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Chapter 1

CHAPTER-I

A brief review on multi-component reactions and their applications in the

synthesis of biologically active compounds.

Synthetic organic chemistry has always been a frontier area of research due to its impact
on the materials and biological sciences. The scientific community thrilling to develop some
efficient methodologies, novel reactions, and processes that will lead to the synthesis of desired
target molecules and their derivatives with ease. It is not only a tool for obtaining compounds
that can be utilized for understanding biological functions or behaviour of materials but it also
leads to the creation of novel drugs or drug-like candidates and of new materials with

interesting properties.

In general, the targets are usually made via an elaborate chain of separate reaction steps that
takes longer time to complete, and when that process is extended to large-scale or industrial, it

becomes environmentally, economically, and energetically non-viable.

These environmental and economic concerns have increased in the potential and economic
world and the last one or two decades because the quality of life is strongly dependent on a
clean environment. Chemists can put all the ingredients together at the beginning. This type of
reaction has always been a part of organic synthesis, which is called a “one pot-reaction or
multicomponent reaction” meaning “chemical conversions consisting of several sequential
transformations are brought about in one reaction step. This approach is not only selective but
also highly efficient, saving time, energy, and raw materials and adds chemists aim to use the
mildest possible conditions, ideally at ambient temperature, atmospheric pressure, an

environmentally safe solvent, and a non-toxic catalyst.

A multicomponent reaction (MCR) is a process in which three or more easily accessible
components are combined in a single reaction vessel to give a final product displaying features
of all inputs and they offer greater possibilities for molecular diversity with a minimum of
synthetic time and effort. MCRs can be divided into two groups, (i) Domino reactions and (ii)
consecutive reactions. Domino reactions also called tandem, sequential, interactive, zipper, or
cascade reactions, are a type of process in which two reactions happens one after other because
of the functionality created when a reactive intermediate forms a bond or breaks apart. In
consecutive reactions, another reagent mediator or catalyst is added after the first reaction

without isolation of the first formed product.
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Over many decades, ubiquitous sweat has been paid towards the disquisition of green chemical
methodologies both in industry and academia. Also, hazardous, impulsive, and poisonous
organic solvents are constantly replaced by either the use of solvent-free ), water-medium [1,

microwave irradiated ), or multicomponent reactions [*71 (MCRs).
Multi-component Reactions:

Nowadays MCRs have been widely used in the area of organic synthesis [, medicinal

chemistry '), natural product synthesis ['>!3], polymer chemistry '*'¥] agro chemistry 1%2%,

21,22]

and combinatorial chemistry [

Short
Reaction
Time

Facile
Automation

Reduction
in Number
of steps

Operation
Simplicity

Access to
Complex
Molecules

Safe and
Cheap
Process

Convergence Eco-

Friendly

Atom
Economy

Figure 1.1

1.1. History of multi-component reactions:
The following reactions are some examples of the principal multi-component reactions based

on named organic reactions.
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* Strecker Reaction, 1850

19th Century « Hantzch Rection, 1882
* Biginelli Reaction, 1891

* Mannich Reaction, 1912
Early 20th « Robinson Reaction, 1917

* Passerini Reaction, 1921

Century :
* Bucherer& Bergs Reaction, 1934
 Asinger Reaction, 1958
Late 20th  Ugi Rection, 1959
Century » Gewald Reaction, 1961

» Grieco Reaction , 1985

Figure 1.2

The multi-component reaction itself occurs in nature in the evolution procedure 2], RNA and
DNA purine bases i.e., adenines are formed by a multi-component reaction approach via the

condensation reaction of HCN, which is catalysed by ammonia (Scheme 1.1).
NH,

o
Ly ﬁ

5HCN + NH,

Scheme 1.1
Strecker’s synthesis
The first report on multi-component reactions was disclosed by Strecker ?lin 1850. Strecker
synthesized a — amino nitriles via a one-pot, a three-component reaction by using ammonia,

aldehyde, and hydrogen cyanide as starting materials (Scheme 1.2).

NH2
RIJ\CN

0
pilly + HOCN  * NH,

Scheme 1.2
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Biginelli reaction

An Italian chemist, Biginelli [>*! established a multi-component reaction for the synthesis of
dihydropyrimidines. These dihydropyrimidine compounds were reported by a one-pot, three-
component reaction of various aldehydes, urea, and f—keto esters in presence of ethanol under

reflux conditions using an acid catalyst (Scheme 1.3).

O R!
0 0] 0O O ~
O NH
+ + -
H

Scheme 1.3

Mannich reaction
Carl Mannich %! explored a multi-component condensation reaction of aldehyde and amine
with carbonyl compounds having active methylene groups to generate the corresponding

scaffolds (Scheme 1.4).

o o H
+ 3+
R H RN R R-RS

5
RZH\H\N'R
R3 R4

Scheme 1.4

Passerini reaction

(27} reported the first isocyanides-based one-pot, multi-component reaction. He

Passerini
reported the synthesis of a-acyloxy carbamides by reaction of isocyanides, carbonyl

compounds, and carboxylic acids (Scheme 1.5).

0] 0] O

Rl RZH
NC
R} R“”\OH

R4 “\0>i§ N~ R3

RIH\RZ

Scheme 1.5
Ugi reaction

A series of 0-acylamino amides were reported by Ivar Karl Ugi 2* via one-pot, four-component
reaction using aldehydes/ketones, amines, isonitriles, and carboxylic acids (Scheme 1.6). This

reaction is enormously described and applied in modern organic synthesis.

4
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0] o Q)

R! RZH
Rl”\RZ + R3NC R4”\OH + RSNH2

RON N
RS

Scheme 1.6

Petasis reaction
Petasis ! developed one-pot, three-component synthesis of substituted amines by the
condensation of carbonyl compounds amines and vinyl or aryl boronic acids to form substituted
amines (Scheme 1.7).

0 . OH Ry R
Rl 7 rNp T e Bon RS AR

Scheme 1.7

Orru reaction

301 explored one of the most significant multi-component reaction to synthesize 2-

Orru [
imidazolines by the condensation reaction of amine, an aldehyde, and a-acidic isocyanides

(Scheme 1.8).

o
by * RN+ pinC

Scheme 1.8

Laurent and Gerhardt multicomponent reaction

Laurent and Gerhardt ! reported the multi-component reaction of “benzoyl azotid”. At firstly
benzaldehyde in the presence of hydrogen cyanide and ammonia produced a-amino benzyl
cyanide. Further, the reaction mixture was added by another mole of benzaldehyde to produce

the anil of benzyl cyanide i.e. “benzoyl azotid” (Scheme 1.9).

CHO
CHO

CN CN
HCN ©}NH2 ©}N4\©
NH,

Scheme 1.9
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Radziszewski imidazole synthesis

Radziszewski %

explored a one-pot, four-component reaction for the synthesis of substituted
imidazoles. In this reaction, the starting materials are 1,2-dicarbonyl compounds,
formaldehyde, primary amine, and ammonia were used to produce the substituted imidazole’s

(Scheme 1.10).

0 + + D + N
)Jj])/ po M Ty TONH; (y

Scheme 1.10

Hantzsch dihydropyridine synthesis
Hantzsch 3! reported a four-component reaction for the synthesis of substituted 1,4-

dihydropyridines via cyclo-condensation reaction using ethyl acetoacetate, ammonium acetate,

and aldehyde (Scheme 1.11).

(0] (0] (0] (0]
(0] H,O
SN SN 2 P N
o + L + NH,OAc + o 0 | 0
H” ™ H reflux N
H
Scheme 1.11

Hantzsch pyrrole synthesis
Hantzsch ¥ reported a one-pot, three-component reaction for the synthesis of pyrroles by the

reaction of f—keto esters with a-halo  — keto esters and primary amines (Scheme 1.12).

2
4 0 ° OR
R
O O - NH, . O O ) Ethanol 0 \_r!
R R 2 R
Rl JJ\/U\()' R3 ‘%J\O’ reﬂux R3 R
1

Scheme 1.12

Bucherer Berg’s hydantoin synthesis
Bucherer and Bergs **! established one of the most important four-component reaction method
for the synthesis of hydantoin via cyclo condensation of carbonyl compounds, hydrogen

cyanide, ammonia, and carbon dioxide (Scheme 1.13).



Chapter |

O NR
(0 1
NC_ NH CcO E/
+ H + NH 2 2
RI)LRZ o 3 RR, ! {%2
Scheme 1.13

Asinger reaction
Asinger [*9 developed a one-pot, four-component method for the synthesis of thiazolines by
using a multicomponent reaction approach. Here, thiazolines are synthesized from a-

halogenated carbonyl compounds, ammonia, and sodium hydrosulphide (Scheme 1.14).

0 o R? N R3
R! + NaSH + NH, + . \E R4
RZUX 3 R3”\R4 Rl S>L
r
Scheme 1.14

Gewald reaction

Karl Gewald 7 developed an efficient, one-pot, three-component reaction approach for the
synthesis of poly substituted 2- amino thiophenes. These title compounds were synthesized by
a reaction of a-methylene carbonyl compounds, elemental sulphur, and a-cyano esters in

presence of a base (Scheme 1.15).

R3
(0)
0) . o
0 3 R
J R S &)J\O’R - | D>—NH,
R N R2 S

Scheme 1.15
Grieco synthesis (three components) of tetrahydro quinolines

Grieco % reported a three-component reaction approach for the synthesis of tetra hydro
quinolones using amines, aldehydes, and cyclopentadiene via cyclo addition reaction in

presence of trifluoroacetic acid (Scheme 1.16).
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Scheme 1.16
Povarov three-component reaction

Povarov [**) developed a three-component reaction approach for the synthesis of tetra hydro
quinolones. At first anilines and benzaldehydes undergo a condensation reaction, and the
intermediate Schiff bases react with Lewis acid-like boron trifluoride to activate imine for
electrophilic addition of the activated alkene. The reaction step forms an oxonium ion which
then reacts with the aromatic ring in a classical electrophilic aromatic substitution. Two

additional elimination reactions lead to the formation of tetra hydro quinolone structure

(Scheme 1.17).

NH, H
1
o) 3 R
|/\\ i Rlu\H " R‘f/\R |: 2
R R/ R
R3
Scheme 1.17

Betti three-component reaction
Betti [0 established a three-component reaction approach for the synthesis of a-amino benzyl
phenols. In this reaction primary aromatic amines and aldehydes form imines, further, this

intermediate reacts with phenol to form a-amino benzyl phenol derivatives (Scheme 1.18).

OH
Xp RI'™H R? - R// N.R2
Rl
Scheme 1.18

1.2. Classifications of multi-component reactions
Multi-component reactions can be classified into several types as follows
» Based on the reactants involved in the synthesis i.e. three-component, four-
component, and five-component reactions, etc.
» Based on the functional groups on the reactant molecules as follows.
1. Imine-based multi-component reactions.

2. Isocyanide-based multi-component reactions.
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Number of well-established multi-component reactions were related to the imine based
multi-component reactions. In this type of reaction, the products encompassing the imine
functional group were produced by the condensation of carbonyl functional group scaffolds
with amines. Whereas, in second method the isocyanide based reactants are the starting
material for the reactions elaborated in isocyanide established multi component reactions.

» Based on the reaction kinetic paths i.e. reversible or irreversible, based on isolabilty
and reactivity of the products.
Type-I: In this type, starting materials used for the reaction, reaction intermediates, and the
final products are in equilibrium with each other. These reactions are thermodynamically
controlled reactions because the yield and isolability of the reaction depend on the

thermodynamics of the reaction (Scheme 1.19).

® O
9 .\ NH,CN H,N_ CN
rilR2 NH; + HON —— _,, =——— T"Ri<g

Scheme 1.19

Type-II: In these reactions, equilibrium exists among substrates and reaction intermediates.
The reaction is completed by an irreversible step between the intermediate and the final product

(Scheme 1.20).

® O o
o NH,CN  §3CR co H A
H,N_ CN 2 N
IL,, + NH; + HCN ——~ |l —_— 2 R?, 'NH
RI™R? ? R'R? RITR? “pp4CR R%

Scheme 1.20

Type-III: In these types of reactions one product is formed by all sub-reactions encompassing

irreversible steps (Scheme 1.21).
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X
R3-
oft ROpOR2 X R'O-p-O-R2
O‘ R3 O‘ R3
RIO-p-OR2 X=0, S, Se
Cl (4]
\©:(S)/CH3
o) X
R'Op-O-R2 X
X Cl o) Cleavage r10.p-OR2
. o
\©:S/CH3 OH
4}
Scheme 1.21

1.3. Different approaches in MCRs

There are various approaches established other than normal conventional methods to solve the
purification problems, minimize the reaction time, improve the product yields, and to develop
easier workup techniques, etc.

Solid Phase MCRs

Yanira Mendez ! et al. have reported a four-component condensation reaction approach for
the synthesis of small ring heterocycles by solid phase synthesis. For example, the Ugi-azide
one-pot, four-component reaction of amine, aldehyde, followed by the addition of isocyanide
and trimethylsilyl azide provides a tetrazole-peptidomimetics (Scheme 1.22). it can serve as an

inhibitor of Escherichia Coli M1-aminopeptidase.

o
NH2 H
+ N-
N\ /

H

B ———

©/\NC TMSN3 TFA/HZO/ TIS
AN
\
N-
NN H \_NH
OH

Scheme 1.22
10
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Aqueous medium MCRs

Menezes *?! et al. reported an efficient and aqueous mediated multi-component reaction
approach for the synthesis of SQXO derivatives using o-phenylenediamine, aldehydes, and
sodium pyruvate in 20% aqueous acetic acid containing sodium acetate provided the title
products in good yields (Scheme 1.23).

R?
( >

NH o 20 % aqueous AcOH N
©:2+ﬁ\_121+ ONa ° a4 >©:\\\\R1
NH, 1{/ AcONa (5 eq), 120 C N
2

Scheme 1.23

Solvent-free MCRs

Singh [ et al. established one of the most important regioselective approach for synthesis of
5,6-dihydro- 4H-thiopyrans via one-pot, three-component domino coupling a, - unsaturated
aldehydes, f-oxodithioesters and cyclic aliphatic secondary amines under solvent free and

catalyst-free conditions at room temperature provided good yields (Scheme 1.24).

Ar O
O S (0 ﬂl catalyst free R!
R2 + /\)L + > |
1 . ) H .
R ”\/U\S Ar H v solvent free SONT>SSSR?

rt, 5 min S

Scheme 1.24
Microwave irradiated MCRs

Rao " et al. reported an efficient, one-pot, three-component synthesis of coumarin-based
thiazoles using thiocarbohydrazide, various aldehydes, and 3-(2-bromo) acetyl coumarins
using a catalytic amount of acetic acid and ethanol under microwave-irradiated condition

(Scheme 1.25).

11
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Rl

RZ

R! = Br

CHO

H
EtOH:AcOH
@ + H,N N NN,
\; \g/ MW-irradiated

7z

Scheme 1.25

Ultrasonic MCRs

Pasha ! et al. explored copper (I) catalyzed a one-pot, four-component reaction approach for
the synthesis of N-substituted 1,4-dihydropyridine derivatives using aldehydes,
dialkylacetylenedicarboxylate, malononitrile, and substituted anilines in water as green solvent

under ultrasonic irradiation condition provided good yields (Scheme 1.26).

NH, R
1
CN Cul (20 mol%) R O:C CN
N RZ// H,0, US (35 KHz) R!'O,C”"N""NH,
30 min
Scheme 1.26

1.4. Applications of multi-component reactions
Applications in natural product synthesis
Number of natural products were widely used in medicinal chemistry. Because of their limited

availability, it is important to synthesize these natural products with good yields. In this regard,
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multi-component reactions play a vital role in the synthesis of natural products. The following

are some instances of the role of MCRs in the synthesis of natural products.

Cannabinols are the natural products that are used as CNS (central nervous system) G-
protein agonists. In their synthesis, 6/H-dibenzo[b, d]pyranone is recognized as one of the
intermediates. Bodwell ¢! and co-workers established an efficient multi-component reaction

approach for the synthesis of 6 H-dibenzo[b,d]|pyranone (Scheme 1.27).

L
Cl

cannabinol
1
R? REO COOMe .
H 0] + | Piperidine
+ )’K/R
R? OH R 1,4-dipgane
f MeOO -Gk
Scheme 1.27

Dysidea frondosa is a marine sponge; from this marine sponge marine sesquiterpenoid
Frondosin B is isolated. It behaves as an interleukin-8 receptor antagonist. On account of its
medicinal significance, most of the natural product chemists have been motivated to synthesize
the Frondosin-B. Hence, Chaplin and Flynn *7! established a multi-component reaction
approach by using substituted alkyne, 2-bromophenol, and bromoenone by palladium catalysis

to produce the benzofuran analogue (Scheme 1.28).

Frondosin-B

0]
/O\©1Br ij\/\/ )J\ Pd-catalyst
+ +
OH Br S

Scheme 1.28
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Martinelline is isolated from Martinella iquitosensis vine roots and used as a natural
nonpeptidic bradykinin B2 receptor antagonist. The alkaloid comprises hexahydropyrrolo[3,2-
c]quinoline as prime moiety with three pendant isoprenyl-derived guanidine structures. Powell
(8] and a co-worker established multi-component Povarov approach to synthesize Martinelline

precursor (Scheme 1.29).

NH,
HNZNH

(o) / Cbz
‘N
 ——
N~ >NHCbz
H H

W\NH

HN)\ NH

N

Martinelline

Cbz
Cbz N
/©/NH2 N 5% Camphor sulphonic acid ~ MeOOC
+ D
MeOOC INI "~ >NHCbz

THF, 48 h

Scheme 1.29

Justicidine E is a naturally obtaining Lignan type of aryl naphthalene lactone ring moieties.
Anastas [* e al. established a one-pot, multi-component reaction for Justicidine E. which was
synthesized from 5-(3-chloroprop-1-yn-1-yl)benzo[d][1,3]dioxole, 5-
ethynylbenzo[d][1,3]dioxole and carbon dioxide (Scheme 1.30).
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Cl

Justicidin E

N + co, SOCL,DMA

K,CO;, DMA

— -/ Crown ether

Scheme 1.30
Multi-component reaction applications in the synthesis of drugs
Multi-component reactions are considered a powerful modern synthetic organic tool because
they are used for the synthesis of a library of compounds and drug-like moieties. For example,
they are efficient protocols to synthesize well-known drugs such as penicillin analogue,
Crixivan, bicalutamide, and (S)-clopidogrel, etc.
Synthesis of Penicillin analogues via Asinger and Ugi multi-component reaction
Ugi established a multi-component reaction for the synthesis of penicillin ** analogues by

coupling Asinger and Ugi reaction (Scheme 1.31).

0] o o S H
CHO COOH C¢H,,NC
: BI>QCHO—> o N N\C6Hu
OMe N
\
x

*  NaSH

Scheme 1.31
Synthesis of HIV-protease inhibitor Crixivan intermediate (piperazine intermediate)

(511 ¢t al. established an efficient synthetic approach for the synthesis of Crixivan

Rossen
intermediate. This piperazine intermediate was synthesized from fert-butyl propyl carbamate,
tert-butylisocyanide, di-chloroacetaldehyde, and formic acid by Ugi multicomponent reaction

(Scheme 1.32).
15
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Boc
N
| N\/ GH
HNYN0
e K

Crixivan

Cl U-4CR Boc_
4t Lo mcoon s € g
CN Cl->CHO & H

-~ "Boc Et;N/ KOtBu

K
Scheme 1.32
Synthesis of the anti-malarial drug via Ugi multi-component reaction
Chibale %! et al. developed an efficient method for the synthesis of an anti-malarial drug
(lactam). The lactam was synthesized using diamines, 4-oxobutyric acid, and cyclohexyl

isocyanide using Ugi multi-component reaction (Scheme 1.33).

HN-">"""NH,

m Ne 1) MeOH, rt,12-18 h HN "N
¥ §-OH Cl N7

o) 2) 0

)K/\g/OH

3) filter, wash

/ MeOH, filter, Wash
4) 3% NH3

Scheme 1.33
Synthesis of an enzyme inhibitor (calpain) via Passerini multi-component reaction
An efficient method for the synthesis of an enzyme inhibitor (calpain) intermediate i.e.
dipeptide moiety has been developed. The dipeptide moiety was synthesized using Boc
protected amino aldehyde, an isonitrile, and a suitably protected amino acid using Passerini

multicomponent reaction 331 (Scheme 1.34).
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Et3N, CH,Cl,

cl
Cl gt-NC, Boe-Val-OH, CH,CI,
(Passerini Reaction) O (0]
H,N
TFA, CH,Cl, Jﬂ NS
P H

H (0]

N_JJ\N N
: H H

PN

Scheme 1.34

Synthesis of the anti-cancer drug via multiple multi-component reactions

An efficient method for the synthesis of a new generation of highly cytotoxic tubulin analogues

(tubugis) was developed. The tubulin moieties are among the most potent artificial anti-cancer

agents ever invented and manifest the first example of a target-oriented synthesis method using

multiple multi-component reactions 4. In this Ugi- Nenajdenko, Passerine-Domiling, three-

component reactions, and Ugi 4 component reactions were used (Scheme 1.35).
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Scheme 1.35
1.5. Chemistry of benzimidazoles
Heterocyclic chemistry is one of the most important topics in modern organic chemistry,
because of its widespread applications in various domains >8] In particular, among the
heterocyclic pharmacophores, the benzimidazole ring system is quite common and contains a

phenyl ring fused to an imidazole ring as depicted in figure 1.23.

N
e
H
Figure 1.23
1.6. History of benimidazoles
Benzimidazole is a six-membered bicyclic heteroaromatic compound in which the benzene
ring is fused to the 4- and 5™ positions of the imidazole ring. Historically, the first
benzimidazole was prepared by Hoebrecker *) in 1872 of 2, 5- and 2, 6-
dimethylbenzimidazole by ring closure reaction of benzene-1,2-diamine derivatives [ and

more interest in the area of benzimidazole based chemistry was developed in the 1950s, when

5,6-dimethyl-1-(a-Dribofuranosyl) benzimidazole was found as an integral part of the structure
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of vitamin B12. Moreover, in 1882, Radziszewski reported the first synthesis of highly
substituted imidazoles by condensing 1, 2-diketones with different aldehydes in the presence
of ammonia [¢!],

1.7. Nature of benzimidazoles

Benzimidazole ring contains two nitrogen atoms at the one and third position of imidazole ring
with amphoteric, i.e., possessing both acidic and basic characteristics. These rings exist in two
equivalent tautomeric forms, in which the hydrogen atom can be located on either of the two

nitrogen atoms (Figure 1.24). Furthermore, the electron-rich nitrogen heterocycles could not

only readily accept or donate protons but also form diverse weak interactions easily.

(basic) (acidic)
H
©i§>> Tautomerization N
X V.
y P
H
(acidic) (basic)

Figure 1.24

1.8. Biological applications of benzimidazoles

Benzimidazole derivatives have revolutionized the medicine discovery process through their
different range of pharmaceutical applications, which makes this compound a necessary anchor
for the invention of new remedial agents. Therefore, the remedial eventuality of benzimidazole
and affiliated medicines has attracted modern organic researchers to design and develop more
potent derivations with a wide range of pharmaceutical potentials. Owing to the immense
synthetic value and extended bioactivities displayed by benzimidazoles and their derivations,
efforts have been made from time to time to produce libraries of these compounds.

These act as structural isosteres of naturally occurring nucleotides. Notably, the benzimidazoles
substituted at 2 and 5 or 6 positions are useful for the development of novel medicinal
compounds in the pharmaceutical fields. For instance, benzimidazole drugs like rabeprazole
and omeprazole act as proton pump inhibitors (treatment of stomach ulcers) thiabendazole and
albendazole are anthelmintic drugs used to inhibition of tubulin polymerization. Therefore,
with the high prevalence of benzimidazole importance within medicinal and various domains
there has been considerable interest in developing efficient approaches for their synthesis. The
synthetic benzimidazole scaffolds are also known to exhibit extended biological activities

[66-681 " antifungal agents %%, antidiabetic

including antimicrobial agents 62631 anti-cancer
agents !l anti-inflammatory agents [">73] anti-Alzheimers !, antagonists "], anti-parasitic

agents [, and anti-tublin ["”),
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Kankala "8 et al. Synthesized a facile catalytic method for the regioselective synthesis of 2,5-
di-substituted-isoxazole bounds to benzimidazoles via catalytic nitrile oxide-alkyne 1,3-dipolar
cycloaddition (figure 1.25). Further, these compounds were screened for their in-vivo
analgesic and anti-inflammatory activity. Herein, pentazocine and Diclofenac are the standard

drugs.
NO,

R N
Ly e
Ard

N
45

Figure 1.25
Mostafa. M. Ramla ™! ef al reported a novel series of 2-(1-benzyl-2-methyl-1H-
benzimidazol-5ylimino)-3-(substituted-thiazolidin-4-one or 3-(2-methyl-1H-benzimidazol-5-
yl)-2-substituted-thiazolidin-4-one derivatives. Further, these scaffolds were screened for their
in-vitro inhibitory activity against the Epstein-Barr Virus Early Antigen (EBV-EA). Among

the tested compounds the following were shown potent activity (Figure 1.26).

S N

N}CH_,,

6@

Figure 1.26
Cruz-Gonzalez 3% ¢t al. Carried out the microwave-assisted synthesis of 2-mercapto
benzimidazoles and its alkylated derivatives by using various 1,2-diamino benzenes, carbon
disulfide, and various alkyl/aralkyl halides in ethanol-NaOH (Figure 1.27).
R!

R@iz\%sﬁg
H

Figure 1.27
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Abdel-Aziz 81 e al. synthesized a series of novel 2-(benzimidazol-2-yl)thio)-1-aryl ethan-1-
one derivatives by using 1,2-amino benzenes, carbon disulfide, and a-Bromo acetophenones in
glacial acetic acid and a catalytic amount of sulphuric acid. Further, these scaffolds were
screened for their in-vitro anti-proliferative activity against colon HT-29 cancer cell lines. The

following compound shows potent activity (Figure 1.28).
N
Clhs g
’ J

Figure 1.28
Malladi 82! ¢f al. reported diversity-oriented, one-pot, synthesis novel imidazo[4, '5']
benzo[e][1,4]thiazepinones and benzo[d]imidazolyl thiazolidines via cyclization method by
using S-amino-2-mercapto benzimidazole, various substituted aromatic aldehydes and
thioglycolic acid in dry toluene and a catalytic amount of p-TSA under reflux. Further, these
compounds were screened for their in-vitro anti-microbial and anti-inflammatory activity
(Figure 1.29).
0]

O H
N N S% N
Z;/ O—sH P \E:[ R
H H

¢ J

74 \ EWG
EDG/ =
EDG: Electron donating groups EWG: Electron withdrwaing groups
Figure 1.29

Kumar B3 et al. reported, a facile one-pot, synthesis of 2-substituted benzylsulfanyl -1H-
benzimidazoles by using 2-mercapto benzimidazole and various aralkyl halides in acetone/
potassium carbonate gave good to excellent yields. Further, these compounds were screened
for their in-vitro anti-microbial activities against B. Subtilis, E. Coli, P. aeruginosa, C.
Albicans, and A. niger, and all the synthesized compounds showed moderate to good activity

(Figure 1.29).
ovat)
H
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Figure 1.30
Madsen B4 ef al. synthesized 2-(benzimidazol-2-yl-thio)-1-(3,4-di-hydroxyphenyl)-1-
ethanone derivatives by using 2-mercapto benzimidazole, 2-bromo-1-(3,4-di-hydroxyphenyl)
ethanones in MeCN gave good yields. Further, these scaffolds were screened for their in-vitro
non-peptide competitive human-glucagon receptor antagonist activity. All the compounds were

shown potent activity (Figure 1.31).
HO OH

N
Ly
H
Figure 1.31
Dong 35! et al. described a convenient, efficient, and one-pot, green protocol for the synthesis
of 2-benzyl/ 2-allyl substituted thiobenzoazoles in water by using 2-aminothiophenols, 2-
aminophenols, and1,2-phenylene diamines with tetramethyl thiuram disulfide [TMTD] gave

mercapto benzoheterocycles. And these subsequently react with various benzyl or allyl halides

in water/ potassium carbonate giving good to excellent yields (Figure 1.32).
FG,

Figure 1.32
Anisetti 8% ¢t al. reported an efficient novel one-pot synthesis of 2-mercapto-1,5-
dihydrospiro[imidazo[4',5":4,5]benzo[ 1,2-¢][ 1,4]thiazepine-9,3'-indoline] derivatives by using
5-amino-2-mercapto benzimidazole, various isatins, and thioglycolic acid in CH3CN, and a
catalytic amount of p-TSA gave good to excellent yields. Further, these scaffolds were screened
for their in-vitro anti-microbial, anti-inflammatory, and antioxidant activities. And all the

compounds exhibited potent activity (Figure 1.33).
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Figure 1.33

Malladi 37! ez al. have described a series of novel benzimidazolyl pyrano[2,3-d] [1,3]thiazolo
carbonitriles via Michael addition using 5-amino-2-mercapto benzimidazole, various aromatic
aldehydes, mercaptoacetic acid and 2-(phenyl methylene) malononitrile gave good to excellent
yields. Further, all the synthesized scaffolds were screened for their in-vitro anti-inflammatory
and anti-oxidant activity. All the synthesized compounds were shown potent activity against

the standard drugs (Figurel.34).

NC / 0
AT

R
R!
Figure 1.34
Aims and objectives of the research work
1. To develop efficient, environmentally benign, facile methods for the synthesis of
biologically potent molecules.
2. To evaluate the biological activities of newly synthesized heterocycle compounds.

The present work covers the synthesis of benzimidazole-linked heterocyclic
compounds and their biological activity studies. The target heterocyclic compounds were
synthesized by using easily and readily available starting materials such as 5-amino-2-
mercaptobenzimidazole, 2,5-dimethoxytetrahydrofuran, alkyl or aralkyl halides, phenacyl
bromides, ammonium isothiocyanate, phenylisothiocyanate's, hydrazine hydrate, and 3-acetyl
coumarins.

Chapter-I describes the introduction to multi-component reactions and the chemistry of

benzimidazoles.
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Chapter-II deals with the synthesis of benzimidazole-linked pyrrole derivatives by the MCR

approach and their molecular docking studies.

: Chon ®

- — Tog

: H

: H,N 6 4a-p

e s@::)_SH \)_& AcOH/AcONa | 88-95% yields

: 70 °C
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: R-X \ @ N @ N R +@ N
: (Ga-p) 74*\ C[ S-S ‘@[ s ‘@E oS
: R-X = Different Alkyl or Aralkyl halides R = Different Alkyl or Aralkyl groups
' :

Chapter III portrays the one-pot synthesis of thioalkylated benzimidazole-based 4-substituted
mercaptoimidazole molecular hybrids via a multi-component approach and their DFT

mechanical studies.
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Chapter 1V is divided into three sections.
Chapter IVA reports the polyethylene glycol-mediated three-component synthesis of
benzimidazole-based thiazoles as a-glucosidase inhibitors. Design, synthesis, molecular

modelling and ADME studies.

Br
NCS AY ,,
H,N N R'  pEG-400 ]Ql S
3—SH + + ‘
\©:N>_ 2 e T ~©:N)_
H 3-5h
RS reflux R?
1 2a-b 3a-j 4a-s
| yields 85 to 95 % ?

Chapter IVB explains a facile, pseudo-four-component synthesis of novel thiazolyl-

benzimidazoles via a multi-component approach and their biological evaluation.
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Chapter IVC described a facile, four-component synthesis of coumarin-based thiazoles via a

multi-component approach and their anti-cancer activity.
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Chapter V comprises a synthesis of novel benzimidazole-based isoindoline-1,3-dione

compounds and benzo[4,5]imidazoles and their antibacterial activity.
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The current research program was undertaken to build new heterocyclic structural modification
moieties on benzimidazoles and to evaluate their biological activities like anti-bacterial, anti-
diabetic and anti-cancer activities. In this direction, we have designed and synthesized novel
building blocks of benzimidazoles. The summary of our present study on 5-amino-2-mercapto-

benzimidazole has been shown in the following figure.

26



Chapter 1

Summary of the present work
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CHAPTER-II

SYNTHESIS OF BENZIMIDAZOLE LINKED PYRROLE DERIVATIVES BY MCR
APPROACH AND THEIR MOLECULAR DOCKING STUDIES

2.1. Introduction

Nitrogen heterocycles are of special interest because they constitute an important class of
natural and synthetic products, many of them which exhibit useful biological activities. The
synthesis of nitrogen-containing heterocyclic compounds and their derivatives plays an
important role in organic chemistry as they frequently exhibit therapeutic and pharmacological
properties. They have emerged as an integral backbone of several existing drugs. Studies reveal
that the incorporation of a pyrrole moiety into various heterocyclic ring systems results in

useful molecules from the pharmacological point of view 131,

Pyrrole is a major class of five-membered heteroaromatic cyclic compounds containing
nitrogen hetero atoms in the cyclic ring system with molecular formula C4HsN. Pyrrole
manifests different resonance structures by the delocalization of nitrogen lone pairs of electrons
in the ring system (Figure 2.1). Due to the delocalization of lone pair of electrons on nitrogen,

the basicity of pyrrole showed lower than amines and other aromatic compounds containing

pyridine moiety.
..\ e ﬁ E= @ _ % —— @ E= / ..\
P — & w — e — =&
H H H H H H

Figure 2.1. Different resonance forms of pyrrole

Moreover, the -NH, and —CH protons of pyrrole moiety exhibit a moderately acidic nature and
they can be deprotonated by strong bases and which makes the pyrrole ring a nucleophile.
Pyrroles are contemplated as a cyclic scaffold of 1,4- di carbonyl compounds with primary
amines. This fundamental moiety is present in a large number of chemical, therapeutic agents,
and natural products as well as in bio-molecular structures like hemoglobin, chlorophyll,
myoglobin, vitamin B12, cytochromes, and bile pigments like bilirubin and biliverdin. etc.
Since it was first detected by F.F. Runge in 1834 as a constituent of coal tar. Further, in 1857
it was isolated from the pyrolysate of bone. Its name pyrrole originated from the Greek word
‘pyrrols’ meaning fiery from its reaction imparting red colour to wood when moistened with
HCI. Haemin was the first pyrrole-containing molecule, which is synthesized by E. Fisher in

1929. Furthermore, developing synthetic methodologies towards the construction of pyrrole
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scaffolds is always of considerable interest to synthetic chemists and has led to several classical
methods like Hantzsch pyrrole synthesis [, Knorr pyrrole synthesis ), Paal-Knorr pyrrole
synthesis [¢], Van-Luesen reaction |7, Barton-Zard reaction [*1 | and Piloty-Robinson synthesis
1 etc. As well known, the Paal-Knorr pyrrole synthesis is one of the most commonly used

methods for the construction of polysubstituted pyrrole by utilizing 1,4 dicarbonyl compound

and primary amines.
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? Q@
N PYRROLES j g £ g
N3 \ \ /, = ; =
C( . , ==~
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£: /
S8 O NH MezN \
2% \= V()H Mgy o
“ ~
z2 = ¢ &
R © P»‘P’% ) H,C Me < S
R! ri g o %\ CH, $
AN & F © <8
<o, \ < ES
lo‘}?‘ (2 . [0) ]
L % <?/0') Ac R! R H;C
2 ) I}
7 H .
60*% N ) H;C ov \\é‘s
H (\(‘\ q‘\
3° RO
Vanluesen Qﬂ\“

pyrrole synthesis

Figure 2.2. An overview of Different methods for the synthesis of the pyrrole molecule

A wide variety of biologically active compounds have pyrrole as a core pharmacophore unit
and several drug molecules contain pyrrole as a principle unit as depicted in Figure 2.3. Pyrrole
moiety has attracted a profound interest due to their anti-oxidant [10,11], anti-inflammatory ['*-
41 anti-cancer "1, anti-depressant 2%, anti-virus ?!], anti-hypertensive [??!, anti-malarial [>],

anti-diabetic ?* anti-microbial %-?"), HMG-CoA reductase inhibitors 2!, CB, receptor
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antagonists (%), also used as co-oxygenase inhibitors %311 JAK-2 inhibitors 2! also used in
the application of bio-sensors [**1 and neuroprotective agents [**l. Pyrroles are also used as
corrosion inhibitors *3 and as a solvent for resins *¢1. Some of the biologically active drugs

containing pyrrole units are listed in Figure 2.2.

CH3 o Cl
NOMEPIRAC S _
(NSAID) F; Br
CHLORFENAPYR
ELOPIPRAZOLE (INSECTICIDAL)
(ANTIPSYCHOTIC)
o) NCH3 VP/ o NH,
| / HN\ \N
€ OH g\CHs ‘ / N=/
TOLMETIN o -
(NSAID) o
Remdesivir
(§) Anti-viral
H CH, OBATOCLAX
— ANTICANCER
H,C
N 3
w0
o/ ~CH, O\)\/N ©/
ALORACETAM Y PYRVINIUM
(ANTI-ALZHEIMER) ISAMOLTANE ANTIHELMINITIC
(beta-ANDRENERGIC ( )
ANTAGONIST)

Figure 2.3. Marketing drugs containing pyrrole moiety

Hantzsch 37! et al. reported the first multi-component synthesis of pyrroles from an equimolar

mixture of chloroacetone, and acetoacetic ester under reflux in concentrated aqueous ammonia.

CO,Et
0 0O o aqs.NH; m
mel o+ L g~ H;C—~ N~ ~CH;
3 reflux H

Scheme 2.1. The first multi-component pyrrole synthesis

Liu 381 et al. described a new approach for the synthesis of pyrrole derivatives based on this

hit compound. Further, they synthesized compounds and were evaluated for in-vitro studies
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against ClpP1P2 peptidase and anti-tubercular activities were explored. Among the tested

compounds some of the compounds exhibited MtbH37 Ra.

(0) R2
0 H NH
RI"NH2 POCI, R2-NH,
!\ DMF / \ / \
PTSA N N NaBH(OAc)3 N
EtOH R! R! CH,Cl, R!
80 °C AcOH up to 78%

R and R, aliphatic/ aromatic primary amines

Scheme 2.2a. 2,3,5-Trisubstituted pyrrole compounds

(0) R3 (0)
(0] o [0) HN (0]
NaH, THF __ POCl;, DMF
Oj& + Rlu\/Br a - J\ i 3y - /A (.
O/\ RZ-NHZ N2 R -NH2 gz
AcOH, 80 °C NaBH(OAc¢)3
CH,Cl, up to 81%
AcOH

RLR2 and R, aliphatic/ aromatic primary amines

9

Scheme 2.2b. Tetra substituted pyrrole compounds

F
0 o)
0 o
/j_\ﬁ e e [ e
N 3CN-~CH;, N~ ~CHj,
Cl i F L
7d 13i 13n 1

Figure 2.4. Biologically potent compounds

Bortolozzi %! et al. reported a new series of pyrrole moiety interposed between the two aryl
rings by a palladium-mediated coupling approach and evaluated for their anti-proliferative

activity against the CA-4 resistant HT-29 cells. Among the tested compounds some of them

showed maximal anti-proliferative activity.
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ArB(OH);
Ts Ts  3,4,5-trimethoxy Ts Pd(pph3)s
N Br;,AcOH N phenyl boronic acid N Na2C03
Q reflux \ / d(pph3) \
90 min pd(pph3)4 1,2-dimethoxy
r ags. NayCOj B ethane/ water
THF, reflux O reflux

N/
1 M aqs. NaOH
EtOH, 50 °C

H
N
S\ /E
(0]
\
N/

Scheme 2.3. 2,4-di aryl interposed pyrrole derivatives

R= different substituted phenyl boronic acids

o g% ®
[ L L
0\ RN 07X
11i 11j

Figure 2.5. Compounds showed anti-proliferative activity

Pagadala Y ¢ al. reported an efficient method for the synthesis of novel tetra-substituted
pyrrolyl-N-acetic acid and acetamide scaffolds through the coupling of 1,4-di-ketones with
different substituted amino acids following Paal-Knorr’s approach. For this reaction, 1,4-di-
ketones were prepared through the hydroacylation of a, B- unsaturated ketones with aromatic
or heterocyclic aldehydes in ethanol using 20 mol% of bis-thiazolium salt in the presence of
triethyl amine. Furthermore, the synthesized compounds were evaluated for anti-mycobacterial
activity against mycobacterium smegmatis and mycobacterium tuberculosis strain H37Rv.

Compounds Sn, 5q, and 5r showed excellent activity.
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20 mol% bis R? R?
0] _O thiazolium salt RIQR3 Amino acids [\g\ HOBt(1.1 mmol)
rRil g T G EGN AcOH ~ R'“SN“R' Epc HOI .1 mmol
EtOH, reflux refluc, 12 h %0 Ré-Ng, 2 mmeD
H DIPEA(1.2 mmol)

RZ

R] »@\g\ R3
e
H

R4

Scheme 2.4. Synthesis of tetra-substituted pyrrolyl-N-acetic acid and acetamide scaffolds

Figure 2.7. Anti-mycobacterial compounds

Zhao " et al. developed an efficient one-pot reaction for the synthesis of tetra-substituted
pyrroles through an intra-inter molecular reaction of strained azirines with 1,3-di carbonyl
compounds involving nucleophilic addition to the C=N bond and ring opening of the aziridine

ring through nickel- catalyzed [3+2] cycloaddition.

R! R4
N o O Ni(OAc¢)2 (10 mol%)
/ + / \
1#-\R2 3”\/U\ 4 > R2 R3
R "RTOR B cnyen, 60 °c N

up to 98% yield
Scheme 2.5. Transition-metal catalyzed synthesis of pyrroles from 2H- azirines

Nageswar 42l et al synthesized an efficient, simple, economically viable, and environmentally

friendly methodology for the synthesis of N-substituted pyrroles in excellent yields from
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appropriate  amounts of  different substituted aromatic amines and = 2,5-

dimethoxytetrahydrofuran via Paal-Knorr’s reaction method under neat reaction conditions.

NH, OCH,
neat reaction
+ —_—
100-120 °C
CH;

CH
R=H,F,ClLBr,NO, 5 OCH;

Scheme 2.6. One-pot synthesis of N-substituted pyrroles under catalyst and solvent-free

conditions

Sarkar 3 et al. has been reported an efficient, one-pot, three components, Fe(IIl) catalyzed
coupling synthesis of tri and tetra substituted N-aryl pyrroles via tandem amination/ Michael/
cycloisomerization reaction. The title compounds were synthesized from acetylacetone, -nitro
styrene, and different substituted aromatic primary amines in anhydrous FeClz and

nitromethane as solvent giving the title compounds with good yields scheme (2.13).

(0)
C R? RI
NO O O FeCl; (5 mol%)
Rl\/ 2
+ + _NH - / \
R2 R3H\)L R4 R "2 "Nitromethane R? N R?
reflux RS

R!= Ar, R?=H, Me yields up to 89%
R3=Ph, Me, R4= Me, OMe, OEt
R3= Ar

Scheme 2.7. One-pot three-component synthesis of tri and tetra substituted N-aryl pyrroles

Balu Atar 4 et al. synthesized a series of new tetra-substituted pyrroles derivatives via
greener and one-pot three components coupling reactions. The title compounds were
synthesized using primary amines, di-alkyl acetylene dicarboxylate, and B-nitro styrene using

imidazolium Bronsted acidic ionic liquids as a catalyst as well as solvent (scheme-2.12).
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CO,R, R,0,C  Ar
BAIL l_ﬁ
Ar o, T opNH2 Y Il 1t R,0,C [ N\
O,R, 30-60 min Rl

1\{—@}\1\/\/803H

BAIL= Me-NO
S
OTf
Scheme 2.8. One-pot three-component synthesis of tetra substituted N-substituted pyrroles

Das 45! et al. reported a one-pot three-component synthesis of pyrroles from primary amines,
2,4-pentanedione, and 3(2-Bromo acetyl) coumarin gave good to excellent yields in 15% of

alum and a mixture of PEG-400 and water in 3:2 ratios.

15 mol% Alum

o O 0.9 PEG-400/ H,O

NH2 + + - 20
R AN Rl%Br 70°C
4-7h

Scheme 2.9. Alum-promoted one-pot three-component pyrrole synthesis in polyethylene

83-91% yield

glycol-water

Meshram ¥l ¢z al. synthesized a one-pot three-component base catalyzed tetra substituted
pyrroles by using a-Bromo acetophenones, 2,4-pentanedione, and primary amines in presence
of organic base DABCO (1,4-diazobicyclo [2,2,2] octane as the catalyst and water as the

reaction medium.

Br [0)
0
)+ O O .\ 10% DABCO /A
NH - N
R- )J\/U\ o 1
H,0, 60 C R R
1
R 1-4h 74-92% yield

Scheme 2.10. One-pot three-component base catalyzed pyrrole synthesis in water
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Trivedi 71 and co-workers developed a catalyst and solvent-free one-pot three-component
reaction for the regioselective synthesis of poly-substituted pyrroles using B-hydroxy ketones,

ammonium acetate, and 1,3-di-carbonyl compounds.

O O
(o) solvent free
rRAMR T Ekph " NH,0Ac - R /N\ Ph
1 2 h cata}ygt free 1 "~

C

Scheme 2.11. One-pot three-component synthesis of 2,3,4,5 tetra substituted pyrroles

Wang and Domling 48! ef al. an efficient one-pot three-component synthesis of 2-amino-5-
keto aryl pyrrole scaffolds by using a mixture of N-protected a-amino acetophenones, aromatic
aldehydes, and malononitrile, cyano acetic acid or cyanoacetamide in trifluoroethanol as

solvent and triethylamine as a base under reflux to give a good yield of the product.

H O Et,N R Ar
TS/N\)J\Arl * RCN T Ar-CHO / \ Ar!
CF;CH,0H HNSN
H
70 C,12h

Scheme 2.12. Domling’s one-pot three-component synthesis of 2-acyl pyrroles

Lei ! and co-workers synthesized polysubstituted pyrroles from primary amines, aldehydes,

or ketones by the electro-oxidative annulation method.

Ar Ar
o anodic oxidation 2"‘&
Ar + o NH / \
\)LH R 2 transistion N
metal free R

Scheme 2.13. One-pot electrochemical synthesis of pyrrole derivatives

Wang B e al. reported a one-pot four-component synthesis of 1,2,3,5-tetrasubstituted
pyrroles by using primary amines, ethyl glyoxylate, and two equivalents of 2-
bromoacetophenones in presence of acetonitrile as solvent and pyridine as a base catalyst. This

formation involves the creation of four bonds by the assembly of [ 2+1+1+1] atom fragments.
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CO,Et CO,Et

(0
+ + Py, CH3CN Ar
rNHz OAH Ar)J\/ Br Y Ar /N\
reflux, 12 h R

Scheme 2.14. One-pot four-component synthesis of 2-acyl pyrroles

Tran Y ef al. developed a green and efficient method for the synthesis of N-substituted
pyrroles using primary amines, and acetonyl acetone in deep eutectic solvent ([ CholineCl]

[ZnCl2]3) under ultrasound irradiation method gave yields up to 99% in a short reaction time.

20 mol%

0 .
@—NHZ )J\/\g/ [CholineCl] [ZnCl;]3 ' Q = . H,0

US, 10 mins, solvent free

Scheme 2.15. One-pot synthesis of N-substituted pyrroles

Kim 32! et al. developed indium-mediated, reductive heterocyclization of di-nitrobenzene with
1,4-diketones in presence of indium-acetic acid and resulted in the formation of 2,5-di-

substituted pyrroles.

o R R
/ \ NO. + R! In, AcOH = ~
N 2 " R < _
O,N Toluene ; f

80 °C

Scheme 2.16. One-pot indium-mediated reductive synthesis of pyrroles

Konkala 33 ¢f al. has been developed an elegant, mild, and straightforward reaction method
for the synthesis of poly-functional pyrroles via a one-pot four-component method using
aromatic aldehydes, primary amines, 2,4-diketones, and nitro alkanes in B-cyclodextrins as a

catalyst in the aqueous medium.

0
e ﬁ/gﬁr
0O o H,0/-CD
NH + NOo, _‘? 7\
. + A1V 2+ et
Ar-CHO +Ar . N N 080°C N
Ar!

Scheme 2.17. One-pot four-component synthesis of pyrroles
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Naeimi 3¥ and co-workers synthesized various N-substituted pyrroles by using primary
amines and 2,5-dimethoxy tetrahydrofuran in water and multi-walled carbon nanotubes

(MWCNTs) as a catalyst.

r,NHz N o /@\0/ MWCNTs-SO;H _ ﬂ

80 C Ar

Scheme 2.18. One-pot synthesis of various N-aryl pyrroles

Goyal 351 ¢t al. has been developed a zirconocene dichloride catalyzed one-pot three-
component synthesis of pyrroles using primary amines, B-di carbonyl compounds, and nitro

alkenes through the nitroalkane-enamine process in ethanol as solvent.

NH, =~ ~NO,
., 0 O O + Cp,ZrCl, m
MN EtOH N CH;,
H reflux
1.5h

Scheme 2.19. Cp>ZrCI2 catalyzed one-pot three-component synthesis of N-substituted pyrroles

Zhang 391 ¢t al, synthesized N-substituted pyrroles from nitro compounds and 2,5 hexadione
via one-pot synthesis using heterogeneous cobalt Co-Nx/C-800-AT as a catalyst followed by
Paal-knorr condensation process. In this reaction, formic acid acts as both catalysts and served

as a hydrogen donor for nitro to amine transformation.

@ )J\/\g/ HCOOH N
Co-Nx/ C-800-AT ©

Scheme 2.20. One-pot hetero-cyclization of nitro-compounds to pyrroles

Mendes 17! et al. synthesized 1,2,3,4 tetra substituted pyrroles via a one-pot four-component
reaction using aromatic aldehydes, nitro alkanes, 2,4-diketones, and primary amines in

presence of ionic liquid [NMPH]CH3SO3 as green reaction medium.
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0)
R R
o O O 1 2
NO [NMPH]|CH3S0;
RAH +H, e AR, Ry 75 °C, 30 min N~ ~CHj
I"{3

Scheme 2.21. One-pot four-component synthesis of tetra-substituted pyrroles

Xu 381 ¢t al. developed a one-pot three-component copper/manganese co-catalyzed
hetrocyclization of aryl amines with styrene and acetone via Paal-Knorr type of condensation

to give 2-methyl 1,5-diaromatic-1H-pyrroles.

=
[0) (5 mol%)
+ N+ pNH | CuOTD: [ ) en
MnCl,.4H,0 (5 mol%) A 3
TRHP, DBU, HSO;NH, r
C

Scheme 2.22. One-pot three-component synthesis of 2-methyl-1,5-di aromatic 1H-pyrrole

Bharate [ et al. has been reported an efficient and eco-friendly one-pot four-component clay-
catalyzed synthesis of functionalized pyrroles from amines, aldehydes, 1,3-dicarbonyl

compounds, and nitro alkanes in good yields.

O

10 mol% R R
2
Ry R, “H R3)J\/U\R4 Ry 60 C,5-8h R, /N\ R
R,

68-88% yield
Scheme 2.23. One-pot four-component montmorillonite clay catalyzed synthesis of pyrroles

2.2. Present work

Because of the importance of pyrroles and benzimidazole moieties and their biological
activities, we have taken up the synthesis of synthesis of 2-alkyl thio-5-(1H-pyrrol-1-yl)-1H-

benzo[d]imidazoles.

2.2.1. Starting materials: In this chapter, the synthesis of new pyrrole and thioether scaffolds

was described. The starting materials for the synthesis of the target compounds are 5-amino-2-
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mercaptobenzimidazole,  2,5-di-methoxytetrahydrofuran, and  different  substituted

alkyl/aralkyl halides. All these compounds were procured from commercial sources.
2.3. Synthesis of pyrrole derivatives

The synthesis of thioalkylated benzimidazole-linked pyrrole analogues was carried as outlined
in Scheme 2.1. The title compounds (4a-p) were synthesized by a combination of 5-amino-2-
mercaptobenzimidazole (1), 2,5-dimethoxytetrahydrofuran (2), and substituted aralkyl/
aliphatic halides (3) in presence of glacial acetic acid as solvent and fused sodium acetate as a

base at 70 °C gives with good to excellent yields.

The current part explains the synthesis of S-alkylated/aryl alkylated benzimidazole—linked
pyrrole (4a-p) derivatives by a one-step three-component process. The specialty of this reaction
is the simultaneous formation of two N-C and one C-S bond are formed. The experimental
procedure involves heating an equimolar amount of 5-amino-2-mercaptobenzimidazole, 2,5

dimethoxytetrahydrofuran, and alkyl/aryl alkyl halides in acetic acid and sodium acetate.

i i
FH,N b 4a-p
P \Q::)_sn \)_g AcOH/AcONa 88-95% vields
i  ec |
: 45h

reflux

(;:-);) %@ﬁ:*m @\CE:\*SR +@ﬁi‘s
5 R ¢ R ; R

R-X = Different Alkyl or Aralkyl halides R = Different Alkyl or Aralkyl groups

.................................................................................................................................

Scheme 2.1. Synthesis of 2-(alkyl/ aralkythio-5-(1 H-pyrrol-1-yl)-1H-benzo[d]imidazoles (4a-
P)

2.4. Results and discussion

To find the optimized conditions for the above three-component reaction, the test reaction was
carried out with  5-amino-2-mercaptobenzimidazole (1.0 mmol), 2,5-dimethoxy
tetrahydrofuran (1.0 mmol), and alkyl/aryl alkyl halides (1.0 mmol) as starting materials in
different solvents like H,O, CH3CN, DMF, Toulene, MeOH, EtOH, and acetic acid
respectively at temperature 60 'C (Table 2.1). Among the tested solvents acetic acid was found
to be the best solvent in the terms of yield and time. Among the tested conditions (Table 2.1

entries 1-14) it was found that the best results have been obtained when the reaction was
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conducted in acetic acid and sodium acetate at 70 'C (Table 2.1, entry-12). Furthermore, there
is no improvisation in terms of product yield beyond 70 ‘C (Table 2.1, entries 13-14) rise in
reaction temperature and amount of base from 1.0 mmol to 1.5 mmol. Hence in the present
methodology, we have used acetic acid and sodium acetate as an optimized reaction condition
with lower time and the highest conversion rate with a yield of 90% obtained at 70 'C (Table
2.1, entry-12).

“Table 2.1. Optimization of the solvent and base for the synthesis of 4a via a three-

component reaction.

Entry Solvent Solvent/ Base Temp (°C) Time (h)  Yield® (%)
1 H>O - 60 24 NR
2 CH3;CN - 60 20 Trace
3 DMF - 60 17 18
4 Toulene - 60 24 NR
5 MeOH - 60 14 25
6 MeOH AcOH (1.0mL) 60 12 37
7 EtOH - 60 13 42
8 EtOH AcOH (1.0 ml) 60 11 50
9 EtOH AcOH (1.5mL) 60 10 55
10 AcOH - 60 8 65
11 AcOH NaOAc (1.0 mmol) 60 6 80
12 AcOH NaOAc(1.0 mmol) 70 5 920
13 AcOH NaOAc (1.5 mmol) 70 5 70
14 AcOH NaOAc (1.0 mmol) reflux 5 62

“Reaction conditions: 1 (1.0 mmol), 2 (1.0 mmol), sodium acetate (1.0 mmol), 3a (1.0 mmol), solvent

(2 mL) refluxing conditions for Sh. ’isolated yield.

