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Abstract 

Air pollution is a major cause of illness and death in the world, but inadequate ground-based 

monitoring (both spatial and temporal) hampers effective air quality management. To address 

this challenge, satellite data can play a crucial role. Over the past two decades, various sensors 

worldwide have routinely measured Aerosol Optical Depth (AOD), to provide qualitative 

information about air quality. Recent advancements in satellite retrieval and modelling 

techniques now allow us to estimate PM2.5 levels from AOD, enabling quantitative 

applications.  Additionally, the current network of 308 monitoring stations in India is 

inadequate and unevenly distributed, which limits accurate measurement of air quality and in 

particular PM2.5, which has detrimental effect on human health. The lack of air quality 

monitoring network in many parts of the country further emphasizes the necessity for more 

monitoring sites. By utilizing satellite-based AOD data, this study aims to estimate ground-

level PM2.5 concentrations and hence, the associated health risks. If these estimations are 

validated, monitoring becomes inexpensive and investments on monitoring networks can be 

limited.  

PM2.5 in the atmosphere is widely reported, but few studies have focussed on the metal-

bound particle concentration of PM2.5 in urban areas. The present study on Warangal, aims to 

quantify Heavy Metals (HM) concentration associated with PM2.5.  The average daily PM2.5 

values were found to be above the annual average (40 µg/m3) set by the National Ambient Air 

Quality Standard (NAAQS) of India. Slightly higher concentrations of Zn and Fe were 

observed as compared to Cu, Ni and Cd. The order of heavy metal based on the concentration 

levels was as follows: Zn>Fe>Cu>Ni>Cd (higher to lower concentration). Analysis of 

enrichment factor showed that the Zn, Cu and Cd fall in the highly enriched element category. 

Based on health risk assessment for three intake pathways, the risk of exposure was found to 

be in the following order: Ingestion>Dermal>Inhalation. Non-carcinogenic and carcinogenic 

risks for children and adults were found to be negligible. Source identification of all the 

elements and PM2.5 study based on Concentration Weighted Trajectory (CWT), Potential 

Source Contribution Function (PSCF) and cluster analysis results indicated dominant 

contributions from West and North-West regions of India. Furthermore, cluster IV was 

reported to have high significance (with 27.11%) and dominant contributions of trajectories 

were observed from the regions of Maharashtra, Chhattisgarh, Rajasthan, and Madhya Pradesh 

over the Warangal region.  
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The results of the source identification study observed that the gap in the spatial pattern was 

due to limited primary data collected during the study period. Backward trajectory 

methodologies require huge data to arrive at accurate source regions. To address this challenge, 

PM2.5 retrievals were attempted for the Hyderabad region using satellite AOD and 

meteorological data. Satellite measurements are important for quantifying the ground 

observations and atmosphere columnar properties like AOD, especially in developing countries 

like India. In this study Moderate Resolution Imaging Spectroradiometer (MODIS) retrieval’s 

AOD product has been used having 3 km and 10 km spatial resolution from Terra and Aqua 

satellites. The MODIS AOD data and meteorological parameters from May 2017 to May 2019 

were used. The Multiple linear regression method is implemented in this study. The study 

concluded that there is good agreement in the prediction of PM2.5 at the Zoopark location. The 

PM concentrations are influenced by the local source regions and the long-range transport of 

pollutants through the wind, whereas the potential source regions identified based on the PSCF, 

CWT, and Cluster analysis. The cluster analysis indicated that the Winter season surface layer 

trajectories with a ratio of 38.1% (cluster III) have a high intensity from Central India (Madhya 

Pradesh and Chhattisgarh). In the pre-monsoon season cluster IV dominated with a ratio of 

31.3% from the Bay of Bengal region. As well as the elevated layer analysis showed that the 

Winter season cluster IV (57%) was predominantly from Central India. Results indicate that 

the Central India and East India regions are the more dominating source regions at the 

Hyderabad location in the winter season. It was found that the lower altitude layer showed the 

major source of the local region's nearby receptors.  

The cluster analysis concluded that Central India was the major dominating region in 

the surface and elevated layers at Hyderabad regions. The long-range transport of the sources 

may be due to open-cast coal mining and open biomass burning. The study also briefs on the 

intensity of surface and elevated layer transport of PM2.5 at receptor locations. The surface layer 

pollutants are more dominating at the receptor location compared to the elevated layer 

pollutants. The results of the study can help policymakers to implement mitigation measures 

and formulate suitable regulations to reduce the health risk associated with PM2.5 and heavy 

metals in the atmosphere. Methodological improvements in back trajectory receptor models 

(like 3D trajectories, wind speed analysis, import of data from dispersion models, the height of 

mixing layer, etc,.) can improve the findings of the study and help in regional air quality 

management. 

 Keywords: PM2.5, Heavy Metal, Health Impact, Backward trajectory, and Cluster 

analysis.  
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Chapter 1 Introduction 

1.1 Background 

The World Health Organization (WHO) has been monitoring and studying the effects of 

air pollution on human health for several decades. Air pollution is a major environmental risk to 

health, causing an estimated 7 million premature deaths annually worldwide (WHO, 2009). 

WHO's research shows that air pollution is linked to a range of health problems, including 

respiratory and cardiovascular diseases, cancer, and adverse birth outcomes. According to the 

World Health Organization, air pollution is the contamination of the environment both indoor and 

outdoor by any type of chemical, physical or biological agents that may lead to modification in the 

natural characteristics of the atmosphere (Hoffmann et al., 2021).  

The sources of air pollution are diverse, including industrial emissions, transportation, 

open-cast coal mines, biomass burning, and forest fires. Particulate matter (PM), Nitrogen oxide 

(NOx), Sulfur Dioxide (SO2), Ozone (O3), and Carbon Monoxide (CO) are among the most harmful 

air pollutants. The burden of incident childhood asthma may be attributable to outdoor Nitrogen 

Dioxide (NO2), PM, and Black Carbon (BC) in Europe (Khreis et al., 2019). WHO provides 

guidance and technical support to countries and works to raise awareness about the health impacts 

of air pollution. The organization has set air quality guidelines to protect public health and 

recommends measures such as promoting clean energy sources, improving transportation systems, 

and reducing emissions from industrial and household sources. WHO also works with 

governments and other stakeholders to strengthen the monitoring and reporting of air pollution 

levels and to develop policies to reduce exposure to air pollution. 

Source reduction of pollutants is the best and most efficient method for controlling 

pollution. However, for source reduction, it is essential to identify the sources of pollution in the 

ambient air. As there are several sources for a particular pollutant under consideration, source 

apportionment (SA) methods are used for the identification of the source and categorization. 

However, these methodologies like Chemical mass balance (CMB), Positive matrix factorization 

(PMF), and Principal components analysis (PCA) are time-consuming processes. Hence that the 

backward trajectory analysis, introduced by the NOAA’s Air Resources Laboratory (ARL)- 

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model run interactively on 
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the Real-time Environmental Applications and Display system (READY) web site is used by 

researchers. 

Reducing ambient PM2.5 levels requires a concerted effort from governments, industry, and 

individuals. Strategies to reduce ambient PM2.5 levels include improving energy efficiency, 

increasing the use of renewable energy sources, promoting cleaner transportation, and 

implementing regulations to reduce emissions from industry. Implementing these strategies will 

not only reduce the health impacts of ambient PM2.5 but also contribute to a healthier and more 

sustainable environment 

1.2 Atmospheric aerosol science 

Pollution levels become colossal problems in Indian cities not only in urban regions but in the rural 

regions as well. The reasons include an increase in industries, vehicle population, and lifestyle 

changes. The  Indian population is exposed to the highest level of particulate pollution 

(Ravishankara et al., 2020; Sharma and Kulshrestha, 2014) because of the increase in fine 

particulate matter that affects the environment and health (Balakrishnan et al., 2018; Niu et al., 

2022). The outdoor biomass burning releases enormous concentrations of particulate matter which 

are dispersed to faraway locations also depending on meteorological conditions. The sources 

contributing to PM2.5 in ambient air are shown in Figure 1.1 The emitted pollutants undergo 

dispersions in the atmosphere contributing to pollution through long-range transport. 

 

Figure 1.1 PM2.5 sources and dispersion of air mass to the receptor location. Source:(Banerjee et 

al., 2015a) 
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In addition to ambient air quality, indoor air quality also affects human health and results in 

different health problems (Datta et al., 2017). Indoor air quality is reported to influence 

development as well (Rohra and Taneja, 2016). Exposure and risk assessment of concentrations 

of fine and coarser particles indicate that finer particles cause higher carcinogenic risk than 

particles in coarse fractions (Shikha et al., 2023). Many studies reported that the PM2.5 and PM10 

concentrations in Indian cities are higher than the prescribed standards (Ambade, 2014a; Das et 

al., 2015). However, the accumulation of toxic heavy metals with particulates associated with air 

pollution by various sources is a challenge. The fine particles from coal combustion and non–

ferrous metal smelting units are associated with heavy metals.  Particulates from the above sources 

are reported to contribute toxic metals (Cr, Ni, Zn, Mo, Sn, Sb, V, Co, Cu, Cd, and Pb) in the PM2.5 

fraction (Das et al., 2015).  Enrichment factor analysis reveals that metallic pollutants are emitted 

from anthropogenic sources or associated with natural sources (Ambade, 2014a).  

1.3 Ambient PM2.5 bound heavy metals 

Ambient PM2.5 refers to particulate matter in the air with a diameter of 2.5 µm or less. These 

particles can be emitted directly into the atmosphere by sources such as transportation, power 

generation, and industrial processes, or they can be formed through chemical reactions between 

other pollutants in the atmosphere. The PM2.5 particles penetrate deeply into the lungs when 

inhaled or find entry through different pathways which can cause a range of health problems, 

including respiratory and cardiovascular diseases. These particles can also travel long distances 

through the air as a media to influence the other regions, which means that air pollution can be 

transported from one region to another, affecting air quality in areas far from the origin source of 

pollution (Liao et al., 2017; Shanavas et al., 2020). 

However, the ambient PM2.5 levels are monitored by regulatory agencies to ensure that they meet 

established air quality standards. In many parts of the world, ambient PM2.5 levels exceed these 

standards. Ambient PM2.5 has a significant impact on the world's population, making it one of the 

leading environmental risk factors for death and disease. Exposure to high levels of ambient PM2.5 

can also worsen pre-existing health conditions, such as asthma and chronic obstructive pulmonary 

disease. Ambient PM2.5 also has environmental impacts, such as contributing to climate change 

and reducing visibility. Additionally, PM2.5 can harm ecosystems and agricultural productivity, as 
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well as damage buildings and monuments. Air pollution is a leading risk factor for stroke, heart 

disease, and lung cancer. 

The State of Global Air Report (Health Effects Institute and the Institute for Air Pollution and 

Brain Outcomes in Children) reveals that air pollution affects the development of the brain. A 

strong correlation was noted between many pollutants and prenatal and childhood exposure 

(Mònica et al., 2022). The Air Quality Life Index, developed by researchers at the Energy Policy 

Institute at the University of Chicago, estimates that air pollution, including ambient PM2.5, 

reduces global life expectancy by an average of 1.8 years, and by more than 4 years in some 

countries (Lee and Greenstone, 2021). The study also highlights the significant impact of ambient 

PM2.5 on human health and the urgent need for action to reduce air pollution levels worldwide. 

Heavy metals released into the atmosphere can remain suspended in the air for extended periods 

and can be transported over long distances. Common heavy metals found in ambient air include 

Lead, Cadmium, Mercury, Arsenic, Chromium, and Nickel (Ambade, 2014a; Khan et al., 2020; 

Tian et al., 2015). Exposure to high levels of these metals in ambient air can pose a significant 

health risk to humans and wildlife.  Once in the body, heavy metals can accumulate in tissues and 

organs, leading to a range of health problems, including respiratory and cardiovascular diseases, 

neurological disorders, and cancer. To reduce the health risks associated with exposure to ambient 

heavy metals, it is important to monitor and reduce emissions from sources such as transportation 

and industry and to take steps to improve air quality in affected areas. This includes implementing 

regulations to limit emissions of heavy metals from industrial processes, promoting the use of 

cleaner transportation options, and encouraging the use of cleaner sources of energy. 

1.4 Health impact of ambient Heavy metals  

The impact of heavy metals in ambient air is significant even while the concentrations are low.  Zn 

is an essential trace element that plays a crucial role in numerous biological processes in the human 

body. It is necessary for proper immune function, growth and development, wound healing, and 

enzyme activity. While zinc is essential for health, excessive exposure to zinc, particularly in 

ambient environments, can have adverse effects on human health. The impact of Zn on human 

health can vary depending on specific circumstances, concentrations, and individual susceptibility. 

Therefore, considering local environmental conditions, regulatory measures and individual factors 

is crucial when assessing the potential health risks associated with zinc exposure. High levels of 
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zinc ingestion can cause gastrointestinal disturbances such as nausea, vomiting, abdominal cramps, 

and diarrhea. Acute ingestion of large amounts of zinc can lead to stomach and intestinal irritation. 

Copper (Cu) deficiency shows that excessive zinc intake can interfere with the absorption and 

utilization of copper in the body. Prolonged high levels of zinc can lead to copper deficiency, 

which may result in anemia, neurological symptoms, and impaired immune function. Respiratory 

effects include irritation in the respiratory system and respiratory distress, coughing, and difficulty 

in breathing. Occupational exposure to high levels of zinc fumes, particularly in industries like 

galvanizing or welding, can lead to a condition called metal fume fever. To minimize the potential 

impact of ambient zinc on human health, the following measures can be taken occupational safety, 

consuming a balanced diet that includes foods rich in zinc, and adequate but not excessive zinc 

intake is important to maintain proper health. However, it is important to note that zinc toxicity 

from ambient exposure is relatively rare and Zn primarily occurs through ingestion of large 

amounts of zinc supplements or occupational exposure to high levels of zinc. For most individuals, 

maintaining a balanced diet and following recommended zinc intake guidelines are sufficient to 

meet nutritional needs without posing a significant health risk. 

Iron (Fe) is an essential nutrient for the human body and plays a vital role in various 

physiological processes. However, excessive exposure to iron, particularly in ambient 

environments, can have adverse effects on human health. The health effects of iron exposure 

depend on the dose, duration, and route of exposure. Gastrointestinal effects, iron overload 

disorders, and iron overload can lead to organ damage, including liver cirrhosis, heart problems, 

and diabetes. Excessive iron levels can contribute to oxidative stress, which may damage cells, 

tissues, and DNA, potentially increasing the risk of various diseases, including cardiovascular 

disease, neurodegenerative disorders, and cancer. As with any heavy metal, the impact of ambient 

iron on human health can vary depending on specific circumstances, concentrations, and individual 

susceptibility. Therefore, considering local environmental conditions, regulatory measures and 

individual factors is crucial when assessing the potential health risks associated with iron exposure. 

One of the most dangerous substances to which a person may be exposed at work or in the 

environment is cadmium (Cd), a by-product of the manufacturing of zinc. Cd is efficiently 

preserved in the human body, where it builds up throughout a lifetime and is toxic to the kidney, 

especially to the proximal tubular cells, either through direct bone damage. The overall impact of 
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the kidneys and bones may be negatively impacted by the current levels of Cd in industrialized 

zones (Bernard, 2008). According to Nawrot et al., (2006), lung cancer development is associated 

with an increased Cd. 

Nickel (Ni) is a heavy metal that can have an impact on human health when present in ambient 

environments. Exposure to nickel can occur through inhalation, ingestion, or dermal contact with 

nickel-containing particles or compounds. Which influences the allergic reactions contact 

dermatitis, which is characterized by skin redness, itching, and rashes. People with a nickel allergy 

may experience these symptoms when they meet nickel-containing objects like jewellery, coins, 

or metal alloys. Fumes with Ni lead to respiratory effects like irritation of the respiratory system, 

coughing, wheezing, and shortness of breath. High-level exposure to nickel compounds, 

particularly nickel sub sulfide is linked to an increased risk of lung cancer. Asthmatic reactions 

such as difficulty in breathing and chest tightness are also associated with Ni ingestion. Nickel 

refining by-products are carcinogenic to humans. Industries like mining, smelting, and nickel 

refining, are associated with an increased risk of lung and nasal cancers. The regulation includes 

implementing engineering controls, providing personal protective equipment, and conducting 

regular monitoring of workplace air quality. Environmental regulations by government agencies 

establish and enforce regulations within acceptable environmental standards. This helps to reduce 

the overall ambient nickel levels in the environment. 

Cadmium (Cd) is a toxic heavy metal that has adverse effects on human health when present in 

the ambient environment. Exposure to cadmium can occur through inhalation of contaminated air, 

ingestion of contaminated food or water, or direct dermal contact with cadmium-containing 

materials. The health effects of cadmium include kidney damage, and kidney dysfunction, leading 

to conditions such as tubular proteinuria, renal tubular dysfunction, and ultimately, kidney failure. 

Cadmium can interfere with calcium metabolism, leading to reduced bone density and increased 

risk of osteoporosis, including joint pain and fractures. Occupational exposure to cadmium has 

been linked to an increased risk of lung cancer. Reproductive and developmental effects are high 

levels associated with adverse reproductive effects, including reduced fertility and potential harm 

to fetal development. Some studies suggest that chronic cadmium exposure may contribute to 

cardiovascular diseases. Cadmium contamination like certain shellfish, cereals, and vegetables, 

can help reduce dietary exposure. Public awareness about cadmium exposure can help individuals 
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make informed choices and take appropriate precautions to minimize their exposure. It is important 

to note that the impact of ambient cadmium on human health varies depending on the specific 

circumstances and concentrations involved. 

Copper is an essential trace element required for various physiological processes in the human 

body. It is necessary for optimal health in small amounts, and gastrointestinal distress, including 

nausea. This is often associated with acute exposure or accidental ingestion of copper-

contaminated substances. Prolonged exposure to elevated levels of copper can lead to disrupt liver 

function. Neurological symptoms such as tremors and cognitive impairments are associated with 

high Cu levels. Allergic reactions are possible on skin contact with copper-containing materials. 

Genetic disorders, such as Wilson's disease, are characterized by impaired copper metabolism and 

excessive copper accumulation in various organs, including the liver, brain, and kidneys. The focus 

should be on minimizing excessive exposure to copper, particularly from non-dietary sources or 

in cases of specific health conditions that require careful copper management, such as Wilson's 

disease. As with any heavy metal, the impact of ambient copper on human health can vary 

depending on specific circumstances, concentrations, and individual susceptibility. Therefore, 

considering local environmental conditions, regulatory measures and individual factors is crucial 

when assessing the potential health risks associated with copper exposure. 

The assessment of heavy metal contents in the ambient air of Coimbatore City, Tamil 

Nadu, India, revealed elevated levels of lead. The study emphasizes the importance of addressing 

the sources of HM pollution and implementing appropriate measures (Vijayanand et al., 2008). 

The health risks associated with heavy metals in coarse and quasi-accumulative particulate matter 

in Mumbai City, located on the Western Coast of India. The study identified the presence of six 

(Zn, Fe, Cu, Pb, Ni, and Cr) heavy metals at detectable and one (Cd) heavy metal at below-

detectable levels (Botle et al., 2020). 

1.5 Columnar properties of aerosols based on Satellite observations  

Satellite observations refer to the use of satellite instruments and sensors to gather data and 

information about the Earth and its environment from space. These observations provide valuable 

insights into a wide range of natural and human-induced phenomena occurring on our planet. 

Satellites are different types of sensors and instruments, including cameras, spectrometers, radar 

systems, and thermal sensors. Each sensor captures specific wavelengths of electromagnetic 
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radiation or other signals, allowing to study different aspects of the Earth's atmosphere, land 

surface, oceans, and other environmental variables. Satellite observations have proven to be crucial 

for remote areas such as difficult to take manual readings. Satellite monitoring is useful for some 

extent of research areas like weather Forecasting satellites provide continuous monitoring of the 

Earth's atmosphere, collecting data on cloud cover, temperature, humidity, wind patterns, and other 

meteorological parameters. This information is crucial for weather forecasting, storm tracking, and 

understanding climate patterns. Climate monitoring satellites play a vital role in monitoring 

climate-related variables, such as sea surface temperatures, ice cover, vegetation health, and 

atmospheric greenhouse gas concentrations. Long-term satellite observations contribute to 

understanding climate change and its impacts on the earth's climate. Environmental monitoring 

satellites helps in monitoring environmental changes and provide data on deforestation, land use 

changes, urbanization, pollution, and natural disasters like wildfires, floods, and hurricanes. This 

information aids in land management, conservation efforts, and disaster response planning. Air 

Quality Monitoring satellite observations contribute to monitoring air pollution by measuring the 

atmospheric composition and identifying sources of pollutants. This data assists in assessing the 

quality of the air we breathe and supporting efforts to mitigate pollution. Geology and Geophysics 

satellites with radar systems can map and monitor changes in Earth's topography, measure surface 

deformations caused by tectonic activity or volcanic eruptions, and detect the groundwater. These 

observations aid in geological and geophysical studies. 

Oceanography satellites provide valuable data on ocean currents, such as the sea surface 

temperatures, and other marine ecosystems. These observations are crucial for studying ocean 

circulation patterns, monitoring marine life, and understanding the impacts of climate change on 

oceans. Satellite observations provide a global perspective and enable scientists to gather data over 

vast areas, they complement ground-based observations and models, filling gaps in spatial and 

temporal coverage. These observations are vital for scientific research, policy-making, resource 

management, and understanding our planet's dynamic processes. 

Furthermore, satellite observations support various applications in sectors like agriculture, 

transportation, communication, and navigation systems. They contribute to disaster management, 

early warning systems, and humanitarian efforts during natural disasters. As satellite technology 

continues to advance, satellite observations are becoming increasingly sophisticated, providing 
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higher-resolution data, improved accuracy, and real-time monitoring capabilities. These 

advancements further enhance our understanding of the Earth's systems and contribute to 

addressing global challenges related to climate change, natural resource management, and 

sustainable development. Satellite observations clearly show the regional-scale changes in aerosol 

content as well as composition and absorption. The analysis of the aerosol loading in the last 2-

decades shows a positive (increasing) trend over Kanpur and other locations in South Asia 

(Ramachandran and Rupakheti, 2022). 

1.6 Source –receptor modeling 

The source of airborne particulate matter using receptor models has been widely practiced. In 

recent years factor analysis-based models such as Positive Matrix Factorization (PMF) and 

UNMIX have gained popularity in this field of source analysis. However, accurate interpretation 

of the results relies on understanding the various influencing variables involved in the modelling 

process. The main chemical species reported as markers in the source studies.  These species as a 

valuable resource for interpreting source profiles and enhancing the accuracy of source 

apportionment studies. The significance of considering multiple variables, employing appropriate 

sources, and understanding the complexities involved in source apportionment modelling to ensure 

reliable and meaningful results in the field of airborne particulate matter analysis. 

Air quality models simulate the impact of emission scenarios on pollutant concentrations. 

In certain cases, source-receptor relationships can replace these models to quickly represent the 

link between emissions and concentrations. Integrated Assessment Models also employ source-

receptor relationships for rapid scenario responses. This study introduces a new approach to 

designing a source-receptor relationship in air quality modelling. The approach reduces the number 

of simulations needed for training and offers flexibility in defining emission sources. A regional 

domain application demonstrates the effectiveness of the proposed approach. The following 

researchers demonstrated and included such type of study in the analysis of the source-receptor 

relationship. 

Soni et al., (2020) investigated PM10 and PM2.5 concentrations in Dehradun, Himalayas. The study 

indicated seasonal variations with higher concentrations in the winter season (PM10: 90 ± 32 μg/m³, 

PM2.5: 63 ± 27 μg/m³). The major sources identified in the study include soil/road dust, vehicular 

and industrial activities, mixed aerosols, and anthropogenic burning. Polluted aerosols at higher 
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altitudes indicated the movement of neighbouring region pollutants toward the receptor location. 

Health risks from PM inhalation were identified. The CALIPSO data assessed aerosol vertical 

profiles to study neighbouring pollution transport. 

Tasic et al., (2010), demonstrated the use of back trajectory analysis for source identification with 

the help of a 5-year PM10 dataset (2004-2008). PSCF values obtained in the study represent the 

conditional probability of higher PM concentrations being related to the passage of air parcels 

through specific cells during transport to the receptor site. Cells with high PSCF values indicated 

areas with potential high contributions of PM. HYSPLIT model was employed to compute 

backward trajectories at different heights above ground levels (300, 500, 1000, 1500, 2000, 3000 

m). Daily trajectories were evaluated for 2 days using a grid with 0.50 X 0.50 latitude and longitude 

cells. The study identified three PM2.5 sources - fossil fuel combustion (40%), metallurgical 

industry (13%), and resuspended road dust (47%). PSCF indicated frequent PM10 transport from 

the west, northwest, and southwest, suggesting multiple source regions. CWT analysis revealed 

local and regional sources as major contributors to PM10 concentrations. 

 The significance of implementing new emission inventories in Seoul, Korea reported a notable 

decrease in NO concentrations from 33.1 to 21.3 ppb (Vellingiri et al., 2016). Both trajectory 

analysis and potential source contribution function indicated that the primary source pathways 

responsible for the recent rise in NO2 concentration at the study site are the northern China region 

and local emission sources, emphasizing their significant influence (Li et al., 2022). 

The advanced 3D-PSCF-CONC method yielded important findings in the Metropolitan Area of 

São Paulo (Dos and Hoinaski, 2021). Local vehicular sources significantly contributed to pollution 

levels at the receptor, while long-range transport from industries and biomass burning impacted 

the region. Incorporating concentration fields improved source estimation accuracy, benefiting air 

quality management efforts. 

The majority of Source Apportionment studies (94% of 51 studies) are attempted during the period 

between 2007 and 2016 (Singh et al., 2017).  Approximately 55% of these studies focused on a 

few specific urban stations, namely Delhi, Dhaka, Mumbai, Agra, and Lahore. Due to the lack of 

local particulate source profiles and emission inventories, positive matrix factorization and 

principal component analysis were the primary choices (62% of studies), followed by chemical 
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mass balance (CMB) (18%). Metallic species were commonly used as source tracers, while back 

trajectory analysis methods were used less frequently. 

