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ABSTRACT

In general, optimization promotes the economical and efficient operation of electrical systems.
The majority of power system issues are often non-linear, non-convex, and involve the
simultaneous optimization of multiple contrasting objective functions. Optimization
approaches may be required to address a variety of continuous and discrete variables in the
problems. In the past, classical/traditional/conventional optimization approaches were
employed. Conventional techniques typically use gradient-based searches that converge to
local optimal solutions, and it was known that they performed well for convex and continuous
optimization problems. Later, a transformation in optimization methods initiated Evolutionary
Algorithms (EASs) into the picture. The majority of these techniques can effectively circumvent
the issue of premature convergence and explore the search area toward the global optimal
solution. In addition, renewable energy sources (RESS) have become a vital part of the modern
power system. Due to the uncertainty and unpredictability of RESs, the formulation of the
power system problem has grown complex and dynamic. The main purpose of this research is
to implement cutting-edge variations of decomposition-based MOEA (MOEA/D) for the OPF
problems in power systems. Moreover, operational and security limitations are prevalent in
electrical networks. The static penalty method was the simplest and most easy strategy for
addressing power system limits. In this thesis, a new constraint handling method (CHM)
referred to as the superiority of feasible solutions (SF) method in addition to the penalty method
was introduced. In conjunction with MOEAs, CHM has been effectively used to previously
known and freshly formulated constrained optimization issues in the power system, notably
the OPF problem.

The following are the thesis contributions:

e Anovel hybrid MOEA based on decomposition and local dominance was proposed for
the OPF problem. The MOOPF aims to minimize total generation cost, emission, active
power loss, and voltage magnitude deviation. To address the limitations of the MOOPF
problem, a penalty function method was implemented. In addition, a fuzzy technique
was used to determine the optimal values among Pareto-optimal alternatives. The
proposed strategy combines the decomposition and local dominance strategies to
promote convergence by enhancing diversity.

e A new hybrid decomposition and summation of normalized objectives with improved

diversified selection-based MOEA including wind energy conversion system (WECS)



and solar photo-voltaic system (SPVS) uncertainty for OPF was carried out. This
chapter recommends a novel CHM, that adaptively inserts penalty and avoids the
parameter relying on penalty calculation. In the OPF cost study, the influence of RES
such as WECS and SPVS integration was examined. To minimize the total generation
cost, the cost of RESs is factored into the OPF issue to examine the influence of
intermittent and unpredictable renewable sources on cost and operation. Weibull and
Lognormal PDFs are applied to characterize the unpredictability of WECS and SPVS

respectively.

A new hybrid decomposition and summation of normalized objectives with improved
diversified selection-based MOEA including WECS, SPVS, and plug-in electric
vehicle system (PEVS) uncertainty for the OPF problem were done. The MOOPF
problem was solved using a unique CHM that adaptively inserts the penalty and avoids
the parameter relying on penalty calculation. In addition, a fuzzy technique was used to
determine the optimal values among Pareto-optimal alternatives. The impact of
intermittence of WECS, SPVS, and PEV integration was considered for optimal cost

analysis.

A new hybrid decomposition and invasive weed optimization (IWO) based MOEA
including WECS, SPVS, and PEV uncertainty was presented for the OPF problem. The
standard OPF problem was transformed into a stochastic OPF by incorporating the
uncertainty of WECS, SPVS, and PEVSs. The MOOPF problem was solved using a
unique CHM that adaptively inserts the penalty and avoids the parameter relying on
penalty calculation. In addition, a fuzzy technique was used to determine the optimal
values among Pareto-optimal alternatives. The impact of intermittence of WECS,

SPVS, and PEV integration was considered for optimal cost analysis.
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Chapter 1

Chapter 1

Introduction

1.1 Optimal Power Flow Overview

The OPF has become a popular topic of discussion amongst power system academics all over
the world due to the interesting variety of issues it raises. The OPF is presented as a single or
multi-objective issue to minimize total generating cost, emission, active power loss, voltage
magnitude deviation, etc., subject to restrictions on the generator's capability, the line's
capacity, the bus voltage, and the balance of power flow. The OPF program provides the ideal
values for the decision variables, resulting in the efficient and economic operation of the power
system. Main control variables refer to the network's generator bus real power, reactive power,
and bus voltages. The latter regulates the flow of reactive power, which is often balanced by
connecting capacitors with the proper ratings to the network that supplies inductive loads. The
bus voltages and complex powers in the lines obtained throughout the optimization indicate
the optimum operating condition, which may result in the fulfillment of one or more network
objectives. Therefore, OPF, which requires complex computations with various parameters and
the identification of optimal solutions while simultaneously fulfilling all restrictions, remains
the most challenging problem to solve.

In recent days, issues such as the rise in penetration of renewable sources and the rise
in load demand are posing new challenges to the modern power system. The OPF is a technique
for power system planning to find the best operating point in terms of real power generation,
voltage magnitude, tap settings of transformers, and compensators to optimize the specific
objective function(s). The OPF is a nonlinear optimization issue with continuous and
discontinuous control variables. However, discrete control variables like transformer tap
settings, shunt devices, and phase shifters make the OPF problem highly complicated.

In recent times, RESs penetration has increased drastically in power systems. The
penetration of RESs has introduced many challenges to the power system. The intermittent
nature of RESs makes the system highly complex in terms of operation and control. The
uncertain nature of RESs is required to be modeled accurately to examine the dynamic
functioning of the power system. Due to its unpredictable nature, protection schemes need to
be updated for operating the power system in a secure region. In a power system, the main aim
is to operate it with optimal cost and simultaneously satisfy the operating and security

constraints. The OPF determines the optimal control settings satisfying system constraints and
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security constraints to operate economically. OPF is an optimizing tool for power system

operation analysis, scheduling, and energy management applications.

1.2 Mathematical Representation
The OPF is a non-linear, non-convex optimization problem that aims to minimize a given
objective function under a variety of equality and inequality restrictions. The OPF model is
formulated as follows:

Minimize: f(x,u) (1.2)

glx,u) =0
h(x,u) <0

Where f(x,u) is the objective function, x and u are the vector of state and control variables

subject to : {

respectively, g(x,u) and h(x,u) are the collection of equality and inequality restrictions
respectively.
a) State variables
The state variables for the power system can be written as follows in the vector x:
x = [Pg1, Vi1 Vine Qg1 - Qoner Sty -+ St | (1.2)
Where, NL and nl denote the number of load buses and lines respectively. P, is the slack bus
real power, Qg; is the i-th generator bus reactive power, V;; denotes i-th load bus voltage and
Sy; is the i-th line loading.
b) Control variables
The decision variables for the power system can be written as follows in the vector u:
u = [Pg2, - Pone: Vo1, -+ Vong Trs - Tt Qe -+ Qenel] (1.3)
Where NG, NT and NC are the number of generators, transformers and shunt compensators
respectively. Pg; is the i-th generator bus real power (except slack bus). V; is the i-th generator
bus voltage magnitude, T; is the i-th transformer tap ratio, Q; is the i-th bus shunt compensator.
In general, a problem having more than one objective is treated as a multi-objective
optimization problem (MOP). While formulating the MOP, the objective functions are chosen
such that they conflict with each other. The conflict between objectives depends on the
correlation among the objectives. Different objectives will have different degrees of correlation
among a combination of objectives. To formulate the combination of objectives, four different
objectives are considered in this thesis, which are minimization of (a) total generation cost (J1),
(b) emission (J2), (c) active power loss (J3), and (d) voltage magnitude deviation (J4). To show
the change in trade-off solutions with an increase in objectives, the multi-objective problems
were designed with two objectives, three objectives, and four objectives. These multi-
objectives was formulated from the combination of four objectives. The combination of

3
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objectives were taken into account to test the MOP with different degrees of correlation among
the objectives.

1.3  Best-Compromised Solution (BCS)

The fuzzy method [12] was employed to obtain the BCS from a set of non-dominated solutions
of the Pareto optimal front. The membership value (uX,) of every objective is computed as
follows:

1; for EX < Emin

p PR rl

Um Frrrrlmx_FnTm

0; for Ef > Fmax

; for EMn < Ek < pmax (1.4)

where E™™, and ET%* are the limits on fitness values for the objective m out of all the non-
dominated solutions; EX is the fitness value of objective m for non-dominated solution k. The
normalized membership value (1) for every non-dominant solution is determined as follows:

M k
k — Ym=1HKm (15)

Ng M k
2k=1 Zm=1 Hm

where N; and M indicate the number of non-dominated solutions and objective functions

U

respectively. The optimal trade-off is represented as the solution with the highest u* value.

f

%y

Pareto Front

Ideal Optimum
’7’ Objective 2
\
\
\
\

\

Worse

Optimum Compromise

Solution Ideal Optimum
Objective 1
v i
- /
3
2 ]
m \\,
\\’_‘ B
Utopia Point
Better Worse Vf

2

Fig.1.1. Pictorial representation of Pareto-optimal solutions.

1.4 Evolutionary Optimization Algorithms

The limitation of conventional optimization methods can be overcome with alternative
optimization techniques such as evolutionary optimization techniques, which can handle
nonlinear, non-differentiable, real-world complex problems, highly constrained, high
dimensionality problems, and discrete optimization problems. Evolutionary optimization

algorithms are one of the branches of meta-heuristic optimization methods, which are inspired
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by the biological evolutionary theory to solve optimization problems. The evolutionary
algorithms can be classified into two categories: i) population-based and ii) trajectory-based
algorithms. Population-based algorithms are inspired by the biology and swarms of different
species. In population-based algorithms, multiple solutions are propagated to find the optimal
solution in the decision space. genetic algorithm (GA), particle swarm optimization (PSO),
etc., are examples of population-based algorithms. Trajectory-based algorithms are adapted
from physics, in which a single solution is propagated to find the optimal solution. Tabu search,
simulated annealing, etc., are examples of trajectory-based algorithms. Evolutionary
optimization algorithms are best suited to resolve the OPF issue. The OPF can be structured as
both single-objective and multiple-objective issues. In practical applications of power systems,
one needs to consider multiple objectives rather than a single objective. The multi-objective
formulation gives the trade-off solutions which are useful in making the decision of power
system planning studies.
1.5  Multi-Objective Evolutionary Algorithms (MOEAS)
The OPF problem can be solved using MOEA. The optimization process provides the best
feasible value which is the maximum or minimum value of a given objective. In general, multi-
objective optimization is expressed as follows:
minimize F(x) = (f1(x), f2(x), ... ...  fn ONT (1.6)
subjected to constraints
Where F(x) is the multi-objective function formulated from ‘m’ individual objectives f(x).
When m>2, the optimization is referred to as multi-objective optimization problem (MOP).
The MOEAs are divided into four categories: i) Pareto dominance based, ii)
Decomposition based, iii) Indicator based, and iv) Model-based.
I.  Pareto dominance-based MOEA: The individuals are ordered based on their Pareto
dominance using the non-dominated sorting method, which increases the convergence
of MOEA, and the crowding distance is used to increase the diversity of solutions on

the Pareto front.

ii.  Decomposition-based MOEA: The MOP is transformed into several single objective
optimization problems. The algorithm divides the problem into subproblems using
scalarization methods based on weights. Based on the distance between aggregation
weights, neighborhoods are generated. The subproblem is simultaneously solved by
exchanging information among the neighboring solutions. This improves the efficiency

of searching the objective space for optimal solutions.
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iii.  Indicator-based MOEA: These methods use performance indicators to guide the
search process and the solutions are selected based on performance indicator value.
Several types of indicator metrics are available in the literature such as hypervolume
indicator, R2 indicator, inverted generational distance (IGD), and so on.

iv.  Model-based MOEA: The model-based MOEAs add the ability to learn from the
environment in evolutionary algorithms. Traditional MOEAs such as Pareto,
decomposition, and indicator-based are intended to operate on fixed heuristic strategies
such as reproduction, selection, and variation. In the process of searching for a feasible
solution, traditional MOEAs may not interact with the rapidly changing environment
due to the complex properties of the problem to be solved. The model-based MOEAS
uses machine learning techniques to adapt to environmental changes in the evolutionary
process. The model-based MOEA replaces the traditional heuristic operators such as
selection, reproduction, and fitness evaluation with a machine learning model. The
models use the candidate solutions as sample training data from the current generation
to generate the best solutions by learning the changes in the environment.

In all evolutionary algorithms, maintaining a proper balance between exploitation and
exploration is necessary to get the global optimum solution. Exploration is the process of
searching broadly in objective space, whereas exploitation is the local searching done in the
vicinity of an optimal or nearly ideal solution. Excessive exploitation results in the algorithm
being stopped at a local optimum point rather than getting close to the global optimum solution,
whereas exhaustive exploration lengthens the convergence time. Therefore, while building
evolutionary algorithms, striking the right balance between exploitation (local search) and
exploration (global search) is crucial.

The MOEAs are normally modeled to handle different conflicting goals, such as
maximizing the spread of solutions along the Pareto front (i.e., diversity) and minimizing the
distance between the solutions along the Pareto front (i.e., convergence) [23]. The trade-off
between convergence and diversity is important to choose the best solution among the solutions
obtained. Therefore, to attain a balance between exploration and exploitation in this thesis, a

new hybrid MOEAS were proposed.
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2.1 Overview

In recent years, the penetration of RESs has increased rapidly in the power system, which in
turn has led to many challenges to monitor and operate the modern power system. The OPF is
a technique in power system planning to find the best operating point in terms of real power
generation, voltage magnitude, off-nominal transformer tap positions, and shunt compensator
to optimize the specific objective function(s) [1]. The OPF is a non-linear, and non-convex
optimization problem that includes both continuous and discrete control variables. A discrete
control variable like transformer tap setting, shunt device, and phase shifter makes the OPF
problem complex. Moreover, the uncertainty and unpredictability of renewable energy sources
make the system highly complex to operate and control [1]. The uncertain nature of RESS is
required to be modeled accurately to monitor and control the dynamic behavior of the power
system network more reliably and operate more efficiently. The OPF determines the optimal
control variables by meeting the system constraints. A significant amount of research has been
carried out in the OPF using both deterministic and stochastic methods.

Several deterministic methods have been offered in the literature to resolve PF
problems. It includes linear programming (LP), non-linear programming (NLP), etc. Lobato
et. al. [2] presented LP-based OPF for power loss reduction and reactive power margin
minimization of generators. Yan et. al. [3] proposed the predictor-corrector interior-point
method for the OPF problem in the form of a rectangle. During optimization, the Hessian
matrices were computed only once and treated as constant. In [4], the authors proposed a
quadratic programming method to minimize power loss in the OPF problem. The gradient
method was proposed in [5] to develop the dynamic OPF to include wind farms without
considering the cost of wind power. For solving the OPF model including wind plant, authors
[6] used the Newton method and interior-point methods. However, conventional or
deterministic optimization method may not handle mixed variable optimization problems; it
requires mathematically well-defined objective functions and constraints, are sensitive to initial
values of the problem, are problem-specific, exhibits poor convergence characteristics, and the
theoretical assumptions related to problems that lead to solutions stuck at local optima points.
Moreover, these methods are unable to solve real-world optimization issues. Likewise, several
authors have attempted the OPF as a single-objective optimization approach with conventional

optimization methods [7, 8]. To overcome the limitations of classical or deterministic
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techniques, various population-based EAs were developed, which can handle nonlinear, non-
differentiable, real-world complex problems, highly constrained, and high dimensionality
problems, and discrete optimization problems.

The stochastic search approach adopted by EAs may explore the search area for global
optimality effectively. Genetic algorithm [9], Evolutionary programming [10], and others were
among the initial attempts to apply stochastic population-based techniques for OPF. Duman et.
al. [11], the symbiotic organisms search (SOS) algorithm was proposed to solve security-
constrained AC-DC OPF including wind, PV, and PEV sources. Sarda et. al. [12], proposed a
robust CE-CMAES for solving the dynamic OPF problems. In this work, the dynamic OPF
problem was modeled by including the wind, PV, and PEV uncertainties. In [13], the authors
proposed an SOS method for resolving the AC OPF problem with thermal-wind-solar-tidal
systems. The uncertainties associated with wind, PV, and tidal energy systems were modeled
with Weibull, Lognormal, and Gumbel PDFs respectively. In [14], the authors developed and
solved different constrained OPF problems for power systems containing RESs like wind and
solar power using an HMICA-SQP. Biswas et. al. [15], used the SHADE algorithm with the
SF method for arriving at the solution to OPF with RESs. Similarly, in [16, 17] the authors
proposed several meta-heuristic optimization methods for solving OPF with RESs. However,
these were formulated as single-objective optimization problems. In the real world, the OPF
problem is multi-objective and the tradeoff between multiple objects gives better optimal
conditions for operation. In most practical optimization problems, the objective functions
conflict mutually. According to the no free lunch (NFL) theorem [18], no single solution is
available which can optimize all the objectives. To overcome this problem, MOPs have been
developed and widely exist in all applications, such as cloud computing, path planning, design,
and scheduling [19]. These problems consist of more than one conflicting objective.

In contrast to the majority of single-objective examples addressed in the
aforementioned OPF literature, the weighted sum method was provided utilizing a
backtracking search optimization [20], the moth swarm algorithm [21], etc. In this optimization
problem, weights are assigned to the objectives, and the weighted sum of the objectives is
minimized. The OPF problem is solved using linear scalarization or weighted-sum-based
multi-objective optimization [22-25], in which every objective is given a weight and the
summation of weights must be one. In [26], the authors proposed a weighted sum-based
differential evolution (DE) algorithm for the MOOPF problem. In the weighted sum-based
method, multiple objectives are transformed into a single objective problem by multiplying

each objective by weight such that the sum of all weights is one. The authors considered
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different objective functions in both normal and contingency conditions. Roy and Paul [27],
proposed a krill herd algorithm (KHA) for solving MOOPF problems using the weighted sum-
based method. The crossover and mutation operator of the DE algorithm was merged with
KHA to enhance the reliability of the solution and also to select a high-quality solution. Ozan
[28], proposed an improved Archimedes optimization method for multi/single-objective OPF
problems. Many authors used [29, 30] weighted sum-based MOOPF problems with different
objectives. The weighted sum-based methods are simple in combining multi-objectives into a
single objective with suitable weights. A weighted sum-based method is the basic type of a
decomposition-based MOEA method. However, the fundamental disadvantage of this method
is that it must be executed multiple times to produce the approximation set. Moreover, the
weighted sum-based method fails to obtain the compromised solutions, and in concave
optimization problems, the weighted sum-based method produces optimal solutions for one of
the objective functions. This approach heavily depends on weights that are assigned to each
objective value, and these, in turn, affect the optimal solution. A series of solutions using multi-
objective approaches is preferable to a single solution employing a weighted sum strategy for
various reasons.

Abido et. al. [31] introduced SPEA to address the active and reactive power dispatch
problem. SPEA’s main drawback is that the beginning population has only one set of non-
dominated solutions and the external population is filled with the same ones. This will lead to
Pareto optimal front being suboptimal, leading to a non-uniformly distributed Pareto front.
Jeyadevi et. al. [32], Pareto dominance-based method was adduced as modified NSGA-II to
solve the multi-objective optimization of the reactive power dispatch problem, and the
controlled elitism method was deployed to preserve the diversity in Pareto-front; to obtain high
uniformity, dynamic crowding distance (DCD) based strategy was proposed. Several authors
[33-39] proposed Pareto dominance-based multi-objective optimization for OPF. However,
Pareto-based methods suffer from limitations. The selection pressure reduces with an increase
in the number of objectives and as a result, the effectiveness of the solution deteriorates
proportionately to such an extent that a loss of diversity occurs in the population.

While the aforementioned articles focused exclusively on thermal units, a system that
combines thermal and wind powers was explored in the literature to achieve the lowest possible
generation cost. To specify the boundaries of reactive power generation ability, Panda et. al.
[40] suggested a modified bacteria foraging algorithm (MBFA) and built the DFIG model
within the OPF architecture. Static synchronous compensation an external reactive power

assisting was utilized in [41] to examine a network having wind and thermal sources, and the
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OPF issue was handled using the ant colony algorithm and MBFA. In an OPF dispatching
program, a stochastic model of wind generation was described in [42]. Included in [43] was
the DFIG wind turbine model. [44] presents the OPF model for a hybrid model with PV, a
diesel generator, and a battery that operates in isolated mode. In [45], pumped hydro was
presented as an alternative method of storage for an autonomous hybrid system composed of
PV, wind, and diesel generation. In conclusion, the OPF including thermal, wind, PV, and PEV
powers requires additional investigation.

In the literature, numerous single-objective problems of OPF have been resolved. In the
current socio-economic environment, it becomes vital to evaluate multiple objectives for OPF.
In the past, the typical formulation of OPF consisted of a single target, which was primarily the
minimization of generation cost. In several countries, legislation and the installation of a carbon
tax have heightened the significance of decreasing greenhouse gas emission. Maintaining
power quality necessitates low voltage fluctuations from the desired voltage, and any
improvement in power loss provides utilities a financial advantage. Therefore, the MOOPF
problem must take into account emission, voltage variation, and power loss in addition to the
cost. Since this MOOPF problem is highly non-linear and aims are frequently contradictory, it
necessitates the application of effective techniques. An appropriate MOEA can yield a Pareto
front (PF) with multiple non-dominated optimal values for balancing multiple objectives.

Several researchers expanded their work on OPF utilizing hybrid heuristic-based multi-
objective optimization algorithms[46, 47]. Nonetheless, as the number of objective functions
increases, so does the size of the objective space. Therefore, nearly all solutions became non-
dominant with each other. This worsens the selection pressure on the PF, a collection of all
Pareto-optimal solutions, and leads to a population diversity loss during the evolution as well
as a slower pace of convergence for MOPs [48, 49].

The MOEAs are normally modeled to tackle different conflicting objectives, such as
maximizing the spread of solutions along the Pareto front (i.e., diversity) and minimizing the
distance between the solutions along the Pareto front (i.e., convergence) [50, 51]. The trade-
off between convergence and diversity is important to choose a good quality solution among
the solutions obtained. Therefore, to attain a balance between exploration and exploitation,

several hybrid MOEAs are proposed in this thesis for solving the OPF problem.

2.2 Motivation
In addition to the benefits cited in the existing literature for various optimization strategies,

there are also certain drawbacks. The limitations are as follows:
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In the literature, the OPF problem is typically written as a single objective optimization
problem [9-17], however, the practical OPF problem has several objectives, and trade-off
solutions play a crucial part in power system decision-making.

The weighted-sum-based technique [20-30] is easy to construct and apply to multi-
objective problems. This strategy turns a MOP into a single-objective problem by
combining weighted objectives. Apart from the merits, the demerits are: (i) It is incapable
of dealing with non-convex Pareto fronts (PF) or the method yields solutions that are
optimal in one of the objective functions for non-concave PF and (ii) The weights assigned
to the objectives have a substantial effect on the optimal solutions.

The Pareto-oriented MOEAs [31-39] are gaining importance because they outperform the
constraints of weighted-sum-based MOEAs. The solutions are prioritized according to
Pareto rather than weighted objectives, which enhances MOEA convergence. Then, the
crowding distance method is applied to ensure the diversity of the solutions in the PF. In
addition to their benefits, Pareto-based MOEASs have the following disadvantages: (i) In
dominance-based approaches, it may be impossible to ensure a level of convergence, and
it is difficult to obtain a particularly regular spacing of solutions along the PF. (ii) As
objective space expands, nearly all solutions inside a population become non-dominant
with one another [48]. (iii) Because dominance resistance solutions exist [49], selection
pressure degrades and it may lead to the loss of population diversity during the evolutionary
process, and it degrades the effectiveness of MOEA [50], and (iv) Pareto dominance may
not give any assurance that the solution provided is an optimal one, as there is no indicator
of performance during the evolution.

In a power system, integrating RESs like WECS and SPVS with conventional OPF is
necessary to consider the impact of uncertainty of these sources. The uncertain nature of
WECS and SPVS are modeled using PDFs and their uncertainty cost is calculated using
Monte-Carlo simulations.

In addition to RESs, integrating the PEVs with conventional OPF to consider the impact of
uncertainty of these sources becomes necessary. The uncertain nature of PEVs is modeled
using PDFs and their uncertainty cost is calculated using Monte-Carlo simulations.

The OPF problem is a constrained optimization problem, which requires an efficient CHM
in combination with an evolutionary algorithm to obtain feasible optimal solutions. The
commonly used one is the static penalty approach here a penalty is applied to the fitness of

an infeasible individual for breaching limitations.
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e However, the drawback with the static penalty-based method is that the accuracy of OPF

suffers due to the huge error associated with penalty factors. The penalty factors of each

objective that are needed to be added to the objective function are fine-tuned by trial and

error.