By utilizing the above optimistic conditions, the designed compounds (4a-p) were synthesized
in good to excellent yields. The first step involves classical Paal-Knorr pyrrole synthesis to
give an intermediate containing a pyrrole ring. This intermediate further reacts with different
substituted alkyl/ aryl alkyl halides to provide final products (4a-p). This is a regioselective S-
alkylation.
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Scheme 2.1. Plausible reaction mechanism for the synthesis of compounds 4a-p

The alkylation of intermediate with different alkyl/ aryl alkyl halides may results in
different types of products, like S-alkylated or N-alkylated or a mixture of both depending on
reaction conditions. But, in the present investigation, no mixture of products is formed (as
evidenced by TLC). Due to the high nucleophilicity of the thiol group S-alkylated / aryl

alkylated products were formed in preference over N-alkylated products.
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Figure 2.2. Scope of substrates
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The formation of S-alkylated products was confirmed by their spectral data. All the newly
synthesized compounds were characterized by their physical, analytical, and spectral data. The
IR spectrum of compound 4a showed characteristic bands at 3338, 2949, and 1631 cm™! due to
NH, C-H, and C=N stretching frequencies respectively. The "TH-NMR spectrum of compound
4a showed two singlets at 12.65 and 3.27 & ppm indicating the presence of NH and S-CH>-
protons.'*C-NMR spectrum of compound, 4a showed characteristic peaks at 35.3 and 169.5 §
ppm indicating the presence of aliphatic carbon and presence of N=C-S carbon respectively.
The ESI-HRMS spectrum of compound 4a gave the molecular ion peak at 258.1020 [M+H] .
2.5. Molecular Docking Studies

The X-ray crystallographic structure of af-tubulin (receptor protein) which is complexed with
DAMA-colchicine was obtained from the protein data bank (PDB ID: 1SAO0). To facilitate
docking simulation on the receptor protein, DAMA-colchicine was removed and polar
hydrogens were added. A grid box generated at 118.484, 89.709, and 6.950 of sizes 90,90, and
90 was utilized while performing the molecular docking simulations. Molecular docking
simulation was performed using Auto Dock Vina [ with an effectiveness value set to 16. To
test the reproducibility of the docking pose, the molecule is redocked at the same active site
and the root mean square deviation (RMSD) of the two poses was estimated. The minimum
distance between the molecule and interacting amino acid was determined using Protein-
Ligand Interaction Profiler (PLIP). Further, the nature of interactions along with the interacting
residues (amino acids) of the protein with the molecule is visualized using the same PLIP (1],

The Visual Molecular Dynamics (VMD) program was utilized to generate the graphical images
[62]

Microtubules are one of the most prominent choices among the targets used for the treatment
of cancer due to their crucial role during cell division. Microtubules are the cytoskeletal
structure of tubulin that forms mitotic spindles via a reversible process called dynamic
instability which plays a vital role in chromosomal segregation and signaling during mitosis
[63-68] ' Therefore, attention has been paid to investigating the anti-tubulin property of the
synthesized compounds. To probe the anti-tubulin properties of the synthesized compounds, a
molecular docking simulation has been performed and the inhibitory activity is predicted based

on the best docking score.
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In silico molecular docking simulation was performed to scrutinize the anti-tubulin properties
of the synthesized compounds. The anti-tubulin properties of the molecules are predicted based
on their binding affinity values at the active site of the receptor protein. The lower binding
affinity value indicates the better affinity of the molecule towards the protein. The binding
affinity values (kcal/mol) of these compounds along with Root Mean Square Deviation
(RMSD) between two docked poses at the active site are tabulated in Table 2.2 Figure 2.3
illustrates the docked pose of 4j and 4p at the active site of the receptor protein (1SAO0).

(4p) (4))

Figure 2.3. The docked position of the compounds at the active site of the receptor protein

It can be seen from Table 2.2 that the lowest binding affinity value is found to be -8.9 and -8.3
kcal/mol for 4p and 4j respectively. Therefore, these are the best anti-tubulin agents among the
molecules considered in the present investigation. Close analysis of the docking results reveals
that alkyl substitution (4a and 4b), shows a high value of binding affinity. It is further found
to increase for 4¢ which may be attributed to the increase in the carbon chain length in the
substitution. Further, it is observed that the affinity value decreases with an increase in the
polarity of the substitution (4d, 4e, and 4g). Moreover, it is worth mentioning that among the
compounds considered in the present investigation, the best binding value is found to be for
the benzyl group substitutions. Furthermore, it is worth noting that the value is further found

to decrease with the presence of the electron-withdrawing group at the benzyl ring (4j and 4p).

To study the effect of pyrrole substitution in the compound on the binding affinity at the active
site, the pyrrole group was removed from the structure of 4p and the molecule is then indicated
as A. The binding affinity value of A is also calculated and given in Table 2.2. The binding
affinity value obtained for A is -8.0 kcal/mol which is comparatively -0.9 kcal/mol more than
found for 4p. This is a clear indication that the binding affinity with the receptor protein

decreases in absence of a pyrrole ring.

48



Chapter 11

Table 2.2. Binding Affinity (kcal/mol) and Root Mean Square Deviation (RMSD) of the

Compounds at the Active Site of the Receptor Protein (1SA0)

S. No. compound Binding affinity (kcal/mol) RMSD
1 4a -6.7 3.09
2 4b -6.7 1.24
3 4c -6.6 0.58
4 4d -7.3 1.32
5 4e -7.4 0.59
6 4f -6.6 0.73
7 4g -7.2 0.52
8 4h -6.7 1.19
9 4i -7.8 0.85
10 4j -8.3 0.89
11 4k -8.1 0.62
12 41 -1.7 0.38
13 4m -7.9 0.87
14 4n -7.9 1.20
15 40 -6.9 0.51
16 4p -8.9 0.86
17 A -8.0 0.86

To validate the reproducibility of the binding pose at the active site of the receptor protein, the

root mean square deviation was evaluated and the results are given in Table 2.2. The lower

root mean square deviation between the two poses demonstrates the reproducibility of the two

docked conformers. The two docked poses of 4j and 4p at the active site are shown in Figure

24.
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Figure 2.4. The two docked poses of the compounds at the active site indicate the

reproducibility of the docking conformer

The amino acid residues which are found to interact with the compound at the active site of the
protein are given in Table 2.3. The value given in the parenthesis indicates the minimum
distance between the compound with its residual interacting amino acid. The amino acid
residues involved in hydrophobic interactions with the compounds are given in the third
column. The amino acid residues which are involved in H-bonding, salt bridge, and n-cationic
interactions are listed in column four of the same Table 2.3. The type of interaction is also

mentioned in the parenthesis.

It can be seen from Table 2.3 that 4p shows only hydrophobic interactions at the active site of
the receptor protein. The interacting amino acids are ALA180A (3.57), LEU248B (3.79),
ALA250B (3.64), LEU255B (3.52), LEU255B (3.42), and ILE378B (3.76). The compound 4j
is found to interact at the active site involving both hydrophobic and n-cationic interactions.
LEU248B (3.98), LYS254B (3.74), ALA316B (3.68), VAL318B (3.14), LYS352B (3.71),
ALA354B (3.57), and ILE378B (3.81) shows hydrophobic interactions while LYS254B (3.91)

shows m-cationic interactions.

Table 2.3. Interacting Amino Acids Residues at the Active Site of the Protein

S. | Compound Amino acids involved in Other interacting amino acids
No. hydrophobic interactions
LEU248B (3.55), LYS254B (3.86), | LEU284B (2.39), LYS254B
1 4a ASN258B (3.72) (2.91) (H-bonding)
ALAI180A (3.57), VAL181A
(3.67),
Lys254B (3.77), ASN258B (3.74),
2 4b ALA316B (3.64), LYS352B (3.60),
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LYS352B (3.67)

4c

LEU248B (3.80), LEU248B (3.95),
LYS254B (3.67), LYS352B (3.84)

ALA250B (3.59) (H-bonding)

4d

VALISIA (3.58), LYS254B
(3.73),

ASN258B (3.76), ALA316B
(3.63),

LYS352B (3.68), LYS352 (3.71)

ASNI101A (2.44), GLY144A
(2.46), THR179A (2.51) (H-
bonding)

de

ALA180A (3.84), LYS254B
(3.84),
ASN258B (3.78), LYS352B (3.84)

ASNI101A (2.40), ASN249B
(2.63) (H-bonding)

LYS254 (3.0) (SALT
BRIDGE)

4f

ALA180A (3.83), LYS254B
(3.58),
ASN258B (3.86), LYS352B (3.74)

ASN101A (3.13) (H-bonding)

VALISIA (3.72), LYS254B
(3.83),

ASN258B (3.65), ALA316B
(3.54),

LYS352B (3.60)

ASNI101A (3.11), ASN249B
(2.46) (H-bonding)
LYS254B (3.75) (SALT
BRIDGE)

4h

ALA180A (3.98), ASN258B
(3.92),

ALA316B (3.90), LYS352B (3.82),
LYS352B (3.95)

ASN101A (2.28) (H-bonding)

4i

VALISIA (3.73), TYR224A
(3.74),

LEU248B (3.76), LYS254B (3.69),
ASN258B (3.80), ALA316B
(3.80),

LYS352B (3.80), LYS352B (3.61)

10

LEU248B (3.98), LYS254B (3.74),
ALA316B (3.68), VAL318B
(3.14),

LYS352B (3.71), ALA354B (3.57),
ILE378B (3.81)

LYS254B (3.91) (n-cationic)

11

4k

LEU248B (3.83), LEU248B (3.75),
ALA250B (3.50), LEU255B
(3.45), LEU255B (3.43), ILE378B
(3.90)

LYS254B (3.76) (n-cationic)

12

41

VALISIA (3.69), TYR224A
(3.85), LYS254B (3.59), ASN258B
(3.94), ALA316B (3.94), LYS352B
(3.65)

ASN101A (3.12) (H-bonding)
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13

4m

VALISI1A (3.75), LEU243B
(3.84), LYS254B (3.77), ASN258B
(3.64), ALA316B (3.57), LYS352B
(3.64)

ASN101A (2.95) (H-bonding)

14

4n

LEU248B (3.63), ALA250B
(3.89), LEU255B (3.80),
ALA316B (3.69), VAL318B
(3.76), ILE378B (3.66)

15

40

VALISIA (3.89), LYS254B
(3.47), ASN258B (3.74),
ALA316B (3.83), LYS352B (3.67)

ASNI101A (2.76), GLY144A
(2.72) (H-bonding)

16

ALAI80A (3.57), LEU248B
(3.79), ALA250B (3.64),
LEU255B (3.52), LEU255B (3.42),
ILE378B (3.76)

17

ASN258B (3.57), ALA316B
(3.74), VAL318B (3.66), LYS352B

(3.80), ALA354B (3.79)

ASN258B (2.85), VAL315B
(2.96) (H-bonding)

ILE378B

$

VALAI&OA

ILE378B

LEU248B
ALA354B

ALA316B

(4p)

(4))

Figure 2.5 Interacting amino acids at the active site of the protein with the compounds.

2.6. Conclusion

In summary, we have synthesized 2-alkyl/aryl alkyl thio-5-pyrrolyl-benzimidazole scaffolds

via a novel, facile one-pot three-component approach using acetic acid and sodium acetate as

a reaction medium with good to excellent yields. The usefulness of this reaction is that it

involves easy workup, shorter reaction time, broad substrate scope, and column-free

purification of the products. Further, in silico molecular docking studies were carried out

against the colchicine binding site of af-tubulin with newly synthesized compounds. Among

all the compounds 4j and 4p exhibited good docking interactions.
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2.7. Experimental section

General procedure for the synthesis of 2-(Propylthio)-5-(1H-pyrrol-1-yl)-1H-
benzo[d]imidazole compounds (4a-p)

A mixture of 5-amino-2-marcaptobenzimidazole 1 (1.0 mmol), 2,5-dimethoxy tetrahydrofuran
2 (1.0 mmol) was refluxed in 2 mL of acetic acid for about 3 h by monitoring TLC (EtOAc: n-
hexane, 80:20). After completion of the reaction, to the reaction mixture different substituted
alkyl/ aryl alkyl halides 3 (1.0 mmol) and anhydrous sodium acetate (1 mmol) was added. The
reaction mixture was refluxed for another 2-3 h. After completion of the reaction, the reaction
mixture was cooled to room temperature and poured into crushed ice and the precipitated

product was filtered. The crude product was dried and recrystallized from ethanol.
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2.8. Characterization data of products
2-(Propylthio)-5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole (4a).

White solid; yield: 90%; mp: 272-274°C; FT-IR (KBr, cm™): 3338 (NH), 2949 (C-H), 1631

(C=N), 1464 (C=C); 'H NMR (400 MHz, DMSO-ds 5 ppm) 1.01 (t, @ N /
N\

3H, J=7.2 Hz), 1.71-1.80 (m,2H), 3.27 (t, 2H, J= 6.8 Hz), 6.25 N>_
H

(unresolvable singlet, 2H, Ar-H) 7.31 (unresolvable singlet, 2H, Ar-H) ,7.55-7.73 (m, 2H, Ar-
H) 7.96 (s, 1H, Ar-H), 12.64 (brs, 1H, NH), 3*C NMR (100 MHz, DMSO- ds) &: 14.9, 24.8,
35.3, 101.7, 110.7, 115.3, 120.0, 130.6, 133.5, 136.2, 169.5; ESI-HRMS (m/z): Calcd. for
C14Hi6N3S [M+H] ": 258.1059, found: 258.1020. Elem. Anal. : C, 65.34; H, 5.88; N, 16.33; S,
12.46; found: C, 65.30; H, 5.83; N, 16.38; S, 12.40.
2-(Butyllthio)-5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole (4b).

White solid; yield: 89%, mp 280-282 °C, FT-IR (KBr, cm™): 3390 (NH), 2962 (C-H), 1464

(C=C), 1619 (C=N); 'H-NMR (400 MHz, CDCl3+DMSO-d;s § @ N S,_/_
H

ppm): 0.89 (t, J=2.4 Hz, 3H) 1.20-1.22 (m, 2H), 1.40 — 1.47 (m,

2H), 1.70 (t, J=5.2 Hz, 2H), 6.20 (t, J=2.4 Hz, 2H, Ar-H), 7.07 (t, /=2.4 Hz 2H, Ar-H), 7.14-
7.16 (m, 2H, Ar-H), 8.02 (s, 1H, Ar-H), 12.48 (s, 1H, NH); 3*C NMR (100 MHz, DMSO-dj)
0; 14.4,22.6,29.5,31.8,101.8, 110.7, 115.3, 120.0, 130.6, 133.5, 136.2 , 169.5; ESI-HRMS:
m/z Calcd. for C1sH1sN3S [M+H] "; 272.1216, found: 272.1217. Elem. Anal. : C,66.39; H,6.31;
N,15.48; S,11.81; found: C, 66.35; H, 6.35; N, 15.55; S, 11.85.
2-(Pentyltyllthio)-5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole (4c).

White solid; yield: 85%; mp: 289-291°C; FT-IR (KBr, cm™):

3137 (NH), 2962 (C-H), 1619 (C=N),1464 (C=C); 'H-NMR @\C §>— S,_/_/
\
H

(400 MHz, DMSO-ds & ppm): 0.85 (t, /= 1.6 Hz, 3H) 1.15-1.25

(m, 6H aliphatic), 4.02 (t, J= 6.8 Hz, 2H, S-CH; protons), 6.24 (unresolvable singlet, 2H, Ar-

H), 7.16-7.21 (m, 2H, Ar-H), 7.28-7.32 (m, 3H, Ar-H) 12.66 (brs, 1H, -NH), '*C-NMR (100

54



Chapter 11

MHz, DMSO-ds 6 ppm); 13.9,21.7,31.4,31.8,101.8,110.7,114.8, 115.3, 120.0, 130.6, 133.5,
135.4, 136.1, 169.5; ESI-HRMS m/z Caled. for CisH20N3S [M+H] *: 286.1312, found:
286.1392; Elem. Anal. C,67.33; H,6.71; N,14.72; S,11.23; found: C,67.38; H,6.74; N,14.76;
S,11.28.

((5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole-2-yl) thio) ethan-1-ol (4d).

Brown solid; yield: 91%; mp: 166-168°C; FT-IR (KBr, cm™): 3349 (OH), 2938 (C-H),1627

(C=N),1460 (C=C); 'H-NMR (400 MHz, DMSO-ds 5 ppm): @ N OH
A\
4.06 (t,J="7.2 Hz, 2H), 439 (t, /= 7.2 Hz, 2H), 5.76 (br s, 1H, \©:§>_

OH), 6.26 (d, J=9.6 Hz, 2H, Ar-H), 7.34 (t, J/=2.4 Hz, 2H, Ar-H), 7.47-7.52 (m, 2H, Ar-H),

7.64 (s,1H, Ar-H), 12.50 (brs,1H, NH); ESI-HRMS m/z Calcd. for C;3H14N3OS [M+H] ™
260.0852, found: 260.0848; Elem. Anal.: C, 60.21; H,5.05; N,16.20; S,12.36; found: C,60.25;
H,5.09; N,16.24; S,12.31.

((5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole-2-yl) thio) acetic acid (4e).

Brown solid; yield: 90%; mp: 180-182 °C; FT-IR (KBr, cm™): 3357 (COOH), 3078 (NH),

=~ OH
2936(C-H), 1591 (C=N), 1455 (C=C); 'H-NMR (400 MHz, @ N S,_%
Ty
H

CDCIl3 6 ppm): 3.11 (s, 2H, S-CH>»), 6.20 (t, J= 2.4 Hz, 2H, Ar-

H), 6.97 (t, J/=2.0 Hz, 2H, Ar-H), 7.09-7.10 (m, 2H, Ar-H), 7.63 (s, 1H, Ar-H), 12.31 (brs, 1H,
NH proton), 12.35 (brs 1H, OH); '*C NMR (100 MHz, DMSO-ds ) & ; 34.2, 110.4, 114.9,
118.1, 120.0, 135.5, 151.0, 155.1, 170.2; ESI-HRMS: m/z Calcd. for C13H12N30,2S [M+H] %;
274.0645, found: 274.0643; Elem. Anal. C,57.13; H,4.06; N,15.37; S,11.73; found: C,57.16;
H,4.00; N,15.31; S,11.77.

2-(Allylthio)-5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole (4f).

white solid; yield: 92%; mp: 150-152°C; FT-IR (KBr, cm™): 3439 (NH), 2948 (C-H), 1628
(C=N),1444 (C=C); '"H-NMR (400 MHz, DMSO-ds & ppm): 3.99 (d, J = 6.4 Hz, 2H, S-CH),

5.12 (d Ha, J = 9.6 Hz, 1H, Ha Hy), 5.33 (d, HsJ = 17.2 Hz, 1H, Hs, Hx), 5.97-6.06 (m, 1H,
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Hx proton), 6.25 (unresolvable singlet, 2H, Ar-H), 7.31-7.57 (m, 4H, Ar-H),7.70 (s, 1H, Ar-

H), 12.70 (brs, 1H, NH); '3C NMR (100 MHz, DMSO-d5s ) §: @ N s’_//
H

34.4. 1104, 115.0, 118.7, 120.1, 134.2, 135.5, 151.2,162.8;

ESI- HRMS m/z Calcd. for C14H14N3S [M+H] *; 256.0903, found: 256.0300; Elem. Anal.,
C,65.86; H,5.13; N,16.46; S,12.56; found: C,65.90; H,5.19; N,16.50; S,12.51.
Ethyl 2-((5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazol-2-yl) thio) acetate (4g).

white solid; yield: 91%; mp 144-146 °C; FT-IR (KBr, cm™): 3440 (NH), 2938 (C-H), 1713

(C=0, ester (1622 (C=N), 1431 (C=C); 'H-NMR (400 MHz, @ N o/
\ S ; )
CDCl; & ppm): 1.15 (t, J=8.4 Hz, 3H), 3.67 (s, 2H), 5.69 (q, 2H), \©:§>_

6.05 (unresolvable singlet, 2H, Ar-H), 6.77 (unresolvable singlet, 2H, Ar-H), 6.98 (d, J=7.6

Hz, 2H, Ar-H), 7.28 (s, 1H, Ar-H), 8.33 (brs, 1H, NH); '*C NMR (100 MHz, DMSO-d;s ) §:
14.5 (aliphatic-C), 33.8, 61.6, 110.4, 114.9, 120.1, 135.5, 150.7, 151.5, 169.0, 170.3; ESI-
HRMS m/z Calcd. For CisHisN3O2S [M+H] *: 302.0958, found: 302.0959: Elem. Anal.,
C,59.78; H,5.02; N,13.94; S,10.64; found: C,59.74; H,5.07; N,14.00; S,10.69.
2-(Prop-2-ynylthio)-5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole (4h).

White solid; yield: 95%; mp: 156-158 °C; FT-IR (KBr, cm™): 3439 (NH), 3276 (C-H), 1628

(C=N), 1479(C=C); "H-NMR (400 MHz, CDCl; & ppm): 2.15 (s, @ N _
O
1H, =CH), 2.38 (brs, 1H, NH), 3.96 (s, 2H, S-CHa), 6.12 N

(unresolvable singlet, 2H, Ar-H), 6.89 (unresolvable singlet, 2H, Ar-H), 7.07 (d, J=7.2 Hz, 1H,

Ar-H), 7.33-7.36 (m, 2H, Ar-H); *C-NMR (100 MHz, CDCl3+DMSO-d5s) §: 20.5, 73.72, 79.5,
106.1, 110.3, 1149, 115.5, 119.9, 135.9, 137.8, 140.0, 149.9; ESI-HRMS m/z Calcd. for
C14H12N3S [M+H] *: 254.0746, found: 254.1774; Elem. Anal. C, 66.38; H, 4.38; N, 16.59; S,

12.66; found: C, 66.35; H, 4.32; N, 16.64; S, 12.61.
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2-(Benzylthio)-5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole (4i).
Brown solid; yield:95%; mp: 135-137 °C; FT-IR (KBr, cm™): 3405 (NH), 2900 (C-H), 1619

(C=N), 1494 (C=C); '"H-NMR (400 MHz, DMSO-ds 5 ppm): @ N {_O
H

4.58 (s, 2H, S-CHy), 6.25 (unresolvable singlet, 2H, Ar-H),

7.24-7.32 (m, 7H, Ar-H), 7.45-7.47 (m, 3H, Ar-H), 12.73 (brs, 1H, NH); *C-NMR (100MHz,
DMSO-ds) &: 36.8, 104.8, 111.1, 117.4, 120.2, 128.4, 129.2, 129.4, 136.5, 137.4, 151.0 ; ESI-
HRMS m/z Calcd. for C1sHi6N3S [M+H] *: 306.1059, found: 306.1087; Elem. Anal. C,70.79;

H, 4.95; N, 13.76; S, 10.50; found: C,70.73; H, 4.90; N, 13.80; S, 10.42.

2-((4-Nitrobenzyl) thio)-5-(1H-pyrrol-1-yl)-1H-benzo[d]imidazole (4j).

Brown solid; yield: 95%; mp: 155-157 °C; FT-IR (KBr, cm™): 3313 (NH), 2937 (C-H), 1628

(C=N), 1444 (C=C); '"H-NMR (400 MHz, DMSO-ds & @ N s,—@—NOz
H

ppm): 4.73 (s, 2H, S-CH»), 6.25 (t, J=2.0 Hz, 2H, Ar-

H), 7.32 (t, J/=2.0 Hz, 2H, Ar-H), 7.36-7.39 (m, 2H, Ar-H), 7.52 (s, 1H, Ar-H), 7.54 (brs, 1H,
-NH), 7.74 (d, J = 8.8 Hz, 2H, Ar-H), 8.18 (d, J = 8.8 Hz, 2H, Ar-H); *C-NMR (100 MHz,
DMSO-ds ) 8: 35.0,105.6,110.6,114.9, 115.8, 120.1, 124.1, 130.6, 136, 146.2, 147.2, 150.6;
ESI-HRMS m/z Caled. For. CisHisN4O2S [M+H] *: 351.0910, found: 351.0917; Elem. Anal.
C, 61.70; H, 4.03; N, 15.99; S, 9.15; found: C, 61.75; H, 4.04; N, 15.92; S, 9.11.
2-((4-Methylbenzyl) thio)-5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole (4K).

Brown solid; yield 92%; mp: 188-190 °C; FT-IR (KBr, cm™): 3367 (NH), 2920 (C-H),

1628(C=N), 1422 (C=C); 'H-NMR (400 MHz, DMSO- QQN S/_O_CH3
N\)—
H

ds ppm): 2.27 (s, 3H -CHz), 4.56 (s, 2H, S-CHa), 6.26 (t,

2H, J= 2.0 Hz, Ar-H), 7.13 (d, 2H, J=7.6 Hz, Ar-H), 7.33-7.35 (m, 4H, Ar-H), 7.36-7.39 (m,
2H Ar-H),7.52 (brs, 1H, -NH-proton), 7.61 (s, 1H, Ar-H); *C-NMR (100 MHz, DMSO-dj) §:

21.2,35.7,110.5,115.4,120.1, 129.2, 129.6, 134.6, 135.8, 137.2, 151.5; ESI-HRMS m/z Calcd.
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for C19H 1sN3S [M+H] *: 320.1216, found: 320.1220; Elem. Anal. C, 71.44; H, 5.36; N, 13.16;
S, 10.04; found: C, 71.40; H, 5.40; N, 13.12; S, 10.10.

2-((4-Bromobenzyl) thio)-5-(1H-pyrrol-1-yl)-1H-benzo[d]imidazole (41).

Brown solid; yield: 91%; mp: 168-170 °C: FT-IR (KBr, cm™): 3345 (NH), 2936 (C-H),

1628(C=N), 1423 (C=C); 'H-NMR (400 MHz, @@N SI_O_Br
N\)—
H

CDCl3+DMSO-ds § ppm): 4.67 (s, 2H, S-CHa); 6.22 (t,

2H, J=2.0 Hz, Ar-H), 7.19 (t, 2H, J= 2.0 Hz, Ar-H), 7.46 (d, 1H, J= 8.8 Hz, Ar-H), 7.50 ( brs,
1H, -NH), 7.60-7.65 (m, 2H, Ar-H),7.72 (d, 2H, J= 8.4 Hz, Ar-H), 8.09-8.02 (m,1H, Ar-H),
8.17 (s, 1H, Ar-H); >*C-NMR (100 MHz, DMSO-ds ) : 35.0, 105.9, 110.3, 114.7, 120.1, 130.0,
131.5, 131.6, 135.2, 137.4, 137.7, 138.4, 151.8; ESI-HRMS m/z Calcd. for CigHi5Br N3S
[M+H] ": 384.0165, found: 384.0165; Elem. Anal., C, 56.26; H, 3.67; N,10.93; S, 8.34; found:
C, 56.22; H, 3.64; N,10.89; S, 8.38.

2-((4-Iodobenzyl) thio)-5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazole (4m).

white solid: yield: 93%, mp: 174-176 °C; FT-IR (KBr, cm™): 3345 (NH), 2899 (C-H), 1628

(C=N), 1423 (C=C); 'H-NMR (400 MHz, @ N S/_Q_l
H

CDCl3+DMSO-ds & ppm): 4.47 (s, 2H, S-CH,), 6.20

(unresolvable singlet, 2H, Ar-H), 7.12 (unresolvable singlet, 2H, Ar-H), 7.17-7.22 (m, 3H, Ar-
H) 7.42 (brs, 1H) 7.54-7.59 (m, 4H, Ar-H); '3C NMR (100 MHz, DMSO-ds ) &: 35.0, 93.7,
105.9,110.3,114.7, 120.1, 130.0, 131.5, 131.6, 135.2, 137.4, 137.7, 138.4, 151.9; ESI-HRMS
m/z Caled. for C1sH14IN3S [M]":430.9953, found: 430.0958; Anal.; C, 50.13; H, 3.27; N,9.74;
S, 7.43; found: C, 50.16; H, 3.30; N,9.78; S, 7.40.

2-((4-Fluorobenzyl) thio)-5-(1H-pyrrol-1-yl)-1H-benzo[d]imidazole (4n).

White solid; yield: 94%; mp: 145-147 °C; FT-IR (KBr, @
N

em™): 3317 (NH), 2936 (C-H), 1629 (C=N), 1482

(C=C); 'H-NMR (400 MHz, DMSO-ds & ppm): 4.71 (s,
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2H, S-CH»), 6.29 (t, 2H, J=2.0 Hz, Ar-H), 7.30-7.36 (m, 4H Ar-H), 7.42 (t, 2H, J= 2.0 Hz, Ar-
H), 7.57-7.60 (m, 2H Ar-H), 7.67 (s, 1H, Ar-H), 7.73 (brs, 1H, NH); *C-NMR (100 MHz,
DMSO-ds ) 6: 34.7,110.4, 115.0, 120.1, 123.9, 124.0, 128.5, 130.5, 135.5, 146.8, 147.0, 147.1,
149.8, 151.0; ESI-HRMS m/z Calcd. for Ci1sHisF N3S [M+H] *: 324.0965, found: 324.0965;
Elem. Anal., C, 66.85; H, 4.36; N, 12.99; S, 9.91; found: C, 66.89; H, 4.40; N, 12.95; S, 9.96.
2-((5-(1H-pyrrol-1-yl)-1H-benzo|d]imidazol-2-yl) thio) ethan-1-amine (40).

Brown solid; yield: 89%; mp: 167-169 °C; FT-IR (KBr, cm™): 3372 (NH), 2961 (C-H), 1634

(C=N), 1465 (C=C): "H-NMR (400 MHz, CDCl;+-DMSO-ds 3 @ N NH,
A\
ppm): 3.04 (t, J=6.0 Hz, 2H), 3.38 (t, J=5.6 Hz, 2H), 3.76 (s, \©:§>_

2H, -NH:> protons), 6.22-6.26 (m, 2H, Ar-H), 7.02-7.29 (m, 2H, Ar-H), 7.17-7.20 (m, 2H, Ar-

H), 7.45 (brs, 1H, Ar-H),7.82 (s, 1H, Ar-H); '>*C-NMR (100 MHz, DMSO-ds ) &: 30.0, 36.6,
101.7,110.5,110.7, 114.9, 115.3, 120.0, 130.6, 133.5, 136.1, 169.4; ESI-HRMS m/z Calcd. for
Ci3HisNsS [M+H] *: 259.1012, found: 259.1039; Elem. Anal. C,60.44; H, 5.46; N,21.69;
S,12.41; found: C, 60.40; H, 5.50; N,21.65; S,12.45.

5-(1H-pyrrol-1-yl)- 2-((4-trifluoromethyl) benzyl) thio)-1H-benzo|[d]imidazole (4p).

Brown solid; yield: 94%; mp: 160-162 °C; FT-IR (KBr, cm™): 3334 (NH), 2939 (C-H ), 1629

(C=N), 1479 (C=C); 'H-NMR (400 MHz, DMSO-ds § |&.
@N CF;
N\)—
H

ppm): 5.25 (s, 2H S-CH>), 6.28 (unresolvable singlet,

2H, Ar-H), 7.39 (unresolvable singlet, 2H, Ar-H), 7.46 (t, 2H, J= 8.4 Hz, Ar-H),7.52 (d, J=
8.8 Hz, 1H, Ar-H), 7.62 (d, J= 8.8 Hz, 1H, Ar-H), 7.67 (s, 1H, Ar-H), 8.16 (d, J/=6.8 Hz, 2H,
Ar-H), 8.33 (brs, 1H, -NH proton); *C-NMR (100 MHz, DMSO-dy) &: 34.9, 110.4, 120.1,
125.8, 125.8, 128.2, 128.5, 130.1, 130.6, 143.4, 151.0; ESI-HRMS m/z: 374.0938 [M+H] ;
Anal. Caled. for CyoHisF3NsS, C, 61.84; H, 4.41; N,10.82; S,8.25. found: C, 61.88; H, 4.45;

N,10.86; S,8.20.
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2.9. Spectra
TH-NMR Spectrum of compound 4a (DMSO-ds, 400MHz):
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Mass spectrum of compound 4a:
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I3C-NMR Spectrum of compound 4b (DMSO-ds, 100MHZz):
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TH-NMR Spectrum of compound 4¢ (DMSO-ds, 400MHz):
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Mass Spectrum of compound 4c:
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Mass Spectrum of compound 4d:
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I3C-NMR Spectrum of compound 4¢ (DMSO-ds, 100MHz):
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TH-NMR Spectrum of compound 4f (DMSO-ds, 400MHz):
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Mass spectrum of compound 4f:
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13C NMR Spectrum of compound 4g (DMSO-ds, 100MHz):
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TH-NMR Spectrum of compound 4h (CDCl:+DMSO-ds, 400MHZz):
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Mass spectrum of compound 4h:
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I3C-NMR Spectrum of compound 4i (DMSO-ds, 100MHz):
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TH-NMR Spectrum of compound 4j (DMSO-ds, 400MHZz):
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Mass spectrum of compound 4j:
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I3C-NMR Spectrum of compound 4k (DMSO-ds, 100MHZz):
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TH-NMR Spectrum of compound 41 (CDCl:+DMSO-ds, 400MHZz):
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Mass spectrum of compound 4l1:
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I3C-NMR Spectrum of compound 4m (DMSO-ds, 100MHz):
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TH-NMR Spectrum of compound 4n (CDCl3+DMSO-ds, 400MHz)
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Mass spectrum

of compound 5n
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I3C-NMR Spectrum of compound 40 (DMSO-ds, 100MHz):
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TH-NMR Spectrum of compound 4p (CDCl:+DMSO-ds, 400MHZz):
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Mass spectrum of compound 4p:
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CHAPTER-III

One-pot synthesis of thioalkylated benzimidazole-based 4-substituted
mercaptoimidazole molecular hybrids via a multi-component approach

3.0. Introduction

Aromatic heterocyclic scaffolds are extremely distributed in the environment and are essential
to life ['*). Among the various heterocyclic compounds, imidazoles are the most pivotal and
privileged heterocyclic aromatic nitrogen-containing heterocyclic compounds with molecular
formula C3HsN». These three carbons and two nitrogen atoms are set at 1%t and 3™ position with
pyrrole and pyridine type of annular nitrogen. The possible isomeric structures with that
molecular formula are depicted in Figure 3.1 and different resonance forms of imidazole are
depicted in Figure 3.2. Historically, imidazole was first named as gluoxaline (first synthesized
from glyoxal and ammonia). These derivatives are broadly present in biologically active natural

6-81 such as histamine, vitamin Bis, biotin, histidine, nucleic acids, and alkaloids.

products !
Additionally, numerous synthetic drugs, frequently prescribed medicines, such as cimetidine
(Tagamet), ketoconazole, etomidate (amidate), and clotrimazole drugs are the component of
imidazole scaffolds Figure 3.3. These heterocycles are also known to exhibit biological
activities such as anti-fungal ©°!, anti-cancer %121 anti-bacterial ['*!¥] and anti-inflammatory
[15] agents. Moreover, these derivatives are also used as functional material !%!7) N-
heterocyclic carbenes ['8) in organometallic catalysis, vital structural blocks in the synthesis of

[21

several biologically active scaffolds 1'*?%), and also used as ionic liquids ?!! green chemistry.

______________________________________

H H |
11,3-imidazole 1,2-imidazole i
(imidazole) (pyrazole) !

@ .o
N\) N N N N N
- o
Y — @y — L —T» — — O
N/ N/® N%D 5N§é N®
H H H H H

Figure 3.2. Different resonance structures of imidazole
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Appropriately the imidazoles and their derivatives are extensively used as JAK (Janus

Associated Kinase) inhibitors %!, glucagon receptors [**!, AxI Kinase Inhibitors [**], fluorescent

[25,26 [27]

probes 23261 TGRS receptor antagonists 271,

A vast number of molecules containing imidazole skeletons have shown prominent biological
and pharmaceutical applications as depicted in Figure 3.3. Owing to the immense synthetic
impotence and the broad range of bioactivities exhibited by these derivatives efforts have been
made from time to time to innovate libraries of these compounds. Therefore, imidazole’s have

received much attention from the researcher’s point of view.

HN_ N/ﬁ

HN 8 "“..““
s \S\\’\:N N O HH .-‘/\/Q/OH |
=8 HaD
H

cimitidine clotrimazole Biotin

N K NH, o

t )\ O-0Et OH 2 (N]

N N H N (0]
0 W - B

Ph N N 0

H H

etomidate FN Histadine Histamine ql

Cl J Cl

N
JI %—CH, j
o oY \
cl cl cl \\bH =0

miconazole metronidazole ketoconazole

Figure 3.3. Selected structures of some natural and pharmaceutical compounds containing

1midazole motifs

Gupta 28! ¢t al. synthesized a series of novel 1,4-diaryl-2-mercaptoimidazoles via a one-pot
solid phase reaction. The title compounds were synthesized by using starting materials like
different substituted anilines, and phenacyl bromides in presence of KoCO3/Na>COs to yield a-
anilinoacetophenones, which on subsequent cyclization in presence of KSCN and p-TSA gave

the titled compounds with excellent yields.
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0 0 NH, H N
A\
AcOH Br N . Na,CO, N N KSCN P&
Br L —or— 1 "
2 R, K,Co0, R, p-TSA @

80-90 °C FZ
1

Scheme 3.1. One-pot solid phase synthesis of 1,4-diaryl-2-mercaptoimidazole derivatives

Naureen 1* et al. reported a series of novel tri-arylimidazoles containing 2-aryl indoles moiety
via a one-pot four-component reaction method. The title compounds were synthesized from
substituted-2-arylindole-3-carbaldehyde, benzil, substituted anilines, and ammonium acetate
in acetic acid under reflux conditions for about 5-6 h. Further, the synthesized compounds
screened for their in-vitro a-glucosidase inhibitory activity. Among the tested compounds 4j

showed more potent inhibitory activity (Figure3.1).

NH,

CHO «
R, , Ph__O
N — R, reflux N
RE T X 7 " NHOAc R &Ph
. \_/ Ph A AcOH
H 3

Scheme 3.2. Synthesis of tri-aryl indoline imidazole derivatives via the one-pot four-

component method

H,COCHN

Figure 3.1. Biologically active compound

Alanthadka B e al. reported a novel one-pot, solvent-free synthesis of substituted
imidazoles. The title compounds were synthesized by using substituted aryl methyl ketones

and different benzyl amines via N-heterocyclic carbene (NHC) catalysis.

91



Chapter 111

e NHC, K,CO, —
| T > /)
— \ ¥
BF,.0FEt, R,
TBHP, 80 °C

RV
Scheme 3.3. One-pot solvent-free synthesis of substituted imidazoles

Banerji B! et al. reported a series of tri and tetra-substituted imidazole derivatives via a one-
pot iodine-catalyzed ariel oxidation method in water. The title compounds were synthesized
from easily available starting materials like benzil/ benzoin and the corresponding amine
followed by a catalytic amount of iodine in water giving 1,2,4,5-tetra substituted imidazole.
The benzil or benzoin substituted aromatic aldehydes and ammonium acetate with the same
reaction condition gave tri-substituted imidazoles with good to excellent yields. Further, the
title compounds were subjected to fluorescence properties and among the tested, some of the

compounds like 8e and 8f showed excellent fluorescence properties (Figure 3.2).

I,, water Ar

el N
Ar-CHO I N _Ar
R R | N}
H

NH,OAC

N L,, water o o 4

)I\\ Ar Ar R oor Ay p—
R K,CO; H

IQ R“NH, L,, water AL_N

R=Alkyl, Aryl | W (4
NH,0AC R
Ar!

Ar= Aryl
Ar-CHO
Ar!-NH,

Scheme 3.4. One-pot iodine catalyzed tri and tetra substituted imidazole derivatives

|N\ = N\ N

Figure 3.2. Fluorescence active compounds.
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Vedula 32 ¢t al. synthesized a novel series of tri-substituted coumarin-based imidazole
derivatives via a one-pot, three-component reaction method. The title compounds were
synthesized from a-amino ketones, excess ammonium thiocyanate and different substituted 3-
(2-bromoacetyl)-2H-chromen-2-one in acetic acid. Further, these titled compounds were
screened for their anti-bacterial activity against Gram-negative bacteria Escherichia Coli.
Among the tested compounds, compound 4a showed good anti-bacterial activity (Figure 3.3).

R3
H
0]

N\©\ R]
0_0 RY AcOH 0_0 x

+ NH,SCN * N\
R? = Br 4 reflux R? _ S /MN

Scheme 3.5. One-pot three-component synthesis of coumarin-based thiazole derivatives

Cl

Compound 4a 1

Figure 3.3. Biologically active compound

Wang 33 et al. reported a new series of 4-aryl-2-benzoyl imidazole derivatives. The title
compounds were synthesized from different substituted 3,4,5-trimethoxy phenyl glyoxal
hydrate, aryl glyoxal hydrate, and ammonium acetate in ethanol. Further, the synthesized
compounds were screened for their in-vitro anti-cancer activity against eight cancer lines
including multi-drug resistant cancer cell lines. Among the tested compounds, compound 12a

showed excellent in-vitro anti-cancer activity with low nanomolar ICso values (Figure 3.4).
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(0) (0) R
0 H 0 H
N (0)
+ + NH,O0AC EtOH, rt B
H;CO OCH; 30-45 mins N
CH, OCH;

Scheme 3.6. Synthesis of 4-aryl-2-benzoyl imidazole derivatives

N O
| \

I OCH,

H,C CH,

compound 12a

Figure 3.4. Biologically active compound

Aggarwal® et al. synthesized 1,4-diaryl-2-mercaptoimidazole via a solvent-free, one-pot,
green synthesis method. These compounds were synthesized from easily available starting
materials like a-tosyloxyacetophenones, and anilines afford a-anilinoacetophenones, which
further undergo cyclization in presence of acid catalyst PTSA in situ manner with KSCN to

give final products in excellent yields.

R
o) NH, O g
OTs N KSCN N
@ ' @ @ ) R
R \/R K,CO; R }( TsOH
or 80-90 °C )
Na,CO, \

Scheme 3.7. One-pot synthesis of 1,4-diaryl mercaptoimidazole derivatives

Wang3l et al. developed an efficient, one-pot, three-component, Ag-catalysed reaction
method for the synthesis of functionalized imidazole derivatives. The title compounds were
synthesized from various amidines, ynals phenols, alcohols, or water providing moderate to

good yields with high regioselectivities.
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TsOH
&1 o CHO AgOAc NEEN R!
r + >
Arl \ILJ( l)l ROH toluene, N, AI.ZJ\MR
H 10h, 100 °C Arl

Scheme 3.8. One-pot three-component synthesis of functionalized imidazoles

Baidya 3¢l ez al. developed a novel, one-pot synthesis of a-aminoketones through the aromatic
nitroso aldol reaction with silyl enol ether and disilane backbone in presence of Brensted acid.
Further, these a-amino ketones react with ammonium thiocyanate in presence of acid catalyst
p-TSOH giving polysubstituted mercaptoimidazoles, on further alkylation gave fully

substituted imidazole derivatives in high yields.

OSiMe,TMS  NO o) o -SiMe,TMS
R CH3CN rt PhB(OH)2
RZ
R2 R2
O p
Rl PhCOCH,Cl o, NH,SCN | N
| N/>—S 0] EtOH N/ES p-TSOH R R! \©\RZ
EtN 80 C, 10 min
R 80 C

Scheme 3.9. One-pot synthesis of polysubstituted mercaptoimidazole derivatives

Radziszewski 37! et al. synthesized a series of novel, 2,4,5-triphenyl 1H-imidazoles via a one-
pot three-component reaction. The title compounds were synthesized from commercially
available starting materials, benzil, benzaldehyde, and with an excess of ammonia gave title

compounds.

CHO O
N
. )
excess O H

Scheme 3.10. One-pot, three-component synthesis of 2,4,5-tri-substituted imidazoles.
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Drefahal B8  ¢r al. synthesized a series of 1-substituted-2,4,5-triphenyl 1H-imidazole
derivatives via a one-pot four-component reaction method. The title compounds were
synthesized from commercially available starting materials like benzil, benzaldehyde, primary

amines, and excess ammonia.

CHO O
O N
+ + pNH2 +  NH, | N\>_©
O 0 excess O R

Scheme 3.11. One-pot, four-component synthesis of tetra-substituted imidazole derivatives

Shafeel ¥°1 ez al. synthesized a novel series of 4-aryl-5-(3,4,5-trimetoxyphenyl)-2-alkylthio-
1 H-imidazolederivatives. The title compounds were synthesized from the starting material like
various benzoins with an excess of ammonium thiocyanate in n-butanol yielding the required
4,5-disubstituted-1H-imidazole 2(3 H) thiones. These compounds were alkylated using various
alkyl iodides in a basic medium to produce titled compounds. Further, the final compounds
were screened for further cytotoxic activity against four various cell lines HT-29, MCF-7, NIH-
3T3, and AGS. Among the tested scaffolds, the compound 6g showed potent cytotoxic activity
(Figure 3.5).

KCN
(0] (0]
2 ethanol 50%
H,;CO H | R H reflux H;CO
H,CO R? R® PhCOCL,KCN  H;CO
R! 4 ethanol 50%
reflux NH,SCN
n-butanol
reflux

) or OCH
R17R23R3sR49R59R6= Hor CH3 3

Scheme 3.12. Synthesis of polysubstituted mercaptoimidazole derivatives
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OCH,
H,CO

H,CO N CH,

o
H,CO

compound 6g

Figure 3.5. Biologically potent compound

Wang "0 ¢t al. developed an acid-promoted, metal-free construction of tri and tetra-
substituted imidazole derivatives via a multi-component reaction. The title compounds were

synthesized with various internal alkynes, aldehydes, and anilines or ammonium acetate.

pivOH

NH,OAC
DMSO:H,0

2

O R® cno 140 °C
+

R! O R3 R4

R2
WO
) N
pivOH | \>\©~R ;
DMSO:H,0 O N
140 °C R!

Scheme 3.13. One-pot synthesis of tri-and tetra substituted imidazoles

Zhang 11 et al. reported novel one-pot synthesis of 2-(2-azaaryl) imidazole derivatives via an
efficient three-component domino [3+1+1] heterocyclization. The title compounds were
synthesized by using azaaryl amidines with aromatic aldehydes and were conducted using

K>CO3 under the microwave-assisted condition to form polysubstituted imidazoles.

Ar-X0 NH K,CO, Ar‘\gN Ar
+ L /
Ar'”>NH H ~Z/
A0 r : MW Ar
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Scheme 3.14. One-pot three-component synthesis of polysubstituted imidazoles
3. 1. Present work

In line with our interest, considering the importance of imidazole and benzimidazole moieties
and prompted by the mentioned previous literature, we aimed for an update and extension of
its usefulness focusing on the synthesis of mercaptoimidazole derivatives via the MCR

approach.
3.2. Starting materials

In this present chapter, the synthesis of new mercaptoimidazole hybrids was described. The
starting materials required for the synthesis of the target compounds are, 5-amino-2-mercapto-
benzimidazole, various substituted phenacyl bromides, and ammonium thiocyanate. All the

chemicals were procured from commercial sources.

.......................................................................................................................................

R2 R3;
R?2 R NH , R
R SH 1
R! 4SCN Ns]ﬁ R
i.AcOH , R' O g R? \ N /
— R ! N \
ii.NaOAc N AcOH (:EN)'
/O R3 N)_ 2-4 hrs reflux H
3
Ot ¥ "’ o
T A
R R! 3aj yields up to 85-95%
: 2. Eqiv.
: 70°C
H,N N 3-4 hrs reflux
E N\)—SH N
: H i.AcOH
1.Eqiv. ii.NaOAc .
R :
Br = :
0 D .
e Teahens O
1 h reflux H AcOH H :

1

R B 2-4 hrs reflux
, C 5a-f
o 4a-f 70 yields up to 87-93%

2-3 hrs reflux

........................................................................................................................................

Scheme 3.1. Synthesis of mercaptoimidazoles via one-pot pseudo-four component reaction.
3.3. Synthesis of mercaptoimidazoles

The synthesis of mercaptoimidazole scaffolds was carried out as outlined in Scheme 3.1. The
title mercaptoimidazoles were synthesized by a reaction of 5-amino-2-mercaptobenzimidazole
(1), phenacyl bromides (2), and ammonium thiocyanate (3) (1:2:1) in glacial acetic acid and

fused sodium acetate provides good to excellent yields.

98



Chapter 111

3.4. Results and discussion

The conditions required for the synthesis of imidazole derivatives are shown in Table 3.1. To
optimize the reaction conditions for the synthesis of title compounds we have investigated the

Table 3.1. Optimized reaction conditions.4aa

Entry Solvent Base Temp ('C) Time (h) Yield (%)
1 H>O - rt 24 NR
2 H>O - 60 24 NR
3 CH;CN - 60 24 trace
4 Dioxane - 60 24 NR
5 DMSO - 60 22 17
6 DMF - 60 21 21
7 Toluene - 60 24 NR
8 Methanol - 60 20 25
9 Ethanol - 60 18 38
10 Ethanol Etz:N (1.0 mmol) 60 12 trace
11 Ethanol NaOH (1.0 mmol) 60 12 40
12 Ethanol KOH (1.0 mmol) 60 12 42
13 Ethanol NaxCOs (1.0 mmol) 60 12 45
14 Ethanol K>COs; (1.0 mmol) 60 12 47
15 AcOH - 60 12 60
16 AcOH piperidine (1.0mmol) 60 10 trace
17  AcOH AcONa (1.0 mmol) 60 10 75
18  AcOH AcONa (1.5 mmol) 60 10 80
19 AcOH AcONa (2.0 mmol) 60 9 85

20 AcOH AcONa (2.0 mmol) 70 8 920
21  AcOH AcONa (2.0 mmol) 80 8 60
22 AcOH AcONa (2.0 mmol) reflux 8 52

“Reaction conditions: 5-amino-2-marcaptobenzimidazole (1.0 mmol), phenacyl bromide (2.0 mmol),

ammonium thiocyanate (1.0 mmeol), solvent (2 mL), “Isolated yields.

reaction 5-amino-2-mercapto-benzimidazole (1.0 mmol), phenacyl bromide (2.0 mmol), and

ammonium thiocyanate (1.0 mmol) in water at room temperature for 24 hours stirring, but there
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is no reaction. To our surprise, there is no reaction even at 60 ‘C under this condition. Then, we
screened the reaction in various aprotic solvents like CH3CN, dioxane, DMSO, DMF, and
toluene (Table 3.1, entries 3-7) where the reaction did not proceed or the yields of the products
obtained are low. Then we carried out the same reaction in protic solvents like methanol,
ethanol, and acetic acid (Table 3.1, entries, 8,9, and 15). Fortunately, the reaction was smooth
in acetic acid and gave the title compounds with the still-low yield at 60 ‘C (Table 3.1, entry
15). Further, the reaction was optimized in the terms of base. Here, we tried with different
organic and inorganic bases (Table 3.1, entries 10-14, and 16), unfortunately, the yields were
found to be poor, and took more time to complete the reaction. Finally, we tried fused sodium
acetate (1.0 mmol) in acetic acid. It was observed from the optimized reaction conditions that
when fused sodium acetate was used, the yields were found to be improved at 60 °C (Table 3.1,
entry 17). Further, the reaction was optimized in the terms of the amount of base and reaction
temperature. A change in the yield was observed when the amount of base was increased. Table
3.1 indicates the best results were obtained when the reaction was performed using 2.0 mmol
of fused sodium acetate as a base at 70 'C in acetic acid (Table 3.1, entry 20). However, there
is no further improvisation of product yield beyond the 70 °C rise in reaction temperature
(Table 3.1, entries 21-22). After optimization of the reaction conditions, we studied this
reaction with a variety of electron-rich phenacyl and electron-deficient phenacyl/ benzyl
bromides. In this study, we found that when electron-withdrawing groups are present on
phenacyl (90-95%) or benzyl (90%) bromides, they gave high yields of the products when
compared with electron-releasing groups on phenacyl or benzyl bromides (89%) Table 3.1.

The synthesized scaffold structures (4a-j) and (Sa-f) were established based on their
physical and analytical data. The infrared spectra of synthesized compounds 4a-j and 5a-f
exhibited the presence of amine(-NH), carbonyl (-C=0), and imine (C=N) functional groups
appears in the region of 3449-3345cm™,1666-1685 cm™, and 1599-1634 cm! respectively. The
"H-NMR spectra showed characteristic resonance peaks for —SH, imidazole C5-proton, and S-
CH2-protons appeared at 10.25-13.15 & ppm, 7.39-8.47 6 ppm, and 5.09-5.37 &6 ppm
respectively. The 3C-NMR spectra also confirm the synthesized compounds (4a-j) and (5a-f)
structures with characteristic resonance peaks of carbonyl carbon, imidazole C5-carbon, and
aliphatic carbon (S-CH»-carbon) appeared at 6c 189.2-192.8 6 ppm, 105.1-112.3 & ppm, and
34.5-44.9 & ppm respectively. The ESI-HRMS spectra of all the synthesized compounds are
shown [M+H]" as base peak.
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Figure 3.2. Scope of substrates.
The plausible reaction mechanism for the formation of title compounds is shown in scheme
3.2 by the reaction of 5-amino-2-mercaptobenzimidazole (1.0 mole), with two moles of
phenacyl bromides in presence of acetic acid and fused sodium acetate to give intermediate
‘A’followed by subsequent reaction with NH4SCN. In this process initially, the thiol and amino
groups displace the bromine atoms of phenacyl bromides to give intermediate ‘A’ with the
elimination of two equivalents of hydrobromic acid. The intermediate ‘A’ further reacts with

NH4SCN to form the intermediates II, III, IV, and V. Further the intermediate V rearranged to
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titled mercaptoimidazolyl phenacylthio benzimidazole derivatives. The mechanistic path for

the above synthesis was confirmed by DFT studies.

....................................................................................................................................................
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Scheme 3.2. Plausible reaction mechanism for the formation of mercaptoimidazolyl phenacyl

thio benzimidazoles.
3.5. Density Functional Theory (DFT) Computational details and Calculations

The geometries of all the point structures were fully optimized without any
geometrical/symmetrical constraints using the ®b97xd method employing a 6-31G* basis set
(421 The nature of the critical point structures was characterized as local minima and as first-
order saddle points by the frequency calculations at the same level of theory. The TSs were
confirmed by the existence of a characteristic single imaginary frequency with displacement
vectors in the direction of bond formation (breaking). All the density functional theory (DFT)

based calculations performed in the present investigation were carried out using Gaussian16
[43]

The density functional theory calculations have been performed to probe the energetics for the
synthesized substituted mercaptoimidazole scaffolds. In the course of calculations, all the
geometries of the point structures were fully optimized. The relative energy profile of the
reaction is shown in Figure 3.1 along with important geometries of TSs which include the

important geometrical parameters.
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It is interesting to note that the ammonium thiocyanate (rearranged product of thiourea), which
is an active moiety for proceeding with the reaction. It has been found that in the TSI, the
calculated N—C distance (N atom of the ammonium thiocyanate and C atom of carbonyl group
of the reactant) is 1.73 A. The calculated C—O and O-H distances are 1.33 and 0.98 A,
respectively. The similar N-C, C-O, and O—H distances in II are found to be 1.47, 1.38, and
0.97 A, respectively. TS2 indicates the transition state for the cyclization reaction to give the
five-membered ring structure. The calculated N—C distance involved in the formation cyclic

ring is 2.08 A in TS2 and the corresponding distance in structure IV is found to be 1.72 A.

The relative energy of TS1 is significantly smaller when compared with the starting materials.
Typically, the calculated relative energy value is -33.11 kcal/mol. Thus, it is worth mentioning
that the conversion of I to II is a barrier-less reaction. Calculated energetics of conversion of |
to II clearly emphasizes that the former converts readily to later in the presence of ammonium

thiocyanate. The low energy barrier may be attributed to the additional non-covalent
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Figure 3.1. Relative energy profile for the synthesis of substituted imidazole.

interactions involved due to the presence of NH4" ion as shown in Figure 3.1. The intermediate
11 is further stabilized by -6.63 kcal/mol as compared to that of TS1. It can be noticed that 13.56
kcal/mol of activation energy is required for the cyclization of II to give a five-membered cyclic
ring. The cyclization reaction of II to give intermediate IV is an endoergic reaction. The
increment in the energy of IV is may be attributed to the repulsive steric factors and ring strain.

