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ABSTRACT 

 

Speech enhancement (SE) is important when the speech signal is degraded by real-world 

background noise. Degradation impacts the quality and intelligibility of speech and decreases the 

performance of speech processing systems. The main goal of the SE method is to reduce or 

suppress the noise from the degraded speech signal while preserving the perceptual quality of 

speech (PESQ) and intelligibility (STOI) with the least distortion. Noise estimation is a crucial 

stage in SE, and it commonly necessitates the use of prior models for speech, noise, or both. Prior 

models, on the other hand, can be ineffective in dealing with nonstationary noise, especially at 

low signal-to-noise (SNR) levels. Estimating noise-related parameters in SE techniques is 

challenging task in low SNR and nonstationary noise environments. Existing SE techniques are 

limited to various types of stationary noise and lack robustness to some forms of real-world noise, 

which are in general nonstationary. These techniques are able to improve speech quality while 

introducing considerable signal distortion, leading to poor intelligibility. Specifically, due to the 

enhancement process, these techniques introduce significant distortion under strong noisy 

conditions, i.e., low SNR (< 0 dB). Signal subspace decomposition methods for denoising offer 

superior performance interms of low signal distortion and residual noise.  

Recently, sparse coding has gained popularity in signal denoising. A sparse representation 

decomposes a signal into a small set of over-complete (dictionary) components tailored to the 

processed data. Determining the best appropriate criterion to identify the principal components 

(called atoms) from the learnt dictionary to generate the principal (signal) subspace and removing 

the other is difficult for signal subspace decomposition based on a sparse representation. 

Dictionary learning based on compressive sensing is hard due to insufficient training a noise 

dictionary. The performance degrades in real world scenarios due to mismatch between unknown 

background noise and the training noises. Therefore, unsupervised models are needed to enhance 

the noisy speech. Estimating noise-related parameters in unsupervised SE techniques is 

challenging in low SNR and nonstationary noise environments. In the recent SE approaches, best 

results are achieved by partitioning noisy speech spectrogram into low rank noise and sparse 

speech parts.   
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This research investigates an unsupervised SE strategy, Robust Principal Component analysis 

(RPCA) to estimate noise and speech when neither is available beforehand by decomposing the 

input noisy spectrum into low-rank noise and sparse speech components. Due to approximation 

of rank of the noise, these strategies are limited and don't directly use low-rank in optimization. 

Nuclear norm minimization (NNM) can recover the matrix's rank under specific theoretical 

guarantee conditions. In many instances, NNM can't correctly predict matrix rank. Weighted 

nuclear norm minimization (WNNM) addresses NNM's drawbacks and delivers a better matrix 

rank approximation than NNM. In this work, a weighted low rank and sparsity constraints is 

employed to differentiate speech and noise spectrograms. However, few limitations reduce the 

performance of these SE methods due to the use of: overlap and add in STFT process, noisy phase, 

due to inaccurate estimation of low- rank in nuclear norm minimization and Euclidian distance 

measure in cost function. These aspects can cause loss of information in the reconstructed signal 

when compared to clean speech.  To solve this, a novel wavelet-based weighted low-rank sparse 

decomposition model is developed for enhancing speech by incorporating a gamma-tone filter 

bank and Kullback Leibler  Divergence(KLD). The proposed framework differs from other strategies 

in which the SE is carried entirely in Time-domain without the need for noise estimation. The 

experimental findings using Noizeus speech corpus indicate that the proposed integrated model 

has shown significant improvement under low SNR conditions over individual and traditional 

methods with regard to objective metrics such as  SDR, PESQ, STOI, SIG, BAK and OVL. 

Further, to reduce the Word Error Rate, these algorithms were trained and tested on a typical 

Automatic Speech Recognition module. 

Finally, the enhanced speech signals are trained and assessed using standard khaldi automatic 

speech recognition (ASR) engine to lower Word Error Rate (WER). Extensive studies on the 

impact of real-world noise on speech signals reveal that the proposed model surpasses the existing 

state-of-the-art methods, resulted in improving the recognition accuracy in terms of WER.  
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Chapter 1 

INTRODUCTION 

Speech is an effective way to express thoughts, as well as one's feelings and interests. It is 

one of the most typical forms of human communication.  Due to technological advancements 

speech communication is currently performed not only in person-to-person interactions but may 

also be done across long distances, such as through telecommunications, or it can even be used as 

a natural manner of human-machine connection. As computationally complex computer hardware 

has been readily accessible to users, speech processing devices like smartphones, tablets, and 

notebooks have become very common. As a result, speech has a big impact on a lot of applications, 

like hands-free phones, digital hearing aids, speech-based computer interfaces, home entertainment 

systems, low-quality audio devices, ASR systems, etc. 

 

However, the presence of undesirable real-world background noise significantly reduces 

speech quality and intelligibility in many speech processing systems. As a result, they have poor 

performance, which makes communication difficult and limits their use. Enhancing speech 

degraded by background noise is both a necessary and difficult task. The difficulty in improving 

speech quality in these applications arises from the nature of the noise encountered, which is 

frequently non-stationary and probably speech-like, thereby inducing a noticeable and time-

varying spectral overlap between speech and noise.  

 

High quality of speech perceived as being more pleasant to listen to for prolonged periods, 

while intelligibility of speech is measured by minimal word error rates in speech recognition 

scenarios. Speech enhancement (SE) is a very hard problem to solve if we don't know anything 

about the noise signal we're trying to remove. The majority of traditional speech enhancement 

techniques are constrained to stationary noise, limited to noise with specific characteristics like 

white/pink, and as a result, denoising has the consequence of degrading the speech signal's 

intelligibility. Due to this, the performance of SE methods entails a trade-off between noise 
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reduction and the intelligibility of speech signals. Understanding speech in the presence of these 

noises is dependent on Signal to Noise Ratio (SNR) and the type of noise. It gets harder to perceive 

speech that is significantly masked by noise as the signal-to-noise ratio lowers (i.e. as noise 

becomes more dominating). It's interesting to note that while most listening scenarios have 

moderate noise levels, only around one in ten involves dominant noise. Therefore, developing a 

successful SE method becomes extremely difficult, especially when dealing with a variety of non-

stationary noises that are typically present in real-world scenarios under low SNR settings. 

 

The focus of this research is to develop and analyse new low-rank sparse decomposition 

techniques for speech enhancement that address various issues with existing techniques. This 

chapter begins by giving a brief overview of speech enhancement, the principles of hearing and 

generating speech, applications, and classification of speech enhancement techniques. Next, a 

detailed description of the low-rank sparse decomposition approach is given, which serves as the 

theoretical foundation for the algorithms developed in the following chapters. A brief description 

of the methods currently employed in low-rank sparse decomposition algorithms for speech 

enhancement under low SNR is provided. The windowing and overlapping techniques are then 

introduced, which is used to pre-process speech signals for improvement. 

 

The motivation for low-rank sparse decomposition techniques is presented, followed by 

problem statement, research objectives, and finally organization the thesis. 

 

 

1.1  Essentials of Speech Signal 

 

It is important to understand the speech signal before addressing speech enhancement. It is 

essential to understand the qualities and characteristics of the speech signal in order to develop 

efficient speech enhancement strategies that preserve high quality and intelligibility in noisy 

conditions with least amount of distortion. 
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It is helpful to understand the properties and characteristics of the speech signal. This 

section provides a brief description of the human speech production mechanism and hearing 

process. 

 

1.1.1 Speech Production Mechanism 

 

The acoustic output of voluntarily regulated movements of the respiratory and masticatory 

systems is speech. 

                       

 

                                                                        

Figure 1.1: Schematic diagram of the human speech production mechanism 

 

The auditory result of deliberate and structured movements of the respiratory and 

masticatory systems is speech. Figure 1.1 depicts the parts of the speech production system 

schematically. The illustration shows a mid-sagittal segment of an adult's vocal tract. Expanding 

the rib cage, lowering lung pressure, and pulling air into the lungs through the nostrils, nasal cavity, 

velum port, and trachea are the main goals of inhalation (windpipe). Normally, the air is ejected 

along the same path. Mastication occurs in the oral cavity when eating. The structures at the 

tracheal entry are pushed up under the epiglottis when food is swallowed. The latter protects the 

voice cord aperture and keeps food from entering the windpipe. In order to provide a passageway 
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for the stomach, the esophagus, which ordinarily lays collapsed against the rear wall of the throat, 

is simultaneously pulled open. The actual vocal tract is a nonuniform cross-sectional area 

acoustical tube. At one end, it is terminated by the lips, and at the other, by the constriction of the 

vocal cords at the top of the trachea. An additional channel for sound transmission is the nasal 

tract. It starts at the nasal velum and ends beyond. The nasal septum divides the cavity along some 

of its front-to-back extents. The size of the opening at the velum affects the acoustic connection 

between the nasal and vocal tracts. The vellum is depicted in Fig. 1.1 at its widest opening. The 

sound may emanate from the mouth and nostrils in such a situation. Generally speaking, nasal 

coupling has a significant impact on the nature of sound emitted from the mouth. The vellum is 

pushed tightly up in order to produce non-nasal noises, essentially blocking the nasal cavity's entry. 

The thoracic and abdominal muscles provide the power needed to produce speech. By widening 

the chest cavity and bringing the diaphragm down, the air is pulled into the lungs. By tightening 

the rib cage and raising the lung pressure, it is ejected. 

 

1.1.2 Hearing Mechanism 

 

Hearing initially begins with the outer ear (shown in figure 1.2) called the pinna.  When an 

external sound is made, sound waves, or vibrations, travel through the external auditory canal and 

strike the eardrum (tympanic membrane). It vibrates inside the ear. Three tiny bones in the middle 

ear called the ossicles receive the vibrations after that. Sound is amplified by the ossicles. The 

hearing organ, which is filled with fluid, receives the sound waves and sends them to the inner ear 

(cochlea). The cochlea is a coiled tube with two membranes—the basilar and Reisner’s 

membranes—enclosed in a fluid. When vibration is applied to the ear, the basilar membrane's 

width and stiffness taper along its length, and the location on the membrane resonate depending 

on the frequency [1]. This process gives the ear frequency selectivity, which is improved by active 

processing by the auditory cortex.  
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Figure 1.2 Schematic diagram of the human hearing mechanism 

   

 Upon entering the inner ear, sound waves are transformed into electrical impulses. These impulses 

travel to the brain via the auditory nerve [2]. When these electrical impulses reach the brain, they 

are translated into sound. 

 

1.1.3 Auditory Masking  

 

Masking, which is attributed to the mechanical vibrations of the basilar membrane, is the 

lowering of a listener's capacity to hear the target sound in the presence of other sounds. A listening 

situation known as "auditory masking" occurs when the presence of one sound prevents the 

detection of another occurring nearby. 

 

Reducing the noise won't be essential if the speech component of noisy speech can hide the 

noise component. In this situation, more speech distortion will result from any processing. On the 

other hand, if the noise component cannot be masked, one must lower the noise distortion level 

below the masking threshold to make the noise undetectable. The masking effect of the human 

acoustic system is depicted in Figure 1.3, where a high-energy speech signal can increase the 

normal hearing threshold level in its proximity. The masking sound (red color) in its neighborhood 

raises the hearing threshold, and the sounds (green and blue colors) at close frequencies have been 

hidden. In the presence of background sound, the amount of masking is calculated by subtracting 

the absolute threshold from the masked threshold. 
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Figure 1.3 Masking characteristics of the human hearing system (Courtesy IET 

Journal ISSN 1751-9675) 

 

 

 

 

Figure 1.5 Illustration of pre, Simultaneous, and Post Masking concepts 

 

Masking can be categorized as simultaneous or frequency masking in the frequency domain, 

and in  time domain, as temporal masking. Frequency masking happens when the masker and the 

target happen at the same time while temporal masking happens when they don't happen 

simultaneously but are close to each other. Even though simultaneous masking is considered to 

have a more significant effect than temporal masking, perception is still impacted by it. Temporal 

masking may be further divided into pre-masking (Shown in figure 1.5), where the target appears 

before the masker in time for roughly 20 ms, and post-masking when the masker appears before 
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the signal for up to 200 ms and has a more pronounced masking effect. Most frequently, only post-

masking is taken into account and the pre-masking is removed in temporal masking models since 

the influence of post-masking lasts longer and that of pre-masking is very minimal. Widespread 

use of the masking technique in applications for speech such as hearing aids, speech coding, 

and make speech pickup and transmission of high quality. Najafzadeh et al. [3] introduced pre and 

post-temporal masking models into MPEG psychoacoustic model to obtain a considerable coding 

gain. The majority of speech enhancement techniques do not entirely eliminate residual noise. 

Algorithms, therefore, try to increase the residual noise perceptually undetectable and increase 

speech intelligibility by utilizing the qualities of the auditory system of humans.  

 

1.1.4 Applications of Speech Enhancement Techniques 

 

The most important aspect of speech enhancement is noise reduction, which is utilized in a 

variety of real-world applications, including telecommunication systems, Automatic speech 

recognition, electronic hearing aids, etc. The predominant use of speech enhancement is in 

telecommunications systems, but there are several other applications as well, including hearing 

aids, the restoration of damaged audio recordings, etc.  This section discusses some of the most 

significant applications to highlight the significance of speech enhancement in our daily lives.  

 

1.1.4.1 Telecommunication 

 

   The field of telecommunications uses a lot of speech enhancement techniques however, 

they struggle to perform in noisy conditions. Mobile communication typically takes place in a 

variety of noisy situations including traffic and cars, crowds, trains, airports, streets, etc., making 

it uncomfortable and unpleasant for the users. The noise and distortion in coded speech are caused 

by noisy environments. For many voice communication systems to work properly, speech 

restoration blocks are necessary. Reduced background noise and easier conversational flow may 

result from the integration of a speech enhancement algorithm into the communication system [4-

6]. 
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1.1.4.2 Electronic Hearing aids 

 

The primary function of the hearing aid is to improve the user’s ability to understand speech. 

Despite numerous advancements in hearing aid technology, users with cochlear prostheses, 

sensorineural impairment, and other sensory aids, where it is impractical to employ a second 

microphone to provide reference input for noise suppression through adaptive filtering, experience 

great difficulty in speech perception in noisy environments. Along with the targeted speech, the 

microphone tries to pick up noise signals. For hearing-impaired listeners using hearing aids, the 

amplified speech must be free from any undesirable noises or disturbances which, if heard, would 

negate the benefits provided by the hearing aid. The noise content is also amplified along with the 

speech, reducing the intelligibility of the speech signal. Hence there is a need for a speech 

enhancement stage in the hearing aids, to filter out the noise before amplification [7,8] for 

improving speech quality and intelligibility. 

 

1.1.4.3 Automatic Speech Recognition Systems 

 

Automatic speech recognition (ASR) systems are designed to convert spoken user 

commands into readable text or other useful system input. The speaker needs to be some distance 

away from the sound-capturing equipment for ASR to be used in real-world situations like meeting 

transcription, customer services, education, and human-robot interaction. The target signal is 

further degraded by noise, which has a detrimental effect on ASR accuracy. In noisy environments, 

the system either misinterprets spoken words or fails to appropriately match the dictionary's list of 

terms. Since the system must be able to distinguish between words with similar sounds, particularly 

in critical applications like banking or disability assistance, high intelligibility is a necessity for 

these systems. Therefore, speech enhancement is used as a preprocessor to speech recognizer. 

Various solutions have been proposed to provide robustness in ASR: improvement of the audio 

signal, front-end-based approaches that enhance the signal in the feature domain, and back-end 

procedures (Haeb-Umbach and Krueger, 2012). 
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1.1.4.4 Audio surveillance and Restoration of recordings 

 

The circumstances of audio surveillance applications are frequently harsh and seldom ever 

allow for microphone adjustment during recording. Speakers who are being watched don't try to 

speak directly and clearly into the microphone. Audio surveillance recordings are strong 

contenders for speech enhancement because of the multiple degradations and sources of 

interference that obscure the speech signals on such tapes. The use of substandard recording tools 

and settings also influences the quality of recorded speech because they introduce noise or hiss 

into the recordings. The goal of audio restoration is to eliminate any audio artifacts that were not 

meant to be included in the recording, such as storage media disruptions and background noise that 

was recorded. Speech enhancement improves speech quality and recovers data that was previously 

believed to be missing. The significant application in the retrieval of old magnetic tapes may 

contain important speeches or facts captured in poor settings.  

 

1.2  Introduction to Speech Enhancement 

 

The main objective of enhancing speech is to improve both the perceived quality and the 

intelligibility of speech, by eliminating undesirable noise, without degrading the speech 

substantially [9]. The speech enhancement stage is often used as a preprocessing block in several 

applications, including speech communication systems, automatic speech recognition, etc. Since 

they eliminate or reduce noise in the speech signal, speech enhancement algorithms are also 

referred to as noise suppression algorithms. 

 

It is important to distinguish between speech quality and intelligibility, two terms that are 

frequently used interchangeably but are quite different from one another. The term "quality of 

speech" relates to the manner in which a speaker presents a statement and encompasses 

characteristics like naturalness and speaker identification [10]. Quality can be defined as a 

measurement of how closely the speech being examined resembles the original speech and how 

pleasant the speech sounds. Intelligibility is concerned with what was said, i.e., the information 

contained or the meaning underlying the words. It focuses on the information-carrying content of 
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speech and measures how easily it is understood. 

 

In unfavorable acoustic conditions, speech communication systems' performance rapidly 

deteriorates. The quality and intelligibility of speech are affected by background noise. In the 

presence of background noise, the performance of speech communication devices, such as mobile 

phones, ASR, etc., which depend on speech processing systems to communicate and store speech 

signals, suffer noticeably, leading to inaccurate information exchange on listener fatigue between 

the speaker and the listener. Thus, a noisy environment limits communication between the speaker 

and the listeners. For example, background noise from traffic & car, crowd, machines, wind, etc. 

at the transmitter end makes it hard for the listener at the receiving end to understand the speaker 

during voice communication using cellular telephony networks. Therefore, there are many 

different situations wherein improving speech is desirable. The performance of other speech 

applications, including speech communication systems, automatic speech recognition (ASR), 

hearing aids, speech coding, etc., is significantly improved by enhancing the quality and/or 

intelligibility of noisy speech. Based on the application, the speech enhancement system has 

different objectives such as minimizing listener fatigue, improving overall speech quality, 

improving intelligibility, etc., or a mix of all of these. 

 

A speech enhancement technique can be used to pre-process the noisy speech signal before 

it is fed to the speech recognition system since the recognition accuracy of an ASR will suffer in 

the presence of noise. In military communication systems, it is more important to improve 

intelligibility than quality. It is always preferred to improve noisy speech by eliminating noise 

before amplification for hearing-impaired listeners using hearing aids. Additionally, the design and 

development of the speech enhancement system are influenced by the characteristics of the noise 

and how it interacts with clean speech signal, such as additive, convoluted, correlated, 

uncorrelated, etc. 

 

The monaural scenario lacks any prior knowledge of noise and spatial information. Due to 

the approximation of noise characteristics, distortion is introduced. Signal distortion is an 

undesirable change of the sound waveform that is being received. Another significant issue in 
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speech enhancement is musical noise, which consists of tones at random frequencies. The problem 

has been addressed by several SE methods utilizing diverse methodologies. The trade-off between 

noise reduction and speech enhancement limits the speech enhancement system's effectiveness. 

Therefore, it becomes extremely challenging to develop an efficient SE algorithm, especially in 

low SNR real-world environments, that can improve speech signal quality without reducing 

intelligibility and while minimizing distortion.     

 

The speech processing system as shown in Figure 1.1, consists of speech pre-processing 

(framing and windowing), SE, and speech recognition stages.  

 

                                                                                                        

 

 

 

The noisy speech frames are being processed by an SE algorithm stage to extract clean 

speech. The performance of the above system is influenced by various factors such as type of noise, 

length of the frame, hop size, type of window, and denoising capability of the SE algorithm. To 

examine the accuracy of recognition, the enhanced speech signals are validated by ASR stage. 

 

 

1.2.1 Classes of Speech Enhancement Techniques 

 

Speech enhancement methods can broadly be classified as single-channel and multi-channel 

techniques [6], depending on the number of Channels(microphones) used to acquire the acoustic 

signal and noise. 

 

1.2.1.1 Single-Channel speech enhancement Systems 

 

A single-channel speech enhancement approach is used when a single microphone is used 
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for the acquisition of the signal and to improve the signal. For speech enhancement in single-

channel systems, it is presumed that the noisy speech signal, which consists of both clean speech 

and additive noise, is available from a single microphone. There is no second signal that could give 

details about the background noise or speech. A second microphone is typically not available in 

the majority of real-time applications, like speech and speaker recognition, mobile communication, 

and hearing aids. Since most real-world circumstances only allow for a single microphone, like 

speech communication, speech coding, and speech recognition in noisy environments [5], this is a 

topic of intense research due to its simplicity and universal applicability. In comparison to multi-

input systems, these systems are comparably less expensive and simpler to implement. 

 

Single-channel systems provide one of the most challenging situations for speech 

enhancement since there is no reference signal to the noise and the speech cannot be pre-processed 

before it is influenced by noise. Typically, they employ various speech and noise statistics. The 

suppression strategy a single microphone speech enhancement system employs has a significant 

impact on the system's quality. More signal distortion results from using a suppression rule with 

larger attenuation to remove a huge amount of noise. A suppression algorithm with lower 

attenuation, on the other hand, will result in  less distorted speech signal but with only modest noise 

reduction. It is important to carefully balance the amount of noise suppression and distortion to get 

the best quality and intelligibility. 

