle Charging Stations (EVCS) due to the electrification of the transportation
system and the rising demand for EVs. Inadequate EVCS infrastructure, optimum
EVCS sites, and charge scheduling in EVCS are a few examples. Furthermore, a vital
EVCS infrastructure would be necessary to partially address a most basic EVs question,
namely EVs pricing and range.

In order to increase charging efficiency and reduce owner energy costs, Fast Charging
Stations (FCE) must also be used in addition to domestic chargers. That will lessen
the impact of domestic chargers on the electrical grid’s power quality. The primary
elements that significantly impact the development and progress of electricity are the
cost of electric vehicles, their autonomy, the charging procedure, and the infrastructure
for charging.

The placement of charging stations is a challenging issue involving the transport net-
work and the electrical distribution system. The installation of charging stations within
the distribution system must be done to minimise their detrimental effects on the dis-
tribution system’s operational characteristics. All the considerations mentioned earlier
inspire this thesis, which explores the planning of charging stations. Investigating and
addressing the planning issue for charging infrastructure may be broadly divided into
two groups in this research endeavour.

First the optimal location for Charging Station (CS) is solely taking the distribution
system into account. This work proposes an optimal simultaneous method for improv-
ing power system performance in a sustainable distribution system that considers EVCS,
Distributed Generators (DGs), Shunted Capacitors (SCs) or Distribution Static Compen-
sator (DSTATCOM) and high integration of EVs using fuzzy multi-objective stochastic
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optimisation. The main goal of the suggested approach is to 1) minimise active power
loss, 2) improve voltage profile, 3) improve substation power factor and 4) deploy the
maximum number of EVs to charging stations. In order to develop models for EV bat-
tery charging loads, load flow analysis makes use of the Li-ion battery’s characteristic
curves. The proposed simultaneous fuzzy multi-objective is conducted with and without
system reconfiguration. The numerical results indicate that the simultaneous technique
with system reconfiguration is computationally efficient and scalable, outperforming
the two-stage methodology and the method without system reconfiguration. Simula-
tion results obtained with the Rao-3 algorithm are compared with other conventional
algorithms.

Second the optimal location for the CS considers the network’s superimposition for
distribution and transportation. The multi-objective optimization proposed in this study
aims to simultaneously allocate CS, DGs, and SCs at their best possible efficiency. In
terms of reducing (a) active power loss costs, (b) voltage deviations, (c) CS capital costs,
(d) EV energy usage costs, and (e) DG costs, in addition to fulfilling the number of CS
and EVs throughout all zones based on road transport and the electrical network with
the help of hybrid Grey Wolf Optimiser (GWO) and Particle Swarm Optimisation (PSO)
algorithm.

The suggested solutions to the location problem of charging stations are tested on radial
distribution systems for 69 and 118 buses.
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Chapter 1
Introduction

1.1 Background
The increased demand for traditional fossil fuels caused several consequences that hurt
the environment. Global climate change, resource depletion, and excessive CO2 emis-
sions that cause the greenhouse effect are a few of their unfavorable effects [1]. In
order to minimise CO2 emissions and contain the earth’s temperature increase, the Paris
Agreement was signed. The emphasis was switched to the generation and utilisation of
renewable energy sources and the ensuing technologies to counteract such impacts. De-
spite all technological innovations, the transportation industry still accounts for around
25 % of greenhouse gas emissions [2]. Utilising renewable energies has emerged as
a more reliable supply option to provide social and economic advantages induced by
energy use while minimising the environmental effects of the emissions of the broadest
range of pollutants.

In order to prevent a significant decline in the global economy, it is intended to keep the
pace of emissions nearer to the predicted value as renewable and cleaner transportation
technologies develop. Due to the factors above, there should be a significant change in
focus toward studying and implementing Electric Vehicles (EVs). Propelled by sustain-
able, renewable energy sources, EVs are crucial to a working transportation system.

Additionally, EVs may be a lifesaver in declining natural gas and oil resources. These
points demonstrate the need for EVs, but significant optimisation and hybridisation are
also necessary for a seamless transition from conventional transportation to electric-
ity [3]. Studies suggest that by 2030, EVs might cut Carbon footprints by 28 % [4].
Unfortunately, the two main obstacles that could impact the general public when switch-
ing to EVs are the high price and the inadequacy of charging infrastructure. Over 2020
to 2027, various industries and governments are anticipated to expand the global EV
industry to USD 974,102.5 million [5].

EVs advanced significantly in several nations in 2020 despite challenging conditions
and the Covid-19 pandemic’s detrimental effects on the automobile industry. As seen in
Fig. 1.1, as many as 13 nations were able to increase sales of new light automobiles from
EVs to surpass 10 % in 2020 [6]. According to the International Energy Agency’s (IEA)
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framework, EVs and plug-in hybrids will account for 50 % of lightweight automobile
purchases by 2050 [7].

Figure 1.1: List of nations where the sale of new consumer vehicles will consist primar-
ily of EVs in 2020

1.2 Different types of EVs
EVs are the answer to a thriving global fight against climate change strategy. In addition,
EVs may save lives when depleting natural gas and oil supplies. The batteries provide
the necessary energy in automobiles and lorries, which must be recharged by plugging
them in. Plug-in Electric Vehicles (PEVs) come in various styles, each with unique
attributes. Battery Electric Vehicles (BEV) and Hybrid Electric Vehicles (HEV) are two
forms of PEVs. Photovoltaic and fuel cell electric vehicles are two other electric drive
vehicles [8, 9].

1. A BEV is entirely electric. The internal battery provides all of the vehicle’s elec-
tricity. BEVs are anticipated to go over 100 miles with a single charge in their
early variants. After then, a power supply will be plugged into the battery to
charge them.
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2. In an HEV, the vehicle is propelled by an electric motor and regular internal com-
bustion. The internal computer manages the car’s gasoline and electric engines to
provide power and achieve excellent overall fuel economy. The electric motor in
these vehicles is supported by an onboard battery, which will be fully recharged
when the car is plugged in. Additionally, the batteries recycle the energy recov-
ered during braking and retardation to power the automobile. The automobile
switches back to regular hybrid operation whenever the plug-in battery is ex-
hausted. Parallel-hybrid, series-hybrid, and combination series-parallel hybrid
topologies are among the types of HEVs that can be built.

1.3 Infrastructure and charging options for EVs
Infrastructure for adequate charging is urgently needed to ensure the seamless operation
of EVs. A battery charger is a component that processes and controls the electrical
current that flows through it to transmit energy to an EV battery. EV chargers include a
rectifier that converts AC to DC to charge an EV battery. EVs charging techniques are
categorised as follows:

1. Direct contact is used in the conductive charging technique to transmit power. For
energy transfer, this method connects the electronic equipment with a conductor.
It is easy to use and very effective. On-board or off-board techniques are both ac-
ceptable. An off-board charging is placed at fixed places to provide fast charging
service, whereas onboard charging is typically used for slow recharging, and the
recharging process is completed inside the EV [10].

2. An EV battery receives electricity using inductive charging, commonly referred to
as contactless charging, using an electromagnetic field. Because it offers electrical
safety in all weather conditions, inductive chargers have this advantage. Poor
performance and significant power loss are inductive chargers’ flaws [11].

3. With a battery switching station, consumers can exchange their dead battery for
one wholly charged. Since batteries are gathered and controlled in centralised
places, it provides many advantages, including extended battery lifespan, low time
requirements, and relatively low management costs [12].

The primary location for recharging electric vehicles is at charging stations. Amongst
the most critical elements in the introduction of EVs is efficient charging infrastructure.
The charging levels are described as follows by the Electric Power Research Institute.
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1. Level 1 uses 120 V AC home plugs with a current 15 A (12 A useable) or 20 A
(16 A useable) processing capacity, where a 16 A plug charged in half the time
of a 12 A plug. Level 1 can consume between 1.4 and 1.9 kW of power [12, 13].
Accordingly, depending on the size and type of the battery, this level of charging
takes 8 to 16 hours to charge EVs battery fully. The most affordable and practical
method of recharging at home is at this level. The slowest and cheapest typi-
cal level is present in both commercial and residential buildings. Infrastructure
expenses for residential Level 1 chargers are projected to be between $500 and
$880 [14].

2. The standard definition of Level 2 is that it is the most common and popular
approach for both residential and commercial facilities; For residential installa-
tions, this level allocates a single-phase 240 V AC with a 40 A current capacity,
and for commercial installations, a three-phase 400 V AC with an 80 A current
capacity [15]. EVs battery may be charged in 4 to 8 hours with this level of
charging, which has a power range of 7.7 to 25.6 kW [12, 13]. Due to the acces-
sibility of 240V AC connection, EV customers may typically recharge EV bat-
teries overnight without impacting their household electronics. Installation ex-
penses for residential Level 2 infrastructures are projected to be between $2150
and $2300 [14], whereas those for commercial stations are higher at around $
15000 [16]. Customers strongly identify with Level 2 techniques to their quick
recharging times and standardised vehicle-to-charger connections. The connec-
tions used to power common domestic appliances like electric ovens and laundry
dryers/washers are also used by Level 2 EV supply devices [17]. On the other
hand, a household’s current demand could rise by up to 25 % [18].

3. With a DC quick charging, level 3 charging, which is appropriate for private and
public use, aims to give customers an experience resembling a conventional petrol
pump. 80 % of a battery’s capacity may typically be reached via rapid charging in
10 to 15 minutes, according to the size and kind of battery. Since the final 20 %
of a battery charge for an EV takes a long time to complete, DC charging is often
measured up to 80 % [19]. In Level 3, an off-board charger typically converts AC
to DC; as a result, DC power is supplied to the EVs [13]. In order to allow quick
EV charging, a 3-phase connection with 208–600 V AC and a maximum capacity
of 200 A is used to power the off-board charger. Level 3 charging infrastructure
expenses range from $50,000 to $160,000, based on the component’s grade and
type.
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1.4 EVs’ effects
Future electric power grid penetration is expected to be significantly influenced by the
present expansion of EVs. EVs may burden power infrastructures heavily due to their
additional power consumption. On the current distribution systems, these extra loads
have many negative repercussions. Contrarily, the widespread use of EVs equipped
with intelligent technology has beneficial effects on the environment and economics.
An EV increases the usage of renewable energy sources and reduces the emission of
greenhouse gases into the atmosphere [20]. Information on these different implications
is provided in the following subsections.

1.4.1 EVs’ effect on the power grid

Considering that the transport industry is regarded as the second most significant source
of carbon emissions, EVs are the focus of substantial interest in addressing the problems
caused by global climate change [21]. Even a conventional distribution system will
need more power if EVs are deployed widely. This case indicates a wide range of
significant negative effects on this distribution system. Additionally, the distribution
system benefits noticeably from EVs. Following are some categories for how EVs affect
distribution networks:

1. Negative effect: Voltage instability, a rise in peak load, power quality issues,
power loss, transformer overheating, and overload are some of the negative effects
of EVs on the current distribution system [22–28].

2. V2G technology’s beneficial effects: Due to its unique capabilities of discharg-
ing energy stored back into the distribution system, V2G technology is the most
valuable opportunity to adopt an EV in an electrical network. Due to this tech-
nique, the power system’s reliability is improved, and system expenses are de-
creased [29, 30].

1.4.2 Effects on the environment

Instead of using fuel-based conventional techniques, EVs get their energy needs from the
power grid, which lowers carbon emissions. Additionally, the increased use of renew-
able and sustainable energy sources to recharge EV batteries can help reduce pollution
emissions even more [31]. Using fossil fuel or other polluting-fuel-based electric power
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systems to charge EVs could increase greenhouse gas emissions. However, the correct
inclusion of renewable power has the potential to lower Greenhouse gas and other pol-
lutant emissions both from generating electricity and transportation [32]. Since only a
few businesses can recycle lithium-ion batteries, dead lithium-ion batteries might con-
taminate groundwater when disposed of in landfills [33].

1.4.3 Impact on the economy

From the viewpoints of EV owners and utility companies, the economic effects of EVs
can be seen [34]. While EVs are more efficient than internal combustion engines, own-
ers believe that their vehicles’ operational and fuel expenses are lower than those of
conventional vehicles [35]. From the viewpoint of the power grid, the addition of EVs
to a distribution system raises the system’s cost and other losses; nevertheless, a suitable
charging plan can significantly reduce those negative effects [36].

1.5 Outline of the planning process for charging stations
The location of CS is an essential planning issue that involves the best placement and
sizing of CS while considering financial factors, distribution system operational charac-
teristics, and the comfort of EV users. The qualities of an effective CS placement model
include the following:

1. Both parameters for the distribution and transportation systems must be consid-
ered in the model.

2. The model needs to consider the economic aspects of the installation of CS.

3. The model should incorporate the comfort of EV users.

4. The distribution system’s stability must be considered in the model.

5. The model must use lower computational expenses to achieve the output planning
outcomes.

1.6 The proposed work’s objectives
The objective of this thesis is to analyse many aspects of the issue of planning for charg-
ing stations. Using meta-heuristic algorithms to solve the location problem, formulating
the charging station location, and sizing are the main tasks in this research study. The
following list highlights the significant outcomes of the research presented in this thesis.
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1. To lessen the effect of the EVCS, the two-stage integration of the distribution
system, charging station, DSTATCOM, and DGs.

2. To improve the substation power factor, simultaneous integration of the distribu-
tion system, charging station, DSTATCOM, and DGs.

3. Further, improving the distribution system’s performance distribution system re-
configuration is utilised for simultaneous integration of the distribution system,
charging station, Shunt Capacitors (SCs), and DGs.

4. The distribution system’s stability must be considered in the model.

5. Simultaneous optimal positioning of fast charging stations (FCE), DGs, and SCs
in the radial distribution system coupled via a transportation network

Investigating and addressing the planning issue for charging infrastructure may be broadly
divided into two groups in this research endeavour. Following are the two subdivisions:

1.6.1 The optimal location for charging station is solely taking the
distribution system into account

1.6.1.1 Two-stage placement

The optimal size and positioning of DGs, DSTATCOM, and EVCS for distribution sys-
tems are addressed in this section using a two-stage fuzzy multi-objective method. In the
first stage, a fuzzy technique is utilised to size and allocate DGs and DSTATCOM op-
timally to increase the substation power factor, reduce real power loss, and enhance
the distribution system’s voltage level. The optimal sites for EVCS and the number of
EVs at the EVCS are determined using a fuzzy method in the second stage distribution
system integrated with DGs and DSTATCOM.

