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Abstract

Intelligent control systems is a branch of engineering which deals with solving con-

trol system problems using non-traditional computing techniques such as nature- inspired

algorithms and neural networks. The classical computing techniques can give the satisfac-

tory performance or acceptable solutions, for complex systems identification and control

is a laborious task. Therefore to efficiently solve identification as well as controller design,

tuning corresponding parameters with meta-heuristics and neural networks are investi-

gated in the work.

In recent times, the significance of neural networks in control systems has increased

because of their learning and universal approximation capabilities. Particularly, system

identification and corresponding controller design becomes difficult, if the system dynam-

ics are complex. A novel method was proposed for identifying system dynamics and design

of neural network based FOPID controller. A class of RNNs(Recurrent Neural Networks)

called NARXnets (Nonlinear Auto Regressive with eXogenous input) have been used to

recognize the system dynamics. Later, this neural network was used to identify the best

suitable neural controller from FOPID controller data. To verify the proposed method, a

separately excited DC motor is considered as plant and HHO(Harris Hawks Optimization)

algorithm-tuned FOPID system as the reference controller. The motor and controller dy-

namics were captured using the designed NARXnet. The simulation results show that

the proposed controller is performing superior to the conventional FOPID / PID con-

trollers. In addition, the proposed method can also be used as an alternative technique

to approximate FOPID controllers using neural networks.

A novel architecture based on neural networks is proposed for the FOPID controller.

A new optimization algorithm using chaotic maps, called Chaotic Political Optimization

(CHPO) is developed to find the optimal weights of the neural network. To verify the effi-

ciency of the proposed single neuron FOPID (SNFOPID) controller, a separately excited
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DC (direct current) motor is considered as plant and its response is optimized. A new cost

function is defined based on the performance metrics of the plant and overall system error.

The simulation results show that the cost function can efficiently optimize the system re-

sponse. The performance metrics of the proposed controller are compared with different

existing controllers. The results show that the SNFOPID controller has produced better

rise time and settling time than the existing techniques. The controller is tested in differ-

ent scenarios like load changes, sudden disturbances, and sinusoidal set-point variations.

In all the cases, the proposed controller shown its superiority.

Optimal tuning of fractional order proportional integral derivative (FOPID) con-

troller parameters for automatic voltage regulator (AVR) system is a complex problem

that requires solution of real order integral and differential equations. Therefore, a novel

optimization technique called Chaotic Black Widow Optimization (ChBWO) algorithm is

proposed to tune the parameters of the FOPID controller. A new cost function is defined

with a combination of Zwe-Lee Gaing’s (ZLG) and integral of time multiplied absolute

error (ITAE) objective functions. The proposed controller performance (rise time, set-

tling time, and overshoot) is compared with the existing state-of-the-art techniques. To

verify the robustness of the proposed controller, the plant parameters deviated from -50%

to 50%. The simulation results show that the controller is robust to deviations in plant

parameters. Disturbance analysis is also carried out by incorporating sudden changes

in the reference signal. The simulation results demonstrate that the controller is stable,

robust, and sustains sudden disturbances.

Identification of optimal controller parameters for a system requires a model of the

system and complex tuning procedures. Since neural networks have excellent approxi-

mation abilities, they can be used for system model identification and controller design.

A new methodology was proposed using neural networks for automatic identification of

controller. A class of recurrent neural networks (RNN) called NARXnets (Non-linear

AutoRegressive with eXogenous input networks) are used for system identification and

controller design. Initially, the plant dynamics are identified using plant excitation and

response data. Later, the identified plant was used to design the NARXnet-based neural

network controller. To train the NARXnets, Bayesian regularization (BR) backpropa-

gation algorithm is used. The algorithm avoids over-fitting and reduces the number of
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training parameters using its inherent procedures. To verify the proposed method, the

automatic voltage regulator (AVR) system is considered as plant. The system response

is optimized by properly training the controller neural network. The response of the

proposed controller is compared with the state-of-the-art methodologies. The simulation

results showed that the proposed controller can track the reference signal efficiently. The

disturbance and load response analysis show that the overall system is stable.

To optimize AVR system response, a novel tuning method was proposed for sigmoid

proportional, integral, and derivative controller (SPID). The method uses the jellyfish

search optimization (JSO) algorithm to identify the optimal parameter for the SPID

controller. The controller parameters are found using the ITAE objective criteria. The

performance of the SPID controller is compared with the existing state-of-the-art PID

controllers. The analysis of simulated results indicated that the proposed SPID controller

can considerably reduce the overshoot compared to the traditional PID controllers. The

proposed JSO-SPID controller can stabilize the overall AVR system and optimize the total

system response. The disturbance analysis and reference signal tracking showed that the

proposed controller can be used under different operating conditions. Robust analysis was

also carried out to study the controller response to uncertain variations in the AVR system

parameters. The simulated results indicated that the JSO-SPID controller is stable and

produces robust performance for variations in plant parameters.

Finally, the HHO-FOPID controller was realized for DC motor speed control using

DSPACE tools. During the implementation, different objective functions are considered

to find the optimal controller for the DC motor. The results showed that the fractional

order controller can control the speed of the DC motor successfully.
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Chapter 1

INTRODUCTION

A control system is a branch of engineering in which the plant/system operation is

adjusted according to the user commands. The plant/system vary from simple temper-

ature control, liquid level inside a tank to complex power plant, and industrial boilers.

When designing the controller for a given plant engineers often come across various prob-

lems starting from obtaining plant model, external disturbances, non-linearity within

system modules etc. Developing an ideal controller for a system is a challenging task and

requires intricate mathematical procedures. Based on the procedure used for controller

design different control strategies were evolved such as classical, modern, robust, optimal,

and intelligent control etc. However, irrespective of the strategy used, the goal of designer

is to get the desired response as good as ideal response under external disturbances and

variations in the system operation. The purpose of any control system is to provide better

industrial and automated systems for the benefit of the society.

The control theory [3] discusses about making the systems whose response is pre-

dictable or making them to exhibit desired behavior. The systems may be mechanical,

electrical, and electronic or a combination. As a result, the control theory has become

interdisciplinary subject and frequently used in various branches of engineering such as

electrical, mechanical, robotics, chemical, and aerospace. The foundation upon which the

linear system theory establishes a cause-and-effect relationship for various system com-

ponents serves as the framework for the analysis of the system. The components that

make up the system configuration are connected through the control system [4], which

produces the required system response. Consequently, the block in Figure 1.1 can be used
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to represent a part of a process system that has to be regulated. This shows the input-

output process’s cause-and-effect relationship. The input signal is processed to produce

an output signal, frequently with power amplification.

The control systems are broadly classified into two types known as open loop and

closed loop. Each of the type has its own advantage. The open loop methods require very

less components to build and are stable. But suffers when external disturbances or noise

effects the system operation. Examples for open loop systems are timer based systems

like washing machines , dryers, volume and brightness control in television etc. Figure 1.2

depicts an open-loop control system where the controller or control actuator is employed

to get the desired response.

System 

(Plant /

Process)

Input Output

Disturbance

Figure 1.1 System to be controlled

Controller
System (Plant/

Process)

Desired

Input
Output

Control 

signal

Disturbance

Figure 1.2 Open loop control system

The closed loop control system produces the control signal that drives the actual

system using the error signal that is generated by comparing the desired output with the

actual/measured output. These systems involves the concept of feedback which creates a

closed loop between input and output. This makes the closed loop systems more robust

and prone to external disturbances and noise. Examples for closed loop control systems

are robotic arms, air conditioners, microwave ovens, and water level controllers for a tank

etc.
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∑ Controller Plant

Feedback 

elements

Desired input Error
Control 

signal

Actual 

output

Measured 

output

Figure 1.3 Closed loop control system

Figure 1.3 shows basic block diagram of closed-loop/feedback control system. The

feedback makes the overall system stable and less prone to external disturbances at the

cost of increased complexity in controller architecture. This type of relationship between

the actual output and desired or reference input is frequently used in feedback control [5]

to get the desired response from the system. The importance of control system has grown

multitude because of increased complexity in the systems and new challenges faced by

the designers to get the optimum performance from the system.

1.1 Literature survey

Nowadays, researchers are trying to improve the performance of proportional integral

derivative (PID) controllers using advanced mathematical concepts. The traditional PID

controllers use integer order calculus for the controller design. This gives the controller

designers only three degrees of freedom. On the other hand, designing PID controllers

using fractional calculus provides two extra degrees of freedom (integral and differen-

tial order). Such controllers are called fractional order proportional integral derivative

(FOPID) controllers [15]. The FOPID controllers comprise five tuning parameters known

as proportional gain (Kp), integral gain (Ki), derivative gain (Kd), order of integration

(λ), and order of differentiation (µ). Because of additional tuning parameters (λ and µ),

FOPID controllers can produce better response over the existing PID techniques [16].

The equations governing the operation of PID and FOPID controllers in frequency

domain are given by
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c(s) = Kp ∗ e(s) +
Ki

s
∗ e(s) +Kd ∗ s ∗ e(s) (1.1)

c(s) = Kp ∗ e(s) +
Ki

sλ
∗ e(s) +Kd ∗ sµ ∗ e(s) (1.2)

where c(s) is the output of controller, e(s) represents error signal. To efficiently tune the

PID and FOPID controller parameters(Kp, Ki, Kd, λ, andµ) various techniques have been

used in the literature. In the following sections, a brief overview of methodologies used in

the literature to design PID, FOPID, and neural network based controllers is discussed.

1.1.1 Fractional order systems and control

The fractional order calculus is used to model the physical phenomena more ac-

curately than integer calculus [17, 18]. Examples of physical phenomena which require

fractional calculus are heat flow inside a solid metal [15], electromagnetic waves inside

lossy transmission lines [19] etc. The importance for fractional order systems has been

increased because of availability of various computing methods [20–22]. A brief theory

related to fractional calculus and fractional order systems is given in appendix A.

To design the fractional order controllers for different systems various analytical

techniques were used in the literature. There are three types of design methods are found

from the literature. A tilt integral derivative (TID) controller was proposed in [23] where

the proportional component of the controller is replaced by a component having transfer

function ′s′ raised to power of − 1
n
Where ′s′ represents complex frequency of system and

n ϵ R. The controller resulted simpler tuning than PID. Moreover, the TID produced

better closed loop response in terms of disturbance rejection and averse to parameter

variations in the plant. Oustaloop and group extensively studied the fractional order

systems and experimented on control strategies. As a consolidation of their research

they developed CRONE (Commande Robuste dordre Non Entier translated in English to

Non-integer-order Robust Control) [24]. Different variations of CRONE controllers can be

found in [25,26] which are based on frequency domain representation of fractional systems.

In the thesis, to approximate the fractional order systems Oustaloop technique was used.

A frequency domain approach to design fractional PIλDµ was proposed in [27, 28]. The
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traditional lead-lag compensator is extended to fractional lead-lag compensator in [29]

and their auto-tuning techniques are mentioned in [30]. A brief review of different tuning

techniques used for fractional order controllers was mentioned in [31].

The procedures mentioned in the literature also showed that the fractional order

PID controllers produce better response than the classical PID controllers. Most of the

analytical methods mentioned in the literature gives us an approximate solution to the

fractional controller design problem. Since fractional systems are infinite order systems

getting an optimal solution using analytical methods is a challenging task. Alternative

methods such as soft computing techniques can be used to get optimum solution.

In the literature, frequency domain based design techniques are mentioned for the

design of fractional order controllers. Since the system behavior can be better represented

in the frequency domain most of the classical methodologies used this representation.

Therefore, time domain based methodologies can be investigated in the design of fractional

order controllers.

1.1.2 Optimization of fractional order controllers using meta-heuristic algorithms

Different types of algorithms are used in the literature to perform the optimization

of controller parameters. These techniques include traditional approaches like gradient

based optimization algorithms which require calculation of gradient of objective function.

The problem with these methods is if the objective/cost function is discontinuous then

the gradient based methods won’t work properly. Moreover if the objective function is

multi-modal in nature then the these algorithm may trap in local minima.

On the other side, evolutionary and meta-heuristic algorithms perform better than

traditional gradient based methods for the wide variety of objective functions. These

algorithms are generalized and can be applied to solve any global optimization problem.

Since the design of fractional order controller complex problem, it can be formed as a

global optimization problem and solve using evolutionary computing and met-heuristic

algorithms.

Evolutionary computing algorithms were used in the design of PID/FOPID con-

trollers for different types of systems such as chemical process control, motor control
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power regulator systems, networked control systems etc. In the thesis two plants (DC

motor and AVR (Automatic Voltage Regulator) system) are considered to test the imple-

mented methods. Since DC motors and AVR systems are well studied in the literature

and moreover different controller mechanisms are applied on these plants. Therefore, it is

convenient to compare the proposed techniques with existing state of the art techniques

on common system.

Genetic algorithm (GA) was used to identify the optimum parameters of PID con-

troller which are used in chemical processes [32, 33]. A novel optimization algorithm

is proposed by hybridizing improved electromagnetism algorithm and genetic algorithm

(IEMGA) and it is used for the tuning of FOPID controller for a second order system [34].

The authors compared the performances of PID controller and FOPID controller and

showed FOPID controller produced better response. Self organizing migrating algorithm

(SOMA) is used to optimize the fractional order controller parameters [35]. In this paper

the authors compared the performance of classical optimization scheme and meta-heuristic

algorithm. Interestingly, the results showed that both methods produced similar optimum

response for the system. Particle swarm optimization (PSO) algorithm was used to tune

the FOPID controller parameters [36] for two different processes. The results indicated

that the FOPID controllers significantly reduced the large overshoot of the systems. The

authors in the paper [37] used modified invasive weed optimization algortihm to tune

the controller parameters. A fractional order vehicle suspension system controller was

developed using an evolutionary algorithm [37].

A delayed first order system is controlled using fractional PID controller [38], in this

paper the authors used genetic algorithm to optimize the controller response. Cauchy

Mutated Artificial Bee Colony (C-ABC) algorithm was used to identify fractional PIλdµ

controller [39]. A novel hybrid control methodology which is a combination of fuzzy logic

and fractional PID [40]. Fruit fly optimization algorithm (FOA) was used to identify

the optimum controller parameters. The authors mentioned that fractional fuzzy control

given better results than the traditional fuzzy PID control. An imperialist competitive

algorithm (ICA ) was used in [41] to control the inter connected power systems in three

locations. The paper indicated that use of FOPID controller in the system produced

smoother response with reduced oscillations in the steady state. The fractional calculus
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introduced in the particle swarm optimization algorithm to update the velocity os par-

ticles and named it as fractional particle swarm optimization based memetic algorithm

(FPSOMA) [42]. The paper used FPSOMA algorithm for the design of FOPID controller

for trajectory control applications. The PSO algorithm is improved with adaptive weight

adjustment strategy and used for FOPID controller response optimization [43]. Gases

Brownian Motion Optimization (GBMO) algorithm is used to optimize the response of

hybrid fuzzy-fopid controller for load frequency control in power systems [44]. To control

a pump storage unit an FOPID controller is proposed and its parameters are optimized

using Caushy and Gaussian mutated gravitational search algorithm (CGGSA). A novel

model refence adaptive control (MRAC) based fractional order PID controller was devel-

oped for different systems [45] whose parameters are optimized using Moth-flame opti-

mization algorithm (MOA). Modifed grey wolf optimizer (MGWO) algorithm is used for

the fractional order PID controller with derivative filter (FOPIDD) design for automatic

Gain Control (AGC) in electric vehicle power systems [46]. To control the movement of

robotic arm FOPID controllers are used whose parameters are optimized using colliding

bodies optimization algorithm [47].

1.1.3 Optimization of fractional order PID controllers for DC motor and AVR

system

The fractional order controllers can be applied to any system where the classical

PID controller fit in. FOPID controllers are extensively used in various electrical circuits

and systems such as DC-DC converters, synchronous and asynchronous motor drivers,

DC motor controllers, load-frequency controller circuits, signal filters, Magnetic levita-

tion systems etc. Even though the number of applications are innumerable, two types of

plants are commonly found in the literature, one is electrical motor and the other is AVR

system. Since these systems are used as benchmark systems to evaluate the fractional

order controllers, the thesis also used the same systems. Moreover, it gives the additional

advantage that the proposed methodologies can be compared against wide range of tech-

niques applied on these benchmark systems. This section briefly discusses the state of the

art literature related to these plants.

Several fractional order PID controllers for managing the speed of a separately ex-
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cited DC motor have been proposed in the literature. optimization of PID controller

variables using a genetic algorithm (GA) was studied in [48].The Grey Wolf Optimization

(GWO) technique is used to create the best controller for a DC motor [49]. Corre-

spondingly robust analysis for controlling DC motor speed based on GWO was presented

in [50]. PID controller parameter identification using IWO (invasive weed optimization)

and stochastic fractal search (SFS) algorithm was discussed in [51, 52]. In Recent times,

several fractional order PID controllers were proposed using multitude of optimization

algorithms for DC motor. The algorithms include Artificial bee colony (ABC) algo-

rithm [53], jaya optimization algorithm(JOA) [54], salp swarm optimization algorithm

(SSA) [55]. A fractional order PID controller parameter tuning method using PSO and

constrained PSO to regulate the speed of DC motor [56]. In the paper the authors showed

that FOPID controllers produced better response and reduced overshoot compared to the

traditional PID controller. A GWO tuned FOPID controller for adjusting DC motor

speed was suggested, coupled with rigorous analysis in [1]. Recently, based on chaotic

theory, ChASO (chaotic atom search optimization) and ASO based FOPID/PID con-

troller design was discussed [2]. The study showed that introduction of chaotic maps

improved the original ASO algorithm. Hybridization of Manta ray foraging optimiza-

tion and simulated annealing (MRFO-SA) techniques incorporated with OBL to find the

optimum parameters of FOPID controller for DC motor speed control [57]. The hybrid

algorithm produced better response for DC motor. Opposition based henry gas solubil-

ity optimization(HGSO) [58] and harris hawks optimization (HHO) [59] algorithms were

used to find the optimum parameters of PID controller. Correspondingly fractional PID

controller developed in [60] for DC motor using the HHO algorithm and improved the

existing performances. An offline optimization technique to PI controller for DC motor

speed control using symbiotic organisms search algorithm was mentioned in [61].The au-

thors in [62] optimized PI+DF (proportional integral with differential filter) controller

using SFS algorithm. In this paper, the authors improved performance of DC servo sys-

tem by incorporating anti-wind up mechanism and derivative filter into the traditional PI

controller.

Tuning fractional controllers for AVR system involve solving under-defined frac-

tional differential equations. Therefore, it can be posed as an optimization problem and

solved with various meta-heuristic algorithms. In case of controller optimization for AVR
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system, the cost function plays an important role. The authors in [63] used a complex

cost function that involves time domain and frequency domain parameters of the system

along with PSO algorithm to optimize the FOPID controller parameters. The proposed

method reduced overshoot to zero, but large values of rise time and settling time are

observed. Different schemes are used to tune the parameters of the fractional order model

reference adaptive controller(FOMRAC), FOPID, and PID controller variables in [64].

The authors used sequential quadratic programming (SQP), particle swarm optimization

(PSO) and genetic algorithm (GA) to identify the controller parameters and showed that

the fractional order PID controller performed better than all other techniques. Chaotic

maps influenced multi-objective optimization problem using a non-dominated sorting ge-

netic algorithm II (NSGA-II) was utilized in [65] to tune the FOPID controller for AVR

system. The authors minimized multiple cost functions to identify best values for the

controller and showed that the fractional order controllers can produce better rise time

and settling time.

Besides these algorithms, various meta-heuristic optimization algorithms are used

in the literature. To improve the dynamic response and stability of the FOPID con-

trollers, salp-swarm optimization (SSO) based tuning method was presented in [66]. A

multi-objective method based on extremal optimization algorithm was proposed in [67]

and showed that the algorithm produces better tuning parameters than NSGA-II for AVR

system. The ant swarm algorithm is hybridized with chaotic maps to optimize FOPID

controller for AVR system [68]. The authors showed that the chaotic maps identified

better FOPID controller parameters than the previous methods. In [69], the authors

tuned the PID controller using cuckoo search (CS) algorithm. Also, a new objective

function was defined with a weighted combination of integral of time multiplied absolute

error (ITAE), overshoot, rise time, and steady state error. FOPID controller tuning using

cyclic exchange neighborhood with chaos-artificial bee colony (CNC-ABC) [70] achieved

better performance of AVR system than the existing PID and FOPID controllers. Com-

parison of AVR system controllers using teaching learning based optimization (TLBO),

harmony search algorithm (HSA), and local uni-modal sampling (LUS) method was pre-

sented in [71]. Sine?cosine algorithm (SCA) based FOPID controller design discussed

in [72] and improved the FOPID controller performance. The authors in [73] used chaotic

yellow saddle goatfish algorithm (CYSGA) to find optimum parameters for FOPID con-
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troller. In the paper, the authors used a new objective function with a combination of

ITAE, overshoot, steady state error, and settling time. The chaotic maps are used in

the literature to improve the search capability of existing algorithms. To improve the

local search capability of differential evolution algorithm, chaotic maps are used in [74].

A combination of two meta-heuristic algorithms simulated annealing (SA) and manta

ray foraging optimization (MRFO) were used in [75] to tune PID, proportional integral

derivative double derivative (PIDD2), and FOPID controllers. The authors confirmed

that FOPID controllers generate better rise time and settling time values, whereas PID

controllers are good for set point tracking.

Various methods are proposed in the literature to tune PI/PID controllers for AVR

system. PSO algorithm is used in [76] to optimize the PID controller variables for AVR

system. In the paper the authors defined a new objective function based on figure of

demerit for efficient tuning. Chaotic map based algorithms such as CAS algorithm and

chaotic optimization approach are use in [77, 78] for AVR system. An online tuning

method for PID controller using two different versions of PSO algorithm called velocity

update relaxation (VURPSO) and novel position, velocity updating strategy and craziness

(CRPSO) was mentioned in [79]. A comparative analysis performed on PSO, ABC and

DE (differential evolution) algorithms [80] for the design of PID controller to AVR system.

The authors showed among the algorithms ABC performed better. To efficiently tune the

PID controller for AVR system different meta-heuristic algorithms such as simplified par-

ticle swarm optimization [81], local uni-modal sampling [82], symbiotic organisms search

algorithm [83], cuckoo search algorithm [84], whale optimization algorithm [85], Improved

kidney-inspired algorithm [86], grasshopper optimization algorithm [87]. Various Hybrid

meta-heuristic optimization algorithms are also used such as hybrid GA-BF (Bacterial

Foraging) optimization [88], Taguchi combined genetic algorithm [89], and Ant Colony

Optimization with constrained Nelder-Mead algorithm [90] for PID controller response

optimization for AVR system.

A detailed analysis of literature survey for the DC motor and AVR system finds

some observations. All the methods mentioned in the literature uses objective function

as minimization criteria to find the optimum parameters for the controller. Therefore, a

better objective function can generate good controller parameters.
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1.1.4 Neural networks for intelligent control

In the literature, various systems were identified using neural networks. The authors

in [91] used NARXnets (Nonlinear Auto Regressive with eXogenous input networks) to

forecast daily solar direct radiation for the photo voltaic management systems. The

developed solution forecasts the direct solar radiation for a surface. The authors in [92]

presented an overview of properties and computational capabilities of the NARX neural

networks along with mathematical modeling. The paper [93] used NARXnets for multi

step time series prediction for time delay systems for real-time VBR(variable bitrate)

video traffic time series. Different types of training algorithms used to train these neural

networks were discussed briefly in [94]. The paper [95] proposed an online adaptive control

strategy for controlling the speed of separately excited DC motor with Artificial Neural

Networks (ANNs). Recently a comparison between Proportional Integral Derivative (PID)

controller and ANN based controller for controlling speed of DC motor was mentioned

by [96] and the author shows that the ANN-based controller produces less overshoot and

settling time compared to the PID controller. For better estimation of DC motor position

and velocity values, ANN-based design was proposed in [97]. In this paper, the authors

proved that the ANN-based estimator provides better values of velocity and position

of DC motor than the traditional state observer based estimator. [98] designed an IMC

(internal model control) based adaptive neural network controller for controlling the speed

of DC motor in real-time. [99] used artificial neural networks for estimating the power

generation efficiency of permanent magnet synchronous generator. The authors proved

that the neural networks can be used for system identification and data generation.

A two stage artificial neural network based controller was designed for DC motor

speed controller [100]. In the paper, the authors used two neural networks one for estima-

tion of motor speed and another for generation of control signal generation. NARMA-L2

(Non-linear Auto Regressive Moving Average-L2) based neural network controller for sep-

arately excited DC motor is mentioned in [101]. A comparative analysis of neuro-fuzzy

system, Genetic algorithm and ZN-Tuning based PID controllers was performed in [102].

In the paper, the authors showed that genetic algorithm and neuro fuzzy based systems

performed better than the traditional PID controller. A detailed research report on ar-

tificial neural networks for DC motor speed control was given in [103]. To control the
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angular position of the DC motor a neural network based approach was given in [104]. PI

controller parameter tuning technique using neural networks was given in [105].

To tune the parameters of FOPID controller for AVR system neural networks are

used in [106]. The authors showed that neural networks are able to optimize controller

response better than the existing optimization algorithms. Probabilistic neural net-

works(PNN) are used in [107] to control the AVR system response. The authors compared

performances of PI, PID, and PNN and showed that PNN produced better performance

metrics. A neural network predictive control scheme along with imperialist competitive

algorithm (ICA) is used for better optimization of AVR system response [108]. To im-

prove the power system stability feed forward neural networks(FFNN) are used in AVR

system [109,110].

