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A B S T R A C T

A free convective flow of an incompressible viscous fluid past an isothermal vertical cone

is investigated with variable viscosity and variable thermal conductivity. As thermal bound-

ary conditions at the surface of the cone, the constant wall temperature (CWT) and constant

wall heat flux (CHF) cases are considered.The successive linearization approach is applied

to linearize a system of nonlinear differential equations that describes the flow under in-

vestigation.The numerical solution for the resulting linear equations is attainedby means of

Chebyshev spectral collocation method. Theimpact of significant parameters on the velocity

and temperature, in addition to heat and mass transfer rates, is evaluated and presented

graphically for the CWT and CHF situations. This thesis consists of Ten chapters.

Chapter- 1 This chapter is introductory in nature and gives motivation to the investigations

carried out in the thesis.A survey of pertinent literature is presented to show the signifi-

cance of the problems considered. The basic equations governing the flow of viscous and

incompressible fluid are given. Chapter-2 Influence of variable properties on free convection

flow past a vertical cone. Chapter- 3 the influence of the variable properties on boundary

layer flow past a vertical cone is examined. Similarity transformations are utilized to reduce

the equations describing the flow into ordinary differential equations. The non-dimensional

equations are linearized using successive linearization procedure and then the solution of the

consequent system is found using Chebyshev spectral method. Chapter- 4 deals with the free

convection flow across a vertical cone is investigated by presuming the viscosity and ther-

mal conductivity varies with temperature in the manifestation of Soret and Dufour effects.

Chapter- 5 The effects of Soret and Dufour on the boundary layer flow across a vertical cone

is investigated by assuming the viscosity and thermal conductivity varies with temperature

is presented in this chapter. Chapter- 6 In this chapter, the laminar free convection flow

across a rotating cone is investigated by taking the temperature dependent viscosity and

thermal conductivity. Similarity transformed are utilized to reduce the equations governing

the flow into ordinary differential equations. The non-dimensional equations linearized using

successive linearization procedure and then the solution of the consequent system is found

using Chebyshev spectral method. Chapter- 7 This chapter deals with the influence of the

variable properties on boundary layer flow past a rotating cone is examined. Chapter- 8

The cross diffusion effects on the free convection flow across a rotating cone is investigated

with temperture dependent viscosity and thermal condictivity is considered in this chapter.

Chapter - 9 Influence of variable properties on boundary layer flow past a rotating cone

with Radiation effect and chemical reaction. In all the above chapters, A coordinate trans-

formation is applied to convert the ordinary differential equations into partial differential
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equations.The successive linearization approach is applied to linearize a system of nonlinear

differential equations that describes the flow under investigation.The numerical solution for

the resulting linear equations is attainedby means of Chebyshev spectral collocation method.

The last chapter, Chapter - 10, gives a summary and overall conclusions and scope for future

work.
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N O M E N C L A T U R E

A Viscosity parameter.

k Thermal conductivity of the fluid.

Gr Grashof Number.

Re Reynolds number.

Pr Prandtl number.

T Fluid Temperature.

C Concentration.

E electric field.

L characteristic length.

Tw Temperature at the surface.

T∞ Temperature of the ambient fluid.

Nu Nusselt number.

f Dimensionless stream function.

Sr Soret number.

Df Dufour number.

Sc Shmidth number.

DTC Dufour type diffusivity.

DCT Soret type diffusivity.

Ds Solutal diffusivity.

g Acceleration due to gravity.

B buoyancy ratio.

λ buoyancy parametr.

Rd radiation parameter.

γ chemical reaction parameter.

qr Heat flux of the thermal radiation.

L the cone slant height.

TL the cone surface temperature.

qw Surface heat flux.

H ′, G,Hthe dimensionless velocity compo-
nents along the tangential,azimuthal
and normal directions.

u Velocity component in the x- direc-
tion.

v Velocity component in the y-
direction.

w Velocity component in the z-
direction.

x, y, z curvilinear coordinates system.

Greek Symbols η Non-
dimensional variable.

ρ Density of the fluid.

θ Dimensionless temperature.

µ(T ) Temperature dependent Viscosity of
the fluid.

α Amplitude associated with the wavy
surface

ξ Non-dimensional variable / dimen-
sionless distance.

ψ Stream function.

Ω angular velocity of the cone.

τ Dimensionlesstime.

ϕ Semivertical cone angle.

ϵ The pressure work parameter.

β pressure gradient parameter.

ν Magnetic diffusivity.
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Chapter 1

Preliminaries and Review

1.1 Introduction

Fluid dynamics is proven to be a passionate, provocative and demanding subject of modern

sciences due to its connectivity to nature with real-life problems and a wide range of appli-

cations. The pursuit for profound understanding of the subject has not only stimulated it’s

own development of subject but also made the progress in allied areas of mathematical sci-

ences such as applied mathematics, numerical computing, physical and mechanical sciences.

The listing of fluid dynamics applications in technology would be almost impossible due to

its ubiquitous nature of a fluid in the technological devices. The axioms/principles of fluid

dynamics can be applied in pure science like Atmospheric sciences(global circulation, global

warming, mesoscale weather patterns), Oceanography (pollution effect on living organisms,

ocean circulation patterns), Geophysics (study of plate tectonics, earthquakes, volcanoes,

magnetic field), Astrophysics (galactic structure, clustering, stellar evolution, supernovae)

and Biological sciences (circulatory, cellular processes and respiratory systems in animals).

In the ever increasing literature on fluid dynamics, studies on convective heat and mass

transfer across various geometries with different corss sections have made significant con-

tributions. The patterns of fluid flow around surfaces of different cross-sections, such as

spheres, cylinders, and cones are realistic to examine. These flows gained strong interest in

view of their wide range of applications in a broad variety of engineering processes, fiber
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technology, high-speed thermal aerodynamics, nuclear cooling systems, surface treatment,

spray deposition process, polymer engineering, etc. In the past, the behaviour of fluid flows

has been analytically examined for simplified formulations. With the advancement of fast

computing machines in recent years, emphasis has shifted to numerical methods for solving

real-world problems involving a wide variety of geometric and fluid flow characteristics.

The problem of convective heat and mass transfer around rotating bodies is of paramount

significance due to its application in several areas of geophysics, engineering, and technology.

The study of such investigations is critical in the design of turbines and turbo-machines,

estimating the flight path of rotating wheels, satellites, space vehicles, nuclear reactors,

modelling of several geophysical vortices and spin stabilized missiles etc.

1.2 Viscous fluid

The majority of most common fluids such as water, gasoline, honey, organic solvents, oils,

air, steam, nitrogen or rare gases are characterized as Newtonian fluids. These fluids resist

movement or the movement of an object through the fluid. The magnitude of resistance to

this deformation is represented by the viscosity of fluid. The study of a Newtonian fluid

flow gained much attention in last few decades because of their industrial and engineering

applications. A Newtonian fluid is one that obeys Newton’s viscosity law or has a linear

relationship between viscosity and shear stress i.e. the shear stress induced by flow is pro-

portional to the rate of strain and the constant of proportionality in this relation denotes

the viscosity of the fluid.

The basic governing equations of a viscous fluid are

∂ρ

∂t
+ (∇ · ρq) = 0 (1.1)

ρ

(
∂q

∂t
+ (q · ∇)q

)
= ρf +

4

3
µ∇(∇ · q)− µ∇× (▽× q) (1.2)

where q is the velocity vector, ρ is the density, f is the body force per unit mass, and t is

the time variable

3



1.3 Basic Terminology

Heat Transfer

The heat transfer takes place when internal energy is exchanged between regions or elements

within a medium. It usually happens from a higher to a lower temperature region. The heat

transfer occurs in three different modes. They are conduction, convection and radiation.

Conduction is the molecular transport of heat inside or between bodies in a thermodynamical

system. Convection is concerned with the fluid medium and/or the fluid in the medium.

The heat transfer due to the movement of fluid from one region to the other region in the

medium is called convection. Radiation heat transfer is a mechanism in which the internal

energy of a substance is converted into radiant energy. The transport of heat by convection

together with conduction is known as convective heat transfer.Furthermore, there are three

types of convection: forced, free, and mixed convection. To compute the heat transfer rate

in the medium, the temperature distribution is to be determined from the heat or energy

(conservation of energy) equation.

ρCp

(
∂T

∂t
+ (q.∇)T

)
= ∇.(k∇T ) (1.3)

where T is the local equilibrium temperature, Cp is the specific heat and k is the thermal

conductivity of the medium.

Mass Transfer

The tendency of a component in a mixture to travel from a region of high to low concen-

tration is called mass transfer. Mass transfer occurs by two mechanisms namely, Diffusion

mass transfer and Convective mass transfer. Diffusion mass transfer can take place as a

consequence of a concentration gradient, a temperature gradient, or a pressure gradient.

Convective mass transfer is a phenomenon that transfers mass between a fluid and a solid

surface as a result of matter moving from the fluid to the solid surface or fluid. The species

mass flux can be determined from the statement of conservation of mass species, which is

given by The conservation of mass is given by(
∂C

∂t
+ (q · ∇)C

)
= ∇ · (Ds∇C) (1.4)
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where C is the concentration, and Ds is the solutal diffusivity.

Boundary Layer Theory

Ludwig Prandtl proposed the boundary layer theory in 1904. Prandtl reasoned that in the

analysis of a flow field, it may be sufficient to examine the effect of viscosity inside the bound-

ary layers, while the flow outside the boundary layers may be regarded inviscid. He then

simplified the conservation equation by determining the order of magnitude of the individual

terms in the conservation equations, resulting in the so-called boundary layer equations. It

can be demonstrated that “the effects of wall boundaries on flows are limited to a small region

(thin layer) near the walls in flows where the acceleration forces are large when compared to

the viscous forces, or the diffusion times are large in contrast to the convection times, or the

convection velocities are large in comparison to the diffusion velocities”. This thin layer is

called the boundary layer. Boundary layer approximations provide sufficient simplifications

to tackle the problems mathematically and then to understand the convective mechanism in

the continuum fluid flows. Using boundary layer assumptions, the two dimensional form of

the equations (1.1) - (1.4), in terms of cartesian coordinates are given by

∂U

∂X
+
∂V

∂Y
= 0, (1.5)

ρ

(
∂U

∂t
+ U

∂U

∂X
+ v

∂U

∂Y

)
= −1

ρ

∂p

∂X
+

∂

∂Y

(
µ
∂U

∂Y

)
, (1.6)

−1

ρ

∂p

∂Y
= 0, (1.7)

ρcp

(
∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y

)
=

∂

∂Y

(
k
∂T

∂Y

)
, (1.8)

∂C

∂t
+ U

∂C

∂X
+ V

∂C

∂Y
=

∂

∂Y
(Ds

∂C

∂Y
), (1.9)

where U and V are the velocity components in X and Y directions.

Soret and Dufour Effects

The flow in simultaneous heat and mass transfer mechanisms is driven by density variations

induced by a temperature or concentration gradient, and material composition all at the

same time. The development of species interaction in an initial homogeneous fluid applied
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to a temperature gradient is known as thermal diffusion, also identified as thermo-diffusion

or the Soret effect [80]. The Dufour effect, also characterized as the diffusion-thermo effect,

is the heat flux caused by a concentration gradient.

Variable fluid properties

In most of the studies, the thermophysical properties of fluid were assumed to be constant.

However, it is known that these properties may change with the temperature, especially

for a fluid viscosity and thermal conductivity. For example the absolute viscosity of water

decreases by 240% when the temperature increases from 10oC to 500oC. The enhancement in

the temperature in lubricating fluids generate internal friction, which modifies the viscosity

of the fluid, which will no longer remain constant. The intensification in temperature speed

up the transport phenomena by decreasing viscosity all over the temperature boundary layer,

which influences the heat transfer rate. Therefore, to predict the heat transfer rate accurately,

it is necessary to take into account this variation of viscosity and thermal conductivity.

Kays and Crawford [37] provided a variety of relationships between fluid physical properties

and temperature. Herwig and Gersten [27] were the first to examine the consequence of

changeable fluid properties on laminar boundary layer flow. Applications include drawing of

plastic films, glass fibre, the study of spilling pollutant crude oil over the surface of seawater,

cooling of nuclear reactors, petroleum reservoir operations, food processing, welding and

casting in manufacturing processes, wire drawing, paper production, glass fibre production,

glueing of labels on hot bodies, etc. Despite its importance in many applications, this effect

has received little attention. In recent years, fewer researchers have analyzed the influence

of variable properties on convective flows over-stretching surfaces.

Thermal Radiation

The radiative effect has important applications in physics and engineering fields, the space

technology and high temperature processes, liquid metal fluids, power generation, cooling of

nuclear reactors, etc. But very little is known about the effect of radiation on the boundary

layer flows. Thermal radiation has a considerable impact on heat transfer and temperature

distribution in the boundary layer flow when temperatures are high. Thermal radiation

influence may play a significant role in managing heat transfer in industries where the quality

of the final product is partially dependent on heat controlling factors. In most of the studies

available in the literature, the linearization process for the radiation term is used.
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1.4 Successive Linearization Method

The Successive Linearisation Method (SLM) is one of the linearization methods and it is

proposed and developed by Makukula et al. [46] and Motsa and Sibanda [56]. This procedure

has been used effectively to linearize several boundary value problems in heat and mass

transfer investigations ([44, 45], [77], [4] erc.).

To solve the nonlinear boundary value problem in an unknown function z(x) using SLM,

we assume that z(x) is approximated by

z(x) = zr(x) +
r−1∑
m=0

zm(x) (1.10)

where zr(x) is an unknown function and z0(x), z1(x) · · · zr−1(x) are known approximate so-

lutions. The unknown function zr(x) can be determined by solving the linearized differential

equation in zr(x) obtained by substituting (1.10) in the given nonlinear differential equation

and linearizing the resulting differential equation using Taylor’s series expansion. Hence, the

subsequent solutions zr(x), r ≥ 1, are obtained by successively solving the linear equations

for zr(x), r ≥ 1 given that the previous guess zr−1(x) is known. The initial guess z0(x) is

taken such that it satisfy the given conditions on the boundary.

Any numerical scheme can used to solve the above iterative sequence of linearized dif-

ferential equations. The SLM method has been successfully applied to a wide variety of

scientific models over finite and semi-infinite intervals. The SLM approximation was applied

to boundary value problems which possess smooth solutions.

1.5 Chebyshev Collocation Method

The Chebyshev collocation method ( [9, 10, 15, 85]) is based on the Chebyshev polynomials

defined on the interval [−1, 1]. To solve a differential equation, in an unknown function z(x),

on [−1, 1], the interval [−1, 1] is to be descritized at N +1 Gauss-Lobatto collocation points,

which are given by

ξj = cos
πj

N
, j = 0, 1, 2, ......, N (1.11)

Next, the unknown function z(x) and its derivatives are guestimated at the collocation
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points as follows

z(ξ) =
N∑
k=0

z(ξk)Tk(ξj)
drz

dxr
=

N∑
k=0

[
2

(b− a)
Dkj

]r
z(ξk), (1.12)

where Tk(ξ) = cos (kcos−1ξ) is the kth Chebyshev polynomial and D being the Chebyshev

spectral differentiation matrix whose entries are defined as ([9, 15, 85]) “

D00 =
2N2+1

6

Djk =
cj
ck

(−1)j+k

ξj−ξk
, j ̸= k; j, k = 0, 1, 2 · · · , N,

Dkk = − ξk
2(1−ξk

2)
, k = 1, 2 · · · , N − 1,

DNN = −2N2+1
6

 (1.13)

” Substituting equations (1.11)-(1.12) into the given differential equation, we obtain the

system of the algebraic equation gven by

Ar−1Xr = Rr−1, (1.14)

in which Ar−1 is a square matrix of order (N +1)× (N +1) while Xr and Rr−1 are (N +1)th

order coloumn vectors. Writing the boundary conditions in terms of Chebyshev polynomi-

als, incorporating them in the above system of equations and solving the reduced system

of algebraic equations, we obtain the solution of the given differential equation. If the do-

main is [a, b], then it will be transformed to the domain [−1, 1] by using the using suitable

transformation.

1.6 Literature Review

The study of convective heat and mass transfer from various geometries, such as plate,

wedge, cylinder, sphere, cone, etc. In particular, the convective heat and mass transfer from

a vertical cone has fascinated much attention due to its vast application in the industrial

and engineering processes. The most recent technological advancements have challenging

applications in fluid flows past a cone. The cone geometry is useful for measuring the flow

and rheological properties of soils and soft materials found in food and personal care prod-

uct testing, where the cone penetration test is a typical quality control technique. It has

demanding applications in a wide range of real-world situations, including health care and

hospitality management systems, geosciences, energy storage systems, aeronautical engineer-
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ing, development of electronic chips, astro-physics, space technology, hydrology, automotive

engine oil controlling systems, environment controlling factors, nuclear safety and cleaning

management systems, solar collectors, preparation of transmission missile gun operations,

lubricating grease for seals, valves, and threaded connections, homeo-therapy treatment,

radiology treatment, endoscopy scanning, dental applications paper production industries,

etc,.

Laminar boundary-layer flows with similarity have long been used to investigate the ef-

fects of physical, dynamical, and thermal characteristics. When the similarity conditions are

fulfilled, the complex system of partial differential equations regulating the flow is simpli-

fied into a system of ordinary differential equations, resulting in a significant mathematical

simplification of the problem. Studies on existence of similarity solutions for isothermal,

axi-symmetric and vertical cone problems have been attracted by several researchers over

non-similarity solutions. Merk and Prins [51, 52] were the pioneers in the development of

similarity solutions for the natural convection flow past a vertical cone considering an ax-

isymmetric form. Braun et al. [8] discussed the natural convection similarity flows about two

dimensional axisymmetric bodies with closed lower ends. Hering and Grosh [26] obtained the

similarity solution for a non-isothermal right circular cone. Later, extensive studies on ana-

lytical and experimental studies are conducted for convective heat and mass transfer under

varied conditions along a vertical cone. Kafoussias [32] scrutinized the consequence of mass

transfer on a viscous fluid flow past a vertical cone due to buoyancy. Hossain and Paul[30]

considered the laminar natural convection from a permeable vertical cone with non-uniform

surface heat flux. Yih et al. [91] analyzed numerically the thermal radiation impact on mixed

convection around an isothermal cone embedded in a porous medium.

Using similarity analysis, Ece [17] explored the impact of magnetic field on a laminar

natural convection flow past a vertical cone subject to the mixed thermal boundary condi-

tion. Pop et al. [66] studied the steady mixed convection flow over an isothermal vertical

cone using a boundary-layer assumption. Singh et al. [78] investigated the unstable mixed

convection flow of viscous fluid over a vertical cone when the fluid in the external stream

is set to be an impulsive motion. Ravindran et al. [69] investigated the mixed convective

heat and mass transfer from a vertical cone. Patil et al. [64] analyzed numerically the effect

of thermal and mass diffusion and linear chemical reaction on unstable mixed convection

flow over a vertical cone. Ganapathirao et al. [20] considered a transient mixed convection

laminar boundary layer flow on vertical cone with non-uniform surface mass transfer through

slot while the cone’s axis is in line of the flow. Palani and Ragavan [62] investigated the

simultaneous influence of the transverse magnetic field, buoyancy, and chemical reaction
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on the flow of natural convection heat and mass transfer past an isothermal vertical cone.

Rosali et al. [71] studied the steady mixed convection boundary layer flow past a vertical

cone embedded in a porous medium using convective boundary condition. Pullepu et al.

[67] considered the simultaneous effects of heat absorption/generation and chemical reaction

on unsteady laminar natural convective heat and mass transfer past a permeable vertical

cone with uniform wall temperature and concentration in an incompressible viscous fluid.

Kannan et al. [35] developed group transformation approach to study the effect of viscous

dissipation on an unsteady free convection flow over a vertical cone with wall surface wall

temperature varying as a power function of the distance from the apex. Meena et al. [50]

investigated the effects of double dispersion and injection/suction on mixed convection flow

over a vertical cone in a viscous fluid-saturated porous medium. Kannan et al. [34] discussed

the outcome of heat sink/source and magnetic field on natural convection from a vertical

cone with variable surface heat flux.

The properties of fluids, for instance, the viscosity and thermal conductivity, are well

known to change with the temperature. Kays and Crawford [37] provided a variety of rela-

tionships between fluid physical properties and temperature. The enhancement of tempera-

ture in lubricating fluids generates internal friction, which modifies the viscosity of working

fluid, which will no longer remain constant. A number of researchers have since been exam-

ining the impact of variable thermal conductivity and variable viscosity on the flow, heat

transfer, and mass transfer in various physical configurations. Chen and Ren [42] studied

the natural convection heat transfer and fluid flow past a vertical cone by expressing the

viscosity as an inverse linear function of temperature. Hossain and Munir [29] considered

the convection flow along a truncated cone with the viscosity depending on the tempera-

ture. Molla et al. [53, 54] provided the consequences of variable properties on the fluid flow

past a sphere and horizontal circular cylinder. Rahman et al. [68] presented the effect of

heat conduction and magnetic field on the free convection flow past a vertical flat plate by

considering the thermal conductivity as a function of temperature. Shateyi and Motsa [77]

numerically analyzed the viscous fluid flow and heat transfer past a semi-infinite unsteady

stretching sheet in the presence of variable viscosity, variable thermal diffusivity, magnetic

field, and Hall currents.

The influence of variable fluid properties on the non-linear stretching sheet has been

explored by Khan et al. [40]. Umavathi et al. [89] undertaken the problem of free convec-

tion viscous fluid flow in a vertical channel with the effect of variable viscosity and thermal

conductivity. Srinivasacharya and Jagadeeshwar [81] investigated viscous fluid flow over a

sheet, which is stretching exponentially, presuming viscosity and thermal conductivity to be
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dependent linearly on the temperature. Ahmed et al. [2] explained the impact of exothermic

catalytic chemical reaction on the free convection flow of a viscous fluid past a curved sur-

face where the viscosity and thermal conductivity are dependent on the temperature. The

consequences of temperature-dependent viscosity on the free convective flow from a vertical

cone, which is permable, with uniform heat flux has been analyzed by Hasan et al. [23].

Khan et al. [38] presented the irreversibility analysis of a boundary layer flow over a heated

flat-plate with viscosity, which depends on temperature, and viscous dissipation.

The relationships amongst driving potentials and the fluxes are intricate as soon as heat

and mass transfer exist concurrently in a flowing liquid. Energy fluxes have been discovered

to be induced by both concentration and temperature gradients. These factors are mainly

overlooked in heat and mass transfer studies because they are of a less significant with respect

to order of magnitude than that of phenomena defined by Fourier’s and Fick’s principles.