The removal of ammonium ion from IV requires the energy of 16.49 kcal/mol to give
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intermediate V and therefore, the removal of ammonium ion from IV is also endothermic. It
may be due to the dissociation of charged species from the polar moiety. The intermediate V
undergoes intramolecular dehydration and rearrangement to give the desired product. The
desired product is thermodynamically more stable than the reactants. Furthermore, the
intramolecular dehydration and rearrangement taking place from V are minor reactions
involving proton transfer, therefore in this investigation, only product formation from
intermediate V is discussed. Overall, the reaction is exothermic and the initiation of the reaction

1s barrier-less.

3.6. Conclusion

In conclusion, we have synthesized thioalkylated benzimidazole-tethered 4-substituted
mercaptoimidazole molecular hybrids via a novel, facile one-pot three/ four-component
approach using acetic acid and fused sodium acetate as a reaction medium with good to
excellent yields. The usefulness of this reaction is that it involves easy workup, shorter reaction
time, broad substrate scope, and column-free purification of the products. Further DFT
calculations were performed to gain insight into the reaction mechanism.

3.7. Experimental section

3.7.1. General procedure for the synthesis of 2-((5-(2-Mercapto-4-phenyl-1H-imidazol-1-yl)-
1H-benzo|d]imidazol-2-yl)thio)-1-phenylethan-1-one (4a-j)

A mixture of 5-amino-2-marcaptobenzimidazole (1.0 mmol), different substituted phenacyl
bromides (2.0 mmol), and fused sodium acetate (2.0 mmol) was taken in a round bottom flask
and the reaction mixture was refluxed in acetic acid (2 ml) at 70 'C for 4 h to give intermediate
‘A’ and this intermediate (without isolation) was further reacted with ammonium thiocyanate
3 (1.0 mmol) under reflux condition for about 4 h. After completion of the reaction (checked
through TLC, 50:50, n-hexane: EtOAc), the reaction mixture was cooled to room temperature
and placed in ice-cold water. The solid separated was filtered, washed with water, dried, and
recrystallized from ethanol.

3.6.2. General procedure for the synthesis of 1-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)-
4-phenyl-1H-imidazole-2-thiol (5a-f)

A mixture of 5-amino-2-marcaptobenzimidazole (1.0 mmol), different substituted benzyl
bromides (0.1187 g, 1.0 mmol), and fused sodium acetate (0.82g, 1.0 mmol) was taken in a
round bottom flask and the reaction mixture was refluxed in acetic acid (2 ml) at 70 °C for 1 h.
To this reaction mixture again 1.0 mmol of fused sodium acetate and phenacyl bromide (0.1990

g, 1.0 mmol) was added and refluxed for another 3h to give intermediate 2-((2-(benzylthio)-
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1 H-benzo[d]imidazol-5-yl)amino)-1-phenylethan-1-one and this intermediate (without
isolation) was further reacted with ammonium thiocyanate 1.0 mmol. After completion of the
reaction (checked through TLC, 50:50, n-hexane: EtOAc), the reaction mixture was cooled to
room temperature and placed in ice-cold water. The solid separated was filtered, washed with

water, dried, and recrystallized from ethanol.

3.8. Characterization data of products

2-((5-(2-Mercapto-4-phenyl-1 H-imidazol-1-yl)-1H-benzo|d]imidazol-2-yl)thio)-1-
phenylethan-1-one. 4a

White solid: yield: 90%, mp: 254-256 ‘C; FT-IR (KBr, cm™): 3406 (NH), 1685 (C=0), 1624
(C=N); 'TH-NMR (400 MHz, CDCI3+DMSO-ds & ppm):13.00

SH VA
(s, 1H, SH), 8.11 (d, J = 7.2 Hz, 2H, Ar-H), 7.97 (s, 1H, @_{j;g N _
imidazole proton), 7.69-7.75 (m, SH, Ar-H), 7.58-7.60 (m,3H, \©:N\)_
Ar-H), 7.29-7.43 (m, 3H, Ar-H,), 5.37 (s, 2H, S-CH> protons), H
1.25 (brs, 1H); 3C NMR (100 MHz, CDCl3+DMSO-d;s ) 6:192.1, 152.5, 135.1, 134.4, 129.2,

128.9, 128.7, 128.2, 128.0, 124.8, 123.1, 116.1, 113.6, 111.5, 41.7; ESI-HRMS: m/z Calcd for
C24H19N4OS, [M+H] " 443.1000: found: 443.1940.

1-(4-Fluorophenyl)-2-((5-(4-(4-fluorophenyl)-2-mercapto-1H-imidazol-1-yl)-1H-
benzo|d]imidazol-2-yl)thio)ethan-1-one. 4b

White solid: yield: 96%, mp: 249-251 'C; FT-IR (KBr, cm™): 3449 (NH), 1678 (C=0), 1634
(C=N); 'TH NMR (400 MHz, DMSO-ds & ppm): 12.99 (s, 1H,
SH), 8.19-8.16 (m, 2H, Ar-H), 7.91 (s, 1H, imidazole proton), N SH

7.90 (s, 1H, Ar-H), 7.84-7.80 (m, 2H, Ar-H), 7.66 (d, J = 8.4 F‘@'&:&@:N {—9
Hz, 1H, Ar-H), 7.53 (d, /= 8.4 Hz, 1H, Ar-H), 7.45 (t,J=8.8 E>—

Hz, 2H), 7.30 (t, J = 8.8 Hz, 2H), 5.24 (s, 2H, S-CHa-protons); 3C NMR (100 MHz, DMSO-
ds) & ppm: 3C NMR (100 MHz, DMSO-ds) § 191.6, 167.2, 164.7, 163.3, 160.9, 152.5, 132.2,
132.1, 126.9, 126.9, 124.9, 122.6, 120.9, 116.6, 116.5, 116.4, 116.3, 113.8, 111.8, 109.7, 41.2;
ESI-HRMS: m/z Caled for C24Hi7F2N4OS: [M+H] * 479.0812. Found: 479.1784.
1-(4-Chlorophenyl)-2-((5-(4-(4-chlorophenyl)-2-mercapto-1H-imidazol-1-yl)-1H-

benzo|d]imidazol-2-yl)thio)ethan-1-one. 4¢
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White solid: yield: 89%, mp: 208-210 'C; FT-IR (KBr, cm™): 3397 (NH), 1677(C=0), 1625
(C=N); TH NMR (400 MHz, CDCI3+DMSO-ds & ppm): - -
13.00 (s, 1H, SH), 8.09 (d, J = 8.8 Hz, 2H, Ar-H), 8.02 (s, Cl_@——\%& N {_@
1H, Ar-H), 7.98 (s, 1H, imidazole proton), 7.73 (d, J = 8.8 Cfgf'

Hz, 2H Ar-H), 7.65 (d, J=5.6 Hz, 2H, Ar-H), 7.57 (d, J = 8.4 Hz, 2H, Ar-H), 7.39 (d, /= 8.4
Hz, 2H, Ar-H), 5.24 (s, 2H, S-CH2- protons), 1.25 (brs, 1H, NH); 3C NMR (100 MHz,
DMSO-ds ) 8; 192.3, 152.3, 139.4, 134.3, 132.7, 130.9, 130.7, 129.5, 129.3, 129.1, 127.2,
126.4, 122.0, 117.5, 113.8, 112.0, 109.7, 108.1, 35.4. ESI-HRMS: m/z Calcd for
C24H17C1aN4OS, [M+H]" 511.0221, found: 511.1175.
1-(4-Bromophenyl)-2-((5-(4-(4-bromophenyl)-2-mercapto-1H-imidazol-1-yl)-1 H-
benzo|d]imidazol-2-yl)thio)ethan-1-one. 4d

White solid: yield: 88%, mp: 214-216 'C; FT-IR (KBr, cm™): 3372 (NH), 1676 (C=0), 1621
(C=N); '"H NMR (400 MHz, CDCI3+DMSO-ds & ppm) 8

SH
12.99 (s, 1H, SH), 8.01 (d, J = 8.4 Hz, 2H, Ar-H), 7.98 (d, |, _@——{jjﬁ . {_@
O

J=1.6 Hz, 1H, Ar-H), 7.75 (s, 1H, imidazole proton), 7.73

—7.66 (m, 4H, Ar-H), 7.64 (s, 1H, Ar-H), 7.57 (d, J= 2.0 Hz, 2H, Ar-H), 7.54 (d, J = 8.4 Hz,
2H, Ar-H), 5.20 (s, 2H, S-CH>), 1.25 (s, 1H); ¥C NMR (100 MHz, CDCl3+DMSO-ds ) §;
191.6,152.2,134.1,132.3,132.0, 130.6, 128.9, 127.2,126.5, 122.5,121.4, 116.5, 113.6, 111.6,
41.2; ESI-HRMS: m/z Calcd for C24H1sBraN4OS, [M+2] 601.9268, found : 601.0272.
2-((5-(2-Mercapto-4-(4-methoxyphenyl)-1H-imidazol-1-yl)-1H-benzo[d]imidazol-2-yl)

thio)-1-(4-methoxyphenyl) ethan-1-one. 4e

White solid: yield: 85%, mp: 257-259 'C; FT-IR (KBr, cm’ %
1): 3355 (NH), 1671 (C=0), 1599 (C=N); '"H NMR (400 N SH

MHz, DMSO-ds 5 ppm): 12.82 (s, 1H, SH), 8.07 (d, J = 8.8 \’O—C&@E:)_J—Q
Hz, 2H, Ar-H), 7.82 (s, 1H, imidazole proton), 7.73-7.70 L
(m, 3H, Ar-H), 7.58 (d, /= 8.8 Hz, 1H, Ar-H), 7.44 (d, /= 8.8 Hz, 1H, Ar-H), 7.11 (d, /= 8.8
Hz, 2H, Ar-H), 7.00 (d, J = 9.2 Hz, 2H, Ar-H), 5.11 (s, 2H, S-CH»-protons), 3.88 (s, 3H, -
OCH3s-protons), 3.79 (s, 3H, -OCHs-protons); 3C NMR (100 MHz, DMSO-ds) 8: 191.5, 164.3,

152.3, 137.0, 134.9, 131.4, 129.2, 128.2, 118.3, 114.7, 114.6, 107.6, 56.2, 40.7; ESI-HRMS:
m/z Calcd for C26H23N403S, [M+H]" 503.1212, found: 503.1243.
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2-((5-(2-Mercapto-4-(p-tolyl)-1 H-imidazol-1-yl)-1 H-benzo|d]imidazol-2-yl)thio)-1-(p-
tolyl)ethan-1-one. 4f

White solid: yield: 88%, mp: 277-279 °C; FT-IR (KBr, cm™): 3426 (NH), 1676 (C=0), 1631
(C=N); '"H NMR (400 MHz, DMSO-ds 6 ppm): 13.01 (s, 1H,
SH proton), 7.97-7.99 (m, Ar-H, 4H), 7.58-7.60 (m, Ar-H, 2H),

7.47 (s, 1H, imidazole proton), 7.40-7.42 (m, 4H, Ar-H), 7.17- ‘@’\:&

7.19 (m, 2H, Ar-H), 5.19 (s, 2H, S-CHz-protons), 2.42 (s, 6H, -

CHj; protons); 3*C NMR (100 MHz, DMSO-ds § ppm); 3C NMR (100 MHz, DMSO-dj)
0:192.5, 152.5, 145.2, 136.2, 134.7, 132.9, 130.2, 129.9, 129.1, 118.9, 116.8, 114.7, 112.9,
107.9, 55.4, 41.3, 21.8; ESI-HRMS: m/z Calcd for CasH23N4OS> [M+H]" 471.1313, found:

471.2277.
1-(2,4-Difluorophenyl)-2-((5-(4-(2,4-difluorophenyl)-2-mercapto-1H-imidazol-1-yl)-1 H-

benzo|d]imidazol-2-yl) thio)ethan-1-one. 4g

White solid: yield: 92%, mp: 223-225 'C; FT-IR (KBr, cm™); 3397 (NH), 1678 (C=0), 1625
(C=N); "TH NMR (400 MHz, DMSO- ds & ppm): 10.70 (s, 1H,
SH), 8.47 (s, 1H, imidazole proton), 8.21-8.28 (m,1H, Ar-H), 3 N:IGSH {_9
8.05-8.10 (m, 1H, Ar-H), 7.59 (d, 1H, J = 8.8 Hz, Ar-H), 7.52 F% ‘@[iy

(t, 1H, J=9.4 Hz, Ar-H), 7.44 (d, /= 8.8 Hz, 1H, Ar-H), 7.23 H
—7.41 (m, 4H, Ar-H), 7.20 (t, J = 8.4 Hz, 1H, Ar-H), 5.23 (s, 2H, S-CHz-protons); *C NMR
(100 MHz, DMSO-ds ) 6: 189.2, 164.0, 163.9, 162.7, 148.8, 143.3, 139.1, 134.3, 133.6, 131.6,
128.5, 1209, 116.1, 114.1, 113.2, 112.9, 112.5, 108.0, 105.9, 100.4, 44.5; ESI-HRMS: m/z
Anal Calcd for C24Hi15F4N4OS: [M+H]" 515.0623, found: 515.0616.
1-(3,4-Dichlorophenyl)-2-((5-(4-(3,4-dichlorophenyl)-2-mercapto-1H- imidazol-1-yl)-1H-
benzo|d]imidazol-2-yl)thio)ethan-1-one. 4h

White solid: yield: 90%, mp: 219-221 'C; FT-IR (KBr, cm™): 3397 (NH), 1673(C=0), 1622
(C=N); 'H NMR (400 MHz, DMSO- ds & ppm): 13.01 (s, RN

Cl SH
N
1H), 8.11 (d, 2H, J = 8.4 Hz, Ar-H), 7.95 (s, 1H, imidazole |¢ _@.@ N ;}j
Ty
H

proton), 7.85 (s, 1H, Ar-H), 7.80 (d, 2H, J = 8.4 Hz, Ar-H),

7.69 (d, 2H, J= 8.4 Hz, Ar-H), 7.62 (d, 1H, J= 8.4 Hz, Ar-H), 7.51 (d, 2H, J = 8.4 Hz, Ar-H),
5.19 (s, 2H, S-CH2-protons); 13C NMR (100 MHz, DMSO-ds ) 6: 191.2, 151.3, 138.3, 133.2,
132.5,131.6, 129.8, 128.4, 128.4, 128.0, 125.3, 121.0, 116.6, 112.7, 110.9, 108.6, 107.0, 39.9;
ESI-HRMS: m/z Calcd for C24H16ClsN4OS2 [M+2] 579.9520, found: 579.1554.
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2-((5-(2-Mercapto-4-(4-nitrophenyl)-1 H-imidazol-1-yl)-1H-benzo|d]imidazol-2-yl) thio)-
1-(4-nitrophenyl)ethan-1-one. 4i

Brown solid: yield: 90%, mp: 275-277 'C; FT-IR (KBr, cm™): 3362 (NH), 1678 (C=0), 1629
(C=N); TH NMR (400 MHz, CDCl3+DMSO- ds 8 ppm): 13.15
(s, 1H, SH), 8.37 (d, J=9.2 Hz, 2H), 8.32 (d, /= 8.8 Hz, 2H), N SH

8.23 (d,J=9.2 Hz, 2H), 7.97 (d, J = 8.8 Hz, 2H), 7.94 (s, 1H, OZN‘O—&:}&@:S)_g_?
imidazole proton), 7.86 (d, J = 2.0 Hz, 1H), 7.78 (d, J = 2.0 H

Hz, 1H), 7.55 (s, 1H, Ar-H), 7.53 (s, 1H, Ar-H), 7.39 (d, J = 6.4 Hz, 1H, Ar-H), 5.09 (s, 2H,
S-CHz-protons); I3C NMR (100 MHz, CDCl3+DMSO-ds) 6: 192.5, 164.6, 151.5, 150.5, 146.4,
140.3, 134.3, 132.3, 130.0, 127.0, 124.9, 124.4, 124.0, 120.6, 119.4, 113.8, 112.3, 44.9; ESI-
HRMS: m/z Calcd for C24H17N6O5sS, [M+H]" 533.0702, found: 533.1707.

1-([1, 1' —Biphenyl]-4-yl)-2-((5-(4-([1, 1' —biphenyl]-4-yl)-2-mercapto-1H-imidazol-1-yl)-
1H-benzo|d]imidazol-2-yl) thio) ethan-1-one. 4j

Light yellow solid: yield: 92%, mp: 251-253 "C; FT-IR (KBr, cm™): 3393 (NH), 1668 (C=0),
1631 (C=N); 'H NMR (400 MHz, DMSO-ds 5 ppm): 13.00 o

N SH
(s, 1H, SH), 12.75 (s, 1H, NH), 8.16 (d, J = 8.0 Hz, 2H, Ar- |py _@_@g . {_@
Cy

NO,

H), 7.90-7.92 (m, 3H, Ar-H), 7.78-7.80 (m, SH Ar-H), 7.52-

7.55 (m, 5H, Ar-H), 7.45 — 7.48 (m, 4H), 7.39 (s, 1H, imidazole proton), 7.11 (d, J = 8.8 Hz,
2H), 5.18 (s, 2H, S-CH»-protons); *C NMR (100 MHz, DMSO-d;) &: 192.8, 152.1, 146.0,
145.8,139.1,137.9,135.6, 134.3, 133.9, 133.7, 129.8, 129.6, 129.1, 128.9, 127.5, 117.8, 114.7,
107.6, 41.9; ESI-HRMS: m/z Calcd for C36H27N40S: [M+H]" 595.1626, found: 595.1648.
1-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)-4-phenyl-1H-imidazole-2-thiol. Sa

White solid: yield: 89%, mp: 172-174°C; FT-IR (KBr, cm™): 3345 (NH), 1628 (C=N), 1423
(C=C): "H NMR (400 MHz, CDCI3+DMSO-ds 8 ppm): N:IGSH

12.65 (s, 1H, SH), 8.15 (s, 1H, Ar-H), 8.06 (d, 2H, J= 7.6 Q—\\’ “@:E)_SPO
Hz), 7.16 (d, 1H, J = 7.7 Hz), 7.48-7.57 (m, 4H, Ar-H), H

7.40 (s, 1H, Ar-H), 7.17 — 7.31 (m, 5H, Ar-H), 7.09 (d, 1H, J = 6.8 Hz, Ar-H), 5.19 (s, 2H, S-
CH,- protons); 3C NMR (100 MHz, CDCI3+DMSO-ds) 8: 171.6, 151.5, 135.6, 135.4, 135.1,
134.4, 134.0, 132.0, 131.4, 129.3, 129.2, 128.9, 121.7, 119.6, 114.7, 108.4, 36.1; ESI-HRMS:
m/z Calcd for C23H19N4S> [M+H]" 415.1051, found: 415.1054.
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1-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)-4-(4-methoxyphenyl)-1 H-imidazole-2-thiol.
5b

White solid: yield: 87%, mp: 176-178 “C; FT-IR (KBr, cm™): 3376 (NH), 1666 (C=0), 1634
(C=N); 'TH NMR (400 MHz, CDCI;+DMSO- ds N,IGSH

ppm):12.41 (s, 1H, SH), 10.25 (s, 1H, NH), 8.15-8.19 b‘Q’\\’ *©:N S’_O
(m, 1H, Ar-H), 8.11 (s, 1H, Ar-H), 8.03 (d, J=7.6 Hz, ﬁ)_

2H), 7.42-7.57 (m, 5H, Ar-H), 7.31 (d, /= 7.6 Hz, 1H), 7.10 (d, J=7.2 Hz, 1H), 7.05 (d, J =
8.4 Hz, 2H), 5.26 (s, 2H, S-CHj-protons), 3.9 (s, 3H,-OCHs); '3*C NMR (100 MHz,
CDCI13+DMSO ds) 6: 170.1, 164.4, 152.4, 133.1, 132.5, 131.3, 129.2, 129.0, 128.2, 127.9,
126.0, 117.4, 114.4, 110.3, 107.8, 105.1, 55.9, 41.7; ESI-HRMS: m/z Calcd for C24H21N4OS>
[M+H]" 445.1157, found: 445.1181.
1-(2-((4-Nitrobenzyl)thio)-1H-benzo[d]imidazol-5-yl)-4-phenyl-1 H-imidazole-2-thiol. Sc¢
White solid: yield: 90%, mp: 146-148 "C; FT-IR (KBr, cm™): 3372 (NH), 1621 (C=N); 'H
NMR (400 MHz, DMSO- ds 6 ppm): 13.00(1H, SH), N\_IGSH

8.10 (s, 1H, Ar-H), 8.06 (d, J = 7.2 Hz, 2H), 7.65-7.72 % ~©:1‘f S/—@'NOZ
(m, Ar-H, 2H), 7.59 (s, 1H, imidazole proton), 7.51-7.57 E)_

(m, 5H), 7.24 (dd, J=8.4,2.0 Hz, 2H, Ar-H), 5.23 (s, 2H, S-CH»-protons), 1.21 (brs, 1H); ESI-
HRMS: m/z Calcd for C23H1sNsO2S> [M+H]" 460.0902, found: 460.0940.
4-(4-Chlorophenyl)-1-(2-((4-nitrobenzyl) thio)-1H-benzo|[d]imidazol-5-yl) 1H-imidazole-
2-thiol. 5d

White solid: yield: 95%, mp: 155-157 "C; FT-IR (KBr, cm™): 3372 (NH), 1622 (C=N); 'H
NMR (400 MHz, DMSO-ds 6 ppm): 10.55 (s, 1H,
SH), 8.33 (s, 1H, NH), 8.10 (d, J = 7.6 Hz, 2H), 8.00 N:IGSH
(d,J=7.2Hz,2H),7.75 (d, 2H, J= 6.8 Hz Ar-H), 7.67 Cl% ”CES)_S’_@_NOZ
(s, 1H, imidazole proton), 7.60 — 7.64 (m, 3H),7.56 (d, H

2H, J= 7.6 Hz Ar-H), 5.45 (s, 2H, S-CH»-proton); '3C NMR (100 MHz, DMSO ds) 6: 170.2,
152.9, 147.1, 146.4, 140.1, 134.8, 131.6, 130.6, 128.9, 128.3, 127.2, 124.0, 122.0, 105.9, 34.5;
ESI-HRMS: m/z Calcd for C23H7CINsO2S2 [M+H]" 494.0512, found: 494.0562.
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4-(4-Bromophenyl)-1-(2-((4-nitrobenzyl) thio)-1H-benzo|d]imidazol- 5-yl) 1H-imidazole-
2-thiol. Se

Pale yellow solid: yield: 96%, mp: 167-169 °'C; FT-IR (KBr, cm™): 3359 (NH), 1621 (C=N);
'H NMR (400 MHz, DMSO- ds & ppm) 10.25 (s, 1H, N SH

SH), 8.07-8.09 (m, 4H, Ar-H), 8.01 (s, 1H, imidazole Br—®—%}~©:N S/_@' NO,
proton), 7.73 (d, 1H, J=7.6 Hz Ar-H), 7.60-7.64 (m, 4H, E)_

Ar-H), 7.43 (d, 2H, J = 8.8 Hz, Ar-H), 5.33 (s, 2H, S-CHa-protons); *C NMR (100 MHz,
DMSOds)6:170.3,152.9,147.1, 146.4, 140.2, 132.5, 131.8, 130.6, 128.6, 127.2, 124.0, 123.6,
122.0, 105.9, 34.5; ESI-HRMS: m/z Caled for C23H17BrNsO»S, [M+H]"; 538. 0007, found:
538.0041.

4-([1, 1' —-Biphenyl]-4-yl)-1-(2-(benzylthio)-1H-benzo|d]imidazol-5-yl)-1H-imidazole-2-
thiol. 5f

Brown solid: yield: 92%, mp: 175-177 'C; FT-IR (KBr, cm™): 3369 (NH), 1633 (C=N), 1423;
'H NMR (400 MHz, CDCls-DMSO- ds 5 ppm): 10.09 (s NﬁGSH _
1H, SH), 9.89 (brs, 1H, NH), 8.37 (s, 1H, Ar-H), 8.18 (d, Ph‘®—\\' CEE)_S/—@
J = 8.4 Hz, 2H), 7.93 (s, 1H, imidazole proton), 7.82 (d, H

2H, J = 8.8 Hz, Ar-H), 7.70 (d, 2H, J = 8.0 Hz, Ar-H), 7.58-7.55 (m, 3H, Ar-H), 7.51 —7.49
(m, 3H, Ar-H), 7.44 (d, 1H, J= 7.2 Hz, Ar-H), 7.33 (t, 2H, J= 8.0 Hz, Ar-H), 7.14 (d, 1H, J =
7.6 Hz, 1H), 5.37 (s, 2H, S-CHa-protons); '3C NMR (100 MHz, CDCI3+DMSO ds) 6: 170.14,
152.3,151.6,136.1,134.2,134.0, 133.1, 132.5, 129.9, 129.6, 129.4, 129.3, 129.0, 128.2, 127 .4,
127.0, 126.1, 118.9, 117.5, 114.6, 110.4, 107.9, 105.1, 36.8; ESI-HRMS: m/z Calcd for
C2oH23N4S> [M+H]™ 491.1364, found: 491.1382.
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3.9. Spectra
TH-NMR Spectrum of compound 4a in (CDCl3+DMSO-ds 400 MHz):
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Mass spectrum of compound 4a:
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I3C-NMR Spectrum of 4b in (DMSO-ds 100 MHz):
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TH-NMR Spectrum of compound 4¢ in (CDCl3+DMSO-ds, 400 MHz):
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Mass spectrum of compound 4c¢
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I3C-NMR Spectrum of compound 4d (CDCl:+DMSO-ds, 100 MHz):
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TH-NMR Spectrum of compound 4e in (DMSO-ds, 400 MHz):
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Mass spectrum of compound 4e
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I3C-NMR Spectrum of compound 4f (CDCl3+DMSO-ds, 100 MHz):
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'TH-NMR spectrum of compound 4g in (DMSO-ds, 400 MHz)
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Mass spectrum of compound 4g
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I3C-NMR Spectrum of compound 4h in (DMSO-ds, 100 MHz):
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TH-NMR spectrum of compound 4i in (CDCIz:+DMSO-ds, 400 MHz):
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Mass spectrum of compound 4i
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I3C-NMR spectrum of compound 4j in (DMSO-ds, 100 MHz):
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'TH-NMR Spectrum of compound 5a in (CDCIz3+DMSO-ds, 400 MHz):
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Mass spectrum of compound Sa
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I3C-NMR Spectrum of compound 5b (CDCl:+DMSO-ds, 100 MHz):
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TH-NMR Spectrum of compound S¢ in (DMSO-ds, 400 MHz):
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TH-NMR Spectrum of compound 5d in (DMSO-ds, 400 MHz)
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Mass

spectrum of compound 5d
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I3C-NMR Spectrum of compound Se in (DMSO-ds, 100 MHz):
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TH-NMR Spectrum of compound 5f (CDCl3+DMSO-ds, 400 MHz)
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Mass spectrum of compound S5f
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Chapter IV.A

CHAPTER-IVA

Polyethylene glycol mediated three-component synthesis of thiazolyl-
benzimidazoles as potent a-glucosidase inhibitors: Design, synthesis,
molecular modelling, and ADME studies

4A.0. Introduction

Heterocycles occupy a predominant position in all types of agrochemicals, veterinary products,
and materials, and are frequently used in the drug development process [!!. Thus, thiazoles are
considered one of the most important and privileged structural motifs and are often found in
several natural products like vitamin Bl(thiamine) and penicillin. Due to their immense
impotence and wide range of bio-activities, the present study was made towards thiazole
synthesis. Fortunately, synthetic thiazoles are also used in the drug discovery process ! and
are also found in many marketed drugs as potent inhibitors (Figure 4A.1). For instance,
thiazole core unit-containing substances often show a large number of bio-activities like anti-
bacterial 1, anti-fungal ¥, anti-cancer [*), and anti-diabetic [¢. In addition, thiazole derivatives
are also found application in functional materials /), as synthetic intermediates [, as CDK

inhibitors ), as liquid crystals for ferroelectric display 1!, and as cosmetic sunscreens '],

w/

d Y% o

SBA375 Ritanovir
anti-cancer agent Anti-HIV
OH O N—\>
|
NS N
VY ;
H 0*>%
Thiabendazole Meloxicam
antihelmintic Anti-inflammatory

Figure 4A.1. Following are marketed drugs with thiazole core unit

The following is a compact review of the literature on the synthesis of thiazoles.

Vedula 21 ¢t al. reported a new series of one-pot three-component synthesis of coumarinyl-
based thiazoles from appropriate amounts of thiocarbohydrazide, substituted aromatic

aldehydes, and different substituted 2-bromoacetophenones in ethanol and a catalytic amount
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of glacial acetic acid under microwave condition provides good to excellent yields (Scheme
4.1). Moreover, the synthesized composites further screened in-vitro cytotoxicity activity

against Gram-positive spheroid firmicute. Among the tested compounds, compound 4e showed

Rl
R2 R RZ

v

\

R! Z Br =Ny
\
NAS

/1\'1

good anti-bacterial activity (Figure 4A.1).

CHO  EtOH

NN AcOH
HN YN,

MW

Scheme 4A.1. One-pot three-component coumarin based-thiazoles

Cl

4e

Figure 4A.1. Biologically potent compound

Meshram 31 ¢t al. developed a simple and eco-friendly one-pot, the three-component
procedure for the synthesis of pyrazolyl-thiazoles using various (E)-N, N-dimethyl-3-
phenylprop-1-en-1-amines, thiosemicarbazide and substituted 2-bromoacetophenones in
presence of sulfamic acid as green catalyst in water (scheme 4A.2). Further, the synthesized

scaffolds were evaluated for in-vitro cytotoxic activity against three human cancer cell lines
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A549, MCF-7, and HeLa. Among the tested compounds, compounds 4b, 4¢, and 4e (Figure

4A.2) showed considerable cytotoxic activity with an ICs5o<5 uM.

Br
(0]

R! W_

_ H H
R + N N N+ N0 \gl
2 \g/ HzO reflux R
R2 3-6h

26 compounds
upto 89% yield

Scheme 4A.2. One pot, three-component synthesis of pyrazolyl-thiazoles

N N N
N N N
NS NN NS
H,C Y H3C/®/</ Ku\/ H3C/®/</ Ry
H CH I
4b : 4c :

4e

Figure 4A.2. Biolological active pyrazolyl-thiazole composites
Mamidala ' ¢z al. has been reported a novel one-pot three-component microwave-assisted
procedure for the synthesis of pyrozolo-thiazoles using thiosemicarbazide, 3-(furan-2-yl)-1-
(pyridin-2-yl)prop-2- en-1-one and 1-(pyridin-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one with
substituted 2-bromoacetophenones in NaOH and ethanol as solvent provides good to excellent
yields (Scheme 4A.3). Moreover, the synthesized scaffolds were evaluated for their in-vitro
cytotoxic activity against four human cancer cell lines, A549, HeLa, SK-N-SH, and DU-145.
Among the tested, compounds 4h has shown excellent in-vitro cytotoxic activity against HeLa
with ICso values 9.97 £ 0.05 uM. Similarly, compounds 4c, and 4j exhibit moderate anti-cancer

activity with 1Cso values of 19.78 £0.03 uM, and 15.61 + 0.06 uM respectively (Figure 4A.4).

Br
0)
(o)
— H Ethanol
™ + N_ NH, + thano
_ H,N \g( NaOH N#S
MW .
X=0,S R

X=S,0
12 compounds
up to 96% yield

Scheme 4A.3. One-pot three-component synthesis of pyrazolo-thiazole derivatives
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4h 4c 4j

Figure 4A.4. Biological potent pyarazolo-thiazole compounds

Gondru ! et al. reported 1,2,3 triazolo-thiazole molecular hybrids via multicomponent
reaction method using 4-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-
yl)methoxy)benzaldehyde, thiosemicarbazide and substituted 2-bromoacetophenones in
methanol and a catalytic amount of acetic acid (Scheme 4A.5). Moreover, the synthesized
derivatives were further screened for their in-vitro antimicrobial and biofilm studies. Among
the tested scaffolds, compounds 8i, 8k, and 81 showed promising antimicrobial activity with
ICso values of 6.6 uM, 16.6 uM, and 15.9 uM respectively against Bacillus subtilis MTCC 121,
and compounds 8k and 81 exhibit inhibitory activity against Staphylococcus aureus MTCC 96
with ICso values 13.5 and 12.0uM respectively (Figure 4A.5).

0 H Nj/@rR
N
CHO NQ}(O
. 8a-h

NG o0
/OON;}/\ Methanol

+ AcOH Y
reflux,4-6 h \©\
H NN
N_ NH, AB N-N

H,N H
’ If SFN R?
R3 (6] o~
R2 Br
N 8i-r 4 1
0)

Scheme 4A.5. Multi-component synthesis of triazolo-thiazole molecular hybrids
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0]
T
o \
N @’\V-NH R®
I
8i: R!=R2=R3=H % 7

8k: R'=OCH;, R>=R3=H Z .
8I: R'=OCH,, R*=Br, R>=H

R2

Figure 4A.5. Biologically active triazole-thiazole derivatives
Vedula 1% ¢z al. reported a one-pot, efficient, novel, inexpensive synthetic procedure for the
synthesis of (E)-ethyl2-(2-((E)-2-(1-(4-methyl-2-(phenylamino) thiazol-
Syl)ethylidene)hydrazinyl)-4-oxothiazol-5(4H)-ylidene)acetates via one-pot, five component
reaction using various substituted anilines, 3-chloropentane-2,4-dione, ammonium
thiocyanate, thiosemicarbazide, and dialkylacetylene dicarboxylate in PEG-400 as green and

recyclable solvent provides good to excellent yields (Scheme 4A.6).

NH, o % o
R! O o ‘R
+ NH,SCN + N
R2 4 )YK PEG-400  R3 N\ﬁ
3 1 N N.
R reflux R2 N- S
R-O 0- 2-35h Lk H

gNH+%_§
HZN\\g/2 o

Scheme 4A.6. One-pot five-component synthesis of thiazole derivatives
Sreejalakshmi 17! ef al. developed a series of novel 4-hydarzinothiazole composites via a
sequential one-pot four-component reaction approach. The title compounds were synthesized
using aminoguanidine, carbonyl compounds, isothiocyanates, and a-halo carbonyl compounds
with excellent yields (Scheme 4A.7). Moreover, the synthesized compounds were further
screened for their in-vitro anti-cancer activity against six human cancer cell lines MCF-7,
SW620, A549, HL60, SK-MEL-2, and OVCAR-3. Compounds 2b and 4b exhibit good activity
against MCF-7, and compound 3b shows good activity against A549 (Figure 4A.6).

Rl
Rz’gN
HN 3
(0] NH 0 N R
" + + S>—NH
RICR? HZN)Lﬁ NH, * paNCS  * pall_Br o g~

4

Scheme 4A.7. One-pot four-component synthesis of thiazoles
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l o_ CeHyy o_ o_
SN H/]%N H SN
NH N NH N NH y
N\ H A\ H N\ H
o | S>— o I S>— o S>_
2b 3b 4b

Figure 4A.6. Biologically active scaffolds
Costa and co-workers '8/ have developed a series of fused thiazolo[5,4-d]thiazoles (TzTz)
and thiazolo[5,4-c]isoquinolines (TzIQ) or mixtures of TzTz and TzIQ. To synthesize titled
compounds dithooxamide and 2-halosubstituted benzaldehydes were used. The use of

lanthanum(III) triflate as the catalyst favours the formation of TzIQ (Scheme 4A.8).

X
s7~Nn, 210°C

La(OTf)3
X=F, Cl, Br

Scheme 4A.8. Synthesis of fused thiazolo-thiazole and thiazolo-isoquinoline derivatives
Choudhury ! ef al. synthesized a series of novel 2,4-diphenyl 1,3-thiazole-linked barbituric
acid analogues via a multi-component reaction method. The title compounds were synthesized
using readily available starting materials i.e. arylglyoxal, barbituric acid, and aryl thioamides
in presence of 3-4 drops of water, and LAG (liquid-assisted grinding) provide titled composites
with good to excellent yields. Similarly, same-titled compounds were also prepared by
involving aryl nitriles, ammonium sulphide, arylglyoxal, and barbituric acid in a water medium
was developed (Scheme 4A.9). Further studied the photophysical properties of titled
compounds. The compound 41 showed the highest quantum yield of 0.660 (Figure 4A.7).

OH
0o OH |
OYN o Rl-C
N
S NH2 H o /N , S OH
s + E/I 2 | N/%Rl (NH4)2S
LAG T THCLrt

NS0

Scheme 4A.9. Tri-substituted thiazolo barbituric acid compounds
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OYPII OH
/N , S
>0
N
F 41
Figure 4A.7

Saroha 2% and Khurana developed an efficient method for the regioselective synthesis of
2,4,5-tri-substituted thiazole compounds by MCR method using thiosemicarbazide,
aldehyde/ketone/isatins, followed by addition of araylglyoxal and active methylene containing
compounds/ C-H activated acids in ethanol and catalytic amounts of glacial acetic acid provide

good to excellent yields (Scheme 4A. 10)

H
Ethanol
H,N_ )L
2 NH2 0> AcOH
80 °C 0}

Scheme 4A.10. One-pot four-component synthesis of 2,4,5 tri-substituted thiazole scaffolds

Peng and co-workers 12! reported a novel one-pot synthesis of imidazo[ 1,2-c]thiazoles through
a Pd-catalysed cascade by cyclization using isonitriles and thioamides provides good to
excellent yields (Scheme 4A.11). Moreover, the titled compounds screened for in-vitro
antitumor activity against HepG2. Compound 3¢ showed excellent activity with ICso values of

7.06+£0.68uM (Figure 4A.8).

S R! NH
1. Pd(OAc), _
R/: X NHZ + CENF_R] R@_{N
z CH,CN:MeOH R\ 4\&

Scheme 4A.11. Pd-catalysed imidazolo-thiazole compounds

-R1
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3¢

Figure 4A.8
Yang 2% ¢t al. developed a one-pot, facile, and efficient protocol to synthesize the 2,5-
disubstituted thiazoles composites from chromone derivatives and thioamides in ethanol

solvent and KOH as a base followed by Michael addition/ intramolecular cycloaddition process

O HO
\ &
Dl

Scheme 4A.12. One-pot synthesis of 2,5 disubstituted thiazole derivatives

provides excellent yields (scheme 4A.12).

0]

Cl
E

S
Z
o) R ~NH, KOH
Deng 123! et al. described a new, one-pot, Brensted acid-catalyzed synthesis of di-substituted

thiazoles from benzyl amines, acetophenones, and sulphur powder in isonicotinic acid media

that provides good to excellent yields under metal-free conditions (Scheme-4A.13).

R
N isonicotinic acid N N
R-L + s + \
= 130 °C S

Scheme 4A.13. Brensted acid catalyzed 2,4-disubstituted thiazole derivatives
Vaarla 124 ef al. developed a novel, efficient, one-pot, three-component synthetic procedure
for the synthesis of alkyl-4-oxo-coumarinyl-ethylidine-hydrazono-thaizolidin-5-yl-diene-
acetate compounds by using different substituted 3-acetyl coumarins, thiosemecarzide and
dialkyl acetylenedicarboxylates in acetic acid solvent (Scheme 4A.15). Moreover, the titled
compounds were further screened for their in-vitro antiviral activity against different human

viruses. The compound I'V-19 showed potent activity (Figure 4A.9).
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R3
R2 O O o
R! A0 P | oR AcOH m
+ 07 T 60 C N, /L
H 4-6 h
N N\g/NHz R

Scheme 4A.15. One-pot three-component synthesis of coumarinyl-hydrazono-thiazolodines

acetate derivatives

S

N, A
2 N
N H

compound-IV-19

Figure 4A.9. Biologically active compound
Ramagiri 5! and co-workers reported a simple, one-pot, three-component synthesis of 3-(3-
phenyl-2-(phenylimino)-2,3-dihydrothiazol-4-yl)-2 H-chromen-2-one derivatives by using 3-
(2-bromoacetyl) chromen-2-one, various substituted primary amines and phenyl

isothiocyanates in DMF. (Scheme 4A.16).

R1 NH, NCS R!

R2? Z Br R4 reflux R2 Pz

Scheme 4.16. One-pot three-component synthesis of 2,3,4-trisubstituted thiazoles

Vedula 261 ¢t al. synthesized a series of novel coumarin-based thiazolyl-pyarazolo-
carbaldehyde derivatives via a one-pot three-component reaction using various substituted 3-
(2-bromoacetyl)coumarins, thiosemicarbazide and substituted acetophenones followed by
Vilsmeier-Haack reaction condition (Scheme 4A.17). Moreover, the titled compounds were

screened for their in-vitro cytotoxic activity against human cancer cell lines and antibacterial
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activity. Among the tested, compounds 4m, and 4n exhibit significant anticancer activity

against HelLa cell lines (Figure 4A.10).

R! R3
CH; o O
DMF, rt, strring @/\Iﬁ
- N
o R2 = N =
POCI;, 0-60 C SN
3 | ¢~ “=cno

N NH2

H,N

Scheme 4A.17. One-pot three-component synthesis of coumarin-based thiazolyl-pyrazolo-

carbaldehyde derivatives

Cl Br
0O O 0O O
N N
— N = — N =
c | \>’N = Br | \>’N =
S CHO S CHO
4m 4n

Figure 4A.10. Biologically active scaffolds

4A.1. Present work
4A.1.1. Starting Materials

In this present work, the synthesis of novel thiazole-based benzimidazole (4a-s) derivatives
were described. The starting materials required for the synthesis of the target compounds were
5-amino-2-mercaptobenzimidazole, = phenyl  isothiocyanate, and  substituted  2-
bromoacetophenones. All the starting materials were procured from commercial sources.
4A.2. Synthesis of Thiazoles

The synthesis of target thiazole analogues was carried out as outlined in Scheme 4A.1. These
compounds (4a-s) were synthesized by a reaction of 5-amino-2-mercaptobenzimidazole (1), phenyl

isothiocyanate (2) and phenacyl bromides (3) (1:1:2) in PEG-400. The yields of products are good.

! 2 \
R
SH + PEG-400 g» N S
-- \
N)_ —0c N>_
3-5h R H
reflux R?
3a-] 4a-s
\ yields 85 to 95 % S

Scheme 4A.1. Synthesis of thiazole derivatives via one-pot three component reaction.
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4A.3. Results and discussion

Inspired by the biological profile of thiazoles, benzimidazoles, and an extension of previous
work on the MCR approach herein, we describe a facile, efficient, and greener protocol for the
synthesis of benzimidazole based thiazoles by the reaction of 5-amino-2-
mercaptobenzimidazole 1 phenyl isothiocyanate 2, a-bromo acetophenone 3 in a green solvent
medium, PEG 400 at ambient temperature to give 88 % of yield via multicomponent approach.
To find the optimization condition, we began our investigation for identifying a suitable solvent
to obtain the title product 4a (Table 4A.1). Using easily available starting materials 5-amino-
2-mercaptobenzimidazole 1 (1.0 equivalent), phenyl isothiocyanate 2 (1.0 equivalent), and a-
bromo acetophenone 3 (2.0 equivalents) in different solvents and various bases were employed
to improve the yields of reaction (Table 4A.1, entries 1-13). But the desired product was not
formed with a greater yield. Finally, we tried a reaction with PEG-400 as a reaction solvent.
Fortunately, the reaction was smooth in PEG-400 and gave the desired product with good yield
within a short time at ambient temperature. Thus, among the solvents tested PEG-400 was
found to be the best solvent for the synthesis of title compounds (4a-s). Notably, PEG-400 is
eco-friendly, cheaper in cost, non-volatile in nature, and a recyclable and reusable solvent.
Further, we examined the recyclability of the PEG-400 and it was found that the PEG-400 is
recoverable and reusable up to the fourth time in reaction. After isolation of the titled product,
water was removed through direct distillation and PEG-400 was washed with diethyl ether
(three times, each time 2.0 ml for a single wash). The recovered PEG-400 was used in further

runs with a negligible loss of PEG-400 effectiveness.

- ~
e \\\
’ \

.

HzN o - PEG-400 g» N o
-- \
N>_ —mC N
3-5h H

reflux R2
3a—J 4a-s

yields 85 to 95 % S

o ——————————————————

Table 4A.1. Optimized reaction conditions. 4a“

Entry Solvent Catalyst (mol%) Temp ('C) Time (h)  Yield® (%)
1 H>O - 60 24 n.r
2 MeOH - 60 24 25
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3 EtOH - 60 20 30
4 EtOH AcOH (10) 60 15 41
5 Ethanol AcOH (20) 60 12 45
6 Ethanol Na,CO3 60 12 30
7 Ethanol K>CO; 60 12 35
8 Ethanol KOH 60 12 30
9 Ethanol NaOH 60 12 28
10 Ethanol DMF (10) 60 12 40
11 Ethanol DMF (20) 60 10 45
12 DMF - 60 8 50
13 DMF - 70 8 65
14  PEG-400 - 60 6 80
15 PEG-400 - 70 4 85
16  PEG-400 - reflux 4 60

“Reaction conditions: 5-amino-2-marcaptobenzimidazole (1) (1.0 mmol), phenyl isothiocyanate (2) (1.0 mmol),

2-bromoacetophenone (3) (2.0 mmol), solvent (2 mL), “Isolated yields.

Under these optimized conditions, the substrate scope of the reaction was studied using
a series of phenyl isocyanates (2a-b) concerning different substituted and o-bromo
acetophenones (3a-j) derivatives (Figure 4A. 2). It is noteworthy that the substituents on the
phenyl isothiocyanates and o-bromo acetophenones, regardless of the electron-deficient/
electron-rich nature, did not hamper the efficiency of the reaction, producing the corresponding
thiazolines in moderate to excellent yields.
The structure of all the newly synthesized scaffolds was well characterized by IR, 'H, NMR,
3C-NMR, and mass spectral data. For instance, the IR spectrum of compound 4a showed the
band at 3391 cm !, 1678 cm ™!, 1618 cm !, and 1486 cm ! corresponding to the -NH, -C=0,
C=N, and C=C stretching vibrations respectively. The 'H-NMR of the spectrum of compound
4a showed peaks at 6 7.99, 6.98, and 3.77 corresponding to the -NH, imidazole C5-proton, and
—S-CHp-aliphatic protons respectively. The '*C-NMR spectrum showed pecks at § 193.17, 152,
105.0, and 41.25 corresponding to the carbonyl carbon, imine carbon, imidazole C5-carbon,
and aliphatic S-CHy-carbons respectively. The HRMS (ESI) spectra of all the synthesized

compounds have shown [M+H] " ion peck.
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Figure 4A.2. Scope of substrates to synthesize

The plausible reaction mechanism for the formation of title compounds is shown in Scheme
4A. 2. Reaction of 5-amino-2-mercaptobenzimidazole, with 1 mmol of phenyl isothiocyanate
in presence of PEG-400 to give intermediate ‘II’ from I. In the next step, the thiol and thiourea
groups of 5-amino-2-mercaptobenzimidazole displace the bromine atoms of two equivalents
of phenacyl bromides to give intermediate ‘III’ with the elimination of two equivalents of
hydro bromic acid. The intermediate ‘III” further reacts with PEG-400 to form the intermediate
IV. Further the intermediate I'V undergoes elimination of water to give benzimidazole based

thiazolidine derivatives (4a-s) V.
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Scheme 4A. 2. Plausible reaction mechanism for the formation of Benzimidazole based

thiazlolyl derivatives.
4A.4.Biology
4A.4.1. a-Amylase Inhibitory Activity

The inhibition of a-amylase was measured using a modified assay technique were described
[27] The synthesized scaffolds and standard acarbose were prescribed at different
concentrations (5-100 pg/mL™"). An aggregate of 50 pL of scaffolds was incubated with 50 pL
of porcine a-amylase (0.5 mg/mL in 0.02 M sodium phosphate buffer pH 6.9) at room
temperature for 30 minutes. After incubation, each tube was filled with 50 puL of 1%, starch
solution in sodium phosphate buffer (pH 6.8) and incubated at room temperature for another
20 minutes. Further,100 uL of DNS (Di-nitro salicylic acid) reagent was added to the reaction
mixture and boiled for 10 minutes than cooled to the room temperature. After dilution, the
absorbance was measured at 540 nm, and the % of inhibition was calculated using the formula

below. The ICso values were found by taking the mean and standard deviation of three

measurements, as shown in Table 4A.2.

All the synthesized compounds (4a-s) were evaluated for in-vitro a-amylase activity using
Acarbose as a standard positive control. The results with ICso values are represented in Table
4A.2 and Figure 4A.3. All the tested scaffolds showed varying degrees of a-amylase inhibitory
activity with the ICso values ranging from 12.02 + 0.51pg/ml to 44.57 = 0.47 pg/ml when
compared with standard Acarbose has ICso 11.88 £+ 0.68 ug/ml. Among the tested scaffolds 4d,

4c, 4h, and 4b were found to be excellent inhibitory activity against enzyme with ICso values
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found to be 12.02 + 0.56; 12.25+ 0.28; 12.74 £ 0.45; 19.10 £ 0.88 pg/ml respectively. Notably,
compounds 4k, 41, and 4n have shown weak inhibitory activity with ICso values are 40.08 +

0.56; 44.57 £ 0.47, and 39.97 + 0.64 pg/ml, respectively.

Table 4A.2. a-Amylase activity and molecular docking studies.

S.NO | Compound | ICso(pg/ml) Molecular Docking Studies

o-Amylase | LF dG | LFV Score | LF Rank Score BC Score
01 4a 36.43+£0.65 | -8.75 -10.52 -10.42 0.169
02 4b 19.10+0.88 | -9.65 -11.38 -9.14 0.21
03 4c 12.25+0.28 | -10.01 -11.45 -10.36 0.226
04 4d 12.02 £0.56 | -11.34 -12.39 -10.90 0.272
05 4g 15.47+£0.51 | -9.90 -11.46 -8.59 0.22
06 4h 12.74+0.45 | -10.36 -11.89 -10.10 0.224
07 4 17.83+0.21 | -9.02 -12.13 -13.15 0.186
08 4k 40.08 £0.56 | -7.69 -9.66 -9.41 0.159
09 41 44.57+0.47 | -8.89 -10.79 -1.79 0.2
10 4m 2534+ 035 | -9.29 -10.93 -9.58 0.223
11 4n 39.97+0.64 | -8.96 -11.26 -10.25 0.226
12 4r 16.65+0091 | -9.77 -12.91 -11.34 0.227
13 Acarbose -6.73 -16.64 -10.48

11.88+0.68
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LF dG= Lead Finder protein-ligand binding energy, LFV Score= Lead Finder Virtual
screening (VS) scoring function; EC Score= Electrostatic complementarity Score.

in-vitro a-amylase inhibition activity

1
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Figure 4A.3. In vitro a-amylase inhibition activity of thiazolyl-benzimidazole scaffolds with

ICsopg/mL.

Structure-activity relationship: The synthetic scaffolds possess both benzimidazole and
thiazole heterocyclic rings. However, different substitutions on these two rings have exhibited
variable a-amylase inhibitory activity. The structure activity relationships were evaluated by
changing substituents on 2,3,4 position of phenacyl bromides and 4™ position of phenyl
isothiocyanate as shown in Table 4A.2. Notably, among the tested compounds, the compounds
with halogen groups (F, Cl, and Br) on the 3™ and 4™ position of phenyl ring have showed (4d,
4c, 4h, and 4b) most potent inhibitory activity against the a-amylase enzymes. Furthermore,
the electron-donating groups on 4™ position of phenyl group such as methyl, methoxy, and
scaffolds with no-substituent on the phenyl ring have shown much weaker inhibitory activity
(Table 4A.2).

4A.5. Molecular docking studies

Molecular docking studies were performed using Cresset Flare Docking software [282°1. All the
synthesized scaffolds were performed for molecular docking studies against the human
pancreatic o-amylase in a complex with montbretin A. (PDB ID: 4W93)P*%l. The 3D-structures
of proteins were retrieved from the protein data bank (PDB). A protein preparation wizard was
used to reduce the target protein energies. The receptor grid around their co-crystal ligand was

generated using Flare software. The 3D structures of ligands were generated and energies were
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minimized using chem3D software. The molecular docking was investigated by normal mode
and results were analyzed and protein-ligand interactions were attained. The grid box was
defined using the Montbretin A crystal structure within 6 A around it as binding site for the
tested compounds to perform docking studies. After the grid box were generated, docking
simulations was subsequently done. Top 10 binding pose were opted for prediction and results
were analysed using Discovery studio visualizer.

The cavity was defined using the native ligand of crystal structure 4w93 (a flavonol glycoside
called Monotrobtin A) within 6 A around it. The standard docking protocol in tDOCK was
used, including 3 stages of Genetic Algorithm search (GA1, GA2, GA3), followed by low-
temperature Monte Carlo (MC) and Simplex minimization (MIN) stages (rDock Reference
Guide, August 2015). Three representatives of the synthesized inhibitors (3a, 4f, and 6b) were
selected to be docked in the binding pocket of the prepared crystal structure using the empirical
score function of rDOCK keeping 20 docking solutions for each inhibitor to be sorted by their
binding scores and later visually analyzed for the interactions between the pocket’s residues
and the inhibitors.

The molecular docking studies of 1-phenyl-2-((5-(4-phenyl-2-(phenylamino) thiazol-3(2H)-
yl)-1H-benzo[d]imidazol-2-yl)thio)ethanone (4a-s) explored the binding mode and acquire

insights into the human pancreatic a-amylase complex with montbretin A (PDB ID: 4W93,

(PDB: Protein Data Bank)) binding sites as a probable mechanism.

A5

P . [510)

. 7"\ F Al 2%

Figure 4A.4. Molecular Docking interactions of A) Montbretin A (Co-crystal Ligand) B)
Acarbose C) Metformin with Human pancreatic a-amylase (PDB ID: 4W93)
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The Flare Cresset program was used to simulate the molecular docking interactions. The
creation of active sites was accomplished according to the earlier published literature*’!. The
hypothetical binding mechanism attained between the active site of a-amylase and thiazole-
benzimidazole scaffolds is depicted in Table 4A.2 and Figures 4A.4-4A.6.

The docking studies were first confirmed by superimposing the co-crystallized ligand
Montbretin A with Montbretin A derived from the crystal structure and redocking into the
active binding site of a-amylase enzyme. The co-crystal ligand montbretin A has binding
connections in the subsequent manner (Figure 4A.5). It forms H-bond interactions with
Argl95,11e235, Lys200, Tyr151, and Glu240 amino acid residues with bond lengths 2.90, 2.94,
3.13, 2.87, and 2.63 A°, respectively. The hydrophobic interactions are exhibited with Trp58
and His299 residues with an LF dG value of -6.73 kcal/mol. The docking studies were also
carried out for acarbose and metformin drugs and have shown similar interactions with that of
co-crystal ligand. Moreover, the synthesized scaffolds bind to the active site of the a-amylase
and exerts similar type of interactions. Based on molecular docking LF dG values ranging
between (-11.34 to -6.73 kcal/mol) shown that these analogues possibly display their anti-

diabetic activity through collaboration with the active sites of the a-amylase protein.

Figure 4A.5. Molecular Docking interactions of compound 4¢ with Human pancreatic a-
amylase (PDB ID: 4W93).

