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ABSTRACT

Flexible Unit Systems (FUS) is an assembling structure wherein there is some proportion of
flexibility permits the system to react if there should be an event of changes, regardless of whether
predicted or unpredicted. This work proposes the degradation, residual life distribution, workload
adjustment, upgradation, predictive maintenance of flexible unit systems that gives a wide guide
of the main explored look into issues in flexible units and future research openings on the point.
An example of 43 scholarly articles distributed in peer-evaluated worldwide diaries up to 2020
comprises the information base of the examination. After a detailed review, few major
performance parameters of manufacturing systems such as throughput rate, throughput time,
system utilization, availability, average stay time, and maximum stay time which affect the
manufacturing systems are shown great importance in its performance and maintaining the final
product quality. Ranking of those parameters from the most influenced parameter to the least one
is utmost requirement for overall assessment particularly when the applications are complex. An
integrated Multi Criteria Decision Making (MCDM) — Technique of Order Preference by
Similarity to the Ideal Solution (TOPSIS) method has been used to ranking in which these

parameters can influence various manufacturing expenditures.

Based on these Identified and ranked parameters, we developed a stochastic linear
degradation model to find the real-time degradation coefficient of each machine in a system at
every instance. We established a textile industry case study for single product category with the
key assumptions. Hence, a Bayesian approach is deployed to update prior distribution of
degradation coefficient to get posterior distribution with the help of measurements that are
collected in real-time and then predicting Remaining Useful Life (RUL) of machines from
degradation signals. With the available health status value of each machine and their
corresponding degree of flexibility, the dynamic job adjustment strategy is applied to achieve the
maximum output for the system. Along with that, the maintenance of machines is also important
to ensure the system to run efficiently. In extension, the maintenance prediction for the FUS has
been proposed and Meta learning based intelligent Cyber-Physical System (I-CPS) architecture
as a higher-level environment for ML based predictive maintenance has been executed with the

help of predictive simulation.



Further, learning the maintenance prediction which determines the degree of the
maintenance necessity between 0 and 1 has been proposed and RUL has been estimated for 3
months, 4 months, and 5 months of training data respectively. From here, the simulation analysis
has been conducted to find the throughput time for equal, random, and proposed workload
adjustment strategies on 4 flexible configurations. Further, Criticality Index (CI) of each machine
has been predicted by considering the predicted maintenance as an input with the collected data.
The CI from 1 to 5 indicated which machine is under more critical or less critical and based on
the index, and estimated maintenance time is required for combined machines or multiple
machines or individual machines with respect to CI. Here, the RUL is the length of time a machine
is likely to operate before it is going to failure, and Cl indicates the level of criticality of a machine.
Further, the predicted RUL and CI will be giving the health information about the machine which
helps in enhancing the throughput rate of every machine. The machine which need to go for
maintenance first has been decided based on decision matrix. Finally, Workload adjustment for a
system whose individual machines RUL, and CI has known has been proposed for throughput

enhancement.

Keywords: Flexible Unit Systems, Degradation, Remaining Useful Life, Workload strategy,
Upgradation, Predictive Maintenance, Machine Learning, Criticality Index.
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Chapter 1

Introduction

1.1 Manufacturing Systems

A manufacturing system can be the combination of various machines, equipment, and the humans
that are bound by the information flow. In a factory, various manufacturing processes assembled
together to produce a desired product. The manufacturing system takes certain inputs and
transforms those inputs into the final product for the customer. Nowadays, the manufacturing
industries are also facing the different challenges of keeping their competitiveness in the market
requirements and technological evolution. In this unique circumstance, profound research activity
need to be addressed to the development of smart factories in manufacturing sector. In order to
make a factory smarter, smart devices are to be used such as sensors, drives, motors, switches and
relays etc. A smart factory is defined as it is an exceptionally digitized shop floor that persistently
gathers and shares the data through associated machines, gadgets and production systems. With its
tremendous applications in businesses, for example automotive and transportation, packaging and
process industries such as oil and gas, the smart factory relied upon to encounter enormous growth
in coming years. Generally, the manufacturing systems can be designed differently according to

the company's strategy, boundary conditions, and the goals mentioned in [1].

1.2 Flexible Unit Systems (FUS)

The recent requirements such as shorter product life cycles, high production rates, jobs complexity,
quality products, and cost effectiveness are the most significant factors for any manufacturing
industry. Considering all the foregoing requirements, in addition, according to the current market
demand and society needs there is a need to enhance the systems capabilities by maintaining it
under control from system breakdowns and several external forces that have not been considered
as a highest priority in the past decade. To accomplish these challenges, there is a need for high
machine availability, flexibility, accessibility of the manufacturing processes. The flexibility in the
manufacturing system configuration is necessary for complex products to cope with the system
responsiveness. Better responsiveness shows a significant level of impact in increasing the

efficiency of the system but seldom makes a system more expensive [2-6]. According to
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Chryssolouris et al. [7], the flexibility of a manufacturing system, can be defined in terms of its
sensitivity to change, where the sensitivity of the system decreases, the system to incorporate
flexibility increases. However, not just machines but the layout of the machine’s configuration,
type of operations, and the type of products produced also have an impact on the manufacturing
system flexibility. For example, a well-known cell production unit situated in japan is famous for
its flexibility, operates with just a couple of human operators, manufacturing items themselves.
Flexible complex manufacturing systems usually consist of multiple machines, which operate
individually or simultaneously in a particular configuration to achieve the required demand.

In theory, Ji-wen sun et al. [8] stated that the proper choice of machine configuration
greatly impacts the manufacturing system concerning its machine reliability and system reliability.
As aresult, numerous scholars have published articles by optimizing the configurations to get better
productivity [9-11]. In addition, they require fewer workers to work them contrasted with other
manufacturing flexibilities. Furthermore, in a flexible manufacturing environment, the identical
machines are designed with a certain level of redundancy that if in case of any unexpected event
the system cultivates a certain level of common redundancy to compensate. For instance, the
capacity of the machines has always kept a value higher than the usual number of jobs assigned so
that, if in the system a machine fails, the other operating machines can be delegated with the number
of jobs more than they are usually assigned to keep up with system necessities. In the U.S.
organizations according to Federal Reserve, the normal repetition for manufacturing industries has
been evaluated to be around 20% [12]. Whereas such a repetition structure by design endeavors to
give a vigorous production scheme, it isn’t uncommon and due to that, an enormous number of
machines tend to degrade at a similar rate, particularly when an equal number of workloads is
allocated to those machines [13]. As aresult, it will certainly lead to simultaneous multiple machine
failures and system necessities being unsatisfied.

Among all the existing manufacturing systems configurations, the semi-fully flexible real-
time configurations also called as FUS, i.e., one-degree, two-degree, semi-flexible, and fully
flexible configurations have been proposed in this research. The above-mentioned configuration
provides routing flexibility, so the system can use two or more machines to perform the same task,
and the system’s ability to handle a large number of changes, such as a substantial increase in
capacity and machine failure [3]. Each of the models illustrated in Figure 1.1 (a—d) have a different
level of flexibility. In this research, we deliberated the degree of flexibility as the ability of a

machine to adjust the assigned number of jobs for completion in response to failure or maintenance.
2
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For instance, Figure 1.1 (a) presents a one-degree flexible environment, here machines
work individually and simultaneously in a linear path to fulfil the necessity of the system, but if
the machine (1,1) fails, the pending assigned jobs on the machine (1,1) can be processed by the
adjacent machine (1,2) depending upon the availability of the machine, stating one-degree

3
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flexibility. Figure 1.1 (b) articulates a two-degree flexible environment, here the availability of
machines for job adjustment increases, i.e., in case of failure in the machine (1, 1), the adjacent
machine (1, 2) or machine (2, 2) can process the pending jobs of the machine (1, 1). Followed by
this are semi-flexible and fully flexible configurations in Figure 1.1 (c), (d) respectively, where the
options for workload adjustment are more in comparison to one-degree and two-degree flexible

systems.

1.2.1 Performance Parameters

This section explains an overview of performance parameters which influence the flexible systems
and their ranking. Generally the manufacturing systems are disrupting due to their own natural
characteristics or unexpected downtimes, their health management for machines is considered as a
most confound approach for better performance, mentioned by [14]. From the various literature
[15, 16], it was shown that majorly six performance parameters need to be considered which
influence the above mentioned four configurations performance. These parameters influence the
flexible machine system’s performance, as machine availability can be an important determinant
of delivery speed and delivery dependability because unexpected machine downtime will not only
increase lead time but also disrupt the production plan [16]. Such disruptions can be detrimental to
a Just-in-Time (JIT) manufacturing environment. Along with that, the average stay time of jobs,
maximum stay time of jobs, maintenance costs, and production cost force firms to analyze the
performance of their systems systematically and efficiently about the availability of the machines
[17]. The simulation analysis for the performance parameters helps in visualize and understanding
of systems behavior of real-time manufacturing systems mentioned by [18].

A method needs to be used for ranking the performance parameters from most influenced
to least influenced which furtherly can help on increasing in manufacturing systems performance
and product quality. The integrated MCDM method considers all standards and the importance that
decision-makers place to determine the most satisfactory solution based on its performance
evaluation [19]. The literature [19, 20] mentioned that different MCDM techniques have been used
to solve the problems related to decision making or ranking among the alternatives. An entropy
method has been presented by the [21] and it has been utilized for finding the weight of each
criterion. From the past literature, it has been observed that an integrated MCDM methodology
based on the TOPSIS method has been utilized to rank the parameters. Among the various MCDM
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techniques, the TOPSIS method is best suited for decision-making problems since it has been
observed that the TOPSIS method has been preferred for considering the quantitative criteria
mentioned by [22]. The main principle of the TOPSIS method is the selected alternative should be
in the shortest distance from the positive ideal solution and the largest distance from the negative
ideal solution. To determine the attribute weight for the TOPSIS method the Entropy method is
frequently utilized [23]. Generally, the Entropy method is used to calculate the weights of each

criterion when decision-makers having conflicting views on the value of weights.

1.2.2 Integration of Cyber Physical Systems for FUS

With the advancement of sensors, actuators, data acquisition systems, communication, and the
latest network technologies, the manufacturing field transforming into the digital age. Hence, there
is a need to integrate Cyber Physical System (CPS) with traditional Production Planning and
Control (PPC) and the Maintenance Management (MM) for manufacturing industries. CPS is the
integration of physical processes with the computation, information, and communication
technologies, as the systems immersed with the physical components and interact with those
physical processes. Generally, the physical part consists of human/material/machine/environment,
which executes the manufacturing activities, and the cyber part consists of the embedded systems
in which it is a combination of input/output peripheral devices, computer processes, and computer
memory [24]. PPC is a tool, which helps in integrating and coordinating the entire manufacturing
activities in a manufacturing system. The production plan handles the materials planning, capacity
planning, and operations scheduling and the control portion oversees the actual production process
to meet the production targets. The main aim of production planning and control is to minimize
direct and indirect costs [25]. The maintenance management is the process of maintaining a firm’s
assets and resources. The main purpose of maintenance management is to make sure that
production runs in an efficient way and that assets of a firm are used effectively [26].

In this context, the industries need CPS proficiencies for improving the usage of resources
and increasing the operator safety [27]. The integration of CPS with the PPC and MM help
industries in fulfilling the different needs such as efficient systems, reduction in systems building
cost, operational cost, and development of new innovative system capabilities and mostly it has
been recognized in manufacturing, energy, and medical domains [28,29]. Among various

maintenance strategies, the condition-based strategy is dependent on the present condition and it
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needs to determine, consequently, times of the necessities can be predicted with the help of
predictive maintenance technique at an early stage [30-32]. These maintenance techniques help in
improving several challenges that affect the FUS’ efficiency and performance in the view of the
breakdown of machines, maintenance issues, sudden interruptions due to natural characteristics,
etc. [33]. The integration CPS for FUS shown in Figure 1.2.
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Figure 1.2 Integration of CPS on flexible systems

The challenges for integrating the CPS for a manufacturing system has been observed from
four viewpoints: improving the production, reconfiguration, information technology, and
standardization. A 5C architecture with five levels VIZ., connection, conversion, cyber, cognition,
and configuration to overcome some of the challenges mentioned above. Here, the accuracy and
reliability measurements of FUS can be obtained by connecting various sensors to the units, and it
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has concerned with the connection level and connection level is the first level of 5C architecture in
integration of CPS. The measurement data into the useful information conversion is taken care of
by the conversion level. More data can be obtained by connecting sensors to a greater number of
machines and it has been emphasized by the cyber level. The statistics and visual information to
assist users to make decisions will be known by the cognition level. Finally, the feedback back to
the physical system according to the decisions made will be known by the configuration level.
There were limited frameworks and approaches available in the context of integration of
CPS across Product life cycle (PLC). In this research, an integrated CPS with their traditional PPC
and MM for several flexible configurations that can cater the needs of recent production industries
has been proposed. This work also concerns how Industry 4.0 integrates the CPS regarding

maintenance activities and various needs for a company to reach the ideal factory.

1.2.3 Degradation

Generally the manufacturing systems subjected to degradation where the machines life comes
down to full health condition to failed condition. Although, a good amount of research investigated
component level and machine level degradation on system performance, but a significant research
gap exists on the unit-level analysis for controlling the degradation of machines in turn to enhance
the system-level performance. In this research, a stochastic linear degradation model has been
developed to find the real-time degradation coefficient of each machine in a system at every
instance. Consequently, an assumption considered as that the degradation rate of each machine is
a random variable following a normal distribution to apprehend the deviation in the degradation
process due to natural characteristics. Further, a Bayesian approach has deployed to predict the

remaining useful life of the machines and their corresponding value.

1.2.4 Remaining Useful Life (RUL)

Estimation of Remaining Useful Life (RUL) helps in understanding the degradation behavior of a
manufacturing system at various stages, and it also helps in maintaining the system health status.
To handle the customized orders that are low in volume, frequent demand shifts, and long-lead
times current manufacturing systems configurations are not only capable enough to manage the
production process. Moreover, every machine in the production system has its own health status

therefore its RUL. Predicting the RUL of each machine which is a key point for understanding the
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system behavior in parallel and hybrid configurations [13]. In line with this purpose, a multi-stage
RUL based on real time data has been proposed and the time features has been extracted from the
collected raw sensory data to classify the machine’s health status. Similarly, a novel mission
reliability based RUL prediction method is developed in a serial manufacturing system [34]. Later,
an empirical analysis for predicting the RUL based on the condition monitoring data has been
presented by developing a model degradation using the data driven prognostics based ML
techniques [35]. It is noted that, based on the RUL of a system, a workload adjustment strategy

helps in improving productivity in the manufacturing industries.

1.2.5 Workload Adjustment strategy

Workload adjustment strategy can be utilized for controlling the pace of degradation of machines
in a parallel and hybrid configuration was proposed by [36]. Based on the mentioned problematic
condition, [37, 38] proposed a method to control the disruptions and to predict the failure time of
each machine in a parallel configuration by adjusting the workloads on individual machines. This
transformation leads to a lot of studies and concepts on the maintenance methodologies related to
the manufacturing systems [39]. The health status of a machine can be evaluated by the
conventional prognostics and diagnostics approaches and these are essential in the case of machine
health management in Industry 4.0 [40, 41]. With the available health status value of each machine
and their corresponding degree of flexibility, the workload adjustment methodology can be applied
to achieve the maximum output from the system. This study presents a method to assign the number
of jobs dynamically in a real-time flexible manufacturing environment to overcome simultaneous
multiple machine breakdown in a system for achieving higher production. The problem here is
designed in such a way that it considers all the real-time system configurations in a flexible
environment. Altogether, this study provides prescriptive analytic for a manufacturing system,

utilizing a dynamic job adjustment strategy.

1.2.6 Predictive Maintenance

Machine maintenance is generally defined as four ways, “reactive maintenance”, preventive
maintenance, predictive maintenance, and proactive maintenance [42, 43]. The main objective of
maintenance of manufacturing systems is to minimize the downtime of machines, unscheduled

maintenance and to make sure that production facilities keep running as smooth as possible. This
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is a real challenge to the many industries and they are facing the difficulties in defining of
maintaining and execute the schedules. It will show a large impact on the efficiency of production
facilities and cost increment, because of shutting down the manufacturing machines until the
problem has been resolved. At that particular time, the continuous advancement in research and
development can be involved in with the new intelligent solutions for decision making, especially
with the predictive maintenance in machine learning. It has been observed from the literature that
many researchers considered only vibration data into the consideration for their studies for the
detection of damages. A very few researchers use one or more features such as temperature,
pressure, and sound. In addition it is not common to use only one machine learning algorithm
comparatively in modeling the collected data. In this study, 30 major machine learning algorithms
has been trained, tested and validated in which algorithm is providing better F1 score to predict the
maintenance and not to have maintenance has been identified. For this, the semi double loop
machine learning based Intelligent — Cyber Physical Systems architecture for predict the

maintenance has been used [44].

1.2.7 Criticality Index (CI)

Due to the customer requirements for a various customized products, the companies not only plan
for the maintenance activities of the machines, but also issues need to be considered related to the
business goals. Based on the above mentioned reason, the major issue for any company is a
machine’s Criticality Index (ClI) [45]. Criticality index of a machine is the most important category
in the manufacturing industry in case of maintenance management of a system. The Cl of machines
or devices used in manufacturing industry can be structured a set of activities to identify failures
which impacts on companies goals [46]. The CI defined as it is the level of critical referring to the

machines with the highest or lowest importance for maintenance.

The Remaining Useful Life (RUL) and Ciriticality Index (CI) will be providing the health
status of a particular machine which will help in enhancing the throughput rate of every machine
by adjusting the workloads. RUL is the length of time a machine is likely to operate before it is
going to failure. And CI indicates the level of criticality of a machine to know the time required
for the maintenance. Workload adjustment for a system whose individual machines RUL, and ClI
has known has been proposed and validated by throughput enhancement.
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1.3 Organization of Thesis

Chapter 1: Introduction

In this chapter, the research preliminaries and the conceptual background of the research
area has been explained. This chapter also includes the motivation for the research and scope of
the research. The thesis organized into eight chapters and contents of each chapter are presented

below in brief.

Chapter 2: Literature Review

A Systematic Literature Review has been conducted to find the literature related to
modelling and analysis of FUS. Literature review attempts to give detailed information unit
degradation model to predict the RUL. The workload adjustment strategy for single product
category, and multi-product category has been discussed based on predicted RUL. The prediction
of CI for combined machine strategy, multiple machine strategy, and individual machine level
strategy has been discussed. Finally, workload adjustment strategy by combining of RUL and ClI

based on the decision matrix has also reviewed.

Chapter 3: Development of realistic configurations ranging from Semi-Flexible to Fully-
Flexible systems and identifying the performance measures

In this chapter, The FUS performance parameters has been identified and analyzed by
conducting simulation analysis and further, the simulation results has been validated with the
experimental results. Thereafter, MCDM Entropy method has been used to identify the weights of
each parameter and then TOPSIS method has been used to rank the parameters. Finally, the
rankings from the TOPSIS method are compared with the PROMETHEE method rankings.

Chapter 4: Development of workload strategy for linear degradation model on single product
category

In this chapter, an approach has been developed using each machine’s degradation
information to predict the machine’s RUL. based on the RUL information the job adjustment
strategy of single product category where machines with a lower health status will be given a high
number of jobs to perform is proposed. The objectives of the proposed model are to reduce
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simultaneous machine failures by slowing down the pace of degradation of machines, to improve

the average occurrence of the first failure time of machines, and to decrease the loss of production.

Chapter 5: Workload Adjustment strategy on Meta Learning based CPS approach for
Predictive Maintenance in Flexible systems based on Machine status indications

In this chapter, the workload adjustment strategy of multi-product category from the FUS
has been proposed. Initially, the maintenance of individual machines has been predicted based I-
CPS architecture. Further, the RUL of an individual machines has been known with the help of
predicted maintenance. Finally, the workload adjustment strategy has been applied based on RUL
has been executed along with the other two benchmark strategies i.e. equal, and random workload

strategy.

Chapter 6: Development of Criticality Index prediction for multi-product category for
identifying machine status indicators

In this chapter, two original and innovative contributions has been presented. The model of
machine learning based approach for predictive maintenance in FUS and the ClI prediction of each
machine with the help of Meta learning based I-CPS architecture as a higher-level environment for

ML based maintenance prediction execution.

Chapter 7: Enhancing the Throughput of Flexible Configurations using novel Hybrid
Degradation model

In this chapter, the workload adjustment strategy on flexible unit configurations has been
proposed by combining of RUL, and CI. The quick maintenance of machine has been preferred
based on decision matrix in which the machine is having low RUL and Cl. The proposed
methodology has enhanced the throughput of system compared to workload adjustment applied on
single product category, and multi product category without considering CI for flexible

configuration.