These influences, on the other hand, are categorized as 2nd order manifestations and they

could be important in fields such as petrology, geosciences, and hydrology. Eckert and Drake

[18] discussed various illustrations of the diffusion-thermo effect. The Soret effect is utilized

to separate isotopes and mixtures of gases with medium (N2, air) molecular weights and

very light (H2, He) molecular weights. A considerable amount of research on Newtonian and

non-Newtonian fluid flows in various geometries has been published in the literature, with a

focus on the Soret and Dufour effects.

The impact of Dufour and Soret on the free convection heat and mass transfer past a

vertical cone placed in a porous medium filled with Newtonian fluids has been analysed

by Cheng et al. [12] . Cheng et al. [13] explored the cross-diffusion effects in double diffu-

sion across a truncated vertical cone in a fluid-saturated porous medium with changeable

wall temperature and concentration. Mahdy [43] obtained numerical solutions for the non-

Newtonian fluid flow about a cylinder, which is permeable and stretching, with suction or

blowing, as well as the Soret and Dufour effects. Sharma et al. [75] researched the significance

of changeable viscosity, variable thermal conductivity, Soret, and Dufour on free convective

flow past a vertical cone. Zuoco et al. [93] numerically analyzed the magnetic field, ther-

mal diffusion, dissipative heat and Soret effects on an unsteady natural convective over a

moving semi-infinite vertical permeable plate. Sivaraj et al. [79] analyzed the unsteady free

convective flow over a moving flat plate and vertical cone with varying fluid properties and

chemical reactions.

The influnce of cross-diffusion on the Blasius and Sakiadis flows has been examined

by Oyem et al. [61]. Kaushik [36] studied an unsteady flow of a viscous incompressible

fluid past a vertical cone with variable viscosity and thermal conductivity. Naseem et al.
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[59] investigated the Dufour and Soret impacts on the magnetic nanofluid flow across a

sheet stretching exponentially using variable thermal conductivity and diffusion coefficient.

Patil et al. [63] investigated the unsteady double-diffusive mixed convection flow over an

exponentially permeable vertical stretching surface in the presence of Darcy-Forchheimer,

Dufour, and Soret effects. Ghoneim et al. [21] explored the Soret and Dufour effects along

with interaction of thermal radiation and variable diffusivity through vertical cone. Das

et al. [14] investigated the radiation, heat generation, Chemical reaction, magnetic field,

Soret and Dufour effects on nonlinear convective flow of tangent hyperbolic nanofluid over a

permeable stretching surface. Hazarika et al. [25] theoretically investigated the consequence

of suction/injection, internal heat generation, chemical reaction and diffusion-thermo on a

the flow of Cu–water nanofluid over a semi-infinite vertical surface.

There has recently been great interest in the mechanics governing the flow around a

rotating cone. The broad rotating cone considered in this paper can be used to model

the behavior of air flowing over the central nose cone of an aero-engine fan. The large

half angles used in these nose cones are chosen to deflect the ensuing turbulent flow from

entering the turbofan core, whilst also ensuring that sufficient amount of airflow is flowing

into the fan blades. It is important due to environmental and noise concerns to understand

the system that governs the intake of this airflow, with the aim to improve the efficiency

of the system. Moreover, applications of heat and mass transfer from a rotating cone are

used to design of canisters for nuclear reactor cooling system, nuclear waste disposal, and

geothermal reservoirs. Hartnett and Deland [22] considered the impact of Prandtl number

on the heat transfer by rotating bodies. Tien and Tsuji [84] theoretical analyzed the heat

transfer effects on the laminar forced flow about a rotating cone. Krieth [31] presented the

study of the flow and heat transfer in rotating systems. Himasekhar et al. [28] discussed

analytically the flow past a vertical rotating cone for different values of Prandtl numbers. An

effective solution method to solve the conjugate problems of forced convection in a boundary

layer flow along a wedge and rotating cone was proposed by Yu et al. [92]. Takhar et al. [83]

analysed the effect of magnetic field and time dependent angular velocity on the transient

mixed convection flow over a rotating cone in an ambient fluid

An unsteady mixed convection flow over a rotating cone in a rotating viscous fluid with

the free stream with time dependent angular velocities has been undertaken by Roy and

Anilkumar [72]. The same authors dealt with the combined effects of thermal and mass

diffusion on an unsteady mixed convection flow over a rotating cone in a rotating fluid [3].

Osalusi et al. [60]analysed the effect of viscous dissipation, Joule heating, Hall and ion-

slip current on unsteady mixed convention magnetohydrodynamics flow on a rotating cone.
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Turkyilmazoglu [86] obtained an analytical solution forthe steady flow of a viscous Newtonian

fluid over a rotating cone Chamkha et al. [11] focused on the effects of magnetic field, chemical

reaction, Soret and Dufour on unsteady mixed convection flow over a vertical cone rotating

with a time-dependent angular velocity. Saleem and Nadeem [74] analysed the mutual effects

of viscous dissipation and slip effects on a rotating vertical cone in a viscous fluid Maliket

al. [47] examined the effects of temperature-dependent viscosity and thermal conductivity

on the flow of a viscous fluid over a rotating vertical cone. Mallikarjuna et al. [48] analysed

the importance of chemical reaction and magnetic field on the mixed convective flow past a

rotating cone placed in a porous medium. Reddy and Sandeep [70] explored the effects of

bioconvection, non linear thermal radiation, and cross diffusion effects on the heat and mass

transfer behaviour of natural convective flow past a permeable rotating cone. Adachi et al.

[1] studied experimentally the effect of viscosity on flow of pumping-up of liquid generated by

a rotating cone at the liquid surface with various concentrations of glycerol aqueous solution.

Sulochana et al. [82] investigated the effects of thermal radiation, chemical , magnetic field

and Soret effects on the flow over a vertical rotating cone through porous medium. Sharma

and Hemanta [76] considered the importance of chemical reaction, thermal radiation and

heat absorption/ generation on the flow, heat and mass transfer about a rotating vertical

cone.

The influences of traveling modes on the boundary layer flow over a rotating cone in

a still fluid system has been analysed by Fildes et al. [19] . Hayat et al. [24] investigated

the unsteady mixed convective magnetohydrodynamics chemically reactive flow of a viscous

liquid over a rotating cone. Khan et al. [39] examined the thermo-diffusion, diffusion-thermo

and viscous dissipation behaviors in mixed convection radiative flow by a rotating cone. Li et

al. [41] explored the influence of heat source/sink, dissipation and binary chemical reaction

on the entropy optimization in convective viscous fluid flows due to a rotating cone. Ullah

et al. [88] presented instability analyses for cones rotating within magnetic field. Verma et

al. [90] investigated the thermal radiation, Soret and Dufour effect on MHD flow about a

rotating vertical cone. Mustafa et al. [57] considered the radiation, dissipation and nanofluid

features on unsteady magnetohydrodynamics flow by a rotary cone.

1.7 The Aim of the Thesis

Several studies have introduced the temperature dependent properties and reported its sig-

nificant influences over the flow characteristics. Further, it is clear that adequate literature
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is not available to study the effect of temperature dependent viscosity and thermal conduc-

tivity on the convective flow of a viscous incompressible fluid along an isothermal vertical

cone and rotating cone.

The aim of present thesis is to understand the usefulness of variable fluid properties,

namely, variable viscosity and variable thermal conductivity on the viscous incompressible

boundary layer flow over a vertical and rotating cone. The characteristics such as thermal

radiation, corss-duffusion, thermal radiation and chemical reaction are included in our study.

The problems considered deal with vertical and rotating cone geometries for the two cases:

the surface is (i) maintained at uniform wall temperature and concentration conditions (ii)

subjected to uniform heat and mass fluxes.

1.8 Overview of the Thesis

This thesis consists of FOUR parts and TEN chapters

Chapter 1 is an introductory chapter that gives insight for the study undertaken in

the thesis. A review of relevant literature is outlined, emphasising the significance of the

problems addressed in the thesis.

Part-II deals with the influence of variable properties on convective flow past a vertical

cone. This consists of four chapters i.e. Chapter 2 to Chapter 5 . In these chapters,

the governing equations, which are non-linear in nature, and their corresponding boundary

conditions are first transformed into non - dimensional forms using similarity variables. The

resulting nonlinear system of equations is linearized by using the successive linearisation and

then the linearized system is solved by using Chebyshev spectral collocation. The computed

numerical findings are compared and found to be in good agreement with earlier findings as

special cases.

In Chapter - 2, the laminar free convection flow across a vertical cone is investigated

by presuming the temperature dependent viscosity and thermal conductivity. Similarity

transformations are utilized to reduce the flow governing equations into ordinary differential

equations. The effects of variable viscosity and thermal conductivity parameters, Prandtl

number on the coefficient of skin friction and local Nusselt number are analysed.

Chapter - 3 deals with influence of the variable properties on the boundary layer flow past

a vertical cone. Similarity transformations are utilized to reduce the equations describing
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the flow into ordinary differential equations. The non-dimensional equations are linearized

using successive linearization procedure and then the solution of the consequent system is

found using Chebyshev spectral method.

Chapter - 4 considers the free convection flow across a vertical cone by presuming the

viscosity and thermal conductivity varies with temperature in the manifestation of Soret and

Dufour effects.

The effects of Soret and Dufour on the boundary layer flow across a vertical cone is

investigated by assuming the viscosity and thermal conductivity varies with temperature is

presented in Chapter - 5.

Part-III deals with the influence of variable properties on convective flow past a rotating

cone. This consists of four Chapters i.e. chapter 6 to chapter 9 . In these chapters, the

nonlinear governing nonlinear system of equations is linearized using successive linearisation

and then solved by using Chebyshev spectral collocation.

In chapter - 6, the laminar free convection flow across a rotating cone is investigated

by taking the temperature dependent viscosity and thermal conductivity. Similarity trans-

formations are utilized to reduce the equations governing the flow into ordinary differential

equations. The non-dimensional equations are linearized using successive linearization pro-

cedure and then the solution of the consequent system is found using Chebyshev spectral

method.

Chapter - 7 deals with the influence of the variable properties on boundary layer flow

past a rotating cone.

The cross diffusion effects on the free convection flow across a rotating cone with tem-

perture dependent viscosity and thermal conductivity is considered in Chapter - 8.

Chapter - 9 explores the influence of chemical and thermal radiation on the boundary

layer flow across a rotating cone by taking the viscosity and thermal conductivity as a

function of temperature.

Part - IV consists of single chapter i.e. Chapter - 10. The key conclusions of the previous

chapters are summarised in this chapter, along with possible future research directions.

In all the above chapters (Chapter 2 to Chapter 9), the similarity transformations are em-

ployed to convert the governing system of partial differential equations to nonlinear ordinary

differential equations. Initially, the resulting equations are linearized using the successive

linearization method. Finally, the obtained linear equations are solved using the Chebyshev
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collocation method.

A list of references is provided at the end of the thesis and is organised alphabetically.

A significant portion of the work in the thesis has been published or accepted for pub-

lication in reputable international journals. The remaining is communicated for potential

publication. The details are presented below.
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Chapter 2

The impact of variable fluid

properties on natural convection flow

past a vertical cone 1

2.1 Introduction

Free convection flows have received the most attention because they appear in nature in addi-

tion to in scientific and engineering applications. Temperature differences produce buoyancy

forces, which cause free convection when a heated surface comes into contact with a fluid.

The atmospheric circulation, which includes hurricanes, blizzards, and monsoons, is driven

by free convection. Mainly these type of heat transfer problems are encountered in the de-

sign of nuclear reactors, solar power collectors, power transformers, steam generators, etc.

Moreover, free convection flow past a vertical cone has attracted much attention due to its

vast application in industrial and engineering processes. Several researchers considered the

free convection flow over a vertical cone in Newtonian and non-Newtonian fluid

The majority of researchers have only examined the influence of constant viscosity and

thermal conductivity on the boundary layer formed by a vertical cone. However, it is well

understood that fluid viscosity varies with temperature. Variable thermal conductivity is

used in a variety of engineering applications, including heat transmission in furnaces, boilers,

porous burners, volumetric solar receivers, and fibrous and foam insulations. A number of

researchers have been examining the effect of variable thermal conductivity and viscosity on

1Accepted for publication in “Journal of Applied Mathematics and Computational Mechanics”
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Figure 2.1: “Schematic of the problem”.

flow, heat transfer, and mass transfer in a variety of physical configurations. Sivaraj et al.

[79] analyzed the unsteady free convective flow over a moving flat plate and vertical cone

with varying fluid properties and chemical reactions. Recently, Hasan et al. [23] investigated

the effects of temperature-dependent viscosity on the natural convection flow from a vertical

permeable circular cone with uniform heat flux.

In this chapter, a free convective flow of an incompressible viscous fluid past an isother-

mal vertical cone is investigated with variable viscosity and variable thermal conductivity.

The constant wall temperature (CWT) and constant wall heat flux (CHF) conditions are

used as temperature boundary conditions at the surface of the cone. The successive lin-

earization method is applied to linearize the governing nonlinear differential equations of

the flow. The numerical solution for the resulting linear equations is obtained through the

Chebyshev spectral collocation method. The impact of significant parameters on the velocity

and temperature, in addition to heat and mass transfer rates, is evaluated and represented

graphically for the CWT and CHF conditions.
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2.2 Mathematical Formulation

Consider an incompressible, steady-state and laminar flow of Newtonian fluid along a vertical

down-pointing cone with local radius r and half-angle ϕ. Choose a coordinate system in which

the origin is taken as the apex of the cone, the x-axis runs along the cone’s surface, and

the y-axis is upright to it, as depicted schematically in Fig. (2.1). The local radius at a

point located and the radius of a cone can be guesstimated by r = (xsinϕ). The ambient

temperature is assumed as T∞.

Applying Boussinesq approximation and utilizing the boundary layer assumptions, the

equations describing the flow are.

∂

∂x
(ur) +

∂

∂y
(vr) = 0 (2.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
+ ρgβ cosϕ(T − T∞) (2.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂

∂y

(
k
∂T

∂y

)
(2.3)

where (u, v, 0) signify the velocity vector, T denotes the temperature of the fluid, g denotes

the gravitational acceleration, µ represents the variable viscosity, ρ represents the fluid den-

sity, β denotes the coefficient of thermal expansion, Cp represents the specific heat and, k

represents the variable thermal conductivity of the fluid.

The viscosity and thermal conductivity are considered to be a linear function of the

temperature [5] and are given by

µ = µ∞[1 + λ(T∞ − T ) and k = k0[1 + γ(T − T∞)], (2.4)

where µ∞ and, k0 represent the absolute viscosity and the thermal conductivity of the fluid,

respectively, λ and γ are constants.

No-slip at the surface of the cone and no stream condition in the ambient medium are

the associated conditions on the boundary for the flow configuration. These are expressed

as follows.

u = 0, v = 0 at y = 0 and u→ 0 as y → ∞ (2.5)

In addition, for the temperature on the surface of the cone, one can either have constant

temperature Tw (CWT) or a constant heat flux qw (CHF). Thus, the conditions for the tem-
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perature on the boundary conditions are written as

Type - I : T = Tw at y = 0 (2.6)

Type - II : k
∂T

∂y
= qw at y = 0 (2.7)

and far away from the cone, the temperature of the free stream is constant i.e. T → T∞ , as

y → ∞

The stream function is defined in context of Eq. (2.1) as u =
1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x

For type – I boundary conditions, we define the following similarity transformations

ξ =
x

L
, η =

y

L

(
Gr

ξ

) 1
4

, ψ = rνGr
1
4 ξ

3
4f(η), T = T∞ + (Tw − T∞)θ(η), (2.8)

where Gr =
L3gβ cosϕ(Tw − T∞)

υ2 is the Grashof number

For type – II boundary conditions, the similarity transformations are given by

ξ =
x

L
, η =

y

L

(
Gr

ξ

) 1
5

, ψ = rνGr
1
5 ξ

4
5f(η), T = T∞ +

qwL

k
Gr−

1
5 ξ

1
5 θ, (2.9)

where Gr =
L2gβ cosϕqw

ν2
is the Grashof number and L is the characterstic length.

Applying the similarity transformations Eqs. (2.9) and (2.8) in the Eqs. (2.2) and (2.3),

we get the non-dimensional equations are shown below

For type - I boundary conditions:

(1 + A)f
′′′ − Aθf

′′′ − Aθ
′
f

′′
+

7

4
ff

′′ − 1

2
f ′2 + θ = 0 (2.10)

1

Pr
θ
′′
+

∈
Pr

(θθ
′′
) +

∈
Pr

(θ
′
)
2
+

7

4
fθ

′
= 0 (2.11)

For type - II boundary conditions

(1 + A) f
′′′
+

9

5
ff

′′ − 3

5
f

′2 − Aθ
′
f

′ ′ − Aθf
′′′
+ θ = 0 (2.12)
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1

Pr
θ
′′
+

∈
Pr
θθ

′′
+

1

Pr
∈ θ

′2 − 1

5
f

′
θ +

9

5
fθ

′
= 0 (2.13)

where Pr =
υ

α0

denotes the Prandtl number, A denotes the viscosity parameter and ϵ denotes

the thermal conductivity parameter.

The dimensionless form of conditions on the boundary are

f(0) = f ′(0) = 0, θ(0) = 1, f ′(∞) = θ(∞) = 0 for CWT case. (2.14)

f(0) = f ′(0) = 0, θ′(0) = −1, f ′(∞) = θ(∞) = 0 for CHF case. (2.15)

The most important results of practical interests are the local skin-friction coefficient

and local rate of heat-transfer in terms of Nusselt number. The non-dimensional form of

skin-friction coefficient Cf and Nusselt number (Nu) for CWT boundary conditions are

CI
f = Gr

3
4 ξ−

1
4f

′′
(0), and NuI = −Gr

1
4 ξ−

1
4 θ′(0), (2.16)

and for CHF boundary conditions are

CII
f = Gr

3
5 ξ−

2
5f

′′
(0), and NuII = Gr

1
5 ξ

4
5

1

θ(0)
. (2.17)

2.3 Methodology

The set of differential equations (2.10) – (2.11) and (2.12) – (2.13) are linearized by means of a

successive linearization method (SLM) [55].The solutions of the ensuing linearized equations

are attained by employing the Chebyshev spectral method [7].

Using SLM, unknown functions f(η) and θ(η) are taken as

f(η) = fi(η) +
i−1∑
m=0

fm(η), θ(η) = θi(η) +
i−1∑
m=0

θm(η) (2.18)

where fi(η) and θi(η) (i = 1, 2, . . .) are unknown function and fm(η) and θm(η) (m ≥ 1)

are guesstimates which can be determined by repeatedly solving the linear terms of the

system of equations obtained by substituting Eq. (2.18) in the Eqs.(2.10)-(2.11) and Eqs.

(2.12)-(2.13). The underlying idea of the SLM is that fi and θi are quite small even as i

turns out to be large, so nonlinear terms in fi and θi and their derivatives are reasoned to

21



be infinitesimal and thus ignored.

The initial guesses f0(η) and θ0(η) are selected to match the conditions on the boundary

(2.14) and (2.15). The iterative solutions fi and θi are attained by recursively solving the

following linearized equations for CWT boundary conditions.

a1f
′′′

i + a2f
′′

i + a3f
′

i + a4fi + a5θ
′

i + a6θi = a7 (2.19)

b1fi + b2θi
′′
+ b3θi

′
+ b4θi = b5 (2.20)

The linearized equations for CHF boundary conditions are

c1f
′′′

i + c2f
′′

i + c3f
′

i + c4fi + c5θ
′

i + c6θi = c7, (2.21)

d1f
′

i + d2fi + d3θ
′′

i + d4θ
′

i + d5θi = d6 (2.22)

where

a1 = c1 = (1 + A)− A(
i−1∑
m=0

θm), a2 =
7

4

i−1∑
m=0

fm − A
i−1∑
m=

θm
′
, a3 = −

i−1∑
m=0

fm
′
,

a4 = 7/4
∑

f
′′

m, a5 = c5 = −A
i−1∑
m=0

fm
′′
, a6 = c6 = 1− A(

i−1∑
m=0

fm
′′
),

a7 =

(
−(1 + A) + A

i−1∑
m=0

θm

)
f

′′′

m +

(
A

i−1∑
m=0

θ
′

m − 7

4

i−1∑
m=0

fm

)
f

′′

m

+
1

2

(
i−1∑
m=0

f
′

m

)2

− θm

b1 =
7

4

i−1∑
m=0

θ
′

m, b2 = d3 =
1

Pr
+

∈
Pr

i−1∑
m=0

θm,

b3 =
2 ∈
Pr

i−1∑
m=0

θ
′

m +
7

4

i−1∑
m=0

fm, b4 =
∈
Pr

i−1∑
m=0

θ
′

m

b5 =

(
− 1

Pr
− ∈

Pr
(
i−1∑
m=0

θm)

)
i−1∑
m=0

θm
′′ − ∈

Pr

(
i−1∑
m=0

θ
′

m

)2

− 7

4

(
i−1∑
m=0

fm

)(
i−1∑
m=0

θ
′

m

)
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c2 =
9

5

∑
fm − A

∑
θ
′

m, c3 = −6

5

∑
f

′

m,c4 =
9

5

∑
f

′′

m

c7 = −(1 + A)
∑

f
′′′

m − 9

5

∑
fm
∑

f
′′

m +
3

5

∑(
f

′

m

)2
+Aθ

′

m

∑
f

′′

m + A
∑

θm
∑

f
′′

m −
∑

θm

d1 = −1

5
θm, d2 =

9

5
θ
′

m, d4 =
2 ∈
Pr

∑
θ
′

m +
9

5

∑
fm,

d5 =
∈
Pr

∑
θ
′′

m − 1

5

∑
f

′

m

d6 = − 1

Pr

∑
θ
′′

m − ∈
Pr

∑
θm
∑

θ
′′

m − ∈
Pr

(∑
θ
′

m

)2
+
1

5

∑
θm
∑

f
′

m − 9

5

∑
fm
∑

θ
′

m

The equivalent conditions to (2.14) and (2.15)

fi(0) = fi
′
(0) = fi

′
(∞) = θi(∞) = 0, θ(0) = 1 (2.23)

The solution to the linearized Equations (2.19) - (2.22) are achieved by means of the Cheby-

shev collocation method which is constructed on the Chebyshev polynomials. In this prob-

lem, the domain of the solution [0,∞] is transformed to [0, L], where L is a constant utilized

to acquire the ambient boundary conditions. To apply this method, [0, L] is again changed

to [-1, 1] by using the mapping

η

L
=
ξ + 1

2
, −1 ≤ ξ ≤ 1 (2.24)

The functions fi and θi are approximated at the following collocation points due to Gauss-

Lobatto

ξj = cos
πj

N
, j = 0, 1, 2, 3.....N (2.25)

as

fi(ξ) =
N∑
k=0

fi(ξK)Tk(ξj), θi(ξ) =
N∑
k=0

θi(ξk)Tk(ξj), j = 0, 1, 2...N (2.26)

where Tk(ξ) = cos [kcos−1(ξ)] is the kth degree Chebyshev polynomial.
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rth derivative of fi and θi are approximated from

drfi
dηr

=
N∑
k=0

Dr
kjfi(ξk),

drθi
dηr

=
N∑
k=0

Dr
kjθi(ξk), j = 0, 1, 2...N (2.27)

where D = 2
L
D with D is the Chebyshev spectral differentiation matrix.

