
 
 

Investigation of Impact of Generation Uncertainty on 

Optimal Power Flow Using New Hybrid Multi-

Objective Evolutionary Algorithms  
Thesis 

Submitted in partial fulfillment of the requirements 

for the award of the degree of 

Doctor of Philosophy 

in 

Electrical Engineering 

 

By 

Avvari Ravi Kumar 

(Roll No: 718122) 

 

Supervisor 

Dr. D. M. Vinod Kumar 

Professor (HAG) 

 

 
 

 DEPARTMENT OF ELECTRICAL ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL 
(An Institution of National Importance, Ministry of Education, Govt. of India) 

Hanumakonda-506004, Telangana State, India 

December-2022 



 
 

APPROVAL SHEET 

This thesis entitled “Investigation of Impact of Generation Uncertainty on Optimal Power 

Flow Using New Hybrid Multi-Objective Evolutionary Algorithms” by Mr. Avvari Ravi 

Kumar, Roll No: 718122 is approved for the degree of Doctor of Philosophy in Electrical 

Engineering. 

 

Examiners 

 

______________________ 

______________________ 

______________________ 

 

Supervisor 

 

Dr. D. M. Vinod Kumar 

Professor (HAG) 

EED, NIT Warangal 

 

Chairman 

 

Dr. S. Srinivasa Rao 

Professor 

EED, NIT Warangal 

 

 

Date: ____________ 

 

DEPARTMENT OF ELECTRICAL ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL 

HANUMAKONDA- 506004 



 
 

DEPARTMENT OF ELECTRICAL ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL 

 

CERTIFICATE 

 

This is to certify that the thesis entitled “Investigation of Impact of Generation Uncertainty 

on Optimal Power Flow Using New Hybrid Multi-Objective Evolutionary Algorithms”, 

which is being submitted by Mr. Avvari Ravi Kumar, Roll No: 718122, is a bonafide work 

submitted to National Institute of Technology Warangal in partial fulfillment of the 

requirements for the award of the degree of Doctor of Philosophy in Electrical Engineering. 

To the best of my knowledge, the work incorporated in this thesis has not been submitted 

elsewhere for the award of any degree. 

 

 

 

 

 

 

 

 

Date: 21 December, 2022                                                    Dr. D. M. Vinod Kumar 

Place: Hanumakonda                                                                (Thesis Supervisor) 

             Professor (HAG) 

        Department of Electrical Engineering                  

         National Institute of Technology Warangal 

                         Hanumakonda –506004, India. 

 

 



 
 

DECLARATION 
 

This is to certify that the work presented in the thesis entitled “Investigation of Impact of 

Generation Uncertainty on Optimal Power Flow Using New Hybrid Multi-Objective 

Evolutionary Algorithms”, is bonafide work done by me under the supervision of Dr. 

D.M.Vinod Kumar, Professor (HAG), Department of Electrical Engineering, National Institute 

of Technology Warangal, India and was not submitted elsewhere for the award of any degree.  

I declare that this written submission represents my ideas in my own words and where 

others’ ideas or words have been included; I have adequately cited and referenced the sources. 

I also declare that I have adhered to all principles of academic honesty and integrity and have 

not misrepresented or fabricated or falsified any idea/date/fact/source in my submission. I 

understand that any violation of the above will be a cause for disciplinary action by the institute 

and can also evoke penal action from the sources which have thus not been properly cited or 

from whom proper permission has not been taken when needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date: 21 December, 2022                                                                            Avvari Ravi Kumar    

Place: Hanumakonda                 (Roll No: 718122) 

             



i 
 

 

 

 

 

 

 

I would like to dedicate my thesis to my parents: 

 

Late Sri Avvari Ramanaiah 

 

Late Smt. Avvari Mahalakshmamma 

 

  



ii 
 

ACKNOWLEDGEMENTS 

I am glad to express my deep sense of gratitude and thanks to my supervisor Dr. D.M. 

Vinod Kumar, Professor (HAG), Department of Electrical Engineering, National Institute of 

Technology Warangal, for his continuous support, guidance, and valuable suggestions. I am 

grateful to him for having faith in me throughout my Ph.D. His knowledge, expertise, and 

experience helped me to perform extensive research.  

 I am very much thankful to Dr. S. Srinivasa Rao, Chairman of the Doctoral Scrutiny 

Committee, and Professor, Department of Electrical Engineering for his continuous support, 

encouragement, and suggestions.  

I am very thankful to Dr. B. L. Narasimharaju, Professor & Head, Department of 

Electrical Engineering for his continuous support, encouragement, and suggestions. 

I take this privilege to thank my Doctoral Scrutiny Committee members, Dr. Ch. 

Venkaiah, Professor, Department of Electrical Engineering, Dr. A.V.Giridhar, Associate 

Professor, Department of Electrical Engineering, Dr. P. Muthu, Associate Professor, 

Department of Mathematics, for their detailed review, constructive suggestions, and excellent 

advice during the process of this research work.  I would like to thank Dr. M. Raja 

Vishwanathan, Associate Professor, Department of Humanities and Social Science for his 

valuable suggestions, continuous support, and cooperation.  

I would like to thank the teaching, and non-teaching members, and fraternity of the 

Department of Electrical Engineering of NIT Warangal for their support and encouragement.  

I wish to express my sincere thanks to Prof. N. V. Ramana Rao, Director, NIT 

Warangal for his support and encouragement. 

 I would like to take this opportunity to thank my seniors Dr. S. Kayalvizhi, Dr. Kiran 

Teeparthi, Dr. C. Bhanu Prasad, and fellow scholar Mr. T. Vinod Kumar for their support and 

encouragement.   

I would like to thank all my teachers, colleagues, and seniors at various places for their 

support and encouragement.  

 I would like to thank my wife Mrs. Lavanya for being a constant source of inspiration 

and support. I take this opportunity to thank all my family members and my well-wishers for 

their understanding, support, and encouragement during this research work. I would like to 

thank all those who helped me directly and indirectly at various stages of this work.  

   

Avvari Ravi Kumar  



iii 
 

ABSTRACT 

In general, optimization promotes the economical and efficient operation of electrical systems. 

The majority of power system issues are often non-linear, non-convex, and involve the 

simultaneous optimization of multiple contrasting objective functions. Optimization 

approaches may be required to address a variety of continuous and discrete variables in the 

problems. In the past, classical/traditional/conventional optimization approaches were 

employed. Conventional techniques typically use gradient-based searches that converge to 

local optimal solutions, and it was known that they performed well for convex and continuous 

optimization problems. Later, a transformation in optimization methods initiated Evolutionary 

Algorithms (EAs) into the picture. The majority of these techniques can effectively circumvent 

the issue of premature convergence and explore the search area toward the global optimal 

solution. In addition, renewable energy sources (RESs) have become a vital part of the modern 

power system. Due to the uncertainty and unpredictability of RESs, the formulation of the 

power system problem has grown complex and dynamic. The main purpose of this research is 

to implement cutting-edge variations of decomposition-based MOEA (MOEA/D) for the OPF 

problems in power systems. Moreover, operational and security limitations are prevalent in 

electrical networks. The static penalty method was the simplest and most easy strategy for 

addressing power system limits. In this thesis, a new constraint handling method (CHM) 

referred to as the superiority of feasible solutions (SF) method in addition to the penalty method 

was introduced. In conjunction with MOEAs, CHM has been effectively used to previously 

known and freshly formulated constrained optimization issues in the power system, notably 

the OPF problem. 

The following are the thesis contributions:  

 A novel hybrid MOEA based on decomposition and local dominance was proposed for 

the OPF problem. The MOOPF aims to minimize total generation cost, emission, active 

power loss, and voltage magnitude deviation. To address the limitations of the MOOPF 

problem, a penalty function method was implemented. In addition, a fuzzy technique 

was used to determine the optimal values among Pareto-optimal alternatives. The 

proposed strategy combines the decomposition and local dominance strategies to 

promote convergence by enhancing diversity.  

 A new hybrid decomposition and summation of normalized objectives with improved 

diversified selection-based MOEA including wind energy conversion system (WECS) 
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and solar photo-voltaic system (SPVS) uncertainty for OPF was carried out. This 

chapter recommends a novel CHM, that adaptively inserts penalty and avoids the 

parameter relying on penalty calculation. In the OPF cost study, the influence of RES 

such as WECS and SPVS integration was examined. To minimize the total generation 

cost, the cost of RESs is factored into the OPF issue to examine the influence of 

intermittent and unpredictable renewable sources on cost and operation. Weibull and 

Lognormal PDFs are applied to characterize the unpredictability of WECS and SPVS 

respectively.  

 A new hybrid decomposition and summation of normalized objectives with improved 

diversified selection-based MOEA including WECS, SPVS, and plug-in electric 

vehicle system (PEVS) uncertainty for the OPF problem were done. The MOOPF 

problem was solved using a unique CHM that adaptively inserts the penalty and avoids 

the parameter relying on penalty calculation. In addition, a fuzzy technique was used to 

determine the optimal values among Pareto-optimal alternatives. The impact of 

intermittence of WECS, SPVS, and PEV integration was considered for optimal cost 

analysis.  

 A new hybrid decomposition and invasive weed optimization (IWO) based MOEA 

including WECS, SPVS, and PEV uncertainty was presented for the OPF problem. The 

standard OPF problem was transformed into a stochastic OPF by incorporating the 

uncertainty of WECS, SPVS, and PEVSs. The MOOPF problem was solved using a 

unique CHM that adaptively inserts the penalty and avoids the parameter relying on 

penalty calculation. In addition, a fuzzy technique was used to determine the optimal 

values among Pareto-optimal alternatives. The impact of intermittence of WECS, 

SPVS, and PEV integration was considered for optimal cost analysis.  
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Chapter 1  

Introduction 

1.1 Optimal Power Flow Overview 

The OPF has become a popular topic of discussion amongst power system academics all over 

the world due to the interesting variety of issues it raises. The OPF is presented as a single or 

multi-objective issue to minimize total generating cost, emission, active power loss, voltage 

magnitude deviation, etc., subject to restrictions on the generator's capability, the line's 

capacity, the bus voltage, and the balance of power flow. The OPF program provides the ideal 

values for the decision variables, resulting in the efficient and economic operation of the power 

system. Main control variables refer to the network's generator bus real power, reactive power, 

and bus voltages. The latter regulates the flow of reactive power, which is often balanced by 

connecting capacitors with the proper ratings to the network that supplies inductive loads. The 

bus voltages and complex powers in the lines obtained throughout the optimization indicate 

the optimum operating condition, which may result in the fulfillment of one or more network 

objectives. Therefore, OPF, which requires complex computations with various parameters and 

the identification of optimal solutions while simultaneously fulfilling all restrictions, remains 

the most challenging problem to solve.     

In recent days, issues such as the rise in penetration of renewable sources and the rise 

in load demand are posing new challenges to the modern power system. The OPF is a technique 

for power system planning to find the best operating point in terms of real power generation, 

voltage magnitude, tap settings of transformers, and compensators to optimize the specific 

objective function(s). The OPF is a nonlinear optimization issue with continuous and 

discontinuous control variables. However, discrete control variables like transformer tap 

settings, shunt devices, and phase shifters make the OPF problem highly complicated. 

In recent times, RESs penetration has increased drastically in power systems. The 

penetration of RESs has introduced many challenges to the power system. The intermittent 

nature of RESs makes the system highly complex in terms of operation and control. The 

uncertain nature of RESs is required to be modeled accurately to examine the dynamic 

functioning of the power system. Due to its unpredictable nature, protection schemes need to 

be updated for operating the power system in a secure region. In a power system, the main aim 

is to operate it with optimal cost and simultaneously satisfy the operating and security 

constraints. The OPF determines the optimal control settings satisfying system constraints and 
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security constraints to operate economically. OPF is an optimizing tool for power system 

operation analysis, scheduling, and energy management applications.  

1.2 Mathematical Representation  

The OPF is a non-linear, non-convex optimization problem that aims to minimize a given 

objective function under a variety of equality and inequality restrictions. The OPF model is 

formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝑓(𝑥, 𝑢)                                                          (1.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ {
𝑔(𝑥, 𝑢) = 0
ℎ(𝑥, 𝑢) ≤ 0

 

Where 𝑓(𝑥, 𝑢) is the objective function, x and u are the vector of state and control variables 

respectively, 𝑔(𝑥, 𝑢) and ℎ(𝑥, 𝑢) are the collection of equality and inequality restrictions 

respectively.  

a) State variables 

The state variables for the power system can be written as follows in the vector x: 

𝑥 = [𝑃𝐺1, 𝑉𝐿1, … 𝑉𝐿𝑁𝐿, 𝑄𝐺1, …𝑄𝐺𝑁𝐺 , 𝑆𝑙1, … 𝑆𝑙𝑛𝑙 ]                              (1.2) 

Where, 𝑁𝐿 and 𝑛𝑙 denote the number of load buses and lines respectively. 𝑃𝐺1is the slack bus 

real power, 𝑄𝐺𝑖 is the i-th generator bus reactive power, 𝑉𝐿𝑖 denotes i-th load bus voltage and 

𝑆𝑙𝑖 is the i-th line loading.  

b) Control variables 

The decision variables for the power system can be written as follows in the vector u:  

𝑢 = [𝑃𝐺2, … 𝑃𝐺𝑁𝐺 , 𝑉𝐺1, … 𝑉𝐺𝑁𝐺 , 𝑇1, … 𝑇𝑁𝑇 , 𝑄𝐶1, …𝑄𝐶𝑁𝐶]                        (1.3) 

Where 𝑁𝐺, 𝑁𝑇 and  𝑁𝐶  are the number of generators, transformers and shunt compensators 

respectively. 𝑃𝐺𝑖 is the i-th generator bus real power (except slack bus). 𝑉𝐺𝑖 is the i-th generator 

bus voltage magnitude, 𝑇𝑖 is the i-th transformer tap ratio, 𝑄𝐶𝑖 is the i-th bus shunt compensator.  

In general, a problem having more than one objective is treated as a multi-objective 

optimization problem (MOP). While formulating the MOP, the objective functions are chosen 

such that they conflict with each other. The conflict between objectives depends on the 

correlation among the objectives. Different objectives will have different degrees of correlation 

among a combination of objectives. To formulate the combination of objectives, four different 

objectives are considered in this thesis, which are minimization of (a) total generation cost (J1), 

(b) emission (J2), (c) active power loss (J3), and (d) voltage magnitude deviation (J4). To show 

the change in trade-off solutions with an increase in objectives, the multi-objective problems 

were designed with two objectives, three objectives, and four objectives. These multi-

objectives was formulated from the combination of four objectives. The combination of 
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objectives were taken into account to test the MOP with different degrees of correlation among 

the objectives. 

1.3 Best-Compromised Solution (BCS)  

The fuzzy method [12] was employed to obtain the BCS from a set of non-dominated solutions 

of the Pareto optimal front. The membership value (𝜇𝑚
𝑘 ) of every objective is computed as 

follows: 

𝜇𝑚
𝑘 =

{
 

 
1;  𝑓𝑜𝑟 𝐹𝑚

𝑘 ≤ 𝐹𝑚
𝑚𝑖𝑛

𝐹𝑚
𝑚𝑎𝑥−𝐹𝑚

𝑘

𝐹𝑚
𝑚𝑎𝑥−𝐹𝑚

𝑚𝑖𝑛

0;  𝑓𝑜𝑟 𝐹𝑚
𝑘 ≥ 𝐹𝑚

𝑚𝑎𝑥

; 𝑓𝑜𝑟    𝐹𝑚
𝑚𝑖𝑛 ≤ 𝐹𝑚

𝑘 ≤ 𝐹𝑚
𝑚𝑎𝑥                        (1.4) 

where 𝐹𝑚
𝑚𝑖𝑛, 𝑎𝑛𝑑 𝐹𝑚

𝑚𝑎𝑥 are the limits on fitness values for the objective m out of all the non-

dominated solutions; 𝐹𝑚
𝑘 is the fitness value of objective m for non-dominated solution 𝑘. The 

normalized membership value (𝜇𝑘) for every non-dominant solution is determined as follows: 

𝜇𝑘 =
∑ 𝜇𝑚

𝑘𝑀
𝑚=1

∑
𝑁𝑑
𝑘=1

∑ 𝜇𝑚
𝑘𝑀

𝑚=1

                                                                  (1.5) 

where 𝑁𝑑 and 𝑀 indicate the number of non-dominated solutions and objective functions 

respectively. The optimal trade-off is represented as the solution with the highest 𝜇𝑘 value.  

 

Fig.1.1. Pictorial representation of Pareto-optimal solutions. 

1.4 Evolutionary Optimization Algorithms 

The limitation of conventional optimization methods can be overcome with alternative 

optimization techniques such as evolutionary optimization techniques, which can handle 

nonlinear, non-differentiable, real-world complex problems, highly constrained, high 

dimensionality problems, and discrete optimization problems. Evolutionary optimization 

algorithms are one of the branches of meta-heuristic optimization methods, which are inspired 
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by the biological evolutionary theory to solve optimization problems. The evolutionary 

algorithms can be classified into two categories: i) population-based and ii) trajectory-based 

algorithms. Population-based algorithms are inspired by the biology and swarms of different 

species. In population-based algorithms, multiple solutions are propagated to find the optimal 

solution in the decision space. genetic algorithm (GA), particle swarm optimization (PSO), 

etc., are examples of population-based algorithms. Trajectory-based algorithms are adapted 

from physics, in which a single solution is propagated to find the optimal solution. Tabu search, 

simulated annealing, etc., are examples of trajectory-based algorithms. Evolutionary 

optimization algorithms are best suited to resolve the OPF issue. The OPF can be structured as 

both single-objective and multiple-objective issues. In practical applications of power systems, 

one needs to consider multiple objectives rather than a single objective. The multi-objective 

formulation gives the trade-off solutions which are useful in making the decision of power 

system planning studies. 

1.5       Multi-Objective Evolutionary Algorithms (MOEAs) 

The OPF problem can be solved using MOEA. The optimization process provides the best 

feasible value which is the maximum or minimum value of a given objective. In general, multi-

objective optimization is expressed as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), …… , 𝑓𝑚(𝑥))
𝑇                            (1.6) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

Where 𝐹(𝑥) is the multi-objective function formulated from ‘m’ individual objectives 𝑓(𝑥). 

When m≥2, the optimization is referred to as multi-objective optimization problem (MOP).  

The MOEAs are divided into four categories: i) Pareto dominance based, ii) 

Decomposition based, iii) Indicator based, and iv) Model-based.  

i. Pareto dominance-based MOEA: The individuals are ordered based on their Pareto 

dominance using the non-dominated sorting method, which increases the convergence 

of MOEA, and the crowding distance is used to increase the diversity of solutions on 

the Pareto front. 

ii. Decomposition-based MOEA: The MOP is transformed into several single objective 

optimization problems. The algorithm divides the problem into subproblems using 

scalarization methods based on weights. Based on the distance between aggregation 

weights, neighborhoods are generated. The subproblem is simultaneously solved by 

exchanging information among the neighboring solutions. This improves the efficiency 

of searching the objective space for optimal solutions. 
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iii. Indicator-based MOEA: These methods use performance indicators to guide the 

search process and the solutions are selected based on performance indicator value. 

Several types of indicator metrics are available in the literature such as hypervolume 

indicator, R2 indicator, inverted generational distance (IGD), and so on.  

iv. Model-based MOEA: The model-based MOEAs add the ability to learn from the 

environment in evolutionary algorithms. Traditional MOEAs such as Pareto, 

decomposition, and indicator-based are intended to operate on fixed heuristic strategies 

such as reproduction, selection, and variation. In the process of searching for a feasible 

solution, traditional MOEAs may not interact with the rapidly changing environment 

due to the complex properties of the problem to be solved. The model-based MOEAs 

uses machine learning techniques to adapt to environmental changes in the evolutionary 

process. The model-based MOEA replaces the traditional heuristic operators such as 

selection, reproduction, and fitness evaluation with a machine learning model. The 

models use the candidate solutions as sample training data from the current generation 

to generate the best solutions by learning the changes in the environment. 

In all evolutionary algorithms, maintaining a proper balance between exploitation and 

exploration is necessary to get the global optimum solution. Exploration is the process of 

searching broadly in objective space, whereas exploitation is the local searching done in the 

vicinity of an optimal or nearly ideal solution. Excessive exploitation results in the algorithm 

being stopped at a local optimum point rather than getting close to the global optimum solution, 

whereas exhaustive exploration lengthens the convergence time. Therefore, while building 

evolutionary algorithms, striking the right balance between exploitation (local search) and 

exploration (global search) is crucial.  

The MOEAs are normally modeled to handle different conflicting goals, such as 

maximizing the spread of solutions along the Pareto front (i.e., diversity) and minimizing the 

distance between the solutions along the Pareto front (i.e., convergence) [23]. The trade-off 

between convergence and diversity is important to choose the best solution among the solutions 

obtained. Therefore, to attain a balance between exploration and exploitation in this thesis, a 

new hybrid MOEAs were proposed. 



Chapter 2 
 

7 
 

Chapter 2 

 

 

 

 

 

 

 

Literature Review 

 

 

 

 



Chapter 2 

8 
 

Chapter 2  

Literature Review 

2.1 Overview 

In recent years, the penetration of RESs has increased rapidly in the power system, which in 

turn has led to many challenges to monitor and operate the modern power system. The OPF is 

a technique in power system planning to find the best operating point in terms of real power 

generation, voltage magnitude, off-nominal transformer tap positions, and shunt compensator 

to optimize the specific objective function(s) [1]. The OPF is a non-linear, and non-convex 

optimization problem that includes both continuous and discrete control variables. A discrete 

control variable like transformer tap setting, shunt device, and phase shifter makes the OPF 

problem complex. Moreover, the uncertainty and unpredictability of renewable energy sources 

make the system highly complex to operate and control [1]. The uncertain nature of RESs is 

required to be modeled accurately to monitor and control the dynamic behavior of the power 

system network more reliably and operate more efficiently. The OPF determines the optimal 

control variables by meeting the system constraints. A significant amount of research has been 

carried out in the OPF using both deterministic and stochastic methods.  

Several deterministic methods have been offered in the literature to resolve PF 

problems. It includes linear programming (LP), non-linear programming (NLP), etc. Lobato 

et. al. [2] presented LP-based OPF for power loss reduction and reactive power margin 

minimization of generators. Yan et. al. [3] proposed the predictor-corrector interior-point 

method for the OPF problem in the form of a rectangle. During optimization, the Hessian 

matrices were computed only once and treated as constant. In [4], the authors proposed a 

quadratic programming method to minimize power loss in the OPF problem. The gradient 

method was proposed in [5] to develop the dynamic OPF to include wind farms without 

considering the cost of wind power. For solving the OPF model including wind plant, authors 

[6] used the Newton method and interior-point methods. However, conventional or 

deterministic optimization method may not handle mixed variable optimization problems; it 

requires mathematically well-defined objective functions and constraints, are sensitive to initial 

values of the problem, are problem-specific, exhibits poor convergence characteristics, and the 

theoretical assumptions related to problems that lead to solutions stuck at local optima points. 

Moreover, these methods are unable to solve real-world optimization issues.  Likewise, several 

authors have attempted the OPF as a single-objective optimization approach with conventional 

optimization methods [7, 8]. To overcome the limitations of classical or deterministic 
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techniques, various population-based EAs were developed, which can handle nonlinear, non-

differentiable, real-world complex problems, highly constrained, and high dimensionality 

problems, and discrete optimization problems.  

The stochastic search approach adopted by EAs may explore the search area for global 

optimality effectively. Genetic algorithm [9], Evolutionary programming [10], and others were 

among the initial attempts to apply stochastic population-based techniques for OPF. Duman et. 

al. [11], the symbiotic organisms search (SOS) algorithm was proposed to solve security-

constrained AC-DC OPF including wind, PV, and PEV sources. Sarda et. al. [12], proposed a 

robust CE-CMAES for solving the dynamic OPF problems. In this work, the dynamic OPF 

problem was modeled by including the wind, PV, and PEV uncertainties. In [13], the authors 

proposed an SOS method for resolving the AC OPF problem with thermal-wind-solar-tidal 

systems. The uncertainties associated with wind, PV, and tidal energy systems were modeled 

with Weibull, Lognormal, and Gumbel PDFs respectively. In [14], the authors developed and 

solved different constrained OPF problems for power systems containing RESs like wind and 

solar power using an HMICA-SQP. Biswas et. al. [15], used the SHADE algorithm with the 

SF method for arriving at the solution to OPF with RESs. Similarly, in [16, 17] the authors 

proposed several meta-heuristic optimization methods for solving OPF with RESs. However, 

these were formulated as single-objective optimization problems. In the real world, the OPF 

problem is multi-objective and the tradeoff between multiple objects gives better optimal 

conditions for operation. In most practical optimization problems, the objective functions 

conflict mutually. According to the no free lunch (NFL) theorem [18], no single solution is 

available which can optimize all the objectives. To overcome this problem, MOPs have been 

developed and widely exist in all applications, such as cloud computing, path planning, design, 

and scheduling [19]. These problems consist of more than one conflicting objective.     

In contrast to the majority of single-objective examples addressed in the 

aforementioned OPF literature, the weighted sum method was provided utilizing a 

backtracking search optimization [20], the moth swarm algorithm [21], etc. In this optimization 

problem, weights are assigned to the objectives, and the weighted sum of the objectives is 

minimized. The OPF problem is solved using linear scalarization or weighted-sum-based 

multi-objective optimization [22-25], in which every objective is given a weight and the 

summation of weights must be one. In [26], the authors proposed a weighted sum-based 

differential evolution (DE) algorithm for the MOOPF problem. In the weighted sum-based 

method, multiple objectives are transformed into a single objective problem by multiplying 

each objective by weight such that the sum of all weights is one. The authors considered 
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different objective functions in both normal and contingency conditions. Roy and Paul [27], 

proposed a krill herd algorithm (KHA) for solving MOOPF problems using the weighted sum-

based method. The crossover and mutation operator of the DE algorithm was merged with 

KHA to enhance the reliability of the solution and also to select a high-quality solution. Ozan 

[28], proposed an improved Archimedes optimization method for multi/single-objective OPF 

problems. Many authors used [29, 30] weighted sum-based MOOPF problems with different 

objectives. The weighted sum-based methods are simple in combining multi-objectives into a 

single objective with suitable weights. A weighted sum-based method is the basic type of a 

decomposition-based MOEA method. However, the fundamental disadvantage of this method 

is that it must be executed multiple times to produce the approximation set. Moreover, the 

weighted sum-based method fails to obtain the compromised solutions, and in concave 

optimization problems, the weighted sum-based method produces optimal solutions for one of 

the objective functions. This approach heavily depends on weights that are assigned to each 

objective value, and these, in turn, affect the optimal solution. A series of solutions using multi-

objective approaches is preferable to a single solution employing a weighted sum strategy for 

various reasons. 

Abido et. al. [31] introduced SPEA to address the active and reactive power dispatch 

problem. SPEA’s main drawback is that the beginning population has only one set of non-

dominated solutions and the external population is filled with the same ones. This will lead to 

Pareto optimal front being suboptimal, leading to a non-uniformly distributed Pareto front. 

Jeyadevi et. al. [32], Pareto dominance-based method was adduced as modified NSGA-II to 

solve the multi-objective optimization of the reactive power dispatch problem, and the 

controlled elitism method was deployed to preserve the diversity in Pareto-front; to obtain high 

uniformity, dynamic crowding distance (DCD) based strategy was proposed. Several authors 

[33-39] proposed Pareto dominance-based multi-objective optimization for OPF. However, 

Pareto-based methods suffer from limitations. The selection pressure reduces with an increase 

in the number of objectives and as a result, the effectiveness of the solution deteriorates 

proportionately to such an extent that a loss of diversity occurs in the population. 

While the aforementioned articles focused exclusively on thermal units, a system that 

combines thermal and wind powers was explored in the literature to achieve the lowest possible 

generation cost. To specify the boundaries of reactive power generation ability, Panda et. al. 

[40] suggested a modified bacteria foraging algorithm (MBFA) and built the DFIG model 

within the OPF architecture. Static synchronous compensation an external reactive power 

assisting was utilized in [41] to examine a network having wind and thermal sources, and the 
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OPF issue was handled using the ant colony algorithm and MBFA. In an OPF dispatching 

program, a stochastic model of wind generation was described in [42]. Included in [43] was 

the DFIG wind turbine model. [44] presents the OPF model for a hybrid model with PV, a 

diesel generator, and a battery that operates in isolated mode. In [45], pumped hydro was 

presented as an alternative method of storage for an autonomous hybrid system composed of 

PV, wind, and diesel generation. In conclusion, the OPF including thermal, wind, PV, and PEV 

powers requires additional investigation. 

In the literature, numerous single-objective problems of OPF have been resolved. In the 

current socio-economic environment, it becomes vital to evaluate multiple objectives for OPF. 

In the past, the typical formulation of OPF consisted of a single target, which was primarily the 

minimization of generation cost. In several countries, legislation and the installation of a carbon 

tax have heightened the significance of decreasing greenhouse gas emission. Maintaining 

power quality necessitates low voltage fluctuations from the desired voltage, and any 

improvement in power loss provides utilities a financial advantage. Therefore, the MOOPF 

problem must take into account emission, voltage variation, and power loss in addition to the 

cost. Since this MOOPF problem is highly non-linear and aims are frequently contradictory, it 

necessitates the application of effective techniques. An appropriate MOEA can yield a Pareto 

front (PF) with multiple non-dominated optimal values for balancing multiple objectives. 