 

1.2.1.2 Multi-Channel Speech Enhancement Systems 

 

The aim of multi-channel speech enhancement is to separate clean speech from a noisy 

mixture employing signals obtained from multiple microphones. The performance of the speech 

enhancement algorithms may be affected by the number of microphones available [5]. The task of 

improving speech is typically made simpler by using multiple microphones. When at least one 

microphone is put close to the source of the noise, adaptive canceling techniques can be used. In 

an adaptive canceling mechanism, the multi-microphone system makes use of the noise reference 

it has obtained. In multi-channel enhancement techniques, microphone arrays are employed to 

phase align and remove undesired noise components [6]. The complexity of these systems is 
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usually higher. 

 

However, better speech enhancement results can be obtained by using a microphone array 

system, which consists of more than one microphone but is more complex and expensive. Most 

systems are single-microphone-based solutions because they are more cost-effective, and the 

output of the single microphone is where the speech enhancement is performed. 

 

1.2.2 Classical speech Enhancement Methods 

 

Speech enhancement is one of the classical topics of speech signal processing and numerous 

single microphone-based methods have been proposed. 

 

The noisy observation can be interpreted as the summation of clean speech and non-speech 

interference signals in the time domain. Then, using only the noisy speech signal, the single-

microphone speech enhancement method seeks to obtain an estimate of clean speech, that is, in 

some respects, "near to" clean speech. 

 

1.2.2.1 Spectral Subtraction Methods 

 

The simplest enhancement methods to use are spectral subtraction approaches, one of the 

earliest classes suggested for the enhancement of single-channel speech. It operates in the 

frequency domain and is based on the fundamental idea that the spectrum of the input signal may 

be described as a sum of the speech spectrum and the noise spectrum, assuming noise to be 

additive. Then, using a Voice Activity Detection (VAD) algorithm, for example, one may estimate 

the noise spectrum when speech activity is really not present and remove it from the noisy signal 

to get the enhanced speech signal. Weiss et al[11] proposed the first formulation of spectral 

subtraction algorithms in the correlation domain and Boll[ ]'s subsequent formulation in the Fourier 

transform domain led to the development of other versions. Even though spectral subtraction-based 

speech enhancement algorithms may significantly reduce speech noise, one of their major 
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drawbacks is that they cause signal distortion—commonly referred to as musical noise—by 

making inaccurate assumptions about the noise magnitude. 

 

The characteristics of single-channel subtractive-type algorithms include a trade-off 

between the level of noise reduction, the degree of speech distortion, and the amount of musical 

residual noise. By adjusting the subtraction settings, this trade-off may be changed. The only 

alternative offered with classic algorithms is often the use of preset, optimal parameters, which are 

difficult to choose for all speech and noise conditions. 

  

1.2.2.2 Statistical Methods 

 

Although spectrum subtraction-based methods for speech enhancement are effective, they 

use heuristics to improve the entire process rather than being specifically developed to be 

mathematically perfect. However, a class of perfect speech enhancement algorithms may be built 

if the speech enhancement task is formulated as a statistical estimation problem with well-defined 

optimality criteria and thoroughly established statistical assumptions. One of these categories is 

the Minimum Mean Squared Error (MMSE) estimators, which may be further subdivided into non-

linear Short-Time Spectral Amplitude (STSA)-MMSE estimators and linear MMSE estimators, 

also known as Wiener filters. 

 

1.2.2.3 Weiner Filtering Algorithms 

 

The goal of Weiner filtering, a statistical filtering technique, is to produce output speech 

signals that are as similar as possible to the desired speech signals. To achieve this, the estimation 

error is calculated and mask it as low as possible. The wiener filter, named after the mathematician 

Nobert Wiener, is the optimal filter that minimizes the prediction error. When the complex noise 

and the speech discrete Fourier transform (DFT) coefficients are considered to be independent 

Gaussian random variables, the Wiener filter technique produces a linear estimator of the complex 

spectrum of the signal and is optimum in the minimum mean square error (MMSE) sense. 
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1.2.2.4 Basic STSA-MMSE Estimators 

 

The Wiener filter is the best complex spectral estimator however, it is not optimum for 

estimating spectral amplitude. The best spectral amplitude estimators, also known as STSA-

MMSE estimators, were developed as a result of this and the prevalent view at the time was that 

the phase was considerably less significant than amplitude for speech enhancement. 

 

Statistical-model-based algorithms provide nonlinear estimators of the signal's amplitude, 

rather than its complex spectrum, using a range of statistical models and optimization criteria (as 

is done in the Wiener filter). These nonlinear estimators explicitly take into account the noise 

probability density function (PDF) and speech DFT coefficients and, in certain cases, use non-

Gaussian prior distributions. It is necessary to derive from the noisy input a nonlinear 

approximation of the clean speech signal. These nonlinear estimators are created using a range of 

techniques, such as maximum likelihood (ML) estimators and Bayesian estimators, which differ 

in the assumptions they make about the parameter of interest and the optimization criteria they use. 

 

1.2.2.5 Subspace Algorithms 

 

Subspace-based algorithms (SSA) are the third category of enhancement algorithms, which 

differ from the previously stated algorithms in that they are principally drawn from the concepts 

of linear algebra rather than, to the same extent, from those of estimation theory and signal 

processing.  Signal subspace approaches are an empirical linear technique used in dimensionality 

reduction and noise reduction. Principal component analysis (PCA), Singular value decomposition 

analysis, and Independent component analysis are three statistical analytic procedures that are used 

in SSA. 

 

The foundation of the subspace algorithms, which are based on linear algebra, is the 

assumption that the clean speech signal may be confined inside a subspace of Euclidean space. The 

vector space is divided into a noise subspace that solely contains noise elements and a signal 

subspace that includes both clean signal and noise components. Once the noise subspace had been 
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nullified and the signal subspace had been cleared of noise elements, the clean signal could then 

be estimated. Using well-known orthogonal matrix factorization methods from linear algebra, such 

as Eigenvalue decomposition (ESD) or singular value decomposition, the signal and noise 

subspace is decomposed (SVD). 

 

The subspace approach for noise reduction was developed by Pisarenko [9]. Understanding 

the sinusoidal frequencies and the noise covariance matrix allowed the approach to be used to 

detect p sinusoids in additive white noise. Later, Schmidt [ 10] devised the multiple signal 

classification (MUSIC) approach to analyze numerous wavefronts arriving at an antenna array that 

picked up transmitted sinusoidal frequencies. The signal component was extracted from the noisy 

data set using the Tufts et al’s [12] approach, which used SVD of the Hankel data matrix and 

projected the noisy signal onto the signal subspace. It offered the clean signal's least square 

estimator, which eliminates the singular values associated with the noisy signal. De Moor [13] 

further enhanced this technique by employing a minimal variance estimator that reduced the mean 

square error of the reconstructed signal. 

 

Although the fundamental SSA approaches assume that noise is additive, they have been 

extended to include various kinds of noise. Dendrinos [s-13] initiated the work in the field of 

speech enhancement using SSA and proposed using SVD on a data matrix comprising time-domain 

amplitude values. Later, Ephraim and Van Trees [15] proposed utilizing eigenvalue decomposition 

of the signal covariance matrix. It has been demonstrated that the aforementioned algorithms 

enhance speech quality and minimize listener fatigue. 

 

1.2.3 Noise estimation in Speech Enhancement 

 

There are many different types of noise, which significantly impact the intelligibility and 

quality of speech. The background noise, the presence of other speakers, a noisy channel, etc. are 

all factors that lower speech quality. Based on a variety of statistical, spectral, or spatial 

characteristics, this noise can be categorized.  
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Noise can also be categorized into additive background noise, speech-like noise, impulse 

noise, convolutive noise, and multiplicative noise depending on the type and characteristics of the 

noise sources. The performance of the speech enhancement system may be improved with a 

suitable speech model. 

 

Noise statistics have to be calculated from the noisy speech in single-channel speech-

enhancing systems. Particularly in an environment with non-stationary noise, noise variance 

estimation is crucial in determining the effectiveness of the speech enhancement system. For noise 

estimation, various approaches exist [16-19]. One of the most popular strategies is the use of Voice 

Activity Detection (VAD), which updates noise from noisy speech during speech absence frames. 

This method is popular due to its complexity and usability. Since it is difficult to detect speech 

active zones in these circumstances, the accuracy of the technique often declines at low SNRs. 

Additionally, under extremely non-stationary noise settings, the enhancement system's 

performance is compromised since the variations in the noise during the speech active areas are 

not detected. With no prior knowledge about the characteristics of noise, it is therefore more 

challenging to deal with non-stationary noise, especially in low SNR situations. The traditional 

approach for estimating noise from the initial intervals by assuming there is no speech signal is 

unsuccessful when attempting to estimate non-stationary noise. Another extensively used 

technique is the minimal statistics (MS) noise estimator[16] which also yields excellent tracking 

performance for non-stationary noises.   

 

1.2.4 Low SNR and Non –stationary Conditions 

 

Many research studies have been conducted to enhance speech. Traditional algorithms like 

spectral subtraction, Wiener filtering, subspace methods, and statistical methods often assume that 

the noise is stationary which works effectively when SNR is high. They are not effective in 

handling non-stationary noise types.  In many real-world scenarios, speech signals are often 

distorted or even totally submerged by strong noise (Low SNR). Consequently, it is necessary to 

develop enhancement methods under low SNR settings. 
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The removal of non-stationary disturbances was investigated using clean speech and noise 

data to train prior models for HMM-based [20] and codebook-driven speech enhancement [21]. 

During training, these methods accurately represented several non-stationary noise types. In 

relevant studies, they were extended to include undetectable non-stationary noise. [22] suggests an 

online noise estimation method using linear prediction coefficients (LPC) features by updating the 

auto-regression HMM (ARHMM) parameters of the noise in a recursive Expectation 

Maximization framework. Creating a functional observation probability density for each HMM 

state allowed for the development of an adaptive HMM [23]. Super-Gaussian HMM priors were 

used in [24] to offer spectral domain speech enhancement. These methods provide baselines for 

algorithms utilizing a pre-trained speech model, similar to the semi-supervised baselines used in 

this work. Modeling spectral noise has been suggested using nonnegative dictionary learning [25]. 

The dictionary has speech and noise bases. A convex combination of speech and noise bases is 

first used to describe the magnitude or power spectrogram of the input noisy speech before it is 

recreated entirely using speech. The estimated clear speech is from the reconstructed spectrogram. 

The primary estimate is improved using Wiener filtering or other smoothing methods. These 

methods' applicability is constrained since they rely on prior knowledge of speech, noise, or both. 

Using noise-only extracts as prior knowledge, dictionaries of the related noise were trained in [26], 

where a wind noise dictionary was estimated prior to enhancement. [27] describes the learning and 

fixing of a speech dictionary as well as the use of clean speech data to train dynamical systems 

with sparse non-negative speech dictionaries that can be adjusted to varying noise environments. 

Without prior noise and speech training, we must first distinguish speech from noise in an 

unsupervised manner and then filter or smooth the speech estimate. Inspired by Spectral 

Subtraction, the first step is to identify noise/speech areas in the input noisy speech 

spectrogram.  Voice activity detection (VAD) can assist in this regard. VAD performance relies 

on noise level and type. Strong non-stationary noises might cause failure [28]. Time-frequency 

binary mask estimation is another solution [29], although it requires supervised training. Recently, 

speech processing from computer vision was applied by employing sparse and low-rank 

decomposition [30]. The quality of noisy speech was enhanced by pre-training a low-rank speech 

dictionary assuming sparse noise [27]. 
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1.2.5  Effects of window and overlap processing on power Estimates from Spectra 

 

The assumption that the signals are stationary and ergodic serves as the basis of Fast Fourier 

Transform (FFT) spectrum processing. As the speech signal is non-stationary, it is difficult to 

analyze in practice.  This issue is solved by framing (segmenting) the noisy speech signal into an 

equal number of samples. The signal processing techniques are now employed and each frame 

length is taken individually to be stationary. Depending on the duration of the speech signal, the 

number of frames changes from one speech signal to another. Each of the speech signal frame 

edges experiences discontinuities during framing. If a Fast Fourier Transform (FFT) of such a 

signal is computed after segmentation using a no-window or rectangular window, the resulting 

spectrum leakage, also known as leakage error, occurs when the spectral energy spreads over a 

broad frequency range in the FFT instead of its actual frequency range, as shown in figure1.6. The 

signal's exact frequency content might be hard to distinguish, and its amplitude is smaller than its 

true value due to spreading (bias). The leakage and bias generated are minimized by windowing 

[31]. It requires multiplying the time record by a window with a finite length and an amplitude that 

gradually and smoothly decreases to zero at the edges, causing the signal to be periodic. When 

applying the windows, a compromise is required. A large main lobe often causes greater bias, but 

a small side lobe level typically reduces leakage. The two properties could not be optimized 

simultaneously. Reduced side lobe level results in decreased leakage error, increased main lobe 

width, and decreased spectral resolution. 
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Figure 1.6 Illustration of spectral leakage in a rectangular window 

 

Over time, a variety of windows have been suggested, some of which enhance frequency 

resolution and others that enhance amplitude accuracy. Smaller side lobes are required by the fact 

that most spectra have a small first derivative, hence Hanning, Tukey, and Hamming windows are 

chosen over other windows like rectangular and Bartlett (Triangular) windows.   

 

 

 

Figure.1.7 Comparison of spectral leakage of several windows (Courtesy: Bob K, 

CC0, via Wikimedia Commons) 



 

21 
 

 

 The most popular window is the Hanning window because it provides good frequency 

resolution and offers less spectral leakage at frame boundaries than Hamming window does. The 

window size is chosen based on the frame length (‘𝑁’). The Hanning window is represented as 

[1.1],  

 

wh[𝑛]=0.5(1- cos(2𝜋𝑛/(𝑁-1))), where 0≤𝑛≤𝑁-1                              (1.1) 

 

Where ‘𝑁’ is the size of the window, ‘𝑛’ is the length of the speech signal. An overlap 

between the frames must be allowed so that there is no loss in the speech signal information.  

 

The noisy speech signal ‘ℎ [𝑛]’ is multiplied with this window function 𝑤[𝑛] by allowing a 

frame overlap to obtain the resultant signal as :    

x[𝑛]=ℎ [𝑛]∗𝑤h[𝑛]                                                     (1.2) 

 

The technique, known as the overlap-add method, employs short-time signals that overlap 

and reconstructs the signals by adding partially overlapping frames. Since it is reasonable to 

suppose that speech signals produced by muscular movements are stationary for a duration of 

roughly 20 to 30 ms, overlapping windows of that length are necessary. 

 

1.3 Motivation 

 

Speech signal is vulnerable to noise in real-world environments. Typically, background 

noise in everyday life interferes with  conversation, rather than in a fully calm environment. 

Background noise significantly impairs the performance of many speech signal processing 

applications, including automatic speech recognition (ASR) systems, telecommunication systems, 

man-machine interfaces, electronic hearing aids, poor audio devices, etc. As a result, they have 

poor speech quality and intelligibility, which makes communication difficult and so restricts their 

use.  
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Speech Enhancement (SE) methods attempt to improve the perceptual quality of speech and 

intelligibility with low distortion and residual noise. Numerous strategies have been proposed for 

SE over the years. The traditional SE techniques make several noise-related assumptions, such as 

stationarity, low magnitude, directly pre-fixing the spectra, and rank with input SNRs greater than 

0 dB. But typically, real-world noise is strong, divergent, unseen, and non-stationary. When these 

presumptions are not considered, enhancement rapidly decreases. Most of the existing SE 

techniques improve speech quality at the expense of intelligibility and distortion. Particularly in 

low SNR(< 0 dB) and various background noise scenarios, there is a substantial amount of 

distortion introduced. As a result, the SE approaches fall short of expectations. Because noisy 

interference is so unpredictable, the SE performance cannot guarantee the functioning of real-world 

applications. Recently, low-rank sparse decomposition methods like Robust Principle Component 

Analysis (RPCA) have been demonstrated to be superior to other approaches in challenging 

situations, particularly when input SNR is low. Since speech intelligibility must be sacrificed to 

reduce noise in low SNR settings, residual noise and distortion are introduced into the enhanced 

speech. Therefore, there is a need to develop Speech Enhancement methods that can provide better 

speech quality and intelligibility at low SNR with the least distortion. 

 

Further, none of the existing methods was tested for improving ASR performance. 

Therefore, there is a need to validate the effectiveness of the proposed SE method in recognizing 

the speech uttered under low SNR with the least error. 

  

1.4 Statement of the Research Problem 

 

The Speech Enhancement (SE) system should have the ability to improve both the 

intelligibility and perceptual quality of noisy speech input. Most of the existing SE techniques 

improve speech quality at the expense of intelligibility. Few of the existing approaches have 

achieved better speech quality with intelligibility with considerable signal distortion and residual 

noise. These methods have shown poor performance in challenging circumstances, particularly 

under low Input SNR conditions. Under low SNR situations, it is hard to suppress noise without 
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sacrificing speech intelligibility by introducing residual noise and distortion in enhanced speech. 

In comparison to existing strategies, the low-rank sparse decomposition (LRSD) methods have 

been shown to provide a better compromise between speech quality, and intelligibility along with 

low level of residual noise and output speech distortion. Therefore, there is a need to investigate 

the use of sparsity property in clean and noisy speech signals in dictionary-based methods for SE. 

The influence of parameters in the LRSD models using Robust Principle Component Analysis 

(RPCA)and Semi Soft Go-Decomposition (SS-GODEC) methods under extended range and 

various types of Non- Stationary noise environments are to be explored. To achieve less residual 

noise and speech distortion under low SNR conditions, there is a need to develop novel noise robust 

SE methods using LRSD Algorithms. Further, the recognition accuracy gets affected due to strong 

noisy environments and thus there is a need to validate the performance of the developed SE 

algorithms so that it is robust even under noise conditions. 

 

1.5 Research Objectives 

 

The objectives of the present research are: 

1. To Investigate the use of sparsity property in clean and noisy speech signals for Single 

channel Speech Enhancement (SE) using traditional methods such as fixed dictionaries (DFT, 

DCT, CEPSTRAL, etc) and adaptive dictionaries (KSVD, NMF, etc).   

 

1 a) To Investigate the influence of parameterization of existing Sparsity-based SE 

techniques using Robust Principle Component Analysis (RPCA)and Semi Soft Go-Decomposition 

(SS-GODEC) methods under extended range and various types of Non- Stationary noise 

environments.   b) To develop novel noise robust speech enhancement methods using Low -rank 

Sparse decomposition Algorithms such as Weighted Nuclear Norm minimization (WNNM), and 

Weighted Schatten p-Norm Minimization (WSNM). c) To combine Wavelet, Gamma-tone filter 

bank, and KL Divergence with the weighted low-rank sparse decomposition algorithms (WNNM 

& WSNM) for SE to achieve low residual noise and speech distortion. 

 

3. To perform a comprehensive evaluation of the proposed techniques and compare the 
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performance with existing algorithms that are suitable under low SNR conditions (< 0dB).  

 

4. To assess and validate the performance of the proposed speech enhancement schemes 

with the specific goal of improving recognition accuracy by reducing the word error rate (WER) 

using state of art Automatic speech recognition (ASR) systems under noisy environments. 

 

1.6 Speech Corpora Used in the Thesis  

The Speech corpora used in most of the SE works are Noizeus, TIMIT and Libri  data bases. 

Hence these databases are used for evaluating the performance of the proposed algorithms 

in this thesis.  

 

1.7 Organization of Thesis 

 

The thesis is organized into seven chapters. The following section gives a summary of the 

chapters. 

Chapter 1: Introduction 

The chapter introduces speech enhancement and a description of the low-rank approach for 

Speech Enhancement, motivation, problem statement, and objectives of the thesis work. 

Chapter 2: Literature Survey 

The chapter explains the limitations of existing Speech enhancement techniques. The 

literature also discusses a variety of noise estimating strategies and the scenario of low SNR 

handling. It presents the issues identified, and the different databases used. 

Chapter 3: Speech Enhancement using Dictionary-based techniques 

The chapter discusses the investigations carried out to test the sparsity of speech signals for 

SE using dictionary-based techniques under different noise conditions taken from NOIZEUS 

database. 

Chapter 4: Speech Enhancement using Low-Rank sparse decomposition techniques under 

Low SNR Environments 
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The limitations of RPCA and SS-Godec methods are explained in this chapter. The 

implementation details of proposed weighted low-rank sparse decomposition methods for SE 

under low SNR conditions along with results are presented here. 

Chapter 5: Unified speech enhancement Approach for Low distortion Under Low SNR 

Environments    

The drawbacks of the proposed weighted low-rank sparse decomposition methods are 

discussed in this chapter. A novel SE method by combining Wavelet, weighted low-rank sparse 

decomposition algorithm, and gamma-tone filter bank under low SNR environments is proposed. 

The implementation details of the proposed SE method are explained along with the results. 

Chapter 6: Validation of the Proposed Speech Enhancement system  

This chapter presents the validation results of the proposed Speech enhancement techniques 

that are carried out by training Kaldi ASR to achieve low WER using different noises with SNRs 

ranging from -10dB to 10dB. 

Chapter 7: Conclusions and Future Scope 

The conclusions and scope for the future research is presented in the chapter. 
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Chapter 2 

 

Literature Survey 

 

The literature on Speech Enhancement and the low-Rank sparse decomposition techniques 

for Speech Enhancement is presented in this chapter. Recent strategies for post-filtering, noise 

estimation, and speech signal processing with low SNR are also discussed. 

 

2.1 Introduction 

 

In real-world situations such as Automatic Speech Recognition, hearing aids, and other 

communication systems, Speech Enhancement is a difficult task. It tries to improve the quality and 

intelligibility of speech signals degraded by a variety of noise situations, such as traffic & car, 

crowd, machine, street, reverberation effects, and speech signals from other speakers, etc [26]. A 

robust speech enhancement system should be able to function well in all noisy environments. 