Substitution of Eqs. (2.26)-(2.27) into Eqs. (2.19)- (2.20) and (2.21) - (2.22) gives the

equation in matrix form as

Ai−1Xi = Ri−1 (2.28)

where Ai−1 is a square matrix of order (2N + 2) and Xi and Ri−1 are column matrices of

order (2N + 2) given by

Ai−1 =

(
A

(i)
11 A

(i)
12

A
(i)
21 A

(i)
22

)
, Xi =

(
Fi

Θi

)
, Ri−1 =

(
r
(i)
1

r
(i)
2

)
(2.29)

where

Fi = [fi(ξ0), fi(ξ1), ...., fi(ξN−1), fi(ξN)]
T ,

Θi = [θi(ξ0), θi(ξ1), .., θi(ξN−1), θi(ξN)]
T ,

A
(1)
11 = a1D

3 + a2D
2 + a3I, A

(1)
12 = a4D + a5I,

A
(1)
21 = b1I, A

(1)
22 = b2D

2 + b3D + b4I

r
(1)
1 = [a6(ξ0), a6(ξ1), ..., a6(ξN−1), a6(ξN)]

T ,

r
(1)
2 = [b5(ξ0), b5(ξ1), ..., b5(ξN−1), b5(ξN)]

T ,

A
(2)
11 = c1D

3 + c2D
2 + c3I, A

(2)
12 = c4D + c5I,

A
(2)
21 = d1D + d2I, A

(2)
22 = d3D

2 + d4D + d5I

r
(1)
2 = [c6(ξ0), c6(ξ1), ..., c6(ξN−1), c6(ξN)]

T ,

r
(2)
2 = [d6(ξ0), d6(ξ1), ..., d6(ξN−1), d6(ξN)]

T

where the superscript T stands for transpose, I is the identity, and O is the zero matrix.

Finally, the solution is given by

Xi = A−1
i−1Ri−1 (2.30)
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2.4 Results and Discussion

The present study computes the velocity component f
′
, the temperature θ, local Nusselt

Number Nu, the coefficient of local skin friction Cf for diverse values of viscosity parameter

A, thermal conductivity parameter ∈ for constant wall temperature and heat flux cases are

depicted graphically.

The impact of viscosity parameter A on the velocity component, temperature, coefficient

of skin friction, and heat transfer rate is depicted in Fig.2.2 for type – I boundary conditions.

It is detected from Fig.2.2(a) that the velocity rises near the cone, reaches its extreme

value and then declines gradually to zero as η → ∞. Furthermore, it is perceived that for

enhancing values of A, the velocity reduces near the cone and enhances away from the cone.

The temperature decreases slightly for an increase in A as portrayed in Fig. 2.2(b). As

shown in Fig.2.2(c), increasing A increases the skin friction coefficient. The rate of heat

transfer decreases as A increases as presented in the Fig.2.2(d).

The variation of f ′, θ, Cf and Nu with the thermal conductivity parameter ∈ is given

in Fig. 2.3 for type – I boundary conditions. Figures. 2.3(a) and 2.3(b) exhibit that as the

value of ∈ grows, so do the velocity f ′ and the temperature θ. The coefficient of skin friction

is increasing, whereas the rate of heat transfer is decreasing for rising values of ∈ as shown

in Figs. 2.3(c) ad 2.3(d).

Figure 2.4 presents the influence of viscosity parameter A on the velocity component,

temperature, coefficient of skin friction, and heat transfer rate for type – II boundary condi-

tions. The impact of the viscosity parameter is less significant in comparison to the type –

I boundary conditions, as seen in Fig. 2.4. For increasing values of A, the velocity enhances

adjacent to the cone and decays away from the cone. The temperature is also decreasing

for increasing values of A as revealed in Fig. 2.4(b). As seen in Fig. 2.4(c), increasing A

slightly enhances the skin friction coefficient. As A increases, so does the heat transfer rate

as presented in Fig. 2.4(d)

The variation of the velocity component, temperature, coefficient of skin friction, and

Nusselt number with the thermal conductivity parameter ∈, is shown in Fig. 2.5 for type

– II boundary conditions. According to Figure 2.5(a), velocity declines with enhancing the

thermal conductivity parameter. Fig. 2.5(b) reveals that the effect of ∈ on the temperature

is not very significant. The skin friction coefficient is decreasing, whereas the Nusselt number

is escalating for increasing values of ∈ as shown in Figs.2.5(c) ad 2.5(d).
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2.5 Conclusion

The free convection flow across a vertical cone is investigated under the supposition that

viscosity and thermal conductivity change with temperature. Similarity transformation is

utilized to convert the equations administering the flow into ordinary differential equations.

The non-dimensional equations are linearized by employing a successive linearization proce-

dure, and then the solution of the consequent system is found using the Chebyshev spectral

method.

• If the viscosity parameter is enhanced, the velocity adjacent to the cone surface in-

creases, while the reverse tendency is detected sufficiently away from the cone surface.

• The local heat transfer rate decreases with increasing the viscosity and thermal con-

ductivity parameters for CWT conditions but the reverse tend is noticed for CHF

conditions.

• For CWT state, an improvement in viscosity and thermal conductivity infers to a rise

in the coefficient of the skin friction, whereas for CWF conditions, the opposite is the

case.
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Figure 2.2: “Effect of A on the Velocity, Temperature, skin friction coefficient and Nusselt
number for CWT boundary conditions”.
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Figure 2.3: “Effect of ∈ on the Velocity, Temperature, skin friction coefficient and Nusselt
number for CWT boundary conditions”.
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Figure 2.4: “Effect of A on the Velocity, Temperature, skin friction coefficient and Nusselt
number for CHF boundary conditions”.
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Figure 2.5: “Effect of ∈ on the Velocity, Temperature, skin friction coefficient and Nusselt
number for CHF boundary conditions”.
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Chapter 3

The Boundary Layer Flow Past a

Vertical Cone with Variable Fluid

Properties. 1

3.1 Introduction

The theory of boundary layer has recently gained prominence due to its multiple uses in

engineering breakthroughs and industrial operations. The determination of friction drag on

bodies in a flow is an essential application of boundary layer theory. Prandtl developed

the boundary layer theory in order to investigate the flow structure of viscous fluids near

solid boundaries. Blasius [6] made an early contribution to fluid dynamics by solving the

renowned boundary layer equation for a flat moving plate problem and discovering a power

series solution to the model. Analysis of laminar boundary layer flow about a vertical cone

in a uniform stream of fluid continue to gain significant attention due to its usefulness in

many practical applications in a wide range of engineering systems. Patrulescu et al. [65]

examined the persistent mixed convection boundary layer movement from such a cone’s

vertical frustum. Ganapathirao et al. [20] produced an unsteady mixed convection laminar

boundary layer flow over a vertical cone with non-uniform surface mass transfer through slot

while the cone’s axis is in line with the flow. Rosali et al. [71] initiated a convective boundary

layer flow past a vertical cone embedded in a porous medium. Khan et al. [38] presented the

entropy generation of an incompressible boundary layer flow over a heated flat-plate with

1Communicated to “Applications and Applied Mathematics: An International Journal”
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temperature dependent viscosity and viscous dissipation.

In this chapter, the effect of variable viscosity and variable thermal conductivity on the

boundary layer flow of an incompressible viscous fluid past an vertical cone is considered.

The constant wall temperature (CWT) and constant wall heat flux (CHF) conditions are

used as temperature boundary conditions at the surface of the cone. The successive lin-

earization method is applied to linearize the governing nonlinear differential equations of

the flow. The numerical solution for the resulting linear equations is obtained through the

Chebyshev spectral collocation method. The impact of significant parameters on the velocity

and temperature, in addition to heat and mass transfer rates, is evaluated and represented

graphically for the CWT and CHF conditions.

3.2 Mathematical Formulation

Consider an incompressible boundary layer flow of viscous fluid along a vertical down-

pointing cone with local radius r and half-angle ϕ under steady state and laminar flow

conditions. The coordinate system and physical model are as depicted in Fig. (2.1). Apart

from the assumptions made in Chapter - 2, here we assume that the ambient velocity of the

fluid is U∞ without Boussinesq approximation.

Using the boundary layer assumptions, the equations describing the flow are:

∂

∂x
(ur) +

∂

∂y
(vr) = 0 (3.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
(3.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂

∂y

(
k
∂T

∂y

)
(3.3)

The quantities appearing in the above equations are already defined in Chapter - 2.

The viscosity and thermal conductivity are considered to be a linear function of the

temperature [5] and are given by

µ = µ∞[1 + λ(T∞ − T ) and k = k0[1 + γ(T − T∞)], (3.4)

where µ∞ and, k0 represent the absolute viscosity and the thermal conductivity of the fluid,

respectively, λ and γ are constants.
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The boundary conditions for the velocity are no slip condition and uniform velocity in

the ambient medium i.e.

u = 0, v = 0, at y = 0 u→ U∞ as y → ∞ (3.5)

As in the chapter- 2, here also we consider two types of boundary conditions for the

temperature.

Type - I : T = Tw at y = 0 (3.6)

Type - II : k
∂T

∂y
= qw at y = 0 (3.7)

and far away from the cone, the temperature of the free stream is constant i.e. T → T∞ , as

y → ∞

The stream function is defined in context of Eq. (2.1) as u =
1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x

For type - I boundary conditions, we define the following similarity transformations

ξ =
x

L
, η =

y

L

(
Re

ξ

) 1
2

, ψ = rLU∞Re−
1
2 ξ

1
2f(η) T = T∞ + (Tw − T∞)θ (3.8)

For type - II boundary conditions, the similarity transformations are given by

ξ =
x

L
, η =

y

L

(
Re

ξ

) 1
2

, ψ = rLU∞Re−
1
2 ξ

1
2f(η) T = T∞ +

qwL

k
Re−

1
2 ξ

1
2 (3.9)

where Re =
ρU∞L

µ∞
is the Reynolds number and L is the characteristic length

Applying the similarity transformations Eqs. (3.8) and (3.9) in the Eqs. (3.2) and (3.3),

we get the following non-dimensional equations.

For type - I boundary conditions:

(1 + A)f
′′′ − Aθf

′′′ − Aθ
′
f

′′
+

3

2
ff

′′
= 0 (3.10)

1

Pr
θ
′′
+

1

Pr
∈ θθ

′′
+

1

Pr
∈ (θ

′
)
2
+

3

2
fθ

′
= 0 (3.11)

For type - II boundary conditions
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(1 + A)f
′′′ − Aθf

′′′ − Aθ
′
f

′′
+

3

2
ff

′′
= 0 (3.12)

2

Pr
θ
′′
+

2 ∈
Pr

θθ
′′
+

2 ∈
Pr

θ
′2
+ 3fθ

′ − f
′
θ = 0 (3.13)

where Pr =
ν

α0

is the Prandtl number, A is the viscosity parameter and ∈ is the thermal

conductivity parameter.

The dimensionless form of conditions on the boundary are

f(0) = 0, f ′(0) = 0, θ(0) = 1, f ′(∞) = 1, θ(∞) = 0, for CWT case. (3.14)

f(0) = 0, f ′(0) = 0, θ′(0) = −1, f ′(∞) = 1, θ(∞) = 0, for CHF case. (3.15)

The local rate of heat transmission in terms of Nusselt number and the local skin-friction

coefficient are the two key findings with the most practical importance. The non-dimensional

form of skin-friction coefficient Cf and Nusselt number (Nu) for CWT boundary conditions

are

CI
f = Re

1
2 ξ−

1
2f

′′
(0) and NuI = −Re

1
2 ξ−

1
2 θ′(0) (3.16)

and for CHF boundary conditions are

CII
f = Re

1
2 ξ−

1
2f

′′
(0) and NuII = −Re

1
2 ξ−

1
2 θ′(0) (3.17)

3.3 Methodology

The system of differential equations (3.10) – (3.11) and (3.12) – (3.13) are linearized by means

of a successive linearization method (SLM) [55]. The solutions of the resulting linearized

equations are obtained by employing the Chebyshev spectral method [7].

On applying the procedure explained in Chapter 2 to the equations (3.10) – (3.11) and

(3.12) – (3.13), we get the following linearized equations for CWT boundary conditions.

a1f
′′′

i + a2f
′′

i + a3fi + a4θ
′

i + a5θi = a6 (3.18)

b1fi + b2θ
′′

i + b3θ
′

i + b4θi = b5 (3.19)

For the CHF boundary conditions, the linearized equations are
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c1f
′′′

i + c2f
′′

i + c3fi + c4θ
′

i + c5θi = c6 (3.20)

d1f
′

i + d2fi + d3θ
′′

i + d4θ
′

i + d5θi = d6 (3.21)

a1 = c1 = (1 + A)− A
∑

θm, a2 =
3

2

∑
fm − A

∑
θ
′

m, a3 = c3 =
3

2

∑
f

′′

m

a4 = c4 = −A
∑

f
′′

m, a5 = c5 = −A
∑

f
′′′

m

a6 =
(
−(1 + A) + A

∑
θm

)∑
f

′′′

m + A
∑

θ
′

m

∑
f

′′

m − 3

2

∑
fm
∑

f
′′

m

b1 =
3

2
θ
′

m, b2 =
1

Pr
+

∈
Pr

∑
θm

b3 =
2 ∈
Pr

∑
θ
′

m +
3

2

∑
fm, b4 =

∈
Pr

∑
θ
′′

m

b5 = − 1

Pr

∑
θ
′′

m − ∈
Pr

∑
θm
∑

θ
′′

m − ∈
Pr

∑
θ
′2

m − 3

2

∑
fm
∑

θ
′

m

c2 =
3

2

∑
fm − A

∑
θ
′

m

c6 =
(
−(1 + A) + A

∑
θm

)∑
f

′′′

m + A
∑

θ
′

m

∑
f

′′

m − 3

2

∑
fm
∑

f
′′

m

d1 = −θm, d2 = 3
(∑

θ
′

m

)
, d3 =

2

Pr
+

2 ∈
Pr

(∑
θm

)
d4 =

4 ∈
Pr

(∑
θ
′

m

)
+ 3

(∑
fm

)
, d5 = −

(∑
f

′

m

)

d6 =
−2

Pr

∑
θ
′′

m − 2 ∈
Pr

(∑
θm

)(∑
θ
′′

m

)
− 2 ∈

Pr

(∑
θ
′

m

)2
−3
(∑

fm

)(∑
θ
′

m

)
+
(∑

f
′

m

)(∑
θm

)
As explained in Chapter 2, applying Chebyshev pseudo spectral method on the system of

linearized equations (3.16) - (3.17) and (3.18) - (3.19), we get the following equation in the

matrix form

Ai−1Xi = Ri−1 (3.22)

whereAi−1 is a square matrix of order 2N +2 and Xi and Ri−1 are column matrices of order
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2N + 2 given by

Ai−1 =

(
A

(i)
11 A

(i)
12

A
(i)
21 A

(i)
22

)
, Xi =

(
Fi

Θi

)
, Ri−1 =

(
r
(i)
1

r
(i)
2

)
(3.23)

where

A
(1)
11 = a1D

3 + a2D
2 + a3I, A

(1)
12 = a4D + a5I

A
(1)
21 = b1I, A

(1)
22 = b2D

2 + b3D + b4I

r
(1)
1 = [a6(ξ0), a6(ξ1), ..., a6(ξN−1), a6(ξN)]

T

r
(1)
2 = [b5(ξ0), b5(ξ1), ..., b5(ξN−1), b5(ξN)]

T ,

A
(2)
11 = c1D

3 + c2D
2 + c3I, A

(2)
12 = c4D + c5I

A
(2)
21 = d1D + d2I, A

(2)
22 = d3D

2 + d4D + d5I

r
(1)
2 = [c6(ξ0), c6(ξ1), ..., c6(ξN−1), c6(ξN)]

T

r
(2)
2 = [d6(ξ0), d6(ξ1), ..., d6(ξN−1), d6(ξN)]

T

where the superscript T stands for transpose, I is the identity O is the zero matrix. Finally,

the solution is given by

Xi = A−1
i−1Ri−1

3.4 Results and Discussion

The variation of the velocity component, temperature, coefficient of skin friction, and heat

transfer rate with the viscosity parameter A is presented in Fig. 3.1 for type – I boundary

conditions. It is noticed from Fig. 3.1(a) that the velocity increases near the cone, reaches

its maximum value and then decreases gradually to zero as η → ∞. Further, it is apparent

that for inreasing values of A, the velocity diminishes near the cone and enhances away from

the cone. There is a slight decrease in the temperature with an increase in A as shown in

Fig. 3.1(b). As revealed in Fig. 3.1(c), increasing A increases the skin friction coefficient.

The rate of heat transfer decreases as A increases as depicted in the Fig. 3.1(d).

The impact of viscosity parameter ∈ on the velocity component, temperature, coefficient of

skin friction, and heat transfer rate is depicted in Fig. 3.2 for type – I boundary conditions.

The effect of ∈ on the velocity is almost negligible as shown in Fig. 3.2(a). The temperature
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increases slightly for an increase in ∈ as displayed in Fig. 3.2(b). It is shown in Fig. 3.2(c)

that increasing ∈ decreases the skin friction coefficient. The rate of heat transfer decreases

as ∈ increases as presented in the Fig. 3.2(d).

Figure 3.3 depicts the influence of viscosity parameter A on f ′, θ, Cf and Nu for type –

II boundary conditions. From Fig. 3.3(a) it is observed that for increasing values of A,

the velocity increases slightly adjacent to the cone and decreases away from the cone. The

influence of ∈ on the temperature is almost negligible as shown in Fig. 3.2(b). It is noticed

from Fig. 3.3(c) that increasing A increases the skin friction coefficient. The rate of heat

transfer increases a little as A increases as presented in the Fig. 3.3(d).

The consequence of viscosity parameter ∈ on f ′, θ, Cf and Nu is portrayed in Fig. 3.4 for

type – II boundary conditions. It is detected from Fig. 3.4(a) that increasing values of ∈,
the velocity increases slightly. The temperature increases for an increase in ∈ as portrayed

in Fig. 3.4(b). It is known from Fig. 3.4(c) that increasing ∈ decreases the skin friction

coefficient. The rate of heat transfer decreases as ∈ increases as presented in Fig.3.4(d).

3.5 Conclusion

The boundary layer flow across a vertical cone is investigated by presuming the temperature

dependent viscosity and thermal conductivity. Similarity transformed are utilized to reduce

the equations governing the flow into ordinary differential equations. The non-dimensional

equations are linearized using successive linearization procedure and then the resulting sys-

tem is solved using Chebyshev spectral method.

• There is a slight decrease in the temperature, increase in the skin friction coefficient

and decrease in the rate of heat transfer as A increase for CWT boundary conditions.

• The effect of ∈ on the velocity is almost negligible but increases the temperature, and

decreases the skin friction coefficient and the rate of heat transfer for CWT boundary

conditions

• For increasing values of A, the velocity increases slightly, increases the skin friction

coefficient rate of heat transfer for CHF case.

• An increase in the values of ∈, increases the velocity, temperature and decreases the

skin friction coefficient and the rate of heat transfer for CHF case.
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Figure 3.1: “Effect of A on the Velocity, Temperature, skin friction coefficient and Nusselt
number for CHF boundary conditions”.
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Figure 3.2: “Effect of ∈ on the Velocity, Temperature, skin friction coefficient and Nusselt
number for CHF boundary conditions”.
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Figure 3.3: “Effect of A on the Velocity, Temperature, skin friction coefficient and Nusselt
number for CWT boundary conditions”.
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Figure 3.4: “Effect of ∈ on the Velocity, Temperature, skin friction coefficient and Nusselt
number for CWT boundary conditions”.
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Chapter 4

Combined influence of Cross Diffusion

and Variable Fluid Properties on The

Free Convective Flow Past a Vertical

Cone 1

4.1 Introduction

The Dufour effect refers to the energy flux caused by a concentration gradient. Temperature

gradients, on the other hand, can generate mass fluxes, which embodies the Soret effect.

A considerable amount of research on Newtonian and non-Newtonian fluid flows in various

geometries has been published in the literature, with a focus on the Soret and Dufour effects.

Oyem et al. [61] examined the consequences of the impact of cross-diffusion on the Blasius

and Sakiadis flows. Ghoneim et al. [21] explored the Soret and Dufour effects along with

interaction of thermal radiation and variable diffusivity through vertical cone. Meena et al.

[49] examined the influence of Soret and Dufour effects on mixed convection flow across a

vertical cone with injection/suction.

In this chapter, the free convective flow of an incompressible viscous fluid over an isother-

mal vertical cone with variable viscosity and variable thermal conductivity is examined in

the presence of the Soret and Dufour effects. As thermal and solutal boundary conditions at

the surface of the cone, the constant temperature and concentration (WTC) and constant

1Accepted for publication in “Heat Transfer”,
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heat and mass flux (HMF) cases are taken into account. The successive linearization method

is applied to linearize a system of nonlinear differential equations that describes the flow un-

der investigation. The numerical solution for the resulting linear equations is attained by

means of the Chebyshev spectral method. The obtained numerical results are compared and

found to be in good agreement with previously published results. The impact of significant

parameters on the heat and mass transfer rates is evaluated and presented graphically for

the WTC and HMF situations

4.2 Mathematical Formulation

Consider an an incompressible, laminar and steady flow of viscous fluid along a vertical

down-pointing cone with local radius r and half-angle ϕ under steady state and laminar flow

conditions. The coordinate system and physical model are as depicted in Fig. (2.1). In

addition to the assumptions made in the previous chapters, thermo diffusion and diffusion

thermo effects are incorporated in the flow. The ambient temperature and concentration are

T∞ and C∞, respectively.

Applying Boussinesq approximation and utilizing the boundary layer concepts, the equa-

tions describing the flow are [33].

∂

∂x
(ur) +

∂

∂y
(vr) = 0 (4.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
+ ρgβ cosϕ ((T − T∞) + (C − C∞)) (4.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α
∂T

∂y

)
+
DsKT

CSCP

∂2c

∂y2
(4.3)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y
(Ds

∂C

∂y
) +

DsKT

Tm

∂2T

∂y2
(4.4)

where βT and βC denote the coefficient of thermal and solutal expansions, Cp denotes the

specific heat Ds is the diffusivity of the solute, Cs denotes the concentration susceptibility,

KT thermal diffusion ratio and Tm is the mean fluid temperature. The remaining quantities

are already defined in the previous chapters.

The viscosity and thermal conductivity are considered to be a linear function of the
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temperature [5] and are given by

µ = µ∞[1 + λ(T∞ − T ) and k = k0[1 + γ(T − T∞)], (4.5)

where µ∞ and, k0 represents the absolute viscosity and the thermal conductivity of the fluid,

respectively, and λ, γ are constants.