To update the emission inventories of primary PM2.5 from major sectors, a combination of source-

oriented and receptor models was utilized (Zhang et al., 2023). The Bayesian Inference method 

was employed to enhance the accuracy of these updates. To efficiently construct the source-

receptor sensitivity matrix, an adjoint model was developed. This matrix provided crucial 

information regarding the relationship between measurements and changes in emissions from 

different sources in various regions. 

1.7 NOAA HYSPLIT Back trajectory analysis 

NOAA's Air Resources Laboratory (ARL) conducts innovative research on the boundary 

layer, a critical part of our atmosphere. The studies in boundary layer chemistry and physics 

enhance regional weather, air quality, and climate predictions. ARL provides essential information 

and forecasts for emergencies like industrial accidents, wildfires, volcanoes, and severe air 

pollution events. By utilizing ARL's data, local managers can make informed decisions regarding 

evacuations. To establish all decisions HYSPLIT model is a versatile tool used for over 30 years 

in atmospheric sciences. It analyses air pollutant transport, identifies sources, and calculates 

concentrations using a hybrid approach. HYSPLIT tracks release, forecasts smoke, analyses dust, 

studies emissions, and assesses allergen and ash transport. With a user-friendly interface, it 

computes trajectories, supports various motion options, and integrates ensemble dispersion. The 

model also evaluates air concentrations, including particles, deposition, and multiple pollutants. 

HYSPLIT aids in understanding pollution dynamics, developing mitigation strategies, and is 

essential in air pollution research. HYSPLIT model enhances air pollution research with trajectory 

analysis, and air concentration capabilities, and automates source-receptor assessment. It supports 

ensemble trajectories, high-resolution simulations, and diverse meteorological datasets. Utility 

programs aid data manipulation. HYSPLIT enables comprehensive and accurate air pollution 

studies. 

The HYSPLIT model is a basic GUI interface model. Outputs can be displayed as postscript files 

and converted to GIF, GrADS, ArcView, and Vis5D formats for easy sharing. With continuous 

development, HYSPLIT remains valuable for air pollution research (Stein et al., 2015). Its robust 

capabilities and support for diverse meteorological data sources make it versatile. HYSPLIT aids 
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in investigating pollutant transport, dispersion, and deposition, understanding their impacts, and 

informing air quality management decisions. 

The incorporation of features from the Stochastic Time-Inverted Lagrangian Transport (STILT) 

model into the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model has 

resulted in a unified dispersion model that offers a wide range of applications and improved 

capabilities (Loughner et al., 2021). The ability to perform both time-forward and time-reversed 

simulations enhances the versatility and flexibility of the model. The inclusion of STILT's 

stochastic elements adds realism and uncertainty analysis to the model, providing a more accurate 

representation of pollutant dispersion in complex meteorological conditions. Overall, this 

integration represents a significant advancement in dispersion modelling, benefiting researchers 

and practitioners in the field of atmospheric sciences and air pollution studies. 

Lagrangian trajectory models require meteorological data, emission inventories, and information 

about the initial location or release point (Bowman et al., 2013). These inputs determine the 

movement of air parcels or particles, enabling accurate simulations of atmospheric transport and 

dispersion. Comprehensive data ensures reliable model outputs for studying air quality and 

environmental impacts. Lagrangian kinematic models and suggests changes in model output 

practices to enhance accuracy. 

Yassin et al., (2018) investigated the dust storms in Kuwait through backward trajectory 

simulations and source identification. By utilizing the NOAA HYSPLIT model and MODIS 

satellite observations, the origins of dust storms are identified, with the Sahara Desert and Arabian 

Desert being the primary sources. The study highlighted the impact of atmospheric conditions, 

particularly visibility and wind direction, on dust storm occurrences. The findings contribute to a 

better understanding of dust storm patterns and provide valuable insights for developing measures 

to mitigate the effects of dust storms on various aspects of life in Kuwait. 

1.8 Lifetime and long-range transport of atmospheric aerosol 

The lifetime and long-range transport of atmospheric aerosols play crucial roles in the Earth's 

climate system and air quality. Aerosols are tiny suspended particles in the atmosphere, ranging in 

size from a few nanometre’s to several micrometre’s. They can originate from natural sources such 

as dust storms, volcanic eruptions, sea spray, human activities like industrial emissions, and the 
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burning of fossil fuels. Local sources and long-range transport of pollutants significantly affect 

PM2.5 at receptor locations (Mahapatra et al., 2018).   

The lifetime of atmospheric aerosols refers to the time they spend suspended in the air 

before being removed through various processes. This lifetime can vary greatly depending on the 

aerosol type, size, and atmospheric conditions. The residence time of atmospheric aerosol particles 

is presented in Table 1.1. Some aerosols have short lifetimes, remaining in the atmosphere for 

hours to days, while others can persist for weeks to months. The removal mechanisms for aerosols 

include wet deposition (precipitation), dry deposition (settling onto surfaces), and gravitational 

settling.  

Table 1.1 Residence Time of Atmospheric Aerosol Particles 

Level in the Atmosphere  Residence Time 

Below about 1.5 km  0 to 2 days 

Lower troposphere  2 days to 1 week 

Middle and upper troposphere 1 to 2 weeks 

Tropopause level  3 weeks to 1 month 

Lower stratosphere  1 to 2 months 

Upper stratosphere  1 to 2 years 

Lower mesosphere 4 to 20 years 

 

However, the long-range transport of aerosols allows them to travel vast distances, often crossing 

continents and even oceans. This transport occurs primarily in the free troposphere, the layer of 

the atmosphere above the planetary boundary layer where most of the weather phenomena and 

surface emissions are concentrated. Aerosols can be transported over thousands of kilometres, 

leading to their redistribution on a global scale. Several factors influence the long-range transport 

of aerosols. First, meteorological conditions such as wind patterns, atmospheric stability, and air 

masses play a significant role. Prevailing winds and weather systems can carry aerosols over long 

distances, especially in the mid-latitudes where the jet streams are prominent. Strong vertical 

mixing and convective processes can also lift aerosols high into the atmosphere, enhancing their 

potential for long-range transport. Second, the size and properties of aerosols affect their transport 
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behaviour. Larger particles tend to settle more quickly due to gravitational forces, while smaller 

particles can remain suspended for longer periods and travel farther distances. Additionally, 

aerosols can undergo physical and chemical transformations during transport, such as collision and 

merging of particles and chemical reactions, which can alter their size, composition, and 

hygroscopic properties, further influencing their transport characteristics. 

Long-range transport of aerosols has important implications for climate and air quality. 

Aerosols can scatter and absorb sunlight, affecting the Earth's energy balance and influencing 

regional and global climate patterns. They can also act as cloud condensation nuclei, altering cloud 

properties and precipitation patterns. In terms of air quality, long-range transport can transport 

pollutants over significant distances, impacting remote areas far from their sources and leading to 

transboundary pollution. Understanding the lifetime and long-range transport of atmospheric 

aerosols is crucial for accurate climate modelling, air quality assessments, and the development of 

effective mitigation strategies. Scientists employ satellite observations, ground-based 

measurements, and atmospheric models to study and predict aerosol transport patterns, unravel 

their sources and transformations, and assess their impacts on climate, air quality, and human 

health.  

The diurnal variation of black carbon concentration is influenced by boundary layer mixing and 

anthropogenic activities (Tripathi, 2005). Kanpur's black carbon levels are comparable to other 

Indian megacities but much higher than similar locations in Europe, the USA, and Asia. These 

high black carbon concentrations in Kanpur contribute to large surface cooling and lower 

atmospheric heating, which can have regional climate impacts. 

Jethva et al., (2005) presented a comparison of AOD retrieved from MODIS with the Aerosol 

Robotic Network (AERONET) data for the year 2004 over Kanpur, an industrial city lying in the 

Ganga Basin in the northern part of India. The entire Indo-Gangetic basin was dominated by the 

fine-mode particles during the winter (November to January) with AOD in the range of 0.4–0.6. 

The study seasonal variability of aerosols over the Indo-Gangetic basin. Results reported indicate 

that the Indo-Gangetic basin has the largest aerosol optical depth in India during both seasons. 

Sarkar et al., (2006) discuss the analysis of the spatial variations of aerosol and aerosol forcing for 

major populated cities in India. A sensitivity study reported that longwave atmospheric cooling 

becomes more prominent with the increase in the amount of absorbing aerosols and a decrease in 
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water vapor, while longwave forcings are found to vary only by 1% for differing ozone 

concentrations (Ramachandran et al., 2006). 

The Trajectory-based Potential Source Apportionment tool kit was utilized to identify sources of 

respirable particulates in Kochi, India (Shanavas et al., 2020). Data from five regulatory 

monitoring stations collected over five years (January 2011 to October 2016) were analysed at 

both local and regional scales. Concentration field analysis utilized back trajectories generated by 

the HYSPLIT model with atmospheric reanalysis data.. Findings revealed contributions from local 

traffic activities during low wind conditions and from a nearby industrial area during high-speed 

winds at most stations. Back trajectory analysis identified potential source areas in Kerala and the 

neighbouring state of Tamil Nadu, as well as the Arabian Sea to the west. The study showcased 

the effectiveness of TraPSA as a tool for understanding the potential source areas impacting 

particulate matter concentrations in Kochi. 

(Jia et al., 2021) The results of the study revealed two distinct periods with different Odor sources. 

In Period 1 (January 1st, 2019 to October 31st, 2020), the landfill emerged as the major source of 

the Odor, the complaints received, 65% reported wind-carrying Odors from the landfill, and 88% 

of these complaints originated from residences located within a 500-meter radius of the landfill 

site. And the wind predominantly transported the Odor from the landfill. In Period 2 (November 

1st, 2020 to December 15th, 2020), the sewage plant became the major source, Among the total 

complaints, 33% indicated wind direction from the sewage plant, and a significant 85% of these 

complaints were registered by residents living within a 1000-meter distance from the sewage plant. 

Using the trajectory and proximity analyses. 

The influence of continental outflow on long-range transport was attempted by Hsiao et al., (2017). 

The variations were associated with different long-range transport patterns of air pollutants, 

including biomass-burning aerosols in spring and potential anthropogenic emissions in autumn. 

Comparisons with measurements from Doi Ang Kang Meteorology Station in Thailand and 

backward trajectories provided insights into the origin of aerosol types transported to the 

Atmospheric Background Station during different seasons. 

Concentrations of water-soluble ions, organic carbon, and elemental carbon of size-resolved 

atmospheric aerosols were measured in Shanghai, China in July and August 2015. Backward 

trajectory and PSCF models were used to identify the potential source distributions of size-
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resolved particles and PM1.8-associated atmospheric inorganic and carbonaceous aerosols (Ding et 

al., 2017). The results showed the air masses originated from heavily industrialized areas, 

including the Pearl River Delta region, the Yangtze River Delta region, and the Beijing-Tianjin 

region. Long-range transport influenced the pollution in July, while local and intra-regional 

transport played a significant role in August. These findings highlight the significant contributions 

of particulate pollutants from long-range transport and shipping to air pollution in Shanghai. The 

significant contribution of particulate pollutants from long-range transported air masses to PM 

levels of Shanghai in summer. 

(Kumari et al., 2020) Ground-based measurements and satellite observations were used in Indo-

Gangetic Plain to study the impact of long-range transport from dust storms (event 1) and crop 

residue burning (event 2). The spatial distribution and temporal variation of ambient PM were 

assessed at 15 air quality monitoring stations in Rajasthan, the north-western IGP, and the 

downwind region. During the dust event, PM2.5 and PM10 mass concentrations were 1.2-3.3 and 

2.2-4.6 times higher than the National Ambient Air Quality Standards (NAAQS) near the Thar 

Desert. Stations in the north-western IGP showed increased PM2.5 and PM10 levels during the crop 

residue burning period. Satellite observations and backward air-mass trajectories indicated that 

aerosols transported from the Thar Desert resulted in reduced O3 levels during the dust event, 

whereas transport of O3 precursors enhanced the photochemical production of O3 during the crop 

residue burning period at Agra. 

One of the significant findings of this research is the identification and quantification of marine-

derived aerosols in the Arabian Sea region (Bikkina et al., 2020). The study highlights the 

importance of sea-surface emissions in contributing to aerosol composition, particularly the 

presence of sea salts and organic compounds originating from marine biota. This understanding of 

marine sources is crucial for accurately assessing regional air quality and its impact on climate. 

1.9 Importance of the study 

The study on the use of satellite data and back trajectory analysis for prediction and retrieval of 

PM2.5 and identification of regional contributions by long-range transport is of significant 

importance for several reasons. 

• Improved Air Quality Prediction of PM2.5, the PM2.5 major air pollutant that poses serious 

health risks to humans and the environment. By utilizing satellite data, researchers can 
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enhance their ability to predict and forecast PM2.5 concentrations more accurately at 

ground-level concentrations. This information is crucial for issuing timely air quality alerts, 

implementing pollution control measures, and protecting public health. 

• Satellite Remote Sensing Advancements, the study highlights the advancements in satellite 

remote sensing technology, which enables the measurement of ground-level PM2.5 

concentrations over large geographical areas with less resolution. Satellite data provide a 

comprehensive view of aerosol particulates distribution, overcoming the limitations of 

ground-based monitoring networks that may have sparse coverage, especially in remote 

locations or less-developed regions. 

• Long-Range Transport of pollutants from their sources, impacting air quality in faraway 

distant regions. By employing backward trajectory analysis, researchers can trace the 

origins of PM2.5 and identify the regions responsible for its long-range transport. This 

understanding is crucial for developing effective air quality management strategies that 

involve cooperation between different regions and countries' boundaries. 

• The study's focus on the source-identifying regional contributions to PM2.5 levels helps in 

source-origin impact. By distinguishing between local emissions and transported 

pollutants, policymakers can prioritize control measures and allocate resources more 

effectively to mitigate the impacts of specific pollution sources. 

• Long-range transport of PM2.5 is not only an air quality issue but also has implications for 

climate change. Black carbon, a component of PM2.5, can accelerate the melting of snow 

and ice when deposited on these surfaces. Understanding the sources of PM2.5 through 

satellite data and trajectory analysis can help assess its contributions to regional climate 

impacts. 

• Policy Formulation and Implementation will consider the accurate information about the 

sources and transport of PM2.5 is essential for designing evidence-based air quality policies. 

Governments and regulatory bodies can use the findings from this study to develop 

measures that target specific emission sources and address regional disparities in air 

pollution levels. 

• Studies that utilize satellite data and trajectory analysis to assess PM2.5 levels can raise 

public awareness about air quality issues. When citizens are informed about the sources 
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and long-range transport of pollutants, they are more likely to engage in sustainable 

practices, demand cleaner technologies, and support air quality improvement initiatives. 

• This study bridges the gap between atmospheric science, remote sensing, and public health. 

It demonstrates the importance of collaboration between these disciplines to tackle 

complex environmental challenges like air pollution effectively. 

In summary, the study focusing on the utilization of satellite data and back trajectory analysis to 

predict PM2.5 levels, identify pollution sources, and assess regional contributions plays a crucial 

role in advancing air quality research, informing policy-making, safeguarding public health, and 

promoting global collaboration to combat the far-reaching consequences of air pollution 

1.10 Need and Scope of thesis 

This research study aims to explore and harness the potential of satellite data and back trajectory 

analysis as valuable tools for the identification of the source origins. Identification of Regional 

Contributions by Long Range Transport to employ back trajectory analysis to trace the origins of 

PM2.5 pollutants over long distances. By identifying the source regions and understanding the 

pathways of these pollutants, we aim to assess the extent of regional contributions to local PM2.5 

levels. 

The scope of this investigation encompasses various aspects related to the use of satellite 

data and back trajectory analysis for PM2.5 source identification and the health impact of ambient 

heavy metals. 

• The study will involve the collection of satellite-derived data, including aerosol optical 

thickness, and meteorological data. Appropriate data processing techniques will be 

explored to convert raw data into usable PM2.5 concentration information. 

• MLR model development will be employed to create accurate predictions for PM2.5 

concentrations. The aim is to achieve high accuracy in predictions of PM2.5 levels across 

different spatial regions. 

• By integrating the findings from satellite data and back trajectory analysis, the study will 

attempt to identify specific sources that contribute to PM2.5 pollution in target areas. The 

research will assess the impact of long-range transport on regional air quality, particularly 

the introduction of external PM2.5 pollutants from distant sources. 
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• The insights from this investigation will help the policy implications for air quality 

management, emphasizing the importance of regional cooperation to mitigate PM2.5 

pollution and its adverse effects on both local environments and public health. The study 

may require collaboration between atmospheric scientists, meteorologists, environmental 

experts, and data analysts to ensure a comprehensive and accurate assessment of the 

collected data. 

Overall, this research will contribute to the broader goal of improving air quality monitoring and 

management strategies, with the potential to inform regulatory decisions and foster international 

cooperation in tackling air pollution issues. 

1.11 Research gaps 

Research gaps for the current scenario 

• Studies related to Sources of fine particulates and their health impacts are extremely limited 

in India.  

• This may be possibly due to inappropriate particulate source profiles, limited emission 

inventories, and differences in adopted methodologies. 

• Application of back trajectory analysis for identification of regions contributing to 

particulate pollution is not well reported in India 

• Studies on satellite data for air quality studies varied from region to region. Limited studies 

are reported for the Hyderabad region.  

• Limited studies are reported on the long-range transport of PM2.5 from different regions 

and on altitude analysis. 

Based on these specific identified research gaps, the Objectives of the thesis were formulated as 

specified in section 1.13 

 

1.12 Objectives  

The following objectives are obtained from the research gaps 

1) Assessment of health impacts caused by PM2.5 bound heavy metals using Hazard Quotient 

and Hazard index.  

2) Application of back trajectory analysis for identification of regions contributing to PM2.5 

bound heavy metals.  



20 

 

3) Studies on the use of satellite data (MODIS AOD) for missing data retrievals and prediction 

of PM2.5. 

4) Application of back trajectory analysis in conjunction with Concentration Weighted 

Trajectory (CWT), Potential Source Contribution function (PSCF), and cluster analysis to 

arrive at potential source regions for Hyderabad and Warangal. 

1.13 Organization of the thesis 

The thesis has been composed of 6 chapters, as mentioned:  

Chapter 1: The "Introduction" chapter deals with the research background such as the  

atmospheric pollution due to the particulate matter and thePM2.5 bond heavy metals. The 

health impact associated with the heavy metals, as well as the satellite retrievals of AOD 

to predict the ground level PM2.5 concentrations. However, the identification of source 

regions based on the back trajectory analysis simplifies the long-range transport of 

pollutants towards the receptor location and Importance of the study, and aim and scope of 

the thesis 

Chapter 2: The "Literature Review" chapter overview the studies available in the  

literature that are relevant to the present investigation. It has elaborated International and 

National status on PM2.5 and heavy metals, aerosol sources and dispersion of the pollutants. 

Subsequently urban pollution influence on local meteorology relates with the aerosol 

concentration, as well as importance of the backward trajectory analysis, and a summary 

of literature and research gaps are well discussed. 

Chapter 3: The “Materials and Methods “chapter outlines the analysis of major sources of air  

Pollution in the study area and the monitoring of the dust sample. Metal analysis using the 

MP-AES instrument instructions well discussed as well as non-carcinogenic and 

carcinogenic methodology for the health risk assessment, and the HYSPLIT model was 

assists in the identification of the source from the long-range transport of pollutants  

Chapter 4: The title of this chapter is “Estimation of PM2.5 and source contribution by  

Backward trajectory analysis over Warangal region." This chapter describes the Variation 

of the PM2.5 concentration and its associated HMs as well as the correlation coefficient 

within the HM. Exposure dose assessment and non-carcinogenic health risks describe the 
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health impact possibility. Backward trajectory approach to compute the dominating HM 

source identification at the receptor location.    

Chapter 5: The “Estimation of surface PM2.5 with MODIS Aerosol optical depth and source  

identification using trajectory analysis: A case of Hyderabad City, India " chapter describes 

a case study of Hyderabad City and the variation of meteorology and the local PM2.5 

concentration. The satellite AOD retrievals are useful for the prediction of the ground level 

PM2.5. Source identification of the different altitude layers and different seasonal 

contributions covered at receptor location.  

Chapter 6: The “Summary and Conclusions " chapter addresses the Summary and Conclusions  

of the present research as well as a few recommendations. 

 

 

  



22 

 

Chapter 2 Review of Literature 

2.1 General 

Air quality modelling and management is critical in urban areas as a variety of complex sources 

are contributing to pollution. Monitoring pollution is a difficult preposition in many nations as it 

involves time and money. Several methods come to light in order to monitor air quality to 

overcome the challenges. In this chapter, literature pertaining to air quality in terms of PM2.5 and 

related aspects of long-range transport of pollutants, health effects of heavy metals bound to PM2.5, 

satellite AOD for air quality assessment, etc., are presented. 

2.2 International and National Status on PM2.5 

PM2.5 is a major air pollutant that poses significant risks to human health and the environment. It 

is generated by various sources such as industrial emissions, vehicle exhaust, and residential 

combustion. Both international and national efforts have been made to address the issue of PM2.5 

pollution and improve air quality. The WHO has set guidelines for PM2.5 exposure levels to protect 

public health. According to the WHO Air Quality Guidelines, the recommended annual mean 

concentration of PM2.5 is 5 μg/m³, and the 24-hour mean concentration should not exceed 15 μg 

(WHO 2021). These guidelines provide a benchmark for countries to assess and manage their air 

quality standards. Almost all the global population (99%) breathes polluted air exceeding WHO 

guideline limits. Low and middle-income countries face the highest exposure. Air quality is 

connected to the earth's climate and ecosystems worldwide. Ambient air pollution is reported to 

be responsible for around 4.2 million premature deaths worldwide (Murray et al., 2020). 

Implementing policies and investments that promote cleaner transport, energy-efficient homes, 

sustainable power generation, improved waste management, and access to clean household energy 

can effectively reduce outdoor air pollution. 

The United States Environmental Protection Agency (EPA) in the United States has 

established the National Ambient Air Quality Standards (NAAQS) to regulate air pollutants, 

including PM2.5. The current annual average standard for PM2.5 is 12 μg/m³, while the 24-hour 

standard is set at 35 μg/m³. These standards are used to evaluate air quality across the country and 

guide pollution control measures. European Union (EU) has implemented air quality standards to 

control PM2.5 pollution. The European Ambient Air Quality Directive sets a limit value for PM2.5 

at 25 μg/m³ for the annual average and 50 μg/m³ for the daily average. Member states are required 
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to report their air quality data, and actions are taken to improve air quality in areas where limits 

are exceeded. 

Jahn et al., 2013, reported elevated PM2.5 mass concentrations throughout Chinese megacity of 

Guangzhou's district, with ambient PM2.5 levels that consistently exceeded the 24-h standards of 

the WHO. PM2.5 pollution in Delhi averaged 150 μg/m3 from 2012 through 2014, which is 15 times 

higher than the WHO annual-average guideline. Central Asian cities are air pollution hotspots with 

limited knowledge on air quality variation (Tursumbayeva et al., 2023). The study examined PM2.5 

levels and meteorological influences in six major cities (Almaty and Astana (Kazakhstan), 

Ashgabat (Turkmenistan), Bishkek (Kyrgyzstan), Dushanbe (Tajikistan), Astana and Tashkent 

(Uzbekistan). Results reveal severe air quality degradation, exceeding annual PM2.5 limits by up 

to ten-fold with winter peaks at 3 locations (Almaty, Bishkek, and Astana). HYSPLIT model 

identified high PM2.5 episodes due to regional pollutant transport. The study challenges previous 

emission inventory studies, revealing coal combustion as the primary PM2.5 source. By analysing 

well-being surveys, particulate matter concentrations, and weather data, the study in the city of 

Ulaanbaatar (capital of Mangolia) reported  a significant connection between air pollution and self-

reported life satisfaction (Sanduijav et al., 2021). A multi-sensor characterization of the increasing 

pre-monsoon aerosol loading over northern India.  

The new WHO global air quality guidelines aim to set even lower targets for reducing air 

pollution worldwide, encouraging significant decreases (WHO 2021). Achieving these guidelines 

will be challenging, especially for cities with high pollution levels, requiring several years of 

dedicated efforts. Simultaneously, the pressure to mitigate climate change and reduce fossil fuel 

usage has prompted many countries to establish temperature reduction goals in line with the Paris 

Agreement. This has resulted in an increase in clean energy generation and will eventually lead to 

widespread vehicle electrification in high-income countries by 2030. Burnett et al., 

(2018) estimates that the number of early deaths in India annually due to PM2.5 could be more than 

two million. The Indo-Gangetic plain is known for having the largest number of brick kilns, which 

use outdated and inefficient combustion technology and rely on a combination of biomass and coal 

for fuel (Bhat et al., 2014). The states of Bihar, West Bengal, Jharkhand, Orissa, and Chhattisgarh 

are home to the country's largest coal mines and a cluster of power plants located in close proximity 

to these mines. During the 2010-11 period, 111 plants with a combined capacity of total electricity 

https://www.sciencedirect.com/science/article/pii/S092876551930452X#bib0040
https://www.sciencedirect.com/science/article/pii/S092876551930452X#bib0040
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generation capacity of 121 GW consumed 503 million tons of coal and generated an estimated 580 

k tons of PM2.5 particulates (Guttikunda et al., 2014). Additionally, the northern and north-eastern 

regions of India, particularly Punjab, Haryana, Delhi, and Uttar Pradesh, have several large power 

plants, making this area the most polluted part of the country. The geographical location of these 

cities in the north, being landlocked, exacerbates the impact of prevailing meteorological 

conditions on air quality, unlike some southern cities that benefit from land-sea breezes 

(Guttikunda and Gurjar, 2012). 