2.3

Objectives of the Research

The objective of the research work is to design a multi-objective framework to handle issues

with OPF problems in power systems.

The research contributions are as follows:

A new hybrid decomposition and local-dominance based MOEA was proposed for the
OPF problem. Combining decomposition and dominance approaches produced
qualitatively and quantitatively distinct compromised solutions along the Pareto
optimal front. In this approach, the static penalty-based CHM is proposed to handle
equality and inequality restrictions of the OPF problem. In addition, a fuzzy technique
is applied to Pareto-optimal solutions to determine the optimal trade-off solution.

A new hybrid decomposition and summation of normalized objectives with an
improved diversified selection-based MOEA including WECS and SPVS uncertainty
were proposed for the OPF problem. This chapter suggests a novel CHM that adds the
penalty adaptively and avoids parameter dependence on penalty calculation. The
summation-based sorting and enhanced diverse selection were applied to increase the
diversity of MOEA. On OPF cost analysis, the impact of RES like WECS and SPVS
on integration is evaluated. To reduce the total generation cost, the OPF problem takes
into account the cost of RESs to study the influence of intermittent and unpredictable
renewable sources on operation cost. Weibull and Lognormal PDFs were used,
respectively, to describe the uncertainty of WECS and SPVS sources.

A new hybrid decomposition and summation of normalized objectives with improved
diversified selection-based MOEA including WECS, SPVS, and PEVs uncertainty
were proposed for the OPF problem. The MOOPF problem was solved using a unique
CHM that adaptively adds the penalty and avoids the parameter relying on the penalty
calculation. The summation-based sorting and enhanced diverse selection were applied
to increase the diversity of MOEA. In addition, a fuzzy technique is applied to Pareto-
optimal solutions to determine the optimal trade-off solution. The impact of
intermittence of WECS, SPVS, and PEVs integration was considered for optimal cost

analysis. The uncertainty associated with WECS, SPVS, and PEV systems was
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represented using PDFs and its uncertainty cost was calculated using Monte-Carlo
simulations (MCSs).

e A novel hybrid decomposition and invasive weed optimization (IWO) based MOEA
was proposed for the OPF problem. The standard OPF problem was transformed into a
stochastic OPF by incorporating the uncertainty of WECS, SPVS, and PEV systems.
The MOOPF problem was solved using a unique CHM that adaptively inserts the
penalty and avoids the parameter relying on penalty calculation. The IWO technique's
selection qualities were utilized to boost the diversity of the proposed method. Monte
Carlo simulations were used to assess the generation cost of WECS, SPVS, and PEVS
in an effort to lower the total generation cost. Weibull, Lognormal, and Normal PDFs
were used to characterize the unpredictability of WECS, SPVS, and PEV sources,

respectively.

2.4 Thesis Organization

The thesis is organized as follows:

Chapter 1 introduces the OPF problem and its importance in monitoring and operation of the
network. It describes briefly the necessities of the OPF problem and the impact of WECS,
SPVS, and PEVS penetrations on the power system.

Chapter 2 presents a comprehensive literature overview of the OPF issue in a power system
and discusses the existing methods and their strengths and weaknesses. It provides details of
methods used to formulate the optimal power flow problem such as single objective and multi-
objective frameworks and discusses different optimization techniques to handle the problem.
Following an extensive literature review on the topic, the motivation for the proposed
research work is presented, followed by the objectives of the research, contributions, and
organization of the thesis.
Chapter 3 proposes a new hybrid decomposition and local-dominance based MOEA for the
OPF problem. The four objectives considered are minimizing the total generation cost,
emission, active power loss, and voltage magnitude deviation. As the OPF problem is a
constrained optimization problem, the static penalty-based constrained handling method was
used to handle several equal and inequality constraints, which aims to obtain the feasible global
optimal solution. The outcomes of the proposed algorithm were compared with NSGA-II and
MOPSO methods and demonstrated on IEEE 57-bus and IEEE 118-bus systems.
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Chapter 4 proposes a new hybrid decomposition and summation of normalized objectives with
improved diverse selection-based MOEA, including WECS and SPVS generation uncertainty
for the OPF problem. This work recommends a novel CHM, that adaptively inserts the penalty
and avoids the parameter relying on penalty calculation. The summation-based sorting and
enhanced diverse selection were applied to increase the diversity of MOEA. The MOOPF
problem was modeled with four objectives: minimizing total generation cost, including WECS
and SPVS generation cost, emission, active power loss, and voltage magnitude deviation. In
the OPF cost analysis, the influence of RESs such as WECS and SPVS on integration was
examined. To minimize the overall cost, the cost of RESs was factored into the OPF to study
the influence of intermittent and unpredictable renewable sources on cost and operation. The
uncertainty of WECS and SPVS was described using Weibull and Lognormal PDFs
respectively. The versatility of the proposed method was demonstrated on IEEE 57-bus and
IEEE 118-bus systems and the results obtained were compared with NSGA-II, and MOPSO

algorithms to demonstrate the superiority of the proposed method.

Chapter 5 proposes a new hybrid decomposition and summation of normalized objectives with
improved diversified selection-based MOEA including WECS, SPVS, and PEVs uncertainty
for the OPF problem. The MOOPF problem includes minimization of the total generation cost,
emission, active power loss, and voltage magnitude deviation as objectives, and a novel CHM,
that adaptively inserts the penalty and avoids the parameter relying on penalty calculation. The
summation-based sorting and enhanced diverse selection were applied to increase the diversity
of MOEA. In addition, a fuzzy technique is applied to Pareto-optimal solutions to determine
the optimal trade-off solution. The impact of intermittence of WECS, SPVS, and PEVs
integration was considered for optimal cost analysis. The uncertainty associated with WECS,
SPVS, and PEV systems was represented using PDFs and the uncertainty cost was calculated
using Monte-Carlo simulation. The superiority of the proposed method was validated by
comparing it with NSGA-I1, and MOPSO algorithms and tested on IEEE 57-bus and IEEE
118-bus systems.

Chapter 6 proposes a new hybrid decomposition and invasive weed optimization (IWO) based
MOEA for the OPF problem. The standard OPF problem was transformed into a stochastic
OPF by incorporating the uncertainty of WECS, SPVS, and PEV systems. This chapter
presents a new CHM that adaptively inserts the penalty and avoids the parameter relying on
penalty calculation. The IWO technique's selection qualities were utilized to increase the

diversity of MOEA. The MOOPF problem includes minimization of the total generation cost,
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emission, active power loss, and voltage magnitude deviation as objectives. The generation
cost of WECS, SPVS, and PEV sources was examined using Monte Carlo simulations to reduce
the total generation cost. Weibull, Lognormal, and Normal PDFs were used to characterize the
unpredictability of WECS, SPVS, and PEV sources, respectively. The impact of WECS, SPVS,
and PEV uncertainties, was taken into account to validate the proposed method. The superiority
of the proposed method was validated by comparing it with NSGA-I1, and MOPSO algorithms
and tested using IEEE 57-bus and IEEE 118-bus systems.

Chapter 7 summarizes the research contribution, findings, and observations on the proposed

research work. Then it presents the scope for future work on the topic.

2.5 Summary

This chapter provides a summary of existing literature on OPF in power systems. With the
penetration of renewable energy sources, power system operation becomes more challenging.
This chapter discusses different OPF solutions in literature, constraint handling methods, and
literature on the integration of uncertain sources like WECS, SPVS, and PEVs. This chapter
also deals with MOOPF problem-related research and presents a discussion of various types of
multi-objective evolutionary algorithms. Furthermore, motivation, contributions of the study,
and organization of the thesis are presented in this chapter.
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Chapter 3

A Novel Hybrid Multi-Objective Evolutionary
Algorithm Based on Decomposition and Local
Dominance for the Optimal Power Flow
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Chapter 3
A Novel Hybrid Multi-Objective Evolutionary Algorithm Based on
Decomposition and Local Dominance for the Optimal Power Flow

3.1 Introduction

In this chapter, a novel hybrid decomposition and local dominance-based MOEA was proposed

for the OPF problem with four conflicting objectives including minimization of total generation

cost, emission, active power loss, and voltage magnitude deviation. A penalty method was used

to address multiple MOOPF problem restrictions. In addition, a fuzzy technique was employed

to identify the best compromise solution among Pareto-optimal solutions. The decomposition

and local dominance methods were employed to get a uniformly distributed Pareto front and

improved convergence characteristics. The suggested method combines decomposition and

local dominance strategies to enhance effectiveness, (i.e., the exploring and exploitation) of

MOEA. To evaluate the suggested method IEEE 57-bus, and IEEE 118-bus systems were

studied, and the obtained results were evaluated using the NSGA-Il and MOPSO algorithms.

The contributions of this chapter are as follows:

i Proposed a new hybrid decomposition and local dominance-based MOEA for the OPF
problem.

ii. The trade-off between convergence and diversity in the solutions was obtained using
hybrid decomposition and dominance methods.

iii. Using a fuzzy technique, the optimal trade-off solution among Pareto-optimal solutions
was determined.

iv. An efficient CHM to tackle constraints in the MOOPF problem was used.

3.2  Problem Formulation

The MOOPF seeks to optimize objective functions while adhering to limitations by identifying

the optimal decision variables. Accordingly, the MOOPF problem is stated as follows:

Min F(x,u) = [F(x,u), F,(x,u),.... Ep(x, u)] (3.1)

Subject to:
g,u) =0 (3.2)
h(x,u) <0 (3.3)

where E,,(x,u) denotes m*" objective; g(x,u) and h(x,u) indicates equality and inequality

constraints respectively.
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3.2.1 Objectives

The MOOPF problem considered the minimization of four objectives: a) total generation cost
(J1), b) emission (J2), ) active power loss (Js), and d) voltage magnitude deviation (Ja).

a) Total generation cost ($/h):

The quadratic connection approximates the relationship between the cost of generation and
power output. The following expression describes the total generation cost from thermal
generators:

Min J; = Zlivfl(ai + b;iPg; + ¢;P%) (3.4)
where N, is the number of generators; Pg; is the it* generator output active power; a;, b;, c; is
the it" generator cost coefficients;

b) Emission (ton/h):
The generation of electric power from traditional fossil fuels would result in the emission of
hazardous gases into the atmosphere. The following expression describes the total emission
from thermal generators:

Minj, = Zlivfl(ai + BiPgi + viPé + 8;e%iP6t) (3.5)
where a;, B;,v;, 6;, €; are the it" generator emission coefficients;
c) Active power loss (MW):

The following equation can be used to express active power loss:

Min J; = Syt, (G (V2 + V7 = 2V,V; cos 6;) ) (3.6)
where N, is the number of lines; 8;; is the voltage angles between buses i and j; G, indicates
conductance of the k" branch; V;, V; is the voltage magnitudes at i*" and j" bus respectively.
d) Voltage magnitude deviation (p.u.):

The voltage variation is the sum of all voltage variations at load buses in the network relative
to the reference voltage. The mathematical expression is as follows:

Min], = Zlivzpﬂ(Vi — Vref)l (3.7)
where Np,, is the number of PQ buses; V,..; is the reference voltage set to 1 p.u.; V; is the ith
load bus voltage.

3.2.2 Constraints

The MOOPF objectives are subjected to the following equality and inequality constraints.

a) Equality constraints:

The equality constraints are power-balancing equations in which the sum of the generations of

the real and reactive powers is equal to their corresponding demands and losses.
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e Power flow constraints
Py — Pp; — V; Z] 2 Vi(G;j cos 6;; + B;jsinB;;) = 0;i = 1,2, ... N (3.8)
Qsi — Qp; — Vi z].jlvj(ai,- sin@;; —B;jcos 0;;) = 0;i = 1,2, ... Np (3.9)
where Ny is the number of buses; Pg;, Qg and Pp;, Qp; represent the real, reactive power
generations and demands at the i* bus, respectively; G; j» Bij is the conductance, susceptance
of lines between buses i and j respectively;
b) Inequality constraints:
The operational limitations on generators, transformers, and shunt devices, as well as the
security requirements on lines and load buses, constitute inequality constraints.

e Generator constraints: The boundary limits of real and reactive powers and voltage

magnitude of the generator buses are expressed as follows:

PN < P < PMOY, i =1,2,...Ng (3.10)
QA™ < Qe < QE™;i=12,..Ng (3.11)
VN < Voo S VIO i = 1,2, .. Ny (3.12)

e Shunt VAR compensator constraints: The following are the boundary values for shunt
compensators:
QA™ < Qci < Qi =12,..N¢ (3.13)
e Transformer constraints: The ideal operating limits for tap settings on a transformer are
given as follows:
T < T, < TM; i =1,2,... Ny (3.14)
e Security constraints: The voltage limits of the load buses and the apparent power value
of each transmission line, which can be restricted by its maximum capacity, are given

as follows:
VI <V S VI =1,2, . Npg (3.15)
S| < S™%; i =1,2,...N, (3.16)
where N, Ny is the number of shunt compensators and transformers respectively; S;; and
S/max are the apparent power flow and its max. limit of it" line; PI*™ PIM@* are the limits on
real power generation; QI¥™,QMe* are the limits on reactive power generation; V", 19% gre
the limits on generator bus voltages; T;™™, T/* are the limits on transformer taps; Q" Qe

are the limits on shunt compensator; V", V%% are the limits on load bus voltages;

21



Chapter 3

3.3  Constraint Handling Method
To address the MOOPF problem restrictions, a constraint-handling process was deployed.
Boundary limits of the decision variables are self-constrained and can be reset using Eq. (3.18)
during simulation. In addition, changes to the equality restrictions of real and reactive power
flows can be done during load flow calculation using Newton-Raphson (Polar) method. The
remaining constraints (inequality) are handled using the penalty factor approach. In the penalty
factor approach, the violated restrictions are multiplied by the punishment factor and added to
the corresponding objective value. This can be formulated as shown in Eq. (3.17).

It should be mentioned that the decision variables are self-constrained. The inequality
constraints of P;, V,,Q¢, and S; can be included in the objective function as quadratic penalty

terms. Thus, the augmented objective function will be as:
[ . 2 Npq . 2]
Fores +Ap(Por = P’ + 2y )~ (Vi = V™)
1=

e lim)?2 N lim2
[Jopr1 (X, U) T +4q Z I(QGi — Qi ) + ASZ_ 1(Sli — Sy )
1= =

Imoopr(X,u) = . =

: . . Npq .
oprm (2, 1) Fopry + Ap (PG1 — PC";‘{n)2 + Ay Z (VLi - Vlﬁm)z
i=1
Ng L2 NL im\ 2
+lg ) (Qa= Q) +25) " (Su=Sim)
| i= 1= N

(3.17)

where 4p, Ay, Ag and A are the penalty factors; M is the number of objective functions; xHm s

the limit value of the independent variable x and is given as:

. Xmin; if X < Xmin
Klim — X; lf Xmin < X < Xmax (318)
Xmaxs Lf X > Xmax

3.4 Proposed Method
The proposed MOEA is obtained by combining the Pareto-dominance and decomposition
techniques to exploit the advantages in both methods and to maintain the balance between
exploration and exploitation. The Pareto-dominance and decomposition techniques were
incorporated from the NSGA-11 [57] and MOEA/D [53] methods.

In Pareto dominance method, the feasible solutions are selected using non-dominated

sorting technique to rank the solutions and crowding distance method is employed to improve
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the population diversity. However, with increase in objective size dominance methods may not
maintain the diversity of the population. On the other hand, Decomposition methods
decompose the MOP into multiple sub-problems using weight vectors. The sub-problems are
then simultaneously optimized. The neighborhoods are created based on the distance between
weights. In each population evolution, neighborhood information is used to choose which
solutions to select. The penalty-based intersection (PBI) is utilized to assign relative fitness
values to each solution [53]. The PBI is stated below:
PBI(X|w,z*) = d, + 0d,

*_ T
where dy = IEZEQOTWI aoq g — 1F(X0) = (27 = dy.w)|

Iwll
where F(X) = [J1,]2,/3,]4] (3.19)
where z* is the ideal point, w is the weight vector, and 6 be the penalty value.

Randomly generate a population of size ‘N’, which is equal to the number of weight
vectors. The weight vectors with a uniform distribution are created using SSA [54]. Each
member of the population is given a weight vector and is associated with a neighborhood. The
mating parents are then selected from the nearby region using the minimum angle requirement
and a probability of ‘6°. The typical value set to selection probability ‘6’ is 0.8. The angle
criteria are used to identify weight vectors' nearest neighbors. The vectors with the least angles
are chosen to be the neighbors. Based on the angle, a neighborhood is allotted to each weight
vector. For every vector, a set of parents is chosen from the neighbors depending on selection
probability. If there are no individuals in the given region, the mating parent is selected from
the entire population. The angle between the two vectors is given by the formulae [55] as given

below:
d,
t = —
an @ a,
where d, = [l and d, = ”w —d ﬂ”
17wl 2 T
wherei,j=1,2,...,Nandi # j (3.20)

where @ = angle between di and da.

The new offspring population is reproduced via crossover and mutation. The old and
new populations are partitioned into 'N' sub-populations. The partition is done by comparing
the two individuals. For comparing the individuals, the dominance method and PBI are used
Eq. (3.19). To choose competent individuals from 'N' subpopulations, the elitist selection
procedure is then employed. This procedure is repeated until the termination criterion has been
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satisfied. The maximum number of iterations served as the termination criterion for this
approach. Using a fuzzy technique, the optimal solution is determined [56].

The steps in the proposed method are as follows:

Initialization: Randomly generate initial population (Pt) of size ‘N’ and weight vectors with a
uniform distribution using SSA [54] as follows:

D+M-1
M-1
Here D and M represent the number of divisions for each objective coordinate and objective

N(D, M) = ( ) forD >0 (3.21)

function respectively.

Run the load flow to determine the fitness value of the chosen objective function and compute
the constraint violations. If any constraint violation occurs, it is penalized using Eq. (3.17),
and Eq. (3.18).

Find the neighboring solutions, the vectors with the least angles are chosen to be the neighbors.
The angle between two vectors is given by Eq. (3.20).

Find the minimum values for all the objectives to form the current ideal point.

Reproduction: Select N mating pairings based on angle requirements. With the probability of
d, a pair of mated parents is chosen for each weight vector. To generate new population (Qt)

use crossover and mutation.

Population-partition: The old (Py) and new (Q:) populations are partitioned into N
subpopulations. Based on the partition, every sub-population has Ni individual populations.
The partition is done by comparing the two individuals.

For Comparing the individuals, the dominance and PBI methods are used. Firstly the
dominance between individuals x and y is compared. If solution X is seen as better compared
to y, return true; otherwise, their respective PBI values are compared. The lower the PBI value

the better the solution.

Elitist selection: Here, all individuals are partitioned into multiple levels. During elitist
selection, the individuals for the next-level Pt+1 are chosen. Choose the individual from each
population subset till 'N' is not exceeded. Otherwise, a random sample is selected from the

partitioned population.

Use the fuzzy approach [59] on the final Pareto front to choose the best-compromised solution.
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3.5

Results and Discussions

The proposed method was executed on MATLAB R2016a and the simulation was carried out

on i3-Processor with 4GB RAM. To validate the efficacy of the proposed method, it was
compared to NSGA-II [57] and MOPSO [58] algorithms. The control parameters of the

proposed method, NSGA-II, and MOPSO are given in Table 3.1, these values are selected in

accordance with the global optimal solution. A total of five cases were considered on IEEE 57-
bus, and IEEE 118-bus systems to test the efficiency of the proposed method for the MOOPF

problem. The various cases considered are given in Table 3.2. The description of the test

systems was given in Table 3.3. Appendices A and B contain system data for the IEEE 57-bus,

and 118-bus, respectively.

Table 3.1: Control parameters of the proposed method, NSGA-II, and MOPSO.

S. No. Method Control parameters
1. Proposed Population size (N) = 100, number of divisions made along the every
method objective (D) = 12, neighborhood size (T) = 20, crossover probability (Pc) =
1.0, mutation probability (Pm) = 0.05, and maximum iterations= 100.
2. NSGA-II [57] N =100, Pc = 0.8, Pm = 0.01, and max. iterations = 100.
3. MOPSO [58] N =100, C;=C,=2, W=0.5, and max. iterations = 100.
Table 3.2: Various cases considered.
S. No. Test Systems Case # J1 Ja J3 Ja
Case-1 v v - -
1. IEEE 57-bus system Case-2 v - v v
Case-3 v v v v
Case-4 v -- v --
2. IEEE 118-bus system CaseS - — ~ ~

Table 3.3: Test systems description.

Specifications IEEE 57-bus system IEEE 118-bus system

Buses 57 118

Lines 80 [9] 186 [59]

Thermal units | 7 | Buses:1,2,3,6,8,9 and 12 54 | Buses: [59]

Slack bus 1 | Bus:l 69 | Bus: 69

Transformer 17 Lines:19,20,31,35,36,37,41,46, 9 Lines: 8,32,36, 51, 93,95,102,107 and

tap positions 54,58,59,65,66,71,73,76, and 80 127

Shunt Buses:34,44,45,46,48,74,79,82, 83,

capacitors 3 | Busesi18, 25, and 53 12 105, 107 and 110

Control Generator bus real powers (6) + _ Generator bus real powers (53) +

variables 33 | voltages (7) + transformer tap settings | 128 volt_ages (54) + transform(_er tap
(17) + shunt capacitor (3). settings (9) + shunt capacitor (12).

Load - | 1250.80MW, 336.40MVAR - 4242.00MW, 1439.00MVAR
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3.5.1 IEEE 57-bus system

The proposed method was tested on an IEEE 57-bus system [59], which has 7 thermal
generators (#1 bus as a slack bus), 80 lines, 17 off-nominal transformers, 3 shunt VAR
compensators, the real and reactive power demand of 1250.80 MW and 336.40 MVAR,
respectively.

a) Case-1: Minimize Ji1, and Jz simultaneously

In this case, the proposed method was simulated by considering two objectives J: and J2. The
Pareto-optimal fronts (PFs) observed in this case, are depicted in Figure 3.1. The optimal
decision variables obtained by the proposed method are presented in Table 3.4. The proposed
method obtains a total generation cost of 42082.05%/h and emission of 1.2233ton/h. NSGA-1I
[57] gives 42091.76%/h, 1.2971ton/h and MOPSO [58] gives 42576.62%/h, 1.4976ton/h
respectively as shown in Table 3.5.

b) Case-2: Minimize J1, Js3, and J4 simultaneously

In this case, the proposed method was simulated by considering three objectives Ji, Jz, and Ja.
The Pareto-optimal fronts (PFs) observed in this case are depicted in Figure 3.1. The optimal
decision variables obtained by the proposed method are presented in Table 3.4. The proposed
method obtains a total generation cost of 41919.00%/h, active power loss of 12.2322MW, and
voltage magnitude deviation of 0.8198p.u. NSGA-II [57] gives 42001.15%/h, 12.2673MW,
0.8312p.u and MOPSO [58] gives 42770.65%/h, 16.7486MW, 1.2838p.u respectively as shown
in Table 3.5.

c) Case-3: Minimize Ji, J2, J3, and J4 simultaneously

In this case, the proposed method was simulated by considering four objectives Ji, J2, J3, and
Ja. The optimal decision variables obtained by the proposed method are presented in Table 3.4.
The proposed method obtains a total generation cost of 42419.00%/h, emission of 1.3065ton/h,
active power loss of 12.3121MW, and voltage magnitude deviation of 0.8918p.u. NSGA-II
[57] gives 42601.15%/h, 1.4190ton/h, 12.3673MW, 1.0315p.u and MOPSO [58] gives
42970.14 $/h, 1.4998ton/h, 15.7126MW, 1.3638p.u respectively as shown in Table 3.5.
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Fig. 3.1: IEEE 57-bus system: Pareto-optimal fronts. a) Case-1, and b) Case-2.
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Table 3.4: IEEE 57-bus system: Optimal control variables obtained by the proposed method.

