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ABSTRACT 

Flexible Unit Systems (FUS) is an assembling structure wherein there is some proportion of 

flexibility permits the system to react if there should be an event of changes, regardless of whether 

predicted or unpredicted. This work proposes the degradation, residual life distribution, workload 

adjustment, upgradation, predictive maintenance of flexible unit systems that gives a wide guide 

of the main explored look into issues in flexible units and future research openings on the point. 

An example of 43 scholarly articles distributed in peer-evaluated worldwide diaries up to 2020 

comprises the information base of the examination. After a detailed review, few major 

performance parameters of manufacturing systems such as throughput rate, throughput time, 

system utilization, availability, average stay time, and maximum stay time which affect the 

manufacturing systems are shown great importance in its performance and maintaining the final 

product quality. Ranking of those parameters from the most influenced parameter to the least one 

is utmost requirement for overall assessment particularly when the applications are complex. An 

integrated Multi Criteria Decision Making (MCDM) – Technique of Order Preference by 

Similarity to the Ideal Solution (TOPSIS) method has been used to ranking in which these 

parameters can influence various manufacturing expenditures.  

Based on these Identified and ranked parameters, we developed a stochastic linear 

degradation model to find the real-time degradation coefficient of each machine in a system at 

every instance. We established a textile industry case study for single product category with the 

key assumptions. Hence, a Bayesian approach is deployed to update prior distribution of 

degradation coefficient to get posterior distribution with the help of measurements that are 

collected in real-time and then predicting Remaining Useful Life (RUL) of machines from 

degradation signals. With the available health status value of each machine and their 

corresponding degree of flexibility, the dynamic job adjustment strategy is applied to achieve the 

maximum output for the system. Along with that, the maintenance of machines is also important 

to ensure the system to run efficiently. In extension, the maintenance prediction for the FUS has 

been proposed and Meta learning based intelligent Cyber-Physical System (I-CPS) architecture 

as a higher-level environment for ML based predictive maintenance has been executed with the 

help of predictive simulation.  



 

 

Further, learning the maintenance prediction which determines the degree of the 

maintenance necessity between 0 and 1 has been proposed and RUL has been estimated for 3 

months, 4 months, and 5 months of training data respectively. From here, the simulation analysis 

has been conducted to find the throughput time for equal, random, and proposed workload 

adjustment strategies on 4 flexible configurations. Further, Criticality Index (CI) of each machine 

has been predicted by considering the predicted maintenance as an input with the collected data. 

The CI from 1 to 5 indicated which machine is under more critical or less critical and based on 

the index, and estimated maintenance time is required for combined machines or multiple 

machines or individual machines with respect to CI. Here, the RUL is the length of time a machine 

is likely to operate before it is going to failure, and CI indicates the level of criticality of a machine. 

Further, the predicted RUL and CI will be giving the health information about the machine which 

helps in enhancing the throughput rate of every machine. The machine which need to go for 

maintenance first has been decided based on decision matrix. Finally, Workload adjustment for a 

system whose individual machines RUL, and CI has known has been proposed for throughput 

enhancement.  

 

Keywords: Flexible Unit Systems, Degradation, Remaining Useful Life, Workload strategy, 

Upgradation, Predictive Maintenance, Machine Learning, Criticality Index. 
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Chapter 1 

Introduction 

1.1 Manufacturing Systems 

A manufacturing system can be the combination of various machines, equipment, and the humans 

that are bound by the information flow. In a factory, various manufacturing processes assembled 

together to produce a desired product. The manufacturing system takes certain inputs and 

transforms those inputs into the final product for the customer. Nowadays, the manufacturing 

industries are also facing the different challenges of keeping their competitiveness in the market 

requirements and technological evolution. In this unique circumstance, profound research activity 

need to be addressed to the development of smart factories in manufacturing sector. In order to 

make a factory smarter, smart devices are to be used such as sensors, drives, motors, switches and 

relays etc. A smart factory is defined as it is an exceptionally digitized shop floor that persistently 

gathers and shares the data through associated machines, gadgets and production systems. With its 

tremendous applications in businesses, for example automotive and transportation, packaging and 

process industries such as oil and gas, the smart factory relied upon to encounter enormous growth 

in coming years. Generally, the manufacturing systems can be designed differently according to 

the company's strategy, boundary conditions, and the goals mentioned in [1]. 

 

1.2 Flexible Unit Systems (FUS) 

The recent requirements such as shorter product life cycles, high production rates, jobs complexity, 

quality products, and cost effectiveness are the most significant factors for any manufacturing 

industry. Considering all the foregoing requirements, in addition, according to the current market 

demand and society needs there is a need to enhance the systems capabilities by maintaining it 

under control from system breakdowns and several external forces that have not been considered 

as a highest priority in the past decade. To accomplish these challenges, there is a need for high 

machine availability, flexibility, accessibility of the manufacturing processes. The flexibility in the 

manufacturing system configuration is necessary for complex products to cope with the system 

responsiveness. Better responsiveness shows a significant level of impact in increasing the 

efficiency of the system but seldom makes a system more expensive [2-6]. According to 
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Chryssolouris et al. [7], the flexibility of a manufacturing system, can be defined in terms of its 

sensitivity to change, where the sensitivity of the system decreases, the system to incorporate 

flexibility increases. However, not just machines but the layout of the machine’s configuration, 

type of operations, and the type of products produced also have an impact on the manufacturing 

system flexibility. For example, a well-known cell production unit situated in japan is famous for 

its flexibility, operates with just a couple of human operators, manufacturing items themselves. 

Flexible complex manufacturing systems usually consist of multiple machines, which operate 

individually or simultaneously in a particular configuration to achieve the required demand.  

 In theory, Ji-wen sun et al. [8] stated that the proper choice of machine configuration 

greatly impacts the manufacturing system concerning its machine reliability and system reliability. 

As a result, numerous scholars have published articles by optimizing the configurations to get better 

productivity [9-11]. In addition, they require fewer workers to work them contrasted with other 

manufacturing flexibilities. Furthermore, in a flexible manufacturing environment, the identical 

machines are designed with a certain level of redundancy that if in case of any unexpected event 

the system cultivates a certain level of common redundancy to compensate. For instance, the 

capacity of the machines has always kept a value higher than the usual number of jobs assigned so 

that, if in the system a machine fails, the other operating machines can be delegated with the number 

of jobs more than they are usually assigned to keep up with system necessities. In the U.S. 

organizations according to Federal Reserve, the normal repetition for manufacturing industries has 

been evaluated to be around 20% [12]. Whereas such a repetition structure by design endeavors to 

give a vigorous production scheme, it isn’t uncommon and due to that, an enormous number of 

machines tend to degrade at a similar rate, particularly when an equal number of workloads is 

allocated to those machines [13]. As a result, it will certainly lead to simultaneous multiple machine 

failures and system necessities being unsatisfied.  

Among all the existing manufacturing systems configurations, the semi-fully flexible real-

time configurations also called as FUS, i.e., one-degree, two-degree, semi-flexible, and fully 

flexible configurations have been proposed in this research. The above-mentioned configuration 

provides routing flexibility, so the system can use two or more machines to perform the same task, 

and the system’s ability to handle a large number of changes, such as a substantial increase in 

capacity and machine failure [3]. Each of the models illustrated in Figure 1.1 (a–d) have a different 

level of flexibility. In this research, we deliberated the degree of flexibility as the ability of a 

machine to adjust the assigned number of jobs for completion in response to failure or maintenance.  
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(a) One-degree flexible system                  (b) Two Degree flexible system 

 

 

 

 

 

 

 

 

 

 

 

 

 
      (c) Semi-flexible system                     (d) Fully flexible system 

 

Figure 1.1 (a-d) Flexible Configurations 

 

For instance, Figure 1.1 (a) presents a one-degree flexible environment, here machines 

work individually and simultaneously in a linear path to fulfil the necessity of the system, but if 

the machine (1,1) fails, the pending assigned jobs on the machine (1,1) can be processed by the 

adjacent machine (1,2) depending upon the availability of the machine, stating one-degree 
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flexibility. Figure 1.1 (b) articulates a two-degree flexible environment, here the availability of 

machines for job adjustment increases, i.e., in case of failure in the machine (1, 1), the adjacent 

machine (1, 2) or machine (2, 2) can process the pending jobs of the machine (1, 1). Followed by 

this are semi-flexible and fully flexible configurations in Figure 1.1 (c), (d) respectively, where the 

options for workload adjustment are more in comparison to one-degree and two-degree flexible 

systems. 

 

1.2.1 Performance Parameters 

 

This section explains an overview of performance parameters which influence the flexible systems 

and their ranking. Generally the manufacturing systems are disrupting due to their own natural 

characteristics or unexpected downtimes, their health management for machines is considered as a 

most confound approach for better performance, mentioned by [14]. From the various literature 

[15, 16], it was shown that majorly six performance parameters need to be considered which 

influence the above mentioned four configurations performance. These parameters influence the 

flexible machine system’s performance, as machine availability can be an important determinant 

of delivery speed and delivery dependability because unexpected machine downtime will not only 

increase lead time but also disrupt the production plan [16]. Such disruptions can be detrimental to 

a Just-in-Time (JIT) manufacturing environment. Along with that, the average stay time of jobs, 

maximum stay time of jobs, maintenance costs, and production cost force firms to analyze the 

performance of their systems systematically and efficiently about the availability of the machines 

[17]. The simulation analysis for the performance parameters helps in visualize and understanding 

of systems behavior of real-time manufacturing systems mentioned by [18]. 

 A method needs to be used for ranking the performance parameters from most influenced 

to least influenced which furtherly can help on increasing in manufacturing systems performance 

and product quality. The integrated MCDM method considers all standards and the importance that 

decision-makers place to determine the most satisfactory solution based on its performance 

evaluation [19]. The literature [19, 20] mentioned that different MCDM techniques have been used 

to solve the problems related to decision making or ranking among the alternatives. An entropy 

method has been presented by the [21] and it has been utilized for finding the weight of each 

criterion. From the past literature, it has been observed that an integrated MCDM methodology 

based on the TOPSIS method has been utilized to rank the parameters. Among the various MCDM 
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techniques, the TOPSIS method is best suited for decision-making problems since it has been 

observed that the TOPSIS method has been preferred for considering the quantitative criteria 

mentioned by [22].  The main principle of the TOPSIS method is the selected alternative should be 

in the shortest distance from the positive ideal solution and the largest distance from the negative 

ideal solution. To determine the attribute weight for the TOPSIS method the Entropy method is 

frequently utilized [23]. Generally, the Entropy method is used to calculate the weights of each 

criterion when decision-makers having conflicting views on the value of weights. 

 

1.2.2 Integration of Cyber Physical Systems for FUS 

 

With the advancement of sensors, actuators, data acquisition systems, communication, and the 

latest network technologies, the manufacturing field transforming into the digital age. Hence, there 

is a need to integrate Cyber Physical System (CPS) with traditional Production Planning and 

Control (PPC) and the Maintenance Management (MM) for manufacturing industries. CPS is the 

integration of physical processes with the computation, information, and communication 

technologies, as the systems immersed with the physical components and interact with those 

physical processes. Generally, the physical part consists of human/material/machine/environment, 

which executes the manufacturing activities, and the cyber part consists of the embedded systems 

in which it is a combination of input/output peripheral devices, computer processes, and computer 

memory [24]. PPC is a tool, which helps in integrating and coordinating the entire manufacturing 

activities in a manufacturing system. The production plan handles the materials planning, capacity 

planning, and operations scheduling and the control portion oversees the actual production process 

to meet the production targets. The main aim of production planning and control is to minimize 

direct and indirect costs [25]. The maintenance management is the process of maintaining a firm’s 

assets and resources. The main purpose of maintenance management is to make sure that 

production runs in an efficient way and that assets of a firm are used effectively [26]. 

In this context, the industries need CPS proficiencies for improving the usage of resources 

and increasing the operator safety [27]. The integration of CPS with the PPC and MM help 

industries in fulfilling the different needs such as efficient systems, reduction in systems building 

cost, operational cost, and development of new innovative system capabilities and mostly it has 

been recognized in manufacturing, energy, and medical domains [28,29]. Among various 

maintenance strategies, the condition-based strategy is dependent on the present condition and it 
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needs to determine, consequently, times of the necessities can be predicted with the help of 

predictive maintenance technique at an early stage [30-32]. These maintenance techniques help in 

improving several challenges that affect the FUS’ efficiency and performance in the view of the 

breakdown of machines, maintenance issues, sudden interruptions due to natural characteristics, 

etc. [33]. The integration CPS for FUS shown in Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Integration of CPS on flexible systems 
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has concerned with the connection level and connection level is the first level of 5C architecture in 

integration of CPS. The measurement data into the useful information conversion is taken care of 

by the conversion level. More data can be obtained by connecting sensors to a greater number of 

machines and it has been emphasized by the cyber level. The statistics and visual information to 

assist users to make decisions will be known by the cognition level. Finally, the feedback back to 

the physical system according to the decisions made will be known by the configuration level.  

There were limited frameworks and approaches available in the context of integration of 

CPS across Product life cycle (PLC). In this research, an integrated CPS with their traditional PPC 

and MM for several flexible configurations that can cater the needs of recent production industries 

has been proposed. This work also concerns how Industry 4.0 integrates the CPS regarding 

maintenance activities and various needs for a company to reach the ideal factory.  

 

1.2.3 Degradation 

Generally the manufacturing systems subjected to degradation where the machines life comes 

down to full health condition to failed condition. Although, a good amount of research investigated 

component level and machine level degradation on system performance, but a significant research 

gap exists on the unit-level analysis for controlling the degradation of machines in turn to enhance 

the system-level performance. In this research, a stochastic linear degradation model has been 

developed to find the real-time degradation coefficient of each machine in a system at every 

instance. Consequently, an assumption considered as that the degradation rate of each machine is 

a random variable following a normal distribution to apprehend the deviation in the degradation 

process due to natural characteristics. Further, a Bayesian approach has deployed to predict the 

remaining useful life of the machines and their corresponding value.  

 

1.2.4 Remaining Useful Life (RUL) 

Estimation of Remaining Useful Life (RUL) helps in understanding the degradation behavior of a 

manufacturing system at various stages, and it also helps in maintaining the system health status. 

To handle the customized orders that are low in volume, frequent demand shifts, and long-lead 

times current manufacturing systems configurations are not only capable enough to manage the 

production process. Moreover, every machine in the production system has its own health status 

therefore its RUL. Predicting the RUL of each machine which is a key point for understanding the 
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system behavior in parallel and hybrid configurations [13]. In line with this purpose, a multi-stage 

RUL based on real time data has been proposed and the time features has been extracted from the 

collected raw sensory data to classify the machine’s health status. Similarly, a novel mission 

reliability based RUL prediction method is developed in a serial manufacturing system [34]. Later, 

an empirical analysis for predicting the RUL based on the condition monitoring data has been 

presented by developing a model degradation using the data driven prognostics based ML 

techniques [35]. It is noted that, based on the RUL of a system, a workload adjustment strategy 

helps in improving productivity in the manufacturing industries. 

 

1.2.5 Workload Adjustment strategy 

Workload adjustment strategy can be utilized for controlling the pace of degradation of machines 

in a parallel and hybrid configuration was proposed by [36]. Based on the mentioned problematic 

condition, [37, 38] proposed a method to control the disruptions and to predict the failure time of 

each machine in a parallel configuration by adjusting the workloads on individual machines. This 

transformation leads to a lot of studies and concepts on the maintenance methodologies related to 

the manufacturing systems [39]. The health status of a machine can be evaluated by the 

conventional prognostics and diagnostics approaches and these are essential in the case of machine 

health management in Industry 4.0 [40, 41]. With the available health status value of each machine 

and their corresponding degree of flexibility, the workload adjustment methodology can be applied 

to achieve the maximum output from the system. This study presents a method to assign the number 

of jobs dynamically in a real-time flexible manufacturing environment to overcome simultaneous 

multiple machine breakdown in a system for achieving higher production. The problem here is 

designed in such a way that it considers all the real-time system configurations in a flexible 

environment. Altogether, this study provides prescriptive analytic for a manufacturing system, 

utilizing a dynamic job adjustment strategy.  

 

1.2.6 Predictive Maintenance 

Machine maintenance is generally defined as four ways, “reactive maintenance”, preventive 

maintenance, predictive maintenance, and proactive maintenance [42, 43]. The main objective of 

maintenance of manufacturing systems is to minimize the downtime of machines, unscheduled 

maintenance and to make sure that production facilities keep running as smooth as possible. This 
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is a real challenge to the many industries and they are facing the difficulties in defining of 

maintaining and execute the schedules. It will show a large impact on the efficiency of production 

facilities and cost increment, because of shutting down the manufacturing machines until the 

problem has been resolved. At that particular time, the continuous advancement in research and 

development can be involved in with the new intelligent solutions for decision making, especially 

with the predictive maintenance in machine learning. It has been observed from the literature that 

many researchers considered only vibration data into the consideration for their studies for the 

detection of damages. A very few researchers use one or more features such as temperature, 

pressure, and sound. In addition it is not common to use only one machine learning algorithm 

comparatively in modeling the collected data. In this study, 30 major machine learning algorithms 

has been trained, tested and validated in which algorithm is providing better F1 score to predict the 

maintenance and not to have maintenance has been identified. For this, the semi double loop 

machine learning based Intelligent – Cyber Physical Systems architecture for predict the 

maintenance has been used [44]. 

 

1.2.7 Criticality Index (CI) 

Due to the customer requirements for a various customized products, the companies not only plan 

for the maintenance activities of the machines, but also issues need to be considered related to the 

business goals. Based on the above mentioned reason, the major issue for any company is a 

machine’s Criticality Index (CI) [45]. Criticality index of a machine is the most important category 

in the manufacturing industry in case of maintenance management of a system. The CI of machines 

or devices used in manufacturing industry can be structured a set of activities to identify failures 

which impacts on companies goals [46]. The CI defined as it is the level of critical referring to the 

machines with the highest or lowest importance for maintenance.  

The Remaining Useful Life (RUL) and Criticality Index (CI) will be providing the health 

status of a particular machine which will help in enhancing the throughput rate of every machine 

by adjusting the workloads. RUL is the length of time a machine is likely to operate before it is 

going to failure. And CI indicates the level of criticality of a machine to know the time required 

for the maintenance. Workload adjustment for a system whose individual machines RUL, and CI 

has known has been proposed and validated by throughput enhancement.  
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1.3 Organization of Thesis 

Chapter 1: Introduction 

In this chapter, the research preliminaries and the conceptual background of the research 

area has been explained. This chapter also includes the motivation for the research and scope of 

the research. The thesis organized into eight chapters and contents of each chapter are presented 

below in brief.  

 

Chapter 2: Literature Review 

A Systematic Literature Review has been conducted to find the literature related to 

modelling and analysis of FUS. Literature review attempts to give detailed information unit 

degradation model to predict the RUL. The workload adjustment strategy for single product 

category, and multi-product category has been discussed based on predicted RUL. The prediction 

of CI for combined machine strategy, multiple machine strategy, and individual machine level 

strategy has been discussed. Finally, workload adjustment strategy by combining of RUL and CI 

based on the decision matrix has also reviewed.  

 

Chapter 3: Development of realistic configurations ranging from Semi-Flexible to Fully-

Flexible systems and identifying the performance measures  

In this chapter, The FUS performance parameters has been identified and analyzed by 

conducting simulation analysis and further, the simulation results has been validated with the 

experimental results. Thereafter, MCDM Entropy method has been used to identify the weights of 

each parameter and then TOPSIS method has been used to rank the parameters. Finally, the 

rankings from the TOPSIS method are compared with the PROMETHEE method rankings. 

 

Chapter 4: Development of workload strategy for linear degradation model on single product 

category  

In this chapter, an approach has been developed using each machine’s degradation 

information to predict the machine’s RUL. based on the RUL information the job adjustment 

strategy of single product category where machines with a lower health status will be given a high 

number of jobs to perform is proposed. The objectives of the proposed model are to reduce 
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simultaneous machine failures by slowing down the pace of degradation of machines, to improve 

the average occurrence of the first failure time of machines, and to decrease the loss of production. 

 

Chapter 5: Workload Adjustment strategy on Meta Learning based CPS approach for 

Predictive Maintenance in Flexible systems based on Machine status indications 

In this chapter, the workload adjustment strategy of multi-product category from the FUS 

has been proposed. Initially, the maintenance of individual machines has been predicted based I-

CPS architecture. Further, the RUL of an individual machines has been known with the help of 

predicted maintenance. Finally, the workload adjustment strategy has been applied based on RUL 

has been executed along with the other two benchmark strategies i.e. equal, and random workload 

strategy. 

 

Chapter 6: Development of Criticality Index prediction for multi-product category for 

identifying machine status indicators  

In this chapter, two original and innovative contributions has been presented. The model of 

machine learning based approach for predictive maintenance in FUS and the CI prediction of each 

machine with the help of Meta learning based I-CPS architecture as a higher-level environment for 

ML based maintenance prediction execution. 

 

Chapter 7: Enhancing the Throughput of Flexible Configurations using novel Hybrid 

Degradation model  

In this chapter, the workload adjustment strategy on flexible unit configurations has been 

proposed by combining of RUL, and CI. The quick maintenance of machine has been preferred 

based on decision matrix in which the machine is having low RUL and CI. The proposed 

methodology has enhanced the throughput of system compared to workload adjustment applied on 

single product category, and multi product category without considering CI for flexible 

configuration. 

 

Chapter 8: Conclusions, and Future Scope 

This chapter reports the research contributions of degradation and upgradation models of 

FUS. The results obtained from the analysis shown that the throughput time is most influenced 

parameter. The tools, techniques, and approaches used in this research can help for researchers for 
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predicting the system behavior there by improving the health status of their system. The RUL and 

CI of each individual machines are predicted which provides the health status of machine.  In this 

research, we specially focused on instantaneous degradation rate is proportional to the workload, 

but in reality such relationships may not be appropriate. In future, a study is needed to perform the 

workload adjustment strategy when the degradation rate and the workload having different 

relationships. A study also required to aim at the creation of a software for the frequent observation 

of the criticality index of machines.  
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Chapter 2 

Systematic Literature Review 

2.1 Systematic Literature Review 

This thesis reviews the state-of-the-art degradation of manufacturing flexible systems through 

RUL, workload adjustment strategy, and CI in case of single and multi-product category and the 

maintenance predictions for smart factories. Smart factory research is an interdisciplinary class that 

is performed by researchers from various backgrounds mentioned in [47]. The scenery of scientific 

literature on the idea of the “smart factory”, which in recent years gaining more consideration from 

academics and experts. Smart factories consolidate modern organization, cloud, and supervisory 

terminals with smart shop floor objects, for example, conveyers, products, and machines [47, 48].  
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Smart factories and smart manufacturing technologies give us additional information for 

understanding the connection between working conditions and machine degradation and failures. 