Several researchers expanded their work on OPF utilizing hybrid heuristic-based multi-

objective optimization algorithms[46, 47]. Nonetheless, as the number of objective functions 

increases, so does the size of the objective space. Therefore, nearly all solutions became non-

dominant with each other. This worsens the selection pressure on the PF, a collection of all 

Pareto-optimal solutions, and leads to a population diversity loss during the evolution as well 

as a slower pace of convergence for MOPs [48, 49].  

The MOEAs are normally modeled to tackle different conflicting objectives, such as 

maximizing the spread of solutions along the Pareto front (i.e., diversity) and minimizing the 

distance between the solutions along the Pareto front (i.e., convergence) [50, 51]. The trade-

off between convergence and diversity is important to choose a good quality solution among 

the solutions obtained. Therefore, to attain a balance between exploration and exploitation, 

several hybrid MOEAs are proposed in this thesis for solving the OPF problem.   

2.2 Motivation 

In addition to the benefits cited in the existing literature for various optimization strategies, 

there are also certain drawbacks. The limitations are as follows: 
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 In the literature, the OPF problem is typically written as a single objective optimization 

problem [9–17], however, the practical OPF problem has several objectives, and trade-off 

solutions play a crucial part in power system decision-making.  

 The weighted-sum-based technique [20-30] is easy to construct and apply to multi-

objective problems. This strategy turns a MOP into a single-objective problem by 

combining weighted objectives. Apart from the merits, the demerits are: (i) It is incapable 

of dealing with non-convex Pareto fronts (PF) or the method yields solutions that are 

optimal in one of the objective functions for non-concave PF and (ii) The weights assigned 

to the objectives have a substantial effect on the optimal solutions. 

 The Pareto-oriented MOEAs [31-39] are gaining importance because they outperform the 

constraints of weighted-sum-based MOEAs. The solutions are prioritized according to 

Pareto rather than weighted objectives, which enhances MOEA convergence. Then, the 

crowding distance method is applied to ensure the diversity of the solutions in the PF. In 

addition to their benefits, Pareto-based MOEAs have the following disadvantages: (i) In 

dominance-based approaches, it may be impossible to ensure a level of convergence, and 

it is difficult to obtain a particularly regular spacing of solutions along the PF. (ii) As 

objective space expands, nearly all solutions inside a population become non-dominant 

with one another [48]. (iii) Because dominance resistance solutions exist [49], selection 

pressure degrades and it may lead to the loss of population diversity during the evolutionary 

process, and it degrades the effectiveness of MOEA [50], and (iv) Pareto dominance may 

not give any assurance that the solution provided is an optimal one, as there is no indicator 

of performance during the evolution.  

 In a power system, integrating RESs like WECS and SPVS with conventional OPF is 

necessary to consider the impact of uncertainty of these sources. The uncertain nature of 

WECS and SPVS are modeled using PDFs and their uncertainty cost is calculated using 

Monte-Carlo simulations.  

 In addition to RESs, integrating the PEVs with conventional OPF to consider the impact of 

uncertainty of these sources becomes necessary. The uncertain nature of PEVs is modeled 

using PDFs and their uncertainty cost is calculated using Monte-Carlo simulations.  

 The OPF problem is a constrained optimization problem, which requires an efficient CHM 

in combination with an evolutionary algorithm to obtain feasible optimal solutions. The 

commonly used one is the static penalty approach here a penalty is applied to the fitness of 

an infeasible individual for breaching limitations. 
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 However, the drawback with the static penalty-based method is that the accuracy of OPF 

suffers due to the huge error associated with penalty factors. The penalty factors of each 

objective that are needed to be added to the objective function are fine-tuned by trial and 

error. 

2.3 Objectives of the Research 

The objective of the research work is to design a multi-objective framework to handle issues 

with OPF problems in power systems. 

The research contributions are as follows: 

 A new hybrid decomposition and local-dominance based MOEA was proposed for the 

OPF problem. Combining decomposition and dominance approaches produced 

qualitatively and quantitatively distinct compromised solutions along the Pareto 

optimal front. In this approach, the static penalty-based CHM is proposed to handle 

equality and inequality restrictions of the OPF problem. In addition, a fuzzy technique 

is applied to Pareto-optimal solutions to determine the optimal trade-off solution. 

 A new hybrid decomposition and summation of normalized objectives with an 

improved diversified selection-based MOEA including WECS and SPVS uncertainty 

were proposed for the OPF problem. This chapter suggests a novel CHM that adds the 

penalty adaptively and avoids parameter dependence on penalty calculation. The 

summation-based sorting and enhanced diverse selection were applied to increase the 

diversity of MOEA. On OPF cost analysis, the impact of RES like WECS and SPVS 

on integration is evaluated. To reduce the total generation cost, the OPF problem takes 

into account the cost of RESs to study the influence of intermittent and unpredictable 

renewable sources on operation cost. Weibull and Lognormal PDFs were used, 

respectively, to describe the uncertainty of WECS and SPVS sources.  

 A new hybrid decomposition and summation of normalized objectives with improved 

diversified selection-based MOEA including WECS, SPVS, and PEVs uncertainty 

were proposed for the OPF problem. The MOOPF problem was solved using a unique 

CHM that adaptively adds the penalty and avoids the parameter relying on the penalty 

calculation. The summation-based sorting and enhanced diverse selection were applied 

to increase the diversity of MOEA. In addition, a fuzzy technique is applied to Pareto-

optimal solutions to determine the optimal trade-off solution. The impact of 

intermittence of WECS, SPVS, and PEVs integration was considered for optimal cost 

analysis. The uncertainty associated with WECS, SPVS, and PEV systems was 
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represented using PDFs and its uncertainty cost was calculated using Monte-Carlo 

simulations (MCSs).  

 A novel hybrid decomposition and invasive weed optimization (IWO) based MOEA 

was proposed for the OPF problem. The standard OPF problem was transformed into a 

stochastic OPF by incorporating the uncertainty of WECS, SPVS, and PEV systems. 

The MOOPF problem was solved using a unique CHM that adaptively inserts the 

penalty and avoids the parameter relying on penalty calculation. The IWO technique's 

selection qualities were utilized to boost the diversity of the proposed method. Monte 

Carlo simulations were used to assess the generation cost of WECS, SPVS, and PEVS 

in an effort to lower the total generation cost. Weibull, Lognormal, and Normal PDFs 

were used to characterize the unpredictability of WECS, SPVS, and PEV sources, 

respectively.  

2.4 Thesis Organization 

The thesis is organized as follows: 

Chapter 1 introduces the OPF problem and its importance in monitoring and operation of the 

network. It describes briefly the necessities of the OPF problem and the impact of WECS, 

SPVS, and PEVS penetrations on the power system.  

Chapter 2 presents a comprehensive literature overview of the OPF issue in a power system 

and discusses the existing methods and their strengths and weaknesses. It provides details of 

methods used to formulate the optimal power flow problem such as single objective and multi-

objective frameworks and discusses different optimization techniques to handle the problem.  

Following an extensive literature review on the topic, the motivation for the proposed 

research work is presented, followed by the objectives of the research, contributions, and 

organization of the thesis.  

Chapter 3 proposes a new hybrid decomposition and local-dominance based MOEA for the 

OPF problem. The four objectives considered are minimizing the total generation cost, 

emission, active power loss, and voltage magnitude deviation. As the OPF problem is a 

constrained optimization problem, the static penalty-based constrained handling method was 

used to handle several equal and inequality constraints, which aims to obtain the feasible global 

optimal solution. The outcomes of the proposed algorithm were compared with NSGA-II and 

MOPSO methods and demonstrated on IEEE 57-bus and IEEE 118-bus systems. 
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Chapter 4 proposes a new hybrid decomposition and summation of normalized objectives with 

improved diverse selection-based MOEA, including WECS and SPVS generation uncertainty 

for the OPF problem. This work recommends a novel CHM, that adaptively inserts the penalty 

and avoids the parameter relying on penalty calculation. The summation-based sorting and 

enhanced diverse selection were applied to increase the diversity of MOEA. The MOOPF 

problem was modeled with four objectives: minimizing total generation cost, including WECS 

and SPVS generation cost, emission, active power loss, and voltage magnitude deviation. In 

the OPF cost analysis, the influence of RESs such as WECS and SPVS on integration was 

examined. To minimize the overall cost, the cost of RESs was factored into the OPF to study 

the influence of intermittent and unpredictable renewable sources on cost and operation. The 

uncertainty of WECS and SPVS was described using Weibull and Lognormal PDFs 

respectively. The versatility of the proposed method was demonstrated on IEEE 57-bus and 

IEEE 118-bus systems and the results obtained were compared with NSGA-II, and MOPSO 

algorithms to demonstrate the superiority of the proposed method. 

Chapter 5 proposes a new hybrid decomposition and summation of normalized objectives with 

improved diversified selection-based MOEA including WECS, SPVS, and PEVs uncertainty 

for the OPF problem. The MOOPF problem includes minimization of the total generation cost, 

emission, active power loss, and voltage magnitude deviation as objectives, and a novel CHM, 

that adaptively inserts the penalty and avoids the parameter relying on penalty calculation. The 

summation-based sorting and enhanced diverse selection were applied to increase the diversity 

of MOEA.  In addition, a fuzzy technique is applied to Pareto-optimal solutions to determine 

the optimal trade-off solution. The impact of intermittence of WECS, SPVS, and PEVs 

integration was considered for optimal cost analysis. The uncertainty associated with WECS, 

SPVS, and PEV systems was represented using PDFs and the uncertainty cost was calculated 

using Monte-Carlo simulation. The superiority of the proposed method was validated by 

comparing it with NSGA-II, and MOPSO algorithms and tested on IEEE 57-bus and IEEE 

118-bus systems. 

Chapter 6 proposes a new hybrid decomposition and invasive weed optimization (IWO) based 

MOEA for the OPF problem. The standard OPF problem was transformed into a stochastic 

OPF by incorporating the uncertainty of WECS, SPVS, and PEV systems. This chapter 

presents a new CHM that adaptively inserts the penalty and avoids the parameter relying on 

penalty calculation. The IWO technique's selection qualities were utilized to increase the 

diversity of MOEA. The MOOPF problem includes minimization of the total generation cost, 
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emission, active power loss, and voltage magnitude deviation as objectives. The generation 

cost of WECS, SPVS, and PEV sources was examined using Monte Carlo simulations to reduce 

the total generation cost. Weibull, Lognormal, and Normal PDFs were used to characterize the 

unpredictability of WECS, SPVS, and PEV sources, respectively. The impact of WECS, SPVS, 

and PEV uncertainties, was taken into account to validate the proposed method. The superiority 

of the proposed method was validated by comparing it with NSGA-II, and MOPSO algorithms 

and tested using IEEE 57-bus and IEEE 118-bus systems. 

Chapter 7 summarizes the research contribution, findings, and observations on the proposed 

research work. Then it presents the scope for future work on the topic. 

2.5 Summary 

This chapter provides a summary of existing literature on OPF in power systems. With the 

penetration of renewable energy sources, power system operation becomes more challenging. 

This chapter discusses different OPF solutions in literature, constraint handling methods, and 

literature on the integration of uncertain sources like WECS, SPVS, and PEVs. This chapter 

also deals with MOOPF problem-related research and presents a discussion of various types of 

multi-objective evolutionary algorithms. Furthermore, motivation, contributions of the study, 

and organization of the thesis are presented in this chapter.
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Chapter 3  

A Novel Hybrid Multi-Objective Evolutionary Algorithm Based on 

Decomposition and Local Dominance for the Optimal Power Flow  

3.1 Introduction 

In this chapter, a novel hybrid decomposition and local dominance-based MOEA was proposed 

for the OPF problem with four conflicting objectives including minimization of total generation 

cost, emission, active power loss, and voltage magnitude deviation. A penalty method was used 

to address multiple MOOPF problem restrictions. In addition, a fuzzy technique was employed 

to identify the best compromise solution among Pareto-optimal solutions. The decomposition 

and local dominance methods were employed to get a uniformly distributed Pareto front and 

improved convergence characteristics. The suggested method combines decomposition and 

local dominance strategies to enhance effectiveness, (i.e., the exploring and exploitation) of 

MOEA. To evaluate the suggested method IEEE 57-bus, and IEEE 118-bus systems were 

studied, and the obtained results were evaluated using the NSGA-II and MOPSO algorithms. 

The contributions of this chapter are as follows: 

i. Proposed a new hybrid decomposition and local dominance-based MOEA for the OPF 

problem.  

ii. The trade-off between convergence and diversity in the solutions was obtained using 

hybrid decomposition and dominance methods.  

iii. Using a fuzzy technique, the optimal trade-off solution among Pareto-optimal solutions 

was determined. 

iv. An efficient CHM to tackle constraints in the MOOPF problem was used. 

3.2 Problem Formulation 

The MOOPF seeks to optimize objective functions while adhering to limitations by identifying 

the optimal decision variables. Accordingly, the MOOPF problem is stated as follows: 

𝑀𝑖𝑛 𝐹(𝑥, 𝑢) = [𝐹1(𝑥, 𝑢), 𝐹2(𝑥, 𝑢), . . . . 𝐹𝑚(𝑥, 𝑢)]                                (3.1) 

 Subject to:  

𝑔(𝑥, 𝑢) = 0                                                                                   (3.2) 

ℎ(𝑥, 𝑢) ≤ 0                                                                                   (3.3) 

where 𝐹𝑚(𝑥, 𝑢) denotes 𝑚𝑡ℎ objective; 𝑔(𝑥, 𝑢) and ℎ(𝑥, 𝑢) indicates equality and inequality 

constraints respectively.  
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3.2.1 Objectives 

The MOOPF problem considered the minimization of four objectives: a) total generation cost 

(J1), b) emission (J2), c) active power loss (J3), and d) voltage magnitude deviation (J4).  

a) Total generation cost ($/h): 

The quadratic connection approximates the relationship between the cost of generation and 

power output. The following expression describes the total generation cost from thermal 

generators:  

           𝑀𝑖𝑛 𝐽1 = ∑ (𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2 )𝑁𝐺

𝑖=1                                                         (3.4) 

where 𝑁𝐺  is the number of generators; 𝑃𝐺𝑖 is the 𝑖𝑡ℎ generator output active power; 𝑎𝑖, 𝑏𝑖 , 𝑐𝑖 is 

the 𝑖𝑡ℎ generator cost coefficients; 

b) Emission (ton/h): 

The generation of electric power from traditional fossil fuels would result in the emission of 

hazardous gases into the atmosphere. The following expression describes the total emission 

from thermal generators: 

𝑀𝑖𝑛𝐽2 = ∑ (𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖𝑃𝐺𝑖
2 + 𝛿𝑖𝑒

𝜀𝑖𝑃𝐺𝑖)𝑁𝐺
𝑖=1                                   (3.5) 

where 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝛿𝑖 , 𝜀𝑖 are the 𝑖𝑡ℎ generator emission coefficients; 

c) Active power loss (MW): 

The following equation can be used to express active power loss:  

𝑀𝑖𝑛 𝐽3 = ∑ (𝐺𝑘(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝜃𝑖𝑗))
𝑁𝐿
𝑘=1                                 (3.6) 

where 𝑁𝐿  is the number of lines; 𝜃𝑖𝑗 is the voltage angles between buses 𝑖 and 𝑗; 𝐺𝑘 indicates 

conductance of the 𝑘𝑡ℎ branch; 𝑉𝑖, 𝑉𝑗 is the voltage magnitudes at 𝑖𝑡ℎ and 𝑗𝑡ℎ bus respectively. 

d) Voltage magnitude deviation (p.u.): 

The voltage variation is the sum of all voltage variations at load buses in the network relative 

to the reference voltage. The mathematical expression is as follows:  

𝑀𝑖𝑛 𝐽4 = ∑ |(𝑉𝑖 − 𝑉𝑟𝑒𝑓)|
𝑁𝑃𝑄
𝑖=1

                                              (3.7) 

where 𝑁𝑃𝑄 is the number of  PQ buses; 𝑉𝑟𝑒𝑓 is the reference voltage set to 1 p.u.; 𝑉𝑖 is the 𝑖𝑡ℎ 

load bus voltage.  

3.2.2 Constraints 

The MOOPF objectives are subjected to the following equality and inequality constraints. 

a) Equality constraints: 

The equality constraints are power-balancing equations in which the sum of the generations of 

the real and reactive powers is equal to their corresponding demands and losses.  
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 Power flow constraints 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)
𝑁𝐵
𝑗=1 = 0; 𝑖 = 1,2, …𝑁𝐵            (3.8) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 −𝐵𝑖𝑗 cos 𝜃𝑖𝑗)
𝑁𝐵
𝑗=1 = 0; 𝑖 = 1,2, …𝑁𝐵               (3.9) 

where 𝑁𝐵 is the number of buses; 𝑃𝐺𝑖, 𝑄𝐺𝑖, and 𝑃𝐷𝑖, 𝑄𝐷𝑖 represent the real, reactive power 

generations and demands at the 𝑖𝑡ℎ bus, respectively; 𝐺𝑖𝑗, 𝐵𝑖𝑗 is the conductance, susceptance 

of lines between buses 𝑖 and 𝑗 respectively; 

b) Inequality constraints: 

The operational limitations on generators, transformers, and shunt devices, as well as the 

security requirements on lines and load buses, constitute inequality constraints.   

 Generator constraints: The boundary limits of real and reactive powers and voltage 

magnitude of the generator buses are expressed as follows: 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐺                                         (3.10) 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐺                                             (3.11) 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐺                                              (3.12) 

 Shunt VAR compensator constraints: The following are the boundary values for shunt 

compensators: 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐶                                           (3.13) 

 Transformer constraints: The ideal operating limits for tap settings on a transformer are 

given as follows: 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇                                            (3.14) 

 Security constraints: The voltage limits of the load buses and the apparent power value 

of each transmission line, which can be restricted by its maximum capacity, are given 

as follows: 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑃𝑄                                        (3.15) 

|𝑆𝑙𝑖| ≤ 𝑆𝑙𝑖
𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐿                                                         (3.16) 

where 𝑁𝐶, 𝑁𝑇 is the number of shunt compensators and transformers respectively; 𝑆𝑙𝑖  and 

𝑆𝑙𝑖
𝑚𝑎𝑥 are the apparent power flow and its max. limit of 𝑖𝑡ℎ line; 𝑃𝐺𝑖

𝑚𝑖𝑛,𝑃𝐺𝑖
𝑚𝑎𝑥 are the limits on 

real power generation; 𝑄𝐺𝑖
𝑚𝑖𝑛,𝑄𝐺𝑖

𝑚𝑎𝑥 are the limits on reactive power generation; 𝑉𝐺𝑖
𝑚𝑖𝑛, 𝑉𝐺𝑖

𝑚𝑎𝑥 are 

the limits on generator bus voltages; 𝑇𝑖
𝑚𝑖𝑛, 𝑇𝑖

𝑚𝑎𝑥 are the limits on transformer taps; 𝑄𝐶𝑖
𝑚𝑖𝑛,𝑄𝐶𝑖

𝑚𝑎𝑥 

are the limits on shunt compensator; 𝑉𝐿𝑖
𝑚𝑖𝑛, 𝑉𝐿𝑖

𝑚𝑎𝑥are the limits on load bus voltages;  
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3.3 Constraint Handling Method 

To address the MOOPF problem restrictions, a constraint-handling process was deployed. 

Boundary limits of the decision variables are self-constrained and can be reset using Eq. (3.18) 

during simulation. In addition, changes to the equality restrictions of real and reactive power 

flows can be done during load flow calculation using Newton-Raphson (Polar) method. The 

remaining constraints (inequality) are handled using the penalty factor approach. In the penalty 

factor approach, the violated restrictions are multiplied by the punishment factor and added to 

the corresponding objective value. This can be formulated as shown in Eq. (3.17). 

It should be mentioned that the decision variables are self-constrained. The inequality 

constraints of 𝑃𝐺1,𝑉𝐿,𝑄𝐺, and 𝑆𝑙 can be included in the objective function as quadratic penalty 

terms. Thus, the augmented objective function will be as: 

𝐽𝑀𝑂𝑂𝑃𝐹(𝑥, 𝑢) =

[
 
 
 
 
 
 
𝐽𝑂𝑃𝐹1(𝑥, 𝑢)

.

.

.

.

.
𝐽𝑂𝑃𝐹𝑀(𝑥, 𝑢)]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝐹𝑂𝑃𝐹1 + 𝜆𝑃(𝑃𝐺1 − 𝑃𝐺1

𝑙𝑖𝑚)
2
+ 𝜆𝑉∑ (𝑉𝐿𝑖 − 𝑉𝐿𝑖

𝑙𝑖𝑚)
2𝑁𝑃𝑄

𝑖=1

+𝜆𝑄∑ (𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑙𝑖𝑚)

2𝑁𝐺

𝑖=1
+ 𝜆𝑆∑ (𝑆𝑙𝑖 − 𝑆𝑙𝑖

𝑙𝑖𝑚)
2𝑁𝐿

𝑖=1.
.
.
.
.

𝐹𝑂𝑃𝐹𝑀 + 𝜆𝑃(𝑃𝐺1 − 𝑃𝐺1
𝑙𝑖𝑚)

2
+ 𝜆𝑉∑ (𝑉𝐿𝑖 − 𝑉𝐿𝑖

𝑙𝑖𝑚)
2𝑁𝑃𝑄

𝑖=1

+𝜆𝑄∑ (𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑙𝑖𝑚)

2𝑁𝐺

𝑖=1
+ 𝜆𝑆∑ (𝑆𝑙𝑖 − 𝑆𝑙𝑖

𝑙𝑖𝑚)
2𝑁𝐿

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (3.17) 

where 𝜆𝑃, 𝜆𝑉, 𝜆𝑄  and 𝜆𝑆 are the penalty factors; 𝑀 is the number of objective functions; 𝑥𝑙𝑖𝑚 is 

the limit value of the independent variable 𝑥 and is given as: 

𝑥𝑙𝑖𝑚 = {

𝑥𝑚𝑖𝑛;  𝑖𝑓                     𝑥 < 𝑥𝑚𝑖𝑛
𝑥;       𝑖𝑓        𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥
𝑥𝑚𝑎𝑥;  𝑖𝑓                    𝑥 > 𝑥𝑚𝑎𝑥

                                        (3.18) 

3.4 Proposed Method 

The proposed MOEA is obtained by  combining the Pareto-dominance and decomposition 

techniques to exploit the advantages in both methods and to maintain the balance between 

exploration and exploitation. The Pareto-dominance and decomposition techniques were 

incorporated from the NSGA-II [57] and MOEA/D [53] methods.  

In Pareto dominance method, the feasible solutions are selected using non-dominated 

sorting technique to rank the solutions and crowding distance method is employed to improve 
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the population diversity. However, with increase in objective size dominance methods may not 

maintain the diversity of the population. On the other hand, Decomposition methods 

decompose the MOP into multiple sub-problems using weight vectors. The sub-problems are 

then simultaneously optimized. The neighborhoods are created based on the distance between 

weights. In each population evolution, neighborhood information is used to choose which 

solutions to select. The penalty-based intersection (PBI) is utilized to assign relative fitness 

values to each solution [53]. The PBI is stated below: 

𝑃𝐵𝐼(𝑋|𝑤, 𝑧∗) = 𝑑1 + 𝜃𝑑2 

𝑤ℎ𝑒𝑟𝑒 𝑑1 =
‖(𝑧∗−𝐹(𝑋)𝑇.𝑤)‖

‖𝑤‖
  and 𝑑2 = ‖𝐹(𝑋) − (𝑧∗ − 𝑑1. 𝑤)‖ 

where 𝐹(𝑋) = [𝐽1, 𝐽2, 𝐽3, 𝐽4]                                                (3.19) 

where z* is the ideal point, w is the weight vector, and θ be the penalty value.  

Randomly generate a population of size ‘N’, which is equal to the number of weight 

vectors. The weight vectors with a uniform distribution are created using SSA [54]. Each 

member of the population is given a weight vector and is associated with a neighborhood. The 

mating parents are then selected from the nearby region using the minimum angle requirement 

and a probability of ‘δ’. The typical value set to selection probability ‘δ’ is 0.8.  The angle 

criteria are used to identify weight vectors' nearest neighbors. The vectors with the least angles 

are chosen to be the neighbors. Based on the angle, a neighborhood is allotted to each weight 

vector. For every vector, a set of parents is chosen from the neighbors depending on selection 

probability. If there are no individuals in the given region, the mating parent is selected from 

the entire population. The angle between the two vectors is given by the formulae [55] as given 

below: 

tan𝜑 =
𝑑2
𝑑1

 

𝑤ℎ𝑒𝑟𝑒 𝑑1 =
‖𝑤𝑖

𝑇.𝑤𝑗‖

‖𝑤𝑗‖
  𝑎𝑛𝑑 𝑑2 = ‖𝑤𝑖 − 𝑑1

𝑤𝑗

‖𝑤‖
‖ 

𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1, 2, … ,𝑁 𝑎𝑛𝑑 𝑖 ≠ 𝑗                                       (3.20) 

 𝑤ℎ𝑒𝑟𝑒 𝜑 = angle between d1 and d2. 

The new offspring population is reproduced via crossover and mutation. The old and 

new populations are partitioned into 'N' sub-populations. The partition is done by comparing 

the two individuals. For comparing the individuals, the dominance method and PBI are used 

Eq. (3.19). To choose competent individuals from 'N' subpopulations, the elitist selection 

procedure is then employed. This procedure is repeated until the termination criterion has been 
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satisfied. The maximum number of iterations served as the termination criterion for this 

approach. Using a fuzzy technique, the optimal solution is determined [56]. 

The steps in the proposed method are as follows: 

Initialization: Randomly generate initial population (Pt) of size ‘N’ and weight vectors with a 

uniform distribution using SSA [54] as follows: 

𝑁(𝐷,𝑀) = (
𝐷 +𝑀 − 1
𝑀 − 1

)  𝑓𝑜𝑟 𝐷 > 0                                         (3.21) 

Here D and M represent the number of divisions for each objective coordinate and objective 

function respectively.  

Run the load flow to determine the fitness value of the chosen objective function and compute 

the constraint violations. If any constraint violation occurs,  it is penalized using Eq. (3.17), 

and Eq. (3.18).  

Find the neighboring solutions, the vectors with the least angles are chosen to be the neighbors. 

The angle between two vectors is given by Eq. (3.20). 

Find the minimum values for all the objectives to form the current ideal point. 

Reproduction: Select N mating pairings based on angle requirements. With the probability of 

δ, a pair of mated parents is chosen for each weight vector. To generate new population (Qt) 

use crossover and mutation.  

Population-partition: The old (Pt) and new (Qt) populations are partitioned into N 

subpopulations. Based on the partition, every sub-population has Ni individual populations. 

The partition is done by comparing the two individuals. 

For Comparing the individuals, the dominance and PBI methods are used. Firstly the 

dominance between individuals x and y is compared. If solution x is seen as better compared 

to y, return true; otherwise, their respective PBI values are compared. The lower the PBI value 

the better the solution. 

Elitist selection: Here, all individuals are partitioned into multiple levels. During elitist 

selection, the individuals for the next-level Pt+1 are chosen. Choose the individual from each 

population subset till 'N' is not exceeded. Otherwise, a random sample is selected from the 

partitioned population. 

Use the fuzzy approach [59] on the final Pareto front to choose the best-compromised solution.  
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3.5 Results and Discussions 

The proposed method was executed on MATLAB R2016a and the simulation was carried out 

on i3-Processor with 4GB RAM. To validate the efficacy of the proposed method, it was 

compared to NSGA-II [57] and MOPSO [58] algorithms. The control parameters of the 

proposed method, NSGA-II, and MOPSO are given in Table 3.1, these values are selected in 

accordance with the global optimal solution. A total of five cases were considered on IEEE 57-

bus, and IEEE 118-bus systems to test the efficiency of the proposed method for the MOOPF 

problem. The various cases considered are given in Table 3.2. The description of the test 

systems was given in Table 3.3. Appendices A and B contain system data for the IEEE 57-bus, 

and 118-bus, respectively. 

Table 3.1: Control parameters of the proposed method, NSGA-II, and MOPSO. 
S. No. Method Control parameters 

1. Proposed 

method 

Population size (N) = 100, number of divisions made along the every 

objective (D) = 12, neighborhood size (T) = 20, crossover probability (Pc) = 

1.0, mutation probability (Pm) = 0.05, and maximum iterations= 100. 

2. NSGA-II [57] N  = 100, Pc = 0.8, Pm = 0.01, and max. iterations = 100. 

3. MOPSO [58] N  = 100, C1 = C2 = 2, W = 0.5, and max. iterations = 100. 

 

Table 3.2: Various cases considered. 
S. No. Test Systems Case #  J1  J2 J3 J4 

1. IEEE 57-bus system 

Case-1         --     -- 

Case-2   --         

Case-3         

2. IEEE 118-bus system 
Case-4         --       -- 

Case-5         --     

Table 3.3: Test systems description. 
Specifications IEEE 57-bus system IEEE 118-bus system 

Buses 57 
[59] 

118 
[59] 

Lines 80 186 

Thermal units 7 Buses:1,2,3,6,8,9 and 12 54 Buses: [59] 

Slack bus 1 Bus:1 69 Bus: 69 

Transformer 

tap positions 
17 

Lines:19,20,31,35,36,37,41,46, 

54,58,59,65,66,71,73,76, and 80 
9 

Lines: 8,32,36, 51, 93,95,102,107 and 

127 

Shunt 

capacitors 
3 Buses:18, 25, and 53 12 

Buses:34,44,45,46,48,74,79,82, 83, 

105, 107 and 110 

Control 

variables 
33 

Generator bus real powers (6) + 

voltages (7) + transformer tap settings 

(17) + shunt capacitor (3). 