Limits
S. No. Control variables e A Case-1 Case-2 Case-3
1. P2 100 99.8169 99.2934 69.0674
2. P3 140 69.7015 65.0581 63.5966
3. P6 100 98.4023 98.3741 77.8914
4, P8 0 550 405.9038 391.7069 414.1483
5. P9 100 99.7592 99.9813 85.0678
6. P12 410 354.3541 349.8846 408.3763
7. V1 1.0469 1.0304 1.0273
8. V2 1.0474 1.0371 1.0300
9. V3 1.0370 1.0328 1.0200
10. V6 0.95 11 1.0519 1.0062 1.0094
11. V8 1.0491 1.0173 1.0359
12. V9 1.0325 1.0337 1.0315
13. V12 1.0215 1.0230 1.0233
14, T19 0.9887 1.0067 0.9858
15. T20 1.0476 1.0132 0.9979
16. T31 1.0129 1.0035 1.0175
17. T35 1.0297 0.9925 1.0093
18. T36 0.9765 1.0075 1.0280
19. T37 0.9898 1.0215 1.0226
20. T41 1.0232 1.0041 1.0057
21. T46 0.9654 0.9629 0.9614
22. T54 0.9773 0.9266 0.9417
23, T58 0.9 11 1.0087 0.9709 0.9680
24, T59 1.0011 0.9692 0.9679
25. T65 0.9711 0.9972 0.9813
26. T66 0.9804 0.9548 0.9499
27. T71 1.0055 0.9879 0.9435
28. T73 1.0286 1.0202 1.0036
29. T76 0.9956 1.0042 0.9911
30. T80 1.0116 1.0298 1.0285
31. QC18 9.9675 9.3891 12.6199
32. QC25 0 20 8.4505 12.2131 11.0358
33. QC53 4.4013 7.0793 5.0682
1. Ji($/h) - - 42082.05 41919.00 42419.00
2. Ja(ton/h) - - 1.2233 - 1.3065
3. J3(MW) - - - 12.2322 12.3121
4, Jua(p.u.) - - - 0.8198 0.8918
Table 3.5: IEEE 57-bus system: Comparison of the proposed method.
Case # Objective functions Proposed method NSGA-II [57] MOPSO [58]
Case.y  |_a(8/h) 42082.05 42091.76 42576.62
Jo(ton/h) 1.2233 1.2971 1.4976
Ju($/h) 41919.00 42001.15 42770.65
Case-2 | J3(MW) 12.2322 12.2673 16.7486
Ja(p.u.) 0.8198 0.8312 1.2838
Ju($/h) 42419.00 42601.15 42970.14
Case.3  |32(ton/h) 1.3065 1.4190 1.4998
J3(MW) 12.3121 12.3673 15.7126
Ja(p.u.) 0.8918 1.0315 1.3638
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3.5.2 IEEE 118-bus system

The proposed technique has also been investigated for the IEEE 118-bus system [59], which
has 54 thermal generator buses (# 69 bus as a slack bus), 186 lines, 9 off-nominal transformers,
12 shunt VAR compensators, the real and reactive power demand of 4242.00MW and
1439.00MVAR, respectively.

a) Case-4: Minimize J: and Jz simultaneously

In this case, the proposed method was simulated by considering two objectives Ji: and Jz. The
Pareto-optimal fronts (PFs) observed in this case are shown in Figure 3.2. The optimal decision
variables obtained by the proposed method are presented in Table 3.6. The proposed method
obtains a total generation cost of 135716.72%/h, and active power loss of 34.5983MW. NSGA-
11 [57] gives 135948.25%/h, 35.6852MW and MOPSO [58] gives 136865.18%/h, 57.6587MW
respectively as shown in Table 3.7.

b) Case-5: Minimize J1, J3, and J4 simultaneously

In this case, the proposed method was simulated by considering three objectives Ji, Jz, and Ja.
The Pareto-optimal fronts (PFs) observed in this case are shown in Figure 3.2. The optimal
decision variables obtained by the proposed method are presented in Table 3.6. The proposed
method obtains a total generation cost of 137715.17%/h, active power loss of 33.3462MW, and
voltage magnitude deviation of 0.4779p.u. NSGA-II [57] gives 138441.48%/h, 37.8479MW,
0.5067p.u and MOPSO [58] gives 138501.58%/h, 51.5057MW, 0.5750p.u respectively as
shown in Table 3.7.
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Fig. 3.2: IEEE 118-bus system: Pareto-optimal fronts. a) Case-4, and b) Case-5.
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Table 3.6: IEEE 118-bus system: Optimal control variables obtained by the proposed method.

S. Control Limits Control Limits

No. variables e Case-4 | Case-5 No. variables e Case-4 Case-5
1 P1 100 | 54.5475 | 49.8078 | 67. V3l 1.0280 1.0087
2. P4 100 | 45.7797 | 52.5061 | 68. V32 1.0239 1.0059
3. P6 100 | 37.6966 | 37.9561 | 609. V34 1.0264 1.0117
4, P8 100 | 27.8767 | 40.4637 | 70. V36 1.0215 1.0063
5. P10 550 | 239.410 | 208.349 | 71. V40 1.0248 1.0177
6. P12 185 | 82.4114 | 96.2351 | 72. V42 1.0251 1.0118
7. P15 100 | 49.3221 | 59.9765 | 73. V46 1.0226 1.0197
8. P18 100 | 45.0909 | 44.6825 | 74. V49 1.0347 0.9980
9. P19 100 | 56.6271 | 46.3333 | 75. V54 1.0211 1.0128
10. P24 100 | 12.7429 | 23.7604 | 76. V55 1.0234 1.0182
11. P25 320 | 125.497 | 117.692 | 77. V56 1.0241 1.0187
12. P26 414 | 150.881 | 154.555 | 78. V59 1.0225 1.0141
13. p27 100 | 47.2764 | 44.1010 | 79. V61l 1.0253 1.0143
14. P31 107 | 13.9278 | 19.6902 | 80. V62 1.0227 1.0226
15. P32 100 | 42.2914 | 31.9930 | 81. V65 1.0278 1.0260
16. P34 100 | 40.2518 | 51.7709 | 82. V66 1.0251 0.9859
17. P36 100 | 48.8938 | 56.1834 | 83. V69 1.0137 1.0281
18. P40 100 | 72.1668 | 87.8627 | 84. V70 1.0334 1.0192
19. P42 100 | 67.5902 | 75.2689 | 85. V72 1.0311 1.0316
20. P46 119 | 35.6793 | 35.1325 | 86. V73 095 | 1.1 | 1.0405 1.0333
21. P49 304 | 187.765 | 159.304 | 87. V74 1.0130 1.0048
22. P54 148 | 69.1268 | 81.8220 | 88. V76 1.0322 1.0080
23. P55 100 | 76.0840 | 80.5026 | 89. V77 1.0195 1.0037
24, P56 100 | 87.1884 | 70.8324 | 90. V80 1.0270 1.0135
25. P59 0 255 | 146.100 | 145.991 | 91. V85 1.0330 1.0100
26. P61 260 | 116.626 | 127.139 | 92. V87 1.0260 1.0091
217. P62 100 | 46.2975 | 49.8338 | 93. V89 1.0293 1.0412
28. P65 491 | 221.758 | 229.532 | 94. V90 1.0253 1.0141
29. P66 492 | 264.060 | 231.120 | 95. Vol 1.0293 1.0157
30. P70 100 | 47.4251 | 45.4400 | 96. V92 1.0149 1.0235
31 P72 100 | 14.0937 | 20.0243 | 97. V99 1.0257 1.0199
32. P73 100 | 36.3494 | 23.8761 | 98. V100 1.0171 1.0172
33. P74 100 | 41.4494 | 50.1527 | 99. V103 1.0125 1.0196
34. P76 100 | 54.4665 | 44.8794 | 100 V104 1.0244 1.0173
35. P77 100 | 47.1822 | 38.0621 | 101 V105 1.0176 1.0104
36. P80 577 | 303.266 | 297.003 | 102 V107 1.0128 1.0184
37. P85 100 | 32.3521 | 42,5265 | 103 V110 1.0274 1.0193
38. P87 104 | 7.4605 | 10.9515 | 104 V11l 1.0270 1.0205
39. P89 707 | 268.214 | 229.933 | 105 V112 1.0164 1.0275
40. P90 100 | 38.1081 | 50.8835 | 106 V113 1.0354 1.0091
41. Po1 100 | 42.9526 | 48.0809 | 107 V116 1.0329 1.0113
42. P92 100 | 34.9052 | 49.2068 | 108 T8 0.9967 1.0108
43. P99 100 | 23.6065 | 35.9029 | 109 T32 0.9954 0.9910
44, P100 352 | 143.338 | 141.629 | 110 T36 0.9782 0.9937
45, P103 140 | 44.2004 | 43.1302 | 111 T51 0.9767 0.9670
46. P104 100 | 39.6433 | 42.4401 | 112 T93 09 |11 [o0.9821 0.9810
47. P105 100 | 46.5554 | 50.3917 | 113 T95 1.0022 1.0004
48. P107 100 | 48.2829 | 35.5470 | 114 T102 0.9967 0.9954
49, P110 100 | 31.1740 | 40.3137 | 115 T107 1.0132 1.0100
50. P111 136 | 36.4716 | 35.5358 | 116 T127 1.0088 0.9757
51. P112 100 | 42.5151 | 45.4344 | 117 QC34 14.7568 | 12.5994
52. P113 100 | 25.4710 | 46.0275 | 118 QC44 12.0512 | 12.4520
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53. P116 100 | 5.4126 | 39.6684 | 119 QC45 0 25 | 113411 [ 13.4924
54. V1 1.0311 | 1.0116 | 120 QC46 10.8431 | 11.5359
55. V4 1.0239 | 1.0034 | 121 QC48 95642 | 10.4103
56. V6 1.0381 | 1.0186 | 122 QC74 11.2007 | 13.0703
57. V8 1.0233 | 1.0130 | 123 QC79 13.6252 | 9.8725
58. V10 1.0350 | 0.9954 | 124 QCs82 13.2053 | 12.7137
59. V12 1.0367 | 1.0202 | 125 Qcs3 11.8160 | 11.7299
60. V15 095 | 11 10151 | 1.0114 | 126 QC105 11.9498 | 9.9882
61. V18 1.0270 | 1.0142 | 127 QC107 13.1417 | 13.0359
62. V19 1.0265 | 1.0155 | 128 QC110 11.9534 | 13.6171
63. V24 1.0290 | 1.0165
64. V25 1.0295 | 1.0118 1. Ji($/h) - - 135716.7 | 137715.1
65. V26 1.0309 | 1.0076 | 2. Js(MW) | - - 345983 | 33.3462
66. V27 1.0260 | 1.0123 | 3. Ja(p.u) - - - 0.4779

Table 3.7: IEEE 118-bus system: Comparison of the proposed method.
Case # | Objective functions Proposed method NSGA-II [57] MOPSO [58]
Caseod Ji($/h) 135716.72 135948.25 136865.18
Js(MW) 34.5983 35.6852 57.6587
Ji($/h) 137715.17 138441.48 138501.48
Case-5 | J3(MW) 33.3462 37.8479 51.5057
Ja(p.u) 0.4779 0.5067 0.5750
3.6 Summary

In this work, a new hybrid decomposition and local dominance-based MOEA was proposed

for solving the OPF problem. Minimizing the total generation cost, emission, active power loss,

and voltage magnitude deviation are the four objectives that were considered. The

hybridization of decomposition and dominance approaches increases the convergence and

diversity of Pareto optimum front solutions. The static penalty-based method was deployed to

tackle both equality and inequality constraints. In addition, a fuzzy technique was used to

obtain the best-compromised solutions from the Pareto-optimal set. The proposed method was

tested on IEEE 57-bus and IEEE 118-bus systems using different cases to validate its efficiency
and the obtained results were compared with NSGA-II and MOPSO methods. This work is

restricted to conventional MOOPF with only thermal units, to assess the impact of wind, and

solar integration on the MOOPF problem next work is proposed.
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Chapter 4

A New Hybrid Decomposition and Summation of
Normalized Objectives with Improved Diversified
Selection Based Multi-Objective Evolutionary
Algorithm Including Wind, and Solar Uncertainty
for the Optimal Power Flow
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Chapter 4
A New Hybrid Decomposition and Summation of Normalized Objectives
with Improved Diversified Selection Based Multi-Objective Evolutionary
Algorithm Including Wind, and Solar Uncertainty for the Optimal Power
Flow

4.1 Introduction

This chapter proposes a new hybrid decomposition, and summation of normalized objectives

with improved diversified selection-based MOEA for the OPF including WECS and SPVS

uncertainty. This work recommends a novel CHM, that adaptively inserts penalty and avoids

the parameter relying on penalty calculation. The summation-based sorting and enhanced

diverse selection techniques are employed to increase the diversity of MOEA. The MOOPF is

defined using four objectives: minimizing total generating cost, comprising WECS and SPVS

generation cost, emission, active power loss, and voltage magnitude deviation. In the OPF cost

study, the influence of RES such as WECS and SPVS on integration is taken into account. To

reduce the total generation cost, the cost of RESs is factored into the OPF issue to study the

impact of intermittent and unpredictable renewable sources on cost and operational viability.

The uncertainty of WECS and SPVS sources was described using Weibull and Lognormal

PDFs respectively. The efficacy of the proposed method was tested on IEEE 57-bus, and 118-

bus systems under all possible RES situations using Monte Carlo simulations. The work makes

the following contributions:

I. Proposing a novel MOEA based on decomposition and summation of normalized
objectives with improved diversified selection for the MOOPF problem.

ii. Integrating RESs like WECS and SPVS with conventional OPF to consider the impact
of the uncertain nature of these sources.

iii. Modeling the uncertain nature of WECS and SPVS using PDFs and calculating the
uncertain cost using Monte-Carlo simulations.

v, Using a new CHM called superiority of feasible solution (SF) to tackle constraints in
the MOOPF problem.

4.2  Problem Formulation

The MOOPF problem's objective functions and constraints are stated as follows:
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4.2.1 Objectives

The MOOPF problem was formulated using four objectives: minimizing a) total generation
cost including the cost of WECS and SPVS generation (J1), b) emission (J2), ) active power
loss (J3), and d) voltage magnitude deviation (J4).

a) Total generation cost ($/h):

The overall generating cost is the sum of the generation cost of thermal, WECS, and SPVS and

is expressed by the following equation:
Nrg

Min J; = Z(ai + biPr¢;i + ¢;Pfg)
im1

Nwg

+ Z [Cw,j(Pws,j) + CRw,j(Pws,j - Pwav,j) + CPw,j(Pwav,j - Pws,j)]
j=1

Nsg

+ [Cs,j (Pss,k) + CRs,k (Pss,k - Psav,k) + CPs,k (Psav,k - Pss,k)]
k=1

4.2)
where Nrg, Nyg, and Ngg are the number of thermal, WECS, and SPVS respectively; P, ;,
and Py ;. is the scheduled powers of j®* WECS and k" SPVS respectively; P,,q,, jrand Pgy i
are the actual powers of jt* WECS and k" SPVS respectively; Pr¢; is the it" thermal generator
output power; a;, b;, ¢; is the it" thermal generator cost coefficients;

b) Emission (ton/h):
The generation of electric power from traditional fossil fuels would result in the emission of
hazardous gases into the atmosphere. The following expression describes the total emission
from thermal generators:

Min], = 2?]:16(“1' + BiPrgi + ViPfg; + 8;e5iP60) (4.2)
where a;, £;,7;, 6;, €; are the i" thermal generator emission coefficients;
c) Active power loss (MW):

The following equation can be used to express active power loss:

Min J5 = Syt, (G (V2 + V7 = 2V,V; cos 6;) ) (4.3)
where N, is the number of lines; 6;; represents the voltage angle between buses i and j; G
shows the conductance of branch k; V;, V; is the voltage magnitudes at it" and j"* buses

respectively.

d) Voltage magnitude deviation (p.u.):
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The voltage variation is the sum of all voltage variances at load buses in the network relative
to the reference voltage. The mathematical expression is as follows:

Min ], = 570 (Vi = Vyes)| (4.4)
where Np, is the number of PQ buses; V. is the reference voltage set to 1 p.u.; V; is the ith
load bus voltage.

4.2.2 Constraints

The MOOPF objectives are subjected to the following equality and inequality constraints.

a) Equality constraints:

The equality constraints are power-balancing equations in which the sum of the generations of

the real and reactive powers is equal to their corresponding demands and losses.

e Power flow constraints

The overall demand and losses throughout the system are equal to the total real and reactive

power delivered:
Pg; — Pp; — V; 2] 1 Vi(Gyijcos6;; + By;sin6;;) = 0;i = 1,2,... Ny (4.5)
Qgi — Opi — ] B V;(Gijsin6;; —B;;cos6;;) = 0;i = 1,2, ... N (4.6)

where N is the number of buses; Pg;, Qgi, and Pp;, Qp; are the real, reactive power generations
and demands at the i*" bus, respectively; Gi;, B;j is the conductance, susceptance of lines
between buses i and j respectively;
b) Inequality constraints:
The operational limitations on generators, transformers, and shunt devices, as well as the
security requirements on lines and load buses, constitute inequality constraints.

e Generator constraints: The boundary limits of real and reactive powers and voltage

magnitude of the generator buses are expressed as follows:

PIEM < Prey < PPA% i =1,2,... Nyg (4.7)
PWm<PWGl<P]:Vnng'L_12 Ny (4.8)
ng§“ < Pggi < Pipd*;1=1,2,...Ngg (4.9

7ot < Qrei < QT i = 1,2, .. Ng (4.10)
QWai < Qwei < Qpai i =12, ... Nyg (4.11)
QU < Qg < QY51 =12,..Ngg (4.12)
Vé’i‘m SV SVEYi=12,..Ng (4.13)

e Shunt compensator constraints: The following are the boundary values for shunt

compensators:
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QU™ < Qe < QU™;i=12,..N¢ (4.14)
e Transformer constraints: The ideal operating limits for tap settings on a transformer are
given as follows:
T < T; < TM™;i=1,2,..Np (4.15)
e Security constraints: The voltage limits of the load buses and the apparent power value
of each transmission line, which can be restricted by its maximum capacity, are given
as follows:
VIR <V S VIR0 = 1,2, .. Npg (4.16)
1S < S i =1,2,..N, (4.17)
where N, N is the number of shunt VAR compensators and transformers respectively; S;;
and S/ are the apparent power flow and its maximum limit of i** line; P PM4* are the
limits on real power generation; Q™ QMa* are the limits on reactive power generation;
ymin ymax are the limits on generator bus voltages; T;/™™, T/"%* are the limits on transformer
taps; Q™ ,QM4X are the limits on shunt compensator; V", V/"%are the limits on load bus
voltages;

Two equality constraints Eq. (4.5) and Eq. (4.6) are automatically satisfied when the
power flow converges to an optimal solution. The generator buses’ real power (excluding slack
bus), transformer tap ratios, voltage limits, and shunt compensator ranges are considered to
control variables that are self-limiting. The remaining inequality constraints require constraint
handling techniques.

In OPF, generator reactive power capacities are significant. In recent years, WECSs
with complete reactive power capability has become commercially viable [60]. WECS can
deliver reactive power in the range of -0.4p.u.to 0.5p.u. The negative sign signifies the
generator's ability to absorb. Rooftop SPVS is designed as load buses with zero reactive power.
However, because utility-based SPVS have built-in converters, full generator modeling is
required due to the converters' dynamic behavior [61]. In this study, the reactive power

capabilities of SPVS are assessed between -0.4p.u and 0.5p.u.
4.3  Constraint Handling Method

The most commonly used CHM is the penalty method. When a constraint violation occurs, its
solution is penalized. Owing to its simplicity and operability, the outcome of this method
relying on the penalty, which must be determined by trial and error, leading the fitness value
to degrade. This study deployed a new CHM called the SF technique which doesn’t require any

penalty coefficient.
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In this work, the SF technique [62] was employed to solve the MOOPF problem with
RESs. The steps followed when comparing two solutions are as follows:

(1) While comparing two non-feasible solutions, the solution having the smallest constraint
violation is selected.

(2) When two feasible solutions are compared, the one with a better fitness solution is selected.

(3) When a feasible solution is compared to a non-feasible solution, the feasible solution is
selected.

Comparing non-feasible solutions based on constraint violation helps push non-feasible
answers into the feasible region while comparing viable solutions based on the fitness value
enables solution quality to be improved.

4.4  Integration of WECS, and SPVS

44.1 WECS, and SPVS Modeling

a) WECS Modeling:

The wind speed at a given geographical area is most likely distributed according to Weibull

PDF as given below:

Ky ()60 ()
fv) = (Z) (Z) (e)Ve/ ;0<v< o (4.18)
where v is the wind speed (m/sec); k, c is the shape, and scale factors respectively.
The PDFs for two different shape and scale factors are given in [63]. The relationship between
wind speed and power generation is as follows:
Ov<vgandv > v,y
V—Vin
Pw(v) = Byr (Ur_vin) s Vin S vy S0 (4.19)

Byr; vr <y < Vot

where P, is the rated wind power output; v;,, Vs, and v, are the cut-in, cut-out, and rated
wind speeds (m/sec) respectively;

The probability of obtaining a zero and rated power output is given by the following:

£(By = 0) =1 — (DD 4 (29 (4.20)
fw (B, =P,y = e(_(%r)k) + e(_(vo—cut) ) (4.21)

The probability for the linear part of the wind speed is given by the following:

CPwr

(k—-1) ,_(YinPwrtPwrr—vin) k
) e ( ) 422)

fw(By) = (k(vr_vin)) (vinPWT"'PW(Vr—Uin)

CPyr CPyr

b) SPVS Modeling:
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Similarly, the power output of a solar PV system (SPVS) is a factor of solar irradiance and it

likely follows the Lognormal PDF [64] as follows:

{—(mcs-ﬂ)z}
208 ). Gg > 0 (4.23)

1
fG(GS) - Gso'\/ﬁe

where u and o are the mean and standard deviation respectively; G, is the solar irradiance
(W/m?).
The SPVS unit's solar irradiance to energy generation is as follows [65]:

Psr(G—é) ;0<Gs <R

GstaRc
Gs .

Py (25) 5 Gs 2 R,
std

where G, is the standard solar irradiance (W/m?); R, is the particular irradiance point (W/m?);

Ps(Gs) = (4.24)

P,, is the SPVS-rated power output.

4.4.2 Uncertainty cost calculation of WECS, and SPVS

Since WECS and SPVS powers are intermittent, Monte-Carlo simulations were used to account
for uncertainty and calculate the uncertainty cost. The estimated cost for the intermittency of
WECS and SPVS power is reflected in three ways: direct, reserve, and penalty costs. Whenever
power is underestimated, extra unusable power is wasted; however, in practical power system
applications, such power can be saved in an energy storage system and thus be counted as the
reserve cost. The cost of overestimating power that is lower than the scheduled power is
considered a penalty cost in the case of overestimation.

The direct cost associated with j** WECS is as follows:

Cw,j(Pws,j) = ngws,j (4.25)
Similarly, the direct cost of k" SPVS is as follows:
Cw,k (Pss,k) = hszs,k (4-26)

where P, ;, Pg . are the scheduled powers of j th WECS, k" SPVS respectively; g j» hy are

the direct cost constants of jt* WECS, k" SPVS respectively;

If the actual output power of the wind farm is lower than the predicted value, to ensure
a constant supply of electricity to the consumers, the operator requires some spinning reserve.
It is called the overestimation of power from unreliable sources. The cost incurred to maintain
the spinning reserve is known as the reserve cost [66].

The reserve cost of the j&* WECS is as follows:

Pys,j

']
CRW,j(PWS,j - Pwav,j) = KRw,j(Pws,j - Pwav,j) = KRw,jJ (Pws,j - pw,j)fw(pw,j)dpw,j
0
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(4.27)
In contrast to the overestimation scenario, when the power output of wind exceeds the
predicted output, the surplus power generated by WECS cannot be used and is wasted. This is
called the underestimation of power from uncertain sources. In this case, ISO must pay a
penalty for excess power.
The penalty cost of the jt* WECS is as follows:
Pyyr,j
Cow,j(Pwav,j = Pws,j) = Kpw,j(Pwav,j = Pws,j) = Kpw,j f (Pw.j = Puws, i) fuw(Pw.j ) AP,

Pys,j
(4.28)
where Kg,, i, Kp, j are the reserve, penalty cost constants of j th WECS respectively; P,,,. jand
P,qv,; are the rated and actually available powers of jt" WECS; f,, (pw, j) is the possibility of
jt" WECS power.
Similarly to WECS, SPVS also exhibits intermittent power output. The SPVS reserve,
and penalty cost expressions are provided below [67].

The reserve cost for k** SPVS plant is as follows:
CRs,k (Pss,k - Psav,k) = KRs,k (Pss,k - Psav,k)
= Kpsi * fs(Psav,k < Pss,k) * [Pss,k - E(Psav,k < Pss,k)] (4.29)
The penalty cost for a k** SPVS plant is as follows:
Cpsk (P sav,k — P ss,k) = Kpsk (P sav,k — P ss,k)
= Kps e * fs(Psave > Pssic) * [E(Psavk > Pssic) = Psye| (4.30)
where Kgs 1, Kps i are the reserve, penalty cost constants of k' SPVS respectively; Py,  iS
the actual available power of k™ SPVS; fi(Psapi < Pssi) and fs(Psaux > Pssic) are the

probabilities of SPVS power; E(Psm,,k < Pss’k), E(Psm,,k > Pss,k) are the expectations of
SPVS power.