For example, rough starts and stops may be the reason for recurring misalignments problems in a 

machine. With this information, integration of CPS with respect to production planning and control 

and maintenance management can improve the production rate. The common factors from different 

studies that affect the FUS are degradation rate, residual life distribution, workload strategy, 

upgradation, and predictive maintenance. Given this scenario, A Systematic Literature Review 

(SLR) with respect to the degradation and upgradation models for FUS has been conducted to 

stimulate the future investigations. The analysis of the reviewed literature, a comprehensive 

conceptualization has been developed shown in Figure 2.1. 

The research followed the SLR is a basic scientific activity that delivers a clear and 

comprehensive overview compared to descriptive literature reviews. The formation of a basic 

framework for an in-depth analysis and a scientific process can be possible by using the SLR. It 

has been observed from the systematic literature followed a sequence of five steps are as follows. 

1) Formation of questions; 

2) Finding the studies; 

3) Study preference and evaluation; 

4) Investigation and combination; 

5) Reporting and using the results. 

 

Step1. Formation of Questions 

RQ1. What is the role of degradation, residual life distribution, workload strategy, upgradation, 

and predictive maintenance on flexible unit systems?  

RQ2. How to integrate the degradation and upgradation models to the flexible unit systems? 

 

Step2. Finding the studies 

This step concerns how to find and choose the bibliographic database or search engine, additionally 

search strings. The research questions have been considered in this search for literature reviews. 

Following similar literature reviews [49-51] and three bibliographic databases i.e. Web of Science, 

Scopus and Science Direct a remarkable quantity of published literature on degradation rate, 

residual life distribution, workload strategy, upgradation, and predictive maintenance including 

very relevant important journals in this area has been considered.  
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Table 2.1 Search string and Number of results from Web of science 

 
Search String Search Field Date of Search No. of Results 

“Flexible unit systems (or) Flexible machine 

systems” and “Degradation (or) Degradation 

Rate” 

Topic 11-08-2020 273 

“Flexible unit systems (or) Flexible machine 

systems” and “Residual Life (or) Residual 

Life Distribution” 

Topic 11-08-2020 34 

“Flexible unit systems (or) Flexible machine 

systems” and “Workload strategy (or) 

Workload adjustment” 

Topic 11-08-2020 42 

“Flexible unit systems (or) Flexible machine 

systems” and “Upgradation” 

Topic  11-08-2020` 2 

“Flexible unit systems (or) Flexible machine 

systems” and “Predictive Maintenance” 

Topic 11-08-2020 41 

 

Table 2.2 Search string and Number of Results from Scopus 

 
Search String Search Field Date of Search No. of Results 

“Flexible unit systems (or) Flexible machine 

systems” and “Degradation (or) Degradation 

Rate” 

Article title, 

abstract, keywords 

04-09-2020 178 

“Flexible unit systems (or) Flexible machine 

systems” and “Residual life (or) Residual life 

Distribution” 

Article title, 

abstract, keywords 

04-09-2020 9 

“Flexible unit systems (or) Flexible machine 

systems” and “Workload strategy (or) 

Workload adjustment” 

Article title, 

abstract, keywords 

04-09-2020 14 

“Flexible unit systems (or) Flexible machine 

systems” and “Upgradation” 

Article title, 

abstract, keywords 

04-09-2020 1 

“Flexible unit systems (or) Flexible machine 

systems” and “Predictive Maintenance” 

Article title, 

abstract, keywords 

04-09-2020 9 

 

Table 2.3 Search string and Number of Results from Science direct 

 
Search String Date of Search No. of Results  

“Flexible unit systems (or) Flexible machine systems” and 

“Degradation (or) Degradation Rate” 

18-09-2020 152 

“Flexible unit systems (or) Flexible machine systems” and 

“Residual life (or) Residual life Distribution” 

18-09-2020 124 

“Flexible unit systems (or) Flexible machine systems” and 

“Workload strategy (or) Workload adjustment” 

18-09-2020 84 

“Flexible unit systems (or) Flexible machine systems” and 

“Upgradation” 

18-09-2020` 101 

“Flexible unit systems (or) Flexible machine systems” and 

“Predictive Maintenance” 

18-09-2020 193 
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Tables 2.1, 2.2, and 2.3 shows the search strings searched in data bases and the results 

obtained using the three mentioned databases. However, after sorting the selecting research articles 

and by selecting the publication title between 2009-2020 shows 603 number of articles for the 

search string “Flexible unit systems (or) Flexible machine systems and Degradation (or) 

Degradation rate”, 167 articles for the search string “Flexible unit systems (or) Flexible machine 

systems and Residual Life Distribution (or) Residual life”, 140 articles for the search string 

“Flexible unit systems (or) Flexible machine systems and workload strategy (or) workload 

adjustment”, 104 articles for the search string “Flexible unit systems (or) Flexible machine systems 

and Upgradation” and 243 articles for the search string “Flexible unit systems (or) Flexible machine 

systems and Predictive Maintenance” respectively.   

 

Step3. Study preference and Evaluation 

In this step, filtering criteria was explicated, to choose only relevant studies to add in the review, 

in which the studies actually addressed the research questions. From 1995 to 2008 articles were 

excluded because they were just consigned to the small percentage of the examples. 11 years (2009-

2020) of related studies was initiated to focus on recent studies, methodologies, and technologies. 

The article journals of document type have been sorted from the search results and at best articles 

distributed in peer-reviewed journals in English were contemplated and Bortolini et al., (2018) [49] 

argue that enclosing the search towards the peer-reviewed journals, and the results can be improved 

because rigorous processes to such articles are subject before publication.  

This exercise reduces the number of journal articles to 198. After checking the duplicates 

(initially in each search string and after, taking into consideration all search strings set together), 

titles, abstracts of the selected journal articles were analyzed for relevance, further the number of 

articles reduced to 106. Articles qualified for review must fulfill the five major criteria (i) articles 

related to finding the Degradation level of manufacturing systems (ii) articles related to finding the 

residual life of manufacturing systems (iii) articles related to be adjustment strategy of workload 

to reduce the degradation level of manufacturing systems (iv) articles related to upgradation of 

manufacturing systems. (v) Articles had to be focused on predictive maintenance of manufacturing 

systems. At this step, the number of articles for investigation was 106. At last, a more examined 

analysis of the 66 articles was made with the full gratified review.  
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Step4. Investigation and Combination  

In this step, the content of each paper was analyzed concerning identifying the key issues. Through 

full-content review, different articles were excluded, because those are not as per the specified 

research focus of this study. In this way, the number of definite articles for the investigation have 

been reduced to 43, as recorded in Table 2.4. 

Table 2.4 Summary of articles preferences and evaluation. 

Bibliographic database analysis Search1 Search2 Search3 Search4 Search5 Total 

Web of sciences 273 34 42 2 41 392 

Scopus 178 9 14 1 9 211 

Science Direct 152 124 84 101 193 654 

 

  Inclusion/Exclusion criteria of Web of sciences 

Date Range 193 29 26 1 28 277 

Document type 191 29 26 1 28 275 

Research Area 175 26 23 1 26 251 

Language 174 26 22 1 26 249 

 Inclusion/Exclusion criteria of Scopus 

Date Range 155 9 11 1 6 182 

Document Type 130 6 7 1 6 150 

Research Area 109 6 6 1 6 128 

Language 96 6 6 1 6 115 

       

After checking the duplicates (in 

each search)  

113 22 36 3 24 198 

After checking the duplicates (in 

all search)  

106 

Analysis of (Abstract and Title) 66 

After a detailed article analysis 59 

 

Step5. Reporting and using the results 

The data contained in 59 articles was summarized and then prepared with connected 

categories, for example, methodologies used in their research and various key findings. The list of 

journals related to the number of articles published as well as the year of publication are noted. 
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Reliability engineering and systems safety, International Journal of Advanced Manufacturing 

Technology, IEEE Transactions on automation science and engineering, Journal of Intelligent 

Manufacturing, IFAC online, CIRP Annals: Manufacturing Technology, and IEEE Transactions 

on Reliability contributed to 55% of the total articles published related to factors (degradation, 

residual life distribution, workload strategy, upgradation, and predictive maintenance) related to 

the manufacturing systems. Other journals like the Journal of Computers & Industrial Engineering, 

IIE Transactions, Journal of manufacturing systems, Procedia Manufacturing, European Journal of 

Operations Research and few other journals contribute to 45% of the total journal articles published 

related to factors affecting the manufacturing systems. 

The relevant data has been collected and studies are arranged dependent on five factors, 

which are mentioned in the research methodology. Only these five relationships are formulated 

because these five are the common factors that will affect the flexible unit systems in different 

ways mentioned in the recognized studies, connection, conversion, cyber, cognition, and 

configuration. The integration of the CPS approach with the production plan and MM of flexible 

configurations contribution is important and it can improve the productivity [52]. 

The discussion in this section has been focused on detailed literature of the CPS approach 

with the PPC and MM as well as several challenges that affect the system’s efficiency and 

performance of realistic flexible configuration systems. CPS became more popular in the context 

of the fourth industrial revolution (Industry 4.0). The main drivers for the development of CPS are 

as security, competitiveness, social needs, etc. for reduction in development costs [53] and time 

with the improvement in designing of the products to make systems safer, increment in 

productivity, and reduction in maintenance cost. The relation between the designed product and 

manufacturing system plays a key role in the evolution of Industry 4.0 [54-55]. For building of 

CPS an 8C architecture by considering the 3C facets along with the 5C architecture provided 

guidelines for a smart factory has been proposed in [56].  

PPC is the planning for the production and manufacturing of various modules in an 

industry. Generally increasing in shorter PLC and the challenges facing by the employees as a 

result of technological changes require to upgrade their practice-related training and qualifications. 

Given the above-mentioned situation, the cost objectives influence by the numerous interactive 

mechanisms. The decisions need to be made in the frame of PPC and targeted as these objectives 

have to consider the reason of technical considerations. From the past literature it has been clarified 

that the CPS in the view of PPC is an advantage in case of cost reduction [57]. Similarly, [58] 
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investigation has shown that production planning is essential for manufacturing systems for 

reducing the overall cost. Along with that, [59] presented a method to the production and 

maintenance plan on a manufacturing system to minimize the cost and maximize the reliability. 

The literature in the past have shown that inadequate maintenance practices also affect the 

industry’s competitiveness by reducing the reliability of production facilities and lowering 

equipment availability. To solve the above-mentioned problems, industrial systems’ maintenance 

is an important part of asset management strategy that aims to maintain better levels of efficiency. 

Generally, maintenance will lead to the monitoring of physical processes with the help of sensors 

and it is a basic function of CPS. It has been identified how industry 4.0 integrate CPS regarding 

maintenance management and the requirements for industries to reach the ideal smart factory. 

Thus, the impact of maintenance mainly on profitability and productivity, which are the two most 

important business performance aspects. Along with that many industries are seeking to facilitate 

performances assets and gain a safer, more sustainable environment with the help of better asset 

management strategies. Moreover, the industry may face various challenges with the integration of 

CPS to the manufacturing industry, and it can be listed as data protection, data security, and 

strategic planning, etc. [60-62].  [63] Worked on aiming to review the literature on the CPS for 

manufacturing the fourth industrial revolution for a complete understanding of its challenges, and 

various used techniques in his domain. But many industries are facing the various breakdown 

problems and research focusing on machine breakdown has also grown significantly in the past 

few years. In manufacturing systems, the uncertainty in machine breakdown has a severe effect on 

the system in context to his production planning, maintenance planning and system predicted 

output [64]. To overcome this, Koh and Sameh [65] intended to represent the stochastic nature of 

such interruption. Later, Yan and Jay [66] designed a prognostic algorithm to capture this process 

of machine failure as the degradation process stating it as a single staged process and tried to predict 

the residual life of the machines.  

 

2.2 Degradation of manufacturing systems 

The degradation of a manufacturing systems is defined as the condition of degrading or being 

degraded. The degradation information of a manufacturing systems will help in knowing the 

performance of manufacturing the products. Although, system degradation is not a single staged 

process in real life but instead a multi-staged process following a Poisson distribution, mentioned 
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in [67]. With this information, a multi-stage stochastic degradation model was proposed to the 

performance of a system using Bayesian updating methods to extract real-time data from machines 

and update the degradation model for finding the Residual Life Distribution for degraded machines 

[68]. Following this, numerous research was carried towards the modeling of the degradation 

process with an insight to capture the degradation coefficient [69]. Later, Bian and Gebraeel [70] 

formulated a stochastic model for the degradation process of inter-dependent parts in a multi-

component system. Hao et al. [37] adopted the stochastic model and proposed a prognostics method 

to predict the residual life of each component in a composite manufacturing system by modeling 

degradation signals as an instantaneous stochastic process. 

Among those literature, Gebraeel et al., [71] implemented Bayesian method for updating 

parameters and to predict the RUL of a bearing component. Hao et al., [38] and Song et al., [72] 

adopted the stochastic model and proposed a prognostic method to predict the residual life of each 

component in a composite manufacturing system by modeling degradation signals as an 

instantaneous stochastic process. The functional form of degradation endeavors to explain 

probabilistically the progression of the physical degradation process. Various techniques have been 

explained by Bian et al., [73], and they has modeled the evolution of degradation signals based on 

sensors data to estimate lifetime distribution. Later, Deutsch et al., [74] research focused on 

prediction of RUL of a rotating element with big data by presenting a deep learning based technique 

based on the degradation data. Their technique has been tested and validated by collecting the data 

from a gear test rig. Similar work has been carried out by Ren et al., [75], a deep learning based 

method has been proposed to predict the RUL of a bearing component combined with the deep 

neural network and deep auto encoder. Further, supervised and unsupervised data analysis 

techniques have been used [76, 77] for the maintenance of a vessel based on its condition in a 

diesel-electric gas propulsion plant.  

In machine level, a case study has been presented for finding the degradation level on 

monitoring of industrial pumps by [78]. In their work, vibration data has been collected from a 

chemical plant on 30 industrial pumps for a period of 2.5 years and applied random forest algorithm 

and found Key Condition Indices (KCIs) for condition based monitoring. Similarly, data analysis 

and simulation tools have been used to analyze the machine failure data, system failures prediction, 

and a novel procedural approach has been proposed by [79].  Later, to reduce the impact of the 

degradation process on machine performance, and machining precision using sensory data such as 

emission rate, maintenance rate, as well as production rate as the performance indices has been 
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identified by [80, 81]. In general, the system degradation is not a single staged process instead it is 

a multi-stage process in real life. Li et al., [82] proposed a method for predicting the RUL by 

changing the degradation rate of systems, and cause signal jumps at condition to change points as 

the two factors. With this information, a multi-stage stochastic degradation model was proposed 

by using Bayesian updating methods to extract real-time data from machines and update 

degradation model for finding the RUL for degraded machines. Further, numerous research was 

carried towards the modeling of the degradation process with an insight to capture the degradation 

[83]. Another paper mentioned with various techniques for predicting the RUL and understanding 

the progression of degradation in machines [84-88]. 

 

2.3 Workload Adjustment 

The objective of workload strategy is to manage the remaining useful lifetime of various unit 

systems to accomplish some sort of optimality. A dynamic workload adjustment technique has 

been proposed by [13] to locate the most extreme workload of the higher degraded machines in 

manufacturing systems to satisfy the production necessities on parallel configurations as well as 

various benchmark instances and simulation tests have been led to assess degradation rate. [36] 

explored that the effects of various workload adjustment methodologies on a system execution by 

a mathematical study utilizing the agent-based simulation. Studies have shown that the higher the 

workload to the machine, accelerate the degradation and vice versa.  To prevent the overlap of 

machine failure within a period of time [36] developed a method to control the degradation and 

predicted failure time of each machine by adjusting the workload. Few studies [13], [35] and [36] 

addresses the phenomena of controlling the pace of degradation among the machines in a real-time 

manufacturing environment. Their studies proposed a workload strategy dynamically to control the 

degradation rate by predicting the residual life on parallel and hybrid configurations.  

The workload adjustment strategy also helps in reducing the overlap of the machine failures 

that the most degraded machines need to be identified and adjust the workload to fulfill the 

necessary requirements [35].  A similar work has been carried out, where the workload adjustment 

strategy has been tested and validated on hybrid configuration by [13, 37]. The allocation of a 

number of jobs is especially important to obtain the better throughput. A mixed integer linear 

programming for the workload adjustment strategy has been proposed by minimizing the loads on 

maximum number of machines in a semiconductor manufacturing front end fab [89]. Similarly, a 
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workload allocation approach has been proposed and a case study of aerospace enterprise has been 

demonstrated by validating the proposed approach [90]. Further, a sensitivity analysis has been 

performed by proposing a mixed integer linear programming where the workload on each machine 

has been adjusted dynamically in a manufacturing company for satisfying the requirements [91]. 

 

2.4 Predictive Maintenance 

Nowadays, predictive maintenance is considered as the key point for many manufacturing 

industries because of a major part of the operational cost and system failure impacts on product 

quality and equipment availability. [92] Explained that Predictive maintenance considers close past 

information for predicting future tendencies, biases, behaviors, etc. through correlation. He et al., 

(2017) [93] introduced that Predictive maintenance is an analytic technique to eliminate 

prospective failures and improve the mission dependability of production systems. Consequently, 

a coordinated Predictive Maintenance procedure considering item degree, mission dependability 

state was proposed reasoning of prediction and manufacturing. Spendla et al., (2017) [94] proposal 

focused on predictive maintenance of manufacturing systems to improve the production process 

quality.  

Dong et al., (2019) [95] have attempted to work on a flexible structure of a versatile 

manufacturing system to satisfy different needs and item varieties and to build up a PHM structure 

for assembling with different online sensors and flexible structures utilizing different sensors-based 

degradation data for registering and predicting each machine's time to failure. For example, Traini 

et al., (2019) [96] discussed the execution predictive maintenance of a milling cutting tool 

information the collection as validation of a structure. Yildirim et al., (2016) [97] expanded the 

adaptive predictive generator maintenance model presented by incorporating unit commitment. 

From the different literature on predictive maintenance, it can be concluded that the predictive 

maintenance of the machines allows to extend the machine’s life and to lower maintenance costs 

by addressing the problems before they cause machine failures. 

The predictive maintenance has significantly benefited with the use of ML prediction 

algorithms and real-time fault detection based on the technological advancements such as sensors 

utilization in manufacturing systems. The predictive maintenance (PM) is a focal point for many 

manufacturing industries to reduce the operational costs [98]. A systematic implementation of 

machine learning (ML) algorithms for PM has been proposed to identify the fault detections of a 
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machine before its failure in a Small and Medium Enterprise (SME) [99]. The Predictive 

Maintenance for machine learning models has been proposed and the models were evaluated by 

the accuracy, precision and F1 score for classifying the ML algorithms [100].  

Many authors have explained that the equipment replacement is based on the maintenance 

costs and many companies were struggling to implement AI and ML-based predictive maintenance 

techniques. The main benefit of the predictive maintenance technique with the help of the ML 

approach is to improve the performance of the machines. The ML tool helps in data-driven 

recommendations and decision makings based on the input data provided. Later, a data-driven PM 

technique is developed for a production line to improve the performance of a manufacturing system 

as the data has been generated from the IoT-based sensors in real-time, and the predictions of 

machine failures and the maintenance requirement detected using ML methods (Ayvaz et al., 2021) 

[101].  

 

2.5 Criticality Index (CI) 

The criticality index of machines or devices used in manufacturing industry can be structured a set 

of activities to identify failures which impacts on companies goals [46]. Criticality of a machine is 

used as a comprehensive measure to estimate the various actions and to highlight the differences 

between each individual machine and action strategies [102]. 

 The literature described about the assessing the machine’s criticality index [103]. Due to 

the quality and method of data acquisition there is an uncertainty related to the time between 

failures and time to repair of machines [104] and all assessment criteria are equally important into 

the consideration. Considering the above issues, a novel method of machine’s criticality index is 

proposed in this objective. In the area of manufacturing systems the factors which are redundancy, 

workload breakdown time of a machine and impact on throughput as factors has been indicated. 

It has been observed from various literature that it is important to find the weightage of 

each criterion to find the health status of a machine in a manufacturing system. Based on the above 

issue, a novel model of criticality index assessment of a machines is proposed as the first criterion 

[105]. The usage of an index method is proposed and demonstrated based on a Cuban heat 

exchanger battery to rank the investment in a manufacturing company [46]. Later, in following of 

finding the criticality index, the effectiveness of reliability is investigated to identify the most 

critical manufacturing machine to improve the performance by developing a discrete event 
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simulation model [106]. Similarly, an embedded multiple case study method is adopted and 

investigated for improving the productivity with the help of smart maintenance techniques by 

incorporating the main objective of maintenance organization as productivity [107]. The main goal 

of this work is to find the criticality assessment of a machine and the criticality assessment of tools 

in machinery to increase productivity. 

          Few more studies as the part CI is introduced to rank and prioritize various parts involved in 

the manufacturing of different products as an algorithm is developed to obtain the compound global 

index which shows the index of a part in a manufacturing machine. A method was proposed to 

improve the productivity of equipment by focusing on equipment’s criticality evaluation and daily 

maintenance [106]. Later, a strategy is presented on the impact of maintenance and it is considered 

one of the competitive factors on critical equipment [107]. 

 

2.6 Motivation of the Research 

Although manufacturing industries are adapted to face few challenges, many industries are 

incapable to meet the pace of change to keep up with the current global competition. Most factories 

are composed of resources such as machines, and automatic devices that are properly integrated 

but not always connected. To handle the customized orders that are low in volume, and long-lead 

times, current manufacturing systems configurations may not be capable enough to manage the 

production process. Therefor the flexible unit systems has been motivated us to conduct various 

analysis and these configurations has been proposed in this research for fulfilling customer 

requirements.  Moreover, every machine in the production system has its own health status 

therefore its remaining useful life (RUL) has an important to maximize the production rate and also 

its degradation status is highly responsible for the operational performance of the production 

system. The maintenance prediction with the help of machine learning also plays the major role 

has been proposed in this research. Finally predicting the criticality index which gives the 

maintenance time for combined, multiple, and individual machines, and workload adjustment 

strategy on flexible unit configurations by combining of RUL, and CI drive us to conduct this 

research. 
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2.7 Objectives of the Thesis 

 To develop different realistic Configurations ranging from semi-flexible to fully-flexible 

systems and to identify the most influenced performance measure 

 To develop mathematical models and job adjustment strategy for linear degradation model 

on single product category of the proposed flexible systems.  

 To develop the workload adjustment strategy on multiple product category for Flexible 

systems. 

 To develop the criticality index for multi-product category for identifying the machine 

status indicators.  

 To enhance the throughput of flexible configurations using novel upgraded hybrid 

degradation model. 
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Chapter 3 

Development of realistic Configurations ranging from Semi-

Flexible to Fully-Flexible systems and identifying the 

performance measures 

 

3.1 Introduction 

Due to recently emerged technologies from Industry 4.0, industries not only benefited but 

simultaneously throw challenges during execution. Regardless of technology advancements and 

functionalities, recent manufacturing systems are vulnerable and challenge enough to unexpected 

disruptions like machine breakdown, power fluctuations, loss of data, Interoperability, etc. 

