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Abstract

Predictive maintenance of machine tools is gaining wide attention in the manufacturing
sector for achieving higher production rates and closer tolerance of machined parts. Due to the
continuous operation of machine tools and the nature of work performed on it, wear and tear
occur on the sliding and rotating components causing gradual mechanical damages. These
mechanical damages on critical machine tool components adversely affect the quality of
machined products and overall production efficiency. The present work investigates the
development of an intelligent predictive maintenance framework for the critical components of

machine tool subsystems.

The investigation first proposes a scientific methodology for the criticality analysis of
machine tool systems employing a fuzzy modified failure mode, effects, and criticality analysis
(fuzzy FMECA) for the maintenance prioritization of computer numerical control (CNC) lathe
subsystems. The subsystems with a higher risk of failure and causing longer downtimes are
considered for predictive maintenance. The lathe spindle unit is identified as the most critical
subsystem with the highest estimated risk value of 848.2. The information on potential failure
modes of components is utilized for the sensor selection in condition monitoring of machines.
Following, an accelerated run-to-failure lathe spindle experimental test rig is fabricated to
acquire machine tool health degradation data for analyzing the intelligent prognostic regression
models for predictive analytics. Vibration signals representing machinery health degradation
patterns are collected from critical lathe spindle locations. Vibration signature features in time,
frequency, and time-frequency domain revealing superior machine degradation patterns are
employed for training the prognostic algorithms. A neighborhood component analysis (NCA)
based feature weighting scheme is used for selecting the most relevant features for regression
analysis. Data conditioning and data selection can avoid underfitting and overfitting of the

prognostic models.

Data-driven prognostics regression algorithms are observed efficient for the machinery
health prognostics and Remaining Useful Life (RUL) estimations. Long Short-Term Memory
(LSTM)/Bidirectional-LSTM (bi-LSTM) deep neural network models, Support Vector
Machine (SVM) machine learning model, and exponential degradation statistical estimator

model are utilized to develop intelligent predictive models for the prognostic analysis of CNC



lathe spindle unit. However, optimizing the network structure and hyperparameters of the
learning algorithm is a major challenge in the implementation of learning algorithms for
predictive analytics. Bayesian optimized machine learning and deep neural network algorithms
are proposed for the predictive analytics of the CNC lathe spindle unit. LSTM/bi-LSTM deep
neural architecture-based prognostic algorithms are promising computational techniques for
predictive maintenance and RUL estimation. LSTM/bi-LSTM networks and their combination
network architectures are explored to evolve intelligent predictive models for the RUL
estimation of lathe subsystems. Prediction accuracy of the evolved predictive models for
estimating RUL of the lathe subsystems is evaluated using root mean square error (RMSE) and
mean absolute percentage error (MAPE). The LSTM + bi-LSTM network architecture is
identified to have the best prediction accuracy on lathe spindle RUL estimation with RMSE
equals 31.65 and MAPE equals 4.45%. Further, this LSTM + bi-LSTM intelligent predictive
model is chosen to develop a real-time loT-based cloud analytics paradigm with a remote

maintenance decision-making dashboard.

Keywords: Industry 4.0, Internet of Things (1oT), Predictive Maintenance, Remaining Useful
Life (RUL), Vibration Signal, Computer Numeric Control (CNC) Lathe; Failure Mode Effects
and Criticality Analysis (FMECA), Deep Learning, Long Short-Term Memory (LSTM),

Machine Learning, Hyperparameter Optimization.
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Chapter 1

Introduction

1.1 Background

Manufacturing enterprises face a constant demand for increased productivity and
improved product quality at minimum costs of production and maintenance. Manufacturing
systems are now designed as highly sophisticated machine tools with advanced Computer
Numerical Control (CNC) support to be in phase with the global competition. The reliability of
manufacturing systems is revealed by the operating condition of the functional components and
subsystems of machine tools. As the manufacturing industry continues to adopt more digital
technologies the shortage of an appropriate machine tool maintenance strategy could prove
adverse [1]. Due to the continuous operation of machine tools and the nature of work performed
on it, wear and tear occurs on the sliding and rotating components causing gradual mechanical
damages. These mechanical damages on critical machine tool components adversely affect the
quality of machined products and productivity [2]. An efficient machinery health management
strategy for the machine tool systems is necessary to withstand the manufacturing industry at

zero unexpected failure rates and minimal machinery downtimes [3, 4].

Machinery health management is the practice of keeping the machines in proper
functioning condition to produce quality products with maximum efficiency. Machinery health
management primarily involves the maintenance of industrial equipment to maximize asset
availability ensuring the quality of products manufactured or services offered and ensuring a
safe working environment for their workforce [5]. Industrial maintenance has evolved over

time, starting from fundamental reactive maintenance through preventive maintenance, and has



come to condition-based maintenance (CBM) [6, 7]. The reactive or corrective maintenance
strategy is an unplanned maintenance approach where the machine is allowed to operate until
failure and then restoring. This maintenance approach can result in unexpected equipment
downtime causing severe production loss. Preventive maintenance is a planned maintenance
strategy where time-based or periodic maintenance actions are scheduled in advance to prevent
failure. However, this maintenance approach causes redundant maintenance activities causing
unnecessary expenditures. Reactive and preventive maintenances approaches consume time
and resources which otherwise could be utilized for production [1, 7]. Figure 1.1 illustrates the
reactive and preventive maintenance strategies for the machinery performance index against
service life. In reactive maintenance, the repair activities are performed only after the machine
degrade beyond the prescribed service line where it fails to perform its intended functions. The
reactive maintenance strategy also performs rehabilitation activities to restore the machine to
its initial working condition once it runs into a catastrophic failure. In preventive maintenance,
a periodic target line is defined as reaching which the machine is subjected to periodic
maintenance activities to restore it to its initial working condition. This maintenance strategy

ensures the machinery to operate always in the prescribed service life state.

Reactive Maintenance
Preventive Maintenance
Initial State Health Degradation
F
I Repair Repair
_q:,, Periodic Target Line \
= \
[Sa=
[-F]
[ ¥]
s ™ Rehabilitation
B
=
Tt
Q .
=) Repair
Service Line
Safety Limit Line
Catastrophic Failure Point

Service Life —

Figure 1.1 lllustration of conventional industrial machinery maintenance strategies on

machinery performance index and service life



CBM is a maintenance strategy that monitors the actual condition of an asset for deciding when
what maintenance needs to be done. CBM is based on the condition monitoring data collected
from operating machinery [8]. Predictive maintenance is an advanced version of CBM, where
data analysis tools and intelligent computational techniques are used to predict any upcoming
failures far before their actual point of occurrence. Thus, the predictive maintenance approach
allows users to well-plan the maintenance activities to perform the right maintenance action at

the right point in time with minimal production loss and expenditure [9].

The scope of implementing predictive maintenance of manufacturing systems
contributes to enhancing the controls, costs, and quality of production. The predictive
maintenance paradigm belongs to Industry 4.0 that it is propped up by several technological
enabling factors including a wide range of sensors capable to register any source of information
(vibrations, acoustic emissions, temperature, etc.) send from operating machinery, advanced
computational resources for analyzing the acquired data, modern Internet of Things (loT)
enabled remote connectivity means, and big data cloud storage and computing technologies that

provide real-time update of machinery information for the prognostic analysis [10].

Predictive maintenance generally uses historical and real-time machine health
degradation information to recognize the equipment failure patterns and further this information
is used to forecast upcoming failures. The predictive maintenance strategy uses condition
monitoring tools to track the performance of the machine functional components. In any
mechanical system, the machine operating condition is monitored using time-series data such
as vibration signal, shock-pulse, acoustic emission, bearing temperature, oil debris, oil pressure,
and electric current variations. This involves the application of different sensors, data
acquisition systems, data processing, and computation techniques [11]. This causes huge
installation costs of sensors, data acquisition, and computational algorithms, and therefore
predictive maintenance is limited to the most critical subsystems of the machinery. Hence, the
identification of the most critical components of the machine system and associated failure
modes are the pre-requisite for employing predictive maintenance [12]. The information on
potential failure modes associated with the critical subsystems is necessary for the selection of
the most suitable sensors for condition monitoring. The machinery log file information that
records either event of machine failure, downtime, restoration, and costs involved are analyzed
using failure modes and criticality analysis tool to identify the potential failure modes of

machinery functional components and the risk associated [13, 14].



Machine condition monitoring makes the primary component of predictive maintenance.
Sensors are used to measure specific machine operating conditions to observe any sign of
irregularity that would affect the normal operation of the machine. The machine condition
monitoring data provides both diagnostic and prognostic information, like the fault, location of
the fault, causes of the fault, and upcoming failure time. The condition monitoring information
can also be used for evaluating the quality of products manufactured, mainly its dimensional
tolerances and surface quality. Machine vibration monitoring is the most widely employed
condition monitoring parameter for mechanical systems. The machine health degradation
patterns are extracted for the vibration signals for machinery failure prognostic analysis [6, 15,
16].

Machinery health prognostics primarily perform the estimation of Remaining Useful
Life (RUL) or Time-to-Failure (TTF) by analyzing the current operating condition of the
machine against the historical machine failure trend pattern. The health prognostics techniques
are classified as physics-based approaches, statistical model-based approaches, Artificial
Intelligence (Al) approaches, and hybrid approaches [6, 17, 18]. The physics-based approach
demands a thorough knowledge of the physics of failure mechanism, which is difficult to
execute for complex machinery. Statistical model-based and Al approaches are data-driven
approaches, which utilize machinery health degradation data for prognostic analysis. Statistical
model-based approaches require only empirical knowledge to establish a relationship between
the failure mechanics and statistical model, whereas the Al models use minimal technical
aspects of the system. Al approaches use intelligent learning algorithms to learn machinery
health degradation patterns, but its implementation was not popular due to the black-box nature
of the learning process and the requirement of computers with high computational power. The
data-driven approaches use machinery health degradation information to train intelligent

predictive models, which are used for RUL estimation of the considered machine [19, 20].

The statistical model-based approaches are the most popularly used prognostic
technique for decades. Random coefficient models, autoregressive models, Wiener process
models, Gamma process models, inverse Gaussian process models, Markov models,
proportional hazards models, exponential degradation model, etc. are the most widely used
statistical models for machinery health prognostics [17]. Al approaches have been receiving
increasing attention with the advancements in computational capabilities and their superiority

in dealing with prognostics problems of complex mechanical systems. Machine learning and



deep learning Al models are very popular in machinery health diagnostic and prognostic
analysis. The most recognized machine learning and deep learning architectures for failure
prediction and RUL estimation include artificial neural network (ANN), neural fuzzy systems,
support vector machine (SVM), support vector regression (SVR), k-nearest neighbor (KNN),
Gaussian process regression (GPR), recurrent neural network (RNN), long short-term memory
(LSTM), deep belief network (DBN), convolution neural network (CNN), etc. [21, 22]. Though
the technical advancements encourage the implementation of an Al algorithm for prognostics,
hyperparameter optimization and network architecture selection are major challenges before
the successful utilization of these techniques. The hyperparameter optimization including both
structural and training parameters has a direct influence on the accuracy of the RUL estimation
models. The computational search algorithms like grid search, random search, Bayesian search
optimization, etc. are employed for the hyperparameter optimization to reduce the

computational complexity and improve prediction accuracy [23, 24].

The appealing contribution of the latest technological advancements to the industry is
the Industrial Internet of Things (110T), which establishes an efficient communication paradigm
between the various industrial machinery, systems, and users. 1loT utilizes advanced sensor
technologies supporting the 10T, cloud space, and cloud computing facilities for intelligent
computational algorithms. These technological advancements can be used to augment the
predictive maintenance paradigm for industrial machinery [9, 25]. A maintenance decision
support system with a maintenance decision-making dashboard and failure warning system can
be offered for the industrial sector. The system is also capable of providing remote access to

the industrial machinery health status information and control of industrial activities [26].

Predictive maintenance is not a substitute for traditional maintenance approaches, rather
it is considered as a value addition to the total industrial production management. It cannot
totally wipe out the need for traditional reactive or preventive maintenance approaches. In any
industry, the user should identify if the predictive maintenance suits the machinery concerning
the huge installation costs and the fact that only those component faults that can be monitored

using sensor technology could be considered [27].

1.2 Motivation of the Thesis

“Maintenance is a necessary evil” is a general opinion among industrialists. The

maintenance costs constitute a major part of the total operating costs of all manufacturing



systems. The loss of production time and product quality that result from an inefficient
maintenance approach has serious impacts on industrial manufacturing enterprises. The advent
of Industry 4.0 can take advantage of cyber-physical systems techniques to digitalize
maintenance strategies and implement loT-based data-driven automated remote-controlled
operations. loT-based intelligent decision support system for machinery health management
can make maintenance scheduling and shop floor work allocations a facile task. Predictive
maintenance is a credible solution for machinery health and product quality management.
Instead of relying on industrial field failure data or in-plant average life statistics, predictive
maintenance uses the machinery condition monitoring data like component vibrations,
temperature, acoustic emissions, etc. to obtain insights on the actual operating condition of the
manufacturing system. Advancements in sensor technology and loT connectivity open a wide
scope for real-time machinery condition monitoring data generation and data acquisition from
anywhere. In the manufacturing sector, predictive maintenance of machine tools is gaining wide
attention to bring about higher production rates and closer tolerance of machined parts.
However, the additional instrumentation causing huge installation costs and the complexities
involved in computational tools pull back the industrialist from implementing predictive
maintenance. Data-driven prognostics approaches like Al techniques require minimal technical
knowledge on the machinery operations and their failure mechanism. Deep learning is a
promising Al computational tool for machinery health prognostics and RUL estimation.
However, the implementation of deep learning algorithms for machinery health prognostics

involves many challenges.
1.3 Scope of the Work

This thesis work aims to employ intelligent data-driven computational techniques for
the prognostic analysis and predictive maintenance of critical machine tool systems. The
research aims to investigate the challenges faced during the implementation of a predictive
maintenance strategy in the manufacturing industry for their machine tool systems. The study
initiates with the criticality analysis of a CNC lathe machine tool for the maintenance
prioritization of critical components and potential failure mode identification followed by
sensor selection and configures data acquisition system for machine health degradation data
recording. Further, data-driven techniques are employed to extract machine health degradation
patterns to evolve intelligent predictive models. However, the implementation of intelligent

data-driven techniques like deep learning algorithms for machinery health prognostics has



enormous challenges, which have a certain scope for discussion in the present era of Industry
4.0. The mandate to have a large size machinery failure data for training deep learning
algorithms is regarded as a major limitation. Hyper-parameter optimization, architecture design
and data training of deep learning algorithms are still challenging and unpredictable, which can
pull back industrialists from implementing intelligent health management of industrial
machinery. This research work aims to unveil the black-box nature of deep learning algorithms
to make an intelligible prognostic platform with automated hyper-parameter selection to
instigate industrialists to set about an autonomous machinery health management system. The
primary scope of this thesis is to motivate industrial practitioners to develop an autonomous
machinery health management system consisting of the machine health degradation data
acquisition system and intelligent prognostic model training algorithms. Such a system

improves the overall industrial value and thus fits itself into the present Industry 4.0 era.
1.4 Organization of Thesis

Chapter 1 introduces the research problem. A detailed review of literature is presented
in chapter 2 highlighting the gaps areas identified for further research and the aim and objectives
of the present study. Chapter 3 discuss the criticality analysis and maintenance prioritization of
the CNC lathe machine tool. Chapter 4 details the fabrication of an accelerated run-to-failure
experimental setup for time series machinery health degradation data acquisition and data
processing to extract useful information on machine failure. Chapter 5 presents the
implementation of data-driven prognostic algorithms for machinery health prognostics and
RUL estimation. The chapter also discusses a comparison of popular data-driven prognostic
models for machinery RUL estimation. Chapter 6 presents the implementation of 10T based
remote maintenance decision-making dashboard with cloud data analytics. Chapter 7 presents

the summary and conclusions of the entire study and the scope for future work.



Chapter 2

Literature Survey

2.1 Introduction

In recent years, the increasing demand for higher production rates and product quality
has led to the induction of more sophisticated machines, which in turn has increased the
requirement of more effective maintenance strategies to ensure the overall performance of
industrial systems. The evolution of industrial maintenance strategies has reached an intelligent
predictive maintenance concept, which detects the upcoming failures in an industrial system far
before their actual occurrence. The change has also affected the manufacturing sectors and the
machine tool systems, the operating condition of which reflects the production rates and quality
of the machined parts. This chapter reviews the predictive maintenance of mechanical systems
with respect to machine condition monitoring and data acquisition, and the computational
analysis focusing on the data-driven approaches. The machine tool failure mode identification
and criticality analysis are discussed for the application of maintenance prioritization. The data-
driven computational approaches including statistical estimator models, machine learning
approaches, and deep learning approaches are discussed for machinery prognostic regression
analysis. Furthermore, the chapter reviews the 10T-based maintenance decision support system
for industrial machinery. The chapter ends with discussions on the gap areas in literature, the

aim and objectives of the present work, and a flowchart of the present work.



2.2 Machine Tool Maintenance

Machine tool technology is the backbone of the manufacturing industry. The machine
tools are often operated in the manufacturing sectors without a planned maintenance strategy
which is usually confined to cleaning the equipment and lubricating the moving parts. Such a
maintenance approach can result in low-grade products, unplanned downtimes, and
catastrophic failures causing huge production loss and a precarious working environment. The
prime motive of planned maintenance is to keep the machine tool vibrations within acceptable
limits thus ensuring a good operating condition [5, 6]. According to ISO 230 (2012), machine
tools should mitigate the types of vibration that produce undesirable effects to avoid
“unacceptable cutting performance with regard to surface finish and accuracy, premature
wear or damage of machine components, reduced tool life, unacceptable noise level,

physiological harm to operators” [8].

The CNC machine tools are more complex and sophisticated industrial systems that play
a significant role in the modern manufacturing industry. These machine tools perform shaping
or machining operations usually, by turning, milling, boring, grinding, shearing, or other forms
of deformation. Due to the continuous operation of machine tools and the nature of work
performed on it, wear and tear occurs on the sliding and rotating components causing gradual
mechanical damages [28]. These mechanical damages on critical machine tool components
adversely affect the quality of machined products. The increasing demand for machining quality
and closer tolerance of machined parts has raised the need for a systematic maintenance
approach for the machine tool systems [4, 29]. A fault-free operating condition of machine tools
is of high priority in the manufacturing industry [30, 31]. There has also been a simultaneous
growth of industrial technologies that hasten the need for an efficient maintenance approach.
The advent of Industry 4.0 has driven the manufacturing industry to achieve a new generation
of machine tool systems termed as Cyber-Physical Machine Tool (CPMT) or Machine Tool
4.0, which are intelligent, well connected, extensively accessible, and more adaptive and

autonomous in operation, control, and maintenance [4, 32, 33].

The reliable performance of machine tool systems is largely dependent on the inherent
reliability of its functional components and maintenance program adopted. The peripheral
factors like production planning and work scheduling also influence the machine tool's
reliability. On the component level, functional components and subsystems of the CNC



machine tool have a considerable influence on its reliability level [3]. The operating condition
of each subsystem like CNC unit, spindle unit, linear axis feed drive, hydraulic system, etc.
contributes to the overall performance of the machine tool. In a machine tool system, the
mechanical failures bring about the major cause of downtime, while the electrical failures are
more frequent, though the downtime caused is comparatively very less [29, 34, 35]. The cutting
tool wear is another common failure phenomenon in machine tool systems. However, these
failures do not cause catastrophic failures of machine tool systems, but highly influence the

quality of machined products [36].

The research paper by Harris et.al. [37] is one of the oldest publications on condition
monitoring and fault detection of machine tools. Martin [38] has published a review on
condition monitoring and fault diagnosis in machine tools and discussed its primary concept
and applications. Drake et.al. [39] developed a data acquisition system for machine tool
condition monitoring. Saravanan et al. [40] have performed failure data analysis for the
condition monitoring of lathe, milling, and grinding machine tools. The author later discussed
the condition monitoring of lathe spindle units based on vibration, acoustic emission, surface
roughness monitoring, and the Shock Pulse Method (SPM) [34]. Liang et al. [41], Kim et al.
[42], Atluru et al. [43] discussed the evolution of process monitoring and control technologies
for machine tool systems. Liao et al. [44] and Jay Lee et al. [45] utilized Watchdog Agent®
prognostic toolbox for the automatic tool changer and spindle bearing health status prediction
integrating both CNC controller data and sensor data. Soft computational data mining
techniques [46-48] and finite elements models [49-52] were preferably employed for fault
diagnostics and prognostics of machine tool system failures. Statistical data analysis techniques
for criticality analysis were used for machine tool failure analysis [2, 3, 53]. Comparatively
only a few researchers worked on condition monitoring and maintenance of machine tool
functional components. Most research works on advanced machine tool maintenance strategies

are focused on cutting tool condition monitoring and cutting tool wear predictions [54, 55].

Recently, a few researchers have studied the development of an intelligent maintenance
strategy for machine tool systems [55-57]. The functional components of CNC machine tools
like spindle unit [58-60], spindle bearings [61, 62], linear axis feed drive [63, 64], ball screw
feed drive [29], transmission system [65], and automatic tool changer [66, 67] are critically
investigated for fault detection and diagnostics. The current trend in machine tool maintenance

is based on advanced predictive maintenance systems with real-time machine tool monitoring
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and failure predictions [3, 4, 61, 67-71]. Research in this area is necessary to ensure increased
productivity, improved product quality, reduced costs, and to keep the manufacturing

technology up-to-date in this fast-growing world.

2.3 Evolution of the Maintenance Strategies

Maintenance can be defined as “a combination of all technical, administrative and
managerial actions during the life cycle of an item intended to retain it in or restore it to, a
state in which it can perform the required function” (EN 13306-2010) [72]. The primary
objective of maintenance is to maximize the asset availability ensuring the quality of products
manufactured or services offered. Efficient maintenance of industrial systems also ensures a

safe working environment for their workforce.

Industrial maintenance has evolved over time, starting from the fundamental reactive
maintenance where any repair or replace actions are initiated only after the occurrence of
failure, through the preventive maintenance in which maintenance actions are performed at
regular intervals to avoid upcoming failures determined based on statistical reliability analysis,
and has come to the CBM where the maintenance is done when a condition monitoring indicator
goes over a predefined threshold [30]. The reactive or corrective maintenance strategy is an
unplanned maintenance approach where the machine is allowed to operate until failure and then
restoring. This can only be considered for less critical systems and only if the consequences of
failure are affordable. The preventive maintenance or time-based or routine or periodic
maintenance are planned maintenance approaches where the maintenance actions are scheduled
in advance to prevent failure. The maintenance is usually determined based on the machine
operating manual or operator’s experience. The CBM is based on the machine condition
monitoring information that indicated machine failure or deterioration. CBM has the primary
focus on failure prevention and functionality of its components but also has a secondary focus
on the quality of manufactured products or machine operations. A predictive maintenance
strategy can be regarded as an advanced version of CBM where the condition monitoring data
is used to predict any upcoming failures far before their actual point of occurrence [30, 31].

Table 2.1 summarizes the main characteristics of all the aforementioned maintenance strategies.
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Table 2.1. Main characteristics of all maintenance strategies

Maintenance Reactive Preventive CBM Predictive
Strategy Maintenance | Maintenance Maintenance
. Depends on | Fixed on basis of Based on Determmed by

Maintenance L o prognostic

E component statistical condition )
requency : A . o regression

failure reliability analysis | monitoring data .
analysis

Complexity

and . Low Medium High medium High

Technological

Requirements

Human

Intervention High High Medium Medium Low

Requirements

CBM has been the most investigated maintenance strategy by both the research
community and industries for machine tool maintenance [31] The discussion mostly includes
the selection of the most suitable sensors for machine tool vibration and temperature monitoring
with available data analysis techniques, and no consideration of the predictive prognostic
analysis was reported. Over a half-decade, researchers had been enthusiastic about the
prognostic health management (PHM) concept for industrial machinery, which includes
research works on monitoring and analyzing the current health status of the machine and
analyzing past machine failure data to predict future machine failures. Implementing the
predictive maintenance concept can contribute to reduced maintenance associated costs,
increased production time, improved product quality, and reduced risk of catastrophic failures
[5, 28].

The predictive maintenance paradigm belongs to Industry 4.0 that it is propped up by
several technological enabling factors including a wide range of sensors capable to register any
source of information send forth an operating machine (vibrations, acoustic emissions,
temperature, etc.), advanced computational resources for analyzing the collected data, modern
I0T enabled remote connectivity means, and big data cloud storage and computing technologies

that provide real-time update of machine information for prognostic analysis [33, 73].
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2.4 Predictive Maintenance

Predictive maintenance strategy allows the industries to have the minimal amount of
annual maintenance activities that would be required to keep the machine in its peak operating
condition and avoid chances of any unexpected catastrophic failure or downtime. Reactive and
preventive maintenances approaches consume time and resources which otherwise could be
utilized for production [7]. Predictive maintenance primarily detects early signs of failure in the
functional components of machinery and then initiates necessary maintenance actions at the
right time. A predictive maintenance strategy is supported by condition monitoring and
prognostics algorithms, which perform the analysis of machinery health degradation. The
machine condition monitoring data provides both diagnostic and prognostic information, like
the fault, location of the fault, causes of the fault, and upcoming failure time. The condition
monitoring information can also be used for evaluating the quality of products manufactured,
mainly its dimensional tolerances and surface quality [74]. Predictive maintenance generally
uses historical and real-time machine health degradation information to estimate the RUL or
TTF of the equipment. RUL is the subjective estimate of the length of time a machine can
perform its intended functions [9]. The failure of a machine is defined as the point at which it
is not able to perform its intended functions in the designed manner. The failure rates throughout
the lifetime of a mechanical system are graphically represented on a failure rate vs time plot
namely, the bathtub curve as shown in Figure 2.1.

Bathtub Curve

Wear-QOut period

Infant Mortali iod . .
niant Viortality perio (Increasing Failure Rate)

(Decreasing Failure Rate)

Failure Rate =

Useful Life period
(Constant Failure Rate)

Time =——b>

Figure 2.1 Bathtub Curve
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The bathtub curve is divided into three regions: early infant mortality period, useful life
period, and wear out period. The early infant mortality period is characterized by a high but
rapidly decreasing failure rate. The failures in this period are due to minor design and
manufacturing flaws. The useful period has a long period of constant failure rate. This period
is the best operating lifetime of the machine. In the final wear-out period, the mechanical
components begin to wear out approaching the failure. The failure rate rapidly increases at this

period of machine lifetime [75].

