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ABSTRACT

Speech signal processing has been one of the domains of research after the past one
decade in signal processing. Research has taken new strides particularly during the past decade
(Five to Ten years). In an environment where multiple speech signals are generated from
different know or unknown sources, they may be mixed-up with various background noise
sources, reverberations and interference, Accordingly the terms like target sources and blind

sources may be used while dealing with them in such environment.

Blind source separation (BSS) is one of the challenging problems in speech signal
processing. When a single microphone is used to sense the sources, it is referred as single
channel and when two or microphones are sensing it is called multichannel, but ultimately it
may be of interest to extract/ enhance a single desirable speech signal reserving its quality
related matrix and thus eliminating all the rest. The desirable speech signal may be termed as
target sources and all the rest blind sources. The target sources may be masked by other
interfering blind sources as well as corrupted by various background noise sources and
reverberations hence blind sources separation is required for enhancement extraction of target

sources.

This work has been focused on development of optimized matrix factorization
integrated with deep Learning methods for BSS. When the sources are very much limited, the
problem of BSS will be simpler. However, when the sample size of sources is reasonably large,
the problem will become complex. The methods proposed in this work deal with complex
situations. In the proposed research problem one or more than one speech signal mixed with

different types of WSS noise sources has been considered.

This proposed research work consists of four contributions for single and multi-channel

source separation. They are:

) Time-Frequency Non-Negative Matrix Factorization (TFNMF) and Sigmoid Base
Normalization Deep Neural Networks for Single Channel Source Separation.
Experiments show that our proposed method achieves the highest gains in PESQ, STIO,
SIR and SDR whose numerical values are 3.58, 0.7, 42 and 7.5 at -9 dB. These obtained
results are compared with those of existing works.

i) Integral fox ride optimization (IFRO) algorithm and retrieval-based deep neural
network (RDNN) for Single Channel Source Separation. Experiments show that our
proposed method achieves the highest gains in SDR, SIR, SAR STIO, and PESQ whose
numerical values are 10.9, 15.3, 10.8, 0.08, and 0.58, respectively. The Joint-DNN-

Vi



SNMF obtains 9.6, 13.4, 10.4, 0.07, and 0.50, comparable to the Joint-DNN-SNMF.
These obtained results are compared with those of existing works.

i) Grasshopper Optimization-based Matrix Factorization (GOMF) and Enthalpy based
DNN (EDNN) for multichannel source Separation. Experimental results show that our
proposed approach accomplishes the most extreme SNR outcome of — 6dB of 24.0523.
Comparable to the DNN-JAT, which achieves 18.50032. The RNN and NMF-DNN
had the worst SNR 13.45434 and 12.29991. These obtained results are compared with
those of existing works.

iv) krill herd-based matrix factorization (KHMF) and score-based convolutional neural
network (SCNN) for multichannel Source Separation. Experimental results show that
our proposed approach accomplishes the most extreme SDR dif outcome of — 5 dB of
8.1. Comparable to the CTF-MINT, which achieves 8.05. The CTF-MPDR and CTF-
BP had the SDR dif worst 7.71 and 7.4. The Unproc had the very worst SDR dif 5.71.

These obtained results are compared with those of existing works.

All the proposed source separation models are evaluated for the mixed sources. The
investigation has been carried out experiments are carried out with various data sets. The
standard source evaluation objective parameters, such as signal to distortion ratio (SDR), signal
to interference ratio (SIR), perceptual evaluation of speech quality (PESQ), short time
objective intelligibility (STOI) and signal to artefacts ratio (SAR), are used for ensuring the

quality of enhancement.

Vi
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Chapter 1

Introduction

1.1 General

In the actual world, voice signals are recorded using a single microphone or a number of
microphones and then transferred to computers for additional processing. Multiple microphones
are obviously desired during the collection process, if the circumstances allow. In this situation,
spatial cues can be kept and utilised as additional tools for deciphering mixed speech. If the
target speaker is not predetermined, microphone arrays may not be advantageous in cocktail
party settings with many sound sources. Even worse, there isn't always access to a setting that
allows for numerous mics. When it comes to automatic speech recognition for radio broadcasts,
utilising one microphone is frequently the only option. Since there is no location information
available, voice activity in this scenario is sent and recorded through radio channels. The news
anchor's voice is frequently distorted by background speakers. Teleconferences are another

real-time use of speech recognition.

If simultaneous speech is recorded and delivered to a speech recognizer, the accuracy is
poor. Any modern recognizer finds the task extremely challenging when there are multiple
interfering speakers present. The output of the recognition system is typically subjected to
additional processing by these systems, including text-to-speech, dialogue systems, question-
answering, news summarising, and categorization. For all of these applications to attain a
reasonable level of speech recognition accuracy, a good single-channel speech system is
necessary because a low level of speech recognition accuracy could result in a substantial
accumulation of errors (Daniel et al 2004, 2007) [1]. The issue of single and multi-channel

speech recognition in interfering noise must be solved for these reasons, and it is crucial.

The classic issue in auditory scene analysis is sound source separation. The difficult issue
of extracting individual voice streams from a mixed signal of several speakers using single and
multi-channel speech separation, in particular, has applications in reliable automatic speech

recognition, speech augmentation, and other areas [2-12].

The voice signal has been improved utilising the minimum mean squared error (MMSE) -
Short Time Spectral Magnitude approach by Wang et al. (2014) [13]. This method is used to
determine starting parameters and the modulation spectrum for noise distortion. Comparatively
speaking to the many other improvement methods, this improves the subjective quality of noisy

speech across multiple acoustic domains. The Modulation Magnitude Estimator (MME)
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parameters are used in several tests to optimise the enhanced speech quality while minimising

noise distortion.
1.2 Blind Source Separation

In order to identify each signal element within the blending made up of numerous sensing
units, the Blind Source Separation (BSS) method is generally used. It is referred to as blind
because no information other than the combinations is employed. In a hall, for instance, a group
of people is speaking, and microphones are being utilised to record the signals [14]. When one
or more people are chatting at the same time, the electro acoustical sensor of each speaker
records a variety of blending as the voice signals are logged for each person separately.
Currently, BSS must finish the work of disentangling such blending from its original supply
signals, which are the voice inputs of each individual speaking. It is challenging generally

because of some complication issues [15].
1.3 Speech Mixture Generation

The process of human communication known as speaking is generally used. The human
auditory system can distinguish between the target sound and background noise interference.
However, many disturbances like train noise, fan noise, crowd noise, etc., interfere with this
communication. The separation of monaural speech remains one of the most difficult issues in
speech processing, and numerous solutions have been put forth to address this issue. In order
to improve speech that has been corrupted by additive non-speech noise, speech enhancement
techniques make use of the statistical characteristics of the signal [16-22]. For voice
improvement, noise reduction, and improving the quality and understandability of speech,

various research activities have been offered.

Two distinct speech signals produced by two different speakers of the same gender and
a different gender are used as the system's input. The two speech signals are subjected to feature
extraction, which includes pitch values, phase, angle, and fundamental frequency (F0). To
create a combination of speech signals, both signals are mixed. For further processing, this
mixed speech signal is employed. X[n] represents the speech mixture. Given that a[n] and b[n]

are two distinct speech signals, x[n] is given as

X[n]=aa[n] + b[n] (1.1)

It should be noted that the two voice signals are added together without being scaled in any

way.



1.3.1 Speech Separation

In order to solve the speech separation problem, a signal that contains a target source,
an interference source, reverberations, and noise when it reaches the receiver must be separated
out to achieve the desired speech source. Processing ought to keep the intended voice source
and throw away the rest of the signal [23]. Given that there are numerous voice sources in the
sound area, the target source could be any one of them or all of them. This stands out from the
vast majority of single target source improvement problems, also referred to as the traditional

speech denoising problems.
1.3.2 Signal channel Separation Process

Short-time Fourier analysis (STFA), where m' is the frame index, n' is the time sample
index inside a frame, and 'k’ is the index of frequency bins, is used to first decompose the
combined speech X[n] into a two-dimensional time-frequency representation. Both of the
parallel signal separation methods supported by the system—one based only on the
fundamental frequency and the other on correlations of modulation frequency—use the same
speech recognition and peripheral signal processing software.

Underdetermined blind source separation occurs when n < m. It is known as single-
channel blind source separation under uncertain conditions when n = 1. The instantaneous

mixing model for single-channel underdetermined blind source separation is as follows:
y(t) =X aze; (t) (1.2)
1.3.3 Multi-channel speech separation

When multiple speech signals are collected using a single microphone or when multiple
speech signals are delivered through the same communication channel, the process is known as
multi-channel speech separation. Many speeches processing applications, including automatic
speech recognition, speaker recognition, audio retrieval, and hearing aids, can be considerably
aided by such tasks [24-26]. In the forensics division, the speech mixture that was recorded

along with the video capture can be divided into different speech signals and examined.

The wave shape of the observed signal y(t) and the independence between the signal
sources are employed in the blind source separation to get the estimated signal e* (t) as near to
the signal source e(t) as feasible. Linear instantaneous mixing model is the mathematical

representation of blind source separation [27-35]:

y(t) = Me(t) + nm (1.3)



M stands for the mixing matrix in the equation, whereas m and n stand for the number of source

signals and receiving antenna components, respectively.
1.3.3.1 Application using BSS

Blind source separation (BSS) is a signal processing technique used to separate
independent signals from a mixture of signals. BSS has a wide range of applications in various

fields, including:

» Speech and audio processing: BSS can be used to separate different sources of speech
or music from a mixed audio signal. This is useful in applications such as noise
reduction, speaker separation, and audio signal enhancement.

» Image processing: BSS can be used to separate different sources of images from a mixed
image signal. This is useful in applications such as object detection and image
segmentation.

> Biomedical signal processing: BSS can be used to separate different sources of
physiological signals, such as electrocardiogram (ECG) and electroencephalogram
(EEG) signals. This is useful in applications such as diagnosing heart diseases and brain
disorders.

» Radar and sonar signal processing: BSS can be used to separate different sources of
radar or sonar signals from a mixed signal. This is useful in applications such as target
tracking and detection.

» Financial data analysis: BSS can be used to separate different sources of financial data,
such as stock prices and economic indicators. This is useful in applications such as

portfolio management and risk analysis.

Overall, BSS is a powerful technique that has a wide range of applications in various fields

where it is necessary to separate independent signals from a mixture of signals.
1.4 Research Motivation

The input speech signal is frequently distorted by the ambient acoustic noise in many
speeches processing applications, including speaker identification, speech enhancement, and
speech recognition. This ultimately lowers the perceived quality and understandability of the
speech, which lowers the overall effectiveness of the speech processing system. In order to
improve voice quality and understandability for future processing, a speech separation
algorithm serves as a crucial front-end component [36]. It will improve the overall performance
of the speech processing algorithm if the desired speech signal is extracted from the acoustic

sounds before processing. Due to the ease of installing a microphone, there may only be one
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acquisition channel available in some real-world circumstances. However, the main drawback
of single channel approaches is the lack of a reference signal to compare interference signals
against. Because of this, it is difficult to quantify the power spectral density of the interfering
speech using the multi-channel speech signals that are currently available. The reduction of
artefacts in the processed speech is crucial, particularly if the recovered speech is intended to
be used in machine-based applications like speaker identification and automatic speech

recognition.
1.5 Problem Statement

Over the past decade, there has been substantial research in the area of speech separation
from various noise sources and interference. The desired voice signal may be corrupted by noise
in an additive or multiplicative way whose spectrum is constant. The desired single voice signal
could also be joined by some additional interfering sources, such as multiple speech signals.
All of them are commonly referred to as "blind sources.” The prerequisite is the suppression or
cancellation of noise, as well as the separation of all sources of unwanted interference—aside
from the intended voice signal—from one other. This improvement is accomplished by
separating blind sources. In the area of the problem indicated above, several scholars have tried
a few different approaches. The works stated in chapter 2 that have been modified or used
unique techniques to increase the quality of the augmented speech signal. Modifications to
techniques like TF, NMF, and deep learning testing models are used in this research. Both
single-channel and multi-channel speech separation techniques are taken into consideration in

this research.

1.6 Motivation

The speech separation issue is the focus of this thesis in both single- and multi-channel
scenarios, both supervised and unsupervised. According to this fundamental premise, the
original signal will be handled as a mixture in which both the desired and undesirable speech
signal components are present. The suggested approaches will be used to improve the recorded
mixed signal, maintaining the required components and deleting the undesirable ones. The
target speech source is the desired component, whereas background noise, reverberation, and

interfering speech sources make up the undesirable component.



The second chapter contains a detailed description of the contributions made by
numerous researchers. For source separation in single channel and multi-channel environments,
a variety of strategies have been put forth by various scholars. Despite the fact that NMF-based
techniques produce superior outcomes, rank estimation remains a significant challenge for
modern NMF systems. The use of approximation signals to increase the training data set and
over-smoothing are noted to be two long-standing problems with single-channel speech
separation. Additionally, when many signals are separated from their superposition recorded at
different sensors in multi-channel environments, problems such as insufficient separation and
voice distortion mitigation have emerged. Finding the eigenvalues of a noise signal in a
multichannel situation is a similar task.

A two-fold mistake occurs when each activation is carried out separately, making the
deviation more susceptible to errors in Deep Neural Network approximation. As a result, the
problem of the spectral overlay at the beginning of a dialogue or commotion is lessened and
discriminative grounds are created. On the other hand, there are still several issues, including a
lack of robustness and inadequate separation accuracy. In order to increase performance
parameters like SAR, SDR, SIR, SNR, and PESQ, we must thus present novel methodologies

based on the deep learning idea in order to address the aforementioned issue.

1.7 Proposed system flow



The thesis' main goal is to offer some input into the design and implementation of a
reliable and improved single channel and multi-channel speech separation system in a clean
and noisy environment with reduced time complexity, which can be used in practical
applications for hard of hearing people and in forensic departments to identify the speech
recorded in public places. The suggested separation system's framework is depicted

schematically in Figure 1.1.

Figure :1.1 Propose framework of Speech Separation System
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Both single channel and multi-channel speech signal separation are goals of the study
activity. In the proposed work consist of four modules, in first two module focused only on
single channel speech separation using neural network and also last two module is implemented
in multi-channel speech signal with hybrid neural networks. which is,

e Module 1: To categorise single-channel source segmentation using sigmoid-based
normalisation in addition to deep neural networks with time-frequency non-negative
matrix factorization is one of the study's primary goals.

e Module 2: To enhance the training data set's quality by employing a hybrid deep
learning approach in a single channel environment to extract low-level texture
information from each spoken signal.

e Module 3: Using Optimization with Matrix Factorization and DNN to categorise a
multichannel voice input.

e Module 4: To classify an audio signal using a novel hybrid approach that uses a
convolutional neural network (SCNN).

Module 1:

The two steps that make up the suggested system are listed below. The training phase
comes first, and the testing phase follows. The testing stage employs a single-channel multi-
talker input signal, whereas the training stage uses a single-channel clean input signal. This
distinction between the two testing and training phases allows for more accurate comparisons.
The input signals from these testing and training phases are sent to the short-term fourier
transform (STFT). When extracting features from spectrograms created by STFT, which
transforms input clean signal into spectrograms, TFNMF is the approach used. Utilizing the
SNDNN classification algorithm after feature extraction, the classified features are then

converted to softmax. Then, ISTFT utilises softmax to appropriately separate speech signals.

Module 2:

Conventional single-channel speech separation has two long-standing issues. The first
issue, over-smoothing, is addressed, and estimated signals are used to expand the training data
set. Second, DNN generates prior knowledge to address the problem of incomplete separation
and mitigate speech distortion [37]. To overcome all current issues, we suggest employing an
efficient optimal reconstruction-based speech separation (ERSS) to overcome those problems
using a hybrid deep learning technique. First, we propose an integral fox ride optimization
(IFRQO) algorithm for spectral structure reconstruction with the help of multiple spectrum

features: time dynamic information, binaural and mono features. Second, we introduce a hybrid
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retrieval-based deep neural network (RDNN) to reconstruct the spectrograms size of speech
and noise directly. The input signals are sent to Short Term Fourier Transform (STFT). STFT
converts a clean input signal into spectrograms then uses a feature extraction technique called
IFRO to extract features from spectrograms. After extracting the features, using the RDNN
classification algorithm, the classified features are converted to softmax. ISTFT then applies to
softmax and correctly separates speech signals. Experiments show that our proposed method
achieves the highest gains in SDR, SIR, SAR STIO, and PESQ outcomes of 10.9, 15.3, 10.8,
0.08, and 0.58, respectively. The Joint-DNN-SNMF obtains 9.6, 13.4, 10.4, 0.07, and 0.50,
comparable to the Joint-DNN-SNMF. The proposed result is compared to a different method
and some previous work. In comparison to previous research, our proposed methodology yields
better results.

Module 3:

In real environments, room reverberation and associated sounds frequently degrade
speech transmission. This study focuses on decoupling objective speech signals from
multichannel input sources under reverberant circumstances. This work presents an effective
method for multichannel speech signal separation utilising a new hybrid technique that
combines Grasshopper Optimization-based Matrix Factorization (GOMF) with Enthalpy-based
DNN in order to address all the current shortcomings (EDNN).

This research proposes a narrative classification framework that includes the phases of
STFT, GOMF-based rank estimation, identifying signal Eigenvalues, noise reduction, feature
extraction, and classification in order to forecast and remove the undesirable noise from the
multichannel input signal. The multichannel mix waveforms are first planned using STFT to
create complex spectrograms. The evident speech signals and noise are then estimated using
GOMF. Important features are extracted after the estimation. Spatial, spectral, and directional
features serve as the foundation for feature extraction. A deep neural network based on enthalpy
is used to recreate the spectrogram in order to achieve improved classification results (EDNN).

Finally, using inverse STFT, transform the generated speech spectrogram back into the
retrieved output signal. According to experimental findings, our suggested method achieves the
highest extreme SNR result, a -6dB of 24.0523. comparable to the 18.50032 achieved by the
DNN-JAT. The worst SNR values were 13.45434 and 12.29991 for the RNN and NMF-DNN.



Module 4

Multi-channel speech separation (SS) is the process of isolating a multi-channel
speaker's voice from the simultaneous speaker's overlapping sounds. Visual modalities have so
far demonstrated considerable promise for multi-channel speech separation. It is addressed how
to separate multiple signals from their superposition when they are recorded at several sensors.
The use of a novel hybrid method combining enthalpy-based direction of arrival (DOA) and
krill herd-based matrix factorization (KHMF) to segment multi-channel speech signals, as well
as Convolutional neural network (SCNN) estimation, are some of the solutions this article
suggests to address any current drawbacks. First, determine the input signal's short-term Fourier
transform (STFT). The tracking branch then starts to determine the signal's enthalpy after signal
analysis. The spatial energy based on DOA in each time frame is known as enthalpy. The spatial
energy histogram is converted into DOA measurements by the Gaussian Mixture Model
(GMM), which also calculates the enthalpy function at each time frame. The output of the signal
tracker is used to determine an enthalpy-based spatial covariance matrix model with DOA
parameters [38]. Utilize multi-channel KHMF to calculate the source's spectral model and
spatial behaviour over time from the tracking direction. Effective qualities like directivity and
spatial features are then extracted based on the target speaker's spatial direction. Utilize the
relation masking function of the score-based convolutional neural network (SCNN). The
extracted output signal is converted from the generated speech spectrogram using the STFT
(ISTFT) procedure. According to experimental findings, our suggested method achieves the
most extreme SDR diff result, which is -5dB of 8.1. comparable to the CTF-8.05 MINT's score
The SDR diff for the CTF-MPDR and CTF-BP were 7.71 and 7.4, respectively. SDR diff 5.71
for the Unproc was the worst possible.

NMF is used to understand the important spectrum of speech and sound, whereas DNN
is used to assess the essential spectrum's function. The NMF hypothesis and functional
assessment are combined with DNN to comprehensively reproduce clear sound and sound
within the compound. The combined strains of DNN and NMF are improving the performance
of the voice department. We suggest a different optimization range with interval control to
suppress excessive noise. This reduces the residue of isolated speech and noise and dramatically
improves GSIR performance. Models can stop high interactions and outperform comparative
models with very low-cost hand tools and defects. Production models can use spectral structures
based on speech and sound, while in-depth study models study complex linear graphs of

distinguishing objectives through silent and supervised learning.

The latest approach since optimizes training formal speech segmentation, in which
different modes of speech, speaker, and background sound are studied from training data.
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Several supervised separation systems have been proposed. The in-depth learning methods used
for supervised speech separation increased the rate of progress and increased the separation
efficiency. Also, reliable assessment of time-frequency masks from the conversation is

challenging, especially when there is room echo in the mix.

We propose an efficient optimal reconstruction-based speech separation (ERSS) to

overcome those problems using a hybrid deep learning technique.

e First, to compute the signal's STFT and computing the enthalpy of the signal.

e Second, propose an integral fox ride optimization (IFRO) algorithm for spectral
structure reconstruction with the help of multiple spectra features: time dynamic
information, binaural and mono features.

e Third, introduce the Deep Neural Network (RDNN) based on a hybrid search to directly
reproduce the speech and voice level spectrogram. RDNN can instantly improve the
partitioning range and minimize accumulated errors.

e+ The GMM, which calculates the enthalpy function for each time frame. The monitored
address is estimated using multi-channel KHMF, and the enthalpy DOA is utilised to
parameterize the SCM model.

e « Following that, the spectrogram speech separation will be muted based on the SCNN
score.

o Finally, we implement the proposed design in the MATLAB tool, and the performance

of the proposed system is compared with the existing state-of-art techniques.
1.8 Contribution

When several speakers are speaking at almost the same time, speech separation is used
to highlight each speaker's mixed-language discourse. It is helpful in speech-related systems
because it can denoise, extract, and improve speech signals. In recent years, a variety of
techniques to distinguish human voices from background noise and other noises have been put
forth. The use of approximation signals to increase the training data set and over-smoothing are
two long-standing problems with traditional single-channel speech separation. Inadequate
separation and voice distortion mitigation have also become a problem. Single-channel source
separation with Time-Frequency non-negative matrix factorization, sigmoid-based
normalisation deep neural networks, and an effective optimal reconstruction-based speech
separation (ERSS) method using a hybrid deep learning technique have all been developed to

address all identified challenges.

