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ABSTRACT 

Speech signal processing has been one of the domains of research after the past one 

decade in signal processing. Research has taken new strides particularly during the past decade 

(Five to Ten years). In an environment where multiple speech signals are generated from 

different know or unknown sources, they may be mixed-up with various background noise 

sources, reverberations and interference, Accordingly the terms like target sources and blind 

sources may be used while dealing with them in such environment.  

Blind source separation (BSS) is one of the challenging problems in speech signal 

processing. When a single microphone is used to sense the sources, it is referred as single 

channel and when two or microphones are sensing it is called multichannel, but ultimately it 

may be of interest to extract/ enhance a single desirable speech signal reserving its quality 

related matrix and thus eliminating all the rest. The desirable speech signal may be termed as 

target sources and all the rest blind sources. The target sources may be masked by other 

interfering blind sources as well as corrupted by various background noise sources and 

reverberations hence blind sources separation is required for enhancement extraction of target 

sources. 

This work has been focused on development of optimized matrix factorization 

integrated with deep Learning methods for BSS. When the sources are very much limited, the 

problem of BSS will be simpler. However, when the sample size of sources is reasonably large, 

the problem will become complex. The methods proposed in this work deal with complex 

situations. In the proposed research problem one or more than one speech signal mixed with 

different types of WSS noise sources has been considered. 

This proposed research work consists of four contributions for single and multi-channel 

source separation. They are: 

i) Time-Frequency Non-Negative Matrix Factorization (TFNMF) and Sigmoid Base 

Normalization Deep Neural Networks for Single Channel Source Separation. 

Experiments show that our proposed method achieves the highest gains in PESQ, STIO, 

SIR and SDR whose numerical values are 3.58, 0.7, 42 and 7.5 at -9 dB. These obtained 

results are compared with those of existing works. 

ii) Integral fox ride optimization (IFRO) algorithm and retrieval-based deep neural 

network (RDNN) for Single Channel Source Separation. Experiments show that our 

proposed method achieves the highest gains in SDR, SIR, SAR STIO, and PESQ whose 

numerical values are 10.9, 15.3, 10.8, 0.08, and 0.58, respectively. The Joint-DNN-
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SNMF obtains 9.6, 13.4, 10.4, 0.07, and 0.50, comparable to the Joint-DNN-SNMF.  

These obtained results are compared with those of existing works. 

iii) Grasshopper Optimization-based Matrix Factorization (GOMF) and Enthalpy based 

DNN (EDNN) for multichannel source Separation. Experimental results show that our 

proposed approach accomplishes the most extreme SNR outcome of − 6dB of 24.0523. 

Comparable to the DNN-JAT, which achieves 18.50032. The RNN and NMF-DNN 

had the worst SNR 13.45434 and 12.29991. These obtained results are compared with 

those of existing works. 

iv)  krill herd-based matrix factorization (KHMF) and score-based convolutional neural 

network (SCNN) for multichannel Source Separation. Experimental results show that 

our proposed approach accomplishes the most extreme SDR dif outcome of − 5 dB of 

8.1. Comparable to the CTF-MINT, which achieves 8.05. The CTF-MPDR and CTF-

BP had the SDR dif worst 7.71 and 7.4. The Unproc had the very worst SDR dif 5.71. 

These obtained results are compared with those of existing works. 

All the proposed source separation models are evaluated for the mixed sources. The 

investigation has been carried out experiments are carried out with various data sets. The 

standard source evaluation objective parameters, such as signal to distortion ratio (SDR), signal 

to interference ratio (SIR), perceptual evaluation of speech quality (PESQ), short time 

objective intelligibility (STOi) and signal to artefacts ratio (SAR), are used for ensuring the 

quality of enhancement.  
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                                          Chapter 1 

Introduction 

1.1 General 

In the actual world, voice signals are recorded using a single microphone or a number of 

microphones and then transferred to computers for additional processing. Multiple microphones 

are obviously desired during the collection process, if the circumstances allow. In this situation, 

spatial cues can be kept and utilised as additional tools for deciphering mixed speech. If the 

target speaker is not predetermined, microphone arrays may not be advantageous in cocktail 

party settings with many sound sources. Even worse, there isn't always access to a setting that 

allows for numerous mics. When it comes to automatic speech recognition for radio broadcasts, 

utilising one microphone is frequently the only option. Since there is no location information 

available, voice activity in this scenario is sent and recorded through radio channels. The news 

anchor's voice is frequently distorted by background speakers. Teleconferences are another 

real-time use of speech recognition. 

If simultaneous speech is recorded and delivered to a speech recognizer, the accuracy is 

poor. Any modern recognizer finds the task extremely challenging when there are multiple 

interfering speakers present. The output of the recognition system is typically subjected to 

additional processing by these systems, including text-to-speech, dialogue systems, question-

answering, news summarising, and categorization. For all of these applications to attain a 

reasonable level of speech recognition accuracy, a good single-channel speech system is 

necessary because a low level of speech recognition accuracy could result in a substantial 

accumulation of errors (Daniel et al 2004, 2007) [1]. The issue of single and multi-channel 

speech recognition in interfering noise must be solved for these reasons, and it is crucial. 

The classic issue in auditory scene analysis is sound source separation. The difficult issue 

of extracting individual voice streams from a mixed signal of several speakers using single and 

multi-channel speech separation, in particular, has applications in reliable automatic speech 

recognition, speech augmentation, and other areas [2-12]. 

The voice signal has been improved utilising the minimum mean squared error (MMSE) - 

Short Time Spectral Magnitude approach by Wang et al. (2014) [13]. This method is used to 

determine starting parameters and the modulation spectrum for noise distortion. Comparatively 

speaking to the many other improvement methods, this improves the subjective quality of noisy 

speech across multiple acoustic domains. The Modulation Magnitude Estimator (MME) 
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parameters are used in several tests to optimise the enhanced speech quality while minimising 

noise distortion. 

1.2 Blind Source Separation 

In order to identify each signal element within the blending made up of numerous sensing 

units, the Blind Source Separation (BSS) method is generally used. It is referred to as blind 

because no information other than the combinations is employed. In a hall, for instance, a group 

of people is speaking, and microphones are being utilised to record the signals [14]. When one 

or more people are chatting at the same time, the electro acoustical sensor of each speaker 

records a variety of blending as the voice signals are logged for each person separately. 

Currently, BSS must finish the work of disentangling such blending from its original supply 

signals, which are the voice inputs of each individual speaking. It is challenging generally 

because of some complication issues [15]. 

1.3 Speech Mixture Generation 

The process of human communication known as speaking is generally used. The human 

auditory system can distinguish between the target sound and background noise interference. 

However, many disturbances like train noise, fan noise, crowd noise, etc., interfere with this 

communication. The separation of monaural speech remains one of the most difficult issues in 

speech processing, and numerous solutions have been put forth to address this issue. In order 

to improve speech that has been corrupted by additive non-speech noise, speech enhancement 

techniques make use of the statistical characteristics of the signal [16-22]. For voice 

improvement, noise reduction, and improving the quality and understandability of speech, 

various research activities have been offered. 

Two distinct speech signals produced by two different speakers of the same gender and 

a different gender are used as the system's input. The two speech signals are subjected to feature 

extraction, which includes pitch values, phase, angle, and fundamental frequency (F0). To 

create a combination of speech signals, both signals are mixed. For further processing, this 

mixed speech signal is employed. X[n] represents the speech mixture. Given that a[n] and b[n] 

are two distinct speech signals, x[n] is given as 

 

X[n]= aa[n] + b[n]        (1.1) 

It should be noted that the two voice signals are added together without being scaled in any 

way. 
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1.3.1 Speech Separation 

In order to solve the speech separation problem, a signal that contains a target source, 

an interference source, reverberations, and noise when it reaches the receiver must be separated 

out to achieve the desired speech source. Processing ought to keep the intended voice source 

and throw away the rest of the signal [23]. Given that there are numerous voice sources in the 

sound area, the target source could be any one of them or all of them. This stands out from the 

vast majority of single target source improvement problems, also referred to as the traditional 

speech denoising problems. 

1.3.2 Signal channel Separation Process  

Short-time Fourier analysis (STFA), where m' is the frame index, n' is the time sample 

index inside a frame, and 'k' is the index of frequency bins, is used to first decompose the 

combined speech X[n] into a two-dimensional time-frequency representation. Both of the 

parallel signal separation methods supported by the system—one based only on the 

fundamental frequency and the other on correlations of modulation frequency—use the same 

speech recognition and peripheral signal processing software. 

  Underdetermined blind source separation occurs when n < m. It is known as single-

channel blind source separation under uncertain conditions when n = 1. The instantaneous 

mixing model for single-channel underdetermined blind source separation is as follows: 

𝑦(𝑡) = ∑ 𝑎𝑖𝑒𝑖
𝑁
𝑖=1 (𝑡)          (1.2) 

1.3.3 Multi-channel speech separation  

When multiple speech signals are collected using a single microphone or when multiple 

speech signals are delivered through the same communication channel, the process is known as 

multi-channel speech separation. Many speeches processing applications, including automatic 

speech recognition, speaker recognition, audio retrieval, and hearing aids, can be considerably 

aided by such tasks [24-26]. In the forensics division, the speech mixture that was recorded 

along with the video capture can be divided into different speech signals and examined. 

The wave shape of the observed signal y(t) and the independence between the signal 

sources are employed in the blind source separation to get the estimated signal e* (t) as near to 

the signal source e(t) as feasible. Linear instantaneous mixing model is the mathematical 

representation of blind source separation [27-35]: 

𝑦(𝑡) = 𝑀𝑒(𝑡) + 𝑛𝑚          (1.3) 



4 
 

M stands for the mixing matrix in the equation, whereas m and n stand for the number of source 

signals and receiving antenna components, respectively. 

1.3.3.1 Application using BSS 

Blind source separation (BSS) is a signal processing technique used to separate 

independent signals from a mixture of signals. BSS has a wide range of applications in various 

fields, including: 

 Speech and audio processing: BSS can be used to separate different sources of speech 

or music from a mixed audio signal. This is useful in applications such as noise 

reduction, speaker separation, and audio signal enhancement. 

 Image processing: BSS can be used to separate different sources of images from a mixed 

image signal. This is useful in applications such as object detection and image 

segmentation. 

 Biomedical signal processing: BSS can be used to separate different sources of 

physiological signals, such as electrocardiogram (ECG) and electroencephalogram 

(EEG) signals. This is useful in applications such as diagnosing heart diseases and brain 

disorders. 

 Radar and sonar signal processing: BSS can be used to separate different sources of 

radar or sonar signals from a mixed signal. This is useful in applications such as target 

tracking and detection. 

 Financial data analysis: BSS can be used to separate different sources of financial data, 

such as stock prices and economic indicators. This is useful in applications such as 

portfolio management and risk analysis. 

Overall, BSS is a powerful technique that has a wide range of applications in various fields 

where it is necessary to separate independent signals from a mixture of signals. 

1.4 Research Motivation 

The input speech signal is frequently distorted by the ambient acoustic noise in many 

speeches processing applications, including speaker identification, speech enhancement, and 

speech recognition. This ultimately lowers the perceived quality and understandability of the 

speech, which lowers the overall effectiveness of the speech processing system. In order to 

improve voice quality and understandability for future processing, a speech separation 

algorithm serves as a crucial front-end component [36]. It will improve the overall performance 

of the speech processing algorithm if the desired speech signal is extracted from the acoustic 

sounds before processing. Due to the ease of installing a microphone, there may only be one 
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acquisition channel available in some real-world circumstances. However, the main drawback 

of single channel approaches is the lack of a reference signal to compare interference signals 

against. Because of this, it is difficult to quantify the power spectral density of the interfering 

speech using the multi-channel speech signals that are currently available. The reduction of 

artefacts in the processed speech is crucial, particularly if the recovered speech is intended to 

be used in machine-based applications like speaker identification and automatic speech 

recognition. 

1.5 Problem Statement 

Over the past decade, there has been substantial research in the area of speech separation 

from various noise sources and interference. The desired voice signal may be corrupted by noise 

in an additive or multiplicative way whose spectrum is constant. The desired single voice signal 

could also be joined by some additional interfering sources, such as multiple speech signals. 

All of them are commonly referred to as "blind sources." The prerequisite is the suppression or 

cancellation of noise, as well as the separation of all sources of unwanted interference—aside 

from the intended voice signal—from one other. This improvement is accomplished by 

separating blind sources. In the area of the problem indicated above, several scholars have tried 

a few different approaches. The works stated in chapter 2 that have been modified or used 

unique techniques to increase the quality of the augmented speech signal. Modifications to 

techniques like TF, NMF, and deep learning testing models are used in this research. Both 

single-channel and multi-channel speech separation techniques are taken into consideration in 

this research. 

 

 

1.6 Motivation 

The speech separation issue is the focus of this thesis in both single- and multi-channel 

scenarios, both supervised and unsupervised. According to this fundamental premise, the 

original signal will be handled as a mixture in which both the desired and undesirable speech 

signal components are present. The suggested approaches will be used to improve the recorded 

mixed signal, maintaining the required components and deleting the undesirable ones. The 

target speech source is the desired component, whereas background noise, reverberation, and 

interfering speech sources make up the undesirable component.  
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The second chapter contains a detailed description of the contributions made by 

numerous researchers. For source separation in single channel and multi-channel environments, 

a variety of strategies have been put forth by various scholars. Despite the fact that NMF-based 

techniques produce superior outcomes, rank estimation remains a significant challenge for 

modern NMF systems. The use of approximation signals to increase the training data set and 

over-smoothing are noted to be two long-standing problems with single-channel speech 

separation. Additionally, when many signals are separated from their superposition recorded at 

different sensors in multi-channel environments, problems such as insufficient separation and 

voice distortion mitigation have emerged. Finding the eigenvalues of a noise signal in a 

multichannel situation is a similar task.  

A two-fold mistake occurs when each activation is carried out separately, making the 

deviation more susceptible to errors in Deep Neural Network approximation. As a result, the 

problem of the spectral overlay at the beginning of a dialogue or commotion is lessened and 

discriminative grounds are created. On the other hand, there are still several issues, including a 

lack of robustness and inadequate separation accuracy. In order to increase performance 

parameters like SAR, SDR, SIR, SNR, and PESQ, we must thus present novel methodologies 

based on the deep learning idea in order to address the aforementioned issue. 

 

 

 

 

 

 

 

 

 

 

 

 

1.7 Proposed system flow 
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The thesis' main goal is to offer some input into the design and implementation of a 

reliable and improved single channel and multi-channel speech separation system in a clean 

and noisy environment with reduced time complexity, which can be used in practical 

applications for hard of hearing people and in forensic departments to identify the speech 

recorded in public places. The suggested separation system's framework is depicted 

schematically in Figure 1.1. 

 

Figure :1.1 Propose framework of Speech Separation System 
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Both single channel and multi-channel speech signal separation are goals of the study 

activity. In the proposed work consist of four modules, in first two module focused only on 

single channel speech separation using neural network and also last two module is implemented 

in multi-channel speech signal with hybrid neural networks. which is, 

 Module 1: To categorise single-channel source segmentation using sigmoid-based 

normalisation in addition to deep neural networks with time-frequency non-negative 

matrix factorization is one of the study's primary goals. 

 Module 2: To enhance the training data set's quality by employing a hybrid deep 

learning approach in a single channel environment to extract low-level texture 

information from each spoken signal. 

 Module 3: Using Optimization with Matrix Factorization and DNN to categorise a 

multichannel voice input. 

 Module 4: To classify an audio signal using a novel hybrid approach that uses a 

convolutional neural network (SCNN). 

Module 1:  

The two steps that make up the suggested system are listed below. The training phase 

comes first, and the testing phase follows. The testing stage employs a single-channel multi-

talker input signal, whereas the training stage uses a single-channel clean input signal. This 

distinction between the two testing and training phases allows for more accurate comparisons. 

The input signals from these testing and training phases are sent to the short-term fourier 

transform (STFT). When extracting features from spectrograms created by STFT, which 

transforms input clean signal into spectrograms, TFNMF is the approach used. Utilizing the 

SNDNN classification algorithm after feature extraction, the classified features are then 

converted to softmax. Then, ISTFT utilises softmax to appropriately separate speech signals.  

 

Module 2:  

Conventional single-channel speech separation has two long-standing issues. The first 

issue, over-smoothing, is addressed, and estimated signals are used to expand the training data 

set. Second, DNN generates prior knowledge to address the problem of incomplete separation 

and mitigate speech distortion [37]. To overcome all current issues, we suggest employing an 

efficient optimal reconstruction-based speech separation (ERSS) to overcome those problems 

using a hybrid deep learning technique. First, we propose an integral fox ride optimization 

(IFRO) algorithm for spectral structure reconstruction with the help of multiple spectrum 

features: time dynamic information, binaural and mono features. Second, we introduce a hybrid 
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retrieval-based deep neural network (RDNN) to reconstruct the spectrograms size of speech 

and noise directly. The input signals are sent to Short Term Fourier Transform (STFT). STFT 

converts a clean input signal into spectrograms then uses a feature extraction technique called 

IFRO to extract features from spectrograms. After extracting the features, using the RDNN 

classification algorithm, the classified features are converted to softmax. ISTFT then applies to 

softmax and correctly separates speech signals. Experiments show that our proposed method 

achieves the highest gains in SDR, SIR, SAR STIO, and PESQ outcomes of 10.9, 15.3, 10.8, 

0.08, and 0.58, respectively. The Joint-DNN-SNMF obtains 9.6, 13.4, 10.4, 0.07, and 0.50, 

comparable to the Joint-DNN-SNMF. The proposed result is compared to a different method 

and some previous work. In comparison to previous research, our proposed methodology yields 

better results. 

Module 3: 

In real environments, room reverberation and associated sounds frequently degrade 

speech transmission. This study focuses on decoupling objective speech signals from 

multichannel input sources under reverberant circumstances. This work presents an effective 

method for multichannel speech signal separation utilising a new hybrid technique that 

combines Grasshopper Optimization-based Matrix Factorization (GOMF) with Enthalpy-based 

DNN in order to address all the current shortcomings (EDNN). 

This research proposes a narrative classification framework that includes the phases of 

STFT, GOMF-based rank estimation, identifying signal Eigenvalues, noise reduction, feature 

extraction, and classification in order to forecast and remove the undesirable noise from the 

multichannel input signal. The multichannel mix waveforms are first planned using STFT to 

create complex spectrograms. The evident speech signals and noise are then estimated using 

GOMF. Important features are extracted after the estimation. Spatial, spectral, and directional 

features serve as the foundation for feature extraction. A deep neural network based on enthalpy 

is used to recreate the spectrogram in order to achieve improved classification results (EDNN). 

 Finally, using inverse STFT, transform the generated speech spectrogram back into the 

retrieved output signal. According to experimental findings, our suggested method achieves the 

highest extreme SNR result, a -6dB of 24.0523. comparable to the 18.50032 achieved by the 

DNN-JAT. The worst SNR values were 13.45434 and 12.29991 for the RNN and NMF-DNN. 
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Module 4 

Multi-channel speech separation (SS) is the process of isolating a multi-channel 

speaker's voice from the simultaneous speaker's overlapping sounds. Visual modalities have so 

far demonstrated considerable promise for multi-channel speech separation. It is addressed how 

to separate multiple signals from their superposition when they are recorded at several sensors. 

The use of a novel hybrid method combining enthalpy-based direction of arrival (DOA) and 

krill herd-based matrix factorization (KHMF) to segment multi-channel speech signals, as well 

as Convolutional neural network (SCNN) estimation, are some of the solutions this article 

suggests to address any current drawbacks. First, determine the input signal's short-term Fourier 

transform (STFT). The tracking branch then starts to determine the signal's enthalpy after signal 

analysis. The spatial energy based on DOA in each time frame is known as enthalpy. The spatial 

energy histogram is converted into DOA measurements by the Gaussian Mixture Model 

(GMM), which also calculates the enthalpy function at each time frame. The output of the signal 

tracker is used to determine an enthalpy-based spatial covariance matrix model with DOA 

parameters [38]. Utilize multi-channel KHMF to calculate the source's spectral model and 

spatial behaviour over time from the tracking direction. Effective qualities like directivity and 

spatial features are then extracted based on the target speaker's spatial direction. Utilize the 

relation masking function of the score-based convolutional neural network (SCNN). The 

extracted output signal is converted from the generated speech spectrogram using the STFT 

(iSTFT) procedure. According to experimental findings, our suggested method achieves the 

most extreme SDR diff result, which is -5dB of 8.1. comparable to the CTF-8.05 MINT's score 

The SDR diff for the CTF-MPDR and CTF-BP were 7.71 and 7.4, respectively. SDR diff 5.71 

for the Unproc was the worst possible. 

NMF is used to understand the important spectrum of speech and sound, whereas DNN 

is used to assess the essential spectrum's function. The NMF hypothesis and functional 

assessment are combined with DNN to comprehensively reproduce clear sound and sound 

within the compound. The combined strains of DNN and NMF are improving the performance 

of the voice department. We suggest a different optimization range with interval control to 

suppress excessive noise. This reduces the residue of isolated speech and noise and dramatically 

improves GSIR performance. Models can stop high interactions and outperform comparative 

models with very low-cost hand tools and defects. Production models can use spectral structures 

based on speech and sound, while in-depth study models study complex linear graphs of 

distinguishing objectives through silent and supervised learning. 

The latest approach since optimizes training formal speech segmentation, in which 

different modes of speech, speaker, and background sound are studied from training data. 
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Several supervised separation systems have been proposed. The in-depth learning methods used 

for supervised speech separation increased the rate of progress and increased the separation 

efficiency. Also, reliable assessment of time-frequency masks from the conversation is 

challenging, especially when there is room echo in the mix.  

We propose an efficient optimal reconstruction-based speech separation (ERSS) to 

overcome those problems using a hybrid deep learning technique.  

 First, to compute the signal's STFT and computing the enthalpy of the signal.  

 Second, propose an integral fox ride optimization (IFRO) algorithm for spectral 

structure reconstruction with the help of multiple spectra features: time dynamic 

information, binaural and mono features.  

 Third, introduce the Deep Neural Network (RDNN) based on a hybrid search to directly 

reproduce the speech and voice level spectrogram. RDNN can instantly improve the 

partitioning range and minimize accumulated errors. 

 • The GMM, which calculates the enthalpy function for each time frame. The monitored 

address is estimated using multi-channel KHMF, and the enthalpy DOA is utilised to 

parameterize the SCM model. 

 • Following that, the spectrogram speech separation will be muted based on the SCNN 

score. 

 Finally, we implement the proposed design in the MATLAB tool, and the performance 

of the proposed system is compared with the existing state-of-art techniques. 