 

2.2 Enhancement Methods for  Speech Processing Systems 

 

There are numerous application areas for speech enhancement, such as telecommunication, 

electronic hearing aids, speech/speaker recognition, audio restoration, and surveillance, etc., In 

noisy environments, a speech enhancement stage can be placed as a front-end processor to reduce 

noise power and improve the quality and intelligibility of the signal.  
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Murnolo et al.[33] suggested a speech enhancement method to minimize the noise in 

wireless digital speech communications by analyzing the 2D spectral map and filling frame gaps 

using a heuristic rule. Rahmani et al.[34] suggested a dual-channel speech enhancement strategy 

based on the difference between the powers of the two received signals in near field situations, 

which worked well with adjacent microphones and non-stationary noise. Wee-Tong Lim[35] 

employed psychoacoustic signal processing based on the "missing fundamental phenomena" to 

amplify poor signal receptions at low frequencies to improve the performance of Singapore Armed 

Force’s (SAF) Radio communication equipment. A polynomial-based nonlinear device was 

synthesized and spectrum-shaped. Beritelli and Rametta [36] provided the design and performance 

assessment of the dual stream solution for HD-VOIP transmission service in forensic scenarios 

wherein speech quality is critical. It reduced packet loss by 85% and improved speech quality by 

0.8 (MOS). Srinivasan and Phandari pande[37] considered multi-microphone speech enhancement 

in an interference environment like hands-free voice communication and multi-party conference. 

When interference occurs, a directional microphone is utilized to measure its power spectral 

density (PSD). The PSD estimate is quantized and sent via a wireless network to a primary 

omnidirectional microphone, where the PSD of the spoken signal was measured. Optimal rates for 

encoding signal PSDs were investigated to decrease overall transmission power while maintaining 

MSE within a set limit. Nabi et al. [38] presented wavelet-based speech enhancement for mobile 

phones in stationary and non-stationary noise. Optimized filters were designed and used as mother 

wavelets by iteratively adjusting the cut-off frequency. 

 

Speech recognition performance degrades in noisy or distorted environments [39]. The 

approach is to use a speech enhancement step as a pre-processor [40-42].  

 

A vocal tract spectral limiting iterative wiener filtering based on line spectral pair 

transformation was reported by Hanson and Clements[43]. Athanaselis et al.[44] examined SVD-

based and non-linear spectral subtraction speech enhancement algorithms for robust ASR when 

the input signal was contaminated by colored noise with variable SNR (SNR). Fine-tuning 

enhancement approach parameters is vital to ASR system performance. A robust speech 

recognition system relying on a de-Reverberation method and a spatial masking-based noise 
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filtering algorithm, where the threshold angle is first learned in several noise-only frames and then 

updated frame by frame, was presented by Qoc et al. [45] using binaural speech enhancement as a 

pre-processing step. A speech recognition system for living room noise was introduced by Delcroix 

et al. [46]. A multi-channel speech-noise separation technique and a single-channel enhancement 

algorithm were used by the recognition system's model-based speech enhancement pre-processor. 

The technology improves speech audibility and keyword identification accuracy at human levels. 

Li et al.[47] presented dynamic change enhancement and mean smoothing after estimating sub-

band log energy to improve In-car Speech recognition. 

 

A Deep Neural Network (DNN)-based feature enhancement method was proposed by Lee 

et al. [48] where the DNN inputs constitute pre-enhanced spectral features inferred by the Direction 

of Arrival restricted ICA preceded by Bayesian Feature Enhancement (BFE) using Hidden Markov 

Model (HMM), before reconstructing noise-resistant features for robust ASR even under 

mismatched noise conditions. The DNN learns to recover a clean spectral feature vector from 

corrupted, pre-enhanced, and noisy inputs. Cho et al.[49] developed an HMM-based BFE approach 

employing Independent Vector Analysis(IVA) and Reverberation parameter Re-estimation(RPR) 

in a multi-microphone system to enhance ASR WERs in additive noise and reverberant distortion 

situations. Chang Huai You and Bin MA[50] advocated employing spectral-domain speech 

enhancement to improve the ASR system by decreasing the feature distortion ratio, which 

comprised smoothing adaption to frame SNR and re-estimation of a priori SNR. Cho and Park[51] 

introduced an IVA-based feature improvement for robust speech recognition to address the low 

performance of ICA-based techniques in under-determined scenarios that cause erroneous noise 

spectrum estimation. Clean speech was estimated through Bayesian inference. 

 

The World Health Organization’s (WHO) recent study [52] published global statistics on 

hearing loss. It claims that 430 million individuals, or greater than 5% of the worldwide people 

(432 million adults and 34 million children), have hearing loss and that almost one-third of persons 

over 60 years are also impacted by disabling hearing loss. Since these figures have increased over 

time, the issue requires highly effective intervention. The aging population and the exposure of 

both young and elderly people to noise are the main causes of the worrying increase. Hearing aids 

give persons with hearing loss a better quality of life and assist them in dealing with the disability. 



 

29 
 

The most crucial function of these devices is speech enhancement, which removes noise and adapts 

the signal for easy hearing. Over the years, a variety of speech enhancement algorithms for hearing 

aids have been suggested. 

 

N. Whitmal et al. [53] employed implicitly filtered, shift-invariant wavelet packet basis 

vectors to improve the observed speech and reduce correlated noise while keeping low-level, high-

frequency spectrum components' noise crucial for intelligibility.  To improve speech quality and 

intelligibility for hearing aid users in noisy environments, L.Alvarez et al. [54] proposed a speech 

enhancement algorithm. This algorithm uses GMM fuelled by Genetic Algorithm(GA) to create 

an enhanced gain function and computes  optimized parameters to maximize the Perceptual 

Evaluation of Speech Quality(PESQ) score. Thiemann. J et al. [55] proposed an SNR estimator 

that shifts between the output signals of a minimum variance distortion-less response beamformer 

and scaled reference microphone signals to enhance the target signal in binaural hearing aids. 

Reddy. C et al.[56] suggested a single microphone enhancement gain function that incorporates a 

trade-off parameter to optimize the super-Gaussian joint maximum a posteriori cost function and 

predict the clean speech magnitude spectrum. The level of noise reduction and speech distortion in 

the suggested approach is adjustable by smartphone users, allowing them to customize the system's 

performance to meet their individual needs. Nayan M et al.'s[57] approach proposes a multi-

channel Wiener filter to improve speech for hearing aids that take into account a scalar combination 

of noise inputs to filter and speech correlations. 

 

Restoration of historical and nostalgic audio recordings and their conversion to high-quality 

media have drawn increasing interest[58,59]. Wax cylinders, disc records, magnetic tape 

technologies, and even contemporary digital recordings all have deteriorated sources that need to 

be restored. Audio restoration seeks to eliminate any components from the recording that were not 

intended, such as background noise from the storage medium and background noise in general. 

 

Vaseghi and Rayner suggested in [60] that when multiple copies are available, archival 

gramophone recordings can be restored. The signals are synchronized with noise rejection achieved 

by an adaptive Finite Impulse Response (FIR) filter interpolator based on least square error criteria. 
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Additionally, a detection estimation approach for removing impulsive noise is presented. The 

output of an autoregressive (AR) model driven by white noise stimulation is used to model audio 

signals. O'Shaughnessy et al.[61] enhanced the wiretap recording's intelligence. Applying the 

short-time spectral attenuation approach, Cape and Laroche[62] were able to restore music that 

had been ruined by background noise. Two methods for the restoration of movie soundtracks were 

described by Czyzewski et al. [63]. In the first, broad-band noise attenuation using a 

psychoacoustic model was employed, and in the second, sinusoidal components taken from the 

sound spectrum are used. A speech enhancement method was brought out by Xiao and Nickel in 

[64] for the offline restoration of old audio files for which there is a clear voice recording of the 

speaker. Based on its predicted probable features, the clean signal was re-synthesized. The 

technique improves the speech's naturalness and perceptual quality, but it has a significant 

processing cost and memory demand. 

 

2.3 Speech Enhancement Approaches 

 

The number of noise sources that are available limits the performance of a speech 

enhancement algorithm [1,65-68]. A single microphone input containing noisy speech is all that is 

needed for single-channel speech enhancement algorithms to produce enhanced speech [69–79]. 

The signal cannot be pre-processed since there is no noise signal reference, hence alternate speech 

and noise statistics are used for enhancement.  

 

Single-channel SE systems traditionally make use of the Voice activity detection (VAD) 

stage to predict and update the noise statistics during noise-only segments. A well-designed VAD 

will improve the performance of the SE method in noisy environments concerning accuracy and 

speed, otherwise, it would degrade the system performance. In low SNR conditions, the current 

VAD approaches are imperfect. Furthermore, even if VAD is adequately built, alterations in the 

noise spectrum that occur in the midst of active speech segments are unable to affect the noise 

estimate on time. This would lead to an underestimation during long-spoken phrases where there 

are few noise-only portions. [80]. Several algorithms have been designed to improve speech quality 

by estimating and reducing background noise power spectral density (PSD) for stationary or slow-
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varying noise signals with SNR above 0dB.  Although these methods can enhance speech quality 

without any prior information about noise type, limited progress has been made to improve 

intelligibility under unseen non-stationary noise conditions that cannot guarantee a sufficient noise 

estimation for all scenarios. 

 

Multichannel Speech Enhancement approaches function better in non-stationary noise 

circumstances because a reference channel is available [81–89]. To remove the undesired noise 

components, one of the channels might be phase-aligned. Multi-channel speech enhancement 

systems' cost of manufacturing and complexity is the main limitations. 

 

In the majority of frequently used applications, such as mobile phones and electronic 

hearing aids, a single channel is utilized. Compared to their multichannel counterparts, single-

channel enhancement methods are fairly simple to implement and less expensive.  

 

Speech enhancement approaches can be categorized as either supervised or unsupervised. 

Supervised approaches reduce noise by considering a model for both speech and noise signals, 

which requires a training phase to predict the parameters. HMM-based methods[90-94], Gaussian 

Mixture models(GMM)[95-96], codebook-based algorithms[97-98], DNN-based 

approaches[99,100], and Nonnegative Matrix Factorization(NMF)-based methods[101-104] are 

examples of supervised methodologies.  

 

A speech enhancement technique put forth by Philip Harding and Ben Milner[105] 

reproduces a clean speech signal employing a sinusoidal model and a set of acoustic speech 

features such as speech classification, fundamental frequency, and spectral envelope that are 

approximated from noisy speech using a single statistical model. By constraining the speech 

production model to generate the enhanced signal, the result is devoid of noise. Tian Gao et al. 

[106] developed a unified DNN method for reducing both background noise and speech 

interference in a speaker-dependent situation. The DNN system was trained to integrate speech 

enhancement and isolation. Speech interference signals are considered one form of noise. The 

unified system delivers superior performance under noise and speech interference mixed situations 
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compared to individual systems when just noise or speech interference is exists. Results indicate 

the efficiency of the ensemble approach in contexts with low SNR. In non-stationary noise 

situations, the performance of supervised techniques is dependent on  prior knowledge provided to 

the system, which restricts its performance.  

 

There are several unsupervised speech enhancement technologies for which no data is 

supplied. Estimating clean speech from noisy observations without prior knowledge of the noise 

type or speaker identification is difficult. Certain techniques need to be employed, these techniques 

include spectral subtraction algorithms, statistical model-based approaches, subspace methods, and 

low-rank sparse decomposition techniques[6]. 

 

Initiated by Boll[3], spectral subtraction is one of the first voice enhancement methods. To 

estimate the clean spectrum, an estimate of the noise spectrum is removed from the noisy speech 

spectrum. During speech absence frames, the spectrum of noise is determined. Major drawbacks 

include the generation of unpleasant musical noise following enhancement. Several changes, 

including perceptually inspired approaches (Petrovsky et al., [107]; Uderea et al.,[108]) and a 

geometric approach in complex planes, are proposed to minimize musical noise (Lu and 

Loizou[109]). 

 

Statistical model-based approaches [110, 111] presume that the distributions of clean 

speech and noise spectra follow statistical models and employ the reduction of MSE or the 

Maximum aposteriori (MAP) estimation to get enhanced speech. Traditional approaches, such as 

the Wiener filter [112] and the MMSE estimate of the Short Time Spectral Amplitude (MMSE-

STSA) by Ephraim and Malah[113], use Gaussian distribution models for both speech and noise 

spectra. Later, Martin[114,115] and Chen, Loizou [116] applied non-Gaussian distributions such 

as Laplacian and Gamma to model clean speech and improve speech enhancement. Trawicki and 

Johnson[117] constructed innovative perceptually-motivated MMSEWE and WCOSH cost 

functions and Chi distributions for speech prior to providing gains in all stages of enhancement. In 

addition to enhancing speech quality and intelligibility, it reduced background noise. Abutalebi 

and Rashidinejad[118] considered Laplacian speech modeling and β-order MMSE approach for 
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speech enhancement based on Mohammod et al’s [119]  model but chose to derive β-order 

LapMMSE estimator which is faster and less complex by applying some approximations for the 

Bessel function and the probability density function of the magnitude spectrum of the clean speech. 

The order of the cost function(β) is modified based on the frame SNR. The studies in this area  

suggested new optimal Laplacian distribution-based linear and non-linear estimators. The 

estimators are generated using an MMSE sense to reduce speech distortion under various scenarios. 

 

Spectral subtraction [3] and Wiener [110,111] filtering has been used often for speech 

enhancement due to their simplicity and ease of implementation in single-channel systems, but one 

of their main drawbacks is the generation of musical noise following enhancement. Smoothing 

techniques such as the decision-directed method [113,120] or Wiener filtering based on prior SNR 

estimation [1-3] are frequently employed to minimize the intensity of musical noise. To eliminate 

residual noise, the majority of algorithms frequently generate a signal with significant distortion. 

 

Linear algebra is the foundation for subspace methodologies. They map the noisy speech 

onto two orthogonal complement subspaces: a signal subspace including clean speech parts in 

addition to the noise part, and a noise subspace containing exclusively noise part. These subspaces 

are formed by Singular Value Decomposition (SVD) of a noise-corrupted speech data matrix [14] 

or Principal Component Analysis (PCA) utilizing Eigen Value Decomposition (EVD) of a noise-

corrupted speech covariance matrix [15]. Speech enhancement is performed in two steps. In the 

first step, the noise subspace is eliminated by mapping the data onto a subset of the principal 

directions of the eigenvectors of the SVD or PCA analysis. In the second step, the contribution of 

noise to the signal subspace is diminished. In comparison to conventional approaches, signal 

subspace techniques have been shown to offer a superior compromise between signal distortion 

and residual noise generation. 

 

It is hard to reduce noise without degrading speech because of the unpredictability of the 

noise and the inherent complexity of the speech signal. It has been a long-term objective to provide 

speech enhancement methods that guarantee a good balance between residual noise and output 

signal distortion[121]. In comparison to other current strategies, SSA[122,123] has been 
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demonstrated to provide a better balance between the two and in [124] a notable improvement of 

the output signal's SNR. The Karhunen-Loeve Transform (KLT) based techniques showed promise 

in improving the intelligibility of distorted speech, as demonstrated by Hu and Loizou[125]. 

Ephraim and Van Trees[15] used EVD, which employed KLT to project clean speech into the 

signal plus noise subspace. 

 

In comparison to  traditional SSA, it has been demonstrated that the Jabloun and 

Champagne method[126]'s of perceptual qualities in subspace reduces residual noise. The lack of 

an Eigen domain explanation for the hearing properties (i.e. masking effects) made it extremely 

difficult to include psychoacoustics into KLT-based approaches. In [126], the appropriate 

transformations for converting the masking threshold to the KLT domain and inversely are 

recommended. Ju and Lee[127] present an extended SVD-based method that is perceptually 

limited, incorporates the human auditory system's masking capabilities, and accurately and 

automatically determines the signal subspace dimension to render residual noise undetectable. 

 

Source separation and dictionary learning [128] denoising methods were developed to 

overcome the above limitation. These methods include sparse coding like principal component 

analysis (PCA) [129], Independent component analysis (ICA) [130], K-SVD [131], and Non-

negative Matrix Factorization (NMF) [132]. Dictionary learning (DL) techniques are effective in 

the context of SE based on compressive sensing, in which the prime data vectors are described by 

a sparse linear combination of basis elements. The DL process is hard due to insufficient data to 

create a noise dictionary. Even though PCA is particularly sensitive to noise, data corruption can 

cause estimates of the low-rank part to be inaccurate relative to the actual model. In the last few 

years, alternate and contemporary supervised SE approaches have made rapid advancements. They 

include Subspace methods like Nonnegative matrix factorization (NMF) [133], Hidden Markov 

Model [134], binary and soft mask estimation [135], etc.  Recently, approaches such as supervised 

learning with a Gaussian mixture model or deep neural networks [136,137], and Deep denoising 

auto-encoders [138] have improved mask estimation performance. All of these solutions require 

either a specific characteristic or extensive initial training for supervised separation. However, 

accuracy is reduced due to the disparity between various real-world noises and training noises.  
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To solve this problem, another very elegant remedy called Robust Principal Component 

Analysis (RPCA) [139.140] was proposed. This is an unsupervised method solved via Principal 

Component Pursuit (PCP) [141] that decomposes noise-corrupted speech matrix into low-rank and 

sparse structures using convex optimization. The resulting sparse component contains speech-

dominant features and a low-rank noise component. One obvious benefit of employing RPCA to 

improve noise robustness is that it requires no prior knowledge of the noise. Contemporarily, the 

convex relaxation of the rank minimization model and the nuclear norm minimization (NNM) 

problem has seen a lot of research interest in recent years. One can improve perceived audio quality 

and/or intelligibility with low signal distortion by utilizing the most successful machine learning 

algorithm. To estimate the noise spectrum from the input noisy speech spectrogram without any 

prior knowledge of speech and noise, D.L. Sun et al. [142] suggested a sparse and low-rank NMF 

with kullback-leibler divergence. This was achieved by separating the input noisy magnitude 

spectrogram into a sparse speech-like portion and a low-rank noise component. 

 

Instrumental measures were inspired by BSS_Eval and perceptual metrics like the signal-

to-distortion ratio (SDR), source-to-interference ratio (SIR), source-to-artifact ratio (SAR), short-

time objective intelligibility ratio (STOI), Perceptual evaluation of speech quality(PESQ), Signal 

distortion (SIG); background intrusiveness (BAK) and overall quality(OVL) have been developed 

since human listener testing is time-consuming and expensive. These metrics were designed to 

estimate how effectively new algorithms will perform by modeling human responses [143-145].  

 

2.3.1 Low-Rank and Sparse Matrix Decomposition Methods 

 

From the basic principle of RPCA, the noisy speech spectrum is decomposed into low-rank 

and sparse matrices using the Principal Component Pursuit (PCP) model. By using effective 

estimating techniques, the sparse and low-rank components may be estimated and recovered with 

a high probability. The low-rank matrix approximation (LRMA) method seeks to retrieve the 

underlying low-rank matrix by minimizing the rank of its relaxations from its corrupted 

observations of speech. Unfortunately, rank minimization is an NP-hard problem with no known 

efficient solution[146]. The nuclear norm, which contributes to NNM-based approaches [147], is 
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the best choice for substituting the rank function with its tightest convex relaxation. The classical 

Low-rank matrix Factorization (LRMF) method also known as the SVD technique, is capable of 

achieving the optimal rank-r approximation of input data matrix M by using a truncation operator 

on its singular value matrix with regard to F-norm fidelity loss. To suppress outliers mixed in data, 

a robust LRMA method called robust principal component analysis (RPCA) framework, based on 

nuclear norm minimization (NNM) is introduced. The NNM could be solved by the singular value 

thresholding algorithm [148] using the alternating direction method of multipliers (ADMM) [149] 

framework, which also belongs to the augmented Lagrange multipliers (ALM) framework. In the 

time-frequency (T–F) domain, noise signals present in distinct time-frames have similar spectral 

structures, and patterns are usually correlated with one another and can be captured with a few 

basis vectors. Therefore, the noise spectrogram is supposed to lie in a low-rank subspace. Further, 

as the spectral energy centralizes in a few T-F units, speech signals can be assumed to be relatively 

sparse in  T–F domain [150]. The RPCA method is non-parametric and does not require any 

particular assumptions regarding the distribution of the spectral components of speech or noise. 

Because both speech and noise spectra can be recovered at the same time, therefore the procedure 

of VAD is unnecessary and irrelevant in this context. This method is superior to many conventional 

SE algorithms that depend on the performance of noise estimation algorithms [151,152]. The 

RPCA algorithm provides the benefits of a small number of tuning parameters and quick 

processing. Additionally, it can function effectively in strong noisy environments. This favours 

denoise speech through mask estimate on spectrogram via sparse and low-rank decomposition. 

Sharing similar principles several modifications have been investigated, to improve further the 

performance of low-rank and sparse models like the SS-GoDec [153] algorithm for the SE. Nuclear 

norm minimization (NNM), which can precisely retrieve the rank of the matrix with a few 

constrained and theoretical guarantee conditions, is the most notable effort. 

 

  

2.4 Research Gaps Identified from the literature 

 

The RPCA and SS-GODEC approaches based on Nuclear Norm Minimization (NNM) may, 

however, provide unfavourable results if prior information on the signal source is not used. The 
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standard NNM regularizes each singular value equally, resulting in simple calculation of the 

convex norm. This limits its flexibility and capacity to handle a variety of real-world problems 

where singular values have significant physical implications and need to be addressed as such. 