From the literature survey it is found that different types of neural networks were

used to tune the parameters of PID/FOPID controllers. In addition feed forward neural

networks, probabilistic neural networks, and neuro-fuzzy systems were also used to im-

prove the performance of existing controllers. Even though the authors mentioned that

neural networks performance is good training neural networks requires model of the sys-

tem and controller training data. Moreover there are very few studies related to hybrid

architectures to mitigate some of these problems. There is a need to investigate whether

a single neural network can be used for identification as well as control.

1.2 Gaps identified from the literature survey

To design optimum controller, various methodologies have been discussed in the

literature such as proportional integral derivative(PID), fractioanl order PID(FOPID),

neural networks, fuzzy, and neuro-fuzzy. Among these techniques PID controllers are

commonly used in industrial applications because of its simplicity and ease of implemen-

tation. As an extention to the PID controllers FOPID controllers are proposed in the

literature to extend the capabilities of PID controllers such as additional degrees of free-

dom in tuning parameters, increased robustness. Most of the methodologies mentioned

in the literature used nature inspired meta-heuristic algorithms to identify the optimum

parameters of FOPID/PID controllers. Neural networks and fuzzy based controllers pro-
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posed as alternative to traditional controllers where in additional customization is possible

related to control strategies.

During the literature survey short comings of different methods are identified and

summarized as follows. These gaps form the foundation for identifying research objectives.

� There are no particular rules defined for tuning FOPID/PID controller parameters.

It is due to the fact that the requirements vary for different systems. Therefore,

the objective functions used for controller optimization should be defined carefully

according to the plant/system under operation.

� meta-heuristic algorithms used for the optimization of controllers can be further

improved or new algorithms can be proposed to enhance the controller performance.

� In traditional control theory, system identification and controller design are viewed

as two separate problems. Using data driven approaches both problems can be

solved using single algorithm.

� There is a need to study how neural networks can be used to solve system identifi-

cation as well as controller design.

� Hybrid controllers such as combination of FOPID and neural networks need to be

investigated. These controllers have the advantages of both FOPID and neural

network controllers.

1.3 Motivation

Over the past century, the systems have grown multi-fold and involved various com-

ponents related to electrical, mechanical and electronics. For such systems designing a

controller that is robust, ambiguity free, and with superior performance is a challenging

task. Design of a good controller requires the knowledge of entire system operation and

accurate mathematical models. As the system complexity increases developing the accu-

rate model becomes difficult and in certain cases it is near to impossible because of huge

number of system parameters. The traditional controller design techniques are particular

and analytical in nature and produced satisfactory results for certain class of systems [6].
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With the advances in the computing technologies we can automate the system modeling

and subsequent controller design tasks. This reduces the burden on the system designers

and they can concentrate more on the system performance related aspects.

Intelligent control is a class of control techniques that use various artificial intel-

ligence computing approaches like neural networks, fuzzy logic, machine learning, and

evolutionary computation [7]. As the importance for machine learning is drastically in-

creasing in several fields of engineering we can use the advantage of availability computing

power for the design of optimum controllers. The traditional PID controller tuning pro-

cedures [8–11] produces semi-optimum parameters. Therefore in order to find optimum

or at least near optimum parameters we can use meta-heuristic algorithms and neural

networks [12–14]. Studying the combination of traditional FOPID/PID controllers and

neural networks can lead to new type of hybrid controllers. Figure1.4 shows the block

diagram for the design procedure for intelligent control.

∑ Controller Plant

Feedback 

elements

Desired input Error
Control 

signal
Actual output

Measured 

output

Meta-heuristic/Neural network based 

learning algorithm

Optimized controller 

parameters

+

-

Figure 1.4 Block diagram for intelligent control system

Inspired from the optimization capabilities of meta-heuristic algorithms and univer-

sal approximation nature of the neural networks, the primary motivation is to develop

procedures to identify optimal parameters for the fractional order proportional integral
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and derivative (FOPID)/PID controllers using meta-heuristic algorithms and design hy-

brid neural network based controllers.

1.4 Problem statement

System identification and controller design is an interesting area where we need to

develop the mathematical models of the system by studying the behavior. The controller

design for a system requires knowledge of system as well as designing of objective function

to design the controller parameters which gives the best response from the system. The

most commonly used controller is the proportional, integral and derivative (PID) con-

troller. Extending the concept of PID controllers to fractional calculus resulted in a new

type of controllers called fractional order PID (FOPID) controllers. But identification of

best parameters for these controllers is a complex problem and it is far more difficult than

PID controllers.

The classical control techniques use frequency domain representation of system and

based on desired response a suitable compensator is employed. But these techniques are

not suitable for multivariate systems. To solve this problem modern control theory uses

state space representation of the system. But the design of controller requires solution

of set of algebraic equations. The traditional gradient based techniques like simplex and

interior point methods can be employed. For these methods to work the system must be

continuous or differentiable. If the system is corrupted by noise or external disturbances

then these methods may not work. Another way which does not require calculation of

derivatives is use of meta-heuristic algorithms and neural networks.

Therefore in the proposed methods meta-heuristic and neural network based tech-

niques are used to identify the optimum controller parameters for a given system. Based

on the idea, the problem statement is formulated as mentioned below.

”Development of controller and tuning techniques using meta-heuristic

algorithms and neural networks”
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1.5 Research Objectives

The research objectives are formed based on the gaps identified in the literature.

The summary of the research objectives are mentioned as follows.

� Devise methods to efficiently tune the FOPID/PID controller parameters using

meta-heuristic optimization algorithms

� To improve performance of existing meta-heuristic algorithms by incorporating

chaotic maps for better tuning of controller parameters

� Design neural network based controllers for identification and control of different

systems

� Design hybrid architectures for the controllers using neural networks

� Analyze the performance of different types of controllers for a given system

1.6 Thesis Contributions

The research work present in ensuing chapters of this thesis makes original contri-

bution to the field of fractional PID controller tuning using meta-heuristics and hybrid

controller architectures using neural networks. The summary of the contributions are

given as follows.

� A type of recurrent neural networks called NARXnets are used to design a Hybrid

controller for the speed control of DC motor. The controller is designed by approxi-

mating HHO (Harris Hawks Optimization) algorithm tuned FOPID controller using

neural networks.

� To verify the operation of FOPID controller, it is practically implemented to control

the DC motor speed. For the realization, Dspace 1104 hardware is used along with

control desk and MATLAB software.

� Novel architecture based on neural network is proposed for fractional order propor-

tional integral derivative (FOPID) controller. A new optimization algorithm using
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chaotic maps, called Chaotic Political Optimization (CHPO) is developed to identify

the optimal weights of the neural network. To verify the efficiency of the proposed

single neuron FOPID (SNFOPID) controller, a separately excited DC (direct cur-

rent) motor is considered as plant and its response is optimized. A new cost function

is defined based on the performance metrics of the plant and overall system error.

� Optimization of FOPID controller parameters for AVR system using BWO (Black

Widow optimization algorithm) was presented. In the second part to further improve

the performance of the BWO algorithm, chaotic maps are introduced and applied

the algorithm to optimize the AVR system response.

� A procedure for Automatic voltage regulator(AVR) system identification and corre-

sponding controller design procedure was developed using Bayesiaan Regularization

NARXnets.

� Novel tuning method proposed for sigmoid proportional, integral, and derivative

controller (SPID). The method uses the jellyfish search optimization (JSO) algo-

rithm to identify the optimal parameter for the SPID controller for AVR system.

1.7 Thesis Organization

The rest of the thesis is structured as follows:

Chapter 1 An overview of state of the art controller design techniques, various met-

heuristic algorithms and neural network based approaches for the design of controllers

are discussed. Later, the gaps identified from the literature study, motivation, problem

statement, research objectives and thesis contributions are mentioned.

Chapter 2 This chapter mentions design procedure for NARXnet controller for speed

control of DC motor using harris hawks optimization algorithm (HHO) tuned FOPID

controller as a reference controller. The chapter also includes hardware implementation

of FOPID controller for DC motor speed control.

Chapter 3 This chapter proposes a novel architecture for FOPID controller inspired from

the architecture of artificial neuron. The parameters of the controller are optimized using

chaotic political optimization algorithm.
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Chapter 4 This chapter discusses the optimal tuning of FOPID controller parameters for

AVR system using black widow optimization (BWO) algorithm and chaotic black widow

optimization (ChBWO).

Chapter 5 This chapter discusses a neural network based identification and control

scheme for stabilization and control of automatic voltage regulator system. Here, the

weights of the neural network are optimized using Bayesian regularization algorithm.

Chapter 6 This chapter presents optimization of sigmoid PID controller parameters for

AVR system Jellyfish search optimization (JSO) algorithm.

Chapter 7 Finally, this chapter summarizes the thesis conclusions from the contributions

and provides a brief discussion on the direction for future work.



Chapter 2

Design of NARXnet based Fractional-Order

PID/PID Controller for Speed Control of DC Motor

In the first part of the chapter, tuning of FOPID controller for speed control of DC

motor using HHO (Harris Hawks Optimization) algorithm was presented. In the second

part, a type of recurrent neural networks called NARXnets are used to design a hybrid

controller for the speed control of DC motor. The controller is designed by approximating

HHO algorithm tuned FOPID controller using neural networks. To validate the FOPID

controller real-time implementation is discussed at the end of the chapter.

2.1 Introduction

To accurately model the dynamics of a system, it requires good understanding of

behavior and important parameters of the system. In traditional methods, the key param-

eters are identified in the initial phase. Later, a mathematical model is developed based

on these parameters. Often the developed model may not accurately predict the dynamics

of the system. It happens due to two reasons, primarily the effect of external signals on

the system dynamics, the second factor is amount of detail, which is limited by nature

of the system. On the other side, artificial neural networks were successfully applied for

dynamic system identification and system approximation problems. The advantage of

neural networks is, they can model any non-linear function by proper training.

Despite various techniques available for the design of FOPID controller, there is
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still scope for research to improve these controllers. Direct implementation of FOPID

controllers involves realization of real order integral and differential equations and the

realization requires infinite order filters. Therefore, to overcome this problem, we propose

a neural network based technique for the design of FOPID controller. The dynamics of

FOPID controller can be identified using neural networks. This allows us to accurately

model the behavior of these controllers. Since neural networks are adaptive in nature it will

be easy for the designer to adjust the weights according to the required controlling action.

Another advantage is neural networks perform better under noisy environments than the

traditional controllers. This increases the reliability and robustness of the controller.

2.2 Overview of Harris Hawks Optimization (HHO) algorithm

HHO [111] is a meta-heuristic, population-based, gradient-free optimization algo-

rithm developed based on the hunting behavior of hawks. At the beginning, the hawks

perch the search area for prey. Once they identify the prey, the hawks confuse the prey

and then make it exhausted. The perching behavior of hawks is like exploration and

hunting the exhausted prey is like exploitation. Let p be a random number, if p > 0.5

then the perching is based on family members else it is based on the position of the prey.

This is mathematically modeled using equation (2.1).

Z(t+ 1) =

Zrnd(t).p1|Zrnd(t)− 2.p2.Z(t) if p1,2 ≥ 0.5

(Zrbt(t)− Zm(t)).p3.(L+ p4.(U − L)) if p1,2 < 0.5

(2.1)

where Z(t+ 1) represents location of hawks in (t+1) iteration, Zrnd(t) indicates random

hawk location, Zrbt(t) is the rabbit location, Z(t) is the present position vector of hawks,

p1, p2, p3, p4 ϵ (0, 1) represents random variables, the upper and lower bounds are indicated

by U and L, and Zm(t) indicates average position for current population((2.2)).

Zm(t) =
1

K

K∑
i=1

Zi(t) (2.2)

2.2.1 Condition to interchange between exploitation and exploration

The algorithm changes between exploration and exploitation phases based on prey

(rabbit) energy. The prey gradually loses energy during the hunting process and this
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behavior represented in equation (2.3).

N = 2N0(1−
t

T
) (2.3)

Here N represents the energy of prey, T is the value of final iteration, and N0ϵ(−1, 1)

indicates initial energy of prey. If prey energy N ≥ 1 then hawks enter into the exploration

stage, and when N < 1 the hawks enter into the exploitation stage.

2.2.2 Exploitation phase

In this process, Harris hawks perform surprise attacks by targeting the intended

prey. Let p represents the probability of escaping for prey then p < 0.5 indicates fruitful

escape and p ≥ 0.5 indicates failed to escape before a surprise attack.

Soft besiege

If p ≥ 0.5 and |N | ≥ 0.5, the prey has enough energy and it tries to escape by following

tricky movements. These moves are modeled with equations (2.4) and (2.5).

Z(t+ 1) = δZ(t)−N |Q ∗ Zrbt(t)− Z(t)| (2.4)

δZ(t) = Zrbt(t)− Z(t) (2.5)

Where Q = 2 ∗ (1− p5) represents the length of rabbit movement.

Hard besiege

If p ≥ 0.5 and |N | < 0.5, the rabbit is tired and it has low N value. The positions of

hawks are updated with equation (2.6).

Z(t+ 1) = Zrbt(t)−N |δZ(t)| (2.6)

2.2.3 Soft besiege using advanced moves

If |N | ≥ 0.5 but p < 0.5, indicates prey has sufficient energy to escape. Therefore

the hawks follow soft besiege. In this case the positions of the hawks are updated using

the equation shown in (2.7)

A = Zrbt(t)−N |Q ∗ Zrbt(t)− Z(t)| (2.7)
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The hawks will move according to L-based patterns using the rule given in (2.8)

B = A+D × L(C) (2.8)

Where C indicates problem dimension and D represents a random vector of size 1 × C.

Correspondingly, the Leavy function L can be obtained from equation (2.9)

L(z) = 0.01× µ× ρ

|u|
1
γ

, ρ =

(
Γ(1 + γ)× sin(πγ

2
)

Γ(1+γ
2
)× γ × 2(

γ−1
2

)

) 1
γ

(2.9)

The random values u, µϵ(0, 1) and γ = 1.5. The final equation to update the positions of

hawk during soft besiege is given in (2.10).

Z(t+ 1) =

A, if F (A) < F (Z(t))

B, if F (B) < F (Z(t))

(2.10)

Where F (.) represents the objective or cost function.

2.2.4 Hard besiege using advanced moves

Hard besiege will be performed if |N | < 0.5 and p < 0.5. In this case, the prey may

not contain sufficient energy to escape. This is modeled by using equation (2.10) Where

A = Zrbt(t)−N |Q ∗ Zrbt(t)− Zm(t)| andB = A+D × L(C) (2.11)

Various working stages of HHO algorithm is represented in the form of block diagram as

shown in the figure 2.1.

2.3 Modeling of DC motor

An externally excited DC motor model was considered for speed control through

armature voltage. The equivalent circuit of the DC motor is shown in figure 2.2. The

parameters identified for modeling the DC motor were mentioned below.

Ra : Armature resistance(Ω), La :Inductance of armature (H),

ia : Current in armature(A), if :Current due to field(A),

ea : Applied voltage(V ), eb : Back e.m.f(V ),
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Z(t + 1) = Zrbt (t) − N |ΔZ(t)|

Update the location vector using Equation

A     if F (A) < F (Z(t))
Z(t + 1) =

B     if F (B) < F (Z(t))





Update the location vector using Equation

Return Zrbt

If
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A     if F (A) < F (Z(t))
Z(t + 1) =

B     if F (B) < F (Z(t))





Figure 2.1 HHO algorithm

T : Motor torque(N.m), ω : Angular velocity of motor shaft(rad/s),

J : Inertia torque(kg.m2), Kb : e.m.f constant(V.s/rad),

K : Motor torque constant(N.m/A), B : Motor friction constant(N.m.s/rad)

A mathematical model for DC motor was formulated from the identified parameters.

The equation governing the electrical behavior of armature controlled dc motor was given
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Figure 2.2 Electrical equivalent of DC motor

Table 2.1 Values of modeling parameters of DC motor [1, 2]

S.no Parameter Value

1. Ra 0.4 Ω

2. La 2.7 H

3. J 0.0004 kg.m2

4. B 0.0692 (N.m.s/rad)

5. K 0.0488 (N.m/A)

6. Kb (V.s/rad)

by (2.12).

ea = Raia + La
∂ia
∂t

+ eb (2.12)

Because of the current flow in the motor armature, torque is developed and is equal to

sum of inertial torque and frictional torque as described in (2.13).

T = J
∂ω

∂t
+Bω = kia (2.13)

The back emf voltage is proportional to angular velocity (ω) of the motor and was related

by (2.14)

eb = kbω = kb
∂θ

∂t
(since ω =

∂θ

∂t
) (2.14)

Application of Laplace transforms to the equations (2.12) - (2.14) produce the corre-

sponding transform domain equations (2.15) - (2.18). Assuming zero initial conditions,

then

ea = RaIa(s) + sLaIa(s) + eb(s) = (Ra + sLa)Ia(s) + eb(s) (2.15)

eb = kbω(s) = skbθ(s) (2.16)
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T (s) = (Js+B)ω(s) = kIa(s) (2.17)

The transfer function of the DC motor was given by (2.18)

G(s) =
ω(s)

Ea(s)
=

k

(sLa +Ra)(Js+B) + kbk
(2.18)

Substituting the values of table 2.1 parameters in (2.18), the final transfer function of DC

motor was identified and given in (2.19).

G(s) =
ω(s)

Ea(s)
=

0.015

(2.7s+ 0.4)(0.0004s+ 0.0022) + 0.00075
(2.19)

Using the equation (2.19) a block diagram was created for the DC motor and implemented

in Simulink. The corresponding diagram was shown in figure 2.3. Using the transfer

Figure 2.3 DC motor transfer function using Simulink

function mentioned in equation (2.19) the motor is simulated with the help of MATLAB

software. The open loop response of the simulated DC motor is plotted and shown in

the figure 2.4. From, the open loop response, it is found that the DC motor has 7.83s

rise time, 14.09s settling time, with 0 overshoot, and absolute steady state error value

8.2 units. From the responses we can observe that the system has high values of rise

time, settling time, and steady state error. Therefore to optimize the system response a

controller is required.

2.4 Fractional order PID / PID controller

Fractional calculus deals with the evaluation of real order integro-differential equa-

tions. The traditional PID controllers use integer order calculus. Expanding the integer

calculus to fractional calculus results in new type of controllers called fractional order PID
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Figure 2.4 Open-loop response of DC motor

(FOPID) controllers. These controllers (FOPID) contain two additional tuning parame-

ters (λ, µ) than integer order or normal PID controllers (IOPID). The general time-domain

equation governing the operation of FOPID controller was given in (2.20).

r(t) = Kper(t) +KiD
−λ
t er(t) +KdD

−µ
t er(t) (2.20)

Where r(t) is the desired signal, er(t) indicates error signal and λ, µ ϵ (0, 2). The terms

D−λ
t and D−µ

t are related to fractional calculus [6] which are defined as

aD
α
t =



dα

dtα
, R(α) > 0,

1, R(α) = 0,
t∫
a

(dτ)−α R(α) < 0

(2.21)

Where a, t are limits and α is the order of differ-integral term D. Another commonly used

definition for fractional calculus operator is Grünwald-Letnikov definition [6] given by

aD
α
t f(t) = lim

x→∞

1

hα

[ t−a
h

]∑
k=0

(−1)k

α
k

 f(t− kh) (2.22)

Where h is the computation step size. Application of Laplace transform to the equation

(2.20) results (2.23)

R(s) = (Kp +
Ki

sλ
+Kds

µ) ∗ E(s) (2.23)
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Where R(s) and E(s) are Laplace domain representation of r(t) and er(t) respectively.

Then the corresponding fractional order controller is given by (2.24).

Gc(s) = Kp +
Ki

sλ
+Kds

µ (2.24)

From equation (2.24) if the values of λ and µ are equal to 1, then the fractional order

controller represents the integer order controller. Different forms of the fractional con-

troller were shown in figure 2.5. From the figure, it is observed that all other integer-order

controllers are special cases of FOPID controller.

λ=1,µ=1

PID
λ=0,µ=1

PD

λ=1,µ=0

PI

λ=0,µ=0 

P Integral 

Order(λ)

Derivative 

Order(µ)

 λ=2,µ=0

λ=0,µ=2
FOPID

Figure 2.5 Operating region of FOPID controller

Designing a fractional order controller involves solving under defined fractional

integro-differential equations. It involves complicated mathematical equations and lengthy

process. The solution to optimal controller can also be found using soft-computing tech-

niques like meta-heuristic algorithms. In the thesis different meta-heuristic algorithms

are used for optimum fractional order controller design.
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2.5 HHO based fractional PID controller design

To optimize DC motor fesponse, fractional order PID controller is considered be-

cause of its inherent advantages like additional tuning parameters. To tune the controller

gains HHO algorithm is used. The block diagram of the complete system was shown in

figure 2.6. For each iteration of the algorithm, the error value for the output of DC mo-

tor was calculated and substituted back into the corresponding objective function. The

parameter error values were adjusted according to the described procedure in the opti-

mization algorithm. The above process is repeated until the terminating criterion was

met. Finally the tuned values are used to implement the FOPID controller.

U(S) 1

a aL s R

1

Js B
K

bK

TL(S)

T(S)

Y s 

+
-

+
-

DP IK K s K s  

E(S)
R(S)

HHO Optimization

ZLG/ITSE/ITAE

(Objective Function)

HHO-FOPID Controller

Open loop DC motor

-

+

KP KI KD µλ

Figure 2.6 Proposed HHO-FOPID controller block diagram

2.5.1 objective function

To find the best tuning parameters for the controller a good objective function is

required. Different objective functions(ITSE, ITAE, and ZLG [76] (Zwe Lee Gaing))

were proposed in the literture for proper tuning of PID controller parameters. Also, to

investigate the effectiveness of the proposed algorithm these objective functions are used.

Therefore to optimize controller parameters Kp, Ki, Kd, λ and µ, HHO algorithm is

applied on the mentioned objective functions.

The equations for ITAE, ITSE, and ZLG functions were shown in equations (2.25),

(2.26), and (2.27). The proportional, integral and derivative parameters (Kp, Ki, and

Kd) were limited to the range [0, 20] and fractional powers (λ and µ) were limited to the
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range [0, 2].

ITAE =

∫
0at.|t.er(t)|dt (2.25)

ITAE =

∫
0at.er2(t)dt (2.26)

ZLG = (1− er−γ) ∗ (Op + Ess) + er−γ ∗ (ts − tr) (2.27)

Where Ess, tr, Op, ess, and ts indicates steady-state error, rise time, maximum overshoot,

and settling time respectively and the value of γ is equal to 1.0 [76].

2.6 Simulation results of HHO-FOPID controller

All the simulations were performed using MATLAB/Simulink (with FOMCON tool-

box) version 8.1a on the computer with Intel i5 processor @ 3.00GHz and 8GB RAM. For

optimization algorithms, the population size is taken as 50 and the number of iterations

performed was 30.

To verify the efficacy of HHO-PID and HHO-FOPID controllers, different controllers

are compared by considering the same plant (DC motor). The FOPID controllers are

implemented with the frequency range [0Hz, 1000Hz]. The range is selected based on the

frequency response of the DC motor using Bode plots. The step reactions of proposed

controllers were indicated in figure 2.7 and figure 2.8. Comparison of step response of

different FOPID controllers is given in figure 2.9 and Bode plot of proposed FOPID-

controller is given in figure 2.10. The tuned parameter (Kp, Ki, Kd, λ, µ) values of

various controllers were shown in Table. 2.3. Also the proposed algorithm was compared

for steady-state error, rise time, overshoot and settling time with other FOPID/PID

controllers in Table 2.3.

The results clearly show that HHO-PID and HHO-FOPID controllers are performing

better than GWO-FOPID/PID [50], SFS-PID [52] and IWO-PID [51] controllers. In the

case of PID controllers, all the controllers are producing nearly the same values with very

slight deviation. For FOPID controllers the settling time was improved from 0.05406s

to 0.0373s, the steady-state error reduced from 3.446E-03 to 3.17E-04 whereas the rise

time was slightly increased from 1.79E-02s to 1.92E-02s. To further investigate, ITAE,

ITSE and ZLG values are calculated (shown in table 2.2) for all the controllers and it is
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Figure 2.7 HHO-FOPID step response
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Figure 2.8 HHO-FOPID controller response
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Figure 2.9 Comparison of different FOPID

controllers

Figure 2.10 Bode plot for HHO-FOPID con-

troller

Table 2.2 Comparison of objective function values for different controllers

Controller ITSE ZLG ITAE

HHO-PID (Proposed) 4.82E-05 0.016704 0.0626

GWO-PID [50] 4.82E-05 0.016707 0.0654

SFS-PID [52] 4.84E-05 0.017032 0.0634

IWO-PID [51] 4.82E-05 0.017155 0.0985

HHO-FOPID 3.18E-05 0.00218 0.0819

GWO-FOPID [50] 3.18E-05 0.00256 0.0819

SFS-FOPID [52] 3.25E-05 0.00491 0.0843

IWO-FOPID [51] 4.26E-05 0.00361 0.0956

clear from the simulated results that the proposed controllers have a little edge over the

others. It is also found that GWO based controllers performance is very nearer to the

HHO based controllers and SWS and IWO based fractional controllers are producing little
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overshoot. Finally, the bode plot as shown in figure 2.10 was drawn for the HHO-FOPID

and HHO-PID Controllers and it shows Both controllers have infinite gain margin and

phase margin value of 178.9201 deg @ 0.928Hz.

