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Abstract 

Predictive maintenance of machine tools is gaining wide attention in the manufacturing 

sector for achieving higher production rates and closer tolerance of machined parts. Due to the 

continuous operation of machine tools and the nature of work performed on it, wear and tear 

occur on the sliding and rotating components causing gradual mechanical damages. These 

mechanical damages on critical machine tool components adversely affect the quality of 

machined products and overall production efficiency. The present work investigates the 

development of an intelligent predictive maintenance framework for the critical components of 

machine tool subsystems.  

The investigation first proposes a scientific methodology for the criticality analysis of 

machine tool systems employing a fuzzy modified failure mode, effects, and criticality analysis 

(fuzzy FMECA) for the maintenance prioritization of computer numerical control (CNC) lathe 

subsystems. The subsystems with a higher risk of failure and causing longer downtimes are 

considered for predictive maintenance. The lathe spindle unit is identified as the most critical 

subsystem with the highest estimated risk value of 848.2. The information on potential failure 

modes of components is utilized for the sensor selection in condition monitoring of machines. 

Following, an accelerated run-to-failure lathe spindle experimental test rig is fabricated to 

acquire machine tool health degradation data for analyzing the intelligent prognostic regression 

models for predictive analytics. Vibration signals representing machinery health degradation 

patterns are collected from critical lathe spindle locations. Vibration signature features in time, 

frequency, and time-frequency domain revealing superior machine degradation patterns are 

employed for training the prognostic algorithms. A neighborhood component analysis (NCA) 

based feature weighting scheme is used for selecting the most relevant features for regression 

analysis. Data conditioning and data selection can avoid underfitting and overfitting of the 

prognostic models.  

Data-driven prognostics regression algorithms are observed efficient for the machinery 

health prognostics and Remaining Useful Life (RUL) estimations. Long Short-Term Memory 

(LSTM)/Bidirectional-LSTM (bi-LSTM) deep neural network models, Support Vector 

Machine (SVM) machine learning model, and exponential degradation statistical estimator 

model are utilized to develop intelligent predictive models for the prognostic analysis of CNC 
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lathe spindle unit. However, optimizing the network structure and hyperparameters of the 

learning algorithm is a major challenge in the implementation of learning algorithms for 

predictive analytics. Bayesian optimized machine learning and deep neural network algorithms 

are proposed for the predictive analytics of the CNC lathe spindle unit. LSTM/bi-LSTM deep 

neural architecture-based prognostic algorithms are promising computational techniques for 

predictive maintenance and RUL estimation. LSTM/bi-LSTM networks and their combination 

network architectures are explored to evolve intelligent predictive models for the RUL 

estimation of lathe subsystems. Prediction accuracy of the evolved predictive models for 

estimating RUL of the lathe subsystems is evaluated using root mean square error (RMSE) and 

mean absolute percentage error (MAPE). The LSTM + bi-LSTM network architecture is 

identified to have the best prediction accuracy on lathe spindle RUL estimation with RMSE 

equals 31.65 and MAPE equals 4.45%. Further, this LSTM + bi-LSTM intelligent predictive 

model is chosen to develop a real-time IoT-based cloud analytics paradigm with a remote 

maintenance decision-making dashboard. 

Keywords: Industry 4.0, Internet of Things (IoT), Predictive Maintenance, Remaining Useful 

Life (RUL), Vibration Signal, Computer Numeric Control (CNC) Lathe; Failure Mode Effects 

and Criticality Analysis (FMECA), Deep Learning, Long Short-Term Memory (LSTM), 

Machine Learning, Hyperparameter Optimization. 
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Chapter 1  

Introduction 

1.1 Background 

Manufacturing enterprises face a constant demand for increased productivity and 

improved product quality at minimum costs of production and maintenance. Manufacturing 

systems are now designed as highly sophisticated machine tools with advanced Computer 

Numerical Control (CNC) support to be in phase with the global competition. The reliability of 

manufacturing systems is revealed by the operating condition of the functional components and 

subsystems of machine tools. As the manufacturing industry continues to adopt more digital 

technologies the shortage of an appropriate machine tool maintenance strategy could prove 

adverse [1]. Due to the continuous operation of machine tools and the nature of work performed 

on it, wear and tear occurs on the sliding and rotating components causing gradual mechanical 

damages. These mechanical damages on critical machine tool components adversely affect the 

quality of machined products and productivity [2]. An efficient machinery health management 

strategy for the machine tool systems is necessary to withstand the manufacturing industry at 

zero unexpected failure rates and minimal machinery downtimes [3, 4]. 

Machinery health management is the practice of keeping the machines in proper 

functioning condition to produce quality products with maximum efficiency. Machinery health 

management primarily involves the maintenance of industrial equipment to maximize asset 

availability ensuring the quality of products manufactured or services offered and ensuring a 

safe working environment for their workforce [5]. Industrial maintenance has evolved over 

time, starting from fundamental reactive maintenance through preventive maintenance, and has 
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come to condition-based maintenance (CBM) [6, 7]. The reactive or corrective maintenance 

strategy is an unplanned maintenance approach where the machine is allowed to operate until 

failure and then restoring. This maintenance approach can result in unexpected equipment 

downtime causing severe production loss. Preventive maintenance is a planned maintenance 

strategy where time-based or periodic maintenance actions are scheduled in advance to prevent 

failure. However, this maintenance approach causes redundant maintenance activities causing 

unnecessary expenditures. Reactive and preventive maintenances approaches consume time 

and resources which otherwise could be utilized for production [1, 7]. Figure 1.1 illustrates the 

reactive and preventive maintenance strategies for the machinery performance index against 

service life. In reactive maintenance, the repair activities are performed only after the machine 

degrade beyond the prescribed service line where it fails to perform its intended functions. The 

reactive maintenance strategy also performs rehabilitation activities to restore the machine to 

its initial working condition once it runs into a catastrophic failure. In preventive maintenance, 

a periodic target line is defined as reaching which the machine is subjected to periodic 

maintenance activities to restore it to its initial working condition. This maintenance strategy 

ensures the machinery to operate always in the prescribed service life state. 

 

Figure 1.1 Illustration of conventional industrial machinery maintenance strategies on 

machinery performance index and service life 
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CBM is a maintenance strategy that monitors the actual condition of an asset for deciding when 

what maintenance needs to be done. CBM is based on the condition monitoring data collected 

from operating machinery [8]. Predictive maintenance is an advanced version of CBM, where 

data analysis tools and intelligent computational techniques are used to predict any upcoming 

failures far before their actual point of occurrence. Thus, the predictive maintenance approach 

allows users to well-plan the maintenance activities to perform the right maintenance action at 

the right point in time with minimal production loss and expenditure [9]. 

The scope of implementing predictive maintenance of manufacturing systems 

contributes to enhancing the controls, costs, and quality of production. The predictive 

maintenance paradigm belongs to Industry 4.0 that it is propped up by several technological 

enabling factors including a wide range of sensors capable to register any source of information 

(vibrations, acoustic emissions, temperature, etc.) send from operating machinery, advanced 

computational resources for analyzing the acquired data, modern Internet of Things (IoT) 

enabled remote connectivity means, and big data cloud storage and computing technologies that 

provide real-time update of machinery information for the prognostic analysis [10].  

Predictive maintenance generally uses historical and real-time machine health 

degradation information to recognize the equipment failure patterns and further this information 

is used to forecast upcoming failures. The predictive maintenance strategy uses condition 

monitoring tools to track the performance of the machine functional components. In any 

mechanical system, the machine operating condition is monitored using time-series data such 

as vibration signal, shock-pulse, acoustic emission, bearing temperature, oil debris, oil pressure, 

and electric current variations. This involves the application of different sensors, data 

acquisition systems, data processing, and computation techniques [11]. This causes huge 

installation costs of sensors, data acquisition, and computational algorithms, and therefore 

predictive maintenance is limited to the most critical subsystems of the machinery. Hence, the 

identification of the most critical components of the machine system and associated failure 

modes are the pre-requisite for employing predictive maintenance [12]. The information on 

potential failure modes associated with the critical subsystems is necessary for the selection of 

the most suitable sensors for condition monitoring. The machinery log file information that 

records either event of machine failure, downtime, restoration, and costs involved are analyzed 

using failure modes and criticality analysis tool to identify the potential failure modes of 

machinery functional components and the risk associated [13, 14].   
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Machine condition monitoring makes the primary component of predictive maintenance. 

Sensors are used to measure specific machine operating conditions to observe any sign of 

irregularity that would affect the normal operation of the machine. The machine condition 

monitoring data provides both diagnostic and prognostic information, like the fault, location of 

the fault, causes of the fault, and upcoming failure time. The condition monitoring information 

can also be used for evaluating the quality of products manufactured, mainly its dimensional 

tolerances and surface quality. Machine vibration monitoring is the most widely employed 

condition monitoring parameter for mechanical systems. The machine health degradation 

patterns are extracted for the vibration signals for machinery failure prognostic analysis [6, 15, 

16].  

Machinery health prognostics primarily perform the estimation of Remaining Useful 

Life (RUL) or Time-to-Failure (TTF) by analyzing the current operating condition of the 

machine against the historical machine failure trend pattern. The health prognostics techniques 

are classified as physics-based approaches, statistical model-based approaches, Artificial 

Intelligence (AI) approaches, and hybrid approaches [6, 17, 18]. The physics-based approach 

demands a thorough knowledge of the physics of failure mechanism, which is difficult to 

execute for complex machinery. Statistical model-based and AI approaches are data-driven 

approaches, which utilize machinery health degradation data for prognostic analysis. Statistical 

model-based approaches require only empirical knowledge to establish a relationship between 

the failure mechanics and statistical model, whereas the AI models use minimal technical 

aspects of the system. AI approaches use intelligent learning algorithms to learn machinery 

health degradation patterns, but its implementation was not popular due to the black-box nature 

of the learning process and the requirement of computers with high computational power. The 

data-driven approaches use machinery health degradation information to train intelligent 

predictive models, which are used for RUL estimation of the considered machine [19, 20].  

The statistical model-based approaches are the most popularly used prognostic 

technique for decades. Random coefficient models, autoregressive models, Wiener process 

models, Gamma process models, inverse Gaussian process models, Markov models, 

proportional hazards models, exponential degradation model, etc. are the most widely used 

statistical models for machinery health prognostics [17]. AI approaches have been receiving 

increasing attention with the advancements in computational capabilities and their superiority 

in dealing with prognostics problems of complex mechanical systems. Machine learning and 
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deep learning AI models are very popular in machinery health diagnostic and prognostic 

analysis. The most recognized machine learning and deep learning architectures for failure 

prediction and RUL estimation include artificial neural network (ANN), neural fuzzy systems, 

support vector machine (SVM), support vector regression (SVR), k-nearest neighbor (KNN), 

Gaussian process regression (GPR), recurrent neural network (RNN), long short-term memory 

(LSTM), deep belief network (DBN), convolution neural network (CNN), etc. [21, 22]. Though 

the technical advancements encourage the implementation of an AI algorithm for prognostics, 

hyperparameter optimization and network architecture selection are major challenges before 

the successful utilization of these techniques. The hyperparameter optimization including both 

structural and training parameters has a direct influence on the accuracy of the RUL estimation 

models.  The computational search algorithms like grid search, random search, Bayesian search 

optimization, etc. are employed for the hyperparameter optimization to reduce the 

computational complexity and improve prediction accuracy [23, 24].  

The appealing contribution of the latest technological advancements to the industry is 

the Industrial Internet of Things (IIoT), which establishes an efficient communication paradigm 

between the various industrial machinery, systems, and users. IIoT utilizes advanced sensor 

technologies supporting the IoT, cloud space, and cloud computing facilities for intelligent 

computational algorithms. These technological advancements can be used to augment the 

predictive maintenance paradigm for industrial machinery [9, 25]. A maintenance decision 

support system with a maintenance decision-making dashboard and failure warning system can 

be offered for the industrial sector. The system is also capable of providing remote access to 

the industrial machinery health status information and control of industrial activities [26]. 

Predictive maintenance is not a substitute for traditional maintenance approaches, rather 

it is considered as a value addition to the total industrial production management. It cannot 

totally wipe out the need for traditional reactive or preventive maintenance approaches. In any 

industry, the user should identify if the predictive maintenance suits the machinery concerning 

the huge installation costs and the fact that only those component faults that can be monitored 

using sensor technology could be considered [27].  

1.2 Motivation of the Thesis 

“Maintenance is a necessary evil” is a general opinion among industrialists. The 

maintenance costs constitute a major part of the total operating costs of all manufacturing 
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systems. The loss of production time and product quality that result from an inefficient 

maintenance approach has serious impacts on industrial manufacturing enterprises.  The advent 

of Industry 4.0 can take advantage of cyber-physical systems techniques to digitalize 

maintenance strategies and implement IoT-based data-driven automated remote-controlled 

operations. IoT-based intelligent decision support system for machinery health management 

can make maintenance scheduling and shop floor work allocations a facile task. Predictive 

maintenance is a credible solution for machinery health and product quality management. 

Instead of relying on industrial field failure data or in-plant average life statistics, predictive 

maintenance uses the machinery condition monitoring data like component vibrations, 

temperature, acoustic emissions, etc. to obtain insights on the actual operating condition of the 

manufacturing system. Advancements in sensor technology and IoT connectivity open a wide 

scope for real-time machinery condition monitoring data generation and data acquisition from 

anywhere. In the manufacturing sector, predictive maintenance of machine tools is gaining wide 

attention to bring about higher production rates and closer tolerance of machined parts. 

However, the additional instrumentation causing huge installation costs and the complexities 

involved in computational tools pull back the industrialist from implementing predictive 

maintenance. Data-driven prognostics approaches like AI techniques require minimal technical 

knowledge on the machinery operations and their failure mechanism. Deep learning is a 

promising AI computational tool for machinery health prognostics and RUL estimation. 

However, the implementation of deep learning algorithms for machinery health prognostics 

involves many challenges.  

1.3 Scope of the Work 

This thesis work aims to employ intelligent data-driven computational techniques for 

the prognostic analysis and predictive maintenance of critical machine tool systems. The 

research aims to investigate the challenges faced during the implementation of a predictive 

maintenance strategy in the manufacturing industry for their machine tool systems. The study 

initiates with the criticality analysis of a CNC lathe machine tool for the maintenance 

prioritization of critical components and potential failure mode identification followed by 

sensor selection and configures data acquisition system for machine health degradation data 

recording. Further, data-driven techniques are employed to extract machine health degradation 

patterns to evolve intelligent predictive models. However, the implementation of intelligent 

data-driven techniques like deep learning algorithms for machinery health prognostics has 
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enormous challenges, which have a certain scope for discussion in the present era of Industry 

4.0. The mandate to have a large size machinery failure data for training deep learning 

algorithms is regarded as a major limitation. Hyper-parameter optimization, architecture design 

and data training of deep learning algorithms are still challenging and unpredictable, which can 

pull back industrialists from implementing intelligent health management of industrial 

machinery. This research work aims to unveil the black-box nature of deep learning algorithms 

to make an intelligible prognostic platform with automated hyper-parameter selection to 

instigate industrialists to set about an autonomous machinery health management system. The 

primary scope of this thesis is to motivate industrial practitioners to develop an autonomous 

machinery health management system consisting of the machine health degradation data 

acquisition system and intelligent prognostic model training algorithms. Such a system 

improves the overall industrial value and thus fits itself into the present Industry 4.0 era. 

1.4 Organization of Thesis 

Chapter 1 introduces the research problem. A detailed review of literature is presented 

in chapter 2 highlighting the gaps areas identified for further research and the aim and objectives 

of the present study. Chapter 3 discuss the criticality analysis and maintenance prioritization of 

the CNC lathe machine tool. Chapter 4 details the fabrication of an accelerated run-to-failure 

experimental setup for time series machinery health degradation data acquisition and data 

processing to extract useful information on machine failure. Chapter 5 presents the 

implementation of data-driven prognostic algorithms for machinery health prognostics and 

RUL estimation. The chapter also discusses a comparison of popular data-driven prognostic 

models for machinery RUL estimation. Chapter 6 presents the implementation of IoT based 

remote maintenance decision-making dashboard with cloud data analytics. Chapter 7 presents 

the summary and conclusions of the entire study and the scope for future work.



 

 

 

Chapter 2  

Literature Survey 

2.1 Introduction 

In recent years, the increasing demand for higher production rates and product quality 

has led to the induction of more sophisticated machines, which in turn has increased the 

requirement of more effective maintenance strategies to ensure the overall performance of 

industrial systems. The evolution of industrial maintenance strategies has reached an intelligent 

predictive maintenance concept, which detects the upcoming failures in an industrial system far 

before their actual occurrence. The change has also affected the manufacturing sectors and the 

machine tool systems, the operating condition of which reflects the production rates and quality 

of the machined parts. This chapter reviews the predictive maintenance of mechanical systems 

with respect to machine condition monitoring and data acquisition, and the computational 

analysis focusing on the data-driven approaches. The machine tool failure mode identification 

and criticality analysis are discussed for the application of maintenance prioritization. The data-

driven computational approaches including statistical estimator models, machine learning 

approaches, and deep learning approaches are discussed for machinery prognostic regression 

analysis. Furthermore, the chapter reviews the IoT-based maintenance decision support system 

for industrial machinery. The chapter ends with discussions on the gap areas in literature, the 

aim and objectives of the present work, and a flowchart of the present work.
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2.2 Machine Tool Maintenance 

Machine tool technology is the backbone of the manufacturing industry. The machine 

tools are often operated in the manufacturing sectors without a planned maintenance strategy 

which is usually confined to cleaning the equipment and lubricating the moving parts. Such a 

maintenance approach can result in low-grade products, unplanned downtimes, and 

catastrophic failures causing huge production loss and a precarious working environment. The 

prime motive of planned maintenance is to keep the machine tool vibrations within acceptable 

limits thus ensuring a good operating condition [5, 6]. According to ISO 230 (2012), machine 

tools should mitigate the types of vibration that produce undesirable effects to avoid 

“unacceptable cutting performance with regard to surface finish and accuracy, premature 

wear or damage of machine components, reduced tool life, unacceptable noise level, 

physiological harm to operators” [8].  

The CNC machine tools are more complex and sophisticated industrial systems that play 

a significant role in the modern manufacturing industry. These machine tools perform shaping 

or machining operations usually, by turning, milling, boring, grinding, shearing, or other forms 

of deformation. Due to the continuous operation of machine tools and the nature of work 

performed on it, wear and tear occurs on the sliding and rotating components causing gradual 

mechanical damages [28]. These mechanical damages on critical machine tool components 

adversely affect the quality of machined products. The increasing demand for machining quality 

and closer tolerance of machined parts has raised the need for a systematic maintenance 

approach for the machine tool systems [4, 29]. A fault-free operating condition of machine tools 

is of high priority in the manufacturing industry [30, 31]. There has also been a simultaneous 

growth of industrial technologies that hasten the need for an efficient maintenance approach. 

The advent of Industry 4.0 has driven the manufacturing industry to achieve a new generation 

of machine tool systems termed as Cyber-Physical Machine Tool (CPMT) or Machine Tool 

4.0, which are intelligent, well connected, extensively accessible, and more adaptive and 

autonomous in operation, control, and maintenance [4, 32, 33].  

The reliable performance of machine tool systems is largely dependent on the inherent 

reliability of its functional components and maintenance program adopted. The peripheral 

factors like production planning and work scheduling also influence the machine tool's 

reliability. On the component level, functional components and subsystems of the CNC 
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machine tool have a considerable influence on its reliability level [3]. The operating condition 

of each subsystem like CNC unit, spindle unit, linear axis feed drive, hydraulic system, etc. 

contributes to the overall performance of the machine tool. In a machine tool system, the 

mechanical failures bring about the major cause of downtime, while the electrical failures are 

more frequent, though the downtime caused is comparatively very less [29, 34, 35]. The cutting 

tool wear is another common failure phenomenon in machine tool systems. However, these 

failures do not cause catastrophic failures of machine tool systems, but highly influence the 

quality of machined products [36].   

The research paper by Harris et.al. [37] is one of the oldest publications on condition 

monitoring and fault detection of machine tools. Martin [38] has published a review on 

condition monitoring and fault diagnosis in machine tools and discussed its primary concept 

and applications. Drake et.al. [39] developed a data acquisition system for machine tool 

condition monitoring. Saravanan et al. [40] have performed failure data analysis for the 

condition monitoring of lathe, milling, and grinding machine tools. The author later discussed 

the condition monitoring of lathe spindle units based on vibration, acoustic emission, surface 

roughness monitoring, and the Shock Pulse Method (SPM) [34]. Liang et al. [41], Kim et al. 

[42], Atluru et al. [43] discussed the evolution of process monitoring and control technologies 

for machine tool systems. Liao et al. [44] and Jay Lee et al. [45] utilized Watchdog Agent® 

prognostic toolbox for the automatic tool changer and spindle bearing health status prediction 

integrating both CNC controller data and sensor data. Soft computational data mining 

techniques [46-48] and finite elements models [49-52] were preferably employed for fault 

diagnostics and prognostics of machine tool system failures. Statistical data analysis techniques 

for criticality analysis were used for machine tool failure analysis [2, 3, 53]. Comparatively 

only a few researchers worked on condition monitoring and maintenance of machine tool 

functional components. Most research works on advanced machine tool maintenance strategies 

are focused on cutting tool condition monitoring and cutting tool wear predictions [54, 55].  

Recently, a few researchers have studied the development of an intelligent maintenance 

strategy for machine tool systems [55-57]. The functional components of CNC machine tools 

like spindle unit [58-60], spindle bearings [61, 62], linear axis feed drive [63, 64], ball screw 

feed drive [29], transmission system [65], and automatic tool changer [66, 67] are critically 

investigated for fault detection and diagnostics. The current trend in machine tool maintenance 

is based on advanced predictive maintenance systems with real-time machine tool monitoring 
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and failure predictions [3, 4, 61, 67-71]. Research in this area is necessary to ensure increased 

productivity, improved product quality, reduced costs, and to keep the manufacturing 

technology up-to-date in this fast-growing world. 

2.3 Evolution of the Maintenance Strategies 

Maintenance can be defined as “a combination of all technical, administrative and 

managerial actions during the life cycle of an item intended to retain it in or restore it to, a 

state in which it can perform the required function” (EN 13306-2010) [72]. The primary 

objective of maintenance is to maximize the asset availability ensuring the quality of products 

manufactured or services offered. Efficient maintenance of industrial systems also ensures a 

safe working environment for their workforce.    

Industrial maintenance has evolved over time, starting from the fundamental reactive 

maintenance where any repair or replace actions are initiated only after the occurrence of 

failure, through the preventive maintenance in which maintenance actions are performed at 

regular intervals to avoid upcoming failures determined based on statistical reliability analysis, 

and has come to the CBM where the maintenance is done when a condition monitoring indicator 

goes over a predefined threshold [30]. The reactive or corrective maintenance strategy is an 

unplanned maintenance approach where the machine is allowed to operate until failure and then 

restoring. This can only be considered for less critical systems and only if the consequences of 

failure are affordable. The preventive maintenance or time-based or routine or periodic 

maintenance are planned maintenance approaches where the maintenance actions are scheduled 

in advance to prevent failure. The maintenance is usually determined based on the machine 

operating manual or operator’s experience. The CBM is based on the machine condition 

monitoring information that indicated machine failure or deterioration. CBM has the primary 

focus on failure prevention and functionality of its components but also has a secondary focus 

on the quality of manufactured products or machine operations. A predictive maintenance 

strategy can be regarded as an advanced version of CBM where the condition monitoring data 

is used to predict any upcoming failures far before their actual point of occurrence [30, 31]. 

Table 2.1 summarizes the main characteristics of all the aforementioned maintenance strategies.  
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Table 2.1. Main characteristics of all maintenance strategies 

Maintenance 

Strategy 

Reactive 

Maintenance 

Preventive 

Maintenance 
CBM 

Predictive 

Maintenance 

Maintenance 

Frequency 

Depends on 

component 

failure 

Fixed on basis of 

statistical 

reliability analysis 

Based on 

condition 

monitoring data 

Determined by 

prognostic 

regression 

analysis 

Complexity 

and 

Technological 

Requirements 

Low Medium High medium High 

Human 

Intervention 

Requirements 

High High Medium Medium Low 

CBM has been the most investigated maintenance strategy by both the research 

community and industries for machine tool maintenance [31] The discussion mostly includes 

the selection of the most suitable sensors for machine tool vibration and temperature monitoring 

with available data analysis techniques, and no consideration of the predictive prognostic 

analysis was reported. Over a half-decade, researchers had been enthusiastic about the 

prognostic health management (PHM) concept for industrial machinery, which includes 

research works on monitoring and analyzing the current health status of the machine and 

analyzing past machine failure data to predict future machine failures. Implementing the 

predictive maintenance concept can contribute to reduced maintenance associated costs, 

increased production time, improved product quality, and reduced risk of catastrophic failures 

[5, 28]. 

The predictive maintenance paradigm belongs to Industry 4.0 that it is propped up by 

several technological enabling factors including a wide range of sensors capable to register any 

source of information send forth an operating machine (vibrations, acoustic emissions, 

temperature, etc.), advanced computational resources for analyzing the collected data, modern 

IoT enabled remote connectivity means, and big data cloud storage and computing technologies 

that provide real-time update of machine information for prognostic analysis [33, 73].  
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2.4 Predictive Maintenance 

Predictive maintenance strategy allows the industries to have the minimal amount of 

annual maintenance activities that would be required to keep the machine in its peak operating 

condition and avoid chances of any unexpected catastrophic failure or downtime. Reactive and 

preventive maintenances approaches consume time and resources which otherwise could be 

utilized for production [7]. Predictive maintenance primarily detects early signs of failure in the 

functional components of machinery and then initiates necessary maintenance actions at the 

right time. A predictive maintenance strategy is supported by condition monitoring and 

prognostics algorithms, which perform the analysis of machinery health degradation. The 

machine condition monitoring data provides both diagnostic and prognostic information, like 

the fault, location of the fault, causes of the fault, and upcoming failure time. The condition 

monitoring information can also be used for evaluating the quality of products manufactured, 

mainly its dimensional tolerances and surface quality [74]. Predictive maintenance generally 

uses historical and real-time machine health degradation information to estimate the RUL or 

TTF of the equipment. RUL is the subjective estimate of the length of time a machine can 

perform its intended functions [9]. The failure of a machine is defined as the point at which it 

is not able to perform its intended functions in the designed manner. The failure rates throughout 

the lifetime of a mechanical system are graphically represented on a failure rate vs time plot 

namely, the bathtub curve as shown in Figure 2.1.  

 

Figure 2.1 Bathtub Curve 
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The bathtub curve is divided into three regions: early infant mortality period, useful life 

period, and wear out period. The early infant mortality period is characterized by a high but 

rapidly decreasing failure rate. The failures in this period are due to minor design and 

manufacturing flaws. The useful period has a long period of constant failure rate. This period 

is the best operating lifetime of the machine. In the final wear-out period, the mechanical 

components begin to wear out approaching the failure. The failure rate rapidly increases at this 

period of machine lifetime [75].   

The predictive maintenance approach consists of three main steps; data acquisition, data 

processing, and maintenance decision-making. The continuous machine monitoring data gives 

insight into the changing health status of the machine. The failure trends of a particular machine 

are deduced from the available historical machine monitoring data. The machine failure trends 

and real-time machine health status are fed into a prognostic analysis tool to determine the TTF 

or RUL that helps in maintenance decision making and scheduling [76, 77]. Figure 2.2 shows 

the flow diagram of the predictive maintenance approach. 