The predictive maintenance approach consists of three main steps; data acquisition, data
processing, and maintenance decision-making. The continuous machine monitoring data gives
insight into the changing health status of the machine. The failure trends of a particular machine
are deduced from the available historical machine monitoring data. The machine failure trends
and real-time machine health status are fed into a prognostic analysis tool to determine the TTF
or RUL that helps in maintenance decision making and scheduling [76, 77]. Figure 2.2 shows
the flow diagram of the predictive maintenance approach.

Data
Acquisition

Data Predictive Maintenance

Model

Decision
Support system

Manipulation

¥’ Sensors v Signal ¥ Prognostic v TTF/RUL v Computerized
v Machinery Filtering Algorithm Estimation Decision
Real-Time v Feature v Data Making
Data Extraction Training v Remote
v"Machinery Access
Health v Maintenance
ST : Scheduling
Information
~ - -
-

Figure 2.2 Predictive maintenance flow diagram

The concept of condition monitoring and predictive maintenance dates back to decades
when experienced maintenance persons use their senses of seeing, hearing, smelling, and
touching to detect an early sign of failure and initiate necessary maintenance actions. This
expertise-based technique though very old is still being practiced as it is still admired in many
situations. The current predictive maintenance approach with the technological substructure got
its true application in the industrial world only since the 1990s, which due to the unavailability

of suitable sensors and data acquisition systems, and high complexities involved discouraged
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the industrialist and research community to consider this maintenance approach [7, 78]. The
advancements in sensor technology and computational capabilities have made these
discouraging factors trivial before the growing demand for efficient maintenance approaches
[74]. With the arrival of Industry 4.0, many industries are eager to establish an intelligent
predictive maintenance strategy for their machinery [79, 80]. The predictive maintenance
approach avoids the situation of over-maintenance or under-maintenance of industrial
equipment. It is not a substitute for traditional maintenance approaches, rather it is considered
as a value addition to the total industrial production management. It cannot totally wipe out the
need for traditional reactive or preventive maintenance approaches. In any industry, the user
should identify a suitable maintenance strategy either reactive, preventive, or predictive based

on the critical requirement [33, 80].

Implementation of predictive maintenance is a complex proceeding for the industry
since it involves meticulous planning of hardware, software, and personnel requirements.
Considering the machinery faults, only those machinery faults that can be monitored using
sensor technology could be considered. Also, predictive maintenance required a huge
installation cost, the user should identify which machinery or machine subsystem should be
covered in the predictive maintenance strategy. The general requirements for successful
implementation predictive maintenance are summarized as follows:

i.  Identify the critical components to be monitored
ii.  ldentify the parameters that indicate deterioration of component
iii.  Selection of suitable sensors and data acquisition system
iv.  Selection of suitable condition monitoring techniques and critical thresholds for the
monitored parameter
v.  Selection of suitable computational algorithm to perform prognostic analysis

vi.  Efficient computerized maintenance decision support system [73, 74, 81]

2.5 Machine Criticality Analysis

Although predictive maintenance is getting wide acceptance, its realization in
manufacturing sectors requires huge installation costs for sensors technology and intelligent
computational algorithms, and therefore, it is limited to the most critical subsystems of the
machinery [74, 82]. The information on potential failure modes associated with these critical

subsystems is necessary for the selection of the most suitable sensors for condition monitoring.
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On account of these factors, the identification of the most critical components of the machine
system and associated failure modes makes the prerequisite for employing predictive
maintenance. Recently, a few research studies have focused on establishing the necessity of
criticality analysis of a mechanical system to support maintenance decision making, pointing
out the lack of strong machine criticality analysis methodologies in the industry for maintenance
prioritization [83-86]. Gopalakrishnan et al. [12] were critical of the traditional maintenance
prioritization practices in the industry, which is operator influenced and thus non-factual. He
has also interpreted the connection between machine criticality and maintenance prioritization

in an industrial context for productivity improvement.

Recently, many researchers have employed failure mode and effects analysis (FMEA)
and failure mode, effects, and criticality analysis (FMECA) technigues for the investigation of
potential failure modes and reliability-centered maintenance of machine tools [87-93]. Lo et al.
[87] introduced a risk assessment framework for the manufacturing of machine tools using a
modified FMEA technique. Gupta et al. [88] presented reliability-centered maintenance with
fuzzy FMEA for a milling machine. FMEA was used to identify critical failure modes of
components and subsystems of the CNC turning center [89]. Wang et al. [90] used FMECA for
CNC lathe with the criticality factor modified for considering the cost required for reducing
failure rates. Du et al. [91] presented FMECA of a remanufactured machine tool with a case
study of the hobbing machine. Zhou et al. [92] presented a reliability allocation method based
on the cubic transformed functions of FMEA. Kim et al. [93] presented a reliability assessment
of machine tools using FMEA with a case study of the machining center, which includes web-

based main-axis vibration data analysis program and a failure mode estimation algorithm.

FMEA and FMECA are tools designed to identify potential failure modes for a system
or process, to determine the risk factor associated with failure modes. These risk factors are
further represented on a relative scale for criticality analysis. The information about various
failure modes and associated risk factors is used to identify and implement corrective measures
for machine components in the order of risk priority. On the application level, FMEA might be
termed as process FMEA, design FMEA, system FMEA, etc. [94], but the basic procedure
remains the same. FMEA has a wide range of applications from equipment failure analysis to
nuclear power product designs for the identification of different failure modes and risks
associated with [94, 95]. FMEA is a 70-year-old technique, first introduced by the US Army

and modified several times for improved analysis and specific applications [96]. Standards like
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MIL-STD-1629A (1980), SAE-J-1739, and SMC REGULATION 800-31 were defined for
implementing FMEA/FMECA techniques [88, 95] MIL-STD-1629A [97] is the most widely
used standard in failure analysis using FMEA/FMECA. FMEA technique with added criticality
analysis and ranking of failure modes or components is termed FMECA [98]. FMECA is a

traditional approach adopted to improve the design and reliability of a system.

FMEA proceeds with the failure mode identification and calculation of Risk Priority
Number (RPN). RPN is an indicator of the risk associated with the failure mode of the
component. RPN is commonly calculated as the product of Severity (S), Occurrence (O), and
Detection (D) [96, 97].

RPN=SxOxD (2.1)

S, O, and D are indicated by values on a scale from 1 to 10. S is the indication of how
severe is the cause of failure mode, O is the frequency of occurrence of the failure mode, and
D is the non-detection rating of the failure mode. RPN can range from 1 to 1000, where
minimum RPN 1 indicates the least risk priority, and the maximum RPN 1000 indicates the
highest risk priority. RPN is used for risk prioritization of failure modes of components [96,
97].

FMEA with an added criticality analysis and risk prioritization of failure modes and
components is termed as FMECA [98-101]. The procedures for performing conventional
FMECA [100] are as follows:

i. Identification of various failure modes, their potential effects, potential causes, and
machine controls for detection at the component level.
ii.  Assigning S, O, and D ratings for each of the failure modes.
iii.  Calculation of RPN from S, O, and D rating values.

iv.  Classification of failure modes based on the criticality ranking.

S, O, and D ratings for CNC lathe machine failure are defined following the MIL-STD-
1629A [97] guidelines and expert elicitation. Furthermore, to determine the RPN for each
failure mode the Eq (2.1) is utilized, which takes the product of S, O, and D. The sum of the
RPNs of each failure mode of a component gives the RPN of that particular component. The
sum of the RPNs of all individual components under a subsystem gives the RPN of that

particular subsystem. RPN is just a number having no units. It is always measured relative to
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the RPN of other components of the system [96, 97]. These RPNs indicate the criticality of the
CNC lathe components and subsystems, which are further utilized to prepare a criticality

ranking for maintenance prioritization.

In certain applications, the criticality is calculated as the product of severity and
occurrence [96]. Primarily, there are two approaches to determine the criticality of a failure
mode of a component, qualitative analysis, and quantitative analysis. Qualitative analysis is
used when the data available is limited or insufficient. Whereas, quantitative analysis is used
when enough failure data of the system is available, and this data is used to calculate the
criticality number. The failure data required for calculating criticality numbers include failure
modes, failure rates, failure ratios, and failure affect probabilities. The method proceeds by
calculating the failure mode criticality (Cm) for each failure mode followed by summing up all
failure mode criticalities to obtain the component criticality (Cr) [100, 101]. The formulation is
adopted from MIL-STD 1629A [97]. The failure mode criticality is calculated as;

Cm = BaApt (2.2)

where J is the conditional probability of occurrence of failure mode, o is the Failure mode ratio,

Ap is the Part failure rate, and t is the total operating time.
Then, the component criticality is calculated as;
Cr=> (Cm) (2.3)

In spite of its successful implementation in an extensive range of applications, many
researchers have criticized conventional FMEA/FMECA methodology pointing out a few
drawbacks [96]. The following are the major drawbacks of FMEA/FMECA.

i.  The concept of RPN calculation is an extension of the risk matrix defined in MIL-

STD-1629A. There is no rationale for considering RPN as a product risk factor [87,
98].

ii.  Different sets of S, O, and D give the same RPN. But in real practice, the risk
associated may not be identical [99].

iii.  There is the erroneous assumption that S, O, and D values have the same
significance. This may not be reasonable in practical applications [102, 103].

iv. RPN is not continuous from 1 to 1000. The product of S, O, and D will never make

a few values in this range. This creates serious interpretation problems [104].
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Many researchers have presented various modifications to overcome the drawbacks of
conventional FMEA [87-90, 98-107]. The fuzzy logic computational technique is extensively
applied to improve FMEA/FMECA [98, 102-107]. The fuzzy logic computational technique is
used to establish the correlation between S, O, and D with RPN. The fuzzy modified
FMEA/FMECA is successfully implemented in various areas of risk assessment like LNG
storage facility [98], purchasing process in a hospital [102], etching of an integrated circuit
wafer [103], sterilization unit [104], aircraft landing system [105], emergency department in a

hospital [106], medical product development [107], etc.

2.6 Machine Condition Monitoring

Machine condition monitoring makes the primary component of predictive maintenance
[20, 108]. The advent of machine condition monitoring has positively influenced machine
reliability management. The availability of monitored data in digital format opens a wide
opportunity for the industries to redefine the limits of the smart manufacturing and maintenance
paradigm [73, 109]. It is the procedure of measuring the specific machine parameters while in
operation to observe any significant portent that could be indicative of an impending failure. It
IS a maintenance strategy where appropriate maintenance is done based on the operating
condition of the machine. Condition monitoring of mechanical systems involves the continuous
measuring of specific equipment parameters, taking note of any irregularities that would affect
the normal operation of the equipment and lead to catastrophic failure of the system
components. In any mechanical system, the machine operating condition is monitored using
sensor data as a vibration signal, shock-pulse, acoustic emission, bearing temperature, oil

debris, oil pressure, and electric current variations [110, 111].

Condition monitoring includes specific machine data monitoring and acquisition
followed by data analysis to convert the monitored data into useful information indicating
machine health status. In order to monitor specific machine data, respective sensors are
mounted around the machine critical locations. A data acquisition system converts the raw
signal read from the sensors into digital data and is stored for further analysis. Relevant
information about the health status of the machine is extracted from this discrete digital data
[112].
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2.6.1 Vibration-Based Condition Monitoring

Machine vibration is one of the most suitable and trustable condition monitoring signals
to know about the machine health condition. The amplitude of the vibration signal indicates the
severity of the fault, while the frequency of the vibration signal indicates the source of the fault.
In an operating machine, there are many forms of excitations in terms of time-varying forces
and torques like forces due to unbalance, forces due to misalignment, dynamic forces at bearing
locations, etc. [112]. In rotating machinery, the rotational speed of the machine corresponds to
the excitation frequency or forcing frequency. The diagnostic analysis and fault detection of a
machine involves the understanding of vibration system characteristics by measuring its
transfer function or Frequency Response Function (FRF). FRF is the ratio of the response of
the system to its excitation. In a mechanical system, the individual components are considered
as a continuous system, whose natural frequencies can be estimated once their stiffness and
mass are known. These frequencies mapped against the monitored vibration signal are used to
determine the health status machine components [112-114]. The Fast Fourier Transform (FFT)
of the monitored time-series vibration signal can detail all fault frequencies associated with the
machine. FFT can define individual frequencies for the detection of faults like misalignment,
cracked shaft, bowed and bent shaft, unbalanced shaft, looseness, rub, and bearing defects.
Separate frequencies are established for bearing inner race, outer race, cage, and balls or rollers
[115]. Similarly, fault frequencies are defined for gear faults [52, 116, 117]. The prognostics of
a machine involves the understanding of trends portrayed by the condition monitoring signal
over a long-term time span [6, 118]. Statistical feature extraction-based data mining techniques

are popularly employed for vibration signal trend analysis [116, 119, 120].

The machinery vibration can be measured in terms of displacement, velocity, or
acceleration. A simple dial gauge, linearly variable displacement transducer (LVDT), proximity
sensor, capacitive probe, position potentiometer, etc. can be used for measuring displacement.
A self-generating low-impedance vibration velocity transducer is used for linear vibration
velocity measurements. Acceleration measurement is the most widely employed method for
vibration monitoring. Acceleration measure is based on the measurement of relative motion of
a suspended mass in a casing, where the casing is subjected to a motion. A sensing element is
attached to the suspended mass, whose motion is calibrated to the provided measure of
acceleration. Piezoelectric accelerometers use piezoelectric crystals as a sensing element, which

is placed on the base and top of a mass on the accelerator. Piezoelectric crystals are sensitive to
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motion in a particular direction. Therefore, it is aligned along the most sensitive axis inside the
accelerometer housing. The piezoelectric accelerometer is mounted on the surface of the
machine to be monitored utilizing a wax, adhesive, magnet, or stud. Accelerometers are also

available with a handheld probe.

Figure 2.3 shows popularly used piezoelectric accelerometers. The accelerometers can
be uniaxial measures vibrations only in one direction or triaxial that measures vibrations in all
three directions. The sensitivity of an accelerometer is defined after a suitable charge-to-voltage
amplifier and is expressed as mV/ms-2. The amplitude of vibration measurement is expressed

in g units, where ‘g’ is the acceleration due to gravity (9.8 ms-2) [112].

Figure 2.3 Accelerometers used for vibration measurement [112]

2.6.2 Vibration Data Acquisition and Storage

Sensors mounted on the machinery measure analog signals which are collected by an
analog-to-digital converter. The purpose of the data acquisition system is to accurately
represent the measured analog signal in digital format. A data acquisition system is concerned
with two important aspects the sampling frequency and the digital bit size. An inadequate
sampling frequency can cause a serious error in data acquisition called aliasing error. In order
to prevent aliasing, the signal sampling frequency has to be at least two times higher than the
excitation frequency present in the machine, which is known as the Nyquist sampling theorem
[66, 121]. Another important aspect of data acquisition is the digital bit size or bits per sample,
which determines the measurement resolution. The required measurement resolution is the

smallest detectable change in the monitored signal [121]. If the assigned digital bit size is above
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the required measurement resolution, it is known as digitalization error. To avoid digitalization

error, it is preferred to have a higher bit size for the data acquisition system [112].

During the selection of an appropriate transducer to measure the mechanical vibrations,
the characteristic parameters to be considered include frequency response, dynamic range, and
sensitivity. Frequency response represents the natural frequency of the transducer itself. While
performing measurements this frequency response region has to be avoided. The dynamic range
relates to the maximum and minimum quantity that can be measured. Sensitivity defines the
level of accuracy expected for the signal measurement. It is the smallest fractional change in a

device that can be measured [112].
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Figure 2.4 A typical multi-channeled data acquisition system

On expanding the condition-based maintenance to predictive maintenance the condition
monitoring data has to be stored for later analysis. Digital data recorders like a memory card or
a computer hard drive are more prevalent for field data recording. Modern data recorders or
data acquisition systems have built-in anti-aliasing low-pass filters that act before analog to
digital conversion. These devices are multi-channeled for providing simultaneous access for

multiple transducers. A typical multi-channeled data acquisition system is shown in Figure 2.4.

2.6.3 Feature Extraction and Feature Selection

Vibration signal signature features revealing superior machine degradation patterns are
extracted from raw time-series vibration data. Signals from rotating machines operating at
constant speed are categorized under stationary deterministic signals. The analysis of stationary

signals is performed in the time, frequency, and time-frequency domain to extract features
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representing machine health degradation trends. The time-domain features give an overall sense
of the time-series signal and best portray the degradation pattern [20]. The predominant
frequencies at which mechanical events occur are analyzed by FFT. As mentioned in ‘section
2.6.1°, every mechanical component or event has a distinct frequency of occurrence, but it does
not provide any information on the degradation pattern. The joint time-frequency domain
features give an in-depth portrayal of short mechanical events on the time domain.

The selection of sensitive features from among the extracted features is a significant step
in data preparation for prognostic regression analysis. The primary task of feature selection is
to discard irrelevant and redundant features, which might cause the overfitting of an evolved
prognostic model. Feature selection is usually performed using various feature ranking metrics,
which include monotonicity, trendability, linear correlation, etc. Neighborhood Component
Analysis (NCA) is a feature learning algorithm that can be effectively implemented to prioritize
features for regression analysis through a feature weighting process. NCA is a non-parametric
approach, characterized by a feature weighting scheme to select the best subset of features based
on the minimization of an objective function that measures the average leave-one-out regression
loss over a training data set. The mean absolute deviation of the response values of a randomized
regression model from the actual response values is considered as the regression loss function.
The algorithm determines the weighting vector w that corresponds to the feature vector Xi. A
regularization parameter A 1s used to avoid overfitting of the NCA model [122]. The regularized

NCA model objective function NCA,,; is represented in Eq (2.4).
NCA,p; = Z?=1 P — AXh=1 Wrzn (2.4)

where Pi; is the probability of actual RUL being correctly predicted, wn is the weight assigned
to the m™ feature, r is the number of features, n is the number of training data. Finally, a relative
threshold value of feature weights is set as a cut-off criterion for selecting features for

prognostic analysis [122,123]. Table 2.2 presents the outline of regularized NCA algorithm.
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Table 2.2 Regularized NCA algorithm outline

Neighborhood Component Analysis algorithm outline

Recognize training set S={(Xi,xi), i= 1,2,..N}, number of failure runs N, actual

Stepl | pUL x

Step 2 | Perform 10-fold cross-validation on training set S

Step 3 Train the NCA model for each A value using S in each fold.

Step 4 | Fit a Gaussian process regression (GPR) model using the selected features.

Compute regression loss for the corresponding test set in the fold using the GPR

Step 5 model.

Step 6 Compute the average loss obtained from the folds for each 1 value.

Step 7 Tune regularization parameter A to obtain minimum regression loss

Step 8 | Fit NCA model with A ;¢ to obtain feature weights

Step 9 | Assign a relative threshold as the cut-off criterion for feature selection

Step 10 | Identify the relevant features

2.7 Prognostics Analysis of Condition Monitoring Data

Prognostics is primarily the forecasting of upcoming failures based on the present and
past operating conditions of machines. The computational algorithm for predictive analytics is
the most crucial and challenging step in machinery failure prognostics. A prognostic algorithm
generally estimates the RUL or TTF by analyzing the historical and current operating condition
of the machine. Several RUL prediction approaches are being employed for machinery
maintenance decision-making. These approaches can be based on the physics of the failure
mechanism or utilizing the machinery failure data (data-driven). Based on the basic techniques
and methodologies, the prognostics approaches can be classified into four groups as physics-
based approaches, statistical model-based approaches, Al approaches, and any combination of
these approaches (hybrid approaches) [6, 18, 54, 124, 125].

Physics-based approach: The physics model-based approach demands a thorough knowledge

of the physics of failure mechanism, which is used to develop an analytical model to represent
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the degradation processes of machinery. For complex mechanical systems, however, it is
difficult to understand the physics of the failure mechanism and therefore this approach has a

limited application.

Statistical model-based approaches: The statistical model-based approaches require only
empirical knowledge about the failure mechanism for establishing the relationship between the
failure mechanism and the statistical models. These statistical model-based approaches are also

effective in describing the uncertainty associated with the RUL prediction [17].

Artificial Intelligence (Al) approaches: The Al approach uses minimal technical aspects of
the system, where intelligent learning algorithms are employed to learn the machinery health
degradation patterns [126, 127]. The algorithms learn the machine degradation data to capture

its health degradation pattern.

2.7.1 Data-Driven Approaches for RUL Estimation

In a data-driven approach, the historic machine monitoring data representing the health
status degradation are used for training computational algorithms to evolve intelligent
predictive models. These predictive models can be employed with real-time machine
monitoring data for future health status prediction and RUL estimation [18-20, 128]. The data-
driven methods are learning-based approaches that discover viable features and prognostics
models from the acquired data. These techniques include statistical models and Al models that
infer health status information directly from the monitored data. The statistical prediction
models are developed by fitting the available machinery failure data into random coefficient
models under a probabilistic method without any physics expertise involved. The statistical
model-based approaches are the most popularly used prognostic technique for decades.
Random coefficient models, autoregressive models, Wiener process models, Gamma process
models, inverse Gaussian process models, Markov models, proportional hazards models,
exponential degradation model, etc. are the most widely used statistical models for machinery
health prognostics [17, 129, 130].

Al is a recently established computational technique that grabbed widespread attention
in the area of machinery health diagnostics and prognostics. Al approaches have been receiving
increasing attention as it is capable of dealing with prognostics problems of complex
mechanical systems because it depends only on the machinery failure data instead of building

physics models or statistical models [56]. Unlike the physics-based or statistical model-based
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approaches, the Al approaches are hard to be explained or lack transparency in operation and
are thus called the black box. Machine learning and deep learning Al models are very popular
in machinery health diagnostic and prognostic analysis [21, 22]. The most recognized machine
learning and deep learning architectures for failure prediction and RUL estimation include
neural fuzzy systems, ANN, SVM, SVR, KNN, GPR, RNN, LSTM, DBN, CNN, etc. [21, 22,
27, 127, 131]. Figure 2.5 shows a comparison between the various machinery health
management approaches, which is a clear indication of why many recent research works are

focused on deep learning techniques.

(@)
Data Machinery
Raw Data Processin Physics-Based Approaches Diagnostics/
£ Prognostics
(b)

Processing Extraction Selection achine Learning g

Approaches Prognostics
(©)
Machinery
Raw Data Deep Learning Approaches Diagnostics/
Prognostics

Figure 2.5 Comparison between (a) physics model-based approaches, (b) statistical

model-based/ Al/machine learning approaches, and (c) deep learning approaches

2.7.2 RUL Estimation Using Exponential Degradation Estimator Models

An exponential degradation model is utilized for estimating the RUL of the mechanical
component. This computational methodology is mostly employed when the component
experiences a cumulative degradation, which is the common degradation phenomenon of any
mechanical system. The exponential degradation model fits into the machinery health
degradation indicator or Health Indicator (HI). This degradation model is extrapolated to find
a future time step where the degradation model crosses a predefined threshold value. The
difference between this future time step and the present time step gives the required RUL. The
failure threshold is usually defined based on previous failure history or chosen as a safe value

before the faulty zone on HI. The exponential degradation model is defined in Eq (2.5) as:

S(t) = @ + 8(t)eFOHEO) (2.5)
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where, ¢ is the model intercept, which is constant. 4(t) is a random variable modeled as a
lognormal distribution, A(t) is a random variable modeled as a Gaussian distribution, &(t) is the
model additive noise and is modeled as a normal distribution, ¢ is the Variance [132]. This
degradation model is fit to the constructed HI to predict the RUL of the mechanical component

in real-time.

Tseng et al. [130], Wen et al. [133], and Zhang et al. [134] recently employed
exponential models for predictive analytics and RUL estimation. Gebraeel et al. [135], first
introduced the exponential model for RUL prediction. It is a model-based analytical method
that can incorporate both expert knowledge and information from measured data [124, 129].
The exponential models are highly suitable for representing the degradation patterns of a
mechanical component, where an exponential-like degradation process can be observed [124,

129, 135]. However, the exponential models are not explored in depth for predictive analytics.

2.7.3 RUL Estimation Using Machine Learning Approaches

Machine learning algorithms are widely employed for the failure classification and
prediction of mechanical systems [22]. SVM is the most popularly used machine learning tool
for classification problems of machinery failure prediction and RUL estimation [127, 136]. In
the past decade, SVM has found its space in regression analysis in real-value function
estimation problems like time-series data trend analysis and predictions. In regression analysis
SVM is also termed as SVR, the basic operation principle remains the same for both
classification and regression analysis. Like NCA, SVM is also a non-parametric technique that
relies on kernel functions [137].

Consider a training dataset T = {xn,yn}, where X is the feature set of N observations and
ynis the corresponding RUL response vector. The SVM objective is to determine a function f(x)

as represented in Eq (2.6), which is a derivative of y, and the value for each training point x.

fO) = En=a(an — @) (nx) + b (2.6)

where onand an” are non-negative multipliers for each observation x». and b is the bias term. If

either an or a*y is not zero, then the observation x ' is called the support vector.

Eq (2.6) represents the linear SVM regression equation. Replacing the dot product x 'nx

with a non-linear kernel function k gives the non-linear SVM as represented in Eq (2.7).
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f(x) = En=a(an — an)k(xn, x) +b (2.7)

The function f(x) is used to predict new values of the regression problem [137, 138]. The
implementation of SVM for degradation data training and RUL estimation requires a good
setting for hyperparameters, which is considered highly complicated. The hyperparameter

setting largely influences the prediction accuracy of the evolved regression model.

SVM is one of the most popular machine learning techniques proposed by Vapnik in
1999 [139], which has unfurled a wide scope for implementation in machinery health
management problems [139-144]. SVR is the popular application form of SVM, which is used
for mapping the machine degradation indicators into nonlinear regressions for RUL prediction
[145-152].

2.7.4 RUL Estimation Using Deep Learning Approaches

Deep learning approaches have emerged as a promising computational tool for the time-
series machinery health degradation analysis for failure prediction and RUL estimation. In deep
learning or deep neural network, the data runs through several layers of a neural network
algorithm. Deep learning, also known as deep structured learning consists of multiple layers on
non-linear processing units. Deep learning is a phrase that leverages a series of nonlinear
processing units comprising multiple layers for the flow of information throughout the model.
Deep learning adopts a hierarchy of data transformation where the present layer accepts the
outcome from the previous layer which is processed and passed to the next layer. Deep learning
supports learning from both labeled and unlabeled data [153]. This novel learning approach has
been successfully implemented in the fields of computer vision, pattern recognition, image
classification, face recognition, facial emotion recognition, natural language processing, speech

recognition, health care, time-series data classification, regression, and many more [153, 154].