2.7 Approximation of FOPID controllers using neural networks

Despite various techniques available for the design of FOPID controller, there is still

scope for research in the realization of these controllers. In general, the fractional order

transfer functions can be approximated using integer order systems by using Oustaloop

method [24,25] which suffers from accuracy. In the proposed method, a data driven neu-

ral network based approximation technique using NARXnets for realization of FOPID

controller is discussed. Once the NARXnet based controller is designed, Real-time imple-

mentation of NARXnets does not require complex hardware. It is because the proposed

method uses very few neurons.

2.7.1 NARXnets

In the thesis, system identification and controller design methodology was investi-

gated using a class of RNNs (Recurrent Neural Networks) called NARX neural networks.

In short form these networks are also called as NARXnets. These are different from regu-

lar other types of RNNs in such a way that the feedback for the network only comes from

output layers instead of hidden and output layers. The continuous time representation of

NARX networks is denoted by

ŷ(t) = ψ(u(t− nu), ..., u(t− 1), u(t), y(t− ny), ..., y(t− 1)) (2.28)

In equation (2.28), the input and output functions at time t are represented as u(t) and

ŷ(t) , the order of delays for input and output are denoted as nu and ny, and the mapping

function ψ(·) can be identified during the neural network training.
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2.7.2 Artificial Neural Networks (ANNs) in NARXnet

Artificial neural networks have the capability to model any non-linear mapping

between one or more variables. Because of this property, ANN’s are used in different

fields of applications like, regression, clustering, classification, function approximation,

system identification, pattern classification, and optimization. But ANN performance

degrades if the system consists of unknown delays. To accurately model these systems

the concept of feedback has to be introduced into the network. On other side, NARXnets

have inbuilt feedback from output layer to input layer which makes them suitable for

time delayed system identification. This results increased neural network performance,

less number of samples to train, early convergence and reduced error [111, 112]. All

these advantages of NARXnets comes at the cost of increased number of inputs, external

delay units, additional memory and more complexity. In general, NARXnets use ANN’s

internally for time series prediction applications.

NARXnets can be realized using two methods, known as series-parallel and paral-

lel architectures. The series-parallel architecture does not use feedback, instead, it uses

memory to store the temporary outputs produced by ANN. The parallel architecture in-

corporates feedback in the network so that the output can be directly fed to input using

delayed feedback concept. The figures 2.11 and 2.12 describe the series and parallel archi-

tectures. In series-parallel architecture, future values are predicted from past and present

values of inputs x(t) and original past values of outputs ŷ(t). In parallel architecture,

the future values of output ŷ are predicted from the present and past values of input

x(t) and past values of estimated output ŷ(t). The mapping function is highly non-linear

T

D

L Feed 

Forward 

NetworkT

D

L

x(t)

ŷ(t)

ŷ(t)

Figure 2.11 Series architecture

T

D

L Feed 

Forward 

NetworkT

D

L

x(t)

ŷ(t)

ŷ(t)

Figure 2.12 Parallel architecture

ψ(·) and is difficult to find. Therefore multi-layer perceptrons(MLP) will be used to find

ψ(·). The MLPs have the capability to approximate any non-linear function by proper

training. The proposed architecture consists of three layers of neurons named as input
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layer, hidden layer, and output layer and all layers contain neurons with weights, biases,

and activation functions. Mathematically, the MLP is represented as

Zi = f(
n∑

j=1

xj · wij) (2.29)

In equation (2.29), Zi represents the response from output neuron i , xj represents input

j and wij indicate weights associated with the i and j layers. The function f(·) indicates

the activation function and corresponding mathematical definitions are given by

Sigmoid : f(x) =
1

1 + e−x
ϵ ]0, 1[ (2.30)

Linear : f(x) = x ϵ R (2.31)

Tansigmoid : f(x) =
ex − e−x

ex + e−x
ϵ ]− 1, 1[ (2.32)

These networks are trained to identify the input-output mapping based on various training

algorithms [113], [123]. The weights of the neural network are updated during the training

process based on the error between target and actual output, produced by the neural

network.

2.7.3 Proposed neural network architecture

The entire system architecture was divided into five components as described in

figure 2.13. The DC motor block, generates the necessary data to identify system dy-

namics with plant neural network. The HHO-FOPID controller, which acts as a reference

data generator to train the controller neural network. Levenberg-Marquardt (LM) algo-

rithm [113] was used to adjust the weights of plant and controller neural networks during

training process. The working procedure of DC motor and HHO-FOPID controller was

already discussed in section 2.4. In the system, the neural network is divided into two

parts namely, plant network and controller network. Each of these networks consists of

an input layer, a hidden layer, and the output layer. The input layer consists of delay

blocks which delays each of the inputs by one and two units. If there are n number of

inputs after passing through delay blocks 3n inputs are produced.

Therefore the delayed signals along with original inputs were fed as input to the

network. The delayed signals will improve the dynamic behavior of the neural network
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Figure 2.14 Architecture of proposed system

during training. Sigmoid and linear activation functions are used to activate hidden and

output layers respectively. The overall neural network architecture was summarized in

figure 2.14. The feedback connections are established from plant output to plant input

and controller input, and from controller output to controller input.
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2.7.4 Training plant neural network

To design the NARXnet controller, two neural networks (plant and controller neural

networks) have to be trained. Therefore, the total training part was divided into two

phases. In the first phase the dynamics of plant neural network are identified, in the

second phase, the identified plant dynamics along with controller training data are used

to train the controller network.

The necessary training data to train the neural networks was generated using Simulink

as described in figure 2.15. The signals in plant, out plant and in cf, out cf represents the

training data for plant and controller respectively.

Figure 2.15 Data generation from Simulink

There are a total of 10,000 training samples are generated with sampling frequency of

1ms(0.001s) by varying magnitudes and time duration. The data set consists of excitation

(input) and response (output) of DC motor. The graphical representation of training data

for the plant network is shown in the figure 2.16.

Initially, the plant neural network was created with 10 hidden neurons and an out-

put neuron. There are two input signals for the plant neural network namely reference

signal and feedback signal. These signals are delayed by 1 and 2 time units respectively.

Therefore there are four inputs including the delayed signals. During the plant network

training, the controller network was deactivated and reference signal r(t) was directly

supplied to the plant along with output feedback.
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Figure 2.16 Training data for plant neural network

Levenberg−Marquardt algorithm [113] was used to identify the neural network

weights with mean square error (MSE) evaluation criteria. The training performance

curve of the plant network was shown in figure 2.17. At the end of training, the plant

network produced minimum cost value 1.5719e-09 for 1000 epochs.
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Figure 2.17 Training performance of the plant network

2.7.5 Training controller neural network

The controller training data is generated from the reference HHO-FOPID controller

using Simuliunk. The training data set consists of 3000 samples of excitation and response

of HHO-FOPID controller. For proper training, different targets are considered in the data
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set with varying magnitudes in the range [0,5]. The training data for the plant network

is shown in figure 2.18.

The controller network is designed with 10 neurons in the hidden layer and a neuron

in the output layer. The controller neural network was also trained similar to the plant

neural network. Here, the trained plant network was added to the controller network

whose output can be used to calculate the error. The error value is used to update the

weights of the controller network. Since the plant network was already trained its weights

are not updated during controller network training i.e the plant network learning rate was

made zero. To train the controller LM algorithm with mean square error (MSE) criteria
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Figure 2.18 Training data for the controller neural network

was used. The training performance of the controller network is shown in figure 2.19. The

controller network took 250 epochs to produce the minimum error value 0.003021. The

corresponding parameter values used during the plant and controller network are listed

in table 2.4.

For any neural network the number of epochs and neurons required are hyper pa-

rameters and depends on type of the input data. In the proposed architecture, the number

of epochs for each network is determined based on the MSE value. The training started

with random number of epochs. After several attempts it is found that the plant net-

work produced the lowest value of MSE at 250 epochs. Using the similar procedure the

controller network produced minimum MSE value after 1000 epochs. As there is no pre-

determined procedure or formula to identify the number of hidden layer neurons, the
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Figure 2.19 Training performance of the controller network

Table 2.4 Parameters for plant and controller neural networks

Parameter Plant network Controller network

Inputs 2 3

Unit delay blocks 4 6

Hidden layer size 10 neurons 10 neurons

Output layer size 1 neuron 1 neuron

Epochs 1000 250

Training samples 3000 10000

Mean Square Error(MSE) 1.572E-09 0.003021

plant and controller network hidden layer neurons are identified using the trial and error

procedure.

The number of delayed signals required to train network depends on the type of the

system. In general the discrete PID controllers are second order, therefore in the proposed

architecture for each input 2 delay blocks are used.

2.8 Results and discussions

All the simulations are performed using MATLAB R2016b on a system with Intel

core i5 Processor with 8GB RAM. To investigate the efficiency of the proposed neural
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controller it was correlated with various optimization algorithm based FOPID controllers.

For all controllers step and load responses analysis are performed.

2.8.1 Step response

Primarily, the step response is plotted for all the controllers as shown in figure 2.20.

The response of proposed neural controller is compared with SFS-PID, IWO-PID, GWO-

PID, ASO-PID, GWO-FOPID, ChASO-FOPID, HHO-FOPID, ASO-FOPID, HHO-PID,

HGSO-PID, OBL/HGSO-PID, MRFO-FOPID and OBL-MRFO-SA-FOPID controllers.

From the step response rise time, settling time, overshoot, and steady state error are cal-

culated. The comparison of different performance metrics of the FOPID/PID controllers

are listed in table 2.5.
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Figure 2.20 Comparison of step response for FOPID/PID controllers
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Table 2.5 Comparison with FOPID/PID controllers

Algorithm-controller Rise time(s) settling time(s) overshoot(%) error(ss)

NN-Controller(Proposed) 0.0079 0.0161 0 4.50E-03

ChASO-FOPID [2] 0.0253 0.0405 0 7.32E-04

ASO - FOPID [2] 0.0376 0.0616 0 1.80E-03

ASO-PID [2] 0.0692 0.1535 0 3.70E-03

GWO-FOPID [50] 0.0488 0.0814 0.3145 2.20E-05

GWO-PID [50] 0.1388 0.2052 1.5062 1.51E-02

IWO-PID [52] 0.1489 1.2533 6.9759 2.86E-04

SFS-PID [51] 0.5436 1.4475 0 3.07e-02

HHO-PID [59] 0.0568 0.1003 0 8.80E-04

HGSO-PID [58] 0.1122 0.1966 0 7.6E-03

OBL/HGSO-PID [58] 0.0894 0.1559 0 7.6E-03

MRFO-FOPID [57] 0.0355 0.0562 0.1546 -

OBL-MRFO-SA-FOPID [57] 0.0214 0.0339 0 -

The results show that the proposed controller produced minimum rise time 0.0079s

and took 0.0161s to settle. The controller do not produce any overshoot while GWO and

IWO based controllers produced overshoot with varying steady-state errors. For better

visualization, The pictorial representation for the data mentioned in table 2.5 is shown

in figure 2.21. From the table 2.5, it can be observed that the NARXnet based controller

shows improved performance than other FOPID/PID controllers in terms of settling time,

rise time, and overshoot.

2.8.2 Load response

To further investigate, all the controllers are subjected to track different set points

within a single run. The corresponding results are shown in the figure 2.22. The response

curves show how the proposed neural controller able to track the load variations over the

time. The results indicate that the NARXnet controller is able to quickly track the set

point changes than the traditional FOPID/PID controllers.
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Figure 2.21 Comparison of performance metrics identified from step response

To get more insight about the NARXnet based FOPID controller, during the set

point tracking the controller effort is calculated and plotted as shown in figure 2.23. The

graph clearly shows that the controller responds only during the set point changes. This

indicates that the controller tracks different set points efficiently.

Further, it is observed that the design of FOPID controllers is a difficult task because

of their infinite order. So to get satisfactory performance FOPID controllers should be

approximated using very high order integer systems. To overcome this problem, the

proposed approach can be used for approximation of FOPID controllers using neural

networks.

2.9 Real-time implementation of FOPID controller for DC mo-

tor speed control

To verify the working of FOPID controller it is implemented in real time to control

the speed of DC motor. Since fractional order controllers are infinite order filters, for
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Figure 2.22 Comparison of load response for FOPID/PID controllers

real-time implementation different techniques are mentioned in the literature such as

Oustaloop approximation [24], CRONE controller [26] and fractional lead-lag compensator

[30]. In the proposed work, Oustaloop approximation technique was chosen because of its

simplicity and reliability. The detailed description about the implementation procedure

is mentioned as follows.

2.9.1 Identification of DC motor model

An externally excited armature controlled shunt DC motor is considered as plant.

The manufacturer specifications are given the table 2.6. The following mathematical

model is considered to identify the various parameters of the DC motor. The detailed
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Figure 2.23 Narxnet controller response analysis

Table 2.6 Specifications of DC motor

S.No Parameter Value

1. Rated Speed 1500RPM

2. Rated Power 5HP (3.7KW)

3. Max. Excitation Voltage 230V (DC)

4. Max. Current 15A

description of the mathematical model can found in the section 2.3.

G(s) =
ω(s)

Ea(s)
=

k

(sLa +Ra)(Js+B) + kbk
(2.33)

where

Ra : Armature resistance(Ω), La :Inductance of armature (H),

J : Inertia torque(kg.m2), Kb : e.m.f constant(V.s/rad),

K : Motor torque constant(N.m/A), B : Motor friction constant(N.m.s/rad)

From the mathematical model of the DC motor, using system optimization toolbox avail-

able in MATLAB the parameters of the DC motor are identified. For this purpose, the

actual motor response is considered for the different input voltages. This data is fed as



Design of NARXnet based Fractional-Order PID/PID Controller for Speed Control of
DC Motor 45

input to the system identification toolbox and the corresponding model of the DC motor

is identified. The identified parameters are listed in table 2.7.

Table 2.7 Identified parameters of DC motor

S.No Parameter Value

1. Ra (Armature resistance) 1.86 Ω

2. La (Armature Inductance) 1.1295E-04 H

3. J (Inertia torque of motor) 8.241E-04 Kg.m2

4. B (Friction constant) 3.82E-03 m.s/rad

5. Kt (Torque constant) 0.085711 Nm/A

6. Kb (Back emf constant ) 0.085711 V.S

Substituting the identified DC motor parameter values into equation (2.33), the

plant model is obtained as mentioned in equation (2.34).

G(s) =
ω(s)

Ea(s)
=

9.208E − 05

9.308E − 08S2 + 0.00153S + 0.01445
(2.34)

The comparison of responses of actual motor and simulated model are represented in 2.24.

From the figure, it is clearly observed that the identified model response is almost similar

to the actual motor response. Moreover most of the error values are very small which are

nearer to zero.

By using the recognized model as mentioned in above equation, the step response

is plotted and it is shown in figure 2.25. From the step response, different performance

measures are calculated and shown in the table 2.8. From the table 2.8, it is found that

Table 2.8 Performances of DC motor

S.No Parameter Value

1. Rise time 0.24s

2. Settling time 0.46s

3. Overshoot 0%

4. Steady state error 4.93

the model has very large steady state error and rise time and settling time can be further
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Figure 2.24 Comparison of response of identified model and actual plant

improved. Therefore a controller is designed to reduce the steady state error and to

improve rise time and settling times.

2.9.2 Harris Hawks Optimization(HHO) based fractional PID controller design

The block diagram of the HHO based FOPID controller was shown in the figure

2.26. The FOPID controller uses the optimization algorithm to identify the tuning pa-

rameters Kp, Ki, Kd, λ, and µ. Initially the objective function has to be identified for the

proper tuning of the parameters. There are different objective functions were proposed

for the proper tuning of PID controller parameters like IAE, ISE, ITSE, and ITAE. Out

of these functions ITSE yields less settling and rise times with comparable overshoot val-

ues in comparison to existing approaches. To further investigate the effectiveness of the

proposed algorithm another objective function called ZLG (Zwe Lee Gaing) was used.

In this algorithm the objective function was chosen as rabbit(prey) and the parameters
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Figure 2.25 Step response of identified model

Kp, Ki, Kd, λ, and µ as Harris Hawks. For each iteration of the algorithm the error value

for the output of DC motor was calculated and substituted into the objective function.

Based on the error values the parameters are updated according to the described pro-

cedure of optimization algorithm. The above process is repeated until the terminating

criteria was met. Then finally the tuned values are used to design the FOPID controller.

2.9.3 Objective function and constraints

To identify the optimum parameters of the FOPID controller the following objective

functions are considered. The corresponding equations for ITSE, ITAE, and ZLG func-

tions were mentioned in (2.35), (2.36), and (2.37) respectively. The proportional, integral

and derivative terms(Kp, Ki, and Kd) were limited to the range [0, 20] and fractional

powers (λ and µ) were limited to the range [0, 2].

ITSE =

∫ T

0

t.e2(t)dt (2.35)
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Figure 2.26 Controller tuning using HHO algorithm

ITAE =

∫ T

0

|t.e(t)|dt (2.36)

ZLG = (1− e−β).(Mp + Ess) + e−β.(ts − tr) (2.37)

Mp, Ess, ts, and tr denotes the maximum overshoot, steady state error, settling time and

rise time, respectively. The weight factor β is usually taken as 1.0. Using the methods

discussed in the section 2.8.2, the simulations are performed in MATLAB to design and

optimize the fractional order controller. The identified FOPID controller parameters using

ITSE, ITAE, and ZLG cost functions are listed in table 2.9.

The corresponding step responses and performances of designed FOPID controllers

are shown in figure 2.27 and table 2.9 respectively.

From the analysis of performances it is found that the ZLG objective function pro-

duced better controller parameters.

2.9.4 Implementation of FOPID controller on DSPACE platform

For the implementation of FOPID controller the following set up is established. To

realize the identified FOPID controller DSPACE 1104 hardware is used. To drive the

DC motor IGBT drivers and converter modules are used. The feedback is established by
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Figure 2.27 Step responses of designed FOPID controllers

connecting rotary encoder module between the motor and DSPACE board. The corre-

sponding block diagram is shown in figure 2.28.

Figure 2.28 Block diagram for hardware setup
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The FOPID controller is developed using the Simulink as shown in the figure2.29.

Initially, rotary encoder (Autonics E50S8 − 2500 − 3 − T − 24) pulses are captured

converted to position and velocity as shown in figure 2.30. During the conversion process

to eliminate the noise in pulses a 12 order averaging filter is used whose Simulink diagram

is shown in figure 2.31.

The measured speed is compared with the reference speed and error signal is gen-

erated which acts as input to FOPID controller. To avoid the error accumulation at the

beginning due to integration, anti-wind up loop is added in the controller as shown in

figure 2.30. To protect the electronics from the large control signals, a saturation block

is used at the controller output. Finally, the controller output is given to the PWM

generater to generate necessary control signals for the DC motor.

Figure 2.29 Simulink block diagram of FOPID controller implemented on DSPACE 1104

To develop the hardware model of the FOPID controller the following procedure is

used.
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Figure 2.30 Block diagram for hardware setup

Figure 2.31 Block diagram for subsystem

Step1: Develop the model in Simulink

Step2: Generate the C/C++ code using DSPACE configuration tool

Step3: Generate .sdf file for DSPACE 1104

Step4: Upload .sdf file into the DSPACE 1104 control desk

Step5: Develop the layout for the visualization

Step6: Calibrate DSPACE board

Step7: Run the program using DSPACE 1104 control desk

Step8: Observe the results in control desk

Step9: End the execution

The real-time setup for the plant to verify the proposed FOPID controller function-

ality is shown in the figure 2.32. The response of the controller for the set point 350 RPM

is obtained using control desk software. The corresponding result is shown in the figure

2.33.
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Figure 2.32 Real-time plant setup for DC motor speed control using FOPID controller

Figure 2.33 Response of the controller for 350 rpm set point

2.9.5 Summary

The techniques mentioned in the literature [9]-[20] use meta-heuristic optimization

algorithms to identify the FOPID controller parameters. Where in the parameters of the

PID controllers are tuned using both optimization algorithms and neural networks [6]-[8].

Moreover, realization of FOPID controllers requires infinite order filters. Practically, the

reduced order filters are used for the realization but these filters limit the accuracy of

controller response. To overcome this problem, in the proposed method an effort has
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been made to approximate the FOPID controller using NARXnets.

Quantitatively, when we look at the comparison of step response, the NARXnet

based controller produced no overshoot and 0.0079s rise time and 0.0161s settling time

which are the lowest. The lowest steady state error is produced by ASO-FOPID controller

which is 2.20E-05 at the same time the controller also has overshoot of 0.315%. From the

values mentioned in the table 4.6, it can be said that the proposed NARXnet controller

produces the quickest response from the DC motor than the other controllers.

2.9.6 Conclusion

NARXnet based system identification and controller design was presented for DC

motor speed control. The training data for plant network was generated from the mathe-

matical model of the plant. For the controller network, the data was generated from HHO

tuned FOPID controller using Simulink. The proposed design method for controller was

compared with traditional optimization based approaches. The results indicate that the

NARXnet controller shows superior performance over the existing controllers in tracking

the set points. In addition, it is found that the NARXnets can capture the dynamics

of FOPID controller. Therefore the developed method can be used for approximation of

FOPID/PID controllers using neural networks. Since these networks can perform better

under noisy environment, the proposed idea can be extended for system identification

under environmental noise and interference effects.

In addition, HHO-FOPID controller is implemented in real-time to verify its opera-

tion. Initially, the DC motor model is identified using the MATLAB system identification

toolbox. Later the identified model is used to design and optimize the FOPID controller

using HHO algorithm. Finally, the optimized controller is implemented on the DSPACE

platform and its operation is verified on control desk software.



Chapter 3

A novel Single Neuron FOPID (SNFOPID) controller

using Chaotic Political Optimizer algorithm with

application to DC motor speed control

This chapter proposes a novel architecture for FOPID controller inspired from the

working principle of artificial neuron. The architecture is developed by combining the

FOPID controller and neural network structures. Various parameters of the proposed

controller are optimized using a novel chaotic political optimizer algorithm. For efficient

tuning a new objective function is proposed based on the controller performances.

It is mentioned that the method proposed in the chapter 2 requires two neural net-

works. Therefore two sets of training data is required to train the plant and controller

neural networks. Moreover the performance of the overall system depends on two fac-

tors. The first one is amount of training given to the plant and controller networks and

second one is how accurately the pant network is trained as compared to the actual sys-

tem. Therefore multiple rounds of training is required causing increased computational

complexity. To overcome the problem a different type of controller is proposed in the

present chapter which reduces the training complexity as it requires only one neuron to

be trained.
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3.1 Discretizaion of fractional differ-integrals

Implementation of fractional order controllers requires infinite order filters and uses

additional computing power and memory than PID controllers. Moreover, there are no

standard architectures defined for fractional order PID controllers. In this regard, inspired

from the FOPID controller equation, in the proposed method a neural network based

architecture is presented. Since the neural networks perform better with discrete data,

the proposed architecture uses a generating function developed based on Al-aloui operator

[114] to discretize the fractional integral and differential systems.

The time-domain representation governing the operation of FOPID controller is

given in equation (3.1).

u(t) = Kpε(t) +KiD
−λ
t ε(t) +KdD

−µ
t ε(t) (3.1)

Where u(t) is the desired signal, ε(t) indicates error signal and λ, µ ϵ (0, 1). The terms

D−λ
t and D−µ

t are related to fractional calculus [6] which are defined as

aD
α
t =



dα

dtα
, α ϵ R+,

1, α = 0,
t∫
a

(dτ)−α α ϵ R−

(3.2)

Where (a, t) ϵ R+ are limits and α ϵ R is the order of differ-integral term D.

Because of convenient form for computations, in the research work, Grunwald-

Letnikov definition [6] represented in equation (3.3) is used to simulate fractional order

systems in computer.

aD
α
t f(t) = lim

x→∞

1

hα

[ t−a
h

]∑
k=0

(−1)k

α
k

 f(t− kh) (3.3)

Where h ϵ R is the computation step size. Application of Laplace transform to the

equation (3.1) produces equation (3.4)

U(s) = KpE(s) +Ki
E(s)

sλ
+KdE(s)s

µ (3.4)

The fractional order system mentioned in equation (3.4) can be descretized by approxi-

mating continuous s-function with the descretizing function ω(z−1). Various techniques
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exist to descretize the continuous fractional transfer functions [114] and [115]. The gen-

eralized mathematical definition of the ω(z−1) is shown in equation (3.5).

