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Abstract

Air pollution is a major cause of illness and death in the world, but inadequate ground-based
monitoring (both spatial and temporal) hampers effective air quality management. To address
this challenge, satellite data can play a crucial role. Over the past two decades, various sensors
worldwide have routinely measured Aerosol Optical Depth (AOD), to provide qualitative
information about air quality. Recent advancements in satellite retrieval and modelling
techniques now allow us to estimate PMas levels from AOD, enabling quantitative
applications.  Additionally, the current network of 308 monitoring stations in India is
inadequate and unevenly distributed, which limits accurate measurement of air quality and in
particular PM2s, which has detrimental effect on human health. The lack of air quality
monitoring network in many parts of the country further emphasizes the necessity for more
monitoring sites. By utilizing satellite-based AOD data, this study aims to estimate ground-
level PM25s concentrations and hence, the associated health risks. If these estimations are
validated, monitoring becomes inexpensive and investments on monitoring networks can be
limited.

PM2sin the atmosphere is widely reported, but few studies have focussed on the metal-
bound particle concentration of PMzs in urban areas. The present study on Warangal, aims to
quantify Heavy Metals (HM) concentration associated with PM2s The average daily PMas
values were found to be above the annual average (40 pg/m?®) set by the National Ambient Air
Quality Standard (NAAQS) of India. Slightly higher concentrations of Zn and Fe were
observed as compared to Cu, Ni and Cd. The order of heavy metal based on the concentration
levels was as follows: Zn>Fe>Cu>Ni>Cd (higher to lower concentration). Analysis of
enrichment factor showed that the Zn, Cu and Cd fall in the highly enriched element category.
Based on health risk assessment for three intake pathways, the risk of exposure was found to
be in the following order: Ingestion>Dermal>Inhalation. Non-carcinogenic and carcinogenic
risks for children and adults were found to be negligible. Source identification of all the
elements and PM2s study based on Concentration Weighted Trajectory (CWT), Potential
Source Contribution Function (PSCF) and cluster analysis results indicated dominant
contributions from West and North-West regions of India. Furthermore, cluster IV was
reported to have high significance (with 27.11%) and dominant contributions of trajectories
were observed from the regions of Maharashtra, Chhattisgarh, Rajasthan, and Madhya Pradesh

over the Warangal region.
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The results of the source identification study observed that the gap in the spatial pattern was
due to limited primary data collected during the study period. Backward trajectory
methodologies require huge data to arrive at accurate source regions. To address this challenge,
PM2s retrievals were attempted for the Hyderabad region using satellite AOD and
meteorological data. Satellite measurements are important for quantifying the ground
observations and atmosphere columnar properties like AOD, especially in developing countries
like India. In this study Moderate Resolution Imaging Spectroradiometer (MODIS) retrieval’s
AOD product has been used having 3 km and 10 km spatial resolution from Terra and Aqua
satellites. The MODIS AOD data and meteorological parameters from May 2017 to May 2019
were used. The Multiple linear regression method is implemented in this study. The study
concluded that there is good agreement in the prediction of PM. s at the Zoopark location. The
PM concentrations are influenced by the local source regions and the long-range transport of
pollutants through the wind, whereas the potential source regions identified based on the PSCF,
CWT, and Cluster analysis. The cluster analysis indicated that the Winter season surface layer
trajectories with a ratio of 38.1% (cluster I11) have a high intensity from Central India (Madhya
Pradesh and Chhattisgarh). In the pre-monsoon season cluster IV dominated with a ratio of
31.3% from the Bay of Bengal region. As well as the elevated layer analysis showed that the
Winter season cluster 1V (57%) was predominantly from Central India. Results indicate that
the Central India and East India regions are the more dominating source regions at the
Hyderabad location in the winter season. It was found that the lower altitude layer showed the
major source of the local region's nearby receptors.

The cluster analysis concluded that Central India was the major dominating region in
the surface and elevated layers at Hyderabad regions. The long-range transport of the sources
may be due to open-cast coal mining and open biomass burning. The study also briefs on the
intensity of surface and elevated layer transport of PM2 s at receptor locations. The surface layer
pollutants are more dominating at the receptor location compared to the elevated layer
pollutants. The results of the study can help policymakers to implement mitigation measures
and formulate suitable regulations to reduce the health risk associated with PM2s and heavy
metals in the atmosphere. Methodological improvements in back trajectory receptor models
(like 3D trajectories, wind speed analysis, import of data from dispersion models, the height of
mixing layer, etc,.) can improve the findings of the study and help in regional air quality
management.

Keywords: PM2s, Heavy Metal, Health Impact, Backward trajectory, and Cluster

analysis.
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Chapter 1 Introduction

1.1 Background

The World Health Organization (WHO) has been monitoring and studying the effects of
air pollution on human health for several decades. Air pollution is a major environmental risk to
health, causing an estimated 7 million premature deaths annually worldwide (WHO, 2009).
WHO's research shows that air pollution is linked to a range of health problems, including
respiratory and cardiovascular diseases, cancer, and adverse birth outcomes. According to the
World Health Organization, air pollution is the contamination of the environment both indoor and
outdoor by any type of chemical, physical or biological agents that may lead to modification in the
natural characteristics of the atmosphere (Hoffmann et al., 2021).

The sources of air pollution are diverse, including industrial emissions, transportation,
open-cast coal mines, biomass burning, and forest fires. Particulate matter (PM), Nitrogen oxide
(NOy), Sulfur Dioxide (SOz), Ozone (Oz), and Carbon Monoxide (CO) are among the most harmful
air pollutants. The burden of incident childhood asthma may be attributable to outdoor Nitrogen
Dioxide (NO2), PM, and Black Carbon (BC) in Europe (Khreis et al., 2019). WHO provides
guidance and technical support to countries and works to raise awareness about the health impacts
of air pollution. The organization has set air quality guidelines to protect public health and
recommends measures such as promoting clean energy sources, improving transportation systems,
and reducing emissions from industrial and household sources. WHO also works with
governments and other stakeholders to strengthen the monitoring and reporting of air pollution

levels and to develop policies to reduce exposure to air pollution.

Source reduction of pollutants is the best and most efficient method for controlling
pollution. However, for source reduction, it is essential to identify the sources of pollution in the
ambient air. As there are several sources for a particular pollutant under consideration, source
apportionment (SA) methods are used for the identification of the source and categorization.
However, these methodologies like Chemical mass balance (CMB), Positive matrix factorization
(PMF), and Principal components analysis (PCA) are time-consuming processes. Hence that the
backward trajectory analysis, introduced by the NOAA’s Air Resources Laboratory (ARL)-
Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model run interactively on



the Real-time Environmental Applications and Display system (READY) web site is used by
researchers.

Reducing ambient PM2 s levels requires a concerted effort from governments, industry, and
individuals. Strategies to reduce ambient PM2s levels include improving energy efficiency,
increasing the use of renewable energy sources, promoting cleaner transportation, and
implementing regulations to reduce emissions from industry. Implementing these strategies will
not only reduce the health impacts of ambient PM2s but also contribute to a healthier and more

sustainable environment

1.2 Atmospheric aerosol science

Pollution levels become colossal problems in Indian cities not only in urban regions but in the rural
regions as well. The reasons include an increase in industries, vehicle population, and lifestyle
changes. The Indian population is exposed to the highest level of particulate pollution
(Ravishankara et al., 2020; Sharma and Kulshrestha, 2014) because of the increase in fine
particulate matter that affects the environment and health (Balakrishnan et al., 2018; Niu et al.,
2022). The outdoor biomass burning releases enormous concentrations of particulate matter which
are dispersed to faraway locations also depending on meteorological conditions. The sources
contributing to PM2s in ambient air are shown in Figure 1.1 The emitted pollutants undergo

dispersions in the atmosphere contributing to pollution through long-range transport.
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In addition to ambient air quality, indoor air quality also affects human health and results in
different health problems (Datta et al., 2017). Indoor air quality is reported to influence
development as well (Rohra and Taneja, 2016). Exposure and risk assessment of concentrations
of fine and coarser particles indicate that finer particles cause higher carcinogenic risk than
particles in coarse fractions (Shikha et al., 2023). Many studies reported that the PM25s and PM1o
concentrations in Indian cities are higher than the prescribed standards (Ambade, 2014a; Das et
al., 2015). However, the accumulation of toxic heavy metals with particulates associated with air
pollution by various sources is a challenge. The fine particles from coal combustion and non—
ferrous metal smelting units are associated with heavy metals. Particulates from the above sources
are reported to contribute toxic metals (Cr, Ni, Zn, Mo, Sn, Sbh, V, Co, Cu, Cd, and Pb) in the PM25
fraction (Das et al., 2015). Enrichment factor analysis reveals that metallic pollutants are emitted
from anthropogenic sources or associated with natural sources (Ambade, 2014a).

1.3 Ambient PM2sbound heavy metals

Ambient PM2s refers to particulate matter in the air with a diameter of 2.5 um or less. These
particles can be emitted directly into the atmosphere by sources such as transportation, power
generation, and industrial processes, or they can be formed through chemical reactions between
other pollutants in the atmosphere. The PM25s particles penetrate deeply into the lungs when
inhaled or find entry through different pathways which can cause a range of health problems,
including respiratory and cardiovascular diseases. These particles can also travel long distances
through the air as a media to influence the other regions, which means that air pollution can be
transported from one region to another, affecting air quality in areas far from the origin source of
pollution (Liao et al., 2017; Shanavas et al., 2020).

However, the ambient PM2 s levels are monitored by regulatory agencies to ensure that they meet
established air quality standards. In many parts of the world, ambient PM3 s levels exceed these
standards. Ambient PM2 s has a significant impact on the world's population, making it one of the
leading environmental risk factors for death and disease. Exposure to high levels of ambient PM2 s
can also worsen pre-existing health conditions, such as asthma and chronic obstructive pulmonary
disease. Ambient PM2s also has environmental impacts, such as contributing to climate change

and reducing visibility. Additionally, PM2s can harm ecosystems and agricultural productivity, as



well as damage buildings and monuments. Air pollution is a leading risk factor for stroke, heart

disease, and lung cancer.

The State of Global Air Report (Health Effects Institute and the Institute for Air Pollution and
Brain Outcomes in Children) reveals that air pollution affects the development of the brain. A
strong correlation was noted between many pollutants and prenatal and childhood exposure
(Monica et al., 2022). The Air Quality Life Index, developed by researchers at the Energy Policy
Institute at the University of Chicago, estimates that air pollution, including ambient PM;s,
reduces global life expectancy by an average of 1.8 years, and by more than 4 years in some
countries (Lee and Greenstone, 2021). The study also highlights the significant impact of ambient

PM250n human health and the urgent need for action to reduce air pollution levels worldwide.

Heavy metals released into the atmosphere can remain suspended in the air for extended periods
and can be transported over long distances. Common heavy metals found in ambient air include
Lead, Cadmium, Mercury, Arsenic, Chromium, and Nickel (Ambade, 2014a; Khan et al., 2020;
Tian et al., 2015). Exposure to high levels of these metals in ambient air can pose a significant
health risk to humans and wildlife. Once in the body, heavy metals can accumulate in tissues and
organs, leading to a range of health problems, including respiratory and cardiovascular diseases,
neurological disorders, and cancer. To reduce the health risks associated with exposure to ambient
heavy metals, it is important to monitor and reduce emissions from sources such as transportation
and industry and to take steps to improve air quality in affected areas. This includes implementing
regulations to limit emissions of heavy metals from industrial processes, promoting the use of
cleaner transportation options, and encouraging the use of cleaner sources of energy.

1.4 Health impact of ambient Heavy metals

The impact of heavy metals in ambient air is significant even while the concentrations are low. Zn
is an essential trace element that plays a crucial role in numerous biological processes in the human
body. It is necessary for proper immune function, growth and development, wound healing, and
enzyme activity. While zinc is essential for health, excessive exposure to zinc, particularly in
ambient environments, can have adverse effects on human health. The impact of Zn on human
health can vary depending on specific circumstances, concentrations, and individual susceptibility.
Therefore, considering local environmental conditions, regulatory measures and individual factors

is crucial when assessing the potential health risks associated with zinc exposure. High levels of
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zinc ingestion can cause gastrointestinal disturbances such as nausea, vomiting, abdominal cramps,
and diarrhea. Acute ingestion of large amounts of zinc can lead to stomach and intestinal irritation.
Copper (Cu) deficiency shows that excessive zinc intake can interfere with the absorption and
utilization of copper in the body. Prolonged high levels of zinc can lead to copper deficiency,
which may result in anemia, neurological symptoms, and impaired immune function. Respiratory
effects include irritation in the respiratory system and respiratory distress, coughing, and difficulty
in breathing. Occupational exposure to high levels of zinc fumes, particularly in industries like
galvanizing or welding, can lead to a condition called metal fume fever. To minimize the potential
impact of ambient zinc on human health, the following measures can be taken occupational safety,
consuming a balanced diet that includes foods rich in zinc, and adequate but not excessive zinc
intake is important to maintain proper health. However, it is important to note that zinc toxicity
from ambient exposure is relatively rare and Zn primarily occurs through ingestion of large
amounts of zinc supplements or occupational exposure to high levels of zinc. For most individuals,
maintaining a balanced diet and following recommended zinc intake guidelines are sufficient to

meet nutritional needs without posing a significant health risk.

Iron (Fe) is an essential nutrient for the human body and plays a vital role in various
physiological processes. However, excessive exposure to iron, particularly in ambient
environments, can have adverse effects on human health. The health effects of iron exposure
depend on the dose, duration, and route of exposure. Gastrointestinal effects, iron overload
disorders, and iron overload can lead to organ damage, including liver cirrhosis, heart problems,
and diabetes. Excessive iron levels can contribute to oxidative stress, which may damage cells,
tissues, and DNA, potentially increasing the risk of various diseases, including cardiovascular
disease, neurodegenerative disorders, and cancer. As with any heavy metal, the impact of ambient
iron on human health can vary depending on specific circumstances, concentrations, and individual
susceptibility. Therefore, considering local environmental conditions, regulatory measures and

individual factors is crucial when assessing the potential health risks associated with iron exposure.

One of the most dangerous substances to which a person may be exposed at work or in the
environment is cadmium (Cd), a by-product of the manufacturing of zinc. Cd is efficiently
preserved in the human body, where it builds up throughout a lifetime and is toxic to the kidney,
especially to the proximal tubular cells, either through direct bone damage. The overall impact of



the kidneys and bones may be negatively impacted by the current levels of Cd in industrialized
zones (Bernard, 2008). According to Nawrot et al., (2006), lung cancer development is associated

with an increased Cd.

Nickel (Ni) is a heavy metal that can have an impact on human health when present in ambient
environments. Exposure to nickel can occur through inhalation, ingestion, or dermal contact with
nickel-containing particles or compounds. Which influences the allergic reactions contact
dermatitis, which is characterized by skin redness, itching, and rashes. People with a nickel allergy
may experience these symptoms when they meet nickel-containing objects like jewellery, coins,
or metal alloys. Fumes with Ni lead to respiratory effects like irritation of the respiratory system,
coughing, wheezing, and shortness of breath. High-level exposure to nickel compounds,
particularly nickel sub sulfide is linked to an increased risk of lung cancer. Asthmatic reactions
such as difficulty in breathing and chest tightness are also associated with Ni ingestion. Nickel
refining by-products are carcinogenic to humans. Industries like mining, smelting, and nickel
refining, are associated with an increased risk of lung and nasal cancers. The regulation includes
implementing engineering controls, providing personal protective equipment, and conducting
regular monitoring of workplace air quality. Environmental regulations by government agencies
establish and enforce regulations within acceptable environmental standards. This helps to reduce

the overall ambient nickel levels in the environment.

Cadmium (Cd) is a toxic heavy metal that has adverse effects on human health when present in
the ambient environment. Exposure to cadmium can occur through inhalation of contaminated air,
ingestion of contaminated food or water, or direct dermal contact with cadmium-containing
materials. The health effects of cadmium include kidney damage, and kidney dysfunction, leading
to conditions such as tubular proteinuria, renal tubular dysfunction, and ultimately, kidney failure.
Cadmium can interfere with calcium metabolism, leading to reduced bone density and increased
risk of osteoporosis, including joint pain and fractures. Occupational exposure to cadmium has
been linked to an increased risk of lung cancer. Reproductive and developmental effects are high
levels associated with adverse reproductive effects, including reduced fertility and potential harm
to fetal development. Some studies suggest that chronic cadmium exposure may contribute to
cardiovascular diseases. Cadmium contamination like certain shellfish, cereals, and vegetables,

can help reduce dietary exposure. Public awareness about cadmium exposure can help individuals



make informed choices and take appropriate precautions to minimize their exposure. It is important
to note that the impact of ambient cadmium on human health varies depending on the specific

circumstances and concentrations involved.

Copper is an essential trace element required for various physiological processes in the human
body. It is necessary for optimal health in small amounts, and gastrointestinal distress, including
nausea. This is often associated with acute exposure or accidental ingestion of copper-
contaminated substances. Prolonged exposure to elevated levels of copper can lead to disrupt liver
function. Neurological symptoms such as tremors and cognitive impairments are associated with
high Cu levels. Allergic reactions are possible on skin contact with copper-containing materials.
Genetic disorders, such as Wilson's disease, are characterized by impaired copper metabolism and
excessive copper accumulation in various organs, including the liver, brain, and kidneys. The focus
should be on minimizing excessive exposure to copper, particularly from non-dietary sources or
in cases of specific health conditions that require careful copper management, such as Wilson's
disease. As with any heavy metal, the impact of ambient copper on human health can vary
depending on specific circumstances, concentrations, and individual susceptibility. Therefore,
considering local environmental conditions, regulatory measures and individual factors is crucial

when assessing the potential health risks associated with copper exposure.

The assessment of heavy metal contents in the ambient air of Coimbatore City, Tamil
Nadu, India, revealed elevated levels of lead. The study emphasizes the importance of addressing
the sources of HM pollution and implementing appropriate measures (Vijayanand et al., 2008).
The health risks associated with heavy metals in coarse and quasi-accumulative particulate matter
in Mumbai City, located on the Western Coast of India. The study identified the presence of six
(Zn, Fe, Cu, Pb, Ni, and Cr) heavy metals at detectable and one (Cd) heavy metal at below-
detectable levels (Botle et al., 2020).

1.5 Columnar properties of aerosols based on Satellite observations

Satellite observations refer to the use of satellite instruments and sensors to gather data and
information about the Earth and its environment from space. These observations provide valuable
insights into a wide range of natural and human-induced phenomena occurring on our planet.
Satellites are different types of sensors and instruments, including cameras, spectrometers, radar

systems, and thermal sensors. Each sensor captures specific wavelengths of electromagnetic



radiation or other signals, allowing to study different aspects of the Earth's atmosphere, land
surface, oceans, and other environmental variables. Satellite observations have proven to be crucial
for remote areas such as difficult to take manual readings. Satellite monitoring is useful for some
extent of research areas like weather Forecasting satellites provide continuous monitoring of the
Earth's atmosphere, collecting data on cloud cover, temperature, humidity, wind patterns, and other
meteorological parameters. This information is crucial for weather forecasting, storm tracking, and
understanding climate patterns. Climate monitoring satellites play a vital role in monitoring
climate-related variables, such as sea surface temperatures, ice cover, vegetation health, and
atmospheric greenhouse gas concentrations. Long-term satellite observations contribute to
understanding climate change and its impacts on the earth's climate. Environmental monitoring
satellites helps in monitoring environmental changes and provide data on deforestation, land use
changes, urbanization, pollution, and natural disasters like wildfires, floods, and hurricanes. This
information aids in land management, conservation efforts, and disaster response planning. Air
Quality Monitoring satellite observations contribute to monitoring air pollution by measuring the
atmospheric composition and identifying sources of pollutants. This data assists in assessing the
quality of the air we breathe and supporting efforts to mitigate pollution. Geology and Geophysics
satellites with radar systems can map and monitor changes in Earth's topography, measure surface
deformations caused by tectonic activity or volcanic eruptions, and detect the groundwater. These

observations aid in geological and geophysical studies.

Oceanography satellites provide valuable data on ocean currents, such as the sea surface
temperatures, and other marine ecosystems. These observations are crucial for studying ocean
circulation patterns, monitoring marine life, and understanding the impacts of climate change on
oceans. Satellite observations provide a global perspective and enable scientists to gather data over
vast areas, they complement ground-based observations and models, filling gaps in spatial and
temporal coverage. These observations are vital for scientific research, policy-making, resource

management, and understanding our planet's dynamic processes.

Furthermore, satellite observations support various applications in sectors like agriculture,
transportation, communication, and navigation systems. They contribute to disaster management,
early warning systems, and humanitarian efforts during natural disasters. As satellite technology

continues to advance, satellite observations are becoming increasingly sophisticated, providing



higher-resolution data, improved accuracy, and real-time monitoring capabilities. These
advancements further enhance our understanding of the Earth's systems and contribute to
addressing global challenges related to climate change, natural resource management, and
sustainable development. Satellite observations clearly show the regional-scale changes in aerosol
content as well as composition and absorption. The analysis of the aerosol loading in the last 2-
decades shows a positive (increasing) trend over Kanpur and other locations in South Asia
(Ramachandran and Rupakheti, 2022).

1.6 Source —receptor modeling

The source of airborne particulate matter using receptor models has been widely practiced. In
recent years factor analysis-based models such as Positive Matrix Factorization (PMF) and
UNMIX have gained popularity in this field of source analysis. However, accurate interpretation
of the results relies on understanding the various influencing variables involved in the modelling
process. The main chemical species reported as markers in the source studies. These species as a
valuable resource for interpreting source profiles and enhancing the accuracy of source
apportionment studies. The significance of considering multiple variables, employing appropriate
sources, and understanding the complexities involved in source apportionment modelling to ensure

reliable and meaningful results in the field of airborne particulate matter analysis.

Air quality models simulate the impact of emission scenarios on pollutant concentrations.
In certain cases, source-receptor relationships can replace these models to quickly represent the
link between emissions and concentrations. Integrated Assessment Models also employ source-
receptor relationships for rapid scenario responses. This study introduces a new approach to
designing a source-receptor relationship in air quality modelling. The approach reduces the number
of simulations needed for training and offers flexibility in defining emission sources. A regional
domain application demonstrates the effectiveness of the proposed approach. The following
researchers demonstrated and included such type of study in the analysis of the source-receptor
relationship.

Soni et al., (2020) investigated PM1oand PM2s concentrations in Dehradun, Himalayas. The study
indicated seasonal variations with higher concentrations in the winter season (PMao: 90 & 32 pug/m?,
PMz2s: 63 + 27 pg/m?). The major sources identified in the study include soil/road dust, vehicular

and industrial activities, mixed aerosols, and anthropogenic burning. Polluted aerosols at higher



altitudes indicated the movement of neighbouring region pollutants toward the receptor location.
Health risks from PM inhalation were identified. The CALIPSO data assessed aerosol vertical

profiles to study neighbouring pollution transport.

Tasic et al., (2010), demonstrated the use of back trajectory analysis for source identification with
the help of a 5-year PMyo dataset (2004-2008). PSCF values obtained in the study represent the
conditional probability of higher PM concentrations being related to the passage of air parcels
through specific cells during transport to the receptor site. Cells with high PSCF values indicated
areas with potential high contributions of PM. HYSPLIT model was employed to compute
backward trajectories at different heights above ground levels (300, 500, 1000, 1500, 2000, 3000
m). Daily trajectories were evaluated for 2 days using a grid with 0.50 X 0.50 latitude and longitude
cells. The study identified three PM2s sources - fossil fuel combustion (40%), metallurgical
industry (13%), and resuspended road dust (47%). PSCF indicated frequent PM1g transport from
the west, northwest, and southwest, suggesting multiple source regions. CWT analysis revealed

local and regional sources as major contributors to PM1o concentrations.

The significance of implementing new emission inventories in Seoul, Korea reported a notable
decrease in NO concentrations from 33.1 to 21.3 ppb (Vellingiri et al., 2016). Both trajectory
analysis and potential source contribution function indicated that the primary source pathways
responsible for the recent rise in NO2 concentration at the study site are the northern China region

and local emission sources, emphasizing their significant influence (Li et al., 2022).

The advanced 3D-PSCF-CONC method yielded important findings in the Metropolitan Area of
Séo Paulo (Dos and Hoinaski, 2021). Local vehicular sources significantly contributed to pollution
levels at the receptor, while long-range transport from industries and biomass burning impacted
the region. Incorporating concentration fields improved source estimation accuracy, benefiting air

quality management efforts.