1.6.1.2 Simultaneous stage placement

Traditional multi approaches do not consider the substation pf for EVCS, DGs, and
DSTATCOM optimal allocation. A fuzzy multi-objective strategy was used in this work
to assign EVCS, DGs, and DSTATCOM simultaneously in the electrical distribution
network. As a result, in this work, simultaneous EVCS, DGs, and DSTATCOM alloca-
tion in the electrical distribution system was done with a fuzzy multi-objective strategy
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for improved distribution system performance, including reducing active power loss, en-
hancing the voltage level, and keeping SS pf at the preferred level. Furthermore, models
for EV charging loads were created using the load flow analysis and the characteristic
curves of Li-ion batteries. The current system’s performance under enhanced EV and
distribution network loads is also demonstrated.

1.6.1.3 Network reconfiguration placement

The electrical distribution system is reconfigured in this analysis, and the optimum si-
multaneous EVCS, DGs, and SCs are deployed. The proposed technique achieves its
primary goal of (a) reducing active power loss, (b) enhancing the substation power fac-
tor, (c) boosting the distribution system’s voltage profile, and (d) deploying the optimum
number of EVs to EVCS. The influence of transient battery charging load impacts node
voltages at the EVCS, and with the help of DGs and SCs, node voltages are kept at
acceptable levels during steady-state charging.

1.6.2 The optimal location for the charging station considers the
network’s superimposed for distribution and transportation

A multi-objective optimisation for the simultaneous optimal allocation of Fast Charg-
ing Stations (FCEs), DGs, and Shunted Capacitors (SCs) is used. The proposed Pareto
dominance-based hybrid methodology incorporates the advantages of the Grey Wolf
Optimiser and Particle Swarm Optimisation algorithm to minimise the objectives of 118
bus radial distribution systems. The proposed method outperforms some other existing
algorithms in terms of minimising (a) active power loss costs of the distribution system
(CPDN), (b) Voltage Deviations (DVT), (c) FCE development costs (DFC), (d) EV en-
ergy consumption costs (EUC) and (e) DG costs (DGC) as well as satisfying the number
of FCEs and EVs in all zones based on transportation and the electrical network.

1.7 Organisation of the thesis
This thesis is organised into six chapters. The work presented in each chapter is outlined
as follows:

Chapter 1 provides a history of the planning challenge for the charging facilities for
electrical Vehicles.
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Chapter 2, provides a description of the research that has already been conducted on
the subject of planning charging infrastructure.

Chapter 3 suggests a fuzzy categorised two- stage method for EVCS, DGs, and DSTAT-
COM optimal sizing and positioning using the RAO-3 algorithm for 69 bus radial dis-
tribution systems.

Chapter 4 suggests a fuzzy categorised simultaneous method for EVCS, DGs, and
DSTATCOM optimal sizing and positioning using the RAO-3 algorithm for 69 bus
radial distribution systems. Li-ion characteristic curves are used to develop P and Q
load models for EV battery charging. The node voltages at the EVCS are impacted
by the transient battery charging load, and at steady state charging, the node voltage is
maintained fair values with the help of DGs and DSTATCOM. Additionally, the current
system’s performance under enhanced EV and distribution network load is illustrated.

Chapter 5 suggests a fuzzy categorised simultaneous distribution network reconfigura-
tion method for EVCS, DGs, and DSTATCOM optimal sizing and positioning using the
RAO-3 algorithm for 69 bus radial distribution systems.

In Chapter 6, a multi-objective hybrid GWO-PSO algorithm is shown for the simul-
taneous optimal placement of fast charging stations, distributed generators, and shunt
capacitors in an interconnected electric transportation system.

Chapter 7 summarises the research’s significant findings and outlines the potential fu-
ture study in this paradigm.
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Chapter 2
Literature Review

2.1 Introduction
This chapter discusses the body of research on several facets of formulating the optimal
placement for charging stations and using optimisation techniques to address the chal-
lenge. This chapter concludes with a summary of the literature review, the shortcomings
of the available literature, and the scope of the current research.

2.2 Optimal Placement of EVCS
Astonishingly, the innovation and spread of new energies have garnered much attention
in today’s society. Most buyers, therefore, embrace and perceive innovative energy elec-
tric vehicles as a representation of the development and application of new energy. The
adoption of electric and hybrid automobiles is anticipated to offer the best chances for
lowering the use of fossil fuels in transportation. The need for EVCS is growing in tan-
dem with the growth in EV sales. In order to properly handle the charging requirements
of EVs, the distribution of EVCS must be as reasonable as possible.

The exponential growth of EVs presents a new challenge for the infrastructure of the
distribution system and utility operators. The distribution system may be significantly
impacted by high electrical power demand brought on by the integration of EVs, bus
voltages, power loss, voltage imbalance, and power efficiency. Additionally, as more
EVs are on the road, more effective EVCS systems and shorter EVs charging times are
needed. Therefore, rapid charging in EVCS is practical for recharging an EV’s battery
in 20 to 30 minutes [37]. Besides its disadvantages, fast charging negatively affects the
distribution network, which might be avoided with careful EVCS planning [38].

Meanwhile, in the past ten years, research subjects on the optimal placement for Charg-
ing Stations (CS) and the effect of EV load on the distribution network have grown in
importance [39]. Investigating and addressing the planning issue for charging infras-
tructure may be broadly divided into two groups in this research endeavour. Following
are the two subdivisions:

1. The optimal location for CS is solely taking the distribution system into account.
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2. The optimal location for the CS considers the network’s superimposition for dis-
tribution and transportation.

2.3 The optimal location for CS is solely taking the dis-
tribution system into account

The utility operator strategy is used to position CS in the optimum possible way, taking
the distribution system solely into account. The utility operator’s placing of EVCS
considers factors, including reducing bus voltage and the distribution system’s overall
power loss. Poorly coordinated EVCS inclusion into the distribution system may result
in problems with the control, management, and operation of the electrical system and
risk its stability by creating a new surge load for the power grid [40, 41]. Chen et al. [42]
could determine the charging station’s optimum placement by considering the operating,
power loss, and voltage deviation cost as indicators with the help of the balanced mayfly
algorithm. Moradi et al. [43] suggest power loss, voltage profile, and EV charging
costs as goal functions for the research framework of where to locate charging stations
and renewable technologies most effectively using a differential evolution algorithm.
Gomez et al. [44] have built a straightforward method to determine the effect of charging
devices on a transformer, cable, circuit breakers, and switches in distribution systems.
Hadley et al. [45] investigated the need for hydrocarbon resources due to the possible
usage of EVs in distribution networks. Sharma et al. [46] proposed a system for smart
distribution to evaluate the problems connected with EVs’ uncontrolled charging. The
effect of charging EVs on British distribution systems was examined by Papadopoulos et
al. [47] while taking into account the unknowns surrounding residential loads. Dubey et
al. [48] studied the effect of EV charging on home distribution networks and discovered
that secondary circuit voltage profiles were more significantly impacted than primary
line voltage profiles. To maximise the power given to EVs, Richardson et al. [49] have
suggested a linear programming-based method for identifying the optimum charging
rate for a vehicle. According to Salihi et al. [50], a solution based on a two-step process
is suggested to best schedule EVs’ reactive and active power. The method’s initial stage
includes real power scheduling, which aims to reduce the total costs aggregators must
bear for charging. The second aspect of the strategy is reactive power scheduling, which
aims to reduce the bus voltages’ deviation from the desired levels. Zhang et al. [51]
provide a probabilistic approach for aggregated EVs and their effect on the ideal load
profile of the power network. A new electrical corridor will be needed, which is costly,
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to handle a rise in the development and redevelopment by EVs in the future. DGs and
EVCS are installed simultaneously in the distribution systems to find a solution to this
issue.

The sizing and positioning of EVCS without the usage of DGs were the main focuses
of the abovementioned strategies. The changing distribution system landscape has in-
creased interest in how EVs, battery banks, and DGs interact in a microgrid setting.
Chen et al. [52] developed a novel GA-based technique for the optimum integration
of EVs in microgrids taking into account the unpredictability in photovoltaics, energy
market price, and load demand. Longo et al. [53] devised a MILP-based method for the
best plan for a rapid charging station taking into account financial indicators. Kumar
et al. [54] created a bi-level optimisation model for allocating battery energy storage
systems and wind production entities with supplementary provisions in a distribution
system. Ahmad et al. [55] presented an ideal energy-management system to reduce the
cost of energy used to charge the EV. Sabillion et al. [56] suggested a dynamical sched-
ule strategy based on the MILP framework to maximise the cooperative functioning of
PVs and EVs in a home distribution system employing energy storage devices.

DGs are electrical energy sources that provide electricity at the unity power factor, and
they include solar panels, fuel cells, and microturbines (as discussed in the literature
previously mentioned). DSTATCOM or shunt capacitors (SCs). Sirjani et al. [57]
thoroughly analysed numerous research studies on the optimum sizes and locations
of DSTATCOM in the distribution network. The DSTATCOM allocations issue was
proven to have aims such as minimal power losses, limiting voltage fluctuations, en-
hancing voltage stabilities, and increasing reliability measures. By using the differential
evaluation approach for DSTATCOM best allocation in the distribution system, Jazebi
et al. [58] minimised power losses and bus voltage variations. Taher et al. optimised
DSTATCOM placements and size in the 33 and 69 radial distribution networks using an
immune method to reduce power loss. In order to further minimise real power loss, DGs
are integrated with DSTATCOM in the distribution system [59–62]. The concurrent in-
corporation of DSTATCOM and DGs while EVCS-loading reduced the power loss and
voltage fluctuation described by Pratap et al. [63].

Mohammadi et al. [64] developed and implemented an optimisation method to address
the issue of SCs location and active power conditioner sizing in distribution networks
for power quality enhancement. In order to minimise system power losses, optimum
simultaneous deployment of DGs and SCs in the distribution network was proposed
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in [65–68]. A two-stage system was put forth by Gampa et al. [69] for the best placement
of EVCS, DGs and SCs.

In order to promote the use of EVs in mobility in the future, network reconfiguration is
a valuable strategy. The distribution system’s voltage stability and network losses are
both impacted by the introduction of electric vehicles. Reconfiguring the distribution
network helps to lessen the effects of this.

Utility companies now have a tremendous operational option to use the available tie
lines. Network reconfiguration involves rearranging a system’s topological structure
by controlling distant sectionalising switch and tie switches to achieve specific goals
while satiating all operational requirements without islanding any nodes [70]. The radial
topology of the system should be retained, which is the most fundamental restriction.
By reducing losses and voltage variation, balancing load, and improving dependability,
network reconfiguration seeks to optimise the grid’s performance.

The subject of network reconfiguration in the presence of EVs has recently received
much attention due to the potential repercussions. For managing congestion and reduc-
ing line loss in distribution networks with high EV penetration, Huang et al. [71] suggest
combining dynamic tariff and network reconfiguration. Cui et al. [72] investigate net-
work reconfiguration with random, uncoordinated delay and apex delay charging solu-
tions for EVs to reduce losses in the distribution system. In the case of a peak-avoiding
delaying charging approach, the charging demand for EVs is shifted to off-peak hours,
and the charging of EVs is delayed by an arbitrarily long amount of time. Rostami et
al. [73] study the reconfiguration of a distribution system to reduce network costs while
considering various EV charging patterns. Kavousi et al. [74] presents another work
along the same lines. Rahmani et al. [75] use a combination of network reconfiguration
and incentive-based management of EV fleets to reduce a distribution system’s total op-
erating cost. In conclusion, the optimum network reconfiguration method can increase
the usage of EVs in smart grids.

In conclusion, utility operators provide electric power for every connected electric load
in resident, commercial, and industrial areas. The parameters of the distribution system
would be impacted by where the new loads are placed. As a result, the placement
of EVCSs under the utility operator method optimises the distribution system’s active
power loss and voltage deviation. The suggested framework for the optimum position
for charging stations is shown in Fig. 2.1, which only takes the distribution system into
consideration.
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2.4 The optimal location for the CS considers the net-
work’s superimposed for distribution and transporta-
tion.

The optimum location for charging stations involves interacting with the transport and
distribution networks and is a non-convex non-combinatorial problem. Options for
charging station locations should consider distribution and transportation systems.

To maximise the revenues from the CS through EV charging, the charging station owner
pays all installation-related expenditures. As a result, the owner of the CS looks for CS
sites with the highest revenues and lowest outlays. In order to determine the best CS
location, the CS owner strategy considers the investment [76–78], operation [79, 80],
maintenance [81] and land costs [82, 83].

The location of CS influences how EV users charge their vehicles. In order to estimate
the predicted charging demand and the anticipated EV user cost, EV user behaviour
is also considered. By employing hourly electric grid load scenarios, ac power flow
has also estimated the expected cost of additional grid loss brought on by EV charging
[84, 85].

Fast Charging Stations (FCE) are a capital-intensive component of the transport system;
thus, their location must allow for a comprehensive and effective travel service [86].
Additionally, while employing a suitable spatial and temporal resolution, the planning
paradigm has considered individual EV drivers’ mobility [87].

The locations of the charging stations were chosen from a city planner’s point of view,
without consideration for utility operators, CS owners, EV users, or potential growth in
the EV population. Therefore, this research focuses on the utility operators, EV owners
and EV users’ approach to enhancing performance in the distribution network, investor
profit and charging preference of an EV user.

The FCE, a common attribute, has been assigned using the planning approach presented
in the abovementioned articles. Concurrently, adding EVs to the electrical grid could
increase peak demand, voltage drop, and energy loss. DGs and SCs are incorporated
into the distribution system to reduce losses, enhance the voltage profile and balance the
reactive power demand. The suggested framework for the optimum position for charg-
ing stations is shown in Fig. 2.2, which the network’s superimpostion for distribution
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and transportation.