1.8 Contribution  

When several speakers are speaking at almost the same time, speech separation is used 

to highlight each speaker's mixed-language discourse. It is helpful in speech-related systems 

because it can denoise, extract, and improve speech signals. In recent years, a variety of 

techniques to distinguish human voices from background noise and other noises have been put 

forth. The use of approximation signals to increase the training data set and over-smoothing are 

two long-standing problems with traditional single-channel speech separation. Inadequate 

separation and voice distortion mitigation have also become a problem. Single-channel source 

separation with Time-Frequency non-negative matrix factorization, sigmoid-based 

normalisation deep neural networks, and an effective optimal reconstruction-based speech 

separation (ERSS) method using a hybrid deep learning technique have all been developed to 

address all identified challenges.  

The technique of separating the voice of a multi-channel speaker from the overlapping 

audio of a simultaneous speaker is known as multi-channel speech separation. Difficulties 
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emerge when several signals are separated from their superposition captured at distinct sensors. 

Despite the fact that rank estimation presents a significant challenge for modern NMF methods. 

This is comparable to the challenge of determining the eigenvalues of noise signals in a 

multichannel situation. A two-fold mistake occurs when each activation is carried out 

separately, making the deviation more susceptible to DNN approximation errors. As a result, 

the problem of the spectral overlay at the beginning of a dialogue or commotion is lessened and 

discriminative grounds are created. On the other hand, there are still several issues, including a 

lack of robustness and inadequate separation accuracy. Thus, in order to get around the 

aforementioned drawbacks, this research paper suggests an effective method for multichannel 

speech signal separation using a novel hybrid approach that combines enthalpy-based DNN 

(EDNN) and grasshopper optimization-based matrix factorization (GOMF). This method 

addresses all of the aforementioned drawbacks. In order to anticipate and eliminate unwanted 

noise from multichannel input signals, this research suggests a classification framework made 

up of STFT, GOMF-based rank estimation, signal eigenvalue identification, noise reduction, 

feature extraction, and classification. In addition, a unique hybrid technique that segments 

multi-channel speech signals using enthalpy-based direction of arrival (DOA), krill herd-based 

matrix factorization (KHMF), and SCNN estimation has been developed. 

1.9 Database details 

We utilised certain data sets available for free from the CHiME database [39] as the 

noise signal and the WHAM database [40] for the single channel speech separation. 

Additionally, we used voice and audio data from the TIMIT Corpus [41] and Noisex-92 Corpus, 

respectively. 10 phrases from TIMIT were delivered by 630 speakers from 8 distinct American 

dialect areas. Each of the 15 general sound kinds found in a normal setting on the NOISEX-92 

lasts for roughly 4 minutes. Factory noise, F-16 noise, chatter noise, and other sounds may all 

be found on the NOISEX-92. To guarantee that the different components of each noise 

utterance are mixed with the clean speech utterances, we arbitrarily split each NOISEX-92 noise 

utterance into distinct pieces based on the temporal length of speech utterances. These sounds 

are primarily analogous to other common noises and are likewise transient.  

In addition, several datasets that may be freely downloaded from the SASSEC07 

database for the multi-channel speech separation. The four courses of source signals—four 

female voice sources, four male speech sources, three non-percussive music sources, and three 

music sources with drums—each with a 10 second period and 16 kHz investigation are used to 

construct the advancement information. In addition, we made advantage of 50 datasets of 

professional music recordings from SiSEC 2018. Here, the TIMIT corpus is used to choose 
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examples of clear language and diffuse noise. We utilised three real-time sound mixing mics 

from SiSEC 2011, level 3x5 (3 mixed signals–5 signal sources), and level 4x8 to examine the 

typical p-dimensional scenario (4 mixed signals-8 signal sources). many voices, both male and 

female. We combined 5 audio sources for the 3x5 example and 8 audio sources for the 4x8 

example. 

1.10. Hardware Tools  

Speech separation is done in this research using MATLAB on a system with 6 GB of 

RAM and a 2.6 GHz Intel I-7 CPU. A programming environment for algorithm creation, data 

analysis, visualisation, and numerical calculation, MATLAB is the language of technical 

computing. It is the top maker of software for mathematical computation. Millions of engineers 

and scientists use MATLAB on a global scale to analyse and develop the technologies and 

systems that are altering our world. The matrix-based MATLAB language is the most natural 

language for communicating computer mathematics in the world. Data may be easily viewed 

and analysed thanks to built-in graphics. On a desktop environment, learning, exploring, and 

experimentation are simple. 

1.11 Structure of The Thesis 

The rest of this thesis is organized as follows: 

Chapter 1 highlights the issues with speech separation on a single channel and many channels. 

Chapter 2 gives a brief overview of the numerous problem-solving strategies that are 

frequently documented in the literature. 

Chapter 3 Given that Single-Channel Source Separation is currently the most difficult 

challenge, this chapter proposes a revolutionary Time-Frequency non-negative matrix 

factorization and sigmoid base normalisation deep neural networks. According to the 

investigation's findings, the suggested method is preferable to the conventional strategy. 

Chapter 4 In order to provide effective optimization-based speech separation, this chapter 

suggests an original RDNN-based speech/filter model (ERSS). The results of the investigation 

demonstrate that the proposed method is superior to the established one. 

Chapter 5 In this chapter, we provide a technique for decoupling multichannel speech signals 

that combines Grasshopper Optimization-based Matrix Factorization (GOMF) with Enthalpy-

based DNN. The experiment's findings will demonstrate that the technique we've suggested is 

preferable to established practises. 
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Chapter 6 The separation of sound sources with time-varying mixing quality induced by 

speech separation is an important research topic for enabling intelligent audio systems in real-

world operating environments, and it is covered in this chapter. Multi-channel speech 

separation, enthalpy-based DOA, and score-based CNN estimation are all topics covered in this 

chapter (SCNN). Experimental results demonstrate the superiority of this approach over 

conventional practises. Compare the results to a number of proven subjects and algorithms, 

such as BP, CTF-MINT, CTF-MPDR, and Unproc techniques. 

Chapter 7 Finally, a conclusion is offered, along with recommendations for further research. 
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Chapter 2 

Literature review 

2.1 Introduction 

Speech is the primary means by which humans exchange information. Speaker and 

speech recognition is a common investigative technique that is only employed in everyday life. 

For many speech processing applications, speech separation serves as the fundamental 

framework. The system's performance suffers significantly when there are competing speaker 

signals present in the input mixture. The separation of mixed voice signals has been regarded 

as a significant and fundamental topic, with a wide range of applications in telecommunications, 

audio and speech signal processing, and medical signal processing. These are just two examples 

of the potential applications for audio and voice separation systems. Other applications include 

automatic speech recognition (ASR) in noisy environments and multimedia or music analysis, 

which purposefully combines information from multiple sources. Single-channel speech 

separation (SCSS) and multi-channel speech separation are the two types of speech separation 

systems (MCSS). A speech augmentation system is another name for SCSS. Source separation 

techniques can generally be categorized into two groups based on the acoustical configuration, 

the number of microphones, and the number of speakers: over-determined, where the number 

of microphones is higher than or at least equal to the number of unknown speakers, and under-

determined, where it is lower. 

This thesis' primary objective is to separate speech mixtures utilizing a single 

observation captured with a single microphone for both single channel and multi-channel 

speech separation. Research on multi-channel voice separation utilizing several microphones 

has already produced some astounding results. 

Humans are capable of accurately and easily separating mixed signals, as seen by day-

to-day existence. A machine cannot, however, perform such precise separation with ease. The 

single-channel separation problem is solved without the use of a reference signal, in contrast to 

the multi-microphone separation scenario. 
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2.2 Single-channel speech separation strategies 

The key to the speech separation strategy is to model the process after the human 

separating mechanism, which is then mirrored in machine forms. The cocktail party effect 

describes how frequently in our daily lives we hear noises that are not isolated but rather 

combined with a noisy backdrop, such as traffic, crowds, radio, and television noise, depending 

on the surrounding circumstances. The target voice and the background noise can be 

distinguished by humans. However, as a system, it will be able to detect mixtures of various 

voice signals with varying time and frequency. Single channel speech separation is the process 

of isolating a particular needed speech signal from background noise or from a combination of 

speech signals when a single microphone is employed to record the speech mixture. One step 

in the speech separation process is single channel speech separation, often known as multiple 

input one output system (MISO). The SCSS problem can be solved using a variety of methods, 

including general signal processing approaches, computational auditory scene analysis (CASA) 

approaches, blind source separation (BSS) approaches, and model-based approaches. 

General signal processing and CASA-based approaches are unsupervised approaches 

among the methodologies listed above because they look for features in the observation signal 

that can distinguish between speech signals and other signals. Contrarily, the BSS and model-

based techniques are supervised approaches since they rely on sources' prior knowledge that 

was learned during a training phase. 

Musicians frequently employed the harmonic model for single channel source 

separation. Michael Stark et al. (2011) [42] provide the Long Frame Associated Harmonic 

Model (LFAHM) to distinguish the two voice sources from a single channel. Through the use 

of harmonic frequency, this method solves the short time window overlapping issue. The pitch 

was estimated simply and precisely using the autocorrelation technique. Additionally, this 

method eliminates unvoiced portions from the mixture and surpasses the harmonic model in 

terms of SNR and quality. It produces improved accuracy in mixture separation and doesn't 

require any prior information of the speaker. However, this method cannot handle two or more 

unvoiced signals at once. 

Monaural source separation was handled by Mohammadiha et al. (2013) [43] in a mixed signal 

containing voice and piano components. The energy of FM transmissions is determined using 

the discrete energy separation algorithm (DESA). A time-varying filter is developed in the time 

frequency domain to remove the interfering signal. In order to estimate the FM signal energy, 

instantaneous signal qualities that are limited in both time and frequency are used. 
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2.3. Deep learning techniques for single channel speech separation 

DNN was utilised by Tae Gyoon Kang et al. [44] to map the data vector and related 

encoding vectors. Source separation, DNN training, and non-negative matrix factorization 

(NMF) training are the three stages of the suggested methodology. DNN-NMF performs better 

than earlier NMF-based approaches, although it is less adaptable. 

Shuai Nie et al. [45] first proposed a DNN and Nonnegative matrix factorization (NMF) 

combination for speech separation. NMF first learns the spectra of the voice signal before 

reconstructing the signal and noise levels. The original speech content is preserved while the 

noise is removed using discriminative training with a scarcity constraint at a very low cost in 

terms of distortions and artefacts. 

Time-varying masking is used to separate noise from speech input and handle channel 

mismatch. Once the system has been trained on clean data, A. Narayan et al. [46] suggested 

employing the diagonal feature discriminant linear regression (dFDLR) adaptation technique 

for the deep neural network and HMM for noise-resistant voice recognition. When dFDLR is 

trained on noisy log-Mel spectral characteristics, the best results are obtained. A number of 

scenarios, including clean, noisy, clean + channel mismatch, and noisy + channel mismatch, 

have been used to train the system. The system's flaw is that WER rises as a result of noise and 

channel mismatch. 

For the deep neural network used for blind speech separation, Zhong-Qiu Wang et al. 

[47] recommended combining spatial and spectral data. A two-step Chimaera ++ network is 

used to analyse the temporal frequency dominance in order to determine the direction of the 

interested user. It works well with ASR that has several speakers. It performs poorly in 

environments with increased noise and reverberation, according to an experimental analysis of 

the RIR database. 

Due to two major problems, the mixer's speaker counts and the speakers' positioning in 

relation to the target and masker speakers, speech separation is difficult. In order to address 

these problems, Yi Lue [48] investigated the use of the Deep Attractor Network (DANet) to 

project the time-frequency properties of mixed signals in high dimensional embedding space. 

The attractor (reference) point has a variety of effects on speaker clustering. Speech separation's 

permutation and speaker number issues are diminished by the attractor and permutation issues 

of DANet. 

The speaker separation technique using text-independent speaker identification was 

examined by Nguyen Nang An et al. [49]. In order to learn speaker characteristics that can 
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handle variable length segments, CNN variations such as residual neural networks (ResNets) 

and visual geometry group (VGG) nets are used. CNN receives the log Mel's spectral properties. 

After the CNN layer, which generates input for subsequent layers of a predetermined length 

and concentrates on the discriminancy in the speaker characteristics, this structured self-

attentive layer is used. The success of the system in a number of areas, including speaker 

authentication, speech emotion identification, and speaker diary, will be the next area of focus 

for this project. 

For end-to-end time-domain speech separation, Y. Luo et al. [50] developed a 

completely convolutional time-domain audio separation network-based deep learning 

technique (Conv-TasNet). Conv-TasNet produces a representation of the speech waveform that 

may be used to identify individual speakers with a linear encoder. Several masks (weighting 

functions) are incorporated into the encoder output to separate the speakers. A linear decoder 

is then used to convert the updated encoder representations back into waveforms. By stacking 

one-dimensional dilated convolutional blocks, the building blocks of a temporal convolutional 

network can mimic the long-term relationships of the speech signal while yet having a small 

model size. With further advancements in its accuracy, speed, and computational cost, 

automated speech separation may one day become a standard and essential component of all 

speech processing technology. 

A phase-sensitive goal function based on the signal-to-noise ratio (SNR) of the 

reconstructed signal was created by H. Erdogan et al. [51]. utilising a target function based on 

signal approximation. Performance has also been found to be enhanced by recurrent networks 

that are deeper and more dynamically accurate. Future prospects look good when language 

model information is more tightly integrated into speech separation and target phase prediction 

is used instead of the noisy phase. 

A neural separation network with a clustering-based embedding was proposed by J. R. 

Hershey et al. Future research should focus on expanding training on datasets with a larger 

variety of audio formats and relevance to other fields like picture segmentation. In order to 

achieve end-to-end training for signal reconstruction quality for the first time, Y. Isik et al. [53] 

improved and expanded the deep clustering framework by extracting an embedding of 

spectrogram segments and estimating a mask for the separation component. The baseline 

system performance is first significantly enhanced by the authors by introducing better 

regularisation, a wider temporal context, and a more intricate architecture. This yields a 10.3 

dB improvement in signal to distortion ratio (SDR) over the baseline of 6.0 dB for two-speaker 

separation and 7.1 dB for three-speaker separation. 
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A innovative technique for detaching a mixed audio sequence—a sequence in which 

several voices are speaking at once—was reported by E. Nachmani et al. in [54]. The novel 

approach makes use of gated neural networks that have been trained to split voices at various 

processing stages while preserving the speaker's stability in each output channel. The model 

with the greatest number of speakers is picked to estimate the actual number of speakers in a 

given sample, and each conceivable speaker count is represented by a distinct model. 

The Hungarian approach, developed by Dovrat, S. et al. [55], substitutes the PIT loss 

and provides an ideal resolution to the permutation problem with a notably reduced temporal 

complexity, enabling the training of separation networks for a large number of speakers. Next, 

we offer a brand-new network architecture that uses stacked dilated convolutions before each 

pair of MulCat blocks. Even when writers make the permutation issues appear to be less 

challenging, complex designs still exist. 

For speaker-independent multi-talker voice separation, Nasir Saleem et al. [56] 

presented a supervised binary classification strategy based on the DNN. In order to attempt 

larger efficiency gains of the proposed approach, we are committed to including the phase 

information in the upcoming work. 

2.4 Separating multi channels of speech 

A multi-channel speech separation is used to separate more than two voice signals sent 

over the same communication channel. According to past studies, the procedure is only deduced 

for two speaker. The algorithm may be expanded to accommodate many speakers. The 

between-cluster and within-cluster matrices can be expanded to accommodate many speakers. 

Iterative estimations can be used to calculate the energy ratios between different speakers. 

Quicker decoding approaches have been adopted because multi-talker settings become 

exponentially more difficult as the number of speakers increases. 

In the current multi-channel speech separation technique, numerous microphones are 

employed to record the different speech signals. Hence Supervisory phrases are incorporated 

into the use of several microphones. However, if the speech combination is recorded using a 

single microphone, it is not possible to do so. The identical procedure taken unsupervised is 

always challenging. Several speech channels that were recorded in both a clean and noisy 

setting are separated from a single mixture using a hybrid vector quantization-based heuristic 

clustering algorithm (HVQHCA). Initial division of the input mixture into voiced and unvoiced 

speech fragments occurs by the algorithm. To extract different pitch values, spoken speech 

chunks are separated into segments. These pitch values are separated into numerous clusters for 
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diverse speakers using a dynamic clustering technique and the Silhouette value. Each 

individual's voiced segments, unvoiced segments, and complements of each voiced segment of 

the other individuals are all mixed into a single stream to generate the separated speech. The 

separations at the coarse and fine levels make the separated speech more accurate. 

By using a simple pitch extraction technique for multi-speaker speech, Yi Luo et al. 

(2018) [57] revealed the potential for utilising the pitch information accessible from temporal 

processing for spectrum analysis. The fine weight function for the residual is derived by 

ascertaining the instants of desired and undesired speakers. The combined weight function of 

temporal processing is made by fusing the fine and gross weight functions. The degraded speech 

LP residual is multiplied by the combined weight function to get the enhanced residual. The 

time-varying all-pole filter made from the degraded speech is excited by the boosted residual 

to produce the temporally processed speech. 

For the blind source separation of three speech samples in a real-world room 

environment, John R Hershey et al. (2016) [30] created a hybrid technique. Information-

theoretic methods and the de-correlation technique are both used to provide superior source 

separation with quick convergence. The method is straightforward, computationally efficient, 

and intended for instant use. Additionally, no prior parameter estimation is required. It also 

used an innovative post-separation speech harmonic alignment to improve separated voice 

quality in a real-world situation. Minhas et al. concentrated on separation techniques for clear 

speech signals without considering background noise. 

For speaker diarization, unsupervised speaker clustering has been proposed to divide 

similar voice segments into a number of speaker groups (Keisuke Kinoshita et al 2018) [57]. 

Prior to fine-tuning the segment borders throughout the re-segmentation process to obtain a 

final diarization hypothesis, the traditional techniques frequently performed speaker clustering 

on some initial segmentation. The author made use of the reference limits listed to determine 

the initial speech/non-speech boundaries. Using an iterative optimization strategy that alternates 

between clustering and re-segmentation until the diarylation hypothesis converges will yield 

better results if the number of speakers needs to be estimated. The iterative Variational Bayesian 

Expectation-Maximization-GMM clustering method finds a global optimum solution. The 

iterative optimization procedure recalculates the number of speakers using better-crafted and 

cleaner speech segments.  

Y.-X. et al. (2013) [54] used a multi-channel system to enhance voice signals captured 

by scattered remote microphones in a car scenario. Each possible speaker in the car has a 

specialised directional microphone nearby that receives the corresponding voice signal. The 
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system creates an output signal in a hands-free phone conference call for a far-end 

communication partner and gets rid of the annoying crosstalk components from interfering 

sound sources that occur in multiple different mixed output signals because it's possible that 

other hands-free applications will be running concurrently. Through the use of a distinct signal 

processing block for interfering speaker cancellation, the crosstalk components of unwanted 

speech are eliminated. As part of the signal improvement, residual crosstalk and background 

noise are also diminished. Four speakers placed inside the automobile's interior and 

dynamically configured for a car setup are affected by a range of noise levels. 

In order to combine BSS and noise suppression, Richard Lyon et al. (59) took use of the 

sources' sparseness in a short time frequency domain. A probabilistic model is used to improve 

the system by simultaneously suppressing the noise and separating the speakers in the event of 

active multiple speakers. This model takes into consideration the possibility of additive noise 

and captures the spatial information of the multi-channel recording. The estimation of source 

activity and the estimation of model parameters are the E and M steps, respectively, of the EM 

technique. The multi-channel adaptive filters are employed to remove noise and interference 

signals using spatial information. 

2.5 Deep learning for multi-channel speech separation 

Wang et al [60].'s deep clustering framework combined spectral and spatial data to 

better efficiently utilise the complementary spectrum and geographical information. By using 

phase difference features in the input, we can improve the predicted time-frequency masks by 

including both spatial and spectral information in the embeddings that deep clustering networks 

generate. Future studies will focus on combining the recommended approach with 

beamforming methods. 

Compared to our earlier approach, Chen et al [61].'s innovative architecture for speech 

separation and multi-channel beamforming performs this combination more well. The 

suggested architecture is made up of a set of fixed beamformers, a beam prediction network, 

and a speech separation network created via permutation invariant training (PIT). The input 

beamformed audio signals are used by the beam prediction network to forecast the ideal beam 

for each speaker in the input mixture. PIT-based speech separation networks are presented in 

two different forms. We will eventually expand our research to include multi-talker voice 

recognition, and since it has been demonstrated that this method is more productive, we will 

jointly train each component more than once rather than just once. 
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A novel speech separation method was presented by Perotin et al. [62], and Perotin et 

al. [62] demonstrated the method's effectiveness using HOA materials. The calculation of a 

GEVD multichannel Wiener filter uses LSTM-based mask estimation. We want to assess the 

system's robustness to small inaccuracies in the projected DoAs in a subsequent investigation 

given the DoAs. 

The deep learning-based multi-channel speaker separation technique developed by 

Wang et al.[63] makes use of both spectral and spatial data. The basic idea is to identify unique 

speakers using an augmentation network, allowing them to be distinguished from an 

approximated direction and with respect to specific spectral properties. To determine the 

speaker's direction of arrival, we only use the time-frequency (T-F) units that the target speaker 

dominates (DOAA two-channel permutation invariant training network that considers spectral 

and inter-channel phase patterns at the input feature level is used to assess the speaker 

dominance of each T-F unit. Tightly integrated beamforming, based on T-F masking, also 

makes use of the magnitudes and phase created. The combined training of the PIT and the 

augmentation network, the investigation of additional categories of spatial information, and a 

closer connection with beamforming techniques are just a few of the areas that could be the 

focus of future study. 

A brand-new end-to-end mechanism for multi-channel speech separation was put forth 

by Gu et al. [64]. A proposed integrated neural architecture that separates speech into 

waveform-in and waveform-out components is the initial step. The traditional STFT and IPD 

are then reformulated by the authors as a function of time-domain convolution with a chosen 

custom kernel. Third, we made the fixed kernels learnable, allowing the architecture as a whole 

to be taught from scratch and fully data-driven. 

Transform-average-concatenate (TAC), a straightforward technique for number-

invariant multi-channel speech separation and end-to-end microphone permutation, was 

proposed by Luo et al. [65]. Before concatenating the output from the second stage with each 

of the output from the first stage and transferring it to a third sub-module, the ATAC module 

first translated each input channel feature using a sub-module, averaged the outputs, and then 

passed it to another sub-module. For each channel, the first and third submodules were shared. 

TAC can be considered a set-based function that is guaranteed to employ all of the data in the 

set while generating overall judgments, regardless of the permutation or quantity of set 

components. 

Gu et alintegrated architecture.'s for learning spatial features directly from the multi-

channel speech waveforms was developed in an end-to-end speech separation framework [66]. 
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It is capable of learning useful spatial cues from the multi-channel speech waveforms in a 

completely data-driven manner. To achieve adaptive spatial filtering, this method makes use of 

time-domain filters that cover a variety of signal channels. These filters are built with the help 

of a 2D convolution (conv2D) layer, and the speech separation objective function is utilised to 

completely data-drivenly change their parameters. In order to calculate the inter-channel 

convolution differences (ICDs), we use a conv2d kernel that we created in part by drawing 

inspiration from the IPD formulation. It is anticipated that the ICDs will offer the spatial 

information necessary to distinguish between directed sources. 