The majority of Source Apportionment studies (94% of 51 studies) are attempted during the period
between 2007 and 2016 (Singh et al., 2017). Approximately 55% of these studies focused on a
few specific urban stations, namely Delhi, Dhaka, Mumbai, Agra, and Lahore. Due to the lack of
local particulate source profiles and emission inventories, positive matrix factorization and

principal component analysis were the primary choices (62% of studies), followed by chemical
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mass balance (CMB) (18%). Metallic species were commonly used as source tracers, while back

trajectory analysis methods were used less frequently.

To update the emission inventories of primary PM2s from major sectors, a combination of source-
oriented and receptor models was utilized (Zhang et al., 2023). The Bayesian Inference method
was employed to enhance the accuracy of these updates. To efficiently construct the source-
receptor sensitivity matrix, an adjoint model was developed. This matrix provided crucial
information regarding the relationship between measurements and changes in emissions from

different sources in various regions.

1.7 NOAA HYSPLIT Back trajectory analysis

NOAA's Air Resources Laboratory (ARL) conducts innovative research on the boundary
layer, a critical part of our atmosphere. The studies in boundary layer chemistry and physics
enhance regional weather, air quality, and climate predictions. ARL provides essential information
and forecasts for emergencies like industrial accidents, wildfires, volcanoes, and severe air
pollution events. By utilizing ARL's data, local managers can make informed decisions regarding
evacuations. To establish all decisions HYSPLIT model is a versatile tool used for over 30 years
in atmospheric sciences. It analyses air pollutant transport, identifies sources, and calculates
concentrations using a hybrid approach. HYSPLIT tracks release, forecasts smoke, analyses dust,
studies emissions, and assesses allergen and ash transport. With a user-friendly interface, it
computes trajectories, supports various motion options, and integrates ensemble dispersion. The
model also evaluates air concentrations, including particles, deposition, and multiple pollutants.
HYSPLIT aids in understanding pollution dynamics, developing mitigation strategies, and is
essential in air pollution research. HYSPLIT model enhances air pollution research with trajectory
analysis, and air concentration capabilities, and automates source-receptor assessment. It supports
ensemble trajectories, high-resolution simulations, and diverse meteorological datasets. Utility
programs aid data manipulation. HYSPLIT enables comprehensive and accurate air pollution

studies.

The HYSPLIT model is a basic GUI interface model. Outputs can be displayed as postscript files
and converted to GIF, GrADS, ArcView, and Vis5D formats for easy sharing. With continuous
development, HYSPLIT remains valuable for air pollution research (Stein et al., 2015). Its robust

capabilities and support for diverse meteorological data sources make it versatile. HYSPLIT aids
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in investigating pollutant transport, dispersion, and deposition, understanding their impacts, and

informing air quality management decisions.

The incorporation of features from the Stochastic Time-Inverted Lagrangian Transport (STILT)
model into the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model has
resulted in a unified dispersion model that offers a wide range of applications and improved
capabilities (Loughner et al., 2021). The ability to perform both time-forward and time-reversed
simulations enhances the versatility and flexibility of the model. The inclusion of STILT's
stochastic elements adds realism and uncertainty analysis to the model, providing a more accurate
representation of pollutant dispersion in complex meteorological conditions. Overall, this
integration represents a significant advancement in dispersion modelling, benefiting researchers

and practitioners in the field of atmospheric sciences and air pollution studies.

Lagrangian trajectory models require meteorological data, emission inventories, and information
about the initial location or release point (Bowman et al., 2013). These inputs determine the
movement of air parcels or particles, enabling accurate simulations of atmospheric transport and
dispersion. Comprehensive data ensures reliable model outputs for studying air quality and
environmental impacts. Lagrangian kinematic models and suggests changes in model output

practices to enhance accuracy.

Yassin et al., (2018) investigated the dust storms in Kuwait through backward trajectory
simulations and source identification. By utilizing the NOAA HYSPLIT model and MODIS
satellite observations, the origins of dust storms are identified, with the Sahara Desert and Arabian
Desert being the primary sources. The study highlighted the impact of atmospheric conditions,
particularly visibility and wind direction, on dust storm occurrences. The findings contribute to a
better understanding of dust storm patterns and provide valuable insights for developing measures

to mitigate the effects of dust storms on various aspects of life in Kuwait.

1.8 Lifetime and long-range transport of atmospheric aerosol

The lifetime and long-range transport of atmospheric aerosols play crucial roles in the Earth's
climate system and air quality. Aerosols are tiny suspended particles in the atmosphere, ranging in
size from a few nanometre’s to several micrometre’s. They can originate from natural sources such

as dust storms, volcanic eruptions, sea spray, human activities like industrial emissions, and the
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burning of fossil fuels. Local sources and long-range transport of pollutants significantly affect

PM2 s at receptor locations (Mahapatra et al., 2018).

The lifetime of atmospheric aerosols refers to the time they spend suspended in the air
before being removed through various processes. This lifetime can vary greatly depending on the
aerosol type, size, and atmospheric conditions. The residence time of atmospheric aerosol particles
is presented in Table 1.1. Some aerosols have short lifetimes, remaining in the atmosphere for
hours to days, while others can persist for weeks to months. The removal mechanisms for aerosols
include wet deposition (precipitation), dry deposition (settling onto surfaces), and gravitational

settling.

Table 1.1 Residence Time of Atmospheric Aerosol Particles

Level in the Atmosphere Residence Time
Below about 1.5 km 0 to 2 days
Lower troposphere 2 days to 1 week

Middle and upper troposphere 1 to 2 weeks

Tropopause level 3 weeks to 1 month
Lower stratosphere 1 to 2 months
Upper stratosphere 1to 2 years

Lower mesosphere 4 to 20 years

However, the long-range transport of aerosols allows them to travel vast distances, often crossing
continents and even oceans. This transport occurs primarily in the free troposphere, the layer of
the atmosphere above the planetary boundary layer where most of the weather phenomena and
surface emissions are concentrated. Aerosols can be transported over thousands of kilometres,
leading to their redistribution on a global scale. Several factors influence the long-range transport
of aerosols. First, meteorological conditions such as wind patterns, atmospheric stability, and air
masses play a significant role. Prevailing winds and weather systems can carry aerosols over long
distances, especially in the mid-latitudes where the jet streams are prominent. Strong vertical
mixing and convective processes can also lift aerosols high into the atmosphere, enhancing their

potential for long-range transport. Second, the size and properties of aerosols affect their transport
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behaviour. Larger particles tend to settle more quickly due to gravitational forces, while smaller
particles can remain suspended for longer periods and travel farther distances. Additionally,
aerosols can undergo physical and chemical transformations during transport, such as collision and
merging of particles and chemical reactions, which can alter their size, composition, and

hygroscopic properties, further influencing their transport characteristics.

Long-range transport of aerosols has important implications for climate and air quality.
Aerosols can scatter and absorb sunlight, affecting the Earth's energy balance and influencing
regional and global climate patterns. They can also act as cloud condensation nuclei, altering cloud
properties and precipitation patterns. In terms of air quality, long-range transport can transport
pollutants over significant distances, impacting remote areas far from their sources and leading to
transboundary pollution. Understanding the lifetime and long-range transport of atmospheric
aerosols is crucial for accurate climate modelling, air quality assessments, and the development of
effective mitigation strategies. Scientists employ satellite observations, ground-based
measurements, and atmospheric models to study and predict aerosol transport patterns, unravel
their sources and transformations, and assess their impacts on climate, air quality, and human
health.

The diurnal variation of black carbon concentration is influenced by boundary layer mixing and
anthropogenic activities (Tripathi, 2005). Kanpur's black carbon levels are comparable to other
Indian megacities but much higher than similar locations in Europe, the USA, and Asia. These
high black carbon concentrations in Kanpur contribute to large surface cooling and lower
atmospheric heating, which can have regional climate impacts.

Jethva et al., (2005) presented a comparison of AOD retrieved from MODIS with the Aerosol
Robotic Network (AERONET) data for the year 2004 over Kanpur, an industrial city lying in the
Ganga Basin in the northern part of India. The entire Indo-Gangetic basin was dominated by the
fine-mode particles during the winter (November to January) with AOD in the range of 0.4-0.6.
The study seasonal variability of aerosols over the Indo-Gangetic basin. Results reported indicate

that the Indo-Gangetic basin has the largest aerosol optical depth in India during both seasons.

Sarkar et al., (2006) discuss the analysis of the spatial variations of aerosol and aerosol forcing for
major populated cities in India. A sensitivity study reported that longwave atmospheric cooling

becomes more prominent with the increase in the amount of absorbing aerosols and a decrease in
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water vapor, while longwave forcings are found to vary only by 1% for differing ozone

concentrations (Ramachandran et al., 2006).

The Trajectory-based Potential Source Apportionment tool kit was utilized to identify sources of
respirable particulates in Kochi, India (Shanavas et al., 2020). Data from five regulatory
monitoring stations collected over five years (January 2011 to October 2016) were analysed at
both local and regional scales. Concentration field analysis utilized back trajectories generated by
the HYSPLIT model with atmospheric reanalysis data.. Findings revealed contributions from local
traffic activities during low wind conditions and from a nearby industrial area during high-speed
winds at most stations. Back trajectory analysis identified potential source areas in Kerala and the
neighbouring state of Tamil Nadu, as well as the Arabian Sea to the west. The study showcased
the effectiveness of TraPSA as a tool for understanding the potential source areas impacting

particulate matter concentrations in Kochi.

(Jiaetal., 2021) The results of the study revealed two distinct periods with different Odor sources.
In Period 1 (January 1%, 2019 to October 31%, 2020), the landfill emerged as the major source of
the Odor, the complaints received, 65% reported wind-carrying Odors from the landfill, and 88%
of these complaints originated from residences located within a 500-meter radius of the landfill
site. And the wind predominantly transported the Odor from the landfill. In Period 2 (November
1%, 2020 to December 15", 2020), the sewage plant became the major source, Among the total
complaints, 33% indicated wind direction from the sewage plant, and a significant 85% of these
complaints were registered by residents living within a 1000-meter distance from the sewage plant.
Using the trajectory and proximity analyses.

The influence of continental outflow on long-range transport was attempted by Hsiao et al., (2017).
The variations were associated with different long-range transport patterns of air pollutants,
including biomass-burning aerosols in spring and potential anthropogenic emissions in autumn.
Comparisons with measurements from Doi Ang Kang Meteorology Station in Thailand and
backward trajectories provided insights into the origin of aerosol types transported to the

Atmospheric Background Station during different seasons.

Concentrations of water-soluble ions, organic carbon, and elemental carbon of size-resolved
atmospheric aerosols were measured in Shanghai, China in July and August 2015. Backward

trajectory and PSCF models were used to identify the potential source distributions of size-
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resolved particles and PMy g-associated atmospheric inorganic and carbonaceous aerosols (Ding et
al., 2017). The results showed the air masses originated from heavily industrialized areas,
including the Pearl River Delta region, the Yangtze River Delta region, and the Beijing-Tianjin
region. Long-range transport influenced the pollution in July, while local and intra-regional
transport played a significant role in August. These findings highlight the significant contributions
of particulate pollutants from long-range transport and shipping to air pollution in Shanghai. The
significant contribution of particulate pollutants from long-range transported air masses to PM

levels of Shanghai in summer.

(Kumari et al., 2020) Ground-based measurements and satellite observations were used in Indo-
Gangetic Plain to study the impact of long-range transport from dust storms (event 1) and crop
residue burning (event 2). The spatial distribution and temporal variation of ambient PM were
assessed at 15 air quality monitoring stations in Rajasthan, the north-western IGP, and the
downwind region. During the dust event, PM2s and PM1o mass concentrations were 1.2-3.3 and
2.2-4.6 times higher than the National Ambient Air Quality Standards (NAAQS) near the Thar
Desert. Stations in the north-western IGP showed increased PM2sand PMyo levels during the crop
residue burning period. Satellite observations and backward air-mass trajectories indicated that
aerosols transported from the Thar Desert resulted in reduced Oz levels during the dust event,
whereas transport of Oz precursors enhanced the photochemical production of Oz during the crop
residue burning period at Agra.

One of the significant findings of this research is the identification and quantification of marine-
derived aerosols in the Arabian Sea region (Bikkina et al., 2020). The study highlights the
importance of sea-surface emissions in contributing to aerosol composition, particularly the
presence of sea salts and organic compounds originating from marine biota. This understanding of

marine sources is crucial for accurately assessing regional air quality and its impact on climate.

1.9 Importance of the study
The study on the use of satellite data and back trajectory analysis for prediction and retrieval of
PM2s and identification of regional contributions by long-range transport is of significant

importance for several reasons.

e Improved Air Quality Prediction of PM2s, the PM2s major air pollutant that poses serious

health risks to humans and the environment. By utilizing satellite data, researchers can
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enhance their ability to predict and forecast PM2s concentrations more accurately at
ground-level concentrations. This information is crucial for issuing timely air quality alerts,
implementing pollution control measures, and protecting public health.

Satellite Remote Sensing Advancements, the study highlights the advancements in satellite
remote sensing technology, which enables the measurement of ground-level PM2s
concentrations over large geographical areas with less resolution. Satellite data provide a
comprehensive view of aerosol particulates distribution, overcoming the limitations of
ground-based monitoring networks that may have sparse coverage, especially in remote
locations or less-developed regions.

Long-Range Transport of pollutants from their sources, impacting air quality in faraway
distant regions. By employing backward trajectory analysis, researchers can trace the
origins of PM2s and identify the regions responsible for its long-range transport. This
understanding is crucial for developing effective air quality management strategies that
involve cooperation between different regions and countries' boundaries.

The study's focus on the source-identifying regional contributions to PM2s levels helps in
source-origin impact. By distinguishing between local emissions and transported
pollutants, policymakers can prioritize control measures and allocate resources more
effectively to mitigate the impacts of specific pollution sources.

Long-range transport of PM2 s is not only an air quality issue but also has implications for
climate change. Black carbon, a component of PM2s, can accelerate the melting of snow
and ice when deposited on these surfaces. Understanding the sources of PMa s through
satellite data and trajectory analysis can help assess its contributions to regional climate
impacts.

Policy Formulation and Implementation will consider the accurate information about the
sources and transport of PM2 s is essential for designing evidence-based air quality policies.
Governments and regulatory bodies can use the findings from this study to develop
measures that target specific emission sources and address regional disparities in air
pollution levels.

Studies that utilize satellite data and trajectory analysis to assess PM.s levels can raise

public awareness about air quality issues. When citizens are informed about the sources
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and long-range transport of pollutants, they are more likely to engage in sustainable
practices, demand cleaner technologies, and support air quality improvement initiatives.

e This study bridges the gap between atmospheric science, remote sensing, and public health.
It demonstrates the importance of collaboration between these disciplines to tackle

complex environmental challenges like air pollution effectively.

In summary, the study focusing on the utilization of satellite data and back trajectory analysis to
predict PM2 s levels, identify pollution sources, and assess regional contributions plays a crucial
role in advancing air quality research, informing policy-making, safeguarding public health, and

promoting global collaboration to combat the far-reaching consequences of air pollution

1.10 Need and Scope of thesis

This research study aims to explore and harness the potential of satellite data and back trajectory
analysis as valuable tools for the identification of the source origins. Identification of Regional
Contributions by Long Range Transport to employ back trajectory analysis to trace the origins of
PM25 pollutants over long distances. By identifying the source regions and understanding the
pathways of these pollutants, we aim to assess the extent of regional contributions to local PM2s

levels.

The scope of this investigation encompasses various aspects related to the use of satellite
data and back trajectory analysis for PM2 s source identification and the health impact of ambient

heavy metals.

e The study will involve the collection of satellite-derived data, including aerosol optical
thickness, and meteorological data. Appropriate data processing techniques will be
explored to convert raw data into usable PM. s concentration information.

e MLR model development will be employed to create accurate predictions for PM2s
concentrations. The aim is to achieve high accuracy in predictions of PM2s levels across
different spatial regions.

¢ By integrating the findings from satellite data and back trajectory analysis, the study will
attempt to identify specific sources that contribute to PM2 s pollution in target areas. The
research will assess the impact of long-range transport on regional air quality, particularly

the introduction of external PM2 s pollutants from distant sources.

18



The insights from this investigation will help the policy implications for air quality
management, emphasizing the importance of regional cooperation to mitigate PMas
pollution and its adverse effects on both local environments and public health. The study
may require collaboration between atmospheric scientists, meteorologists, environmental
experts, and data analysts to ensure a comprehensive and accurate assessment of the

collected data.

Overall, this research will contribute to the broader goal of improving air quality monitoring and

management strategies, with the potential to inform regulatory decisions and foster international

cooperation in tackling air pollution issues.

1.11 Research gaps

Research gaps for the current scenario

Studies related to Sources of fine particulates and their health impacts are extremely limited
in India.

This may be possibly due to inappropriate particulate source profiles, limited emission
inventories, and differences in adopted methodologies.

Application of back trajectory analysis for identification of regions contributing to
particulate pollution is not well reported in India

Studies on satellite data for air quality studies varied from region to region. Limited studies
are reported for the Hyderabad region.

Limited studies are reported on the long-range transport of PM2s from different regions
and on altitude analysis.

Based on these specific identified research gaps, the Objectives of the thesis were formulated as

specified in section 1.13

1.12 Objectives

The following objectives are obtained from the research gaps

1) Assessment of health impacts caused by PM2 s bound heavy metals using Hazard Quotient

and Hazard index.

2) Application of back trajectory analysis for identification of regions contributing to PM2s

bound heavy metals.
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3) Studies on the use of satellite data (MODIS AOD) for missing data retrievals and prediction
of PMzs,

4) Application of back trajectory analysis in conjunction with Concentration Weighted
Trajectory (CWT), Potential Source Contribution function (PSCF), and cluster analysis to
arrive at potential source regions for Hyderabad and Warangal.

1.13 Organization of the thesis

The thesis has been composed of 6 chapters, as mentioned:

Chapter 1: The "Introduction™ chapter deals with the research background such as the
atmospheric pollution due to the particulate matter and thePM2s bond heavy metals. The
health impact associated with the heavy metals, as well as the satellite retrievals of AOD
to predict the ground level PMa2s concentrations. However, the identification of source
regions based on the back trajectory analysis simplifies the long-range transport of
pollutants towards the receptor location and Importance of the study, and aim and scope of
the thesis

Chapter 2: The "Literature Review" chapter overview the studies available in the

literature that are relevant to the present investigation. It has elaborated International and
National status on PM2sand heavy metals, aerosol sources and dispersion of the pollutants.
Subsequently urban pollution influence on local meteorology relates with the aerosol
concentration, as well as importance of the backward trajectory analysis, and a summary

of literature and research gaps are well discussed.

Chapter 3: The “Materials and Methods “chapter outlines the analysis of major sources of air
Pollution in the study area and the monitoring of the dust sample. Metal analysis using the
MP-AES instrument instructions well discussed as well as non-carcinogenic and
carcinogenic methodology for the health risk assessment, and the HYSPLIT model was
assists in the identification of the source from the long-range transport of pollutants

Chapter 4: The title of this chapter is “Estimation of PM2 s and source contribution by
Backward trajectory analysis over Warangal region.” This chapter describes the Variation
of the PM2s concentration and its associated HMs as well as the correlation coefficient

within the HM. Exposure dose assessment and non-carcinogenic health risks describe the
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health impact possibility. Backward trajectory approach to compute the dominating HM
source identification at the receptor location.

Chapter 5: The “Estimation of surface PM2.s with MODIS Aerosol optical depth and source
identification using trajectory analysis: A case of Hyderabad City, India " chapter describes
a case study of Hyderabad City and the variation of meteorology and the local PM2s
concentration. The satellite AOD retrievals are useful for the prediction of the ground level
PMs. Source identification of the different altitude layers and different seasonal
contributions covered at receptor location.

Chapter 6: The “Summary and Conclusions " chapter addresses the Summary and Conclusions

of the present research as well as a few recommendations.
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Chapter 2 Review of Literature

2.1 General

Air quality modelling and management is critical in urban areas as a variety of complex sources
are contributing to pollution. Monitoring pollution is a difficult preposition in many nations as it
involves time and money. Several methods come to light in order to monitor air quality to
overcome the challenges. In this chapter, literature pertaining to air quality in terms of PM2s and
related aspects of long-range transport of pollutants, health effects of heavy metals bound to PM>s,

satellite AOD for air quality assessment, etc., are presented.

2.2 International and National Status on PM2s

PM:2sis a major air pollutant that poses significant risks to human health and the environment. It
is generated by various sources such as industrial emissions, vehicle exhaust, and residential
combustion. Both international and national efforts have been made to address the issue of PM2s
pollution and improve air quality. The WHO has set guidelines for PM_ s exposure levels to protect
public health. According to the WHO Air Quality Guidelines, the recommended annual mean
concentration of PM2s is 5 pg/m?, and the 24-hour mean concentration should not exceed 15 pg
(WHO 2021). These guidelines provide a benchmark for countries to assess and manage their air
quality standards. Almost all the global population (99%) breathes polluted air exceeding WHO
guideline limits. Low and middle-income countries face the highest exposure. Air quality is
connected to the earth's climate and ecosystems worldwide. Ambient air pollution is reported to
be responsible for around 4.2 million premature deaths worldwide (Murray et al., 2020).
Implementing policies and investments that promote cleaner transport, energy-efficient homes,
sustainable power generation, improved waste management, and access to clean household energy

can effectively reduce outdoor air pollution.

The United States Environmental Protection Agency (EPA) in the United States has
established the National Ambient Air Quality Standards (NAAQS) to regulate air pollutants,
including PM2s. The current annual average standard for PM2sis 12 pg/m?®, while the 24-hour
standard is set at 35 pg/m?. These standards are used to evaluate air quality across the country and
guide pollution control measures. European Union (EU) has implemented air quality standards to
control PM2 ;s pollution. The European Ambient Air Quality Directive sets a limit value for PM2s

at 25 pg/m? for the annual average and 50 pg/m? for the daily average. Member states are required
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to report their air quality data, and actions are taken to improve air quality in areas where limits

are exceeded.

Jahn et al., 2013, reported elevated PM2s mass concentrations throughout Chinese megacity of
Guangzhou's district, with ambient PM. s levels that consistently exceeded the 24-h standards of
the WHO. PM s pollution in Delhi averaged 150 pug/m? from 2012 through 2014, which is 15 times
higher than the WHO annual-average guideline. Central Asian cities are air pollution hotspots with
limited knowledge on air quality variation (Tursumbayeva et al., 2023). The study examined PM2 s
levels and meteorological influences in six major cities (Almaty and Astana (Kazakhstan),
Ashgabat (Turkmenistan), Bishkek (Kyrgyzstan), Dushanbe (Tajikistan), Astana and Tashkent
(Uzbekistan). Results reveal severe air quality degradation, exceeding annual PM2s limits by up
to ten-fold with winter peaks at 3 locations (Almaty, Bishkek, and Astana). HYSPLIT model
identified high PM2 s episodes due to regional pollutant transport. The study challenges previous
emission inventory studies, revealing coal combustion as the primary PM2 s source. By analysing
well-being surveys, particulate matter concentrations, and weather data, the study in the city of
Ulaanbaatar (capital of Mangolia) reported a significant connection between air pollution and self-
reported life satisfaction (Sanduijav et al., 2021). A multi-sensor characterization of the increasing

pre-monsoon aerosol loading over northern India.

The new WHO global air quality guidelines aim to set even lower targets for reducing air
pollution worldwide, encouraging significant decreases (WHO 2021). Achieving these guidelines
will be challenging, especially for cities with high pollution levels, requiring several years of
dedicated efforts. Simultaneously, the pressure to mitigate climate change and reduce fossil fuel
usage has prompted many countries to establish temperature reduction goals in line with the Paris
Agreement. This has resulted in an increase in clean energy generation and will eventually lead to
widespread vehicle electrification in high-income countries by 2030. Burnett et al.,
(2018) estimates that the number of early deaths in India annually due to PM. s could be more than
two million. The Indo-Gangetic plain is known for having the largest number of brick kilns, which
use outdated and inefficient combustion technology and rely on a combination of biomass and coal
for fuel (Bhat et al., 2014). The states of Bihar, West Bengal, Jharkhand, Orissa, and Chhattisgarh
are home to the country's largest coal mines and a cluster of power plants located in close proximity

to these mines. During the 2010-11 period, 111 plants with a combined capacity of total electricity
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generation capacity of 121 GW consumed 503 million tons of coal and generated an estimated 580
k tons of PM2 s particulates (Guttikunda et al., 2014). Additionally, the northern and north-eastern
regions of India, particularly Punjab, Haryana, Delhi, and Uttar Pradesh, have several large power
plants, making this area the most polluted part of the country. The geographical location of these
cities in the north, being landlocked, exacerbates the impact of prevailing meteorological

conditions on air quality, unlike some southern cities that benefit from land-sea breezes

(Guttikunda and Gurjar, 2012).