 

Figure 2.2 Predictive maintenance flow diagram 

The concept of condition monitoring and predictive maintenance dates back to decades 

when experienced maintenance persons use their senses of seeing, hearing, smelling, and 

touching to detect an early sign of failure and initiate necessary maintenance actions. This 

expertise-based technique though very old is still being practiced as it is still admired in many 

situations. The current predictive maintenance approach with the technological substructure got 

its true application in the industrial world only since the 1990s, which due to the unavailability 

of suitable sensors and data acquisition systems, and high complexities involved discouraged 
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the industrialist and research community to consider this maintenance approach [7, 78]. The 

advancements in sensor technology and computational capabilities have made these 

discouraging factors trivial before the growing demand for efficient maintenance approaches 

[74]. With the arrival of Industry 4.0, many industries are eager to establish an intelligent 

predictive maintenance strategy for their machinery [79, 80]. The predictive maintenance 

approach avoids the situation of over-maintenance or under-maintenance of industrial 

equipment. It is not a substitute for traditional maintenance approaches, rather it is considered 

as a value addition to the total industrial production management. It cannot totally wipe out the 

need for traditional reactive or preventive maintenance approaches. In any industry, the user 

should identify a suitable maintenance strategy either reactive, preventive, or predictive based 

on the critical requirement [33, 80].  

Implementation of predictive maintenance is a complex proceeding for the industry 

since it involves meticulous planning of hardware, software, and personnel requirements. 

Considering the machinery faults, only those machinery faults that can be monitored using 

sensor technology could be considered. Also, predictive maintenance required a huge 

installation cost, the user should identify which machinery or machine subsystem should be 

covered in the predictive maintenance strategy. The general requirements for successful 

implementation predictive maintenance are summarized as follows: 

i. Identify the critical components to be monitored 

ii. Identify the parameters that indicate deterioration of component 

iii. Selection of suitable sensors and data acquisition system 

iv. Selection of suitable condition monitoring techniques and critical thresholds for the 

monitored parameter 

v. Selection of suitable computational algorithm to perform prognostic analysis 

vi. Efficient computerized maintenance decision support system [73, 74, 81] 

2.5 Machine Criticality Analysis 

Although predictive maintenance is getting wide acceptance, its realization in 

manufacturing sectors requires huge installation costs for sensors technology and intelligent 

computational algorithms, and therefore, it is limited to the most critical subsystems of the 

machinery [74, 82]. The information on potential failure modes associated with these critical 

subsystems is necessary for the selection of the most suitable sensors for condition monitoring. 
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On account of these factors, the identification of the most critical components of the machine 

system and associated failure modes makes the prerequisite for employing predictive 

maintenance. Recently, a few research studies have focused on establishing the necessity of 

criticality analysis of a mechanical system to support maintenance decision making, pointing 

out the lack of strong machine criticality analysis methodologies in the industry for maintenance 

prioritization [83-86]. Gopalakrishnan et al. [12] were critical of the traditional maintenance 

prioritization practices in the industry, which is operator influenced and thus non-factual. He 

has also interpreted the connection between machine criticality and maintenance prioritization 

in an industrial context for productivity improvement. 

Recently, many researchers have employed failure mode and effects analysis (FMEA) 

and failure mode, effects, and criticality analysis (FMECA) techniques for the investigation of 

potential failure modes and reliability-centered maintenance of machine tools [87-93]. Lo et al. 

[87] introduced a risk assessment framework for the manufacturing of machine tools using a 

modified FMEA technique. Gupta et al. [88] presented reliability-centered maintenance with 

fuzzy FMEA for a milling machine. FMEA was used to identify critical failure modes of 

components and subsystems of the CNC turning center [89]. Wang et al. [90] used FMECA for 

CNC lathe with the criticality factor modified for considering the cost required for reducing 

failure rates. Du et al. [91] presented FMECA of a remanufactured machine tool with a case 

study of the hobbing machine. Zhou et al. [92] presented a reliability allocation method based 

on the cubic transformed functions of FMEA. Kim et al. [93] presented a reliability assessment 

of machine tools using FMEA with a case study of the machining center, which includes web-

based main-axis vibration data analysis program and a failure mode estimation algorithm. 

FMEA and FMECA are tools designed to identify potential failure modes for a system 

or process, to determine the risk factor associated with failure modes. These risk factors are 

further represented on a relative scale for criticality analysis. The information about various 

failure modes and associated risk factors is used to identify and implement corrective measures 

for machine components in the order of risk priority. On the application level, FMEA might be 

termed as process FMEA, design FMEA, system FMEA, etc. [94], but the basic procedure 

remains the same.  FMEA has a wide range of applications from equipment failure analysis to 

nuclear power product designs for the identification of different failure modes and risks 

associated with [94, 95]. FMEA is a 70-year-old technique, first introduced by the US Army 

and modified several times for improved analysis and specific applications [96]. Standards like 
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MIL-STD-1629A (1980), SAE-J-1739, and SMC REGULATION 800-31 were defined for 

implementing FMEA/FMECA techniques [88, 95] MIL-STD-1629A [97] is the most widely 

used standard in failure analysis using FMEA/FMECA. FMEA technique with added criticality 

analysis and ranking of failure modes or components is termed FMECA [98]. FMECA is a 

traditional approach adopted to improve the design and reliability of a system. 

FMEA proceeds with the failure mode identification and calculation of Risk Priority 

Number (RPN). RPN is an indicator of the risk associated with the failure mode of the 

component. RPN is commonly calculated as the product of Severity (S), Occurrence (O), and 

Detection (D) [96, 97].  

RPN = S x O x D        (2.1) 

S, O, and D are indicated by values on a scale from 1 to 10. S is the indication of how 

severe is the cause of failure mode, O is the frequency of occurrence of the failure mode, and 

D is the non-detection rating of the failure mode. RPN can range from 1 to 1000, where 

minimum RPN 1 indicates the least risk priority, and the maximum RPN 1000 indicates the 

highest risk priority. RPN is used for risk prioritization of failure modes of components [96, 

97]. 

FMEA with an added criticality analysis and risk prioritization of failure modes and 

components is termed as FMECA [98-101]. The procedures for performing conventional 

FMECA [100] are as follows:  

i. Identification of various failure modes, their potential effects, potential causes, and 

machine controls for detection at the component level. 

ii. Assigning S, O, and D ratings for each of the failure modes. 

iii. Calculation of RPN from S, O, and D rating values. 

iv. Classification of failure modes based on the criticality ranking. 

S, O, and D ratings for CNC lathe machine failure are defined following the MIL-STD-

1629A [97] guidelines and expert elicitation. Furthermore, to determine the RPN for each 

failure mode the Eq (2.1) is utilized, which takes the product of S, O, and D. The sum of the 

RPNs of each failure mode of a component gives the RPN of that particular component. The 

sum of the RPNs of all individual components under a subsystem gives the RPN of that 

particular subsystem. RPN is just a number having no units. It is always measured relative to 
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the RPNs of other components of the system [96, 97]. These RPNs indicate the criticality of the 

CNC lathe components and subsystems, which are further utilized to prepare a criticality 

ranking for maintenance prioritization. 

In certain applications, the criticality is calculated as the product of severity and 

occurrence [96]. Primarily, there are two approaches to determine the criticality of a failure 

mode of a component, qualitative analysis, and quantitative analysis. Qualitative analysis is 

used when the data available is limited or insufficient. Whereas, quantitative analysis is used 

when enough failure data of the system is available, and this data is used to calculate the 

criticality number. The failure data required for calculating criticality numbers include failure 

modes, failure rates, failure ratios, and failure affect probabilities. The method proceeds by 

calculating the failure mode criticality (Cm) for each failure mode followed by summing up all 

failure mode criticalities to obtain the component criticality (Cr) [100, 101]. The formulation is 

adopted from MIL-STD 1629A [97]. The failure mode criticality is calculated as; 

Cm = βαλpt         (2.2) 

where β is the conditional probability of occurrence of failure mode, α is the Failure mode ratio, 

λp is the Part failure rate, and t is the total operating time. 

Then, the component criticality is calculated as; 

Cr = ∑ (Cm)         (2.3) 

In spite of its successful implementation in an extensive range of applications, many 

researchers have criticized conventional FMEA/FMECA methodology pointing out a few 

drawbacks [96]. The following are the major drawbacks of FMEA/FMECA. 

i. The concept of RPN calculation is an extension of the risk matrix defined in MIL-

STD-1629A. There is no rationale for considering RPN as a product risk factor [87, 

98]. 

ii. Different sets of S, O, and D give the same RPN. But in real practice, the risk 

associated may not be identical [99]. 

iii. There is the erroneous assumption that S, O, and D values have the same 

significance. This may not be reasonable in practical applications [102, 103]. 

iv. RPN is not continuous from 1 to 1000. The product of S, O, and D will never make 

a few values in this range. This creates serious interpretation problems [104]. 
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Many researchers have presented various modifications to overcome the drawbacks of 

conventional FMEA [87-90, 98-107]. The fuzzy logic computational technique is extensively 

applied to improve FMEA/FMECA [98, 102-107]. The fuzzy logic computational technique is 

used to establish the correlation between S, O, and D with RPN. The fuzzy modified 

FMEA/FMECA is successfully implemented in various areas of risk assessment like LNG 

storage facility [98], purchasing process in a hospital [102], etching of an integrated circuit 

wafer [103], sterilization unit [104], aircraft landing system [105], emergency department in a 

hospital [106], medical product development [107], etc. 

2.6 Machine Condition Monitoring 

Machine condition monitoring makes the primary component of predictive maintenance 

[20, 108]. The advent of machine condition monitoring has positively influenced machine 

reliability management. The availability of monitored data in digital format opens a wide 

opportunity for the industries to redefine the limits of the smart manufacturing and maintenance 

paradigm [73, 109]. It is the procedure of measuring the specific machine parameters while in 

operation to observe any significant portent that could be indicative of an impending failure. It 

is a maintenance strategy where appropriate maintenance is done based on the operating 

condition of the machine. Condition monitoring of mechanical systems involves the continuous 

measuring of specific equipment parameters, taking note of any irregularities that would affect 

the normal operation of the equipment and lead to catastrophic failure of the system 

components. In any mechanical system, the machine operating condition is monitored using 

sensor data as a vibration signal, shock-pulse, acoustic emission, bearing temperature, oil 

debris, oil pressure, and electric current variations [110, 111].  

Condition monitoring includes specific machine data monitoring and acquisition 

followed by data analysis to convert the monitored data into useful information indicating 

machine health status. In order to monitor specific machine data, respective sensors are 

mounted around the machine critical locations. A data acquisition system converts the raw 

signal read from the sensors into digital data and is stored for further analysis. Relevant 

information about the health status of the machine is extracted from this discrete digital data 

[112]. 
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2.6.1 Vibration-Based Condition Monitoring 

Machine vibration is one of the most suitable and trustable condition monitoring signals 

to know about the machine health condition. The amplitude of the vibration signal indicates the 

severity of the fault, while the frequency of the vibration signal indicates the source of the fault. 

In an operating machine, there are many forms of excitations in terms of time-varying forces 

and torques like forces due to unbalance, forces due to misalignment, dynamic forces at bearing 

locations, etc. [112]. In rotating machinery, the rotational speed of the machine corresponds to 

the excitation frequency or forcing frequency. The diagnostic analysis and fault detection of a 

machine involves the understanding of vibration system characteristics by measuring its 

transfer function or Frequency Response Function (FRF). FRF is the ratio of the response of 

the system to its excitation. In a mechanical system, the individual components are considered 

as a continuous system, whose natural frequencies can be estimated once their stiffness and 

mass are known. These frequencies mapped against the monitored vibration signal are used to 

determine the health status machine components [112-114]. The Fast Fourier Transform (FFT) 

of the monitored time-series vibration signal can detail all fault frequencies associated with the 

machine. FFT can define individual frequencies for the detection of faults like misalignment, 

cracked shaft, bowed and bent shaft, unbalanced shaft, looseness, rub, and bearing defects. 

Separate frequencies are established for bearing inner race, outer race, cage, and balls or rollers 

[115]. Similarly, fault frequencies are defined for gear faults [52, 116, 117]. The prognostics of 

a machine involves the understanding of trends portrayed by the condition monitoring signal 

over a long-term time span [6, 118]. Statistical feature extraction-based data mining techniques 

are popularly employed for vibration signal trend analysis [116, 119, 120]. 

The machinery vibration can be measured in terms of displacement, velocity, or 

acceleration. A simple dial gauge, linearly variable displacement transducer (LVDT), proximity 

sensor, capacitive probe, position potentiometer, etc. can be used for measuring displacement. 

A self-generating low-impedance vibration velocity transducer is used for linear vibration 

velocity measurements. Acceleration measurement is the most widely employed method for 

vibration monitoring. Acceleration measure is based on the measurement of relative motion of 

a suspended mass in a casing, where the casing is subjected to a motion. A sensing element is 

attached to the suspended mass, whose motion is calibrated to the provided measure of 

acceleration. Piezoelectric accelerometers use piezoelectric crystals as a sensing element, which 

is placed on the base and top of a mass on the accelerator. Piezoelectric crystals are sensitive to 
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motion in a particular direction. Therefore, it is aligned along the most sensitive axis inside the 

accelerometer housing. The piezoelectric accelerometer is mounted on the surface of the 

machine to be monitored utilizing a wax, adhesive, magnet, or stud. Accelerometers are also 

available with a handheld probe.  

Figure 2.3 shows popularly used piezoelectric accelerometers. The accelerometers can 

be uniaxial measures vibrations only in one direction or triaxial that measures vibrations in all 

three directions. The sensitivity of an accelerometer is defined after a suitable charge-to-voltage 

amplifier and is expressed as mV/ms-2. The amplitude of vibration measurement is expressed 

in g units, where ‘g’ is the acceleration due to gravity (9.8 ms-2) [112]. 

 

Figure 2.3 Accelerometers used for vibration measurement [112] 

2.6.2 Vibration Data Acquisition and Storage 

Sensors mounted on the machinery measure analog signals which are collected by an 

analog-to-digital converter.  The purpose of the data acquisition system is to accurately 

represent the measured analog signal in digital format. A data acquisition system is concerned 

with two important aspects the sampling frequency and the digital bit size. An inadequate 

sampling frequency can cause a serious error in data acquisition called aliasing error. In order 

to prevent aliasing, the signal sampling frequency has to be at least two times higher than the 

excitation frequency present in the machine, which is known as the Nyquist sampling theorem 

[66, 121]. Another important aspect of data acquisition is the digital bit size or bits per sample, 

which determines the measurement resolution. The required measurement resolution is the 

smallest detectable change in the monitored signal [121]. If the assigned digital bit size is above 
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the required measurement resolution, it is known as digitalization error. To avoid digitalization 

error, it is preferred to have a higher bit size for the data acquisition system [112].  

During the selection of an appropriate transducer to measure the mechanical vibrations, 

the characteristic parameters to be considered include frequency response, dynamic range, and 

sensitivity. Frequency response represents the natural frequency of the transducer itself. While 

performing measurements this frequency response region has to be avoided. The dynamic range 

relates to the maximum and minimum quantity that can be measured. Sensitivity defines the 

level of accuracy expected for the signal measurement. It is the smallest fractional change in a 

device that can be measured [112]. 

 

Figure 2.4 A typical multi-channeled data acquisition system 

On expanding the condition-based maintenance to predictive maintenance the condition 

monitoring data has to be stored for later analysis. Digital data recorders like a memory card or 

a computer hard drive are more prevalent for field data recording. Modern data recorders or 

data acquisition systems have built-in anti-aliasing low-pass filters that act before analog to 

digital conversion. These devices are multi-channeled for providing simultaneous access for 

multiple transducers. A typical multi-channeled data acquisition system is shown in Figure 2.4. 

2.6.3 Feature Extraction and Feature Selection 

Vibration signal signature features revealing superior machine degradation patterns are 

extracted from raw time-series vibration data. Signals from rotating machines operating at 

constant speed are categorized under stationary deterministic signals. The analysis of stationary 

signals is performed in the time, frequency, and time-frequency domain to extract features 
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representing machine health degradation trends. The time-domain features give an overall sense 

of the time-series signal and best portray the degradation pattern [20]. The predominant 

frequencies at which mechanical events occur are analyzed by FFT. As mentioned in ‘section 

2.6.1’, every mechanical component or event has a distinct frequency of occurrence, but it does 

not provide any information on the degradation pattern. The joint time-frequency domain 

features give an in-depth portrayal of short mechanical events on the time domain. 

The selection of sensitive features from among the extracted features is a significant step 

in data preparation for prognostic regression analysis. The primary task of feature selection is 

to discard irrelevant and redundant features, which might cause the overfitting of an evolved 

prognostic model. Feature selection is usually performed using various feature ranking metrics, 

which include monotonicity, trendability, linear correlation, etc. Neighborhood Component 

Analysis (NCA) is a feature learning algorithm that can be effectively implemented to prioritize 

features for regression analysis through a feature weighting process.   NCA is a non-parametric 

approach, characterized by a feature weighting scheme to select the best subset of features based 

on the minimization of an objective function that measures the average leave-one-out regression 

loss over a training data set. The mean absolute deviation of the response values of a randomized 

regression model from the actual response values is considered as the regression loss function. 

The algorithm determines the weighting vector w that corresponds to the feature vector Xi. A 

regularization parameter λ is used to avoid overfitting of the NCA model [122]. The regularized 

NCA model objective function 𝑁𝐶𝐴𝑜𝑏𝑗 is represented in Eq (2.4). 

𝑁𝐶𝐴𝑜𝑏𝑗 =  ∑ 𝑃𝑖 −𝑛
𝑖=1  λ ∑ 𝑤𝑚

2𝑟
𝑚=1       (2.4) 

where Pi is the probability of actual RUL being correctly predicted, wm is the weight assigned 

to the mth feature, r is the number of features, n is the number of training data. Finally, a relative 

threshold value of feature weights is set as a cut-off criterion for selecting features for 

prognostic analysis [122,123]. Table 2.2 presents the outline of regularized NCA algorithm. 
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Table 2.2 Regularized NCA algorithm outline 

Neighborhood Component Analysis algorithm outline 

Step 1 
Recognize training set S={(Xi,xi), i= 1,2,..N}, number of failure runs N, actual 

RUL xi 

Step 2 Perform 10-fold cross-validation on training set S 

Step 3 Train the NCA model for each λ value using S in each fold. 

Step 4 Fit a Gaussian process regression (GPR) model using the selected features. 

Step 5 
Compute regression loss for the corresponding test set in the fold using the GPR 

model. 

Step 6 Compute the average loss obtained from the folds for each λ value. 

Step 7 Tune regularization parameter λ to obtain minimum regression loss 

Step 8 Fit NCA model with 𝜆 𝑏𝑒𝑠𝑡 to obtain feature weights 

Step 9 Assign a relative threshold as the cut-off criterion for feature selection 

Step 10 Identify the relevant features 

2.7 Prognostics Analysis of Condition Monitoring Data 

Prognostics is primarily the forecasting of upcoming failures based on the present and 

past operating conditions of machines. The computational algorithm for predictive analytics is 

the most crucial and challenging step in machinery failure prognostics. A prognostic algorithm 

generally estimates the RUL or TTF by analyzing the historical and current operating condition 

of the machine. Several RUL prediction approaches are being employed for machinery 

maintenance decision-making. These approaches can be based on the physics of the failure 

mechanism or utilizing the machinery failure data (data-driven). Based on the basic techniques 

and methodologies, the prognostics approaches can be classified into four groups as physics-

based approaches, statistical model-based approaches, AI approaches, and any combination of 

these approaches (hybrid approaches) [6, 18, 54, 124, 125].  

Physics-based approach: The physics model-based approach demands a thorough knowledge 

of the physics of failure mechanism, which is used to develop an analytical model to represent 
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the degradation processes of machinery. For complex mechanical systems, however, it is 

difficult to understand the physics of the failure mechanism and therefore this approach has a 

limited application.  

Statistical model-based approaches: The statistical model-based approaches require only 

empirical knowledge about the failure mechanism for establishing the relationship between the 

failure mechanism and the statistical models. These statistical model-based approaches are also 

effective in describing the uncertainty associated with the RUL prediction [17].  

Artificial Intelligence (AI) approaches: The AI approach uses minimal technical aspects of 

the system, where intelligent learning algorithms are employed to learn the machinery health 

degradation patterns [126, 127]. The algorithms learn the machine degradation data to capture 

its health degradation pattern. 

2.7.1 Data-Driven Approaches for RUL Estimation  

In a data-driven approach, the historic machine monitoring data representing the health 

status degradation are used for training computational algorithms to evolve intelligent 

predictive models. These predictive models can be employed with real-time machine 

monitoring data for future health status prediction and RUL estimation [18-20, 128]. The data-

driven methods are learning-based approaches that discover viable features and prognostics 

models from the acquired data. These techniques include statistical models and AI models that 

infer health status information directly from the monitored data. The statistical prediction 

models are developed by fitting the available machinery failure data into random coefficient 

models under a probabilistic method without any physics expertise involved. The statistical 

model-based approaches are the most popularly used prognostic technique for decades. 

Random coefficient models, autoregressive models, Wiener process models, Gamma process 

models, inverse Gaussian process models, Markov models, proportional hazards models, 

exponential degradation model, etc. are the most widely used statistical models for machinery 

health prognostics [17, 129, 130]. 

AI is a recently established computational technique that grabbed widespread attention 

in the area of machinery health diagnostics and prognostics. AI approaches have been receiving 

increasing attention as it is capable of dealing with prognostics problems of complex 

mechanical systems because it depends only on the machinery failure data instead of building 

physics models or statistical models [56]. Unlike the physics-based or statistical model-based 
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approaches, the AI approaches are hard to be explained or lack transparency in operation and 

are thus called the black box. Machine learning and deep learning AI models are very popular 

in machinery health diagnostic and prognostic analysis [21, 22]. The most recognized machine 

learning and deep learning architectures for failure prediction and RUL estimation include 

neural fuzzy systems, ANN, SVM, SVR, KNN, GPR, RNN, LSTM, DBN, CNN, etc. [21, 22, 

27, 127, 131]. Figure 2.5 shows a comparison between the various machinery health 

management approaches, which is a clear indication of why many recent research works are 

focused on deep learning techniques. 

 

Figure 2.5 Comparison between (a) physics model-based approaches, (b) statistical 

model-based/ AI/machine learning approaches, and (c) deep learning approaches 

2.7.2 RUL Estimation Using Exponential Degradation Estimator Models 

An exponential degradation model is utilized for estimating the RUL of the mechanical 

component. This computational methodology is mostly employed when the component 

experiences a cumulative degradation, which is the common degradation phenomenon of any 

mechanical system. The exponential degradation model fits into the machinery health 

degradation indicator or Health Indicator (HI). This degradation model is extrapolated to find 

a future time step where the degradation model crosses a predefined threshold value. The 

difference between this future time step and the present time step gives the required RUL. The 

failure threshold is usually defined based on previous failure history or chosen as a safe value 

before the faulty zone on HI. The exponential degradation model is defined in Eq (2.5) as: 

𝑆(𝑡) = 𝜑 + 𝜃(𝑡)𝑒(𝛽(𝑡)𝑡+𝜀(𝑡)−
𝜎

2
)
       (2.5) 
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where, ϕ is the model intercept, which is constant. θ(t) is a random variable modeled as a 

lognormal distribution, β(t) is a random variable modeled as a Gaussian distribution, ε(t) is the 

model additive noise and is modeled as a normal distribution, σ is the Variance [132]. This 

degradation model is fit to the constructed HI to predict the RUL of the mechanical component 

in real-time. 

Tseng et al. [130], Wen et al. [133], and Zhang et al. [134] recently employed 

exponential models for predictive analytics and RUL estimation. Gebraeel et al. [135], first 

introduced the exponential model for RUL prediction. It is a model-based analytical method 

that can incorporate both expert knowledge and information from measured data [124, 129]. 

The exponential models are highly suitable for representing the degradation patterns of a 

mechanical component, where an exponential-like degradation process can be observed [124, 

129, 135]. However, the exponential models are not explored in depth for predictive analytics. 

2.7.3 RUL Estimation Using Machine Learning Approaches 

Machine learning algorithms are widely employed for the failure classification and 

prediction of mechanical systems [22]. SVM is the most popularly used machine learning tool 

for classification problems of machinery failure prediction and RUL estimation [127, 136]. In 

the past decade, SVM has found its space in regression analysis in real-value function 

estimation problems like time-series data trend analysis and predictions. In regression analysis 

SVM is also termed as SVR, the basic operation principle remains the same for both 

classification and regression analysis. Like NCA, SVM is also a non-parametric technique that 

relies on kernel functions [137]. 

Consider a training dataset T = {xn,yn}, where xn is the feature set of N observations and 

yn is the corresponding RUL response vector. The SVM objective is to determine a function f(x) 

as represented in Eq (2.6), which is a derivative of yn and the value for each training point x. 

𝑓(𝑥) =  ∑ (𝛼𝑛 − 𝛼𝑛
∗ )(𝑥𝑛

′ 𝑥)𝑁
𝑛=1 + 𝑏         (2.6) 

where αn and αn
* are non-negative multipliers for each observation xn. and b is the bias term. If 

either αn or α*n is not zero, then the observation x’n is called the support vector. 

Eq (2.6) represents the linear SVM regression equation. Replacing the dot product x’nx 

with a non-linear kernel function k gives the non-linear SVM as represented in Eq (2.7). 
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𝑓(𝑥) =  ∑ (𝛼𝑛 − 𝛼𝑛
∗ )𝑘(𝑥𝑛

′ , 𝑥)𝑁
𝑛=1 + 𝑏         (2.7) 

The function f(x) is used to predict new values of the regression problem [137, 138]. The 

implementation of SVM for degradation data training and RUL estimation requires a good 

setting for hyperparameters, which is considered highly complicated. The hyperparameter 

setting largely influences the prediction accuracy of the evolved regression model. 

SVM is one of the most popular machine learning techniques proposed by Vapnik in 

1999 [139], which has unfurled a wide scope for implementation in machinery health 

management problems [139-144]. SVR is the popular application form of SVM, which is used 

for mapping the machine degradation indicators into nonlinear regressions for RUL prediction 

[145-152]. 

2.7.4 RUL Estimation Using Deep Learning Approaches 

Deep learning approaches have emerged as a promising computational tool for the time-

series machinery health degradation analysis for failure prediction and RUL estimation. In deep 

learning or deep neural network, the data runs through several layers of a neural network 

algorithm. Deep learning, also known as deep structured learning consists of multiple layers on 

non-linear processing units. Deep learning is a phrase that leverages a series of nonlinear 

processing units comprising multiple layers for the flow of information throughout the model. 

Deep learning adopts a hierarchy of data transformation where the present layer accepts the 

outcome from the previous layer which is processed and passed to the next layer. Deep learning 

supports learning from both labeled and unlabeled data [153]. This novel learning approach has 

been successfully implemented in the fields of computer vision, pattern recognition, image 

classification, face recognition, facial emotion recognition, natural language processing, speech 

recognition, health care, time-series data classification, regression, and many more [153, 154].  

As shown in Figure 2.6, a deep learning framework for machinery health prognostics is 

generally composed of the data acquisition stage, deep neural network learning stage, intelligent 

predictive model construction, and the final machinery health status prediction stage. An 

intelligent predictive model is evolved from the trained deep learning algorithm, which is 

further utilized for machinery health prognostics using real-time machine monitoring data [21, 

155]. 
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Figure 2.6. Generalized deep learning framework for machinery health prognostics using 

time-series data 

The LSTM neural network, an advanced variant of RNN, is identified as a powerful 

computational tool for mining critical information from raw sequential time-series data. In 

1997, Hochreiter and Schmidhuber [156] introduced the LSTM neural network to address the 

vanishing/exploding gradient problem while training using RNN. LSTM has an additional 

memory unit to remember information for long periods enabling the network to learn long-term 

dependency, which makes it suitable for RUL estimation from time-series data. A self-recurrent 

connection node within the memory unit ensures that the long-term information gradient can 

pass across many time-steps of time-series sequence data without vanishing. The memory unit 

in LSTM provides storage for information from previous time-steps and passes it to current 

outputs ensuring the long-term memory in the form of weights that changes during training and 

the short-term memory in the form of ephemeral activation functions [157]. 
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Figure 2.7 Generalized LSTM network architecture 

Figure 2.7 shows the generalized LSTM network architecture having three control gates; 

input gate, output gate and forget gate; and two information states; the long-term state C(t) and 

the short-term state H(t). Initially, the LSTM architecture had only input and output gates, later 

Gers et al. [158] in 2000 have introduced the forget gate. The LSTM architecture with input 

gate, output gate and forget gate is entitled as vanilla LSTM. This vanilla version is now 

popularly referred to as the LSTM architecture. The input gate controls the information stored 

in the memory cell and output gates control the information extraction from the memory cell. 