In Jharia (Jharkhand State, India), the main contributors to air pollution were coal mining 

activities and active mine fires, with vehicular emissions playing a secondary role (Pandey et al., 

2014). Additionally, wind-blown dust from unpaved roads also made a modest contribution to the 

overall air pollution levels and PCA recognized that coal mining and active mine fires (57.71% 

variance) are the main contributors of air pollutants in the study area Jharkhand. (Du et al., 2020) 

where poor air quality has caused a public health crisis. On average, 46% of population-weighted 

air pollution exposure originates from another state. Of the major sources, energy (75%) and 

industry (53%) see most of their emissions travel to another state. All sectors have 39% or more 

of their emissions travel across state boundaries in Indian states. The study in eastern India revealed 

elevated air pollution levels around clusters of coal-fired power plants (Tyagi et al., 2021). Results 

indicate that eastern India is becoming a new hotspot region for air pollution, with the highest 

levels recorded in India. Approximately 50% of residential PM2.5 emissions are attributed to the 

<10% of households using cow dung as cooking fuel (Sharma et al., 2022). PM2.5 emissions from 

open waste burning have seen minimal change from 2010 to 2020. Pollution levels in cities of 

varying sizes may be similar, despite differences in local activity levels. This similarity is 

attributed to the significant influence of the wider region on pollution levels, which currently plays 

a substantial role (Agrawal et al., 2021). Guttikunda et al., 2014 proposed two strategies for 

improving air quality in Indian cities. First, there is a need to raise public awareness and garner 

commitment to action from civic, commercial, and political sectors. Second, it is crucial to 

integrate air pollution mitigation efforts with broader social and economic development policies. 

For instance, addressing local challenges can involve implementing safer and more reliable public 

transportation systems, efficient waste management, dust-free roads, and promoting pollution-free 

industries and power plants. Investigate variations in indoor/outdoor concentrations of particulate 

matter during various activities. There is significantly a study in three different micro-
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environments in Pakistan revelled higher levels of particulate matter  in kitchens that use biomass 

fuels compared to other living areas (Colbeck et al., 2010). As a result, women and children are 

exposed to a greater extent as they spend more time in the kitchen. The urban concentrations 

observing the impact of traffic, it was evident that concerns regarding roadside PM2.5 

concentrations were more pronounced than non-roadside concentrations. A vertical dispersion 

experiment was conducted, demonstrating a significant decrease in PM2.5 levels from 119.5 μg/m3 

at street level to 42.8 μg/m3 on a third-floor rooftop. That the both horizontal and vertical 

dispersion of the pollutants exhibited sharp declines in PM2.5 concentrations (Kinney et al., 2011). 

Recent developments in remote sensing, global chemical-transport models, and 

improvements in coverage of surface measurements facilitate virtually complete spatially resolved 

global air pollutant concentration estimates. A recent study by Chatterjee et al., (2023) combining 

source-specific emission estimates to the grid simulations from a chemical transport model achieve 

the high-resolution hybrid PM2.5, and disease-specific mortality estimation was concluded the 

combined mortality burden associated with residential combustion (ambient) and household air 

pollution (HAP) in India is 0.72 million. However, primary data will be helpful for statistical 

modelling to evaluate the effectiveness of PM2.5 emissions (Liu et al., 2012). Initial assessment of 

pollutants and spatial and/or temporal patterns of multiple pollutants in the ambient air are also 

attempted (Arku et al., 2008). Extensive evidence from past respiratory viruses and emerging 

research on COVID-19 demonstrated the harmful effects of air pollution on respiratory defense 

mechanisms, leading to more severe infections (Brauer et al., 2021). Taking decisive actions to 

reduce air pollution remains paramount to safeguarding public health and fostering a healthier 

future. 

India has also been grappling with severe PM2.5 pollution, particularly in densely populated 

cities. The Indian government has launched initiatives such as the National Clean Air Programme 

(NCAP) five-year action plan launched in 2019 to combat air pollution. The program aims to 

reduce PM2.5 and PM10 concentrations by 20-30% by 2024. Implementation of measures such as 

stricter emission norms for industries and the promotion of electric vehicles is underway to achieve 

this goal (Broomandi et al., 2022). Despite significant efforts to reduce air pollution, the threat it 

poses to monuments and materials in East Asia remains severe and persistent. Exposure to ambient 

pollution, especially in urban areas, increases the vulnerability of World Heritage Sites to 
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degradation and corrosion. Therefore, special attention is needed to address this issue and protect 

these invaluable cultural treasures based on the dose-response calculations for material corrosion. 

The following table represent some studies related to the air pollution sources in India, the 

developing cities which are increasing in the urban population as well as increase in the vehicles 

and daily activities of the human causes the air pollution in the urban regions. The Table 2.1 

conclude the major sources dominating sectors from vehicles, industries, biomass burning and coal 

combustion. 

Table 2.1 Studies related to the source identification over Indian region 

Location Period Data Source Method Main Result Reference 

Delhi 2010-

2014 

CPCB 

monitors 

CMB Vehicles, 

biomass 

burning, and soil 

dust are the 

major sources of 

PM2.5 

Sharma et al., 2017 

 

Mumbai 2011-

2012 

CPCB 

monitors 

PMF Vehicles, sea 

salt, industrial 

emissions, and 

secondary 

aerosols are the 

major sources of 

PM2.5 

Ramachandran et al 

2017 

 

Kolkata 2013-

2014 

CPCB 

monitors 

PCA Vehicles, coal 

combustion, 

biomass 

burning, and 

brick kilns are 

the major 

sources of 

PM2.5 

Ghosh et al., 2018 

 

Chennai 2014-

2015 

CPCB 

monitors 

UNMIX Vehicles, sea 

salt, industrial 

emissions, and 

secondary 

aerosols are the 

major sources of 

PM2.5 

Kumar et al., 2016 

 

Hyderabad 2015-

2016 

MODIS AOD MLR AOD can be 

used to estimate 

PM2.5 

concentration 

Shao, et al., 2017 
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with moderate 

accuracy and 

uncertainty 

Warangal 2016-

2017 

Low-cost 

sensors 

Kriging PM2.5 

concentration 

shows high 

spatial and 

temporal 

variability and 

exceeds the 

WHO guideline 

value 

Kumar et al., 2017 

 

Agra, 

India 

 January 

to 

December 

2021 

Fine 

particulate 

sampler(APM 

550, 

Envirotech) 

PCA Carcinogenic 

risks of metals 

in PM2.5 is 

higher for adults 

than children. 

Sah et al., 2023 

Trombay 

(Mumbai, 

India) 

  

2010 and 

2011 

Gent’s 

dichotomous 

sampler  

PMF PM2.5 has 

major 

contributions 

from 

anthropogenic 

sources such as 

coal/biomass 

combustion 

(25.5%). 

Police et al., 2018 

 

2.3 International and National Status on Heavy Metals 

In recent years, the presence of increased levels of heavy metals in urban ambient air is reported. 

Highways, an integral part of any urban development, only use a small percentage of urban land, 

however, they generate many types of combined pollutants, among which heavy metals, in 

particular Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn) are 

very common (Sankar et al., 2020; Wang and Zhang, 2018). Heavy metals are important 

environmental pollutants and are regarded as potential hazards to human health and natural 

ecosystems. Most of the heavy metals are dangerous to the human body since they tend to bio 

accumulate. The heavy metals derived from highways originate from diverse sources (Wang and 

Zhang, 2018). Studies indicated atmospheric deposition, input from traffic, carriageway breakup 

and surrounding land uses as the key sources of heavy metal pollution from roads (Sankar et al., 
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2020; Wang and Zhang, 2018; Pal et al., 2018). The urban pollution impact associated with 

transportation has become an important issue as road traffic in India has increased rapidly. 

Aerosols are of immense scientific interest due to their complex nature and consequent effects on 

human health. Several researchers focused on human exposure to fine particulate matter and 

adverse impacts on human health. Fine particles penetrate deeper into the lung and reach up to the 

alveolar regions and thus their potential adverse health effect is much greater (Xing et al., 2016). 

Furthermore, these particles possess higher surface-to-volume ratios and are often generated 

through gas-to-particle conversion or combustion processes Many epidemiological studies have 

shown that both short-term and long-term exposures to fine particulate matter are associated with 

elevated rates of premature mortality (Bell et al., 2004; Woodruff et al., 2008; Tarín-Carrasco et 

al., 2021; Basith et al., 2022). 

Primary elements generated from the Earth's crust (Al, Fe, and Ca) and anthropogenic sources (Pb, 

Ni, and Cd) were identified as major contributors to coarse and fine particles (Roy et al., 2023). 

PM-bound bacteria and the presence of potential respiratory pathogens indicated a significant risk 

to both human lung health and the environment. The heavy metals bound in the particulate matter 

are a major concern since they can induce polycyclic aromatic hydrocarbons and trace metals 

adsorbed to respirable particulate matter in higher concentrations ( Kampa and Castanas, 2008; 

Singh et al., 2011).  

Potential risk to children and adults from heavy metal exposure by calculating the average 

daily doses (ADD), non-cancer or hazard quotient (HQ), hazard index (HI), and cancer risk (CR) 

for ingestion, inhalation, and dermal contact pathways was attempted in a study in Pakistan (Khan 

et al., 2020). The results indicated that children had higher intake than adults, primarily through 

ingestion. The HI and CR values were observed within the acceptable limits (<1 and 10−4–10−6) 

of the US EPA. The removal of Topsoil and dust in urban areas are indicators of heavy metal 

contamination from atmospheric deposition (Krishna and Govil, 2007).   Locations close to roads 

are severely polluted by heavy metals such as lead, zinc, copper, and chromium. Due to their non-

volatile nature, heavy metals found in respirable particulate matter are less susceptible to chemical 

transformations. Consequently, they tend to persist in their emitted form without significant 

changes. Studies have shown that automobiles are the primary contributors to air pollution in urban 

areas, with a significant portion of heavy metals like Pb, Cd, Cu, Cr, and Ni being present in the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/earth-crust
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/anthropogenic-source
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/atmospheric-aerosols
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PM10 fraction (Pasha and Alharbi, 2015). These metals predominantly originate from 

anthropogenic vehicular activities associated with traffic.   

CMB studies were reported by Gummeneni et al., (2011) for source identification of heavy metals 

bound to particulate matter.  The study recommended controlling emissions from industries and 

automobiles and refuse burning. A similar study by  Chaudhari et al., (2012) and Pasha and 

Alharbi, (2015) assessed heavy metals bound to PM2.5  indicating industrial and automobile as 

major sources. Ambade, (2014) tagged Zn and Fe with natural sources and Pb, Cu, Cr, and Ni with 

anthropogenic sources. Several researchers reported the presence of heavy metals bound to 

particulate matter in their studies indicating industry, automobile, refuse burning, and other 

anthropogenic activities as sources of heavy metals (Kulshrestha et al., 2014; Bhuyan et al., 2018a; 

Ghosh et al., 2018; Alves et al., 2018).  

Principal component analysis revealed that Cd, Cr, Ni, and Pb are associated with industrial 

sources whereas Zn and Cu are mainly contributed by vehicular traffic (Suryawanshi et al., 2016a). 

Contamination factor analysis showed that road dust samples are significantly contaminated by Zn 

and Pb. Step-wise linear regression model revealed that humidity and temperature significantly 

influence the mass concentration of PM2.5 (Prabhu and Shridhar, 2019). Enrichment factor and 

principal component analysis revealed that anthropogenic activities such as vehicular emissions, 

road dust re-suspension, and biomass burning are the predominant sources of atmospheric PM2.5. 

Particulate matter with Co, Cr, Ni, Cd, and Pb is reported to be carcinogenic while particulate 

matter with Mn, Fe, Cu, and Zn is non-carcinogenic (Pandey et al., 2017). Assessment of reliable 

fractions of heavy metals helps in the prediction of the degree of toxicity and pollution load. The 

exposure concentration (ng/m^3) was found highest for the industrial region followed by the 

residential. The health risk assessment of Cr, Mn, Co, Ni, Cu, As, and Cd provided useful 

information to the policymaker to frame regulation (Sah et al., 2019). They concluded the 

concentrations of Cr, Mn, Co, Ni, Cu, As, and Cd above the NAAQS and WHO limits, whereas 

those of Pb below the NAAQS and WHO 2014 limits and PM10 concentrations exceeded the 

annual mean standard set by the NAAQS in India, USEPA, and WHO Limits. Spatiotemporal 

variability of dust fall chemical constituents also provide important conclusions on the impact 

pattern of dust emissions on environmentally defined receptors (Gurugubelli et al., 2013). The dust 

fallout levels were found to be in the range of 13.73 ± 5.46 to 78.82 ± 34.81 g/m2/month. 
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Overall air quality in the city of Kanpur was much inferior to other cities in India with 

respect to PM10 and PM2.5. Also, heavy metals were almost 5–10 times higher than levels in 

European cities (Sharma and Maloo, 2005). (Gajghate et al., 2012a) This study demonstrates the 

re-suspension of dust released during traffic activities and soil erosion. However, the concentration 

and fluxes of Zn and V (anthropogenic elements) may be attributed to industrial emissions. 

Average individual trace element concentrations fluctuated between 0.003 µg/m3 (Cr) and 3.43 

µg/m3 (Zn). CWT analysis indicated a higher influence of local sources during winter and post-

monsoon (Chandra et al., 2014). Significant diurnal and seasonal variations were also reported. 

Enrichment Factor analysis indicated that Cd, Zn, Cu, Pb, and Ni were highly enriched relative to 

their crustal ratios with a substantial contribution from anthropogenic sources (Basha et al., 2010). 

Factor analysis, a receptor modelling technique has been used for identification of the possible 

sources contributing to the PM10 (Karar et al., 2006). Varimax rotated factor analysis identified 

four possible sources. Results of the correlation analysis showed that most of the metals exhibit 

moderate to weak relationships with each other. Seasonal distribution patterns indicate that most 

of the metals tend to exhibit maximum during the winter season, probably due to the temperature 

inversion. Health risks associated with heavy metals are reported by several researchers wherein 

exposure to heavy metal, exposure pathways, potential risk of cancer, vulnerable age groups,  risk 

of long-term exposure, etc., were attempted (Sharma et al., 2008; Izhar et al., 2016; Dalal et al., 

2013; Massey et al., 2013; Kulshrestha et al., 2009; Pervez et al., 2009).  

2.4 Ambient Aerosol sources and dispersions 

Atmospheric aerosol distributions are influenced by changes in precipitation, atmospheric mixing, 

and ventilation due to circulation changes. Emissions from natural aerosol sources strongly depend 

on climate factors like wind speed, temperature, and vegetation (Tegen and Schepanski, 2018). 

Several particle dispersion models are available which are used widely - Box models (AURORA, 

CPB, and PBM), Gaussian models (CALINE4, OSPM, CALPUFF, AEROPOL, AERMOD, UK-

ADMS, and SCREEN3), Lagrangian/Eulerian Models (GRAL, TAPM, ARIA Regional), CFD 

models (ARIA Local, MISKAM, MICRO-CALGRID) and models which include aerosol 

dynamics (GATOR, MONO32, UHMA, CIT, AERO, RPM, AEROFOR2, URM-1ATM, 

MADRID, CALGRID, and UNI-AERO) (Holmes and Morawska, 2006). As well as deterministic 

methods are WRF-CMAQ, WRF-Chem, WRF/Chem-MADRID Operational Street Pollution 

Models (OSPM) and (CAMx) (Qi et al., 2023).  
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  Primary aerosols are directly emitted into the atmosphere from specific sources. These can 

include natural sources such as dust and sea spray or anthropogenic sources such as industrial 

emissions, vehicle exhaust, and biomass burning. Primary aerosols are typically larger compared 

to secondary aerosols (Du et al., 2018; May et al., 2013; Mohr et al., 2009). Aerosol size 

distribution and chemical composition are crucial parameters that determine their dynamics in the 

complex atmosphere (Colbeck and Lazaridis, 2010). The aqueous-phase reaction presented a more 

complex effect on secondary aerosol formation at different relative humidity conditions. The 

formation efficiencies of secondary aerosols were enhanced during the lockdown as the increase 

of atmospheric oxidation capacity (Tian et al., 2021). Domestic energy use by the burning of solid 

biofuels is the largest contributor to ambient black carbon, primary organic aerosols, and 

anthropogenic secondary organic aerosols globally (Chowdhury et al., 2022). The variation in 

biomass burning contribution was inferred to be driven mainly by agricultural fires with relatively 

low combustion efficiencies (Cheng et al., 2021). Mechanical dispersion occurs when solid 

particles are mechanically generated and dispersed into the air. This mechanism is often associated 

with activities like construction, mining, and agricultural practices (Yan et al., 2023). These 

processes can generate dust particles that become suspended in the air as aerosols. Indoor and 

outdoor air pollution studies revealed that the Indoor levels were generally lower than the 

corresponding outdoor (Diapouli et al., 2011). Haze and Non-haze episodes study in Indonesia 

reported that the main cause of air pollution was uncontrolled biomass and peat burning. There 

was no consistent pattern for particle number concentrations during the haze period as compared 

to the non-haze period (Xu et al., 2015). 

It is important to note that the sources of ambient aerosol and dispersions are complex and 

interconnected. Multiple processes can contribute to the overall aerosol composition and 

concentrations in the atmosphere, and their relative importance can vary depending on the location, 

season, and specific environmental conditions. Even though, heavy metals are known to enter the 

atmosphere from both natural and anthropogenic sources at trace levels, most of them are also 

introduced into the atmosphere by various anthropogenic activities only (Tian et al., 2015). The 

primary human-caused origins of pollutants include emissions from burning coal and oil, vehicle 

traffic and movement, stirring up of road dust, natural crustal materials, metallurgical processes, 

incineration, wind-blown dust from soil, piping, construction and demolition operations, waste 

incineration, components of various products, industrial and human activities, as well as industrial 
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point sources like ongoing and past mining activities, foundries, and smelters (Gummeneni et al., 

2011; Kalaiarasan et al., 2018; Morantes et al., 2021; Patil et al., 2013). 

2.5 Natural vs. Anthropogenic source's Influence on Urban Pollution 

The contribution of each source varies depending on the type of activity like natural vs 

anthropogenic. The source-resolved model is compared to the results of chemical mass 

balance models (CMB) for Pittsburgh and multiple urban/rural sites, evidence that the organic PM 

emissions from natural gas combustion are overestimated (Lane et al., 2007). Regarding the natural 

and anthropogenic sources of aerosols in the northeastern Mediterranean area, Total Ozone Mapping 

Spectrometer (TOMS) -Absorbing Aerosol Index (AAI) one of the most useful space-borne data sets, 

offering long-term daily and global information on UV absorbing aerosol distributions.  

  The data is utilized as a proxy for the dust source, while the difference between MODIS and 

TOMS AOT is employed as an indicator of the anthropogenic aerosol component. The sources 

attributed to road traffic, while smaller contributions come from vegetative detritus, wood smoke, 

natural gas, coal, and dust/soil (Kubilay et al., 2005; Herman et al., 1997). 

In order to assess the contribution of natural sources to PM2.5 levels in North-West 

Germany, a one-year measurement project was conducted at two sites during the period from April 

2008 to March 2009. Strong to moderate correlations between urban and regional areas were 

observed for factors categorized as aged marine aerosol, aged mineral dust, secondary sulfate, and 

fossil fuel combustion (Beuck et al., 2011). An integrated method combining Aerosol Robotic 

Network (AERONET) data, backward trajectories, and Potential Source Contribution Function 

(PSCF) modelling was used to identify probable transport pathways and magnitudes of source 

contributions for four characteristic aerosol types (Wong et al., 2013). The Hierarchical Bayesian 

Approach was used to estimate the contribution of urban growth to primary aerosols through 

statistical methods. The results suggested that The model performed moderately for most of Indian 

cities. The estimates were compared with the results of chemical transport models that provide 

more accurate but computationally expensive results, The approach is useful in locations without 

emission inventory (Misra et al., 2019). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chemical-mass-balance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chemical-mass-balance
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2.6 Influence of Meteorology on Aerosol concentration  

Aerosol concentration is significantly influenced by meteorological factors. Various aspects of 

meteorology, such as wind patterns, temperature, humidity, and atmospheric stability, play a vital 

role in the transport, dispersion, and accumulation of aerosol particles in the atmosphere. Wind 

patterns determine the direction and speed of air movement, affecting the spread of aerosols over 

large distances. Strong winds can disperse aerosols widely, while weak or stagnant winds can lead 

to localized accumulation. Temperature and humidity have an impact on the chemical reactions 

and physical properties of aerosols. Higher temperatures can increase the evaporation of water 

droplets containing aerosols, resulting in higher particle concentrations. Humidity levels also 

influence the growth of aerosols, affecting their size and composition. Atmospheric stability refers 

to the vertical profile of temperature and moisture in the atmosphere. Stable atmospheric 

conditions can trap aerosols near the surface, leading to higher concentrations. Conversely, 

unstable conditions promote vertical mixing and dispersion, resulting in lower aerosol 

concentrations. Moreover, meteorological conditions can interact with anthropogenic pollutant 

emissions, such as industrial processes, vehicle exhaust, and biomass burning. Temperature 

inversions, for instance, can trap pollutants close to the surface, causing elevated aerosol 

concentrations in urban areas. Meteorology plays a crucial role in shaping the spatial and temporal 

variations in ambient aerosol concentrations, thereby impacting air quality, climate, and human 

health.  

 Kumar et al., (2020) investigated the impact of meteorological parameters, including 

temperature, wind speed, and relative humidity at Varanasi, India. Temperature showed an 

insignificant relationship during the pre-monsoon period, but during winter months, it exhibited a 

negative trend with concentration. Wind speed exhibited a negative correlation throughout the 

observation period. Relative humidity showed a weak positive correlation with PM2.5 and PM10 

during winter months, while PM2.5 did not show any significant relationship during the pre- and 

post-monsoon periods. The pollutants were reported to originate from various industrial activities, 

biomass burning, and vehicular emissions. The findings from these analyses provide valuable 

insights for future urban development planning and climate studies. 

In India, assessment of the PM2.5 concentration is challenging due to limited coverage, 

inconsistent data availability, and spatial-temporal gaps (Chelani, 2018). To address this, satellite-
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based observations using MODIS were utilized in this study to estimate ground PM2.5 levels in five 

cities in Maharashtra, India, from January 2016 to May 2017. The model incorporated 

meteorological parameters to enhance accuracy. Multiple linear regression (or) Multiple 

regression involves employing multiple explanatory variables to forecast the outcome of a 

response variable. A combination models, merging MLR and MLR residuals, was developed to 

derive more accurate estimates. The effectiveness of this approach was evaluated for two types of 

time series one with infrequent missing data and the other with frequent missing data. Spatial 

analysis revealed elevated AOD levels in Mumbai. Notably, integrating meteorological factors 

into the regression equation improved the MLR model's performance. Ultimately, the combination 

model outperformed MLR by considering the residuals of the MLR model. Tariq et al., (2021), 

focused on the analysis of aerosol optical properties using MODIS datasets, including AOD at 550 

nm, Angstrom exponent (AE) at 440/870 nm, and enhanced vegetation index (EVI) over Pakistan. 

The goal was to gain a comprehensive understanding of aerosol variability and its relationship 

with meteorological variables such as temperature, relative humidity (RH), and wind speed (WS). 

The evaluation of Aqua-AOD against AERONET-AOD shows coefficients of determination (R2) 

of 0.6724 over Lahore and 0.7678 over Karachi. Additionally, Aqua-AOD was validated using 

AOD data from Terra, MISR, and SeaWiFS. Notably, high AOD values (0.8–1) and low AE values 

(0.4–0.8) indicated the presence of dust aerosols in south and south-western Pakistan. The study 

also revealed significant interannual variation in AOD, with the lowest values (0.22) in January 

and the highest (0.58) in July. Furthermore, a positive correlation (R ≥ 0.6) was observed between 

AOD and temperature in south-western Pakistan. Investigation into the variation of AOD and its 

physical-optical properties was attempted in Dibrugarh, northeast India, from October 2001 to 

November 2010 (Pathak and Bhuyan, 2015). The focus was on the diurnal AOD and its 

relationship with meteorological parameters. AOD consistently showed higher values during 

forenoon (FN) hours compared to afternoon (AN) hours in most seasons. This variation is 

primarily influenced by prevailing meteorological conditions and the change in the ray path from 

polluted industrialized areas in the east and northeast of Dibrugarh during the forenoon to cleaner 

mountain regions and the Brahmaputra River in the afternoon. This indicated a prevalence of 

coarse-mode aerosols during the forenoon compared to the afternoon. However, the climatological 

mean difference between MODIS Terra and Aqua AOD is smaller than the mean difference 

observed between ground based AOD measurements. Atmospheric visibility was analysed to 
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assess air pollution globally from 1973 to 2012 (Qu et al., 2020). In densely populated regions 

characterized by lower surface wind speeds, there tends to be a correlation with increasing air 

pollution and diminished visibility. Conversely, higher relative humidity (RH) tends to promote 

secondary aerosol formation and hygroscopic growth, further impairing visibility. The interaction 

between meteorological factors and major aerosol components in different regions globally can 

influence aerosol and cloud formation, impacting the evolution of the atmospheric boundary layer 

and air pollution. In East Asia, India, and Southeast Asia, the decline in visibility was linked to 

increased anthropogenic emissions and a more stable atmospheric boundary layer (ABL) 

characterized by weakened surface winds and reduced diurnal temperature range. Higher aerosol 

loading and cloud cover contribute to decreased solar radiation reaching the surface, further 

stabilizing the ABL and exacerbating air pollution.  

The mass and optical properties of PM2.5 were assessed in an ecologically sensitive zone in 

Central India (Sunder Raman and Kumar, 2016). The concentration of fine PM ranged from 3.2 

μg/m³ to 193.9 μg/m³, with a median concentration of 31.4 μg/m³. The attenuation coefficients at 

different wavelengths and the scattering and absorption coefficients were also measured. The 

relationship between fine PM mass and attenuation coefficients varied seasonally, with the 

strongest correlation observed during the post-monsoon season. Fine PM mass exhibited the 

highest correlation (r² = 0.81) with a scattering coefficient at 550 nm during the post-monsoon 

season. However, monitoring optical properties alone as a surrogate for fine PM mass throughout 

the year was deemed unsuitable for the study location. MLR models were fitted for each season to 

assess the relationships between fine PM mass, optical properties, and meteorological parameters. 