In Jharia (Jharkhand State, India), the main contributors to air pollution were coal mining
activities and active mine fires, with vehicular emissions playing a secondary role (Pandey et al.,
2014). Additionally, wind-blown dust from unpaved roads also made a modest contribution to the
overall air pollution levels and PCA recognized that coal mining and active mine fires (57.71%
variance) are the main contributors of air pollutants in the study area Jharkhand. (Du et al., 2020)
where poor air quality has caused a public health crisis. On average, 46% of population-weighted
air pollution exposure originates from another state. Of the major sources, energy (75%) and
industry (53%) see most of their emissions travel to another state. All sectors have 39% or more
of their emissions travel across state boundaries in Indian states. The study in eastern India revealed
elevated air pollution levels around clusters of coal-fired power plants (Tyagi et al., 2021). Results
indicate that eastern India is becoming a new hotspot region for air pollution, with the highest
levels recorded in India. Approximately 50% of residential PM2s emissions are attributed to the
<10% of households using cow dung as cooking fuel (Sharma et al., 2022). PM2s emissions from
open waste burning have seen minimal change from 2010 to 2020. Pollution levels in cities of
varying sizes may be similar, despite differences in local activity levels. This similarity is
attributed to the significant influence of the wider region on pollution levels, which currently plays
a substantial role (Agrawal et al., 2021). Guttikunda et al., 2014 proposed two strategies for
improving air quality in Indian cities. First, there is a need to raise public awareness and garner
commitment to action from civic, commercial, and political sectors. Second, it is crucial to
integrate air pollution mitigation efforts with broader social and economic development policies.
For instance, addressing local challenges can involve implementing safer and more reliable public
transportation systems, efficient waste management, dust-free roads, and promoting pollution-free
industries and power plants. Investigate variations in indoor/outdoor concentrations of particulate

matter during various activities. There is significantly a study in three different micro-
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environments in Pakistan revelled higher levels of particulate matter in kitchens that use biomass
fuels compared to other living areas (Colbeck et al., 2010). As a result, women and children are
exposed to a greater extent as they spend more time in the kitchen. The urban concentrations
observing the impact of traffic, it was evident that concerns regarding roadside PMazs
concentrations were more pronounced than non-roadside concentrations. A vertical dispersion
experiment was conducted, demonstrating a significant decrease in PMz5s levels from 119.5 pg/m®
at street level to 42.8 pg/m3 on a third-floor rooftop. That the both horizontal and vertical
dispersion of the pollutants exhibited sharp declines in PM2 s concentrations (Kinney et al., 2011).

Recent developments in remote sensing, global chemical-transport models, and
improvements in coverage of surface measurements facilitate virtually complete spatially resolved
global air pollutant concentration estimates. A recent study by Chatterjee et al., (2023) combining
source-specific emission estimates to the grid simulations from a chemical transport model achieve
the high-resolution hybrid PM2.5, and disease-specific mortality estimation was concluded the
combined mortality burden associated with residential combustion (ambient) and household air
pollution (HAP) in India is 0.72 million. However, primary data will be helpful for statistical
modelling to evaluate the effectiveness of PM..s emissions (Liu et al., 2012). Initial assessment of
pollutants and spatial and/or temporal patterns of multiple pollutants in the ambient air are also
attempted (Arku et al., 2008). Extensive evidence from past respiratory viruses and emerging
research on COVID-19 demonstrated the harmful effects of air pollution on respiratory defense
mechanisms, leading to more severe infections (Brauer et al., 2021). Taking decisive actions to
reduce air pollution remains paramount to safeguarding public health and fostering a healthier

future.

India has also been grappling with severe PM: s pollution, particularly in densely populated
cities. The Indian government has launched initiatives such as the National Clean Air Programme
(NCAP) five-year action plan launched in 2019 to combat air pollution. The program aims to
reduce PM.s and PMz1o concentrations by 20-30% by 2024. Implementation of measures such as
stricter emission norms for industries and the promotion of electric vehicles is underway to achieve
this goal (Broomandi et al., 2022). Despite significant efforts to reduce air pollution, the threat it
poses to monuments and materials in East Asia remains severe and persistent. Exposure to ambient

pollution, especially in urban areas, increases the vulnerability of World Heritage Sites to
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degradation and corrosion. Therefore, special attention is needed to address this issue and protect

these invaluable cultural treasures based on the dose-response calculations for material corrosion.

The following table represent some studies related to the air pollution sources in India, the
developing cities which are increasing in the urban population as well as increase in the vehicles
and daily activities of the human causes the air pollution in the urban regions. The Table 2.1
conclude the major sources dominating sectors from vehicles, industries, biomass burning and coal

combustion.

Table 2.1 Studies related to the source identification over Indian region

Location | Period Data Source | Method | Main Result Reference
Delhi 2010- CPCB CMB Vehicles, Sharma et al., 2017
2014 monitors biomass
burning, and soil
dust are the
major sources of
PM2.5
Mumbai 2011- CPCB PMF Vehicles, sea Ramachandran et al
2012 monitors salt, industrial 2017
emissions, and
secondary

aerosols are the
major sources of
PM2.5

Kolkata 2013- CPCB PCA Vehicles, coal Ghosh et al., 2018
2014 monitors combustion,
biomass
burning, and
brick kilns are
the major
sources of
PM2.5
Chennai 2014- CPCB UNMIX | Vehicles, sea Kumar et al., 2016
2015 monitors salt, industrial
emissions, and
secondary
aerosols are the
major sources of

PM2.5
Hyderabad | 2015- MODIS AOD | MLR AOD can be Shao, et al., 2017
2016 used to estimate
PM2.5

concentration
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with moderate
accuracy and
uncertainty

Warangal

2016-
2017

Low-cost
Sensors

Kriging

PM2.5
concentration
shows high
spatial and
temporal
variability and
exceeds the
WHO guideline
value

Kumar et al., 2017

Agra,
India

January
to
December
2021

Fine
particulate

sampler(APM

550,
Envirotech)

PCA

Carcinogenic
risks of metals
in PM25 is
higher for adults
than children.

Sah et al., 2023

Trombay
(Mumbai,
India)

2010 and
2011

Gent’s
dichotomous
sampler

PMF

PM2.5 has
major
contributions

Police et al., 2018

from
anthropogenic
sources such as
coal/biomass
combustion
(25.5%).

2.3 International and National Status on Heavy Metals

In recent years, the presence of increased levels of heavy metals in urban ambient air is reported.
Highways, an integral part of any urban development, only use a small percentage of urban land,
however, they generate many types of combined pollutants, among which heavy metals, in
particular Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn) are
very common (Sankar et al.,, 2020; Wang and Zhang, 2018). Heavy metals are important
environmental pollutants and are regarded as potential hazards to human health and natural
ecosystems. Most of the heavy metals are dangerous to the human body since they tend to bio
accumulate. The heavy metals derived from highways originate from diverse sources (Wang and
Zhang, 2018). Studies indicated atmospheric deposition, input from traffic, carriageway breakup

and surrounding land uses as the key sources of heavy metal pollution from roads (Sankar et al.,

27



2020; Wang and Zhang, 2018; Pal et al., 2018). The urban pollution impact associated with
transportation has become an important issue as road traffic in India has increased rapidly.
Aerosols are of immense scientific interest due to their complex nature and consequent effects on
human health. Several researchers focused on human exposure to fine particulate matter and
adverse impacts on human health. Fine particles penetrate deeper into the lung and reach up to the
alveolar regions and thus their potential adverse health effect is much greater (Xing et al., 2016).
Furthermore, these particles possess higher surface-to-volume ratios and are often generated
through gas-to-particle conversion or combustion processes Many epidemiological studies have
shown that both short-term and long-term exposures to fine particulate matter are associated with
elevated rates of premature mortality (Bell et al., 2004; Woodruff et al., 2008; Tarin-Carrasco et
al., 2021; Basith et al., 2022).

Primary elements generated from the Earth's crust (Al, Fe, and Ca) and anthropogenic sources (Pb,
Ni, and Cd) were identified as major contributors to coarse and fine particles (Roy et al., 2023).
PM-bound bacteria and the presence of potential respiratory pathogens indicated a significant risk
to both human lung health and the environment. The heavy metals bound in the particulate matter
are a major concern since they can induce polycyclic aromatic hydrocarbons and trace metals
adsorbed to respirable particulate matter in higher concentrations ( Kampa and Castanas, 2008;
Singh et al., 2011).

Potential risk to children and adults from heavy metal exposure by calculating the average
daily doses (ADD), non-cancer or hazard quotient (HQ), hazard index (HI), and cancer risk (CR)
for ingestion, inhalation, and dermal contact pathways was attempted in a study in Pakistan (Khan
et al., 2020). The results indicated that children had higher intake than adults, primarily through
ingestion. The HI and CR values were observed within the acceptable limits (<1 and 10—4—10-6)
of the US EPA. The removal of Topsoil and dust in urban areas are indicators of heavy metal
contamination from atmospheric deposition (Krishna and Govil, 2007). Locations close to roads
are severely polluted by heavy metals such as lead, zinc, copper, and chromium. Due to their non-
volatile nature, heavy metals found in respirable particulate matter are less susceptible to chemical
transformations. Consequently, they tend to persist in their emitted form without significant
changes. Studies have shown that automobiles are the primary contributors to air pollution in urban

areas, with a significant portion of heavy metals like Pb, Cd, Cu, Cr, and Ni being present in the
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PMyo fraction (Pasha and Alharbi, 2015). These metals predominantly originate from

anthropogenic vehicular activities associated with traffic.

CMB studies were reported by Gummeneni et al., (2011) for source identification of heavy metals
bound to particulate matter. The study recommended controlling emissions from industries and
automobiles and refuse burning. A similar study by Chaudhari et al., (2012) and Pasha and
Alharbi, (2015) assessed heavy metals bound to PM2s indicating industrial and automobile as
major sources. Ambade, (2014) tagged Zn and Fe with natural sources and Pb, Cu, Cr, and Ni with
anthropogenic sources. Several researchers reported the presence of heavy metals bound to
particulate matter in their studies indicating industry, automobile, refuse burning, and other
anthropogenic activities as sources of heavy metals (Kulshrestha et al., 2014; Bhuyan et al., 2018a;
Ghosh et al., 2018; Alves et al., 2018).

Principal component analysis revealed that Cd, Cr, Ni, and Pb are associated with industrial
sources whereas Zn and Cu are mainly contributed by vehicular traffic (Suryawanshi et al., 2016a).
Contamination factor analysis showed that road dust samples are significantly contaminated by Zn
and Pb. Step-wise linear regression model revealed that humidity and temperature significantly
influence the mass concentration of PM2s (Prabhu and Shridhar, 2019). Enrichment factor and
principal component analysis revealed that anthropogenic activities such as vehicular emissions,
road dust re-suspension, and biomass burning are the predominant sources of atmospheric PM2s.
Particulate matter with Co, Cr, Ni, Cd, and Pb is reported to be carcinogenic while particulate
matter with Mn, Fe, Cu, and Zn is non-carcinogenic (Pandey et al., 2017). Assessment of reliable
fractions of heavy metals helps in the prediction of the degree of toxicity and pollution load. The
exposure concentration (ng/m”3) was found highest for the industrial region followed by the
residential. The health risk assessment of Cr, Mn, Co, Ni, Cu, As, and Cd provided useful
information to the policymaker to frame regulation (Sah et al., 2019). They concluded the
concentrations of Cr, Mn, Co, Ni, Cu, As, and Cd above the NAAQS and WHO limits, whereas
those of Pb below the NAAQS and WHO 2014 limits and PMyo concentrations exceeded the
annual mean standard set by the NAAQS in India, USEPA, and WHO Limits. Spatiotemporal
variability of dust fall chemical constituents also provide important conclusions on the impact
pattern of dust emissions on environmentally defined receptors (Gurugubelli et al., 2013). The dust
fallout levels were found to be in the range of 13.73 + 5.46 to 78.82 + 34.81 g/m?/month.
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Overall air quality in the city of Kanpur was much inferior to other cities in India with
respect to PMzyo and PM2s. Also, heavy metals were almost 5-10 times higher than levels in
European cities (Sharma and Maloo, 2005). (Gajghate et al., 2012a) This study demonstrates the
re-suspension of dust released during traffic activities and soil erosion. However, the concentration
and fluxes of Zn and V (anthropogenic elements) may be attributed to industrial emissions.
Average individual trace element concentrations fluctuated between 0.003 pg/m® (Cr) and 3.43
pg/m? (Zn). CWT analysis indicated a higher influence of local sources during winter and post-
monsoon (Chandra et al., 2014). Significant diurnal and seasonal variations were also reported.
Enrichment Factor analysis indicated that Cd, Zn, Cu, Pb, and Ni were highly enriched relative to
their crustal ratios with a substantial contribution from anthropogenic sources (Basha et al., 2010).
Factor analysis, a receptor modelling technique has been used for identification of the possible
sources contributing to the PMyo (Karar et al., 2006). Varimax rotated factor analysis identified
four possible sources. Results of the correlation analysis showed that most of the metals exhibit
moderate to weak relationships with each other. Seasonal distribution patterns indicate that most
of the metals tend to exhibit maximum during the winter season, probably due to the temperature
inversion. Health risks associated with heavy metals are reported by several researchers wherein
exposure to heavy metal, exposure pathways, potential risk of cancer, vulnerable age groups, risk
of long-term exposure, etc., were attempted (Sharma et al., 2008; Izhar et al., 2016; Dalal et al.,
2013; Massey et al., 2013; Kulshrestha et al., 2009; Pervez et al., 2009).

2.4 Ambient Aerosol sources and dispersions

Atmospheric aerosol distributions are influenced by changes in precipitation, atmospheric mixing,
and ventilation due to circulation changes. Emissions from natural aerosol sources strongly depend
on climate factors like wind speed, temperature, and vegetation (Tegen and Schepanski, 2018).
Several particle dispersion models are available which are used widely - Box models (AURORA,
CPB, and PBM), Gaussian models (CALINE4, OSPM, CALPUFF, AEROPOL, AERMOD, UK-
ADMS, and SCREENS3), Lagrangian/Eulerian Models (GRAL, TAPM, ARIA Regional), CFD
models (ARIA Local, MISKAM, MICRO-CALGRID) and models which include aerosol
dynamics (GATOR, MONO32, UHMA, CIT, AERO, RPM, AEROFOR2, URM-1ATM,
MADRID, CALGRID, and UNI-AERO) (Holmes and Morawska, 2006). As well as deterministic
methods are WRF-CMAQ, WRF-Chem, WRF/Chem-MADRID Operational Street Pollution
Models (OSPM) and (CAMX) (Qi et al., 2023).
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Primary aerosols are directly emitted into the atmosphere from specific sources. These can
include natural sources such as dust and sea spray or anthropogenic sources such as industrial
emissions, vehicle exhaust, and biomass burning. Primary aerosols are typically larger compared
to secondary aerosols (Du et al., 2018; May et al., 2013; Mohr et al., 2009). Aerosol size
distribution and chemical composition are crucial parameters that determine their dynamics in the
complex atmosphere (Colbeck and Lazaridis, 2010). The aqueous-phase reaction presented a more
complex effect on secondary aerosol formation at different relative humidity conditions. The
formation efficiencies of secondary aerosols were enhanced during the lockdown as the increase
of atmospheric oxidation capacity (Tian et al., 2021). Domestic energy use by the burning of solid
biofuels is the largest contributor to ambient black carbon, primary organic aerosols, and
anthropogenic secondary organic aerosols globally (Chowdhury et al., 2022). The variation in
biomass burning contribution was inferred to be driven mainly by agricultural fires with relatively
low combustion efficiencies (Cheng et al., 2021). Mechanical dispersion occurs when solid
particles are mechanically generated and dispersed into the air. This mechanism is often associated
with activities like construction, mining, and agricultural practices (Yan et al., 2023). These
processes can generate dust particles that become suspended in the air as aerosols. Indoor and
outdoor air pollution studies revealed that the Indoor levels were generally lower than the
corresponding outdoor (Diapouli et al., 2011). Haze and Non-haze episodes study in Indonesia
reported that the main cause of air pollution was uncontrolled biomass and peat burning. There
was no consistent pattern for particle number concentrations during the haze period as compared
to the non-haze period (Xu et al., 2015).

It is important to note that the sources of ambient aerosol and dispersions are complex and
interconnected. Multiple processes can contribute to the overall aerosol composition and
concentrations in the atmosphere, and their relative importance can vary depending on the location,
season, and specific environmental conditions. Even though, heavy metals are known to enter the
atmosphere from both natural and anthropogenic sources at trace levels, most of them are also
introduced into the atmosphere by various anthropogenic activities only (Tian et al., 2015). The
primary human-caused origins of pollutants include emissions from burning coal and oil, vehicle
traffic and movement, stirring up of road dust, natural crustal materials, metallurgical processes,
incineration, wind-blown dust from soil, piping, construction and demolition operations, waste

incineration, components of various products, industrial and human activities, as well as industrial
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point sources like ongoing and past mining activities, foundries, and smelters (Gummeneni et al.,
2011; Kalaiarasan et al., 2018; Morantes et al., 2021; Patil et al., 2013).

2.5 Natural vs. Anthropogenic source’s Influence on Urban Pollution

The contribution of each source varies depending on the type of activity like natural vs
anthropogenic. The source-resolved model is compared to the results of chemical mass
balance models (CMB) for Pittsburgh and multiple urban/rural sites, evidence that the organic PM
emissions from natural gas combustion are overestimated (Lane et al., 2007). Regarding the natural
and anthropogenic sources of aerosols in the northeastern Mediterranean area, Total Ozone Mapping
Spectrometer (TOMS) -Absorbing Aerosol Index (AAI) one of the most useful space-borne data sets,

offering long-term daily and global information on UV absorbing aerosol distributions.

The data is utilized as a proxy for the dust source, while the difference between MODIS and
TOMS AOT is employed as an indicator of the anthropogenic aerosol component. The sources
attributed to road traffic, while smaller contributions come from vegetative detritus, wood smoke,

natural gas, coal, and dust/soil (Kubilay et al., 2005; Herman et al., 1997).

In order to assess the contribution of natural sources to PMas levels in North-West
Germany, a one-year measurement project was conducted at two sites during the period from April
2008 to March 2009. Strong to moderate correlations between urban and regional areas were
observed for factors categorized as aged marine aerosol, aged mineral dust, secondary sulfate, and
fossil fuel combustion (Beuck et al., 2011). An integrated method combining Aerosol Robotic
Network (AERONET) data, backward trajectories, and Potential Source Contribution Function
(PSCF) modelling was used to identify probable transport pathways and magnitudes of source
contributions for four characteristic aerosol types (Wong et al., 2013). The Hierarchical Bayesian
Approach was used to estimate the contribution of urban growth to primary aerosols through
statistical methods. The results suggested that The model performed moderately for most of Indian
cities. The estimates were compared with the results of chemical transport models that provide

more accurate but computationally expensive results, The approach is useful in locations without

emission inventory (Misra et al., 2019).
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2.6 Influence of Meteorology on Aerosol concentration

Aerosol concentration is significantly influenced by meteorological factors. Various aspects of
meteorology, such as wind patterns, temperature, humidity, and atmospheric stability, play a vital
role in the transport, dispersion, and accumulation of aerosol particles in the atmosphere. Wind
patterns determine the direction and speed of air movement, affecting the spread of aerosols over
large distances. Strong winds can disperse aerosols widely, while weak or stagnant winds can lead
to localized accumulation. Temperature and humidity have an impact on the chemical reactions
and physical properties of aerosols. Higher temperatures can increase the evaporation of water
droplets containing aerosols, resulting in higher particle concentrations. Humidity levels also
influence the growth of aerosols, affecting their size and composition. Atmospheric stability refers
to the vertical profile of temperature and moisture in the atmosphere. Stable atmospheric
conditions can trap aerosols near the surface, leading to higher concentrations. Conversely,
unstable conditions promote vertical mixing and dispersion, resulting in lower aerosol
concentrations. Moreover, meteorological conditions can interact with anthropogenic pollutant
emissions, such as industrial processes, vehicle exhaust, and biomass burning. Temperature
inversions, for instance, can trap pollutants close to the surface, causing elevated aerosol
concentrations in urban areas. Meteorology plays a crucial role in shaping the spatial and temporal
variations in ambient aerosol concentrations, thereby impacting air quality, climate, and human
health.

Kumar et al., (2020) investigated the impact of meteorological parameters, including
temperature, wind speed, and relative humidity at Varanasi, India. Temperature showed an
insignificant relationship during the pre-monsoon period, but during winter months, it exhibited a
negative trend with concentration. Wind speed exhibited a negative correlation throughout the
observation period. Relative humidity showed a weak positive correlation with PM2s and PM1o
during winter months, while PM2 did not show any significant relationship during the pre- and
post-monsoon periods. The pollutants were reported to originate from various industrial activities,
biomass burning, and vehicular emissions. The findings from these analyses provide valuable

insights for future urban development planning and climate studies.

In India, assessment of the PM2 s concentration is challenging due to limited coverage,
inconsistent data availability, and spatial-temporal gaps (Chelani, 2018). To address this, satellite-
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based observations using MODIS were utilized in this study to estimate ground PM2 levels in five
cities in Maharashtra, India, from January 2016 to May 2017. The model incorporated
meteorological parameters to enhance accuracy. Multiple linear regression (or) Multiple
regression involves employing multiple explanatory variables to forecast the outcome of a
response variable. A combination models, merging MLR and MLR residuals, was developed to
derive more accurate estimates. The effectiveness of this approach was evaluated for two types of
time series one with infrequent missing data and the other with frequent missing data. Spatial
analysis revealed elevated AOD levels in Mumbai. Notably, integrating meteorological factors
into the regression equation improved the MLR model's performance. Ultimately, the combination
model outperformed MLR by considering the residuals of the MLR model. Tariq et al., (2021),
focused on the analysis of aerosol optical properties using MODIS datasets, including AOD at 550
nm, Angstrom exponent (AE) at 440/870 nm, and enhanced vegetation index (EV1) over Pakistan.
The goal was to gain a comprehensive understanding of aerosol variability and its relationship
with meteorological variables such as temperature, relative humidity (RH), and wind speed (WS).
The evaluation of Aqua-AOD against AERONET-AOD shows coefficients of determination (R?)
of 0.6724 over Lahore and 0.7678 over Karachi. Additionally, Aqua-AOD was validated using
AOD data from Terra, MISR, and SeaWiFS. Notably, high AOD values (0.8-1) and low AE values
(0.4-0.8) indicated the presence of dust aerosols in south and south-western Pakistan. The study
also revealed significant interannual variation in AOD, with the lowest values (0.22) in January
and the highest (0.58) in July. Furthermore, a positive correlation (R > 0.6) was observed between
AOD and temperature in south-western Pakistan. Investigation into the variation of AOD and its
physical-optical properties was attempted in Dibrugarh, northeast India, from October 2001 to
November 2010 (Pathak and Bhuyan, 2015). The focus was on the diurnal AOD and its
relationship with meteorological parameters. AOD consistently showed higher values during
forenoon (FN) hours compared to afternoon (AN) hours in most seasons. This variation is
primarily influenced by prevailing meteorological conditions and the change in the ray path from
polluted industrialized areas in the east and northeast of Dibrugarh during the forenoon to cleaner
mountain regions and the Brahmaputra River in the afternoon. This indicated a prevalence of
coarse-mode aerosols during the forenoon compared to the afternoon. However, the climatological
mean difference between MODIS Terra and Aqua AOD is smaller than the mean difference

observed between ground based AOD measurements. Atmospheric visibility was analysed to
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assess air pollution globally from 1973 to 2012 (Qu et al., 2020). In densely populated regions
characterized by lower surface wind speeds, there tends to be a correlation with increasing air
pollution and diminished visibility. Conversely, higher relative humidity (RH) tends to promote
secondary aerosol formation and hygroscopic growth, further impairing visibility. The interaction
between meteorological factors and major aerosol components in different regions globally can
influence aerosol and cloud formation, impacting the evolution of the atmospheric boundary layer
and air pollution. In East Asia, India, and Southeast Asia, the decline in visibility was linked to
increased anthropogenic emissions and a more stable atmospheric boundary layer (ABL)
characterized by weakened surface winds and reduced diurnal temperature range. Higher aerosol
loading and cloud cover contribute to decreased solar radiation reaching the surface, further

stabilizing the ABL and exacerbating air pollution.