The forget gate controls the discarding of previous information from the memory cell. In an 

LSTM cell, the input gate combines the current input X(t), previous output H(t-1), and the 

previous memory cell state C(t-1). ft, it, ot indicate the three-control gate outputs of forget gate, 

input gate, and output gate, respectively. The Eqs (2.8), (2.9), and (2.10) represent the gate 

operation of forget gate, input gate, and output gate, respectively. σ , g, and h are the gate, input, 

and output activation functions, respectively; ⊗ and ⊕ denote element-wise multiplication and 

element-wise addition of vectors, respectively.  
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𝑓(𝑡)  =  𝜎(𝑈𝑓 . 𝑋(𝑡)  + 𝑉𝑓 . 𝐻(𝑡−1)  + 𝑊𝑓 ⊗ 𝐶(𝑡−1)  +  𝑏𝑓 )    (2.8) 

where Uf, Vf, and Wf are the forget gate weights associated with X(t), H(t−1), and C(t−1), 

respectively, while bf is the bias weight vector. The output gate combines the current input X(t), 

previous output H(t-1), and the previous memory cell state C(t-1).  

𝑖(𝑡)  =  𝜎(𝑈𝑖. 𝑋(𝑡)  + 𝑉𝑖. 𝐻(𝑡−1)  +  𝑊𝑖 ⊗ 𝐶(𝑡−1)  +  𝑏𝑖 )   (2.9) 

where Ui, Vi, and Wi are the input gate weights associated with X(t), H(t−1), and C(t−1), respectively, 

while bi is the bias weight vector. The activation function values of forget gate f(t) at current 

time stem t are computed based on the current input X(t), previous output H(t-1), and the previous 

memory cell state C(t-1). 

𝑜(𝑡)  =  𝜎(𝑈𝑜. 𝑋(𝑡)  +  𝑉𝑜. 𝐻(𝑡−1)  + 𝑊𝑜 ⊗ 𝐶(𝑡−1)  +  𝑏𝑜 )   (2.10) 

where Uo, Vo, and Wo are the output gate weights associated with X(t), H(t−1), and C(t−1), 

respectively, while bo is the bias weight vector. The current layer input, l(t) is computed as 

presented in Eq (2.11).  

𝑙(𝑡)  =  𝑔(𝑈𝑙. 𝑋(𝑡)  + 𝑉𝑙. 𝐻(𝑡−1) + 𝑏𝑙)      (2.11) 

where Ul and Vl are the layer input weights associated with X(t) and H(t−1) respectively, while bl 

is the bias weight vector. The current memory cell state C(t) is computed as presented in Eq 

(2.12). 

𝐶(𝑡)  =  𝑙(𝑡)  ⊗ 𝑖(𝑡)  ⊕ 𝐶(𝑡−1)  ⊗ 𝑓(𝑡)     (2.12) 

Finally, the current layer output H(t) is computed as presented in Eq (2.13). 

𝐻(𝑡)  = ℎ(𝐶(𝑡) ) ⊗ 𝑜(𝑡)       (2.13) 

LSTM evaluates the temporal relationship between inputs and outputs following a 

forward learning principle using the Eqs. (2.8) to (2.13). The error values between the input 

data and the output data of each layer are computed and are reversely seeded to the input gate 

and forget gate, based on which the weights associated with each gate are updated. This process 

is repeated for a fixed number of iterations and an optimal value of weights and bias terms are 

obtained [157, 159].  
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The Bi-LSTM network learns the bidirectional long-term dependency between time-

steps of time-series sequence data, enabling the network to learn from the complete time-series 

at each time step. The bi-LSTM network comprehensively considers the temporal correlation 

information between inputs and outputs in both forward and backward time-step directions 

simultaneously, which makes it perform excellent for RUL estimation problems. The 

generalized bi-LSTM network architecture is represented in Figure 2.8 where the same input 

data is fed into forward LSTM cells and backward LSTM cells of respective forward and 

backward LSTM layers [160,161]. 

 

Figure 2.8 Generalized bi-LSTM network architecture 

The forward LSTM is computed as: 

𝐻(𝑡)
⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝐿𝑆𝑇𝑀(𝑥(𝑡), ℎ⃗ (𝑡−1))        (2.14) 

The backward LSTM is computed as: 

𝐻(𝑡)
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐿𝑆𝑇𝑀(𝑥(𝑡), ℎ⃗⃖(𝑡+1))        (2.15) 
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The bi-LSTM network computes the forward LSTM hidden state 𝐻(𝑡)
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the backward 

LSTM hidden state 𝐻(𝑡)
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗  simultaneously at each sequence time-step t. LSTM(.) denotes the 

LSTM evaluation defined in Eqs (2.8) to (2.13). Finally, the two hidden states are concatenated 

to compute the current layer output 𝑦(𝑡) as: 

𝑦(𝑡)  = 𝑊ℎ⃗⃗ 𝐻(𝑡)
⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑊ℎ⃗⃗⃖ 𝐻(𝑡)

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑏𝑦       (2.16) 

where 𝑊ℎ⃗⃗  and 𝑊ℎ⃗⃗⃖ are the forward and backward LSTM layer weights; 𝑏𝑦 is the output layer 

bias weight vector [163].  

Recently, the LSTM network and its variants are widely used for learning machine 

degradation patterns from time-series sensor data for RUL estimations [163-178]. Elsheikh et 

al. [160], Song et al. [179], Zhang et al. [180], Wang et al. [181] have used bidirectional LSTM 

(bi-LSTM) and Essien et al. [182] used convolutional LSTM for RUL estimation. Xia et al. 

[162] and Zhang et al. [183] have used a convolutional LSTM and convolutional bi-LSTM 

ensemble framework respectively for the RUL estimation. 

The machinery prognostics data are time-series sensor signals, which are usually 

analyzed to develop a regression model for RUL estimation. RNN and its variant LSTM have 

emerged as the most popular AI approach for handling sequential data like time-series sensor 

signals using its ability to encode temporal information. The initial implementations of RNN 

have reported its suitability for RUL prediction [184]. Improved accuracy of RUL prediction 

was achieved by enhancing the memory capacity of basic RNN architecture which is named 

Eco-State Network [185, 186]. The LSTM architecture has subsequently proved to be more 

effective than simple RNN architecture. Fault diagnostics and prognostics of aero-engine units 

[163] and machine tools [187] mark the initial implementation of LSTM architecture for 

machinery health prognostics. He et al. [172] have proposed a long short-term memory network 

with multi-resolution singular value decomposition to accurately locate the fault in vibration 

signals, and minimize the effect of interfering noise. ElSaid et al. [166] have utilized LSTM for 

predictive analytics of time-series sensor data with the Ant Colony Optimization approach for 

optimizing the gates within LSTM. Further, this work was improved by combining CNN with 

LSTM forming a convolutional bi-directional LSTM [188]. CNN was used to extract robust 

features from raw sensor signals sequential input and bi-directional LSTM was used to encode 

temporal information of sequential output of the convolution layer. Zhao et al. [189] have 
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proposed a hybrid approach that combines manual feature extraction and automatic feature 

learning using an enhanced gated-RNN/Gated Recurrent Unit (GRU) for machinery health 

monitoring. Elsheikh et al. [160] proposed a bidirectional handshaking LSTM architecture for 

RUL prediction with a short sequence of monitored data with random starting health conditions 

and requires a lesser assumption on actual degradation phenomenon. Malhotra et al. [190] 

proposed an LSTM based encoder-decoder architecture where the encoder transforms a 

multivariant input sequence into a fixed-length vector which the decoder translates into a target 

sequence. Xia et al. [162] proposed a hybrid deep learning framework based on convolutional 

bi-directional long short-term memory with multiple time windows for accurately predicting 

RUL. The algorithm addresses the inconsistency among the length of condition monitoring data 

and develops base models with different time window sizes. Zhang B. et al. [171] have 

formulated bearing health monitoring as a classification problem using LSTM RNN using 

waveform entropy as the degradation indicator for bearing health degradation. Wu Y. et al. 

[165], Zhao et al. [169], Wang et al. [170], Zhang et al. [180], and Chen Y. et al. [191] have 

also developed deep long short-term memory network architectures for RUL estimation based 

on time-series sensor signals. LSTM and other variants of RNN are reported as the most suitable 

computational tool for RUL estimation. A majority of recent literature on machinery health 

prognostics has implemented LSTM architecture as such or with modifiers for prognostics 

health indicator construction and RUL predictions. 

2.7.5 Bayesian Optimization of Hyperparameters for Learning Algorithms 

The hyperparameter optimization and network architecture selection are other major 

challenges before the successful implementation of a deep learning algorithm for prognostics 

analysis of industrial machinery. The selection of hyperparameters including both training and 

structural parameters has a direct influence on the performance of the predictive models. 

Generally, this optimization is performed by trial-and-error methods, which is arduous and 

time-consuming [162, 168]. Recently, a few literature have discussed the hyperparameter 

optimization algorithms employing ant colony optimization [166], particle swarm optimization 

[171], comparative analysis [179], grid search [165, 170, 182], Bayesian search optimization 

[161, 173], etc. to reduce the computational complexity and improve prediction accuracy.  

Bayesian optimization is an effective computational tool for optimizing non-

differentiable, discontinuous, and computationally expensive functions. In the Bayesian 

optimization algorithm framework, the unknown hyperparameters of deep learning architecture 
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are assumed to be random, independent, and have their prior distributions. The algorithm 

attempts to minimize a scalar objective function f(x) for x in a bounded domain χ. The deep 

learning architecture is represented within the function f(x) that returns the deep learning 

validation error. Bayesian optimization internally maintains a Gaussian process model of the 

objective function f(x) and uses it to train the computational model. This Gaussian process 

model is updated at each new evaluation of f(x) and the next x point is determined using an 

acquisition function Acq(x) performing a local search to find the best apparent feasible point 

satisfying the constraints. The target of Bayesian optimization is to determine the optimum 

point 𝑥𝑏𝑒𝑠𝑡, which is the value of x for which f(x) attains its minimum. 𝑥𝑏𝑒𝑠𝑡 is computed as: 

𝑥𝑏𝑒𝑠𝑡  = argmin
𝑥𝜖𝜒

(𝑓(𝑥))         (2.17) 

After each new evaluation of f(x), the next most potential evaluation point 𝑥𝑛𝑒𝑥𝑡 is the 

value of x for which Acq(x) attains its maximum. 𝑥𝑛𝑒𝑥𝑡 is computed as: 

𝑥𝑛𝑒𝑥𝑡  = argmax
𝑥𝜖𝜒

(𝐴𝑐𝑞(𝑥))         (2.18) 

The Bayesian optimization algorithm repeats the Gaussian process modeling and 

acquisition function at each evaluation of the objective function f(x). The algorithm can 

terminate at a predefined time limit, maximum iterations, or any other termination criteria 

reflecting its performance. The Bayesian optimization can be deterministic or stochastic 

because the optimization results are not reproducible for the same point x [173, 121, 192]. Table 

2.3 presents the outline of a Bayesian optimization algorithm for hyperparameter optimization. 
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Table 2.3 Bayesian optimization algorithm outline 

Bayesian optimization algorithm outline 

Step 1 Randomly initialize a set of hyperparameters from the bounded domain of χ 

Step 2 Obtain the new set of hyperparameters 

Step 3 Perform Gaussian process regression to evaluate f(x) 

Step 4 Determine the next most potential evaluation point 𝑥𝑛𝑒𝑥𝑡 based on Acq(x) 

Step 5 Add results to solution space 

Step 6 Repeat Steps 2 to 5 until the termination criterion is reached 

Step 7 Record the best hyperparameters 𝑥𝑏𝑒𝑠𝑡 

2.8 Maintenance Decision Support System 

The IoT is having a profound effect on the industrial sector. Utilizing the full benefits 

from IoT, the industrial predictive maintenance approach can be implemented in its intact form 

[73, 78]. The advancements in sensor technologies supporting IoT, cloud storage and cloud 

computing, and intelligent computational approaches have offered an easy to deploy end-to-

end communication paradigm which is now popularly known as IIoT [9, 194]. Figure 2.9 shows 

a typical architecture of IIoT systems portraying different levels of IIoT. The bottom level of 

IIoT architecture includes the machines or devices labeled as the ‘things’, then comes the 

internet gateway to the cloud space and data pre-processing followed by the data management 

stage, and finally, the cloud data center where the real-time intelligent computations are 

occurring.   
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Figure 2.9 Typical architecture of IIoT systems 

Maintenance decision-making is a very crucial task in the industry that has a 

considerable impact on machine operability and has to be carried out with minimal impact on 

the production cycle in the industry [26, 194]. Effective maintenance decision-making requires 

the integration of several factors including the machine health condition, machine work 

schedule, system configuration, maintenance service, spare parts availability, and maintenance 

costs [14, 195, 196].  The primary aim of maintenance decision-making is to have minimum 

machine downtime and improved quality of products [197]. Cloud computing and big data 

analytics with predictive maintenance decision-making are used to develop an integrated 

maintenance recommendation system to improve asset lifecycle [26, 198]. A key performance 

indicator of machinery namely, RUL, TTF, mean time between failure (MTBF), or mean time 

to repair (MTTR) is determined as the maintenance decision support tool. Intelligent 

computational models and the computational algorithm to determine the key performance 

indicator are made available in the cloud space [1, 3]. The decision support system using models 

is popularly known as a model-driven decision support system. In a model-driven maintenance 

decision support system, the real-time machine health condition data is evaluated against the 

computational models to estimate the key performance indicator to predict future failures [199]. 

This information is made available on a maintenance decision support dashboard to serve as a 

maintenance decision-making paradigm for industrial machines. This maintenance decision 

support dashboard provides managers with models and analysis capabilities that can be used 

during the process of maintenance decision-making [199, 200]. The system is also been used 

to develop an autonomous warning system on approaching failures [193, 201]. 
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2.9 Gap Areas 

Predictive maintenance has become the new trend of PHM for industrial equipment. The 

ability to predict the need for maintenance of the complex machine tool systems at a certain 

future point is one of the main challenges in the PHM of the manufacturing industry. An 

intelligent predictive health management paradigm for manufacturing machinery is inevitable 

in Industry 4.0. The tool condition monitoring (TCM), problems such as cutting tool wear, 

cutting tool breakage, and chatter are largely been investigated by the research communities 

over decades, whereas the research investigations on machine tool functional component 

condition monitoring and maintenance are limited and inadequate for Industry 4.0 

implementations. The manufacturing industries are pulled back from implementing the 

predictive maintenance approach due to its huge capital investment for the installation of 

sensors and data acquisition systems, and difficulties to maintain complex computational 

algorithms. From the research point of view, studying the industrial machinery health 

degradation and failure analysis has practical complications to implement. Most research works 

are depended on machine degradation and failure data available in the open repositories, which 

are used for the development and validation of machinery failure diagnostics and prognostics 

algorithms. Advanced computational algorithms based on deep learning models are widely 

employed for solving real-world problems. It is also found effective for sequence data like time-

series machine health degradation data. The deep learning architecture design and 

hyperparameter optimization are the major challenges that need to be addressed for the 

successful implementation of intelligent predictive analytics. On account of the industry 4.0 

era, the advanced sensor technologies with IoT support, cloud storage, and big data analytics 

could be integrated to develop a model-driven intelligent maintenance decision support 

dashboard. The gaps identified from the literature are summarized as: 

i. Limited literature is available in the public domain on prognostics and predictive 

maintenance of machine tools. The available literature is largely focused on cutting tool 

condition monitoring and tool wear analysis. 

ii. The possibility of a systematic solution for the high installation costs for sensors and 

data acquisition systems in the implementation of predictive maintenance is never 

discussed. 
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iii. Researchers seldom generate experimental machine health degradation data for the 

prognostic analysis. The available research works are mostly based on machine health 

degradation data available in open repositories. 

iv. Deep Learning techniques are not explored in depth for Predictive Maintenance 

applications. On an implementation level, deep learning architecture design, hyper-

parameter optimization, and data training are still challenging and unpredictable. 

v. IoT-based intelligent maintenance decision support system for the manufacturing sector 

is a shortfall in the present Industry 4.0 era. 

In view of the above, there is a strong need for in-depth scientific understanding and 

detailed investigations on the development of condition monitoring and predictive maintenance 

of machine tool systems addressing the huge capital investments and large complexity of its 

implementation. It is proposed to take up the research on the predictive maintenance of machine 

too systems, which involves the maintenance prioritization technique to limit predictive 

maintenance approach to the most critical subsystems are components, generate machine health 

degradation data, easy employment of intelligent data-driven techniques for prognostic 

analysis, and IoT-based intelligent maintenance decision support system. 

2.10 Aim and Objectives 

The thesis work aims to employ a systematic approach for machine tool components 

maintenance prioritization and data-driven intelligent algorithms for predictive maintenance. The 

thesis validates the developed algorithms using simulated run-to-failure experimental data. The 

primary objectives of the work are: 

i. To identify the most critical component of a Lathe Machine Tool through failure 

analysis. 

ii. To perform vibration-based Condition Monitoring for the selected features of the 

identified critical component. 

iii. To conduct optimization/simulation-based analysis to predict the RUL of the identified 

critical component. 

iv. To develop a remote maintenance decision-making dashboard over an IoT-based cloud 

data analytics platform for integrating the evolved prognostic model. 
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2.11 Flowchart of Thesis 
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2.12 Summary 

An intelligent predictive health management approach for the manufacturing industry is 

inevitable in the present generation of smart manufacturing. The manufacturing industry could 

utilize the recent developments in sensor technologies and computational capabilities to 

develop a predictive maintenance paradigm to ensure the well-operating condition of the 

functional components and subsystems of machine tool systems. However, the implementation 

of predictive maintenance for machinery health management has enormous challenges, which 

have a certain scope for discussion in the present era of Industry 4.0. Predictive maintenance 

involves various complex stages of implementation like machinery health degradation data 

acquisition as time-series sensor signals, which are analyzed for fault detection, prediction, and 

maintenance decision making. Further, there is a lack of literature available in the public domain 

addressing the major issue on the practical implementation of predictive maintenance like the 

huge installation costs for sensors and data acquisition systems, also on optimizing the 

architectural and learning parameters of the data-mining technique. Thus, the present work aims 

to investigate the practical implementation of predictive maintenance for CNC lathe machine 

tool systems with intelligent data-driven computational techniques for machinery health 

degradation pattern learning. The next chapter presents the pre-requisite analysis for the 

implementation of predictive maintenance on the criticality analysis of the CNC lathe machine 

tool for the maintenance prioritization of functional components and subsystems, and to identify 

its potential failure modes. 



 

 

Chapter 3  

                                                                                      

Machine Tool Criticality Analysis and Maintenance 

Prioritization 

3.1 Introduction 

As mentioned in the previous chapter ‘section 2.5’, machine criticality analysis is a 

prerequisite for employing the predictive maintenance strategy for industrial systems. Machine 

criticality analysis involves the identification of the most critical components and subsystems 

of the machine system and their associated failure modes. As the predictive maintenance 

approach is based on machinery condition monitoring data, only those components and 

subsystems that deteriorate over time emitting signals indicating health degradation are 

considered for predictive maintenance. Also, the information on potential failure modes 

associated with these components and subsystems is necessary for the selection of the most 

suitable sensors for condition monitoring. The machine criticality analysis thus provides a 

maintenance prioritization of machinery components and subsystems, assisting the user to 

choose only those components and subsystems which are critical to be considered for predictive 

maintenance and hence keep the initial investments and implementation costs to a minimum. 

In this work, the CNC lathe machine tool components and subsystems are subjected to FMECA 

for the maintenance prioritization and identification of potential failure modes.
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3.2 CNC Lathe Criticality Analysis 

CNC machine tools are the key production equipment for the manufacturing industry. 

CNC machine tools, with numerous mechanical moving parts and precise control systems, are 

prone to malfunctioning and breakdowns. The predictive maintenance of CNC machine tools 

requires the identification of critical components and subsystems and their potential failure 

modes [12]. The methodology for criticality analysis and maintenance prioritization involves 

the following steps: 

i. Collection of field failure data of CNC lathe machine tools. 

ii. Defining the structure of the CNC lathe system. 

iii. Identifying the potential failure modes, failure causes, and machine controls and 

methods for detecting failures and subsequently framing of S, O, and D rating 

scales for the failure modes, failure occurrence. 

iv. Finally, the computation of RPN for maintenance prioritization. 

3.2.1 Field Failure Data of CNC Lathe 

Industrial field failure data and expert elicitation constitute the foundation for failure 

analysis using fuzzy FMECA [202, 203]. The field failure data of 30 CNC lathe machines over 

7-years of duration is collected from various industries. The data is in the form of history cards 

of individual CNC lathe machines, which detail all the maintenance works, repairs, and 

replacements of the components and subsystems with the date of action and total downtime of 

the machine tool for each failure. The expert elicitation is an aggregate of opinions of various 

industry experts. The major causes of failure were due to the structural and material failure of 

the component. The structural failure includes design and maintenance faults, manufacturing 

defects, mechanical overload, the presence of debris, and the collision of components. The 

material failure includes fatigue, wear, corrosion, overheating, insufficient lubrication.  

The field failure data and expert elicitation collected from industries are used to identify 

the potential failure modes of the CNC lathe at the component level. Further, this information 

is used to assign S, O, and D rating values and in developing the fuzzy FMECA engine. The 

potential failure modes are identified at the component level and the corresponding risk factor 

is defined. In FMECA, the aggregate risks allied with failure modes of components in a 

subsystem represent the risk associated with that particular subsystem [89, 97]. 
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3.2.2 Structure of CNC Lathe 

CNC lathes are machine tools with a composite structure having mechanical, hydraulic, 

and electrical subsystems [34, 202]. In the present study, the prioritization of components for 

predictive maintenance is limited to only mechanical components and subsystems. Electronics 

and electrical subsystems, which are very frequent to failures like electronic damages of 

sensors, relays, blown fuse, etc. are not included [87-93]. Therefore, only seven mechanical 

subsystems of the CNC lathe machine are investigated using fuzzy FMECA. Individual 

components of the CNC lathe machine are grouped within different subsystems for failure 

analysis. Figure 3.1 shows the CNC lathe hierarchy with subsystems and the respective 

components in each subsystem. The hierarchy structure of a CNC lathe is defined based on 

expert elicitation and field failure data from industries. 

 

Figure 3.1 Hierarchy of a CNC lathe machine 

3.3 Failure Analysis of CNC Lathe 

Industrial field failure data and expert elicitation of CNC lathe combined with MIL-

STD-1629A [88, 97] guidelines are followed in developing S, O, and D rating scales, which 

makes the input parameters for FMECA. The industrial field failure data and expert elicitation 

are analyzed to identify the failure modes associated with each component of the CNC lathe 

followed by an assessment of potential failure effects, causes of failure, and current controls 

available to detect the fault. The CNC lathe failure and maintenance information and the MIL-

STD-1629A guidelines are concatenated to define the risk classifications of failure modes of 

CNC lathe machine components in respect of S, O, and D rating scales. The rating scales 

illustrated in various literature on the application of FMEA/FMECA for CNC lathe machine 

tool failure analysis are also considered [87-89]. Table 3.1, Table 3.2, and Table 3.3 respectively 
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present the S, O, and D rating scales for the CNC lathe machine. S, O, and D rating varies from 

1 to 10. In Table 3.1, the severity rating 1 indicates the least severity, and 10 indicates the most 

severe case. In Table 3.2, the occurrence rating is framed based on the occurrence probability 

of component failure, where the occurrence rating of 1 indicates an extremely unlikely 

occurrence of failure and value 10 indicates the most frequent occurrence of failure, which 

might be serious. In Table 3.3, the detection rating represents the chance of failure being 

undetected. The detection rating 1 indicates an almost certain chance for the detection of 

component failure and value 10 indicates an almost uncertain chance for the detection of 

component failure. S, O, and D ratings are determined for all the components mentioned in the 

CNC lathe hierarchy structure (refer to Figure 3.1). 

Table 3.1 Severity rating for CNC Lathe 

S. No. 
Failure effects 

severity 
Ranking Criteria 

S 

scale 

1 Serious Failure causing harm to the operator without warning 10 

2 Very Extreme Failure causing harm to the operator with a warning 9 

3 Extreme 
Failure occurring without any warning and causing 

no harm to the operator 
8 

4 Major 
Failure causing damage to the machine with a 

warning and causing huge maintenance costs 
7 

5 Significant 

Failure has severe effects on the functions of 

subsystem /component of the machine 

Significant maintenance costs and production loss 

6 

6 Moderate 

Moderately effect on the performance of a subsystem 

/component 

Moderate maintenance costs and production loss  

5 

7 Low 

Failure has no severe effect on the function or 

performance of a subsystem /component 

Low maintenance costs and production loss 

4 

8 Minor 
Failure can be solved by minor repair 

Very low maintenance costs and production loss 
3 

9 Very Minor 
Failure has a little effect on machine performance 

Negligible maintenance costs and production loss 
2 

10 None 
Failure has a little or no effect on the performance of 

the machine  
1 
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Table 3.2 Occurrence rating for CNC Lathe 

S. No. Ranking level Ranking Criteria 
Occurrence 

probability 

O 

scale 

1 Frequent 
Failure is almost certain 

> 0.0600 10 

2 Very High 0.0500 to 0.0600 9 

3 High 
Failure repetition is expected 

0.0400 to 0.0500 8 

4 High Moderate 0.0300 to 0.0400 7 

5 Moderate 

Failure occurs occasionally 

0.0250 to 0.0300 6 

6 Low 0.0200 to 0.0250 5 

7 Very Low 0.0175 to 0.0200 4 

8 Remote Failure repetition is not 

expected 

0.0100 to 0.0175 3 

9 Very Remote 0.0080 to 0.0100 2 

10 
Extremely 

Unlikely 
Failure is almost uncertain < 0.0080 1 

Table 3.3 Detection rating for CNC Lathe 

S. No. 
Likelihood of 

detection 
Ranking Criteria 

D 

scale 

1 Almost certain 
Design controls will almost certainly detect the 

potential failure modes 
1 

2 Very High 
Very likelihood that the current design controls will 

detect potential failure modes/task error 
2 

3 High 
High chance that the current design controls will 

detect failure 
3 

4 Moderate-High 

Moderately high likelihood that the current design 

controls detect the potential failure modes before 

affecting the system performance  

4 

5 Moderate 

Moderately likelihood that the current design controls 

detect the potential failure modes before affecting the 

system performance 

5 

6 Low 
Low likelihood that the current design controls will 

detect failure modes 
6 

7 Very Low 
Very low likelihood that the current design controls 

will detect failure 
7 

8 Remote 
Remote chance that the design controls will detect 

failure 
8 

9 Very Remote Defect most likely remains undetected 9 

10 
Almost 

Uncertain 
Failures are not detected  10 
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3.4 Computation of RPN and Maintenance Prioritization 

The key part of FMECA is to determine the RPN for failure modes of CNC lathe 

components, which is computed based on S, O, and D rating values. The conventional method 

for determining the RPN value of components is by computing the product of S, O, and D rating 

values of each component (refer to Eq 2.1). As mentioned in ‘section 2.5’, conventional 

FMEA/FMECA has many drawbacks on practical application. The computations in 

conventional FMECA are based on the assumption that the input variables are crisp values. 