As shown in Figure 2.6, a deep learning framework for machinery health prognostics is
generally composed of the data acquisition stage, deep neural network learning stage, intelligent
predictive model construction, and the final machinery health status prediction stage. An
intelligent predictive model is evolved from the trained deep learning algorithm, which is
further utilized for machinery health prognostics using real-time machine monitoring data [21,
155].
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Figure 2.6. Generalized deep learning framework for machinery health prognostics using

time-series data

The LSTM neural network, an advanced variant of RNN, is identified as a powerful
computational tool for mining critical information from raw sequential time-series data. In
1997, Hochreiter and Schmidhuber [156] introduced the LSTM neural network to address the
vanishing/exploding gradient problem while training using RNN. LSTM has an additional
memory unit to remember information for long periods enabling the network to learn long-term
dependency, which makes it suitable for RUL estimation from time-series data. A self-recurrent
connection node within the memory unit ensures that the long-term information gradient can
pass across many time-steps of time-series sequence data without vanishing. The memory unit
in LSTM provides storage for information from previous time-steps and passes it to current
outputs ensuring the long-term memory in the form of weights that changes during training and

the short-term memory in the form of ephemeral activation functions [157].
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Figure 2.7 Generalized LSTM network architecture

Figure 2.7 shows the generalized LSTM network architecture having three control gates;
input gate, output gate and forget gate; and two information states; the long-term state C( and
the short-term state Hy. Initially, the LSTM architecture had only input and output gates, later
Gers et al. [158] in 2000 have introduced the forget gate. The LSTM architecture with input
gate, output gate and forget gate is entitled as vanilla LSTM. This vanilla version is now
popularly referred to as the LSTM architecture. The input gate controls the information stored
in the memory cell and output gates control the information extraction from the memory cell.
The forget gate controls the discarding of previous information from the memory cell. In an
LSTM cell, the input gate combines the current input X, previous output H¢.1), and the
previous memory cell state C.1). ft, it, Ot indicate the three-control gate outputs of forget gate,
input gate, and output gate, respectively. The Eqgs (2.8), (2.9), and (2.10) represent the gate
operation of forget gate, input gate, and output gate, respectively. o, g, and h are the gate, input,
and output activation functions, respectively; @ and & denote element-wise multiplication and

element-wise addition of vectors, respectively.
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foy = oUp Xy + Ve-Hiemry +Wp @ Cieony + by ) (2.8)

where Uy, Vi and Ws are the forget gate weights associated with Xw, Hg-7), and Ci-y),
respectively, while bs is the bias weight vector. The output gate combines the current input X,
previous output H.1), and the previous memory cell state C.1).

l(t) = O'(Ui.X(t) + Vi'H(t—l) + Wi ®C(t—1) + bl) (29)

where Uj, Vi and W are the input gate weights associated with X, H-1), and C-1), respectively,
while bj is the bias weight vector. The activation function values of forget gate f) at current
time stem t are computed based on the current input X, previous output H.1), and the previous
memory cell state Ct.1).

oy = 0(Uo- Xy + VouHeemry +Wo ® Cieony + by ) (2.10)

where Uo, Vo, and W, are the output gate weights associated with X, He-7), and Cg-y),
respectively, while bo is the bias weight vector. The current layer input, Il is computed as
presented in Eq (2.11).

ley = 9(Ur Xy + Vi.He-1y + by) (2.12)

where U and Vi are the layer input weights associated with X and H-;) respectively, while by
is the bias weight vector. The current memory cell state C) is computed as presented in Eq
(2.12).

Coy = Ly ® iy @ Cie-1) @ [y (2.12)
Finally, the current layer output Hg) is computed as presented in Eq (2.13).
Hey = h(Ciy)) ® o (2.13)

LSTM evaluates the temporal relationship between inputs and outputs following a
forward learning principle using the Eqgs. (2.8) to (2.13). The error values between the input
data and the output data of each layer are computed and are reversely seeded to the input gate
and forget gate, based on which the weights associated with each gate are updated. This process
is repeated for a fixed number of iterations and an optimal value of weights and bias terms are
obtained [157, 159].
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The Bi-LSTM network learns the bidirectional long-term dependency between time-
steps of time-series sequence data, enabling the network to learn from the complete time-series
at each time step. The bi-LSTM network comprehensively considers the temporal correlation
information between inputs and outputs in both forward and backward time-step directions
simultaneously, which makes it perform excellent for RUL estimation problems. The
generalized bi-LSTM network architecture is represented in Figure 2.8 where the same input
data is fed into forward LSTM cells and backward LSTM cells of respective forward and
backward LSTM layers [160,161].

Yit=1) Y© Y(t+1) Outputs

Backward
LSTM Layer

Forward
LSTM Layer

X(t-1) X(t) X(t+1) Inputs

Figure 2.8 Generalized bi-LSTM network architecture

The forward LSTM is computed as:
Hy = LSTM(x(), hge_1y) (2.14)
The backward LSTM is computed as:

% = LSTM (x¢), h(t+1)) (2.15)
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The bi-LSTM network computes the forward LSTM hidden state ﬁ(; and the backward

LSTM hidden state (I% simultaneously at each sequence time-step t. LSTM(.) denotes the
LSTM evaluation defined in Egs (2.8) to (2.13). Finally, the two hidden states are concatenated

to compute the current layer output y as:
Yoy = WgHey + Wi Hey +by (2.16)

where W3 and W7, are the forward and backward LSTM layer weights; b,, is the output layer

bias weight vector [163].

Recently, the LSTM network and its variants are widely used for learning machine
degradation patterns from time-series sensor data for RUL estimations [163-178]. Elsheikh et
al. [160], Song et al. [179], Zhang et al. [180], Wang et al. [181] have used bidirectional LSTM
(bi-LSTM) and Essien et al. [182] used convolutional LSTM for RUL estimation. Xia et al.
[162] and Zhang et al. [183] have used a convolutional LSTM and convolutional bi-LSTM

ensemble framework respectively for the RUL estimation.

The machinery prognostics data are time-series sensor signals, which are usually
analyzed to develop a regression model for RUL estimation. RNN and its variant LSTM have
emerged as the most popular Al approach for handling sequential data like time-series sensor
signals using its ability to encode temporal information. The initial implementations of RNN
have reported its suitability for RUL prediction [184]. Improved accuracy of RUL prediction
was achieved by enhancing the memory capacity of basic RNN architecture which is named
Eco-State Network [185, 186]. The LSTM architecture has subsequently proved to be more
effective than simple RNN architecture. Fault diagnostics and prognostics of aero-engine units
[163] and machine tools [187] mark the initial implementation of LSTM architecture for
machinery health prognostics. He et al. [172] have proposed a long short-term memory network
with multi-resolution singular value decomposition to accurately locate the fault in vibration
signals, and minimize the effect of interfering noise. ElSaid et al. [166] have utilized LSTM for
predictive analytics of time-series sensor data with the Ant Colony Optimization approach for
optimizing the gates within LSTM. Further, this work was improved by combining CNN with
LSTM forming a convolutional bi-directional LSTM [188]. CNN was used to extract robust
features from raw sensor signals sequential input and bi-directional LSTM was used to encode

temporal information of sequential output of the convolution layer. Zhao et al. [189] have
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proposed a hybrid approach that combines manual feature extraction and automatic feature
learning using an enhanced gated-RNN/Gated Recurrent Unit (GRU) for machinery health
monitoring. Elsheikh et al. [160] proposed a bidirectional handshaking LSTM architecture for
RUL prediction with a short sequence of monitored data with random starting health conditions
and requires a lesser assumption on actual degradation phenomenon. Malhotra et al. [190]
proposed an LSTM based encoder-decoder architecture where the encoder transforms a
multivariant input sequence into a fixed-length vector which the decoder translates into a target
sequence. Xia et al. [162] proposed a hybrid deep learning framework based on convolutional
bi-directional long short-term memory with multiple time windows for accurately predicting
RUL. The algorithm addresses the inconsistency among the length of condition monitoring data
and develops base models with different time window sizes. Zhang B. et al. [171] have
formulated bearing health monitoring as a classification problem using LSTM RNN using
waveform entropy as the degradation indicator for bearing health degradation. Wu Y. et al.
[165], Zhao et al. [169], Wang et al. [170], Zhang et al. [180], and Chen Y. et al. [191] have
also developed deep long short-term memory network architectures for RUL estimation based
on time-series sensor signals. LSTM and other variants of RNN are reported as the most suitable
computational tool for RUL estimation. A majority of recent literature on machinery health
prognostics has implemented LSTM architecture as such or with modifiers for prognostics
health indicator construction and RUL predictions.

2.7.5 Bayesian Optimization of Hyperparameters for Learning Algorithms

The hyperparameter optimization and network architecture selection are other major
challenges before the successful implementation of a deep learning algorithm for prognostics
analysis of industrial machinery. The selection of hyperparameters including both training and
structural parameters has a direct influence on the performance of the predictive models.
Generally, this optimization is performed by trial-and-error methods, which is arduous and
time-consuming [162, 168]. Recently, a few literature have discussed the hyperparameter
optimization algorithms employing ant colony optimization [166], particle swarm optimization
[171], comparative analysis [179], grid search [165, 170, 182], Bayesian search optimization
[161, 173], etc. to reduce the computational complexity and improve prediction accuracy.

Bayesian optimization is an effective computational tool for optimizing non-
differentiable, discontinuous, and computationally expensive functions. In the Bayesian

optimization algorithm framework, the unknown hyperparameters of deep learning architecture
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are assumed to be random, independent, and have their prior distributions. The algorithm
attempts to minimize a scalar objective function f(x) for x in a bounded domain . The deep
learning architecture is represented within the function f(x) that returns the deep learning
validation error. Bayesian optimization internally maintains a Gaussian process model of the
objective function f(x) and uses it to train the computational model. This Gaussian process
model is updated at each new evaluation of f(x) and the next x point is determined using an
acquisition function Acq(x) performing a local search to find the best apparent feasible point
satisfying the constraints. The target of Bayesian optimization is to determine the optimum
point x;..:, which is the value of x for which f(x) attains its minimum. x4 IS computed as:
Xpest = argmin(f(x)) (2.17)
xex
After each new evaluation of f(x), the next most potential evaluation point x,.,; is the
value of x for which Acq(x) attains its maximum. x,,,,; IS computed as:
Xnext = argmax(Acq(x)) (2.18)
xex
The Bayesian optimization algorithm repeats the Gaussian process modeling and
acquisition function at each evaluation of the objective function f(x). The algorithm can
terminate at a predefined time limit, maximum iterations, or any other termination criteria
reflecting its performance. The Bayesian optimization can be deterministic or stochastic
because the optimization results are not reproducible for the same point x [173, 121, 192]. Table

2.3 presents the outline of a Bayesian optimization algorithm for hyperparameter optimization.
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Table 2.3 Bayesian optimization algorithm outline

Bayesian optimization algorithm outline
Step 1 | Randomly initialize a set of hyperparameters from the bounded domain of y
Step 2 | Obtain the new set of hyperparameters
Step 3 | Perform Gaussian process regression to evaluate f(x)
Step 4 | Determine the next most potential evaluation point x,,.,; based on Acq(x)
Step 5 | Add results to solution space
Step 6 | Repeat Steps 2 to 5 until the termination criterion is reached
Step 7 | Record the best hyperparameters x;.¢;

2.8 Maintenance Decision Support System

The loT is having a profound effect on the industrial sector. Utilizing the full benefits
from loT, the industrial predictive maintenance approach can be implemented in its intact form
[73, 78]. The advancements in sensor technologies supporting loT, cloud storage and cloud
computing, and intelligent computational approaches have offered an easy to deploy end-to-
end communication paradigm which is now popularly known as 10T [9, 194]. Figure 2.9 shows
a typical architecture of I1oT systems portraying different levels of 110T. The bottom level of
IIoT architecture includes the machines or devices labeled as the ‘things’, then comes the
internet gateway to the cloud space and data pre-processing followed by the data management

stage, and finally, the cloud data center where the real-time intelligent computations are

occurring.
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Figure 2.9 Typical architecture of 110T systems

Maintenance decision-making is a very crucial task in the industry that has a
considerable impact on machine operability and has to be carried out with minimal impact on
the production cycle in the industry [26, 194]. Effective maintenance decision-making requires
the integration of several factors including the machine health condition, machine work
schedule, system configuration, maintenance service, spare parts availability, and maintenance
costs [14, 195, 196]. The primary aim of maintenance decision-making is to have minimum
machine downtime and improved quality of products [197]. Cloud computing and big data
analytics with predictive maintenance decision-making are used to develop an integrated
maintenance recommendation system to improve asset lifecycle [26, 198]. A key performance
indicator of machinery namely, RUL, TTF, mean time between failure (MTBF), or mean time
to repair (MTTR) is determined as the maintenance decision support tool. Intelligent
computational models and the computational algorithm to determine the key performance
indicator are made available in the cloud space [1, 3]. The decision support system using models
is popularly known as a model-driven decision support system. In a model-driven maintenance
decision support system, the real-time machine health condition data is evaluated against the
computational models to estimate the key performance indicator to predict future failures [199].
This information is made available on a maintenance decision support dashboard to serve as a
maintenance decision-making paradigm for industrial machines. This maintenance decision
support dashboard provides managers with models and analysis capabilities that can be used
during the process of maintenance decision-making [199, 200]. The system is also been used

to develop an autonomous warning system on approaching failures [193, 201].
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2.9 Gap Areas

Predictive maintenance has become the new trend of PHM for industrial equipment. The
ability to predict the need for maintenance of the complex machine tool systems at a certain
future point is one of the main challenges in the PHM of the manufacturing industry. An
intelligent predictive health management paradigm for manufacturing machinery is inevitable
in Industry 4.0. The tool condition monitoring (TCM), problems such as cutting tool wear,
cutting tool breakage, and chatter are largely been investigated by the research communities
over decades, whereas the research investigations on machine tool functional component
condition monitoring and maintenance are limited and inadequate for Industry 4.0
implementations. The manufacturing industries are pulled back from implementing the
predictive maintenance approach due to its huge capital investment for the installation of
sensors and data acquisition systems, and difficulties to maintain complex computational
algorithms. From the research point of view, studying the industrial machinery health
degradation and failure analysis has practical complications to implement. Most research works
are depended on machine degradation and failure data available in the open repositories, which
are used for the development and validation of machinery failure diagnostics and prognostics
algorithms. Advanced computational algorithms based on deep learning models are widely
employed for solving real-world problems. It is also found effective for sequence data like time-
series machine health degradation data. The deep learning architecture design and
hyperparameter optimization are the major challenges that need to be addressed for the
successful implementation of intelligent predictive analytics. On account of the industry 4.0
era, the advanced sensor technologies with 10T support, cloud storage, and big data analytics
could be integrated to develop a model-driven intelligent maintenance decision support

dashboard. The gaps identified from the literature are summarized as:

i.  Limited literature is available in the public domain on prognostics and predictive
maintenance of machine tools. The available literature is largely focused on cutting tool

condition monitoring and tool wear analysis.

ii.  The possibility of a systematic solution for the high installation costs for sensors and
data acquisition systems in the implementation of predictive maintenance is never

discussed.
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iii.  Researchers seldom generate experimental machine health degradation data for the
prognostic analysis. The available research works are mostly based on machine health

degradation data available in open repositories.

iv. Deep Learning techniques are not explored in depth for Predictive Maintenance
applications. On an implementation level, deep learning architecture design, hyper-
parameter optimization, and data training are still challenging and unpredictable.

v. loT-based intelligent maintenance decision support system for the manufacturing sector

is a shortfall in the present Industry 4.0 era.

In view of the above, there is a strong need for in-depth scientific understanding and
detailed investigations on the development of condition monitoring and predictive maintenance
of machine tool systems addressing the huge capital investments and large complexity of its
implementation. It is proposed to take up the research on the predictive maintenance of machine
too systems, which involves the maintenance prioritization technique to limit predictive
maintenance approach to the most critical subsystems are components, generate machine health
degradation data, easy employment of intelligent data-driven techniques for prognostic

analysis, and loT-based intelligent maintenance decision support system.

2.10 Aim and Objectives

The thesis work aims to employ a systematic approach for machine tool components
maintenance prioritization and data-driven intelligent algorithms for predictive maintenance. The
thesis validates the developed algorithms using simulated run-to-failure experimental data. The
primary objectives of the work are:

i.  To identify the most critical component of a Lathe Machine Tool through failure

analysis.

ii.  To perform vibration-based Condition Monitoring for the selected features of the
identified critical component.

iii. To conduct optimization/simulation-based analysis to predict the RUL of the identified
critical component.

iv.  To develop a remote maintenance decision-making dashboard over an loT-based cloud
data analytics platform for integrating the evolved prognostic model.
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2.12 Summary

An intelligent predictive health management approach for the manufacturing industry is
inevitable in the present generation of smart manufacturing. The manufacturing industry could
utilize the recent developments in sensor technologies and computational capabilities to
develop a predictive maintenance paradigm to ensure the well-operating condition of the
functional components and subsystems of machine tool systems. However, the implementation
of predictive maintenance for machinery health management has enormous challenges, which
have a certain scope for discussion in the present era of Industry 4.0. Predictive maintenance
involves various complex stages of implementation like machinery health degradation data
acquisition as time-series sensor signals, which are analyzed for fault detection, prediction, and
maintenance decision making. Further, there is a lack of literature available in the public domain
addressing the major issue on the practical implementation of predictive maintenance like the
huge installation costs for sensors and data acquisition systems, also on optimizing the
architectural and learning parameters of the data-mining technique. Thus, the present work aims
to investigate the practical implementation of predictive maintenance for CNC lathe machine
tool systems with intelligent data-driven computational techniques for machinery health
degradation pattern learning. The next chapter presents the pre-requisite analysis for the
implementation of predictive maintenance on the criticality analysis of the CNC lathe machine
tool for the maintenance prioritization of functional components and subsystems, and to identify

its potential failure modes.
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Chapter 3

Machine Tool Criticality Analysis and Maintenance

Prioritization

3.1 Introduction

As mentioned in the previous chapter ‘section 2.5’, machine criticality analysis is a
prerequisite for employing the predictive maintenance strategy for industrial systems. Machine
criticality analysis involves the identification of the most critical components and subsystems
of the machine system and their associated failure modes. As the predictive maintenance
approach is based on machinery condition monitoring data, only those components and
subsystems that deteriorate over time emitting signals indicating health degradation are
considered for predictive maintenance. Also, the information on potential failure modes
associated with these components and subsystems is necessary for the selection of the most
suitable sensors for condition monitoring. The machine criticality analysis thus provides a
maintenance prioritization of machinery components and subsystems, assisting the user to
choose only those components and subsystems which are critical to be considered for predictive
maintenance and hence keep the initial investments and implementation costs to a minimum.
In this work, the CNC lathe machine tool components and subsystems are subjected to FMECA
for the maintenance prioritization and identification of potential failure modes.



3.2 CNC Lathe Criticality Analysis

CNC machine tools are the key production equipment for the manufacturing industry.
CNC machine tools, with numerous mechanical moving parts and precise control systems, are
prone to malfunctioning and breakdowns. The predictive maintenance of CNC machine tools
requires the identification of critical components and subsystems and their potential failure
modes [12]. The methodology for criticality analysis and maintenance prioritization involves
the following steps:
i.  Collection of field failure data of CNC lathe machine tools.

ii.  Defining the structure of the CNC lathe system.
iii.  ldentifying the potential failure modes, failure causes, and machine controls and
methods for detecting failures and subsequently framing of S, O, and D rating

scales for the failure modes, failure occurrence.

iv.  Finally, the computation of RPN for maintenance prioritization.

3.2.1 Field Failure Data of CNC Lathe

Industrial field failure data and expert elicitation constitute the foundation for failure
analysis using fuzzy FMECA [202, 203]. The field failure data of 30 CNC lathe machines over
7-years of duration is collected from various industries. The data is in the form of history cards
of individual CNC lathe machines, which detail all the maintenance works, repairs, and
replacements of the components and subsystems with the date of action and total downtime of
the machine tool for each failure. The expert elicitation is an aggregate of opinions of various
industry experts. The major causes of failure were due to the structural and material failure of
the component. The structural failure includes design and maintenance faults, manufacturing
defects, mechanical overload, the presence of debris, and the collision of components. The

material failure includes fatigue, wear, corrosion, overheating, insufficient lubrication.

The field failure data and expert elicitation collected from industries are used to identify
the potential failure modes of the CNC lathe at the component level. Further, this information
is used to assign S, O, and D rating values and in developing the fuzzy FMECA engine. The
potential failure modes are identified at the component level and the corresponding risk factor
is defined. In FMECA, the aggregate risks allied with failure modes of components in a
subsystem represent the risk associated with that particular subsystem [89, 97].
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3.2.2 Structure of CNC Lathe

CNC lathes are machine tools with a composite structure having mechanical, hydraulic,
and electrical subsystems [34, 202]. In the present study, the prioritization of components for
predictive maintenance is limited to only mechanical components and subsystems. Electronics
and electrical subsystems, which are very frequent to failures like electronic damages of
sensors, relays, blown fuse, etc. are not included [87-93]. Therefore, only seven mechanical
subsystems of the CNC lathe machine are investigated using fuzzy FMECA. Individual
components of the CNC lathe machine are grouped within different subsystems for failure
analysis. Figure 3.1 shows the CNC lathe hierarchy with subsystems and the respective
components in each subsystem. The hierarchy structure of a CNC lathe is defined based on

expert elicitation and field failure data from industries.

CNC Lathe
. : |
| | I I | | 1
Spindle Unit Chuck Linear Axis Turret Lqun»canon Cooling Encoder Unit
ystem System
[ [ I ' I ' [ [ ' [
+Spindle *Chuck *X&Z Axis *Turret +Oil Seal +Coolant 'Eucodler
Motor *Drawbar Servo Motor * Turret *Lubrication Pump Coupling
+Spindle *Pulley + Axis Slide Motor Pump +Coolant *Encoder
Bearings + Axis Belt *Tool Holder *Lubrication Motor Belt
*Spindle Belt *Ball Screw Motor *Coolant
*Spindle *Ball Screw +0il Tank & Tank &
Cooling Fan Bearing Piping Piping

Figure 3.1 Hierarchy of a CNC lathe machine
3.3 Failure Analysis of CNC Lathe

Industrial field failure data and expert elicitation of CNC lathe combined with MIL-
STD-1629A [88, 97] guidelines are followed in developing S, O, and D rating scales, which
makes the input parameters for FMECA. The industrial field failure data and expert elicitation
are analyzed to identify the failure modes associated with each component of the CNC lathe
followed by an assessment of potential failure effects, causes of failure, and current controls
available to detect the fault. The CNC lathe failure and maintenance information and the MIL-
STD-1629A guidelines are concatenated to define the risk classifications of failure modes of
CNC lathe machine components in respect of S, O, and D rating scales. The rating scales
illustrated in various literature on the application of FMEA/FMECA for CNC lathe machine
tool failure analysis are also considered [87-89]. Table 3.1, Table 3.2, and Table 3.3 respectively
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present the S, O, and D rating scales for the CNC lathe machine. S, O, and D rating varies from
1to 10. In Table 3.1, the severity rating 1 indicates the least severity, and 10 indicates the most
severe case. In Table 3.2, the occurrence rating is framed based on the occurrence probability
of component failure, where the occurrence rating of 1 indicates an extremely unlikely
occurrence of failure and value 10 indicates the most frequent occurrence of failure, which
might be serious. In Table 3.3, the detection rating represents the chance of failure being
undetected. The detection rating 1 indicates an almost certain chance for the detection of
component failure and value 10 indicates an almost uncertain chance for the detection of
component failure. S, O, and D ratings are determined for all the components mentioned in the
CNC lathe hierarchy structure (refer to Figure 3.1).

Table 3.1 Severity rating for CNC Lathe

S. No. Fallu_re effects Ranking Criteria S
severity scale
1 Serious Failure causing harm to the operator without warning 10
2 Very Extreme Failure causing harm to the operator with a warning 9
3 Extreme Failure occurring without any warning and causing 8
no harm to the operator
4 Major Failure causing damage to the machine with a 7

warning and causing huge maintenance costs
Failure has severe effects on the functions of
5 Significant subsystem /component of the machine 6
Significant maintenance costs and production loss

Moderately effect on the performance of a subsystem
6 Moderate /component 5
Moderate maintenance costs and production loss
Failure has no severe effect on the function or

7 Low performance of a subsystem /component 4
Low maintenance costs and production loss

Failure can be solved by minor repair

8 Minor Very low maintenance costs and production loss 3
. Failure has a little effect on machine performance

9 Very Minor . . ! 2
Negligible maintenance costs and production loss

10 None Failure has a little or no effect on the performance of 1

the machine
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Table 3.2 Occurrence rating for CNC Lathe

S. No. Ranking level Ranking Criteria Occurrgr]ce ©
probability scale
1 Frequent ) ] ) > 0.0600 10
- Failure is almost certain
2 Very High 0.0500 to 0.0600 9
3 High _ o 0.0400 to 0.0500 8
- Failure repetition is expected
4 High Moderate 0.0300 to 0.0400 7
5 Moderate 0.0250 to 0.0300 6
6 Low Failure occurs occasionally 0.0200 to 0.0250 5
7 Very Low 0.0175 to 0.0200 4
8 Remote Failure repetition is not 0.010010 0.0175 3
9 Very Remote expected 0.0080 to 0.0100 2
10 Extrgmely Failure is almost uncertain < 0.0080 1
Unlikely
Table 3.3 Detection rating for CNC Lathe
S. No. L'kEIIhOOd of Ranking Criteria D
detection scale
1 Almost certain De5|gr_1 con'_[rols will almost certainly detect the 1
potential failure modes
: Very likelihood that the current design controls will
2 Very High detect potential failure modes/task error 2
3 High High che}nce that the current design controls will 3
detect failure
Moderately high likelihood that the current design
4 Moderate-High | controls detect the potential failure modes before 4
affecting the system performance
Moderately likelihood that the current design controls
5 Moderate detect the potential failure modes before affecting the 5
system performance
Low likelihood that the current design controls will
6 Low . 6
detect failure modes
7 Very Low erry low Ilkgllhood that the current design controls F
will detect failure
Remote chance that the design controls will detect
8 Remote : 8
failure
9 Very Remote Defect most likely remains undetected 9
10 Almost . Failures are not detected 10
Uncertain
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3.4 Computation of RPN and Maintenance Prioritization

The key part of FMECA is to determine the RPN for failure modes of CNC lathe
components, which is computed based on S, O, and D rating values. The conventional method
for determining the RPN value of components is by computing the product of S, O, and D rating
values of each component (refer to Eq 2.1). As mentioned in ‘section 2.5°, conventional
FMEA/FMECA has many drawbacks on practical application. The computations in
conventional FMECA are based on the assumption that the input variables are crisp values.
Although, due to several uncertainties, these variables are non-crisp in nature, which is the
primary cause of disputes about the conventional FMECA technique [87, 107]. These rating
values basically represent linguistic variables indicating different risk classifications. Linguistic
variables are input/output variables whose values are words or sentences. The qualitative
FMECA approach uses linguistic variables to express the risk classification category of
severity, occurrence, and detection rating scales. The linguistic terms like certain, uncertain,

moderate, low, very low, high, etc. are used to indicate various risk classifications.