The velocity boundary conditions are no slip condition and zero velocity in the ambient

medium i.e.

“u = 0, v = 0, at y = 0 u→ 0 as y → ∞′′ (4.6)

In addition, for the temperature and concentration on the cone surface, one can either

have constant temperature Tw and constant wall concentration Cw (WTC) or a constant

heat flux qw and constant mass flux qm (HMF). Thus, the temperature and concentration

conditions at the boundary are written as

Case-I (WTC) : T = Tw, C = Cw at y = 0.

Case-II (HMF) : −k∂T
∂y

= qw, −Ds
∂C

∂y
= qm at y = 0.

(4.7)

Far-off from the cone, the following conditions are considered.

T → T∞, C → C∞ as y → ∞ (4.8)

The similarity transformations for WTC case are given by

ξ =
x

L
, η =

y

L

(
Gr

ξ

) 1
4

, ψ = rνGr
1
4 ξ

3
4f(η), θ(η) =

T − T∞
Tw − T∞

, ϕ(η) =
C − C∞

Cw − C∞
.

(4.9)

where Gr =
L3gβ cosϕ(Tw − T∞)

ν2
represents the thermal Grashof number and L is the

characteristic length.

Utilizing equation (4.9) in the equations (4.2) to (4.4), we get the non-dimensional equa-

tions as

(1 + A)f
′′′ − Aθf

′′′ − Aθ
′
f

′′
+

7

4
ff

′′ − 1

2
f ′2 + θ +Bϕ = 0 (4.10)

1

Pr
θ
′′
+

∈
Pr

(θθ
′′
) +

∈
Pr

(θ
′
)
2
+Dfϕ

′′
+

7

4
fθ

′
= 0 (4.11)
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1

Sc
ϕ

′′
+ Srθ

′′
+

7

4
fϕ

′
= 0 (4.12)

where Pr =
ν

α0

denotes the Prandtl number, B =
βc(Cw − C∞)

βT (Tw − T∞)
denotes the Buoyancy ra-

tio, Df =
DSKT (Cw − C∞)

CsCpν(Tw − T∞)
denotes the Dufour number, Sr =

DSKT (Tw − T∞)

Tmν(Cw − C∞)
denotes the

Soret number, and Sc =
ν

Ds

denotes the Schmidt number.

The similarity transformations for HMF case are given by

ξ =
x

L
, η =

y

L

(
Gr

ξ

) 1
5

, ψ = rνGr
1
5 ξ

4
5f(η), (4.13)

T = T∞ +
qwL

k
Gr−

1
5 ξ

1
5 θ, C = C∞ +

qwk

L
Gr−

1
5 ξ

1
5ϕ

where Gr =
L3gβ cosϕ(Tw − T∞)

υ2 is the thermal Grashof number. Utilizing the (4.13) in the

equations (4.2) to (4.4), we obtain

(1 + A)f
′′′ − Aθf

′′′ − Aθ
′
f

′′
+

9

5
ff

′′ − 3

5
f

′2
+ θ + ϕ = 0 (4.14)

1

Pr
θ
′′
+

∈
Pr
θθ

′′
+

∈
Pr
θ
′2 − 1

5
f

′
θ +

9

5
fθ

′
+Dfϕ

′′
= 0 (4.15)

1

Sc
ϕ

′′
+ Srθ

′′ − 1

5
f

′
θ +

9

5
fϕ

′
= 0 (4.16)

B =
βck0qm
βTDsqw

denotes the Buoyancy ratio, Df =
DSKT qmk0
CsCpνqw

denotes the Dufour number,

Sr =
DSKT qwDs

Tmνqmk0
denotes the Soret number,

The dimensionless form of Equation (4.7) and (4.8) are

“f(0) = f ′(0) = 0, θ(0) = ϕ(0) = 1, f ′(∞) = θ(∞) = ϕ(∞) = 0′′ for WTC case. (4.17)

“f(0) = f ′(0) = 0, θ′(0) = ϕ′(0) = −1, f ′(∞) = θ(∞) = ϕ(∞) = 0′′ for HMF case. (4.18)

The most fundamental technical findings are the local skin-friction coefficient and rate of

heat and transfers. The dimensionless representation of skin-friction coefficient Cf , Nusselt

number (Nu), and Sherwood number (Sh) for WTC case are

G
− 3

4
r ξ−

3
4CI

f = f
′′
(0), G

− 1
4

r ξ
1
4NuI = −θ′

(0) and G
− 1

4
r ξ

1
4ShI = −ϕ′

(0) (4.19)
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and for CHF boundary conditions are

G
− 3

5
r ξ−

2
5CII

f = f
′′
(0), G

− 1
5

r ξ−
4
5NuII =

1

θ(0)
and G

− 1
5

r ξ−
4
5ShII =

1

ϕ(0)
(4.20)

4.3 Methodology

The set of differential equations (4.10) - (4.12) and (4.14) - (4.16) are linearized by means

of a successive linearization method (SLM) [55]. The solutions of the resulting linearized

equations are attained by employing the Chebyshev spectral method [7].

On applying the procedure explained in Chapter 2 to the Eqs. (4.10) - (4.12) and Eqs.

(4.14) - (4.16) , we get the following linearized equations.

a1
(n)f

′′′

i + a2
(n)f

′′

i + a3
(n)f

′

i + a4
(n)fi + a5

(n)θ
′

i + a6
(n)θi + a7

(n)ϕi = a8
(n) (4.21)

b1
(n)fi

′
+ b2

(n)fi + b3
(n)θi

′′
+ b4

(n)θi
′
+ b5

(n)θi + b6
(n)ϕ

′′

i = b7
(n) (4.22)

C1
(n)fi

′
+ C2

(n)fi + C3
(n)θ

′′

i + C4
(n)ϕ

′′

i + C5
(n)ϕ

′

i + C6
(n)ϕi = c7

(n) (4.23)

where n=1 corresponds to WTC boundary conditions and n=2 corresponds to HMF bound-

ary conditions. The coefficients in the above equations are given by

a1
(1) = a1

(2) = (1 + A)− A(
∑

θm), a2
(1) =

7

4

∑
fm − A

i−1∑
m=

θm
′
,

a
(2)
2 =

9

5

∑
fm − A

∑
θ
′

m a3
(1) = −

∑
fm

′
, a3

(2) =
−6

5

∑
f

′

m,

a4
(1) = 7/4

∑
f

′′

m, a4
(2) = 7/4

∑
f

′′

m. a5
(1) = a5

(2) = −A
∑

fm
′′
,

a6
(1) = a6

(2) = 1− A(
∑

fm
′′
), a7

(1) = a7
(2) = B

a8
(1) =

(
−(1 + A) + A

∑
θm

)
f

′′′

m +

(
A
∑

θ
′

m − 7

4

∑
fm

)
f

′′

m

+
1

2

(∑
f

′

m

)2
−
∑

θm −B
∑

ϕm,

a8
(2) =

(
−(1 + A) + A

∑
θm

)
f

′′′

m +

(
A
∑

θ
′

m − 9

5

∑
fm

)
f

′′

m

+
3

5

(∑
f

′

m

)2
−
∑

θm −B
∑

ϕm
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b1
(1) =

7

4

∑
θ
′

m, b1
(2) = −1

5

∑
θm, b2

(1) =
1

Pr
+

∈
Pr

∑
θm, b2

(2) =
9

5

∑
θ
′

m,

b3
(1) =

2 ∈
Pr

∑
θ
′

m +
7

4

∑
fm, b3

(2) =
1

Pr
+

∈
Pr

∑
θm, b4

(1) =
∈
Pr

∑
θ
′

m, b5
(1) = Df ,

b4
(2) =

9

5

∑
fm +

2 ∈
Pr

∑
θ
′

m, b5
(2) =

∈
Pr

∑
θ
′′

m − 1

5

∑
f

′

m b6
(1) = 0, b6

(2) = Df

b7
(1) =

(
− 1

Pr
− ∈

Pr
(
∑

θm)

)∑
θm

′′ − ∈
Pr

(∑
θ
′

m

)2
− 7

4

(∑
fm

)(∑
θ
′

m

)
−Df

∑
ϕ

′′

m,

b7
(2) = −

(
1

Pr
+

∈
Pr

∑
θm

)∑
θ
′′

m − ∈
Pr

∑
θ
′2

m +
1

5

∑
f

′

m

∑
θm − 9

5

∑
fm
∑

θ
′

m

−Df

∑
ϕ

′′

m

c1
(1) =

7

4

∑
ϕ

′

m, c1
(2) = −1

5

∑
ϕm, c2

(1) = Sr, c2
(2) =

9

5

∑
ϕ

′

m, c3
(1) =

1

Sc
, c3

(2) = Sr,

c4
(1) =

7

4

∑
fmc4

(2) =
1

Sc
, , c5

(1) = 0, c5
(2) =

9

5

∑
fm, c6

(1) = 0,

c6
(2) = −1

5

∑
f

′

m, c7
(1) = − 1

Sc

∑
ϕ

′′

m − Sr
∑

θ
′′

m − 7

4

∑
fm
∑

ϕ
′

m

c7
(2) = − 1

Sc

∑
ϕ

′′

m − Sr
∑

θ
′′

m +
1

5

∑
f

′

m

∑
ϕm − 9

5

∑
fm
∑

ϕ
′

m

The conditions (4.17) and (4.18) changes to

fi(0) = fi
′
(0) = fi

′
(∞) = θi(∞) = ϕi(∞) = 0, θi(0) = ϕi(0) = 1 (4.24)

fi(0) = fi
′
(0) = fi

′
(∞) = θi(∞) = ϕi(∞) = 0, θ

′
i(0) = ϕ

′

i(0) = −1 (4.25)

As explained in Chapter 2, applying Chebyshev pseudo spectral method on the system of

linearized equations (4.21) to (4.23), we get the following equation in the matrix form

Ai−1Xi = Ri−1 (4.26)

where Ai−1 is a square matrix of order 3N +3 and Xi and Ri−1 are column matrices of order

3N + 3 given by

Ai−1 =

A
(i)
11 A

(i)
12 A

(i)
13

A
(i)
21 A

(i)
22 A

(i)
23

A
(i)
31 A

(i)
32 A

(i)
33

 , Xi =

Fi

Θi

Φi

 , Ri =

r
(i)
1

r
(i)
2

r
(i)
3

 (4.27)
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where

Fi = [fi(ζ0), fi(ζ1), ...., fi(ζN−1), fi(ζN)]
T ,

Θi = [θi(ζ0), θi(ζ1), .., θi(ζN−1), θi(ζN)]
T ,

Φi = [ϕi(ζ0), ϕi(ζ1), ...ϕi(ζN−1), ϕi(ζN)]
T ,

A
(1)
11 = a1

(1)D3 + a2
(1)D2 + a3

(1)D + a4
(1)I, A

(1)
12 = a5

(1)D + a6
(1)I, A

(1)
13 = a7

(1)I

A
(1)
21 = b1

(1)I, A
(1)
22 = b2

(1)D2 + b3
(1)D + b4

(1)I, A
(1)
23 = b5

(1)D2

A
(1)
31 = c1

(1)I, A
(1)
32 = c2

(1)D2, A
(1)
33 = c3

(1)D2 + c4
(1)D

A
(2)
11 = a1

(2)D3 + a2
(2)D2 + a3

(2)D + a4
(2)I, A

(2)
12 = a5

(2)D + a6
(2)I, A

(2)
13 = a7

(2)I

A
(2)
21 = b1

(2)D + b2
(2)I, A

(2)
22 = b3

(2)D2 + b4
(2)D + b5

(2)I, A
(2)
23 = b6

(2)D2

A
(2)
31 = c1

(2)D + c2
(2)I, A

(2)
32 = c3

(2)D2, A
(2)
33 = c4

(2)D2 + c5
(2)D + c6

(2)I

r
(n)
1 =

[
a8

(n)(ζ0), a8
(n)(ζ1), ..., a8

(n)(ζN−1), a8
(n)(ζN)

]T
r(2)n = [b7(ζ0), b7(ζ1), ..., b7(ζN−1), b7(ζN)]

T

r
(n)
3 = [c7(ζ0), c7(ζ1), ..., c7(ζN−1), c7(ζN)]

T

Where the superscript T stands for transpose, I is the identity O is the zero matrix.

Finally, the solution is given by

Xi = A−1
i−1Ri−1

4.4 Results and Discussion

The current model is basically focused on determining the impact of the four dimensionless

parameters: viscosity parameter A, thermal conductivity parameter ϵ, Soret parameter Sr,

Dufour parameter Df on the local Nusselt Number Nu, the coefficient of local skin friction

Cf , and Sherwood number Sh for WTC and HMF cases. To ensure a better understanding

of the scientific problem, a thorough numerical parametric evaluation is carried out, and

the findings are exhibited graphically (Figs. (2) – (9)). Numerical computations have been

performed for diverse values of A, ϵ, Df , and Sr. In all the calculations, the values of Pr,

B, and Scwere fixed as 2.0, 4.0 and 1.0, respectively, unless otherwise specified.
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To confirm the correctness of the method, the code developed is verified by comparing

our computational results of −θ(0) for WTC case and θ(0) for HMF case with the published

results of Na and Chiou [58] for diverse values of Prandtl number Pr by ignoring the pa-

rameters A, ∈, Df , Sr and B. The computed results are presented in Table 4.1 and the

comparisons are found to be in very good agreement.

Table 4.1: Comparative analysis for the values of −θ(0) for WTC case and θ(0) for HMF
case by the present method for A = 0, ∈= 0, Df = 0, Sr = 0 and B = 0 with the results of
Na and Chiou [58]

−θ(0) for WTC case θ(0) for HMF case
Pr Na and Chiou [58] Present Na and Chiou [58] Present
0.01 0.07493 0.7492765 - -
0.1 - - 3.2781 3.2780756
0.70 0.45101 0.4510092 - -
1.0 0.51039 0.5103894 1.6329 1.6327658
10.0 1.03397 1.0339685 0.9336 0.9335867
100.0 1.92197 1.9219665 0.5738 0.5738012

The impact of viscosity parameter A on the coefficient of skin friction, heat transfer rate,

and the mass transfer rate is portrayed in Fig. 4.1 for WTC boundary conditions. As shown

in Fig.4.1(a), increase in A enhances the skin friction coefficient. As A rises, the rate of

heat and mass transfer decreases, as seen in Figs.4.1(b) and 4.1(c). This is due to due to

the fact that increasing viscosity parameter increases the velocity and its gradient which,

in turn, increases the viscous dissipation and then increases the temperature, which reduces

the temperature difference.

The variation of coefficient of skin friction, Nusselt number, and Sherwood number with

the thermal conductivity parameter ∈ is given in the Fig. 4.2 for WTC boundary condi-

tions. It is understood from Fig. 4.2(a) that the coefficient of skin friction improves as the

variable thermal conductivity parameter rises. The rate of heat transfer is reducing with

an enhancement in ∈ as depicted in Fig. 4.2(b) From Fig. 4.2(c) it is perceived that the

Sherwood number is rising for increasing values of ∈.

The influence of Soret number Sr on the coefficient of skin friction, Nusselt number, and

Sherwood number is given in the Fig. 4.3 for WTC boundary conditions. According to Fig.

4.3(a) enhancing the value of the Soret number enhances the coefficient of skin friction. As

the value of Sr rises, so does the amount of heat transfer as displayed in Fig. 4.3(b). Fig.

4.3(c) reveals that the Sherwood number is lessening an Sr increases. Soret number is the
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ratio of a temperature difference to the concentration. Hence, the increase in Soret number

stands for an increase in the temperature difference and precipitous gradient.

The variation of skin friction coefficient, heat and mass transfer rate against the Dufour

parameter Df is shown in the Fig. 4.4 for WTC boundary conditions. The coefficient of

skin friction rises as the Dufour parameter value is increased, as shown in Fig. 4.4(a) The

heat transfer rate is reducing with a rise in Df as portrayed in Fig. 4.4(b). According to

Fig. 4.4(c), the Sherwood numbers appear to be increasing for growing Df values. The

Dufour number signifies the influence of the solutal gradients to the thermal energy flux in

the flow. Hence, an enhance in the Dufour number results in an increase in the temperature

and a drop in the concentrations

The consequence of viscosity parameter A on the coefficient of skin friction, Nusselt

number and Sherwood number is depicted in Fig.4.5for HMF boundary conditions. As

presented in Fig. 4.5(a), intensifying A increases the skin friction coefficient. The heat

transfer rate and Sherwood numbers are increasing initially and then decreasing with an

escalation in the variable viscosity parameter A as given in the Figs. 4.5(b) and 4.5(c).

The influence of ∈ on the skin friction coefficient, Nusselt number and Sherwood number

is depicted in Fig.4.6 for HMF boundary conditions. According to Fig. 4.6(a), the coefficient

of skin friction intensifies as the value of the thermal conductivity parameter rises. The heat

transfer rate is decreasing with a rise ∈ as indicated in Fig. 4.6(b). Fig. 4.6(c) discloses that

the Sherwood number is enhancing for enhancing values of ϵ.

The variation of skin friction coefficient, Nusselt number and Sherwood number with the

Soret number Sr is displayed in the Fig. 4.7 for HMF boundary conditions. Fig. 4.7(a) shows

that the coefficient of skin friction is rising with a rise in the value of the Soret parameter.

As Sr is enhancing, the heat transfer is also enhancing as displayed in the Fig. 4.7(b). Fig.

4.7(c) explains that the Sherwood number is diminishing as the values of Sr increase.

The deviation of coefficient of skin friction with the Dufour number parameter Df is

presented in Fig. 4.8 for HMF boundary conditions. Fig. 4.8(a) exhibits that the coefficient

of skin friction is increasing with an increase in the value of the Dufour parameter. The

rate of heat transfer is diminishing with a rise in Df as portrayed in Fig. 4.8(b). From Fig.

4.8(c), it is detected that the Sherwood number is increasing for enhancing values of Df .
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4.5 Conclusion

The free convection flow across a vertical cone is investigated by presuming the viscosity

and thermal conductivity varies with temperature in the manifestation of Soret and Du-

four effects. Similarity conversions are utilized to reduce the equations describing the flow

into ordinary differential equations. The non-dimensional equations linearized using succes-

sive linearization procedure and then the solution of the consequent system is found using

Chebyshev spectral method.

• The skin friction coefficient increases for both WTC and HMF conditions. The rate

of heat and mass transfer decrease with increasing the viscosity parameter for WTC

conditions. The heat and mass transfer rate increase initially and then decrease with

an increase in the variable viscosity parameter.

• For both the conditions, the coefficient of skin friction and mass transfer improves and

rate of heat transfer reduce with the variable thermal conductivity parameter increases.

• An enhancement in Soret number enhances the coefficient of skin friction and rate of

heat transfer but reduces the Sherwood number for both WTC and HMF cases.

• The coefficient of skin friction and Sherwood numbers rise whereas the heat transfer

rate is reducing as the Dufour parameter increase.
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Figure 4.1: “Effect of A on the skin friction coefficient, Nusselt number and Sherwood number
for WTC boundary conditions”.
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Figure 4.2: “Effect of ∈ on the skin friction coefficient, Nusselt number and Sherwood number
for WTC boundary conditions”.
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Figure 4.3: “Effect of Sr on the skin friction coefficient, Nusselt number and Sherwood
number for WTC boundary conditions”.

54



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.50

1.55

1.60

1.65

1.70

f''
(0

)

Pr

 Df = 0.1
 Df = 0.2
 Df = 0.5
 Df = 0.6
 Df = 0.8

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.15

0.20

0.25

0.30

0.35


'(
0
)

Pr

 Df = 0.1
 Df = 0.2
 Df = 0.5
 Df = 0.6
 Df = 0.8

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.48

0.50

0.52

0.54

0.56

0.58

-
'(
0
)

Pr

 Df = 0.1
 Df = 0.2
 Df = 0.5
 Df = 0.6
 Df = 0.8

(c)

Figure 4.4: “Effect of Df on the skin friction coefficient, Nusselt number and Sherwood
number for WTC boundary conditions”.

55



1.0 1.5 2.0 2.5 3.0 3.5 4.0
2

4

6

8

10

12

14

16

18

f''
(0

)

Pr

 A = 1.0
 A = 1.5
 A = 2.0
 A = 4.0

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.8

0.9

1.0

1.1

1.2

1.3

1
/ 

(0
)

Pr

 A = 1.0
 A = 1.5
 A = 2.0
 A = 4.0

(b)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

1
/

(0
)

Pr

 A = 1.0
 A = 1.5
 A = 2.0
 A = 4.0

(c)

Figure 4.5: “Effect of A on the skin friction coefficient, Nusselt number and Sherwood number
for WTC boundary conditions”.
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Figure 4.6: “Effect of ∈ on the skin friction coefficient, Nusselt number and Sherwood number
for WTC boundary conditions”.
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Figure 4.7: “Effect of Sr on the skin friction coefficient, Nusselt number and Sherwood
number for WTC boundary conditions”.
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Figure 4.8: “Effect of Df on the skin friction coefficient, Nusselt number and Sherwood
number for WTC boundary conditions”.
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Chapter 5

Influence of Variable Fluid Properties

on The Boundary Layer Flow Past a

Vertical Cone With Soret and Dufour

Effects 1

5.1 Introduction

The flow over a vertical cone has fascinated much importance on account of its vast appli-

cation in engineering and industrial processes. For example, the cone penetration test is

a standard quality control procedure for measuring the rheological properties of soils, soft

solids found in food, and personal care products. Several authors developed similarity solu-

tions for the steady flow across a vertical cone. Dufour effect is the energy flux caused by a

concentration gradient. The Soret effect is the mass fluxe created by temperature gradient.

Due to the importance of Dufour and Soret effects for the fluids with very light molecular

weight as well as medium molecular weight, many investigators [93], [79], et al. [63], Ghoneim

et al. [21], Meena et al. [49] have studied and reported results for these flows.

The current chapter emphasizes the study of a viscous incompressible boundary layer flow

along a vertical cone with changeable viscosity and thermal conductivity in the existence

of Dufour and Soret effects. The pseudo-spectral approach is implemented to solve the

governing equations after they have been linearized by employing the successive linearization

1Published to “Journal of Xidian University”
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method. The impacts of various flow and geometry factors on the skin friction coefficient as

well as the rate of heat and mass transfer, are thoroughly examined.

5.2 Mathematical Formulation

Consider an incompressible boundary layer flow of viscous fluid along a vertical down-

pointing cone with local radius r and half-angle ϕ under steady state and laminar flow

conditions. The coordinate system and physical model are as depicted in Fig. (2.1). Apart

from the assumptions made in Chapter - 4, here we assume that the ambient velocity of the

fluid is U∞ and no Boussinesq approximation is used. The ambient temperature and con-

centration are T∞ and C∞, respectively. Applying Boussinesq approximation and utilizing

the boundary layer assumptions, the equations describing the flow are.