Chapter 8: Conclusions, and Future Scope
This chapter reports the research contributions of degradation and upgradation models of
FUS. The results obtained from the analysis shown that the throughput time is most influenced

parameter. The tools, techniques, and approaches used in this research can help for researchers for
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predicting the system behavior there by improving the health status of their system. The RUL and
Cl of each individual machines are predicted which provides the health status of machine. In this
research, we specially focused on instantaneous degradation rate is proportional to the workload,
but in reality such relationships may not be appropriate. In future, a study is needed to perform the
workload adjustment strategy when the degradation rate and the workload having different
relationships. A study also required to aim at the creation of a software for the frequent observation

of the criticality index of machines.
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Chapter 2

Systematic Literature Review

2.1 Systematic Literature Review

This thesis reviews the state-of-the-art degradation of manufacturing flexible systems through
RUL, workload adjustment strategy, and CI in case of single and multi-product category and the
maintenance predictions for smart factories. Smart factory research is an interdisciplinary class that
is performed by researchers from various backgrounds mentioned in [47]. The scenery of scientific
literature on the idea of the “smart factory”, which in recent years gaining more consideration from
academics and experts. Smart factories consolidate modern organization, cloud, and supervisory

terminals with smart shop floor objects, for example, conveyers, products, and machines [47, 48].
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Smart factories and smart manufacturing technologies give us additional information for
understanding the connection between working conditions and machine degradation and failures.
For example, rough starts and stops may be the reason for recurring misalignments problems in a
machine. With this information, integration of CPS with respect to production planning and control
and maintenance management can improve the production rate. The common factors from different
studies that affect the FUS are degradation rate, residual life distribution, workload strategy,
upgradation, and predictive maintenance. Given this scenario, A Systematic Literature Review
(SLR) with respect to the degradation and upgradation models for FUS has been conducted to
stimulate the future investigations. The analysis of the reviewed literature, a comprehensive
conceptualization has been developed shown in Figure 2.1.

The research followed the SLR is a basic scientific activity that delivers a clear and
comprehensive overview compared to descriptive literature reviews. The formation of a basic
framework for an in-depth analysis and a scientific process can be possible by using the SLR. It
has been observed from the systematic literature followed a sequence of five steps are as follows.
1) Formation of questions;

2) Finding the studies;
3) Study preference and evaluation;
4) Investigation and combination;

5) Reporting and using the results.

Stepl. Formation of Questions
RQ1. What is the role of degradation, residual life distribution, workload strategy, upgradation,
and predictive maintenance on flexible unit systems?

RQ2. How to integrate the degradation and upgradation models to the flexible unit systems?

Step2. Finding the studies

This step concerns how to find and choose the bibliographic database or search engine, additionally
search strings. The research questions have been considered in this search for literature reviews.
Following similar literature reviews [49-51] and three bibliographic databases i.e. Web of Science,
Scopus and Science Direct a remarkable quantity of published literature on degradation rate,
residual life distribution, workload strategy, upgradation, and predictive maintenance including

very relevant important journals in this area has been considered.
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Table 2.1 Search string and Number of results from Web of science

Search String

Search Field Date of Search

No. of Results

“Flexible unit systems (or) Flexible machine
systems” and “Degradation (or) Degradation
Rate”

Topic 11-08-2020

273

“Flexible unit systems (or) Flexible machine
systems” and “Residual Life (or) Residual
Life Distribution”

Topic 11-08-2020

34

“Flexible unit systems (or) Flexible machine
systems” and “Workload strategy (or)
Workload adjustment”

Topic 11-08-2020

42

“Flexible unit systems (or) Flexible machine
systems” and “Upgradation”

Topic 11-08-2020°

“Flexible unit systems (or) Flexible machine
systems” and “Predictive Maintenance”

Topic 11-08-2020

41

Table 2.2 Search string and Number of Results from Scopus

Search String Search Field Date of Search No. of Results
“Flexible unit systems (or) Flexible machine Article title, 04-09-2020 178
systems” and “Degradation (or) Degradation abstract, keywords
Rate”
“Flexible unit systems (or) Flexible machine Article title, 04-09-2020 9
systems” and “Residual life (or) Residual life | abstract, keywords
Distribution”
“Flexible unit systems (or) Flexible machine Article title, 04-09-2020 14
systems” and “Workload strategy (or) abstract, keywords
Workload adjustment”
“Flexible unit systems (or) Flexible machine Article title, 04-09-2020 1
systems” and “Upgradation” abstract, keywords
“Flexible unit systems (or) Flexible machine Article title, 04-09-2020 9

systems” and “Predictive Maintenance”

abstract, keywords

Table 2.3 Search string and Number of Results from Science direct

Search String

Date of Search

No. of Results

“Flexible unit systems (or) Flexible machine systems” and 18-09-2020 152
“Degradation (or) Degradation Rate”
“Flexible unit systems (or) Flexible machine systems” and 18-09-2020 124
“Residual life (or) Residual life Distribution”
“Flexible unit systems (or) Flexible machine systems” and 18-09-2020 84
“Workload strategy (or) Workload adjustment”
“Flexible unit systems (or) Flexible machine systems” and 18-09-2020° 101
“Upgradation”
“Flexible unit systems (or) Flexible machine systems” and 18-09-2020 193

“Predictive Maintenance”
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Tables 2.1, 2.2, and 2.3 shows the search strings searched in data bases and the results
obtained using the three mentioned databases. However, after sorting the selecting research articles
and by selecting the publication title between 2009-2020 shows 603 number of articles for the
search string “Flexible unit systems (or) Flexible machine systems and Degradation (or)
Degradation rate”, 167 articles for the search string “Flexible unit systems (or) Flexible machine
systems and Residual Life Distribution (or) Residual life”, 140 articles for the search string
“Flexible unit systems (or) Flexible machine systems and workload strategy (or) workload
adjustment”, 104 articles for the search string “Flexible unit systems (or) Flexible machine systems
and Upgradation” and 243 articles for the search string “Flexible unit systems (or) Flexible machine

systems and Predictive Maintenance” respectively.

Step3. Study preference and Evaluation

In this step, filtering criteria was explicated, to choose only relevant studies to add in the review,
in which the studies actually addressed the research questions. From 1995 to 2008 articles were
excluded because they were just consigned to the small percentage of the examples. 11 years (2009-
2020) of related studies was initiated to focus on recent studies, methodologies, and technologies.
The article journals of document type have been sorted from the search results and at best articles
distributed in peer-reviewed journals in English were contemplated and Bortolini et al., (2018) [49]
argue that enclosing the search towards the peer-reviewed journals, and the results can be improved
because rigorous processes to such articles are subject before publication.

This exercise reduces the number of journal articles to 198. After checking the duplicates
(initially in each search string and after, taking into consideration all search strings set together),
titles, abstracts of the selected journal articles were analyzed for relevance, further the number of
articles reduced to 106. Articles qualified for review must fulfill the five major criteria (i) articles
related to finding the Degradation level of manufacturing systems (ii) articles related to finding the
residual life of manufacturing systems (iii) articles related to be adjustment strategy of workload
to reduce the degradation level of manufacturing systems (iv) articles related to upgradation of
manufacturing systems. (v) Articles had to be focused on predictive maintenance of manufacturing
systems. At this step, the number of articles for investigation was 106. At last, a more examined

analysis of the 66 articles was made with the full gratified review.
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Step4. Investigation and Combination

In this step, the content of each paper was analyzed concerning identifying the key issues. Through
full-content review, different articles were excluded, because those are not as per the specified
research focus of this study. In this way, the number of definite articles for the investigation have
been reduced to 43, as recorded in Table 2.4.

Table 2.4 Summary of articles preferences and evaluation.

Bibliographic database analysis | Searchl | Search2 Search3 | Search4 Search5 | Total

Web of sciences 273 34 42 2 41 392

Scopus 178 9 14 1 9 211

Science Direct 152 124 84 101 193 654
Inclusion/Exclusion criteria of Web of sciences

Date Range 193 29 26 1 28 277

Document type 191 29 26 1 28 275

Research Area 175 26 23 1 26 251

Language 174 26 22 1 26 249
Inclusion/Exclusion criteria of Scopus

Date Range 155 9 11 1 6 182

Document Type 130 6 7 1 6 150

Research Area 109 6 6 1 6 128

Language 96 6 6 1 6 115

After checking the duplicates (in | 113 22 36 3 24 198

each search)

After checking the duplicates (in | 106

all search)

Analysis of (Abstract and Title) | 66

After a detailed article analysis | 59

Step5. Reporting and using the results

The data contained in 59 articles was summarized and then prepared with connected
categories, for example, methodologies used in their research and various key findings. The list of
journals related to the number of articles published as well as the year of publication are noted.
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Reliability engineering and systems safety, International Journal of Advanced Manufacturing
Technology, IEEE Transactions on automation science and engineering, Journal of Intelligent
Manufacturing, IFAC online, CIRP Annals: Manufacturing Technology, and IEEE Transactions
on Reliability contributed to 55% of the total articles published related to factors (degradation,
residual life distribution, workload strategy, upgradation, and predictive maintenance) related to
the manufacturing systems. Other journals like the Journal of Computers & Industrial Engineering,
IIE Transactions, Journal of manufacturing systems, Procedia Manufacturing, European Journal of
Operations Research and few other journals contribute to 45% of the total journal articles published
related to factors affecting the manufacturing systems.

The relevant data has been collected and studies are arranged dependent on five factors,
which are mentioned in the research methodology. Only these five relationships are formulated
because these five are the common factors that will affect the flexible unit systems in different
ways mentioned in the recognized studies, connection, conversion, cyber, cognition, and
configuration. The integration of the CPS approach with the production plan and MM of flexible
configurations contribution is important and it can improve the productivity [52].

The discussion in this section has been focused on detailed literature of the CPS approach
with the PPC and MM as well as several challenges that affect the system’s efficiency and
performance of realistic flexible configuration systems. CPS became more popular in the context
of the fourth industrial revolution (Industry 4.0). The main drivers for the development of CPS are
as security, competitiveness, social needs, etc. for reduction in development costs [53] and time
with the improvement in designing of the products to make systems safer, increment in
productivity, and reduction in maintenance cost. The relation between the designed product and
manufacturing system plays a key role in the evolution of Industry 4.0 [54-55]. For building of
CPS an 8C architecture by considering the 3C facets along with the 5C architecture provided
guidelines for a smart factory has been proposed in [56].

PPC is the planning for the production and manufacturing of various modules in an
industry. Generally increasing in shorter PLC and the challenges facing by the employees as a
result of technological changes require to upgrade their practice-related training and qualifications.
Given the above-mentioned situation, the cost objectives influence by the numerous interactive
mechanisms. The decisions need to be made in the frame of PPC and targeted as these objectives
have to consider the reason of technical considerations. From the past literature it has been clarified

that the CPS in the view of PPC is an advantage in case of cost reduction [57]. Similarly, [58]
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investigation has shown that production planning is essential for manufacturing systems for
reducing the overall cost. Along with that, [59] presented a method to the production and
maintenance plan on a manufacturing system to minimize the cost and maximize the reliability.
The literature in the past have shown that inadequate maintenance practices also affect the
industry’s competitiveness by reducing the reliability of production facilities and lowering
equipment availability. To solve the above-mentioned problems, industrial systems’ maintenance
Is an important part of asset management strategy that aims to maintain better levels of efficiency.
Generally, maintenance will lead to the monitoring of physical processes with the help of sensors
and it is a basic function of CPS. It has been identified how industry 4.0 integrate CPS regarding
maintenance management and the requirements for industries to reach the ideal smart factory.
Thus, the impact of maintenance mainly on profitability and productivity, which are the two most
important business performance aspects. Along with that many industries are seeking to facilitate
performances assets and gain a safer, more sustainable environment with the help of better asset
management strategies. Moreover, the industry may face various challenges with the integration of
CPS to the manufacturing industry, and it can be listed as data protection, data security, and
strategic planning, etc. [60-62]. [63] Worked on aiming to review the literature on the CPS for
manufacturing the fourth industrial revolution for a complete understanding of its challenges, and
various used technigues in his domain. But many industries are facing the various breakdown
problems and research focusing on machine breakdown has also grown significantly in the past
few years. In manufacturing systems, the uncertainty in machine breakdown has a severe effect on
the system in context to his production planning, maintenance planning and system predicted
output [64]. To overcome this, Koh and Sameh [65] intended to represent the stochastic nature of
such interruption. Later, Yan and Jay [66] designed a prognostic algorithm to capture this process
of machine failure as the degradation process stating it as a single staged process and tried to predict

the residual life of the machines.

2.2 Degradation of manufacturing systems

The degradation of a manufacturing systems is defined as the condition of degrading or being
degraded. The degradation information of a manufacturing systems will help in knowing the
performance of manufacturing the products. Although, system degradation is not a single staged

process in real life but instead a multi-staged process following a Poisson distribution, mentioned
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in [67]. With this information, a multi-stage stochastic degradation model was proposed to the
performance of a system using Bayesian updating methods to extract real-time data from machines
and update the degradation model for finding the Residual Life Distribution for degraded machines
[68]. Following this, numerous research was carried towards the modeling of the degradation
process with an insight to capture the degradation coefficient [69]. Later, Bian and Gebraeel [70]
formulated a stochastic model for the degradation process of inter-dependent parts in a multi-
component system. Hao et al. [37] adopted the stochastic model and proposed a prognostics method
to predict the residual life of each component in a composite manufacturing system by modeling
degradation signals as an instantaneous stochastic process.

Among those literature, Gebraeel et al., [71] implemented Bayesian method for updating
parameters and to predict the RUL of a bearing component. Hao et al., [38] and Song et al., [72]
adopted the stochastic model and proposed a prognostic method to predict the residual life of each
component in a composite manufacturing system by modeling degradation signals as an
instantaneous stochastic process. The functional form of degradation endeavors to explain
probabilistically the progression of the physical degradation process. Various techniques have been
explained by Bian et al., [73], and they has modeled the evolution of degradation signals based on
sensors data to estimate lifetime distribution. Later, Deutsch et al., [74] research focused on
prediction of RUL of a rotating element with big data by presenting a deep learning based technique
based on the degradation data. Their technique has been tested and validated by collecting the data
from a gear test rig. Similar work has been carried out by Ren et al., [75], a deep learning based
method has been proposed to predict the RUL of a bearing component combined with the deep
neural network and deep auto encoder. Further, supervised and unsupervised data analysis
techniques have been used [76, 77] for the maintenance of a vessel based on its condition in a
diesel-electric gas propulsion plant.

In machine level, a case study has been presented for finding the degradation level on
monitoring of industrial pumps by [78]. In their work, vibration data has been collected from a
chemical plant on 30 industrial pumps for a period of 2.5 years and applied random forest algorithm
and found Key Condition Indices (KCls) for condition based monitoring. Similarly, data analysis
and simulation tools have been used to analyze the machine failure data, system failures prediction,
and a novel procedural approach has been proposed by [79]. Later, to reduce the impact of the
degradation process on machine performance, and machining precision using sensory data such as

emission rate, maintenance rate, as well as production rate as the performance indices has been
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identified by [80, 81]. In general, the system degradation is not a single staged process instead it is
a multi-stage process in real life. Li et al., [82] proposed a method for predicting the RUL by
changing the degradation rate of systems, and cause signal jumps at condition to change points as
the two factors. With this information, a multi-stage stochastic degradation model was proposed
by using Bayesian updating methods to extract real-time data from machines and update
degradation model for finding the RUL for degraded machines. Further, numerous research was
carried towards the modeling of the degradation process with an insight to capture the degradation
[83]. Another paper mentioned with various techniques for predicting the RUL and understanding

the progression of degradation in machines [84-88].

2.3 Workload Adjustment

The objective of workload strategy is to manage the remaining useful lifetime of various unit
systems to accomplish some sort of optimality. A dynamic workload adjustment technique has
been proposed by [13] to locate the most extreme workload of the higher degraded machines in
manufacturing systems to satisfy the production necessities on parallel configurations as well as
various benchmark instances and simulation tests have been led to assess degradation rate. [36]
explored that the effects of various workload adjustment methodologies on a system execution by
a mathematical study utilizing the agent-based simulation. Studies have shown that the higher the
workload to the machine, accelerate the degradation and vice versa. To prevent the overlap of
machine failure within a period of time [36] developed a method to control the degradation and
predicted failure time of each machine by adjusting the workload. Few studies [13], [35] and [36]
addresses the phenomena of controlling the pace of degradation among the machines in a real-time
manufacturing environment. Their studies proposed a workload strategy dynamically to control the
degradation rate by predicting the residual life on parallel and hybrid configurations.

The workload adjustment strategy also helps in reducing the overlap of the machine failures
that the most degraded machines need to be identified and adjust the workload to fulfill the
necessary requirements [35]. A similar work has been carried out, where the workload adjustment
strategy has been tested and validated on hybrid configuration by [13, 37]. The allocation of a
number of jobs is especially important to obtain the better throughput. A mixed integer linear
programming for the workload adjustment strategy has been proposed by minimizing the loads on

maximum number of machines in a semiconductor manufacturing front end fab [89]. Similarly, a
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workload allocation approach has been proposed and a case study of aerospace enterprise has been
demonstrated by validating the proposed approach [90]. Further, a sensitivity analysis has been
performed by proposing a mixed integer linear programming where the workload on each machine
has been adjusted dynamically in a manufacturing company for satisfying the requirements [91].

2.4 Predictive Maintenance

Nowadays, predictive maintenance is considered as the key point for many manufacturing
industries because of a major part of the operational cost and system failure impacts on product
quality and equipment availability. [92] Explained that Predictive maintenance considers close past
information for predicting future tendencies, biases, behaviors, etc. through correlation. He et al.,
(2017) [93] introduced that Predictive maintenance is an analytic technique to eliminate
prospective failures and improve the mission dependability of production systems. Consequently,
a coordinated Predictive Maintenance procedure considering item degree, mission dependability
state was proposed reasoning of prediction and manufacturing. Spendla et al., (2017) [94] proposal
focused on predictive maintenance of manufacturing systems to improve the production process
quality.

Dong et al., (2019) [95] have attempted to work on a flexible structure of a versatile
manufacturing system to satisfy different needs and item varieties and to build up a PHM structure
for assembling with different online sensors and flexible structures utilizing different sensors-based
degradation data for registering and predicting each machine's time to failure. For example, Traini
et al., (2019) [96] discussed the execution predictive maintenance of a milling cutting tool
information the collection as validation of a structure. Yildirim et al., (2016) [97] expanded the
adaptive predictive generator maintenance model presented by incorporating unit commitment.
From the different literature on predictive maintenance, it can be concluded that the predictive
maintenance of the machines allows to extend the machine’s life and to lower maintenance costs
by addressing the problems before they cause machine failures.

The predictive maintenance has significantly benefited with the use of ML prediction
algorithms and real-time fault detection based on the technological advancements such as sensors
utilization in manufacturing systems. The predictive maintenance (PM) is a focal point for many
manufacturing industries to reduce the operational costs [98]. A systematic implementation of
machine learning (ML) algorithms for PM has been proposed to identify the fault detections of a
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machine before its failure in a Small and Medium Enterprise (SME) [99]. The Predictive
Maintenance for machine learning models has been proposed and the models were evaluated by
the accuracy, precision and F1 score for classifying the ML algorithms [100].

Many authors have explained that the equipment replacement is based on the maintenance
costs and many companies were struggling to implement Al and ML-based predictive maintenance
techniques. The main benefit of the predictive maintenance technique with the help of the ML
approach is to improve the performance of the machines. The ML tool helps in data-driven
recommendations and decision makings based on the input data provided. Later, a data-driven PM
technique is developed for a production line to improve the performance of a manufacturing system
as the data has been generated from the loT-based sensors in real-time, and the predictions of
machine failures and the maintenance requirement detected using ML methods (Ayvaz et al., 2021)
[101].

2.5 Criticality Index (CI)

The criticality index of machines or devices used in manufacturing industry can be structured a set
of activities to identify failures which impacts on companies goals [46]. Criticality of a machine is
used as a comprehensive measure to estimate the various actions and to highlight the differences
between each individual machine and action strategies [102].

The literature described about the assessing the machine’s criticality index [103]. Due to
the quality and method of data acquisition there is an uncertainty related to the time between
failures and time to repair of machines [104] and all assessment criteria are equally important into
the consideration. Considering the above issues, a novel method of machine’s criticality index is
proposed in this objective. In the area of manufacturing systems the factors which are redundancy,
workload breakdown time of a machine and impact on throughput as factors has been indicated.

It has been observed from various literature that it is important to find the weightage of
each criterion to find the health status of a machine in a manufacturing system. Based on the above
issue, a novel model of criticality index assessment of a machines is proposed as the first criterion
[105]. The usage of an index method is proposed and demonstrated based on a Cuban heat
exchanger battery to rank the investment in a manufacturing company [46]. Later, in following of
finding the criticality index, the effectiveness of reliability is investigated to identify the most

critical manufacturing machine to improve the performance by developing a discrete event

23

Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA



simulation model [106]. Similarly, an embedded multiple case study method is adopted and
investigated for improving the productivity with the help of smart maintenance techniques by
incorporating the main objective of maintenance organization as productivity [107]. The main goal
of this work is to find the criticality assessment of a machine and the criticality assessment of tools
in machinery to increase productivity.

Few more studies as the part Cl is introduced to rank and prioritize various parts involved in
the manufacturing of different products as an algorithm is developed to obtain the compound global
index which shows the index of a part in a manufacturing machine. A method was proposed to
improve the productivity of equipment by focusing on equipment’s criticality evaluation and daily
maintenance [106]. Later, a strategy is presented on the impact of maintenance and it is considered

one of the competitive factors on critical equipment [107].

2.6 Motivation of the Research

Although manufacturing industries are adapted to face few challenges, many industries are
incapable to meet the pace of change to keep up with the current global competition. Most factories
are composed of resources such as machines, and automatic devices that are properly integrated
but not always connected. To handle the customized orders that are low in volume, and long-lead
times, current manufacturing systems configurations may not be capable enough to manage the
production process. Therefor the flexible unit systems has been motivated us to conduct various
analysis and these configurations has been proposed in this research for fulfilling customer
requirements. Moreover, every machine in the production system has its own health status
therefore its remaining useful life (RUL) has an important to maximize the production rate and also
its degradation status is highly responsible for the operational performance of the production
system. The maintenance prediction with the help of machine learning also plays the major role
has been proposed in this research. Finally predicting the criticality index which gives the
maintenance time for combined, multiple, and individual machines, and workload adjustment
strategy on flexible unit configurations by combining of RUL, and CI drive us to conduct this

research.
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2.7 Objectives of the Thesis

25

To develop different realistic Configurations ranging from semi-flexible to fully-flexible
systems and to identify the most influenced performance measure

To develop mathematical models and job adjustment strategy for linear degradation model
on single product category of the proposed flexible systems.