2.5 Optimisation methods to address the charging sta-
tion placement problem

The optimal positioning of the charging station problem has a sophisticated and multi-
variate objective function.

2.5.1 Selection of the optimisation technique

The fascinating exemplar is meta-heuristics, which operate on a method of preliminary
guessing that is enhanced throughout finding as the algorithm identifies the optimal an-
swer for the given mathematical model. Meta-heuristics require little to no data about
the locations and training data and processes on a method of preliminary guessing. De-
spite systems with equal and unequal constraints, these algorithms can produce a viable
yet best solution. The optimal answer is slower and requires much training data with
machine learning methods. It is also important to note that multi-objective optimisation
strategies have been created that could also handle the optimisation of several goals and
produce results that do not contradict each other [88].

2.5.2 Mechanisms for addressing constraints

Constraints are typically set on the fitness values of evolutionary algorithms. Once a
restriction is broken, a significant penalty is introduced, instantly increasing the fitness
function’s weight and causing the algorithms to recognise it as a quasi-solution.

Another strategy is referred to as the "constraint adjustment" method, in which a con-
straint is rounded off or shifted to a nearby feasible area if a decision variable’s position
on the restriction area violates the constraint. It is up to the researchers to choose the
optimal approaches for the needed optimisation challenge, even if each technique has
pros and cons for different optimisation situations [89].

2.5.3 EV optimisation is considered necessary

The innovation for creating EVs is currently in its infancy. The current vehicular trans-
portation system is most designed for traditional systems, and in order for EVs to fully
maximise their utility, they still need to evolve and acclimatise to this system [90, 91].
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Implementing meta-heuristic-based evolutionary algorithms that can keep providing
adaptable and dependable solutions for complicated EV innovations, beginning from
their production, configuration, operation, and placement, is the most significant do-
main of study in EV optimisation [92].

"Goldberg’s view" (1989) accurately illustrates how effective meta-heuristics are for
solving real-world situations [93]. According to the article, optimisation can be used as
a reliable and effective technique to identify the optimum solutions for most challenges
with minimal to no knowledge of the solution’s previous performance.

The disadvantage of using meta-heuristic optimisation approaches is the lack of guar-
antee that the chosen optimising technique will produce the optimum possible answer
to the given situation. Further tuning may be necessary to address the ambiguity in how
well meta-heuristics function in confined and unrestrained scenarios. It is not always
a sensible choice to use single-objective optimisation techniques for multiobjective op-
timisation through different issue formulation methods. The infamous "No free lunch
theory" [94] asserts that not every optimisation technique can solve every optimisation
issue.

This variance in productivity among the metaheuristics can be attributed to many fac-
tors. First, every metaheuristic is just a modified form of an arbitrary search strategy
that scours the search space in quest of a more compelling answer. Every search situ-
ation is different; for instance, swarm intelligence iteratively searches the search area
depending on the animal, bird, fish, and other foraging behaviours [95]. Another search
method involves the formation of the answer over time using an evolutionary approach
that adheres to a predetermined set of parameters, intending to improve the solutions’
accuracy [96] continually. In addition, "human behaviour-based algorithms" [97, 98]
have gained popularity because of their simplicity, convenience of use and capacity to
solve challenges involving both single and multiobjective optimisation that are limited
and unrestrained.

The second major drawback is the optimum trade between exploration (diversifying so-
lutions focused on global searching) and exploitation (intensifying solutions focused on
local search) [99]. The suggested algorithms may efficiently traverse the search area be-
cause they can produce solutions with a high diversification for each iteration; however,
the solutions’ accuracy is lacking. In the opposite situation, algorithms that prioritise
further exploiting a particular section of the search panorama could be unable to ex-
plore the area beyond it, becoming trapped at local optimum solutions and yielding
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solutions with no population diversity. This phenomenon, called "local trapping," is a
significant cause of the infamous "untimely converging," in which the problem’s fitness
at a preliminary phase does not get better as iterations advance. To prevent these cir-
cumstances, tuning improvements and a more thorough examination of the search area
are necessary. Unique variables to change and adapt the search strategy may also be
incorporated into current approaches to encourage the equivalence between exploration
and exploitation [100].

Since algorithms and metaheuristics are the main determinants of optimisation, they are
also given more weight. The basic tuning requirements, i.e., the iteration count [101]
and the size of the population [102], are to be suitably tuned, prioritising the number
of function evaluations and computing durations to obtain the optimum metaheuristic
possible.

Although the effectiveness of bio-inspired algorithms has grown in recent years, the
idea that they are preferable to other evolutionary, physics-based strategies is still up for
debate. Optimal performance is frequently regarded as a vital point.

The various optimisation techniques chosen for EV optimisation during the previous
two decades are graded based on their implementation in multiple domains. Deb et
al. [103] propose NSGA-II, a system that uses improved mutation and crossover pro-
cess to produce the future offspring population and then chooses the appropriate upcom-
ing generation to use a non-dominated Pareto technique and crowd distance assessment
method. James et al. [104] analyse the swarm behaviour, which includes intellectual
and interpersonal memory components and inertial weight to direct the particle to the
optimum option. With EV load and renewable power generation, Zhao et al. [105] de-
veloped an economic dispatch model using PSO. Ant colony optimisation (ACO) [106]
is inspired by how ants travel across networks to locate good routes to feed using a
pheromone-driven communication system. Dervis et al. [107] built a colony of artificial
bees with feeding supplies, hired forager honeybees, and jobless forager bees with a
path counter to effectively investigate the search space. Rao et al. [108] model a human
behavioural-based optimisation method for optimising actual problems relying on the
exchange of knowledge in a class engagement between instructors and learners. Mir-
jalili et al. [109] represent the group’s vital leadership supervision process used by the
grey wolf classed as alpha, beta, delta, and omega while wolves seek their target in an
optimisation technique. In order to get at the ultimate planning of FCE, Akanksha et
al. [110] utilised the multiobjective GWO method to find a non-dominated solution and
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fuzzy satisfaction-based judgements. Rao et al. [111] developed an easier-to-implement
algorithm-specific-parameter-less optimisation for both single and multiobjective re-
stricted and unrestrained optimisation based on the solutions moving towards the op-
timum solutions while rejecting the worst solutions. An optimisation technique called
Rao was just newly created [112]. Due to its ease and convenience of usage in optimi-
sation purposes, it is widely used by researchers.

In summary the field of optimisation using metaheuristics is an excellent fit for the
optimisation of EVs because these problem formulations demand a lot of numerical
computation, an accurate solution that handles many dimensions, and many limitations
that control the viability of the solutions.

2.6 Summary
This chapter presents a thorough analysis of the literature about several issues of the
development of charging stations for electric vehicles. The installation of EVCS load
degrades the power grid’s functioning characteristics, according to the consensus of all
the research on the subject.

2.6.1 Limitation

According to earlier studies, the EVCS placements problems formulation and related
methods of the solution have the following drawbacks:

1. Most researchers neglect the distribution system’s substation power factor while
the optimal placement of EVCS.

2. Most of the research review does not consider future EV population expansion.

3. Most researchers have positioned the charging station (particularly fast charging)
by considering the cost function while neglecting the effect of the charging station.

4. The planning of the charging stations takes into account the viewpoints of an
urban architect rather than that of the utility operator of the distribution system,
EV users, or charging station owners.

5. Most academics have thought about one or two deployment strategies for charging
stations in places where doing so is not advised due to practical issues. The owner
of the charging station, the distribution network’s operator and the EV consumers
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are all equally interested in formulating the issue for the optimum placements of
charging stations.
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Figure 2.1: The charging station framework only considers the distribution system
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Figure 2.2: The charging station framework considering both distribution system and
transportation network
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Chapter 3
Two-Stage Optimal Placement of Electric Vehi-
cle Charging Stations in a Distribution System

3.1 Introduction
Presently, EVs are preferred for road network transportation. Moreover, various gov-
ernment agencies and automobile industries are focusing on EVs due to their cheaper
operating costs and because they have less of an impact on climatic change when com-
pared to conventional engine vehicles. As EVs are rapidly increasing, EVCSs are being
integrated into the distribution system (DST). Due to this, power demand is increasing,
leading to an increase in the load level in the distribution line and a system voltage drop.
Increased power losses and voltage instability cause power security problems in the dis-
tribution system. The world’s perception of distributed renewable energy has changed
significantly in recent decades due to its added economic, political, and ecological ben-
efits. However, the improper placements of DGs make the operation of a sustainable
distribution network more difficult and complex. DSTATCOMs are routinely installed
by utility engineers to enhance the distribution system’s voltage profile. In order to miti-
gate this problem, this paper includes simultaneous optimal sizing and citing of EVCSs,
DGs and DSTATCOMs in the distribution system.

This chapter presents a fuzzy classified method for optimal sizings and two-stage place-
ments of EVCSs, DGs and DSTATCOMs for 69-bus radial distribution systems using
the RAO-3 algorithm. The prime objective of the proposed method is to (1) Reduce real
power loss; (2) Enhance the substation (SS) power factor (pf); (3) Enhance the distribu-
tion network’s voltage profile; and (4) Allocate the optimum number of vehicles at the
charging stations.

The proposed fuzzified RAO-3 algorithm improves the substation pf in the distribution
system. The fuzzy multi-objective function is utilized for the two stages of the EVCS,
DG and DSTATCOM.

The rest of the chapter is structured as follows: Section 3.2 explains the fuzzy multi-
objective problem formulation and its restrictions. Section 3.3 introduces the suggested
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two-stage fuzzy multi-objective RAO-3 method. Section 3.4 presents the results and
analyses, and Section 3.5 presents the summary.

3.2 Problem Formulation
This section presents fuzzy multi-objective functions for the optimal placements of DG,
DSTATCOM and EVCS in various cases to improve the DST performance. This section
presents the multi-objective function that focuses on reducing real power loss, enhancing
the voltage profile of DST, enhancing the substation’s power factor and the optimum
number of electric vehicles at the EVCS.

The fuzzy domain membership function is presented for each objective. The member-
ship function indicates the level of goal satisfaction. In the crisp domain, the member-
ship function values are either zero or unity, whereas, in the fuzzy domain, they range
from zero to unity. Consequently, the fuzzy set theory advances the classic style the-
ory [113]. The membership function is a strictly monotonically declining continuous
function with lower and upper bound values for the various goals described below. The
trapezoidal memberships are used to obtain the desired multi-objective values, such as
reduced power loss and improved voltage limitations [114]. The triangular function is
used for additional objectives needed to mollify constraints, such as the SS power factor
and DG penetration limit [114].

3.2.1 Fuzzification of Real Power Loss of the DST

The real power losses of the distribution system is shown below:

RPL =
nb−1

∑
j=1

Pl j (3.1)

Pl j =
r j ×

{
P2

j+1 +Q2
j+1

}
∣∣v j+1

∣∣2 (3.2)

Pl j is the assumed test distribution network’s branch real power loss, where Pj+1 is the
active power load and Q j+1 is the reactive power load injected at the load ( j+1) node.
In the distribution network, resistance at the jth node is r j and the voltage at the ( j+1)th

node is v j+1. The real power loss index (RPLX) can be calculated as:

RPLX =
RPLDGSC

RPLBase
(3.3)
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RPLDGSC is the active power loss with DG and DSTATCOM. The active power loss
in the base situation is represented by RPLBase. The fuzzified real power loss index
(∈ RPLX ) [69] is shown in Figure 3.1. RPLXmax is considered unity. Based on utility
necessity, RPLXmin was selected, such that the active power loss was reduced to the
desired value. The mathematical expression for the fuzzy set ∈ RPLX is explained in
Equation (3.4).

∈ RPLX=


1 for RPLX ≤ RPLXmin

RPLXmax−RPLX
RPLXmax−RPLXmin for RPLXmax ≤ RPLX ≤ RPLXmin

0 for RPLX > RPLXmax

(3.4)

Figure 3.1: Reduction of real power loss.

3.2.2 Fuzzification of Voltage Nodes of the Distribution Network

The fuzzy membership function of voltage (∈v j) [69] of each node j in the distribu-
tion network is explained in Figure 3.2; mathematically, it can be explained in Equa-
tion (3.5): vl1 = 0.94, vmin = 0.95, vmax = 1.05 and vl2 = 1.06 are assumed. In this
work, the fuzzy voltage performance (∈v) is the minimum value of fuzzy membership
of the voltage of each node of the distribution network considered. It can be defined as
∈v= (1−min(∈v j)).
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∈v j=



0 for v j ≤ vl1
v j−vl1

vmin−vl1
for vl1 < v j < vmin

1 for vmin ≤ v j ≤ vmax
v j− vmax
vl2−vmax

for vmax < v j < vl2

0 for v j > vl2

(3.5)

Figure 3.2: Bus voltage.

subsectionFuzzification of SS Power Factor The DG must operate at a lagged pf of 0.95
to increase the SS power factor (p f ). It is possible to determine the SS power factor:

p f = cos

(
SSN

kW

SSN
kVA

)
(3.6)

SSS
kW =

nb

∑
j=1

Pload
j +Pl −

ndg

∑
k=1

PDG
k (3.7)

SSS
kVAr =

nb

∑
j=1

Qload
j +Ql −

nsc

∑
m=1

QSC
m −

ndg

∑
k=1

PDG
k × /0dg (3.8)

SSS
kVA =

√
SSS

kW
2
+SSS

kVAr
2 (3.9)

PDG is the capacity of DG. ndg stands for the number of DGs installed in the DST. The
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active power load connected to the jth bus is Pload
j , and the total number of buses in the

DST is nb. When DG, DSTATCOM, or EV charging stations are deployed, The distri-
bution network’s active power loss is termed Pl. The reactive power load linked to the
jth bus is Qload

j , the DSTATCOM rating is QSC
m , and the total number of DSTATCOMs in

the DST is nsc. When DG or DSTATCOM are implemented, the distribution network’s
reactive power loss is Ql.