ω(z−1) =

(
1 + σ

T

)(
1− z−1

1 + σz−1

)
(3.5)

In the equation (3.5), substituting σ = 1/7 results in Al-aloui descretization operator,

σ = 1 and σ = 0 results Tustin and Euler’s backward difference approximation techniques,

respectively.

sµ = (ω(z−1))µ =

[(
1 + σ

T

)(
1− z−1

1 + σz−1

)]µ
(3.6)

Considering the power series expansion (PSE) of equation (3.6)(
1 + σ

T

)µ(
1− z−1

1 + σz−1

)µ

=

(
1 + σ

T

)µ ∞∑
i=0

ψi(µ)z
−i (3.7)

where i ϵ N and

ψi(µ) =
1

i!

di

dωi

(
1− ω

1 + aω

)µ

ω=0

(3.8)

The integral term s−λ is re-written as

s−λ =
1

s
s1−λ (3.9)

Then the corresponding generating function expansion is given by

s−λ =

(
T

1 + σ

)(
1 + σz−1

1− z−1

)
·
[(

1 + σ

T

)(
1− z−1

1 + σz−1

)]1−λ

(3.10)

substituting (3.8) into (3.10)

s−λ =

(
1 + σ

T

)1−λ(
1 + σz−1

1− z−1

) ∞∑
i=0

ψi(1− λ)z−i (3.11)

Using equations (3.7) and (3.11) the discrete equation for the controller is given by

C(z) =
U(z)

E(z)
= kp+ki

(
1 + σ

T

)1−λ(
1 + σz−1

1− z−1

) ∞∑
i=0

ψi(1−λ)z−i+kd

(
1 + σ

T

)µ ∞∑
i=0

ψi(µ)z
−i

(3.12)

substituting Kp = kp, Kd = kd
(
1+σ
T

)µ
, Ki = ki

(
1+σ
T

)1−λ
and limiting approximation

length to L, then the controller equation is given as

C(z) = Kp +Kd

L∑
i=0

ψi(µ)z
−i +Ki

(
1− z−1

1 + σz−1

) L∑
i=0

ψi(1− λ)z−i (3.13)



A novel Single Neuron FOPID (SNFOPID) controller using Chaotic Political Optimizer
algorithm with application to DC motor speed control 58

rewriting equation (3.13)

(1− z−1)C(z) =Kp(1− z−1) +Kd

L∑
i=0

ψi(µ)z
−i +Ki(1 + σz−1)

L∑
i=0

ψi(1− λ)z−i

(3.14)

we know that

U(z) = C(z)E(z) (3.15)

(1− z−1)U(z) =Kp(1− z−1)E(z) +Kd(1− z−1)E(z)
L∑
i=0

ψi(µ)z
−i+

KiE(z)(1 + σz−1)
L∑
i=0

ψi(1− λ)z−i

(3.16)

Converting equation(3.16) to discrete time domain

U(k) =u(k − 1) +Kp(ε(k)− ε(k − 1)) +Kd(ε(k)− ε(k − 1))
L∑
i=0

ψi(µ)

(ε(k − i)− ε(k − i− 1)) +Ki

L∑
i=0

ψi(µ)(ε(k − i) + σε(k − i− 1))

(3.17)

The generating function ψi(.) can be approximated using PSE (power series expansion).

Table 3.1 lists the approximation equations upto order 8. In the paper, we have considered

Al-aloui approximation because it combines the advantages of Euler and Tustin operators.

3.2 Single Neuron FOPID (SNFOPID) controller architecture

Based on the equation (3.17), a single neuron FOPID architecture is developed. The

detailed diagram of the proposed system is shown in figure 3.1. There are a total of 5

weights need to be tuned which are denoted as w1, w2, w3, w4, and w5. These weights

corresponds to the FOPID controller parameters Kp, Ki, Kd, λ, and µ, respectively.

In the figure 3.1, the terms ε(k), ε(k − 1), ..., ε(k − L) indicates the delayed error

signals and L ϵ N represents the length of approximation for the function ψi. Consider,

ζ1 = ε(k)− ε(k − 1) (3.18)
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Table 3.1 Approximation of generating function ψi(α)

Order(L) Function Approximation

0 ψ0(α) 1

1 ψ1(α) −2α

2 ψ2(α) 2α2

3 ψ3(α) −4α3+2α
3

4 ψ4(α)
2α4+4α2

3

5 ψ5(α) −4α5+20α3+6α
15

6 ψ6(α)
4α6+40α4+46α2

45

7 ψ7(α) −8α7+140α5+392α3+90α
315

8 ψ8(α)
2α8+56α6+308α4+264α2

315

Z
-1

Ψ0(w5)

Ψ0(1-w4)

Ψn(w5)

Ψn(1-w4)

+

+

p Ø(p)

+

u(k)

w1

w3

w2

Z
-1

Z
-1

Z
-1 ΨL(w5)

ΨL(1-w4)Z
-1

ε(k)

ε(k-1)

ε(k-n-1)

ε(k-n)

ε(k-L-1)

ε(k-L)

-

+

+

-

+

-

s0

sn

sL

d0

dn

dL

G1

G2

Figure 3.1 SNFOPID controller architecture

Let the signals produced from the sum and difference blocks are denoted by s0, s1, s2, ..., sL

and d0, d1, d2, ..., dL, respectively. The inputs for the gate G1 and gate G2 are s0 ∗ψ0(w5),

s1∗ψ1(w5),...,sL∗ψ1(w5) and d0∗ψ0(1−w4), d1∗ψ1(1−w4),...,dL∗ψ1(1−w4), respectively.

Then the output from the gate G1 is given by

ζ2 =
L∑
i=0

si ∗ ψi(w5) (3.19)

Similarly, the output from the gate G2 is

ζ3 =
L∑
i=0

di ∗ ψi(1− w4) (3.20)

The outputs of ζ2 and ζ3 represents fractional integration and differentiation values, re-
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spectively. The three inputs for the neuron p are w1, ζ1 ∗ w2, and ζ2 ∗ w3. In figure 3.1,

ϕ(p) indicates the tansigmoid activation function and its mathematical formula is given

by

ϕ(x) =
1− e−x

1 + e−x
, x ϵ R (3.21)

The reason for choosing tansigmoid function is it can limit the output to the range [1,-1]

which better suits for controlling applications than the other activation functions.

To verify the functionality of the proposed SNFOPID controller, it is subjected

to optimize the DC motor response(as mentioned in section 3.3). Correspondingly the

transfer function of the DC motor is given by equation (3.22).

G(s) =
ω(s)

Ea(s)
=

0.015

(2.7s+ 0.4)(0.0004s+ 0.0022) + 0.00075
(3.22)

Assuming the sampling period Ts = 0.001 and applying Euler’s formula as defined in

equation (3.23),

s ≈
(
1− z−1

Ts

)
(3.23)

Correspondingly, the discretized transfer function of DC motor is

G(z) =
Y (z)

X(z)
=

6.931e−06z−1 + 6.918e−06z−2

1− 1.994z−1 + 0.9944z−2
(3.24)

Rewriting the equation (3.24)

Y (z)(1− 1.994z−1 + 0.9944z−2) = X(z)(6.931e−06z−1 + 6.918e−06z−2) (3.25)

The corresponding discrete time domain representation of D.C motor is

y(n) = 1.994y(n− 1)− 0.9944y(n− 2) + 6.913e−06x(n− 1) (3.26)

The equation (3.26) is used as plant and to optimize the plant response SNFOPID con-

troller is included in the control loop. To tune the parameters of proposed controller

an optimization algorithm is required. The next section discusses about chaotic political

optimization.

3.3 Chaotic Political Optimization (CHPO) Algorithm

Political optimizer (PO) is a social behavior inspired meta-hueristic algorithm de-

veloped by [116] based on different phases of politics in a country. According to the al-
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gorithm, the important phases in the politics are represented as election campaign, party

switching, election, and parliamentary affairs. The algorithm mimics the different roles

of politicians to find the optimal solution. The important characteristic of population in

the PO is each member plays dual role as constitution and political party. Therefore the

members update their position based on constituency leader and party leader.

To study the effect of chaotic maps on the political optimizer algorithm, a total

of 10 chaotic maps are used and listed in table A.1(appendix). The chaotic maps can

produce statistically divergent and non-repeating random numbers. Therefore optimiza-

tion algorithms often use these chaotic maps to improve their search capability [117,118].

The chaotic maps are extremely sensitive to initial conditions. Therefore, a small change

in initial value can lead to completely different behavior. In the proposed method, to

increase the exploitation efficiency of existing algorithm chaotic maps are incorporated in

the parliamentary affairs stage. This prevents the algorithm to trap in the local minima

and improves the accuracy of the results.

3.3.1 Mathematical representation

The algorithm starts the optimization by initializing the population P. Let n rep-

resents number of constituencies, parties, and candidates in each party, then the corre-

sponding population matrices are given by equations (3.27-3.31).

P = [P1, P2, P3, ..., Pn] (3.27)

Pi = [p1i , p
2
i , p

3
i , ..., p

n
i ] (3.28)

pji = [p1i,1, p
2
i,2, p

3
i,3, ..., p

n
i,d] (3.29)

C = [C1, C2, C3, ..., Cn] (3.30)

Cj = [p1i , p
2
i , p

3
i , ..., p

n
i ] (3.31)

Where P represents set of parties, Pi is set of candidates in the party i, pji , represents

candidate j of party Pi, or election candidate in a constitution, and each member in the

party pji,k indicates potential solution of d dimensions. Where C represents set of con-

stituencies and Cj represents the constituencies and its elements are election candidates

or party members. The term d represents the number of variables to be solved in the

optimization problem.
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After initialization of population, fitness is evaluated for each of the candidate. This

process is denoted by the general election stage (election between parties) and evaluated

using

q = argmin
1≤j≤n

f(pji ) ∀ i = 1, 2, ..., n (3.32)

Then the fittest members in the parties are denoted by p∗i (party leaders) and the corre-

sponding matrix is given by

P ∗ = [p∗1, p
∗
2, ..., p

∗
n] (3.33)

Similarly the winners from all the constituencies (c∗j) are denoted by

C∗ = [c∗1, c
∗
2, ..., c

∗
n] (3.34)

After general election of party leaders, to update the positions of the candidates the

following equations are used. This stage is denoted as election campaign.

pji,k(t+1) =


m∗ + r(m∗ − pji,k(t)), pji,k(t− 1) ≤ pji,k(t) ≤ m∗ or pji,k(t− 1) ≥ pji,k(t) ≥ m∗

m∗ + (2r − 1)|m∗ − pji,k(t)|, pji,k(t− 1) ≤ m∗ ≤ pji,k(t) or p
j
i,k(t− 1) ≥ m∗ ≥ pji,k(t)

m∗ + (2r − 1)|m∗ − pji,k(t− 1)|, m∗ ≤ pji,k(t− 1) ≤ pji,k(t) or m
∗ ≥ pji,k(t− 1) ≥ pji,k(t)

l

(3.35)

pji,k(t+1) =


m∗ + (2r − 1)|m∗ − pji,k(t)|, pji,k(t− 1) ≤ pji,k(t) ≤ m∗ or pji,k(t− 1) ≥ pji,k(t) ≥ m∗

pji,k(t− 1) + r(pji,k(t)− pji,k(t− 1)), pji,k(t− 1) ≤ m∗ ≤ pji,k(t) or p
j
i,k(t− 1) ≥ m∗ ≥ pji,k(t)

m∗ + (2r − 1)|m∗ − pji,k(t− 1)|, m∗ ≤ pji,k(t− 1) ≤ pji,k(t) or m
∗ ≥ pji,k(t− 1) ≥ pji,k(t)

(3.36)

where m∗ represents the value of dimension k of the party leader p∗i,k and r denotes a

random number in the range [0,1].

After the election campaign the algorithm enters party switching phase. Here an

adaptive parameter λ ε [0, λmax] is considered to select the switching candidate pji ( with

probability λ). The selected candidate pji swaps position with least fit member pqr of some

randomly chosen party P j. The least fit member is calculated from the equation ((3.37)).

q = argmax
1≤j≤n

f(pjr) (3.37)

Then election is conducted to identify the constituency winners. This is represented

mathematically as

q = argmin
1≤j≤n

f(pji ) (3.38)
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Then, in the parliamentary affairs stage, the constituency winners / parliamentarians

c∗j updates their position by comparing with a randomly chosen member c∗r using the

equation (3.39). If the comparison improves the corresponding member position then

they are updated, otherwise they retain their values.

C∗
j = C∗

r + (2γ − 1)|C∗
r − C∗

j | (3.39)

Where γ is chaotic random number generator which produce random numbers in the

range (0,1).

The algorithm runs through all the stages as mentioned until the termination criteria

is met. The detailed description of the algorithm can be found in [116]. To identify the

best map for the political optimizer algorithm, a total of 10 chaotic maps are considered

and given in table A.10. The complete flow chart for CHPO algorithm is shown in figure

3.2. The detailed analysis related to effect of chaotic maps on the algorithm is presented

in next subsection.

3.3.2 Benchmark functions

To investigate the effect of chaotic maps on the algorithm a total of 9 benchmark

functions are considered, which include both uni-modal and multi-modal functions. The

detailed definitions of bench mark functions are given in table A.2.

3.3.3 Statistical analysis

To analyze the effect of chaotic maps on the political optimizer algorithm, statistical

parameters such as best, worst, mean, median, and standard deviation are considered.

The comparison results of chaotic PO and PO algorithm for various benchmark functions

are mentioned in table 3.2. The bold values indicates the best values produced for each

benchmark function. From the table, it is found that the CHPO6 chaotic map produced

better optimized values than the other maps. The results show that the chaotic maps

improved the original algorithm by surpassing the best values of most of the benchmark

functions. From the results, it is further observed that the CHPO6 algorithm significantly
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Figure 3.2 Proposed Chaotic Political Optimizer flow chart

improved PO performance.

3.3.4 Convergence curves

To further analyze behavior of different CHPO algorithms, the convergence curves

are drawn. The convergence curves of various benchmark functions are shown in figure

3.3. For each benchmark function, 30,000 function evaluations are performed over 430

iterations. The curves are plotted by taking number of iterations on x-axis and log vale

of cost function on the y-axis. The convergence curves shows that the CHPO based

algorithms surpassed the original PO algorithm. It is also found that the use of chaotic
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Table 3.2 Statistical analysis of benchmark functions

Algorithm Parameter F1 F2 F3 F4 F5 F6 F7 F8 F9

PO

Best 7.35E-06 2.27E-189 1.32E-237 -1.00E+00 2.17E-306 7.23E-188 9.00E-01 7.08E-204 3.00E+00

Worst 1.02E-03 3.49E-173 5.71E-179 0.00E+00 9.57E-267 1.25E-177 1.00E+00 1.01E-191 3.00E+01

Median 2.31E-04 3.76E-184 6.33E-208 0.00E+00 4.09E-288 4.69E-184 9.00E-01 3.77E-200 7.15E+00

Mean 2.65E-04 1.40E-174 2.28E-180 -2.80E-01 3.83E-268 5.00E-179 9.32E-01 4.07E-193 1.07E+01

SD 2.12E-04 0.00E+00 0.00E+00 4.58E-01 0.00E+00 0.00E+00 4.76E-02 0.00E+00 9.25E+00

CHPO1

Best 3.14E-05 2.05E-168 2.67E-230 -1.00E+00 7.81E-281 1.26E-167 9.00E-01 4.64E-192 3.00E+00

Worst 6.36E-04 2.78E-159 8.68E-184 0.00E+00 1.95E-240 2.34E-154 1.00E+00 6.70E-178 3.00E+01

Median 2.11E-04 9.47E-162 2.51E-206 0.00E+00 1.53E-263 3.02E-161 9.00E-01 3.45E-188 3.84E+00

Mean 2.57E-04 3.69E-160 3.47E-185 -4.00E-01 7.81E-242 9.39E-156 9.44E-01 2.68E-179 8.22E+00

SD 1.56E-04 7.19E-160 0.00E+00 5.00E-01 0.00E+00 4.68E-155 5.07E-02 0.00E+00 8.93E+00

CHPO2

Best 6.55E-06 2.17E-197 8.22E-251 -1.00E+00 1.08E-312 4.62E-194 9.00E-01 5.31E-209 3.00E+00

Worst 7.55E-04 8.59E-182 6.54E-198 0.00E+00 2.26E-268 4.60E-182 1.00E+00 8.05E-195 3.00E+01

Median 1.67E-04 2.86E-189 4.75E-220 0.00E+00 2.59E-298 4.60E-190 9.00E-01 1.95E-201 3.33E+00

Mean 2.06E-04 3.50E-183 2.62E-199 -3.20E-01 9.04E-270 1.85E-183 9.48E-01 5.96E-196 5.90E+00

SD 1.68E-04 0.00E+00 0.00E+00 4.76E-01 0.00E+00 0.00E+00 5.10E-02 0.00E+00 5.78E+00

CHPO3

Best 2.35E-05 6.26E-186 6.14E-247 -1.00E+00 0.00E+00 8.33E-187 9.00E-01 3.82E-198 3.00E+00

Worst 7.61E-04 4.86E-176 1.76E-194 0.00E+00 3.56E-270 4.16E-176 1.00E+00 4.06E-186 2.38E+01

Median 2.90E-04 1.61E-180 8.29E-223 0.00E+00 1.27E-286 3.98E-181 9.00E-01 1.16E-193 3.72E+00

Mean 3.30E-04 3.86E-177 7.04E-196 -4.40E-01 1.43E-271 2.55E-177 9.40E-01 2.17E-187 6.44E+00

SD 2.12E-04 0.00E+00 0.00E+00 5.07E-01 0.00E+00 0.00E+00 5.00E-02 0.00E+00 5.26E+00

CHPO4

Best 3.44E-05 2.09E-187 1.07E-220 -1.00E+00 1.79E-307 1.89E-183 9.00E-01 5.46E-204 3.00E+00

Worst 1.22E-03 3.79E-173 1.55E-165 0.00E+00 1.98E-262 6.60E-174 1.00E+00 2.00E-187 3.00E+01

Median 2.50E-04 1.76E-180 3.55E-201 0.00E+00 3.05E-285 1.74E-179 9.00E-01 3.02E-197 4.00E+00

Mean 3.70E-04 1.54E-174 6.19E-167 -3.20E-01 7.92E-264 4.78E-175 9.40E-01 7.99E-189 7.80E+00

SD 2.97E-04 0.00E+00 0.00E+00 4.76E-01 0.00E+00 0.00E+00 5.00E-02 0.00E+00 8.84E+00

CHPO5

Best 3.15E-05 2.08E-181 1.47E-229 -1.00E+00 2.00E-301 3.54E-181 9.00E-01 3.92E-198 3.01E+00

Worst 6.95E-04 2.55E-169 2.91E-178 0.00E+00 4.96E-262 3.19E-170 1.00E+00 7.13E-185 3.00E+01

Median 2.07E-04 1.86E-175 8.33E-210 0.00E+00 4.88E-286 3.84E-175 1.00E+00 1.94E-193 7.76E+00

Mean 2.40E-04 1.45E-170 1.17E-179 -2.00E-01 2.04E-263 1.41E-171 9.52E-01 2.85E-186 1.14E+01

SD 1.66E-04 0.00E+00 0.00E+00 4.08E-01 0.00E+00 0.00E+00 5.10E-02 0.00E+00 9.33E+00

CHPO6

Best 4.19E-05 1.50E-200 1.68E-273 -1.00E+00 0.00E+00 2.58E-200 9.00E-01 1.09E-215 3.00E+00

Worst 7.35E-04 4.49E-186 2.52E-210 0.00E+00 4.88E-301 2.52E-186 1.00E+00 1.23E-200 3.00E+01

Median 2.21E-04 1.75E-192 5.31E-241 0.00E+00 9.00E-322 9.57E-193 9.00E-01 8.37E-210 3.82E+00

Mean 2.65E-04 1.85E-187 1.72E-211 -2.80E-01 1.95E-302 1.40E-187 9.40E-01 4.91E-202 5.53E+00

SD 2.23E-04 0.00E+00 0.00E+00 4.58E-01 0.00E+00 0.00E+00 5.00E-02 0.00E+00 5.40E+00

CHPO7

Best 5.58E-05 1.92E-182 1.07E-232 -1.00E+00 6.96E-296 3.69E-183 9.00E-01 3.24E-204 3.00E+00

Worst 9.29E-04 9.00E-169 4.04E-184 0.00E+00 2.05E-263 2.73E-168 1.00E+00 3.82E-190 3.00E+01

Median 1.87E-04 1.09E-175 2.39E-205 0.00E+00 1.75E-281 3.62E-176 9.00E-01 6.92E-196 4.24E+00

Mean 2.63E-04 4.77E-170 1.62E-185 -2.40E-01 8.33E-265 1.09E-169 9.36E-01 2.34E-191 9.23E+00

SD 2.37E-04 0.00E+00 0.00E+00 4.36E-01 0.00E+00 0.00E+00 4.90E-02 0.00E+00 9.08E+00

CHPO8

Best 3.61E-05 9.83E-178 1.87E-233 -1.00E+00 2.69E-303 5.38E-178 9.00E-01 2.38E-198 3.00E+00

Worst 1.13E-03 2.20E-168 3.10E-179 0.00E+00 1.44E-262 1.51E-168 1.00E+00 1.30E-183 3.00E+01

Median 2.14E-04 1.70E-173 1.85E-212 0.00E+00 2.10E-280 5.47E-175 9.00E-01 1.66E-189 3.68E+00

Mean 3.09E-04 1.06E-169 1.24E-180 -2.40E-01 5.77E-264 6.34E-170 9.44E-01 5.65E-185 6.82E+00

SD 2.86E-04 0.00E+00 0.00E+00 4.36E-01 0.00E+00 0.00E+00 5.07E-02 0.00E+00 6.54E+00

CHPO9

Best 1.65E-05 2.62E-190 3.23E-257 -1.00E+00 2.204e-321 3.93E-191 9.00E-01 3.10E-201 3.00E+00

Worst 1.07E-03 3.28E-179 8.08E-197 0.00E+00 3.17E-278 3.14E-178 1.00E+00 1.78E-186 3.00E+01

Median 3.44E-04 5.07E-186 1.67E-230 0.00E+00 2.21E-300 4.00E-185 9.00E-01 3.98E-195 4.86E+00

Mean 3.34E-04 1.32E-180 3.23E-198 -2.80E-01 1.95E-279 1.82E-179 9.48E-01 8.56E-188 1.05E+01

SD 2.40E-04 0.00E+00 0.00E+00 4.58E-01 0.00E+00 0.00E+00 5.10E-02 0.00E+00 1.02E+01

CHPO10

Best 2.37E-05 1.26E-189 1.43E-233 -1.00E+00 1.45E-314 3.61E-190 9.00E-01 2.82E-205 3.00E+00

Worst 8.75E-04 1.79E-180 6.25E-173 0.00E+00 9.50E-274 5.88E-178 1.00E+00 1.01E-191 3.00E+01

Median 2.94E-04 2.92E-185 5.83E-214 0.00E+00 1.87E-295 1.87E-184 9.00E-01 4.42E-199 4.01E+00

Mean 3.07E-04 1.59E-181 2.50E-174 -2.40E-01 3.80E-275 3.75E-179 9.40E-01 4.17E-193 9.18E+00

SD 2.17E-04 0.00E+00 0.00E+00 4.36E-01 0.00E+00 0.00E+00 5.00E-02 0.00E+00 9.08E+00

maps reduced the number of iterations to produce optimum value.
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Figure 3.3 Comparison of convergence curves for benchmark functions

3.3.5 Wilcoxon ranksum test

Since statistical analysis and convergence behavior does not give complete behavior

of an algorithm, to further analyze, Wilcoxon ranksum test is conducted by considering

the best values produced in 25 consecutive runs. The p-values are obtained by comparing

the CHPO algorithms with PO algorithm. In table 3.3, the values with ≤0.05 statistical

significance level are indicated in bold. From the comparison of table 3.2 and table 3.3, it

is observed that the Chebyschev chaotic map (CHPO6) produced lowest values for most

of the benchmark functions.

Therefore to train the proposed SNFOPID controller, CHPO6 algorithm is used.

The next section describes the analysis of simulation results when proposed controller

parameters are optimized using CHPO6 algorithm.
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Table 3.3 Wilcoxon’s Ranksum test results of Chaotic PO algorithms. The proposed algo-

rithms are compared with the actual PO algorithm for 25 consecutive runs and ranksum test is

performed. The p-values which are ≤ 0.05 are highlighted with bold facing

Function CHPO1 CHPO2 CHPO3 CHPO4 CHPO5 CHPO6 CHPO7 CHPO8 CHPO9 CHPO10

F1 0.0144 0.4332 0.4652 0.1517 0.4545 0.257 0.4438 0.331 0.4017 0.3811

F2 6.34E-06 7.17E-06 4.19E-02 8.80E-03 6.34E-06 6.34E-06 2.53E-04 1.87E-05 7.99E-02 2.32E-01

F3 5.85E-02 7.22E-02 8.80E-04 3.41E-01 2.66E-01 1.60E-03 3.41E-01 2.75E-01 2.00E-03 1.90E-01

F4 3.41E-01 1.93E-01 3.96E-02 3.91E-01 1.39E-01 1.71E-01 8.40E-02 4.23E-02 1.67E-02 7.99E-02

F5 1.11E-04 9.26E-02 1.58E-01 7.22E-02 8.80E-03 6.34E-06 8.40E-02 1.34E-02 5.00E-03 1.00E-02

F6 6.34E-06 3.32E-05 2.00E-01 6.17E-02 1.03E-05 6.34E-06 1.23E-04 6.34E-06 0.0331 7.00E-02

F7 1.73E-01 8.39E-01 1.62E-01 9.42E-02 1 2.44E-01 8.20E-01 4.97E-01 3.39E-01 6.70E-01

F8 6.34E-06 3.31E-02 2.07E-04 0.1335 6.34E-06 3.72E-05 1.25E-02 6.34E-06 1.52E-04 3.52E-02

F9 2.06E-01 2.44E-01 3.10E-01 4.80E-02 9.40E-02 1.02E-01 4.19E-02 1.00E-01 2.40E-01 3.52E-02

3.4 Speed control of DC motor using SNFOPID controller

3.4.1 Objective function and tuning of SNFOPID controller

The objective of the SNFOPID controller is to generate a control signal such that

the system output optimally tracks the reference signal. To achieve this, we need to

identify the weights of the controller Kp(w1), Ki(w2), Kd(w3), λ(w4), and µ(w5) in such a

way that the control signal u(k) minimizes the error between actual system output and

reference signal.