The in-vitro a-amylase activity results exhibited that the 4d substituted with bromo group
showed enhanced enzymatic activity with ICso value 12.02 = 0.56 pg/mL and exhibited the
highest binding energy with LF dG -11.34 kcal/mol. This 4d showed a hydrogen bond between
the amino acid residues GIn63 (Glutamine63) with the sulphur atom of thiazole with a bond

length of 2.54 A° (Figure 4A.6). It also exhibits hydrophobic interactions with Trp59
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(Tryptophan59 amino acid residue) and Thr163 (Threoninel63 amino acid residue) of amino

acid residues.

|
| Tyrizh
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Figure 6. Molecular Docking interactions of compound 4d with Human pancreatic a-amylase

(PDB ID: 4W93).

Moreover, 4¢ showed the highest binding energy LF dG -10.01 kcal/mol. The ligand forms pi-
pi interactions with Tyr62 (Tyrosine62 residue) with chlorophenyl and hydrophobic
interactions with Tyr62 and Thr163 amino acid residues.The molecular docking interactions
illustrate that the synthesized poly heterocycles have benzimidazole and thiazole rings with
diverse group forms as probable bioactive cores and that they form strong binding contacts
with active site of amino acid residues. The docking results shown that the docked ligands
entered the catalytic reaction centre region of a-amylase. The substrate ligands can form
hydrogen bonds with multiple conserved amino acids in o-amylase, especially the core
catalytic site GIn63 and Thr163 (Glutamine63 and Threoninel63) indicating that the molecular
docking model has high confidence.

4A.6. Electrostatic complementarity study

The docked compounds were also studied for Electrostatic complementarity in Flare Software
(The electrostatic complementarity colouring and scoring functions within Flare are an
extension of the protein interaction potential functions) !, Electrostatic interactions between
ligands and their protein contribute significantly to the enthalpic aspect of the binding free
energy AG. Examining the electrostatic match among the docked ligands and active site reveals

important information about why ligands bind and what can be done to optimize binding.
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4W93_P (1) + 4 D] -10;90K L, 4W93_P (1) + 4h %] -16,10%. “£Clip: -16.1A

Figure 4A.7. Electrostatic complementarity of the ligand with Human pancreatic a-amylase
(PDB ID: 4W93).

By selecting the ligands of interest and selecting Electrostatic complementarity to Protein from
the 'Mol' button drop-down menu in the Ligand tab, electrostatic complementarity surfaces for
ligands (towards the related protein) can be calculated and displayed. The default colours for
minimum and maximum EC vary from green (perfect electrostatic complementarity), white
(no electrostatic potential for either the ligand or the protein), and red (electrostatic clash). Each
ligand’s EC score is calculated against the protein with which it is associated. The score ranges
from EC score 1 (perfect complementarity) to EC score -1 (perfect clash). We calculated the
EC score of all docked ligand-protein complexes and showed positive values given in Table
4A.2. The illustration of Electrostatic Complementarity to Protein-ligand complex was shown

in Figure 4A.7.

4A.7. Molecular Dynamic Simulations

Gromacs software was used to perform the Molecular Dynamic (MD) simulations *?1. The
physical movements of molecules and atoms of the protein-ligand molecular docking complex
will be determined via MD simulation. The MD simulation is performed on a docked
compound 4d with pancreatic a-amylase complex (PDB ID: 4W93). The structure check
wizard tool is used to thoroughly vetted the protein for any missing residues before performing
the MD simulations. The AMBER force field was used to minimize the ligand energies, while

the AMBER FF14SB force field used to minimize the protein energies. MD simulations were
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carried out with default settings of normal calculation method, with the following parameters:
simulation length was 10 ns, and the solvent model was explicit. With a 10 A° solvent box, the
AMI1-BCC charge method is applied. The protein-ligand complexes energy has been
minimized to 0.25 kcal/mol, and the system has been equilibrated for 200 ps before the
production run begins. After the simulation was done, the trajectory was analyzed for RMSD
and RMSF plots and protein-ligand contacts.

To further understand and validate the molecular level interactions binding ability and
influence of compound 4d in complex with a-amylase (PDB ID: 4W93), we have performed
MD simulations of 100 nanoseconds. The Gromacs was used for the MD simulations. Periodic
boundary conditions were used to determine the specific size and shape of the water box
buffered at 10 A distances and box volume was calculated as ~400000 cubic As of simulation
box volume respectively. The simulation length is specified as 100 ns and Explicit solvent
models with TIP3P (Transferable Intermolecular Potential-3P) water are used for the MD
simulation. Ligand is minimized with the AMBER/GAFF (General AMBER Force Field
(GAFF)) force field and AMBER FF14SB (FF14SB= force field improved protein secondary
structure balance and dynamics from earlier force fields like FF99SB) was used as the protein
force field. After completing the MD simulation, the trajectory file was opened from Open
Trajectory, and RMSD (Root Mean Square Deviation) plots observed. The RMSD plots of
protein-ligand complex and ligand heavy atoms were recorded.

Root mean square fluctuations (RMSF) of individual residues were initially analyzed to
understand the impact of compound binding on the protein conformation changes. The RMSD
plot for protein-ligand complexes was stable during the simulations. The results were analyzed
using the Open Trajectory wizard and observations showed that the RMSD plots were stable
during the MD simulations. The study was carried out with 100ns MD simulations for
compound 4d-4W93 protein complex. Throughout the MD simulations, the RMSF and RMSD
plots of protein were scrutinized, in which the RMSD could measure the protein conformation
changes and based on this, identify that the molecular dynamics simulations had reached the
equilibrium, while the RMSF plot could identify the local changes of each amino acid residue
along the protein chain. The RMSF plot was displayed in Figure 4A.9, the plot is obtained for
the 4d-4W93 protein complex from the simulation studies. The fluctuations of the majority of
amino acid residues were found to be less than 3.5A, and enormous fluctuations in the residues
were comprehended in the plot indicating the protein hoop is high flexibility. A plot of RMSD
was generated between the primary frame of the protein and chosen frame. The plots in Figure

4A.8 illustrate the RMSD plot of the protein-ligand complex of MD simulation.
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Figure 4A.8. RMSD plot of compound 4d with a-amylase protein complex (PDB ID: 4W93)
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Figure 4A.9. RMSF plot of compound 4d with a-amylase protein complex (PDB ID: 4W93

The reference frame is the molecular docked complex of protein-ligand, and the movement for
this original alignment during MD simulation is gauged by aligning all the protein frames in
terms of time. The RMSD value of 1-4 A° is agreeable for globular proteins. For our MD
simulation of the compound 4d-4W93 protein complex, the value of RMSD did not surpass 1.0
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A° showing the stability of the protein conformation. The H-bond analysis of the compound 4d-
4W93 complex shows the interactions with the following amino acid residues Trp43, Tyr59,
Tyr62, His305, and Asp356 residues.

4A.8. 3D RISM Solvation Studies for 4d-4W93 complex

A three-dimensional reference-site (3D-RISM) algorithm was used to study the stability of the
protein in bulk water molecules generated during Flare docking studies at the active site 3], At
the end of 3D-RISM calculations, the high water density at the active site 4W93 was formed.
Figure 4A.9 reveals that the oxygen and hydrogen density of 4d at the active site of 4W93

protein and is demonstrated in two 3D-RISM colors, one is with green spheres

Figure 4A.10. 3D RISM solvation studies for 4d in complex with a-amylase protein complex
(PDB ID: 4W93)

indicates as Happy and the red sphere indicates unhappy i.e. favorable and unfavorable regions
at the active site. Solvation studies shown that ligand 4d that bind to the 4W93 active site are
stable in bulk water. These studies indicate that the green color sphere (Happy) will favor the
interactions between the 4d and 4W93 protein, red color sphere (Unhappy) will not favor
interactions Figure 4A.10. Thus 3D-RISM will predict the role of water in the active site
interactions. 3D-RISM-KH (Three-Dimensional Reference Interaction Site Model (3D-RISM)
with Kovalenko—Hirata (KH)) molecular theory of solvation studies explained the mechanism
of 4d binding to 4W93 protein.

In silico ADME, Toxicity and Pharmacokinetic Studies

All the tested compounds were evaluated for physicochemical, and ADME descriptors by using

galaxy webserver [*¥. The toxicity was calculated by using Data warrior software */. hRERG
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toxicity were calculated for tested compounds by using ADMET Prediction Service webserver
3¢ The pharmacokinetics studies were carried out in ADMET lab 2.0 37,

The in-silico ADME (absorption, distribution, metabolism and, excretion) properties of 1-
phenyl-2-((5-(4-phenyl-2-(phenylamino) thiazol-3(2H)-yl)-1H-benzo[d]imidazol-2-yl)
thio)ethanone derivatives was studied by using with RDKit. For evaluating drug-likeliness and
oral bioavailability Lipinski’s Rule of 5 is often used. According to this criterion, molecular
weight must be < 500 Da, logP <5, no of H-Acceptors < 10 and, no of H-Donor < 5. The
bioavailability of compounds that violate more than two Ro5 will be affected. All the calculated
chemical descriptors met the Lipinski rule, which specifies that ligands should not violate more
than two Ro5. (Table 4A.3). The Quantitative Estimation Drug-Likeliness (QED) is calculated
from eight properties i.e. molecular weight (MW), number of hydrogen bond donors (HBD's),
octanol-water partition coefficient (ALOGP), number of hydrogen bond acceptors (HBAs),
molecular polar surface area (PSA), number of rotatable bonds (ROTBs), number of structural
alerts (ALERTS), and number of aromatic rings (AROMs). The value ranges from 0
(unfavorable properties) to 1 (favorable properties). All the synthesized scaffolds do not have
drug likeliness properties which indicates the positive value is considered to be Drug likeliness.
Data Warrior predicts toxicity qualities for the scaffolds, and all compounds are toxicity-free.
The Marvin sketch software is used to predict hERG toxicity for target compounds which
exhibited in the range from 6.01 to 6.26 value. All compounds are predicted for toxicity
properties by using Data warrior software which predicts organ toxicity Tumorigenic,
Reproductive Effective, Irritant, and Mutagenicity. All compounds are free from toxicity and
have a high oral bioavailability. All the synthesized compounds were visualized the molecular
lipophilicity potential (MLP) in Galaxy 3D visualizer which generates molecular surfaces to
see which regions are hydrophobic (blue and violet colors) and hydrophilic (red and orange).
MLP is calculated using the same atomic hydrophobicity contributions as the octanol-water
partition coefficient (logP). Analysis of 3D molecular surface distribution of hydrophobicity is
particularly helpful when explaining differences in observed ADME properties of molecules
with the same logP. The calculated logP values of all synthesized compounds are much
correlated with the 3D visualized MLP. Among the compounds 4j and 4r are highly
hydrophobic with blue color and exhibited logP values 10.63 and 10.76 respectively. In
addition, all of tested compounds showed acceptable pharmacokinetic properties (Tables 4A.5-

4A.8).
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ADME Properties Toxicity
Entry | MW | ALOGP | HBA | HBD | PSA | ROTB | AROM | ALERTS | LRo5 | QED Liz?fess hERG | Tumorigenic Reé’frf';‘i‘t‘fvtéve Irritant | Mutagenicity
4a | 518.67 7.29 3 1 63.04 7 6 2 2 0.21 228 6.08 None None None None
4b | 554.65 7.56 3 1 63.04 7 6 2 2 0.19 0.94 6.07 None None None None
4c | 587.56 8.59 3 1 63.04 7 6 2 2 0.16 2.34 6.18 None None None None
4d | 676.46 8.81 3 1 63.04 7 6 2 2 0.15 0.49 6.06 None None None None
4g | 590.63 7.84 3 1 63.04 7 6 3 2 0.12 0.94 6.01 None None None None
4h | 656.45 9.9 3 1 63.04 7 6 2 2 0.14 2.34 6.26 None None None None
4j 670.86 10.63 3 1 63.04 9 8 2 2 0.12 2.28 6.07 None None None None
4k | 536.66 7.42 3 1 63.04 7 6 2 2 0.2 0.94 6.1 None None low None
4 | 572.64 7.7 3 1 63.04 7 6 2 2 0.18 1 6.16 None None low None
4m | 605.55 8.73 3 1 63.04 7 6 2 2 0.16 0.85 6.13 None None low None
4n | 694.45 8.95 3 1 63.04 7 6 2 2 0.15 0.84 6.05 None None low None
4r 688.85 10.76 3 1 63.04 9 8 2 2 0.13 0.94 6.04 None None low None
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Table 4A.4. Molecular Lipophilicity potential (MLP) of the Tested Compounds
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Table 4A.5. Absorption profile for the Tested compounds

Entry Pgp-inh Pgp-sub F(20%) F(30%) Caco-2 MDCK
4a 1 0.002 0.661 0.003 -5.464 1.46E-05
4b 1 0.004 0.003 0.003 -5.57 1.32E-05
4c 1 0.004 0.006 0.002 -5.553 8.92E-06
4d 1 0 0.003 0.002 -5.696 1.14E-05
4g 1 0.002 0.002 0.002 -5.959 1.52E-05
4h 1 0.002 0.003 0.011 -5.879 7.38E-06
4 1 0.055 0.973 0.009 -5.356 1.07E-05
4k 1 0.002 0.017 0.003 -5.489 1.36E-05
41 1 0.005 0.002 0.003 -5.556 1.29E-05
4m 1 0.01 0.001 0.001 -5.594 9.14E-06
4n 1 0 0.002 0.004 -5.751 1.13E-05
4r 1 0.013 0.654 0.005 -5.466 9.82E-06

Pgp-inhibitor (Category 1: inhibitor); Pgp-substrate (Category 0: non-substrate);
Bioavailability.Category 1: F20%+ (bioavailability <20%); Category 0: F20%- (bioavailability >20%);
F(30%): 30% Bioavailability Category 1: F30%+ (bioavailability <30%); Category 0: F30%
(bioavailability >30%); Caco-2 permeability: Optimal: higher than -5.15 Log unit; MDCK permeability: low:
<2 x 10°° cm/s medium: 2-20x 10 cm/s, high passive: > 20 x10° cm/s

F(20%): 20%

Table 4A.6. Distribution property for the most active compounds

Entry PPB VDss Fu
4a 101.02% 0.183 0.76%
4b 101.66% 0.128 0.74%
4c 102.16% 0.074 0.60%
4d 102.44% 0.231 2.06%
4g 102.00% 0.063 0.54%
4h 103.66% -0.039 0.71%
4 104.96% 0.175 0.92%
4k 101.36% 0.167 0.73%
41 101.97% 0.101 0.69%
4m 102.37% 0.049 0.58%
4n 102.65% 0.184 1.78%
4r 105.52% 0.142 0.92%

PPB: Plasma Protein Binding: Optimal <90%; VDss: Volume Distribution Optimal: 0.04-20L/kg; Fu: The

fraction unbound in plasma Low: <5%; Middle: 5~20%; High: >20%
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Table 4A.7. Metabolism profile for the Tested compounds

Ent | CYP1 | CYP1 | CYP2C | CYP2C | CYP2 | CYP2 | CYP2 | CYP2 | CYP3 | CYP3
ry | A2-inh | A2-sub | 19-inh 19-sub | C9-inh | C9-sub | D6-inh | D6-sub | A4-inh | A4-sub
4a 0.90 0.16 0.86 0.05 0.93 0.29 0.13 0.08 0.51 0.74
4b 0.73 0.16 0.61 0.05 0.50 0.72 0.09 0.20 0.33 0.84
4c 0.81 0.16 0.77 0.05 0.52 0.59 0.14 0.12 0.28 0.91
4d 0.75 0.14 0.66 0.05 0.49 0.69 0.07 0.13 0.23 0.85
4g 0.67 0.17 0.78 0.05 0.89 0.91 0.07 0.27 0.41 0.49
4h 0.83 0.16 0.71 0.05 0.77 0.79 0.10 0.20 0.28 0.91
4 0.59 0.11 0.20 0.04 0.12 0.71 0.00 0.11 0.12 0.86
4k 0.82 0.16 0.80 0.05 0.84 0.53 0.12 0.10 0.45 0.79
41 0.64 0.16 0.39 0.05 0.22 0.83 0.07 0.44 0.22 0.88
4m 0.74 0.16 0.63 0.05 0.21 0.77 0.11 0.19 0.21 0.91
4n 0.68 0.14 0.57 0.05 0.21 0.82 0.05 0.24 0.20 0.88
4r 0.57 0.12 0.17 0.04 0.08 0.86 0.00 0.23 0.09 0.89

Table 4A.8. Excretion for the Tested compounds
Entry CL T12
4a 3.376 0.149
4b 341 0.028
4c 3.209 0.052
4d 2.06 0.039
4g 3.602 0.011
4h 3.543 0.029
4 3.358 0.015
4k 3.442 0.065
41 3.432 0.013
4m 3.256 0.022
4n 2.153 0.016
4r 3.345 0.007
CL: Clearance, High: >15mL/min/kg, moderate: 5-15 mL/min/kg, low: <§
L/min/kg; T1/2: Category 1: long half-life, Category 0: short half-life,
long half-life: >3h; short halflife:<3h.
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Table 4A.9. Calculated values of LogBB, HIA and hERG for
Tested compounds
hERG hERG
Entry LogBB HIA Affinity | Activity
4a 0.31 100 8.08 6.46
4b 0.31 94.3 8.18 6.57
4c 0.31 94.3 8.69 6.78
4d 0.31 94.3 8.18 6.3
4g 1.25 94.3 8.04 5.88
4h 1.13 94.3 8.61 7.03
4j 0.31 94.3 9 7.36
4k 0.31 100 8.13 6.74
41 0.31 94.3 8.23 6.86
4m 0.31 94.3 8.74 7.06
4n 0.31 94.3 8.23 6.58
4r 0.31 94.3 9 7.62
BB: Blood Brain Barrier; HIA: Human Intestine Absorption

4A.10. Conclusion

In conclusion, we have synthesized a facile one-pot four-component synthesis of
thiazolylbenzimidazole derivatives (4a-s) via a multi-component approach by using readily
available starting materials in green solvent medium PEG-400 as a recyclable and greener
solvent in a shorter reaction time without any by-products. All the synthesized compounds (4a-
s) are well characterized by analytical and spectroscopic techniques. Further, all the
synthesized compounds were evaluated for in vitro a-amylase activity using acarbose as a
standard positive control. Among the tested composites,4d, 4¢, 4h, and 4b were found to be
excellent inhibitory activity against a-amylase enzyme with ICso values found to be 12.02 +
0.56; 12.25+ 0.28; 12.74 + 0.45; 19.10 £ 0.88 pg/ml respectively. Structure-activity
relationship (SAR) studies indicate compounds substituted with halogen groups on the 3™ and
4™ position of the phenyl ring have exhibited (4d, 4¢, 4h, and 4b) most potent inhibitory activity
against the a-amylase enzyme. The mode of binding connections between the a-amylase
enzyme and the composites was studied. The medicine-likeness properties (in silico ADME
properties) have been prognosticated for the title compounds. The a-amylase inhibition,
molecular docking, and drug-likeness properties of the title composite proven that these are

promising anti-diabetic active skeletons.
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4A.11. Experimental section

4A.11.1. General procedure for the synthesis of compounds (4a-s):

A mixture of 5-amino-2-marcaptobenzimidazole (1.0 mmol), phenyl isothiocyanate (2a-b) (1.0
mmol), different substituted a-bromo-acetophenones 3 (a-j) (2.0 mmol), was taken in a round
bottom flask and the reaction mixture was refluxed in PEG-400 (4 ml) at 70 "C for 4 h. After
completion of the reaction (checked through TLC, 50:50, n-hexane: EtOAc), the reaction
mixture was cooled to room temperature and placed in ice-cold water. The solid separated was

filtered, washed with diethyl ether, dried, and recrystallized from ethanol.

4A.12. Characterization data of products
1-Phenyl-2-((5-(4-phenyl-2-(phenylimino)thiazol-3(2H)-yl)-1H-benzo|d]imidazol-2-
yDthio)ethan-1-one (4a).

White solid: yield: 89%, mp: 191-193 °C; FT-IR (KBr, cm-1):
3389 (NH), 1680 (C=0), 1623 (C=N): '"H NMR (400 MHz, /3(0

DMSO-ds 5 ppm): 8.09 (d, J = 7.6 Hz, 2H, Ar-H), 7.73 (¢, J = S;@r (j:i)_fp
7.2 Hz, 1H, Ar-H), 7.63 — 7.59 (m, 5H, Ar-H), 7.53-7.50 (m, @' i

4H, Ar-H), 7.34 — 7.28 (m, 5H, Ar-H), 7.20 (d, J = 6.8 Hz, 2H, Ar-H), 7.13 (s, 1H, imidazole
proton), 5.21 (s, 2H, S-CH; protons); 3C-NMR (100 MHz, DMSO-ds) &: 193.17, 152.48,
141.92, 135.52, 134.68, 134.52, 130.91, 130.56, 130.01, 129.71, 129.40, 129.29, 129.00,
128.85, 121.08, 120.49, 115.21, 110.31, 105.00, 41.25; ESI-HRMS: m/z Calcd for Chemical
Formula: C30H23N40S2 519.1305 [M+H] * found: 519.1338.

1-(4-Fluorophenyl)-2-((5-(4-(4-fluorophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)-1 H-
benzo|d]imidazol-2-yl)thio)ethan-1-one. (4b):

White solid: yield: 95%, mp: 198-200 ‘C; FT-IR (KBr, cm-1): F .
3384 (NH), 1678 (C=0), 1593 (C=N): 'H NMR (400 MHz, {\(@
DMSO-ds & ppm): 8.18 (dd, J = 9.0, 5.4 Hz, 2H, Ar-H), 7.66 — g N

Oy

7.58 (m, 5H, Ar-H), 7.54-7.51 (m, 3H, Ar-H), 7.44 (t, J = 8.8 Hz,
2H, Ar-H), 7.28-7.24 (m, 3H, Ar-H), 7.18 (s, 1H, imidazole proton), 7.14 (d, J = 8.8 Hz, 2H,
Ar-H), 5.21 (s, 2H, S-CH»-protons); 3C-NMR (100 MHz, DMSO-ds) &: 191.74, 167.21,
164.69, 164.19, 161.72, 152.53, 140.89, 134.47, 132.35, 132.27, 132.18, 132.09, 131.04,
130.62, 129.30, 121.44, 116.61, 116.39, 116.06, 115.84, 115.25, 110.25, 105.56, 41.46; ESI-
HRMS: m/z Calcd for Chemical Formula: C3oH2iFaN4OS»: 555.1117 [M+H] * found:
555.1152.
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1-(4-Chlorophenyl)-2-((5-(4-(4-chlorophenyl)-2-(phenylimino)thiazol-3(2H)-yl)-1 H-
benzo|d]imidazol-2-yl)thio)ethan-1-one. 4¢

White solid: yield: 90%, mp: 208-210°C; FT-IR (KBr, cm™): 3381 T 5
(NH), 1677 (C=0), 1622 (C=N); 'H NMR (400 MHz, DMSO-ds F(G {_@
o ppm): 8.09 (d, J = 8.4 Hz, 2H, Ar-H), 7.68 (d, J = 8.8 Hz, 2H, N

Ar-H), 7.62 — 7.58 (m, 5H, Ar-H), 7.53-7.51 (m, 4H, Ar-H), 7.38 @ i CEI*V*)_
(d,/=8.8 Hz, 2H), 7.21 (d, /= 8.4 Hz, 2H, Ar-H), 7.13 (s, 1H, imidazole proton), 5.17 (s, 2H,
S-CH; protons); ); 3C-NMR ¢ (100 MHz, DMSO-ds) &: 186.79, 165.34, 141.02, 131.94,
131.39, 131.25,131.17, 131.04, 129.22, 128.78, 128.52, 107.01, 17.27; ESI-HRMS: m/z Calcd
for Chemical Formula: C30H21CioN4OS;: 587.0534 [M+H] " found: 587.0565.

1-(4-Bromophenyl)-2-((5-(4-(4-bromophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)-1 H-
benzo|d]imidazol-2-yl)thio)ethan-1-one. 4d

White solid: yield: 91%, mp: 209-211°C; FT-IR (KBr, cm™): 3389 Br -
(NH), 1677 (C=0), 1621 (C=N); 'H NMR (400 MHz, F(@ {_@
CDCI3+DMSO- ds 6 ppm): 8.07 (d, J = 8.4 Hz, 2H, Ar-H), 7.88 N

(s, 1H, Ar-H), 7.76 (s, 1H, Ar-H), 7.73-7.70 (m, 3H, Ar -H), 7.54 @ﬁl ~©:§1>_
(unresolvable singlet, 4H, Ar-H), 7.42-7.36 (m, 4H, Ar-H), 7.07 (d, J = 8.4 Hz, 2H, Ar-H),
5.39 (s, 2H, Ar-H), 1.25 (s, 1H, NH proton); *C-NMR (100 MHz, DMSO-ds) : 192.59,
152.24, 140.61, 134.63, 132.47, 131.89, 131.71, 130.97, 130.62, 129.29, 128.63, 123.62,
120.79, 115.22, 40.98; ESI-HRMS: m/z Calcd for Chemical Formula: C30H21BraN4OS;:
674.9515 [M+H] " found: 674.9547.

2-((5-(2-(Phenylimino)-4-(p-tolyl)thiazol-3(2H)-yl)-1H-benzo|d]imidazol-2-yl)thio)-1-(p-
tolyl)ethan-1-one (4e):.

White solid: yield: 85%, mp: 221-223 'C; FT-IR (KBr, cm™): - o
3 3
3388 (NH), 1676 (C=0), 1602 (C=N); '"H NMR (400 MHz, {\(@
DMSO-ds 6 ppm): 7.99 (d, J = 8.0 Hz, 2H, Ar-H), 7.64 — 7.59 _ N
Oy
(m, 5H, Ar-H), 7.53 (d, /= 7.6 Hz, 2H, Ar-H), 7.42-7.40 (m, 3H, H
Ar-H), 7.26 (s, 1H, imidazole proton), 7.11-7.06 (m, SH, Ar-H), 5.2 (s, 2H, S-CHb»- protons),

2.42 (s, 3H, aliphatic), 2.24 (s, 3H Aliphatic); *C-NMR (100 MHz, DMSO) &: 192.61, 152.61,
145.17, 142.07, 139.77, 134.59, 132.98, 131.00, 130.62, 129.93, 129.57, 129.43, 129.29,
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129.13, 126.35, 115.21, 110.35, 104.79, 41.41, 21.75, 21.22; ESI-HRMS: m/z Calcd for
Chemical Formula: C32H27N40S; : 547.1618 [M+H] " found: 547.1658.

1-(4-Methoxyphenyl)-2-((5-(4-(4-methoxyphenyl)-2-(phenylimino)thiazol-3(2H)-yl)-1H-
benzo|d]imidazol-2-yl)thio)ethan-1-one (4f):

White solid: yield: 90%, mp: 206-208 'C; FT-IR (KBr, cm™): 3237 oo =
(NH), 1662 (C=0), 1597 (C=N); 'H NMR (400 MHz, DMSO-ds & {t(g {_@
ppm): 8.26 (d, J = 8.8 Hz, 2H), 8.04 (s, 1H, Ar-H), 7.86 (s, 1H, N

Ar-H), 7.84 (s, 1H, Ar-H), 7.576— 7.54 (m, 4H, Ar-H), 7.34 (dd, J @JDJ’ \©:‘;‘,>_
=20.4,7.2 Hz, 2H, Ar-H), 7.10 (d, J = 8.8 Hz, 1H, Ar-H), 6.90 (s, 1H, imidazole proton), 6.79
— 6.75 (m, 2H, Ar-H), 5.52 (s, 2H, S-CH2-protons), 3.90 (s, 3H, aliphatic), 3.77 (s, 3H,
aliphatic); (100 MHz, DMSO-dy) 6: 191.48, 164.29, 160.43, 152.68, 141.93, 134.66, 131.44,
131.22, 130.98, 130.63, 129.31, 128.35, 121.36, 114.64, 114.29, 110.35, 56.22, 55.72, 41.11;

ESI-HRMS: m/z Calcd for Chemical Formula: C3H27NsO3S2: 579.1516 [M+H] * found:
579.1554.

1-(2,4-Difluorophenyl)-2-((5-(4-(2,4-difluorophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)-
1H-benzo|d]imidazol-2-yl)thio)ethan-1-one. 4g

White solid: yield: 89%, mp: 201-203 °C; FT-IR (KBr, cm™'): 3263 ¥ -
(NH), 1687 (C=0), 1608 (C=N); "H NMR (400 MHz, DMSO-ds s;p ;@
o ppm): 10.50 (s, 1H, Ar-H), 10.30 (s, 1H, Ar-H), 8.07 (d, /= 6.8 N

Hz, 2H, Ar-H), 7.59 (s, 1H, imidazole proton), 7.59-7.52(m, 4H, @,Q’ \CEE)_

Ar-H), 7.42 (dd, J = 8.8, 2.0 Hz, 1H, Ar-H), 7.36-7.31 (m, 5H, Ar-H), 7.13 (t, J = 7.4 Hz, 1H,
Ar-H), 5.21 (s, 2H, S-CHz-protons); 3C-NMR (100 MHz, DMSO-ds) &: 189.09, 179.98,
151.31, 150.26, 139.86, 137.32, 137.04, 133.49, 130.38, 129.75, 128.85, 126.39, 124.87,

123.80, 123.09, 121.53, 113.42, 112.92, 107.31, 105.88, 44.38; ESI-HRMS: m/z Calcd for
Chemical Formula: C30H19F4sN4OS3: 591.0928 [M+H] * found: 591.0958.

1-(3,4-Dichlorophenyl)-2-((5-(4-(3,4-dichlorophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)-
1H-benzo|d]imidazol-2-yl)thio)ethan-1-one. 4h
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White solid: yield: 88%, mp: 198-200 ‘C; FT-IR (KBr, cm™): 3207 T 0 o o
(NH), 1691 (C=0), 1581 (C=N): '"H NMR (400 MHz, DMSO-ds 5 !\(@

ppm): 10.36 (s, 1H, Ar-H), 10.19 (s, 1H, Ar-H), 8.03 (s, 1H, Ar-H), @j }s”?
8.00 (s, 1H, Ar-H), 7.80 (d, J = 2.0 Hz, 1H, Ar-H), 7.66 (d, J = 2.4

Hz, 1H, Ar-H), 7.64 (d, J = 2.4 Hz, 1H, Ar-H), 7.56-7.53 (m,3H, Ar-H), 7.46 — 7.32 (m, 5H,
Ar-H), 7.13 (t, J = 7.4 Hz, 1H, Ar-H), 5.15 (s, 2H, S-CH2 protons); *C-NMR (100 MHz,
DMSO-ds) 6: 194.23, 180.00, 152.56, 150.88, 149.68, 139.89, 137.87, 137.47, 137.06, 135.36,
132.49, 132.20, 130.95, 130.72, 130.38, 129.75, 128.85, 128.10, 128.00, 126.40, 123.81,

123.07, 42.80; ESI-HRMS: m/z Calcd for Chemical Formula: C3oH9CluN4OS,: 654.9749
[M+H] " found: 654.9761.

==}

1-(4-Nitrophenyl)-2-((5-(4-(4-nitrophenyl)-2-(phenylimino)thiazol-3(2H)-yl)-1 H-
benzo[d]imidazol-2-yl)thio)ethan-1-one. 4i

Brown solid: yield: 91%, mp: 218-220 ‘C; FT-IR (KBr, cm™): NO, o,
3390 (NH), 1687 (C=0), 1601 (C=N); '"H NMR (400 MHz, {§(© {_@
DMSO-ds & ppm): 6 8.42 (d, J=8.8 Hz, 2H, Ar-H), 8.31 (d, J = N

8.8 Hz, 2H, Ar-H), 8.17 (d, J = 8.8 Hz, 2H), 7.66 (dd, J = 8.6, @Jl \©:¥1)_

5.0 Hz, 2H, Ar-H), 7.62 (s, 1H, Ar-H), 7.59 (s, 1H, Ar-H), 7.48 (d, J = 8.8 Hz, 2H), 7.43-7.34
(m, 4H, Ar-H), 7.21 (s, 1H, Ar-H), 7.14 (d, J=8.8 Hz, 1H, Ar-H), 5.23 (s, 2H, S-CH>- protons):
BC-NMR &¢ (100 MHz, CDCI3+DMSO-ds) : 192.80, 150.73, 147.96, 140.43, 131.28, 130.76,

130.54, 130.40, 129.69, 129.24, 124.43, 123.92, 120.18, 115.22, 41.00; ESI-HRMS: m/z Calcd
for Chemical Formula: C30H21NsO5S2: 609.1007 [M+H] * found: 609.1047.

1-(|1,1'-Biphenyl]-4-yl)-2-((5-(4-(|1,1'-biphenyl]-4-yl)-2-(phenylimino)thiazol-3(2 H)-yl)-
1H-benzo[d]imidazol-2-yl)thio)ethan-1-one. 4j

White solid: yield: 90%, mp: 242-244 "C; FT-IR (KBr, cm™): Ph

3374 (NH), 1669 (C=0), 1600 (C=N); '"H NMR (400 MHz, {§(© {_@
DMSO-ds 6 ppm): 12.34 (s, 1H, NH proton), 9.58 (s, 1H, Ar-H), ‘Q' ‘@E:\)_

8.12 (d, J = 8.4 Hz, 2H, Ar-H), 8.01 (s, 1H, Ar-H), 7.75 (d, J = O i

8.8 Hz, 2H), 7.67-7.60 (m, SH, Ar-H), 7.50 — 7.44 (m, 6H, Ar-H), 7.28-7.24 (m, 5H, Ar-H),
7.09 —7.05 (m, 3H, Ar-H), 6.90 (d, /= 7.2 Hz, 1H, Ar-H), 6.26 (s, 1H, imidazole proton), 4.98
(s, 2H, Ar-H); 3C-NMR ¢ (100 MHz, DMSO-ds) &: 192.70, 152.51, 139.17, 134.56, 134.24,
133.50, 131.95, 131.76, 131.20, 130.84, 130.68, 129.60, 129.46, 128.95, 128.88, 128.29,

Ph
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123.76, 121.68, 120.55, 119.41, 105.40, 43.11: ESI-HRMS: m/z Calcd for Chemical Formula:
C42H31N408S2: 671.1931 [M+H] "found: 671.1930
2-((5-(2-((4-Fluorophenyl)imino)-4-phenylthiazol-3(2H)-yl)-1H-benzo|d]imidazol-2-
yl)thio)-1-phenylethan-1-one. 4k

White solid: yield: 88%, mp: 205-207 'C; FT-IR (KBr, cm™):

3384 (NH), 1680 (C=0), 1595 (C=N); 'H-NMR (400 MHz, !§(©
DMSO-ds 6 ppm): 10.21 (s, 1H, Ar-H), 8.18 — 8.07 (m, 4H, @' *@E:»_
F’@ H

Ar-H), 8.08 (s, 1H, Ar-H), 7.62 (d, J = 8.0 Hz, 2H, Ar-H),

7.53 (d, J= 7.6 Hz, 2H, Ar-H), 7.48-7.44 (m, 4H, Ar-H), 7.35 (t, J = 8.0 Hz, 2H, Ar-H), 7.15
(t, J= 7.4 Hz, Ar-H), 7.02 (s, 1H, imidazole proton), 5.35 ( s, 2H, S-CH,-protons); *C-NMR
(100 MHz, DMSO-ds) o: 191.41, 180.16, 167.27, 164.75, 150.61, 139.74, 137.10, 133.70,
132.17, 132.08, 128.95, 125.05, 124.08, 121.80, 116.66, 116.44, 113.53, 107.88, 41.59; ESI-
HRMS: m/z Calcd for Chemical Formula: C30H22FN4OS;: 537.1214 [M+H] " found: 537.1231.

1-(4-Fluorophenyl)-2-((5-(4-(4-fluorophenyl)-2-((4-fluorophenyl)imino)thiazol-3(2 H)-
yl)-1H-benzo|d]imidazol-2-yl)thio)ethan-1-one. 41

White solid: yield: 95%, mp: 216-218 "C; FT-IR (KBr, cm™): F .
3346 (NH), 1677 (C=0), 1594 (C=N); 'H NMR (400 MHz, f(@ {_@
CDCl3+DMSO-ds & ppm): 8.27-8.25 (m, 2H, Ar-H), 8.02 (s, 1H, N

Ar-H), 7.78 (d, J = 8.8 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.58- F*@J ﬁﬂ*

7.54 (m, 2H, Ar-H), 7.49 (s, 1H, Ar-H), 7.31 (dd, J=9.0, 4.6 Hz, 1H, Ar-H), 7.16 — 7.13 (m,
4H, Ar-H), 6.99-6.91 (m, 4H, Ar-H), 5.54 (s, 2H, S-CHa- protons); 3C-NMR (100 MHz,
CDCI3+DMSO-ds); 191.10, 167.32, 164.79, 164.34, 161.86, 152.27, 140.73, 135.61, 133.75,
132.03, 131.94, 131.66, 131.56, 130.62, 125.29, 121.41, 117.55, 117.32, 116.37, 116.15,

115.99, 115.77, 114.98, 109.64, 104.84, 41.79 ; ESI-HRMS: m/z Calcd for Chemical Formula:
C30H20F3N408,: 573.1022 [M+H] " found: 573.1049.
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1-(4-Chlorophenyl)-2-((5-(4-(4-chlorophenyl)-2-((4-fluorophenyl)imino)thiazol-3(2 H)-
yl)-1H-benzo|d]imidazol-2-yl)thio)ethan-1-one. 4m

White solid: yield: 91%, mp: 208-210 ‘C; FT-IR (KBr, cm™): ai g
3378 (NH), 1676 (C=0), 1588 (C=N); 'H NMR (400 MHz, ﬁ(@
DMSO-ds 8 ppm): 8.09 (d, J= 8.8 Hz, 2H, Ar-H), 7.69-7.67 (m, Y

CLy

4H, Ar-H), 7.62 (d, J = 8.8 Hz, 2H, Ar-H), 7.50 (s, 1H, Ar-H), ¥
7.42—17.37 (m, 4H, Ar-H), 7.23 (d, /= 8.4 Hz, 2H, Ar-H), 7.18 (s, 1H, Ar-H), 7.12 (s, 1H, Ar-
H), 5.17 (s, 2H, S-CHa- protons); ¥C-NMR (100 MHz, CDCI3+DMSO-ds) 8; 190.79, 164.54,
162.04, 152.25, 140.94, 140.57, 135.93, 133.09, 132.04, 131.27, 131.18, 130.91, 130.63,
129.96, 129.25, 128.90, 126.98, 122.21, 117.68, 117.45, 114.85, 109.73, 105.42, 43.41; ESI-
HRMS: m/z Calcd for Chemical Formula: C30H20CI.FN4OS;: 605.0431 [M+H] * found:
605.0455.

1-(4-Bromophenyl)-2-((5-(4-(4-bromophenyl)-2-((4-fluorophenyl)imino)thiazol-3(2H)-
y)-1H-benzo|d]imidazol-2-yl)thio)ethan-1-one. 4n

White solid: yield: 92%, mp: 210-212 °C; FT-IR (KBr, cm™): Br Br
3388 (NH), 1676 (C=0), 1620 (C=N); 'H NMR (400 MHz, S/§(© {_@
CDCIl13+DMSO-ds & ppm): 8.17 (s, 1H, Ar-H), 8.00 (d, /= 8.8 @’ *©:§>_

Hz, 2H, Ar-H), 7.75 (d, J = 8.0 Hz, 2H, Ar-H), 7.60-7.58 (m, FQ H

3H, Ar-H), 7.47-7.45(m, 3H, Ar-H), 7.28 (t, J = 8.2 Hz, 2H), 7.18 (d, J = 8.4 Hz, 1H, Ar-H),
7.11 (d, J = 8.8 Hz, 2H, Ar-H), 6.99 (s, 1H, imidazole proton), 5.16 (s, 2H, S-CH»-protons);
I3C-NMR (100 MHz, CDCIs+DMSO-ds) &; 192.03, 152.03, 140.42, 134.35, 132.31, 131.85,
131.70, 131.60, 131.44, 130.81, 128.80, 128.34, 123.75, 120.98, 117.58, 117.35, 115.02,
109.44, 104.79, 41.35; ESI-HRMS: m/z Calcd for Chemical Formula: C3oH20Br.FN4OS;
692.9421 [M+H] " found: 692.9468.
2-((5-(2-((4-Fluorophenyl)imino)-4-(p-tolyl)thiazol-3(2H)-yl)-1 H-benzo[d]imidazol-2-
yDthio)-1-(p-tolyl)ethan-1-one.40

White solid: yield: 87%, mp: 234-236 'C; FT-IR (KBr, cm™):

CH, CH,
3390 (NH), 1676 (C=0), 1602 (C=N); '"H NMR (400 MHz,
Se N
N>_
H

DMSO-ds & ppm): 7.98 (d, J = 8.4 Hz, 2H), 7.67 (dd, J = 7.8, Y
4.2 Hz, 2H), 7.62 (s, 1H, Ar-H), 7.60 (s, 1H, Ar-H), 7.52 (s, FQ

N\
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1H, Ar-H), 7.41-7.37 (m, 4H, Ar-H), 7.20 (dd, J = 8.4, 2.0 Hz, 1H), 7.15-7.07 (m, 4H, Ar-H)
5.15 (s, 2H, S-CH,-protons), 2.42 (s, 3H, Aliphatic), 2.25 (s, 3H, Aliphatic); '3C-NMR (100
MHz, DMSO-ds) 6:192.78, 152.45, 145.06, 139.80, 133.11, 131.98, 131.89, 129.92, 129.62,
129.50, 129.10, 126.36, 120.56, 117.70, 117.47, 115.18, 40.89, 21.74, 21.23; ESI-HRMS: m/z
Calcd for Chemical Formula: C3;H26FN4OS2: 565.1524 [M+H] " found: 565.1565.

2-((5-(2-((4-Fluorophenyl)imino)-4-(4-methoxyphenyl)thiazol-3(2 H)-yl)-1 H-
benzo|d]imidazol-2-yl)thio)-1-(4-methoxyphenyl)ethan-1-one. 4p

White solid: yield: 90%, mp: 228-230 °C; FT-IR (KBr, cm™): o
3375 (NH), 1669 (C=0), 1598 (C=N);'H NMR (400 MHz, {\(@ {_@
DMSO-ds 6 ppm): 8.06 (d, J = 8.8 Hz, 2H, Ar-H), 7.60 (d, J = N

8.8 Hz, 1H), 7.48 (s, 1H, Ar-H), 7.38-7.34 (m, 2H, Ar-H), 7.19 F’O}F \©:¥I>_

—7.13 (m, 4H, Ar-H), 7.11 (dd, J= 6.2, 3.0 Hz, 2H, Ar-H), 6.93 (s, IH, Ar-H), 6.87 (d, /= 8.8
Hz, 2H, Ar-H), 6.82 (d, /= 8.8 Hz, 1H, Ar-H), 5.10 (s, 2H, S-CH»-protons), 3.89 (s, 3H, OCH3),
3.74 (s, 3H, OCH3), 3.70 (s, 1H); 3C-NMR (100 MHz, DMSO-ds) 5:191.80, 164.17, 160.40,
131.88,131.38,131.19, 128.55,122.39,121.44,119.80, 117.62,117.42,114.59, 114.34, 56.17,
55.71,41.18; ESI-HRMS: m/z Calcd for Chemical Formula: C32H26FN4O3S2: 597.1422 [M+H]
" found: 597.1463.
1-(2,4-Difluorophenyl)-2-((5-(4-(2,4-difluorophenyl)-2-((4-fluorophenyl)imino)thiazol-
3(2H)-yl)-1H-benzo|d]imidazol-2-yl)thio)ethan-1-one. 4q

White solid: yield: 90%, mp: 206-208 'C; FT-IR (KBr, cm™): -

3342 (NH), 1686 (C=0), 1608 (C=N); 'H NMR (400 MHz, {jp ;:@
DMSO-ds 6 ppm): 10.56 (s, 1H, Ar-H), 8.10-8.06 (m, 2H, Ar- N

H), 7.60 — 7.55 (m, 4H, Ar-H), 7.48-7.42 (m, 3H, Ar-H), 7.30 — F’QJZI; \O:I‘V*)_

7.26 (m, 3H, Ar-H), 7.16 (d, J = 8.8 Hz, 2H, Ar-H), 5.21 (s, 2H, S-CHaz-protons); 3C-NMR
(100 MHz, DMSO-ds) 9; 189.09, 180.39, 167.32, 164.91, 164.78, 164.06, 163.93, 161.49,
161.36, 160.76, 158.36, 150.33, 137.17, 136.11, 133.58, 133.51, 121.57, 115.61, 115.38,
113.47, 113.20, 112.99, 107.50, 106.15, 105.89, 105.62, 44.35; ESI-HRMS: m/z Calcd for
Chemical Formula: C30H;sFsN4OS2: 609.0837 [M+H]* found: 609.0849
1-([1,1'-Biphenyl]-4-yl)-2-((5-(4-(|1,1'-biphenyl]-4-yl)-2-((4-fluorophenyl)imino)thiazol-
3(2H)-yl)-1H-benzo[d]imidazol-2-yl)thio)ethan-1-one. 4r

173



Chapter IV.A

White solid: yield: 92%, mp: 225-227 °C; FT-IR (KBr, cm™): PR m
3376 (NH), 1668 (C=0), 1621 (C=N); 'H-NMR (400 MHz, d@ {_9
DMSO-ds § ppm): 10.23 (s, 1H, Ar-H), 8.18 — 8.16 (m, 4H, Ar- N

H), 8.10 (s, 1H, Ar-H), 7.93 (d, J = 8.8 Hz, 2H, Ar-H), 7.80 (d, L i \(:Eﬂ)_

J=172 Hz, 2H, Ar-H),7.63 (d, J=8.4 Hz, 2H, Ar-H), 7.55-7.52 (m, 5H, Ar-H), 7.48-7.44 (m,
5H, Ar-H), 7.35 (t, J = 8.0 Hz, 2H, Ar-H), 7.15 (t, J= 7.4 Hz, Ar-H), 7.03 (s, 1H, imidazole
proton), 5.40 ( s, 2H, S-CHy-protons); 3C-NMR (100 MHz, DMSO-ds) &: 192.29, 180.16,
150.70, 145.94, 139.75, 139.10, 137.14, 134.06, 129.78, 129.63, 129.14, 128.95, 127.56,
125.05, 124.08, 121.81, 113.53, 107.85, 41.80; ESI-HRMS: m/z Calcd for Chemical Formula:
Ca2H30FN4OS;: 689.184 [M+H] " found: 689.1868.
2-((5-(2-((4-Fluorophenyl)imino)-4-(4-nitrophenyl)thiazol-3(2 H)-yl)-1 H-

benzo[d]imidazol-2-yl)thio)-1-(4-nitrophenyl)ethan-1-one. 4s

White solid: yield: 90%, mp: 216-218 ‘C; FT-IR (KBr, cm™): NO, NO,

3390 (NH), 1688 (C=0), 1600 (C=N), 1522 (NO»), 1348 ﬁ(@ {_@
1 . _ N

(NO2); 'H NMR (400 MHz, DMSO-ds & ppm): 8.42 (d, J O

8.8 Hz, 2H), 8.31 (d, /= 8.8 Hz, 2H), 8.13 (d, /= 9.2 Hz, 2H), O i

7.60-7.56 (m,4H, Ar-H), 7.52-7.45 (m, 5H, Ar-H), 7.21 (s, 1H, Ar-H), 7.12 (s, 1H, Ar-H), 5.22
(s, 2H, S-CH»- protons); *C-NMR (100 MHz, CDCl3+DMSO-ds) &; 186.51, 164.60, 150.96,
137.31, 131.28, 131.03, 130.91, 130.76, 128.04, 124.07, 123.69, 123.56, 123.48, 122.79,
107.49; ESI-HRMS: m/z Calcd for Chemical Formula: C30H20FN¢OsS2: 627.0912 [M+H] *
found: 627.0956.
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Chapter IV.A

TH-NMR Spectrum of compound 4a in DMSO-ds (400 MHz)
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Chapter IV.A

Mass spectrum of compound 4a
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Chapter IV.A

I3C-NMR Spectrum of compound 4b in DMSO-ds (100MHz):

-+ — oo Q- N OO T D T D D
L HeHn n@eeamdaaSgYMIenoacdan
= A R B R R R =
) e R e T e I R I B B e e e e B ] —
— —_— = A A A A A A A A A A A k=
r N e il e |
s = —
F F
S
b N 3
N 5 0
N
H

T T T T T T T
210 200 190 180 170 160 150 140 130 120 11% 100 90 80 70 60 50 40 30 20 10 0 -10
ppm

Mass spectrum of compound 4b

x10 & |*ESI Scan (rt: 0.249 min) Frag=175.0V 20.11.2020-38.d

165
16
155 F
15

F
1.45 Q 5551152
144 ==
135 ) N)_ .
—s
134

1254 H

124
m/z: 5541047

115
11 [MAH] + : 555.1119

1.05
14
0.95
0.9+
0.85
0.8+
0.75-
0.7+
0.65
0.6+
055
0.5+
0.45-
0.4+
0.35
0.3
025
0.2+
015
0.1
0.05

512.0398 577.0947

470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640
Counts vs. Mass-to-Charge (miz)

177



Chapter IV.A

TH-NMR Spectrum of compound 4¢ in DMSO-d;s (400MHz)
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Chapter IV.A

Mass spectrum of compound 4c¢
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Chapter IV.A

I3C-NMR Spectrum of compound 4d in DMSO-ds (100MHz):
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Chapter IV.A
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Chapter IV.A

Mass spectrum of compound 4e
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Chapter IV.A

I3C-NMR Spectrum of compound 4f in DMSO-ds (100 MHz):
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Chapter IV.A

'TH-NMR Spectrum of compound 4¢g in DMSO-ds (400MHz)
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Chapter IV.A

Mass spectrum of compound 4g
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Chapter IV.A

13C-NMR Spectrum of compound 4h in DMSO-ds (100MHz):
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Chapter IV.A

TH-Spectrum of compound 4i in DMSO-ds (400MHz)
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Chapter IV.A

Mass spectrum of compound 4i
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Chapter IV.A

I3C-NMR Spectrum of compound 4j in DMSO-ds (100MHz):
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Chapter IV.A

TH-NMR Spectrum of compound 4k in DMSO-ds (400MHz)
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Chapter IV.A

Mass spectrum of compound 4k
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Chapter IV.A

I3C-NMR Spectrum of compound 41 in CDCl:-DMSO-ds (100MHz):
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Chapter IV.A

TH-NMR Spectrum of compound 4m in DMSO-ds (400MHz)
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Mass spectrum of compound 4m
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I3C-NMR Spectrum of compound 4n in CDCl3-DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 40 in DMSO-ds (400MHz)
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Mass spectrum of compound 40
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I3C-NMR Spectrum of compound 4p in DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 4q in DMSO-ds (100MHz)
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Mass spectrum of compound 4q
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I3C-NMR Spectrum of compound 4r in DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 4s in DMSO-ds (400MHz)

61Ts—

6TT°L
LOT'L
TSrL
SLYLA
667°L
6TS"LA
196°L
SLEL
L68°L
£TT8
T8
86781
_:.m.iﬂ
80+'8
ocrs

J

=007

LU0
180
e
R
07T

=¥T'T
00T

& ppm

I3C-NMR Spectrum of compound 4s in CDCl:-DMSO-ds (100MHz)

90°Fr—

99°911L
9L7TTTH
9F°ETT
LE'ETTH
L6'ETT

66°LT1
89°8TT

8L'8TT
£L°6TT
SO°0ETH
98°0ETH
L6T0ET

3

E
9

TTTET
PO IET

98°9ET-7
6TLET

T8°6ET-

90°8FT—
T6°05T—

EI—

8E98T—

NOy

NOy

rwn

L

60

70

100 %0
fl (ppm)

110

150 150 170 160 150 140

200

202



Chapter IV.A

Mass spectrum of compound 4s

x10 3
3.4

3.3
3.2
3.1

a4
29
28
274
26+
25
24
234
22+
214

24
1.9
1.8
1.7
16
15
14
1.3
1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0z

+ESI Scan (rt: 0.243 min) Frag=175.0V 20.11.2020-43.d

NO, NO,

YO0
T 5 {
Lr'

H

m/z: 626.0842
[M+H] + : 627.0915

F

5541786 570.2945

627.0956

645.1056

520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730

Counts vs. Mazs-te-Charge (m/z)

203



Chapter IV.A

4A. 14. References

10.

11.

12.

13.

14.

15.

16.
17.

18

19.

20.

. Aggarwal, T.; Kumar, S.; Verma, A. K. Org. Biomol. Chem. 2016, 14, 7639-7653.

Potewar, T. M.; Ingale, S. A.; Srinivasan, K. V. Tetrahedron. 2008, 64, 5019-5022.
Sever, B.; Altintop, M.D.; Demir, Y.; Akalin Cift¢i, G.; Beydemir, S.; Ozdemir, A.
Bioorg. Chem. 2020, 102, 104110.

Hu, Y.; Hu, C.; Pan, G.; Yu, C.; Ansari, M. F.; Yadav Bheemanaboina, R. R.; Cheng,
Y.; Zhou, C.; Zhang, J. Eur. J. Med. Chem. 2021, 222, 113628.

Yan, Z.; Liu, A.; Ou, Y.; Li, J.; Y1, H.; Zhang, N.; Liu, M.; Huang, L.; Ren, J.; Liu, W_;
Hu, A. Bioorg. Med. Chem. 2019, 27, 3218-3228.

Hassan, A.; Badr, M.; Hassan, H. A.; Abdelhamid, D.; Abuo-Rahma, D. E. A. Bioorg.
Med. Chem. 2021, 40, 116168.

Hupfer, M. L.; Kaufmann, M.; Roussille, L.; PreiB3, J.; Weil}, D.; Hinrichs, K.; Deckert,
V.; Dietzek, B.; Beckert, R.; Presselt, M. Langmuir. 2019, 35, 2561-2570.

Liu, W.; Yu, X.; Kuang, C. Org. Lett. 2014, 16, 1798-1801.

El-Naggar, A. M.; El-Hashash, M. A.; Elkaeed, E. B. Bioorg. Chem. 2021, 108,
104615.

Kiryanov, A. A.; Seed, A. J.; Sampson, P. Tetrahydron Lett. 2001, 42, 8797-8800
Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2002, 4, 1363—1365.

Mamidala, S.; Peddi, S. R.; Aravilli, R. K.; Jilloju, P. C.; Manga, V.; Vedula, R. R. J.
Mol. Struct. 2021, 1225.

Sridevi, B.; Tangella, Y.; Babu, K. S.; Nanubolu, J. B.; Sunitha Rani, R.; Ganesh
Kumar, C.; Meshram, H. M.; Kamal, A. New J. Chem. 2017, 41, 3745-3749.
Mamidala, S.; Aravilli, R. K.; Vaarla, K.; Vedula, R. R. ChemistrySelect. 2019, 4,
9878-9881.

Gondru, R.; Kanugala, S.; Raj, S.; Ganesh Kumar, C.; Pasupuleti, M.; Banothu, J.;
Bavantula, R. Bioorg. Med. Chem. Lett. 2021, 33, 127746.

Sujatha, K.; Vedula, R. R. Mol. Divers. 2020, 24, 413-421.

Titus, S.; Sreejalekshmi, K. G. Med. Chem. Res. 2018, 27, 23-36.

. Costa, L. D.; Guieu, S.; Faustino, M. do A. F.; Tomé, A. C. New J. Chem. 2022, 46,

3602-3615.

Mahata, A.; Bhaumick, P.; Panday, A. K.; Yadav, R.; Parvin, T.; Choudhury, L. H.
New J. Chem. 2020, 44, 4798—4811.

Saroha, M.; Khurana, J. M. New J. Chem. 2019, 43, 8644—-8650.

204



21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Chapter IV.A

Peng, X.; Qin, F.; Xu, M.; Zhu, S.; Pan, Y.; Tang, H.; Meng, X.; Wang, H. Org. Biomol.
Chem. 2019, 17, 8403—-8407.