The mass and optical properties of PM2.s were assessed in an ecologically sensitive zone in
Central India (Sunder Raman and Kumar, 2016). The concentration of fine PM ranged from 3.2
pg/m? to 193.9 ug/m?, with a median concentration of 31.4 pg/m?3. The attenuation coefficients at
different wavelengths and the scattering and absorption coefficients were also measured. The
relationship between fine PM mass and attenuation coefficients varied seasonally, with the
strongest correlation observed during the post-monsoon season. Fine PM mass exhibited the
highest correlation (r? = 0.81) with a scattering coefficient at 550 nm during the post-monsoon
season. However, monitoring optical properties alone as a surrogate for fine PM mass throughout
the year was deemed unsuitable for the study location. MLR models were fitted for each season to
assess the relationships between fine PM mass, optical properties, and meteorological parameters.
The MLR model for the post-monsoon season explained over 88% of the variability in fine PM
mass. However, the MLR models performed less effectively during the pre-monsoon and monsoon
seasons, explaining only 31% and 32% of the variability, respectively. In the winter season, the
MLR model accounted for 54% of the variability in PM.s. Variations in Black carbon (BC) mass
concentration were studied at a high-altitude urban site, Srinagar (north-western Himalaya, India)
in 2013 (Bhat et al., 2017). The study aimed to analyse temporal variations, meteorological
influences, source contributions, and radiative forcing of BC. The highest mean monthly BC
concentration (13.6 pg/m?) was observed in November, while the lowest (3.4 ug/m?) was in April.
Autumn had the highest mean BC concentration (9.2 pg/m?), while spring had the lowest (3.5
ug/m?). The annual average BC concentration (6 pg/m?®) was higher than other high-altitude
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stations. Wind speed, minimum temperature, and total precipitation showed a negative correlation
with BC, while evening relative humidity showed a positive correlation. Biomass burning was the
main source of BC during autumn, spring, and winter, while both fossil fuel and biomass burning
contributed equally during summer. Back trajectory simulations indicated the transport of BC from
various regions to Srinagar, with westerly air masses being dominant except during summer.
Aerosol optical properties (AOPs) and particulate matter were measured continuously at
an urban site in Delhi, India during the winter period (December 2011 to March 2012) (Tiwari et
al., 2015). Higher values of scattering and absorption coefficients were observed in December,
while lower values were observed in March and February. SSA was higher in January and lower
in March. Bimodal distributions of scattering and absorption coefficients were observed during
traffic rush hours and low boundary layer conditions, with lower values in the afternoon.
Meteorological parameters such as wind speed, wind direction, visibility, and mixed layer depths
were found to have a significant impact on AOPs and particle concentrations. There was a clear
negative correlation between atmospheric visibility and scattering coefficient, absorption
coefficient, and PM2s. AOPs and particle concentrations were significantly higher during foggy
and dense foggy days, as well as when mixed layer depths were below 200 m and wind speed was
below 1 m/s. The results indicate the crucial role of meteorological parameters in enhancing
aerosol levels at ground level during the winter period in Delhi. Ravindra et al., (2022),
investigated the impact of meteorological parameters and air pollutants on airborne pollen in
Chandigarh, an urban city located in the Indo-Gangetic Plains. From June 2018 to June 2020.
Temperature and wind were found to be the most influential parameters, showing a positive
correlation with the annual pollen integral of Cannabis Sativa, Parthenium hysterophorus, Poaceae,
and total pollen concentration. The study highlighted the distinct responses of each pollen taxon
to meteorological parameters and air pollutants. It emphasizes the importance of examining pollen
response at the taxon level and using long-term data to understand the relationships and trends
among meteorology, air pollutants, and aerobiology for future scenarios and environmental
changes. Guttikunda and Gurjar, (2012), attempted to study the role of meteorology in Delhi's
pollution using the Atmospheric Transport Modelling System. The harsh and highly polluted
winters in Delhi, a megacity, have significant impacts on health and transportation. Pollution levels
during winter are two to three times higher than in summer, leading to delays and accidents. The

pollution contribution was mainly from a combination of manmade factors, such as fuel burning,
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and natural factors influenced by meteorology. Despite efforts to control pollution, fine particulate
matter remains a major concern, averaging 80 to 100 pg/m? daily in 2009. The results show that
tracer concentrations were consistently 40% to 80% higher in winter (November, December, and
January) and 10% to 60% lower in summer (May, June, and July) compared to the annual average.

2.7 Satellite retrievals for Aerosol optical properties

Satellites collect the different types of remote sensing data which can be used for several purposes
including estimation of aerosol concentrations. These instruments observe the Earth's surface and
the atmosphere from space, capturing the interaction of sunlight with aerosols. The retrieval
process involves analysing the radiance measurements acquired by the satellite sensors and
comparing them to radiative transfer models. These models simulate the interaction of sunlight
with aerosols and the atmosphere, considering factors such as scattering, absorption, and the
influence of surface reflection. Through a series of algorithms and inversion techniques, the

satellite data is processed to estimate the AOD values at different locations on the Earth's surface.

This retrieval process considers various factors, including satellite geometry, atmospheric
properties, and surface characteristics. Satellite retrievals for AOD provide valuable information
about the spatial and temporal distribution of aerosols on a global scale. This data is used for
studying air quality, climate research, understanding aerosol sources and transport patterns, and
validating atmospheric models. It's important to note that different satellite instruments and
retrieval algorithms may have variations in the accuracy and spatial resolution of AOD
measurements. Therefore, it is essential to consider the specific satellite platform and retrieval
methodology when utilizing satellite-derived AOD data for scientific analysis and applications.

Most of the researchers utilized AOD as one of the components to suit the purpose of the study.

Kumar, 2014, used AOD values at 550 nm from NASA's Terra and Aqua satellites’ MODIS
sensors. The study was carried out for the period 2003-2012 in Delhi, Northern India. The results
indicated a notable increase in AOD values exceeding 25% in Delhi, India over the study period.
Yearly mean AOD values derived from Terra/Aqua data showed a gradual increase at rates of
approximately 0.005/0.009 per year. Winter mean AOD values exhibited a slightly higher
increasing trend at rates of about 0.012/0.007 per year. Sharma and Kulshrestha, 2014, investigated
the relationships between MODIS-derived AOD and SPM, NO,, and SO levels. In this study,

SPM concentrations were analysed across different regions of India. Central and northern districts
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generally exhibited higher SPM concentrations than the south. Nine out of the top ten districts with
high SPM pollution were in Uttar Pradesh state. Zeeshan and Kim Oanh, 2014, carried out
correlation studies between satellite AOD and ground monitoring PM considering synoptic
patterns and meteorological factors. The correlation (R?) between MODIS and Sun photometer
AODs was above 0.8. The radiative and climatic impacts of the observed AOD variations for
Bangalore were attempted in a study (Sreekanth, 2013). AOD values at 550 nm, derived from
NASA's Terra and Aqua satellites' MODIS sensor were used for the study. Monthly mean AOD
values show an increasing trend from January to May, with a secondary peak in July, and a
minimum in December. The highest AOD values were reported in the monsoon season, lowest
AOD values were reported in winter. Yearly AOD values increased mainly due to higher summer

AOD. The results are compared with previous studies and other Indian locations.

MODIS data from the Terra satellite was used to analyse the spatial and temporal variations of
aerosol particles in the North Eastern region of India (Kumar, 2013). The study revealed an
increase of over 15% in aerosol optical depths across the North Eastern part of India during the
last decade. The mean AOD values during summer were observed to be 0.60+0.07, while during
the post-monsoon season, the mean AOD values were 0.07£0.02. The highest annual mean
increase in AOD (>79%) was found in Guwahati. Furthermore, the study investigated the
relationship between AOD and five cloud parameters, including water vapor, cloud fraction, cloud
top temperature, cloud top pressure, and cloud optical depth, in order to enhance the understanding

of aerosol-cloud interactions in the North Eastern part of India.

Spatial and temporal variations of aerosol particles in Southern India were explored using
MODIS data from the Terra satellite (Balakrishnaiah et al., 2012). High AOD values were
observed during the summer season in most regions, and the monsoon season in Pune,
Visakhapatnam, and Hyderabad. The relationship between AOD and cloud parameters (water
vapour, cloud fraction, cloud top temperature, and cloud top pressure) was analysed. Positive
correlations were found between AOD and cloud fraction in some cities, while AOD showed
negative correlations with cloud top pressure and cloud top temperature in Southern Indian
regions. The correlation between AOD and cloud fraction was strongest for some cities while some
of them indicated a weak correlation. Additionally, a strong positive correlation was observed
between AOD and water vapour for all cities studied. However, there was a negative correlation
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between AOD and cloud-top pressure as well as cloud-top temperature in the Southern Indian

regions.

The impact of biomass burning and wildfires on atmospheric aerosol concentrations was
analysed using satellite data in Greece (Kaskaoutis et al., 2011). The study examined various
aerosol parameters, including Aerosol Optical Depth (AOD), effective radius, Angstrom exponent,
mass concentration, cloud-condensation nuclei (CCN), OMI Aerosol Index (Al), single scattering
albedo, absorption, and extinction optical depths. Smoke plumes from the fires were observed
traveling southwards over thousands of km, affecting the central Mediterranean and North African

coastal regions.

Agricultural residue burning in the Indo-Ganges region was found to significantly
contribute to greenhouse gas emissions and aerosols (Vadrevu et al., 2011). This study utilized
MODIS data to examine fire intensity, seasonality, variability, fire radiative energy (FRE), and
aerosol optical depth (AOD) during the residue burning season. Fire counts exhibited two peaks
in April-May and October-November, corresponding to wheat and rice residue burning. FRE
variations aligned with the amount of burnt residues. The average AOD from 2003 to 2008 was
0.60. Increased AOD during winter correlated with the rice residue burning season. However, the
AOD-fire relationship was weak during the summer. These findings underscore the importance of
a comprehensive assessment of greenhouse gases and aerosols to address air quality concerns in

the region.

Kharol et al., (2011), examined the use of remote sensing to analyse aerosols and their role
in global warming and climate change in Hyderabad, India. Specifically, it compares aerosol
optical depths (AOD550) obtained from Level 2 (10 x 10 km) and Level 3 (1° x 1°) Terra/Aqua
MODIS (C005) data with ground-based measurements using the MICROTOPS-11 sun photometer.
Correlation coefficients (R2) between Level 3 MODIS and ground-based AOD550 range from 0.30
to 0.46 across all seasons. Lower correlations were observed when utilizing Level 2 MODIS data
(R?=0.16-0.30). Level 3 MODIS AOD550 underestimates ground-based AOD550, whereas Level
2 AOD550 values surpass those of Level 3. Assessing Terra/Aqua MODIS AOD550 at a regional
scale, particularly over urban/industrial areas with significant diurnal aerosol variation. Results
indicated a relatively strong correlation (R? ~ 0.6-0.7) for the Level 3 dataset, but Level 2 data

exhibit substantial scatter and weak correlations. Mean seasonal AOD550 values are similar, with
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Terra AOD550 being higher than Aqua. Both satellite and ground-based measurements
demonstrated increasing trends in AOD over Hyderabad, and the same was attributed to urban

expansion, population growth, motor vehicle emissions, and local pollution.

A multispectral empirical model was developed using Landsat 8 Operational Land Imager
satellite data to estimate the concentration of PMyo in Delhi, India (Saraswat et al., 2017). Ground
monitoring stations in New Delhi provided PMzio concentration data that corresponded to the
acquisition dates of the Landsat 8 satellite data. The visible bands of Landsat 8 imagery were used
to calculate atmospheric reflectance, which was then correlated with PM1o measurements from the
ground stations. The proposed algorithm's feasibility was assessed based on the correlation
coefficient and root mean square error value. The results indicated that the suggested multispectral
PM1o model can predict particulate matter concentrations with an acceptable level of accuracy.
Multi-satellite observations and ground-based measurements are used to analyse a dust storm event
in the Persian Gulf and Arabian Sea region on February 19-24, 2008 (Badarinath et al., 2010). The
study utilized Indian geostationary satellite KALPANA-1 VHRR data and ground observations to
analyse the temporal variation of the dust event, with the strongest intensity observed on 22
February. The OMI Aerosol Index (Al) was also examined to assess dust presence and plume
location independently. The study observes a significant increase in Terra/Aqua MODIS AOD550
(> 1.0) and AURA-OMI-AI during the dust event. Additionally, AODs derived from sun
photometers at six AERONET sites in South Asia confirm the presence of dust and its west-to-

east transport.

Sreekanth et al., (2017), addressed the need for high-resolution data on PMio mass
concentrations for health and epidemiological studies in India. The results established empirical
relations between AOD and PMyo mass concentrations in five Indian megacities. The goal is to
predict surface PM2s concentrations using high-resolution columnar AOD datasets. The study
utilizes multi-city public domain PM. s data and MODIS AOD data spanning almost four years.
Positive correlations between PM.s and AOD were found, with spatially varying regression
coefficients observed through station-wise linear regression analysis. Multiple regression analysis
indicated the impact of day-to-day variability in local meteorological conditions on the AOD-
PM2 s relationship. A cross-validation approach using three years of data as a training dataset and
one year as a validation dataset yielded an R? value of approximately 0.63. The performance of
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MODIS Collection 6 AOD retrieval algorithms was evaluated for the Indo-Gangetic Plain (IGP)
of South Asia (Mhawish et al., 2017). The study examined the Dark Target (DT) AOD at 3 km
and 10 km resolutions, Deep Blue (DB) AOD at 10 km, and the merged DT-DB AOD at 10 km.
The evaluation compared collected Aqua MODIS C6 AOD data with AOD measurements from
six AERONET stations over the IGP from 2006 to 2015. The study investigated the impact of
aerosol heterogeneity, including aerosol loading and type, on the uncertainty of satellite based
AOD retrieval. Findings indicated that the DT algorithm at both resolutions over estimated AOD
by 14-25%, with only 51.37-61.29% of retrievals falling within the expected error range. The DT
3 km algorithm under estimated surface reflectance compared to DT 10 km, which performs better
in terms of collocation numbers and retrieval accuracy, especially in urban areas. DT 3 km

performs the poorest.

Yan et al., (2021), made an attempt to study the importance of fine-mode AOD (fAOD) as an
indicator of column-integrated anthropogenic particulate pollutants. The study developed a
retrieval algorithm based on the latest global-scale MODIS aerosol product (Collection 6.1) to
generate a 10-year global fAOD product. The product was validated by comparing it with fAOD
derived from Aerosol Robotic Network (AERONET) measurements. The resulting root-mean-
square error (RMSE) of 0.22 indicates good agreement between satellite-derived and AERONET.
Ground-level RSPM was estimated using satellite remote sensing AOD data and ground-based
meteorological measurements for Jaipur, a semi-arid region in North-western India (Soni et al.,
2018). Multi-regression statistical models were developed using satellite MODIS Level 2.0 AOD
to estimate RSPM values in the study area. The models considered factors such as the Height of
the Planetary Boundary Layer (HPBL) and meteorological parameters to optimize the
representation of MODIS AOD. The performance of the regression models was evaluated using
statistical measures including Normalized Mean Square Error (NMSE), Correlation (R), and
Fractional Bias (FB). The nonlinear multi-regression model performs the best for the study period
and region, with a correlation of 0.80, and NMSE of 0.01. The coefficients obtained from MODEL
V were also applied to Jodhpur and found to be effective. Mangla et al., 2020, compared AOD
measurements from multiple satellites (MISR, MODIS, and OMI) with ground-based observations
over the IGP region (2010-2017). The results showed a higher correlation with MODIS (R? = 0.7
at Gandhi College), followed by MISR and OMI AOD. MISR exhibited the highest percentage
(58%) of data points within the error envelope. Both MISR and OMI consistently displayed a
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negative bias trend for higher AOD, while MODIS showed a negative bias only over the Jaipur
region. Seasonally, the IGP region exhibits higher AOD in summer due to dust storms. Comparing
MODIS and MISR, MODIS generally exhibits higher seasonal AOD. The spatial correlation
between MODIS and MISR was high during summer and winter seasons. However, the OMI
sensor's performance in the IGP region does not match existing patterns. These findings provide

valuable insights for selecting reliable satellite AOD products in future studies.

The impact of environmental attributes on the uncertainty in satellite-based AOD retrieval
compared to AERONET measurements was assessed at 21 sites in North Africa, California, and
Germany from 2007 to 2017 (Falah et al., 2021). The effects of spatial and temporal averaging
techniques were examined. MAIAC AOD was then analysed based on different environmental
attributes, including aerosol loading, dominant particle size, vegetation cover, and prevailing
particle type. The expected retrieval error varied across these attributes, with more accurate AOD
retrievals observed in highly vegetated areas. Retrieval accuracy was found to be sensitive to
aerosol loading and particle size, with larger biases between MAIAC and AERONET AOD during
high aerosol loading of coarse particles. (Kaskaoutis et al., 2009; Moorthy et al., 2005; Quinn,
2002; Tripathi, 2005 also reported similar findings from their research on AOD and satellite

observations.

2.8 Source-Receptor modeling

Source-receptor modelling is a technique used to understand the relationship between the emission
sources of pollutants and the locations where these pollutants are observed or measured. It involves
analysing the transport and dispersion of pollutants from their sources to the receptor’s location,
allowing for the identification and quantification of the contributions of different emission sources
to the observed pollution levels. Source apportionment techniques are used to attribute the
contributions of different emission sources to the observed pollution levels. This can be done
through statistical methods, receptor modelling, or other data analysis techniques. Source-receptor
modelling is valuable for understanding the spatial and temporal variations in pollutant
concentrations and identifying the major emission sources responsible for pollution in specific
regions. This information can be used for developing effective air quality management strategies,
implementing pollution control measures, and assessing the impacts of different emission sources

on air quality and public health.
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Source Apportionment (SA) studies over different geographical divisions of IGP, Delhi,
western, eastern, and central India indicated that more than 50% of the studies are focused on the
Delhi National Capital Region (NCR) and IGP (Yadav et al., 2022). Based on the database is
available on chemical characterization of ambient aerosols, only 49 offline and 16 online SA
studies. The most studied size fractions are PMyo (34%) and PM2 5 (28%) followed by 11% studies
on PMyand only 5% on size-segregated SA of aerosols in India. The contributions of PMas
emission sources were quantified in Busan, South Korea (Jeong et al., 2017). Three receptor
models (PCA/APCS, PMF, and CMB) were used to analyse the data. The results showed that the
secondary formation of PM2s was the dominant contributor (45-60%) to PM.s levels in Busan.
Ship emissions were found to be a non-negligible contributor (up to 10%) according to PMF and
PCA/APCS, but negligible according to CMB. The different models produced varying estimates
of source contributions due to their limitations. Analysis of potential source contribution function
and concentration-weighted trajectory revealed that long-range transport from sources in eastern
China and the Yellow Sea significantly influenced PM2s levels in Busan Dutta and Chatterjee,
2022, assessed aerosol pollution in India, focusing on long-term trends, source apportionment, and
future projections for each state. Results indicated that most states in the Indo-Gangetic Plain are
highly vulnerable, while central, western, and southern states are considered vulnerable. The study
identified coal-fired thermal power plants, vehicular emissions, solid fuel/waste, and biomass

burning as major aerosol sources.

2.9 Source identification based on backward trajectory analysis

Backward trajectory analysis utilizes atmospheric science to trace the origin and transport history
of air masses or pollutants by calculating the trajectories of air parcels or particles in reverse from
their current location back to their source region. This analysis aids in understanding the pathways,
sources, and potential influences on the air masses or pollutants being studied. By analysing
meteorological data and identifying source regions, researchers gain insights into long-range
pollutant transport, the contribution of different regions to local pollution, and the influence of
meteorological conditions and transport mechanisms. Backward trajectory analysis plays a crucial
role in air quality studies, atmospheric pollution research, climate investigations, and
understanding atmospheric transport and dispersion processes. However, studies on source

identification based on trajectory are limited in India (Banerjee et al., 2015b)
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Chandra et al., 2017 investigated trace metals associated with PMio aerosols and their
variations during different times of the day and different seasons in 2012. Principal Component
Analysis (PCA) identified five components that explained 86.8% of the cumulative variance. PC1
represented 30% of the variance and was associated with metals of anthropogenic origin, while
PC2 explained 28% of the variance and consisted of metals of crustal origin. These trace metals
exhibited distinct seasonal and diurnal patterns. Cu, Pb, and Cd concentrations were higher during
the night in all seasons, while Fe had higher concentrations during the daytime except in the
monsoon season. During the post-monsoon season, Cu, Cd, Zn, and Pb had the highest mean
values, likely due to winds carrying pollutants from waste/biomass burning and industrial activities
in Punjab and Haryana regions. Concentration-weighted trajectory analysis indicated that metals
of crustal origin were transported over long distances, while metals from anthropogenic and
industrial sources originated from regional/local areas. Positive matrix factorization (PMF) and
potential source contribution function (PSCF) analysis were used for identifying the sources of
aerosols in the Indian Ocean Experiment domain (Bhanuprasad et al., 2008). Surface aerosol
measurements and emissions inventory information was utilized to identify co-located sources
from PSCF. PMF analysis identified six factors, including biomass combustion, industrial
emissions, and two dust factors. These factors effectively predicted measured submicron PM
concentrations. Probable source regions beyond India, such as Africa, West Asia, the Arabian
Peninsula, and Southeast Asia were identified. These sources affected particulate matter
concentrations in the INDOEX domain covered by the Ron Brown cruise.

Source identification and human health risks associated with elements in fine PM2s over
Agra, India were attempted by Sah, 2023. The average annual PM2 s concentration exceeded air
quality guidelines, measuring 144.32 + 57.18 pg/m® Winter exhibited the highest PMys
concentration, followed by post-monsoon, summer, and monsoon seasons. Si had the highest
concentration among the analysed elements, while V had the lowest. The concentrations of Cr, Ni,
As, and Cd exceeded WHO limits, while V, Mn, and Pb concentrations were below the limits.
Significant seasonal variations in element concentrations were observed. The HI for studied metals
was 7.02 for both age groups. Carcinogenic risks due to Pb for both children and adults and due to
Cd for children were lower than 1 x 1078, Carcinogenic risks for other studied metals exceeded 1
x 1078, The total carcinogenic risks for adults and children surpassed the acceptable limit of 1 x
107, Hourly data was analysed to study NO2 and O3 levels at an urban background site in Seoul,
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Korea (Vellingiri et al., 2016). The trajectory analysis was used to examine the contributions of
variables in special cases with high NO2 and Oz levels (>60 ppb). A potential source contribution
function with a grid size resolution of 0.25° x 0.25° was utilized to identify potential external
sources of NO and Os in the study area. The results indicated that both the northern China region
and local emission sources were major contributors to the increase in NO2 concentration at the site.
For Oz, the influential source pathways included the oceanic and mountainous regions of China

and Japan.

Air mass back trajectories in Toronto were analysed using cluster analysis and a neural
network (Owega et al., 2006). The two techniques utilized different similarity criteria but yielded
similar results regarding PM2.s emission sources and pollution levels associated with various air
transport patterns. Both methods highlighted the cleaner nature of northerly and north-westerly
patterns compared to southerly and south-westerly ones, as well as the impact of stagnant air
masses. The conventional PSCF method was compared with the proposed 3D-PSCF-CONC
method for the assessment of air pollution in the Metropolitan Area of Sdo Paulo in Brazil (Dos
Santos and Hoinaski, 2021). Using backward trajectories from the HYSPLIT version 4 model, a
total of 1825 trajectories with the three models were analysed. The analysis suggested that
vehicular sources near the receptor site contribute significantly to air pollution, while long-range
transport of industrial emissions and biomass burning associated with sugarcane production also
play a role. Overall, the 3D-PSCF-CONC method provides a valuable tool for understanding the
air pollution process and identifying pollution sources accurately. Previous studies also reported
results of back trajectory analysis and effective origin source regions and long-range transport of
pollutants (Conte et al., 2020; Hong et al., 2019).