Although, due to several uncertainties, these variables are non-crisp in nature, which is the 

primary cause of disputes about the conventional FMECA technique [87, 107]. These rating 

values basically represent linguistic variables indicating different risk classifications. Linguistic 

variables are input/output variables whose values are words or sentences. The qualitative 

FMECA approach uses linguistic variables to express the risk classification category of 

severity, occurrence, and detection rating scales. The linguistic terms like certain, uncertain, 

moderate, low, very low, high, etc. are used to indicate various risk classifications.  

In this work, the Fuzzy logic technique is used to assign non-crisp values to these linguist 

variables. Zadeh [204] in the year 1965, introduced fuzzy sets to assign the linguistic variables 

to different fuzzy sets. A membership (characteristic) function was defined to correlate the 

fuzzy sets with linguistic variables. The fuzzy logic was further evolved from this concept. The 

fuzzy logic computation is used when there are uncertainties in risk factor calculations. 

The fuzzy inference engine mostly uses Mamdani's method or Takagi-Sugeno's method 

[99, 205]. The present work utilizes Mamdani’s method to define a fuzzy FMECA engine, 

where both the precedent and the succedent are fuzzy propositions. A typical fuzzy logic 

algorithm proceeds as follow [203, 206]: 

i. Fuzzification of quantities 

ii. Establishment of fuzzy sets 

iii. Establishment of fuzzy rules 

iv. Defuzzification of quantities 
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Fuzzy FMECA is basically a fuzzy decision support system, which offers a more 

realistic framework for qualitative risk rating scales than traditional crisp values. The 

methodology for performing fuzzy FMECA are as follows: 

i. Create all input and output variables of FMECA in the fuzzy logic platform. 

ii. Develop the input membership functions to represent S, O, and D. 

iii. Develop the output membership functions to represent RPN 

iv. Establish rules to correlate the Fuzzy RPN with the fuzzified S, O, and D 

linguistic variables.  

The membership function for a fuzzy set is a generalization of the characteristic function 

of crisp sets [204]. Membership functions are used to solve practical problems by experience 

rather than knowledge. It represents the degree of truth of a valuation. The membership function 

associates each element with a value in the interval [0, 1]. In fuzzy sets, each element is mapped 

to the interval [0, 1] using a membership function. This makes the degree of the truthiness of a 

statement in fuzzy logic not constrained to either 0 or 1, but to have any values in the range 

[0,1]. Consequently, the fuzzy set with a vague boundary is used to represent crisp values. The 

establishment of this correlation is known as fuzzification [99]. This fuzziness is best 

characterized by its membership function. The membership function allows the graphical 

representation of the fuzzy set. 

Simple functions are used to build the membership function for a fuzzy set. The most 

commonly used base functions include the triangular function, trapezoidal function, Gaussian 

function, generalized bell function, sigmoid function, etc. [206]. In this work, the Gaussian 

membership function is used to represent each linguistic variable. The Gaussian function is a 

smooth, concise notation, and non-zero at all points, which makes it a popular method for 

specifying fuzzy sets [204-206]. Moreover, polynomial-based curves are commonly used to 

represent fuzzy membership functions. The Gaussian function is defined using two parameters, 

mean (µ) and standard deviation (σ), which indicate the center and width of the membership 

function respectively. Figure 3.2 illustrates a typical Gaussian function representation. The 

smaller the standard deviation, the narrower will be the bell curve. The standard deviation value 

is tuned so that the membership functions in a fuzzy set have suitable overlapping to avoid any 

chance of a gap in the linguistic variable domain. The Gaussian membership function can be 
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represented by Eq (3.1), where x can be any of the crisp values of the FMECA input and output 

variables [206].  

𝑓(𝑥; 𝜇, 𝜎) = 𝑒−
1

2
(
𝑥−𝜇

𝜎
)
2

        (3.1) 

 

Figure 3.2 Typical Gaussian membership function 

In fuzzy FMECA, the variables are not defined by sharp boundaries. The crisp input 

values of S, O, and D rating scales are transformed into non-crisp fuzzy values from the 

linguistic terms using membership functions. These linguistic input variables are fed into the 

fuzzy engine. In order to represent RPN using fuzzy membership functions, a risk classification 

must be made based on RPNs. RPNs are also represented using linguistic variables. The fuzzy 

engine returns a linguistic output variable representing RPN, which is defuzzified to obtain a 

crisp value for RPN.  

The input to the defuzzification stage is a fuzzy linguistic variable and the output is a 

crisp value, which is denoted as the fuzzy RPN. This is a reverse mapping of crisp values from 

membership functions. The centroid method is the most commonly used defuzzification 

technique that returns the central point of the area under the fuzzy set, which is a crisp value 

[100, 203] The overall structure for the fuzzy modeling of FMECA is illustrated in Figure 3.3. 
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Figure 3.3 Flow diagram for fuzzy modeling of FMECA 

The collated field failure data of the CNC lathe is subjected to criticality analysis using 

FMECA and fuzzy FMECA methods. The major objective of the study is to identify the most 

critical components and subsystems of a CNC lathe and prepare a priority list for implementing 

a predictive maintenance strategy. The potential failure modes, potential effects, potential 

causes, and design controls for detection are identified for every component of the CNC lathe 

using the field failure data, and further, Tables 3.1, 3.2, and 3.3 are used to assign S, O, and D 

ratings for each component. The fuzzy FMECA proceeds are shown in Figure 3.3. In order to 

determine the fuzzy RPNs for failure modes of components, the input and output linguistic 

variables are fuzzified. 

Figure 3.4 shows the fuzzy representation of the severity, occurrence, and detection 

rating scales. This makes the basic non-crisp inputs for a fuzzy FMECA. Similarly, the output 

RPNs are fuzzified, but it requires an RPN rating scale for the CNC lathe.  Table 3.4 presents 

the 10-scale risk classification of RPN, which defines a set of RPNs to a particular risk category. 

Risk classification and ranking criteria for RPN are developed by integrating the conventional 

RPNs with industrial expert elicitation. Each class is assigned the values from 1 to 10, the value 

10 indicates the category with the highest risk and the value 1 indicates the category with the 

least risk. Like the input membership functions, the Gaussian membership function is used to 

transform RPN into a fuzzy RPN. Figure 3.5 shows the output membership function for fuzzy 

RPN. This fuzzy representation of RPNs is used for the defuzzification of the linguistic output 

variables to give crisp fuzzy RPNs. 
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Figure 3.4 Membership function for input variables (a) Severity, (b) Occurrence, (c) 

Detection 

Table 3.4 Failure Classification based on RPN rating scale 

S. No. Linguistic Variable Ranking Criteria Rank 

1 Very High 450 ≤ RPN ≤ 1000 10 

2 High 300 ≤ RPN ≤ 449 9 

3 Low High 217 ≤ RPN ≤ 299 8 

4 High Medium 141 ≤ RPN ≤ 216 7 

5 Medium 81 ≤ RPN ≤ 140 6 

6 Low Medium 50 ≤ RPN ≤ 80 5 

7 High Low 30 ≤ RPN ≤ 49 4 

8 Low 17 ≤ RPN ≤ 29 3 

9 Very Low 9 ≤ RPN ≤ 16 2 

10 None 1 ≤ RPN ≤ 8 1 
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Figure 3.5 Membership function for output variable-RPN  

The fuzzy rules are defined to correlate the input and output membership function. The 

if-then rule is used to establish the fuzzy relation between the inputs S, O, D, and the output 

RPN. Following the 10-scale ratings for S, O, and D, 1000 if-then rules are developed using the 

information extracted from expert elicitation. These rules are intended to portray every possible 

combination of S, O, and D rating scales. If-then rules are defined as follows: 

“If Severity is Serious and Occurrence is Moderate and Detection is Uncertain then RPN is 

Very High” 

“If Severity is Minor and Occurrence is Frequent and Detection is Uncertain then RPN is 

High” 

“If Severity is Major and Occurrence is Remote and Detection is Certain then RPN is Low” 

Similar 1000 rules are defined to represent the fuzzy FMECA of the CNC lathe. A 

typical worksheet for qualitative FMECA is used to display the complete FMECA and fuzzy 

FMECA of a CNC lathe machine as presented in Table 3.5. Columns of the FMECA worksheet 

include part name, potential failure modes, the potential effects and causes of the respective 

failure mode, the current machine controls detection, severity, occurrence, and detection values 

for the failure mode of the component, and RPNs. An additional column is included in the 

conventional FMECA worksheet to display fuzzy RPNs. This could provide a clear comparison 

between the conventional RPN and the fuzzy RPN. The FMECA relates the potential failure 

modes to potential effects and root causes, which give a clear knowledge about the failure of a 

component. 
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Table 3.5 FMECA sheet for CNC Lathe with RPN and Fuzzy RPN 

Part 

No. 
Part Name 

Potential 

failure mode(s) 

Potential 

effect(s) of 

failure 

Potential 

cause(s) of 

failure 

Current 

machine 

controls 

Detection 

Risk assessment 

Fuzzy 

RPN 
S O D RPN 

1 Turret 

Indexing error 

Affects 

engaging of the 

cutting tool, 

Bearing 

damage 

Trapping of 

chips 

Visual 

Inspection 
5 6 7 210 255 

Lock problem 

Improper 

Clamping, 

Chance of 

accident 

Wear, Trapping 

of chips 

Visual 

Inspection 
6 10 3 180 178 

2 Turret Motor 

Noisy 

Operation, 

Overheating 

Winding or 

bearing 

damaged 

Wrong position 

of the tool 

Visual 

Inspection 
4 1 3 12 13.5 

Electric short 

circuit 
Faulty Indexing 

Winding burns 

out 

Electric 

Failure Alarm 
6 1 7 42 40.9 

3 Tool Holder 
Improper 

clamping, Play 

Tool slip, 

increased tool 

charter 

Fatigue 
Visual 

Inspection 
3 5 2 30 40.1 
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4 Chuck 

Worn out, 

Sudden loss of 

grip 

Workpiece 

runout, 

Improper 

clamping 

Overload, 

material fatigue 

Inspection 

using 

instruments 

and gauges 

6 10 5 300 280 

5 Drawbar Worn Thread 

Improper 

workpiece 

clamping 

Thread failure 
No job 

clamping 
5 10 3 150 178 

6 Pulley 
Loosen Key, 

Worn Sheave 

Pulley play, 

Belt slip, Belt 

break 

Wear, Spindle 

bearing fault 

Noise and 

jerking 

movement of 

the belt 

4 1 5 20 17.7 

7 
Spindle 

Motor 

Noisy 

Operation, 

Overheating 

Bearing 

damaged, Over 

Heating 

Motor bearing 

or bush failure 

Noise and 

overheating, 

Increased 

Vibrations 

7 3 3 63 66 

Electric short 

circuit 

Winding Burn 

out, Stopped 

Working 

Winding burns 

out 

Overheating, 

Electric 

failure Alarm 

6 2 6 72 65 

8 Spindle Belt 

Improper 

tensioning, Belt 

fatigue, Worn 

Belt, 

Broken Belt, 

improper 

power 

transmission, 

noisy 

operation, 

overheating 

Fatigue, Wear, 

pulley 

misalignment 

Increased 

noise of 

slipping and 

chatter 

3 8 4 96 83.2 
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9 
Spindle 

Bearing 

Bearing 

deformation 

Noisy 

Operation, 

Overheating, 

Spindle runout, 

Damage 

bearing 

elements 

Wear and 

Deformation of 

bearing 

elements, 

Overload, 

Misalignment 

Increased 

noise and 

vibration, 

Chatter mark 

on Workpiece 

7 10 7 490 568 

10 

Spindle 

Cooling Fan 

Motor 

Over Heating 

Noisy 

operation, 

Overheating 

Short circuit, 

Contamination 

Fan stopped 

working 
5 4 3 60 66 

11 
X & Z Axis 

Servomotor 

Worn bearing, 

Electric short-

circuit 

Noisy 

operation, 

overheating 

Overload due 

to improper 

slide 

movement 

Overheating, 

Noise 
8 4 6 192 179 

Worn coupling Vibrations Misalignment Jerking Noise 4 3 5 60 45.8 

12 Axis Belt 

Worn Belt, Belt 

fatigue, 

Improper 

tensioning 

Overheating, 

Noisy 

operation 

Fatigue, Wear, 

pulley 

misalignment 

Visual 

Inspection 
4 1 6 24 22.7 

13 Axis Slide 
Not Smooth, 

Play 

Lack of 

precision 

Misalignment, 

wear 

no smooth 

movement, 

increased load 

on motor 

5 3 3 45 42.6 
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14 Ball Screw 
Bent Screw, 

Play 
Misalignment 

Chip trapping, 

wear, Fatigue 

Noisy 

Unsmooth 

operation 

6 1 5 30 27.8 

15 
Ball Screw 

Bearing 

Unsmooth 

operation 

Noisy 

operation, 

Overheating 

Deformation, 

chip trapping 

Noise, 

Vibration 
6 5 5 150 129 

16 Oil Seal Leakage 
Pressure loss, 

Wastage of oil 
Contaminants 

Visual 

Inspection 
3 3 5 45 40.4 

17 
Lubrication 

pump 
Vane Blocked 

Improper 

lubrication 

Entry of chips, 

deformation 

Drop in oil 

pressure 
2 1 6 12 13.3 

18 
Lubrication 

Motor 

Burnt Winding Stop working 

Oil leakage 

into the 

winding 

Oil Spilling 5 1 5 25 23.7 

Noisy 

Operation, 

Overheating 

Noisy 

Operation 

Wear of 

bearing 

Noise, 

Overheating 
4 2 6 48 40.2 

19 
Oil Tank and 

Piping 

Leakage, 

Blocked or 

improper flow 

Inadequate 

Lubrication, 

Lubricant 

wastage 

Blockage due 

to 

Contaminants 

Visual 

Inspection 
3 4 4 48 40 

20 
Coolant 

Pump 

Worn or blocked 

vanes 
Inadequate 

pressure, 

Blocked filter, 

contaminants 

Inadequate 

flow of 

coolant 

2 1 3 6 4.79 
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Improper 

Coolant flow 

21 
Coolant 

Motor 

Burnt Winding Stop working 

Leakage of 

coolant into the 

winding 

stop working 6 1 3 18 26.8 

Noisy 

Operation, 

Overheating 

Noisy 

Operation 

Wear of 

bearing 

Noise, 

Overheating 
4 2 4 32 30 

22 
Coolant Tank 

and Piping 

Leakage, 

Blocked or 

improper flow 

Inadequate 

Coolant 

Blockage due 

to 

Contaminants 

Visual 

Inspection 
2 1 5 10 5.41 

23 
Encoder 

Coupling 
Fail to encode 

Wrong axis and 

turret position 
Fatigue, aging 

Wrong 

positioning 
5 1 5 25 23.7 

24 Encoder Belt 
Rubbing and 

Overheating 

Wrong axis and 

turret position 
Fatigue, wear 

Noise, 

vibration, no 

movement 

3 1 6 18 19.3 
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In Table 3.5, it is observed that the same RPN is produced for different combinations of 

S, O, and D values with the conventional FMECA, which is one of its major drawbacks. On the 

other hand, all the fuzzy RPNs are unique. For example, tool holder and ball screw have (S, O, 

D) combinations as (3, 5, 2) and (6, 1, 5) respectively, which give the same RPN 30 with 

conventional FMECA. The same set of input variables for tool holder and ball screw in fuzzy 

FMECA gives fuzzy RPNs 40.1 and 27.8 respectively. Thus, fuzzy RPN overcomes the major 

drawback of conventional FMECA in calculating RPN and makes it better for risk 

prioritization. This is due to the result of the fuzzification of the linguistic variables of input 

and output parameters. 

RPN is a relative quantity indicating the risk associated with different failure modes of 

the components of machinery. The RPN of a component is calculated as the aggregate of RPNs 

of all failure modes of that component as represented by Eq (3.2). The RPN of a subsystem is 

calculated as the sum of RPNs of all components within that subsystem as represented by Eq 

(3.3) [89, 96].  

RPN Component  = RPN Failure Mode 1 + RPN Failure Mode 2 + … +RPN Failure Mode n  (3.2) 

where n is the total number of failure modes of that particular component. 

RPN Subsystem  = RPN Component 1 + RPN Component 2 + … + RPN Component m  (3.3) 

where m is the total number of components under the considered subsystem. 

The RPN of components is calculated using Eq (3.2). A priority rank is given to the 

CNC lathe components based on conventional RPN and fuzzy RPNs from larger to smallest as 

presented in Table 3.6. Due to the repetition of RPNs in conventional FMECA, there is a chance 

of a tie between the priority ranks of components. In such cases, the product of S and O is 

considered and the component having a higher product value is given a higher rank. However, 

this problem does not appear when the ranking is based on a fuzzy RPN, where all values are 

unique. Therefore, the risk priority ranking based on a fuzzy RPN is considered for the 

predictive maintenance of the CNC lathe. It is observed that spindle bearing has the highest 

RPN and the fuzzy RPN 490 and 568, respectively. Hence, the spindle bearing is reported as 

the most critical component of a CNC lathe machine, followed by turret and chuck. 
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Table 3.6 Criticality Ranking of CNC Lathe Components based on RPN and Fuzzy RPN 

Part 

No. 
Part Name RPN 

RPN 

Priority 

Rank 

Fuzzy RPN 

Fuzzy RPN 

Priority 

Rank 

1 Spindle Bearing 490 1 568 1 

2 Turret 390 2 443 2 

3 Chuck 300 3 280 3 

4 
X & Z Axis 

Servomotor 
252 4 224.8 4 

5 Drawbar 150 5 178 5 

6 Spindle Motor 135 7 131 6 

7 
Ball Screw 

Bearing 
150 6 129 7 

8 Spindle Belt 96 8 83.2 8 

9 
Spindle Cooling 

Fan Motor 
60 10 66 9 

10 Lubrication Motor 73 9 63.9 10 

11 Coolant Motor 50 12 56.8 11 

12 Turret Motor 54 11 54.5 12 

13 Axis Slide 45 14 42.6 13 

14 Oil Seal 45 15 40.4 14 

15 Tool Holder 30 16 40.1 15 

16 
Oil Tank and 

Piping 
48 13 40 16 

17 Ball Screw 30 17 27.8 17 

18 Encoder Coupling 25 18 23.7 18 

19 Axis Belt 24 19 22.7 19 

20 Encoder Belt 18 21 19.3 20 

21 Pulley 20 20 17.7 21 

22 Lubrication pump 12 22 13.3 22 

23 
Coolant Tank and 

Piping 
10 23 5.41 23 

24 Coolant Pump 6 24 4.79 24 
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Further, the RPNs of subsystems are calculated as the sum of the RPNs of each 

component belonging to that subsystem using Eq (3.3). Similarly, the fuzzy RPNs are also 

calculated for the subsystems. These fuzzy RPNs are utilized to prepare a maintenance priority 

ranking for CNC lathe subsystems as presented in Table 3.7. A comparison of the conventional 

and fuzzy RPN is provided and the subsystems are arranged according to the fuzzy RPN priority 

ranking. It is observed that the ranking based on fuzzy RPN is more in agreement with industrial 

expert elicitation. The spindle unit of the CNC lathe machine is identified as the most critical 

subsystem with the conventional and fuzzy RPNs 781 and 848.2, respectively. The criticality 

analysis based on both conventional and fuzzy RPNs has established the spindle unit as the 

most critical subsystem. The spindle unit of a CNC Lathe Machine tool includes subsystems 

such as spindle motor, spindle bearings, spindle belt, and spindle cooling fan. The subsystem 

fuzzy RPN values of the spindle motor, spindle bearings, spindle belt, and spindle cooling fan 

are obtained as 131, 568, 83.2, and 66 respectively. The highest fuzzy RPN value is obtained 

for the spindle bearings whose potential cause of failure is reported as wear and deformation of 

beaning components. The fuzzy RPN values of the spindle motor, spindle belt, and spindle 

cooling fan are far-off for comparison with that of spindle bearings. Hence, all other causes of 

failure such as overheating, short-circuit, contamination, etc. have negligible contributions 

toward the failure spindle unit. 

Hence, it can be stated that the predictive maintenance strategy must be implemented 

for the spindle unit of a CNC lathe machine tool. The turret, chuck, and linear axis subsystems 

also have high fuzzy RPNs. These subsystems can also be considered for predictive 

maintenance. The other subsystems might be considered for preventive or reactive 

maintenance. 

Table 3.7 Criticality Ranking of CNC Lathe Subsystem based on RPN and Fuzzy RPN 

Subsystem RPN 
RPN Priority 

Rank 
Fuzzy RPN 

Fuzzy RPN 

Priority Rank 

Spindle 781 1 848.2 1 

Turret 474 3 527.5 2 

Chuck 470 4 475.7 3 

Linear Axis 501 2 446.9 4 

Lubrication 178 5 157.6 5 

Cooling 67 6 67 6 

Encoder 43 7 43 7 
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3.5 Summary 

This chapter presents a systematic methodology for the criticality analysis and 

maintenance prioritization of the CNC lathe machine tool for the application of picking out 

critical lathe components and subsystems for predictive maintenance. Criticality analysis of 

CNC lathe is performed to identify the most critical subsystems and their potential failure 

modes from a maintenance perspective and hence limit the implementation of predictive 

maintenance to the identified critical subsystems. One of the most widely used criticality 

analysis techniques FMECA, which is improved with fuzzy logic computation is utilized for 

risk prioritization of the CNC lathe machine tool. The failure modes of components and 

subsystems of the CNC lathe are identified and the risk associated with each component and 

subsystem is determined. Furthermore, a maintenance priority rank is generated based on the 

risk factor associated with the components with respect to the failure modes. Industrial field 

failure data and expert elicitation constitute major input for performing failure and criticality 

analysis. This data is used to calculate the RPNs following the conventional and fuzzy improved 

FMECA. 

FMECA relates the potential failure modes to potential effects and root causes. This 

knowledge can be utilized in the phenomenon of sensors selection and installation for the 

condition monitoring of critical components. The spindle unit of a CNC lathe is identified as 

the most critical subsystem with the highest RPN, followed by the turret, chuck, and linear axis. 

The wear and deformation of bearings causing increased noise and vibration are identified as 

the potential failure modes and failure effects for the lathe spindle unit. The comparison of the 

results of conventional and fuzzy FMECA highlights the benefits of fuzzy FMECA over 

conventional methodology. The fuzzy FMECA results seem to be more reasonable and in 

agreement with the industrial data and expert elicitation. The study also proves that the primary 

drawbacks of conventional FMECA are eliminated with the implementation of fuzzy logic 

computational techniques.



 

 

Chapter 4                                                                                                                         

 

Condition Monitoring Data Acquisition and Data 

Preparation 

4.1 Introduction 

In the present chapter, the experimental setup for condition monitoring data acquisition 

and data preparation for prognostic regression analysis is described. This chapter includes the 

fabrication of an accelerated run-to-failure experimental test rig with sensors and a data 

acquisition system for condition monitoring data acquisition and the conversion of raw 

condition monitoring data into useful machinery health degradation information for prognostic 

regression analysis. The chapter also discusses the standardization of condition monitoring data 

and response variables.

4.2 Experimental Test Rig 

The predictive maintenance analysis of the lathe spindle unit requires machinery health 

degradation data from the initial healthy state to the final faulty state. The available literature 

largely has utilized the open-source aircraft turbofan engine degradation data [19-24, 31-37, 

40] or bearing degradation data [25- 27, 39] for validating their RUL estimation algorithms. A 

few researchers have generated their machinery degradation data like reciprocating compressor 

degradation data [28], cutting tool wear monitoring data [29], gear failure data [30], can-making 

machine degradation data [38], etc. 
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A spindle test-bed built by TechSolve [207] used a frequency drive, electric motor, Poly-

V belt transmission, and simplified spindle using two bearings identical to the ones used in the 

horizontal machining center. Figure 4.1 (a) shows the spindle testbed including the motor, the 

belt transmission, and the actual spindle. A loading mechanism pulling on the nose of the 

spindle was added to accelerate the degradation. The force pushing down on the spindle nose 

was kept approximately constant throughout all tests. The section of the loading mechanism is 

located under the supporting stand (see Figure 4.1 (b)). A uniaxial accelerometer was placed on 

the spindle housing, on top of the back bearing. A thermocouple was inserted in a hole drilled 

into the spindle housing, close to the back bearings outer surface. 

 

Figure 4.1 Machine tool spindle test rigs in literature (a) and (b) [207], (c) [208], and 

(d) [209] 

Similarly, Figure 4.1 (c) [208] shows a spindle is supported by four angular contact ball 

bearings of 42 mm outer diameter on its front and rear ends. Two air cylinders (static and 

dynamic load cylinder) apply constant and impulsive loads to the spindle, simulating the spindle 

operation conditions under stable preload (e.g., when machining a workpiece under constant 

speed and feed) or shock input (e.g., when impacted due to tool-workpiece interaction). Four 

accelerometers were placed at the front and rear ends of the spindle, within the loading and 

unloading zones of the bearings, to measure their vibrations. Literature proposing a 
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methodology for obtaining an optimal bearing preload to improve the spindle work accuracy of 

machine tools used a similar machine tool spindle test rig that includes the driver, coupling, 

shaft, housing, and cutting force simulation device. The experimental test rig is shown in Figure 

4.1 (d) [209]. Fiber Bragg grating (FBG) temperature sensors are utilized to measure the 

temperature rise at the bearing outer ring.  

In the present work, an accelerated run-to-failure experimental test setup is fabricated to 

acquire spindle health degradation data. The experimental test rig primarily comprises a lathe 

spindle assembly, a drive motor with the belt-pulley arrangement, and a loading arrangement. 

The speed (rpm) of the spindle unit is varied for different runs by varying the driver pulley ratio. 

The loading arrangement is placed replacing the chuck of the lathe spindle. The arrangement 

applies a constant radial load on the spindle and it also ensures that there is no shock load acting 

on the spindle. As in any mechanical system, the vibration signal is identified as the most 

suitable parameter for condition monitoring of the spindle unit test rig. ‘PCB-603C01’ 

accelerometer sensors are employed for vibration monitoring of the spindle unit. The 

accelerometer sensors are mounted to the spindle housing by the adhesive mounting technique. 

A mounting pad is first fixed firmly to the spindle housing using superior metal adhesives. 

Further, the accelerometer is screw fitted to the mounting pad. The mounting pads offer a very 

high-frequency response which is comparable to that of adhesives and stud mounting, and this 

could avoid the damage of a sensor during the removal process. The accelerometer model has 

a sensitivity of 100 mV/g, a frequency range of 0.5 to 10000 Hz, and a measurement range of 

±50 g (g = 9.8m/s2). The development of a fault or deterioration in the condition of machines 

is indicated by an increase in overall vibration levels. ‘NI-9234’ sound and vibration module 

with ‘cRIO 9171’ data acquisition (DAQ) system are used to record monitored vibration 

signals. Table 4.1 presents the detailed specifications of the equipment the vibration sensor, the 

data acquisition module, and the data acquisition interface system used in the experimental 

setup. The accelerometer sensors are mounted directly on the top of spindle bearings and are 

connected to the data acquisition device. The data acquisition system acquires vibration data 

from the accelerometers and transfers it to the connected computer storage. The data flow across 

various components in the experimental setup is illustrated in Figure 4.2. 
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Table 4.1 Detailed specification of equipment used in the experimental setup  

Equipment Type Equipment Name Equipment Specification 

Vibration Sensor 
PCB 603C01 

Accelerometer 

▪ Sensitivity: (±10%)100 mV/g (10.2 

mV/(m/s²)) 

▪ Frequency Range: 0.5 to 10000 Hz 

▪ Sensing Element: Ceramic 

▪ Measurement Range: ±50 g (±490 

m/s²) 

▪ Weight: 1.8 oz (51 gm) 

Data Acquisition 

Module 

NI 9234 Sound & 

Vibration Module 

▪ 4 Channel 

▪ 51.2 kS/s/channel Simultaneous 

Sampling 

▪ Signal Range: ±5 V, 24 Bit 

▪ AC Coupling & AC/DC Coupling 

▪ IEPE type 

Data Acquisition 

System 

(Computer Interface) 

cRIO 9171 USB 

DAQ System 

▪ 1-Slot, USB CompactDAQ Chassis 

▪ Plug-and-play simplicity of USB to 

sensor 

▪ Supported on DAQmx Driver 

Software 
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Figure 4.2 Data flow across various components in the experimental setup 

The entire experimental setup is assembled on a heavy machine worktable using anti-

vibration gaskets to minimize the presence of noise in the condition monitoring data. The 

accelerated run-to-failure experimental test rig with component labels is shown in Figure 4.3. 