Monitoring of complex manufacturing systems and to deal with these unexpected disruptions is a 

complex and challenging task. The Prognostics and Health Management (PHM) is the 

maintenance policy that helps for the better health care of complex machine systems aiming at 

reducing the time and cost for maintenance, manufacturing processes, and unexpected disruptions. 

Prognostics and Health Management also combines sensing and elucidate the performance related 

parameters to assess the system health and diagnose different types of failures. In this situation, 

few major performance parameters of manufacturing systems such as throughput rate, throughput 

time, system utilization, availability, average stay time, and maximum stay time which affect the 

manufacturing systems are of great importance in its performance and maintaining the final 

product quality.  

Ranking of those parameters from the most influenced parameter to the least one is utmost 

requirement for overall assessment particularly when the applications are complex and advanced. 

The ranking of parameters is a tedious task, because of complicated relationships exist between 

decision criteria for ranking the alternatives. It is a type of integrated Multi Criteria Decision 

Making (MCDM) problem in which these parameters can influence various manufacturing 

expenditures [108, 109]. The main driving force for this research work is to improve the 

performance of manufacturing systems, maximize the production rate of the semi-fully flexible 
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machine systems and priory identification of degradation of systems and their health status by 

ranking of various parameters. 

The real-time semi-fully flexible machine configurations are of one-degree flexible 

configuration, two-degree flexible configuration, semi-flexible configuration, and fully flexible 

configurations, in which the identical machines operate simultaneously to process the given 

number of jobs. In addition, the performance analysis of flexible machine systems of the above-

mentioned parameters has shown great importance in systems efficiency. Among various 

mentioned parameters, the throughput rate (summation of all workloads from all the units) is an 

important parameter for the designing and operations of presented configurations. Similarly, 

various manufacturing costs along with the processing time, inspection time, and moving time 

drives the firms to effectively analyse the performance of semi-fully flexible machine systems in 

terms of throughput time. In general, systems degrade with certain rate over a period of time where 

its performance varies while processing similar kind of operations. In fact, the machine is 

considered as failed when its degradation level crosses the pre-defined failure threshold. Hence, 

predicting of residual life will be of great help to the shop floor manager to reroute the processes 

efficiently. Residual life of a machine can be defined as the machine can work until a catastrophic 

interruption [110]. Another key parameter influences the process in the shop floor is machine 

availability, it deals with the probability of machines working without breakdown. In addition, the 

average stay time is the mean processing time taken to complete the jobs on a single machine and 

the maximum stay time is the maximum processing time taken to complete the jobs on a single 

machine also affects the flexible machine systems. 

The experimental analysis is based on the real system, which provides the accurate results 

compared to the simulation results [111]. The simulation model solves real-world problems safely 

and efficiently. The performance parameters analysis provided by the simulation helps in 

visualization, understanding, and quantification of real time manufacturing systems scenarios. 

Various techniques have been applied in the past literature [112] to make the decisions or rank the 

alternatives and it has been observed that one of the popular methods is integrated MCDM method 

but few researches has been done in the field of ranking the parameters with the Technique of 

Order Preference by Similarity to the Ideal Solution (TOPSIS) method. 
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3.2 MCDM (Multi-Criteria Decision Making) 

In this research, the performance process parameters have been analysed using the 

simulation analysis approach and then the results have been validated with the real-time 

experimental calculation results. Later, an integrated MCDM method has been selected to rank 

the parameters, because MCDM is a well-known technique to solve the complex real-life scenario 

problems of diverse alternatives with several criteria to rank or choose the best or worst 

alternative.  

From the various literature, it has been observed that different MCDM techniques can be 

used for solving decision-making problems, but the TOPSIS method is best suited and since it has 

been observed that the TOPSIS method has been preferred for considering the quantitative criteria. 

The Entropy method has been used in conjunction with the TOPSIS method respectively. The 

Entropy method has been applied to calculate the weightage of each criterion and the TOPSIS 

method has been used for evaluating the alternatives (parameters) based on these criteria. Various 

key parameters which influence the Flexible machine systems are shown in below Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Identified Parameters which influence the flexible configurations 

 

3.3 Methodology  

In the experimentation analysis, the number of jobs has been taken as 5000 and the values 

of each individual parameter have been evaluated. Later, the simulation analysis has been 

conducted with the help of simulation software by varying the number of jobs from 100 to 5000. 
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The obtained simulation results are mostly nearby the experimental values. Finally ranked 

the parameters of simulation results that influence the flexible machine systems from most to 

least. Figure 3.2 outlines the overview of the integrated MCDM based simulation approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Overview of an integrated MCDM based simulation approach 

 

Here, S1, S2… S6 indicates the sources from where the jobs can be assigned to the 

processors. The flexible machine systems consist of N number of identical machines in which the 

system has to operate simultaneously to complete the given number of jobs shown in Figure 3.3 

(a-d). Figure 3.3 (a) presents the one-degree flexible system in which if any machine will fail then 

the remaining number of jobs can be adjusted on an adjacent connected machine. Figure 3.3 (b) 

represents the two-degree flexible system in which if any machine fails then the remaining number 

of jobs can be adjusted on two adjacent connected machines depending upon the availability of 

machines. Here, the availability of machines has been increased in the case of two-degree flexible 

configuration compared to one-degree flexible configuration. Figure 3.3 (c), (d) represents the 

semi-flexible and fully flexible machines in which the availability of machines is more compared 

to the one-degree flexible system, two-degree flexible system. 
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a. One-Degree Flexible System     b. Two-Degree Flexible System 

    

c. Semi Flexible System    d. Fully Flexible System 

Figure 3.3 (a-d) Flexible configuration machine systems 

 

3.3.1 Experimental Analysis 

The values of each parameter have been calculated by considering the number of jobs as 5000 and 

it was mentioned below in Table 3.1 since to get that level our majority of machine breakdown at 

least once. Throughput time is the actual time taken to manufacture a product and it can be 

calculated by multiplying the average stay time by the total number of jobs per machine, similarly, 

throughput rate is the rate at which units move from start to finish and it can be calculated by 

dividing the output by throughput time. The availability is the amount of time in which the 

machine actually runs and is available for production, and it can be calculated by Equation 3.1. 
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                                                                       (3.1)
MTBF

Availability
MTBF MTTR




 The average stay time and maximum stay time can be calculated from the bell curve by 

considering a 99.97% confidence level since the processing time follows the normal distribution. 

The system utilization can be defined as the proportion of time that the manufacturing system has 

been used, and system utilization is calculated by Equation 3.2. 

 
                                                               (3.2)

  

Actual Output
Utilization

Maximum Level Output
  

 

Table 3.1 Experimentation matrix of various parameters for 5000 number of jobs 
 

Without Breakdown With Breakdown 

Criteria/ 

Parameters 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

Throughput 

Time (Sec) 

362133.33 362133.33 380133.33 369333.33 521600 550400 539600 550400 

Throughput/ 

Hour 

49.70 49.70 47.35 48.73 34.50 32.70 33.35 32.70 

System 

Utilization (%) 

99.41 99.410 94.70 97.47 69.01 65.40 66.71 65.40 

Availability 1 1 1 1 0.9999 0.9999 0.9999 0.9999 

Average stay 

time(s) 

600 600 600 600 600 600 600 600 

Max stay 

time(s) 

690 690 690 690 86400 86400 86400 86400 

 

3.3.2 Simulation Analysis 

The simulation analysis was conducted on a PC with Intel Corei3-7100 U (2.40 GHz), running 

under windows 10 professional operating system with 8GB RAM. The images of various 

configurations from a single degree to fully flexible as shown in Figure 3.3 (a-d) The processing 

time and mean time between failures (MTBF), Mean Time to Repair (MTTR) follows the normal 

distribution, and the time required to repair a machine has been considered as constant.  

 

Warmup period 

The number of replications for the simulation has been determined as 20 and the length of each 

replication is 1hr with a warmup period is 8hours for one-degree flexible configuration and has 

been shown in Figure 3.4 (a) by without breakdown of machines. The warmup period for two-

degree flexible configuration, semi-flexible, and fully flexible configurations without the 
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breakdown of machines are as 8hours, 13hours, and 10hours as shown in Figure 3.4 (b), (c), (d) 

respectively. Similarly, warm-up period with the breakdown of machines for various 

configurations is shown in Figure 3.5 (a-d). The warmup period for one-degree, two-degree 

flexible configuration, semi-flexible, and fully flexible configurations in the view of the 

breakdown of machines are as 6hours, 14hours, 11hours, and 14hours as shown in Figure 3.5(a), 

(b), (c), (d) respectively. The warmup period can be obtained by applying Welch’s procedure 

[113] to estimate the steady state mean. Here the technique often suggested for these kinds of 

problems is called the warmup period or also called initial data deletion. The main idea here is to 

delete the initial observations from the run and using of remaining observations to get the steady-

state. The number of replications has been calculated with the help of the following Equation 3.3. 

[113].  

1,1 /2( )                                                                                              (3.3)n

s
X n t

n
   

Where ( )X n represents the sample mean, s represents sample standard deviation, and n

represents the number of replications, and
1,1 /2nt  

is the upper and 1 / 2  critical points where 

the warmup period is in case of breakdown for one-degree configuration is 6hrs. Then the desired 

confidence interval for 95% confidence level is
19,0.025

7.504
6

20
t . From the results it has been 

observed that, the 20 number of simulations are enough from the initial approach mentioned in 

[113]. The warmup period has been identified from the plot as shown in figure below for various 

configurations.  
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(a) One Degree      (b) Two Degree 

 

 

 

 

 

 

 

 

  (c) Semi Flexible     (d) Fully Flexible 

 

 Figure 3.4 (a-d) Warm up period for flexible configurations without breakdown 

 

 

(a) One Degree     (b) Two Degree 
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(c) Semi Flexible     (d) Fully Flexible 

 

Figure 3.5 (a-d) Warm up period for flexible configurations without breakdown 

 

Various parameters such as Throughput Rate (TR) in (throughput/hour), Throughput Time 

(TT) in (Seconds), System Utilization (SU) in (%), Availability (A), Average stay time (Tavg) in 

(Seconds) Maximum stay time (Tmax) in (Seconds) values have been generated with the help of 

simulation software for one degree, two-degree, semi-flexible, and fully flexible configurations 

without and with the breakdown of machines. The number of machines has been varied from 100 to 

5000 and the simulation results has been presented for various configurations in Tables 3.2, 3.3, 3.4, 

and 3.5 respectively. 

Table 3.2 Comparative Simulation Matrix of One-degree Configuration without and with 

breakdown of machines. 

 One Degree Flexible (without breakdown) One Degree Flexible (with breakdown) 

No. of 

Jobs 

TR TT SU A Tmax Tavg TR TT SU A Tmax Tavg 

100 50.85 35879.61 100 1 674.91 601.19 35.13 31848.98 66.67 1 669.4 600.2 

200 52.71 42459.19 100 1 678.82 599.2 35.52 41867.61 66.67 1 678.82 598.18 

300 53.25 49082.4 100 1 678.82 599.58 35.79 51772.82 66.67 1 683.74 600 

400 53.56 55685.86 100 1 683.74 599.66 35.75 61883.3 66.67 1 683.74 599.8 

500 53.94 90973.22 100 1 695.33 600.5 35.88 71771.32 66.67 1 683.74 599.82 

700 53.96 104299.78 100 1 695.33 600.36 35.92 91749.3 66.67 1 683.74 599.88 

900 54.09 117499.95 100 1 701.54 600.38 35.86 111943.09 66.67 1 695.33 600.36 

1100 53.87 131110.14 100 1 712.62 601.32 35.9 131893.71 66.67 1 695.33 600.17 

1300 53.89 144439.91 100 1 712.62 600.79 35.93 151868.42 66.67 1 701.74 600.41 

1500 53.91 157769.41 100 1 712.62 600.56 35.9 172038.72 66.67 1 712.62 601.12 
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1800 53.97 177659.53 100 1 712.62 600.49 35.93 201928.04 66.67 1 712.62 600.72 

2100 53.97 197681.64 100 1 712.62 600.13 35.92 232050.95 66.67 1 712.62 600.6 

2400 54 217589.93 100 1 712.62 600.12 35.93 262070.93 66.67 0.99 712.62 600.37 

2700 53.98 237683.2 100 1 712.62 600.12 35.95 291977.9 66.66 0.98 712.62 600.24 

3000 54.02 257528.86 100 1 712.62 599.99 35.93 322222.42 66.66 0.97 712.62 600.24 

3400 53.97 54381.48 100 1 712.62 600.21 35.98 361781.14 66.68 0.97 86981.14 625.41 

3700 53.62 305999.59 99.33 1 712.62 600.26 35.96 391993.21 66.68 0.96 86981.14 623.48 

4100 51.89 342068.53 96.07 1 712.62 600.13 35.96 432017.34 66.68 0.95 86981.14 621.35 

4500 49.95 381923.46 92.46 1 712.62 599.83 35.98 471830.77 66.69 0.94 87012.33 638.61 

5000 48.09 431921.51 89.01 1 712.62 599.87 36 521598.36 66.69 0.94 87012.33 651.7 

 

Table 3.3 Comparative Simulation Matrix of Two-degree Configuration by without and with 

breakdown of machines 

 Two Degree Flexible (without breakdown) Two Degree Flexible (with breakdown) 

No of 

Jobs 

TR TT SU A Tmax Tavg TR TT SU A Tmax Tavg 

100 50.85 35879.61 100 1 674.91 601.19 50.85 35879.61 100 1 674.91 601.19 

200 52.71 42459.19 100 1 678.82 599.2 52.71 42459.19 100 1 678.82 599.2 

300 53.25 49082.4 100 1 678.82 599.58 53.25 49082.4 100 1 678.82 599.58 

400 53.56 55685.86 100 1 678.82 599.66 53.56 55685.86 100 1 678.82 599.66 

500 53.66 62347.22 100 1 683.74 600 53.66 62347.22 100 1 683.74 600 

700 53.78 75659 100 1 683.74 600.19 53.78 75659 100 1 683.74 600.19 

900 53.71 89121.68 100 1 695.33 600.26 53.71 89121.68 100 1 695.33 600.26 

1100 53.79 102424.66 100 1 695.33 600.2 53.79 102424.66 100 1 695.33 600.2 

1300 53.86 115686.21 100 1 695.33 600.41 53.86 115686.21 100 1 695.33 600.41 

1500 53.73 129300.36 100 1 712.62 601.18 53.73 129300.36 100 1 712.62 601.18 

1800 53.8 149244.62 100 1 712.62 600.74 53.8 149244.62 100 1 712.62 600.74 

2100 53.84 169217.09 100 1 712.62 600.64 53.84 169217.09 100 1 712.62 600.64 

2400 53.86 189221.03 100 1 712.62 600.41 53.86 189221.03 100 1 712.62 600.41 

2700 53.93 209043.09 100 1 712.62 600.26 53.93 209043.09 100 1 712.62 600.26 

3000 53.93 229064.06 100 1 712.62 600.25 53.93 229064.06 100 1 712.62 600.25 

3400 53.94 255711.11 100 1 712.62 600.03 53.94 255711.11 100 1 712.62 600.03 

3700 53.93 275769.78 100 1 712.62 600.13 53.93 275769.78 100 1 712.62 600.13 

4100 53.9 302657.47 99.71 1 712.62 600.31 53.9 302657.47 99.71 1 712.62 600.31 

4500 52.55 337049.76 97.41 1 712.62 600.23 52.55 337049.76 97.41 1 712.62 600.23 

5000 50.28 386801.83 93.14 1 712.62 599.87 50.28 386801.83 93.14 1 712.62 599.87 
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Table 3.4 Comparative Simulation Matrix of Semi flexible Configuration by without and with 

breakdown of machines. 

 Semi Flexible (without breakdown) Semi Flexible (with breakdown) 

No of 

Jobs 

TR TT SU A Tmax Tavg TR TT SU A Tmax Tavg 

100 50.85 53879.61 100 1 674.91 601.19 35.35 49783.91 66.67 1 669.4 600.75 

200 52.71 60459.19 100 1 678.82 599.2 35.55 59852.27 66.67 1 678.82 598.46 

300 53.25 67082.4 100 1 678.82 599.58 35.67 69877.89 66.67 1 678.82 599.8 

400 53.56 72685.86 100 1 678.82 599.66 35.77 79858.19 66.67 1 683.74 599.69 

500 53.66 80347.22 100 1 683.74 600 35.75 89944.35 66.67 1 683.74 599.85 

700 53.78 93659 100 1 683.74 600.19 35.87 109852.47 66.67 1 683.74 599.95 

900 53.71 107121.68 100 1 695.33 600.26 35.89 129878.71 66.67 1 695.33 600.35 

1100 53.79 120424.66 100 1 695.33 600.2 35.94 149797.73 66.67 1 695.33 600.15 

1300 53.86 133686.21 100 1 701.41 600.41 35.91 169916.44 66.67 1 701.54 600.44 

1500 53.73 147300.36 100 1 712.62 601.18 35.84 190257 66.67 1 712.62 601.13 

1800 53.8 167244.62 100 1 712.62 600.74 35.9 220097.42 66.67 1 712.62 600.73 

2100 53.84 187217.09 100 1 712.62 600.64 35.91 250140.05 66.67 1 712.62 600.59 

2400 53.86 207221.03 100 1 712.62 600.41 35.95 279925.42 66.67 1 712.62 600.36 

2700 53.93 227043.09 100 1 712.62 600.26 36.35 307012.44 67.46 0.99 712.62 600.23 

3000 53.93 247064.06 100 1 712.62 600.25 37.26 329437.19 69.12 0.98 712.62 600.24 

3400 53.94 273711.11 100 1 712.62 600.03 38.27 359391.17 70.97 0.97 712.62 600.03 

3700 53.93 293769.78 100 1 712.62 600.13 38.63 384447.19 71.62 0.96 87010.2 623.48 

4100 53.92 320521.68 100 1 712.62 600.31 38.92 418792.05 71.21 0.95 87010.2 621.37 

4500 52.69 354260.59 97.6 1 712.62 600.23 39.17 453145.31 72.62 0.95 87010.2 638.59 

5000 50.39 403982.15 93.3 1 712.62 599.87 38.77 503929.54 71.81 0.95 87010.2 634.44 

 

Table 3.5 Comparative Simulation Matrix of Fully flexible Configuration by without and with 

breakdown of machines. 

 Fully Flexible (without breakdown) Fully Flexible (with breakdown) 

No of 

Jobs 

TR TT SU A Tmax Tavg TR TT SU A Tmax Tavg 

100 50.85 43079.61 100 1 674.91 601.19 35.13 60648.37 66.67 1 669.4 600.49 

200 52.71 49659.19 100 1 678.82 599.2 35.6 70625.13 66.67 1 678.82 598.21 

300 53.25 56282.4 100 1 678.82 599.58 35.75 80613.69 66.67 1 683.74 600.06 

400 53.56 62885.86 100 1 683.74 599.66 35.84 90575.8 66.67 1 683.74 599.74 

500 53.66 69547.22 100 1 683.74 600 35.8 100676.19 66.67 1 683.74 599.91 
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700 53.78 82859 100 1 683.74 600.19 35.89 120618.59 66.67 1 683.74 600 

900 53.71 96321.68 100 1 695.33 600.26 35.89 140663.51 66.67 1 695.33 600.32 

1100 53.79 109624.66 100 1 695.33 600.2 35.91 160686.28 66.67 1 695.33 600.2 

1300 53.86 122886.21 100 1 701.41 600.41 35.89 180798.96 66.67 1 701.54 600.44 

1500 53.73 136500.36 100 1 712.62 601.18 35.85 201020.24 66.67 1 712.62 601.13 

1800 53.8 156444.62 100 1 712.62 600.74 35.89 230963.02 66.67 1 712.62 600.75 

2100 53.84 176417.09 100 1 712.62 600.64 35.92 260855.44 66.67 1 712.62 600.58 

2400 53.86 196421.03 100 1 712.62 600.41 35.94 290798.12 66.67 1 712.62 600.34 

2700 53.93 216243.06 100 1 712.62 600.26 35.95 320764.93 66.67 1 712.62 600.21 

3000 53.93 236264.06 100 1 712.62 600.25 36.25 348339.64 67.24 0.9971 712.62 600.22 

3400 53.94 262911.11 100 1 712.62 600.03 37.33 378258.36 69.22 0.9872 712.62 600.01 

3700 53.93 282969.78 100 1 712.62 600.13 38.02 400784.56 70.48 0.9829 712.62 600.12 

4100 53.92 309721.68 100 1 712.62 600.31 38.75 431342.46 71.84 0.9748 87037.7 621.37 

4500 53.94 336339.16 100 1 712.62 600.23 38.99 465935.58 72.26 0.9726 87037.7 619.41 

5000 53.95 369613.81 100 1 712.62 599.87 39.33 508033.76 72.86 0.9557 87037.7 617.15 

 

The collected values of the parameters’ effect on FUS have been represented in Table 3.6. 

These values have been generated by the simulation procedure for various configurations without 

and with machines breakdown by considering the number of jobs as 5000. Initially different 

normally distributed Mean Time Between Failures (MTBF) values for the different machines 

(processors) and constant Mean Time to Repair (MTTR) as 1 day and normally distributed 

processing time has been considered to get random failure. 

 

Table 3.6 Collected values of the parameters effect on flexible machine systems for 5000 number 

of jobs 
 

Without the Breakdown With Breakdown  

Criteria/Para

meters 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

Throughput 

Time  

431921.51 386801.8

3 

403982.15 369613.81 521598.3

6 

572693.84 503929.54 508033.76 

Throughput 

rate  

48.09 50.28 50.39 53.95 36 34.46 38.77 39.33 

System 

Utilization 

(%) 

89.01 93.14 93.76 100 66.69 63.84 71.81 72.86 

Availability 1 1 1 1 0.9423 0.9488 0.9505 0.9557 

Average stay 

time(s) 

599.87 599.87 599.87 599.87 651.7 634.41 634.33 617.15 

Maximum 

stay time(s) 

712.62 712.62 712.62 712.62 87012.33 87037.73 87010.28 87037.73 
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Figures 3.6 (a), (b), (c), (d) represents the simulation results of various parameters 

(throughput rate, system utilization, and average stay time) for various configurations without the 

breakdown of machines. Similarly, Figures 3.7 (a), (b), (c), (d) represents the simulation results of 

the above-mentioned parameters with the breakdown of machines. These simulation results have 

been generated by arranging the machines as per the configuration and data has been provided in 

the simulation software with the help of MTBF, MTTR, and processing time for each machine.  

     

a. System Throughput Rate     b. System Utilization  c. Average Stay time 

 (a) One Degree  

     

a. System Throughput Rate     b. System Utilization  c. Average Stay time 

(b) Two Degree  

        

a. System Throughput Rate     b. System Utilization  c. Average Stay time 

(c) Semi Flexible  

        

a. System Throughput Rate     b. System Utilization  c. Average Stay time 

(d) Fully Flexible  

Figure 3.6 (a-d) Simulation results by without breakdown of machines 
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a. System Throughput Rate     b. System Utilization  c. Average Stay time 

(a) One-degree  

        a. 