The triangular fuzzy membership function [69] for the SS power factor (∈p f ) is shown
in Figure 3.3 and the mathematical expression is shown in Equation (3.10).

∈ p f=



0 for p f ≤ p f min
p f−p f min
p f s−p f min

for p f min ≤ p f ≤ p f s
p f max−p f
p f max−p f s

for p f s ≤ p f ≤ p f max

0 for p f ≤ p f max

(3.10)

In the preceding equations, p fmin =0.85, p fs =0.95, and p fmax = 1.0 are used. The
desired power factor level is denoted as p f s.

Figure 3.3: SS power factor.

3.2.3 Fuzzification of DG Penetration

Penetration of the DG index in the distribution network can be defined as the ratio of the
number of DGs connected to the total real power load in the DST.

DGPI =
∑

ndg
k=1 Pdg

∑
nb
j=1 Pload

(3.11)
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Figure 3.4 shows the triangular fuzzification of the DG penetration (∈DGPI) [69] limit;
the mathematical expression is shown in the following Equation (3.12). DGPImin =

0.4, DGPIs = 0.5, DGPImax = 0.6, respectively. DGPIs are the desired penetration
levels in the distribution network. In this work, penetration is considered at 50%.

∈ DGPI=



0 for DGPI ≤ DGPImin

DGPI−DGPImin
DGPIs−DGPImin

for DGPImin ≤ DGPI ≤ DGPIs

DGPImax−DGPI
DGPImax−DGPIs

for DGPIs ≤ DGPI ≤ DGPImax

0 for DGPI ≤ DGPImax

(3.12)

Figure 3.4: DG penetration.

3.2.4 Fuzzification of the EV Power Loss Index

With the EV index, the real power loss can be calculated as follows:

EV PI =
EV PIEV LD

EV PILD (3.13)

EV PIEV LD is the active power loss with EV and other load losses. EV PILD is the load
loss. Here, the load can be DG, DSTATCOM, or any commercial load. The member-
ship fuzzification of the EV power loss index (∈EV PI) [69] is shown in Figure 3.5; the
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mathematical expression is shown in Equation (3.14).

∈ EV PI=



0 for EV PI ≤ EV PImin

EV PI−EV PImin
EV PIs−EV PImin

for EV PImin ≤ EV PI ≤ EV PIs

EV PImax−EV PI
EV PImax−EV PIs

for EV PIs ≤ EV PI ≤ EV PImax

0 for EV PI ≤ EV PImax

(3.14)

EV PImin = 1, EV PIs = 1.5, EV PImax = 2 respectively. EV PI is always greater than
1 because power loss increases with the addition of the EV load in the distribution
network.

Figure 3.5: EV real power index.

3.2.5 Multi-Objective Fuzzy Function for Optimal Sizing and Loca-
tion of EVCS, DG, and DSTATCOM

1. In the case-1 DG and DSTATCOM are placed optimally in the DST, then the fol-
lowing equation depicts multi-objective fuzzy functions for the DG and DSTAT-
COM optimum sites and sizings:

Fzdc =
1

∈ RPLX + ∈ p f + ∈ v + ∈ DGPI (3.15)

2. The following equation depicts the fuzzy objective functions of the case-2 for the
optimum location and sizing of EVCS:

Fze =
1

(∈ EV PI)
(3.16)
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The multi-objective fuzzy functions, explained in Equations (3.15)–(3.16), are mini-
mized by using the RAO-3 algorithm subjected to different constraints. In this work,
penetration of DG in the distribution network is considered to be 50 % of the total active
power load; the reactive power injection is 50 % of the total reactive power.

0 < PDG
k ≤ PDG

max where k = 1, 2, 3 (3.17)

0 < Qsc
m ≤ Qsc

max where k = 1, 2, 3 (3.18)

PDG
k and Qsc

m are the DG power and DSTATCOM reactive power injection at the nodes
in the distribution network at optimal locations.

3.3 Summary of RAO-3
The optimization algorithm Rao was recently created [112]. Rao-1, Rao-2 and Rao-3
are the three proposed Rao algorithms. This study chose it as a population-based ap-
proach because it is straightforward to employ in optimized applications. It also has
fewer control factors because there is no metaphorical explanation. Once the halt condi-
tion is reached, only the swarm size needs to be changed. Compared to other algorithms,
the RAO algorithm performs better statistically because it can ensure exploration per-
formance while yielding superior exploitation, keeping an excellent balance between
exploration and exploitation.

The three RAO algorithms follow similar processes. However, as seen in the following
steps and shown in Figure 3.6, only the movement equation is different.

1. Initialize the system data and load profile.

2. Initialize the population (algorithm parameter), iteration and set the maximum
iteration.

3. Randomly initialize the sizings and locations of EVCS, DG and DSTATCOM.

4. The objective function’s indicated fitness function is put to the test.

5. Identify the best and worst solutions proposed by the population.

6. The revised solution is updated for all populations under the selected RAO algo-
rithm as follows:
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• RAO-1:
z′m,p,i = zm,p,i + rand1,m.i × (zm,b,i − zm,w,i) (3.19)

• RAO-2:

z′m,p,i = zm,p,i + rand1,m.i × (zm,b,i − zm,w,i)

+rand2,m.i × (| zm,p,i or zm,d,i | − | zm,d,i or zm,p,i |)
(3.20)

• RAO-3:

z′m,p,i = zm,p,i + rand1,m.i × (zm,b,i − | zm,w,i |)

+rand2,m.i × (| zm,p,i or zm,d,i | − (zm,d,i or zm,p,i))
(3.21)

zm,p,i is the mth variable’s value for the pth candidate in the ith iteration. The best
solution is denoted by zm,b,i, whereas the worst solution is denoted by zm,w,i. The Rao
algorithm can guarantee exploration performance while producing superior exploitation,
resulting in an excellent balance between exploitation and exploration, representing the
method’s higher statistical performance when compared to other algorithms.
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Figure 3.6: RAO-3 algorithm implementation flow chart.
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3.4 Results and Discussion
For this study, a 69 bus radial distribution system is used. 100 MVA and 12.66 kV are the
system’s base values. For load flow studies, the backwards-forward sweep approach is
preferred. The simulation is run with MATLAB 2017a software on a computer with an
Intel Core i5 8th Gen processor and 8GB RAM. The total active power load is 3082.19
kW, the reactive power load is 2796.77 kVAr, total real losses are 225 kW and the
lowest voltage is 0.9092 calculated from the load flow following data in the base case.
The algorithm made the following assumptions: itrmax = 100 and population = 100.

This work addresses the appropriate placement and sizing of DGs and SCs units in the
distribution network, containing three bus nodes of DGs units and three bus nodes of
SCs units. Furthermore, five bus nodes are considered for optimal EVCS planning. In
each charging station maximum of 50 EV can be charged. Nissan Altra Lithium-ion
batteries are considered to have a rating of 6.5kW [69].

3.4.1 Cases

Two different scenarios were considered in the given DST for optimal sizings and loca-
tions of EVCS, DSTATCOM and DG.

• Stage 1: In this first stage, DSTATCOM and DG are integrated with the distribu-
tion network;

• Stage 2: In the second stage, EV charging stations are connected.

3.4.1.1 Stage 1

In the first stage, optimum citing and sizing of DG and DSTATCOM are done, with
the help of a fuzzy multi-objective function, as shown in Equation (3.14). This fuzzy
multi-objective used in Equation (3.14) is considered to maintain the substation power
factor desired value, improve the voltage profile, and reduce the distribution system’s
active power losses. Optimum allocations of DG and DSTATCOM are done with the
RAO-3 algorithm’s help, as shown in Tables 3.1 and 3.2. From this work, it can be seen
that in the proposed method, each bus voltage moves closer to unity and the distribution
system’s performance is enhanced. The fuzzy RAO-3 method is compared with a two-
stage methodology [69], fuzzy TLBO, fuzzy GWO and fuzzy PSO. The performance of
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the distributed system, voltage profile, and convergence of fitness is better with RAO-3,
as depicted in Table 3.3 and Figures 3.7 and 3.8.

Figure 3.7: Voltage Curve.

Figure 3.8: Fitness Curve of DG and DSTATCOM.

3.4.1.2 Stage 2

The EVCS is installed after the integration of the DG and DSTATCOM in the DST,
which is the second stage. In this work, five optimum locations are preferred for locat-
ing the charging station. In each charging station, a maximum of 50 EVs are assumed.
A fuzzy multi-objective was used for achieving this optimal location, as shown in Equa-
tion (3.15). The optimum number of EVs and optimum locations of EVCSs are shown in
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Table 3.4. The single-line diagram of the 69-bus radial distribution system with EVCS,
DG and DSTATCOM of two-stage is shown in Figure 3.9.

Figure 3.9: The single-line diagram of the 69-bus radial distribution system of two-stage
methodology.

3.5 Summary
In stage-2, the active power loss is reduced to 84.675%, 15.92%compared to the base
case and two-stage methodology [69]. The minimum voltage of the bus is improved
to 0.97653 p.u. two-stage compared to the base case minimum voltage of 0.902. The
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optimum no -of vehicles in two-stage is increased to 4.21%, compared to the two-stage
methodology [69]. The final distribution of the active power loss and minimum voltage
with DG, DSTATCOM and EV are shown in Table 3.5.
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Chapter 4
Simultaneous Optimal Placement of Electric Ve-
hicle Charging Stations in a Distribution Sys-
tem

4.1 Introduction
The strategy proposed in the previous chapter reduces the overall power losses and im-
proves the voltage profile. However after the inclusion of EVCS the substation power
factor is not considered and future expansion of EVs in the distribution system is also
unpredictable. This chapter, presents a fuzzy classified method for simultaneous opti-
mal sizing and placement of EVCS, DG and DSTATCOM for 69 bus radial distribution
systems using the RAO-3 algorithm. The characteristic curves of Li-ion batteries are
utilised for load flow analysis to develop models for EV battery charging loads. The
prime objective of the proposed method is to 1) reduce real power loss, 2) enhance Sub-
station (SS) power factor (pf), 3) enhance the distribution network’s voltage profile, and
4) allocate the optimum number of vehicles at the charging stations. Moreover, the ex-
isting system’s performance for increased EV and distribution system loads is presented.

The rest of the chapter is structured as follows: Section 4.2 explains the fuzzy multi-
objective problem formulation and its restrictions. In Section 4.3, from the battery
charging characteristics, the charging load models for EV batteries were developed for
the load flow analysis. Section 4.4 introduces the suggested fuzzy multi-objective RAO-
3 method. Section 4.5 presents the results and analyses and Section 4.6 presents the
summary.

4.2 Problem Formulation
This section presents fuzzy multi-objective functions for the simulatenous optimal place-
ments of DG, DSTATCOM and EVCS to improve the DST performance. This section
presents the multi-objective function that focuses on reducing real power loss, enhancing
the voltage profile of DST, enhancing the substation’s power factor, and the optimum
number of electric vehicles at the EVCS. The fuzzy domain membership function is
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presented for each objective. The membership function indicates the level of goal sat-
isfaction. In the crisp domain, the membership function values are either zero or unity,
whereas, in the fuzzy domain, they range from zero to unity.Consequently, the fuzzy set
theory advances the classic style theory [113]. The membership function is a strictly
monotonically declining continuous function with lower and upper bound values for
the various goals described below. The trapezoidal memberships are used to obtain the
desired multi-objective values, such as reduced power loss and improved voltage limi-
tations [114]. The triangular function is used for additional objectives needed to mollify
constraints, such as the SS power factor and DG penetration limit [114].

4.2.1 Fuzzification of Real Power Loss of the DST

The real power losses of the distribution system is shown below:

RPL =
nb−1

∑
j=1

Pl j (4.1)

Pl j =
r j ×

{
P2

j+1 +Q2
j+1

}
∣∣v j+1

∣∣2 (4.2)

Pl j is the assumed test distribution network’s branch real power loss, where Pj+1 is the
active power load and Q j+1 is the reactive power load injected at the load ( j+1) node.
In the distribution network, resistance at the jth node is r j and the voltage at the ( j+1)th

node is v j+1. The real power loss index (RPLX) can be calculated as:

RPLX =
RPLDGSC

RPLBase
(4.3)

RPLDGSC is the active power loss with DG and DSTATCOM. The active power loss
in the base situation is represented by RPLBase. The fuzzified real power loss index
(∈ RPLX ) [69] is shown in Figure 4.1. RPLXmax is considered unity. Based on utility
necessity, RPLXmin was selected, such that the active power loss was reduced to the
desired value. The mathematical expression for the fuzzy set ∈ RPLX is explained in
Equation (4.4).
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∈ RPLX=


1 for RPLX ≤ RPLXmin

RPLXmax−RPLX
RPLXmax−RPLXmin for RPLXmax ≤ RPLX ≤ RPLXmin

0 for RPLX > RPLXmax

(4.4)

Figure 4.1: Reduction of real power loss.

4.2.2 Fuzzification of Voltage Nodes of the Distribution Network

The fuzzy membership function of voltage (∈v j) [69] of each node j in the distribu-
tion network is explained in Figure 4.2; mathematically, it can be explained in Equa-
tion (4.5): vl1 = 0.94, vmin = 0.95, vmax = 1.05 and vl2 = 1.06 are assumed. In this
work, the fuzzy voltage performance (∈v) is the minimum value of fuzzy membership
of the voltage of each node of the distribution network considered. It can be defined as
∈v= (1−min(∈v j)).