2.10 Summary of Literature

The summary presents a comprehensive overview of the widespread issue of PMazs
pollution and its bound Heavy Metals (HMs) associated with health impact. The global efforts to
combat this problem, with various countries and international organizations setting air quality
standards and guidelines. The World Health Organization (WHO) guidelines serve as a benchmark
for evaluating and managing air quality, but despite these efforts, almost all global populations
still breathe polluted air exceeding these limits, particularly affecting low and middle-income

countries. The literature summary delves into specific case studies from different regions,
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showcasing the severity of PM2s pollution and its sources. India, in particular, faces significant
challenges due to factors like coal mining, industrial emissions, and biomass usage for cooking,
leading to severe air pollution levels. Furthermore, the study emphasizes the importance of
addressing long-range sources of PMa s pollution, recognizing the significant impact on public
health, especially for vulnerable groups like adults and children. It highlights the critical need for
comprehensive strategies to mitigate air pollution, integrating air quality efforts with broader social
and economic development policies. To combat air pollution, various countries, including the
United States and European Union, have established regulatory standards to control PMas
emissions, and India has launched initiatives like the National Clean Air Programme (NCAP) to
reduce pollution levels. However, despite these efforts, the persistent threat of PM_.s pollution on
cultural heritage sites in East Asia remains a significant concern, emphasizing the need for special
preservation measures. Recent developments in remote sensing and global as well as regional
chemical-transport models provide valuable data to estimate ground-level pollutant
concentrations, facilitating a better understanding and evaluation of PMs emissions and their
impacts on public health. In recent years, there’s been a documented rise in the presence of heavy
metals, which are hazardous pollutants posing potential threats to both human health and natural
ecosystems., as they tend to bio-accumulate in the human body. The heavy metals emitted from
highways come from various sources, such as atmospheric deposition, traffic emissions,
carriageway breakup, and surrounding land use. Urban pollution from transportation has become

a crucial concern due to the rapid increase in road traffic in many countries, including India.

Studies have identified both primary elements from the Earth's crust (Al, Fe, and Ca) and
anthropogenic sources (Pb, Ni, and Cd) as major contributors to coarse and fine particles in urban
areas. The manmade sources are dominating sources in the urban areas. Particulate matter can also
harbor bacteria and potential respiratory pathogens, posing risks to lung health and the
environment. Researchers have attempted to assess the potential risk of heavy metal exposure to
children and adults through various pathways. Overall, children tend to have higher intake levels
than adults, however, the exposure levels were found to be within acceptable limits according to
the US EPA guidelines. The atmospheric aerosol distributions are influenced by various factors
such as precipitation, atmospheric mixing, and ventilation due to circulation changes. Emissions
from natural aerosol sources are influenced by climate factors like wind speed, temperature, and

vegetation. Several particle dispersion models are available and widely used to study aerosol
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dynamics and distribution in the atmosphere. Mechanical dispersion is a process where solid
particles are mechanically generated and dispersed into the air. This mechanism is often associated
with activities like construction, mining, and agricultural practices, which can release dust particles
into the air as aerosols. In some regions, haze episodes are caused by uncontrolled biomass and
peat burning. However, the sources of ambient aerosol and their dispersions are complex and
interconnected, with multiple processes contributing to the overall aerosol composition and
concentrations in the atmosphere. Understanding the sources and dynamics of aerosols in the
atmosphere is essential to address air pollution and its impacts on human health and the
environment. The interplay of various factors, both natural and human-induced, influences the
presence and distribution of aerosols, including heavy metals, in the atmosphere. Effective

strategies and regulations are required to mitigate air pollution and protect air quality.

Overall, these studies highlight the importance of understanding the sources of aerosols in
different regions and the methods used to assess their contributions. Accurate knowledge of
aerosol sources is essential for developing effective strategies to mitigate air pollution and its
impacts on human health and the environment. Several studies explore the relationship between
aerosol concentration and meteorological factors in various regions. Meteorological factors
significantly influence aerosol concentration wind patterns, temperature, humidity, and
atmospheric stability play vital roles in the transport, dispersion, and accumulation of aerosol
particles in the atmosphere. These factors affect the spatial and temporal variations in ambient
aerosol concentrations, impacting air quality, climate, and human health. In general temperature
showed a negative trend with concentration during winter months, while wind speed exhibited a
negative correlation. Relative humidity showed a weak positive correlation with PM2sand PMyo
during winter months. A combination model incorporating meteorological parameters enhanced
accuracy in estimating ground PMz s levels. AOD showed significant interannual variation, with a
positive correlation with temperature. AOD consistently showed higher values during forenoon
hours compared to afternoon hours, influenced by prevailing meteorological conditions and
pollution sources. The lower surface wind speeds and higher relative humidity tend to worsen air

pollution and reduce visibility in heavily populated areas.

Overall, studies highlight the importance of considering meteorological factors in

understanding and predicting aerosol concentrations. The compilation of various research studies
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and their findings related to Satellites, AOD estimation, and its applications. These satellites
collect remote sensing data, including information on aerosol concentrations. Retrieving AOD
values involves analyzing radiance measurements from satellite sensors for AOD are used for
studying air quality, climate research, understanding aerosol sources and transport patterns, and
validating atmospheric models. Studies assessed the impact of environmental attributes on the
accuracy of satellite-based AOD retrieval, indicating the importance of considering factors like
aerosol loading, particle size, and vegetation cover. Studies highlight the significance of satellite-
derived AOD data in various applications and the need to consider different factors affecting AOD
retrieval for accurate analysis and interpretation. Source-receptor modelling is a valuable
technique used to understand the relationship between pollutant emission sources and their
locations of observation or measurement. It involves analysing how pollutants are transported and
dispersed from their sources to receptor locations, allowing for the identification and quantification
of different emission sources' contributions to observed pollution levels. This information is
crucial for developing effective air quality management strategies, implementing pollution control
measures, and assessing the impacts of various emission sources on air quality and public health.
Studies on source-receptor modelling have been conducted in different geographical regions, with
a significant focus on the NCR and IGP.

A study in India assessed aerosol pollution in each state, focusing on long-term trends,
source apportionment, and future projections. The IGP states were found to be highly vulnerable
to aerosol pollution, while central, western, and southern states were considered vulnerable. Major
aerosol sources identified in India include coal-fired thermal power plants, vehicular emissions,
solid fuel/waste, and biomass burning. Overall, source-receptor modelling plays a crucial role in
understanding pollutant sources, and their impacts, and devising effective pollution control
strategies to safeguard public health and improve air quality. Backward trajectory analysis is a
powerful technique in atmospheric science used to trace the origin and transport history of air
masses or pollutants by calculating the trajectories of air parcels or particles in reverse from their
current location back to their source region. This analysis provides valuable insights into long-
range pollutant transport, the contribution of different regions to local pollution, and the influence
of meteorological conditions and transport mechanisms. Overall, backward trajectory analysis is a

valuable tool in various atmospheric studies, providing essential information for air quality
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management, pollution control strategies, and understanding atmospheric transport and dispersion

processes.

Overall, the summary emphasizes the importance of comprehensive strategies for PM2s
pollution, including addressing the outdoor sources and integrating with satellite AOD and
meteorological parameters to predict the ground level of PM2s. The long-range transport of the
aerosol pollutants from the source regions an indirect effect on the social and economic
development policies and implementing effective regulations and mitigation measures to protect

human health and the environment.

49



Chapter 3 Materials and Methods

3.1 Study Area

One of the study areas is Warangal, in the southern part of India, hosting a population of 983000
as per the 2021 census. It is the second-largest municipality in Telangana state, next to the state
capital, Hyderabad, which is the second study location. Warangal located at 18.0°N and 79.58°E,
records an average temperature of 34.5°C during summer and an average temperature of 22.4°C
during winter. Tropical climate prevails in the area with an annual average precipitation of 945
mm. Air samples were collected at the institute campus by adopting prescribed procedures. The
index map of the study area with the sampling location is presented in Figure 3.1. The sampling

location was situated on the roof (~15 m above ground level) of the Chemistry Department

building.
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Figure 3.1 Sampling Location in the study area at Warangal.

The second study area was the Hyderabad, a city with a rich history spanning 400 years, proudly
serves as the state capital of Telangana. It is nestled on the Deccan Plateau, approximately 500
meters above sea level, situated at a latitude of 17° 23’ 13.704” N and a longitude of 78° 29’
30.0624" E (Figure 3.2). The city extends over an area of around 650 km? along the banks of the
Musi River. Hyderabad shares its glory with its twin city, Secunderabad, and together, they form
the fifth-largest urban agglomeration in India. According to the 2011 census, the metropolitan

population was around 0.97 crores. During the monsoon season, from June to October, the
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southwest monsoon graces the city with heavy rainfall, contributing significantly to its annual

precipitation.

The climate in Hyderabad is generally pleasant, with an average annual temperature of 26.6 °C.
However, temperatures can fluctuate from 21 to 33 °C throughout the year. The hottest month,
with temperatures reaching 36-39 °C, is May, while December and January experience cooler
weather, ranging from 14.5 to 28 °C. With a thriving industrial sector and numerous research
centers, Hyderabad has emerged as a prominent high-tech hub in southeast India. This remarkable
growth has attracted a substantial influx of people, resulting in a high population density of
approximately 17,000 individuals per km? The rapid urbanization and increased economic
activities have led to significant migration to the twin cities, resulting in a surge in personal, public,
and para transit vehicles, as well as industrial output. This growth has also placed a considerable
burden on the cities' infrastructure. Hyderabad, together with the neighbouring ten Municipalities,
constitutes the Hyderabad Urban Development Area (HUDA). The region has been expanding at
an average annual rate of 9%, further solidifying its position as one of the fastest-growing cities in
India.
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Figure 3.2 Meteorological data locations and CPCB monitoring sites considered in this Study at
Hyderabad region
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3.2 Major Sources of Air Pollution

Warangal is a typical town with mixed land uses dominated by residential, commercial,
and transportation activities with no major industrial sources within a 3-4 km radius. The sampling
location is in the institute campus extending 240 acres with academic and residential buildings and
a population of about 7000 residing on the campus. Transportation and daily cleaning activities
can be considered as the major sources of air pollution in the college campus. Construction activity
is another source on the campus that contributes to particulate matter in the air. The sampling
location is close to Warangal - Hyderabad National Highway (about 300 m to the North) with high
traffic density is also a major dominating source of pollution. Direct vehicular emissions, road
dust, and dust resuspension in particular contribute to air pollution. Open burning nearby areas is
another source that contributes to particulates in the air. The campus is surrounded by residential
with mixed activities influencing air pollution. In summary, local and non-local sources influence
the pollution levels at the location. The non-local sources include industries, biomass burning, and

coal mining activities.

Hyderabad, a bustling metropolis in southern India, grapples with a myriad of
pollution sources that contribute to its environmental challenges. Vehicular emissions stand out as
a significant contributor, given the city's burgeoning population and rapid urbanization. The
increasing number of vehicles on the roads releases pollutants, including particulate matter and
greenhouse gases, impacting air quality. Industrial activities, prevalent in and around the city.
Bollaram located in the Medchal-Malkajgiri district of Telangana, India, is recognized for its
industrial importance. It houses diverse industrial estates and manufacturing units, playing a
pivotal role in the economic landscape. Over recent years, Bollaram has undergone substantial
development, becoming a magnet for businesses and making significant contributions to the

overall economic advancement of the neighboring region.

Central University Hyderabad Situated in Gachibowli, Hyderabad, Telangana, India, it is
also recognized as the University of Hyderabad and finds itself amidst a burgeoning IT and
business hub. Gachibowli, positioned in the western part of Hyderabad, has evolved into a
prominent district hosting technology companies, educational institutions, and research centers.
The environmental quality around the university campus plays a role in influencing pollution levels

in the campus region.
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Industrial Development Area (IDA) Pashamylaram, positioned on the outskirts of
Hyderabad, Telangana, is an industrial development area near Pashamylaram. Falling under the
jurisdiction of the Hyderabad Metropolitan Development Authority (HMDA), Pashamylaram is
renowned for its industrial estates, situated northwest of Hyderabad city. Within the IDA of
Pashamylaram, diverse industrial units, manufacturing facilities, and businesses thrive. The
purpose of its development is to foster industrial growth and contribute significantly to the
economic advancement of the region. The specific location within Pashamylaram can vary,

contingent upon the specific industrial zone.

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) resides in
Patancheru, on the outskirts of Hyderabad, Telangana, India. Patancheru, a dynamic industrial and
residential zone on Hyderabad's periphery, is strategically positioned. It accommodates a mix of
industrial estates, educational institutions, and residential complexes, contributing significantly to
Hyderabad's economic landscape. This area is home to manufacturing units, research centers, and
IT companies, exemplifying its industrial importance. ICRISAT's presence underscores its pivotal
role in global agricultural research. Despite its industrial vibrancy, Patancheru embraces natural

beauty, with lakes and green spaces enhancing its surroundings.

Sanathnagar located in the western part of Hyderabad, Telangana, India, Sanathnagar is a
vibrant locality renowned for its industrial and residential zones. The area boasts a blend of
commercial establishments, manufacturing units, and residential neighbourhoods. Sanathnagar has
experienced substantial urban development and enjoys excellent connectivity to other parts of the
city. Its significance lies in hosting industrial estates that contribute significantly to Hyderabad's
economic activities. However, the region faces environmental challenges, particularly related to

traffic density and ongoing construction activities.

The Nehru Zoological Park, commonly known as Zoo Park, is situated in the Bahadurpura
area of Hyderabad, part of the Old City with a rich historical and cultural heritage. Next to the zoo
lies Lumbini Park, featuring a delightful musical fountain, providing visitors with a pleasant
recreational space. The ancient Mir Alam Tank, a reservoir nearby, enhances the natural beauty of
the surroundings and serves as a habitat for diverse bird species. The vicinity of the zoo has
witnessed urban development, with the emergence of residential neighbourhood’s, commercial

establishments, and educational institutions, creating a diverse and vibrant locale.
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Table 3.1 Air quality monitoring stations over Hyderabad

S.No  Stations Latitude and Longitude
1 Bollaram Industrial Area, Hyderabad - TSPCB 17.54089, 78.358528

2 Central University, Hyderabad - TSPCB 17.460103, 78.334361

3 IDA Pashamylaram, Hyderabad - TSPCB 17.5316895, 78.218939
4 ICRISAT Patancheru, Hyderabad - TSPCB 17.512414, 78.2753706
5 Sanathnagar, Hyderabad - TSPCB 17.4559458, 78.4332152
6 Zoo Park, Hyderabad - TSPCB 17.349694, 78.451437

3.3 Respirable dust sampler

PM2 s particles were collected using a Respirable dust sampler as shown in Figure. 3.3. For proper
control of PM25, a flow win impactor and silica gel were used. The dust sampler flow rate was
16.67 £ 5% liters per minute (LPM) and an accuracy of £2% was maintained throughout the
sampling period. 12 hours of samples were collected separately during the day and night. A total
of 130 samples were collected for six months starting from September 2018 to February 2019.
Prescribed glass-fiber filter paper was used for the filtration of samples (Bhuyan et al., 2018;
Chaudhari et al., 2012b; Satsangi et al., 2014). The weight of dry filter paper before and after
sampling was recorded with the help of mass balance and subsequently, PM2 s concentrations were
calculated. A desiccator was used to control the influence of atmospheric moisture on filter papers.
The collected samples were stored in the refrigerator for subsequent metal analysis using the
Agilent Microwave Plasma Atomic Emission Spectrometers (MP-AES) model was Agilent 4210
MP-AES.
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Figure 3.3 Configuration of Respirable dust sampler

3.4 MP-AES heavy metals analysis

The Agilent 4210 MP-AES offers a superior alternative to flame Atomic Absorption
Spectroscopy (AAS) with high sensitivity and accuracy. Unlike AAS, it uses a microwave plasma
and operates on air, allowing for flexible installation in labs or remote locations. With detection
limits down to ppb levels, it provides excellent sensitivity while eliminating the need for sample
pretreatment. The 4210 MP-AES delivers cost-effective analysis without compromising accuracy

or sensitivity.

The heavy metal analysis on the filter paper was conducted using the following method:
The glass-fiber filter papers underwent acid digestion with 20 ml concentrated HNO3 solution for
2-h on the hot plate (Chakraborty & Gupta, 2010; Kamala et al., 2014). The solution was
maintained at 180°C until the acid got evaporated completely. The residual liquid was then filtered
through a 0.22 um Teflon filter and diluted to 100 mL with Milli-Q water (resistivity 18.2 mQ) for
subsequent elemental analysis. A blank filter was digested following the same procedure as the
sample filters. The blank filters were analysed separately and the values were subtracted from the
total weight after filtration to get the weight of the retentived. The reference standard solutions for
MP-AES were prepared for calibration to find the concentration of metals in the samples (Kamala
etal., 2014).

The analytical performance of MP-AES is similar to that of AAS, but MP-AES can

measure more elements more rapidly across a broader concentration range. The detection limit in
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MP-AES is a crucial factor determining the instrument's capacity to identify and measure trace
quantities of elements within a sample. Ensuring a low detection limit is indispensable for
applications demanding heightened sensitivity. Detection limits parameters influence the signal-
to-noise ratio the signal from the analyte emission lines needs to be clearly distinguished from the
background noise. A higher signal allows for the detection of lower concentrations. Spectral
Interferences from other elements or compounds in the sample can affect the accuracy of detection.
Methods such as collision or reaction cells may be employed to reduce spectral interferences and
improve the detection limits. Accurate calibration of the instrument using standards of known
concentrations is essential. A well-calibrated instrument provides a reliable basis for determining
the detection limit. The following table presented the detection limits for the element analysis
(pang 2014).

Table 3.2 MPAES instrument detection limits for elemental analysis.

Element/Heavy Metal Detection Limit (ug/L)
Aluminum (Al) 0.1
Arsenic (As) 0.01
Cadmium (Cd) 0.005
Chromium (Cr) 0.05
Copper (Cu) 0.01
Iron (Fe) 0.1
Lead (Pb) 0.01
Manganese (Mn) 0.2
Nickel (Ni) 0.01
Zinc (Zn) 0.01
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3.5 Enrichment Factor analysis

The enrichment factor (EF) is generally used to identify the pollutant originating from the earth's
crust and non-crustal sources. Equation 3.1 may be used for the determination of EF. In most
studies (Das et al., 2015; Zhang et al., 2009), Fe and Al are used as reference elements as these
elements exhibit stable chemical properties. Therefore, in this study, Fe was used as a reference
element. The standard crustal composition reported by Rudnick and Gao, (2003), was used in the

present study. However, there is no thumb rule for selecting reference elements.

X
((Ccref)sample)

(G erust)

EF =

Eq. 3.1

Where X is the concentration of the element being examined and “Cref” is the reference element
concentration, with respective sample and crust. The relation between EF and the level of

enrichment is given in Table 3.1.

Table 3.3 Interpretation of EF (Zhang et al., 2009)

EF Level of Enrichment
<2 Minimal enrichment
2-5 Moderate enrichment
5-20 Significant enrichment
20-40 very high enrichment
EF >40 | extremely high enrichment

3.6 Non-carcinogenic and carcinogenic health risk assessment

The health risk assessment for adults and children was analysed based on heavy metals
associated with PM2s. Exposure to ambient metals occurs through inhalation, ingestion, and skin.
In the present study, the exposure assessment methodology developed by the U.S. EPA (US EPA
2009a; US EPA 2009b) has been adopted. Ambient heavy metals are inhaled through the nose and
mouth; ingested through food and absorbed through skin pores. Risk Assessment methodologies
have been reported in a few studies (Han et al., 2016; Hu et al., 2012; Wei et al., 2015) and the
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health risk assessment framework includes the identification of pollutants and the exposure

assessment based on dose-response assessment.

3.6.1 Average Daily Dose

US EPA considers the Average Daily Dose (ADD) (mg/kg/day) for exposure dose assessment of
the risk posed by metals to humans. The potential exposure through three different pathways for
each metal separately is computed in the present study with the help of equations 3.2, 3.3, and 3.4)
(Ferreir & Miguel, 2005; Hu et al., 2012; Kong et al., 2012).

_ CXxIngR XEF XED X CF

ADDyp, = B AT Eq. 3.2
C X SAX AF X ABS X EF X ED X CF
ADD g,y = B AT Eq. 3.3
C x InhR X EF X ED Eq. 3.4
ADD,, = q

PEF X BW X AT
Where ADDing, is the average daily dose by ingestion (mg/kg/day).
ADDyer is the average daily dose by dermal contact (mg/kg/day).
ADDinn Average daily dose by inhalation (mg/kg/day).
C is the heavy metal concentration (mg/kg).
IngR is Ingestion rate (mg/day) 30_adults, 60_children (US EPA 2007);
EV is Events frequency that occurs every day at once.
EF is Exposure frequency, 180 days for a year.
ED is Exposure duration, 24 years for adults, 6 years for Children.
CF is a Conversion factor 107¢ kg/mg.
BW is Body weight - 70kg for adults, 15kg for children.
SA is Skin surface area - 5700 cm? for adults, 2800cm? for children.
AF is the Adherence factor of soil to the skin - 0.07 (mg/cm?/event) for adults, 0.2
(mg/cm?/event) for children.
ABS is Dermal absorption fraction - 0.001 (US EPA 2004b);
InhR is Inhalation rate 7.63m3/day for adults, 20m?/day for Children.
PEF is Particle emission factor - 1.36 X 10° m3/kg (US EPA 2009a);
AT is Averaging time for Non carcinogens (AT = ED X 365 days/year) and Carcinogens
(AT =70 years X 365 days/year) (Du et al., 2013).
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In the present study, standard parameter values as given by US EPA (US EPA 2004b; US EPA
2004c; US EPA 2007; US EPA 2009a; US EPA 2009b) were used.

3.6.2 Hazards Quotient and Hazards Index

The non-carcinogenic health risk assessment was calculated based on Hazard Quotient (HQ) and
Hazard Index (HI). HQ and HI were determined using Eq. 3.5 and 3.6 respectively. HQ value of
less than 1 indicates there is no significant health impact, while HQ value of more than 1 indicates
an adverse effect on human health (Zheng et al., 2010). HQ value was found based on the reference
dose (RFD) of each element. HI is the sum of all the Hazard Quotients (Ferreira & Miguel, 2005;
Zheng et al., 2010). HI value of less than 1 indicates that there is no significant non-carcinogenic
impact, while HI value greater than 1, indicates chances of significant non-carcinogenic impact
(Zheng et al., 2010).

_ADD
C=%mp Eq. 3.5
n
HI = Z HQ,;
e Eq.3.6

3.6.3 Excess Cancer Risk Assessment

Excess Cancer Risk (ECR) is a measure of the incremental cancer risk over the lifetime (Hu et al.,
2012). ECR is calculated using Eq. 3.7. The inhalation unit risks of the metals are provided by US
EPA IRIS (Integrated Risk Information System) (US EPA, 2009). A zero value indicates that there
is no cancer risk, while higher values indicate a higher chance of cancer risk. The US EPA
methodology provides only the inhalation unit risk. However, other pathways and associated risks
are not provided. When the ECR value falls within the range of 105-10** indicates carcinogenic

risk (Hu et al., 2012; Qi et al., 2019) was minimal.

ECR_CXETXEFX ED x IUR

Where C is pollutant levels in mg/m3; ET is the exposure time taken as 8 h/day; EF is Exposure
frequency 180 days for a year; ED is Exposure duration: 24 years for adults, 6 years for children;
IUR is inhalation unit risk in mg/m3, AT is Average time for carcinogens 70 year 365 days/year
24 h/day).
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3.7 MODIS AOD data product

AOD is derived from atmospheric radiance observations by the MODIS instruments aboard the
Terra and Aqua. Collection 6.1. The MODIS Aqua and Terra retrievals are obtained from NASA’s
Level-3 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive
Center (https://ladsweb.nascom.nasa.gov). The MODIS AOD product available in two algorithms
which are Dark Target (DT) and Deep Blue (DB). DT is designed to retrieve AOD at various
wavelengths over relatively “dark™ targets in the visible, such as water bodies or vegetation. In
contrast, DB is designed to address the retrieval of AOD over more reflective surfaces, such as
sand. For this study, two resolution data was analysed terra/aqua products 3km and 10km aerosol
product. Here on words representation of all four MODIS products as the MODIS terra 3km
(MODO04_3K), MODIS terra km (MODO04_L2), MODIS aqua 3km (MYDO04_3K), MODIS terra
3km (MYDO04_L2). The 3 km product tends to be noiser than the 10 km product. Comparisons of
the global mean AOD from the two products shows that the 3 km AOD is 0.01 to 0.02 higher over
land (Levy et al., 2015). MODIS product files are stored in Hierarchical Data Format (HDF-EQS).
To extraction of the HDF data files python scripts are developed. Terra crosses the equator
southward about 10:30 local solar time (LST), whereas Aqua northward about 13:30 LST. Because
of the difference in direction, the mid-latitude time differences between Terra and Aqua are
approximately 1.5 h in the northern Hemisphere and 4.5 h in the southern Hemisphere (Kaufman
et al., 2005), while for Hyderabad this time interval is about 2.5 h. The above four data sets are
adapted in this study, and following the Interquartile Range (IQR) method, the method stands out
as a robust approach for pinpointing outliers in a dataset. It achieves this by examining the range
between the first and third quartiles. The higher AOD values are represent the haze days due to the
cloud interaction in the atmosphere, similar data causes the uncertainty in the predictions of PM2.5.
To this extent data was excluded from the analysis.