Gu et al. [67] introduced a unique multi-channel TSS framework that exactly imitates 

cRM estimation in the complex domain using a complex deep neural network (cDNN) with a 

U-Net topology. This framework was carefully constructed to make the most of temporal 

spectral-spatial data. 

An ADL-MVDR framework that may be customised and used for multi-channel, multi-

frame, and multi-channel multi-frame target speech separation tasks was proposed by Zhang et 

al. [68]. The proposed ADL-MVDR system solves the numerical instability problem that arises 

in traditional neural mask-based MVDR systems during cooperative training with neural 

networks by relying on RNN-predicted filtering weights. The ability of the suggested ADL-

MVDR systems to generate practically any nonlinear distortions with minimal residual noise 

suggests the systems' aptitude to achieve the greatest objective scores (reflected by lowest 

WER). The disadvantage of the new ADL-MVDR system is that it needs more processing 

power than earlier, neural mask-based MVDR systems. Li et al[69] .'s three-step audio-visual 

multi-channel speech separation, dereverberation, and identification technique completely 

takes into account visual information. Future studies will improve the integration of the 

separation, dereverberation, and recognition components. 

 

2.6 Methods for Blind Source Separation  

There have been a number of time domain and frequency domain methods for single 

channel source separation presented. The time domain approach may encounter convergence 

problems and a significant workload if noisy chats are recorded in a noisy, busy environment. 

This is because numerous parameters must be examined. In contrast to the time domain, the 

frequency domain can simplify complex valued instantaneous blends for each frequency bin. It 

has substantially easier calculations and faster convergence than the time domain. 
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In order to retrieve the original source signals, a statistical method known as blind 

source separation searches for instantaneous mixes of a collection of source signals. The 

assumption behind BSS is that the mixing process must be linear. The BSS problem is 

frequently solved using independent component analysis (ICA) (Kevin et al. 2009) [70]; its 

extension necessitates that the sources be statistically independent of one another. The ICA 

approach to BSS generally seeks to invert the mixing process (de mixing) for recovering the 

original components by obtaining a linear transform of the mixes so that the recovered signals 

are as independent as possible. 

To overcome the constraint of having a limited number of observations and to resolve 

the single channel source separation issue, some studies had used underdetermined BSS 

approaches (Benesty et al 2008) [38]. With these techniques, supplemental information is 

typically used to address the problem (such as a priori understanding of the statistical models 

of the sources). 

Signal processing research has long been interested in the BSS problem. Strong 

principal component analysis and ICA are two examples of conventional BSS approaches. A 

potent BSS framework called non-negative matrix factorization divides data into activations 

and templates, or spectral templates and temporal activations for spectrograms (NMF). NMF 

presupposes that the data are not negative. Unsupervised BSS has drawn a lot of interest 

recently. Numerous unsupervised BSS techniques are covered in this section. 

The variational auto-encoding-based single-channel blind source separation system 

developed by Neri et alnovel. [71] outperforms conventional techniques while automatically 

choosing the appropriate number of sources in data mixes. To disentangle (separate) data 

mixtures into low-dimensional latent source variables, a deep inference network is used. Each 

latent source is separated into its source signal by a deep generative network, whose sum 

matches to the input mixture. To automatically differentiate arbitrary-length films and universal 

audio waveforms, the proposed method has to be developed. In the lack of parallel clean data, 

Drude et altraining .'s technique [72] was offered as a way to train neural network-based source 

separation algorithms from scratch. It is expected to extend the current work to CHiME 5 

challenge recordings in order to better synchronise authentic recordings. 

The thorough method for blind source separation developed by Drude et al.[73] included 

probabilistic spatial mixture models, deep attractor networks, and neural deep clustering. The 

integration was accomplished by creating a mixed model that shared the same latent class 

affiliation variable between both modalities and had two separate observation distributions, one 

for the vector of microphone signals and the other for the embedding vectors generated by the 
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neural network. By integrating an extra speaker identification embedding, Haeb-Umbach et al. 

[74] presented a deep attractor network for blind source separation and speaker re-

identification. 

The new single-channel blind source separation (SCBSS) algorithm was created by him 

and his co-workers [75] and is based on multi-channel mapping and Independent Component 

Analysis (ICA). It assumes that mixed signals originate from dynamic systems in which each 

component is impacted by interactions with other components and signals are instantly mixed 

in a linear fashion. The authors state that the algorithm will be enhanced in the future to achieve 

online SCBSS in accordance with the dynamic system concept. 

A technique for bootstrapping a single-channel deep network for source separation that 

was inspired by biology was disclosed by Seetharaman et al. in [76]. To train the model, noisy 

separation estimates from stereo mixes are created using a spatial audio source separation 

technique. Even when the method that taught it didn't give it the necessary cue, the trained 

model can recognise sources in single-channel mixes. The authors created a confidence metric 

for the spatial method's output. Any clustering-based separation technique may specify a 

comparable confidence metric to lessen the effect of subpar training estimations on model 

training. 

The two stages of the process are the training phase and the testing phase. Using sparse 

coding, nonnegative matrix factorization (NMF), or ICA, the voice sources are projected onto 

a set of fundamental operations during the training phase. Makino et al. (2007); Cherry et al. 

(2003). (2007) (Benesty et al.) [77]. During the testing phase, the necessary speech signal is 

separated from the speech mixture by comparing the speech signal to the statistical model 

created during the training phase. Statistical model-based methods estimate the clean speech 

spectrum in noisy environments using a statistical estimation framework. The techniques 

employ maximum likelihood, least mean square error, and a posteriori estimator as well as other 

probabilistic-based speech spectrum estimators. 

Supervised NMF generates new sources by combining sources from a learned set of 

bases for each source in the mixture. Hyvarinen et al. (1999) [78] combined the model-driven 

separation technique with ideas from sparse coding and NMF by choosing the appropriate 

number of bases in the training. In conventional NMF, which ignores phase information, the 

spectrogram matrix of the mixed signal is factored into the sum of rank-one source 

spectrograms. In Virtanen, the presumption that phase shouldn't be factorised and its 

consequences on separation are investigated [79]. If the underlying source spectrograms are 
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given a priori, there is an improvement over NMF that tracks the distribution of the spectrogram 

points of the mixture. 

In practise, there are no individual source recordings available. Yi Luo et al. (2019) [80] 

proposed an NMF method for monaural blind source separation to solve this problem by using 

mixed audio recordings to train the source models. In a single-channel scenario, speech mixture 

has been separated using vector quantization (VQ) and NMF. Despite the apparent differences 

between the two methods, the VQ strategy for model-driven separation is remarkably similar 

to the supervised NMF separation strategy. 

According to Hennequin et al. (2020) [81], specific features affect a voice application's 

accuracy more significantly than specific generative models do. A sub band perceptually 

weighted transformation (SPWT) was applied to the magnitude spectrum to improve the 

performance of a single-channel separation scenario. The author specifically contrasted the 

SPWT, magnitude spectrum, and log-spectrum feature types. A rigorous statistical analysis is 

used to evaluate the efficiency of a VQ-based SCSS framework in terms of the lowest error 

bound. Two trained codebooks that were utilised to conduct the primary separation evaluation 

on the quantized feature vector of speakers form the basis of this methodology. The simulation 

results show that the transformation offers a viable option for improving the separation 

efficiency of model-based SCSS. It is also mentioned that it generates a higher spectrum SNR 

and a lower-error bound for spectral distortion when compared to other characteristics. 

 

 

 

Table 2.1. Summary of Speech Separation Methods 

Author and 

Year 

Methodology Database Evaluation Metrics Application  

Chang et al. 

(2015) [82] 

Deep Neural 

Network – 

Non-negative 

matrix 

factorization 

(NMF) 

TIMIT and 

NOISEX-92 

noise dataset. 

SDR -8.74  

SIR -11.20  

SAR -13.91  

PESQ -2.23 

Source 

separation, 

speech 

enhancement 
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Stephan et al. 

9 (2018) [83] 

combination 

of DNN and 

Nonnegative 

matrix 

factorization 

TIMIT and 

NOISEX-92 

dataset 

SDR -9.8 

SIR-14.7 

SAR-10.2 

PESQ- 0.59 

Speech 

separation  

Wichern et al. 

(2019) [84] 

Diagonal 

feature 

discriminant 

linear 

regression 

(dFDLR) and 

Deep Neural 

network 

(DNN) 

Aurora-4 

medium--

large 

vocabulary 

Word Error Rate -

4.8% (Clean 

Training) 

speech 

separation and 

noisy speech 

recognition 

Shi et al (2019) 

[85] 

combination 

of spatial and 

spectral 

features for 

deep neural 

network 

WSJ0-2MIX 

using up to 

two 

microphones, 

WSJ0-3MIX 

using up to 

two 

microphones 

SDR- 10.4 for 

WSJ0-2MIX 

SDR-7.9 for WSJ0-

3MIX 

blind speech 

separation 

Liu et al. (2020) 

[86] 

Deep Attractor 

Network 

(DANet) 

Wall Street 

Journal 

dataset 

SDR – 10.4 (2 

speaker) 

SDR- 8.5 (3 speaker) 

Speech 

separation 

NGUYEN 

NANG AN et al. 

(2019) [87] 

Convolutional 

Neural 

Network 

VoxCeleb 

database 

Accuracy-88.2% 

(VGG+ Self 

attention Layer) 

Accuracy-90.8% ( 

ResNet+ Self 

attention layer) 

Speaker 

identification 

Y. Luo (2020) 

[88]  

fully 

convolutional 

time-domain 

audio 

WSJ0-2mix 

and WSJ0- 

3mix datasets 

PESQ-3.24 (WSJ0-

2mix) and 2.61 

(WSJ0- 3mix 

datasets) 

Speech 

Separation  
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separation 

network 

(Conv-

TasNet) 

 

Wang (2018) 

[89] 

LSTM neural 

network with a 

phase sensitive 

loss function 

CHiME-2 SDR-14.75 

SIR-20.46 

speech 

separation 

Luo (2019) [90] deep 

clustering 

WSJ0 corpus SDR-6.8 (2 

Speakers) 

Speech 

separation 

Shi et al (2020) 

[91] 

To accomplish 

end-to-end 

training for 

signal 

reconstruction 

quality, the 

deep 

clustering 

framework 

was extended. 

WSJ0 corpus SDR-10.5(2 

Speaker) 

SDR-7.1 (3 speaker) 

Single-Channel 

Multi-Speaker 

Separation 

Han et al (2020) 

[89]  

two bi-

directional 

RNNs and a 

skip 

connection are 

combined in a 

new recurrent 

block. 

WSJ-mix 

dataset was 

extended to 

include 

mixtures of 5 

speakers 

SDR-20.12 dB (2 

speaker) 

SDR- 10.6 dB (5 

speaker) 

Voice 

Separation with 

an Unknown 

Number of 

Multiple 

Speakers 

Fan, S et al 

[2020].[90] 

training for 

permutation 

invariance 

with the 

Hungarian 

method 

WSJ-5mix  

Libri-5Mix  

 Libri-10Mix  

Libri-15Mix  

Libri-20Mix 

SDR-12.72(WSJ-

5mix)  

        -7.78 (Libri-

5Mix) 

         -5.66 (Libri-

10Mix) 

Many-Speakers 

Single Channel 

Speech 

Separation 
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         -4.26 (Libri-

15Mix) 

         -13.22(Libri-

20Mix) 

Yi Luo et al 

(2018) [91] 

Fully 

connected 

Deep neural 

networks 

based binary 

classification 

720 IEEE 

speech 

utterances 

WSJ0-2mix 

PESQ- 2.84(2 

talker),      2.7(3 

talker), 2.57(4 

talker) 

SNR-6.85(2-talker), 

2.7(3 talker), 2.57(4 

talker) 

 

single channel 

speaker 

independent 

multi-talker 

speech 

separation 

Yi Luo et al 

[2018] [92] 

Utilises a deep 

clustering 

architecture 

that integrates 

spectral and 

spatial 

characteristics. 

wsj0-2mix 

dataset 

SDR- 12.9 Multi-Channel 

Speaker-

Independent 

speech 

separation 

Nima et al 

(2019) [94] 

Fixed beam 

formers with 

Bi-LSTM 

integration 

anechoic 

speech 

signals, 

internal 

collection of 

utterances 

spoken by 44 

speakers, 

WSJ SI-284 

SDRs of different 

separation systems 

for different mixing 

conditions. 

multi-channel 

far-field speech 

separation 

Keisuke 

Kinoshita et al 

[2018] [70] 

Recurrent 

neural 

networks 

Ester dataset word error rate-11% Multichannel 

speech 

separation 

Naoya 

Takahashi et al 

[2019] [71] 

combines 

spatial and 

spectral data 

wsj0-2mix 

corpus. 

SDR-10.9 Multi-Channel 

Speaker 

Separation 
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for deep 

learning. 

Vincent et al 

[2003] [72] 

end-to-end 

approach  

WSJ0 2-mix SI-SNR- 11.6 multichannel 

speech 

separation. 

Hao et al [2020] 

[95]  

transform-

average-

concatenate 

Libri speech 

dataset 

Si-SNR- 12 for 6 

mics 

number 

invariant multi-

channel speech 

separation 

P.-S. Huang, et 

al [2014] [97] 

End-to-end 

speech 

separation 

framework 

integrated 

architecture 

for learning 

spatial 

information 

directly from 

the multi-

channel 

speech 

waveforms. 

WSJ0 2-mix 

dataset 

SI-SDR- 11.9 

SDR-12.3  

Multi-Channel 

Speech 

Separation 

Felix 

Weningeret al 

[2021][96] 

U-Net 

structure is 

used to 

carefully 

create the 

complex deep 

neural network 

(cDNN). 

Original 

speech data is 

collected from 

You tube 

SI-SDR- 12 

WER- 17.03 

Multi-channel 

Target Speech 

Separation in 

Complex 

Domain 

Yusuf Isik et al 

[2018] [61] 

ADL-MVDR 

framework 

Mandarin 

audio-visual 

corpus 

PESQ-3.46 

SI-SNR-15.43 

SDR-16.03 

STOI-93.7 

multi-channel 

multi-frame 

Speech 

Separation 
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WER-12.31 

Dong et al 

[2017] [65] 

DNN-WPE 

and spectral 

mapping  

LRS2 dataset PESQ-2.49 

SRMR-8.71 

WER-22.38 

Audio-visual 

multi-channel 

speech 

separation, 

Dereverberation 

and 

Recognition 

Neri et al [2021]  variational 

auto-encoding 

MNIST and 

MUMS 

dataset 

SI-SDR-17.10 

SIR-29.55 

SAR-18.20 

unsupervised 

single-channel 

blind source 

separation 

Yi Luo et al 

[2018] [64]  

unsupervised 

spatial 

clustering 

algorithm 

WSJ sets SDR-9.5 

PESQ-0.40 

STOI-0.18 

WER-29.3 

Multichannel 

Blind Source 

Separation 

Drude et al 

[2019]  

Deep 

clustering, 

deep attractor 

networks, and 

probabilistic 

spatial mixture 

models are 

used in an 

integrated 

method for 

blind source 

separation. 

Wall Street 

Journal sets 

SDR-6.8 

PESQ-0.60 

STOI-0.15 

WER-33.4 

acoustic blind 

source 

separation 

Morten Kolbæk 

et al [2017] [66] 

Deep Attractor 

Network based 

system 

Wall Street 

Journal sets 

SDR-9.2 

SIR-16.4 

SAR-10.6 

Speaker re-

identification 

and blind source 

separation 

He et al [2018]  multi-channel 

mapping 

TIMIT dataset SNR for different 

sampling points 

single channel 

blind source 

separation 
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Seetharaman et 

al [2019]  

To train a deep 

learning 

source 

separation 

model, stereo 

mixes are 

subjected to 

unsupervised 

spatial source 

separation that 

results in the 

first 

breakdown of 

the mixtures. 

wsj0-2mix SDR-2.9 

SIR-13.5 

SAR-3.7 

Single-channel 

source 

separation 

 

2.7 Research Gap 

In this investigation, distinctive execution measures to appraise the word mistake paces of 

reproduced behind-the-ear listening device flags and identify the azimuth point of the objective 

source in 180-degree spatial scenes. These measures get from phoneme back probabilities 

created by a profound neural organization acoustic model. 

 In existing NMF, rank estimation is a major issue. This is equivalent to the issue of 

recognizing noise signal eigenvalues in a multi-channel environment. 

 In existing Deep Neural Networks (DNNs), assessment of the activations is acted in a 

different lead to a twofold error issue and create the departure progressively delicate to 

approximation inaccuracies of DNN. 

 This makes discriminative bases and reduces the issue of spectral overlay in the 

beginnings of discourse and commotion.  

 In another hand, numerous issues remain to comprise poor separation accuracy and 

absence of robustness. 

 In a previous study, the hybrid Grasshopper Optimization-based Matrix Factorization 

(GOMF) algorithm shows great potential in the Multichannel speech separation. 

However, GOMF has a parameter initialization problem and leading to poor separation 

performance. 
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 Instead, a joint creation of the GOMF model parameter approximation and source 

localization delinquent.  

In this section, some existing techniques and their drawbacks are discussed. To overcome all 

these research gaps, methods such as hybrid GOMF and Enthalpy based Deep Neural Networks 

have been proposed in the present research work. 

2.8 Summary 

As various methods of speech separation and classification for Single and multi-channel 

speech signals exists, it is difficult to draw meaningful conclusions about the merits of anyone 

approach over another. The techniques developed in this thesis are useful as this leads to 

improve the SNR advantage of signal separation and classification is carried out in real-time. 

Several supervised separation systems have been proposed. The in-depth learning methods used 

for supervised speech separation increased the rate of progress and increased the separation 

efficiency. Also, reliable assessment of time-frequency masks from the conversation is 

challenging, especially when there is room echo in the mix. From this survey, to overcome this 

issue, we propose an efficient optimal reconstruction-based speech separation (ERSS) using a 

hybrid deep learning technique. The upcoming chapter will explain based on single channel 

source separation using FTNMF and softmax. 
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Chapter 3 

Time-Frequency Non-Negative Matrix Factorization 

(TFNMF) and Sigmoid Base Normalization Deep Neural 

Networks for Single Channel Source Separation 

3.1 Introduction 

For single channel source separation problem, multiple clean speech signals data sets 

have been considered for investigations. The work has been carried out using Time- Frequency 

Non-Negative matrix factorization (TFNMF) and Sigmoid Base Normalization Deep Neural 

Networks (SNDNN). The human auditory system can, with some concentration, hear the speech 

of a specific speaker in such a situation. It implies that the human hearing system is capable of 

distinguishing between different sources and efficiently identifying the source of interest. 

However, the human auditory system also has significant limitations in terms of the perception 

of the incoming information. Not only are researchers interested in creating an effective speech 

recognition system that mimics human auditory function, but they are also interested in 

extracting more information from the input signal than a human can. 

When the number of data collecting sensors (microphones) is restricted, the situation 

for the machine gets complex. For instance, a cell phone, which is one of the most prevalent 

electronic devices that people carry around with them during the day, contains just one 

microphone. When a user speaks a command into their mobile device, it must be able to identify 

it even in challenging circumstances. Such situations may arise when the target signal is mixed 

with background noise (such as the chatter of a train, car, or factory), the speech of another 

speaker, or music. Monaural recording is the practice of recording many sources simultaneously 

using a single sensor (microphone). 

The problem of monaural speech separation, also known as single channel speech 

separation, is the main focus of this chapter. This is followed by the recognition of the target 

speech. The challenge is to distinguish individual speech signals from the mixture with an 

unknown mixing pattern using a monaural signal because, in a practical case, the level of 

mixing is also not specified. 

The two stages listed below make up this chapter. The training phase comes first, and 

the testing phase follows. The testing stage employs a single-channel multi-talker input signal, 

whereas the training stage uses a single-channel clean input signal. This distinction between the 
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two testing and training phases allows for more accurate comparisons. The input signals from 

these testing and training phases are sent to the short-term fourier transform (STFT). When 

extracting features from spectrograms created by STFT, which transforms input clean signal 

into spectrograms, TFNMF is the approach used.  

3.2 Monaural Source Separation 

The problem of monaural speech separation, also known as single channel speech 

separation. Two fundamental approaches can be taken to solve the single-channel mixed speech 

recognition challenge. First, the mixed signal must be separated, and then the separated signals 

must be recognized. To recognize clear speech, a variety of effective speech recognition models 

are available. Therefore, this thesis' primary goal is to roughly approximate each individual 

speech signal from various types of mixed speech signals. According to the desired result, the 

source separation issue can be divided into two categories: "target versus all" and "audio 

modification." 

It is common knowledge that a signal is also a concoction of various independent 

components. A combination of n sources will therefore contain N numbers of distinct 

components, where N > n. When separating the target source from the mixture, the "target 

versus all" problem was used. The isolation of all mixing components is necessary to solve this 

issue. one of the main tasks of the mixed signal. Together, various mixing elements created the 

goal signal. An easy solution to the "audio modification" problem can be found by recombining 

various mixing components of various separate signals.  

The separation of a singing voice from any musical tune illustrates the applicability of 

the "target versus all" dilemma. Another illustration of the "target versus all" challenge is the 

speech identification of the target speaker in a loud environment and the separation of the 

individual signals of other speakers in a cocktail party situation. The audio editing can be used 

for current audio remixing, hearing aid signal augmentation, etc. 

3.3 Time Frequency Non-Negative Matrix Factorization for Source 

Separation 

The extraction of the signal's mixing components serves as the first step in the monaural 

source separation process. Speech signals are frequently processed in the time-frequency 

domain. Short-term Fourier transforms (STFT) of speech are thus employed during the mixing 

component extraction procedure. The enormous dimensionality of the Euclidean space in which 

STFT's time-frequency data is embedded is a characteristic of this technology [6]. It is 
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necessary to minimise the high dimensionality of the input data in order to separate individual 

signals from mixed signals. Additionally crucial is raising the standard of data analysis. PCA, 

SVD,TFNMF, and others are some of the common methods for dimensionality reduction. These 

methods can also be applied to the source separation task. 

A mixed signal needs to be separated in many different situations, such as when speech 

is mixed with music, noise, or another voice at various decibel levels and in various acoustic 

environments. When recording speech with a single microphone or a group of microphones, 

the quantity of input mixed signals may also vary in various situations. Any of the previously 

suggested source separation methods may not be the best option in all circumstances. Different 

source separation strategies have been demonstrated to be applicable for a variety of mixed 

speech separation issues by researchers. 