∈v j=



0 for v j ≤ vl1
v j−vl1

vmin−vl1
for vl1 < v j < vmin

1 for vmin ≤ v j ≤ vmax
v j− vmax
vl2−vmax

for vmax < v j < vl2

0 for v j > vl2

(4.5)

subsectionFuzzification of SS Power Factor The DG must operate at a lagged pf of 0.95
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Figure 4.2: Bus voltage.

to increase the SS power factor (p f ). It is possible to determine the SS power factor:

p f = cos

(
SSN

kW

SSN
kVA

)
(4.6)

SSS
kW =

nb

∑
j=1

Pload
j +Pl −

ndg

∑
k=1

PDG
k (4.7)

SSS
kVAr =

nb

∑
j=1

Qload
j +Ql −

nsc

∑
m=1

QSC
m −

ndg

∑
k=1

PDG
k × /0dg (4.8)

SSS
kVA =

√
SSS

kW
2
+SSS

kVAr
2 (4.9)

PDG is the capacity of DG. ndg stands for the number of DGs installed in the DST. The
active power load connected to the jth bus is Pload

j , and the total number of buses in the
DST is nb. When DG, DSTATCOM, or EV charging stations are deployed, The distri-
bution network’s active power loss is termed Pl. The reactive power load linked to the
jth bus is Qload

j , the DSTATCOM rating is QSC
m , and the total number of DSTATCOMs in

the DST is nsc. When DG or DSTATCOM are implemented, the distribution network’s
reactive power loss is Ql. The triangular fuzzy membership function [69] for the SS
power factor (∈p f ) is shown in Figure 4.3 and the mathematical expression is shown in
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Equation (4.10).

∈ p f=



0 for p f ≤ p f min
p f−p f min
p f s−p f min

for p f min ≤ p f ≤ p f s
p f max−p f
p f max−p f s

for p f s ≤ p f ≤ p f max

0 for p f ≤ p f max

(4.10)

In the preceding equations, p fmin =0.85, p fs =0.95, and p fmax = 1.0 are used. The
desired power factor level is denoted as p f s.

Figure 4.3: SS power factor.

4.2.3 Fuzzification of DG Penetration

Penetration of the DG index in the distribution network can be defined as the ratio of the
number of DGs connected to the total real power load in the DST.

DGPI =
∑

ndg
k=1 Pdg

∑
nb
j=1 Pload

(4.11)

Figure 4.4 shows the triangular fuzzification of the DG penetration (∈DGPI) [69] limit;
the mathematical expression is shown in the following Equation (4.12). DGPImin =

0.4, DGPIs = 0.5, DGPImax = 0.6, respectively. DGPIs are the desired penetration
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levels in the distribution network. In this work, penetration is considered at 50%.

∈ DGPI=



0 for DGPI ≤ DGPImin

DGPI−DGPImin
DGPIs−DGPImin

for DGPImin ≤ DGPI ≤ DGPIs

DGPImax−DGPI
DGPImax−DGPIs

for DGPIs ≤ DGPI ≤ DGPImax

0 for DGPI ≤ DGPImax

(4.12)

Figure 4.4: DG penetration.

4.2.4 Fuzzification of the EV Power Loss Index

With the EV index, the real power loss can be calculated as follows:

EV PI =
EV PIEV LD

EV PILD (4.13)

EV PIEV LD is the active power loss with EV and other load losses. EV PILD is the load
loss. Here, the load can be DG, DSTATCOM, or any commercial load. The member-
ship fuzzification of the EV power loss index (∈EV PI) [69] is shown in Figure 4.5; the
mathematical expression is shown in Equation (4.14).

∈ EV PI=



0 for EV PI ≤ EV PImin

EV PI−EV PImin
EV PIs−EV PImin

for EV PImin ≤ EV PI ≤ EV PIs

EV PImax−EV PI
EV PImax−EV PIs

for EV PIs ≤ EV PI ≤ EV PImax

0 for EV PI ≤ EV PImax

(4.14)
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EV PImin = 1, EV PIs = 1.5, EV PImax = 2 respectively. EV PI is always greater than
1 because power loss increases with the addition of the EV load in the distribution
network.

Figure 4.5: EV real power index.

4.2.5 Multi-Objective Fuzzy Function for Optimal Sizing and Loca-
tion of EVCS, DG, and DSTATCOM

Multi-objective fuzzy functions for simultaneous optimum allocation of EVCS, DSTAT-
COM, and DG are shown in the following equation:

Fzs =
1

∈ RPLX + ∈ p f + ∈ v + ∈ DGPI + ∈ EV PI (4.15)

The multi-objective fuzzy functions, explained in Equation (4.15), are minimized by
using the RAO-3 algorithm subjected to different constraints. In this work, penetration
of DG in the distribution network is considered to be 50 % of the total active power
load; the reactive power injection is 50 % of the total reactive power.

0 < PDG
k ≤ PDG

max where k = 1, 2, 3 (4.16)

0 < Qsc
m ≤ Qsc

max where k = 1, 2, 3 (4.17)

PDG
k and Qsc

m are the DG power and DSTATCOM reactive power injection at the nodes
in the distribution network at optimal locations.

4.3 Modeling Battery Charging Load for EV
In this work, it is anticipated that EVs will be recharged from completely depleted states.
Figure 4.6 can be used to produce the equation for the load flow analysis using the mod-
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els for the battery charging loads [115]. The charging of a battery is shown in Equa-
tion (4.18) for both transient and steady state conditions. As a result, the exponential
equations below can be used to estimate the battery power charging parameters.

PbEV (t) =


Pmax

bEV (1− e
(
−γ×t

tb

)
) 0 ≤ t ≤ tb

Pmax
bEV

(
tmax−t
tmax−tb

)
tb ≤ t ≤ tmax

0 t > tmax

(4.18)

Figure 4.6: Li-ion battery charging characteristics.

PbEV (t) represents the instantaneous EV battery charging load. The maximum battery
charging load for the substation is Pmax

bEV .

δPmax
bEV = Pmax

bEV

(
1− e

(
−γ×ta

tb

))
(4.19)

γ =−
(

ta
tb

)
ln(1−δ ) (4.20)

ta = 0.25 h, tb = 4.5 h, and tmax = 5 h are in the preceding Equations (4.18) and (4.20),
respectively, taken from Figure 4.6. γ and δ are EV battery characteristic constants.
Equation (4.20) (derived from Equation (4.19) can be used to find the value of γ . The EV
battery’s characteristic constants are alpha and beta. The fraction of maximum charging
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load, expressed as 0.95, accounts for 95% of Pmax
bEV at time ta. Equation (4.21) can be

utilized to establish the power charging equation when the batteries are charged from a
zero-charge scenario P0

bEV .

PbEV (t) = Pmax
bEV

(
1− e

(
−γ×t

tcg

))
+ P0

bEV

(
e
(
−γ×t

tcg

))
0 < t < tcg (4.21)

The tcg is the time it takes to charge a battery from its starting charge position fully. The
following equation can be used to describe the state of the power-charging battery.

SOC(t +1) = SOC(t)+ PbEV (t)×∆(t) (4.22)

Once reaching 100 % SOC, the batteries should be unplugged from the power supply to
minimize battery damage caused by overcharging.

4.4 Summary of RAO-3
The optimization algorithm Rao was recently created [112]. Rao-1, Rao-2 and Rao-3
are the three proposed Rao algorithms. This study chose it as a population-based ap-
proach because it is straightforward to employ in optimized applications. It also has
fewer control factors because there is no metaphorical explanation. Once the halt condi-
tion is reached, only the swarm size needs to be changed. Compared to other algorithms,
the RAO algorithm performs better statistically because it can ensure exploration per-
formance while yielding superior exploitation, keeping an excellent balance between
exploration and exploitation.

The three RAO algorithms follow similar processes. However, as seen in the following
steps and shown in Figure 4.7, only the movement equation is different.

1. Initialize the system data and load profile.

2. Initialize the population (algorithm parameter), iteration and set the maximum
iteration.

3. Randomly initialize the sizings and locations of EVCS, DG and DSTATCOM.

4. The objective function’s indicated fitness function is put to the test.

5. Identify the best and worst solutions proposed by the population.
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6. The revised solution is updated for all populations under the selected RAO algo-
rithm as follows:

• RAO-1:
z′m,p,i = zm,p,i + rand1,m.i × (zm,b,i − zm,w,i) (4.23)

• RAO-2:

z′m,p,i = zm,p,i + rand1,m.i × (zm,b,i − zm,w,i)

+rand2,m.i × (| zm,p,i or zm,d,i | − | zm,d,i or zm,p,i |)
(4.24)

• RAO-3:

z′m,p,i = zm,p,i + rand1,m.i × (zm,b,i − | zm,w,i |)

+rand2,m.i × (| zm,p,i or zm,d,i | − (zm,d,i or zm,p,i))
(4.25)

zm,p,i is the mth variable’s value for the pth candidate in the ith iteration. The best
solution is denoted by zm,b,i, whereas the worst solution is denoted by zm,w,i. The Rao
algorithm can guarantee exploration performance while producing superior exploitation,
resulting in an excellent balance between exploitation and exploration, representing the
method’s higher statistical performance when compared to other algorithms.

4.5 Results and Discussion
A 69-bus radial distribution system is considered for the present analysis. The system’s
base values are 100 MVA and 12.66 kV. The backward–forward sweep method has
been used for load flow studies. The proposed problem’s simulation was carried out
via MATLAB 2017a software installed on a computer with a processor Intel core i5
8th Gen, 8 GB RAM. Initially, i.e., at the base case from the load flow, the following
data were obtained: the total real power load was 3082.19 kW, the reactive power load
was 2796.77 kVAr, the minimum voltage was 0.9092 p.u., and the overall real power
loss was 225 kW. The algorithm made the following assumptions: itrmax = 100 and
population = 100.

The optimal positions and sizings of DG and DSTATCOM units were addressed in this
work in the distribution system, which included three bus nodes of DG units and three
bus nodes of DSTATCOM units. Moreover, for optimal planning of the EV charging
station, five bus nodes were assumed, which is approximately 13% of the assumed dis-
tribution system bus nodes. In each charging station, a maximum of 50 EVs can be
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Figure 4.7: RAO-3 algorithm implementation flow chart.
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charged. The characteristic charging curve is shown in Figure 4.6. Figure 4.6 shows
that the Li-ion battery’s maximum constant charge charging load is 6.5 kW.

In this work, DG, DSTATCOM, and EVCS were simultaneously (and optimally) placed
via fuzzy multi-objective functions, as explained in Equation (4.15). In this scenario,
the overall real power loss of the DST is reduced to 21.6085 kW, the voltage profile is
enhanced, i.e., the minimum voltage of the DST is 0.988507 p.u. The optimum number
of electric vehicles is increased, i.e., 209.

Figure 4.8: Voltage curve.

Figure 4.9: Fitness curve.
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The optimum locations and sizings of DG and DSTATCOM were conducted, as shown
in Tables 4.1 and 4.2. The optimal number of EVs and optimal locations of EVCSs
were placed in the distribution system, as shown in Table 4.3. The performance of
the distribution system can be analyzed in Table 4.4. The voltage profile curve and
fitness function curves are shown in Figures 4.8 and 4.9. The single-line diagram of
the 69-bus radial distribution system with EVCS, DG and DSTATCOM of simultaneous
methodology is shown in Figure 4.10.

Figure 4.10: The single-line diagram of the 69-bus radial distribution system of Simul-
taneous methodology.
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4.5.1 Analysis of the Enhancement of Distribution Load Growth

In this section, with the initial EV charging load with a simultaneous approach, the ef-
fect of enhancement of the distribution load is analyzed for the 69-bus radial DST in
Figure 4.11. Active power loss decreases immensely with the integration of DSTAT-
COM and DGs in comparison to the base case. From Table 4.5, the real power loss
reduces with the proposed methodology.

Figure 4.11: The impact of the rising DST system load on the performance of the 69-bus
radial distribution system.

4.5.2 Analysis of Enhancement of EV Load

In this section, the effect of the enhancement of an EV load is analyzed with a simul-
taneous approach with different load factors of the distribution system. The proposed
method of scenario 2 has the best performance compared to other scenarios. The EV
load is increased up to 50 % of the initial load. Due to the enhancement of the EV
load at various load conditions in distribution systems shown in Table 4.6, the power
loss rises with rises in the EV load; however, with the fuzzy RAO-3 simultaneously
proposed approach, the power loss is compared less with the base case.

The impact of the active power and reactive power consumed from SS with the enhance-
ment of the EV load is depicted in Tables 4.7 and 4.8. Active power and reactive power
consumed from SS can meet the rise in the EV load; with a simultaneously proposed
approach, both active and reactive power consumed is less than the base case.

When the EV load increases, the impact on the minimum bus node voltage is analyzed
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in Table 4.9. From Table 4.9, the minimum voltage reduces with a gradual enhancement
of the EV load, and with a fuzzy RAO-3 simultaneous approach, a minimum bus node
voltage remains within the standard limits.

4.5.3 Analysis of Transient Responses

Figure 4.12 depicts the impacts of EVs on EVCS node voltages. Batteries charge from a
fully depleted to a completely charged state for 69-bus radial distribution systems under
peak load conditions. It is also worth noting that, even with EV charging demand, the
voltage quality may be maintained at a deservedly high level due to the availability of
the complete DG capacity and DSTATCOM installations.

Figure 4.12: EVCS voltage transients.

4.6 Summary
In summary, the suggested approach enhances the test distribution system’s perfor-
mance, such as in simultaneous methodology the active power loss was reduced to
90.377%, 47.30%, and 37.341% compared to the base case, two-stage methodology [69],
and two-stage methodology (chapter-1). The minimum voltage of the bus was enhanced
to 0.988507 p.u. and 0.97653 p.u. in simultaneous methodology and two-stage method-
ology (chapter-1) compared to the base case minimum voltage of 0.902 p.u. The op-
timum number of vehicles in simultaneous methodology increased to 10% and 5.56%
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compared to the two-stage methodology [69] in two-stage (chapter-1). Table 4.10 dis-
plays the comparison findings for all scenarios. Li-ion characteristic curves were used
to develop P and Q load models for EV battery charging. Simulation results show that
SS can support an EV load up to its active power supply’s maximum level after the im-
pact of the EV load growth under various loading situations. With the help of DG and
DSTATCOM, the voltage profile can be kept at a reasonable level despite an increase
in the EV load. The node voltages at the EVCS are impacted by the transient battery
charging load, and at steady state charging, the node voltage maintains fair values with
the help of DG and DSTATCOM. We show that the proposed method outperforms the
stage-wise placement of various components in terms of (1) reducing active power loss,
(2) improving substation power factors, (3) enhancing distribution network voltage pro-
files and (4) allocating the optimum number of vehicles at the charging stations.
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Chapter 5
Optimal Network Reconfiguration of Distribu-
tion System with Electric Vehicle Charging Sta-
tions, Distributed Generation, and Shunt Ca-
pacitors

5.1 Introduction
The strategy proposed in the previous chapter reduces the overall power losses and im-
proves the voltage profile. DSTATCOM was used in the previous chapter in order to
balance the reactive power in the distribution system. However, in practical the DSTAT-
COM is quiet expensive.