System Throughput Rate     b. System Utilization  c. Average Stay time 

(b) Two-degree  

        

a. System Throughput Rate     b. System Utilization  c. Average Stay time 

(c) Semi Flexible  

         

a. System Throughput Rate     b. System Utilization  c. Average Stay time 

(d) Fully Flexible  

Figure 3.7 (a-d) Simulation results by with breakdown of machines 

 

3.3.3 Proposed Entropy weight based TOPSIS method 

In this research, frequently used normalization methods including the entropy and TOPSIS 

methods, as these two methods are used in combination with each other have been analyzed for the 

collected simulation data. The entropy method is used to calculate the weights of each criterion 

when decision-makers having conflicting views. The weights calculating by the entropy method as 
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also called objective weights. The entropy method shows how much different alternatives approach 

one another in respect to a certain criterion. The best advantage of an entropy method is the 

avoidance of human factors interference on the weights of indicators. With this advantage, the 

entropy method has been widely utilized in recent years. The entropy method consists of four steps 

mentioned below. The equations from 4 to 7 are the formulas to calculate the weights of each 

criterion are as follows [114]. The TOPSIS method is used to find the ranking for each individual 

alternative. The TOPSIS method is used to get the solution, which is near to the positive ideal 

solution and far from the negative ideal solution. The application of the TOPSIS method in ranking 

various factors that affect the FUS has been reported in the literature. Various steps involved in the 

entropy and TOPSIS methods have been explained below with the help of equations from 3.4 to 

3.14 are as follows [114]. 

 

3.4 Results and Discussion 

Weights calculation by Entropy Method 

Step 1. Normalize the Decision matrix 

The performance value of 
tha alternative and thb criteria in Equation 3.4 is indicated by 

( 1,2,....., ;   1,2,...., )abA a m b n    and the normalized matrix has been shown in Table 3.7. 

1

                                                                                                                (3.4)ab
ab m

a

u
B

u





 

Table 3.7 Normalized Matrix for the collected values of the parameters. 
 

Without Breakdown With Breakdown 

Criteria/Parame

ters 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

Throughput 

Time  

0.2712

53077 

0.2429

17253 

0.253706

747 

0.2321229

23 

0.247642

492 

0.2719

0141 

0.239253

756 

0.2412023

42 

Throughput rate 0.2372

3546 

0.2480

39071 

0.248581

718 

0.2661437

52 

0.242326

333 

0.2319

60151 

0.260971

998 

0.2647415

19 

System 

Utilization (%) 

0.2367

85401 

0.2477

72073 

0.249421

404 

0.2660211

22 

0.242332

849 

0.2319

76744 

0.260937

5 

0.2647529

07 

Availability 0.25 0.25 0.25 0.25 0.248150

001 

0.2498

61744 

0.250309

43 

0.2516788

24 

Average Stay 

time 

0.25 0.25 0.25 0.25 0.256818

477 

0.2500

04926 

0.249973

4 

0.2432031

97 

Maximum Stay 

time 

0.25 0.25 0.25 0.25 0.249964

988 

0.2500

37956 

0.249959

099 

0.2500379

56 
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Step 2. Entropy value of bE for  𝑏𝑡ℎ criteria 

Entropy value 
jE of thb criteria can be obtained by Equation 3.5 and has shown in Table 3.8. 

1
  ln( )                   1,2,........,                                                          (3.5)

x

b ab aba
E K B B b x


    

Where, 1/ lnK x is a constant to satisfy the condition 0 1bE   and ‘ b ’ indicates the number 

of alternatives or factors. 

Table 3.8 Entropy values. 

 
bE  

Parameters Without Breakdown  With Breakdown  

Throughput Time 0.9988008 0.999082245 

Throughput Rate 0.999384207 0.998999198 

System Utilization 0.999373203 0.999000837 

Availability 0.999999999 1.000035853 

Average Stay Time 0.999999999 0.999911288 

Maximum Stay Time 0.999999999 1.000045018 

 

Step 3. The degree of divergence of average information 

The degree of divergence of average needs to be find out by the Equation 3.6. The degree of 

diversity value matrix has been calculated and shown in Table 3.9.  

 |1 |                                                                                                                        (3.6)b bD E   

Table 3.9 Degree of divergence values. 

 
bD  

Parameters Without Breakdown  With Breakdown  

Throughput Time 0.0011992 0.000917755 

Throughput Rate 0.000615793 0.001000802 

System Utilization 0.000626797 0.000999163 

Availability 1E-09 3.58532E-05 

Average Stay Time 1E-09 8.87123E-05 

Maximum Stay Time 1E-09 4.50179E-05 

 

Step 4. The weight of entropy of 𝑏𝑡ℎ criteria 

The weightages of thb criterion can be calculated by Equation 3.7 and represented in Table 3.10. 

1

                                                                                                                           (3.7)b
b y

b

b

D
B

D





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Table 3.10 Weights of all criteria. 

 
bB  

Parameters Without Breakdown  With Breakdown 

Throughput Time 0.491114421 0.297267459 

Throughput Rate 0.25218903 0.324167048 

System Utilization 0.256695321 0.323636175 

Availability 4.09535E-07 0.011613119 

Average Stay Time 4.09535E-07 0.028734577 

Maximum Stay Time 4.09535E-07 0.014581622 

 

Ranking the parameters by TOPSIS Method 

Step1. Normalization of decision matrix.  

The normalization matrix can be calculated by the Equation 3.8 mentioned below. The normalized 

decision matrix has been formed and shown in Table 3.11. 

2

1

      1,2...., ;        1,2,...,  ;                                                              (3.8)ab
ab

x

a

u
N b y a x

u


  


 

Table 3.11 Normalized Matrix of the collected values 
 

Without Breakdown With Breakdown 

Criteria/Parame

ters 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

Throughput 

Time  

0.5416

02229 

0.4850

25007 

0.506568

04 

0.4634723

18 

0.494614

631 

0.5430

668 

0.477859

868 

0.4817517

65 

Throughput rate 0.4740

63957 

0.4956

52646 

0.496737

01 

0.5318309

52 

0.483954

322 

0.4632

51831 

0.521191

918 

0.5287200

96 

System 

Utilization (%) 

0.4731

5782 

0.4951

12003 

0.498407

788 

0.5315782

72 

0.483968

414 

0.4632

86003 

0.521124

184 

0.5287440

19 

Availability 0.5 0.5 0.5 0.5 0.496293

694 

0.4997

17136 

0.500612

497 

0.5033512

5 

Average Stay 

time 

0.5 0.5 0.5 0.5 0.513541

76 

0.4999

17187 

0.499854

147 

0.4863162

5 

Maximum Stay 

time 

0.5 0.5 0.5 0.5 0.499929

971 

0.5000

75907 

0.499918

193 

0.5000759

07 

 

Step2. Construct the weighted normalized decision matrix. 

The associated weights bW  to be multiplied with the normalized matrix and taken from each 

parameter to be obtained by following Equation 3.9. The weighted normalized decision matrix is 

formed and shown in Table 3.12. 

         1,2.....,        1,2.....,                                                                     (3.9)ab ab bV N W b y a x    
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Table 3.12 Weighted normalized decision matrix. 
 

Without Breakdown With Breakdown 

Criteria/Parame

ters 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

One 

degree 

Two 

degrees 

Semi 

Flexible 

Fully 

Flexible 

Throughput 

Time  

0.2659

88665 

0.2382

02775 

0.248782

87 

0.2276179

39 

0.147032

834 

0.1614

36088 

0.142052

189 

0.1432091

23 

Throughput rate 0.1195

53729 

0.1249

9816 

0.125271

625 

0.1341219

32 

0.156882

044 

0.1501

70979 

0.168953

246 

0.1713936

33 

System 

Utilization 

0.1214

57398 

0.1270

92934 

0.127938

947 

0.1364536

55 

0.156629

686 

0.1499

3611 

0.168654

638 

0.1711206

92 

Availability 2.0476

8E-07 

2.0476

8E-07 

2.04768E

-07 

2.04768E-

07 

0.005763

518 

0.0058

03275 

0.005813

672 

0.0058454

78 

Average stay 

time 

2.0476

8E-07 

2.0476

8E-07 

2.04768E

-07 

2.04768E-

07 

0.014756

405 

0.0143

64909 

0.014363

097 

0.0139740

92 

Maximum stay 

time 

2.0476

8E-07 

2.0476

8E-07 

2.04768E

-07 

2.04768E-

07 

0.007289

79 

0.0072

91918 

0.007289

618 

0.0072919

18 

 

Step3. Determining Positive Ideal solution and Negative Ideal Solution 

The positive ideal solution and the negative ideal solution to be determined by using below 

Equations 3.10, 3.11 respectively. The positive ideal and negative ideal solution matrix is formed 

and shown in Table 3.13. 

|

1 2{ , ,......., }    {(  | ),(  | ) |    a 1,2,...., }                     (3.10)n ab abV V V Max V b K Min V b K x        

|

1 2{ , ,......., }    {(  | ),(  | ) |    a 1,2,...., }                      (3.11)n ab abV V V Min V b K Max V b K x        

Where K is the index of set of benefit criteria and 
|K  is the index of cost criteria. 

 

Table 3.13 Matrix of Positive and Negative ideal solution. 

 Without Breakdown  With Breakdown 

Parameters 
jV   

jV   
jV   

jV   

Throughput Time 0.227618218 0.265988992 0.142052189 0.161436088 

Throughput Rate 0.134122097 0.119553876 0.171393633 0.150170979 

System Utilization 0.136453823 0.121457548 0.171120692 0.14993611 

Availability 2.04768E-07 2.04768E-07 0.005845478 0.005763518 

Average Stay Time 2.04768E-07 2.04768E-07 0.013974092 0.014756405 

Maximum Stay Time 2.04768E-07 2.04768E-07 0.007289618 0.007291918 

 

Step 4. Finding the Euclidean Distance from positive ideal solution & negative ideal solution. 

The Euclidean distance from positive ideal solution and negative ideal solution to be computed by 

the below Equations 3.12, 3.13 respectively. The Euclidian distance matrix from positive ideal 

solution & negative ideal solution is formed and shown in Table 3.14. 
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2 1/2

1
=  { ( ) }        1,2...., ;        1,2,...,  ;                                              (3.12)

y

i ab bb
S V V b y a x 


    

2 1/2

1
=  { ( ) }        1,2...., ;        1,2,...,  ;                                              (3.13)

y

i ab bb
S V V b y a x 


    

Table 3.14 Euclidian Distance Matrix. 

 Without Breakdown With Breakdown 

Criteria/Parameters 
iS   

iS  
iS   

iS  

Throughput Time 0.002032267 0.002540462 0.02004696 0.0302557 

Throughput rate 0.000373814 0.000274561 0.02582523 0.02912409 

System Utilization 0.000385022 0.000298649 0.0257848 0.02905122 

Availability 0 0 9.75202E-05 0.000103988 

Average stay time 0 0 0.00095712 0.00095915 

Maximum stay time 0 0 3.25684E-06 3.13322E-06 

 

Step 5. Calculating the relative closeness (performance score) 

The relative closeness to be calculated from the ideal solution by using below mentioned Equation 

3.14. 

            1,2,......,  ;  0 1                                                                    (3.14)i
i i

i i

S
C a x C

S S



 
   


 

The Equation 3.14 indicates the relative closeness in which the higher value indicates best rank and 

lower value indicates worst rank. The relative closeness value matrix is formed based on obtained 

value and ranked the parameters with as shown in Tables 3.15 (a), (b). 

Table 3.15 (a) Matrix of Relative closeness and ranking of the parameters. 

Without Breakdown 

Criteria/Parameters 
i iS S   

 i
i

i i

S
C

S S



 



 

Rank 

Throughput Time 
0.004572729 0.555568101 

1 

Throughput rate 
0.000648376 0.423460029 

3 

System Utilization 0.000683671 0.43683168 2 

Availability 0 - 4 

Average stay time 0 - 4 

Maximum stay time 0 - 4 

 

Table 3.15 (b) Matrix of Relative closeness and ranking of the parameters. 

With Breakdown 

Criteria/Parameters 
i iS S   

 i
i

i i

S
C

S S



 



 

Rank 

Throughput Time 
0.050302734 0.60147362 

1 

Throughput rate 
0.054949332 0.530017304 

2 

System Utilization 
0.054836051 0.529783342 

3 
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Availability 
0.000201509 0.516049358 

4 

Average stay time 
0.001916273 0.50053063 

5 

Maximum stay time 
6.39006E-06 0.490327135 

6 

 

3.5 Conclusions 

In this research, the maximum number of jobs has been taken as 5000 in the real-time experiment 

and obtained the values of mentioned six parameters such as throughput rate, throughput time, 

system utilization, availability of machines, maximum stay time, and average stay time. To 

compare these experimental results, the simulation analysis was also conducted with the help of 

simulation software by varying the number of jobs from 100 to 5000 by considering with and 

without the breakdown of machines for various configurations. Later, the entropy method has been 

utilized for simulation results to compute the weights of each criterion, and the integrated MCDM 

– TOPSIS method has been employed to rank the parameters from the most affected parameter to 

the least affected parameter by considering the breakdown and without the breakdown of machines. 

From the obtained results it has been observed that the Throughput Time is the most affected 

performance parameter and maximum stay time is the least affected performance parameter on 

flexible machine systems in case of breakdown condition and Throughput Time is the most affected 

performance parameter and Availability, average stay time, and maximum stay time are the least 

affected performance parameter on flexible machine systems without breakdown condition. 
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Chapter 4 

Development of workload strategy for linear Degradation 

model on single product category 

4.1 Introduction 

Although production industries are adapted to face a certain level of challenges, many firms are 

incapable to meet the accelerated pace of change to keep up with the current global competition, 

and technological advancements. Digital transformation driven by smart manufacturing is the basis 

of the current paradigm shift. Most factories are composed of resources such as machines, assembly 

lines, and automatic devices that are properly integrated but not always connected. In order to make 

a factory smarter, the Industrial Internet of Things (IIOT) platform has emerged as a new and 

innovative concept that enables Industry 4.0 key enabling technologies. To handle the customized 

orders that are low in volume, frequent demand shifts, and long-lead times current manufacturing 

systems configurations are not capable enough to manage the production process. Moreover, every 

machine in the production system has its own health status therefore its remaining useful life 

(RUL). Its’ degradation status is highly responsible for the operational performance of the 

production system [115, 116].  

In this unique circumstance, profound research activity is addressed for the development of 

smart factories in the Industrial world. Although the maximum rate of production of a particular 

machine designed with more than actual, according to the reports from the Federal Reserve Board, 

the United States fabrication industries are facing nearly 20 percent of redundancy which is an 

alarming issue for the production system industries [7]. However, this isn’t uncommon due to an 

enormous number of machines tend to degrade at a similar rate, particularly when an equal number 

of workloads are allocated to those machines [13]. Therefore, evaluation of systems performance 

in real-time by capturing performance of a machine is a challenge. Although, a good amount of 

research investigated on component level and machine level degradation on system performance, 

however, a significant research gap exists on the unit-level analysis for controlling the degradation 

of machines in turn to enhance the system-level performance. The proper choice of machine 

configuration greatly impacts the production system concerning its machine reliability and system 

reliability. As a result, numerous scholars have published articles by optimizing the configurations 

to get better productivity 
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4.2 Degradation Problem Description 

We develop a linear degradation model for proposed configurations associated with their 

manufacturing flexibility ranging from a single degree to fully flexible systems to control the pace 

of degradation among the machines for preventing the system from failure and indirectly 

controlling the loss of production of the system. To highlight the main idea, these systems undergo 

various analyses to predict the RUL of the machines that further improves the throughput through 

the minimization of the average degradation level. We define “throughput rate” as the overall 

output of the system, i.e., 
( )

( , )1, 1
TH(x) ( )

N x

q rq r
O x

 
 where denoted by TH(x) represents the 

throughput rate at the time x  and ( )N x  presents the number of machines. Here, we assume that 

the machines in the system are identical in nature. Now, let the number of operating machines at 

time x , be
~

( )N x , then the maximum throughput rate becomes

~

( )

( , )1, 1

N x

q rq r
C

  , where ( , )q rC indicates 

the “capacity” of a machine ,q r  at time x. The throughput rate of a system concerning demand is 

defined as

~

( )

( , )1, 1
( ) min ,

N x

q rq r
TH x C D

 

 
  

 
  where D stands for “Demand”. If demand of the system 

is less than capacity

~

( )

( , )1, 1
 

N x

q rq r
C D

 
 , then the throughput rate can be considered as equal to the 

demand, ( )  TH x D . Alternatively, when the capacity of the operating machines is lower than 

the demand,

~

( )

( , )1, 1
 

N x

q rq r
C D

 
  then the throughput rate becomes equal to the maximum capacity of 

the operating machines

~

( )

( , )1, 1
( )

N x

q rq r
TH x C

 
 , which in turn possibility of assigning the maximum 

amount of jobs to the machines. Here,  ( , ) ( , )0    ,q r q rxO C   for , 1,  2, ,  q r N  , ( , ) ( )q rO x  

denotes assigned jobs for the machine ,q r at time x  acts as a control variable. When machine 

breakdown occurs the job processed on the machine becomes zero with the machine ,q r at the 

time x , i.e. ( , ) ( ) 0q rO x   

4.3 System Model Description 

Yoram et al. [3] pointed out the impact of various configurations on manufacturing system 

performance in terms of productivity, reliability, and life cycle cost. Among all the existing 
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manufacturing systems configurations, we considered flexible real-time configurations, i.e., one-

degree, two-degree, semi-flexible, and fully flexible configurations as explained in previous 

chapters. Flexible unit systems consist of N identical machines operating simultaneously to process 

the assigned number of jobs. Here, when a job arrives, it has to be assigned to any available 

machines in the following configuration to be completed. To recap, the main highlight of this 

research work is to determine the number of jobs that are to be assigned to each machine based on 

the health status of a machine at a unit time from the following assumptions. 

1. Demand is constant in the system, whereas, the resulting amount of jobs can vary on machines 

at a certain time. 

2. The degradation coefficient for ,m n machines, i.e., 
( , )m n  is unknown and random. For that, 

we assumed “Machines to machines variability” to capture the uncertainty in the 

manufacturing environment. 

3. At a time, only one job can be handled on one machine. 

4. Once a machine initiates the processing of a job, the obstruction of its processing is not 

allowed. 

5. Machine failure concerning its degradation rate is only considered. 

4.4 Proposed Degradation Framework 

We proposed a framework of the methodology followed in this research depicted in Figure 4.1. 

The framework depicts a tool for decision-making by delivering the condition of the machine at 

each decision epoch and predicting the real-time health status of machines in a manufacturing 

flexible systems scenario. Recall, the machines are identical in nature, where the assignment of the 

jobs on each machine is carried out based on the capacity and the demand of the system. Though 

the machines are identical in nature, their degradation rate differs not only concerning the number 

of jobs and demand but also due to the natural characteristics such as processing variations, friction, 

material inhomogeneity, etc. These characteristics provide information about the real-time 

degradation rate of each machine, denoted as
( , ) ( )q ri x . With the available degradation information 

of each machine, a linear stochastic differential equation is developed as follows.  
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Figure 4.1 Proposed Degradation framework 

 

( , ) ( , ) ( , ) ( , )( ) ( ) ( )                                                                                  (4.1)q r q r q r q rdA x O x dt dW x 

 Here, ( , ) ( )q rA x  represents the amplitude of degradation signals for the machine ,q r  at the 

time x , and ( , ) ( )q rW x  is a Brownian motion error function. The formulation of Equation 4.1 is 

inspired by the modeling of degradation efforts in the absence of prior degradation information 

[117]. The main idea here is to develop a job assignment strategy to effectively control acceleration 

in the degradation rate of machines by considering this relationship shown in Equation 4.1. Based 

on the past research efforts made on characterizing the relationship between degradation rate and 

amount of jobs assigned through several mathematical assumptions and historical data, we 
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considered a special case stating real-time degradation rate is directly proportional to jobs assigned 

as, shown in Equation 4.2 below. 

( , ) ( , ) ( , )( ) ( )                                                                                                                   (4.2)q r q r q ri x O x  

Where, ( , )q r is considered as the degradation coefficient of the machine ,q r . From Equation 4.2, 

Equation 4.1 can be rewritten as below in Equation 4.3. 

( , ) ( , ) ( , ) ( , )( ) ( ) ( )                                                                                        (4.3)q r q r q r q rdA x O x dt dW x   

Furthermore, the condition monitoring of systems is executed at discrete observation epochs [38] 

therefore we performed the sampling of job adjustment in discrete epochs i.e., 

1 0 2 1 1... u ux x x x x x x        where the sampling interval is kept constant and ux denotes 

the latest observation epoch. Then, ( , ) ( )q r uA x  is the amplitude of degradation signal of the machine 

,q r at time ux  and the corresponding job assigned is ( , ) 1( )q r uO x  .  To facilitate solving the 

formulation in Equation (3) can be simplified as below in Equation 4.4. 

( , ) ( , ) ( , ) 1 ( , ) ( , ) 1( ) ( ) ( ) ( )                                                               (4.4)q r u q r q r u q r u q r uA x O x t W x W x       

From the properties of Brownian motion
2

( , ) ( , ) 1 ( , )( ) ( ) (0, )q r u q r u q rW x W x N d x . Next, we have the 

corresponding jobs assigned as ( , ) 1( )q r uO x   and degradation coefficient ( , )q r , the conditional 

distribution developed by Manupati et al., [36] is expressed as below in Equation 4.5. 

2

( , ) ( , ) 1 ( , ) ( , ) ( , ) 1 ( , )( ) | ( ), ( ( ) , )                                                    (4.5)q r u q r u q r q r q r u q rA x O x N O x x d x       

As per the characteristics of the Wiener process, Brownian motion has an independent increment 

stating ( , ) 1 ( , )( ),..., ( )q r q r uA x A x  are statistically independent [36]. As a result, the probability 

density function of amplitude function can be evaluated as below in Equation 4.6. 

( , ) ( , ) 1 ( , ) ( , ) ( , ) 1 ( , )

1

( ( ) | ( ), ) ( ( ) | ( ), )                                        (4.6)
u

q r u q r u q r q r i q r i q r

i

p A x O x p A x O x    



  

Where ( , ) ( , ) 1 ( , )( ) [ ( ),...., ( )]q r u q r q r uA x A x A x    and ( , ) 1( )q r uO x  ( , ) 0 ( , ) 1[ ( ),..., ( )]q r q r uO x O x  . Here 

random variable ( , )q r  is modelled whose prior distribution was normal distribution with mean ( , )q r

, and variance 
2

( , )q r  .This prior distribution is updated to get posterior distribution with help of 

Bayesian approach by the use of measurements that are collected in real-time [37]. Then the 
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posterior distribution’s mean and variance of degradation coefficient ( , )q r  are represented in 

Equation 4.7, and Equation 4.8. 