The technique of separating the voice of a multi-channel speaker from the overlapping

audio of a simultaneous speaker is known as multi-channel speech separation. Difficulties
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emerge when several signals are separated from their superposition captured at distinct sensors.
Despite the fact that rank estimation presents a significant challenge for modern NMF methods.
This is comparable to the challenge of determining the eigenvalues of noise signals in a
multichannel situation. A two-fold mistake occurs when each activation is carried out
separately, making the deviation more susceptible to DNN approximation errors. As a result,
the problem of the spectral overlay at the beginning of a dialogue or commotion is lessened and
discriminative grounds are created. On the other hand, there are still several issues, including a
lack of robustness and inadequate separation accuracy. Thus, in order to get around the
aforementioned drawbacks, this research paper suggests an effective method for multichannel
speech signal separation using a novel hybrid approach that combines enthalpy-based DNN
(EDNN) and grasshopper optimization-based matrix factorization (GOMF). This method
addresses all of the aforementioned drawbacks. In order to anticipate and eliminate unwanted
noise from multichannel input signals, this research suggests a classification framework made
up of STFT, GOMF-based rank estimation, signal eigenvalue identification, noise reduction,
feature extraction, and classification. In addition, a unique hybrid technique that segments
multi-channel speech signals using enthalpy-based direction of arrival (DOA), krill herd-based

matrix factorization (KHMF), and SCNN estimation has been developed.

1.9 Database details

We utilised certain data sets available for free from the CHIME database [39] as the
noise signal and the WHAM database [40] for the single channel speech separation.
Additionally, we used voice and audio data from the TIMIT Corpus [41] and Noisex-92 Corpus,
respectively. 10 phrases from TIMIT were delivered by 630 speakers from 8 distinct American
dialect areas. Each of the 15 general sound kinds found in a normal setting on the NOISEX-92
lasts for roughly 4 minutes. Factory noise, F-16 noise, chatter noise, and other sounds may all
be found on the NOISEX-92. To guarantee that the different components of each noise
utterance are mixed with the clean speech utterances, we arbitrarily split each NOISEX-92 noise
utterance into distinct pieces based on the temporal length of speech utterances. These sounds

are primarily analogous to other common noises and are likewise transient.

In addition, several datasets that may be freely downloaded from the SASSECO07
database for the multi-channel speech separation. The four courses of source signals—four
female voice sources, four male speech sources, three non-percussive music sources, and three
music sources with drums—each with a 10 second period and 16 kHz investigation are used to
construct the advancement information. In addition, we made advantage of 50 datasets of

professional music recordings from SiSEC 2018. Here, the TIMIT corpus is used to choose
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examples of clear language and diffuse noise. We utilised three real-time sound mixing mics
from SISEC 2011, level 3x5 (3 mixed signals—5 signal sources), and level 4x8 to examine the
typical p-dimensional scenario (4 mixed signals-8 signal sources). many voices, both male and
female. We combined 5 audio sources for the 3x5 example and 8 audio sources for the 4x8

example.
1.10. Hardware Tools

Speech separation is done in this research using MATLAB on a system with 6 GB of
RAM and a 2.6 GHz Intel I-7 CPU. A programming environment for algorithm creation, data
analysis, visualisation, and numerical calculation, MATLAB is the language of technical
computing. It is the top maker of software for mathematical computation. Millions of engineers
and scientists use MATLAB on a global scale to analyse and develop the technologies and
systems that are altering our world. The matrix-based MATLAB language is the most natural
language for communicating computer mathematics in the world. Data may be easily viewed
and analysed thanks to built-in graphics. On a desktop environment, learning, exploring, and

experimentation are simple.
1.11 Structure of The Thesis

The rest of this thesis is organized as follows:
Chapter 1 highlights the issues with speech separation on a single channel and many channels.

Chapter 2 gives a brief overview of the numerous problem-solving strategies that are

frequently documented in the literature.

Chapter 3 Given that Single-Channel Source Separation is currently the most difficult
challenge, this chapter proposes a revolutionary Time-Frequency non-negative matrix
factorization and sigmoid base normalisation deep neural networks. According to the

investigation's findings, the suggested method is preferable to the conventional strategy.

Chapter 4 In order to provide effective optimization-based speech separation, this chapter
suggests an original RDNN-based speech/filter model (ERSS). The results of the investigation

demonstrate that the proposed method is superior to the established one.

Chapter 5 In this chapter, we provide a technique for decoupling multichannel speech signals
that combines Grasshopper Optimization-based Matrix Factorization (GOMF) with Enthalpy-
based DNN. The experiment's findings will demonstrate that the technique we've suggested is

preferable to established practises.

13



Chapter 6 The separation of sound sources with time-varying mixing quality induced by
speech separation is an important research topic for enabling intelligent audio systems in real-
world operating environments, and it is covered in this chapter. Multi-channel speech
separation, enthalpy-based DOA, and score-based CNN estimation are all topics covered in this
chapter (SCNN). Experimental results demonstrate the superiority of this approach over
conventional practises. Compare the results to a number of proven subjects and algorithms,
such as BP, CTF-MINT, CTF-MPDR, and Unproc techniques.

Chapter 7 Finally, a conclusion is offered, along with recommendations for further research.
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Chapter 2

Literature review

2.1 Introduction

Speech is the primary means by which humans exchange information. Speaker and
speech recognition is a common investigative technique that is only employed in everyday life.
For many speech processing applications, speech separation serves as the fundamental
framework. The system's performance suffers significantly when there are competing speaker
signals present in the input mixture. The separation of mixed voice signals has been regarded
as a significant and fundamental topic, with a wide range of applications in telecommunications,
audio and speech signal processing, and medical signal processing. These are just two examples
of the potential applications for audio and voice separation systems. Other applications include
automatic speech recognition (ASR) in noisy environments and multimedia or music analysis,
which purposefully combines information from multiple sources. Single-channel speech
separation (SCSS) and multi-channel speech separation are the two types of speech separation
systems (MCSS). A speech augmentation system is another name for SCSS. Source separation
techniques can generally be categorized into two groups based on the acoustical configuration,
the number of microphones, and the number of speakers: over-determined, where the number
of microphones is higher than or at least equal to the number of unknown speakers, and under-

determined, where it is lower.

This thesis' primary objective is to separate speech mixtures utilizing a single
observation captured with a single microphone for both single channel and multi-channel
speech separation. Research on multi-channel voice separation utilizing several microphones

has already produced some astounding results.

Humans are capable of accurately and easily separating mixed signals, as seen by day-
to-day existence. A machine cannot, however, perform such precise separation with ease. The
single-channel separation problem is solved without the use of a reference signal, in contrast to

the multi-microphone separation scenario.
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2.2 Single-channel speech separation strategies

The key to the speech separation strategy is to model the process after the human
separating mechanism, which is then mirrored in machine forms. The cocktail party effect
describes how frequently in our daily lives we hear noises that are not isolated but rather
combined with a noisy backdrop, such as traffic, crowds, radio, and television noise, depending
on the surrounding circumstances. The target voice and the background noise can be
distinguished by humans. However, as a system, it will be able to detect mixtures of various
voice signals with varying time and frequency. Single channel speech separation is the process
of isolating a particular needed speech signal from background noise or from a combination of
speech signals when a single microphone is employed to record the speech mixture. One step
in the speech separation process is single channel speech separation, often known as multiple
input one output system (MISO). The SCSS problem can be solved using a variety of methods,
including general signal processing approaches, computational auditory scene analysis (CASA)

approaches, blind source separation (BSS) approaches, and model-based approaches.

General signal processing and CASA-based approaches are unsupervised approaches
among the methodologies listed above because they look for features in the observation signal
that can distinguish between speech signals and other signals. Contrarily, the BSS and model-
based techniques are supervised approaches since they rely on sources' prior knowledge that

was learned during a training phase.

Musicians frequently employed the harmonic model for single channel source
separation. Michael Stark et al. (2011) [42] provide the Long Frame Associated Harmonic
Model (LFAHM) to distinguish the two voice sources from a single channel. Through the use
of harmonic frequency, this method solves the short time window overlapping issue. The pitch
was estimated simply and precisely using the autocorrelation technique. Additionally, this
method eliminates unvoiced portions from the mixture and surpasses the harmonic model in
terms of SNR and quality. It produces improved accuracy in mixture separation and doesn't
require any prior information of the speaker. However, this method cannot handle two or more

unvoiced signals at once.

Monaural source separation was handled by Mohammadiha et al. (2013) [43] in a mixed signal
containing voice and piano components. The energy of FM transmissions is determined using
the discrete energy separation algorithm (DESA). A time-varying filter is developed in the time
frequency domain to remove the interfering signal. In order to estimate the FM signal energy,

instantaneous signal qualities that are limited in both time and frequency are used.
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2.3. Deep learning techniques for single channel speech separation

DNN was utilised by Tae Gyoon Kang et al. [44] to map the data vector and related
encoding vectors. Source separation, DNN training, and non-negative matrix factorization
(NMF) training are the three stages of the suggested methodology. DNN-NMF performs better

than earlier NMF-based approaches, although it is less adaptable.

Shuai Nie et al. [45] first proposed a DNN and Nonnegative matrix factorization (NMF)
combination for speech separation. NMF first learns the spectra of the voice signal before
reconstructing the signal and noise levels. The original speech content is preserved while the
noise is removed using discriminative training with a scarcity constraint at a very low cost in

terms of distortions and artefacts.

Time-varying masking is used to separate noise from speech input and handle channel
mismatch. Once the system has been trained on clean data, A. Narayan et al. [46] suggested
employing the diagonal feature discriminant linear regression (dFDLR) adaptation technique
for the deep neural network and HMM for noise-resistant voice recognition. When dFDLR is
trained on noisy log-Mel spectral characteristics, the best results are obtained. A number of
scenarios, including clean, noisy, clean + channel mismatch, and noisy + channel mismatch,
have been used to train the system. The system'’s flaw is that WER rises as a result of noise and

channel mismatch.

For the deep neural network used for blind speech separation, Zhong-Qiu Wang et al.
[47] recommended combining spatial and spectral data. A two-step Chimaera ++ network is
used to analyse the temporal frequency dominance in order to determine the direction of the
interested user. It works well with ASR that has several speakers. It performs poorly in
environments with increased noise and reverberation, according to an experimental analysis of
the RIR database.

Due to two major problems, the mixer's speaker counts and the speakers' positioning in
relation to the target and masker speakers, speech separation is difficult. In order to address
these problems, Yi Lue [48] investigated the use of the Deep Attractor Network (DANet) to
project the time-frequency properties of mixed signals in high dimensional embedding space.
The attractor (reference) point has a variety of effects on speaker clustering. Speech separation's
permutation and speaker number issues are diminished by the attractor and permutation issues
of DANet.

The speaker separation technique using text-independent speaker identification was

examined by Nguyen Nang An et al. [49]. In order to learn speaker characteristics that can
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handle variable length segments, CNN variations such as residual neural networks (ResNets)
and visual geometry group (VGG) nets are used. CNN receives the log Mel's spectral properties.
After the CNN layer, which generates input for subsequent layers of a predetermined length
and concentrates on the discriminancy in the speaker characteristics, this structured self-
attentive layer is used. The success of the system in a number of areas, including speaker
authentication, speech emotion identification, and speaker diary, will be the next area of focus

for this project.

For end-to-end time-domain speech separation, Y. Luo et al. [50] developed a
completely convolutional time-domain audio separation network-based deep learning
technique (Conv-TasNet). Conv-TasNet produces a representation of the speech waveform that
may be used to identify individual speakers with a linear encoder. Several masks (weighting
functions) are incorporated into the encoder output to separate the speakers. A linear decoder
is then used to convert the updated encoder representations back into waveforms. By stacking
one-dimensional dilated convolutional blocks, the building blocks of a temporal convolutional
network can mimic the long-term relationships of the speech signal while yet having a small
model size. With further advancements in its accuracy, speed, and computational cost,
automated speech separation may one day become a standard and essential component of all

speech processing technology.

A phase-sensitive goal function based on the signal-to-noise ratio (SNR) of the
reconstructed signal was created by H. Erdogan et al. [51]. utilising a target function based on
signal approximation. Performance has also been found to be enhanced by recurrent networks
that are deeper and more dynamically accurate. Future prospects look good when language
model information is more tightly integrated into speech separation and target phase prediction

is used instead of the noisy phase.

A neural separation network with a clustering-based embedding was proposed by J. R.
Hershey et al. Future research should focus on expanding training on datasets with a larger
variety of audio formats and relevance to other fields like picture segmentation. In order to
achieve end-to-end training for signal reconstruction quality for the first time, Y. Isik et al. [53]
improved and expanded the deep clustering framework by extracting an embedding of
spectrogram segments and estimating a mask for the separation component. The baseline
system performance is first significantly enhanced by the authors by introducing better
regularisation, a wider temporal context, and a more intricate architecture. This yields a 10.3
dB improvement in signal to distortion ratio (SDR) over the baseline of 6.0 dB for two-speaker

separation and 7.1 dB for three-speaker separation.
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A innovative technique for detaching a mixed audio sequence—a sequence in which
several voices are speaking at once—was reported by E. Nachmani et al. in [54]. The novel
approach makes use of gated neural networks that have been trained to split voices at various
processing stages while preserving the speaker's stability in each output channel. The model
with the greatest number of speakers is picked to estimate the actual number of speakers in a

given sample, and each conceivable speaker count is represented by a distinct model.

The Hungarian approach, developed by Dovrat, S. et al. [55], substitutes the PIT loss
and provides an ideal resolution to the permutation problem with a notably reduced temporal
complexity, enabling the training of separation networks for a large number of speakers. Next,
we offer a brand-new network architecture that uses stacked dilated convolutions before each
pair of MulCat blocks. Even when writers make the permutation issues appear to be less

challenging, complex designs still exist.

For speaker-independent multi-talker voice separation, Nasir Saleem et al. [56]
presented a supervised binary classification strategy based on the DNN. In order to attempt
larger efficiency gains of the proposed approach, we are committed to including the phase

information in the upcoming work.
2.4 Separating multi channels of speech

A multi-channel speech separation is used to separate more than two voice signals sent
over the same communication channel. According to past studies, the procedure is only deduced
for two speaker. The algorithm may be expanded to accommodate many speakers. The
between-cluster and within-cluster matrices can be expanded to accommodate many speakers.
Iterative estimations can be used to calculate the energy ratios between different speakers.
Quicker decoding approaches have been adopted because multi-talker settings become

exponentially more difficult as the number of speakers increases.

In the current multi-channel speech separation technique, numerous microphones are
employed to record the different speech signals. Hence Supervisory phrases are incorporated
into the use of several microphones. However, if the speech combination is recorded using a
single microphone, it is not possible to do so. The identical procedure taken unsupervised is
always challenging. Several speech channels that were recorded in both a clean and noisy
setting are separated from a single mixture using a hybrid vector quantization-based heuristic
clustering algorithm (HVQHCA). Initial division of the input mixture into voiced and unvoiced
speech fragments occurs by the algorithm. To extract different pitch values, spoken speech

chunks are separated into segments. These pitch values are separated into numerous clusters for
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diverse speakers using a dynamic clustering technique and the Silhouette value. Each
individual's voiced segments, unvoiced segments, and complements of each voiced segment of
the other individuals are all mixed into a single stream to generate the separated speech. The

separations at the coarse and fine levels make the separated speech more accurate.

By using a simple pitch extraction technique for multi-speaker speech, Yi Luo et al.
(2018) [57] revealed the potential for utilising the pitch information accessible from temporal
processing for spectrum analysis. The fine weight function for the residual is derived by
ascertaining the instants of desired and undesired speakers. The combined weight function of
temporal processing is made by fusing the fine and gross weight functions. The degraded speech
LP residual is multiplied by the combined weight function to get the enhanced residual. The
time-varying all-pole filter made from the degraded speech is excited by the boosted residual

to produce the temporally processed speech.

For the blind source separation of three speech samples in a real-world room
environment, John R Hershey et al. (2016) [30] created a hybrid technique. Information-
theoretic methods and the de-correlation technique are both used to provide superior source
separation with quick convergence. The method is straightforward, computationally efficient,
and intended for instant use. Additionally, no prior parameter estimation is required. It also
used an innovative post-separation speech harmonic alignment to improve separated voice
quality in a real-world situation. Minhas et al. concentrated on separation techniques for clear

speech signals without considering background noise.

For speaker diarization, unsupervised speaker clustering has been proposed to divide
similar voice segments into a number of speaker groups (Keisuke Kinoshita et al 2018) [57].
Prior to fine-tuning the segment borders throughout the re-segmentation process to obtain a
final diarization hypothesis, the traditional techniques frequently performed speaker clustering
on some initial segmentation. The author made use of the reference limits listed to determine
the initial speech/non-speech boundaries. Using an iterative optimization strategy that alternates
between clustering and re-segmentation until the diarylation hypothesis converges will yield
better results if the number of speakers needs to be estimated. The iterative Variational Bayesian
Expectation-Maximization-GMM clustering method finds a global optimum solution. The
iterative optimization procedure recalculates the number of speakers using better-crafted and

cleaner speech segments.

Y.-X. et al. (2013) [54] used a multi-channel system to enhance voice signals captured
by scattered remote microphones in a car scenario. Each possible speaker in the car has a
specialised directional microphone nearby that receives the corresponding voice signal. The
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system creates an output signal in a hands-free phone conference call for a far-end
communication partner and gets rid of the annoying crosstalk components from interfering
sound sources that occur in multiple different mixed output signals because it's possible that
other hands-free applications will be running concurrently. Through the use of a distinct signal
processing block for interfering speaker cancellation, the crosstalk components of unwanted
speech are eliminated. As part of the signal improvement, residual crosstalk and background
noise are also diminished. Four speakers placed inside the automobile's interior and

dynamically configured for a car setup are affected by a range of noise levels.

In order to combine BSS and noise suppression, Richard Lyon et al. (59) took use of the
sources' sparseness in a short time frequency domain. A probabilistic model is used to improve
the system by simultaneously suppressing the noise and separating the speakers in the event of
active multiple speakers. This model takes into consideration the possibility of additive noise
and captures the spatial information of the multi-channel recording. The estimation of source
activity and the estimation of model parameters are the E and M steps, respectively, of the EM
technique. The multi-channel adaptive filters are employed to remove noise and interference

signals using spatial information.
2.5 Deep learning for multi-channel speech separation

Wang et al [60].'s deep clustering framework combined spectral and spatial data to
better efficiently utilise the complementary spectrum and geographical information. By using
phase difference features in the input, we can improve the predicted time-frequency masks by
including both spatial and spectral information in the embeddings that deep clustering networks
generate. Future studies will focus on combining the recommended approach with

beamforming methods.

Compared to our earlier approach, Chen et al [61].'s innovative architecture for speech
separation and multi-channel beamforming performs this combination more well. The
suggested architecture is made up of a set of fixed beamformers, a beam prediction network,
and a speech separation network created via permutation invariant training (PIT). The input
beamformed audio signals are used by the beam prediction network to forecast the ideal beam
for each speaker in the input mixture. PIT-based speech separation networks are presented in
two different forms. We will eventually expand our research to include multi-talker voice
recognition, and since it has been demonstrated that this method is more productive, we will

jointly train each component more than once rather than just once.

21



A novel speech separation method was presented by Perotin et al. [62], and Perotin et
al. [62] demonstrated the method's effectiveness using HOA materials. The calculation of a
GEVD multichannel Wiener filter uses LSTM-based mask estimation. We want to assess the
system'’s robustness to small inaccuracies in the projected DoAs in a subsequent investigation

given the DoAs.

The deep learning-based multi-channel speaker separation technique developed by
Wang et al.[63] makes use of both spectral and spatial data. The basic idea is to identify unique
speakers using an augmentation network, allowing them to be distinguished from an
approximated direction and with respect to specific spectral properties. To determine the
speaker's direction of arrival, we only use the time-frequency (T-F) units that the target speaker
dominates (DOAA two-channel permutation invariant training network that considers spectral
and inter-channel phase patterns at the input feature level is used to assess the speaker
dominance of each T-F unit. Tightly integrated beamforming, based on T-F masking, also
makes use of the magnitudes and phase created. The combined training of the PIT and the
augmentation network, the investigation of additional categories of spatial information, and a
closer connection with beamforming techniques are just a few of the areas that could be the

focus of future study.

A brand-new end-to-end mechanism for multi-channel speech separation was put forth
by Gu et al. [64]. A proposed integrated neural architecture that separates speech into
waveform-in and waveform-out components is the initial step. The traditional STFT and IPD
are then reformulated by the authors as a function of time-domain convolution with a chosen
custom kernel. Third, we made the fixed kernels learnable, allowing the architecture as a whole

to be taught from scratch and fully data-driven.

Transform-average-concatenate (TAC), a straightforward technique for number-
invariant multi-channel speech separation and end-to-end microphone permutation, was
proposed by Luo et al. [65]. Before concatenating the output from the second stage with each
of the output from the first stage and transferring it to a third sub-module, the ATAC module
first translated each input channel feature using a sub-module, averaged the outputs, and then
passed it to another sub-module. For each channel, the first and third submodules were shared.
TAC can be considered a set-based function that is guaranteed to employ all of the data in the
set while generating overall judgments, regardless of the permutation or quantity of set

components.

Gu et alintegrated architecture.'s for learning spatial features directly from the multi-
channel speech waveforms was developed in an end-to-end speech separation framework [66].
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It is capable of learning useful spatial cues from the multi-channel speech waveforms in a
completely data-driven manner. To achieve adaptive spatial filtering, this method makes use of
time-domain filters that cover a variety of signal channels. These filters are built with the help
of a 2D convolution (conv2D) layer, and the speech separation objective function is utilised to
completely data-drivenly change their parameters. In order to calculate the inter-channel
convolution differences (ICDs), we use a conv2d kernel that we created in part by drawing
inspiration from the IPD formulation. It is anticipated that the ICDs will offer the spatial

information necessary to distinguish between directed sources.

Gu et al. [67] introduced a unique multi-channel TSS framework that exactly imitates
cRM estimation in the complex domain using a complex deep neural network (cDNN) with a
U-Net topology. This framework was carefully constructed to make the most of temporal

spectral-spatial data.