Dai, T.; Cui, C.; Qi, X.; Cheng, Y.; He, Q.; Zhang, X.; Luo, X.; Yang, C. Org. Biomol.
Chem. 2020, 18, 6162—6170.

Ni, P.; Tan, J.; Li, R.; Huang, H.; Zhang, F.; Deng, G. J. RSC Adv. 2020, 10, 3931-
3935.

Vaarla, K.; Vishwapathi, V.; Vermeire, K.; Vedula, R. R.; Kulkarni, C. V. J. Mol.
Struct. 2022, 1249, 131662.

Ramagiri, R. K.; Vedula, R. R. Synth. Commun. 2014, 44, 1301-1306.

Vaarla, K.; Kesharwani, R. K.; Santosh, K.; Vedula, R. R.; Kotamraju, S.; Toopurani,
M. K. Bioorg. Med. Chem. Lett. 2015, 25, 5797-5803.

Ruddarraju, R. R.; Kiran, G.; Murugulla, A. C.; Maroju, R.; Prasad, D. K.; Kumar, B.
H.; Bakshi, V.; Reddy, N. S. Bioorg. Chem. 2019, 92, 103120.

Flare, version, Cresset®, Litlington, Cambridgeshire, UK; http://www.cresset-
group.com/flare/;

Cheeseright, T.; Mackey, M.; Rose, S.; Vinter, A. J. Chem. Inf- Model. 2006, 46, 665—
676.

Williams, L. K.; Zhang, X.; Caner, S.; Tysoe, C.; Nguyen, N. T.; Wicki, J.; Williams,
D. E.; Coleman, J.; McNeill, J.H.; Yuen, V.; Andersen, R. J.; Withers, S. G.; Brayer,
G. D. Nat. Chem. Biol. 2015, 11, 691-696.

Bauer, M. R.; Mackey, M. D. J. Med. Chem. 2019, 62, 3036-3050.

Makarewicz, T.; Kazmierkiewicz, R. J. Chem. Inf. Model. 2013, 53, 1229—-1234.
Skyner, R. E.; McDonagh, J. L.; Groom, C. R.; Van Mourik, T.; Mitchell, J. B. O. Phys.
Chem. Chem. Phys. 2015, 17, 6174-6191.

Bickerton, G.; Paolini, G.; Besnard, J.; Muresan, S.; Hopkin, A. L. Nature Chem. 2012,
4, 90-98.

Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. J. Chem. Inf. Model. 2015, 55, 460-
473.

E. V. Radchenko, E. V.; Rulev, Yu. A.; Safanyaev, Ya. A.; Palyulin, V. A.; Zefirov N.
S. Dokl. Biochem. Biophys. 2017, 473, 128-131.

Xiong, G.; Wu, Z.; Y1, J.; Fu, L.; Yang, Z.; Hsieh, C.; Cao, D. Nucleic Acids Res. 2021,
49, W5-W14.

205



4 CHAPTER-IV (Section-B) )

Facile, One-pot, pseudo four-component synthesis of novel

thiazolyl-benzimidazoles via multi-component approach and

/

their biological evaluation

\_




Chapter IV.B

CHAPTER-IVB

Facile, pseudo-four-component synthesis of novel thiazolyl-benzimidazoles
via multi-component approach and their biological evaluation

4B.0. Present Work

4B.0.1. Starting Materials

In this chapter, we describe the synthesis, anti-biotic activity and computational studies of
novel thiazolyl-benzimidazole (4a-p) compounds as outlined in Scheme 4B.1. The title
compounds were synthesized by using 5-amino-2-mercaptobenzimidazole 1, ammonium
thiocyanate 2, substituted a- bromo-acetophenones 3 or aryl alkyl halides. All the starting
materials were procured from commercial sources.

4B.1. Synthesis of Thiazoles

The synthesis of target thiazole analogues was carried out as outlined in Scheme 4B.1. The title
compounds were synthesized by using 5-amino-2-mercaptobenzimidazole 1, ammonium
thiocyanate 2, substituted a- bromo-acetophenones 3 or aryl alkyl halides (1:1:2) in glacial
acetic acid at 70 °C to give final compounds (4a-p) with good to excellent yields in a shorter

reaction time.
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Scheme 4B.1. Synthesis of benzimidazole based thaizoles.

206



Chapter IV.B

4B.2. Results and discussion

- ~,
2 N
4 \

_0
H,N N Solvent @i
H)—SH+ NH,SCN + >—
\@N* 4 reactlon I \@
H

conditions

[ ——

\ 7
\, ’
~o e

Table 4B.1. Optimized reaction conditions.4a“

Entry Solvent Catalyst Temp ('C) Time (h) Yield (%)
1 CH3CN - 60 24 n.r
2 DMSO - 60 24 n.r
3 DMF - 60 20 21
4 Methanol - 60 15 25
5 Ethanol - 60 12 38
6 Ethanol NaOH 60 12 43
7 Ethanol KOH 60 12 45
8 Ethanol Na;COs3 60 12 35
9 Ethanol K2COs3 60 12 42
10 Ethanol Et;N 60 12 41
11 Ethanol Acetic acid 60 10 52
12 Ethanol Acetic acid 60 6 60
13 AcOH - 60 4 65
14 AcOH AcONa (1.0 mmol) 60 4 70
15 AcOH AcONa (2.0 mmol) 70 4 88
16 AcOH - reflux 4 51

“Reaction conditions: 5-amino-2-marcaptobenzimidazole (1) (1.0 mmol), ammonium

thiocyanate (2) (1.0 mmol), phenacyl bromide (3) (2.0 mmol), solvent (2 mL), *Isolated yields.

Initially, to find the optimization conditions, we started our investigation to synthesize the title
scaffolds starting from 5-amino-2-mercaptobenzimidazole (1), ammonium thiocyanate (2), and
various substituted a-Bromo acetophenones (3). To our delight, the desired benzimidazole-
based thiazoles obtained 70% of yield in the presence of glacial acetic acid at 70 °C for about

4 h reflux (Table 4B.1, entry-14) and its structure was unambiguously confirmed by IR, 'H-
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NMR, *C-NMR spectra, and HRMS. Other solvents were also screened and it was revealed
that DMSO, DMF, CH3CN, methanol, and ethanol resulted in very poor yields, while DMSO
and CH3CN gave unsuccessful results (entries-1,2). Next, we examined the bases to improve
the reaction yields, here we screened different organic and inorganic bases, but we did not
observe greater yields when inorganic bases were used. Surprisingly, when fused sodium
acetate was used as a base there is a sharp increase in reaction yield at 70 °C within 4 h of time
(Table 4B.1, entry-15). But, when the reaction temperature increased a significant reduction
in the product 4a yield was noticed (Table 4B.1, entries-15,16). From this, we concluded that
increasing the reaction temperature did not affect improving the product yield (Table 4B.1,
entries-15,16). Further, different concentrations of the base were investigated. Finally, two
equivalents of fused sodium acetate were found to be in the best condition with 80% yield

(Table 4B.1, entry-15).
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Scheme 4B.1. Plausible reaction mechanism for synthesis of thiazole derivatives.

Under the optimized reaction conditions (Table 4B.1, entry-15) the substrate scope of the
reaction was studied using a series of a-bromo acetophenones. As shown in (Figure 4B.2)
different substituted a-bromo acetophenones either electron-withdrawing or electron-donating
groups were well tolerated (4a-j) and the presence of a strong electron-withdrawing group like

the nitro group on the phenyl ring offered the desired product 4i in excellent yield consequently
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the presence of F, Cl, and Br groups on phenyl ring also (4b,4¢,4d) offered products in good
yield.

The final structure of the synthesized compounds (4a-q) was subjected to their spectral and
analytical data. The "TH-NMR spectrum of compound 4a as a representative example showed a
characteristic two singlet signals at 5.22 and 7.47 6 ppm due to -S-CHz and Cs-proton of

thiazole respectively.
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Figure 4B.2. Scope of substrates

The *C-NMR displayed a significant signal at 5c 193.06, 172.69, 107.89, and 21.50 § ppm are
assigned for C=0, C=N, Cs carbon of thiazole, and S-CH; carbons respectively. The infrared
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spectra of compound 4a show frequencies at 3404 cm™!, 1685 cm™!, and 1623 cm™! of amine (-
NH), carbonyl (-C=0), and imine (C=N) functional groups respectively. The HRMS (ESI)
spectra of all the synthesized compounds are shown [M+H] " as base peck.

4B.3. Biological studies

4B.3.1. Anti-bacterial activity

The assay system used to determine the antibacterial activities of the title compounds was the
agar well diffusion method. Two clinical pathogens Proteus mirabilis (2081), a gram-negative
bacterium, and Streptococcus Pneumoniae (2451), a gram-positive bacterium were freshly
grown on a Nutrient agar medium. A loop of 48-hour-old pathogens was taken into 10 ml
distilled water and added to Nutrient agar medium and poured into sterile Petri plates. After
solidification, wells of 0.6 diameters were punctured with a cork borer. Further, 50 pg of
sample powder is dissolved in 500ul DMSO solution. 50 pl of the dissolved sample is poured
into a well with a micropipette and control with DMSO was maintained and incubated at 37 "C
for 48 hours. The zone of inhibition was calculated at different time intervals of 48 hours and

96 hours.

4B.3.2. Antibacterial activity results

The in-vitro antibacterial activity of synthesized thiazolyl-benzimidazole derivatives 4a, 4b,
4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k, 41, 4m, 40, and 4p were analyzed against Gram-positive
Bacteria Streptococcus pneumonia (ATCC2451) and Gram-negative bacteria Proteus
Mirabilis (ATCC2081). The in-vitro antibacterial activity of synthesized compounds was
initially evaluated by determining their minimum inhibition concentration (MIC) values using
the agar well diffusion method. Among the tested scaffolds, compound 4f has shown a
maximum value of 3.6 cm of inhibitory activity against Gram Positive Streptococcus
Pneumoniae (MTCC2451), and compound 4k has shown a value of 3.3 cm against Gram-
negative Proteus Mirabilis (MTCC2081).

Table 4B.2. Antibacterial activity of synthesized thiazolyl-benzimidazole scaffolds expressed
as MIC against Proteus mirabilis (ATCC2081) and Streptococcus pneumoniae (ATCC2451).

Antibiotic activity by Zone of Inhibition (¢cm)
S.No | Compound | Proteus Mirabilis | Streptococcus Pneumoniae
code (2081) (2451)
1 4a 2.1 2,177
2 4b 225 2,85
3 4c 1.35" 217
4 4d 1.9™ 1.8
5 4e 2,75+ 2,55
6 4f 2,55 3.6
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7 4g 1.45" 1.35"
8 4h 1.57 2.1

9 41 0.95" 1.2

10 4 1.9 225
11 4k 3.3 2.7

12 4] 237 225
13 4m 2.3 1.957"
14 4o 2 2257
15 4p 1.9 225

(++++ Maximum +++: Medium  ++: Moderate  + Minimum - Nil)

Figure 4B.3. Screening of Antibiotic Activity of compounds against Streptococcus pneumonia

(ATCC2451) by Agar well diffusion method. *C is controlled with 50 ul of DMSO.

e

Figure 4B.4. Screening of Antibiotic Activity of compounds against Proteus mirabilis

(ATCC2081). *C is controlled with 50 ul of DMSO.
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O P. mirabilis @ Str. Pneumonia

3.5 -

0.5 -

4a 4b 4c ad 4e af 4g 4h 4i 4j 4k 4] 4m 4o 4p

Figure 4B.5. Antibacterial activity of synthesized thiazolyl- benzimidazole scaffolds
expressed as MIC against Proteus mirabilis (ATCC2081) and Streptococcus pneumonia
(ATCC2451).

4B.3.3. Structure-activity relationship (SAR)

The SAR studies were evaluated by changing the substituent on the 2,3,4 position of the
phenacyl bromide ring as shown in Table 4B.2 to see the impact of the electronic effects.
Among the investigated compounds for their in-vitro antibacterial activity when the 4™ position
of phenacyl bromide ring was substituted with electron-withdrawing groups like F, Cl, Br, and
nitro as in 4e, 4k showed excellent Gram-negative in-vitro antibacterial activity than compound
with electron releasing or without any substituents. Further, compound 4f with electron
releasing group (-OCH3) on phenacyl bromide ring was shown excellent Gram-positive in-
vitro activity.

4B.4. Molecular Docking and Dynamics Simulations

The demand for structurally and chemically distinct antibiotics with different modes of action
is perpetual as the bacteria show the propensity to develop resistance against the therapeutic
drugs that have been clinically practiced for a long [!l. The enzyme DNA gyrase B is a specific
target that has received enduring interest in the search for novel antibiotics owing to its crucial
role in ATP hydrolysis and bacterial DNA synthesis >*!. In the present report, attention has
also been devoted to scrutinizing the inhibitory activity of the synthesized compounds against
the DNA gyrase B by analysing the binding affinity and binding mode using molecular docking
studies. Further, the molecular dynamics simulation has also been performed to gain insight
into the dynamic behaviour, interactions, and stability of the molecule at the active site of the

receptor protein.
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The X-ray crystallographic structure of gyrase B (receptor protein) complexed with
Novobiocin was obtained from the protein data bank (PDB ID: 1K1J). To facilitate the docking,
water and Novobiocin molecule were removed from the receptor protein and polar hydrogens
were added. The grid box of sizes 84,78, and 70 were generated at 9.991, 3.548, and 46.044.
The Auto Dock Vina software was utilized to perform the in silico molecular docking studies
[4]. The minimum distance and the interaction of the ligand (synthesized compounds) with the
amino acid residues of the proteins were examined with Protein-Ligand Interaction Profiler
(PLIP) 1. The best docking pose of compound 4i obtained using docking simulation was taken
into consideration for the molecular dynamics (MD) simulations. The MD simulations were
executed with GROMACS employing OPLS-AA Force Field and SPC/E water model [* 7). The
Na' and CI ions were added to the system to maintain neutral conditions during the simulations
in a cubic box. The energy minimization was carried out using the steepest descent algorithm.
The system was initially equilibrated with the NVT and NPT ensemble at 300 K temperature
and 1.0 bar pressure. The MD simulation was carried out for 10 ns with the time step of 2 fs

and the coordinates were saved at an interval of 10 ps.

The calculated binding affinity values of the synthesized compounds at the active site
of the gyrase B enzyme range from -9.8 to 12.0 kcal/mol. These values suggest that all the
studied compounds show a stronger affinity towards the active site of the receptor protein.
Further, the difference in the docking score of the two molecules is not very large which may
be attributed due to the significant similarity in their chemical structure. The highest binding
affinity value is observed for the compounds 4b, 4h, 4i, 4n, and 4p. The binding score is
comparatively higher for the Phenyl (-Ph) substitution as in 4i and electron-withdrawing

substituents more particularly the nitro group (-NO2) as in 4h, 4n, and 4p.

The docked pose of the compound 4i along with 3D and 2D view of the interacting amino acids
at the active site of the protein is shown in Figure 4B.6. It is apparent from the figure that the
binding pose of the studied scaffolds is unique and show a ‘dual-arm’ U-shaped binding mode
on the protein. This U-shaped binding mode is uncommon in the most familiar gyrase inhibitors
like quinolones and coumarins, however, it was previously reported for kibdelomycin at the
active site of Staphylococcus aureus GyrB.? Although, a U-shaped binding mode is observed
at the active site of the GyrB, nevertheless, the binding position of the synthesized compounds
substantially differs from that of the kibdelomycin. Therefore, the results exclusively

emphasize that the synthesized compounds have a distinct binding mode at the active site of
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DNA gyrase B and may thus be beneficial to inhibit bacterial proliferation overcoming the

cross-resistance for long-practiced drugs.

(@
Figure 4B.6. Docked pose of compound 4i at an active site of the gyrase protein (PDB ID:

1K1J). (a) Surface view of 4i at an active site, (b) Docked pose of 4i along with the interacting

amino acid residue of the protein, (c¢) overlapping structure of two different docked poses of

41,

Close analysis of the binding pose revealed that the substituted acetophenyl or benzyl
moiety mostly occupies the ATP-binding pocket of the enzyme. The N and -NH of
benzimidazole and N of thiazole ring usually establish hydrogen bonding interaction with
Asn45, Lys109, Valll7, or Glyl16 residue of the enzyme. The five-membered ring of

benzimidazole or thiazole participates in the cationic interaction with the Lys109 residue while

the phenyl ring involves in the pi-stacking interaction with the Phel03 residue. Moreover,
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Asp45, lle77, Phel03, Lys109, Vall17, Pro328 are the amino acid residues which shows hydrophobic interactions with most of the synthesized
molecules. The details of the binding affinity value and various binding interactions shown by the synthesized compounds with the protein along

with the minimum distance from the residues are tabulated in Table 4B.3.

Table 4B.3. Binding affinity (kcal/mol), RMSD, interacting amino acid residues and distances between the ligand and interacting residues.

Binding
affinity

Molecules  (kcal/mol) RMSD Interacting amino acid residues along with the distances (A) from the ligand
Hydrophobic Hydrogen bonding 7 stacking 7 cation Halogen bonding
1e93 (3.58), Phel03 (3.66), Glul04 Phel03 Lys109

4a -10 1.24  (3.83), Lys109 (3.81), Pro328 (3.59) Lys109 (2.77), Vall17 (2.85) (4.17) (3.42)
Asn45 (3.95), Glu49 (3.67), Lys109 Asn45 (2.83), Lys109 (2.45),

4b -10.6 0.725 (3.50) Valll7 (2.45)
Glu49 (3.78) 11e77 (3.48), Phel03 Asn45 (2.73), Lys109 (2.78), Lys109

4c -10.2 1.539 (3.58), Lys109 (3.69) Vall17 (3.75) Glyl16 (2.53) (3.98)
11e93 (3.56), Phe103 (3.78), Glul04 Phel03 Lys109

4d -10.3 2.296 (3.90), Tyr108 (3.53), Lys109 (3.82) Lys109 (2.29) (4.15) (3.58)
Asn45 (3.45), Glu49 (3.48), 11e77 (3.61),
Tyr108 (3.78), Lys109 (3.71), Pro328

4e -10.3 0.809 (3.94) Asn45 (2.66)

Asn45 (2.89), Gly76 (3.01),

4f -9.8 0.657 Lu49 (3.89), I1e77 (3.62), Lys109 (3.66)  Lys109 (3.16)
11e93 (3.55), Phe103 (3.66), Lys109 Asn45 (3.61), Lys109 (3.00), Phel03 Lys109

4g -10.4 1.94 (3.59) Valll7 (2.70) (4.17) (3.53) GInl105 (3.31)
Asn45 (3.55), Ile77 (3.72), Lys109

4h -11 0.922  (3.66) Asn45 (2.60), Gly113 (2.69)
Phel03 (3.62), Lys109 (3.80), Pro328

4i -12 1.996 (3.39) Lys109 (2.30), Vall17 (3.50)
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4j

4k

41

4m

4n

40

4p

-10.1

-10

-10.2

-10.7

-10.4

-10.7

1.343

0.581

0.715

1.334

1.276

0.919

2.361

Asnd5 (3.28), Glud9 (3.62), 11e77 (3.76),
Phe103 (3.74), Lys109 (3.63), Vall17
(3.61)

Asnd5 (3.90), Glud9 (3.55), 1le77 (3.60),
Phe103 (3.70), Lys109 (3.67), Vall17
(3.58)

Asnd5 (3.73), Asp48 (4.00), 1le77
(3.72), Glu104 (3.79), Tyr108 (3.45),
Lys109 (3.56), Pro328 (3.49)

Asnd5 (3.90), Glud9 (3.57), 1le77 (3.63),
Phe103 (3.71), Lys109 (3.61), Vall17
(3.62)

Glu49 (3.82), Ile77 (3.58), Glu104
(3.88), Tyr108 (3.73), Lys109 (4.00)

177 (3.96), Glul104 (3.84), Lys109
(3.84), Pro328 (3.64)

Asnd5 (3.62), Lys109 (3.46)

Asnd5 (2.71), Lys109 (3.02)

Asnd5 (2.79), Lys109 (2.99)

Lys109 (3.05)

Asnd5 (2.74), Lys109 (3.09)

Asnd5 (3.33), Lys109 (2.20),
Valll7 (3.65)

Asnd5 (3.33), Lys109 (2.31)

Asnd5 (2.76), Lys109 (4.04),
Glyl16 (2.70)
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Lys109
(3.89)

Lys109
(3.80)

Lys109
(3.65)

Lys109(3.95)

Lys109
(3.57)

Lys109
(3.63)

Lys109
(4.10)
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Figure 4B.7. MD analyses of 4i complexed with the gyrase protein. Variation in (a) RMSD of

the protein and ligand in their complex, (b) radius of gyration (Rg) of the protein in the

complex. (¢) RMSF of each residue in the protein, (d) RMSF of an individual atom of the

ligand in the complex. Variation in (e) Total energy of the system, and (f) Distance between

amino acids residues and the compound 4i.

En route to probing the reproducibility of the binding pose, the root mean square deviation

(RMSD) between the two docked conformers has also been estimated at the active site of the

receptor protein. The calculated RMSD value for the different compounds is also given in
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Table 4B.3 of ESI. It has been noticed that the RMSD values range between 0.581 to 2.361
which explains the reproducibility of the docking pose at the active site of the enzyme.
Therefore, the studied compounds could potentially inhibit the functioning of DNA gyrase and

serve as a promising antibiotic drug.

Thereafter, attention has been focused to perform molecular dynamics simulations for further
insight into the stability of the compound at the active site of the gyrase protein. Figure 4B.7
displays the plot of the variation in RMSD, the radius of gyration (Rg), total energy, important
distances with the amino acid residues during the simulation, and the RMS fluctuation (RMSF)

for the protein as well as the ligand.

It can be seen from the figure that the RMSD value of the gyrase protein progressively
increased to 0.35 nm within 1.5 ns and stabilized in the range around 2.8-3.5 nm until the
simulation time. Likewise, the RMSD value of the ligand is increased to 0.24 in the first 1.5 ns
and fluctuates around 1.5-2.5 nm during the simulation. Figure 4B.7 also reveals that the Rg
value only slightly increases from 2.46 to 2.53 nm in the initial 2 ns and then fluctuates within
the range of 2.1-2.4 nm till the end of the simulations. Further analysis reveals that the total
energy of the system almost remains the same with marginal fluctuations during the simulation.
Interestingly, it has been observed that most RMSF of the residues in the protein more
particularly the loop 98—118 (active site) is small. The RMSF value for most of the amino acid
residues lies below 0.25 nm. Analogous to the protein, the fluctuations in each atom of the
ligand are small and do not exceed 0.2 nm. Moreover, the analysis of the variation in the
distance unveils that the separation between the ligand and the amino acid residues Glu104,
GInl105, Alal07, Tyr108, Lys109, Vall110, Ser111, Asn271, Leu327, and Pro328 is maintained
below 4 A. All these shreds of evidence from the MD simulations advocates that the compound

4i is stable at the active site of the gyrase protein.

The geometries of the protein-ligand (4i) complex obtained at an interval of 2 ns are considered
to elucidate the interaction of ligand (4i) at the active site of the receptor protein. The protein-
ligand (4i) interaction in these complexes is unraveled using the PLIP and depicted in Figure
4B.8. It is evident from the figure that the ligand molecule (4i) remains bound at the active site
of the protein until the end of the simulation. Further, the unique U-shaped binding mode of
the compound (4i) is retained during the entire simulations. Close analysis of the figure reveals
that the interaction of 4i with Phel03, Lys109, and Pro328 is maintained throughout the

simulations.
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6 ns 8 ns 10 ns

Figure 4B.8. The trajectories of 4i complexed with gyrase protein along with the interacting

amino acid residues obtained during the molecular dynamics simulation.

4B.5. Conclusion

In conclusion, we have synthesized a series of novel thiazolyl-benzimidazole scaffolds via the
one-pot, four-component reaction by using S5-amino-2-mercaptobenzimidole 1, aryl alkyl
halides 2, ammonium thiocyanate 3, and substituted a-bromo-acetophenones 4 in 2 mL of
glacial acetic acid to give title compounds (5a-j) and (4a-j) with good to excellent yields in a
shorter time. Further, the synthesized scaffolds were screened for their in-vitro antibacterial
activity studies using Gram-positive Streptococcus Pneumonia (2451) bacteria and Gram-
negative Proteus Mirabilis (2081) bacteria. Based on the MIC results, it was observed that the
most active thiazolyl-benzimidazole derivatives 4f, 4k, 4b, and 4k are shown significant anti-
bacterial activity with the zone of inhibition values of 2.75 cm and 3.3 cm against Gram-
negative Proteus Mirabilis bacteria and Gram-positive activity against Streptococcus
Pneumonia with the zone of inhibition values 2.85 cm and 3.6 cm respectively. Similarly,
reaming synthesized compounds exhibited moderate to good antibiotic activity. The in-vitro
anti-bacterial activity, and molecular docking studies of the title compounds proven that these

are promising anti-bacterial active skeletons.

The molecular docking reveals that the synthesized complex bounds as a “dual-arm” U-shaped
binding pose at the active site of the receptor protein. The mode of binding exhibited by the

synthesized compounds significantly differs from the clinically approved quinolones and
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coumarins-based drugs. Further, the outcomes of the molecular dynamics study reinforce the
stability of the ligand retaining the binding mode during simulation. Thus, the results
exclusively emphasize that the synthesized compounds have the potential to cease bacterial
proliferation by inhibiting the activity of the gyrase enzyme responsible for DNA replication.
Therefore, the synthesized could act as a promising antibiotic and may be beneficial to
overcome the cross-resistance to the other antibacterial agents owing to its different binding

modes.
4B.6. Experimental section

General procedure for the synthesis of 1-phenyl-2-((5-((4-phenylthiazol-2-yl)amino)-1H-

benzo|d]imidazol-2-yl)thio)ethan-1-one compounds (4a-i):

A mixture of 5-amino-2-marcaptobenzimidazole (1.0 mmol), ammonium thiocyanate 2 (1.0
mmol) different substituted a-Bromo-acetophenones 3(a-j) (2.0 mmol), and fused sodium
acetate (2.0 mmol) were taken in a round bottom flask and the reaction mixture was refluxed
in acetic acid (2 ml) at 70 °C for 4 h. After completion of the reaction (checked through TLC,
50:50, n-hexane: EtOAc), the reaction mixture was cooled to room temperature. The solid
separated was filtered, washed with water, dried, and recrystallized from ethanol.

General procedure for the synthesis of N-(2-(benzylthio)-1H-benzo[d]imidazol-5-yl)-4-
phenylthiazol-2-amine compounds (4j-p):

A mixture of 5-amino-2-marcaptobenzimidazole (1.0 mmol), different substituted benzyl
bromides (2a-b) (1.0 mmol), and fused sodium acetate (1.0 mmol) was taken in a round bottom
flask and the reaction mixture was refluxed in acetic acid (2 ml) at 70 °C for 1 h. To this reaction
mixture ammonium thiocyanate 1.0 mmol, fused sodium acetate 1.0 mmol, and a-Bromo-
acetophenones 4 (a-j) were added and refluxed for another 3h. After completion of the reaction
(checked through TLC, 50:50, n-hexane: EtOAc), the reaction mixture was cooled to room
temperature. The solid separated was filtered, washed with water, dried, and recrystallized from

ethanol.
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4B.7. Characterization data of products

1-Phenyl-2-((5-((4-phenylthiazol-2-yl)amino)-1H-benzo|d]imidazol-2-yl)thio)ethan-1-

one.4a
White solid: yield: 88% ; m.p: 262-264 °C FT-IR (KBr, cm™): 3407 (NH), 1685(C=0), 1623
(C=N); '"H NMR (400 MHz, DMSO-ds) 5 ppm 8.08-8.07 /_Q

H
5H, Ar-H), 7.74-7.70 3H, Ar-H), 7.62-7.58 5H NN N \
(m7 » AT )7 (ma » AT ): (ma s %I \@N\)—S (6]
H

Ar-H), 7.47 (s, 1H, thiazole proton), 7.18 (s, 1H, NH
proton), 5.22 (s, 2H, S-CH> protons), 1.91 (s, 1H, NH proton), '3C NMR (100 MHz, DMSO-
ds) 0: 193.06, 172.69, 152.40, 135.37, 134.77, 134.59, 129.88, 129.64, 129.42, 129.09, 128.95,
118.80, 114.74, 107.89, 21.50; ESI-HRMS: m/z Calcd for : C24H19N4OS, [M+H] *: 443.0995
found: 443.0996.
1-(4-Fluorophenyl)-2-((5-((4-(4-fluorophenyl)thiazol-2-yl)amino)-1H-benzo|d]imidazol-
2-yl)thio)ethan-1-one. 4b

White solid: yield: 92% ; m.p. 254-256 °C FT-IR (KBr, cm™): 3442 (NH), 1677 (C=0), 1623
(C=N); '"H NMR (400 MHz, DMSO-ds 8 ppm): 8.25 (s, 1H, F
thiazole proton), 8.20 — 8.15 (m, 4H), 7.60 (d, /=8.4 Hz, | . N, N N {_@
1H), 7.54 (s, 1H, NH proton), 7.40-7.36 (m, 4H, Ar-H), 7.23 Oﬂj, ~©:E)_
(d,J=8.4 Hz, 3H), 5.23 (s, 2H, S-CH; protons), 1.91 (s, 1H, NH proton), '*C NMR (100 MHz,
DMSO-dys) 6: 191.41, 167.27, 164.75, 150.61, 139.74, 137.10, 133.70, 132.08, 128.95, 125.05,
124.08, 121.80, 116.66, 116.44, 113.53, 107.88, 41.59; ESI-HRMS: m/z Calcd for :
C24H17F2N408S, [M+H] *: 479.0806 found: 479.1784.
1-(4-Chlorophenyl)-2-((5-((4-(4-chlorophenyl)thiazol-2-yl)amino)-1H-benzo|d]imidazol-
2-yl)thio)ethan-1-one. 4¢

White solid: yield: 90% ; mp. 262-264 °C FT-IR (KBr, cm™): 3347 (NH), 1675 (C=0), 1624
(C=N); '"H NMR (400 MHz, DMSO-ds & ppm): 10.55 (s, =
1H, NH proton), 8.36 (s, 1H, thiazole proton), 8.08 (d, J = o N, H N {_@
8.8 Hz, 2H, Ar-H), 7.98 (d, J = 8.4 Hz, 2H, Ar-H), 7.70 (d, _Q_Q\—I \©:§>_

J=8.8 Hz, 2H, Ar-H), 7.57 (s, 1H, NH proton), 7.50 (d, J = 8.4 Hz, 2H, Ar-H), 7.46 (s, 1H,
Ar-H), 7.41 (dd, J = 8.8,1.6 Hz, 2H, Ar-H), 5.25 (s, 2H, S-CH> protons). *C NMR (100 MHz,
DMSO-ds) 6:192.11,163.17, 149.31, 148.95, 139.58, 132.57, 130.92, 129.57, 129.13, 127.94,
114.33,104.85,41.72 : ESI-HRMS: m/z Calcd for : C24H17CI:N4OS2 [M+H] ™2 511.0215 found:
511.1174.
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1-(4-Bromophenyl)-2-((5-((4-(4-bromophenyl)thiazol-2-yl)amino)-1H-benzo|[d]imidazol-
2-yl)thio)ethan-1-one. 4d

White solid: yield: 90%; mp. 270-272 °C FT-IR (KBr, cm™): 3399 (NH), 1672 (C=0), 1631
(C=N); '"H NMR (400 MHz, DMSO-ds & ppm); 8.01-7.99 (m, -
4H, Ar-H), 7.83-7.81 (m, 4H, Ar-H), 7.56 (s, 1H, thiazole . N H N {_@
proton), 7.54 (s, 1H, Ar-H), 7.42 (brs, 1H, NH proton), 7.13 ~©~‘\’I \©:§>_

(dd, J = 8.5, 1.8 Hz, 2H, Ar-H), 5.14 (s, 2H, S-CH»-protons) *C NMR (100 MHz,
CDCI3+DMSO-ds ) 6: 192.06, 150.57,139.67, 134.30, 132.51, 130.96, 128.97, 125.14, 124.17,
121.93, 113.53, 107.97, 41.51; ESI-HRMS: m/z Calcd for : CuHi7BraN4OS; [M+H] ™
598.9205 found: 598.9166.
1-(p-Tolyl)-2-((5-((4-(p-tolyl)thiazol-2-yl)amino)-1H-benzo|d]imidazol-2-yl)thio)ethan-1-

one. 4e

White solid: yield: 82% ; m.p. 257-259 °C FT-IR (KBr, cm™): 3438 (NH), 1675 (C=0), 1629
(C=N); "THNMR (400 MHz, CDCl3+DMSO-ds & ppm): 10.26
(s, 1H, NH proton), 8.11 (s, 1H, thiazole proton), 7.99 (d, J = 3/_?
8.4 Hz, 2H, Ar-H), 7.66 — 7.62 (m, 2H, Ar-H), 7.62 (s, 1H, —@_&Inx(:[:'?_ \
Ar-H), 7.40-7.36 (m, 4H, Ar-H), 7.30 (dd, J = 8.8 Hz, 2.0Hz H
2H, Ar-H), 5.26 (s, 2H, S-CHx protons), 2.45 (s, 6H, aliphatic), 2.13 (s, 1H, NH proton). 13C
NMR (100 MHz, CDCI3+DMSO-ds) 6: 191.41, 169.15, 152.72, 149.85, 146.20, 145.30,
137.89, 132.78, 132.55, 129.91, 129.69, 129.19, 129.02, 113.22, 42.27,21.79; ESI-HRMS: m/z
Calcd for : C26H23N4OS> [M+H] ™: 471.1308 found: 471.2280.
1-(4-Methoxyphenyl)-2-((5-((4-(4-methoxyphenyl)thiazol-2-yl)amino)-1H-
benzo|d]imidazol-2-yl)thio)ethan-1-one. 4f

white solid: yield: 85%; mp. 259-261 °C, FT-IR (KBr, cm™):) 3380 (NH), 1667 (C=0), 1629
(C=N);'H NMR (400 MHz, CDCl3+ DMSO-ds & ppm): 10.25 %

(s, 1H, Ar-H), 8.61 (s, 1H, Ar-H), 8.12 (s, 1H, Ar-H), 8.12-8.05 ' S/_?
0 N N \
/ N
O ‘@3—

(m, 3H, Ar-H), 7.89 (d, J = 9.2 Hz, 1H, Ar-H), 7.58 — 7.50 (m,

2H, Ar-H), 7.08 (d, J = 8.0 Hz, 2H), 7.03 (s, 1H, Ar-H), 6.97 (d, J = 8.8 Hz, 2H, Ar-H), 5.32
(s, 2H, S-CHa- protons), 3.91 (s, 3H, Aliphatic), 3.83 (s, 3H, aliphatic); '3*C NMR (100 MHz,
DMSO-ds) 0; 191.46, 164.28, 152.34, 136.99, 134.89, 131.42, 129.17, 128.22, 118.29, 114.63,
107.56, 56.16: ESI-HRMS: m/z Calcd for: C26H23N403S: [M+H] *: 503.1206 found: 503.1237.
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1-(3,4-Dichlorophenyl)-2-((5-((4-(3,4-dichlorophenyl)thiazol-2-yl)amino)-1H-
benzo|[d]imidazol-2-yl)thio)ethan-1-one. 4g

Pale yellow solid: yield: 86%; mp. 270-272 °C FT-IR (KBr, cm™): 3399 (NH), 1672 (C=0),
1631 (C=N); '"H NMR (400 MHz, DMSO-ds & ppm); 10.66 (s, 1H, 4 0
Ar-H), 8.40 (s, 1H, Ar-H), 8.03 (dd, J = 8.6, 3.4 Hz, 2H, Ar-H), Cl‘@—&‘ﬁ‘@[iyfp
7.79 (d,J=2.0 Hz, 1H, Ar-H), 7.73 (d,J=2.4 Hz, 1H, Ar-H), 7.65 | « N

(dd, J=8.4,2.0 Hz, 1H, Ar-H), 7.57 (s, 1H, Ar-H), 7.54 (dd, J = 8.4, 2.0 Hz, 2H), 7.45 (s, 1H,
Ar-H), 7.39 (d, J= 8.8 Hz, 1H), 5.18 (s, 2H, S-CHz-protons); *C NMR (100 MHz, DMSO-ds
) 8; 193.43, 148.25, 145.92, 139.12, 137.89, 134.53, 133.19, 133.01, 132.63, 132.48, 132.31,
132.05, 130.96, 130.25, 128.10, 116.18, 114.18, 109.50, 43.87: ESI-HRMS: m/z Calcd for
C24H15CLsN4OS, [M+H] * 578.9436: found: 578.9432.

1-(4-Nitrophenyl)-2-((5-((4-(4-nitrophenyl)thiazol-2-yl)amino)-1H-benzo[d]imidazol-2-
yDthio)ethan-1-one. 4h

Orange solid: yield: 90%; mp. 209-211 °C FT-IR (KBr, cm™): 3380 (NH), 1667 (C=0), 1629
(C=N); '"H NMR (400 MHz, DMSO-ds & ppm): 10.70 (s, ;02
1H, Ar-H), 8.44-8.42 (m, 3H, Ar-H), 8.30 (dd, /=9.2,2.4 ON N N N {_9
Hz, 4H, Ar-H), 8.23 (d, J=8.0Hz, 2H), 7.79 (s, 1H, Ar-H), 2 —QKI \©:§,)_

7.63 (s, 1H, Ar-H), 7.60 (s, 1H, Ar-H), 7.47 (dd, J = 8.8, 2.0 Hz, 1H), 5.36 (s, 2H, S-CH»-
protons); ¥C NMR (100 MHz, DMSO-ds ) 8: 192.11, 169.15, 163.64, 150.83, 148.85, 148.44,
146.75, 140.76, 139.89, 139.12, 137.22, 134.05, 130.47, 127.13, 124.46, 116.34, 114.29,
109.01, 100.33, 42.35: ESI-HRMS: m/z Calcd for : C24H17N6OsS2 [M+H] *: 533.0696 found:
533.0690.

1-([1,1'-Biphenyl]-4-yl)-2-((5-((4-([1,1'-biphenyl]-4-yl)thiazol-2-yl)amino)-1H-
benzo[d]imidazol-2-yl)thio)ethan-1-one. 4i

White solid: yield: 90%; mp. 246-248 °C, FT-IR (KBr, cm): 3407 (NH), 1685(C=0), 1623
(C=N); 'H NMR (400 MHz, DMSO-ds & ppm); 10.71 (brs, 8
1H, NH proton), 10.29 (s, 1H, NH proton), 8.17-8.15 (m, NN N {_@
4H), 7.94-7.89 (m, 4H), 7.80-7.77 (m, SH), 7.56 — 7.52 (m, thI ~©:ﬂ>_

5H), 7.48-7.46 (m, 2H, Ar-H), 7.41 (s, 1H, thiazole proton), 7.13 (d, J = 6.8, 1H, Ar-H), 5.20
(s, 2H, S-CH; protons); 3C NMR (100 MHz, DMSO-d¢) &; 192.85, 152.07, 145.72, 139.14,
139.04, 137.94, 134.37, 129.80, 129.73, 129.65, 129.09, 127.53, 127.11, 117.75, 114.71,
107.67, 40.75 :ESI-HRMS: m/z Calcd for: C3sH27N4O0S> [M+H] *: 595.1621 found:595.1635.
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N-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)-4-phenylthiazol-2-amine. 4j

White solid: yield: 87%; mp 170-172°C; FT-IR (KBr, cm™): 3348 (NH), 1625 (C=N);'H NMR
(400 MHz, DMSO-ds 6 pp.m); 7.58 (s, 1H, Ar-H), N 1I;II N

7.56 (s, 1H, Ar-H), 7.43 (d, /= 7.2 Hz, 2H), 7.33 — ©~§\’\? \©:N\>_S‘ ( )
7.27 (m, 5H, Ar-H), 7.23 (s, 1H, Ar-H), 7.20 — 7.10 H

(m, 5H, Ar-H), 7.04 (s, 1H, Ar-H), 4.61 (s, 2H, S-CHa-protons): 3C NMR (100 MHz, DMSO-
ds) 0; 159.04, 148.85, 142.93,131.11, 130.07, 129.75, 129.41, 129.26, 129.11, 128.86, 128.77,
128.49, 128.21, 127.08, 126.88, 106.75, 37.43: ESI-HRMS: m/z Calcd for : C23H19N4S2 Exact
Mass: 415.1046 [M+H] " found: 415.1030.
N-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)-4-(4-chlorophenyl)thiazol-2-amine. 4k
White solid: yield: 89%; mp. 150-152 ‘C; FT-IR (KBr, cm™): 3379 (NH), 1626 (C=N); 'H
NMR (400 MHz, DMSO-ds 6 ppm); 7.58 (s, 1H, Ar-H), 7.56 (s, 1H, Ar-H), 7.43 (d, J = 8.8

Hz, 2H), 7.33-7.30 (m, 5H, Ar-H), 7.23 (s, cr N ﬁ N s/_@
1H), 7.19 — 7.15 (m, 4H, Ar-H), 7.12 (dd MI \@N\*

J=8.4, 2.0, Hz, 1H, Ar-H), 4.61 (s, 2H, S- H
CH2- protons); '3C NMR (100 MHz, CDCl3+DMSO-ds) &: 167.26, 151.50, 135.52, 135.32,
134.75,131.58, 129.08, 128.90, 128.16, 127.60, 123.76, 122.83,113.95, 112.56, 105.82, 37.14:
ESI-HRMS: m/z Caled for : C23HisCIN4S, [M+H] *: 449.0656 found: 449.0650.
N-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)-4-(4-bromophenyl)thiazol-2-amine. 41

Pale yellow solid: yield: 87%; mp. 169-171 'C; FT-IR (KBr, cm™): 3370 (NH), 1633 (C=N);
'H NMR (400 MHz, DMSO-d5 3 ppm); 7.99 | N X N 5’_©
(d, J = 8.8 Hz, 2H, Ar-H), 7.81 (d, J = 8.8 —©—'\\’I \@N\F

Hz, 2H, Ar-H), 7.56 (s, 1H, Ar-H), 7.54 (s, H
1H, Ar-H), 7.43 (d, J= 2.0 Hz, 1H, Ar-H), 7.31-7.29 (m, 3H, Ar-H), 7.16 — 7.13 (m, 3H, Ar-
H), 7.04 (s, 2H, Ar-H), 5.13 (s, 2H, S-CHz-protons); 3C NMR (100 MHz, DMSO-d; ) ;
165.89, 152.55, 132.90, 132.17, 132.01, 131.85, 131.76, 131.11, 130.12, 129.95, 129.77,
129.36, 128.69, 128.51, 127.11, 126.89, 116.57, 108.12, 89.87, 37.42: ESI-HRMS: m/z Calcd
for : C23HisBrN4S, [ M+H] : 493.0151 found: 493.0149.
N-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)-4-(p-tolyl)thiazol-2-amine. 4m

White solid: yield: 82%; mp. 174-176 ‘C; FT-IR (KBr, cm™): 3370 (NH), 1631 (C=N);'H
NMR (400 MHz, CDCI3+DMSO-ds 6 ppm): N I&I N

12.62 (s, 1H, NH proton), 8.07 (s, 1H, Ar-H), *@—Q\:I \©:N\>_S‘ ( )
8.03(d,/=9.2Hz, 2H, Ar-H), 7.54 (d, J=8.4 H

Hz, 2H, Ar-H), 7.51 (d, /= 2.0 Hz, 1H, Ar-H), 7.20 — 7.17 (m, 4H, Ar-H), 7.16 (s, 1H, Ar-H),
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7.10 (d, J=2.0 Hz, 1H, Ar-H), 7.08 (d, J=2.0 Hz, 1H, Ar-H), 7.02 (d, J=9.2 Hz, 2H, Ar-H),
5.15 (s, 2H, S-CH2-protons), 3.86 (s, 3H, aliphatic): ESI-HRMS: m/z Calcd for: C24H21N4S;
[M+H] *: 429.1202 found: 429.1197.
4-(4-Chlorophenyl)-N-(2-((4-nitrobenzyl)thio)-1H-benzo|d]imidazol-5-yl)thiazol-2-
amine. 4n

White solid: yield: 90%; mp. 164-166 'C; FT-IR (KBr, cm™): 3375 (NH), 1625 (C=N); 'H
NMR (400 MHz, DMSO-ds 6 ppm): 9.25 (s, H

1H, Ar-H), 8.18 (d, J = 8.8 Hz, 2H, Ar-H), CI_NIN\@:%S/_O_ NO:
7.75 (d, J = 8.8 Hz, 2H, Ar-H), 7.52 (s, 1H, H

Ar-H), 7.34 (d, /= 8.8 Hz, 2H, Ar-H), 7.26 — 7.23 (m, 4H, Ar-H), 7.18 (d, J=2.0 Hz, 1H, Ar-
H), 7.16 (d,J=2.0 Hz, 1H, Ar-H), 4.72 (s, 2H, S-CH»-protons); 3C NMR (100 MHz, DMSO-
ds) 6; 170.02, 151.38, 147.20, 146.01, 139.35, 137.15, 134.30, 133.04, 132.48, 130.87, 130.59,
129.50, 126.36, 124.11, 117.81, 114.94, 110.67, 105.05, 34.97: ESI-HRMS: m/z Calcd for :
C23H17CINsO2S: [ M+H] ™: 494.0507 found: 494.0554.
4-(4-Bromophenyl)-N-(2-((4-nitrobenzyl)thio)-1H-benzo|d]imidazol-5-yl)thiazol-2-

amine. 40

White solid: yield: 88%%; mp. 177-179 'C; FT-IR (KBr, cm™): 3396 (NH), 1628 (C=N);'H
NMR (400 MHz, DMSO-ds 9 ppm): 9.24 (s, IH, | N, N N S/—Q-Noz
Ar-H), 8.18 (d, J = 8.8 Hz, 2H), 8.01 (d, J = 8.8 @‘Q\I \©:N\)-

Hz, 1H), 7.75 (d, J = 8.8 Hz, 2H), 7.73 (d, J= 2.0 H

Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.54 (s, 1H, Ar-H), 7.52 (s, 1H, Ar-H), 7.48 (d, J = 8.4 Hz,
2H, Ar-H), 7.23 (s, 1H, Ar-H), 7.17 (d, J = 8.8 Hz, 2H, Ar-H), 4.72 (s, 2H, S-CH2-protons);
13C NMR (100 MHz, DMSO-ds) &: 152.16, 151.40, 147.22, 145.93, 134.75, 134.57, 132.46,
130.95, 130.77, 130.60, 128.62, 124.13, 114.95, 114.75, 108.55, 107.99, 35.02 : ESI-HRMS:

m/z Calcd for : C23H17BrNsO,S, [ M+H] *: 538.0002 found: 538.0037.
N-(2-((4-Nitrobenzyl)thio)-1H-benzo|d]imidazol-5-yl)-4-(4-nitrophenyl)thiazol-2-amine.

4p

White solid: yield: 90%; mp. 180-182°C; FT-IR (KBr, cm™): 3408 (NH), 1629 (C=N);'"H NMR

(400 MHz, DMSO-ds § ppm): 10.81 (s, 3|
O-N NN N NO,

1H, Ar-H), 8.58 (s, 1H, Ar-H), 8.42 (d, /= |02 Y ‘@EN\)_

8.8 Hz, 2H, Ar-H), 8.33 — 8.30 (m, 3H, Ar- i

H), 8.28 — 8.24 (m, 4H, Ar-H), 7.80 (s, 1H, Ar-H), 7.65 (d, J = 8.8 Hz, 1H), 7.51 (dd, J = 9.0,

1.8 Hz, 1H), 5.47 (s, 2H, S-CHa-protons); 3C NMR (100 MHz, DMSO-ds) 8:163.56, 150.77,

148.38, 146.66, 140.65, 139.13, 133.89, 130.61, 130.44, 127.06, 124.52, 124.39, 124.00,
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114.16, 108.91, 42.24 : ESI-HRMS: m/z Calcd for: Ca3Hi7NsOs [ M+H] *: 505.0747 found:
505.0752.
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4B.8. Spectra
TH-NMR Spectrum of compound 4a in DMDO-ds (400 MHz):
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Mass spectrum of compound 4a:
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I3C-NMR Spectrum of compound 4b in CDCl3-DMSO-ds (100 MHz):
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TH-NMR Spectrum of compound 4¢ in DMSO-ds (400 MHz)
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Mass spectrum of compound 4c:
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I3C-NMR Spectrum of compound 4d in DMSO-d; (100 MHz):

—192.06

0
139.67
134.30
132.51
130.96

~128.97

514
\121.93
—113.

—12
12417

f
]
J

Er

H
=Y N‘@L;{\r/_?

" .Ilu A
w

|
|
I
e

. e

53

—107.97

41 51

S
3

L L

180

T
200 190

170

T T
160 150 140 130 120

Mass spectrum of compound 4d:

T T
110 100
4 ppm

90 80 70 60 50 40 30 20

x10 4 |*ES!
281
271
261
251
247
231
221
211

24
1.9
184
1.7
164
15
1.4
13
12
1.14

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

Scan (rt: 0.225 min) Frag=175.0V 25.7.19-6.d

B

601.0262

5090282

503.0260

O

H
m/z: 597.9132

[M+2]*=599.9278 Br

U u T t U T
590 592 594 596 598 600

T
602

T
604

U U T T T T
606 603 610 612 614 616

Counts vs. Mass-to-Charge (miz)

232

618



Chapter IV.B

TH-NMR Spectrum of compound 4e in DMSO-ds (400 MHz)
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Mass spectrum of compound 4e:
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I3C-NMR Spectrum of compound 4f inCDCl3-DMSO-ds (100 MHz):
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TH-NMR Spectrum of compound 4g in DMSO-ds (400 MHz)
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Mass spectrum of compound 4g:
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TH-NMR Spectrum of compound 4h in DMSO-ds (400 MHz):
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I3C-NMR Spectrum of compound 4h in DMSO-ds (100 MHz):
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TH-NMR Spectrum of compound 4i in DMSO-d; (400 MHz)
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Mass spectrum of compound 4i:
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TH-NMR Spectrum of compound 4j in DMSO-d;s (400 MHz):
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I3C-NMR Spectrum of compound 4j in DMSO-ds (100 MHz):
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TH-NMR Spectrum of compound 4k in DMSO-ds (400 MHz)
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Mass spectrum of compound 4k
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I3C-NMR Spectrum of compound 41 in DMSO-ds (100 MHz):
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TH-NMR Spectrum of compound 4m in DMSO-ds (400 MHz):
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TH-NMR Spectrum of compound 4n in DMSO-ds (400 MHz)
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Mass spectrum of compound 4n:
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I3C-NMR Spectrum of compound 40 in DMSO-ds (100 MHz):
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TH-NMR Spectrum of compound 4p in DMSO-ds (400 MHz)

Tirs—

wa._‘.a_

96F" L
FIS Ly
615L

9Lt
£99°L
6L
LETB
097'8
SLTS
867'8
206°8-
STE'S
FIF'S
9EF'S
sisg!

£18°0T—

NO;

H—8

N
N
H

o

“}f/N
5

N
Y

0N

=007

~LED
=101
~06°0
00°F
£eTE
A, .

et
L16°0

=160

105 100

1o

I3C-NMR Spectrum of compound 4p in DMSO-ds (100 MHz)

YU —

T16'80T—
IrIT—

00'FT14
6£PTT-
TehTl
90221,
:._umﬁ_m
197061
68°€ET
£T6eT
soop1’
99°9¢1/;
mm.n:%
LLOSTY

9S'E9T—

NO,

¥
S

0,N.

il i

ol i gl

10

30

40

100 S0 80 70 60
& ppm

1o

130

140

170 160

180

249



Chapter IV.B

Mass spectrum

of compound 4p:

x10 3
3.675
3.65
3.625 -
364
3.575
3.55
3.525
354
3.475
345
3425
344
3.375
3.35
3325
337
3275
3.25
3.225
32+
3.175
315
3.125
3.1
3.075
3.05
3.025

2975 4

+ESI Scan (rt: 0.232 min) Frag=160.0V 27.05.2022-7.d

501.3748

505.0752

H —
2 — N
W 'i\.».‘j \‘fL_\_P_‘a
H

m/z: 504.0674
[M+H]"= 5050747

514.1423

T T T T T 4 t T t T T T T T T T T T T t T
490 492 494 496 498 500 502 504 506 508 510 512 514 516 518 520 522 524 526 528 530
Counts vs. Mass-to-Charge (m/z)

250



Chapter IV.B

4B.9. References

1.

Privalsky, T. M.; Soohoo, A. M.; Wang, J.; Walsh, C. T.; Wright, G. D.; Gordon, E.
M.; Gray, N. S.; Khosla, C. J. Am. Chem. Soc. 2021, 143,21127-21142.

Lu, J.; Patel, S.; Sharma, N.; Soisson, S. M.; Kishii, R.; Takei, M.; Fukuda, Y.; Lumb,
K. J.; Singh, S. B. ACS Chem. Biol. 2014, 9, 2023-2031.

Arévalo, J. M. C.; Amorim, J. C. Sci Rep. 2022, 12, 4742.
Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455-461.

Salentin, S.; Schreiber, S.; Haupt, V. J.; Adasme, M. F.; Schroeder, M. Nucleic Acids
Res. 2015, 43, W443-W447.

Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J.
C. J. Comput. Chem. 2005, 26, 1701-1718.

Robertson, M. J.; Tirado-Rives, J.; Jorgensen, W. L. J. Chem. Theory Comput. 2015,
11 ,3499-3509.

251



4 CHAPTER-IV (Section-C) A

Facile, four-component synthesis of coumarinyl based-thiazoles

via MCR approach and their anti-cancer activity

- )




Chapter IV.C

CHAPTER-IVC

Facile, one-pot, four-component synthesis of comarinyl-based-thiazole via

MCR approach and their anti-cancer activity

4C.0. Introduction to 3-heteryl coumarins

Coumarin is a substantial natural product. Also, an oxygen heterocyclic system of benzopyran-
2-one derivative. These are the significant metabolics found in extracts of several plant
families, such as Euphorbiaceae, Orchidaceae, Asteraceae %), and microorganism by several
extraction methods. Very fistly, coumarin was isolated from Tonka beans by Vogel *!, and
first synthesized by Henry perkin in 1868. Moreover, chemically coumarin derivatives can be
synthesized by Pechmann ), Reformatsky 61, Knoenengel [#], Perkin !, Hoesch 1'%), Claisen

[11.12] " and Wittig ['3] cyclization reaction approaches.

o O (0)
T |
1 2
5,6-benzo-alpha-pyrone benzene-gamma-pyrone
Coumarin Chromone
Figure 4C.1

4C.1. General characteristics of coumarins:

It is constantly ambiguous regarding the aromatic nature of heterocyclic ring because of its
double chemical reaction nature i.e. it displays both the aromatic and aliphatic feature
properties. In this moiety, the lactone carbonyl functional (-O=0) group donates the lone pair
of electrons to the ring moiety to generate the aromatic structure of 10 m-electrons (Figure

4C.2).
g\
L
3

©)
o O Q)

T

Figure 4C.2

[14, 15

From the UV Spectrum of coumarins 1 it’s been observed that they displayed funactional

absorption values. The outcomes indicated that the introduction of any substituents at various
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position of coumarin moiety does not change the nature of the UV spectrum. The A max and &
values of coumarin are 273 nm (40, 368 M"! cm™) and 309 nm (37, 449 M™! cm™") respectively.

(16} of coumarin demonstrates the characteristic stretching frequency for

The IR spectrum
lactone carbonyl functional group at 1705 cm™!, C=C, stretching frequency at 1608, and 1450
cm’! respectively.