2 2

( , ) ( , ) ( , ) 1 ( , ) ( , )

1
( , )

2 2 2

( , ) ( , ) 1 ( , )

1

2 2

( , ) ( , )2

( , )

( , )

( ) ( )

( )                                                                   (4.7)

[ ( )]

( )

u

q r q r i q r i q r q r

i
q r u u

q r q r i q r

i

q r q r

q r u

q r

A x O x d

x

O x x d

d
x

  



 


























2 2 2

( , ) 1 ( , )

1

                                                                                  (4.8)

[ ( )]
u

q r i q r

i

O x x d





 

Next, the posterior mean of degradation coefficient assists in updating the residual life distribution 

of each machine that follows Inverse Gaussian (IG) distribution developed [37] as shown below in 

Equation 4.9. 

( , ) ( , ) ( , ) ( , ) ( , ) ( , )( | ( ), ( ), ) IG( ; ( ), ( ))                                             (4.9)q r q r u q r u q r q r u q r uP T x A x O x x x S x 

where IG(t;.,.) indicates the cumulative distribution function with ( , ) ( )q r ux 

( , ) ( , ) ( , ) ( , )( ( )) / ( ( )) q r q r u q r q r uF A x O x , ( , ) ( )q r uS x 
2 2

( , ) ( , ) ( , )([ ( )] ) / ( ) q r q r u q rF A x d as the mean 

parameter and the shape parameter of an IG distribution respectively. Here, to estimate ( , )q r at a 

certain decision epoch we propose to replace ( , )q r  with the posterior mean ( , ) ( )q r ux  which in turn 

helps in finding the approximated mean parameter of the IG distribution i.e., ( , ) ( )q r ux 

( , ) ( , ) ( , ) ( , )( ( )) / ( ( ) ( )).q r q r u q r u q r uF A x x O x  Here, ( , ) ( , ) ( , )( ( )) / ( )q r q r u q r uF A x x  is the health status 

of the machine ,q r  at the time x   represented by  ( , ) uq rdi x , As a result, predicted residual life 

(mean parameter of IG distribution) can be shown below in Equation 4.10. 

( , )

( , )

( , )

( )
( )                                                                                                                  (4.10)

( )

q r u

q r u

q r u

di x
x

O x
   

After finding each machine’s health status value  ( , ) ,q r udi x the degree of flexibility of the system 

is checked according to which the number of jobs is assigned dynamically to prevent the 

simultaneous multiple machines failure is the primary objective of this study. This procedure 

repeats for every trail until maximum throughput is achieved. 
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4.5  Development of a Jobs Adjustment Methodology 

We formulate our dynamically assigning jobs methodology as a minimization problem that controls 

the degradation of machines by modifying the remaining task at hand. Given the posterior mean of 

the degradation coefficient ( , )q r  of functioning machines
     ~1

)
1,

(

  ...u u
N u

x x   and corresponding 

degradation levels, 
   1,1

...uxA  ~

)( ( )
u

N u

A x   the average degradation of all machines at next decision 

epoch are minimized by adjusting the jobs ~(1,1)
( ( ))

( )... ( )u u
N u

O x O x  as shown in Equation 4.11 and it 

is  summation of two parts. The first part

~

( )

( , ) ( , )

1, 1

 [ ( ) ( ) ] 
uN x

q r u q r u

q r

x O x x 
 

  indicates the incremental 

growth in the degradation rate of the system concerning time. Whereas, the second part ( , ) ( )q r uA x  

measures the degradation signal amplitude of the machine ,q r at the time x . 

 

Objective function:   Minimize Z,  

Where 

~

( )

( , ) ( , ) ( , )~
1, 1

1
 Z =  [ ( ) ( ) ( )]                                                                    (4.11)

( )

uN x

q r u q r u q r u

q r
u

x O x x A x

N x

 
 



 

Subjected to constraints: 

~ ~

( ) ( )

( , ) ( , )

1, 1 1, 1

( ) min ,                                                                                            (4.12)
u uN x N x

q r u q r

q r q r

O x C D
   

 
 
 
 

 

 

~(1,1) ( )
( ( ))

 ... ( )                                                                                                           (4.13)
u

u u
N x

O x O x 

 

( , ) ( , )0 ( ) ,                                     , 1,...,                                                            (4.14)q r u q rO x C q r N  
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( , ) 2

( , ) ( , 1) ( , 1) ( ) ( , ) ( , ) ( , 1)

~

[ ( ) ( )] ( ) ( ) ( )   
4

                                                                                  for 1,2,...,  ( )

           

q r

q r u q r u q r u q r u q r u q r u

u

E x
O x O x di x O x di x O x

q N x


    



~

                                                                             1, 2,...,  ( ) 1                             (4.15)ur N x 

 

( , ) 2

( , ) ( 1, 1) ( 1, 1) ( ) ( , ) ( , ) ( 1, 1)

~

[ ( ) ( )] ( ) ( ) ( )   
4

                                                                                  for 1,2,..., ( ) 1

    

q r

q r u q r u q r u q r u q r u q r u

u

E x
O x O x di x O x di x O x

q N x


       

 

~

                                                                                    1, 2,..., ( ) 1                              (4.16)ur N x 

 

( , ) 2

( , ) ( 1, ) ( 1, ) ( ) ( , ) ( , ) ( 1, )

~

[ ( ) ( )] ( ) ( ) ( )   
4

                                                                                  for 1,2,..., ( ) 1

          

q r

q r u q r u q r u q r u q r u q r u

u

E x
O x O x di x O x di x O x

q N x


    

 

~

                                                                              1,2,..., ( )                                   (4.17)ur N x
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( , ) 2

( , ) ( , 1) ( , 1) ( ) ( , ) ( , ) ( , 1)[ ( ) ( )] ( ) ( ) ( )   
4

                                                                                  for 1

                   

q r

q r u q a r u q a r u q r u q r u q a r u

E x
O x O x di x O x di x O x

r


       



~

~

                                                                      1, 2,..., ( )

                                                                                        1, 2,..., ( ) 1        

u

u

q N x

a N x



 

( , ) 2

( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , )

                    (4.18) 

[ ( ) ( )] ( ) ( ) ( )   
4

                                                                                  for 

q r

q r u q r a u q r a u q r u q r u q r a u

E x
O x O x di x O x di x O x

r


    

~

1

                                                                                         q 1, 2,...., ( )

                                                                                        1,

uN x

a






~

( , ) 2

( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , )

2,..., ( ) 1                            (4.19) 

[ ( ) ( )] ( ) ( ) ( )   
4

                                                           

u

q r

q r u q a r b u q a r b u q r u q r u q a r b u

N x

E x
O x O x di x O x di x O x


     



  

~

                            for ,   1

                                                                                       1, 2,..., ( ) 1

                                                        

u

q r

a N x



 

~

                               0,1, 2,..., ( ) 1                          (4.20)

                                                                                      

ub N x   

The purpose of the objective function is to ensure that, on average, the failure of all machines 

occurs at the slowest rate, shown in Equation 4.11.  

Recall, in the system, when the demand of the system is lower than its capacity, the throughput 

rate is equivalent to demand. Conversely, if the capacity is less than its system’s demand, then the 

system’s capacity becomes the throughput rate. This constraint is determined as presented in 

Equation 4.12. Despite the fact, the flexibility in a system develops a certain amount of robustness 

for production, it will become ineffectual if the simultaneous breakdown occurs in multiple 

machines exceeding a certain limit. So to prevent the multiple machines failure at a time, we 

proposed a method that assigns machines having poorer health status, with a greater workload. The 

fundamental assumption of this approach is that a greater workload speeds up the process of 

degradation and thus distinguishes these machine’s anticipated failure time from the others i.e., 

assigning      1,2) ( ,, )(1 1) (    u u uq rO xO Ox x 
 for machines having health status

   ( ) (1,1 )1,2u ud dixi x  ( , )q r udi x , where  ( , )q r uO x ,  ( , )q r ui xd and denotes the number of 

jobs assigned and health status respectively of machine ,q r calculated at time ux , be
~

( )uN x
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indicating the number of functional machines computed at time ux ., This method as a constraint is 

reflected in Equation 4.13. Constraint in Equation 4.14 refers to the allotment of the non-negative 

quantity of jobs to the respective machines.  

To intercept the system from breakdown, the key challenge is to prevent overlap of machine 

failure.  The solution to this problem is that the failure of a machine should occur after the repair 

of another machine as stated in Equation 4.21 as for a one-degree flexible system. 

( , ) ( , ) ( , 1)( ) ( )                                                                                                  (4.21)q r u q r q r ux E x x    

 

From Equation (10), Equation (21) can be rewritten as shown in Equation 4.22. 

( , ) ( , ) ( , 1) ( , ) ( , ) ( , 1) ( , 1)( ) ( ) ( ) ( ) ( ) ( )                                  (4.22)q r q r u q r u q r u q r u q r u q r uE xO x O x di x O x di x O x    

 

While solving, it results in non-convex quadratic programming equations which are NP- 

hard in nature. An algorithm has been proposed by [118-121] that provides an optimal solution to 

the non-convex quadratically constrained quadratic programming problems by finding a convex 

space, covering the original non-convex space. Later on literature addressed certain challenges that 

arise while optimizing non-convex problems, and further proposed a cutting plate strategy to 

recognize strong cuts to select and generate to improve solutions by using branch and cut algorithm. 

The drawback of using this mentioned approach for our problem is that an optimal solution may 

not be feasible to the non-convex space providing misleading results. In this research, we search 

for a convex subspace in the nonconvex space so that until unless there is an optimal solution, it 

falls under the feasible region and prevents overlap of machine failures. Based on Hao et al. [37], 

we utilized the Arithmetic mean- Geometric mean inequality to convert the non-convex form from 

which constraint in Equation 4.15 is generated. 

For a one-degree flexible system, the overlap of machine failure is controlled by Equation 

4.15. Recall, as flexibility increases the availability of machines for adjusting jobs increases. As a 

result, for a two-degree flexible environment, the problem is controlled by Equation 4.15 and 4.16. 

Similarly, Equation 4.15, 4.17, and 4.18 prevents the intersection of machine failure in the semi-

flexible system. Whereas, in a fully flexible system the problem is tried to be controlled using 

constraints in Equation 4.19 and 4.20. 
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4.5.1 Case Study 

In this section, a case study provided to evaluate the performance of the proposed configurations 

and the effectiveness of the method adopted with a fabric weaving Industry [122]. The related data 

are collected from the zone Surat situated in the northern region of India. This industry consists of 

power loom machines that operate identically to weave fabrics from the thread. The factors that 

influence the productivity of power looms are equipment factor, technological factor, and 

manufacturing flexibility. 

 

Data gathering and Parameters setting 

In this research, 1460 power loom machines degradation data were considered to validate and 

verify proposed model. These 1460 machines process under 4 proposed configurations with 3 

different instances until there is a catastrophic interruption. The number of machines and the degree 

of flexibility for a particular configuration with different instances and flexibilities is shown in 

Table 4.1. An effective arrangement of machines in the configurations has an impact on increasing 

the performance. In this study, the machine arrangement is planned for each configuration in a 

particular instance in such a way that maximum production and highest productivity must be 

achieved. For example, in instance 1 for a one-degree flexible system, the number of machines 70 

arranged in the sequence 10 rows and 7 columns. To capture the real-world characteristics of the 

power looms, we considered the following parameter settings stated in Table 4.2. 

 

Experimental Study 

Table 4.1 Experimental data 

Serial 

No. 

Degree of Flexibility No. of Machines 

(Instance 1) 

No. of Machines 

(Instance 2) 

No. of Machines 

(Instance 3) 

1 One Degree 70 90 110 

2 Two Degree 80 120 140 

3 Semi Flexible 100 140 160 

4 Fully Flexible 100 150 200 

 

 

 



57 
   Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA 

Parameters for the case study 

Table 4.2 Parameters for the case study 

Parameters Unit 

Production of Jobs Kg/day 

The capacity of each machine 48kg/day 

Demand for One Degree Flexible system 3400kg/day 

Demand for Two Degree Flexible system 4000kg/day 

Demand for Semi-Flexible system 5000kg/day 

Demand for Fully Flexible system 5250kg/day 

The prior mean of degradation coefficient of each machine 5.97 × 10-8 inch/kg 

Diffusion parameter of the Brownian motion error 2.03 × 10-5 inch/day 

Failure threshold of each machine 0.004 

 

Experiment Procedure 

We investigated the performance of our approach concerning effectiveness in increasing the 

residual life of machines by comparing our strategy with two other benchmark strategies mentioned 

in [13] i.e., 1) jobs are assigned equally to each machine, and 2) Assignment of jobs is done 

randomly among the machines in a given particular configuration.  To be more specific, on each 

observation epoch, for the first benchmark, an equal number of jobs are assigned to each machine 

in the system, while in benchmark 2, all possible solutions of the number of jobs assignment are 

identified, and randomly one is selected from the entire solution sets. Next, for the proposed 

methodology, based on the degradation framework in section 3, the rate of degradation of each 

machine on each decision epoch was calculated. Further based on the health status of the machine, 

the number of jobs was assigned to it following the methodology in section 4. The experimentation 

on each configuration in each instance simultaneously was conducted for 350 days. The 

observation time for each decision epoch was considered as 1 day.  

To examine the performance and enumerate the results, we contemplated two performance 

indices: 1) The occurrence of a failure in machines for the first time and 2) Loss of Production. 

Since the objective of this research is to find degradation information of machines, so these indices 

are more informative for our proposed manufacturing configurations as the loss of production will 
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be influenced if multiple machines breakdown occurs. Here, the maintenance time for a repaired 

machine is considered as 3 days according to power loom industry data.  

4.6 Results and Discussion 

In this section, for 3 different instances of 4 flexible configurations, we ran 12 experiments. For 

every condition, we plotted the graph by considering the two performance indices as shown in 

Figures 4.2, 4.3, 4.4, and 4.5. The following discussions can be made based on the results obtained. 
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(c) 

 

  (d) 

Figure 4.2 (a-d) Occurrence of Machines failure in the system (Instance 1) 

 Figure 4.2 (a-d) depicts the experimental results for the first instance of machine configurations. 

As the demand is high, the machines are made to work up to their limit, accelerating the degradation 

process resulting in machine life. Figure 4.2 (a) shows the result of a one-degree flexible system. 

From the plot, it should be noticed that when an equal number of jobs are assigned to all the 

machines in the configuration, the rate of degradation remains similar in all the machines that lead 

to failure within a short period i.e., between 41th – 50th day. Whereas, when the random workload 

was assigned a deviation in the range was found between 40th – 65th day. While in the proposed 

methodology it was found that in a row (10 machines) there was a gap of at least 3 days (repair 

time) in between any two machines failure.  Figure 4.2 (b) presents the graph of a two-degree 

flexible system. Here, similar results were observed when the number of jobs was assigned equally 

and randomly while in the proposed method a certain level of robustness was found. The result of 

the semi-flexible system and fully flexible system is articulated in Figure 4.2 (c) and (d) 
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respectively. Recall, as flexibility increases the availability of machines for adjusting the remaining 

jobs increases. As a result, here in Figure 4.2 (c-d) when an equal amount of jobs is assigned, the 

graph depicts almost a straight line stating very close failure times of machines. 
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(d) 

Figure 4.3 (a-d) the occurrence of Machines failure in the system (Instance 2) 

The results for Instance 2 are illustrated in Figure 4.3 (a-d). Here, as the number of machines 

more while the demand being constant, a rise in the average life span of machines was observed. 

In a one-degree flexible system, as shown in Figure 4.3 (a), it was found that machines in a row 

tend to fail at the same time when an equal number of jobs were assigned to the system. From 

Figure 4.3 (a) it is visible as one machine in the row fails, the others tend to fail at a similar range 

of days. For example, machines 1-10 fail approximately between 65th – 67th day while machines 

11-20 fail approximately in a range 55th – 60th day.  Whereas in the random assignment of jobs the 

machines tend to fail randomly, increasing the efficiency of the system somewhat improved than 

equal workload. While in the proposed method, the tendency of multiple machines breakdown 

reduced drastically increasing the efficiency of the system. Similar but slightly better results were 

observed in Figure 4.3 (b) as the degree of flexibility increased compared to Figure 4.3 (a). In a 

semi-flexible system and fully flexible system results are shown in Figure 4.3 (c) and Figure 4.3 

(d) respectively, a hike in points in the plot was appeared for the proposed method, stating robust 

in machine-to-machine variability. On contrary, the performance of the other two assignment 

techniques reduced as the machine-to-machine variability decreased.  
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(d) 

Figure 4.4 (a-d) Occurrence of Machines failure in the system (Instance 3) 

Figure 4.4 (a-d) plots the results for Instance 3. Compared to the other two instances a 

certain level of increased efficiency of the system is observed. Figure 4.4 (a) and (b) illustrates the 

result of a one-degree flexible system and two-degree flexible system respectively. It can be 

observed that here when an equal amount of jobs the results were the same as Figure 4.3 (a), (b) 

but as the number of machines were more the average time of breakdown was increased. While in 

the case of random assignment of jobs the deflection in points was in a higher range reducing the 

possibility of multiple machines breakdown but less compared to the proposed methodology. In 

the case of semi-flexible system and fully flexible system articulated in Figure 4.4 (c) and (d), the 

number of points presenting the machines for the proposed method in the plot was less in 

comparison to the number of machines considered in Instance 3, depicting that not all machines 

failed during the experimentation. It was found that in the observed time only 58 machines failed 

in a semi-flexible system while in a fully flexible system the count was 44.  
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Figure 4.5 Percentage Loss of Production 

In Figure 4.5, numbers 1, 2, 3 and 4 on horizontal axis indicates one degree, two degree, 

semi flexible and fully flexible configurations. Based on the experimental results illustrated in 

Figures 4.2, 4.3, 4.4, and 4.5, the performance of equal assignment of jobs is found to be worst in 

all the 3 instances.  When the random assignment of jobs was carried the machines tend to fail 

randomly, showing slightly better results than the equal assignment of workload reducing the 

possibility of multiple failures of machines but still, it failed to control the overall degradation rate 

resulting in a system breakdown. In all the 3 instances proposed method showed an effective impact 

on the efficiency of the system by reducing the degradation process of each machine. When the 

number of machines was less the system exhibited a similar degradation process as a result several 

machines tend to fail at a similar range of time. 

 

4.7 Conclusions  

The stochastic nature of the degradation process always brings challenges to accurately predict the 

residual life of machines in a system. First, each configuration of machines in a system has a 

different level of flexibility which varies the degradation rate of one in comparison to others, thus 

making it difficult to formulate a degradation model. Second, the workload adjustment in such a 

system is dependent on the type of configuration which makes it hard to frame an ideal dynamic 

workload adjustment strategy. Corresponding to these two major challenges, in this research, we 

proposed a degradation model framework that explicates the degradation process and predicts the 

health status of any machine regardless of the system configuration. The major contribution of this 

research is the multiply configurations dynamic jobs adjustment strategy that can be applied to any 

manufacturing systems depending upon their flexibility. We applied a Bayesian approach that 
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utilizes the real-time degradation information from the machine to predict the health status of the 

machine at each decision epoch. Then based on the degradation condition of the machines, our job 

assignment methodology assigns the jobs to the machines to prevent the overlap of machines failure 

in the system. Later, the stochastic degradation model was adapted numerically to evaluate the 

performance of a real-time manufacturing environment. We compare our proposed method with 

the other two benchmark strategies, specifically equal job adjustment and random job adjustment. 

The outcomes depicted that our method consistently shows a certain level of robustness by 

preventing the overlap of machine failure in each instance and reducing the loss in production to 

fulfill the required demand. The average percentage of loss in production is 4.75% in case of 

proposed model, which is reduced compared to average of 10.5% obtained in case of equal job 

adjustment, and average of 7.5% in random job adjustment in instance1. Similarly average 

percentage of loss in production is 2% in case of proposed model, which is reduced compared to 

average of 6.67% in case of equal job adjustment and average of 4.61% in random job adjustment 

in instance2. The average percentage of loss in production is 0.75% in case of proposed model 

which is reduced compared to average of 3.75% in case of equal job adjustment and average of 2% 

in random job adjustment in instance3.   
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Chapter 5 

Development of workload strategy on multi-product 

category of flexible configurations 

5.1 Introduction 

Recent industries efficiency and effectiveness depend on smooth flow of production without any 

interruptions. The equipment maintenance is apparent in the shop floor to offset the problems 

related to product quality, production cost and loss of productivity. However, conventional 

maintenance procedures lack effective mechanism to tackle real time disruptions. Recently 

emerged Artificial Intelligence (AI) and Machine Learning (ML) techniques transform the 

traditional maintenance system to an advanced one that can able to capture the machines status and 

further process the machines information in a real-time environment to improve the system 

performance. Out of many maintenance strategies available corrective, preventive, and predictive 

maintenance are considered as effective ones.  

Selection of an appropriate maintenance strategy depends on the context of the problem 

and desired objective function. From various strategies mentioned above, it has been observed that 

the effective maintenance concerned with respect to manufacturing systems is by minimizing the 

downtime of machines, unscheduled maintenance and uninterrupted production facilities. 

Additionally, defining of maintenance schedules and execution of activities is a real challenge. In 

other words, breakdown of any machine may leads to shutting down of the facility which shows 

huge impact on efficiency and cost of production. Hence, there is a need of effective mechanism 

not only for handling the above mentioned disruptive activities but also to understand and predict 

the systems behavior priory. Recent advancements proved the effectiveness of ML approach on 

Predictive Maintenance (PM) where the intelligent solutions guide the decision maker to take the 

necessary action without damage.  

In conventional CPS, the machines are integrated with IoT/IIoT devices responsible to 

generate mountains of data is connected to the data acquisition system to transform and transfer 

the data into tools and techniques for further analysis. Ultimately the analyzed data reached to 

maintenance manager for further action. In this work, a semi double loop machine learning based 

I-CPS (Intelligent – Cyber Physical Systems) architecture [44] has been used that act as an 

alternative to the conventional CPS. Due to the limitations in conventional CPS i.e., deploying of 
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IoT/IIoT devices for every task in the industries is a cost affair and employees working under such 

situations need additional skills where identifying of skilled labor is one of the challenging tasks 

in current industries. Hence, industries are not ready to transform their existing setup. The 

alternative solution to handle the above issues and make the system effective is by introducing the 

recently proposed I-CPS architecture. The advantage with this architecture is, it allows the decision 

maker to implement the meta-learning by improving the intelligence of the system and by creating 

new and effective algorithms.  

Motivation drawn from the fact that the adapted meta-learning approach is having its ability 

to adapt the system behavior and improve the system’s intelligence through improved learning 

algorithms. In this research work, the I-CPS model is instantiated in three different combinations 

i.e., the combined machines, multiple machines, and individual machine level. Here, the developed 

models behavior and the related information has been trained and tested with supervised learning 

based machine learning repository, after learning some algorithms that are not qualified are 

discarded due to their poor performance, among others the best performed five algorithms has been 

chosen further for future analysis. Based on the analysis, the health status i.e., RUL of each machine 

can be evaluated. Further, with simulation experiments by adjusting the workload adjustment 

strategy, the performance of the system has been improved by reducing the throughput time. 