To develop the workload adjustment strategy on multiple product category for Flexible
systems.

To develop the criticality index for multi-product category for identifying the machine
status indicators.

To enhance the throughput of flexible configurations using novel upgraded hybrid
degradation model.
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Chapter 3

Development of realistic Configurations ranging from Semi-
Flexible to Fully-Flexible systems and identifying the

pe rformance measures

3.1 Introduction

Due to recently emerged technologies from Industry 4.0, industries not only benefited but
simultaneously throw challenges during execution. Regardless of technology advancements and
functionalities, recent manufacturing systems are vulnerable and challenge enough to unexpected
disruptions like machine breakdown, power fluctuations, loss of data, Interoperability, etc.
Monitoring of complex manufacturing systems and to deal with these unexpected disruptions is a
complex and challenging task. The Prognostics and Health Management (PHM) is the
maintenance policy that helps for the better health care of complex machine systems aiming at
reducing the time and cost for maintenance, manufacturing processes, and unexpected disruptions.
Prognostics and Health Management also combines sensing and elucidate the performance related
parameters to assess the system health and diagnose different types of failures. In this situation,
few major performance parameters of manufacturing systems such as throughput rate, throughput
time, system utilization, availability, average stay time, and maximum stay time which affect the
manufacturing systems are of great importance in its performance and maintaining the final
product quality.

Ranking of those parameters from the most influenced parameter to the least one is utmost
requirement for overall assessment particularly when the applications are complex and advanced.
The ranking of parameters is a tedious task, because of complicated relationships exist between
decision criteria for ranking the alternatives. It is a type of integrated Multi Criteria Decision
Making (MCDM) problem in which these parameters can influence various manufacturing
expenditures [108, 109]. The main driving force for this research work is to improve the

performance of manufacturing systems, maximize the production rate of the semi-fully flexible
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machine systems and priory identification of degradation of systems and their health status by
ranking of various parameters.

The real-time semi-fully flexible machine configurations are of one-degree flexible
configuration, two-degree flexible configuration, semi-flexible configuration, and fully flexible
configurations, in which the identical machines operate simultaneously to process the given
number of jobs. In addition, the performance analysis of flexible machine systems of the above-
mentioned parameters has shown great importance in systems efficiency. Among various
mentioned parameters, the throughput rate (summation of all workloads from all the units) is an
important parameter for the designing and operations of presented configurations. Similarly,
various manufacturing costs along with the processing time, inspection time, and moving time
drives the firms to effectively analyse the performance of semi-fully flexible machine systems in
terms of throughput time. In general, systems degrade with certain rate over a period of time where
its performance varies while processing similar kind of operations. In fact, the machine is
considered as failed when its degradation level crosses the pre-defined failure threshold. Hence,
predicting of residual life will be of great help to the shop floor manager to reroute the processes
efficiently. Residual life of a machine can be defined as the machine can work until a catastrophic
interruption [110]. Another key parameter influences the process in the shop floor is machine
availability, it deals with the probability of machines working without breakdown. In addition, the
average stay time is the mean processing time taken to complete the jobs on a single machine and
the maximum stay time is the maximum processing time taken to complete the jobs on a single
machine also affects the flexible machine systems.

The experimental analysis is based on the real system, which provides the accurate results
compared to the simulation results [111]. The simulation model solves real-world problems safely
and efficiently. The performance parameters analysis provided by the simulation helps in
visualization, understanding, and quantification of real time manufacturing systems scenarios.
Various techniques have been applied in the past literature [112] to make the decisions or rank the
alternatives and it has been observed that one of the popular methods is integrated MCDM method
but few researches has been done in the field of ranking the parameters with the Technique of
Order Preference by Similarity to the Ideal Solution (TOPSIS) method.
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3.2 MCDM (Multi-Criteria Decision Making)

In this research, the performance process parameters have been analysed using the

simulation analysis approach and then the results have been validated with the real-time

experimental calculation results. Later, an integrated MCDM method has been selected to rank

the parameters, because MCDM is a well-known technique to solve the complex real-life scenario

problems of diverse alternatives with several criteria to rank or choose the best or worst

alternative.

From the various literature, it has been observed that different MCDM techniques can be

used for solving decision-making problems, but the TOPSIS method is best suited and since it has

been observed that the TOPSIS method has been preferred for considering the quantitative criteria.

The Entropy method has been used in conjunction with the TOPSIS method respectively. The

Entropy method has been applied to calculate the weightage of each criterion and the TOPSIS

method has been used for evaluating the alternatives (parameters) based on these criteria. Various

key parameters which influence the Flexible machine systems are shown in below Figure 3.1.

Flexible Machine Systems

One Degree

Two Degree

Semi Flexible

Fully Flexible

v

Throughput
Time

Throughput
Rate

System

Utilization

Availability

Average
stay time

Figure 3.1 Identified Parameters which influence the flexible configurations

3.3 Methodology

In the experimentation analysis, the number of jobs has been taken as 5000 and the values

of each individual parameter have been evaluated. Later, the simulation analysis has been

conducted with the help of simulation software by varying the number of jobs from 100 to 5000.

28

Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA

Maximum
stay time




The obtained simulation results are mostly nearby the experimental values. Finally ranked
the parameters of simulation results that influence the flexible machine systems from most to

least. Figure 3.2 outlines the overview of the integrated MCDM based simulation approach.

Flexible configurations

Simulation Mlggéicszgﬁ“a Predict the
i Demand Experiments for with
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5 and without the parameters behavior
i disruptions P

v v

Numerical Comparison of Numerical

\ | Experiments for with Experiments with

and without »|  Simulation Experiments

disruptions Results

Figure 3.2 Overview of an integrated MCDM based simulation approach

Here, S1, S2... S6 indicates the sources from where the jobs can be assigned to the
processors. The flexible machine systems consist of N number of identical machines in which the
system has to operate simultaneously to complete the given number of jobs shown in Figure 3.3
(a-d). Figure 3.3 (a) presents the one-degree flexible system in which if any machine will fail then
the remaining number of jobs can be adjusted on an adjacent connected machine. Figure 3.3 (b)
represents the two-degree flexible system in which if any machine fails then the remaining number
of jobs can be adjusted on two adjacent connected machines depending upon the availability of
machines. Here, the availability of machines has been increased in the case of two-degree flexible
configuration compared to one-degree flexible configuration. Figure 3.3 (c), (d) represents the
semi-flexible and fully flexible machines in which the availability of machines is more compared

to the one-degree flexible system, two-degree flexible system.
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Figure 3.3 (a-d) Flexible configuration machine systems

3.3.1 Experimental Analysis

The values of each parameter have been calculated by considering the number of jobs as 5000 and
it was mentioned below in Table 3.1 since to get that level our majority of machine breakdown at
least once. Throughput time is the actual time taken to manufacture a product and it can be
calculated by multiplying the average stay time by the total number of jobs per machine, similarly,
throughput rate is the rate at which units move from start to finish and it can be calculated by
dividing the output by throughput time. The availability is the amount of time in which the

machine actually runs and is available for production, and it can be calculated by Equation 3.1.
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MTBF
MTBF + MTTR

The average stay time and maximum stay time can be calculated from the bell curve by

Availability = (3.1)

considering a 99.97% confidence level since the processing time follows the normal distribution.
The system utilization can be defined as the proportion of time that the manufacturing system has
been used, and system utilization is calculated by Equation 3.2.

Actual Output
Maximum Level Output

Utilization =

(3.2)

Table 3.1 Experimentation matrix of various parameters for 5000 number of jobs

Without Breakdown With Breakdown
Criteria/ One Two Semi Fully One Two Semi Fully
Parameters degree degrees Flexible Flexible degree degrees | Flexible | Flexible
Throughput 362133.33 | 362133.33 | 380133.33 | 369333.33 | 521600 550400 | 539600 | 550400
Time (Sec)
Throughput/ 49.70 49.70 47.35 48.73 34.50 32.70 33.35 32.70
Hour
System 99.41 99.410 94.70 97.47 69.01 65.40 66.71 65.40
Utilization (%)
Availability 1 1 1 1 0.9999 0.9999 0.9999 0.9999
Average stay 600 600 600 600 600 600 600 600
time(s)
Max stay 690 690 690 690 86400 86400 86400 86400
time(s)

3.3.2 Simulation Analysis

The simulation analysis was conducted on a PC with Intel Corei3-7100 U (2.40 GHz), running
under windows 10 professional operating system with 8GB RAM. The images of various
configurations from a single degree to fully flexible as shown in Figure 3.3 (a-d) The processing
time and mean time between failures (MTBF), Mean Time to Repair (MTTR) follows the normal

distribution, and the time required to repair a machine has been considered as constant.

Warmup period

The number of replications for the simulation has been determined as 20 and the length of each
replication is 1hr with a warmup period is 8hours for one-degree flexible configuration and has
been shown in Figure 3.4 (a) by without breakdown of machines. The warmup period for two-
degree flexible configuration, semi-flexible, and fully flexible configurations without the
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breakdown of machines are as 8hours, 13hours, and 10hours as shown in Figure 3.4 (b), (c), (d)
respectively. Similarly, warm-up period with the breakdown of machines for various
configurations is shown in Figure 3.5 (a-d). The warmup period for one-degree, two-degree
flexible configuration, semi-flexible, and fully flexible configurations in the view of the
breakdown of machines are as 6hours, 14hours, 11hours, and 14hours as shown in Figure 3.5(a),
(b), (c), (d) respectively. The warmup period can be obtained by applying Welch’s procedure
[113] to estimate the steady state mean. Here the technique often suggested for these kinds of
problems is called the warmup period or also called initial data deletion. The main idea here is to
delete the initial observations from the run and using of remaining observations to get the steady-
state. The number of replications has been calculated with the help of the following Equation 3.3.
[113].

X ()£t (3.3)

S
a/Z\/H
Where X (n) represents the sample mean, S represents sample standard deviation, and n

represents the number of replications, and t is the upper and 1-a/ 2 critical points where

n—1,1-«/2
the warmup period is in case of breakdown for one-degree configuration is 6hrs. Then the desired

confidence interval for 95% confidence level isBitlgvo.ml\/z%A'_ From the results it has been

observed that, the 20 number of simulations are enough from the initial approach mentioned in
[113]. The warmup period has been identified from the plot as shown in figure below for various

configurations.
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Figure 3.5 (a-d) Warm up period for flexible configurations without breakdown

Various parameters such as Throughput Rate (TR) in (throughput/hour), Throughput Time
(TT) in (Seconds), System Utilization (SU) in (%), Availability (A), Average stay time (Tayg) In
(Seconds) Maximum stay time (Tmax) in (Seconds) values have been generated with the help of
simulation software for one degree, two-degree, semi-flexible, and fully flexible configurations
without and with the breakdown of machines. The number of machines has been varied from 100 to
5000 and the simulation results has been presented for various configurations in Tables 3.2, 3.3, 3.4,
and 3.5 respectively.

Table 3.2 Comparative Simulation Matrix of One-degree Configuration without and with

breakdown of machines.

One Degree Flexible (without breakdown) One Degree Flexible (with breakdown)
No. of | TR 1T SuU A | Trmax Tavg TR TT SuU A Tmax Tavg
Jobs
100 50.85 35879.61 100 1 | 67491 601.19 35.13 31848.98 66.67 1 669.4 600.2
200 52.71 42459.19 100 1 | 678.82 599.2 35.52 41867.61 66.67 1 678.82 598.18
300 53.25 49082.4 100 1 | 678.82 | 599.58 | 35.79 | 51772.82 66.67 |1 683.74 600
400 53.56 55685.86 100 1 | 683.74 | 599.66 | 35.75 | 61883.3 66.67 |1 683.74 599.8
500 53.94 90973.22 100 1 | 695.33 600.5 35.88 71771.32 66.67 1 683.74 599.82
700 53.96 104299.78 100 1 | 695.33 600.36 35.92 91749.3 66.67 1 683.74 599.88
900 54.09 117499.95 | 100 1 | 70154 | 600.38 | 3586 | 111943.09 | 66.67 |1 695.33 600.36
1100 53.87 131110.14 | 100 1 | 71262 | 601.32 | 359 131893.71 | 66.67 |1 695.33 600.17
1300 53.89 14443991 | 100 1 | 712,62 | 600.79 | 3593 | 15186842 | 66.67 |1 701.74 600.41
1500 53.91 157769.41 100 1 | 712.62 600.56 35.9 172038.72 66.67 1 712.62 601.12
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1800 53.97 177659.53 | 100 1 | 71262 | 600.49 | 3593 | 201928.04 | 66.67 |1 712.62 600.72
2100 53.97 197681.64 | 100 1 | 71262 | 600.13 | 3592 | 23205095 | 66.67 |1 712.62 600.6

2400 54 217589.93 | 100 1| 71262 | 600.12 | 3593 | 26207093 | 66.67 | 0.99 | 712.62 600.37
2700 53.98 237683.2 100 1| 71262 | 600.12 | 35.95 | 291977.9 66.66 | 0.98 | 712.62 600.24
3000 54.02 257528.86 | 100 1 | 71262 | 599.99 | 3593 | 32222242 | 66.66 | 097 | 712.62 600.24
3400 53.97 54381.48 100 1 | 71262 | 600.21 | 3598 | 361781.14 | 66.68 | 0.97 | 86981.14 | 625.41
3700 53.62 305999.59 | 99.33 |1 | 71262 | 600.26 | 35.96 | 391993.21 | 66.68 | 0.96 | 86981.14 | 623.48
4100 51.89 342068.53 | 96.07 |1 | 71262 | 600.13 | 3596 | 432017.34 | 66.68 | 0.95 | 86981.14 | 621.35
4500 49.95 38192346 | 9246 |1 | 71262 | 599.83 | 3598 | 471830.77 | 66.69 | 0.94 | 87012.33 | 638.61
5000 48.09 43192151 |89.01 |1 | 71262 | 599.87 | 36 521598.36 | 66.69 | 0.94 | 87012.33 | 651.7

breakdown of machines

Table 3.3 Comparative Simulation Matrix of Two-degree Configuration by without and with

Two Degree Flexible (without breakdown) Two Degree Flexible (with breakdown)

No of | TR TT SuU A | Tmax Tavg TR TT SU A Tmax Tavg
Jobs
100 50.85 35879.61 100 1 67491 | 601.19 | 50.85 | 35879.61 100 1 674.91 601.19
200 52.71 42459.19 100 1 678.82 599.2 52.71 | 42459.19 100 1 678.82 599.2
300 53.25 49082.4 100 1 678.82 | 599.58 | 53.25 | 49082.4 100 1 678.82 599.58
400 53.56 55685.86 100 1 678.82 | 599.66 | 53.56 | 55685.86 100 1 678.82 599.66
500 53.66 62347.22 100 1 683.74 600 53.66 | 62347.22 100 1 683.74 600
700 53.78 75659 100 1 683.74 600.19 53.78 | 75659 100 1 683.74 600.19
900 53.71 89121.68 100 1 695.33 600.26 53.71 89121.68 100 1 695.33 600.26
1100 53.79 102424.66 100 1 695.33 600.2 53.79 102424.66 100 1 695.33 600.2
1300 53.86 115686.21 100 1 695.33 600.41 53.86 115686.21 100 1 695.33 600.41
1500 53.73 129300.36 100 1 712.62 601.18 53.73 129300.36 100 1 712.62 601.18
1800 53.8 149244.62 100 1 712.62 600.74 53.8 149244.62 100 1 712.62 600.74
2100 53.84 169217.09 100 1 712.62 600.64 53.84 169217.09 100 1 712.62 600.64
2400 53.86 189221.03 | 100 1 712.62 | 600.41 | 53.86 | 189221.03 | 100 1 712.62 600.41
2700 53.93 209043.09 | 100 1 712.62 | 600.26 | 53.93 | 209043.09 | 100 1 712.62 600.26
3000 53.93 229064.06 | 100 1 712.62 | 600.25 | 53.93 | 229064.06 | 100 1 712.62 600.25
3400 53.94 255711.11 100 1 712.62 600.03 53.94 | 255711.11 100 1 712.62 600.03
3700 53.93 275769.78 | 100 1 712.62 | 600.13 | 53.93 | 275769.78 | 100 1 712.62 600.13
4100 53.9 302657.47 99.71 1 712.62 600.31 53.9 302657.47 99.71 1 712.62 600.31
4500 52.55 337049.76 97.41 1 712.62 600.23 5255 | 337049.76 97.41 1 712.62 600.23
5000 50.28 386801.83 | 9314 |1 712.62 | 599.87 | 50.28 | 386801.83 | 93.14 |1 712.62 599.87
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Table 3.4 Comparative Simulation Matrix of Semi flexible Configuration by without and with

breakdown of machines.

Semi Flexible (without breakdown) Semi Flexible (with breakdown)

Noof | TR TT su Al Tax Tavg TR TT Su A Trmax Tavg
Jobs

100 50.85 53879.61 | 100 1] 67491 |601.19 | 3535 |4978391 | 66.67 |1 669.4 600.75
200 52.71 60459.19 | 100 1] 67882 [599.2 |[3555 |59852.27 |66.67 |1 678.82 598.46
300 53.25 67082.4 100 1] 67882 |599.58 | 3567 | 69877.89 | 66.67 |1 678.82 599.8
400 53.56 72685.86 | 100 1] 67882 [599.66 | 3577 | 7985819 | 66.67 |1 683.74 599.69
500 53.66 80347.22 | 100 1] 68374 | 600 35.75 | 89944.35 | 6667 |1 683.74 599.85
700 53.78 93659 100 1] 68374 | 60019 | 3587 | 10985247 | 66.67 |1 683.74 599.95
900 53.71 107121.68 | 100 1] 69533 | 600.26 | 35.89 | 12987871 | 66.67 |1 695.33 600.35
1100 | 53.79 120424.66 | 100 1] 69533 |600.2 |3594 |149797.73 |66.67 |1 695.33 600.15
1300 | 53.86 133686.21 | 100 1] 70141 | 60041 | 3591 | 169916.44 | 66.67 |1 701.54 600.44
1500 | 53.73 147300.36 | 100 1] 71262 | 601.18 | 35.84 | 190257 66.67 | 1 712.62 601.13
1800 | 53.8 167244.62 | 100 1] 71262 |600.74 | 359 | 220097.42 | 6667 |1 712.62 600.73
2100 | 53.84 187217.09 | 100 1] 71262 | 600.64 | 3591 | 250140.05 | 66.67 |1 712.62 600.59
2400 | 53.86 207221.03 | 100 1] 71262 | 60041 | 3595 | 27992542 |66.67 |1 712.62 600.36
2700 | 53.93 227043.09 | 100 1] 71262 | 600.26 | 36.35 | 30701244 |67.46 | 0.99 | 712.62 600.23
3000 | 5393 247064.06 | 100 1] 71262 | 600.25 | 37.26 | 329437.19 |69.12 | 098 | 712.62 600.24
3400 | 53.94 27371111 | 100 1] 71262 | 600.03 | 3827 |359391.17 | 7097 | 0.97 | 712.62 600.03
3700 | 53.93 293769.78 | 100 1] 71262 | 60013 | 3863 | 38444719 | 7162 | 0.96 | 87010.2 | 623.48
4100 | 53.92 320521.68 | 100 1] 71262 | 60031 | 3892 | 41879205 |71.21 [ 0.95 | 870102 | 621.37
4500 | 52.69 35426059 | 97.6 | 1| 71262 | 600.23 | 39.17 | 45314531 | 72.62 | 0.95 | 870102 | 63859
5000 | 50.39 403982.15 [ 933 | 1| 71262 |599.87 | 3877 |50392954 | 71.81 | 095 | 870102 | 634.44

Table 3.5 Comparative Simulation Matrix of Fully flexible Configuration by without and with
breakdown of machines.
Fully Flexible (without breakdown) Fully Flexible (with breakdown)

Noof | TR TT SU AT Tm Tavg TR TT SuU A Trmax Tavg
Jobs

100 50.85 | 43079.61 100 1 | 67491 | 601.19 | 35.13 | 60648.37 66.67 669.4 600.49

200 52.71 | 49659.19 100 678.82 | 599.2 35.6 70625.13 66.67 678.82 598.21

300 53.25 | 56282.4 100 678.82 | 599.58 | 35.75 | 80613.69 66.67 683.74 600.06

400 53.56 | 62885.86 100 683.74 | 599.66 | 35.84 | 90575.8 66.67 683.74 599.74

N
I

500 53.66 | 69547.22 100 683.74 | 600 35.8 100676.19 | 66.67 683.74 599.91

36
Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA




700 53.78 | 82859 100 1 |683.74 |600.19 | 3589 | 12061859 | 66.67 |1 683.74 600
900 53.71 | 96321.68 100 1 | 69533 |600.26 | 35.89 | 140663.51 | 66.67 |1 695.33 600.32
1100 53.79 | 109624.66 | 100 1 |69533 | 600.2 3591 | 160686.28 | 66.67 | 1 695.33 600.2
1300 53.86 | 122886.21 | 100 1 |701.41 | 60041 | 3589 | 180798.96 | 66.67 |1 701.54 600.44
1500 53.73 | 136500.36 | 100 1 | 71262 |601.18 | 3585 | 201020.24 | 66.67 |1 712.62 601.13
1800 53.8 156444.62 | 100 1 | 71262 | 600.74 | 3589 | 230963.02 | 66.67 |1 712.62 600.75
2100 53.84 | 176417.09 | 100 1 | 71262 | 600.64 | 3592 | 26085544 | 66.67 |1 712.62 600.58
2400 53.86 | 196421.03 | 100 1 | 71262 | 60041 | 3594 |290798.12 | 66.67 |1 712.62 600.34
2700 53.93 | 216243.06 | 100 1 | 71262 |600.26 | 3595 | 320764.93 | 66.67 |1 712.62 600.21
3000 53.93 | 236264.06 | 100 1 | 71262 | 600.25 | 36.25 | 348339.64 | 67.24 | 0.9971 712.62 600.22
3400 53.94 | 262911.11 | 100 1 | 712,62 | 600.03 | 37.33 | 378258.36 | 69.22 | 0.9872 712.62 600.01
3700 53.93 | 282969.78 | 100 1 | 712.62 | 600.13 | 38.02 | 400784.56 | 70.48 | 0.9829 712.62 600.12
4100 53.92 | 309721.68 | 100 1 | 712.62 | 600.31 | 38.75 | 43134246 | 71.84 | 0.9748 87037.7 621.37
4500 53.94 | 336339.16 | 100 1 | 712.62 | 600.23 | 38.99 | 46593558 | 72.26 | 0.9726 87037.7 619.41
5000 53.95 | 369613.81 | 100 1 | 712,62 | 599.87 | 39.33 | 508033.76 | 72.86 | 0.9557 87037.7 617.15

The collected values of the parameters’ effect on FUS have been represented in Table 3.6.