Also, these algorithms are limited due to the approximation of the original rank of noise through 

NNM and do not explicitly use low-rank property in optimization. As a result, NNM frequently 

tends to over-shrink the rank components, making it impossible for it to effectively approximate 

the matrix rank for many real-world applications. Recent developments have demonstrated that 

WNNM, which heuristically sets the weight as inverse to the singular values, outperforms NNM 

in terms of achieving a superior matrix rank approximation. It is proved that the recently proposed 

WNNM can replace the traditional nuclear norm, as an improved approximation to the rank of a 

matrix in computer vision applications [154]. As RPCA and SS-GODEC algorithms explicitly 

account for deviations of  speech and noise time-frequency matrices from the idealistic sparse and 

low-rank model, there is a need to propose an alternate SE algorithm for speech and noise 

spectrogram separation by enforcing weighted low-rank and sparsity constraints. With the help of  

low rankness of WNNM, the efficacy of enhancement by using singular value decomposition, the 

ADMM, and the accelerated proximal gradient line search method can be improved. Therefore 

WNNM-based RPCA enhancement model can be used, which takes advantage of  high correlation 

of the speech signals, adding excellence to NNM-based methods. Further study led to the invention 

of a new RPCA model, the weighted Schatten p-norm minimization model, to effectively perform 

low-rank regularization (WSNM). It is demonstrated in [155] that WSNM suppresses noise more 

effectively than state-of-the-art approaches and is better at modeling dynamic and complex 

situations. WSNM is a generalized version of WNNM whose performance in image denoising was 

analysed. 

 

Though the standard RPCA-based approaches have proven to be useful for SE, there are a 

few potential drawbacks limiting the effectiveness. First, RPCA approaches are often 

approximated by spectrogram analysis using the short-time Fourier transform (STFT). However, 

due to segmentation and windowing operations, there is distortion in the STFT process [156,157]. 

Second, most of these algorithms optimize their cost function, which is based on Euclidean 

distance (ED). ED, can often lead to fairly significant reconstruction errors since it tends to 

overemphasize the accuracy of large values. As a result, the ED measure is not appropriate for 
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processing speech signals [158]. Third, the majority of existing SE approaches improve the STFT-

based spectral magnitude while retaining the input noise-corrupted phase part unaltered, leading to 

distorting the recovered speech signals and reducing SE performance [159,160]. Fourth, the most 

well-known strategy used in the evaluation of RPCA is nuclear norm minimization (NNM) which 

precisely restores the rank of the matrix within specific constrained and theoretically guaranteed 

circumstances. In many cases, NNM fails to predict the rank of the matrix accurately [161]. These 

strategies are constrained by the estimate of the real rank of noise, and they do not fully utilize the 

low-rank characteristics in optimization. 

 

2.5 Conclusion:  

 

Extensive research for speech enhancement has been done using various methods. 

According to literature, reducing signal distortion and residual noise are main challenges in speech 

enhancement. Speech enhancement in low SNR situations is difficult. Low rank sparse 

decomposition models have demonstrated adequate performance in highly noisy situations, 

however they exhibit some signal distortion in low SNR (< 0 dB) conditions. Therefore, in order 

to improve performance, a novel speech enhancement strategy using low rank sparse 

decomposition models is required. 
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Chapter 3 

Speech Enhancement using Dictionary-based Techniques 

The main objective of this chapter is to address the issues identified from the literature 

survey. In this the use of the sparsity property in clean and noisy speech signals for single channel 

speech enhancement (SE) was investigated through i) fixed dictionaries like DFT, DCT, 

CEPSTRAL, etc., ii) adaptive dictionaries like KSVD, NMF, etc., and iii) low-rank sparse 

decomposition approaches like RPCA, SSGODEC. 

 

3.1 Motivation   

 

Sparse representation techniques have become more popular in recent years as a way 

to enhance speech. With the sparse representation technique, the most important information 

about a speech signal can be represented using a smaller number of classic spatial bases. The 

ability of a sparse decomposition method depends on the learned dictionary and how well 

the dictionary atoms match the signal features. The dictionary learning process and the sparse 

coding technique are the two main steps that lead to an over complete dictionary. In the 

dictionary selection step, a dictionary that has already been predetermined is used. Also, 

adaptive dictionary can be formed by a process of learning that is often based on alternating 

optimization strategies. 

 

3.2 Introduction 

 

Speech enhancement aims to improve the quality of noisy speech, typically by suppressing 

noise in such a way that the residual noise is not annoying to the listeners, and speech distortion 

introduced by the enhanced process is minimized.  
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Existing SE approaches are limited to stationary noise and lack robustness for non-

stationary real-world noise. Compressive sensing (CS) promises to effectively recover a sparse 

signal from a few random samples [191-193]. A CS recovery method reconstructs structured 

speech while eliminating unstructured noise. Encouraged by the emerging technique, this 

investigation analyses the performance of CS in SE using fixed and adaptive dictionaries 

[194,195]. Various sparse domain and sensing matrices and combined transform domain 

(dictionary) combinations that satisfy incoherence criteria have been tested for speech 

enhancement. Despite being straightforward and having fast calculations, these non-

adaptive(fixed) dictionaries are unable to effectively (sparsely) represent a particular class of 

signals. The last ten years have seen extensive research towards dictionary learning as a solution 

to the above problem [196,197]. In this approach, a dictionary is learnt from a certain class of 

training signals of interest. In several signal processing applications, such as image compression 

and enhancement [172] and classification tasks [197], it has been empirically demonstrated that 

these adaptive dictionaries perform better than non-adaptive ones.  An adaptive dictionary requires 

prior knowledge of speech and noise for supervised learning. Under unseen non-stationary and 

strong noise environments, the adaptive dictionary approaches are ineffective. Therefore, real-

world noisy speech enhancement requires unsupervised approaches to achieve better performance. 

 

For supervised learning, an adaptive dictionary needs prior knowledge of speech and 

background noise. However, due to varying perspectives and circumstances, training and testing 

domains may differ during the designing of dictionaries. The adaptive dictionary techniques fail in 

contexts with significant noise and unknown non-stationarity. Therefore, unsupervised techniques 

are needed for noisy speech enhancement in real-world applications to attain higher performance. 

 

The unique data analysis method known as Robust Principle Component Analysis (RPCA) 

has proven to be successful for data contaminated by noise. The benefit of RPCA is that it can be 

applied in unknown real-world noisy conditions since it doesn't require any prior information. 

Additionally, it can function well in strong noisy environments. As a result, RPCA as a low-rank 

and sparse matrix decomposition model has been often employed for unsupervised separation for 

robust speech enhancement. This chapter presents the results of simulation that were performed to 
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examine the suitability of low-rank sparse representations for SE under different NOIZEUS corpus 

settings employing objective and subjective measurements.  

 

 

3.3 CS-BASED SPEECH ENHANCEMENT USING FIXED AND 

SPARSE DICTIONARIES 

 

In recent past, the emergence of compressive sensing (CS) or sparse recovery, another 

method for sampling signals and lossless recovery based on sparse representation, was proposed 

[162-167]. The samples can be directly acquired from a high dimensional signal via linear 

mapping, and thus the process of measuring the entire signal is eliminated. The theory of CS 

assures an exact reconstruction of a low dimensional sparse signal, wherein the number of samples 

or measurements taken randomly is proportional to the sparsity level and a log factor of the signal 

dimension.  An efficient reconstruction algorithm is needed to recover the signal from compressed 

samples [168]. Researchers have been attempting to apply the novel concept of CS to solve many 

of the signal processing problems [169-170] such as robust signal reconstruction, image 

processing, analogue to information conversion, radar data analysis, computational biology, etc. 

The property of sparsity is exploited to separate the non-sparse components in a noisy signal 

mixture. The important aspect of these applications of CS to real-world scenarios is that the 

sparsifying basis matrix must be known a priori. As the speech is sparse in the time-frequency 

domain, some of the CS-based speech enhancement methods proposed [171] use a random 

sampling matrix in the sensing scheme to extract the components of speech from a noisy signal. 

Often, the random sampling matrices are designed carefully using a mathematical model of the 

signal, which possesses Restricted Isometric Property (RIP) and incoherence with sparse matrix. 

 

3.3.1 SPARSE DICTIONARY MODELING 

 

Sparse modeling is a process of representing the input signal as a linear combination of 

fewer basis vectors or elements called atoms that are chosen from the dictionary (i.e., the whole 
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collection of the basis signals or code words) [172]. A sparse dictionary is based on a sparsity 

model of the dictionary atoms over a fixed base dictionary [173]. An over-complete (redundant) 

dictionary not only allows to represent multiple ways of the same signal but also improves the 

sparsity and flexibility of representation [174-175]. As natural signals are composed of impulsive 

and oscillatory transients, a transform matrix may exhibit sparsity to some of its components in 

one domain while others are sparse in some other domain.  Therefore, in CS, searching for the best 

transform matrix is of great importance. However, in certain cases, a dictionary that is the best fit 

for the speech signal can significantly improve sparsity, which can be used for speech denoising 

[176]. This method avoids the use of unreliable frequency components to reconstruct. Therefore, 

investigating the CS-based speech enhancement techniques that optimally suppress noise is a 

critical task [177]. 

 

Sparse decomposition of a signal, however, depends on the degree of fitting the data and 

the dictionary. A predefined dictionary can be obtained by an analytical approach based on a 

mathematical transform matrix, such as a Discrete Fourier Transform (DFT), Discrete Cosine 

Transform(DCT), Discrete wavelet Transform (DWT)[178] matrices, cepstrum, curvelets[179] 

and contourlets [180].  The reconstructed signal is fairly good by selecting the K largest valued 

sparse transform coefficients.  Once a matrix or a high dimensional vector is transformed to a 

sparse space, different recovery algorithms like Basis pursuit(L1-minimisation) [181], Orthogonal 

matching pursuit (OMP) [182], CoSaMP [183], or fast non-iterative algorithms can be used to 

recover the signal. 

 

The present enhancement approach is rooted in transforming the time-domain signals into 

a suitable feature space, and then this feature space is sparse-coded using signal models called 

dictionaries. Sparse coding can decompose the noisy mixture into its structured components and 

attenuate any unstructured component (i.e., noise). Ultimately, the estimate of clean speech is 

obtained by applying inverse transform from the feature space back into the time domain. 
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Many dictionary-based techniques have been proposed, However, there is a dearth of 

reasonable evaluation methods to determine whether a dictionary is good enough in representing 

a signal with reduced dimensionality subspaces. To solve this problem, a set of dictionary 

evaluation measures is defined. These measures not only address the sparseness and reconstruction 

error of signal representation but also consider denoising and separating performance[183]. 

Normally, the performance of the speech enhancement algorithm is measured by subjective 

listening tests with human listeners. Objective measures are designed to approximate subjective 

quality scores and intelligibility rates. The majority of objective measures figure out improvement 

by comparing the (unobserved) clean speech with  distorted speech and enhanced speech in a 

perceptually meaningful way.  

 

3.3.2 Noise Reduction through Compressive Sensing  

 

The fundamental principle of Compressive Sensing is that if a signal has a sparse 

representation in one basis, it can be reconstructed from fewer numbers of projections on to the 

second basis [162,164,165]. Therefore, it is possible to recover a signal with very few 

measurements than the conventional Nyquist rate, providing compression due to low memory 

storage space and transmission bandwidth. The capability of compression assumes sparsity and 

incoherence. Sparsity refers to the rate of information which is much lower than the rate suggested 

by its bandwidth [164].  

 

Sparsity is defined by considering an NXN matrix ᴪ with columns forming an orthonormal 

basis. Speech signals are k-sparse while noise factors are not and therefore these two components 

are theoretically separable by the method of CS [184]. 

Thus, a k-sparse signal, x(n) ∈ ℝN can be represented   as   

 

         x(n) = ᴪ ɵ(n)                                   (3.1) 

 

 



 

44 
 

Where ɵ(n) ∈ ℝN has k-non-zero entries. The CS Measurement vector can be expressed as:  

 

y(n) = Φx(n) =  Φᴪ ɵ(n) = Θ ɵ ,                             (3.2) 

 

where x(n) is an NX1 vector and Φ is an MXN sensing matrix/a linear mapping matrix. i.e., 

Φ ∶ ℝ N  ℝM  and  Θ is a MXN CS matrix.   

Here it is noted that as M ≪ N, the numbers of columns are more than rows, and the 

dimension of y(n) is smaller than x(n). If the sensing matrix adheres to the Restricted Isometry 

Property (RIP), It can be shown that a k-sparse signal x(n) can be reconstructed from fewer 

measured samples. 

 

3.3.3 RECONSTRUCTION ALGORITHM  

 

The impressive property of CS is that if a signal is  K–sparse (or, not exactly K-sparse), the 

quality of the recovered signal  x̂(n) is as good as selecting only the K largest values before the 

calculations, and measuring them directly [185].  This problem is undetermined and convex to 

solve, as there are more coefficients than variables. Different applications suggest various norms 

(Lp) to optimize parameters. The best solution is achieved by L0-norm i.e. p=0, but it is an NP-hard 

problem. For p=1, various algorithms have been developed to solve this problem through linear 

programming. The computationally efficient L2-norm i.e. p=2, a relaxed version, gives a solution 

but is not sparse.  L1-norm i.e. p=1 gives sparse solutions and good reconstruction probabilities.  

[186],[187-190].   

 

The reconstruction algorithms are broadly classified for CS, namely Basis pursuit (BP) 

[182] and orthogonal matching pursuit (OMP)[183],  and Compressive Sampling Matching 

Pursuit(CoSaMP) are the commonly used algorithms. BP with denoising (BPDN) seeks a better 

approach for  findind a solution for the reconstruction of the noisy speech signal.  

 

x̂(n)= Arg min || x ||1   s.t. y = Φ x,                 (3.3) 
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min || x ||1 such that || Θ x – y ||2  ≤  ε              (3.4) 

 

This problem is equivalent to: 

 

Arg min  || Θ x – y ||2 + λ || x ||                          (3.5) 

 

OMP is a greedy CS recovery algorithm i.e., it is simple and easy to implement solutions 

to complex, multi-step problems by deciding which next step will be a better choice and  will 

provide the most benefit. To reconstruct the input signal ‘x’, OMP uses an iterative greedy 

algorithm to select a column in the sensing matrix ɸ that constitutes a part of y. In every iteration, 

a column of ɸ is chosen which is highly correlated with the residual of ‘y’. Then the contribution 

of that column is subtracted from ‘y’ and the same procedure is repeated for the residual of ‘y’. 

After ‘K’ iterations the algorithm would have identified the correct set of columns. The residual at 

the end is reconstructed signal ‘x’. which can exactly recover k-sparse signals using: M = c * k 

log(N/K) measurements. 

 

Needell and Tropp[190] proposed CoSaMP, which is a greedy algorithm based on OMP. In 

this method signal x is reconstructed by obtaining a proxy ‘p’, where ‘p’ is obtained by multiplying 

Φ ∗ with the observation vector ‘y’, Therefore, to identify the location of the significant K 

components of Ф, it is sufficient to identify the significant components of ‘p’. In every iteration, 

the algorithm selects the largest 2K components of ‘p’ and includes an index in the set. Then by 

applying the least square method, an estimate ‘e’ is obtained. Finally, the signal ‘x’ is obtained by 

selecting significant k components of the estimate ‘e’. 

 

3.3.4 Different Sparsity basis for speech signal  

 

Speech signals are more complex and consist of many harmonics which have uncorrelated 

frequency components.  Therefore, a speech signal is considered less sparse in the observed time 
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domain. The speech signal is to be examined for the best sparsity property using different types of 

transform basis.  

 

To exploit the sparsity in speech signals, a comparative analysis regarding these dictionaries 

is given as follows: 

 

i)  DFT Dictionary 

 

DFT is the most basic transform used as a sparsifying basis. An experiment was conducted 

to test the sparse domain using a Fourier basis. It is observed that due to the presence of a large 

number of non-zero valued frequency components, the Fourier basis is not suitable for sparse 

representation of speech signals. It also results in a complex number and therefore they are less 

sparse in the frequency domain. Further, it has been observed that to increase the level of sparsity, 

k, discarding frequency components below a threshold results in a large reconstruction error. 

     

ii) DCT Dictionary 

 

DCT, a real-valued transform matrix was explored to test the sparsity in the speech frame. 

In this case, a frame length of 4267 speech samples was observed. Several experiments were 

conducted with a varied number of CS measurements on the original number of samples. The DCT 

gives a more satisfactory reconstruction than DFT. Further, we observe from experimental results 

that the DCT transform basis gives a smaller MSE for the same number of used measurements, 

compared to DFT. 

 

iii) DWT Dictionary 

 

DWT uses a set of orthogonal basis functions with scaling and translation properties to 

capture the characteristics of the signal in both time and frequency domains. The observation from 
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the results confirms that DWT provides better sparsity than DFT since the transform has better 

localization properties.  

 

iv) Cepstral Dictionary 

 

Cepstrum domain analysis corresponds to homomorphic mapping which is used to get 

information on speech formant and periodicity. Since speech signals are generally sparse in Time–

Frequency domain and many types of noise are non-sparse, the noisy speech can be decomposed 

and reconstructed. The Table 3.1 shows the capacity of sparse transform of noisy speech for various 

SNR values, sparsity: K=517, and measurement samples: M= 4317 

                                                                                                                  

 

Table 3.1 SNR output of various sparse basis considering the sparsity and 

measurement samples. 

 

The key result observed is that the number of measurements M required for successful 

recovery is different under different solution criteria. 

 

The following experimental analysis explores the capacity of sparsity of DCT and DWT for 

various speech and noise signals. The sparsity is calculated in Tables 3.2(a-d) by considering the 

K-sparse threshold transform domain coefficients that carry q % of energy here q is taken 99, 90, 

80, and 70 by thresholding respectively. 

 

 

 

Sparse 

 Basis 

             Input     

         SNR dB 

                  Output SNR dB 

 

-10 

 

-5  0 5 10 

 

15 

DCT -11.8 -6.35 4.18 7.84 13.29 13.32 

DWT -9.27 -3.51 6.51 10.19 12.75 13.11 

FFT -15.65 -7.46 -3.43 -3.06 -2.84 -2.86 

CEPSTRUM -18.13 -9.04 -6.41 -2.41 1.48 1.87 
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                                                              (a)                                               

       

 

 

                                                                    

                           

 

 

(b)                      

 

 

 

 

 

 

 

                              

                                                                                   

                                                                                c )     

Threshold= 99% DCT DWT 

     Input  

SNR dB 

K M Output 

SNR dB 

K M Output  

SNR dB 

-10 1526 5102 -12.68 3179 8914 -9.27 

-5 1365 4837 -7.62 2573 7306 -3.51 

0 1129 4072 4.29 2110 6975 4.26 

5 909 3278 8.17 1718 5679 8.36 

10 765 2759 15.50 731 2416 12.15 

15 691 2492 15.39 711 2349 12.66 

Threshold= 90% DCT DWT 

Input 

SNR dB 

K M Output 

SNR dB 

K M Output  

SNR dB 

-10 524 1510 -15.82 983 8914 -12.72 

-5 356 1373 -8.21 739 7306 -6.15 

0 255 919 0.81 513 1695 0.24 

5 198 714 0.86 349 1153 0.54 

10 145 523 1.12 249 823 2.32 

15 134 483 2.67 248 819 5.31 

Threshold= 80% DCT DWT 

     Input  

SNR dB 

K M Output 

SNR dB 

K M Output  

SNR dB 

-10 427 580 -17.26 436 917 -14.20 

-5 259 438 -9.81 397 835 -7.01 

0 103 371 -0.29 212 700 -0.93 

5 79 284 -0.11 164 541 -0.85 

10 58 209 0.65 129 425 0.27 

15 54 94 1.82 131 432 0.7 
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                                                        (d) 

Tables 3.2(a-d) Effect of threshold transform domain coefficients at a) 99%  b) 90%  c) 80% d)  

70% on K, M, and output SNR of the DCT and DWT dictionaries. 

 

From the simulation results, it is observed that the performance of the fixed dictionaries 

degrades at low (< 0 dB) input SNR for all threshold scenarios. This demonstrate that the capacity 

of sparse transformation on strong noisy speech influences the sparsity. 

 

DCT gives high output SNR values than DWT while reconstructing. Though DWT gives 

the best sparsity value at low SNR, poor reconstruction is observed. Therefore, DCT basis is chosen 

in all the test cases. Figure 3.1 shows the results of applying DCT to sparsify the noisy speech 

signal and using a random sensing matrix, the noisy components are discarded. An L1-

minimization recovery algorithm is used in reconstructing, the output of the sensing matrix.  

 

 

Threshold= 70% DCT DWT 

     Input  

SNR dB 

K M Output 

SNR dB 

K M Output  

SNR dB 

-10 74 301 -21.24 362 592 -18.07 

-5 56 238 -11.37 239 483 -9.47 

0 47 169 -1.28 110 363 -1.03 

5    38   137    -0.82    89   293 1.26 

10 29 104 -0.44 73 241 1.4 

15 27 97 -0.35 74 244 2.86 
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Figure 3.1(a-f) Results of applying DCT a) clean signal b) noisy signal c) DCT after 

thresholding d) Sensing matrix, e) Output of recovery algorithm f) recovered signal. 