45  Proposed Method

In this chapter, a summation of normalized objective values (SNOV) with improved diversified
selection (IDS) is integrated with the multi-objective evolution algorithm based on the
decomposition (MOEA/D) [53] to solve the MOOPF problem with RES. The MOEA/D
decomposes the multi-objective optimization problem into several single scalar optimization
problems and optimizes them all at the same time using weight vectors. The weight vectors'
distance is used to create neighborhoods. In every population evolution, information from the

neighborhood is used to find a solution. The non-dominated sorting used in MOEA/D is
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complex and time-taking. Some useful information may be lost if the dominant solutions are
completely discarded. In addition, diversity may be lost during the search process and lead to
local optima. To overcome these problems, the summation of normalized objective values with
IDS [68] is employed in this work instead of non-dominated sorting selection to get a uniformly
distributed Pareto front and improved convergence characteristics.

Proposed algorithm steps:

1 Randomly generate the initial population (N) and uniformly distributed weights using
SSA [54] as given below:
D+M-1

N(D, M) =( e )forD >0
2 Run the load flow, and determine the fitness value of the chosen objective function and
total constraint violation.

Using angle criteria [55], locate neighbors with the smallest angles for each weight
3 vector as given below:

d;

tanf = —

dy
lwi wil wj
where d; = ——,d, = ||w; —dy —%
||WJ|| ”W]”

i,j=1,2,., N;i#j, 6=angle between d, and d,.
4  Evaluate the smaller objective values to form the present ideal point.

5 Evaluate the larger objective values to form the present nadir point.

6  Angle criteria are used to choose N pairs of mating parents. A set of mating parents is
picked with a probability of § each weight.

7  Crossover is used to produce offspring from mated parents. Then, the mutation is
applied to produce a new population (Qy).

8 The new population is formed by combining the original population (Pt) with the new
offspring population (Qx).

Py =P UQ,
9  For each objective and solution, calculate the normalized objective values.

10 By adding all of the normalized objective values for each solution, obtain the sum of
the normalized objective values [68].
Form=1to M
Calculate the max and min objectives of the m" objective and find its range.
Normalize the m™ objective values using the expression:

’ _ fm(x) - fmin
fm (X) fmax - fmin
End for
Fori=1toN
Sum up all the normalized objective values to get a unique value
End for

11 Calculate the Euclidean space between all of the solutions and the reference point.

12 Set a stopping point for the individual with the shortest path to the original point.

13 Partition the target range into 100 bins and scan each bin till you reach the stopping
point. The solution having the least summation value will be picked to enter into the
preferential set for each scanned bin.
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14 The solutions are dominated by stopping points, and also the individuals who were not
selected will be sent to the backup set.

15 Apply the fuzzy approach [56] to get the optimal values.
4.6  Results and Discussions
The proposed method was tested on IEEE 57-bus, and 118-bus systems to address the MOOPF
problem incorporating WECS and SPV'S uncertainties. To consider uncertainties, Monte-Carlo
simulations were used to generate 1000 samples. It is programmed in MATLAB R2016a and
operates on an i3 processor with 4GB RAM and the results obtained are compared with NSGA-
I1 [57], and MOPSO [58]. The control parameters of the proposed method, NSGA-II, and
MOPSO are given in Table 4.1. The various cases considered are given in Table 4.2. The
description of the test systems is given in Table 4.3. PDF specifications and cost components

of various sources are given in Table 4.4.

Table 4.1: Control parameters of the proposed method, NSGA-II, and MOPSO.

S. No. Method Control parameters
1. Proposed method N =100, D =12, T = 20, Pc = 1.0, Pm = 0.05, and max. iterations= 100.
2. NSGA-II [57] N =100, Pc = 0.8, Pm = 0.01, and max. iterations = 100.
3. MOPSO [58] N =100, C1=C2 =2, W = 0.5, and max. iterations = 100.
Table 4.2: Various cases considered.
S. No. Test Systems Case # J1 NP NE Ja
Case-1 v v -- --
1. IEEE 57-bus system Case-2 v v v --
Case-3 v v v v
Case-4 v - v --
2. IEEE 118-bus system Cases % — % %

Table 4.3: Test systems description.

Specifications IEEE 57-bus system IEEE 118-bus system
Buses 57 118
Lines 80 [59] 186 5]
Thermal units | 7 | Buses:1,2,3,6,8,9 and 12 54 | Buses: [59]
Slack bus 1 | Bus:1 69 | Bus: 69
Transformer 17 Lines:19,20,31,35,36,37,41,46, 9 Lines: 8,32,36, 51, 93,95,102,107 and
tap positions 54,58,59,65,66,71,73,76, and 80 127
Shunt Buses:34,44,45,46,48,74,79,82, 83,
capacitors 3 | Buses:18,25, and 53 12 105, 107 and 110
Generator bus real powers (8) + Generator bus real powers (55) +
Control .
variables 37 | voltages (9) + transformer tap settings | 132 | voltages (56) + transformer tap
(17) + shunt capacitor (3). settings (9) + shunt capacitor (12).
Load - | 1250.80MW, 336.40MVAR - 4242.00MW, 1439.00MVAR
WECS 1 | 45#bus 1 81 # bus
SPVS 1 | 16 #bus 1 64 # bus
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Table 4.4: PDF specifications and cost components of various sources.
S. No. Specifications WECS SPVS
1. PDF Weibull Lognormal

c =10, k =2, vy,=10misec, | u =6, ¢ = 0.6, G4;4=800

2. Parameters
Vour=12m/sec, V.=12m/sec W/m?, R =120 W/m?
3. Direct cost coefficients ($/MW) 1.75 1.60
. Reserve cost coefficients ($/MW) 3 3
5. Penalty cost coefficients ($/MW) 15 15

4.6.1 |EEE 57-bus system

To test the efficacy of the proposed method, in solving the MOOPF problem the IEEE 57-bus
system [59] was considered. It contains 7 thermal generators # 1 bus as a slack bus), 80 lines,
15 off-nominal transformers, 3 shunt VAR compensators, and real and reactive power demand
of 1250.80MW and 336.40MVAR respectively. Notably, the locations of these sources were
chosen from [74], by replacing load buses with the respective WECS, and SPVS.

a) Case-1: Minimize J: and Jz simultaneously

In this case, J1, and J2 are the objectives that need to be minimized simultaneously. The optimal
decision variables obtained by the proposed method are included in Table 4.5. The best-
compromised values obtained by the proposed method have a total generation cost of
36195.21%/h and emission of 1.0182ton/h. NSGA-11 [57] gives 36399.10%/h, 1.0912ton/h and
MOPSO [58] gives 36733.34%/h, 1.1145ton/h as shown in Table 4.6. The Pareto-optimal fronts
(PFs) observed in this are depicted in Figure 4.1.

b) Case-2: Minimize Ji1, J2 and Js simultaneously

In this case, J1, J2, and Js are the objectives that need minimizing simultaneously. The optimal
decision variables obtained by the proposed method are included in Table 4.5. The best-
compromised values obtained by the proposed method have a total generation cost of
36096.69%/h, emission of 1.0238ton/h, and active power loss of 10.3303MW. NSGA-II [57]
gives 36363.70$/h, 1.1288ton/h, 10.7953MW and MOPSO [58] gives 39208.74%/h,
1.0890ton/h, 11.0434MW as shown in Table 4.6. The Pareto-optimal fronts (PFs) observed in
this are depicted in Figure 4.1.

c) Case-3: Minimize Ji, J2, J3 and J4 simultaneously

In this case, J1, J2, J3, and J4 are the objectives that need to be minimized simultaneously. The
optimal decision variables obtained by the proposed method are included in Table 4.5. The
best-compromised values obtained by the proposed method have a total generation cost of
36207.21%/h, emission of 1.0916ton/h, active power loss of 9.9732MW, and voltage
magnitude deviation of 0.6848p.u. NSGA-II [57] gives 36479.38%/h, 1.1382ton/h,
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11.3923MW, 0.8907p.u and MOPSO [58] gives 37321.91%$/h, 1.2049ton/h, 14.5232MW,
0.8323p.u. as shown in Table 4.6.
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Fig. 4.1: IEEE 57-bus system: Pareto-optimal fronts. a) Case-1, and b) Case-2.
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Table 4.5: IEEE 57-bus system: Optimal control variables obtained by the proposed method.

Control

Limits

S. No. variables i Max Case-1 Case-2 Case-3
1 P2 100 98.1298 67.1046 74.8586
2. P3 140 69.4063 55.0118 64.1958
3. P6 100 70.9842 98.4255 52.0615
4. P8 0 550 329.0458 306.7587 315.7318
5. P9 100 72.7441 99.3728 98.8024
6. P12 410 315.2646 341.6928 378.7730
7. P45 80 79.6017 79.9551 79.8243
8. P46 80 79.8919 79.9311 79.5757
9. V1 1.0481 1.0296 1.0391
10. V2 1.0371 1.0246 1.0333
1L V3 1.0340 1.0227 1.0229
12. V6 1.0275 1.0185 1.0209
13. V8 0.95 11 1.0295 1.0162 1.0318
14. V9 1.0169 1.0099 1.0160
15. V12 1.0369 1.0268 1.0217
16. V45 1.0471 1.0498 1.0514
17. V46 1.0209 1.0372 1.0175
18. T19 1.0154 1.0139 1.0056
19. T20 0.9945 1.0497 1.0367
20. T3l 1.0183 1.0260 0.9955
21. T35 0.9938 1.0263 0.9876
22. T36 0.9601 0.9982 0.9821
23. T37 0.9943 1.0176 1.0321
24, T4l 1.0225 0.9911 1.0155
25. T46 0.9889 0.9757 0.9456
26. T54 0.9 11 0.9999 0.9233 0.9049
27. T58 0.9814 0.9802 0.9613
28. T59 1.0108 0.9877 1.0070
29. T65 0.9914 0.9841 0.9967
30. T66 0.9748 0.9484 0.9140
3L T71 0.9703 0.9756 0.9547
32. T73 1.0158 0.9829 1.0058
33. T76 0.9691 0.9769 0.9649
34, T80 0.9908 0.9872 1.0199
35. QC18 9.1150 11.4035 11.0379
36. QC25 0 20 0.8438 10.4059 8.2934
37. QC53 11.2830 7.1925 7.7894
1. Ju($/h) - - 36195.21 36096.69 36207.21
2. Ja(ton/h) - ; 1.0182 1.0238 1.0916
3. Js(MW) - ; ; 10.3303 9.9732
4. Ja(p.u) - - - - 0.6848
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Table 4.6: IEEE 57-bus system: Comparison of the proposed method.

Case # | Objective functions Proposed method NSGA-II [57] MOPSO [58]
Case-1 Ji($/h) 36195.21 36399.10 36733.34
Jo(ton/h) 1.0182 1.0912 1.1145
Ji($/h) 36096.69 36363.70 39208.74
Case-2 | Jo(ton/h) 1.0238 1.1288 1.0890
J3(MW) 10.3303 10.7953 11.0434
J1($/h) 36207.21 36479.38 37321.91
Case-3 Jo(ton/h) 1.0916 1.1382 1.2049
Js(MW) 9.9732 11.3923 14.5232
Ja(p.u.) 0.6848 0.8907 0.8323

4.6.2 |EEE 118-bus system

To show the scalability of the proposed method for a large-scale system in solving the MOOPF
problem, the IEEE 118-bus system [59] is considered. It contains 54 thermal generators (# 69
bus as a slack bus), 186 lines, 9 off-nominal transformers, and 12 shunt VAR compensators.
The real and reactive power demand on the system is 4242.00MW and 1439.00MVAR
respectively. Notably, the locations of these sources were chosen from [74], by replacing load
buses with the respective WECS, and SPVS.

a) Case-4: Minimize J; and Js simultaneously

In this case, J1, and Jz are the objectives that need to be minimized simultaneously. The optimal
decision variables obtained by the proposed method are included in Table 4.7. The best-
compromised values obtained by the proposed method have a total generation cost of
132958.66%/h, and an active power loss of 31.2916MW. NSGA-II [57] gives 133837.90%/h,
31.8664MW and MOPSO [58] gives 134673.5%/h, 35.3868MW as shown in Table 4.8. The
Pareto-optimal fronts (PFs) observed in this are depicted in Figure 4.2.

b) Case-5: Minimize Ji, J3 and J4 simultaneously

In this case, J1, J3, and J4 are the objectives that need minimizing simultaneously. The optimal
decision variables obtained by the proposed method are included in Table 4.7. The best-
compromised values obtained by the proposed method have a total generation cost of
135774.93%/h, active power loss of 39.6333MW, and voltage magnitude deviation of
0.4299p.u. NSGA-II [57] gives 135912.8%/h, 45.6904MW, 0.5074p.u and MOPSO [58] gives
136459.9%/h, 48.3446MW, 0.5878p.u. as shown in Table 4.8. The Pareto optimal fronts (PFs)

observed in this are depicted in Figure 4.2.
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Fig. 4.2: IEEE 118-bus system: Pareto-optimal fronts. a) Case-4, and b) Case-5.
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Table 4.7: IEEE 118-bus system: Optimal control variables obtained by the proposed method.

,\i'). vc:r)|2tt:I(:els _lelts Case-4 | Case-5 l\?o. Vzﬁr;:)rloels _lelts Case-4 Case-5
min max min max
1. P1 100 | 31.118 | 52.020 69. V31 1.0253 1.0169
2. P4 100 | 21.400 | 41.520 70. V32 1.0195 1.0030
3. P6 100 | 42.530 | 40.834 71. V34 0.9909 1.0094
4. P8 100 | 28.556 | 26.448 72. V36 1.0241 1.0067
5. P10 550 | 273.35 | 245.999 | 73. V40 1.0096 1.0118
6. P12 185 | 86.663 | 95.235 74. V42 1.0305 1.0113
7. P15 100 | 43.268 | 37.779 75. V46 1.0150 1.0221
8. P18 100 | 99.997 | 45.659 76. V49 1.0118 1.0055
9. P19 100 | 35.781 | 55.328 77. V54 1.0359 1.0023
10. P24 100 | 64.585 | 35.747 78. V55 1.0708 1.0239
11. P25 320 | 182.60 | 90.928 79. V56 1.0661 1.0256
12. P26 414 | 0.000 | 162.842 | 80. V59 1.0619 1.0271
13. P27 100 | 24.090 | 46.656 81. V61 095 | 11 | 11000 1.0175
14. P31 107 | 22.783 | 25.781 82. V62 1.0982 0.9985
15. P32 100 | 62.386 | 37.325 83. V65 1.0875 1.0049
16. P34 100 | 43.187 | 40.202 84. V66 1.0434 1.0099
17. P36 100 | 100.00 | 54.841 85. V69 1.0436 1.0280
18. P40 100 | 88.192 | 64.417 86. V70 1.0184 1.0096
19. P42 100 | 83.016 | 49.460 87. V72 1.0066 1.0062
20. P46 119 | 19.417 | 44.338 88. V73 1.0092 1.0190
21. P49 304 | 138.66 | 140.370 | 89. V74 1.0119 1.0264
22. P54 148 | 59.984 | 98.543 90. V76 1.0045 1.0089
23. P55 100 | 74.764 | 52.457 1. V77 1.0367 1.0170
24, P56 0 100 | 59.627 | 46.8259 | 92. V80 1.0229 1.0183
25. P59 255 | 117.12 | 115.881 | 93. V85 0.9985 1.0125
26. P61 260 | 121.66 | 121.893 | 94. V87 0.9617 1.0290
27. P62 100 | 35.517 | 44.630 95, V89 1.0269 1.0266
28. P65 491 | 214.33 | 213.346 | 96. V90 1.0321 1.0253
29. P66 492 | 205.83 | 187.419 | 97. Vol 1.0209 1.0221
30. P70 100 | 12.582 | 54.0066 | 98. V92 1.0237 1.0056
31. P72 100 | 12.141 | 40.751 99. V99 1.0297 1.0222
32. P73 100 | 55.579 | 50.455 | 100. V100 1.0412 1.0206
33. P74 100 | 14.137 | 42.021 | 101. V103 1.0269 1.0326
34. P76 100 | 75.678 | 37.592 | 102. V104 1.0484 1.0319
35. P77 100 | 82.194 | 42539 | 103. V105 1.0531 1.0203
36. P80 577 | 256.72 | 270.903 | 104. V107 1.0380 1.0324
37. P85 100 | 42,579 | 42.382 | 105. V110 1.0685 1.0243
38. P87 104 | 0.000 | 19.159 | 106. V111 1.0854 1.0296
30. P89 707 | 257.13 | 216.783 | 107. V112 1.0619 1.0349
40. P90 100 | 97.811 | 36.604 | 108. V113 1.0228 1.0236
41. P91 100 | 8.436 | 52.187 | 109. V116 1.0519 1.0073
42. P92 100 | 45.760 | 43.249 | 110. V64 1.0160 1.0149
43. P99 100 | 23.885 | 40.178 | 111. V65 1.0453 1.0229
44. P100 352 | 11362 | 150.771 | 112. T8 0.9897 1.0013
45, P103 140 | 42,612 | 50598 | 113. T32 1.0611 1.0167
46. P104 100 | 11.805 | 45.019 | 114. T36 0.9508 0.9920
47. P105 100 | 100.00 | 63.106 | 115. T51 1.0001 0.9742
48. P107 100 | 19.672 | 39.046 | 116. T93 09 |11 [0.9995 1.0096
49. P110 100 | 56.657 | 53.624 | 117. T95 0.9000 1.0180
50. P111 136 | 22.867 | 43.765 | 118. T102 1.0099 1.0270
51. P112 100 | 40.659 | 39.005 | 119. T107 0.9262 0.9814
52. P113 100 | 16.067 | 51.229 | 120. T127 0.9770 0.9995
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53. P116 100 [ 39.564 | 44.049 | 121, QC34 6.1168 | 14.2885
54. P64 100 | 99.998 | 74.484 | 122, QC44 14.0212 | 11.8200
55. P65 100 | 99.998 | 61.143 | 123, QC45 24.0656 | 12.7371
56. V1 1.0554 | 1.0093 | 124. QC46 95124 | 157212
57. V4 0.9500 | 1.0106 | 125. QC48 58489 | 14.8892
58. V6 0.9753 | 1.0256 | 126. QC74 19.2222 | 10.8066
59. V8 0.9585 | 1.0102 | 127. QC79 0 |25 [00000 | 15.8930
60. V10 1.0381 | 1.0205 | 128. QC82 247411 | 13.8225
61. V12 1.0502 | 1.0141 | 129. Qcs3 139104 | 11.6974
62. V15 0.9529 | 1.0094 | 130. QC105 24.9944 | 135413
63. V18 0.9960 | 1.0220 | 131. QC107 19.0262 | 15.0743
64. V19 1.0077 | 1.0321 | 132. QC110 121782 | 11.1250
65. V24 0.9956 | 1.0184
66. V25 10117 [ 1.0251 | 1. Ji ($/h) - 132958.6 | 135774.9
67. V26 1.0397 | 1.0227 . BMW) | - 31.2916 | 39.6333
68. V27 1.0466 | 1.0121 | 3. Ja (p.u) - 0.4299

Table 4.8: IEEE 118-bus system: Comparison of the proposed method.
Case # | Objective functions Proposed method NSGA-II [57] MOPSO [58]
Casea | 2168/M) 132958.66 133837.90 134673.5
J3(MW) 31.2916 31.8664 35.3868
J1($/h) 135774.93 135912.8 136459.9
Case-5 | Js(MW) 39.6333 45.6904 48.3446
Ja(p.u.) 0.4299 0.5074 0.5878
4.7 Summary

This work proposes a solution to the MOOPF problem with a combination of thermal, WECS,
and SPVS using MOEA based on decomposition and summation of normalized objectives with
an improved diversified selection method. Using the superiority of the feasible solution (SF)
technique, the method also addresses the restrictions in the MOOPF problem. The generation
cost of thermal generators and uncertainty cost associated with WECS and SPVS are
minimized along with emission, active power loss, and voltage magnitude deviation. Monte
Carlo simulations were used to assess the uncertainty of WECS and SPV'S power. To show the
efficacy of the proposed method, simulations were done on the IEEE 57-bus and IEEE 118-
bus systems, and the results were compared with NSGA-II and MOPSO algorithms. The
outcomes show that the proposed method is superior to competing methods. Therefore, the
proposed approach can be effectively used in operation and control when WECS and SPVS
power generation are included in the power system. This work is limited to the MOOPF
problem with integration of WECS, and SPVS, to assess the impact of PEV integration on the
MOOPF problem along with WECS, and SPVS next work is proposed.
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Chapter 5
A New Hybrid Decomposition and Summation of Normalized Objectives
with Improved Diversified Selection Based Multi-Objective Evolutionary
Algorithm Including Wind, Solar, and PEV Uncertainty for the Optimal
Power Flow
5.1 Introduction

This chapter presents a new hybrid decomposition and summation of normalized objectives
with improved diversified selection-based MOEA for the OPF problem including WECS,
SPVS, and PEVs uncertainty with four conflicting objectives including minimizing total
generation cost, emission, active power loss, and voltage magnitude deviation. The MOOPF
problem was solved using a unique CHM that adaptively inserts the penalty and avoids the
parameter relying on penalty calculation. The summation-based sorting and enhanced diverse
selection are used to improve the diversity of MOEA. In addition, a fuzzy algorithm is used to
determine the optimal compromise values from Pareto-optimal solutions. The impact of
intermittence of WECS, SPVS, and PEVS integration was considered for optimal cost analysis.
The uncertainty associated with WECS, SPVS, and PEV systems was represented using PDFs
and its uncertainty cost is calculated using the Monte-Carlo simulations. To test the
effectiveness of the suggested method, IEEE 57-bus and 118-bus systems were assessed, and
the acquired results were compared with NSGA-11 and MOPSO.

The contributions of this chapter are as follows:

I. Proposing a novel hybrid MOEA for solving the MOOPF problem based on the
decomposition and summation of normalized objectives with an enhanced diverse
selection.

ii. Integrating WECS, SPVS, and PEV systems into the traditional OPF to investigate
the effect of the stochastic nature of the sources.

iii. Modeling uncertainty associated with WECS, SPVS, and PEV systems using PDFs,
and evaluating the associated uncertain cost using Monte-Carlo simulations.

iv. Using an efficient constraint handling method called the SF method to address

various constraints in the MOOPF problem.

5.2 Problem Formulation

The objectives and constraints for the considered MOOPF problem are expressed as follows:
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5.2.1 Objectives

The MOOPF problem is formulated using four objectives: minimizing a) total generation cost
(J1), b) emission (J2), ) active power loss (Js3), and d) voltage magnitude deviation (Ja).

a) Total generation cost ($/h):

The overall generating cost is the sum of the generation cost of thermal, WECS, SPVS, and

PEV sources and is expressed by the following equation:
Nrg

Min J; = Z(ai + b;Prg; + ¢;Pfg;)
i=1

Nwe

+ Z [Cw,j(Pws,j) + CRw,j(Pws,j - Pwav,j) + CPw,j(Pwav,j - Pws,j)]
j=1

Nsg

+ Z [Cs,k (Pss,k) + CRs,k (Pss,k - Psav,k) + CPs,k (Psav,k - Pss,k)]
k=1

Npgv

+ Z [Cpev,n (Ppevs,n) + CRpev,n (Ppevs,n - Ppevav,n) + CPpev,n(Ppevav,n
n=1

~ Prevs)]
(5.1)
where Nrg, Nye, Ngg, and Npgy are the number of thermal, WECS, SPVS, and PEVS
respectively; P, j, Pssx, and By, are the scheduled powers of jt WECS, k" SPVS, and
n'" PEVS respectively; Pyay j» Psavi: @Nd Pyepayn are the actual powers of j&* WECS, k"
SPVS, and n‘"* PEVS respectively; Pr; is the it" thermal generator output power; a;, b;, ¢; is
the i*" thermal generator cost coefficients;
b) Emission (ton/h):
The generation of electric power from traditional fossil fuels would result in the emission of
hazardous gases into the atmosphere. The following expression describes the total emission
from thermal generators:
Minj, = $375(a; + BiPrei + ViPigi + 8;e5F760) (5.2)
where a;, £;,7;, 6;, €; are the it" thermal generator emission coefficients;
c) Active power loss (MW):
The following equation can be used to express active power loss:

Min J; = YL (Gk(vl.2 + V2 — 2VVj cos 6 j)) (5.3)
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where N, is the number of lines; 6;; shows the voltage angle between buses i and j; Gy
represents the conductance of branch k; V;, V; is the voltage magnitudes at it" and j** bus
respectively.

d) Voltage magnitude deviation (p.u.):

The voltage variation is the sum of all voltage variances at load buses in the network relative
to the reference voltage. The mathematical expression is as follows:

Min Jy = 5,021 (Vi = Vrer)| (5.4)
where Np, is the number of PQ buses; V.. is the reference voltage set to 1 p.u.; V; is the ith
load bus voltage.