In this work, the Fuzzy logic technique is used to assign non-crisp values to these linguist
variables. Zadeh [204] in the year 1965, introduced fuzzy sets to assign the linguistic variables
to different fuzzy sets. A membership (characteristic) function was defined to correlate the
fuzzy sets with linguistic variables. The fuzzy logic was further evolved from this concept. The

fuzzy logic computation is used when there are uncertainties in risk factor calculations.

The fuzzy inference engine mostly uses Mamdani's method or Takagi-Sugeno's method
[99, 205]. The present work utilizes Mamdani’s method to define a fuzzy FMECA engine,
where both the precedent and the succedent are fuzzy propositions. A typical fuzzy logic

algorithm proceeds as follow [203, 206]:
i.  Fuzzification of quantities
ii.  Establishment of fuzzy sets
iii.  Establishment of fuzzy rules

iv.  Defuzzification of quantities
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Fuzzy FMECA is basically a fuzzy decision support system, which offers a more
realistic framework for qualitative risk rating scales than traditional crisp values. The

methodology for performing fuzzy FMECA are as follows:
i.  Create all input and output variables of FMECA in the fuzzy logic platform.
ii.  Develop the input membership functions to represent S, O, and D.
iii.  Develop the output membership functions to represent RPN

iv.  Establish rules to correlate the Fuzzy RPN with the fuzzified S, O, and D

linguistic variables.

The membership function for a fuzzy set is a generalization of the characteristic function
of crisp sets [204]. Membership functions are used to solve practical problems by experience
rather than knowledge. It represents the degree of truth of a valuation. The membership function
associates each element with a value in the interval [0, 1]. In fuzzy sets, each element is mapped
to the interval [0, 1] using a membership function. This makes the degree of the truthiness of a
statement in fuzzy logic not constrained to either O or 1, but to have any values in the range
[0,1]. Consequently, the fuzzy set with a vague boundary is used to represent crisp values. The
establishment of this correlation is known as fuzzification [99]. This fuzziness is best
characterized by its membership function. The membership function allows the graphical
representation of the fuzzy set.

Simple functions are used to build the membership function for a fuzzy set. The most
commonly used base functions include the triangular function, trapezoidal function, Gaussian
function, generalized bell function, sigmoid function, etc. [206]. In this work, the Gaussian
membership function is used to represent each linguistic variable. The Gaussian function is a
smooth, concise notation, and non-zero at all points, which makes it a popular method for
specifying fuzzy sets [204-206]. Moreover, polynomial-based curves are commonly used to
represent fuzzy membership functions. The Gaussian function is defined using two parameters,
mean (i) and standard deviation (o), which indicate the center and width of the membership
function respectively. Figure 3.2 illustrates a typical Gaussian function representation. The
smaller the standard deviation, the narrower will be the bell curve. The standard deviation value
is tuned so that the membership functions in a fuzzy set have suitable overlapping to avoid any

chance of a gap in the linguistic variable domain. The Gaussian membership function can be
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represented by Eq (3.1), where x can be any of the crisp values of the FMECA input and output
variables [206].

foimo) = e ) 3.0)

Gaussian Membership Function

Degree of Membership

Figure 3.2 Typical Gaussian membership function

In fuzzy FMECA, the variables are not defined by sharp boundaries. The crisp input
values of S, O, and D rating scales are transformed into non-crisp fuzzy values from the
linguistic terms using membership functions. These linguistic input variables are fed into the
fuzzy engine. In order to represent RPN using fuzzy membership functions, a risk classification
must be made based on RPNs. RPNs are also represented using linguistic variables. The fuzzy
engine returns a linguistic output variable representing RPN, which is defuzzified to obtain a

crisp value for RPN.

The input to the defuzzification stage is a fuzzy linguistic variable and the output is a
crisp value, which is denoted as the fuzzy RPN. This is a reverse mapping of crisp values from
membership functions. The centroid method is the most commonly used defuzzification
technique that returns the central point of the area under the fuzzy set, which is a crisp value
[100, 203] The overall structure for the fuzzy modeling of FMECA is illustrated in Figure 3.3.

50



.................................................................................................................................................................................

Severity (S) Fuzzy Rules
. . Fuzzy Logic . .
Occurrence (O) Fuzzification F . — Defuzzification » Fuzzy RPN
Engine
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Detection (D) Data & expert elicitation
Crisp Input Fuzzy FMECA System Crisp Output

Figure 3.3 Flow diagram for fuzzy modeling of FMECA

The collated field failure data of the CNC lathe is subjected to criticality analysis using
FMECA and fuzzy FMECA methods. The major objective of the study is to identify the most
critical components and subsystems of a CNC lathe and prepare a priority list for implementing
a predictive maintenance strategy. The potential failure modes, potential effects, potential
causes, and design controls for detection are identified for every component of the CNC lathe
using the field failure data, and further, Tables 3.1, 3.2, and 3.3 are used to assign S, O, and D
ratings for each component. The fuzzy FMECA proceeds are shown in Figure 3.3. In order to
determine the fuzzy RPNs for failure modes of components, the input and output linguistic

variables are fuzzified.

Figure 3.4 shows the fuzzy representation of the severity, occurrence, and detection
rating scales. This makes the basic non-crisp inputs for a fuzzy FMECA. Similarly, the output
RPNs are fuzzified, but it requires an RPN rating scale for the CNC lathe. Table 3.4 presents
the 10-scale risk classification of RPN, which defines a set of RPNs to a particular risk category.
Risk classification and ranking criteria for RPN are developed by integrating the conventional
RPNs with industrial expert elicitation. Each class is assigned the values from 1 to 10, the value
10 indicates the category with the highest risk and the value 1 indicates the category with the
least risk. Like the input membership functions, the Gaussian membership function is used to
transform RPN into a fuzzy RPN. Figure 3.5 shows the output membership function for fuzzy
RPN. This fuzzy representation of RPNs is used for the defuzzification of the linguistic output

variables to give crisp fuzzy RPNs.
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Table 3.4 Failure Classification based on RPN rating scale

S. No. Linguistic Variable Ranking Criteria Rank
1 Very High 450 <RPN <1000 10
2 High 300 < RPN <449 9
3 Low High 217 <RPN <299 8
4 High Medium 141 <RPN <216 7
5 Medium 81 <RPN <140 6
6 Low Medium 50 <RPN <80 5
7 High Low 30<RPN <49 4
8 Low 17<RPN <29 3
9 Very Low 9<RPN<16 2
10 None 1 <RPN<8 1
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Figure 3.5 Membership function for output variable-RPN

The fuzzy rules are defined to correlate the input and output membership function. The
if-then rule is used to establish the fuzzy relation between the inputs S, O, D, and the output
RPN. Following the 10-scale ratings for S, O, and D, 1000 if-then rules are developed using the
information extracted from expert elicitation. These rules are intended to portray every possible

combination of S, O, and D rating scales. If-then rules are defined as follows:

“If Severity is Serious and Occurrence is Moderate and Detection is Uncertain then RPN is

Very High”

“If Severity is Minor and Occurrence is Frequent and Detection is Uncertain then RPN is

High”

“If Severity is Major and Occurrence is Remote and Detection is Certain then RPN is Low”

Similar 1000 rules are defined to represent the fuzzy FMECA of the CNC lathe. A
typical worksheet for qualitative FMECA is used to display the complete FMECA and fuzzy
FMECA of a CNC lathe machine as presented in Table 3.5. Columns of the FMECA worksheet
include part name, potential failure modes, the potential effects and causes of the respective
failure mode, the current machine controls detection, severity, occurrence, and detection values
for the failure mode of the component, and RPNs. An additional column is included in the
conventional FMECA worksheet to display fuzzy RPNs. This could provide a clear comparison
between the conventional RPN and the fuzzy RPN. The FMECA relates the potential failure
modes to potential effects and root causes, which give a clear knowledge about the failure of a

component.
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Table 3.5 FMECA sheet for CNC Lathe with RPN and Fuzzy RPN

. . Current Risk assessment
. Potential Potential i
Part Potential machine Fuzzy
Part Name . effect(s) of cause(s) of
No. failure mode(s) failure failure controls o D RPN RPN
Detection
Affects
engaging of the . i
Indexing error cutting tool, Tra([::)rﬁ)ilnsg of Ing/lzggl)n 6 7 210 255
Bearing P P
1 Turret damage
Improper
Lock problem Clamping, Wear, Trapping Visual 10 3 180 178
Chance of of chips Inspection
accident
Noisy Winding or . .
Operation, bearing Wrc;n% p03|t||on Vlsua}l 1 3 12 135
Overheating damaged of the too Inspection
2 Turret Motor
Electric short . Winding burns Electric
circuit Faulty Indexing out Failure Alarm 1 ! 42 409
Improper Tool slip, Visual
3 Tool Holder prop increased tool Fatigue . 5 2 30 40.1
clamping, Play charter Inspection
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W Workpiece Inspection
orn out, runout Overload usin
Chuck Sudden loss of ! erioad, : g 10 300 280
" Improper material fatigue | instruments
grip clamping and gauges
Improper No iob
Drawbar Worn Thread workpiece Thread failure 19 10 150 178
. clamping
clamping
Pulley play . N_oise_ and
Pulley Loosen Key, | goyt jip, Belt | VVear Spindle | jerking 1 20 17.7
Worn Sheave bearing fault movement of
break
the belt
Noisy Bearing Noise and
Operation, damaged, Over M%torhb;ea_:mg overheanr:jg, 3 63 66
Overheating Heating Or bush fariure Increase
Spindle Vibrations
Motor
. Winding Burn - Overheating,
Elec(::tirrlézu?th ort out, Stopped W|nd|cr)13tburns Electric 2 72 65
Working failure Alarm
Broken Belt,
improper
I_mp_roper power Fatigue, Wear, Increased
. tensioning, Belt . noise of
Spindle Belt . transmission, pulley o 8 96 83.2
fatigue, Worn . M slipping and
noisy misalignment
Belt, ; chatter
operation,

overheating
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Noisy

. Wear and
Operation, . Increased
: Deformation of .
Spindle Bearing Overheating, bearing noise and
9 : - Spindle runout, vibration, 10 490 568
Bearing deformation elements,
Damage Chatter mark
. Overload, :
bearing o on Workpiece
Misalignment
elements
Spindle Noisy L
10 | Cooling Fan Over Heating operation, Short circut, Fan sto_pped 4 60 66
: Contamination working
Motor Overheating
Worn bearing, Noisy C:(\)/ ei::???) deure Overheatin
. Electric short- operation, prop -ating, 4 192 179
X & Z Axis o . slide Noise
11 circuit overheating
Servomotor movement
Worn coupling Vibrations Misalignment | Jerking Noise 3 60 45.8
Worpatl?elljte, Belt Overheating, | Fatigue, Wear, Visual
12 | Axis Belt gue, Noisy pulley : 1 24 22.7
Improper : M Inspection
L operation misalignment
tensioning
no smooth
13 Axis Slide Not Smooth, Lac_k_of Misalignment, _ movement, 3 45 426
Play precision wear increased load
on motor
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Noisy

14 Ball Screw Bent Screw, Misalignment Chip trapping, Unsmooth 30 27.8
Play wear, Fatigue .
operation
Noisy : .
15 | Bgusoew | ool | opron, | Seoraton | Mok
g P Overheating P trapping
16 Oil Seal Leakage Pressure IOSS.’ Contaminants Vlsua}l 45 40.4
Wastage of oil Inspection
17 Lubrication Vane Blocked Improp_er Entry of cr_nps, Drop in oil 12 13.3
pump lubrication deformation pressure
Oil leakage
Burnt Winding | Stop working into the Oil Spilling 25 23.7
Lubrication winding
18
Motor .
Noisy Noisy Wear of Noise
Operation, Operation bearin Overheat’in 48 402
Overheating P g g
Leakage Inadequate Blockage due
Oil Tank and ge, Lubrication, g Visual
19 L Blocked or : to . 48 40
Piping . Lubricant . Inspection
improper flow Contaminants
wastage
. Inadequate
20 Coolant Worn or blocked Inadequate Blocked_ filter, flow of 5 479
Pump vanes pressure, contaminants coolant
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Improper

Coolant flow
Leakage of
Burnt Winding | Stop working | coolant into the | stop working 18 26.8
Coolant winding
21
Motor Noisy
operation. | oo | eating | Overhesti 2 | W
Overheating P g g
Leakage, Blockage due )
99 Coolan_t Tank Blocked or Inadequate 0 Vlsua}l 10 541
and Piping . Coolant . Inspection
improper flow Contaminants
23 CI:E ncoder Fail to encode Wrong axis _and Fatigue, aging V\_/r_ong 25 23.7
oupling turret position positioning
Rubbing and | Wrong axis and . . No_ise,
24 | Encoder Belt X o Fatigue, wear | vibration, no 18 19.3
Overheating turret position movement
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In Table 3.5, it is observed that the same RPN is produced for different combinations of
S, O, and D values with the conventional FMECA, which is one of its major drawbacks. On the
other hand, all the fuzzy RPNs are unique. For example, tool holder and ball screw have (S, O,
D) combinations as (3, 5, 2) and (6, 1, 5) respectively, which give the same RPN 30 with
conventional FMECA. The same set of input variables for tool holder and ball screw in fuzzy
FMECA gives fuzzy RPNs 40.1 and 27.8 respectively. Thus, fuzzy RPN overcomes the major
drawback of conventional FMECA in calculating RPN and makes it better for risk
prioritization. This is due to the result of the fuzzification of the linguistic variables of input

and output parameters.

RPN is a relative quantity indicating the risk associated with different failure modes of
the components of machinery. The RPN of a component is calculated as the aggregate of RPNs
of all failure modes of that component as represented by Eq (3.2). The RPN of a subsystem is
calculated as the sum of RPNs of all components within that subsystem as represented by Eq
(3.3) [89, 96].

RPN component = RPN Failure Mode 1 + RPN Failure Mode 2 + ... RPN Failure Mode n (3.2)
where n is the total number of failure modes of that particular component.

RPN subsystem = RPN component1 + RPN component2 + ... + RPN component m (3.3)
where m is the total number of components under the considered subsystem.

The RPN of components is calculated using Eq (3.2). A priority rank is given to the
CNC lathe components based on conventional RPN and fuzzy RPNs from larger to smallest as
presented in Table 3.6. Due to the repetition of RPNs in conventional FMECA, there is a chance
of a tie between the priority ranks of components. In such cases, the product of S and O is
considered and the component having a higher product value is given a higher rank. However,
this problem does not appear when the ranking is based on a fuzzy RPN, where all values are
unique. Therefore, the risk priority ranking based on a fuzzy RPN is considered for the
predictive maintenance of the CNC lathe. It is observed that spindle bearing has the highest
RPN and the fuzzy RPN 490 and 568, respectively. Hence, the spindle bearing is reported as

the most critical component of a CNC lathe machine, followed by turret and chuck.
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Table 3.6 Criticality Ranking of CNC Lathe Components based on RPN and Fuzzy RPN

Part RPN Fuzzy RPN
Part Name RPN Priority Fuzzy RPN Priority
No.
Rank Rank
1 Spindle Bearing 490 1 568 1
2 Turret 390 2 443 2
3 Chuck 300 3 280 3
4 X & Z Axis 252 4 2248 4
Servomotor
5 Drawbar 150 5 178 5
6 Spindle Motor 135 7 131 6
7 Ball Screw 150 6 129 7
Bearing
8 Spindle Belt 96 8 83.2 8
Spindle Cooling
J Fan Motor 60 10 66 9
10 Lubrication Motor 73 9 63.9 10
11 Coolant Motor 50 12 56.8 11
12 Turret Motor 54 11 54.5 12
13 Axis Slide 45 14 42.6 13
14 Oil Seal 45 15 40.4 14
15 Tool Holder 30 16 40.1 15
16 Oil Tank and 48 13 40 16
Piping
17 Ball Screw 30 17 27.8 17
18 Encoder Coupling 25 18 23.7 18
19 Axis Belt 24 19 22.7 19
20 Encoder Belt 18 21 19.3 20
21 Pulley 20 20 17.7 21
22 Lubrication pump 12 22 13.3 22
g3 | Coolant Tank and 10 23 5.41 23
Piping
24 Coolant Pump 6 24 4.79 24
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Further, the RPNs of subsystems are calculated as the sum of the RPNs of each
component belonging to that subsystem using Eq (3.3). Similarly, the fuzzy RPNs are also
calculated for the subsystems. These fuzzy RPNs are utilized to prepare a maintenance priority
ranking for CNC lathe subsystems as presented in Table 3.7. A comparison of the conventional
and fuzzy RPN is provided and the subsystems are arranged according to the fuzzy RPN priority
ranking. It is observed that the ranking based on fuzzy RPN is more in agreement with industrial
expert elicitation. The spindle unit of the CNC lathe machine is identified as the most critical
subsystem with the conventional and fuzzy RPNs 781 and 848.2, respectively. The criticality
analysis based on both conventional and fuzzy RPNs has established the spindle unit as the
most critical subsystem. The spindle unit of a CNC Lathe Machine tool includes subsystems
such as spindle motor, spindle bearings, spindle belt, and spindle cooling fan. The subsystem
fuzzy RPN values of the spindle motor, spindle bearings, spindle belt, and spindle cooling fan
are obtained as 131, 568, 83.2, and 66 respectively. The highest fuzzy RPN value is obtained
for the spindle bearings whose potential cause of failure is reported as wear and deformation of
beaning components. The fuzzy RPN values of the spindle motor, spindle belt, and spindle
cooling fan are far-off for comparison with that of spindle bearings. Hence, all other causes of
failure such as overheating, short-circuit, contamination, etc. have negligible contributions

toward the failure spindle unit.

Hence, it can be stated that the predictive maintenance strategy must be implemented
for the spindle unit of a CNC lathe machine tool. The turret, chuck, and linear axis subsystems
also have high fuzzy RPNs. These subsystems can also be considered for predictive
maintenance. The other subsystems might be considered for preventive or reactive

maintenance.

Table 3.7 Criticality Ranking of CNC Lathe Subsystem based on RPN and Fuzzy RPN

Subsystem RPN RPNRZ:E rity Fuzzy RPN Pfiléﬁzy%gﬁk
Spindle 781 1 848.2 1
Turret 474 3 527.5 2
Chuck 470 4 475.7 3

Linear Axis 501 2 446.9 4

Lubrication 178 5 157.6 5
Cooling 67 6 67 6
Encoder 43 7 43 7
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3.5 Summary

This chapter presents a systematic methodology for the criticality analysis and
maintenance prioritization of the CNC lathe machine tool for the application of picking out
critical lathe components and subsystems for predictive maintenance. Criticality analysis of
CNC lathe is performed to identify the most critical subsystems and their potential failure
modes from a maintenance perspective and hence limit the implementation of predictive
maintenance to the identified critical subsystems. One of the most widely used criticality
analysis techniques FMECA, which is improved with fuzzy logic computation is utilized for
risk prioritization of the CNC lathe machine tool. The failure modes of components and
subsystems of the CNC lathe are identified and the risk associated with each component and
subsystem is determined. Furthermore, a maintenance priority rank is generated based on the
risk factor associated with the components with respect to the failure modes. Industrial field
failure data and expert elicitation constitute major input for performing failure and criticality
analysis. This data is used to calculate the RPNs following the conventional and fuzzy improved
FMECA.

FMECA relates the potential failure modes to potential effects and root causes. This
knowledge can be utilized in the phenomenon of sensors selection and installation for the
condition monitoring of critical components. The spindle unit of a CNC lathe is identified as
the most critical subsystem with the highest RPN, followed by the turret, chuck, and linear axis.
The wear and deformation of bearings causing increased noise and vibration are identified as
the potential failure modes and failure effects for the lathe spindle unit. The comparison of the
results of conventional and fuzzy FMECA highlights the benefits of fuzzy FMECA over
conventional methodology. The fuzzy FMECA results seem to be more reasonable and in
agreement with the industrial data and expert elicitation. The study also proves that the primary
drawbacks of conventional FMECA are eliminated with the implementation of fuzzy logic

computational techniques.
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Chapter 4

Condition Monitoring Data Acquisition and Data

Preparation

4.1 Introduction

In the present chapter, the experimental setup for condition monitoring data acquisition
and data preparation for prognostic regression analysis is described. This chapter includes the
fabrication of an accelerated run-to-failure experimental test rig with sensors and a data
acquisition system for condition monitoring data acquisition and the conversion of raw
condition monitoring data into useful machinery health degradation information for prognostic
regression analysis. The chapter also discusses the standardization of condition monitoring data

and response variables.

4.2 Experimental Test Rig

The predictive maintenance analysis of the lathe spindle unit requires machinery health
degradation data from the initial healthy state to the final faulty state. The available literature
largely has utilized the open-source aircraft turbofan engine degradation data [19-24, 31-37,
40] or bearing degradation data [25- 27, 39] for validating their RUL estimation algorithms. A
few researchers have generated their machinery degradation data like reciprocating compressor
degradation data [28], cutting tool wear monitoring data [29], gear failure data [30], can-making

machine degradation data [38], etc.



A spindle test-bed built by TechSolve [207] used a frequency drive, electric motor, Poly-
V belt transmission, and simplified spindle using two bearings identical to the ones used in the
horizontal machining center. Figure 4.1 (a) shows the spindle testbed including the motor, the
belt transmission, and the actual spindle. A loading mechanism pulling on the nose of the
spindle was added to accelerate the degradation. The force pushing down on the spindle nose
was kept approximately constant throughout all tests. The section of the loading mechanism is
located under the supporting stand (see Figure 4.1 (b)). A uniaxial accelerometer was placed on
the spindle housing, on top of the back bearing. A thermocouple was inserted in a hole drilled

into the spindle housing, close to the back bearings outer surface.

Loading
mechanism

Cutting force
simulation device 8

M belt @ Thermocouple

Figure 4.1 Machine tool spindle test rigs in literature (a) and (b) [207], (c) [208], and
(d) [209]

Similarly, Figure 4.1 (c) [208] shows a spindle is supported by four angular contact ball
bearings of 42 mm outer diameter on its front and rear ends. Two air cylinders (static and
dynamic load cylinder) apply constant and impulsive loads to the spindle, simulating the spindle
operation conditions under stable preload (e.g., when machining a workpiece under constant
speed and feed) or shock input (e.g., when impacted due to tool-workpiece interaction). Four
accelerometers were placed at the front and rear ends of the spindle, within the loading and

unloading zones of the bearings, to measure their vibrations. Literature proposing a
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methodology for obtaining an optimal bearing preload to improve the spindle work accuracy of
machine tools used a similar machine tool spindle test rig that includes the driver, coupling,
shaft, housing, and cutting force simulation device. The experimental test rig is shown in Figure
4.1 (d) [209]. Fiber Bragg grating (FBG) temperature sensors are utilized to measure the

temperature rise at the bearing outer ring.

In the present work, an accelerated run-to-failure experimental test setup is fabricated to
acquire spindle health degradation data. The experimental test rig primarily comprises a lathe
spindle assembly, a drive motor with the belt-pulley arrangement, and a loading arrangement.
The speed (rpm) of the spindle unit is varied for different runs by varying the driver pulley ratio.
The loading arrangement is placed replacing the chuck of the lathe spindle. The arrangement
applies a constant radial load on the spindle and it also ensures that there is no shock load acting
on the spindle. As in any mechanical system, the vibration signal is identified as the most
suitable parameter for condition monitoring of the spindle unit test rig. ‘PCB-603CO01’
accelerometer sensors are employed for vibration monitoring of the spindle unit. The
accelerometer sensors are mounted to the spindle housing by the adhesive mounting technique.
A mounting pad is first fixed firmly to the spindle housing using superior metal adhesives.
Further, the accelerometer is screw fitted to the mounting pad. The mounting pads offer a very
high-frequency response which is comparable to that of adhesives and stud mounting, and this
could avoid the damage of a sensor during the removal process. The accelerometer model has
a sensitivity of 100 mV/g, a frequency range of 0.5 to 10000 Hz, and a measurement range of
150 g (g = 9.8m/s2). The development of a fault or deterioration in the condition of machines
is indicated by an increase in overall vibration levels. ‘NI-9234 sound and vibration module
with ‘cRIO 9171’ data acquisition (DAQ) system are used to record monitored vibration
signals. Table 4.1 presents the detailed specifications of the equipment the vibration sensor, the
data acquisition module, and the data acquisition interface system used in the experimental
setup. The accelerometer sensors are mounted directly on the top of spindle bearings and are
connected to the data acquisition device. The data acquisition system acquires vibration data
from the accelerometers and transfers it to the connected computer storage. The data flow across

various components in the experimental setup is illustrated in Figure 4.2.
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Table 4.1 Detailed specification of equipment used in the experimental setup

Equipment Type

Equipment Name

Equipment Specification

Vibration Sensor

PCB 603C01

Accelerometer

Sensitivity: (£10%)100 mV/g (10.2
mV/(m/s?))

Frequency Range: 0.5 to 10000 Hz
Sensing Element: Ceramic
Measurement Range: +50 g (490
m/s?)