 

 

3.3.5 COMBINED BASIS 

 

 Further, speech enhancement based on compressive sensing by considering a combined 

basis is attempted and its performance is compared by using PESQ and MSE measures. Linear 

prediction (LP) is a commonly used technique that extracts the sparse LP coefficients and conveys 

large information about pitch and formants present in the speech signal. The speech signal is 

separated into voiced and unvoiced parts by using a zero-crossing rate (ZCR). Using a hamming 

window, the signal is divided into frames and then ZCR for each frame is calculated and frames 

are classified into voiced (V) and unvoiced (UV) then de-framing is then done so that voiced and 

unvoiced parts are separated. Four different pairs of the basis for both parts of the signal forming 

a combined basis scheme are tested here for analysis. Table 3.3 shows a comparison of experimental 

results of PESQ and MSE (Average values) for the frames in the speech signal corresponding to male and 

female speakers using combined Sparse basis pairs.  
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SIGNAL 

M = 100 

SPARSITY 

BASIS 

OMP BP (L1- MIN) 

 Voiced(V),         

Un-Voiced (UV) 

PESQ MSE PESQ MSE 

SP01(male) DCT(V), LPC(UV) 1.832 1.58E-04 1.35 1.22E-03 

LPC(V), DCT(UV) 1.911 1.40E+05 2.09 3.59E-00 

LPC(V), FFT(UV) 1.457 6.20E+04 2.03 2.29E-00 

FFT(V), LPC(UV) 1.30 5.14E+04 1.83 4.30E-03 

SP05(male) DCT(V), LPC(UV) 1.370 4.18E+02 1.61 0.63E-00 

LPC(V), DCT(UV) 1.524 10.4E+02 2.32 8.25E-06 

LPC(V), FFT(UV) 1.439 2.84E+02 1.85 0.002E-00 

FFT(V), LPC(UV) 1.376 4.18E+02 2.22 0.002E-00 

SP13(Female) DCT(V), LPC(UV) 1.318 5.00E+02 1.76 6.54E-06 

LPC(V), DCT(UV) 1.875 4.71E+02 2.015 5.98E-07 

LPC(V), FFT(UV) 1.515 1.39E+02 1.817 4.98E-06 

FFT(V), LPC(UV) 1.317 5.00E+02 1.595 3.129E-05 

SP15(Female) DCT(V), LPC(UV) 1.205 1.91E+02 1.66 0.45E-01 

LPC(V), DCT(UV) 1.599 3.67E+03 2.24 5.82E-07 

LPC(V), FFT(UV) 1.199 3.67E+03 1.37 6.72E-05 

FFT(V), LPC(UV) 1.784 1.91E+03 1.98    2.98E-04 

 

Table 3.3 : Comparison of experimental results of PESQ and MSE(Average values). 

 

From Table 3.3, it is observed that LPC(V), and DCT(UV) pair give better results when 

compared to other combinations for both reconstruction algorithms with a fixed number of 

measurements. As the number of measurements increases, in both reconstructions, the SNR 

increases while MSE decreases. Finally, L1-Minimization gives the best reconstruction compared 

to OMP from all combinations. 
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The test methodology adopts a DCT dictionary with L1 minimization (frame-by-frame 

analysis).  From the simulation results it is observed that, though COSAMP is faster than OMP,  

the reconstruction through the OMP method is accurate.  But when speech is corrupted by noise, 

COSAMP shows better reconstruction than OMP. For low SNRs, in all cases, L1 minimization 

shows good performance. 

 

3.4 Adaptive Dictionaries 

 

Fixed-dictionary performance degrades with low (< 0 dB) input SNR. To optimize sparse 

signal representation, train a generic dictionary. Fixed (predefined) dictionaries are suitably 

structured  for generic signals and are relatively easy to implement. As input SNR increases, the 

PESQ score also increases. The implicit DCT dictionary model performs best on sparse signals 

with noise. Since the signal dictionary is fixed, we can't denoise it entirely in non-stationary 

settings. Further, when the input SNR is low, the performance of fixed dictionaries degrades. The 

alternate optimization strategy is to train a generic dictionary for sparse signal representation. To 

increase performance over predefined dictionaries, efficient and flexible dictionary learning 

approaches like KSVD, and NMF are examined. 

 

A dictionary learning technique finds a dictionary in such a way that all training signals 

have a suitable sparse representation in them by employing a training data matrix, which contains 

signals from a specific class of signals. A typical dictionary learning method specifically addresses 

the following issue:  min || Y-DX||2F 

 

                                             D Ɛ D,      X Ɛ x   ………   (3.6) 

 

where D  is the dictionary and x coefficient matrix are acceptable sets of data, respectively, 

and ||.||F  is the Frobenius norm. D   is often described as the set of all dictionaries with unit column-

norms ‘ x’  guarantees that the coefficient matrix has sparse columns. 
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Notably, the aforementioned issue is not convex with regard to the pair (D, X). Most 

dictionary learning algorithms approach this issue by repeatedly carrying out the following two-

step process: i) Sparse representation and ii) Dictionary update.  The sparse representations of each 

training signal are generated using the current dictionary in Stage 1, which is just a regular sparse 

coding issue. For this step, a variety of sparse coding techniques have been suggested [210]. Stage 

2, in which the dictionary is updated to decrease the representation error of stage 1, is the primary 

distinction between several dictionary learning techniques. 

 

Another well-known and very effective approach is K-Singular Value Decomposition (K-

SVD) [211]. Only one atom is modified at a time during the dictionary update step.  The non-zero 

items in the corresponding row vector are likewise updated together with each atom's change. This 

results in an issue of matrix rank-1 approximation, which is subsequently resolved by using an 

SVD procedure. Though K-SVD is sequential like K-means, it fails to simplify to K-means by 

destroying the structure in sparse coefficients”. This is due to performing SVD in K-SVD, which 

(unlike K-means) forces the atom norms to be 1, and the resulting coefficients are not necessarily 

0 or 1. 

 

3.4.1   Nonnegative Matrix Factorization (NMF) 

 

In the presence of nonstationary noise, NMF could be employed to denoise speech.  Using 

the technique of nonnegative matrix factorization, the matrix equation V≈ WH is solved by 

determining the W and H which are locally optimum. As a result, it is possible to break down a 

signal into a convex set of nonnegative constituent parts. Smaragdis [25] demonstrated how NMF 

may be utilized to distinguish single-channel mixtures of sounds where the signal, V, is a 

spectrogram and the building blocks (basis vectors), W, are a collection of certain spectral shapes. 

This is done by associating various sets of building blocks with various sound sources. In 

Smaragdis' formulation, H takes the shape of the building components' time-varying activation 

levels. Each source is represented by a set of building blocks in W, and since H permits activations 

to change over time, this decomposition is well suited to modelling nonstationary sounds. 
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NMF is effective in separating sounds when the constituent parts of several sources are 

entirely diverse. When the constituent parts of several sources are entirely diverse, NMF is 

effective in separating sounds. The building blocks for one source will not be very useful in 

characterizing the other, for instance, if one source, like a flute, only produces harmonic sounds 

while another source, like a snare drum, only produces nonharmonic sounds. However, there is 

substantially less distinction between sets of building components in many situations of practical 

significance. Human speech, for instance, comprises harmonic sounds (potentially at various 

fundamental frequencies at various times) and nonharmonic sounds, and it can have energy 

throughout a large frequency range. For these reasons, the speech building blocks can at least 

partially reflect numerous interfering sounds. NMF is entirely incapable of reconstructing the 

individual sources since the basis functions for speech and noise are identical. NMF is entirely 

incapable of representing the individual sources since the basis functions for speech and noise are 

identical. 

 

Under entirely non-stationary noisy environments such as Traffic noise, machine noise, 

babble noise, crowd noise, etc., both KSVD and NMF approaches produce poor results. The 

performance of techniques based on Non-negative Matrix Factorization (NMF) is better than K-

SVD [131] for non-stationary noise. NMF is a supervised method and has the problem that it needs 

a priori knowledge of speech and noise. When unseen real-world noise is encountered, the NMF 

technique fails. 

 

3.5 Robust Principle Component Analysis (RPCA) 

 

Robust Principle Component Analysis is a unique data analysis technique that has been 

shown to be effective for noise-corrupted data. The advantage of RPCA is that it doesn’t require 

any previous knowledge of noise and hence can be used in unseen real-world noisy environments. 

Moreover, it can perform well under strong noisy conditions. Therefore, RPCA has been widely 

used for robust speech representation algorithms. In [30], RPCA is applied to the spectrogram of 

speech signals, and the resulting sparse component is shown to contain low levels of noise and thus 

be noise-robust. 
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The low-rank and sparse matrix decomposition model which is employed as the core of the 

speech enhancement method called Robust Principal Component Analysis (RPCA) is also 

employed for unsupervised separation [198,199]. Furthermore, because it accounts for deviations 

of speech and noise time-frequency (T-F) matrices from the idealistic sparse and low-rank model 

based on bilateral random projections, the Semi-Soft Go Decomposition (SS-GODEC) [200] will 

be treated as the matrix decomposition at the core of the enhancement process. In this paper, we 

perform analysis of the low-rank and sparse matrix decomposition techniques to separate speech 

signal from the noisy speech in an unsupervised way. The suggested method separates the noisy 

speech spectrogram Y into three submatrices, Y = L+S+E, where L, S, and E represent noise, 

speech, and residual noise matrices respectively. This method differs significantly from RPCA 

[201,202], which assumes Y = L+ S and can be applied to a wide range of problems.  

 

Speech signals were recovered from noisy recordings by decomposing the spectrogram of 

the input signal into a low-rank noise estimate and a sparse activation matrix of a dictionary of 

target speech templates, using SS-GoDec as its centerpiece. For enhancement of speech signals, 

this work assesses the method of [202] with RPCA [199] and Semi-Soft GoDec[200] as its basis. 

In doing so, special attention is paid to the STFT parametrization within this algorithm and its 

impact on the enhancement method's outcomes. Log-sigmoid soft masks [203] were considered 

and tested in addition to binary T-F masks, which were considered for the masking step of the 

enhancement algorithm in [201,202]. Test signals were also studied to determine if the low-rank 

and sparse model is suitable for speech and noise signals. Finally, the SE method's performance 

with RPCA and SS-GoDec was compared. 

          

      

3.5.1 RPCA MODEL FOR SPEECH ENHANCEMENT FRAMEWORK 

RPCA is concerned about the following problem:  Given a matrix M ∈ Rn1×n2 ,and 

decompose it as the sum  of a low-rank matrix   L0 ∈ Rn1×n2 ,  with rank(L0) < min(n1, n2), 

and a  sparse matrix S0 ∈ Rn1×n2 ,  
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                                 𝑀 = 𝐿0 + 𝑆0                                                                              …..     (3.7) 

 

The aforementioned convex problem cannot be solved. Furthermore, it is an NP-

hard problem since information on the low-rank and sparse components is not known in 

advance. A technique called Principal Component Pursuit (PCP) is suggested in [197] as 

a solution to the aforementioned RPCA separation problem. The estimations for L0 and 

S0 obtained via PCP are shown to be precise under a variety of circumstances. PCP 

successfully distinguished between low-rank and sparse components with great reliability 

and accuracy. Additionally, PCP has demonstrated encouraging outcomes when used for 

low-rank and sparse matrix decompositions in video surveillance and facial recognition 

tasks. This motivated the present study to examine the potential of RPCA for use in signal-

processing applications. 

 

PCP accomplishes low-rank and sparse matrix decomposition by solving the convex 

optimization problem:  

 

                arg min (||L||∗ + λ ||𝑆||1) under the constraint M=L+ S             …… (3.8) 

 

where λ is a scalar.     The parameter λ is used to balance the two opposing minimizations' 

priorities.  

The approximated values of    L̂, Ŝ   are calculated using Eq (3.9) as follows: 

 

L̂, Ŝ  = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐿,𝑆 ||𝐿||
∗

+  λ||S||
1
 

                                                                                       s. t    M − L − S =  0            …(3.9) 

 

By using the Lagrange method, a Lagrange multiplier Y is associated to produce an 

unconstrained function. The optimum values of L and S are found in an iteration using    Y value 
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from the last iteration. Thus, in this way, the values of L, S, and Y are updated to reach the global 

optimum. 

 

The higher the value of λ, the sparser Ŝ will be at the cost of low rank estimates L̂.  The 

smaller the value of λ is chosen, the better the low-rank estimates L̂ will be at the expense of less 

sparse Ŝ.    Solving this optimization problem yields estimates of L̂ for L0 and Ŝ for S0. Thus, in 

this way, the values of L, S, and Y are updated to reach the global optimum. 

 

 

The decomposed components, however, must be nonnegative to preserve the physical 

interpretation of a spectrogram, hence designers provide the following Nonnegative 

RPCA(NRPCA) model: 

 

 

L̂, Ŝ  = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐿,𝑆 ||𝐿||
∗

+  λ||S||
1
 

                                                   

                                                       s. 𝑡    𝑀 = 𝐿 + 𝑆 , 𝐿 ≥  0, 𝑆 ≥  0                  …(3.10) 

 

                                

  

  Figure 3.2  Illustrates an overview of   RPCA based SE approach that decomposes noisy input 

speech into sparse ‘S’ and low rank  ‘ L’ components.                         
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                                           Figure 3.2 Overview of RPCA based SE frame work 

 

The algorithm for the RPCA based SE is as follows:  

Algorithm 1: Speech Enhancement by NRPCA 

Input: Observation data M 

1: Initialize μ0 > 0, λ > 0, ρ > 1, θ > 0, k = 0, L0 = M, Y0 = 0; 

2: do 

3: Sk+1 =arg min S  λ ||Sk||1+ μk / 2 || M+μk 
−1 

+ Yk −Lk −Sk||F
2  ; 

4: Lk+1 =arg min L ||L||∗+ μk /2 ||M+μk
−1 Yk −Sk+1 −L||F

2  ; 

5: Yk+1 = Yk + μk (M − Lk+1 − Sk+1); 

6: Update μk+1 = ρ ∗ μk ; 

7: k = k + 1; 

8: while ||M − Lk+1 − Sk+1||F / ||M||F > θ 

9: Output: Matrix L = Lk+1 and S = Sk+1; 
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3.5.2 Speech Enhancement Method Using SS GODEC 

 

GODEC: Another matrix decomposition that will be investigated and compared to NRPCA 

in terms of applicability for SE techniques is the Go Decomposition [200]. Although NRPCA and 

GoDec have similar principles, there are a few ways in which GoDec differs from NRPCA. 

 

According to preliminary testing, the original RPCA technique [201], which decomposes 

noisy speech spectrogram into two submatrices, is not robust or effective enough to extract the 

formant structure of clean speech. As a result, we enhance the original RPCA approach by making 

the noisy speech spectrogram Y the superposition of L, S, and E; Y = L+S+ E. We assume that L 

is in a low-rank subspace, that the speech structure is sparse, and that R is a noise term that perturbs 

the ideal rank and sparse character. The assumption is based on the fact that the noise spectral 

pattern is always repeated, whereas the speech signal has more diversity and is relatively sparse 

within the noise. Under the perturbation of E, the aim is to recover the low-rank matrix L and 

sparse matrix S from Y. 

 

The original Go-Dec and Semi-Soft Go-Dec are two separate variants of the Go-Dec. For 

the original Go-Dec [200] technique to find approximations L and S with these features that 

minimize noise power, the rank r of L and the cardinality c of the support set of S must be 

predefined. It is difficult to decide on suitable values for c and r in advance for a use of Go-Dec in 

a practical application, such as the core of an SE algorithm. If the choice is too large, some of the 

noise R can leak into L or S. Choosing them too low could result in the noise term being incorrectly 

allocated to portions of L or S. Further, poor decisions for c and r could result in L's components 

leaking into S, or vice versa. Therefore, it is necessary to investigate which values of c and r   are 

appropriate choices for each situation that Go-Dec should be used in. 

 

Furthermore, suboptimal choices for ‘c’ and ‘r’ could cause parts of L to leak into S or vice 

versa. Hence, for each respective context that GoDec is used in, it is necessary to explore which 

values of ‘m’ and ‘r’ are suitable choices. The Semi-Soft GoDec algorithm just needs r as an input 

and automatically determines c. Semi-Soft Godec offers two significant advantages over traditional 
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Go Decomposition. The possibility of selecting c erroneously is first and foremost eliminated by 

obtaining a suitable c automatically. Second, compared to  original GoDec, the Semi-Soft Godec 

time cost is substantially less [204]. Another key difference between RPCA and GoDec is that for 

PCP, neither ‘c’ nor ‘r’ needs to be predetermined, and the estimates for L0 and S0 are completely 

unconstrained. 

 

3.5.3 Optimization in GoDec 

 

The original GoDec optimization problem is written as                        : 

     

arg 𝑚𝑖𝑛𝐿,𝑆 ǁ 𝑀 −  𝐿 –   𝑆ǁ2 𝑠. 𝑡 𝑟𝑎𝑛𝑘(𝐿)  ≤  𝑟  

                                                                  𝑎𝑛𝑑 𝑐𝑎𝑟𝑑(𝑆)  ≤  𝑚                     ….. (3.11) 

 and results in low-rank and sparse estimates L̂  and Ŝ. 

 

So, L and S have to be chosen such that they meet the predefined conditions on their rank 

and cardinality of their support set while the noise power  ǁEǁ2   = ǁ M − L − SǁF
2 is minimized.  

 

As the cardinality S is hard to estimate, by using soft threshold λ for matrix decomposition, 

the optimization problem is formulated in Eq(3.5) as follows: 

 

          𝑎𝑟𝑔 𝑚𝑖𝑛 ǁ𝑀 − 𝐿 − 𝑆ǁ2 + 𝜆ǁ𝑆ǁ1 𝑠. 𝑡 . 𝑟𝑎𝑛𝑘 (𝐿)  ≤  𝑟                                  …(3.12) 

Additionally, it generates the sparse and low-rank estimates Lˆ   and Sˆ. 

 

The objective function in this case is the sum of the noise power and the l1-norm of S, scaled 

by a balancing factor λ. The l1-norm is employed as a measure of the number of large entries in S 

and hence as a measure of sparsity S to some extent. 

 

The number of relevant entries of S in the objective function is traded off with one another 

by the parameter λ, as it is necessary to reduce the noise power. According to the trend, the higher 
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the value of λ, the sparser the value of Ŝ, and vice versa. This enables the self-determination of a 

number of significant components in S, which is useful when deciding on a good value for λ. In 

Section 3.9, the value of λ will be explored to see if it is appropriate to utilize Semi-Soft GoDec in 

a speech enhancement method. There will also be a search for the best option for r. 

 

Although the restrictions of (3.11) are rather irregular and difficult to formulate, the 

algorithm that will be explained in the following part will be able to solve the SSGoDec 

optimization problem. 

 

Figure 3.3 illustrates an overview of  SS-GODEC based SE approach that decomposes 

noisy input speech into sparse ‘S’, low rank  ‘ L’ and a residual noise ‘E’ components.                              

                     

                                       Figure 3.3 Overview of  SS-GODEC based SE framework 
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2 2 

  

3.5.4 Fast GoDec Algorithms 

 

The algorithm given in [200] solves the problem (3.6) by addressing the two 

subproblems alternately.        

                                                                             

Lk+1 =arg min ǁ M − L − SkǁF and Sk+1 = arg min ǁM−Lk+1 − SǁF  ….   ….   (3.13) 

                                      s . t  rank(L) ≤ r card(S) ≤  c                   

 

In particular, Singular value hard thresholding of (M-SK)  is used to tackle the first 

subproblem. This involves computing a singular value decomposition (M-Sk) = U ΣVT. Then, 

by setting all but the r largest singular values in Σ to zero, determines, Σ̃.. Finally, Lk+1 = U 

Σ̃V T is derived as the updated estimate of Lk. This gives a rank r approximation of (Y- SK). 

Similarly, the second subproblem is addressed using (M - Lk+1) entry-wise hard thresholding. This 

means that the updated estimate Sk+1 is (M- Lr+1), with all entries saving the m biggest set to zero. 

 

An algorithmic framework for this strategy looks like this:  

Algorithm2 for Semi-Soft GoDec 

Input M, r, λ; Initialize S0;  

1.for k = 0, 1, 2, . . . 

2. Lk+1 = singular value hard thresholding of  

    (M − Sk); Sk+1 = Sλ(M − Lk+1); 

3. if t h e  final convergence test i s  satisfied, 

    STOP with final estimates Lk+1 and Sk+1; 

4. end (for) 

 

In this study, S0 is initialized as a matrix with al l  zeros. The convergence test is 

satisfied when 
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                                              |M − Lk+1 − Sk+1|F ≤ 10−2             ….             (3.14)         

holds. 

 

An SVD of a n1×n2 matrix requires min (n1
2n2, n1n2

2 ) flops which i s  expe ns ive  

for large matrices. To decrease the computations, a method based on bilateral  random 

projections is proposed to calculate a rank ‘r’ approximation of a matrix, and this                   method is 

used to approximate (M −Sk) in eq( 3.14) in place of the singular value hard thresholding[200]. 

This low-rank approximation requires r2(n1 +3n2 +4r)+8n1n2r flops per iteration. This 

approach's computational cost scales linearly with the matrix's dimensions, which saves time 

when the matrix is huge. Semi-Soft GoDec decomposes matrices using the bilateral random 

projection-based low-rank approximation approach. 

 

Because the PCP method in section 3.4.1 requires a singular value decomposition, the Semi-

Soft GoDec technique will require significantly fewer flops per iteration for big matrices than  PCP 

approach. The sizes of the matrices that have to be decomposed for the speech enhancement 

experiments in this work are presented in section 3.10. The number of flops required for one 

singular value decomposition in the RPCA-based speech enhancement algorithm and one low-rank 

approximation in SS GoDec-based speech enhancement algorithm will be compared. Also, the 

costs of computing one recovered speech signal for both strategies will be shown and compared. 

 

 

3.5.5 Matrix Decomposition for Speech Denoising 

 

The recovery of speech signals from noisy recordings is difficult in general, but it becomes 

considerably harder if only one microphone is being used to record both the speech and the noise. 

Additionally, there is no spatial information available that could be utilized to distinguish between 

the two signals. In this monoaural situation, it is essential to take into account the distinct tonal 

characteristics of both speech and noise that enable separation between speech-like and noise-like 

components of the mixed signal. The SE algorithms tested in this work were unsupervised and 
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untrained, and based on a very innovative model for the speech and noise components. It will be 

assumed that the noise contribution is approximately low-rank and that the speech contribution is 

approximately sparse in its T-F representation. The low-rank and sparse matrix decompositions 

that were looked at in the previous section should be able to distinguish between speech and noise 

if this model is adequate 

 

 

3.5.6 Considerations of the Time-Frequency Settings  

 

STFT settings impact the effectiveness of matrix decomposition-based SE. The works 

of [201,202,205] missed this fact. The findings of these experiments show that parameterizing the 

STFT is crucial for SE. The effect of transform windows on the spectrogram that arises in low-

rank or sparse approximation was investigated. The success of SE technique for calculating the T-

F matrix differs slightly for rectangular, Hann, and Blackman windows with a fixed length N.  The 

results of experimental evaluations on rectangular, Hann and Blackman windows for a fixed length 

of N have revealed that the success of the SE algorithm for calculating the T-F matrix differs 

slightly. 