3.8 Meteorological data

The meteorological data was obtained from CPCB (https://app.cpcbcer.com/ccr/#/caagm-
dashboard-all/caagm-landing) six monitoring locations over Hyderabad. The six monitoring
locations are presented in the Table 3.1. The meteorological parameters considered Temperature
(AT), Relative Humidity, pressure (BP), Solar Radiation (SR), Wind speed (WS) and direction
(WD) and PM2.5 data collected over the period of May 2017 to May 2019 (two years) was used
in the study. For further analysis, the analysis encompasses all available parameters and data
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available days only, to reduce the uncertainty in the model. All the datasets removed outliers using
the IQR method. The all the meteorological parameters and AOD data ready for the further model
analysis to predict the PM2.5.

Ensuring the quality of data is crucial in air quality monitoring stations, particularly as
decisions hinge on results obtained through the CPCB's air quality monitoring program. Various
pollution control activities rely on these outcomes. To guarantee acceptable data quality, the CPCB
conducts exercises such as visiting monitoring stations and holding meetings. Regular calibration,

servicing, and repair of field devices are imperative to maintain data quality at a high standard.

3.9 Multiple linear Regression model

Multiple linear regression (MLR) as established for PM2.s and MODIS AOD Terra/Aqua products
along with meteorological parameters. MLR equation shown in Eq.3.1 was adopted. However, bo
represents the model intercept, and the by, ba... and bz, represent the model parameters to be
estimated. The a represents the error term that individual outcomes will vary about that mean. The
assumption was error terms are normally distributed and homoscedastic, that is, the variance of
the errors is the same across all levels of the independent variables.

PM, s = by + by (AOD) + b,(AT) + b3(RH) + by(WS) + bs(WD) + bg(SR) +

b,(BP) + a... Eq.3.8

The meteorological data were obtained from CPCB (https://app.cpcbccr.com/ccr/#/caagm-
dashboard-all/caagm-landing) for Air Quality Monitoring Stations (AQMSs) considered in the
study. The meteorological parameters Temperature (AT), Relative Humidity (RH), Pressure (BP),
Solar Radiation (SR), wind speed (WS) and direction (WD), and PM2.5 data collected for the
period between May 2017 and May 2019 (two years) were used in the study. 80% of the data was
used for model development and 20% of the data was used for model validation. The interquartile
range (IQR) method was used to exclude external outliers from the data. The best option model
was used to predict the PM2.5 and validate the observed data at six locations in Hyderabad. Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model

The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL)
proposed the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) (Draxler
and Hess, 1998). The HYSPLIT atmospheric dispersion model was used to simulate daily wind-

aided dispersion with a focus on long-range transportation and initial establishment (Chapple et
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al., 2012; Westbrook et al., 2011). HYSPLIT continues to be one of the most extensively used
atmospheric transport and dispersion models in the atmospheric sciences community to establish
source—receptor relationships (Draxler and Hess, 1998; Fleming et al., 2012). The major
contribution of fireworks and their species identification on back trajectory analysis using the
NOAA-HYSPLIT model was reported by Pathak et al., (2015). The study indicated the existence
of the transported aerosols. The applications based on the HYSPLIT model were used for
forecasting and to assess the influence of the radioactive material (Connan et al., 2013) and to
study the suspicious non-identified wildfire smoke (Rolph et al., 2009). AOD and solar irradiance
revealed higher spatial variation of AOD during the summer season leading to the dispersion of
particles in Delhi (Bhardwaj et al., 2017). Freitag et al., (2013), investigated the conditions for the
formation and expanding airborne gas and aerosol measurements based on the HYSPLIT model.

3.10 Model Performance Evaluation

Performance of the models is assessed using commonly used statistical performance
measures, including correlation coefficient (R) is a statistical measure that quantifies the degree to
which two variables are related or associated. It gauges both the strength and direction of a linear
relationship between two variables. The closer the correlation coefficient is to 1 or -1, the stronger
the correlation. The normalized mean bias (NMB) is a statistical metric used to assess the accuracy
of a model or measurement by quantifying the average tendency of the model or measurement to
overestimate or underestimate a variable of interest. A positive NMB indicates a systematic
overestimation by the model or measurement, while a negative NMB suggests a systematic
underestimation. A NMB close to zero suggests minimal bias. Normalized mean bias is useful for
comparing model outputs to observations and understanding the overall bias in a system. The root
mean squared error (RMSE) is a commonly used metric to assess the accuracy of a predictive
model or measurement by quantifying the average magnitude of the errors between predicted and
observed values. It provides a measure of how well the model's predictions align with the actual
observed values. RMSE calculates the square root of the average squared differences between
predicted and observed values. The result is in the same units as the variable being measured,
providing a clear understanding of the magnitude of errors. A lower RMSE indicates better model
performance, as it signifies smaller errors between predicted and observed values. The index of
agreement (d) is a statistical metric used to assess the agreement or similarity between observed

and modelled or predicted values in a dataset. The Index of Agreement ranges from 0 to 1, with a
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value of 1 indicating perfect agreement between observed and predicted values. Higher values
suggest better agreement, while lower values indicate poorer agreement. It provides a
comprehensive measure of the overall performance of a model or prediction compared to the

observed data.

_ _ S(cp-Cp)(co-Co) 3.9
N R
I ) 3.10
ZELED,
- 3.11
RMSE = /Z(CPTC")Z ........
d = X(Cp=Co® 3.12
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where Cp and Co represents the predicted and observed concentrations of PM2.5 respectively

whereas n represents number of samples.

3.11 Meteoinfo

Meteolnfo is a flexible framework designed primarily for the meteorological community,
providing support for GIS applications and scientific computations (Wang, 2014). Meteolnfo Map
is a GIS application that enables users to visually explore and analyse spatial and meteorological
data in multiple formats (Wang, 2019). Meteolnfo Lab is a powerful scientific computation and
visualization environment that leverages Jython scripting. It provides advanced features, including

multi-dimensional array calculations and comprehensive 2D/3D plotting capabilities.

3.11.1 Trajstat

TrajStat, a GIS-based software, utilizes statistical analysis of air mass back trajectories and long-
term air pollution measurements to identify pollution sources(Wang et al., 2009). It visualizes,
analyses, and clusters trajectories, and calculates the potential source contribution function (PSCF)
and concentrated weighted trajectory (CWT) using measured data.
The HYSPLIT model calculates trajectories that can be converted into ESRI "PolylineZ" shape
files, representing three-dimensional endpoint data with properties based on longitude, latitude,
and air pressure. Trajectories can be visualized in various spatial patterns, such as two-dimensional

figures using level or height coordinates, or three-dimensional plots combining longitude, latitude,
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and height. Long-term measurement data can be assigned to trajectories, and a query function helps
identify polluted trajectories with high measurement concentration, estimating pollutant pathways.
Cluster models like Euclidean distance or angle distance can be selected, with the maximum cluster
number determined by comparing mean-trajectory maps visually. Cluster statistics calculate the
mean pollutant concentration for each cluster, linking pollutant pathways to high-concentration
clusters. Computation of PSCF and CWT values, along with a weight function for cells with
limited endpoints, aids in identifying potential source regions with high PSCF or CWT values. The
screenshot of Meteolnfo for analysis and flowchart is given in Figure 3.4. The step-by-step process

for performing the Trajstat tool is given below.

Following are the steps to implement in the Trajstat tool:

Add the proposed station to the tool.

Calculate 7-day back trajectories during the PMz1o data measurement period.

Converting trajectory files to the .tgs files.

Then join all .tgs files into one combined file which will represent the all trajectory.
Convert the combined .tgs file to the shape file and then add the shape file to the project.
Add measurement data into the trajectories.

Create grid polygon shape layers of PSCF and CWT.

PSCF and CWT analysis.

Cluster calculation to the trajectories.

© © N o g & w NP
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Figure 3.4 Meteoinfo interface for Trajstat plug-in tool
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Figure 3.5 CWT analysis flow chart for back trajectory.

The source identification was done based on CWT, PSCF, and Cluster analysis. Meteolnfo tool

and GI1S-based software were used for meteorological data visualization and analysis (Wang, 2014).

The PSCF, CWT, and Cluster analysis were analyzed using the plugin TrajStat tool (Wang et al.,

2009), for conducting source analysis.

3.11.1.1 Concentration Weighted Trajectory Analysis

CWT analysis shows the long-range pollutants at the receptor site and the strength of the source

(Chengetal., 2013). CWT model can locate the regional sources that can affect the receptor region.
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In CWT analysis, each cell in the grid is assigned a weight by averaging the pollutant concentration
(Seibert et al., 1994). The trajectory endpoint time in the grid cells has been weighted by the
corresponding PM s trajectory. The concentration of each grid cell was calculated using Eq. 3.9
(Chen et al., 2018). In this study, the spatial resolution 0.5°x0.5° was considered to find the source

paths.
ZIL=1 C1 T
CWT;; = m Eq. 3.9
Where C, is the observed mean concentration of pollutant; 1 denotes the associated backward
trajectory; tij each segment endpoints in 0.5° x 0.5° grid cells (i, j); L presents the total number of
backward trajectories considered in this study.
3.11.1.2 Potential Source Contribution Function Analysis
The Potential source contribution function (PSCF) was used to indicate the probability of the
impact of sources on the receptor (Negral et al., 2020). PSCF values may be calculated using the
following equation 3.10.
PSCF;; = %W--
TN Y Eg. 3.10
Where, Mj;j is the total number of back trajectories with grid cell (i, j), Njj is the total number of
back trajectories with respective each grid cell (i, j); Wi denotes the weighting function of back
trajectory segment endpoints in a grid cell (i, j) (Fu et al., 2012). A weight function (Wj;) was
established for each grid to overcome the uncertainty in Njj (Zeng and Hopke, 1989).
3.11.1.3 Cluster Analysis
The clustering technique shows the average trajectory paths for each cluster. There are two
clustering options with Euclidean distance or angle distance. The Euclidean distance cluster
technique is extensively used for studying air mass trajectories representing pollutant pathways.
When the Euclidean distances were used, shorter trajectories were more likely to be assigned to
the same cluster, and longer trajectories were more likely to be assigned to different clusters. In
the present study, the Euclidean distance was adopted for clustering the back trajectories as given
in Eq. 3.11.
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dio = | ) (6D = %) + (40 = V) Eq, 3.1
=1

Where X1(Y1) and X2('Y2) reference backward trajectories 1 and 2, respectively.

The angle distance between two backward trajectories was defined by Eq. 3.12

(A; ++B; — ()

\/H Eqg. 3.12

1 n
dy, ==Y COS™1(0.5
12 n;
Where
A = (X, (D) — X)* + (Y1() — Yp)?
B; = (X2(i) — X¢)? + (Y2 (i) — ¥p)?

Ci = (X, (D) — X1(i))2 + (Y2 — Y1(i))2

The variables X0 and YO define the position of the site. d12 varies between 0 and n. The two
extreme values occur when two trajectories are in the same and opposite directions, respectively.

d12 is the mean angle between the two backward trajectories, as seen from the studied site.

3.12 Quiality Assurance and Quality Control

Quality Assurance (QA) is a systematic process or set of activities designed to ensure that
processes meet specified standards and fulfil the target requirements. The primary goal of QA is
to prevent errors and to consistently deliver high-quality results. QA encompasses a range of
activities that focus on establishing and maintaining processes to ensure the reliability and quality
of the end results. Quality Control (QC) is a systematic process or set of activities designed to
regulate the quality of products. The primary goal of QC is to identify deviations from established
standards, ensuring that the final output meets specified requirements. Unlike QA, which focuses
on preventing defects, QC involves inspection and testing activities to detect and address issues
during or after the production or implementation phase.

QA/QC are essential for ensuring the accuracy, precision, and reliability of data generated by the
MP-AES instrument. Here are considerations for QA/QC in the context of MP-AES, the main
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consideration was calibration. The regularly calibrate the MP-AES instrument using certified
reference standard samples to establish accurate calibration curves. Ensure that calibration
standards cover the concentration range of interest. The internal standards to correct for variations
in sample introduction, plasma stability, and detector response. This helps improve the precision
and accuracy of quantitative measurements. Blank samples were introduced in the analytical
sequence to identify and correct for any contamination during sample preparation or analysis.
Monitor background noise levels. Quality control samples incorporate of known concentrations
into each analytical run. Regularly analyse QC samples to assess the accuracy and precision of the
MP-AES instrument. Reproducibility and Precision assess the reproducibility and precision of the
MP-AES instrument by running replicate analyses of the same sample. Low variability among
replicates indicates high precision. Instrument regularly check and maintain the MP-AES
instrument. Verify the stability of the plasma source, assess detector efficiency, and ensure the
integrity of optical components. Implement thorough data validation procedures to identify and
address anomalies in the analytical data. Check for outliers, confirm adherence to calibration
curves, and ensure results fall within acceptable limits. Ensure that analysts are well-trained in the
operation, maintenance, and troubleshooting of the MP-AES instrument. Regular training updates
contribute to the reliability of analytical results. By adhering to these QA/QC practices, in the
laboratories enhance the reliability and accuracy of data generated by the MP-AES instrument.
These are the crucial for meeting regulatory standards, ensuring data integrity, and providing
trustworthy results for various applications.

QA/QC are essential in handling and analysing data, including MODIS Aerosol Optical Depth
(AOD) data and data from the Central Pollution Control Board (CPCB). Here are considerations
for QA/QC in the context of these datasets, Confirm the data source of the MODIS AOD and
meteorology data, ensuring it comes from reputable and authoritative sources. Check for quality
flags or indicators in CPCB data that highlight potential issues, such as missing values or data
gaps. Understand the calibration procedures for instruments used by CPCB. Verify that
instruments are regularly calibrated, and any issues with calibration are addressed. Document and
review the steps involved in processing MODIS AOD data, ensuring transparency and
reproducibility. Check for temporal and spatial consistency in the MODIS AOD data. Verify that
the data aligns with the expected patterns.
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Chapter 4 Estimation of PM2s and source contribution by back

trajectory analysis over Warangal region

4.1 Assessment of Particulate Matter

The monthly mean mass concentrations of PMas are presented in Figure 4.1 (a) at Warangal.

During the study period, the monthly mean PM2.s concentrations were found to be in the range of

8.3-29.6 pg/m3, with the highest daily concentration of 58.3 pg/m?, and the lowest daily

concentration of 4.7 pg/m*. During the monsoon period, maximum, minimum, and mean

concentrations of PMzs were 41.6, 24.9, and 29.6 pg/m? respectively. Concentrations of PMzs

were observed to be higher during the weekend as compared to the concentration during weekdays.

This is perhaps due to the proximity of the highway to the monitoring station, and the fact that the

highway caters to higher volumes of traffic during the weekends compared to weekdays.
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Figure 4.1(a) Diurnal Concentration of PM2 s (b) Monthly variation of PM2s

(c) Night-time concentration of PM2 s
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During the post-monsoon period, maximum, minimum, and mean concentrations of PM2s were
58.3, 8.33, and 19.5 pg/m® respectively. During the winter, maximum, minimum, and mean
concentrations of PM2s were 49.9, 4.7, and 21.2 ug/m? respectively (Figure 4.1 (b)). As per the
National Ambient Air Quality Standards (NAAQS), the PM2s concentrations were below the
standard levels (40 pg/m? for PM2s annually and 60 pg/m® for 24 hours). The PMzs during the
night presented in Figure 4.1 (c), is considered as background concentration. The night-time (06:00
PM-06:00 AM) concentrations were observed to be lower than daytime (06:00 AM-06:00 PM)
concentrations. The night maximum, minimum, and mean concentrations were 38.45, 8.33, and
20.51 pg/m?® respectively. Wind profiles and temperature influence the movement of particles. Low
concentrations during nighttime are attributed to minimum traffic volumes during the night. The
results of the present study were similar to the reported values in other places (Bhopal, Nagpur )
dominated by vehicular and urban activities (Das et al., 2015; Karar & Gupta, 2006; Nirmalkar et
al., 2021). In Nagpur city, the concentration PMa s value is 52 pg/m® due to road dust on highways
(Chaudhari et al., 2012b). At Dongargarh, Chhattisgarh India, the PM2s concentration was
reported to be 64 pug/m® mostly due to vehicular emissions (Ambade, 2014b). In Kolkata city,
PM_5 concentration was reported as 83 pg/m? at a location where construction activities and road
dust were major contributors to air pollution (Das et al., 2015). In Hyderabad city, PM25 was
reported as 45 ug/m® (Gummeneni et al., 2011). In Agra city, PM2s was 104.9 pg/m®mainly due

to industrial emissions and anthropogenic activities (Kulshrestha et al., 2009).

The number of daily deaths due to air pollution varies among cities and is correlated with their
respective population sizes. Shimla records the lowest daily death count (4.2 + 2.7), whereas
Mumbai reports the highest (225.6 + 30.7) (Dholakia et al., 2014). While all the cities have
different pollution levels arising from different sources, the common sources of PMz s in the urban
atmosphere are road dust, construction activities, small industries, and vehicular emissions. Most
of the deaths due to the air pollution in India during 2019 were from ambient particulate matter
pollution (0-98 million [0-77-1-19]). The economic loss as a proportion of the state Gross
domestic product (GDP) varied 3-2 times between the states (Pandey et al., 2021).

4.2 Assessment of heavy metals
The samples collected during the study were analysed for heavy metals using MP-AES and
presented in Figure 4.2 (a) and (b). Some metals like Zn, Cu, and Fe were higher when compared

71



with other metals. Average concentrations of Zn, Fe, Cu, Ni, and Cd were 1.25, 0.65, 0.35, 0.005,
and 0.0025 pg/m® respectively. Metals in ambient air bound to PMzs reported by various
researchers for studies conducted in India are presented in Table 4.1. For obvious reasons, the
concentrations of metals vary with location depending on the sources dominating in that location.
Metallic contaminants like Fe, Cu, Ca, Zn, Pb, etc, are generally released predominantly from
anthropogenic sources in inland regions (Nair et al., 2006). Trace metal contributions from long-

range transport of polluted air masses were reported at receptor locations (Sudheer and Rengarajan,

2012).

Table 4.1 Studies on Ambient Heavy metal over India

S.n | Author Region Heavy metals
0
1 | Abhishek Kanpur Zn, Fe, As, Cu, Cd, Ca, Cr, Mg, Pb, Ni, Se, V
(2010) Region
2 | Kulshrestha Agra, India | Pb, Zn, Ni, Fe, Cr, Mn, Cu
(2009)
3 | Ambade Dongargarh, | Fe > Zn >Pb > Cu > Ni > Cr > Cd
(2014) Central
India
4 | Chaudhari Nagpur Zn > Fe >Pb > Ni > Cd > Cr 2006
(2012)
5 | Kamala (2014) | Hyderabad | Al, As, B, Ba, Ca, Cr, Cu, Fe, K, Mn, Na, Ni,
Pb, Zn
6 | Das (2015) Kolkata Zn, Cr, Ni, Mo, Cu, Sn, Sh, V, Co, Cd, Pb,
Ca, Al, Mg, Sc, Ti, Mn and Fe
7 | Vijayanand Tamil Nadu | Zn, Fe, Cu, Pb, Ni and Cr) Cd
(2008)
8 | Habil (2016) Agra Fe, Pb, Mn, Cu, Ni, Cr, Zn, Cd
9 | Massey (2013) | Agra Fe, Pb, Ni, Cr, Cd, Cu, Mn
10 | Monika (2016) | central K>Zn>Mg>Fe>Mn>Cu>Cd.
Delhi
11 | Pant(2017) New Delhi Si*, Ca, Fe, Ti, Mn, Ni, Cu, Zn, Pb
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12 | Poonam Lucknow Fe>Pb>Ni>Cu>Cr>Cd
Pandey (2017)

13 | Ghosh (2018) | Bolpur Mn, Zn, Cd, Pb, Ni, Co,

The variations of heavy metals during the study period concluded that the post monsoon season
concentrations are high as compared to the monsoon season concentrations presented in Figure.
4.2.. These metals are perhaps released from automobiles, construction activities, and other urban
activities. Literature suggests that Fe, Si, Al, and Ti originate from the earth’s crust (Pant et al.,
2016). Zn and Pb concentration levels correlate well with non-exhaust traffic emissions (Nirmalkar
et al., 2021; Piscitello et al., 2021), industrial sources (Zhao et al., 2021), and solid waste burning
(Wang et al., 2016). Ni et al,. (2017) concluded that open biomass burning and industrial pollution
results in Fe, Zn, Pb, and K emissions. Cd, Cr, Ni, and Pb are associated with industrial sources
whereas Zn and Cu are associated with traffic emissions. The use of Zn for protective coating on
iron, steel, etc, by the industries results in a higher concentration of this heavy metal (Vijayanand
et al., 2008). Road dust is commonly associated with high concentrations of Cd and Pb (Massey
et al., 2013; Suryawanshi et al., 2016b). Mn, Zn, Pb, Fe and Cu emissions from lubricants oil,
brake pads, and tires are the main sources (Garg et al., 2000; Grigoratos & Martini, 2015;
Ntziachristos et al., 2007; Pakkanen et al., 2003; Wang et al., 2016). The concentration of Zn and
Fe is attributed to industrial emission, crustal trace element concentrations, and fluxes due to the
re-suspension of dust released during traffic activities and soil erosion (Gajghate et al., 2012b).
Increased concentration of Cd was reported to be contributed by solid waste combustion, refinery,

and fossil fuel burning (Banerjee., 2003; Chinnam et al., 2006).

The Heavy Metals (HMs) transport was dominated by the Suspended Particulate Matter
(SPM) load over Caohai, China. The reported HMs were attributed to agriculture and industry
regions (Li et al., 2023). In Isfahan City, Iran, the concentrations of As, Cd, and Ni were in a range
of 23-36, 1-12, and 5-76 ng/m? and all of them were above the US-EPA standards (Soleimani et
al., 2018). The most important sources of HMs are fossil fuel combustion, abrasion of vehicle tires,
and industrial activities. A research (Harrison, 2020) finding suggests that the heavy metals in the
particulate matter increase with a decrease in the particle size. Literature suggests that the coarse
particulate matter contains heavy metals from natural origin, while the fine particles host heavy
metals emitted from anthropogenic sources (Soleimani et al., 2018). However, heavy metals bound

to particles are capable of long-range atmospheric transportation (Chang et al., 2018; Githaiga et
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al., 2020). Around 57-64% of heavy metals like Pb, Zn, and Cu are found in soil dust particles
smaller than 10 um due to their lower densities and higher surface area per unit volume. The finer
fraction is easily re-suspended and they result in a high impact on human health. They linger in
the air for longer periods and have a greater tendency to adhere to the skin. Metals bound to finer
fractions can readily be adsorbed and accumulate in the upper respiratory tract of humans during
inhalation (Valiulis, 2008). In-depth studies lead to fingerprinting the sources and their

apportionment.
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Figure 4.2 Variation in heavy metal concentration

The average concentrations of heavy metals in Warangal region as presented in the Figure 4.3. The
order of Zn>Fe>Cu>Ni>Cd observed from the Figure 4.3(a). the HM concentration of the two
seasonal differences in monsoon and post monsoon (Figure 4.3(b)) variations, the analysis clearly

shows that the monsoon and the post-monsoon concentrations are decreasing trend from one

74



season to another season. The sudden variation due to the wet deposition of the ambient particulate
matter observed in monsoon (Mamun et al., 2022), and the increase in the post-monsoon season
will be due to the resuspension of the particulates in the atmosphere. It may cause due to
meteorological variations. In the monsoon season, only two elements are in the detectable range
(Zn, Fe) but the other elements are not detectable range. In the post-monsoon season, three
elements (Zn, Fe, Cu) are detectable and two are not detectable range elements (Ni, Cd). The
possibility of the difference would be the anthropogenic activity involved in the post-monsoon
season it could be related to Cu emissions.
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Figure 4.3 Monsoon and Post monsoon Seasonal change in heavy metal concentration

4.3 Pearson’s correlation between heavy metals and PM 25

Results of Pearson’s correlation analysis performed are presented in Figure. 4.4. Results
indicate that Fe and Cu were strongly correlated when compared with other metals. Other
significant correlations exist between Zn and Cu, and Zn and Fe and are all predominantly related
to traffic emissions. The other correlations among the heavy metals were moderate during the

study. Similar results were reported by Fang et al., (2000) indicating traffic as an important source
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of heavy metals in urban environments. Chandra et al., 2017, also identified vehicular pollution
as the main source of heavy metals. Fe is generally associated with rock weathering and dust from
minerals (Cheng et al., 2005; Xia & Gao, 2011), however, in the present study, it was not a

dominating source.
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Figure 4.4 Pearson’s correlation between various metal elements

4.4 Enrichment Factor analysis

The enrichment factor indicates whether the source of emission is natural or anthropogenic. EF
values obtained are depicted in Figure 4.5. EF values for Zn, Cu, Ni, and Cd are above 10. EF
value for Ni falls in the moderately enriched bracket indicating nearby industries as possible
sources. EF values of Zn, Cu, and Cd were greater than 100 and hence fall in the highly enriched
category. Similar results of high enrichment for Zn were reported by Zhang et al., (2010). These
emissions are perhaps due to combustion and related activities originating from the automobile
and industrial sectors. Ambade, (2014) reported that Ni, Cu, and Cr are emitted from

anthropogenic activities while Fe and Zn are generally emitted from natural sources.
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Figure 4.5 Enrichment Factor for heavy metals
4.5 Health Risk Assessment

4.5.1 Exposure Dose Assessment

The exposure assessment evaluation based on Average Daily Dose (ADD) for ingestion,
inhalation, and skin contact is presented in Figure 4.6. The results indicated a similar trend
variation in ADD for all the exposure pathways in both children and adults. Zn exhibited higher
values for all three exposure pathways, while Cu and Fe showed moderate ADD values. Ni and
Cd exhibited negligible ADD values for all the pathways. The total average daily dose is presented
in Figure 4.7(a) and the order of impact of exposure of metals may be observed to be as follows:
Ingestion > Dermal > Inhalation. Zheng et al., (2010) also reported that the ingestion pathway of
HMs is a dominant route of exposure followed by dermal contact. Literature reports the significant
impact of the resuspension of dust particles and construction activities on ADD values (Kong et
al., 2011; Mitra & Das, 2020). Both resuspension of dust due to traffic activity and construction

activities dominate the study area.
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Figure 4.6 ADD for children and adults for ingestion, dermal, and inhalation pathways
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4.5.2 Non-Carcinogenic Health Risk

Hazard Quotient (HQ)obtained during the study is presented in Figure 4.8. The HQ results
obtained were in the following order: HQing>HQuer>HQinn. The trend is similar to that of risk of
exposure. lIzhar et al., (2014) reported a similar trend in their study on health risks posed by
particle-bound metals. For HQger the following order of metals was observed: Cd > Zn > Cu>Ni,
whereas for HQinn order of metals was: Cu > Zn > Ni > Cd for both children and adults. Though
the values were slightly different from one another, the HQing trend in both adults and children
(Figure 4.8) was observed to be: Cu > Zn > Cd > Ni. HQ index was observed to be below 1 for all

pathways.