Weight: 1.8 0z (51 gm)

Data Acquisition

Module

NI19234 Sound &

Vibration Module

4 Channel

51.2 kS/s/channel Simultaneous
Sampling

Signal Range: £5 'V, 24 Bit

AC Coupling & AC/DC Coupling
IEPE type

Data Acquisition

System

(Computer Interface)

cRIO 9171 USB

DAQ System

1-Slot, USB CompactDAQ Chassis
Plug-and-play simplicity of USB to
sensor

Supported on DAQmx Driver

Software
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PCB-603C01 NI-9234 Sound & cRIO 9171 DAQ
Accelerometer Vibration Module System ‘)

E-b
t

Lathe Spindle Unit Computer with DAQ
Driver

Figure 4.2 Data flow across various components in the experimental setup

The entire experimental setup is assembled on a heavy machine worktable using anti-
vibration gaskets to minimize the presence of noise in the condition monitoring data. The
accelerated run-to-failure experimental test rig with component labels is shown in Figure 4.3.
The accelerometer data is acquired at a sampling rate of 25.6 kHz following a time-step of once
every 60 seconds. Each of these acquired data packets represents the health state of the spindle
unit at that time step. The machine health degradation data is represented by these packets in
their respective time-steps. Each degradation data represents the health degradation of the
spindle unit from a healthy state to a faulty state. The faulty state of any machine component is
when it is not able to perform its operation in a predefined desired manner. The faulty state of
a lathe spindle unit can be defined as the point at which it is unable to produce machined parts
within the tolerance limits of surface finish and dimensional accuracy. Accelerometer reading
(vibration amplitude) above 40 g is defined as the failure state of the experimental test rig

considered.
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Figure 4.3 Accelerated run-to-failure experimental test rig

The lathe spindle health degradation data includes 14 accelerated run-to-failure vibration
signal datasets performed at a constant load for five different rotational speeds 823 rpm, 900
rpm, 1400 rpm, 1800 rpm, and 2520 rpm. The chosen rotational speeds can simulate the
maximum possible variation in the functioning of the lathe spindle for the observed vibration
signals. The rotational speeds above 2520 rpm produced very high and rapidly varying vibration
signals in a short run-time and rotational speed below 823 rpm failed to produce any significant
variation (increase) in the vibration signal even after long run-time. Thus, the five rotational
speeds are chosen on practical grounds. Figure 4.4 shows all 14 acquired raw vibration data

presented on time series plots with their respective rotational speeds.
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Figure 4.4 Acquired 14 raw vibration data presented on time series plot
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Table 4.2 lists the lathe spindle health degradation data with maximum life obtained for
each run denominated in time-steps (one time-step equals 60 seconds). The spindle bearings
(32211, 32212 tapered roller bearings) are replaced with new bearings and the spindle unit is

completely reconditioned before each failure runs.

Table 4.2 Lathe spindle health degradation data with maximum life

S. No. | Speed (rpm) | Maximum Life (Time-Steps)
1 1942
2 823 1926
3 1816
4 1802
5 900 1674
6 1230
7 1146
8 1440 1072
9 972
10 923
11 1800 901
12 857
13 647

2520
14 624

4.3 Vibration Signal Processing

4.3.1 Feature Extraction

As mentioned in the introduction section of the thesis, the machinery degradation data
comprising at most a single vibration sensor data might cause underfitting of the deep learning
model. Vibration signal signature features revealing superior machinery degradation patterns
are considered for deep network training. The raw vibration signals are first subjected to
wavelet denoising with ‘db5’ mother wavelet at level-4 to filter out high-frequency noise

signals [50]. Then, statistical features are extracted from the denoised signal using time,
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frequency, and time-frequency domain analysis. The features extracted from the denoised
vibration signal include; mean, standard deviation, root mean square (RMS), root sum of square
(RSSq), peak-to-peak, crest factor, impulse factor, margin factor, skewness, kurtosis, shape
factor, mean frequency, time domain energy, wavelet energy, spectral entropy, spectral
kurtosis, Shannon entropy, Log entropy, normal entropy, approximate entropy, joint moment,
and mean peak frequency. [51, 52] (See Appendix | for MATLAB code for vibration signal
signature feature extraction). Table 4.3 summarizes the statistical features with their

computation formulae.
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Table 4.3 Statistical features in time, frequency, and time-frequency domain

t=first temporal moment,
w=spectral time-freq.
moment

Fl | Feature Formula Fl Feature Formula
Index
1 Mean M = %Zﬁ\’:lxl 12 P%i‘;io_ P2P = max|x;| — min|x;|
Standard 1 1
2 | deviation | 9= ¥z —® 13| RSSq RSSq = |5 XiLilxil?
R F Crest CF = -maxlxi
3| RMS RMS = |gXizxi |14 gactor NI K]
4 | Tmpulse IF = —mextxl 15 | Margin MF = —maxixl
factor SN Ix;] factor IV Ix[2
L (=m)’ : I (i-m)*
5 | Skewness Sk = ==-—— 16 | Kurtosis Ku = =&=———
(N-1)a3 (N-1)o%
Shape INENL, 7 Mean _ 1w
61 factor SE = ISN 2] 17 frequency meanfreq =y fi
N&~i=11"1
Energy ,
7| (Time E= YN x? 18 Vg’r?g’f'et WE = YN 260
domain) 9y N
ISCEI*
. e(p) = K(f)=m—2’f¢
8 Spectral | — YL, p(x;) 1092_(1_0(961)) 19 Spectrgl 0
entropy P(.) = probability kurtosis S(.)=STFT of x;, t=time
function f=frequency
Shannon sEntropy = Log N 2
9 entropy — YN x?logx? 20 entropy LEntropy = Y= log x;
Normal | nEntropy = Y, |x;|? Approx. AE — B = Oy
10 entropy p = signal threshold | 2+ entropy O = (N —m +
DI  log(N)
moment]
= ff t"w™mP(t, w)dtdw M meanPeakFreq =
11 Joint m= order, P(.) = 29 pee:l? %fOT argmax,, (Sp(t, w))dt
moment marginal distribution, frequency Sp(.) = Spectrogram,

w=individual frequency

*F1 = Feature Index
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4.3.2 Feature Selection

The vibration features from 14 failure runs are concatenated to form a compound dataset,
which is then subjected to an NCA-based feature selection criterion. A regularized NCA
algorithm is executed using the compound feature dataset representing all 14 failure runs to
determine the weighting vector corresponding to each feature. The NCA result is illustrated in
Figure 4.5 showing the weighting vectors and corresponding feature indices (FI). The features
with their indices are presented in Table 4.3. A relative threshold value for feature weights
equals to 15.0 is assigned from random trials as the cut-off criterion to select the most relevant
feature subsets for all 14 failure datasets. The features standard deviation, RMS, energy, normal
entropy, peak-to-peak, RSSq, log entropy clears the set threshold and are selected for the RUL
estimation of the lathe spindle unit using the data-driven prognostic algorithms.

NCA Feature Selection
T T T I I I T T T

25 T T

20

-
w
I

Feature Weight

-
o
T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Feature Index (FI)

Figure 4.5 NCA feature selection - Feature weights and corresponding feature index

All the remaining features are discarded at this stage of analysis. Training the prognostic
algorithms using these selected features could maximize the prediction accuracy of evolved

predictive models. (See Appendix Il for MATLAB code for NCA regression-based feature
selection)

4.4 Preparing Data

All the selected features representing a single machine (lathe spindle) failure run

constitutes a machine health degradation dataset. In preparing data for predictive analytics, the
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available dataset is first divided into the training set, validation set, and testing set. The training
dataset is used to train the prognostic model by minimizing the error between the predicted and
actual values. The validation dataset is used to select an evolved predictive model before
possible overfitting. The testing dataset is used to evaluate the generalization capability of the
trained model. The training, testing, and validation dataset are randomly selected following an
80:10:10 split ratio. The total of 14 machine health degradation datasets is divided into 10

training datasets, 2 validation datasets, and 2 testing datasets.

This time-series training dataset is then normalized to have zero mean and unit variance.
The validation and testing datasets are also normalized for the same mean and standard
deviation. The normalized time-series data S,,(t;) for any time-series dataset S(t;) can be

expressed as:

S, (L) = S(fi)s—t# (4.1)

where, mean is the mean of the training dataset, and std is the standard deviation of the
training dataset [53]. The time-steps from the initial healthy state to the final faulty state
represents the response variable, which is the RUL at each instance from healthy to faulty state.
It is assumed that the lathe spindle does not start to degrade at the beginning healthy state of
each failure runs instead, a response clip of around 20% of total life is applied until when there
is no health degradation or drop in RUL [32, 40]. Beyond the response clip region, the RUL
drops in each time step to reach zero. Figure 4.6 portrays a typical perspective of response

clipping for time series data.
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Figure 4.6 Typical clipped response variable

4.5 Summary

The vibration signals representing lathe spindle health degradation are acquired from an
accelerated run-to-failure experimental test rig are first analyzed to extract time, frequency, and
time-frequency features. These extracted vibration signature features are then subjected to
NCA-based feature selection criteria to identify the relevant features for prognostic analysis.
All the selected features representing a lathe spindle failure run constitute a machine health
degradation dataset. Such 14 datasets are weeded out from the entire extracted feature datasets.
This feature processing methodology is expected to nullify the concerns due to the smaller data
size. In preparing data for predictive analytics, the available dataset is first divided into the
training set, validation set, and testing set. The time-series dataset is then normalized to have
zero mean and unit variance. It is also assumed that the lathe spindle does not start to degrade
at the beginning healthy state of each failure run. Hence, a response clip is applied until where
there is no health degradation or drop in RUL.
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Chapter 5

Data-Driven Prognostic Analysis for Remaining Useful

Life Estimation

5.1 Introduction

This chapter presents a detailed discussion on the implementation of the data-driven
intelligent computational algorithms for the prognostic analysis of lathe spindle unit RUL
estimations. The computational algorithms for predictive modeling are the most crucial and
challenging step in machine failure prognostics. These algorithms can be physics-based, model-
based, data-driven, or a hybrid combination of any of these. The physics-based approach
demands a thorough knowledge of the physics of the system and the model-based approach
requires mathematical descriptions for the health status degradation of the mechanical system
[19, 20]. Whereas, the data-driven approach uses minimal technical aspects of the system. In a
data-driven approach, the historic machine monitoring data representing the health status
degradation are used for training computational algorithms to evolve intelligent predictive
models [18-20, 128]. Data-driven approaches include statistical approaches and Al approaches.
In this work, three data-driven prognostic algorithms based on the deep learning model,
machine learning model, and statistical estimator model are developed for the RUL estimation

of the lathe spindle unit.



5.2 RUL Estimation Employing Deep Learning Model

The data-driven methods are learning-based approaches that discover viable features and
prognostics models from the acquired data. These techniques include statistical models and Al
models that infer health status information directly from the monitored data. Al models learn
machinery health degradation patterns from the available machine health degradation data.
Machine learning and deep learning Al models are very popular in machinery health diagnostic
and prognostic analysis. The most recognized deep learning architectures for failure prediction
and RUL estimation include RNN, LSTM, DBN, CNN, etc. [21, 22].

Over the past decade, deep learning approaches have emerged as a promising
computational tool for predictive analytics in engineering and industrial applications. The
LSTM-RNN deep learning architectures are also gaining wide reorganization in analyzing the
time series machinery health degradation analysis for failure prediction and RUL estimations
[163-178]. LSTM network is an advanced variant of RNN which has been recognized as a
powerful computational tool for mining critical information from raw sequential time series
data. Song et al. [179], Zhang et al. [180], Elsheikh et al. [160], Wang et al. [181] have used
bidirectional LSTM (bi-LSTM) and Essien et al. [182] used convolutional LSTM for RUL
estimation. Zhang et al. [183] and Xia et al. [162] have used a convolutional LSTM and
convolutional bi-LSTM ensemble framework respectively for the RUL estimation. Generally,
the deep learning network has a natural structure to learn machinery degradation patterns
directly from raw machinery monitoring data. However, it demands a large size machine
degradation data with multiple sensor observations to avoid the problem of underfitting during
RUL estimations [210]. Wang et al. [170], Zhang et al. [171], He et al. [172] have processed
the machine degradation data to extract signature features representing the machine degradation
trend, which is then utilized for training the LSTM deep network for accurate RUL estimation.
The potential of the LSTM network to learn from raw sensor data minimizes the computational
complexity, at the same time the mandate to have large size machine degradation data is
regarded as the major limitation on the implementation of LSTM deep neural networks in

industries.

The hyperparameter optimization and network architecture selection is another major
challenge before the successful implementation of deep learning algorithms for prognostics

analysis of industrial machinery. The selection of hyperparameters including both training and
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structural parameters has a direct influence on the performance of the predictive models.
Generally, this optimization is performed by trial-and-error methods, which is arduous and
time-consuming [162, 168]. Recently, a few literature have discussed the LSTM
hyperparameter optimization algorithms employing ant colony optimization [166], particle
swarm optimization [171], comparative analysis [179], grid search [165, 170, 182], Bayesian
search optimization [161, 173], etc. to reduce the computational complexity and improve
prediction accuracy. Bayesian search optimization provides a refined approach and has been
shown to outperform other algorithms [211]. Bayesian optimization techniques are popularly
employed to optimize non-differentiable, discontinuous, and expensive functions. The
algorithm uses an acquisition function that estimates the next point to evaluate, which makes
the algorithm optimize the hyperparameters in a minimum number of iterations [173, 211]. Its
capability to converge at optimized values in the minimum number of iterations makes it
appropriate for expensive and computationally complicated algorithms like deep learning
algorithms. The mandate to have large-sized data for prognostic analysis and the black-box
nature of learning algorithms remains a major challenge before the practical implementation of
deep learning architectures for predictive maintenance. There exists an insistent need for further
research works owing to the vast applicability of the LSTM deep learning network in prognostic

predictive maintenance of industrial machinery.

The thesis proposes a novel Bayesian optimization LSTM/bi-LSTM deep learning
approach with an automated hyperparameter optimization paradigm for the RUL estimation of
the lathe spindle unit. The prepared vibration signature features for prognostic regression
analysis using time, frequency, and time-frequency domain analysis and NCA-based feature
selection criteria (refer to section 4.3) are employed for training the deep learning models. This
feature processing methodology is expected to nullify the concerns due to the smaller data size.
The prepared lathe spindle health degradation dataset comprising the training, testing, and
validation datasets are employed for training the Bayesian optimized LSTM/bi-LSTM and their
combination deep network architectures for the prognostic analysis. The Bayesian optimization
of LSTM/bi-LSTM deep network hyperparameters is expected to knock down the black-box

nature of these learning algorithms.

The training and validation datasets are fed into the Bayesian optimization LSTM/bi-
LSTM network algorithm to evolve accurate predictive models for RUL estimation. In the

proposed learning architecture, the LSTM/bi-LSTM network algorithm is executed within the
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Bayesian optimization algorithm. The flow diagram for the Bayesian optimization LSTM/bi-
LSTM network algorithm is shown in Figure 5.1. The LSTM/bi-LSTM deep learning
architectures with predefined fixed ranges of hyperparameters are assigned as the objective
function to a Bayesian optimization algorithm. The objective function trains the LSTM/bi-
LSTM network and returns the validation error to the Bayesian optimization algorithm. After
each iteration, a new set of values are assigned to the hyperparameters and the process continues
until a termination criterion is reached [173, 211]. The termination criterion for the algorithm
is set to a predefined condition of completing 30 iterations. The condition is arbitrarily chosen
based on random trials considering a parity between the computational expense and prediction
accuracy. Finally, the chosen predictive models are tested on the independent test sets. (See
Appendix Il for MATLAB code for Bayesian optimization deep learning model based

prognostic algorithm)

Bayesian Optimization

----------------------------------- ; i Define fixed ranges for
Deep Learning I i hyperparameters

Prepared Machine degradation
datasets
(Training, Validation, & Testing)

Estimate hhyperparameters for
current iteration

Training dataset

y

LSTM/bi-LSTMnenwvork algorithm 1 Optimize LSTM/bi-LSTMnetwork

Validation dataset

4

Estimate Validation Error : Evaluate LSTM/Di-LSTMmodel

Testing dataset

Test the optimized LSTM/bi-LSTM 1 i Update hyperparameters

model
Maxinium g
Irerations

________________________________________

...................................
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Figure 5.1 Flow diagram for Bayesian optimization LSTM/bi-LSTM network
algorithm

The algorithm is proposed to optimize the deep learning hyperparameters towards the

achievement of a minimum validation error. The validation error is defined as the mean absolute
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error (MAE) between the predicted machine health degradation trend for the validation dataset
and the actual machine health degradation trend as shown in Eq. 5.1

Validation Error = W (5.1)

where y; is the predicted machine health degradation trend, xi is the actual machine
degradation trend, and n is the total time-steps of the validation dataset. The degradation trend
is the RUL of machine components at different time-steps starting from healthy to a failure

state.

In order establish a better understanding of the LSTM/bi-LSTM network algorithms, the
Bayesian optimization is separately performed for the network structure and hypermeters
optimization of LSTM, bi-LSTM, LSTM + bi-LSTM, bi-LSTM + LSTM, LSTM + LSTM, and
bi-LSTM + bi-LSTM network architectures. The deep network architectures with single
LSTM/bi-LSTM network models include only six layers namely the sequence input layer, the
LSTM layer, the fully connected layer, the dropout layer, the fully connected output layer, and
the regression layer. On the other hand, those deep network architectures with LSTM/bi-LSTM
combination network models have nine layers including the second LSTM/bi-LSTM network
model and an additional set of the fully connected layer and the dropout layer for the second
LSTM/bi-LSTM network models. Table 5.1 and Table 5.2 presents the layer framework of
these deep learning architectures. A sequence input layer inputs sequence data to a network.
The fully connected layer establishes the connection between every neuron in one layer of the
LSTM/bi-LSTM network model to every neuron on preceding layers. The dropout layers
regulate the learning process to avoid overfitting of LSTM/bi-LSTM network models. A
regression layer computes the error loss for regression tasks. In the combination network
models, the second LSTM/bi-LSTM network layer requires an additional set of the fully
connected layer and the dropout layer. The fully connected layer, the dropout layer, and the
second LSTM/bi-LSTM layer make the addition of extra three layers.
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Table 5.1 Layer framework of LSTM and bi-LSTM network architectures

Layer No. | LSTM bi-LSTM

1 Sequence input layer Sequence input layer

2 LSTM layer bi-LSTM layer

3 Fully connected layer Fully connected layer

4 Dropout layer Dropout layer

5 Fully connected output layer | Fully connected output layer
6 Regression layer Regression layer

Table 5.2 Layer framework of LSTM + bi-LSTM, bi-LSTM + LSTM, LSTM + LSTM, and bi-
LSTM + bi-LSTM network architectures

Layer LSTM + bi-LSTM + LSTM + bi-LSTM +
No. bi-LSTM LSTM LSTM bi-LSTM
1 Sequence input Sequence input Sequence input Sequence input
layer layer layer layer
2 LSTM layer bi-LSTM layer LSTM layer bi-LSTM layer
3 Fully connected Fully connected Fully connected Fully connected
layer layer layer layer
4 Dropout layer Dropout layer Dropout layer Dropout layer
5 bi-LSTM layer LSTM layer LSTM layer bi-LSTM layer
5 Fully connected Fully connected Fully connected Fully connected
layer layer layer layer
7 Dropout layer Dropout layer Dropout layer Dropout layer
8 Fully connected Fully connected Fully connected Fully connected
output layer output layer output layer output layer
9 Regression layer | Regression layer | Regression layer | Regression layer
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The hyperparameters control the behavior of deep learning architecture. The most
relevant hyperparameters involved in the training of LSTM/bi-LSTM deep learning
architecture are as follows: [192, 212]

(a) Number of hidden units (Hn): It corresponds to the amount of information remembered
between time-steps. Too large Hn value might cause overfitting of training data. It can
vary from a few dozen to a few thousand.

(b) Number of fully connected layer (FCn): All neurons in the fully connected layer are
connected to all neurons in the previous layer. This combines all the features learned
across the layers to identify hidden patterns.

(c) Dropout rate (Dr): It randomly sets input elements to zero thus changing the underlying
network structure between iterations. Higher D, causes more elements being dropped
during training. It influences the performance of the evolved model by enhancing model
generalization.

(d) Maximum epochs (Epoch): A epoch corresponds to the full pass of the training algorithm
over the entire dataset.

(e) Initial learning rate (L(): It is used for training the algorithm. Too low L, takes a long
training time and too high L might conclude at a suboptimal result or diverge.

(f) L2-regularization factor (L2r): It corresponds to the weight decay factor that is
responsible to reduce training data overfitting.

In the Bayesian optimization algorithm, the hyperparameters are initiated with
predefined fixed ranges based on random trials. The algorithm is executed with random
hyperparameters combinations varying one at a time. Only those ranges of hyperparameter
showing a significant variation in the final result are chosen for the study. Table 5.3 shows the
hyperparameters with their respective predefined fixed ranges. The performance of the
LSTM/bi-LSTM network architectures for RUL estimation of lathe spindle is evaluated using
the root mean square error (RMSE) between the actual and predicted RUL. RMSE is computed

as:

Y ri—x)?
n

RMSE = (5.2)

where n is total time-steps, y; is predicted values, and xi is actual values.
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Table 5.3 Hyperparameters of deep learning architectures with respective fixed ranges

Hyperparameters

Network Structure Training Parameters

Hn FCn Dy Epoch L, L2

[100300] | [25250] [020.8] | [100300] | [le-30.1] | [le-5 1e-3]

The algorithms employed in this work are developed and executed on a computer having
an Intel Core-i7 (3.60 GHz) processor with 8 GB RAM using 64-bit MATLAB software. The
prepared lathe spindle health degradation dataset comprising 10 training datasets, 2 validation
datasets, and 2 testing datasets are employed for prognostic analysis using the Bayesian
optimization LSTM/bi-LSTM learning algorithm. Bayesian optimization of LSTM, bi-LSTM,
LSTM + bi-LSTM, bi-LSTM + LSTM, LSTM + LSTM, and bi-LSTM + bi-LSTM network
architectures are performed separately using the training and validation datasets to identify their
best hyperparameters. The Bayesian optimization algorithm tune the hyperparameters towards
the attainment of a minimum validation error. The algorithm terminates after completing 30
iterations to produce the optimized hyperparameters for the minimum validation error. Table
5.4 presents the Bayesian optimized hyperparameter sets for all the considered deep network
architectures. The LSTM/bi-LSTM deep network architectures trained using these optimized

hyperparameters are compared to identify the most accurate predictive model.

Table 5.4 Bayesian optimized hyperparameters of LSTM/bi-LSTM network architectures

Network FCh- Hn- | FCh-
B Hn'l Dr'l Dr'2 EpOCh Lr L2rf
Architecture 1 2 2
LSTM 242 116 | 0.63 | --- 296 0.009 | 4.0e-4
bi-LSTM 104 199 | 0.36 | --- 239 0.011 | 2.5e-4

LSTM + bi-LSTM 114 | 129 | 038 | 270 | 84 | 0.21 | 207 | 0.0034 | 5.1e-5

bi-LSTM + LSTM 125 | 127 | 0.63 | 107 | 152 | 030 | 216 | 0.0012 | 1.9e-4

LSTM + LSTM 221 | 180 | 0.21| 179 | 39 |0.22 | 247 | 0.0098 | 1.8e-5

bi-LSTM + bi-LSTM | 110 | 184 | 0.55 | 119 75 | 0.20 | 223 | 0.0019 | 1.8e-4
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The evolved predictive models are examined to determine the prediction accuracy on an
independent testing dataset. The RMSE between the actual and predicted RUL is estimated for
all predictive models. Test observation plots between actual RUL and predicted RUL for
LSTM/bi-LSTM network architectures with their respective prediction accuracy (RMSE) are
illustrated in Figure 5.2. The predicted RUL well compliments the actual lathe spindle life
degradation pattern including the response clip pinned on the actual life pattern. It is observed
that not all the deeper LSTM and bi-LSTM network combination architectures give better
accuracy than the single LSTM or bi-LSTM network architectures for spindle lathe RUL
estimation. The LSTM + bi-LSTM network architecture is identified to have the best prediction
accuracy on lathe spindle RUL estimation with RMSE equals 31.65 followed by the single
LSTM architecture with RMSE equals 40.01. The LSTM architecture is well efficient in
digging up hidden patterns from time-series data. Further employing a bi-LSTM network can
refine the learned degradation patterns yielding accurate estimations. It is also observed that the
order of placing the LSTM/bi-LSTM layer in the layer framework has a very high impact on
the training process and thus the prediction accuracy. The deep learning architectures with a bi-
LSTM network at the beginning are observed to produce comparatively lesser accurate
predictions. This might be because the bi-LSTM network learns the time series data from both
directions leads to overfitting of the evolved predictive model. The Bayesian optimization of
LSTM/bi-LSTM and their combination architectures identifies the best individual
hyperparameter sets for maximum prediction accuracy on lathe spindle data. The proposed
Bayesian optimization deep learning algorithm provides an integrated self-optimization of
hyperparameters and an RUL estimation platform for the predictive analytics of the lathe

spindle unit.
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Figure 5.2 Actual RUL vs predicted RUL for (a) LSTM, (b) bi-LSTM, (c) LSTM + bi-
LSTM, (d) bi-LSTM + LSTM (e) LSTM + LSTM, (f) bi-LSTM + bi-LSTM models
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5.3 RUL Estimation Employing Machine Learning Model

Machine learning algorithms are widely employed for the failure classification and
prediction of mechanical systems [22]. SVM is the most popularly employed learning approach
for machine failure prediction and RUL estimation [127, 136]. Yan et al. [138] employed an
SVM classifier to assess the degradation stage of bearing, which is further utilized to exploit
the optimal RUL prediction. Chen et al. [213] proposed a framework for RUL estimation of an
aircraft engine using the lifecycle data and performance deteriorated parameter data based on
the theory of similarity index and SVM. Louen et al. [214] proposed a new health feature
creation approach using a binary SVM classifier, which is also used to obtain fault detection
for the RUL estimation. Benkedjouh et al. [145] employed the isometric feature mapping
reduction technique for nonlinear feature reduction and SVR for the RUL estimation of
mechanical bearings. As in the case of deep learning algorithms, the options for the internal
parameters/hyperparameters of SVM can strongly influence the prediction accuracy. Manually
assigning these hyperparameters might not serve the purpose as it is considered transcendent
[23, 215, 216]. Similar to the Bayesian optimization of LSTM/bi-LSTM deep network
hyperparameter optimization algorithm, the SVM machine learning algorithm is executed
within the Bayesian optimization algorithm against the minimization of prediction error to

obtain the best hyperparameter set for a given training data.