For optimal tuning of SNFOPID controller weights, an objective function is required.

Since, identification of neural network weights involves fractional order differential equa-

tions, application of gradient descent algorithm increases the complexity and does not

guarantee the optimal solution if the objective function consists of more than one min-

ima. This can be solved by using non-gradient methods such as meta-heuristic algorithms.

Therefore, in the proposed method CHPO algorithm is used to identify the SNFOPID con-

troller weights. The process of tuning the SNFOPID controller parameters is represented

as a block diagram and shown in figure 3.4.

In the case of traditional neural networks, MSE (mean square) is used. Since the

proposed SNFOPID controller has to optimize the weights that produce best output from

the system, cost functions like IAE (integral of absolute error), ITAE (integral of time

multiplied absolute error), and ITSE (integral of time multiplied squared error) can be

used. Even though these functions can reduce overall system error, they cannot optimize

individual performances of the system like rise time, settling time, overshoot and steady
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Figure 3.4 Tuning procedure for SNFOPID controller

state error. Therefore, in the proposed system we have developed a new cost function

that optimizes overall system error as well as individual performance metrics. It uses the

ITAE cost function to reduce the overall system error and the weighted combination of

overshoot, rise time, and settling time are used to optimize the individual performances.

The corresponding mathematical formula for the proposed cost function is given in the

equation (3.40).

f = ITAE + α.(Overshoot) + β.(Rise time+ Settling time+ |ess|) (3.40)

Where the parameters α and β represents the weighing coefficients of objective function.

After several trials, it is found that α = 10 and β = 2 produced the optimum weights for

the SNFOPID controller.

3.4.2 Working of SNFOPID controller

The identified weights are used in the realization of SNFOPID controller. To verify

the controlling ability of designed controller, it is added in the control loop of DC motor

as shown in figure 3.5. The working procedure of proposed system is as follows. Initially,

the error signal ε(k) is generated using equation (3.41).

ε(k) = x(k)− y(k) (3.41)

Later, the delayed error signals are generated using delay blocks based on the order (L)

of the generator function ψ(α). Then the signals are passed through sum and difference
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Figure 3.5 DC motor speed control using SNFOPID controller

blocks and fed as input to the neuron P. The neuron generates the output and the signal

is activated by passing through tansigmoid function ϕ(x). This activated signal acts as

control signal u(k) which drives the DC motor.

Figure 3.6 Effect of generating function order on controller response

3.5 Results and discussion

All the simulations are performed using MATLAB 2016a software on a system with

Intel core i5 processor and 8GB RAM. The controller parameters are limited to the range

as shown in table 3.4. The lower bounds and upper bounds are selected from the literature

to maintain the consistency.
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Table 3.4 Controller parameters range

Parameter Lower limit Upper limit

Kp 0.001 20

Ki 0.001 20

Kd 0.001 20

λ 0.001 1

µ 0.001 1

To identify the optimum parameters of SNFOPID controller step response is con-

sidered. To reduce the error between reference signal and system output, the network is

trained using CHPO6 algorithm. The weights of the neural network are updated using

the cost function described in equation (3.40).
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Figure 3.7 Convergence curves of SNFOPID controller weights

The identified weights of the SNFOPID controller (Kp, Ki, Kd, λ, and µ) are shown in

table 3.6. Moreover, the proposed controller parameters are compared with OBL/HGSO-

FOPID, MRFO-SA-FOPID, CHASO-FOPID, ASO-FOPID, ASO-PID, GWO-FOPID,

GWO-PID, and SFS-PID controllers.

The response of the proposed system for different orders (L) of generating function

is plotted as shown in figure 3.6. The convergence curves for the first 10 iterations of

CHPO6 algorithm are shown in figure 3.7. To determine the order of the generating

function, using the step response performance metrics of the controller for different orders

are calculated. The corresponding results are mentioned in table 3.5 and figure 3.8. From
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the analysis, it is found that the settling time and rise time are decreasing with increase

in order. Whereas, the overshoot and steady state error are increasing with increase in

order. Moreover, it is also found that even order shows better performance than the odd

order. For the simulations, we considered generating function order (L) as 2, since the

system has lowest steady state error for this order.

Table 3.5 Effect of generating function order on controller performances

Order(L) Rise time (ms) Settling time (ms) Overshoot(%) Steady-state error

1 13.795 23.8137 0.0243 -1.71E-04

2 13.7943 23.8188 0.018 4.60E-05

3 13.7959 23.8202 0.0196 -1.03E-04

4 13.7663 23.7499 0.0259 0.0014

5 13.7767 23.7931 0.043 0.0011

6 13.7299 23.6592 0.0341 0.0029

7 13.7479 23.738 0 0.0024

8 13.6885 23.5507 0.0422 0.0044

9 13.7125 23.6593 0 0.0038

10 13.6441 23.4255 0.0512 0.0058

Since direct observation of these values doesn’t give an idea of controller behavior,

step, load, disturbance, and sinusoidal response analysis are carried out.

3.5.1 Step response

To check the controlling ability of the SNFOPID controller, its step response is com-

pared with various existing FOPID/PID controllers. The step responses are calculated

using the controller parameter values mentioned in table 3.6. Figure 3.9 and 3.10 shows

the comparison of responses obtained. For all the systems, performance metrics like rise

time, settling time, overshoot, and steady state error are calculated as shown in table

3.6. From the table, it is found that the proposed SNFOPID controller produced best rise

time 0.0137s and settling time 0.0238s with negligible overshoot. SNFOPID controller per-

formance is compared with the state-of-the-art FOPID/PID controllers like MRFO-SA-

FOPID, CHASO-FOPID, ASO-FOPID, GWO-FOPID, OBL/HGSO-PID, HGSO-PID,

and GWO-PID controllers.
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Figure 3.9 Step response comparison of FOPID controllers
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Figure 3.10 Performance comparison of FOPID controllers

3.5.2 Load response

To further investigate the controller behavior, different set points are given to the

SNFOPID controller. All the set points are tracked by the proposed controller efficiently.

On comparison with other state-of-the-art techniques the proposed controller tracked the

set points efficiently.

Figure 3.11 Comparison of FOPID controllers for set point changes

The controller behavior and the error signals are plotted in figure 3.12 when tracking

the reference signal. From the figure 3.12, it is observed that the controller performance
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Figure 3.12 SNFOPID controller response for setpoint changes

is smooth and tracked the set points with minimum effort. Moreover, the responses

of various controllers are also compared with the SNFOPID controller. The proposed

controller produced good tracking behavior than the other controllers.

3.5.3 Disturbance response

Sudden disturbances in the input can lead to system instability. Therefore to check

the controller response for abrupt changes in the input, disturbance analysis is carried out.

Sudden impulses are added to the actual step signal and the controller response is plotted

as shown in figure 3.13. The proposed SNFOPID controller has shown good response for

disturbances. When compared with others the SNFOPID controller, it recovered early

from the sudden disturbances.
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Figure 3.13 Disturbance response comparison of FOPID controllers

3.5.4 Sinusoidal response

To observe behavior of the controller for continuous changes in the set point, sinu-

soidal response is considered. The figure 3.14 represents reaction of different controllers

for sinusoidal reference signal.

Figure 3.14 Sinusoidal response comparison of FOPID controllers

From the analysis, it is found that the proposed SNFOPID controller has given the

best tracking performance than the existing FOPID/PID controllers. The error between

actual signal and the SNFOPID controller response is minimum when compared with

other controllers.
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3.5.5 Quantitative analysis

Quantitatively the MSE (mean of squared error) values for step, load, disturbance,

and sinusoidal signal responses of different controllers are given in table 3.7. The best

values are indicated in bold. The corresponding pictorial representation is given in figure

3.15.

Table 3.7 Comparison of MSE values for step, load, disturbance and sinusoidal responses

Controller Step Load Disturbance Sinusoidal

SNFOPID(Proposed) 4.65E-04 2.21E-02 8.6E-06 5.45E-07

HGSO-PID [57] 2.25E-03 7.27E-02 1.54E-02 4.53E-02

OBL/HGSO-PID [57] 1.82E-03 5.82E-02 1.39E-02 2.95E-02

MRFO-FOPID [58] 1.32E-02 4.24E-02 1.23E-02 1.40E-02

OBL-MRFO-SA-FOPID [58] 8.41E-04 2.66E-02 9.30E-03 5.48E-03

ChASO-FOPID [2] 9.66E-04 3.08E-02 1.02E-02 7.52E-03

ASO-FOPID [2] 1.35E-03 4.40E-02 1.23E-02 1.59E-02

ASO-PID [2] 2.17E-03 7.11E-02 1.50E-02 4.43E-02

GWO-FOPID [1] 1.64E-03 5.38E-02 1.34E-.02 2.52E-02

GWO-PID [1] 4.98E-03 1.61E-01 2.26E-02 1.77E-01

SFS-PID [52] 1.88E-02 5.97E-01 4.77E-02 4.63E-01

SNFOPID

HGSO-PID

OBL/HGSO-PID

MRFO-FOPID

OBL-MRFO-SA-FOPID

ChASO-FOPID

ASO-FOPID

ASO-PID

GWO-FOPID

GWO-PID
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MSE(Step response) 

MSE(Load response) 

MSE(Disturbance response) 

MSE(Sinusoidal response) 

Figure 3.15 Comparison of MSE values for different responses
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3.5.6 Response for noisy reference

Finally, to study the effect of noise in target signal, a noisy reference signal is

considered. Then the SNFOPID controller response along with error and system response

are plotted. The figure 3.16 shows that SNFOPID controller is able to track the reference

input under continuous fluctuations. It is also observed that the system is stable and the

controller quickly responds to small changes in the target signal.
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Figure 3.16 Response of SNFOPID controller for noisy target

3.5.7 Summary

Two different kinds of techniques mentioned in chapter 2 and chapter 3. On compar-

ison of these techniques it is found that the NARXnet based controller produced better rise

time, settling time, and overshoot values whereas SNFOPID based controller produced

better steady state response. Overall, it can be said that the NARXnet based controller

produced better response than the SNFOPID controller. But it is also mentioned that the

behavior of neural network based controllers is unpredictable under heavy disturbances

and changes in operating conditions. The performance of these controllers entirely de-

pends on the training data. For the reliable performance neural networks need sufficient

training data that covers different operating conditions. Since SNFOPID controller does

not uses the training data related to either plant or controller, as mentioned shown in the
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disturbance and noise analysis (section 3.5.3 and section 3.5.5) the SNFOPID controller

is more reliable.

3.6 Conclusion

A novel architecture based on neural networks for realization of fractional order PID

controllers (FOPID) has been presented. The controller is developed from the standard

discretized fractional order controller equation. For the descretization purpose Al-aloui

operator is used as it combines the advantages of Tustin and Euler methods. To optimize

the controller parameters a novel Chaotic Political Optimizer (CHPO) is developed by

hybridizing chaotic maps with the political optimizer algorithm. To analyze the perfor-

mance of single neuron FOPID (SNFOPID) controller, a DC motor has been considered as

plant and the proposed controller is subjected to optimize its response. Moreover, a new

objective function is defined with the combination ITAE and system performance mea-

sures to optimize system response. To check the reliability of the controller, it is tested

with step input, load changes, sudden disturbances, and sinusoidal tracking signals. In

all the cases the response of the SNFOPID controller is compared with other controllers.

The simulation results show that the proposed controller produced better performances

than the existing techniques. Moreover, for the sinusoidal input signal, it is observed that

the SNFOPID controller showed very good tracking behavior.



Chapter 4

Tuning of FOPID controller for AVR system using

Chaotic Black Widow Optimization (ChBWO)

algorithm

This chapter presents optimization of fractional order PID controller parameters to

obtain the desired response from the automatic voltage regulator (AVR) system. Initially,

the FOPID controller parameters are tuned using a meta-heuristic algorithm called Black

Widow Optimization(BWO) algorithm. Later, chaotic maps are introduced into the orig-

inal BWO algorithm to improve its convergence behavior. The improved Chaotic BWO

is used to optimize FOPID controller for AVR system.

4.1 Automatic Voltage Regulator (AVR) System

Synchronous generators are commonly used in power generation systems. Due to

the variations in the load or sudden changes in power usage, the generators produce

oscillations at the output for a significant amount of time. These oscillations may lead to

system instability and can cause catastrophes. To improve the terminal voltage stability,

generators are controlled by excitation systems and AVR systems. Various constituents

of the AVR system are amplifier, exciter, generator, and sensor [68]. The interconnections

of various system blocks were shown in figure 4.1.

Initially, the generator terminal voltage given to the sensor circuit, converts the
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Figure 4.1 AVR system block diagram

terminal voltage into a proportional voltage signal. Then this signal is subtracted from

the reference voltage and the error signal will be generated. The amplifier improves the

strength of the error signal and the output of the amplifier connected to the exciter.

The exciter converts the input signal into a suitable form to drive the generator. The

corresponding mathematical representations of various blocks in the AVR system are

given by the following equations.

The transfer function of the amplifier is represented as

Ga(s) =
Ka

1 + sτa
(4.1)

Where Ka is amplifier gain which has values in the range [100,400] and τa is the time

constant of the amplifier and lies in the range [0.02, 0.1]. The transfer function of the

exciter iss represented as

Ge(s) =
Ke

1 + sτe
(4.2)

Where Ke is exciter gain which has values in the range [10,400] and τe is the time constant

of the exciter and lies in the range [0.5, 1.0]. The transfer function of the generator is

represented as

Gg(s) =
Kg

1 + sτg
(4.3)

Where Kg is generator gain which has values in the range [0.7, 1.0], and τg is the time

constant of the generator and lies in the range [1.0, 2.0]. The transfer function of the

sensor is represented as

Hs(s) =
Ks

1 + sτs
(4.4)
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Where Ks is exciter gain which has values in the range [1.0, 2.0], and τs is the time

constant of the sensor and lies in the range [0.001, 0.06]. The range of various parameters

of AVR system are chosen from the literature [66, 68, 73, 75] and summarized as shown

in table 4.1. To understand the behavior and dynamics of the system its step response

Table 4.1 Range of modeling parameters of AVR system

Parameter Description Range Value

Ka Amplifier gain [10,400] 10

τa Amplifier time constant [0.02,1] 0.1

Ke Exciter gain [1,10] 1

τe Exciter time constant [0.4,1] 0.4

Kg Generator gain [0.7,1] 1

τg Generator time constant [1,2] 1

Ks Sensor gain [1,2] 1

τg Sensor time constant [0.001,0.06] 0.01

is plotted in figure 4.2. From the step response key performance parameters identified.

Table 4.2 shows the variation of key parameters with a change in Kg value. Since the

terminal voltage varies with load changes, different values of Kg were considered in the

range [0.7, 1.0] for step response. The gain margin and phase margin were calculated

from the bode plot mentioned in figure 4.3.

Table 4.2 Identified key performances for AVR system

Parameter Kg=0.7 Kg=0.8 Kg=0.9 Kg=1

Rise Time 32.021 29.73 27.87 0.26

Settling Time 423.08 472.15 520.11 7.02

Steady State Error 0.125 0.11 0.1 0.09

Peak Overshoot 47.85 52.94 57.61 65.21

Gain Margin 1.74 1.39 1.125 1.91

Phase Margin 17.6 9.71 3.19 2.32

The step response has 0.26s rise time, 7.02s settling time, and with overshoot value

65.21%. The system has very high overshoot and settling time. Therefore,to optimize the

response of AVR system, a controller is required.
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Figure 4.2 Step response variation of AVR system
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Figure 4.3 Bode plot for AVR system

4.2 Black Widow Optimization algorithm

Black widow optimization (BWO) proposed in [119], is a meta-heuristic algorithm

developed based on the lifestyle of black widow spiders to solve engineering optimization
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problems. An important behavior of black widow spiders is cannibalism. Due to this,

only stronger spiders survive and produce the next generation. During the mating process,

the female spider exhibits sexual cannibalism and consumes male spider. Thereafter, the

female spider lays eggs in her nest and spiderlings will hatch within 8-11 days. The

hatched spiderlings exhibit sibling cannibalism in which the weak siblings are consumed

by stronger ones. Under special conditions, the siblings may consume the mother entirely.

A reference picture related to black widow spiders and spiderlings is given in figure 4.4.

The total process is developed as an optimization algorithm that consists of 4 stages

known as initialization, procreation, cannibalism, and mutation.

Figure 4.4 Black widow spider and spiderlings

4.2.1 Initial population generation

In the algorithm, a variable in the solution space is called a widow and the solution is

called black widow spider. For an mvar dimensional optimization problem, the algorithm

starts by generating initial widow matrix with population of npop ×mvar. Then fitness is

evaluated for each element in the widow matrix using

val = f(x1, x2, ...xmvar) (4.5)

where f is fitness function and x1, x2, ...xmvar represents dimensional variables.

4.2.2 Procreation and Cannibalism

The next generation of population (offspring) are generated from the initial popu-

lation using the process of mating. This is implemented in the algorithm with the help of
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ζ matrix of length mvar whose elements are random numbers having length of mvar. If x1

and x2 are parents then the offspring z1 and z2 are generated using equations (4.6) and

(4.7).

z1 = ζ ∗ x1 + (1− ζ ∗ x2) (4.6)

z2 = ζ ∗ x2 + (1− ζ ∗ x2) (4.7)

The number of parents participating in procreation is chosen based on procreation rate

(PR). The process is repeated for mvar/2 times without repetition of parents. The best

of offspring and parents are selected using fitness calculation. Evaluation of fitness and

identifying best spiders are similar to sexual cannibalism and sibling cannibalism, where

only stronger ones survive. The number of spiders showing cannibalism are decided based

on cannibalism rate (CR).

4.2.3 Mutation

Mutation increases the exploration capabilities of the algorithm. In the BWO op-

timization, mutation is performed based on mutation rate (MR), which describes the

number of spiders to be mutated. In the proposed algorithm, swap mutation is used to

preserve the adjacent position information. For the mutation, two random positions are

selected in the widow matrix and their positions are exchanged to generate a new spider.

The diagram representing the mutation process is shown in figure 4.5.

  x1      x2        ...       xm       ...       xn

Figure 4.5 Mutation operation

In the proposed algorithm, the procreation rate (PR), cannibalism rate (CR), and

mutation rate (MR) are chosen as 0.6, 0.44, and 0.4, respectively [119]. It is mentioned

that the effect of PR, CR, and MR on convergence behavior of BWO algorithm can be

considered for future scope. The complete flow chart of the BWO algorithm is shown in

figure 4.6.
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Figure 4.6 Flow chart of BWO algorithm

4.3 Proposed BWO-FOPID controller

The BWO-FOPID controller provides two additional degrees of freedombwhen com-

pared to existing PID controllers. This allows designing a robust controller for a given

application. The process to tune the FOPID controller using the BWO algorithm was

represented as a block diagram in figure 4.7. Vref (s) is the reference voltage that should

be maintained by the AVR system at its terminals. Vt(s) is the actual terminal voltage

produced by the system. Ve(s) is error voltage, which indicates the difference of Vref (s)

and Vt(s). For each iteration of the BWO algorithm, a population of Kp, Ki, Kd, λ, and µ

are generated and used to find the objective function value. FOPID controller takes Ve(s)

as the input signal and produces the corresponding control signal. For this signal, the

AVR system terminal voltage and error are calculated. The process is repeated until the

termination criteria were met. Finally, the best values of the parameters will be identified

and are used to design the optimum FOPID controller.



Tuning of FOPID controller for AVR system using Chaotic Black Widow Optimization
(ChBWO) algorithm 87

Generator

Sensor

U(S)

DP IK K s K s  

Ve(s)Vref(s)

BWO Optimization

J=ZLG

(Objective Function)

BWO-FOPID Controller

Parameter Tuning

-
+

KP KI KD µλ

Exciter

AVR System

Vt(s)
Amplifier

Figure 4.7 Proposed BWO-FOPID controller block diagram

The designed controller was inserted into the system. The controller output is given

as input to the AVR system. The terminal voltage of AVR was again compared with

the reference voltage and the error signal is produced. The process is repeated until the

error signal becomes zero. When the desired level was reached, the controller produces a

constant U(s) voltage signal to uphold the output level at the terminal voltage.

4.3.1 Objective function and optimization

During the FOPID controller design, to tune the parameters ZLG optimization

function was used. Although various standard optimization functions like IAE, ISE, ITAE,

and ITSE are available, ZLG produced better results according to [76]. The equation for

the ZLG optimization function [76] was given in (4.8).

ZLG = (1− e−β) ∗ (Mp + Ess) + e−β ∗ (Ts − Tr) (4.8)

The termMp represents peak overshoot, Ess is the steady-state error, Ts and Tr represents

settling time and rise time of the system respectively. β is an adjustment parameter and

its value is taken as 1 [76]. The convergence curve for the BWO-FOPID algorithm during

parameter identification was shown in figure 4.8. The range of parameters considered for

the optimization process was mentioned in table 4.3.
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Table 4.3 Parameter range for BWO-FOPID controller

Parameter Lower value Upper Value

Kp 0.1 3

Ki 0.1 1

Kd 0.1 0

λ 0.5 0.5

µ 0.5 1.5

Figure 4.8 Convergence curve for BWO-FOPID controller

4.4 Results and Discussions

All the simulations were performed using MATLAB/Simulink (with FOMCON tool-

box) version 8.1a on the computer with Intel i5 processor @ 3.00GHz and 8GB RAM. For

the BWO optimization algorithm, the total population was chosen as 50 and 35 iterations

were performed.

4.4.1 Step response

The tuned values of FOPID parameters were mentioned in table 4.4. For the simula-

tion the FOPID controllers are designed by considering the frequency range [0Hz, 1000Hz],
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identified from the frequency response of the system. Different FOPID controllers for AVR

system are compared w.r.t step response as shown in figure 4.9. From the figure, it can be

observed that the BWO-FOPID controller produced lowest overshoot 1.27%. To further

investigate the controller performance Ts, Tr, and Ess were calculated and compared with

other FOPID controllers.

Table 4.4 Tuned controller parameters of FOPID controllers

Algorithm - Controller Kp Ki Kd λ µ

BWO-FOPID 2.6597 0.7462 0.4263 1.0106 1.3442

C-YSGA-FOPID 1.7775 0.9463 0.3525 1.206 1.1273

PSO-FOPID 1.5338 0.6523 0.9722 1.209 0.9702

CS-FOPID 2.459 0.1759 0.3904 1.38 0.97

GA-FOPID 0.9632 0.3599 0.2816 1.8307 0.5491

Figure 4.9 Comparison of step response of different FOPID controllers

The BWO algorithm produces the best parameter values because of the cannibalism

stage, in which the weak solutions are automatically omitted and only strong solutions

exist. It is observed that the BWO-FOPID controller has a better settling time of 0.1727s

and overshoot 1.2774s and produced a very less steady-state error. The rise time of the

controller is a little higher than the PSO-FOPID and GA-FOPID controllers. Moreover,
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the PSO-FOPID controller produced the highest overshoot of 22.58% whereas the GA-

FOPID controller produced a high rise time of 1.3008s and settling time of 1.6967s.

Table 4.5 Comparison of performance metrics of FOPID controllers

Controller Rise time(s) Settlign time(s) Overshoot(%) Steady state error

BWO-FOPID 0.1127 0.1727 1.2774 1.90E-04

C-YSGA-FOPID 0.1347 0.2 1.89 0.009

PSO-FOPID 0.0614 1.3313 22.58 0.0175

CS-FOPID 0.0963 0.9774 3.56 0.0321

GA-FOPID 1.3008 1.6967 6.99 0.0677

Since in the voltage regulator systems overshoot causes severe problems than rise

time issues more importance should be given to optimizing overshoot. If the operating

environment of the system is strictly constrained then a trade off can be made between

rise time and overshoot. The comparison for performance parameters of different FOPID

controllers were mentioned in table 4.5.

4.4.2 Robust Analysis

To test the reliability of the designed controller, the robust analysis was performed

by changing the time constants of various subsystems in the range of -20% to 20%. The

corresponding step responses were plotted as shown in figures 4.10,4.11,4.12, and 4.13 for

variation in τa, τe, τg, and τs respectively.

Figure 4.10 Robust analysis for τa Figure 4.11 Robust analysis for τe

From the figures, it is found that the BWO-FOPID controller performs well even

though there is a change of parameter values up to 40%.
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Figure 4.12 Robust analysis for τg Figure 4.13 Robust analysis for τs

4.5 Proposed Chaotic Black Widow Optimization (ChBWO)

algorithm

In general, most of the meta-heuristic optimization algorithms generate initial pop-

ulation using random number generators. The poor selection of random numbers re-

sults in the deterioration of performance of the optimization algorithm. On the other

hand, chaotic maps can also be used as random number generators. Since they gener-

ate non-repeating random numbers, the search space of the algorithm increases, which

is an advantage. Different types of chaotic maps are used in various optimization prob-

lems [2, 65,68,73]. These include Chebyshev map, tent map, logistic map, iterative map,

piece-wise map, Gauss map, quadratic map, circle map, sinusoidal map, and cubic map.

To identify the best chaotic map for the BWO algorithm, a total of 10 chaotic

maps are considered (appendix A.1). In the proposed algorithm, the initial population is

generated from equation (4.9).

pi+1 = Cj(pi) (4.9)

where i=0,1,2, . . .,N and j=1,2, . . .,10. The variable Cj represents a chaotic mapping

function.