The HI index is the sum of HQs and the values obtained in the study are presented in Figure
4.9. As RfD values for Fe, Se, and Ca metals have not been specified by USEPA. The results
signify that non-carcinogenic threat was negligible for both children and adults since HI (Figure
4.9) values are below 1. However, a higher risk was reported when we consider the injection
pathway and derminal contact. Also, the risk for children was more when compared to that of
adults. Pongpiachan et al., (2018) also similar HI values (below 1) were reported in the study
indicating that that these have non-carcinogenic risks. Ni, Cd, Co, Cr, and Pb are considered
carcinogenic metals while Fe, Cu, Zn, and Mn are considered non-carcinogenic metals that

generally originate from anthropogenic activities (Pandey et al., 2017).

The HQchila values for all pathways were almost higher values than the HQagquit are appears
in this study. It appears reasonable to mention that children are more vulnerable than adults to the
noncancerous health effects. The situation can be attributed to their mouthing behaviours and the

children’s hand-to-mouth activities are the major exposures.
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Figure 4.9 Hazard Index associated with heavy metals for adults and children
Results of the study show that the concentration of Ni was higher than Cd when considering

the two carcinogenic elements for children and adults. The cancer risk in adults with Ni was 1.02

4.5.3 Excess Cancer Risk Assessment



x107 and with Cd was 6.12 x 10”". The ECR in the case of children with Ni and Cd was 1.18x 10"
6 and 7.15x10°® respectively. The results obtained in the study were within the acceptable limits of
10 to 10 Similar trends in non-carcinogenic and carcinogenic risk assessment for both adults
and children were reported in Nanjing, China (Hu et al., 2012). The non-carcinogenic and
carcinogenic risks are in general reported to be higher for children than adults (Das et al., 2020;
Hu et al., 2012; Mitra & Das, 2020; Sah et al., 2019; Xie et al., 2020).

4.6 Source identification

The back trajectory analysis was used to trace the path of the air mass arrivals at the
receptor location. The 7-day back trajectory involves accessing the source regions at the receptor
location. The trajectories for September, October, and November (2018) are presented in Figure
4.10. The trajectory for September month indicates the influence of the Western region of India,
while the trajectories of October and November were influenced by Indo Gangetic Plain (IGP).
Few trajectories were observed from the Bay of Bengal (BOB) in October. The changes in the
trajectories can be attributed to changes in season and variations in wind and temperature profiles.
However, most trajectories were observed to be from the north-eastern (NE), northern (N), and
western (W) regions of India. HYSPLIT back trajectories analysis has also been used by other

researchers for the identification of source regions at receptor locations (Yusup et al., 2016).
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Figure 4.10 HYSPLIT back trajectory for September, October, and November

4.6.1 Concentration Weighted Trajectory Analysis

The CWT analysis shows the contribution of the majority of trajectory regions at receptor
or sampling location. The heavy metal transformations at the receptor location are presented in
Figure 4.11. Each trajectory coupled with respective metal concentrations using the Meteolnfo
software. The meteoinfo is an intergrated framework both for GIS application and scientific
computation. Results show that Zn is contributed from NE regions especially Odisha and
Chhattisgarh and parts of Central India (mainly Madhya Pradesh). This can be attributed to
significant coal mining and biomass burning in these regions. Fe, Cu, Ni, and Cd are contributed
by local anthropogenic activities and dust resuspension due to wind currents. (Mukherjee and
Agrawal, 2018) reported a significant contribution of PM2 s from north-western (NW) regions of
India using CWT and Cluster Analysis. Rai et al., 2020, identified that the pollutants moving
toward the receptor, (Darjeeling in their case) originate mainly from Nepal apart from the IGP and
the BOB.
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Figure 4.11 CWT analysis for September October and November(a) Zn (b) Fe (c) Cu (d)Ni (e)
Cd (f) PM 25

4.6.2 Potential Source Contribution Function Analysis

NE regions (Odisha, Chhattisgarh, and Jharkhand) and IGP regions contribute Zn and the
same was evident in WPSCF analysis (Figure 4.12). As these regions are dominated by mining
activities and the burning of fossil fuels, Zn contributions will likely be significant. Similar
findings have been reported by Chinnam et al., 2006. Fe, Cu, and Ni were mainly contributed by
nearby local sources. The NE coastal region was a moderate contributor (0.7-0.8 significance
levels) for all metals. The majority of the potential source regions fall upwind towards the receptor
location. It may be noted that the transformation of pollutants from upwind to downwind causes a
transboundary particle moment from most east coastal states and some central states. The transport
and accumulation of pollutants are based on the geographical location of the existing region (Kong
et al., 2020; Qiao et al., 2019).
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Figure 4.12 PSCF analysis for (a) Zn (b) Fe (c) Cu (d) Ni (e) Cd (f) PM 25

4.6.3 Cluster analysis

The clustering of all 7-day back trajectories at receptor location observed during the study
is shown in Figure 4.12. Cluster 4 was observed to contribute 27.11% of trajectories from the NW
region of India, while Cluster 2 was observed to contribute 22.34% of trajectories from Odisha,
Chhattisgarh, and part of Madhya Pradesh. Cluster 3 contributed about 20.15% from parts of
Madhya Pradesh, Rajasthan, and Western parts of the world on Indian border. Clusters 1 and 5
contributed about 10.62 and 8.79% from part of Maharashtra and the Arabian sea mostly. Cluster
6 contributed 10.99% of trajectories from the BOB indicating the influence of sea salt origin at the
receptor location. In cluster analysis, it was noticed that Odisha and Chhattisgarh contribute
significantly due to mining activities, thermal power plants, and associated industries. Similar
findings related to transport in the lower layer and from nearby local regions were reported by
Hong et al., (2019); Kopas et al., (2020). Luo et al., (2020) also reported 5 clusters from their
investigations based on 48-h mass back trajectory studies. The tracers for CO and PMazs were
identified as fire emissions in the regional air quality forecasting system. The modelling
framework indicates that stubble-burning fires contributed up to 30-35% of Delhi's air pollution
during October-November 2021(Govardhan et al., 2023).
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Figure 4.13 Cluster analysis

4.7 Summary

Based on the analysis of PM2 s during the study, concentrations of PM2 s and heavy metals
are high in the post-monsoon season. However, the PM. s concentrations observed were lower than
the standards prescribed by NAAQS. Pollution due to heavy metals bound to PM_ s was significant
due to emissions from traffic and anthropogenic activities in urban areas. It was evident that from
the CWT, PSCF and cluster analysis indicate the pollution was significantly contributed by long-
range transport. Zn, Fe, and Cu concentrations in PM2 s were significantly higher compared to the
concentrations of Ni and Cd. The order of occurrence of heavy metals in descending order was
found to be: Zn>Fe>Cu>Ni>Cd. Long-term sampling may help in better understanding the
variation in PM2s and metal concentrations. EF values of Zn, Cu, and Cd are high indicating
association with combustion and industry. Health risk assessment showed that the ingestion
pathway dominates over the dermal and inhalation pathways. Based on HQ and HI index, it may

be concluded that there is no significant non-carcinogenic and carcinogenic risk from the observed
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metals in the study region. However, the risk for children was higher when compared to that for

adults.

From the CWT, PSCF, and cluster analysis, it may be concluded that the contributions
from the western and North-Western regions of India dominate at the given receptor location.
Since heavy metals bound to PM2.5 were analysed in this study, the presented results from health
assessment and source identification can be used in planning air pollution control strategies and

for framing appropriate regulations.
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Chapter 5 Estimation of ground level PM2s with MODIS Aerosol
optical depth and source identification using trajectory analysis over

Hyderabad region

5.1 Variation of meteorological parameters

Meteorology and air pollution are interconnected disciplines that explore the intricate interplay
between the atmosphere and the presence of pollutants within it. Meteorological parameters
influence the air quality and their transport in the atmosphere. Meteorology delves into the
mechanisms and dynamics of the Earth's atmosphere, encompassing the analysis of weather
patterns, atmospheric phenomena, and the behaviour of air masses. A comprehensive grasp of
meteorological factors is pivotal in evaluating and forecasting levels of air pollution.
Meteorological parameters namely — ambient temperature (AT), relative humidity (RH), wind
speed (WS), wind direction (WD), solar radiation (SR) and barometric pressure (BP) variations
are analysed over Hyderabad regions from the May 2017 to May 2019. The data adapted in this
study from the CPCB secondary data and the variations are presented in Figure 5.1. Statistical
parameters of the meteorological factors are given in Table 5.1. The temperature and relative
humidity values are approximately to those reported in the Jaipur region reported by Soni et al.
(2018). Temperature inversion leads to higher values of pollutants in the winter season at ground
level (Yadav et al., 2019). The wind speed and direction are also important parameters in the
dispersion and transport of particles. These particles move along with the wind from one region to
far away regions depending on the strength of the wind and atmospheric stability conditions.
Hence, the meteorological parameters are crucial for the identification of the particulate
concentration at the receptor location (Das et al., 2021; Zhang et al., 2017). Higher variations are
observed in BP and SR at all locations. Lower deviations in AT, RH, PM, and AOD are observed.
This is perhaps due to the topography of the land and climatic conditions. In the present study, the
mean temperatures recorded at all locations are typical of those found in tropical regions. However,

the winter and summer temperature variations are significant.

The use of satellite data to estimate air quality is one of the indirect methods that is used in regions
where data is scarce or temporal coverage is limited. Regional air quality assessment and modeling

can use data obtained by satellite sensors. AOD and MODIS are widely used to assess air quality
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at urban and local scales. The presence of particulates in the atmosphere will be reflected by AOD
and the intensity of the light received by the instrument will reflect the columnar property of the
atmosphere. Satellite-based AOD measurements are widely used to predict PM2sand PM1o (Shao
et al., 2017; Soni et al., 2018). The variations in PM2s with AOD during the May 2017 to May
2019 period shown in Figure 5.1(d) and the statistical parameters are given in Table 5.1. The mean
AOD variations in the ranges as follows at Bollaram (0.54+0.21), Central University (0.54+0.23),
IDA (0.50+0.2), Patancheru (0.55+0.23) Sanathnagar (0.52+21) and Zoopark (0.47+0.22). High
AOD was observed at Patancheru and the least AOD at the Zoopark location. The higher AOD
values at Patancheru are perhaps due to concentrated industrial activity while Zoopark represents
minimum anthropogenic activity. Higher AOD values indicate a significant contribution from
submicron aerosols to columnar loading. Soni et al., (2018) reported the average AOD as 0.42 and
the range as 0.02—-1.67 in the Jaipur region. AOD values were higher during the pre-monsoon and
winter with a subsequent decrease in the summer period. The study in an urban environment in
Eastern India reported AOD in the range of 0.82 (winter) and 0.71 (summer) (Pani and Verma,
2014). The influence of climate change on particulate pollution and transboundary aerosols was
reported by Deb and Sil (2019). However, the influence of climate change on particulate pollution

is not attempted in the present study.
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Table 5.1 Variation of the meteorological parameters over six locations for May2017 to May
2019. Source: CPCB (2020a)

Location Paramet | Aer | Ambi | Relat | Win | Wind | Solar | Baro | PM2s
ers osol | ent ive d | directi | radiat | metri | (ng/m
opti | temp | humi | spee | on(de | ion(W | pressu %)
cal | eratu | dity | d(m/ | grees) | /m?) | re(m
dept | re(®C | (%) s) m)
h )
Bollaram | Min 0.04 | 19.56 | 30.66 | 0.30| 42.71| 70.04 -1 12.39
Max 1.16 | 39.70 | 72.07 | 9.23 | 287.78 | 199.89 -1 9297
Median 0.52 | 2836 | 49.02 | 1.62 | 140.06 | 121.00 -| 55.01
Average 0.54 | 28.65| 49.32 | 2.80 | 146.65 | 126.42 -| 54.84
Stdev 021 | 463| 884| 241 | 47.80| 2508 -| 13.95
Central Min 0.04 | 2579 | 3334 | 060 | 4594 | 76.75| 700.97 | 13.17
University | Max 1.23 | 33.52 | 74.06 | 2.63 | 259.34 | 237.78 | 731.50 | 96.84
Median 0.51 | 2845 | 51.41| 1.53| 153.56 | 162.07 | 713.39 | 43.00
Average 0.54 | 2898 | 51.62 | 1.54 | 159.00 | 163.02 | 712.39 | 46.77
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Stdev 0.23 1.83 8.54| 0.39 48.43 28.61 6.04 16.78

IDA Min 0.10 | 20.64 | 28.56 | 0.80 53.49 83.12 | 696.83 6.41
Max 1.09 | 38.49 | 7531 | 3.02| 302.60 | 326.79 | 732.98 83.63
Median 048 | 2734 | 47.60 | 1.77 | 165.92 | 192.98 | 716.72 53.89
Average 0.50 | 28.23 | 48.44 | 1.80| 168.16 | 194.07 | 715.92 52.80

Stdev 0.20 4.27 9.36 | 0.45 42.21 51.59 6.77 16.00
Patancher | Min 0.05| 2859 | 41.45| 0.52 27.00 66.78 | 711.62 0.94
u Max 1.22 | 34.03| 79.68 | 1.56| 268.41 | 167.96 | 731.43 78.78

Median 0.52 | 30.05| 58.59 | 0.87| 121.97 | 121.49 | 716.80 50.50
Average 0.55| 3051 | 57.14 | 091 | 132.29 | 124.03 | 717.87 49.76

Stdev 0.23 1.22 7.99 | 0.22 49.72 20.75 4.61 16.77
Sanath Min 0.05| 20.24 | 30.11| 0.58 86.11 83.86 | 701.79 15.57
Nagar Max 1.10| 38.80| 72.86| 194 | 261.25| 216.87 | 725.47 91.69

Median 0.50 | 28.19 | 47.27 | 1.04 | 14552 | 152.12 | 714.63 54.71
Average 0.52 | 2823 | 48.06 | 1.08 | 148.86 | 151.39 | 714.10 56.02

Stdev 0.21 4.27 8.84 | 0.29 35.94 24.52 5.16 15.16
Zoopark Min 0.01| 19.34 | 28.89 | 0.29 44.20 18.02 | 703.41 13.00
Max 1.08 | 36.86| 68.99 | 1.30| 317.12 | 233.51| 721.96 | 104.09

Median 0.44 | 2788 | 47.54| 053 | 143.38 | 123.58 | 715.84 60.01
Average 0.47 | 28.18 | 47.44 | 0.58 | 148.28 | 125.20 | 714.35 58.12
Stdev 0.22 3.72 8.00 | 0.24 49.58 38.77 3.22 17.33

5.2 MODIS AQOD for prediction of the PM2s

5.2.1 Variation of MODIS AOD over an urban region

The relation between MODIS products (MOD 3K, MOD L2, MYOD 3K, and MYOD L2) and
PM> s are shown in Figure 5.2. The relationships are established using the R language tool. In the
present study, a weak positive correlation is observed between AOD and PM: s at most locations
for all MODIS products. The linear regression results between AOD and PM: s results indicate a
weak positive correlation in some locations with a relatively higher correlation at Bollaram. A
single grid of each pixel was chosen for the study, the missing AOD data was replaced with an
average AOD of 3x3 or 5x5 grid. The variations are perhaps due to the urban conditions and
geographical differences. Local dominating sources also result in variations.

The relationship between AOD and PMz5s is based on the theoretical assumption that PM2s is
reflected in AOD captured by satellites. As such there is a correlation between AOD and PM2.5 and
it is either strong or weak depending on various factors. PMzs represents the ground-level

concentration of particles with a diameter of less than 2.5 um, while AOD represents the visibility
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in the atmospheric column from the ground surface to satellite height (in the order of numerous
km). Furthermore, PM2 s reflects the dry weight of particles, and it is not affected by water vapor
and other particles in the atmosphere, while AOD is affected by water vapor and other particles in
the atmosphere as well. Hence, the relationship between AOD and PM2s can be either weak or
strong. The complicated relationship between AOD and PMys varies temporally and spatially
depending on environmental conditions. The relationship is reflected in PM2 s retrievals. However,
For retrievals, the study is useful for this region only as such, cannot address large-scale retrieval
challenges. A comprehensive study over the larger area covering different cities and regions is
required to establish relationships between PM2s -AOD which subsequently can be used for
retrievals. The AOD - PMa 5 relation is stronger in some locations in India (Chelani, 2018). Other
studies have also shown a similar trend where, coastal areas, the PM25-AOD relation was weaker
comparisons shown by Yang et al., (2019). Few studies indicated a positive and weaker correlation

with the AOD - PM_ 5 (Chelani, 2018; Yang et al., 2019).
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Figure 5.2 AOD - PM2 s correlation within MODIS product at all locations,

(1) MOD_3K (3km) (11) MOD_L2 (10km) (1) MYOD_3K (3km) (IV) MYOD_L2 (10km)
(a) Zoopark (b) Sanathnagar (c) Patancheru (d) IDA (e) Central University (CU) (f) Bollaram

5.2.2 Multiple linear regression model

For the prediction of ground-level PM: s concentration, regression model was developed using
AOD and meteorological parameters (temperature, RH, Wind speed, wind direction, solar
radiation, and pressure). Statistical parameters (R, RMSE, d, and NMB) of the models are
presented in Table 5.2. Results indicated relatively good agreement at Zoopark when compared to
the other five locations. Also, the MOD L2 product was observed to give better predictions when

compared to others except for Patancheru. The variations in model predictions were observed from
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location to location. Some of them gave good predictability which is reflected in terms of R ranging
between (0.33-0.64) at the Zoopark location. Kharol et al., 2011 also reported similar correlation
coefficients (0.30 to 0.46) between Level 3 Terra/Aqua MODIS and MICROTOPS-II, AOD550 in
all seasons over Hyderabad.

The scatter plots between observed and predicted concentrations (for 3 km and 10 km
resolution of Aqua and Terra product) for Zoopark are presented in Figure 5.3. Most of the
predicted values fall within the 30% error line (black dotted line) indicating the applicability of

the MLR model. Few points were observed within the 50% error line.
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Figure 5.3 Scatter plot for PM2 s Predicted and Observed at Zoopark location for four MODIS
AOD product

Shao et al. (2017) in their studies on AOD- PM2sin Nanjing of the Yangtze River Delta,
concluded that there was a high consistency of AOD versus PM2 s and the correlation coefficient

was (R) 0.56. In the current study, the correlation coefficients are slightly lower around 0.4 for
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various MODIS products. Lower correlation coefficients are reported to be due to desert dust and

cloud properties Gopal et al., 2016).

The MOD_3K product has a negative Normalized Mean Bias (NMB) except for the Zoopark
location. The correlation coefficients were higher for Zoopark, IDA, and Sanathnagar; lower
values for Patancheru, Bollarm, and CU regions. RMSE was higher (54 ug/m®) at Patancheru and
low for other locations (11-15 pg/m®). RMSE values at Patancheru peaked in all MODIS
collections when compared with other locations. The MOD_L2 results indicated over-prediction
at CU and Zoopark locations, while under-prediction was observed for other locations. The
correlation was higher (0.41) at Zoopark while the correlation was low at Patancheru. The RMSE
variation range (11-14 pug/m®) except for the Patancheru region. The MYOD_3K and MYOD L2
have nearly similar values in RMSE, d, and NMB indicating good agreement in the correlation
coefficient in the MYOD_3K product. Greater resolution data resulted in a higher deviation from
the standard line in this study. Kumar et al., (2008) reported that the finer resolution of
MODIS_AOD in addition to RH and atmospheric pressure results in a better correlation for the
prediction of PM2sin New Delhi. The Terra AOD product performed better than the Aqua in the
present study while the 10km resolution data performed better than the 3km resolution data in the

correlation analysis. Similar results were reported by Wang et al., (2019).

MODIS AOD product obtained for 10km and 3 km resolution is used. The quality of the 3 km
resolution was generating relatively high noise influencing the accuracy of prediction. Munchak
etal., (2013) also reported similar observations. The study considered a linear relationship between
PM:2 5 and meteorological parameters while the PM2 s formation mechanisms are not considered.
The model accuracies are influenced by the PMas formation mechanism, spatiotemporal
heterogeneities, and geographical regions. The best-fit location was identified based on MLR, later
the location latitude and longitude were used in the Hybrid Single-Particle Lagrangian Integrated

Trajectory model (HYSPLIT) model for back trajectory analysis.

Table 5.2 MODIS AOD and PM2.s summarized statistical parameters for the six locations

Parameter | Bollaram | Central IDA Patancheru | Sanath Z00
University nagar Park

MOD_3K | RMSE 15 15 11 54 10 12
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d 0.53 0.59 0.81 0.21 0.78 | 0.76
NMB -0.15 -0.02 -0.02 -0.84 -0.04 | 0.05
R 0.13 0.13 0.53 -0.18 047 | 0.36
MOD_L2 | RMSE 12 14 12 55 11 11
d 0.52 0.66 0.71 0.22 0.73| 0.85
NMB -0.009 0.11 -0.03 -0.87 -0.03| 0.10
R 0.34 0.30 0.46 -0.15 038 | 0.64
MYOD_3K | RMSE 15 15 13 47 10 10
d 0.52 0.73 0.62 0.25 081| 0.74
NMB -0.12 0.14 -0.08 -0.67 -0.02| 0.01
R 0.28 0.38 0.51 -0.11 0.56 | 0.33
MYOD_L2 | RMSE 14 16 11 44 11 11
d 0.52 0.60 0.82 0.22 0.74| 0.80
NMB -0.12 0.11 -0.04 -0.67 -0.01| 0.09
R 0.21 0.16 0.59 -0.25 042 | 0.56

5.3 Backward Trajectory analysis for source identification

The backward trajectory simply the air mass trajectory path with suitable end points, based on the
end points which will differ from one trajectory to the other one. To club the all these trajectories
at one location creates the variations in the grid points to identified the potential grids in study
location. For the each of the trajectory required the suitable parameter to convert the grid points.
In this study PM2.5 chosen as the identified parameter. As well as the fug data collection was
mandatory for the accurate conclusion on the source regions. The daily data was difficult to collect
manually so that the Hyderabad study location was chosen for the continues data. From the last

chapter the methodology following same for the CWT, PSCF and cluster analysis in this chapter.