 

The length N of STFT influences the T-F frequency resolution. Longer N provides more 

frequency bins. Both T-F matrices contain speech and noise information. If an SE technique based 

on the low rank and sparse structure of noise and speech signals is used, a high resolution is needed 

to capture those qualities in the spectrogram. Through a low-rank and sparse matrix decomposition, 

the resolution shows how well speech and noise spectrogram components can be separated. STFT 

lengths of 512, 1024, 1536, and 2048 were used to assess the enhancement algorithm. As N 

increases, performance generally improves. The best STFT length was M = 1536, and the worst 

was N = 512.  N = 2048 decreases the SE algorithm's performance. Hop size determines 

spectrogram resolution. It should be set high enough to differentiate noise and speech accurately 

in the masking step. After enhancement, experimental observations indicated variations in 

recovered speech signals for different hop sizes. 
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Developing and applying T-F masks improves the enhanced speech signal's SNR. Every T-

F bin in a binary mask is either speech or noise. If the suggested SE technique only includes a few 

frequency bins per time step, binary masks won't work [8,15]. As speech and noise bands may 

overlap, log-sigmoid masks were therefore considered. 

 

The mask g was defined using the results of the matrix decomposition S and L. This matrix 

was used to estimate speech and noise in the T-F representation of the original noisy speech 

spectrogram. 

 

| M̂speech (m, n) | = | MNS (m, n) | g (m, n),                                                  …      (3.15)  

 

| M̂ noise (m, n) | = | MNS (m, n) |(1 − g (m, n)).                                          ..       (3.16) 

 

The method used to calculate the masks from L and S is different for binary and log-

sigmoid masking.  

 

3.5.6.1 Binary Masking 

 

Binary mask entries are 0 or 1. When the matrix is applied to |MNS|, each element of |MNS| 

is either fully assigned to speech estimate M̂speech or noise estimate M̂noise. If two signals' T-F 

representations don't overlap, an IBM can isolate them from a noisy input signal. This condition is 

called W-disjoint orthogonality or WDO in short [206].  Binary masks won't accomplish perfect 

separation in the proposed SE technique as speech and noise don't meet the WDO requirement. 

While [206] reveals two or more speech signals exhibit W-disjoint orthogonality, noise and speech do 

not. Many noises excite the same frequency bands as speech, causing T-F matrices to overlap. As the 

IBM is unknown, Mask M is estimated as the best mask. This estimate assumes noise 

interference is already suppressed in the matrix decomposition's sparse output S. When (m, n) 

in |S| is larger than (m, n) in |L|, the entry of | MNS | is assigned to the speech estimate 

|M̂speech|.   Otherwise, |M̂ speech| speech’s T-F bin is set to zero. Since matrix decomposition 
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does not ensure a clean pre-separation of the mixed spectrogram, mask estimate M deviates 

from IBM. 

 

3.5.6.2 Log-Sigmoid Masking 

 

In the case of mask uncertainties, overlapping speech, and noise T-F representations, a binary 

hard decision mask may not be the optimal solution. [203] Suggests using log-sigmoid soft masks in a 

similar circumstance to decompose a combination of speech signals.  [203] shows that log-sigmoid 

masks outperformed binary masks in ASR experiments. Log-sigmoid masks were used in the 

speech enhancement process for this work. Section 3.7.2.1 compares the method's performance 

with no mask, binary masking, and log-sigmoid masking. The results show variations between 

the three alternatives. Log-sigmoid mask entries are in the range [0; 1]. However, the transition 

between 0 and 1 is a slope whose steepness is regulated by α. In preliminary trials, α   = 1.6 

proved highly suitable for the SE algorithm and was employed throughout this work. 

 

3.6 Simulations and Results 

 

This section evaluates SE algorithms from experiments. These studies have considerable 

practical significance for assessing enhancement's potential and limitations. They calculate the 

influence of variables considered in sections 3.4 and 3.5. Due to uncertainty and complex 

interactions, the previous theoretical discussion was insufficient to predict the speech recovery 

technique's performance. The experimental results show how well the algorithms performed in 

testing, as well as validating the assumption that they will perform similarly in comparable 

scenarios.  

 

3.6.1 Framework 

 

The speech corpus [207], a collection of male and female speakers who utter columns 

of figures, was utilized to record the speech signals. The signals are provided as Wav files 
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with a 20 kHz sampling rate. For the tests, 20 of these files—10 with male speakers and 10 

with female speakers were selected. The noise collection was used to extract the noise signals 

[208]. Additionally, the signals were available in Wav- format with a 20 kHz sampling rate. 

Five noise recordings were chosen for evaluation: a car driven in traffic, wind, a machine, a 

bubbling stream of water, and a crowd of people cheering. 

 

After that, each of the five noise signals was combined with a corresponding speech 

signal at speech-to-noise energy ratios of -10dB, -5dB, 0dB, 5dB, and 10dB.   This resulted in 

an overall number of 5 · 20 · 5 = 500 mixed test signals, which were all about 3 seconds long 

each.  It should be noted that all settings were kept unchanged, apart from those that were 

altered to assess their impact on the effectiveness of the speech enhancement approach. 

Particularly, the RPCA mask's settings for λ = 1, gain = 1, and power = 1 remained the same. 

In this section, the experiments that were conducted for this work are described precisely to 

make the results obtained meaningful. 

 

3.6.2 Evaluation of the RPCA-Based Speech Denoising Method 

 

This section presents the assessment results for various parameter settings for the RPCA-

based SE technique that were discussed in Sections 3.4 .The results were analyzed to determine 

the factors that affect the performance of SE algorithms, the best values for these factors, and 

whether some noise types help speech recovery more than others. The effects of  T-F masks will 

be examined first. The section that follows will explore the results of different STFT parameter 

selections. To determine if the results of the first two parts can accurately predict how well the 

RPCA-based SE algorithm will perform for various noise kinds, the results of the first two sections 

will be coupled to the analysis of the noise and speech signals with ml and ms. 

 

3.6.2.1 Influence of Binary and Log-Sigmoid Time-Frequency                                                                                         Masking 

 

The SE technique with RPCA matrix decomposition was applied to all 500 test signals. To 

evaluate and compare the various effects of the masks experimentally, the enhancement strategy 
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was tested with binary masks, log-sigmoid masks, and without masks using fixed STFT settings 

of M = 1024, hop-size = 256, and Hann windowing. Table 3.4 is a list of the bss-eval parameter's 

findings [209]. The average SDR was provided for all five types of noise, all five input SNRs, and 

all three types of masks. It was obtained by averaging the SDR values of all 20 speakers (no mask, 

binary mask, and log-sigmoid mask). 

 

For all noises and all masks, the approach with the aforementioned settings produces an 

SDR in the speech estimate that is noticeably higher than the SNR of the input signal. Most entries 

with input SNR of -10dB and all entries with input SNR of -5dB, 0dB, 5dB, and 10dB exhibit this 

behaviour. The enhancement strategy only failed to further enhance speech quality for a small 

number of entries at the already high input SNR of 10dB and instead lowered it. The SE approach 

based on RPCA performed as expected by reducing background noise effectively even when the 

noises were unpredictable like the sound of a cheering crowd or a stream of bubbling water. The 

graph shows that all three masks provide results that are quite similar for low-input SNR values, 

while the output SDR values become slightly more dispersed for higher-input SNR values. 

 

All 500 test signals were decomposed using RPCA. The enhancement technique was tried 

using binary masks, log-sigmoid masks, and without masks using M = 1024 with a hop-size of 256 

and Hann windowing. The average SDR plots for all five noise classes are displayed in Fig.3.4 for 

input SNRs ranging from -10 dB to 10 dB using three different masks. The above settings result in 

an estimate of SDR that is greater than the input signal SNR for all noises and masks. This tendency 

is seen in all -5dB, 0dB, 5dB, and 10dB entries as well as the majority of -10dB entries. At 10dB 

input SNR, the enhancement method only slightly decreased speech quality for a few instances. 

Even in the presence of demanding or unexpected stimuli, such as a cheering crowd or gushing 

water, the SE approach based on RPCA can reduce background noise. With low input SNR, all 

three masks yield similar results; however, for high input SNR, the output SDR values become 

more dispersed. 
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Fig.3.4 Influence of Masks on SDR (averaged for all five noise classes) 

 

The SE approach uses no mask that performs best for high SNR values, followed by 

binary masking in the next place and log-sigmoid masking in the third. This demonstrates that 

the masks that were taken into consideration in this work cannot improve the RPCA 

decomposition further, which already accomplished a fair separation of speech and noise. 

Instead, the masks lead to unwanted changes that degrade the outcomes. The results are very 

similar at low SNR levels, with log-sigmoid masking performing the best. As a consequence, 

masking can significantly enhance the outcomes of speech recovery in extremely noisy 

environments. 

 

Furthermore, Figure 3.4 demonstrates that binary masking consistently performs 

around 0.5 dB worse than log-sigmoid masking. The figure clearly shows that the three 

different mask types respond similarly to each of the different noise kinds, deviating relatively 

little from the mean of all noise signals. This indicates that none of the noise signals being 

used has a particular type of mask that is specifically suited for a particular noise type and 

performs noticeably better for this noise than for others and noticeably better than the other 

masks do for this noise. Finally, Figure 3.5 demonstrates how the SE technique frequently 

increases SNR. The SDR is increased by around 2.2–2.6 dB when SE uses the RPCA method 

without masking in  -10dB to 5dB range of the input SNR. 
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To assess the effectiveness of RPCA-based SE technique,  the empirical perception that 

might be obtained by hearing the recovered speech signals. This is because a straightforward 

assessment of speech quality, like the bss-eval [209] SDR, cannot fully capture all relevant 

information. Again, the most crucial element is that the noise truly seems to have been significantly 

reduced in speech estimations. The improvement method works with all input SNR levels and all 

five different types of noise. The residual noise in speech estimations just sounds considerably 

softer without masking. Noise can be successfully eliminated by using binary and log-sigmoid 

masking. For any input SNR level or noise type, there was no noticeable change in the speech-to-

residual noise ratio between the three mask variants. The results would have shown that at high 

input SNR levels i.e. above 5 dB, the speech-to-residual noise ratio would be better without 

masking than that achieved with masking, but the auditory tests were unable to confirm the data. 

Another false impression that could be drawn from the data is that at already high input SNR levels, 

the SE technique is unable to further reduce the noise. It is incorrect. The noisy speech input signal 

is believed to be less noisy than the speech estimates produced under these circumstances. It is 

obvious that the improvement is less noticeable than for input SNR levels with lower levels. The 

remaining noise is decreased and its sound is altered using binary and log-sigmoid masking. It 

ceases being unique and is no longer as clearly recognizable as, for instance, a crowd of people 

cheering or a car moving in traffic. It sounds strange and artificial. The recovered speech signals 

are therefore unpleasant to hear compared to speech signals that were recovered without masking 

that sound more natural. 

 

3.6.2.2 Effect of the Short-Time Fourier Transform Parametriza tion 

 

The following sections examine how STFT settings affected SE algorithm's performance. 

STFT window type, hop size, and length M were considered. For each of the three parameters, the 

tests, bss-eval findings [209], and auditory impressions of recovered speech signals were reported. 

The significance of the test results is addressed as a conclusion. 

 

To evaluate the STFT window, M = 1024 and hop-size = 256 were fixed. The SE approach 
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with log-sigmoid masking was tested for Hann, Blackman, and rectangular windowing using all 

500 test signals. Figure 3.5(a-c) illustrates the average values of all 20 speakers for the five types 

of noise vs input SNR. Figure 3.5 (a) illustrates SE algorithm results utilizing three different STFT 

windows. Despite all three window types providing T-F representations that incorporate full input 

signal information, the SDR levels for different types of noise were still high. 

 

        

  

(a)                                                                         (b) 

                                                    

                                                                                   (c) 

     Figure 3.5  a) Influence of the STFT window type on the output SDR as a function of   the input SNR 

b) Influence of the STFT length M on the output SDR as a function of the input SNR. 

   c) Influence of the STFT Hop Size on the output SDR as a function of  the input SNR 
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3.6.2.3 Influence of the STFT window 

 

Rectangular windowing, which is basically no windowing, provides the best performance and 

is, on average, 1.45–2.3 dB better than Blackman windowing, which results in the worst results. SDR 

results for bss-eval are consistently 0.6dB lower for Hann windowing than for rectangular windowing 

[209]. Rectangular windowing provides the best results on average, while Blackman windowing yields 

the poorest results. Figure 3.5(a) illustrates that Blackman windowing is ineffective at increasing input 

SNR values (a). At an input SNR level of 10 dB, the technique reduces SDR on average by more than 

1.86 dB, while the enhancement strategy using Blackman windowing already fails to improve the SDR 

at an SNR of 5 dB. It must be remembered that the Blackman windowing enhancement technique did 

not produce substantial improvement for various noise types even at the input SNR level of 0dB. 

(Machine and water noise).  

 

The major point from the figure applies to windows and is comparable to the one that was 

determined for T-F masks. The behavior of the three window types for different noise kinds does not 

significantly differ from the average of all noises. This indicates that none of the used noise signals has 

a window type that is particularly appropriate for this particular noise type and performs for it both 

significantly better than for the others and better than other masks perform for it. The auditive tests also 

highlight several elements that  bss-eval SDR value was unable to capture.  

 

The listening tests support the ratings of the three window types that were indicated by the 

numbers: Rectangular windowing produces recovered speech signals with the best noise suppression. 

Blackman windowing seems to generate more noise in the speech signals overall than the other two 

windows together. However, there aren't many variations, between Blackman windowing and 

rectangular windowing as the figures have indicated.  

 

In contrast, the energy ratio was noticeably worsened by the bss-eval SDR values, especially for  

Blackman window. Listening to the recovered speech signals that were generated via rectangular 

windowing revealed the buzzing sound in the speech estimates as one important characteristic. All 

recovered speech signals that were generated via rectangular windowing included this sound, which is 
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about as loud as the background noises and a little unpleasant to hear. Hann windowing, which 

ultimately made the best impression, was be employed. 

 

The numerical ratings for the three window types were supported by the listening tests. Speech 

signals without noise were produced using rectangular windowing. The speech noise coming from 

Blackman Windowing looked louder than the other two. Blackman windowing and rectangular 

windowing were not as distinct as the data suggests. As demonstrated by the masking experiment, the 

approach reduces noise for all three window types at a 10dB input SNR level. The energy ratio was 

made worse by bss-eval SDR values, notably for the Blackman window. The buzzing sound in the 

speech estimates was audible when listening to reconstructed rectangular windowed speech signals. All 

rectangle windowed recovered speech signals contained this irritating sound. Following will use   Hann 

windowing made the best impression. 

 

 

3.6.2.4 Influence of the STFT Length 

 

The effect of STFT length M on the outcomes of the SE algorithm is examined now. This 

was accomplished by decomposing the test signals using the enhancement program's Hann 

windowing and log-sigmoid time-frequency masking during the STFT calculation.  

 

 

The hop size of ¼ M was determined in accordance with the STFT length. The values of M 

= 512, 1024, and 1536 were utilized for the STFT length itself. 

 

The results of these tests' bss-eval [16] SDR tests are once again presented  in table 3.4 in 

the following format:  
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Table 3.4: SDR-levels for different noise types after the SE algorithm with different STFT lengths 

 

The average values across all 20 speakers and each of the five forms of noise are presented 

as a function of input SNR. M = 1536 comes first, M = 1024 comes second, and M = 512 comes 

third for all entries and averages. None of the noise signals employed has an STFT length that is 

particularly suited for this sort of noise and performs much better for it.   

 

3.6.2.5 Influence of the Hop-Size 

 

In this series of tests, an STFT with a length of M = 1024, and log-sigmoid masking were 

employed. Then, the hop size was changed between 128,256 and 512, i.e., 1/8M, 1/4M, and 1/2M. 

Noise dB M=512 M=1024 M=1536 Noise dB M=512 M=1024 M=1536 

Crowd -10 -

12.576 

-9.379 -8.353 Water -10 -13.795 -8.358 -6.868 

-5 -6.567 -3.185 -2.497 -5 -7.984 -2.703 -1.355 

0 -1.740 2.077 2.871 0 -3.052 2.284 3.766 

5 1.125 6.292 7.742 5 0.389 6.322 8.386 

10 2.460 9.205 11.827 10 2.127 9.156 12.192 

Wind -10 10.590 -8.022 -7.462 Machine -10 -10.172 -6.649 -5.876 

-5 -5.485 -2.493 -1.906 -5 -4.509 -0.759 -0.191 

0 -1.351 2.436 3.270 0 -0.615 3.958 4.893 

5 1.248 6.387 7.897 5 1.602 7.558 9.323 

10 2.391 9.121 11.671 10 2.583 9.859 12.848 

Traffic & 

Car 

-10 -8.253 -6.350 -5.716  

 

 

 

-5 -2.933 -0.535 0.117 

0 0.544 4.257 5.163 

5 2.215 7.823 9.475 

10 2.848 10.061 12.862 
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Yet again, the recovered speech signals were assessed using the bss-eval SDR, PESQ, and STOI 

values [16] and subjectively compared by listening to them. Figure 3.8 (c) reveals that the 

algorithms with different hop sizes for the individual noise types did not deviate much from the 

average overall noises. 

 

Finally, the performance of the SE method could be tested with an unlimited number of 

values for each parameter and an endless number of parameter combinations. The evaluation in 

this research is more intended to demonstrate that, in this type of speech enhancement approach, 

the STFT parameters should be taken into consideration because they do affect the enhancement 

method's outcomes. 

 

 

3.7 Evaluation of the Test Signals with ml and ms 

 

RPCA-based SE algorithm's SDR performance depends on STFT settings. Another 

tendency in the data that has not yet been addressed is the dependence of SDR results on different 

types of noise. Certain noises, like wind and traffic and car, are more easily hidden than others. 

The findings show how SE performs differently depending on noise kind. This figure is the average 

of each of the noise's STFT values and input SNR levels. 

 

Test signals were analyzed using the metrics ml and ms, which suggest the feasibility of the 

low-rank and sparse model for speech and noise. This strategy was chosen since the results could 

only differ if the SE algorithm's PCP could separate speech and noise accurately in some T-F 

representations or from some other noises. Since PCP is a low-rank and sparse matrix 

decomposition approach, it was hypothesized that inconsistencies were caused by the model's 

unsuitability for speech and noise. 

 

The ml and ms values for test signals were evaluated and compared to enhancement test 

results to find probable relationships. The table shows the noise types' ml and ms values in different 

T-F formats. The rectangular, Hanning, and Blackman were calculated using the respective 



 

76 
 

window functions with an STFT length of M = 1024, and a hop size of 256. The findings in 

columns "1536" and "512" were obtained with respective STFT lengths, Hann windowing, and ¼ 

M hop-size. A hop size of 1/8 M and ½ M with M = 1024 and Hann windowing led to the "one-

eighth" and "one-half" columns. In Table 3.5, the values are averaged over all the noise types. 

 

     

 Table 3.5: Average ml and ms values for the test signals 

 

It is interesting to see from ms values in Table 3.5 that the sparsity assumption for the 

speech in comparison to the noise signals was fulfilled by all test signals apart from the wind noise. 

This can be recognized because ms > 1 means that on average the 20 speech signals can better be 

modeled as sparse than the noise signal. On the contrary, table 3.5 reveals that many of the noise 

signals do not exhibit a more predominant low-rank character than the speech signals. Table 3.5 

showed that for the machine noise for example and with an STFT length of M = 1536, the recovered 

speech signals had an SDR that was about 2.8–4.8 dB higher than the respective input SNR levels, 

which means that the SE algorithm was successful. However, Table 3.5 now reveals that the 

machine noise in the STFT representation with M = 1536 can be distinguished from speech signals 

by its low rankness because on average, the speech signals are better modeled as low-rank than the 

noise. Still, the enhancement method based on a low-rank and sparse decomposition performed 

very well for machine noise. Further, on average the recovery of the speech signals from the 

machine noise yielded the second-best results despite the low average ml value in Table 3.5. 

Noise Rectan 

gular 

Hanning Blackman 512 1536 One 

eighth 

One Half 

ml ms ml ms ml ms ml ms ml ms ml ms ml ms 

Crowd 0.61 2.13 0.52 2.78 0.46 2.91 0.63 2.82 0.53 2.65 0.48 2.77 0.56 2.85 

Wind 3.26 0.65 3.22 0.34 3.16 0.35 4.67 0.35 2.11 0.34 2.76 0.35 2.36 0.34 

Water 0.54 2.81 0.56 3.83 0.55 3.82 0.46 3.85 0.57 3.85 0.42 4.01 0.73 3.98 

Machine 0.51 2.64 0.44 3.73 0.46 2.01 0.48 3.65 0.48 3.52 0.35 3.68 0.56 3.72 

Traffic & 

Car 

1.86 1.93 2.58 1.87 1.46 1.93 1.65 1.82 0.92 1.76 1.34 1.95 1.13 1.98 
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Similar observations can be made for the wind noise with the difference that for that noise type 

the ml values are good while ms values were too low for the low-rank and sparse model to be 

fit well. 

 

The conclusions that arise from this are as follows: The sparse model for speech and 

low-rank model for noise is not the best choice. Despite the fact that speech is often far sparser 

than the noise signals, it appears that the assumption that noise signals are well represented as 

low-rank is a little over optimistic. According to the experiments, speech signals tend to be 

less mainly low-rank than noise signals.  