5.2.2 Constraints
The MOOPF objectives are subjected to the following equality and inequality constraints.
a) Equality constraints:
The equality restrictions are power-balancing equations in which the sum of the generations of
the real and reactive powers is equal to their corresponding demands and losses.
e Power flow constraints
The overall demand and losses throughout the system are equal to the total real and reactive

power delivered:

Pg; — Ppi = V; 232, V;(Gij cos 6y + Byjsin0;;) = 0;i = 1,2,... Ny (5.5)
QGi — QDi — Vi 2751 V](GU sin 91] _BU Ccos 91]) = O; i = 1,2, NB (56)

where N is the number of buses; Pg;;, Q¢i, and Pp;, Qp; are the real, reactive power generations

and demands at the i" bus, respectively; G; B;; is the conductance, susceptance of lines

i1
between buses i and j respectively;
b) Inequality constraints:
The operational limitations on generators, transformers, and shunt devices, as well as the
security requirements on lines and load buses, constitute inequality constraints.

e Generator constraints: The boundary limits of real and reactive powers and the voltage

magnitude of the generator buses are expressed as follows:

PMIN < proi < PMAY: i =12, ... Npg (5.7)
P < Pei < PIOX i = 1,2, ... Nyg (5.8)
PMIn < po. < PMAY: i = 1,2, ... Ngg (5.9)
PRI < Popyei < PMAX i =1,2,...Npgy (5.10)
QMIN < Qrg; < QMA¥, i =1,2,...Nrg (5.11)
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QWet < Quei < Qpel; i = 1,2, ... Ny (5.12)
QUM < Qs < QU1 =12, ... Ng (5.13)
VI < Vo S V91 =1,2,.. N (5.14)

e Shunt compensator constraints: The following are the boundary values for shunt
compensators:
MR < Qg < QM%; i =1,2,... N (5.15)
e Transformer constraints: The ideal operating limits for tap settings on a transformer are
given as follows:
T < T; < TM;i=1,2,..Np (5.16)
e Security constraints: The voltage limits of the load buses and the apparent power value
of each transmission line, which can be restricted by its maximum capacity, are given
as follows:
VI <V S V0= 1,2, .. Npg (5.17)
1S < S5 i =1,2,..N, (5.18)
where N¢,and Ny is the number of shunt compensators and transformers respectively; S;; and
S are the apparent power flow and its maximum limit of i** line; P7#™ PT%* are the limits
on real power generation; QIH™,QMe* are the limits on reactive power generation; Vmin, ynax
are the limits on generator bus voltages; T/™", T/"** are the limits on transformer
taps; QM QMA* are the limits on shunt compensator; V™", V®**are the limits on load bus
voltages;

Two equality constraints Eq. (5.5) and Eq. (5.6) are automatically satisfied when the
power flow converges to an optimal solution. The generator buses’ real power (excluding slack
bus), transformer tap ratios, voltage limits, and shunt compensator ranges are considered to
control variables that are self-limiting. The remaining inequality constraints require constraint
handling techniques.

In OPF, generator reactive power capacities are significant. In recent years, WECSs
with complete reactive power capability has become commercially viable [60]. WECS can
deliver reactive power in the range of -0.4p.u.to 0.5p.u. The negative sign signifies the
generator's ability to absorb. Rooftop solar PV is designed as load buses with zero reactive
power. However, because utility-based Solar PVs have converters built-in, full generator
modeling is required due to the converters' dynamic behavior [61]. In this study, the reactive

power capabilities of SPVS are assessed between -0.4p.u and 0.5p.u.
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5.3  Constraint Handling Method

A proper CHM must be used in conjunction with an evolutionary algorithm to guide the search
process toward a globally optimal solution. Among the many CHMSs, the most frequently
employed is the penalty approach, which involves adding a penalty to the fitness of a non-
feasible solution. Despite its simplicity and ease of implementation, this method's performance
is highly dependent on the penalty factor, which must be calibrated through trial and error. To
tackle this difficulty, in this study, a new parameter-free CHM superiority of feasible solution
(SF) is introduced in the study for solving the MOOPF problem.

In [62], Deb introduced the SF method for handling different constraints efficiently. In
the SF method, a comparison is drawn between a pair of solutions. When a pair of solutions
are compared, the following cases emerge:

(1) While comparing two non-feasible solutions, the solution having the smallest constraint
violation is selected.

(2) When two feasible solutions are compared, the one with a better fitness solution is selected.

(3) When a feasible solution is compared to a non-feasible solution, the feasible solution is
selected.

Comparing non-feasible solutions based on constraint violation helps push non-feasible
answers into the feasible region while comparing viable solutions based on the fitness value
enables solution quality to be improved.

5.4  Integration of WECS, SPVS, and PEV Systems

54.1 WECS, SPVS, and PEV Modeling

In this part, the WECS, SPVS, and PEV systems are integrated into the conventional OPF
problem.

a) WECS Modeling:

The wind speed at a given geographical area is most likely distributed according to Weibull

PDF as given below:

K\ (v k-1 v\
fv) = (Z) (Z) @& 0<v <o (5.19)
where v is the wind speed (m/sec); k, and c is the shape, and scale factors respectively.
The PDFs for two different shape and scale factors are given in [63]. The relationship between
wind speed and power generation is as follows:

O;v<vgpand v > vy

Pw(v) = Pwr (ﬂ) y Uin < vy, < Uy (520)

Ur—Vin
Bur; vr <y < Vpye
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where P, is the rated wind power; v;,, V,y+ v are the cut-in, cut-out, and rated wind speeds
(m/sec) respectively;

The probability of obtaining a zero and rated power output is given by the following:

fu(Py=0)=1- () 4 (2 (5.21)
fuw(By = Pyy) = o) 4 o2 (5.22)

The probability for the linear part of the wind speed is given by the following:

£, (P,) = (k(vr—vin)) (”inPerer(vr—vin))(k—l) e(_

CPyr CPyr

VinPwr+tPwrWr—vin) k
cP )
wr

(5.23)

b) SPVS Modeling:
Similarly, the power output of a solar energy system is a factor of solar irradiance and it likely
follows the Lognormal PDF [64] as follows:

2
—(InGs-u)

fo(G) = Gs;m e{ 207 }; Gs >0 (5.24)

where u and o are the mean and standard deviation respectively; G, is the solar irradiance
(W/m?).
The SPVS unit's solar irradiance to energy generation is as follows [65]:

P ( 6§ ) 50<Gs <R

GstdRe

Py, (GG—S> ; Gs = R,

std

Ps(Gs) = (5.25)

where G, is the standard solar irradiance (W/m?); R, is the particular irradiance point (W/m?);
P,, is the SPVS-rated power output.

c¢) PEV Modeling:

In recent days, public transport electric vehicles ply most of the time during the day and are
charged during off-peak periods and so are not suitable for V2G application. Privately-owned
PEVs are generally idle most of the time during the day and hence PEVs are suitable for the
vehicle-to-grid (V2G) power-fed capability. The availability of electric vehicles as V2G source
follows the normal PDF as follows [69]:

_{(Ppev—ﬂ)Z}
1 2
j;ev = e *

where u and ¢ are the mean and standard deviation of normal PDF respectively; P, is the

(5.26)

212

available V2G power;
Here, the PEVs are used as a source of power feeding the grid through suitable infrastructure.

The following assumptions are made regarding the use of PEV as a power source.
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e All PEVs supply battery power to the power network through DC/AC inverter.

e All PEVs represent one big VV2G charging/discharging station.

e V2G system acts as a power source controller.
Depending on the probability of PEVs availability, the direct, reserve, and penalty costs are
calculated.
5.4.2 Uncertainty cost calculation of WECS, SPVS, and PEV Systems
Since WECS, SPVS, and PEVS are intermittent, the Monte-Carlo simulations are used to
account for uncertainty and to calculate the uncertainty cost. The estimated cost for the
intermittency of WECS, SPVS, and PEVS powers is reflected in three ways: direct, reserve,
and penalty costs. Whenever power is underestimated, extra unusable power is wasted,;
however, in practical power system applications, such power can be saved in an energy storage
system and thus be counted as the reserve cost. The cost of overestimating power that is lower
than the scheduled power is considered a penalty cost in the case of overestimation.

The direct cost associated with j** WECS is as follows:

Cw,j(Pws ) = 9jPws; (5.27)
The direct cost of k™" SPVS is as follows:

Cow e (Pssc) = RycPss e (5.28)
Similarly, the direct cost of nt* PEVS is as follows:

Coevn(Ppevsn) = dnPoevs;n (5.29)

where P, ;, Pss i, and Pyeys , are the scheduled powers of j** WECS, k" SPVS, and n*"PEVS
respectively; g;, hy, and d,, are the direct cost coefficients of j* WECS, k** SPVS, and n‘"
PEVS respectively;

When the wind farm's actual output falls short of the predicted value, the system
operator must maintain a spinning reserve to ensure that consumers receive uninterrupted
power. This is called the overestimation of power delivered from uncertain sources and the cost
incurred to maintain the spinning reserve is known as reserve cost [66].

The reserve cost of the j&* WECS is as follows:

Pws,j
CRw,j(Pws,j - Pwav,j) = KRw,j(Pws,j - Pwav,j) = KRw,jf (Pws,j - pw,j)fw(pw,j)dpw,j
0

(5.30)
In contrast to the overestimation case, when the actual power output of the wind exceeds

the predicted output, the surplus power is squandered if it cannot be utilized. As a result, the
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ISO is required to pay a penalty fee for excess power. This is referred to as the underestimation
of power delivered from uncertain sources.

The penalty cost of the j&* WECS is as follows:

Pwr,j
CPw,j(Pwav,j - Pws,j) = KPw,j(Pwav,j - Pws,j) = KPw,j.l- (Pw,j - pws,j)fw(pw,j)dpw,j

Pys,j
(5.31)
where Kg,, ;, Kpy, j are the reserve, penalty cost coefficients of jt" WECS respectively; Py, I
Py qv,; are the rated, actually available powers of jth WECS; f,, (pw‘ j) be the possibility of jt*
WECS.
Like the WECS, SPVS power also shows intermittency in output power. The approach
to calculating the over and underestimation cost of SPVS is as follows [67].
The reserve cost for k** SPVS is as follows:
Croje(Pssc = Psavye) = Krsik(Psskc — Psavyk)
= Krsje * fs(Psave < Pssi) * [Pss = E(Psavi < Pssic)] (5.32)
The penalty cost for a k*"* SPVS is as follows:
Crsje(Psavk = Pssi) = Kps(Psave = Pss)
= Kpsj * fs(Psavi > Pssi) * [E(Psave > Pssi) — Pssi] (5.33)
where Kgg i, Kps 1S the reserve, penalty cost constants of k" SPVS respectively; P, 1 is the
actually available power of k®* SPVS; f;(Psayi < Pssi) and fi(Psapx > Pssi) are the
probabilities of SPVS power; E(Psm,,k < Pss’k), E(Psm,,k > Pss,k) are the expectations of
SPVS power.
Similarly, PEVS also shows intermittency in output power. The approach to calculating
the over and underestimation cost of PEVS is as follows [70, 71].

Reserve cost associated with nt" PEV is defined as:

CRpev,n (Ppevs,n - Ppevav,n) = KRpev,n (Ppevs,n - Ppevav,n)

P, evs,n
= KRpev,n fo pevs (Ppevs,n - ppev,n)fpev (ppev,n)dppev,n (5-34)

Penalty cost associated with nt"* PEV is defined as:

CPpev,n (Ppevav,n - Ppevs,n) = KPpev,n (Ppevav,n - Ppevs,n)

P evr,n
= KPpev,nf pevr (ppev,n - Ppevs,n)fpev(ppev,n)dppev,n (5-35)

Ppevsn
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where Kgpepn, Kppevn 1S the reserve, penalty cost constants of nt" PEVS respectively; Poevrn:

Pyevavn are the rated, actually available powers of n** PEVS; f,c,(Ppevn) is the n'™ PEVS
power probability.
55  Proposed Method
In this chapter, a summation of normalized objective values (SNOV) with improved diversified
selection (IDS) is proposed and integrated with the multi-objective evolution algorithm based
on the decomposition (MOEA/D) [53] method to solve the MOOPF problem. The MOEA/D
method decomposes the multi-objective optimization problem into several single scalar
optimization problems and optimizes them all at the same time using weight vectors. The
weight vectors' distance is used to create neighborhoods. In every population evolution,
information from the neighborhood is used to find a solution. The non-dominated sorting used
in MOEA/D is complex and time-taking. Some useful information may be lost if the dominant
solutions are completely discarded. In addition, diversity may be lost during the search process
and lead to local optima. To overcome these problems, the summation of normalized objective
values [68] with IDS is employed in this work instead of non-dominated sorting selection to
get a uniformly distributed Pareto front and improved convergence characteristics.

The proposed MOEA comprises initialization, reproduction, investigation of feasible
solutions, normalization and selection, and termination phases.
1. Initialization:

e Initialize the population (Pt) of size ‘N’.
e The uniformly distributed weights are produced using SSA in the following
manner:

D+M-1
M-1

e Run the load flow, and calculate the fitness of the selected objective and total

N(D, M) = ( ) forD > 0 (5.36)

constraint violation.
e Using angle criteria, locate neighbors with the smallest angles for each weight

vector [55] as follows:

tang@ = @
dy
[[wi .| w;
where d; = Tl and d, = ||Wl- —d; m”
wherei,j=1,2,..... ,Nandi #j (5.37)

Where w indicates the weight vector, ¢ indicates the angle between d; and d>.
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e Find the smallest objective values to form the present ideal point.
e Find the largest objective values to form the present nadir point.
e Set iteration count=1.
2. Reproduction:
e Use an angle criterion to choose N pair of mating parents. A set of mating
parents is picked from neighbors with a probability for each weight vector.
e Perform two-point crossover and mutation operations to generate a new
population (Qt).
e Calculate the fitness values for the newly generated population (Qt).
e Compute the total constraint violation for the new population (Qt).
e Merge the original population (Pt) and the new population (Qt).
3. Investigation of feasible solutions:
e Sort the total population ascending by total constraint violation values.
e Discover feasible solutions.
e |If the number of viable solutions is lower than the population (N), move on to
Step 5.
e [f at least N solutions exist in the total population, move on to Step 4.
4. Normalization and selection:
e Apply the equation below to each objective and solution to determine the

normalized objective value[68, 72].

£ Gemy = L™ imin (5.38)

fimax—Fimin
where £, (x™) is the normalized value of x™ for i** objective, f; max, fimin are
the i*" objective limits.
e Obtain a summation of the normalized objective values for all solutions [68,
72].
F'(x™ =X f; ™) (5.39)
e Calculate the Euclidian distance between the origin and the sum of all
normalized objective values. The stopping point is defined by the solution that
yields total normalized objective values near to the origin.
e Equally, divide the objective space into 100 bins where scanning of the bins
should continue until the scanning procedure reaches a stopping point. For every
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scanned bin, the solution with the smallest sum of normalized objective values
is entered into the preferred set.
e The backup set includes unselected solutions as well as solutions dominated by
the stopping point.
5. Termination:
e Increase iteration number by one i.e. iter=iter+1.

e |f the stopping requirement is met, Stop else Go to Step 2.

Initialization

i

Reproduction

Sort the whole population in ascending
order of whole constraint violation.

Is the number of viable
solutions greater than N?

Yes No
Perform normalization, selection, and The combined populations’ top N
updating of the top N members to members become the new population.

become the new population.

v

iter =iter+1

No

Is stopping

criteria reached?

Fig. 5.1: Flowchart of the proposed method.
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56  Results and Discussions

To analyze the robustness and efficacy of the proposed method, IEEE 57-bus, and 118-bus
systems were chosen. The proposed method was implemented in MATLAB R2016a, and
simulations were conducted over an i3-Processor having 4 GB RAM. To verify the efficacy of
the proposed method, comparisons were made with NSGA-II [57] and MOPSO [58]. In this
work, the stochastic nature of WECS, SPVS, and PEV sources was taken into account to study
the impact of these sources on the MOOPF problem. To consider uncertainties, Monte-Carlo
simulations were used to generate 1000 samples. The control parameters of the proposed
method, NSGA-I1, and MOPSO are given in Table 5.1. The various cases considered are given
in Table 5.2. The description of the test systems is given in Table 5.3. PDF specifications and

cost components of various sources are given in Table 5.4.

Table 5.1: Control parameters of the proposed method, NSGA-II, and MOPSO.

S. No. Method Control parameters
1. Proposed method N =100, D =12, T =20, Pc =1.0, Pm =0.05, and max. iterations=100.
2. NSGA-II [57] N =100, P, =0.8, Py, =0.01, and max. iterations=100.
3. MOPSO [58] N =100, C1= C2 =2, W=0.5, and max. iterations=100.
Table 5.2: Various cases considered.
S. No Test Systems Case # 1 J2 Js Ja
Case-1 v v -- --
1. IEEE 57-bus system Case-2 v v v --
Case-3 4 v 4 4
Case-4 v -- v --
2. IEEE 118-bus system CaseS - — - -
Table 5.3: Test systems description.
Specifications IEEE 57-bus system IEEE 118-bus system
Buses 57 118
Lines 80 [59] 186 (591
Thermal units | 7 | Buses:1,2,3,6,8,9 and 12 54 | Buses: [59]
Slack bus 1 | Bus:1 69 | Bus: 69
Transformer 17 Lines:19,20,31,35,36,37,41,46, 9 Lines: 8,32,36, 51, 93,95,102,107 and
tap positions 54,58,59,65,66,71,73,76, and 80 127
Shunt Buses:34,44,45,46,48,74,79,82, 83,
capacitors 3 | Buses:18,25,and 53 12 105, 107 and 110
Generator bus real powers (9) + Generator bus real powers (56) +
Control .
variables 36 | voltages (7) + transformer tap settings | 131 volt_ages (54) + transform_er tap
(17) + shunt capacitor (3). settings (9) + shunt capacitor (12).
Load - | 1250.8MW, 336.4MVAR - 4242.0MW, 1439.0MVAR
WECS 1 | 45 #bus 1 81 #bus
SPVS 1 | 16 #bus 1 64 #bus
PEVS 1 | 49 #bus 1 117 #bus
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Table 5.4: PDF specifications and cost components of various sources.

S. No. Specifications WECS SPVS PEVS
1. PDF Weibull Lognormal Normal
5 Parameters c =10, k =2, wvy,=10m/sec, | 1 =6,0=0.6, G5;4=800 | u :_3.2,

Vour=12misec, U,.=12m/sec W/m?, R.=120 W/m? | ¢ =0.88
3. Direct cost 1.75 1.60 1.60
coefficient ($/MW)
4, Reserve cost 3 3 3
coefficient ($/MW)
5. Penalty cost 1.5 15 15
coefficient ($/MW)

5.6.1 IEEE 57-bus system

The proposed method was tested on an IEEE 57-bus system [59], it has 7 thermal generators
(# 1 bus acts as a slack bus), 80 lines, 15 off-nominal transformers, 3 shunt VAR compensators,
and real and reactive power demand of 1250.80MW and 336.40MVAR respectively. Notably,
the locations of these sources were chosen from [74], by replacing load buses with the
respective WECS, SPVS, and PEV sources.

a) Case-1: Minimize Ji: and Jz simultaneously.

In this case, J1 and J2 are the objectives that need to be minimized simultaneously. The optimal
decision variables obtained by the proposed method are included in Table 5.5. The best-
compromised values obtained using the proposed method have a total generation cost of
35815.04%/h and emission of 0.8950ton/h. The best-compromised values achieved using
NSGA-I1I [57] and MOPSO [58] are 35850.00%$/h, 0.9928ton/h, and 35910.00%$/h, 1.0120ton/h
respectively as reported in Table 5.6. The Pareto-optimal fronts (PFs) observed are depicted in
Figure 5.2.

b) Case-2: Minimize J1, J2 and Jz simultaneously.

In this case, J1, J2, and Js are the objectives that need minimizing simultaneously. The optimal
decision variables obtained by the proposed method are included in Table 5.5. The best-
compromised values obtained using the proposed method have a total generation cost of
35558.26%/h, emission of 0.9673ton/h, and active power loss of 10.0796MW. The best
compromised values achieved using NSGA-II [57] and MOPSO [58] are 36336.00%/h,
1.2498ton/h, 11.0813MW and 36402.69%/h, 1.0450ton/h, 12.5591MW respectively as reported
in Table 5.6. The Pareto-optimal fronts (PFs) observed are depicted in Figure 5.2.

c) Case-3: Minimize Ji, J2, Js and J4 simultaneously.

In this case, J1, J2, Js and Js are the objectives that need to be minimized simultaneously. The
optimal decision variables obtained by the proposed method are included in Table 5.5. The

best-compromised values obtained using the proposed method have a total generation cost of
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35980.02%/h, emission of 1.1696ton/h, active power loss of 10.5229MW, and voltage
magnitude deviation of 0.8308p.u. The best-compromised values achieved using NSGA-II
[57] and MOPSO [58] are 36250.00%/h, 1.4175ton/h, 12.3871MW, 1.0481p.u. and
36662.59%/h, 0.9367ton/h, 14.1833MW, 1.0669p.u respectively as reported in Table 5.6.

125 ‘ l
* * Proposed Method
. % NSGA-I
* MOPSO
LSE —
*

L1~ * _
M * kg |
S 1.05 * *-);& *% *

g -
§ 1r CELT M _
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0.95“ x % * * . 1 ~
LA™ |
0.9 - T LT ™ | |
“us, Wiy * ¥ %
: ¥ . —
*
0.8 i l | | | | |
35 3.54 3,56 3,58 8 " ; 3166 3'68 |
J1(sh) Xw4
@
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. * *
* : ! **
ey * / * * | *
| * 3 ¥y
* # * | *i
14—
§ R WM
21— |
e
10—
x10*

1 09 35 J1($/h)
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(b)
Fig. 5.2: IEEE 57-bus system: Pareto-optimal fronts. a) Case-1, and b) Case-2.
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Table 5.5: IEEE 57-bus system: Optimal control variables obtained by the proposed method.

Limits
S. No. Control variables i X Case-1 Case-2 Case-3
1. P2 100 95.7907 84.1793 57.9085
2. P3 140 69.0738 53.1935 80.1009
3. P6 100 97.6214 95.7712 57.4498
4, P8 550 304.0230 302.8312 329.5786
5. P9 0 100 82.3521 98.7022 64.9448
6. P12 410 294.0245 331.1684 379.1110
7. P45 80 79.8467 79.7886 78.2859
8. P16 80 79.7469 79.9465 78.5326
9. P49 20 19.3799 19.8993 14.6734
10. V1 1.0385 1.0340 1.0226
11. V2 1.0279 1.0286 1.0102
12. V3 1.0313 1.0252 1.0144
13. V6 0.95 1.1 1.0343 1.0203 1.0127
14. V8 1.0394 1.0201 1.0224
15. V9 1.0214 1.0123 1.0125
16. V12 1.0341 1.0353 1.0421
17. T19 1.0362 1.0016 1.0101
18. T20 1.0250 0.9939 0.9964
19. T31 1.0036 0.9826 1.0142
20. T35 1.0307 1.0275 0.9855
21. T36 0.9769 0.9881 0.9927
22. T37 1.0448 1.0359 1.0270
23. T41 1.0065 0.9990 1.0064
24, T46 0.9927 0.9800 0.9956
25. T54 0.9 11 1.0014 0.9536 0.9065
26. T58 0.9821 0.9724 0.9780
27. T59 0.9530 0.9719 0.9732
28. T65 0.9719 0.9847 0.9799
29. T66 0.9873 0.9485 0.9536
30. T71 0.9720 0.9750 0.9620
31 T73 0.9815 1.0087 1.0091
32. T76 0.9844 0.9706 0.9641
33. T80 1.0118 0.9973 1.0106
34, QC18 11.6868 8.9393 11.0809
35. QC25 0 20 10.5195 10.2799 11.1002
36. QC53 10.8182 6.1637 8.4158
1. Ji($/h) - - 35815.04 35558.26 35980.02
2. Jo(ton/h) - - 0.8950 0.9673 1.1696
3. J3(MW) - - - 10.0796 10.5229
4, Ja(p.u.) - - - - 0.8308
Table 5.6: IEEE 57-bus system: Comparison of the proposed method.
Case # Objective functions Proposed method NSGA-II [57] MOPSO [58]
Caseq | 22(8/) 35815.04 35850.00 35910.00
Jo(ton/h) 0.8950 0.9928 1.0120
Ji($/h) 35558.26 36336.00 36402.69
Case-2 | Jo(ton/h) 0.9673 1.2498 1.0450
J3(MW) 10.0796 11.0813 12.5591
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J1($/h) 35980.02 36250.00 36662.59
Casea | 22(ton/h) 1.1696 1.4175 0.9367

J3(MW) 10.5229 12.3871 14.1833

Ju(p.u) 0.8308 1.0481 1.0669

5.6.2 IEEE 118-bus system

The proposed technique has been examined on an IEEE 118-bus system [59], it has 54 thermal
generators (# 69 bus as a slack bus), 186 lines, 9 off-nominal transformers, 12 shunt VAR
compensators, and real and reactive power demand of 4242.00 MW and 1439.00 MVAR
respectively. Notably, the locations of these sources were chosen from [74], by replacing load
buses with the respective WECS, SPVS, and PEV sources.

a) Case-4: Minimize Ji: and Jz simultaneously.