The accelerometer data is acquired at a sampling rate of 25.6 kHz following a time-step of once 

every 60 seconds. Each of these acquired data packets represents the health state of the spindle 

unit at that time step. The machine health degradation data is represented by these packets in 

their respective time-steps. Each degradation data represents the health degradation of the 

spindle unit from a healthy state to a faulty state. The faulty state of any machine component is 

when it is not able to perform its operation in a predefined desired manner. The faulty state of 

a lathe spindle unit can be defined as the point at which it is unable to produce machined parts 

within the tolerance limits of surface finish and dimensional accuracy. Accelerometer reading 

(vibration amplitude) above 40 g is defined as the failure state of the experimental test rig 

considered. 
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Figure 4.3  Accelerated run-to-failure experimental test rig 

The lathe spindle health degradation data includes 14 accelerated run-to-failure vibration 

signal datasets performed at a constant load for five different rotational speeds 823 rpm, 900 

rpm, 1400 rpm, 1800 rpm, and 2520 rpm. The chosen rotational speeds can simulate the 

maximum possible variation in the functioning of the lathe spindle for the observed vibration 

signals. The rotational speeds above 2520 rpm produced very high and rapidly varying vibration 

signals in a short run-time and rotational speed below 823 rpm failed to produce any significant 

variation (increase) in the vibration signal even after long run-time. Thus, the five rotational 

speeds are chosen on practical grounds. Figure 4.4 shows all 14 acquired raw vibration data 

presented on time series plots with their respective rotational speeds. 



 

69 

 

 

Figure 4.4 Acquired 14 raw vibration data presented on time series plot  
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Table 4.2 lists the lathe spindle health degradation data with maximum life obtained for 

each run denominated in time-steps (one time-step equals 60 seconds). The spindle bearings 

(32211, 32212 tapered roller bearings) are replaced with new bearings and the spindle unit is 

completely reconditioned before each failure runs.  

Table 4.2 Lathe spindle health degradation data with maximum life 

S. No. Speed (rpm) Maximum Life (Time-Steps) 

1 

823 

1942 

2 1926 

3 1816 

4 

900 

1802 

5 1674 

6 1230 

7 

1440 

1146 

8 1072 

9 972 

10 

1800 

923 

11 901 

12 857 

13 
2520 

647 

14 624 

4.3 Vibration Signal Processing 

4.3.1 Feature Extraction 

As mentioned in the introduction section of the thesis, the machinery degradation data 

comprising at most a single vibration sensor data might cause underfitting of the deep learning 

model. Vibration signal signature features revealing superior machinery degradation patterns 

are considered for deep network training. The raw vibration signals are first subjected to 

wavelet denoising with ‘db5’ mother wavelet at level-4 to filter out high-frequency noise 

signals [50]. Then, statistical features are extracted from the denoised signal using time, 
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frequency, and time-frequency domain analysis. The features extracted from the denoised 

vibration signal include; mean, standard deviation, root mean square (RMS), root sum of square 

(RSSq), peak-to-peak, crest factor, impulse factor, margin factor, skewness, kurtosis, shape 

factor, mean frequency, time domain energy, wavelet energy, spectral entropy, spectral 

kurtosis, Shannon entropy, Log entropy, normal entropy, approximate entropy, joint moment, 

and mean peak frequency.  [51, 52] (See Appendix I for MATLAB code for vibration signal 

signature feature extraction). Table 4.3 summarizes the statistical features with their 

computation formulae.  
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Table 4.3 Statistical features in time, frequency, and time-frequency domain 

FI Feature Formula FI 
Feature 

Index 
Formula 

1 Mean 𝑀 = 
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1   12 

Peak-to-

peak 
𝑃2𝑃 = max|𝑥𝑖| − min|𝑥𝑖| 

2 
Standard 

deviation 
𝜎 =  √

1

𝑁
∑ (𝑥𝑖 − 𝑥̅)𝑁

𝑖=1   13 RSSq 𝑅𝑆𝑆𝑞 =  √
1

𝑁
∑ |𝑥𝑖|2

𝑁
𝑖=1   

3 RMS 𝑅𝑀𝑆 =  √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1   14 

Crest 

factor 
𝐶𝐹 =  

𝑚𝑎𝑥|𝑥𝑖|
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1

  

4 
Impulse 

factor 
𝐼𝐹 =  

𝑚𝑎𝑥|𝑥𝑖|

√
1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1

  
15 

Margin 

factor 
𝑀𝐹 = 

𝑚𝑎𝑥|𝑥𝑖|

√
1

𝑁
∑ |𝑥𝑖|

2𝑁
𝑖=1

  

5 Skewness 𝑆𝑘 =  
∑ (𝑥𝑖−𝑚)3𝑁

𝑖=1

(𝑁−1)𝜎3   16 Kurtosis 𝐾𝑢 = 
∑ (𝑥𝑖−𝑚)4𝑁

𝑖=1

(𝑁−1)𝜎4   

6 
Shape 

factor 𝑆𝐹 =  
√

1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1

1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1

  17 
Mean 

frequency 
𝑚𝑒𝑎𝑛𝑓𝑟𝑒𝑞 =  

1

𝑁
∑ 𝑓𝑖

𝑁
𝑖=1   

7 

Energy 

(Time 

domain) 

𝐸 =  ∑ 𝑥𝑖
2𝑁

𝑖=1   18 
Wavelet 

energy 
𝑊𝐸 = ∑

𝜔𝑡∅
2(𝑖)

𝑁

𝑁
𝑖=1   

8 
Spectral 

entropy 

𝑒(𝑝) =
−∑ 𝑝(𝑥𝑖)

𝑛
𝑖=1 𝑙𝑜𝑔2(𝑝(𝑥𝑖))  

P(.) = probability 

function 

19 
Spectral 

kurtosis 

𝐾(𝑓) =
|𝑆(𝑡,𝑓)|4

(|𝑆(𝑡,𝑓)|2)2
− 2, 𝑓 ≠

0  

S(.)=STFT of xi, t=time, 

f=frequency 

9 
Shannon 

entropy 

𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
 −∑ 𝑥𝑖

2 log 𝑥𝑖
2𝑁

𝑖=1   
20 

Log 

entropy 
𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ log 𝑥𝑖

2𝑁
𝑖=1   

10 
Normal 

entropy 

𝑛𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ |𝑥𝑖|
𝑝𝑁

𝑖=1   

p = signal threshold 
21 

Approx. 

entropy 

𝐴𝐸 =  ∅𝑚 − ∅𝑚+1 

∅𝑚 = (𝑁 − 𝑚 +
1)−1 ∑ log(𝑁𝑖)

𝑁−𝑚+1
𝑖=1   

11 
Joint 

moment 

𝑚𝑜𝑚𝑒𝑛𝑡𝐽

= ∬𝑡𝑛𝑤𝑚𝑃(𝑡, 𝜔)𝑑𝑡𝑑𝜔 

m= order, P(.) = 

marginal distribution, 

t=first temporal moment, 

ω=spectral time-freq. 

moment 

22 

Mean 

peak 

frequency 

𝑚𝑒𝑎𝑛𝑃𝑒𝑎𝑘𝐹𝑟𝑒𝑞 =
1

𝑇
∫ 𝑎𝑟𝑔𝑚𝑎𝑥𝑤(𝑆𝑝(𝑡, 𝜔))𝑑𝑡

𝑇

0
  

Sp(.) = Spectrogram, 

ω=individual frequency 

*FI = Feature Index 
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4.3.2 Feature Selection 

The vibration features from 14 failure runs are concatenated to form a compound dataset, 

which is then subjected to an NCA-based feature selection criterion. A regularized NCA 

algorithm is executed using the compound feature dataset representing all 14 failure runs to 

determine the weighting vector corresponding to each feature. The NCA result is illustrated in 

Figure 4.5 showing the weighting vectors and corresponding feature indices (FI). The features 

with their indices are presented in Table 4.3. A relative threshold value for feature weights 

equals to 15.0 is assigned from random trials as the cut-off criterion to select the most relevant 

feature subsets for all 14 failure datasets. The features standard deviation, RMS, energy, normal 

entropy, peak-to-peak, RSSq, log entropy clears the set threshold and are selected for the RUL 

estimation of the lathe spindle unit using the data-driven prognostic algorithms.  

 

Figure 4.5 NCA feature selection - Feature weights and corresponding feature index 

All the remaining features are discarded at this stage of analysis. Training the prognostic 

algorithms using these selected features could maximize the prediction accuracy of evolved 

predictive models. (See Appendix II for MATLAB code for NCA regression-based feature 

selection) 

4.4 Preparing Data 

All the selected features representing a single machine (lathe spindle) failure run 

constitutes a machine health degradation dataset. In preparing data for predictive analytics, the 
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available dataset is first divided into the training set, validation set, and testing set. The training 

dataset is used to train the prognostic model by minimizing the error between the predicted and 

actual values. The validation dataset is used to select an evolved predictive model before 

possible overfitting. The testing dataset is used to evaluate the generalization capability of the 

trained model. The training, testing, and validation dataset are randomly selected following an 

80:10:10 split ratio. The total of 14 machine health degradation datasets is divided into 10 

training datasets, 2 validation datasets, and 2 testing datasets. 

This time-series training dataset is then normalized to have zero mean and unit variance. 

The validation and testing datasets are also normalized for the same mean and standard 

deviation. The normalized time-series data 𝑆𝑛(𝑡𝑖) for any time-series dataset 𝑆(𝑡𝑖) can be 

expressed as: 

𝑆𝑛(𝑡𝑖) =
𝑆(𝑡𝑖)−𝑚𝑒𝑎𝑛

𝑠𝑡𝑑
       (4.1) 

where, mean is the mean of the training dataset, and std is the standard deviation of the 

training dataset [53]. The time-steps from the initial healthy state to the final faulty state 

represents the response variable, which is the RUL at each instance from healthy to faulty state. 

It is assumed that the lathe spindle does not start to degrade at the beginning healthy state of 

each failure runs instead, a response clip of around 20% of total life is applied until when there 

is no health degradation or drop in RUL [32, 40]. Beyond the response clip region, the RUL 

drops in each time step to reach zero. Figure 4.6 portrays a typical perspective of response 

clipping for time series data.   
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Figure 4.6 Typical clipped response variable  

4.5 Summary 

The vibration signals representing lathe spindle health degradation are acquired from an 

accelerated run-to-failure experimental test rig are first analyzed to extract time, frequency, and 

time-frequency features. These extracted vibration signature features are then subjected to 

NCA-based feature selection criteria to identify the relevant features for prognostic analysis. 

All the selected features representing a lathe spindle failure run constitute a machine health 

degradation dataset. Such 14 datasets are weeded out from the entire extracted feature datasets. 

This feature processing methodology is expected to nullify the concerns due to the smaller data 

size. In preparing data for predictive analytics, the available dataset is first divided into the 

training set, validation set, and testing set. The time-series dataset is then normalized to have 

zero mean and unit variance. It is also assumed that the lathe spindle does not start to degrade 

at the beginning healthy state of each failure run. Hence, a response clip is applied until where 

there is no health degradation or drop in RUL.



 

 

Chapter 5  

                                                                                                        

Data-Driven Prognostic Analysis for Remaining Useful 

Life Estimation                                                                                             

 

5.1 Introduction 

This chapter presents a detailed discussion on the implementation of the data-driven 

intelligent computational algorithms for the prognostic analysis of lathe spindle unit RUL 

estimations. The computational algorithms for predictive modeling are the most crucial and 

challenging step in machine failure prognostics. These algorithms can be physics-based, model-

based, data-driven, or a hybrid combination of any of these. The physics-based approach 

demands a thorough knowledge of the physics of the system and the model-based approach 

requires mathematical descriptions for the health status degradation of the mechanical system 

[19, 20]. Whereas, the data-driven approach uses minimal technical aspects of the system. In a 

data-driven approach, the historic machine monitoring data representing the health status 

degradation are used for training computational algorithms to evolve intelligent predictive 

models [18-20, 128]. Data-driven approaches include statistical approaches and AI approaches. 

In this work, three data-driven prognostic algorithms based on the deep learning model, 

machine learning model, and statistical estimator model are developed for the RUL estimation 

of the lathe spindle unit.
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5.2 RUL Estimation Employing Deep Learning Model 

The data-driven methods are learning-based approaches that discover viable features and 

prognostics models from the acquired data. These techniques include statistical models and AI 

models that infer health status information directly from the monitored data. AI models learn 

machinery health degradation patterns from the available machine health degradation data. 

Machine learning and deep learning AI models are very popular in machinery health diagnostic 

and prognostic analysis. The most recognized deep learning architectures for failure prediction 

and RUL estimation include RNN, LSTM, DBN, CNN, etc. [21, 22]. 

Over the past decade, deep learning approaches have emerged as a promising 

computational tool for predictive analytics in engineering and industrial applications. The 

LSTM-RNN deep learning architectures are also gaining wide reorganization in analyzing the 

time series machinery health degradation analysis for failure prediction and RUL estimations 

[163-178]. LSTM network is an advanced variant of RNN which has been recognized as a 

powerful computational tool for mining critical information from raw sequential time series 

data. Song et al. [179], Zhang et al. [180], Elsheikh et al. [160], Wang et al. [181] have used 

bidirectional LSTM (bi-LSTM) and Essien et al. [182] used convolutional LSTM for RUL 

estimation. Zhang et al. [183] and Xia et al. [162] have used a convolutional LSTM and 

convolutional bi-LSTM ensemble framework respectively for the RUL estimation.  Generally, 

the deep learning network has a natural structure to learn machinery degradation patterns 

directly from raw machinery monitoring data. However, it demands a large size machine 

degradation data with multiple sensor observations to avoid the problem of underfitting during 

RUL estimations [210]. Wang et al. [170], Zhang et al. [171], He et al. [172] have processed 

the machine degradation data to extract signature features representing the machine degradation 

trend, which is then utilized for training the LSTM deep network for accurate RUL estimation. 

The potential of the LSTM network to learn from raw sensor data minimizes the computational 

complexity, at the same time the mandate to have large size machine degradation data is 

regarded as the major limitation on the implementation of LSTM deep neural networks in 

industries. 

The hyperparameter optimization and network architecture selection is another major 

challenge before the successful implementation of deep learning algorithms for prognostics 

analysis of industrial machinery. The selection of hyperparameters including both training and 



 

78 

 

structural parameters has a direct influence on the performance of the predictive models. 

Generally, this optimization is performed by trial-and-error methods, which is arduous and 

time-consuming [162, 168]. Recently, a few literature have discussed the LSTM 

hyperparameter optimization algorithms employing ant colony optimization [166], particle 

swarm optimization [171], comparative analysis [179], grid search [165, 170, 182], Bayesian 

search optimization [161, 173], etc. to reduce the computational complexity and improve 

prediction accuracy. Bayesian search optimization provides a refined approach and has been 

shown to outperform other algorithms [211]. Bayesian optimization techniques are popularly 

employed to optimize non-differentiable, discontinuous, and expensive functions. The 

algorithm uses an acquisition function that estimates the next point to evaluate, which makes 

the algorithm optimize the hyperparameters in a minimum number of iterations [173, 211]. Its 

capability to converge at optimized values in the minimum number of iterations makes it 

appropriate for expensive and computationally complicated algorithms like deep learning 

algorithms. The mandate to have large-sized data for prognostic analysis and the black-box 

nature of learning algorithms remains a major challenge before the practical implementation of 

deep learning architectures for predictive maintenance. There exists an insistent need for further 

research works owing to the vast applicability of the LSTM deep learning network in prognostic 

predictive maintenance of industrial machinery. 

The thesis proposes a novel Bayesian optimization LSTM/bi-LSTM deep learning 

approach with an automated hyperparameter optimization paradigm for the RUL estimation of 

the lathe spindle unit. The prepared vibration signature features for prognostic regression 

analysis using time, frequency, and time-frequency domain analysis and NCA-based feature 

selection criteria (refer to section 4.3) are employed for training the deep learning models. This 

feature processing methodology is expected to nullify the concerns due to the smaller data size. 

The prepared lathe spindle health degradation dataset comprising the training, testing, and 

validation datasets are employed for training the Bayesian optimized LSTM/bi-LSTM and their 

combination deep network architectures for the prognostic analysis. The Bayesian optimization 

of LSTM/bi-LSTM deep network hyperparameters is expected to knock down the black-box 

nature of these learning algorithms. 

The training and validation datasets are fed into the Bayesian optimization LSTM/bi-

LSTM network algorithm to evolve accurate predictive models for RUL estimation. In the 

proposed learning architecture, the LSTM/bi-LSTM network algorithm is executed within the 
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Bayesian optimization algorithm. The flow diagram for the Bayesian optimization LSTM/bi-

LSTM network algorithm is shown in Figure 5.1. The LSTM/bi-LSTM deep learning 

architectures with predefined fixed ranges of hyperparameters are assigned as the objective 

function to a Bayesian optimization algorithm. The objective function trains the LSTM/bi-

LSTM network and returns the validation error to the Bayesian optimization algorithm. After 

each iteration, a new set of values are assigned to the hyperparameters and the process continues 

until a termination criterion is reached [173, 211]. The termination criterion for the algorithm 

is set to a predefined condition of completing 30 iterations. The condition is arbitrarily chosen 

based on random trials considering a parity between the computational expense and prediction 

accuracy. Finally, the chosen predictive models are tested on the independent test sets. (See 

Appendix III for MATLAB code for Bayesian optimization deep learning model based 

prognostic algorithm) 

 

Figure 5.1 Flow diagram for Bayesian optimization LSTM/bi-LSTM network 

algorithm 

The algorithm is proposed to optimize the deep learning hyperparameters towards the 

achievement of a minimum validation error. The validation error is defined as the mean absolute 
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error (MAE) between the predicted machine health degradation trend for the validation dataset 

and the actual machine health degradation trend as shown in Eq. 5.1 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =
∑ |𝑦𝑖−𝑥𝑖|

𝑛
𝑖=1

𝑛
       (5.1) 

where yi is the predicted machine health degradation trend, xi is the actual machine 

degradation trend, and n is the total time-steps of the validation dataset. The degradation trend 

is the RUL of machine components at different time-steps starting from healthy to a failure 

state. 

In order establish a better understanding of the LSTM/bi-LSTM network algorithms, the 

Bayesian optimization is separately performed for the network structure and hypermeters 

optimization of LSTM, bi-LSTM, LSTM + bi-LSTM, bi-LSTM + LSTM, LSTM + LSTM, and 

bi-LSTM + bi-LSTM network architectures. The deep network architectures with single 

LSTM/bi-LSTM network models include only six layers namely the sequence input layer, the 

LSTM layer, the fully connected layer, the dropout layer, the fully connected output layer, and 

the regression layer. On the other hand, those deep network architectures with LSTM/bi-LSTM 

combination network models have nine layers including the second LSTM/bi-LSTM network 

model and an additional set of the fully connected layer and the dropout layer for the second 

LSTM/bi-LSTM network models. Table 5.1 and Table 5.2 presents the layer framework of 

these deep learning architectures. A sequence input layer inputs sequence data to a network. 

The fully connected layer establishes the connection between every neuron in one layer of the 

LSTM/bi-LSTM network model to every neuron on preceding layers. The dropout layers 

regulate the learning process to avoid overfitting of LSTM/bi-LSTM network models. A 

regression layer computes the error loss for regression tasks. In the combination network 

models, the second LSTM/bi-LSTM network layer requires an additional set of the fully 

connected layer and the dropout layer. The fully connected layer, the dropout layer, and the 

second LSTM/bi-LSTM layer make the addition of extra three layers. 
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Table 5.1 Layer framework of LSTM and bi-LSTM network architectures 

Layer No. LSTM bi-LSTM 

1 Sequence input layer Sequence input layer 

2 LSTM layer bi-LSTM layer 

3 Fully connected layer Fully connected layer 

4 Dropout layer Dropout layer 

5 Fully connected output layer Fully connected output layer 

6 Regression layer Regression layer 

Table 5.2 Layer framework of LSTM + bi-LSTM, bi-LSTM + LSTM, LSTM + LSTM, and bi-

LSTM + bi-LSTM network architectures 

Layer 

No. 

LSTM + 

bi-LSTM 

bi-LSTM + 

LSTM 

LSTM + 

LSTM 

bi-LSTM + 

bi-LSTM 

1 
Sequence input 

layer 

Sequence input 

layer 

Sequence input 

layer 

Sequence input 

layer 

2 LSTM layer bi-LSTM layer LSTM layer bi-LSTM layer 

3 
Fully connected 

layer 

Fully connected 

layer 

Fully connected 

layer 

Fully connected 

layer 

4 Dropout layer Dropout layer Dropout layer Dropout layer 

5 bi-LSTM layer LSTM layer LSTM layer bi-LSTM layer 

6 
Fully connected 

layer 

Fully connected 

layer 

Fully connected 

layer 

Fully connected 

layer 

7 Dropout layer Dropout layer Dropout layer Dropout layer 

8 
Fully connected 

output layer 

Fully connected 

output layer 

Fully connected 

output layer 

Fully connected 

output layer 

9 Regression layer Regression layer Regression layer Regression layer 
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The hyperparameters control the behavior of deep learning architecture. The most 

relevant hyperparameters involved in the training of LSTM/bi-LSTM deep learning 

architecture are as follows: [192, 212] 

(a) Number of hidden units (Hn): It corresponds to the amount of information remembered 

between time-steps. Too large Hn value might cause overfitting of training data. It can 

vary from a few dozen to a few thousand. 

(b) Number of fully connected layer (FCn): All neurons in the fully connected layer are 

connected to all neurons in the previous layer. This combines all the features learned 

across the layers to identify hidden patterns.  

(c) Dropout rate (Dr): It randomly sets input elements to zero thus changing the underlying 

network structure between iterations. Higher Dr causes more elements being dropped 

during training. It influences the performance of the evolved model by enhancing model 

generalization. 

(d) Maximum epochs (Epoch): A epoch corresponds to the full pass of the training algorithm 

over the entire dataset. 

(e) Initial learning rate (Lr): It is used for training the algorithm. Too low Lr takes a long 

training time and too high Lr might conclude at a suboptimal result or diverge. 

(f) L2-regularization factor (L2rf): It corresponds to the weight decay factor that is 

responsible to reduce training data overfitting. 

In the Bayesian optimization algorithm, the hyperparameters are initiated with 

predefined fixed ranges based on random trials. The algorithm is executed with random 

hyperparameters combinations varying one at a time. Only those ranges of hyperparameter 

showing a significant variation in the final result are chosen for the study. Table 5.3 shows the 

hyperparameters with their respective predefined fixed ranges. The performance of the 

LSTM/bi-LSTM network architectures for RUL estimation of lathe spindle is evaluated using 

the root mean square error (RMSE) between the actual and predicted RUL. RMSE is computed 

as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑥𝑖)

2𝑛
𝑖=1

𝑛
        (5.2) 

where n is total time-steps, yi is predicted values, and xi is actual values. 
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Table 5.3 Hyperparameters of deep learning architectures with respective fixed ranges 

Hyperparameters 

Network Structure Training Parameters 

Hn FCn Dr Epoch Lr L2rf 

[100 300] [25 250] [0.2 0.8] [100 300] [1e-3 0.1] [1e-5 1e-3] 

The algorithms employed in this work are developed and executed on a computer having 

an Intel Core-i7 (3.60 GHz) processor with 8 GB RAM using 64-bit MATLAB software. The 

prepared lathe spindle health degradation dataset comprising 10 training datasets, 2 validation 

datasets, and 2 testing datasets are employed for prognostic analysis using the Bayesian 

optimization LSTM/bi-LSTM learning algorithm. Bayesian optimization of LSTM, bi-LSTM, 

LSTM + bi-LSTM, bi-LSTM + LSTM, LSTM + LSTM, and bi-LSTM + bi-LSTM network 

architectures are performed separately using the training and validation datasets to identify their 

best hyperparameters. The Bayesian optimization algorithm tune the hyperparameters towards 

the attainment of a minimum validation error. The algorithm terminates after completing 30 

iterations to produce the optimized hyperparameters for the minimum validation error. Table 

5.4 presents the Bayesian optimized hyperparameter sets for all the considered deep network 

architectures. The LSTM/bi-LSTM deep network architectures trained using these optimized 

hyperparameters are compared to identify the most accurate predictive model.  

Table 5.4 Bayesian optimized hyperparameters of LSTM/bi-LSTM network architectures 

Network 

Architecture 
Hn-1 

FCn-

1 
Dr-1 

Hn-

2 

FCn-

2 
Dr-2 Epoch Lr L2rf 

LSTM 242 116 0.63 --- --- --- 296 0.009 4.0e-4 

bi-LSTM 104 199 0.36 --- --- --- 239 0.011 2.5e-4 

LSTM + bi-LSTM 114 129 0.38 270 84 0.21 207 0.0034 5.1e-5 

bi-LSTM + LSTM 125 127 0.63 107 152 0.30 216 0.0012 1.9e-4 

LSTM + LSTM 221 180 0.21 179 39 0.22 247 0.0098 1.8e-5 

bi-LSTM + bi-LSTM 110 184 0.55 119 75 0.20 223 0.0019 1.8e-4 
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The evolved predictive models are examined to determine the prediction accuracy on an 

independent testing dataset. The RMSE between the actual and predicted RUL is estimated for 

all predictive models. Test observation plots between actual RUL and predicted RUL for 

LSTM/bi-LSTM network architectures with their respective prediction accuracy (RMSE) are 

illustrated in Figure 5.2. The predicted RUL well compliments the actual lathe spindle life 

degradation pattern including the response clip pinned on the actual life pattern. It is observed 

that not all the deeper LSTM and bi-LSTM network combination architectures give better 

accuracy than the single LSTM or bi-LSTM network architectures for spindle lathe RUL 

estimation. The LSTM + bi-LSTM network architecture is identified to have the best prediction 

accuracy on lathe spindle RUL estimation with RMSE equals 31.65 followed by the single 

LSTM architecture with RMSE equals 40.01. The LSTM architecture is well efficient in 

digging up hidden patterns from time-series data. Further employing a bi-LSTM network can 

refine the learned degradation patterns yielding accurate estimations. It is also observed that the 

order of placing the LSTM/bi-LSTM layer in the layer framework has a very high impact on 

the training process and thus the prediction accuracy. The deep learning architectures with a bi-

LSTM network at the beginning are observed to produce comparatively lesser accurate 

predictions. This might be because the bi-LSTM network learns the time series data from both 

directions leads to overfitting of the evolved predictive model. The Bayesian optimization of 

LSTM/bi-LSTM and their combination architectures identifies the best individual 

hyperparameter sets for maximum prediction accuracy on lathe spindle data. The proposed 

Bayesian optimization deep learning algorithm provides an integrated self-optimization of 

hyperparameters and an RUL estimation platform for the predictive analytics of the lathe 

spindle unit. 
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Figure 5.2 Actual RUL vs predicted RUL for (a) LSTM, (b) bi-LSTM, (c) LSTM + bi-

LSTM, (d) bi-LSTM + LSTM (e) LSTM + LSTM, (f) bi-LSTM + bi-LSTM models 
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5.3 RUL Estimation Employing Machine Learning Model 

Machine learning algorithms are widely employed for the failure classification and 

prediction of mechanical systems [22]. SVM is the most popularly employed learning approach 

for machine failure prediction and RUL estimation [127, 136]. Yan et al. [138] employed an 

SVM classifier to assess the degradation stage of bearing, which is further utilized to exploit 

the optimal RUL prediction. Chen et al. [213] proposed a framework for RUL estimation of an 

aircraft engine using the lifecycle data and performance deteriorated parameter data based on 

the theory of similarity index and SVM. Louen et al. [214] proposed a new health feature 

creation approach using a binary SVM classifier, which is also used to obtain fault detection 

for the RUL estimation. Benkedjouh et al. [145] employed the isometric feature mapping 

reduction technique for nonlinear feature reduction and SVR for the RUL estimation of 

mechanical bearings. As in the case of deep learning algorithms, the options for the internal 

parameters/hyperparameters of SVM can strongly influence the prediction accuracy. Manually 

assigning these hyperparameters might not serve the purpose as it is considered transcendent 

[23, 215, 216]. Similar to the Bayesian optimization of LSTM/bi-LSTM deep network 

hyperparameter optimization algorithm, the SVM machine learning algorithm is executed 

within the Bayesian optimization algorithm against the minimization of prediction error to 

obtain the best hyperparameter set for a given training data. 