These values have been generated by the simulation procedure for various configurations without

and with machines breakdown by considering the number of jobs as 5000. Initially different

normally distributed Mean Time Between Failures (MTBF) values for the different machines

(processors) and constant Mean Time to Repair (MTTR) as 1 day and normally distributed

processing time has been considered to get random failure.

Table 3.6 Collected values of the parameters effect on flexible machine systems for 5000 number

of jobs
Without the Breakdown With Breakdown
Criteria/Para One Two Semi Fully One Two Semi Fully
meters degree degrees Flexible Flexible degree degrees Flexible Flexible
Throughput | 431921.51 | 386801.8 | 403982.15 | 369613.81 | 521598.3 | 572693.84 | 503929.54 | 508033.76
Time 3 6
Throughput 48.09 50.28 50.39 53.95 36 34.46 38.77 39.33
rate
System 89.01 93.14 93.76 100 66.69 63.84 71.81 72.86
Utilization
(%)
Availability 1 1 1 1 0.9423 0.9488 0.9505 0.9557
Average stay 599.87 599.87 599.87 599.87 651.7 634.41 634.33 617.15
time(s)
Maximum 712.62 712.62 712.62 712.62 87012.33 | 87037.73 | 87010.28 | 87037.73

stay time(s)
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Figures 3.6 (a), (b), (c), (d) represents the simulation results of various parameters
(throughput rate, system utilization, and average stay time) for various configurations without the
breakdown of machines. Similarly, Figures 3.7 (a), (b), (c), (d) represents the simulation results of
the above-mentioned parameters with the breakdown of machines. These simulation results have

been generated by arranging the machines as per the configuration and data has been provided in

the simulation software with the help of MTBF, MTTR, and processing time for each machine.
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3.3.3 Proposed Entropy weight based TOPSIS method

In this research, frequently used normalization methods including the entropy and TOPSIS
methods, as these two methods are used in combination with each other have been analyzed for the
collected simulation data. The entropy method is used to calculate the weights of each criterion

when decision-makers having conflicting views. The weights calculating by the entropy method as
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also called objective weights. The entropy method shows how much different alternatives approach
one another in respect to a certain criterion. The best advantage of an entropy method is the
avoidance of human factors interference on the weights of indicators. With this advantage, the
entropy method has been widely utilized in recent years. The entropy method consists of four steps
mentioned below. The equations from 4 to 7 are the formulas to calculate the weights of each
criterion are as follows [114]. The TOPSIS method is used to find the ranking for each individual
alternative. The TOPSIS method is used to get the solution, which is near to the positive ideal
solution and far from the negative ideal solution. The application of the TOPSIS method in ranking
various factors that affect the FUS has been reported in the literature. Various steps involved in the
entropy and TOPSIS methods have been explained below with the help of equations from 3.4 to
3.14 are as follows [114].

3.4 Results and Discussion
Weights calculation by Entropy Method

Step 1. Normalize the Decision matrix
The performance value of a™alternative and b™criteria in Equation 3.4 is indicated by

A,=(@=12,...m; b=12,...,n) and the normalized matrix has been shown in Table 3.7.

B, = 52 (3.4)
>u
a=
Table 3.7 Normalized Matrix for the collected values of the parameters.
Without Breakdown With Breakdown
Criteria/Parame One Two Semi Fully One Two Semi Fully
ters degree | degrees | Flexible Flexible degree | degrees | Flexible Flexible
Throughput 0.2712 | 0.2429 | 0.253706 | 0.2321229 | 0.247642 | 0.2719 | 0.239253 | 0.2412023
Time 53077 | 17253 747 23 492 0141 756 42
Throughput rate | 0.2372 | 0.2480 | 0.248581 | 0.2661437 | 0.242326 | 0.2319 | 0.260971 | 0.2647415
3546 39071 718 52 333 60151 998 19
System 0.2367 | 0.2477 | 0.249421 | 0.2660211 | 0.242332 | 0.2319 | 0.260937 | 0.2647529
Utilization (%) | 85401 | 72073 404 22 849 76744 5 07
Availability 0.25 0.25 0.25 0.25 0.248150 | 0.2498 | 0.250309 | 0.2516788
001 61744 43 24
Average Stay 0.25 0.25 0.25 0.25 0.256818 | 0.2500 | 0.249973 | 0.2432031
time 477 04926 4 97
Maximum Stay 0.25 0.25 0.25 0.25 0.249964 | 0.2500 | 0.249959 | 0.2500379
time 088 37956 099 56
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Step 2. Entropy value of E, for b'" criteria

Entropy value E; of b™ criteria can be obtained by Equation 3.5 and has shown in Table 3.8.

X

(3.5

E,=-K 2 . By IN(By)
Where, K =1/In xis a constant to satisfy the condition 0< E, <1 and ‘b ’ indicates the number

of alternatives or factors.

Table 3.8 Entropy values.

Eb
Parameters Without Breakdown With Breakdown
Throughput Time 0.9988008 0.999082245
Throughput Rate 0.999384207 0.998999198
System Utilization 0.999373203 0.999000837
Availability 0.999999999 1.000035853
Average Stay Time 0.999999999 0.999911288
Maximum Stay Time 0.999999999 1.000045018

Step 3. The degree of divergence of average information
The degree of divergence of average needs to be find out by the Equation 3.6. The degree of

diversity value matrix has been calculated and shown in Table 3.9.

D,= |1-E,| (36)
Table 3.9 Degree of divergence values.
D,
Parameters Without Breakdown With Breakdown
Throughput Time 0.0011992 0.000917755
Throughput Rate 0.000615793 0.001000802
System Utilization 0.000626797 0.000999163
Availability 1E-09 3.58532E-05
Average Stay Time 1E-09 8.87123E-05
Maximum Stay Time 1E-09 4.50179E-05

Step 4. The weight of entropy of bt" criteria

The weightages of b™ criterion can be calculated by Equation 3.7 and represented in Table 3.10.

D,

B, =
Db

y
b=1
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Table 3.10 Weights of all criteria.

Bb
Parameters Without Breakdown With Breakdown
Throughput Time 0.491114421 0.297267459
Throughput Rate 0.25218903 0.324167048
System Utilization 0.256695321 0.323636175
Availability 4.,09535E-07 0.011613119
Average Stay Time 4.09535E-07 0.028734577
Maximum Stay Time | 4.09535E-07 0.014581622

Ranking the parameters by TOPSIS Method

Stepl. Normalization of decision matrix.

The normalization matrix can be calculated by the Equation 3.8 mentioned below. The normalized
decision matrix has been formed and shown in Table 3.11.

uab

Nab:—X b=12..; a=12,..,x; (3.8)
2
2t
Table 3.11 Normalized Matrix of the collected values
Without Breakdown With Breakdown
Criteria/Parame One Two Semi Fully One Two Semi Fully
ters degree | degrees | Flexible Flexible degree | degrees | Flexible Flexible
Throughput 0.5416 | 0.4850 | 0.506568 | 0.4634723 | 0.494614 | 0.5430 | 0.477859 | 0.4817517
Time 02229 | 25007 04 18 631 668 868 65
Throughput rate | 0.4740 | 0.4956 | 0.496737 | 0.5318309 | 0.483954 | 0.4632 | 0.521191 | 0.5287200
63957 | 52646 01 52 322 51831 918 96
System 0.4731 | 0.4951 | 0.498407 | 0.5315782 | 0.483968 | 0.4632 | 0.521124 | 0.5287440
Utilization (%) 5782 12003 788 72 414 86003 184 19
Availability 0.5 0.5 0.5 0.5 0.496293 | 0.4997 | 0.500612 | 0.5033512
694 17136 497 5
Average Stay 0.5 0.5 0.5 0.5 0.513541 | 0.4999 | 0.499854 | 0.4863162
time 76 17187 147 5
Maximum Stay 0.5 0.5 0.5 0.5 0.499929 | 0.5000 | 0.499918 | 0.5000759
time 971 75907 193 07

Step2. Construct the weighted normalized decision matrix.

The associated weights W, to be multiplied with the normalized matrix and taken from each
parameter to be obtained by following Equation 3.9. The weighted normalized decision matrix is
formed and shown in Table 3.12.

Var = NopW, (3.9)
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Table 3.12 Weighted normalized decision matrix.

Without Breakdown With Breakdown
Criteria/Parame One Two Semi Fully One Two Semi Fully
ters degree | degrees | Flexible Flexible degree | degrees | Flexible Flexible
Throughput 0.2659 | 0.2382 | 0.248782 | 0.2276179 | 0.147032 | 0.1614 | 0.142052 | 0.1432091
Time 88665 | 02775 87 39 834 36088 189 23
Throughput rate | 0.1195 | 0.1249 | 0.125271 | 0.1341219 | 0.156882 | 0.1501 | 0.168953 | 0.1713936
53729 9816 625 32 044 70979 246 33
System 0.1214 | 0.1270 | 0.127938 | 0.1364536 | 0.156629 | 0.1499 | 0.168654 | 0.1711206
Utilization 57398 | 92934 947 55 686 3611 638 92
Auvailability 2.0476 | 2.0476 | 2.04768E | 2.04768E- | 0.005763 | 0.0058 | 0.005813 | 0.0058454
8E-07 | 8E-07 -07 07 518 03275 672 78
Average stay 2.0476 | 2.0476 | 2.04768E | 2.04768E- | 0.014756 | 0.0143 | 0.014363 | 0.0139740
time 8E-07 | 8E-07 -07 07 405 64909 097 92
Maximum stay | 2.0476 | 2.0476 | 2.04768E | 2.04768E- | 0.007289 | 0.0072 | 0.007289 | 0.0072919
time 8E-07 | 8E-07 -07 07 79 91918 618 18

Step3. Determining Positive Ideal solution and Negative Ideal Solution

The positive ideal solution and the negative ideal solution to be determined by using below
Equations 3.10, 3.11 respectively. The positive ideal and negative ideal solution matrix is formed
and shown in Table 3.13.

AR A V'Y = {(MaxV, |beK),(MinV, |beK)| a=12...,x} (3.10)
NV Vo = {MinV,, [beK),(Max V,, |[beK)| a=12,...,x} (3.11
Where K is the index of set of benefit criteriaand K!' is the index of cost criteria.

Table 3.13 Matrix of Positive and Negative ideal solution.

Without Breakdown With Breakdown
Parameters V. + V. — V. + V. —
i j i j

Throughput Time 0.227618218 0.265988992 | 0.142052189 0.161436088
Throughput Rate 0.134122097 0.119553876 | 0.171393633 0.150170979
System Ultilization 0.136453823 0.121457548 | 0.171120692 0.14993611
Auvailability 2.04768E-07 2.04768E-07 | 0.005845478 0.005763518
Average Stay Time 2.04768E-07 2.04768E-07 | 0.013974092 0.014756405
Maximum Stay Time 2.04768E-07 2.04768E-07 | 0.007289618 0.007291918

Step 4. Finding the Euclidean Distance from positive ideal solution & negative ideal solution.
The Euclidean distance from positive ideal solution and negative ideal solution to be computed by
the below Equations 3.12, 3.13 respectively. The Euclidian distance matrix from positive ideal
solution & negative ideal solution is formed and shown in Table 3.14.
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— y 2q/2 . .
Si= >, Vo~V )¥ b=12..,y; a=12..,x; (3.12)
__ y —\2q1/2 . .
Si= >, Vo -V )’¥ b=12..,y; a=12..,xX; (3.13)
Table 3.14 Euclidian Distance Matrix.
Without Breakdown With Breakdown
Criteria/Parameters Sh S” S/ S’
Throughput Time 0.002032267 0.002540462 0.02004696 0.0302557
Throughput rate 0.000373814 0.000274561 0.02582523 0.02912409
System Utilization 0.000385022 0.000298649 0.0257848 0.02905122
Auvailability 0 0 9.75202E-05 0.000103988
Average stay time 0 0 0.00095712 0.00095915
Maximum stay time 0 0 3.25684E-06 3.13322E-06

Step 5. Calculating the relative closeness (performance score)

The relative closeness to be calculated from the ideal solution by using below mentioned Equation

3.14.
S
C=—"— a=12...,x,;0<C<1
S’ +S;
The Equation 3.14 indicates the relative closeness in which the higher value indicates best rank and

(3.14)

lower value indicates worst rank. The relative closeness value matrix is formed based on obtained

value and ranked the parameters with as shown in Tables 3.15 (a), (b).

Table 3.15 (a) Matrix of Relative closeness and ranking of the parameters.

Without Breakdown
Criteria/Parameters S*4+S- - Rank
[} 1 _ i
' ST+S;

Throughput Time 0.004572729 0.555568101 1
Throughput rate 0.000648376 0.423460029 3
System Ultilization 0.000683671 0.43683168 2
Availability 0 - 4
Average stay time 0 - 4
Maximum stay time 0 - 4

Table 3.15 (b) Matrix of Relative closeness and ranking of the parameters.

With Breakdown
Criteria/Parameters S +S; ST Rank
C = e
S +S;
Throughput Time 0.050302734 0.60147362 !
Throughput rate 0.054949332 0.530017304 2
System Ultilization 0.054836051 0.529783342 3
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Availability 0.000201509 0.516049358

Average stay time 0.001916273 0.50053063

Maximum stay time 6.39006E-06 0.490327135 6

3.5 Conclusions

In this research, the maximum number of jobs has been taken as 5000 in the real-time experiment
and obtained the values of mentioned six parameters such as throughput rate, throughput time,
system utilization, availability of machines, maximum stay time, and average stay time. To
compare these experimental results, the simulation analysis was also conducted with the help of
simulation software by varying the number of jobs from 100 to 5000 by considering with and
without the breakdown of machines for various configurations. Later, the entropy method has been
utilized for simulation results to compute the weights of each criterion, and the integrated MCDM
— TOPSIS method has been employed to rank the parameters from the most affected parameter to
the least affected parameter by considering the breakdown and without the breakdown of machines.
From the obtained results it has been observed that the Throughput Time is the most affected
performance parameter and maximum stay time is the least affected performance parameter on
flexible machine systems in case of breakdown condition and Throughput Time is the most affected
performance parameter and Availability, average stay time, and maximum stay time are the least

affected performance parameter on flexible machine systems without breakdown condition.
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Chapter 4
Development of workload strategy for linear Degradation

model on single product category

4.1 Introduction

Although production industries are adapted to face a certain level of challenges, many firms are
incapable to meet the accelerated pace of change to keep up with the current global competition,
and technological advancements. Digital transformation driven by smart manufacturing is the basis
of the current paradigm shift. Most factories are composed of resources such as machines, assembly
lines, and automatic devices that are properly integrated but not always connected. In order to make
a factory smarter, the Industrial Internet of Things (110T) platform has emerged as a new and
innovative concept that enables Industry 4.0 key enabling technologies. To handle the customized
orders that are low in volume, frequent demand shifts, and long-lead times current manufacturing
systems configurations are not capable enough to manage the production process. Moreover, every
machine in the production system has its own health status therefore its remaining useful life
(RUL). Its’ degradation status is highly responsible for the operational performance of the
production system [115, 116].

In this unique circumstance, profound research activity is addressed for the development of
smart factories in the Industrial world. Although the maximum rate of production of a particular
machine designed with more than actual, according to the reports from the Federal Reserve Board,
the United States fabrication industries are facing nearly 20 percent of redundancy which is an
alarming issue for the production system industries [7]. However, this isn’t uncommon due to an
enormous number of machines tend to degrade at a similar rate, particularly when an equal number
of workloads are allocated to those machines [13]. Therefore, evaluation of systems performance
in real-time by capturing performance of a machine is a challenge. Although, a good amount of
research investigated on component level and machine level degradation on system performance,
however, a significant research gap exists on the unit-level analysis for controlling the degradation
of machines in turn to enhance the system-level performance. The proper choice of machine
configuration greatly impacts the production system concerning its machine reliability and system
reliability. As a result, numerous scholars have published articles by optimizing the configurations
to get better productivity
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4.2 Degradation Problem Description

We develop a linear degradation model for proposed configurations associated with their
manufacturing flexibility ranging from a single degree to fully flexible systems to control the pace
of degradation among the machines for preventing the system from failure and indirectly
controlling the loss of production of the system. To highlight the main idea, these systems undergo
various analyses to predict the RUL of the machines that further improves the throughput through

the minimization of the average degradation level. We define “throughput rate” as the overall

N (x)

output of the system, i.e., TH(X)=Zq:1,r:10(qxr)(X) where denoted by TH(x) represents the

throughput rate at the time X and N (x) presents the number of machines. Here, we assume that

the machines in the system are identical in nature. Now, let the number of operating machines at

time X , be N (x), then the maximum throughput rate becomesz where C, ,, indicates

=1,r=1 (qf)’ (q,r)

the “capacity” of a machine g, I at time x. The throughput rate of a system concerning demand is

N (x)
=1,r=1

defined asTH (x) = mln{z Ciany D} where D stands for “Demand”. If demand of the system

is less than capamtyz > D, then the throughput rate can be considered as equal to the

(qr

demand, TH(x) = D . Alternatively, when the capacity of the operating machines is lower than

the demand, Z Ciqr < D then the throughput rate becomes equal to the maximum capacity of

N ()

Gt Cq.r) » Which in turn possibility of assigning the maximum

the operating machinesTH (x) = Z

amount of jobs to the machines. Here, 0 < O, (X) < C,), forg,rel, 2,..., N,Qg, (X)
denotes assigned jobs for the machine Q,r at time x acts as a control variable. When machine
breakdown occurs the job processed on the machine becomes zero with the machine q,r at the

time X, i.e.0,,(X)=0

4.3 System Model Description

Yoram et al. [3] pointed out the impact of various configurations on manufacturing system
performance in terms of productivity, reliability, and life cycle cost. Among all the existing
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manufacturing systems configurations, we considered flexible real-time configurations, i.e., one-
degree, two-degree, semi-flexible, and fully flexible configurations as explained in previous
chapters. Flexible unit systems consist of N identical machines operating simultaneously to process
the assigned number of jobs. Here, when a job arrives, it has to be assigned to any available
machines in the following configuration to be completed. To recap, the main highlight of this
research work is to determine the number of jobs that are to be assigned to each machine based on
the health status of a machine at a unit time from the following assumptions.

1. Demand is constant in the system, whereas, the resulting amount of jobs can vary on machines

at a certain time.

2. The degradation coefficient for m, n machines, i.e., 4

mm 1S Unknown and random. For that,
we assumed ‘“Machines to machines variability” to capture the uncertainty in the
manufacturing environment.

3. Atatime, only one job can be handled on one machine.

4. Once a machine initiates the processing of a job, the obstruction of its processing is not
allowed.

5. Machine failure concerning its degradation rate is only considered.

4.4 Proposed Degradation Framework

We proposed a framework of the methodology followed in this research depicted in Figure 4.1.
The framework depicts a tool for decision-making by delivering the condition of the machine at
each decision epoch and predicting the real-time health status of machines in a manufacturing
flexible systems scenario. Recall, the machines are identical in nature, where the assignment of the
jobs on each machine is carried out based on the capacity and the demand of the system. Though
the machines are identical in nature, their degradation rate differs not only concerning the number
of jobs and demand but also due to the natural characteristics such as processing variations, friction,
material inhomogeneity, etc. These characteristics provide information about the real-time

degradation rate of each machine, denoted asi, ,(x) . With the available degradation information

of each machine, a linear stochastic differential equation is developed as follows.
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Initialization

The capacity of each machine.