This chapter, suggests an RAO-3 based on the fuzzy classification technique for the opti-
mum EVCS, DGs, and SCs sizing and positioning for 69 bus radial distribution systems
with network reconfiguration. The proposed method has the following advantages (i)
lower active power loss, (ii) enhanced voltage profiles, (iii) improved power factor at
the substation and (iv) optimum distribution of EVs at charging stations. Characteristic
curves of Li-ion battery charging are utilised for load flow analysis to build EV battery
charging loads models. The proposed simultaneous fuzzy multi-objective study with a
reconfigured network can handle the optimal number of EVs in EVCS and maintain the
substation power factor at the required level, yielding an impressive distribution system
performance.

The rest of the paper is organised in the following manner: Section 5.2 discusses the
fuzzy multi-objective formulation of the problem and its constraints. Section 5.3 dis-
cusses the fuzzy multi-objective RAO technique. Section 5.4 includes the results and
analyses, whereas Section 5.5 has the summary.

5.2 Problem Formulation
The fuzzy-based multi-objective functions necessary for optimal deployment of EVCS,
DGs, and SCs in order to improve distribution system performance are established in
this section.
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5.2.1 Substation Power Factor Membership Function:

The DGs primarily run at 0.95 lagging pf; hence, the goal is to improve the Substation
(SN) pf to 0.95 lagging. The following equation can be used to compute the substation
power factor.

p f = cos

(
SSN

kW

SSN
kVA

)
(5.1)

SSN
kW =

nbs

∑
m=1

Pload
m +Pl −

ndg

∑
n=1

PDG
n (5.2)

SSN
kVAr =

nbs

∑
m=1

Qload
m +Ql −

nsc

∑
o=1

QSC
o −

ndg

∑
n=1

PDG
n × /0dg (5.3)

SSN
kVA =

√
SSN

kW
2
+SSN

kVAr
2 (5.4)

SSN
kW and SSN

kVA are the active and reactive power drawn from the substation. PDG
n is the

capacity of the nth DG. The total no-of DGs installations is ndg. /0dg is the DGs units’
power factor angle. The mth node’s active power and reactive power loads are Pload

m

and Qload
m . nbs is the total number of buses in the distribution network. Pl is the real

power loss and Ql is the reactive power loss of the distribution system. The capacity
rating of shunt reactive is QSC

o . The total number of SCs installations is nsc.The fuzzy
membership function for the SN Power-Factor (p f ) [69] is depicted in Fig. 1(a), and
the mathematical expression is given in Equation. (5.5).

δ
p f =



0 for p f ≤ p f min
p f−p f min
p f s−p f min

for p f min ≤ p f ≤ p f s
p f max−p f
p f max−p f s

for p f s ≤ p f ≤ p f max

0 for p f ≤ p f max

(5.5)

p fmin = 0.85, p fs = 0.95, p fmax = 1 are assumed.

5.2.2 DGs penetration membership function:

The DGP is the proportion of installed DGs to total active power load.

DGP =
∑

ndg
n=1 PDG

n

∑
nbs
m=1 Pload

m
(5.6)
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The fuzzy membership function for the DGs penetration [69] is shown in Fig.1(b) and
mathematical expression is given in Equation. (5.7).

δ DGP =



0 for DGP ≤ DGPmin

DGP−DGPmin
DGPs−DGPmin

for DGPmin ≤ DGP ≤ DGIs

DGPmax−DGP
DGPmax−DGPs

for DGPs ≤ DGP ≤ DGPmax

0 for DGP ≤ DGPmax

(5.7)

DGPmin = 0.4, DGPs = 0.5, DGPmax = 0.6

5.2.3 Active power loss membership function:

The following equation depicts the distribution network’s active power loss (AL):

AL =
nbs−1

∑
m=1

Plm (5.8)

Plm represents the branch active power loss [116], where formulated from the following
equation: -

Plm =
rm ×

{
P2

m+1 +Q2
m+1
}

|vm+1|2
(5.9)

wherePm+1 is the active power load injected at the load (m+ 1) node and Qm+1 is the
reactive power load.

The following formula can be used to determine the active power loss index (ALX):

ALX =
ALDGSC

ALBase
(5.10)

With DGs and SCs, ALDGSC denotes active power loss. ALBase denotes the real power
loss in the base case. The fuzzy membership function for the real power loss [69]
is depicted in Fig.1(c) and mathematical expression is given in equation Eq. (5.11).
ALXmax = 1. ALXminis chosen based on utility necessity so that active power loss is
minimized to a desirable value.

δ ALX =


1 for ALX ≤ ALXmin

ALXmax−ALX
ALXmax−ALXmin for ALXmax ≤ ALX ≤ ALXmin

0 for ALX > ALXmax

(5.11)
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Figure 5.1: Fuzzy Membership function

5.2.4 Distribution system voltage membership function:

In Fig. 1(d), the fuzzy membership function of voltage [69] (δ vm) of each node m

in the distribution system is explained, and it can be mathematically explained using
Equation. (5.12). vld1 = 0.94,vmin = 0.95,vmax = 1.05,vld2 = 1.06 are assumed. The
distribution system’s fuzzy voltage limit is now defined as δ v = (1−min(δ vm)))

δ
vm =



0 for vm ≤ vld1

vm−vld1
vmin−vld1

for vld1 < vm < vmin

1 for vmin ≤ vm ≤ vmax

vm− vmax
vld2−vmax

for vmax < v j < vld2

0 for vm > vld2

(5.12)
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5.2.5 Distribution Network Reconfiguration methodology

To determine the efficacy of loss reduction, the researchers’ proposed optimum net-
work reconfiguration switching strategies must consider each feasible transition. The
proposed network reconfiguration strategy [114] is described in detail in the following
algorithm.

Step 1: Data from the system is read. Run the radial distribution networks load-flow
application.

Step 2: Calculate the difference in voltage between the open tie switches, i.e., ∆vtie ( j) , j =

1,2,3 . . . tie.

Step 3: Determine which of the open tie switches has the greatest voltage difference.

Step 4: The tie switch "s" is closed, count how many loop branches (Ls) there are,
including the tie branch.

Step 5: Open each branch in the loop one at a time to evaluate the value of each objec-
tive.

[for j = 1 to Ls, compute δ ALX ,δ vm.Ds = min(δ ALX , δ vm) ]

Step 6: Select the ideal solution for the "s" action of the tie switch i.e.,Os = max(Ds))

Step 7: tie=tie-1

Step 8: Check to see if tie=0. If answer is yes, proceed to Step 11. If not, proceed to
Step 10.

Step 9: Return to Step 2 after rearranging the code of the remaining tie switches.

Step 10: Results should be printed.

Step 11: Stop

5.2.6 Optimal allocations of EVs, DGs, and SCs using a multi-objective
fuzzy function:

Gzs =
1

δ ALX +δ p f +δ v +δ DGP (5.13)
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The propose method is to minimise fuzzy function described in Equation. (5.13), which
is exposed to various constraints.

0 < PDG
n ≤ PDG

max where n = 1, 2, 3 (5.14)

0 < Qsc
o ≤ Qsc

max where o = 1, 2, 3 (5.15)

The DGs and SCs power injection at the optimal point in the distribution system are
PDG

n and Qsc
o .

5.2.7 Battery charging load modelling for EVs:

Equations for load flow analysis using the battery charging load model [115] can be
generated from Fig. (5.2). Equation. (5.16) depicts the charging of a battery for both
steady-state and transient circumstances. The following exponential equations can be
used to predict the power charging properties of batteries [69].

Figure 5.2: Li-ion Battery Charging Characteristics

PBEV (t) =


Pmax

BEV (1− e
(
−γ×t

t2

)
) 0 ≤ t ≤ t2

Pmax
BEV

(
tm−t
tm−t2

)
t2 ≤ t ≤ tm

0 t > tm

(5.16)
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The instantaneous electric vehicle battery charging load is PBEV (t). Pmax
BEV is the substa-

tion’s maximum battery charging load.

δPmax
BEV = Pmax

BEV

(
1− e

(
−γ×t1

t2

))
(5.17)

γ =−
(

t2
t1

)
ln(1−δ ) (5.18)

t1 = 0.25 h, t2 = 4.5 h, and tm = 5 h are in the preceding Equation. (5.16) and Equa-
tion. (5.17), respectively, taken from Fig. (5.2). The EV battery characteristic constants
are γ and δ . δ is the proportion of maximum load for charging, with a value of 0.95
corresponding to 95% of Pmax

BEV at time t1. Equation. (5.18) (which may be derived from
Equation. (5.17)) can be used to find the value of γ . The equation for power charging
can be represented as Equation. (5.19). The batteries are charged from a zero-charge
condition P0

BEV .

PBEV (t) = Pmax
BEV

(
1− e(

−γ×t
tc )
)
+ P0

BEV

(
e(

−γ×t
tc )
)

0 < t < tc (5.19)

The tc represents the amount of time it takes to charge a battery from its starting charging
position fully. The following equation can be used to represent the status of the power
charging battery.

SOC(t +1) = SOC(t)+ PBEV (t)×∆(t) (5.20)

5.3 RAO-3 algorithm
The optimization algorithm Rao was just recently created [112]. Rao-1, Rao-2 and Rao-
3 are the three proposed Rao algorithms. It was chosen as a population-based approach
for this study because of its simplicity and ease of implementation in optimization appli-
cations. It has a few control parameters. The population size is the sole control parame-
ter that must be changed once the stop criteria are met.The three RAO algorithms follow
similar processes. However, as seen in the following steps and shown in Fig. (5.3), only
the movement equation is different.

Step 1: Initialize the population (EVCS, DG and SC), their sizes, the number of EVs at
random, and the maximum iteration.

Step 2: The fitness function mentioned in the objective function is evaluated.
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Step 3: Determine the population’s best and worst solutions.

Step 4: According to the chosen RAO algorithm,the new solution updated for all popu-
lations as follows:

a: RAO-1:
y′m,p,i = ym,p,i + rand1,m.i × (ym,b,i − ym,w,i) (5.21)

b: RAO-2:

y′m,p,i = ym,p,i + rand1,m.i × (ym,b,i − ym,w,i)

+rand2,m.i × (| ym,p,i or ym,d,i | − | ym,d,i or ym,p,i |)
(5.22)

c: RAO-3:

y′m,p,i = ym,p,i + rand1,m.i × (ym,b,i − | ym,w,i |)

+rand2,m.i × (| ym,p,i or ym,d,i | − (ym,d,i or ym,p,i))
(5.23)

ym,p,i is the mth variable’s value for the pth candidate in the ith iteration. The best
solution is denoted by ym,b,i, whereas the worst solution is denoted by ym,w,i. The Rao-3
algorithm can guarantee exploration performance while producing superior exploitation,
resulting in an excellent balance between exploitation and explorations, representing the
method’s higher statistical performance when compared to other algorithms.

74



Figure 5.3: Rao-3 flow chart for the placment of EVCS, DGs, and SCs
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5.4 Result and discussions
A 69 bus radial distribution system is considered for the present analysis. 100 MVA
and 12.66 kV are the system’s base values. Backwards-forward sweep method is used
for load flow studies. Proposed problem, simulation is carried out in MATLAB 2017a
software installed on a computer having processor intel core i5 8th Gen, 8GB RAM.
Initially, i.e., at the base case from load flow following data are obtained total active
power load is 3082.19 kW, the reactive power load is 2796.77 kVAr, total real losses are
225 kW, and the minimum voltage is 0.9092 p.u.

The optimal position and sizing of DG and SC units are addressed in this work in the
distribution system, which includes three bus nodes of DG units and three bus nodes of
SC units. Moreover, for optimal planning of the EV charging station, 5 bus nodes are
assumed, which is approximately 13 % of the assumed distribution system bus nodes.
In each charging station maximum of 50 EVs can be charged. The characteristic charg-
ing curve shown in Figure 5.2. From Figure 5.2, Li-ion battery’s maximum constant
charge charging load is 6.5 kW. Two scenarios are studied for EVCS, DGs, and SCs in
a particular distribution network to be sized and placed optimally.

5.4.1 Scenario 1

With the help of the Rao-3 algorithm, DGs, SCs and EVCS are optimal sized and po-
sitioned fuzzy multi-objective functions defined in equation Equation. (5.13) in this pa-
per. Table. (5.1) and Table. (5.2) shows the DGs and SCs optimal location and size.
Table. (5.3) depicts the optimal number of EVs and EVCS are deployed. Table. (5.4)
shows the distribution system’s performance. Fig. (5.4) and Fig. (5.5) illustrate the fit-
ness function and voltage profile curves, respectively. Fig. (5.6) shows a single line
diagram of the 69-bus radial distribution system with EVCS, DGs and SCs from sce-
nario 1.

The total power loss of the distribution network is decreased to 39.3467 kW, which
is lower than the base case, and the voltage profile is improved, with the distribution
system’s minimum voltage being 0.9762 p.u. Compared to the two-stage process [69],
the optimal number of cars is raised to 193.
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Figure 5.4: fitness curve

Figure 5.5: Voltage profile curve

5.4.2 Scenario 2

In this scenario, first network reconfiguration of 69 bus radial system is done.The sys-
tem’s real-power loss prior to reconfiguration is 224.95 kW, and the lowest system volt-
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Figure 5.6: Single line Diagram of 69 bus with EVCS, DGs and SCs

age Vmin=0.9092 p.u.