In this case, J1 and Js are the objectives that need to be minimized simultaneously. The optimal
decision variables obtained by the proposed method are included in Table 5.7. The best-
compromised values obtained using the proposed method have a total generation cost of
129019.12%/h and an active power loss of 36.7616MW. The best-compromised values
achieved using NSGA-IlI [57] and MOPSO [58] are 129582.23%/h, 37.3464MW, and
130673.5%/h, 38.0368MW respectively as reported in Table 5.8. The Pareto-optimal fronts
(PFs) observed are depicted in Figure 5.3.

b) Case-5: Minimize J1, J3 and J4 simultaneously.

In this case, J1, J3, and J4 are the objectives that need to be minimized simultaneously. The
optimal decision variables obtained by the proposed method are included in Table 5.7. The
best-compromised values obtained using the proposed method have a total generation cost of
130796.33%/h, active power loss of 32.5358MW, and voltage magnitude deviation of
0.5165p.u.. The best-compromised values achieved using NSGA-I1 [57] and MOPSO [58] are
134395.5%/h, 40.0724MW, 0.6876p.u. and 133574.6%/h, 41.3020MW, 0.9706p.u. respectively
as reported in Table 5.8. The Pareto-optimal fronts (PFs) observed are depicted in Figure 5.3.
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Table 5.7: IEEE 118-bus system: Optimal control variables obtained by the proposed method.

S. Control .lelts Case-4 | Case-5 S. Control .lelts Case-4 Case-5
No. | variables min | max No. variables min | max

1. P1 100 | 40.0447 | 63.4515 68. V26 1.0157 1.0212
2. P4 100 | 49.9982 | 35.6629 69. V27 1.0335 1.0080
3. P6 100 | 59.1167 | 35.0138 70. V3l 1.0378 1.0260
4, P8 100 | 45.0837 | 47.8259 71. V32 1.0211 1.0335
5. P10 550 | 193.352 | 164.224 72. V34 1.0259 1.0250
6. P12 185 | 66.1489 | 76.0734 73. V36 1.0379 1.0142
7. P15 100 | 48.9935 | 56.2799 74. V40 1.0346 1.0075
8. P18 100 | 43.7256 | 39.0496 75. V42 1.0239 1.0040
9. P19 100 | 28.7879 | 70.2897 76. V46 1.0123 1.0215
10. P24 100 | 33.8075 | 48.7321 77. V49 1.0274 0.9947
11. P25 320 | 120.040 | 60.8414 78. V54 1.0252 1.0138
12. P26 414 | 120.644 | 169.915 79. V55 1.0079 1.0267
13. p27 100 | 46.2456 | 61.7409 80. V56 1.0059 1.0278
14. P31 107 | 22.3999 | 22.4692 81. V59 1.0022 1.0261
15. P32 100 | 55.1251 | 27.1559 82. V61l 1.0346 1.0459
16. P34 100 | 51.6765 | 56.3221 83. V62 1.0200 1.0243
17. P36 100 | 55.7278 | 26.4301 84. V65 1.0282 1.0170
18. P40 100 | 58.4597 | 54.2550 85. V66 1.0376 1.0277
19. P42 100 | 61.1690 | 78.9208 86. V69 1.0270 1.0202
20. P46 119 | 42.4237 | 36.1427 | 87. V70 095 | 1.1 [1.0283 [ 1.0337
21. P49 304 | 178.039 | 177.089 88. V72 1.0330 1.0119
22. P54 148 | 68.7727 | 93.0152 89. V73 1.0417 1.0283
23. P55 100 | 41.4856 | 64.4180 90. V74 1.0268 1.0272
24. P56 100 | 56.0731 | 39.1371 91. V76 1.0088 1.0119
25. P59 255 | 141.029 | 133.894 92. V77 1.0187 1.0314
26. P61 260 | 106.400 | 112.972 93. V80 1.0252 1.0404
27. P62 0 100 | 60.9986 | 56.6838 94, V85 1.0134 1.0240
28. P65 491 | 220.874 | 232.485 95. V87 1.0207 1.0161
29. P66 492 | 204.311 | 137.571 96. V89 1.0214 1.0363
30. P70 100 | 57.4597 | 45.9800 97. Va0 1.0218 1.0280
31. P72 100 | 40.2247 | 35.5260 98. Vo1 1.0264 1.0480
32. P73 100 | 33.4507 | 40.8232 99. V92 1.0262 1.0312
33. P74 100 | 62.6285 | 52.5801 | 100. V99 1.0083 1.0415
34. P76 100 | 58.4179 | 60.1585 | 101. V100 1.0155 1.0291
35. P77 100 | 58.7759 | 47.9148 | 102. V103 1.0270 1.0226
36. P80 577 | 277.432 | 307.393 | 103. V104 1.0178 1.0103
37. P85 100 | 45.6938 | 50.9420 | 104. V105 1.0316 1.0118
38. P87 104 | 8.7870 9.0718 105. V107 1.0132 1.0042
39. P89 707 | 265.920 | 217.226 | 106. V110 1.0212 1.0117
40. P90 100 | 37.1972 | 40.2967 | 107. V111 1.0209 0.9956
41. Po1 100 | 38.8539 | 31.8664 | 108. V112 1.0184 1.0163
42. P92 100 | 48.4612 | 49.3316 | 109. V113 1.0333 1.0343
43. P99 100 | 37.8606 | 30.9745 | 110. V116 1.0418 1.0108
44, P100 352 | 97.0986 | 130.965 | 111. T8 1.0165 0.9994
45, P103 140 | 71.3612 | 50.4524 | 112. T32 1.0025 0.9958
46. P104 100 | 54.0455 | 51.1611 | 113. T36 0.9948 0.9237
47. P105 100 | 37.9765 | 43.3539 | 114. T51 1.0136 0.9826
48. P107 100 | 46.0688 | 38.7497 | 115. T93 0.9 11 0.9876 0.9304
49, P110 100 | 41.2868 | 31.8345 | 116. T95 0.9931 0.9980
50. P111 136 | 30.3153 | 42.3214 | 117. T102 1.0057 0.9999
51. P112 100 | 38.6270 | 34.9093 | 118. T107 0.9818 0.9784
52. P113 100 | 51.6430 | 44.9313 | 119. T127 0.9806 0.9861
53. P116 100 | 43.0444 | 42.0291 | 120. QC34 11.3179 14.5351

70



Chapter 5

54. P81 150 [ 953791 [ 128314 | 121. QC44 10.0859 | 14.2184
5. P64 150 | 134.122 | 142.181 | 122. QC45 147235 | 9.0981
56. P117 40 | 15.9465 | 19.7354 | 123, QC46 13.0587 | 6.1809
57. V1 1.0263 | 1.0471 | 124. QC48 11.7728 | 145904
58. V4 1.0310 | 1.0050 | 125. QC74 12.4274 | 14.0292
59. V6 10355 | 1.0291 | 126 QC79 12.0556 | 6.2538
60. V8 1.0093 | 1.0193 | 127 QC82 0 |25 [16.3087 | 164578
61. V10 10374 | 1.0024 | 128 Qcs3 117913 | 11.4913
62. V12 10158 | 1.0224 | 129. QC105 126136 | 10.6581
63. V15 1.0206 | 1.0179 | 130. QC107 8.8002 | 12.8524
64. V18 1.0285 | 1.0259 | 13L. QC110 11.7193 | 15.2300
65. V19 1.0193 | 1.0269 L. Jushy |- 129019.1 | 130796.3
66. V24 10230 | 10235 | 2 Js(MW) | - 36.7616 | 32.5358
67. V25 10278 | 09998 | 3. Japu) | - 0.5165

Table 5.8: IEEE 118-bus system: Comparison of the proposed method.
Case# | Objective functions Proposed method NSGA-II [57] MOPSO [58]
Cased |G 129019.12 129582.23 130673.5
J3(MW) 36.7616 37.3464 38.0368
J1($/h) 130796.33 134395.5 133574.6
Case-5 | J3(MW) 32.5358 40.0724 41.3020
Ja(p.u.) 0.5165 0.6876 0.9706
5.7 Summary

The approach for the MOEA is based on decomposition and summing up normalized objectives
with an improved diverse selection mechanism. It also addresses the superiority of the feasible
solution (SF) technique for dealing with the MOOPF problem constraints. The cost of thermal
energy and the cost uncertainty associated with WECS, SPVS, and PEV systems are minimized
along with the minimization of emission, active power loss, and voltage magnitude deviation.
Monte Carlo simulations were used to assess the uncertainty of WECS, SPVS, and PEV power.
To show the efficacy of the proposed method, simulations were done on the IEEE 57-bus and
IEEE 118-bus systems, and the results were compared with NSGA-I1 and MOPSO algorithms.
The outcomes show that the proposed method is superior to competing methods. Therefore,
the proposed approach can be effectively used in operation when WECS, SPVS, and PEVS
power generations are included in the power system. The proposed method may provide an
optimal solution, but to further improve the evolutionary process a new hybrid MOEA is
proposed in the next work.
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Chapter 6

A Novel Hybrid Multi-Objective Evolutionary
Algorithm Based on Decomposition and Invasive
Weed Optimization Including Wind, Solar, and PEV
Uncertainty for the Optimal Power Flow
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Chapter 6
A Novel Hybrid Multi-Objective Evolutionary Algorithm Based on
Decomposition and Invasive Weed Optimization Including Wind, Solar,
and PEV Uncertainty for the Optimal Power Flow

6.1 Introduction

This chapter proposes a novel hybrid decomposition and invasive weed optimization (IWO)
based MOEA for the OPF problem. The standard OPF problem was transformed into a
stochastic OPF by incorporating the uncertainty of WECS, SPVS, and PEV systems. This
chapter presents a new CHM that adaptively inserts the penalty and avoids the parameter
relying on penalty calculation. The IWO technique's selection qualities were utilized to
increase the diversity of MOEA. The MOOPF problem includes minimization of the total
generation cost, emission, active power loss, and voltage magnitude deviation as objectives.
The generation cost of WECS, SPVS, and PEVS was examined using Monte Carlo simulations
to reduce the total generation cost. Weibull, Lognormal, and Normal PDFs were used to
characterize the unpredictability of WECS, SPVS, and PEVS, respectively. The impact of
WECS, SPVS, and PEV uncertainties, was taken into account to validate the proposed method.
The superiority of the proposed method was validated by comparing it with NSGA-II, and
MOPSO algorithms and tested using IEEE 57-bus and IEEE 118-bus systems.

The contributions of this chapter are as follows:

I. Introducing a novel hybrid decomposition and invasive weed optimization (IWO)
based MOEA for the OPF problem.

ii. Integrating the stochastic nature of WECS, SPVS, and PEVS with normal OPF to
address the influence of the sources' unpredictable nature.

ii. Modeling the uncertainty of WECS, SPVS, and PEV energy systems using PDF and
computing its uncertainty cost with Monte Carlo simulations.

v, Using an effective CHM known as the SF method to handle constraints in the MOOPF

problem.

6.2 Problem Formulation
The objectives and constraints for the considered MOOPF problem are expressed as follows:
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6.2.1 Objectives

The MOOPF problem is formulated by considering four objectives which involve minimizing
a) total generation cost (J1), b) emission (J2), ) active power loss (J3), and d) voltage magnitude
deviation (Ja4).

a) Total generation cost ($/h):

The overall generating cost is the sum of the generation cost of thermal, WECS, SPVS, and

PEV sources and is expressed by the following equation:
Nrg

Min J; = Z(ai + b;Prg; + ¢;Pfg;)
i=1

Nweg

+ Z [Cw,j(Pws,j) + CRw,j(Pws,j - Pwav,j) + CPw,j(Pwav,j - Pws,j)]
j=1

Nsg

+ Z [Cs,k (Pss,k) + CRs,k (Pss,k - Psav,k) + CPs,k (Psav,k - Pss,k)]
k=1

Npgv

+ Z [Cpev,n (Ppevs,n) + CRpev,n (Ppevs,n - Ppevav,n) + CPpev,n(Ppevav,n
n=1

= Prevsn)]

(6.1)
where Nrg, Nyg, Ngg, and Npgy are the number of thermal, WECS, SPVS, and PEVS
respectively; P, j, Pssx, and By, are the scheduled powers of jt WECS, k" SPVS, and
n'" PEVS respectively; Pyay, i+ Psavk» @Nd Pyepayn are the actual powers of j™* WECS, k"
SPVS, and nt"* PEVS respectively; Pr¢; is the i*" thermal generator output power; a;, b;, ¢; is
the it" thermal generator cost coefficients;

b) Emission (ton/h):
The generation of electric power from traditional fossil fuels would result in the emission of
hazardous gases into the atmosphere. The following expression describes the total emission
from thermal generators:

Minj, = $376(a; + BiPri + ViPigi + 8;e5T60) (6.2)
where a;, B;,v;, 0;, €; are the it" generator emission coefficients;
c) Active power loss (MW):

The following equation can be used to express active power loss:

Min J; = ¥NL (Gk(vl.2 + V2 — 2VVj cos 6 j)) (6.3)

75



Chapter 6

where N, is the number of lines; 6;; indicates voltage angles between buses i and j; G, shows
the conductance of branch k; V;, V; is the voltage magnitudes at it" and j** bus respectively.
d) Voltage magnitude deviation (p.u.):

The voltage variation is the sum of all voltage variances at load buses in the network relative
to the reference voltage. The mathematical expression is as follows:

Min Jy = 552\ (Vi = Vrey)| (6.4)
where Np, is the number of PQ buses; V.. is the reference voltage set to 1 p.u.; V; is the ith
load bus voltage.

6.2.2 Constraints
The MOOPF objectives are subjected to the following equality and inequality constraints.
a) Equality constraints:
The equality restrictions are power-balancing equations in which the sum of the generations of
the real and reactive powers is equal to their corresponding demands and losses.
e Power flow constraints
The overall demand and losses throughout the system are equal to the total real and reactive

power delivered:

PGi — PDi — Vi Zjvfl V(GU cos BU + Bl] sin 01]) = O; i = 1,2, NB (65)
Qci — Qi — Vi 232, V;(Gyj sin6;; —Byj cos 0;;) = 0;i = 1,2, .. Ny (6.6)

where N is the number of buses; Pg;;, Q¢i, and Pp;, Qp; are the real, reactive power generations

and demands at the i" bus, respectively; G; B;; is the conductance, susceptance of lines

i1
between buses i and j respectively;
b) Inequality constraints:
The operational limitations on generators, transformers, and shunt devices, as well as the
security requirements on lines and load buses, constitute inequality constraints.

e Generator constraints: The boundary limits of real and reactive powers and the voltage

magnitude of the generator buses are expressed as follows:

PMIN < pro < P i =12 .. Npg (6.7)
PV < Py < PMA%: i = 1,2, ... Nyg (6.8)
PN < po.. < PMAY: i = 1,2, ... Ngg (6.9)
PR < Popyei < PMAX i =1,2, ... Npgy (6.10)
QMIN < Qrg; < QM i =1,2,... Nyg (6.11)
Qwet < Qwai < QWet;i = 1,2, ... Nyg (6.12)
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Qsai < Qsci < Qs¢i 1 =12,..Ngg (6.13)
VI < Ve, S VIO = 1,2, .. Ng (6.14)
e Shunt VAR compensator constraints: The following are the boundary values for shunt
compensators:
8" < Qo S QA i=12,.. N, (6.15)
e Transformer constraints: The ideal operating limits for tap settings on a transformer are
given as follows:
TN < T; < TM; 0 =1,2,... Ny (6.16)
e Security constraints: The voltage limits of the load buses and the apparent power value
of each transmission line, which can be restricted by its maximum capacity, are given
as follows:
VIR <V S V0= 1,2, .. Npg (6.17)
S| < S™*; i =1,2,...N, (6.18)
where N.,and Ny is the number of shunt compensators and transformers respectively; S;; and
S/max are the apparent power flow and its maximum limit of i** line; PT¥™ P~ are the real
power generation limits; Q™ QM4* are the reactive power generation limits; V7%, 7me* are
the generator bus voltage limits; T/, T/"** are the transformer tap limits; Q™™ Q* are the
shunt compensator limits; V™", " are the load bus voltage limits;

Two equality constraints Eq. (6.5) and Eq. (6.6) are automatically satisfied when the
power flow converges to an optimal solution. The generator buses’ real power (excluding slack
bus), transformer tap ratios, voltage limits, and shunt compensator ranges are considered to
control variables that are self-limiting. The remaining inequality constraints require constraint
handling techniques.

In OPF, generator reactive power capacities are significant. In recent years, WECSs
with complete reactive power capability has become commercially viable [60]. WECS can
deliver reactive power in the range of -0.4p.u.to 0.5p.u. The negative sign signifies the
generator's ability to absorb. Rooftop solar PV is designed as load buses with zero reactive
power. However, because utility-based Solar PVs have built-in converters, full generator
modeling is required due to the converters' dynamic behavior [61]. In this study, the reactive

power capabilities of SPVS are assessed between -0.4p.u and 0.5p.u.
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6.3  Constraint Handling Method
Since MOOPF is a constrained optimization problem, it requires a better-constrained handling
method. In this work, the SF technique [62] was employed to solve the MOOPF problem with
RESs. The steps followed when comparing two solutions are as follows:
1) While comparing two non-feasible solutions, the solution having the smallest constraint
violation is selected.
2) When two feasible solutions are compared, the one with a better fitness solution is selected.
3) When a feasible solution is compared to a non-feasible solution, the feasible solution is
selected.
Comparing non-feasible solutions based on constraint violation helps push non-feasible
answers into the feasible region while comparing viable solutions based on the fitness value
enables solution quality to be improved.

6.4 Integration of WECS, SPVS, and PEV Sources

6.4.1 WECS, SPVS, and PEV Modeling

a) WECS Modeling:

The wind speed at a given geographical area is most likely distributed according to Weibull

PDF as given below:

fo =) @ 0<v <o (6.19)

c/ \c
where v is the wind speed (m/sec); k,and c is the shape, and scale factors respectively.
The PDFs for two different shape and scale factors are given in [63]. The relationship between
wind speed and power generation is as follows:
Ov<vgu,andv > v,y
B,(v) = P (222 Vi < Uy S Uy (6.20)

Ur—Vin

Bori r < Uy < Voue
where P, is the rated wind power; v;,, vy, v, are the cut-in, cut-out, and rated wind speeds
(m/sec) respectively;

The probability of obtaining a zero and rated power output is given by the following:

vin)\k vout\X
Py = 0) = 1— o8 4 () (6.21)
vr k You
fu(Py = Pyy) = e (0)) 4 () (6.22)
The probability for the linear part of the wind speed is given by the following:

VinPwr+PwrWr—vip)

£.(P) = (k(vr—vin)) (vinpwwpw(vr—vin))("‘” o ( Prr )k) (6.23)

CPyr CPyr
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b) SPVS Modeling:
Similarly, the power output of an SPVS is a factor of solar irradiance and it likely follows the
Lognormal PDF [64] as follows:

{—(mcs-ﬂ)z}
208 ). Gg > 0 (6.24)

1
fG(GS) - Gso'\/ﬁe

where u and o are the mean and standard deviation respectively; G, is the solar irradiance
(W/m?).

The SPVS unit's solar irradiance to energy generation is as follows [65]:

Psr (Gsfch) ;0<Gs <R

Ps(Gs) = (6.25)

Pr(2) 5 Gs 2 Re

Gstd

where G, is the standard solar irradiance (W/m?); R, is the particular irradiance point (W/m?);
P,, is the SPVS-rated power output.
c¢) PEV Modeling:
In recent days, public transport electric vehicles ply most of the time during the day and are
charged during off-peak periods and so are not suitable for V2G application. Privately-owned
PEVs are generally idle most of the time during the day and hence PEVs are suitable for the
vehicle-to-grid (V2G) power-fed capability. The availability of electric vehicles as V2G source
follows the normal PDF as follows [69]:

foer = mmge U 7

where u and ¢ are the mean and standard deviation of normal PDF respectively; P, is the

(6.26)

available V2G power;
Here, the PEVs are used as a source of power feeding the grid through suitable infrastructure.
The following assumptions are made regarding the use of PEV as a power source.
e All PEVs supply battery power to the power network through DC/AC inverter.
e All PEVs represent one big V2G charging/discharging station.
e V2G system acts as a power source controller.
Depending on the probability of PEVs availability, the direct, reserve, and penalty costs are
calculated
6.4.2 Uncertainty cost calculation of WECS, SPVS, and PEV Sources
Since WECS, SPVS, and PEVS are intermittent, the Monte Carlo simulations are used to

account for uncertainty and to calculate the uncertainty cost. The estimated cost for the
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intermittency of WECS, SPVS, and PEVS powers is reflected in three ways: direct, reserve,
and penalty costs. Whenever power is underestimated, extra unusable power is wasted,;
however, in practical power system applications, such power can be saved in an energy storage
system and thus be counted as the reserve cost. The cost of overestimating power that is lower
than the scheduled power is considered a penalty cost in the case of overestimation.

The direct cost of jt* WECS is as follows:

Cuw,j(Puws,j) = 9Puws,j (6.27)
The direct cost of k" SPVS is as follows:

Cok(Pssi) = hicPss (6.28)
The direct cost of n* PEV unit is as follows:

Cpevn(Poevsn) = dnPoevsin (6.29)

where Py i, Pss i, aNd Pyeys 5 are the scheduled powers of j** WECS, k** SPVS, and n*"* PEVS
respectively; g;, hy, and d,, are the direct cost coefficients of j* WECS, k** SPVS, and n‘"
PEV systems respectively;

The approach to calculating the over and underestimation cost of WECS s as follows [66].

The reserve cost of the jt* WECS is as follows:

Pws,j
CRW,j(PWS,j - Pwav,j) = KRw,j(Pws,j - Pwav,j) = KRw,jJ (Pws,j - pw,j)fw(pw,j)dpw,j
0
(6.30)
The penalty cost of the jt* WECS is as follows:
Pwr,j
CPW,j(Pwav,j - Pws,j) = KPW,j(PWClU,j - Pws,j) = KPw,jf (Pw,j - pws,j)fw(pw,j)dpw,j
Pws,j
(6.31)

where K, ; and Kp,, ; are the reserve and penalty cost coefficients of j th WECS respectively;
Py and P, ; are rated and actually available powers of j* WECS; f,,(p,;) be the
possibility of j** WECS.

The approach to calculating the over and underestimation cost of SPVS is as follows [67].

The reserve cost for k" SPVS is as follows:
CRs,k (Pss,k - Psav,k) = KRS,k (Pss,k - Psav,k)
= KRs,k * fs(Psav,k < Pss,k) * [Pss,k - E(Psav,k < Pss,k)] (6-32)
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The penalty cost for a k" SPVS is as follows:
Cpsi(Psavk — Pssi) = Kpsi(Psavi — Pssik)
= Kpsc * fs(Psavje > Pssjc) * [E(Psavi > Pssi) = Pssie] (6.33)
where Kgs; and Kp are the reserve and penalty cost constants of k" SPVS respectively;
Pgayx is the actual available power of k" SPVS; f;(Psayx < Pssi) and f5(Psapx > Pss) are

the probabilities of SPVS power; E(Psgy i < Pssi)s E(Psavx > Pssy) are the expectations of
SPVS power.
The approach to calculating the over and underestimation cost of PEVS is as follows [70, 71].