∂

∂x
(ur) +

∂

∂y
(vr) = 0 (5.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
(5.2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α
∂T

∂y

)
+
DsKT

CSCP

∂2c

∂y2
(5.3)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y
(Ds

∂C

∂y
) +

DsKT

Tm

∂2T

∂y2
(5.4)

The viscosity and thermal conductivity are considered to be a linear function of the

temperature [5] and are given by

µ = µ∞[1 + λ(T∞ − T ) and k = k0[1 + γ(T − T∞)], (5.5)

where µ∞ and,k0 represent the absolute viscosity and the thermal conductivity of the fluid,

respectively, λ and γ are constants.

The boundary conditions for the velocity are no slip condition and uniform velocity in

the ambient medium i.e.

u = 0, v = 0, at y = 0 u→ U∞ as y → ∞ (5.6)

As in the chapter- 4, here also we consider two types of boundary conditions for the
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temperature.

Case-I (WTC) : T = Tw, C = Cw at y = 0.

Case-II (HMF) : −k∂T
∂y

= qw, −Ds
∂C

∂y
= qm at y = 0.

(5.7)

Far away from the cone, the following conditions are considered.

T → T∞, C → C∞ as y → ∞ (5.8)

In the context of equation (5.1), the stream function is introduced as u =
1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x

The similarity transformations for WTC case are given by

ξ =
x

L
, η =

y

L

(
Re

ξ

) 1
2

, ψ = rLU∞Re−
1
2 ξ

1
2f(η),

T = T∞ + (Tw − T∞)θ, C = C∞ + (Cw − C∞)ϕ,

 (5.9)

where Re =
ρU∞L

µ∞
represents the Reynolds number and L is the characteristic length.

Utilizing Equation (5.9) in the Equation (5.2),(5.3) and (5.4) we get the non-dimensional

equations as

(1 + A)f
′′′ − Aθf

′′′ − Aθ
′
f

′′
+

3

2
ff

′′
= 0 (5.10)

1

Pr
θ
′′
+

1

Pr
∈ θθ

′′
+

1

Pr
∈ (θ

′
)
2
+

3

2
fθ

′
+Dfϕ

′′
= 0 (5.11)

Srθ
′′
+

1

Sc
ϕ

′′
+

3

2
fϕ

′
= 0 (5.12)

The similarity transformations for HMF case are given by

ξ =
x

L
, η =

y

L

(
Re

ξ

) 1
2

, ψ = rLU∞Re−
1
2 ξ

1
2f(η),

T = T∞ +
qwL

k
Re−

1
2 ξ

1
2 C = C∞ +

qwL

k
Re−

1
2 ξ

1
2ϕ

 (5.13)
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Utilizing the (5.13) in the Equations (5.2) to (5.4),we obtain

(1 + A)f
′′′ − Aθf

′′′ − Aθ
′
f

′′
+

3

2
ff

′′
= 0 (5.14)

2

Pr
θ
′′
+

2 ∈
Pr

θθ
′′
+

2 ∈
Pr

θ
′2
+ 3fθ

′ − f
′
θ +Dfϕ

′′
= 0 (5.15)

Srθ
′′
+

1

Sc
ϕ

′′ − 1

2
f

′
ϕ+

3

2
fϕ

′
(5.16)

The dimensionless form of boundary conditions (5.7) and (5.8) are

“f(0) = f ′(0) = 0, θ(0) = ϕ(0) = 1, f ′(∞) = 1, θ(∞) = ϕ(∞) = 0′′ for WTC case.

(5.17)

“f(0) = f ′(0) = 0, θ′(0) = ϕ′(0) = −1, f ′(∞) = 1, θ(∞) = ϕ(∞) = 0′′ for HMF case.

(5.18)

The most fundamental technical findings are the local skin-friction coefficient and rate of

heat and transfers. The dimensionless representation of skin-friction coefficient Cf , Nusselt

number (Nu), and Sherwood number(Sh) for WTC case are

Re−
1
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1
2CI
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′′
(0), Re−

1
2 ξ

1
2NuI = −θ′

(0) and Re−
1
2 ξ

1
2ShI = −ϕ′

(0) (5.19)

and for CHF boundary conditions are
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1
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1
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1
2 ξ−

1
2NuII =

1

θ(0)
and Re−

1
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1
2ShII =

1

ϕ(0)
(5.20)

5.3 Methodology

The set of differential equations (5.10) - (5.12) and (5.14) - (5.16) are linearized by means of

a successive linearization method (SLM). The solutions of the ensuing linearized equations

are attained by employing the Chebyshev spectral method.

On applying the procedure explained in Chapter 2 to the Eqs. (5.10) - (5.12) and Eqs.

(5.14) - (5.16) , we get the following linearized equations.

a1
(n)f

′′′

i + a2
(n)f

′′

i + a3
(n)fi + a4

(n)θ
′

i + a5
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′
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(n)θi + b6
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(n) (5.22)
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′
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where n=1 corresponds to WTC boundary conditions and n=2 corresponds to HMF bound-

ary conditions.The coefficients in the above equations are given by
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The equivalent conditions (5.17) and (5.18) changes to

fi(0) = fi
′
(0) = fi

′
(∞) = 1, θi(∞) = ϕi(∞) = 0, θi(0) = ϕi(0) = 1 (5.24)

fi(0) = fi
′
(0) = 0, fi

′
(∞) = 1, θi(∞) = ϕi(∞) = 0, θi(0) = ϕi(0) = 1 (5.25)

As explained in Chapter 2, applying Chebyshev pseudo spectral method on the system

of linearized equations (5.21),(5.22) and (5.23), we get the following equation in the matrix

form

Ai−1Xi = Ri−1 (5.26)
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whereAi−1 is a square matrix of order 3N +3 and Xi and Ri−1 are column matrices of order

3N + 3 given by
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A
(i)
11 A

(i)
12 A

(i)
13

A
(i)
21 A

(i)
22 A

(i)
23

A
(i)
31 A

(i)
32 A

(i)
33

 , Xi =

Fi

Θi

Φi

 , Ri =

r
(i)
1

r
(i)
2

r
(i)
3

 (5.27)

where
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T ,

Θi = [θi(ζ0), θi(ζ1), .., θi(ζN−1), θi(ζN)]
T ,
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T ,
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T

Where the superscript T stands for transpose, I is the identity O is the zero matrix.

Finally, the solution is given by

Xi = A−1
i−1Ri−1

5.4 Results and Discussion

The impact of the four dimensionless parameters, viscosity parameter A, thermal conduc-

tivity parameter ϵ, Soret parameter Sr, Dufour parameter Df on the local Nusselt Number
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Nu, the coefficient of local skin friction Cf , and Sherwood number Sh for WTC and HMF

cases is presented graphically. In all the calculations, the values of Pr,B, and Scwere fixed

as 2.0, 4.0and 1.0, respectively, unless otherwise specified.

The variation of the coefficient of skin friction, heat transfer rate, and the mass transfer

rate with the impact of viscosity parameter A is portrayed in Fig.5.1 for WTC boundary

conditions. It is observed from the Fig.5.1(a) that an increasing A increases the skin fric-

tion coefficient. As A rises, the rate of heat and mass transfer decreases, as presented in

Figs.5.1(b) and 5.1(c).

The influence of thermal conductivity parameter ∈ on the coefficient of skin friction,

Nusselt number, and Sherwood number is given in the Fig.5.2 for WTC boundary conditions.

It is revealed from Fig.5.2(a) that the coefficient of skin friction enhances as the variable

thermal conductivity parameter rises. An enhancement in ∈ leads to increase in the rate of

heat transfer as depicted in 5.2(b). From Fig.5.2(c) it is noted that the Sherwood number

is increasing for increasing values of ∈.

The consequence of Soret number Sr on Nu, Cf , and Sh is portrayed in Fig.5.3 for WTC

boundary conditions. From Fig.5.3(a) it is seen that decreasing the value of the Soret number

enhances the sherewood number. The rate of heat transfer increases with an increase in the

value of Sr as displayed in 5.3(b). Fig.5.3(c) reveals that the Sherwood number is increasing

as Sr increases.

The variation of skin friction coefficient, heat and mass transfer rate against the Dufour

parameter Df is shown in the Fig.5.4 for WTC boundary conditions. As shown in Fig.

5.4(a), the coefficient of skin friction decreases as the Dufour parameter increase. The heat

transfer rate is reducing with a rise in Df as portrayed in Fig.5.4(b). From Fig. 5.4(c), it is

noticed that the Sherwood numbers appear to be increasing for increasing Df values.

The influence of viscosity parameter A on Nu, Cf , and Sh is depicted in Fig.5.5 for

HMF boundary conditions. As shown in Fig. 5.5(a),5.5(c) intensifying A increases the

skin friction coefficient and sherewood number. The heat transfer rate is increasing initially

and then decreasing with an increase in the variable viscosity parameter A as given in the

Figs.5.5(b).

The effect of ∈ on the skin friction coefficient, Nusselt number and Sherwood number is

depicted in Fig.5.6 for HMF boundary conditions. According to Fig. 5.6(a), the coefficient

of skin friction increases as the value of the thermal conductivity parameter decreases. The

heat transfer rate is decreasing with a rise ∈ as indicated in 5.6(b). Fig.5.6(c) discloses that
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the Sherwood number is enhancing for enhancing values of ∈.

The variation of Nu, Cf , and Sh with the Soret number Sr is displayed in the Fig.5.7

for HMF boundary conditions. Fig.5.7(a) shows that the coefficient of skin friction and

heat transfer rate are decreasing with a rise in the value of the Soret parameter. As Sr

is enhancing, the heat transfer is also enhancing as displayed in the Fig.5.7(b). Fig.5.7(c)

explains that the Sherwood number is increases as the values of Sr increase.

The consequence of Nu, Cf , and Sh with the Dufour number parameter Df is presented

in Fig.5.8 for HMF boundary conditions. Fig.5.8(a) exhibits that the coefficient of skin

friction is decreasing with an increase in the value of the Dufour parameter. The rate of

heat transfer is diminishing with a rise in Df as portrayed in Fig.5.8(b) From Fig. 5.8(c) it

is detected that the Sherwood number is increasing for enhancing values of Df .

5.5 Conclusion

The boundary layer flow across a vertical cone is considered by assuming the variable viscosity

and variable thermal conductivity in the presence of Soret and Dufour effects. Similarity

conversions are utilized to reduce the equations describing the flow into ordinary differential

equations. The non-dimensional equations linearized using successive linearization procedure

and then the solution of the resulting system is found using Chebyshev spectral method.

• The heat transfer rate decrements with intensifying the viscosity and thermal con-

ductivity parameters for WTC conditions but the reverse tend is noticed for HMF

conditions.

• For WTC state, an improvement in viscosity and thermal conductivity infers to a rise

in the coefficient of the skin friction, whereas for HMF conditions, the opposite is the

case

• An enhancement in Soret number enhances the coefficient of skin friction and rate of

heat transfer but reduces the Sherwood number for both WTC and HMF cases.

• The coefficient of skin friction and Sherwood numbers rise whereas the heat transfer

rate is reducing as the Dufour parameter increase.
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Figure 5.1: “Effect of A on the skin friction coefficient, Nusselt number and Sherwood number
for WTC boundary conditions”.
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Figure 5.2: “Effect of ∈ on the skin friction coefficient, Nusselt number and Sherwood number
for WTC boundary conditions”.
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Figure 5.3: “Effect of Sr on the skin friction coefficient, Nusselt number and Sherwood
number for WTC boundary conditions”.
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Figure 5.4: “Effect of Df on the skin friction coefficient, Nusselt number and Sherwood
number for WTC boundary conditions”.
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Figure 5.5: “Effect of A on the skin friction coefficient, Nusselt number and Sherwood number
for HMF boundary conditions”.
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Figure 5.6: “Effect of ∈ on the skin friction coefficient, Nusselt number and Sherwood number
for HMF boundary conditions”.
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Figure 5.7: “Effect of Sr on the skin friction coefficient, Nusselt number and Sherwood
number for HMF boundary conditions”.
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Figure 5.8: “Effect of Df on the skin friction coefficient, Nusselt number and Sherwood
number for HMF boundary conditions”.
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Chapter 6

The Effect of Variable Viscosity and

Thermal Conductivity on the Free

Convection Flow Past a Rotating

Cone 1

6.1 Introduction

The convective boundary layer flow over a rotating cone is important for the model of innu-

merable engineering apparatus like heat swaps, discarding and geothermal basins, containers

for fissionable trash, rotating heat exchangers, rotating cone reactors for bio-fuels produc-

tion, gas or marine turbine, are extensively utilized by the energy, automobile and chemical

industries. Earlier research of flow and heat transfer in rotating systems are given by Dorff-

man [16] and Kreith [31]. Since then, several researchers have been examining the convective

heat and mass transfer over a rotating cone under various physical conditions. Fildes et al.

[19] focused on analysing the effects of traveling modes on the boundary layer flow over a

rotating cone in a still fluid system. Hayat et al. [24] investigated the importance of mag-

netic field and chemical reaction in the mixed convective unsteady flow of viscous liquid over

a rotating cone. Ullah et al. [88] presented instability analyses for cones rotating within

magnetic field.

This chapter deals with the study of an incompressible viscous fluid flow and along over

1Communicated to “International Journal of Applied and Computational Mathematics”
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Figure 6.1: ““Geometry of the flow field.

a rotating cone with changeable viscosity and thermal conductivity. The pseudo-spectral

approach is used to solve the governing equations after they have been linearized using the

successive linearization method. This technique was efficaciously applied to solve the con-

vection heat and mass transfer problems. The impacts of various flow and geometry factors

on the velocity component, temperature, and heat transfer rate are thoroughly examined.

6.2 Mathematical Formulation

Consider the laminar viscous incompressible fluid flow over a cone rotating about its axis

with angular velocity Ω. We consider the cartesian rectangular coordinate system in which

x-axis is along a meridional section, y-axis is along a circular section and the z-axis is normal

to the cone surface. The coordinate system and the geometry of the problem is depicted in

Fig. (6.1). The local radius of the cone is r and semi-vertical angle of the cone is α. The

local radius at a point located and the radius of a cone can be guesstimated by r = (xsinϕ).

Let (u, v, w) be the velocity vector. The free stream temperature is T∞. The variations

in the temperature are responsible for the buoyancy forces in the fluid flow and the flow is

assumed to be axisymmetric.

Applying Boussinesq approximation and utilizing the boundary layer assumptions, the
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equations describing the flow are.

∂u

∂x
+
∂w

∂z
+
u

x
= 0 (6.1)

ρ
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+ ρgβ cosα(T − T∞) (6.2)

ρ
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∂z

(
µ
∂v
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(6.3)(

u
∂T

∂x
+ w

∂T

∂z

)
=

∂

∂z

(
α
∂T

∂z

)
(6.4)

where T represents the temperature of the fluid, g represents the gravitational acceleration,

µ represents the variable viscosity, ρ represents the fluid density, β represents the coefficient

of thermal expansion, Cp represents the specific heat and k represents the variable thermal

conductivity of the fluid.

The viscosity and thermal conductivity are considered to be a linear function of the

temperature [5] and are given by

µ = µ∞[1 + λ(T∞ − T ) and k = k0[1 + γ(T − T∞)], (6.5)

where µ∞ and,k0 represent the absolute viscosity and the thermal conductivity of the fluid,

respectively, λ and γ are constants.

The bounday conditions for the velocity are given as

u = 0 , v = rΩ w = 0 at z = 0 and u→ 0 v → 0 as z → ∞ (6.6)

In addition, for the temperature on the surface of the cone, one can either have constant

temperature Tw (CWT) or a constant heat flux qw (CHF).Thus, the conditions for the tem-

perature on the boundary conditions are written as

Type - I : T = Tw at z = 0 (6.7)

Type - II : k
∂T

∂z
= qw at z = 0 (6.8)

and far away from the cone, the temperature of the free stream is constant i.e. T → T∞ , as

z → ∞

In order to obtain non-dimensional equations,we introduce the following non-dimensional
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Transformations

η =

(
Ω sinα

ν

) 1
2

z, u =
1

2
xΩ sinαf ′(η),

v = xΩ sinαg(η), w = (νΩ sinα)
1
2 f(η),

T = T∞ + (Tw − T∞)θ(η), where Tw − T∞ = (TL − T∞)
x

L
for CWT case

T = T∞ +

(
Ω sinα

ν

) 1
2 qw
k
θ(η), where qw = q0

x

L
for CHF case



(6.9)

Applying the similarity transformations (6.9) in the Eqs. (6.1) to (6.4), we get the following

non-dimensional equations

(1 + A)f
′′′ − Aθf

′′′ − ff
′′
+

1

2
f

′2 − Aθ
′
f

′′ − 2g2 − 2λθ = 0 (6.10)

(1 + A)g
′′ − Aθg

′′ − Ag
′
θ
′
+ f

′
g − fg

′
= 0 (6.11)

1

Pr
θ
′′
+

1

Pr
∈ θθ

′′
+

∈
Pr
θ
′2
+

1

2
f

′
θ − fθ

′
= 0 (6.12)

where ReL =
L2Ω sinα

ν
is the Reynolds number, L is the typical length, Pr =

ν

α0

is the

Prandtl number, Gr1 =
L2gβ cosϕ(Tw − T∞)

ν2
is the Grashof number and λ =

Gr1
Re2L

for CWT

case, Gr2 =
L2gβ cosϕqw

ν2
is the Grashof number and λ =

Gr2
Re2L

for CHF case. Here λ is

the dimensionless buoyancy parameter, A is the viscosity parameter and ∈ is the thermal

conductivity parameter.

The dimensionless form of conditions on the boundary are

f(0) = f ′(0) = 0, g(0) = 1, θ(0) = 1, f ′(∞) = g(∞) = θ(∞) = 0 for CWT case.

(6.13)

f(0) = f ′(0) = 0, g(0) = 1, θ′(0) = −1, f ′(∞) = g(∞) = θ(∞) = 0 for CHF case.

(6.14)

The quantities of practical interests are the surface skin-friction coefficient in x- and y-

directions and local rate of heat-transfer in terms of Nusselt number. The non-dimensional

form of skin-friction coefficient Cfx and Cfy Nusselt number (Nu) for CWT boundary con-
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ditions are

Cfx = −Rex−
1
2f ′′(0), and Cfy = −Rex−

1
2 g′(0) (6.15)

The non-dimensional form of Nusselt number (Nu) is

NuI = θ′(0) for CWT case and NuII =
1

θ(0)
for CHF case (6.16)

6.3 Methodology

The set of differential equations (6.10) - (6.12) are linearized by means of a successive lin-

earization method (SLM) [55]. The solutions of the ensuing linearized equations are attained

by employing the Chebyshev spectral method [7].

On applying the procedure explained in Chapter 2 to the Eqs. (6.10) - (6.12), we get the

following linearized equations.

a1f
′′

i + a2f
′′

i + a3f
′

i + a4fi + a5gi + a6θ
′

i + a7θi = a8 (6.17)

b1f
′

i + b2fi + b3g
′′

i + b4g
′

i + b5gi + b6θ
′

i + b7θi = b8 (6.18)

c1f
′

i + c2fi + c3θ
′′

i + c4θ
′

i + c5θi = c6 (6.19)

where

a1 =
(
(1 + A)− A

∑
θm

)
, a2 =

(
−
∑

fm − A
∑

θ
′

m

)
,

a3 = −
∑

f
′

m, a4 = −
∑

f
′′

m, a5 = −4
∑

gm, a6 = −A
∑

f
′′

m,

a7 = −A
∑

f
′′′

m − 2λ

a8 =
(
A
∑

θm − (1 + A)
)∑

f
′′′

m +
(∑

fm + A
∑

θ
′

m

)∑
f

′′

m − 1

2

∑
f

′2

m

+2
∑

gm
2
+ 2λ

∑
θm

b1 =
∑

gm, b2 = −
∑

g
′

m, b3 =
(
(1 + A)− A

∑
θm

)
b4 = −A

∑
θ
′

m −
∑

fm, b5 =
∑

f
′

m, b6 = −A
∑

g
′

m, b7 = −A
∑

g
′′

m

b8 =
(
A
∑

θm − (1 + A)
)∑

g
′′

m + A
∑

g
′

m

∑
θ
′

m −
∑

f
′

m

∑
gm +

∑
fm
∑

g
′

m
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c1 =
1

2

∑
θm, c2 = −

∑
θ
′

m, c3 =
1

Pr
+

∈
Pr

∑
θm

c4 =
2 ∈
Pr

∑
θ
′

m −
∑

fm, c5 =
∈
Pr

∑
θ
′′

m +
1

2

∑
f

′

m

c6 =

(
− 1

Pr
− ∈
Pr

∑
θm

)∑
θ
′′

m − ∈
Pr

∑
θ
′2

m +
∑

fm
∑

θ
′

m − 1

2

∑
f

′

m

∑
θm

The conditions (6.13) and (6.14) changes to

fi(0) = f ′
i(0) = 0, gi(0) = 1, θi(0) = 1, f ′

i(∞) = gi(∞) = θi(∞) = 0 for CWT case.

(6.20)

f(0) = f ′
i(0) = 0, gi(0) = 1, θ′i(0) = −1, f ′

i(∞) = gi(∞) = θi(∞) = 0 for CHF case.

(6.21)

As explained in Chapter 2, applying Chebyshev pseudo spectral method on the system

of linearized equations (6.17),(6.18) and (6.19), we get the following equation in the matrix

form

Ai−1Xi = Ri−1 (6.22)

whereAi−1 is a square matrix of order 3N +3 and Xi and Ri−1 are column matrices of order

3N + 3 given by

Ai−1 =

A
(i)
11 A

(i)
12 A

(i)
13

A
(i)
21 A

(i)
22 A

(i)
23

A
(i)
31 A

(i)
32 A

(i)
33

 , Xi =

Fi

Gi

Θi

 , Ri =

r
(i)
1

r
(i)
2

r
(i)
3

 (6.23)

where

Fi = [fi(ζ0), fi(ζ1), ...., fi(ζN−1), fi(ζN)]
T ,

Gi = [gi(ξ0), gi(ξ1), .., gi(ξN−1), gi(ξN)]
T ,

Θi = [θi(ξ0), θi(ξ1), ...θi(ξN−1), θi(ξN)]
T ,

A
(1)
11 = a1D

3 + a2D
2 + a3D + a4I, A

(1)
12 = a5I, A

(1)
13 = a6D + a7I

A
(1)
21 = b1D + b2I, A

(1)
22 = b3D

2 + b4I, A
(1)
23 = b6D + b7I

A
(1)
31 = c1D + c2I, A

(1)
32 = 0, A

(1)
33 = c3D

2 + c4D + c5I

r
(1)
1 = [a8(ξ0), a8(ξ1), ..., a8(ξN−1), a8(ξN)]

T

r
(1)
2 = [b8(ξ0), b8(ξ1), ..., b8(ξN−1), b8(ξN)]

T
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r
(1)
3 = [c6(ξ0), c6(ξ1), ..., c6(ξN−1), c6(ξN)]

T

where the superscript T stands for transpose, I is the identity O is the zero matrix. Finally,

the solution is given by

Xi = A−1
i−1Ri−1

6.4 Results and Discussion

The variation of the velocity component f
′
, the circumferential velocity g and the tempera-

ture θ, local Nusselt Number Nu, and the local skin friction coefficients in the tangential and

azimuthal directions Cfx, Cfx for diverse values of viscosity parameter, buoyancy parame-

ter and thermal conductivity parameter for constant wall temperature and heat flux cases

depicted graphically.