Due to its ability to represent data in a non-negative manner, NMF has quickly become 

one of the most popular source separation approaches. Like the pixel intensity of an image or 

the spectrogram of audio, many sample data points of a signal are non-negative in nature. It is 

anticipated that dimensionality reduction algorithms would show this data in a non-negative 

way. PCA and independent component analysis (ICA) cannot ensure non-negativity in such a 

circumstance. The existence of basis vectors is also shown by the presence of non-negative 

components. This provides inspiration to develop a non-negative decomposition of data 

solution. 

In the past, NMF has the potential to be used in a variety of applications where non-negativity 

is a crucial requirement, such as picture enhancement, text clustering, and speech separation. 

The ability to modify the decomposition process in accordance with the application and other 

criteria, such as orthogonality, sparseness, uniqueness, etc., is what makes NMF so appealing. 

In a matrix X, where each column X I represents an observation, such as a picture, a 

spectrogram, or probability, observations of any signal are generally accumulated. 

 



37 
 

 

Figure 3.1: Single channel speech separation 

A disruptive speaker, like the one in the illustration, or any other noise maker could be 

the second source. In this scenario, a listener may want to focus on a single target speech signal 

or on both signals separately. If noise is blending into the target signal, the noise may be isolated 

or suppressed; however, if the mixing signal is speech, both signals should be clearly separated, 

as seen in Figure 3.1. 

As various speakers are speaking at roughly the same time, the goal of speech partition 

is to emphasise each speaker's mixed language speech. Multiple sources are separated from a 

single channel using SCSS (Single Channel Speech Separation). Automated speech recognition 

(ASR), hearing aids, and speaker recognition are just a few of the applications. Traditional 

single-channel speech separation approaches include computer auditory scene analysis (CASA) 

and TFNMF. To imitate sound processing by the human hearing system, CASA employs certain 

organising principles and appropriate decoupling signals.  

Pre-learning is an essential consideration of the classification and regression process in 

digital signal processing. To minimize the overall design cost, these learning methods integrate 

the concept of a data matrix. The Time-Frequency NMF Non-Negative Matrix Coupling 

Source 1 Source 2 

Mixer 

Source separation Estimate 1 Estimate 2 
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(TFNMF), the most generally used pre-learning technology, is one of the most widely utilised 

technologies. Sound signal detection, environmental impact on speech recognition systems, and 

numerous functionalities of sound sources are all covered by TFNMF technology. Background 

interference from the primary target requirements for speech separation [98]. It's a signal 

processing feature that's useful in a variety of applications, including mobile communications, 

audio prosthetics, accurate speech, and speaker recognition. The human auditory system has a 

significant ability to distinguish one sound source from multiple others in a mixed environment. 

Non-negative matrix data X is generated through the TFNMF approximation technique. 

The spiral TFNMF crucial attenuation is one of the most important instruments for signal 

processing and machine learning. TFNMF is the most effective and efficient way to distort 

fundamentals, and it offers a number of advantages over environmental resource separation. 

The basic goal of voice separation in a single microphone recording is to remove background 

noise from the target speaker. The solution covers the fundamentals of individual hybrid 

signals, from mixed signs to temporal frequencies, which are employed in a variety of 

applications including voice communication, speech coding, and authentic speaker learning 

methods. People who compete with various sound signal sources and background speakers in 

good complex surroundings focus on the auditory interest in signal combinations of complex 

signals, and humans excel at solving issues, according to the Cocktail Party Problem. Hearing-

impaired audiences had more trouble with all interface speakers and intermediate spatial 

reversals than ordinary hearing aids, according to studies. Music recovery's major purpose is to 

assess and rely on the sound and background of music in advanced apps that contain 

information on reusing music recovery. To this purpose, a supervised technique, particularly 

one based on in-depth research, should yield current outcomes. 

It would be used for both undeclared speech separation and correct speech extraction, 

which will improve application and usefulness. To facilitate utility extraction, additional 

speaker recognition steps can be built to identify target speakers from publications on 

undeclared segregation networks. Both approaches have benefits, and structural abstraction 

skills for uninformed speech extraction and undeclared speech separation are desirable. Allow 

extraction from multiple speaker outputs to identify target speakers. The most fundamental 

technique of determining filters is based on the time-frequency (TF) coverage, which 

determines how the TF mask is formed. No limit values are generated because this limit is 

appropriate and yields a modest approximate error (0.36 dB in Oracle tests). Monorail sound 

requires a single recorded microphone device to distinguish the target speaker from the 

background speaker. Methods of speech recognition Automatic Speech Recognition (ASR) is 
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crucial in the development of hearing aids. Finally, we detected the noise mistake in speech 

using the softmax classifier and removed it using the proposed technique.  

3.4 Proposed system for TFNMF based DNN softmax 

The proposed DNN softmax system based on the TFNMF is depicted in figure 3.2. 

There are two parts in it, including training and testing. Following the training phase is the 

testing phase. A single-channel multi-talker input signal is used in the testing phase, but a 

single-channel clean input signal is used in the training phase. Between these two testing and 

training phases, this is the primary distinction. Input signals for the Short-Term Fourier 

Transform come from both the training and testing phases (STFT). These concepts are equally 

thorough and insightful as the sections that follow; 

 

Figure 3.2: Block diagram illustrating the suggested approach 
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3.5 Algorithm of Training Stage: 

Input: Mixed speech signal 

Output: Signal channel speech signal 

Step 1: Initially take the mixed speech signal from the database. 

Step 2: Input signals pass to STFT.  

Step :3 Spectrograms are produced by STFT from input clean signals. 

STFT is a typical Fourier transform decomposition if the sign fluctuates over time or is 

ambiguous. 

1

)2(

1

*

1 ).().(),( dyeyyhyzfyZ fyi                        (3.1) 

 

 

 

 Comparing the spectrogram to the conventional Fourier change and range, the following 

design is possible: 

                              
2

),(),( fyZfyU z                                                  (3.2) 

 It is typically employed to examine signals that evolve over time. The spectrogram breaks 

down the sign into a number of smaller components and calculates the range of each component, 

letting us know where various frequencies converge. a device that converts single-channel 

mixed sounds into intricate spectrograms. Then, using Time-Frequency non-negative matrix 

factorization, characteristics are obtained (TFNMF). 

Step: 4 Feature Extraction based on TFNMF,  

Here, Cohen's class of temporal frequencies for signal has a discrete-time form.

 








 
m n

fnj

uu emntumntumnftZ  4)()(),(),(                      (3.3) 

The time index and frequency index are denoted everywhere by the letters t and f, 

respectively. 

Step :5 The distribution's kernel, which is dependent on both the time and lag factors, defines 

the distribution.  

Step :6 In order to calculate the cross-TF between two signals,

fmj

m n

uu emntumntumnftZ  4

212,1 )()(),(),( 








       (3.4) 

Step : 7 Expressions 3 and 4 currently explain the succeeding data spatial t-f distribution 

(STFD) matrix. 
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fmj

m n

uu emntuumntumnftZ  4)()(),(),( 








            (3.5) 

Anywhere   ....1,),,(),( ,,
njiforftZftZ

ji uujiuu    

Step :8 The STFD matrix can be defined generally as

fmj

m n

uu emntumntumnftZ  4)()(),(),( 








                          (3.6) 

Anywhere is the kernel connected to a few speech signal data that represents the Hadamard 

product. Features are recovered based on non-matrix factorization after time-frequency 

estimation. 

Step :9 In addition to using a non-negative grid with a focus on binary nonnegative lattices, 

NMF processes regressions. 

XYUV                                                           (3.7) 

Step :10 Whenever in the domain of K sections and N lines with nonnegative components. 

Following that, the NMF prototype can be coupled to a noise matrix in the following ways:

EXYUV                                                       (3.8) 

Step :11 calculations for measuring the matrices X and Y as the objective matrix UV and 

solving the NMF [41] problem. They involve replacing the following valuation requirements 

for each lattice: 

)||(min

)||(minarg

XYUVCarY

XYUVCX

Y

X




                                                      (3.9) 

Step :12 Due to the constraints, each component of matrix W and the component in the kth row 

and rth column of matrix X serve as a measure of how far apart matrices A and B are from one 

another. Using well-known "distance" measurements like the Gulbach-Leipler difference and 

the Euclidean distance, it is possible to analyse C (V || XY). In terms of Euclidean distance, C 

(V || XY) is precisely defined as follows: 

2||)(||
2

1
)||( FXYUVXYUVC                                               (3.10) 
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                                         (3.11) 

Wherever and term element-wise multiplication also division.  
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3.6. Testing stage: 

 This phase's testing is repeated using the same methodology. Inputs are treated as multi-talker 

speech in the testing phase as opposed to clean speech in the training phase. Characteristics 

from the training and testing periods are finally retrieved using a Time-Frequency non-negative 

matrix factorization. The SNDNN classification algorithm, which is described below, is used 

to categorise all features after feature extraction using the SNDNN classification step. 

3.6.1 Classification algorithm using SNDNN 

 Our work makes use of a novel development based on sigmoid normalisation (SN) 

combined with DNN in place of the many existing procedures that are just based on DNN. One 

of the cutting-edge techniques we study is this one. Data is initially passed to the DNN 

convolutional layer, which uses the sigmoid to normalise the data. Once at the convolutional 

level, the layer progresses to the highest grouping level before repeating the process to reach 

the highest retrieval level. 

 

Figure 3.3: Reconfigured softmax-CNN Architecture  

 

Data-related information is contained in the convolutional layer. The Softmax regression is 

connected to this layer. The basis of SN's initial processing is pure voice and input from multiple 

speakers. The output signal is sent to the highest grouping level once the procedure is complete, 

which minimises the display of limit values and calculations. 

Algorithm for Softmax 

Step :1 Define data 

 data = [speech database] 

Step :2 Calculate softmax 

 result = softmax(data) 

 report the probabilities 

Step :3 Calculate the softmax of a vector 

 def softmax(vector): 

 e = exp(vector) 

 

RBM  

Input 

frame 

Conv 

Layer 

Max 

pooling 

Layer 

Bi-LSTM 

Drop 

out  

DSnet  Gaussian 

Layer 

Softmax  
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 return e / e.sum() 

  print(result) 

Step :4 report the sum of the probabilities 

 print(sum(result)) 

 

A. Convolution layer 

A matrix or kernel-based initial layer of the network is used to recover the signal from the 

first clear format. The signal's qualities are maintained in relation to one another via 

understanding the signal. Pay close attention to the spectrogram fields to comprehend the 

following degrees of work folding. Equation (3. 12)'s criteria are met by this layer, and the 

result of the adjustment is what is referred to as element mapping in each instance.







1

0

N

n

nknk hxy

                               (3.12) 
   

 

Wherever the input qualities are, there are filters and a number of necessities. Its output is the 

yield vector. The elements of the vector are represented by the subscripts. 

B. Normalization layer  

Sigmoid-based normalisation, the network's next layer, merely points to a comparable area or 

known route. To do this, a signal is normalised, which lowers its distortion to a constant mean 

of 0. The single-channel source separation's range is expanded by sigmoid-based normalisation 

(3.13), (3.14). 
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In Single-channel source separation X, the lowest and maximum values are shown by SG (u), 

the sigmoid based normalised or Single channel source separation, the Euler's number. 

C. Max-Pool layer 

The pooling layer seeks to streamline the system's computation and boundary value 

presentation. When the max-pooling layer is employed to minimise the dimensionality of the 

signal, it has an effect on both the next level and the strength of the neurons. This also goes by 

the moniker of the downsampling layer. 
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D. Completely connected layer 

Since there are a large number of neurons in the preceding layer, each neuron receives 

information from that layer. Softmax is a representational tool that can handle multiple classes 

because the name of the logistic regression is "0, 1". 
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Wherever the network's input is based on entropy and the outcomes of recognising the harm 

or otherwise normal, SNDNN is utilised to classify it. We sequentially implemented the 

entropy-cantered deep neural architecture. In its boundary learning, it also involves mutual 

pre-preparing and modification stages. 

E.  Training Stage  

Step 1: We display the visible units' advice for the training vector's selected features. 
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Wherever it indicates the symmetric association duration between the visible constituent and 

the concealed component, the term "predisposition" denotes the number of understandable and 

hidden processes [99]. The position vector's logarithmic likelihood with respect to the weight 

is satisfied by the major conflict. In an RBM, covered units are not immediately impacted, but 

it is rather straightforward to make a case for 
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Anywhere  x signifies the strategic sigmoid capacity
  xexp1

1


, jsi hf , denotes the 

unbiased sample. 

Step 2: We match the supplied hidden and explicit units to the evident and invisible units. The 

sharpest random rise in the log-likelihood of location data might be produced, according to this, 

by more direct learning principles, such as the ones that follow: 

 

F. Fine-tuning phase 

In essence, the fine-tuning stage is a normal back spread computation. System implementation 

organisations frequently achieve performance levels above the SNDNN. The reconciliation 

record is additionally output while the extra weight is processed or reviewed. In this situation, 

the SNDNN classifier is crucial because it will collect the required information and utilise it to 

finish the process, allowing it to position results that could lack certain qualities. 
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3.6.2. Inverse STFT (iSTFT) operation: 

The extracted output signal can then be subjected to the reverse STFT technique to change the 

voice signal's final channel interval. Finally, get the split extracted signal. 

3.7. Dataset Description: 

We used several data sets from the WHAM database and the CHiME database that were 

freely available for use in the investigation. From the CHiME database, the current data set was 

chosen as the noise signal. The SIR, SDR, PESQ, and short-term objective understanding 

(SOUE) indicators are employed by the system to assess the objective indicators (STOI). We 

are analysing the offer to gain a better understanding of the actual scenario. The CHiME 

database has the computer technique listed (multi-source environment). 

 

3.8 Results and Conclusions  

In this part, experiments are used to compare the possible outcomes for each element of the 

suggested plan. The effectiveness of the suggested system will also be carefully evaluated in a 

variety of test scenarios. Let's begin by considering ways to improve the performance of 

separation and processing during detection. Furthermore, in Experimentation 1, we evaluated 

the proposed separation strategy using typical indicators (understandability and separability). 

Experiment 2 tested the suggested system under more challenging real-world conditions as 

opposed to the existing data set. The suggested system retains its original characteristics as well. 

an individual signal We confirm certain information (e.g. sentiment data). 

3.8.1 CHiME Dataset: 

 

 

Figure 3.4: SSR evaluation comparison and study of quality (PESQ) 
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In terms of PESQ quality, the SSR benchmark test is depicted in Figure 3.4. Compared to 

competing approaches, our method can improve a single signal's perceived speech superiority. 

The graphic above shows the suggested method using the current pure phase NMF, Normal 

NMF, NMF with noise phase (relative to phase), and PASD. Examining proposed Figure 3.4 

results in the greatest PESQ score. Our concept outperforms alternative approaches in terms of 

results. 

 

Figure 3.5: Comparison analysis of Short-Time Objective Intelligibility 

The STOI benchmark test is shown in Figure 3.5, and it is used to determine speech 

intelligibility in loud settings. STOI and speech intelligibility have a strong association (0.79), 

demonstrating the usefulness of this interpreter algorithm routine. The proposed system yields 

superior outcomes in comparison to competing approaches. This shows that even in a loud 

environment, the suggested technique aims to improve speech intelligibility and phrase 

recognition capabilities. Among the choices are pure phase NMF, conventional NMF, noisy 

phase NMF, conscious phase, and PASD. The proposed Figure 3.5 will be examined to 

determine the highest STOI score possible. When compared to other existing solutions, our 

suggestion produces superior outcomes. 
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Figure 3.6: Comparison analysis of Signal to interference ratio 

SIR assesses the interference rejection rate in Figure 4, which displays the results of its 

benchmark analysis. The suggested strategy performs better than the rival method in nearly all 

test circumstances. This shows that by removing interference, the suggested system delivers 

valuable separation outcomes. It is suggested to use a current NMF technology that includes 

PASD, conventional NMF, noise phase, consciousness phase, and pure phase NMF. The best 

SIR findings can be attained by analysing the proposed Figure 3,6. Our solution yields superior 

outcomes in comparison to other existing strategies. 

 

Figure 3.7: Comparison analysis of SDR 

The SDR benchmark test, which has two advantages, is shown in Figure 3.7. At first, it 

evaluates signals separated by modified measures and in a variety of test scenarios (mixing 

different SDR ratios and real records). The expected results will apply to other applications. In 

the image above, the method for illustrating NMF using pure phase NMF, regular NMF, noisy 
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phase, conscious phase, and PASD is shown. Analysis of the top 3.7 results will yield the 

greatest SDR score. With the additional strategies we advise, better results will be attained. 

 

Figure 3.8: PESQ comparative analysis for the real-world situation at various SNR levels 

 

Figure 3.8 illustrates the comparison study of PESQ results at various SNR levels in the real-

world scenario of using a clean phase for reconstruction. voice indication In the image above, 

the method for illustrating NMF using pure phase NMF, regular NMF, noisy phase, conscious 

phase, and PASD is shown. By examining the provided figure 3.8, locate the SNR result with 

the highest SNR. Compared to other existing approaches, our technique produces better results. 

3.8.2 Experiment 2: Evaluation in Terms of ASR 

 

Here, we have calculated how well our system performs in a variety of mixed speech 

recognition tasks, such as those involving speakers from the same stalker (ST), speakers of the 

same gender (SG), and speakers of diverse genders. the mixture of genders (DG), average 

accuracy When compared to the baseline, the findings obtained show a noticeable improvement 

in performance. The proposed system performs significantly better than the fundamental system 

in terms of average accuracy. The evaluations of the ASR Accuracy Tables 3.1, 3.2, 3.3, and 

Table 3.4 yielded the following conclusions: 
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Table 3.1: Analysis of mixtures from the same talker in a table 

Methods -9dB -6 dB -3 dB 0dB 3 dB 6 dB 

Baseline 

Signal 9 17 23 29 43 66 

Advance  

front-end 1.5 22.0 25.5 27 46.5 68.0 

SS 17 18.3 19.2 23.8 28.1 32.6 

PASD 19 20.2 24.0 30.4 42.0 72.3 

Proposed 82.907 82.90781 83.90781 83.90781 83.90781 83.90781 

 

Table 3.2: Table analysis of mixtures of speakers of the same gender 

 Methods -9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 

Baseline 

Signal 9 17 23 29 43 66 

Advance  

front-end 9.7 14 21.4 22 46.1 66 

SS 13.0 12.5 15.5 21.8 28.5 31 

PASD 20.5 37.1 58.3 64.4 72.0 78.7 

Proposed 90.29167 90.29167 90.29167 90.29167 90.29167 90.29167 

 

Table 3.3: Table analysis of mixtures of speakers of the same gender 

 Methods -9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 

Baseline 

Signal 9 17 23 29 43 66 

Advance  

front-end 5.1 11 17 25.4 43.3 58.0 

SS 14.4 18 22 27.5 36 44 

PASD 37 46 62.5 70.2 75.2 80.3 

Proposed 98.34219 98.34219 98.34219 98.34219 98.34219 98.34219 

 

Table 3.4: Table analysis of Mean accuracy 

 Methods -9 dB -6 dB -3 dB 0 dB 3 dB 6 dB 

Baseline 

Signal 8.5 11.3 19.7 30.5 45.0 65.2 
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Advance  

front-end 7.84 11.03 20 33 45.45 65.07 

SS 17 15.3 19 23 25 35.5 

PASD 22 34 46 61 63 76.4 

Proposed 85.87552 85.87552 85.87552 85.87552 85.87552 85.87552 

 

Current and suggested values are analysed in Tables 3.1 through 3.4 above. In this instance, 

the value from the table is contrasted with the present SS, PASD, extended interface, and 

basic signal. Examine the proposed settings in the first four tables to attain the best ASR 

accuracy. Compared to other existing approaches, our technique produces better results. 

 

Figure 3.9: Comparative study of mixtures that belong to the same talker 

 

Figure 3.10: Study of comparisons between speakers of the same gender 
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Figure 3.11: Comparative analysis of speaker combinations from different genders 

 

Figure 3.12: Comparison and mean accuracy analysis 

The aforementioned diagram illustrates the difficulties voice recognition encounters when 

dealing with different mixtures, such as mixtures of speakers from the same talker (ST), 

mixtures of speakers of the same gender (SG), and mixtures of speakers of different genders 

(DG). Figures 3.9, 3.10, and 3.11 use the speech intelligibility index (SII) and the non-intrusive 

speech quality and intelligibility (NISQI) as markers. IBS can forecast speech 

comprehensibility in a variety of loud conditions and the ability to recognise sentences in 

adverse acoustic environments. NISQI has the highest correlation value according to subjective 

testing as well. the SS, front end, and PASD. 
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Figure 3.13: Analysis of SNR-based SDR comparisons 

 

 

Figure 3.14: Analysis of SNR-based PESQ comparison 
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Figure 3.15: Analysis of SNR-based ESTOI comparisons 

 

In the preceding figures 3.13 to 3.15, we contrasted our proposed method with three currently 

used techniques: uPIT Dense-UNet, Deep CASA, and De-noising Deep CASA, IBM. In this 

instance, Dense-UNet-Framework learns and employs uPIT SNR while Deep CASA is 

aggregated. It is a simple Deep CASA extension in a noisy environment. Remove CASA: To 

reduce interference from outside sources, use a lightweight version of Dense-UNet with 32-

channel SDR, PESQ, and ESTOI size. Compared to other existing approaches, our technique 

produces better results. 

3.9. Summary 

 In this proposed and completed part of the research work, the data consists of two or 

more than the clean speech signals. The TFNMF integrated with SNDNN technique has been 

applied and results have been obtained. It has been observed that the results (performance 

evaluation metrics) are improved compared with existing works as indicated in the graphs and 

tables. The SSR average rate is above 40 and the mean accuracy of baseline signal in 6dB is 

65.2, the mean accuracy of Advanced front-end signal in 6dB is65.07, the mean accuracy of SS 

signal in 6dB is35.5. the mean accuracy of PASD signal in 6dB is 76.4 and the mean accuracy 

of the proposed signal in 6dB is85.88, 
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Chapter 4 

Integral Fox Ride Optimization (IFRO) algorithm and 

Retrieval-based Deep Neural Network (RDNN) for Single 

Channel Source Separation 

4.1 Introduction 

In the noisy speech signal environment for a single channel, there is a requirement of 

speech signal segregation from noise. Thus, the speech signal is retrieved after getting 

segregated from noise. A hybrid deep neural network (HDNN) model is proposed as a unique 

technique for speech segregation from stationary noisy audio signal without labels. In this 

problem of research work, an integral fox ride optimization (IFRO) technique has been used 

for effective reconstruction of a variety of spectrum features which include time dynamic data, 

binaural and mono features. Further a hybrid retrieval-based deep neural network (RDNN) has 

been used for classification of speech and noise segregation. 

The most instinctive form of human-machine communication is speech. Speech has 

become widely used in numerous applications for close-range human-machine interaction due 

to the dramatic recent development of speech perception (hearing and understanding) and 

speech generating (speaking) technologies. Reverberation, background noises, and interference 

speech can make speech perception (speech recognition) and speech creation (text-to-speech) 

systems less accurate. 