Dharmatti "7 ez al. establishes the proton NMR spectrumof coumarin. The "H-NMR displays
characteric reasonance peaks for C3-H and C4-H at 6.45 and 7.80 & ppm respectively.

The electron impact mass spectera (EI-Mass) of coumarin was described by Barnes and
Occolowitz '8, The molecular ion peak and fragmentation peaks shows the transformation of

coumarin to benzofuran ( Figure 4C.3).

+ +
o 0 |’ -CO o)
Ly )
m/z 146 m/z 118
4
Figure 4C.3

4C.2. Applications of 3-heteryl coumarins

Nowadays, herbal and synthetic 3-substituted coumarin derivatives have drawn significant
attention from the scientific community due to their tremendous appilications inside the area
of agrochemicals, dyes, material science, optoelectronics, and therapeutics. Moreover, unique
3-substituted coumarin scaffolds act as privileged heterocyclic analogues with miscellaneous
biological activities like antitumor, antioxidant, antimicrobial, anti-aoagulant, anti-tubercular
carbonic anhydrase inhibitor, and MAO-B inhibitor activities. Therefore, the development of
novel or new artificial and semi-synthetic coumarin heterocyclic derivatives with substantial

applications is vital.
Anti-viral activity of 3-substituted coumarins

A novel series of 3-substituted alkyl-4-oxo-coumarinyl ethylidene hydrazono-thiazolidine-5-
ylidene 5 analogues were synthesized by Vedula " ef al. by using 3-acetyl coumarin,

thiosemicarbazide, and dialkyl acetylene dicarboxylate as starting materials and described their
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anti-viral activity. These compounds manifested a promising anti-viral activity against various

spectrums of human viruses in different cell cultures (Figure 4C.4).

H, HﬁC 0
H,C“0 2C
O O S /)
NN N//LN ©
H
5
Figure 4C.4

Hassan 2% ¢z al. established a novel series of 3-imidazolylthio methyl-coumarin scaffolds and
further screened for their anti-hepatitic C virus activity. Compound 6 has exhibited potent

antiviral activity (Figure 4C.5).

0O O
S_ N
F/@)\i/ =
ak_)
6
Figure 4C.5

Anti-malarial activity of 3-substituted coumarins

Sujatha 2! ¢f al. synthesized a series of new thiazolyl hydrazonothiazolamine derivatives
starting from 3-(2-bromoacetyl)coumarins. These compounds were evaluated for their in vitro
anti-malarial activity. Compounds 7, and 8 exhibited potential activity against malaria (Figure

4C.6).

N N-NH N N-NH
)l\\ y S>:N o )I\\ / S>:N (0]
H,N" S _ H,N" S _

Figure 4C.6
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Anti-bacterial activity of 3-substituted coumarins

A series of novel coumarin-based thiazoles 9 were synthesized by Mamidala 1?2 et al. using
thiocarbohydrazide, various aldehydes, and substituted 3-(2-bromoacetyl)coumarins. These
compounds were further evaluated for their anti-bacterial activity against the Gram-positive

bacterium Staphylococcus aureus (Figure 4C.7).

Cl

QN:N %s ) X Cl
9

Figure 4C.7
A series of coumarin-based o-acyl amino amide derivatives were reported by Kumar 23! ez al.
via a one-pot Knoevengel-Ugi five-component sequential reaction and further described their
anti-bacterial activity for Gram-positive and Gram-negative strains. Among the tested

compounds, compound 10 have shown good anti-bacterial activity (Figure 4C.8).

Figure 4C.8

Anti-cancer activity of 3-substituted coumarins

Vaarla 24 ¢t al. has been synthesized a novel series of coumarin based thiazolo-pyrazole 11
derivatives using thiosemicarbazide, 3(2-bromoacetyl)coumarins, and benzoylacetonitriles.
These titled compounds were evaluated for their in-vitro anti-cancer activity against L1210,
CEM, Dul45, HeLa, and MCF-7 cell lines and compound 11 shows potent anti-cancer activity
(Figure 4C.9).
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0O O
N No
) Ly ¥
H2
11

Figure 4C.9
Kamath 25! ¢t al. established a series of new N-((2-(2-oxo-2H-chromen-3-yl)-1H-indol-3-
yl)methylene)benzohydrazide 12 derivatives. Further, these derivatives were evaluated for
their anticancer activity against human breast adenocarcinoma cells (MCF-7). These

derivatives exhibited potential brest cancer activity with apoptosis properties (Figure 4C.10).

Figure 4C.10

Xiang 1?61 ef al. developed a series of new 3-substituted 4-anilino-coumarin scaffolds and
demonstrated in-vitro anti-proliferative properties against MCF-7, HepG2, HCT116, and Panc-

I cell lines. Compounds 13, and 14 have showed good anti-proliferative activity (Figure

4C.11).
QNH (0] \©\NH (0
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Figure 4C.11
Gali 1?7 ¢t al. synthesized indole-incorporated thiazolyl coumarin derivatives and studied in-

vitro antibacterial activity against Gram-positive bacteria bacillus subtilis and Gram-negative

bacteria Escherichia coli and also screened for their in-vitro anti-cancer activity against the full
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panel of 60 human cancer cell lines. Compound 15 shows promising anti-cancer and anti-

bacterial activity.
o O

Figure 4C.12
Rajitha 1281 et al. reported the synthesis of 3-(1-phenyl-4-((2-(4-arylthiazol-2-yl)hydrazono)-
methyl)-1H-pyrazol-3-y/)-2H-chromen-2-ones and further evaluated their in-vitro anti-
microbial activity against Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, and
Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, Fungal strains, Candida
albicans, Aspergillus niger, Candida glabrata, and Aspergillus parasiticus. And anti-oxidant
properties.
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Figure 4C.13
Carbonic anhydrase activity of 3-substituted coumarins
Abdelrahman 2! ez al. synthesized novel 3-substituted coumarin derivatives and described

their carbonic anhydrase IX and XII properties. Compounds 18 and 19 exhibit potent carbonic
anhydrase properties (Figure 4C.14).

CH, CH,

Figure 4C.14
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Glucosidase inhibitor activity of 3-substituted coumarins

Salar BV e al. established a series of novel 3-thiozolylcoumarin derivatives 20 via one-pot
approach using 3(2-bromoacetyl)coumarins and 2-benzoyl-N-arylhydrazinecarbothioamide in
ethanol. Forther these derivatives were evaluated for their in-vitro a-glucosidase inhibitory

activity. All the synthesized compounds have showed potent inhibitory activity (Figure 4C.15).
o O

Figure 4C.15
Wang Bl et al. developed a series of new thiazolyl coumarin scaffolds using ethyl 4-(2-oxo-
2H-chromen-3-yl)thiazole-2-carboxylates with substituted aldehydes and hydrazine hydrate.
Further, these derivatives were evaluated for their a-glucosidase inhibitory activity. Among the
tested compounds, compound 21 have showed remarkable inhibitory activity (Figure 4C.16).

O O
/NO

21

Figure 4C.16
Acetylcholinesterase inhibitor activity of 3-substituted coumarins
Yao B2 et al reported a series of new 2-0x0-N-(4-(2-(piperzine-1-yl)ethylphenyl)-2H-
chromene-3-carboxamide derivatives strating from 3-chloro-4-((4-ethyl piperazine-1-
ylD)methyl)aniline with 2-oxo-2H-chromene-3-carbonyl chloride. Further, these compounds
were evaluated for their acetylcholine esterase inhibition activity. Compound 22 have showed

remarkable AChE inhibition activity. Here, Huperzine A used as the reference drug (Figure
4C.17).
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Figure 4C.17
Antileishmanial activity of 3-substituted coumarins
Zaheer 133 e al. reported a series of new 3-substituted amino-4-hydroxycoumarin analogoues.
Furthere, these derivatives were screened for their antileishmanial activity against Leishmania
donovani promastigotes. Among the tested compounds, compound 23 have showed significant
antileishmanial activity (Figure 4C.18). Here, pentamidine and miltefosine are the standard

agents.

23

Figure 4C.18
Analgesic activity of 3-substituted coumarins
Gupta 34 et al. developed and evaluated in-vivo analgesic activity of 2-amino-4-(coumarin-
3-yl)-6-aryl pyrimidine derivatives from 3-acetyl coumarin. Here, the diclofenac sodium was

used as standard drug. Compound 24 have showed remarkable analgesic activity (Figure
4C.19).

Figure 4C.19

Antioxidant activity of 3-substituted coumarins

A series of new 3-(2-oxo0-2H-chromen-3-yl)-1H-pyrazole-5-carboxylic acid 25, 5-(2-oxo0-2H-
chromen-3-yl)-2,3-dihydroisoxazole-3-carboxylic acid derivatives 26 were reported by
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Saleem 3% et al using 4-0x0-4-(2-0x0-2H-chromen-3-yl)but-2-enoic acid, hydrazine hydrate
or hydroxylamine hydrochloride. Further, these derivatives were screened for their antioxidant

activity (Figure 1.20).

Figure 4C.20
Li 131 et al. reported a series of novel conjugates of hydroxytyrosol-based coumarin scaffolds

and described their in-vitro anti-oxidant activity. Compound 27 shows promising anti-oxidant

activity (Figure 4C.21).
OH
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Figure 4C.21
4C.3. Present work

In line with our interest, considering the importance of coumarin, and thiazole moieties and
prompted by the aforementioned literature, we aimed for an update and extension of its
usefulness focusing on the synthesis of coumarin-based thiazole derivatives via the MCR

approach.
4C.3.1 Starting materials

The present chapter describes the synthesis and anticancer activity of 3- coumarinyl based

R3

2)Ethyl acetoacetate ~
R! CHO Pinssidine ~ R A CHs
la-b 3a-b
1a) R!=H, RZ=H, R3=H 3a) RI=H,R>=H,R3=H
1b) R'=H, R?= H, R3= OEt 3b) R'= H, R?= H, R3= OEt

Scheme 4C.1. Synthesis of coumarin based thiazoles:
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thiazole compounds (5a-s) and are outlined in scheme-4C.1. The titled compounds were
synthesized by reaction of an equimolar ratio of phenyl isothiocyanate (1), hydrazine hydrate
(2), substituted 3-acetyl-coumarins (3) and various substituted phenacyl bromides (4)
(1:1.2:1:1) in the catalytic amount of acetic acid and ethanol as solvent at 60 °C to give titled

compounds in good yields.

T R
: R :
Br R
: 0 :
: NCS R Rl
: 0__0 R! N, :
: 2 EtOH-AcOH > NN :
: & R 60 C N ;
R3 reflux
: 1 2 3a-b 4a-j :

: @ Metal free reaction g Eco-friendly reaction ¢ catalyst-free reaction Sa-s
: yields up 84-94%

Scheme 4C.2. Synthesis of coumarin-based thiazoles.

4C.4. Results and discussion

The synthetic protocol for the title coumarin-based thiazole derivatives (5a-s) has been outlined
in Scheme 4C.2 and was synthesized by the one-pot, four-component condensation of phenyl
isothiocyanate 1, hydrazine hydrate 2, 3-acetyl coumarin 3, and phenacyl bromide, in ethanol
with a catalytic amount of glacial acetic acid under reflux condition provides good to excellent
yields in shorter reaction time. The starting material 3-acetyl coumarins were synthesized by

37,38

following literature procedures 78], The optimized reaction conditions and physical data of

the synthesized compound were presented in Table 4C.2.

The starting material phenyl isothiocyanate, hydrazine hydrate and phenacyl bromides were
procured from commercial sources and were used as it is. To optimize the reaction condition
for the synthesis of the title compounds 5a-t, a pilot reaction was conducted by taking the trail
reactants phenyl isothiocyanate (1), hydrazine hydrate (2), 3- acetyl coumarin (3), and phenacyl
bromide (4). The optimization of the results of the compound 5a was summarized in Table

4C.1.
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Table 4C.1. Optimization reaction conditions of coumarin-based thiazole synthesis.

Entry Solvent catalyst Temp (°C)  Time (h) Yield® (%)
1 H>O - r.t 24 15
2 HO - 60 18 21
3 MeOH - r.t 18 28
4 MeOH - 60 18 40
5 MeOH KOH 60 15 45
6 MeOH NaOH 60 15 48
7 MeOH AcOH (1.0mL) 60 14 50
8 MeOH Et;N 60 15 42
9 MeOH Piperidine (5 drops) 60 15 41

10 EtOH - 60 15 48
11 EtOH KOH 60 12 50
12 EtOH NaOH 60 10 52
13 EtOH Et:N 60 10 55
14 EtOH Piperidine (5 drops) 60 10 58
15 EtOH AcOH 60 8 85
16 EtOH AcOH 70 8 70
17 EtOH - reflux 6 60
18 AcOH - 60 7 72

“Reaction conditions: phenylisothiocyanate (1) (1.0 mmol), hydrazine hydrate (2) (1.2 mmol),

3-acetyl-coumarin (3) (1.0 mmol), phenacyl bromide ( 1.0 mmol) solvent (2 mL), “Isolated

yields.

A pilot reaction was conducted between phenyl isothiocyanate (1), hydrazine hydrate (2), 3-

acetyl coumarin (3), and phenacyl bromide (4) in water at room temperature to obtain the

desired product 5a in poor yield (Table 4C.1, entry-1). It is noticed that even methanol also the

reaction provided poor yield at room temperature (Table 4C.1, entry-3). Hence, it is well

noticed that the room temperature was not effective to get better reaction yields. Further, we

focused our attention on to increase the temperature from room temperature to 60 °C and tried

different reaction conditions (Table 4C.1, entries 5-18). Notably, the solvent screening was
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continued in polar protic solvents like methanol, ethanol and acetic acid along with the loading
of various organic and inorganic bases resulted in moderate reaction yields and took longer
reaction time (Table 4C.1, entries 4-14). To our delight, the yield of 5a was dramatically
increased to 85% when the reaction was conducted in ethanol and a catalytic amount of acetic
acid at 60 °C (Table 4C.1, entry-15). Additionally, by variation in temperature and load of
catalyst (AcOH) does not increase the product yield (Table 4C.1, entry 15,16). The structure
of 5a was confirmed by 'H and '*C-NMR and ESI-HRMS spectral data.

With these optimized reaction conditions in hand (Table 4C.1, entry-14) then we have focused
our attention to explore the scope of this novel one-pot, four-component reaction, with
diversely substituted phenacyl bromides and 3-acetyl coumarins. The physical data of the
synthesized scaffolds were summarized in Table 4C.2. It is well recognized that electron
withdrawing groups like ~NO> substituent on phenacyl bromide at the 4™ position has be
reacted smoothly and gave the highest yield (96%, Table 4C.2, entry-51) in a short time. This
can also be tolerated with halogen substituents such as F, Cl, and Br and afforded the
corresponding coumarin-based substituted thiazole derivatives in 95-96% of yields (Table
4C.2, entries- 5d,5e, and 5f). Further, 3-acetyl coumarin which has variant at the 7th position (-
OEt) also well participated in the reaction and gave excellent yields. Further, the final products
were purified by simple recrystallization. The uniqueness of this four-component reaction is
that 3C-N, 1C-S, bonds are formed at a time, and the reaction does not require any metal
catalyst, harsh reaction conditions, and also no column chromatography for the purification of
the final compounds.

The structure of newly synthesized scaffolds was well characterized by IR,'"H-NMR, "*C-
NMR, and HRMS spectral data. For instance, the stretching vibrations of -C=0 (lactone), C=N,
and C=C were detected in the IR spectrum of compound 4a at 1735 cm !, 1602 cm !, and 1589
cm ! respectively. The "TH-NMR of the spectrum of compound 4a revealed peaks at & 8.09 (C4-
proton of coumarin), 6 6.18 corresponding to the C5-proton of thiazole, and & 2.32 aliphatic
protons respectively. The '*C-NMR spectrum showed peaks at & 170.09, 116.52 and 17.14
corresponding to the carbonyl carbon of lactone, thiazole C5-carbon, and aliphatic methyl
carbons respectively. The HRMS (ESI) spectra of all the synthesized compounds have shown
[M+H]" ion peak.
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Scheme 4C.3. Plausible reaction mechanism for the one-pot, four-component formation of

thiazole compounds (Sa-s)
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The plausible reaction mechanism of the formation of scaffolds (5a-s) was illustrated in
Scheme 4C. 3. In this reaction at first 1 equivalent of phenylisothiocyanate reacts with 1.2
equivalent of hydrazine hydrate by acid-catalysed condensation to form intermediate-I
phenylthiosemicarbazide. Further, this undergoes condensation with 1 equivalent of protonated
carbonyl part of substituted 3-acetyl coumarin to form intermediate-VII. Afterwards, the
nucleophilic attack of sulphur on the carbon of C-Br bond of various substituted phenacyl
bromides (1 equivalent) gave intermediate IX. This further undergoes acid-catalysed

dehydration to form coumarin-based substituted thiazoles (5a-s).
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Figure 4C.1 Substrate scope of derivatives.

4C.5. In-vitro anti-cancer activity

The synthesized compounds were checked for their anticancer activities using different cancer
cell lines. We used C6 rat glioma and LN 18 human glioma cell lines. We also checked the anti-

cancer activity in MCF7, the breast cancer cell lines using the MTT assay.
4C.5.1. MTT Cell Viability Assay

A colourimetric assay called MTT is used to measure cellular metabolic activity. Living cells
transform the yellow tetrazole MTT into the purple formazan. Tetrazolium salts are
transformed into coloured formazan compounds by living (metabolically active) cells but not
by dead cells. As a result, only tetrazolium salt-based colourimetric tests can detect live cells.
These metabolic activity assays are widely used to assess drug-induced cytotoxicity since a

cytotoxic factor, such as a drug or synthetic molecule, would decrease the rate at which a
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population of cells cleaves tetrazolium salts. Cells that divide quickly, such as cancer cells,

have high rates of MTT decrease.
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4C.5.2. Principle

Numerous in vitro tests of a cell population's reaction to outside influences are based on
measurements of cell viability and proliferation. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] assay, was first described by Mosmann *°! in 1983 and is based
on the ability of a mitochondrial dehydrogenase enzyme from viable cells to cleave the
tetrazolium rings of the pale yellow MTT to form dark blue formazan crystals. The formazan
is impermeable to cell membranes and thus results in its accumulation within healthy cells. By
using spectrophotometric techniques, the resulting intracellular purple formazan can be
solubilized and measured. The insoluble purple formazan product is converted into a coloured
solution by adding a solubilization solution, which is typically either dimethyl sulfoxide, an
acidified ethanol solution, or a solution of the detergent sodium dodecyl sulphate in diluted
hydrochloric acid. After that, the colour can be measured using a simple colorimetric assay.
The absorbance of this coloured solution can be measured using a spectrophotometer at a
certain wavelength (often between 500 and 600 nm). The results can be read on a multiwell
scanning spectrophotometer (ELISA reader). The MTT Cell Proliferation assay measures the
cell proliferation rate and conversely when metabolic events lead to a reduction in cell viability

(Further MTT assay studies was going in laboratories).
4C.5.3. Results

Preliminary investigations were done by screening the compounds for anti-cancer activity on
C6 glioma cell lines. The synthesized compounds were screened for cytotoxicity in C6 rat
glioma cell lines by MTT assay. Based on the reduction of the tetrazolium bromide salt MTT

[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide], this assay gives a
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quantitative measurement of the number of cells with metabolically active mitochondria. All
treatments were performed in triplicate. As depicted in the table, all compounds showed well.
Analysis of data showed that the compounds significantly diminished the cell viability over
time in a dose-dependent manner and showed a good inhibitory effect against the growth of C6
glioma cell proliferation. 5a-s exhibited a good anti-proliferative effect and Sm displayed the

highest inhibition of cell proliferation with the ICso value of 0.617 micromoles.

Table 4C.2. ICso values in pM for the compounds Sa—s against human cancer cell lines through

Cell Viability (MTT) Assay

Code LN18 MCEF7
Sa 12.91 29
5b 31.39
5¢ 32.48 17.51
5d 47.73 20.82
5e 15.37 4.7
5f 2.55 619
5¢g Above 100 Above 100
5h 29.6 5.05
51 Above 60 4.81
5 9779 2.28
5k 67.4 12.89
51 14.25 3.21
5m 0.617 4.61
5n 266.9 73.72
50 51.27 243
5p 21.46 76.97
5q 22.41 55.56
5t 21.53 14.4
5s 14.82 10.3

Structure-activity relationship

To explore and understand the structure-activity relationship (SAR) of new thiazole
derivatives, the synthesized compounds were screened against cancer cell lines. The new
thiazole derivatives were synthesized by incorporating various electron-donating groups
(methoxy and hydroxyl) and electron-withdrawing groups (Fluorine, Chlorine, Bromine and
Nitro) at R position of 3-acetyl coumarin, Ri, R>» and R3 positions on phenacyl bromides.
Among the newly synthesized compounds, compound Sm which is having methoxy group at

R3 and ethoxy at R positions has shown potent activity against all cancer cell lines (Table 5.5).
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Notably, compound 5f possessing bromine at the 'R3' position showed comparatively moderate
activity against all cancer cell lines when compared with the remaining compounds in the
series. It indicates that the presence of strong electron-withdrawing groups at the 'R3' position
may not be beneficial for activity instead small electron-withdrawing groups may favour the
activity. Compounds which possessed electron-withdrawing groups at Ri, R> and R3 positions
could not show any significant effect on activity. Therefore, it was evident from the anti-cancer

data that electron-donating groups at R and R3 positions will be beneficial for activity.
4C.6. Conclusion

In summary, we have developed a potential protocol for the synthesis of new coumarin-based
thiazole derivatives by a one-pot MCR approach. Further, we have screened the title
compounds (5a-t) for their in-vitro anticancer activity against MCF7 and LN18 cancer cell
lines. Among tested compounds, compound Sm was showed excellent anticancer activity.
Here, temozolomide was used as reference-positive control drug.

4C.7. Experimental section

4C.7.1. General procedure for the synthesis of 4-phenyl-2-(phenylimino)thiazol-3(2H)-
yDimino)ethyl)-2H-chromen-2-ones (5a-s).

A mixture of phenyl isothiocyanate (1 mmol), hydrazine hydrate (1.2 mmol), substituted 3-
acetyl coumarin (1 mmol) and various phenacyl bromide (1 mmol) along with the catalytic
amount of acetic acid and ethanol was taken in a round bottom flask. The reaction mixture was
refluxed for 8-10 h. Progress of the reaction was monitored by thin-layer chromatography.
After completion of the reaction, the product was filtered and separated, washed with ethanol,

dried and recrystallized from ethanol.
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4C.8. Characterization data of products
4-Phenyl-2-(phenylimino)thiazol-3(2H)-yl)imino)ethyl)-2 H-chromen-2-one. 5a

Yellow solid: yield: 85% ; mp. 207-209 ‘C; FT-IR (KBr, cm™): 1735 (lactone —C=0), 1602

(C=N), 1589 (C=C); '"H NMR (400 MHz, CDCl; § ppm): 8.09 (s, IH, Cs4- | 0. _o
coumarin proton), 7.57 (d, J= 7.6 Hz, 2H, Ar-H), 7.50 (t, J/= 7.0 Hz, 1H, NNy {
Ar-H), 7.33-7.30 (m, 3H, Ar-H), 7.27-7.24 (m, 5H, Ar-H), 7.21 (d, J = NS
7.6 Hz, 2H, Ar-H), 7.12 (dd, J = 7.8, 1.8 Hz, 2H, Ar-H), 6.18 (s, 1H, ©

thiazole Cs-ptoton), 2.32 (s, 3H, CHs-protons). *C NMR (100 MHz,
CDCl3) 6: 170.09, 160.29, 156.04, 154.16, 140.76, 140.59, 137.97, 131.75, 131.36, 128.85,
128.78, 128.59, 128.50, 128.41, 127.84, 127.71, 124.55, 119.72, 116.52, 101.63, 17.14; ESI-
HRMS: m/z Calcd for Chemical Formula: C26H20N30:S: 438.1271 [M+H] * found: 438.1270.
2-(Phenylimino)-4-(p-tolyl)thiazol-3(2H)-yl)imino)ethyl)-2 H-chromen-2-one. Sb

Yellow solid: yield: 87% ; mp. 226-228 "C; FT-IR (KBr, cm™): 1722 (lactone —C=0), 1603

(C=N), 1572 (C=C); 'H NMR (400 MHz, CDCI; &c): 8.08 (s, 1H, Cs- 0. o C
coumarin proton), 7.57 (dd, J=7.8, 1.4 Hz, 1H, Ar-H), 7.50 (t, J= 7.0 Hz, AN {

1H, Ar-H), 7.34— 7.31 (m, 3H, Ar-H), 7.27 — 7.24 (m, 4H, Ar-H), 7.00 s
(unresolvable singlet, 4H, Ar-H), 6.13 (s, 1H, thiazole Cs-ptoton), 2.31 (s, ©

3H, CHj3 protons), 2.28 (s, 3H, CHj protons). *C NMR (100 MHz, CDCls) &: 170.00, 160.13,
155.72, 153.97, 140.55, 138.40, 137.88, 131.54, 128.99, 128.65, 128.37, 128.11, 127.68,
127.48, 124.36, 119.56, 116.34, 100.81, 21.24, 16.94; ESI-HRMS: m/z Calcd for Chemical
Formula: C27H2:N30,S: 452.1427 [M+H] " found: 452.1447.
4-(4-Methoxyphenyl)-2-(phenylimino)thiazol-3(2H)-yl)imino)ethyl)-2 H-chromen-2-one.
Sc

Yellow solid: yield: 89% ; mp. 205-207 ‘C; FT-IR (KBr, cm™): 1721 (lactone —C=0), 1603

(C=N), 1570 (C=C); 'H NMR (400 MHz, CDCls § ppm): 8.08 (s, 1H, Cs4- Yo
coumarin proton), 7.57 (dd, J= 7.6, 1.6 Hz, 1H, Ar-H), 7.50 (t, J= 7.0 Hz, 00

1H, Ar-H), 7.32 (d, J = 8.0 Hz, 3H, Ar-H), 7.27-7.24 (m, 4H, Ar-H), 7.04 qif:is\
(d, J=9.2 Hz, 2H, Ar-H), 6.72 (d, J = 8.8 Hz, 2H, Ar-H), 6.09 (s, 1H, ©

thiazole Cs-ptoton), 3.75 (s, 3H, -OCHj3 protons), 2.31 (s, 3H, CH3 protons).
3C NMR (100 MHz, CDCls) &: 169.99, 160.13, 159.58, 155.66, 153.97, 140.53, 140.19,
137.86, 131.54, 129.61, 128.67, 128.59, 128.42, 127.68, 127.50, 124.36, 123.61, 119.56,
116.33, 113.70, 100.18, 55.23, 16.93; ESI-HRMS: m/z Calcd for Chemical Formula:
C27H22N303S: 468.1376 [M+H] " found: 468.1375.
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(4-Fluorophenyl)-2-(phenylimino)thiazol-3(2H)-yl)imino)ethyl)-2 H-chromen-2-one. 5d
Yellow solid: yield: 90% ; mp. 212-214 'C; FT-IR (KBr, cm™): 1734 (lactone —C=0), 1599
(C=N), 1582 (C=C);'H NMR (400 MHz, CDCI; & ppm): 8.08 (s, 1H, Ca-

F
coumarin proton), 7.57 (dd, J = 7.6, 1.6 Hz, 1H, Ar-H), 7.51 (t, J= 7.2 Hz, @C’Iﬁ
= N
1H, Ar-H), 7.32 (d, J= 6.0 Hz, 2H, Ar-H), 7.29 — 7.23 (m, 5H, Ar-H), 7.10 - 18\
N/

(dd, J=9.2,4.6 Hz, 2H, Ar-H), 6.90 (t, /= 8.8 Hz, 2H, Ar-H), 6.15 (s, 1H,
thiazole Cs-ptoton), 2.31 (s, 3H, CHj; protons). 3C NMR (100 MHz,
CDCh) 6: 169.70, 163.77, 161.30, 160.09, 156.04, 153.98, 140.62, 139.31, 137.60, 131.61,
130.14, 130.06, 128.79, 128.60, 128.34, 127.69, 127.62, 127.29, 124.38, 119.51, 116.36,
115.56, 115.34, 101.41, 16.96; ESI-HRMS: m/z Calcd for Chemical Formula: C26H19FN3O,S:
456.1177 [M+H] " found: 456.1176.
4-Chlorophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-2 H-chromen-2-one. 5e
Yellow solid: yield: 91% ; mp. 234-236 'C; FT-IR (KBr, cm™): 1735 (lactone —C=0), 1601
(C=N), 1586 (C=C); '"H NMR (400 MHz, CDCl3 & ppm): 8.08 (s, 1H, Cs- a

1H, Ar-H), 7.33 (d, /J=7.6 Hz, 2H, Ar-H), 7.30 - 7.23 (m, 5H, Ar-H), 7.18 >N A
(d, J = 8.8 Hz, 2H, Ar-H), 7.05 (d, J = 8.4 Hz, 2H, Ar-H), 6.19 (s, 1H, s
thiazole Cs-ptoton), 2.31 (s, 3H, CH3 protons). 3*C NMR (100 MHz, @
CDCh) 6: 169.82, 160.26, 156.36, 154.17, 140.83, 139.38, 137.74, 134.61, 131.81, 129.80,
129.57, 129.03, 128.79, 128.45, 127.92, 127.78, 124.58, 119.68, 116.55, 102.21, 17.17; ESI-
HRMS: m/z Calcd for Chemical Formula: Ca6Hi9CIN3O2S: 472.0881 [M-+H] © found:
472.0881.
4-(4-Bromophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-2 H-chromen-2-one. 5f
Yellow solid: yield: 92% ; mp. 226-228 ‘C; FT-IR (KBr, cm™): 1735 (lactone —C=0), 1600
(C=N), 1582 (C=C); 'H NMR (400 MHz, CDCl3 § ppm): 8.07 (s, 1H, Ca- U
coumarin proton), 7.57 (dd, J = 7.8, 1.4 Hz, 1H, Ar-H), 7.51 (t, /=7.0 Hz, @;(;\(;N ?
1H, Ar-H), 7.33 (dd, J = 8.2, 1.4 Hz, 4H, Ar-H), 7.30 — 7.23 (m, 5H, Ar- /Nis\
H), 6.99 (d, J = 8.4 Hz, 2H, Ar-H), 6.20 (s, 1H, thiazole Cs-ptoton), 2.31 ©

(s, 3H, CH; protons). 3*C NMR (100 MHz, CDCls) §: 169.63, 160.07,
156.20, 153.98, 140.66, 139.22, 137.55, 131.64, 131.56, 130.07, 129.62, 128.87, 128.61,
128.25, 127.75, 127.58, 124.40, 122.65, 119.49, 116.36, 102.11, 17.00; ESI-HRMS: m/z Calcd
for Chemical Formula: C26H19BrN30,S: 516.0376 [M+H] " found: 516.0379.
4-(3,4-Dichlorophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-2 H-chromen-2-

coumarin proton), 7.57 (dd, J= 7.6, 1.4 Hz, 1H, Ar-H), 7.51 (t, J/=7.2 Hz, @fi;)

one. 5g
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Pale yellow solid: yield: 82% ; mp. 184-186°C; FT-IR (KBr, cm™): 1718 (lactone -C=0), 1610
(C=N), 1594 (C=C);'H NMR (400 MHz, CDCl3 § ppm): 9.44 (s, 1H,

I
0 _o Cl
Ar-H), 8.87 (s, 1H, Ar-H), 7.99 (s, 1H, C4-coumarin proton), 7.69 (d, J @:%N
- N
= 7.6 Hz, 2H, Ar-H), 7.60 (d, J = 7.2 Hz, 2H, Ar-H), 7.40 — 7.31 (m, N/Lg

5H, Ar-H), 7.23 (t, J= 7.4 Hz, 1H, Ar-H), 2.33 (s, 3H, CH3 protons).
3C NMR (100 MHz, CDCls) &: 176.31, 159.31, 154.01, 144.59,
141.56,137.79,132.71, 128.81, 128.72, 126.21, 125.90, 124.90, 124.12, 118.81, 116.64, 15.02;
ESI-HRMS: m/z Calcd for Chemical Formula: CasHisCIN3O,S: 506.0491 [M+H] " found:
506.0499.
4-(2,4-Difluorophenyl)-2-(phenylimino)thiazol-3(2H)-yl)imino)ethyl)-2 H-chromen-2-

one. 5g

Pale yellow solid: yield: 83% ; mp. 172-174 °C; FT-IR (KBr, cm™): F

1719 (lactone —C=0), 1604 (C=N), 1560 (C=C);'H NMR (400 MHz, 00

CDCl3 o6 ppm): 8.08 (s, 1H, Cs-coumarin proton), 7.57 (dd, J=8.0, 1.6 ~ /le\ ‘
NG

Hz, 1H, Ar-H), 7.53 — 7.48 (m, 1H, Ar-H), 7.33 — 7.29 (m, 4H, Ar-H), ©

7.25-7.22 (m, 3H, Ar-H), 7.17 (d, J= 6.4 Hz, 1H, Ar-H), 6.80-6.75 (m,
1H, Ar-H), 6.71 — 6.66 (m, 1H, Ar-H), 6.23 (s, 1H, thiazole Cs-ptoton), 2.30 (s, 3H, CHj3
protons). *C NMR (100 MHz, CDCls) &: 169.20, 160.08, 156.03, 153.98, 140.63, 137.18,
133.31, 132.72, 132.23, 132.10, 131.61, 128.64, 127.97, 127.61, 126.27, 124.39, 124.18,
119.51, 116.68, 116.36, 111.63, 111.38, 104.36, 103.63, 16.94; ESI-HRMS: m/z Calcd for
Chemical Formula: C26H1sF2N30,S: 474.1082 [M+H] * found: 474.1088.
4-(4-Nitrophenyl)-2-(phenylimino)thiazol-3(2H)-yl)imino)ethyl)-2 H-chromen-2-one. S5i

White solid: yield: 94% ; mp. 162-164 'C; FT-IR (KBr, cm™): 1714 NO;
(lactone —C=0), 1605 (C=N), 1561 (C=C); 'H NMR (400 MHz, 0_o
CDCIl13+DMSO-ds & ppm): 8.11 (d, J= 5.6 Hz, 2H, Ar-H), 7.89 (s, 1H, @%&N’V A
C4-coumarin proton), 7.81 (d, J = 9.2 Hz, 2H, Ar-H), 7.76 (s, 1H, N
thiazole Cs-ptoton), 7.69 (dd, J = 8.0, 1.6 Hz, 1H, Ar-H), 7.61 — 7.57 @

(m, 1H, Ar-H), 7.39-7.33 (m, 4H, Ar-H), 7.19 (t, J = 7.8 Hz, 2H, Ar-H), 7.07 (t, J = 7.4 Hz,
1H, Ar-H), 2.20 (s, 3H, CHj3 protons); '3C NMR (100 MHz, CDCl3+DMSO-ds) §: 168.02,
159.70, 156.94, 153.85, 149.17, 147.34, 141.02, 138.84, 132.19, 129.01, 128.23, 127.66,
127.29, 126.24, 124.80, 123.27, 119.20, 116.21, 94.88, 17.07; ESI-HRMS: m/z Calcd for
Chemical Formula: C26H19N4O4S: 483.1122 [M+H] " found: 483.1120.
4-([1,1'-Biphenyl]-4-yl)-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-2 H-chromen-2-
one. 5j
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Orange solid: yield: 92% ; mp. 208-210 ‘C; FT-IR (KBr, cm™): 1721 (lactone —C=0), 1601

(C=N), 1587 (C=C); 'H NMR (400 MHz, CDCls & ppm): 8.09 (s, 1H, Ph
C4-coumarin proton), 7.57 (dd, J = 7.6, 1.6 Hz, 1H, Ar-H), 7.53 (d, J = @("I;’

7.2 Hz, 2H, Ar-H), 7.45-7.40 (m, 5H, Ar-H), 7.35 — 7.27 (m, 8H, Ar-H), g :ig
7.18 (d, J= 8.4 Hz, 2H, Ar-H), 6.23 (s, 1H, thiazole Cs-ptoton), 2.33 (s, ©

3H, CHs protons). °C NMR (100 MHz, CDCIl3) §: 170.09, 160.29,
156.10, 154.16, 142.58, 141.20, 140.78, 140.19, 138.01, 131.75, 130.19, 129.02, 128.93,
128.78, 128.69, 128.52, 128.39, 127.86, 127.77, 127.11, 127.07, 124.55, 119.71, 116.52,
101.76, 17.16; ESI-HRMS: m/z Calcd for Chemical Formula: C32H24N30,S: 514.1584 [M+H]
" found: 514.1588.
8-Ethoxy-4-phenyl-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-2 H-chromen-2-one. 5k
Yellow solid: yield: 88% ; mp. 204-206 ‘C; FT-IR (KBr, cm™): 1713 (lactone —C=0), 1601
(C=N), 1590 (C=C);'H NMR (400 MHz, CDCls & ppm): 8.06 (s, 1H, Ca-
coumarin proton), 7.31 (d, J = 6.8 Hz, 2H, Ar-H), 7.25 — 7.21 (m, 5H, ©;(ii:‘l ?
Ar-H), 7.18 = 7.11 (m, 5H, Ar-H), 7.05 (dd, /= 7.6, 2.0 Hz, 1H, Ar-H), /le\
6.18 (s, 1H, thiazole Cs-ptoton), 4.19 (q, J = 7.2 Hz, 2H, -CHz-protons),
2.31 (s, 3H, CHj3 protons), 1.50 (t, J = 7.0 Hz, 3H, CHj3 protons). 1*C
NMR (101 MHz, CDCls) 8: 169.82, 159.70, 155.99, 146.26, 143.94, 140.78, 140.39, 137.81,
131.20, 128.65, 128.39, 128.28, 128.23, 127.76, 127.51, 124.17, 120.29, 120.09, 114.95,
101.44, 65.07, 16.96, 14.79; ESI-HRMS: m/z Calcd for Chemical Formula: CosH24N305S:
482.1533 [M+H] " found: 482.1541.
8-Ethoxy-2-(phenylimino)-4-(p-tolyl)thiazol-3(2 H)-yl)imino)ethyl)-2 H-chromen-2-one. 51
Yellow solid: yield: 89% ; mp. 198-200 ‘C; FT-IR (KBr, cm™): 1714 (lactone —C=0), 1599
(C=N), 1588 (C=C); 'H NMR (400 MHz, CDCl3 & ppm): 8.05 (s, 1H,

C4-coumarin proton), 7.31 (d, J = 7.2 Hz, 1H, Ar-H), 7.27 — 7.24 (m, @/Kr/ V?
4H, Ar-H), 7.16 (d,J=7.6 Hz, 1H, Ar-H), 7.13 (dd, J="7.8, 1.8 Hz, 1H,
Ar-H), 7.05 (dd, J=17.6, 1.6 Hz, 1H, Ar-H), 7.00 (unresolvable singlet,
4H, Ar-H), 6.13 (s, 1H, thiazole Cs-ptoton), 4.18 (q, J = 7.2 Hz, 2H, -CHz-protons), 2.31 (s,
3H, CHj3 protons), 2.28 (s, 3H, CHj; protons), 1.50 (t, J= 7.0 Hz, 3H, CH;3 protons). 3*C NMR
(100 MHz, CDCl3) 8: 169.92, 159.72, 155.85, 146.25, 143.92, 140.76, 140.45, 138.38, 137.88,
128.98, 128.64, 128.37, 128.10, 127.78, 127.46, 124.16, 120.08, 114.91, 100.79, 65.05, 21.23,

16.94, 14.79; ESI-HRMS: m/z Calcd for Chemical Formula: C20H26N303S: 496.1689 [M+H] "
found: 496.1687.
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8-4-(4-Methoxyphenyl)-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-2 H-chromen-2-
one. Sm

Orange solid: yield: 88% ; mp. 175-177 'C; FT-IR (KBr, cm™): 1731 (lactone —C=0), 1589
(C=N), 1574 (C=C); '"HNMR (400 MHz, CDCI; & ppm): 8.05 (s, 1H, Ca-

N0 \0
coumarin proton), 7.31 (d, /= 6.8 Hz, 2H, Ar-H), 7.28 — 7.23 (m, 4H, Ar- @;O)i;\l ?
H), 7.20 - 7.12 (m, 2H, Ar-H), 7.05 - 7.02 (m, 2H, Ar-H), 6.72 (d, /= 8.8 s

Hz, 2H, Ar-H), 6.09 (s, 1H, thiazole Cs-ptoton), 4.18 (q, J = 6.8 Hz, 2H,
-CHz-protons), 3.75 (s, 3H, -OCH3 protons), 2.30 (s, 3H, CH3 protons),
1.50 (t,J = 7.0 Hz, 3H, CHj3 protons). *C NMR (100 MHz, CDCls) &: 169.90, 159.56, 155.80,
146.25, 143.92, 140.73, 140.16, 137.87, 129.61, 128.66, 128.41, 127.47, 124.16, 123.63,
120.08, 114.90, 113.69, 100.16, 65.05, 55.23, 16.93, 14.80; ESI-HRMS: m/z Calcd for
Chemical Formula: C29H26N304S: 512.1639 [M+H] " found: 512.1631.
8-Mthoxy-4-(4-fluorophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-2 H-

chromen-2-one. 5Sn
Yellow solid: yield: 91% ; mp. 226-228 ‘C; FT-IR (KBr, cm™): 1714 (lactone —C=0), 1599
(C=N), 1583 (C=C);'H NMR (400 MHz, CDCls § ppm): 8.05 (s, 1H, Ca-

F

coumarin proton), 7.32 (d, J=7.6 Hz, 2H, Ar-H), 7.23 (d, J=7.2 Hz, 2H, Bt 0_o
Ar-H), 7.19 (d, J = 7.6 Hz, 1H, Ar-H), 7.15 (d, J = 5.2 Hz, 1H, Ar-H), NN A
7.12 (m, 1H, Ar-H), 7.09 (d, J= 5.6 Hz, 1H, Ar-H), 7.05 (dd, J="7.8, 1.8 NS
Hz, 1H, Ar-H), 6.90 (t, J = 8.8 Hz, 2H, Ar-H), 6.15 (s, 1H, thiazole Cs- ©

ptoton), 4.19 (q, /= 7.2 Hz, 2H, -CH»-protons), 2.31 (s, 3H, CH3 protons ), 1.50 (t, /= 7.0 Hz,
3H, CHj3 protons). *C NMR (100 MHz, CDCI3) &: 169.61, 161.29, 159.69, 156.17, 146.27,
143.93, 140.82, 139.29, 137.61, 130.14, 130.06, 128.78, 128.34, 127.67, 127.34, 124.18,
120.07, 115.55, 115.33, 114.94, 101.41, 65.06, 16.97, 14.79; ESI-HRMS: m/z Calcd for
Chemical Formula: C2sH23FN303S: 500.1439 [M+H] " found: 500.1433.
3-4-(4-Chlorophenyl)-2-(phenylimino)thiazol-3(2H)-yl)imino)ethyl)-8-ethoxy-2 H-
chromen-2-one. So

Yellow solid: yield: 93% ; mp. 214-216 'C; FT-IR (KBr, cm™): 1715 (lactone —C=0), 1600

(C=N), 1585 (C=C);'H NMR (400 MHz, CDCI & ppm): 8.05 (s, 1H, Ca- —~o cl

coumarin proton), 7.33 (d, J=7.6 Hz, 2H, Ar-H), 7.30 — 7.23 (m, 4H, Ar- 0_o

H), 7.19 — 7.11 (m, 4H, Ar-H), 7.05 (d, J = 8.4 Hz, 2H, Ar-H), 6.18 (s, ~ /le\
N7

1H, thiazole Cs-ptoton), 4.19 (q, J = 7.2 Hz, 2H, -CHz-protons), 2.31 (s, ©

3H, CH; protons), 1.50 (t, J = 7.0 Hz, 3H, CHj3 protons). *C NMR (100
MHz, CDCl3) o: 169.55, 159.67, 156.30, 146.27, 143.93, 140.85, 139.16, 137.57, 134.40,

273



Chapter IV.C

129.38, 128.84, 128.60, 128.26, 127.70, 124.19, 120.07, 114.96, 102.03, 65.05, 16.99, 14.79;
ESI-HRMS: m/z Caled for Chemical Formula: CpsH23CIN3O3S: 516.1143 [M+H] * found:
516.1141.
3-4-(4-Bromophenyl)-2-(phenylimino)thiazol-3(2H)-yl)imino)ethyl)-8-ethoxy-2 H-
chromen-2-one. 5p

Yellow solid: yield: 93% ; mp. 197-199 'C; FT-IR (KBr, cm™): 1727 (lactone —C=0), 1598
Br

(C=N), 1581 (C=C);'H NMR (400 MHz, CDCls § ppm): 8.04 (s, 1H, % o o
C4-coumarin proton), 7.33 (d, J = 8.4 Hz, 4H, Ar-H), 7.28 (d, J = 7.2 Q%VN'N
- N
As
N~

Hz, 1H, Ar-H), 7.23 (d, J=7.2 Hz, 2H, Ar-H), 7.17 (d, J = 8.0 Hz, 1H,
Ar-H), 7.13 (dd, J= 7.6, 1.6 Hz, 1H, Ar-H), 7.05 (dd, J = 8.0, 1.6 Hz,
1H, Ar-H), 6.99 (d, /= 8.4 Hz, 2H, Ar-H), 6.19 (s, 1H, thiazole Cs-ptoton), 4.19 (q, /= 6.8 Hz,
2H, -CHa-protons), 2.31 (s, 3H, CH3 protons), 1.50 (t, /= 7.0 Hz, 3H, CHj3 protons). *C NMR
(100 MHz, CDCl3) 8: 169.54, 159.67, 156.33, 146.27, 143.94, 140.86, 139.20, 137.56, 131.55,
129.61, 128.85, 128.25, 127.73, 124.19, 122.62, 120.07, 114.96, 102.10, 65.06, 17.00, 14.80;
ESI-HRMS: m/z Calcd for Chemical Formula: CasH23BrN3;Os3S: 560.0638 [M+H] * found:
560.0638.

3-4-(3,4-Dichlorophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-8-ethoxy-2 H-

chromen-2-one. 5q

White solid: yield: 83% ; mp. 186-188 'C; FT-IR (KBr, cm): 1716

—~o CI
(lactone —C=0), 1618 (C=N), 1591 (C=C);'H NMR (400 MHz, CDCl; o0 “
o ppm): 9.45 (s, 1H, Cs-coumarin proton), 8.87 (s, 1H, Ar-H), 7.96 (s, g /N'i\

NS

1H, Ar-H), 7.69 (d, J=7.6 Hz, 2H, Ar-H), 7.39 (t, /= 8.0 Hz, 2H, Ar-
H), 7.24 (dd, J= 7.6, 2.2 Hz, 2H, Ar-H), 7.21 (d, /= 3.2 Hz, 1H, Ar-
H), 7.15-7.12 (m, 2H, Ar-H), 7.11 (d, J=1.2 Hz, 1H, Ar-H), 4.20 (q, J = 7.2 Hz, 2H, -CH>-
protons), 2.33 (s, 3H, CH; protons), 1.51 (t,J= 7.0 Hz, 3H, CH3 protons). *C NMR (100 MHz,
CDCl) dc: 176.32, 158.95, 146.44, 144.64, 143.88, 141.80, 137.80, 128.79, 126.19, 124.74,
124.14, 119.91, 119.45, 115.62, 65.07, 14.98, 14.74; ESI-HRMS: m/z Calcd for Chemical
Formula: C23H2>CIbN303S: 550.0753[ M+H] * found: 550.0760.
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3-4-(2,4-Difluorophenyl)-2-(phenylimino)thiazol-3(2 H)-yl)imino)ethyl)-8-ethoxy-2 H-
chromen-2-one. S5r

White solid: yield: 84% ; mp. 188-190°C; FT-IR (KBr, cm™): 1731 (lactone —C=0), 1619
(C=N), 1591 (C=C); '"H NMR (400 MHz, CDCl; & ppm) : 9.44 (s, 1H,

—~o0 F
Ar-H), 8.87 (s, 1H, Ar-H), 7.96 (s, 1H, Cs4-coumarin proton), 7.68 (d, @"I“j
_ N F
J=17.6 Hz, 2H, Ar-H), 7.38 (t, J = 8.0 Hz, 2H, Ar-H), 7.25-720 (m, e
N/

2H, Ar-H), 7.15-7.10 (m, 2H, Ar-H), 4.19 (q, J = 7.2 Hz, 2H, -CH>-
protons), 2.32 (s, 3H, CHj3 protons ), 1.50 (t, J = 7.0 Hz, 3H, CHj
protons); 3°C NMR (100 MHz, CDCls) &: 176.32, 158.96, 146.44, 144.64, 143.88, 141.80,
137.80, 128.80, 126.20, 125.99, 124.75, 124.15, 119.91, 119.45, 115.62, 65.07, 14.99, 14.74;
ESI-HRMS: m/z Calcd for Chemical Formula: CasH22FoN303S: 518.1344] M+H] * found:
518.1354.
3-4-([1,1'-Biphenyl]-4-yl)-2-(phenylimino)thiazol-3(2H)-yl)imino)ethyl)-8-ethoxy-2 H-

chromen-2-one. Ss
Yellow solid: yield: 93% ; mp. 198-200 ‘C; FT-IR (KBr, cm™): 1718 (lactone —C=0), 1600
(C=N), 1587 (C=C);'"H NMR (400 MHz, CDCl; & ppm): 8.06 (s, 1H,

—~o0 Ph
C4-coumarin proton), 7.53 (d, /= 6.8 Hz, 2H, Ar-H), 7.45-7.39 (m, 4H, 0 _o
Ar-H), 7.36 — 7.28 (m, 6H, Ar-H), 7.19 — 7.12 (m, 4H, Ar-H), 7.05 (dd, Z /N'i\
NS

J=17.6,1.6 Hz, 1H, Ar-H), 6.23 (s, 1H, thiazole Cs-ptoton), 4.18 (q, J =
7.2 Hz, 2H, -CHz-protons), 2.32 (s, 3H, CH3 protons), 1.50 (t, J = 7.0
Hz, 3H, CH3 protons). 3C NMR (100 MHz, CDCls) c: 169.82, 159.70, 156.06, 146.27,
143.96, 141.01, 140.79, 140.03, 137.86, 130.05, 128.84, 128.74, 128.52, 128.35, 127.57,
124.17, 120.09, 114.96, 101.58, 65.07, 16.98, 14.80; ESI-HRMS: m/z Calcd for Chemical
Formula: C34H2sN303S: 558.1846 [M+H] " found: 558.1854.
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4C.9. Spectra

TH-NMR Spectrum of compound 5a in CDCls (400 MHz)
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Mass spectrum of compound Sa
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I3C-NMR Spectrum of compound 5b in CDCl3 (100 MHz):
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TH-NMR Spectrum of compound 5¢ in CDCl3 (400 MHz)
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Chapter IV.C

Mass spectrum of compound Sc

TH-NMR Spectrum of compound 5d in CDCls (400 MHz):
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Chapter IV.C

I3C-NMR Spectrum of compound 5d in CDCl3 (100 MHz):
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Chapter IV.C

TH-NMR Spectrum of compound 5e in CDCl3 (400 MHz)
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Chapter IV.C

Mass spectrum of compound Se
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Chapter IV.C

I3C-NMR Spectrum of compound 5f in CDCl3 (100 MHz):
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Chapter IV.C

TH-NMR Spectrum of compound 5g in CDCls (400 MHz)
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Chapter IV.C

Mass spectrum of compound 5g
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Chapter IV.C

I3C-NMR Spectrum of compound 5h in CDCl; (100 MHz):
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Chapter IV.C

TH-NMR Spectrum of compound 5i in CDCl; (400 MHz)
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Chapter IV.C

Mass spectrum of compound Si

x10 4
7
6.8 4
6.6 1
6.4
6.2
6
5.8
9.6
5.4
5.21
54
4.81
4.6
4.4
4.2
4
3.8
3.6
3.4
3.21
34
2.81
2.6
2.4
221
54
1.8 1
1.6 1
1.4
1.2
14
0.8 |

+ESI Scan (rt: 0.253 min) Frag=160.0V 27.05.2022-18.d

m/z: 482.1049
[M+H] * = 483.1122

483.1120

443.3326 457.3460 473.3443

440 445 450 455 460 465 470 475
Counts vs. Mass-to-Charge (m/z)

480 485

TH-NMR Spectrum of compound 5j in CDCl3 (400 MHz):

8.092

[
7
|
[

5
0
5
5

58
581
566
562
538

520
7,449
7.428
7.410

7.391
l
7.347
7.330
7.312
7.307
-7.301
+7.203
-7.290
727
—6.234

L7,

I.7.272
.7.19
7.174

7
7
7
1.
r?
L7
7.3

i

490

495

500

—2.329

3.00—=

289



Chapter IV.C

I3C-NMR Spectrum of compound 5j in CDCI3 (100 MHz):
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Chapter IV.C

TH-NMR Spectrum of compound 5k in CDCl; (400 MHz)
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Chapter IV.C

Mass spectrum of compound Sk
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Chapter IV.C

I3C-NMR Spectrum of compound 51 in CDCl3 (100 MHz):

5
5

wi
@ W
g =

@
i
L=
bt}
—

@
=
o
-l
—

9.72

wi
Wi
—

5
114.91
100.79

5
=
-r
-l
—

169.92
143.92
128.64
128.37
127.78
127.46

w
]

-128.10

@
=
=
-1
—

-1
r146.2
/r140.76
1-140.4
137.88
1
|f»
—21.23
_-16.94
—14.79

A n

=

I

J

C'Hy

T T T T T
150 180 170 160 150 140 130 120 110 100ﬁ S0 80 70 60 50 40 30 20 10 0
ppm

Mass spectrum of compound 5l

w10 6 |*ESI Scan (rt: 0.243 min) Frag=175.0V 28.4.2022-16.d

CH,

244 496.1687
™.
Sl = pec
24
m/z: 495.1617
[MAH+H] " = 496. 1659

024 443.3338 474.4305 | 5181510 5341245 576.1079

430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590
Counts vs. Mass-to-Charge (m/z)

293



Chapter IV.C

TH-NMR Spectrum of compound 5m in CDCI3 (400 MHz)
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Chapter IV.C

Mass spectrum of compound Sm
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Chapter IV.C

I3C-NMR Spectrum of compound 5n in CDCl3 (100 MHz):
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Chapter IV.C

TH-NMR Spectrum of compound 50 in CDCI3 (400 MHz)
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Chapter IV.C

Mass spectrum of compound So
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Chapter IV.C

I3C-NMR Spectrum of compound 5p in CDCl3 (100 MHz):
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TH-NMR Spectrum of compound 5¢q in CDCl; (400 MHz)
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Mass spectrum of compound S5q
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13C-NMR Spectrum of compound 5r in CDCl; (100 MHz):
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TH-NMR Spectrum of compound 5s in CDCl3 (400 MHz)
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CHAPTER-V

Synthesis and antibacterial activity of novel benzimidazole based

isoindoline-1,3-dione compounds and benzo[4,5]imidazol[2,1-b]thiazoles

Introduction 5.0

[1.2] is to minimize the production of toxic and hazardous

The main objective of green chemistry
substances during the synthesis and design of synthetic protocols in the path of low risk to
nature. This demand the need of exploring green and novel perspectives towards the synthesis

of biologically active polyheterocyclic analogues.