The impact of viscosity parameter A on the velocity components, temperature, coefficient

of skin friction and heat transfer rate is depicted in Fig.6.2 for type - I boundary conditions.

It is detected that from Fig. 6.2(a) that the tangential velocity f is seen to be decreasing

towards the cone surface and subsequently increasing for an increase in A. Figure 6.2(b)

shows that with rising values of A, the circumferential velocity g increases away from the

cone surface. It is observed from 6.2(c) that there is a marginal rise in temperature with

higher values of A. The dimensionless tangential skin-friction (−f ′′(0)) and azimuthal skin-

friction(−g′(0)) grow as A increases as depicted in Figs. 6.2(d) and 6.2(e). The Nusselt

number (−θ′(0)), which is shown in Fig. 6.2(f), is rising together with the value of A .

The effect of thermal conductivity parameter ∈ on the velocity, temperature, coefficient of

skin frictions and heat transfer rate is depicted in Fig. 6.3 for type – I boundary conditions.

From Fig. 6.3(a), it is observed that the tangential velocity f rises as the values of in

rise. The circumferential velocity g is not significantly affected by in. As the value of ∈
is increasing, it is observed from Fig.6.3(c) that the temperature also increasing. Figures

6.3(d) and 6.3(e) show that both the skin frictions rise as the value of ∈ rises. According to

Fig. 6.3(f), the Nusselt number is dropping as the parameter in increases.

Figure 6.4 presents the variation of the velocity, temperature, coefficient of skin frictions

and heat transfer rate for type – I boundary conditions. From Fig. 6.4(a) it is observed that

the tangential velocity f increases near the cone surface and then decreases as the parameter

lambda increases. As lambda increases, the circumferential velocityg decreases slightly, as

shown in Fig. 6.4(b). Figure 6.4(c) shows that the temperature theta decreases as the
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value of lambda increases. Figures 6.4(d) and 6.4(e) show that the tangential skin-friction

(−f”(0)) and azimuthal skin-friction (−g′(0)) both increase as lambda increases. As shown

in Fig. 6.4(f), the rate of heat transfer decreases as the value of lambda increases.

The impact of viscosity parameter A on the velocity component, temperature, coefficient

of skin friction and heat transfer rate is depicted in Fig.6.5for type – II boundary conditions.

Figure 6.5(a) reveals that the tangential velocity f increases near the cone surface and then

decreases as A increases. From figures 6.5(b), it is observed that circumferential velocityg

decreases near the cone surface and shows very little variation away from the cone. As

shown in Fig. 6.5(b), the effect of A on temperature theta is insignificant. The tangential

skin friction (−f”(0)) and azimuthal skin-friction (−g′(0)) both increase with an increase

in A, as shown in Figs. 6.5(d) and 6.5(e). As depicted in Fig. 6.5(f), the Nusselt number

decreases as A increases.

The influence of ∈ on the velocity, temperature, coefficient of skin frictions and heat

transfer rate is depicted in Fig. 6.6 for type – II boundary conditions. From Fig. 6.6(a), it

is observed that the tangential velocityf increases as the value of in increases. As presented

in Fig. 6.6(a), the effect of in on circumferential velocity g is insignificant. The temperature

rises as the value of in rises, as shown by Fig.6.6(c). It is observed from Figures 6.6(d) and

6.6(e) that as the value of the in increases, so do the tangential and azimuthal skin-frictions.

The Nusselt number increases as the parameter in increases, as shown in 6.6(f).

The Effect of λ on velocity, temperature, coefficient of skin frictions and heat transfer

rate are depicted in Figure 6.7 From Fig. 6.7(a) it is observed that the tangential velocity

f increases near the cone surface and then decreases as the parameter lambda increases. As

lambda increases, the circumferential velocity g decreases slightly, as shown in in Fig. 6.7(b).

Figure 6.7(c) reveals that the temperature theta decreases as the value of lambda increases..

Figures 6.7(d) and 6.7(e) show that the tangential skin-friction (−f”(0)) and azimuthal skin-

friction (−G′(0)) both increase as lambda increases. The rate of heat transfer increases as

the value of lambda increases as depicted in Fig. 6.4(f).

6.5 Conclusion

By assuming temperature dependent viscosity and thermal conductivity, the laminar free

convection flow across a rotating vertical cone is investigated. The similarity transformed

equations are used to reduce the flow equations to ordinary differential equations. The non-
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dimensional equations are linearized successively, and the solution of the resulting system is

found using the Chebyshev spectral method.

• When the viscosity parameter is increased, the tangential velocity near the cone surface

decreases, then increases away from the cone. As one moves away from the cone, the

circumferential velocity increases.

• For enhancing values of the viscosity parameter, the dimensionless tangential skin-

friction, azimuthal skin-friction, and rate of heat transfer all rise.

• As the values of in are increased, the tangential velocity and temperature rise..

• The Nusselt number is decreasing with an increase in ∈ while the skin friction coeffi-

cients are rising.

• The tangential and azimuthal skin friction increase while heat transfer rate decreases

as lambda increases.
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Figure 6.2: “Effect of A on the Velocity, Temperature, tangential and azimuthal skin friction
coefficient and Nusselt number for CWT boundary conditions”.
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Figure 6.3: “Effect of ∈ on the Velocity, Temperature, tangential and azimuthal skin friction
coefficient and Nusselt number for CWT boundary conditions”.
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Figure 6.4: “Effect of λ on the Velocity, Temperature, tangential and azimuthal skin friction
coefficient and Nusselt number for CWT boundary conditions”.
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Figure 6.5: “Effect of A on the Velocity, Temperature, tangential and azimuthal skin friction
coefficient and Nusselt number for CHF boundary conditions”.
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Figure 6.6: “Effect of ∈ on the Velocity, Temperature, tangential and azimuthal skin friction
coefficient and Nusselt number for CHF boundary conditions”.
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Figure 6.7: “Effect of λ on the Velocity, Temperature, tangential and azimuthal skin friction
coefficient and Nusselt number for CHF boundary conditions”.
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Chapter 7

The Heat and Mass Transfer Across a

Rotating Cone With Variable Fluid

Properties 1

7.1 Introduction

The investigation of flow and (or) heat and mass transfer over rotating bodies is of significant

importance due to its prevalence in many industrial, geophysical, geothermal, technological,

and engineering applications. Such a study is important in the design of turbines and

turbo-machines, automotive engineering, estimating the flight path of rotating wheels and

spin-stabilized missiles, energy systems, medical equipment, processing engineering and in

the modeling of many geophysical vortices. Turkyilmazoglu [87] inspected the heat transfer

pattern in viscous fluid confined by a rotating cone Saleem [73] studied the impact of heat

and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely

rotating upright cone.

The convective heat and mass transfer over a rotating cone with changeable viscosity

and thermal conductivity is presented in this chapter. The pseudo-spectral approach is

used to solve the governing equations after they have been linearized using the successive

linearization method. This technique was efficaciously applied to solve the convection heat

and mass transfer problems. The impacts of various flow and geometry factors on the velocity

component, temperature, and heat transfer rate are thoroughly examined.

1Communicated to “Computational Thermal Science”
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7.2 Mathematical Formulation

Consider the laminar viscous incompressible fluid flow over a cone rotating about its axis

with angular velocity Ω. The coordinate system and the geometry of the problem is depicted

in Fig. (6.1). The local radius of the cone is r and semi-vertical angle of the cone is α. The

local radius at a point located and the radius of a cone can be guesstimated by r = (xsinϕ).

The variations in the temperature are responsible for the buoyancy forces in the fluid flow and

the flow is assumed to be axisymmetric. Applying Boussinesq approximation and utilizing

the boundary layer assumptions, the equations describing the flow are.

∂u

∂x
+
∂w

∂z
+
u

x
= 0 (7.1)

ρ

(
u
∂u

∂x
+ w

∂u

∂z
− v2

x

)
=

∂

∂z

(
µ
∂u

∂z

)
+ ρg [βT (T − T∞) + βC(C − C∞)] cosα (7.2)

ρ

(
u
∂v

∂x
+ w

∂v

∂z
+
uv

x

)
=

∂

∂z

(
µ
∂v

∂z

)
(7.3)(

u
∂T

∂x
+ w

∂T

∂z

)
=

∂

∂z

(
α
∂T

∂z

)
(7.4)

u
∂C

∂x
+ w

∂C

∂z
=

∂

∂z

(
Ds

∂C

∂z

)
(7.5)

The quantities used in the above equations ar already defined in the previous chapters.

The viscosity and thermal conductivity are considered to be a linear function of the

temperature [5] and are given by

µ(T ) = µ∞[1 + λ(T∞ − T )] and k(T ) = k0[1 + γ(T∞ − T )] (7.6)

where µ∞ and,k0 represent the absolute viscosity and the thermal conductivity of the fluid,

respectively, λ and γ are constants. The boundary conditions for the velocity are given as

u = 0 , v = rΩ w = 0 at z = 0 and u→ 0 v → 0 as z → ∞ (7.7)

In addition, for the temperature and concentration on the surface of the cone, one can either

have constant temperature Tw and concentration and Cw (CWT) or a constant heat flux

qw and mass flux and qw (CHF).Thus, the conditions for the temperature on the boundary

conditions are written as
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Type - I (CWT) : T = Tw C = Cw at z = 0 (7.8)

Type - II (CHF) : k
∂T

∂z
= qw k

∂C

∂z
= qm at z = 0 (7.9)

and far away from the cone, the temperature and concentration of the free stream are

constant i.e. T → T∞ , C → C∞ as z → ∞ The following non-dimensional transformations

are utilised to get the non-dimensional equations

η =

(
Ω sinα

ν

) 1
2

z, u =
1

2
xΩ sinαf ′(η), v = xΩ sinαg(η), w = (νΩ sinα)

1
2 f(η),

T = T∞ + (Tw − T∞)θ(η), where Tw − T∞ = (TL − T∞)
x

L
for CWT case

T = T∞ +

(
Ω sinα

ν

) 1
2 qw
k
θ(η), where qw = q0

x

L
for CHF case,

C = C∞ + (Cw − C∞)θ(η), where Cw − C∞ = (CL − C∞)
x

L
for CWT case

C = C∞ +

(
Ω sinα

ν

) 1
2 qw
k
θ(η), where qw = q0

x

L
for CHF case


(7.10)

Applying the similarity transformations (7.10) in the Eqs. (7.1) to (7.4), we get the

following non-dimensional equations

(1 + A)f
′′′ − Aθf

′′′ − ff
′′
+

1

2
f

′2 − Aθ
′
f

′′ − 2g2 − 2λ [θ − 2Bϕ] = 0 (7.11)

(1 + A)g
′′ − Aθg

′′ − Ag
′
θ
′
+ f

′
g − fg

′
= 0 (7.12)

1

Pr
θ
′′
+

1

Pr
∈ θθ

′′
+

∈
Pr

θ
′2
+

1

2
f

′
θ − fθ

′
= 0 (7.13)

1

Sc
ϕ

′′
+

∈
Sc
θϕ

′′
+

1

Sc
∈ θ

′
ϕ′ +

1

2
f

′
ϕ− fϕ′ = 0 (7.14)

where B =
βc(Cw − C∞)

βT (Tw − T∞)
denotes the Buoyancy ratio. The remaining quantities are already

defined in the previous chapters.
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The dimensionless form of conditions on the boundary are

f(0) = f ′(0) = 0, g(0) = 1, θ(0) = 1, ϕ(0) = 1,

f ′(∞) = g(∞) = θ(∞) = ϕ(∞) = 0

}
for CWT case. (7.15)

f(0) = f ′(0) = 0, g(0) = 1, θ′(0) = −1, ϕ′(0) = −1

f ′(∞) = g(∞) = θ(∞) = ϕ(∞) = 0

}
for CHF case. (7.16)

The quantities of practical interests are the surface skin-friction coefficient in x- and y-

directions and local rate of heat-transfer in terms of Nusselt number. The non-dimensional

form of skin-friction coefficients Cfx and Cfy are

Cfx = −Rex−
1
2f

′′
(0), Cfy = −Rex−

1
2 g

′
(0) (7.17)

The non-dimensional form of Nusselt numbers (Nu) and Sherwood number (Sh) for CWT

case are

NuI = −Rex−
1
2 θ

′
(0), ShI = −Rex−

1
2ϕ

′
(0), (7.18)

The non-dimensional form of Nusselt numbers (Nu) and Sherwood number (Sh) for CHF

case are

NuII =
1

θ(0)
, ShII =

1

ϕ(0)
(7.19)

7.3 Methodology

The set of differential equations (7.11) - (7.14) are linearized by means of a successive lin-

earization method (SLM) [55]. The solutions of the ensuing linearized equations are attained

by employing the Chebyshev spectral method [7]. On applying the procedure explained in

Chapter 2 to the Eqs. (7.11) - (7.14), we get the following linearized equations.

a1f
′′′

i + a2f
′′

i + a3f
′

i + a4fi + a5gi + a6θ
′

i + a7θi + a8ϕi = a9 (7.20)

b1f
′

i + b2fi + b3g
′′

i + b4g
′

i + b5gi + b6θ
′

i + b7θi = b8 (7.21)

c1f
′

i + c2fi + c3θ
′′

i + c4θ
′

i + c5θi = c6 (7.22)

d1f
′

i + d2fi + d3θ
′

i + d4θi + d5ϕ
′′

i + d6ϕ
′

i + d7ϕi = d8 (7.23)

94



Where

a1 =
(
(1 + A)− A

∑
θm

)
, a2 =

(
−
∑

fm − A
∑

θ
′

m

)
,

a3 = −
∑

f
′

m, a4 = −
∑

f
′′

m, a5 = −4
∑

gm, a6 = −A
∑

f
′′

m,

a7 = −A
∑

f
′′′

m − 2λ, a8 = −2B

a9 =
(
A
∑

θm − (1 + A)
)∑

f
′′′

m +
(∑

fm + A
∑

θ
′

m

)∑
f

′′

m − 1

2

∑
f

′2

m

+2
∑

gm
2
+ 2λ

∑
θm + 2B

∑
ϕm

b1 =
∑

gm, b2 = −
∑

g
′

m, b3 =
(
(1 + A)− A

∑
θm

)
b4 = −A

∑
θ
′

m −
∑

fm, b5 =
∑

f
′

m, b6 = −A
∑

g
′

m, b7 = −A
∑

g
′′

m

b8 =
(
A
∑

θm − (1 + A)
)∑

g
′′

m + A
∑

g
′

m

∑
θ
′

m −
∑

f
′

m

∑
gm

+
∑

fm
∑

g
′

m

c1 =
1

2

∑
θm, c2 = −

∑
θ
′

m, c3 =
1

Pr
+

∈
Pr

∑
θm

c4 =
2 ∈
Pr

∑
θ
′

m −
∑

fm, c5 =
∈
Pr

∑
θ
′′

m +
1

2

∑
H

′

m

c6 =

(
− 1

Pr
− ∈

Pr

∑
θm

)∑
θ
′′

m − ∈
Pr

∑
θ
′2

m +
∑

fm
∑

θ
′

m − 1

2

∑
f

′

m

∑
θm

d1 =
1

2

∑
ϕm, d2 = −1

2

∑
ϕ

′

m, d3 =
∈
Sc

∑
ϕ

′

m, d4 =
∈
Sc

∑
ϕ

′′

m

d5 =
1

Sc
+

∈
Sc

∑
θm, d6 =

∈
Sc

∑
θ
′

m − 1

2

∑
fm, d7 =

1

2

∑
f

′

m

d8 =

(
− 1

Sc
− ∈
Sc

∑
θm

)∑
ϕ

′′

m +

(
− ∈
Sc

∑
θ
′

m +
1

2

∑
fm

)∑
ϕ

′

m − 1

2

∑
f

′

m

∑
ϕm

The equivalent conditions to Equations (7.24) and (7.25) are

fi(0) = f ′
i(0) = 0, gi(0) = 1, θi(0) = 1, ϕi(0) = 1,

f ′
i(∞) = gi(∞) = θi(∞) = ϕi(∞) = 0

}
for CWT case. (7.24)

fi(0) = f ′
i(0) = 0, gi(0) = 1, θ′i(0) = −1, ϕ′

i(0) = −1

f ′
i(∞) = gi(∞) = θi(∞) = ϕi(∞) = 0

}
for CHF case. (7.25)

As explained in Chapter 2, applying Chebyshev pseudo spectral method on the system
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of linearized equations (7.20),(7.21),(7.22) and (7.23), we get the following equation in the

matrix form

Ai−1Xi = Ri−1 (7.26)

whereAi−1 is a square matrix of order 4N +4 and Xi and Ri−1 are column matrices of order

4N + 4 given by

Ai−1 =


A

(i)
11 A

(i)
12 A

(i)
13 A

(i)
14

A
(i)
21 A

(i)
22 A

(i)
23 A

(i)
24

A
(i)
31 A

(i)
32 A

(i)
33 A

(i)
34

A
(i)
41 A

(i)
42 A

(i)
43 A

(i)
44

 , Xi =


Fi

Gi

Θi

Φi

 , Ri =


r
(i)
1

r
(i)
2

r
(i)
3

r
(i)
4

 (7.27)

where

fi = [fi(ξ0), fi(ξ1), ...., fi(ξN−1), fi(ξN)]
T ,

Gi = [gi(ξ0), gi(ξ1), .., gi(ξN−1), gi(ξN)]
T ,

Θi = [θi(ξ0), θi(ξ1), ...θi(ξN−1), θi(ξN)]
T ,

Φi = [ϕi(ξ0), ϕi(ξ1), ...ϕi(ξN−1), ϕi(ξN)]
T ,

A
(1)
11 = a1D

3 + a2D
2 + a3D + a4I, A

(1)
12 = a5I, A

(1)
13 = a6D + a7I, A

(1)
14 = a8I

A
(1)
21 = b1D + b2I, A

(1)
22 = b3D

2 + b4D + b5I, A
(1)
23 = b6D + b7I, A

(1)
24 = 0

A
(1)
31 = c1D + c2I, A

(1)
32 = 0, A

(1)
33 = c3D

2 + c4D + c5I, A
(1)
34 = 0

A
(1)
41 = d1D + d2I, A

(1)
42 = 0, A

(1)
43 = d3D + d4I, A

(1)
44 = d5D

2 + d6D + d7I

r
(1)
1 = [a9(ξ0), a9(ξ1), ..., a9(ξN−1), a9(ξN)]

T

r
(1)
2 = [b8(ξ0), b8(ξ1), ..., b8(ξN−1), b8(ξN)]

T

r
(1)
3 = [c6(ξ0), c6(ξ1), ..., c6(ξN−1), c6(ξN)]

T

r
(1)
4 = [d8(ξ0), d8(ξ1), ..., d8(ξN−1), d8(ξN)]

T

Where the superscript T stands for transpose, I is the identity O is the zero matrix. Finally,

the solution is given by

Xi = A−1
i−1Ri−1
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7.4 Results and Discussion

The influences of viscosity parameter A, the dimensionless buoyancy parameter λ, buoyancy

number B, and thermal conductivity parameter ∈ on the the tangential skin friction coeffi-

cient Cfx, azimuthal skin friction coefficient Cfy, Nusselt NumberNu and Sherwood number

Sh for constant wall temperature and heat flux cases are depicted graphically. ‘ The effect of

the viscosity parameter A on the coefficients of skin friction, Nusselt number, and Sherwood

number is depicted in Fig. 7.1 for type - I boundary conditions. Figures 7.1(a) and 7.1(b)

show that the tangential and azimuthal skin friction coefficients increase as A increases.

As shown in Fig. 7.1(c), the local Nusselt number (−θ′(0)) decreases as A increases. As

presented in Fig. 7.1(d), increasing the parameter A reduces the local Sherwood number

(−ϕ′(0)).

Figure 7.2 displays the variation of tangential and azimuthal skin-friction coefficients

(−f ′′(0) and −g′(0)), Nusselt number (−θ′(0)) and Sherwood number (−ϕ′(0)) for various

values of ∈. According to Figs. 7.2(a), 7.2(a) and 7.2(d), both the Skin friction coefficient

and Sherwood number decrease as ∈ increases. The and the Nusselt number increase as the

value of ∈ increases, as shown in Fig. 7.2(d).

The impact of the parameter λ on −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) is presented in

Fig.7.3 for type - I boundary conditions. It is noticed from Figs. 7.3(a) and 7.3(b) that both

the tangential and azimuthal skin friction coefficients increase as λ increases. Figures 7.3(c)

and 7.3(d) reveal that Nusselt number and Sherwood number both increase as the value of

λ increases.

The consequence of buoyancy parameter B on the ttangential and azimuthal skin-friction

coefficients (−f ′′(0) and −g′(0)), Nusselt number (−θ′(0)) and Sherwood number (−ϕ′(0))

is displayed in Fig.7.4 for type - I boundary conditions. It is clear from Figs. 7.4(a),7.4(b)

7.4(c), and 7.4(d) that increasing B increases the skin friction coefficients, Nusselt number,

and Sherwood number.

The impact of viscosity parameter A on the coefficients of skin frictions, Nusselt number

and Sherwood number are depicted in Fig.7.5 for type - II boundary conditions. Fig. 7.5(a)

and 7.5(b) show that the tangential velocity increases initially and then decreases as A

increases. The azimuthal skin friction coefficient (Cfy), local Nusselt number (−θ′(0)) and
the local Sherwood number (−ϕ′(0)) decrease as A increases presented in Fig. 7.5(c) and

7.5(d) .
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The variation of −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) for various values of ∈ is presented in

Fig. 7.6. It is observed from Fig. 7.6(a) that the influence of ∈ on the tangential skin friction

coefficient is negligible. Further, Fig. 7fig9b shows that the azimuthal skin friction coefficient

decrease slightly as ∈ increases. The Nusselt number increases while the Sherewood number

decreases as the value of ∈ increases, as displayed in Fig. 7.6(c) and Fig. 7.6(d).