4.2 Single-Channel Speech Separation 

 

Single-channel speech separation is the process of estimating numerous output 

waveforms from a single input recording in which multiple speakers are speaking at the same 

time, each estimate having the voice of only one of the input speakers. Single channel speech 

separation must use only the structure of speech and must capitalize on inter-speaker 

differences, relying heavily on the fact that each speaker's speech is sparse in a time-frequency 

domain. This is in contrast to multi-channel techniques, where multiple microphones capture 

the speech and provide access to directional information. In other words, it is unlikely that 

numerous speakers will contribute a large amount of energy to a segmented signal if a 

combination of speakers is segmented spectrally, for instance using a straightforward Short-



55 
 

Time Fourier Transform (STFT) with suitable settings. The latent speech signals are now 

simpler to recognize during training and inference, in addition to making it easier to split the 

signal into a spectrum representation [100]. Source separation strategies were frequently based 

on either known features of the speech signals or inspired by the human auditory perception 

system's capacity to follow sources in overlapped speech prior to the development of DNN-

based methods propelled by massive volumes of labelled data. 

These traditional techniques include Computational Auditory Scene Analysis (CASA), 

Factorial Hidden Markov Models (HMMs), Independent Component Analysis (ICA), and Non-

negative Matrix Factorization (NMF). These techniques are frequently based on statistical 

features of the signals and rely on signal processing to distinguish between the sources. 

Comparing this class of speech separation approaches to other separation tasks like reducing 

speech noise, the major problem is that speech signals from two different speakers can have 

extremely similar statistical features. The algorithms do take advantage of the structure and 

continuity restrictions of speech in time and frequency, which results in some success in speech 

separation, but their performance is considerably outperformed by the more recent deep 

learning techniques. 

The bulk of DNN speech separation approaches rely on a spectral masking strategy, 

however some cutting-edge methods estimate the speech source waveforms directly. In order 

to use these techniques, the mixed waveform must first be projected using an analytical 

transform into a two-dimensional spectral domain with resolution in both time and frequency. 

The Short-Time Fourier Transform (STFT), which was employed in earlier approaches, has 

now been replaced by learnt transforms. 

Then, using this mixture spectral representation, a neural network creates a mask for 

each speaker with values ranging from 0 to 1. An approximation of the source spectra of 

individual speakers is produced by individually multiplying each of these masks by the mixture 

representation in order to mask out the interfering sources. 

4.3 Proposed method  

The first issue, over-smoothing, is addressed, and estimated signals are used to expand 

the training data set. Second, DNN generates prior knowledge to address the problem of 

incomplete separation and mitigate speech distortion. To overcome all current issues, we 

suggest employing an efficient optimal reconstruction-based speech separation (ERSS) to 

overcome those problems using a hybrid deep learning technique. First, we propose an integral 

fox ride optimization (IFRO) algorithm for spectral structure reconstruction with the help of 
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multiple spectrum features: time dynamic information, binaural and mono features. Second, we 

introduce a hybrid retrieval-based deep neural network (RDNN) to reconstruct the spectrograms 

size of speech and noise directly. The input signals are sent to Short Term Fourier Transform 

(STFT). STFT converts a clean input signal into spectrograms then uses a feature extraction 

technique called IFRO to extract features from spectrograms. After extracting the features, 

using the RDNN classification algorithm, the classified features are converted to softmax. 

ISTFT then applies to softmax and correctly separates speech signals. 

 

 

Figure 4.1: Block diagram of Integral fox ride optimization based RDNN system 

We propose an efficient optimal reconstruction-based speech separation (ERSS) using a hybrid 

deep learning technique. The objective of feature extraction is to improve the quality of the 

Single Speech channel signals from database 

STFT 

Feature Extraction 

Integral Fox Ride Optimization 

a) Seeking Mode 

b) Tracking Mode 

1) Dynamic time information 

2) Binaural features 

3) Mono features 

Hybrid retrieval based deep neural network (RDNN) 

ISTFT 

Output Signal 
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training data set extracted from each of the speech signals from low-level texture features using 

integral fox ride optimization. The output from feature extraction was given to segmentation 

and in a cascaded process to provide a textured pattern. Finally, using the RDNN classifier, we 

found the noise error from speech and removed it using the proposed technique. 

When we use NMF to capture the structure patterns of speech separation targets, such 

as ideal masks or magnitude spectrograms of interests, We investigate a discriminative training 

objective with sparsity constraints, which improves the separation model's ability to suppress 

noise and preserve speech. 

NMF is used to understand the important spectrum of speech and sound, whereas DNN 

is used to assess the essential spectrum's function. The NMF hypothesis and functional 

assessment are combined with DNN to comprehensively reproduce clear sound and sound 

within the compound. The combined strains of DNN and NMF are improving the performance 

of the voice department. We suggest a different optimization range with interval control to 

suppress excessive noise. This reduces the residue of isolated speech and noise and dramatically 

improves GSIR performance. Models can stop high interactions and outperform comparative 

models with very low-cost hand tools and defects. Production models can use spectral structures 

based on speech and sound, while in-depth study models study complex linear graphs of 

distinguishing objectives through silent and supervised learning. 

The latest approach since optimizes training formal speech segmentation, in which 

different modes of speech, speaker, and background sound are studied from training data. 

Several supervised separation systems have been proposed. The in-depth learning methods used 

for supervised speech separation increased the rate of progress and increased the separation 

efficiency [101]. Also, reliable assessment of time-frequency masks from the conversation is 

challenging, especially when there is room echo in the mix.  

We propose an efficient optimal reconstruction-based speech separation (ERSS) to 

overcome those problems using a hybrid deep learning technique.  

• First, we propose an integral fox ride optimization (IFRO) algorithm for spectral 

structure reconstruction with the help of multiple spectra features: time dynamic information, 

binaural and mono features.  

• Second, we introduce the Deep Neural Network (RDNN) based on a hybrid search to 

directly reproduce the speech and voice level spectrogram. RDNN can instantly improve the 

partitioning range and minimize accumulated errors. 
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• Finally, we implement the proposed design in the MATLAB tool, and the performance 

of the proposed ERSS is compared with the existing state-of-art techniques. 

 

Figure. 4.2: Illustration of proposed ERSS using a hybrid deep learning technique 

Figure. 4.2 shows a specific hybrid model structure separating background noise and 

conversation using Fox Riding optimization and Search Deep Neural Networks. As shown in 

Fig. III, a multi-layered deep neural network input speech signal extract with continuous 

functions such as non-linear activation, regulation, and hidden layer to extract advanced 

features of the speech signal. After the fully connected hidden layer's input layer, a multi-

dimensional speech signal was extracted from the connected first layer. Finally, the classifier 

separates the background noise from the speech signal. 
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4.4 Proposed optimization and deep learning technique 

4.4.1 IFRO optimization 

The FRO system has two modes, i.e., the searching for away and the going with way. 

In checking for mode, Fox search for in their neighbourhood, which has a spot close to looking. 

Fox updates their condition in the following method by following the general faultless worth, 

an area with the available seek after. FRO has a solid combination, both thinking about 

worldwide enhancement and nearby streamlining, which is for the most part connected to work 

improvement and accomplished significant impact.  

a) Seeking mode 

The looking for method portrays the resting aptitude of a fox. A fox moves to various 

positions in the inquiry space, looking for a way yet stay alert. It very well may be translated as 

nearby look for the arrangements. The accompanying documentation is utilized in this model  

• The searching Ratio of chosen Dimension (SRD) signifies the distinction among 

new and old components of fox chosen for change.  

• Searching Memory Pool (SMP): This parameter portrays the number of 

duplicates of a fox to be reproduced.  

• Dimension Counts Change (DCC): It speaks to the number of measurements a 

fox position experienced for transformation. The means of seeking a method of FRO calculation 

are given as pursues. 

If SPC=I, Generate T (=Searching Memory Pool) copies of   as indicated by DCC, 

request the change administrator to the T duplicates. Arbitrarily short or in addition to Searching 

Ratio of selected Dimension percent the present qualities, supplant the old attributes [102]. 

Assess the wellness of the changed duplicates. Use condition (1) to compute the choosing 

likelihood of every competitor and pick the   point with most elevated choosing l likelihood to 

supplant. If the objective of the wellness capacity is to locate the base arrangement, Le , 

otherwise    

minmax FSFS

FSFS
P

bi

i





      (4.1) 

b) Tracking Mode 
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Tracking Mode is the second method of calculation. In this mode, felines want to follow 

targets and nourishments. This mode mirrors the chasing ability of felines. When a feline the 

prey, the position and speed of the feline are refreshed. This way, an enormous contrast happens 

between old and new places.  

Representation of the best position of a fox is that the fox's position and velocity are 

calculated using (1) & (2) equation. 

min max min( ) ( )sin( )
max

t
t

t


     

      (4.2) 

Where, new described the refreshed velocity of   dimension, indicates fox dimension 

and w indicates a factor weight from the value of 0 to 1, shows the past velocity of the fox term, 

c represents user finite number, 

Where, 
d

inewV
new described the refreshed velocity of 

thd  dimension, 
thi indicates fox 

dimension and w indicates a factor weight from  the value of 0 to 1, 
d

ibestV
shows the past 

velocity of the fox 
thi term, c represents  user finite number, 

d d d

jnew j jP P V 
        (4.3) 

Where, now indicates the position update of fox in dimension, shows the present state position 

with fox and size then denoted the fox velocity of the term. To investigate additionally 

encouraging arrangement and develop a ratio of convergence, while the fox best position is 

utilized to control the places of fox in the following mode. Subsequently, another changed quest 

condition is implemented for the following method of FRO calculation, which incorporates the 

worldwide best [34]- [36] 

 1 1 *d d d

inew j g jP P N V      
       (4.4) 

The FRO calculation utilizes a speed vector, and past fox locations were refreshed in tracing 

mode. The restored fox location is just affected by vector velocity. Thus, another speed 

refreshed condition is presented to develop an assorted variety of FRO calculations, particularly 

within finding mode. 

 1 *d d d

jnew j g jV V N P      
       (4.5) 
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where, ε is an irregular vector consistently conveyed from [0 to 1]; α and β are quickening 

parameters used to sift through the state of a feline toward close to better positions, and Pg 

provides the general position for the best situation of a feline. To concordance between the 

appraisal and misuse structures, both vitalizing parameters β and α go about as parameters 

controlling. 

max min
max

max

( ) { }*t t
t

 
 


 

        (4.6) 

In (4.6), presenting the lower and upper limits, t indicates the most extreme no. of cycles, and t 

denotes the present emphasis value. Subsequently, α (t) is a stage work whose worth ranges 

among lower and upper limits. The bigger estimation of α bolsters investigation, whereas little 

qualities bolster abuse. The point of α (t) term is investigated and controlled by the procedure 

of fox in hunt space. 

min max min( ) ( )sin( )
max

t
t

t


     

       (4.7) 

In (4.7),    the mean the base and most extreme estimations of first and last cycles respectively  

represent the greatest no. of emphases and t described the present value in iteration. The 

explanation for the consolidation of the parameter is to impact the worldwide investigation 

capacity of the proposed calculation; a massive estimation of the parameter reinforces the 

worldwide best position of feline and watches out for the arrangement refinement. The 

pseudocode of FRO is shown in Algorithm 4.1. 

 

The algorithm 4.I Pseudocode of integral fox ride optimization 

Input: A speech signal with background noise 

Output: Separate noise and speech 

1 Initialize the various parts of proposed count like sum α, neighbourhood structure, fox 

(N), β, C, SRD, SMP, and C are variably put N addresses a position in numbers in 

sporadic search space. 

2 Generate every cat from the D-dimensional space of search speed and position.  

3 Compute the fox wellbeing limit and save an estimation value, which is the best 

position. 

4 While (i < mi) 

5 To evaluate the no. of Flag, distributed randomly seeking along tracing mode towards 

the fox. 
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6 If (Flag==1); Seeking mode of fox position 

7 To apply the seeking mode to every fox. 

       7.1: Generate every fox j copy. 

   Maintain the fox best position after the contrast value of fitness function toward 

memory. 

        End for 

8 Else, tracing the mode position of the fox 

To apply the tracing mode to every fox 

Find the fox best position after update the fox position 

rand ≤ iterfittness 

Update global best position and fox position. 

End if 

i = i++ 

Obtain the concluding solution 

4.4. 2 Hybrid retrieval based deep neural network 

This segment describes the systematic description of retinal-based deep neural network 

(RDNN) and the creative learning process for dynamic DNN generation. Finally, the 

cumulative criteria are given. 

Systematic Description: The repaired deep neural network with concealed layers m can 

be reported using 2 constraints (Λ, Φ); Λ as shown in Figure III. Layers are vectors that give 

the figure of neurons per layer 1; = Λ = (n0, n1, ..., nl , ..., nm, nm+1). The input layer is (l = 

0), the output layer is (l = m+1), and the hidden layer is (l to m). = W1, W2,..., Wl,..., Wm + 1= 

Φ  is the weight connections vector. Each of the W1 vector's components is a heavier link 

matrix. 
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        (4.8) 

Where  is the weight correlation between the ith neuron of the layer l and the jth neuron of the 

layer l − 1. Consider only RDNN with one neuron at the output layer + + 1 = 1, where d is the 

input vector size (input layer size n0 = d) to simplify the technique described in the following 

article. 
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Specific evolutionary simulation RDNN is a neural network structure that regularly develops 

through training. The size of layer l is denoted by the vector n t l in phase t, while the vector Λ 

t indicates the size of layer t. The fundamental structure of the neural network at the start of the 

creation phase is: Λ 0 = n 0 0, n0 1, n0 2 = (d, 1, 1). Figure 1 shows how to create the first 

hidden layer (HL 1) from scratch. The construction procedure is separated into three sections 

at each step. 

 In the primary stage, new neurons are included. This novel neuron is totally integrated 

with all the preceding and subsequent layers.  

 We are starting a new burden. All other weights retain their preceding values. 

 At last, HL (1) only trains the weight of the concealed layer and constantly updates it 

using the online backdoor algorithm. 

The second concealed layer is built in the same way as the first concealed layer HL (L). 

Full description: The evolutionary architectural algorithms and how to achieve the integration 

criteria are described in the following section. At every training stage of layer l, the training 

process is completed by reducing the M1 frequency of the W1 to continuous online backs to 

update the weight, with the square error function defined by X at each repetition (from = 1 to 

M). 

2)(
2

1
kkK doE 

         (4.9) 

Where ok represents the neural network output for the K format,   represents the output required 

for the K format, k represents the code above the input-output pair (k = 1 to N), and N represents 

the number of samples in the training set. To update the W1 weight, calculate the (1) slope 

utilized in the random online back spreading method. By adding   to it, the weight   is updated: 

l

ij

kl

ij
w

E
w




 

         (4.10) 

Where   is the development rate, (GSEiter) delivers the total square error of the N training 

pairings at the end of each iteration: 





N

k

kiter EGSE
1          (4.11) 

At the end of the step-by-step training process, the average square error (MSEt) returns. 
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        (4.12) 

For each of the four scenarios in the building process, keep the following information in mind: 

 It's not reached. It is objective and not completed with hidden layer l . A hidden layer 

was added with a new neuron    

 It's not called its objective and full l hidden layer. A hidden layer was added with a new 

neuron. 

 Reached its objective. Successfully built a DNN. End of the building process. 

 RDNN reached its peak regardless of the end goal. RDNN is not built successfully at 

the end of the construction process. 

Where θ is the gateway used to define RDNN, is the number of neurons in T according to the 

currently concealed layer l, and is the number of neurons in T. The maximum RDNN 

recognition is called Max. Maximum hidden layer; The complete RDNN has approved the 

maximum number of hidden layers, Max. Authorized layers for the entire RDNN. 

Algorithm 4.2 Initialization process of RDNN 

1 Part 1: Initialize RDNN process  

2 t = 0, 

3 l = 0,  

4 Max1, max. no. of Hidden Layers 

5 Max = random, max. no. of neurons per layer 

6 // DNN initialization7   

8 // initialize random no. of weights: 

10 //end the process 

In this way, the training course of RDNN is repeated at each stage according to the 

calculated MSEt. Max and Max1 are used to control the RDNN level. To avoid the arbitrary 

size limit of hidden layers, I utilized a random limit: 

),( 21 randomMaxn 
           (4.13)

 

Where ),( 21   are correspondingly the lower limit and higher limit? The functional 

capabilities of DNN are given in Algorithms 2-4, along with the boot process, hidden layer 1, 

and fine-tuning, respectively, for updating the weighted link in the last layer. 
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Algorithm 4.3 Building hidden layer-l in RDNN 

1 Repeat 

2 for iter = 1 to M 

3 for k = 1 to N 

4 calculate  

5 calculate   

6  // Update the weights Wl 

7 end k 

8 calculate  

9 end iter 

10 calculate   

11 end     

12     // RDNN successfully Built 

13  // hidden layer l added to new neuron 

15 if   

16  // added hidden layer  

17 if   

18 ends          

19  // Not built the RDNN 

20 t  =  t + 1 

21 end 

 

4.4.3. Comparative Analysis of Previous Speech Separation and 

Enhancement Work 

Our evaluation would not be complete without comparing our results to previous work 

in an efficient optimal reconstruction-based speech separation (ERSS) using a hybrid deep 

learning technique. It contains these comparisons on different efficient optimal reconstruction-

based speech separation (ERSS) using mixed deep learning datasets, integral fox ride 

optimization (IFRO) algorithm, RDNN and MATLAB tool, using the evaluation protocols and 

metrics described in the respective papers. On our project page, you sometimes get qualitative 

results from these comparisons. It's worth noting that these previous methods necessitate 

training a separate model for each speaker in their dataset (speaker-specific), whereas we 

evaluate their data using a model built on our general RDNN dataset. Despite never having 
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heard these specific speakers before, our results are substantially better than those reported in 

the original articles, demonstrating our model's great generalization capacity. We propose an 

efficient optimal reconstruction-based speech separation (ERSS) using a hybrid deep learning 

technique to overcome those problems.  

4.5 Results and Conclusions  

Tests were performed to evaluate the performance of the anti-supervisory control source or 

filter model for speech separation. Benchmarks include Semi-supervised source or filter models 

with variations in control usage (with or without controls, better control over the source or filter 

sync control, control adaptation generated for sound isolation). 

4.5.1 Dataset Description 

For evaluation, TIMIT Corpus and Noisex-92 Corpus are used as voice and audio data, 

respectively. TIMIT contains 10 sentences spoken by 630 speakers of 8 different dialect regions 

of the USA. The NOISEX-92 contains 15 general types of sounds in a typical environment, 

each about 4 minutes long. The NOISEX-92 has noise such as factory noise, F-16 noise babble 

noise, etc. While mixing speech and noise, we randomly cut each NOISEX-92 noise utterance 

into unique portions based on the time length of speech utterances to ensure that the various 

components of each noise utterance are mixed with the clean speech utterances. These sounds 

are mainly related to different everyday sounds, and they are also non-permanent. Nine types 

for training DNMF, SNMF, CNMF for speech, 2000 words for speech-based sound, and 2,000 

words for sound training. W1 and W2 were trained with 2000 words and phonetic pairs. Figures 

4.3 (a-f) show speech basis spectra and noise basis spectra. 

 

 a) b) c) 
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Figure.4.3: (a) Typical NMF, (b) Sparse NMF, (c) discriminative NMF (trained using the TIMIT 

training database) found a collection of speech basis spectra. (d) TNMF, (e) SNMF, (f) DNMF (trained 

with 9 noises from the NOISEX-92 dataset) identified a collection of noise basis spectra. 

4.5.2 Simulation setup 

This article provides a comprehensive summary of RDNN supported supervisory 

speech separation. We reviewed the key components of the supervisory department: describing 

learning machines, educational goals, vocal functions, representative methods, and reviewed 

several related studies. DNN-based segregation and segregation issues were created as a 

supervised study, which has dramatically elevated modern art to some linguistic tasks, 

including moral language development, language disabilities, speaker segregation, and 

continuous sound partition. This speedy improvement will lead to a rigorous combination of 

domain awareness and data-based frameworks and the development of in-depth knowledge. 

Beneath, we converse some of the ideological issues related to this perspective. 

It is important to define appropriate training goals for learning and generalization in the 

supervised conversation category. There are two categories of educational goals: mask-based 

goals and mapping-based goals. Cognitive-based objects define the time-frequency relationship 

for clean speech background interaction, while mapping-based objects relate to pure speech 

spectrum representation. This section compares the RDNN methodology to four popular NMF 

models: Typical NMF, Sparse NMF, Discriminative NMF, and Convolutive NMF. 

4.5.3 Performance Metrics 

As assessment estimations, we receive SIR, SAR, SDR, SNR, PESQ worth [-0.5, 4.5] 

and a brief timeframe target clearness measure (STOI [0,1]). SIR, SAR, and SDR are free to 

use and can be enrolled by the Blind source separation (BSS) Evaluation tool section to test 

degrees of basis to impedance, antiquities, and mutilation. The SNR and PESQ scores 

independently assess the degrees of the source to uncomfortable influence and target talk worth, 

whereas the Short time objective intelligibility (STOI) assesses target speech coherence. 

d) e) f) 
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Furthermore, we compare the SIR, SDR, SNR, PESQ, and STOI enhancements in terms of the 

blend talk, as follows: 

GSIR (ˆs, s, x) = SIR (ˆs, s) − SIR (x, s),      (4.14) 

GSDR (ˆs, s, x) = SDR (ˆs, s) − SDR (x, s),       (4.15) 

GPESQ (ˆs, s, x) = PESQ (ˆs, s) − PESQ (x, s),     (4.16) 

GSNR (ˆs, s, x) = SNR (ˆs, s) − SNR (x, s),      (4.17) 

GSTOI (ˆs, s, x) = STOI (ˆs, s) − STOI (x, s),      (4.18) 

Where GSIR, GSDR, GSNR, GPESQ, and GSTOI denote the gains of SIR, SDR, SNR, 

PESQ, and STOI, respectively. Here's' is the pure speech, x is the mixture signals, and ˆs is the 

divided speech. It is a method of weighing all grade measurements and test clips along their 

length, the higher principle indicating better performance. Furthermore, simultaneous speech 

and sound level spectrum prediction improves separation efficiency. On the one hand, sound 

and noise levels can cover a large part of the spectrum and separate sounds. Preliminary studies, 

on the other hand, show that the Weiner type filtering strategy can increase the overall 

performance of RDNN much further. Compared to the earlier mask approximate RDNN, the 

approximate spectral target provides several advantages. 