The MLR model for the post-monsoon season explained over 88% of the variability in fine PM 

mass. However, the MLR models performed less effectively during the pre-monsoon and monsoon 

seasons, explaining only 31% and 32% of the variability, respectively. In the winter season, the 

MLR model accounted for 54% of the variability in PM2.5. Variations in Black carbon (BC) mass 

concentration were studied at a high-altitude urban site, Srinagar (north-western Himalaya, India) 

in 2013 (Bhat et al., 2017). The study aimed to analyse temporal variations, meteorological 

influences, source contributions, and radiative forcing of BC. The highest mean monthly BC 

concentration (13.6 μg/m³) was observed in November, while the lowest (3.4 μg/m³) was in April. 

Autumn had the highest mean BC concentration (9.2 μg/m³), while spring had the lowest (3.5 

μg/m³). The annual average BC concentration (6 μg/m³) was higher than other high-altitude 
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stations. Wind speed, minimum temperature, and total precipitation showed a negative correlation 

with BC, while evening relative humidity showed a positive correlation. Biomass burning was the 

main source of BC during autumn, spring, and winter, while both fossil fuel and biomass burning 

contributed equally during summer. Back trajectory simulations indicated the transport of BC from 

various regions to Srinagar, with westerly air masses being dominant except during summer. 

Aerosol optical properties (AOPs) and particulate matter were measured continuously at 

an urban site in Delhi, India during the winter period (December 2011 to March 2012) (Tiwari et 

al., 2015). Higher values of scattering and absorption coefficients were observed in December, 

while lower values were observed in March and February. SSA was higher in January and lower 

in March. Bimodal distributions of scattering and absorption coefficients were observed during 

traffic rush hours and low boundary layer conditions, with lower values in the afternoon. 

Meteorological parameters such as wind speed, wind direction, visibility, and mixed layer depths 

were found to have a significant impact on AOPs and particle concentrations. There was a clear 

negative correlation between atmospheric visibility and scattering coefficient, absorption 

coefficient, and PM2.5. AOPs and particle concentrations were significantly higher during foggy 

and dense foggy days, as well as when mixed layer depths were below 200 m and wind speed was 

below 1 m/s. The results indicate the crucial role of meteorological parameters in enhancing 

aerosol levels at ground level during the winter period in Delhi. Ravindra et al., (2022), 

investigated the impact of meteorological parameters and air pollutants on airborne pollen in 

Chandigarh, an urban city located in the Indo-Gangetic Plains. From June 2018 to June 2020. 

Temperature and wind were found to be the most influential parameters, showing a positive 

correlation with the annual pollen integral of Cannabis Sativa, Parthenium hysterophorus, Poaceae, 

and total pollen concentration. The study highlighted the distinct responses of each pollen taxon 

to meteorological parameters and air pollutants. It emphasizes the importance of examining pollen 

response at the taxon level and using long-term data to understand the relationships and trends 

among meteorology, air pollutants, and aerobiology for future scenarios and environmental 

changes. Guttikunda and Gurjar, (2012), attempted to study the role of meteorology in Delhi's 

pollution using the Atmospheric Transport Modelling System.  The harsh and highly polluted 

winters in Delhi, a megacity, have significant impacts on health and transportation. Pollution levels 

during winter are two to three times higher than in summer, leading to delays and accidents. The 

pollution contribution was mainly from a combination of manmade factors, such as fuel burning, 
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and natural factors influenced by meteorology. Despite efforts to control pollution, fine particulate 

matter remains a major concern, averaging 80 to 100 μg/m3 daily in 2009. The results show that 

tracer concentrations were consistently 40% to 80% higher in winter (November, December, and 

January) and 10% to 60% lower in summer (May, June, and July) compared to the annual average.  

2.7 Satellite retrievals for Aerosol optical properties 

Satellites collect the different types of remote sensing data which can be used for several purposes 

including estimation of aerosol concentrations. These instruments observe the Earth's surface and 

the atmosphere from space, capturing the interaction of sunlight with aerosols. The retrieval 

process involves analysing the radiance measurements acquired by the satellite sensors and 

comparing them to radiative transfer models. These models simulate the interaction of sunlight 

with aerosols and the atmosphere, considering factors such as scattering, absorption, and the 

influence of surface reflection. Through a series of algorithms and inversion techniques, the 

satellite data is processed to estimate the AOD values at different locations on the Earth's surface.  

This retrieval process considers various factors, including satellite geometry, atmospheric 

properties, and surface characteristics. Satellite retrievals for AOD provide valuable information 

about the spatial and temporal distribution of aerosols on a global scale. This data is used for 

studying air quality, climate research, understanding aerosol sources and transport patterns, and 

validating atmospheric models. It's important to note that different satellite instruments and 

retrieval algorithms may have variations in the accuracy and spatial resolution of AOD 

measurements. Therefore, it is essential to consider the specific satellite platform and retrieval 

methodology when utilizing satellite-derived AOD data for scientific analysis and applications. 

Most of the researchers utilized AOD as one of the components to suit the purpose of the study. 

Kumar, 2014, used AOD values at 550 nm from NASA's Terra and Aqua satellites' MODIS 

sensors. The study was carried out for the period 2003-2012 in Delhi, Northern India. The results 

indicated a notable increase in AOD values exceeding 25% in Delhi, India over the study period. 

Yearly mean AOD values derived from Terra/Aqua data showed a gradual increase at rates of 

approximately 0.005/0.009 per year. Winter mean AOD values exhibited a slightly higher 

increasing trend at rates of about 0.012/0.007 per year. Sharma and Kulshrestha, 2014, investigated 

the relationships between MODIS-derived AOD and SPM, NO2, and SO2 levels. In this study, 

SPM concentrations were analysed across different regions of India. Central and northern districts 
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generally exhibited higher SPM concentrations than the south. Nine out of the top ten districts with 

high SPM pollution were in Uttar Pradesh state. Zeeshan and Kim Oanh, 2014, carried out 

correlation studies between satellite AOD and ground monitoring PM considering synoptic 

patterns and meteorological factors. The correlation (R2) between MODIS and Sun photometer 

AODs was above 0.8. The radiative and climatic impacts of the observed AOD variations for 

Bangalore were attempted in a study (Sreekanth, 2013). AOD values at 550 nm, derived from 

NASA's Terra and Aqua satellites' MODIS sensor were used for the study. Monthly mean AOD 

values show an increasing trend from January to May, with a secondary peak in July, and a 

minimum in December. The highest AOD values were reported in the monsoon season, lowest 

AOD values were reported in winter. Yearly AOD values increased mainly due to higher summer 

AOD. The results are compared with previous studies and other Indian locations. 

MODIS data from the Terra satellite was used to analyse the spatial and temporal variations of 

aerosol particles in the North Eastern region of India (Kumar, 2013). The study revealed an 

increase of over 15% in aerosol optical depths across the North Eastern part of India during the 

last decade. The mean AOD values during summer were observed to be 0.60±0.07, while during 

the post-monsoon season, the mean AOD values were 0.07±0.02. The highest annual mean 

increase in AOD (>79%) was found in Guwahati. Furthermore, the study investigated the 

relationship between AOD and five cloud parameters, including water vapor, cloud fraction, cloud 

top temperature, cloud top pressure, and cloud optical depth, in order to enhance the understanding 

of aerosol-cloud interactions in the North Eastern part of India.  

Spatial and temporal variations of aerosol particles in Southern India were explored using 

MODIS data from the Terra satellite (Balakrishnaiah et al., 2012). High AOD values were 

observed during the summer season in most regions, and the monsoon season in Pune, 

Visakhapatnam, and Hyderabad. The relationship between AOD and cloud parameters (water 

vapour, cloud fraction, cloud top temperature, and cloud top pressure) was analysed. Positive 

correlations were found between AOD and cloud fraction in some cities, while AOD showed 

negative correlations with cloud top pressure and cloud top temperature in Southern Indian 

regions. The correlation between AOD and cloud fraction was strongest for some cities while some 

of them indicated a weak correlation. Additionally, a strong positive correlation was observed 

between AOD and water vapour for all cities studied. However, there was a negative correlation 
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between AOD and cloud-top pressure as well as cloud-top temperature in the Southern Indian 

regions.  

The impact of biomass burning and wildfires on atmospheric aerosol concentrations was 

analysed using satellite data in Greece (Kaskaoutis et al., 2011). The study examined various 

aerosol parameters, including Aerosol Optical Depth (AOD), effective radius, Angstrom exponent, 

mass concentration, cloud-condensation nuclei (CCN), OMI Aerosol Index (AI), single scattering 

albedo, absorption, and extinction optical depths. Smoke plumes from the fires were observed 

traveling southwards over thousands of km, affecting the central Mediterranean and North African 

coastal regions.  

Agricultural residue burning in the Indo-Ganges region was found to significantly 

contribute to greenhouse gas emissions and aerosols (Vadrevu et al., 2011). This study utilized 

MODIS data to examine fire intensity, seasonality, variability, fire radiative energy (FRE), and 

aerosol optical depth (AOD) during the residue burning season. Fire counts exhibited two peaks 

in April-May and October-November, corresponding to wheat and rice residue burning. FRE 

variations aligned with the amount of burnt residues. The average AOD from 2003 to 2008 was 

0.60. Increased AOD during winter correlated with the rice residue burning season. However, the 

AOD-fire relationship was weak during the summer. These findings underscore the importance of 

a comprehensive assessment of greenhouse gases and aerosols to address air quality concerns in 

the region. 

 Kharol et al., (2011), examined the use of remote sensing to analyse aerosols and their role 

in global warming and climate change in Hyderabad, India. Specifically, it compares aerosol 

optical depths (AOD550) obtained from Level 2 (10 × 10 km) and Level 3 (1° × 1°) Terra/Aqua 

MODIS (C005) data with ground-based measurements using the MICROTOPS-II sun photometer. 

Correlation coefficients (R2) between Level 3 MODIS and ground-based AOD550 range from 0.30 

to 0.46 across all seasons. Lower correlations were observed when utilizing Level 2 MODIS data 

(R2 = 0.16-0.30). Level 3 MODIS AOD550 underestimates ground-based AOD550, whereas Level 

2 AOD550 values surpass those of Level 3. Assessing Terra/Aqua MODIS AOD550 at a regional 

scale, particularly over urban/industrial areas with significant diurnal aerosol variation. Results 

indicated a relatively strong correlation (R2 ~ 0.6-0.7) for the Level 3 dataset, but Level 2 data 

exhibit substantial scatter and weak correlations. Mean seasonal AOD550 values are similar, with 
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Terra AOD550 being higher than Aqua. Both satellite and ground-based measurements 

demonstrated increasing trends in AOD over Hyderabad, and the same was attributed to urban 

expansion, population growth, motor vehicle emissions, and local pollution. 

A multispectral empirical model was developed using Landsat 8 Operational Land Imager  

satellite data to estimate the concentration of PM10 in Delhi, India (Saraswat et al., 2017). Ground 

monitoring stations in New Delhi provided PM10 concentration data that corresponded to the 

acquisition dates of the Landsat 8 satellite data. The visible bands of Landsat 8 imagery were used 

to calculate atmospheric reflectance, which was then correlated with PM10 measurements from the 

ground stations. The proposed algorithm's feasibility was assessed based on the correlation 

coefficient and root mean square error value. The results indicated that the suggested multispectral 

PM10 model can predict particulate matter concentrations with an acceptable level of accuracy. 

Multi-satellite observations and ground-based measurements are used to analyse a dust storm event 

in the Persian Gulf and Arabian Sea region on February 19-24, 2008 (Badarinath et al., 2010). The 

study utilized Indian geostationary satellite KALPANA-1 VHRR data and ground observations to 

analyse the temporal variation of the dust event, with the strongest intensity observed on 22 

February. The OMI Aerosol Index (AI) was also examined to assess dust presence and plume 

location independently. The study observes a significant increase in Terra/Aqua MODIS AOD550 

(> 1.0) and AURA-OMI-AI during the dust event. Additionally, AODs derived from sun 

photometers at six AERONET sites in South Asia confirm the presence of dust and its west-to-

east transport. 

 Sreekanth et al., (2017), addressed the need for high-resolution data on PM10 mass 

concentrations for health and epidemiological studies in India. The results established empirical 

relations between AOD and PM10 mass concentrations in five Indian megacities. The goal is to 

predict surface PM2.5 concentrations using high-resolution columnar AOD datasets. The study 

utilizes multi-city public domain PM2.5 data and MODIS AOD data spanning almost four years. 

Positive correlations between PM2.5 and AOD were found, with spatially varying regression 

coefficients observed through station-wise linear regression analysis. Multiple regression analysis 

indicated the impact of day-to-day variability in local meteorological conditions on the AOD- 

PM2.5 relationship. A cross-validation approach using three years of data as a training dataset and 

one year as a validation dataset yielded an R2 value of approximately 0.63. The performance of 



41 

 

MODIS Collection 6 AOD retrieval algorithms was evaluated for the Indo-Gangetic Plain (IGP) 

of South Asia (Mhawish et al., 2017). The study examined the Dark Target (DT) AOD at 3 km 

and 10 km resolutions, Deep Blue (DB) AOD at 10 km, and the merged DT-DB AOD at 10 km. 

The evaluation compared collected Aqua MODIS C6 AOD data with AOD measurements from 

six AERONET stations over the IGP from 2006 to 2015. The study investigated the impact of 

aerosol heterogeneity, including aerosol loading and type, on the uncertainty of satellite based 

AOD retrieval. Findings indicated that the DT algorithm at both resolutions over estimated AOD 

by 14-25%, with only 51.37-61.29% of retrievals falling within the expected error range. The DT 

3 km algorithm under estimated surface reflectance compared to DT 10 km, which performs better 

in terms of collocation numbers and retrieval accuracy, especially in urban areas. DT 3 km 

performs the poorest. 

Yan et al., (2021), made an attempt to study the importance of fine-mode AOD (fAOD) as an 

indicator of column-integrated anthropogenic particulate pollutants. The study developed a 

retrieval algorithm based on the latest global-scale MODIS aerosol product (Collection 6.1) to 

generate a 10-year global fAOD product. The product was validated by comparing it with fAOD 

derived from Aerosol Robotic Network (AERONET) measurements. The resulting root-mean-

square error (RMSE) of 0.22 indicates good agreement between satellite-derived and AERONET. 

Ground-level RSPM was estimated using satellite remote sensing AOD data and ground-based 

meteorological measurements for Jaipur, a semi-arid region in North-western India (Soni et al., 

2018). Multi-regression statistical models were developed using satellite MODIS Level 2.0 AOD 

to estimate RSPM values in the study area. The models considered factors such as the Height of 

the Planetary Boundary Layer (HPBL) and meteorological parameters to optimize the 

representation of MODIS AOD. The performance of the regression models was evaluated using 

statistical measures including Normalized Mean Square Error (NMSE), Correlation (R), and 

Fractional Bias (FB). The nonlinear multi-regression model performs the best for the study period 

and region, with a correlation of 0.80, and NMSE of 0.01. The coefficients obtained from MODEL 

V were also applied to Jodhpur and found to be effective. Mangla et al., 2020, compared AOD 

measurements from multiple satellites (MISR, MODIS, and OMI) with ground-based observations 

over the IGP region (2010-2017). The results showed a higher correlation with MODIS (R2 = 0.7 

at Gandhi College), followed by MISR and OMI AOD. MISR exhibited the highest percentage 

(58%) of data points within the error envelope. Both MISR and OMI consistently displayed a 
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negative bias trend for higher AOD, while MODIS showed a negative bias only over the Jaipur 

region. Seasonally, the IGP region exhibits higher AOD in summer due to dust storms. Comparing 

MODIS and MISR, MODIS generally exhibits higher seasonal AOD. The spatial correlation 

between MODIS and MISR was high during summer and winter seasons. However, the OMI 

sensor's performance in the IGP region does not match existing patterns. These findings provide 

valuable insights for selecting reliable satellite AOD products in future studies. 

The impact of environmental attributes on the uncertainty in satellite-based AOD retrieval 

compared to AERONET measurements was assessed at 21 sites in North Africa, California, and 

Germany from 2007 to 2017 (Falah et al., 2021). The effects of spatial and temporal averaging 

techniques were examined. MAIAC AOD was then analysed based on different environmental 

attributes, including aerosol loading, dominant particle size, vegetation cover, and prevailing 

particle type. The expected retrieval error varied across these attributes, with more accurate AOD 

retrievals observed in highly vegetated areas. Retrieval accuracy was found to be sensitive to 

aerosol loading and particle size, with larger biases between MAIAC and AERONET AOD during 

high aerosol loading of coarse particles. (Kaskaoutis et al., 2009; Moorthy et al., 2005; Quinn, 

2002; Tripathi, 2005 also reported similar findings from their research on AOD and satellite 

observations.  

2.8 Source-Receptor modeling 

Source-receptor modelling is a technique used to understand the relationship between the emission 

sources of pollutants and the locations where these pollutants are observed or measured. It involves 

analysing the transport and dispersion of pollutants from their sources to the receptor’s location, 

allowing for the identification and quantification of the contributions of different emission sources 

to the observed pollution levels. Source apportionment techniques are used to attribute the 

contributions of different emission sources to the observed pollution levels. This can be done 

through statistical methods, receptor modelling, or other data analysis techniques. Source-receptor 

modelling is valuable for understanding the spatial and temporal variations in pollutant 

concentrations and identifying the major emission sources responsible for pollution in specific 

regions. This information can be used for developing effective air quality management strategies, 

implementing pollution control measures, and assessing the impacts of different emission sources 

on air quality and public health.  
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Source Apportionment (SA) studies over different geographical divisions of IGP, Delhi, 

western, eastern, and central India indicated that more than 50% of the studies are focused on the 

Delhi National Capital Region (NCR) and IGP (Yadav et al., 2022). Based on the database is 

available on chemical characterization of ambient aerosols, only 49 offline and 16 online SA 

studies. The most studied size fractions are PM10 (34%) and PM2.5 (28%) followed by 11% studies 

on PM1 and only 5% on size-segregated SA of aerosols in India. The contributions of PM2.5  

emission sources were quantified in Busan, South Korea (Jeong et al., 2017). Three receptor 

models (PCA/APCS, PMF, and CMB) were used to analyse the data. The results showed that the 

secondary formation of PM2.5 was the dominant contributor (45-60%) to PM2.5 levels in Busan. 

Ship emissions were found to be a non-negligible contributor (up to 10%) according to PMF and 

PCA/APCS, but negligible according to CMB. The different models produced varying estimates 

of source contributions due to their limitations. Analysis of potential source contribution function 

and concentration-weighted trajectory revealed that long-range transport from sources in eastern 

China and the Yellow Sea significantly influenced PM2.5  levels in Busan Dutta and Chatterjee, 

2022, assessed aerosol pollution in India, focusing on long-term trends, source apportionment, and 

future projections for each state. Results indicated that most states in the Indo-Gangetic Plain are 

highly vulnerable, while central, western, and southern states are considered vulnerable. The study 

identified coal-fired thermal power plants, vehicular emissions, solid fuel/waste, and biomass 

burning as major aerosol sources. 

2.9 Source identification based on backward trajectory analysis 

Backward trajectory analysis utilizes atmospheric science to trace the origin and transport history 

of air masses or pollutants by calculating the trajectories of air parcels or particles in reverse from 

their current location back to their source region. This analysis aids in understanding the pathways, 

sources, and potential influences on the air masses or pollutants being studied. By analysing 

meteorological data and identifying source regions, researchers gain insights into long-range 

pollutant transport, the contribution of different regions to local pollution, and the influence of 

meteorological conditions and transport mechanisms. Backward trajectory analysis plays a crucial 

role in air quality studies, atmospheric pollution research, climate investigations, and 

understanding atmospheric transport and dispersion processes. However, studies on source 

identification based on trajectory are limited in India (Banerjee et al., 2015b) 
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 Chandra et al., 2017 investigated trace metals associated with PM10 aerosols and their 

variations during different times of the day and different seasons in 2012. Principal Component 

Analysis (PCA) identified five components that explained 86.8% of the cumulative variance. PC1 

represented 30% of the variance and was associated with metals of anthropogenic origin, while 

PC2 explained 28% of the variance and consisted of metals of crustal origin. These trace metals 

exhibited distinct seasonal and diurnal patterns. Cu, Pb, and Cd concentrations were higher during 

the night in all seasons, while Fe had higher concentrations during the daytime except in the 

monsoon season. During the post-monsoon season, Cu, Cd, Zn, and Pb had the highest mean 

values, likely due to winds carrying pollutants from waste/biomass burning and industrial activities 

in Punjab and Haryana regions. Concentration-weighted trajectory analysis indicated that metals 

of crustal origin were transported over long distances, while metals from anthropogenic and 

industrial sources originated from regional/local areas. Positive matrix factorization (PMF) and 

potential source contribution function (PSCF) analysis were used for identifying the sources of 

aerosols in the Indian Ocean Experiment domain (Bhanuprasad et al., 2008). Surface aerosol 

measurements and emissions inventory information was utilized to identify co-located sources 

from PSCF. PMF analysis identified six factors, including biomass combustion, industrial 

emissions, and two dust factors. These factors effectively predicted measured submicron PM 

concentrations. Probable source regions beyond India, such as Africa, West Asia, the Arabian 

Peninsula, and Southeast Asia were identified. These sources affected particulate matter 

concentrations in the INDOEX domain covered by the Ron Brown cruise. 

Source identification and human health risks associated with elements in fine PM2.5 over 

Agra, India were attempted by Sah, 2023. The average annual PM2.5 concentration exceeded air 

quality guidelines, measuring 144.32 ± 57.18 μg/m3. Winter exhibited the highest PM2.5 

concentration, followed by post-monsoon, summer, and monsoon seasons. Si had the highest 

concentration among the analysed elements, while V had the lowest. The concentrations of Cr, Ni, 

As, and Cd exceeded WHO limits, while V, Mn, and Pb concentrations were below the limits. 

Significant seasonal variations in element concentrations were observed. The HI for studied metals 

was 7.02 for both age groups. Carcinogenic risks due to Pb for both children and adults and due to 

Cd for children were lower than 1 × 10−6. Carcinogenic risks for other studied metals exceeded 1 

× 10−6. The total carcinogenic risks for adults and children surpassed the acceptable limit of 1 × 

10−6. Hourly data was analysed to study NO2 and O3 levels at an urban background site in Seoul, 
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Korea (Vellingiri et al., 2016). The trajectory analysis was used to examine the contributions of 

variables in special cases with high NO2 and O3 levels (>60 ppb). A potential source contribution 

function with a grid size resolution of 0.25° × 0.25° was utilized to identify potential external 

sources of NO2 and O3 in the study area. The results indicated that both the northern China region 

and local emission sources were major contributors to the increase in NO2 concentration at the site. 

For O3, the influential source pathways included the oceanic and mountainous regions of China 

and Japan. 

Air mass back trajectories in Toronto were analysed using cluster analysis and a neural 

network (Owega et al., 2006). The two techniques utilized different similarity criteria but yielded 

similar results regarding PM2.5 emission sources and pollution levels associated with various air 

transport patterns. Both methods highlighted the cleaner nature of northerly and north-westerly 

patterns compared to southerly and south-westerly ones, as well as the impact of stagnant air 

masses. The conventional PSCF method was compared with the proposed 3D-PSCF-CONC 

method for the assessment of air pollution in the Metropolitan Area of São Paulo in Brazil (Dos 

Santos and Hoinaski, 2021). Using backward trajectories from the HYSPLIT version 4 model, a 

total of 1825 trajectories with the three models were analysed. The analysis suggested that 

vehicular sources near the receptor site contribute significantly to air pollution, while long-range 

transport of industrial emissions and biomass burning associated with sugarcane production also 

play a role. Overall, the 3D-PSCF-CONC method provides a valuable tool for understanding the 

air pollution process and identifying pollution sources accurately. Previous studies also reported 

results of back trajectory analysis and effective origin source regions and long-range transport of 

pollutants (Conte et al., 2020; Hong et al., 2019). 

2.10 Summary of Literature 

The summary presents a comprehensive overview of the widespread issue of PM2.5 

pollution and its bound Heavy Metals (HMs) associated with health impact. The global efforts to 

combat this problem, with various countries and international organizations setting air quality 

standards and guidelines. The World Health Organization (WHO) guidelines serve as a benchmark 

for evaluating and managing air quality, but despite these efforts, almost all global populations 

still breathe polluted air exceeding these limits, particularly affecting low and middle-income 

countries. The literature summary delves into specific case studies from different regions, 
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showcasing the severity of PM2.5 pollution and its sources. India, in particular, faces significant 

challenges due to factors like coal mining, industrial emissions, and biomass usage for cooking, 

leading to severe air pollution levels. Furthermore, the study emphasizes the importance of 

addressing long-range sources of PM2.5 pollution, recognizing the significant impact on public 

health, especially for vulnerable groups like adults and children. It highlights the critical need for 

comprehensive strategies to mitigate air pollution, integrating air quality efforts with broader social 

and economic development policies. To combat air pollution, various countries, including the 

United States and European Union, have established regulatory standards to control PM2.5 

emissions, and India has launched initiatives like the National Clean Air Programme (NCAP) to 

reduce pollution levels. However, despite these efforts, the persistent threat of PM2.5 pollution on 

cultural heritage sites in East Asia remains a significant concern, emphasizing the need for special 

preservation measures. Recent developments in remote sensing and global as well as regional 

chemical-transport models provide valuable data to estimate ground-level pollutant 

concentrations, facilitating a better understanding and evaluation of PM2.5 emissions and their 

impacts on public health. In recent years, there’s been a documented rise in the presence of heavy 

metals, which are hazardous pollutants posing potential threats to both human health and natural 

ecosystems., as they tend to bio-accumulate in the human body. The heavy metals emitted from 

highways come from various sources, such as atmospheric deposition, traffic emissions, 

carriageway breakup, and surrounding land use. Urban pollution from transportation has become 

a crucial concern due to the rapid increase in road traffic in many countries, including India. 