An ADL-MVDR framework that may be customised and used for multi-channel, multi-
frame, and multi-channel multi-frame target speech separation tasks was proposed by Zhang et
al. [68]. The proposed ADL-MVDR system solves the numerical instability problem that arises
in traditional neural mask-based MVDR systems during cooperative training with neural
networks by relying on RNN-predicted filtering weights. The ability of the suggested ADL-
MVDR systems to generate practically any nonlinear distortions with minimal residual noise
suggests the systems' aptitude to achieve the greatest objective scores (reflected by lowest
WER). The disadvantage of the new ADL-MVDR system is that it needs more processing
power than earlier, neural mask-based MVDR systems. Li et al[69] .'s three-step audio-visual
multi-channel speech separation, dereverberation, and identification technique completely
takes into account visual information. Future studies will improve the integration of the

separation, dereverberation, and recognition components.

2.6 Methods for Blind Source Separation

There have been a number of time domain and frequency domain methods for single
channel source separation presented. The time domain approach may encounter convergence
problems and a significant workload if noisy chats are recorded in a noisy, busy environment.
This is because numerous parameters must be examined. In contrast to the time domain, the
frequency domain can simplify complex valued instantaneous blends for each frequency bin. It

has substantially easier calculations and faster convergence than the time domain.
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In order to retrieve the original source signals, a statistical method known as blind
source separation searches for instantaneous mixes of a collection of source signals. The
assumption behind BSS is that the mixing process must be linear. The BSS problem is
frequently solved using independent component analysis (ICA) (Kevin et al. 2009) [70]; its
extension necessitates that the sources be statistically independent of one another. The ICA
approach to BSS generally seeks to invert the mixing process (de mixing) for recovering the
original components by obtaining a linear transform of the mixes so that the recovered signals
are as independent as possible.

To overcome the constraint of having a limited number of observations and to resolve
the single channel source separation issue, some studies had used underdetermined BSS
approaches (Benesty et al 2008) [38]. With these techniques, supplemental information is
typically used to address the problem (such as a priori understanding of the statistical models
of the sources).

Signal processing research has long been interested in the BSS problem. Strong
principal component analysis and ICA are two examples of conventional BSS approaches. A
potent BSS framework called non-negative matrix factorization divides data into activations
and templates, or spectral templates and temporal activations for spectrograms (NMF). NMF
presupposes that the data are not negative. Unsupervised BSS has drawn a lot of interest

recently. Numerous unsupervised BSS techniques are covered in this section.

The variational auto-encoding-based single-channel blind source separation system
developed by Neri et alnovel. [71] outperforms conventional techniques while automatically
choosing the appropriate number of sources in data mixes. To disentangle (separate) data
mixtures into low-dimensional latent source variables, a deep inference network is used. Each
latent source is separated into its source signal by a deep generative network, whose sum
matches to the input mixture. To automatically differentiate arbitrary-length films and universal
audio waveforms, the proposed method has to be developed. In the lack of parallel clean data,
Drude et altraining .'s technique [72] was offered as a way to train neural network-based source
separation algorithms from scratch. It is expected to extend the current work to CHIME 5

challenge recordings in order to better synchronise authentic recordings.

The thorough method for blind source separation developed by Drude et al.[73] included
probabilistic spatial mixture models, deep attractor networks, and neural deep clustering. The
integration was accomplished by creating a mixed model that shared the same latent class
affiliation variable between both modalities and had two separate observation distributions, one
for the vector of microphone signals and the other for the embedding vectors generated by the
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neural network. By integrating an extra speaker identification embedding, Haeb-Umbach et al.
[74] presented a deep attractor network for blind source separation and speaker re-

identification.

The new single-channel blind source separation (SCBSS) algorithm was created by him
and his co-workers [75] and is based on multi-channel mapping and Independent Component
Analysis (ICA). It assumes that mixed signals originate from dynamic systems in which each
component is impacted by interactions with other components and signals are instantly mixed
in a linear fashion. The authors state that the algorithm will be enhanced in the future to achieve

online SCBSS in accordance with the dynamic system concept.

A technique for bootstrapping a single-channel deep network for source separation that
was inspired by biology was disclosed by Seetharaman et al. in [76]. To train the model, noisy
separation estimates from stereo mixes are created using a spatial audio source separation
technique. Even when the method that taught it didn't give it the necessary cue, the trained
model can recognise sources in single-channel mixes. The authors created a confidence metric
for the spatial method's output. Any clustering-based separation technique may specify a
comparable confidence metric to lessen the effect of subpar training estimations on model

training.

The two stages of the process are the training phase and the testing phase. Using sparse
coding, nonnegative matrix factorization (NMF), or ICA, the voice sources are projected onto
a set of fundamental operations during the training phase. Makino et al. (2007); Cherry et al.
(2003). (2007) (Benesty et al.) [77]. During the testing phase, the necessary speech signal is
separated from the speech mixture by comparing the speech signal to the statistical model
created during the training phase. Statistical model-based methods estimate the clean speech
spectrum in noisy environments using a statistical estimation framework. The techniques
employ maximum likelihood, least mean square error, and a posteriori estimator as well as other

probabilistic-based speech spectrum estimators.

Supervised NMF generates new sources by combining sources from a learned set of
bases for each source in the mixture. Hyvarinen et al. (1999) [78] combined the model-driven
separation technique with ideas from sparse coding and NMF by choosing the appropriate
number of bases in the training. In conventional NMF, which ignores phase information, the
spectrogram matrix of the mixed signal is factored into the sum of rank-one source
spectrograms. In Virtanen, the presumption that phase shouldn't be factorised and its

consequences on separation are investigated [79]. If the underlying source spectrograms are
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given a priori, there is an improvement over NMF that tracks the distribution of the spectrogram

points of the mixture.

In practise, there are no individual source recordings available. Yi Luo et al. (2019) [80]
proposed an NMF method for monaural blind source separation to solve this problem by using
mixed audio recordings to train the source models. In a single-channel scenario, speech mixture
has been separated using vector quantization (VQ) and NMF. Despite the apparent differences
between the two methods, the VQ strategy for model-driven separation is remarkably similar

to the supervised NMF separation strategy.

According to Hennequin et al. (2020) [81], specific features affect a voice application's
accuracy more significantly than specific generative models do. A sub band perceptually
weighted transformation (SPWT) was applied to the magnitude spectrum to improve the
performance of a single-channel separation scenario. The author specifically contrasted the
SPWT, magnitude spectrum, and log-spectrum feature types. A rigorous statistical analysis is
used to evaluate the efficiency of a VQ-based SCSS framework in terms of the lowest error
bound. Two trained codebooks that were utilised to conduct the primary separation evaluation
on the quantized feature vector of speakers form the basis of this methodology. The simulation
results show that the transformation offers a viable option for improving the separation
efficiency of model-based SCSS. It is also mentioned that it generates a higher spectrum SNR

and a lower-error bound for spectral distortion when compared to other characteristics.

Table 2.1. Summary of Speech Separation Methods

Author and | Methodology | Database Evaluation Metrics | Application
Year
Chang et al. |Deep Neural | TIMIT and |SDR-8.74 Source
(2015) [82] Network — | NOISEX-92 | SIR-11.20 separation,
Non-negative | noise dataset. | SAR -13.91 speech
matrix PESQ -2.23 enhancement
factorization
(NMF)
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Stephan et al. combination TIMIT and | SDR -9.8 Speech
9 (2018) [83] of DNN and | NOISEX-92 | SIR-14.7 separation
Nonnegative | dataset SAR-10.2
matrix PESQ- 0.59
factorization
Wichern et al. | Diagonal Aurora-4 Word Error Rate - | speech
(2019) [84] feature medium-- 4.8% (Clean | separation and
discriminant large Training) noisy  speech
linear vocabulary recognition
regression
(dFDLR) and
Deep Neural
network
(DNN)
Shi et al (2019) | combination WSJ0-2MIX | SDR- 104  for | blind  speech
[85] of spatial and | using up to | WSJO-2MIX separation
spectral two SDR-7.9 for WSJO0-
features  for | microphones, | 3AMIX
deep  neural | WSJ0-3MIX
network using up to
two
microphones
Liu et al. (2020) | Deep Attractor | Wall ~ Street | SDR - 10.4 (2 | Speech
[86] Network Journal speaker) separation
(DANEet) dataset SDR- 8.5 (3 speaker)
NGUYEN Convolutional | VoxCeleb Accuracy-88.2% Speaker
NANG AN et al. | Neural database (VGG+ Self | identification
(2019) [87] Network attention Layer)
Accuracy-90.8%  (
ResNet+ Self
attention layer)
Y. Luo (2020) | fully WSJO0-2mix PESQ-3.24 (WSJO- | Speech
[88] convolutional | and  WSJO- | 2mix) and 2.61 | Separation
time-domain 3mix datasets | (WSJO- 3mix
audio datasets)
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separation

network
(Conv-
TasNet)
Wang  (2018) | LSTM neural | CHIME-2 SDR-14.75 speech
[89] network with a SIR-20.46 separation
phase sensitive
loss function
Luo (2019) [90] | deep WSJO corpus | SDR-6.8 (2 | Speech
clustering Speakers) separation
Shi et al (2020) | To accomplish | WSJO corpus | SDR-10.5(2 Single-Channel
[91] end-to-end Speaker) Multi-Speaker
training  for SDR-7.1 (3 speaker) | Separation
signal
reconstruction
quality,  the
deep
clustering
framework
was extended.
Han et al (2020) | two bi- | WSJ-mix SDR-20.12 dB (2 | Voice
[89] directional dataset  was | speaker) Separation with
RNNs and a |extended to|SDR- 10.6 dB (5|an  Unknown
skip include speaker) Number of
connection are | mixtures of 5 Multiple
combined in a | speakers Speakers
new recurrent
block.
Fan, S et al|training for | WSJ-5mix SDR-12.72(WSJ- Many-Speakers
[2020].[90] permutation Libri-5Mix 5mix) Single Channel
invariance Libri-10Mix -7.78  (Libri- | Speech
with the | Libri-15Mix | 5Mix) Separation
Hungarian Libri-20Mix -5.66  (Libri-
method 10Mix)
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-4.26  (Libri-
15Mix)
-13.22(L.ibri-
20Mix)
Yi Luo et al|Fully 720 IEEE | PESQ- 2.84(2 | single channel
(2018) [91] connected speech talker), 2.7(3 | speaker
Deep neural | utterances talker), 2.57(4 | independent
networks WSJ0-2mix talker) multi-talker
based binary SNR-6.85(2-talker), | speech
classification 2.7(3 talker), 2.57(4 | separation
talker)
Yi Luo et al | Utilises a deep | wsjO-2mix SDR-12.9 Multi-Channel
[2018] [92] clustering dataset Speaker-
architecture Independent
that integrates speech
spectral  and separation
spatial
characteristics.
Nima et al|Fixed beam | anechoic SDRs of different | multi-channel
(2019) [94] formers  with | speech separation systems | far-field speech
Bi-LSTM signals, for different mixing | separation
integration internal conditions.
collection of
utterances
spoken by 44
speakers,
WSJ SI-284
Keisuke Recurrent Ester dataset | word error rate-11% | Multichannel
Kinoshita et al | neural speech
[2018] [70] networks separation
Naoya combines wsj0-2mix SDR-10.9 Multi-Channel
Takahashi et al | spatial and | corpus. Speaker
[2019] [71] spectral data Separation
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for deep
learning.
Vincent et al | end-to-end WSJO0 2-mix | SI-SNR- 11.6 multichannel
[2003] [72] approach speech
separation.
Hao et al [2020] | transform- Libri speech | Si-SNR- 12 for 6 | number
[95] average- dataset mics invariant multi-
concatenate channel speech
separation
P.-S. Huang, et | End-to-end WSJ0 2-mix | SI-SDR- 11.9 Multi-Channel
al [2014] [97] speech dataset SDR-12.3 Speech
separation Separation
framework
integrated
architecture
for  learning
spatial
information
directly from
the multi-
channel
speech
waveforms.
Felix U-Net Original SI-SDR- 12 Multi-channel
Weningeret al | structure is | speech data is | WER- 17.03 Target Speech
[2021][96] used to | collected from Separation in
carefully You tube Complex
create the Domain
complex deep
neural network
(cDNN).
Yusuf Isik et al | ADL-MVDR | Mandarin PESQ-3.46 multi-channel
[2018] [61] framework audio-visual SI-SNR-15.43 multi-frame
corpus SDR-16.03 Speech
STOI-93.7 Separation
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WER-12.31

Dong et al | DNN-WPE LRS2 dataset | PESQ-2.49 Audio-visual
[2017] [65] and  spectral SRMR-8.71 multi-channel
mapping WER-22.38 speech
separation,
Dereverberation
and
Recognition
Neri et al [2021] | variational MNIST and | SI-SDR-17.10 unsupervised
auto-encoding | MUMS SIR-29.55 single-channel
dataset SAR-18.20 blind source
separation
Yi Luo et al|unsupervised | WSJsets SDR-9.5 Multichannel
[2018] [64] spatial PESQ-0.40 Blind  Source
clustering STOI-0.18 Separation
algorithm WER-29.3
Drude et al | Deep Wall  Street | SDR-6.8 acoustic  blind
[2019] clustering, Journal sets PESQ-0.60 source
deep attractor STOI-0.15 separation
networks, and WER-33.4
probabilistic
spatial mixture
models are
used in an
integrated
method for
blind source
separation.
Morten Kolbak | Deep Attractor | Wall ~ Street | SDR-9.2 Speaker re-
et al [2017] [66] | Network based | Journal sets SIR-16.4 identification
system SAR-10.6 and blind source
separation
He et al [2018] | multi-channel | TIMIT dataset | SNR for different | single channel
mapping sampling points blind source
separation
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Seetharaman et | To train a deep | wsj0-2mix SDR-2.9 Single-channel

al [2019] learning SIR-13.5 source
source SAR-3.7 separation
separation

model, stereo
mixes are
subjected to
unsupervised
spatial source
separation that
results in the
first

breakdown of

the mixtures.

2.7 Research Gap

In this investigation, distinctive execution measures to appraise the word mistake paces of

reproduced behind-the-ear listening device flags and identify the azimuth point of the objective

source in 180-degree spatial scenes. These measures get from phoneme back probabilities

created by a profound neural organization acoustic model.

In existing NMF, rank estimation is a major issue. This is equivalent to the issue of
recognizing noise signal eigenvalues in a multi-channel environment.

In existing Deep Neural Networks (DNNSs), assessment of the activations is acted in a
different lead to a twofold error issue and create the departure progressively delicate to
approximation inaccuracies of DNN.

This makes discriminative bases and reduces the issue of spectral overlay in the
beginnings of discourse and commotion.

In another hand, numerous issues remain to comprise poor separation accuracy and
absence of robustness.

In a previous study, the hybrid Grasshopper Optimization-based Matrix Factorization
(GOMF) algorithm shows great potential in the Multichannel speech separation.
However, GOMF has a parameter initialization problem and leading to poor separation

performance.
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e Instead, a joint creation of the GOMF model parameter approximation and source

localization delinquent.

In this section, some existing techniques and their drawbacks are discussed. To overcome all
these research gaps, methods such as hybrid GOMF and Enthalpy based Deep Neural Networks
have been proposed in the present research work.

2.8 Summary

As various methods of speech separation and classification for Single and multi-channel
speech signals exists, it is difficult to draw meaningful conclusions about the merits of anyone
approach over another. The techniques developed in this thesis are useful as this leads to
improve the SNR advantage of signal separation and classification is carried out in real-time.
Several supervised separation systems have been proposed. The in-depth learning methods used
for supervised speech separation increased the rate of progress and increased the separation
efficiency. Also, reliable assessment of time-frequency masks from the conversation is
challenging, especially when there is room echo in the mix. From this survey, to overcome this
issue, we propose an efficient optimal reconstruction-based speech separation (ERSS) using a
hybrid deep learning technique. The upcoming chapter will explain based on single channel

source separation using FTNMF and softmax.
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Chapter 3

Time-Frequency Non-Negative Matrix Factorization
(TENMF) and Sigmoid Base Normalization Deep Neural

Networks for Single Channel Source Separation

3.1 Introduction

For single channel source separation problem, multiple clean speech signals data sets
have been considered for investigations. The work has been carried out using Time- Frequency
Non-Negative matrix factorization (TFNMF) and Sigmoid Base Normalization Deep Neural
Networks (SNDNN). The human auditory system can, with some concentration, hear the speech
of a specific speaker in such a situation. It implies that the human hearing system is capable of
distinguishing between different sources and efficiently identifying the source of interest.
However, the human auditory system also has significant limitations in terms of the perception
of the incoming information. Not only are researchers interested in creating an effective speech
recognition system that mimics human auditory function, but they are also interested in

extracting more information from the input signal than a human can.

When the number of data collecting sensors (microphones) is restricted, the situation
for the machine gets complex. For instance, a cell phone, which is one of the most prevalent
electronic devices that people carry around with them during the day, contains just one
microphone. When a user speaks a command into their mobile device, it must be able to identify
it even in challenging circumstances. Such situations may arise when the target signal is mixed
with background noise (such as the chatter of a train, car, or factory), the speech of another
speaker, or music. Monaural recording is the practice of recording many sources simultaneously

using a single sensor (microphone).

The problem of monaural speech separation, also known as single channel speech
separation, is the main focus of this chapter. This is followed by the recognition of the target
speech. The challenge is to distinguish individual speech signals from the mixture with an
unknown mixing pattern using a monaural signal because, in a practical case, the level of

mixing is also not specified.

The two stages listed below make up this chapter. The training phase comes first, and
the testing phase follows. The testing stage employs a single-channel multi-talker input signal,

whereas the training stage uses a single-channel clean input signal. This distinction between the
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two testing and training phases allows for more accurate comparisons. The input signals from
these testing and training phases are sent to the short-term fourier transform (STFT). When
extracting features from spectrograms created by STFT, which transforms input clean signal

into spectrograms, TENMF is the approach used.
3.2 Monaural Source Separation

The problem of monaural speech separation, also known as single channel speech
separation. Two fundamental approaches can be taken to solve the single-channel mixed speech
recognition challenge. First, the mixed signal must be separated, and then the separated signals
must be recognized. To recognize clear speech, a variety of effective speech recognition models
are available. Therefore, this thesis' primary goal is to roughly approximate each individual
speech signal from various types of mixed speech signals. According to the desired result, the
source separation issue can be divided into two categories: "target versus all" and "audio

modification."

It is common knowledge that a signal is also a concoction of various independent
components. A combination of n sources will therefore contain N numbers of distinct
components, where N > n. When separating the target source from the mixture, the "target
versus all" problem was used. The isolation of all mixing components is necessary to solve this
issue. one of the main tasks of the mixed signal. Together, various mixing elements created the
goal signal. An easy solution to the "audio modification" problem can be found by recombining

various mixing components of various separate signals.

The separation of a singing voice from any musical tune illustrates the applicability of
the "target versus all" dilemma. Another illustration of the "target versus all* challenge is the
speech identification of the target speaker in a loud environment and the separation of the
individual signals of other speakers in a cocktail party situation. The audio editing can be used

for current audio remixing, hearing aid signal augmentation, etc.

3.3 Time Frequency Non-Negative Matrix Factorization for Source

Separation

The extraction of the signal's mixing components serves as the first step in the monaural
source separation process. Speech signals are frequently processed in the time-frequency
domain. Short-term Fourier transforms (STFT) of speech are thus employed during the mixing
component extraction procedure. The enormous dimensionality of the Euclidean space in which

STFT's time-frequency data is embedded is a characteristic of this technology [6]. It is
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necessary to minimise the high dimensionality of the input data in order to separate individual
signals from mixed signals. Additionally crucial is raising the standard of data analysis. PCA,
SVD, TENMF, and others are some of the common methods for dimensionality reduction. These

methods can also be applied to the source separation task.

A mixed signal needs to be separated in many different situations, such as when speech
is mixed with music, noise, or another voice at various decibel levels and in various acoustic
environments. When recording speech with a single microphone or a group of microphones,
the quantity of input mixed signals may also vary in various situations. Any of the previously
suggested source separation methods may not be the best option in all circumstances. Different
source separation strategies have been demonstrated to be applicable for a variety of mixed

speech separation issues by researchers.

Due to its ability to represent data in a non-negative manner, NMF has quickly become
one of the most popular source separation approaches. Like the pixel intensity of an image or
the spectrogram of audio, many sample data points of a signal are non-negative in nature. It is
anticipated that dimensionality reduction algorithms would show this data in a non-negative
way. PCA and independent component analysis (ICA) cannot ensure non-negativity in such a
circumstance. The existence of basis vectors is also shown by the presence of non-negative
components. This provides inspiration to develop a non-negative decomposition of data

solution.

In the past, NMF has the potential to be used in a variety of applications where non-negativity
is a crucial requirement, such as picture enhancement, text clustering, and speech separation.
The ability to modify the decomposition process in accordance with the application and other
criteria, such as orthogonality, sparseness, uniqueness, etc., is what makes NMF so appealing.
In a matrix X, where each column X | represents an observation, such as a picture, a

spectrogram, or probability, observations of any signal are generally accumulated.
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Estimate 1 Source separation Estimate 2

Figure 3.1: Single channel speech separation

A disruptive speaker, like the one in the illustration, or any other noise maker could be
the second source. In this scenario, a listener may want to focus on a single target speech signal
or on both signals separately. If noise is blending into the target signal, the noise may be isolated
or suppressed; however, if the mixing signal is speech, both signals should be clearly separated,

as seen in Figure 3.1.

As various speakers are speaking at roughly the same time, the goal of speech partition
is to emphasise each speaker's mixed language speech. Multiple sources are separated from a
single channel using SCSS (Single Channel Speech Separation). Automated speech recognition
(ASR), hearing aids, and speaker recognition are just a few of the applications. Traditional
single-channel speech separation approaches include computer auditory scene analysis (CASA)
and TFNMF. To imitate sound processing by the human hearing system, CASA employs certain

organising principles and appropriate decoupling signals.

Pre-learning is an essential consideration of the classification and regression process in
digital signal processing. To minimize the overall design cost, these learning methods integrate

the concept of a data matrix. The Time-Frequency NMF Non-Negative Matrix Coupling
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(TENMEF), the most generally used pre-learning technology, is one of the most widely utilised
technologies. Sound signal detection, environmental impact on speech recognition systems, and
numerous functionalities of sound sources are all covered by TENMF technology. Background
interference from the primary target requirements for speech separation [98]. It's a signal
processing feature that's useful in a variety of applications, including mobile communications,
audio prosthetics, accurate speech, and speaker recognition. The human auditory system has a

significant ability to distinguish one sound source from multiple others in a mixed environment.