The SVM machine learning architectures with predefined fixed ranges of 

hyperparameters are assigned as the objective function to a Bayesian optimization algorithm. 

The objective function trains the SVM model and returns the validation error to the Bayesian 

optimization algorithm. After each iteration, a new set of values are assigned to the 

hyperparameters and the process continues until a termination criterion is reached [23]. The 

termination criterion for the algorithm is set to a predefined condition of completing 30 

iterations as similar to LSTM/bi-LSTM deep learning architecture optimization. Finally, the 

evolved SVM regression model for the best-optimized hyperparameter set is tested towards the 

independent testing dataset to obtain the RUL and prediction error. The flow diagram of the 

Bayesian optimization SVM learning algorithm is shown in Figure 5.3. (See Appendix IV for 

MATLAB code for Bayesian optimization machine learning model based prognostic algorithm) 
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Figure 5.3 Bayesian Optimization SVM algorithm flow diagram 

The overall algorithm is aiming to minimize the Bayesian optimization validation error, 

which is computed using the MSE as presented in Eq. 5.1 [217]. Bayesian optimization 

algorithm estimates the MSE between the predicted and actual RUL for every iteration for the 

assigned set of hyperparameters. The hyperparameter set for every iteration is expected to 

minimize the prediction error to obtain an estimated MSE. This estimated MSE is compared 

against the actual observed MSE to determine the hyperparameter set for the next iteration. In 

each iteration, the SVM model fitness is evaluated using RMSE between the actual and the 

predicted RUL as presented in Eq. 5.2 [218].  

The SVM algorithm is repeatedly executed within the Bayesian optimization algorithm 

to converge at a set of hyperparameters that causes minimum prediction error. The major 

hyperparameters considered for optimization includes 

(a) Box constraint: It constrains the α coefficients that the α coefficient values cannot 

exceed the box constrain value. The Positive values log-scaled in the range 

[0.001,1000] are assigned for box constrain 
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(b) Kernel function: Kernel functions are mathematical functions used to map the 

training data to the required form. A kernel function among Linear, Gaussian, 

Quadratic, or Cubic, which best represents the training data is selected. 

(c) Kernel scale: The SVM algorithm divides the elements of the predictor vector by 

kernel scale. Positive values log-scaled in the range [0.001,1000] are assigned for 

kernel function. 

(d) Epsilon: Epsilon is a margin of tolerance in the support vector selection error. It is 

half the width of epsilon-insensitive band specified as positive values log-scaled in 

the range [0.001,100] * iqr(y) / 1.349, where iqr(y) is the interquartile range of 

response variable y [219, 220]. 

Table 5.5 shows the hyperparameters of SVM machine learning architecture with their 

respective predefined fixed ranges. The algorithm iterates repeatedly for a different set of SVM 

hyperparameters within these fixed ranges.  

Table 5.5 Hyperparameters of SVM machine learning architecture with respective fixed ranges 

Hyperparameters Fixed Ranges 

Box Constraint Kernel Function Kernel Scale Epsilon 

0.001-1000 
Linear, Gaussian, 

Quadratic, or Cubic 
0.001-1000 0.47739 - 47739.066 

The algorithms employed in this work are developed and executed on a computer having 

an Intel Core-i7 (3.60 GHz) processor with 8 GB RAM using 64-bit MATLAB software. The 

prepared lathe spindle health degradation dataset comprising 10 training datasets, 2 validation 

datasets, and 2 testing datasets are employed for prognostic analysis using the Bayesian 

optimization SVM learning algorithm. First, the Bayesian optimization SVM learning 

algorithm is executed using the training and validation dataset. The SVM model is trained 

within the Bayesian optimization algorithm, which automatically optimizes the 

hyperparameters to evolve the best accurate RUL estimation model. The algorithm iterates 

repeatedly to tune the SVM hyperparameters for a minimum estimated MSE between the 

predicted and actual RUL on the validation dataset. The Bayesian optimization algorithm 

terminates after 30 iterations. The progress of Bayesian optimization to identify a minimum 
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observed MSE against an estimated minimum MSE for each iteration is represented in an MSE 

plot as shown in Figure 5.4. 

 

Figure 5.4 MSE plot for Bayesian optimization 

The estimated minimum MSE at each iteration is an estimate of the MSE for all the 

hyperparameters sets considered till each respective iteration. The hyperparameter set assigned 

to each iteration is expected to achieve this minimum estimated MSE. The observed minimum 

MSE is the minimum of actual MSE obtained up to the current iteration. In Figure 5.4, it can 

be observed that the best hyperparameter set is obtained at iteration 21, at which the 

hyperparameter values correspond to the most accurate SVM model for the given datasets. The 

optimized SVM hyperparameters are shown in Table 5.6.  
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Table 5.6 Bayesian optimized SVM hyperparameters 

Hyperparameters Optimized Result 

Box Constrain 536.89 

Kernal Function Gaussian 

Kernal Scale 0.058 

Epsilon 76.52 

The SVM model with the Bayesian optimized hyperparameters set is tested using the 

two independent test datasets. The variation of actual RUL vs predicted RUL for the two test 

datasets is shown in Figure 5.5. The actual RUL values of test datasets are response-clipped to 

an RUL value equal to 800. It can be observed that the predicted RUL attempts to trace the 

actual RUL pattern from the initial to the final time-steps. The pattern tracing is observed to 

improve towards the final time-steps for both test data 1 and test data 2. The overall predicted 

RUL is having an acceptable agreement with the actual RUL. An RMSE equal to 206.23 is 

obtained as a quantitative measure of prediction accuracy for the Bayesian optimized SVM 

model for the given dataset. 

 

Figure 5.5 SVM model -the variation of actual RUL vs predicted RUL 
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The prediction results obtained fairly follows the actual experimental test observations. 

SVM prognostic regression analysis is an effective tool for RUL estimation from time-series 

machine degradation data. As well, the Bayesian optimization approach for the best 

hyperparameters setting is proved effective for machine learning algorithms. 

5.4 RUL Estimation Employing Statistical Estimator Model 

The statistical data-driven regression approaches are reported as an easy-to-implement 

approach for RUL estimation using time-series sequence data [17]. It is effective in addressing 

the uncertainty of the degradation phenomenon and its influence on RUL estimations. Auto-

Regressive (AR) models, Random coefficient models, Wiener process models, Gamma process 

models, Inverse Gaussian process models, Markov models, Proportional hazards models, and 

their different variants are the most popularly used statistical data-driven techniques for 

machine prognostics analysis (6, 221). 

Recently, the statistical data-driven approaches have made a progression from the basic 

state estimator models to more specific RUL estimation models like the similarity-based 

models, exponential degradation models, and survival-based models. The similarity-based RUL 

prediction approach is widely used for industrial data analytics (222, 223). Liu et al. [224] 

developed a distance similarity and spatial direction similarity-based health index for RUL 

prediction. Wen et al. [133] have presented an exponential degradation model and Mahalanobis 

distance approach for the RUL estimation of ball screw systems. Zhang et al. [134] proposed 

an exponential degradation model and particle filter-based RUL estimation approach Lithium-

ion battery. Tseng et al. [130] proposed an exponential-depression degradation model for the 

optimization of accelerated degradation test allocation problems. Li et al. [129] proposed an 

improved exponential degradation model for the RUL estimation of bearings. Gebraeel et al. 

[135], first introduced the exponential model for RUL prediction. It is a model-based analytical 

method that can incorporate both expert knowledge and information from measured data [124, 

129]. The exponential models are highly suitable for representing the degradation patterns of a 

mechanical component, where an exponential-like degradation process can be observed [225, 

226]. It is also useful when the component experiences cumulative degradation where the cause 

of degradation from multiple sources are acting together [124, 129, 135, 226]. However, the 

exponential models are not explored in depth for predictive analytics. 
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In this section, a prognostic approach combining the Principal Component Analysis 

(PCA) and exponential degradation model is proposed for the RUL estimation of the lathe 

spindle unit. The proposed algorithm put forward a less complicated and economic 

computational platform by integrating the abilities of PCA to reduce dimensionality while 

preserving variance of the prepared vibration monitoring data and the exponential degradation 

model to represent the complex degradation patterns of mechanical components. The 

methodology includes lathe spindle HI construction and RUL estimation. The PCA is employed 

for the HI construction and the exponential degradation model is employed for RUL estimation. 

5.4.1 Feature Dimensionality Reduction and Degradation HI Construction 

Dimensionality reduction is the process of converting a set of data having large 

dimensions to data with smaller dimensions, ensuring that there is no loss of useful information 

during the conversion process. This technique can also fuse the data generating a single data 

feature that conveys similar information concisely. One of the most widely used dimensionality 

reduction-based fusion approaches, namely the PCA - Principal Component Analysis, also 

known as the Karhunen–Loeve transformation is utilized in this work [227, 228].   

PCA is the most commonly used statistical tool for HI construction by dimension 

reduction and feature fusion. The method generates a new set of variables, called principal 

components, which are linear combinations of all selected features [227, 229, 230]. The HI 

construction by PCA is described in the following steps. 

i. Standardization: - This step aims to standardize the range of vibration signal features to 

ensure an equal contribution of all features. Once standardized, all features are 

transformed to a common scale. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑣𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
      (5.3) 

ii. Covariance Matrix Computation: -This step determines how the features are varying 

from the mean with respect to each other, which is to find any correlation between them. 

The positive sign of covariance indicates a correlation and the negative sign indicates 

an inverse correlation. 

iii. Compute Eigenvectors and Eigenvalues of Covariance Matrix: -These are used to 

estimate the principal components. The computed principal components are 

uncorrelated and store maximum information about the original features. The first 
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principal component has the maximum possible information, the next maximum 

information in the second, and so on. 

iv. Feature Vector: -In this step, the lesser significant (low eigenvalues) components are 

discarded and the remaining ones are selected to form a feature vector. This makes 

dimensionality reduction. Finally, cast the data along the principal component axes. This 

is done by multiplying the transpose of standardized original data set by the transpose 

of the feature vector. 

The prognostic analysis employing the exponential degradation model utilizes a single 

lathe spindle health degradation dataset. The dataset with a maximum life of 1072 time-steps is 

chosen for validation of the proposed algorithm. The features selected after NCA based feature 

selection criterion (refer to Chapter 4, section 4.3.2) are analyzed with PCA to construct the HI. 

The constructed HI is a linear combination of these selected features. Figure 5.6 shows the 

analysis of the data space of the first two principal components. 

 

Figure 5.6 Data space for the first two principal components 

The first principal component increases as the bearing approach to failure and therefore, 

it is recognized as the best to represent bearing degradation [231]. The first principal component 

is further smoothened using a moving mean filter to produce a reliable degradation trend of the 

bearing from normal to the faulty stage. Figure 5.7 shows the smoothened HI for bearing 
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degradation. The HI shows a steady trend at the beginning of component life, which indicates 

the normal healthy condition of the component. This stage is followed by a gradually increasing 

trend of HI, which marks the sprouting of faults in the mechanical unit. A sudden increase in 

trend indicates the component approaching failure and finally the failure. This smoothened HI 

is used to train the exponential degradation model algorithm for RUL estimation. (See 

Appendix V for MATLAB code for exponential degradation model-based prognostic 

algorithm) 

 

Figure 5.7 Constructed Health Indicator (HI) 

5.4.2 Lathe Spindle RUL Estimation Using Exponential Degradation 

Model 

The exponential degradation model is utilized for estimating the RUL of the lathe 

spindle unit. This computational methodology is mostly employed when the component 

experiences a cumulative degradation, which is the common degradation phenomenon of any 

mechanical system. The basic concept of the approach is a simple curve fitting and 

extrapolation process. The exponential degradation model fits into the constructed HI. This 
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degradation model is extrapolated to find a future time step where the degradation model 

crosses a predefined threshold value. The difference between this future time step and the 

present time step gives the required RUL. This failure threshold is usually defined based on 

previous failure history or chosen as a safe value before the faulty zone on HI. Assuming that 

no historical data is available for the dataset, the last value of the HI is chosen as the failure 

threshold. 

The constructed HI is provided as the input for the RUL computation algorithm and the 

HI value corresponding to the time step-1072 (the last HI value) is assigned as the threshold for 

failure detection. To validate the prediction algorithm, only a part of the HI from the beginning 

to time step-900 is provided as the input to train the exponential degradation model. The 

evolved exponential degradation model truly fits into the actual degradation trend represented 

by the HI. Figure 5.8 shows the exponential degradation model fitted into the constructed HI 

for the RUL estimation with a 95% confidence interval. The algorithm estimates the prediction 

model to cross the failure threshold at time step-958, which computes the RUL as 58-time steps. 

The error of predicted lifetime from the actual experimental value is 114-time steps. 

 

Figure 5.8 Exponential degradation model for RUL Prediction 

5.5 Comparison of Predictive Accuracy of Considered Data-

Driven Prognostic Models 

For further evaluation of the proposed predictive analytics approaches, a comparison of 

the prominent data-driven approaches the deep learning model, machine learning model, and 
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statistical estimator model is included in the context of discussions. To make an easy intelligible 

comparison of the prediction accuracy of considered data-driven prognostic models the mean 

absolute percentage error (MAPE) between the predicted and actual RUL are estimated [232].  

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

(𝑥𝑖 −𝑦𝑖)

𝑥𝑖
|𝑛

𝑖=1        (5.4) 

where xi is actual RUL, yi is predicted RUL, and n is sample length. A comparison is 

made for the RUL prediction error determined as RMSE and MAPE for the considered data-

driven prognostics approaches. A comparison has also been made on the computational 

complexity of three data-driven approaches in terms of the time for computation. 

A comparison metrics of the considered data-driven prognostics approach LSTM/bi-

LSTM deep learning models, exponential degradation estimator model, and SVM machine 

learning model are presented in Table 5.7. The comparison metrics include the RUL prediction 

errors (determined as RMSE and MAPE) and computational complexity (determined as 

computational time). It is observed that the deep learning models outperform the machine 

learning and statistical estimator model in the RUL estimation of the lathe spindle unit. 

Table 5.7 Comparison of prediction accuracy and computational complexity of data-driven 

models 

Data-Driven 

Approach 
RMSE 

MAPE 

(%) 

Computational 

Time 

(Hours) 

LSTM 40.01 6.09 4.49 

bi-LSTM 52.73 7.01 13.01 

LSTM + bi-LSTM 31.65 4.45 18.60 

bi-LSTM + LSTM 59.34 7.14 20.34 

LSTM + LSTM 66.99 10.40 9.51 

bi-LSTM + bi-

LSTM 
64.18 9.52 23.82 

Exponential 

Degradation model 
114.00 10.63 0.28 

SVM model 206.23 23.18 1.83 
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The deeper LSTM + bi-LSTM leaning architecture is trained best on the lathe spindle 

health degradation data with an RMSE of 31.65 and MAPE of 4.45%. The RMSE and MAPE 

of the exponential degradation model are 114 and 10.63% respectively, and those for the SVM 

model are 206.23 and 23.18% respectively. The prediction errors observed for the exponential 

degradation model and SVM model are high compared to the prediction error of LSTM/bi-

LSTM deep learning models. Considering the computational complexity, a comparison is also 

made based on the computational time. It is observed that the computational time for deep 

learning or machine learning models is not even in the range of comparison with the statistical 

estimator model. The observed computation time for the exponential degradation estimator 

model is 0.28 hours (approx. 17 minutes), whereas the computation time for learning algorithms 

is from around 2 hours to 24 hours. This is because the prognostic analysis employing an 

exponential degradation model does not involve any hyperparameter optimization and is 

basically a curve fitting technique. Machine learning models having less complicated network 

architectures spend 1.83 hours for their Bayesian optimized hyperparameter tuning and RUL 

estimation using the SVM model. The deep learning models on the other hand consumed greater 

time for Bayesian optimized hyperparameter tuning and RUL estimations ranging from 4.49 

hours to 23.82 hours. It is also observed that the simple deep learning architectures involving a 

single LSTM or bi-LSTM layer consume lesser time compared to more complicated deeper 

LSTM/bi-LSTM combination model architectures. The bi-LSTM model that learns the time-

series data from both directions is observed to consume greater time compared to LSTM 

models. 

5.6 Summary 

In this work, three data-driven prognostic algorithms based on the deep learning model, 

machine learning model, and statistical estimator model are developed for the RUL estimation 

of the lathe spindle unit. Bayesian optimization-based self-optimizing hyperparameter 

algorithms are developed for deep learning and machine architectures. The Bayesian 

optimization LSTM/bi-LSTM network algorithm is executed separately for LSTM/bi-LSTM 

and their combination network architectures to identify the best hyperparameters. The 

optimized LSTM/bi-LSTM deep learning architectures were tested on an independent dataset 

to determine their prediction accuracy. Similarly, a Bayesian optimization SVM machine 

learning algorithm is executed on the lathe spindle dataset for RUL estimation with the best-

optimized hyperparameter sets. An exponential degradation statistical estimator model is also 
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used to fit into the lathe spindle health degradation model for RUL estimation analysis. The 

LSTM/bi-LSTM deep networks are observed effective for prognostic regression analysis using 

time-series sequence data. The long-term and short-term memory gradients in the LSTM 

networks can better unravel the hidden trend patterns from time-series data. Training a deep 

learning algorithm using the extracted vibration signature features avoids the possibility of 

underfitting the predictive models. The useful machinery degradation information extracted 

from the raw vibration signals well trains the data-driven prognostic models for RUL 

estimations. Feature extraction and feature selection approaches have nullified the mandate to 

have larger-sized data for training intelligent learning models.  Bayesian optimization-based 

self-tuning of hyperparameters partially knocks down the black-box nature deep learning 

algorithm as the proposed methodology completely avoids the hectic task of manually setting 

the hyperparameters for training learning algorithms.



 

 

Chapter 6  

                                                                                              

IoT-Based Real-Time Remote Maintenance Decision-

Making Dashboard                                                                                             

 

6.1 Introduction 

The present chapter put forward an intelligent system architecture for Internet-of-

Things/IoT-based real-time machinery monitoring and intelligent predictive maintenance of the 

lathe spindle unit. IoT, as a critical Industry 4.0 enabler unfolds the concepts of smart industries 

and smart machines for efficient machinery health management for higher productivity. The 

architecture requires the development of a failure alert system and a remote maintenance 

decision-making dashboard incorporating cloud space storage and cloud computing 

technologies. A real-time IoT data acquisition and data analytics framework is developed for 

real-time machinery health status monitoring and analysis to aid in the maintenance decision-

making process. The project uses the ThingSpeak™ IoT analytics platform service offered by 

MathWorks® to establish a real-time lathe spindle health monitoring and health status analysis 

studies. ThingSpeak allows you to aggregate, visualize and analyze live data streams in the 

cloud. Real-time condition monitoring and upcoming failure prediction information on the 

ThingSpeak IoT platform provide enhanced effective decision-making in terms of machinery 

maintenance scheduling and shopfloor allocations.
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6.2 Potential of IoT Technology 

The term ‘Internet-of-Things / IoT’, coined by Kevin Ashton in 1999 [233], was in use 

for the past few years and will continue to be a major area to explore in the industrial sector. 

The concept of IoT dates back to the early 1990s, as utilized in ‘Radio Frequency ID (RFID)’ 

chips, where the information is transmitted over radio waves to radio waves to communicate its 

identity and other information [234]. Essentially, IoT refers to providing devices/things 

representation in the digital realm using unique identities and establishing connectivity among 

them in a network space. Devices/things connected in such a network space can communicate 

among themselves, transfer data and information over the internet without any human 

interventions, hence realizing machine-to-machine (M2M) communication. M2M 

communication enables networked devices/things to exchange data and execute actions based 

on preprogrammed algorithms without any human assistance [78]. An IoT software primarily 

involves the features of data collection, data integration, real-time analytics, and application. 

The data collection is achieved through a wide variety of sensors systems and associated data 

acquisition systems. It also establishes M2M communication within the networked devices. The 

data integration system ensures the required cooperation and networking between the 

networked devices for smooth communication. It manages various communication protocols to 

establish connectivity. Real-time analytics involves algorithms that use data from various 

devices to make viable decisions or execute actions. Finally, the application extends the reach 

of the existing system and software to a real-world scenario for effective improvement in 

practical implementations [78, 235].  

Building an IoT system requires the devices/things, the internet gateway, the cloud space 

for storage and analytics, the analytics platform, and finally the user interface. Figure 6.1 shows 

the major components in a generalized IoT architecture. The devices/things include a sensor 

that continuously collects data about themselves and the environment and transmits it to the 

next layer. These devices/things might be connected over a wire, wi-fi, Bluetooth, etc. The IoT 

gateway act as a middle layer between the devices/things and cloud space which manages the 

bidirectional data traffic between the networks and protocols. The gateway is to translate 

different networks and protocols to ensure interoperability of the connected devices/things. 

Gateway offers a certain level of security for the network and transmitted data. IoT cloud offers 

tools to collect, process, manage, and store a huge amount of different data in real-time. The 
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IoT services can easily access these data remotely and make critical analyses when required. 

IoT analytics is the process of converting meaningful insights from the collected sensor data. 

Intelligent algorithms are employed to analyze the sensor data over a cloud computing platform 

for the improvement of products and services. The user interfaces are the visible, tangible part 

of the IoT system which are accessible to users [5, 236]. 

 

Figure 6.1 Major components of a generalized IoT architecture 

The conceptual IoT technologies were successfully implemented in a wide range of real-

world applications. These include smart home architecture with connected home appliances 

[73, 236-238], healthcare framework [239-241], smart cities [242-244], smart transportation 

[245, 246], smart agriculture with intelligent climate and soil condition monitoring [247-252], 

manufacturing monitoring with fault diagnosis and prognosis systems [194, 253-255], and 

many more. IoT-based weather monitoring and forecast systems can make early warnings on 

natural disasters like floods, earthquakes, storms, hurricanes, etc. [256, 257]. 

In this Industry 4.0 era, the IoT technologies and artificial intelligence algorithms based 

on big data analytics are explored in developing innovative solutions for industrial limitations 

in achieving improved production efficiency. Recent studies have also proved the potential of 

IoT technologies and big data analytics for improving efficiency, quality and realizing data-

oriented predictive maintenance of industrial systems at reduced costs. Ayvaz et al. [201] 

proposed a data-driven predictive maintenance system for production lines in the manufacturing 

sector. The real-time IoT sensor data are analyzed employing machine learning algorithms to 

detect potential failures before their occurrence. Rymaszewska et al. [258] addressed how 

organizations offering product services can reap the benefits of IoT technologies through the 

analysis of IoT implementation case studies in manufacturing sectors. Lee et al. [196] 

introduced an effective cyber-physical system (CPS) architecture for supporting multi-site and 

multi-products manufacturing focusing on a case in the manufacturing of vehicles’ high-
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intensity discharge headlights and cable modules, which are usually manufactured with several 

multi-manufactured sites. Aheleroff et al. [73] discussed smart appliances under industry 4.0 

on transforming conventional home appliances to IoT-enabled smart systems. Khademi et al. 

[259] proposed a method to convert rotating machinery as IoT-enabled devices using a new 

generation accelerometer for vibration monitoring. Compare et al. [78] has made a deeper 

understanding on the relevance of IoT in achieving a maturity stage for the real-world predictive 

maintenance applications and discussed major research limitation on deployment of IoT-

enabled predictive maintenance in the industry. Mekid et al. [260] proposed an IoT-based 

condition monitoring solution for cutting tool wear monitoring and failure prognostics on the 

cloud server. Chandra et al. [261] proposed an IoT-based reliable remote monitoring method 

over the on-site method for the monitoring and control of diesel generators installed for 

electricity production. Karthik et al. [262] proposed a model for IoT-based preventive 

maintenance of the alternators and motors inside the aircraft to ensure more safety before every 

take-off. Tan et a. [263] addressed the implementation of a digital twin-oriented simulation in 

an IoT-enabled manufacturing environment that synchronizes real-world information in real-

time into the digital twin cyberspace. Moens et al. [264] presented the ‘Smart Maintenance 

Living Lab’, an open test and research platform that consists of a fleet of drivetrain systems for 

accelerated lifetime tests of rolling-element bearings, a scalable IoT middleware cloud platform 

for reliable data ingestion and persistence, and a dynamic dashboard application for fleet 

monitoring and visualization. Noyjeen et al. [265] developed an IoT-based three-phase 

induction motor monitoring and diagnosis system. Santiago et al. [266] proposed an efficient 

IoT-based predictive maintenance system able to identify, predict and notify the occurrence of 

failure events in Heating, Ventilation, and Air-Conditioning (HVAC) systems. Tao et al. [267] 

investigated the application of IoT technologies in cloud manufacturing to achieve intelligent 

perception and access to various manufacturing resources. 

6.3 Outline of the Proposed IoT Framework 

In this work, an effort is made to seamlessly integrate the relevant information extracted 

from real-time condition monitoring data, the predictive analytics model trained using historical 

machine degradation data, machinery health status visualization dashboard, and a real-time 

upcoming failure warning initiation system to provide meaningful insights into the acquired 

machinery degradation information. The machinery health degradation information is acquired 

from the lathe spindle unit using the sensors and data acquisition system. This data is further 



 

103 

 

analyzed to extract useful information for prognostic analysis (refer to Chapter 4). Intelligent 

prognostic algorithms are trained using the extracted machinery health degradation information 

to evolve intelligent predictive models for the RUL estimation of lathe spindle unit (refer to 

Chapter 5).  

The best-chosen RUL estimation model is uploaded to the cloud space to make it 

available for real-time predictive analytics. The real-time machinery health degradation data 

representing the current operating condition of the lathe spindle is acquired and is made 

available in the cloud space. An intelligent cloud computing algorithm is developed to estimate 

the RUL of the current operating lathe spindle unit. This information on the cloud analytics 

platform is considered for the real-time assessment of upcoming failures and trigger email alerts 

warnings. The real-time machinery health degradation information of the lathe spindle unit is 

also made available on a webpage visualization interface. The real-time machinery health status 

information and failure warnings based on the estimated RUL can be put into use for the 

predictive maintenance of the lathe machine tool. Figure 6.2 shows the outline of the proposed 

IoT cloud analytics framework. 

 

Figure 6.2 Outline of IoT cloud analytics framework 



 

104 

 

6.4 Cloud-Based Data Management and Predictive Analytics 

Framework 

The cloud-based data management and predictive analytics framework comprises an IoT 

platform to enable communication with the lathe spindle unit, monitor live data from the local 

computing and storage system, and manage historical data and evolved predictive models for 

real-time prognostic analysis. In the present work, the ThingSpeak™ IoT analytics platform 

service offered by MathWorks® is employed to realize the cloud-based data management and 

predictive analytics framework. The local computing and storage system is connected to the 

ThingSpeak IoT platform and the lathe spindle health status visualization and failure alert 

warning systems were integrated on the ThingSpeak IoT platform. 

6.4.1 Overview of ThingSpeakTM IoT Web Service 

ThingSpeak is a web-based IoT analytics platform service that allows the user to 

aggregate, visualize, and analyze real-time data streams in the cloud space [268, 269]. 