 

However, the effectiveness of the enhancing technique cannot be denied. Additionally, 

it suppresses noise types with poor ml or ms values. And this is also true in cases where 

improvement is only made possible by PCP without masking. This indicates that PCP has 

favorable qualities for the purpose to which it is applied in this study, i.e., beneficial qualities 

that go beyond its capacity to produce a reliable low-rank and sparse matrix decomposition 

 

The ml and ms Tables 3.4 and 3.5 further reveal that there does not appear to be any 

connection between ml and ms  and the typical success of the enhancement method. It might be 

assumed that the Traffic and car noise, where ml  > 1 and ml and ms > 1 hold, and which has the 

greatest overall bss-eval enhancement findings [209], demonstrate the relationship between good 

ml and ms values and speech recovery. However, there is a very evident exception to this trend: 

Although the average ml and ms values for wind noise are better than those for traffic and car noise, 

the average SDR results are substantially poorer than those for car noise. This raises the concern 

of whether it is possible to forecast how well the enhancement method will work for every signal 

based on the values of ml and ms. In summary, some noise patterns allow for improved speech 

recovery, but they are difficult to distinguish only from ml and ms measurements. 

 

Tables 3.4 show that different STFT parametrizations have a significant impact on how 

sparse or low-rank the speech and noise signals appear in their T-F representations. This 

confirms the discussion and assumptions of Section 3.4. 
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There is a trend in the data that can be recognized when looking at Table 3.4 for the 

SDR results in dependency of STFT window type and Table 3.5 for ml values  in dependence 

of the window type. It appears that rectangular windowing led to the best SDR results of all 

three windows for all noise types and all input SNR levels. Fittingly, rectangular windowing 

led to the highest ml values of all three windows for all noise types. 

 

The same trend is not true for ms where rectangular windowing led to the worst values 

of all three window types except for the wind noise. But because the ms values tend to be 

better in comparison with ml, ml might be the more critical and more influential figure. 

 

A similar trend was not found for different STFT lengths or different hop- sizes. This 

could have to do with the fact that for different STFT length and hop-size settings the T-F 

matrices differ in their sizes while for different windows, the     sizes stayed the same. Possibly 

the size of the T-F matrix influences the performance of PCP step. 

 

3.8 Determination of an Optimal GoDec Parametriza tion 

 

Studies to determine the parameters for SS-GoDec-based SE algorithm show that, on 

average, this algorithm gives the best results across 500 test signals. SS GoDec low-rank, sparse, 

and noisy matrix decomposition requires r and λ.  r specifies the rank of the low-rank component, 

while it trades cardinality for noise energy. Higher λ makes sparse components sparser and vice 

versa. 

 

The two parameters need to be tuned. If λ is too small, the noise will leak into the speech 

estimate because the necessity to minimize the cardinality of the sparse component is not strong 

enough to remove all substantial noise contributions. If λ is too large, the desire to lower the 

cardinality of the sparse component is so strong that portions of the speech will be lost. All 500 

test signals were decomposed with SS GoDec-based SE algorithm for different combinations of r 

and λ. All 500 speech signals were examined with r ∈ [1, 2, 3, 5, 8] and λ ∈ [0 to 1.5]. This 
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evaluation involved 5. 16. 500 = 40000 decompositions. The SE technique uses an STFT with 

Hann windowing, M = 1536, ¼ M hop-size, and log-sigmoid masks. Figure 3.9 shows the average 

SDR over 500 test signals for every (r, λ ) combination. 

 

Figure 3.6: Influence of the NNM-RPCA parametrization on the average output SDR. 

 

Figure 3.6 shows that setting r = 1 and λ = 1 yields an average SDR of 2.92 dB. This 

parameter will be used to compare SS-GoDec with RPCA in SE. SS-GoDec with r = 1 no longer 

performs low-rank decomposition. r = 1 is the lowest possible rank of any matrix, hence almost 

none of the noise signals are absorbed by the low-rank component but most parts of the noise 

signals will be assigned to matrix R in the SS-GoDec decomposition. SSGoDec with r = 1 prefers 

sparse and noisy component decomposition over low-rank and sparse. 

 

A higher value of r leads to a rapid decrease in the SDR level of the recovered speech 

signal as can be seen in Figure 3.6. This is in accordance with Table 3.4 and the concerns 

raised in Section 3.5.1 about the validity of using a low-rank and sparse decomposition to 

improve speech. 
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3.9 Comparison of KSVD, NMF, RPCA, and GoDec-Based Speech           

        Enhancement 

 

In this section, the SS-Godec SE algorithm is compared to RPCA and other baseline 

SE methods using bss-eval SDR metrics [209] and the subjective listening impression. 

Both RPCA and SSGODEC computation times for generating an improved speech signal 

were calculated. All approaches employed an STFT with Hann windowing, M = 1536, 

and 384 hops. No T-F masks were used. For the SS-Godec algorithm, log-sigmoid masks 

were utilized. Section 3.5.2's evaluation recommended setting r and λ to 1. All 500 noisy 

input signals were decomposed using both approaches, and Figure 3.7(a-c) depicts the 

average results for 20 speakers at five SNR levels. 

 

 

    

(a)                                  (b) 
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                                                      (c) 

Figure 3.7(a-c): Comparison of the performances of RPCA and Semi-Soft GoDec 

with existing baseline SE methods in terms of a) SDR   b) PESQ    c) STOI 

 

 

           SSGODEC-based SE yields better SDR, PESQ, and STOI values than 

baseline techniques at lower input SNR levels, while RPCA is superior at higher input 

SNR levels. GoDec produced a 4.5–6.45dB improvement under noisy and very noisy 

conditions. Listening to the test signals gave the subjective impression that GoDec 

suppressed noise better than RPCA at 0dB, 5dB, and 10dB input SNR levels for all noise 

classes. For low input SNR levels, crowd, water, and machine noise, it was unclear which 

method suppressed noise best in enhanced speech signals. For the other two noise 

categories, GoDec enhancement had a considerable benefit at low input SNR. 
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The SS-GoDec SE approach performed well for traffic and wind noise. At higher 

input SNR levels, just traces of noise remained in recovered speech signals, and speech 

was minimally affected. At input SNR levels of -10dB and -5dB, noise bled into voice 

signals, and speech was lost, but the results sounded convincing and marvelous. With 

RPCA Enhancement, the noise remained in all speech channels. The SE approach 

employing SS-GoDec performed better than RPCA-based algorithm. Faster GoDec. 

GoDec computed one enhanced speech signal in 1–1.5 seconds, while RPCA needed 

15–20 seconds. A test signal T-F matrix with the above STFT values is 769 x 161. 

RPCA needs a minimum of (7692. 161, 769. 1612) = 19933249 flops for one SVD but 

SS GoDec just needs 12 (769 + 3.161 + 4.1) + 8 .769 161. 1 = 991728 flops for one 

low-rank approximation. The SE technique using GoDec matrix decomposition at its 

foundation generated better and faster-improved speech signals. 

 

3.9.1 Observations  

 

Sparse, low-rank RPCA was presented to estimate the noise spectrum from a noisy 

speech spectrogram. With the right settings, the proposed SE technique suppresses noise 

in noisy speech signals, even in unsteady noise. Experiments on the Noizeus database 

showed sparse and low-rank minimization's effectiveness under low SNR. Parameterizing 

the STFT in the SE algorithm affects its success and should be carefully considered. For 

the test corpus signals, M = 1536 with 384 hops, and Hann windowing worked well. An 

appropriate parametrization for the test signal corpus was found, and a comparison between 

conventional baseline approaches and RPCA-based SE algorithms demonstrated that SS-

GODEC outperformed in terms of enhanced speech signal quality. The proposed 

approaches performed better on PESQ scores without a prior noise or speech dictionary 

than state-of-the-art algorithms. No T-F masking led to the best enhancement outcomes 

because binary and log-sigmoid masks degraded SDR performance and had unpleasant 

sonic side effects. Noise types affect how successfully the denoising algorithm separates 

speech. This could not be explained by the newly added ml and ms measurements of low-

rank and sparse model appropriateness for noise and speech signals. These measurements 
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demonstrated that the low-rank and sparse model for noise and speech is not suitable since 

in most cases, speech signals had a more prevalent low-rank character than noise signals. 

 

The explanation in this part did not give any precise directions like” utilize an STFT 

length of M = 1024, a hop-size of 512, and a Hann window to achieve the best results”. It's hard 

to predict how RPCA and the masking step will react to spectrograms with different parameter 

combinations. Even more so, since algorithm noise signals can vary. For one noise and speech 

signal, one STFT value may be best, while another may be better for another. Predicting the 

optimum parameter selections is particularly tough because it's not enough to find a T-F 

representation with sparse speech or low-rank noise. A T-F representation is needed in which 

speech is sparse and noise isn't, and noise is low-rank and speech isn't. A T-F representation 

that separates the two components based on these properties is desired. Future research could 

examine the impact of STFT parameters on weighted Nuclear norm minimization. Then, even 

more, extensive test signal corpora and more elaborate objective speech quality measures might 

be applied. It should also be determined which noise types the SE approach performs well for 

and which are difficult. Good RPCA-based findings for particular noise types could encourage 

real-time implementation of this technique, which could be useful for hands-free mobile 

communication in cars or hearing aids. 

 

3.10 Summary 

 

 Existing SE methods are confined to stationary noise and are ineffective for non-

stationary noise experienced in the physical realm. Compressive sensing (CS) claims to 

successfully recover a sparse signal from a few random samples. Structured speech is restored 

using CS recovery techniques, which also remove unstructured background noise. This study, 

which was motivated by the newly developed method, examines how well CS performs in SE 

utilizing both fixed and adaptive dictionaries. The effectiveness of various sparse domain, 

sensing, and combined transform domain (dictionary) combinations for improving speech is 

investigated.  
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These non-adaptive dictionaries are unable to efficiently (sparsely) represent a particular 

class of signals while being simple and having fast computations. An in-depth study on 

dictionary learning as a solution has been conducted during the past decade. This method 

involves learning a dictionary from a particular class of useful training signals. It has been 

empirically proven that these adaptive dictionaries outperform non-adaptive ones in several 

signal processing applications, including image compression and enhancement and 

classification tasks. An adaptive dictionary requires prior knowledge of speech and background 

noise for supervised learning. However, while developing dictionaries, training and testing 

domains may vary owing to different viewpoints and situations. In environments with 

considerable noise and unidentified non-stationarity, the adaptive dictionary strategies are 

ineffective. Therefore, to get better performance for noisy speech enhancement in real-world 

applications, unsupervised approaches are required.  For data that have been corrupted by noise, 

the novel data analysis technique known as Robust Principal Component Analysis (RPCA) is 

effective. Since RPCA doesn't require any prior knowledge, it may be used in unknown real-

world noisy situations. It can also work effectively in very noisy surroundings. As a result, 

unsupervised separation for robust speech enhancement frequently uses a low-rank and sparse 

matrix decomposition model. The experimental tests that were conducted to determine if low-

rank sparse representations were appropriate for SE under various NOIZEUS corpus conditions 

using both objective and subjective assessments are presented in this chapter. 
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Chapter 4 

 

Speech Enhancement using Low-Rank Sparse 

decomposition techniques under Low SNR Environments 

 

       In this chapter, a novel speech enhancement Approach based on Low-Rank sparse 

decomposition techniques under Low SNR (< 0dB) Environments is proposed to reduce speech 

distortion and residual noise under low SNR conditions. 

 

 

4.1 Motivation 

 

Noise estimation is a crucial stage in speech enhancement (SE), and it commonly 

necessitates the use of prior models for speech, noise, or both. Prior models, on the other hand, 

can be ineffective in dealing with unseen nonstationary noise, especially at low signal-to-noise 

(SNR) levels as they produce residual noise, i.e., the noise remaining after the enhancement 

process. In addition to the requirement for minimal distortion of original speech, which was 

discussed in Chapter 3, it is important that the residual noise does not sound unnatural. Although 

the Adaptive dictionary-based methods such as KSVD and NMF methods can eliminate 

interferers, under low SNR conditions, part of the recovered speech formant structure is lost 

during the matrix decomposition process, resulting in speech distortion. Therefore, there is a 

great need to minimize noise and produce a speech output, reducing listener fatigue and 

improving intelligibility. Low-rank sparse decomposition techniques prevent musical noise by 

estimating precisely the matrix rank using the Nuclear Norm Minimization (NNM) approach. 
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4.2 Introduction 

 

Musical noise results due to the existence of randomly spaced peaks in the spectrum of the 

reconstructed signal because of the overestimation and underestimation of clean signal in 

adjacent spectral groupings, resulting sometimes from rough estimation of the noisy signal 

power spectrum. Low-rank and sparse matrix decomposition (LRSD) like Robust Principle 

Component Analysis (RPCA) method is used to estimate noise and speech when neither is 

available beforehand by decomposing the input noisy spectrum into a low-rank noise 

component and a sparse speech component. Due to the approximation of the actual rank of 

noise, these techniques are constrained, and they do not directly exploit the low-rank property 

in optimization. Nuclear norm minimization (NNM) is the most well-known approach, as it can 

precisely recover the matrix's rank under certain restricted and theoretically guaranteed 

conditions. NNM, on the other hand, is unable to reliably estimate the matrix rank in many 

situations. The source of musical noise in LRSD method is the inaccurate estimation of the rank 

which produces fluctuating tone-like components. Musical noise and distortion can be reduced 

by making use of low-rank and sparse decomposition models with a different objective function 

than conventional RPCA approaches. For each noisy input, all the regularization parameters 

are automatically modified and updated.  Consequently, to alleviate speech distortion, it is 

intended to build a novel low-rank and sparse matrix decomposition model by placing 

appropriate constraints on the sparse part.  

 

4.3 Low-rank and Sparse Matrix Decomposition 

 

The principal Component Pursuit (PCP) model decomposes noisy speech spectrum into 

low-rank and sparse matrices from RPCA. Efficient estimation methods may approximate and 

extract sparse and low-rank components with high probability. The low-rank matrix 

approximation (LRMA) approach minimizes the rank of its relaxations using corrupted speech 

observations to recover the low-rank matrix. Rank minimization is NP-hard with no efficient 
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solution. The nuclear norm, which contributes to NNM-based techniques [212], is optimal for 

replacing the rank function with its tightest convex relaxation. 

 

The traditional Low-rank matrix Factorization (LRMF) approach, commonly known as 

SVD, uses a truncation operator on its singular value matrix to achieve the best rank-r 

approximation of input data matrix M in terms of F-norm fidelity loss. The robust principal 

component analysis (RPCA) approach, based on nuclear norm minimization (NNM), 

suppresses outliers in data. Singular value thresholding [148] and the alternate direction method 

of multipliers (ADMM) [149] framework can solve NNM. In the time-frequency (T–F) domain, 

noise signals in different time-frames exhibit similar spectral structures and patterns that are 

frequently associated and may be represented using a few basis vectors. Therefore, the noise 

spectrogram is supposed to be in a low-rank subspace. Speech signals are sparse in the T–F 

domain since spectral energy centralizes in a few T-F units [150]. The non-parametric RPCA 

approach requires no assumptions regarding speech or noise spectral component distributions. 

VAD is unnecessary since speech and noise spectra may be reconstructed concurrently. This 

strategy outperforms noise estimation-based SE methods [151, 152]. RPCA is quick and has 

minimal tuning parameters. It also works well in high noise. Mask estimation on spectrogram 

using sparse and low-rank decomposition helps denoise voice. Similar improvements have been 

attempted to enhance low-rank and sparse models like Semi-Soft Go-Decomposition (SS-

GoDec) [153] technique for the SE. 

 

Nuclear norm minimization (NNM) can retrieve the matrix rank under certain 

theoretically guaranteed conditions. When the signal source is unknown, Nuclear Norm 

Minimization (NNM)-based RPCA and SS-GODEC approaches may provide undesirable 

results. The conventional NNM attempts to balance singular values equally, making convex 

norm computation easy. This limits its capacity to tackle a wide range of practical difficulties 

where individual values have physical significance and should be treated properly. Due to 

NNM's estimate of noise rank, these methods cannot directly exploit the low-rank characteristic 

in optimization. Since NNM over-shrinks rank components, it cannot correctly approximate 

matrix rank in many real-world applications. Weighted nuclear norm minimization (WNNM) 

achieves a superior matrix rank approximation than NNM, which heuristically sets the weight 
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as inverse to the singular values. In computer vision applications, the recently suggested 

WNNM can replace the nuclear norm as an improved rank approximation [154]. We propose a  

weighted low-rank and sparsity SE method for speech and noise spectrogram separation since 

RPCA and SS-GODEC explicitly account for deviations of the speech and noise time-frequency  

 

matrices from the idealistic sparse and low-rank model. The low rank of WNNM improves 

singular value decomposition, ADMM, and accelerated proximal gradient line search methods. 

Thus, the WNNM-based RPCA enhancement model makes use of speech signal correlation and 

outperforms NNM-based techniques. The weighted Schatten p-norm minimization (WSNM) 

RPCA model was developed to accomplish low-rank regularisation. WSNM suppresses noise 

better than state-of-the-art methods and models dynamic and complicated situations better 

[155]. WSNM, a generalized WNNM, was tested for image denoising. 

 

4.4 SPEECH ENHANCEMENT USING RPCA-BASED 

WEIGHTED NUCLEAR NORM MINIMIZATION (WNNM)  

 

The goal of NNM decomposition is to recover the underlying low-rank matrix L from 

its degraded observation matrix M, by minimizing ||L||∗. But the main problem with the above 

formulation of NNM-RPCA is that the optimization function is non-convex and the problem 

falls under NP-hard problems, which are computationally expensive. Moreover, the technique 

assigns equal weights to all the singular values or rank components resulting in a biased 

estimate of low-rank and sparse components, restricting its flexibility in practical applications. 

The singular values of a matrix in the context of speech processing are closely associated with 

the physical properties of the speech signal. Large singular values account for prominent 

features of speech such as short-term zero crossing and energy, while smaller ones correspond 

to noise components. Therefore, large singular values must be treated differently from the 

smaller ones and must be preserved to reproduce high-quality speech. To improve the 

performance of NNM, in the last few years, numerous applications based on NNM have been 

proposed, such as video enhancement, background extraction, and subspace clustering. 

However, the nuclear norm is generally adopted as a convex surrogate for matrix rank. The 

singular value thresholding (SVT) model for NNM treats different rank components equally,  
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leading to over shrinking the rank components, and hence the estimation of the matrix rank 

becomes inaccurate. As a result, it is obvious that the traditional NNM model, as well as the 

accompanying SVT approaches, are insufficient to deal with such problems. The methods such 

as truncated nuclear norm regularization (TNNR) and partial sum minimization (PSM] among 

N singular values, keep the largest ‘r’ (rank of the matrix) singular values unchanged and only 

minimize the smallest (N-r) ones. TNNR and PSM, on the other hand, are not flexible enough 

because they make a binary decision on whether or not to regularize a particular singular value 

or not. This could produce an over-fitting solution due to the noise effects. 

 

Inspired by the singular values that have distinct physical implications, the weighted 

nuclear norm minimization (WNNM) model has been proposed. WNNM generalizes NNM and 

improves the flexibility of NNM significantly. To improve the flexibility of the nuclear norm, 

we propose to investigate the weighted nuclear norm and evaluate its minimization strategy. 

The weighted nuclear norm of a matrix M is defined in Eq(4.6) as follows:  

 

         || 𝑀 || 𝑤,∗ = (∑|| 𝑤𝑖 𝜎𝑖(M)|| 1                                                                       (4.1) 

 

Where vector w = [w1, w2 ..., wn] and wi ≥ 0 is a non-negative weight assigned to 𝜎𝑖.   

The rational weights rules for weighting can be specified depending on prior knowledge and 

understanding of the problem, which will greatly improve the representation capability of the 

original data from the corrupted input. From prior knowledge, it is understood that higher 

singular values of M are more essential than the smaller ones in natural speech because they 

indicate the energy of the major components of M. The larger the individual values are, the less 

they should be shrunk while denoising. As a result, it's a natural assumption that the weight 

given to σi(M), ith singular value of M, should be inversely proportional to σi (M).  WNNM is 

a non-convex problem that is more complex to solve than NNM.   So far, the WNNM problem 

has got very little attention in this work. We investigate in-depth the WNNM problem using   

F-norm data fidelity. The solutions are examined under various weight conditions. 
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SE aims to estimate the hidden clean speech from its noisy observation. As a classical 

and fundamental problem in low SNR conditions, SE has been extensively explored for many 

years; however, it remains a prominent research area since enhancement is an ideal testbed for 

investigating and evaluating statistical speech modeling techniques. The use of speech Nonlocal 

self-similarity (NSS) has improved significantly the SE performance in recent years. The NSS 

prior refers to the fact that for a given local frame in a natural speech, one can find many similar 

frames to it across speech signal. The nonlocal similar frame vector is stacked into a matrix, 

which must be a low-rank matrix with sparse singular values. As a result, enhancement 

algorithms can be designed using low-rank matrix approximation method. 

 

 

4.4.1 Model formulation for WNNM Model 

 

RPCA attempts to identify a low-rank version and a sparse version from a single matrix 

and has a wide range of applications. In this section, we propose reformulating eq (4.1) using 

the weighted nuclear norm, resulting in WNNM-based RPCA (WNNM-RPCA) model 

represented in Eq(4.2) as follows: 

 

arg min ( ||𝐿||
𝑤,∗

+ 𝜆 ||𝑆||
1

 ) 

                            𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑀 = 𝐿 + 𝑆             ………..                      (4.2) 

 

 

ADMM is used to solve the WNNM-RPCA problem, just like it is in NNM-RPCA. By 

using ALM method, a Lagrange multiplier Y is associated to produce an unconstrained function 

represented in Eq(4.3) as follows: 

 

 

 𝑎𝑟𝑔 𝑚𝑖𝑛𝐿,𝑆||𝐿||𝑤,∗  + 𝜆 ||𝑆||1+ <  𝑌, 𝑀 − 𝐿 − 𝑆 >   + 
𝜇

2
 ||𝑀 − 𝐿 − 𝑆||𝐹     

2           … … ..  (4.3) 

                     Where μ=1/2k 
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The optimum values of L and S are found in an iteration using the Y value from the last 

iteration. Then again, the value of Y is updated in the current iteration with the new optimum 

L and S values. 