Demand to be fulfilled from the system.
Setting the workload for each machine.
Natural characteristics of degradation

v

Obtaining the real-time degradation
rate of each machine

v

Developing a linear stochastic differential
equation to find the degradation coefficient

v

Applying the Bayesian approach to predict the
health status of each machine

Degree of
Flexibility
(DOF)>0

Overlap of Machines failure

Adjusting the workload dynamically

v

Maximum output from the system

Figure 4.1 Proposed Degradation framework

A g (¥) = 4 Opqry ()t +dWg , (X) (4.1)
Here, A, (X) represents the amplitude of degradation signals for the machine g, r at the

timeX, and W, (x) is a Brownian motion error function. The formulation of Equation 4.1 is

inspired by the modeling of degradation efforts in the absence of prior degradation information
[117]. The main idea here is to develop a job assignment strategy to effectively control acceleration
in the degradation rate of machines by considering this relationship shown in Equation 4.1. Based
on the past research efforts made on characterizing the relationship between degradation rate and

amount of jobs assigned through several mathematical assumptions and historical data, we
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considered a special case stating real-time degradation rate is directly proportional to jobs assigned

as, shown in Equation 4.2 below.

0. (¥) =1 Oqr (X) 4.2
Where, «,,is considered as the degradation coefficient of the machine g, I' . From Equation 4.2,

Equation 4.1 can be rewritten as below in Equation 4.3.

dA (X) =g O (XAt +dW,, , (X) 4.3)

Furthermore, the condition monitoring of systems is executed at discrete observation epochs [38]

therefore we performed the sampling of job adjustment in discrete epochs i.e.,

X =Xy =X, =X =..= X, —X,; =0X where the sampling interval is kept constant and X, denotes

the latest observation epoch. Then, A, ,(X,) is the amplitude of degradation signal of the machine

g,rat timex, and the corresponding job assigned isO,,(x,;). To facilitate solving the

formulation in Equation (3) can be simplified as below in Equation 4.4.

5AYq,r) (Xu) = a(q,r)o(q,r) (Xu—l)é‘t +W(q,r) (Xu) _W(q,r) (Xu—l) (44)

From the properties of Brownian motionWig , (X,) =W (%,1) ~ N(0,d; ,6X) . Next, we have the
corresponding jobs assigned as O, (X, ,) and degradation coefficiente, ,, the conditional
distribution developed by Manupati et al., [36] is expressed as below in Equation 4.5.

2
5'AYq,r) (Xu) | O(q,r) (Xu—l)’ a(q,r) - N (a(q,r)o(q,r) (Xu—1)5X1 d(q,r)é‘x) (45)

As per the characteristics of the Wiener process, Brownian motion has an independent increment

stating A, (X),...,0A,,(X,)are statistically independent [36]. As a result, the probability

density function of amplitude function can be evaluated as below in Equation 4.6.

p(gA(q,r) (Xu) | O(q,r) (Xu—l)! a(q,r)) = ﬁ p(5A(q,r) (Xi) | O(q,r) (Xi—l)’ a(q,r)) (46)

Where 5Aq,r)(xu):[é‘AYq,r)(Xi)"“"5'qu,r)(xu)] and O(q,r)(xufl) :[O(q,r)(XO)""io(q,r)(xufl)]' Here

random variable ¢, is modelled whose prior distribution was normal distribution with mean g ,

, and variance }/élr) .This prior distribution is updated to get posterior distribution with help of

Bayesian approach by the use of measurements that are collected in real-time [37]. Then the
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posterior distribution’s mean and variance of degradation coefficiente,,, are represented in
Equation 4.7, and Equation 4.8.
u
7(2q,r)Z5A(q,r) (X)Oq.r) (X 1) +ﬂ(q,r)d(2q,r)

ﬂ(q,r)(xu) = = u (47)
y(zq,r)Z[O(q,r) (Xi—l)]25X + d(zq,r)
i=1

dan?
}/(Zq’r)(xu) — - (q,r)/ (q.r) (4.8)

7(2q,r) Z[O(q,r) (Xi—l)]2 5X + d(Zq,r)
i=1

Next, the posterior mean of degradation coefficient assists in updating the residual life distribution
of each machine that follows Inverse Gaussian (IG) distribution developed [37] as shown below in

Equation 4.9.
P(T(q,r) < Xl Aiq,r) (Xu)’o(q,r) (Xu)1 a(q,r)) - IG(X’ lu(q,r)(xu)’ S(q,r) (Xu )) (49)

where IG(t;.,.) indicates the cumulative distribution function with g, (X,)=

2

2
(F(q,r) - Aiq,r) (Xu)) / (a(q,r)o(q,r)(xu)) ’ S(q,r) (Xu) = ([F(q,l’) - Aq,r)(xu )] )/(d(q,r)) as the mean
parameter and the shape parameter of an IG distribution respectively. Here, to estimate ¢, ,at a
certain decision epoch we propose to replace ¢, with the posterior mean £, ,(x,) which in turn

helps in finding the approximated mean parameter of the IG distribution i.e., sz (X,)=
(F(q,r) _Aiq,r)(xu))/(ﬂ(q,r)(xu)o(q,r)(xu))' Here’ (F(q,r) _AYq,r) (Xu))/ﬂ(qr) (Xu) iS the health status

of the machine q,r atthe time X represented bydi(q,r)(Xu), As a result, predicted residual life
(mean parameter of IG distribution) can be shown below in Equation 4.10.

di(q,r) (Xu)

4.10
O(q,r) (Xu) ( )

/u(q,r) (Xu) =

After finding each machine’s health status value di(q,r) (Xu),the degree of flexibility of the system

is checked according to which the number of jobs is assigned dynamically to prevent the
simultaneous multiple machines failure is the primary objective of this study. This procedure

repeats for every trail until maximum throughput is achieved.
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4.5 Development of a Jobs Adjustment Methodology

We formulate our dynamically assigning jobs methodology as a minimization problem that controls

the degradation of machines by modifying the remaining task at hand. Given the posterior mean of

the degradation coefficient «, ., of functioning machines 4., (x,)...A. (x,) and corresponding
' ' N (u)

degradation levels, A, (x,)... A(N( ) (Xu) the average degradation of all machines at next decision
! u

epoch are minimized by adjusting the jobs O, ,,(x,)...0 - (x,) asshown in Equation 4.11 and it
' (N(u)

. . . N(x,) - .
IS summation of two parts. The first part > B (%.)0r (X,)5X] indicates the incremental

g=1,r=1

growth in the degradation rate of the system concerning time. Whereas, the second part A, ,(X,)

measures the degradation signal amplitude of the machine q, I at the time X..

Obijective function: Minimize Z,

Where
N(x )
Z Z [ﬂ(q r) (X )O(q r)(X )5X+ AXq r)(X )] (411)
N(X ) g=1r=1

Subjected to constraints:

N(XU N(XU

> Ogn*)=min| > Cg,.D (4.12)

g=1,r=1 g=1,r=1

O Xy 2..20_ (X 4,13
(1D ™u) (N(Xu))( u) ( )

0<041, (%) <Cp grel..N (4.14)

52

Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA




E, OX
(q‘4) [O(q’r)(XU)+ (qu( )] _dqul) (u) (qr)(x) dlqr)( ) (qr+l)(Xu)
forqel2,.., N(xu)
rel2,., N(x)-1 (4.15)
E

—a— r) [O(q o (%) + O gz sy (X)T° < i 12y X 1y Oty (%) = iy (%, )0 gz 2y (%)

forgel2,..., N(xu)—l
re2,.,N(x,)-1 (4.16)

E r
@ ) [qu)(x )+Oq+1r)(x )] <d|(q+1r)x(u) qr)(X ) dl(q r)(X )O q+lr)(X )

forqel?2,..., N (x,)-1
rel2,.,N(x,) (4.17)
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E(qyr)§x

[O(q,r) (Xu) + O(q+a,r+1) (Xu )]2 < di(q+a,r+1)x(u)o(q,r) (Xu ) - di(q,r) (Xu )O(q+a,r+l) (Xu)

4
forr=1
qel2,...,N(x,)
acl2,..,N(x,)-1 (4.18)
EnOX . .
(qY4) [O(q,r) (Xu) + O(q,r+a) (Xu )]2 < dl(q,r+a) X(u)o(q,r) (Xu) - dl(q,r) (Xu )O(q,r+a) (Xu)
forr=1
qel2,....N(x,)
acl2,..,N(x)-1 (4.19)
E . nOX . .
(qY4) [O(q,r) (Xu) + O(q+a,r+b) (Xu )]2 < dl(q+a,r+b) X(u)o(q,r) (Xu ) - dl(q,r) (Xu )O(q+a,r+b) (Xu)

forq,r =1
acl2,..,N(x)-1

be0,12,...N(x,)-1 (4.20)

The purpose of the objective function is to ensure that, on average, the failure of all machines
occurs at the slowest rate, shown in Equation 4.11.

Recall, in the system, when the demand of the system is lower than its capacity, the throughput
rate is equivalent to demand. Conversely, if the capacity is less than its system’s demand, then the
system’s capacity becomes the throughput rate. This constraint is determined as presented in
Equation 4.12. Despite the fact, the flexibility in a system develops a certain amount of robustness
for production, it will become ineffectual if the simultaneous breakdown occurs in multiple
machines exceeding a certain limit. So to prevent the multiple machines failure at a time, we
proposed a method that assigns machines having poorer health status, with a greater workload. The
fundamental assumption of this approach is that a greater workload speeds up the process of
degradation and thus distinguishes these machine’s anticipated failure time from the others i.e.,

assigning  Cun (%) = Ouz (%) =---= O (X)) for machines having health status

digy (%) <di, (%) <...<dig, (%), where Oy (X,),dig, (X )and denotes the number of

jobs assigned and health status respectively of machine q,r calculated at time X,, be Nn(x,)
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indicating the number of functional machines computed at time X, ., This method as a constraint is

reflected in Equation 4.13. Constraint in Equation 4.14 refers to the allotment of the non-negative
quantity of jobs to the respective machines.

To intercept the system from breakdown, the key challenge is to prevent overlap of machine
failure. The solution to this problem is that the failure of a machine should occur after the repair

of another machine as stated in Equation 4.21 as for a one-degree flexible system.

Hign) (x,)+ E(q,r)5x < Mg ray (%) (4.21)

From Equation (10), Equation (21) can be rewritten as shown in Equation 4.22.
E0.n0XOq.0) (X,)Oq iy (%) < g 1) (%,)0q 1) (X,) = g 110y (%, )0 119 (%) (4.22)

While solving, it results in non-convex quadratic programming equations which are NP-
hard in nature. An algorithm has been proposed by [118-121] that provides an optimal solution to
the non-convex quadratically constrained quadratic programming problems by finding a convex
space, covering the original non-convex space. Later on literature addressed certain challenges that
arise while optimizing non-convex problems, and further proposed a cutting plate strategy to
recognize strong cuts to select and generate to improve solutions by using branch and cut algorithm.
The drawback of using this mentioned approach for our problem is that an optimal solution may
not be feasible to the non-convex space providing misleading results. In this research, we search
for a convex subspace in the nonconvex space so that until unless there is an optimal solution, it
falls under the feasible region and prevents overlap of machine failures. Based on Hao et al. [37],
we utilized the Arithmetic mean- Geometric mean inequality to convert the non-convex form from
which constraint in Equation 4.15 is generated.

For a one-degree flexible system, the overlap of machine failure is controlled by Equation
4.15. Recall, as flexibility increases the availability of machines for adjusting jobs increases. As a
result, for a two-degree flexible environment, the problem is controlled by Equation 4.15 and 4.16.
Similarly, Equation 4.15, 4.17, and 4.18 prevents the intersection of machine failure in the semi-
flexible system. Whereas, in a fully flexible system the problem is tried to be controlled using

constraints in Equation 4.19 and 4.20.

55

Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA



45.1 Case Study

In this section, a case study provided to evaluate the performance of the proposed configurations
and the effectiveness of the method adopted with a fabric weaving Industry [122]. The related data
are collected from the zone Surat situated in the northern region of India. This industry consists of
power loom machines that operate identically to weave fabrics from the thread. The factors that
influence the productivity of power looms are equipment factor, technological factor, and

manufacturing flexibility.

Data gathering and Parameters setting

In this research, 1460 power loom machines degradation data were considered to validate and
verify proposed model. These 1460 machines process under 4 proposed configurations with 3
different instances until there is a catastrophic interruption. The number of machines and the degree
of flexibility for a particular configuration with different instances and flexibilities is shown in
Table 4.1. An effective arrangement of machines in the configurations has an impact on increasing
the performance. In this study, the machine arrangement is planned for each configuration in a
particular instance in such a way that maximum production and highest productivity must be
achieved. For example, in instance 1 for a one-degree flexible system, the number of machines 70
arranged in the sequence 10 rows and 7 columns. To capture the real-world characteristics of the

power looms, we considered the following parameter settings stated in Table 4.2.

Experimental Study
Table 4.1 Experimental data

Serial Degree of Flexibility | No. of Machines | No. of Machines | No. of Machines
No. (Instance 1) (Instance 2) (Instance 3)
1 One Degree 70 90 110
2 Two Degree 80 120 140
3 Semi Flexible 100 140 160
4 Fully Flexible 100 150 200
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Parameters for the case study

Table 4.2 Parameters for the case study

Parameters Unit

Production of Jobs Kg/day

The capacity of each machine 48kg/day

Demand for One Degree Flexible system 3400kg/day
Demand for Two Degree Flexible system 4000kg/day
Demand for Semi-Flexible system 5000kg/day
Demand for Fully Flexible system 5250kg/day

The prior mean of degradation coefficient of each machine | 5.97 x 10 inch/kg
Diffusion parameter of the Brownian motion error 2.03 x 10" inch/day
Failure threshold of each machine 0.004

Experiment Procedure
We investigated the performance of our approach concerning effectiveness in increasing the
residual life of machines by comparing our strategy with two other benchmark strategies mentioned
in [13] i.e., 1) jobs are assigned equally to each machine, and 2) Assignment of jobs is done
randomly among the machines in a given particular configuration. To be more specific, on each
observation epoch, for the first benchmark, an equal number of jobs are assigned to each machine
in the system, while in benchmark 2, all possible solutions of the number of jobs assignment are
identified, and randomly one is selected from the entire solution sets. Next, for the proposed
methodology, based on the degradation framework in section 3, the rate of degradation of each
machine on each decision epoch was calculated. Further based on the health status of the machine,
the number of jobs was assigned to it following the methodology in section 4. The experimentation
on each configuration in each instance simultaneously was conducted for 350 days. The
observation time for each decision epoch was considered as 1 day.

To examine the performance and enumerate the results, we contemplated two performance
indices: 1) The occurrence of a failure in machines for the first time and 2) Loss of Production.
Since the objective of this research is to find degradation information of machines, so these indices

are more informative for our proposed manufacturing configurations as the loss of production will
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be influenced if multiple machines breakdown occurs. Here, the maintenance time for a repaired

machine is considered as 3 days according to power loom industry data.

4.6 Results and Discussion

In this section, for 3 different instances of 4 flexible configurations, we ran 12 experiments. For

every

condition, we plotted the graph by considering the two performance indices as shown in

Figures 4.2, 4.3, 4.4, and 4.5. The following discussions can be made based on the results obtained.
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Figure 4.2 (a-d) Occurrence of Machines failure in the system (Instance 1)
Figure 4.2 (a-d) depicts the experimental results for the first instance of machine configurations.
As the demand is high, the machines are made to work up to their limit, accelerating the degradation
process resulting in machine life. Figure 4.2 (a) shows the result of a one-degree flexible system.
From the plot, it should be noticed that when an equal number of jobs are assigned to all the
machines in the configuration, the rate of degradation remains similar in all the machines that lead
to failure within a short period i.e., between 41" — 50" day. Whereas, when the random workload
was assigned a deviation in the range was found between 40" — 65" day. While in the proposed
methodology it was found that in a row (10 machines) there was a gap of at least 3 days (repair
time) in between any two machines failure. Figure 4.2 (b) presents the graph of a two-degree
flexible system. Here, similar results were observed when the number of jobs was assigned equally
and randomly while in the proposed method a certain level of robustness was found. The result of

the semi-flexible system and fully flexible system is articulated in Figure 4.2 (c) and (d)
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respectively. Recall, as flexibility increases the availability of machines for adjusting the remaining
jobs increases. As a result, here in Figure 4.2 (c-d) when an equal amount of jobs is assigned, the

graph depicts almost a straight line stating very close failure times of machines.
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Figure 4.3 (a-d) the occurrence of Machines failure in the system (Instance 2)

The results for Instance 2 are illustrated in Figure 4.3 (a-d). Here, as the number of machines
more while the demand being constant, a rise in the average life span of machines was observed.
In a one-degree flexible system, as shown in Figure 4.3 (a), it was found that machines in a row
tend to fail at the same time when an equal number of jobs were assigned to the system. From
Figure 4.3 (a) it is visible as one machine in the row fails, the others tend to fail at a similar range
of days. For example, machines 1-10 fail approximately between 65" — 67" day while machines
11-20 fail approximately in a range 551" — 60" day. Whereas in the random assignment of jobs the
machines tend to fail randomly, increasing the efficiency of the system somewhat improved than
equal workload. While in the proposed method, the tendency of multiple machines breakdown
reduced drastically increasing the efficiency of the system. Similar but slightly better results were
observed in Figure 4.3 (b) as the degree of flexibility increased compared to Figure 4.3 (a). In a
semi-flexible system and fully flexible system results are shown in Figure 4.3 (c) and Figure 4.3
(d) respectively, a hike in points in the plot was appeared for the proposed method, stating robust
in machine-to-machine variability. On contrary, the performance of the other two assignment

techniques reduced as the machine-to-machine variability decreased.
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Figure 4.4 (a-d) Occurrence of Machines failure in the system (Instance 3)
Figure 4.4 (a-d) plots the results for Instance 3. Compared to the other two instances a
certain level of increased efficiency of the system is observed. Figure 4.4 (a) and (b) illustrates the
result of a one-degree flexible system and two-degree flexible system respectively. It can be
observed that here when an equal amount of jobs the results were the same as Figure 4.3 (a), (b)
but as the number of machines were more the average time of breakdown was increased. While in
the case of random assignment of jobs the deflection in points was in a higher range reducing the
possibility of multiple machines breakdown but less compared to the proposed methodology. In
the case of semi-flexible system and fully flexible system articulated in Figure 4.4 (c) and (d), the
number of points presenting the machines for the proposed method in the plot was less in
comparison to the number of machines considered in Instance 3, depicting that not all machines
failed during the experimentation. It was found that in the observed time only 58 machines failed

in a semi-flexible system while in a fully flexible system the count was 44.
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In Figure 4.5, numbers 1, 2, 3 and 4 on horizontal axis indicates one degree, two degree,
semi flexible and fully flexible configurations. Based on the experimental results illustrated in
Figures 4.2, 4.3, 4.4, and 4.5, the performance of equal assignment of jobs is found to be worst in
all the 3 instances. When the random assignment of jobs was carried the machines tend to fail
randomly, showing slightly better results than the equal assignment of workload reducing the
possibility of multiple failures of machines but still, it failed to control the overall degradation rate
resulting in a system breakdown. In all the 3 instances proposed method showed an effective impact
on the efficiency of the system by reducing the degradation process of each machine. When the
number of machines was less the system exhibited a similar degradation process as a result several

machines tend to fail at a similar range of time.

4.7 Conclusions

The stochastic nature of the degradation process always brings challenges to accurately predict the
residual life of machines in a system. First, each configuration of machines in a system has a
different level of flexibility which varies the degradation rate of one in comparison to others, thus
making it difficult to formulate a degradation model. Second, the workload adjustment in such a
system is dependent on the type of configuration which makes it hard to frame an ideal dynamic
workload adjustment strategy. Corresponding to these two major challenges, in this research, we
proposed a degradation model framework that explicates the degradation process and predicts the
health status of any machine regardless of the system configuration. The major contribution of this
research is the multiply configurations dynamic jobs adjustment strategy that can be applied to any

manufacturing systems depending upon their flexibility. We applied a Bayesian approach that
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utilizes the real-time degradation information from the machine to predict the health status of the
machine at each decision epoch. Then based on the degradation condition of the machines, our job
assignment methodology assigns the jobs to the machines to prevent the overlap of machines failure
in the system. Later, the stochastic degradation model was adapted numerically to evaluate the
performance of a real-time manufacturing environment. We compare our proposed method with
the other two benchmark strategies, specifically equal job adjustment and random job adjustment.
The outcomes depicted that our method consistently shows a certain level of robustness by
preventing the overlap of machine failure in each instance and reducing the loss in production to
fulfill the required demand. The average percentage of loss in production is 4.75% in case of
proposed model, which is reduced compared to average of 10.5% obtained in case of equal job
adjustment, and average of 7.5% in random job adjustment in instancel. Similarly average
percentage of loss in production is 2% in case of proposed model, which is reduced compared to
average of 6.67% in case of equal job adjustment and average of 4.61% in random job adjustment
in instance2. The average percentage of loss in production is 0.75% in case of proposed model
which is reduced compared to average of 3.75% in case of equal job adjustment and average of 2%

in random job adjustment in instance3.
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Chapter 5
Development of workload strategy on multi-product

category of flexible configurations

5.1 Introduction

Recent industries efficiency and effectiveness depend on smooth flow of production without any
interruptions. The equipment maintenance is apparent in the shop floor to offset the problems
related to product quality, production cost and loss of productivity. However, conventional
maintenance procedures lack effective mechanism to tackle real time disruptions. Recently
emerged Artificial Intelligence (Al) and Machine Learning (ML) techniques transform the
traditional maintenance system to an advanced one that can able to capture the machines status and
further process the machines information in a real-time environment to improve the system
performance. Out of many maintenance strategies available corrective, preventive, and predictive
maintenance are considered as effective ones.