ThingSpeak uses channels to store data transmitted from local storage systems or ground 

devices over the internet. Figure 6.3 shows a screenshot of the ThingSpeak IoT analytics 

platform with a channel created to store lathe spindle health status information. Data can be 

sent to or retrieved from ThingSpeak channels using a REST API or MQTT API (REST- 

Representational state transfer, MQTT- Message Queue Telemetry Transport, API- Application 

Programming Interface). The REST API calls are used to create and update the ThingSpeak 

channels and the MQTT API is used to update the ThingSpeak channels. MQTT is an OASIS 

and ISO standard messaging protocol for the IoT.  In addition, ThingSpeak also encourages 

cloud-to-cloud interactions, which is utilized in this work to obtain the evolved predictive 

models for RUL estimation [270].  
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Figure 6.3 Screenshot of ThingSpeakTM IoT analytics platform with a live channel created to 

store lathe spindle health status information 

6.4.2 Communication with the IoT Platform 

The core element for communication in the ThingSpeak IoT web service is a 

ThingSpeak channel that establishes connectivity among the devices/things over the internet. 

ThingSpeak allows the user to store and retrieve data to and from the channel in real-time. The 

ThingSpeak channel has fields for data, fields for device station location, and fields for status 

for varied sensed data. REST API calls ‘GET’ and ‘POST’ can be used to send and retrieve 

data to and from the channel respectively. The MQTT ‘Publish’ method can also be used to 

update the channel fields and MQTT ‘Subscribe’ can be used to retrieve channel data. 

MATLAB functional codes are also employed to write or read data to and from the ThingSpeak 

channel. The ThingSpeak channel uses separate API keys namely the ‘Write API key’ and 

‘Read API key’ to write and read data from channel respectively. Figure 6.4 shows a screenshot 

of the ‘lathe spindle health status’ channel information with the respective channel ID, the write 

and read APIs, and the available fields of machinery health degradation data. The data are stored 

in the ThingSpeak channel in either JSON, XML, or CSV data formats.  
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Figure 6.4 Lathe spindle health status channel information 

In the present work a MATLAB function code using the channel ‘Write API key’ is 

defined to upload the real-time lathe spindle health degradation data from the local storage 

space to the IoT ThingSpeak channel. The selected vibration signature features mentioned in 

‘section 4.3.2’ are sent to the ‘lathe spindle health status’ monitoring channel employing the 

‘Write API key’ function. The live data acquired from the lathe spindle test setup is first 

analyzed to extract the meaningful vibration signature feature (section 4.3) and then selected 

features uploaded to the ThingSpeak data collection channel at a rate of once in every 60 

seconds (See Appendix VI for MATLAB code to upload data to ThingSpeak cloud space). The 

different vibration signature features are uploaded to separate fields of data defined in the 

ThingSpeak channel namely standard deviation, peak-to-peak, RMS, RSSq, energy, normal 

entropy, and log entropy. Similarly, a MATLAB function code using the channel ‘Read API 

key’ is defined to retrieve the data from the channel when required for analysis. The data read 

from the channel fed in a cloud computing space where the live lathe spindle health degradation 

data is analyzed against the evolved predictive model for the RUL estimation of lathe spindle 

unit and further failure alert warning through email notifications. The evolved predictive model 

required for the RUL estimation is made available in the cloud space through the ‘Drop Box’ 

cloud storage service provider. The identified best predictive model, the LSTM + bi-LSTM 

predictive model is uploaded to the DropBox server and is called in the ThingSpeak cloud 

analytics space when required. Figure 6.5 shows the flow of data in the proposed IoT system.  
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Figure 6.5 Flow of data in IoT Platform 

6.5 Cloud Computing Architecture and User Interface for 

Predictive Analytics 

ThingSpeak IoT web service provides a MATLAB analysis cloud computing paradigm 

for analyzing the channel data. The architecture comprises the cloud storage, cloud computing, 

and user interface stages. Figure 6.6 shows the flow diagram of IoT cloud computing 

architecture and user interface for the predictive analytics of the lathe spindle unit. The IoT 

cloud computing architecture and the user interface are discussed in detail in the following 

sections.  
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Figure 6.6 IoT cloud computing architecture and user interface for the predictive 

analytics of lathe spindle unit 

6.5.1 Lathe Spindle RUL Estimation and Failure Warning System 

The RUL estimation required the lathe spindle real-time health status information and 

the evolved intelligent predictive model. The real-time lathe spindle health degradation data 

stored in the ‘lathe spindle health status’ channel is read using the ‘Read API key’ and the 

intelligent predictive model stored in a ‘Drop Box’ cloud storage is called using the ‘DropBox 

Access Token’, which the ‘’Drop Box API key’. The RUL life estimation algorithm first 

retrieves the intelligent predictive model and then the features representing the real-time health 

status of the lathe spindle. (See Appendix VII for the MATLAB code for cloud computing 

algorithm for the real-time RUL estimation and email alert warnings) 

The algorithm predicts the RUL of the lathe spindle by analyzing the current health 

status information and historical health degradation patterns. The current health status of the 

lathe spindle is revealed through the extracted vibration signature features standard deviation, 

peak-to-peak, RMS, RSSq, energy, normal entropy, and log entropy, which are made available 

in the cloud space. The historical health degradation patterns of the lathe spindle are represented 

through the evolved LSTM + Bi-LSTM prognostic regression model. The degradation pattern 

of the features is analyzed against the evolved prognostic regression model to estimate the RUL 

of the lathe spindle unit. The algorithm automatically executes at regular intervals of time and 



 

109 

 

also can be executed at any time in the interest of the user. The evaluated RUL values are saved 

for further analysis. 

The determined RUL values are then used as a facet to trigger the failure warning system 

through email alerts. The system is designed to evaluate the RUL at a regular interval of time 

and if the obtained RUL value crosses a predefined safe threshold, the system automatically 

triggers the email alerts. The email alert warning includes a message on if the machine is 

running well or if the machine requires maintenance. The email also provides the available RUL 

of the spindle unit, which also provides the user to make a suitable decision regarding 

machinery maintenance and planning. Figure 6.7 provides a screenshot of the generated email 

alert warning. 

 

Figure 6.7 Screenshot of generated email alert warning 

6.5.2 Webpage Visualization of Lathe Spindle Health Status 

The outputs of the proposed IoT architecture are integrated into a web page user interface 

that allows the user to have live monitoring of lathe spindle health status from anywhere in the 

world. The live lathe spindle health degradation data sent to the ThingSpeak channel is reflected 
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as such in the webpage interface on a real-time scale. Figure 6.8 shows screenshots on the 

developed webpage user interface.  

 

Figure 6.8 Screenshot of developed web page interface (a) main introduction page,  

(b) Health Indicator dial gauge and degradation trend 
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Figure 6.8 (a) displays the introduction page detailing the identity and purpose of the 

webpage. A live health status indicator dial gauge is also designed and integrated into the 

webpage for easy monitoring of lathe spindle health status.  Figure 6.8 (b) displays the live 

health status indicator dial gauge that has three stages of dial gauge indicating the safe (Green), 

alert (Yellow), and faulty (Red) zones of lathe spindle operational lifetime. The page also 

displays the health degradation pattern of the current operating lathe spindle. As shown in 

Figure 6.9, the webpage can also redirect to a detailed graphical representation of the lathe 

spindle health degradation patterns that are represented through the selected vibration signature 

features. The real-time lathe spindle health status information available on the webpage 

interface enables the user to make appropriate decisions regarding the maintenance planning of 

the lathe machine tool system. The interface can be utilized as a real-time maintenance decision-

making dashboard for the lathe machine tool system. 

 

Figure 6.9 Screenshot of Detailed webpage view of lathe spindle degradation trend 
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6.6 Summary 

The chapter presents a real-time maintenance decision-making dashboard collaborating 

the modern digital technological paradigms IoT, Big Data Analytics, Cloud Computing, and 

sophisticated predictive analytics algorithms. In this work, a simple and efficient framework is 

proposed for real-time IoT-based machinery health status monitoring and maintenance 

decision-making. The ThingSpeak IoT web service platform and DropBox cloud storage 

services are utilized for developing the IoT-based real-time maintenance decision-making 

dashboard. The real-time lathe spindle monitoring vibration data is analyzed to extract signature 

features and then the selected features are simultaneously sent to a cloud space storage on a 

real-time basis. The best evolved data-driven prognostic model is also stored in a cloud space 

to make it available for predictive analytics.  The features representing the current health status 

of the lathe spindle are analyzed against the trained predictive model to estimate the real-time 

RUL of the lathe spindle unit. This RUL value crossing a predefined threshold automatically 

triggers email warnings to alert the user regarding the maintenance of the lathe machine tool. 

The features in the cloud space are integrated into a webpage user interface to provide a real-

time health status visualization of the lathe spindle unit. The webpage interface displays a health 

indicator dial gauge calibrated to the real-time health status of the lathe spindle.



 

 

Chapter 7  

Summary and Conclusions 

7.1 Summary 

The present research work comprehends and contributes to the existing understanding 

of the condition monitoring and intelligent predictive maintenance of industrial machinery. The 

studies provide insights into the potential of intelligent data-driven learning algorithms, 

advanced big data technologies, and IoT-based cloud computational techniques in the 

application of machinery health degradation data monitoring, data exploration, and prognostic 

regression analysis. The thesis portrays the design and development of an intelligent predictive 

maintenance framework for the critical components of the CNC lathe machine tool in an 

industry 4.0 scenario. The study utilizes the computational techniques fuzzy modified FMECA 

for the maintenance prioritization of CNC machine tool components and the data-driven 

prognostic algorithms such as LSTM deep learning models, SVM machine learning models, 

and exponential degradation statistical estimator models to evolve intelligent RUL estimation 

models. The generated machinery health degradation data is employed to train the intelligent 

data-driven prognostic models. The study is expected to motivate industrial practitioners for 

developing a remote machinery health monitoring and data acquisition system with an 

intelligent predictive maintenance module, thus making them a worthful candidate to compete 

in the current Industry 4.0 era.



 

114 

 

7.2 Conclusions 

This research work is focused on studies on the development of a data-driven intelligent 

predictive maintenance framework for the critical components of the CNC lathe machine tool 

in an industry 4.0 scenario. Based on the research work, the followings are the conclusions: 

(a) Criticality analysis of the CNC lathe machine tool subsystems is performed to identify 

the most critical subsystems and their potential failure modes from a maintenance 

perspective and hence limit the implementation of predictive maintenance to the 

identified critical subsystems. The Fuzzy modified FMECA technique is effectively 

employed for the maintenance prioritization of lathe machine tool subsystems. The 

spindle unit of a CNC lathe is identified as the most critical subsystem with the highest 

fuzzy RPN value of 848.2. Furthermore, FMECA relates the potential failure modes to 

potential effects and root causes. The wear and deformation of spindle bearings causing 

increased noise and vibration are identified as the potential failure causes and effects in 

the lathe spindle unit. This knowledge can be utilized in the phenomenon of sensors 

selection and installation of the condition monitoring system for the critical components. 

(b) An accelerated run-to-failure experimental test rig with sensors and a data acquisition 

system is fabricated to obtain the operational health degradation patterns of a CNC lathe 

spindle unit. The acquired vibration sensor signals do not provide any meaningful 

information regarding the health degradation patterns of the lathe spindle unit. These 

sensor signals need to be preprocessed and explored to extract useful information for 

effectual learning using computational algorithms. The Vibration signature feature in 

the time, frequency, and time-frequency domain extracts the health degradation patterns 

from the raw vibration signals. Further, an NCA-based feature selection algorithm 

identified the features' standard deviation, peak-to-peak, RMS, RSSq, energy, normal 

entropy, and log entropy as significant for prognostic regression analysis. Lathe spindle 

accelerated run-to-failure health degradation data acquired from 14 individual 

experimental runs are prepared for the prognostic regression analysis employing 

intelligent data-driven algorithms. As well, the feature extraction and feature selection 

approach employed for the preparation of health degradation data have nullified the 

mandate to have larger-sized data for training intelligent learning models. 
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(c) Three data-driven algorithms, the deep learning LSTM/bi-LSTM network models, 

machine learning SVM model, and statistical estimator exponential degradation model 

algorithms are successfully employed for the prognostic regression analysis. The 

selected vibration signature features representing the lathe spindle health degradation 

are used to train the data-driven algorithms to evolve intelligent RUL estimation models. 

The LSTM + bi-LSTM network architecture is identified to have the best prediction 

accuracy on lathe spindle RUL estimation with RMSE equals 31.65 followed by the 

single LSTM architecture with RMSE equals 40.01. The LSTM architecture is well 

efficient in digging up hidden patterns from time-series data. Further employing a bi-

LSTM network can refine the learned degradation patterns yielding accurate 

estimations. Furthermore, an RMSE equal to 206.23 is obtained as the prediction 

accuracy for the SVM model and an RMSE of 114.00 is obtained for the exponential 

degradation model. 

(d) One of the major challenges in training deep learning and machine learning algorithms 

for prognostic regression analysis is the selection of suitable hyperparameter values to 

obtain maximum prediction accuracy. A Bayesian optimized deep learning and machine 

learning architecture are proposed to have an automated hypermeter tuning to evolve 

the best intelligent predictive models. Intricacy in manually setting the best 

hyperparameters is overcome through the Bayesian Optimization approach. Bayesian 

optimization-based self-tuning of hyperparameters partially knocks down the black-box 

nature deep learning algorithm as the proposed methodology completely avoids the 

hectic task of manually setting the hyperparameters for training learning algorithms. 

(e) In order to make a further evaluation on the prediction accuracy and computational 

complexity of the proposed data-driven approaches the deep learning model, machine 

learning model, and statistical estimator model, the MAPE and maximum computational 

time for each algorithm are compared. The deeper LSTM + bi-LSTM leaning 

architecture is trained best on the lathe spindle health degradation data with a MAPE of 

4.45%. The MAPE of the exponential degradation model is 10.63% respectively, and 

that for the SVM model is 23.18% respectively. The observed computation time for the 

exponential degradation estimator model is approximately 17 minutes, whereas the 

computation time for learning algorithms ranges from 2 hours to 24 hours. This is 
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because the prognostic analysis employing an exponential degradation model does not 

involve any hyperparameter optimization and is basically a curve fitting technique. 

(f) An IoT cloud-based simple and efficient predictive maintenance framework are 

proposed for real-time machinery health status monitoring and RUL estimation. The 

vibration signature features representing the lathe spindle health degradation patterns 

and the intelligent predictive models for RUL estimation are seamlessly integrated to 

realize a real-time remote maintenance decision-making dashboard. The acquired live 

lathe spindle health degradation data is analyzed against the trained intelligent predicted 

model to estimate the RUL. The estimated RUL values crossing a predefined threshold 

automatically trigger email warnings intimating the user regarding the maintenance of 

the lathe spindle. The real-time lathe spindle health status information is also made 

available in a webpage user interface, which allows the user to access the lathe spindle 

live health status information from anywhere in the world. 

With the advancements in technology, industrial practitioners can integrate new 

technologies, including AI and machine learning, IoT, and cloud computing and analytics into 

their production facilities. The thesis provides insight into the scope and challenges of the 

Industry 4.0 era and future machine tool technologies. Advanced sensor technology and 

computational algorithms are suitably integrated to develop a remote machinery health 

monitoring and data acquisition system with an intelligent predictive maintenance module. The 

machine criticality analysis can identify the most critical machine system and its subsystems 

that need to be considered for predictive maintenance. The information on the potential failure 

of causes component provides insights into the selection of suitable sensors for machinery 

condition monitoring. The sensors and associated data acquisition systems are programmed to 

monitor and acquire machine operating data on a real-time basis. The extracted data is further 

analyzed to obtain meaningful information on machinery health degradation to better train 

intelligent predictive algorithms. Subsequently, the acquired machinery condition monitoring 

information is made available in the IoT cloud computing and analytics platform for further 

predictive analytics from anywhere in the world.  
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7.3 Scope for Future Work 

(a) Multi-sensor data fusion with CNC controller data can be explored to improve the 

quality and information content of machinery degradation data, which consequently 

improves the performance of prognostic regression models. 

(b) A large-size multi-sensor dataset for training deep learning algorithms could avoid the 

requirement for feature extraction and selection. 

(c) The application of hybrid computational algorithms can be studied to better train the 

machinery health degradation data for RUL estimation. 

(d) IoT-based data analytics can be elaborated to control the operation of industrial 

machinery concerning the present machinery condition monitoring data. 

(e) Multi-sensor data and CNC controller data can be mapped to surface roughness and 

dimensional tolerances to develop an advanced predictive paradigm of machined 

product quality.
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Appendix I  

Vibration Signal Signature Feature Extraction 

Raw Vibration Signal Processing & Feature Extraction 

N = 14; 

featureTableArray = cell(N,1); 

SfeatureArray = cell(N,1); 

SfeatureTableArray = cell(N,1); 

 

for i=1:N 

    file=sprintf('SDA%d.mat',i); 

    feature = sprintf('allFeatures%d',i); 

     

    load(file); 

    len = length(singleDataArray); 

     

    fs = 25600;    

    tstart = 0; 

     

    %Plot raw vibration signals 

    figure 

    hold on 

    for k = 1:len 

        v= singleDataArray{k,1}(:,1); 

        t = tstart + (1:length(v))/fs; 

        plot(t, v) 

        tstart = t(end); 

    end 

    hold off 

 

       xlabel('Time (minutes), 1 seconds per every 60 seconds') 

       ylabel('Acceleration (g)') 

     

tstart = 0; 

SE_array = cell(len, 1); 

denoisedata_array = cell(len,1); 

for k = 1:len 
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% Denoise using Wavelet analysis 

    v = wdenoise(singleDataArray{k,1}(:,1), 8,... 

                 'Wavelet', 'sym4', ... 

                 'DenoisingMethod', 'Bayes', ... 

                 'ThresholdRule', 'Median', ... 

                 'NoiseEstimate', 'LevelIndependent'); 

     

     denoisedata_array{k,1} = v;       

    

% spectral entropy 

    t = tstart + (1:length(v))/fs; 

    [se,te] = pentropy(v,t'); 

    SE_array{k,1} = se; 

    

end 

    features = matfile(feature,'Writable', true); 

 

for k = 1:len 

    v = denoisedata_array{k,1}(:,1); 

 

    SE = SE_array{k,1}; 

    SPW = spectralPowerFeatures(v,fs); 

    SPK = spectralPeaksFeatures(v,fs); 

    order = [2,2]; 

     

 % Time Domain Features 

    features.mean(k,1) = mean(v); 

    features.Std(k,1) = std(v); 

    features.Skewness(k,1) = skewness(v); 

    features.Kurtosis(k,1) = kurtosis(v); 

    features.Peak2Peak(k,1) = peak2peak(v); 

    features.RMS(k,1) = rms(v); 

    features.Peak2RMS(k,1) = peak2rms(v); 

    features.RSSq(k,1) = rssq(v); 

    features.CrestFactor(k,1) = max(v)/features.RMS(k,1); 

    features.ShapeFactor(k,1) = features.RMS(k,1)/mean(abs(v)); 

    features.ImpulseFactor(k,1) = max(v)/mean(abs(v)); 

    features.MarginFactor(k,1) = max(v)/mean(abs(v))^2; 

    features.Energy(k,1) = sum(v.^2); 

    features.Entropy(k,1) = wentropy(v,'norm',1.1);           

    features.ShEntropy(k,1) = wentropy(v,'shannon'); 

    features.LogEntropy(k,1) = wentropy(v,'log energy'); 

    features.SpEntropy(k,1) = pentropy(v,fs,'Instantaneous',false); 
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    %Wavelet packet node energy 

    [c,l] = wavedec(v,3,'sym4');%1D wavelet decomposition 

    [Ea,Ed] = wenergy(c,l); 

    features.WPDEnergy(k,1) = Ea; 

    features.momentJ(k,1) = tfmoment(v,time,order);%seconds(1:1:N) 

     

    features.corDim(k,1) = correlationDimension(v); 

    features.approxEnt(k,1) = approximateEntropy(v); 

    features.lyapExp(k,1) = lyapunovExponent(v,fs); 

    %P0 is the spectrogram, fvec is the frequencyvector and  

    % tvec is the time vector.  

    [~,fvec,tvec,P_k] = spectrogram(v,500,450,512,fs); 

    [~,I] = max(P_k); 

    features.meanPeakFreq(k,1) = mean(fvec(I)); 

    features.RMSF = sqrt(sum((abs(S)/length(S)).^2)); 

    features.meanfreq(k,1) = meanfreq(v,fs);  

    features.medfreq(k,1) = medfreq(v,fs); 

    features.spuriousfreedr(k,1) = sfdr(v,fs); 

    features.distrotionRatio(k,1) = sinad(v,fs); 

    features.intercept(k,1) = toi(v,fs); 

    features.bw(k,1) = obw(v,fs); 

    features.bp(k,1) = bandpower(v); 

    features.pbw(k,1) = powerbw(v,fs); 

     

    % Spectral Kurtosis related features 

    features.SKMean(k,1) = mean(SK); 

    features.SKStd(k,1) = std(SK); 

    features.SKSkewness(k,1) = skewness(SK); 

    features.SKKurtosis(k,1) = kurtosis(SK); 

     

    % Spectral Entropy related features 

    features.SEMean(k,1) = mean(SE); 

    features.SEStd(k,1) = std(SE); 

    features.SESkewness(k,1) = skewness(SE); 

    features.SEKurtosis(k,1) = kurtosis(SE); 

    features.SPower(k,1) = SPW(1); 

    features.SPeakpos(k,1) = SPK(1); 

    features.SPeakpow(k,1) = SPK(7); 

end 

featureTableArray{i,1} = table(features.mean,features.Std,... 

features.Skewness,features.Kurtosis,features.Peak2Peak,features.RMS,

features.Peak2RMS,... 
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feature.RSSq,features.CrestFactor,features.ShapeFactor,features.Impu

lseFactor,... 

features.MarginFactor,features.Energy,features.Entropy,features.ShEn

tropy,... 

features.LogEntropy,features.SpEntropy,features.momentJ,features.cor

Dim,... 

features.approxEnt,features.lyapExp,features.WPDEnergy,features.mean

freq,... 

features.medfreq,features.spuriousfreedr,features.distrotionRatio,..

. 

features.intercept,features.bw,features.bp,features.pbw,features.SKM

ean,... 

features.SKStd,features.SKSkewness,features.SKKurtosis,features.SEMe

an,... 

features.SEStd,features.SESkewness,features.SEKurtosis,features.SPow

er,... 

features.SPeakpos,features.SPeakpow,... 

'VariableNames',{'mean','Std','Skewness','Kurtosis','Peak2Peak',... 

'RMS','Peak2RMS','RSSq','CrestFactor','ShapeFactor','ImpluseFactor',

... 

'MarginFactor','Energy','Entropy','ShEntropy','LogEntropy','SpEntrop

y',... 

'WPDEnergy','momentJ','corDim','approxEntropy','lyapExp','MeanFreq',

... 

'MedianFreq','SFDR','DistrotionRatio',... 

'3rdIntercept','BandWidth','BandPower','PowerBW',... 

'SKMean','SKStd','SKSkewness','SKKurtosis','SEMean',... 

'SEStd','SESkewness','SEKurtosis','SPower','SPeakPos','SPeakPow'}); 

%smooth features 

Sfeaturetable = smoothdata( featureTableArray{i,1}); 

SfeatureTableArray{i,1} = Sfeaturetable; 

SfeatureArray{i,1} = table2array(Sfeaturetable); 

end 

N = 14; 

SfeatureTimeTableArray =cell(N,1); 

for i = 1:N 

    lenTable = size(SfeatureTableArray{i,1},1); 

    SfeatureTimeTableArray{i,1} = 

table2timetable(SfeatureTableArray{i,1},'RowTimes',seconds(1:1:lenTa

ble)); 

end 
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Array of feature matrix 

selectedFeatureArray = cell(N,1); 

for o = 1:N 

    selectedFeatureArray{o,1} = 

table2array(selectedFeatureTableArray{o,1});  

end     

SortedfeatureSelectedArray = cell(N,1); 

%Plot Extracted Features 

for j=1:N 

    featureSelected = selectedFeatureTableArray{j,1}; 

    featureSelectedNorm = normalize(featureSelected) 

    featuretable = timetable2table(featureSelectedNorm); 

    featuretable = removevars(featuretable,{'Time'}); 

    featurearray = table2array(featuretable); 

    SortedfeatureSelectedArray{j,1} = featurearray;  

    s = size(featurearray,2); 

    names = featureSelectedNorm.Properties.VariableNames; 

    nS   = sqrt(s); 

    nCol = ceil(nS); 

    nRow = nCol - (nCol * nCol - s > nCol - 1); 

    figure 

    hold on 

    for i = 1:s 

      subplot(nRow,nCol,i); 

      plot(featureSelectedNorm.Time,featurearray(:,i)); 

      title(names{i}); 

    end 

end 
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Appendix II  

NCA Regression-Based Feature Selection 

Load the sample data. 

N = size(featureTableArray, 1); 

tn = 2; %number of test data 

TrainDataArray = cell(N-tn,1); 

 

for i = 1:N-tn 

    TrainDataArray{i,1} = table2array(featureTableArray{i,1}); 

 %RUL for each TrainData 

    s = size(TrainDataArray{i,1} ,1); 

    timeSteps = 1:1:s; %time column of featuretable     

    TrainDataArray{i,1}(:,end+1) = fliplr(timeSteps)'; 

end 

 

%make single feature matrix 

TrainData = cell2mat(TrainDataArray); 

XTrain = TrainData(:,1:end-1);%end-1%Predictors 

YTrain = TrainData(:,end); 

 

mu = mean(XTrain,2); 

sigma = std(XTrain,0,2); 

XTrain = (XTrain-mu)./sigma; 

%Fit a neighborhood component analysis (NCA)  

% model for regression to detect the relevant features. 

nca = fsrnca(XTrain,YTrain,'Standardize',1,'Lambda',0.0666); 

%Plot the feature weights. 

     

figure() 

plot(nca.FeatureWeights,'ro') 

xlabel('Feature Index') 

ylabel('Feature Weight') 

grid on 

TestDataArray = cell(2,1); 

i = 1; 

for k = N-(tn-1):N 

    TestDataArray{i,1} = table2array(featureTableArray{k,1}); 

 %RUL for each TrainData 

    s = size(TestDataArray{i,1} ,1); 

    timeSteps = 1:1:s; %time column of featuretable    

    TestDataArray{i,1}(:,end+1) = fliplr(timeSteps)'; 

    i = i+1; 

end 
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%make single feature matrix 

TestData = cell2mat(TestDataArray); 

XTest = TestData(:,1:end-1);%end-1%Predictors 

YTest = TestData(:,end); 

 

mu = mean(XTest,2); 

sigma = std(XTest,0,2); 

XTest = (XTest-mu)./sigma; 

Compute the regression loss. 

L = loss(nca,XTest,YTest,'LossFunction','mad') 

Compute the predicted response values for the test set and plot them versus 

the actual response. 

YPred = predict(nca,XTest); 

figure() 

plot(YPred,YTest,'bo') 

xlabel('Predicted response') 

ylabel('Actual response') 

xlim([0 1300]) 

ylim([0 1300]) 

SelectedFeatureArray = cell(N,1); 

for m = 1:N 

    SelectedFeatureArray{m,1} = featureTableArray{m,1}... 