 

5.2  Problem Description 

System model description 

The proposed flexible configurations with one degree, two degree, semi-flexible, and fully flexible 

configurations are considered. The one-degree flexibility represents in which, if any machine fails, 

then the pending jobs can be assigned to the adjacent machine. Whereas in two-degree flexibility 

represents if any machine fails, the pending jobs can be re-routed to adjacent machines of two 

stages.. Similarly semi-flexible as well as fully flexible configurations where the availability of 

machines are more in case of semi-flexible than one degree and two degree flexible configurations 

and more in case of fully flexible. 

Here, the workload for the machines, i.e., the assigned number of jobs, acts as the control 

variable, and the workload must be in the range of 0 to machine capacity. As mentioned earlier, we 

utilize the production data to predict the residual life of the machine for which the set-up time, 

processing time and the repair time of each machine has been considered by assuming all the 
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machines are identical in nature. As a result, the Equation 5.1 representing time required to produce 

n number of jobs can be written as follows:  

𝑈𝑎,𝑏 = (𝑛 ∗ 𝑡𝑝) + 𝑡𝑠 + (𝐿𝑎,𝑏 ∗ 𝑥)                                                                                                        (5.1)  

Here, time to produce n number of jobs = setup time of a machine (𝑡𝑠)+ repair time of a machine 

(𝐿𝑎,𝑏) + processing time per n number of jobs(𝑡𝑝). 

The degradation model is adopted from [37], where Bayesian approach is used to predict 

the rate of degradation of a machine and the corresponding mean and the shape parameters of 

Inverse Gaussian (IG) distribution helps in finding the degradation coefficient of the machine 𝑎, 𝑏 

at the time 𝑥  represented by 𝛼(𝑎,𝑏)(𝑥). For notational convenience we define 𝑑𝑖(𝑎,𝑏)(𝑥𝑢) =

 𝑈𝑎,𝑏/𝛽(𝑎,𝑏).  Such that, 𝜇(𝑎,𝑏)(𝑥𝑢), an estimation of predicted residual life can be calculated using 

Equation 5.2. 

𝜇(𝑎,𝑏)(𝑥𝑢) =
𝑑𝑖(𝑎,𝑏)(𝑥𝑢)

𝐴(𝑎,𝑏)(𝑥𝑢)
                                                                                                                       (5.2) 

Based on machine’s health status value 𝑑𝑖(𝑎,𝑏)(𝑥𝑢), the workload adjustment strategy is then 

implemented to reduce the simultaneous machines failure by indirectly reducing the throughput 

time. Here, the main objective is to minimize the throughput time by adjusting the number of jobs 

on each machine based on the predicted health status from Equation 5.3. Thus, the objective 

function for minimizing overlap of machine failure to reduce the throughput time can be formed 

as follows; 

Minimization of throughput time (Z): 

𝑍 =
1

𝑁(𝑥𝑢)
∑ [𝛽(𝑎,𝑏)(𝑥𝑢)𝐴(𝑎,𝑏)(𝑥𝑢)𝛿𝑥 + 𝑈𝑎,𝑏]                                                                         (5.3)

𝑁(𝑥𝑢)

𝑎=1,𝑏=1

 

Subjected to constraints 

∑ 𝐴(𝑎,𝑏)(𝑥𝑢) = 𝑚𝑖𝑛 ( ∑ 𝐶(𝑎,𝑏), 𝐷

𝑁(𝑥𝑢)

𝑎=1,𝑏=1

)

𝑁(𝑥𝑢)

𝑎=1,𝑏=1

                                                                                   (5.4) 

𝐴(1,1)𝑥(𝑢) ≥ ⋯ ≥ 𝐴(𝑁(𝑥𝑢))(𝑥𝑢)                                                                                                               (5.5) 

0 ≤ 𝐴(𝑎,𝑏)(𝑥𝑢) ≤ 𝐶(𝑎,𝑏),                   𝑎, 𝑏 ∈ 1, … . , 𝑁                                                                             (5.6) 

𝜇(𝑎,𝑏)(𝑥𝑢) + 𝐿(𝑎,𝑏)𝛿𝑥 ≤ 𝜇(𝑎.𝑏+1)(𝑥𝑢)                                                                                                    (5.7) 
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𝐿(𝑎,𝑏)𝛿𝑥

4
[𝐴(𝑎,𝑏)(𝑥𝑢) + 𝐴(𝑎,𝑏+1)(𝑥𝑢)]

2
≤ 𝑑𝑖(𝑎,𝑏+1)𝑥𝑢𝐴(𝑎,𝑏)(𝑥𝑢) − 𝑑𝑖(𝑎,𝑏)(𝑥𝑢)𝐴(𝑎,𝑏+1)(𝑥𝑢)     𝑓𝑜𝑟  𝑎

∈ 1,2, … . , 𝑁(𝑥𝑢),        𝑏 ∈ 1,2, … . , 𝑁(𝑥𝑢) − 1                                                                       (5.8) 

𝐿(𝑎,𝑏)𝛿𝑥

4
[𝐴(𝑎,𝑏)(𝑥𝑢) + 𝐴(𝑎+1,𝑏+1)(𝑥𝑢)]

2
≤ 𝑑𝑖(𝑎+1,𝑏+1)𝑥𝑢𝐴(𝑎,𝑏)(𝑥𝑢) − 𝑑𝑖(𝑎,𝑏)(𝑥𝑢)𝐴(𝑎+1,𝑏+1)(𝑥𝑢)   𝑓𝑜𝑟  𝑎

∈ 1,2, … . , 𝑁(𝑥𝑢) − 1,     𝑏 ∈ 1,2, … . , 𝑁(𝑥𝑢) − 1                                                                  (5.9) 

𝐿(𝑎,𝑏)𝛿𝑥

4
[𝐴(𝑎,𝑏)(𝑥𝑢) + 𝐴(𝑎+1,𝑏)(𝑥𝑢)]

2
≤ 𝑑𝑖(𝑎+1,𝑏)𝑥𝑢𝐴(𝑎,𝑏)(𝑥𝑢) − 𝑑𝑖(𝑎,𝑏)(𝑥𝑢)𝐴(𝑎+1,𝑏)(𝑥𝑢)   𝑓𝑜𝑟  𝑎

∈ 1,2, … . , 𝑁(𝑥𝑢) − 1,     𝑏 ∈ 1,2, … . , 𝑁(𝑥𝑢)                                                                       (5.10) 

𝐿(𝑎,𝑏)𝛿𝑥

4
[𝐴(𝑎,𝑏)(𝑥𝑢) + 𝐴(𝑎+𝑚,𝑏+1)(𝑥𝑢)]

2

≤ 𝑑𝑖(𝑎+𝑚,𝑏+1)𝑥𝑢𝐴(𝑎,𝑏)(𝑥𝑢) − 𝑑𝑖(𝑎,𝑏)(𝑥𝑢)𝐴(𝑎+𝑚,𝑏+1)(𝑥𝑢)    𝑓𝑜𝑟 𝑏 = 1,

𝑎 ∈ 1,2, … . , 𝑁(𝑥𝑢),     𝑏 ∈ 1,2, … . , 𝑁(𝑥𝑢) − 1                                                                   (5.11) 

𝐿(𝑎,𝑏)𝛿𝑥

4
[𝐴(𝑎,𝑏)(𝑥𝑢) + 𝐴(𝑎,𝑏+𝑚)(𝑥𝑢)]

2
≤ 𝑑𝑖(𝑎,𝑏+𝑚)𝑥𝑢𝐴(𝑎,𝑏)(𝑥𝑢) − 𝑑𝑖(𝑎,𝑏)(𝑥𝑢)𝐴(𝑎,𝑏+𝑚)(𝑥𝑢)    𝑓𝑜𝑟 𝑏 = 1,

𝑎 ∈ 1,2, … . , 𝑁(𝑥𝑢),     𝑏 ∈ 1,2, … . , 𝑁(𝑥𝑢) − 1                                                                   (5.12) 

𝐿(𝑎,𝑏)𝛿𝑥

4
[𝐴(𝑎,𝑏)(𝑥𝑢) + 𝐴(𝑎+𝑚,𝑏+𝑛)(𝑥𝑢)]

2

≤ 𝑑𝑖(𝑎+𝑚,𝑏+𝑛)𝑥𝑢𝐴(𝑎,𝑏)(𝑥𝑢) − 𝑑𝑖(𝑎,𝑏)(𝑥𝑢)𝐴(𝑎+𝑚,𝑏+𝑛)(𝑥𝑢)    𝑓𝑜𝑟 𝑏 = 1,

𝑎 ∈ 1,2, … . , 𝑁(𝑥𝑢) − 1,     𝑏 ∈ 1,2, … . , 𝑁(𝑥𝑢) − 1                                                           (5.13) 

Constraint mentioned in Equation 5.4 states that when the capacity of the system is greater than 

demand, the throughput of the system will be equal to the demand and conversely, if demand is 

greater than capacity then throughput will be equal to capacity. Constraint mentioned in Equation 

5.5 articulates that higher workload to be assigned to machines with lower health status, and vice 

versa. Constraint mentioned in Equation 5.6 ensures the workload need to be in the range between 

0 to capacity of the machine. Constraint mentioned in Equation 5.7 prevents the overlapping of 

machine failures. Considering the situation of different configurations, the overlapping of machine 

failure constraint is developed depending upon the configurations. Equation 5.8 represents the 

overlap of machine failures for one-degree flexible configuration. Equation 5.9 and Equation 5.11 

represents the overlap of machine failures can be controlled in two-degree flexible configuration. 

Similarly, Equation 5.10, Equation 5.12, and Equation 5.13 prevents the overlap of machines 

failure in the semi-flexible system. Whereas, in a fully flexible system the problem is tried to be 

controlled using constraints in Equation 5.12 and Equation 5.13.  
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5.3  Methodology 

The framework which is an integration approach of data preparation, machine learning model and 

workload adjustment strategy has been proposed to identify the KPI’s responsible for residual life 

of a system. The proposed model starts with data collection followed with data transformation for 

data pre-processing to perform data preparation. Primarily, after articulating the problem definition 

the respective data has been gathered Via sensory information. It is necessary to remove the 

inaccurate, unbalanced, and bias information from collected data through sensors integrated on the 

machines. We have performed data pre-processing by formatting, cleaning and sampling before 

data transformation. In data transformation, normalizing, decomposition, and aggregation steps 

need to be performed before sending the data to the ML model. While developing a ML model, the 

prepared data undergoes three different stages namely training, testing, and validation as shown in 

Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Framework for developing workload adjustment strategy based on predicted RUL 
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In the second stage i.e., machine learning prediction model, the prepared data is tried to fit 

with numerous machine learning algorithms particularly supervised learning algorithms available 

in the MATLAB repository. During this process some algorithms automatically discarded due to 

their poor performance, where the best fit algorithms called for modelling further known as double 

loop for modelling the parameters using training, testing and validating the model parameters for 

improving the accuracy thereby reduce the error. In other words, the double loop learning model 

or Meta learning model inferred as two separate ML algorithms in two loops. Learning algorithms 

in the first loop are the object algorithms, where the learning algorithms in second loop are adjusted 

or modified first loop algorithms used to improve the model parameters for better accuracy is 

shown as an I-CPS architecture in Figure 5.2.  

 

 

Figure 5.2 Intelligent Cyber Physical Systems (I-CPS) architecture 

 In the third stage, predictive simulations has been performed using the RUL from the 

predicted maintenance can be taken as an input along with the capacity of each unit, and demand 

for each configuration from the collected data. The goal of dynamically adjusting the workload on 

each unit is to reduce the overlap of machine failures and to increase the throughput of each unit. 

To achieve this goal, we have used the workload adjustment strategy that allocates the more number 

of jobs on worse health status. The main reason underlying this strategy is that the more jobs on 

worse health status machine will degrades faster and leads to failure and thus the expected failure 

time of each machine to other will be different [36,37]. 
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5.4 Experimentation  

In this section, we proposed three strategies i.e., combined machine strategy, multiple machines 

strategy, and individual machine strategy to analyze four different realistic configurations for 

implementing the proposed approach. The detailed description of proposed strategies and 

configurations are as follows:  

 

Strategy 1. Combined Machine:  

In this strategy, the group of machines are considered as a single machine and their information is 

considered as one data set to perform different analysis of the system. Here, to perform the machine 

learning based modelling operations i.e., training, testing and validation, we have chosen the best 

performing supervised machine learning algorithm from the repository to conduct the analysis. As 

we assume that the considered training data is from single machine information, the available 

maintenance information is plenty to conduct required analysis. But, due to lack of specific 

machine data it is quite difficult to predict which machine is required for maintenance.   

 

Strategy 2. Multiple Machines  

In this strategy, similarly like combined machine strategy a single ML algorithm has been used to 

train, test and validate the data. But, unlike the combined strategy here the Machine ID has been 

considered as an additional input which helps in identifying the maintenance requirement for a 

particular machine.  

  

Strategy 3. Individual machine 

Here, we have collected the training data of every single machine in the system for prediction due 

to their unique behavior. Thereafter, with all the supervised machine learning algorithms available 

in the repository we have trained each machine separately to predict the most suitable algorithm 

for the respective machine. One can realize from below tables that due to this analysis each machine 

ID have their respective ML algorithm.  
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5.4.1 Experimentation settings for maintenance prediction 

The Meta-learning ML based CPS approach for the prediction of maintenance has been validated 

in real life industry in this research. Data of 12 machines were considered to validate the proposed 

model. The 12 machines are operating under four configurations called one degree flexible, two 

degree flexible, semi flexible, and fully flexible configurations. The machine IDs are considered 

from 1 to 12 in each configuration. A period of 6 months’ data has been collected to predict the 

maintenance required and maintenance not required. A total of 30,427 batches of manufacturing 

data from 12 machines has been considered in each configuration. Among the 6 months of data, 

the holdout data has been taken in 3 variances in which 17% (1 month), 33% (2 months), 50% (3 

months) for testing of different set of algorithms, the input data variables as well as output of the 

program are shown in Table 5.1. 

 

Table 5.1 Data variables involved in ML Program. 

Variable of Input Extracted Features Output 

1. Machine ID 1. Total working time of machine Maintenance requirement (1/0) 

2. Shift 2. Total number of setups  

3. Shift Date 3. Total quantity of a machine  

4. Material 4. Total work time of a machine after 

last maintenance 

 

5. Quantity 5. Total quantity of a machine after 

last maintenance 

 

6. Production Time 6. Total number of setups after 

previous maintenance 

 

7. Time/piece   

8. Maintenance Time   

9. Setup   
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5.4.2 Experimentation settings for workload adjustment strategy 

The proposed framework for workload adjustment strategy followed in this research is shown in 

Figure 5.3. The machines are identical where the workload on machines can be assigned based on 

the demand and capacity of each machine. The processing variations in machines will provide the 

information about the characteristics of degradation rate which helps in finding the degradation 

coefficient. Later, the Bayesian approach applied to predict the residual life of each individual 

machine. Further, the workload is adjusted dynamically on machines to minimize the throughput 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Framework for workload adjustment strategy 

 The total number of machines are 12 for each configuration, in which the machine ID from 

1 to 12 is considered. The data has been collected over a period of 6 months and a total of 30,427 

batches of data for 54000 number of jobs. The demand of each configuration, and capacity of each 

identical machine as parameters for the experimentation shown in Table 5.2. 
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Table 5.2 Parameters for the experimentation 

Parameters Unit 

The capacity of each machine 4500 jobs/day 

Demand for One Degree Flexible system 54000 jobs/day 

Demand for Two Degree Flexible system 54000 jobs/day 

Demand for Semi-Flexible system 54000 jobs/day 

Demand for Fully Flexible system 54000 jobs/day 

 

5.5 Experimental Results and Discussion 

5.5.1 Results for Maintenance prediction  

The Confusion Matrix (CM) is a tool helps for predictive analysis in ML and it can be deployed 

for checking the performance of a classification-based ML model. The CM is an N*N matrix which 

helps in evaluating the performance of a model, where N indicates the number of target classes. 

Here, 2*2 CM has considered and F1 score has been calculated for predicting the maintenance 

required or not required. Three strategies have been applied for predicting the maintenance of 

machines named as combined strategy, multiple machines strategy, and individual machine 

strategy [44]. 

 

Table 5.3 Results for the various learning algorithms for 17%, 33%, and 50% holdout for 

predictive models under 3 strategies for one degree flexible configuration. 

Learning Algorithm Accuracy F1 Score  

(Maintenance 

Prediction) 

F1 Score  

(No Maintenance 

Prediction) 

Strategy 1. Combined Machines 

Decision Tree fine 94.32% 0.0909 0.9767 

Naïve Bayes (Kernel) 94.02% 0.1388 0.9775 

SVM (Quadratic) 95.74% 0.1176 0.9805 

Neural Network (Medium) 94.6% 0.24 0.9720 

Ensemble (RUS Boosted) 67.47% 0.1061 0.9811 

SVM (Cubic) 94.31% 0.1449 0.9705 

Strategy 2. Multiple Machines 

Decision Tree (Medium) 95.45% 0.05 0.98 
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Naïve Bayes (Kernel) 91.19% 0.16 0.98 

SVM (Quadratic) 96.04% 0.11 0.98 

Neural Network (Medium) 93.75% 0.21 0.97 

Ensemble (RUS Boosted) 65.5% 0.13 0.85 

SVM (Cubic) 94.01% 0.23 0.98 

Strategy 3. Individual Machine Level (Average F1) 

Multi algorithm learning model 98.04% 0.6733 0.991 

 

Table 5.3 presents the results of top 5 algorithms from a total of 30 algorithms which are 

predictive models with highest F1 score and accuracy for the above mentioned 3 strategies for one 

degree flexible configuration. From the Table 5.3, it has been observed that in strategy 1, the Neural 

network (Medium) has been predicted the highest F1 score as 0.24, where the 24% of chance is 

there for the maintenance requirement according to the algorithm predicted. The Ensemble (RUS 

Boosted) algorithm has been predicted the highest F1 score as 0.9811 for the no maintenance 

prediction in which the 0.9811 indicated that the 98.11% of chances as there is no maintenance is 

required. In strategy 2, the neural network (medium) has been predicted highest F1 score as 0.21 

for maintenance requirement, and Decision Tree (Medium), Naïve Bayes(Kernel), and SVM 

(Quadratic) has been predicted the highest F1 score as 0.98 for not to have the maintenance. In 

strategy 3, multi algorithm learning model has been predicted 0.6733 as highest F1 score to have 

the maintenance, 0.991 as F1 score to not to have the maintenance, and the 98.04% as accuracy has 

been achieved. 

 

Table 5.4 Results for the various learning algorithms for 17%, 33%, and 50% holdout for 

predictive models under 3 strategies for two degree flexible configuration. 

Learning Algorithm Accuracy F1 Score 

(Maintenance 

Prediction)  

F1 Score (No 

maintenance 

Prediction) 

Strategy 1. – Combined Machines 

Decision Tree fine 95.27% 0.0754 0.9757 

Naïve Bayes (Gaussian) 89.76% 0.0833 0.9458 

Naïve Bayes (Kernel) 94.6% 0.1739 0.9761 
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SVM (Cubic) 94.03% 0.2222 0.9798 

SVM (Quadratic) 95.61% 0.0625 0.9775 

KNN (Fine) 96.13% 0.2 0.9803 

Strategy 2. – Multiple Machines 

Decision Tree (Fine) 92.85% 0.0975 0.9783 

Naïve Bayes (Gaussian) 93.27% 0.1785 0.9649 

Naïve Bayes (Kernel) 94.88% 0.1025 0.9736 

SVM (Cubic) 94.49% 0.123 0.9797 

SVM (Quadratic) 95.75% 0.0434 0.9782 

KNN (Fine) 96.02% 0.2222 0.9795 

Strategy 3. – Individual Machine Level (Average F1) 

Multi algorithm learning model 96.43% 0.5422 0.9815 

 

Table 5.4 presents the results of top 5 algorithms from a total of 30 algorithms which are 

predictive models with highest F1 score and accuracy for the above mentioned 3 strategies for two 

degree flexible configuration. From the Table 5.4, it has been observed that in strategy 1, the SVM 

(Cubic) has been predicted the highest F1 score as 0.1739 for maintenance required, and the SVM 

(Cubic) algorithm has been predicted the highest F1 score as 0.9798 for the no maintenance 

required. In strategy 2, the Naïve Bayes (Gaussian) algorithm has been predicted the highest F1 

score as 0.21 for maintenance requirement, and SVM (Cubic) is giving highest F1 score for not to 

have the maintenance. In strategy 3, multi algorithm learning model has been predicted 0.5422 as 

F1 score to have maintenance, and 0.9815 as F1 score to not to have the maintenance, and the 

96.43% of accuracy has been achieved. 

 

Table 5.5 Results for the various learning algorithms for 17%, 33%, and 50% holdout for predictive 

models under 3 strategies for semi flexible configuration. 

Learning Algorithm Accuracy F1 Score 

(Maintenance 

Prediction) 

F1 Score (No 

Maintenance 

Prediction) 

Strategy 1. – Combined Machines 

Decision Tree Coarse 95.74% 0.12 0.9782 
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Naïve Bayes (Kernel) 94.89% 0.10 0.9737 

SVM (Linear) 96.2% 0.13 0.9806 

SVM (Cubic) 95.17% 0.32 0.9750 

Ensemble (Random Search with 

1K Learner) 

95.91% 0.07 0.9791 

Ensemble (Random Search with 

30K Learner) 

96.31% 0.13 0.9811 

Strategy 2. – Multiple Machines 

Ensemble (Boosted) 96.06% 0.2 0.9798 

Decision Tree (Medium) 95.76% 0.1887 0.9782 

Naïve Bayes (Gaussian) 94.3% 0.1 0.9729 

SVM (Cubic) 94.64% 0.2308 0.9722 

Naïve Bayes (Kernel) 95.17% 0.1 0.9752 

Strategy 3. – Individual Machine Level (Average F1) 

Multi algorithm learning model 96.9% 0.5491 0.9840 

 

Table 5.5 presents the results of top 5 algorithms from a total of 30 algorithms which are 

predictive models with highest F1 score and accuracy for the above mentioned 3 strategies for 

semi-flexible configuration. From the Table 5.5, it has been observed that in strategy 1, the SVM 

(Cubic) has been predicted the highest F1 score as 0.32 for maintenance required, and the SVM 

(Linear) algorithm has been predicted the highest F1 score as 0.9706 for the no maintenance 

prediction. In strategy 2, the SVM (Cubic) has been predicted the highest F1 score as 0.2308 for 

maintenance required, and Ensemble (Boosted) has been predicted the highest F1 score as 0.9798 

for not to have the maintenance. In strategy 3, multi algorithm learning model has been predicted 

0.5491 as highest F1 score to have maintenance, and 0.9840 as highest F1 score to not to have the 

maintenance, and the 96.9% of accuracy has been achieved. 
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Table 5.6 Results for the various learning algorithms for 17%, 33%, and 50% holdout for predictive 

models under 3 strategies for fully flexible configuration. 