The effect of the parameter λ on the coefficients of skin frictions, Nusselt number and

Sherwood number is portrayed in Fig.7.7 for type - II boundary conditions. It is noticed

from Figs. 7.7(a) and 7.7(b) that both the tangential and azimuthal skin friction coefficients

increase as λ increases. Figs. 7.7(c) and 7.7(d) reveal that the Nusselt number and Sherewood

number both increase as the value of λ increases.

The effect of buoyancy parameter B on −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) is depicted

in Fig.7.8 for type - II boundary conditions. It is evident from Figs. 7.8(a),7.8(b) 7.8(c),

and 8.10(d) that increasing B raises both the skin friction coefficients, Nusselt number, and

Sherewood number.

7.5 Conclusion

The hear and mass transfer across a rotating vertical cone is investigated with temperature

dependent viscosity and thermal conductivity. The flow equations are reduced to ordinary

differential equations using similarity transformed equations. The non-dimensional equations

are linearized successively, and the resulting system is solved using the Chebyshev spectral

method.

• As the viscosity parameter increases, the tangential and azimuthal skin friction coeffi-

cients increasewhere as the Nusselt number ans Sherwood number decrease.

• The tangential and azimuthal skin friction coefficient and Sherwood number decrease

where as the Nusselt number increase as the thermal conductivity parameter increases.

• The tangential and azimuthal skin friction coefficients, Nusselt number and Sherewood

number increase as the value of λ increases

• An increase in the buoyancy ratio raises the tangential and azimuthal skin friction

coefficients, Nusselt number, and Sherewood number.
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Figure 7.1: “Effect of A on the tangential skin friction coefficient, azimuthal skin friction
coefficient, Nusselt number and Sherwod number for CWT boundary conditions”.
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Figure 7.2: “Effect of ∈ on the tangential skin friction coefficient, azimuthal skin friction
coefficient, Nusselt number and Sherwod number for CWT boundary conditions”.
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Figure 7.3: “Effect of λ on the tangential skin friction coefficient, azimuthal skin friction
coefficient, Nusselt number and Sherwod number for CWT boundary conditions”.
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Figure 7.4: “Effect of B on the tangential skin friction coefficient, azimuthal skin friction
coefficient, Nusselt number and Sherwod number for CWT boundary conditions”.
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Figure 7.5: “Effect of A on the tangential skin friction coefficient, azimuthal skin friction
coefficient, Nusselt number and Sherwod number for HMF boundary conditions”.
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Figure 7.6: “Effect of ∈ on the tangential skin friction coefficient, azimuthal skin friction
coefficient, Nusselt number and Sherwod number for HMF boundary conditions”.
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Figure 7.7: “Effect of λ on the tangential skin friction coefficient, azimuthal skin friction
coefficient, Nusselt number and Sherwod number for HMF boundary conditions”.
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Figure 7.8: “Effect of B on the tangential skin friction coefficient, azimuthal skin friction
coefficient, Nusselt number and Sherwod number for HMF boundary conditions”.
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Chapter 8

Effect of Soret and Dufour on the

Flow Across a Rotating Cone With

Variable Fluid Properties 1

8.1 Introduction

If one property’s diffusivity is significantly higher than the other, the study of double diffusive

convection becomes difficult. Furthermore, when two transport processes operate concur-

rently, they interact and cause cross-diffusion effects. Soret and Dufour coefficients are used

to describe the flux of mass caused by a temperature gradient and the flux of heat caused by

a concentration gradient, respectively. There are only few studies, for example, [82], [39], [90]

and references therin, available on the effect of cross diffusion on double diffusive convection

on rotating cone because of the complexity in determining these coefficients.

In this chapter, the study of Soret and Dufour effects on the viscous fluid flow along over a

rotating cone with changeable viscosity and thermal conductivity is considered. This chapter

is an extension of the chapter - 7 by including the cross diffusion effects. The pseudo-spectral

approach is used to solve the governing equations after they have been linearized using the

successive linearization method. This technique was efficaciously applied to solve the con-

vection heat and mass transfer problems. The impacts of various flow and geometry factors

on the velocity component, temperature, and heat transfer rate are thoroughly examined.

1Communicated to “Journal of Applied Nonlinear Dynamics”
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8.2 Mathematical Formulation

Consider the laminar viscous incompressible fluid flow over a cone rotating about its axis

with angular velocity Ω. The coordinate system and the geometry of the problem is depicted

in Fig. (6.1). The local radius of the cone is r and semi-vertical angle of the cone is α.

In addition to the assumptions made in the previous chapter, cross diffusion effects are

incorporated in the flow.

Applying Boussinesq approximation and utilizing the boundary layer assumptions, the

equations describing the flow are.

∂u

∂x
+
∂w

∂z
+
u

x
= 0 (8.1)

ρ

(
u
∂u

∂x
+ w

∂u

∂z
− v2

x

)
=

∂

∂z

(
µ
∂u

∂z

)
+ ρg [βT (T − T∞) + βC(C − C∞)] cosα (8.2)

ρ

(
u
∂v

∂x
+ w

∂v

∂z
+
uv

x

)
=

∂

∂z

(
µ
∂v

∂z

)
(8.3)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α
∂T

∂y

)
+
DsKT

CSCP

∂2c

∂y2
(8.4)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y
(Ds

∂C

∂y
) +

DsKT

Tm

∂2T

∂y2
(8.5)

The quantities used in the above equations ar already defined in the previous chapters.

The viscosity and thermal conductivity are considered to be a linear function of the

temperature [5] and are given by

µ(T ) = µ∞[1 + λ(T∞ − T )] and k(T ) = k0[1 + γ(T∞ − T )] (8.6)

where µ∞ and,k0 represent the absolute viscosity and the thermal conductivity of the fluid,

respectively, λ and γ are constants.

The boundary conditions for the velocity are given as

u = 0 , v = rΩ w = 0 at z = 0 and u→ 0 v → 0 as z → ∞ (8.7)

In addition, for the temperature and concentration on the surface of the cone, one can

either have constant temperature Tw and concentration and Cw (CWT) or a constant heat

108



flux qw and mass flux and qw (CHF).Thus, the conditions for the temperature on the bound-

ary conditions are written as

Type - I (CWT) : T = Tw C = Cw at z = 0 (8.8)

Type - II (CHF) : k
∂T

∂z
= qw k

∂C

∂z
= qm at z = 0 (8.9)

and far away from the cone, the temperature and concentration of the free stream are

constant i.e. T → T∞ , C → C∞ as z → ∞

The following non-dimensional transformations are utilised to get the non-dimensional

equations

η =

(
Ω sinα

ν

) 1
2

z, u =
1

2
xΩ sinαf ′(η), v = xΩ sinαg(η), w = (νΩ sinα)

1
2 f(η),

T = T∞ + (Tw − T∞)θ(η), where Tw − T∞ = (TL − T∞)
x

L
for CWT case

T = T∞ +

(
Ω sinα

ν

) 1
2 qw
k
θ(η), where qw = q0

x

L
for CHF case,

C = C∞ + (Cw − C∞)θ(η), where Cw − C∞ = (CL − C∞)
x

L
for CWT case

C = C∞ +

(
Ω sinα

ν

) 1
2 qw
k
θ(η), where qw = q0

x

L
for CHF case


(8.10)

Applying the similarity transformations (8.10) in the Eqs. (8.1) to (8.4), we get the

following non-dimensional equations.

(1 + A)f
′′′ − Aθf

′′′ − ff
′′
+

1

2
f

′2 − Aθ
′
f

′′ − 2g2 − 2λ [θ − 2Bϕ] = 0 (8.11)

(1 + A)g
′′ − Aθg

′′ − Ag
′
θ
′
+ f

′
g − fg

′
= 0 (8.12)

1

Pr
θ
′′
+

1

Pr
∈ θθ

′′
+

∈
Pr
θ
′2
+

1

2
f

′
θ − fθ

′
+Dfϕ

′′
= 0 (8.13)

1

Sc
ϕ

′′
+

∈
Sc
θϕ

′′
+

1

Sc
∈ θ

′
ϕ′ +

1

2
f

′
ϕ− fϕ′ + Srθ

′′
= 0 (8.14)

The parameters are already defined in the previous chapters.
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The dimensionless form of conditions on the boundary are

f(0) = f ′(0) = 0, g(0) = 1, θ(0) = 1, ϕ(0) = 1,

f ′(∞) = g(∞) = θ(∞) = ϕ(∞) = 0

}
for CWT case. (8.15)

f(0) = f ′(0) = 0, g(0) = 1, θ′(0) = −1, ϕ′(0) = −1

f ′(∞) = g(∞) = θ(∞) = ϕ(∞) = 0

}
for CHF case. (8.16)

The quantities of practical interests are the surface skin-friction coefficient in x- and y-

directions and local rate of heat-transfer in terms of Nusselt number. The non-dimensional

form of skin-friction coefficient Cfx and Cfy are

Cfx = −Rex−
1
2f

′′
(0), Cfy = −Rex−

1
2 g

′
(0) (8.17)

The non-dimensional form of Nusselt numbers (Nu) and Sherwood number (Sh) for CWT

case are

NuI = −Rex−
1
2 θ

′
(0), ShI = −Rex−

1
2ϕ

′
(0), (8.18)

The non-dimensional form of Nusselt numbers (Nu) and Sherwood number (Sh) for CHF

case are

NuII =
1

θ(0)
, ShII =

1

ϕ(0)
(8.19)

8.3 Methodology

The set of differential equations (8.11) - (8.14) are linearized by means of a successive lin-

earization method (SLM) [55]. The solutions of the ensuing linearized equations are attained

by employing the Chebyshev spectral method [7]. On applying the procedure explained in

Chapter 2 to the Eqs. (8.11) - (8.14), we get the following linearized equations.

a1f
′′

i + a2f
′′

i + a3f
′

i + a4fi + a5gi + a6θ
′

i + a7θi + a8ϕi = a9 (8.20)

b1f
′

i + b2fi + b3g
′′

i + b4g
′

i + b5gi + b6θ
′

i + b7θi = b8 (8.21)

c1f
′

i + c2fi + c3θ
′′

i + c4θ
′

i + c5θi + c6ϕ
′′

i = c7 (8.22)

d1f
′

i + d2fi + d3θ
′′

i + d4θ
′

i + d5θi + d6ϕ
′′

i + d7ϕ
′

i + d8ϕi = d9 (8.23)
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where

a1 =
(
(1 + A)− A

∑
θm

)
, a2 =

(
−
∑

fm − A
∑

θ
′

m

)
,

a3 = −
∑

f
′

m, a4 = −
∑

f
′′

m, a5 = −4
∑

gm, a6 = −A
∑

f
′′

m,

a7 = −A
∑

fm
′′′ − 2λ, a8 = −2B

a9 =
(
A
∑

θm − (1 + A)
)∑

f
′′′

m +
(∑

fm + A
∑

θ
′

m

)∑
f

′′

m − 1

2

∑
f

′2

m

+2
∑

gm
2
+ 2λ

∑
θm + 2B

∑
ϕm

b1 =
∑

gm, b2 = −
∑

g
′

m, b3 =
(
(1 + A)− A

∑
θm

)
b4 = −A

∑
θ
′

m −
∑

fm, b5 =
∑

f
′

m, b6 = −A
∑

g
′

m, b7 = −A
∑

g
′′

m

b8 =
(
A
∑

θm − (1 + A)
)∑

g
′′

m + A
∑

g
′

m

∑
θ
′

m −
∑

f
′

m

∑
fm +

∑
fm
∑

g
′

m

c1 =
1

2

∑
θm, c2 = −

∑
θ
′

m, c3 =
1

Pr
+

∈
Pr

∑
θm

c4 =
2 ∈
Pr

∑
θ
′

m −
∑

fm, c5 =
∈
Pr

∑
θ
′′

m +
1

2

∑
f

′

m, C6 = Df

c7 =

(
− 1

Pr
− ∈

Pr

∑
θm

)∑
θ
′′

m − ∈
Pr

∑
θ
′2

m +
∑

fm
∑

θ
′

m − 1

2

∑
f

′

m

∑
θm

d1 =
1

2

∑
ϕm, d2 = −1

2

∑
ϕ

′

m, d3 = Sr, d4 =
∈
Sc

∑
ϕ

′

m, d5 =
∈
Sc

∑
ϕ

′′

m

d6 =
1

Sc
+

∈
Sc

∑
θm, d7 =

∈
Pr

∑
θ
′

m − 1

2

∑
fm, d8 =

1

2

∑
f

′

m

d9 =

(
− 1

Sc
− ∈
Sc

∑
θm

)∑
ϕ

′′

m +

(
− ∈
Sc

∑
θ
′

m +
1

2

∑
fm

)∑
ϕ

′

m − 1

2

∑
f

′

m

∑
ϕm

The equivalent conditions to Equations (8.15) and (8.16) are

fi(0) = f ′
i(0) = 0, gi(0) = 1, θi(0) = 1, ϕi(0) = 1,

f ′
i(∞) = gi(∞) = θi(∞) = ϕi(∞) = 0

}
for CWT case. (8.24)

fi(0) = f ′
i(0) = 0, gi(0) = 1, θ′i(0) = −1, ϕ′

i(0) = −1

f ′
i(∞) = gi(∞) = θi(∞) = ϕi(∞) = 0

}
for CHF case. (8.25)

As explained in Chapter 2, applying Chebyshev pseudo spectral method on the system

of linearized equations (8.20),(8.21),(8.22) and (8.23), we get the following equation in the
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matrix form

Ai−1Xi = Ri−1 (8.26)

whereAi−1 is a square matrix of order 4N +4 and Xi and Ri−1 are column matrices of order

4N + 4 given by

Ai−1 =


A

(i)
11 A

(i)
12 A

(i)
13 A

(i)
14

A
(i)
21 A

(i)
22 A

(i)
23 A

(i)
24

A
(i)
31 A

(i)
32 A

(i)
33 A

(i)
34

A
(i)
41 A

(i)
42 A

(i)
43 A

(i)
44

 , Xi =


Fi

Gi

Θi

Φi

 , Ri =


r
(i)
1

r
(i)
2

r
(i)
3

r
(i)
4

 (8.27)

where

Fi = [fi(ξ0), fi(ξ1), ...., fi(ξN−1), fi(ξN)]
T ,

Gi = [gi(ξ0), gi(ξ1), .., gi(ξN−1), gi(ξN)]
T ,

Θi = [θi(ξ0), θi(ξ1), ...θi(ξN−1), θi(ξN)]
T ,

Φi = [ϕi(ξ0), ϕi(ξ1), ...ϕi(ξN−1), ϕi(ξN)]
T ,

A
(1)
11 = a1D

3 + a2D
2 + a3D + a4I, A

(1)
12 = a5I, A

(1)
13 = a6D + a7I, A

(1)
14 = a8I

A
(1)
21 = b1D + b2I, A

(1)
22 = b3D

2 + b4D + b5I, A
(1)
23 = b6D + b7I, A

(1)
24 = 0

A
(1)
31 = c1D + c2I, A

(1)
32 = 0, A

(1)
33 = c3D

2 + c4D + c5I, A
(1)
34 = 0

A
(1)
41 = d1D + d2I, A

(1)
42 = 0, A

(1)
43 = d3D

2 + d4D + d5I, A
(1)
44 = d6D

2 + d7D + d8I

r
(1)
1 = [a9(ξ0), a9(ξ1), ..., a9(ξN−1), a9(ξN)]

T

r
(1)
2 = [b8(ξ0), b8(ξ1), ..., b8(ξN−1), b8(ξN)]

T

r
(1)
3 = [c6(ξ0), c6(ξ1), ..., c6(ξN−1), c6(ξN)]

T

r
(1)
4 = [d8(ξ0), d8(ξ1), ..., d8(ξN−1), d8(ξN)]

T

Where the superscript T stands for transpose, I is the identity O is the zero matrix.

Finally, the solution is given by

Xi = A−1
i−1Ri−1
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8.4 Results and Discussion

The variation of tangential skin friction coefficient, azimuthal skin friction coefficient, local

Nusselt Number, and Sherwood number for diverse values of A,∈, λ, B, Df and Sr is

depicted graphically.

Figure 8.1 depicts the effect of the viscosity parameter A on the coefficients of skin

friction, Nusselt number, and Sherwood number for type - I boundary conditions. Figures

8.1(a) and 8.1(b) show that the tangential and azimuthal skin friction coefficients increase

as A increases. As presented in Fig. 8.1(c), the Nusselt number (−θ′(0)) decreases as

A increases. As presented in Fig. 8.1(d), increasing the parameter A reduces the local

Sherwood number (−ϕ′(0)).

The variation of tangential skin-friction coefficient (−f ′′(0)), azimuthal skin-friction coef-

ficient (−g′(0)), Nusselt number (−θ′(0)) and Sherwood number (−ϕ′(0)) for various values

of ∈ and Pr is portrayed in Fig. 8.2. According to Figs. 8.2(a), 8.2(a) and 8.2(c), both the

Skin friction coefficient and Nusselt number decrease as ∈ increases. The and the Sherewood

number increase as the value of ∈ increases, as shown in Fig. 8.7(d).

The impact of the parameter λ on −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) is presented in

Fig.8.3 for type - I boundary conditions. It is noticed from Figs. 8.3(a) and 8.3(b) that both

the tangential and azimuthal skin friction coefficients increase as λ increases. Figures 8.3(c)

and 8.3(d) reveal that Nusselt number and Sherwood number both increase as the value of

λ increases.

The consequence of buoyancy parameter B on the tangential skin-friction coefficient

(−f ′′(0)), azimuthal skin-friction coefficient (−g′(0)), Nusselt number (−θ′(0)) and Sherwood

number (−ϕ′(0)) is displayed in Fig.8.4 for type - I boundary conditions. It is clear from

Figs. 8.4(a),8.4(b) 8.4(c), and 8.4(d) that increasing B increases the skin friction coefficients,

Nusselt number, and Sherwood number.

The effect of Dufour number Df on −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) is depicted in

Fig.8.5 for type - I boundary conditions It is observed from Figs. 8.5(a) and 8.5(b) that

both the skin friction coefficients increase with an increase in the Dufour number. Figure

8.5(c) shows that the rate of heat transfer increases as the Dufour number increases. The

Sherwood number decreases as Df increases, as shown in Fig. 8.5(d).

The variation of −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) with Soret number Sr is displayed

in Fig.8.6 for type - I boundary conditions It is noticed from Figs. 8.6(a),8.6(b) and 8.6(d)
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that both the skin friction coefficients and the rate of heat transfer increase as the Soret

number increases. According to Fig. 8.6(d), the rate of mass transfer decreases as the value

of Sr increases.

The influence of viscosity parameter A on the coefficients of skin frictions, Nusselt num-

ber and Sherwood number are depicted in Fig.8.7 for type - II boundary conditions. Fig.

9.7(a) and 8.7(b) show that the tangential and azimuthal skin friction coefficients increase

as A increases. the local Nusselt number (−θ′(0)) and the local Sherwood number (−ϕ′(0))

increase as A increases presented in Fig. 8.7(c) and 8.7(d) .

The variation of −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) for various values of ∈ is presented

in Fig. 8.8. It is observed from Figs. 8.8(a) and 8.8(b) that the tangential and azimuthal

skin friction coefficient decrease as ∈ increases. The Nusselt number increases while the

Sherewood number decreases as the value of ∈ increases, as displayed in Fig. 8.8(c) and Fig.

8.8(d).

The impact of the parameter λ on the coefficients of skin frictions, Nusselt number and

Sherwood number is portrayed in Fig.8.9 for type - II boundary conditions. It is noticed

from Figs. 8.9(a) and 8.9(b) that both the tangential and azimuthal skin friction coefficients

increase as λ increases. Figs. 8.9(c) and 8.9(d) reveal that the Nusselt number and Sherewood

number both increase as the value of λ increases.

The consequence of buoyancy parameter B on −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) is

depicted in Fig.8.10 for type - II boundary conditions. It is evident from Figs. 8.10(a),8.10(b)

8.10(c), and 8.10(d) that increasing B raises both the skin friction coefficients, Nusselt

number, and Sherewood number.

The effect of Dufour number Df on the coefficients of skin frictions, Nusselt number and

Sherwood number is depicted in Fig.8.11 for type - II boundary conditions It is observed from

Figs. 8.11(a) and 8.11(b) that both the skin friction coefficients increase with an increase

in the Dufour number. Figure 8.11(c) shows that the rate of heat transfer decreases as the

Dufour number increases. The Sherewood number is increases as Df increases, as depicted

in Fig. 8.11(d).

The variation of −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) with Soret number Sr is displayed

in Fig.8.12 for type - II boundary conditions It is noticed from Figs. 8.12(a),8.12(b) and

8.12(c) that increasing the Soret number increases both the skin friction coefficients and the

rate of heat transfer. According to Fig. 8.12(d), the rate of mass transfer decreases as the

value of Soret number increases.
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8.5 Conclusion

The cross diffusion effect on convection flow across a rotating vertical cone is investigated

with temperature dependent viscosity and thermal conductivity. The flow equations are

reduced to ordinary differential equations using similarity transformed equations. The non-

dimensional equations are linearized successively, and the resulting system is solved using

the Chebyshev spectral method.

• The Dufour number increases both the skin friction coefficients and the Sherwood

number while decreasing the Nusselt number.

• The tangential and azimuthal skin friction coefficients, as well as the rate of heat

transfer, increase as the Soret number increases, whereas the rate of mass transfer

decreases.
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Figure 8.1: Effect of A on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 8.2: Effect of ∈ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 8.3: Effect of λ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 8.4: Effect of B on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 8.5: Effect of Df on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 8.6: Effect of Sr on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 8.7: Effect of A on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Figure 8.8: Effect of ∈ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Figure 8.9: Effect of λ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Figure 8.10: Effect of B on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.

125



4 5 6 7 8 9 10
0.98

1.00

1.02

1.04

1.06

1.08

1.10

-G
'(
0
)

Pr

 Df = 0.50
 Df = 1.00
 Df = 1.50
 Df = 2.00

(a)

4 5 6 7 8 9 10

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

-H
''(

0
)

Pr

 Df = 0.50
 Df = 1.00
 Df = 1.50
 Df = 2.00

(b)

4 5 6 7 8 9 10

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1
/ 

(0
)

Pr

 Df = 0.50
 Df = 1.00
 Df = 1.50
 Df = 2.00

(c)

4 5 6 7 8 9 10
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1
/

(0
)

Pr

 Df = 0.50
 Df = 1.00
 Df = 1.50
 Df = 2.00

(d)

Figure 8.11: Effect of Df on “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Figure 8.12: Effect of Sr on “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Chapter 9

Influence of Chemical Reaction and

Thermal Radiation on the Flow

Across a Rotating Cone with Variable

Fluid Properties 1

9.1 Introduction

The study of thermal radiation effects on heat and mass transfer with chemical reaction are

of considerable importance in chemical technology and hydrometallurgical industries. For

example, ”formation of smog” is a first order homogeneous chemical reaction. In the case

of NO2 emissions from automobiles and other smokestacks, NO2 reacts chemically in the

atmosphere with unburned hydrocarbons (aided by sunlight) to form peroxyacetyl nitrate,

which forms an envelope known as photochemical smog. Furthermore, the effect of radiation

on convective heat transfer problems is becoming increasingly important in astrophysical

flows, electrical power generation, space vehicle re-entry, solar power technology, and other

industrial areas.s.