                                (:,nca.FeatureWeights(:,:)>1); 

 

end 

for j=1:N 

    lenTable = size(SelectedFeatureArray{j,1},1); 

    TimeStep = 1:1:lenTable;  

    featurearray = table2array(SelectedFeatureArray{j,1}); 

    s = size(featurearray,2); 

    names = SelectedFeatureArray{j,1}.Properties.VariableNames; 

    nS   = sqrt(s); 

    nCol = ceil(nS); 

    nRow = nCol - (nCol * nCol - s > nCol - 1); 

    figure 

    hold on 

    for i = 1:s 

      subplot(nRow,nCol,i); 

      plot(TimeStep,featurearray(:,i)); 

      title(names{i}); 

    end 

end 
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Appendix III  

Bayesian Optimization Deep Learning Model-Based 

Prognostic Algorithm 

Load Data 

load ('SDATrainC.mat');  

numofFailData = size(TrainDataArray, 1); 

numofFeatures = size(TrainDataArray{1,1}, 2);  

XTrain = cell(numofFailData,1); 

YTrain = cell(numofFailData,1); 

for i = 1:numofFailData 

    fieldData = table2array(TrainDataArray{i,1}); 

    X = fieldData;    

    XTrain{i} = X'; 

    s = size(X,1); 

    timeSteps = 1:1:s; 

%   timeSteps = timeSteps/max(timeSteps); 

    Y = fliplr(timeSteps); 

    YTrain{i} = Y; 

end 

%Normalize Data 

mu = mean([XTrain{:}],2); 

sigma = std([XTrain{:}],0,2); 

XTrain = cellfun(@(X) (X-mu)./sigma,XTrain,'UniformOutput',false); 

%Clip Data 

for i = 1:numel(YTrain) 

    s = size(TrainDataArray{i,1},1); 

    if (s<900) 

      thr = 550;   

    elseif(s<1300) 

      thr = 800;   

    else 

      thr = 1400;    

    end 

    YTrain{i}(YTrain{i} > thr) = thr; 

end 

%Sort Data 

for i=1:numel(XTrain) 

    sequence = XTrain{i}; 

    sequenceLengths(i) = size(sequence,2); 

end 

[sequenceLengths,idx] = sort(sequenceLengths,'descend'); 

XTrain = XTrain(idx); 

YTrain = YTrain(idx); 
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%Test Validation Data 

load('SDATestC.mat'); 

load('SDArulC.mat'); 

numofTestData = size(TestDataArray,1); 

numofTestFeatures = size(TestDataArray{1,1},2); 

XTest = cell(numofTestData,1); 

YTest = cell(numofTestData,1); 

% YTestSteps = cell(numofTestData,1); 

for i = 1:numofTestData 

    fieldData = table2array(TestDataArray{i,1}); 

    X = fieldData;   

    XTest{i} = X'; 

end 

for j = 1:numofTestData  

    X = XTest{j}; 

    sequenceLength = size(X,2); 

    rul = rulData(j); 

    YTest{j} = rul+sequenceLength-1:-1:rul;     

end 

XTest = cellfun(@(X) (X-mu)./sigma,XTest,'UniformOutput',false); 

for i = 1:numel(XTest) 

    s = size(XTest{i,1},2); 

    if (s<900) 

      thr = 550;   

    elseif(s<1300) 

      thr = 800;   

    else 

      thr = 1400;    

    end 

    YTest{i}(YTest{i} > thr) = thr; 

end 

 

% XValidation = XTest; 

% YValidation = YTest; 

XTest = XTest{1,1}; 

YTest = YTest{1,1}; 

%Validation Data 

load ('SDAValC1.mat');  

numofValData = size(ValDataArray, 1); 

XValidation = cell(numofValData,1); 

YValidation = cell(numofValData,1); 

for i = 1:numofValData 

    fieldData = table2array(ValDataArray{i,1}); 

    X = fieldData;    

    XValidation{i} = X'; 

    s = size(X,1); 

    timeSteps = 1:1:s; %time column of featuretable 

        

    Y = fliplr(timeSteps); 
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    YValidation{i} = Y; 

end 

Choose Variables to Optimize 

optimVars = [optimizableVariable('InitialLearnRate',[0.0001 

0.04],'Transform','log') 

            optimizableVariable('numHiddenUnits1',[100 500],'Type','integer') 

%             optimizableVariable('numHiddenUnits2',[100 

300],'Type','integer') 

            optimizableVariable('ConnectedLayer1',[25 250],'Type','integer') 

%             optimizableVariable('ConnectedLayer2',[25 250],'Type','integer') 

            optimizableVariable('dropout1',[0.2 0.8]) 

%             optimizableVariable('dropout2',[0.2 0.8]) 

            optimizableVariable('maxEpochs',[100 300],'Type','integer') 

            optimizableVariable('L2Regularization',[1e-5 1e-

2],'Transform','log')]; 

        %         optimizableVariable('ConnectedLayer1',[25 

200],'Type','integer')  

        %         optimizableVariable('dropout2',[0.2 0.8]) 

        %         optimizableVariable('ConnectedLayer2',[25 

200],'Type','integer')    

        %         optimizableVariable('miniBatchSize',[1 2],'Type','integer') 

         

Perform Bayesian Optimization 

ObjFcn = makeObjFcn(XTrain,YTrain,XValidation,YValidation); 

Perform Bayesian optimization by minimizing the classification error on the validation set. 

BayesObject = bayesopt(ObjFcn,optimVars, ... 

    'MaxTime',36*60*60, ... 

    'IsObjectiveDeterministic',false, ... 

    'UseParallel',false); 

Evaluate Final Network 

Load the best network found in the optimization and its validation accuracy. 

bestIdx = BayesObject.IndexOfMinimumTrace(end); 

fileName = BayesObject.UserDataTrace{bestIdx}; 

savedStruct = load(fileName); 

valError = savedStruct.valError 

Predict the labels of the test set and calculate the test error. Treat the classification of each image 

in the test set as independent events with a certain probability of success, which means that the 

number of incorrectly classified images follows a binomial distribution. Use this to calculate the 

standard error (testErrorSE) and an approximate 95% confidence interval (testError95CI) of 

the generalization error rate. This method is often called the Wald method. bayesopt determines 

the best network using the validation set without exposing the network to the test set. It is then 

possible that the test error is higher than the validation error. 



 

128 

 

[YPredicted,probs] = predict(savedStruct.trainedNet, XTest); 

testError = abs(mean(YPredicted - YTest)) 

NTest = numel(YTest); 

testErrorSE = sqrt(testError*(1-testError)/NTest); 

testError95CI = [testError - 1.96*testErrorSE, testError + 1.96*testErrorSE] 

Objective Function for Optimization 

Define the objective function for optimization. 

function ObjFcn = makeObjFcn(XTrain,YTrain,XValidation,YValidation) 

ObjFcn = @valErrorFun; 

    function [valError,cons,fileName] = valErrorFun(optVars) 

Define the LSTM network architecture. 

numResponses = size(YTrain{1},1); 

featureDimension = size(XTrain{1},1); 

% numHiddenUnits = 210; 

 

layers = [ ... 

    sequenceInputLayer(featureDimension) 

    lstmLayer(optVars.numHiddenUnits1,'OutputMode','sequence') 

    fullyConnectedLayer(optVars.ConnectedLayer1)%50 

    dropoutLayer(optVars.dropout1)%0.2 

%     fullyConnectedLayer(optVars.ConnectedLayer2)%50 

%     dropoutLayer(optVars.dropout2)%0.4 

    fullyConnectedLayer(numResponses) 

    regressionLayer]; 

%     bilstmLayer(numHiddenUnits2,'OutputMode','sequence') 

%     fullyConnectedLayer(optVars.ConnectedLayer2)%50 

%     dropoutLayer(optVars.dropout2)%0.4       

%     fullyConnectedLayer(optVars.ConnectedLayer2) 

%     dropoutLayer(optVars.dropout2) 

 

miniBatchSize = 2; 

validationFrequency = floor(numel(YTrain)/miniBatchSize); 

% maxEpochs = 150; 

 

options = trainingOptions('adam', ... 

    'MaxEpochs',optVars.maxEpochs, ... 

    'MiniBatchSize',miniBatchSize, ... 

    'InitialLearnRate',optVars.InitialLearnRate, ... 

    'GradientThreshold',1, ... 

    'L2Regularization',optVars.L2Regularization,...%0.0001 

    'GradientDecayFactor',0.95,...%0.95 

    'Shuffle','never', ... 

    'Plots','training-progress',... 
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    'Verbose',0,... 

    'ValidationData',{XValidation,YValidation}, ... 

    'ValidationFrequency',validationFrequency); 

 

%         options = trainingOptions('sgdm', ... 

%             'InitialLearnRate',optVars.InitialLearnRate, ... 

%             'Momentum',optVars.Momentum, ... 

%             'MaxEpochs',60, ... 

%             'LearnRateSchedule','piecewise', ... 

%             'LearnRateDropPeriod',40, ... 

%             'LearnRateDropFactor',0.1, ... 

%             'MiniBatchSize',miniBatchSize, ... 

%             'L2Regularization',optVars.L2Regularization, ... 

%             'Shuffle','every-epoch', ... 

%             'Verbose',false, ... 

%             'Plots','training-progress', ... 

%             'ValidationData',{XValidation,YValidation}, ... 

%             'ValidationFrequency',validationFrequency); 

Train the network and plot the training progress during training. Close all training plots after 

training finishes. 

        trainedNet = trainNetwork(XTrain,YTrain,layers,options); 

        close(findall(groot,'Tag','NNET_LSTM_TRAININGPLOT_FIGURE')) 

Evaluate the trained network on the validation set, calculate the predicted image labels, and 

calculate the error rate on the validation data. 

        YPredicted = predict(trainedNet,XValidation); 

        valError = abs(mean([YPredicted{:}] - [YValidation{:}])); 

 

        fileName = num2str(valError) + ".mat"; 

        save(fileName,'trainedNet','valError','options') 

        cons = []; 

         

    end 

end 
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Appendix IV  

Bayesian Optimization Machine Learning Model-

Based Prognostic Algorithm  

%clear 

load ('SDATrainC.mat');  

load ('SDAValC1.mat');  

numofFailData = size(TrainDataArray, 1); 

numofFeatures = size(TrainDataArray{1,1}, 2);  

XTrain = cell(numofFailData,1); 

YTrain = cell(numofFailData,1); 

for i = 1:numofFailData 

    fieldData = table2array(TrainDataArray{i,1}); 

    X = fieldData;    

    XTrain{i} = X'; 

    s = size(X,1); 

    timeSteps = 1:1:s; %time column of featuretable 

    Y = fliplr(timeSteps); 

    YTrain{i} = Y; 

end 

numofValData = size(ValDataArray, 1); 

XVal = cell(numofValData,1); 

YVal = cell(numofValData,1); 

for i = 1:numofValData 

    fieldData = table2array(ValDataArray{i,1}); 

    X = fieldData;    

    XVal{i} = X'; 

    s = size(X,1); 

    timeSteps = 1:1:s; %time column of featuretable 

        

    Y = fliplr(timeSteps); 

    YVal{i} = Y; 

end 

Normalize Training Data X 

Normalize the training set to have zero mean and unit variance. 

mu = mean([XTrain{:}],2); 

sigma = std([XTrain{:}],0,2); 

XTrain = cellfun(@(X) (X-mu)./sigma,XTrain,'UniformOutput',false); 

XVal = cellfun(@(X) (X-mu)./sigma,XVal,'UniformOutput',false); 
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Clip Responses 

% thr = 700;  

for i = 1:numel(YTrain) 

%     YTrain{i}(YTrain{i} > thr) = thr; 

    s = size(TrainDataArray{i,1},1); 

    if (s<900) 

      thr = 550;  %550 

    elseif(s<1300) 

      thr = 800;  %800 

    else 

      thr = 1400;  %1300  

    end 

    YTrain{i}(YTrain{i} > thr) = thr; 

end 

for i = 1:numel(YVal) 

        if(s<900) 

            thr = 550;   

        elseif(s<1300) 

            thr = 800;   

        else 

            thr = 1400;    

        end 

    YVal{i}(YVal{i} > thr) = thr; 

end 

Normalize Training Data Y 

% ymu = mean([YTrain{:}],2); 

% ysigma = std([YTrain{:}],0,2); 

% YTrain = cellfun(@(Y) ((Y-ymu)./ysigma),YTrain,'UniformOutput',false); 

% YVal = cellfun(@(Y) ((Y-ymu)./ysigma),YVal,'UniformOutput',false); 

% for i = 1:numofFailData    

%     XTrain{i} = XTrain{i}'; 

%     YTrain{i} = YTrain{i}'; 

% end 

%  

% for i = 1:numofValData 

%     XVal{i} = XVal{i}'; 

%     YVal{i} = YVal{i}'; 

% % end 

% XTrainArray = vertcat(XTrain{:}); 

% YTrainArray = vertcat(YTrain{:}); 

XTrainArray = horzcat(XTrain{:}); 

YTrainArray = horzcat(YTrain{:}); 

XValArray = horzcat(XVal{:}); 

YValArray = horzcat(YVal{:}); 

load('FGSVMModelXnorm.mat') 

yfit = FGSVMModel.predictFcn(XValArray); 
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Plot 

    yfit = smoothdata(yfit, 3); 

    yfit = yfit'; 

    subplot(2,1,1) 

    plot(YValArray(:,1:1674),'--') 

    hold on 

    plot(yfit(:,1:1674),'.-') 

    hold off 

    title("Test Data " + 1) 

    xlabel("Time Step") 

    ylabel("RUL") 

     

     subplot(2,1,2) 

    plot(YValArray(:,1674:2904),'--') 

    hold on 

    plot(yfit(:,1674:2904),'.-') 

    hold off 

    title("Test Data " + 2) 

    xlabel("Time Step") 

    ylabel("RUL") 

legend(["Test Data" "Predicted"]) 

ypred = yfit; 

yval = YValArray; 

RMSE = sqrt(mean(abs(ypred-yval).^2)) 

MAPE = mean(abs(ypred-yval)./yval) 

ypred1 =yfit(:,1:1674); 

yval1 = YValArray(:,1:1674); 

RMSE1 = sqrt(mean(abs(ypred1-yval1).^2)) 

MAPE1 = mean(abs(ypred1-yval1)./yval1) 

ypred2 =yfit(:,1674:2904); 

yval2 = YValArray(:,1674:2904); 

RMSE2 = sqrt(mean(abs(ypred2-yval2).^2)) 

MAPE2 = mean(abs(ypred2-yval2)./yval2) 

function [trainedModel, validationRMSE] = trainRegressionModel(trainingData, 

responseData) 

 

% Convert input to table 

inputTable = array2table(trainingData', 'VariableNames', {'row_1', 'row_2', 

'row_3', 'row_4', 'row_5', 'row_6', 'row_7'}); 

 

predictorNames = {'row_1', 'row_2', 'row_3', 'row_4', 'row_5', 'row_6', 

'row_7'}; 

predictors = inputTable(:, predictorNames); 

response = responseData; 

isCategoricalPredictor = [false, false, false, false, false, false, false]; 

 

% Train a regression model 

% This code specifies all the model options and trains the model. 
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regressionSVM = fitrsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 3, ... 

    'KernelScale', 1, ... 

    'BoxConstraint', 0.6207549522638148, ... 

    'Epsilon', 0.4858736702340352, ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(x) array2table(x', 'VariableNames', 

predictorNames); 

svmPredictFcn = @(x) predict(regressionSVM, x); 

trainedModel.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedModel.RegressionSVM = regressionSVM; 

trainedModel.About = 'This struct is a trained model exported from Regression 

Learner R2021a.'; 

trainedModel.HowToPredict = sprintf('To make predictions on a new predictor 

row matrix, X, use: \n  yfit = c.predictFcn(X) \nreplacing ''c'' with the name 

of the variable that is this struct, e.g. ''trainedModel''. \n \nX must 

contain exactly 7 rows because this model was trained using 7 predictors. \nX 

must contain only predictor rows in exactly the same order and format as your 

training \ndata. Do not include the response row or any rows you did not 

import into the app. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appregression_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

% Convert input to table 

inputTable = array2table(trainingData', 'VariableNames', {'row_1', 'row_2', 

'row_3', 'row_4', 'row_5', 'row_6', 'row_7'}); 

 

predictorNames = {'row_1', 'row_2', 'row_3', 'row_4', 'row_5', 'row_6', 

'row_7'}; 

predictors = inputTable(:, predictorNames); 

response = responseData; 

isCategoricalPredictor = [false, false, false, false, false, false, false]; 

 

% Set up holdout validation 

cvp = cvpartition(size(response, 1), 'Holdout', 0.25); 

trainingPredictors = predictors(cvp.training, :); 

trainingResponse = response(cvp.training, :); 

trainingIsCategoricalPredictor = isCategoricalPredictor; 



 

134 

 

 

% Train a regression model 

% This code specifies all the model options and trains the model. 

regressionSVM = fitrsvm(... 

    trainingPredictors, ... 

    trainingResponse, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 3, ... 

    'KernelScale', 1, ... 

    'BoxConstraint', 0.6207549522638148, ... 

    'Epsilon', 0.4858736702340352, ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

svmPredictFcn = @(x) predict(regressionSVM, x); 

validationPredictFcn = @(x) svmPredictFcn(x); 

 

% Add additional fields to the result struct 

 

 

% Compute validation predictions 

validationPredictors = predictors(cvp.test, :); 

validationResponse = response(cvp.test, :); 

validationPredictions = validationPredictFcn(validationPredictors); 

 

% Compute validation RMSE 

isNotMissing = ~isnan(validationPredictions) & ~isnan(validationResponse); 

validationRMSE = sqrt(nansum(( validationPredictions - validationResponse 

).^2) / numel(validationResponse(isNotMissing) )); 
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Appendix V  

Exponential Degradation Model-Based Prognostic 

Algorithm 

Training Data 

breaktime = 23000;%23750; 

breakpoint = find(SfeatureTimeTable.Time <= breaktime, 1, 'last'); 

trainData = SfeatureTimeTable(1:breakpoint, :); 

trainDataSelected = trainData(:,featureImportance{:,:}>0.015) 

featureSelected = SfeatureTimeTable(:,featureImportance{:,:}>0.015) 

%trainDataSelected = trainData(:, featureImportance{:,:}>0.01); 

%feature_array{1,1}(:, featureImportance(:,:)>0.035); 

meanTrain = mean(trainDataSelected{:,:}); 

sdTrain = std(trainDataSelected{:,:}); 

trainDataNormalized = (trainDataSelected{:,:} - meanTrain)./sdTrain; 

coef = pca(trainDataNormalized); 

PCA1 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 1); 

PCA2 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 2); 

figure 

numData = size(featuretable, 1); 

scatter(PCA1, PCA2,[], 1:numData,'filled'); 

xlabel('PCA 1') 

ylabel('PCA 2') 

cbar = colorbar; 

ylabel(cbar, 'Time (x10 seconds)') 

 

healthIndicator = PCA1; 

healthIndicator = medfilt1(healthIndicator, 6); 

healthIndicator = smoothdata(healthIndicator); 

figure 

hold on 

plot(SfeatureTimeTable.Time/10, PCA1, '-') 

plot(SfeatureTimeTable.Time/10, healthIndicator,... 

    '-r','LineWidth',1.5) 

legend('Before smoothing', 'After smoothing') 

xlabel('Time (x10 seconds)') 

title('Health Indicator') 

hold off 

healthIndicator = healthIndicator - healthIndicator(1); 

threshold = healthIndicator(end); 

 

mdl = exponentialDegradationModel(... 

    'Theta', 5, ... 
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    'ThetaVariance', 1e6, ... 

    'Beta', 5, ... 

    'BetaVariance', 1e6, ... 

    'Phi', -1, ... 

    'NoiseVariance', (0.1*threshold/(threshold + 1))^2, ... 

    'SlopeDetectionLevel', 1); 

% Keep records at each iteration 

totalTime = (length(healthIndicator) - 1); 

estRULs = zeros(totalTime, 1); 

trueRULs = zeros(totalTime, 1); 

CIRULs = zeros(totalTime, 2); 

pdfRULs = cell(totalTime, 1); 

% Create figures and axes for plot updating 

figure 

ax1 = subplot(2, 1, 1); 

ax2 = subplot(2, 1, 2); 

for currentTime = 1:totalTime 

    % Update model parameter posterior distribution 

    update(mdl, [currentTime healthIndicator(currentTime)]) 

    % Predict Remaining Useful Life 

    [estRUL, CIRUL, pdfRUL] = predictRUL(mdl, ... 

                                         [currentTime 

healthIndicator(currentTime)], ... 

                                         threshold); 

    trueRUL = totalTime - currentTime + 1; 

    % Updating RUL distribution plot 

    helperPlotTrend(ax1, currentTime, healthIndicator, mdl, threshold, 'x10 

seconds'); 

    helperPlotRUL(ax2, trueRUL, estRUL, CIRUL, pdfRUL, 'x10 seconds') 

    % Keep prediction results 

    estRULs(currentTime) = estRUL; 

    trueRULs(currentTime) = trueRUL; 

    CIRULs(currentTime, :) = CIRUL; 

    pdfRULs{currentTime} = pdfRUL; 

     

    % Pause 0.1 seconds to make the animation visible 

    pause(0.1) 

end 

Predict the RUL for the bearing. 

estRULoverall = predictRUL(mdl,threshold) 
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Appendix VI  

Upload Data to ThingSpeak Cloud Space 

Write Data to ThingSpeak Channel 

load("normTestFeatureData.mat") 

s = size(normTestFeatureData,1); 

for i=1:s 

     

    data = normTestFeatureData(i,:);   

    % Generate timestamps for the data 

    tStamps = datetime('now'); 

 

    channelID = 1044755; % Change to your Channel ID 

    writeKey = '8B4B91T47Q6MFGRT'; % Change to your Write API Key 

 

    % Write 10 values to each field of your channel along with timestamps 

    thingSpeakWrite(channelID,data,'TimeStamp',tStamps,'WriteKey',writeKey) 

    pause(15) 

    r = s-i 

end 
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Appendix VII  

Cloud Computing Algorithm for the Real-Time RUL 

Estimation and Email Alert Warnings 

% ThingSpea & DropBox credentials 

firstChID = 1044755; %FILL IN first channel's ID  

firstReadAPIKey = '7CPPH4ENMAFE9H2R'; %FILL IN first channel's Read API key  

secondChID = 1044755;  %FILL IN second channel's ID 

secondWriteAPIKey = 'JCQ414YH411POYRA'; %FILL IN second channel's Write API 

key 

secondReadAPIKey = '02MXH1N0PYB9H77H'; %FILL IN second channel's Read API key 

dropBoxAccessToken 

='gezLS6x0vLQAAAAAAAAAAdX0AYPfwWSO7z0gHfleIO0UxqbF1IIamgo6siuVOINS'; %FILL IN 

dropbox access token 

 

thresholdRUL = 60; %email will be sent if the fan's TTS is less than this 

value (in minutes) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

% Provide the ThingSpeak alerts API key.  All alerts API keys start with TAK. 

alertApiKey = 'TAKA0XIG6PYEXOQXE'; 

 

% Set the address for the HTTTP call 

alertUrl="https://api.thingspeak.com/alerts/send"; 

 

% webwrite uses weboptions to add required headers.  Alerts needs a 

ThingSpeak-Alerts-API-Key header. 

options = weboptions("HeaderFields", ["ThingSpeak-Alerts-API-Key", alertApiKey 

]); 

 

% Set the email subject. 

alertSubject = sprintf("Lathe Spindle Remaining Useful Life"); 

 

% Read the recent data. 

featureData = 

thingSpeakRead(firstChID,'ReadKey',firstReadAPIKey,'NumDays',10); %past 10 

Days data 

testData = featureData'; 

 

 

 

 

% Check to make sure the data was read correctly from the channel. 

if isempty(featureData) 
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    alertBody = ' No data read from machine subsystem. ';       

else 

 

     

    %[mdl, labels] = getmodel(dropBoxAccessToken); %Get the predictive model 

from DropBox 

     

    rawdata = downloadFromDropbox(dropBoxAccessToken,'PredictiveModel.mat'); 

    f = fopen('PredictiveModel.mat','w'); 

        fwrite(f,rawdata); 

        fclose(f); 

        T = load('PredictiveModel.mat'); 

         

         

    %#function network 

    YPred = predict(T.netmdl,testData,'MiniBatchSize',1); 

    YPredLast = YPred(end); 

    

    % Set the outgoing message 

    if (YPredLast>thresholdRUL) 

        alertBody = 'Machine Tool operating Good!'; 

    elseif (YPredLast<=thresholdRUL) 

        RUL = YPredLast; 

        alertBody ="Machine Tool Need Maintenance! and RUL = " + 

num2str(RUL,'%0.3f'); 

    end 

end 

  

 % Catch errors so the MATLAB code does not disable a TimeControl if it fails 

try 

    webwrite(alertUrl , "body", alertBody, "subject", alertSubject, options); 

catch someException 

    fprintf("Failed to send alert: %s\n", someException.message); 

end 

 

%functions 

 

function [mdl,labels] = getmodel(dropBoxAccessToken) 

    rawdata = downloadFromDropbox(dropBoxAccessToken,'PredictiveModel.mat'); 

    f = fopen('PredictiveModel.mat','w'); 

    fwrite(f,rawdata); 

    fclose(f); 

    thefile = matfile('PredictiveModel.mat'); 

    mdl = thefile.trainedModel; 

    labels = thefile.labels; 

end 
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function output = downloadFromDropbox(dropboxAccessToken,varargin) 

    narginchk(1,2); 

 

    FName = varargin{1}; 

 

    % Generate the custom header 

    headerFields = {'Authorization', ['Bearer ', dropboxAccessToken]}; 

    headerFields{2,1} = 'Dropbox-API-Arg'; 

    headerFields{2,2} = sprintf('{"path": "/%s"}',FName); 

    headerFields{3,1} = 'Content-Type'; 

    headerFields{3,2} = 'application/octet-stream'; 

    headerFields = string(headerFields); 

 

    % Set the options for WEBREAD 

    opt = weboptions; 

    opt.MediaType = 'application/octet-stream'; 

    opt.CharacterEncoding = 'ISO-8859-1'; 

    opt.RequestMethod = 'post'; 

    opt.HeaderFields = headerFields; 

 

    % Upload the file 

    try 

        tempOutput = 

webread('https://content.dropboxapi.com/2/files/download', 

opt);%https://content.dropboxapi.com/2/files/download' 

    catch someException 

        

throw(addCause(MException('downloadFromDropbox:unableToDownloadFile','Unable 

to download file.'),someException)); 

    end 

 

    % If user requested output, pass along WEBWRITE output 

    if isequal(nargout,1) 

        output = tempOutput; 

    end 

end 

 

function output = uploadToDropbox(dropboxAccessToken,dataFile)  

     

    % Check if input file exists 

    if ~exist(dataFile,'file') 

        throw(MException('uploadToDropbox:fileNotFound','Input file was not 

found.')); 

    end 

 

    % Read file contents 

    try 

        fid = fopen(dataFile, 'r'); 

        data = char(fread(fid)'); 
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        fclose(fid); 

    catch someException 

        throw(addCause(MException('uploadToDropbox:unableToReadFile','Unable 

to read input file.'),someException)); 

    end 

 

    % Generate the custom header 

    [~,remoteFName, remoteExt] = fileparts(dataFile); 

    headerFields = {'Authorization', ['Bearer ', dropboxAccessToken]}; 

    headerFields{2,1} = 'Dropbox-API-Arg'; 

    headerFields{2,2} = sprintf('{"path": "/%s%s", "mode": "overwrite", 

"autorename": false, "mute": false}',remoteFName, remoteExt); 

    headerFields{3,1} = 'Content-Type'; 

    headerFields{3,2} = 'application/octet-stream'; 

    headerFields = string(headerFields); 

 

    % Set the options for WEBWRITE 

    opt = weboptions; 

    opt.MediaType = 'application/octet-stream'; 

    opt.CharacterEncoding = 'ISO-8859-1'; 

    opt.RequestMethod = 'post'; 

    opt.HeaderFields = headerFields; 

 

    % Upload the file 

    try 

        tempOutput = webwrite('https://content.dropboxapi.com/2/files/upload', 

data, opt); 

    catch someException 

        throw(addCause(MException('uploadToDropbox:unableToUploadFile','Unable 

to upload file.'),someException)); 

    end 

 

    % If user requested output, pass along WEBWRITE output 

    if isequal(nargout,1) 

        output = tempOutput; 

    end 

end 
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