Hence, the development of novel heterocyclic compounds from simple and easily available
starting components is of significant importance in medicinal and Pharmaceutical chemistry.
Out of the heterocyclic compounds N-fused heterocyclic derivatives are considered an
important therapeutic agent with diversified applications in agrochemical, pharmaceutical and
materials. Imidazol[2,1-b]thiazole are pivotal aromatic bicyclic five-membered heterocyclic
compound containing one sulphur and one nitrogen atom in a cyclic ring. Moreover,
imidazol[2,1-b]thiazole rings are quotient motifs exemplifying an interest in heterocyclic
compounds establishing a plethora of pharmacological activities such as anti-inflammatory B!,
anti-tumour agents *°1 anti-tubercular agents [®], CDC25 phosphatase inhibitor activity [7),
calcium channel antagonistic activity [*], anti-diabetic agents [*!%] anti-cardiovascular agents
(111 "anti-neurodegenerative '?! and mGluRs antagonist activity 3], anti-microbial ''*! and so on
[15] Some of the pharmaceutically active compounds containing fused thiazole core units were

depicted in Figure 5.1.

On the other hand, the amide bond (-NH-(CO)-R peptide linkage) communicates the backbone
of proteins, which is not only responsible for the evaluation of the mysterious process of life
on the earth but also encountered in the number of pharmaceutical active drugs, dyes, polymers,
and agrochemicals ['®?*, Some of the pharmacologically important drugs consisting of amide
moiety are depicted in Figure 5.1. Given the aforementioned importance and pharmaceutical
applications of fused thiazole and indoline 1,3-dione derivatives, we have made an unswerving
interest to synthesize the fused thiazolyl derivatives, hoping these may exhibit and enhance

pivotal biological activity.
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Figure 5.1. Biologically active compounds

The following is a brief literature review on the synthesis of isoindolinel,3-diones and

benzimidazolyl thiazoles.

Wang 5] et al. have reported a one-pot novel synthetic strategy for the cuprous oxide catalysed
oxidative C-C bond cleavage of ketones for the cyclic imides. For this reaction, various
substituted 1-indanone and substituted primary amines like aniline, benzylamine, aliphatic and

heteroaromatic amines provide good to excellent yields in presence of DMSO.

(0 (0]
Cu,O
R_i\ + RINHZ —2> R N _R!
= MPa 02 ! _—
DMSO
110 °C

Scheme 5.1. One-pot synthesis of cyclic imide

Jayaprakash 129 ¢f al. have developed a series of 4-(1,3-dioxo-2,3-dihydro-1H-isoindol-2-
yl)benzene-1-sulphonamide scaffolds. For this reaction, a mixture of aniline and phthalic
anhydride in presence of glacial acetic acid gave good to excellent yields. This intermediate
further reacts with chlorosulphonic acid and phosphorous pentachloride in presence of DCM

to give sulphonyl chloride isoindoline compound, again this isolated compound reacts with
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various amines/anilines in presence of pyridine base and di-chloromethane solvent providing
titled compounds in good to excellent yields. Furthermore, these compounds were evaluated

for their in-vitro anti-viral activity against DENV2 NS2B-NS3 protease inhibitory activity.
o NH

N AcOH @ HSO3C1 0 Cl
reflux PCls
DCM

Amines/ anilines

py/ DCM

ONR1

Scheme 5.2. Synthesis of isoindoline-based sulphonamide derivatives

Patil 1?71 ¢ al. have reported, an efficient, one-pot, eco-friendly, inexpensive graphene oxide
(GO) promoted cyclic amides from transamidation reaction. For this reaction, carboxamides/
phthalimide/ urea/ thioamide/ substituted urea with aliphatic/aromatic amine in presence of 20

wt.% of graphene oxide provides good to excellent yields.

0) (0)
GO (20 wt. % N
=
neat

Scheme 5.3. One-pot synthesis of cyclic imides via transamidation

Chen!?8! et al. have reported an efficient, one-pot, green reaction method for the synthesis of
N-arylphthalimide in presence of an easily accessible and inexpensive ionic liquid. For this
reaction, a mixture of phthalic anhydride and various aromatic amines in [Bmim][BF4] was

used and yields are good to excellent.

NH,

0
@ [Bmim][BF4] -
@E% . 8h,80°C - @E@@R

Scheme 5.4. Ionic liquid catalysed one-pot synthesis of isoindoline scaffolds
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Dos Santos 1?1 ef al. have developed a series of novel phthalimide derivatives which contain
furoxanyl nitric oxide as a subunit donor molecule. In this reaction, a mixture of phthalic
anhydride reacts with 4-(2-aminoethoxy)-3- (phenylsulfonyl)-1,2,5-oxadiazole 2-oxide in
presence of glacial acetic acid gave titled compounds in good to excellent yields. Further, these
derivatives were evaluated for their in vitro and in vivo activity against Sickle cell disease

symptoms. Among the tested, compound 3b showed promising activity.

e
AcOH NONO
\
00 L 520
PO R D
H,N 3b
W—O
0 ®0o ©Q
N'O‘N‘O
(0] 9 \
o ° 50
o ) 0-S

O
~0 ®0o
Aniline 0 Cl 0
HSO,CI 0  DCM/EGHN 3c
PCl,
0 S)
peAghipe benzoic acid N,O‘CIJ{J),O

DMF, 60 °C 0 .
SOCl, Oy O)/K _0

o H,N /\/OW uN_/ O @
_0
/: ;C‘ -0®0

0-C
(0) :
DCM/Et;N 3d
rt
& ’

Scheme 5.5. Synthesis of phthalimide derivatives containing furoxanyl nitric oxide as donor

Figure 5.2. Biologically potent molecule

Le B% ¢t al. have developed an efficient, eco-friendly, one-pot synthesis for N-alky and N-aryl

phthalimide derivatives in presence of ionic liquid. For this reaction, a mixture of phthalic
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anhydride and various substituted aromatic primary amines in [Bmim][PFs] was used as a

solvent and the yields are good to excellent.

0) o)
[Bmim][PF]

133 °C

Scheme 5.6. Synthesis of N-alkyl and N-aryl phthalimide derivatives

Kuribara B!l et al. have reported a visible light-mediated, one-pot, metal-free and photo-
catalyst-free synthesis of N-aryl phthalimide derivatives via intramolecular C-H bond
imidation. For this reaction, a mixture of various substituted arenes and phthalimide with di-
acetoxy iodo benzene and molecular iodine provides good to excellent yields at ambient

reaction conditions.

O H 0]
oot PhI(OAc): =\
XI{ 125 rt \ /\R

Scheme 5.7. One-pot, visible light-mediated synthesis of phthalimide derivatives

Bhatt 3% ez al. have developed a series of novel azo-linked hybrids of 1,3,4-thia-/ oxadiazolo
cyclic imides. The title compounds were synthesized by using phthalic anhydride / maleic
anhydride with various aromatic amines in presence of glacial acetic acid gave N-substituted
cyclic imides. Further, these N-substituted cyclic imides coupling with diazonium salt of 1,3,4-
thia-/ oxadiazolo compound gave titled compounds with good to excellent yields. Further, these
compounds were screened for their in-vitro anticancer activity against MCF-7 and HT-29 cell
lines. Among the tested compounds, compound C14 showed promising activity against two

cell lines with ICso values of 0.09 + 0.02 uM and 0.11 + 0.03 puM respectively.

NH,

@ AcOH
CI% \R “reflux CI‘Q:O— o R
NaOAc (I@ —|-
0°C Q x_ R
Np, MeOH, HCI Rl X %28 e, 2h N \I

‘& { NaNO, K”@/ X=§,0

0-5°C

X=S,0
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Scheme 5.8. Azo-linked 1,3,4-thia/oxadiazolo-cyclic imide scaffolds

QC' -
X 2

compound-14

0]

Figure 5.3 Biologically active compound

Bhange 133 et al. have reported synthetically an efficient, solvent-free, one-pot, facile synthesis
of N-aryl phthalimide derivatives via metal oxide (MnO>) catalysed amine formylation and
transamidation of primary and secondary amides by amines under reflux condition gave good

to excellent yields.

(0 NH, 0)
x/l{ 150 oC \ “7~R

Scheme 5.9. Metal oxide catalysed N-substituted phthalimide derivatives

Liang 4 et al. have reported an efficient, one-pot, synthesis of N-alkyl and N-arylphthalimide
derivatives in presence of an eco-friendly and nontoxic solvent medium. For the synthesis of
title compounds, a mixture of various primary amines and different substituted cyclic

anhydrides in presence of PEG-400 gave good to excellent yields.

0 O

R,
120 °C

R= alkyl/ aryl amines

Scheme 5.10. PEG-400 catalysed N-substituted phthalimide scaffolds

Srinivas 13! et al. established a one-pot, efficient, and eco-friendly protocol for the synthesis
of N-substituted phthalimide derivatives via microwave irradiation method in presence of an
aqueous medium. For this synthesis, various amides react with substituted amines in presence

of K»S>0g under transamidation of microwave irradiation conditions giving good yields.
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K;$,05

Water, 100 OC
or
MW irradiation

Scheme 5.11. One-pot synthesis of N-substituted phthalimide derivatives

Upadhyay P9l et al. explored an efficient, one-pot, and microwave-irradiated synthesis of
cyclic imide derivatives. In this reaction, different substituted cyclic anhydrides and amines

react in presence of DMF under reflux conditions giving good to excellent yields.

0 (0)

+ NH, MW -R

R,
DMF

R= alkyl/ aryl amines

Scheme 5.12. One-pot synthesis of cyclic imides

Nocentini 371 et al. developed a novel, one-pot synthesis of isoindoline-1,3-dione-based
oximes and benzenesulfonamide hydrazone derivatives. For this reaction, various cyclic
anhydrides, hydroxyl amines and 4(hydrazine carbonyl) benzene sulphonamides gave title
compounds with good to excellent yields in presence of methanol and a catalytic amount of
glacial acetic acid. Further, the titled compounds were evaluated for their carbonic anhydrase
inhibition and all the compounds were shown remarkable activity against hCA-IX, hCA -I,
hCA -II, and hCA -1V.

o NH
N MeOH-AcOH 0 NH,0H, HCl
Tused AcONa_ T AcOH Q—Q
reflux fused AcONa
o

(l;gﬁ%H-AcOH
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Scheme 5.13. One-pot synthesis of isoindoline-1,3-dione-based oximes and

benzenesulfonamide scaffolds

Wu B8 ¢t al. reported a novel series of isoindoline-1,3-dione containing 1,2,4-traizole
derivatives via a one-pot reaction. For this conversion, 4-amino-5-substituted-4H-1,2,4
traizole-3-thiol, various cyclic anhydrides, Zinc bromide and tri-ethyl amine in presence of dry
toluene at room temperature gave good to excellent yields. Further, these compounds were
screened for their in-vitro anti-fungal and anti-cancer activity against C. musae, F. oxysporum
f. sp. Niveum, C. gloeosporioides penz, B. theobromae, F. Oxysporum, f. sp. cubense and P.
Oryzae Cav. and anti-cancer activity against HepG2, A549, PC-3M, and MKN45 cell lines.

Among the tested compounds, compound 37 showed promising activity.

o O R O R
N-N TEA, ZnBr N/k 2 N
) 2 <N R~-Br =
+ HS/Q >\R S E— - N - /N
N toluene S)? reflux 5>/
NH2 rt H
st

Scheme 5.14. One-pot synthesis of 1,2,4-triazolo-isoindoline-1,3-dione derivatives

H;

Figure 5.4. Biologically potent molecule

Kok 3! et al. have reported an efficient, novel, one-pot synthesis of benzothiazole-containing
phthalimide derivatives. For this conversion, a mixture of phthalic anhydrides reacts with
different substituted benzothiazoles in presence of toluene and triethyl amine giving good to
excellent yields. Further, these compounds were screened for their anti-cancer activity against
CA46, K562, and SKHeP1 cell lines. All the synthesized compounds were shown remarkable

activity.
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0] 0]

N Tol/ Et;N (3:1) N
+ H,N— 2RI o y 1 Ri
R 2 _<Sj© 180 C R _<sj©

Scheme 5.15. Condensation of phthalic anhydride with benzothiazoles

Mei % ef al. have reported an efficient, Brensted acid catalysed, one-pot, three-component
synthesis of imidazole [2,1-b] thiazole derivatives. For this synthesis, various benzimidazole,
aryl nitro alkenes and elemental sulphur in presence of DMSO and salicylic acid gave titled
compounds in good to excellent yields. This reaction follows aza-Michael addition followed

by nucleophilic sulfuration with deamination aromatization.

-, R?
P
\_
R3
N N02 . . . \
R @:Q N m v s, Salicylic acid _ @[ N/>/
_ \Iz R DMSO, 100 °C R/ =
H 2

28 h

Scheme 5.16. One-thee component synthesis of N-fused thiazoles

Jana ! ¢ al. synthesized copper and catalysed an efficient, one-pot synthesis of
benzo[4,5]imidazo[2,1-b]thiazole derivatives by using a catalytic amount of Cu(OAc),. For
this synthesis S-nitro alkenes, and 2-mercaptobenzimidazole in presence of DMF gave good to

excellent yields.

N ~NO; =
RIS\ sm + | X Cu(OAc) H,0 | N
_ N% o DMF, 80 °C R// Ny
H 2 8h

Scheme 5.17. Copper catalysed synthesis of benzo[4,5]imidazo[2,1-b]thiazole derivatives

Zhao *¥ ¢t al. reported a facile one-pot metal-free oxidative cyclization reaction for the
synthesis of imidazole[2,1-b]thiazoles. For this reaction, 2-mercaptobenzimidazoles, and
ketones undergo oxidative cyclization in presence of methane sulfonic acid combined with

acetic anhydride, selectfluor as reaction mediator in sulfolane solvent giving good to excellent
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yields.

R C[N\ SH + o , selectfluor N
—_ R A\
_ N% R1“\/ CH,SO;H R@;EN%S
H Ac =~ R!
20, Sulfolane A

120 °C

Scheme 5.18. One-pot oxidative synthesis of imidazole[2,1-b]thiazoles

Shen 431 e al. have explored an efficient, one-pot cross-coupling reaction for the synthesis of
3-substituted and 2,3-disubstituted benzo[4,5]imidazo[2,1-b]thiazole derivatives. For this
synthesis, trans-1,2-diiodoalkenes, 2-mercaptobenzimidazole and various haloarenes in
presence of the catalytic amount of copper catalyst combines with K»CO3 in presence of DMF
solvent gave benzo[4,5]imidazo[2,1-b] thiazoles. Further, these compounds undergo cross-
coupling reaction using a catalytic amount of palladium catalyst in presence of p-xylene solvent
combined with Cs>CO3 gave 2,3-disubstituted benzo[4,5]imidazo[2,1-b]thiazole compounds

in good to excellent yields.

N N
X I X Pd(OAc)z/pph3
R_!(;[ N—SH + \)\I oohen C[ DY S
7 11§1>_ v R N% T Cs,co, N%

DMF, K,CO, _
100 °C i p-xylene A
135 °C, N, / =

2
o-phen = orthophenylene diamine X R

R2_C
L~

Scheme 5.19. Cross-coupling synthesis of 2,3-disubstituted benzo[4,5]imidazo[2,1-b]thiazole

Chen ™1 ¢t al. developed a series of copper-catalysed synthesis of N-fused
benzo[4,5]imidazo[2,1-b]thiazole  derivatives using 2-mercaptobenzimidazole, 1,1-
dibromoalkenes in presence of a catalytic amount of Cul in presence of DMF gave good to

excellent yields.

@EN\ _ Br Cul @[N\ N N
\
N K B —DMEDA NS @EN% i
H TBAF, DMF f %R
65 C

Scheme 5.20. One-pot copper catalysed synthesis benzo[4,5]imidazo[2,1-b]thiazoles
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Li ! e al. synthesized an efficient, one-pot copper-mediated synthesis of N-fused
benzo[2,3]imidazo[2,1-b]thiazoles by using 2-mercaptobenzimidazole and various substituted

terminal alkynes in presence of toluene and a catalytic amount of CuCl and ICy.HCL

N CuCl N
Crysn + o7 . (1
Toulene 52)

110 C,24h

Scheme 5.21. One-pot synthesis of N-fused Benzo[2,3]imidazo[2,1-b]thiazole scaffolds

5.1. Present work

5.1.1. Starting Materials

In this chapter, we describe the synthesis, antibacterial activity and molecular docking studies of
benzimidazole-based isoindoline-1,3-dione compounds and benzo[4,5]imidazol[2,1-
b]thiazoles (4a-w) and (5a-h) compounds as outlined in Scheme 5.1. The title compounds
were synthesized by using 5-amino-2-mercaptobenzimidazole 1, various cyclic anhydrides 2,
and different alkyl/ aralkyl halides 3. All the starting materials were procured from commercial

sSources.

0
9 N R
gess
H
o 4a-w

H,N N y )

o-sH P AcOH Yields 82-95% R

RN reflux R

H 90 °C |

. g 10N 0 a 0
- B — N
g . roci, g -
I ~e—— / A —_— > /

0 Lo T

3R-X L

reflux
70 °C

7N 2-3h 5a-h
R 4a-h Yields 88-95%
3a-h

Scheme 5.1 Benzimidazole based isoindoline-1,3-dione and benzo[4,5]imidazo[2,1-b]thiazol

derivatives.
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5.1.2. Synthesis of title compounds

The synthesis of target compounds was carried out as outlined in Scheme 5.1. The title compounds
were synthesized by using 5-amino-2-mercaptobenzimidazole 1, various cyclic anhydrides 2,
alkyl or substituted aralkyl halides 3 or (1:1:1) in glacial acetic acid using fused sodium acetate
at 70 °C to give final compounds (4a-w) with good to excellent yields in a shorter reaction

time.
5.3. Results and discussion

Given the aforementioned importance and pharmaceutical applications of fused thiazole and
indoline 1,3-dione derivatives, we have made an unswerving interest to synthesize the fused
thiazolyl derivatives, hoping that these compounds may exhibit and enhance pivotal biological

activity.

o Br 0O
H,N N J reaction conditions N S/—@
O O Rt
H H
1 2a 3a 4a

Scheme 5.1: Synthesis of 2-(2-(benzylthio)-1H-benzo[d|imidazol-5-yl)isoindoline-1,3-dione

Table 5.1. Optimization of reaction conditions 4a.

S.NO Solvent Base Temp(°C) Time (h) Yields® (%)
1 DMF - RT 24 Trace

2 DMF - 60 18 17

3 Methanol - 60 18 19

4 Ethanol - 60 18 22

5 AcOH - 60 15 60

6 AcOH NaOH (1.0 mmol) 60 12 43

7 AcOH NaCO3(1.0 mmol) 60 12 40

8 AcOH K2CO3 (1.0 mmol) 60 15 35

9 ACOH Piperidine (5 mol%) 60 12 55
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10 AcOH Pyridine (5 mol%) 60 12 50
11 AcOH AcONa (1.0 mmol) 60 10 70
12 AcOH AcONa (1.0 mmol) 70 10 84
13 AcOH AcONa (1.0 mmol) 80 10 90
14 AcOH AcONa (1.0 mmol) 90 9 95
15 AcOH AcONa (2.0 mmol) 90 8 87
16 AcOH - 90 12 85
17 AcOH - 100 10 80
18 AcOH AcONa (1.0 mmol) reflux 8 80

Reaction conditions: 5-amino-2-mercaptobenzimidazole (1.0 mmol), phthalic anhydride (1.0 mmol),
benzyl bromide (1.2 mmol), fused sodium acetate (1.0 mmol), Acetic acid (2.0 mL) 90 °C. *Isolated
yields.

The initial experiment was focused on identifying the suitable reaction parameters (solvent,
base, temperature) to obtain the 4a (Table 5.1) using the readily available 5-amino-2-
mercaptobenzimidazole 1, phthalic anhydride 2a, and benzyl bromide 3a in DMF solvent, we
found that the reaction takes longer time and provides lower the reaction yield (Table 5.1,
entry-1). Then the same reaction mixture was attempted under the thermal condition at 60 °C,

the reaction yielded little improved product with 17% (Table 5.1, entry-2).

Further, we demonstrated the same reaction in various polar solvents such as methanol, ethanol
and glacial acetic acid to find the effect of solvent on reaction yield timings as shown in Table
5.1. These findings suggest that the reaction proceeds much better in glacial acetic acid (Table
5.1, entry-5). Further, we examine the amount of base to improve the reaction yield. Therefore,
we demonstrated various organic and inorganic bases such as NaOH, Na,COs, K>COs,
Piperidine, pyridine, and fused sodium acetate (Table 5.1, entries 6-11). Among the tested,
sodium acetate was found to be a better base to improve the reaction yields and reduce the
reaction timings (Table 5.1, entry-14). Next, we examine the temperature study demonstrated
that the reaction requires a high temperature (90 °C) for the formation of 4a in good yields as
shown in Table 5.1, Entry-14 Vs 1-13. In addition, we have also carried out the reaction at
more than 90 °C and lesser than 90 °C without base and we found lower yields (Table 5.1,

entries-16,17). Table 5.1 indicates the best results were obtained when the reaction was
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performed using 1.0 mmol of fused sodium acetate as a base at 90 °C in acetic acid (Table 5.1,

entry 14).

o :\,"\\ /O _
H,N N . / . AcOH/AcONa - N s’_@
V—=SH o / \
Ty wesmn 0 LY
reflux H
1 2a 4a-w

23 derivatives
83-95% yield

In order, to explore the scope of this new three-component reaction, we examined the
effectiveness and tolerance of the product yields when both benzyl and phenacyl bromides

contain various functional groups on the phenyl ring. The developed optimized conditions were

7h, 87% 8h, 95/ 7h, 83/ o 7";;5"/
Qf”aw@ %‘ow %T”OEN» %c;w@

‘O o snss/ | O 8h85% % 8h84/{_9 % 9h88/{_@
@rw@ AesTacalinh eet -

8h, 86% 8 h, 88/ Cl 8h, lJl)/ 8h, 95/

/0 /
CE R >
| > Rt ‘o
H
S
0,
8h, 95A> 7h, 90/ a 7h, 91% Br 8h, 87/
(o
N ® .
CEN\» Ly
H H
4v 4w
9h, 88% 8 h, 86% 8 h, 89%

Figure 5.2. The scope of substrates.

applied for both diversely substituted benzyl bromide and phenacyl bromide compounds, and
we observed that the benzyl and phenacyl bromides with electron-donating substituents (4-

methyl benzyl bromide,4-methyl phenacyl bromides) gave excellent yields 95% and 93%
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respectively as shown in Figure 5.1, entries-4b, 4q and 4r. When the same reaction conditions
were performed to electron withdrawing halo, nitro-substituted benzyl bromides and phenacyl

bromides will reduce the product's yields (Figure 5.1).

’
{

H o H TN
0 hY 0 . oH N__SH
R e X X R Y
] ( —_ QoH + B SH —= H
HY . 4 ®
) ) rY H Il
H+

Scheme 5.2. Plausible reaction mechanism

Initially, the condensation between  phthalic  anhydride and  5-amino-2-
mercaptobenzimidazoles takes place by an acid-catalysed reaction. At first, the ester carbonyl
oxygen was pronated to give intermediate I. Further this intermediate I was attacked by the
amino group of 5-amino-2- mercaptobenzimidazole to yield protonated amine intermediate II.
Next, this intermediate undergoes deprotonated followed by ring opening and leads to the
formation of elimination of water molecule gave 2-(2-mercapto-1H-benzo[d]imidazol-5-yl)
isoindoline-1,3-dione intermediate III. Further, the thiol hydrogen of intermediate III was
attacked by fused sodium acetate to give intermediate IV. Finally, the mercaptide ion displaces

the bromine atom of alkyl/aralkyl/phenacyl bromide to give final compounds 4a-w.
5.3. Anti-microbial evaluation

Assay of in vitro antibacterial activity, bacterial strains were purchased from the National
Collection of industrial microorganisms, Pune, India. Antibacterial activity was tested against
E. coli, S. typhi, and S. aureus, Micrococcus luteus by agar well diffusion method. The zone of
inhibition was measured after 24hrs incubation at 37°C. The sterilized nutrient agar medium

was distributed 100 mL each in two 250 mL conical flasks and allowed to cool to room
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temperature. To these media, 18-24 h grown bacterial sub-cultures were added and shaken

thoroughly to ensure uniform distribution of organisms throughout the medium.

Then, the agar medium was distributed in equal portions, in sterilized Petri dishes,
ensuring that each petri dish contains about 900 pg/ml of the medium. The medium was then
allowed for solidification. The cups were made with the help of a sterile cork borer (6 mm
diameter) punching into the set of agar media. The solutions of required concentrations (100
pug/ml) of test compounds were prepared by dissolving the compounds in DMSO and were
filled into the cups with 1 mL of respective solution. Then, the Petri dishes were kept for
incubation in an inverted position for 24 - 48 h at 37 °C in an incubator. When growth inhibition
zones were developed surrounding each cup, their diameter in mm was measured and compared
with that of the standard drugs. Each experiment was made in triplicate using DMSO as a

control.
5.4.1. Results

All the newly synthesized compounds (4a — w) were investigated for antibacterial activity.
Compounds 4a, 4g, 4j, 4q, 4s, and 4t showed good activity against Gram-positive, Gram-
positive bacteria had a thick cell wall, containing a high amount of peptidoglycan and Gram-
negative bacteria had two layers of cell membrane: the inner membrane contains peptidoglycan

and the outer membrane contains lipopolysaccharides (Table 5.2).

Table 5.2. Antibacterial activity

Compounds | Conc. Minimum Inhibitory Concentration
pg/ml | Escherichia | Salmonella | Staphylococcus | Micrococcus
coli typhi aureus luteus
4a 900 450 200 200 150
4b 900 400 300 200 450
4c 900 400 450 600 200
4d 900 700 600 170 300
4e 900 160 260 550 500
4f 900 00 00 00 00
4g 900 510 430 260 125
4h 900 700 650 600 640
4i 900 500 420 500 550
4j 900 700 290 210 450
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4k 900 00 00 560 700

41 900 700 500 400 440

4m 900 00 00 00 500

4n 900 00 400 00 00

40 900 00 00 700 00

4p 900 00 700 00 120

4q 900 285 220 190 180

4r 900 390 400 600 500

4s 900 400 530 300 210

4t 900 515 320 200 330

4u 900 800 750 600 480

4v 900 300 620 510 600

4w 900 600 500 600 720
Standard 900 08 15 10 12

(streptomycin)

5.4. Molecular docking studies

In silico docking studies are very useful to examine and to gain a wise reflection in the way of
binding interactions of each ligand molecule (4a-z) with receptor structure. All the synthesized
structures were drawn by using Chem Draw Ultra 13.0, Molecular energy was minimized using
the Energy Minimization module of Maestro Tool (Schrodinger software). The three-
dimensional structure of the receptor structure was retrieved from the RCSB database (PDB
ID: 1BNA). Similar synthesized chemical compounds have shown cancer-like activity in the
previous literature and the active site of the structure of a B-DNA dodecamer will have a similar
binding potentiality to inhibit the DNA binding event. The target receptor was prepared by
removing the structural water molecule, hetero atoms and co-factors by leaving only the
residues associated with the receptor structure. Further, the grid was prepared and molecular
docking was performed using the Glide docking module the results obtained were scrutinized

based on the highest dock score and number of H-bonds by visualizing in Pymol.

Molecular docking results were identified basis on the ideal interacted ligands were scrutinized
based on the greatest ligand binding poses were identified using the low binding energy, high

docking score and the number of H-bonding, hydrophobic interactions at receptor site i.e., 4s,
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4j, 4a, 4q, 4t, 4g (Figure 5.3). Table 5.3 represents the docking score, Hydrogen bond distance

and interacting atoms. All the compounds were found to be buried.

Table 5.3. Molecular interactions with ligands against B-DNA (PDB ID: 1BNA).

Receptor | Ligands | Receptor | Ligand Distance Docking
Interaction | Atoms (A°) Affinity
Atoms (kcal/mol)
4g NH O 2.02 -7.26
NH O 2.06
1BNA NH O 2.07
4a NH O 1.55 -8.90
4 O NH 1.53 -8.94
4q O NH 1.74 -8.60
4q NH O 1.80 -9.50
4s O NH 1.44 -9.94
4t O NH 1.73 -8.55
NH O 1.80

Compound 4g Compound 4g
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Compound 4j
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Hydrophobic

Metal
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stacking

Compound 4t

Figure 5.3. Molecular docking interaction with PDB ID: 1BNA.
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Next, we turned our attention to investigating the suitable solvent for the conversion of 2-(2-
((2-ox0-2-phenylethyl)thio)-1H-benzo[d]imidazol-5-yl)isoindoline-1,3-dione derivatives to 2-
(3- phenylbenzo[4,5]imidazo[2,1-b]thiazol-7-yl)isoindoline-1,3-dione  derivatives 5Sa-f.
Therefore, we examine different solvents and acid catalysts (Table 5.2, entries 1-7) to find the
better yields a model reaction was demonstrated by using a combination of AcOH: HCI,
AcOH:H>SO4 and phosphorous oxychloride (POCI3) (Table 5.2, entries 1-7). The findings
suggest that the reaction proceeds better in POCI3; and provides good reaction yields (Table
5.2, entry-5). The temperature study indicates that this conversion requires a high temperature

(90 °C).

R
R
/O /4 O
/ \@N POC13 / U S
A\
IHQ 2-3 h, reflux N/>’
5a-h
yields up to 95%

Table 5.4. Optimization of reaction conditions Sa.

S.NO Solvent Catalyst Temp( "C) Time(h) Yield®
1 AcOH HCI (5 mol%) 90 18 50
2 AcOH HCI (10 mol%) 90 18 55
3 AcOH H>SO4 (5 mol%) 90 15 58
4 AcOH H2S04 (10 mol%) 90 15 62
5 POClI; - 90 10 88
6 POCI; - 100 8 65
7 POCI; - 110 8 51
Reaction conditions: 2-(2-((2-ox0-2-phenylethyl)thio)-1 H-benzo[d]imidazol-5-

yl)isoindoline-1,3-dione (1 mmol), solvent 2 mL. 90 °C. "Isolated yields
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R
R
0
; @N POCl,4 \©:
A\
HN 2-3 h, reflux N)’
5a-h
yields up to 95%

Scheme 5.2. 2-(2-((2-Oxo0-2-phenylethyl)thio)-1H-benzo[d]imidazol-5-yl)isoindoline-1,3-dione

--------------------------------------------------------------------------------------------------------------------------------
.

““““
03 .

H,C ~0 F
0 0 0 %o
Sa 5b 5S¢ 5d
10 h, 88% 12 h, 90% 12 h, 89% 10 h, 91%
cl O,N Ph
/O /O
10 h, 93% 10 h, 95% 10 h, 89% 10 h, 89%

*, .
""""
0 .
--------------------------------------------------------------------------------------------------------------------------------

Figure 5.3. The substrate scope of derivatives.

5.5. Conclusion

In conclusion, we have synthesized thioalkylated benzimidazole-based isoindoline-1,3-dione
and N-fused 4,5-benzo[4,5]imidaz[2,1-b]thiazole derivatives via a novel, one-pot three/ four-
component approach using acetic acid and fused sodium acetate as a reaction medium with
good to excellent yields. The usefulness of this reaction is that it involves easy workup, shorter
reaction time, broad substrate scope, and column-free purification of the products. Further, the
synthesized compounds (4a-w) were evaluated for their in-vitro anti-microbial activity.
Compounds 4a, 4g, 4j, 4q, 4s, and 4t showed good activity against Gram-positive and Gram-

negative bacteria.
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5.6. Experimental section
5.6.1. General procedure for the synthesis of benzo[3,4]imidazo[2,1-b|thiazole (5a-f):

An equimolar mixture of 5-amino-2-mercaptobenzimidazole (1 mmol) and various substituted
cyclic anhydrides (1mmol) in 2 mL of glacial acetic acid and fused sodium acetate (1.0 mmol)
was added, then various alkyl aryl halides/ phenacyl bromides (1.2 mmol) were added after the
disappearance of all starting compounds by TLC and continued the stirring under reflux
condition for 3-4 h. After completion of the reaction (ensured by TLC), the solvent from the
reaction mixture was removed under reduced pressure. Then the reaction mixture was cooled
in an ice bath and treated with an ice-cold solution of POCI; (1 mL) was added and allowed to
stir at 0-5 °C for 10-15 minutes followed by at room temperature for another 15 minutes. Then,
the reaction mixture was serried at 70 °C for 2-3 h. After completion of the reaction, the reaction
mixture was poured into crushed ice and the precipitated product was neutralized with 10 mol%
of K2COs solution, filtered the precipitated solid, and washed several times with ice-cold water

the crude product was recrystallized from ethanol and yields of the products are 88-95%.

5.7. Characterization data of products
2-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)isoindoline-1,3-dione. 4a

White solid: yield: 87%, mp 244-246°C; FT-IR (KBr, cm™): 3390 (-NH), 1735 (imide —C=0),
1602 (C=N), 'H NMR (400 MHz, DMSO-ds & ppm): 10.43 (s, o

1H, Ar-H), 8.0-7.95 (m, 2H, Ar-H), 7.86 (s, 1H, Ar-H), 7.68 — 7.61 %\@EN\ s@
(m, 1H, Ar-H), 7.57-7.54 (m, 3H, Ar-H), 7.43 (t, J=7.0 Hz, 2H, {

Ar-H), 7.32 (t, J= 7.2 Hz, 2H, Ar-H), 4.65 (s, 2H, S-CH); '*C NMR (100 MHz, DMSO-d;s §
ppm): 167.90,167.72, 155.96, 151.74, 136.76, 135.19, 135.03, 132.12, 130.18, 129.99, 129.39,
129.23, 128.34, 127.97, 125.01, 123.91, 123.76, 120.63, 114.08, 113.64, 108.71, 36.44; ESI-
HRMS: m/z Calcd for Chemical Formula: C2,Hi6N302S: 386.0958 [M+H] * found: 386.0956.
2-(2-((4-Methylbenzyl)thio)-1H-benzo|d]imidazol-5-yl)isoindoline-1,3-dione. 4b

White solid: Yield: 95%, mp 220-222 °C; FT-IR (KBr, cm™): 3355 (-NH), 1735 (imide -C=0),
1629 (C=N); 'H NMR (400 MHz, DMSO-ds § ppm): 8.0-7.98 Y

(m, 2H, Ar-H), 7.94-7.92 (m, 2H, Ar-H), 7.68 (d, /= 8.0 Hz, %\C[l:\%sﬁ@cm
2H), 7.35 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 7.6 Hz, 2H), 4.64 H

(s, 2H, S-CHz-protons), 2.27 (s, 3H, CHs-protons), 2.09 (s, 1H, NH proton); *C NMR (100
MHz, DMSO-ds 6 ppm): 167.74, 151.80, 137.73, 135.92, 135.44, 135.23, 133.48, 132.03,
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129.79, 129.30, 128.00, 123.92, 114.02, 113.55, 110.31, 36.36, 21.16; ESI-HRMS: m/z Calcd
for Chemical Formula: C23H1sN302S: 400.1114 [M+H] " found:400.1117.
2-(2-((4-Fluorobenzyl)thio)-1H-benzo|d]imidazol-5-yl)isoindoline-1,3-dione. 4¢

White solid: Yield: 83% ; mp. 236-238 °C; FT-IR (KBr, cm™): 3392 (NH), 1764 (imide —
C=0), 1619 (C=N); '"H NMR (400 MHz, DMSO) § 7.99-7.97 o

(m, 2H, Ar-H), 7.94-7.92 (m, 2H, Ar-H), 7.68 (s, 1H, Ar-H, %\C[E%Sﬁ@ ’
NH proton), 7.66-7.65 (m, 2H, Ar-H), 7.54 (d, J = 8.4 Hz, H
2H), 7.43 (d, J = 8.4 Hz, 2H), 7.34 (dd, J = 8.4, 2.0 Hz, 2H), 4.65 (s, 2H, S-CH> protons); 1*C
NMR (100 MHz, DMSO-ds) o: 167.58, 151.03, 147.30, 145.39, 136.88, 136.36, 135.23,
131.94, 130.58, 127. 61, 124.20, 123.90, 123.61, 114.14, 11.77, 35.36; ESI-HRMS: m/z Cacld
for Chemical Formula: C22H;5FN30,S: 404.0864 [M+H] * found: 404.0870.
2-(2-((4-Bromobenzyl)thio)-1H-benzo|d]imidazol-5-yl)isoindoline-1,3-dione. 4d

White solid: Yield: 85%; mp. 240-242 °C; FT-IR (KBr, cm™): 3390 (NH), 1726 (imide -C=0),
1601 (C=N); 'H NMR (400 MHz, CDCI3+DMSO-ds ppm) & 0
7.91-7.89 (m, 2H, Ar-H), 7.83-7.81 (m, 2H, Ar-H), 7.78 (s, %@:\%S@B
1H, Ar-H), 7.69 (s, 1H, Ar-H, NH proton), 7.67 (d, J = 2.0 H

Hz, Ar-H, 2H), 7.41 (d, J = 8.4 Hz, 2H, Ar-H), 7.33 (d, /= 8.4 Hz, 2H, Ar-H), 4.65 (s, 2H, S-
CHz protons); *C NMR (100 MHz, CDCI3+DMSO-ds) &: 167.15, 151.00, 134.89, 134.68,
134.56,133.88,132.42,131.99, 131.59, 131.08, 128.47,123.80, 122.06, 113.92, 112.53, 36.39:
ESI-HRMS: m/z Calcld for Chemical Formula: C2:HisBrN3O,S: 464.0063 [M+H]" found:
464.0068.

2-(2-((4-Nitrobenzyl)thio)-1H-benzo[d]imidazol-5-yl)isoindoline-1,3-dione. 4e

White solid: Yield: 86% ; mp. 287-289 °C; FT-IR (KBr, cm™!): 3427 (NH), 1732 (imide —
C=0), 1613 (C=N); 'H NMR (400 MHz, DMSO-ds § ppm): 0
8.17 (d, J=8.8 Hz, 2H, Ar-H), 7.97-7.95 (m, 2H, Ar-H), 7.92 %\C[;gisﬁ@flvol
—7.89 (m, 2H, Ar-H), 7.73 (d, J = 8.8 Hz, 2H, Ar-H), 7.68 (s, H

1H, Ar-H), 7.65-7.64, m, 2H, Ar-H), 7.33 (dd, /= 8.4, 2.0 Hz, 1H, Ar-H), 4.77 (s, 2H, S-CH>»
protons); '*C NMR (100 MHz, DMSO-ds) &: 167.84, 151.05, 147.28, 145. 52, 137.23, 136.71,
135.23, 131.95, 130.57, 127.44, 124.19, 123.90, 123.43, 114.17, 113.83, 35.28; ESI-HRMS:
m/z Cacld for Chemical Formula: C2,H15N4O4S: 431.0809 [M+H]* found: 431.0805.
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Ethyl 2-((5-(1,3-dioxoisoindolin-2-yl)-1H-benzo[d]imidazol-2-yl)thio)acetate. 4f
White solid: Yield: 88%; mp. 188-190 °C; FT-IR (KBr, cm™): 3385 (-NH), 1725 (imide —
C=0), 1710 (O-C=0), 1625 (C=N) 'H NMR (400 MHz, CDCl;) o o/
0 8.34 (s, 1H, Ar-H), 7.27 (d, J = 8.8 Hz, 2H, Ar-H), 6.99 (d, J = %K\CEN\ sﬁ%
9.2 Hz, 2H, Ar-H), 6.78 (s, 2H, Ar-H), 6.06 (s, 2H, Ar-H), 5.72- 1}\11%
5.66 (m, 2H, aliphatic protons), 3.68 (s, 2H, S-CH; Protons), 1.50 (t, J = 7.2 Hz, 3H, CHj3
Protons); '*C NMR (100 MHz, CDCl3+DMSO-ds) 8: 167.72, 167.24, 151.18, 134.95, 131.76,
123.80, 113.88, 112.77, 62.23, 34.65, 14.28: ESI-HRMS: m/z Cacld for Chemical Formula:
C1oH16N304S: 382.0856 [M+H]" found: 382.0857.
2-((5-(1,3-Dioxoisoindolin-2-yl)-1 H-benzo|d]imidazol-2-yl)thio)acetic acid. 4g
White solid: Yield: 87%; mp. 243-245 °C; FT-IR (KBr, cm™): 3465 (-COOH), 3390 (-NH),
1719 (imide —-C=0), 1613 (C=N); 'H NMR (400 MHz, CDCls+ o o
DMSO-ds ppm) 6: 7.99-7.97 (m, 2H, Ar-H), 7.89-7.87 (m, 2H, %\C[:\%Sﬁ%
Ar-H), 7.79 (s, 1H, Ar-H, NH proton), 7.77-7.76 (m, 2H, Ar-H), H
7.71 (s, 1H, Ar-H), 7.52 (dd, J = 8.4, 1.6 Hz, 1H), 4.46 (s, 2H, S-CH; protons); '>*C NMR '3C
NMR (100 MHz, CDCl3+DMSO-ds) o: 167.59, 167.16, 151.07, 134.93, 131.70, 123.81,
113.85,112.62, 34.67; ESI-HRMS: m/z Cacld for Chemical Formula: C;7H12N304S: 354.0543
[M+H] " found: 354.0540.
1-(2-((4-Fluorobenzyl)thio)-1H-benzo[d]imidazol-5-yl)pyrrolidine-2,5-dione. 4h
White solid: Yield: 82%; mp. 185-187 °C; FT-IR (KBr, cm™): 3425 (-NH), 1718 (imide —
C=0), 1623 (-C=N); 'H NMR (400 MHz, CDCl3+DMSO-ds & 0
ppm): 10.21 (s, 1H, Ar-H, NH proton), 7.90 (s, 1H, Ar-H), 7.53 — g\c[l\l\ S@F
7.51 (m, 2H, Ar-H), 7.45 (dd, J = 8.6, 5.4 Hz, 2H, Ar-H), 7.05 (t, ﬁ
J=28.6 Hz, 2H, Ar-H), 4.72 (s, 2H, S-CH; prptons), 2.16 (s, 4H, aliphatic protons); '*C NMR
(100 MHz, CDCIl3+DMSO-ds) 6: 169.55, 163.63, 161.17, 148.05, 137.79, 132.69, 131.22,
131.14, 128.20, 118.57, 116.07, 115.85, 113.36, 103.15, 36.90, 24.36; ESI-HRMS: m/z Cacld
for Chemical Formula: CisH;sFN30:S: 356.0864 [M+H] * found: 356.0865.
1-(2-((4-Nitrobenzyl)thio)-1H-benzo[d]imidazol-5-yl)pyrrolidine-2,5-dione. 4i
White solid: Yield: 85%; mp. 193-195 °C; FT-IR (KBr, cm™): o)
3427 (-NH), 1735 (imide —-C=0), 1626 (C=N); 'H NMR (400 g N NO,
MHz, CDCl3+DMSO-ds & ppm): 10.15 (s, 1H, Ar-H, NH \C[ﬂ\%s#@
proton), 8.26 (s, 1H, Ar-H), 8.08 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (d, J = 8.8 Hz, 2H, Ar-H),
7.49 — 7.44 (m, 2H, Ar-H), 4.82 (s, 2H, S-CH, protons), 2.09 (s, 4H, aliphatic protons); '*C
NMR (100 MHz, CDCI3+DMSO-ds) 8: 169.38, 147.56, 147.23, 142.98, 137.87, 132.94,
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130.33, 128.47, 124.02, 118.53, 113.43, 103.15, 36.54, 24.39; ESI-HRMS: m/z Cacld for
Chemical Formula: CisH1sN4O4S: 383.0809 [M+H] * found: 383.0424.
2-(2-((4-Fluorobenzyl)thio)-1H-benzo|d]imidazol-5-yl)-4-nitroisoindoline-1,3-dione. 4j
Orange solid: Yield: 85%; mp. 226-228 °C; FT-IR (KBr, cm™): 3426 (-NH), 1731 (imide —
C=0), 1612 (C=N) ; '"H NMR (400 MHz, CDCl5+DMSO-ds § ppm): NOZO
8.27 (d, J=8.0 Hz, 1H, Ar-H), 8.22 (d, /= 6.8 Hz, 1H, Ar-H), 8.10 \C[:\%S/_QF
(t,J=7.8 Hz, 2H, Ar-H), 7.64 (s, 1H, Ar-H, NH proton), 7.62 — 7.61 H

(m, 1H, Ar-H), 7.45 (d, J = 8.8 Hz, 2H, Ar-H), 7.38 (d, J = 8.4 Hz, 2H, Ar-H), 7.30 (dd, J =
8.6, 1.8 Hz, 1H, Ar-H), 4.61 (s, 2H, S-CH; protons); *C NMR (100 MHz, DMSO-ds ) &:
166.02, 163.45, 160.80, 151.89, 144.95, 137.07, 136.87, 131.46, 131.38, 128.80, 127.49,
123.41, 123.01, 116.02, 115.81, 114.20, 114.04, 35.19; ESI-HRMS: m/z Cacld for Chemical
Formula: C22H14FN4O4S: 449.0714 [M+H] * found: 449.0710.
4-Nitro-2-(2-((4-nitrobenzyl)thio)-1H-benzo|[d]imidazol-5-yl)isoindoline-1,3-dione. 4k
Orange solid: Yield: 84%; mp. 230-232 °C; FT-IR (KBr, cm™): 3408 (-NH), 1729 (imide —

NO,

C=0), 1623 (C=N) 'H NMR (400 MHz, DMSO-ds & ppm): 10. 34 %

0
(s, 1H, Ar-H, NH proton), 8.34 (d, J = 8.0 Hz, 1H, Ar-H), 8.27 — @:\ﬁ@woz
8.23 (m, 1H, Ar-H), 8.13 (t, J=7.8 Hz, 1H, Ar-H), 7.73 — 7.69 (m, H

1H, Ar-H), 7.62 (d, J= 8.8 Hz, 1H, Ar-H), 7.47-7.41 (m, 2H, Ar-H), 7.35-7.27 (m, 3H, Ar-H),
4.71 (s, 2H, S-CHz-protons); '3C NMR (100 MHz, CDCl3+ DMSO-ds) §: 167.26, 151.50,
135.52,134.75,131.58, 129.08, 128.90, 128.16, 127.60, 123.76, 122.83,113.95, 112.56, 37.14;
ESI-HRMS: m/z Cacld for Chemical Formula: C2H14NsO6S: 476.0659 [M+H] * found:
476.0653.
2-(2-(Benzylthio)-1H-benzo|d]imidazol-5-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione. 41
White solid: Yield: 88%; mp. 268-270 °C; IR FT-IR (KBr, cm™): 3377 (-NH), 1737 (imide —
C=0), 1622 (C=N) ; 'H NMR (400 MHz, DMSO-ds § ppm): 8.54- O o

8.51 (m, 5SH, Ar-H), 7.92 (t, J= 7.8 Hz, 1H, Ar-H), 7.77 (d, J = 8.0 :\%SﬁO
Hz, 2H), 7.50 (d, J= 7.2 Hz, 2H), 7.43 — 7.31 (m, 4H, Ar-H), 4.76 (s, H

2H, S-CH> Protons); *C NMR (100 MHz, DMSO-ds) &: 164.45, 151.30, 136.50, 134.98,

131.93, 131.23, 129.39, 129.29, 128.45, 128.35, 127.73, 123.12, 114.97, 114.00, 36.70; ESI-
HRMS: m/z: Cacld for Chemical Formula: C26HisN302S: 436.1114 [M+H] " found: 436.1121.
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2-(2-((4-Fluorobenzyl)thio)-1H-benzo[d]imidazol-5-yl)-1H-benzo|[de]isoquinoline-
1,3(2H)-dione. 4m

White solid: Yield: 86%; mp. 268-270 °C; FT-IR (KBr, cm™): 3398 (-NH), 1736 (imide —
C=0), 1623 (C=N); 'H NMR (400 MHz, DMSO-d;) &: 8.53-8.51 0

(m, 5H, Ar-H), 7.92 (t, J= 7.8 Hz, 2H, Ar-H), 7.71 (d, /= 8.8 Hz, N N F
2H, Ar-H), 7.54 (t, ] = 6.8 Hz, 2H, Ar-H), 7.34 (d, J=8.0 Hz, 1H, : CEE%S@
Ar-H), 7.19 (t, J = 8.6 Hz, 2H, Ar-H), 4.71 (s, 2H, S-CH; Protons); *C NMR (100 MHz,
DMSO-dys) 6: 164.47,151.17,134.93, 133.44,131.93,131.49, 131.41, 131.21, 128.35, 127.72,
125.12, 123.17, 116.12, 115.91, 115.09, 114.04, 35.53; ESI-HRMS: m/z: Cacld for Chemical
Formula: C26Hi7FN30,S: 454.1020 [M+H] " found: 454.1022.
2-(2-((4-Bromobenzyl)thio)-1H-benzo|d]imidazol-5-yl)-1H-benzo|[de]isoquinoline-
1,3(2H)-dione. 4n

White solid: Yield: 88%; mp. 268-270 °C; FT-IR (KBr, cm™): 3366 (-NH), 1711 (imide —
C=0), 1623 (C=N); 'H NMR (400 MHz, DMSO-ds ppm): 8.54 ‘ o

—8.51 (m, 5H, Ar-H), 7.92 (t, J= 7.8 Hz, 2H, Ar-H), 7.77 — 7.75 @% S@m
(m, 2H, Ar-H), 7.56 (d, J = 8.4 Hz, 2H, Ar-H), 7.46 (d, J= 8.4 Hz, H

2H, Ar-H), 7.41 (dd, J = 8.6, 2.4 Hz, 1H, Ar-H), 4.73 (s, 2H, S-CH protons); *C NMR (100
MHz, DMSO-ds) 6: 164.44, 151.00, 136.46, 134.95, 132.69, 132.16, 131.95, 131.57, 131.20,
128.38, 127.73, 125.82, 123.20, 121.58, 115.04, 114.04, 35.86; ESI-HRMS: m/z Cacld for
Chemical Formula: CasH17BrN;O2S : 514.0219 [M+H] + found: 514.0217
2-(2-((2-Oxo0-2-phenylethyl)thio)-1H-benzo|d]imidazol-5-yl)isoindoline-1,3-dione. 40
White solid: Yield: 95%; mp. 226-228 °C; FT-IR (KBr, cm™): 3326 (-NH), 1735 (carbonyl —
C=0), 1690 (imide —C=0), 1626 (C=N); 'H NMR (400 MHz, o

DMSO-ds & ppm): 8.07 (d, J=7.2 Hz, 2H), 7.97-7.94 (m, 2H, Ar- %\C[:\%Sﬁ@
H), 7.91-7.89 (m, 2H, Ar-H), 7.70 (t, J = 7.4 Hz, 1H, Ar-H), 7.64- H

7.56 (m, 5H, Ar-H), 7.30 (d, J = 8.4 Hz, 1H, Ar-H), 5.20 (s, 2H, S-CH> Protons); *C NMR
(100 MHz, DMSO-ds 9) 6: 193.33, 167.81, 152.06, 137.29, 136.79, 135.58, 135.18, 134.45,

132.03,129.39, 128.94, 127.24, 123.87, 123.14, 113.94, 113.64, 40.74; ESI-HRMS: m/z Cacld
for Chemical Formula: C23H6N303S: 414.0907 [M+H]" found: 414.0905.
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2-(2-((2-Oxo0-2-(p-tolyl)ethyl)thio)-1H-benzo|d]imidazol-5-yl)isoindoline-1,3-dione. 4p
Yellow solid: yield: 95%; mp. 226-228 °C; FT-IR (KBr, cm™): 3260 (-NH), 1727 (carbonyl —
C=0), 1685 (imide -C=0), 1613 (C=N); 'H NMR (400 MHz, DMSO) CHs
0]
N
Ly %
H

0 8.10 (s, IH, Ar-H), 7.97-7.91 (m, 2H, Ar-H), 7.87-7.85 (m, 2H, Ar-
H), 7.62 (d, J= 8.4 Hz, 1H), 7.58 (s, 1H, Ar-H), 7.34 (d, /= 8.0 Hz,
2H, Ar-H), 7.29 (dd, J = 8.6, 1.8 Hz, 1H, Ar-H), 5.14 (s, 2H, S-CH> Protons), 2.40 (s, 3H, -
CH; Protons); '*C NMR (100 MHz, DMSO-ds) §: 192.37, 167.49, 152.05, 144.93, 134.96,
132.93, 131.86, 129.73, 128.94, 127.29, 123.78, 122.85, 113.83, 113.12, 40.81, 21.77; ESI-
HRMS: m/z Cacld for Chemical Formula: C24H;sN303S: 428.1063 [M+H] " found: 428.1067.
2-(2-((2-(4-Methoxyphenyl)-2-oxoethyl)thio)-1 H-benzo[d]imidazol-5-yl)isoindoline-1,3-

dione. 4q

Yellow solid: yield: 95%; mp. 226-228 °C; FT-IR (KBr, cm™): 3426 (-NH), 1733 (carbonyl —
C=0), 1695 (imide -C=0), 1625 (C=N); 'H NMR (400 MHz, DMSO-ds o
o ppm): 8.04 (d, J = 8.8 Hz, 2H, Ar-H), 7.95-7.93 (m, 2H, Ar-H), 7.90- ’ N @

7.87 (m, 2H, Ar-H), 7.58 (s, 1H, Ar-H), 7.55 — 7.54 (m, 2H, Ar-H), 7.22 \C[HNH

(dd,J=8.4,2.0 Hz, 1H), 7.08 (d, J = 8.8 Hz, 2H, Ar-H), 5.07 (s, 2H, S-CHo- protons), 3.85 (s,
3H, OCHj3 protons); '*C NMR (100 MHz, DMSO-ds) &: 191.94, 167.90, 164.10, 152.01,
138.79, 135.12, 132.04, 131.35, 128.56, 126.48, 123.83, 122.33, 114.55, 113.87, 56.11, 40.92;
ESI-HRMS: m/z Cacld for Chemical Formula: CosHisN304S: 444.1013 [M+H] * found:
444.10009.
2-(2-((2-(4-Chlorophenyl)-2-oxoethyl)thio)-1H-benzo|[d]imidazol-5-yl)isoindoline-1,3-

dione. 4r

Yellow solid: yield: 95%; mp. 226-228 °C; FT-IR (KBr, cm™): 3327 (-NH), 1735 (carbonyl —
C=0), 1692 (imide —-C=0), 1619 (C=N); 'H NMR (400 MHz, . .
CDCI13+DMSO-ds 6 ppm): 8.08 (d, /= 8.4 Hz, 2H), 7.98-7.96 (m, 2H, S@

N
Ar-H), 7.92-7.90 (m, 2H, Ar-H), 7.68 — 7.64 (m, 4H, Ar-H), 7.35 (dd, \C[ﬁ%

J = 8.6, 1.8 Hz, 1H), 5.30 (s, 1H, -NH Proton), 5.21 (s, 2H, S-CHa Protons); '*C NMR (100
MHz, DMSO-ds) 6: 192.32, 167.76, 152.02, 139.40, 135.20, 134.26, 132.04, 130.88, 129.52,
123.90,113.92, 113.56, 40.82; ESI-HRMS: m/z Cacld for Chemical Formula: C23H;5CIN3OsS:
448.0517 [M+H] * found: 448.0519.
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2-(2-((2-(4-Bromophenyl)-2-oxoethyl)thio)-1 H-benzo|d]imidazol-5-yl)isoindoline-1,3-

dione. 4s

White solid: yield: 91%; mp. 285-287 °C; FT-IR (KBr, cm™): 3297 (-NH), 1721 (carbonyl —
C=0), 1677 (imide —-C=0), 1620 (C=N); '"H NMR (400 MHz, CDCl3+ . BT
DMSO- ds 6 ppm): 8.10 (s, 1H, Ar-H), 7.99 (d, J = 8.4 Hz, 2H, Ar-H), N @
7.93-7.85 (m, 3H, Ar-H), 7.71 (d, J = 8.8 Hz, 2H, Ar-H), 7.55 —7.50 C[fs

(m, 2H, Ar-H), 7.19 (d, J = 8.4 Hz, 1H), 5.18 (s, 1H, Ar-H), 5.05 (s, 2H, S-CH> Protons): '*C
NMR (100 MHz, DMSO-ds) 6: 192.61, 170.03, 152.61, 145.17, 142.07, 139.77, 134.59,
132.98, 131.00, 130.62, 129.93, 129.57, 129.43, 129.29, 129.13, 126.35, 115.21, 110.35,
104.79, 41.34; ESI-HRMS: m/z Cacld for Chemical Formula: C23HsBrN3;O3S: 492.0012
[M+H] " found: 492.0024.