4.5.1 Optimization of benchmark functions using ChBWO algorithm

To verify the efficiency of the proposed ChBWO algorithm, eight benchmark func-

tions are considered, as listed in table 4.6. The statistical analysis is performed considering

dimensionality, population size, and number of iterations as 10, 50, and 500, respectively.

The table 4.7 compares the performance of different chaotic maps with respect to best,
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mean, and median values. The detailed description of chaotic maps used for the study is

mentioned in appendix A.1. It is found from the results that the logistic map produced

best minimum values for 7 benchmark functions. Other than logistic map, sine map pro-

duced best minimum values for 4 benchmark functions. Later, Wilcoxon ranksum test

with 0.05 significance level is performed for all the chaotic maps. For the test, the data

related to 25 consecutive runs are considered. Table 4.8 shows the Wilcoxon ranksum re-

sults (p-values) which make comparison between the original BWO algorithm and BWO

incorporated with chaotic maps. In table 4.8, the values that are less than 0.05 indi-

cate that there is considerable difference in statistical results when compared with the

actual BWO algorithm. The bold values indicate p-values that are greater than 0.05. It

is identified from the comparison of p-values that the Chebyshev, Gauss, logistic, singer,

sinusoidal and tent maps produce lower p-values than other chaotic maps. From the

results presented in table 4.7 and 4.8, it is found that the logistic map produces better

optimized values for the 7 benchmark functions and has p-values that are less than 0.05.

Therefore, for the proposed ChBWO algorithm, the logistic map is used to initialize the

spider population.

Table 4.9 shows the comparison of statistical results(best, mean, and median) be-

tween ChBWO algorithm and GA, PSO, BWO, ABC, and BBO algorithms. The best

values are indicated in bold font. Table 4.9 indicates that ChBWO algorithm produced

the best values for most of the objective functions.

Table 4.6 Cost functions for AVR system FOPID controller

Objective function Range min.

f1(x) =
∑n

i=1 x
2
i [-5.12,5.12] 0

f2(x) =
∑n−1

i=1 (100(x
2
i − xi+1)

2 + (1− xi)
2) [-30,30] 0

f3(x) = (x1 − 1)2 +
∑n

i=2 i(2x
2
i − xi−1)

2 [-10,10] 0

f4(x) = 10n+
∑n

i=1(x
2
i − 10cos(2πxi)) [-5.12,5.12] 0

f5(x) =
∑n

i=1(x
2
i − i)2 [-500,500] 0

f6(x) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i )−

exp( 1n
∑n

i=1 cos(xi)) + 20 + exp(1) [-35,35] 0

f7(x) = 1 +
∑n

i=1
x2
i

4000 −
∏n

i=1 cos(
xi√
i
) [-100,100] 0

f8(x) = 1− cos(2π
√∑n

i=1 x
2
i ) + 0.1

√∑n
i=1 x

2
i [-100,100] 0
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Table 4.7 Comparison of statistics of ChBWO algorithm with different chaotic maps

Chebyshev Circle Gauss Logistic Iterative Piecewise Sine Singer Sinusoidal Tent

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

f1

Best 2.02E-06 5.34E-10 2.435717 2.24E-30 5.69E-12 2.80E-30 1.13E-47 4.54E-02 2.93E+00 1.81E-09

Mean 1.75E-03 2.4E-04 8.63E+00 1.84E-09 4.99E-06 1.14E-08 1.64E-07 2.97E-01 5.07E+00 2.88E-05

Median 4.21E-04 4.55E-05 8.76E+00 1.30E-12 3.22E-07 3.68E-07 4.90E-11 2.87E-01 5.02E+00 5.76E-07

f2

Best 6.94E-01 7.99E+00 5.44E+06 1.94E-02 2.61E+00 1.41E-01 3.34E+00 8.73E+02 1.21E+06 7.41E+00

Mean 4.81E+00 9.05E+00 4.28E+07 6.72E+00 1.85E+01 1.03E+01 1.41E+01 1.26E+06 5.26E+06 4.16E+01

Median 3.52E+00 8.82E+00 3792815 5.85E+00 1.05E+01 1.67E+01 1.00E+00 1.09E+05 5.55E+06 4.35E+01

f3

Best 8.29E-03 6.67E-01 1.69E+03 2.866E-03 1.10E+01 8.94E-02 4.55E-01 9.71E-01 4.43E+03 1.21E-01

Mean 0.519237 0.667629 16179.89 4.90E-01 4.95E-01 6.83E-01 6.83E-01 8.78E+01 1.37E+03 4.98E-01

Median 4.12E-01 6.67E-01 1.26E+05 4.48E-01 4.32E-01 6.02E-01 6.80E-01 6.88E+01 1.41E+01 5.93E-01

f4

Best 1.13E-08 6.10E-09 1.68E+00 0 0 0 0 4.06E-01 9.95E+00 7.25E-13

Mean 2.73E-01 7.76E-02 1.29E+01 1.31E-03 6.95E-02 2.72E-03 9.49E-03 4.75E+01 1.26E+01 9.22E-02

Median 4.77E-02 9.63E-03 1.14E+02 5.51E-08 9.55E-04 2.26E-02 7.77E-08 3.16E+00 1.23E+01 1.32E-02

f5

Best 2.91E-01 1.97E-01 8.85E+08 1.08E-02 6.30E-02 1.47E-01 3.37E-01 5.08E+06 3.1E+08 1.79E-02

Mean 2.53E+02 1.97E+01 4.47E+09 3.53E+01 6.67E+01 1.45E+01 2.51E+01 2.39E+08 7.54E+08 2.38E+01

Median 1.08E+01 1.32E+00 3.31E+09 1.47E+00 1.61E+00 2.01E+00 2.92E+00 1.66E+08 7.42E+08 0.75774

f6

Best 4.22E-02 5.74E-03 3.50E-01 2.66E-15 2.66E-15 2.79E-10 8.72E-12 5.33E-01 1.17E+01 4.33E-05

Mean 5.10E-01 1.19E-01 1.87E+01 3.77E-04 3.86E-03 2.99E-04 2.31E-01 4.03E+01 1.36E-01 2.31E-02

Median 3.97E-01 6.59E-02 1.15E+00 1.48E-05 8.07E-04 1.17E-03 2.79E-06 4.15E+01 1.39E+01 1.54E-02

f7

Best 4.73E-06 1.03E-07 5.38E-01 0 1.11E-16 0 0 1.38E-01 5.81E-01 6.55E-15

Mean 4.29E-02 2.32E-02 1.25E+00 5.00E-04 6.24E-03 3.73E-07 2.31E-03 1.92E-01 8.67E-01 1.00E-02

Median 3.90E-02 2.03E-02 1.11E+00 8.05E-13 4.40E-05 1.94E-03 5.20E-08 1.93E-01 8.67E-01 1.97E-03

f8

Best 9.98E-02 9.98E-02 4.09E+01 9.98E-02 9.98E-02 9.98E-02 9.98E-02 4.99E-01 4.09E+01 9.98E-02

Mean 2.59E-01 2.03E-01 6.85E+01 1.07E+01 9.98E-02 9.98E-02 9.98E-02 1.59E+01 4.89E+01 1.35E-01

Median 2.99E-01 1.99E-01 7.19E+01 0.099873 9.98E-02 9.98E-02 9.98E-02 1.69E+01 4.79E+01 9.98E-02

Table 4.8 Wilcoxon ranksum test results obtained by comparing 25 consecutive runs of BWO

with various chaotic maps. The bold values indicates α ≥ 0.05 significance level

f1 f2 f3 f4 f5 f6 f7 f8

C1 6.34E-06 6.07E-04 2.14E-02 9.14E-06 4.44E-o3 6.34E-06 6.34E-06 5.64E-05

C2 6.34E-06 7.59E-02 1.47E-05 5.19E-05 2.84E-01 6.34E-06 1.66E-05 3.59E-05

C3 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.26E-06

C4 5.85E-02 2.66E-01 4.65E-01 3.02E-01 3.21E-01 3.81E-01 4.69E-01 6.26E-06

C5 6.34E-06 2.44E-02 5.02E-04 2.13E-03 1.76E-02 2.97E-03 1.23E-04 6.26E-06

C6 1.79E-03 3.12E-02 2.00E-01 2.51E-03 6.05E-03 1.17E-02 6.59E-03 6.26E-06

C7 6.85E-02 1.09E-02 4.12E-01 3.02E-01 1.07E-01 3.02E-01 5.19E-03 6.26E-06

C8 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.23E-06

C9 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.34E-06 6.18E-06

C10 1.03E-05 9.14E-06 1.64E-03 4.14E-04 2.97E-03 9.14E-06 1.37E-04 6.18E-06

The comparison of convergence curves of different chaotic maps are shown in figure

4.14. From the curves, it is observed that the ChBWO algorithm converged in less than

100 iterations for all the benchmark functions. Moreover, except for function f1, the

logistic map produced best cost values.
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Figure 4.14 Convergence curves of ChBWO algorithm for different chaotic maps
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Table 4.9 Comparison of statistical parameters of ChBWO algorithm for benchmark functions

Function Parameter ChBWO GA PSO BWO ABC BBO

f1(x) Best 2.24E-30 1.30E-11 8.33E-05 2.35E-30 4.82E-05 5.70E-08

Mean 1.84E-09 6.15E-04 8.60E-03 2.45E-07 6.54E-04 1.69E-07

Median 1.30E-12 7.90E-06 3.72E-03 6.10E-12 4.38E-04 1.71E-07

f2(x) Best 1.94E-01 4.45E-01 9.12E-01 3.54E-01 4.52E+00 6.52E-01

Mean 6.72E+00 1.02E+01 2.38E+02 7.90E+00 1.38E+01 5.39E+00

Median 5.85E+00 7.40E+00 1.61E+01 7.22E+00 1.14E+01 4.68E+00

f3(x) Best 2.87E-03 4.40.E-01 4.97E-03 4.37E-01 2.39E-01 1.03E+00

Mean 4.90E-01 7.23E-01 9.46E+00 3.26E-01 5.72E-01 2.56.E+00

Median 4.48E-01 6.95E-01 9.46E+00 4.77E-01 5.55E-01 2.50E+00

f4(x) Best 0 4.81E-10 2.03E-01 0 1.30E+01 1.99E+00

Mean 1.32E-04 5.73E-01 7.90E+00 2.89E-03 2.90E+01 5.87E+00

Median 5.51E-08 7.90E-03 6.09E+00 3.13E-06 2.92E+01 5.47E+00

f5(x) Best 1.09E-02 1.18E+00 1.04E+01 1.99E-01 5.44E-01 2.44E-02

Mean 3.53E+00 2.00E+02 1.38E+02 2.83E+00 5.85E+00 4.85E-02

Median 1.45E+00 5.33E+00 7.04E+01 2.18E+00 4.30E+00 4.78E-02

f6(x) Best 2.66E-15 4.82E-05 8.44E-05 2.78E-13 1.17E-01 1.45E-03

Mean 3.8E-04 4.97E-02 4.43E-03 3065E-03 3.23E-01 1.89E-01

Median 1.32E-06 1.22E-02 2.68E-03 4.53E-05 2.72E-01 1.95E-03

f7(x) Best 0 7.33E-08 1.22E-01 0 5.19E-02 7.40E-03

Mean 5.00E-04 4.29E-02 5.48E-01 6.99E-03 1.51E-01 7.12E-02

Median 8.05E-13 3.43E-02 5.61E-01 1.95E-05 1.61E-01 6.02E-02

f8(x) Best 9.99E-02 9.99E-02 2.11E+00 9.99E-02 1.41E+00 9.99E-02

Mean 1.07E-01 1.53E-01 3.66E+00 1.03E-01 2.30E+00 2.53E-01

Median 9.99E-02 9.99E-02 3.77E+00 9.99E-02 2.30E+00 2.00E-01

4.6 Design of ChBWO-FOPID controller for AVR system

To optimize the AVR system response the chaotic black widow optimization algo-

rithm is used. The tuning procedure is similar to the procedure mentioned in the section

4.4.1. The corresponding block diagram is shown in the figure 4.15.
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Figure 4.15 ChBWO tuned FOPID controller for AVR system

4.6.1 Parameter selection

The optimization process uses various parameters at different stages. All the pa-

rameters are categorized as AVR system, FOPID controller, and ChBWO algorithm

parameters. The range of parameter values related to FOPID controller are given as

Kp = (0.1, 3), Ki = (0.1, 1), Kd = (0.1, 1.5), λ = (0.5, 1.5) and µ = (0.5, 1.5). The

range for the parameters is identified from the observation of different FOPID con-

trollers [63–65,67], and [69].
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Figure 4.16 Super parameter effect on cost function

To identify the ChBWO algorithm super parameters (PR,CR, and MR), each pa-

rameter is varied in the range (0.2, 0.8) while keeping other parameters constant. The

corresponding cost function curves related to the individual parameters are given in figure
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4.16. The lowest cost value is produced when the procreation rate (PR), Cannibalism rate

(CR), and Mutation rate (MR) are 0.6, 0.6, and 0.8 respectively.

4.6.2 Fitness function

To tune the parameters of FOPID controller, the state-of-the art methods used

various types of objective functions as listed in the table 4.10. In addition to the general

Table 4.10 Cost functions for AVR system FOPID controller

Reference Cost function

[68,69] ZLG = (1− e−β) · (OS + ess) + e−β · (ts − tr)

[70] IAE =
∫
|e(t)|dt

[66] ITAE =
∫
t|e(t)|dt

[67] OF1 =
∫
te2(t)dt,OF2 =

∫
∆u2(t)dt,OF3 =

∫
te2load(t)dt

[64] OF = w1 ·OS + w2 · ts + w3 · Ess + w4

∫
|e(t)|dt+ w5

∫
u2(t)dt

OF = (w1 ·OS)2 + w2t
2
s +

w3

(max dv)2

[67] OF1 = IAE,OF2 = 1000|Ess|, OF3 = ts

[65] OF1 = ωgc, OF2 = Pm

[63]
OF = w1 · OS + w2 · tr + w3 · ts + w4 · Ess +

∫
(w5 · |e(t)| + w6 ·

Vf (t)
2)dt+ w7

Pm
+ w8

Gm

objective functions like integral of squared error (ISE), ITAE, and integral time squared

error (ITSE), most of the objective functions are formed by either taking the weighted

sum of different performance metrics of AVR system or by considering the total error of

the system. Moreover, the weighted combination of performance metrics increases the

dimensionality of the fitness function. Therefore, a new objective function is defined in

the proposed method to improve performance metrics and minimize the total error of the

system without increasing the dimensionality of the cost function.

In the proposed method, ITAE and ZLG objective functions are combined into a

single function. After several trials of simulations with different objective functions, it is

found that the combination of ITAE and ZLG gives best tuned parameters of the FOPID

controller. The corresponding mathematical formula is given by equation (4.10).

J = (1− e−β) ∗ (Mp + Ess) + e−β ∗ (Ts − Tr) +

∫
t.|e|dt (4.10)
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The proposed fitness function has two advantages. The first one is getting optimized

overshoot, rise time and settling time of the system using the ZLG function. The second

one is reducing the overall output error of the system using the ITAE function.

4.6.3 Convergence curve

To identify the optimum parameters of the ChBWO-FOPID controller for AVR sys-

tem, we take the fitness function mentioned in Section 4.7.2. The ChBWO algorithm is

initialized with 50 spiders (population) and run for 50 iterations. A comparison of conver-

gence curves of the proposed ChBWO and existing BWO algorithms are shown in figure

4.17. The convergence curve shows that the ChBWO algorithm starts converging after

Figure 4.17 Comparison of convergence curves for BWO and ChBWO algorithms

iteration 5, whereas the BWO algorithm took 15 iterations for convergence. Moreover,

the proposed algorithm has first iteration cost function value of 19, whereas it is 25 for

the BWO algorithm. The reason for improvement is the use of the logistic map at the

initialization stage of the proposed algorithm.

4.7 Results and Discussion

The proposed ChBWO-FOPID controller is tested for stability and reliability under

different conditions. Various types of analyses (Step, load, robust, and Bode) are carried

out on the controller. To improve the performance of AVR system, the proposed controller
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is added in the control loop of the AVR system.

4.7.1 Step response

The step response of different FOPID controllers are compared using the optimally

tuned parameters Kp, Ki, Kd, λ, and µ of the FOPID controllers as depicted in figure 4.18.

Table 4.11 lists the tuned values of various FOPID/PID controllers.

Table 4.11 also shows the comparison of performance metrics related to the step

response of different controllers. From the results in table 4.11, it is found that the

the proposed controller produces good rise time and settling time values with acceptable

overshoot (below 2%). When compared with other state-of-the-art methods, CHBWO-

FOPID has improved the rise time 0.02s, settling time 0.03s, overshoot 0.7%, and phase

margin 20. When compared to SA-MRFO-FOPID [73] and C-YSGA-FOPID [75]. The

PSO-FOPID [64] and produced good rise time but suffered from high settling time and

large overshoot values. The proposed controller reduced the overshoot 21.4% and settling

time 1.16s, and phase margin 92.90. As compared to CS-FOPID controller [120] the

proposed controller improved the settling time 0.808s and overshoot 1.72%. As compared

to GA-FOPID [67] the proposed controller improved rise time 1.19s, settling time 1.53s,

overshoot 5.816%, and phase margin 140. As compared to SCA-FOPID [72] and SA-

FOPID [84] controllers the proposed controller improved Phase margin by 93.180 and

95.60 respectively. It is also informed that for various methods multiple runs of simulation

showed a trade-off between overshoot, rise time, and settling time.

Figure 4.18 Step response of FOPID controllers for AVR system
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Figure 4.19 Comparison of Bode plots

The Bode plots of different controllers are compared as shown in figure 4.19. The

analysis of plots indicates that all the controllers produce stable responses. The ChBWO-

FOPID controller has infinite gain margin with phase margin of 164.19 degrees.

4.7.2 Load response analysis

During the simulation, the proposed controller is tested with two types of load

conditions. Initially, different step changes are applied to the controller continuously.

Then the response is compared with respect to other controllers. The results in figure

4.20 show that the ChBWO-FOPID controller is able to track different set points more

efficiently than the other controllers. Later, the controller is fed with sudden impulses

Figure 4.20 Load response of AVR system for different FOPID controllers

in the set point. The impulses act as disturbances and help to identify the disturbance
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response of the controller. From figure 4.21, we can conclude that the proposed controller

Figure 4.21 Disturbance response of AVR system for ChBWO FOPID controller

can withstand sudden impulses of load and responds optimally.

4.7.3 Robust analysis

The controller is tested for parameter variations of the AVR system ranging from

-50% to 50% uncertainty. The parameters considered are time constants of amplifier(τa),

exciter(τe), generator(τg) and sensor(τs) as listed in table 4.12. The corresponding results

are shown in figures 4.22, 4.23, 4.24, and 4.25, respectively. From the graphs, it is observed

that the proposed controller performance is satisfactory under parameter variations.

Figure 4.22 Robust analysis for τa Figure 4.23 Robust analysis for τe
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Figure 4.24 Robust analysis for τg Figure 4.25 Robust analysis for τs

Table 4.12 Robust analysis performance of proposed controller

Parameter Deviation(%) Value Rise time(s) Settling time(s) Overshoot(%)

τa

50 0.15 0.1424 0.4404 3.9027

25 0.125 0.1347 0.2068 1.4395

-25 0.075 0.1234 0.4211 0.7976

-50 0.05 0.1432 0.455 0.5819

τe

50 0.6 0.1722 0.9683 4.2137

25 0.5 0.1502 0.8313 2.5919

-25 0.3 0.1043 0.4601 0.0222

-50 0.2 0.08 0.5967 0.0209

τg

50 1.5 0.1879 1.0231 3.5755

25 1.25 0.1571 0.8444 2.3547

-25 0.75 0.1 0.4164 0.019

-50 0.5 0.0732 0.5007 1.7496

τs

50 0.015 0.1003 0.8765 5.1407

25 0.0125 0.1033 0.8813 3.8387

-25 0.0075 0.111 0.8906 2.6313

-50 0.005 0.1154 0.8952 2.6104

4.7.4 Summary

In this chapter, efforts are put to improve the FOPID controller performance for

AVR system. An alternative method was proposed for optimal tuning of FOPID controller

parameters based on chaotic maps and black widow optimization (BWO) algorithm [119].

To improve the convergence speed and search capability of BWO algorithm, effect of

chaotic maps is studied and found that logistic map [121] improves the performance of

the existing. The cost function plays a crucial role during optimization of any controller.

So, after working on different cost functions for the ChBWO algorithm, it is found

that the combination of ZLG and ITAE functions produces optimum values for the FOPID

controller. The advantage of ChBWO algorithm is early convergence and produced better
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optimum values when compared with other state of the art algorithms like PSO, GA, ABC,

and bio-geography-based optimization (BBO). Even though various cost functions have

been proposed in the state-of-the-art approaches, most of them are weighted combinations

of controller parameters and system error. As a result, the dimensionality of optimization

problems increases. Since the proposed cost function does not contain these weights, it is

simple to implement and effective.

4.8 Conclusion

A novel optimization algorithm has been proposed by hybridizing chaotic maps with

the black widow optimization (BWO) algorithm. The effects of 10 chaotic maps have been

studied and found that logistic map generates best results for most of the uni-modal and

multi-modal benchmark functions. The proposed Chaotic BWO (ChBWO) algorithm

has been used in the optimization of FOPID controller parameters for AVR system. To

identify the finest controller parameters, a novel and efficient objective criteria with a

combination of ITAE and ZLG functions is developed. Using simulation, it has been shown

that the ChBWO-FOPID controller is able to produce better step response in terms of rise

time and settling time than the existing state-of the-art techniques. To study the behavior

of the controller, it is subjected to set point changes, sudden disturbances and parameter

variations. In all the cases, the proposed controller has incremental improvement and

produces stable and robust response.



Chapter 5

BR-NARXnets for Identification and Control of

Automatic Voltage Regulator System

This chapter presents a novel design method for identification and control of auto-

matic voltage regulator system. The method uses recurrent neural networks which have

the capability to model time delayed systems. To avoid over fitting during the training

of neural networks Bayesian regularization is used.

5.1 Introduction

Modeling and control of dynamic systems requires good understanding of parame-

ters which govern the system operation. Moreover, for complex systems, it is difficult to

identify the model. For example, in chapter 4, design of FOPID controller requires the

mathematical model of the system. For complex systems these models may not be accu-

rate and requires lot of time and effort to develop a good model of the system. Therefore

in this chapter a data driven approach is proposed for the system identification as well

as controller design. On the other hand neural networks have universal approximation

capabilities which require only excitation and response data. Therefore, to model complex

systems, instead of mathematical model the neural networks can be used to find the sys-

tem behavior. The advantage is it reduces the modeling time and requires only input and

output data of the system. Even though different types of neural networks are available,

NARXnets (Non-linear Auto regressive with eXogenous input networks) are better suited



BR-NARXnets for Identification and Control of Automatic Voltage Regulator
System 106

for the problems where inherent delays exist in the system.

Even though various types of PID and FOPID controllers are developed for AVR

system, there are very few studies in which neural networks are used. In the proposed

method, an attempt has been put for the design of NARXnet based AVR system model

and corresponding controller development.

5.2 Automatic Voltage Regulator (AVR) System

5.2.1 Overview of AVR system

The industrial power generation units are often employed with synchronous gener-

ators. In order to regulate the output voltage of synchronous generator and to stabilize

the overall system synchronous generators are often integrated with automatic voltage

regulator (AVR) systems. The AVR system internally composed of four modules namely,

amplifier, exciter, generator, and sensor. The standard model of the AVR system is men-

tioned in the literature [66,68,73,75]. In the model, the individual modules are represented

as first order systems and shown in the figure 5.1.

+
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Figure 5.1 AVR system block diagram

Correspondingly, various AVR system parameters used in the modeling are men-

tioned in table 5.1. The parameter values are identified from the literature [66,68,73,75].

In the table, K represents gain (unit-less) and T represents time constant (in seconds)

of different modules. The suffixes a, e, g, and s indicates the modules amplifier, exciter,

generator, and sensor respectively.

Using the parameters mentioned in the section 5.1, the AVR system model is de-



BR-NARXnets for Identification and Control of Automatic Voltage Regulator
System 107

Table 5.1 Parameter values of AVR system

Parameter Range Value

Ka [10,400] 10

τa [0.02,1] 0.1

Ke [1,10] 1

τe [0.4,1] 0.4

Kg [0.7,1] 1

τg [1,2] 1

Ks [1,2] 1

τs [0.001,0.06] 0.01

veloped and simulated. The corresponding unit step response is shown in the figure 5.2.

From the response, it is identified that the system has 60.52% overshoot, 0.26s rise time,

and 6.22s settling time. Moreover, the system produced a steady state error of 0.091.

The system response can be optimized by including a suitable controller in the closed

loop form.

Figure 5.2 Open loop unit step response of AVR system

5.3 Bayesian regularization back-propagation algorithm

The NARXnets can be trained to identify the input-output mapping of dynamic

systems. The internal weights and biases are updated based on the error between actual

and target values. In the section, working of Bayesian regularization back-propagation

training algorithm is discussed in detail.
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The traditional back-propagation uses gradient descent algorithm to update the

neural network weights. But the draw back is the network may over-fit the training data.