Table 4.I Various metrics using existing and suggested techniques 

Models gSDR gSAR gSIR gPESQ gSTOI 

Proposed ERSS 10.90 10.80 15.30 0.58 0.08 

Joint-DNN-DNMF 9.90 10.40 14.60 0.54 0.07 

Joint-DNN-CNMF  10.0 10.40 14.80 0.57 0.07 

Joint-DNN-TNMF 10.1 10.50 15.00 0.57 0.07 

Joint-DNN-SNMF 9.60 10.40 13.40 0.50 0.07 

DNN-SPE-NOI-5 9.60 10.70 13.30 0.50 0.07 

DNN-SPE-NOI-1 9.50 10.50 13.00 0.47 0.07 

DNN-SPE-1 8.10 8.40 11.70 0.40 0.06 

DNN-SPE-5 8.60 9.20 12.30 0.45 0.07 

DNN-PSA-1 9.60 10.10 14.80 0.42 0.05 
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DNN-PSA-5 9.60 10.20 14.50 0.45 0.05 

DNN-IRM-1 8.50 10.60 10.90 0.45 0.06 

DNN-IRM-5 8.50 10.80 11.40 0.44 0.06 

 

Table. 4.1 show the different models like TNMF, SNMF, DNMF, CNMF, and proposed ERSS 

using four execution estimations: gSAR, gSDR, gSIR, and gPESQ gSTOI. This phenomenally 

owes to the joint undertakings of RDNN and IFRO. As indicated by one point of view, RDNN 

can misuse spectra-standard structures of talk and change by taking in premise spectra from 

tremendous unadulterated talk and blast. On the other hand, RDNN has strong demonstrating 

limits in taking in the non-linear organizing from the obligation to target. The planned 

combinatorial game-plan centers on the qualities of the pair RDNN and IFRO for the talk group. 

 

Figure. 4.4: Graphical representation of Speech Separation Performances of Various metrics using 

existing and suggested technique 

 

Figure. 4.5: Graphical representation of gSDR matched and unmatched noise 
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Figure. 4.6: Graphical representation of SAR matched and unmatched noise. 

 

Figure. 4.7: Graphical representation of gSIR, matched and unmatched noise 

 

Figure. 4.8: Graphical representation of gPESQ matched and unmatched noise 

Figure. 4.5 to Figure.4.8 reports the cultivated presentations by Joint-DNN-TNMF, 

SNMF, DNMF, CNMF with proposed RDNN for various sparsity models. From one viewpoint, 
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RDNN can abuse spectra-common talk and clatter structures by taking in premise spectra from 

enormous unadulterated talk and uproar. Of course, RDNN has strong showing limits in taking 

in the non-linear arranging from commitment to objective. The projected combinatorial 

arrangement considers the mutually RDNN and NMF for the talk segment. Although Kang-

DNN-NMF also abuses the characteristics of the pair RDNN and IFRO for talk division, the 

IFRO indication and the RDNN measure of the authorizations are acted in an alternate or 

channel way. This will incite a twofold screwup issue, and make the parcel logically fragile to 

estimation mix-ups of RDNN. Hence, NMF achieves a more deplorable introduction than the 

projected RDNN combinatorial models, particularly in matchless disturbance conditions. 

 

Figure. 4.9: Average gain in SDR: partition execution of a variety of partition prototypes at various input 

SNR environments 

 

Figure. 4.10: Average gain in SIR: separation performances of a variety of partition prototypes at various 

input SNR environments 
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Figure. 4.11: Average gain in PESQ: separation performances of a variety of partition prototypes at 

various input SNR environments 

 

Figure. 4.12: Average gain in STOI: separation performances of various partition prototypes at various 

input SNR environments 

Figures. 4.9 to 4.12 Different performance dimensions show specific and graphical 

representations of previous technologies. Multiple Frames of Contextual Separation Target You 

can see that in most evaluations, more than one frame of the separation target is exceeded. This 

may be why RDNN is best suited to study temporary structures and structural objectives within 

the separation goal. Compared to individual RTN models, RTN's IFRO's integrated model, 

DNMF, SNMF, DNMF, and CNMF's integrated model can perform better than speech and 

speech, so you can learn more about speech and speech.  
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It is primarily reserved for the joint efforts of DNN and NMF. On the contrary, the 

spectral-time structure of NMF speech and sound can be applied to the spectrum learned from 

very pure speech and sound. DNN, on the contrary, has powerful designing technology for non-

map learning from input to target. The projected integration plan focuses on the strength of 

DNN and NMF in sound separation. Kong-TNN-NMF uses both the functions of DNN and 

NMF for voice partition, but the DNN evaluation of NMF references and functions is done 

individually or on a tube-by-tube basis. This can lead to double error problems and sensitivity 

to segregation DNN evaluation errors. Therefore, Kong-DNNNMF has lower performance than 

the proposed integrated model, especially at unmatched sound levels. 

4.6 Summary 

In this proposed and completed part of the research work, the data consists of nosy 

speech signals. The integral fox ride optimization (IFRO) integrated with retrieval-based deep 

neural network technique has been applied and results have been obtained. It has been observed 

that the results (performance evaluation metrics) are improved compared with existing works 

as indicated in the graphs and tables. Experiments show that our proposed method achieves the 

highest gains in SDR, SIR, SAR STIO, and PESQ outcomes of 10.9, 15.3, 10.8, 0.08, and 0.58, 

respectively. The Joint-DNN-SNMF obtains 9.6, 13.4, 10.4, 0.07, and 0.50, comparable to the 

Joint-DNN-SNMF. The proposed result is compared to a different method and some previous 

work. In comparison to previous research, our proposed methodology yields better results. 
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Chapter 5 

Grasshopper Optimization-based Matrix Factorization 

(GOMF) and Enthalpy based DNN (EDNN) for 

multichannel source Separation 

5.1 Introduction 

For precise signal localization and separation in radar, sonar, and seismology applications, 

array technologies have been widely used. Since narrowband signals are the major focus of the 

applications, wideband signals require a generalization of the technology. The directivity 

pattern of delay-and-sum beamformers is not constant across all wideband signals. Numerous 

array designs have been suggested as a solution to this issue. Using general design theory as a 

foundation, Ward presented a constant beam width array. Each microphone signal is treated 

using a finite impulse response filter in this manner. Filter-and-sum technique is the name given 

to it. These are reliant on the location of the target, the layout of the array, and they are 

susceptible to noise signals. A narrowband adaptive beamforming approach was developed for 

seismic data processing by Capon to address this restriction. Frost developed a wideband 

adaptive beamformer that was used to filter each microphone signal in an adaptive manner. 

Griffith and Jim introduced the generalized sidelobe canceller, an enhancement technique. 

These strategies were well-liked by adaptive beamforming systems. 

5.2. Proposed Method 

Grasshopper Optimization-based Matrix Factorization (GOMF) and Enthalpy-based DNN are 

combined to create a novel hybrid approach that is proposed in this chapter for multichannel 

speech signal separation (EDNN). Before applying the short-term Fourier Transform (SDFT) 

to the data stream, it is first applied to the multi-channel input signal. An STFT is used to 

construct complex spectrograms with multiple channel composite waveforms. The fundamental 

vectors of clean speech are then evaluated using a ranking-based GOMF approach. Then, to 

distinguish between useful features like directional, spectral, and spatial features, the spatial 

bearing of the target speaker is used. The spectrogram is then rebuilt using an enthalpy-based 

deep neural network. Using the inverse STFT (iSTFT) activity, the retrieved yield signal is then 

transformed back into the produced discourse spectrogram. The proposed strategy's general 

layout is depicted in Figure 5.1. 
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Figure 5.1: Block diagram of the proposed methodology   

Figure 5.1 displays the general layout of the model being presented. The multichannel input 

signal in this instance is put through STFT. In the sections below, the themes are thoroughly 

explained; 

5.2.1. Short Term Fourier Transform (STFT) 

 The multichannel input signal is the first step, followed by a fast Fourier transformation. 

Complex spectrograms are produced by planning the multi-channel blend waveforms with an 

STFT [31]. The STFT is a typical Fourier change expansion where the signs are time-varying 

or non-fixed. 

1

)2(

1

*

1 ).().(),( dyeyyhyzfyZ fyi    (1) 

 In this instance, the window task is H(y), and the sign is Z(y), both of which are focused 

at time y. Since the window work has only cut the sign near to time y, the Fourier transformation 
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is used as a gauge locally at this time. The traditional method of computing the STFT makes 

use of a fixed positive even window, h(y), of a specific form that is fixated on zero and contains 

power. 

We can create a spectrogram that resembles a conventional Fourier change and range.                                                       

2
),(),( fyZfyU z          (5.2) 

 This technique is widely used when examining time-varying and non-fixed indicators. The 

sign is divided into several smaller components by the spectrogram, and from each component, 

a range is calculated. This data displays the locations and times of certain frequencies. The 

multi-channel blend waveforms to complex spectrograms are planned using an STFT. The basis 

vectors of noise and clear speech are then computed using the rank-based GOMF method. The 

GOMF idea is thoroughly explained in the following section; 

5.3. Based on Grasshopper Optimization, matrix factorization 

(GOMF) 

 GOA is relying on the skills and knowledge of grasshoppers. Here, an unique 

hybrid technique for multichannel speech signal separation is integrated with Grasshopper 

Optimization-based Matrix Factorization (GOMF). The whole description of the rank estimate 

process is provided below; 

 

5.3.1. Matrix factorization based on the GOMF: 

 

Step 1: Scov, or spatial covariance matrix 

If the scov function is a vector, it will provide a separate power value for each incoming signal, 

which is presumed to be uncorrelated. If scov is an M-by-M lattice, it speaks to the entire 

covariance matrix between all incoming signals as shown in the following mathematical 

expressions: 

N*)j,i(U

N*)j,i(U
)j,i(SCM

'
  (3) 

the letters U, I, and V stand for the input spectrum, inverse spectrum, and variance, respectively. 

Here, U designates the spectrogram input as well as the spectrogram's inverse, while SCM I j) 

designates the spatial covariance matrix. 

Step 2: Initialization 

 Initialization is a vital stage for the entire optimization process. The multichannel input 

signals utilised as input in this step are first chosen at random. The length of the grasshopper is 

N if the overall magnitude of the multichannel input signal is N. The answer's indicator is 
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grasshopper. The grasshoppers are meant to be arranged in the manner depicted in condition 

(4), and image 5,2 shows the resolution in action. 
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Initial solution format of OGOA 

 

 

Figure 5.2: Solution representation for feature data selection with OGOA 

 

Figure 5.2 illustrates the solution procedure for a sample multichannel input signal. 

N=1,000,000,000 was used in this work (i.e., number of signals presented in dataset is 

1000000). The grasshoppers are shown at random either 0 or 1. This indicates that user data 

wasn't chosen for the classification procedure at the moment since a grasshopper's station is 

zero [103]. Otherwise, the data are chosen for the categorization process if the answer is 1. The 

purchased configuration is offered for the next phase, such as a fitness evaluation. 

Step 3: Fitness Calculation 

The best rank vector arrangement is then chosen once the fitness function has been looked at. 

GOMF-controlled noise and signal Eigen values are both recognised by this technique. The 

fitness function is usually used by optimization algorithms to discover the best configuration. 

The fitness certification is an essential part of GOMF. 

 
nceNoiseVaria*MeanNoise

Fitnessi
1

  (5) 

 

The fitness estimation of each person is evaluated and recorded for future use at the time the 

first solution and opposing arrangement are developed. Condition is used to illustrate the 

fitness function (5). We used a multi-target analysis that includes both noise mean and noise 

variance in this. The use of (6 and 7) allows for the computation of noise mean and noise 

variance. 

termsofnumber

termstheofsum
MeanNoise   (6) 
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



n

)xx(
Variance Noise

i   (7) 

Where "n," the number of observations, "Significance of the Particular Observation," "Mean 

Value of All Observations," and "n" are pertinent concepts. The solution upgrade process is 

already ready to proceed with the received results. 

Step 4: GOMF based Updating solution 

Use the Grasshopper optimization matrix factorization algorithm to adjust the 

arrangement as needed after assessing your fitness. Using condition, we can modify the solution 

(8). The grasshopper's circumstance or position can be mathematically described as follows: 

N1,2,...,i       ,AGSx  iiii   (8) 

Anywhere, the ith grasshopper interacts with society in a way called S i, which can be expressed 

mathematically as follows: 





N

jij

jiijiji xxddSS
,1

ij

^

||d   ,)(  (9) 

The distance between the ith and jth grasshoppers is represented by d ij, whereas s stands 

for the strength of the social forces function, which can be mathematically expressed as follows. 

yl

y

efeyS 



)(  (10) 

Where G I and A I are the gravitational force and wind direction, respectively, for the ith 

grasshopper, and where the following mathematical equation can be used to express this 

relationship: 

^

g
eg

i
G  ,  

^

wi euA   (11) 

As opposed to e g and e w, which stand for the unity vector to the centre of the earth and the 

direction of the wind, respectively, g and u stand for the gravitational constant and constant 

drift. Nevertheless, equation 11 could not be used directly to determine the solution to the 

optimization problem, therefore we recast equation 12 as follows: 
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



(12) 

Where, 𝑢 ⟶ higher bound of the search space, 𝑙 ⟶ Inferior bound of the search space, 

𝑇𝑑 ⟶ Best solution value 

 

Step 5: Termination criteria 

The optimization procedure comes to an end once the best option has been found. After the 

rank vector is estimated, features are collected for handling noise and locating signal Eigen 

values. The parts that follow provide a detailed explanation of the idea that includes NMF. 
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5.3.2. Normalization mean factorization (NMF) 

Using the NMF process, a non-negative grid is declined into two nonnegative lattices, and as

XYUV   (13) 

Anywhere one looks, one finds networks with K lines, N sections, and nonnegative 

components. However, the following noise matrix can be used to describe the NMF model.

EXYUV   (14) 

calculations aimed at solving the NMF problem and assessing the matrices X and Y derived 

from the UV objective matrix. They include trading assessment conditions for each lattice.

)||(min

)||(minarg

XYUVCarY

XYUVCX

Y

X




 (15) 

The component in the kth row and rth column of matrix X, which is every member of matrix 

W, is a distance measure between the matrices A and B given the constraints. There are 

numerous "distance" measurements that can be used to evaluate C (V || XY), with the Euclidean 

distance and the Gulbach-Leipler difference being just two examples. The Euclidean distance 

is used to define C (V || XY) mathematically. 2||)(||
2

1
)||( FXYUVXYUVC   (16) 

Where F is the frequent rule and || || The multiplication update rule can be used to reevaluate 

X and Y as shown below. 
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Anywhere and  designate element-wise multiplication as well as division, 

respectively. 

 

5.3.3. How to calculate the NMF rank: 

 In this, the fundamental vectors of clear speech and noise are evaluated using a ranking-

based GOMF technique. If we rewrite "model" in the following way: 

E0UV=UV  (18) 

Since all matrices X, Y, and = XY have nonnegative rankings, their ranks in the direction of R 

are all identical. Because of this, the evaluation of a nonnegative position in a noisy 

environment is inversely correlated with the evaluation of the number of premise vectors. 

Regrettably, an NP-problematic topic is the surveying of the nonnegative position. Due of the 

relationship between the rank and the nonnegative position, we prefer to evaluate the rank rather 

than the nonnegative position (the framework rank is the lower bound of the nonnegative 

position). 
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 It still requires more than R non-zero Eigen values if we suppose that the rank of is R, even 

if R = (1/N) only implies R non-zero Eigen values because of X. As a result, the problem with 

rank evaluation is due to the inability to distinguish between R signal Eigen regards in a noisy 

environment, which can be solved by noisy head section inspection. The GOMF is a well-

known method for analysing model solicitation in the noisy PCA problem; it chooses the model 

solicitation as the value that limits a threat work. Following rank evaluation and disturbance 

elimination, the multichannel signal is given to the feature extraction stage, which may be 

clearly illustrated as follows: 

5.4. Extracting Features: 

The multichannel signal is shown to highlight the extraction step after rank evaluation and noise 

removal. The extraction of highlights is a critical step in signal characterisation. Distinguishing 

a meaningful characteristic from a multichannel signal can be difficult. There are several 

approaches for extracting elements. In this work, we take multichannel data and extract 

highlights with extraterrestrial, spatial, and directional bases. 

5.5 . Spectrogram reconstruction using an enthalpy-based deep 

neural network (EDNN): 

 

 In contrast to earlier research, which solely relied on DNN, our study uses the Enthalpy 

algorithm, which we just created and coupled with DNN. This is one of the cutting-edge 

techniques we used in our research. The convolutional layer of the DNN receives the data 

initially, which is then subjected to enthalpy, a max pooling layer, a fully connected layer to the 

Softmax regressor, and a repetition of the procedure. 

 

Figure 5.3: Structure of the envisaged EDNN 

 

Figure 3 above depicts the suggested EDNN's design, which is utilised to rebuild the 

spectrogram. Figure 3 shows the transfer of input signals to the enthalpy layer. Enthalpy starts 

its process in response to the input signal. In order to reduce the representation of boundaries 
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and calculations in the system, the max-pooling layer gets the output of the signals after it has 

completed processing. Before continuing to con1, where it receives the signals with a clear 

format, Max pooling processes the signals using a matrix or kernel. The signals are then sent 

back to enthalpy, where they are handled by max-pooling before being transferred to con2. The 

softmax regressor will receive the full signal from Con2 and forecast the outcome. 

5.5.1. Convolution layer 

The signals are retrieved in their original clear format by the network's primary layer using 

a matrix or kernel. Recognizing the pixels aids in maintaining the connection between the 

signal features. The spectrogram fields should be checked for the upcoming convolutional 

layer operations. This layer satisfies the criteria set forth by equation (24). In any case, the 

output of the convolution is referred to as the element map. 







1

0

N

n

nknk hxy

 (24) 

There is usually a filter, input features, and a certain amount of necessities. The output is the 

yield vector. The subscripts denote the components of the vector. 

5.5.2. Layer of normalization depending on enthalpy 

Enthalpy-based standardization, the second layer of the network, essentially transmits the 

indicators to a comparable area or along a specified path. Normalization, which involves 

altering the signal with the aim of achieving a mean of 0 and a standard deviation of 1, is a 

common example of a preset go. The process of normalization involves changing the range of 

pixel force values. The enthalpy-based normalization calculation is carried out to widen the 

scope of spectrum reconstruction. Using the conditions listed below, a quantitative illustration 

of enthalpy-based normalization is provided. 

)SAF*SEF(DFH   (25) 

minmax XX

X
HEBN


  (26) 

Where DF stands for direction feature, SEF stands for spectral feature, SAF stands for spatial 

feature, and combined with are the minimum and maximum values in spectrum reconstruction 

X. Where EBN is the enthalpy esteem based normalised or spectrum reconstruction. 

5.5.3. Max-Pooling layer 

The pooling layer reduces the system's representation of computation and boundary. Prior to 

contributing to the next layer, the max-pooling layer, often referred as as the down sampling 

layer, is used to reduce the dimensionality of the signal and the yield neurons. 
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5.5.4. Fully connected layer 

Since each neuron receives input from the previous layer, it is advantageous to produce as many 

neurons as possible from those layers. 

Softmax: This term is used to describe the various digits of the labels logistic regression's 

assumption that there are many classes (0, 1). 


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x

i
i

i

e

e
p

1 (27) 

Wherever the network input is, EDNN is employed to categorise the input signals according 

to the entropy value and to spot abnormal or wounded behaviour. Entropy-based deep neural 

architecture was implemented in a particular sequence. It also has steps for planning and 

changing boundary learning. 

5.6 Pre-training stage  

With the help of the DBN model, the association can produce observable authorizations 

that reflect its convictions based on the conditions of its hidden units. In this situation, we solved 

the aforementioned issue using the RBM. 

A Restricted Boltzmann Machine (RBM) is a kind of prohibitive Markov self-assertive 

field with two layers: one layer of stochastic covered (often Bernoulli) units and one layer 

of stochastic clear (commonly Gaussian or Bernoulli) units. The DNN structure shown in 

Figure 5.4 demonstrates how it employs a significant number of data neurons to address 

the selected ideal characteristics and distinctive covered layers before gathering the 

signals in the yield layer. 

Step 1: The observable units, which suggest the selected features to the training vector, 

are fundamentally introduced. 

    
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The predisposition word, which indicates the symmetrical collaboration between the 

detectable component and the concealed component everywhere, describes the number 

of visible and hidden components. The subordinate log probability of a weight 

arrangement vector is fundamentally illogical. There are no direct effects between 

covered units in an RBM, but it is incredibly easy to make a case for 

  
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Anywhere  x signifies the strategic sigmoid capacity
  xexp1

1


, jsi hf , denotes the 

unbiased sample. 
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Step 2: In order to make the given visible and undetectable units equal, we update the 

clear and hidden units. This shows how to conduct the stochastic steepest ascending in 

the log probability of the arrangement data using a more straightforward learning strategy. 

   
tionreconstrucjsidatajsiij yfyfW   (30) 

Once the RBM is ready, a superior RBM can be "stacked" on top of it to produce a multilayer 

model. communicates at this point about the updated weight as a result of the shifting load in 

the hidden layer. In the last layer of the correctly arranged layers, a commitment to the novel 

RBM is secured. Setting up an adjustment stage is the focus of the developed big association 

burdens. 

5.6.1 Fine tuning phase 

It is rather common to employ back-spread computation for fine-tuning. To organise 

system introduction, the DNN is often covered by a yield layer. Similarly, until the advanced 

weight is mastered or improved, the training dataset is made available. Due to the potential 

repercussions of missing any indicators along the layout, the DNN classifier is crucial. The 

classifier in this instance uses the data to complete the procedure. An inverse STFT technique 

is performed following spectrogram reconstruction. The concept of iSTFT is explained in more 

detail in the section that follows. 

5.7 Inverse STFT (iSTFT) operation 

The extracted output signal is then created by converting the generated speech spectrogram 

using the inverse STFT process. Finally, the extracted separated signal was acquired.  

5.8 Results and Conclusions: 

The suggested hybrid GOMF and enthalpy-based deep neural network for multichannel speech 

separation. In this section, the newly proposed methodology is put to use in MATLAB on a 

system with 6 GB of RAM and an Intel I-7 processor running at 2.6 GHz. Pictures of the iris, 

which is a distinctive mark, are taken from the dataset and used to evaluate the accuracy and 

capabilities of the approach. 

 

 

 

 

 

Performance analysis of spectrogram 
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(a) 

 

(b) 

 

(c) 



85 
 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

Figure 5.4: (a), (b), (c), (d) Performance evaluation of the input signal from the spectrogram and (e), (f), 

(g) (h) Performance evaluation of the signal from spectrogram reconstruction  

As a result, Figure 5.4 illustrates the performance analysis of four spectrogram input 

signals (a, b, c, and d). Four spectrogram reconstruction signals' respective performance 

analyses are shown in Figure 5.4 (e, f, g, and h). Analysing the aforementioned figures, our 

suggested changes produce better results. As you can see from the accompanying diagram, our 

suggested strategy leads to better outcomes than pre-existing theories. 