Reserve cost associated with nt"* PEV is defined as:

CRpev,n (Ppevs,n - Ppevav,n) = KRpev,n (Ppevs,n - Ppevav,n)

P evs,n
= KRpev,n fO P (Ppevs,n - ppev,n)fpev (ppev,n)dppev,n (6-34)

Penalty cost associated with nt® PEVS is defined as:

CPpev,n (Ppevav,n - Ppevs,n) = KPpev,n (Ppevav,n - Ppevs,n)

P evr,n
= KPpev,n f ’ (ppev,n - Ppevs,n)fpev (ppev,n)dppev,n (6-35)

Ppevsn

where Kgpeypn aNd Kppey, , are the reserve and penalty cost constants of nt" PEVS respectively;
Pyevrn and P,eyqyr are the rated and actually available powers of nth PEVS; fpe,,(ppe,,,n) is
the n*" PEVS power probability. f,e, (Ppev,n) is the nt™ PEVS power probability.

6.5 Proposed Method

In this chapter, the modified IWO [73] for multi-objective optimization and then include in
MOEA/D [53], which provides a decomposition-based multi-objective optimization method
with invasive weed colonies, to merge their exceptional qualities in the proposed hybrid
method. The flowchart of the proposed method is shown in Figure 6.1.

The proposed method decomposes a multi-objective issue into a large number of scalar
optimization sub-problems and solves them simultaneously. In each sub-problem, an adaptive
IWO search was used to minimize the aggregation function of all objectives under
consideration. Each sub-problem has a unique aggregation weight that generates a distinct
aggregation function from those of others. The population size at each generation is equal to
the number of decomposed sub-problems. If N is specified as the population size, then N sub-
problems must be simultaneously optimized. The objective function of it* sub-problem can be

expressed as follows.

g% (x|, z7) = max{A|f;(x) — 2

h1<j<sm (6.36)
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Where 2! = (4, lz)l;n)T m is the number of objectives and z* = (z},z3,..z;)7,

z; = min{f;(x)|x € [, u]},i = 1,2, ...m is the point of reference.
The proposed method steps are as follows:

Input: N: population size;
T: neighborhood size, 0 < T < N;
AL, 22, ... AN: weight vectors;
Output: PO solutions;
1. Initialization:
2. x%,x?,..x" is randomly selected between [, u]  FV/ = F(x/);

3. Foreach j = 1: N do neb(j) = {a, b, ... t};
4, reference point z = (24, z, ... Zy) .
5. Do while (loop is not met)
6. Forj=1:N
7. U< IWo(x/,stdl),,.);
8. V < IWo(x*,stdk,,);
| k is chosen from neb(j) /
9. Foreachy e UuV do
10. If y & [[,u] then
11. y repair (y);
12. End
13. Foreachi =1tomdo
14. If z; > f;(y) then
15. zi = fi(y);
16. End
17. End
18. For each i € neb(j) do
19. If gte(y|Al, z) < gt (x|, z)then
20. xt=y;
21. FVi=F(y);
22. End
23. End
24, End
25. End
26. End Do

27. Use fuzzy theory to get best-compromised values [55].
In line 7 of the pseudo-code, U « IWO(xi,stdl?ter)expresses the procedure of producing x*
seeds. U Contains the children's seeds generated byx!. SupposeU = {y*,y?, ...y*}; then k is

the size of children seeds generated byx?, which is calculated using Eq. (6.37).

te _ te
Snum = flOOT (% (Smax - Smin) + Smin) (637)

max~ Ymin

te
mmn’

gte .are obtained as follows:

gie, = min{gt(x*|2,, z*)| x¥ € B(i)} (6.38)

where g
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gt = max{gt® (x|}, z*)| x* € B()} (6.39)
where std.,,, represents the adaptive standard deviation (SD) of x and its value can be
obtained through Eqg. (6.40) and Eq. (6.41).

_ itermax—iter\POW
Ojter = afinal + ( iter ) . (Ginitial - Gfinal) (6-40)
max

It is evident from Eq. (6.40) that o;:., reduces with increasing iterations. However, for each
parent seed in a single generation, the value o;;.,-remains constant. This does not promote
exploration or efficient exploration. Each parent should have weed characteristics that are
distinct from those of other parents. In this study, an adaptive standard deviation (SD)
std;;.rWas employed, whose g;.., Value fluctuates with iteration and rank. The SD can be

characterized as follows:

1+ gte_grtrfean * . te 5 te
Q te _ te Oiters 9~ = Ymean
Imax—9Imean (6 41)
te _te -
%) * Oyer;  Otherwise
Imean"9Imin

Stditer =
(1-

Where g£é,q,is formulated as follows:

e _ 2{g°(xN12 2| x*eB)}
Imean = Bl (6.42)

Where g*¢ be the value of the weed's aggregated scalar function, g-¢;,,, g&¢.. and gt¢,q,, are
the lowest, highest, and mean values of weeds in the present iteration respectively, and Q is the
regulatory parameter whose value ranges from 0 to 0.5. |B(i)| is the number of neighbors of
it" sub-problem. Similarly, the same model was applied to the neighbors of x* in line 8 of the
algorithm.
Letx! = (x{ x5, ... x,ﬁ)Tis the i*" parent individual, y = (y4,v,, ... ¥,,)T are the seeds generated
byx!; where each element y; is produced as follows:

yj = x; + N(0,std%,.);j = 1,2, ..n. (6.43)

Then the trade-off objective optimal value is selected using the fuzzy method [56].
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Read the test system data

|

Read the control parameters of the proposed method

Generate the initial population and
weight vectors using SSA [54].

»
»

Determine each population candidate's objective
values and constraint violations by running OPF.

\ 4

Find neighbors with the least angles depending on the angle criterion [55]
and get the minimum values for all objectives that comprise the ideal point.

¥

Generate a new population using IWO

Partition of the combined population

Perform elitist selection

Rerun the OPF for the newly generated population and update

Are termination

criteria reached?

Apply the fuzzy method [56] to get BCSs

Fig.6.1: Flowchart of the proposed method
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6.6  Results and Discussions

To analyze the robustness and efficacy of the suggested method, IEEE 57-bus and 118-bus
systems were taken into account. The proposed method was implemented in MATLAB
R2016a, and simulations were conducted over an i3-Processor having 4 GB RAM. To verify
the efficacy of the proposed method, comparisons were made with NSGA-I1 [57] and MOPSO
[58]. In this work, the stochastic nature of WECS, SPVS, and PEV sources was taken into
account to study the impact of these sources on the MOOPF problem. To consider
uncertainties, Monte-Carlo simulations were used to generate 1000 samples. The control
parameters of the proposed method, NSGA-II, and MOPSO are given in Table 6.1. The various
cases considered are given in Table 6.2. The description of the test systems was given in Table

6.3. PDF specifications and cost components of various sources are given in Table 6.4.

Table 6.1: Control parameters of the proposed method, NSGA-II, and MOPSO.

S. No. Method Control parameters
1. Proposed method N =100, D =12, T =20, P. =1.0, Pm =0.05, max. iterations=100.
2. NSGA-II [57] N =100, P, =0.8, Py, =0.01, and max. iterations=100.
3. MOPSO [58] N =100, C1= C2= 2, W=0.5, and max. iterations=100.
Table 6.2: Various cases considered.
S. No. Test Systems Case # J1 NP NE Ja
Case 1 v 4 -- --
1. IEEE 57-bus system Case 2 v 4 v --
Case 3 v v v v
Case 4 v - v -
2. IEEE 118-bus system Case 5 ~ — " "
Table 6.3: Test systems description.
Specifications IEEE 57-bus system IEEE 118-bus system
Buses 57 118
Lines 80 [59] 186 5]
Thermal units | 7 | Buses:1,2,3,6,8,9 and 12 54 | Buses: [59]
Slack bus 1 | Bus:1 69 | Bus: 69
Transformer 17 Lines:19,20,31,35,36,37,41,46, 9 Lines: 8,32,36, 51, 93,95,102,107 and
tap positions 54,58,59,65,66,71,73,76, and 80 127
Shunt Buses:34,44,45,46,48,74,79,82, 83,
capacitors 3 | Buses:18,25, and 53 12 105, 107 and 110
Generator bus real powers (9) + Generator bus real powers (56) +
Control .
variables 36 | voltages (7) + transformer tap settings | 131 | voltages (54) + transformer tap
(17) + shunt capacitor (3). settings (9) + shunt capacitor (12).
Load - 1250.8MW, 336.4AMVAR - 4242.0MW, 1439.0MVAR
WECS 1 | 45 #bus 1 81 #bus
SPVS 1 | 16 #bus 1 64 #bus
PEVS 1 | 49 #bus 1 117 #bus
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Table 6.4: PDF specifications and cost components of various sources.

S. No. Specifications WECS SPVS PEVS
1. PDF Weibull Lognormal Normal
) Parameters c =10, k =2, v;,=10m/sec, | u =6, 0 = 0.6, G44=800 | u=3.2,

Vout=12m/sec, v,.=12m/sec | W/m?, R =120 W/m? =088
3. Direct cost 1.75 1.60 1.60
coefficient ($/MW)
4, Reserve cost 3 3 3
coefficient ($/MW)
5. Penalty cost 15 15 1.5
coefficient ($/MW)

6.6.1 IEEE 57-bus system

The IEEE 57-bus system [59] was investigated to demonstrate the performance of the proposed
method for solving the MOOPF problem. The information about the IEEE 57-bus system
incorporating WECS, SPVS, and PEV sources used is given in Table 6.3. Notably, the locations
of these sources were chosen from [74], by replacing load buses with the respective WECS,
SPVS, and PEV sources.

a) Case-1: Minimize Ji, and J simultaneously

In this case, the proposed method was simulated by considering two objectives J1 and J2. The
Pareto-optimal fronts (PFs) observed are depicted in Figure 6.2. The optimal decision variables
obtained by the proposed method are presented in Table 6.5. The proposed method obtains a
total generation cost of 35780.28%/h, and emission of 0.8702ton/h. NSGA-II [57] gives
35850.00%/h, 0.9928ton/h and MOPSO [58] gives 35910.00%/h, 1.0120ton/h respectively as
shown in Table 6.6.

b) Case-2: Minimize Ji, J2, and Js simultaneously

In this case, the proposed method was simulated by considering three objectives Ji, J2, and Ja.
The Pareto-optimal fronts (PFs) observed are depicted in Figure 6.2. The optimal decision
variables obtained by the proposed method are presented in Table 6.5. The proposed method
obtains a total generation cost of 36111.28%/h, emission of 0.9568ton/h, and active power loss
of 10.3543MW. NSGA-II [57] gives 36336.00$/h, 1.2498ton/h, 11.0813MW and MOPSO
[58] gives 36402.69%/h, 1.0450ton/h, 12.5591MW respectively as shown in Table 6.6.

c) Case-3: Minimize Ji, J2, J3, and J4 simultaneously

In this case, the proposed method was simulated by considering four objectives Ji, Jo, J3, and
Js. The optimal decision variables obtained by the proposed method are presented in Table 6.5.
The proposed method obtains a total generation cost of 36340.27%/h, emission of 1.1009ton/h,
active power loss of 10.9504MW, and voltage magnitude deviation of 0.8519p.u. NSGA-II
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[57] gives 36250.00$/h, 1.4175ton/h, 12.3871MW, 1.0481p.u. and MOPSO [58] gives
36662.59%/h, 0.9367ton/h, 14.1833MW, 1.0669p.u. respectively as shown in Table 6.6.

1.25 I \ |
12F % * Proposed Mehtod | |
Y * NSGAI
LI5S S * MOPSO -
'}
L1 . N
* ™ * m
~1.05- X, Fex N
g %* LY *
£ #
g 1F *y * L S _
g *% ’ - % b * % *
=095 - *s%* . * i . |
#M*
- * * |
0.9 LN v
Meaa ay i
0.85 - b TT ]
Bk wy N e %
0.8 I~ * * ¥y i a1l
075 | | | | | | |
3.52 354 3.56 3.58 3.6 3.62 3.04 3.66 3.68 37
Ji(s/) 10"
(@)
* Proposed Method
¥ NSGA-II
i ¥ MOPSO

Donh) 08 33 )

(b)
Fig. 6.2: IEEE 57-bus system: Pareto-optimal fronts. a) Case-1, and b) Case-2.
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Table 6.5: IEEE 57-bus system: Optimal control variables obtained by the proposed method.

Limits

S. No. Control variables - Case-1 Case-2 Case-3
min max

L P2 100 98.6033 743511 66.6157
2. P3 140 68.1994 84.8910 73.7500
3. P6 100 94.1666 76.8214 64.6217
4] P8 550 302.9663 306.6662 343.0574
5. P9 0 100 97.5424 96.5544 86.5482
6. P12 410 281.1485 323.7556 333.9688
7. P45 80 79.8163 76.7799 64.5531
8. P16 80 79.6213 77.8880 76.2239
9. P49 20 19.0489 20.0000 12.9058
10. V1 1.0336 1.0292 1.0217
1. V2 1.0426 1.0307 1.0395
12. V3 1.0359 1.0209 1.0209
13. V6 0.95 1.1 1.0238 1.0152 1.0068
14. V8 1.0281 1.0278 1.0267
15. V9 1.0301 1.0322 1.0334
16. V12 0.9964 1.0293 1.0281
17. T19 0.9699 1.0169 0.9913
18. T20 1.0061 0.9466 0.9981
19. T31 0.9952 1.0297 1.0208
20. T35 1.0185 1.0392 0.9834
21 T36 0.9865 0.9587 1.0104
22. T37 1.0302 1.0210 0.9945
23 T4l 0.9931 0.9793 1.0133
24, T46 0.9980 0.9517 0.9548
25, T54 0.9 11 0.9789 1.0221 0.9580
26. T58 1.0155 0.9831 0.9625
27. T59 0.9985 0.9873 0.9783
28. T65 0.9916 0.9903 0.9809
29. T66 0.9863 0.9828 0.9328
30. T71 1.0063 0.9541 1.0035
3L, T73 1.0113 1.0138 0.9825
32. T76 0.9938 0.9960 0.9718
33, T80 0.9709 0.9940 1.0180
34, QC18 9.4263 8.5916 8.6920
35, QC25 0 20 7.8862 9.9315 10.1887
36. QC53 9.5980 8.2526 7.1468
L. Ju($/h) - - 35780.28 36111.28 36340.27
2. Ja(ton/h) - - 0.8702 0.9568 1.1009
3. Ja(MW) ; - - 10.3543 10.9504
4, Ja(p.u.) - - - - 0.8519
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Table 6.6: IEEE 57-bus system: Comparison of the proposed method.

Case # | Objective functions Proposed method NSGA-II [57] MOPSO [58]
Case-1 J1($/h) 35780.28 35850.00 35910.00
Jo(ton/h) 0.8702 0.9928 1.0120
J1($/h) 36111.28 36336.00 36402.69
Case-2 | Jo(ton/h) 0.9568 1.2498 1.0450
J3(MW) 10.3543 11.0813 12.5591
Ji($/h) 36340.27 36250.00 36662.59
Case-3 Jo(ton/h) 1.1009 1.4175 0.9367
J3(MW) 10.9504 12.3871 14.1833
Ja(p.u.) 0.8519 1.0481 1.0669

6.6.2 IEEE 118-bus system

The IEEE 118-bus system [59] was considered to demonstrate the efficacy of the proposed
method on a big system. The information about the IEEE 118-bus system incorporating WECS,
SPVS, and PEV sources used is given in Table 6.3. Notably, the locations of these sources
were chosen from [74], by replacing load buses with the respective WECS, SPVS, and PEV
sources.

a) Case-4: Minimize Ji, and Js simultaneously

In this case, the proposed method was simulated by considering two objectives Ji, and Jz. The
Pareto-optimal fronts (PFs) observed are depicted in Figure 6.3. The optimal decision variables
obtained by the proposed method are presented in Table 6.7. The proposed method obtains a
total generation cost of 127890.61$/h, and an active power loss of 33.3705MW. NSGA-I1 [57]
gives 129582.23%/h, 37.3464MW and MOPSO [58] gives 130673.5$/h, 38.0368MW
respectively as shown in Table 6.8.

b) Case-5: Minimize J1, J3, and J4 simultaneously

In this case, the proposed method was simulated by considering three objectives Ji, Jz, and Ja.
The Pareto-optimal fronts (PFs) observed are depicted in Figure 6.3. The optimal decision
variables obtained by the proposed method are presented in Table 6.7. The proposed method
obtains a total generation cost of 130749.11$/h, active power loss of 38.2259MW, and voltage
magnitude deviation of 0.4511p.u. NSGA-II [57] gives 134395.5%/h, 40.0724MW, 0.6876p.u.
and MOPSO [58] gives 133574.6%/h, 41.3020MW, 0.9706p.u. respectively as shown in Table
6.8.
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Fig. 6.3: IEEE 118-bus system: Pareto-optimal fronts. a) Case-4, and b) Case-5.
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Table 6.7: IEEE 118-bus system: Optimal control variables obtained by the proposed method.

,\? ' Control .lelts Case-4 Case-5 Control .lelts Case-4 Case-5
0. variables min | max NO- variables min | max

1. P1 100 | 55.9460 | 48.6240 | 68. V26 1.0178 1.0307
2. P4 100 | 39.0503 | 43.6199 | 69. V27 1.0297 1.0318
3. P6 100 | 56.3835 | 56.3541 | 70. V31 1.0184 1.0121
4. P8 100 | 54.5506 | 37.2383 | 71. V32 1.0182 1.0019
5. P10 550 | 173.927 | 181.510 | 72. V34 1.0243 1.0045
6. P12 185 | 67.0061 | 85.3627 | 73. V3 1.0429 1.0027
7. P15 100 | 48.2205 | 48.2502 | 74. V40 1.0352 1.0122
8. P18 100 | 45.9455 | 40.6351 | 75. V42 1.0165 1.0207
9. P19 100 | 51.4212 | 38.9266 | 76. V46 1.0292 1.0287
10. P24 100 | 45.6110 | 43.8313 | 77. V49 1.0177 1.0110
11. P25 320 | 88.1517 | 107.417 | 7s. V54 1.0228 1.0018
12. P26 414 | 139.941 | 143,538 | 79. V55 0951 11 5168 1.0151
13. P27 100 | 56.0018 | 53.8079 | 80. V56 1.0154 1.0180
14, P31 107 | 18.1830 | 10.9532 | 81. V59 1.0193 1.0160
15. P32 100 | 51.1361 | 44.4332 | 82. V61 1.0296 1.0011
16. P34 100 | 42.2086 | 53.2355 | 83. V62 1.0245 1.0068
17. P36 100 | 41.1170 | 51.3992 | 84. V65 1.0144 1.0007
18. P40 100 | 66.2173 | 43.2414 | 85. V66 1.0162 1.0112
19. P42 100 | 59.6259 | 64.8196 | 86. V69 1.0250 1.0095
20. P46 119 | 35.3173 | 53.9039 | 87. V70 1.0266 1.0118
21. P49 304 | 142501 | 162.688 | 88. V72 0.9897 1.0338
22. P54 148 | 85.1966 | 79.4450 | 89. V73 1.0493 1.0116
23. P55 100 | 43.7812 | 46.0740 | 90. V74 1.0115 1.0220
24. P56 100 | 73.7154 | 64.3958 | 91. V76 1.0384 1.0181
25. P59 255 | 142.951 | 121.802 | 92. V77 1.0260 1.0069
26. P61 260 | 112.737 | 102575 | 93. V80 1.0323 1.0154
27. P62 0 100 | 32.7737 | 33.4058 | 94. V85 1.0222 1.0083
28. P65 491 | 219.553 | 185.720 | 95. V87 1.0175 1.0229
29. P66 492 | 210.691 | 173.373 | 96. V89 1.0459 1.0158
30. P70 100 | 44.5214 | 39.1977 | 97. V90 1.0331 1.0215
31. P72 100 | 28.1889 | 38.9919 | 98. Vol 1.0313 1.0356
32. P73 100 | 45.6510 | 33.4913 | 99. V92 1.0322 1.0073
33. P74 100 | 52.7319 | 54.0390 | 100. V99 1.0288 1.0398
34. P76 100 | 57.4716 | 59.8387 | 101. V100 1.0363 1.0168
35. P77 100 | 49.0969 | 49.5707 | 102. V103 1.0262 1.0155
36. P80 577 | 264.626 | 215.734 | 103. V104 1.0230 1.0330
37. P85 100 | 38.1422 | 53.5711 | 104. V105 1.0227 1.0089
38. P87 104 | 9.2807 | 85961 | 105. V107 1.0192 1.0293
30. P89 707 | 226.574 | 247.730 | 106. V110 1.0160 1.0135
40. P90 100 | 44.6105 | 47.3346 | 107. V111 1.0152 1.0249
41. PO1 100 | 45.9099 | 42.2742 | 108. V112 1.0099 1.0278
42. P92 100 | 35.3494 | 34.6101 | 109. V113 1.0405 1.0139
43. P99 100 | 38.3796 | 53.0877 | 110. V116 1.0306 1.0077
44, P100 352 | 136.606 | 150.785 | 111. T8 0.9871 1.0178
45, P103 140 | 56.5448 | 47.0893 | 112. T32 0.9952 1.0190
46. P104 100 | 33.6492 | 60.5636 | 113. T36 0.9914 0.9827
47. P105 100 | 56.5368 | 30.3130 | 114. T51 1.0251 0.9933
48. P107 100 | 28.6504 | 58.8769 | 115. T93 09 |11 [1.0069 1.0144
49. P110 100 | 52.2132 | 35.2832 | 116. T95 0.9791 0.9795
50. P111 136 | 32.2479 | 38.7994 | 117. T102 1.0044 0.9924
51. P112 100 | 25.2790 | 44.2174 | 118. T107 0.9813 0.9928
52. P113 100 | 23.7058 | 44.1563 | 119. T127 1.0172 0.9870
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53. P116 100 [ 46.6905 | 45.1908 | 120. QC34 116919 | 13.8154
54, P81 150 | 116.444 | 139.032 | 121. QC44 112106 | 10.0945
55. P64 150 | 126.922 | 104.668 | 122. QC45 14.6353 | 15.2303
56. P117 40 | 19.4935 | 21.7456 | 123. QC46 9.9899 | 125583
57. V1 1.0190 | 1.0200 | 124. QC48 11.2227 | 10.7383
58. V4 1.0210 | 1.0063 | 125. QC74 17.2265 | 13.3213
59. V6 1.0217 | 10128 | 126. QC79 0 |25 [123653 | 129234
60. V8 1.0246 | 1.0092 | 127. QC82 7.8219 | 145555
61. V10 1.0313 | 09973 | 128. QCs3 9.2042 | 11.3947
62. V12 1.0286 | 1.0310 | 129. QC105 10.8933 | 17.0364
63. V15 1.0220 | 1.0048 | 130. QC107 117149 | 11.3518
64. V18 1.0210 | 1.0177 | 131 QC110 111915 | 11.8901
65. V19 1.0287 |1.0345 | 1. Ji($/h) - - 1278906 | 130749.1
66. V24 1.0250 |1.0231 | 2. Js(MW) | - - 33.3705 | 38.2259
67. V25 0.9987 | 1.0055 | 3. Ja(p.u) - - - 0.4511

Table 6.8: IEEE 118-bus system: Comparison of the proposed method.
Case# | Objective functions Proposed method NSGA-II [57] MOPSO [58]
Caseod J1($/h) 127890.61 129582.23 130673.5
J3(MW) 33.3705 37.3464 38.0368
J1($/h) 130749.11 134395.5 133574.6
Case-5 | J3(MW) 38.2259 40.0724 41.3020
Ja(p.u.) 0.4511 0.6876 0.9706
6.7 Summary

This chapter introduced a solution to the MOOPF problem in a thermal, WECS, SPVS, and

PEV integrated power system using hybrid MOEA based on decomposition and IWO methods.

It also addressed the constraints of the MOOPF problem with the superiority of the feasible

solution (SF) method. In conjunction with the minimization of emission, active power loss, and

voltage magnitude deviation, the generation cost of thermal generators and the uncertainty cost
of WECS, SPVS, and PEV systems were reduced. The unpredictability of WECS, SPVS, and

PEV powers was assessed with Monte Carlo simulations. To illustrate the efficacy of the

proposed technique, simulations were done on the IEEE 57-bus and IEEE 118-bus systems,

and the results were compared with NSGA-II and MOPSO algorithms. The outcomes indicate

that the proposed technique is much more reliable and superior to existing techniques.
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Chapter 7

Conclusions

In this thesis, the power system OPF problem was solved using new hybrid MOEASs. The thesis
explored the new multi-objective frameworks such as decomposition-based MOEAs and their
application to the MOOPF problem. Furthermore, stochastic WECS, SPVS, and PEV systems
were integrated into the conventional OPF to study the impact of uncertainty. Since MOOPF
IS a constrained problem, in this thesis, effective constraint handling methods were proposed
for solving the OPF problem. A fuzzy method was used to obtain the best-compromised
solution among the solutions obtained. This chapter presents the important findings proposed

through the research work and discusses future extensions of the proposed research work.