128 

Generator bus real powers (53) + 

voltages (54) + transformer tap 

settings (9) + shunt capacitor (12). 

Load - 1250.80MW, 336.40MVAR - 4242.00MW, 1439.00MVAR 
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3.5.1 IEEE 57-bus system  

The proposed method was tested on an IEEE 57-bus system [59], which has 7 thermal 

generators (#1 bus as a slack bus), 80 lines, 17 off-nominal transformers, 3 shunt VAR 

compensators, the real and reactive power demand of 1250.80 MW and 336.40 MVAR, 

respectively.  

a)  Case-1: Minimize J1, and J2 simultaneously 

In this case, the proposed method was simulated by considering two objectives J1 and J2. The 

Pareto-optimal fronts (PFs) observed in this case, are depicted in Figure 3.1. The optimal 

decision variables obtained by the proposed method are presented in Table 3.4. The proposed 

method obtains a total generation cost of 42082.05$/h and emission of 1.2233ton/h. NSGA-II 

[57] gives 42091.76$/h, 1.2971ton/h and MOPSO [58] gives 42576.62$/h, 1.4976ton/h 

respectively as shown in Table 3.5. 

b) Case-2: Minimize J1, J3, and J4 simultaneously 

In this case, the proposed method was simulated by considering three objectives J1, J3, and J4. 

The Pareto-optimal fronts (PFs) observed in this case are depicted in Figure 3.1. The optimal 

decision variables obtained by the proposed method are presented in Table 3.4. The proposed 

method obtains a total generation cost of 41919.00$/h, active power loss of 12.2322MW, and 

voltage magnitude deviation of 0.8198p.u. NSGA-II [57] gives 42001.15$/h, 12.2673MW, 

0.8312p.u and MOPSO [58] gives 42770.65$/h, 16.7486MW, 1.2838p.u respectively as shown 

in Table 3.5. 

c) Case-3: Minimize J1, J2, J3, and J4 simultaneously 

In this case, the proposed method was simulated by considering four objectives J1, J2, J3, and 

J4. The optimal decision variables obtained by the proposed method are presented in Table 3.4. 

The proposed method obtains a total generation cost of 42419.00$/h, emission of 1.3065ton/h, 

active power loss of 12.3121MW, and voltage magnitude deviation of 0.8918p.u. NSGA-II 

[57] gives 42601.15$/h, 1.4190ton/h, 12.3673MW, 1.0315p.u and MOPSO [58] gives 

42970.14 $/h, 1.4998ton/h, 15.7126MW, 1.3638p.u respectively as shown in Table 3.5.   
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(a) 

 

(b) 

Fig. 3.1: IEEE 57-bus system: Pareto-optimal fronts. a) Case-1, and b) Case-2. 
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Table 3.4: IEEE 57-bus system: Optimal control variables obtained by the proposed method. 

S. No. 
 

Control variables 

Limits 
Case-1 Case-2 Case-3 

min max 

1. P2  

 

 

0 

100 99.8169 99.2934 69.0674 

2. P3 140 69.7015 65.0581 63.5966 

3. P6 100 98.4023 98.3741 77.8914 

4. P8 550 405.9038 391.7069 414.1483 

5. P9 100 99.7592 99.9813 85.0678 

6. P12 410 354.3541 349.8846 408.3763 

7. V1  

 

 

0.95 

 

 

 

1.1 

1.0469 1.0304 1.0273 

8. V2 1.0474 1.0371 1.0300 

9. V3 1.0370 1.0328 1.0200 

10. V6 1.0519 1.0062 1.0094 

11. V8 1.0491 1.0173 1.0359 

12. V9 1.0325 1.0337 1.0315 

13. V12 1.0215 1.0230 1.0233 

14. T19  

 

 

 

 

 

 

 

 

0.9 

 

 

 

 

 

 

 

 

 

1.1 

0.9887 1.0067 0.9858 

15. T20 1.0476 1.0132 0.9979 

16. T31 1.0129 1.0035 1.0175 

17. T35 1.0297 0.9925 1.0093 

18. T36 0.9765 1.0075 1.0280 

19. T37 0.9898 1.0215 1.0226 

20. T41 1.0232 1.0041 1.0057 

21. T46 0.9654 0.9629 0.9614 

22. T54 0.9773 0.9266 0.9417 

23. T58 1.0087 0.9709 0.9680 

24. T59 1.0011 0.9692 0.9679 

25. T65 0.9711 0.9972 0.9813 

26. T66 0.9804 0.9548 0.9499 

27. T71 1.0055 0.9879 0.9435 

28. T73 1.0286 1.0202 1.0036 

29. T76 0.9956 1.0042 0.9911 

30. T80 1.0116 1.0298 1.0285 

31. QC18  

0 

 

20 

9.9675 9.3891 12.6199 

32. QC25 8.4505 12.2131 11.0358 

33. QC53 4.4013 7.0793 5.0682 

1. J1($/h)  - - 42082.05 41919.00 42419.00 

2. J2(ton/h) - - 1.2233 - 1.3065 

3. J3(MW) - - - 12.2322  12.3121  

4. J4(p.u.) - - - 0.8198 0.8918 

Table 3.5: IEEE 57-bus system: Comparison of the proposed method. 
Case # Objective functions Proposed method NSGA-II [57] MOPSO [58] 

Case-1 
J1($/h) 42082.05 42091.76 42576.62 

J2(ton/h) 1.2233 1.2971 1.4976 

Case-2 

J1($/h) 41919.00 42001.15 42770.65 

J3(MW) 12.2322  12.2673 16.7486 

J4(p.u.) 0.8198 0.8312 1.2838 

Case-3 

J1($/h) 42419.00 42601.15  42970.14  

J2(ton/h) 1.3065 1.4190 1.4998 

J3(MW) 12.3121  12.3673 15.7126 

J4(p.u.) 0.8918 1.0315 1.3638 
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3.5.2 IEEE 118-bus system 

The proposed technique has also been investigated for the IEEE 118-bus system [59], which 

has 54 thermal generator buses (# 69 bus as a slack bus), 186 lines, 9 off-nominal transformers, 

12 shunt VAR compensators, the real and reactive power demand of 4242.00MW and 

1439.00MVAR, respectively.  

a) Case-4: Minimize J1 and J3 simultaneously 

In this case, the proposed method was simulated by considering two objectives J1 and J3. The 

Pareto-optimal fronts (PFs) observed in this case are shown in Figure 3.2. The optimal decision 

variables obtained by the proposed method are presented in Table 3.6. The proposed method 

obtains a total generation cost of 135716.72$/h, and active power loss of 34.5983MW. NSGA-

II [57] gives 135948.25$/h, 35.6852MW and MOPSO [58] gives 136865.18$/h, 57.6587MW 

respectively as shown in Table 3.7.    

b) Case-5: Minimize J1, J3, and J4 simultaneously 

In this case, the proposed method was simulated by considering three objectives J1, J3, and J4. 

The Pareto-optimal fronts (PFs) observed in this case are shown in Figure 3.2. The optimal 

decision variables obtained by the proposed method are presented in Table 3.6. The proposed 

method obtains a total generation cost of 137715.17$/h, active power loss of 33.3462MW, and 

voltage magnitude deviation of 0.4779p.u. NSGA-II [57] gives 138441.48$/h, 37.8479MW, 

0.5067p.u and MOPSO [58] gives 138501.58$/h, 51.5057MW, 0.5750p.u respectively as 

shown in Table 3.7.  
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(a) 

 

(b) 

Fig. 3.2: IEEE 118-bus system: Pareto-optimal fronts. a) Case-4, and b) Case-5. 
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Table 3.6: IEEE 118-bus system: Optimal control variables obtained by the proposed method.  
S. 

No. 
Control 

variables 

Limits 
Case-4 Case-5 

S. 

No. 

Control 

variables 
Limits 

Case-4 Case-5 
min max min max 

1. P1  
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100 54.5475 49.8078 67. V31  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 

1.0280 1.0087 

2. P4 100 45.7797 52.5061 68. V32 1.0239 1.0059 

3. P6 100 37.6966 37.9561 69. V34 1.0264 1.0117 

4. P8 100 27.8767 40.4637 70. V36 1.0215 1.0063 

5. P10 550 239.410 208.349 71. V40 1.0248 1.0177 

6. P12 185 82.4114 96.2351 72. V42 1.0251 1.0118 

7. P15 100 49.3221 59.9765 73. V46 1.0226 1.0197 

8. P18 100 45.0909 44.6825 74. V49 1.0347 0.9980 

9. P19 100 56.6271 46.3333 75. V54 1.0211 1.0128 

10. P24 100 12.7429 23.7604 76. V55 1.0234 1.0182 

11. P25 320 125.497 117.692 77. V56 1.0241 1.0187 

12. P26 414 150.881 154.555 78. V59 1.0225 1.0141 

13. P27 100 47.2764 44.1010 79. V61 1.0253 1.0143 

14. P31 107 13.9278 19.6902 80. V62 1.0227 1.0226 

15. P32 100 42.2914 31.9930 81. V65 1.0278 1.0260 

16. P34 100 40.2518 51.7709 82. V66 1.0251 0.9859 

17. P36 100 48.8938 56.1834 83. V69 1.0137 1.0281 

18. P40 100 72.1668 87.8627 84. V70 1.0334 1.0192 

19. P42 100 67.5902 75.2689 85. V72 1.0311 1.0316 

20. P46 119 35.6793 35.1325 86. V73 1.0405 1.0333 

21. P49 304 187.765 159.304 87. V74 1.0130 1.0048 

22. P54 148 69.1268 81.8220 88. V76 1.0322 1.0080 

23. P55 100 76.0840 80.5026 89. V77 1.0195 1.0037 

24. P56 100 87.1884 70.8324 90. V80 1.0270 1.0135 

25. P59 255 146.100 145.991 91. V85 1.0330 1.0100 

26. P61 260 116.626 127.139 92. V87 1.0260 1.0091 

27. P62 100 46.2975 49.8338 93. V89 1.0293 1.0412 

28. P65 491 221.758 229.532 94. V90 1.0253 1.0141 

29. P66 492 264.060 231.120 95. V91 1.0293 1.0157 

30. P70 100 47.4251 45.4400 96. V92 1.0149 1.0235 

31. P72 100 14.0937 20.0243 97. V99 1.0257 1.0199 

32. P73 100 36.3494 23.8761 98. V100 1.0171 1.0172 

33. P74 100 41.4494 50.1527 99. V103 1.0125 1.0196 

34. P76 100 54.4665 44.8794 100 V104 1.0244 1.0173 

35. P77 100 47.1822 38.0621 101 V105 1.0176 1.0104 

36. P80 577 303.266 297.003 102 V107 1.0128 1.0184 

37. P85 100 32.3521 42.5265 103 V110 1.0274 1.0193 

38. P87 104 7.4605 10.9515 104 V111 1.0270 1.0205 

39. P89 707 268.214 229.933 105 V112 1.0164 1.0275 

40. P90 100 38.1081 50.8835 106 V113 1.0354 1.0091 

41. P91 100 42.9526 48.0809 107 V116 1.0329 1.0113 

42. P92 100 34.9052 49.2068 108 T8  

 

 

 

0.9 

 

 

 

 

 

1.1 

 

0.9967 1.0108 

43. P99 100 23.6065 35.9029 109 T32 0.9954 0.9910 

44. P100 352 143.338 141.629 110 T36 0.9782 0.9937 

45. P103 140 44.2004 43.1302 111 T51 0.9767 0.9670 

46. P104 100 39.6433 42.4401 112 T93 0.9821 0.9810 

47. P105 100 46.5554 50.3917 113 T95 1.0022 1.0004 

48. P107 100 48.2829 35.5470 114 T102 0.9967 0.9954 

49. P110 100 31.1740 40.3137 115 T107 1.0132 1.0100 

50. P111 136 36.4716 35.5358 116 T127 1.0088 0.9757 

51. P112 100 42.5151 45.4344 117 QC34   14.7568 12.5994 

52. P113 100 25.4710 46.0275 118 QC44 12.0512 12.4520 
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53. P116 100 5.4126 39.6684 119 QC45 0 

 

25 

 

11.3411 13.4924 

54. V1  

 

 

 

 

 

0.95 

 

 

 

 

 

 

 

1.1 

 

1.0311 1.0116 120 QC46 10.8431 11.5359 

55. V4 1.0239 1.0034 121 QC48 9.5642 10.4103 

56. V6 1.0381 1.0186 122 QC74 11.2007 13.0703 

57. V8 1.0233 1.0130 123 QC79 13.6252 9.8725 

58. V10 1.0350 0.9954 124 QC82 13.2053 12.7137 

59. V12 1.0367 1.0202 125 QC83 11.8160 11.7299 

60. V15 1.0151 1.0114 126 QC105 11.9498 9.9882 

61. V18 1.0270 1.0142 127 QC107 13.1417 13.0359 

62. V19 1.0265 1.0155 128 QC110 11.9534 13.6171 

63. V24 1.0290 1.0165  

64. V25 1.0295 1.0118 1. J1($/h)  - - 135716.7 137715.1 

65. V26 1.0309 1.0076 2. J3(MW) - - 34.5983 33.3462 

66. V27 1.0260 1.0123 3. J4(p.u) - - - 0.4779 

Table 3.7: IEEE 118-bus system: Comparison of the proposed method. 
Case # Objective functions Proposed method NSGA-II [57] MOPSO [58] 

Case-4 
J1($/h)  135716.72 135948.25 136865.18 

J3(MW) 34.5983 35.6852 57.6587 

Case-5 

J1($/h)  137715.17 138441.48 138501.48 

J3(MW) 33.3462 37.8479 51.5057 

J4(p.u) 0.4779 0.5067 0.5750 

 

3.6 Summary  

In this work, a new hybrid decomposition and local dominance-based MOEA was proposed 

for solving the OPF problem. Minimizing the total generation cost, emission, active power loss, 

and voltage magnitude deviation are the four objectives that were considered. The 

hybridization of decomposition and dominance approaches increases the convergence and 

diversity of Pareto optimum front solutions. The static penalty-based method was deployed to 

tackle both equality and inequality constraints. In addition, a fuzzy technique was used to 

obtain the best-compromised solutions from the Pareto-optimal set. The proposed method was 

tested on IEEE 57-bus and IEEE 118-bus systems using different cases to validate its efficiency 

and the obtained results were compared with NSGA-II and MOPSO methods. This work is 

restricted to conventional MOOPF with only thermal units, to assess the impact of wind, and 

solar integration on the MOOPF problem next work is proposed.  
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Chapter 4  

A New Hybrid Decomposition and Summation of Normalized Objectives 

with Improved Diversified Selection Based Multi-Objective Evolutionary 

Algorithm Including Wind, and Solar Uncertainty for the Optimal Power 

Flow  

4.1 Introduction 

This chapter proposes a new hybrid decomposition, and summation of normalized objectives 

with improved diversified selection-based MOEA for the OPF including WECS and SPVS 

uncertainty. This work recommends a novel CHM, that adaptively inserts penalty and avoids 

the parameter relying on penalty calculation. The summation-based sorting and enhanced 

diverse selection techniques are employed to increase the diversity of MOEA. The MOOPF is 

defined using four objectives: minimizing total generating cost, comprising WECS and SPVS 

generation cost, emission, active power loss, and voltage magnitude deviation. In the OPF cost 

study, the influence of RES such as WECS and SPVS on integration is taken into account. To  

reduce the total generation cost, the cost of RESs is factored into the OPF issue to study the 

impact of intermittent and unpredictable renewable sources on cost and operational viability. 

The uncertainty of WECS and SPVS sources was described using Weibull and Lognormal 

PDFs respectively. The efficacy of the proposed method was tested on IEEE 57-bus, and 118-

bus systems under all possible RES situations using Monte Carlo simulations. The work makes 

the following contributions: 

i. Proposing a novel MOEA based on decomposition and summation of normalized 

objectives with improved diversified selection for the MOOPF problem. 

ii. Integrating RESs like WECS and SPVS with conventional OPF to consider the impact 

of the uncertain nature of these sources.   

iii. Modeling the uncertain nature of WECS and SPVS using PDFs and calculating the 

uncertain cost using Monte-Carlo simulations. 

iv. Using a new CHM called superiority of feasible solution (SF) to tackle constraints in 

the MOOPF problem. 

4.2 Problem Formulation 

The MOOPF problem's objective functions and constraints are stated as follows:  
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4.2.1 Objectives 

The MOOPF problem was formulated using four objectives: minimizing a) total generation 

cost including the cost of WECS and SPVS generation (J1), b) emission (J2), c) active power 

loss (J3), and d) voltage magnitude deviation (J4).  

a) Total generation cost ($/h): 

The overall generating cost is the sum of the generation cost of thermal, WECS, and SPVS and 

is expressed by the following equation: 

              𝑀𝑖𝑛 𝐽1 = ∑(𝑎𝑖 + 𝑏𝑖𝑃𝑇𝐺𝑖 + 𝑐𝑖𝑃𝑇𝐺𝑖
2 )

𝑁𝑇𝐺

𝑖=1

+ ∑[𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) + 𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) + 𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗)]

𝑁𝑊𝐺

𝑗=1

+∑[𝐶𝑠,𝑗(𝑃𝑠𝑠,𝑘) + 𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘) + 𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)]

𝑁𝑆𝐺

𝑘=1

 

(4.1) 

where 𝑁𝑇𝐺, 𝑁𝑊𝐺, and 𝑁𝑆𝐺  are the number of thermal, WECS, and SPVS respectively; 𝑃𝑤𝑠,𝑗, 

and 𝑃𝑠𝑠,𝑘 is the scheduled powers of 𝑗𝑡ℎ WECS and 𝑘𝑡ℎ SPVS respectively; 𝑃𝑤𝑎𝑣,𝑗, and 𝑃𝑠𝑎𝑣,𝑘 

are the actual powers of 𝑗𝑡ℎ WECS and 𝑘𝑡ℎ SPVS respectively; 𝑃𝑇𝐺𝑖 is the 𝑖𝑡ℎ thermal generator 

output power; 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 is the 𝑖𝑡ℎ thermal generator cost coefficients; 

b) Emission (ton/h): 

The generation of electric power from traditional fossil fuels would result in the emission of 

hazardous gases into the atmosphere. The following expression describes the total emission 

from thermal generators: 

𝑀𝑖𝑛𝐽2 = ∑ (𝛼𝑖 + 𝛽𝑖𝑃𝑇𝐺𝑖 + 𝛾𝑖𝑃𝑇𝐺𝑖
2 + 𝛿𝑖𝑒

𝜀𝑖𝑃𝑇𝐺𝑖)𝑁𝑇𝐺
𝑖=1                         (4.2) 

where 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝛿𝑖 , 𝜀𝑖 are the 𝑖𝑡ℎ thermal generator emission coefficients; 

c) Active power loss (MW): 

The following equation can be used to express active power loss:  

𝑀𝑖𝑛 𝐽3 = ∑ (𝐺𝑘(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝜃𝑖𝑗))
𝑁𝐿
𝑘=1                              (4.3) 

where 𝑁𝐿  is the number of lines; 𝜃𝑖𝑗 represents the voltage angle between buses 𝑖 and 𝑗; 𝐺𝑘 

shows the conductance of branch 𝑘; 𝑉𝑖, 𝑉𝑗 is the voltage magnitudes at 𝑖𝑡ℎ and 𝑗𝑡ℎ buses 

respectively. 

d) Voltage magnitude deviation (p.u.): 
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The voltage variation is the sum of all voltage variances at load buses in the network relative 

to the reference voltage. The mathematical expression is as follows:  

 𝑀𝑖𝑛 𝐽4 = ∑ |(𝑉𝑖 − 𝑉𝑟𝑒𝑓)|
𝑁𝑃𝑄
𝑖=1

                                 (4.4) 

where 𝑁𝑃𝑄 is the number of PQ buses; 𝑉𝑟𝑒𝑓 is the reference voltage set to 1 p.u.; 𝑉𝑖 is the 𝑖𝑡ℎ 

load bus voltage. 

4.2.2 Constraints 

The MOOPF objectives are subjected to the following equality and inequality constraints. 

a) Equality constraints: 

The equality constraints are power-balancing equations in which the sum of the generations of 

the real and reactive powers is equal to their corresponding demands and losses.  

 Power flow constraints 

The overall demand and losses throughout the system are equal to the total real and reactive 

power delivered: 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)
𝑁𝐵
𝑗=1 = 0; 𝑖 = 1,2, …𝑁𝐵             (4.5) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 −𝐵𝑖𝑗 cos 𝜃𝑖𝑗)
𝑁𝐵
𝑗=1 = 0; 𝑖 = 1,2, …𝑁𝐵               (4.6) 

where 𝑁𝐵 is the number of buses; 𝑃𝐺𝑖, 𝑄𝐺𝑖, and 𝑃𝐷𝑖, 𝑄𝐷𝑖 are the real, reactive power generations 

and demands at the 𝑖𝑡ℎ bus, respectively; 𝐺𝑖𝑗, 𝐵𝑖𝑗 is the conductance, susceptance of lines 

between buses 𝑖 and 𝑗 respectively; 

b) Inequality constraints:  

The operational limitations on generators, transformers, and shunt devices, as well as the 

security requirements on lines and load buses, constitute inequality constraints.   

 Generator constraints: The boundary limits of real and reactive powers and voltage 

magnitude of the generator buses are expressed as follows: 

𝑃𝑇𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑇𝐺𝑖 ≤ 𝑃𝑇𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇𝐺                                      (4.7) 

𝑃𝑊𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑊𝐺𝑖 ≤ 𝑃𝑊𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑊𝐺                                    (4.8) 

𝑃𝑆𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑆𝐺𝑖 ≤ 𝑃𝑆𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑆𝐺                                       (4.9) 

𝑄𝑇𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑇𝐺𝑖 ≤ 𝑄𝑇𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇𝐺                                        (4.10) 

𝑄𝑊𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑊𝐺𝑖 ≤ 𝑄𝑊𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑊𝐺                                     (4.11) 

𝑄𝑆𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑆𝐺𝑖 ≤ 𝑄𝑆𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑆𝐺                                        (4.12) 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐺                                             (4.13) 

 Shunt compensator constraints: The following are the boundary values for shunt 

compensators: 
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𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐶                                            (4.14) 

 Transformer constraints: The ideal operating limits for tap settings on a transformer are 

given as follows: 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇                                             (4.15) 

 Security constraints: The voltage limits of the load buses and the apparent power value 

of each transmission line, which can be restricted by its maximum capacity, are given 

as follows: 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑃𝑄                                         (4.16) 

|𝑆𝑙𝑖| ≤ 𝑆𝑙𝑖
𝑚𝑎𝑥;  𝑖 = 1,2, …𝑁𝐿                                                         (4.17) 

where 𝑁𝐶, 𝑁𝑇  is the number of shunt VAR compensators and transformers respectively; 𝑆𝑙𝑖  

and 𝑆𝑙𝑖
𝑚𝑎𝑥  are the apparent power flow and its maximum limit of 𝑖𝑡ℎ line; 𝑃𝐺𝑖

𝑚𝑖𝑛,𝑃𝐺𝑖
𝑚𝑎𝑥 are the 

limits on real power generation; 𝑄𝐺𝑖
𝑚𝑖𝑛,𝑄𝐺𝑖

𝑚𝑎𝑥 are the limits on reactive power generation; 

𝑉𝐺𝑖
𝑚𝑖𝑛, 𝑉𝐺𝑖

𝑚𝑎𝑥 are the limits on generator bus voltages; 𝑇𝑖
𝑚𝑖𝑛, 𝑇𝑖

𝑚𝑎𝑥 are the limits on transformer 

taps; 𝑄𝐶𝑖
𝑚𝑖𝑛,𝑄𝐶𝑖

𝑚𝑎𝑥 are the limits on shunt compensator; 𝑉𝐿𝑖
𝑚𝑖𝑛, 𝑉𝐿𝑖

𝑚𝑎𝑥are the limits on load bus 

voltages;  

Two equality constraints Eq. (4.5) and Eq. (4.6) are automatically satisfied when the 

power flow converges to an optimal solution. The generator buses’ real power (excluding slack 

bus), transformer tap ratios, voltage limits, and shunt compensator ranges are considered to 

control variables that are self-limiting. The remaining inequality constraints require constraint 

handling techniques.  

In OPF, generator reactive power capacities are significant. In recent years, WECSs 

with complete reactive power capability has become commercially viable [60]. WECS can 

deliver reactive power in the range of -0.4p.u.to 0.5p.u. The negative sign signifies the 

generator's ability to absorb. Rooftop SPVS is designed as load buses with zero reactive power. 

However, because utility-based SPVS have built-in converters, full generator modeling is 

required due to the converters' dynamic behavior [61]. In this study, the reactive power 

capabilities of SPVS are assessed between -0.4p.u and 0.5p.u. 

4.3 Constraint Handling Method  

The most commonly used CHM is the penalty method. When a constraint violation occurs, its 

solution is penalized. Owing to its simplicity and operability, the outcome of this method 

relying on the penalty, which must be determined by trial and error, leading the fitness value 

to degrade. This study deployed a new CHM called the SF technique which doesn’t require any 

penalty coefficient.  
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In this work, the SF technique [62] was employed to solve the MOOPF problem with 

RESs. The steps followed when comparing two solutions are as follows: 

(1) While comparing two non-feasible solutions, the solution having the smallest constraint 

violation is selected. 

(2) When two feasible solutions are compared, the one with a better fitness solution is selected. 

(3) When a feasible solution is compared to a non-feasible solution, the feasible solution is 

selected. 

Comparing non-feasible solutions based on constraint violation helps push non-feasible 

answers into the feasible region while comparing viable solutions based on the fitness value 

enables solution quality to be improved.    

4.4 Integration of WECS, and SPVS  

4.4.1 WECS, and SPVS Modeling 

a) WECS Modeling: 

The wind speed at a given geographical area is most likely distributed according to Weibull 

PDF as given below: 

𝑓(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)
(𝑘−1)

(𝑒)(
−𝑣

𝑐
)
𝑘

; 0 < 𝑣 < ∞                                           (4.18) 

where 𝑣 is the wind speed (m/sec); 𝑘, 𝑐 is the shape, and scale factors respectively. 

The PDFs for two different shape and scale factors are given in [63]. The relationship between 

wind speed and power generation is as follows: 

𝑃𝑤(𝑣) = {

0; 𝑣 < 𝑣𝑖𝑛 𝑎𝑛𝑑 𝑣 > 𝑣𝑜𝑢𝑡

𝑃𝑤𝑟 (
𝑣−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
)

𝑃𝑤𝑟;  𝑣𝑟 < 𝑣𝑤 ≤ 𝑣𝑜𝑢𝑡

;  𝑣𝑖𝑛 ≤ 𝑣𝑤 ≤ 𝑣𝑟                         (4.19) 

where 𝑃𝑤𝑟 is the rated wind power output; 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡 , 𝑎𝑛𝑑 𝑣𝑟 are the cut-in, cut-out, and rated 

wind speeds (m/sec) respectively;  

The probability of obtaining a zero and rated power output is given by the following: 

𝑓𝑤(𝑃𝑤 = 0) = 1 − 𝑒
(−(

𝑣𝑖𝑛
𝑐
)
𝑘
)
+ 𝑒

(−(
𝑣𝑜𝑢𝑡
𝑐
)
𝑘
)
                                        (4.20) 

𝑓𝑤(𝑃𝑤 = 𝑃𝑤𝑟) = 𝑒(−(
𝑣𝑟
𝑐
)
𝑘
) + 𝑒(−(

𝑣𝑜𝑢𝑡
𝑐
)
𝑘
)                                             (4.21) 

The probability for the linear part of the wind speed is given by the following: 

𝑓𝑤(𝑃𝑤) = (
𝑘(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
) (

𝑣𝑖𝑛𝑃𝑤𝑟+𝑃𝑤(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
)
(𝑘−1)

𝑒
(−(

𝑣𝑖𝑛𝑃𝑤𝑟+𝑃𝑤𝑟(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
)
𝑘

)
      (4.22) 

b) SPVS Modeling: 
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Similarly, the power output of a solar PV system (SPVS) is a factor of solar irradiance and it 

likely follows the Lognormal PDF [64] as follows: 

𝑓𝐺(𝐺𝑠) =
1

𝐺𝑆𝜎√2𝜋
𝑒
{
−(ln𝐺𝑆−𝜇)

2

2𝜎2
}
; 𝐺𝑆 > 0                                         (4.23) 

where 𝜇 and 𝜎 are the mean and standard deviation respectively; 𝐺𝑠 is the solar irradiance 

(W/m2). 

The SPVS unit's solar irradiance to energy generation is as follows [65]: 

𝑃𝑆(𝐺𝑆) = {
𝑃𝑠𝑟 (

𝐺𝑆
2

𝐺𝑠𝑡𝑑𝑅𝑐
)   ; 0 < 𝐺𝑆 < 𝑅𝑐

𝑃𝑠𝑟 (
𝐺𝑆

𝐺𝑠𝑡𝑑
)  ;  𝐺𝑆 ≥ 𝑅𝑐

                                       (4.24) 

where 𝐺𝑠𝑡𝑑 is the standard solar irradiance (W/m2); 𝑅𝑐 is the particular irradiance point (W/m2); 

𝑃𝑠𝑟 is the SPVS-rated power output. 