Studies have identified both primary elements from the Earth's crust (Al, Fe, and Ca) and 

anthropogenic sources (Pb, Ni, and Cd) as major contributors to coarse and fine particles in urban 

areas. The manmade sources are dominating sources in the urban areas. Particulate matter can also 

harbor bacteria and potential respiratory pathogens, posing risks to lung health and the 

environment. Researchers have attempted to assess the potential risk of heavy metal exposure to 

children and adults through various pathways. Overall, children tend to have higher intake levels 

than adults, however, the exposure levels were found to be within acceptable limits according to 

the US EPA guidelines. The atmospheric aerosol distributions are influenced by various factors 

such as precipitation, atmospheric mixing, and ventilation due to circulation changes. Emissions 

from natural aerosol sources are influenced by climate factors like wind speed, temperature, and 

vegetation. Several particle dispersion models are available and widely used to study aerosol 
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dynamics and distribution in the atmosphere. Mechanical dispersion is a process where solid 

particles are mechanically generated and dispersed into the air. This mechanism is often associated 

with activities like construction, mining, and agricultural practices, which can release dust particles 

into the air as aerosols. In some regions, haze episodes are caused by uncontrolled biomass and 

peat burning. However, the sources of ambient aerosol and their dispersions are complex and 

interconnected, with multiple processes contributing to the overall aerosol composition and 

concentrations in the atmosphere. Understanding the sources and dynamics of aerosols in the 

atmosphere is essential to address air pollution and its impacts on human health and the 

environment. The interplay of various factors, both natural and human-induced, influences the 

presence and distribution of aerosols, including heavy metals, in the atmosphere. Effective 

strategies and regulations are required to mitigate air pollution and protect air quality. 

Overall, these studies highlight the importance of understanding the sources of aerosols in 

different regions and the methods used to assess their contributions. Accurate knowledge of 

aerosol sources is essential for developing effective strategies to mitigate air pollution and its 

impacts on human health and the environment. Several studies explore the relationship between 

aerosol concentration and meteorological factors in various regions. Meteorological factors 

significantly influence aerosol concentration wind patterns, temperature, humidity, and 

atmospheric stability play vital roles in the transport, dispersion, and accumulation of aerosol 

particles in the atmosphere. These factors affect the spatial and temporal variations in ambient 

aerosol concentrations, impacting air quality, climate, and human health. In general temperature 

showed a negative trend with concentration during winter months, while wind speed exhibited a 

negative correlation. Relative humidity showed a weak positive correlation with PM2.5 and PM10 

during winter months. A combination model incorporating meteorological parameters enhanced 

accuracy in estimating ground PM2.5 levels. AOD showed significant interannual variation, with a 

positive correlation with temperature. AOD consistently showed higher values during forenoon 

hours compared to afternoon hours, influenced by prevailing meteorological conditions and 

pollution sources.  The lower surface wind speeds and higher relative humidity tend to worsen air 

pollution and reduce visibility in heavily populated areas. 

Overall, studies highlight the importance of considering meteorological factors in 

understanding and predicting aerosol concentrations. The compilation of various research studies 
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and their findings related to Satellites, AOD estimation, and its applications. These satellites 

collect remote sensing data, including information on aerosol concentrations. Retrieving AOD 

values involves analyzing radiance measurements from satellite sensors for AOD are used for 

studying air quality, climate research, understanding aerosol sources and transport patterns, and 

validating atmospheric models. Studies assessed the impact of environmental attributes on the 

accuracy of satellite-based AOD retrieval, indicating the importance of considering factors like 

aerosol loading, particle size, and vegetation cover. Studies highlight the significance of satellite-

derived AOD data in various applications and the need to consider different factors affecting AOD 

retrieval for accurate analysis and interpretation. Source-receptor modelling is a valuable 

technique used to understand the relationship between pollutant emission sources and their 

locations of observation or measurement. It involves analysing how pollutants are transported and 

dispersed from their sources to receptor locations, allowing for the identification and quantification 

of different emission sources' contributions to observed pollution levels. This information is 

crucial for developing effective air quality management strategies, implementing pollution control 

measures, and assessing the impacts of various emission sources on air quality and public health. 

Studies on source-receptor modelling have been conducted in different geographical regions, with 

a significant focus on the NCR and IGP. 

A study in India assessed aerosol pollution in each state, focusing on long-term trends, 

source apportionment, and future projections. The IGP states were found to be highly vulnerable 

to aerosol pollution, while central, western, and southern states were considered vulnerable. Major 

aerosol sources identified in India include coal-fired thermal power plants, vehicular emissions, 

solid fuel/waste, and biomass burning. Overall, source-receptor modelling plays a crucial role in 

understanding pollutant sources, and their impacts, and devising effective pollution control 

strategies to safeguard public health and improve air quality. Backward trajectory analysis is a 

powerful technique in atmospheric science used to trace the origin and transport history of air 

masses or pollutants by calculating the trajectories of air parcels or particles in reverse from their 

current location back to their source region. This analysis provides valuable insights into long-

range pollutant transport, the contribution of different regions to local pollution, and the influence 

of meteorological conditions and transport mechanisms. Overall, backward trajectory analysis is a 

valuable tool in various atmospheric studies, providing essential information for air quality 
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management, pollution control strategies, and understanding atmospheric transport and dispersion 

processes. 

Overall, the summary emphasizes the importance of comprehensive strategies for PM2.5 

pollution, including addressing the outdoor sources and integrating with satellite AOD and 

meteorological parameters to predict the ground level of PM2.5. The long-range transport of the 

aerosol pollutants from the source regions an indirect effect on the social and economic 

development policies and implementing effective regulations and mitigation measures to protect 

human health and the environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

Chapter 3 Materials and Methods 

3.1 Study Area 

One of the study areas is Warangal, in the southern part of India, hosting a population of 983000 

as per the 2021 census. It is the second-largest municipality in Telangana state, next to the state 

capital, Hyderabad, which is the second study location. Warangal located at 18.0°N and 79.58°E, 

records an average temperature of 34.5°C during summer and an average temperature of 22.4°C 

during winter. Tropical climate prevails in the area with an annual average precipitation of 945 

mm. Air samples were collected at the institute campus by adopting prescribed procedures. The 

index map of the study area with the sampling location is presented in Figure 3.1. The sampling 

location was situated on the roof (~15 m above ground level) of the Chemistry Department 

building.  

 

Figure 3.1 Sampling Location in the study area at Warangal. 

The second study area was the Hyderabad, a city with a rich history spanning 400 years, proudly 

serves as the state capital of Telangana. It is nestled on the Deccan Plateau, approximately 500 

meters above sea level, situated at a latitude of 17° 23′ 13.704” N and a longitude of 78° 29′ 

30.0624″ E (Figure 3.2). The city extends over an area of around 650 km2 along the banks of the 

Musi River. Hyderabad shares its glory with its twin city, Secunderabad, and together, they form 

the fifth-largest urban agglomeration in India. According to the 2011 census, the metropolitan 

population was around 0.97 crores. During the monsoon season, from June to October, the 
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southwest monsoon graces the city with heavy rainfall, contributing significantly to its annual 

precipitation. 

The climate in Hyderabad is generally pleasant, with an average annual temperature of 26.6 °C. 

However, temperatures can fluctuate from 21 to 33 °C throughout the year. The hottest month, 

with temperatures reaching 36–39 °C, is May, while December and January experience cooler 

weather, ranging from 14.5 to 28 °C. With a thriving industrial sector and numerous research 

centers, Hyderabad has emerged as a prominent high-tech hub in southeast India. This remarkable 

growth has attracted a substantial influx of people, resulting in a high population density of 

approximately 17,000 individuals per km2. The rapid urbanization and increased economic 

activities have led to significant migration to the twin cities, resulting in a surge in personal, public, 

and para transit vehicles, as well as industrial output. This growth has also placed a considerable 

burden on the cities' infrastructure. Hyderabad, together with the neighbouring ten Municipalities, 

constitutes the Hyderabad Urban Development Area (HUDA). The region has been expanding at 

an average annual rate of 9%, further solidifying its position as one of the fastest-growing cities in 

India. 

 

Figure 3.2 Meteorological data locations and CPCB monitoring sites considered in this Study at 

Hyderabad region 
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3.2 Major Sources of Air Pollution  

Warangal is a typical town with mixed land uses dominated by residential, commercial, 

and transportation activities with no major industrial sources within a 3-4 km radius. The sampling 

location is in the institute campus extending 240 acres with academic and residential buildings and 

a population of about 7000 residing on the campus. Transportation and daily cleaning activities 

can be considered as the major sources of air pollution in the college campus. Construction activity 

is another source on the campus that contributes to particulate matter in the air. The sampling 

location is close to Warangal - Hyderabad National Highway (about 300 m to the North) with high 

traffic density is also a major dominating source of pollution. Direct vehicular emissions, road 

dust, and dust resuspension in particular contribute to air pollution. Open burning nearby areas is 

another source that contributes to particulates in the air. The campus is surrounded by residential 

with mixed activities influencing air pollution. In summary, local and non-local sources influence 

the pollution levels at the location. The non-local sources include industries, biomass burning, and 

coal mining activities.  

 Hyderabad, a bustling metropolis in southern India, grapples with a myriad of 

pollution sources that contribute to its environmental challenges. Vehicular emissions stand out as 

a significant contributor, given the city's burgeoning population and rapid urbanization. The 

increasing number of vehicles on the roads releases pollutants, including particulate matter and 

greenhouse gases, impacting air quality. Industrial activities, prevalent in and around the city. 

Bollaram located in the Medchal-Malkajgiri district of Telangana, India, is recognized for its 

industrial importance. It houses diverse industrial estates and manufacturing units, playing a 

pivotal role in the economic landscape. Over recent years, Bollaram has undergone substantial 

development, becoming a magnet for businesses and making significant contributions to the 

overall economic advancement of the neighboring region.  

Central University Hyderabad Situated in Gachibowli, Hyderabad, Telangana, India, it is 

also recognized as the University of Hyderabad and finds itself amidst a burgeoning IT and 

business hub. Gachibowli, positioned in the western part of Hyderabad, has evolved into a 

prominent district hosting technology companies, educational institutions, and research centers. 

The environmental quality around the university campus plays a role in influencing pollution levels 

in the campus region. 
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Industrial Development Area (IDA) Pashamylaram, positioned on the outskirts of 

Hyderabad, Telangana, is an industrial development area near Pashamylaram. Falling under the 

jurisdiction of the Hyderabad Metropolitan Development Authority (HMDA), Pashamylaram is 

renowned for its industrial estates, situated northwest of Hyderabad city. Within the IDA of 

Pashamylaram, diverse industrial units, manufacturing facilities, and businesses thrive. The 

purpose of its development is to foster industrial growth and contribute significantly to the 

economic advancement of the region. The specific location within Pashamylaram can vary, 

contingent upon the specific industrial zone. 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) resides in 

Patancheru, on the outskirts of Hyderabad, Telangana, India. Patancheru, a dynamic industrial and 

residential zone on Hyderabad's periphery, is strategically positioned. It accommodates a mix of 

industrial estates, educational institutions, and residential complexes, contributing significantly to 

Hyderabad's economic landscape. This area is home to manufacturing units, research centers, and 

IT companies, exemplifying its industrial importance. ICRISAT's presence underscores its pivotal 

role in global agricultural research. Despite its industrial vibrancy, Patancheru embraces natural 

beauty, with lakes and green spaces enhancing its surroundings.  

Sanathnagar located in the western part of Hyderabad, Telangana, India, Sanathnagar is a 

vibrant locality renowned for its industrial and residential zones. The area boasts a blend of 

commercial establishments, manufacturing units, and residential neighbourhoods. Sanathnagar has 

experienced substantial urban development and enjoys excellent connectivity to other parts of the 

city. Its significance lies in hosting industrial estates that contribute significantly to Hyderabad's 

economic activities. However, the region faces environmental challenges, particularly related to 

traffic density and ongoing construction activities. 

The Nehru Zoological Park, commonly known as Zoo Park, is situated in the Bahadurpura 

area of Hyderabad, part of the Old City with a rich historical and cultural heritage. Next to the zoo 

lies Lumbini Park, featuring a delightful musical fountain, providing visitors with a pleasant 

recreational space. The ancient Mir Alam Tank, a reservoir nearby, enhances the natural beauty of 

the surroundings and serves as a habitat for diverse bird species. The vicinity of the zoo has 

witnessed urban development, with the emergence of residential neighbourhood’s, commercial 

establishments, and educational institutions, creating a diverse and vibrant locale. 
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Table 3.1 Air quality monitoring stations over Hyderabad 

S.No Stations Latitude and Longitude 

1 Bollaram Industrial Area, Hyderabad - TSPCB 17.54089, 78.358528 

2 Central University, Hyderabad - TSPCB 17.460103, 78.334361 

3 IDA Pashamylaram, Hyderabad - TSPCB 17.5316895, 78.218939 

4 ICRISAT Patancheru, Hyderabad - TSPCB 17.512414, 78.2753706 

5 Sanathnagar, Hyderabad - TSPCB 17.4559458, 78.4332152 

6 Zoo Park, Hyderabad - TSPCB 17.349694, 78.451437 

    

3.3 Respirable dust sampler 

PM2.5 particles were collected using a Respirable dust sampler as shown in Figure. 3.3. For proper 

control of PM2.5, a flow win impactor and silica gel were used. The dust sampler flow rate was 

16.67 ± 5% liters per minute (LPM) and an accuracy of ±2% was maintained throughout the 

sampling period. 12 hours of samples were collected separately during the day and night.  A total 

of 130 samples were collected for six months starting from September 2018 to February 2019. 

Prescribed glass-fiber filter paper was used for the filtration of samples (Bhuyan et al., 2018; 

Chaudhari et al., 2012b; Satsangi et al., 2014). The weight of dry filter paper before and after 

sampling was recorded with the help of mass balance and subsequently, PM2.5 concentrations were 

calculated. A desiccator was used to control the influence of atmospheric moisture on filter papers. 

The collected samples were stored in the refrigerator for subsequent metal analysis using the 

Agilent Microwave Plasma Atomic Emission Spectrometers (MP-AES) model was Agilent 4210 

MP-AES. 
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Figure 3.3 Configuration of Respirable dust sampler 

3.4 MP-AES heavy metals analysis 

The Agilent 4210 MP-AES offers a superior alternative to flame Atomic Absorption 

Spectroscopy (AAS) with high sensitivity and accuracy. Unlike AAS, it uses a microwave plasma 

and operates on air, allowing for flexible installation in labs or remote locations. With detection 

limits down to ppb levels, it provides excellent sensitivity while eliminating the need for sample 

pretreatment. The 4210 MP-AES delivers cost-effective analysis without compromising accuracy 

or sensitivity. 

The heavy metal analysis on the filter paper was conducted using the following method: 

The glass-fiber filter papers underwent acid digestion with 20 ml concentrated HNO3 solution for 

2-h on the hot plate (Chakraborty & Gupta, 2010; Kamala et al., 2014). The solution was 

maintained at 180°C until the acid got evaporated completely. The residual liquid was then filtered 

through a 0.22 μm Teflon filter and diluted to 100 mL with Milli-Q water (resistivity 18.2 mΩ) for 

subsequent elemental analysis. A blank filter was digested following the same procedure as the 

sample filters. The blank filters were analysed separately and the values were subtracted from the 

total weight after filtration to get the weight of the retentived. The reference standard solutions for 

MP-AES were prepared for calibration to find the concentration of metals in the samples (Kamala 

et al., 2014). 

The analytical performance of MP-AES is similar to that of AAS, but MP-AES can 

measure more elements more rapidly across a broader concentration range. The detection limit in 
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MP-AES is a crucial factor determining the instrument's capacity to identify and measure trace 

quantities of elements within a sample. Ensuring a low detection limit is indispensable for 

applications demanding heightened sensitivity. Detection limits parameters influence the signal-

to-noise ratio the signal from the analyte emission lines needs to be clearly distinguished from the 

background noise. A higher signal allows for the detection of lower concentrations. Spectral 

Interferences from other elements or compounds in the sample can affect the accuracy of detection. 

Methods such as collision or reaction cells may be employed to reduce spectral interferences and 

improve the detection limits. Accurate calibration of the instrument using standards of known 

concentrations is essential. A well-calibrated instrument provides a reliable basis for determining 

the detection limit. The following table presented the detection limits for the element analysis 

(pang 2014). 

Table 3.2 MPAES instrument detection limits for elemental analysis. 

Element/Heavy Metal Detection Limit (µg/L) 

Aluminum (Al) 0.1 

Arsenic (As) 0.01 

Cadmium (Cd) 0.005 

Chromium (Cr) 0.05 

Copper (Cu) 0.01 

Iron (Fe) 0.1 

Lead (Pb) 0.01 

Manganese (Mn) 0.2 

Nickel (Ni) 0.01 

Zinc (Zn) 0.01 
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3.5 Enrichment Factor analysis 

The enrichment factor (EF) is generally used to identify the pollutant originating from the earth's 

crust and non-crustal sources. Equation 3.1 may be used for the determination of EF. In most 

studies (Das et al., 2015; Zhang et al., 2009), Fe and Al are used as reference elements as these 

elements exhibit stable chemical properties. Therefore, in this study, Fe was used as a reference 

element. The standard crustal composition reported by Rudnick and Gao, (2003), was used in the 

present study. However, there is no thumb rule for selecting reference elements. 

 𝐸𝐹 =
((

𝑋

𝐶𝐶𝑟𝑒𝑓
)𝑠𝑎𝑚𝑝𝑙𝑒)

((
𝑋

𝑟𝑒𝑓
)𝑐𝑟𝑢𝑠𝑡)

 Eq. 3.1 

Where X is the concentration of the element being examined and “Cref” is the reference element 

concentration, with respective sample and crust. The relation between EF and the level of 

enrichment is given in Table 3.1.  

Table 3.3 Interpretation of EF (Zhang et al., 2009) 

EF Level of Enrichment 

 < 2  Minimal enrichment 

2–5  Moderate enrichment 

5–20  Significant enrichment 

20–40  very high enrichment 

EF > 40  extremely high enrichment 

 

3.6 Non-carcinogenic and carcinogenic health risk assessment 

The health risk assessment for adults and children was analysed based on heavy metals 

associated with PM2.5. Exposure to ambient metals occurs through inhalation, ingestion, and skin. 

In the present study, the exposure assessment methodology developed by the U.S. EPA (US EPA 

2009a; US EPA 2009b) has been adopted. Ambient heavy metals are inhaled through the nose and 

mouth; ingested through food and absorbed through skin pores. Risk Assessment methodologies 

have been reported in a few studies (Han et al., 2016; Hu et al., 2012; Wei et al., 2015) and the 
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health risk assessment framework includes the identification of pollutants and the exposure 

assessment based on dose-response assessment.    

3.6.1 Average Daily Dose  

US EPA considers the Average Daily Dose (ADD) (mg/kg/day) for exposure dose assessment of 

the risk posed by metals to humans. The potential exposure through three different pathways for 

each metal separately is computed in the present study with the help of equations 3.2, 3.3, and 3.4) 

(Ferreir & Miguel, 2005; Hu et al., 2012; Kong et al., 2012). 

 𝐴𝐷𝐷𝑖𝑛𝑔 =
𝐶 × 𝐼𝑛𝑔𝑅 × 𝐸𝐹 × 𝐸𝐷 × 𝐶𝐹

𝐵𝑊 × 𝐴𝑇
 Eq. 3.2 

 𝐴𝐷𝐷𝑑𝑒𝑟 =
𝐶 × 𝑆𝐴 × 𝐴𝐹 × 𝐴𝐵𝑆 × 𝐸𝐹 × 𝐸𝐷 × 𝐶𝐹

𝐵𝑊 × 𝐴𝑇
 Eq. 3.3 

 
𝐴𝐷𝐷𝑖𝑛ℎ =

𝐶 × 𝐼𝑛ℎ𝑅 × 𝐸𝐹 × 𝐸𝐷

𝑃𝐸𝐹 × 𝐵𝑊 × 𝐴𝑇
 

Eq. 3.4 

Where ADDing, is the average daily dose by ingestion (mg/kg/day). 

ADDder is the average daily dose by dermal contact (mg/kg/day). 

ADDinh Average daily dose by inhalation (mg/kg/day). 

C is the heavy metal concentration (mg/kg). 

IngR is Ingestion rate (mg/day) 30_adults, 60_children (US EPA 2007); 

EV is Events frequency that occurs every day at once. 

EF is Exposure frequency, 180 days for a year. 

ED is Exposure duration, 24 years for adults, 6 years for Children. 

CF is a Conversion factor 10−6 kg/mg. 

BW is Body weight - 70kg for adults, 15kg for children. 

SA is Skin surface area - 5700 cm2 for adults, 2800cm2 for children. 

AF is the Adherence factor of soil to the skin - 0.07 (mg/cm2/event) for adults, 0.2 

(mg/cm2/event) for children. 

ABS is Dermal absorption fraction - 0.001 (US EPA 2004b); 

InhR is Inhalation rate 7.63m3/day for adults, 20m3/day for Children. 

PEF is Particle emission factor - 1.36 X 109 m3/kg (US EPA 2009a); 

AT is Averaging time for Non carcinogens (AT = ED X 365 days/year) and Carcinogens 

(AT = 70 years X 365 days/year) (Du et al., 2013). 



59 

 

In the present study, standard parameter values as given by US EPA (US EPA 2004b; US EPA 

2004c; US EPA 2007; US EPA 2009a; US EPA 2009b) were used.  

3.6.2 Hazards Quotient and Hazards Index 

The non-carcinogenic health risk assessment was calculated based on Hazard Quotient (HQ) and 

Hazard Index (HI). HQ and HI were determined using Eq. 3.5 and 3.6 respectively. HQ value of 

less than 1 indicates there is no significant health impact, while HQ value of more than 1 indicates 

an adverse effect on human health (Zheng et al., 2010). HQ value was found based on the reference 

dose (RFD) of each element. HI is the sum of all the Hazard Quotients (Ferreira & Miguel, 2005; 

Zheng et al., 2010). HI value of less than 1 indicates that there is no significant non-carcinogenic 

impact, while HI value greater than 1, indicates chances of significant non-carcinogenic impact 

(Zheng et al., 2010). 

 𝐻𝑄 =
𝐴𝐷𝐷

𝑅𝑓𝐷
 Eq. 3.5 

 𝐻𝐼 = ∑ 𝐻𝑄𝑖

𝑛

1
 Eq. 3.6 

3.6.3 Excess Cancer Risk Assessment 

Excess Cancer Risk (ECR) is a measure of the incremental cancer risk over the lifetime (Hu et al., 

2012). ECR is calculated using Eq. 3.7. The inhalation unit risks of the metals are provided by US 

EPA IRIS (Integrated Risk Information System) (US EPA, 2009). A zero value indicates that there 

is no cancer risk, while higher values indicate a higher chance of cancer risk. The US EPA 

methodology provides only the inhalation unit risk. However, other pathways and associated risks 

are not provided. When the ECR value falls within the range of 10-6-10-4 indicates carcinogenic 

risk (Hu et al., 2012; Qi et al., 2019) was minimal. 

 𝐸𝐶𝑅 =
𝐶 ×  𝐸𝑇 ×  𝐸𝐹 ×  𝐸𝐷 ×  𝐼𝑈𝑅

𝐴𝑇
 Eq. 3.7 

Where C is pollutant levels in mg/m3; ET is the exposure time taken as 8 h/day; EF is Exposure 

frequency 180 days for a year; ED is Exposure duration: 24 years for adults, 6 years for children; 

IUR is inhalation unit risk in mg/m3, AT is Average time for carcinogens 70 year 365 days/year 

24 h/day). 
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3.7 MODIS AOD data product  

AOD is derived from atmospheric radiance observations by the MODIS instruments aboard the 

Terra and Aqua. Collection 6.1. The MODIS Aqua and Terra retrievals are obtained from NASA’s 

Level-3 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive 

Center (https://ladsweb.nascom.nasa.gov). The MODIS AOD product available in two algorithms 

which are Dark Target (DT) and Deep Blue (DB). DT is designed to retrieve AOD at various 

wavelengths over relatively “dark” targets in the visible, such as water bodies or vegetation. In 

contrast, DB is designed to address the retrieval of AOD over more reflective surfaces, such as 

sand. For this study, two resolution data was analysed terra/aqua products 3km and 10km aerosol 

product. Here on words representation of all four MODIS products as the MODIS terra 3km 

(MOD04_3K), MODIS terra km (MOD04_L2), MODIS aqua 3km (MYD04_3K), MODIS terra 

3km (MYD04_L2). The 3 km product tends to be noiser than the 10 km product. Comparisons of 

the global mean AOD from the two products shows that the 3 km AOD is 0.01 to 0.02 higher over 

land (Levy et al., 2015). MODIS product files are stored in Hierarchical Data Format (HDF-EOS). 

To extraction of the HDF data files python scripts are developed. Terra crosses the equator 

southward about 10:30 local solar time (LST), whereas Aqua northward about 13:30 LST. Because 

of the difference in direction, the mid-latitude time differences between Terra and Aqua are 

approximately 1.5 h in the northern Hemisphere and 4.5 h in the southern Hemisphere (Kaufman 

et al., 2005), while for Hyderabad this time interval is about 2.5 h. The above four data sets are 

adapted in this study, and following the Interquartile Range (IQR) method, the method stands out 

as a robust approach for pinpointing outliers in a dataset. It achieves this by examining the range 

between the first and third quartiles. The higher AOD values are represent the haze days due to the 

cloud interaction in the atmosphere, similar data causes the uncertainty in the predictions of PM2.5. 

To this extent data was excluded from the analysis. 

3.8 Meteorological data 

The meteorological data was obtained from CPCB (https://app.cpcbccr.com/ccr/#/caaqm-

dashboard-all/caaqm-landing) six monitoring locations over Hyderabad. The six monitoring 

locations are presented in the Table 3.1. The meteorological parameters considered Temperature 

(AT), Relative Humidity, pressure (BP), Solar Radiation (SR), Wind speed (WS) and direction 

(WD) and PM2.5 data collected over the period of May 2017 to May 2019 (two years) was used 

in the study. For further analysis, the analysis encompasses all available parameters and data 

https://ladsweb.nascom.nasa.gov/
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available days only, to reduce the uncertainty in the model. All the datasets removed outliers using 

the IQR method. The all the meteorological parameters and AOD data ready for the further model 

analysis to predict the PM2.5. 