Non-negative matrix data X is generated through the TFNMF approximation technique.
The spiral TFNMF crucial attenuation is one of the most important instruments for signal
processing and machine learning. TENMF is the most effective and efficient way to distort
fundamentals, and it offers a number of advantages over environmental resource separation.
The basic goal of voice separation in a single microphone recording is to remove background
noise from the target speaker. The solution covers the fundamentals of individual hybrid
signals, from mixed signs to temporal frequencies, which are employed in a variety of
applications including voice communication, speech coding, and authentic speaker learning
methods. People who compete with various sound signal sources and background speakers in
good complex surroundings focus on the auditory interest in signal combinations of complex
signals, and humans excel at solving issues, according to the Cocktail Party Problem. Hearing-
impaired audiences had more trouble with all interface speakers and intermediate spatial
reversals than ordinary hearing aids, according to studies. Music recovery's major purpose is to
assess and rely on the sound and background of music in advanced apps that contain
information on reusing music recovery. To this purpose, a supervised technique, particularly

one based on in-depth research, should yield current outcomes.

It would be used for both undeclared speech separation and correct speech extraction,
which will improve application and usefulness. To facilitate utility extraction, additional
speaker recognition steps can be built to identify target speakers from publications on
undeclared segregation networks. Both approaches have benefits, and structural abstraction
skills for uninformed speech extraction and undeclared speech separation are desirable. Allow
extraction from multiple speaker outputs to identify target speakers. The most fundamental
technique of determining filters is based on the time-frequency (TF) coverage, which
determines how the TF mask is formed. No limit values are generated because this limit is
appropriate and yields a modest approximate error (0.36 dB in Oracle tests). Monorail sound
requires a single recorded microphone device to distinguish the target speaker from the

background speaker. Methods of speech recognition Automatic Speech Recognition (ASR) is
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crucial in the development of hearing aids. Finally, we detected the noise mistake in speech

using the softmax classifier and removed it using the proposed technique.
3.4 Proposed system for TFNMF based DNN softmax

The proposed DNN softmax system based on the TFNMF is depicted in figure 3.2.
There are two parts in it, including training and testing. Following the training phase is the
testing phase. A single-channel multi-talker input signal is used in the testing phase, but a
single-channel clean input signal is used in the training phase. Between these two testing and
training phases, this is the primary distinction. Input signals for the Short-Term Fourier
Transform come from both the training and testing phases (STFT). These concepts are equally

thorough and insightful as the sections that follow;
Training Stage Testing Stage

Clean Speech Multi-talker Speech

o tine ol
e e
o b bl

l

STFT |
TFNMF Feature
Extraction

A A

Separate Speech

i o o

Figure 3.2: Block diagram illustrating the suggested approach
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3.5 Algorithm of Training Stage:

Input: Mixed speech signal
Output: Signal channel speech signal

Step 1: Initially take the mixed speech signal from the database.

Step 2: Input signals pass to STFT.

Step :3 Spectrograms are produced by STFT from input clean signals.

STFT is a typical Fourier transform decomposition if the sign fluctuates over time or is

ambiguous.

Z(y, T) = [ 2(y,)-h"(y, — y).e "™ dy, (3.1)

Comparing the spectrogram to the conventional Fourier change and range, the following
design is possible:

U.(y, f)=[z(y, )f (3.2)

It is typically employed to examine signals that evolve over time. The spectrogram breaks
down the sign into a number of smaller components and calculates the range of each component,
letting us know where various frequencies converge. a device that converts single-channel
mixed sounds into intricate spectrograms. Then, using Time-Frequency non-negative matrix
factorization, characteristics are obtained (TFNMF).

Step: 4 Feature Extraction based on TFNMF,

Here, Cohen's class of temporal frequencies for signal has a discrete-time form.

o0

Z,(t,f)=>] i(/ﬁ(n,m)u(wn+m)><u*(t+n—m)e’j‘"an (3.3)

The time index and frequency index are denoted everywhere by the letters t and f,
respectively.

Step :5 The distribution's kernel, which is dependent on both the time and lag factors, defines
the distribution.

Step :6 In order to calculate the cross-TF between two signals,

00

Zu )= i(é(n, m)u, (t +n+m)xu; (t+n—m)e 4 (3.4)

Step : 7 Expressions 3 and 4 currently explain the succeeding data spatial t-f distribution
(STFD) matrix.
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Z,@tf)= i igb(n, m)u(t +n+m)xuu®(t +n—m)e ™ (3.5)

Anywhere [Z,,(t, )] ; =2, (t. f), fori,j=1.n.

Step :8 The STFD matrix can be defined generally as
Z,@tf)= i i(/ﬁ(n, m)OU(t +n+m)xu(t+n—m)e 4 (3.6)
Anywhere is the kernel connected to a few speech signal data that represents the Hadamard
product. Features are recovered based on non-matrix factorization after time-frequency
estimation.

Step :9 In addition to using a non-negative grid with a focus on binary nonnegative lattices,
NMF processes regressions.

UV = XY (3.7)

Step :10 Whenever in the domain of K sections and N lines with nonnegative components.
Following that, the NMF prototype can be coupled to a noise matrix in the following ways:
UV =XY+E (3.8)

Step :11 calculations for measuring the matrices X and Y as the objective matrix UV and
solving the NMF [41] problem. They involve replacing the following valuation requirements
for each lattice:

X «arg m)in CUV | XY)

. (3.9)
Y «ar min C(UV || XY)

Step :12 Due to the constraints, each component of matrix W and the component in the kth row
and rth column of matrix X serve as a measure of how far apart matrices A and B are from one
another. Using well-known "distance” measurements like the Gulbach-Leipler difference and
the Euclidean distance, it is possible to analyse C (V || XY). In terms of Euclidean distance, C

(V|| XY) is precisely defined as follows:
1
CUVIIXY) =S UV = (XY) E (3.10)

X «— X Q[UVYT)g(XYY )],

(3.11)
Y <« Y Q[(XTUV)@(X T XY)],

Wherever ® and ¢term element-wise multiplication also division.
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3.6. Testing stage:

This phase's testing is repeated using the same methodology. Inputs are treated as multi-talker
speech in the testing phase as opposed to clean speech in the training phase. Characteristics
from the training and testing periods are finally retrieved using a Time-Frequency non-negative
matrix factorization. The SNDNN classification algorithm, which is described below, is used
to categorise all features after feature extraction using the SNDNN classification step.
3.6.1 Classification algorithm using SNDNN

Our work makes use of a novel development based on sigmoid normalisation (SN)
combined with DNN in place of the many existing procedures that are just based on DNN. One
of the cutting-edge techniques we study is this one. Data is initially passed to the DNN
convolutional layer, which uses the sigmoid to normalise the data. Once at the convolutional
level, the layer progresses to the highest grouping level before repeating the process to reach
the highest retrieval level.

Max Drop
pooling out Softmax
Layer I
' . "—’ v'-> ‘._> ‘H»q Il
Conv
Input Layer Bi-LSTM DSnet Gaussian
frame Layer

Figure 3.3: Reconfigured softmax-CNN Architecture

Data-related information is contained in the convolutional layer. The Softmax regression is
connected to this layer. The basis of SN's initial processing is pure voice and input from multiple
speakers. The output signal is sent to the highest grouping level once the procedure is complete,

which minimises the display of limit values and calculations.

Algorithm for Softmax

Step :1 Define data
data = [speech database]
Step :2 Calculate softmax
result = softmax(data)
report the probabilities
Step :3 Calculate the softmax of a vector
def softmax(vector):

e = exp(vector)
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return e / e.sum()
print(result)
Step :4 report the sum of the probabilities

print(sum(result))

A. Convolution layer
A matrix or kernel-based initial layer of the network is used to recover the signal from the
first clear format. The signal's qualities are maintained in relation to one another via
understanding the signal. Pay close attention to the spectrogram fields to comprehend the
following degrees of work folding. Equation (3. 12)'s criteria are met by this layer, and the

result of the adjustment is what is referred to as element mapping in each instance.

n=0 (312)

Wherever the input qualities are, there are filters and a number of necessities. Its output is the
yield vector. The elements of the vector are represented by the subscripts.

B. Normalization layer

Sigmoid-based normalisation, the network's next layer, merely points to a comparable area or
known route. To do this, a signal is normalised, which lowers its distortion to a constant mean
of 0. The single-channel source separation’s range is expanded by sigmoid-based normalisation
(3.13), (3.14).

1

SG(u)=1+m

(3.13)

-u

X
SGBN =SG(U)x ————— 3.14
(u)x— (319

max min

In Single-channel source separation X, the lowest and maximum values are shown by SG (u),
the sigmoid based normalised or Single channel source separation, the Euler's number.

C. Max-Pool layer

The pooling layer seeks to streamline the system's computation and boundary value
presentation. When the max-pooling layer is employed to minimise the dimensionality of the
signal, it has an effect on both the next level and the strength of the neurons. This also goes by

the moniker of the downsampling layer.
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D. Completely connected layer
Since there are a large number of neurons in the preceding layer, each neuron receives
information from that layer. Softmax is a representational tool that can handle multiple classes
because the name of the logistic regression is "0, 1".

exi

2,¢ (3.15)

Wherever the network’s input is based on entropy and the outcomes of recognising the harm

P

or otherwise normal, SNDNN is utilised to classify it. We sequentially implemented the
entropy-cantered deep neural architecture. In its boundary learning, it also involves mutual
pre-preparing and modification stages.

E. Training Stage

Step 1: We display the visible units’ advice for the training vector's selected features.

E(X! Y):_iiQij fSiyj _Zl:ai fsi _iﬂjyj (3-16)

i=1 j=1 i=1 j=1
Wherever it indicates the symmetric association duration between the visible constituent and
the concealed component, the term "predisposition™ denotes the number of understandable and
hidden processes [99]. The position vector's logarithmic likelihood with respect to the weight
is satisfied by the major conflict. In an RBM, covered units are not immediately impacted, but

it is rather straightforward to make a case for

|
P(yj =1 | fsi):g[ZQij g "'ajj (3.17)
i=1
Anywhere £(x)signifies the strategic sigmoid capacity 1 , f5.h;denotes the
(L+exp(x))

unbiased sample.
Step 2: We match the supplied hidden and explicit units to the evident and invisible units. The
sharpest random rise in the log-likelihood of location data might be produced, according to this,

by more direct learning principles, such as the ones that follow:

F. Fine-tuning phase

In essence, the fine-tuning stage is a normal back spread computation. System implementation
organisations frequently achieve performance levels above the SNDNN. The reconciliation
record is additionally output while the extra weight is processed or reviewed. In this situation,
the SNDNN classifier is crucial because it will collect the required information and utilise it to

finish the process, allowing it to position results that could lack certain qualities.
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3.6.2. Inverse STFT (iSTFT) operation:

The extracted output signal can then be subjected to the reverse STFT technique to change the
voice signal's final channel interval. Finally, get the split extracted signal.

3.7. Dataset Description:

We used several data sets from the WHAM database and the CHIME database that were
freely available for use in the investigation. From the CHIME database, the current data set was
chosen as the noise signal. The SIR, SDR, PESQ, and short-term objective understanding
(SOUE) indicators are employed by the system to assess the objective indicators (STOI). We
are analysing the offer to gain a better understanding of the actual scenario. The CHIME
database has the computer technique listed (multi-source environment).

3.8 Results and Conclusions

In this part, experiments are used to compare the possible outcomes for each element of the
suggested plan. The effectiveness of the suggested system will also be carefully evaluated in a
variety of test scenarios. Let's begin by considering ways to improve the performance of
separation and processing during detection. Furthermore, in Experimentation 1, we evaluated
the proposed separation strategy using typical indicators (understandability and separability).
Experiment 2 tested the suggested system under more challenging real-world conditions as
opposed to the existing data set. The suggested system retains its original characteristics as well.

an individual signal We confirm certain information (e.g. sentiment data).
3.8.1 CHIME Dataset:

4q | ™= PASD
W Phase aware
351 W MNMF with noise phrase
mm conventional NMF
301 mmm NMF with clean phase
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r
un
420 A
15 A1
10 A
0.5 1
0.0 -

S5R[dB]

Figure 3.4: SSR evaluation comparison and study of quality (PESQ)
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In terms of PESQ quality, the SSR benchmark test is depicted in Figure 3.4. Compared to
competing approaches, our method can improve a single signal's perceived speech superiority.
The graphic above shows the suggested method using the current pure phase NMF, Normal
NMF, NMF with noise phase (relative to phase), and PASD. Examining proposed Figure 3.4
results in the greatest PESQ score. Our concept outperforms alternative approaches in terms of
results.

PASD

0.8 Phase aware

’ MMF with noise phrase
conventional NMF

0.6 NMF with clean phase
’ Proposed

04

02 1

0.0 -

SSR[dB]

ST0I

Figure 3.5: Comparison analysis of Short-Time Objective Intelligibility
The STOI benchmark test is shown in Figure 3.5, and it is used to determine speech
intelligibility in loud settings. STOI and speech intelligibility have a strong association (0.79),
demonstrating the usefulness of this interpreter algorithm routine. The proposed system yields
superior outcomes in comparison to competing approaches. This shows that even in a loud
environment, the suggested technique aims to improve speech intelligibility and phrase
recognition capabilities. Among the choices are pure phase NMF, conventional NMF, noisy
phase NMF, conscious phase, and PASD. The proposed Figure 3.5 will be examined to
determine the highest STOI score possible. When compared to other existing solutions, our

suggestion produces superior outcomes.
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Figure 3.6: Comparison analysis of Signal to interference ratio
SIR assesses the interference rejection rate in Figure 4, which displays the results of its
benchmark analysis. The suggested strategy performs better than the rival method in nearly all
test circumstances. This shows that by removing interference, the suggested system delivers
valuable separation outcomes. It is suggested to use a current NMF technology that includes
PASD, conventional NMF, noise phase, consciousness phase, and pure phase NMF. The best
SIR findings can be attained by analysing the proposed Figure 3,6. Our solution yields superior

outcomes in comparison to other existing strategies.
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Figure 3.7: Comparison analysis of SDR
The SDR benchmark test, which has two advantages, is shown in Figure 3.7. At first, it
evaluates signals separated by modified measures and in a variety of test scenarios (mixing
different SDR ratios and real records). The expected results will apply to other applications. In

the image above, the method for illustrating NMF using pure phase NMF, regular NMF, noisy
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phase, conscious phase, and PASD is shown. Analysis of the top 3.7 results will yield the
greatest SDR score. With the additional strategies we advise, better results will be attained.
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Figure 3.8: PESQ comparative analysis for the real-world situation at various SNR levels

Figure 3.8 illustrates the comparison study of PESQ results at various SNR levels in the real-
world scenario of using a clean phase for reconstruction. voice indication In the image above,
the method for illustrating NMF using pure phase NMF, regular NMF, noisy phase, conscious
phase, and PASD is shown. By examining the provided figure 3.8, locate the SNR result with

the highest SNR. Compared to other existing approaches, our technique produces better results.

3.8.2 Experiment 2: Evaluation in Terms of ASR

Here, we have calculated how well our system performs in a variety of mixed speech
recognition tasks, such as those involving speakers from the same stalker (ST), speakers of the
same gender (SG), and speakers of diverse genders. the mixture of genders (DG), average
accuracy When compared to the baseline, the findings obtained show a noticeable improvement
in performance. The proposed system performs significantly better than the fundamental system
in terms of average accuracy. The evaluations of the ASR Accuracy Tables 3.1, 3.2, 3.3, and

Table 3.4 yielded the following conclusions:
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Table 3.1: Analysis of mixtures from the same talker in a table

Methods -9dB -6 dB -3dB 0dB 3dB 6 dB

Baseline

Signal 9 17 23 29 43 66
Advance

front-end 1.5 22.0 25.5 27 46.5 68.0
SS 17 18.3 19.2 23.8 28.1 32.6
PASD 19 20.2 24.0 30.4 42.0 72.3
Proposed 82.907 |82.90781 | 83.90781 | 83.90781 | 83.90781 | 83.90781

Table 3.2: Table analysis of mixtures of speakers of the same gender

Methods -9dB -6 dB -3dB 0dB 3dB 6 dB
Baseline

Signal 9 17 23 29 43 66
Advance
front-end 9.7 14 21.4 22 46.1 66
SS 13.0 12.5 15.5 21.8 28.5 31
PASD 20.5 37.1 58.3 64.4 72.0 78.7
Proposed 90.29167 | 90.29167 | 90.29167 | 90.29167 | 90.29167 | 90.29167

Table 3.3: Table analysis of mixtures of speakers of the same gender

Methods -9dB -6 dB -3dB 0dB 3dB 6 dB
Baseline

Signal 9 17 23 29 43 66
Advance
front-end 5.1 11 17 25.4 43.3 58.0
SS 14.4 18 22 27.5 36 44
PASD 37 46 62.5 70.2 75.2 80.3
Proposed 08.34219 | 98.34219 | 98.34219 | 98.34219 | 98.34219 | 98.34219

Table 3.4: Table analysis of Mean accuracy

Methods -9dB -6 dB -3dB 0dB 3dB 6 dB
Baseline
Signal 8.5 11.3 19.7 30.5 45.0 65.2
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Advance

front-end 7.84 11.03 20 33 45.45 65.07
SS 17 15.3 19 23 25 35.5
PASD 22 34 46 61 63 76.4

Proposed 85.87552 | 85.87552 | 85.87552 | 85.87552 | 85.87552 | 85.87552

Current and suggested values are analysed in Tables 3.1 through 3.4 above. In this instance,
the value from the table is contrasted with the present SS, PASD, extended interface, and
basic signal. Examine the proposed settings in the first four tables to attain the best ASR

accuracy. Compared to other existing approaches, our technique produces better results.

‘—-—-—‘—-—-—‘—-—-—‘—-—-—‘-—-—--‘
Eﬂ -
70 1 7/
L
E;i B0 1 —n- Proposed technigue ;'.""’
g oy | o PASD /.-f"
E -4t 55 &’
g a0 4 ™ :dvalr.'Iced.anltend ‘__ﬁ_;
—&- Baseline signals -~
—— . 1
-
20 = B T e
F--—- —
i
0 { ¥
—a —6 —4 —2 0 z 4q &
TMR[dE]

Figure 3.9: Comparative study of mixtures that belong to the same talker
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Figure 3.10: Study of comparisons between speakers of the same gender
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Figure 3.11: Comparative analysis of speaker combinations from different genders
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Figure 3.12: Comparison and mean accuracy analysis
The aforementioned diagram illustrates the difficulties voice recognition encounters when
dealing with different mixtures, such as mixtures of speakers from the same talker (ST),
mixtures of speakers of the same gender (SG), and mixtures of speakers of different genders
(DG). Figures 3.9, 3.10, and 3.11 use the speech intelligibility index (SIl) and the non-intrusive
speech quality and intelligibility (NISQI) as markers. IBS can forecast speech
comprehensibility in a variety of loud conditions and the ability to recognise sentences in
adverse acoustic environments. NISQI has the highest correlation value according to subjective

testing as well. the SS, front end, and PASD.
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Figure 3.13: Analysis of SNR-based SDR comparisons
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Figure 3.14: Analysis of SNR-based PESQ comparison
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Figure 3.15: Analysis of SNR-based ESTOI comparisons

In the preceding figures 3.13 to 3.15, we contrasted our proposed method with three currently
used techniques: uPIT Dense-UNet, Deep CASA, and De-noising Deep CASA, IBM. In this
instance, Dense-UNet-Framework learns and employs uPIT SNR while Deep CASA is
aggregated. It is a simple Deep CASA extension in a noisy environment. Remove CASA: To
reduce interference from outside sources, use a lightweight version of Dense-UNet with 32-
channel SDR, PESQ, and ESTOI size. Compared to other existing approaches, our technique

produces better results.

3.9. Summary

In this proposed and completed part of the research work, the data consists of two or
more than the clean speech signals. The TFNMF integrated with SNDNN technique has been
applied and results have been obtained. It has been observed that the results (performance
evaluation metrics) are improved compared with existing works as indicated in the graphs and
tables. The SSR average rate is above 40 and the mean accuracy of baseline signal in 6dB is
65.2, the mean accuracy of Advanced front-end signal in 6dB is65.07, the mean accuracy of SS
signal in 6dB is35.5. the mean accuracy of PASD signal in 6dB is 76.4 and the mean accuracy

of the proposed signal in 6dB is85.88,
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Chapter 4

Integral Fox Ride Optimization (IFRQO) algorithm and
Retrieval-based Deep Neural Network (RDNN) for Single

Channel Source Separation

4.1 Introduction

In the noisy speech signal environment for a single channel, there is a requirement of
speech signal segregation from noise. Thus, the speech signal is retrieved after getting
segregated from noise. A hybrid deep neural network (HDNN) model is proposed as a unique
technique for speech segregation from stationary noisy audio signal without labels. In this
problem of research work, an integral fox ride optimization (IFRO) technique has been used
for effective reconstruction of a variety of spectrum features which include time dynamic data,
binaural and mono features. Further a hybrid retrieval-based deep neural network (RDNN) has

been used for classification of speech and noise segregation.

The most instinctive form of human-machine communication is speech. Speech has
become widely used in numerous applications for close-range human-machine interaction due
to the dramatic recent development of speech perception (hearing and understanding) and
speech generating (speaking) technologies. Reverberation, background noises, and interference
speech can make speech perception (speech recognition) and speech creation (text-to-speech)

systems less accurate.

4.2 Single-Channel Speech Separation

Single-channel speech separation is the process of estimating numerous output
waveforms from a single input recording in which multiple speakers are speaking at the same
time, each estimate having the voice of only one of the input speakers. Single channel speech
separation must use only the structure of speech and must capitalize on inter-speaker
differences, relying heavily on the fact that each speaker's speech is sparse in a time-frequency
domain. This is in contrast to multi-channel techniques, where multiple microphones capture
the speech and provide access to directional information. In other words, it is unlikely that
numerous speakers will contribute a large amount of energy to a segmented signal if a

combination of speakers is segmented spectrally, for instance using a straightforward Short-
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Time Fourier Transform (STFT) with suitable settings. The latent speech signals are now
simpler to recognize during training and inference, in addition to making it easier to split the
signal into a spectrum representation [100]. Source separation strategies were frequently based
on either known features of the speech signals or inspired by the human auditory perception
system'’s capacity to follow sources in overlapped speech prior to the development of DNN-

based methods propelled by massive volumes of labelled data.