4.4.2 Uncertainty cost calculation of WECS, and SPVS 

Since WECS and SPVS powers are intermittent, Monte-Carlo simulations were used to account 

for uncertainty and calculate the uncertainty cost. The estimated cost for the intermittency of 

WECS and SPVS power is reflected in three ways: direct, reserve, and penalty costs. Whenever 

power is underestimated, extra unusable power is wasted; however, in practical power system 

applications, such power can be saved in an energy storage system and thus be counted as the 

reserve cost. The cost of overestimating power that is lower than the scheduled power is 

considered a penalty cost in the case of overestimation. 

The direct cost associated with 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) = 𝑔𝑗𝑃𝑤𝑠,𝑗                                                   (4.25) 

Similarly, the direct cost of 𝑘𝑡ℎ SPVS is as follows: 

𝐶𝑤,𝑘(𝑃𝑠𝑠,𝑘) = ℎ𝑘𝑃𝑠𝑠,𝑘                                                   (4.26) 

where 𝑃𝑤𝑠,𝑗, 𝑃𝑠𝑠,𝑘 are the scheduled powers of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ SPVS respectively; 𝑔𝑗, ℎ𝑘 are 

the direct cost constants of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ SPVS respectively; 

If the actual output power of the wind farm is lower than the predicted value, to ensure 

a constant supply of electricity to the consumers, the operator requires some spinning reserve. 

It is called the overestimation of power from unreliable sources. The cost incurred to maintain 

the spinning reserve is known as the reserve cost [66]. 

The reserve cost of the 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) = 𝐾𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) = 𝐾𝑅𝑤,𝑗∫ (𝑃𝑤𝑠,𝑗 − 𝑝𝑤,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

𝑃𝑤𝑠,𝑗

0
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(4.27) 

In contrast to the overestimation scenario, when the power output of wind exceeds the 

predicted output, the surplus power generated by WECS cannot be used and is wasted. This is 

called the underestimation of power from uncertain sources. In this case, ISO must pay a 

penalty for excess power. 

The penalty cost of the 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗) = 𝐾𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗) = 𝐾𝑃𝑤,𝑗∫ (𝑃𝑤,𝑗 − 𝑝𝑤𝑠,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

𝑃𝑤𝑟,𝑗

𝑃𝑤𝑠,𝑗

 

(4.28) 

where 𝐾𝑅𝑤,𝑗, 𝐾𝑃𝑤,𝑗 are the reserve, penalty cost constants of 𝑗𝑡ℎ WECS respectively; 𝑃𝑤𝑟,𝑗 and 

𝑃𝑤𝑎𝑣,𝑗 are the rated and actually available powers of 𝑗𝑡ℎ WECS; 𝑓𝑤(𝑝𝑤,𝑗) is the possibility of 

𝑗𝑡ℎ WECS power.  

Similarly to WECS, SPVS also exhibits intermittent power output. The SPVS reserve,  

and penalty cost expressions are provided below [67]. 

The reserve cost for 𝑘𝑡ℎ SPVS plant is as follows: 

𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘) = 𝐾𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘)   

 = 𝐾𝑅𝑠,𝑘 ∗ 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) ∗ [𝑃𝑠𝑠,𝑘 − 𝐸(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘)]  (4.29) 

The penalty cost for a 𝑘𝑡ℎ SPVS plant is as follows: 

𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘) = 𝐾𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)    

= 𝐾𝑃𝑠,𝑘 ∗ 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) ∗ [𝐸(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) − 𝑃𝑠𝑠,𝑘]  (4.30) 

where 𝐾𝑅𝑠,𝑘, 𝐾𝑃𝑠,𝑘 are the reserve, penalty cost constants of 𝑘𝑡ℎ SPVS respectively; 𝑃𝑠𝑎𝑣,𝑘 is 

the actual available power of 𝑘𝑡ℎ SPVS;  𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) and 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) are the 

probabilities of SPVS power; 𝐸(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘), 𝐸(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) are the expectations of 

SPVS power.  

4.5 Proposed Method  

In this chapter, a summation of normalized objective values (SNOV) with improved diversified 

selection (IDS) is integrated with the multi-objective evolution algorithm based on the 

decomposition (MOEA/D) [53] to solve the MOOPF problem with RES. The MOEA/D 

decomposes the multi-objective optimization problem into several single scalar optimization 

problems and optimizes them all at the same time using weight vectors. The weight vectors' 

distance is used to create neighborhoods. In every population evolution, information from the 

neighborhood is used to find a solution. The non-dominated sorting used in MOEA/D is 



 

Chapter 4    

42 
 

complex and time-taking. Some useful information may be lost if the dominant solutions are 

completely discarded. In addition, diversity may be lost during the search process and lead to 

local optima. To overcome these problems, the summation of normalized objective values with 

IDS [68] is employed in this work instead of non-dominated sorting selection to get a uniformly 

distributed Pareto front and improved convergence characteristics.  

Proposed algorithm steps: 

1 Randomly generate the initial population (N) and uniformly distributed weights using 

SSA [54] as given below: 

𝑁(𝐷,𝑀) = (
𝐷 +𝑀 − 1
𝑀 − 1

)  𝑓𝑜𝑟 𝐷 > 0 

2 Run the load flow, and determine the fitness value of the chosen objective function and 

total constraint violation. 

 

3 

Using angle criteria [55], locate neighbors with the smallest angles for each weight 

vector as given below: 

tan 𝜃 =
𝑑2
𝑑1

 

where 𝑑1 =
‖𝑤𝑖

𝑇𝑤𝑗‖

‖𝑤𝑗‖
, 𝑑2 = ‖𝑤𝑖 − 𝑑1

𝑤𝑗

‖𝑤𝑗‖
‖ 

i, j = 1, 2,.., N; i≠j,  𝜃= angle between 𝑑1 and 𝑑2. 

4 Evaluate the smaller objective values to form the present ideal point. 

5 Evaluate the larger objective values to form the present nadir point. 

6 Angle criteria are used to choose 𝑁 pairs of mating parents. A set of mating parents is 

picked with a probability of 𝛿 each weight. 

7 Crossover is used to produce offspring from mated parents. Then, the mutation is 

applied to produce a new population (Qt).  

8 The new population is formed by combining the original population (Pt) with the new 

offspring population (Qt). 

𝑃𝑡 = 𝑃𝑡  ∪ 𝑄𝑡 
9 For each objective and solution, calculate the normalized objective values. 

10 By adding all of the normalized objective values for each solution, obtain the sum of 

the normalized objective values [68]. 

 For m= 1 to M 

 Calculate the max and min objectives of the mth objective and find its range. 

Normalize the mth objective values using the expression: 

𝑓𝑚
′ (𝑥) =  

𝑓𝑚(𝑥) − 𝑓𝑚𝑖𝑛
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

 

End for  

 For i= 1 to N 

 Sum up all the normalized objective values to get a unique value  
End for  

11 Calculate the Euclidean space between all of the solutions and the reference point. 

12 Set a stopping point for the individual with the shortest path to the original point. 

13 Partition the target range into 100 bins and scan each bin till you reach the stopping 

point. The solution having the least summation value will be picked to enter into the 

preferential set for each scanned bin. 
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14 The solutions are dominated by stopping points, and also the individuals who were not 

selected will be sent to the backup set. 

15 Apply the fuzzy approach [56] to get the optimal values. 

 

4.6 Results and Discussions 

The proposed method was tested on IEEE 57-bus, and 118-bus systems to address the MOOPF 

problem incorporating WECS and SPVS uncertainties. To consider uncertainties, Monte-Carlo 

simulations were used to generate 1000 samples. It is programmed in MATLAB R2016a and 

operates on an i3 processor with 4GB RAM and the results obtained are compared with NSGA-

II [57], and MOPSO [58]. The control parameters of the proposed method, NSGA-II, and 

MOPSO are given in Table 4.1. The various cases considered are given in Table 4.2. The 

description of the test systems is given in Table 4.3. PDF specifications and cost components 

of various sources are given in Table 4.4. 

Table 4.1: Control parameters of the proposed method, NSGA-II, and MOPSO. 
S. No. Method Control parameters 

1. Proposed method N = 100, D =12, T = 20, Pc = 1.0, Pm  = 0.05, and max. iterations= 100. 

2. NSGA-II [57] N =100, Pc = 0.8, Pm = 0.01, and max. iterations = 100. 

3. MOPSO [58] N =100, C1= C2 =2, W = 0.5, and max. iterations = 100. 

Table 4.2: Various cases considered. 
S. No. Test Systems Case #  J1  J2 J3 J4 

1. IEEE 57-bus system 

Case-1     -- -- 

Case-2       -- 

Case-3         

2. IEEE 118-bus system 
Case-4   --   -- 

Case-5   --     

 

Table 4.3: Test systems description. 

Specifications IEEE 57-bus system IEEE 118-bus system 

Buses 57 
[59] 

118 
[59] 

Lines 80 186 

Thermal units 7 Buses:1,2,3,6,8,9 and 12 54 Buses: [59] 

Slack bus 1 Bus:1 69 Bus: 69 

Transformer 

tap positions 
17 

Lines:19,20,31,35,36,37,41,46, 

54,58,59,65,66,71,73,76, and 80 
9 

Lines: 8,32,36, 51, 93,95,102,107 and 

127 

Shunt 

capacitors 
3 Buses:18,25, and 53 12 

Buses:34,44,45,46,48,74,79,82, 83, 

105, 107 and 110 

Control 

variables 
37 

Generator bus real powers (8) + 

voltages (9) + transformer tap settings 

(17) + shunt capacitor (3). 

132 

Generator bus real powers (55) + 

voltages (56) + transformer tap 

settings (9) + shunt capacitor (12). 

Load - 1250.80MW, 336.40MVAR - 4242.00MW, 1439.00MVAR 

WECS 1 45 # bus 1 81 # bus 

SPVS 1 16 # bus 1 64 # bus 
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Table 4.4:  PDF specifications and cost components of various sources. 
S. No. Specifications WECS SPVS 

1. PDF Weibull Lognormal 

2. Parameters 
𝑐 =10, 𝑘 =2, 𝑣𝑖𝑛=10m/sec, 

𝑣𝑜𝑢𝑡=12m/sec, 𝑣𝑟=12m/sec 

𝜇 =6, 𝜎 = 0.6, 𝐺𝑠𝑡𝑑=800 

W/m2 , 𝑅𝑐=120 W/m2 

3. Direct cost coefficients ($/MW) 1.75 1.60 

4. Reserve cost coefficients  ($/MW) 3 3 

5. Penalty cost coefficients  ($/MW) 1.5 1.5 

 

4.6.1 IEEE 57-bus system 

To test the efficacy of the proposed method, in solving the MOOPF problem the IEEE 57-bus 

system [59] was considered. It contains 7 thermal generators # 1 bus as a slack bus), 80 lines, 

15 off-nominal transformers, 3 shunt VAR compensators, and real and reactive power demand 

of 1250.80MW and 336.40MVAR respectively. Notably, the locations of these sources were 

chosen from [74], by replacing load buses with the respective WECS, and SPVS. 

a) Case-1: Minimize J1 and J2 simultaneously 

In this case, J1, and J2 are the objectives that need to be minimized simultaneously. The optimal 

decision variables obtained by the proposed method are included in Table 4.5. The best-

compromised values obtained by the proposed method have a total generation cost of 

36195.21$/h and emission of 1.0182ton/h. NSGA-II [57] gives 36399.10$/h, 1.0912ton/h and 

MOPSO [58] gives 36733.34$/h, 1.1145ton/h as shown in Table 4.6. The Pareto-optimal fronts 

(PFs) observed in this are depicted in Figure 4.1.  

b) Case-2: Minimize J1, J2 and J3 simultaneously 

In this case, J1, J2, and J3 are the objectives that need minimizing simultaneously. The optimal 

decision variables obtained by the proposed method are included in Table 4.5. The best-

compromised values obtained by the proposed method have a total generation cost of 

36096.69$/h, emission of 1.0238ton/h, and active power loss of 10.3303MW. NSGA-II [57] 

gives 36363.70$/h, 1.1288ton/h, 10.7953MW and MOPSO [58] gives 39208.74$/h, 

1.0890ton/h, 11.0434MW as shown in Table 4.6. The Pareto-optimal fronts (PFs) observed in 

this are depicted in Figure 4.1.  

c) Case-3: Minimize J1, J2, J3 and J4 simultaneously 

In this case, J1, J2, J3, and J4 are the objectives that need to be minimized simultaneously. The 

optimal decision variables obtained by the proposed method are included in Table 4.5. The 

best-compromised values obtained by the proposed method have a total generation cost of 

36207.21$/h, emission of 1.0916ton/h, active power loss of 9.9732MW, and voltage 

magnitude deviation of 0.6848p.u. NSGA-II [57] gives 36479.38$/h, 1.1382ton/h, 
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11.3923MW, 0.8907p.u and MOPSO [58] gives 37321.91$/h, 1.2049ton/h, 14.5232MW, 

0.8323p.u. as shown in Table 4.6.  

 

(a) 

 
(b) 

Fig. 4.1: IEEE 57-bus system: Pareto-optimal fronts. a) Case-1, and b) Case-2. 
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Table 4.5: IEEE 57-bus system: Optimal control variables obtained by the proposed method.  

S. No. 
Control 

variables 

Limits 
Case-1 Case-2 Case-3 

Min Max 

1. P2  

 

 

0 

100 98.1298 67.1046 74.8586 

2. P3 140 69.4063 55.0118 64.1958 

3. P6 100 70.9842 98.4255 52.0615 

4. P8 550 329.0458 306.7587 315.7318 

5. P9 100 72.7441 99.3728 98.8024 

6. P12 410 315.2646 341.6928 378.7730 

7. P45 80 79.6017 79.9551 79.8243 

8. P46 80 79.8919 79.9311 79.5757 

9. V1  

 

 

 

0.95 

 

 

 

 

1.1 

1.0481 1.0296 1.0391 

10. V2 1.0371 1.0246 1.0333 

11. V3 1.0340 1.0227 1.0229 

12. V6 1.0275 1.0185 1.0209 

13. V8 1.0295 1.0162 1.0318 

14. V9 1.0169 1.0099 1.0160 

15. V12 1.0369 1.0268 1.0217 

16. V45 1.0471 1.0498 1.0514 

17. V46 1.0209 1.0372 1.0175 

18. T19  

 

 

 

 

 

 

 

0.9 

 

 

 

 

 

 

 

 

1.1 

1.0154 1.0139 1.0056 

19. T20 0.9945 1.0497 1.0367 

20. T31 1.0183 1.0260 0.9955 

21. T35 0.9938 1.0263 0.9876 

22. T36 0.9601 0.9982 0.9821 

23. T37 0.9943 1.0176 1.0321 

24. T41 1.0225 0.9911 1.0155 

25. T46 0.9889 0.9757 0.9456 

26. T54 0.9999 0.9233 0.9049 

27. T58 0.9814 0.9802 0.9613 

28. T59 1.0108 0.9877 1.0070 

29. T65 0.9914 0.9841 0.9967 

30. T66 0.9748 0.9484 0.9140 

31. T71 0.9703 0.9756 0.9547 

32. T73 1.0158 0.9829 1.0058 

33. T76 0.9691 0.9769 0.9649 

34. T80 0.9908 0.9872 1.0199 

35. QC18  

0 

 

20 

9.1150 11.4035 11.0379 

36. QC25 9.8438 10.4059 8.2934 

37. QC53 11.2830 7.1925 7.7894 

1. J1($/h) - - 36195.21 36096.69 36207.21 

2. J2(ton/h) - - 1.0182 1.0238 1.0916 

3. J3(MW) - - - 10.3303 9.9732 

4. J4(p.u.) - - - - 0.6848 
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Table 4.6: IEEE 57-bus system: Comparison of the proposed method. 
Case # Objective functions Proposed method NSGA-II [57] MOPSO [58] 

Case-1 
J1($/h)  36195.21 36399.10 36733.34 

J2(ton/h) 1.0182 1.0912 1.1145 

Case-2 

J1($/h)  36096.69 36363.70 39208.74 

J2(ton/h) 1.0238 1.1288 1.0890 

J3(MW) 10.3303 10.7953 11.0434 

Case-3 

J1($/h)  36207.21 36479.38 37321.91 

J2(ton/h) 1.0916 1.1382 1.2049 

J3(MW) 9.9732 11.3923 14.5232 

J4(p.u.) 0.6848 0.8907 0.8323 

 

4.6.2 IEEE 118-bus system 

To show the scalability of the proposed method for a large-scale system in solving the MOOPF 

problem, the IEEE 118-bus system [59] is considered. It contains 54 thermal generators (# 69 

bus as a slack bus), 186 lines, 9 off-nominal transformers, and 12 shunt VAR compensators. 

The real and reactive power demand on the system is 4242.00MW and 1439.00MVAR 

respectively. Notably, the locations of these sources were chosen from [74], by replacing load 

buses with the respective WECS, and SPVS. 

a) Case-4: Minimize J1 and J3 simultaneously 

In this case, J1, and J3 are the objectives that need to be minimized simultaneously. The optimal 

decision variables obtained by the proposed method are included in Table 4.7. The best-

compromised values obtained by the proposed method have a total generation cost of 

132958.66$/h, and an active power loss of 31.2916MW. NSGA-II [57] gives 133837.90$/h, 

31.8664MW and MOPSO [58] gives 134673.5$/h, 35.3868MW as shown in Table 4.8. The 

Pareto-optimal fronts (PFs) observed in this are depicted in Figure 4.2.  

b) Case-5: Minimize J1, J3 and J4 simultaneously 

In this case, J1, J3, and J4 are the objectives that need minimizing simultaneously. The optimal 

decision variables obtained by the proposed method are included in Table 4.7. The best-

compromised values obtained by the proposed method have a total generation cost of 

135774.93$/h, active power loss of 39.6333MW, and voltage magnitude deviation of 

0.4299p.u. NSGA-II [57] gives 135912.8$/h, 45.6904MW, 0.5074p.u and MOPSO [58] gives 

136459.9$/h, 48.3446MW, 0.5878p.u. as shown in Table 4.8. The Pareto optimal fronts (PFs) 

observed in this are depicted in Figure 4.2. 
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(a) 

 
(b) 

Fig. 4.2: IEEE 118-bus system: Pareto-optimal fronts. a) Case-4, and b) Case-5. 
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Table 4.7: IEEE 118-bus system: Optimal control variables obtained by the proposed method.  
S. 

No. 
Control 

variables 

Limits 
Case-4 Case-5 

S. 

No. 

Control 

variables 
Limits 

Case-4 Case-5 
min max min max 

1. P1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

100 31.118 52.020 69. V31  

 

 

 

 

 

 

 

 

 

 

 

 

0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 

1.0253 1.0169 

2. P4 100 21.400 41.520 70. V32 1.0195 1.0030 

3. P6 100 42.530 40.834 71. V34 0.9909 1.0094 

4. P8 100 28.556 26.448 72. V36 1.0241 1.0067 

5. P10 550 273.35 245.999 73. V40 1.0096 1.0118 

6. P12 185 86.663 95.235 74. V42 1.0305 1.0113 

7. P15 100 43.268 37.779 75. V46 1.0150 1.0221 

8. P18 100 99.997 45.659 76. V49 1.0118 1.0055 

9. P19 100 35.781 55.328 77. V54 1.0359 1.0023 

10. P24 100 64.585 35.747 78. V55 1.0708 1.0239 

11. P25 320 182.60 90.928 79. V56 1.0661 1.0256 

12. P26 414 0.000 162.842 80. V59 1.0619 1.0271 

13. P27 100 24.090 46.656 81. V61 1.1000 1.0175 

14. P31 107 22.783 25.781 82. V62 1.0982 0.9985 

15. P32 100 62.386 37.325 83. V65 1.0875 1.0049 

16. P34 100 43.187 40.202 84. V66 1.0434 1.0099 

17. P36 100 100.00 54.841 85. V69 1.0436 1.0280 

18. P40 100 88.192 64.417 86. V70 1.0184 1.0096 

19. P42 100 83.016 49.460 87. V72 1.0066 1.0062 

20. P46 119 19.417 44.338 88. V73 1.0092 1.0190 

21. P49 304 138.66 140.370 89. V74 1.0119 1.0264 

22. P54 148 59.984 98.543 90. V76 1.0045 1.0089 

23. P55 100 74.764 52.457 91. V77 1.0367 1.0170 

24. P56 100 59.627 46.8259 92. V80 1.0229 1.0183 

25. P59 255 117.12 115.881 93. V85 0.9985 1.0125 

26. P61 260 121.66 121.893 94. V87 0.9617 1.0290 

27. P62 100 35.517 44.630 95. V89 1.0269 1.0266 

28. P65 491 214.33 213.346 96. V90 1.0321 1.0253 

29. P66 492 205.83 187.419 97. V91 1.0209 1.0221 

30. P70 100 12.582 54.0066 98. V92 1.0237 1.0056 

31. P72 100 12.141 40.751 99. V99 1.0297 1.0222 

32. P73 100 55.579 50.455 100. V100 1.0412 1.0206 

33. P74 100 14.137 42.021 101. V103 1.0269 1.0326 

34. P76 100 75.678 37.592 102. V104 1.0484 1.0319 

35. P77 100 82.194 42.539 103. V105 1.0531 1.0203 

36. P80 577 256.72 270.903 104. V107 1.0380 1.0324 

37. P85 100 42.579 42.382 105. V110 1.0685 1.0243 

38. P87 104 0.000 19.159 106. V111 1.0854 1.0296 

39. P89 707 257.13 216.783 107. V112 1.0619 1.0349 

40. P90 100 97.811 36.604 108. V113 1.0228 1.0236 

41. P91 100 8.436 52.187 109. V116 1.0519 1.0073 

42. P92 100 45.760 43.249 110. V64 1.0160 1.0149 

43. P99 100 23.885 40.178 111. V65 1.0453 1.0229 

44. P100 352 113.62 150.771 112. T8  

 

 

 

0.9 

 

 

 

 

 

1.1 

 

0.9897 1.0013 

45. P103 140 42.612 50.598 113. T32 1.0611 1.0167 

46. P104 100 11.805 45.019 114. T36 0.9508 0.9920 

47. P105 100 100.00 63.106 115. T51 1.0001 0.9742 

48. P107 100 19.672 39.046 116. T93 0.9995 1.0096 

49. P110 100 56.657 53.624 117. T95 0.9000 1.0180 

50. P111 136 22.867 43.765 118. T102 1.0099 1.0270 

51. P112 100 40.659 39.005 119. T107 0.9262 0.9814 

52. P113 100 16.067 51.229 120. T127 0.9770 0.9995 
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53. P116 100 39.564 44.049 121. QC34  

 

 

 

 

 

0 

 

 

 

 

 

 

 

25 

 

6.1168 14.2885 

54. P64 100 99.998 74.484 122. QC44 14.0212 11.8200 

55. P65 100 99.998 61.143 123. QC45 24.0656 12.7371 

56. V1   1.0554 1.0093 124. QC46 9.5124 15.7212 

57. V4 0.9500 1.0106 125. QC48 5.8489 14.8892 

58. V6 0.9753 1.0256 126. QC74 19.2222 10.8066 

59. V8 0.9585 1.0102 127. QC79 0.0000 15.8930 

60. V10 1.0381 1.0205 128. QC82 24.7411 13.8225 

61. V12 1.0502 1.0141 129. QC83 13.9104 11.6974 

62. V15 0.9529 1.0094 130. QC105 24.9944 13.5413 

63. V18 0.9960 1.0220 131. QC107 19.0262 15.0743 

64. V19 1.0077 1.0321 132. QC110 12.1782 11.1250 

65. V24 0.9956 1.0184  

66. V25 1.0117 1.0251 1. J1 ($/h)  - - 132958.6 135774.9 

67. V26 1.0397 1.0227 2. J3(MW) - - 31.2916 39.6333 

68. V27 1.0466 1.0121 3. J4 (p.u) - - - 0.4299 

Table 4.8: IEEE 118-bus system: Comparison of the proposed method. 
Case # Objective functions Proposed method NSGA-II [57] MOPSO [58] 

Case-4 
J1($/h) 132958.66 133837.90 134673.5 

J3(MW) 31.2916 31.8664 35.3868 

Case-5 

J1($/h) 135774.93 135912.8 136459.9 

J3(MW) 39.6333 45.6904 48.3446 

J4(p.u.) 0.4299 0.5074 0.5878 

 

4.7 Summary 

This work proposes a solution to the MOOPF problem with a combination of thermal, WECS, 

and SPVS using MOEA based on decomposition and summation of normalized objectives with 

an improved diversified selection method. Using the superiority of the feasible solution (SF) 

technique, the method also addresses the restrictions in the MOOPF problem. The generation 

cost of thermal generators and uncertainty cost associated with WECS and SPVS are 

minimized along with emission, active power loss, and voltage magnitude deviation. Monte 

Carlo simulations were used to assess the uncertainty of WECS and SPVS power. To show the 

efficacy of the proposed method, simulations were done on the IEEE 57-bus and IEEE 118-

bus systems, and the results were compared with NSGA-II and MOPSO algorithms. The 

outcomes show that the proposed method is superior to competing methods. Therefore, the 

proposed approach can be effectively used in operation and control when WECS and SPVS 

power generation are included in the power system. This work is limited to the MOOPF 

problem with integration of WECS, and SPVS, to assess the impact of  PEV integration on the 

MOOPF problem along with WECS, and SPVS next work is proposed. 
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Chapter 5  

A New Hybrid Decomposition and Summation of Normalized Objectives 

with Improved Diversified Selection Based Multi-Objective Evolutionary 

Algorithm Including Wind, Solar, and PEV Uncertainty for the Optimal 

Power Flow  

5.1 Introduction 

This chapter presents a new hybrid decomposition and summation of normalized objectives 

with improved diversified selection-based MOEA for the OPF problem including WECS, 

SPVS, and PEVs uncertainty with four conflicting objectives including minimizing total 

generation cost, emission, active power loss, and voltage magnitude deviation. The MOOPF 

problem was solved using a unique CHM that adaptively inserts the penalty and avoids the 

parameter relying on penalty calculation. The summation-based sorting and enhanced diverse 

selection are used to improve the diversity of MOEA. In addition, a fuzzy algorithm is used to 

determine the optimal compromise values from Pareto-optimal solutions. The impact of 

intermittence of WECS, SPVS, and PEVS integration was considered for optimal cost analysis. 

The uncertainty associated with WECS, SPVS, and PEV systems was represented using PDFs 

and its uncertainty cost is calculated using the Monte-Carlo simulations. To test the 

effectiveness of the suggested method, IEEE 57-bus and 118-bus systems were assessed, and 

the acquired results were compared with NSGA-II and MOPSO.  

The contributions of this chapter are as follows: 

i. Proposing a novel hybrid MOEA for solving the MOOPF problem based on the 

decomposition and summation of normalized objectives with an enhanced diverse 

selection. 

ii. Integrating WECS, SPVS, and PEV systems into the traditional OPF to investigate 

the effect of the stochastic nature of the sources.  

iii. Modeling uncertainty associated with WECS, SPVS, and PEV systems using PDFs, 

and evaluating the associated uncertain cost using Monte-Carlo simulations. 

iv. Using an efficient constraint handling method called the SF method to address 

various constraints in the MOOPF problem. 

5.2 Problem Formulation 

The objectives and constraints for the considered MOOPF problem are expressed as follows:  
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5.2.1 Objectives  

The MOOPF problem is formulated using four objectives: minimizing a) total generation cost 

(J1), b) emission (J2), c) active power loss (J3), and d) voltage magnitude deviation (J4). 

a) Total generation cost ($/h): 

The overall generating cost is the sum of the generation cost of thermal, WECS, SPVS, and 

PEV sources and is expressed by the following equation: 

              𝑀𝑖𝑛 𝐽1 = ∑(𝑎𝑖 + 𝑏𝑖𝑃𝑇𝐺𝑖 + 𝑐𝑖𝑃𝑇𝐺𝑖
2 )

𝑁𝑇𝐺

𝑖=1

+ ∑[𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) + 𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) + 𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗)]

𝑁𝑊𝐺

𝑗=1

+∑[𝐶𝑠,𝑘(𝑃𝑠𝑠,𝑘) + 𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘) + 𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)]

𝑁𝑆𝐺

𝑘=1

+ ∑ [𝐶𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛) + 𝐶𝑅𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛 − 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛) + 𝐶𝑃𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑎𝑣,𝑛

𝑁𝑃𝐸𝑉

𝑛=1

− 𝑃𝑝𝑒𝑣𝑠,𝑛)] 

 (5.1) 

where 𝑁𝑇𝐺, 𝑁𝑊𝐺, 𝑁𝑆𝐺 , and 𝑁𝑃𝐸𝑉 are the number of thermal, WECS, SPVS, and PEVS 

respectively; 𝑃𝑤𝑠,𝑗, 𝑃𝑠𝑠,𝑘 , and 𝑃𝑝𝑒𝑣𝑠,𝑛 are the scheduled powers of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ SPVS, and 

𝑛𝑡ℎ PEVS respectively; 𝑃𝑤𝑎𝑣,𝑗, 𝑃𝑠𝑎𝑣,𝑘, and 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛 are the actual powers of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ 

SPVS, and 𝑛𝑡ℎ PEVS respectively; 𝑃𝑇𝐺𝑖 is the 𝑖𝑡ℎ thermal generator output power; 𝑎𝑖, 𝑏𝑖 , 𝑐𝑖 is 

the 𝑖𝑡ℎ thermal generator cost coefficients; 

b) Emission (ton/h): 

The generation of electric power from traditional fossil fuels would result in the emission of 

hazardous gases into the atmosphere. The following expression describes the total emission 

from thermal generators: 

𝑀𝑖𝑛𝐽2 = ∑ (𝛼𝑖 + 𝛽𝑖𝑃𝑇𝐺𝑖 + 𝛾𝑖𝑃𝑇𝐺𝑖
2 + 𝛿𝑖𝑒

𝜀𝑖𝑃𝑇𝐺𝑖)𝑁𝑇𝐺
𝑖=1                          (5.2) 

where 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝛿𝑖 , 𝜀𝑖 are the 𝑖𝑡ℎ thermal generator emission coefficients; 

c) Active power loss (MW): 

The following equation can be used to express active power loss:  

𝑀𝑖𝑛 𝐽3 = ∑ (𝐺𝑘(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝜃𝑖𝑗))
𝑁𝐿
𝑘=1                              (5.3) 
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where 𝑁𝐿  is the number of lines; 𝜃𝑖𝑗 shows the voltage angle between buses 𝑖 and 𝑗; 𝐺𝑘 

represents the conductance of branch 𝑘; 𝑉𝑖, 𝑉𝑗 is the voltage magnitudes at 𝑖𝑡ℎ and 𝑗𝑡ℎ bus 

respectively. 

d) Voltage magnitude deviation (p.u.): 

The voltage variation is the sum of all voltage variances at load buses in the network relative 

to the reference voltage. The mathematical expression is as follows:  

                    𝑀𝑖𝑛 𝐽4 = ∑ |(𝑉𝑖 − 𝑉𝑟𝑒𝑓)|
𝑁𝑃𝑄
𝑖=1

                                             (5.4) 

where 𝑁𝑃𝑄 is the number of PQ buses; 𝑉𝑟𝑒𝑓 is the reference voltage set to 1 p.u.; 𝑉𝑖 is the 𝑖𝑡ℎ 

load bus voltage.  