5.3.1 Concentration-Weighted Trajectory

The results obtained by CWT analysis for Hyderabad are presented period of May 2017 to May
2019 in Figure 5.4, with Figure 5.4 (a, b, c, d) indicating the CWT analysis for the surface layer
represent the trajectory heights with the 100m, 500m, 1000m. Season-wise percentile contributions
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of pollutants by trajectories are indicated in Figure 5.4. The colour in the figure reflects the
concentrations - the red colour represents high concentrations while the blue represents low PM2 s
concentrations. Season-wise weighted trajectory details are presented in Table 5.3. CWT analysis
helps in finding the influence of short-range regional transport of air pollution and indicates the
direction of trajectories. The surface layer concentrated paths identified for the winter season are
dominating. The trajectory paths from East India, North India, and coastal regions are likely the
contributing source paths for receptor location considered in the study. However, the weighted
trajectory from East India and Coastal regions are more dominating in winter. Two paths are
identified in the pre-monsoon, which are from land and sea regions. These are perhaps due to land
and sea breeze effects from nearby coastal regions. The two dominating paths are - one from
central India and the other from the Bay of Bengal. In the monsoon, trajectories from Western
India and the Arabian Sea are observed. However, contributions from local regions are dominating
in monsoon. Trajectory from East India, Indo-Gangetic Plain, and coastal regions are in the post-
monsoon season. The weighted trajectory paths from the coastal regions and Indo-Gangetic Plain
are dominating. For two seasons (winter and pre-monsoon) two paths are identified while for the
other two seasons (monsoon and post-monsoon) one transport path at the surface layer is identified.
However, the trajectories vary from season to season as meteorological conditions influence the
contributions. Gebhart et al., (2011) reported trajectory-based studies and subsequently used the
results for source apportionment. Dust outbreaks in Spain were also analysed using trajectory-
based models and the results were encouraging (Cabello et al., 2016). The tracking of Hazardous

air pollutants from refinery fire was analysed using trajectory studies (Shie and Chan, 2013).

CWT analysis for the elevated layer represent the trajectory heights with the 1500 m, 2000 m. The
CWT analysis is presented in Figure 5.4 (a, b, ¢, d). In CWT analysis, trajectories from all
directions were observed in the winter season. However, the dominating paths are from central
India and East India. In the pre-monsoon season, the weighted trajectory was from central India,
while for monsoon, the dominating trajectories were from West India and the Arabian Sea. For the

post-monsoon season, the dominating trajectory was from local regions.

For both the surface and elevated layers, the contributions from central India and East India are

predominant in winter and pre-monsoon. In the monsoon season, contributions from local regions
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are dominant. As precipitation in monsoon washes the particulates in the air, contributions from
other regions are not significant.
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Figure 5.4 CWT analysis for the surface layer.

Winter Pre-monsoon
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Monsoon Post-monsoon

Figure 5.5 CWT analysis for elevated layer.

5.3.2 Potential Source Contribution Function

The potential source contribution function indicates the source contributions to the receptor
locations. PSCF is one of the receptor models that consider meteorological information in
determining the source regions contributing to potential pollution. Backward trajectory analysis is
used for the PSCF analysis. PSCF is helpful in the identification of determining the relative
contributions of potential source regions. Figure 5.6 presents the results of PSCF analysis for the
study area at the surface layer. Table 5.3 indicates the predominant source regions contributing
PM2 5 to the receptor location in the study area. In the winter season, predominant contributions
were from Central India, East India, and Coastal Region. Contributions from Central India, the
Bay of Bengal, Western India, and the Arabian Sea were predominant in the pre-monsoon season.

During monsoon and post-monsoon seasons, contributions from local regions were dominating.

Source contributions for the elevated layer are presented in Figure 5.7 and Table 5.3. In the winter
season, dominating source contributions are observed from Central India, Coastal regions, and
East India. For the other three seasons, contributions were mostly from local regions. The results
of CWT and PSCF analysis indicating dominant trajectories and source regions are mostly similar
indicating the credibility and accuracy of the results. Chengming et al., (2020) also reported similar
agreement between CWT and PSCF results in their study on assessment of contributions of PM2 s
in Weifang, China. PSCF cannot take into account if the PM2s concentrations of the grids are
slightly higher or much higher than the considered standard PMzs (60 pg/m3, in the study)
concentrations. Because of this limitation, the PSCF method fails to bring clear distinction between
strong and moderate sources. However, the CWT model incorporates the relative importance of

the potential sources.
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5.6 PSCF analysis for the surface layer.
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Figure 5.7 PSCF analysis for elevated layer.

100



Table 5.3 Results of CWT Analysis and PSCF analysis

Season Predominant trajectories from Predominant source regions from
CWT Analysis PSCF Analysis
Surface Layer Elevated Layer | Surface Layer Elevated Layer
Winter Central India, East | Central India, | Central India, East Central India,
India, Coastal East India India, Coastal Coastal regions,
Region Region and East India
Pre- Central India, Bay Central India | Central India, Bay Local regions
monsoon | of Bengal, Western of Bengal,
India Western India and
Arabian Sea
Monsoon Local regions Local regions Local regions Local regions
(nearby receptor | (nearby receptor
locations) locations)
Post- Central India and Local regions Central India and Central India
Monsoon | Indo-Gangetic Plain Local regions

5.3.3 Cluster Analysis for Hyderabad

Trajectory cluster analysis was carried out to group trajectories with similar characteristics.
The K-means algorithm was used in the study for Cluster analysis. The threshold value was based
on the daily base pollution criteria value was set by 60 pg/m2. The polluted mean and deviation
also associated with more than the 60 pug/m?of PM, s concentrations over study region. The results
of CA for the surface layer are presented in Figure 5.8 (a, b, ¢, and d). The results obtained using
the Trajstat tool are presented in Table 5.4. The trajectories in the study area are grouped into 6
clusters. The color indicates the elevation of the trajectory — red refers to higher elevation while
blue refers to lower elevation. In winter, the maximum contribution (38%) was from cluster 11l
which was from East India, Central India, and West India. The polluted mean concentration was
72.65 pg/m® and 61 polluted trajectories. Cluster 4, from the Bay of Bengal, is contributing to
maximum PMzs (31.3%) in pre-monsoon. Cluster analysis also indicated long and short-range
transport pollution. For instance, in the monsoon season, the pollution is contributed by long-range
air mass while in winter it is observed that pollution can be contributed by both long-range
(Clusters Il and 1V) and short-range (Cluster I, 11, V, and V1) air masses observed from the Figure

5.8(a).
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For Monsoon, the maximum contribution (22%) was from cluster 1 arising from West India and

the Arabian Sea; while for post-monsoon, the maximum contribution (29%) was arising from Indo

Gangetic Plain and East India. In monsoon, the contributions from lower elevations dominated as

there were not many contributions from higher elevations due to rainfall. Also, the lower elevation

trajectories were from nearby regions in India. The elevated trajectories were mostly from far away

regions indicating long-range transport.

Table 5.4 Polluted clusters and associated trajectory’s numbers at surface layer
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Figure 5.8 Cluster analysis for surface layer.

Clus | Number Mean value | Standard Polluted Polluted mean Polluted Ratio (%) of
ter | trajectory of PMas deviation | number value of PMa2s Standard each cluster
S.N (Lg/m3) trajectory (ug/m3) deviation end points
o
Winter
| 202 72.05 8.43 179 74.52 4.83 21.6
Il 45 65.21 11.61 29 72.81 5.75 8.33
] 79 68.07 10.31 61 72.65 5.78 38.1
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I\ 163 64.46 12.43 98 73.33 5.55 13.52

\ 42 63.71 14.23 26 73.4 5.29 7.22

Vi 53 63.54 10.32 35 72.32 5.23 11.23

Pre_monsoon

I 118 43.85 7.96 0 0 0 18.29
Il 49 48.85 10.7 6 69.44 7.18 7.91
1] 51 50.71 10.54 9 66.14 4 7.91
\% 199 48.42 11.73 38 66.79 4.4 31.3
Vv 115 42.25 11.75 11 67.88 7.37 19.22
VI 98 47.53 9.57 11 66.37 5.69 15.3
Monsoon

I 154 21.9 5.16 0 0 0 22.59
1l 89 25.93 7.04 0 0 0 12.4
1] 111 34.64 12.9 10 62.54 2.57 17.15
v 124 18.9 3.62 0 0 0 18.9
Vv 133 21.75 4.92 0 0 0 20.9
VI 55 32.85 9.82 2 63.91 4.78 7.95

Post-monsoon

| 97 55.11 19.22 42 71.21 6.44 29.23
Il 60 50.37 23.19 24 70.21 5.04 17.76
i 55 40.79 13.32 4 67.08 5.91 15.03
I\ 26 54.95 25.27 15 72.26 541 8.20
\) 67 42.98 22.13 16 69.31 6.21 22.40
Vi 16 33.33 27.28 4 72.18 7.53 7.38

Cluster 111 was more contributing in the Winter season, In the pre-monsoon season cluster 1V
trajectories are influencing the receptor location pollution levels from the Bay of Bengal region.
The monsoon season was dominated by cluster | (ratio of 22.59%) from the Arabian region.

Cluster I predominate regions from central India and the IGP region with a ratio of 29.23% in Post
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monsoon season. The least number of polluted trajectories in all clusters was observed in the

monsoon season.

The results of CA for the elevated layer are presented in Figure 5.9 (a, b, ¢, and d) and Table 5.5.
In the winter season, trajectory IV indicated the highest contribution (57%) and the polluted mean
value of 73.17 pg/m?®. The trajectory was from Central India and West India. Cluster II contributed
a maximum (23.72%) in pre-monsoon season and it was mostly from the Bay of Bengal and local
regions. Most of the clusters in the monsoon season were from the Arabian Sea with a maximum
(23.16%) contributed by Cluster V. In post-monsoon, the maximum contribution was by Cluster
IV, indicating long-range transport of PM2s. The mean PM2s concentrations contributed by
trajectories are well below the NAAQS standard (60 pg/m®). Bycenkiené et al., (2014) also
employed 6 clusters in their study on the Baltic region and reported relative contributions by
clusters from different regions. However, there was no comprehensive study reported for the study

area and the region indicating probable source contributions using AOD and MODIS data.

Monsoon Post-monsoon
Figure 5.9 Cluster analysis for elevated layer.
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Table 5.5 Polluted clusters and associated trajectory’s numbers at Elevated layer

Clus | Number Mean value | Standard Polluted Polluted mean Polluted Ratio (%)of
ter | trajectory of PMas deviation | number value of PMa2s Standard each
S.N (ng/md) trajectory (ug/m3) deviation cluster end
o] points
Winter
I 35 67.31 9.93 24 72.89 6.13 18.6
Il 43 71.09 7.92 39 73.1 4.8 9
1l 23 64.09 11.09 16 70.01 7.03 12.6
v 57 68.8 9.5 a4 73.17 4.8 57
\" 7 66.85 1.89 5 72.67 5.19 3.54
\ 29 68.26 10 19 74.68 4.7 14.65
Pre monsoon
| 38 50.95 10.7 8 65.81 2.95 9.30
Il 101 46.1 10.18 10 67.1 6.05 23.72
1l 47 46.78 10.8 6 69.95 6 10.93
v 72 48.33 10.31 8 67.03 4.56 16.74
\ 51 48.51 11.8 7 67.56 8.56 12.09
\ 111 44.94 10.99 11 65.99 34 27.21
Monsoon
| 105 19.18 3.84 0 0 0 22.75
Il 70 22.77 5.92 0 0 0 17.62
il 50 3.89 10.25 0 0 0 10.25
v 96 23.99 6.58 0 0 0 19.67
\ 104 30.53 12.6 8 62.77 2.85 23.16
\ 29 21.03 4.15 0 0 0 6.56
Post monsoon
| 26 56.38 24.59 16 72.17 5.57 131
Il 36 38.56 21.38 5 70.59 7.19 17.2
1l 45 45.27 20.89 12 68.1 6.56 213
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v 58 58.26 20.08 33 71.54 5.75 25
\% 21 44.42 15.59 1 74.2 0 8.61
Vi 28 39.25 17.67 3 69 7.82 14.75

5.4 Wind rose analysis.

In order to determine the maximum frequency of the wind direction and wind speed based
on wind rose analysis. The wind roses represent the ground-level winds. The wind rose plots are
drawn utilizing Openair package in R program language (Carslaw and Ropkins, 2012). The
analysis indicates that the dominating wind direction at Zoopark location was from the E and SE
direction at the Zoopark location in the winter season, with nearly 20% of winds from the East
direction. The dominating wind direction was from the SE and SW direction at the Zoopark
location in autumn season. The mean and standard deviation of wind speed at Zoopark were in the
range of 0.78+0.7. The analysis of the wind rose and backward trajectory data revealed consistent
patterns in the wind direction within the surface layer. The observations indicated a striking
similarity between the wind directions obtained from the backward trajectory analysis and the
actual wind directions at the receptor location. This alignment between the two datasets suggests
similar agreement in the wind patterns at the location of interest. The findings from both analyses
provide robust evidence of a consistent wind flow pattern in the surface layer.

Below are wind rose diagrams for various locations Figure 5.11 illustrates that Sanathnagar
experiences high wind speeds during the summer season, while the winter and autumn seasons
exhibit the least wind speeds with a consistent dominant direction from the southeast. Additionally,
moderate winds are observed in the autumn season. Notably, there is a sudden change in wind
direction from summer to autumn in the Sanathnagar region. The observed mean and standard
deviation of wind speed fall within the range of 1.25+0.5. Figure 5.12 displays the seasonal wind
rose patterns for Patancheru. Dominant winds are observed during the summer season, while the
least winds are noted in winter season. Moderate winds are evident during the spring and autumn
seasons. In the summer, winds predominantly come from the southwest, while in all other seasons,
they are dominated by southeast directions at Patancheru. The mean and standard deviation of
wind speed were observed as 1.26+0.7. Figure 5.13 illustrates the wind pattern at IDA. The
location exhibits dominant winds from the south in the spring season and west in the summer. In

the autumn and winter seasons, winds predominantly come from the southeast. A sudden change
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in wind direction is observed from summer to autumn in the wind direction. The mean and standard
deviation of wind speed at IDA were observed as 2.1+£0.9. Figure 5.14 displays the wind rose for
Central University. High wind speeds are evident in the summer season, while moderate winds
prevail in the spring season. In both these seasons, winds come from the southwest and southeast
directions. In the autumn season, moderate winds from the east direction are observed. During the
winter season, winds come from two directions, one from the south and another from the east. The
mean and standard deviation of wind speed were observed as 1.6+0.6. Figure 5.15 showcases the
wind rose for the Bollaram location. During the summer season, winds dominate from two
directions, with high wind speeds from the west and moderate winds from the east. In the autumn
and winter seasons, prevailing winds come from the southeast direction. In the spring season,
winds predominantly originate from the south direction. The mean and standard deviation of wind
speed were observed as 2.6£1.9. In this study, the Bollaram location exhibited the highest wind
speeds overall, while the Zoo Park location recorded the lowest. Across all locations, the summer
season consistently displayed stronger winds, whereas the winter season consistently had the

lowest wind speeds.
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Figure 5.10 Zoopark wind rose diagram for all seasons
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Figure 5.11 Sanathnagar wind rose diagram for all seasons
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Figure 5.12 Patancheru wind rose diagram for all seasons
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Figure 5.14 CU wind rose diagram for all seasons
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Figure 5.15 Bollaram wind rose diagram for all seasons

5.5 Summary

In this study, ground-level PM2 s retrieval was attempted using meteorological conditions and
MODIS Aqua/Terra AOD. Multiple regression analysis using AOD and meteorological conditions
suggested that the MODIS Terra aerosol products were in reasonable agreement with predicted
PM2 s concentrations. Source identification based on trajectory-based studies by CWT, PSCF, and
cluster analysis indicated long-range transport of the PM2 s and potential source regions. East India
and Coastal regions were the potential source regions in the winter season. Potential sources
perhaps are biomass burning and anthropogenic activities from the source regions. The clusters
provided the main mechanism of transporting paths toward the receptor. The high PM.s aerosol
mass concentration at Hyderabad reflects high emissions by local sources such as vehicular
transport and other anthropogenic activities. During the winter season, the surface layer
experienced the highest levels of pollution, particularly originating from the East coastal regions.
These pollution levels were exacerbated by prevailing atmospheric stability conditions. PSCF
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analysis indicates dominating source regions from the Central India, East India and Coastal region
in the winter season. As compared to other seasons winter season was dominating pollutions in the

study region.

The meteorology conditions influence the ground-level particulate concentration and
transboundary aerosols. The estimation of PM2.5from MODIS Terra AOD and meteorology
conditions the best-fit prediction method at Zoo park location. Research reported indicated a
positive correlation between AOD and ground-level PM2s concentrations. In this study, the
elevated layer demonstrated the long transport of pollutants from faraway regions like central

India, North West India regions, and East India regions.
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Chapter 6 Conclusions

6.1 General

In the present study, an attempt was made to study regional air pollution in two urban locations of
Telangana. For Warangal, the study focused on sampling PM2s, and subsequent analysis was
carried out to find the heavy metals bound to the particulates. Enrichment factor analysis was
performed to identify anthropogenic sources of heavy metals. Heavy metals are significantly found
with PM: s, especially in regions dominated by industry, traffic, and other human activities. Both
PM2s and heavy metals are of great concern in view of their persistence and toxicity. The risk
associated with inhalable PM2s along with heavy metals in adults and children was attempted.
Source identification studies based on Concentration Weighted Trajectory (CWT), Potential
Source Contribution Function (PSCF), and cluster analysis were attempted to arrive at regions
contributing to pollution.

Subsequently indirect method of using AOD data from satellites for PM2 s retrievals and
use in back trajectory analysis was demonstrated. Hyderabad, which is the capital of Telangana
state, is dominated by several anthropogenic activities that result in the degradation of air quality.
In this context, an attempt is made in this study, to use CWT, PSCF, and CA for identifying the
pollutant source contributions by different regions. The results of the study can be used for the

mitigation and regulation of air pollution in the region.

6.2 Conclusions

The concentrations of PM.s and heavy metals bound to PM2s in Warangal are high in the post-
monsoon season. However, the PM2s concentrations observed were lower than the standards
prescribed by NAAQS (60 pg/m® — 24 hr-average). Ambient heavy metals bound to PMs were
significant due to emissions from traffic and other anthropogenic activities in urban areas. Zn, Fe
and Cu concentrations in PM2 s were significantly higher compared to the concentrations of Ni and
Cd. The order of occurrence of heavy metals in descending order was found to be:
Zn>Fe>Cu>Ni>Cd. High EF values for Zn, Cu, and Cd indicate higher emissions from combustion
and industry. Health risk assessment showed that the ingestion pathway dominates over the dermal
and inhalation pathways. Based on HQ and HI index, it may be concluded that there is no
significant non-carcinogenic and carcinogenic risk from the metals considered in the study.

However, the health risk in children was higher when compared to that for adults. Long-term
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sampling can help in better understanding the variations in PM2s and metal concentrations.
Significant concentrations of few heavy metals bound to PM2 s demand for implementation of air
pollution control strategies. From the CWT, PSCF, and cluster analysis, it was concluded that the

contributions from the West and North-West regions of India dominate at the receptor location.

In this study, an assessment of ground-level PM2s over Hyderabad region based on
multiple regression analysis with the meteorology and retrieved MODIS AOD Terra/Aqua product
was attempted. The study suggested that the MODIS Terra AOD product was seen as the best fit
for the prediction of PM2s at the Zoo Park location among the six locations. For other locations,
there was a positive correlation with moderate results in terms of applicability. Trajectory based
CWT method, PSCF model, and cluster analysis were performed with the seasonal data for winter
(December-April), pre-monsoon (April-June), monsoon (June-September), and post-monsoon
(October- December) in order to recognize the source paths, regions, and clusters contributing to
PM25 concentrations at the receptor locations. The study identified the long-range transport of
PM:25 and potential source regions contributing to PM2s. Central India, East India, and Coastal
regions were the potential source regions in the winter season at the surface and elevated layers.

The long-range transport was predominantly from open biomass burning and open coal
mine activities. Cluster analysis considered 6 clusters for identifying the probable transporting
paths toward the receptor location. The Surface layer Cluster 111 was the more dominating region
in the Winter season with a polluted mean concentration of 72.65 pug/m®. Lower boundary layer
and low wind speed conditions in winter lead to the entrapment of particulates within the surface
level resulting in high ground-level PM2s concentrations. The lowest number of polluted
trajectories in all clusters was observed in the monsoon season at both layers. This is possibly due
to the minimum pollution contribution in winter. The high PM2s aerosol mass concentration in
Hyderabad City reflects high emissions from local sources such as vehicular transport and
anthropogenic activities in addition to long-range transport as well. With the help of cluster
analysis, major clusters contributing to ambient concentrations of PM2s are identified for all
seasons. Furthermore, the contributions were determined and the corresponding number of clusters
and their percentage contributions are established. However, choosing a number of clusters for CA
is complicated as a lot of information is required to decide the number of clusters for using CA in

air pollution analysis. This aspect is perhaps the limitation of cluster analysis.
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Long-range potential source regions of PM2 s pollution and their impact on Hyderabad City
is assessed during the study. The results of our study offer scientific backing for formulating
pollution control measures specific to different regions. Nevertheless, it is important to
acknowledge the limitations of the study. For instance, the resolution of the study grid (0.5°X0.5°),
based on the backward trajectory model, is not a sufficiently high resolution to be applicable to
small-scale regions. Additionally, the estimation of PMa2s sources is not flawless, as the
calculations solely rely on meteorological data and do not incorporate factors such as dust
production and deposition.

6.3 Recommendations

The study yielded valuable insights regarding the policy implications concerning PMas
pollution in the study region. The findings are beneficial for developing effective pollution control
and prevention measures, emphasizing the need for the government to prioritize the regulation of
pollutant sources while considering the migration of regional pollution caused by these sources.
To illustrate, by analysing the transport patterns of pollutants, it is possible to classify and divide
the surrounding pollutant source regions. This discovery suggests the implementation of diverse
control and management policies, tailored to each region, to effectively curb pollution. Given that
Hyderabad is significantly affected by short-distance pollutant transport from neighboring regions,
particular attention should be given to mitigating such transport. For instance, implementing
intensive greening measures can help reduce the long-distance transport of PM.s. Additionally, it
is crucial to consider the interactions between the city and its surrounding areas, promoting

collaborative control and cooperation among different regions.

The PhD work provides valuable insights and recommendations for the development of
effective and efficient policies to reduce the air pollution in Warangal and Hyderabad, as well as
other similar locations in India and elsewhere. | have also highlighted the main policy implications

of the PhD work, such as:

e The need for more comprehensive and representative monitoring and assessment of PM2.5
concentration and sources, using a combination of ground-based, satellite-based, and low-
cost sensor data and methods.

e The need for more stringent and specific emission standards and regulations for the major

sources of PM2.5, such as vehicles, industries, biomass burning, and dust.
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e The need for more integrated and coordinated policy actions and interventions across
different sectors and levels of governance, such as transportation, energy, agriculture,
urban planning, and public health.

e The need for more control rules and advanced methods in the coal mining activities to
decrease the pollution at the source location.

e The need for more strict guidelines following the forest department to control forest fires
and improvement in the forest area. the air pollution at the source location

e The need for more public awareness and participation in the policy making and
implementation process, as well as the promotion of behavioural changes and alternative

practices to reduce the exposure and impact of PM2.5.

6.4 Scope for further study

e In this study, three approaches are used for implementation trajectory-based CWT, PSFC,
and CA are used. In the first case, sampling data is used for Warangal, and in the second
case, AOD and secondary data of PMzs is used for attempting CWT, PSFC, and CA.
However, the integration of sampling and secondary data will ensure accurate data inputs
and hence, better results. This was not attempted for want of finances and time for sampling
over the entire region.

e The use of machine learning and deep learning models with satellite data as the input for
air pollutant forecasting is a good area for further research. MODIS, TROPOMI, and OMI
satellite data could be used for the forecast.

e Theinclusion of wind patterns, rainfall patterns, land use changes, and even climate change
can be useful for in-depth analysis and modelling.

e Inclusion of source inventory especially traffic data (hourly average vehicle data) and
transport emissions and industrial emissions as input can lead to fingerprinting of sources.

e CWT and PSCF analysis as well as additional work that combines emission sources and
externally monitored PM. s concentration data is needed to improve the prediction of PM2 s
source regions and validate the analysis results quantitatively. Furthermore, analyses for
various years will be further conducted to assess the inter-annual variability. The use of
advanced deep learning models could be experimented with larger data sets to achieve
better results.
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