These traditional techniques include Computational Auditory Scene Analysis (CASA),
Factorial Hidden Markov Models (HMMs), Independent Component Analysis (ICA), and Non-
negative Matrix Factorization (NMF). These techniques are frequently based on statistical
features of the signals and rely on signal processing to distinguish between the sources.
Comparing this class of speech separation approaches to other separation tasks like reducing
speech noise, the major problem is that speech signals from two different speakers can have
extremely similar statistical features. The algorithms do take advantage of the structure and
continuity restrictions of speech in time and frequency, which results in some success in speech
separation, but their performance is considerably outperformed by the more recent deep

learning techniques.

The bulk of DNN speech separation approaches rely on a spectral masking strategy,
however some cutting-edge methods estimate the speech source waveforms directly. In order
to use these techniques, the mixed waveform must first be projected using an analytical
transform into a two-dimensional spectral domain with resolution in both time and frequency.
The Short-Time Fourier Transform (STFT), which was employed in earlier approaches, has

now been replaced by learnt transforms.

Then, using this mixture spectral representation, a neural network creates a mask for
each speaker with values ranging from 0 to 1. An approximation of the source spectra of
individual speakers is produced by individually multiplying each of these masks by the mixture

representation in order to mask out the interfering sources.
4.3 Proposed method

The first issue, over-smoothing, is addressed, and estimated signals are used to expand
the training data set. Second, DNN generates prior knowledge to address the problem of
incomplete separation and mitigate speech distortion. To overcome all current issues, we
suggest employing an efficient optimal reconstruction-based speech separation (ERSS) to
overcome those problems using a hybrid deep learning technique. First, we propose an integral

fox ride optimization (IFRO) algorithm for spectral structure reconstruction with the help of
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multiple spectrum features: time dynamic information, binaural and mono features. Second, we
introduce a hybrid retrieval-based deep neural network (RDNN) to reconstruct the spectrograms
size of speech and noise directly. The input signals are sent to Short Term Fourier Transform
(STFT). STFT converts a clean input signal into spectrograms then uses a feature extraction
technique called IFRO to extract features from spectrograms. After extracting the features,
using the RDNN classification algorithm, the classified features are converted to softmax.

ISTFT then applies to softmax and correctly separates speech signals.

Single Speech channel signals from database

v

STFT

Feature Extraction

| Integral Fox Ride Optimization
e T a) Seeking Mode
g i b) Tracking Mode
e Taking each frame |

1) Dynamic time information
: 2) Binaural features
C 3G 30 3¢ 30 d. 30 3 § 3) Mono features

Feature
extraction

- Hybrid retrieval based deep neural network (RDNN)

v
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l

m ‘ Output Signal
.II ‘II L l-_ A

Figure 4.1: Block diagram of Integral fox ride optimization based RDNN system

We propose an efficient optimal reconstruction-based speech separation (ERSS) using a hybrid

deep learning technique. The objective of feature extraction is to improve the quality of the
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training data set extracted from each of the speech signals from low-level texture features using
integral fox ride optimization. The output from feature extraction was given to segmentation
and in a cascaded process to provide a textured pattern. Finally, using the RDNN classifier, we

found the noise error from speech and removed it using the proposed technique.

When we use NMF to capture the structure patterns of speech separation targets, such
as ideal masks or magnitude spectrograms of interests, We investigate a discriminative training
objective with sparsity constraints, which improves the separation model's ability to suppress

noise and preserve speech.

NMF is used to understand the important spectrum of speech and sound, whereas DNN
is used to assess the essential spectrum's function. The NMF hypothesis and functional
assessment are combined with DNN to comprehensively reproduce clear sound and sound
within the compound. The combined strains of DNN and NMF are improving the performance
of the voice department. We suggest a different optimization range with interval control to
suppress excessive noise. This reduces the residue of isolated speech and noise and dramatically
improves GSIR performance. Models can stop high interactions and outperform comparative
models with very low-cost hand tools and defects. Production models can use spectral structures
based on speech and sound, while in-depth study models study complex linear graphs of

distinguishing objectives through silent and supervised learning.

The latest approach since optimizes training formal speech segmentation, in which
different modes of speech, speaker, and background sound are studied from training data.
Several supervised separation systems have been proposed. The in-depth learning methods used
for supervised speech separation increased the rate of progress and increased the separation
efficiency [101]. Also, reliable assessment of time-frequency masks from the conversation is

challenging, especially when there is room echo in the mix.

We propose an efficient optimal reconstruction-based speech separation (ERSS) to

overcome those problems using a hybrid deep learning technique.

. First, we propose an integral fox ride optimization (IFRO) algorithm for spectral
structure reconstruction with the help of multiple spectra features: time dynamic information,

binaural and mono features.

. Second, we introduce the Deep Neural Network (RDNN) based on a hybrid search to
directly reproduce the speech and voice level spectrogram. RDNN can instantly improve the

partitioning range and minimize accumulated errors.
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. Finally, we implement the proposed design in the MATLAB tool, and the performance

of the proposed ERSS is compared with the existing state-of-art techniques.

Input speech signal
Reconstructing spectral
= structure using [FRO
algorithm
s Haddeo O Layer Analysis
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S NG " ; g. i Hidden !a}-‘er
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Segregated speech Background noise

Figure. 4.2: lllustration of proposed ERSS using a hybrid deep learning technique

Figure. 4.2 shows a specific hybrid model structure separating background noise and
conversation using Fox Riding optimization and Search Deep Neural Networks. As shown in
Fig. 111, a multi-layered deep neural network input speech signal extract with continuous
functions such as non-linear activation, regulation, and hidden layer to extract advanced
features of the speech signal. After the fully connected hidden layer's input layer, a multi-
dimensional speech signal was extracted from the connected first layer. Finally, the classifier

separates the background noise from the speech signal.
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4.4 Proposed optimization and deep learning technique

4.4.1 IFRO optimization

The FRO system has two modes, i.e., the searching for away and the going with way.
In checking for mode, Fox search for in their neighbourhood, which has a spot close to looking.
Fox updates their condition in the following method by following the general faultless worth,
an area with the available seek after. FRO has a solid combination, both thinking about
worldwide enhancement and nearby streamlining, which is for the most part connected to work

improvement and accomplished significant impact.
a) Seeking mode

The looking for method portrays the resting aptitude of a fox. A fox moves to various
positions in the inquiry space, looking for a way yet stay alert. It very well may be translated as

nearby look for the arrangements. The accompanying documentation is utilized in this model

. The searching Ratio of chosen Dimension (SRD) signifies the distinction among

new and old components of fox chosen for change.

. Searching Memory Pool (SMP): This parameter portrays the number of

duplicates of a fox to be reproduced.

. Dimension Counts Change (DCC): It speaks to the number of measurements a
fox position experienced for transformation. The means of seeking a method of FRO calculation

are given as pursues.

If SPC=I, Generate T (=Searching Memory Pool) copies of as indicated by DCC,
request the change administrator to the T duplicates. Arbitrarily short or in addition to Searching
Ratio of selected Dimension percent the present qualities, supplant the old attributes [102].
Assess the wellness of the changed duplicates. Use condition (1) to compute the choosing
likelihood of every competitor and pick the point with most elevated choosing I likelihood to
supplant. If the objective of the wellness capacity is to locate the base arrangement, Le ,

otherwise

[FS, — FSy|
Pi -t - -
FS.. —FS... (4.1)

b) Tracking Mode
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Tracking Mode is the second method of calculation. In this mode, felines want to follow
targets and nourishments. This mode mirrors the chasing ability of felines. When a feline the
prey, the position and speed of the feline are refreshed. This way, an enormous contrast happens

between old and new places.

Representation of the best position of a fox is that the fox's position and velocity are
calculated using (1) & (2) equation.

/1'[)

a(t) = amin + (0{
t max (4.2)

max _amin)Sin(

Where, new described the refreshed velocity of dimension, indicates fox dimension
and w indicates a factor weight from the value of 0 to 1, shows the past velocity of the fox term,
c represents user finite number,

d .
Where, Vinew new described the refreshed velocity of d” dimension, i" indicates fox

d
dimension and w indicates a factor weight from the value of 0 to 1, Vibes shows the past

velocity of the fox i term, ¢ represents user finite number,

P

jnew

d _ de +de (4.3)
Where, now indicates the position update of fox in dimension, shows the present state position
with fox and size then denoted the fox velocity of the term. To investigate additionally
encouraging arrangement and develop a ratio of convergence, while the fox best position is
utilized to control the places of fox in the following mode. Subsequently, another changed quest
condition is implemented for the following method of FRO calculation, which incorporates the
worldwide best [34]- [36]

P

inew

d+l _ d d

=(1-a)*P"+a*N, +V*, 4.4)
The FRO calculation utilizes a speed vector, and past fox locations were refreshed in tracing
mode. The restored fox location is just affected by vector velocity. Thus, another speed
refreshed condition is presented to develop an assorted variety of FRO calculations, particularly

within finding mode.

Ve’ =V, +a(Ng -P° )+,3*g

(4.5)
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where, € is an irregular vector consistently conveyed from [0 to 1]; a and B are quickening
parameters used to sift through the state of a feline toward close to better positions, and Pg
provides the general position for the best situation of a feline. To concordance between the
appraisal and misuse structures, both vitalizing parameters B and o go about as parameters

controlling.

,B(t) _ leax _{ﬁmaxt _lein }*t
o (4.6)

In (4.6), presenting the lower and upper limits, t indicates the most extreme no. of cycles, and t
denotes the present emphasis value. Subsequently, a (t) is a stage work whose worth ranges
among lower and upper limits. The bigger estimation of a bolsters investigation, whereas little
qualities bolster abuse. The point of a (t) term is investigated and controlled by the procedure

of fox in hunt space.

a(t) = amin + (0{ amin Sin(

max )
t max (4.7)

In (4.7), the mean the base and most extreme estimations of first and last cycles respectively
represent the greatest no. of emphases and t described the present value in iteration. The
explanation for the consolidation of the parameter is to impact the worldwide investigation
capacity of the proposed calculation; a massive estimation of the parameter reinforces the
worldwide best position of feline and watches out for the arrangement refinement. The

pseudocode of FRO is shown in Algorithm 4.1.

The algorithm 4.1 Pseudocode of integral fox ride optimization

Input: A speech signal with background noise

Output: Separate noise and speech

1 Initialize the various parts of proposed count like sum a, neighbourhood structure, fox
(N), B, C, SRD, SMP, and C are variably put N addresses a position in numbers in

sporadic search space.

2 Generate every cat from the D-dimensional space of search speed and position.

3 Compute the fox wellbeing limit and save an estimation value, which is the best
position.

4 While (i < mi)

5 To evaluate the no. of Flag, distributed randomly seeking along tracing mode towards
the fox.
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6 If (Flag==1); Seeking mode of fox position
7 To apply the seeking mode to every fox.
7.1: Generate every fox j copy.
Maintain the fox best position after the contrast value of fitness function toward
memory.
End for
8 Else, tracing the mode position of the fox
To apply the tracing mode to every fox
Find the fox best position after update the fox position
rand < iterfittness
Update global best position and fox position.
End if
i=i++

Obtain the concluding solution

4.4. 2 Hybrid retrieval based deep neural network

This segment describes the systematic description of retinal-based deep neural network
(RDNN) and the creative learning process for dynamic DNN generation. Finally, the

cumulative criteria are given.

Systematic Description: The repaired deep neural network with concealed layers m can
be reported using 2 constraints (A, ®); A as shown in Figure III. Layers are vectors that give
the figure of neurons per layer 1; = A = (n0, nl, ..., nl, ..., nm, nm+1). The input layer is (1 =
0), the output layer is (I = m+1), and the hidden layer is (Ito m). = W1, W2,..., WI,..., Wm + 1=

® is the weight connections vector. Each of the W1 vector's components is a heavier link

matrix.
I I I
Wy Wi Wi,
I I I I
Wo = w Wi; Wini-1
I I I
WnIl Wan Vvnlnl—l (4 8)

Where is the weight correlation between the ith neuron of the layer | and the jth neuron of the
layer 1 — 1. Consider only RDNN with one neuron at the output layer + + 1 = 1, where d is the
input vector size (input layer size n0 = d) to simplify the technique described in the following

article.

62



Specific evolutionary simulation RDNN is a neural network structure that regularly develops
through training. The size of layer 1 is denoted by the vector n t I in phase t, while the vector A
t indicates the size of layer t. The fundamental structure of the neural network at the start of the
creation phase is: A0=n00,n0 1, n0 2 =(d, 1, 1). Figure 1 shows how to create the first
hidden layer (HL 1) from scratch. The construction procedure is separated into three sections

at each step.

e In the primary stage, new neurons are included. This novel neuron is totally integrated
with all the preceding and subsequent layers.

e We are starting a new burden. All other weights retain their preceding values.

e At last, HL (1) only trains the weight of the concealed layer and constantly updates it

using the online backdoor algorithm.
The second concealed layer is built in the same way as the first concealed layer HL (L).

Full description: The evolutionary architectural algorithms and how to achieve the integration
criteria are described in the following section. At every training stage of layer |, the training
process is completed by reducing the M1 frequency of the W1 to continuous online backs to
update the weight, with the square error function defined by X at each repetition (from = 1 to
M).

1
EK = _(Ok _dk)2
2 (4.9)
Where ok represents the neural network output for the K format, represents the output required
for the K format, k represents the code above the input-output pair (k =1 to N), and N represents
the number of samples in the training set. To update the W1 weight, calculate the (1) slope

utilized in the random online back spreading method. By adding to it, the weight is updated:

i (4.10)

Where is the development rate, (GSEiter) delivers the total square error of the N training

pairings at the end of each iteration:

N
GSEiter = ZEk

k=1 (4.11)
At the end of the step-by-step training process, the average square error (MSEt) returns.

63



M
MSE! = = > GSE;
M iter=1 (412)

For each of the four scenarios in the building process, keep the following information in mind:

e It's not reached. It is objective and not completed with hidden layer | . A hidden layer
was added with a new neuron

e It'snot called its objective and full | hidden layer. A hidden layer was added with a new
neuron.

e Reached its objective. Successfully built a DNN. End of the building process.

o RDNN reached its peak regardless of the end goal. RDNN is not built successfully at

the end of the construction process.

Where 0 is the gateway used to define RDNN, is the number of neurons in T according to the
currently concealed layer I, and is the number of neurons in T. The maximum RDNN
recognition is called Max. Maximum hidden layer; The complete RDNN has approved the

maximum number of hidden layers, Max. Authorized layers for the entire RDNN.

Algorithm 4.2 Initialization process of RDNN

Part 1: Initialize RDNN process

t=0,

=0,

Max1, max. no. of Hidden Layers

Max = random, max. no. of neurons per layer
// DNN initialization7

/l initialize random no. of weights:

o o o A W N -

10 /lend the process

In this way, the training course of RDNN is repeated at each stage according to the
calculated MSEt. Max and Max1 are used to control the RDNN level. To avoid the arbitrary

size limit of hidden layers, I utilized a random limit:

Max, = random (¢, «,) (4.13)

Where (o, «,) are correspondingly the lower limit and higher limit? The functional
capabilities of DNN are given in Algorithms 2-4, along with the boot process, hidden layer 1,

and fine-tuning, respectively, for updating the weighted link in the last layer.
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Algorithm 4.3 Building hidden layer-1 in RDNN

Repeat
foriter=1to M
fork=1to N
calculate

1

2

3

4

5 calculate
6 // Update the weights WI

7 end k

8 calculate

9 end iter

10 calculate

11 end

12 /Il RDNN successfully Built

13 // hidden layer | added to new neuron

15 if

16 /[ added hidden layer
17 if

18 ends

19 // Not built the RDNN
20 t=t+1

21 end

4.4.3. Comparative Analysis of Previous Speech Separation and

Enhancement Work

Our evaluation would not be complete without comparing our results to previous work
in an efficient optimal reconstruction-based speech separation (ERSS) using a hybrid deep
learning technique. It contains these comparisons on different efficient optimal reconstruction-
based speech separation (ERSS) using mixed deep learning datasets, integral fox ride
optimization (IFRO) algorithm, RDNN and MATLAB tool, using the evaluation protocols and
metrics described in the respective papers. On our project page, you sometimes get qualitative
results from these comparisons. It's worth noting that these previous methods necessitate
training a separate model for each speaker in their dataset (speaker-specific), whereas we

evaluate their data using a model built on our general RDNN dataset. Despite never having
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heard these specific speakers before, our results are substantially better than those reported in
the original articles, demonstrating our model's great generalization capacity. We propose an
efficient optimal reconstruction-based speech separation (ERSS) using a hybrid deep learning

technique to overcome those problems.
4.5 Results and Conclusions

Tests were performed to evaluate the performance of the anti-supervisory control source or
filter model for speech separation. Benchmarks include Semi-supervised source or filter models
with variations in control usage (with or without controls, better control over the source or filter

sync control, control adaptation generated for sound isolation).
4.5.1 Dataset Description

For evaluation, TIMIT Corpus and Noisex-92 Corpus are used as voice and audio data,
respectively. TIMIT contains 10 sentences spoken by 630 speakers of 8 different dialect regions
of the USA. The NOISEX-92 contains 15 general types of sounds in a typical environment,
each about 4 minutes long. The NOISEX-92 has noise such as factory noise, F-16 noise babble
noise, etc. While mixing speech and noise, we randomly cut each NOISEX-92 noise utterance
into unique portions based on the time length of speech utterances to ensure that the various
components of each noise utterance are mixed with the clean speech utterances. These sounds
are mainly related to different everyday sounds, and they are also non-permanent. Nine types
for training DNMF, SNMF, CNMF for speech, 2000 words for speech-based sound, and 2,000
words for sound training. W1 and W2 were trained with 2000 words and phonetic pairs. Figures

4.3 (a-f) show speech basis spectra and noise basis spectra.
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d) e) f)

Figure.4.3: (a) Typical NMF, (b) Sparse NMF, (c) discriminative NMF (trained using the TIMIT
training database) found a collection of speech basis spectra. (d) TNMF, (€) SNMF, (f) DNMF (trained
with 9 noises from the NOISEX-92 dataset) identified a collection of noise basis spectra.

4.5.2 Simulation setup

This article provides a comprehensive summary of RDNN supported supervisory
speech separation. We reviewed the key components of the supervisory department: describing
learning machines, educational goals, vocal functions, representative methods, and reviewed
several related studies. DNN-based segregation and segregation issues were created as a
supervised study, which has dramatically elevated modern art to some linguistic tasks,
including moral language development, language disabilities, speaker segregation, and
continuous sound partition. This speedy improvement will lead to a rigorous combination of
domain awareness and data-based frameworks and the development of in-depth knowledge.

Beneath, we converse some of the ideological issues related to this perspective.

It is important to define appropriate training goals for learning and generalization in the
supervised conversation category. There are two categories of educational goals: mask-based
goals and mapping-based goals. Cognitive-based objects define the time-frequency relationship
for clean speech background interaction, while mapping-based objects relate to pure speech
spectrum representation. This section compares the RDNN methodology to four popular NMF
models: Typical NMF, Sparse NMF, Discriminative NMF, and Convolutive NMF.

4.5.3 Performance Metrics

As assessment estimations, we receive SIR, SAR, SDR, SNR, PESQ worth [-0.5, 4.5]
and a brief timeframe target clearness measure (STOI [0,1]). SIR, SAR, and SDR are free to
use and can be enrolled by the Blind source separation (BSS) Evaluation tool section to test
degrees of basis to impedance, antiquities, and mutilation. The SNR and PESQ scores
independently assess the degrees of the source to uncomfortable influence and target talk worth,
whereas the Short time objective intelligibility (STOI) assesses target speech coherence.
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Furthermore, we compare the SIR, SDR, SNR, PESQ, and STOI enhancements in terms of the

blend talk, as follows:

GSIR (s, s, x) = SIR (s, s) — SIR (X, s),

GSDR (s, s, x) = SDR ("s, s) — SDR (x, s),

GPESQ (s, s, X) = PESQ (s, s) — PESQ (x, 5),

GSNR (s, s, x) = SNR ("s, s) = SNR (x, s),

GSTOI (s, s, x) = STOI (s, s) — STOI (x, s),

(4.14)
(4.15)
(4.16)
(4.17)

(4.18)

Where GSIR, GSDR, GSNR, GPESQ, and GSTOI denote the gains of SIR, SDR, SNR,

PESQ, and STOI, respectively. Here's' is the pure speech, x is the mixture signals, and "s is the

divided speech. It is a method of weighing all grade measurements and test clips along their

length, the higher principle indicating better performance. Furthermore, simultaneous speech

and sound level spectrum prediction improves separation efficiency. On the one hand, sound

and noise levels can cover a large part of the spectrum and separate sounds. Preliminary studies,

on the other hand, show that the Weiner type filtering strategy can increase the overall

performance of RDNN much further. Compared to the earlier mask approximate RDNN, the

approximate spectral target provides several advantages.