5.2.2 Constraints  

The MOOPF objectives are subjected to the following equality and inequality constraints. 

a) Equality constraints: 

The equality restrictions are power-balancing equations in which the sum of the generations of 

the real and reactive powers is equal to their corresponding demands and losses.  

 Power flow constraints 

The overall demand and losses throughout the system are equal to the total real and reactive 

power delivered: 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)
𝑁𝐵
𝑗=1 = 0; 𝑖 = 1,2, …𝑁𝐵           (5.5) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 −𝐵𝑖𝑗 cos 𝜃𝑖𝑗)
𝑁𝐵
𝑗=1 = 0; 𝑖 = 1,2, …𝑁𝐵              (5.6) 

where 𝑁𝐵 is the number of buses; 𝑃𝐺𝑖, 𝑄𝐺𝑖, and 𝑃𝐷𝑖, 𝑄𝐷𝑖 are the real, reactive power generations 

and demands at the 𝑖𝑡ℎ bus, respectively; 𝐺𝑖𝑗, 𝐵𝑖𝑗 is the conductance, susceptance of lines 

between buses 𝑖 and 𝑗 respectively; 

b) Inequality constraints: 

The operational limitations on generators, transformers, and shunt devices, as well as the 

security requirements on lines and load buses, constitute inequality constraints.   

 Generator constraints: The boundary limits of real and reactive powers and the voltage 

magnitude of the generator buses are expressed as follows: 

𝑃𝑇𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑇𝐺𝑖 ≤ 𝑃𝑇𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇𝐺                                       (5.7) 

𝑃𝑊𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑊𝐺𝑖 ≤ 𝑃𝑊𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑊𝐺                                    (5.8) 

𝑃𝑆𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑆𝐺𝑖 ≤ 𝑃𝑆𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑆𝐺                                        (5.9) 

𝑃𝑃𝐸𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑃𝐸𝑉𝐺𝑖 ≤ 𝑃𝑃𝐸𝑉𝐺𝑖

𝑚𝑎𝑥 ; 𝑖 = 1,2, …𝑁𝑃𝐸𝑉                             (5.10) 

𝑄𝑇𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑇𝐺𝑖 ≤ 𝑄𝑇𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇𝐺                                         (5.11) 
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𝑄𝑊𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑊𝐺𝑖 ≤ 𝑄𝑊𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑊𝐺                                      (5.12) 

𝑄𝑆𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑆𝐺𝑖 ≤ 𝑄𝑆𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑆𝐺                                         (5.13) 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐺                                              (5.14) 

 Shunt compensator constraints: The following are the boundary values for shunt 

compensators: 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐶                                             (5.15) 

 Transformer constraints: The ideal operating limits for tap settings on a transformer are 

given as follows: 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇                                              (5.16) 

 Security constraints: The voltage limits of the load buses and the apparent power value 

of each transmission line, which can be restricted by its maximum capacity, are given 

as follows: 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑃𝑄                                          (5.17) 

|𝑆𝑙𝑖| ≤ 𝑆𝑙𝑖
𝑚𝑎𝑥;  𝑖 = 1,2, …𝑁𝐿                                                         (5.18) 

where 𝑁𝐶,and 𝑁𝑇 is the number of shunt compensators and transformers respectively; 𝑆𝑙𝑖  and 

𝑆𝑙𝑖
𝑚𝑎𝑥 are the apparent power flow and its maximum limit of 𝑖𝑡ℎ line; 𝑃𝐺𝑖

𝑚𝑖𝑛,𝑃𝐺𝑖
𝑚𝑎𝑥 are the limits 

on real power generation; 𝑄𝐺𝑖
𝑚𝑖𝑛,𝑄𝐺𝑖

𝑚𝑎𝑥 are the limits on reactive power generation; 𝑉𝐺𝑖
𝑚𝑖𝑛, 𝑉𝐺𝑖

𝑚𝑎𝑥 

are the limits on generator bus voltages; 𝑇𝑖
𝑚𝑖𝑛, 𝑇𝑖

𝑚𝑎𝑥 are the limits on transformer 

taps; 𝑄𝐶𝑖
𝑚𝑖𝑛,𝑄𝐶𝑖

𝑚𝑎𝑥 are the limits on shunt compensator; 𝑉𝐿𝑖
𝑚𝑖𝑛, 𝑉𝐿𝑖

𝑚𝑎𝑥are the limits on load bus 

voltages;  

Two equality constraints Eq. (5.5) and Eq. (5.6) are automatically satisfied when the 

power flow converges to an optimal solution. The generator buses’ real power (excluding slack 

bus), transformer tap ratios, voltage limits, and shunt compensator ranges are considered to 

control variables that are self-limiting. The remaining inequality constraints require constraint 

handling techniques.  

In OPF, generator reactive power capacities are significant. In recent years, WECSs 

with complete reactive power capability has become commercially viable [60]. WECS can 

deliver reactive power in the range of -0.4p.u.to 0.5p.u. The negative sign signifies the 

generator's ability to absorb. Rooftop solar PV is designed as load buses with zero reactive 

power. However, because utility-based Solar PVs have converters built-in, full generator 

modeling is required due to the converters' dynamic behavior [61]. In this study, the reactive 

power capabilities of SPVS are assessed between -0.4p.u and 0.5p.u. 
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5.3 Constraint Handling Method 

A proper CHM must be used in conjunction with an evolutionary algorithm to guide the search 

process toward a globally optimal solution. Among the many CHMs, the most frequently 

employed is the penalty approach, which involves adding a penalty to the fitness of a non-

feasible solution. Despite its simplicity and ease of implementation, this method's performance 

is highly dependent on the penalty factor, which must be calibrated through trial and error. To 

tackle this difficulty, in this study, a new parameter-free CHM superiority of feasible solution 

(SF) is introduced in the study for solving the MOOPF problem. 

In [62], Deb introduced the SF method for handling different constraints efficiently. In 

the SF method, a comparison is drawn between a pair of solutions. When a pair of solutions 

are compared, the following cases emerge: 

(1) While comparing two non-feasible solutions, the solution having the smallest constraint 

violation is selected. 

(2) When two feasible solutions are compared, the one with a better fitness solution is selected. 

(3) When a feasible solution is compared to a non-feasible solution, the feasible solution is 

selected. 

Comparing non-feasible solutions based on constraint violation helps push non-feasible 

answers into the feasible region while comparing viable solutions based on the fitness value 

enables solution quality to be improved.    

5.4 Integration of WECS, SPVS, and PEV Systems 

5.4.1 WECS, SPVS, and PEV Modeling 

In this part, the WECS, SPVS, and PEV systems are integrated into the conventional OPF 

problem.  

a) WECS Modeling: 

The wind speed at a given geographical area is most likely distributed according to Weibull 

PDF as given below: 

𝑓(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)
(𝑘−1)

(𝑒)(
−𝑣

𝑐
)
𝑘

; 0 < 𝑣 < ∞                                           (5.19) 

where 𝑣 is the wind speed (m/sec); 𝑘, and 𝑐 is the shape, and scale factors respectively. 

The PDFs for two different shape and scale factors are given in [63]. The relationship between 

wind speed and power generation is as follows: 

𝑃𝑤(𝑣) = {

0; 𝑣 < 𝑣𝑖𝑛 𝑎𝑛𝑑 𝑣 > 𝑣𝑜𝑢𝑡

𝑃𝑤𝑟 (
𝑣−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
)

𝑃𝑤𝑟;  𝑣𝑟 < 𝑣𝑤 ≤ 𝑣𝑜𝑢𝑡

;  𝑣𝑖𝑛 ≤ 𝑣𝑤 ≤ 𝑣𝑟                         (5.20) 
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where 𝑃𝑤𝑟 is the rated wind power; 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡, 𝑣𝑟 are the cut-in, cut-out, and rated wind speeds 

(m/sec) respectively;  

The probability of obtaining a zero and rated power output is given by the following: 

𝑓𝑤(𝑃𝑤 = 0) = 1 − 𝑒(−(
𝑣𝑖𝑛
𝑐
)
𝑘
) + 𝑒(−(

𝑣𝑜𝑢𝑡
𝑐
)
𝑘
)                                        (5.21) 

𝑓𝑤(𝑃𝑤 = 𝑃𝑤𝑟) = 𝑒(−(
𝑣𝑟
𝑐
)
𝑘
) + 𝑒(−(

𝑣𝑜𝑢𝑡
𝑐
)
𝑘
)                                             (5.22) 

The probability for the linear part of the wind speed is given by the following: 

𝑓𝑤(𝑃𝑤) = (
𝑘(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
) (

𝑣𝑖𝑛𝑃𝑤𝑟+𝑃𝑤(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
)
(𝑘−1)

𝑒
(−(

𝑣𝑖𝑛𝑃𝑤𝑟+𝑃𝑤𝑟(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
)
𝑘

)
      (5.23) 

b) SPVS Modeling: 

Similarly, the power output of a solar energy system is a factor of solar irradiance and it likely 

follows the Lognormal PDF [64] as follows: 

𝑓𝐺(𝐺𝑠) =
1

𝐺𝑆𝜎√2𝜋
𝑒
{
−(ln𝐺𝑆−𝜇)

2

2𝜎2
}
; 𝐺𝑆 > 0                                         (5.24) 

where 𝜇 and 𝜎 are the mean and standard deviation respectively; 𝐺𝑠 is the solar irradiance 

(W/m2). 

The SPVS unit's solar irradiance to energy generation is as follows [65]: 

𝑃𝑆(𝐺𝑆) = {
𝑃𝑠𝑟 (

𝐺𝑆
2

𝐺𝑠𝑡𝑑𝑅𝑐
)   ; 0 < 𝐺𝑆 < 𝑅𝑐

𝑃𝑠𝑟 (
𝐺𝑆

𝐺𝑠𝑡𝑑
)  ;  𝐺𝑆 ≥ 𝑅𝑐

                                       (5.25) 

where 𝐺𝑠𝑡𝑑 is the standard solar irradiance (W/m2); 𝑅𝑐 is the particular irradiance point (W/m2); 

𝑃𝑠𝑟 is the SPVS-rated power output. 

c) PEV Modeling: 

In recent days, public transport electric vehicles ply most of the time during the day and are 

charged during off-peak periods and so are not suitable for V2G application. Privately-owned 

PEVs are generally idle most of the time during the day and hence PEVs are suitable for the 

vehicle-to-grid (V2G) power-fed capability. The availability of electric vehicles as V2G source 

follows the normal PDF as follows [69]:  

𝑓𝑝𝑒𝑣 =
1

√2𝜋𝜑2
𝑒
−{

(𝑃𝑝𝑒𝑣−𝜇)
2

2𝜑2
}

                                                 (5.26) 

where 𝜇 and 𝜑 are the mean and standard deviation of normal PDF respectively; 𝑃𝑝𝑒𝑣 is the 

available V2G power; 

Here, the PEVs are used as a source of power feeding the grid through suitable infrastructure. 

The following assumptions are made regarding the use of PEV as a power source. 
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 All PEVs supply battery power to the power network through DC/AC inverter. 

 All PEVs represent one big V2G charging/discharging station. 

 V2G system acts as a power source controller. 

Depending on the probability of PEVs availability, the direct, reserve, and penalty costs are 

calculated. 

5.4.2 Uncertainty cost calculation of WECS, SPVS, and PEV Systems 

Since WECS, SPVS, and PEVS are intermittent, the Monte-Carlo simulations are used to 

account for uncertainty and to calculate the uncertainty cost. The estimated cost for the 

intermittency of WECS, SPVS, and PEVS powers is reflected in three ways: direct, reserve, 

and penalty costs. Whenever power is underestimated, extra unusable power is wasted; 

however, in practical power system applications, such power can be saved in an energy storage 

system and thus be counted as the reserve cost. The cost of overestimating power that is lower 

than the scheduled power is considered a penalty cost in the case of overestimation. 

The direct cost associated with 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) = 𝑔𝑗𝑃𝑤𝑠,𝑗                                                                    (5.27) 

The direct cost of 𝑘𝑡ℎ SPVS is as follows: 

𝐶𝑤,𝑘(𝑃𝑠𝑠,𝑘) = ℎ𝑘𝑃𝑠𝑠,𝑘                                                                    (5.28) 

Similarly, the direct cost of 𝑛𝑡ℎ PEVS is as follows: 

𝐶𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛) = 𝑑𝑛𝑃𝑝𝑒𝑣𝑠,𝑛                                                           (5.29) 

where 𝑃𝑤𝑠,𝑗 , 𝑃𝑠𝑠,𝑘, and 𝑃𝑝𝑒𝑣𝑠,𝑛 are the scheduled powers of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ SPVS, and 𝑛𝑡ℎPEVS 

respectively; 𝑔𝑗, ℎ𝑘, and 𝑑𝑛 are the direct cost coefficients of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ SPVS, and 𝑛𝑡ℎ 

PEVS respectively; 

        When the wind farm's actual output falls short of the predicted value, the system 

operator must maintain a spinning reserve to ensure that consumers receive uninterrupted 

power. This is called the overestimation of power delivered from uncertain sources and the cost 

incurred to maintain the spinning reserve is known as reserve cost [66].  

The reserve cost of the 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) = 𝐾𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) = 𝐾𝑅𝑤,𝑗∫ (𝑃𝑤𝑠,𝑗 − 𝑝𝑤,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

𝑃𝑤𝑠,𝑗

0

 

(5.30) 

In contrast to the overestimation case, when the actual power output of the wind exceeds 

the predicted output, the surplus power is squandered if it cannot be utilized. As a result, the 
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ISO is required to pay a penalty fee for excess power. This is referred to as the underestimation 

of power delivered from uncertain sources. 

The penalty cost of the 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗) = 𝐾𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗) = 𝐾𝑃𝑤,𝑗∫ (𝑃𝑤,𝑗 − 𝑝𝑤𝑠,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

𝑃𝑤𝑟,𝑗

𝑃𝑤𝑠,𝑗

 

(5.31) 

where 𝐾𝑅𝑤,𝑗, 𝐾𝑃𝑤,𝑗 are the reserve, penalty cost coefficients of 𝑗𝑡ℎ WECS respectively; 𝑃𝑤𝑟,𝑗, 

𝑃𝑤𝑎𝑣,𝑗 are the rated, actually available powers of 𝑗𝑡ℎ WECS; 𝑓𝑤(𝑝𝑤,𝑗) be the possibility of 𝑗𝑡ℎ 

WECS.  

Like the WECS, SPVS power also shows intermittency in output power. The approach 

to calculating the over and underestimation cost of SPVS is as follows [67]. 

The reserve cost for 𝑘𝑡ℎ SPVS is as follows: 

𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘) = 𝐾𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘)   

 = 𝐾𝑅𝑠,𝑘 ∗ 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) ∗ [𝑃𝑠𝑠,𝑘 − 𝐸(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘)]  (5.32) 

The penalty cost for a 𝑘𝑡ℎ SPVS is as follows: 

𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘) = 𝐾𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)   

 = 𝐾𝑃𝑠,𝑘 ∗ 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) ∗ [𝐸(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) − 𝑃𝑠𝑠,𝑘]  (5.33) 

where 𝐾𝑅𝑠,𝑘, 𝐾𝑃𝑠,𝑘 is the reserve, penalty cost constants of 𝑘𝑡ℎ SPVS respectively; 𝑃𝑠𝑎𝑣,𝑘 is the 

actually available power of 𝑘𝑡ℎ SPVS; 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) and 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) are the 

probabilities of SPVS power; 𝐸(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘), 𝐸(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) are the expectations of 

SPVS power.  

Similarly, PEVS also shows intermittency in output power. The approach to calculating 

the over and underestimation cost of PEVS is as follows [70, 71]. 

Reserve cost associated with 𝑛
𝑡ℎ PEV is defined as: 

𝐶𝑅𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛 − 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛) = 𝐾𝑅𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛 − 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛) 

= 𝐾𝑅𝑝𝑒𝑣,𝑛 ∫ (𝑃𝑝𝑒𝑣𝑠,𝑛 − 𝑝𝑝𝑒𝑣,𝑛)𝑓𝑝𝑒𝑣(𝑝𝑝𝑒𝑣,𝑛)𝑑𝑝𝑝𝑒𝑣,𝑛
𝑃𝑝𝑒𝑣𝑠,𝑛

0
  (5.34) 

Penalty cost associated with 𝑛
𝑡ℎ PEV is defined as: 

𝐶𝑃𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑎𝑣,𝑛 − 𝑃𝑝𝑒𝑣𝑠,𝑛) = 𝐾𝑃𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑎𝑣,𝑛 − 𝑃𝑝𝑒𝑣𝑠,𝑛) 

= 𝐾𝑃𝑝𝑒𝑣,𝑛 ∫ (𝑝𝑝𝑒𝑣,𝑛 − 𝑃𝑝𝑒𝑣𝑠,𝑛)𝑓𝑝𝑒𝑣(𝑝𝑝𝑒𝑣,𝑛)𝑑𝑝𝑝𝑒𝑣,𝑛
𝑃𝑝𝑒𝑣𝑟,𝑛

𝑃𝑝𝑒𝑣𝑠,𝑛
  (5.35) 
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where 𝐾𝑅𝑝𝑒𝑣,𝑛, 𝐾𝑃𝑝𝑒𝑣,𝑛 is the reserve, penalty cost constants of 𝑛𝑡ℎ PEVS respectively; 𝑃𝑝𝑒𝑣𝑟,𝑛, 

𝑃𝑝𝑒𝑣𝑎𝑣,𝑛 are the rated, actually available powers of 𝑛𝑡ℎ PEVS; 𝑓𝑝𝑒𝑣(𝑝𝑝𝑒𝑣,𝑛) is the 𝑛𝑡ℎ  PEVS 

power probability.  

5.5 Proposed Method 

In this chapter, a summation of normalized objective values (SNOV) with improved diversified 

selection (IDS) is proposed and integrated with the multi-objective evolution algorithm based 

on the decomposition (MOEA/D) [53] method to solve the MOOPF problem. The MOEA/D 

method decomposes the multi-objective optimization problem into several single scalar 

optimization problems and optimizes them all at the same time using weight vectors. The 

weight vectors' distance is used to create neighborhoods. In every population evolution, 

information from the neighborhood is used to find a solution. The non-dominated sorting used 

in MOEA/D is complex and time-taking. Some useful information may be lost if the dominant 

solutions are completely discarded. In addition, diversity may be lost during the search process 

and lead to local optima. To overcome these problems, the summation of normalized objective 

values [68] with IDS is employed in this work instead of non-dominated sorting selection to 

get a uniformly distributed Pareto front and improved convergence characteristics.  

The proposed MOEA comprises initialization, reproduction, investigation of feasible 

solutions, normalization and selection, and termination phases.  

1. Initialization:  

 Initialize the population (Pt) of size ‘N’. 

 The uniformly distributed weights are produced using SSA in the following 

manner: 

N(D,M) = (
D +M− 1
M − 1

)  for D > 0                                           (5.36) 

 Run the load flow, and calculate the fitness of the selected objective and total 

constraint violation. 

 Using angle criteria, locate neighbors with the smallest angles for each weight 

vector [55] as follows: 

tan𝜑 =
𝑑2
𝑑1

 

𝑤ℎ𝑒𝑟𝑒 𝑑1 =
‖𝑤𝑖

𝑇.𝑤𝑗‖

‖𝑤𝑗‖
  𝑎𝑛𝑑 𝑑2 = ‖𝑤𝑖 − 𝑑1

𝑤𝑗

‖𝑤‖
‖ 

𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1, 2, …… ,𝑁 𝑎𝑛𝑑 𝑖 ≠ 𝑗                                    (5.37) 

Where w indicates the weight vector, φ indicates the angle between d1 and d2. 
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 Find the smallest objective values to form the present ideal point. 

 Find the largest objective values to form the present nadir point. 

 Set iteration count=1. 

2. Reproduction:  

 Use an angle criterion to choose N pair of mating parents. A set of mating 

parents is picked from neighbors with a probability for each weight vector. 

 Perform two-point crossover and mutation operations to generate a new 

population (Qt).  

 Calculate the fitness values for the newly generated population (Qt).  

 Compute the total constraint violation for the new population (Qt). 

 Merge the original population (Pt) and the new population (Qt). 

3. Investigation of feasible solutions:  

 Sort the total population ascending by total constraint violation values. 

 Discover feasible solutions. 

 If the number of viable solutions is lower than the population (N), move on to 

Step 5.  

 If at least N solutions exist in the total population, move on to Step 4.  

4. Normalization and selection: 

 Apply the equation below to each objective and solution to determine the 

normalized objective value[68, 72]. 

𝑓𝑖
"(𝑥𝑚) =

𝑓𝑖(𝑥
𝑚)−𝑓𝑖,𝑚𝑖𝑛

𝑓𝑖,𝑚𝑎𝑥−𝑓𝑖,𝑚𝑖𝑛
                                                     (5.38) 

where 𝑓𝑖
"(𝑥𝑚) is the normalized value of 𝑥𝑚 for 𝑖𝑡ℎ objective, 𝑓𝑖,𝑚𝑎𝑥, 𝑓𝑖,𝑚𝑖𝑛 are 

the 𝑖𝑡ℎ objective limits.  

 Obtain a summation of the normalized objective values for all solutions [68, 

72]. 

𝐹"(𝑥𝑚) = ∑ 𝑓𝑖
"(𝑥𝑚)𝑀

𝑖=1                                                      (5.39) 

 Calculate the Euclidian distance between the origin and the sum of all 

normalized objective values. The stopping point is defined by the solution that 

yields total normalized objective values near to the origin. 

 Equally, divide the objective space into 100 bins where scanning of the bins 

should continue until the scanning procedure reaches a stopping point. For every 
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scanned bin, the solution with the smallest sum of normalized objective values 

is entered into the preferred set. 

 The backup set includes unselected solutions as well as solutions dominated by 

the stopping point. 

5. Termination: 

 Increase iteration number by one i.e. iter=iter+1. 

 If the stopping requirement is met, Stop else Go to Step 2. 
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Fig. 5.1: Flowchart of the proposed method.                                                                             
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5.6 Results and Discussions 

To analyze the robustness and efficacy of the proposed method, IEEE 57-bus, and 118-bus 

systems were chosen. The proposed method was implemented in MATLAB R2016a, and 

simulations were conducted over an i3-Processor having 4 GB RAM. To verify the efficacy of 

the proposed method, comparisons were made with NSGA-II [57] and MOPSO [58]. In this 

work, the stochastic nature of WECS, SPVS, and PEV sources was taken into account to study 

the impact of these sources on the MOOPF problem. To consider uncertainties, Monte-Carlo 

simulations were used to generate 1000 samples. The control parameters of the proposed 

method, NSGA-II, and MOPSO are given in Table 5.1. The various cases considered are given 

in Table 5.2. The description of the test systems is given in Table 5.3. PDF specifications and 

cost components of various sources are given in Table 5.4. 

Table 5.1: Control parameters of the proposed method, NSGA-II, and MOPSO. 
S. No. Method Control parameters 

1. Proposed method N =100, D =12, T =20, Pc =1.0, Pm  =0.05, and max. iterations=100. 

2. NSGA-II [57] N =100, Pc =0.8, Pm =0.01, and max. iterations=100. 

3. MOPSO [58] N =100, C1= C2 =2, W=0.5, and max. iterations=100. 

Table 5.2: Various cases considered. 
S. No Test Systems Case #  J1  J2 J3 J4 

1. IEEE 57-bus system 

Case-1     -- -- 

Case-2       -- 

Case-3         

2. IEEE 118-bus system 
Case-4   --   -- 

Case-5   --     

 

Table 5.3: Test systems description. 

Specifications IEEE 57-bus system IEEE 118-bus system 

Buses 57 
[59] 

118 
[59] 

Lines 80 186 

Thermal units 7 Buses:1,2,3,6,8,9 and 12 54 Buses: [59] 

Slack bus 1 Bus:1 69 Bus: 69 

Transformer 

tap positions 
17 

Lines:19,20,31,35,36,37,41,46, 

54,58,59,65,66,71,73,76, and 80 
9 

Lines: 8,32,36, 51, 93,95,102,107 and 

127 

Shunt 

capacitors 
3 Buses:18,25, and 53 12 

Buses:34,44,45,46,48,74,79,82, 83, 

105, 107 and 110 

Control 

variables 
36 

Generator bus real powers (9) + 

voltages (7) + transformer tap settings 

(17) + shunt capacitor (3). 

131 

Generator bus real powers (56) + 

voltages (54) + transformer tap 

settings (9) + shunt capacitor (12). 

Load - 1250.8MW, 336.4MVAR - 4242.0MW, 1439.0MVAR 

WECS 1 45 #bus 1 81 #bus 

SPVS 1 16 #bus 1 64 #bus 

PEVS 1 49 #bus 1 117 #bus 
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Table 5.4:  PDF specifications and cost components of various sources. 
S. No. Specifications WECS SPVS PEVS 

1. PDF Weibull Lognormal Normal 

2. Parameters 
𝑐 =10, 𝑘 =2, 𝑣𝑖𝑛=10m/sec, 

𝑣𝑜𝑢𝑡=12m/sec, 𝑣𝑟=12m/sec 

𝜇 =6, 𝜎 = 0.6, 𝐺𝑠𝑡𝑑=800 

W/m2 , 𝑅𝑐=120 W/m2 

𝜇 = 3.2,  

𝜑 = 0.88 

3. Direct cost 

coefficient ($/MW) 

1.75 1.60 1.60 

4. Reserve cost 

coefficient ($/MW) 

3 3 3 

5. Penalty cost 

coefficient  ($/MW) 

1.5 1.5 1.5 

 

5.6.1 IEEE 57-bus system 

The proposed method was tested on an IEEE 57-bus system [59], it has 7 thermal generators 

(# 1 bus acts as a slack bus), 80 lines, 15 off-nominal transformers, 3 shunt VAR compensators, 

and real and reactive power demand of 1250.80MW and 336.40MVAR respectively. Notably, 

the locations of these sources were chosen from [74], by replacing load buses with the 

respective WECS, SPVS, and PEV sources. 

a) Case-1: Minimize J1 and J2 simultaneously. 

In this case, J1 and J2 are the objectives that need to be minimized simultaneously. The optimal 

decision variables obtained by the proposed method are included in Table 5.5. The best-

compromised values obtained using the proposed method have a total generation cost of 

35815.04$/h and emission of 0.8950ton/h. The best-compromised values achieved using 

NSGA-II [57] and MOPSO [58] are 35850.00$/h, 0.9928ton/h, and 35910.00$/h, 1.0120ton/h 

respectively as reported in Table 5.6. The Pareto-optimal fronts (PFs) observed are depicted in 

Figure 5.2. 

b) Case-2: Minimize J1, J2 and J3 simultaneously. 

In this case, J1, J2, and J3 are the objectives that need minimizing simultaneously. The optimal 

decision variables obtained by the proposed method are included in Table 5.5. The best-

compromised values obtained using the proposed method have a total generation cost of 

35558.26$/h, emission of 0.9673ton/h, and active power loss of 10.0796MW. The best 

compromised values achieved using NSGA-II [57] and MOPSO [58] are 36336.00$/h, 

1.2498ton/h, 11.0813MW and 36402.69$/h, 1.0450ton/h, 12.5591MW respectively as reported 

in Table 5.6. The Pareto-optimal fronts (PFs) observed are depicted in Figure 5.2.  

c) Case-3: Minimize J1, J2, J3 and J4 simultaneously. 

In this case, J1, J2, J3 and J4 are the objectives that need to be minimized simultaneously. The 

optimal decision variables obtained by the proposed method are included in Table 5.5. The 

best-compromised values obtained using the proposed method have a total generation cost of 
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35980.02$/h, emission of 1.1696ton/h, active power loss of 10.5229MW, and voltage 

magnitude deviation of 0.8308p.u. The best-compromised values achieved using NSGA-II 

[57] and MOPSO [58] are 36250.00$/h, 1.4175ton/h, 12.3871MW, 1.0481p.u. and 

36662.59$/h, 0.9367ton/h, 14.1833MW, 1.0669p.u respectively as reported in Table 5.6. 