 Comparative Results 

The system is connected to the most recent DNN-JAT, RNN, and NMF-DNN algorithms. The 

results are investigated using the SASSEC07 and SiSEC 2010 sets. The (long stretch) SNRs of 

the signals in the noisy dataset range from - 6 dB to 9 dB. The relative investigation of the 

current methods is shown in the accompanying tables 1 and 3. Examining voice signals and 
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signal management strategies is what the speech signal does. As part of the speech processing 

process, speech signals are gathered, managed, stored, transported, and created. Voice synthesis 

is the term used to describe the process of creating the information from speech recognition. 

The four signals SGL1, SGL 2, SGL 3, and SGL 4 are used in this. SGL 1 denotes signal number 

1, SGL 2 signal number 2, SGL 3 signal number 3, and SGL 4 signal number 4. 

Table 5.1: Comparative evaluation of SASSEC07's data set 

Methods -6dB -3dB 0dB 3dB 6dB  9dB 

PROPOSED 23.1523 23.0523 19.0523 16.0523 11.0523 10.052296 

DNN-JAT 17.51032 14.50032 13.50032 10.500317 7.500317 2.500317 

RNN 12.5434 11.45434 8.454344 5.454344 2.454344 2.545656 

NMF-DNN                                               11.49991 10.299912 7.299912 5.299912 1.299912 1.700088 

 

In this situation, our recommended approach yields the most extreme result of -6dB of 

24.0523, ranging from -6dB, -3dB, 0dB, 3dB, 6dB, and 9dB. According to the analysis, our 

suggested technique performs better than the present outcomes. 

Table 5.2: SASSEC07 Data Set: SDR, SIR, SAR, and PESQ Analysis 
 

Methods SDR SIR SAR PESQ 

SGL1 

PROPOSED 65.17269 81.31335 65.28133 4.107441 

DNN-JAT 64.59602 80.84348 64.66359 2.829521 

RNN 63.78988 80.1175 63.89267 1.996385 

NMF-DNN 23.79269 0.746314 21.11269 2.059962 

SGL2 

PROPOSED 66.5279 84.42081 66.60005 4.03195 

DNN-JAT 64.59602 82.84348 64.66359 2.829521 

RNN 65.05929 82.44476 65.14301 2.14013 

NMF-DNN 22.83533 1.677526 20.56635 1.656663 

SGL3 

PROPOSED 66.59894 82.61139 66.71209 3.941679 

DNN-JAT 65.72619 81.53611 65.8008 2.817636 

RNN 65.00474 80.92769 65.0953 2.413042 

NMF-DNN 24.36949 2.238257 22.32536 2.117426 

SGL4 

PROPOSED 68.30567 84.39359 68.42121 4.352382 

DNN-JAT 65.64417 81.72218 65.75984 3.461406 

RNN 64.09938 84.21401 64.14289 2.48984 

NMF-DNN 22.75859 0.754332 20.08968 1.770753 
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The SASSEC07 data set's SDR, SIR, SAR, and PESQ signal analyses are described in more 

depth in Table 2 above. In this case, the effectiveness of three various existing methodologies—

DMF-DNN, RNN, and DNN—against four different signals is investigated. When analyzing 

the features in the aforementioned table, our suggestion produces better outcomes. From Table 

2 above, it is clear that our suggested strategy outperforms conventional beliefs in terms of 

effectiveness. Near and to test the suggested Multichannel Speech Separation using crossover 

GOMF and Enthalpy based Deep Neural Network; this can be sure to confirm the efficacy of 

the earlier techniques. Figures 5 to 9 show the representation of the spectrum input signals, 

reconstruction signals, SAR, SDR, SIR, SNR, and PESQ measurements for each dataset. 

 

Figure 5.5: SAR performance evaluation 

 

Figure 5.6: SDR performance evaluation 
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Figure 5.7: SIR's performance evaluation 

 

Figure 5.8: SNR performance evaluation 

 

Figure 5.9: Analysis of PESQ score performance 
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The performance analysis of SAR, SDR, SIR, SNR, and PESQ is shown in Figures 5.5 to 5.9, 

respectively. PESQ is expressed as mean opinion scores (MOS), with a range of 0 to 5. The 

higher the MOS, the better. The comparison of the proposed method with the DNN-JAT, RNN, 

and NMF-DNN existing methods is shown in the above graph. Figure 10-14, when examined, 

yields the best results in terms of SAR, SDR, SIR, SNR, and PESQ. Our suggested approach 

yields better results when compared to other current solutions. 

Table 5.3: Comparative analysis of data set SiSEC 2010 

Methods -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB 

PROPOSED 22.12368 19.12368 16.12368 13.12368 10.12368 7.123679 

DNN-JAT 20.28293 17.28293 14.28293 11.28293 8.28293 5.28293 

RNN 17.34285 14.34285 11.34285 8.342846 5.342846 2.342846 

NMF-DNN 11.31751 8.31751 5.31751 2.31751 0.68249 3.68249 

 

The presented system attains the extreme outcome of -6dB of 22.12368 ranging from -6dB, -

3dB, 0dB, 3dB, 6dB as well as 9dB. From the examination, visibly recognize that the presented 

technique is enhanced than the current techniques. 

 

Table 5.4: SiSEC 2010_Signal Analysis of SDR, SIR and SAR 

 

SGL1 

Method  SDR SIR SAR PESQ 

PROPOSED 66.23178 84.69063 66.2942 4.341312 

DNN-JAT 65.77422 82.55409 65.86636 3.048116 

RNN 65.35931 81.53766 65.46658 2.612899 

NMF-DNN 24.6071 0.67683 21.36052 2.089909 

SGL2 

PROPOSED 66.08751 83.03069 66.18009 3.828596 

DNN-JAT 64.10656 81.23423 64.19774 2.689591 

RNN 65.41014 82.38261 65.50194 2.767913 

NMF-DNN 22.66986 2.860692 20.83926 1.461341 

SGL3 

PROPOSED 65.83716 83.54766 65.91321 4.0997 

DNN-JAT 65.40494 83.14233 65.47892 3.016585 

RNN 65.39326 78.77577 65.59737 2.566589 

NMF-DNN 22.69306 2.609322 20.78142 1.923716 

SGL4 
PROPOSED 68.27951 79.65546 68.61231 4.259884 

DNN-JAT 66.39269 78.57407 66.61433 2.974225 
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RNN 67.92532 77.67461 68.23352 2.621152 

NMF-DNN 24.27491 0.697049 20.87947 1.590075 

 

The signal analysis for SDR, SIR, SAR, and PESQ in the SiSEC 2010 data set is described in 

Table 5.4 above. Four signals are compared in this study using three different existing 

methodologies: DMF-DNN, RNN, and DNN-JAT. Our suggested modifications result in 

improved outcomes when compared to the numbers in the aforementioned table. Table 5.4 

shows that the proposed technology outperforms the currently employed techniques in terms of 

results. 

 

 

Figure 5. 10: SAR performance evaluation 

 

Figure 5.11: SDR performance evaluation 
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Figure 5.12: Performance review for SIR 

 

Figure 5.13: SNR performance evaluation 

 

Figure 5.14: Analysis of PESQ Score performance 



93 
 

The graph up top compares the SAR, SDR, SIR, SNR, and PESQ of a proposed approach 

against those of existing methods using the dataset SiSEC 2010. Figures 10 to 14's analysis 

shows that the proposed produces the highest SAR, SDR, SIR, and SNR. Compared to other 

DNN-JAT, RNN, and DNN-NMF techniques currently in use, the one we propose performs 

better. 

5. 9 Summary 

Multichannel speech separation is one of the most difficult challenges at the moment. 

Grasshopper Optimization-based Matrix Factorization (GOMF) and Enthalpy-based DNN are 

combined and used for data sets (SASSEC07, SiSEC-2010) to obtain results for multichannel 

source separation. The investigations findings demonstrate better performance when compared 

with the existing results. It has been observed that the results (performance evaluation metrics) 

are improved compared with existing works as indicated in the graphs and tables. Experimental 

results show that our proposed approach accomplishes the most extreme SNR outcome of -6dB 

of 24.0523. Comparable to the DNN-JAT, which achieves 18.50032. The RNN and NMF-DNN 

had the worst SNR 13.45434 and 12.29991. 
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Chapter 6 

Krill herd-based matrix factorization (KHMF) and Score-

based Convolutional Neural Network (SCNN) for 

Multichannel Source Separation. 

6.1  Introduction 

In a previous study, the hybrid Grasshopper Optimization-based Matrix Factorization 

(GOMF) algorithm shows great potential in the Multichannel speech separation. However, 

GOMF has a parameter initialization problem and leading to poor separation performance. 

Instead, a joint creation of the GOMF model parameter approximation and source localization 

delinquent. So that we proposed Speech Separation with Enthalpy-based DOA and Score-based 

CNN. The current generation of automatic speech recognition systems can decode clear speech 

quite well in relatively quiet surroundings, but their performance suffers greatly in loud 

environments or when a voice signal is present that interferes with the speech signal. Humans, 

on the other hand, are adept at recognizing combinations of speech signals that are produced by 

two simultaneous speakers.  

There are many techniques that have been developed to enhance voice recognition in the 

presence of background noise or competing speech. Among them, the methods (1) multichannel 

signal separation, also known as blind signal separation, and (2) computational auditory scene 

analysis may show promise (CASA). 

6.2. PROPOSED SYSTEM 

This chapter suggests a technique for decoding multi-channel speech signals that 

combines enthalpy-based DOA, KHMF, and score-based CNN. Determine the signal's STFT 

first. The branch begins the subsequent phase by determining the enthalpy of the signal under 

analysis. The change in space energy caused by DOA in each time interval is referred to as 

enthalpy. The spatial energy histogram will be transformed by the GMM that determines the 

enthalpy function at each time frame. The SCM model is parameterized by the enthalpy DOA 

in the third step using the signal tracker's output as a basis. To calculate the tracked address, 

use multi-channel KHMF. In the fourth step, useful features are extracted that correspond to 

the spatial direction of the target speaker, such as directional features and spatial features. A 

SCNN ratio based on the score will then be used to mask the spectrogram. In the method of 

forming, the photo blocks are visible. 
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In contrast, no specific prior knowledge is necessary for the multichannel signal separation 

technique. It only makes use of statistical data from the multivariate data collected from a 

collection of microphones, where variations in propagation delay might be significant. An 

automatic speech recognizer can use the multichannel signal separation as a front-end to 

separate the simultaneous speech signals into individual signals, thereby cancelling the cross-

talk for a particular speech signal. As a result, it is anticipated that it will enhance the target 

speech source's recognition performance, as current automatic speech recognition systems are 

very sensitive to cross-talk and perform significantly worse in this environment than they do in 

environments with other types of background noise. 

 

Figure 6.1: shows a block diagram of the suggested approach. 
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The offered model's schematic is shown in Figure 1. Multi-channel input signals are employed 

in this case with STFT. These ideas are thoroughly explained in the following sections. 

6.2.1. STFT 

 Multichannel input signals are received, and then the short-term Fourier transform is 

applied. Through the use of STFT, complex spectrograms are created from multi-channel mixed 

waveforms. The STFT, a distinct extension of the Fourier transform, is utilised when the signs 

are variable or not fixed. 

1

)2(

1

*

1 ).().(),( dyeyyhyzfyZ fyi                                                 (1) 

 Anywhere, Z(y) denotes the symbol, and h(y) denotes where the temporary work is located 

within the y window. The Fourier shift serves as a local indicator at time y, the only time the 

window truncates the sign. A fixed positive even window h(y), which needs to be zeroed out 

and given a base, must be used in some way to calculate STFT. We can design the spectrogram 

as using the Fourier transform and normal range. 

                                                       
2

),(),( fyZfyU z                                                           (2) 

 It is typically used to examine signals that evolve over time. The spectrogram separates 

the sign into numerous smaller parts and estimates the range of each part, giving us knowledge 

of the moment when several frequencies converge. In intricate spectrograms, it is used to plan 

multi-channel mixed signals. The monitoring branch then begins by calculating the analysis 

signal's enthalpy. Enthalpy describes how space energy changes with DOA in each time 

interval. The spatial energy histogram is transformed into DOA measurements by the GMM, 

which calculates the enthalpy function at each time frame. The definition of granularity is 

provided in the following paragraph. 

6.2.2 GMM: 

The goal of the GMM [23] is to identify the mixture that most accurately reproduces the 

multivariate Gaussian probability distribution of an input set. In this scenario, each time interval 

will estimate the Gaussian model of the mixture of enthalpy that transforms the space energy. 

To model the spatial distribution of the mixture, we advise utilising a mixture model as 

opposed to searching for SRP peaks [24]. For each time frame of the guided response 

performance, the Gaussian value was assessed independently (SRP). A DOA measurement 

value (multiple directions of arrival) with mean, variance, and weight is created using the GMM 

result parameter from the discrete spatial distribution acquired from the SRP. Sound hopping 

across borders is the source of the noise in SRP. The use of GMM can lessen the effects of noise 

if the measurement uncertainty in multi-channel speech separation can be represented by the 

width of each peak provided by the Gaussian variance from e to h. 
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The probability density function (PDF) of univariate Gaussian distribution [25] [26] 

through mean   as well as variance 2  can be defined as follows; 
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Where ),;( 2N is a PDF of a regular Gaussian distribution, l is the GMM index of 

2 multiples, and ],[   . Here, the GMM through weights ka  designed for every 

Gaussian distribution k  is well-defined as algorithm1; 

 

Algorithm 6.1: EM-Algorithm for estimation of GMM  

 

 

Input: Signal data S   

Output:  

Initialize the 2,  anda  

Compute  probability density function using equation(3) 

//First get the equation in E step 

For t=1:T 

     For i=1:Z 

           For k=1:K 
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//Second go through the M step 
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              End  

     End 

Until converge reached the condition. 

 

 

The above algorithm specifies the estimation as well as maximization of the GMM. 
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Anywhere k  in the entire quantity of Gaussians in the model as well as EM procedure 

for approximating parameters  2,, a  that exploit the log-likelihood  
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Is assumed in [25]. The parameter d  indicates the standpoints of guidelines indices

Md ,...,1  used to estimate SRP in (24). 

 

6.2.3 Enthalpy based DOA: 

 The spatial energy histogram is then translated into DOA measurements in each time 

interval using an estimated GMM of the enthalpy function. This can be written mathematically 

as: 

minmax

min

XX

XX
EBTF




                              (6) 

 EBTFEp  k                             (7) 

Anywhere, 
minX along with 

maxX are the minimum as well as maximum values into c 

measurements X, where EBTF is the enthalpy-based time frame. 
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6.2.4 DOA Measurements by GMM: 

For both time frames, Algorithm 1 operates discretely. In addition, the resulting means 

via variances and weights are assessed as permuted DOA measurements. A combination of 

Gaussians aiming at both time frames is obtained. The algorithm is currently unable to 

distinguish between measurements in each frame that are brought on by real sources and those 

that are due to noise. Enthalpy is used to explain the connection between the DOA and the space 

energy of each period in this context. The spatial energy histogram is transformed into DOA 

measurements at each time frame by the estimation of the enthalpy function. A spatial 

covariance matrix model (SCM model), which is parameterized by DOA based on enthalpy, is 

created once the DOA measurement results have been calculated. According to the signal, the 

tracker outputs. In order to estimate the spectral model from the source in the direction 

described in more detail below, use the multi-channel KHMF to represent the spatial behaviour 

of the source in time; 

6.2.5 Spatial Covariance Matrix Model: 

 

The signal tracker output is used to define a spatial covariance matrix model [27] 

parameterized by Enthalpy-based DOA. For each time frame point in this example, the SCM is 

calculated. Both input channels' magnitude spectrograms are contained in each diagonal. The 

disagreement and absolute value of (off-diagonal values) denote, respectively, the segment 

variance and magnitude correlation among microphones for a time frame point. Combination 

SCMs can be used to approximate the TF domain mixing in equations (2, 3). 

EpHMM
S

s
sxysxy

xyxy q





1

,,
                                               (8) 

Where the source's optimistically valued magnitude spectrogram and the frequency domain 

Room Impulse Response (RIR) SCMs are. Then, using the multi-channel KHMF to estimate 

the spectral model of the source from the tracking direction as will be detailed below, the 

obtained SCM represents the spatial behaviour of the source in time; 

 

6.2.6 KHMF: 

By modelling the grazing of krill populations based on certain organic and ecological 

forms, KHA is a new meta-heuristic technique that can rationalise the population to address the 

reproduction problem. This optimization algorithm's goal is to maximise herd density. Here, 

matrix factorization is the foundation of the conventional krill swarm optimization approach. 

The flow representation based on the krill population's matrix decomposition is depicted in 

Figure 6.2. In the part after this, this procedure will be explained. 
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Figure.6.2 The flowchart for krill herd-based matrix factorization algorithm 

 

The next section will introduce the step-by-step process of the matrix factorization algorithm 

based on krill swarms. 
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6.3  Krill Herd based Matrix factorization: 

 

Step 1: Spatial covariance matrix (SCM): 

Each input signal receives a separate power value if scov is a vector [28], which is likewise 

regarded as unimportant. If an M-by-M network, then the full covariance matrix involving all 

input signals is being discussed. The following is its mathematical expression: 

N*)j,i(U

N*)j,i(U
)j,i(SCM

'
                                               (9) 

Anywhere; U → Multichannel input signals, 'U → Inverse multichannel signals, N

variance value. Here, SCM (i, j) stipulates the spatial covariance matrix, U stipulates the 

multichannel input as well as stipulates the inverse of signals. 

 

Step 2: Initialization 

The population size, overall evolution number, and are the key KHA factors. The feature 

value is represented by the krill herd in our proposed method. We obtain some sets of initial 

solutions after initialising the values. The following steps receive these solutions. 

 

Step 3: Fitness calculation 

            Estimate the fitness effectiveness rest on the equation (10) and select the best result. 

                               
PSNRFitness max                                                                 (10) 

Krill herd-based matrix factorization repeats the application of the first three movements while 

also adhering to the search directives to increase the value of the goal function. Every individual 

krill's mobility is controlled by three key mechanisms.  

(a) Development initiated by other krill individuals,  

(b) Foraging action,  

(c) Random dispersion. 

6.3.1 Development initiated by other krill individuals 

Individual krill attempt to maintain increased thickness throughout this process, while the 

rate of development of other krill affects the speed of each individual. To evaluate the motion-

induced effect, three impacts are used: the repulsive impact (x), the neighbourhood impact (y), 

and the objective impact (z). For each individual m, this signal could be expressed as 

    
old

mbm

new

m DDD   max
                                                (11) 

Where, 
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maxD - Extreme induced signal or motion,   b    - Inertia weight of the motion-induced 

inside the range [0, 1], 
old

mD  - Preceding induced motion of the mth krill individuals,        

bw FandF -The most horrible also the finest situation amid altogether the krill individuals of 

the population, nm PandP -Current situation of the mth as well as the nth entities, N - Amount 

of krill individuals additional than the specific krill, maxMandM - Amount of present iteration 

in addition to an extreme quantity of iterations, 
best

mF -The best fitness value of the mth and the 

nth individuals, 
best

mP -The best-related position of the mth and the nth individuals. 

             

At this point, a parameter termed as sensing signal distance dS  is utilized for the 

distance amongst the individual krills as well as the neighbours also it is expressed by, 

    





1

15

1 N

n

nmd FF
N

S                                                    (19) 

 Where N - Entire amount of the krill individual, nm FF  -Position of the mth as well as 

nth krill. 

 

6.3.2  Foraging action 

 This action is founded upon dual foremost factors. Originally the current food area, as 

well as the second, is the data about the previous food area. For the mth krill individual, the 

foraging velocity can be spoken by, 
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old

Fmxmf

new

Fm FSF                                                                            (20)

                                 
 

Where, x  -Inertia weight of the foraging motion, 
old

Fm

new

Fm FandF  -Foraging motions of the new 

and the old mth krill 

 

6.3.4 Random dispersion 

To improve the populace variety random diffusion procedure is mostly measured as well as 

it is spoken by, 

   
max

D

new

Dm RR  
   

                                                   (21)
                                                             

       
 
 

Where, 
max

DR  - Maximum diffusion speed,  - Random directional vector lies amid [-1, 1]. 

 

Step 4: Updating the position 

In this process, a single krill can potentially shift from its current position to one that is more 

beneficial because to the random movement of induction movement, feed movement, and 

propagation. The promoted placement of the mth krill individuals throughout t and also may be 

associated by, as shown by the three investigated movements above. 

 
dt

dP
ttPttP m

mm  )()(                                                                           (22) 

Where, An n-dimensional judgment space in the Lagrangian model is used to express basic 

KHA technique as shown below, 

                        

new

Dm

new

Fm

new

m

m RFD
dt

dP
                                                                                (23) 

  Where 
new

mD  -the motion-induced through additional krill individuals,
new

FmF - foraging motion,            

new

DmR -physical diffusion of the krill individuals 

                            




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n

nnt LLULrt
1

)(                                                                                (24) 

  Where nn LLandUL -Upper and lower limits, tr  -Random number uniformly distributed 

between 0 to 2.  Based on the above method, SCM represents the spatial behaviour of the source 

in time and uses multi-channel KHMF to estimate the spectral model from the source following 

the direction. 

 

Step 5: Termination criteria 
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After finding the best solution, the optimization process ends. After the evaluation, the result 

will be passed to the feature extraction step, which will be explained in detail below. 

 

6.4 Feature Extraction: 

At this point, actual features like directivity and spatial features are extracted based on the 

speaker's spatial direction. Next, a convolutional neural network model estimated from the 

spectrogram is used to mask it. 

6.4.1 Feature extraction based on the directional feature (DF): 

In this instance, we separate the target speaker using a neural spatial filter, a direct 

function in a neural tissue model. The two-layer directional highlight can be effectively planned 

and then incorporated into the creation of the conventional multi-channel voice segment in 

accordance with the previous characteristics of the solid support. To get the target speaker ready 

for separation, emphasise at the information level (for instance, the power spectrum and the 

space allocated between channels). 

Here, two new directions—directional power ratio (DPR) and directional signal-to-

noise ratio—are applied in consideration of the operating capacity of the universal fixed strip 

forming machine (DSNR). Some static channels, such as the super cardioids static pillar before, 

are intended and predetermined by way of, which imagine recovering sound sources as course 

for reappearance canister. These channels are directed at, and receiver demonstration and a pre-

characterized bearing lattice are assumed. We can use the organising produce intensity of as a 

functional assessment of the significant force from course given that we anticipate that these 

immovable channels can stretch entirely about spatial detachment and that the numerous 

speakers are not firmly located in the space. As the marker is a T-F receptacle overcome through 

the sign from heading, the DPR can be calculated in this way and is classified as follows: 
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),(      (25) 

Somewhere;  ftY ,  is the polyhedral spectrum vector in bin  ftTF , . In addition, in most 

radiation pattern design methods, each fixed spatial filter has multiple rejection regions. For 

example, the signals near 
P  are well preserved by  fwp , but they are greatly attenuated by

 fwk , pk  . At this point, p  is a set of directions, and its radiation pattern in the 
P

direction is zero. It can be precisely defined during the design phase of the beam-former. If the 

address grid covers the entire space, DSNR can therefore be interpreted as the ratio of signal 

power 
P  to the strongest interference: 
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In this case, the directivity of DPR and DSNR can provide clues to distinguish the target speech 

from the interference. 