Table 4.1 Various metrics using existing and suggested techniques

Models gSDR gSAR gSIR gPESQ gSTOI
Proposed ERSS 10.90 10.80 15.30 0.58 0.08
Joint-DNN-DNMF 9.90 10.40 14.60 0.54 0.07
Joint-DNN-CNMF 10.0 10.40 14.80 0.57 0.07
Joint-DNN-TNMF 10.1 10.50 15.00 0.57 0.07
Joint-DNN-SNMF 9.60 10.40 13.40 0.50 0.07
DNN-SPE-NOI-5 9.60 10.70 13.30 0.50 0.07
DNN-SPE-NOI-1 9.50 10.50 13.00 0.47 0.07
DNN-SPE-1 8.10 8.40 11.70 0.40 0.06
DNN-SPE-5 8.60 9.20 12.30 0.45 0.07
DNN-PSA-1 9.60 10.10 14.80 0.42 0.05
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DNN-PSA-5 9.60 10.20 14.50 0.45 0.05
DNN-IRM-1 8.50 10.60 10.90 0.45 0.06
DNN-IRM-5 8.50 10.80 11.40 0.44 0.06

Table. 4.1 show the different models like TNMF, SNMF, DNMF, CNMF, and proposed ERSS
using four execution estimations: gSAR, gSDR, gSIR, and gPESQ gSTOI. This phenomenally
owes to the joint undertakings of RDNN and IFRO. As indicated by one point of view, RDNN

can misuse spectra-standard structures of talk and change by taking in premise spectra from

tremendous unadulterated talk and blast. On the other hand, RDNN has strong demonstrating

limits in taking in the non-linear organizing from the obligation to target. The planned

combinatorial game-plan centers on the qualities of the pair RDNN and IFRO for the talk group.
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Figure. 4.4: Graphical representation of Speech Separation Performances of Various metrics using

existing and suggested technique
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Figure. 4.5: Graphical representation of gSDR matched and unmatched noise
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Figure. 4.6: Graphical representation of SAR matched and unmatched noise.
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Figure. 4.7: Graphical representation of gSIR, matched and unmatched noise
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Figure. 4.8: Graphical representation of gPESQ matched and unmatched noise

Figure. 4.5 to Figure.4.8 reports the cultivated presentations by Joint-DNN-TNMF,
SNMF, DNMF, CNMF with proposed RDNN for various sparsity models. From one viewpoint,
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RDNN can abuse spectra-common talk and clatter structures by taking in premise spectra from
enormous unadulterated talk and uproar. Of course, RDNN has strong showing limits in taking
in the non-linear arranging from commitment to objective. The projected combinatorial
arrangement considers the mutually RDNN and NMF for the talk segment. Although Kang-
DNN-NMF also abuses the characteristics of the pair RDNN and IFRO for talk division, the
IFRO indication and the RDNN measure of the authorizations are acted in an alternate or
channel way. This will incite a twofold screwup issue, and make the parcel logically fragile to
estimation mix-ups of RDNN. Hence, NMF achieves a more deplorable introduction than the

projected RDNN combinatorial models, particularly in matchless disturbance conditions.
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Figure. 4.9: Average gain in SDR: partition execution of a variety of partition prototypes at various input
SNR environments
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Figure. 4.10: Average gain in SIR: separation performances of a variety of partition prototypes at various
input SNR environments
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Figure. 4.11: Average gain in PESQ: separation performances of a variety of partition prototypes at

various input SNR environments
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Figure. 4.12: Average gain in STOI: separation performances of various partition prototypes at various

input SNR environments

Figures. 4.9 to 4.12 Different performance dimensions show specific and graphical
representations of previous technologies. Multiple Frames of Contextual Separation Target You
can see that in most evaluations, more than one frame of the separation target is exceeded. This
may be why RDNN is best suited to study temporary structures and structural objectives within
the separation goal. Compared to individual RTN models, RTN's IFRO's integrated model,
DNMF, SNMF, DNMF, and CNMF's integrated model can perform better than speech and

speech, so you can learn more about speech and speech.
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It is primarily reserved for the joint efforts of DNN and NMF. On the contrary, the
spectral-time structure of NMF speech and sound can be applied to the spectrum learned from
very pure speech and sound. DNN, on the contrary, has powerful designing technology for non-
map learning from input to target. The projected integration plan focuses on the strength of
DNN and NMF in sound separation. Kong-TNN-NMF uses both the functions of DNN and
NMF for voice partition, but the DNN evaluation of NMF references and functions is done
individually or on a tube-by-tube basis. This can lead to double error problems and sensitivity
to segregation DNN evaluation errors. Therefore, Kong-DNNNMF has lower performance than

the proposed integrated model, especially at unmatched sound levels.

4.6 Summary

In this proposed and completed part of the research work, the data consists of nosy
speech signals. The integral fox ride optimization (IFRO) integrated with retrieval-based deep
neural network technique has been applied and results have been obtained. It has been observed
that the results (performance evaluation metrics) are improved compared with existing works
as indicated in the graphs and tables. Experiments show that our proposed method achieves the
highest gains in SDR, SIR, SAR STIO, and PESQ outcomes of 10.9, 15.3, 10.8, 0.08, and 0.58,
respectively. The Joint-DNN-SNMF obtains 9.6, 13.4, 10.4, 0.07, and 0.50, comparable to the
Joint-DNN-SNMF. The proposed result is compared to a different method and some previous
work. In comparison to previous research, our proposed methodology yields better results.
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Chapter 5
Grasshopper Optimization-based Matrix Factorization
(GOMF) and Enthalpy based DNN (EDNN) for

multichannel source Separation

5.1 Introduction

For precise signal localization and separation in radar, sonar, and seismology applications,
array technologies have been widely used. Since narrowband signals are the major focus of the
applications, wideband signals require a generalization of the technology. The directivity
pattern of delay-and-sum beamformers is not constant across all wideband signals. Numerous
array designs have been suggested as a solution to this issue. Using general design theory as a
foundation, Ward presented a constant beam width array. Each microphone signal is treated
using a finite impulse response filter in this manner. Filter-and-sum technique is the name given
to it. These are reliant on the location of the target, the layout of the array, and they are
susceptible to noise signals. A narrowband adaptive beamforming approach was developed for
seismic data processing by Capon to address this restriction. Frost developed a wideband
adaptive beamformer that was used to filter each microphone signal in an adaptive manner.
Griffith and Jim introduced the generalized sidelobe canceller, an enhancement technique.

These strategies were well-liked by adaptive beamforming systems.

5.2. Proposed Method
Grasshopper Optimization-based Matrix Factorization (GOMF) and Enthalpy-based DNN are

combined to create a novel hybrid approach that is proposed in this chapter for multichannel
speech signal separation (EDNN). Before applying the short-term Fourier Transform (SDFT)
to the data stream, it is first applied to the multi-channel input signal. An STFT is used to
construct complex spectrograms with multiple channel composite waveforms. The fundamental
vectors of clean speech are then evaluated using a ranking-based GOMF approach. Then, to
distinguish between useful features like directional, spectral, and spatial features, the spatial
bearing of the target speaker is used. The spectrogram is then rebuilt using an enthalpy-based
deep neural network. Using the inverse STFT (iISTFT) activity, the retrieved yield signal is then
transformed back into the produced discourse spectrogram. The proposed strategy's general

layout is depicted in Figure 5.1.
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Figure 5.1: Block diagram of the proposed methodology
Figure 5.1 displays the general layout of the model being presented. The multichannel input
signal in this instance is put through STFT. In the sections below, the themes are thoroughly
explained;

5.2.1. Short Term Fourier Transform (STFT)

The multichannel input signal is the first step, followed by a fast Fourier transformation.
Complex spectrograms are produced by planning the multi-channel blend waveforms with an
STFT [31]. The STFT is a typical Fourier change expansion where the signs are time-varying

or non-fixed.

Z(y, £) = [ 2(y,).h"(y, — y).e ?"™dy, ()

In this instance, the window task is H(y), and the sign is Z(y), both of which are focused

at time y. Since the window work has only cut the sign near to time y, the Fourier transformation
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is used as a gauge locally at this time. The traditional method of computing the STFT makes
use of a fixed positive even window, h(y), of a specific form that is fixated on zero and contains
power.

We can create a spectrogram that resembles a conventional Fourier change and range.

Uy, ) =[2(y, 1) (5.2)

This technique is widely used when examining time-varying and non-fixed indicators. The
sign is divided into several smaller components by the spectrogram, and from each component,
a range is calculated. This data displays the locations and times of certain frequencies. The
multi-channel blend waveforms to complex spectrograms are planned using an STFT. The basis
vectors of noise and clear speech are then computed using the rank-based GOMF method. The

GOMEF idea is thoroughly explained in the following section;

5.3. Based on Grasshopper Optimization, matrix factorization
(GOMF)

GOA is relying on the skills and knowledge of grasshoppers. Here, an unique
hybrid technique for multichannel speech signal separation is integrated with Grasshopper
Optimization-based Matrix Factorization (GOMF). The whole description of the rank estimate

process is provided below;
5.3.1. Matrix factorization based on the GOMF:

Step 1: Scov, or spatial covariance matrix
If the scov function is a vector, it will provide a separate power value for each incoming signal,
which is presumed to be uncorrelated. If scov is an M-by-M lattice, it speaks to the entire
covariance matrix between all incoming signals as shown in the following mathematical
expressions:

_U(i,j)*N

SCM(i.1)= 7 oy

(3)

the letters U, I, and V stand for the input spectrum, inverse spectrum, and variance, respectively.
Here, U designates the spectrogram input as well as the spectrogram's inverse, while SCM 1 j)
designates the spatial covariance matrix.
Step 2: Initialization

Initialization is a vital stage for the entire optimization process. The multichannel input
signals utilised as input in this step are first chosen at random. The length of the grasshopper is

N if the overall magnitude of the multichannel input signal is N. The answer's indicator is
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grasshopper. The grasshoppers are meant to be arranged in the manner depicted in condition
(4), and image 5,2 shows the resolution in action.

G G Gip
Grasshopper, =| G,;, G,,....... G,p
Gnl an ------- GnD (4)

Initial solution format of OGOA

Si Sz S 5 Swooooe
G 1 L] 1 ] . 1
G2 0 0 1 1 | tevsnnan 0
(lﬁ 1 L] 1 0 | ssessnns 1

Figure 5.2: Solution representation for feature data selection with OGOA

Figure 5.2 illustrates the solution procedure for a sample multichannel input signal.
N=1,000,000,000 was used in this work (i.e., number of signals presented in dataset is
1000000). The grasshoppers are shown at random either 0 or 1. This indicates that user data
wasn't chosen for the classification procedure at the moment since a grasshopper's station is
zero [103]. Otherwise, the data are chosen for the categorization process if the answer is 1. The
purchased configuration is offered for the next phase, such as a fitness evaluation.

Step 3: Fitness Calculation

The best rank vector arrangement is then chosen once the fitness function has been looked at.
GOMF-controlled noise and signal Eigen values are both recognised by this technique. The
fitness function is usually used by optimization algorithms to discover the best configuration.

The fitness certification is an essential part of GOMF.

Fitnessi = — ! - - (5)
Noise Mean™ NoiseVariance

The fitness estimation of each person is evaluated and recorded for future use at the time the
first solution and opposing arrangement are developed. Condition is used to illustrate the
fitness function (5). We used a multi-target analysis that includes both noise mean and noise
variance in this. The use of (6 and 7) allows for the computation of noise mean and noise
variance.

sum of theterms (6)

Noise Mean =
number of terms
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ST (% —x)? (7)

n—1

Noise Variance =

Where "n," the number of observations, "Significance of the Particular Observation,” "Mean
Value of All Observations,” and "n" are pertinent concepts. The solution upgrade process is
already ready to proceed with the received results.
Step 4: GOMF based Updating solution

Use the Grasshopper optimization matrix factorization algorithm to adjust the
arrangement as needed after assessing your fitness. Using condition, we can modify the solution
(8). The grasshopper's circumstance or position can be mathematically described as follows:

X =5+G +A, 1=12..,N (8
Anywhere, the ith grasshopper interacts with society in away called S i, which can be expressed
mathematically as follows:

S, = >25(d,)dy, dy =% x| O

j=1i=j
The distance between the ith and jth grasshoppers is represented by d ij, whereas s stands
for the strength of the social forces function, which can be mathematically expressed as follows.

-y

S(y)=fe! —e” (10)
Where G | and A | are the gravitational force and wind direction, respectively, for the ith
grasshopper, and where the following mathematical equation can be used to express this

relationship:
N

Gi :—geg . A :ueAW (11)

As opposed to e g and e w, which stand for the unity vector to the centre of the earth and the
direction of the wind, respectively, g and u stand for the gravitational constant and constant
drift. Nevertheless, equation 11 could not be used directly to determine the solution to the
optimization problem, therefore we recast equation 12 as follows:

X; —

x=c( 3 crsix x4 Td(12)

J=Li#] le

Where, u — higher bound of the search space, [ — Inferior bound of the search space,

Td — Best solution value

Step 5: Termination criteria
The optimization procedure comes to an end once the best option has been found. After the
rank vector is estimated, features are collected for handling noise and locating signal Eigen

values. The parts that follow provide a detailed explanation of the idea that includes NMF.
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5.3.2. Normalization mean factorization (NMF)
Using the NMF process, a non-negative grid is declined into two nonnegative lattices, and as
UV = XY (13)
Anywhere one looks, one finds networks with K lines, N sections, and nonnegative
components. However, the following noise matrix can be used to describe the NMF model.
UV = XY +E (14)
calculations aimed at solving the NMF problem and assessing the matrices X and Y derived
from the UV objective matrix. They include trading assessment conditions for each lattice.
X <« arg m)gn CUV || XY) (15)
Y < ar inn CUV || XY)
The component in the kth row and rth column of matrix X, which is every member of matrix
W, is a distance measure between the matrices A and B given the constraints. There are
numerous "distance” measurements that can be used to evaluate C (V || XY), with the Euclidean
distance and the Gulbach-Leipler difference being just two examples. The Euclidean distance

is used to define C (V || XY) mathematically. c(uv || xY) = % UV — (XY) |2 (16)

Where F is the frequent rule and || || The multiplication update rule can be used to reevaluate
X and Y as shown below.

X« X ®[UVYT)g(XYY )], (17)
Y <Y ®[(XTUV)g(X T XY)],

Anywhere ® and ¢ designate element-wise multiplication as well as division,

respectively.

5.3.3. How to calculate the NMF rank:

In this, the fundamental vectors of clear speech and noise are evaluated using a ranking-

based GOMF technique. If we rewrite "model” in the following way:
UV =UV,+E (18)

Since all matrices X, Y, and = XY have nonnegative rankings, their ranks in the direction of R
are all identical. Because of this, the evaluation of a nonnegative position in a noisy
environment is inversely correlated with the evaluation of the number of premise vectors.
Regrettably, an NP-problematic topic is the surveying of the nonnegative position. Due of the
relationship between the rank and the nonnegative position, we prefer to evaluate the rank rather
than the nonnegative position (the framework rank is the lower bound of the nonnegative

position).
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It still requires more than R non-zero Eigen values if we suppose that the rank of is R, even
if R = (1/N) only implies R non-zero Eigen values because of X. As a result, the problem with
rank evaluation is due to the inability to distinguish between R signal Eigen regards in a noisy
environment, which can be solved by noisy head section inspection. The GOMF is a well-
known method for analysing model solicitation in the noisy PCA problem; it chooses the model
solicitation as the value that limits a threat work. Following rank evaluation and disturbance
elimination, the multichannel signal is given to the feature extraction stage, which may be

clearly illustrated as follows:
5.4. Extracting Features:

The multichannel signal is shown to highlight the extraction step after rank evaluation and noise
removal. The extraction of highlights is a critical step in signal characterisation. Distinguishing
a meaningful characteristic from a multichannel signal can be difficult. There are several
approaches for extracting elements. In this work, we take multichannel data and extract
highlights with extraterrestrial, spatial, and directional bases.

5.5 . Spectrogram reconstruction using an enthalpy-based deep
neural network (EDNN):

In contrast to earlier research, which solely relied on DNN, our study uses the Enthalpy
algorithm, which we just created and coupled with DNN. This is one of the cutting-edge
techniques we used in our research. The convolutional layer of the DNN receives the data
initially, which is then subjected to enthalpy, a max pooling layer, a fully connected layer to the

Softmax regressor, and a repetition of the procedure.

Input signals

Pad™
J—
W3

Softmax
Regressor

l
¥

Enthalpy
based
based
Comv2

Enthalpy

Convl

Max Pooling
Max Pooling

Figure 5.3: Structure of the envisaged EDNN

Figure 3 above depicts the suggested EDNN's design, which is utilised to rebuild the
spectrogram. Figure 3 shows the transfer of input signals to the enthalpy layer. Enthalpy starts

its process in response to the input signal. In order to reduce the representation of boundaries
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and calculations in the system, the max-pooling layer gets the output of the signals after it has
completed processing. Before continuing to conl, where it receives the signals with a clear
format, Max pooling processes the signals using a matrix or kernel. The signals are then sent
back to enthalpy, where they are handled by max-pooling before being transferred to con2. The
softmax regressor will receive the full signal from Con2 and forecast the outcome.
5.5.1. Convolution layer
The signals are retrieved in their original clear format by the network's primary layer using
a matrix or kernel. Recognizing the pixels aids in maintaining the connection between the
signal features. The spectrogram fields should be checked for the upcoming convolutional
layer operations. This layer satisfies the criteria set forth by equation (24). In any case, the
output of the convolution is referred to as the element map.

(24)
There is usually a filter, input features, and a certain amount of necessities. The output is the
yield vector. The subscripts denote the components of the vector.

5.5.2. Layer of normalization depending on enthalpy
Enthalpy-based standardization, the second layer of the network, essentially transmits the
indicators to a comparable area or along a specified path. Normalization, which involves
altering the signal with the aim of achieving a mean of 0 and a standard deviation of 1, is a
common example of a preset go. The process of normalization involves changing the range of
pixel force values. The enthalpy-based normalization calculation is carried out to widen the
scope of spectrum reconstruction. Using the conditions listed below, a quantitative illustration
of enthalpy-based normalization is provided.

H = DF +(SEF* SAF) (25)

EBN =H XL (26)

Xmax -X min

Where DF stands for direction feature, SEF stands for spectral feature, SAF stands for spatial
feature, and combined with are the minimum and maximum values in spectrum reconstruction

X. Where EBN is the enthalpy esteem based normalised or spectrum reconstruction.
5.5.3. Max-Pooling layer

The pooling layer reduces the system's representation of computation and boundary. Prior to
contributing to the next layer, the max-pooling layer, often referred as as the down sampling

layer, is used to reduce the dimensionality of the signal and the yield neurons.
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5.5.4. Fully connected layer
Since each neuron receives input from the previous layer, it is advantageous to produce as many
neurons as possible from those layers.
Softmax: This term is used to describe the various digits of the labels logistic regression's
assumption that there are many classes (0, 1).

exi

zleXi (27)

Wherever the network input is, EDNN is employed to categorise the input signals according

P

to the entropy value and to spot abnormal or wounded behaviour. Entropy-based deep neural
architecture was implemented in a particular sequence. It also has steps for planning and
changing boundary learning.

5.6 Pre-training stage

With the help of the DBN model, the association can produce observable authorizations
that reflect its convictions based on the conditions of its hidden units. In this situation, we solved
the aforementioned issue using the RBM.

A Restricted Boltzmann Machine (RBM) is a kind of prohibitive Markov self-assertive

field with two layers: one layer of stochastic covered (often Bernoulli) units and one layer

of stochastic clear (commonly Gaussian or Bernoulli) units. The DNN structure shown in

Figure 5.4 demonstrates how it employs a significant number of data neurons to address

the selected ideal characteristics and distinctive covered layers before gathering the

signals in the yield layer.

Step 1: The observable units, which suggest the selected features to the training vector,

are fundamentally introduced.

1 J | J

E(X! y):_ZZQij fsiyj _Zai fsi _Zﬂjyj (28)

i<l j=1 i=1 j=L
The predisposition word, which indicates the symmetrical collaboration between the
detectable component and the concealed component everywhere, describes the number
of visible and hidden components. The subordinate log probability of a weight
arrangement vector is fundamentally illogical. There are no direct effects between

covered units in an RBM, but it is incredibly easy to make a case for

p(yj :1| fsi)zé’[z i fg +ajj (29)

i=1

Anywhere ¢(x)signifies the strategic sigmoid capacity#, fsi,hjdenotes the
(L+exp(x))

unbiased sample.
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Step 2: In order to make the given visible and undetectable units equal, we update the
clear and hidden units. This shows how to conduct the stochastic steepest ascending in
the log probability of the arrangement data using a more straightforward learning strategy.
W = e(fsi Yj )data(fsi Y )reconstrumon (30)
Once the RBM is ready, a superior RBM can be "stacked" on top of it to produce a multilayer
model. communicates at this point about the updated weight as a result of the shifting load in
the hidden layer. In the last layer of the correctly arranged layers, a commitment to the novel

RBM is secured. Setting up an adjustment stage is the focus of the developed big association
burdens.
5.6.1 Fine tuning phase

It is rather common to employ back-spread computation for fine-tuning. To organise
system introduction, the DNN is often covered by a yield layer. Similarly, until the advanced
weight is mastered or improved, the training dataset is made available. Due to the potential
repercussions of missing any indicators along the layout, the DNN classifier is crucial. The
classifier in this instance uses the data to complete the procedure. An inverse STFT technique
is performed following spectrogram reconstruction. The concept of iSTFT is explained in more

detail in the section that follows.

5.7 Inverse STFT (iISTFT) operation

The extracted output signal is then created by converting the generated speech spectrogram

using the inverse STFT process. Finally, the extracted separated signal was acquired.
5.8 Results and Conclusions:
The suggested hybrid GOMF and enthalpy-based deep neural network for multichannel speech

separation. In this section, the newly proposed methodology is put to use in MATLAB on a
system with 6 GB of RAM and an Intel I-7 processor running at 2.6 GHz. Pictures of the iris,
which is a distinctive mark, are taken from the dataset and used to evaluate the accuracy and

capabilities of the approach.

Performance analysis of spectrogram
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Figure 5.4: (a), (b), (c), (d) Performance evaluation of the input signal from the spectrogram and (e), (f),
(9) (h) Performance evaluation of the signal from spectrogram reconstruction

As a result, Figure 5.4 illustrates the performance analysis of four spectrogram input
signals (a, b, ¢, and d). Four spectrogram reconstruction signals' respective performance
analyses are shown in Figure 5.4 (e, f, g, and h). Analysing the aforementioned figures, our
suggested changes produce better results. As you can see from the accompanying diagram, our
suggested strategy leads to better outcomes than pre-existing theories.
Comparative Results
The system is connected to the most recent DNN-JAT, RNN, and NMF-DNN algorithms. The
results are investigated using the SASSECOQ7 and SiSEC 2010 sets. The (long stretch) SNRs of
the signals in the noisy dataset range from - 6 dB to 9 dB. The relative investigation of the
current methods is shown in the accompanying tables 1 and 3. Examining voice signals and
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signal management strategies is what the speech signal does. As part of the speech processing
process, speech signals are gathered, managed, stored, transported, and created. VVoice synthesis
is the term used to describe the process of creating the information from speech recognition.
The four signals SGL1, SGL 2, SGL 3, and SGL 4 are used in this. SGL 1 denotes signal number
1, SGL 2 signal number 2, SGL 3 signal number 3, and SGL 4 signal number 4.
Table 5.1: Comparative evaluation of SASSECOQ7's data set
Methods -6dB -3dB 0dB 3dB 6dB 9dB
PROPOSED 23.1523  23.0523  19.0523 16.0523  11.0523 10.052296
DNN-JAT  17.51032 14.50032 13.50032 10.500317 7.500317 2.500317
RNN 12.5434  11.45434 8.454344 5.454344 2.454344 2.545656
NMF-DNN  11.49991 10.299912 7.299912 5.299912 1.299912 1.700088

In this situation, our recommended approach yields the most extreme result of -6dB of
24.0523, ranging from -6dB, -3dB, 0dB, 3dB, 6dB, and 9dB. According to the analysis, our
suggested technique performs better than the present outcomes.