  

(a) 

  

(b) 

Fig. 5.2: IEEE 57-bus system: Pareto-optimal fronts. a) Case-1, and b) Case-2. 
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Table 5.5: IEEE 57-bus system: Optimal control variables obtained by the proposed method. 

S. No. 
 

Control variables  

Limits 
Case-1 Case-2 Case-3 

min max 

1. P2  

 

 

 

 

0 

100 95.7907 84.1793 57.9085 

2. P3 140 69.0738 53.1935 80.1009 

3. P6 100 97.6214 95.7712 57.4498 

4. P8 550 304.0230 302.8312 329.5786 

5. P9 100 82.3521 98.7022 64.9448 

6. P12 410 294.0245 331.1684 379.1110 

7. P45 80 79.8467 79.7886 78.2859 

8. P16 80 79.7469 79.9465 78.5326 

9. P49 20 19.3799 19.8993 14.6734 

10. V1  

 

 

0.95 

 

 

 

1.1 

1.0385 1.0340 1.0226 

11. V2 1.0279 1.0286 1.0102 

12. V3 1.0313 1.0252 1.0144 

13. V6 1.0343 1.0203 1.0127 

14. V8 1.0394 1.0201 1.0224 

15. V9 1.0214 1.0123 1.0125 

16. V12 1.0341 1.0353 1.0421 

17. T19  

 

 

 

 

 

 

 

0.9 

 

 

 

 

 

 

 

 

1.1 

1.0362 1.0016 1.0101 

18. T20 1.0250 0.9939 0.9964 

19. T31 1.0036 0.9826 1.0142 

20. T35 1.0307 1.0275 0.9855 

21. T36 0.9769 0.9881 0.9927 

22. T37 1.0448 1.0359 1.0270 

23. T41 1.0065 0.9990 1.0064 

24. T46 0.9927 0.9800 0.9956 

25. T54 1.0014 0.9536 0.9065 

26. T58 0.9821 0.9724 0.9780 

27. T59 0.9530 0.9719 0.9732 

28. T65 0.9719 0.9847 0.9799 

29. T66 0.9873 0.9485 0.9536 

30. T71 0.9720 0.9750 0.9620 

31. T73 0.9815 1.0087 1.0091 

32. T76 0.9844 0.9706 0.9641 

33. T80 1.0118 0.9973 1.0106 

34. QC18  

0 

 

20 

11.6868 8.9393 11.0809 

35. QC25 10.5195 10.2799 11.1002 

36. QC53 10.8182 6.1637 8.4158 

1. J1($/h) - - 35815.04 35558.26 35980.02 

2. J2(ton/h) - - 0.8950 0.9673 1.1696 

3. J3(MW) - - - 10.0796 10.5229 

4. J4(p.u.) - - - - 0.8308 

Table 5.6: IEEE 57-bus system: Comparison of the proposed method. 
Case # Objective functions Proposed method NSGA-II [57] MOPSO [58] 

Case-1 
J1($/h) 35815.04 35850.00 35910.00 

J2(ton/h) 0.8950 0.9928 1.0120 

Case-2 

J1($/h) 35558.26 36336.00 36402.69 

J2(ton/h) 0.9673 1.2498 1.0450 

J3(MW) 10.0796 11.0813 12.5591 
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Case-3 

J1($/h) 35980.02 36250.00 36662.59 

J2(ton/h) 1.1696 1.4175 0.9367 

J3(MW) 10.5229 12.3871 14.1833 

J4(p.u.) 0.8308 1.0481 1.0669 

 

5.6.2 IEEE 118-bus system 

The proposed technique has been examined on an IEEE 118-bus system [59], it has 54 thermal 

generators (# 69 bus as a slack bus), 186 lines, 9 off-nominal transformers, 12 shunt VAR 

compensators, and real and reactive power demand of 4242.00 MW and 1439.00 MVAR 

respectively. Notably, the locations of these sources were chosen from [74], by replacing load 

buses with the respective WECS, SPVS, and PEV sources. 

a) Case-4: Minimize J1 and J3 simultaneously. 

In this case, J1 and J3 are the objectives that need to be minimized simultaneously. The optimal 

decision variables obtained by the proposed method are included in Table 5.7. The best-

compromised values obtained using the proposed method have a total generation cost of 

129019.12$/h and an active power loss of 36.7616MW. The best-compromised values 

achieved using NSGA-II [57] and MOPSO [58] are 129582.23$/h, 37.3464MW, and 

130673.5$/h, 38.0368MW respectively as reported in Table 5.8. The Pareto-optimal fronts 

(PFs) observed are depicted in Figure 5.3.  

b) Case-5: Minimize J1, J3 and J4 simultaneously. 

In this case, J1, J3, and J4 are the objectives that need to be minimized simultaneously. The 

optimal decision variables obtained by the proposed method are included in Table 5.7. The 

best-compromised values obtained using the proposed method have a total generation cost of 

130796.33$/h, active power loss of 32.5358MW, and voltage magnitude deviation of 

0.5165p.u.. The best-compromised values achieved using NSGA-II [57] and MOPSO [58] are 

134395.5$/h, 40.0724MW, 0.6876p.u. and 133574.6$/h, 41.3020MW, 0.9706p.u. respectively 

as reported in Table 5.8. The Pareto-optimal fronts (PFs) observed are depicted in Figure 5.3.  
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(a) 

  
(b) 

Fig. 5.3: IEEE 118-bus system: Pareto-optimal fronts. a) Case-4, and b) Case-5. 
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Table 5.7: IEEE 118-bus system: Optimal control variables obtained by the proposed method.  
S. 

No. 

Control 

variables 

Limits 
Case-4 Case-5 

 S. 

No. 

Control 

variables 

Limits 
Case-4 Case-5 

min max min max 

1. P1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

100 40.0447 63.4515 68. V26  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 

1.0157 1.0212 

2. P4 100 49.9982 35.6629 69. V27 1.0335 1.0080 

3. P6 100 59.1167 35.0138 70. V31 1.0378 1.0260 

4. P8 100 45.0837 47.8259 71. V32 1.0211 1.0335 

5. P10 550 193.352 164.224 72. V34 1.0259 1.0250 

6. P12 185 66.1489 76.0734 73. V36 1.0379 1.0142 

7. P15 100 48.9935 56.2799 74. V40 1.0346 1.0075 

8. P18 100 43.7256 39.0496 75. V42 1.0239 1.0040 

9. P19 100 28.7879 70.2897 76. V46 1.0123 1.0215 

10. P24 100 33.8075 48.7321 77. V49 1.0274 0.9947 

11. P25 320 120.040 60.8414 78. V54 1.0252 1.0138 

12. P26 414 120.644 169.915 79. V55 1.0079 1.0267 

13. P27 100 46.2456 61.7409 80. V56 1.0059 1.0278 

14. P31 107 22.3999 22.4692 81. V59 1.0022 1.0261 

15. P32 100 55.1251 27.1559 82. V61 1.0346 1.0459 

16. P34 100 51.6765 56.3221 83. V62 1.0200 1.0243 

17. P36 100 55.7278 26.4301 84. V65 1.0282 1.0170 

18. P40 100 58.4597 54.2550 85. V66 1.0376 1.0277 

19. P42 100 61.1690 78.9208 86. V69 1.0270 1.0202 

20. P46 119 42.4237 36.1427 87. V70 1.0283 1.0337 

21. P49 304 178.039 177.089 88. V72 1.0330 1.0119 

22. P54 148 68.7727 93.0152 89. V73 1.0417 1.0283 

23. P55 100 41.4856 64.4180 90. V74 1.0268 1.0272 

24. P56 100 56.0731 39.1371 91. V76 1.0088 1.0119 

25. P59 255 141.029 133.894 92. V77 1.0187 1.0314 

26. P61 260 106.400 112.972 93. V80 1.0252 1.0404 

27. P62 100 60.9986 56.6838 94. V85 1.0134 1.0240 

28. P65 491 220.874 232.485 95. V87 1.0207 1.0161 

29. P66 492 204.311 137.571 96. V89 1.0214 1.0363 

30. P70 100 57.4597 45.9800 97. V90 1.0218 1.0280 

31. P72 100 40.2247 35.5260 98. V91 1.0264 1.0480 

32. P73 100 33.4507 40.8232 99. V92 1.0262 1.0312 

33. P74 100 62.6285 52.5801 100. V99 1.0083 1.0415 

34. P76 100 58.4179 60.1585 101. V100 1.0155 1.0291 

35. P77 100 58.7759 47.9148 102. V103 1.0270 1.0226 

36. P80 577 277.432 307.393 103. V104 1.0178 1.0103 

37. P85 100 45.6938 50.9420 104. V105 1.0316 1.0118 

38. P87 104 8.7870 9.0718 105. V107 1.0132 1.0042 

39. P89 707 265.920 217.226 106. V110 1.0212 1.0117 

40. P90 100 37.1972 40.2967 107. V111 1.0209 0.9956 

41. P91 100 38.8539 31.8664 108. V112 1.0184 1.0163 

42. P92 100 48.4612 49.3316 109. V113 1.0333 1.0343 

43. P99 100 37.8606 30.9745 110. V116 1.0418 1.0108 

44. P100 352 97.0986 130.965 111. T8  

 

 

 

0.9 

 

 

 

 

 

1.1 

 

1.0165 0.9994 

45. P103 140 71.3612 50.4524 112. T32 1.0025 0.9958 

46. P104 100 54.0455 51.1611 113. T36 0.9948 0.9237 

47. P105 100 37.9765 43.3539 114. T51 1.0136 0.9826 

48. P107 100 46.0688 38.7497 115. T93 0.9876 0.9304 

49. P110 100 41.2868 31.8345 116. T95 0.9931 0.9980 

50. P111 136 30.3153 42.3214 117. T102 1.0057 0.9999 

51. P112 100 38.6270 34.9093 118. T107 0.9818 0.9784 

52. P113 100 51.6430 44.9313 119. T127 0.9806 0.9861 

53. P116 100 43.0444 42.0291 120. QC34   11.3179 14.5351 
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54. P81 150 95.3791 128.314 121. QC44  

 

 

 

 

 

0 

 

 

 

 

 

 

25 

 

10.0859 14.2184 

55. P64 150 134.122 142.181 122. QC45 14.7235 9.0981 

56. P117 40 15.9465 19.7354 123. QC46 13.0587 6.1809 

57. V1   1.0263 1.0471 124. QC48 11.7728 14.5904 

58. V4 1.0310 1.0050 125. QC74 12.4274 14.0292 

59. V6 1.0355 1.0291 126 QC79 12.0556 6.2538 

60. V8 1.0093 1.0193 127 QC82 16.3087 16.4578 

61. V10 1.0374 1.0024 128 QC83 11.7913 11.4913 

62. V12 1.0158 1.0224 129. QC105 12.6136 10.6581 

63. V15 1.0206 1.0179 130. QC107 8.8002 12.8524 

64. V18 1.0285 1.0259 131. QC110 11.7193 15.2300 

65. V19 1.0193 1.0269 1. J1($/h)  - - 129019.1 130796.3 

66. V24 1.0230 1.0235 2. J3(MW) - - 36.7616 32.5358 

67. V25 1.0278 0.9998 3. J4(p.u) - - - 0.5165 

 

Table 5.8: IEEE 118-bus system: Comparison of the proposed method. 
Case #  Objective functions  Proposed method NSGA-II [57] MOPSO [58] 

Case-4 
J1($/h) 129019.12 129582.23 130673.5 

J3(MW) 36.7616 37.3464 38.0368 

Case-5 

J1($/h) 130796.33 134395.5 133574.6 

J3(MW) 32.5358 40.0724 41.3020 

J4(p.u.) 0.5165 0.6876 0.9706 

 

5.7 Summary 

The approach for the MOEA is based on decomposition and summing up normalized objectives 

with an improved diverse selection mechanism. It also addresses the superiority of the feasible 

solution (SF) technique for dealing with the MOOPF problem constraints. The cost of thermal 

energy and the cost uncertainty associated with WECS, SPVS, and PEV systems are minimized 

along with the minimization of emission, active power loss, and voltage magnitude deviation. 

Monte Carlo simulations were used to assess the uncertainty of WECS, SPVS, and PEV power. 

To show the efficacy of the proposed method, simulations were done on the IEEE 57-bus and 

IEEE 118-bus systems, and the results were compared with NSGA-II and MOPSO algorithms. 

The outcomes show that the proposed method is superior to competing methods. Therefore, 

the proposed approach can be effectively used in operation when WECS, SPVS, and PEVS 

power generations are included in the power system. The proposed method may provide an 

optimal solution, but to further improve the evolutionary process a new hybrid MOEA is 

proposed in the next work.  
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Chapter 6  

A Novel Hybrid Multi-Objective Evolutionary Algorithm Based on 

Decomposition and Invasive Weed Optimization Including Wind, Solar, 

and PEV Uncertainty for the Optimal Power Flow  

6.1 Introduction 

This chapter proposes a novel hybrid decomposition and invasive weed optimization (IWO) 

based MOEA for the OPF problem. The standard OPF problem was transformed into a 

stochastic OPF by incorporating the uncertainty of WECS, SPVS, and PEV systems. This 

chapter presents a new CHM that adaptively inserts the penalty and avoids the parameter 

relying on penalty calculation. The IWO technique's selection qualities were utilized to 

increase the diversity of MOEA.  The MOOPF problem includes minimization of the total 

generation cost, emission, active power loss, and voltage magnitude deviation as objectives. 

The generation cost of WECS, SPVS, and PEVS was examined using Monte Carlo simulations 

to reduce the total generation cost. Weibull, Lognormal, and Normal PDFs were used to 

characterize the unpredictability of WECS, SPVS, and PEVS, respectively. The impact of 

WECS, SPVS, and PEV uncertainties, was taken into account to validate the proposed method. 

The superiority of the proposed method was validated by comparing it with NSGA-II, and 

MOPSO algorithms and tested using IEEE 57-bus and IEEE 118-bus systems.  

The contributions of this chapter are as follows:  

i. Introducing a novel hybrid decomposition and invasive weed optimization (IWO) 

based MOEA for the OPF problem. 

ii. Integrating the stochastic nature of WECS, SPVS, and PEVS with normal OPF to 

address the influence of the sources' unpredictable nature.  

iii. Modeling the uncertainty of WECS, SPVS, and PEV energy systems using PDF and 

computing its uncertainty cost with Monte Carlo simulations. 

iv. Using an effective CHM known as the SF method to handle constraints in the MOOPF 

problem.  

6.2 Problem Formulation 

The objectives and constraints for the considered MOOPF problem are expressed as follows:  
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6.2.1 Objectives 

The MOOPF problem is formulated by considering four objectives which involve minimizing 

a) total generation cost (J1), b) emission (J2), c) active power loss (J3), and d) voltage magnitude 

deviation (J4).  

a) Total generation cost ($/h): 

The overall generating cost is the sum of the generation cost of thermal, WECS, SPVS, and 

PEV sources and is expressed by the following equation: 

              𝑀𝑖𝑛 𝐽1 = ∑(𝑎𝑖 + 𝑏𝑖𝑃𝑇𝐺𝑖 + 𝑐𝑖𝑃𝑇𝐺𝑖
2 )

𝑁𝑇𝐺

𝑖=1

+ ∑[𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) + 𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) + 𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗)]

𝑁𝑊𝐺

𝑗=1

+∑[𝐶𝑠,𝑘(𝑃𝑠𝑠,𝑘) + 𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘) + 𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)]

𝑁𝑆𝐺

𝑘=1

+ ∑ [𝐶𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛) + 𝐶𝑅𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛 − 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛) + 𝐶𝑃𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑎𝑣,𝑛

𝑁𝑃𝐸𝑉

𝑛=1

− 𝑃𝑝𝑒𝑣𝑠,𝑛)] 

 (6.1) 

where 𝑁𝑇𝐺, 𝑁𝑊𝐺, 𝑁𝑆𝐺 , and 𝑁𝑃𝐸𝑉 are the number of thermal, WECS, SPVS, and PEVS 

respectively; 𝑃𝑤𝑠,𝑗, 𝑃𝑠𝑠,𝑘 , and 𝑃𝑝𝑒𝑣𝑠,𝑛 are the scheduled powers of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ SPVS, and 

𝑛𝑡ℎ PEVS respectively; 𝑃𝑤𝑎𝑣,𝑗, 𝑃𝑠𝑎𝑣,𝑘,  and 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛 are the actual powers of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ 

SPVS, and 𝑛𝑡ℎ PEVS respectively; 𝑃𝑇𝐺𝑖 is the 𝑖𝑡ℎ thermal generator output power; 𝑎𝑖, 𝑏𝑖 , 𝑐𝑖 is 

the 𝑖𝑡ℎ thermal generator cost coefficients; 

b) Emission (ton/h): 

The generation of electric power from traditional fossil fuels would result in the emission of 

hazardous gases into the atmosphere. The following expression describes the total emission 

from thermal generators: 

𝑀𝑖𝑛𝐽2 = ∑ (𝛼𝑖 + 𝛽𝑖𝑃𝑇𝐺𝑖 + 𝛾𝑖𝑃𝑇𝐺𝑖
2 + 𝛿𝑖𝑒

𝜀𝑖𝑃𝑇𝐺𝑖)𝑁𝑇𝐺
𝑖=1                               (6.2) 

where 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝛿𝑖 , 𝜀𝑖 are the 𝑖𝑡ℎ generator emission coefficients; 

c) Active power loss (MW): 

The following equation can be used to express active power loss:  

𝑀𝑖𝑛 𝐽3 = ∑ (𝐺𝑘(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝜃𝑖𝑗))
𝑁𝐿
𝑘=1                                   (6.3) 
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where 𝑁𝐿  is the number of lines; 𝜃𝑖𝑗 indicates voltage angles between buses 𝑖 and 𝑗; 𝐺𝑘 shows 

the conductance of branch 𝑘; 𝑉𝑖, 𝑉𝑗 is the voltage magnitudes at 𝑖𝑡ℎ and 𝑗𝑡ℎ bus respectively. 

d) Voltage magnitude deviation (p.u.): 

The voltage variation is the sum of all voltage variances at load buses in the network relative 

to the reference voltage. The mathematical expression is as follows:  

𝑀𝑖𝑛 𝐽4 = ∑ |(𝑉𝑖 − 𝑉𝑟𝑒𝑓)|
𝑁𝑃𝑄
𝑖=1

                                                         (6.4) 

where 𝑁𝑃𝑄 is the number of PQ buses; 𝑉𝑟𝑒𝑓 is the reference voltage set to 1 p.u.; 𝑉𝑖 is the 𝑖𝑡ℎ 

load bus voltage.  

6.2.2 Constraints  

The MOOPF objectives are subjected to the following equality and inequality constraints. 

a) Equality constraints: 

The equality restrictions are power-balancing equations in which the sum of the generations of 

the real and reactive powers is equal to their corresponding demands and losses.  

 Power flow constraints 

The overall demand and losses throughout the system are equal to the total real and reactive 

power delivered: 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)
𝑁𝐵
𝑗=1 = 0; 𝑖 = 1,2, …𝑁𝐵                  (6.5) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 −𝐵𝑖𝑗 cos 𝜃𝑖𝑗)
𝑁𝐵
𝑗=1 = 0; 𝑖 = 1,2, …𝑁𝐵                     (6.6) 

where 𝑁𝐵 is the number of buses; 𝑃𝐺𝑖, 𝑄𝐺𝑖, and 𝑃𝐷𝑖, 𝑄𝐷𝑖 are the real, reactive power generations 

and demands at the 𝑖𝑡ℎ bus, respectively; 𝐺𝑖𝑗, 𝐵𝑖𝑗 is the conductance, susceptance of lines 

between buses 𝑖 and 𝑗 respectively; 

b) Inequality constraints: 

The operational limitations on generators, transformers, and shunt devices, as well as the 

security requirements on lines and load buses, constitute inequality constraints.   

 Generator constraints: The boundary limits of real and reactive powers and the voltage 

magnitude of the generator buses are expressed as follows: 

𝑃𝑇𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑇𝐺𝑖 ≤ 𝑃𝑇𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇𝐺                                           (6.7) 

𝑃𝑊𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑊𝐺𝑖 ≤ 𝑃𝑊𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑊𝐺                                        (6.8) 

𝑃𝑆𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑆𝐺𝑖 ≤ 𝑃𝑆𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑆𝐺                                            (6.9) 

𝑃𝑃𝐸𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑃𝐸𝑉𝐺𝑖 ≤ 𝑃𝑃𝐸𝑉𝐺𝑖

𝑚𝑎𝑥 ; 𝑖 = 1,2, …𝑁𝑃𝐸𝑉                               (6.10) 

𝑄𝑇𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑇𝐺𝑖 ≤ 𝑄𝑇𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇𝐺                                             (6.11) 

𝑄𝑊𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑊𝐺𝑖 ≤ 𝑄𝑊𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑊𝐺                                          (6.12) 
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𝑄𝑆𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑆𝐺𝑖 ≤ 𝑄𝑆𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑆𝐺                                             (6.13) 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐺                                                  (6.14) 

 Shunt VAR compensator constraints: The following are the boundary values for shunt 

compensators: 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐶                                                 (6.15) 

 Transformer constraints: The ideal operating limits for tap settings on a transformer are 

given as follows: 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑇                                                  (6.16) 

 Security constraints: The voltage limits of the load buses and the apparent power value 

of each transmission line, which can be restricted by its maximum capacity, are given 

as follows: 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝑃𝑄                                              (6.17) 

|𝑆𝑙𝑖| ≤ 𝑆𝑙𝑖
𝑚𝑎𝑥; 𝑖 = 1,2, …𝑁𝐿                                                              (6.18) 

where 𝑁𝐶,and 𝑁𝑇 is the number of shunt compensators and transformers respectively; 𝑆𝑙𝑖  and 

𝑆𝑙𝑖
𝑚𝑎𝑥 are the apparent power flow and its maximum limit of 𝑖𝑡ℎ line; 𝑃𝐺𝑖

𝑚𝑖𝑛,𝑃𝐺𝑖
𝑚𝑎𝑥 are the real 

power generation limits; 𝑄𝐺𝑖
𝑚𝑖𝑛,𝑄𝐺𝑖

𝑚𝑎𝑥 are the reactive power generation limits; 𝑉𝐺𝑖
𝑚𝑖𝑛, 𝑉𝐺𝑖

𝑚𝑎𝑥 are 

the generator bus voltage limits; 𝑇𝑖
𝑚𝑖𝑛, 𝑇𝑖

𝑚𝑎𝑥 are the transformer tap limits; 𝑄𝐶𝑖
𝑚𝑖𝑛,𝑄𝐶𝑖

𝑚𝑎𝑥 are the 

shunt compensator limits; 𝑉𝐿𝑖
𝑚𝑖𝑛, 𝑉𝐿𝑖

𝑚𝑎𝑥are the load bus voltage limits;  

Two equality constraints Eq. (6.5) and Eq. (6.6) are automatically satisfied when the 

power flow converges to an optimal solution. The generator buses’ real power (excluding slack 

bus), transformer tap ratios, voltage limits, and shunt compensator ranges are considered to 

control variables that are self-limiting. The remaining inequality constraints require constraint 

handling techniques.  

In OPF, generator reactive power capacities are significant. In recent years, WECSs 

with complete reactive power capability has become commercially viable [60]. WECS can 

deliver reactive power in the range of -0.4p.u.to 0.5p.u. The negative sign signifies the 

generator's ability to absorb. Rooftop solar PV is designed as load buses with zero reactive 

power. However, because utility-based Solar PVs have built-in converters, full generator 

modeling is required due to the converters' dynamic behavior [61]. In this study, the reactive 

power capabilities of SPVS are assessed between -0.4p.u and 0.5p.u. 
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6.3 Constraint Handling Method  

Since MOOPF is a constrained optimization problem, it requires a better-constrained handling 

method. In this work, the SF technique [62] was employed to solve the MOOPF problem with 

RESs. The steps followed when comparing two solutions are as follows: 

1) While comparing two non-feasible solutions, the solution having the smallest constraint 

violation is selected. 

2) When two feasible solutions are compared, the one with a better fitness solution is selected. 

3) When a feasible solution is compared to a non-feasible solution, the feasible solution is 

selected. 

Comparing non-feasible solutions based on constraint violation helps push non-feasible 

answers into the feasible region while comparing viable solutions based on the fitness value 

enables solution quality to be improved.    

6.4 Integration of WECS, SPVS, and PEV Sources 

6.4.1 WECS, SPVS, and PEV Modeling 

a) WECS Modeling: 

The wind speed at a given geographical area is most likely distributed according to Weibull 

PDF as given below: 

𝑓(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)
(𝑘−1)

(𝑒)(
−𝑣

𝑐
)
𝑘

; 0 < 𝑣 < ∞                                           (6.19) 

where 𝑣 is the wind speed (m/sec); 𝑘, and 𝑐 is the shape, and scale factors respectively. 

The PDFs for two different shape and scale factors are given in [63]. The relationship between 

wind speed and power generation is as follows: 

𝑃𝑤(𝑣) = {

0; 𝑣 < 𝑣𝑖𝑛 𝑎𝑛𝑑 𝑣 > 𝑣𝑜𝑢𝑡

𝑃𝑤𝑟 (
𝑣−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
)

𝑃𝑤𝑟;  𝑣𝑟 < 𝑣𝑤 ≤ 𝑣𝑜𝑢𝑡

;  𝑣𝑖𝑛 ≤ 𝑣𝑤 ≤ 𝑣𝑟                         (6.20) 

where 𝑃𝑤𝑟 is the rated wind power; 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡, 𝑣𝑟 are the cut-in, cut-out, and rated wind speeds 

(m/sec) respectively;  

The probability of obtaining a zero and rated power output is given by the following: 

𝑓𝑤(𝑃𝑤 = 0) = 1 − 𝑒(−(
𝑣𝑖𝑛
𝑐
)
𝑘
) + 𝑒(−(

𝑣𝑜𝑢𝑡
𝑐
)
𝑘
)                                        (6.21) 

𝑓𝑤(𝑃𝑤 = 𝑃𝑤𝑟) = 𝑒(−(
𝑣𝑟
𝑐
)
𝑘
) + 𝑒(−(

𝑣𝑜𝑢𝑡
𝑐
)
𝑘
)                                             (6.22) 

The probability for the linear part of the wind speed is given by the following: 

𝑓𝑤(𝑃𝑤) = (
𝑘(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
) (

𝑣𝑖𝑛𝑃𝑤𝑟+𝑃𝑤(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
)
(𝑘−1)

𝑒
(−(

𝑣𝑖𝑛𝑃𝑤𝑟+𝑃𝑤𝑟(𝑣𝑟−𝑣𝑖𝑛)

𝑐𝑃𝑤𝑟
)
𝑘

)
      (6.23) 
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b) SPVS Modeling: 

Similarly, the power output of an SPVS is a factor of solar irradiance and it likely follows the 

Lognormal PDF [64] as follows: 

𝑓𝐺(𝐺𝑠) =
1

𝐺𝑆𝜎√2𝜋
𝑒
{
−(ln𝐺𝑆−𝜇)

2

2𝜎2
}
; 𝐺𝑆 > 0                                         (6.24) 

where 𝜇 and 𝜎 are the mean and standard deviation respectively; 𝐺𝑠 is the solar irradiance 

(W/m2). 

The SPVS unit's solar irradiance to energy generation is as follows [65]: 

𝑃𝑆(𝐺𝑆) = {
𝑃𝑠𝑟 (

𝐺𝑆
2

𝐺𝑠𝑡𝑑𝑅𝑐
)   ; 0 < 𝐺𝑆 < 𝑅𝑐

𝑃𝑠𝑟 (
𝐺𝑆

𝐺𝑠𝑡𝑑
)  ;  𝐺𝑆 ≥ 𝑅𝑐

                                       (6.25) 

where 𝐺𝑠𝑡𝑑 is the standard solar irradiance (W/m2); 𝑅𝑐 is the particular irradiance point (W/m2); 

𝑃𝑠𝑟 is the SPVS-rated power output. 

c) PEV Modeling: 

In recent days, public transport electric vehicles ply most of the time during the day and are 

charged during off-peak periods and so are not suitable for V2G application. Privately-owned 

PEVs are generally idle most of the time during the day and hence PEVs are suitable for the 

vehicle-to-grid (V2G) power-fed capability. The availability of electric vehicles as V2G source 

follows the normal PDF as follows [69]:  

𝑓𝑝𝑒𝑣 =
1

√2𝜋𝜑2
𝑒
−{

(𝑃𝑝𝑒𝑣−𝜇)
2

2𝜑2
}

                                                 (6.26) 

where 𝜇 and 𝜑 are the mean and standard deviation of normal PDF respectively; 𝑃𝑝𝑒𝑣 is the 

available V2G power; 

Here, the PEVs are used as a source of power feeding the grid through suitable infrastructure. 

The following assumptions are made regarding the use of PEV as a power source. 

 All PEVs supply battery power to the power network through DC/AC inverter. 

 All PEVs represent one big V2G charging/discharging station. 

 V2G system acts as a power source controller. 

Depending on the probability of PEVs availability, the direct, reserve, and penalty costs are 

calculated 

6.4.2 Uncertainty cost calculation of WECS, SPVS, and PEV Sources 

Since WECS, SPVS, and PEVS are intermittent, the Monte Carlo simulations are used to 

account for uncertainty and to calculate the uncertainty cost. The estimated cost for the 
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intermittency of WECS, SPVS, and PEVS powers is reflected in three ways: direct, reserve, 

and penalty costs. Whenever power is underestimated, extra unusable power is wasted; 

however, in practical power system applications, such power can be saved in an energy storage 

system and thus be counted as the reserve cost. The cost of overestimating power that is lower 

than the scheduled power is considered a penalty cost in the case of overestimation. 