Selection of an appropriate maintenance strategy depends on the context of the problem
and desired objective function. From various strategies mentioned above, it has been observed that
the effective maintenance concerned with respect to manufacturing systems is by minimizing the
downtime of machines, unscheduled maintenance and uninterrupted production facilities.
Additionally, defining of maintenance schedules and execution of activities is a real challenge. In
other words, breakdown of any machine may leads to shutting down of the facility which shows
huge impact on efficiency and cost of production. Hence, there is a need of effective mechanism
not only for handling the above mentioned disruptive activities but also to understand and predict
the systems behavior priory. Recent advancements proved the effectiveness of ML approach on
Predictive Maintenance (PM) where the intelligent solutions guide the decision maker to take the
necessary action without damage.

In conventional CPS, the machines are integrated with 10T/l1loT devices responsible to
generate mountains of data is connected to the data acquisition system to transform and transfer
the data into tools and techniques for further analysis. Ultimately the analyzed data reached to
maintenance manager for further action. In this work, a semi double loop machine learning based
I-CPS (Intelligent — Cyber Physical Systems) architecture [44] has been used that act as an

alternative to the conventional CPS. Due to the limitations in conventional CPS i.e., deploying of
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I0T/110T devices for every task in the industries is a cost affair and employees working under such
situations need additional skills where identifying of skilled labor is one of the challenging tasks
in current industries. Hence, industries are not ready to transform their existing setup. The
alternative solution to handle the above issues and make the system effective is by introducing the
recently proposed I-CPS architecture. The advantage with this architecture is, it allows the decision
maker to implement the meta-learning by improving the intelligence of the system and by creating
new and effective algorithms.

Motivation drawn from the fact that the adapted meta-learning approach is having its ability
to adapt the system behavior and improve the system’s intelligence through improved learning
algorithms. In this research work, the 1-CPS model is instantiated in three different combinations
.., the combined machines, multiple machines, and individual machine level. Here, the developed
models behavior and the related information has been trained and tested with supervised learning
based machine learning repository, after learning some algorithms that are not qualified are
discarded due to their poor performance, among others the best performed five algorithms has been
chosen further for future analysis. Based on the analysis, the health status i.e., RUL of each machine
can be evaluated. Further, with simulation experiments by adjusting the workload adjustment

strategy, the performance of the system has been improved by reducing the throughput time.

5.2 Problem Description

System model description

The proposed flexible configurations with one degree, two degree, semi-flexible, and fully flexible
configurations are considered. The one-degree flexibility represents in which, if any machine fails,
then the pending jobs can be assigned to the adjacent machine. Whereas in two-degree flexibility
represents if any machine fails, the pending jobs can be re-routed to adjacent machines of two
stages.. Similarly semi-flexible as well as fully flexible configurations where the availability of
machines are more in case of semi-flexible than one degree and two degree flexible configurations
and more in case of fully flexible.

Here, the workload for the machines, i.e., the assigned number of jobs, acts as the control
variable, and the workload must be in the range of 0 to machine capacity. As mentioned earlier, we
utilize the production data to predict the residual life of the machine for which the set-up time,

processing time and the repair time of each machine has been considered by assuming all the
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machines are identical in nature. As a result, the Equation 5.1 representing time required to produce
n number of jobs can be written as follows:

Ugp =(n*t,) +ts+ (Lap * %) (5.1)
Here, time to produce n number of jobs = setup time of a machine (t,)+ repair time of a machine
(Lg,p) + processing time per n number of jobs(t,).

The degradation model is adopted from [37], where Bayesian approach is used to predict
the rate of degradation of a machine and the corresponding mean and the shape parameters of
Inverse Gaussian (IG) distribution helps in finding the degradation coefficient of the machine a, b
at the time x represented by a(,p)(x). For notational convenience we define di(, p)(x,) =
Uap/Pap)- Such that, ue p)(x,), an estimation of predicted residual life can be calculated using
Equation 5.2.

di(a,p)(Xy)
A(a,b)(xu)
Based on machine’s health status value di(, p)(x,), the workload adjustment strategy is then

Ha,p) (Xu) = (5.2)

implemented to reduce the simultaneous machines failure by indirectly reducing the throughput
time. Here, the main objective is to minimize the throughput time by adjusting the number of jobs
on each machine based on the predicted health status from Equation 5.3. Thus, the objective
function for minimizing overlap of machine failure to reduce the throughput time can be formed

as follows;

Minimization of throughput time (Z):

1 N(xy)
- D Ban G A ()% + Ugy] (53)
N(xy)
a=1,b=1

Subjected to constraints

N(xy) N(xy)

z Aap)(xy) = min Z Ciapy D (5.4)
a=1,b=1 a=1,b=1
AanXa) 2 - 2 Ay ry)) %) (5.5)
0< A(a‘b)(xu) < C(a,b)f abel,...,N (56)
U(a,p) (xu) + L(a,b)ax < HU(a.p+1) (xu) (5.7)
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L(a b)5x

[A(a b)(xu) + A(a b+1)(xu)] < dl(a b+1)qu(a b)(xu) dl(a b)(xu)A(a b+1)(xu) fOT' a

€12,...,N(x,), be€1L2 ... N(x,)—1 (5.8)
L(ab)6X

[A(a b) (xu) + A(a+1 b+1) (xu)] < dl(a+1 b+1)qu(a b) (xu) d"(a b) (xu)A(a+1 b+1) (xu) fOT' a

€12 ...N(x,)—1, be€12...,N(x,)—1 (5.9)

L b 6x
L [Aap) (x) + Aasp) (xu)] < dig+1,0)Xulap) (X)) — diggp) (X A@r1,p) () for a

€12,...,N(x,)—1, b€12 ...,N(x,) (5.10)
L(ab)Sx

[A(a b) (xu) + A(a+m b+1) (xu)]

< dl(a+m,b+1)qu(a,b) (xw) — di(ap) (xu)A(a+m,b+1) (xy) forb=1,
a€l?2,...,N(x,), bel2 .. N(y) -1 (5.11)
L(a b)8x

[A(a b) (xu) + A(a b+m) (xu)] < dl(a b+m)qu(a b) (xu) dl(a b) (xu)A(a b+m) (xu) fOT‘ b= 1,

a€12,...,N(xy), b€1L2...N(x,)—1 (5.12)
L(ab)6x

[Acap) () + Agrmp+n) (xu)]

< digrmp+n)Xul(ap) ) — digp) (w)A@rmp+n) ()  forb =1,

a€12,...,Nx)—-1, b€12..,N()—1 (5.13)
Constraint mentioned in Equation 5.4 states that when the capacity of the system is greater than
demand, the throughput of the system will be equal to the demand and conversely, if demand is
greater than capacity then throughput will be equal to capacity. Constraint mentioned in Equation
5.5 articulates that higher workload to be assigned to machines with lower health status, and vice
versa. Constraint mentioned in Equation 5.6 ensures the workload need to be in the range between
0 to capacity of the machine. Constraint mentioned in Equation 5.7 prevents the overlapping of
machine failures. Considering the situation of different configurations, the overlapping of machine
failure constraint is developed depending upon the configurations. Equation 5.8 represents the
overlap of machine failures for one-degree flexible configuration. Equation 5.9 and Equation 5.11
represents the overlap of machine failures can be controlled in two-degree flexible configuration.
Similarly, Equation 5.10, Equation 5.12, and Equation 5.13 prevents the overlap of machines
failure in the semi-flexible system. Whereas, in a fully flexible system the problem is tried to be

controlled using constraints in Equation 5.12 and Equation 5.13.
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5.3 Methodology

The framework which is an integration approach of data preparation, machine learning model and

workload adjustment strategy has been proposed to identify the KPI’s responsible for residual life

of a system. The proposed model starts with data collection followed with data transformation for

data pre-processing to perform data preparation. Primarily, after articulating the problem definition

the respective data has been gathered Via sensory information. It is necessary to remove the

inaccurate, unbalanced, and bias information from collected data through sensors integrated on the

machines. We have performed data pre-processing by formatting, cleaning and sampling before

data transformation. In data transformation, normalizing, decomposition, and aggregation steps

need to be performed before sending the data to the ML model. While developing a ML model, the

prepared data undergoes three different stages namely training, testing, and validation as shown in

Figure 5.1.
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Figure 5.1 Framework for developing workload adjustment strategy based on predicted RUL
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____________ P _ _ _Intelligent CPS (I-CPS)

In the second stage i.e., machine learning prediction model, the prepared data is tried to fit
with numerous machine learning algorithms particularly supervised learning algorithms available
in the MATLAB repository. During this process some algorithms automatically discarded due to
their poor performance, where the best fit algorithms called for modelling further known as double
loop for modelling the parameters using training, testing and validating the model parameters for
improving the accuracy thereby reduce the error. In other words, the double loop learning model
or Meta learning model inferred as two separate ML algorithms in two loops. Learning algorithms
in the first loop are the object algorithms, where the learning algorithms in second loop are adjusted
or modified first loop algorithms used to improve the model parameters for better accuracy is

shown as an I-CPS architecture in Figure 5.2.
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Figure 5.2 Intelligent Cyber Physical Systems (I-CPS) architecture

In the third stage, predictive simulations has been performed using the RUL from the
predicted maintenance can be taken as an input along with the capacity of each unit, and demand
for each configuration from the collected data. The goal of dynamically adjusting the workload on
each unit is to reduce the overlap of machine failures and to increase the throughput of each unit.
To achieve this goal, we have used the workload adjustment strategy that allocates the more number
of jobs on worse health status. The main reason underlying this strategy is that the more jobs on
worse health status machine will degrades faster and leads to failure and thus the expected failure

time of each machine to other will be different [36,37].
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5.4 Experimentation

In this section, we proposed three strategies i.e., combined machine strategy, multiple machines
strategy, and individual machine strategy to analyze four different realistic configurations for
implementing the proposed approach. The detailed description of proposed strategies and

configurations are as follows:

Strategy 1. Combined Machine:

In this strategy, the group of machines are considered as a single machine and their information is
considered as one data set to perform different analysis of the system. Here, to perform the machine
learning based modelling operations i.e., training, testing and validation, we have chosen the best
performing supervised machine learning algorithm from the repository to conduct the analysis. As
we assume that the considered training data is from single machine information, the available
maintenance information is plenty to conduct required analysis. But, due to lack of specific
machine data it is quite difficult to predict which machine is required for maintenance.

Strategy 2. Multiple Machines

In this strategy, similarly like combined machine strategy a single ML algorithm has been used to
train, test and validate the data. But, unlike the combined strategy here the Machine ID has been
considered as an additional input which helps in identifying the maintenance requirement for a

particular machine.

Strategy 3. Individual machine

Here, we have collected the training data of every single machine in the system for prediction due
to their unique behavior. Thereafter, with all the supervised machine learning algorithms available
in the repository we have trained each machine separately to predict the most suitable algorithm
for the respective machine. One can realize from below tables that due to this analysis each machine
ID have their respective ML algorithm.
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5.4.1 Experimentation settings for maintenance prediction

The Meta-learning ML based CPS approach for the prediction of maintenance has been validated

in real life industry in this research. Data of 12 machines were considered to validate the proposed

model. The 12 machines are operating under four configurations called one degree flexible, two

degree flexible, semi flexible, and fully flexible configurations. The machine IDs are considered

from 1 to 12 in each configuration. A period of 6 months’ data has been collected to predict the

maintenance required and maintenance not required. A total of 30,427 batches of manufacturing

data from 12 machines has been considered in each configuration. Among the 6 months of data,
the holdout data has been taken in 3 variances in which 17% (1 month), 33% (2 months), 50% (3

months) for testing of different set of algorithms, the input data variables as well as output of the

program are shown in Table 5.1.

Table 5.1 Data variables involved in ML Program.

Variable of Input

Extracted Features

Output

1. Machine ID 1. Total working time of machine Maintenance requirement (1/0)

2. Shift 2. Total number of setups

3. Shift Date 3. Total quantity of a machine

4. Material 4. Total work time of a machine after
last maintenance

5. Quantity 5. Total quantity of a machine after
last maintenance

6. Production Time 6. Total number of setups after
previous maintenance

7. Time/piece

8. Maintenance Time

9. Setup
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5.4.2 Experimentation settings for workload adjustment strategy

The proposed framework for workload adjustment strategy followed in this research is shown in
Figure 5.3. The machines are identical where the workload on machines can be assigned based on
the demand and capacity of each machine. The processing variations in machines will provide the
information about the characteristics of degradation rate which helps in finding the degradation
coefficient. Later, the Bayesian approach applied to predict the residual life of each individual
machine. Further, the workload is adjusted dynamically on machines to minimize the throughput

time.

Initialization

e The capacity of each machine.
e Demand to be fulfilled from the system.
e Setting the workload for each machine.

v

I Past production/maintenance data of each machine

v

A linear stochastic differential equation to find the
degradation coefficient

v

Applying the Bayesian approach to predict the residual life

Degree of
Flexibility
(DOF) >0

Overlap of Machine failure

Adjusting the workload on machines

v

Minimization of Throughput time

Figure 5.3 Framework for workload adjustment strategy
The total number of machines are 12 for each configuration, in which the machine ID from
1to 12 is considered. The data has been collected over a period of 6 months and a total of 30,427
batches of data for 54000 number of jobs. The demand of each configuration, and capacity of each

identical machine as parameters for the experimentation shown in Table 5.2.
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Table 5.2 Parameters for the experimentation

Parameters Unit
The capacity of each machine 4500 jobs/day
Demand for One Degree Flexible system | 54000 jobs/day
Demand for Two Degree Flexible system | 54000 jobs/day
Demand for Semi-Flexible system 54000 jobs/day
Demand for Fully Flexible system 54000 jobs/day

5.5 Experimental Results and Discussion

5.5.1 Results for Maintenance prediction

The Confusion Matrix (CM) is a tool helps for predictive analysis in ML and it can be deployed
for checking the performance of a classification-based ML model. The CM is an N*N matrix which
helps in evaluating the performance of a model, where N indicates the number of target classes.
Here, 2*2 CM has considered and F1 score has been calculated for predicting the maintenance
required or not required. Three strategies have been applied for predicting the maintenance of
machines named as combined strategy, multiple machines strategy, and individual machine
strategy [44].

Table 5.3 Results for the various learning algorithms for 17%, 33%, and 50% holdout for
predictive models under 3 strategies for one degree flexible configuration.

Learning Algorithm Accuracy | F1 Score F1 Score
(Maintenance (No Maintenance
Prediction) Prediction)

Strategy 1. Combined Machines

Decision Tree fine 94.32% | 0.0909 0.9767

Naive Bayes (Kernel) 94.02% | 0.1388 0.9775

SVM (Quadratic) 95.74% | 0.1176 0.9805

Neural Network (Medium) 94.6% 0.24 0.9720

Ensemble (RUS Boosted) 67.47% | 0.1061 0.9811

SVM (Cubic) 94.31% | 0.1449 0.9705

Strategy 2. Multiple Machines

Decision Tree (Medium) 95.45% | 0.05 0.98
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Naive Bayes (Kernel) 91.19% | 0.16 0.98
SVM (Quadratic) 96.04% |0.11 0.98
Neural Network (Medium) 93.75% 0.21 0.97
Ensemble (RUS Boosted) 65.5% 0.13 0.85
SVM (Cubic) 94.01% |0.23 0.98
Strategy 3. Individual Machine Level (Average F1)

Multi algorithm learning model | 98.04% | 0.6733 0.991

Table 5.3 presents the results of top 5 algorithms from a total of 30 algorithms which are
predictive models with highest F1 score and accuracy for the above mentioned 3 strategies for one
degree flexible configuration. From the Table 5.3, it has been observed that in strategy 1, the Neural
network (Medium) has been predicted the highest F1 score as 0.24, where the 24% of chance is
there for the maintenance requirement according to the algorithm predicted. The Ensemble (RUS
Boosted) algorithm has been predicted the highest F1 score as 0.9811 for the no maintenance
prediction in which the 0.9811 indicated that the 98.11% of chances as there is no maintenance is
required. In strategy 2, the neural network (medium) has been predicted highest F1 score as 0.21
for maintenance requirement, and Decision Tree (Medium), Naive Bayes(Kernel), and SVM
(Quadratic) has been predicted the highest F1 score as 0.98 for not to have the maintenance. In
strategy 3, multi algorithm learning model has been predicted 0.6733 as highest F1 score to have
the maintenance, 0.991 as F1 score to not to have the maintenance, and the 98.04% as accuracy has

been achieved.

Table 5.4 Results for the various learning algorithms for 17%, 33%, and 50% holdout for

predictive models under 3 strategies for two degree flexible configuration.

Learning Algorithm Accuracy | F1 Score F1 Score (No
(Maintenance maintenance
Prediction) Prediction)

Strategy 1. — Combined Machines

Decision Tree fine 95.27% 0.0754 0.9757

Naive Bayes (Gaussian) 89.76% 0.0833 0.9458

Naive Bayes (Kernel) 94.6% 0.1739 0.9761
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SVM (Cubic) 94.03% 0.2222 0.9798
SVM (Quadratic) 95.61% 0.0625 0.9775
KNN (Fine) 96.13% 0.2 0.9803
Strategy 2. — Multiple Machines

Decision Tree (Fine) 92.85% 0.0975 0.9783
Naive Bayes (Gaussian) 93.27% 0.1785 0.9649
Naive Bayes (Kernel) 94.88% 0.1025 0.9736
SVM (Cubic) 94.49% 0.123 0.9797
SVM (Quadratic) 95.75% 0.0434 0.9782
KNN (Fine) 96.02% 0.2222 0.9795
Strategy 3. — Individual Machine Level (Average F1)

Multi algorithm learning model | 96.43% 0.5422 0.9815

Table 5.4 presents the results of top 5 algorithms from a total of 30 algorithms which are
predictive models with highest F1 score and accuracy for the above mentioned 3 strategies for two
degree flexible configuration. From the Table 5.4, it has been observed that in strategy 1, the SVM
(Cubic) has been predicted the highest F1 score as 0.1739 for maintenance required, and the SVM
(Cubic) algorithm has been predicted the highest F1 score as 0.9798 for the no maintenance
required. In strategy 2, the Naive Bayes (Gaussian) algorithm has been predicted the highest F1
score as 0.21 for maintenance requirement, and SVM (Cubic) is giving highest F1 score for not to
have the maintenance. In strategy 3, multi algorithm learning model has been predicted 0.5422 as
F1 score to have maintenance, and 0.9815 as F1 score to not to have the maintenance, and the

96.43% of accuracy has been achieved.

Table 5.5 Results for the various learning algorithms for 17%, 33%, and 50% holdout for predictive

models under 3 strategies for semi flexible configuration.

Learning Algorithm Accuracy | F1 Score F1 Score (No
(Maintenance Maintenance
Prediction) Prediction)

Strategy 1. — Combined Machines
Decision Tree Coarse 95.74% 0.12 0.9782
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Naive Bayes (Kernel) 94.89% 0.10 0.9737

SVM (Linear) 96.2% 0.13 0.9806
SVM (Cubic) 95.17% 0.32 0.9750
Ensemble (Random Search with | 95.91% 0.07 0.9791
1K Learner)

Ensemble (Random Search with | 96.31% 0.13 0.9811

30K Learner)

Strategy 2. — Multiple Machines

Ensemble (Boosted) 96.06% 0.2 0.9798
Decision Tree (Medium) 95.76% 0.1887 0.9782
Naive Bayes (Gaussian) 94.3% 0.1 0.9729
SVM (Cubic) 94.64% 0.2308 0.9722
Naive Bayes (Kernel) 95.17% 0.1 0.9752
Strategy 3. — Individual Machine Level (Average F1)

Multi algorithm learning model | 96.9% 0.5491 0.9840

Table 5.5 presents the results of top 5 algorithms from a total of 30 algorithms which are
predictive models with highest F1 score and accuracy for the above mentioned 3 strategies for
semi-flexible configuration. From the Table 5.5, it has been observed that in strategy 1, the SVM
(Cubic) has been predicted the highest F1 score as 0.32 for maintenance required, and the SVM
(Linear) algorithm has been predicted the highest F1 score as 0.9706 for the no maintenance
prediction. In strategy 2, the SVM (Cubic) has been predicted the highest F1 score as 0.2308 for
maintenance required, and Ensemble (Boosted) has been predicted the highest F1 score as 0.9798
for not to have the maintenance. In strategy 3, multi algorithm learning model has been predicted
0.5491 as highest F1 score to have maintenance, and 0.9840 as highest F1 score to not to have the

maintenance, and the 96.9% of accuracy has been achieved.
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Table 5.6 Results for the various learning algorithms for 17%, 33%, and 50% holdout for predictive

models under 3 strategies for fully flexible configuration.