Table 5.2: SASSECO7 Data Set: SDR, SIR, SAR, and PESQ Analysis

Methods SDR SIR SAR PESQ
PROPOSED 65.17269 81.31335 65.28133 4.107441
DNN-JAT 64.59602 80.84348 64.66359 2.829521
SeH RNN 63.78988 80.1175 63.89267 1.996385
NMF-DNN 23.79269 0.746314 21.11269 2.059962
PROPOSED 66.5279 84.42081 66.60005 4.03195
DNN-JAT 64.59602 82.84348 64.66359 2.829521
SeLe RNN 65.05929 82.44476 65.14301 2.14013
NMF-DNN 22.83533 1.677526 20.56635 1.656663
PROPOSED 66.59894 82.61139 66.71209 3.941679
DNN-JAT 65.72619 81.53611 65.8008 2.817636
SeLs RNN 65.00474 80.92769 65.0953 2.413042
NMF-DNN 24.36949 2.238257 22.32536 2.117426
PROPOSED 68.30567 84.39359 68.42121 4.352382
DNN-JAT 65.64417 81.72218 65.75984 3.461406
SeL RNN 64.09938 84.21401 64.14289 2.48984
NMF-DNN 22.75859 0.754332 20.08968 1.770753
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The SASSECO07 data set's SDR, SIR, SAR, and PESQ signal analyses are described in more
depth in Table 2 above. In this case, the effectiveness of three various existing methodologies—
DMF-DNN, RNN, and DNN—against four different signals is investigated. When analyzing
the features in the aforementioned table, our suggestion produces better outcomes. From Table
2 above, it is clear that our suggested strategy outperforms conventional beliefs in terms of
effectiveness. Near and to test the suggested Multichannel Speech Separation using crossover
GOMF and Enthalpy based Deep Neural Network; this can be sure to confirm the efficacy of
the earlier techniques. Figures 5 to 9 show the representation of the spectrum input signals,
reconstruction signals, SAR, SDR, SIR, SNR, and PESQ measurements for each dataset.
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Figure 5.5: SAR performance evaluation

go | Proposed [ RNN
[TIDNN-JAT [ INMF-DNN

Male Female Non-percussive Drums

10

Figure 5.6: SDR performance evaluation
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Figure 5.9: Analysis of PESQ score performance
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The performance analysis of SAR, SDR, SIR, SNR, and PESQ is shown in Figures 5.5 to 5.9,
respectively. PESQ is expressed as mean opinion scores (MOS), with a range of 0 to 5. The
higher the MOS, the better. The comparison of the proposed method with the DNN-JAT, RNN,

and NMF-DNN existing methods is shown in the above graph. Figure 10-14, when examined,
yields the best results in terms of SAR, SDR, SIR, SNR, and PESQ. Our suggested approach

yields better results when compared to other current solutions.

Table 5.3: Comparative analysis of data set SISEC 2010

Methods -6 dB -3dB 0dB 3dB 6 dB 9dB
PROPOSED 22.12368 19.12368 16.12368 13.12368 10.12368 7.123679
DNN-JAT 20.28293 17.28293 14.28293 11.28293 8.28293 5.28293
RNN 17.34285 14.34285 11.34285 8.342846 5.342846 2.342846
NMF-DNN 11.31751 8.31751 5.31751 2.31751 0.68249 3.68249

The presented system attains the extreme outcome of -6dB of 22.12368 ranging from -6dB, -

3dB, 0dB, 3dB, 6dB as well as 9dB. From the examination, visibly recognize that the presented

technique is enhanced than the current techniques.

Table 5.4: SiISEC 2010_Signal Analysis of SDR, SIR and SAR

Method SDR SIR SAR PESQ
PROPOSED 66.23178 84.69063 66.2942 4.341312
DNN-JAT 65.77422 82.55409 65.86636 3.048116
Set RNN 65.35931 81.53766 65.46658 2.612899
NMF-DNN 24.6071 0.67683 21.36052 2.089909
PROPOSED 66.08751 83.03069 66.18009 3.828596
DNN-JAT 64.10656 81.23423 64.19774 2.689591
SeL RNN 65.41014 82.38261 65.50194 2.767913
NMF-DNN 22.66986 2.860692 20.83926 1.461341
PROPOSED 65.83716 83.54766 65.91321 4.0997
DNN-JAT 65.40494 83.14233 65.47892 3.016585
SeLS RNN 65.39326 78.77577 65.59737 2.566589
NMF-DNN 22.69306 2.609322 20.78142 1.923716
PROPOSED 68.27951 79.65546 68.61231 4.259884
SeL DNN-JAT 66.39269 78.57407 66.61433 2.974225
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RNN 67.92532 77.67461 68.23352 2.621152
NMF-DNN 24.27491 0.697049 20.87947 1.590075

The signal analysis for SDR, SIR, SAR, and PESQ in the SiISEC 2010 data set is described in
Table 5.4 above. Four signals are compared in this study using three different existing
methodologies: DMF-DNN, RNN, and DNN-JAT. Our suggested modifications result in
improved outcomes when compared to the numbers in the aforementioned table. Table 5.4
shows that the proposed technology outperforms the currently employed techniques in terms of

results.
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Figure 5. 10: SAR performance evaluation
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Figure 5.11: SDR performance evaluation
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Figure 5.14: Analysis of PESQ Score performance

92



The graph up top compares the SAR, SDR, SIR, SNR, and PESQ of a proposed approach
against those of existing methods using the dataset SISEC 2010. Figures 10 to 14's analysis
shows that the proposed produces the highest SAR, SDR, SIR, and SNR. Compared to other
DNN-JAT, RNN, and DNN-NMF techniques currently in use, the one we propose performs
better.

5.9 Summary

Multichannel speech separation is one of the most difficult challenges at the moment.
Grasshopper Optimization-based Matrix Factorization (GOMF) and Enthalpy-based DNN are
combined and used for data sets (SASSECOQ7, SiISEC-2010) to obtain results for multichannel
source separation. The investigations findings demonstrate better performance when compared
with the existing results. It has been observed that the results (performance evaluation metrics)
are improved compared with existing works as indicated in the graphs and tables. Experimental
results show that our proposed approach accomplishes the most extreme SNR outcome of -6dB
of 24.0523. Comparable to the DNN-JAT, which achieves 18.50032. The RNN and NMF-DNN
had the worst SNR 13.45434 and 12.29991.
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Chapter 6

Krill herd-based matrix factorization (KHMF) and Score-
based Convolutional Neural Network (SCNN) for

Multichannel Source Separation.

6.1 Introduction

In a previous study, the hybrid Grasshopper Optimization-based Matrix Factorization
(GOMF) algorithm shows great potential in the Multichannel speech separation. However,
GOMF has a parameter initialization problem and leading to poor separation performance.
Instead, a joint creation of the GOMF model parameter approximation and source localization
delinquent. So that we proposed Speech Separation with Enthalpy-based DOA and Score-based
CNN. The current generation of automatic speech recognition systems can decode clear speech
quite well in relatively quiet surroundings, but their performance suffers greatly in loud
environments or when a voice signal is present that interferes with the speech signal. Humans,
on the other hand, are adept at recognizing combinations of speech signals that are produced by
two simultaneous speakers.

There are many techniques that have been developed to enhance voice recognition in the
presence of background noise or competing speech. Among them, the methods (1) multichannel
signal separation, also known as blind signal separation, and (2) computational auditory scene

analysis may show promise (CASA).
6.2. PROPOSED SYSTEM

This chapter suggests a technique for decoding multi-channel speech signals that
combines enthalpy-based DOA, KHMF, and score-based CNN. Determine the signal's STFT
first. The branch begins the subsequent phase by determining the enthalpy of the signal under
analysis. The change in space energy caused by DOA in each time interval is referred to as
enthalpy. The spatial energy histogram will be transformed by the GMM that determines the
enthalpy function at each time frame. The SCM model is parameterized by the enthalpy DOA
in the third step using the signal tracker's output as a basis. To calculate the tracked address,
use multi-channel KHMF. In the fourth step, useful features are extracted that correspond to
the spatial direction of the target speaker, such as directional features and spatial features. A
SCNN ratio based on the score will then be used to mask the spectrogram. In the method of

forming, the photo blocks are visible.
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In contrast, no specific prior knowledge is necessary for the multichannel signal separation
technique. It only makes use of statistical data from the multivariate data collected from a
collection of microphones, where variations in propagation delay might be significant. An
automatic speech recognizer can use the multichannel signal separation as a front-end to
separate the simultaneous speech signals into individual signals, thereby cancelling the cross-
talk for a particular speech signal. As a result, it is anticipated that it will enhance the target
speech source's recognition performance, as current automatic speech recognition systems are
very sensitive to cross-talk and perform significantly worse in this environment than they do in

environments with other types of background noise.

Multi-Channel Input Signal

N R o
N T
e VY

Frequeacy (H2)

2 0 04 0%

Figure 6.1: shows a block diagram of the suggested approach.

95



The offered model's schematic is shown in Figure 1. Multi-channel input signals are employed
in this case with STFT. These ideas are thoroughly explained in the following sections.
6.2.1. STFT

Multichannel input signals are received, and then the short-term Fourier transform is
applied. Through the use of STFT, complex spectrograms are created from multi-channel mixed
waveforms. The STFT, a distinct extension of the Fourier transform, is utilised when the signs

are variable or not fixed.

Z(y, 1) = [ 2(y) 0 (y, - y).e *™dy, (L)
Anywhere, Z(y) denotes the symbol, and h(y) denotes where the temporary work is located

within the y window. The Fourier shift serves as a local indicator at time y, the only time the

window truncates the sign. A fixed positive even window h(y), which needs to be zeroed out

and given a base, must be used in some way to calculate STFT. We can design the spectrogram

as using the Fourier transform and normal range.

U.(y, f) =2y, )f 2)

It is typically used to examine signals that evolve over time. The spectrogram separates

the sign into numerous smaller parts and estimates the range of each part, giving us knowledge
of the moment when several frequencies converge. In intricate spectrograms, it is used to plan
multi-channel mixed signals. The monitoring branch then begins by calculating the analysis
signal's enthalpy. Enthalpy describes how space energy changes with DOA in each time
interval. The spatial energy histogram is transformed into DOA measurements by the GMM,
which calculates the enthalpy function at each time frame. The definition of granularity is

provided in the following paragraph.
6.2.2 GMM:
The goal of the GMM [23] is to identify the mixture that most accurately reproduces the

multivariate Gaussian probability distribution of an input set. In this scenario, each time interval
will estimate the Gaussian model of the mixture of enthalpy that transforms the space energy.
To model the spatial distribution of the mixture, we advise utilising a mixture model as
opposed to searching for SRP peaks [24]. For each time frame of the guided response
performance, the Gaussian value was assessed independently (SRP). A DOA measurement
value (multiple directions of arrival) with mean, variance, and weight is created using the GMM
result parameter from the discrete spatial distribution acquired from the SRP. Sound hopping
across borders is the source of the noise in SRP. The use of GMM can lessen the effects of noise
if the measurement uncertainty in multi-channel speech separation can be represented by the

width of each peak provided by the Gaussian variance from e to h.
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The probability density function (PDF) of univariate Gaussian distribution [25] [26]

through mean 4 as well as variance &2 can be defined as follows;

S(O; u,0%) = iZ(e;ﬂ+i2ﬂ,02)

-~ (0-p+27)?% "’ (3)
o0 1 _ 5 5
= E —Uu o
i 2707

Where N(6; ,u,az) is a PDF of a regular Gaussian distribution, | is the GMM index of

27z multiples, and @ e [z, ~z]. Here, the GMM through weights 4, designed for every

Gaussian distribution k is well-defined as algorithm1;

Algorithm 6.1: EM-Algorithm for estimation of GMM

Input: Signal data S
Output: u

Initialize the 4, ,, and &2

Compute probability density function using equation(3)

/[First get the equation in E step

For t=1:T
Fori=1:Z
For k=1:K
nd, = . S(G s +27[’G|<2i)aki
Zk: Z.OO: SO kg +27,0)8y,
End
End
//Second go through the M step
For d=1:D
For k=1:K

2= 2= M O = 2)
PIEDISLLM

ot — L = 2= MO~ 1)
2= 2=
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Ay = ZZA =2 =,
End
End
Until converge reached the condition.

The above algorithm specifies the estimation as well as maximization of the GMM.

S(H;a,u,a2):zk:akiS(e;kaZﬂ,af) (4)

I=—00

Anywhere k in the entire quantity of Gaussians in the model as well as EM procedure

for approximating parameters {a,u, o’ } that exploit the log-likelihood

M k e
log L=>log > a, >.S(by; 1 +i27,07) (5)

d=1 k=1 i=—00
Is assumed in [25]. The parameter 6, indicates the standpoints of guidelines indices

d =1,...,M used to estimate SRP in (24).

6.2.3 Enthalpy based DOA:

The spatial energy histogram is then translated into DOA measurements in each time
interval using an estimated GMM of the enthalpy function. This can be written mathematically
as:

X = Xin

EBTF = (6)

mx Xnin
Ep = EBTF + [ (7)
Anywhere, x . along with x __ are the minimum as well as maximum values into ¢

measurements X, where EBTF is the enthalpy-based time frame.
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6.2.4 DOA Measurements by GMM:

For both time frames, Algorithm 1 operates discretely. In addition, the resulting means
via variances and weights are assessed as permuted DOA measurements. A combination of
Gaussians aiming at both time frames is obtained. The algorithm is currently unable to
distinguish between measurements in each frame that are brought on by real sources and those
that are due to noise. Enthalpy is used to explain the connection between the DOA and the space
energy of each period in this context. The spatial energy histogram is transformed into DOA
measurements at each time frame by the estimation of the enthalpy function. A spatial
covariance matrix model (SCM model), which is parameterized by DOA based on enthalpy, is
created once the DOA measurement results have been calculated. According to the signal, the
tracker outputs. In order to estimate the spectral model from the source in the direction
described in more detail below, use the multi-channel KHMF to represent the spatial behaviour

of the source in time;

6.2.5 Spatial Covariance Matrix Model:

The signal tracker output is used to define a spatial covariance matrix model [27]
parameterized by Enthalpy-based DOA. For each time frame point in this example, the SCM is
calculated. Both input channels' magnitude spectrograms are contained in each diagonal. The
disagreement and absolute value of (off-diagonal values) denote, respectively, the segment
variance and magnitude correlation among microphones for a time frame point. Combination
SCMs can be used to approximate the TF domain mixing in equations (2, 3).

s
Z H W%y, s (8)

s=1

/\

Where the source's optimistically valued magnitude spectrogram and the frequency domain
Room Impulse Response (RIR) SCMs are. Then, using the multi-channel KHMF to estimate
the spectral model of the source from the tracking direction as will be detailed below, the

obtained SCM represents the spatial behaviour of the source in time;

6.2.6 KHMF:

By modelling the grazing of krill populations based on certain organic and ecological
forms, KHA is a new meta-heuristic technique that can rationalise the population to address the
reproduction problem. This optimization algorithm's goal is to maximise herd density. Here,
matrix factorization is the foundation of the conventional krill swarm optimization approach.
The flow representation based on the krill population's matrix decomposition is depicted in
Figure 6.2. In the part after this, this procedure will be explained.
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Figure.6.2 The flowchart for krill herd-based matrix factorization algorithm

The next section will introduce the step-by-step process of the matrix factorization algorithm

based on krill swarmes.
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6.3 Krill Herd based Matrix factorization:

Step 1: Spatial covariance matrix (SCM):

Each input signal receives a separate power value if scov is a vector [28], which is likewise
regarded as unimportant. If an M-by-M network, then the full covariance matrix involving all
input signals is being discussed. The following is its mathematical expression:

U(i,j)*N

(9)

Anywhere; U — Multichannel input signals, U — Inverse multichannel signals, N
—>variance value. Here, SCM (i, j) stipulates the spatial covariance matrix, U stipulates the

multichannel input as well as stipulates the inverse of signals.

Step 2: Initialization
The population size, overall evolution number, and are the key KHA factors. The feature
value is represented by the krill herd in our proposed method. We obtain some sets of initial

solutions after initialising the values. The following steps receive these solutions.

Step 3: Fitness calculation
Estimate the fitness effectiveness rest on the equation (10) and select the best result.
Fitness = max PSNR (10)

Krill herd-based matrix factorization repeats the application of the first three movements while
also adhering to the search directives to increase the value of the goal function. Every individual
krill's mobility is controlled by three key mechanisms.
(a) Development initiated by other krill individuals,
(b) Foraging action,
(c) Random dispersion.
6.3.1 Development initiated by other krill individuals

Individual krill attempt to maintain increased thickness throughout this process, while the
rate of development of other krill affects the speed of each individual. To evaluate the motion-
induced effect, three impacts are used: the repulsive impact (x), the neighbourhood impact (y),

and the objective impact (z). For each individual m, this signal could be expressed as
Dy = &,D™ + 7,05 (11)

Where,
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é:m _ r(T:]urrent _I_é;rtnarget (12)

N
gr?]urrem = Z an I:)mn (13)
n=1
SRR Sl (14)
abs(P, - P,)+rand
F,—F
= ___n 15
mn F w _ F b ( )
target _ K bestF besthset (16)
m m m
Kbt = Z(random + MM J (17)
N _ —
En=2, Fon F”b x P =Py +2| random + Foestppest (18)
| F"-F° abs(P,-P,)+rand rex

D™ - Extreme induced signal or motion, %, - Inertia weight of the motion-induced
inside the range [0, 1], D° - Preceding induced motion of the m™ krill individuals,
F"and F°-The most horrible also the finest situation amid altogether the krill individuals of
the population, P,and P, -Current situation of the m" as well as the n entities, N - Amount
of krill individuals additional than the specific krill, M and M, - Amount of present iteration
in addition to an extreme quantity of iterations, Fn:’e“ -The best fitness value of the m™ and the
n™ individuals, P’ -The best-related position of the mt™ and the n'" individuals.

At this point, a parameter termed as sensing signal distance S, is utilized for the

distance amongst the individual krills as well as the neighbours also it is expressed by,

1 N-1
Sq=—) |[Fn—F, 19
6 =5 2/Fn =il (19)
Where N - Entire amount of the krill individual, F,, — F, -Position of the m" as well as

n™ krill.

6.3.2 Foraging action
This action is founded upon dual foremost factors. Originally the current food area, as
well as the second, is the data about the previous food area. For the m™ krill individual, the

foraging velocity can be spoken by,
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Foe' =S 6 + 2 Fon (20)

Where, 7, -Inertia weight of the foraging motion, F{=" and FY -Foraging motions of the new

and the old m™ krill

6.3.4 Random dispersion
To improve the populace variety random diffusion procedure is mostly measured as well as
it is spoken by,
Rom = BxRp™ (21)

Where, Ry - Maximum diffusion speed, s - Random directional vector lies amid [-1, 1].

Step 4: Updating the position

In this process, a single krill can potentially shift from its current position to one that is more
beneficial because to the random movement of induction movement, feed movement, and
propagation. The promoted placement of the mth krill individuals throughout t and also may be

associated by, as shown by the three investigated movements above.

P (t+At) =P (1) + At ddF;m 22)

Where, An n-dimensional judgment space in the Lagrangian model is used to express basic
KHA technique as shown below,

dP,
dt

= D+ REY (23)

Where D™ -the motion-induced through additional krill individuals, Fs, - foraging motion,

Rom -physical diffusion of the krill individuals
N
At=r) (UL, -LL,) (24)
n=1
Where UL, and LL,-Upper and lower limits, I, -Random number uniformly distributed

between 0 to 2. Based on the above method, SCM represents the spatial behaviour of the source
in time and uses multi-channel KHMF to estimate the spectral model from the source following

the direction.

Step 5: Termination criteria
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After finding the best solution, the optimization process ends. After the evaluation, the result
will be passed to the feature extraction step, which will be explained in detail below.

6.4 Feature Extraction:

At this point, actual features like directivity and spatial features are extracted based on the
speaker's spatial direction. Next, a convolutional neural network model estimated from the
spectrogram is used to mask it.

6.4.1 Feature extraction based on the directional feature (DF):

In this instance, we separate the target speaker using a neural spatial filter, a direct
function in a neural tissue model. The two-layer directional highlight can be effectively planned
and then incorporated into the creation of the conventional multi-channel voice segment in
accordance with the previous characteristics of the solid support. To get the target speaker ready
for separation, emphasise at the information level (for instance, the power spectrum and the
space allocated between channels).