The direct cost of 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) = 𝑔𝑗𝑃𝑤𝑠,𝑗                                                                    (6.27) 

The direct cost of 𝑘𝑡ℎ SPVS is as follows: 

𝐶𝑤,𝑘(𝑃𝑠𝑠,𝑘) = ℎ𝑘𝑃𝑠𝑠,𝑘                                                                    (6.28) 

The direct cost of 𝑛𝑡ℎ PEV unit is as follows: 

𝐶𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛) = 𝑑𝑛𝑃𝑝𝑒𝑣𝑠,𝑛                                                           (6.29) 

where 𝑃𝑤𝑠,𝑗 , 𝑃𝑠𝑠,𝑘, and 𝑃𝑝𝑒𝑣𝑠,𝑛 are the scheduled powers of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ SPVS, and 𝑛𝑡ℎ PEVS 

respectively; 𝑔𝑗, ℎ𝑘, and 𝑑𝑛 are the direct cost coefficients of 𝑗𝑡ℎ WECS, 𝑘𝑡ℎ SPVS, and 𝑛𝑡ℎ 

PEV systems respectively; 

The approach to calculating the over and underestimation cost of WECS is as follows [66]. 

The reserve cost of the 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) = 𝐾𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) = 𝐾𝑅𝑤,𝑗∫ (𝑃𝑤𝑠,𝑗 − 𝑝𝑤,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

𝑃𝑤𝑠,𝑗

0

 

(6.30) 

The penalty cost of the 𝑗𝑡ℎ WECS is as follows: 

𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗) = 𝐾𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗) = 𝐾𝑃𝑤,𝑗∫ (𝑃𝑤,𝑗 − 𝑝𝑤𝑠,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

𝑃𝑤𝑟,𝑗

𝑃𝑤𝑠,𝑗

 

(6.31) 

where 𝐾𝑅𝑤,𝑗 and 𝐾𝑃𝑤,𝑗 are the reserve and penalty cost coefficients of 𝑗𝑡ℎ WECS respectively; 

𝑃𝑤𝑟,𝑗 and 𝑃𝑤𝑎𝑣,𝑗 are rated and actually available powers of 𝑗𝑡ℎ WECS; 𝑓𝑤(𝑝𝑤,𝑗) be the 

possibility of 𝑗𝑡ℎ WECS.  

The approach to calculating the over and underestimation cost of SPVS is as follows [67]. 

The reserve cost for 𝑘𝑡ℎ SPVS is as follows: 

𝐶𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘) = 𝐾𝑅𝑠,𝑘(𝑃𝑠𝑠,𝑘 − 𝑃𝑠𝑎𝑣,𝑘)   

 = 𝐾𝑅𝑠,𝑘 ∗ 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) ∗ [𝑃𝑠𝑠,𝑘 − 𝐸(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘)]  (6.32) 
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The penalty cost for a 𝑘𝑡ℎ SPVS is as follows: 

𝐶𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘) = 𝐾𝑃𝑠,𝑘(𝑃𝑠𝑎𝑣,𝑘 − 𝑃𝑠𝑠,𝑘)    

= 𝐾𝑃𝑠,𝑘 ∗ 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) ∗ [𝐸(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) − 𝑃𝑠𝑠,𝑘]  (6.33) 

where 𝐾𝑅𝑠,𝑘 and 𝐾𝑃𝑠,𝑘 are the reserve and penalty cost constants of 𝑘𝑡ℎ SPVS respectively; 

𝑃𝑠𝑎𝑣,𝑘 is the actual available power of 𝑘𝑡ℎ SPVS; 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘) and 𝑓𝑠(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) are 

the probabilities of SPVS power; 𝐸(𝑃𝑠𝑎𝑣,𝑘 < 𝑃𝑠𝑠,𝑘), 𝐸(𝑃𝑠𝑎𝑣,𝑘 > 𝑃𝑠𝑠,𝑘) are the expectations of 

SPVS power.  

The approach to calculating the over and underestimation cost of PEVS is as follows [70, 71]. 

Reserve cost associated with 𝑛
𝑡ℎ PEV is defined as: 

𝐶𝑅𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛 − 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛) = 𝐾𝑅𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑠,𝑛 − 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛) 

= 𝐾𝑅𝑝𝑒𝑣,𝑛 ∫ (𝑃𝑝𝑒𝑣𝑠,𝑛 − 𝑝𝑝𝑒𝑣,𝑛)𝑓𝑝𝑒𝑣(𝑝𝑝𝑒𝑣,𝑛)𝑑𝑝𝑝𝑒𝑣,𝑛
𝑃𝑝𝑒𝑣𝑠,𝑛

0
   (6.34) 

Penalty cost associated with 𝑛
𝑡ℎ PEVS is defined as: 

𝐶𝑃𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑎𝑣,𝑛 − 𝑃𝑝𝑒𝑣𝑠,𝑛) = 𝐾𝑃𝑝𝑒𝑣,𝑛(𝑃𝑝𝑒𝑣𝑎𝑣,𝑛 − 𝑃𝑝𝑒𝑣𝑠,𝑛) 

= 𝐾𝑃𝑝𝑒𝑣,𝑛 ∫ (𝑝𝑝𝑒𝑣,𝑛 − 𝑃𝑝𝑒𝑣𝑠,𝑛)𝑓𝑝𝑒𝑣(𝑝𝑝𝑒𝑣,𝑛)𝑑𝑝𝑝𝑒𝑣,𝑛
𝑃𝑝𝑒𝑣𝑟,𝑛

𝑃𝑝𝑒𝑣𝑠,𝑛
   (6.35) 

where 𝐾𝑅𝑝𝑒𝑣,𝑛 and 𝐾𝑃𝑝𝑒𝑣,𝑛 are the reserve and penalty cost constants of 𝑛𝑡ℎ  PEVS respectively; 

𝑃𝑝𝑒𝑣𝑟,𝑛 and 𝑃𝑝𝑒𝑣𝑎𝑣,𝑛 are the rated and actually available powers of 𝑛𝑡ℎ PEVS; 𝑓𝑝𝑒𝑣(𝑝𝑝𝑒𝑣,𝑛) is 

the 𝑛𝑡ℎ PEVS power probability. 𝑓𝑝𝑒𝑣(𝑝𝑝𝑒𝑣,𝑛) is the 𝑛𝑡ℎ  PEVS power probability.  

6.5 Proposed Method 

In this chapter, the modified IWO [73] for multi-objective optimization and then include in 

MOEA/D [53], which provides a decomposition-based multi-objective optimization method 

with invasive weed colonies, to merge their exceptional qualities in the proposed hybrid 

method. The flowchart of the proposed method is shown in Figure 6.1. 

      The proposed method decomposes a multi-objective issue into a large number of scalar 

optimization sub-problems and solves them simultaneously. In each sub-problem, an adaptive 

IWO search was used to minimize the aggregation function of all objectives under 

consideration. Each sub-problem has a unique aggregation weight that generates a distinct 

aggregation function from those of others. The population size at each generation is equal to 

the number of decomposed sub-problems. If N is specified as the population size, then N sub-

problems must be simultaneously optimized. The objective function of 𝑖𝑡ℎ sub-problem can be 

expressed as follows.  

𝑔𝑡𝑒(𝑥|𝜆𝑖, 𝑧∗) = 𝑚𝑎𝑥{𝜆𝑗
𝑖|𝑓𝑗(𝑥) − 𝑧𝑗

∗|}; 1 ≤ 𝑗 ≤ 𝑚                                        (6.36)      
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Where 𝜆𝑖 = (𝜆1
𝑖 , 𝜆2

𝑖 , … 𝜆𝑚
𝑖 )

𝑇
, 𝑚 is the number of objectives and 𝑧∗ = (𝑧1

∗, 𝑧2
∗, … 𝑧𝑚

∗ )𝑇, 

𝑧𝑖
∗ = 𝑚𝑖𝑛{𝑓𝑖(𝑥)|𝑥 ∈ [𝑙, 𝑢]}, 𝑖 = 1,2, …𝑚 is the point of reference. 

The proposed method steps are as follows: 

Input: 𝑁: population size; 

 𝑇: neighborhood size, 0 < 𝑇 < 𝑁; 

 𝜆1, 𝜆2, … 𝜆𝑁: weight vectors;  

Output: PO solutions;  

1. Initialization: 

2. 𝑥1, 𝑥2, … 𝑥𝑁 is randomly selected between [𝑙, 𝑢]       𝐹𝑉𝑗 = 𝐹(𝑥𝑗); 
3.           For each 𝑗 = 1:𝑁 do 𝑛𝑒𝑏(𝑗) = {𝑎, 𝑏, … 𝑡}; 
4.           reference point 𝑧 = (𝑧1, 𝑧2, … 𝑧𝑚)

𝑇 . 
5. Do while (loop is not met) 

6.         For 𝑗 = 1:𝑁 

7.                  𝑈 ← 𝐼𝑊𝑂(𝑥𝑗 , 𝑠𝑡𝑑𝑖𝑡𝑒𝑟
𝑗
); 

8.                  𝑉 ← 𝐼𝑊𝑂(𝑥𝑘 , 𝑠𝑡𝑑𝑖𝑡𝑒𝑟
𝑘 ); 

                          / 𝑘 is chosen from 𝑛𝑒𝑏(𝑗) /                                         
9.              For each 𝑦 ∈ 𝑈 ∪ 𝑉 do 

10.                    If 𝑦 ∉ [𝑙, 𝑢] then  

11.                        𝑦 repair (𝑦); 
12.                    End 

13.                    For each 𝑖 = 1 𝑡𝑜 𝑚 do  

14.                          If 𝑧𝑖 > 𝑓𝑖(𝑦) then  

15.                             𝑧𝑖 = 𝑓𝑖(𝑦); 
16.                          End 

17.                    End  

18.                    For each 𝑖 ∈ 𝑛𝑒𝑏(𝑗) do 

19.                         If 𝑔𝑡𝑒(𝑦|𝜆𝑖, 𝑧) < 𝑔𝑡𝑒(𝑥𝑖|𝜆𝑖 , 𝑧)then 

20.                              𝑥𝑖 = 𝑦; 

21.                              𝐹𝑉𝑖 = 𝐹(𝑦); 
22.                         End 

23.                    End 

24.              End 

25.         End 

26. End Do 

27. Use fuzzy theory to get best-compromised values [55]. 

In line 7 of the pseudo-code, 𝑈 ← 𝐼𝑊𝑂(𝑥𝑖 , 𝑠𝑡𝑑𝑖𝑡𝑒𝑟
𝑖 )expresses the procedure of producing 𝑥𝑖 

seeds. 𝑈 Contains the children's seeds generated by𝑥𝑖. Suppose𝑈 = {𝑦1, 𝑦2, … 𝑦𝑘}; then 𝑘 is 

the size of children seeds generated by𝑥𝑖, which is calculated using Eq. (6.37).  

𝑆𝑛𝑢𝑚 = 𝑓𝑙𝑜𝑜𝑟 (
𝑔𝑚𝑎𝑥
𝑡𝑒 −𝑔𝑡𝑒

𝑔𝑚𝑎𝑥
𝑡𝑒 −𝑔𝑚𝑖𝑛

𝑡𝑒 (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛) + 𝑆𝑚𝑖𝑛)                                     (6.37) 

where 𝑔𝑚𝑖𝑛
𝑡𝑒 , 𝑔𝑚𝑎𝑥

𝑡𝑒 are obtained as follows:  

𝑔𝑚𝑖𝑛
𝑡𝑒 = 𝑚𝑖𝑛{𝑔𝑡𝑒(𝑥𝑘|𝜆𝑖, 𝑧∗)| 𝑥𝑘 ∈ 𝐵(𝑖)}                                        (6.38)      
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𝑔𝑚𝑎𝑥
𝑡𝑒 = 𝑚𝑎𝑥{𝑔𝑡𝑒(𝑥𝑘|𝜆𝑖, 𝑧∗)| 𝑥𝑘 ∈ 𝐵(𝑖)}                                        (6.39)      

where 𝑠𝑡𝑑𝑖𝑡𝑒𝑟
𝑖  represents the adaptive standard deviation (SD) of 𝑥𝑖  and its value can be 

obtained through Eq. (6.40) and Eq. (6.41).  

𝜎𝑖𝑡𝑒𝑟 = 𝜎𝑓𝑖𝑛𝑎𝑙 + (
𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)
𝑝𝑜𝑤

. (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙)                                     (6.40) 

It is evident from Eq. (6.40) that 𝜎𝑖𝑡𝑒𝑟 reduces with increasing iterations. However, for each 

parent seed in a single generation, the value 𝜎𝑖𝑡𝑒𝑟remains constant. This does not promote 

exploration or efficient exploration. Each parent should have weed characteristics that are 

distinct from those of other parents. In this study, an adaptive standard deviation (SD) 

𝑠𝑡𝑑𝑖𝑡𝑒𝑟was employed, whose 𝜎𝑖𝑡𝑒𝑟 value fluctuates with iteration and rank. The SD can be 

characterized as follows: 

𝑠𝑡𝑑𝑖𝑡𝑒𝑟 = {
(1 + 𝑄

𝑔𝑡𝑒−𝑔𝑚𝑒𝑎𝑛
𝑡𝑒

𝑔𝑚𝑎𝑥
𝑡𝑒 −𝑔𝑚𝑒𝑎𝑛

𝑡𝑒 ) ∗ 𝜎𝑖𝑡𝑒𝑟;   𝑔
𝑡𝑒 ≥ 𝑔𝑚𝑒𝑎𝑛

𝑡𝑒

(1 − 𝑄
𝑔𝑚𝑒𝑎𝑛
𝑡𝑒 −𝑔𝑡𝑒

𝑔𝑚𝑒𝑎𝑛
𝑡𝑒 −𝑔𝑚𝑖𝑛

𝑡𝑒 ) ∗ 𝜎𝑖𝑡𝑒𝑟;       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                     (6.41) 

Where 𝑔𝑚𝑒𝑎𝑛
𝑡𝑒 is formulated as follows:  

𝑔𝑚𝑒𝑎𝑛
𝑡𝑒 =

∑{𝑔𝑡𝑒(𝑥𝑘| 𝜆𝑖, 𝑧∗)| 𝑥𝑘∈𝐵(𝑖)}

|𝐵(𝑖)|
                                                                  (6.42) 

Where 𝑔𝑡𝑒 be the value of the weed's aggregated scalar function, 𝑔𝑚𝑖𝑛
𝑡𝑒 , 𝑔𝑚𝑎𝑥

𝑡𝑒  and 𝑔𝑚𝑒𝑎𝑛
𝑡𝑒  are 

the lowest, highest, and mean values of weeds in the present iteration respectively, and 𝑄 is the 

regulatory parameter whose value ranges from 0 to 0.5. |𝐵(𝑖)| is the number of neighbors of 

𝑖𝑡ℎ sub-problem. Similarly, the same model was applied to the neighbors of 𝑥𝑖 in line 8 of the 

algorithm.  

Let 𝑥𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … 𝑥𝑛
𝑖 )
𝑇
is the 𝑖𝑡ℎ parent individual, 𝑦 = (𝑦1, 𝑦2, … 𝑦𝑛)

𝑇 are the seeds generated 

by𝑥𝑖; where each element 𝑦𝑗 
is produced as follows:  

𝑦𝑗 = 𝑥𝑗
𝑖 +𝑁(0, 𝑠𝑡𝑑𝑖𝑡𝑒𝑟

2 ); 𝑗 = 1,2, … 𝑛.                                                 (6.43) 

Then the trade-off objective optimal value is selected using the fuzzy method [56].  
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Fig.6.1: Flowchart of the proposed method 
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6.6 Results and Discussions 

To analyze the robustness and efficacy of the suggested method, IEEE 57-bus and 118-bus 

systems were taken into account. The proposed method was implemented in MATLAB 

R2016a, and simulations were conducted over an i3-Processor having 4 GB RAM. To verify 

the efficacy of the proposed method, comparisons were made with NSGA-II [57] and MOPSO 

[58]. In this work, the stochastic nature of WECS, SPVS, and PEV sources was taken into 

account to study the impact of these sources on the MOOPF problem. To consider 

uncertainties, Monte-Carlo simulations were used to generate 1000 samples. The control 

parameters of the proposed method, NSGA-II, and MOPSO are given in Table 6.1. The various 

cases considered are given in Table 6.2. The description of the test systems was given in Table 

6.3. PDF specifications and cost components of various sources are given in Table 6.4. 

Table 6.1: Control parameters of the proposed method, NSGA-II, and MOPSO. 
S. No. Method Control parameters 

1. Proposed method N =100, D =12, T =20, Pc =1.0, Pm =0.05, max. iterations=100. 

2. NSGA-II [57] N =100, Pc =0.8, Pm =0.01, and max. iterations=100. 

3. MOPSO [58] N =100, C1= C2= 2, W=0.5, and max. iterations=100. 

 

Table 6.2: Various cases considered. 
S. No. Test Systems Case # J1 J2 J3 J4 

1. IEEE 57-bus system 

Case 1     -- -- 

Case 2       -- 

Case 3         

2. IEEE 118-bus system 
Case 4   --   -- 

Case 5   --     

 

Table 6.3: Test systems description. 
Specifications IEEE 57-bus system IEEE 118-bus system 

Buses 57 
[59] 

118 
[59] 

Lines 80 186 

Thermal units 7 Buses:1,2,3,6,8,9 and 12 54 Buses: [59] 

Slack bus 1 Bus:1 69 Bus: 69 

Transformer 

tap positions 
17 

Lines:19,20,31,35,36,37,41,46, 

54,58,59,65,66,71,73,76, and 80 
9 

Lines: 8,32,36, 51, 93,95,102,107 and 

127 

Shunt 

capacitors 
3 Buses:18,25, and 53 12 

Buses:34,44,45,46,48,74,79,82, 83, 

105, 107 and 110 

Control 

variables 
36 

Generator bus real powers (9) + 

voltages (7) + transformer tap settings 

(17) + shunt capacitor (3). 

131 

Generator bus real powers (56) + 

voltages (54) + transformer tap 

settings (9) + shunt capacitor (12). 

Load - 1250.8MW, 336.4MVAR - 4242.0MW, 1439.0MVAR 

WECS 1 45 #bus 1 81 #bus 

SPVS 1 16 #bus 1 64 #bus 

PEVS 1 49 #bus 1 117 #bus 
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Table 6.4:  PDF specifications and cost components of various sources. 
S. No. Specifications WECS SPVS PEVS 

1. PDF Weibull Lognormal Normal 

2. Parameters 
𝑐 =10, 𝑘 =2, 𝑣𝑖𝑛=10m/sec, 

𝑣𝑜𝑢𝑡=12m/sec, 𝑣𝑟=12m/sec 

𝜇 =6, 𝜎 = 0.6, 𝐺𝑠𝑡𝑑=800 

W/m2 , 𝑅𝑐=120 W/m2 

𝜇 = 3.2,  

𝜑 = 0.88 

3. Direct cost 

coefficient ($/MW) 

1.75 1.60 1.60 

4. Reserve cost 

coefficient ($/MW) 

3 3 3 

5. Penalty cost 

coefficient  ($/MW) 

1.5 1.5 1.5 

 

6.6.1 IEEE 57-bus system 

The IEEE 57-bus system [59] was investigated to demonstrate the performance of the proposed 

method for solving the MOOPF problem. The information about the IEEE 57-bus system 

incorporating WECS, SPVS, and PEV sources used is given in Table 6.3. Notably, the locations 

of these sources were chosen from [74], by replacing load buses with the respective WECS, 

SPVS, and PEV sources.  

a) Case-1: Minimize J1, and J2 simultaneously 

In this case, the proposed method was simulated by considering two objectives J1 and J2. The 

Pareto-optimal fronts (PFs) observed are depicted in Figure 6.2. The optimal decision variables 

obtained by the proposed method are presented in Table 6.5. The proposed method obtains a 

total generation cost of 35780.28$/h, and emission of 0.8702ton/h. NSGA-II [57] gives 

35850.00$/h, 0.9928ton/h and MOPSO [58] gives 35910.00$/h, 1.0120ton/h respectively as 

shown in Table 6.6.    

b) Case-2: Minimize J1, J2, and J3 simultaneously 

In this case, the proposed method was simulated by considering three objectives J1, J2, and J3. 

The Pareto-optimal fronts (PFs) observed are depicted in Figure 6.2. The optimal decision 

variables obtained by the proposed method are presented in Table 6.5. The proposed method 

obtains a total generation cost of 36111.28$/h, emission of 0.9568ton/h, and active power loss 

of 10.3543MW. NSGA-II [57] gives 36336.00$/h, 1.2498ton/h, 11.0813MW and MOPSO 

[58] gives 36402.69$/h, 1.0450ton/h, 12.5591MW respectively as shown in Table 6.6.    

c) Case-3: Minimize J1, J2, J3, and J4 simultaneously 

In this case, the proposed method was simulated by considering four objectives J1, J2, J3, and 

J4. The optimal decision variables obtained by the proposed method are presented in Table 6.5. 

The proposed method obtains a total generation cost of 36340.27$/h, emission of 1.1009ton/h, 

active power loss of 10.9504MW, and voltage magnitude deviation of 0.8519p.u. NSGA-II 
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[57] gives 36250.00$/h, 1.4175ton/h, 12.3871MW, 1.0481p.u. and MOPSO [58] gives 

36662.59$/h, 0.9367ton/h, 14.1833MW, 1.0669p.u. respectively as shown in Table 6.6.    

  

(a) 

  

(b) 

Fig. 6.2: IEEE 57-bus system: Pareto-optimal fronts. a) Case-1, and b) Case-2. 



Chapter 6 

   

88 
 

Table 6.5: IEEE 57-bus system: Optimal control variables obtained by the proposed method. 

S. No. Control variables  
Limits 

Case-1 Case-2 Case-3 
min max 

1. P2  

 

 

 

0 

100 98.6033 74.3511 66.6157 

2. P3 140 68.1994 84.8910 73.7500 

3. P6 100 94.1666 76.8214 64.6217 

4. P8 550 302.9663 306.6662 343.0574 

5. P9 100 97.5424 96.5544 86.5482 

6. P12 410 281.1485 323.7556 333.9688 

7. P45 80 79.8163 76.7799 64.5531 

8. P16 80 79.6213 77.8880 76.2239 

9. P49 20 19.0489 20.0000 12.9058 

10. V1  

 

 

0.95 

 

 

 

1.1 

1.0336 1.0292 1.0217 

11. V2 1.0426 1.0307 1.0395 

12. V3 1.0359 1.0209 1.0209 

13. V6 1.0238 1.0152 1.0068 

14. V8 1.0281 1.0278 1.0267 

15. V9 1.0301 1.0322 1.0334 

16. V12 0.9964 1.0293 1.0281 

17. T19  

 

 

 

 

 

 

 

0.9 

 

 

 

 

 

 

 

 

      1.1 

0.9699 1.0169 0.9913 

18. T20 1.0061 0.9466 0.9981 

19. T31 0.9952 1.0297 1.0208 

20. T35 1.0185 1.0392 0.9834 

21. T36 0.9865 0.9587 1.0104 

22. T37 1.0302 1.0210 0.9945 

23. T41 0.9931 0.9793 1.0133 

24. T46 0.9980 0.9517 0.9548 

25. T54 0.9789 1.0221 0.9580 

26. T58 1.0155 0.9831 0.9625 

27. T59 0.9985 0.9873 0.9783 

28. T65 0.9916 0.9903 0.9809 

29. T66 0.9863 0.9828 0.9328 

30. T71 1.0063 0.9541 1.0035 

31. T73 1.0113 1.0138 0.9825 

32. T76 0.9938 0.9960 0.9718 

33. T80 0.9709 0.9940 1.0180 

34. QC18  

0 

 

20 

9.4263 8.5916 8.6920 

35. QC25 7.8862 9.9315 10.1887 

36. QC53 9.5980 8.2526 7.1468 

1. J1($/h) - - 35780.28 36111.28 36340.27 

2. J2(ton/h) - - 0.8702 0.9568 1.1009 

3. J3(MW) - - - 10.3543 10.9504 

4. J4(p.u.) - - - - 0.8519 
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Table 6.6: IEEE 57-bus system: Comparison of the proposed method. 
Case #  Objective functions  Proposed method NSGA-II [57] MOPSO [58] 

Case-1 
J1($/h) 35780.28 35850.00 35910.00 

J2(ton/h) 0.8702 0.9928 1.0120 

Case-2 

J1($/h) 36111.28 36336.00 36402.69 

J2(ton/h) 0.9568 1.2498 1.0450 

J3(MW) 10.3543 11.0813 12.5591 

Case-3 

J1($/h) 36340.27 36250.00 36662.59 

J2(ton/h) 1.1009 1.4175 0.9367 

J3(MW) 10.9504 12.3871 14.1833 

J4(p.u.) 0.8519 1.0481 1.0669 

 

6.6.2 IEEE 118-bus system 

The IEEE 118-bus system [59] was considered to demonstrate the efficacy of the proposed 

method on a big system. The information about the IEEE 118-bus system incorporating WECS, 

SPVS, and PEV sources used is given in Table 6.3. Notably, the locations of these sources 

were chosen from [74], by replacing load buses with the respective WECS, SPVS, and PEV 

sources.  

a) Case-4: Minimize J1, and J3 simultaneously 

In this case, the proposed method was simulated by considering two objectives J1, and J3. The 

Pareto-optimal fronts (PFs) observed are depicted in Figure 6.3. The optimal decision variables 

obtained by the proposed method are presented in Table 6.7. The proposed method obtains a 

total generation cost of 127890.61$/h, and an active power loss of 33.3705MW. NSGA-II [57] 

gives 129582.23$/h, 37.3464MW and MOPSO [58] gives 130673.5$/h, 38.0368MW 

respectively as shown in Table 6.8.    

b) Case-5: Minimize J1, J3, and J4 simultaneously 

In this case, the proposed method was simulated by considering three objectives J1, J3, and J4. 

The Pareto-optimal fronts (PFs) observed are depicted in Figure 6.3. The optimal decision 

variables obtained by the proposed method are presented in Table 6.7. The proposed method 

obtains a total generation cost of 130749.11$/h, active power loss of 38.2259MW, and voltage 

magnitude deviation of 0.4511p.u. NSGA-II [57] gives 134395.5$/h, 40.0724MW, 0.6876p.u. 

and MOPSO [58] gives 133574.6$/h, 41.3020MW, 0.9706p.u. respectively as shown in Table 

6.8.    
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(a) 

 

(b) 
Fig. 6.3: IEEE 118-bus system: Pareto-optimal fronts. a) Case-4, and b) Case-5. 
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Table 6.7: IEEE 118-bus system: Optimal control variables obtained by the proposed method.  
S. 

No. 

Control 

variables 

Limits 
Case-4 Case-5 

S. 

No. 