The effects of chemical reaction and thermal radiation on the incompressible viscous fluid

flow over a rotating cone in the presence of changeable viscosity and thermal conductivity

are studied in this chapter. The pseudo-spectral approach is used to solve the governing

equations after they have been linearized using the successive linearization method. This

1Communicated to “Heat Transfer”
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technique was efficaciously applied to solve the convection heat and mass transfer problems.

The impacts of various flow and geometry factors on the velocity component, temperature,

and heat transfer rate are thoroughly examined.

9.2 Mathematical Formulation

Consider the laminar viscous incompressible fluid flow over a cone rotating about its axis

with angular velocity Ω. The coordinate system and the geometry of the problem is depicted

in Fig. (6.1). In addition to the assumptions made in the chapter - 7, the chemical reaction

and radiation effects are incorporated in the flow.

Applying Boussinesq approximation and utilizing the boundary layer assumptions, the

equations describing the flow are.

∂u

∂x
+
∂w

∂z
+
u

x
= 0 (9.1)

ρ

(
u
∂u

∂x
+ w

∂u

∂z
− v2

x

)
=

∂

∂z

(
µ
∂u

∂z

)
+ ρg [βT (T − T∞) + βC(C − C∞)] cosα (9.2)

ρ

(
u
∂v

∂x
+ w

∂v

∂z
+
uv

x

)
=

∂

∂z

(
µ
∂v

∂z

)
(9.3)(

u
∂T

∂x
+ w

∂T

∂z

)
=

∂

∂z

(
α
∂T

∂z

)
− 1

ρcp

∂qr
∂Z

(9.4)

u
∂C

∂x
+ w

∂C

∂z
=

∂

∂z

(
α
∂C

∂z

)
− kr(C − C∞) (9.5)

where kr denotes the rate of chemical reaction and qr denotes the radiative heat flux term.

The radiative heat flux qr is described by the Rosseland approximation such that

qr =
4σ∗

3k∗
∂T 4

∂z
(9.6)

where σ∗ represents the Stefan-Boltzmann constant and k∗ represents the mean absorption

coefficient. We assume that the temperature differences within the flow are small enough so

that T 4 can be expressed as a linear function of temperature. This is achieved by expanding

T 4 in a Taylor series about Tinfty while ignoring higher-order terms. Thus

T 4 ≈ 4T 3
∞T − 3T 4

∞ (9.7)
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Using (9.6) and (9.7) in the last term of the Eq. (9.4), we get(
u
∂T

∂x
+ w

∂T

∂z

)
=

∂

∂z

(
α
∂T

∂z

)
− 16σ∗T 3

∞
3ρcpk∗

∂2T

∂z2
(9.8)

The viscosity and thermal conductivity are considered to be a linear function of the

temperature [5] and are given by

µ(T ) = µ∞[1 + λ(T∞ − T )] and k(T ) = k0[1 + γ(T∞ − T )] (9.9)

where µ∞ and,k0 represent the absolute viscosity and the thermal conductivity of the fluid,

respectively, λ and γ are constants.

The boundary conditions for the velocity are given as

u = 0 , v = rΩ w = 0 at z = 0 and u→ 0 v → 0 as z → ∞ (9.10)

In addition, for the temperature and concentration on the surface of the cone, one can

either have constant temperature Tw and concentration and Cw (CWT) or a constant heat

flux qw and mass flux and qw (CHF).Thus, the conditions for the temperature on the bound-

ary conditions are written as

Type - I (CWT) : T = Tw C = Cw at z = 0 (9.11)

Type - II (CHF) : k
∂T

∂z
= qw k

∂C

∂z
= qm at z = 0 (9.12)

and far away from the cone, the temperature and concentration of the free stream are

constant i.e. T → T∞ , C → C∞ as z → ∞

The following non-dimensional Transformations are introduced to get the dimensionless
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equations

η =

(
Ω sinα

ν

) 1
2

z, u =
1

2
xΩ sinαf ′(η), v = xΩ sinαg(η), w = (νΩ sinα)

1
2 f(η),

T = T∞ + (Tw − T∞)θ(η), where Tw − T∞ = (TL − T∞)
x

L
for CWT case

T = T∞ +

(
Ω sinα

ν

) 1
2 qw
k
θ(η), where qw = q0

x

L
for CHF case,

C = C∞ + (Cw − C∞)θ(η), where Cw − C∞ = (CL − C∞)
x

L
for CWT case

C = C∞ +

(
Ω sinα

ν

) 1
2 qw
k
θ(η), where qw = q0

x

L
for CHF case


(9.13)

Applying the similarity transformations (9.13) in the Eqs. (9.1) to (9.4), we get the

following non-dimensional equations

(1 + A)f
′′′ − Aθf

′′′ − ff
′′
+

1

2
f

′2 − Aθ
′
f

′′ − 2G2 − 2λθ − 2Bϕ = 0 (9.14)

(1 + A)g
′′ − Aθg

′′ − Ag
′
θ
′
+ f

′
g − fg

′
= 0 (9.15)(

Rd+
1

Pr

)
θ
′′
+

∈
Pr
θθ

′′
+

∈
Pr
θ
′2
+

1

2
f

′
θ − fθ

′
= 0 (9.16)

1

Sc
ϕ

′′
+

∈
Sc
θϕ

′′
+

1

Sc
∈ θ

′
ϕ′ +

1

2
f

′
ϕ− fϕ′ − γϕ = 0 (9.17)

where Rd = 1
µcp

16σ∗T 3
∞

3kσ
is the radiation parameter, γ = kr

ΩSinα
is the chemical reaction param-

eter.

The dimensionless form of conditions on the boundary are

f(0) = f ′(0) = 0, g(0) = 1, θ(0) = 1, ϕ(0) = 1,

f ′(∞) = g(∞) = θ(∞) = ϕ(∞) = 0

}
for CWT case. (9.18)

f(0) = f ′(0) = 0, g(0) = 1, θ′(0) = −1, ϕ′(0) = −1

f ′(∞) = g(∞) = θ(∞) = ϕ(∞) = 0

}
for CHF case. (9.19)

The quantities of practical interests are the surface skin-friction coefficient in x- and y-
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directions and local rate of heat-transfer in terms of Nusselt number. The non-dimensional

form of skin-friction coefficient Cfx and Cfy are

Cfx = −Rex−
1
2f

′′
(0), Cfy = −Rex−

1
2 g

′
(0) (9.20)

The non-dimensional form of Nusselt numbers (Nu) and Sherwood number (Sh) for CWT

case are

NuI = −Rex−
1
2 θ

′
(0), ShI = −Rex−

1
2ϕ

′
(0), (9.21)

The non-dimensional form of Nusselt numbers (Nu) and Sherwood number (Sh) for CHF

case are

NuII =
1

θ(0)
, ShII =

1

ϕ(0)
(9.22)

9.3 Methodology

The set of differential equations (9.14) - (9.17) are linearized by means of a successive lin-

earization method (SLM) [55]. The solutions of the ensuing linearized equations are attained

by employing the Chebyshev spectral method [7]. On applying the procedure explained in

Chapter 2 to the Eqs. (9.14) - (9.17), we get the following linearized equations.

a1f
′′′

i + a2f
′′

i + a3f
′

i + a4fi + a5gi + a6θ
′

i + a7θi + a8ϕi = a9 (9.23)

b1f
′

i + b2fi + b3f
′′

i + b4f
′

i + b5fi + b6θ
′

i + b7θi = b8 (9.24)

c1f
′

i + c2fi + c3θ
′′

i + c4θ
′

i + c5θi = c6 (9.25)

d1f
′

i + d2fi + d3θ
′

i + d4θi + d5ϕ
′′

i + d6ϕ
′

i + d7ϕi = d8 (9.26)

where

a1 =
(
(1 + A)− A

∑
θm

)
, a2 =

(
−
∑

fm − A
∑

θ
′

m

)
,

a3 = −
∑

f
′

m, a4 = −
∑

f
′′

m, a5 = −4
∑

gm, a6 = −A
∑

f
′′

m,

a7 = −A
∑

f
′′′

m − 2λ, a8 = −2B

a9 =
(
A
∑

θm − (1 + A)
)∑

f
′′′

m +
(∑

fm + A
∑

θ
′

m

)∑
f

′′

m − 1

2

∑
f

′2

m

+2
∑

gm
2
+ 2λ

∑
θm + 2B

∑
ϕm
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b1 =
∑

gm, b2 = −
∑

g
′

m, b3 =
(
(1 + A)− A

∑
θm

)
b4 = −A

∑
θ
′

m −
∑

fm, b5 =
∑

f
′

m, b6 = −A
∑

g
′

m, b7 = −A
∑

g
′′

m

b8 =
(
A
∑

θm − (1 + A)
)∑

g
′′

m + A
∑

g
′

m

∑
θ
′

m −
∑

f
′

m

∑
gm +

∑
fm
∑

g
′

m

c1 =
1

2

∑
θm, c2 = −

∑
θ
′

m, c3 = (Rd+
1

Pr
) +

∈
Pr

∑
θm

c4 =
2 ∈
Pr

∑
θ
′

m −
∑

fm, c5 =
∈
Pr

∑
θ
′′

m +
1

2

∑
f

′

m

c6 =

(
− 1

Pr
− ∈

Pr

∑
θm

)∑
θ
′′

m − ∈
Pr

∑
θ
′2

m +
∑

fm
∑

θ
′

m − 1

2

∑
f

′

m

∑
θm

d1 =
1

2

∑
ϕm, d2 = −

∑
ϕ

′

m, d3 =
∈
Sc

∑
ϕ

′

m, d4 =
∈
Sc

∑
ϕ

′′

m, d5 =
1

Sc
+

∈
Sc

∑
θm

d6 =
∈
Sc

∑
θ
′

m −
∑

fm, d7 =
1

2

∑
f

′

m − γ,

d8 =

(
− 1

Sc
− ∈
Sc

∑
θm

)∑
ϕ

′′

m+
(
− ∈
Sc

∑
θ
′

m +
∑

fm

)∑
ϕ

′

m−
1

2

∑
f

′

m

∑
ϕm+γ

∑
ϕm

The equivalent conditions to Equations (9.18) and (9.19) are

fi(0) = f ′
i(0) = 0, gi(0) = 1, θi(0) = 1, ϕi(0) = 1,

f ′
i(∞) = gi(∞) = θi(∞) = ϕi(∞) = 0

}
for CWT case. (9.27)

fi(0) = f ′
i(0) = 0, gi(0) = 1, θ′i(0) = −1, ϕ′

i(0) = −1

f ′
i(∞) = gi(∞) = θi(∞) = ϕi(∞) = 0

}
for CHF case. (9.28)

As explained in Chapter 2, applying Chebyshev pseudo spectral method on the system

of linearized equations (9.23),(9.24),(9.25) and (9.26), we get the following equation in the

matrix form

Ai−1Xi = Ri−1 (9.29)

whereAi−1 is a square matrix of order 4N +4 and Xi and Ri−1 are column matrices of order

4N + 4 given by

Ai−1 =


A

(i)
11 A

(i)
12 A

(i)
13 A

(i)
14

A
(i)
21 A

(i)
22 A

(i)
23 A

(i)
24

A
(i)
31 A

(i)
32 A

(i)
33 A

(i)
34

A
(i)
41 A

(i)
42 A

(i)
43 A

(i)
44

 , Xi =


Fi

Gi

Θi

Φi

 , Ri =


r
(i)
1

r
(i)
2

r
(i)
3

r
(i)
4

 (9.30)
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where

A
(1)
11 = a1D

3 + a2D
2 + a3D + a4I, A

(1)
12 = a5I, A

(1)
13 = a6D + a7I, A

(1)
14 = a8I

A
(1)
21 = b1D + b2I, A

(1)
22 = b3D

2 + b4D + b5I, A
(1)
23 = b6D + b7I, A

(1)
24 = 0

A
(1)
31 = c1D + c2I, A

(1)
32 = 0, A

(1)
33 = c3D

2 + c4D + c5I, A
(1)
34 = 0

A
(1)
41 = d1D + d2I, A

(1)
42 = 0, A

(1)
43 = d3D + d4I, A

(1)
44 = d5D

2 + d6D + d7I

r
(1)
1 = [a9(ξ0), a9(ξ1), ..., a9(ξN−1), a9(ξN)]

T

r
(1)
2 = [b8(ξ0), b8(ξ1), ..., b8(ξN−1), b8(ξN)]

T

r
(1)
3 = [c6(ξ0), c6(ξ1), ..., c6(ξN−1), c6(ξN)]

T

r
(1)
4 = [d8(ξ0), d8(ξ1), ..., d8(ξN−1), d8(ξN)]

T

9.4 Results and Discussion

The effects of viscosity parameter, buoyancy parameter and thermal conductivity parameter

on the local skin friction coefficients, local Nusselt Number and local Sherwood number are

depicted graphically for constant wall temperature and heat flux cases.

Figure 9.1 depicts the effect of the viscosity parameter A on the coefficients of skin

friction, Nusselt number, and Sherwood number for type - I boundary conditions. Figures

9.1(a) and 9.1(b) show that the tangential and azimuthal skin friction coefficients increase

as A increases. As shown in Fig. 9.1(c), the local Nusselt number (−θ′(0)) decreases as A
increases. As presented in Fig. 9.1(d), increasing the parameter A slightly reduces the local

Sherwood number (−ϕ′(0)).

The variation of tangential and azimuthal skin-friction coefficients (−f ′′(0)) and −g′(0)),
Nusselt number (−θ′(0)) and Sherwood number (−ϕ′(0)) for different values of ∈ and Pr

is portrayed in Fig. 9.2. According to Figs. 9.2(a) and 9.2(c), the tangential Skin friction

coefficient and Nusselt number increase as ∈ rises. The azimuthal skin friction coefficient

and the Sherewood number reduce as the value of ∈ rises, as shown in Figs. 9.2(b) and

9.2(d).

The impact of the parameter λ on −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) is presented in
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Fig.9.3 for type - I boundary conditions. It is noticed from Figs. 9.3(a) and 9.3(b) that Both

the tangential and azimuthal skin friction coefficients increase as λ increases. Figures 9.3(c)

and 9.3(d) reveal that Nusselt number and Sherwood number both increase as the value of

λ increases.

The consequence of buoyancy parameter B on the tangential skin-friction coefficient

(−f ′′(0)), azimuthal skin-friction coefficient (−g′(0)), Nusselt number (−θ′(0)) and Sherwood

number (−ϕ′(0)) is displayed in Fig.9.4 for type - I boundary conditions. It is clear from

Figs. 9.4(a),9.4(b) 9.4(c), and 9.4(d) that increasing B increases the skin friction coefficients,

Nusselt number, and Sherwood number.

The effect of radiation parameter Rd on −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) is depicted in

Fig.9.5 for type - I boundary conditions It is observed from Figs. 9.5(a) and 9.5(b) that both

the skin friction coefficients increase with an increase in the radiation parameter. Figure

9.5(c) shows that the rate of heat transfer decreases as the radiation parameter increases.

The Sherwood number increases as Rd increases, as shown in Fig. 9.5(d).

The variation of −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) with chemical reaction parameter γ

is displayed in Fig.9.6 for type - I boundary conditions It is noticed from Figs. 9.6(a),9.6(b)

and 9.6(c) that both the skin friction coefficients and the rate of heat transfer decrease as the

chemical reaction parameter increases. According to Fig. 9.6(d), the rate of mass transfer

increases as the value of γ increases.

The influence of viscosity parameter A on the coefficients of skin frictions, Nusselt num-

ber and Sherwood number are depicted in Fig.9.7 for type - II boundary conditions. Fig.

9.7(a) and 9.7(b) show that the tangential and azimuthal skin friction coefficients increase

as A increases. the local Nusselt number (−θ′(0)) and the local Sherwood number (−ϕ′(0))

increase as A increases as presented in Fig. 9.7(c) and 9.7(d) .

The variation of −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) for various values of ∈ and Pr is

presented in Fig. 9.8. It is observed from Figs. 9.8(a) and 9.8(b) that the tangential and

azimuthal skin friction coefficient decrease as ∈ increases. The Nusselt number increases

while the Sherewood number decreases as the value of ∈ increases, as displayed in Fig.

9.8(c) and Fig. 9.8(d).

The impact of the parameter λ on the coefficients of skin frictions, Nusselt number and

Sherwood number is portrayed in Fig.9.9 for type - II boundary conditions. It is noticed

from Figs. 9.9(a) and 9.9(b) that both the tangential and azimuthal skin friction coefficients

increase as λ increases. Figs. 9.9(c) and 9.9(d) reveal that the Nusselt number and Sherewood
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number both increase as the value of λ increases.

The consequence of buoyancy parameter B on −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) is

depicted in Fig.9.10 for type - II boundary conditions. It is evident from Figs. 9.10(a),9.10(b)

9.10(c), and 9.4(d) that increasingB raises both the skin friction coefficients, Nusselt number,

and Sherewood number.

The effect of radiation parameter Rd on the coefficients of skin frictions, Nusselt number

and Sherwood number is depicted in Fig.9.11 for type - II boundary conditions It is observed

from Figs. 9.11(a) and 9.11(b) that both the skin friction coefficients increase with an increase

in the radiation parameter. Figure 9.11(c) shows that the rate of heat transfer decreases as

the radiation parameter increases. The Sherewood number is increases as Rd increases, as

depicted in Fig. 9.11(d).

The variation of −f ′′(0), −g′(0), −θ′(0) and −ϕ′(0) with chemical reaction parameter γ is

displayed in Fig.9.12 for type - II boundary conditions It is noticed from Figs. 9.12(a),9.12(b)

and 9.12(c) that increasing the chemical reaction parameter decreases both the skin friction

coefficients and the rate of heat transfer. According to Fig. 9.12(d), the rate of mass transfer

increases as the value of γ increases.

9.5 Conclusion

The effects of thermal radiation and chemical reaction on convection flow across a rotating

vertical cone were investigated under the assumption of temperature dependent viscosity and

thermal conductivity. The flow equations are reduced to ordinary differential equations using

similarity transformed equations. The non-dimensional equations are linearized successively,

and the resulting system is solved using the Chebyshev spectral method.

• The tangential and azimuthal skin friction coefficients increase as the viscosity param-

eter increases for both types of boundary conditions.

• The radiation parameter increases both the skin friction coefficients and the Sherwood

number while decreasing the Nusselt number.

• The tangential and azimuthal skin friction coefficients, as well as the rate of heat

transfer, decrease as the chemical reaction parameter increases, whereas the rate of

mass transfer increases.
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Figure 9.1: Effect of A on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 9.2: Effect of ∈ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 9.3: Effect of λ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 9.4: Effect of B on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 9.5: Effect of Rd on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 9.6: Effect of γ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for CWT boundary conditions.
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Figure 9.7: Effect of A on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Figure 9.8: Effect of ∈ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Figure 9.9: Effect of λ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Figure 9.10: Effect of B on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” HMF boundary conditions.
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Figure 9.11: Effect of Rd on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions.
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Figure 9.12: Effect of γ on the “tangential skin friction coefficient”, “azimuthal skin friction
coefficient”, “Nusselt number” and “Sherwod number” for HMF boundary conditions”.
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Chapter 10

Summary and Conclusions

In this thesis, imcompressible viscous fluid flow over a vertical and rotating cone is considered.

The equations governing the flow in Chapters - 2 through Chapters - 9 are transformed into a

system of nonlinear ordinary differential equations using suitable transformations. The non-

linear ordinary differential equations were linearized by utlizing the successive linearization

method. The solution of the resulting equations are obtained by Chebyshev collocation

method.

The effects of variable viscosity and thermal conductivity on the steady convective heat

and mass transfer along a vertical cone in a viscous fluid is studied in part-II. The objective

of this part is to study the effects of variable viscosity paramter, varaible thermal cinduc-

tivity paramter, Soret and Dufour on the velocity, temperature, concentration, skin friction

coefficients, Nusselt number, Sherwood number. The important observations made from this

study are listed below :

• If the viscosity parameter is enhanced, the velocity adjacent to the cone surface in-

creases, while the reverse tendency is detected sufficiently away from the cone surface.

• The local heat transfer rate decreases with increasing the viscosity and thermal con-

ductivity parameters for CWT conditions but the reverse tend is noticed for CHF

conditions.

• For both the conditions, the coefficient of skin friction and mass transfer improves and

rate of heat transfer reduce with the variable thermal conductivity parameter increases.

• An enhancement in Soret number enhances the coefficient of skin friction and rate of

heat transfer but reduces the Sherwood number for both WTC and HMF cases.
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• The coefficient of skin friction and Sherwood numbers rise whereas the heat transfer

rate is reducing as the Dufour parameter increase.

Part-III deals with convective heat and mass transfer along a rotating cone embedded in

a viscous fluid with variable viscosity and thermal conductivity. Examining effects of vari-

able flid properties, Soret, Dufour, thermal radation and chemical reaction on the velocity,

temperature and concentration profiles and skin friction coefficients, heat and mass transfer

rates are the objectives of this section. The main observations of these studies are

• For increasing values of the viscosity parameter, the dimensionless tangential skin-

friction, azimuthal skin-friction, and rate of heat transfer all rise.

• The Nusselt number is decreasing with an increase in ∈ while the skin friction coeffi-

cients are rising.

• The tangential and azimuthal skin friction increase while heat transfer rate decreases

as lambda increases.

• An increase in the buoyancy ratio raises the tangential and azimuthal skin friction

coefficients, Nusselt number, and Sherewood number.

• The Dufour number increases both the skin friction coefficients and the Sherwood

number while decreasing the Nusselt number.

• The tangential and azimuthal skin friction coefficients, as well as the rate of heat

transfer, increase as the Soret number increases, whereas the rate of mass transfer

decreases.

• The radiation parameter increases both the skin friction coefficients and the Sherwood

number while decreasing the Nusselt number.

• The tangential and azimuthal skin friction coefficients, as well as the rate of heat

transfer, decrease as the chemical reaction parameter increases, whereas the rate of

mass transfer increases.

The work presented in the thesis can be extended to analyze the various effects like MHD,

Hall effect, Hall and Ion slip, viscous dissipation, binary chemical reaction, etc. Further, this

work can be extended by studying the analysis in various non-Newtonian fluids like Casson

fluids, Jeffrey fluids, Power-law fluids. This work can also be extended to porous media.
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In the recent past, the study of stability analysis has attracted the curiosity of many

researchers. Thus, the work presented in the thesis can be extended to study the stability

of the boundary layer flows in Newtonian and/or non-Newtonian fluids.
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