This produces very good performance during training and poor performance when new

data set or testing data is applied. To overcome the problem, regularization mechanisms

should be incorporated into the training algorithm. In the proposed method, Bayesian

regularization (BR) back-propagation is used to train the NARXnets. BR avoids the

over fitting by including regularization parameters into the cost function. It also has

other advantages like no need for lengthy cross-validation and omits the non-performing

parameters in the network during training phase. Mathematically it converts non-linear

regression problem to statistical L2 (Ridge) type regression. A brief overview of Bayesian

regularization algorithm is discussed as follows.

Consider for an unknown system with the input samples xi ϵ R and the correspond-

ing response yi ϵ R. Let the set C represents input and response pairs (xi, yi) ϵ R indicated

in the equation (5.1)

C = {(x1, y1), (x2, y2), (x3, y3), ..., (xp, yp)} (5.1)

where p indicates number of samples in the data set. Conveniently, the above equation

can be represented as C = {X, Y }, where X and Y indicates input and output values of

the system. To identify the relation between xi and yi a neural network architecture M

is developed. Let W ϵ R represents the connection weights, then the mapping between

inputs and responses is given by equation (5.2)

Ŷ =M(X,W ) (5.2)

The difference between actual response (Y ) and estimated response (Ŷ ) is denoted as

error energy EC and represented in equation (5.3)

EC =
1

2

p∑
i=0

(Y − Ŷ )2 (5.3)

An additional regularization term called energy of weights indicated by Ew is added to

the actual error as shown in equation (5.4)

Ew =
k∑

i=0

(w̄i)
2 (5.4)
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where w̄i indicates vector of all the weights in the neural network. Therefore, the final

objective function is given by equation (5.5)

E = µ ∗ Ew + η ∗ EC (5.5)

where the variables η and µ are objective function parameters. If µ << η then it leads

to larger weights and smaller errors, can cause over fitting problem. If µ >> η then it

leads to smaller weights at the cost of overall network error. Therefore, the optimum

values of µ, η, and w can be found using Bayesian probability theory [122]. In Bayesian

terminology, the network weightsW are considered as random numbers having probability

density function (5.6).

P (w|C, µ, η,M) =
P (C|w, η,M)P (w|µ,M)

P (C|µ, η,M)
(5.6)

In equation (5.6), P (w|µ,M) indicates prior density of network weights, P (C|w, η,M)

is likelihood function of data for given weights and P (C|µ, η,M) represents normalizing

factor which limits the total probability to 1.

Assuming the noise in data and prior distribution of weights are Gaussian then the

corresponding probability densities are written as shown in equation (5.7)

P (C|w, η,M) =
1

ZC(η)
exp(−ηEC) and P (w|µ,M) =

1

Zw(η)
exp(−µEw) (5.7)

where ZC(η) = (π/η)k/2 and Zw(µ) = (π/µ)N/2. Where k indicates the number of neural

network weights and N indicates total number of parameters. Substituting (5.7), ZC , and

Zw into equation (5.5)

P (w|C, µ, η,M) =

1
Zw(µ)

1
ZC(η)

exp(−(ηEC + µEw))

P (C|µ, η,M)
=

P

exp(−F (w))
ZF (µ, η) (5.8)

where

ZF (µ, η) = ZC(η)Zw(µ) (5.9)

Applying Bayes rule [122] to optimize the parameters µ and η

P (µ, η|C,M) =
P (C|µ, η,M)P (µ, η,M)

P (C|M)
(5.10)
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Assuming uniform prior density P (µ, η,M) for parameters µ and η then minimizing pos-

terior density is achieved by maximizing P (C|µ, η,M). Since all the probabilities have

Gaussian form, the corresponding posterior density is mentioned in equation (5.8). Solv-

ing equation (5.5) for normalization factor,

P (C|µ, η,M) =
P (C|w, η,M)P (w|µ,M)

P (w|C, µ, η,M)

=
[ 1
ZC(η)

exp(−ηEC)][
1

Zw(η)
exp(−µEw)]

ZF (µ, η)exp(−F (w))

=
ZF (µ, η)

ZC(η)ZW (µ)

exp(−ηEC − µEW )

exp(−F (w))

=
ZF (µ, η)

ZC(η)ZW (µ)

Expanding F (w) around minimum point w∗ using Taylor series, the optimum parameters

are estimated as

µ∗ =
γ

2Ew(w∗)
and η∗ =

k − γ

2EC(w∗)
(5.11)

where

γ = k − 2µ∗tr(H∗)−1 (5.12)

The variable γ represents effective number of parameters in the network. H∗ is the

Hessian matrix of objective function evaluated at w∗ and is calculated using Gauss -

Newton approximation [123] as shown in equation (5.13).

H∗ ≈ JT .J (5.13)

where J is jacobian matrix. Then, the approximation factor ZF (µ, η) is given by [124]

equation (5.14)

ZF (µ, η) ≈ (2π)N/2(det(H∗))1/2exp(−F (w∗)) (5.14)

Computing H matrix at minimum point w∗ is solved according to LM algorithm [113].

The weights and biases are adjusted using [122,123] equation (5.15).

wk+1 = wk − [JTJ + λI]−1JT e (5.15)

where λ denotes the LM damping factor and JT e is the error gradient.
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5.4 Proposed BR-NARXnet System architecture

The proposed system architecture consists of two neural networks known as plant

network and controller network. Initially, the behavior of the plant is identified by train-

ing the plant neural network on the AVR system data. Later, the controller network

trained using the plant network and reference data. Both the networks uses Bayesian

regularization algorithm to update the weights during training process.

The plant network is designed with 15 hidden layer neurons and one output neuron.

The feedback in actual AVR system (figure 5.3) indicates that the current response of

AVR system depends on past outputs. Therefore, the plant network also consists of two

inputs one is the actual reference signal and the other one is the feed back signal. The

network has two delay units for reference input and three units for the feedback signal.

In figure 5.3, u(k) and ŷ are inputs for the plant and the outputs of delay blocks are

u(k), u(k − 1), u(k − 2), ŷ(k), ŷ(k − 1), and ŷ(k − 2) respectively.

Input

r(k)
r(k-1)

r(k-2)

u(k-1)

u(k-2)

ŷ(k-1)

ŷ(k-2)

∑

∑

∑

tansig

tansig

tansig

∑ lin

u(k)
u(k-1)

u(k-2)

ŷ(k-2)

ŷ(k-3)

ŷ(k-1)

∑

∑

∑

tansig

tansig

tansig

∑ lin

Controller
Plant

Delay 

block1
Delay 

block2

Input layer Hideden layer

Output layer

Input layer
Hideden layer

Output

ŷ(k)

Output layer

AVR System

(Plant)

∑

Bayesian Regularization

Ref

+

-
y(k)

r(k)

u(k) ŷ(k)

e(k)

NARXnet 

Controller
NARXnet plant

(AVR System)

l2(k) l1(k)

Figure 5.3 Architecture of proposed system

Similarly, the controller network is also created with 15 hidden neurons and one

output neuron. For better training and to learn past dependencies the controller has
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feedback signals from its own output as well as system output. Therefore, the controller

has totally three inputs known as reference signal (r(k)), controller output feedback (u(k)),

and actual system response (ŷ(k)). All these inputs are delayed by two units as discussed

in plant network to optimize the overall system response.

The commonly used activation functions are linear, sigmoid, and tan sigmoid func-

tions whose definitions are given in equations (5.16), (5.17), and (5.18). The plant and

controller network hidden layer neurons are activated using tansigmoid function and out-

put neurons are activated using linear function.

Sigmoid : f(x) =
1

1 + e−x
ϵ [0, 1] (5.16)

Tansigmoid : f(x) =
ex − e−x

ex + e−x
ϵ [−1, 1] (5.17)

Linear : f(x) = x, and x ϵ R (5.18)

Even though the activation functions mentioned are equally good for general applications,

we have chosen tansigmoid activation function for the NARXnets. Since tansigmoid func-

tion generates the output in the range [-1,1] which better suits for controlling applications.

5.5 BR-NARXnet Training and Simulation

The total training part is divided into two phases. In the first phase, the dynamics

of plant neural network are identified using the data generated using the Simulink model

of AVR system shown in figure 5.4. In the second phase, the identified plant dynamics

along with controller training data are used to train the controller network.

5.5.1 Training procedure for BR-NARXnet

The procedure to train the BR-NARXnet controller for the AVR system involves

the following steps. It is mentioned that the proposed method can also be used as a

generalized procedure to design BR-NARXnet controllers for various dynamic systems.

Plant training:
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Figure 5.4 Simulink model for training data generation

1. Collect the training data i.e, excitation (input) and response (output), for the system

(AVR system) with N samples.

2. Initialize the plant network with Hp hidden neurons, Ip input neurons, and Op

output neurons. The number of input neurons is equal to number of features and

output neurons is equal to plant outputs.

3. Set the number of epochs to 1500, learning method as Bayesian regularization and

chose the performance criteria for training as MSE.

4. Train the neural network using the procedure mentioned in Section.3 as described

in the following

(a) Calulate the regularization parameters using equations (5.11) and (5.12)

(b) Apply the back propagation algorithm for the calculated sensitivities using

equation (5.5)

(c) With the help of the jacobian matrix J update the weights using equation

(5.15)

5. Calculate the MSE and statistics during training and plot the response.

Controller training:

1. Collect the training data for the controller with M samples.
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2. Initialize the controller network with Hc hidden neurons, Ic input neurons and Oc

output neurons and connect the controller network to plant network as shown in

figure 5.3.

3. Disable the learning for plant network, and train the controller using the procedure

mentioned in steps 3 and 4.

4. Save the network parameters, weights, and biases.

5. Using the saved model predict the output from the testing data set and evaluate

the metrics.

5.5.2 Training plant neural network

The plant network training data is generated from the Simulink model of AVR

system as shown in figure 5.4. A total of 50000 excitation and response samples are

generated. The figures 5.5 and 5.6 represents the input and response data of the actual

AVR system respectively. During plant network training, the controller network weights

are deactivated and the reference signal r(t) is directly fed to the input of the plant

network along with feedback.

Figure 5.5 Training data (input) for plant neural network
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Figure 5.6 Training data (output) for plant neural network

Bayesian regularization backpropagation algorithm is used to train the neural net-

work with mean square error (MSE) evaluation criteria. The detailed analysis of training

performances are given in section 5.6. The performance curve of the plant network during

the training is shown in figure 5.7. The network produced minimum cost value 1.688e-10

for 1500 epochs.

Figure 5.7 Training performance of the plant network

The error distribution is given in the figure 5.8. The distribution plot is drawn by
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taking error values on one axis and instances of error are taken on another axis. From

the figure, it is observed that most of the error samples are located near the zero line

(indicated as red line).

Figure 5.8 Training error histogram for plant

5.5.3 Training controller neural network

The controller network is also trained similar to the plant neural network. During the

controller training, the trained plant network is added to the controller network whose

output can be used to compute the error. The weights of the controller network are

updated using the error values. Since the plant network is already trained, its weights

are not updated during controller network training. The training data for the controller

network is shown in figure 5.9 To train the controller Bayesian regularization algorithm

with MSE criteria is used. The performance curve of the controller network during the

training is shown in figure 5.10. The controller network took 1500 epochs to produce the

minimum MSE value 0.003021. Various parameters used during the plant and controller

network training are summarized as shown in table 5.2.

The error distribution plot after controller training was completed is shown in the

figure 5.11. The plot is generated similar to the plant error distribution. From the figure,
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Figure 5.9 Training data for controller neural network

Figure 5.10 Training performance of the controller network

it is found that most of the errors are located near the zero value which is indicated as a

solid red line in the figure 5.11.
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Figure 5.11 Training error histogram for controller

5.6 Results and discussions

All the training and simulations are performed using MATLAB 2016b software on

a computer with intel core i5 processor with 8GB RAM. The simulation results are di-

vided into two parts containing plant and controller performances. Various analysis are

performed on the plant and controller networks during the training process.

5.6.1 Analysis of plant training

To study the effect of hidden number of neurons on plant identification the plant

network is trained with 5, 10, 15 and 20 hidden neurons. Moreover, the training is

performed by considering Bayesian regularization [122] and Livenberg Marquardt (LM)

algorithm [116]. To compare the performance of the neural network various measures like

MSE (Mean Square Error), SSW (Sum of Squared weights), gradient, and RMSE (Root

Mean Square Error) are considered. The formulas used for evaluation of MSE, SSW, and

RMSE are given by equations (5.19), (5.20), and (5.21).

MSE =
1

m
ED (5.19)
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Table 5.2 Parameters for plant and controller neural networks

Parameter Plant network Controller network

Inputs 2 3

Unit delay blocks 5 6

Hidden layer size 15 neurons 15 neurons

Output layer size 1 neuron 1 neuron

Epochs 1500 1500

Training samples 50000 50000

SSE = ED (5.20)

RMSE =

√
1

m
ED (5.21)

The performance measures of plant NARXnet, trained using LM algorithm with different

hidden neurons are given in table 5.3. Similarly, the performance measures when BR

algorithm is used are given in table 5.4. Table 5.5 lists the MRE values of LM and BR

algorithms.

The relative error (RE) is used to measure the deviation of the actual output from

the target values. The formula for mean relative error (MRE) is given by equation 5.22.

Where Yi represents the target and ŷi represents the actual neural network response.

MRE =
1

N

N∑
i=1

Yi − ŷi
Yi

(5.22)

Table 5 lists the MRE values of LM and BR algorithms. The comparison of tables indicate

that both LM and BR algorithms produced MSE of 1.63E-10 for 15 hidden neurons. The

SSE and RMSE values are also similar, but the BR algorithm produced lowest gradient

and MRE values 1.05E-07 and 3.82E-04 respectively. Both algorithms did not show early

convergence behavior during the training. Based on the comparison, finally for the plant

network BR algorithm with 15 hidden neurons are considered.

The comparison of step, load, and disturbance responses of proposed BR-Narxnet

plant model and actual model of AVR system are shown in figures 5.12, 5.13, 5.14, and

5.15. From the figures, it is observed that the response produced by Narxnet model is

almost identical to actual model of the AVR sytem.
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Table 5.3 Performance of LM algorithm for plant network

Hidden

neurons
MSE SSE SSW Gradient Mu

5 2.13E-10 1.07E-05 53.1069 1.23E-06 1.00E-08

10 1.64E-10 8.20E-06 24.465 2.15E-06 1.00E-09

15 1.63E-10 8.15E-06 25.1 1.99E-07 1.00E-09

20 1.66E-10 8.30E-06 24.1688 1.53E-06 1.00E-09

Table 5.4 Performance of Bayesian regularization algorithm for plant network

Hidden

neurons
MSE SSE SSW Gradient Epochs Mu

Effective

parameters

5 1.97E-10 9.85E-06 111.623 7.87E-07 1500 5.00E+05 29.6

10 1.69E-10 8.45E-06 26.7 3.39E-07 1500 5.00E+05 56.5

15 1.63E-10 8.15E-06 22.68 1.05E-07 1500 5.00E+05 80

20 1.64E-10 8.20E-06 24.2482 1.18E-07 1500 5.00E+05 103

Figure 5.12 Comparison of step response of Narxnet model and AVR transfer function model

To further analyze the identified plant behavior various performance metrics like

rise time, settling time, overshoot, undershoot, steady state error, and peak values are

compared with actual model of the AVR system. The corresponding results are mentioned
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Table 5.5 MRE and RMSE comparison for plant network

Hidden

Neurons
BR (MRE) LM (MRE) BR (RMSE) LM (RMSE)

5 0.0089 0.0078 1.40357E-05 1.4595E-05

10 0.0031 0.0019 1.3E-05 1.2806E-05

15 3.82E-04 0.0018 1.27671E-05 1.2767E-05

20 0.0048 8.52E-04 1.28062E-05 1.2884E-05

in the table 5.6 and figure 5.12. From the comparison it is concluded that the BR-

NARXnet model of the plant produced more than 95% accuracy.

Table 5.6 Copmarison of performance metrics for plant

Parameter AVR Model BR-NARXnet Model

Rise time(s) 0.2687 0.2635

Settling time(s) 5.7055 5.6636

Overshoot(%) 60.4151 60.3395

Steady state error 0.09 0.089

Peak value 1.4592 1.4616

Undershoot(%) 0 0
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Figure 5.13 Comparison of performance metrics of actual AVR model and BR-NARXnet model
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Figure 5.14 Comparison of load response of Narxnet model and AVR transfer function model

Figure 5.15 Comparison of disturbance response of NARXnet and AVR transfer function model

5.6.2 Analysis of controller training

A similar analysis discussed in section 7.2 is carried out on the controller during

training. To study the effect of hidden neurons, the controller network is designed with

5, 10, 15 and 20 hidden neurons. Various metrics like MSE, SSE, RMSE and MRE are

used to describe the controller efficiency. The controller network is trained using LM
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and Bayesian regularization algorithms. The corresponding results obtained during the

training process are tabulated as shown in tables 5.7, 5.8, and 5.9. On comparison of the

tables it is found that BR algorithm produced the least mean square error of 3.22E-02 for

15 hidden neurons. It is also mentioned that the sum of squared error (SSE), gradient and

RMSE values are better for BR algorithm than lm algorithm. The LM algorithm shown

early convergence for 15 and 20 hidden neurons. Similarly BR algorithm shown early

convergence for 5, 10, and 15 hidden neurons. Therefore, considering all these metrics it

is decided to use BR algorithm to train the controller network with 15 hidden neurons.

Table 5.7 Performance of LM algorithm for controller network

Hidden

neu-

rons

MSE SSE SSW Gradient Epochs Mu

5 1.05E+00 5.25E+04 27.099 1.33E+02 1500 1.00E+05

10 6.45E-02 3.22E+03 40.9933 6.10E-02 1500 1.00E+02

15 1.96E-01 9.80E+03 43.765 6.14E+08 7 5.00E+10

20 1.28E-01 6.38E+03 70.14 2.25E+00 17 5.00E+10

Table 5.8 Performance of Bayesian regularization algorithm for controller network

Hidden

neurons
MSE SSE SSW Gradient Epochs Mu

Effective

parameters

5 5.63E-02 2.82E+03 32.9172 7.35E+00 148 5.00E+10 32.3

10 3.54E-02 1.77E+03 47.798 1.27E+00 614 5.00E+10 67.3

15 3.22E-02 1.61E+03 71.405 2.17E-02 1500 5.00E+06 78.6

20 6.86E-02 3.43E+03 21.159 1.52E+01 272 5.00E+10 32.2

5.6.3 Controller response for step input and set point changes

To investigate the efficiency of the proposed neural controller it is correlated with

other meta-heuristic and stochastic optimization algorithm tuned controllers. Primarily

the step input response is plotted for all the controllers as shown in figure 5.16. Cor-
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Table 5.9 MRE and RMSE comparison of proposed controller

Hidden

Neurons
BR (MRE) LM (MRE) BR (RMSE) LM (RMSE)

5 7.10E-03 4.30E-02 0.2373 2.236068

10 5.25E-04 1.39E-02 0.1881 3.162278

15 9.56E-05 6.28E-04 0.1794 3.872983

20 2.38E-02 1.64E-02 0.2619 4.472136

respondingly, the controller parameter values for the FOPID/PID/PIDA controllers are

given in table 5.10

From the step response, it can be observed that the NARXnet based controller

shown improved performance than other FOPID/PID/PIDA controllers in terms of set-

tling time, rise time, and overshoot. From the step response various performance measures

are calculated and listed in table 5.10.

From the results, it is found that the proposed controller produced the rise time

of 0.1052 seconds and took 0.4108 seconds to settle. Moreover, the proposed controller

produced minimum overshoot value 2.9116%. The overall performance of each controller

is calculated using the equation 5.23.

Overall Performance = Rise T ime + Settling T ime + Overshoot (5.23)

From the table 5.10 it is concluded that the neural controller is performing better than

the traditional optimization based controllers.

To further investigate, all the controllers are subjected to track different set points

within a single run. The corresponding results are shown in the figure 5.17. The re-

sponse curves show exactly how the proposed neural controller is able to track the load

variations over the time. The results indicate the NARXnet controller is quickly tracking

the set point changes than the traditional FOPID/PID/ PIDA controllers. The pictorial

representation for the data mentioned in table ?? is shown in figures 5.18, 5.19, 5.20, and

5.21.

Finally, analysis of results indicates that the proposed BR-NARXnets can be used
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BR-NARXnet

Figure 5.16 Comparison of step response

for identification and control of AVR system. From the comparison it has been shown that

NARXnets perform very good for system identification and satisfactory performance for

controlling. To further improve the BR-NARXnet performance, specifically for controlling

applications, it is suggested to use hybrid cost functions that include performance metrics

like overshoot, settling time, rise time, ITSE, and ITAE in addition to MSE.

Proposed NN

Figure 5.17 Load response comparison for different controllers
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Figure 5.18 Comparison of rise time
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Figure 5.19 Comparison of settling time
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Figure 5.20 Comparison of overshoot
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Figure 5.21 Comparison of overall performance

5.7 Conclusion

For the modeling and control of dynamic systems, a neural network-based solution

employing BR-NARXnets has been presented. To verify the proposed methodology AVR

system is considered and its response is optimized using NARXnets. The neural network

training data is generated using the Simulink model of the actual AVR system. The

BR-NARXnets are used to identify the AVR system dynamics. The comparison of ac-

tual model response and NARXnet response has shown very good correlation. Later the

trained plant network is utilized to identify the controller. During the training Bayesian

regularization back propagation algorithm and Levenberg-Marquardt algorithms are used.

On comparison of performance metrics like MSE, MRE and gradient values it is found that

BR algorithm performs better. The influence of the hidden layer neurons on the system’s

performance is investigated. The performance of the controller is compared to existing

state-of-the-art approaches. The suggested BR-NARXnet controller outperformed exist-

ing approaches in terms of overshoot and combined performance metric values. Moreover,
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the developed procedure can be used as a generalized method to design NARXnet con-

trollers for various types of dynamic systems.



Chapter 6

A novel sigmoid PID (SPID) Controller for AVR

System using Jellyfish Search Optimization algorithm

6.1 Sigmoid PID controller

The proportional integral derivative controllers are famously known for their simple

architecture, robust operation, and ease of implementation properties. The PID controller

consists of fixed values of controller parameters known as proportional gain (Kp), integral

gain (Ki) and derivative gain (Kd). Although these fixed gains are sufficient to give

the required control action, they are not precisely sensitive to the error, limiting the

controller response. Therefore, variable gain PID controllers are used in many control

applications [126,127] to improve the sensitivity of the PID controller and to enhance the

controller reaction. On the other hand FOPID controllers will give additional degrees of

freedom to the existing PID controllers whose gain values are fixed during the course of

operation. Therefore these controllers cannot improve the sensitivity of the parameters.

Therefore efforts have been put on a new type of controller called sigmoid PID controller

whose gains can be varied during the operation according to the error.

The sigmoid PID controller which is a modified version of variable gain PID con-

troller was initially mentioned in [126]. The sigmoid PID(SPID) controller continuously

varies the gains of PID controller (Kp, Ki, and Kd) according to the magnitude of the

error signal. The controller internally uses sigmoid activation function to limit the gain

parameters within the specified range. The sigmoid function is famous activation function
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used in artificial neural networks. A mathematical description governing the operation of

SPID controller is given by the following equations.

The proportional gain is varied according to equation (6.1)

Kpv(t) = Kplo −
∣∣∣∣ Kphi −Kplo

1 + exp(−σp|e(t)|)

∣∣∣∣ (6.1)

considering δp = Kphi −Kplo, then

Kpv(t) = Kplo −
∣∣∣∣ δp
1 + exp(−σp|e(t)|)

∣∣∣∣ (6.2)

The integral gain equation is given by

Kiv(t) = Kilo −
∣∣∣∣ Kihi −Kilo

1 + exp(−σi|e(t)|)

∣∣∣∣ (6.3)

considering δi = Kihi −Kilo, then

Kiv(t) = Kilo −
∣∣∣∣ δi
1 + exp(−σi|e(t)|)

∣∣∣∣ (6.4)

Similarly the equation for derivative gain is given by

Kdv(t) = Kdlo −
∣∣∣∣ Kdhi −Kdlo

1 + exp(−σd|e(t)|)

∣∣∣∣ (6.5)

considering δd = Kihi −Kilo, then

Kdv(t) = Kdlo −
∣∣∣∣ δd
1 + exp(−σd|e(t)|)

∣∣∣∣ (6.6)

In the equations (6.1)-(6.6), the parameters Kphi, Kihi, and Kdhi represents the higher

bounds and Kplo, Kilo, and Kdlo represents lower bounds of proportional, integral and

derivative gains respectively. The coefficients σp, σi, and σd are used to adjust the sharp-

ness of sigmoid curve as shown in figure 6.1.

The mathematical representation for SPID controller is obtained by summing all

the gains as mentioned in equation (6.7).

SPID = Kpv(t) +
Kiv(t)

s
+Kdv(t) ∗ s (6.7)

The advantage of sigmoid PID controller is it adjusts the controller gains within the

limited boundary according to the variations in the error signal.In the case of traditional

PID controller these gains are constant irrespective of changes in the error value.
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Figure 6.1 Variation in sigmoid function with σ

6.2 Jellyfish Search Optimization (JSO) Algorithm

Artificial jellyfish search optimization is a meta-heuristic algorithm proposed in

[128]. The algorithm is developed according to the food searching nature of jellyfish

in the ocean. The jellyfish exhibits different types of motions depending on the availabil-

ity of food sources and ocean currents. In general the ocean currents carry good amount

of nutrients. Therefore while moving along the ocean currents the jellyfish swarms are

formed. Inside the swarm they exhibit two varieties of motions known as passive and ac-

tive motions. During the passive motion the jelly fish move nearby to its present location.