Control 

variables 

Limits 
Case-4 Case-5 

min max min max 

1. P1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

100 55.9460 48.6240 68. V26  

 

 

 

 

 

 

 

 

 

 

0.95 

 

 

 

 

 

 

 

 

 

 

 

1.1 

1.0178 1.0307 

2. P4 100 39.0503 43.6199 69. V27 1.0297 1.0318 

3. P6 100 56.3835 56.3541 70. V31 1.0184 1.0121 

4. P8 100 54.5506 37.2383 71. V32 1.0182 1.0019 

5. P10 550 173.927 181.510 72. V34 1.0243 1.0045 

6. P12 185 67.0061 85.3627 73. V3 1.0429 1.0027 

7. P15 100 48.2205 48.2502 74. V40 1.0352 1.0122 

8. P18 100 45.9455 40.6351 75. V42 1.0165 1.0207 

9. P19 100 51.4212 38.9266 76. V46 1.0292 1.0287 

10. P24 100 45.6110 43.8313 77. V49 1.0177 1.0110 

11. P25 320 88.1517 107.417 78. V54 1.0228 1.0018 

12. P26 414 139.941 143.538 79. V55 1.0168 1.0151 

13. P27 100 56.0018 53.8079 80. V56 1.0154 1.0180 

14. P31 107 18.1830 10.9532 81. V59 1.0193 1.0160 

15. P32 100 51.1361 44.4332 82. V61 1.0296 1.0011 

16. P34 100 42.2086 53.2355 83. V62 1.0245 1.0068 

17. P36 100 41.1170 51.3992 84. V65 1.0144 1.0007 

18. P40 100 66.2173 43.2414 85. V66 1.0162 1.0112 

19. P42 100 59.6259 64.8196 86. V69 1.0250 1.0095 

20. P46 119 35.3173 53.9039 87. V70 1.0266 1.0118 

21. P49 304 142.501 162.688 88. V72 0.9897 1.0338 

22. P54 148 85.1966 79.4450 89. V73 1.0493 1.0116 

23. P55 100 43.7812 46.0740 90. V74 1.0115 1.0220 

24. P56 100 73.7154 64.3958 91. V76 1.0384 1.0181 

25. P59 255 142.951 121.802 92. V77 1.0260 1.0069 

26. P61 260 112.737 102.575 93. V80 1.0323 1.0154 

27. P62 100 32.7737 33.4058 94. V85 1.0222 1.0083 

28. P65 491 219.553 185.720 95. V87 1.0175 1.0229 

29. P66 492 210.691 173.373 96. V89 1.0459 1.0158 

30. P70 100 44.5214 39.1977 97. V90 1.0331 1.0215 

31. P72 100 28.1889 38.9919 98. V91 1.0313 1.0356 

32. P73 100 45.6510 33.4913 99. V92 1.0322 1.0073 

33. P74 100 52.7319 54.0390 100. V99 1.0288 1.0398 

34. P76 100 57.4716 59.8387 101. V100 1.0363 1.0168 

35. P77 100 49.0969 49.5707 102. V103 1.0262 1.0155 

36. P80 577 264.626 215.734 103. V104 1.0230 1.0330 

37. P85 100 38.1422 53.5711 104. V105 1.0227 1.0089 

38. P87 104 9.2807 8.5961 105. V107 1.0192 1.0293 

39. P89 707 226.574 247.730 106. V110 1.0160 1.0135 

40. P90 100 44.6105 47.3346 107. V111 1.0152 1.0249 

41. P91 100 45.9099 42.2742 108. V112 1.0099 1.0278 

42. P92 100 35.3494 34.6101 109. V113 1.0405 1.0139 

43. P99 100 38.3796 53.0877 110. V116 1.0306 1.0077 

44. P100 352 136.606 150.785 111. T8  

 

 

 

0.9 

 

 

 

 

1.1 

0.9871 1.0178 

45. P103 140 56.5448 47.0893 112. T32 0.9952 1.0190 

46. P104 100 33.6492 60.5636 113. T36 0.9914 0.9827 

47. P105 100 56.5368 30.3130 114. T51 1.0251 0.9933 

48. P107 100 28.6504 58.8769 115. T93 1.0069 1.0144 

49. P110 100 52.2132 35.2832 116. T95 0.9791 0.9795 

50. P111 136 32.2479 38.7994 117. T102 1.0044 0.9924 

51. P112 100 25.2790 44.2174 118. T107 0.9813 0.9928 

52. P113 100 23.7058 44.1563 119. T127 1.0172 0.9870 
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53. P116 100 46.6905 45.1908 120. QC34  

 

 

 

 

 

0 

 

 

 

 

 

 

25 

11.6919 13.8154 

54. P81 150 116.444 139.032 121. QC44 11.2106 10.0945 

55. P64 150 126.922 104.668 122. QC45 14.6353 15.2303 

56. P117 40 19.4935 21.7456 123. QC46 9.9899 12.5583 

57. V1   1.0190 1.0200 124. QC48 11.2227 10.7383 

58. V4 1.0210 1.0063 125. QC74 17.2265 13.3213 

59. V6 1.0217 1.0128 126. QC79 12.3653 12.9234 

60. V8 1.0246 1.0092 127. QC82 7.8219 14.5555 

61. V10 1.0313 0.9973 128. QC83 9.2042 11.3947 

62. V12 1.0286 1.0310 129. QC105 10.8933 17.0364 

63. V15 1.0220 1.0048 130. QC107 11.7149 11.3518 

64. V18 1.0210 1.0177 131. QC110 11.1915 11.8901 

65. V19 1.0287 1.0345 1. J1($/h)  - - 127890.6 130749.1 

66. V24 1.0250 1.0231 2. J3(MW) - - 33.3705 38.2259 

67. V25 0.9987 1.0055 3. J4(p.u) - - - 0.4511 

 

Table 6.8: IEEE 118-bus system: Comparison of the proposed method. 
Case #  Objective functions  Proposed method NSGA-II [57] MOPSO [58] 

Case-4 
J1($/h) 127890.61 129582.23 130673.5 

J3(MW) 33.3705 37.3464 38.0368 

Case-5 

J1($/h) 130749.11 134395.5 133574.6 

J3(MW) 38.2259 40.0724 41.3020 

J4(p.u.) 0.4511 0.6876 0.9706 

 

6.7 Summary 

This chapter introduced a solution to the MOOPF problem in a thermal, WECS, SPVS, and 

PEV integrated power system using hybrid MOEA based on decomposition and IWO methods. 

It also addressed the constraints of the MOOPF problem with the superiority of the feasible 

solution (SF) method. In conjunction with the minimization of emission, active power loss, and 

voltage magnitude deviation, the generation cost of thermal generators and the uncertainty cost 

of WECS, SPVS, and PEV systems were reduced. The unpredictability of WECS, SPVS, and 

PEV powers was assessed with Monte Carlo simulations. To illustrate the efficacy of the 

proposed technique, simulations were done on the IEEE 57-bus and IEEE 118-bus systems, 

and the results were compared with NSGA-II and MOPSO algorithms. The outcomes indicate 

that the proposed technique is much more reliable and superior to existing techniques.
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Chapter 7  

Conclusions 

In this thesis, the power system OPF problem was solved using new hybrid MOEAs. The thesis 

explored the new multi-objective frameworks such as decomposition-based MOEAs and their 

application to the MOOPF problem. Furthermore, stochastic WECS, SPVS, and PEV systems 

were integrated into the conventional OPF to study the impact of uncertainty. Since MOOPF 

is a constrained problem, in this thesis, effective constraint handling methods were proposed 

for solving the OPF problem. A fuzzy method was used to obtain the best-compromised 

solution among the solutions obtained. This chapter presents the important findings proposed 

through the research work and discusses future extensions of the proposed research work. 

7.1 Summary of Important Findings 

The following conclusions were arrived at from the research work carried out and reported in 

previous chapters of this thesis. 

1) A new hybrid decomposition and local dominance-based MOEA was proposed for the OPF 

problem. 

 The MOOPF problem was modeled with four objectives: minimizing total generation 

cost, emission, active power loss, and voltage magnitude deviation.  

 The hybridization of decomposition and dominance methodologies increased the Pareto 

front's convergence and diversity of solutions.  

 The MOOPF problem constraints were handled using a static-penalty method, in which 

a penalty is imposed to the fitness of the infeasible solutions with this all infeasible 

solutions are discarded and only considers feasible ones, and this would help in 

achieving the global optimal solution.

 The results of the proposed method were compared with NSGA-II and MOPSO and 

demonstrated on IEEE 57-bus and IEEE 118-bus systems. 

2) A new hybrid decomposition and summation of normalized objectives with improved 

diversified selection-based MOEA were proposed for solving the OPF problem including 

the WECS, and SPVS uncertainty.  

 Integrating RESs like WECS and SPVS sources with conventional OPF to consider the 

impact of the uncertain nature of these sources. The uncertain nature of RESs was 

modeled using PDFs and their uncertainty cost was calculated using Monte-Carlo 

simulations. 
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 A new constraint handling method was adopted so that it enhances the quality of the 

solution and eliminates the parameter dependence in handling constraints.   

 The proposed method was tested on IEEE 57-bus and IEEE 118-bus systems. The 

findings obtained demonstrate that the proposed strategy is superior to NSGA-II and 

MOPSO.  

3) A novel hybrid decomposition and summation of normalized objectives with improved 

diversified selection-based MOEA was proposed for OPF problems including WECS, 

SPVS, and PEV system uncertainty.  

 The MOOPF problem was designed with four objectives: minimizing total generation 

cost, emission, active power loss, and voltage magnitude deviation. 

 A new constraint handling method was adopted so that it enhances the quality of the 

solution and eliminates the parameter dependence in handling constraints.   

 The impact of WECS, SPVS generation, as well as PEV uncertainties, was taken into 

account to validate the proposed method. 

 The proposed method was tested on IEEE 57-bus and IEEE 118-bus systems. The 

findings obtained demonstrate that the proposed strategy is superior to NSGA-II and 

MOPSO. 

4) A new hybrid decomposition and invasive weed optimization (IWO) based MOEA was 

proposed for OPF including WECS, SPVS, and PEV system uncertainty.  

 The MOOPF problem was designed with four objectives: minimizing total generation 

cost, emission, active power loss, and voltage magnitude deviation. 

 A new constraint handling method was adopted so that it enhances the quality of the 

solution and eliminates the parameter dependence in handling constraints.   

 The impact of WECS, SPVS generation, as well as PEV uncertainties, was taken into 

account to validate the proposed method.  

 The proposed method was tested on IEEE 57-bus and IEEE 118-bus systems. The 

findings obtained demonstrate that the proposed strategy is superior to NSGA-II and 

MOPSO. 
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7.2 Scope of the Future Work 

The present research can be extended for future research. The probable areas where research 

can be contemplated are: 

 Big data, data analytics techniques, and machine learning methods can be used to model 

multi-objective framework design to adopt problem-specific and computationally 

complex problems like the MOOPF problems. 

 To evaluate the efficacy of MOEAs for multi-objective optimization problems, other 

CHM such as epsilon constraint (EC), and stochastic ranking (SR) can be combined. 

 To discover the best-compromised solutions, more sophisticated decision-making 

techniques may be utilized, such as the pseudo-weight method, and Lp metric. 

 Future research will continue to focus on the dynamic optimal power flow (DOPF) 

problem, which takes into account the ramping rate of generators, variations in load 

needs across time, the stochastic character of all renewable sources, and all network 

restrictions. 
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Appendix-A 

IEEE 57-bus system data 

Number of buses: 57  

Number of lines: 80  

Total active power load: 1250.80 MW   

Total reactive power load: 336.40 MVAR  

 

Fig. A.1: Single-line diagram of IEEE 57-bus system 

 
        Table A.1: Line data of IEEE 57-bus system 

Line No. From To R 

(in pu) 

X 

(in pu) 

B 
(in pu) 

1 1 2 0.0083 0.0280 0.1290 

2 2 3 0.0298 0.0850 0.0818 

3 3 4 0.0112 0.0366 0.0380 

4 4 5 0.0625 0.1320 0.0258 

5 4 6 0.0430 0.1480 0.0348 

6 6 7 0.0200 0.1020 0.0276 

7 6 8 0.0339 0.1730 0.0470 

8 8 9 0.0099 0.0505 0.0548 

9 9 10 0.0369 0.1679 0.0440 

10 9 11 0.0258 0.0848 0.0218 

11 9 12 0.0648 0.2950 0.0772 

12 9 13 0.0481 0.1580 0.0406 
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13 13 14 0.0132 0.0434 0.0110 

14 13 15 0.0269 0.0869 0.0230 

15 1 15 0.0178 0.0910 0.0988 

16 1 16 0.0454 0.2060 0.0546 

17 1 17 0.0238 0.1080 0.0286 

18 3 15 0.0162 0.0530 0.0544 

19 4 18 0 0.5550 0 

20 4 18 0 0.4300 0 

21 5 6 0.0302 0.0641 0.0124 

22 7 8 0.0139 0.0712 0.0194 

23 10 12 0.0277 0.1262 0.0328 

24 11 13 0.0223 0.0732 0.0188 

25 12 13 0.0178 0.0580 0.0604 

26 12 16 0.0180 0.0813 0.0216 

27 12 17 0.0397 0.1790 0.0476 

28 14 15 0.0171 0.0547 0.0148 

29 18 19 0.4610 0.6850 0 

30 19 20 0.2830 0.4340 0 

31 21 20 0 0.7767 0 

32 21 22 0.0736 0.1170 0 

33 22 23 0.0099 0.0152 0 

34 23 24 0.1660 0.2560 0.0084 

35 24 25 0 1.1820 0 

36 24 25 0 1.2300 0 

37 24 26 0 0.0473 0 

38 26 27 0.1650 0.2540 0 

39 27 28 0.0618 0.0954 0 

40 28 29 0.0418 0.0587 0 

41 7 29 0 0.0648 0 

42 25 30 0.1350 0.2020 0 

43 30 31 0.3260 0.4970 0 

44 31 32 0.5070 0.7550 0 

45 32 33 0.0392 0.0360 0 

46 34 32 0 0.9530 0 

47 34 35 0.0520 0.0780 0.0032 

48 35 36 0.0430 0.0537 0.0016 

49 36 37 0.0290 0.0366 0 

50 37 38 0.0651 0.1009 0.0020 

51 37 39 0.0239 0.0379 0 

52 36 40 0.0300 0.0466 0 

53 22 38 0.0192 0.0295 0 

54 11 41 0 0.7490 0 

55 41 42 0.2070 0.3520 0 
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56 41 43 0 0.4120 0 

57 38 44 0.0289 0.0585 0.0020 

58 15 45 0 0.1042 0 

59 14 46 0 0.0735 0 

60 46 47 0.0230 0.0680 0.0032 

61 47 48 0.0182 0.0233 0 

62 48 49 0.0834 0.1290 0.0048 

63 49 50 0.0801 0.1280 0 

64 50 51 0.1386 0.2200 0 

65 10 51 0 0.0712 0 

66 13 49 0 0.1910 0 

67 29 52 0.1442 0.1870 0 

68 52 53 0.0762 0.0984 0 

69 53 54 0.1878 0.2320 0 

70 54 55 0.1732 0.2265 0 

71 11 43 0 0.1530 0 

72 44 45 0.0624 0.1242 0.0040 

73 40 56 0 1.1950 0 

74 56 41 0.5530 0.5490 0 

75 56 42 0.2125 0.3540 0 

76 39 57 0 1.3550 0 

77 57 56 0.1740 0.2600 0 

78 38 49 0.1150 0.1770 0.0030 

79 38 48 0.0312 0.0482 0 

80 9 55 0 0.1205 0 

 

 

                   Table A.2: Bus data of IEEE 57-bus system 
Bus 

No. 

P 

(MW) 

Q 

(MVAR) 

1    55 

5555 

   17 

2    3    88 

3    411    21 

4    0    0 

5    0    4 

6  75  2 

7  0    0 

8    150 22 

9    121 26 

10 5 2 

11 0 0 

12 377 24 

13 18 2.3 

14 10.5 5.3 
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15 22 5 

16 43 3 

17 42 8 

18 27.2 9.8 

19 3.3 0.6 

20 2.3 1 

21 0 0 

22 0 0 

23 6.3 2.1 

24 0 0 

25 6.3 3.2 

26 0 0 

27 9.3 0.5 

28 4.6 2.3 

29 17 2.6 

30 3.6 1.8 

31 5.8 2.9 

32 1.6 0.8 

33 3.8 1.9 

34 0 0 

35 6 3 

36 0 0 

37 0 0 

38 14 7 

39 0 0 

40 0 0 

41 6.3 3 

42 7.1 4.4 

43 2 1 

44 12 1.8 

45 0 0 

46 0 0 

47 29.7 11.6 

48 0 0 

49 18 8.5 

50 21 10.5 

51 18 5.3 

52 4.9 2.2 

53 20 10 

54 4.1 1.4 

55 6.8 3.4 

56 7.6 2.2 

57 6.7 2 
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                    Table A.3: IEEE 57-bus system: Cost and Emission coefficients 

   S.No. Bus No. Cost coefficients Emission coefficients 

a b c 𝛼 𝛽 𝛾 𝛿 𝜀 

1. 1 0 20 0.0775795 0.040  -0.05  0.060  0.00002  0.5 

2. 2 0 40 0.01 0.030  -0.06  0.050  0.00005  1.5 

3. 3 0 20 0.25 0.040  -0.05  0.040  0.00001  1.0 

4. 6 0 40 0.01 0.035  -0.03  0.035  0.00002  0.5 

5. 8 0 20 0.0222222 0.050  -0.05  0.045  0.00004  2.0 

6. 9 0 40 0.01 0.045   -0.04  0.050  0.00001  2.0 

7. 12 0 20 0.0322581 0.060  -0.05  0.050  0.00001  1.5 
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Appendix-B 

IEEE 118-bus system data 

Number of buses: 118  

Number of lines: 186  

Total active power load: 4242.00 MW   

Total reactive power load: 1439.00 MVAR  

 

Fig. B.1: Single-line diagram of IEEE 118-bus system 

 

Table B.1: Line data of IEEE 118-bus system 

Line 

No. 

From To      R 

(in pu) 

X 

(in pu) 

B  
(in pu) 

1 1 2 0.0303 0.0999 0.0254 

2 1 3 0.0129 0.0424 0.0108 

3 4 5 0.00176 0.00798 0.0021 

4 3 5 0.0241 0.1080 0.0284 

5 5 6 0.0119 0.0540 0.0142 

6 6 7 0.00459 0.0208 0.0055 

7 8 9 0.00244 0.0305 1.1620 

8 8 5 0 0.0267 0 

9 9 10 0.00258 0.0322 1.2300 

10 4 11 0.0209 0.0688 0.01748 

11 5 11 0.0203 0.0682 0.01738 

12 11 12 0.00595 0.0196 0.00502 
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13 2 12 0.0187 0.0616 0.01572 

14 3 12 0.0484 0.1600 0.0406 

15 7 12   0.00862 0.0340 0.00874 

16  11 13 0.02225 0.0731 0.01876 

17 12 14 0.0215 0.0707 0.01816 

18 13 15 0.0744 0.2444 0.06268 

19 14 15 0.0595 0.1950 0.0502 

20 12 16 0.0212 0.0834 0.0214 

21 15 17 0.0132 0.0437 0.0444 

22 16 17 0.0454 0.1801 0.0466 

23 17 18 0.0123 0.0505 0.01298 

24 18 19 0.01119 0.0493 0.01142 

25 19 20 0.0252 0.1170 0.0298 

26 15 19 0.0120 0.0394 0.0101 

27 20 21 0.0183 0.0849 0.0216 

28 21 22 0.0209 0.0970 0.0246 

29 22 23 0.0342 0.1590 0.0404 

30 23 24 0.0135 0.0492 0.0498 

31 23 25 0.0156 0.0800 0.0864 

32 26 25 0 0.0382 0 

33 25 27 0.0318 0.1630 0.1764 

34 27 28 0.01913 0.0855 0.0216 

35 28 29 0.0237 0.0943 0.0238 

36 30 17 0 0.0388 0 

37 8 30 0.00431 0.0504 0.5140 

38 26 30 0.00799 0.0860 0.9080 

39 17 31 0.0474 0.1563 0.0399 

40 29 31 0.0108 0.0331 0.0083 

41 23 32 0.0317 0.1153 0.1173 

42 31 32 0.0298 0.0985 0.0251 

43 27 32 0.0229 0.0755 0.01926 

44 15 33 0.0380 0.1244 0.03194 

45 19 34 0.0752 0.2470 0.0632 

46 35 36 0.00224 0.0102 0.00268 

47 35 37 0.0110 0.0497 0.0131 

48 33 37 0.0415 0.1420 0.0366 

49 34 36 0.00871 0.0268 0.00568 

50 34 37 0.00256 0.0094 0.00984 

51 38 37 0 0.0375 0 

52 37 39 0.0321 0.1060 0.0270 

53 37 40 0.0593 0.1680 0.0420 

54 30 38 0.00464 0.0540 0.4220 

55 39 40 0.0184 0.0605 0.01552 
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56 40 41 0.0145 0.0487 0.01222 

57 40 42 0.0555 0.1830 0.0466 

58 41 42 0.0410 0.1350 0.0344 

59 43 44 0.0608 0.2454 0.06068 

60 34 43 0.0413 0.1681 0.04226 

61 44 45 0.0224 0.0901 0.0224 

62 45 46 0.0400 0.1356 0.0332 

63 46 47 0.0380 0.1270 0.0316 

64 46 48 0.0601 0.1890 0.0472 

65 47 49 0.0191 0.0625 0.01604 

66 42 49 0.0715 0.3230 0.0860 

67 42 49 0.0715 0.3230 0.0860 

68 45 49 0.0684 0.1860 0.0444 

69 48 49 0.0179 0.0505 0.01258 

70 49 50 0.0267 0.0752 0.01874 

71 49 51 0.0486 0.1370 0.0342 

72 51 52 0.0203 0.0588 0.01396 

73 52 53 0.0405 0.1635 0.04058 

74 53 54 0.0263 0.1220 0.0310 

75 49 54 0.073 0.289 0.0738 

76 49 54 0.0869 0.291 0.073 

77 54 55 0.0169 0.0707 0.0202 

78 54 56 0.00275 0.00955 0.00732 

79 55 56 0.00488 0.0151 0.00374 

80 56 57 0.0343 0.0966 0.0242 

81 50 57 0.0474 0.134 0.0332 

82 56 58 0.0343 0.0966 0.0242 

83 51 58 0.0255 0.0719 0.01788 

84 54 59 0.0503 0.2293 0.0598 

85 56 59 0.0825 0.251 0.0569 

86 56 59 0.0803 0.239 0.0536 

87 55 59 0.04739 0.2158 0.05646 

88 59 60 0.0317 0.145 0.0376 

89 59 61 0.0328 0.15 0.0388 

90 60 61 0.00264 0.0135 0.01456 

91 60 62 0.0123 0.0561 0.01468 

92 61 62 0.00824 0.0376 0.0098 

93 63 59 0 0.0386 0 

94 63 64 0.00172 0.02 0.216 

95 64 61 0 0.0268 0 

96 38 65 0.00901 0.0986 1.046 

97 64 65 0.00269 0.0302 0.38 

98 49 66 0.018 0.0919 0.0248 
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99 49 66 0.018 0.0919 0.0248 

100 62 66 0.0482 0.218 0.0578 

101 62 67 0.0258 0.117 0.031 

102 65 66 0 0.037 0 

103 66 67 0.0224 0.1015 0.02682 

104 65 68 0.00138 0.016 0.638 

105 47 69 0.0844 0.2778 0.07092 

106 49 69 0.0985 0.324 0.0828 

107 68 69 0 0.037 0 

108 69 70 0.03 0.127 0.122 

109 24 70 0.00221 0.4115 0.10198 

110 70 71 0.00882 0.0355 0.00878 

111 24 72 0.0488 0.196 0.0488 

112 71 72 0.0446 0.18 0.04444 

113 71 73 0.00866 0.0454 0.01178 

114 70 74 0.0401 0.1323 0.03368 

115 70 75 0.0428 0.141 0.036 

116 69 75 0.0405 0.122 0.124 

117 74 75 0.0123 0.0406 0.01034 

118 76 77 0.0444 0.148 0.0368 

119 69 77 0.0309 0.101 0.1038 

120 75 77 0.0601 0.1999 0.04978 

121 77 78 0.00376 0.0124 0.01264 

122 78 79 0.00546 0.0244 0.00648 

123 77 80 0.017 0.0485 0.0472 

124 77 80 0.0294 0.105 0.0228 

125 79 80 0.0156 0.0704 0.0187 

126 68 81 0.00175 0.0202 0.808 

127 81 80 0 0.037 0 

128 77 82 0.0298 0.0853 0.08174 

129 82 83 0.0112 0.03665 0.03796 

130 83 84 0.0625 0.132 0.0258 

131 83 85 0.043 0.148 0.0348 

132 84 85 0.0302 0.0641 0.01234 

133 85 86 0.035 0.123 0.0276 

134 86 87 0.02828 0.2074 0.0445 

135 85 88 0.02 0.102 0.0276 

136 85 89 0.0239 0.173 0.047 

137 88 89 0.0139 0.0712 0.01934 

138 89 90 0.0518 0.188 0.0528 

139 89 90 0.0238 0.0997 0.106 

140 90 91 0.0254 0.0836 0.0214 

141 89 92 0.0099 0.0505 0.0548 
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142 89 92 0.0393 0.1581 0.0414 

143 91 92 0.0387 0.1272 0.03268 

144 92 93 0.0258 0.0848 0.0218 

145 92 94 0.0481 0.158 0.0406 

146 93 94 0.0223 0.0732 0.01876 

147 94 95 0.0132 0.0434 0.0111 

148 80 96 0.0356 0.182 0.0494 

149 82 96 0.0162 0.053 0.0544 

150 94 96 0.0269 0.0869 0.023 

 151 80 97 0.0183 0.0934 0.0254 

 152 80 98 0.0238 0.108 0.0286 

 153 80 99 0.0454 0.206 0.0546 

 154 92 100 0.0648 0.295 0.0472 

 155 94 100 0.0178 0.058 0.0604 

 156 95 96 0.0171 0.0547 0.01474 

 157 96 97 0.0173 0.0885 0.024 

 158 98 100 0.0397 0.179 0.0476 

 159 99 100 0.018 0.0813 0.0216 

 160 100 101 0.0277 0.1262 0.0328 

 161 92 102 0.0123 0.0559 0.01464 

 162 101 102 0.0246 0.112 0.0294 

 163 100 103 0.016 0.0525 0.0536 

 164 100 104 0.0451 0.204 0.0541 

 165 103 104 0.0466 0.1584 0.0407 

 166 103 105 0.0535 0.1625 0.0408 

 167 100 106 0.0605 0.229 0.062 

 168 104 105 0.00994 0.0378 0.00986 

 169 105 106 0.014 0.0547 0.01434 

 170 105 107 0.053 0.183 0.0472 

 171 105 108 0.0261 0.0703 0.01844 

 172 106 107 0.053 0.183 0.0472 

 173 108 109 0.0105 0.0288 0.0076 

 174 103 110 0.03906 0.1813 0.0461 

 175 109 110 0.0278 0.0762 0.0202 

 176 110 111 0.022 0.0755 0.02 

 177 110 112 0.0247 0.064 0.062 

 178 17 113 0.00913 0.0301 0.00768 

 179 32 113 0.0615 0.203 0.0518 

 180 32 114 0.0135 0.0612 0.01628 

 181 27 115 0.0164 0.0741 0.01972 

 182 114 115 0.0023 0.0104 0.00276 

 183 68 116 0.00034 0.00405 0.164 

 184 12 117 0.0329 0.14 0.0358 
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 185 75 118 0.0145 0.0481 0.01198 

 186  76 118 0.0164 0.0544 0.01356 

 

Table B.2: Bus data of IEEE 118-bus system 
Bus 

No. 

P 

(MW) 

Q 

(MVAR) 

1 51 27 

2 20 9 

3 39 10 

4    39 

 

    12 

5 0 0 

6     52    22 

7 19 2 

8     28    0 

9 0 0 

10 0 0 

11 70 23 

12 47 10 

13 34 16 

14 14 1 

15 90 30 

16 25 10 

17 11 3 

18 60 34 

19 45 25 

20 18 3 

21 14 8 

22 10 5 

23 7 3 

24 13 0 

25 0 0 

26 0 0 

27 71 13 

28 17 7 

29 24 4 

30 0 0 

31 43 27 

32 59 23 

33 23 9 

34 59 26 

35 33 9 

36 31 17 

37 0 0 

38 0 0 
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39 27 11 

40 66 23 

41 37 10 

42 96 23 

43 18 7 

44 16 8 

45 53 22 

46 28 10 

47 34 0 

48 20 11 

49 87 30 

50 17 4 

51 17 8 

52 18 5 

53 23 11 

54 113 32 

55 63 22 

56 84 18 

57 12 3 

58 12 3 

59 277 113 

60 78 3 

61 0 0 

62 77 14 

63 0 0 

64 0 0 

65 0 0 

66 39 18 

67 28 7 

68 0 0 

69 0 0 

70 66 20 

71 0 0 

72 12 0 

73 6 0 

74 68 27 

75 47 11 

76 68 36 

77 61 28 

78 71 26 

79 39 32 

80 130 26 

81 0 0 
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82 54 27 

83 20 10 

84 11 7 

85 24 15 

86 21 10 

87 0 0 

88 48 10 

89 0 0 

90 163 42 

91 10 0 

92 65 10 

93 12 7 

94 30 16 

95 42 31 

96 38 15 

97 15 9 

98 34 8 

99 42 0 

100 37 18 

101 22 15 

102 5 3 

103 23 16 

104 38 25 

105 31 26 

106 43 16 

107 50 12 

108 2 1 

109 8 3 

110 39 30 

111 0 0 

112 68 13 

113 6 0 

114 8 3 

115 22 7 

116 184 0 

117 20 8 

118 33 15 
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Table B.3: IEEE 118-bus system: Cost coefficients 

S.No. Bus No. a b c 

1. 1 0 20 0.0193648335 

2. 4 0 40 0.01 

3. 6 0 40 0.01 

4. 8 0 40 0.01 

5. 10 0 40 0.01 

6. 12 0 20 0.0222222222 

7. 15 0 20 0.117647059 

8. 18 0 40 0.01 

9. 19 0 40 0.01 

10. 24 0 40 0.01 

11. 25 0 40 0.01 

12. 26 0 20 0.0454545455 

13. 27 0 20 0.0318471338 

14. 31 0 40 0.01 

15. 32 0 20 1.42857143 

16. 34 0 40 0.01 

17. 36 0 40 0.01 

18. 40 0 40 0.01 

19. 42 0 40 0.01 

20. 46 0 40 0.01 

21. 49 0 20 0.526315789 

22. 54 0 20 0.0490196078 

23. 55 0 20 0.208333333 

24. 56 0 40 0.01 

25. 59 0 40 0.01 

26. 61 0 20 0.064516129 

27. 62 0 20 0.0625 

28. 65 0 40 0.01 

29. 66 0 20 0.0255754476 

30. 69 0 20 0.0255102041 

31. 70 0 40 0.01 

32. 72 0 40 0.01 

33. 73 0 40 0.01 

34. 74 0 40 0.01 

35. 76 0 40 0.01 

36. 77 0 40 0.01 

37. 80 0 20 0.0209643606 
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38. 85 0 40 0.01 

39. 87 0 20 2.5 

40. 89 0 20 0.0164744646 

41. 90 0 40 0.01 

42. 91 0 40 0.01 

43. 92 0 40 0.01 

44. 99 0 40 0.01 

45. 100 0 20 0.0396825397 

46. 103 0 20 0.25 

47. 104 0 40 0.01 

48. 105 0 40 0.01 

49. 107 0 40 0.01 

50. 110 0 40 0.01 

51. 111 0 20 0.277777778 

52. 112 0 40 0.01 

53. 113 0 40 0.01 

54. 116 0 40 0.01 
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