Learning Algorithm Accuracy F1 Score 

(Maintenance 

Prediction) 

F1 Score (No 

Maintenance 

Prediction) 

Strategy 1. – Combined Machines 

Ensemble (Random Search with 

30K learner) 

96.35% 0.13 0.9813 

Decision Tree Course 96.02% 0.12 0.9796 

Naïve Bayes (Kernel) 95.32% 0.15 0.9759 

SVM (Linear) 96.14% 1 0.9803 

SVM (Cubic) 95.17% 0.32 0.9749 

Ensemble (Random Search with 

1K Learner) 

96.31% 0.13 0.9811 

Strategy 2. – Multiple Machines 

Ensemble (Bagged) 95.76% 0.12 0.9782 

Decision Tree (Medium) 95.45% 0.2 0.9766 

SVM (Cubic) 94.32% 0.16 0.9705 

Naïve Bayes (Kernel) 93.47% 0.14 0.9660 

Neural Network (Narrow) 90.2% 0.12 0.9481 

Strategy 3. – Individual Machine Level (Average F1) 

Multi algorithm learning model 97.49% 0.6625 0.9857 

 

Table 5.6 presents the results of top 5 algorithms from a total of 30 algorithms which are 

predictive models with highest F1 score and accuracy for the above mentioned 3 strategies for fully 

flexible configuration. From the Table 5.6, it has been observed that in strategy 1, the SVM (Cubic) 

has been predicted the highest F1 score as 0.32 for maintenance required, and the Ensemble 

(random search with 30K learner) algorithm has been predicted the highest F1 score as 0.9813 for 

the no maintenance prediction. In strategy 2, the SVM (Cubic) has been given the highest F1 score 

as 0.16 for maintenance requirement, and Ensemble (Bagged) has been predicted the highest F1 

score as 0.9782 for not to have the maintenance. In strategy 3, multi algorithm learning model has 
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been predicted 0.6625 as F1 score to have maintenance, 0.9857 as F1 score to not to have the 

maintenance, and the 97.49% of accuracy has been achieved. 

  

Figure 5.4 (a-d) F1 score of maintenance prediction and of no maintenance prediction when 

required for individual machines for the strategy 3 for various flexible configurations 

Figure 5.4 (a-d) shows the individual machine strategy for the prediction of maintenance 

requirement of four proposed flexible configurations. Here, the M1 to M12 represents the machine 

ID from 1 to 12 as shown in figure above. The training data set has been taken in 3 different periods 

such as 3 months training, 4 months training, and 5 months training and the other time period 

among the 6 month of data has been considered for testing the model. Figure 5.4 (a) represents the 

maintenance prediction for the one degree flexible systems where the F1 score is more than 0.9 for 

not to have the maintenance, and 0.48 to have the maintenance. Figure 5.4 (b) represents the 

maintenance prediction for the two degree flexible system as F1 is score is more than 0.9 to not to 

have the maintenance, and 0.38 is the average F1 score to have the maintenance. Similarly, Figure 

5.4 (c), Figure 5.4 (d) represents the maintenance prediction for the semi-flexible, and fully flexible 

systems respectively, where the F1 score is greater than 0.9 in case of no maintenance prediction, 

and the average F1 score is 0.4 for semi flexible, and 0.48 for fully flexible systems. 

(a)     One Degree (b) Two Degree 

(c)   Semi Flexible  (d)   Fully Flexible  
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Figure 5.5 (a-d) Accuracy of an individual machine maintenance prediction for the strategy 3 for 

flexible configurations 

The accuracy for each machine from machine ID 1 to machine ID 12 as shown in Figure 5.5 (a-d) 

for each configuration from one degree flexible to the fully flexible systems. Figure 5.5 (a) 

represents one degree flexible system and the accuracy has been achieved between the ranges of 

90-100% for 12 number of machines with the predicted ML algorithms. Figure 5.5 (b) represents 

the accuracy obtained for two degree flexible system, and it is ranging between 83-100% with the 

predicted algorithms. Figure 5.5 (c), Figure 5.5 (d) represents the accuracy results for the semi-

flexible system, and fully-flexible system respectively and the accuracy has been achieved between 

the range of 82-100%, and 87-100% respectively.  

 

 

 

(a) One Degree (b) Two Degree 

(c) Semi Flexible (d) Fully Flexible 
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5.5.2 Results of Workload Adjustment strategy 

To be part of it, based on the predicted maintenance the RUL has been identified and the 

simulation environment is created using simulation software for workload adjustment strategy. The 

validation of proposed approach has been shown by the simulation results of state Gantt, and 

throughput on four different configurations such as one degree, two degree, semi flexible, and fully 

flexible. The simulation helped in showing each individual machine and the number of jobs 

processed as throughput. State Gantt shown the machine performance based on time in which 

performance time, breakdown time, and idle time of machines. 

In this section, the dynamic workload adjustment strategy has been implemented (Hao et 

al., 2015) [37] with the other two benchmark strategies i.e. equal workload, and random workload 

has been enumerated. We considered two key performance indices (KPI) as Throughput and 

performance of machines based on time as State Gantt. 

 

 

 

(a) One Degree 

(b) Two Degree 
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Figure 5.6 (a-d) Equal strategy as equal number of jobs has been distributed on every machine 

The above Figure 5.6 (a-d) shows the simulation program outcomes for one degree to fully 

flexible configurations for processing the 54000 number of jobs in equal strategy. In equal strategy, 

the equal number of jobs has been distributed on each machine where Figure 5.6 (a) represents the 

one degree flexible system and clearly shows that it has taken 51757 seconds to complete the 

demand. Figure 5.6 (b) represents the two degree flexible system where it taken 51756 seconds to 

complete the number of jobs. Figure 5.6 (c), and Figure 5.6 (d) represents the semi-flexible, and 

fully flexible systems respectively, and it has been observed that it almost taken same amount of 

time to complete the number of jobs as first two configurations. From the figures it is clearly 

observed that in case of equal strategy, the machines are ultimately fails in an equal phase and the 

workload allocated to the machines leads to the overlap of machine failure. 

 

 

 

 

 

(c) Semi Flexible 

(d) Fully Flexible 
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Figure 5.7 (a-d) Random strategy as the random number of jobs has been distributed on every 

machine in various configuration. 

(a) One degree 

(b) Two degree 

(c) Semi-Flexible 

(c) Fully-Flexible 
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Figure 5.7 (a-d) shows the performance of simulation for random strategy for one degree 

to fully flexible configurations for processing 54000 number of jobs. Figure 5.7 (a) shows the one 

degree flexible system in random strategy, where the jobs has been allocated on machines 

randomly. It has taken 48960 seconds to process the number of jobs. Figure 5.7 (b) represents the 

two degree flexible system where it has taken 47880 seconds to process the jobs. Similarly, Figure 

5.7 (c), and Figure 5.7(d) represents the semi-flexible, and fully flexible system where it has taken 

48296 seconds, and 47996 seconds to process the 54000 number of jobs respectively. In the random 

strategy as the jobs has been distributed randomly irrespective of machine condition. One could 

clearly comprehend that the tendency of various machine failures overlap was reduced to a certain 

level because of random failures. 

 

 

 

 

 

 

 

 

 

 

 

(a) Two degree  

(b) one degree  
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Figure 5.8 (a-d) Workload adjustment strategy for flexible configurations 

Figure 5.8 (a) represents the results of proposed methodology of throughput and Gantt chart 

for one degree flexible configuration and it has been observed that the workload adjustment 

strategy has been taken 52865 seconds to complete the number of jobs. Figure 5.8 (b) represents 

the two degree flexible system where it has been taken 47843 seconds to complete the number of 

jobs. Figure 5.8 (c), and Figure 5.8 (d) represents the semi-flexible, and fully-flexible 

configurations as 47376 seconds, 46946 seconds has been taken to process the jobs. As in proposed 

methodology, a dynamic workload has been carried out based on the predicted remaining useful 

life which has been taken from the maintenance predicted and the tendency of individual machine 

failure was purely improved resulted in the completion of the workload allocated on the machines. 

(c) Semi-Flexible  

(d) Fully-Flexible  
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Figure 5.9 Throughput time comparison for three strategies 

The proposed methodology that integrates the workload for the flexible configurations 

applied to residual life. It mainly consists of throughput time based on workload adjustment for 

each strategy as shown in Figure 5.9. In dynamic workload adjustment, the capacity of each 

machine and demand has been considered to allocate the workload on each individual unit. Here 

the total amount of operations at its peak, performed efficiently by each machine in a unit time 

called as capacity. From the Figure 5.9, it has been observed that the throughput time for processing 

54000 number jobs, in equal strategy for the processing the demand almost equal throughput time 

around 51756 seconds has been taken for various configurations. Similarly in the random strategy 

taken 47996 seconds from the fully flexible configuration is taken less amount of time taken than 

the other configurations to complete the number of jobs. Workload adjustment strategy results 

shown in which 46946 seconds has been taken for fully flexible configuration which is less for 

processing the same number of jobs on each configuration among 3 strategies. 

 

5.5.3 Sensitivity Analysis 

 The sensitivity analysis assists in understanding how the uncertainty in the model’s output is 

varying by changing the coefficient of the parameters. It also helps in simplifying the models and 
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identifying the research priorities and plays a major role as a tool to assess the model validity. Here, 

the throughput time has been generated with the help of simulation for flexible configurations for 

three strategies i.e., equal strategy, random strategy, and proposed workload strategy by varying 

the number of jobs from 1000 to 54000 units. The results for these three strategies have been shown 

in Tables 5.7, 5.8, 5.9 respectively. 

 

Table 5.7 Comparative simulation matrix of equal strategy for flexible configurations 

Equal Strategy 

No of Jobs 

One Degree 

Flexible 

Throughput Time 

(Seconds) 

Two Degree 

Throughput Time 

(Seconds) 

Semi Flexible 

Throughput Time 

(Seconds) 

Fully Flexible 

Throughput Time 

(Seconds) 

1000 697 697 697 697 

2000 1402 1402 1403 1403 

3000 2118 2116 2118 2118 

5000 3536 3534 3535 3534 

10000 7100 7096 7101 7100 

15000 11742 11740 11742 11742 

20000 16290 16287 16291 16288 

30000 26425 26423 26424 26426 

40000 35861 35855 35858 35853 

50000 45630 45628 45626 45623 

54000 51757 51756 51756 51758 

 

Table 5.8 Comparative simulation matrix of random strategy for flexible configurations 

Random Strategy 

No of Jobs 

One Degree 

flexible 

Throughput Time 

(Seconds) 

Two Degree 

flexible 

Throughput Time 

(Seconds) 

Semi Flexible 

Throughput Time 

(Seconds) 

Fully Flexible 

Throughput 

Time (Seconds) 

1000 697 697 697 697 

2000 1400 1403 1402 1403 

3000 2115 2118 2118 2118 

5000 3532 3528 3536 3595 

10000 7096 7306 7218 7232 
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15000 11738 12196 11953 11925 

20000 16187 15864 15920 15765 

30000 26258 25044 24845 24925 

40000 33671 33458 33380 33326 

50000 42573 42376 42380 42337 

54000 48960 47880 48296 47996 

 

Table 5.9 Comparative simulation matrix of workload adjustment strategy for flexible 

configurations 

Workload adjustment Strategy 

No of Jobs 

One Degree 

flexible 

Throughput Time 

(Seconds) 

Two Degree 

flexible 

Throughput Time 

(Seconds) 

Semi Flexible 

Throughput Time 

(Seconds) 

Fully Flexible 

Throughput Time 

(Seconds) 

1000 699 696 698 698 

2000 1403 1399 1386 1381 

3000 2185 2183 2176 2168 

5000 3537 3510 3501 3485 

10000 7156 7228 7206 7180 

15000 11846 11994 11742 11695 

20000 16847 15688 15454 15286 

30000 26953 24918 24698 24315 

40000 35510 33392 33023 32601 

50000 45272 42355 41982 41351 

54000 52865 47843 47376 46946 

On the basis of simulation results, it can be observed that the throughput time is varying 

linearly by increasing the number of jobs from 1000 to 54000 jobs for one-degree flexible 

configuration to fully flexible configurations. In equal strategy, the similar time has been followed 

to process the number of jobs. In random strategy, each configuration processed randomly by 

increasing the number of jobs and in the workload adjustment strategy, the throughput time has 

reduced from one degree to fully flexible configurations. 
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5.6 Conclusions  

Primarily, the main research hypothesis is examined that the predicting the maintenance 

requirement and predicting the no maintenance requirement of the flexible configurations. Based 

on the predicted maintenance requirement of machines, the RUL has been examined and workload 

adjustment strategy has been applied. Initially, 12 machines data of each configuration has been 

collected from single degree to fully flexible configuration. The demonstration, based on the 

system implementation shown very good predictions and better results has been achieved under 3 

different strategies and various machine learning algorithms. Results shown that the accuracy 

varied from 82% to 100% under 3 strategies for 4 configurations, and the F1 score is varied from 

0.9 to 1 for prediction in maintenance required, and 0.1 to 1 for prediction in not to have 

maintenance. Further we focused on dynamic adjustment on the workload control the throughput 

time of all units in a complex system based on RUL by predicted maintenance requirement. To 

validate the methodology, a simulation environment created and workload adjustment strategy has 

been applied and compared with the other two benchmark strategies in achieving the lower 

throughput time. The results clearly shown out methodology consistently outperformed than other 

two strategies in case of minimization of throughput time. The proposed workload adjustment 

strategy has been taken 46946 seconds for fully flexible configuration which is less than the other 

two benchmark strategies in any configuration. Finally, it can be concluded that with the workload 

adjustment strategy has been given better results than other strategies in flexible configurations.  
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Chapter 6 

Development of Criticality Index prediction for multi-

product category for identifying machine status indicators 

 

6.1 Introduction 

Due to the customer requirements for specific and individual products, the technologies used in 

their industries underwent a paradigm shift by introducing various latest technologies such as 

artificial intelligence, machine learning, cyber-physical systems, and maintenance management. 

Recent requirements such as high-quality products, and customized products are the major factors 

for most of the manufacturing industries to improve the production rate. Considering the foregoing 

requirements, the flexibility of a manufacturing system needs to be enhanced where flexibility 

plays a major role to perform production faster. The flexible unit systems (FUS) with one-degree 

flexible, two-degree flexible, semi-flexible, and fully flexible systems have been considered. 

Therefore, the major issue for any company is a machine’s criticality index. Criticality index of a 

machine is the most important category in the manufacturing industry in case of maintenance 

management of a system. The CI defined as it is the level of critical referring to the machines with 

the highest or lowest importance for maintenance.  

 To improve the productivity of a company, the companies not only plan for the maintenance 

activities for manufacturing systems but also issues that affect the business goals in the industry. 

Therefore, the major issue for any company is predicting the machine’s CI with the help of ML 

techniques. Finding the CI of each individual machine in complex flexible configurations is the 

most important category for the manufacturing industry along with the maintenance management 

of a system. The main reason to predict or evaluates the CI of machines or devices used in the 

manufacturing industry with a set of activities to identify failures that impact companies' goals. 

Predicting the machine’s CI is possible to prior the action of maintenance of machines in a flexible 

machine system. The criticality of a machine is used as a comprehensive measure to estimate the 

various actions and to highlight difference between the individual machine and its action strategy.  

            The literature described assessing the machine’s CI as an important parameter to improve 

in quality of products. Due to the method of collecting the data and the quality of product, there is 

uncertainty related to the time between failures of machines and time to repair of various machines 
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and considered as all assessment criteria are considered as equally important [111]. By considering 

the above issues, a novel method of prediction of criticality index of machines is proposed in this 

objective with the predicted maintenance into consideration. Initially, the maintenance of machines 

in flexible systems is predicted with the help of ML algorithms and the I-CPS architecture is used 

for ML-based predictions [45]. The I-CPS implies the usual applications of the ML models, and in 

this case, learning of criticality index predictive models. 

            In the area of manufacturing systems, the factors such as breakdown time of a machines, 

redundancy, and workload are impact on throughput as factors are indicated. Henceforth, in this 

research, the ML-based approach is utilized to process the data of various configurations. Here, 

different ML techniques have been proposed to classify the collected data. Later, the confusion 

matrix has been generated for evaluating the data as the confusion matrix is the tabular way of 

visualizing the performance of the predicted model. The criticality level of a machine is checked 

by choosing a grading scale from 1 to 5 and subjectively assigning numbers. The estimated time 

of maintenance for the machines for each criticality index needs to be considered. Later, F1 score 

and accuracy is evaluated from the confusion matrix to rank the ML algorithms for identifying 

which algorithm is providing the highest F1 score and accuracy. Finally, the CI is predicted from 

day 1 to day 100 based on the method used to predict the criticality index of a machine. 

 

6.2  Problem Description 

The flexible configurations with one degree, two degree, semi-flexible, and fully flexible 

configurations has considered for the criticality index analysis in this problem.  Here, the criticality 

index need to be predicted as a prediction output, and the output must be in the range of 0 to 5. As 

mentioned earlier, we utilize the production data for training, testing, and validation to predict the 

maintenance requirement for the machines and then to predict the CI of each machine.  

 

List of notations 

𝜇 Expected Value 

𝑋 Random Variable 

𝜎 Standard Deviation 

𝑚 Number of standard deviations from the mean 
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For example, the decision tree algorithm needs a proper decision making to the 

classification point as it decide to split a main node into two or more sub nodes and the naive Bayes 

algorithm is works on the theory of conditional probability. The mathematical model behind the 

random forest algorithm are explained as the random forest algorithm stands on the theory of 

Chebyshev’s in equality combination of mean and standard deviation. Thus the objective function 

for prediction of criticality index as per the random forest algorithm is to understand the system 

health status as shown in Equation 6.1.  

 

Prediction of criticality index combination of mean and standard deviation (P): 

𝑃(|𝑋 − 𝜇| > 𝑚𝜎) ≤
1

𝑚2
                                                                                                   (6.1) 

 

6.3 Methodology 

Machines criticality index is a complex concept and which depends on many factors. In general 

“intuition” may not be sufficient to make the decision about which machine is more important, and 

which machine is less important. At this particular time, it is necessary to build a method which 

supports the decision makers to identify the machines in an appropriate way in the machine 

criticality assessment process. The main aim of this research is to obtain a criticality index for a 

machine for the maintenance prioritization demands, using the collected production data. 

Therefore, an explanatory sequential method was chosen to predict the CI of each machine as 

explained. The framework which is an integrated approach on data preparation, and machine 

learning prediction for the criticality index for each individual machine as shown below in Figure 

6.1. The initial step of model implementation starts with data collection, data pre-processing, and 

data preparation. Here the data from 12 machines are considered for validating the proposed model. 

The data has been collected over a period of 6 months, considering the different variables 

mentioned in the above table. We have processed cleaning, and sampling by removing the 

inaccurate and unbalanced data before data transformation. The normalization and aggregation of 

data are performed before sending the data to develop an ML model. The basic ML model consists 

of training, testing, and validation as shown below in Figure 6.1. 
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Figure 6.1 Framework for developing the ML model to predict the criticality index 

 

The input data variables such as Machine ID, shift, shift date, material, quantity, production 

time, time per piece, time for maintenance, and set up is considered [45]. Later, the data is imported, 

and tried to develop an algorithm that performs supervised learning algorithms. The maintenance 

requirement of machines is predicted with the help of various ML algorithms by performing the 

necessary steps. Few algorithms are eliminated due to poor performance which is providing less 

accuracy. Amongst all algorithms, the top 5 best algorithms are noted which are trained, tested, 

and validated with the highest F1 score, and better accuracy. Here, the I-CPS architecture is utilized 

as a double-loop learning model as two separate two loops. The first loop algorithms are considered 

objective algorithms, and the second loop algorithms are modified first-loop algorithms. The 

double loop ML algorithm is used to improve the accuracy and model parameters. Later, the 

predicted maintenance is considered as an extra input for predicting the criticality index of 

machines. We have considered 1 month, 2 months, and 3 months of data amongst 6 months of data 

is used for testing in different set of ML algorithms. 
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6.4 Experimentation  

We proposed three strategies in this study i.e., combined machine strategy, multiple machines 

strategy, and individual machine strategy, and these strategies are adopted to analyze four different 

realistic configurations for implementing the proposed methodology [44]. From the three 

strategies, the combined machines strategy is considered as the single machine data, multiple 

machines is considered as the single machine data along with the machine ID as an extra input for 

the predictions, and the individual machine strategy considered as it is to train the data separately 

for each machine for the predictions [44]. 

 

6.4.1 Experimentation settings for criticality index prediction 

The Meta-learning based ML approach is utilized for predicting the criticality index of each 

machine and validated. Data from 12 machines were collected and these 12 machines are operating 

under four configurations called one-degree flexible, two-degree flexible, semi-flexible, and fully 

flexible. The machine ID from 1 to 12 from each configuration is considered. The additional 

extracted features as total work time of the machine, Total work quantity of the machine, Total 

number of setups, total work time of the machine after previous maintenance, and the total number 

of setups after previous maintenance is taken and the criticality index considered as predicted 

output [46]. A total of 30,427 batches of manufacturing data from these machines from each 

configuration and amongst 6 months of data 1 month, 2 months, and 3 months of data have been 

utilized for testing in three conditions for a different set of ML algorithms. Initially, the 

maintenance requirement for each individual machine is predicted. Later, the criticality index for 

each individual machine has been predicted in four configurations by taking the predicted 

maintenance as an input along with the input data and the input data has shown below in Table 6.1. 

 

Table 6.1 Data variables involved in ML Program 

Variable of Input Extracted Features Output 

10. Machine ID 4. Total working time of machine Maintenance requirement (1/0) 

11. Shift 5. Total number of setups  

6. Shift Date 12. Total quantity of a machine  

13. Material 4. Total work time of a machine after 

last maintenance 
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14. Quantity 5. Total quantity of a machine after 

last maintenance 

 

15. Production Time 6. Total number of setups after 

previous maintenance 

 

16. Time/piece   

17. Maintenance Time   

18. Setup   

 

 

6.5 Experimental Results and Discussion 

Confusion Matrix 

Figure 6.2 shows the 5*5 confusion matrix for the CI. CI of each machine has been predicted by 

considering the predicted maintenance as an input with the collected data. The CI from 1 to 5 

indicated which machine is more critical or less critical based on the index, and estimated 

maintenance time is required for combined machines or multiple machines, or individual machines 

with respect to CI as shown in Table 6.2. The information on CI ranges from 1 to 5 and has been 

collected from the shop floor manager in industry. The formulas for calculating the precision, 

accuracy, and F1 score from the obtained confusion matrix as mentioned in below Equations 6.2, 

6.3, 6.4.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                  (6.2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=  
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
    (6.3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
                                 (6.4) 
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Real CI 

 

 

 

Predicted CI 

 

 

 

 

Figure 6.2. Criticality Index for 5*5 matrix 

 

The TP1, TP2, TP3, TP4, and TP5 indicate the True Positive of the prediction class for the CI 

from 1 to 5 and the E21 to E45 are the True negatives and the false positives and false negatives for 

their respective prediction classes, and the true classes for the CI shown above Figure 6.2. The true 

positive defines the label belongs to the class of correctly predicted, False positive does not belong 

to the class but is predicted as positive, true negative does not belong to the class, predicted 

correctly, and finally, false negative does not belong to the class, predicted as negative. From the 

predictions of CI, the estimated time for maintenance of a machine information is collected from 

the shop floor manager is shown below in Table 6.2. 