 Ensuring the quality of data is crucial in air quality monitoring stations, particularly as 

decisions hinge on results obtained through the CPCB's air quality monitoring program. Various 

pollution control activities rely on these outcomes. To guarantee acceptable data quality, the CPCB 

conducts exercises such as visiting monitoring stations and holding meetings. Regular calibration, 

servicing, and repair of field devices are imperative to maintain data quality at a high standard. 

3.9 Multiple linear Regression model 

Multiple linear regression (MLR) as established for PM2.5 and MODIS AOD Terra/Aqua products 

along with meteorological parameters. MLR equation shown in Eq.3.1 was adopted. However, b0 

represents the model intercept, and the b1, b2... and b7, represent the model parameters to be 

estimated. The α represents the error term that individual outcomes will vary about that mean. The 

assumption was error terms are normally distributed and homoscedastic, that is, the variance of 

the errors is the same across all levels of the independent variables. 

𝑃𝑀2.5 = 𝑏0 + 𝑏1(𝐴𝑂𝐷) + 𝑏2(𝐴𝑇) + 𝑏3(𝑅𝐻) + 𝑏4(𝑊𝑆) + 𝑏5(𝑊𝐷) + 𝑏6(𝑆𝑅) +

𝑏7(𝐵𝑃) + 𝛼… 
Eq. 3.8 

The meteorological data were obtained from CPCB (https://app.cpcbccr.com/ccr/#/caaqm-

dashboard-all/caaqm-landing) for Air Quality Monitoring Stations (AQMs) considered in the 

study. The meteorological parameters Temperature (AT), Relative Humidity (RH), Pressure (BP), 

Solar Radiation (SR), wind speed (WS) and direction (WD), and PM2.5 data collected for the 

period between May 2017 and May 2019 (two years) were used in the study. 80% of the data was 

used for model development and 20% of the data was used for model validation. The interquartile 

range (IQR) method was used to exclude external outliers from the data. The best option model 

was used to predict the PM2.5 and validate the observed data at six locations in Hyderabad. Hybrid 

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model  

The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) 

proposed the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) (Draxler 

and Hess, 1998). The HYSPLIT atmospheric dispersion model was used to simulate daily wind-

aided dispersion with a focus on long-range transportation and initial establishment (Chapple et 

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
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al., 2012; Westbrook et al., 2011). HYSPLIT continues to be one of the most extensively used 

atmospheric transport and dispersion models in the atmospheric sciences community to establish 

source–receptor relationships (Draxler and Hess, 1998; Fleming et al., 2012). The major 

contribution of fireworks and their species identification on back trajectory analysis using the 

NOAA–HYSPLIT model was reported by Pathak et al., (2015). The study indicated the existence 

of the transported aerosols. The applications based on the HYSPLIT model were used for 

forecasting and to assess the influence of the radioactive material (Connan et al., 2013) and to 

study the suspicious non-identified wildfire smoke (Rolph et al., 2009). AOD and solar irradiance 

revealed higher spatial variation of AOD during the summer season leading to the dispersion of 

particles in Delhi (Bhardwaj et al., 2017). Freitag et al., (2013), investigated the conditions for the 

formation and expanding airborne gas and aerosol measurements based on the HYSPLIT model.  

3.10 Model Performance Evaluation 

Performance of the models is assessed using commonly used statistical performance 

measures, including correlation coefficient (R) is a statistical measure that quantifies the degree to 

which two variables are related or associated. It gauges both the strength and direction of a linear 

relationship between two variables. The closer the correlation coefficient is to 1 or -1, the stronger 

the correlation. The normalized mean bias (NMB) is a statistical metric used to assess the accuracy 

of a model or measurement by quantifying the average tendency of the model or measurement to 

overestimate or underestimate a variable of interest. A positive NMB indicates a systematic 

overestimation by the model or measurement, while a negative NMB suggests a systematic 

underestimation. A NMB close to zero suggests minimal bias. Normalized mean bias is useful for 

comparing model outputs to observations and understanding the overall bias in a system. The root 

mean squared error (RMSE) is a commonly used metric to assess the accuracy of a predictive 

model or measurement by quantifying the average magnitude of the errors between predicted and 

observed values. It provides a measure of how well the model's predictions align with the actual 

observed values. RMSE calculates the square root of the average squared differences between 

predicted and observed values. The result is in the same units as the variable being measured, 

providing a clear understanding of the magnitude of errors. A lower RMSE indicates better model 

performance, as it signifies smaller errors between predicted and observed values. The index of 

agreement (d) is a statistical metric used to assess the agreement or similarity between observed 

and modelled or predicted values in a dataset. The Index of Agreement ranges from 0 to 1, with a 
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value of 1 indicating perfect agreement between observed and predicted values. Higher values 

suggest better agreement, while lower values indicate poorer agreement. It provides a 

comprehensive measure of the overall performance of a model or prediction compared to the 

observed data. 

𝑅 =
∑(𝐶𝑝−𝐶𝑝̅̅ ̅̅ )(𝐶𝑜−𝐶𝑜̅̅̅̅ )

√∑(𝐶𝑝−𝐶𝑝)̅̅ ̅̅ ̅2 ∑(𝐶𝑜−𝐶𝑜)̅̅ ̅̅ ̅2
…………. 3.9 

𝑁𝑀𝐵 =
∑(𝐶𝑝−𝐶𝑜))

∑ 𝐶𝑜
……… 3.10 

𝑅𝑀𝑆𝐸 = √
∑(𝐶𝑝− 𝐶𝑜)2

𝑛
…….. 

3.11 

𝑑 = 1 −
∑(𝐶𝑝− 𝐶𝑜)2

∑(|𝐶𝑝−𝐶𝑜̅̅̅̅ |+|𝐶𝑜−𝐶𝑜̅̅̅̅ |)2………. 3.12 

where Cp and Co represents the predicted and observed concentrations of PM2.5 respectively 

whereas n represents number of samples. 

3.11 Meteoinfo 

MeteoInfo is a flexible framework designed primarily for the meteorological community, 

providing support for GIS applications and scientific computations (Wang, 2014). MeteoInfo Map 

is a GIS application that enables users to visually explore and analyse spatial and meteorological 

data in multiple formats (Wang, 2019). MeteoInfo Lab is a powerful scientific computation and 

visualization environment that leverages Jython scripting. It provides advanced features, including 

multi-dimensional array calculations and comprehensive 2D/3D plotting capabilities. 

3.11.1 Trajstat 

TrajStat, a GIS-based software, utilizes statistical analysis of air mass back trajectories and long-

term air pollution measurements to identify pollution sources(Wang et al., 2009). It visualizes, 

analyses, and clusters trajectories, and calculates the potential source contribution function (PSCF) 

and concentrated weighted trajectory (CWT) using measured data. 

The HYSPLIT model calculates trajectories that can be converted into ESRI "PolylineZ" shape 

files, representing three-dimensional endpoint data with properties based on longitude, latitude, 

and air pressure. Trajectories can be visualized in various spatial patterns, such as two-dimensional 

figures using level or height coordinates, or three-dimensional plots combining longitude, latitude, 
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and height. Long-term measurement data can be assigned to trajectories, and a query function helps 

identify polluted trajectories with high measurement concentration, estimating pollutant pathways. 

Cluster models like Euclidean distance or angle distance can be selected, with the maximum cluster 

number determined by comparing mean-trajectory maps visually. Cluster statistics calculate the 

mean pollutant concentration for each cluster, linking pollutant pathways to high-concentration 

clusters. Computation of PSCF and CWT values, along with a weight function for cells with 

limited endpoints, aids in identifying potential source regions with high PSCF or CWT values. The 

screenshot of MeteoInfo for analysis and flowchart is given in Figure 3.4. The step-by-step process 

for performing the Trajstat tool is given below.  

Following are the steps to implement in the Trajstat tool: 

1. Add the proposed station to the tool. 

2. Calculate 7-day back trajectories during the PM10 data measurement period. 

3. Converting trajectory files to the .tgs files. 

4.  Then join all .tgs files into one combined file which will represent the all trajectory. 

5. Convert the combined .tgs file to the shape file and then add the shape file to the project. 

6. Add measurement data into the trajectories. 

7. Create grid polygon shape layers of PSCF and CWT. 

8. PSCF and CWT analysis. 

9. Cluster calculation to the trajectories. 
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Figure 3.4 Meteoinfo interface for Trajstat plug-in tool 
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Figure 3.5 CWT analysis flow chart for back trajectory. 

The source identification was done based on CWT, PSCF, and Cluster analysis. MeteoInfo tool 

and GIS-based software were used for meteorological data visualization and analysis (Wang, 2014). 

The PSCF, CWT, and Cluster analysis were analyzed using the plugin TrajStat tool (Wang et al., 

2009), for conducting source analysis. 

3.11.1.1 Concentration Weighted Trajectory Analysis 

CWT analysis shows the long-range pollutants at the receptor site and the strength of the source 

(Cheng et al., 2013). CWT model can locate the regional sources that can affect the receptor region. 
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In CWT analysis, each cell in the grid is assigned a weight by averaging the pollutant concentration 

(Seibert et al., 1994). The trajectory endpoint time in the grid cells has been weighted by the 

corresponding PM2.5 trajectory. The concentration of each grid cell was calculated using Eq. 3.9 

(Chen et al., 2018). In this study, the spatial resolution 0.5°×0.5° was considered to find the source 

paths. 

 CWTij =
∑ clτijl

L
l=1

∑ τijl
L
l=1

 Eq. 3.9 

Where CƖ is the observed mean concentration of pollutant; Ɩ denotes the associated backward 

trajectory; τijƖ each segment endpoints in 0.5o x 0.5o grid cells (i, j); L presents the total number of 

backward trajectories considered in this study. 

3.11.1.2 Potential Source Contribution Function Analysis 

The Potential source contribution function (PSCF) was used to indicate the probability of the 

impact of sources on the receptor (Negral et al., 2020). PSCF values may be calculated using the 

following equation 3.10. 

 PSCFij =
Mij

Nij
Wij Eq. 3.10 

Where, Mij is the total number of back trajectories with grid cell (i, j), Nij is the total number of 

back trajectories with respective each grid cell (i, j); Wij denotes the weighting function of back 

trajectory segment endpoints in a grid cell (i, j) (Fu et al., 2012). A weight function (Wij) was 

established for each grid to overcome the uncertainty in Nij (Zeng and Hopke, 1989). 

3.11.1.3 Cluster Analysis 

The clustering technique shows the average trajectory paths for each cluster. There are two 

clustering options with Euclidean distance or angle distance. The Euclidean distance cluster 

technique is extensively used for studying air mass trajectories representing pollutant pathways. 

When the Euclidean distances were used, shorter trajectories were more likely to be assigned to 

the same cluster, and longer trajectories were more likely to be assigned to different clusters. In 

the present study, the Euclidean distance was adopted for clustering the back trajectories as given 

in Eq. 3.11.  
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 𝑑12 = √∑((𝑋1(𝑖) − 𝑋2(𝑖))2 + (𝑌1(𝑖) − 𝑌2(𝑖))2)

𝑛

𝑙=1

 Eq. 3.11 

Where X1(Y1) and X2(Y2) reference backward trajectories 1 and 2, respectively. 

The angle distance between two backward trajectories was defined by Eq. 3.12 

 𝑑12 =
1

𝑛
∑ 𝐶𝑂𝑆−1(0.5

(𝐴𝑖 + +𝐵𝑖 − 𝐶𝑖)

√𝐴𝑖𝐵𝑖

)

𝑛

𝑖=1

 Eq. 3.12 

Where 

 𝐴𝑖 = (𝑋1(𝑖) − 𝑋0)2 + (𝑌1(𝑖) − 𝑌0)2 

 𝐵𝑖 = (𝑋2(𝑖) − 𝑋0)2 + (𝑌2(𝑖) − 𝑌0)2 

 𝐶𝑖 = (𝑋2(𝑖) − 𝑋1(𝑖))2 + (𝑌2(𝑖) − 𝑌1(𝑖))2 

The variables X0 and Y0 define the position of the site. d12 varies between 0 and π. The two 

extreme values occur when two trajectories are in the same and opposite directions, respectively. 

d12 is the mean angle between the two backward trajectories, as seen from the studied site. 

3.12 Quality Assurance and Quality Control 

Quality Assurance (QA) is a systematic process or set of activities designed to ensure that 

processes meet specified standards and fulfil the target requirements. The primary goal of QA is 

to prevent errors and to consistently deliver high-quality results. QA encompasses a range of 

activities that focus on establishing and maintaining processes to ensure the reliability and quality 

of the end results. Quality Control (QC) is a systematic process or set of activities designed to 

regulate the quality of products. The primary goal of QC is to identify deviations from established 

standards, ensuring that the final output meets specified requirements. Unlike QA, which focuses 

on preventing defects, QC involves inspection and testing activities to detect and address issues 

during or after the production or implementation phase.  

QA/QC are essential for ensuring the accuracy, precision, and reliability of data generated by the 

MP-AES instrument. Here are considerations for QA/QC in the context of MP-AES, the main 
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consideration was calibration. The regularly calibrate the MP-AES instrument using certified 

reference standard samples to establish accurate calibration curves. Ensure that calibration 

standards cover the concentration range of interest. The internal standards to correct for variations 

in sample introduction, plasma stability, and detector response. This helps improve the precision 

and accuracy of quantitative measurements. Blank samples were introduced in the analytical 

sequence to identify and correct for any contamination during sample preparation or analysis. 

Monitor background noise levels. Quality control samples incorporate of known concentrations 

into each analytical run. Regularly analyse QC samples to assess the accuracy and precision of the 

MP-AES instrument. Reproducibility and Precision assess the reproducibility and precision of the 

MP-AES instrument by running replicate analyses of the same sample. Low variability among 

replicates indicates high precision. Instrument regularly check and maintain the MP-AES 

instrument. Verify the stability of the plasma source, assess detector efficiency, and ensure the 

integrity of optical components. Implement thorough data validation procedures to identify and 

address anomalies in the analytical data. Check for outliers, confirm adherence to calibration 

curves, and ensure results fall within acceptable limits. Ensure that analysts are well-trained in the 

operation, maintenance, and troubleshooting of the MP-AES instrument. Regular training updates 

contribute to the reliability of analytical results. By adhering to these QA/QC practices, in the 

laboratories enhance the reliability and accuracy of data generated by the MP-AES instrument. 

These are the crucial for meeting regulatory standards, ensuring data integrity, and providing 

trustworthy results for various applications. 

QA/QC are essential in handling and analysing data, including MODIS Aerosol Optical Depth 

(AOD) data and data from the Central Pollution Control Board (CPCB). Here are considerations 

for QA/QC in the context of these datasets, Confirm the data source of the MODIS AOD and 

meteorology data, ensuring it comes from reputable and authoritative sources. Check for quality 

flags or indicators in CPCB data that highlight potential issues, such as missing values or data 

gaps. Understand the calibration procedures for instruments used by CPCB. Verify that 

instruments are regularly calibrated, and any issues with calibration are addressed. Document and 

review the steps involved in processing MODIS AOD data, ensuring transparency and 

reproducibility. Check for temporal and spatial consistency in the MODIS AOD data. Verify that 

the data aligns with the expected patterns. 
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Chapter 4 Estimation of PM2.5 and source contribution by back 

trajectory analysis over Warangal region 

4.1 Assessment of Particulate Matter 

The monthly mean mass concentrations of PM2.5 are presented in Figure 4.1 (a) at Warangal. 

During the study period, the monthly mean PM2.5 concentrations were found to be in the range of 

8.3-29.6 µg/m3, with the highest daily concentration of 58.3 µg/m3, and the lowest daily 

concentration of 4.7 µg/m3. During the monsoon period, maximum, minimum, and mean 

concentrations of PM2.5 were 41.6, 24.9, and 29.6 μg/m3 respectively. Concentrations of PM2.5 

were observed to be higher during the weekend as compared to the concentration during weekdays. 

This is perhaps due to the proximity of the highway to the monitoring station, and the fact that the 

highway caters to higher volumes of traffic during the weekends compared to weekdays. 

 

Figure 4.1(a) Diurnal Concentration of PM2.5 (b) Monthly variation of PM2.5  

(c) Night-time concentration of PM2.5 
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During the post-monsoon period, maximum, minimum, and mean concentrations of PM2.5 were 

58.3, 8.33, and 19.5 μg/m3 respectively. During the winter, maximum, minimum, and mean 

concentrations of PM2.5 were 49.9, 4.7, and 21.2 μg/m3 respectively (Figure 4.1 (b)). As per the 

National Ambient Air Quality Standards (NAAQS), the PM2.5 concentrations were below the 

standard levels (40 μg/m3 for PM2.5 annually and 60 μg/m3 for 24 hours). The PM2.5 during the 

night presented in Figure 4.1 (c), is considered as background concentration. The night-time (06:00 

PM-06:00 AM) concentrations were observed to be lower than daytime (06:00 AM-06:00 PM) 

concentrations. The night maximum, minimum, and mean concentrations were 38.45, 8.33, and 

20.51 μg/m3 respectively. Wind profiles and temperature influence the movement of particles. Low 

concentrations during nighttime are attributed to minimum traffic volumes during the night. The 

results of the present study were similar to the reported values in other places (Bhopal, Nagpur ) 

dominated by vehicular and urban activities (Das et al., 2015; Karar & Gupta, 2006; Nirmalkar et 

al., 2021). In Nagpur city, the concentration PM2.5 value is 52 μg/m3 due to road dust on highways 

(Chaudhari et al., 2012b). At Dongargarh, Chhattisgarh India, the PM2.5 concentration was 

reported to be 64 μg/m3 mostly due to vehicular emissions (Ambade, 2014b). In Kolkata city, 

PM2.5 concentration was reported as 83 μg/m3 at a location where construction activities and road 

dust were major contributors to air pollution (Das et al., 2015). In Hyderabad city, PM2.5 was 

reported as 45 μg/m3 (Gummeneni et al., 2011). In Agra city, PM2.5 was 104.9 μg/m3 mainly due 

to industrial emissions and anthropogenic activities (Kulshrestha et al., 2009).  

The number of daily deaths due to air pollution varies among cities and is correlated with their 

respective population sizes. Shimla records the lowest daily death count (4.2 ± 2.7), whereas 

Mumbai reports the highest (225.6 ± 30.7) (Dholakia et al., 2014). While all the cities have 

different pollution levels arising from different sources, the common sources of PM2.5 in the urban 

atmosphere are road dust, construction activities, small industries, and vehicular emissions. Most 

of the deaths due to the air pollution in India during 2019 were from ambient particulate matter 

pollution (0·98 million [0·77–1·19]). The economic loss as a proportion of the state Gross 

domestic product (GDP) varied 3·2 times between the states (Pandey et al., 2021). 

4.2 Assessment of heavy metals 

The samples collected during the study were analysed for heavy metals using MP-AES and 

presented in Figure 4.2 (a) and (b).  Some metals like Zn, Cu, and Fe were higher when compared 
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with other metals. Average concentrations of Zn, Fe, Cu, Ni, and Cd were 1.25, 0.65, 0.35, 0.005, 

and 0.0025 μg/m3 respectively. Metals in ambient air bound to PM2.5 reported by various 

researchers for studies conducted in India are presented in Table 4.1. For obvious reasons, the 

concentrations of metals vary with location depending on the sources dominating in that location. 

Metallic contaminants like Fe, Cu, Ca, Zn, Pb, etc, are generally released predominantly from 

anthropogenic sources in inland regions (Nair et al., 2006). Trace metal contributions from long-

range transport of polluted air masses were reported at receptor locations (Sudheer and Rengarajan, 

2012). 

Table 4.1 Studies on Ambient Heavy metal over India 

S.n

o 

Author Region Heavy metals 

1 Abhishek 

(2010) 

Kanpur 

Region 

Zn, Fe, As, Cu, Cd, Ca, Cr, Mg, Pb, Ni, Se, V 

2 Kulshrestha 

(2009) 

Agra, India Pb, Zn, Ni, Fe, Cr, Mn, Cu 

3 Ambade 

(2014) 

Dongargarh, 

Central 

India 

Fe > Zn > Pb > Cu > Ni > Cr > Cd 

4 Chaudhari 

(2012) 

Nagpur Zn > Fe > Pb > Ni > Cd > Cr 2006 

5 Kamala (2014) Hyderabad Al, As, B, Ba, Ca, Cr, Cu, Fe, K, Mn, Na, Ni, 

Pb, Zn 

6 Das (2015) Kolkata Zn, Cr, Ni, Mo, Cu, Sn, Sb, V, Co, Cd, Pb, 

Ca, Al, Mg, Sc, Ti, Mn and Fe 

7 Vijayanand 

(2008)  

Tamil Nadu Zn, Fe, Cu, Pb, Ni and Cr) Cd 

8 Habil (2016) Agra Fe, Pb, Mn, Cu, Ni, Cr, Zn, Cd 

9 Massey (2013) Agra Fe, Pb, Ni, Cr, Cd, Cu, Mn  

10 Monika (2016) central 

Delhi 

K > Zn > Mg > Fe > Mn > Cu > Cd. 

11 Pant(2017) New Delhi Si*, Ca, Fe, Ti, Mn, Ni, Cu, Zn, Pb 
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12 Poonam 

Pandey (2017)  

Lucknow Fe>Pb>Ni>Cu>Cr>Cd 

13 Ghosh (2018) Bolpur Mn, Zn, Cd, Pb, Ni, Co, 

The variations of heavy metals during the study period concluded that the post monsoon season 

concentrations are high as compared to the monsoon season concentrations presented in Figure. 

4.2. .  These metals are perhaps released from automobiles, construction activities, and other urban 

activities. Literature suggests that Fe, Si, Al, and Ti originate from the earth’s crust (Pant et al., 

2016). Zn and Pb concentration levels correlate well with non-exhaust traffic emissions (Nirmalkar 

et al., 2021; Piscitello et al., 2021), industrial sources (Zhao et al., 2021), and solid waste burning 

(Wang et al., 2016). Ni et al,. (2017) concluded that open biomass burning and industrial pollution 

results in Fe, Zn, Pb, and K emissions. Cd, Cr, Ni, and Pb are associated with industrial sources 

whereas Zn and Cu are associated with traffic emissions. The use of Zn for protective coating on 

iron, steel, etc, by the industries results in a higher concentration of this heavy metal (Vijayanand 

et al., 2008). Road dust is commonly associated with high concentrations of Cd and Pb (Massey 

et al., 2013; Suryawanshi et al., 2016b). Mn, Zn, Pb, Fe and Cu emissions from lubricants oil, 

brake pads, and tires are the main sources (Garg et al., 2000; Grigoratos & Martini, 2015; 

Ntziachristos et al., 2007; Pakkanen et al., 2003;  Wang et al., 2016). The concentration of Zn and 

Fe is attributed to industrial emission, crustal trace element concentrations, and fluxes due to the 

re-suspension of dust released during traffic activities and soil erosion (Gajghate et al., 2012b). 

Increased concentration of Cd was reported to be contributed by solid waste combustion, refinery, 

and fossil fuel burning (Banerjee., 2003; Chinnam et al., 2006).  

The Heavy Metals (HMs) transport was dominated by the Suspended Particulate Matter 

(SPM) load over Caohai, China. The reported HMs were attributed to agriculture and industry 

regions (Li et al., 2023). In Isfahan City, Iran, the concentrations of As, Cd, and Ni were in a range 

of 23–36, 1–12, and 5–76 ng/m3 and all of them were above the US-EPA standards  (Soleimani et 

al., 2018). The most important sources of HMs are fossil fuel combustion, abrasion of vehicle tires, 

and industrial activities. A research (Harrison, 2020) finding suggests that the heavy metals in the 

particulate matter increase with a decrease in the particle size. Literature suggests that the coarse 

particulate matter contains heavy metals from natural origin, while the fine particles host heavy 

metals emitted from anthropogenic sources (Soleimani et al., 2018). However, heavy metals bound 

to particles are capable of long-range atmospheric transportation (Chang et al., 2018; Githaiga et 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/fuel-combustion
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al., 2020). Around 57-64% of heavy metals like Pb, Zn, and Cu are found in soil dust particles 

smaller than 10 μm due to their lower densities and higher surface area per unit volume. The finer 

fraction is easily re-suspended and they result in a high impact on human health. They linger in 

the air for longer periods and have a greater tendency to adhere to the skin. Metals bound to finer 

fractions can readily be adsorbed and accumulate in the upper respiratory tract of humans during 

inhalation (Valiulis, 2008). In-depth studies lead to fingerprinting the sources and their 

apportionment. 

 

 

Figure 4.2 Variation in heavy metal concentration 

The average concentrations of heavy metals in Warangal region as presented in the Figure 4.3. The 

order of Zn>Fe>Cu>Ni>Cd observed from the Figure 4.3(a). the HM concentration of the two 

seasonal differences in monsoon and post monsoon (Figure 4.3(b)) variations, the analysis clearly 

shows that the monsoon and the post-monsoon concentrations are decreasing trend from one 
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season to another season. The sudden variation due to the wet deposition of the ambient particulate 

matter observed in monsoon (Mamun et al., 2022), and the increase in the post-monsoon season 

will be due to the resuspension of the particulates in the atmosphere. It may cause due to 

meteorological variations. In the monsoon season, only two elements are in the detectable range 

(Zn, Fe) but the other elements are not detectable range. In the post-monsoon season, three 

elements (Zn, Fe, Cu) are detectable and two are not detectable range elements (Ni, Cd). The 

possibility of the difference would be the anthropogenic activity involved in the post-monsoon 

season it could be related to Cu emissions.  

 

Figure 4.3 Monsoon and Post monsoon Seasonal change in heavy metal concentration 

4.3 Pearson’s correlation between heavy metals and PM 2.5   

Results of Pearson’s correlation analysis performed are presented in Figure. 4.4. Results 

indicate that Fe and Cu were strongly correlated when compared with other metals. Other 

significant correlations exist between Zn and Cu, and Zn and Fe and are all predominantly related 

to traffic emissions. The other correlations among the heavy metals were moderate during the 

study. Similar results were reported by Fang et al., (2000) indicating traffic as an important source 
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of heavy metals in urban environments.  Chandra et al., 2017, also identified vehicular pollution 

as the main source of heavy metals. Fe is generally associated with rock weathering and dust from 

minerals (Cheng et al., 2005; Xia & Gao, 2011), however, in the present study, it was not a 

dominating source. 