Here, two new directions—directional power ratio (DPR) and directional signal-to-
noise ratio—are applied in consideration of the operating capacity of the universal fixed strip
forming machine (DSNR). Some static channels, such as the super cardioids static pillar before,
are intended and predetermined by way of, which imagine recovering sound sources as course
for reappearance canister. These channels are directed at, and receiver demonstration and a pre-
characterized bearing lattice are assumed. We can use the organising produce intensity of as a
functional assessment of the significant force from course given that we anticipate that these
immovable channels can stretch entirely about spatial detachment and that the numerous
speakers are not firmly located in the space. As the marker is a T-F receptacle overcome through

the sign from heading, the DPR can be calculated in this way and is classified as follows:
2
' () e, 1,
2
PO O

Somewhere; Y (t, f) is the polyhedral spectrum vector in binTF(t, f ). In addition, in most

DPR,, (t, f) =

(25)

radiation pattern design methods, each fixed spatial filter has multiple rejection regions. For

example, the signals near g, are well preserved by Wp(f ) but they are greatly attenuated by

Wk(f ) 6, €Q,. At this point, €2, is a set of directions, and its radiation pattern in the ¢

P
direction is zero. It can be precisely defined during the design phase of the beam-former. If the
address grid covers the entire space, DSNR can therefore be interpreted as the ratio of signal

power g, to the strongest interference:
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In this case, the directivity of DPR and DSNR can provide clues to distinguish the target speech

(26)

DPR, (t, f) =

from the interference.
6.4.2 Feature extraction based on the spatial feature (SAF):

We initially use cochlear gramme decomposition to separate the left and right ear signals from
among these spatial features [29]. In particular, a 64-channel gamma-ray channel that controls
a register with a focus frequency between 50 Hz and 8000 Hz by means of a proportionate
rectangular transaction rate scale divides the information mix. Each channel's power is
restricted to half-wave support, a track motion of 10 ms, and loop lengths of 20 ms. We omitted
the two primary binaural accents of ITD and ILD because the TF nameplate has a sampling rate
of 16 kHz and 320 models can be enumerated by binaural information prompts. ITD is built on
a common CCF between the left and right hemispheres, as the Lyr application obliquely

suggests.
Z k Xcm,l (k)xcm,r (k - Z')
\/Z  x2em, 19 \/Z xZem, r®)

XCM,L and XCM,R transfer the symbols of one side of the device and the right ear in

CCF(c,m,7) =

(27)

channel ¢ and freely group m under the predetermined parameters, and k records a sign instance
of a T-F unit. is between -1 ms and 1 ms. The CCF component for a test frequency of 16 kHz
is 33. To examine characters coming from various starting points, the CCF aspect is used as a
partial vector right away.

Another two-dimensional (2D) ITD will be implemented at this point. The CCF estimate
at the anticipated delay e in relation to the target speech head serves as the primary
measurement. The result is the highest CCF score, which measures the compatibility of the left
and right hearing aids and is used to decide which binaural decorations to use to reduce noise.
The usage provides suggestions for these two highlighted objectives. To identify directional
sources of scattered noise, the highly regarded CCF is employed. The least common CCF value
should be close to 1 for directional sound sources and close to 0 for diffuse sound sources. The
evaluation target's discrete speech and annoying noise, which are brought on by another source,
are directly resolved by taking CCF into account.
CCF(c,m,r j

(28)
max CCF(c,m,7)

ITD(c,m) :(
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In specific ILD associates towards the energy ratio in DP, and is determined under every unit
pair,

Z “om, 1)
ILD(c,m) =10log,, &= (29)

2
ka cm, r®

Overall, we may say that 2D ITD and 1D ILD make up each pair of TF blocks' space allocation.
To create a spatial component vector in the envelope, we connect each projection at the unit
level. The overall measurement value for each time window for a 64-channel cochlea is 192.
The extracted features will proceed to the following SCNN step after feature extraction. Next,
based on the neural network masking factor, convolution is used to estimate the spectrogram.

The following provides a thorough explanation of the convolutional network concept.
6.5 SCNN:

Three layers, including a convolutional layer, a clustering layer, and a fully linked layer, make
up the proposed SCNN. The weights and biases of the preceding layer influence the CNN
classifier's final judgement. The condition (26) and condition (27) of each layer, in turn, justify

these weights and biases.

AW, == X~ X € aw )
r" N, oW, (30

AB, =— X% LA (1)
n oB, (31)

WhereW, represents the weight, B, represents the bias, N signifies the layer number,

A signifies the regularization parameter, X represents the learning rate, N, represents the total

number of training samples, M represents the momentum, t represents the updating step, and

C represents the cost function. The CNN classifier includes various kinds of layers are as

follows,
() Convolutional layer: It contains several learned weighting matrices, so-called
filters, which slide on the input signal. In each convolutional layer, the performance of
the transmission layer is first checked according to various learning weight networks
called template filters. Operate linearly to output the layer. This layer uses condition
(30) to perform convolution of the input data and the kernel. The result of convolution
is also called an attribute map.

M-1
Ck = z ynhk—n
m=0 (32)
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Anywhere, Y, is the input featuresh is the filter and M is the number of components in

y and the output vector isC, .

(b) Pooling layer: This layer is called the down sampling layer. The clustering process
reduces the size of neurons emerging from the convolutional layer to diminish
computational intensity as well as avoid over-fitting. In this sense, the largest grouping
activity will select the most excessive stimulation in each component. Reduce the
number of output neurons. In addition, the grouping layer shortens the information in
the output of the convolutional layer.

(c) Fully connected layer: This level is completely related to each start of the previous
level. That is, this layer connects each neuron in the maximum combination layer with
all output neurons. The activation function used in this work corresponds to the

following:

Softmax: This function calculates the probability distribution of k output categories.
Therefore, the output layer uses the softmax function to calculate the input category

corresponding to normal or abnormal.

= € )
Zl € " (33)

Anywhere, X is the multichannel input signals that are, the output classes of SCNN are

P

extracted output signal. After restoring the spectrogram, perform the reverse STFT operation.

The next section will introduce the concept of iSTFT in detail. STFT inverse operation.

6.5.1 Inverse STFT (iISTFT) operation:

Finally, the STFT inverse operation is applied and used to modify the resulting speech
spectrogram. At the end of the extracted output signal, we get the extracted single signal.

6.6 Results and Conclusions:

The proposed multi-channel KHMF is used for speech separation using enthalpy-based
DOA and SCNN. In this section, the method introduced in MATLAB applies to a system with
6 GB RAM and an Intel 1-7 processor. The accuracy and performance of the method were
evaluated at 2.6 GHz, and Signals were collected from the data set.
6.6.1 General Assumptions:

In the experiment, we used 50 professional music recording datasets from SiSEC 2018
[30]. Here, clear language and diffuse noise are selected from the TIMIT corpus [31]. To test

the common p-dimensional situation, we used three real-time voice mixing and three
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microphones and 4 signal sources from SiSEC 2011 [32], level 3x5 (3 mixed signals-5 signal
sources), and Level 4x8 (4 mixed signals-8 signal sources). ) Random male and female voices.
In the 3x5 example, we mixed 5 audio sources, and in the 4x8 example, we mixed 8 audio
sources. Since there is no reliable information about the angle at which the source is placed in
the mix, we use our proposed method to estimate the DOA of the source.

6.6.2 Comparative Results:

In order to analyse the results using SISEC 2018 and the TIMIT suite, the proposed
system makes use of existing Directional Fuzzy C-Means (DFCM), Weighted Mixture of
Directional Laplacian Distributions (WMDLD), Flexible Audio Source Separation Toolbox
(FASST), and GaussSep algorithm (GS) methods. The comparative analysis of the suggested
and existing methodologies is shown in the accompanying tables 6.1 and 6.2. Each data set in
this instance has two blends. Male2, Male3, and Male3 are created from these two

combinations, as indicated below.
6.7 Comparative Analysis of Dataset SISEC2018:

Mixture Signal 1:
Table 6.1: Mixturel Data set SISEC2018 Analysis of SDR, SIR, and SAR

Methods SDR SIR SAR

PROPOSED 45.53 35.16 10.37

DFCM 06.54 15.81 07.43

Male2 WMDLD 06.51 17.62 07.29
FASST 06.18 10.86 08.44

GS 10.83 16.56 12.32

PROPOSED 27.31 37.88 10.57

DFCM 04.14 12.25 05.37

Male3 WMDLD 04.07 13.77 05.12
FASST 03.25 07.91 06.35

GS 05.64 11.53 07.29

PROPOSED 45.30 35.45 09.85

DFCM 09.39 18.55 10.06

Male4 WMDLD 08.69 19.78 09.21
FASST 07.63 10.98 10.89

GS 13.18 20.23 14.19
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Mixture Signal 2:

Table 6.2: Mixture2 Data set SISEC2018 Analysis of SDR, SIR, and SAR

Methods SDR SIR SAR

PROPOSED 25.92 33.88 07.97

DFCM 06.46 14.94 07.35

Male2 WMDLD 06.57 16.92 07.22
FASST 04.38 07.32 08.85

GS 10.83 16.56 12.32

PROPOSED 28.43 34.56 06.08

DFCM 08.23 16.35 09.16

Male3 WMDLD 07.80 17.7 08.81
FASST 07.57 11.91 13.37

GS 10.79 16.82 12.45

PROPOSED 25.95 34.52 08.58

DFCM 08.03 14.81 05.75

Maled WMDLD 05.77 16.61 08.81
FASST 04.66 11.91 13.37

GS 07.57 16.82 12.45

Tables 6.1 and 6.2 above display the analysis of SDR, SIR, and SAR signals in the SISEC
2018 data set. In this case, the multi-channel signal is compared to some state-of-the-art
methods, such as DFCM, WMDLD, FASST, and GS. For each set of data, the input signal with

the best outcome and the signal for spectrum reconstruction are shown below;

Figures 6.3 to 6.12 depict, respectively, the performance analysis of SAR, SDR, and
SIR. The above picture illustrates the strategies using the current DFCM, WMDLD, FASST,
and GS techniques. Numbers 3 to 12 are anticipated to have the highest SAR, SDR, and SIR

results. Our concept outperforms alternative approaches in terms of results.
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Figure 6.3: Performance analysis of input signal SISEC Mix1
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Figure 6.4: Performance analysis of input signal SISEC Mix2
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Figure 6.5: Performance analysis of Reconst signal SISEC Mix1
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Figure 6.6: Performance analysis of Reconst signal SISEC Mix2

Figures 6.3 to 6.12 depict, respectively, the performance analysis of SAR, SDR, and
SIR. The above picture illustrates the strategies using the current DFCM, WMDLD, FASST,
and GS techniques. Numbers 6.3 to 6.12 are anticipated to have the highest SAR, SDR, and

SIR results. Our concept outperforms alternative approaches in terms of results.
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Figure 6.7: A comparative analysis of SAR Mix1

111



15

R rroPOsSED I FASST
I DFCM i cs
[ JwwmbLD

SAR [dB]

Male2 Male3 Maled

Figure 6.8: Comparative analysis of SAR Mix2

The comparison between the DFCM, WMDLD, FASST, and GS methods and the SAR
mixes 1 and 2 is made from the aforementioned figures 6.7 and 6.8. The source-to-artifact ratio
(SAR) gauges a network’s ability to provide extraordinary superiority results without adding
more artefacts. Analysis of the aforementioned figures 7 and 8 reveals that our solution yields

more favourable outcomes.

i R FroroSED [ FASST
[ DFCM [ [
[ JwmpLD

Male2 Male3 Maled

Figure 6.9: comparative analysis of SDR Mix1
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Figure 6.10: Comparative analysis of SDR Mix2
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In the image above, the existing DFCM, WMDLD, FASST, and GS methods are
contrasted with the 6.9 and 6.10 SDR mixturel and mixture2. SDR is widely used in this context
as a general indicator of a source's audio quality. The most cutting-edge time- and frequency-
domain resolution is at odds with SDR (source-to-distortion ratio). In comparison to figures 6.9

and 6.10 above, our proposed yields superior outcomes.
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Figure 6.11: a comparative analysis of SIR Mix1
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Figure 6.12: a comparative analysis of SIR Mix2

Using the aforementioned figures 6.11 and 6.12, SIR mixturel and mixture2 are
compared to the present DFCM, WMDLD, FASST, and GS methods. The source of

interference ratio (SIR), as a result, is a statistic that demonstrates how well the algorithm can
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maintain the source of interest while eliminating other sources. Analysis of the aforementioned

figures 6.11 and 6.12 shows that our solution yields more favourable outcomes.

6.8 Comparative Analysis of Dataset TIMIT:

The current approaches CTF-MINT, CTF-MPDR, BP, and Unproc are connected to the
suggested system. Analyse the outcomes using the TIMIT kit. An analysis of the new method
and the old method is shown in the attached figure. according to the following;

Cepstral distance (CD) (dB), frequency-weighted segment SNR (FWSeg.SNR) (dB),
and log-likelihood ratio (log-LR) were the three evaluation criteria specified in REVERB
Challenge [27]. (LLR). In order to assess the voice source's performance in terms of separation,
we also employed the SDR (dB) and SIR (dB) in [34]. The difference between the estimated
value of the single reverberation signal and DE and the estimated value of the microphone input
signal should be calculated for each measurement. The lower the score, the better when
employing CD and LLR. In other words, a higher score is preferable. Results evaluation based
on the 1 and 2 metre distances are shown in Table 3 and Table 6.4.

Table 6.3. Evaluation results: distance is 1 m

SIR
Method SDR diff | diff CID diff | FWSeg.SNR | LLR
Proposed 81| 10.22 -0.54 2.32 -0.19
CTF-MINT 8.05| 10.18 -0.53 2.29 -0.19
CTF-MPDR 7.71| 10.02 -0.5 2.14 -0.17
CTF-BP 7.4 9.58 -0.47 2.09 -0.16
Unproc 5.71 5.77 -0.25 0.8 -0.12

Table 6.4. Evaluation results: distance is 2 m

SIR
Method SDR diff | diff CID diff | FWSeg.SNR | LLR
Proposed 7.54 8.67 -0.41 1.62 -0.18
CTF-MINT 7.48 8.62 -0.40 1.61 -0.18
CTF-MPDR 71.22 8.46 -0.38 1.51 -0.16
CTF-BP 6.79 8.02 -0.35 1.41 -0.16
Unproc 5.55 4.25 -0.16 0.6 -0.11
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Figures 6.13 to 6.21 illustrate, in turn, how the TIMIT dataset's comparative analysis of
SDR-based SNR, SIR-based SNR, PESQ-based SNR, TIMIT reconstruction signal SNR, SIR-
based NPM, and PESQ-based NPM is analysed using the current CTF-MINT, CTF-MPDR,
BP, and Unproc techniques. Analysis of figures 6.13 to 6.21 reveals that CTF-MINT, CTF-
MPDR, BP, and Unproc have the highest gains. In relation to additional common approaches,
our suggested achieves better results.

«10% Input signal
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Figure 6.13: a comparative analysis of TIMIT input signal Mix1

«104 Reconstructed signal
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Figure 6.14: a comparative analysis of TIMIT reconstruction signal Mix2
The performance analysis of the input as well as the spectrogram reconstruction signals

of mixtures 1 and 2 are shown in figures 6.13 and 6.14 above. When analysing the overhead
statistics, our suggested approach produces cutting-edge results.
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Figure 6.15: a comparative analysis of TIMIT input signal SDR based SNR
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Figure 6.16: a comparative analysis of TIMIT input signal SIR based SNR

Figures 6.15 and 6.16 illustrate the analysis' findings as a function of the input signal-
to-noise ratio from a combination of 4 microphones and 3 signal sources. There are two
configurations for noise, i.e., 10-5 and 10-1, as was already mentioned. Our concept delivers
better outcomes when compared to other existing techniques, suchas CTF-MINT, CTF-MPDR,
BP, and Unproc.
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Figure 6.17: a comparative analysis of TIMIT reconstruction signal PESQ based SNR

Figure 6.17 displays the reconstructed signal based on the Perceptual Speech Quality
Assessment's SNR spectrogram (PESQ). Here, the reverberation features are carefully assessed
using the perceptual evaluation based on the PESQ SNR measurement. PESQ should be
calculated for various sources while removing noise. When compared to figure 6.17, our
suggested solution produces better results. Our suggested approach is contrasted with the other
existing CTF-MINT, CTF-MPDR, BP, and Unproc strategies in this.
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Figure 6.18: a comparative analysis of TIMIT reconstruction signal SNR

The performance analysis of the signal generated from the spectrogram reconstruction
is shown in figure 6.18 above. The noise is being amplified if the input signal-to-noise ratio is
more than 5 dB. Effective noise suppression requires that the signal-to-noise ratio at the output
end always be higher than the signal-to-noise ratio at the input end. Our approach is contrasted
with the current CTF-MINT, CTF-MPDR, BP, and Unproc techniques in this case.
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Figure 6.19: a comparative analysis of TIMIT SDR based NPM

Figure 6.19 depicts the correlation between the NPM and the mixing outcomes of 4 and
3 microphones. Both of the delta settings have been examined, just like in the prior experiment.
Only the SDR indicator was examined. Our suggested strategy performs better than the other
CTF-MINT, CTF-MPDR, BP, and Unproc existing techniques.
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Figure 6.20: a comparative analysis of TIMIT SIR based NPM
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Figure 6.21: a comparative analysis of TIMIT PESQ based NPM
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Figure 6.23: Comparative analysis of computational time

Figures 6.22 and 6.23 above show a study of execution and computational times side by
side. The overall length of time that the process spends operating is known as the execution
time; this time is typically independent of the commencement time but frequently depends on
the input data. We frequently set deadlines for ongoing procedures, but we could also want to
set one for a one-off process. Calculation time is the amount of time needed to complete a
computation. The calculation time is inversely correlated with the number of rule applications
when a computation is represented as a sequence of rule applications. Here, the current DFCM,
WMDLD, FASST, and GS approaches are contrasted with our methodology.
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6.9 Analysis of proposed methods in comparison to related work

citations

Table 6.5 compares the suggested approaches with citations to similar works and lists
the test's SDR, SIR, and SAR values for various signals. The dataset SISEC2018 was initially
used in comparative analysis to compare the experimental outcomes of the proposed system
with those of the control group.

Table 6.6 compares the proposed methods with references to related literature, as well
as the corresponding SDR and LLR values for the test on various signals. The second dataset
from TIMIT compares the experimental outcomes of the proposed system. Tables 6.5 and 6.6
above demonstrate the comparison of the SISEC2018 and TIMIT datasets. The suggested
approach can produce better outcomes than the existing effort

Table 6.5: SiISEC2018 comparative analysis

Related work | Year Methodology Outcome

SDR SIR SAR

[36] 2020 DFCM 25.33 25.26 6.720

[37] 2019 MSS 25.53 25.16 6.302

[38] 2022 DGSS 15.43 25.46 6.223

[39] 2021 PSA 25.66 15.55 6.343

[40] 2021 ICASSP 25.44 15.44 8.552

[41] 2021 SESS 35.67 25.78 9.372

Proposed - SCNN 45.53 35.16 10.372

Table 6.6: comparative analysis of TIMIT
Outcome
Related work | Year | Methodology | SDR ) FWSeg.S

it SIR.diff | CDF R LLR
[42] 2019 TFMM 6.6 4.22 -0.34 1.42 -0.11
[43] 2020 CSS 6.5 5.32 -0.44 1.42 -0.13
[44] 2020 SS 7.8 6.62 -0.34 1.52 -0.16
[45] 2021 SSDL 7.1 7.22 -0.24 1.72 -0.13
Proposed - SCNN 8.1 10.22 -0.54 2.32 -0.19
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6.10. summary:

Multichannel speech separation is one of the most difficult challenges at the moment. KHMF
and score-based CNN are combined and used for data sets (TIMIT, SISEC-2011) to obtain
results for multichannel source separation. The investigations findings demonstrate better
performance when compared with the existing results. It has been observed that the results
(performance evaluation metrics) are improved compared with existing works as indicated in
the graphs and tables. The proposed SCNN method is calculated some performance measure
which as SDR, SIR, and SAR. The value of the parameters is 45.53, 5.16 and 10.372
respectively. Experimental results show that our proposed approach accomplishes the most
extreme SDR diff outcome of -5dB of 8.1. Comparable to the CTF-MINT, which achieves 8.05.
The CTF-MPDR and CTF-BP had the SDR diff worst 7.71 and 7.4. The Unproc had the very
worst SDR diff 5.71.
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Chapter 7

Overall Conclusion and Future Scope of The Work

This chapter outlines the contributions of proposed research work for single channel and
multi-channel source separation. In addition to the strength of research work that has been
carried out, few limitations have also been observed which may be taken up as future scope of

research.
7.1 Research findings of the thesis

The conclusions those have been discussed for each contribution are summarized as below:

In the method of TENMF for single channel source separation, the data consists of two
or more than the clean speech signals. The TFNMF integrated with SNDNN technique has been
applied and results have been obtained. Experiments show that our proposed method achieves the
highest gains in PESQ, STIO, SIR and SDR outcomes of 3.58, 0.7, 42 and 7.5 at -9 dB. It has been
observed that the results (performance evaluation metrics) are improved compared with existing

works as indicated in the graphs and tables.

In the method of IFRO for single channel source separation, the data consists of nosy
speech signals. The integral fox ride optimization (IFRO) integrated with retrieval-based deep
neural network technique has been applied and results have been obtained. Experiments show
that our proposed method achieves the highest gains in SDR, SIR, SAR STIO, and PESQ outcomes of
10.9, 15.3, 10.8, 0.08, and 0.58, respectively. The Joint-DNN-SNMF obtains 9.6, 13.4, 10.4, 0.07, and
0.50, comparable to the Joint-DNN-SNMF. It has been observed that the results (performance
evaluation metrics) are improved compared with existing works as indicated in the graphs and

tables.

In the method of GOMF and EDNN for Multichannel source separation, Grasshopper
Optimization-based Matrix Factorization (GOMF) and Enthalpy-based DNN are combined and
used for data sets (SASSECO07, SiSEC-2010) to obtain results for multichannel source
separation. Experimental results show that our proposed approach accomplishes the most extreme
SNR outcome of — 6dB of 24.0523. Comparable to the DNN-JAT, which achieves 18.50032. The RNN
and NMF-DNN had the worst SNR 13.45434 and 12.29991. The investigations findings demonstrate
better performance when compared with the existing results. It has been observed that the
results (performance evaluation metrics) are improved compared with existing works as

indicated in the graphs and tables.
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In the method of KHNF and SCNN for Multichannel source separation, KHMF and score-based
CNN are combined and used for data sets (TIMIT, SISEC-2011) to obtain results for
multichannel source separation. Experimental results show that our proposed approach
accomplishes the most extreme SDR dif outcome of - 5 dB of 8.1. Comparable to the CTF-MINT, which
achieves 8.05. The CTF-MPDR and CTF-BP had the SDR dif worst 7.71 and 7.4. The Unproc had the very
worst SDR dif 5.71. The investigations findings demonstrate better performance when compared
with the existing results. It has been observed that the results (performance evaluation metrics)
are improved compared with existing works as indicated in the graphs and tables.

7.2 Future scope

In the case of multi-channel source separation, sources may be mixed up with noise
(Stationary and non-stationary) and investigations may be done using suitable methods.
Supervised data sets have been considered in this work, but same methods may be extended for
unsupervised data sets also

Work may also be extended for all other varieties of audio sources such as musical

instruments sound sources mixed up with reverberations.
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