 

6.4.2 Feature extraction based on the spatial feature (SAF): 

 

We initially use cochlear gramme decomposition to separate the left and right ear signals from  

among these spatial features [29]. In particular, a 64-channel gamma-ray channel that controls 

a register with a focus frequency between 50 Hz and 8000 Hz by means of a proportionate 

rectangular transaction rate scale divides the information mix. Each channel's power is 

restricted to half-wave support, a track motion of 10 ms, and loop lengths of 20 ms. We omitted 

the two primary binaural accents of ITD and ILD because the TF nameplate has a sampling rate 

of 16 kHz and 320 models can be enumerated by binaural information prompts. ITD is built on 

a common CCF between the left and right hemispheres, as the Lyr application obliquely 

suggests. 
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XCM,L and XCM,R transfer the symbols of one side of the device and the right ear in 

channel c and freely group m under the predetermined parameters, and k records a sign instance 

of a T-F unit. is between -1 ms and 1 ms. The CCF component for a test frequency of 16 kHz 

is 33. To examine characters coming from various starting points, the CCF aspect is used as a 

partial vector right away. 

Another two-dimensional (2D) ITD will be implemented at this point. The CCF estimate 

at the anticipated delay e in relation to the target speech head serves as the primary 

measurement. The result is the highest CCF score, which measures the compatibility of the left 

and right hearing aids and is used to decide which binaural decorations to use to reduce noise. 

The usage provides suggestions for these two highlighted objectives. To identify directional 

sources of scattered noise, the highly regarded CCF is employed. The least common CCF value 

should be close to 1 for directional sound sources and close to 0 for diffuse sound sources. The 

evaluation target's discrete speech and annoying noise, which are brought on by another source, 

are directly resolved by taking CCF into account. 
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In specific ILD associates towards the energy ratio in DP, and is determined under every unit 

pair,  
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Overall, we may say that 2D ITD and 1D ILD make up each pair of TF blocks' space allocation. 

To create a spatial component vector in the envelope, we connect each projection at the unit 

level. The overall measurement value for each time window for a 64-channel cochlea is 192. 

The extracted features will proceed to the following SCNN step after feature extraction. Next, 

based on the neural network masking factor, convolution is used to estimate the spectrogram. 

The following provides a thorough explanation of the convolutional network concept. 

6.5 SCNN: 

Three layers, including a convolutional layer, a clustering layer, and a fully linked layer, make 

up the proposed SCNN. The weights and biases of the preceding layer influence the CNN 

classifier's final judgement. The condition (26) and condition (27) of each layer, in turn, justify 

these weights and biases. 
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Where nW  represents the weight, nB  represents the bias, n  signifies the layer number, 

  signifies the regularization parameter, x  represents the learning rate, tN  represents the total 

number of training samples, m  represents the momentum, t  represents the updating step, and

C  represents the cost function. The CNN classifier includes various kinds of layers are as 

follows, 

(a) Convolutional layer: It contains several learned weighting matrices, so-called 

filters, which slide on the input signal. In each convolutional layer, the performance of 

the transmission layer is first checked according to various learning weight networks 

called template filters. Operate linearly to output the layer. This layer uses condition 

(30) to perform convolution of the input data and the kernel. The result of convolution 

is also called an attribute map. 
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Anywhere, ny  is the input features ĥ  is the filter and M  is the number of components in

y  and the output vector is kC .

 
(b) Pooling layer: This layer is called the down sampling layer. The clustering process 

reduces the size of neurons emerging from the convolutional layer to diminish 

computational intensity as well as avoid over-fitting. In this sense, the largest grouping 

activity will select the most excessive stimulation in each component. Reduce the 

number of output neurons. In addition, the grouping layer shortens the information in 

the output of the convolutional layer.  

(c) Fully connected layer: This level is completely related to each start of the previous 

level. That is, this layer connects each neuron in the maximum combination layer with 

all output neurons. The activation function used in this work corresponds to the 

following: 

  

Softmax: This function calculates the probability distribution of k output categories. 

Therefore, the output layer uses the softmax function to calculate the input category 

corresponding to normal or abnormal. 

 


k x

x

i
i

i

e

e
p

1                                                    (33) 

Anywhere, x  is the multichannel input signals that are, the output classes of SCNN are 

extracted output signal. After restoring the spectrogram, perform the reverse STFT operation. 

The next section will introduce the concept of iSTFT in detail. STFT inverse operation. 

6.5.1 Inverse STFT (iSTFT) operation: 

Finally, the STFT inverse operation is applied and used to modify the resulting speech 

spectrogram. At the end of the extracted output signal, we get the extracted single signal. 

6.6 Results and Conclusions: 

The proposed multi-channel KHMF is used for speech separation using enthalpy-based 

DOA and SCNN. In this section, the method introduced in MATLAB applies to a system with 

6 GB RAM and an Intel I-7 processor. The accuracy and performance of the method were 

evaluated at 2.6 GHz, and Signals were collected from the data set. 

6.6.1 General Assumptions: 

In the experiment, we used 50 professional music recording datasets from SiSEC 2018 

[30]. Here, clear language and diffuse noise are selected from the TIMIT corpus [31]. To test 

the common p-dimensional situation, we used three real-time voice mixing and three 
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microphones and 4 signal sources from SiSEC 2011 [32], level 3×5 (3 mixed signals-5 signal 

sources), and Level 4×8 (4 mixed signals-8 signal sources). ) Random male and female voices. 

In the 3×5 example, we mixed 5 audio sources, and in the 4×8 example, we mixed 8 audio 

sources. Since there is no reliable information about the angle at which the source is placed in 

the mix, we use our proposed method to estimate the DOA of the source.  

 

6.6.2 Comparative Results: 

In order to analyse the results using SiSEC 2018 and the TIMIT suite, the proposed 

system makes use of existing Directional Fuzzy C-Means (DFCM), Weighted Mixture of 

Directional Laplacian Distributions (WMDLD), Flexible Audio Source Separation Toolbox 

(FASST), and GaussSep algorithm (GS) methods. The comparative analysis of the suggested 

and existing methodologies is shown in the accompanying tables 6.1 and 6.2. Each data set in 

this instance has two blends. Male2, Male3, and Male3 are created from these two 

combinations, as indicated below. 

6.7 Comparative Analysis of Dataset SiSEC2018: 

Mixture Signal 1:  

Table 6.1: Mixture1 Data set SiSEC2018 Analysis of SDR, SIR, and SAR 
 

Methods SDR SIR SAR 

Male2 

PROPOSED 45.53 35.16 10.37 

DFCM 06.54 15.81 07.43 

WMDLD 06.51 17.62 07.29 

FASST 06.18 10.86 08.44 

GS 10.83 16.56 12.32 

Male3 

PROPOSED 27.31 37.88 10.57 

DFCM 04.14 12.25 05.37 

WMDLD 04.07 13.77 05.12 

FASST 03.25 07.91 06.35 

GS 05.64 11.53 07.29 

Male4 

PROPOSED 45.30 35.45 09.85 

DFCM 09.39 18.55 10.06 

WMDLD 08.69 19.78 09.21 

FASST 07.63 10.98 10.89 

GS 13.18 20.23 14.19 
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Mixture Signal 2: 

 

Table 6.2: Mixture2 Data set SiSEC2018 Analysis of SDR, SIR, and SAR 
 

Methods SDR SIR SAR 

Male2 

PROPOSED 25.92 33.88 07.97 

DFCM 06.46 14.94 07.35 

WMDLD 06.57 16.92 07.22 

FASST 04.38 07.32 08.85 

GS 10.83 16.56 12.32 

Male3 

PROPOSED 28.43 34.56 06.08 

DFCM 08.23 16.35 09.16 

WMDLD 07.80 17.7 08.81 

FASST 07.57 11.91 13.37 

GS 10.79 16.82 12.45 

Male4 

PROPOSED 25.95 34.52 08.58 

DFCM 08.03 14.81 05.75 

WMDLD 05.77 16.61 08.81 

FASST 04.66 11.91 13.37 

GS 07.57 16.82 12.45 

 

 Tables 6.1 and 6.2 above display the analysis of SDR, SIR, and SAR signals in the SiSEC 

2018 data set. In this case, the multi-channel signal is compared to some state-of-the-art 

methods, such as DFCM, WMDLD, FASST, and GS. For each set of data, the input signal with 

the best outcome and the signal for spectrum reconstruction are shown below; 

 

 Figures 6.3 to 6.12 depict, respectively, the performance analysis of SAR, SDR, and 

SIR. The above picture illustrates the strategies using the current DFCM, WMDLD, FASST, 

and GS techniques. Numbers 3 to 12 are anticipated to have the highest SAR, SDR, and SIR 

results. Our concept outperforms alternative approaches in terms of results. 
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Figure 6.3: Performance analysis of input signal SiSEC Mix1 

 

 

 

Figure 6.4: Performance analysis of input signal SiSEC Mix2 

 

 

Figure 6.5: Performance analysis of Reconst signal SiSEC Mix1 
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Figure 6.6: Performance analysis of Reconst signal SiSEC Mix2 

 

 Figures 6.3 to 6.12 depict, respectively, the performance analysis of SAR, SDR, and 

SIR. The above picture illustrates the strategies using the current DFCM, WMDLD, FASST, 

and GS techniques. Numbers 6.3 to 6.12 are anticipated to have the highest SAR, SDR, and 

SIR results. Our concept outperforms alternative approaches in terms of results. 

 

Figure 6.7: A comparative analysis of SAR Mix1 
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Figure 6.8: Comparative analysis of SAR Mix2 

 

 The comparison between the DFCM, WMDLD, FASST, and GS methods and the SAR 

mixes 1 and 2 is made from the aforementioned figures 6.7 and 6.8. The source-to-artifact ratio 

(SAR) gauges a network's ability to provide extraordinary superiority results without adding 

more artefacts. Analysis of the aforementioned figures 7 and 8 reveals that our solution yields 

more favourable outcomes. 

 

Figure 6.9: comparative analysis of SDR Mix1 

 

 

Figure 6.10: Comparative analysis of SDR Mix2 
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 In the image above, the existing DFCM, WMDLD, FASST, and GS methods are 

contrasted with the 6.9 and 6.10 SDR mixture1 and mixture2. SDR is widely used in this context 

as a general indicator of a source's audio quality. The most cutting-edge time- and frequency-

domain resolution is at odds with SDR (source-to-distortion ratio). In comparison to figures 6.9 

and 6.10 above, our proposed yields superior outcomes. 

 

Figure 6.11: a comparative analysis of SIR Mix1 

 

 

Figure 6.12: a comparative analysis of SIR Mix2 

  

Using the aforementioned figures 6.11 and 6.12, SIR mixture1 and mixture2 are 

compared to the present DFCM, WMDLD, FASST, and GS methods. The source of 

interference ratio (SIR), as a result, is a statistic that demonstrates how well the algorithm can 
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maintain the source of interest while eliminating other sources. Analysis of the aforementioned 

figures 6.11 and 6.12 shows that our solution yields more favourable outcomes. 

 

6.8 Comparative Analysis of Dataset TIMIT: 

The current approaches CTF-MINT, CTF-MPDR, BP, and Unproc are connected to the 

suggested system. Analyse the outcomes using the TIMIT kit. An analysis of the new method 

and the old method is shown in the attached figure. according to the following; 

 

Cepstral distance (CD) (dB), frequency-weighted segment SNR (FWSeg.SNR) (dB), 

and log-likelihood ratio (log-LR) were the three evaluation criteria specified in REVERB 

Challenge [27]. (LLR). In order to assess the voice source's performance in terms of separation, 

we also employed the SDR (dB) and SIR (dB) in [34]. The difference between the estimated 

value of the single reverberation signal and DE and the estimated value of the microphone input 

signal should be calculated for each measurement. The lower the score, the better when 

employing CD and LLR. In other words, a higher score is preferable. Results evaluation based 

on the 1 and 2 metre distances are shown in Table 3 and Table 6.4. 

 

Table 6.3. Evaluation results: distance is 1 m 

Method SDR diff 

SIR 

diff CID diff FWSeg.SNR LLR 

Proposed 8.1 10.22 -0.54 2.32 -0.19 

CTF-MINT 8.05 10.18 -0.53 2.29 -0.19 

CTF-MPDR 7.71 10.02 -0.5 2.14 -0.17 

CTF-BP 7.4 9.58 -0.47 2.09 -0.16 

Unproc 5.71 5.77 -0.25 0.8 -0.12 

 

Table 6.4. Evaluation results: distance is 2 m 

Method SDR diff 

SIR 

diff CID diff FWSeg.SNR LLR 

Proposed 7.54 8.67 -0.41 1.62 -0.18 

CTF-MINT 7.48 8.62 -0.40 1.61 -0.18 

CTF-MPDR 7.22 8.46 -0.38 1.51 -0.16 

CTF-BP 6.79 8.02 -0.35 1.41 -0.16 

Unproc 5.55 4.25 -0.16 0.6 -0.11 
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 Figures 6.13 to 6.21 illustrate, in turn, how the TIMIT dataset's comparative analysis of 

SDR-based SNR, SIR-based SNR, PESQ-based SNR, TIMIT reconstruction signal SNR, SIR-

based NPM, and PESQ-based NPM is analysed using the current CTF-MINT, CTF-MPDR, 

BP, and Unproc techniques. Analysis of figures 6.13 to 6.21 reveals that CTF-MINT, CTF-

MPDR, BP, and Unproc have the highest gains. In relation to additional common approaches, 

our suggested achieves better results. 

 

Figure 6.13: a comparative analysis of TIMIT input signal Mix1 

 

 

 

Figure 6.14: a comparative analysis of TIMIT reconstruction signal Mix2 

 

 The performance analysis of the input as well as the spectrogram reconstruction signals 

of mixtures 1 and 2 are shown in figures 6.13 and 6.14 above. When analysing the overhead 

statistics, our suggested approach produces cutting-edge results. 
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Figure 6.15: a comparative analysis of TIMIT input signal SDR based SNR 

 

 

 Figure 6.16: a comparative analysis of TIMIT input signal SIR based SNR 

 

 Figures 6.15 and 6.16 illustrate the analysis' findings as a function of the input signal-

to-noise ratio from a combination of 4 microphones and 3 signal sources. There are two 

configurations for noise, i.e., 10-5 and 10-1, as was already mentioned. Our concept delivers 

better outcomes when compared to other existing techniques, such as CTF-MINT, CTF-MPDR, 

BP, and Unproc. 
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Figure 6.17: a comparative analysis of TIMIT reconstruction signal PESQ based SNR 

 

 Figure 6.17 displays the reconstructed signal based on the Perceptual Speech Quality 

Assessment's SNR spectrogram (PESQ). Here, the reverberation features are carefully assessed 

using the perceptual evaluation based on the PESQ SNR measurement. PESQ should be 

calculated for various sources while removing noise. When compared to figure 6.17, our 

suggested solution produces better results. Our suggested approach is contrasted with the other 

existing CTF-MINT, CTF-MPDR, BP, and Unproc strategies in this. 

 

 Figure 6.18: a comparative analysis of TIMIT reconstruction signal SNR 

 

 The performance analysis of the signal generated from the spectrogram reconstruction 

is shown in figure 6.18 above. The noise is being amplified if the input signal-to-noise ratio is 

more than 5 dB. Effective noise suppression requires that the signal-to-noise ratio at the output 

end always be higher than the signal-to-noise ratio at the input end. Our approach is contrasted 

with the current CTF-MINT, CTF-MPDR, BP, and Unproc techniques in this case. 
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Figure 6.19: a comparative analysis of TIMIT SDR based NPM 

 

 Figure 6.19 depicts the correlation between the NPM and the mixing outcomes of 4 and 

3 microphones. Both of the delta settings have been examined, just like in the prior experiment. 

Only the SDR indicator was examined. Our suggested strategy performs better than the other 

CTF-MINT, CTF-MPDR, BP, and Unproc existing techniques. 

 

Figure 6.20: a comparative analysis of TIMIT SIR based NPM 

 

Figure 6.21: a comparative analysis of TIMIT PESQ based NPM 
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Figure 6.22: Comparative analysis of execution time 

 

 

Figure 6.23: Comparative analysis of computational time 

 

Figures 6.22 and 6.23 above show a study of execution and computational times side by 

side. The overall length of time that the process spends operating is known as the execution 

time; this time is typically independent of the commencement time but frequently depends on 

the input data. We frequently set deadlines for ongoing procedures, but we could also want to 

set one for a one-off process. Calculation time is the amount of time needed to complete a 

computation. The calculation time is inversely correlated with the number of rule applications 

when a computation is represented as a sequence of rule applications. Here, the current DFCM, 

WMDLD, FASST, and GS approaches are contrasted with our methodology.  
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6.9 Analysis of proposed methods in comparison to related work 

citations 

Table 6.5 compares the suggested approaches with citations to similar works and lists 

the test's SDR, SIR, and SAR values for various signals. The dataset SiSEC2018 was initially 

used in comparative analysis to compare the experimental outcomes of the proposed system 

with those of the control group. 

 Table 6.6 compares the proposed methods with references to related literature, as well 

as the corresponding SDR and LLR values for the test on various signals. The second dataset 

from TIMIT compares the experimental outcomes of the proposed system. Tables 6.5 and 6.6 

above demonstrate the comparison of the SiSEC2018 and TIMIT datasets. The suggested 

approach can produce better outcomes than the existing effort 

Table 6.5: SiSEC2018 comparative analysis
 

Related work Year 
 

Methodology 
Outcome 

 SDR SIR SAR 

[36] 2020  DFCM 25.33 25.26 6.720 

[37] 2019  MSS 25.53 25.16 6.302 

[38] 2022  DGSS 15.43 25.46 6.223 

[39] 2021  PSA 25.66 15.55 6.343 

[40] 2021  ICASSP 25.44 15.44 8.552 

[41] 2021  SESS 35.67 25.78 9.372 

Proposed -  SCNN 45.53 35.16 10.372 

 

Table 6.6: comparative analysis of TIMIT 

 

Related work Year Methodology 

Outcome 

SDR

.diff 
SIR.diff CDF 

FWSeg.S

NR 
LLR 

[42] 2019 TFMM 6.6 4.22 -0.34 1.42 -0.11 

[43] 2020 CSS 6.5 5.32 -0.44 1.42 -0.13 

[44] 2020 SS 7.8 6.62 -0.34 1.52 -0.16 

[45] 2021 SSDL 7.1 7.22 -0.24 1.72 -0.13 

Proposed - SCNN 8.1 10.22 -0.54 2.32 -0.19 
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6.10. summary: 

Multichannel speech separation is one of the most difficult challenges at the moment.  KHMF 

and score-based CNN are combined and used for data sets (TIMIT, SiSEC-2011) to obtain 

results for multichannel source separation. The investigations findings demonstrate better 

performance when compared with the existing results. It has been observed that the results 

(performance evaluation metrics) are improved compared with existing works as indicated in 

the graphs and tables. The proposed SCNN method is calculated some performance measure 

which as SDR, SIR, and SAR. The value of the parameters is 45.53, 5.16 and 10.372 

respectively. Experimental results show that our proposed approach accomplishes the most 

extreme SDR diff outcome of -5dB of 8.1. Comparable to the CTF-MINT, which achieves 8.05. 

The CTF-MPDR and CTF-BP had the SDR diff worst 7.71 and 7.4. The Unproc had the very 

worst SDR diff 5.71. 
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Chapter 7 

Overall Conclusion and Future Scope of The Work 

This chapter outlines the contributions of proposed research work for single channel and 

multi-channel source separation. In addition to the strength of research work that has been 

carried out, few limitations have also been observed which may be taken up as future scope of 

research.    

7.1 Research findings of the thesis 

The conclusions those have been discussed for each contribution are summarized as below: 

In the method of TFNMF for single channel source separation, the data consists of two 

or more than the clean speech signals. The TFNMF integrated with SNDNN technique has been 

applied and results have been obtained. Experiments show that our proposed method achieves the 

highest gains in PESQ, STIO, SIR and SDR outcomes of 3.58, 0.7, 42 and 7.5 at -9 dB. It has been 

observed that the results (performance evaluation metrics) are improved compared with existing 

works as indicated in the graphs and tables. 

In the method of IFRO for single channel source separation, the data consists of nosy 

speech signals. The integral fox ride optimization (IFRO) integrated with retrieval-based deep 

neural network technique has been applied and results have been obtained. Experiments show 

that our proposed method achieves the highest gains in SDR, SIR, SAR STIO, and PESQ outcomes of 

10.9, 15.3, 10.8, 0.08, and 0.58, respectively. The Joint-DNN-SNMF obtains 9.6, 13.4, 10.4, 0.07, and 

0.50, comparable to the Joint-DNN-SNMF. It has been observed that the results (performance 

evaluation metrics) are improved compared with existing works as indicated in the graphs and 

tables. 

In the method of GOMF and EDNN for Multichannel source separation, Grasshopper 

Optimization-based Matrix Factorization (GOMF) and Enthalpy-based DNN are combined and 

used for data sets (SASSEC07, SiSEC-2010) to obtain results for multichannel source 

separation. Experimental results show that our proposed approach accomplishes the most extreme 

SNR outcome of − 6dB of 24.0523. Comparable to the DNN-JAT, which achieves 18.50032. The RNN 

and NMF-DNN had the worst SNR 13.45434 and 12.29991. The investigations findings demonstrate 

better performance when compared with the existing results. It has been observed that the 

results (performance evaluation metrics) are improved compared with existing works as 

indicated in the graphs and tables.  
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In the method of KHNF and SCNN for Multichannel source separation, KHMF and score-based 

CNN are combined and used for data sets (TIMIT, SiSEC-2011) to obtain results for 

multichannel source separation. Experimental results show that our proposed approach 

accomplishes the most extreme SDR dif outcome of − 5 dB of 8.1. Comparable to the CTF-MINT, which 

achieves 8.05. The CTF-MPDR and CTF-BP had the SDR dif worst 7.71 and 7.4. The Unproc had the very 

worst SDR dif 5.71. The investigations findings demonstrate better performance when compared 

with the existing results. It has been observed that the results (performance evaluation metrics) 

are improved compared with existing works as indicated in the graphs and tables.  

 

 

7.2 Future scope 

 In the case of multi-channel source separation, sources may be mixed up with noise 

(Stationary and non-stationary) and investigations may be done using suitable methods. 

Supervised data sets have been considered in this work, but same methods may be extended for 

unsupervised data sets also 

 Work may also be extended for all other varieties of audio sources such as musical 

instruments sound sources mixed up with reverberations.   
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