The SVM machine learning architectures with predefined fixed ranges of
hyperparameters are assigned as the objective function to a Bayesian optimization algorithm.
The objective function trains the SVM model and returns the validation error to the Bayesian
optimization algorithm. After each iteration, a new set of values are assigned to the
hyperparameters and the process continues until a termination criterion is reached [23]. The
termination criterion for the algorithm is set to a predefined condition of completing 30
iterations as similar to LSTM/bi-LSTM deep learning architecture optimization. Finally, the
evolved SVM regression model for the best-optimized hyperparameter set is tested towards the
independent testing dataset to obtain the RUL and prediction error. The flow diagram of the
Bayesian optimization SVM learning algorithm is shown in Figure 5.3. (See Appendix IV for

MATLAB code for Bayesian optimization machine learning model based prognostic algorithm)
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Figure 5.3 Bayesian Optimization SVM algorithm flow diagram

The overall algorithm is aiming to minimize the Bayesian optimization validation error,
which is computed using the MSE as presented in Eq. 5.1 [217]. Bayesian optimization
algorithm estimates the MSE between the predicted and actual RUL for every iteration for the
assigned set of hyperparameters. The hyperparameter set for every iteration is expected to
minimize the prediction error to obtain an estimated MSE. This estimated MSE is compared
against the actual observed MSE to determine the hyperparameter set for the next iteration. In
each iteration, the SVM model fitness is evaluated using RMSE between the actual and the
predicted RUL as presented in Eq. 5.2 [218].

The SVM algorithm is repeatedly executed within the Bayesian optimization algorithm
to converge at a set of hyperparameters that causes minimum prediction error. The major

hyperparameters considered for optimization includes

(a) Box constraint: It constrains the o coefficients that the a coefficient values cannot
exceed the box constrain value. The Positive values log-scaled in the range

[0.001,1000] are assigned for box constrain
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(b) Kernel function: Kernel functions are mathematical functions used to map the
training data to the required form. A kernel function among Linear, Gaussian,

Quadratic, or Cubic, which best represents the training data is selected.

(c) Kernel scale: The SVM algorithm divides the elements of the predictor vector by
kernel scale. Positive values log-scaled in the range [0.001,1000] are assigned for

kernel function.

(d) Epsilon: Epsilon is a margin of tolerance in the support vector selection error. It is
half the width of epsilon-insensitive band specified as positive values log-scaled in
the range [0.001,100] * iqr(y) / 1.349, where iqgr(y) is the interquartile range of
response variable y [219, 220].

Table 5.5 shows the hyperparameters of SVM machine learning architecture with their
respective predefined fixed ranges. The algorithm iterates repeatedly for a different set of SVM
hyperparameters within these fixed ranges.

Table 5.5 Hyperparameters of SVM machine learning architecture with respective fixed ranges

Hyperparameters Fixed Ranges

Box Constraint Kernel Function Kernel Scale Epsilon

Linear, Gaussian,

0.001-1000 Quadratic, or Cubic

0.001-1000 0.47739 - 47739.066

The algorithms employed in this work are developed and executed on a computer having
an Intel Core-i7 (3.60 GHz) processor with 8 GB RAM using 64-bit MATLAB software. The
prepared lathe spindle health degradation dataset comprising 10 training datasets, 2 validation
datasets, and 2 testing datasets are employed for prognostic analysis using the Bayesian
optimization SVM learning algorithm. First, the Bayesian optimization SVM learning
algorithm is executed using the training and validation dataset. The SVM model is trained
within the Bayesian optimization algorithm, which automatically optimizes the
hyperparameters to evolve the best accurate RUL estimation model. The algorithm iterates
repeatedly to tune the SVM hyperparameters for a minimum estimated MSE between the
predicted and actual RUL on the validation dataset. The Bayesian optimization algorithm

terminates after 30 iterations. The progress of Bayesian optimization to identify a minimum
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observed MSE against an estimated minimum MSE for each iteration is represented in an MSE
plot as shown in Figure 5.4.
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Figure 5.4 MSE plot for Bayesian optimization

The estimated minimum MSE at each iteration is an estimate of the MSE for all the
hyperparameters sets considered till each respective iteration. The hyperparameter set assigned
to each iteration is expected to achieve this minimum estimated MSE. The observed minimum
MSE is the minimum of actual MSE obtained up to the current iteration. In Figure 5.4, it can
be observed that the best hyperparameter set is obtained at iteration 21, at which the
hyperparameter values correspond to the most accurate SVM model for the given datasets. The
optimized SVM hyperparameters are shown in Table 5.6.
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Table 5.6 Bayesian optimized SVM hyperparameters

Hyperparameters Optimized Result
Box Constrain 536.89
Kernal Function Gaussian
Kernal Scale 0.058
Epsilon 76.52

The SVM model with the Bayesian optimized hyperparameters set is tested using the
two independent test datasets. The variation of actual RUL vs predicted RUL for the two test
datasets is shown in Figure 5.5. The actual RUL values of test datasets are response-clipped to
an RUL value equal to 800. It can be observed that the predicted RUL attempts to trace the
actual RUL pattern from the initial to the final time-steps. The pattern tracing is observed to
improve towards the final time-steps for both test data 1 and test data 2. The overall predicted
RUL is having an acceptable agreement with the actual RUL. An RMSE equal to 206.23 is
obtained as a quantitative measure of prediction accuracy for the Bayesian optimized SVM

model for the given dataset.
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Figure 5.5 SVM model -the variation of actual RUL vs predicted RUL
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The prediction results obtained fairly follows the actual experimental test observations.
SVM prognostic regression analysis is an effective tool for RUL estimation from time-series
machine degradation data. As well, the Bayesian optimization approach for the best

hyperparameters setting is proved effective for machine learning algorithms.

5.4 RUL Estimation Employing Statistical Estimator Model

The statistical data-driven regression approaches are reported as an easy-to-implement
approach for RUL estimation using time-series sequence data [17]. It is effective in addressing
the uncertainty of the degradation phenomenon and its influence on RUL estimations. Auto-
Regressive (AR) models, Random coefficient models, Wiener process models, Gamma process
models, Inverse Gaussian process models, Markov models, Proportional hazards models, and
their different variants are the most popularly used statistical data-driven techniques for

machine prognostics analysis (6, 221).

Recently, the statistical data-driven approaches have made a progression from the basic
state estimator models to more specific RUL estimation models like the similarity-based
models, exponential degradation models, and survival-based models. The similarity-based RUL
prediction approach is widely used for industrial data analytics (222, 223). Liu et al. [224]
developed a distance similarity and spatial direction similarity-based health index for RUL
prediction. Wen et al. [133] have presented an exponential degradation model and Mahalanobis
distance approach for the RUL estimation of ball screw systems. Zhang et al. [134] proposed
an exponential degradation model and particle filter-based RUL estimation approach Lithium-
ion battery. Tseng et al. [130] proposed an exponential-depression degradation model for the
optimization of accelerated degradation test allocation problems. Li et al. [129] proposed an
improved exponential degradation model for the RUL estimation of bearings. Gebraeel et al.
[135], first introduced the exponential model for RUL prediction. It is a model-based analytical
method that can incorporate both expert knowledge and information from measured data [124,
129]. The exponential models are highly suitable for representing the degradation patterns of a
mechanical component, where an exponential-like degradation process can be observed [225,
226]. Itis also useful when the component experiences cumulative degradation where the cause
of degradation from multiple sources are acting together [124, 129, 135, 226]. However, the

exponential models are not explored in depth for predictive analytics.
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In this section, a prognostic approach combining the Principal Component Analysis
(PCA) and exponential degradation model is proposed for the RUL estimation of the lathe
spindle unit. The proposed algorithm put forward a less complicated and economic
computational platform by integrating the abilities of PCA to reduce dimensionality while
preserving variance of the prepared vibration monitoring data and the exponential degradation
model to represent the complex degradation patterns of mechanical components. The
methodology includes lathe spindle HI construction and RUL estimation. The PCA is employed

for the HI construction and the exponential degradation model is employed for RUL estimation.

5.4.1 Feature Dimensionality Reduction and Degradation HI Construction

Dimensionality reduction is the process of converting a set of data having large
dimensions to data with smaller dimensions, ensuring that there is no loss of useful information
during the conversion process. This technique can also fuse the data generating a single data
feature that conveys similar information concisely. One of the most widely used dimensionality
reduction-based fusion approaches, namely the PCA - Principal Component Analysis, also

known as the Karhunen—Loeve transformation is utilized in this work [227, 228].

PCA is the most commonly used statistical tool for HI construction by dimension
reduction and feature fusion. The method generates a new set of variables, called principal
components, which are linear combinations of all selected features [227, 229, 230]. The HI
construction by PCA is described in the following steps.

i. Standardization: - This step aims to standardize the range of vibration signal features to
ensure an equal contribution of all features. Once standardized, all features are

transformed to a common scale.

value—mean

Standardized value = (5.3)

standard deviation

ii. Covariance Matrix Computation: -This step determines how the features are varying
from the mean with respect to each other, which is to find any correlation between them.
The positive sign of covariance indicates a correlation and the negative sign indicates
an inverse correlation.

iii. Compute Eigenvectors and Eigenvalues of Covariance Matrix: -These are used to
estimate the principal components. The computed principal components are

uncorrelated and store maximum information about the original features. The first
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principal component has the maximum possible information, the next maximum
information in the second, and so on.

iv. Feature Vector: -In this step, the lesser significant (low eigenvalues) components are
discarded and the remaining ones are selected to form a feature vector. This makes
dimensionality reduction. Finally, cast the data along the principal component axes. This
is done by multiplying the transpose of standardized original data set by the transpose

of the feature vector.

The prognostic analysis employing the exponential degradation model utilizes a single
lathe spindle health degradation dataset. The dataset with a maximum life of 1072 time-steps is
chosen for validation of the proposed algorithm. The features selected after NCA based feature
selection criterion (refer to Chapter 4, section 4.3.2) are analyzed with PCA to construct the HI.
The constructed HI is a linear combination of these selected features. Figure 5.6 shows the

analysis of the data space of the first two principal components.
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Figure 5.6 Data space for the first two principal components

The first principal component increases as the bearing approach to failure and therefore,
it is recognized as the best to represent bearing degradation [231]. The first principal component
is further smoothened using a moving mean filter to produce a reliable degradation trend of the

bearing from normal to the faulty stage. Figure 5.7 shows the smoothened HI for bearing
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degradation. The HI shows a steady trend at the beginning of component life, which indicates
the normal healthy condition of the component. This stage is followed by a gradually increasing
trend of HI, which marks the sprouting of faults in the mechanical unit. A sudden increase in
trend indicates the component approaching failure and finally the failure. This smoothened HI
is used to train the exponential degradation model algorithm for RUL estimation. (See
Appendix V for MATLAB code for exponential degradation model-based prognostic

algorithm)
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5.4.2 Lathe Spindle RUL Estimation Using Exponential Degradation
Model

The exponential degradation model is utilized for estimating the RUL of the lathe
spindle unit. This computational methodology is mostly employed when the component
experiences a cumulative degradation, which is the common degradation phenomenon of any

mechanical system. The basic concept of the approach is a simple curve fitting and

extrapolation process. The exponential degradation model fits into the constructed HI. This
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degradation model is extrapolated to find a future time step where the degradation model
crosses a predefined threshold value. The difference between this future time step and the
present time step gives the required RUL. This failure threshold is usually defined based on
previous failure history or chosen as a safe value before the faulty zone on HI. Assuming that
no historical data is available for the dataset, the last value of the HI is chosen as the failure
threshold.

The constructed HI is provided as the input for the RUL computation algorithm and the
HI value corresponding to the time step-1072 (the last HI value) is assigned as the threshold for
failure detection. To validate the prediction algorithm, only a part of the HI from the beginning
to time step-900 is provided as the input to train the exponential degradation model. The
evolved exponential degradation model truly fits into the actual degradation trend represented
by the HI. Figure 5.8 shows the exponential degradation model fitted into the constructed HI
for the RUL estimation with a 95% confidence interval. The algorithm estimates the prediction
model to cross the failure threshold at time step-958, which computes the RUL as 58-time steps.

The error of predicted lifetime from the actual experimental value is 114-time steps.
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Figure 5.8 Exponential degradation model for RUL Prediction

5.5 Comparison of Predictive Accuracy of Considered Data-
Driven Prognostic Models

For further evaluation of the proposed predictive analytics approaches, a comparison of

the prominent data-driven approaches the deep learning model, machine learning model, and
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statistical estimator model is included in the context of discussions. To make an easy intelligible
comparison of the prediction accuracy of considered data-driven prognostic models the mean
absolute percentage error (MAPE) between the predicted and actual RUL are estimated [232].

1
MAPE = -7,

(xi —yi)
- | (5.4)

where x; is actual RUL, yi is predicted RUL, and n is sample length. A comparison is
made for the RUL prediction error determined as RMSE and MAPE for the considered data-
driven prognostics approaches. A comparison has also been made on the computational

complexity of three data-driven approaches in terms of the time for computation.

A comparison metrics of the considered data-driven prognostics approach LSTM/bi-
LSTM deep learning models, exponential degradation estimator model, and SVM machine
learning model are presented in Table 5.7. The comparison metrics include the RUL prediction
errors (determined as RMSE and MAPE) and computational complexity (determined as
computational time). It is observed that the deep learning models outperform the machine

learning and statistical estimator model in the RUL estimation of the lathe spindle unit.

Table 5.7 Comparison of prediction accuracy and computational complexity of data-driven
models

Data-Driven MAPE Computational
Approach RMSE (%) Time
(Hours)
LSTM 40.01 6.09 4.49
bi-LSTM 52.73 7.01 13.01
LSTM + bi-LSTM 31.65 4.45 18.60
bi-LSTM + LSTM 59.34 7.14 20.34
LSTM + LSTM 66.99 10.40 9.51
bi-LSTM + bi-
LSTM 64.18 9.52 23.82
Exponential
Degradation model 114.00 10.63 0.28
SVM model 206.23 23.18 1.83
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The deeper LSTM + bi-LSTM leaning architecture is trained best on the lathe spindle
health degradation data with an RMSE of 31.65 and MAPE of 4.45%. The RMSE and MAPE
of the exponential degradation model are 114 and 10.63% respectively, and those for the SVM
model are 206.23 and 23.18% respectively. The prediction errors observed for the exponential
degradation model and SVM model are high compared to the prediction error of LSTM/bi-
LSTM deep learning models. Considering the computational complexity, a comparison is also
made based on the computational time. It is observed that the computational time for deep
learning or machine learning models is not even in the range of comparison with the statistical
estimator model. The observed computation time for the exponential degradation estimator
model is 0.28 hours (approx. 17 minutes), whereas the computation time for learning algorithms
is from around 2 hours to 24 hours. This is because the prognostic analysis employing an
exponential degradation model does not involve any hyperparameter optimization and is
basically a curve fitting technique. Machine learning models having less complicated network
architectures spend 1.83 hours for their Bayesian optimized hyperparameter tuning and RUL
estimation using the SVM model. The deep learning models on the other hand consumed greater
time for Bayesian optimized hyperparameter tuning and RUL estimations ranging from 4.49
hours to 23.82 hours. It is also observed that the simple deep learning architectures involving a
single LSTM or bi-LSTM layer consume lesser time compared to more complicated deeper
LSTM/bi-LSTM combination model architectures. The bi-LSTM model that learns the time-
series data from both directions is observed to consume greater time compared to LSTM

models.

5.6 Summary

In this work, three data-driven prognostic algorithms based on the deep learning model,
machine learning model, and statistical estimator model are developed for the RUL estimation
of the lathe spindle unit. Bayesian optimization-based self-optimizing hyperparameter
algorithms are developed for deep learning and machine architectures. The Bayesian
optimization LSTM/bi-LSTM network algorithm is executed separately for LSTM/bi-LSTM
and their combination network architectures to identify the best hyperparameters. The
optimized LSTM/bi-LSTM deep learning architectures were tested on an independent dataset
to determine their prediction accuracy. Similarly, a Bayesian optimization SVM machine
learning algorithm is executed on the lathe spindle dataset for RUL estimation with the best-

optimized hyperparameter sets. An exponential degradation statistical estimator model is also
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used to fit into the lathe spindle health degradation model for RUL estimation analysis. The
LSTM/bi-LSTM deep networks are observed effective for prognostic regression analysis using
time-series sequence data. The long-term and short-term memory gradients in the LSTM
networks can better unravel the hidden trend patterns from time-series data. Training a deep
learning algorithm using the extracted vibration signature features avoids the possibility of
underfitting the predictive models. The useful machinery degradation information extracted
from the raw vibration signals well trains the data-driven prognostic models for RUL
estimations. Feature extraction and feature selection approaches have nullified the mandate to
have larger-sized data for training intelligent learning models. Bayesian optimization-based
self-tuning of hyperparameters partially knocks down the black-box nature deep learning
algorithm as the proposed methodology completely avoids the hectic task of manually setting

the hyperparameters for training learning algorithms.
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Chapter 6

loT-Based Real-Time Remote Maintenance Decision-
Making Dashboard

6.1 Introduction

The present chapter put forward an intelligent system architecture for Internet-of-
Things/loT-based real-time machinery monitoring and intelligent predictive maintenance of the
lathe spindle unit. 10T, as a critical Industry 4.0 enabler unfolds the concepts of smart industries
and smart machines for efficient machinery health management for higher productivity. The
architecture requires the development of a failure alert system and a remote maintenance
decision-making dashboard incorporating cloud space storage and cloud computing
technologies. A real-time 10T data acquisition and data analytics framework is developed for
real-time machinery health status monitoring and analysis to aid in the maintenance decision-
making process. The project uses the ThingSpeak ™ 10T analytics platform service offered by
MathWorks® to establish a real-time lathe spindle health monitoring and health status analysis
studies. ThingSpeak allows you to aggregate, visualize and analyze live data streams in the
cloud. Real-time condition monitoring and upcoming failure prediction information on the
ThingSpeak 10T platform provide enhanced effective decision-making in terms of machinery

maintenance scheduling and shopfloor allocations.



6.2 Potential of IoT Technology

The term ‘Internet-of-Things / IoT’, coined by Kevin Ashton in 1999 [233], was in use
for the past few years and will continue to be a major area to explore in the industrial sector.
The concept of IoT dates back to the early 1990s, as utilized in ‘Radio Frequency ID (RFID)’
chips, where the information is transmitted over radio waves to radio waves to communicate its
identity and other information [234]. Essentially, 10T refers to providing devices/things
representation in the digital realm using unique identities and establishing connectivity among
them in a network space. Devices/things connected in such a network space can communicate
among themselves, transfer data and information over the internet without any human
interventions, hence realizing machine-to-machine (M2M) communication. M2M
communication enables networked devices/things to exchange data and execute actions based
on preprogrammed algorithms without any human assistance [78]. An loT software primarily
involves the features of data collection, data integration, real-time analytics, and application.
The data collection is achieved through a wide variety of sensors systems and associated data
acquisition systems. It also establishes M2M communication within the networked devices. The
data integration system ensures the required cooperation and networking between the
networked devices for smooth communication. It manages various communication protocols to
establish connectivity. Real-time analytics involves algorithms that use data from various
devices to make viable decisions or execute actions. Finally, the application extends the reach
of the existing system and software to a real-world scenario for effective improvement in

practical implementations [78, 235].

Building an 10T system requires the devices/things, the internet gateway, the cloud space
for storage and analytics, the analytics platform, and finally the user interface. Figure 6.1 shows
the major components in a generalized 0T architecture. The devices/things include a sensor
that continuously collects data about themselves and the environment and transmits it to the
next layer. These devices/things might be connected over a wire, wi-fi, Bluetooth, etc. The loT
gateway act as a middle layer between the devices/things and cloud space which manages the
bidirectional data traffic between the networks and protocols. The gateway is to translate
different networks and protocols to ensure interoperability of the connected devices/things.
Gateway offers a certain level of security for the network and transmitted data. 10T cloud offers

tools to collect, process, manage, and store a huge amount of different data in real-time. The
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I0T services can easily access these data remotely and make critical analyses when required.
IoT analytics is the process of converting meaningful insights from the collected sensor data.
Intelligent algorithms are employed to analyze the sensor data over a cloud computing platform
for the improvement of products and services. The user interfaces are the visible, tangible part

of the 10T system which are accessible to users [5, 236].

Internet

&
n-e
a-e

Gateway

Objects/
Things

User
Interface

Analytics

Figure 6.1 Major components of a generalized loT architecture

The conceptual 10T technologies were successfully implemented in a wide range of real-
world applications. These include smart home architecture with connected home appliances
[73, 236-238], healthcare framework [239-241], smart cities [242-244], smart transportation
[245, 246], smart agriculture with intelligent climate and soil condition monitoring [247-252],
manufacturing monitoring with fault diagnosis and prognosis systems [194, 253-255], and
many more. loT-based weather monitoring and forecast systems can make early warnings on

natural disasters like floods, earthquakes, storms, hurricanes, etc. [256, 257].

In this Industry 4.0 era, the 10T technologies and artificial intelligence algorithms based
on big data analytics are explored in developing innovative solutions for industrial limitations
in achieving improved production efficiency. Recent studies have also proved the potential of
0T technologies and big data analytics for improving efficiency, quality and realizing data-
oriented predictive maintenance of industrial systems at reduced costs. Ayvaz et al. [201]
proposed a data-driven predictive maintenance system for production lines in the manufacturing
sector. The real-time 0T sensor data are analyzed employing machine learning algorithms to
detect potential failures before their occurrence. Rymaszewska et al. [258] addressed how
organizations offering product services can reap the benefits of 10T technologies through the
analysis of 10T implementation case studies in manufacturing sectors. Lee et al. [196]
introduced an effective cyber-physical system (CPS) architecture for supporting multi-site and

multi-products manufacturing focusing on a case in the manufacturing of vehicles’ high-
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intensity discharge headlights and cable modules, which are usually manufactured with several
multi-manufactured sites. Aheleroff et al. [73] discussed smart appliances under industry 4.0
on transforming conventional home appliances to loT-enabled smart systems. Khademi et al.
[259] proposed a method to convert rotating machinery as loT-enabled devices using a new
generation accelerometer for vibration monitoring. Compare et al. [78] has made a deeper
understanding on the relevance of 10T in achieving a maturity stage for the real-world predictive
maintenance applications and discussed major research limitation on deployment of IoT-
enabled predictive maintenance in the industry. Mekid et al. [260] proposed an loT-based
condition monitoring solution for cutting tool wear monitoring and failure prognostics on the
cloud server. Chandra et al. [261] proposed an loT-based reliable remote monitoring method
over the on-site method for the monitoring and control of diesel generators installed for
electricity production. Karthik et al. [262] proposed a model for loT-based preventive
maintenance of the alternators and motors inside the aircraft to ensure more safety before every
take-off. Tan et a. [263] addressed the implementation of a digital twin-oriented simulation in
an loT-enabled manufacturing environment that synchronizes real-world information in real-
time into the digital twin cyberspace. Moens et al. [264] presented the ‘Smart Maintenance
Living Lab’, an open test and research platform that consists of a fleet of drivetrain systems for
accelerated lifetime tests of rolling-element bearings, a scalable 10T middleware cloud platform
for reliable data ingestion and persistence, and a dynamic dashboard application for fleet
monitoring and visualization. Noyjeen et al. [265] developed an loT-based three-phase
induction motor monitoring and diagnosis system. Santiago et al. [266] proposed an efficient
loT-based predictive maintenance system able to identify, predict and notify the occurrence of
failure events in Heating, Ventilation, and Air-Conditioning (HVAC) systems. Tao et al. [267]
investigated the application of 10T technologies in cloud manufacturing to achieve intelligent

perception and access to various manufacturing resources.

6.3 Outline of the Proposed IoT Framework

In this work, an effort is made to seamlessly integrate the relevant information extracted
from real-time condition monitoring data, the predictive analytics model trained using historical
machine degradation data, machinery health status visualization dashboard, and a real-time
upcoming failure warning initiation system to provide meaningful insights into the acquired
machinery degradation information. The machinery health degradation information is acquired

from the lathe spindle unit using the sensors and data acquisition system. This data is further
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analyzed to extract useful information for prognostic analysis (refer to Chapter 4). Intelligent
prognostic algorithms are trained using the extracted machinery health degradation information
to evolve intelligent predictive models for the RUL estimation of lathe spindle unit (refer to
Chapter 5).

The best-chosen RUL estimation model is uploaded to the cloud space to make it
available for real-time predictive analytics. The real-time machinery health degradation data
representing the current operating condition of the lathe spindle is acquired and is made
available in the cloud space. An intelligent cloud computing algorithm is developed to estimate
the RUL of the current operating lathe spindle unit. This information on the cloud analytics
platform is considered for the real-time assessment of upcoming failures and trigger email alerts
warnings. The real-time machinery health degradation information of the lathe spindle unit is
also made available on a webpage visualization interface. The real-time machinery health status
information and failure warnings based on the estimated RUL can be put into use for the
predictive maintenance of the lathe machine tool. Figure 6.2 shows the outline of the proposed

I0T cloud analytics framework.
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Figure 6.2 Outline of 10T cloud analytics framework
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6.4 Cloud-Based Data Management and Predictive Analytics
Framework

The cloud-based data management and predictive analytics framework comprises an loT
platform to enable communication with the lathe spindle unit, monitor live data from the local
computing and storage system, and manage historical data and evolved predictive models for
real-time prognostic analysis. In the present work, the ThingSpeak ™ 10T analytics platform
service offered by MathWorks® is employed to realize the cloud-based data management and
predictive analytics framework. The local computing and storage system is connected to the
ThingSpeak 10T platform and the lathe spindle health status visualization and failure alert

warning systems were integrated on the ThingSpeak IoT platform.