 

Figure 4.4 Pearson’s correlation between various metal elements 

4.4 Enrichment Factor analysis 

The enrichment factor indicates whether the source of emission is natural or anthropogenic. EF 

values obtained are depicted in Figure 4.5.  EF values for Zn, Cu, Ni, and Cd are above 10. EF 

value for Ni falls in the moderately enriched bracket indicating nearby industries as possible 

sources. EF values of Zn, Cu, and Cd were greater than 100 and hence fall in the highly enriched 

category. Similar results of high enrichment for Zn were reported by Zhang et al., (2010). These 

emissions are perhaps due to combustion and related activities originating from the automobile 

and industrial sectors. Ambade, (2014) reported that Ni, Cu, and Cr are emitted from 

anthropogenic activities while Fe and Zn are generally emitted from natural sources. 
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Figure 4.5 Enrichment Factor for heavy metals 

4.5 Health Risk Assessment 

4.5.1 Exposure Dose Assessment 

The exposure assessment evaluation based on Average Daily Dose (ADD) for ingestion, 

inhalation, and skin contact is presented in Figure 4.6. The results indicated a similar trend 

variation in ADD for all the exposure pathways in both children and adults. Zn exhibited higher 

values for all three exposure pathways, while Cu and Fe showed moderate ADD values. Ni and 

Cd exhibited negligible ADD values for all the pathways. The total average daily dose is presented 

in Figure 4.7(a) and the order of impact of exposure of metals may be observed to be as follows: 

Ingestion > Dermal > Inhalation. Zheng et al., (2010) also reported that the ingestion pathway of 

HMs is a dominant route of exposure followed by dermal contact. Literature reports the significant 

impact of the resuspension of dust particles and construction activities on ADD values (Kong et 

al., 2011; Mitra & Das, 2020). Both resuspension of dust due to traffic activity and construction 

activities dominate the study area.  
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Figure 4.6 ADD for children and adults for ingestion, dermal, and inhalation pathways 

 

Figure 4.7 Total Average Daily Dose 
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4.5.2 Non-Carcinogenic Health Risk 

Hazard Quotient (HQ)obtained during the study is presented in Figure 4.8. The HQ results 

obtained were in the following order: HQing>HQder>HQinh. The trend is similar to that of risk of 

exposure.  Izhar et al., (2014) reported a similar trend in their study on health risks posed by 

particle-bound metals. For HQder the following order of metals was observed:  Cd > Zn > Cu>Ni, 

whereas for HQinh order of metals was: Cu > Zn > Ni > Cd for both children and adults. Though 

the values were slightly different from one another, the HQing trend in both adults and children 

(Figure 4.8) was observed to be: Cu > Zn > Cd > Ni. HQ index was observed to be below 1 for all 

pathways. 

The HI index is the sum of HQs and the values obtained in the study are presented in Figure 

4.9. As RfD values for Fe, Se, and Ca metals have not been specified by USEPA. The results 

signify that non-carcinogenic threat was negligible for both children and adults since HI (Figure 

4.9) values are below 1. However, a higher risk was reported when we consider the injection 

pathway and derminal contact. Also, the risk for children was more when compared to that of 

adults. Pongpiachan et al., (2018) also similar HI values (below 1) were reported in the study 

indicating that that these have non-carcinogenic risks.  Ni, Cd, Co, Cr, and Pb are considered 

carcinogenic metals while Fe, Cu, Zn, and Mn are considered non-carcinogenic metals that 

generally originate from anthropogenic activities (Pandey et al., 2017). 

 The HQchild values for all pathways were almost higher values than the HQadult are appears 

in this study. It appears reasonable to mention that children are more vulnerable than adults to the 

noncancerous health effects. The situation can be attributed to their mouthing behaviours and the 

children’s hand-to-mouth activities are the major exposures. 
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Figure 4.8 HQ Index for heavy metals 

 

Figure 4.9 Hazard Index associated with heavy metals for adults and children 

4.5.3 Excess Cancer Risk Assessment 

Results of the study show that the concentration of Ni was higher than Cd when considering 

the two carcinogenic elements for children and adults. The cancer risk in adults with Ni was 1.02 
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x10-6 and with Cd was 6.12 x 10-7. The ECR in the case of children with Ni and Cd was 1.18x 10-

6 and 7.15x10-6 respectively. The results obtained in the study were within the acceptable limits of 

10-6 to 10-4. Similar trends in non-carcinogenic and carcinogenic risk assessment for both adults 

and children were reported in Nanjing, China (Hu et al., 2012). The non-carcinogenic and 

carcinogenic risks are in general reported to be higher for children than adults (Das et al., 2020; 

Hu et al., 2012; Mitra & Das, 2020; Sah et al., 2019; Xie et al., 2020). 

4.6 Source identification  

The back trajectory analysis was used to trace the path of the air mass arrivals at the 

receptor location. The 7-day back trajectory involves accessing the source regions at the receptor 

location. The trajectories for September, October, and November (2018) are presented in Figure 

4.10. The trajectory for September month indicates the influence of the Western region of India, 

while the trajectories of October and November were influenced by Indo Gangetic Plain (IGP). 

Few trajectories were observed from the Bay of Bengal (BOB) in October. The changes in the 

trajectories can be attributed to changes in season and variations in wind and temperature profiles. 

However, most trajectories were observed to be from the north-eastern (NE), northern (N), and 

western (W) regions of India. HYSPLIT back trajectories analysis has also been used by other 

researchers for the identification of source regions at receptor locations (Yusup et al., 2016). 
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Figure 4.10 HYSPLIT back trajectory for September, October, and November 

4.6.1 Concentration Weighted Trajectory Analysis 

The CWT analysis shows the contribution of the majority of trajectory regions at receptor 

or sampling location. The heavy metal transformations at the receptor location are presented in 

Figure 4.11. Each trajectory coupled with respective metal concentrations using the MeteoInfo 

software. The meteoinfo is an intergrated framework both for GIS application and scientific 

computation. Results show that Zn is contributed from NE regions especially Odisha and 

Chhattisgarh and parts of Central India (mainly Madhya Pradesh). This can be attributed to 

significant coal mining and biomass burning in these regions. Fe, Cu, Ni, and Cd are contributed 

by local anthropogenic activities and dust resuspension due to wind currents.  (Mukherjee and 

Agrawal, 2018) reported a significant contribution of PM2.5 from north-western (NW) regions of 

India using CWT and Cluster Analysis. Rai et al., 2020, identified that the pollutants moving 

toward the receptor, (Darjeeling in their case) originate mainly from Nepal apart from the IGP and 

the BOB. 
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(a) Zinc(Zn) (b) Iron(Fe) 

  

(c) Copper(Cu) (d) Nickel(Ni) 

 

 

(e) Cadmium(Cd) (f) PM 2.5 
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Figure 4.11 CWT analysis for September October and November(a) Zn (b) Fe (c) Cu (d)Ni (e) 

Cd (f) PM 2.5 

4.6.2 Potential Source Contribution Function Analysis 

NE regions (Odisha, Chhattisgarh, and Jharkhand) and IGP regions contribute Zn and the 

same was evident in WPSCF analysis (Figure 4.12). As these regions are dominated by mining 

activities and the burning of fossil fuels, Zn contributions will likely be significant. Similar 

findings have been reported by Chinnam et al., 2006. Fe, Cu, and Ni were mainly contributed by 

nearby local sources.  The NE coastal region was a moderate contributor (0.7-0.8 significance 

levels) for all metals. The majority of the potential source regions fall upwind towards the receptor 

location. It may be noted that the transformation of pollutants from upwind to downwind causes a 

transboundary particle moment from most east coastal states and some central states. The transport 

and accumulation of pollutants are based on the geographical location of the existing region (Kong 

et al., 2020; Qiao et al., 2019). 

 

 

(a) Zinc(Zn) (b) Iron(Fe) 
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(c) Copper(Cu) (d) Nickel(Ni) 

  

(e) Cadmium(Cd) (f) PM 2.5 

Figure 4.12 PSCF analysis for (a) Zn (b) Fe (c) Cu (d) Ni (e) Cd (f) PM 2.5 

4.6.3 Cluster analysis 

The clustering of all 7-day back trajectories at receptor location observed during the study 

is shown in Figure 4.12. Cluster 4 was observed to contribute 27.11% of trajectories from the NW 

region of India, while Cluster 2 was observed to contribute 22.34% of trajectories from Odisha, 

Chhattisgarh, and part of Madhya Pradesh.  Cluster 3 contributed about 20.15% from parts of 

Madhya Pradesh, Rajasthan, and Western parts of the world on Indian border. Clusters 1 and 5 

contributed about 10.62 and 8.79% from part of Maharashtra and the Arabian sea mostly. Cluster 

6 contributed 10.99% of trajectories from the BOB indicating the influence of sea salt origin at the 

receptor location. In cluster analysis, it was noticed that Odisha and Chhattisgarh contribute 

significantly due to mining activities, thermal power plants, and associated industries. Similar 

findings related to transport in the lower layer and from nearby local regions were reported by 

Hong et al., (2019); Kopas et al., (2020). Luo et al., (2020) also reported 5 clusters from their 

investigations based on 48-h mass back trajectory studies. The tracers for CO and PM2.5 were 

identified as fire emissions in the regional air quality forecasting system. The modelling 

framework indicates that stubble-burning fires contributed up to 30-35% of Delhi's air pollution 

during October-November 2021(Govardhan et al., 2023). 
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Figure 4.13 Cluster analysis 

4.7 Summary 

Based on the analysis of PM2.5 during the study, concentrations of PM2.5 and heavy metals 

are high in the post-monsoon season. However, the PM2.5 concentrations observed were lower than 

the standards prescribed by NAAQS. Pollution due to heavy metals bound to PM2.5 was significant 

due to emissions from traffic and anthropogenic activities in urban areas. It was evident that from 

the CWT, PSCF and cluster analysis indicate the pollution was significantly contributed by long-

range transport. Zn, Fe, and Cu concentrations in PM2.5 were significantly higher compared to the 

concentrations of Ni and Cd. The order of occurrence of heavy metals in descending order was 

found to be: Zn>Fe>Cu>Ni>Cd. Long-term sampling may help in better understanding the 

variation in PM2.5 and metal concentrations. EF values of Zn, Cu, and Cd are high indicating 

association with combustion and industry.  Health risk assessment showed that the ingestion 

pathway dominates over the dermal and inhalation pathways. Based on HQ and HI index, it may 

be concluded that there is no significant non-carcinogenic and carcinogenic risk from the observed 
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metals in the study region. However, the risk for children was higher when compared to that for 

adults.  

From the CWT, PSCF, and cluster analysis, it may be concluded that the contributions 

from the western and North-Western regions of India dominate at the given receptor location. 

Since heavy metals bound to PM2.5 were analysed in this study, the presented results from health 

assessment and source identification can be used in planning air pollution control strategies and 

for framing appropriate regulations. 
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Chapter 5 Estimation of ground level PM2.5 with MODIS Aerosol 

optical depth and source identification using trajectory analysis over 

Hyderabad region 

5.1 Variation of meteorological parameters 

Meteorology and air pollution are interconnected disciplines that explore the intricate interplay 

between the atmosphere and the presence of pollutants within it. Meteorological parameters 

influence the air quality and their transport in the atmosphere. Meteorology delves into the 

mechanisms and dynamics of the Earth's atmosphere, encompassing the analysis of weather 

patterns, atmospheric phenomena, and the behaviour of air masses. A comprehensive grasp of 

meteorological factors is pivotal in evaluating and forecasting levels of air pollution. 

Meteorological parameters namely – ambient temperature (AT), relative humidity (RH), wind 

speed (WS), wind direction (WD), solar radiation (SR) and barometric pressure (BP) variations 

are analysed over Hyderabad regions from the May 2017 to May 2019. The data adapted in this 

study from the CPCB secondary data and the variations are presented in Figure 5.1. Statistical 

parameters of the meteorological factors are given in Table 5.1. The temperature and relative 

humidity values are approximately to those reported in the Jaipur region reported by Soni et al. 

(2018). Temperature inversion leads to higher values of pollutants in the winter season at ground 

level (Yadav et al., 2019). The wind speed and direction are also important parameters in the 

dispersion and transport of particles. These particles move along with the wind from one region to 

far away regions depending on the strength of the wind and atmospheric stability conditions. 

Hence, the meteorological parameters are crucial for the identification of the particulate 

concentration at the receptor location (Das et al., 2021; Zhang et al., 2017). Higher variations are 

observed in BP and SR at all locations. Lower deviations in AT, RH, PM, and AOD are observed. 

This is perhaps due to the topography of the land and climatic conditions. In the present study, the 

mean temperatures recorded at all locations are typical of those found in tropical regions. However, 

the winter and summer temperature variations are significant.  

The use of satellite data to estimate air quality is one of the indirect methods that is used in regions 

where data is scarce or temporal coverage is limited. Regional air quality assessment and modeling 

can use data obtained by satellite sensors. AOD and MODIS are widely used to assess air quality 
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at urban and local scales.  The presence of particulates in the atmosphere will be reflected by AOD 

and the intensity of the light received by the instrument will reflect the columnar property of the 

atmosphere. Satellite-based AOD measurements are widely used to predict PM2.5 and PM10 (Shao 

et al., 2017; Soni et al., 2018). The variations in PM2.5 with AOD during the May 2017 to May 

2019 period shown in Figure 5.1(d) and the statistical parameters are given in Table 5.1. The mean 

AOD variations in the ranges as follows at Bollaram (0.54±0.21), Central University (0.54±0.23), 

IDA (0.50±0.2), Patancheru (0.55±0.23) Sanathnagar (0.52±21) and Zoopark (0.47±0.22). High 

AOD was observed at Patancheru and the least AOD at the Zoopark location. The higher AOD 

values at Patancheru are perhaps due to concentrated industrial activity while Zoopark represents 

minimum anthropogenic activity. Higher AOD values indicate a significant contribution from 

submicron aerosols to columnar loading. Soni et al., (2018) reported the average AOD as 0.42 and 

the range as 0.02–1.67 in the Jaipur region. AOD values were higher during the pre-monsoon and 

winter with a subsequent decrease in the summer period. The study in an urban environment in 

Eastern India reported AOD in the range of 0.82 (winter) and 0.71 (summer) (Pani and Verma, 

2014). The influence of climate change on particulate pollution and transboundary aerosols was 

reported by Deb and Sil (2019). However, the influence of climate change on particulate pollution 

is not attempted in the present study.  
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Figure 5.1 Meteorological variation of all locations (a) RH (%) and Temperature (0C) (b) Wind 

speed (m/s) and Wind direction (degrees) (c) Barometric pressure (mm) and Solar radiation 

(W/m2) (d) PM2.5 (μg/m3) and  MODIS Terra AOD 

 

Table 5.1 Variation of the meteorological parameters over six locations for May2017 to May 

2019. Source: CPCB (2020a) 

Location Paramet
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3) 

Bollaram Min 0.04 19.56 30.66 0.30 42.71 70.04 - 12.39 

Max 1.16 39.70 72.07 9.23 287.78 199.89 - 92.97 

Median 0.52 28.36 49.02 1.62 140.06 121.00 - 55.01 

Average 0.54 28.65 49.32 2.80 146.65 126.42 - 54.84 

Stdev 0.21 4.63 8.84 2.41 47.80 25.08 - 13.95 

Central 

University 

Min 0.04 25.79 33.34 0.60 45.94 76.75 700.97 13.17 

Max 1.23 33.52 74.06 2.63 259.34 237.78 731.50 96.84 

Median 0.51 28.45 51.41 1.53 153.56 162.07 713.39 43.00 

Average 0.54 28.98 51.62 1.54 159.00 163.02 712.39 46.77 
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Stdev 0.23 1.83 8.54 0.39 48.43 28.61 6.04 16.78 

IDA Min 0.10 20.64 28.56 0.80 53.49 83.12 696.83 6.41 

Max 1.09 38.49 75.31 3.02 302.60 326.79 732.98 83.63 

Median 0.48 27.34 47.60 1.77 165.92 192.98 716.72 53.89 

Average 0.50 28.23 48.44 1.80 168.16 194.07 715.92 52.80 

Stdev 0.20 4.27 9.36 0.45 42.21 51.59 6.77 16.00 

Patancher

u 

Min 0.05 28.59 41.45 0.52 27.00 66.78 711.62 0.94 

Max 1.22 34.03 79.68 1.56 268.41 167.96 731.43 78.78 

Median 0.52 30.05 58.59 0.87 121.97 121.49 716.80 50.50 

Average 0.55 30.51 57.14 0.91 132.29 124.03 717.87 49.76 

Stdev 0.23 1.22 7.99 0.22 49.72 20.75 4.61 16.77 

Sanath 

Nagar 

Min 0.05 20.24 30.11 0.58 86.11 83.86 701.79 15.57 

Max 1.10 38.80 72.86 1.94 261.25 216.87 725.47 91.69 

Median 0.50 28.19 47.27 1.04 145.52 152.12 714.63 54.71 

Average 0.52 28.23 48.06 1.08 148.86 151.39 714.10 56.02 

Stdev 0.21 4.27 8.84 0.29 35.94 24.52 5.16 15.16 

Zoopark Min 0.01 19.34 28.89 0.29 44.20 18.02 703.41 13.00 

Max 1.08 36.86 68.99 1.30 317.12 233.51 721.96 104.09 

Median 0.44 27.88 47.54 0.53 143.38 123.58 715.84 60.01 

Average 0.47 28.18 47.44 0.58 148.28 125.20 714.35 58.12 

Stdev 0.22 3.72 8.00 0.24 49.58 38.77 3.22 17.33 

 

5.2 MODIS AOD for prediction of the PM2.5 

5.2.1 Variation of MODIS AOD over an urban region 

The relation between MODIS products (MOD_3K, MOD_L2, MYOD_3K, and MYOD_L2) and 

PM2.5 are shown in Figure 5.2. The relationships are established using the R language tool. In the 

present study, a weak positive correlation is observed between AOD and PM2.5 at most locations 

for all MODIS products. The linear regression results between AOD and PM2.5 results indicate a 

weak positive correlation in some locations with a relatively higher correlation at Bollaram. A 

single grid of each pixel was chosen for the study, the missing AOD data was replaced with an 

average AOD of 3x3 or 5x5 grid. The variations are perhaps due to the urban conditions and 

geographical differences. Local dominating sources also result in variations. 

The relationship between AOD and PM2.5 is based on the theoretical assumption that PM2.5 is 

reflected in AOD captured by satellites. As such there is a correlation between AOD and PM2.5 and 

it is either strong or weak depending on various factors. PM2.5 represents the ground-level 

concentration of particles with a diameter of less than 2.5 µm, while AOD represents the visibility 
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in the atmospheric column from the ground surface to satellite height (in the order of numerous 

km). Furthermore, PM2.5 reflects the dry weight of particles, and it is not affected by water vapor 

and other particles in the atmosphere, while AOD is affected by water vapor and other particles in 

the atmosphere as well. Hence, the relationship between AOD and PM2.5 can be either weak or 

strong. The complicated relationship between AOD and PM2.5 varies temporally and spatially 

depending on environmental conditions. The relationship is reflected in PM2.5 retrievals. However, 

For retrievals, the study is useful for this region only as such, cannot address large-scale retrieval 

challenges. A comprehensive study over the larger area covering different cities and regions is 

required to establish relationships between PM2.5 -AOD which subsequently can be used for 

retrievals. The AOD - PM2.5 relation is stronger in some locations in India (Chelani, 2018). Other 

studies have also shown a similar trend where, coastal areas, the PM2.5-AOD relation was weaker 

comparisons shown by Yang et al., (2019). Few studies indicated a positive and weaker correlation 

with the AOD - PM2.5 (Chelani, 2018; Yang et al., 2019).  
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Figure 5.2 AOD - PM2.5 correlation within MODIS product at all locations,  

(I) MOD_3K (3km) (II) MOD_L2 (10km) (III) MYOD_3K (3km) (IV) MYOD_L2 (10km) 

 (a) Zoopark (b) Sanathnagar (c) Patancheru (d) IDA (e) Central University (CU) (f) Bollaram 

 

5.2.2 Multiple linear regression model 

For the prediction of ground-level PM2.5 concentration, regression model was developed using 

AOD and meteorological parameters (temperature, RH, Wind speed, wind direction, solar 

radiation, and pressure). Statistical parameters (R, RMSE, d, and NMB) of the models are 

presented in Table 5.2. Results indicated relatively good agreement at Zoopark when compared to 

the other five locations. Also, the MOD_L2 product was observed to give better predictions when 

compared to others except for Patancheru. The variations in model predictions were observed from 
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location to location. Some of them gave good predictability which is reflected in terms of R ranging 

between (0.33-0.64) at the Zoopark location. Kharol et al., 2011 also reported similar correlation 

coefficients (0.30 to 0.46) between Level 3 Terra/Aqua MODIS and MICROTOPS-II, AOD550 in 

all seasons over Hyderabad.  

The scatter plots between observed and predicted concentrations (for 3 km and 10 km 

resolution of Aqua and Terra product) for Zoopark are presented in Figure 5.3. Most of the 

predicted values fall within the 30% error line (black dotted line) indicating the applicability of 

the MLR model. Few points were observed within the 50% error line.  

 

  

  

Figure 5.3 Scatter plot for PM2.5 Predicted and Observed at Zoopark location for four MODIS 

AOD product 

 Shao et al. (2017) in their studies on AOD- PM2.5 in Nanjing of the Yangtze River Delta, 

concluded that there was a high consistency of AOD versus PM2.5 and the correlation coefficient 

was (R) 0.56. In the current study, the correlation coefficients are slightly lower around 0.4 for 
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various MODIS products. Lower correlation coefficients are reported to be due to desert dust and 

cloud properties Gopal et al., 2016). 

The MOD_3K product has a negative Normalized Mean Bias (NMB) except for the Zoopark 

location. The correlation coefficients were higher for Zoopark, IDA, and Sanathnagar; lower 

values for Patancheru, Bollarm, and CU regions. RMSE was higher (54 μg/m3) at Patancheru and 

low for other locations (11-15 μg/m3). RMSE values at Patancheru peaked in all MODIS 

collections when compared with other locations. The MOD_L2 results indicated over-prediction 

at CU and Zoopark locations, while under-prediction was observed for other locations. The 

correlation was higher (0.41) at Zoopark while the correlation was low at Patancheru. The RMSE 

variation range (11-14 μg/m3) except for the Patancheru region. The MYOD_3K and MYOD_L2 

have nearly similar values in RMSE, d, and NMB indicating good agreement in the correlation 

coefficient in the MYOD_3K product. Greater resolution data resulted in a higher deviation from 

the standard line in this study. Kumar et al., (2008) reported that the finer resolution of 

MODIS_AOD in addition to RH and atmospheric pressure results in a better correlation for the 

prediction of PM2.5 in New Delhi. The Terra AOD product performed better than the Aqua in the 

present study while the 10km resolution data performed better than the 3km resolution data in the 

correlation analysis. Similar results were reported by Wang et al., (2019). 

MODIS AOD product obtained for 10km and 3 km resolution is used. The quality of the 3 km 

resolution was generating relatively high noise influencing the accuracy of prediction. Munchak 

et al., (2013) also reported similar observations. The study considered a linear relationship between 

PM2.5 and meteorological parameters while the PM2.5 formation mechanisms are not considered.  

The model accuracies are influenced by the PM2.5 formation mechanism, spatiotemporal 

heterogeneities, and geographical regions. The best-fit location was identified based on MLR, later 

the location latitude and longitude were used in the Hybrid Single-Particle Lagrangian Integrated 

Trajectory model (HYSPLIT) model for back trajectory analysis. 

Table 5.2 MODIS AOD and PM2.5 summarized statistical parameters for the six locations 

 Parameter Bollaram Central 

University 

IDA Patancheru Sanath 

nagar 

Zoo 

Park 

MOD_3K RMSE 15 15 11 54 10 12 
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 d 0.53 0.59 0.81 0.21 0.78 0.76 

 NMB -0.15 -0.02 -0.02 -0.84 -0.04 0.05 

 R 0.13 0.13 0.53 -0.18 0.47 0.36 

MOD_L2 RMSE 12 14 12 55 11 11 

 d 0.52 0.66 0.71 0.22 0.73 0.85 

 NMB -0.009 0.11 -0.03 -0.87 -0.03 0.10 

 R 0.34 0.30 0.46 -0.15 0.38 0.64 

MYOD_3K RMSE 15 15 13 47 10 10 

 d 0.52 0.73 0.62 0.25 0.81 0.74 

 NMB -0.12 0.14 -0.08 -0.67 -0.02 0.01 

 R 0.28 0.38 0.51 -0.11 0.56 0.33 

MYOD_L2 RMSE 14 16 11 44 11 11 

 d 0.52 0.60 0.82 0.22 0.74 0.80 

 NMB -0.12 0.11 -0.04 -0.67 -0.01 0.09 

 R 0.21 0.16 0.59 -0.25 0.42 0.56 

 

5.3 Backward Trajectory analysis for source identification 

The backward trajectory simply the air mass trajectory path with suitable end points, based on the 

end points which will differ from one trajectory to the other one. To club the all these trajectories 

at one location creates the variations in the grid points to identified the potential grids in study 

location. For the each of the trajectory required the suitable parameter to convert the grid points. 

In this study PM2.5 chosen as the identified parameter. As well as the fug data collection was 

mandatory for the accurate conclusion on the source regions. The daily data was difficult to collect 

manually so that the Hyderabad study location was chosen for the continues data. From the last 

chapter the methodology following same for the CWT, PSCF and cluster analysis in this chapter.   