Learning Algorithm Accuracy F1 Score F1 Score (No
(Maintenance Maintenance
Prediction) Prediction)

Strategy 1. — Combined Machines

Ensemble (Random Search with | 96.35% 0.13 0.9813

30K learner)

Decision Tree Course 96.02% 0.12 0.9796

Naive Bayes (Kernel) 95.32% 0.15 0.9759

SVM (Linear) 96.14% 1 0.9803

SVM (Cubic) 95.17% 0.32 0.9749

Ensemble (Random Search with | 96.31% 0.13 0.9811

1K Learner)
Strategy 2. — Multiple Machines

Ensemble (Bagged) 95.76% 0.12 0.9782
Decision Tree (Medium) 95.45% 0.2 0.9766
SVM (Cubic) 94.32% 0.16 0.9705
Naive Bayes (Kernel) 93.47% 0.14 0.9660
Neural Network (Narrow) 90.2% 0.12 0.9481
Strategy 3. — Individual Machine Level (Average F1)

Multi algorithm learning model | 97.49% 0.6625 0.9857

Table 5.6 presents the results of top 5 algorithms from a total of 30 algorithms which are
predictive models with highest F1 score and accuracy for the above mentioned 3 strategies for fully
flexible configuration. From the Table 5.6, it has been observed that in strategy 1, the SVM (Cubic)
has been predicted the highest F1 score as 0.32 for maintenance required, and the Ensemble
(random search with 30K learner) algorithm has been predicted the highest F1 score as 0.9813 for
the no maintenance prediction. In strategy 2, the SVM (Cubic) has been given the highest F1 score
as 0.16 for maintenance requirement, and Ensemble (Bagged) has been predicted the highest F1
score as 0.9782 for not to have the maintenance. In strategy 3, multi algorithm learning model has
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been predicted 0.6625 as F1 score to have maintenance, 0.9857 as F1 score to not to have the

maintenance, and the 97.49% of accuracy has been achieved.
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Figure 5.4 (a-d) F1 score of maintenance prediction and of no maintenance prediction when

required for individual machines for the strategy 3 for various flexible configurations

Figure 5.4 (a-d) shows the individual machine strategy for the prediction of maintenance
requirement of four proposed flexible configurations. Here, the M1 to M12 represents the machine
ID from 1 to 12 as shown in figure above. The training data set has been taken in 3 different periods
such as 3 months training, 4 months training, and 5 months training and the other time period
among the 6 month of data has been considered for testing the model. Figure 5.4 (a) represents the
maintenance prediction for the one degree flexible systems where the F1 score is more than 0.9 for
not to have the maintenance, and 0.48 to have the maintenance. Figure 5.4 (b) represents the
maintenance prediction for the two degree flexible system as F1 is score is more than 0.9 to not to
have the maintenance, and 0.38 is the average F1 score to have the maintenance. Similarly, Figure
5.4 (c), Figure 5.4 (d) represents the maintenance prediction for the semi-flexible, and fully flexible
systems respectively, where the F1 score is greater than 0.9 in case of no maintenance prediction,

and the average F1 score is 0.4 for semi flexible, and 0.48 for fully flexible systems.
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Figure 5.5 (a-d) Accuracy of an individual machine maintenance prediction for the strategy 3 for

flexible configurations

The accuracy for each machine from machine ID 1 to machine ID 12 as shown in Figure 5.5 (a-d)
for each configuration from one degree flexible to the fully flexible systems. Figure 5.5 (a)
represents one degree flexible system and the accuracy has been achieved between the ranges of
90-100% for 12 number of machines with the predicted ML algorithms. Figure 5.5 (b) represents
the accuracy obtained for two degree flexible system, and it is ranging between 83-100% with the
predicted algorithms. Figure 5.5 (c), Figure 5.5 (d) represents the accuracy results for the semi-
flexible system, and fully-flexible system respectively and the accuracy has been achieved between
the range of 82-100%, and 87-100% respectively.
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5.5.2 Results of Workload Adjustment strategy

To be part of it, based on the predicted maintenance the RUL has been identified and the
simulation environment is created using simulation software for workload adjustment strategy. The
validation of proposed approach has been shown by the simulation results of state Gantt, and
throughput on four different configurations such as one degree, two degree, semi flexible, and fully
flexible. The simulation helped in showing each individual machine and the number of jobs
processed as throughput. State Gantt shown the machine performance based on time in which
performance time, breakdown time, and idle time of machines.

In this section, the dynamic workload adjustment strategy has been implemented (Hao et
al., 2015) [37] with the other two benchmark strategies i.e. equal workload, and random workload
has been enumerated. We considered two key performance indices (KPI) as Throughput and

performance of machines based on time as State Gantt.
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Figure 5.6 (a-d) Equal strategy as equal number of jobs has been distributed on every machine

The above Figure 5.6 (a-d) shows the simulation program outcomes for one degree to fully

flexible configurations for processing the 54000 number of jobs in equal strategy. In equal strategy,

the equal number of jobs has been distributed on each machine where Figure 5.6 (a) represents the

one degree flexible system and clearly shows that it has taken 51757 seconds to complete the

demand. Figure 5.6 (b) represents the two degree flexible system where it taken 51756 seconds to

complete the number of jobs. Figure 5.6 (c), and Figure 5.6 (d) represents the semi-flexible, and

fully flexible systems respectively, and it has been observed that it almost taken same amount of

time to complete the number of jobs as first two configurations. From the figures it is clearly

observed that in case of equal strategy, the machines are ultimately fails in an equal phase and the

workload allocated to the machines leads to the overlap of machine failure.
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Figure 5.7 (a-d) Random strategy as the random number of jobs has been distributed on every

machine in various configuration.
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Figure 5.7 (a-d) shows the performance of simulation for random strategy for one degree

to fully flexible configurations for processing 54000 number of jobs. Figure 5.7 (a) shows the one

degree flexible system in random strategy, where the jobs has been allocated on machines

randomly. It has taken 48960 seconds to process the number of jobs. Figure 5.7 (b) represents the

two degree flexible system where it has taken 47880 seconds to process the jobs. Similarly, Figure

5.7 (c), and Figure 5.7(d) represents the semi-flexible, and fully flexible system where it has taken
48296 seconds, and 47996 seconds to process the 54000 number of jobs respectively. In the random
strategy as the jobs has been distributed randomly irrespective of machine condition. One could

clearly comprehend that the tendency of various machine failures overlap was reduced to a certain

level because of random failures.
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Figure 5.8 (a-d) Workload adjustment strategy for flexible configurations

Figure 5.8 (a) represents the results of proposed methodology of throughput and Gantt chart
for one degree flexible configuration and it has been observed that the workload adjustment
strategy has been taken 52865 seconds to complete the number of jobs. Figure 5.8 (b) represents
the two degree flexible system where it has been taken 47843 seconds to complete the number of
jobs. Figure 5.8 (c), and Figure 5.8 (d) represents the semi-flexible, and fully-flexible
configurations as 47376 seconds, 46946 seconds has been taken to process the jobs. As in proposed
methodology, a dynamic workload has been carried out based on the predicted remaining useful
life which has been taken from the maintenance predicted and the tendency of individual machine

failure was purely improved resulted in the completion of the workload allocated on the machines.
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Figure 5.9 Throughput time comparison for three strategies

The proposed methodology that integrates the workload for the flexible configurations
applied to residual life. It mainly consists of throughput time based on workload adjustment for
each strategy as shown in Figure 5.9. In dynamic workload adjustment, the capacity of each
machine and demand has been considered to allocate the workload on each individual unit. Here
the total amount of operations at its peak, performed efficiently by each machine in a unit time
called as capacity. From the Figure 5.9, it has been observed that the throughput time for processing
54000 number jobs, in equal strategy for the processing the demand almost equal throughput time
around 51756 seconds has been taken for various configurations. Similarly in the random strategy
taken 47996 seconds from the fully flexible configuration is taken less amount of time taken than
the other configurations to complete the number of jobs. Workload adjustment strategy results
shown in which 46946 seconds has been taken for fully flexible configuration which is less for

processing the same number of jobs on each configuration among 3 strategies.

5.5.3 Sensitivity Analysis

The sensitivity analysis assists in understanding how the uncertainty in the model’s output is

varying by changing the coefficient of the parameters. It also helps in simplifying the models and
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identifying the research priorities and plays a major role as a tool to assess the model validity. Here,
the throughput time has been generated with the help of simulation for flexible configurations for
three strategies i.e., equal strategy, random strategy, and proposed workload strategy by varying
the number of jobs from 1000 to 54000 units. The results for these three strategies have been shown

in Tables 5.7, 5.8, 5.9 respectively.

Table 5.7 Comparative simulation matrix of equal strategy for flexible configurations

Equal Strategy
One Degree ] . ]
. Two Degree Semi Flexible Fully Flexible
Flexible . . .
No of Jobs ) Throughput Time | Throughput Time | Throughput Time
Throughput Time
(Seconds) (Seconds) (Seconds)
(Seconds)

1000 697 697 697 697
2000 1402 1402 1403 1403
3000 2118 2116 2118 2118
5000 3536 3534 3535 3534
10000 7100 7096 7101 7100
15000 11742 11740 11742 11742
20000 16290 16287 16291 16288
30000 26425 26423 26424 26426
40000 35861 35855 35858 35853
50000 45630 45628 45626 45623
54000 51757 51756 51756 51758

Table 5.8 Comparative simulation matrix of random strategy for flexible configurations

Random Strategy
One Degree Two Degree ) ) )
) ) Semi Flexible Fully Flexible
flexible flexible )
No of Jobs ) ) Throughput Time Throughput
Throughput Time | Throughput Time )
(Seconds) Time (Seconds)
(Seconds) (Seconds)

1000 697 697 697 697
2000 1400 1403 1402 1403
3000 2115 2118 2118 2118
5000 3532 3528 3536 3595
10000 7096 7306 7218 7232
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15000 11738 12196 11953 11925
20000 16187 15864 15920 15765
30000 26258 25044 24845 24925
40000 33671 33458 33380 33326
50000 42573 42376 42380 42337
54000 48960 47880 48296 47996

Table 5.9 Comparative simulation matrix of workload adjustment strategy for flexible

configurations

Workload adjustment Strategy
One Degree Two Degree ] . .
Semi Flexible Fully Flexible
flexible flexible ] .
No of Jobs ) . Throughput Time | Throughput Time
Throughput Time | Throughput Time
(Seconds) (Seconds)
(Seconds) (Seconds)

1000 699 696 698 698
2000 1403 1399 1386 1381
3000 2185 2183 2176 2168
5000 3537 3510 3501 3485
10000 7156 7228 7206 7180
15000 11846 11994 11742 11695
20000 16847 15688 15454 15286
30000 26953 24918 24698 24315
40000 35510 33392 33023 32601
50000 45272 42355 41982 41351
54000 52865 47843 47376 46946

On the basis of simulation results, it can be observed that the throughput time is varying
linearly by increasing the number of jobs from 1000 to 54000 jobs for one-degree flexible
configuration to fully flexible configurations. In equal strategy, the similar time has been followed
to process the number of jobs. In random strategy, each configuration processed randomly by
increasing the number of jobs and in the workload adjustment strategy, the throughput time has

reduced from one degree to fully flexible configurations.
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5.6 Conclusions

Primarily, the main research hypothesis is examined that the predicting the maintenance
requirement and predicting the no maintenance requirement of the flexible configurations. Based
on the predicted maintenance requirement of machines, the RUL has been examined and workload
adjustment strategy has been applied. Initially, 12 machines data of each configuration has been
collected from single degree to fully flexible configuration. The demonstration, based on the
system implementation shown very good predictions and better results has been achieved under 3
different strategies and various machine learning algorithms. Results shown that the accuracy
varied from 82% to 100% under 3 strategies for 4 configurations, and the F1 score is varied from
0.9 to 1 for prediction in maintenance required, and 0.1 to 1 for prediction in not to have
maintenance. Further we focused on dynamic adjustment on the workload control the throughput
time of all units in a complex system based on RUL by predicted maintenance requirement. To
validate the methodology, a simulation environment created and workload adjustment strategy has
been applied and compared with the other two benchmark strategies in achieving the lower
throughput time. The results clearly shown out methodology consistently outperformed than other
two strategies in case of minimization of throughput time. The proposed workload adjustment
strategy has been taken 46946 seconds for fully flexible configuration which is less than the other
two benchmark strategies in any configuration. Finally, it can be concluded that with the workload

adjustment strategy has been given better results than other strategies in flexible configurations.
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Chapter 6
Development of Criticality Index prediction for multi-

product category for identifying machine status indicators

6.1 Introduction

Due to the customer requirements for specific and individual products, the technologies used in
their industries underwent a paradigm shift by introducing various latest technologies such as
artificial intelligence, machine learning, cyber-physical systems, and maintenance management.
Recent requirements such as high-quality products, and customized products are the major factors
for most of the manufacturing industries to improve the production rate. Considering the foregoing
requirements, the flexibility of a manufacturing system needs to be enhanced where flexibility
plays a major role to perform production faster. The flexible unit systems (FUS) with one-degree
flexible, two-degree flexible, semi-flexible, and fully flexible systems have been considered.
Therefore, the major issue for any company is a machine’s criticality index. Criticality index of a
machine is the most important category in the manufacturing industry in case of maintenance
management of a system. The CI defined as it is the level of critical referring to the machines with
the highest or lowest importance for maintenance.

To improve the productivity of a company, the companies not only plan for the maintenance
activities for manufacturing systems but also issues that affect the business goals in the industry.
Therefore, the major issue for any company is predicting the machine’s CI with the help of ML
techniques. Finding the CI of each individual machine in complex flexible configurations is the
most important category for the manufacturing industry along with the maintenance management
of a system. The main reason to predict or evaluates the CI of machines or devices used in the
manufacturing industry with a set of activities to identify failures that impact companies' goals.
Predicting the machine’s CI is possible to prior the action of maintenance of machines in a flexible
machine system. The criticality of a machine is used as a comprehensive measure to estimate the
various actions and to highlight difference between the individual machine and its action strategy.

The literature described assessing the machine’s CI as an important parameter to improve
in quality of products. Due to the method of collecting the data and the quality of product, there is

uncertainty related to the time between failures of machines and time to repair of various machines

91

Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA



and considered as all assessment criteria are considered as equally important [111]. By considering
the above issues, a novel method of prediction of criticality index of machines is proposed in this
objective with the predicted maintenance into consideration. Initially, the maintenance of machines
in flexible systems is predicted with the help of ML algorithms and the I-CPS architecture is used
for ML-based predictions [45]. The I-CPS implies the usual applications of the ML models, and in
this case, learning of criticality index predictive models.

In the area of manufacturing systems, the factors such as breakdown time of a machines,
redundancy, and workload are impact on throughput as factors are indicated. Henceforth, in this
research, the ML-based approach is utilized to process the data of various configurations. Here,
different ML techniques have been proposed to classify the collected data. Later, the confusion
matrix has been generated for evaluating the data as the confusion matrix is the tabular way of
visualizing the performance of the predicted model. The criticality level of a machine is checked
by choosing a grading scale from 1 to 5 and subjectively assigning numbers. The estimated time
of maintenance for the machines for each criticality index needs to be considered. Later, F1 score
and accuracy is evaluated from the confusion matrix to rank the ML algorithms for identifying
which algorithm is providing the highest F1 score and accuracy. Finally, the CI is predicted from
day 1 to day 100 based on the method used to predict the criticality index of a machine.

6.2 Problem Description

The flexible configurations with one degree, two degree, semi-flexible, and fully flexible
configurations has considered for the criticality index analysis in this problem. Here, the criticality
index need to be predicted as a prediction output, and the output must be in the range of 0 to 5. As
mentioned earlier, we utilize the production data for training, testing, and validation to predict the

maintenance requirement for the machines and then to predict the CI of each machine.

List of notations

U Expected Value

X Random Variable

o Standard Deviation

m Number of standard deviations from the mean
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For example, the decision tree algorithm needs a proper decision making to the
classification point as it decide to split a main node into two or more sub nodes and the naive Bayes
algorithm is works on the theory of conditional probability. The mathematical model behind the
random forest algorithm are explained as the random forest algorithm stands on the theory of
Chebyshev’s in equality combination of mean and standard deviation. Thus the objective function
for prediction of criticality index as per the random forest algorithm is to understand the system

health status as shown in Equation 6.1.

Prediction of criticality index combination of mean and standard deviation (P):

1
P(X —u|l >mo) < 2 (6.1)

6.3 Methodology

Machines criticality index is a complex concept and which depends on many factors. In general
“intuition” may not be sufficient to make the decision about which machine is more important, and
which machine is less important. At this particular time, it is necessary to build a method which
supports the decision makers to identify the machines in an appropriate way in the machine
criticality assessment process. The main aim of this research is to obtain a criticality index for a
machine for the maintenance prioritization demands, using the collected production data.
Therefore, an explanatory sequential method was chosen to predict the CI of each machine as
explained. The framework which is an integrated approach on data preparation, and machine
learning prediction for the criticality index for each individual machine as shown below in Figure
6.1. The initial step of model implementation starts with data collection, data pre-processing, and
data preparation. Here the data from 12 machines are considered for validating the proposed model.
The data has been collected over a period of 6 months, considering the different variables
mentioned in the above table. We have processed cleaning, and sampling by removing the
inaccurate and unbalanced data before data transformation. The normalization and aggregation of
data are performed before sending the data to develop an ML model. The basic ML model consists

of training, testing, and validation as shown below in Figure 6.1.
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Figure 6.1 Framework for developing the ML model to predict the criticality index

The input data variables such as Machine 1D, shift, shift date, material, quantity, production
time, time per piece, time for maintenance, and set up is considered [45]. Later, the data is imported,
and tried to develop an algorithm that performs supervised learning algorithms. The maintenance
requirement of machines is predicted with the help of various ML algorithms by performing the
necessary steps. Few algorithms are eliminated due to poor performance which is providing less
accuracy. Amongst all algorithms, the top 5 best algorithms are noted which are trained, tested,
and validated with the highest F1 score, and better accuracy. Here, the I-CPS architecture is utilized
as a double-loop learning model as two separate two loops. The first loop algorithms are considered
objective algorithms, and the second loop algorithms are modified first-loop algorithms. The
double loop ML algorithm is used to improve the accuracy and model parameters. Later, the
predicted maintenance is considered as an extra input for predicting the criticality index of
machines. We have considered 1 month, 2 months, and 3 months of data amongst 6 months of data

is used for testing in different set of ML algorithms.
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6.4 Experimentation

We proposed three strategies in this study i.e., combined machine strategy, multiple machines
strategy, and individual machine strategy, and these strategies are adopted to analyze four different
realistic configurations for implementing the proposed methodology [44]. From the three
strategies, the combined machines strategy is considered as the single machine data, multiple
machines is considered as the single machine data along with the machine ID as an extra input for
the predictions, and the individual machine strategy considered as it is to train the data separately

for each machine for the predictions [44].

6.4.1 Experimentation settings for criticality index prediction

The Meta-learning based ML approach is utilized for predicting the criticality index of each
machine and validated. Data from 12 machines were collected and these 12 machines are operating
under four configurations called one-degree flexible, two-degree flexible, semi-flexible, and fully
flexible. The machine ID from 1 to 12 from each configuration is considered. The additional
extracted features as total work time of the machine, Total work quantity of the machine, Total
number of setups, total work time of the machine after previous maintenance, and the total number
of setups after previous maintenance is taken and the criticality index considered as predicted
output [46]. A total of 30,427 batches of manufacturing data from these machines from each
configuration and amongst 6 months of data 1 month, 2 months, and 3 months of data have been
utilized for testing in three conditions for a different set of ML algorithms. Initially, the
maintenance requirement for each individual machine is predicted. Later, the criticality index for
each individual machine has been predicted in four configurations by taking the predicted

maintenance as an input along with the input data and the input data has shown below in Table 6.1.

Table 6.1 Data variables involved in ML Program

Variable of Input Extracted Features Output
10. Machine ID 4. Total working time of machine Maintenance requirement (1/0)
11. Shift 5. Total number of setups
6. Shift Date 12. Total quantity of a machine
13. Material 4. Total work time of a machine after
last maintenance
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14. Quantity 5. Total quantity of a machine after

last maintenance

15. Production Time 6. Total number of setups after

previous maintenance

16. Time/piece

17. Maintenance Time

18. Setup

6.5 Experimental Results and Discussion

Confusion Matrix

Figure 6.2 shows the 5*5 confusion matrix for the CI. CI of each machine has been predicted by
considering the predicted maintenance as an input with the collected data. The CI from 1 to 5
indicated which machine is more critical or less critical based on the index, and estimated
maintenance time is required for combined machines or multiple machines, or individual machines
with respect to Cl as shown in Table 6.2. The information on CI ranges from 1 to 5 and has been
collected from the shop floor manager in industry. The formulas for calculating the precision,
accuracy, and F1 score from the obtained confusion matrix as mentioned in below Equations 6.2,
6.3, 6.4.

Precisi True Positive (62)
recision = .
True Positive + False Positive

Accuracy

(True Positive + True Negative)

(6.3)

- (True Positive + False Positive + True Negative + False Negative)

2 x Precision * Accuracy
F1 Score = — (6.4)
(Precision + Accuracy)
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Figure 6.2. Criticality Index for 5*5 matrix

The TPy, TP2, TP3, TP4, and TPs indicate the True Positive of the prediction class for the CI
from 1 to 5 and the E>1 to Ess are the True negatives and the false positives and false negatives for
their respective prediction classes, and the true classes for the CI shown above Figure 6.2. The true
positive defines the label belongs to the class of correctly predicted, False positive does not belong
to the class but is predicted as positive, true negative does not belong to the class, predicted
correctly, and finally, false negative does not belong to the class, predicted as negative. From the
predictions of ClI, the estimated time for maintenance of a machine information is collected from

the shop floor manager is shown below in Table 6.2.

Table 6.2 Criticality Index estimated time

Criticality Index | Estimated time for maintenance
(seconds)
0-999
1000-4999
5000-9999
10000-19999
20000+

gl B~ W N

The estimated time for maintenance in (seconds) for respective CI has been taken from the
shop floor manager from the industry. The estimated time range is 0-999 seconds for CI 1, 1000-
4999 seconds for CI 2, 5000-9999 seconds for Cl 3, 10000-19999 seconds for CI 4, and greater
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than 20000 seconds for CI 5 as shown below in Table 3. Three strategies have been applied for
predicting the criticality index of machines named as combined machine strategy, multiple machine
strategy, and individual machine strategy.