After network reconfiguration, the active power loss of 69 radial bus distribution net-
work is reduced to 98.5512 kW, i.e., 56.1789 % power loss reduction, and minimum
voltage is Vmin =0.94947 p.u. which is shown in Fig. (5.7). Table. (5.5) represents
the performances of distribution system after network reconfiguration. With this net-
work reconfiguration, EVCS, DGs, and SCs are optimally placed with the help of fuzzy
multi-objective functions explained in Equation. (5.13). Fig. (5.8)and Fig. (5.9) depict
the fitness function and voltage profile curves, respectively. Fig. (5.10) shows a single
line diagram of the after-network reconfiguration of the 69-radial bus with EVCS, DGs,
and SCs from scenario 2. The optimal allocation of DGs and SCs are determined, as
illustrated in Table. (5.6) and Table. (5.7). The optimal number of EVs and the optimal
placement of EVCS are shown in Table. (5.8). Table. (5.9) examines the performance
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Figure 5.7: Voltage curve before and after reconfiguration

of the distribution system.

Figure 5.8: fitness curve

In this scenario, the distribution system’s overall power loss is decreased to 18.0884 kW,
which is lower than scenario 1 and the voltage profile is improved, with the distribution
system’s minimum voltage being 0.9905 p.u. The optimal number of EVs has been
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Figure 5.9: Voltage profile curve

increased to 213 vehicles.

Fig. (5.11) depicts the impact of EVs on EVCS node voltages. It is also worth noting
that, even with EV charging demand, the voltage quality may be maintained at kept at
deservedly high levels due to the availability of the complete DGs capacity and SCs
installations.

5.5 Summary
In summary, the suggested approach scenario 2 (simultaneous placement of EVCS, DG,
and SC with network reconfiguration utilising Rao-3) performs better than the other
scenarios. Table. (5.10) compares the outcomes of all of the scenarios.

Compared to the base case, two-stage methodology [69] and scenario 1, the active power
loss in scenario 2 is reduced to 91.9589 %, 55.89 % and 54.028 %. Compared to the
base case minimum voltage of 0.9092, the bus’s minimum voltage is enhanced to 0.9905
p.u. and 0.9762 p.u. in scenarios 2 and 1. Compared to the two-stage methodology [69]
and scenario 1, the optimal number of EVs in scenario 2 increases to 12.1 % and 10.362
%.
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Figure 5.10: Single line Diagram of 69 bus with EVCS, DGs and SCs
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Figure 5.11: EVCS Voltage transients.
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Chapter 6
Optimal Placement of Fast Charging Station for
Integrated Electric-Transportation System us-
ing Multi-Objective Approach

6.1 Introduction
The usage of Electric Vehicles (EVs) for transportation is expected to continue grow-
ing, which opens up new possibilities for creating new smart grids. It offers a large-
scale penetration of Fast Charging Stations (FCE) in a local utility network. A se-
vere voltage fluctuation and increased active power loss might result from the inap-
propriate placement of the FCE as it penetrates the Distribution System (DST). This
paper proposes a multi-objective optimisation for the simultaneous optimal allocation
of FCEs, Distributed Generators (DGs) and Shunted Capacitors (SCs). The proposed
Pareto dominance-based hybrid methodology incorporates the advantages of the Grey
Wolf Optimiser and Particle Swarm Optimisation algorithm to minimise the objectives
on 118 bus radial distribution systems. The proposed method outperforms some other
existing algorithms in terms of minimising (a) active power loss costs of the distribution
system, (b) voltage deviations, (c) FCE development costs, (d) EV energy consumption
costs and (e) DG costs, as well as satisfying the number of FCEs and EVs in all zones
based on transportation and the electrical network.

The remainder of this paper is structured as follows: Section 6.2 explains the formula-
tion of the multi-objective issue and associated limitations. Section 6.3 presents the sug-
gested hybrid GWO-PSO algorithm for the system under consideration. In Section 6.4,
the results and analysis are covered. Section 6.5 discusses summary.

6.2 Problem Formulation
This section includes objective operations, such as DFC, EUC, CPDN, DVT and DGC
being minimised.

In order to determine the optimal allocation of FCE, the proposed approach uses an
arbitrary area, as depicted in Figure 6.1. Zones [117, 118] are created inside the research
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area, such as zn1,zn2,zn3, and zn4, where the number of EVs is available in each zone.
he assumption is that the number of EVs n each zone is located in the geographical
centre. On a particular day, it was assumed that the FCE charges the Total Number of
EVs (NT EV ) in the considered area. NT EV is calculated as:

NT EV =
zn

∑
z=1

EV n,zn (6.1)

The number of committed EV s in the zone (zn) is represented by the value EV n,zn.

Figure 6.1: Illustrative zones with area.

6.2.1 Development Cost of FCEs (DFC)

DFC includes the cost of the charging station equipment and land cost. The equipment
and land cost of charging station is a function of the number of charging connectors and
capacity of charging stations [119].

DFC =C f ixed +24 × Cland ×NC (i)×ny +Ccond × (NC (i)−1)×Pcg (6.2)

FCE’s fixed cost is denoted by C f ixed (USD). Since it deals with the equipment, the cost
is almost similar among the different countries. Cland (in USD per meter) is the land
rental cost yearly. The study time for the FCE consists of ny years. The charger devel-
opment cost is Ccond , NC (i) is the number of connectors in charging stations in the ith
FCE, and Pcg is the charging connector rated power (kW).

NC(i) =
zn

∑
z=1

(max(PREV )×EV n,zn ×DFE(z, i)) (6.3)
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The probability that EVs will be charged in an hour (h) during a day is PREV . DFE(z, i)

is a decision binary variable, and if EVs in the zn are charged in the ith FCE, then
DFE (z, i) = 1; otherwise, it is zero. The choice of EVs in the zn to the ith FCE is cal-
culated by the minimal distance between the ith FCE to zn compared to the other FCE.

The capacity of the charging station’s connectors differs between 50–250 kW. The rating
of the ith FCE is calculated as:

PFCE = NC(i)×Pcg (6.4)

6.2.2 Energy Consumption of EVs User Cost (EUC)

The EV user takes a particular route to reach the FCE. While driving, the EV consumes
energy, and the cost related to energy consumption is represented by the EUC. In order
to charge the batteries of EVs, which are situated at location zone zn to the nearest ith
FCE, EUC(zn, i) is calculated as [119]:

EUC (zn, i) = L(zn, i)×CSE ×
24

∑
hr=1

PREV (h)×EV (zn)×EPh (6.5)

The distance between the ith FCE and zone (zn) on a trajectory length is denoted as
L(zn, i). The electricity price in USD is represented by EPh, and CSE is the specific
energy consumption of EVs. EVs’ CSE stands for their specific energy consumption.

6.2.3 Active Power loss of Distribution Network Cost (CPDN)

Since the EV demand is increasing, the load in the distribution network increases and
distribution network power losses also increase. A non-linear relationship exists be-
tween the loading and the distribution network loss. The load varies from hour to hour
on a particular day and during the year. A correct estimation of the distribution network
power loss due to EV charging is required, i.e., the load variation must be considered.
The Active power loss of the Distribution Network Cost(CPDN ) [119] of all seasons in
a year is calculated as:

CPDN =
ns

∑
s=1

24

∑
hr=1

T PL(hr,s)×Nhr(s)×EPh (6.6)

The number of seasons is denoted as ns, and TPL is the active power loss of the DST,
including EV loads. The total number of hours throughout all seasons in a year is Nhr
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6.2.4 Cost of DGs (DGC)

The cost of DGs includes the cost of investment CINV , the cost of operation COPR,
and the cost of maintenance CMAT of DGs.

1. Cost of Investment: this includes various initial costs, such as money invested on
unit construction, essential equipment, and installation for each generation unit.
This cost can be expressed as:

CINV =
ndg

∑
d=1

(Pdg,d ×CostINV ) (6.7)

2. Cost of operation: the generation cost, fuel cost, and other similar costs are con-
sidered in the cost of operation COPR. It can be formulated as

COPR =
nyr

∑
yr=1

ndg

∑
d=1

(
Pdg,d ×T Lh ×COd ×

(
1+RINF
1+RINT

)yr)
(6.8)

3. Cost of Maintenance: This includes the cost required for restoring the unit equip-
ment, renewal, and repairing.

CMAT =
nyr

∑
yr=1

ndg

∑
d=1

(
Pdg,d ×T Lh ×CMd ×

(
1+RINF
1+RINT

)yr)
(6.9)

Hours in a year are denoted by T Lh. The number of DGs considered for this study is
ndg, with nyr being the total years for DG planning. Lastly, the DGC can be determined
as:

DGC =CINV +COPR +CMAT (6.10)

6.2.5 DVT

The improper placement of the FCE and DGs in the DST leads to voltage instability.
This work calculates voltage deviations for 24 h of all seasons. Calculating the DV T of
DST is as follows:

DV T = max{1−V ( j)} j = 1,2 . . .nb (6.11)

The voltage of the jth bus is V ( j), and the DST bus number is nb.
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6.2.6 Multi-Objective Function

The optimum number of FCEs obtained using the proposed optimisation procedure is
denoted by the symbol NFCE . The primary purpose of the objective problem is to min-
imise the DFC, EUC, CPDN, DV T , and DGC by satisfying the constraints.

Min

{
NFCE

∑
k=1

DFC (k)+
NT EV

∑
l=1

EUC(l)+CPDN +DGC+DV T

}
(6.12)

6.2.6.1 Constraints

To recharge the EVs from the research area, one FCE must be installed.

NPFCE

∑
k=1

B(k)> 0 k = 1,2,3 . . . , NPFCE (6.13)

B(k) is a binary decision variable; if the kth FCE is chosen, B(k) = 1; otherwise, B(k) =

0. NPFCE is the number of feasible FCEs. At least one connector should be taken into
account from the chosen FCE.

NC (k)≥ 0 k = 1,2,3 . . . , NPFCE (6.14)

One optimal FCE is chosen by EVs from each zn depending on the displacement be-
tween zn to the kth FCE.

zn

∑
z=1

DFC (z,k)×B(k) = 1 (6.15)

6.3 Overview of Hybrid GWO-PSO Algorithm
In the real world, the power system has multiple objective functions that should be opti-
mised simultaneously. The objective function suggested in this work is optimised using
a hybrid GWO-PSO technique [120]. The best features of GWO and PSO are combined
to solve the problems. PSO [104] is a population-based metaheuristic optimisation al-
gorithm. The greatest advantages of PSO is that it is simple to perform and has fewer
controlling parameters.

Zitr
p+1 = Zitr

p + vitr
p+1 (6.16)
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vitr
p+1 = vitr

p + c1 × ran1×
(
Pitr

best −Zitr
p
)
+ c2 × ran2×

(
Gitr

best −Zitr
p
)

(6.17)

Here, Zp is the position vector, vp is the velocity vector, itr is the iteration, pvis the par-
ticle in the population, w is the inertia of the weight parameter, Pitr

best is the best position
in the pth particle and Gitr

best is the best position in the available population. In the PSO
algorithm, the main disadvantage is that the updated position and velocity of a particle
cannot jump into another space with a global optimum and has a low convergence rate
in the iterative process. Grey Wolf Optimisation (GWO) [109] is an intelligent swarm
technique. GWO follows the hierarchy of leadership. Grey wolves are well coordinated
and always live in packs. They always follow the social hierarchy, and, based on this hi-
erarchy, they can be classified into four types of wolves, i.e., Alpha (α), Beta (β ), Delta
(δ ), and Omega (ω). This social hierarchy is based on their fitness value. α is the top
leader and makes the decisions (hunting, staying in one place, sleeping, etc.), and other
members follow the order. β is subordinate to α , where β helps give suggestions to α

for decision making and always ensures that other members follow the order given by
α . δ is subordinate to β but superior to ω . ω is the follower and occupies the minuscule
level in the hierarchy.

6.3.1 Encircling the Victim

During hunting, they encircle the prey. Encircling mathematical behaviour is mod-
elled as

L⃗ =
∣∣∣⃗S.Z⃗p − Z⃗(itr)

∣∣∣ (6.18)

Z⃗(itr) = Z⃗p(itr)− R⃗.⃗Lt (6.19)

itr denotes the current iteration, Zp depicts the location of the prey, and Z represents the
positioning of the grey wolf. It is possible to determine the vector coefficients S⃗ and R⃗

as
R⃗ = 2.⃗r.rad1 − r⃗ (6.20)

S⃗ = 2.rad2 (6.21)

[0, 1] are the boundaries of the random vectors rad1, rad2. Through iterations, the co-
efficient r⃗ linearly declines from 2 to 0.
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6.3.2 Hunting Procedure

α provides direction for the hunting process. A deeper understanding of the prey (opti-
mal solution) is held by α , β , and δ . As alpha, beta, and delta change positions, other
wolves in the back update the positions. Attacking can be expressed mathematically
as follows:

L⃗α =
∣∣∣⃗S.Z⃗α − Z⃗

∣∣∣ (6.22)

L⃗β =
∣∣∣⃗S.Z⃗β − Z⃗

∣∣∣ (6.23)

L⃗δ =
∣∣∣⃗S.Z⃗δ − Z⃗

∣∣∣ (6.24)

Z⃗1 = Z⃗α − R⃗1.(L⃗α) (6.25)

Z⃗2 = Z⃗β − R⃗2.(L⃗β ) (6.26)

Z⃗3 = Z⃗δ − R⃗3.(L⃗δ ) (6.27)

Z⃗ (itr+1) =
Z⃗1 + Z⃗2 + Z⃗3

3
(6.28)

6.3.3 Exploring and Attacking a Victim

When wolves attack their prey, and |R| < 1, the R-value should fall between [−2r, 2r].
Exploitation is the act of attacking prey. Exploration is the process through which they
separate to look for the target. If |R|> 1, wolves are compelled to look for prey.

6.3.4 Hybrid GWO-PSO

Singh et al. [120] used low-level co-evolution mix hybrids for hybridising GWO with the
PSO method. This algorithm’s design philosophy integrates the GWO algorithm’s ex-
ploration capability with the PSO algorithm’s exploitation capability to maximise both
types’ strengths. The exploration and exploitation of the grey wolves in the search area
are controlled by the inertia constant (w) rather than conventional mathematical calcu-
lations. The suggested equations update the positions of the first three agents in the
search space.