2-(2-((2-([1,1'-Biphenyl]-4-yl)-2-oxoethyl)thio)-1 H-benzo[d]imidazol-5-yl)isoindoline-
1,3-dione. 4t

White solid: yield: 87%, mp. 199-201 °C; FT-IR (KBr, cm™): 3336 (-NH), 1738 (carbonyl —
C=0), 1696 (imide -C=0), 1628 (C=N); 'H NMR (400 MHz, DMSO- .
ds & ppm): 12.89 (s, 1H, Ar-H, NH Proton), 8.15 (d, J = 8.4 Hz, 2H, %O N ﬁ@
Ar-H), 7.93-7.85 (m, 6H, Ar-H), 7.75 (d, /= 7.2 Hz, 2H, Ar-H), 7.52- \C[ﬁ\%s

7.48 (m, 4H, Ar-H), 7.42 (t, J= 7.4 Hz, 1H, Ar-H), 7.16 (t, J= 7.4 Hz, 1H, Ar-H), 5.09 (s, 2H,
S-CH: protons); *C NMR (100 MHz, DMSO-dy) &: 193.39, 167.97, 151.75, 145.52, 139.23,
135.09, 134.66, 132.05, 129.68, 129.62, 129.01, 127.50, 123.80, 121.97,117.37, 110.54, 41.15;
ESI-HRMS: m/z Cacld for Chemical Formula: C20H20N303S: 490.1220 [M+H] * found:
490.1220.
2-(2-((2-Oxo0-2-phenylethyl)thio)-1H-benzo|d]imidazol-5-yl)-1H-benzo|de]isoquinoline-
1,3(2H)-dione. 4u

White solid: yield: 88%; mp. 246-248 °C; FT-IR (KBr, cm™): 3320 (-NH), 1729 (carbonyl —
C=0), 1698 (imide -C=0), 1626 (C=N); '"H NMR (400 MHz, DMSO- ‘ .

ds & ppm): 10.38 (s, 1H, Ar-H), 8.52 (t, J= 6.6 Hz 3H, Ar-H), 8.26 (d, C[Nfsﬁ@
J=1.6 Hz, 1H, Ar-H), 8.10 (t, /= 7.8 Hz, 2H, Ar-H), 7.91 (t,J = 7.8 H

Hz, 1H, Ar-H), 7.79-7.77 (m, 1H, Ar-H), 7.75-7.74 (m, 1H, Ar-H), 7.67-7.60 (m, 3H, Ar-H),
7.52 (dd, J = 8.8, 2.0 Hz, 1H, Ar-H), 7.47-7.45 (m, 1H, Ar-H), 5.43 (s, 2H, S-CH_ Protons);
3C NMR (100 MHz, DMSO-ds) &: 192.56, 169.26, 164.42, 152.02, 150.19, 137.61, 135.89,
135.30, 134.97, 132.94, 131.93, 131.19, 129.44, 129.05, 127.72, 123.17, 117.73, 114.76,
113.81, 102.55,42.23; ESI-HRMS: m/z Cacld for Chemical Formula: C27H1sN3O3S: 464.1063
[M+H] * found: 464.1070.
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2-(2-((2-(4-Chlorophenyl)-2-oxoethyl)thio)-1 H-benzo|[d]imidazol-5-yl)-1 H-
benzo[de]isoquinoline-1,3(2H)-dione. 4v

White solid: yield: 86%, mp. 270-272 °C; FT-IR (KBr, cm™): 3348 (-NH), 1738 (carbonyl —
C=0), 1707 (imide —C=0), 1630 (C=N); 'H NMR (400 MHz, ‘ a
CDCIl13+DMSO-ds 6 ppm): 10.24 (s, 1H, Ar-H, NH Proton), 8.55 (dd, O N ﬁ@
J=172,1.2Hz, 1H), 8.46 (d, J= 8.0 Hz, 1H, Ar-H), 833 (d, /= 1.6 : ﬁﬁs

Hz, 1H, Ar-H), 8.10 (t, /= 9.0 Hz, 2H, Ar-H), 7.88 (t, /=7.8 Hz, 1H, Ar-H), 7.75 (d, J = 8.4
Hz, 1H, Ar-H), 7.69 (s, 1H, Ar-H), 7.61 (dd, J = 8.6, 1.8 Hz, 2H, Ar-H), 7.55 (d, J = 8.8 Hz,
1H, Ar-H), 7.47 (dd, /= 8.8, 1.6 Hz, 1H), 7.39 (dd, /= 8.6, 1.8 Hz, 1H, Ar-H), 5.32 (s, 2H, S-
CH. Protons); *C NMR (100 MHz, DMSO-ds) &: 192.16, 169.42, 164.48, 151.72, 150.02,
139.48, 137.22, 135.00, 133.88, 133.47, 132.43, 131.27, 130.89, 129.52, 127.73, 125.60,
123.03, 117.61, 114.86, 113.90, 41.63; ESI-HRMS: m/z Cacld for Chemical Formula:

C27H17CIN303S: 498.0674 [M+H] * found: 498.0675.
2-(2-((2-(4-Bromophenyl)-2-oxoethyl)thio)-1H-benzo|d]imidazol-5-yl)-1 H-

benzo|de]isoquinoline-1,3(2H)-dione. 4w

White solid: yield: 89%; mp. 261-263 °C; FT-IR (KBr, cm™): 3352 (-NH), 1731 (carbonyl —
C=0), 1687 (imide —-C=0), 1622 (C=N); '"H NMR (400 MHz, DMSO- ‘ . o
ds 6 ppm): 10.34 (s, 1H, Ar-H, NH Proton), 8.57-8.50 (m, 3H, Ar-H), O N sﬁ@
8.24 (s, 1H, Ar-H), 8.01 (t,J=9.2, 2H, Ar-H), 7.92 (t,J= 7.8 Hz, 1H, : C[{
Ar-H), 7.85 (dd, J= 8.8, 3.2 Hz, 2H), 7.76 — 7.74 (m, 1H, Ar-H), 7.62 (d, J = 8.8 Hz, 1H, Ar-
H), 7.49 (dd, J= 8.8, 1.6 Hz, 1H, Ar-H), 7.42 (dd, J= 8.6, 1.4 Hz, 1H, Ar-H), 5.36 (s, 2H, S-
CH. Protons); '*C NMR (100 MHz, DMSO-ds) &: 192.24, 169.24, 164.42, 151.79, 150.00,
137.53, 135.89, 134.96, 132.94, 132.51, 131.20, 130.98, 128.76, 128.04, 127.72, 123.18,
113.87, 41.93: ESI-HRMS: m/z Cacld for Chemical Formula: C27H;7BrN3zOs3S: 542.0169
[M+H] * found: 542.0170.
2-(3-Phenylbenzo[4,5]imidazo[2,1-b]thiazol-6-yl)isoindoline-1,3-dione. Sa

White solid: yield: 88%; mp. 216-218 °C; FT-IR (KBr, cm™): 1747 (imide —-C=0); '"H NMR

(400 MHz, DMSO-ds 6 ppm): 7.97-7.89 (m, Ar-H, 5H), 7.83-7.80 (m, Ar- o
H, 2H), 7.67 — 7.66 (m, 2H, Ar-H), 7.60-7.59 (m, 2H, Ar-H), 7.42 (dd, J = ~
8.8, 1.6 Hz, 1H, Ar-H), 7.36 (s, 1H, Ar-H); >*C NMR (100 MHz, DMSO- C[N/y

ds) 6: 166.93, 150.87, 136.79, 135.23, 134.71, 129.45, 129.01, 121.94, 113.57, 108.23; ESI-
HRMS: m/z Cacld for Chemical Formula: C23H14N302S: 396.0801 [M+H] * found: 396.0802.
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2-(3-(p-Tolyl)benzo[4,5]imidazo[2,1-b]thiazol-6-yl)isoindoline-1,3-dione. Sb

White solid: yield: 90%; mp. 233-235 °C; FT-IR (KBr, cm™): 1742 (imide -C=0); 'H NMR
(400 MHz, CDCI3+DMSO-ds 6 ppm): 8.09 (s, 1H, Ar-H), 7.96-7.85 (m, 6H, .
Ar-H), 7.48-7.43 (m, 2H, Ar-H), 7.32 (d, J = 7.6 Hz, 2H, Ar-H), 7.10 (s, 1H,
Ar-H), 2.40 (s, 3H, CH3 Protons); 3C NMR (100 MHz, DMSO-ds & ppm):
167.33, 150.81, 145.40, 139.66, 132.72, 129.98, 129.12, 128.98, 125.16, 124.20, 121.96,
113.50, 108.06, 21.74; ESI-HRMS: m/z Cacld for Chemical Formula: C24H16N302S: 410.0958
[M+H] " found: 410.0956.
2-(3-(4-Methoxyphenyl)benzo[4,5]imidazo[2,1-b]thiazol-6-yl)isoindoline-1,3-dione. Sc
White solid: yield: 89%; mp. 218-220 °C; FT-IR (KBr, cm™): 1723 (imide -C=0); 'H NMR
(400 MHz, DMSO-ds 6 ppm): 7.94-7.90 (m, 4H, Ar-H), 7.74-7.68 (m, 3H, Ar-
H), 7.40 (s, 1H, Ar-H), 7.18 (d, /= 8.4 Hz, 2H, Ar-H), 7.13 (d, /= 8.4 Hz, 2H,
Ar-H), 3.82 (s, 3H, OCHj3 Protons); *C NMR (100 MHz, CDCls+ DMSO-ds )
O: 164.44, 150.53, 139.42, 137.44, 131.29, 128.69, 127.81, 125.04, 124.15, 114.37, 113.16,
107.76, 55.93; ESI-HRMS: m/z Cacld for Chemical Formula: C24H16N303S: 426.0907 [M+H]
" found: 426.0913.
2-(3-(4-Fluorophenyl)benzo[4,5]imidazo[2,1-b]|thiazol-6-yl)isoindoline-1,3-dione. 5d
White solid: yield: 91%; mp. 232-234 °C; FT-IR (KBr, cm™): 1747 (imide

—C=0); 'H NMR (400 MHz, DMSO-ds & ppm): 8.17 (dd, J = 8.4, 5.6 Hz, %“ %
2H, Ar-H), 8.08 (s, 1H, Ar-H), 7.62 (d, J= 8.8 Hz, 1H, Ar-H), 7.53 (d, J = \©iN>/
7.6 Hz, 2H, Ar-H), 7.46 (t, J = 8.8 Hz, 3H, Ar-H), 7.35 (t, /= 8.0 Hz, 2H, Ar-H), 7.15 (s, 1H,
Ar-H); *C NMR (100 MHz, DMSO-ds 8) &: 167.27, 164.75, 152.57, 132.10, 132.01, 129.04,
119.65, 116.95, 116.83, 116.49, 116.27, 114.67, 112.80, 108.28; ESI-HRMS: m/z Cacld for
Chemical Formula: C23Hi3FN30,S: 414.0707 [M+H] * found: 414.0707.
2-(3-(4-Chlorophenyl)benzo|[4,5]imidazo[2,1-b]thiazol-6-yl)isoindoline-1,3-dione. Se
White solid: yield: 93%; mp. 270-272 °C; FT-IR (KBr, cm™): 1746 (imide -C=0); 'H NMR
(400 MHz, DMSO-ds 6 ppm): 7.93-7.91 (m, 3H, Ar-H), 7.84-7.78 (m, 2H, Ar-
H), 7.71 (d, J=8.4 Hz, 2H, Ar-H), 7.64 (d, /= 8.4 Hz, 2H, Ar-H), 7.39 (s, 1H,
Ar-H), 7.30-7.27 (m, 2H, Ar-H), 7.20 (dd, /= 8.4, 1.6 Hz, 1H, Ar-H); 3*C NMR
(100 MHz, DMSO-ds) o: 165.10, 150.57, 139.67, 139.58, 133.98, 130.90, 129.56, 128.97,
125.15, 124.20, 121.89, 113.54, 108.15; ESI-HRMS: m/z Cacld for Chemical Formula:
C23Hi13CIN30,S: 430.0412 [M+H] " found: 430.0420.

336



ChapterV

2-(3-(4-Nitrophenyl)benzo[4,5]imidazo[2,1-b]thiazol-6-yl)isoindoline-1,3-dione. 5f
Yellow solid: yield: 95%, mp. 263-265 °C; FT-IR (KBr, cm™): 1748 (imide —
C=0), (NO») 1525, 1341; 'H NMR (400 MHz, DMSO-ds § ppm): 8.36 (d, J
=9.2 Hz, 2H, Ar-H), 8.30 (d, /=9.2 Hz, 2H, Ar-H), 7.96-7.91 (m, 4H, Ar-H),
7.53 (s, 1H, Ar-H), 7.51 — 7.50 (m, 2H, Ar-H), 7.18 (dd, J = 845, 2.0 Hz, 1H,
Ar-H); 3C NMR (100 MHz, DMSO-ds) 8: 166.11, 157.31, 153.82, 135.92, 132.47, 132.32,
131.66, 131.60, 128.83, 128.69, 127.03, 124.58, 123.70, 112.38, 109.77; ESI-HRMS: m/z
Cacld for Chemical Formula: C23Hi13N4O4S: 441.0652 [M+H] " found: 441.0652.
2-(3-([1,1'-Biphenyl]-4-yl)benzo[4,5]imidazo[2,1-b]thiazol-6-yl)isoindoline-1,3-dione. 5g
White solid: yield: 89%, mp. 198-200 °C; FT-IR (KBr, cm™): 1745 (imide -C=0); 'H NMR
(400 MHz, DMSO)-ds 6 ppm): 8.17 (d, J= 8.4 Hz, 2H, Ar-H), 8.10 (s, 1H, Ar-
H), 7.93 (d, /= 8.8 Hz, 2H, Ar-H), 7.80 (d, /= 7.2 Hz, 2H, Ar-H), 7.63 (d, J =
8.4 Hz, 2H, Ar-H), 7.55-7.53 (m, 3H, Ar-H), 7.48-7.44 (m, 2H, Ar-H), 7.35 (t,
J=8.0Hz, 2H, Ar-H), 7.15 (s, 1H, Ar-H); '*C NMR (100 MHz, DMSO-ds §) 8: 167.35, 150.70,
145.94, 139.75, 139.10, 137.14, 134.06, 129.78, 129.63, 129.14, 128.95, 127.56, 125.05,
124.08, 121.81, 113.53, 107.85; ESI-HRMS: m/z Cacld for Chemical Formula: C29HsN302S:
472.1114 [M+H] * found: 472.1117.

2-(3-Phenylbenzo[4,5]imidazo[2,1-b]|thiazol-6-yl)-1 H-benzo[de]isoquinoline-1,3(2H)-
dione. Sh

White solid: yield: 89%; mp. 276-278 °C; FT-IR (KBr, cm™): 1745 (imide -C=0); 'H NMR
(400 MHz, DMSO-ds 6 ppm): 7.94 —7.92 (m, 2H, Ar-H), 7.86 — 7.83 (m, O o %
2H, Ar-H), 7.78 (d, J= 6.4 Hz, 2H, Ar-H), 7.73 (d, /= 8.4 Hz, 2H, Ar-H), C[ ;
7.66 (s, 1H, Ar-H), 7.43 — 7.41 (m, 2H, Ar-H), 7.35-7.32 (m, 2H, Ar-H), i N
7.30 (s, 1H, Ar-H), 7.21 (dd, J = 8.8, 1.6 Hz, 1H, Ar-H); '*C NMR (100 MHz, DMSO-dj) §:
166.37, 157.29, 153.45, 141.82, 139.47, 136.02, 132.14, 131.42, 129.53, 128.50, 127.62,
127.33, 127.19, 126.61, 124.69, 111.81, 109.20, 105.42, 79.54; ESI-HRMS: m/z Cacld for
Chemical Formula: C27H16N30,S: 446.0958 [M+H] * found: 446.0995.
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5.8. Spectra

SFOr—

00€°L,
STEL
9EE°L
£TF°Lo
0Eb"L|
8P LA
TP Lt
USLT
rI9°LY
s£9°L
$98°L
8F6°L
$S6°L
L86'L
9008~

0Er 01—

TH-NMR Spectrum of compound 4a in DMSO-ds (400MHz)

o

o0z

=£C°0

00

0.3

Lo

6.0 33 30

6.3

110 1035 100

115

£l (ppm)

I3C-NMR Spectrum of compound 4a in DMSO-ds (100MHz)

IL'801
P9'Ell
80°VIL

€9°071
IL'ETT
16°€T1
10°sc1

L6LT1
PE8TIL
€T°6T1

6€°671
66°6T1 \
8T°0¢T
(44!
€0°SET1
61'SEl
9L'9ET—
PLIST
96°SS1

WL
06°L91

N )

0]
N
o]

170 160 130 140 130 120 110 100 90 80 70 60 50 40 30 20 10

180

190

d ppm

338



ChapterV

Mass spectrum of compound 4a:
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I3C-NMR Spectrum of compound 4b in DMSO-ds (100MHz):
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'TH-NMR Spectrum of compound 4¢ in DMSO-ds (400MHz)
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Mass spectrum of compound 4c:
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I3C-NMR Spectrum of compound 4d in CDCl3-DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 4e in DMSO-ds (400MHz)
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Mass spectrum of compound 4e:
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I3C-NMR Spectrum of compound 4f in CDCI3-DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 4g in DMSO-ds (400MHz):
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Mass spectrum of compound 4g:
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I3C-NMR Spectrum of compound 4h in CDCl3-DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 4i in DMSO-ds (400 MHz):
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Mass spectrum of compound 4i
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I3C-NMR Spectrum of compound 4j in DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 4k in DMSO-ds (400MHz)
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Mass spectrum

of compound 4k
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I3C-NMR Spectrum of compound 41 in DMSO-ds (100MHz):
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'TH-NMR Spectrum of compound 4m in DMSO-ds (400MHz)
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Mass spectrum of compound 4m
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'TH-NMR Spectrum of compound 4n in DMSO-ds (400MHz):
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I3C-NMR Spectrum of compound 4n in DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 40 in DMSO-ds (400MHz)
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Mass spectrum of compound 40
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I3C-NMR Spectrum of compound 4p in CDCl3- DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 4q in DMSO-ds (400MHz)
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Mass spectrum of compound 4q
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I3C-NMR Spectrum of compound 4r in CDCl3- DMSO-ds (100MHz):
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'TH-NMR Spectrum of compound 4s in DMSO-ds (400MHz)
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Mass spectrum of compound 4s
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TH-NMR Spectrum of compound 4t in DMSO-ds (400MHz):
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I3C-NMR Spectrum of compound 4t in CDClz- DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 4u in DMSO-ds (400MHz)
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Mass spectrum of compound 4u
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I3C-NMR Spectrum of compound 4v in CDCl:- DMSO-ds (100 MHz):

00
2
60

= = -] el @ - - S hadd Ll B -
— + = FoOM NS ®H T TIMNRINE DS S w5 ]
ol o =t [l = O L Lt B B e B T PR T . ) ﬂ
= ) 1) IF &) € o) o) ) o o) O O O Sl el - -
— - ~ A A A A A A A A A A A~~~ -
] [N ACESANGrrnSanntan i
= T G

N N
8 0
H

150

T T T
130 120 100 90 80 70 60 50 40

& ppm

T T T T T T
200 180 170 160 150 140 110

Mass spectrum of compound 4v

30

+ESI Scan (rt: 0.259 min) Frag=175.0V 4.11.2020-54.d

498.0675

0.95
0.99
0.85 1
0.8
0.751

0.74
m/z: 497.0601

0:651 IMH] * = 498.0674

0.6
0.551
0.5
0.45
0.49
0.354
0.3
0.25
0.2
0.159
0.14

0.05

448.1145 469.1302 I
L li L

517.1132

1

480 490 500 510 520 530 540 550
Counts vs. Mass-to-Charge (m/z)

430 440 450 460 470

370

560



ChapterV

TH-NMR Spectrum of compound 4w in DMSO-ds (400 MHz)
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Mass spectrum of compound 4w
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I3C-NMR Spectrum of compound 5a in DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 5b in DMSO-ds (400MHz)
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Mass spectrum of compound Sb
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I3C-NMR Spectrum of compound 5¢ in CDCIz-DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 5d in DMSO-ds (400MHz)
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Mass spectrum of compound Sd
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I3C-NMR Spectrum of compound 5S¢ in DMSO-ds (100MHz):
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'"H-NMR Spectrum of compound 5f in DMSO-ds (400MHz)
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Mass Spectrum of compound 5f
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I3C-NMR Spectrum of compound 5g in DMSO-ds (100MHz):
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TH-NMR Spectrum of compound 5h in DMSO-ds (400MHz)
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Mass spectrum of compound Sh
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Summary

The title of the thesis is “Multicomponent Synthesis of New Heterocyclic Compounds and their
Biological Evaluation” and it consists of five chapters, out of which four chapters
(IVIOIIVA/IVB/IVC/V) deal with the synthesis of various heterocyclic compounds containing
nitrogen and sulphur relying on the multi-component approach as a common theme. The
introduction part (Chapter-I) gives a brief overview of multi-component reactions showing their
various applications in modern organic synthesis and their uses in the synthesis of biologically
active compounds.

CHAPTER-I

A brief review of multi-component reactions and their applications in the

synthesis of biologically active compounds

This Chapter describes the history and importance of multi-component reactions (MCRs) and
reactions on 5-amino-2-mercapto-benzimidazoles. In the present study, different heterocyclic
compounds were synthesized through a multi-component approach involving green chemistry
principles. In recent years, modern organic chemists have paid attention to environmentally-benign
synthetic strategies both in industry and academia. Also, hazardous, impulsive, and poisonous
organic solvents are constantly replaced by either the use of solvent-free '), water-medium [,
microwave irradiated ), or multicomponent reactions 7! (MCRs), etc. Nonetheless, the
aforementioned MCRs received considerable interest in the area of green synthesis. In general,
MCRs are defined as the components consisting of three or more reactants in a single reaction
vessel to give products containing virtually all the number of reactants. Due to its featured
applications like using shorter reaction time, lower energy consumption, high yield, facile
synthesis, atom proficiency, and straightforward reactions became more popular. Hence, in recent
years the multicomponent strategy has become an increasingly active area of modern organic

(11" agro

synthesis ®1, medicinal chemistry [°), natural product synthesis "%, polymer chemistry
chemistry ['2], and combinatorial chemistry ['¥!. Thus, we have selected the development of new
methodologies by ensuring a multi-component strategy as our research program.

The main objectives of the present work are revealed and outlines of the present work carried
out are given.
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The objectives of the work

» To establish facile, efficient, and eco-friendly methods for the synthesis of biologically
active molecules.

» To establish the structures of newly synthesized compounds by analytical and spectral
methods.

» To study and screen the biological activities and to carry out computational studies of the
newly synthesized compounds.

[14,15] [18]

3-Acetyl coumarins I phenacyl bromides ['®!”) and 5-amino-2-mercaptobenzimidazole ['¥! are
the key intermediates in the synthesis of heterocyclic compounds. The reactivity of these

intermediates is also discussed.

CHAPTER-II
Synthesis of benzimidazole linked pyrrole derivatives by MCR approach and

their molecular docking studies.

This chapter describes the synthesis of S-alkylated/aralkylated benzimidazole—linked pyrrole (4a-
p) derivatives as outlined in Scheme 2.1. The title compounds 4a-p were synthesized by using 5-
amino-2-mercaptobenzimidazole, 2,5-dimethoxytetrahydrafuran, and various alkyl/aralkyl halides

(1:1:1) in acetic acid in presence of fused sodium acetate via multi-component reaction with good

yields
— Ty
5 H
4a-
! H,N p
P \@:)—SH b_gé AcOH/AcONa $8-95% vields
: 70 °C
; 4-5h
reflux

% oo G
5 R 6 R 7 R i

RX = I‘P%BBF&yPB%“I}{}Ee,’%roMIacer o, :}gled ﬂrlt’)%lll(%th T efi efe l%lohg I%lln%‘i
B5 88 Ben st nARIRS B a-CrEIHE o) RSBAY naBiD BNiRS By

...................................................................................................................................

Scheme 2.1. Synthesis of benzimidazole-based pyrroles
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The alternative possible condensed products 5,6 and 7 from 1,2 and 3 can be rejected based on
their analytical and spectral data.

For the optimization of the reaction, we screened the reaction with various solvents, at different
temperatures, and with different amounts of catalysts. High yields of the products were obtained
when one equivalent of fused sodium acetate and one equivalent of alkyl/aralkyl halides were used

in glacial acetic acid at 70 °C.

- -~
- ~
-~ S

5h, 90% 5h, 89% 5h, 88% 4.5h,90%
Qo O Qs 7 Qo 7 Qo
N N
T Cry- Ty Ty
H H H H
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~ -

Figure 2.1. Different substitutions of benzimidazole-based pyrrole hybrids (4a-p)
Molecular Docking Studies
The in-silico molecular docking simulation was performed to scrutinize the anti-tubulin properties
of the synthesized compounds (4a-p). The anti-tubulin properties of the molecules are predicted
based on their binding affinity values at the active site of the receptor protein (1SAO0). The lower
binding affinity value indicates the better affinity of the molecule towards the protein. The
compounds 4j and 4p showed the least binding affinity -8.3 kcal/mol and -8.9 kcal/mol

respectively towards the active site of the receptor protein (1SAO).
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V - LEU248B

i3.57

ILE378B ALA316B

ILE378B

(4p) (4i)

Figure 2.2. Interacting amino acids at the active site of the protein with the compounds

The amino acid residues are involved in H-bonding, salt bridge, and n-cationic interactions. The
compound 4p showed hydrophobic interactions at the active site of the receptor protein. The
interacting amino acids are ALA180A (3.57), LEU248B (3.79), ALA250B (3.64), LEU255B
(3.52), LEU255B (3.42), and ILE378B (3.76). The compound 4;j is found to interact at the active
site involving both hydrophobic and m-cationic interactions. LEU248B (3.98), LYS254B (3.74),
ALA316B (3.68), VAL318B (3.14), LYS352B (3.71), ALA354B (3.57), and ILE378B (3.81)
shows hydrophobic interactions while LYS254B (3.91) shows n-cationic interactions.

In conclusion, we have developed a potential green approach for the synthesis of novel
benzimidazole-based pyrrole derivatives via a multi-component method. Further, the synthesized
compounds were also subjected to molecular docking studies. The specialty of the reaction is that
it is a transition-metal-free, column-free, catalyst-free reaction. And two N-C and one C-S bond

are formed at a time.
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CHAPTER-III
One-pot synthesis of thioalkylated benzimidazole-based 4-substituted
mercaptoimidazole molecular hybrids via a multi-component approach
This chapter includes the synthesis of new mercaptoimidazoles and their benzyl hybrids (4a-j) and
(5a-f). The starting materials required for the synthesis of the target compounds are, 5-amino-2-
mercapto-benzimidazole, various substituted phenacyl bromides, aralkyl halides, and ammonium

thiocyanate. The synthesis of title scaffolds was carried out as outlined in Scheme 3.1

.......................................................................................................................................
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Scheme 3.1. Synthesis of mercaptoimidazoles
For the optimization of the reaction, we screened the reaction with various solvents, temperatures,
and different amounts of catalyst. High yields of the products were observed when the reactions
were carried with two equivalents of fused sodium acetate and two equivalents of phenacyl
bromides or one equivalent of aralkyl halide and one equivalent of phenacyl bromides in glacial
acetic acid at 70 °C. All the synthesized compounds (4a-j) and (5a-f) structures were confirmed

by their spectral and analytical studies.
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Figure 3.1. Scope of substrates.

3.4. Density Functional Theory (DFT) Calculations

H,

0,

yims" . \0 ]::KSH .
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-

The mechanistic insight into the formation of the final products has been provided based on their

DFT calculation. Overall, the reaction is exothermic and the initiation of the reaction is barrier-

less.
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Figure 3.2. Relative energy profile for the synthesis of substituted imidazole.
In conclusion, we have synthesized thioalkylated benzimidazole-tethered 4-substituted
mercaptoimidazole molecular hybrids via a novel, facile, one-pot three/ four-component approach
using acetic acid and fused sodium acetate as a reaction medium with good to excellent yields.
Further DFT calculations were performed to gain insight into the reaction mechanism.

CHAPTER-1IV

Chapter IV consists of, Polyethylene glycol mediated, three-component synthesis of thiazolyl-
benzimidazoles as potent a-glucosidase inhibitors: Design, synthesis, molecular modeling,
and ADME studies, facile, pseudo-four-component synthesis of novel thiazolyl-
benzimidazoles via multi-component approach and their biological evaluation and facile,
four-component synthesis of 3-coumarinyl based-thiazoles via MCR approach and their anti-
cancer activity

The chapter is divided into three sections, 4A, 4B, and 4C
Section-4A

Polyethylene glycol mediated, three-component synthesis of thiazolyl-

benzimidazoles as potent a-glucosidase inhibitors: Design, synthesis, molecular

modeling, and ADME studies

This chapter deals with the three-component synthesis, anti-diabetic activity, and computational
studies of thiazolyl-benzimidazole (4a-s) derivatives as shown in scheme 4A.1. The title scaffolds

(4a-s) were synthesized by using 5-amino-2-mercaptobenzimidazole, phenyl isothiocyanates, and
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substituted phenacyl bromides (1:1:2) using PEG-400 as a recyclable and greener solvent in a

shorter reaction time.

H,N PEG-400
SH +
\©:N>_ —T7Cc
35h

3a-] reflux

Scheme 4A.1. Benzimidazole-based thiazoles
For the optimization of the reaction, we screened the reaction with various solvents, temperatures,
and different amounts of catalyst. High yields of the products were observed in PEG-400 at 70 °C
without any base and two equivalents of phenacyl bromides under a multi-component approach.
All the synthesized compounds (4a-s) structures were confirmed by their spectral and analytical
studies.
Anti-diabetic activity: a-Amylase Inhibitory Activity
Further, the synthesized compounds (4a-s) were evaluated for their in-vitro inhibition of a-
amylase activity using Acarbose as a standard positive control. All the tested scaffolds showed
varying degrees of a-amylase inhibitory activity with the ICso values ranging from 12.02 +
0.51pg/mL to 44.57 £ 0.47 pg/mL when compared with standard Acarbose has ICso 11.88 + 0.68
pg/mL. Among the tested scaffolds 4d, 4¢, 4h, and 4b were found to be excellent inhibitory
activity against enzyme with ICso values found to be 12.02 + 0.56; 12.25+ 0.28; 12.74 + 0.45;
19.10 + 0.88 pug/mL respectively.
Molecular Docking Studies
The in-silico molecular docking studies of 1-phenyl-2-((5-(4-phenyl-2-(phenylamino) thiazol-
3(2H)-yl)-1H-benzo[d]imidazol-2-yl)thio)ethanone derivatives (4a-s) explored the binding mode
and acquire insights into the human pancreatic a-amylase complex with montbretia A (PDB ID:
4W93). Molecular docking studies revealed that compounds 4¢ and 4d have stable binding patterns
to the human pancreatic o—amylase (PDB ID: 4W93).
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Figure 4A.1. Scope of substrates.

The in-vitro a-amylase activity results exhibited that the 4d substituted with bromo group
enhanced enzymatic activity with ICso value 12.02 + 0.56 pg/mL and exhibited the highest binding
energy with LF dG -11.34 kcal/mol. This 4d showed a hydrogen bond between the amino acid
residues GIn63 (Glutamine63) with the sulphur atom of thiazole with a bond length of 2.54 A°
(Figure 4A.2). It also exhibits hydrophobic interactions with Trp59 (Tryptophan59 amino acid

residue) and Thr163 (Threoninel163 amino acid residue) of amino acid residue.
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Figure 4A.2. Molecular Docking interactions of compound 4d with Human pancreatic o-
amylase (PDB ID: 4W93).

Moreover, 4¢ showed the highest binding energy LF dG -10.01 kcal/mol. The ligand forms n-n
interactions with Tyr62 (Tyrosine62 residue) with chlorophenyl and hydrophobic interactions with
Tyr62 and Thr163 amino acid residues. The molecular docking interactions illustrate that the
synthesized poly heterocycles have benzimidazole and thiazole rings with diverse group forms as
probable bioactive cores and that they form strong binding contacts with the active site of amino
acid residues. The docking results have shown that the docked ligands entered the catalytic reaction

center region of a-amylase.

Figure 4A.3. Molecular Docking interactions of compound 4¢ with Human pancreatic a-amylase
(PDB ID: 4W93).

In summary, we have developed an efficient, one-pot, three-component synthesis of
benzimidazolyl-thiazole scaffolds (4a-s) using green solvent via a multi-component approach.

Further, we screened the title compounds for their in-vitro anti-diabetic activity, and also
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performed computational studies i.e., molecular docking, dynamic studies, and drug-like ADME
properties.
CHAPTER-IVB

Facile, pseudo-four-component synthesis of novel thiazolyl-benzimidazoles via

multi-component approach and their biological evaluation

In this chapter, we describe the synthesis, anti-bacterial activity, and computational studies of
novel thiazolyl-benzimidazole (4a-p) scaffolds as outlined in scheme 4B.1. The title compounds
were synthesized by using 5-amino-2-mercaptobenzimidazole 1, ammonium thiocyanate 2,
substituted a- bromo-acetophenones 3 or aralkyl halides (1:1:2) in glacial acetic acid at 70 °C to

give final compounds (4a-p) with good to excellent yields in a shorter reaction time via MCR

approach.

g 2. NH,SCN R R\
K R 2 3 \
] R 1 0 1

2 / R Rl
Br 2 Ry H
Ry N_N N
- R
C<r o
\ N
H
4a-j
H,N N AcOH/H" 4-5 hrs
S_SH yields 85-92%
N>_ - ] [ atom economy
H 70 C metal-free reaction
1 4-5 h reflux
Br
SCN I @N)_
Ry o

R2 / 4 k-p
\ 3. Br H
\ R !
\ 3 /

N,
~ -
~ -
~ -

Scheme 4B.1. Synthesis of benzimidazole-based thiazoles.
For the optimization of the reactions, we screened the reaction with various solvents, temperatures,
and different amounts of catalyst. High yields were observed in glacial AcOH at 70 °C using two

equivalents of phenacyl bromides or one equivalent of aralkyl halides and one equivalent of
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Figure IVB.1. Scope of substrates
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pneumonia (ATCC2451) and Gram-negative bacteria Proteus Mirabilis (ATCC2081). The in-
vitro antibacterial activity of synthesized compounds was initially evaluated by determining their
minimum inhibition concentration (MIC) values using the Agar well diffusion method. Among
tested compounds, 4b, 4f, and 4k were shown significant anti-bacterial activity.

Molecular Docking Simulations

To gain further insights into the interactions, the title compounds were subjected to their molecular
docking studies using PDB ID: 1KIJ. The molecular docking results showed that compound 4i
showed the highest binding affinity at -12 kcal/mol. The N and -NH of benzimidazole and N of
thiazole ring usually establish hydrogen bonding interaction with Asn45, Lys109, Valll7, or
Gly116 residue of the enzyme. The five-membered ring of benzimidazole or thiazole participates
in the cationic interaction with the Lys109 residue while the phenyl ring involves in the pi-stacking
interaction with the Phel03 residue. Moreover, Asp45, Ile77, Phel03, Lys109, Valll7, and
Pro328 are the amino acid residues that show hydrophobic interactions with most of the

synthesized molecules.

(a) (b) (c)
Figure IVB.2. Docked pose of compound 4i at an active site of the gyrase protein (PDB ID: 1K1J).

(a) Surface view of 4i at an active site, (b) Docked pose of 4i along with the interacting amino acid
residue of the protein, (¢) overlapping structure of two different docked poses of 4i.

In conclusion, we have synthesized benzimidazolyl-thiazoles via the MCR approach.
Further, the synthesized compounds were screened for their anti-bacterial activity against Gram-
positive Streptococcus Pneumoniae (2451) and Gram-negative bacteria Porteous Mirabilis (2081).
Compounds 4b, 4f, and 4k, and have shown excellent activity. And also performed molecular

docking studies.
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CHAPTER-IVC
Facile, four-component synthesis of 3-comarinyl based-thiazoles via MCR

approach and their anti-cancer activity

The present chapter describes the synthesis and anticancer activity of 3-coumarinyl-based thiazoles
(5a-s) which is indicated in scheme 4C.1. The title compounds were synthesized by reaction of an
equimolar ratio of phenyl isothiocyanate (1), hydrazine hydrate (2), substituted 3-acetyl-coumarins
(3) and substituted phenacyl bromides (4) (1:1.2:1:1) in the catalytic amount of acetic acid and
ethanol at 60 °C in good yields.

For the optimization of the reaction, we have screened the reactions with various solvents, at
different temperatures and various loads of catalysts. By screening the reaction in ethanol along
with the catalytic amount of acetic acid, we got the best results in terms of reaction yields. Then
the reaction was carried out with different temperatures and different amounts of acetic acid. It
was observed that with 10 mol% of an acetic acid catalyst, using ethanol as solvent under reflux
conditions gave good results in terms of time and reaction yields. All the synthesized scaffolds

(5a-s) structures were confirmed by their analytical and spectral data.

+ NCS

Br
R 20
. 1 .
: 0_0 R EtOH-AcOH 2 N :
: + NH,-NH,-H,0 + + Jog :
: & R*  60°C N7 ;
R3 reflux
11 2 3a-b 4a-j :

5a-s
yields up 84-94%

Scheme 4C.1. Synthesis of coumarin-based thiazoles.

i @ Metal free reaction g Eco-friendly reaction o catalyst-free reaction

Anti-cancer activity

The in-vitro anti-cancer activity of synthesized coumarinyl-based thiazole derivatives (5a-s) was
screened against different human cancer cell lines LN18 and breast cancer MCF7. Preliminary
investigations were done by screening the compounds for anti-cancer activity on C6 glioma cell

lines. The synthesized compounds were screened for their cytotoxicity in C6 rat glioma cell lines
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by MTT assay. From the in-vitro results, it was found that compound Se (ICso = 0.5 uM) showed

excellent anti-cancer activity against LN18 and MCF7 cell lines.

............................................................................................................................................................................
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Figure 4C.1. Substrate scope of thiazole hybrids.
In summary, we have developed a potential green protocol for the synthesis of new coumarinyl
thiazole derivatives by the multi-component reaction. Further, these compounds were screened for

their in-vitro anti-cancer activity.

CHAPTER-V
Synthesis and anti-bacterial activity of novel benzimidazole based isoindoline-
1,3-diones and benzo[4,5]imidazol|2,1-b]thiazoles
This chapter deals with the synthesis of benzimidazole-based isoindoline-1,3-dione and

benzo[4,5]imidazo[2,1-b]thiazol (4a-w) and (5a-h) derivatives as outlined in Scheme 5.1. The
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title compounds were synthesized by using 5-amino-2-mercaptobenzimidazole, various cyclic

anhydrides, and different substituted aralkyl halides/phenacyl bromides (1:1:1) using glacial acetic

0
\‘<g N R
g
H
4a-w
H,N N N/ .
S_SH + AcOH Yields 82-95% R
N: reflux R
H

90 °C I~
1 2a-d 7oh el \
= g . roc, g
o O e OO0
| Br H 70 °C
Y 2-3h 5a-h
R-T 4a-h Yields 88-95%

Scheme 5.1. Benzimidazole based isoindoline-1,3-dione and benzo[4,5]imidazo[2,1-b]thiazol

derivatives.
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Figure 5.1. Scope of substrates.
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acid solvent at 70 °C. Further, these derivatives with thiophenacyl moiety undergo cyclo
dehydration in presence of strong acid POCIls to give (5a-h) good yields in a shorter reaction time.
For the optimization of the reaction, we screened the reaction with various solvents, at different
temperatures and loads of catalysts. It has been found that acetic acid was the best solvent in terms
of time and yield. All the synthesized scaffolds (4a-w) structures were confirmed by their
analytical and spectral data.

Anti-bacterial activity

The in-vitro antibacterial activity of the synthesized benzimidazole-based isoindoline-1,3-diones
and benzo[4,5]imidazo[2,1-b]thiazoles were carried out against Gram-negative Escherichia coli,
Salmonella typhi, and Gram-positive bacteria Staphylococcus aureus, Micrococcus luteus by Agar
well diffusion method. Compounds 4a, 4g, 4j, 4q, 4s, and 4t showed significant activity against
the standard drug Streptomycin.

Molecular docking studies

R
R
/0 /4 0
/ \@N POC13 / @ S
N
IHQ 2-3 h, reflux N/>’
5a-h

yields up to 95%

Scheme 5.1. Synthesis of benzo[4,5]imidazo[2,1-b]thiazol derivatives.
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ABSTRACT ARTICLE HISTORY
Novel, a series of pyrrolyl-thio alkylated/aryl alkylated benzimidazole Received 11 August 2021
derivatives were synthesized via one-pot, the three-component reaction Accepted 13 October 2021
of 5-amino-2-mercaptobenzimidazole, 2,5-dimethoxytetrahydrofuran, and
different substituted alkyl/aryl alkyl halides in acetic acid and sodium
acetate is described. The newly synthesized scaffolds were purified and
confirmed by their spectroscopic (IR, 1H—NMR, 13C—NN’IR, Mass) and elem-
ental analysis. Further, in silico molecular docking studies were carried
out for the synthesized compounds against the colchicine binding site
of af-tubulin (PDB ID: 1SA0). Among all the synthesized compounds
4j, 4p was shown good binding affinity with colchicine binding site
of af-tubulin.
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Introduction

In the conventional method, the synthesis of complex molecules involves a huge number of syn-
thetic operations as well as purification techniques such as recrystallization, solvent extraction,
and also column chromatographic techniques are involved in each step. And also, uses high
energy consumption and a longer reaction time.
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nacyl bromides/aryl alkyl halides in the presence of glacial acetic phenacyl bromides;
acid and fused sodium acetate under reflux condition to give corre- imidazole; multi-component
sponding intermediates. These compounds on further reaction with component approach
ammonium thiocyanate via multi-component reaction to give the
title compounds (4a-j) and (5a—f). All the newly synthesized com-
pounds were well characterized by their spectral and analytical stud-
ies. This procedure includes several advantages such as transition
metal-free, catalyst-free, mild reaction temperature, shorter reaction
time, and gives good to excellent yields without any column purifi-
cation techniques. Further, mechanistic insight into the formation of
the final products has also been provided based on their density
functional theory (DFT) studies.
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An efficient rapid synthesis of a new class of diversely functionalized 6- Received 21 December 2020
phenyl-3-(1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole  derivatives Accepted 30 January 2021
(4a-q) is described via a facile one-pot, three-component cascade reaction
with high yields. It is a multi-functional cyclization reaction to form two
new heterocycles. The structures of newly formed compounds were con- thiadiazole: multi-
firmed by using spectral and analytical studies. Simple reaction conditions, (Ompcnem' reaction:
the good isolated yield of the product, and no column chromatographic docking studies;
purification are attractive features of the present protocol. Further, the anti-microbial
newly synthesized compounds were screened for anti-microbial activity

and molecular docking interactions.

KEYWORDS
Triazole; pyrazole;
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Introduction

In the multi-component reactions, three or more reactants combine closely in a single reaction
pot to yield the final desire products. Currently, most of the researchers are interested in multi-
component reactions (MCRs) to synthesize the different types of heterocyclic compounds.'”
Strategy for the synthesis of complex compound and generation of C-C bond, C-heteroatom
bond and ring with high atom economy, high selectivity, simple protocol in a unique synthetic

- - : - : . : - . 3-8
operation without isolation of intermediate via a multi-component reaction.

CONTACT Rajeswar Rao Vedula @ rajeswarnitw@gmail.com e Department of Chemistry, National Institute of Technology,
Warangal Telangana 506004, India.
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A series of new 13,4-thiadiazines were synthesized by the conventional method of dehydroaceric
acid, thiecarbohydrazide and substituted phenacyl bromides or substituted 3-(2-bromoacetyl) coumarins.
Structures of all the synthesized compounds were confirmed by spectral ('H &'3C NMR, FTIR, Mass) and
analytical data. The target compounds were screened for their in vitro anticancer activity, From the in
vitro anticancer results, it was found that the compound 6a has shown significant activity with the stan-
dard. Furthermore, the synthesized 1,3,4-thiadiazines were inflicted to molecular docking simulations for
gaining insights into their mechanism of action and possible mode of binding against STAT3. The docking
results were consistent with the experimental dara.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Green chemistry is described by Environmental Protection
Agency as adapt of chemical procedures and products that min-
imize or eradicate the use or generation of hazardous chemicals.
The Green chemistry or sustainable chemistry has initiated to save
the environment, in which E factor, process mass intensity and
atom economy in the chemical procedures are the major focusing
areas [1,2].

Moreover, in the green chemistry process for instance Multi
Component Reaction [3-5] (MCR), aqueous medium reactions [6],
solvent free reactions [7,8], ultra-sonication reactions [9,10], solid
phase synthesis [11,12], microwave irradiation [13,14], photochem-
ical synthesis [15] etc. among these green chemistry processes
multi component reaction has gained preference on top of con-
ventional and multi-step reaction. Furthermore, it is a powerful
chemical tool for the synthesis of complex molecules, in this re-
action without isolation of intermediates, minimization of cost,

* Corresponding author.
E-mail address: rajeswarnitw@gmail.com (RR. Vedula).

https:{/doi.org/10.1016j.molstruc.2021.130111
0022-2860/© 2021 Elsevier BV. All rights reserved.

time and waste and also diversified, high atom economy pro-
cess. In consequence it is a powerful robust tool to synthesize the
biological active compounds in pharmaceutical industry [16,17].
Subsequently multi component reaction process is extremely ef-
fective to synthesize a wide variety of heterocyclic compounds
[18,19].

Among this hetero cyclic compounds 1,3,4-thiadiazines and
their derivatives are a prominent class of medicinally relevant
compounds on account of their anticancer [20], ant-viral [21],
antimicrobial [22], antifungal [23], antibacterial [24], antioxidant
[25]. Moreover, thiadiazines and its analogues manifest inhibitory
activities like STAT3 inhibitor [26], matrix metalloproteinase in-
hibitor [27], cyclic AMP phosphodiesterase inhibitor [28], Hepati-
tis C virus polymerase inhibitor [29], cholinesterase inhibitor [30],
cyclindependent kinase inhibitor [31], PDE4 inhibitor [32]. Sub-
sequently coumarin based derivatives are one of the prime class
of biologically active compounds due to their antioxidant [33,34],
anti-inflammatory [25], antimicrobial [36-38], antiviral [39], an-
tituberculosis [40], anticancer [41,42], anticoagulant [43], anti-
cholinesterase [44,45], antidepressant agent [46] (Fig. 1).

Considering the enormous medicinal and biological impor-
tance of 1,3,4-thiadiazines and coumarin motifs and in continu-
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A series of thiazolyl pyrazole carbaldehydes (4a-n) were synthesized by conventional method using
thiosemicarbazide, substituted phenacyl bromides, substituted 3-acetylcoumarins, and Vilsmeyer-Hack
reagent. Structures of all the synthesized compounds were confirmed by spectral ('"H & *C NMR, FTIR,
Mass) and analytical data. The target compounds were screened for their in vitro anticancer activity. From

the results, it was found that the compound 4m has shown significant antiproliferative activity against

Keywords:

thiazolyl pyrazole carbaldehydes
Anti-cancer

ADME|T

Molecular Docking

anticancer data.

all tested cell-lines. Furthermore, in silico ADME/T profiles were also carried out to set effective lead
candidates for the future anticancer drug discovery initiatives. Molecular docking studies were carried
out against colchicine binding site of S-tubulin and the results were in concordance with the in vitro

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing consciousness over environmental prob-
lems, there is a growing demand for usage of less or non-
hazardous chemicals in industrial and medicinal research on ac-
count of their impact and the subsequent problems on the envi-
ronment and human health. Nowadays green chemistry has be-
come an interesting domain of chemical research to design eco-
friendly chemical methodologies and synthetic approaches towards
eliminating the harmful chemicals at any stage of production [1-
3]

Furthermore, eco-friendly methodologies includes aqueous
medium [4], solvent free [5,6], multi-component reactions ([MICR)
[7-9], solid-phase synthesis [10,11], ultra-sonication [12,13] and
microwave irradiation [14,15] etc. Among the above mentioned
green methodologies, MCR provides a fascinating method to attain
structurally diversified analogs of medicinal and organic interest.
Also, MCR becomes a powerful chemical tool for the preparation of
complex compounds on account of step and atom economy, avoid-

* Corresponding author.
E-mail address; rajeswarnitw@gmail.com (R.R, Vedula).

hrps: j/doi,org/10,1016/j.molstruc. 2021130356
0022-2860/© 2021 Elsevier B.V. All rights reserved

ing protecting group strategies and less time purification process.
Nevertheless, MCR method is a notably effective to synthesize a
variety of heterocyclic compounds [16].

Out of the various heterocyclic compounds, coumarin ring has
wide range of biological activities such as antiviral [17], antioxi-
dant [18,19], anticancer [20,21], antidepressant [22], antitubercu-
losis [23], anti-inflammatory [24], anticholinesterase [25-27], an-
timicrobial [28-30], anticoagulant agent [31,32] etc. Also, pyrazole,
thiazole scaffolds have attained great interest from the scientific
community due to their broad spectrum of biological potency like
antitumor [33-35], antituberculosis [36,37], antiviral [38,39], anti-
inflammatory [40-42], antimicrobial activity [43-46] etc. Some of
the biologically potent compounds embedding the above discussed
scaffolds are shown in Fig. 1. Impressed, due to the importance
of coumarin, pyrazole, and thiazole rings in the area of medici-
nal chemistry, we have been fascinated to synthesize a new struc-
tural unit that consists of all three moieties. We further assessed
for their in vitro anticancer activity, and in silico ADME|T profiles.

Furthermore, the mode of action of these thiazolyl pyrazole car-
baldehyde derivatives with the colchicine binding site of f-tubulin
through their interactions was explored through molecular docking
studies.
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Alkyl/aralkyl/phenacyl thiotriazolyl isoindoline-1,3-diones were synthesized Received 10 October 2021
by the reaction of dipotassium cyanodithioimidocarbonate salt with hydra- ~ Accepted 9 February 2022
zine hydrate, phthalic anhydride and alkyl/aralkyl/phenacyl bromides using
acetic acid and sodium acetate via a one-pot four-component synthesis.
Alternatively, the same final products were also synthesized by the reaction
of dipotassium cyanodithioimidocarbonate salt with hydrazine hydrate in
presence of acetic acid to give intermediate 5-amino-4H-1,2,4-triazole-3-
thiol [l]. This compound was further reacted with phthalic anhydride, fol-
lowed by a reaction with alkyl/aralkyl/phenacyl bromides to give the title
compounds in a two-step process. In this method, the yields are less com-
pared to one-pot four-component synthesis. All the newly synthesized
compounds were characterized by their spectral studies (FTIR, TH-NMR,
3C-NMR, Mass). Further, the synthesized compounds were screened for
their in-vitro anticancer activity. Compounds 5m, 5p, 5r showed good
cytotoxic assay against Hela cancer cell lines. Furthermore, compounds
5(a-t) were subjected to their docking analysis and DFT calculations.

KEYWORDS

Isoindoline; Sulfone; Anti-
cancer activity; Docking;
DFT calculations
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Introduction

Ailments of human beings were mostly caused by genetic disorders. Few diseases like Diabetes,
Obesity, Cancer, T.B etc, are genealogically transformed diseases from generation to generations.'
Across the globe cancer is highly dangerous and it is the second main leading cause of death in
human beings® due to multiple uncontrolled development of cells. There are numerous thera-
peutic and literature reports on cancer. The available anti-cancer agents are not effectively (100%)

CONTACT Rajeswar Rao Vedula @ rajeswarnitw@gmail.com e Department of Chemistry, National Institute of Technology,
Warangal-506004, Telangana, India
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Glioma is aggressive malignant tumor with limited therapeuric interventions, Herein we report the synthesis of
fused bieyelie 1,2,4-triazolothiazoles by a one-por multi-component approach and their activiry against C6 rar
and LN18 human glioma cell lines. The target compounds 2-(6-phenylthiazolo[3,2-b1[1.2,4]triazol-2-yI)
isoindoline-1,3-diones and (E)-1-phenyl-N-(6-phenylthiazolo[3,2-b][1,2,4]wiazol-2-y]) methanimines were ob-
tained by the reaction of 5-amino-4H-1,2,4-triazole-3-thiol with substiruted phenacyl bromide, phthalic anhy-

dride, and different aromatic aldehydes in EtOH/HCI under reflux conditions. In Cé rat glioma cell lines,
compounds 4g and 6i showed good cytotoxic activity with 1Csy values of 8.09 and 8.74 pM, respectively,
resulting in G1 and G2-M phase atrest of the cell cycle and activation of apoptosis by modulating phosphory-

lation of ERK and AKT pathway.

Glioma is the most aggressive primary brain tumor with few treat-
ment options and dismal prognosis. While standard treatment includes
complete surgical resection followed by chemo-radiotherapy, recent
scientific advances have led to the consideration of novel approaches
like immunotherapy, gene therapy, altered signal transduction, and
angiogenesis.” Despite all the available treatments, recurrence of GBM
and drug resistance are its limitations and the reason for small median
survival rate.” Hence, comprehensive analysis is required for a better
understanding of this fatal disease. Genomic profiling of various tumors
has revealed aberrant mutations in Mitogen-activated protein-kinase
(MAPK) and associated pathways. such as AKT/mTOR pathway.”’
Overactivation of MAPK/ERK pathway promotes cell proliferation and
subsequent phosphorylation of downstream substrates which can be
related to tumor formation ” Elevated ERK expression has been detected
in some of the common human cancers like ovarian, breast, brain and
lung. Bur inhibition of ERK/MAPK path can significantly decrease the
survival of tumor forming cells and promote apoptosis.” MAPK and
associated signaling pathways can lead to a response through ER stress
signaling pathway.” Therefore, in this study we evaluated the in vitro
activity of the synthesized triazolothiazoles against glioma cell lines as

* Corresponding authors.

well as their mode of action.

The N-substituted imines and isoindolines have been identified as
one of the most important scaffolds with R-CH = N-R, -CO-N(R)-CO-
structures. The isoindoline unit makes them hydrophobie, neutral and
can easily cross biological membranes.” *”

Because of their good biological activity, fused heterocyclic com-
pounds with N and § have attracted a lot of interest in the field of me-
dicinal chemistry.”" ' The antitumor properties of the 2-amino-1,3,4-
thiadiazole skeleton are well recognized, and its fused systems with
the imidazo [3,2-b][1,2,4] triazole ring system are likewise known to
possess remarkable anticancer activities.'”'¥ Hybrid molecules created
by combining distinet pharmacophores could lead to compounds with
interesting biological characteristics. Fig. 1 shows similar reported
anticancer moieties.'?

Motivated by these findings and in continuation of our research in
the synthesis of various bioactive heteracyelic units®*** we have syn-
thesized a series of fused triazolothiazole scaffolds bearing isoindoline
and schiff base moieties and evaluated their activity against C6 rat and
LN18 human glioma cell lines.

The target compounds were synthesized by a multi-component

E-mail addresses: prakash@uohyd.ac.in (P.P. Babu), viajesw@nitw.ac.in (R.R. Vedula).
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