6.4.1 Overview of ThingSpeak™ loT Web Service

ThingSpeak is a web-based loT analytics platform service that allows the user to
aggregate, visualize, and analyze real-time data streams in the cloud space [268, 269].
ThingSpeak uses channels to store data transmitted from local storage systems or ground
devices over the internet. Figure 6.3 shows a screenshot of the ThingSpeak loT analytics
platform with a channel created to store lathe spindle health status information. Data can be
sent to or retrieved from ThingSpeak channels using a REST API or MQTT API (REST-
Representational state transfer, MQTT- Message Queue Telemetry Transport, API- Application
Programming Interface). The REST API calls are used to create and update the ThingSpeak
channels and the MQTT API is used to update the ThingSpeak channels. MQTT is an OASIS
and ISO standard messaging protocol for the loT. In addition, ThingSpeak also encourages
cloud-to-cloud interactions, which is utilized in this work to obtain the evolved predictive
models for RUL estimation [270].
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Figure 6.3 Screenshot of ThingSpeak™ IoT analytics platform with a live channel created to
store lathe spindle health status information

6.4.2 Communication with the 10T Platform

The core element for communication in the ThingSpeak 10T web service is a
ThingSpeak channel that establishes connectivity among the devices/things over the internet.
ThingSpeak allows the user to store and retrieve data to and from the channel in real-time. The
ThingSpeak channel has fields for data, fields for device station location, and fields for status
for varied sensed data. REST API calls ‘GET’ and ‘POST’ can be used to send and retrieve
data to and from the channel respectively. The MQTT ‘Publish’ method can also be used to
update the channel fields and MQTT ‘Subscribe’ can be used to retrieve channel data.
MATLAB functional codes are also employed to write or read data to and from the ThingSpeak
channel. The ThingSpeak channel uses separate API keys namely the ‘Write API key’ and
‘Read API key’ to write and read data from channel respectively. Figure 6.4 shows a screenshot
of the ‘lathe spindle health status’ channel information with the respective channel ID, the write
and read APIs, and the available fields of machinery health degradation data. The data are stored
in the ThingSpeak channel in either JSON, XML, or CSV data formats.
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Channel Info

Name: Lathe Spindle Health Status
Channel ID: 1044755
Access: Public
Read APl Key: 7CPPHAENMAFESH2R
Write APl Key: 8B4B91T47Q6MFGRT
Fields:

1: Standard Deviation

2: Peak-to-Peak

3:RMS

4: R55q
5:Energy
6: Normal Entropy
7:Log Entropy

Figure 6.4 Lathe spindle health status channel information

In the present work a MATLAB function code using the channel ‘Write API key’ is
defined to upload the real-time lathe spindle health degradation data from the local storage
space to the 10T ThingSpeak channel. The selected vibration signature features mentioned in
‘section 4.3.2 are sent to the ‘lathe spindle health status’ monitoring channel employing the
‘Write API key’ function. The live data acquired from the lathe spindle test setup is first
analyzed to extract the meaningful vibration signature feature (section 4.3) and then selected
features uploaded to the ThingSpeak data collection channel at a rate of once in every 60
seconds (See Appendix VI for MATLAB code to upload data to ThingSpeak cloud space). The
different vibration signature features are uploaded to separate fields of data defined in the
ThingSpeak channel namely standard deviation, peak-to-peak, RMS, RSSq, energy, normal
entropy, and log entropy. Similarly, a MATLAB function code using the channel ‘Read API
key’ is defined to retrieve the data from the channel when required for analysis. The data read
from the channel fed in a cloud computing space where the live lathe spindle health degradation
data is analyzed against the evolved predictive model for the RUL estimation of lathe spindle
unit and further failure alert warning through email notifications. The evolved predictive model
required for the RUL estimation is made available in the cloud space through the ‘Drop Box’
cloud storage service provider. The identified best predictive model, the LSTM + bi-LSTM
predictive model is uploaded to the DropBox server and is called in the ThingSpeak cloud

analytics space when required. Figure 6.5 shows the flow of data in the proposed 10T system.
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Figure 6.5 Flow of data in 10T Platform

6.5 Cloud Computing Architecture and User Interface for
Predictive Analytics

ThingSpeak 10T web service provides a MATLAB analysis cloud computing paradigm
for analyzing the channel data. The architecture comprises the cloud storage, cloud computing,
and user interface stages. Figure 6.6 shows the flow diagram of loT cloud computing
architecture and user interface for the predictive analytics of the lathe spindle unit. The loT
cloud computing architecture and the user interface are discussed in detail in the following

sections.
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Figure 6.6 10T cloud computing architecture and user interface for the predictive
analytics of lathe spindle unit

6.5.1 Lathe Spindle RUL Estimation and Failure Warning System

The RUL estimation required the lathe spindle real-time health status information and
the evolved intelligent predictive model. The real-time lathe spindle health degradation data
stored in the ‘lathe spindle health status’ channel is read using the ‘Read API key’ and the
intelligent predictive model stored in a ‘Drop Box’ cloud storage is called using the ‘DropBox
Access Token’, which the “’Drop Box API key’. The RUL life estimation algorithm first
retrieves the intelligent predictive model and then the features representing the real-time health
status of the lathe spindle. (See Appendix VII for the MATLAB code for cloud computing

algorithm for the real-time RUL estimation and email alert warnings)

The algorithm predicts the RUL of the lathe spindle by analyzing the current health
status information and historical health degradation patterns. The current health status of the
lathe spindle is revealed through the extracted vibration signature features standard deviation,
peak-to-peak, RMS, RSSq, energy, normal entropy, and log entropy, which are made available
in the cloud space. The historical health degradation patterns of the lathe spindle are represented
through the evolved LSTM + Bi-LSTM prognostic regression model. The degradation pattern
of the features is analyzed against the evolved prognostic regression model to estimate the RUL

of the lathe spindle unit. The algorithm automatically executes at regular intervals of time and
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also can be executed at any time in the interest of the user. The evaluated RUL values are saved
for further analysis.

The determined RUL values are then used as a facet to trigger the failure warning system
through email alerts. The system is designed to evaluate the RUL at a regular interval of time
and if the obtained RUL value crosses a predefined safe threshold, the system automatically
triggers the email alerts. The email alert warning includes a message on if the machine is
running well or if the machine requires maintenance. The email also provides the available RUL
of the spindle unit, which also provides the user to make a suitable decision regarding
machinery maintenance and planning. Figure 6.7 provides a screenshot of the generated email

alert warning.
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Figure 6.7 Screenshot of generated email alert warning

6.5.2 Webpage Visualization of Lathe Spindle Health Status

The outputs of the proposed 10T architecture are integrated into a web page user interface
that allows the user to have live monitoring of lathe spindle health status from anywhere in the

world. The live lathe spindle health degradation data sent to the ThingSpeak channel is reflected
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as such in the webpage interface on a real-time scale. Figure 6.8 shows screenshots on the

developed webpage user interface.
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Figure 6.8 Screenshot of developed web page interface (a) main introduction page,

(b) Health Indicator dial gauge and degradation trend
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Figure 6.8 (a) displays the introduction page detailing the identity and purpose of the
webpage. A live health status indicator dial gauge is also designed and integrated into the
webpage for easy monitoring of lathe spindle health status. Figure 6.8 (b) displays the live
health status indicator dial gauge that has three stages of dial gauge indicating the safe (Green),
alert (Yellow), and faulty (Red) zones of lathe spindle operational lifetime. The page also
displays the health degradation pattern of the current operating lathe spindle. As shown in
Figure 6.9, the webpage can also redirect to a detailed graphical representation of the lathe
spindle health degradation patterns that are represented through the selected vibration signature
features. The real-time lathe spindle health status information available on the webpage
interface enables the user to make appropriate decisions regarding the maintenance planning of
the lathe machine tool system. The interface can be utilized as a real-time maintenance decision-

making dashboard for the lathe machine tool system.
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Figure 6.9 Screenshot of Detailed webpage view of lathe spindle degradation trend
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6.6 Summary

The chapter presents a real-time maintenance decision-making dashboard collaborating
the modern digital technological paradigms 10T, Big Data Analytics, Cloud Computing, and
sophisticated predictive analytics algorithms. In this work, a simple and efficient framework is
proposed for real-time loT-based machinery health status monitoring and maintenance
decision-making. The ThingSpeak loT web service platform and DropBox cloud storage
services are utilized for developing the loT-based real-time maintenance decision-making
dashboard. The real-time lathe spindle monitoring vibration data is analyzed to extract signature
features and then the selected features are simultaneously sent to a cloud space storage on a
real-time basis. The best evolved data-driven prognostic model is also stored in a cloud space
to make it available for predictive analytics. The features representing the current health status
of the lathe spindle are analyzed against the trained predictive model to estimate the real-time
RUL of the lathe spindle unit. This RUL value crossing a predefined threshold automatically
triggers email warnings to alert the user regarding the maintenance of the lathe machine tool.
The features in the cloud space are integrated into a webpage user interface to provide a real-
time health status visualization of the lathe spindle unit. The webpage interface displays a health

indicator dial gauge calibrated to the real-time health status of the lathe spindle.
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Chapter 7

Summary and Conclusions

7.1 Summary

The present research work comprehends and contributes to the existing understanding
of the condition monitoring and intelligent predictive maintenance of industrial machinery. The
studies provide insights into the potential of intelligent data-driven learning algorithms,
advanced big data technologies, and loT-based cloud computational techniques in the
application of machinery health degradation data monitoring, data exploration, and prognostic
regression analysis. The thesis portrays the design and development of an intelligent predictive
maintenance framework for the critical components of the CNC lathe machine tool in an
industry 4.0 scenario. The study utilizes the computational techniques fuzzy modified FMECA
for the maintenance prioritization of CNC machine tool components and the data-driven
prognostic algorithms such as LSTM deep learning models, SVM machine learning models,
and exponential degradation statistical estimator models to evolve intelligent RUL estimation
models. The generated machinery health degradation data is employed to train the intelligent
data-driven prognostic models. The study is expected to motivate industrial practitioners for
developing a remote machinery health monitoring and data acquisition system with an
intelligent predictive maintenance module, thus making them a worthful candidate to compete

in the current Industry 4.0 era.



7.2

Conclusions

This research work is focused on studies on the development of a data-driven intelligent

predictive maintenance framework for the critical components of the CNC lathe machine tool

in an industry 4.0 scenario. Based on the research work, the followings are the conclusions:

(@)

(b)

Criticality analysis of the CNC lathe machine tool subsystems is performed to identify
the most critical subsystems and their potential failure modes from a maintenance
perspective and hence limit the implementation of predictive maintenance to the
identified critical subsystems. The Fuzzy modified FMECA technique is effectively
employed for the maintenance prioritization of lathe machine tool subsystems. The
spindle unit of a CNC lathe is identified as the most critical subsystem with the highest
fuzzy RPN value of 848.2. Furthermore, FMECA relates the potential failure modes to
potential effects and root causes. The wear and deformation of spindle bearings causing
increased noise and vibration are identified as the potential failure causes and effects in
the lathe spindle unit. This knowledge can be utilized in the phenomenon of sensors

selection and installation of the condition monitoring system for the critical components.

An accelerated run-to-failure experimental test rig with sensors and a data acquisition
system is fabricated to obtain the operational health degradation patterns of a CNC lathe
spindle unit. The acquired vibration sensor signals do not provide any meaningful
information regarding the health degradation patterns of the lathe spindle unit. These
sensor signals need to be preprocessed and explored to extract useful information for
effectual learning using computational algorithms. The Vibration signature feature in
the time, frequency, and time-frequency domain extracts the health degradation patterns
from the raw vibration signals. Further, an NCA-based feature selection algorithm
identified the features' standard deviation, peak-to-peak, RMS, RSSq, energy, normal
entropy, and log entropy as significant for prognostic regression analysis. Lathe spindle
accelerated run-to-failure health degradation data acquired from 14 individual
experimental runs are prepared for the prognostic regression analysis employing
intelligent data-driven algorithms. As well, the feature extraction and feature selection
approach employed for the preparation of health degradation data have nullified the

mandate to have larger-sized data for training intelligent learning models.
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(©)

(d)

(€)

Three data-driven algorithms, the deep learning LSTM/bi-LSTM network models,
machine learning SVM model, and statistical estimator exponential degradation model
algorithms are successfully employed for the prognostic regression analysis. The
selected vibration signature features representing the lathe spindle health degradation
are used to train the data-driven algorithms to evolve intelligent RUL estimation models.
The LSTM + bi-LSTM network architecture is identified to have the best prediction
accuracy on lathe spindle RUL estimation with RMSE equals 31.65 followed by the
single LSTM architecture with RMSE equals 40.01. The LSTM architecture is well
efficient in digging up hidden patterns from time-series data. Further employing a bi-
LSTM network can refine the learned degradation patterns yielding accurate
estimations. Furthermore, an RMSE equal to 206.23 is obtained as the prediction
accuracy for the SVM model and an RMSE of 114.00 is obtained for the exponential
degradation model.

One of the major challenges in training deep learning and machine learning algorithms
for prognostic regression analysis is the selection of suitable hyperparameter values to
obtain maximum prediction accuracy. A Bayesian optimized deep learning and machine
learning architecture are proposed to have an automated hypermeter tuning to evolve
the best intelligent predictive models. Intricacy in manually setting the best
hyperparameters is overcome through the Bayesian Optimization approach. Bayesian
optimization-based self-tuning of hyperparameters partially knocks down the black-box
nature deep learning algorithm as the proposed methodology completely avoids the

hectic task of manually setting the hyperparameters for training learning algorithms.

In order to make a further evaluation on the prediction accuracy and computational
complexity of the proposed data-driven approaches the deep learning model, machine
learning model, and statistical estimator model, the MAPE and maximum computational
time for each algorithm are compared. The deeper LSTM + bi-LSTM leaning
architecture is trained best on the lathe spindle health degradation data with a MAPE of
4.45%. The MAPE of the exponential degradation model is 10.63% respectively, and
that for the SVM model is 23.18% respectively. The observed computation time for the
exponential degradation estimator model is approximately 17 minutes, whereas the

computation time for learning algorithms ranges from 2 hours to 24 hours. This is

115



because the prognostic analysis employing an exponential degradation model does not
involve any hyperparameter optimization and is basically a curve fitting technique.

() An 10T cloud-based simple and efficient predictive maintenance framework are
proposed for real-time machinery health status monitoring and RUL estimation. The
vibration signature features representing the lathe spindle health degradation patterns
and the intelligent predictive models for RUL estimation are seamlessly integrated to
realize a real-time remote maintenance decision-making dashboard. The acquired live
lathe spindle health degradation data is analyzed against the trained intelligent predicted
model to estimate the RUL. The estimated RUL values crossing a predefined threshold
automatically trigger email warnings intimating the user regarding the maintenance of
the lathe spindle. The real-time lathe spindle health status information is also made
available in a webpage user interface, which allows the user to access the lathe spindle

live health status information from anywhere in the world.

With the advancements in technology, industrial practitioners can integrate new
technologies, including Al and machine learning, 10T, and cloud computing and analytics into
their production facilities. The thesis provides insight into the scope and challenges of the
Industry 4.0 era and future machine tool technologies. Advanced sensor technology and
computational algorithms are suitably integrated to develop a remote machinery health
monitoring and data acquisition system with an intelligent predictive maintenance module. The
machine criticality analysis can identify the most critical machine system and its subsystems
that need to be considered for predictive maintenance. The information on the potential failure
of causes component provides insights into the selection of suitable sensors for machinery
condition monitoring. The sensors and associated data acquisition systems are programmed to
monitor and acquire machine operating data on a real-time basis. The extracted data is further
analyzed to obtain meaningful information on machinery health degradation to better train
intelligent predictive algorithms. Subsequently, the acquired machinery condition monitoring
information is made available in the 10T cloud computing and analytics platform for further

predictive analytics from anywhere in the world.
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7.3
(@)

Scope for Future Work

Multi-sensor data fusion with CNC controller data can be explored to improve the
quality and information content of machinery degradation data, which consequently

improves the performance of prognostic regression models.

(b) A large-size multi-sensor dataset for training deep learning algorithms could avoid the

(©)

(d)

(€)

requirement for feature extraction and selection.

The application of hybrid computational algorithms can be studied to better train the

machinery health degradation data for RUL estimation.

loT-based data analytics can be elaborated to control the operation of industrial

machinery concerning the present machinery condition monitoring data.

Multi-sensor data and CNC controller data can be mapped to surface roughness and
dimensional tolerances to develop an advanced predictive paradigm of machined

product quality.
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Appendix |

Vibration Signal Signature Feature Extraction

Raw Vibration Signal Processing & Feature Extraction

N = 14;

featureTableArray = cell(N,1);
SfeatureArray = cell(N,1);
SfeatureTableArray = cell(N,1);

for i=1:N
file=sprintf('SDA%d.mat’',i);

feature = sprintf('allFeatures%d’',i);

load(file);

len = length(singleDataArray);

fs = 25600;
tstart = 0;

%Plot raw vibration signals
figure

hold on

for k = 1:1en

v= singleDataArray{k,1}(:,1);

t = tstart + (1:1length(v)
plot(t, v)
tstart = t(end);

end

hold off

xlabel('Time (minutes), 1
ylabel('Acceleration (g)')

tstart = 0;

SE_array = cell(len, 1);
denoisedata_array = cell(len,1);
for k = 1:1en

)/fs;

seconds per every 60 seconds')
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% Denoise using Wavelet analysis

VvV =

wdenoise(singleDataArray{k,1}(:,1), 8,...

'Wavelet', 'symd',
'DenoisingMethod', 'Bayes’,
'"ThresholdRule', 'Median',

"NoiseEstimate', 'LevelIndependent');

denoisedata_array{k,1} = v;

% spectral entropy

t = tstart + (1:1length(v))/fs;
[se,te] = pentropy(v,t');
SE_array{k,1} = se;

end

for

features

~
1l

SE =
SPW
SPK
order

1:1en
denoisedata_array{k,1}(:,1);

= matfile(feature, 'Writable', true);

SE_array{k,1};
spectralPowerFeatures(v,fs);
spectralPeaksFeatures(v,fs);
= [2,2];

% Time Domain Features

features.
features.

features

features

features

.LogEntropy(k,1) =
features.

mean(k,1) = mean(v);
Std(k,1) = std(v);

.Skewness(k,1) = skewness(v);
features.
features.
features.
features.
features.
features.
features.
features.
.MarginFactor(k,1) =
features.
features.
features.

Kurtosis(k,1) = kurtosis(v);

Peak2Peak(k,1) = peak2peak(v);

RMS(k,1) = rms(v);

Peak2RMS(k,1) = peak2rms(v);

RSSq(k,1) = rssq(v);

CrestFactor(k,1) = max(v)/features.RMS(k,1);
ShapeFactor(k,1) = features.RMS(k,1)/mean(abs(v));
ImpulseFactor(k,1) = max(v)/mean(abs(v));
max(v)/mean(abs(v))"2;
Energy(k,1) = sum(v.”2);

Entropy(k,1) = wentropy(v, 'norm',1.1);
ShEntropy(k,1) = wentropy(v, 'shannon');
wentropy(v, 'log energy');
SpEntropy(k,1) = pentropy(v,fs, 'Instantaneous',false);
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end

%hWavelet
[c,1] =
[Ea,Ed]
features

features.

features.
features.
features.

%P0 is t
% tvec i

[~,fvec,tvec,P_k] =

[N)I] =

features

features.
features.
features.
features.
features.

features

features.
features.
features.

packet node energy

wavedec(v,3, 'sym4');%1D wavelet decomposition

= wenergy(c,1);
.WPDEnergy(k,1) = Ea;

corDim(k,1) = correlationDimension(v);
approxEnt(k,1) = approximateEntropy(v);
lyapExp(k,1) = lyapunovExponent(v,fs);

he spectrogram, fvec is the frequencyvector and
s the time vector.
spectrogram(v,500,450,512,fs);
max(P_k);

.meanPeakFreq(k,1) = mean(fvec(I));

RMSF = sqrt(sum((abs(S)/length(S)).”2));
meanfreq(k,1) = meanfreq(v,fs);
medfreq(k,1) = medfreq(v,fs);
spuriousfreedr(k,1) = sfdr(v,fs);
distrotionRatio(k,1) = sinad(v,fs);
.intercept(k,1) = toi(v,fs);

bw(k,1) = obw(v,fs);

bp(k,1) = bandpower(v);

pbw(k,1) = powerbw(v,fs);

% Spectral Kurtosis related features

features
features
features
features

.SKMean(k,1) = mean(SK);
.SKStd(k,1) = std(SK);
.SKSkewness(k,1) = skewness(SK);
.SKKurtosis(k,1) = kurtosis(SK);

% Spectral Entropy related features

features.
features.
features.
features.
features.
features.

features

SEMean(k,1) = mean(SE);
SEStd(k,1) = std(SE);
SESkewness(k,1) = skewness(SE);
SEKurtosis(k,1) = kurtosis(SE);
SPower(k,1) = SPW(1);
SPeakpos(k,1) = SPK(1);
.SPeakpow(k,1) = SPK(7);

featureTableArray{i,1} = table(features.mean,features.Std,...

features.Skewness,features.Kurtosis, features.Peak2Peak, features.

features.Peak2RMS, ...
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feature.RSSq, features.CrestFactor,features.ShapeFactor,features.Impu
lseFactor,...
features.MarginFactor,features.Energy,features.Entropy,features.ShEn
tropy, ...

features.LogEntropy,features.SpEntropy, features.moment],features.cor
Dim, ...

features.approxEnt, features.lyapExp,features.WPDEnergy,features.mean
freq,...
features.medfreq,features.spuriousfreedr,features.distrotionRatio,..

features.intercept, features.bw, features.bp,features.pbw,features.SKM
ean,...

features.SKStd, features.SKSkewness, features.SKKurtosis, features.SEMe
an,...

features.SEStd, features.SESkewness, features.SEKurtosis, features.SPow
er,...

features.SPeakpos, features.SPeakpow, ...
'VariableNames',{'mean’', 'Std', 'Skewness', 'Kurtosis', 'Peak2Peak’,...
'RMS', 'Peak2RMS', 'RSSq', 'CrestFactor', 'ShapeFactor', 'ImpluseFactor’,

'MarginFactor', '"Energy', 'Entropy', 'ShEntropy', 'LogEntropy"', 'SpEntrop

y',ee.
'"WPDEnergy', 'moment]', 'corDim', 'approxEntropy’, 'lyapExp', '"MeanFreq',

'MedianFreq', 'SFDR', 'DistrotionRatio’,...
'3rdIntercept’, 'BandWidth', 'BandPower', 'PowerBW', ...
'SKMean', 'SKStd', 'SKSkewness', 'SKKurtosis', 'SEMean',...
'SEStd', 'SESkewness', 'SEKurtosis', 'SPower', 'SPeakPos', 'SPeakPow'});
%smooth features
Sfeaturetable = smoothdata( featureTableArray{i,1});
SfeatureTableArray{i,1} = Sfeaturetable;
SfeatureArray{i,1} = table2array(Sfeaturetable);
end
N = 14;
SfeatureTimeTableArray =cell(N,1);
for i = 1:N
lenTable = size(SfeatureTableArray{i,1},1);
SfeatureTimeTableArray{i,1} =
table2timetable(SfeatureTableArray{i,1}, 'RowTimes',seconds(1:1:1enTa
ble));
end
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Array of feature matrix

selectedFeatureArray = cell(N,1);
for o = 1:N
selectedFeatureArray{o,1} =
table2array(selectedFeatureTableArray{o,1});
end
SortedfeatureSelectedArray = cell(N,1);
%Plot Extracted Features
for j=1:N
featureSelected = selectedFeatureTableArray{j,1};
featureSelectedNorm = normalize(featureSelected)
featuretable = timetable2table(featureSelectedNorm);
featuretable = removevars(featuretable,{ 'Time'});
featurearray = table2array(featuretable);
SortedfeatureSelectedArray{j,1} = featurearray;
s = size(featurearray,2);
names = featureSelectedNorm.Properties.VariableNames;
ns sqrt(s);
nCol = ceil(nS);
nRow = nCol - (nCol * nCol - s > nCol - 1);
figure
hold on
for i = 1:s
subplot(nRow,nCol,i);
plot(featureSelectedNorm.Time,featurearray(:,1i));
title(names{i});
end

end
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Appendix 11

NCA Regression-Based Feature Selection

Load the sample data.

N = size(featureTableArray, 1);
tn = 2; %number of test data
TrainDataArray = cell(N-tn,1);

for i = 1:N-tn
TrainDataArray{i,1} = table2array(featureTableArray{i,1});
%RUL for each TrainData
s = size(TrainDataArray{i,1} ,1);
timeSteps = 1:1:s; %time column of featuretable
TrainDataArray{i,1}(:,end+1) = fliplr(timeSteps)’;
end

%make single feature matrix

TrainData = cell2mat(TrainDataArray);

XTrain = TrainData(:,1:end-1);%end-1%Predictors
YTrain = TrainData(:,end);

mu = mean(XTrain,2);

sigma = std(XTrain,0,2);

XTrain = (XTrain-mu)./sigma;

%Fit a neighborhood component analysis (NCA)

% model for regression to detect the relevant features.

nca = fsrnca(XTrain,YTrain, 'Standardize’',1, 'Lambda’,0.0666);
%#Plot the feature weights.

figure()
plot(nca.FeatureWeights, 'ro")
xlabel('Feature Index")
ylabel('Feature Weight')
grid on
TestDataArray = cell(2,1);
i=1;
for k = N-(tn-1):N
TestDataArray{i,1} = table2array(featureTableArray{k,1});
%RUL for each TrainData
s = size(TestDataArray{i,1} ,1);
timeSteps = 1:1:s; %time column of featuretable
TestDataArray{i,1}(:,end+1) = fliplr(timeSteps)';
i = 1i+1;
end
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%make single feature matrix

TestData = cell2mat(TestDataArray);

XTest = TestData(:,1l:end-1);%end-1%Predictors
YTest = TestData(:,end);

mu = mean(XTest,2);
sigma = std(XTest,0,2);
XTest = (XTest-mu)./sigma;

Compute the regression loss.

L = loss(nca,XTest,YTest, 'LossFunction’, ‘mad")

Compute the predicted response values for the test set and plot them versus
the actual response.