In the active motion they will move inside the swarm as a whole searching for better food

locations. The jellyfish blooms are formed when the availability of food is maximum.

A mathematical model is developed simulating the ocean currents and different

types of jellyfish motions. The switching between various motions is governed by a time

control mechanism. The quantity of available food is mapped to the cost function. The

algorithm tries to find the optimum solution using the objective function value similar to

the jellyfish movement.

The JSO algorithm is presented in the form of series of steps as mentioned below.

Step 1 : Set the initial parameters like population size, number of iterations and bound-

aries of search space.
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Step 2 : Initialize the jellyfish population (ξi) using logistic map

ξi+1 = µ ∗ ξi ∗ (1− ξi) (6.8)

Since the random numbers should be in the range of (0, 1), in the algorithm the value of

µ is set to 4.

Step 3 : Calculate the quantity of food at each location by evaluating the objective

function f(ξi) and find the current best location ξ∗.

Step 4: Calculate the control time ν(t) using the equation

ν(t) =

∣∣∣∣(1− t

max iter

)
∗ (2 ∗ rnd(0, 1)− 1)

∣∣∣∣ (6.9)

Step 5: When the control time ν(t) ≥ 0.5, the jellyfish follows ocean current. The ocean

current direction and the jellyfish positions are updated using the equations

−−−−−→
current = ξ∗ − β ∗ rnd(0, 1) ∗ µ (6.10)

where β is called distribution coefficient and its value is considered as 3 [128].

ξi(t+ 1) = ξi(t) + rnd(0, 1) ∗ −−−−−→current (6.11)

Step 6 : When the control time ν(t) < 0.5 the jellyfish moves inside swarm and exhibit

passive and active motions When rand(0, 1) < 1− ν(t), then passive motion is exhibited

and the new positions are given by

ξi(t+ 1) = ξi(t) + γ ∗ rnd(0, 1) ∗ (Ub − Lb) (6.12)

Where γ is called motion coefficient and its value is identified as 0.1 from the sensitivity

analysis.

When rand(0, 1) > (1−ν(t)), then active motion is exhibited and the new current direction

and positions are given by

−−−−−−→
Direction =

ξi(t+ 1) = ξj(t)− ξi(t) if f(ξi) ≥ f(ξj)

ξi(t+ 1) = ξi(t)− ξj(t) if f(ξi) < f(ξj)

(6.13)

ξi(t+ 1) = ξi(t) + rnd(0, 1) ∗
−−−−−−→
Direction (6.14)
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Step 7 : In the steps 5 and 6 check the boundary conditions and evaluate the quantity

of food using f(ξi) and update the best position ξ∗.

Step 8 : Repeat the steps 3 to 7 until the maximum number of iterations reached or

the termination criteria is met. The detailed description of the algorithm along with

convergence profiles can be found in [128]. For the implementation of JSO algorithm the

hyper parameters spatial distribution (β) and motion coefficient (γ) are taken as 3 and

0.1 respectively. These values are identified by varying the values of β and γ in the range

[0.510] and [0.051] respectively.

6.3 Implementation

6.3.1 Proposed JSO-Sigmoid PID controller

In the proposed method, the JSO algorithm is used to identify the optimum values of

the SPID controller parameters. Initially, the error value Ve(s) is calculated from the AVR

system response. The error is then used to compute the objective function value. The

JSO controller generates the initial controller parameters. Based on these parameters,

controller generates the control signal U(s) to minimize the difference between the set

point VRef (s) and the AVR system output. Then the error is again calculated from the

AVR system response, and the process is repeated until the error is minimized. The

aforementioned process is depicted in the figure 6.2.

To perform the simulations, the JSO algorithm is implemented in MATLAB, SPID

controller and plant are developed using Simulink. When parameters generated by JSO

algorithm are sent to Simulink and model response is calculated. Using the simulink model

response, the objective function calculates the cost value and new set of parameters are

generated and the process is repeated until maximum number of iterations.
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Figure 6.2 Proposed JSO-SPID controller block diagram

6.3.2 Objective function

Various objective functions [73] are used in the literature to identify the optimum

controller parameters for the AVR system. These functions vary from simple IAE (integral

of absolute error) function to functions involving weighted combinations of performance

metrics. Even though the objective functions used in the existing methods are able to

optimize individual performance metrics and overall system error they suffer from high

computational complexity. To reduce number computations without compromising the

controller performance, ITAE (Integral of time multiplied absolute error) is used in the

proposed method. Moreover, it is mentioned that after several simulations on various

objective functions such as IAE, ISE (integral of squared error), ITAE (integral of time

multiplied absolute error), ITSE (integral of time multiplied squared error), and FOD

(figure of demerit), it is found that the ITAE has given better controller performance.

ITAE =

∫ ∞

0

t ∗ |e(t)|dt (6.15)

The JSO algorithm is run with the population of 100 for 300 iterations to produce the opti-

mum SPID controller parameters. The convergence behavior of the JSO algorithm during

the optimization of SPID controller parameters is given in figure 6.3. The convergence

curve shows that the algorithm converged in 100 iterations, after that the variation in cost
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function is very less. The detailed block diagram describing the complete optimization

procedure is shown in figure 6.4.

Figure 6.3 Convergence curve of JSO-SPID controller

The range of SPID controller parameters and their optimum values obtained using

JSO algorithm are listed in table 6.1. For all the controller gains the lower bound is taken

as 3 and upper bound is taken as 20. The upper and lower bounds of the SPID controller

parameters are selected by analyzing the existing literature related the FOPID/PID con-

troller parameter values.

Substituting the values mentioned in table 6.1 into the equations (6.2), (6.4), and

(6.6) results the equations (6.16), (6.17), and (6.18) respectively.

Kpv(t) = 1.95−
∣∣∣∣ 5.77

1 + exp(−2.18 ∗ |e(t)|)

∣∣∣∣ (6.16)

Kiv(t) = 1.95−
∣∣∣∣ 1.46

1 + exp(−2.12 ∗ |e(t)|)

∣∣∣∣ (6.17)

Kdv(t) = 0.56−
∣∣∣∣ 18.04

1 + exp(−0.33|e(t)|)

∣∣∣∣ (6.18)
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Figure 6.4 Optimization of SPID controller parameters using JSO algorithm

6.4 Results & Discusion

To inspect the efficiency of the proposed sigmoid PID controller different types

of analysis like step, load, disturbance, and tracking a reference signal are carried out.

The proposed JSO-SPID controller is compared with the existing state-of-the-art PID

controllers. All the simulations are performed using Matlab®version 2016b on a system

with intel®core i5 processor and 8GB RAM.
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Table 6.1 Optimized JSO-SPID controller parameter values

Parameter Lower bound Upper bound Identified value

Kplo 0.01 3 2.6913741

Kilo 0.01 3 1.9514011

Kdlo 0.01 3 0.5649716

δp 0.01 20 5.7705772

δi 0.01 20 1.4594253

δd 0.01 20 18.039579

σp 0.01 3 2.1806829

σi 0.01 3 2.117246

σd 0.01 3 0.331519

6.4.1 Step response analysis

The controller behavior is analyzed by applying step input as the reference signal.

The step response of the AVR system with JSO-SPID controller is calculated. From the

response various performance metrics like rise time, settling time, overshoot, and steady

state error values are computed. The proposed system performance is compared with the

existing NSCA-SPID and PID controllers.

The step response comparison plots are shown in figure 6.5 and the corresponding

performance metrics are mentioned in the table 6.2.

For better visualization and comparison purpose the performance metrics of various

SPID/PID controllers are represented as bar charts and shown in figure 6.6, 6.7 and

6.8. From the comparison of performances, it is found that the proposed JSO-SPID

controller produced lowest value of overshoot, peak error and settling time values with

little increase in rise time. When compared with existing NSCA-SPID controller the JSO-

SPID controller produced better performance metrics. Moreover it is also identified that

the oscillations are minimum in the proposed controller response when compared with

all the existing state of the art SPID/PID controllers. If we look at the SPID and PID

controllers as a whole it is interesting to note that the SPID controllers produced very

low overshoot values than the existing PID controllers.
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Figure 6.5 Comparison of step response of different controllers

Table 6.2 Step response comparison of different PID/SPID controllers

Controller Rise time Settling time Overshoot Peak value Peak error

ZN-PID [129] 0.236487 3.0526 51.4973 1.515 0.515

DE-PID [80] 0.150608 1.7835 33.3775 1.3287 0.3287

ABC-PID [80] 0.15489 2.4597 25.4783 1.2504 0.2504

BBO-PID [130] 0.148284 1.4417 15.5482 1.1553 0.1553

GOA-PID [87] 0.129555 0.9716323 20.5827 1.2058 0.2058

WCO-PID [131] 0.250857 3.3705 9.9123 1.0967 0.0967

IKA-PID [86] 0.127554 0.7541113 15.0038 1.1501 0.1501

SFSA-PID [62] 0.103659 0.9545286 22.7783 1.2278 0.2278

PSO-PID [132] 0.149089 0.8155078 18.8382 1.1884 0.1884

SCA-PID [72] 0.149089 0.8155078 18.8382 1.1884 0.1884

NSCA-SPID [133] 0.499462 1.185 2.1668 1.0221 0.0221

JSO-SPID (Proposed) 0.319407 0.507679 0 1 0

6.4.2 Analysis of JSO-SPID parameters

When compared with the traditional PID controllers, the SPID controllers consists

of variable controller gains represented as Kp(t), Ki(t), and Kd(t). The controller gains

vary according to the error value. The system error e(t) versus gain plots are given in
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Figure 6.7 Comparison of settling time

figures 6.9, 6.10, and 6.11. For the step response considered in section 6.1, the variation

of controller gain values (Kpv(t), Kiv(t), and Kdv(t)) and error value are given in figure

6.12, 6.13, and 6.14.

6.4.3 Robust analysis

The JSO-SPID controller reliability is verified by varying the time constants of

different blocks of AVR system in the range of -50% to +50%. In each case, the controller

response is calculated using step signal as reference signal. From the step response of
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the system various performance metrics like rise time, settling time, overshoot and peak

error values are calculated and tabulated as shown in table 6.3. Correspondingly, the step

response for variations in the AVR system parameters τa, τe, τg, and τs are shown in the

figures 6.15, 6.16, 6.17, and 6.18 respectively.

Table 6.3 Robust analysis of proposed JSO-SPID controller

Parameter Deviation(%) Value Rise time(s) Settling time(s) Overshoot(%) Peak

τa

50 0.15 0.326937 1.1759 3.6668 1.0367

25 0.125 0.3205197 1.0612 1.6295 1.0163

-25 0.075 0.3315133 0.6018283 0 1

-50 0.05 0.3683437 0.6372062 0 1

τe

50 0.6 0.4115553 1.0167 3.8873 1.0389

25 0.5 0.3675781 0.5522281 1.8721 1.0187

-25 0.3 0.2662282 0.9037487 0 1

-50 0.2 0.207573 0.815204 0 1

τg

50 1.5 0.4784809 1.1707 2.7522 1.0276

25 1.25 0.4007993 0.6215516 1.021 1.0102

-25 0.75 0.2406998 0.9344763 0.4083 1.0041

-50 0.5 0.1688934 1.2033 4.2544 1.0425

τs

50 0.015 0.3099309 0.9318803 0 1

25 0.0125 0.3146207 0.4970452 0 1

-25 0.0075 0.3242642 0.5181904 0 1

-50 0.005 0.3291654 0.5284382 0 1

Figure 6.15 Response for variations in τa Figure 6.16 Response for variations in τe

From the robust analysis, shown in table 6.3, we can observe that the controller is

able to maintain its optimum performance even though there is variation of parameters

from -50% to +50%. These values indicates that the controller is robust for parameter

variations in the plant. In spite of significant variations in the AVR system parameters
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Table 6.4 Quantitative analysis for robustness of JSO-SPID controller

Measures Rise time (s) Settling time (s) Overshoot (%)

Optimum value 0.3194 0.5077 0

Max. value 0.4784 1.1759 4.25

Min. value 0.31 0.497 0

Max. deviation from

optimum value 0.159 0.6682 4.25

Min. deviation from

optimum value 0.0094 0.0107 0

Max. deviation (%) 33.23 66.82 4.25

Min. deviation (%) 2.94 2.11 0

Figure 6.17 Response for variations in τg Figure 6.18 Response for variations inτs

the controller produced a maximum rise time of 0.4784 seconds, settling time of 1.1759

seconds and overshoot of 4.25%. The quantitative evaluation of the robust analysis results

are given in table 6.4.

6.4.4 Load response

To investigate the effect of load on the JSO-SPID controller different set points are

given in the single run. The load response of different controllers is shown in the figure

6.19. The load response helps to identify the controller behavior for variations in the target

signal or set point changes. The response of NSCA-SPID and JSO-SPID controllers for

load variations is given in the figure 6.20. From the figure, it is clearly observed that

the response produced by the proposed JSO-SPID controller is much smoother than the

NSCA-SPID controller.
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Figure 6.19 Comparison of load response of SPID/PID controllers

Figure 6.20 Disturbance response of JSO-SPID and NSCA-SPID controllers

6.4.5 Disturbance analysis

To further inquire the controller behavior under sudden input changes disturbance

analysis is carried out. During the analysis the proposed JSO-SPID controller is compared
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with the existing state of the art methods mentioned in the literature. The correspond-

ing results are shown in the figure 6.21. From the figure, it is clearly observed that the

Figure 6.21 Comparison of disturbance response of SPID/PID controllers

proposed controller responded minimally for the sudden disturbances. When compared

with the existing NSCA-SPID controller (shown in figure 6.22) the JSO-SPID contrller

produced less oscillations. The corresponding controller responses are shown in the fig-

ure 6.23. The analysis of the response indicates that the proposed JSO-SPID controller

responded optimally than the NSCA-SPID controller.

A comparative study between NSCA-SPID and the proposed JSCA-SPID controllers

for IAE, ISE, ITAE, and ITSE objective functions was carried out. The corresponding

results are given in table 6.5 and shown in figure 6.24.

Table 6.5 Comparative study of objective functions for disturbance response

IAE ISE ITAE ITSE

JSO-SPID 0.299 0.1515 0.4664 0.0572

NCSA-SPID 0.4187 0.1095 1.222 0.0822
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Figure 6.22 Comparison of disturbance response of SPID/PID controllers

Figure 6.23 Control signal for disturbance response of JSO-SPID and NSCA-SPID controllers

6.4.6 Sawtooth response

The tracking behavior of the proposed controller is studied using a saw-tooth signal

as the reference input. The sawtooth response of various SPID/PID controllers along with
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Figure 6.24 Comparison of objective functions for disturbance response

JSO-SPID controlelr is given in the figure 6.25. From the figure, we can clearly observe the

effect of rise time and overshoot on the overall tracking error. Since the SPID controllers

have moderately good rise time values the initial deviation is more. Since these controllers

produce very low overshoot, they are able to settle to the reference tracking signal quickly

than the PID controller. The figure also indicates that the JSO-SPID controller settled

quickly than the other controllers.

Figure 6.25 Comparison of sawtooth response of SPID/PID controllers

The comparative analysis of different objective function values for the sawtooth
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response is given in table 6.6 and visualized in figure 6.26.

Table 6.6 Comparative study of objective functions for sawtooth response

IAE ISE ITAE ITSE

JSO-SPID 0.530613 0.19044 2.688483 1.03001

NCSA-SPID 0.686863 0.296236 3.399753 1.611317
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Figure 6.26 Comparison of objective functions for sawtooth response

6.4.7 Frequency response

The frequency response and stability of the proposed JSO-SPID controller is ana-

lyzed with the help of bode plot and pole-zero map. The proposed controller’s magnitude

plot and phase plot are given in figure 6.27. The gain margin of the overall system is

42.7dB where as the phase margin is 70.7 rad and delay margin is 0.109s. During the

controller operation the system is stable and this can also be verified by looking at the

pole locations. The corresponding pole zero map is shown in the figure 6.28.

The pole locations are given by −4.079 + 8.869j, −4.079− 8.869j, −101.2 + 0.0j,

−3.534 + 0.0j, and −0.6551 + 0.0j. From the pole locations it is identified that all poles

are on left half of S-plane, which indicates that the overall system is stable.
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Figure 6.27 Bode plot of JSO-SPID controller

Figure 6.28 Pole zero map of JSO-SPID controller

6.4.8 Summary

A new type of controller called sigmoid PID controller was developed to enhance

the AVR system response. The existing NSCA-SPID controller has shown unnecessary

oscillations in the steady state response of AVR system. To minimize these oscillations

JSO optimization algorithm was used in the present method. On comparison with the

existing PID controllers the proposed JSO-SPID controller improved the performance
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metrics such as settling time, overshoot, and peak error. When compared with the existing

NSCA-SPID controller the proposed controller has shown better performance in terms of

rise time, overshoot, and steady state error.

6.5 Conclusion

A novel tuning method to identify the optimum parameters of sigmoid PID controller

for AVR system is presented. The SPID controller differs from traditional PID controller

in such a way that it continuously varies its gains according to the error value of the

system. This makes the controller more dynamic and supports wide range of operation.

To optimize the controller gains jellyfish search optimization (JSO) algorithm is used. The

simulation results showed that the proposed JSO-SPID controller is able to optimize the

AVR system response than the existing state of the art methods. When compared with

NSCA-SPID controller, the proposed controller produced much smoother response for

step and sudden disturbances. Moreover, it is also found from the simulation study that

the SPID controllers naturally produce much lower overshoot values than the existing PID

controller. The robust analysis results indicates that the JSO-SPID controller is robust

to uncertain variations in the plant parameters. The bode and pole-zero analysis showed

that the JSO-SPID controller is stable and produced good gain margin and phase margin

values.



Chapter 7

Conclusions and Future Scope

This chapter concludes the thesis by underlining the main contributions. It also

presents the possible directions of future work.

7.1 Conclusions

In the thesis various controllers and tuning techniques are developed to control the

response of DC motor and automatic voltage regulator (AVR) system. To optimize the

system response meta-heuristic algorithms and neural networks are used.

NARXnet based system identification and controller design was presented using

data-driven approach for controlling the DC motor speed. The training data for plant

network was generated from the mathematical model of the plant and for the controller

network, data was generated from HHO tuned FOPID controller using Simulink. The

proposed design method for controller was compared with traditional optimization based

approaches. The results indicate that the NARXnet controller shows superior performance

over the existing controllers in tracking the set points. In addition, the NARXnets can

capture the dynamics of FOPID controller; the developed method can also be used for

approximation of FOPID/PID controllers. Since the neural networks perform better

under noisy environment, the proposed idea can be extended for system identification

under environmental noise and interference effects.

A novel architecture based on neural networks for realization of fractional order
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PID controllers (FOPID) has been presented. The architecture is developed from the

standard discretized fractional order controller equation. For the discretization purpose

Al-aloui operator is used as it combines the advantages of Tustin and Euler methods.

To optimize the controller parameters a novel optimization algorithm Chaotic Political

Optimizer (CHPO) is developed by hybridizing chaotic maps with the Political optimizer

algorithm. To analyze the performance of proposed single neuron FOPID (SNFOPID)

controller, a DC motor has been considered as plant and the proposed controller is sub-

jected to optimize the DC motor response. Moreover, a new objective function is defined

with the combination ITAE and system performance measures to optimize the overall

system response.

A novel optimization algorithm has been proposed by hybridizing chaotic maps with

the black widow optimization (BWO) algorithm. The effects of 10 chaotic maps have been

studied and found that logistic map generates best results for most of the uni-modal and

multi-modal benchmark functions. The proposed Chaotic BWO (ChBWO) algorithm

has been used in the optimization of FOPID controller parameters for AVR system. To

identify the finest controller parameters, a new and efficient objective criterion with a

combination of ITAE and ZLG functions are developed.

For the modeling and control of dynamic systems, a neural network-based solution

employing BR-NARXnets is presented. To verify the proposed methodology AVR system

is considered and its response is optimized using NARXnets.

A novel tuning method to identify the optimum parameters of sigmoid PID controller

for AVR system is presented. The SPID controller differs from traditional PID controller

in such a way that it continuously varies its gains according to the error value of the

system. This makes the controller more dynamic and supports wide range of operation.

To optimize the controller gains jellyfish search optimization (JSO) algorithm is used.

The simulation results showed that the proposed JSO-SPID controller is able to optimize

the AVR system response better than the existing state of the art methods.
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7.2 Future Scope

During the thesis work, issues were identified related to implementation of meta-

heuristic algorithms and FOPID controller on hardware platforms. These issues form the

basis for future scope. The detailed summary is given as follows.

The methods developed in the thesis are limited to offline tuning of FOPID/PID

controllers. Therefore for more flexibility and reliability of the controller the techniques

can be extended to online tuning. As meta-heuristic algorithms require good amount of

computing power new methods can be introduced to reduce the number computations in

the proposed algorithms. In the thesis, hardware implementation of FOPID controller is

performed using Dspace tools which are expensive. To lower the cost of development, there

is scope to create FOPID controller designs that can be used with basic micro controller

platforms. The proposed neural network based architectures can be implemented on

hardware platforms such as Nvidia boards and raspberry pi etc. Moreover, in the thesis

only NARXnets are used to design optimal controllers for various systems. Various other

types of recurrent neural networks such as LSTM (Long Short Term Memory) and GRU

(Gated Recurrent Units) can also be used for the controller development.
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Appendix A

Chaotic maps and benchmark functions

A.1 Chaotic maps used for the study

Table A.1 Various types of chaotic maps

S.No Chaotic map Equation

1 Chebyshev map xi+1 = cos(icos−1(xi))

2 Circle map xi+1 = mod(xi + b− ( a
2π )sin(2πxk), 1),

= 0.5 and b = 0.2

3 Gauss/mouse map xi+1 =


1, xi = 0

1
mod(xi,1)

, otherwise

4 Iterative map xi+1 = sin(aπxi
), a = 0.7

5 Logistic map xi+1 = axi(1− xi), a = 4

6 Piecewise map xi+1 =



x
P 0 ≤ xi < P

xi−P
0.5−P P ≤ xi < 0

1−P−xi
0.5−P 0.5 ≤ xi < 1− P

1−xi
P 1− P ≤ xi < 1

, P = 0.4

7 Sine map xi+1 =
a
4sin(πxi), a = 4

8 Singer map xi+1 = µ(7.86xi − 23.31x2i + 28.75x3i − 13.302875x4i ),

µ = 0.7

9 Sinusoidal map xi+1 = ax2i sin(πxi), a = 2.3

10 Tent map xi+1 =


xi
0.7 xi < 0.7

10
3 (1− xi) xi ≥ 0.7
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A.2 Uni-modal and Multi-modal benchmark functions

Table A.2 Definitions of uni-modal and multi-modal benchmark functions

Function Equation Range

uni-modal functions

Quartic noise f1(x) =
∑n

i=1 ix
4
i + random[0, 1) [-1.28,1,28]

Powell Sum f2(x) =
∑n

i=1 |xi|i+1 [-1,1]

Schwefel’s 2.20 f3(x) =
∑n

i=1 |xi| [-100,100]

Schwefel’s 2.21 f4(x) = maxi=1,...,n|xi| [-100,100]

Zakharov f6(x) =
∑n

i=1 x
2
i + (

∑n
i=1 0.5ixi)

2 + (
∑n

i=1 0.5ixi)
4 [-5,10]

perm 0,D beta f7(x) =
∑d

i=1[
∑d

j=1(j + β(xij − 1
ji
))] [-50,50]

Three-Hump Camel f8(x, y) = 2x2 − 1.05x4 + x6

6 + xy + y2 [-5,5]

Schwefel’s 1.20 f9(x) =
∑n

i=1(
∑n

j=1 xi) [-100,100]

Schwefel’s 2.22 f10(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| [-100,100]

multi-modal functions

Rastrigin f11(x, y) = 10n+
∑n

i=1(x
2
i − 10cos(2πxi)) [-5.12,5.12]

Periodic f12(x) = 1 +
∑n

i=1 sin
2(xi)− 0.1e(

∑n
i=1 x

2
i ) [-10,10]

Xin-She Yang f13(x) =
∑n

i=1 ϵi|xi|i [-10,10]

Griewank f14(x) = 1 +
∑n

i=1
x2
i

4000 −
∏n

i=1 cos(
xi√
i
) [-100,100]

Genaralized Penalized f15(x) =
π
n(10 sin

2(πy1) +
∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)]+

(yn − 1)2) +
∑n

i=1 u(xi, a, k,m) [-50,50]

Goldstein Price f16(x, y) = [1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)]

[30 + (2x− 3y)2(18− 32x+ 12x2 + 4y − 36xy + 27y2)] [-2,2]

Schwefel’s 2.26 f17(x) = 418.9829n−
∑n

i=1−xi(sin
√

|xi|) [-500,500]
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[2] B. Hekimoğlu, “Optimal tuning of fractional order pid controller for dc motor speed

control via chaotic atom search optimization algorithm,” IEEE Access, vol. 7, pp.

38 100–38 114, 2019.

[3] A. T. Azar and S. Vaidyanathan, Handbook of Research on Advanced Intelligent

Control Engineering and Automation. Engineering Science Reference, 2015.

[4] R. D. RC and R. B. RH, “Modern control systems,” 2005.

[5] J. J. d’Azzo and C. D. Houpis, Linear control system analysis and design: conven-

tional and modern. McGraw-Hill Higher Education, 1995.

[6] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu-Batlle, Fractional-order

systems and controls: fundamentals and applications. Springer Science & Business

Media, 2010.
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