Table 6.3 presents the results of the top 6 algorithms (out of 30) that output the predictive
models with the highest F1 score and the accuracy for the above-mentioned 3 strategies for one-
degree flexible configuration. It has been observed that in strategy 1 i.e. combined machines
strategy, for one-degree flexible configuration, the Cosine KNN is giving the highest F1 score as
0.7288 as the 72.88% of chances are there for the criticality index according to the algorithm
predicted and SVM (Quadratic) algorithm is giving the highest accuracy as 98.3%. In strategy 2,
i.e multiple machines strategies, the neural network (Trilayered) is giving the highest F1 score of
0.6731 for the criticality index and the KNN medium is giving the highest accuracy at 98.9% for
one-degree flexible configuration. In strategy 3, i.e multi-algorithm level model, the algorithm has

given an F1 score of 0.636, and an accuracy of 98.04% has been achieved.

Table 6.3 Results for the criticality index prediction in case of one degree flexible configuration

Learning Algorithm Accuracy F1 Score to predict maintenance

Strategy 1. — Combined Machines

Cosine KNN 97.90% 0.7288

Neural Network (Medium) 96.90% 0.7179

Decision Tree (Fine) 97.70% 0.7076

Neural Network (Bilayered) 97.5% 0.6621

SVM (Quadratic) 98.3% 0.5934
Strategy 2. — Multiple Machines

Neural Network (Trilayered) 98.6% 0.6731

KNN (Medium) 98.9% 0.6422

Ensemble Subspace (KNN) 96.9% 0.6249

Fine KNN 98.3% 0.6014

SVM Linear 98.6% 0.5802

Strategy 3. — Individual Machine Level (Average F1)
Multi algorithm learning model 98.04% 0.636
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Further, the criticality index range has been taken from 1 to 5, where 1 indicates the lower
critical level which requires a lower amount of time for the maintenance of a machine is required,
and 5 indicates the higher critical machine which requires a higher amount of time for the
maintenance. The predicted criticality index for 100 days for 12 number of machines has explained.
The CI has been predicted when the 12 machines of one-degree configuration are performing the
operations under the given input is shown in Figure 6.3. The average criticality index of one degree
flexible configuration is obtained as 1.09667. The average and standard deviation summation is
equal to 1.63136, and the difference between averages to the standard deviation is equal to 0.56198.
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Figure 6.3 Criticality Index prediction for One degree flexible configuration

Table 6.4 presents the results of the top 5 algorithms (out of 30) that output the predictive
models with the highest F1 score and the accuracy for the mentioned 3 strategies for two-degree
flexible configuration. It has been observed that in strategy 1 i.e. combined machines strategy, for
two-degree flexible configuration, the neural network (medium) is giving the highest F1 score of
0.696 as the 69.6% of chances are there for the criticality index according to the algorithm predicted
and KNN (medium) algorithm is giving the highest accuracy as 98.4%. Similarly in strategy 2, i.e
multiple machines strategy, the Ensemble Boosted Trees is giving the highest F1 score as 0.9744

for the criticality index and SVM (Quadratic) is giving highest accuracy at 98.3% for two-degree
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flexible configuration. In strategy 3 i.e multi-algorithm learning model has given an F1 score of

0.6395 and an accuracy has 97.57% has been achieved.

Table 6.4 Results for the Criticality index prediction for the two degree configuration

Learning Algorithm Accuracy F1 Score to predict maintenance

Strategy 1. — Combined Machines

Neural Network (Medium) 98.10% 0.696

Ensemble RUS Boosted Trees 97.50% 0.631

Neural Network (Trilayered) 97.20% 0.588

SVM Medium (Gaussian) 98.3% 0.597

Medium KNN 98.4% 0.563
Strategy 2. — Multiple Machines

Ensemble Boosted Trees 97.4% 0.9744

Ensemble Subspace KNN 96.9% 0.7366

Neural Network (Bilayered) 97.6% 0.7285

SVM (Quadratic) 98.3% 0.6496

Linear Discriminant 98.0% 0.6322

Strategy 3. — Individual Machine Level (Average F1)
Multi algorithm learning model 97.57% 0.6395

The CI has been predicted from day 1 to day 100 as when 12 number of machines of two-
degree configuration are performing the operation under the given input is shown in Figure 6.4.
The average criticality index of a two-degree flexible configuration for 12 number of machines is
obtained as 1.0725. The average and standard deviation summation is equal to 1.5054, and the

difference between averages to the standard deviation is equal to 0.6396.
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Figure 6.4 Criticality Index for Two degree flexible configuration

Table 6.5 presents the results of the top 5 algorithms (out of 30) that output the predictive
models with the highest F1 score and the accuracy for the mentioned 3 strategies for semi-flexible
configuration. It has been observed that in strategy 1 i.e. combined machines strategy, for semi-
flexible configuration, the neural SVM (Quadratic) is giving the highest F1 score as 0.6461 as the
64.61% of chances are there for the criticality index according to the algorithm predicted and KNN
(medium) algorithm is giving the highest accuracy as 97.4%. In strategy 2, i.e multiple machines
strategy, the Weighted KNN is giving the highest F1 score as 0.6138 for the criticality index and
SVM coarse Gaussian is giving highest accuracy as 92.53% for semi-flexible configuration. In
strategy 3, i.e multi-algorithm learning model has been given an F1 score of 0.6406 and an accuracy

as 97.96% has been achieved.

Table 6.5 Results for the criticality index prediction in case of semi flexible configuration

Learning Algorithm

Accuracy

F1 Score to predict maintenance

Strategy 1. — Combined Machines
SVM Quadratic 97.00% 0.6461
Decision Tree Medium 96.30% 0.560
Medium KNN 97.40% 0.5521
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Ensemble Bagged Trees 97.2% 0.5372
Ensemble Boosted Trees 97.2% 0.5115
Strategy 2. — Multiple Machines

Weighted KNN 92.15% 0.6138

Decision Tree Fine 92.06% 0.5351

Ensemble Bagged Trees 92.25% 0.5326

Ensemble Boosted Trees 92.06% 0.5319

SVM Coarse Gaussian 92.53% 0.5214
Strategy 3. — Individual Machine Level (Average F1)

Multi algorithm learning model 97.96% 0.6406

The CI has been predicted from day 1 to day 100 when 12 machines of semi degree
configuration are performing the operations under given input is shown in Figure 6.5. The average
criticality index of semi degree for 12 machines is obtained as 1.07083. The average and standard
deviation summation is equal to 1.53198, and the difference between averages to the standard

deviation is equal to 0.60968.

6

j | A n\ “ ”l '

<
)]

AT ™NO N OO ANNO A TN OMOUAOONLWO A SNO N OV N N 0 o ~
A A A AN AN AN T T T NDND N O O ONMNNMNOOOGOOOO [e)]

100

== V|1 == |VI2 M3 M4 e=@==M5 ==@=\6
== |\|7 =@==|V|§ =@==|V|9 =@==|V|]10 e=@m=|V|]] ==@==|\V]12

Figure 6.5 Criticality Index for Semi flexible configuration
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Table 6.6 presents the results of the top 5 algorithms (out of 30) that output the predictive
models with the highest F1 score and the accuracy for the mentioned 3 strategies for fully flexible
configuration. It has been observed that in strategy 1, i.e. combined machines strategy, for fully
flexible configuration, the neural SVM (medium Gaussian) is giving the highest F1 score as 0.6422
as the 64.22% of chances are there for the criticality index according to the algorithm predicted
and SVM (medium Gaussian), and the weighted KNN (medium) algorithm is giving the highest
accuracy as 97.5%. In strategy 2, i.e multiple machines strategy, the SVM course Gaussian
algorithm is giving highest F1 score as 0.6166 for the criticality index and SVM coarse Gaussian
and weighted KNN algorithms are giving the highest accuracy as 93.6% for semi-flexible
configuration. In strategy 3, i.e multi-algorithm learning model has been given an F1 score of

0.5774 and an accuracy as 98.15% has been achieved.

Table 6.6 Results for the criticality index prediction in case of fully flexible configuration

Learning Algorithm Accuracy F1 Score to predict maintenance
Strategy 1. — Combined Machines
SVM Medium Gaussian 97.50% 0.6422
Ensemble Bagged Trees 97.30% 0.6113
Weighted KNN 97.50% 0.5946
SVM Quadratic 97.4% 0.5641
Decision Tree Medium 96.3% 0.56
Strategy 2. — Multiple Machines
SVM Coarse Gaussian 93.6% 0.6166
Neural Network 93.41% 0.5869
Weighted KNN 93.6% 0.5709
Decision Tree Coarse 93.41% 0.5486
SVM Linear 93.5% 0.4316
Strategy 3. — Individual Machine Level (Average F1)
Multi algorithm learning model 98.15% 0.5774

The CI has been predicted from day 1 to day 100 when 12 number of machines of fully

configuration are performing the operations under given input is shown in Figure 6.6. The average
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criticality index of semi degree for 12 machines is obtained as 1.03746. The average and standard
deviation summation is equal to 1.2847, and the difference between averages to the standard

deviation is equal to 0.6283.
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Figure 6.6 Criticality Index for Fully flexible configuration

6.6 Conclusions

Predicting the criticality index of a machine is an important experiment to understand the machine
behavior. Primarily, the main hypothesis of this work is examined that the predicting the criticality
index of each individual machine in the complex flexible configurations. Initially, 12 machines
data of each configuration has been collected from single degree to fully flexible configurations.
The demonstration, based on the system implementation shown very good predictions and better
results has been achieved for predicting the criticality index under 3 different strategies and various
machine learning algorithms. From the results, it has been observed that the accuracy has been
achieved in the range from 92% to 98.9% under 3 strategies for 4 configurations, and F1 score for
predicting the criticality index varied from 0.43 to 0.9744. Few machines were not identified as
critical machines, which indicates that the machines are working in good condition and there is no
maintenance is required for those machines. Amongst, four configurations, the less number of
machines are identified as critical in case of fully flexible configurations compared to other
configurations. In general, higher the criticality index for a machine will indicates the high amount

of time is required for the maintenance.
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Chapter 7
A novel upgraded hybrid degradation model for maximum

throughput in flexible configurations

7.1 Introduction
Manufacturing systems can be designed with various configurations such as series configuration,
parallel configuration, and hybrid configuration. When it comes to the complex products to
manufacture, the flexibility of manufacturing systems will play a major role to complete the
demand as early as possible. The FUS, which are flexible enough to produce the complex parts is
considered in this problem. Generally, throughput analysis is important for the design, operation
and management of manufacturing systems [123, 124]. The maximum number of parts produced
can be affected by the reliability of the workstations, and the cycle time (the time required to
complete all the operations). The throughput can be defined as the maximum number of items
processed in a unit time [37]. Most papers analyzed throughput for manufacturing systems using
simulation or analytical methods. In general, the simulation and analytic methods are two different
methods to estimate and analyze the throughput performance of various manufacturing systems. as
per the authors knowledge, the simulation analysis has been widely using in various manufacturing
systems analysis due to the robustness and the capacity of modeling large and complex systems.
This study analyzes and enhances the throughput of flexible systems with the help of hybrid
degradation model which has been combined with RUL and CI of each individual machine. The
throughput achieved by the hybrid degradation model has been compared with the real time data
method which was used in 4" chapter of this research and production data method which was used

in 5" chapter of this research work.

7.1.1 Remaining Useful Life (RUL)

A machine’s or a component’s residual life estimation during its operation based on its present
condition is very important in order to find its health condition. The residual life of a manufacturing
machine was characterized as remaining useful time till its level of degradation arrives at a
predefined failure threshold. [38] Proposed a remaining useful life prediction by introducing the

degradation rate changing to transition function and it jumps the degradation signals towards the
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measurement function. The neural network can also be used to decide the residual life of a
machine’s component regarding a number of residual operations. For example, in the
manufacturing industry the usage of a prognostic health management system for deciding the
residual life of milling cutters in a high-speed milling machine depends on externally measured
conditions has been mentioned in [125].

The Prediction of the life of a complex manufacturing system needs an exact estimation of
degradation conditions of its constituent parts as well as an adequate understanding of how these
stages progress in the future. Those difficulties become more entangled whenever parts of a
machine are associated. Si et al., (2013) [126] proposed degradation method to anticipate the
remaining useful life of machines utilizing a recursive channel calculation. Zhang et al., (2018)
[127] survey is on ongoing modeling improvements of the wiener-process strategies for
degradation information examination, remaining useful life estimation as their implementation in
the empirics of the health management of manufacturing systems. Mosallam et al., (2014) [128]
presented two stages of an information-driven strategy for remaining useful life prediction. It is
noted that, based on the residual life of a manufacturing unit a workload adjustment strategy will

be helpful to maintain the production rate.

7.1.2 Criticality Index (CI)

Due to the customer requirements for a product, the technologies used in their industries, the
companies not only must plan for the maintenance activities, but also issues which affects the
business goals. Therefore, the major issue for any company is a machine’s criticality index.
Criticality index of a machine is the most important category in the manufacturing industry in case
of maintenance management of a system. The criticality index of machines or devices used in
manufacturing industry can be structured a set of activities to identify failures which impacts on
companies goals [46]. Criticality of a machine is used as a comprehensive measure to estimate the
various actions and to highlight the differences between each individual machine and action

strategies.

The predicted remaining useful life and Criticality index will be giving the whole health
information about the machine which helps in enhancing the throughput rate of every machine.

RUL is the length of time a machine is likely to operate before it is going to failure. And CI
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indicates the level of criticality of a machine. Workload adjustment for a system whose individual

machines RUL, and CI has known has been proposed and validated by throughput enhancement.

7.2 Problem Description

We developed a linear degradation model for proposed configurations for single degree to fully
flexible systems to control the degradation of machines for controlling the loss of production of the
system. To highlight the main idea, these systems undergo various analyses to predict the RUL and
to predict the Criticality Index of each machines that further improves the throughput by
minimizing the average degradation level. We define “throughput rate” as the overall output of the
system, denoted by TH(x) and it represents the throughput rate at the time X and N(x) presents

the number of machines. Based on the operating machines N (x), the maximum throughput rate

N (x)
becomeszu| Y C where C

41Can )indicates the “capacity” of a machined, at time X. The

(q.r
throughput rate of a system by considering the demand is defined as TH (X) = min {Z:_(:i_lc(qlr), D}
where D stands for “Demand”. If the capacity is less than the demand, then throughput is equal to
capapcity, and if the demand is less than the capacity, then the throughput is equal to the demand.
Further, The RUL has been predicted by using the Equations 4.1 to Equation 4.10.

Along with the RUL, the method for predicting the criticality index is used as a prediction
output, and the output must be in the range of 0 to 5 which is used for Equation 6.1. As mentioned
earlier, we utilized the production data for training, testing, and validation to predict the
maintenance requirement for the machines and then to predict the Cl of each machine. For example,
The mathematical model behind the random forest algorithm are explained as the random forest
algorithm stands on the theory of Chebyshev’s in equality combination of mean and standard
deviation. Thus the objective function for prediction of criticality index as per the random forest

algorithm is to understand the system health status as shown in Equation 6.1.
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7.3 Experimentation

We define throughput as the maximum number of items processed in a unit time from the system.
Here, we assume that the machines in the system are identical in nature. Now, the capacity of each
machine and the demand for the each configuration need to be known for operating machines for
finding the throughput. The throughput can be concerning about the demand is defined as if the
demand is less than the capacity, then the demand is equal to the throughput and if the demand is
more than the capacity, then the capacity is equal to the throughput. The framework for developing

the Hybrid Degradation model is shown in Figure 7.1.
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Figure 7.1 Framework for developing the Hybrid Degradation model

7.3.1 Decision Making

The decision making by combining of RUL and CI as shown in Figure 7.2. The Decision making
has been considered based on the machine which has lower RUL and ClI as first preference for the
maintenance because the machine will take the lower maintenance time than other conditions
mentioned in the decision criteria. Low RUL and High CI of a machine has been considered second
preference for the maintenance. High RUL and low CI of a machine has been considered as the
third preference and High RUL and high CI of a machine has been considered as the last preferred

for the maintenance requirement for fulfilling the necessities.
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Figure 7.2 Decision making criteria for hybrid degradation model

7.4 Results and Discussions

Figure 7.3 shows the throughput for the hybrid degradation model comparison with the real time
data method and production data method for one degree flexible configuration. When the time of
manufacturing has been considered as 1 day, the 1053 number of products has been manufactured
which is almost equal when compared with the other two methods i.e. real time data method and
production data method. In time comparison, when the number of days are increasing from 1 to 9,
the number of products processed has been raised to 8909 which is higher than other two methods

in one degree flexible configuration.
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Figure 7.3 Throughput comparison between proposed method with other real time data method

and production data method for one degree flexible configuration

Figure 7.4 shows the throughput of the hybrid degradation model for two degree flexible
configuration in comparison with the real time data method and production data method. When the
time of manufacturing has been considered as 1 day, the 1132 number of products has been
manufactured which is almost equal when compared with the other two methods i.e. real time data
method and production data method. In time comparison, when the number of days are increasing
from 1 to 9, the number of products processed has been increased to 12985 which is higher than

other two methods in two degree flexible configuration.
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Figure 7.4 Throughput comparison between proposed method with other real time data method
and production data method for two degree flexible configuration

Figure 7.5 shows the throughput of the hybrid degradation model for semi flexible
configuration in comparison with the real time data method and production data method. When the
time of manufacturing has been considered as 1 day, the 1576 number of products has been
manufactured which is slightly greater when compared with the other two methods i.e. real time
data method and production data method. In time comparison, when the number of days are
increasing from 1 to 9, the number of products processed has been increased to 14448, which is
higher than other two methods in semi flexible configuration.
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Figure 7.5 Throughput comparison between proposed method with other real time data method

and production data method for semi flexible configuration

Figure 7.6 shows the throughput of the hybrid degradation model for fully flexible
configuration in comparison with the real time data method and production data method. When the
time of manufacturing has been considered as 1 day, the 1270 number of products has been
manufactured which is almost equal when compared with the other two methods i.e. real time data
method and production data method. In time comparison, when the number of days are increasing
from 1 to 9, the number of products processed has been increased to 15604, which is higher than

other two methods in fully flexible configuration.

112

2
)

3e

Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA

N
i



Fully - flexible
18000
===Proposed real
16000 time Data
h
14000 method
12
— 000 == Proposed
o -
o Production
'% 10000 data Method
2 8000
=
I—
6000 == Proposed
Hybrid method
Index
2000
0
1 2 3 4 5 6 7 8 9
Time (Days)

Figure 7.6 Throughput comparison between proposed method with other real time data method
and production data method for fully flexible configuration

7.5 Conclusions

The proposed hybrid degradation model manufactured 15,604 number of jobs in fully flexible
configuration which is higher than other two benchmark strategies. In one degree flexible
configuration, the 1053 number of products has been manufactured which is almost equal when
compared with the other two methods i.e. real time data method and production data method on
dayl. In two degree flexible configuration, the 1132 number of products has been manufactured
which is almost equal when compared with the other two methods i.e. real time data method and

production data method for the day 1.
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Chapter 8

Conclusions and Future Scope

8.1 Conclusions

The flexible systems analysis shown an interest to understand the system behavior. Majorly six

performance parameters has been identified which influence the four flexible configurations. Based

on the identified parameters, the entropy based TOPSIS method has been used to rank the

parameters. The Throughput rate shown as most influenced parameter, further which was used for

predicting the RUL and workload adjustment strategy has been proposed on single product

category. The maintenance requirement has been predicted using ML and RUL has been identified

based on maintenance prediction then workload adjustment has been proposed on multi-product

category. The criticality index of each machine has been predicted for understanding

The following conclusions can be drawn from the obtained results.
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» The Throughput Time is the most affected performance parameter and maximum stay time

is the least affected performance parameter on flexible machine systems in case of
breakdown condition and Throughput Time is the most affected performance parameter
and Awvailability, average stay time, and maximum stay time are the least affected
performance parameter on flexible machine systems without breakdown condition.

The average percentage of loss in production is 4.75% in case of proposed model, which is
reduced compared to average of 10.5% obtained in case of equal job adjustment, and
average of 7.5% in random job adjustment in instancel. Similarly average percentage of
loss in production is 2% in case of proposed model, which is reduced compared to average
of 6.67% in case of equal job adjustment and average of 4.61% in random job adjustment
in instance2. The average percentage of loss in production is 0.75% in case of proposed
model which is reduced compared to average of 3.75% in case of equal job adjustment and
average of 2% in random job adjustment in instance3.

The workload adjustment strategy in case of multi-product category, the results clearly

shown out that the workload adjustment methodology consistently outperformed than other
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two strategies in case of minimization of throughput time. The proposed workload
adjustment strategy has been taken 46946 seconds for fully flexible configuration which is
less than the other two benchmark strategies in any configuration.

The criticality index prediction results shown that the accuracy varied from 92% to 98.9%
under 3 strategies for 4 configurations, and F1 score for predicting the criticality index
varied from 0.43 to 0.9744.

8.2 Future Scope

115

» A study is needed to perform the workload adjustment strategy when the degradation rate

and the workload having different relationships.

In the future, the proposed parameters ranking methodology using entropy based TOPSIS
method can help firm management to take verdicts refining the performance parameters of
various proposed flexible systems and understand the manufacturing system behavior and
its influencing parameters in normal and various uncertain conditions.

The criticality index prediction which determines the degree of the maintenance necessity
can be done for more applications.

In future, investigation of new learning paradigms, various algorithms can be utilized to
predict the criticality index.

A study also required to aim at the creation of a software for the frequent observation of the
criticality index of machines.
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