 

Table 6.2 Criticality Index estimated time 

Criticality Index Estimated time for maintenance 

(seconds) 

1 0-999 

2 1000-4999 

3 5000-9999 

4 10000-19999 

5 20000+ 

 

The estimated time for maintenance in (seconds) for respective CI has been taken from the 

shop floor manager from the industry. The estimated time range is 0-999 seconds for CI 1, 1000-

4999 seconds for CI 2, 5000-9999 seconds for CI 3, 10000-19999 seconds for CI 4, and greater 

TP1 E21 E31 E41 E51 

E12 TP2 E32 E42 E52 

E13 E23 TP3 E43 E53 

E14 E24 E34 TP4 E54 

E15 E25 E35 E45 TP5 



98 
   Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA 

than 20000 seconds for CI 5 as shown below in Table 3. Three strategies have been applied for 

predicting the criticality index of machines named as combined machine strategy, multiple machine 

strategy, and individual machine strategy. 

 Table 6.3 presents the results of the top 6 algorithms (out of 30) that output the predictive 

models with the highest F1 score and the accuracy for the above-mentioned 3 strategies for one-

degree flexible configuration.  It has been observed that in strategy 1 i.e. combined machines 

strategy, for one-degree flexible configuration, the Cosine KNN is giving the highest F1 score as 

0.7288 as the 72.88% of chances are there for the criticality index according to the algorithm 

predicted and SVM (Quadratic) algorithm is giving the highest accuracy as 98.3%. In strategy 2, 

i.e multiple machines strategies, the neural network (Trilayered) is giving the highest F1 score of 

0.6731 for the criticality index and the KNN medium is giving the highest accuracy at 98.9% for 

one-degree flexible configuration. In strategy 3, i.e multi-algorithm level model, the algorithm has 

given an F1 score of 0.636, and an accuracy of 98.04% has been achieved.  

 

Table 6.3 Results for the criticality index prediction in case of one degree flexible configuration 

Learning Algorithm Accuracy F1 Score to predict maintenance 

Strategy 1. – Combined Machines 

Cosine KNN 97.90% 0.7288 

Neural Network (Medium) 96.90% 0.7179 

Decision Tree (Fine) 97.70% 0.7076 

Neural Network (Bilayered) 97.5% 0.6621 

SVM (Quadratic) 98.3% 0.5934 

Strategy 2. – Multiple Machines 

Neural Network (Trilayered) 98.6% 0.6731 

KNN (Medium) 98.9% 0.6422 

Ensemble Subspace (KNN) 96.9% 0.6249 

Fine KNN 98.3% 0.6014 

SVM Linear 98.6% 0.5802 

Strategy 3. – Individual Machine Level (Average F1) 

Multi algorithm learning model 98.04% 0.636 
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 Further, the criticality index range has been taken from 1 to 5, where 1 indicates the lower 

critical level which requires a lower amount of time for the maintenance of a machine is required, 

and 5 indicates the higher critical machine which requires a higher amount of time for the 

maintenance. The predicted criticality index for 100 days for 12 number of machines has explained. 

The CI has been predicted when the 12 machines of one-degree configuration are performing the 

operations under the given input is shown in Figure 6.3. The average criticality index of one degree 

flexible configuration is obtained as 1.09667. The average and standard deviation summation is 

equal to 1.63136, and the difference between averages to the standard deviation is equal to 0.56198.  

 

Figure 6.3 Criticality Index prediction for One degree flexible configuration 

Table 6.4 presents the results of the top 5 algorithms (out of 30) that output the predictive 

models with the highest F1 score and the accuracy for the mentioned 3 strategies for two-degree 

flexible configuration. It has been observed that in strategy 1 i.e. combined machines strategy, for 

two-degree flexible configuration, the neural network (medium) is giving the highest F1 score of 

0.696 as the 69.6% of chances are there for the criticality index according to the algorithm predicted 

and KNN (medium) algorithm is giving the highest accuracy as 98.4%. Similarly in strategy 2, i.e 

multiple machines strategy, the Ensemble Boosted Trees is giving the highest F1 score as 0.9744 

for the criticality index and SVM (Quadratic) is giving highest accuracy at 98.3% for two-degree 
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flexible configuration. In strategy 3 i.e multi-algorithm learning model has given an F1 score of 

0.6395 and an accuracy has 97.57% has been achieved.  

 

Table 6.4 Results for the Criticality index prediction for the two degree configuration 

Learning Algorithm Accuracy F1 Score to predict maintenance 

Strategy 1. – Combined Machines 

Neural Network (Medium) 98.10% 0.696 

Ensemble RUS Boosted Trees 97.50% 0.631 

Neural Network (Trilayered) 97.20% 0.588 

SVM Medium (Gaussian) 98.3% 0.597 

Medium KNN 98.4% 0.563 

Strategy 2. – Multiple Machines 

Ensemble Boosted Trees 97.4% 0.9744 

Ensemble Subspace KNN 96.9% 0.7366 

Neural Network (Bilayered) 97.6% 0.7285 

SVM (Quadratic) 98.3% 0.6496 

Linear Discriminant 98.0% 0.6322 

Strategy 3. – Individual Machine Level (Average F1) 

Multi algorithm learning model 97.57% 0.6395 

 

 The CI has been predicted from day 1 to day 100 as when 12 number of machines of two-

degree configuration are performing the operation under the given input is shown in Figure 6.4. 

The average criticality index of a two-degree flexible configuration for 12 number of machines is 

obtained as 1.0725. The average and standard deviation summation is equal to 1.5054, and the 

difference between averages to the standard deviation is equal to 0.6396. 
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Figure 6.4 Criticality Index for Two degree flexible configuration 

 Table 6.5 presents the results of the top 5 algorithms (out of 30) that output the predictive 

models with the highest F1 score and the accuracy for the mentioned 3 strategies for semi-flexible 

configuration. It has been observed that in strategy 1 i.e. combined machines strategy, for semi-

flexible configuration, the neural SVM (Quadratic) is giving the highest F1 score as 0.6461 as the 

64.61% of chances are there for the criticality index according to the algorithm predicted and KNN 

(medium) algorithm is giving the highest accuracy as 97.4%. In strategy 2, i.e multiple machines 

strategy, the Weighted KNN is giving the highest F1 score as 0.6138 for the criticality index and 

SVM coarse Gaussian is giving highest accuracy as 92.53% for semi-flexible configuration. In 

strategy 3, i.e multi-algorithm learning model has been given an F1 score of 0.6406 and an accuracy 

as 97.96% has been achieved. 

 

Table 6.5 Results for the criticality index prediction in case of semi flexible configuration 

Learning Algorithm Accuracy F1 Score to predict maintenance 

Strategy 1. – Combined Machines 

SVM Quadratic 97.00% 0.6461 

Decision Tree Medium 96.30% 0.560 

Medium KNN 97.40% 0.5521 
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Ensemble Bagged Trees 97.2% 0.5372 

Ensemble Boosted Trees 97.2% 0.5115 

Strategy 2. – Multiple Machines 

Weighted KNN 92.15% 0.6138 

Decision Tree Fine 92.06% 0.5351 

Ensemble Bagged Trees 92.25% 0.5326 

Ensemble Boosted Trees 92.06% 0.5319 

SVM Coarse Gaussian 92.53% 0.5214 

Strategy 3. – Individual Machine Level (Average F1) 

Multi algorithm learning model 97.96% 0.6406 

 

 The CI has been predicted from day 1 to day 100 when 12 machines of semi degree 

configuration are performing the operations under given input is shown in Figure 6.5. The average 

criticality index of semi degree for 12 machines is obtained as 1.07083. The average and standard 

deviation summation is equal to 1.53198, and the difference between averages to the standard 

deviation is equal to 0.60968. 

 

Figure 6.5 Criticality Index for Semi flexible configuration 
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Table 6.6 presents the results of the top 5 algorithms (out of 30) that output the predictive 

models with the highest F1 score and the accuracy for the mentioned 3 strategies for fully flexible 

configuration. It has been observed that in strategy 1, i.e. combined machines strategy, for fully 

flexible configuration, the neural SVM (medium Gaussian) is giving the highest F1 score as 0.6422 

as the 64.22% of chances are there for the criticality index according to the algorithm predicted 

and SVM (medium Gaussian), and the weighted KNN (medium) algorithm is giving the highest 

accuracy as 97.5%. In strategy 2, i.e multiple machines strategy, the SVM course Gaussian 

algorithm is giving highest F1 score as 0.6166 for the criticality index and SVM coarse Gaussian 

and weighted KNN algorithms are giving the highest accuracy as 93.6% for semi-flexible 

configuration. In strategy 3, i.e multi-algorithm learning model has been given an F1 score of 

0.5774 and an accuracy as 98.15% has been achieved. 

  

Table 6.6 Results for the criticality index prediction in case of fully flexible configuration 

Learning Algorithm Accuracy F1 Score to predict maintenance 

Strategy 1. – Combined Machines 

SVM Medium Gaussian 97.50% 0.6422 

Ensemble Bagged Trees 97.30% 0.6113 

Weighted KNN 97.50% 0.5946 

SVM Quadratic 97.4% 0.5641 

Decision Tree Medium 96.3% 0.56 

Strategy 2. – Multiple Machines 

SVM Coarse Gaussian 93.6% 0.6166 

Neural Network 93.41% 0.5869 

Weighted KNN 93.6% 0.5709 

Decision Tree Coarse 93.41% 0.5486 

SVM Linear 93.5% 0.4316 

Strategy 3. – Individual Machine Level (Average F1) 

Multi algorithm learning model 98.15% 0.5774 

 

 The CI has been predicted from day 1 to day 100 when 12 number of machines of fully 

configuration are performing the operations under given input is shown in Figure 6.6. The average 
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criticality index of semi degree for 12 machines is obtained as 1.03746. The average and standard 

deviation summation is equal to 1.2847, and the difference between averages to the standard 

deviation is equal to 0.6283. 

 

Figure 6.6 Criticality Index for Fully flexible configuration 

 

6.6 Conclusions 

Predicting the criticality index of a machine is an important experiment to understand the machine 

behavior. Primarily, the main hypothesis of this work is examined that the predicting the criticality 

index of each individual machine in the complex flexible configurations. Initially, 12 machines 

data of each configuration has been collected from single degree to fully flexible configurations. 

The demonstration, based on the system implementation shown very good predictions and better 

results has been achieved for predicting the criticality index under 3 different strategies and various 

machine learning algorithms. From the results, it has been observed that the accuracy has been 

achieved in the range from 92% to 98.9% under 3 strategies for 4 configurations, and F1 score for 

predicting the criticality index varied from 0.43 to 0.9744. Few machines were not identified as 

critical machines, which indicates that the machines are working in good condition and there is no 

maintenance is required for those machines. Amongst, four configurations, the less number of 

machines are identified as critical in case of fully flexible configurations compared to other 

configurations. In general, higher the criticality index for a machine will indicates the high amount 

of time is required for the maintenance. 
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Chapter 7 

A novel upgraded hybrid degradation model for maximum 

throughput in flexible configurations  

 

7.1 Introduction 

Manufacturing systems can be designed with various configurations such as series configuration, 

parallel configuration, and hybrid configuration. When it comes to the complex products to 

manufacture, the flexibility of manufacturing systems will play a major role to complete the 

demand as early as possible. The FUS, which are flexible enough to produce the complex parts is 

considered in this problem. Generally, throughput analysis is important for the design, operation 

and management of manufacturing systems [123, 124]. The maximum number of parts produced 

can be affected by the reliability of the workstations, and the cycle time (the time required to 

complete all the operations). The throughput can be defined as the maximum number of items 

processed in a unit time [37]. Most papers analyzed throughput for manufacturing systems using 

simulation or analytical methods. In general, the simulation and analytic methods are two different 

methods to estimate and analyze the throughput performance of various manufacturing systems. as 

per the authors knowledge, the simulation analysis has been widely using in various manufacturing 

systems analysis due to the robustness and the capacity of modeling large and complex systems.  

 This study analyzes and enhances the throughput of flexible systems with the help of hybrid 

degradation model which has been combined with RUL and CI of each individual machine. The 

throughput achieved by the hybrid degradation model has been compared with the real time data 

method which was used in 4th chapter of this research and production data method which was used 

in 5th chapter of this research work.  

 

7.1.1 Remaining Useful Life (RUL) 

A machine’s or a component’s residual life estimation during its operation based on its present 

condition is very important in order to find its health condition. The residual life of a manufacturing 

machine was characterized as remaining useful time till its level of degradation arrives at a 

predefined failure threshold. [38] Proposed a remaining useful life prediction by introducing the 

degradation rate changing to transition function and it jumps the degradation signals towards the 



106 
   Department of Mechanical Engineering, National Institute of Technology, Warangal (T.S), INDIA 

measurement function. The neural network can also be used to decide the residual life of a 

machine’s component regarding a number of residual operations. For example, in the 

manufacturing industry the usage of a prognostic health management system for deciding the 

residual life of milling cutters in a high-speed milling machine depends on externally measured 

conditions has been mentioned in [125].  

The Prediction of the life of a complex manufacturing system needs an exact estimation of 

degradation conditions of its constituent parts as well as an adequate understanding of how these 

stages progress in the future. Those difficulties become more entangled whenever parts of a 

machine are associated. Si et al., (2013) [126] proposed degradation method to anticipate the 

remaining useful life of machines utilizing a recursive channel calculation. Zhang et al., (2018) 

[127] survey is on ongoing modeling improvements of the wiener-process strategies for 

degradation information examination, remaining useful life estimation as their implementation in 

the empirics of the health management of manufacturing systems. Mosallam et al., (2014) [128] 

presented two stages of an information-driven strategy for remaining useful life prediction. It is 

noted that, based on the residual life of a manufacturing unit a workload adjustment strategy will 

be helpful to maintain the production rate.  

 

7.1.2 Criticality Index (CI) 

Due to the customer requirements for a product, the technologies used in their industries, the 

companies not only must plan for the maintenance activities, but also issues which affects the 

business goals. Therefore, the major issue for any company is a machine’s criticality index. 

Criticality index of a machine is the most important category in the manufacturing industry in case 

of maintenance management of a system. The criticality index of machines or devices used in 

manufacturing industry can be structured a set of activities to identify failures which impacts on 

companies goals [46]. Criticality of a machine is used as a comprehensive measure to estimate the 

various actions and to highlight the differences between each individual machine and action 

strategies. 

The predicted remaining useful life and Criticality index will be giving the whole health 

information about the machine which helps in enhancing the throughput rate of every machine. 

RUL is the length of time a machine is likely to operate before it is going to failure. And CI 
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indicates the level of criticality of a machine. Workload adjustment for a system whose individual 

machines RUL, and CI has known has been proposed and validated by throughput enhancement. 

7.2 Problem Description 

We developed a linear degradation model for proposed configurations for single degree to fully 

flexible systems to control the degradation of machines for controlling the loss of production of the 

system. To highlight the main idea, these systems undergo various analyses to predict the RUL and 

to predict the Criticality Index of each machines that further improves the throughput by 

minimizing the average degradation level. We define “throughput rate” as the overall output of the 

system, denoted by TH(x) and it represents the throughput rate at the time x  and ( )N x  presents 

the number of machines. Based on the operating machines
~

( )N x , the maximum throughput rate 

becomes

~

( )

( , )1, 1

N x

q rq r
C

  , where ( , )q rC indicates the “capacity” of a machine ,q r  at time x. The 

throughput rate of a system by considering the demand is defined as

~

( )

( , )1, 1
( ) min ,

N x

q rq r
TH x C D

 

 
  

 
  

where D stands for “Demand”. If the capacity is less than the demand, then throughput is equal to 

capapcity, and if the demand is less than the capacity, then the throughput is equal to the demand. 

Further, The RUL has been predicted by using the Equations 4.1 to Equation 4.10.  

Along with the RUL, the method for predicting the criticality index is used as a prediction 

output, and the output must be in the range of 0 to 5 which is used for Equation 6.1. As mentioned 

earlier, we utilized the production data for training, testing, and validation to predict the 

maintenance requirement for the machines and then to predict the CI of each machine. For example, 

The mathematical model behind the random forest algorithm are explained as the random forest 

algorithm stands on the theory of Chebyshev’s in equality combination of mean and standard 

deviation. Thus the objective function for prediction of criticality index as per the random forest 

algorithm is to understand the system health status as shown in Equation 6.1.  
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7.3 Experimentation 

We define throughput as the maximum number of items processed in a unit time from the system. 

Here, we assume that the machines in the system are identical in nature. Now, the capacity of each 

machine and the demand for the each configuration need to be known for operating machines for 

finding the throughput. The throughput can be concerning about the demand is defined as if the 

demand is less than the capacity, then the demand is equal to the throughput and if the demand is 

more than the capacity, then the capacity is equal to the throughput. The framework for developing 

the Hybrid Degradation model is shown in Figure 7.1. 

 

 

Figure 7.1 Framework for developing the Hybrid Degradation model 

  

7.3.1 Decision Making 

The decision making by combining of RUL and CI as shown in Figure 7.2. The Decision making 

has been considered based on the machine which has lower RUL and CI as first preference for the 

maintenance because the machine will take the lower maintenance time than other conditions 

mentioned in the decision criteria. Low RUL and High CI of a machine has been considered second 

preference for the maintenance.  High RUL and low CI of a machine has been considered as the 

third preference and High RUL and high CI of a machine has been considered as the last preferred 

for the maintenance requirement for fulfilling the necessities.  
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Figure 7.2 Decision making criteria for hybrid degradation model 

 

7.4 Results and Discussions 

Figure 7.3 shows the throughput for the hybrid degradation model comparison with the real time 

data method and production data method for one degree flexible configuration. When the time of 

manufacturing has been considered as 1 day, the 1053 number of products has been manufactured 

which is almost equal when compared with the other two methods i.e. real time data method and 

production data method. In time comparison, when the number of days are increasing from 1 to 9, 

the number of products processed has been raised to 8909 which is higher than other two methods 

in one degree flexible configuration. 
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Figure 7.3 Throughput comparison between proposed method with other real time data method 

and production data method for one degree flexible configuration 

 

 Figure 7.4 shows the throughput of the hybrid degradation model for two degree flexible 

configuration in comparison with the real time data method and production data method. When the 

time of manufacturing has been considered as 1 day, the 1132 number of products has been 

manufactured which is almost equal when compared with the other two methods i.e. real time data 

method and production data method. In time comparison, when the number of days are increasing 

from 1 to 9, the number of products processed has been increased to 12985 which is higher than 

other two methods in two degree flexible configuration. 
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Figure 7.4 Throughput comparison between proposed method with other real time data method 

and production data method for two degree flexible configuration 

 

 Figure 7.5 shows the throughput of the hybrid degradation model for semi flexible 

configuration in comparison with the real time data method and production data method. When the 

time of manufacturing has been considered as 1 day, the 1576 number of products has been 

manufactured which is slightly greater when compared with the other two methods i.e. real time 

data method and production data method. In time comparison, when the number of days are 

increasing from 1 to 9, the number of products processed has been increased to 14448, which is 

higher than other two methods in semi flexible configuration. 
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Figure 7.5 Throughput comparison between proposed method with other real time data method 

and production data method for semi flexible configuration 

 

 Figure 7.6 shows the throughput of the hybrid degradation model for fully flexible 

configuration in comparison with the real time data method and production data method. When the 

time of manufacturing has been considered as 1 day, the 1270 number of products has been 

manufactured which is almost equal when compared with the other two methods i.e. real time data 

method and production data method. In time comparison, when the number of days are increasing 

from 1 to 9, the number of products processed has been increased to 15604, which is higher than 

other two methods in fully flexible configuration. 
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Figure 7.6 Throughput comparison between proposed method with other real time data method 

and production data method for fully flexible configuration 

 

7.5 Conclusions 

The proposed hybrid degradation model manufactured 15,604 number of jobs in fully flexible 

configuration which is higher than other two benchmark strategies. In one degree flexible 

configuration, the 1053 number of products has been manufactured which is almost equal when 

compared with the other two methods i.e. real time data method and production data method on 

day1. In two degree flexible configuration, the 1132 number of products has been manufactured 

which is almost equal when compared with the other two methods i.e. real time data method and 

production data method for the day 1.  
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Chapter 8 

Conclusions and Future Scope 

 

8.1 Conclusions 

The flexible systems analysis shown an interest to understand the system behavior. Majorly six 

performance parameters has been identified which influence the four flexible configurations. Based 

on the identified parameters, the entropy based TOPSIS method has been used to rank the 

parameters. The Throughput rate shown as most influenced parameter, further which was used for 

predicting the RUL and workload adjustment strategy has been proposed on single product 

category. The maintenance requirement has been predicted using ML and RUL has been identified 

based on maintenance prediction then workload adjustment has been proposed on multi-product 

category. The criticality index of each machine has been predicted for understanding  

 

The following conclusions can be drawn from the obtained results. 

 

 The Throughput Time is the most affected performance parameter and maximum stay time 

is the least affected performance parameter on flexible machine systems in case of 

breakdown condition and Throughput Time is the most affected performance parameter 

and Availability, average stay time, and maximum stay time are the least affected 

performance parameter on flexible machine systems without breakdown condition. 

 The average percentage of loss in production is 4.75% in case of proposed model, which is 

reduced compared to average of 10.5% obtained in case of equal job adjustment, and 

average of 7.5% in random job adjustment in instance1. Similarly average percentage of 

loss in production is 2% in case of proposed model, which is reduced compared to average 

of 6.67% in case of equal job adjustment and average of 4.61% in random job adjustment 

in instance2. The average percentage of loss in production is 0.75% in case of proposed 

model which is reduced compared to average of 3.75% in case of equal job adjustment and 

average of 2% in random job adjustment in instance3.   

 The workload adjustment strategy in case of multi-product category, the results clearly 

shown out that the workload adjustment methodology consistently outperformed than other 
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two strategies in case of minimization of throughput time. The proposed workload 

adjustment strategy has been taken 46946 seconds for fully flexible configuration which is 

less than the other two benchmark strategies in any configuration. 

 The criticality index prediction results shown that the accuracy varied from 92% to 98.9% 

under 3 strategies for 4 configurations, and F1 score for predicting the criticality index 

varied from 0.43 to 0.9744.  

8.2 Future Scope 

 A study is needed to perform the workload adjustment strategy when the degradation rate 

and the workload having different relationships.  

 In the future, the proposed parameters ranking methodology using entropy based TOPSIS 

method can help firm management to take verdicts refining the performance parameters of 

various proposed flexible systems and understand the manufacturing system behavior and 

its influencing parameters in normal and various uncertain conditions. 

 The criticality index prediction which determines the degree of the maintenance necessity 

can be done for more applications. 

 In future, investigation of new learning paradigms, various algorithms can be utilized to 

predict the criticality index. 

 A study also required to aim at the creation of a software for the frequent observation of the 

criticality index of machines.  
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