L⃗α =
∣∣∣⃗S.Z⃗α −w× Z⃗

∣∣∣ (6.29)

L⃗β =
∣∣∣⃗S.Z⃗β −w× Z⃗

∣∣∣ (6.30)

L⃗δ =
∣∣∣⃗S.Z⃗δ −w× Z⃗

∣∣∣ (6.31)
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By revising the velocity and locations’ equations as below, the GWO and PSO variants
are combined.
Figure 6.2 depicts the hybrid GWO-PSO algorithm’s flowchart. The hybrid GWO-PSO
process’ basic steps are as follows:

1. Initialise the parameters of GWO and PSO R⃗, S⃗, r⃗ and w; where w = 0.5 + rand()/2
and set maximum iteration.

2. Calculate an agent’s fitness using Equations (6.29)–(6.31).

3. Update the velocity and location of the current search’s grey wolf for each search
using Equations (6.33) and (6.34).

4. R⃗, S⃗ and r⃗ are updated, Fitness of all wolves are computed.

5. Positions of α , β and δ are updated

6. Until the terminating requirements are met, repeat this process.

s = (vitr
p + c1 × ran1×

(
Z⃗1 −Zitr

p

)
+ c2 × ran2×

(
Z⃗2 −Zitr

p

)
+c3 × ran2×

(
Z⃗3 −Zitr

p

) (6.32)

vitr
p+1 = w×

(
vitr

p + s
)

(6.33)

Zitr
p+1 = Zitr

p + vitr
p+1 (6.34)
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Figure 6.2: Hybrid GWO-PSO flowchart.

The multiple objective functions are constructed as a single goal function by selecting
appropriate weights for each objective in all traditional approaches, such as the weighted
objective approach. There are primarily two issues with determining the single objec-
tive’s optimal value. The first is that while optimising a single objective function might
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ensure the existence of a single optimal solution, in all practical uses, the judgement
still wants access to other solutions. The second examines how each goal in a single
objection function responds to its weights. Additionally, the classical approaches are
ineffective when the objective function is much noisier and the factors in the search area
are discontinuous.

Multiobjective Pareto front optimisation techniques are required to address multiobjec-
tive scenarios to get around the abovementioned issues. The hybrid methods are also
quite effective at locating the best solution. In this work, hybrid GWO-PSO was utilised
to meet the desired objectives.

Mirjalili et al. [121] proposed a set of non-dominated solutions, and one of these solu-
tions must be chosen by the decision maker. Due to the subjectively inaccurate nature
of the decision maker’s assessment and the fact that it is straightforward to employ and
has similarities to human thinking, the fuzzy satisfaction-based method [110] was em-
ployed in this case for ultimate decision-making.

6.4 Results and Discussion
In this chapter, four scenarios with various cases were explored using the suggested test
system to determine the optimum distribution of FCE, DGs and SCs in a connected
transportation network.

6.4.1 Proposed Methodology

This study used a 720 km2 test area to apply the suggested strategy. The population of
EVs in each research area zone is shown in Figure 6.3. There are 180 zones in the test
area, each with a 4 km2 (2 km×2 km). As seen in Figure 6.4, a test area was connected
to the 118 bus radial distribution system.
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Figure 6.3: Zone EV population.

In this chapter, the total EV population was considered as 1632.

With the requirement that each FCE is roughly equally spaced apart, it has been assumed
that 16 FCE might be put along the test area’s major roadways. Figure 6.4 depicts 16
possible FCEs represented in the DST by the rhombus symbol. The simulation of the
proposed problem was carried out in MATLAB 2017a software installed on a computer
with a processor intel core i5 8th Gen and 8 GB RAM. A 118 distribution bus system
was considered to carry out the analysis.

The distributed system’s base values were as follows: 22.71 MW of real power, 11 kV,
100 MW and 1.7041 MVAr. The load curve [119] for different seasons is shown in
Figure 6.5. For the optimum location and sizing of DGs and SCs in the distribution
system, this paper considered five bus nodes of DGs units and three bus nodes of SCs
units. From 5 a.m. to 9 p.m. every day, it is presumable that EVs are charged at the
FCE. Figure 6.6 indicates the probability of daily EV charging. The DST and FCE
parameters are represented in Table 6.1. Four different scenarios were analysed with the
help of a hybrid GWO-PSO algorithm with a maximum of 500 iterations for appraising
the proposed problem.
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Figure 6.4: 118 bus distribution system in the proposed testing area.

Table 6.1: Study parameters.

Parameter Values
NTEV 1632

ny 5

NPFCE 16

CSE 0.142 kWh/km

EPh USD 87.7/MWh

Cland USD 240/M2 per year

C f ixed USD 70,000

Ccond USD 208.33/kW

Pcg 96 kW
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Figure 6.5: Load curve on an hourly basis for various seasons.

Figure 6.6: EVs’ probability of being charged.

Due to its simple and independent structure from the problem, an optimisation method
utilised in planning FCE, DGs and SCs can be applied to any test system. Additionally,
the fuzzy satisfaction-based choice approach [110] allows decision makers to select the
ultimate organising strategy under their preferences by selecting preferred values.
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6.4.2 Scenario 1: Optimum Placement of FCE in DST Conjunction
with Transportation Network

The optimal allocation of an FCE is achieved by minimising the EUC, CPDN ,and DVT
of the DST. DGs are not considered; therefore, DGC in Equation (6.12) is zero. Since
the total number of connectors in FCEs is almost constant, the DFC variation has an
almost negligible effect on the objective function. Thus, the DFC is not considered to
minimise the objective function in this scenario. In this scenario, three cases are taken:

(a) Case 1: Minimisation of EUC and CPDN.

(b) Case 2: Minimisation of DVT and CPDN.

(c) Case 3: Minimisation of DVT, CPDN, and EUC.

The optimal Pareto font for various cases in scenario 1 shows figures from Figure 6.7a–c.
The best location and size of the FCE are obtained from the fuzzy satisfaction-based
choice approach [110]. Table 6.2 displays the optimum FCE position and EV values,
whereas Table 6.3 displays the optimal objective parameters.
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Figure 6.7: Optimal Pareto-front
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6.4.3 Scenario 2: Optimal Positioning of DGs in DST with Previous
Optimum FCE Load

DGs enhance the voltage profile and lower power losses in the DST. For the optimal
DGs positioning, the optimal FCE load from case 3 is taken into account. This scenario
takes into account three cases.

(a) Case 4: Minimisation of DGC and DVT.

(b) Case 5: Minimisation of CPDN and DGC.

(c) Case 6: Minimisation of DGC, DVT, and CPDN.

Figure 6.7d–f are displayed using the best pareto-front for various scenarios in scenario
2. The optimal location and size of DGs are obtained from the fuzzy satisfaction-based
choice approach. For various cases in scenario 2, the optimum location and sizing of
DGs are displayed in Table 6.4, and objective parameters are depicted in Table 6.5.

6.4.4 Scenario 3: Allocation of DGs and SCs in DST Optimally Us-
ing the Previous Optimal FCE Load

The optimal positioning of DGs and SCs is considered in the distributed system to en-
hance the voltage profile of the system. Three cases are used in this scenario for the
optimal planning of DGs and SCs with the optimum load of the FCE from case 3.

(a) Case 7: Minimisation of DGC and DVT.

(b) Case 8: Minimisation of CPDN and DGC.

(c) Case 9: Minimisation of DGC, DVT, and CPDN.

The optimal pareto font for various cases in scenario 3 shows figures from Figure 6.7g–i.
The optimal location and size of DGs and SCs are obtained from the fuzzy satisfaction-
based choice approach. For various cases in scenario 3, the optimal sizing and location
of DGs are shown in Table 6.6, Table 6.7 shows the optimal SCs position and sizing,
and Table 6.8 shows the objective parameters.
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6.4.5 Scenario 4: Simultaneous Optimum Location and Sizing of
FCE, DGs, and SCs in DST

In this scenario, the optimum location and sizing of the FCE, DGs, and SC in a DST is
achieved by coupling a transportation network to reduce the cost of CPDN, EUC, DGC
and DVT. The following four cases are considered.

(a) Case 10: Minimisation of CPDN and EUC.

(b) Case 11: Minimisation of DGC and DVT.

(c) Case 12: Minimisation of CPDN and DGC.

(d) Case 13: Minimisation of DGC, DVT, and CPDN.

The optimal Pareto font for various cases is scenario 4, which shows figures from Fig-
ure 6.7j–m. The best location and size of FCE, DGs and SCs are obtained from the
fuzzy satisfaction-based choice approach. For various cases in scenario 4, the opti-
mal allocation of the FCE, number of EVs, DGs and SCs is shown in Tables 6.9–6.11.
The objective is the parameters that are shown in Table 6.12.

6.5 Summary
This chapter proposes a multi-objective hybrid GWO-PSO algorithm for the simultane-
ous optimal planning of fast charging stations, distributed generators, and shunt capac-
itors in an integrated electric transportation system. Table 6.13 compares the outcomes
of four scenarios. Hybrid GWO-PSO outperforms other algorithms in terms of perfor-
mance. In case 13, the DVT decreased by 68.99%, 18.8% and 4.8% in comparison
to case 3, case 6 and case 9. In case 13, the CPDN decreased by 53.21%, 22.41%
and 7.68% in comparison to case 3, case 6 and case 9. The DGC is reduced to 5.1%
and 1.7% in case 13 in comparison to cases 6 and 9. Similarly, the DFC and EUC were
reduced to 22.56% and 19.8% in case 13 compared to all cases. Simultaneous opti-
mal FCE, DGs and SCs in the coupled DST and road network give the best economical
solution for the proposed method.
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Chapter 7
Conclusion

7.1 Summary and Important Finding
EVs are a potential future option for the road transportation system for the following
generation. Issues from abrupt climate change, rising crude oil prices, and the depletion
of fossil fuels constantly encourage consumers to pursue alternative energy sources for
transportation systems. Due to the significant initial price of EV batteries, EVs remain
high compared to conventional vehicles. Since it emits little carbon dioxide compared to
an ICE vehicle, an EV is environmentally fair and fuel efficient. Even though batteries
have undergone significant advancements in recent years, today’s Li-ion battery has a
lower energy density and a shorter lifespan.

The requirement for charging infrastructural expansion has grown as the EVs industry
share increases. Different planning concerns for EV charging infrastructure are included
in the current research. This research aims to develop viable EV charging infrastruc-
ture and to use effective and cutting-edge methods for the location of charging stations.
Charging stations are a network component that provides electricity for recharging EV
batteries. Proper site selection and charging station size are crucial to lessen the adverse
effects on EVs.

A thorough analysis of the scientific literature on planning for charging infrastructure
is provided . The primary research shortcomings in this field of study are noted. The
primary goals of the investigation endeavor are chosen after determining the significant
research gaps.

Therefore, two strategies for the appropriate placement of EVCSs have been evaluated in
this work. In the first strategy, only the distribution network is considered. Utility com-
panies must provide the electricity needed to operate all connected electrical loads in
homes, residential, business, and industrial regions. The utility operator strategy is used
to position CS in the optimum possible way, taking the distribution system solely into
account. The utility operator’s placing of EVCS considers factors, including reducing
bus voltage and the distribution system’s overall power loss.

In the second strategy, both distribution and superimposed transportation networks are
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considered. This approach considers charging station owners, EV users, and utility
operators’ views to obtain distribution performance and economic benefits.

For 69-bus radial distribution systems utilising the RAO-3 algorithm, a fuzzy classified
technique for optimum sizings and two-stage deployments of EVCSs, DGs and DSTAT-
COMs. Due to which it enhances the distribution system’s performance.

A fuzzy classified method for simultaneous optimal sizing and placement of EVCS,
DG and DSTATCOM for 69 bus radial distribution systems using the RAO-3 algorithm
is proposed. Li-ion characteristic curves are employed to build P and Q load models
for charging EV batteries. As a result of increasing EV load under different loading
conditions, simulation findings indicate that the substation can handle EV load until the
maximum level of its active power supply. Despite an increase in EV demand, the bus
voltages can be maintained at a tolerable level with the aid of DGs and DSTATCOM.
The transient battery charging load affects the node voltages at the EVCS, and at steady-
state charging, the bus node voltages are maintained at adequate levels with the aid of
DGs and DSTATCOMs.

The Rao-3 algorithm is used to accomplish the optimal location and size of EVCS, DGs,
and SCs without and with network reconfiguration. It demonstrated that the suggested
technique outscored the without network reconfiguration and two-stage placing of vari-
ous components in aspects of

1. Active power loss was decreased.

2. Substation power factor was improved.

3. The bus voltages of the distribution system were enhanced.

4. Additionally, the best number of EVs was facilitated in the EVCS.

An interconnected electric transportation system uses the multi-objective hybrid GWO-
PSO algorithms to predict the best locations for rapid charging stations, DGs and SCs.
Different case studies were carried out using the suggested strategy for simultaneous
deployment of FCE, DGs and SCs, as well as single stage-wise placement.

7.2 Future Scope
The following future study trends are recommended based on the discussions mentioned
earlier:
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1. The substation power factor can be further enhanced by using minimum quantity
of DSTATCOM or SCs.

2. The voltage profile of the distribution system can be further improved with less
number of DGs and SCs or DSTATCOM.

3. Modernizing the power infrastructure and advancing EV usage in V2G technolo-
gies have been made possible recently by the growth of the smart grid. However,
the cost of smart metering, integrated solutions, and intelligent communications
networks among an EV and a smart grid would surely increase for intelligent
discharging and charging networks.

4. Future study, bigger test system with real case scenarios has to be incorporated.

5. Advanced optimisation techniques can be utilised, to achieve the required objec-
tive such as to further reducing power loss and enhancing voltage profile.

6. An excellent new research topic for the foreseeable future is the practical analysis
of hybrid charging stations.
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