7.1  Summary of Important Findings
The following conclusions were arrived at from the research work carried out and reported in

previous chapters of this thesis.

1) Anew hybrid decomposition and local dominance-based MOEA was proposed for the OPF
problem.

e The MOOPF problem was modeled with four objectives: minimizing total generation
cost, emission, active power loss, and voltage magnitude deviation.

e The hybridization of decomposition and dominance methodologies increased the Pareto
front's convergence and diversity of solutions.

e The MOOPF problem constraints were handled using a static-penalty method, in which
a penalty is imposed to the fitness of the infeasible solutions with this all infeasible
solutions are discarded and only considers feasible ones, and this would help in
achieving the global optimal solution.

e The results of the proposed method were compared with NSGA-II and MOPSO and
demonstrated on IEEE 57-bus and IEEE 118-bus systems.

2) A new hybrid decomposition and summation of normalized objectives with improved
diversified selection-based MOEA were proposed for solving the OPF problem including
the WECS, and SPVS uncertainty.

e Integrating RESs like WECS and SPVS sources with conventional OPF to consider the
impact of the uncertain nature of these sources. The uncertain nature of RESs was
modeled using PDFs and their uncertainty cost was calculated using Monte-Carlo

simulations.
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A new constraint handling method was adopted so that it enhances the quality of the
solution and eliminates the parameter dependence in handling constraints.

The proposed method was tested on IEEE 57-bus and IEEE 118-bus systems. The
findings obtained demonstrate that the proposed strategy is superior to NSGA-II and
MOPSO.

3) A novel hybrid decomposition and summation of normalized objectives with improved

diversified selection-based MOEA was proposed for OPF problems including WECS,

SPVS, and PEV system uncertainty.

The MOOPF problem was designed with four objectives: minimizing total generation
cost, emission, active power loss, and voltage magnitude deviation.

A new constraint handling method was adopted so that it enhances the quality of the
solution and eliminates the parameter dependence in handling constraints.

The impact of WECS, SPVS generation, as well as PEV uncertainties, was taken into
account to validate the proposed method.

The proposed method was tested on IEEE 57-bus and IEEE 118-bus systems. The
findings obtained demonstrate that the proposed strategy is superior to NSGA-II and
MOPSO.

4) A new hybrid decomposition and invasive weed optimization (IWQO) based MOEA was
proposed for OPF including WECS, SPVS, and PEV system uncertainty.

The MOOPF problem was designed with four objectives: minimizing total generation
cost, emission, active power loss, and voltage magnitude deviation.

A new constraint handling method was adopted so that it enhances the quality of the
solution and eliminates the parameter dependence in handling constraints.

The impact of WECS, SPVS generation, as well as PEV uncertainties, was taken into
account to validate the proposed method.

The proposed method was tested on IEEE 57-bus and IEEE 118-bus systems. The
findings obtained demonstrate that the proposed strategy is superior to NSGA-I1 and
MOPSO.
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7.2 Scope of the Future Work
The present research can be extended for future research. The probable areas where research

can be contemplated are:

e Big data, data analytics techniques, and machine learning methods can be used to model
multi-objective framework design to adopt problem-specific and computationally
complex problems like the MOOPF problems.

e To evaluate the efficacy of MOEAs for multi-objective optimization problems, other
CHM such as epsilon constraint (EC), and stochastic ranking (SR) can be combined.

e To discover the best-compromised solutions, more sophisticated decision-making
techniques may be utilized, such as the pseudo-weight method, and Lp metric.

e Future research will continue to focus on the dynamic optimal power flow (DOPF)
problem, which takes into account the ramping rate of generators, variations in load
needs across time, the stochastic character of all renewable sources, and all network

restrictions.
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Appendix-A
IEEE 57-bus system data

Number of buses: 57

Number of lines: 80

Total active power load: 1250.80 MW
Total reactive power load: 336.40 MVAR

17

S

10

Fig. A.1: Single-line diagram of IEEE 57-bus system

Table A.1: Line data of IEEE 57-bus system

Line No.| From To R X B
(inpu) | (in pu) (in pu)
1 1 2 0.0083 0.0280 0.1290
2 2 3 0.0298 0.0850 0.0818
3 3 4 0.0112 0.0366 0.0380
4 4 5 0.0625 0.1320 0.0258
5 4 6 0.0430 0.1480 0.0348
6 6 7 0.0200 0.1020 0.0276
7 6 8 0.0339 0.1730 0.0470
8 8 9 0.0099 0.0505 0.0548
9 9 10 0.0369 0.1679 0.0440
10 9 11 0.0258 0.0848 0.0218
11 9 12 0.0648 0.2950 0.0772
12 9 13 0.0481 0.1580 0.0406
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13 13 14 0.0132 0.0434 0.0110
14 13 15 0.0269 0.0869 0.0230
15 1 15 0.0178 0.0910 0.0988
16 1 16 0.0454 0.2060 0.0546
17 1 17 0.0238 0.1080 0.0286
18 3 15 0.0162 0.0530 0.0544
19 4 18 0 0.5550 0
20 4 18 0 0.4300 0
21 5 0.0302 0.0641 0.0124
22 7 0.0139 0.0712 0.0194
23 10 12 0.0277 0.1262 0.0328
24 11 13 0.0223 0.0732 0.0188
25 12 13 0.0178 0.0580 0.0604
26 12 16 0.0180 0.0813 0.0216
27 12 17 0.0397 0.1790 0.0476
28 14 15 0.0171 0.0547 0.0148
29 18 19 0.4610 0.6850 0
30 19 20 0.2830 0.4340 0
31 21 20 0 0.7767 0
32 21 22 0.0736 0.1170 0
33 22 23 0.0099 0.0152 0
34 23 24 0.1660 0.2560 0.0084
35 24 25 0 1.1820 0
36 24 25 0 1.2300 0
37 24 26 0 0.0473 0
38 26 27 0.1650 0.2540 0
39 27 28 0.0618 0.0954 0
40 28 29 0.0418 0.0587 0
41 7 29 0 0.0648 0
42 25 30 0.1350 0.2020 0
43 30 31 0.3260 0.4970 0
44 31 32 0.5070 0.7550 0
45 32 33 0.0392 0.0360 0
46 34 32 0 0.9530 0
47 34 35 0.0520 0.0780 0.0032
48 35 36 0.0430 0.0537 0.0016
49 36 37 0.0290 0.0366 0
50 37 38 0.0651 0.1009 0.0020
51 37 39 0.0239 0.0379 0
52 36 40 0.0300 0.0466 0
53 22 38 0.0192 0.0295 0
54 11 41 0 0.7490 0
55 41 42 0.2070 0.3520 0
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56 41 43 0 0.4120 0
57 38 44 0.0289 0.0585 0.0020
58 15 45 0 0.1042 0
59 14 46 0 0.0735 0
60 46 47 0.0230 0.0680 0.0032
61 47 48 0.0182 0.0233 0
62 48 49 0.0834 0.1290 0.0048
63 49 50 0.0801 0.1280 0
64 50 51 0.1386 0.2200 0
65 10 51 0 0.0712 0
66 13 49 0 0.1910 0
67 29 52 0.1442 0.1870 0
68 52 53 0.0762 0.0984 0
69 53 54 0.1878 0.2320 0
70 54 55 0.1732 0.2265 0
71 11 43 0 0.1530 0
72 44 45 0.0624 0.1242 0.0040
73 40 56 0 1.1950 0
74 56 41 0.5530 0.5490 0
75 56 42 0.2125 0.3540 0
76 39 57 0 1.3550 0
77 57 56 0.1740 0.2600 0
78 38 49 0.1150 0.1770 0.0030
79 38 48 0.0312 0.0482 0
80 9 55 0 0.1205 0

Table A.2: Bus data of IEEE 57-bus system

Bus P Q
No. (MW) | (MVAR)
1 55 17

2 3 88

3 411 21

4 0

5 0

6 75

7 0 0

8 150 22

9 121 26
10 5

11 0

12 377 24
13 18 2.3
14 10.5 5.3
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15 22 5
16 43 3
17 42

18 27.2 9.8
19 33 0.6
20 2.3 1
21 0 0
22 0 0
23 6.3 2.1
24 0 0
25 6.3 3.2
26 0 0
27 9.3 0.5
28 4.6 2.3
29 17 2.6
30 3.6 1.8
31 5.8 2.9
32 16 0.8
33 3.8 1.9
34 0 0
35 6 3
36 0 0
37 0 0
38 14 7
39 0 0
40 0 0
41 6.3 3
42 7.1 4.4
43 2 1
44 12 1.8
45 0 0
46 0 0
47 29.7 11.6
48 0 0
49 18 8.5
50 21 105
51 18 5.3
52 4.9 2.2
53 20 10
54 4.1 1.4
55 6.8 3.4
56 7.6 2.2
57 6.7 2
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Table A.3: IEEE 57-bus system: Cost and Emission coefficients

S.No. | Bus No. | Cost coefficients Emission coefficients
alb c a B y 1) €
1. 1 0 | 20 | 0.0775795 | 0.040 | -0.05 | 0.060 | 0.00002 | 0.5
2. 2 0 | 40 0.01 0.030 | -0.06 | 0.050 | 0.00005 | 1.5
3. 3 0| 20 0.25 0.040 | -0.05 | 0.040 | 0.00001 | 1.0
4. 6 0 | 40 0.01 0.035 | -0.03 | 0.035 | 0.00002 | 0.5
5. 8 0 | 20 | 0.0222222 | 0.050 | -0.05 | 0.045 | 0.00004 | 2.0
6. 9 0 | 40 0.01 0.045 | -0.04 | 0.050 | 0.00001 | 2.0
7. 12 0 | 20 | 0.0322581 | 0.060 | -0.05 | 0.050 | 0.00001 | 1.5
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Appendix-B
IEEE 118-bus system data

Number of buses: 118
Number of lines: 186
Total active power load: 4242.00 MW

Total reactive power load: 1439.00 MVAR
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Fig. B.1: Single-line diagram of IEEE 118-bus system

Table B.1: Line data of IEEE 118-bus system

Line From To R X B

No. (in pu) | (in pu) (in pu)
1 1 2 0.0303 | 0.0999 | 0.0254
2 1 3 0.0129 | 0.0424 | 0.0108
3 4 5 0.00176 | 0.00798 | 0.0021
4 3 5 0.0241 | 0.1080 | 0.0284
5 5 6 0.0119 | 0.0540 | 0.0142
6 6 7 0.00459 | 0.0208 | 0.0055
7 8 9 0.00244 | 0.0305 | 1.1620
8 8 5 0 0.0267 | 0
9 9 10 0.00258 | 0.0322 | 1.2300
10 4 11 0.0209 | 0.0688 | 0.01748
11 5 11 0.0203 | 0.0682 | 0.01738
12 11 12 0.00595 | 0.0196 | 0.00502
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13 2 12 0.0187 | 0.0616 | 0.01572
14 3 12 0.0484 | 0.1600 | 0.0406
15 7 12 0.00862 | 0.0340 | 0.00874
16 11 13 0.02225 | 0.0731 | 0.01876
17 12 14 0.0215 | 0.0707 | 0.01816
18 13 15 0.0744 | 0.2444 | 0.06268
19 14 15 0.0595 | 0.1950 | 0.0502
20 12 16 0.0212 | 0.0834 | 0.0214
21 15 17 0.0132 | 0.0437 | 0.0444
22 16 17 0.0454 | 0.1801 | 0.0466
23 17 18 0.0123 | 0.0505 | 0.01298
24 18 19 0.01119 | 0.0493 | 0.01142
25 19 20 0.0252 | 0.1170 | 0.0298
26 15 19 0.0120 | 0.0394 | 0.0101
27 20 21 0.0183 | 0.0849 | 0.0216
28 21 22 0.0209 | 0.0970 | 0.0246
29 22 23 0.0342 | 0.1590 | 0.0404
30 23 24 0.0135 | 0.0492 | 0.0498
31 23 25 0.0156 | 0.0800 | 0.0864
32 26 25 0 0.0382 | O

33 25 27 0.0318 | 0.1630 | 0.1764
34 27 28 0.01913 | 0.0855 | 0.0216
35 28 29 0.0237 | 0.0943 | 0.0238
36 30 17 0 0.0388 | 0

37 8 30 0.00431 | 0.0504 | 0.5140
38 26 30 0.00799 | 0.0860 | 0.9080
39 17 31 0.0474 | 0.1563 | 0.0399
40 29 31 0.0108 | 0.0331 | 0.0083
41 23 32 0.0317 | 0.1153 | 0.1173
42 31 32 0.0298 | 0.0985 | 0.0251
43 27 32 0.0229 | 0.0755 | 0.01926
44 15 33 0.0380 | 0.1244 | 0.03194
45 19 34 0.0752 | 0.2470 | 0.0632
46 35 36 0.00224 | 0.0102 | 0.00268
47 35 37 0.0110 | 0.0497 | 0.0131
48 33 37 0.0415 | 0.1420 | 0.0366
49 34 36 0.00871 | 0.0268 | 0.00568
50 34 37 0.00256 | 0.0094 | 0.00984
51 38 37 0 0.0375 | 0

52 37 39 0.0321 | 0.1060 | 0.0270
53 37 40 0.0593 | 0.1680 | 0.0420
54 30 38 0.00464 | 0.0540 | 0.4220
55 39 40 0.0184 | 0.0605 | 0.01552
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56 40 41 0.0145 | 0.0487 | 0.01222
57 40 42 0.0555 | 0.1830 | 0.0466
58 41 42 0.0410 | 0.1350 | 0.0344
59 43 44 0.0608 | 0.2454 | 0.06068
60 34 43 0.0413 | 0.1681 | 0.04226
61 44 45 0.0224 | 0.0901 | 0.0224
62 45 46 0.0400 | 0.1356 | 0.0332
63 46 47 0.0380 | 0.1270 | 0.0316
64 46 48 0.0601 | 0.1890 | 0.0472
65 47 49 0.0191 | 0.0625 | 0.01604
66 42 49 0.0715 | 0.3230 | 0.0860
67 42 49 0.0715 | 0.3230 | 0.0860
68 45 49 0.0684 | 0.1860 | 0.0444
69 48 49 0.0179 | 0.0505 | 0.01258
70 49 50 0.0267 | 0.0752 | 0.01874
71 49 51 0.0486 | 0.1370 | 0.0342
72 51 52 0.0203 | 0.0588 | 0.01396
73 52 53 0.0405 | 0.1635 | 0.04058
74 53 54 0.0263 | 0.1220 | 0.0310
75 49 54 0.073 0.289 0.0738
76 49 54 0.0869 | 0.291 0.073
7 54 55 0.0169 | 0.0707 | 0.0202
78 54 56 0.00275 | 0.00955 | 0.00732
79 55 56 0.00488 | 0.0151 | 0.00374
80 56 57 0.0343 | 0.0966 | 0.0242
81 50 57 0.0474 | 0.134 0.0332
82 56 58 0.0343 | 0.0966 | 0.0242
83 51 58 0.0255 | 0.0719 | 0.01788
84 54 59 0.0503 | 0.2293 | 0.0598
85 56 59 0.0825 | 0.251 0.0569
86 56 59 0.0803 | 0.239 0.0536
87 55 59 0.04739 | 0.2158 | 0.05646
88 59 60 0.0317 | 0.145 0.0376
89 59 61 0.0328 | 0.15 0.0388
90 60 61 0.00264 | 0.0135 | 0.01456
91 60 62 0.0123 | 0.0561 | 0.01468
92 61 62 0.00824 | 0.0376 | 0.0098
93 63 59 0 0.0386 | O

94 63 64 0.00172 | 0.02 0.216
95 64 61 0 0.0268 | O

96 38 65 0.00901 | 0.0986 | 1.046
97 64 65 0.00269 | 0.0302 | 0.38

98 49 66 0.018 0.0919 | 0.0248
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99 49 66 0.018 0.0919 | 0.0248
100 62 66 0.0482 | 0.218 0.0578
101 62 67 0.0258 | 0.117 0.031
102 65 66 0 0.037 0

103 66 67 0.0224 | 0.1015 | 0.02682
104 65 68 0.00138 | 0.016 0.638
105 47 69 0.0844 | 0.2778 | 0.07092
106 49 69 0.0985 | 0.324 0.0828
107 68 69 0 0.037 0

108 69 70 0.03 0.127 0.122
109 24 70 0.00221 | 0.4115 | 0.10198
110 70 71 0.00882 | 0.0355 | 0.00878
111 24 72 0.0488 | 0.196 0.0488
112 71 72 0.0446 | 0.18 0.04444
113 71 73 0.00866 | 0.0454 | 0.01178
114 70 74 0.0401 | 0.1323 | 0.03368
115 70 75 0.0428 | 0.141 0.036
116 69 75 0.0405 | 0.122 0.124
117 74 75 0.0123 | 0.0406 | 0.01034
118 76 77 0.0444 | 0.148 0.0368
119 69 77 0.0309 | 0.101 0.1038
120 75 77 0.0601 | 0.1999 | 0.04978
121 77 78 0.00376 | 0.0124 | 0.01264
122 78 79 0.00546 | 0.0244 | 0.00648
123 77 80 0.017 0.0485 | 0.0472
124 77 80 0.0294 | 0.105 0.0228
125 79 80 0.0156 | 0.0704 | 0.0187
126 68 81 0.00175 | 0.0202 | 0.808
127 81 80 0 0.037 0

128 77 82 0.0298 | 0.0853 | 0.08174
129 82 83 0.0112 | 0.03665 | 0.03796
130 83 84 0.0625 | 0.132 0.0258
131 83 85 0.043 0.148 0.0348
132 84 85 0.0302 | 0.0641 | 0.01234
133 85 86 0.035 0.123 0.0276
134 86 87 0.02828 | 0.2074 | 0.0445
135 85 88 0.02 0.102 0.0276
136 85 89 0.0239 | 0.173 0.047
137 88 89 0.0139 | 0.0712 | 0.01934
138 89 90 0.0518 | 0.188 0.0528
139 89 90 0.0238 | 0.0997 | 0.106
140 90 91 0.0254 | 0.0836 | 0.0214
141 89 92 0.0099 | 0.0505 | 0.0548
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142 89 92 0.0393 | 0.1581 | 0.0414
143 91 92 0.0387 | 0.1272 | 0.03268
144 92 93 0.0258 | 0.0848 | 0.0218
145 92 94 0.0481 | 0.158 0.0406
146 93 94 0.0223 | 0.0732 | 0.01876
147 94 95 0.0132 | 0.0434 | 0.0111
148 80 96 0.0356 | 0.182 0.0494
149 82 96 0.0162 | 0.053 0.0544
150 94 96 0.0269 | 0.0869 | 0.023
151 80 97 0.0183 | 0.0934 | 0.0254
152 80 98 0.0238 | 0.108 0.0286
153 80 99 0.0454 | 0.206 0.0546
154 92 100 0.0648 | 0.295 0.0472
155 94 100 0.0178 | 0.058 0.0604
156 95 96 0.0171 | 0.0547 | 0.01474
157 96 97 0.0173 | 0.0885 | 0.024
158 98 100 0.0397 | 0.179 0.0476
159 99 100 0.018 0.0813 | 0.0216
160 100 101 0.0277 | 0.1262 | 0.0328
161 92 102 0.0123 | 0.0559 | 0.01464
162 101 102 0.0246 | 0.112 0.0294
163 100 103 0.016 0.0525 | 0.0536
164 100 104 0.0451 | 0.204 0.0541
165 103 104 0.0466 | 0.1584 | 0.0407
166 103 105 0.0535 | 0.1625 | 0.0408
167 100 106 0.0605 | 0.229 0.062
168 104 105 0.00994 | 0.0378 | 0.00986
169 105 106 0.014 0.0547 | 0.01434
170 105 107 0.053 0.183 0.0472
171 105 108 0.0261 | 0.0703 | 0.01844
172 106 107 0.053 0.183 0.0472
173 108 109 0.0105 | 0.0288 | 0.0076
174 103 110 0.03906 | 0.1813 | 0.0461
175 109 110 0.0278 | 0.0762 | 0.0202
176 110 111 0.022 0.0755 | 0.02
177 110 112 0.0247 | 0.064 0.062
178 17 113 0.00913 | 0.0301 | 0.00768
179 32 113 0.0615 | 0.203 0.0518
180 32 114 0.0135 | 0.0612 | 0.01628
181 27 115 0.0164 | 0.0741 | 0.01972
182 114 115 0.0023 | 0.0104 | 0.00276
183 68 116 0.00034 | 0.00405 | 0.164
184 12 117 0.0329 | 0.14 0.0358
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185

75

118

0.0145

0.0481

0.01198

186

76

118

0.0164

0.0544

0.01356

Table B.2: Bus data of IEEE 118-bus system

Bus P Q
No (MW) | (MVAR)
1 51 27
2 20 9
3 39 10
4 39 12
5 0 0
6 52 22
7 19 2
8 28 0
9 0
10
11 70 23
12 47 10
13 34 16
14 14 1
15 90 30
16 25 10
17 11 3
18 60 34
19 45 25
20 18 3
21 14 8
22 10 5
23 7 3
24 13 0
25 0
26 0
27 71 13
28 17
29 24
30 0
31 43 27
32 59 23
33 23 9
34 59 26
35 33 9
36 31 17
37
38
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39 27 11
40 66 23
41 37 10
42 96 23
43 18 7
44 16

45 53 22
46 28 10
47 34 0
48 20 11
49 87 30
50 17 4
51 17

52 18 5
53 23 11
54 113 32
55 63 22
56 84 18
57 12 3
58 12 3
59 277 113
60 78 3
61 0 0
62 77 14
63 0
64

65

66 39 18
67 28

68

69

70 66 20
71 0

72 12

73 6

74 68 27
75 47 11
76 68 36
77 61 28
78 71 26
79 39 32
80 130 26
81 0 0
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82 54 27
83 20 10
84 11 7
85 24 15
86 21 10
87 0 0
88 48 10
89 0 0
90 163 42
91 10 0
92 65 10
93 12 7
94 30 16
95 42 31
96 38 15
97 15 9
98 34 8
99 42 0
100 37 18
101 22 15
102 5 3
103 23 16
104 38 25
105 31 26
106 43 16
107 50 12
108
109 8 3
110 39 30
111 0 0
112 68 13
113 6 0
114 8 3
115 22 7
116 184 0
117 20 8
118 33 15
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Table B.3: IEEE 118-bus system: Cost coefficients

S.No. |BusNo. [a| b c
1. 1 0 | 20 | 0.0193648335
2. 4 0|40 0.01
3. 6 0|40 0.01
4, 8 0|40 0.01
5. 10 0|40 0.01
6. 12 0 | 20 | 0.0222222222
7. 15 0 | 20 | 0.117647059
8. 18 040 0.01
9. 19 040 0.01
10. 24 040 0.01
11. 25 040 0.01
12. 26 0 | 20 | 0.0454545455
13. 27 0 | 20 | 0.0318471338
14. 31 040 0.01
15. 32 0|20 1.42857143
16. 34 040 0.01
17. 36 0|40 0.01
18. 40 0|40 0.01
19. 42 0|40 0.01
20. 46 0|40 0.01
21. 49 0 | 20 | 0526315789
22. 54 0 | 20 | 0.0490196078
23 55 0 | 20 | 0.208333333
24, 56 0|40 0.01
25. 59 0|40 0.01
26. 61 0 | 20 | 0.064516129
27. 62 020 0.0625
28. 65 0|40 0.01
29. 66 0 | 20 | 0.0255754476
30. 69 0 | 20 | 0.0255102041
31. 70 040 0.01
32. 72 040 0.01
33. 73 040 0.01
34. 74 040 0.01
35. 76 040 0.01
36. 77 040 0.01
37. 80 0 | 20 | 0.0209643606
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38. 85 0140 0.01
39. 87 0|20 25
40. 89 0 | 20 | 0.0164744646
41. 90 0|40 0.01
42. 91 0|40 0.01
43. 92 0|40 0.01
44, 99 0|40 0.01
45. 100 0 | 20 | 0.0396825397
46. 103 0]20 0.25
47. 104 040 0.01
48. 105 040 0.01
49. 107 040 0.01
50. 110 040 0.01
51 111 0120 | 0277777778
52. 112 040 0.01
53. 113 040 0.01
54. 116 040 0.01
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