5.3.1 Concentration-Weighted Trajectory 

The results obtained by CWT analysis for Hyderabad are presented period of May 2017 to May 

2019 in Figure 5.4, with Figure 5.4 (a, b, c, d) indicating the CWT analysis for the surface layer 

represent the trajectory heights with the 100m, 500m, 1000m. Season-wise percentile contributions 
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of pollutants by trajectories are indicated in Figure 5.4. The colour in the figure reflects the 

concentrations - the red colour represents high concentrations while the blue represents low PM2.5 

concentrations. Season-wise weighted trajectory details are presented in Table 5.3. CWT analysis 

helps in finding the influence of short-range regional transport of air pollution and indicates the 

direction of trajectories. The surface layer concentrated paths identified for the winter season are 

dominating. The trajectory paths from East India, North India, and coastal regions are likely the 

contributing source paths for receptor location considered in the study. However, the weighted 

trajectory from East India and Coastal regions are more dominating in winter.  Two paths are 

identified in the pre-monsoon, which are from land and sea regions. These are perhaps due to land 

and sea breeze effects from nearby coastal regions. The two dominating paths are - one from 

central India and the other from the Bay of Bengal. In the monsoon, trajectories from Western 

India and the Arabian Sea are observed. However, contributions from local regions are dominating 

in monsoon. Trajectory from East India, Indo-Gangetic Plain, and coastal regions are in the post-

monsoon season. The weighted trajectory paths from the coastal regions and Indo-Gangetic Plain 

are dominating.   For two seasons (winter and pre-monsoon) two paths are identified while for the 

other two seasons (monsoon and post-monsoon) one transport path at the surface layer is identified. 

However, the trajectories vary from season to season as meteorological conditions influence the 

contributions. Gebhart et al., (2011) reported trajectory-based studies and subsequently used the 

results for source apportionment. Dust outbreaks in Spain were also analysed using trajectory-

based models and the results were encouraging (Cabello et al., 2016). The tracking of Hazardous 

air pollutants from refinery fire was analysed using trajectory studies (Shie and Chan, 2013). 

CWT analysis for the elevated layer represent the trajectory heights with the 1500 m, 2000 m. The 

CWT analysis is presented in Figure 5.4 (a, b, c, d). In CWT analysis, trajectories from all 

directions were observed in the winter season.  However, the dominating paths are from central 

India and East India. In the pre-monsoon season, the weighted trajectory was from central India, 

while for monsoon, the dominating trajectories were from West India and the Arabian Sea. For the 

post-monsoon season, the dominating trajectory was from local regions.  

For both the surface and elevated layers, the contributions from central India and East India are 

predominant in winter and pre-monsoon. In the monsoon season, contributions from local regions 
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are dominant. As precipitation in monsoon washes the particulates in the air, contributions from 

other regions are not significant.  

  

  

Winter Pre-monsoon 

  
Monsoon Post-monsoon 

Figure 5.4 CWT analysis for the surface layer. 

 

  

Winter Pre-monsoon 
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Monsoon Post-monsoon 

Figure 5.5 CWT analysis for elevated layer. 

5.3.2 Potential Source Contribution Function 

The potential source contribution function indicates the source contributions to the receptor 

locations. PSCF is one of the receptor models that consider meteorological information in 

determining the source regions contributing to potential pollution. Backward trajectory analysis is 

used for the PSCF analysis. PSCF is helpful in the identification of determining the relative 

contributions of potential source regions. Figure 5.6 presents the results of PSCF analysis for the 

study area at the surface layer. Table 5.3 indicates the predominant source regions contributing 

PM2.5 to the receptor location in the study area. In the winter season, predominant contributions 

were from Central India, East India, and Coastal Region. Contributions from Central India, the 

Bay of Bengal, Western India, and the Arabian Sea were predominant in the pre-monsoon season. 

During monsoon and post-monsoon seasons, contributions from local regions were dominating. 

Source contributions for the elevated layer are presented in Figure 5.7 and Table 5.3.  In the winter 

season, dominating source contributions are observed from Central India, Coastal regions, and 

East India. For the other three seasons, contributions were mostly from local regions.  The results 

of CWT and PSCF analysis indicating dominant trajectories and source regions are mostly similar 

indicating the credibility and accuracy of the results. Chengming et al., (2020) also reported similar 

agreement between CWT and PSCF results in their study on assessment of contributions of PM2.5 

in Weifang, China. PSCF cannot take into account if the PM2.5 concentrations of the grids are 

slightly higher or much higher than the considered standard PM2.5 (60 µg/m3, in the study) 

concentrations. Because of this limitation, the PSCF method fails to bring clear distinction between 

strong and moderate sources. However, the CWT model incorporates the relative importance of 

the potential sources. 
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Winter Pre-monsoon 

  

Monsoon Post-monsoon 

Figure 5.6 PSCF analysis for the surface layer. 

  
Winter Pre-monsoon 

  
Monsoon Post-monsoon 

Figure 5.7 PSCF analysis for elevated layer. 
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Table 5.3 Results of CWT Analysis and PSCF analysis 

Season Predominant trajectories from 

CWT Analysis 

Predominant source regions from 

PSCF Analysis 

Surface Layer Elevated Layer Surface Layer Elevated Layer 

Winter Central India, East 

India, Coastal 

Region 

Central India, 

East India 

Central India, East 

India, Coastal 

Region 

Central India, 

Coastal regions, 

and East India 

Pre-

monsoon 

Central India, Bay 

of Bengal, Western 

India 

Central India Central India, Bay 

of Bengal, 

Western India and 

Arabian Sea  

Local regions 

Monsoon Local regions 

(nearby receptor 

locations)  

Local regions 

(nearby receptor 

locations) 

Local regions  Local regions 

Post-

Monsoon 

Central India and 

Indo-Gangetic Plain  

Local regions Central India and 

Local regions 

Central India 

 

5.3.3 Cluster Analysis for Hyderabad 

Trajectory cluster analysis was carried out to group trajectories with similar characteristics. 

The K-means algorithm was used in the study for Cluster analysis. The threshold value was based 

on the daily base pollution criteria value was set by 60 µg/m3. The polluted mean and deviation 

also associated with more than the 60 µg/m3 of PM2.5 concentrations over study region. The results 

of CA for the surface layer are presented in Figure 5.8 (a, b, c, and d). The results obtained using 

the Trajstat tool are presented in Table 5.4. The trajectories in the study area are grouped into 6 

clusters. The color indicates the elevation of the trajectory – red refers to higher elevation while 

blue refers to lower elevation. In winter, the maximum contribution (38%) was from cluster III 

which was from East India, Central India, and West India. The polluted mean concentration was 

72.65 µg/m3 and 61 polluted trajectories. Cluster 4, from the Bay of Bengal, is contributing to 

maximum PM2.5 (31.3%) in pre-monsoon. Cluster analysis also indicated long and short-range 

transport pollution. For instance, in the monsoon season, the pollution is contributed by long-range 

air mass while in winter it is observed that pollution can be contributed by both long-range 

(Clusters II and IV) and short-range (Cluster I, III, V, and VI) air masses observed from the Figure 

5.8(a).   
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For Monsoon, the maximum contribution (22%) was from cluster 1 arising from West India and 

the Arabian Sea; while for post-monsoon, the maximum contribution (29%) was arising from Indo 

Gangetic Plain and East India. In monsoon, the contributions from lower elevations dominated as 

there were not many contributions from higher elevations due to rainfall. Also, the lower elevation 

trajectories were from nearby regions in India. The elevated trajectories were mostly from far away 

regions indicating long-range transport.  

 

  

Winter Pre-monsoon 
  

Monsoon Post-monsoon 
Figure 5.8 Cluster analysis for surface layer. 

Table 5.4 Polluted clusters and associated trajectory’s numbers at surface layer 

Clus

ter 

S.N

o 

Number 

trajectory 

Mean value 

of PM2.5 

(μg/m3) 

Standard 

deviation 

Polluted 

number 

trajectory 

Polluted mean 

value of PM2.5 

(μg/m3) 

Polluted 

Standard 

deviation 

Ratio (%) of 

each cluster 

end points 

Winter 

I 202 72.05 8.43 179 74.52 4.83 21.6 

II 45 65.21 11.61 29 72.81 5.75 8.33 

III 79 68.07 10.31 61 72.65 5.78 38.1 
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IV 163 64.46 12.43 98 73.33 5.55 13.52 

V 42 63.71 14.23 26 73.4 5.29 7.22 

VI 53 63.54 10.32 35 72.32 5.23 11.23 

Pre_monsoon 

I 118 43.85 7.96 0 0 0 18.29 

II 49 48.85 10.7 6 69.44 7.18 7.91 

III 51 50.71 10.54 9 66.14 4 7.91 

IV 199 48.42 11.73 38 66.79 4.4 31.3 

V 115 42.25 11.75 11 67.88 7.37 19.22 

VI 98 47.53 9.57 11 66.37 5.69 15.3 

Monsoon 

I 154 21.9 5.16 0 0 0 22.59 

II 89 25.93 7.04 0 0 0 12.4 

III 111 34.64 12.9 10 62.54 2.57 17.15 

IV 124 18.9 3.62 0 0 0 18.9 

V 133 21.75 4.92 0 0 0 20.9 

VI 55 32.85 9.82 2 63.91 4.78 7.95 

Post-monsoon 

I 97 55.11 19.22 42 71.21 6.44 29.23 

II 60 50.37 23.19 24 70.21 5.04 17.76 

III 55 40.79 13.32 4 67.08 5.91 15.03 

IV 26 54.95 25.27 15 72.26 5.41 8.20 

V 67 42.98 22.13 16 69.31 6.21 22.40 

VI 16 33.33 27.28 4 72.18 7.53 7.38 

 

Cluster III was more contributing in the Winter season, In the pre-monsoon season cluster IV 

trajectories are influencing the receptor location pollution levels from the Bay of Bengal region. 

The monsoon season was dominated by cluster I (ratio of 22.59%) from the Arabian region.  

Cluster I predominate regions from central India and the IGP region with a ratio of 29.23% in Post 
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monsoon season. The least number of polluted trajectories in all clusters was observed in the 

monsoon season. 

 The results of CA for the elevated layer are presented in Figure 5.9 (a, b, c, and d) and Table 5.5. 

In the winter season, trajectory IV indicated the highest contribution (57%) and the polluted mean 

value of 73.17 µg/m3. The trajectory was from Central India and West India. Cluster II contributed 

a maximum (23.72%) in pre-monsoon season and it was mostly from the Bay of Bengal and local 

regions. Most of the clusters in the monsoon season were from the Arabian Sea with a maximum 

(23.16%) contributed by Cluster V. In post-monsoon, the maximum contribution was by Cluster 

IV, indicating long-range transport of PM2.5. The mean PM2.5 concentrations contributed by 

trajectories are well below the NAAQS standard (60 µg/m3). Byčenkienė et al., (2014) also 

employed 6 clusters in their study on the Baltic region and reported relative contributions by 

clusters from different regions.  However, there was no comprehensive study reported for the study 

area and the region indicating probable source contributions using AOD and MODIS data. 

 

 
Winter Pre-monsoon 

  
Monsoon Post-monsoon 

Figure 5.9 Cluster analysis for elevated layer. 
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Table 5.5 Polluted clusters and associated trajectory’s numbers at Elevated layer 

Clus

ter 

S.N

o 

Number 

trajectory 

Mean value 

of PM2.5 

(μg/m3) 

Standard 

deviation 

Polluted 

number 

trajectory 

Polluted mean 

value of PM2.5 

(μg/m3) 

Polluted 

Standard 

deviation 

Ratio (%)of 

each 

cluster end 

points 

Winter 

I 35 67.31 9.93 24 72.89 6.13 18.6 

II 43 71.09 7.92 39 73.1 4.8 9 

III 23 64.09 11.09 16 70.01 7.03 12.6 

IV 57 68.8 9.5 44 73.17 4.8 57 

V 7 66.85 1.89 5 72.67 5.19 3.54 

VI 29 68.26 10 19 74.68 4.7 14.65 

Pre monsoon 

I 38 50.95 10.7 8 65.81 2.95 9.30 

II 101 46.1 10.18 10 67.1 6.05 23.72 

III 47 46.78 10.8 6 69.95 6 10.93 

IV 72 48.33 10.31 8 67.03 4.56 16.74 

V 51 48.51 11.8 7 67.56 8.56 12.09 

VI 111 44.94 10.99 11 65.99 3.4 27.21 

Monsoon 

I 105 19.18 3.84 0 0 0 22.75 

II 70 22.77 5.92 0 0 0 17.62 

III 50 3.89 10.25 0 0 0 10.25 

IV 96 23.99 6.58 0 0 0 19.67 

V 104 30.53 12.6 8 62.77 2.85 23.16 

VI 29 21.03 4.15 0 0 0 6.56 

Post monsoon 

I 26 56.38 24.59 16 72.17 5.57 13.1 

II 36 38.56 21.38 5 70.59 7.19 17.2 

III 45 45.27 20.89 12 68.1 6.56 21.3 



106 

 

IV 58 58.26 20.08 33 71.54 5.75 25 

V 21 44.42 15.59 1 74.2 0 8.61 

VI 28 39.25 17.67 3 69 7.82 14.75 

 

5.4 Wind rose analysis. 

 In order to determine the maximum frequency of the wind direction and wind speed based 

on wind rose analysis. The wind roses represent the ground-level winds. The wind rose plots are 

drawn utilizing Openair package in R program language (Carslaw and Ropkins, 2012). The 

analysis indicates that the dominating wind direction at Zoopark location was from the E and SE 

direction at the Zoopark location in the winter season, with nearly 20% of winds from the East 

direction. The dominating wind direction was from the SE and SW direction at the Zoopark 

location in autumn season. The mean and standard deviation of wind speed at Zoopark were in the 

range of 0.78±0.7. The analysis of the wind rose and backward trajectory data revealed consistent 

patterns in the wind direction within the surface layer. The observations indicated a striking 

similarity between the wind directions obtained from the backward trajectory analysis and the 

actual wind directions at the receptor location. This alignment between the two datasets suggests 

similar agreement in the wind patterns at the location of interest. The findings from both analyses 

provide robust evidence of a consistent wind flow pattern in the surface layer. 

 Below are wind rose diagrams for various locations Figure 5.11 illustrates that Sanathnagar 

experiences high wind speeds during the summer season, while the winter and autumn seasons 

exhibit the least wind speeds with a consistent dominant direction from the southeast. Additionally, 

moderate winds are observed in the autumn season. Notably, there is a sudden change in wind 

direction from summer to autumn in the Sanathnagar region. The observed mean and standard 

deviation of wind speed fall within the range of 1.25±0.5. Figure 5.12 displays the seasonal wind 

rose patterns for Patancheru. Dominant winds are observed during the summer season, while the 

least winds are noted in winter season. Moderate winds are evident during the spring and autumn 

seasons. In the summer, winds predominantly come from the southwest, while in all other seasons, 

they are dominated by southeast directions at Patancheru. The mean and standard deviation of 

wind speed were observed as 1.26±0.7. Figure 5.13 illustrates the wind pattern at IDA. The 

location exhibits dominant winds from the south in the spring season and west in the summer. In 

the autumn and winter seasons, winds predominantly come from the southeast. A sudden change 
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in wind direction is observed from summer to autumn in the wind direction. The mean and standard 

deviation of wind speed at IDA were observed as 2.1±0.9. Figure 5.14 displays the wind rose for 

Central University. High wind speeds are evident in the summer season, while moderate winds 

prevail in the spring season. In both these seasons, winds come from the southwest and southeast 

directions. In the autumn season, moderate winds from the east direction are observed. During the 

winter season, winds come from two directions, one from the south and another from the east. The 

mean and standard deviation of wind speed were observed as 1.6±0.6. Figure 5.15 showcases the 

wind rose for the Bollaram location. During the summer season, winds dominate from two 

directions, with high wind speeds from the west and moderate winds from the east. In the autumn 

and winter seasons, prevailing winds come from the southeast direction. In the spring season, 

winds predominantly originate from the south direction. The mean and standard deviation of wind 

speed were observed as 2.6±1.9. In this study, the Bollaram location exhibited the highest wind 

speeds overall, while the Zoo Park location recorded the lowest. Across all locations, the summer 

season consistently displayed stronger winds, whereas the winter season consistently had the 

lowest wind speeds. 

 
Figure 5.10 Zoopark wind rose diagram for all seasons 
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Figure 5.11 Sanathnagar wind rose diagram for all seasons 

 
Figure 5.12 Patancheru wind rose diagram for all seasons 
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Figure 5.13 IDA wind rose diagram for all seasons 

 
Figure 5.14 CU wind rose diagram for all seasons 
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Figure 5.15 Bollaram wind rose diagram for all seasons 

 

5.5 Summary 

   In this study, ground-level PM2.5 retrieval was attempted using meteorological conditions and 

MODIS Aqua/Terra AOD. Multiple regression analysis using AOD and meteorological conditions 

suggested that the MODIS Terra aerosol products were in reasonable agreement with predicted 

PM2.5 concentrations. Source identification based on trajectory-based studies by CWT, PSCF, and 

cluster analysis indicated long-range transport of the PM2.5 and potential source regions. East India 

and Coastal regions were the potential source regions in the winter season. Potential sources 

perhaps are biomass burning and anthropogenic activities from the source regions. The clusters 

provided the main mechanism of transporting paths toward the receptor. The high PM2.5 aerosol 

mass concentration at Hyderabad reflects high emissions by local sources such as vehicular 

transport and other anthropogenic activities. During the winter season, the surface layer 

experienced the highest levels of pollution, particularly originating from the East coastal regions. 

These pollution levels were exacerbated by prevailing atmospheric stability conditions. PSCF 
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analysis indicates dominating source regions from the Central India, East India and Coastal region 

in the winter season. As compared to other seasons winter season was dominating pollutions in the 

study region. 

The meteorology conditions influence the ground-level particulate concentration and 

transboundary aerosols. The estimation of PM2.5from MODIS Terra AOD and meteorology 

conditions the best-fit prediction method at Zoo park location. Research reported indicated a 

positive correlation between AOD and ground-level PM2.5 concentrations. In this study, the 

elevated layer demonstrated the long transport of pollutants from faraway regions like central 

India, North West India regions, and East India regions. 
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Chapter 6 Conclusions  

6.1 General   

In the present study, an attempt was made to study regional air pollution in two urban locations of 

Telangana. For Warangal, the study focused on sampling PM2.5, and subsequent analysis was 

carried out to find the heavy metals bound to the particulates. Enrichment factor analysis was 

performed to identify anthropogenic sources of heavy metals. Heavy metals are significantly found 

with PM2.5, especially in regions dominated by industry, traffic, and other human activities. Both 

PM2.5 and heavy metals are of great concern in view of their persistence and toxicity. The risk 

associated with inhalable PM2.5 along with heavy metals in adults and children was attempted. 

Source identification studies based on Concentration Weighted Trajectory (CWT), Potential 

Source Contribution Function (PSCF), and cluster analysis were attempted to arrive at regions 

contributing to pollution.  

Subsequently indirect method of using AOD data from satellites for PM2.5 retrievals and 

use in back trajectory analysis was demonstrated. Hyderabad, which is the capital of Telangana 

state, is dominated by several anthropogenic activities that result in the degradation of air quality. 

In this context, an attempt is made in this study, to use CWT, PSCF, and CA for identifying the 

pollutant source contributions by different regions.  The results of the study can be used for the 

mitigation and regulation of air pollution in the region. 

6.2 Conclusions 

The concentrations of PM2.5 and heavy metals bound to PM2.5 in Warangal are high in the post-

monsoon season. However, the PM2.5 concentrations observed were lower than the standards 

prescribed by NAAQS (60 μg/m3 – 24 hr-average). Ambient heavy metals bound to PM2.5 were 

significant due to emissions from traffic and other anthropogenic activities in urban areas. Zn, Fe 

and Cu concentrations in PM2.5 were significantly higher compared to the concentrations of Ni and 

Cd. The order of occurrence of heavy metals in descending order was found to be: 

Zn>Fe>Cu>Ni>Cd. High EF values for Zn, Cu, and Cd indicate higher emissions from combustion 

and industry.  Health risk assessment showed that the ingestion pathway dominates over the dermal 

and inhalation pathways. Based on HQ and HI index, it may be concluded that there is no 

significant non-carcinogenic and carcinogenic risk from the metals considered in the study. 

However, the health risk in children was higher when compared to that for adults. Long-term 
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sampling can help in better understanding the variations in PM2.5 and metal concentrations. 

Significant concentrations of few heavy metals bound to PM2.5 demand for implementation of air 

pollution control strategies. From the CWT, PSCF, and cluster analysis, it was concluded that the 

contributions from the West and North-West regions of India dominate at the receptor location.  

In this study, an assessment of ground-level PM2.5 over Hyderabad region based on 

multiple regression analysis with the meteorology and retrieved MODIS AOD Terra/Aqua product 

was attempted. The study suggested that the MODIS Terra AOD product was seen as the best fit 

for the prediction of PM2.5 at the Zoo Park location among the six locations. For other locations, 

there was a positive correlation with moderate results in terms of applicability. Trajectory based 

CWT method, PSCF model, and cluster analysis were performed with the seasonal data for winter 

(December-April), pre-monsoon (April-June), monsoon (June-September), and post-monsoon 

(October- December) in order to recognize the source paths, regions, and clusters contributing to 

PM2.5 concentrations at the receptor locations. The study identified the long-range transport of 

PM2.5 and potential source regions contributing to PM2.5. Central India, East India, and Coastal 

regions were the potential source regions in the winter season at the surface and elevated layers.  

The long-range transport was predominantly from open biomass burning and open coal 

mine activities. Cluster analysis considered 6 clusters for identifying the probable transporting 

paths toward the receptor location. The Surface layer Cluster III was the more dominating region 

in the Winter season with a polluted mean concentration of 72.65 µg/m3. Lower boundary layer 

and low wind speed conditions in winter lead to the entrapment of particulates within the surface 

level resulting in high ground-level PM2.5 concentrations. The lowest number of polluted 

trajectories in all clusters was observed in the monsoon season at both layers. This is possibly due 

to the minimum pollution contribution in winter. The high PM2.5 aerosol mass concentration in 

Hyderabad City reflects high emissions from local sources such as vehicular transport and 

anthropogenic activities in addition to long-range transport as well. With the help of cluster 

analysis, major clusters contributing to ambient concentrations of PM2.5 are identified for all 

seasons. Furthermore, the contributions were determined and the corresponding number of clusters 

and their percentage contributions are established. However, choosing a number of clusters for CA 

is complicated as a lot of information is required to decide the number of clusters for using CA in 

air pollution analysis. This aspect is perhaps the limitation of cluster analysis.  
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Long-range potential source regions of PM2.5 pollution and their impact on Hyderabad City 

is assessed during the study. The results of our study offer scientific backing for formulating 

pollution control measures specific to different regions. Nevertheless, it is important to 

acknowledge the limitations of the study. For instance, the resolution of the study grid (0.5oX0.5o), 

based on the backward trajectory model, is not a sufficiently high resolution to be applicable to 

small-scale regions. Additionally, the estimation of PM2.5 sources is not flawless, as the 

calculations solely rely on meteorological data and do not incorporate factors such as dust 

production and deposition. 

6.3 Recommendations 

The study yielded valuable insights regarding the policy implications concerning PM2.5 

pollution in the study region. The findings are beneficial for developing effective pollution control 

and prevention measures, emphasizing the need for the government to prioritize the regulation of 

pollutant sources while considering the migration of regional pollution caused by these sources. 

To illustrate, by analysing the transport patterns of pollutants, it is possible to classify and divide 

the surrounding pollutant source regions. This discovery suggests the implementation of diverse 

control and management policies, tailored to each region, to effectively curb pollution. Given that 

Hyderabad is significantly affected by short-distance pollutant transport from neighboring regions, 

particular attention should be given to mitigating such transport. For instance, implementing 

intensive greening measures can help reduce the long-distance transport of PM2.5. Additionally, it 

is crucial to consider the interactions between the city and its surrounding areas, promoting 

collaborative control and cooperation among different regions. 

The PhD work provides valuable insights and recommendations for the development of 

effective and efficient policies to reduce the air pollution in Warangal and Hyderabad, as well as 

other similar locations in India and elsewhere. I have also highlighted the main policy implications 

of the PhD work, such as: 

• The need for more comprehensive and representative monitoring and assessment of PM2.5 

concentration and sources, using a combination of ground-based, satellite-based, and low-

cost sensor data and methods. 

• The need for more stringent and specific emission standards and regulations for the major 

sources of PM2.5, such as vehicles, industries, biomass burning, and dust. 
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• The need for more integrated and coordinated policy actions and interventions across 

different sectors and levels of governance, such as transportation, energy, agriculture, 

urban planning, and public health. 

• The need for more control rules and advanced methods in the coal mining activities to 

decrease the pollution at the source location.  

• The need for more strict guidelines following the forest department to control forest fires 

and improvement in the forest area. the air pollution at the source location  

• The need for more public awareness and participation in the policy making and 

implementation process, as well as the promotion of behavioural changes and alternative 

practices to reduce the exposure and impact of PM2.5. 

6.4 Scope for further study 

• In this study, three approaches are used for implementation trajectory-based CWT, PSFC, 

and CA are used. In the first case, sampling data is used for Warangal, and in the second 

case, AOD and secondary data of PM2.5 is used for attempting CWT, PSFC, and CA. 

However, the integration of sampling and secondary data will ensure accurate data inputs 

and hence, better results. This was not attempted for want of finances and time for sampling 

over the entire region. 

• The use of machine learning and deep learning models with satellite data as the input for 

air pollutant forecasting is a good area for further research. MODIS, TROPOMI, and OMI 

satellite data could be used for the forecast. 

• The inclusion of wind patterns, rainfall patterns, land use changes, and even climate change 

can be useful for in-depth analysis and modelling. 

• Inclusion of source inventory especially traffic data (hourly average vehicle data) and 

transport emissions and industrial emissions as input can lead to fingerprinting of sources. 

• CWT and PSCF analysis as well as additional work that combines emission sources and 

externally monitored PM2.5 concentration data is needed to improve the prediction of PM2.5 

source regions and validate the analysis results quantitatively. Furthermore, analyses for 

various years will be further conducted to assess the inter-annual variability. The use of 

advanced deep learning models could be experimented with larger data sets to achieve 

better results. 
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