YPred = predict(nca,XTest);
figure()
plot(YPred,YTest, 'bo")
xlabel('Predicted response')
ylabel('Actual response')
x1lim([© 1300])
ylim([@ 1300])
SelectedFeatureArray = cell(N,1);
for m = 1:N
SelectedFeatureArray{m,1} = featureTableArray{m,1}...
(:,nca.FeaturelWeights(:,:)>1);

end
for j=1:N
lenTable = size(SelectedFeatureArray{j,1},1);
TimeStep = 1:1:1enTable;
featurearray = table2array(SelectedFeatureArray{j,1});
s = size(featurearray,2);
names = SelectedFeatureArray{j,1}.Properties.VariableNames;
ns sqrt(s);
nCol = ceil(nS);
nRow = nCol - (nCol * nCol - s > nCol - 1);
figure
hold on
for i = 1:s
subplot(nRow,nCol,i);
plot(TimeStep, featurearray(:,i));
title(names{i});
end

end

124



Appendix 11
Bayesian Optimization Deep Learning Model-Based
Prognostic Algorithm

Load Data

load ('SDATrainC.mat');
numofFailData = size(TrainDataArray, 1);
numofFeatures = size(TrainDataArray{1,1}, 2);
XTrain = cell(numofFailData,1);
YTrain = cell(numofFailData,1);
for i = 1:numofFailData
fieldData = table2array(TrainDataArray{i,1});
X = fieldData;
XTrain{i} = X';
s = size(X,1);
timeSteps = 1:1:s;
%  timeSteps = timeSteps/max(timeSteps);
Y = fliplr(timeSteps);
YTrain{i} = Y;

end
%Normalize Data
mu = mean([XTrain{:}],2);
sigma = std([XTrain{:}],0,2);
XTrain = cellfun(@(X) (X-mu)./sigma,XTrain, 'UniformOutput’,false);
%Clip Data
for i = 1:numel(YTrain)
s = size(TrainDataArray{i,1},1);
if (s5<900)
thr = 550;
elseif(s<1300)
thr = 800;
else
thr = 1400;
end
YTrain{i}(YTrain{i} > thr) = thr;

end

%Sort Data

for i=1:numel(XTrain)
sequence = XTrain{i};
sequencelLengths(i) = size(sequence,2);

end

[sequenceLengths,idx] = sort(sequencelLengths, "descend");
XTrain = XTrain(idx);

YTrain = YTrain(idx);
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%Test Validation Data

load( 'SDATestC.mat');

load('SDArulC.mat');

numofTestData = size(TestDataArray,1);
numofTestFeatures = size(TestDataArray{1,1},2);
XTest =
YTest =
% YTestSteps = cell(numofTestData,1l);

for

end
for

end

XTest

for

end

i=
fiel
X =
XTes

J
X
sequ
rul

YTes

i
s
if (

th
else

th
else

th
end
YTes

cell(numofTestData,1);
cell(numofTestData,1);

1:numofTestData

dData = table2array(TestDataArray{i,1});
fieldData;
t{i} = X3

1:numofTestData

XTest{j};

encelLength = size(X,2);

= rulData(j);

t{j} = rul+sequencelLength-1:-1:rul;

cellfun(@(X) (X-mu)./sigma,XTest, 'UniformOutput’,false);
1:numel(XTest)

size(XTest{i,1},2);

$<900)

r = 550;

if(s<1300)

r = 800;

r

1400;

t{i}(YTest{i} > thr) = thr;

% XValidation = XTest;

% YValidation = YTest;

XTest = XTest{1,1};

YTest = YTest{1,1};

%#Validation Data

load ('SDAvValCl.mat');

numofValData = size(ValDataArray, 1);
XValidation = cell(numofValData,1);
YValidation = cell(numofValData,1);

for

i=
fiel
X =
XVal
S =
time

Y =

1:numofValData

dData = table2array(ValDataArray{i,1});
fieldData;

idation{i} = X';

size(X,1);

Steps = 1:1:s; %time column of featuretable

fliplr(timeSteps);
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YValidation{i} = Y;
end

Choose Variables to Optimize

optimvars = [optimizableVariable('InitiallLearnRate',[0.0001
0.04], 'Transform', "log")
optimizableVariable('numHiddenUnitsl',[100 500], 'Type', "integer")
% optimizableVariable( 'numHiddenUnits2',[100
300], 'Type', "integer")
optimizableVariable('ConnectedLayerl',[25 250], 'Type', "integer")

% optimizableVariable('ConnectedLayer2',[25 250], 'Type', 'integer")
optimizableVariable('dropoutl’,[0.2 0.8])
% optimizableVariable( 'dropout2',[0.2 ©0.8])

optimizableVariable( 'maxEpochs',[100 300], 'Type', "integer")
optimizableVariable('L2Regularization',[le-5 le-
2], 'Transform', "log')];

% optimizableVariable( 'ConnectedlLayerl’,[25
200], 'Type', "integer")
% optimizableVariable('dropout2',[0.2 0.8])
% optimizableVariable( 'ConnectedlLayer2’,[25
200], 'Type', "integer")
% optimizableVariable('miniBatchSize',[1 2], 'Type', "integer")

Perform Bayesian Optimization

ObjFcn = makeObjFcn(XTrain,YTrain,XValidation,YValidation);

Perform Bayesian optimization by minimizing the classification error on the validation set.

BayesObject = bayesopt(ObjFcn,optimVars,
'MaxTime',36*60*60,
'IsObjectiveDeterministic',false,
'UseParallel',false);

Evaluate Final Network

Load the best network found in the optimization and its validation accuracy.

bestIdx = BayesObject.IndexOfMinimumTrace(end);
fileName = BayesObject.UserDataTrace{bestIdx};
savedStruct = load(fileName);

valError = savedStruct.valError

Predict the labels of the test set and calculate the test error. Treat the classification of each image
in the test set as independent events with a certain probability of success, which means that the
number of incorrectly classified images follows a binomial distribution. Use this to calculate the
standard error (testErrorSE) and an approximate 95% confidence interval (testError95CI) of
the generalization error rate. This method is often called the Wald method. bayesopt determines
the best network using the validation set without exposing the network to the test set. It is then
possible that the test error is higher than the validation error.
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[YPredicted,probs] = predict(savedStruct.trainedNet, XTest);

testError = abs(mean(YPredicted - YTest))

NTest = numel(YTest);

testErrorSE = sqrt(testError*(1-testError)/NTest);

testError95CI = [testError - 1.96*testErrorSE, testError + 1.96*testErrorSE]

Objective Function for Optimization

Define the objective function for optimization.

function ObjFcn = makeObjFcn(XTrain,YTrain,XValidation,YValidation)
ObjFcn = @valErrorFun;
function [valError,cons,fileName] = valErrorFun(optVars)

Define the LSTM network architecture.

numResponses = size(YTrain{1},1);
featureDimension = size(XTrain{1},1);
% numHiddenUnits = 210;

layers = [
sequencelInputLayer(featureDimension)
lstmLayer(optVars.numHiddenUnits1, 'OutputMode’, 'sequence"')
fullyConnectedLayer(optVars.ConnectedLayerl)%50
dropoutLayer(optVars.dropoutl)%e.2

% fullyConnectedLayer(optVars.ConnectedLayer2)%50

% dropoutLayer(optVars.dropout2)%0.4
fullyConnectedLayer(numResponses)
regressionlLayer];

% bilstmLayer(numHiddenUnits2, 'OutputMode’, 'sequence’)
% fullyConnectedLayer(optVars.ConnectedLayer2)%50

% dropoutLayer(optVars.dropout2)%e.4

% fullyConnectedLayer(optVars.ConnectedLayer2)

% dropoutLayer(optVars.dropout2)

miniBatchSize = 2;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
% maxEpochs = 150;

options = trainingOptions('adam’,
'MaxEpochs',optVars.maxEpochs,
'MiniBatchSize',miniBatchSize,
"InitiallLearnRate’',optVars.InitiallearnRate,
'GradientThreshold’, 1,
'L2Regularization',optVars.L2Regularization,...%0.0001
'GradientDecayFactor',0.95,...%0.95
'Shuffle', 'never',
'Plots', 'training-progress',...
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'Verbose',0, ...
'ValidationData',{XValidation,YValidation},
'ValidationFrequency',validationFrequency);

% options = trainingOptions('sgdm’,

% "InitiallearnRate',optVars.InitiallearnRate,
% '"Momentum',optVars.Momentum,

% 'MaxEpochs', 60,

% 'LearnRateSchedule’, 'piecewise’,

% 'LearnRateDropPeriod’,40,

% 'LearnRateDropFactor',0.1,

% 'MiniBatchSize',miniBatchSize,

% "L2Regularization’,optVars.L2Regularization,
% 'Shuffle', 'every-epoch',

% 'Verbose',false,

% 'Plots', 'training-progress"',

% 'ValidationData',{XValidation,YValidation},
% ‘ValidationFrequency',validationFrequency);

Train the network and plot the training progress during training. Close all training plots after
training finishes.

trainedNet = trainNetwork(XTrain,YTrain,layers,options);
close(findall(groot, 'Tag', '"NNET_LSTM_TRAININGPLOT FIGURE'))

Evaluate the trained network on the validation set, calculate the predicted image labels, and
calculate the error rate on the validation data.

YPredicted = predict(trainedNet,XValidation);
valError = abs(mean([YPredicted{:}] - [YValidation{:}]));

fileName = num2str(valError) + ".mat";
save(fileName, 'trainedNet', 'valError', 'options')
cons = [];

end
end
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%clear

Appendix IV
Bayesian Optimization Machine Learning Model-

Based Prognostic Algorithm

load ('SDATrainC.mat');

load ('SDAValCl.mat');

numofFailData = size(TrainDataArray, 1);
numofFeatures = size(TrainDataArray{1,1}, 2);
XTrain = cell(numofFailData,1);

YTrain = cell(numofFailData,1);

for i
fieldData = table2array(TrainDataArray{i,1});
X = fieldData;
XTrain{i} = X';

end

1:numofFailData

size(X,1);

timeSteps = 1:1:s; %time column of featuretable
= fliplr(timeSteps);
YTrain{i} =YV,

numofValData = size(ValDataArray, 1);
XVal = cell(numofValData,1);

YVal = cell(numofValData,1);

for i = 1:numofValData

end

fieldData = table2array(ValDataArray{i,1});
= fieldData;
XvVal{i} = X';

size(X,1);

timeSteps = 1:1:s; %time column of featuretable

= fliplr(timeSteps);
Yval{i} = Y;

Normalize Training Data X

Normalize the training set to have zero mean and unit variance.

mu

sigma

mean([XTrain{:}],2);

std([XTrain{:}],0,2);

XTrain = cellfun(@(X) (X-mu)./sigma,XTrain, 'UniformOutput’,false);
XvVal = cellfun(@(X) (X-mu)./sigma,XVal, 'UniformOutput’,false);
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Clip Responses

% thr 700;

for i = 1:numel(YTrain)

% YTrain{i}(YTrain{i} > thr) = thr;
s = size(TrainDataArray{i,1},1);
if (s<900)

thr = 550; %550
elseif(s<1300)
thr = 800; %800
else
thr = 1400; %1300
end
YTrain{i}(YTrain{i} > thr) = thr;
end

for i = 1:numel(YVal)

if(s<900)

thr = 550;
elseif(s<1300)

thr = 800;
else

thr = 1400;

end
YVal{i}(Yval{i} > thr) = thr;
end

Normalize Training Data Y

% ymu = mean([YTrain{:}],2);

% ysigma = std([YTrain{:}],0,2);

% YTrain = cellfun(@(Y) ((Y-ymu)./ysigma),YTrain, 'UniformOutput’,false);
% YVal = cellfun(@(Y) ((Y-ymu)./ysigma),YVal, 'UniformOutput',false);

% for i = l:numofFailData

% XTrain{i} = XTrain{i}"';
% YTrain{i} = YTrain{i}"';
% end

% for i = 1:numofValData

% XVal{i} = Xval{i}';
% YVal{i} = YVal{i}"';
% % end

% XTrainArray = vertcat(XTrain{:});

% YTrainArray = vertcat(YTrain{:});
XTrainArray = horzcat(XTrain{:});
YTrainArray = horzcat(YTrain{:});
XValArray = horzcat(Xval{:});

YValArray = horzcat(YVal{:});
load('FGSVMModelXnorm.mat")

yfit = FGSVMModel.predictFcn(XValArray);
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Plot

yfit = smoothdata(yfit, 3);
yfit = yfit’';

subplot(2,1,1)
plot(YvalArray(:,1:1674),"'--")
hold on
plot(yfit(:,1:1674),"'.-")

hold off

title("Test Data " + 1)
xlabel("Time Step")
ylabel("RUL")

subplot(2,1,2)
plot(YvalArray(:,1674:2904),"'--")
hold on
plot(yfit(:,1674:2904),"'.-")

hold off

title("Test Data " + 2)

xlabel("Time Step")

ylabel("RUL")
legend(["Test Data" "Predicted"])
ypred = yfit;
yval = YValArray;
RMSE = sqrt(mean(abs(ypred-yval).”2))
MAPE = mean(abs(ypred-yval)./yval)
ypredl =yfit(:,1:1674);
yvall = YValArray(:,1:1674);
RMSE1 = sqrt(mean(abs(ypredl-yvall).”2))
MAPE1 = mean(abs(ypredil-yvall)./yvall)
ypred2 =yfit(:,1674:2904);
yval2 = YValArray(:,1674:2904);
RMSE2 = sqrt(mean(abs(ypred2-yval2).”2))
MAPE2 = mean(abs(ypred2-yval2)./yval2)
function [trainedModel, validationRMSE] = trainRegressionModel(trainingData,
responseData)

% Convert input to table
inputTable = array2table(trainingData', 'VariableNames', {'row_1', 'row 2',
'row_3', 'row 4', 'row 5', 'row 6', 'row_7'});

predictorNames = {'row 1', 'row 2', 'row 3', 'row 4', 'row 5', 'row 6',
"row_7"'};

predictors = inputTable(:, predictorNames);

response = responseData;

isCategoricalPredictor = [false, false, false, false, false, false, false];

% Train a regression model
% This code specifies all the model options and trains the model.
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regressionSVM = fitrsvm(...
predictors,
response,
'KernelFunction', 'polynomial',
'PolynomialOrder', 3,
'KernelScale', 1,
'BoxConstraint', ©.6207549522638148,
"Epsilon', 0.4858736702340352,
'Standardize', true);

% Create the result struct with predict function

predictorExtractionFcn = @(x) array2table(x', 'VariableNames',
predictorNames);

svmPredictFcn = @(x) predict(regressionSVM, x);

trainedModel.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct

trainedModel.RegressionSVM = regressionSVM;

trainedModel.About = 'This struct is a trained model exported from Regression
Learner R2021a.';

trainedModel.HowToPredict = sprintf('To make predictions on a new predictor
row matrix, X, use: \n yfit = c.predictFcn(X) \nreplacing "'c'' with the name
of the variable that is this struct, e.g. '‘'trainedModel''. \n \nX must
contain exactly 7 rows because this model was trained using 7 predictors. \nX
must contain only predictor rows in exactly the same order and format as your
training \ndata. Do not include the response row or any rows you did not
import into the app. \n \nFor more information, see <a
href="matlab:helpview(fullfile(docroot, '‘'stats'', ''stats.map''),

' 'appregression_exportmodeltoworkspace'')">How to predict using an exported
model</a>.");

% Extract predictors and response

% This code processes the data into the right shape for training the

% model.

% Convert input to table

inputTable = array2table(trainingData', 'VariableNames', {'row_1', 'row 2",
‘'row_3', 'row_4', 'row_ 5', 'row 6', 'row_7'});

predictorNames = {'row 1', 'row 2', 'row 3', 'row 4', 'row 5', 'row 6',
‘row_7'};

predictors = inputTable(:, predictorNames);

response = responseData;

isCategoricalPredictor = [false, false, false, false, false, false, false];

% Set up holdout validation

cvp = cvpartition(size(response, 1), 'Holdout', 0.25);
trainingPredictors = predictors(cvp.training, :);
trainingResponse = response(cvp.training, :);
trainingIsCategoricalPredictor = isCategoricalPredictor;
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% Train a regression model
% This code specifies all the model options and trains the model.
regressionSVM = fitrsvm(...
trainingPredictors,
trainingResponse,
'KernelFunction', 'polynomial',
'PolynomialOrder', 3,
'KernelScale', 1,
'BoxConstraint', ©0.6207549522638148,
"Epsilon', 0.4858736702340352,
'Standardize', true);

% Create the result struct with predict function
svmPredictFcn = @(x) predict(regressionSVM, x);
validationPredictFcn = @(x) svmPredictFcn(x);

% Add additional fields to the result struct

% Compute validation predictions

validationPredictors = predictors(cvp.test, :);

validationResponse = response(cvp.test, :);

validationPredictions = validationPredictFcn(validationPredictors);

% Compute validation RMSE

isNotMissing = ~isnan(validationPredictions) & ~isnan(validationResponse);
validationRMSE = sqrt(nansum(( validationPredictions - validationResponse
).”2) / numel(validationResponse(isNotMissing) ));
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Appendix V
Exponential Degradation Model-Based Prognostic
Algorithm

Training Data

breaktime = 23000;%23750;

breakpoint = find(SfeatureTimeTable.Time <= breaktime, 1, 'last');
trainData = SfeatureTimeTable(1:breakpoint, :);

trainDataSelected = trainData(:,featureImportance{:,:}>0.015)
featureSelected = SfeatureTimeTable(:,featurelmportance{:,:}>0.015)
%trainDataSelected = trainData(:, featureImportance{:,:}>0.01);
%feature_array{1,1}(:, featureImportance(:,:)>0.035);

meanTrain = mean(trainDataSelected{:,:});

sdTrain = std(trainDataSelected{:,:});

trainDataNormalized = (trainDataSelected{:,:} - meanTrain)./sdTrain;
coef = pca(trainDataNormalized);

PCA1l = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 1);
PCA2 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 2);
figure

numData = size(featuretable, 1);
scatter(PCA1l, PCA2,[], 1l:numData, 'filled');
xlabel('PCA 1)

ylabel('PCA 2')

cbar = colorbar;

ylabel(cbar, 'Time (x10 seconds)')

healthIndicator = PCA1;

healthIndicator = medfiltl(healthIndicator, 6);

healthIndicator = smoothdata(healthIndicator);

figure

hold on

plot(SfeatureTimeTable.Time/10, PCA1l, '-'")

plot(SfeatureTimeTable.Time/10, healthIndicator,...
"-r', 'LineWidth',1.5)

legend( 'Before smoothing', 'After smoothing")

xlabel('Time (x10 seconds)')

title('Health Indicator')

hold off

healthIndicator = healthIndicator - healthIndicator(1);

threshold = healthIndicator(end);

mdl = exponentialDegradationModel(...
'Theta', 5,
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'ThetaVariance', 1e6,
'Beta', 5,
'BetaVariance', 1le6,
'"Phi', -1,
"NoiseVariance', (@.1*threshold/(threshold + 1))72,
'SlopeDetectionLevel', 1);
% Keep records at each iteration
totalTime = (length(healthIndicator) - 1);
estRULs = zeros(totalTime, 1);
trueRULs = zeros(totalTime, 1);
CIRULs = zeros(totalTime, 2);
pdfRULs = cell(totalTime, 1);
% Create figures and axes for plot updating
figure
axl = subplot(2, 1, 1);
ax2 = subplot(2, 1, 2);
for currentTime = 1:totalTime
% Update model parameter posterior distribution
update(mdl, [currentTime healthIndicator(currentTime)])
% Predict Remaining Useful Life
[estRUL, CIRUL, pdfRUL] = predictRUL(mdl,
[currentTime

healthIndicator(currentTime)],
threshold);

trueRUL = totalTime - currentTime + 1;

% Updating RUL distribution plot

helperPlotTrend(axl, currentTime, healthIndicator, mdl, threshold,
seconds');

helperPlotRUL(ax2, trueRUL, estRUL, CIRUL, pdfRUL, 'x10 seconds")

% Keep prediction results

estRULs(currentTime) = estRUL;

trueRULs(currentTime) = trueRUL;

CIRULs(currentTime, :) = CIRUL;

pdfRULs{currentTime} = pdfRUL;

% Pause 0.1 seconds to make the animation visible

pause(0.1)
end

Predict the RUL for the bearing.

estRULoverall = predictRUL(mdl,threshold)
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Appendix VI

Upload Data to ThingSpeak Cloud Space

Write Data to ThingSpeak Channel

load("normTestFeatureData.mat")

S =
for

end

size(normTestFeatureData,1);
i=1:s

data = normTestFeatureData(i,:);
% Generate timestamps for the data
tStamps = datetime('now"');

channelID = 1044755; % Change to your Channel ID
writeKey = '8B4B91T47Q6MFGRT'; % Change to your Write API Key

% Write 10 values to each field of your channel along with timestamps
thingSpeakWrite(channellID,data, 'TimeStamp',tStamps, 'WriteKey',writeKey)
pause(15)

r=s-i
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Appendix VII
Cloud Computing Algorithm for the Real-Time RUL

Estimation and Email Alert Warnings

% ThingSpea & DropBox credentials

firstChID = 1044755; %FILL IN first channel's ID

firstReadAPIKey = '7CPPH4ENMAFESH2R'; %FILL IN first channel's Read API key
secondChID = 1044755; %FILL IN second channel's ID

secondWriteAPIKey = 'JCQ414YH411POYRA'; %FILL IN second channel's Write API
key

secondReadAPIKey = '©2MXHINOPYBOH77H'; %FILL IN second channel's Read API key
dropBoxAccessToken
="'gezLS6x0VLQAAAAAAAAAAIXOAYPfWIWSO7z0gHf1leI0OUXgbF1ITIamgo6siuVOINS'; %FILL IN
dropbox access token

thresholdRUL = 60; %email will be sent if the fan's TTS is less than this
value (in minutes)
FoJoT26767676767676767676.76. %7777 %% %% % %% %% %% %% %66 %6 %66 %6696 9696966966966 96966606 7666666666676

% Provide the ThingSpeak alerts API key. All alerts API keys start with TAK.
alertApiKey = 'TAKAOXIG6PYEXOQXE';

% Set the address for the HTTTP call
alertUrl="https://api.thingspeak.com/alerts/send";

% webwrite uses weboptions to add required headers. Alerts needs a
ThingSpeak-Alerts-API-Key header.
options = weboptions("HeaderFields", ["ThingSpeak-Alerts-API-Key", alertApiKey

1);

% Set the email subject.
alertSubject = sprintf("Lathe Spindle Remaining Useful Life");

% Read the recent data.

featureData =

thingSpeakRead(firstChID, 'ReadKey',firstReadAPIKey, 'NumDays',10); %past 10
Days data

testData = featureData';

% Check to make sure the data was read correctly from the channel.
if isempty(featureData)
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alertBody = ' No data read from machine subsystem. ';

else

%[mdl, labels] = getmodel(dropBoxAccessToken); %Get the predictive model
from DropBox

rawdata = downloadFromDropbox(dropBoxAccessToken, 'PredictiveModel.mat"');
f = fopen('PredictiveModel.mat"', 'w");

fwrite(f,rawdata);

fclose(f);

T = load('PredictiveModel.mat');

%H#function network
YPred = predict(T.netmdl,testData, ‘MiniBatchSize',1);
YPredLast = YPred(end);

% Set the outgoing message
if (YPredLast>thresholdRUL)
alertBody = 'Machine Tool operating Good!';
elseif (YPredLast<=thresholdRUL)
RUL = YPredLast;
alertBody ="Machine Tool Need Maintenance! and RUL = " +
num2str(RUL, "'%0.3F");
end
end

% Catch errors so the MATLAB code does not disable a TimeControl if it fails
try

webwrite(alertUrl , "body", alertBody, "subject", alertSubject, options);
catch someException

fprintf("Failed to send alert: %s\n", someException.message);
end

%functions

function [mdl,labels] = getmodel(dropBoxAccessToken)
rawdata = downloadFromDropbox(dropBoxAccessToken, 'PredictiveModel.mat");
f = fopen('PredictiveModel.mat', 'w"');
fwrite(f,rawdata);
fclose(f);
thefile = matfile('PredictiveModel.mat"');
mdl = thefile.trainedModel;
labels = thefile.labels;
end
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function output = downloadFromDropbox(dropboxAccessToken,varargin)
narginchk(1,2);

FName = varargin{1l};

% Generate the custom header
headerFields = {'Authorization', ['Bearer ', dropboxAccessToken]};

headerFields{2,1} = 'Dropbox-API-Arg";
headerFields{2,2} = sprintf('{"path": "/%s"}',FName);
headerFields{3,1} = 'Content-Type';

headerFields{3,2} = 'application/octet-stream’;
headerFields = string(headerFields);

% Set the options for WEBREAD

opt = weboptions;

opt.MediaType = 'application/octet-stream’;
opt.CharacterEncoding = 'IS0-8859-1";
opt.RequestMethod = 'post';
opt.HeaderFields = headerFields;

% Upload the file
try
tempOutput =
webread( 'https://content.dropboxapi.com/2/files/download’,
opt);%https://content.dropboxapi.com/2/files/download’
catch someException

throw(addCause(MException('downloadFromDropbox:unableToDownloadFile', 'Unable
to download file.'),someException));
end

% If user requested output, pass along WEBWRITE output
if isequal(nargout,1)
output = tempOutput;
end
end

function output = uploadToDropbox(dropboxAccessToken,dataFile)

% Check if input file exists
if ~exist(dataFile, 'file")
throw(MException('uploadToDropbox:fileNotFound', 'Input file was not
found. "));
end

% Read file contents

try
fid = fopen(dataFile, 'r');
data = char(fread(fid)");
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fclose(fid);
catch someException
throw(addCause(MException( 'uploadToDropbox:unableToReadFile"', 'Unable

to read input file.'),someException));

end

% Generate the custom header

[~,remoteFName, remoteExt] = fileparts(dataFile);

headerFields = {'Authorization', ['Bearer ', dropboxAccessToken]};
headerFields{2,1} = 'Dropbox-API-Arg";

headerFields{2,2} = sprintf('{"path": "/%s%s", "mode": "overwrite",

"autorename": false, "mute": false}',remoteFName, remoteExt);

headerFields{3,1} = 'Content-Type';
headerFields{3,2} = 'application/octet-stream’;
headerFields = string(headerFields);

% Set the options for WEBWRITE

opt = weboptions;

opt.MediaType = 'application/octet-stream’;
opt.CharacterEncoding = 'IS0-8859-1";
opt.RequestMethod = 'post';
opt.HeaderFields = headerFields;

% Upload the file
try
tempOutput = webwrite('https://content.dropboxapi.com/2/files/upload’,

data, opt);

catch someException
throw(addCause(MException( 'uploadToDropbox:unableToUploadFile', 'Unable

to upload file.'),someException));

end

end

% If user requested output, pass along WEBWRITE output
if isequal(nargout,1)

output = tempOutput;
end
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