 

Lk, Yk, and Sk are local variables and represent the local optimum in the kth iteration 

represented in Eq(4.4) and Eq(4.5) as follows: 

 

𝑆𝑘+1  =  𝑎𝑟𝑔𝑚𝑖𝑛 𝑓(𝑆, 𝐿𝑘, 𝑌𝑘) 

=  𝑎𝑟𝑔𝑚𝑖𝑛𝑆 𝜆|| 𝑆 ||1 +  
𝜇

2
|| 𝑀 +  (𝑌𝑘/𝜇) − 𝐿𝑘 − 𝑆 ||𝐹

2                                  ……  (4.4)  

 

Similarly 

 

            𝐿𝑘+1  =  𝑎𝑟𝑔𝑚𝑖𝑛𝐿 𝜆|| 𝐿 ||𝑤,∗ + 
𝜇

2
|| 𝑀 +  (𝑌𝑘/𝜇) − 𝐿 − 𝑆𝑘+1 ||𝐹

2               ……..    (4.5)       

 

For the weight wi of each group Mi, large singular values of each frame group mj in M 

usually offer significant information, and vice versa, inspired by singular values that have clear 

physical implications. As a result, we usually shrink large singular values less and smaller 

singular values more. In other words, the weight wi of each group mj in M is set to be inverse 

to the singular values, and so as in [154], the weight is heuristically set as:      

 

 

                              𝑤𝑖,𝑗 =  c / (σ𝑖,𝑗  +   ϵ ), where c and ϵ  are small constants.  …....(4.6) 

 

Solving the above equation, we obtain Eq(4.7) as follows: 

                            

                                     𝑌𝑘+1 = 𝑌𝑘 + 𝜇𝑘(𝑀 −  𝐿𝑘+1 − 𝑆𝑘+1)                 ….                    (4.7) 

Thus, in this way, the values of L, S, and Y are updated to reach the global optimum. The 

algorithm1 and the flow chart (shown in figure 4.1 ) for WNNM-RPCA is shown below 
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Algorithm 1 SE by WNNM-RPCA 

Input: Noisy speech data M, weight vector w 

1: Initialize μ0 > 0, λ > 0, ρ > 1, θ > 0, k = 0, L0 = M, Y0 = 0;  

2: do 

3:𝑆𝑘+1 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑆 𝜆|| 𝑆 ||1 + 
𝜇

2
|| 𝑀 +  (𝑌𝑘/𝜇) −  𝐿𝑘 − 𝑆 ||𝐹

2  

4. for each frame mj in M do  

5: Find a similar frame group Mj  

6: Estimate weight vector w  

7: 𝐿𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿 𝜆|| 𝐿 ||𝑤,∗ +  
𝜇

2
||𝑀 +  (

𝑌𝑘

𝜇
) − 𝐿𝑘 − 𝑆𝑘+1 ||𝐹

2  

8: 𝑌𝑘+1 = 𝑌𝑘 + 𝜇𝑘(𝑀 −  𝐿𝑘+1 − 𝑆𝑘+1); 

9: Update μk+1 = ρ ∗ μk ; 

10: k = k + 1; 

11: while ||M − Lk+1 − Sk+1||F / ||M||F > θ 

12: Output Matrix L = Lk+1 and S = Sk+1; 

 

        

Figure 4.1 Flow chart representation of the SE using WNNM-RPCA 
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4.4.2 Model formulation for WSNM Model  

 

WSNM is a generalized variant of Weighted Nuclear Norm Minimization, whose image-

denoising performance has been studied in [155],[213]. WSNM Low-rank approximation tends 

to carry out low-rank regularization effectively wherein we employ the loss function expressed 

in Eq (4.8) as follows: 

 

       𝑎𝑟𝑔 𝑚𝑖𝑛𝑆,𝐿 || 𝑆 ||1 + || 𝐿 ||𝑤,𝑆𝑝

𝑃  𝑠. 𝑡  𝑀 = 𝐿 + 𝑆                                               (4.8) 

Using the Augmented Lagrangian function in  Eq (4.8) we get : 

 

𝐿(𝐿, 𝑆, 𝑍, 𝜇)  =  || 𝑆 ||1 + || 𝐿 ||𝑤,𝑆𝑝

𝑃 + <  𝑌, 𝑀 − 𝐿 − 𝑆 >   

                               +  
𝜇

2
 ||𝑀 − 𝐿 − 𝑆||2

𝐹                                                                  (4.9)                            

Where Y is a Lagrangian multiplier, μ is a positive scalar. The values of the weighted 

vectors are defined in Eq (4.9) as follows: 

 

                          𝑤𝑖 = 𝐶√(𝑚𝑥𝑛)/(ϭ𝑖(𝑀) +  𝜖)                                         ….    (4.10) 

 

Thus, in this way, the values of L, S, and Y are updated to reach the global optimum. The 

algorithm2 for WSNM-RPCA is shown below   

Algorithm 2 SE by WSNM-RPCA 

Input: Noisy speech data M, weight vector w, power p 

1: Initialize μ0 > 0, ρ > 1,  k = 0, L0 = M, Y0 = 0;  

2: do 

3: 𝑆𝑘+1 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑆 𝜆|| 𝑆 ||1 +  
𝜇

2
||𝑀 + (

𝑌𝑘

𝜇𝑘
) −  𝐿𝑘𝑆𝑘 ||𝐹

2   

4: 𝐿𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿 || 𝐿 ||𝑤,𝑆𝑝
𝑃 +  

𝜇

2
||𝑀 +  (

𝑌𝑘

𝜇
) − 𝐿−𝑆𝑘+1 ||𝐹

2; 

5: 𝑌𝑘+1 = 𝑌𝑘 + 𝜇𝑘(𝑀 −  𝐿𝑘+1 − 𝑆𝑘+1);  

6: Update μk+1 = ρ ∗ μk ; 

7: k = k + 1; 

8: while ||M − Lk+1 − Sk+1||F / ||M||F not converged 

9: Output Matrix L = Lk+1 and S = Sk+1; 



 

94 

4.5 Simulations and Methodology 

This section provides details of the experimental setup and methods for evaluating the 

suggested noise reduction methods' performance and suitability.  The results of these 

experiments are of high value for assessing the possibilities and limitations of the enhancement 

method. They also allow for estimating the influence of the parameters that were considered in 

Sections 4.4 and 4.5. Because of many uncertainties and complicated relations, the theoretical 

discussion in the previous section did not suffice to make a reliable prediction of the 

performance of the speech recovery procedure. On the contrary, the results of the experiments 

show how well the algorithms have already performed in tests, and the assumption is justified 

that they will perform similarly in identical situations. Therefore, the following section contains 

very valuable information about the potential of the SE method in practical use. Even more so, 

as the number of test signals that were used is rather high. 

 

The standard Noizeus corpus [145] was used in studies. The speech signals are available 

as Wav files with a sampling rate of 8 kHz. A total of 20 clean sentences were chosen for this 

study. The noisy stimuli were created by adding clean phrases with five different signal-to-

noise ratio levels, including -10, -5, 0, 5, and 10 dB. The noise signals obtained from a noise 

collection were available as waveforms with a sampling rate of 8 kHz as well. Five noise 

recordings: The cheering of a crowd of people, a bubbling stream of water, wind, machine, and 

car driving in traffic, were selected for evaluation. AWGN was simulated and added to the clean 

speech.  This resulted in an overall number of 5 • 20 • 6 = 600 mixed test signals, which are all 

about 3 seconds long.  

 

Low-rank, sparse, and noise matrix decomposition algorithms need to be given the 

parameters r and λ.  r determines the rank of the low-rank component while λ  value is used to 

trade off the desire to minimize the cardinality of the sparse component against the desire to 

minimize the energy of the noise component. It is important to tune the two parameters. If λ 

value is chosen too small, then parts of the noise will leak into the speech estimate because the 

urge to minimize the cardinality of the sparse component is not high enough to eliminate all 

relevant noise contributions from the sparse component. If λ value is too big on the other hand, 

the urge to minimize the cardinality of the sparse component is so dominant that parts of the 

speech will be eliminated from speech estimate which is counterproductive. It should be pointed 



 

95 

out that apart from the parameters that were changed in order to evaluate their influence on the 

performance of the SE method, all settings were left as they were. The best value in this 

investigation is an average output SDR of 2.89 dB which was achieved by setting r = 1 and        

λ = 1. Therefore, this will be the setting that will be used in the following comparison of the 

performances in speech-denoising methods. 

 

4.5.1 Influence of Binary and Log-Sigmoid Time-Frequency Masking 

 

To illustrate the time-frequency masking step and the influence of different masks, 

Figure 4.1 contains plots of all matrices that are relevant for example masking step. The 

spectrogram of the noisy speech input signal is shown in Figure 4.2(a) Figures 4.2(b) and 4.2(c) 

show the low-rank and sparse components that decomposed the input spectrogram by WNNM-

RPCA algorithm. Figure 4.2(d) depicts the binary mask derived from the low-rank and sparse 

components, while Figure 4.2(e) displays the final speech estimate after applying the binary 

mask. Figure 4.2(f) shows the log-sigmoid mask calculated from the low-rank and sparse 

components and Figure 4.2(g) is the final voice estimate after applying the log-sigmoid mask. 

Figure 4.2(h) shows the final speech estimate spectrogram when no mask is applied. The SE 

algorithm with WNNM-RPCA matrix decomposition was applied to all 600 test signals. With 

fixed STFT settings of M = 1024, and hop-size = 256 using Hanning windowing, the 

enhancement methods were tested with binary masks, log-sigmoid masks, and without masks 

to experimentally evaluate and compare the influences of masks. 

 

For all five noise types, all five speech-to-noise energy ratios in the input signal, and all 

three different masks (no mask, binary mask, and log-sigmoid mask), the mean speech-to-

distortion energy ratio was obtained by averaging the resulting SDR values of all 20 speakers. 

The most obvious and most important thing that can be learned from these results is that for all 

noises and all masks, the approach with the settings specified above achieves a speech-to-

distortion energy ratio (SDR) in the speech estimate that is considerably higher than the speech 

to noise energy ratio in the input signal. 
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                               (g)                                                                           (h) 

Figure 4.2.   Plots of relevant matrices for the time-frequency masking step using WNNM-RPCA 

Based   SE   algorithm: a) Spectrogram of noisy speech signal   b) Low-rank component.  c) 

Sparse component d) Binary mask   e) Speech estimate after binary masking f) Log-sigmoid 

mask  g) Speech estimate after Log-sigmoid mask    h) Speech estimate without masking. 

 

The most obvious and most important thing that can be learned from these results is that 

for all noises and all masks, the approach with the settings specified above achieves a speech-

to-distortion energy ratio (SDR) in the speech estimate that is considerably higher than the 

speech to noise energy ratio in the input signal. This is true for all entries with input SNR levels 

of -5dB, 0dB, and 5dB, and most of the entries with input SNR of -10dB. Only for some entries 

at the already high input SNR of 10dB, did the enhancement method fail to produce a further 

increase in the speech quality and decreased it instead. From the results, it is observed that all 

three masks achieve very similar results for low values of the input SNR and that the output 

SDR values become slightly more spread out for higher values of the input SNR. For high SNR 

values, the SE algorithm without any mask performs best, log-sigmoid masking is second best 

and binary masking is last with a performance that is about 1dB worse than that without 

masking. This suggests that the WNNM-RPCA decomposition already achieves a good 

separation of speech and noise, which cannot be further enhanced with the masks used here. 

Instead, the masks cause undesired alterations that deteriorate the results. 

 

For low values of SNR on the other hand, the results are closer together with log-sigmoid 

masking performing best. So, in very noisy conditions, masking can help improve the outcome 

of speech recovery a little bit. Another aspect that results reveal is that log-sigmoid masking 

does constantly perform about 0.4dB better than binary masking. This is not only true on 

average but can also be verified by comparing corresponding individual entries. It can be 
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realized that the behavior of the three different mask types for the individual noise types does 

not deviate significantly from the average of overall noise signals. This means that none of the 

tested noise signals has a mask type that is particularly suitable and performs significantly better 

than all other mask types.   

 

4.6 Evaluation of the Weighted Low Rank and Sparse 

decomposition models for SE  

 

   This section contains the evaluation results that were achieved with WNNM-RPCA 

(WRPCA) and WSNM-RPCA (WSRPCA) based enhancement procedure for different settings 

of the parameters which were discussed in Sections 4.3 to 4.6. The 600 test signals were 

decomposed with the SE algorithm that has NNM-RPCA at its core. The results indicate how 

well the WSRPCA-based SE algorithm will perform for different noise types. The suggested 

SE algorithms were evaluated and validated against the baseline state-of-the-art SE algorithms 

using objective evaluation metrics such as SDR, PESQ, STOI, SIG, and BAK. The results of 

experiments revealed that WSRPCA outperforms state-of-the-art enhancement algorithms not 

only in terms of PESQ and STOI index but also in local structure preservation, leading to 

listening being more pleasant.    
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(c)                                                   (d) 

Figure 4.3(a-d) Performance comparison of the proposed SE algorithms with baseline 

methods in terms of  SDR  values using the standard NOIZEUS database for a)  Crowd         

b)  Water   c) Wind  d) Machine     

 

                              

(e)                                                (f) 

Figure 4.3(e, f) Performance comparison of the proposed SE algorithms with baseline 

methods in terms of SDR values using the standard NOIZEUS database    e) Traffic & Car    f) 

AWGN noise. 

 

 

At -10dB, using the suggested WSRPCA approach, an improvement of  8.14 dB and 

6.17 dB in SDR was observed with Traffic & Car and Wind noise, respectively. The weighted 

low-rank and sparse models have shown improvements in all SNR levels and noise 

environments. The proposed methods are also examined with AWGN as a stationary noise case. 
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The performance study of the proposed algorithms versus KSVD, NMF, RPCA, and SS-

GODEC in terms of PESQ [214] for all SNR levels is depicted in Figure 4.4(a-f). PESQ was 

improved the most in a noisy unprocessed speech at -10 dB traffic and car noise (∆PESQ = 

0.49) and the least with 10 dB AWGN (∆PESQ = 0.27). When compared to the baseline 

techniques, the suggested speech enhancement algorithms showed a considerable improvement 

in PESQ at all SNR levels and noise situations. At -10 dB noise levels, the greatest PESQ scores 

were obtained in traffic and car noise, wind noise, and AWGN, with PESQ = 2.51, 2.27, and 

2.43, respectively. 
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(e)                                                                           (f) 

Figure 4.4(a-f). Performance comparison of the proposed SE algorithms with existing 

methods in terms of PESQ values using the standard NOIZEUS database. 

 

 

According to the results of the previous investigations on proposed algorithms, using a 

binary T-F mask improved speech intelligibility in strong noisy conditions (-10 to 0 dB). Figure 

4.5(a-f) demonstrates the improved speech intelligibility with a binary mask using STOI [215] 

measure. For SNR = 10 dB, all noise sources resulted in the highest intelligibility scores 

(STOI > 0.86). 

 

To determine the speech distortion and background residual noise introduced by the 

recommended algorithms, measures like SIG, BAK, and OVL must be taken into account. For 

the proposed algorithm's speech distortion (SIG), residual noise (BAK) and Overall quality 

were measured and are shown in Figures 4.6 (a-c). The strategies offered provide low residual 

noise and consistently produce high BAK and OVL values at all SNR levels and noise 

conditions. In all noise situations, the algorithm performed effectively in low SNR levels (-10 

dB) and significantly decreased residual noise when compared to baseline techniques. The 

proposed approach produces high SIG values at all SNR levels and noise situations, 

demonstrating its usefulness in terms of speech content preservation. 
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(a)                                               (b) 

 

 

                                 

                                     (c)                                                                  (d) 

Figure 4.5(a-d) Performance comparison of the proposed SE algorithms with existing methods     

 

0

0.2

0.4

0.6

0.8

1

-10dB -5dB 0dB 5dB 10dB

ST
O

I

INPUT SNR

CROWD

KSVD NMF NRPCA

SSGODEC WRPCA WSRPCA

0

0.2

0.4

0.6

0.8

1

-10dB -5dB 0dB 5dB 10dB

ST
O

I

INPUT SNR

WATER

KSVD NMF NRPCA

SSGODEC WRPCA WSRPCA

0

0.2

0.4

0.6

0.8

1

-10dB -5dB 0dB 5dB 10dB

ST
O

I

INPUT SNR

WIND

KSVD NMF NRPCA
SSGODEC WRPCA WSRPCA

0

0.2

0.4

0.6

0.8

1

-10dB -5dB 0dB 5dB 10dB

ST
O

I

INPUT SNR

MACHINE

KSVD NMF NRPCA

SSGODEC WRPCA WSRPCA



 

103 

                                

                                         (e)                                                                     (f)  

 

    Figure 4.5(e-f) Performance comparison of the proposed SE algorithms with existing methods   in 

terms of STOI   using standard NOIZEUS data base   
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                                                                        (c) 

 Figure 4.6(a-c)  Performance comparison of the proposed SE algorithms with existing methods in     

terms of Objective metrics: a) BAK   b) OVL c) SIG 

 

When compared to baseline techniques, in low SNR situations (< 0dB) the proposed 

approach produced the greatest SIG values, demonstrating its usefulness in terms of speech 

content preservation. The approach outperformed in Traffic & car noise at all SNR levels by 

introducing low speech distortion and also very little residual noise in all noise settings. 

 

4.7 Summary 

 

The work proposes two convex optimization-based speech enhancement approaches that 

don't require any prior knowledge of speech or noise. Using a low-rank sparse matrix 

decomposition model, the approach decomposes input noisy speech magnitude spectra into 

low-rank noise and sparse speech components. Due to better characteristics, researchers believe 

that the algorithms recommended can provide a new and feasible approach to the SE problem 

in low SNR situations. The suggested methods are non-parametric strategies that do not require 

any assumptions about the spectral component distribution in speech or noise. In T-F domain, 

it only requires low-rank noise and sparse speech. The VAD approach is irrelevant and 
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unnecessary in SE framework since speech and noise components can be obtained 

simultaneously. 

 

    The contribution of this chapter is to provide an unsupervised speech-denoising 

strategy under diverse, strong, and unseen real-world nonstationary noisy settings that use low-

rank and sparse decomposition models with a different objective function than conventional 

RPCA approaches. For each noisy input, all the regularization parameters are automatically 

modified and updated. Although existing methods such as KSVD and NMF methods can 

eliminate most interferers, under low SNR conditions (< 0dB) part of the recovered speech 

formant structures are lost during the matrix decomposition process, resulting in speech 

distortion. To alleviate speech distortion, we intend to build a novel low-rank and sparse matrix 

decomposition model by placing appropriate constraints on the sparse part.  The present study 

assessed several objective measures widely used for evaluating speech quality. The 

performance metrics of RPCA, SS-GODEC, WNNM, and WSNM were evaluated and these 

were compared with KSVD and NMF in a wide range of acoustic conditions. The test 

conditions included speech signals from Noizeus databases and five real-world noises at five  

SNR levels (-10 dB, -5dB, 0 dB, 5, and 10 dB). Acoustic conditions with stationary noise at 

various SNR levels were included in our experiments and they reported excellent performance. 

With the proposed model, promising results were obtained in our experiments in terms of better 

objective measures like SDR, PESQ, SIG, BAK, OVL, and STOI values when compared with 

baseline methods such as KSVD, NMF, RPCA, and SS-GoDEC.   

 

    The proposed SE methods, however, were unable to completely remove background 

noise since the convex optimization techniques were inaccurate in estimating exact low rank. 

The problem of developing robust speech enhancement algorithms that can effectively remove 

background noise while maintaining good quality and intelligibility with low distortion in 

highly nonstationary and adversely noisy situations has yet to be solved. For Superior 

performance, models to estimate exact low-rank and noise type are to be explored.  
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Chapter 5 

 

Unified Speech Enhancement Approach for Low Distortion 

Under Low SNR Environments 

 

This chapter discusses the shortcomings of the suggested weighted low-rank sparse 

decomposition techniques that were previously developed. A novel SE approach is presented 

to address these issues in low SNR situations by integrating Wavelet, weighted low-rank sparse 

decomposition, and gamma-tone filter banks. Along with the results, the proposed SE method's 

implementation details are presented. The implementation details of the proposed SE method 

are explained along with the results. 

 

5.1 Motivation  

 

In low SNR and nonstationary noise situations, estimation of noise-related parameters 

in unsupervised speech enhancement (SE) approach is difficult. In recent SE approaches, the 

best results were achieved by partitioning noisy speech spectrogram into low-rank noise and 

sparse speech parts. Although the standard RPCA-based methods have proven useful for SE, 

there are a few potential drawbacks limiting its effectiveness.  First, RPCA approaches are often 

approximated by spectrogram analysis using short-time Fourier transform (STFT). However, 

due to segmentation and windowing operations, there is distortion included in STFT process 

[141]. Second, most of these algorithms optimize their cost function, which is based on 

Euclidean distance (ED). The ED, on the other hand, can contribute to fairly significant 

reconstruction errors since it tends to overemphasize the accuracy of large values. As a result, 

the ED measure is not appropriate for processing speech signals [142]. Third, the majority of 

existing SE approaches improve STFT-based spectral magnitude while retaining the input 

noise-corrupted phase part unaltered, leading to distortion of the recovered speech signals and 
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reducing SE performance [156,157]. Fourth, the most well-known strategy used in the 

evaluation of RPCA is nuclear norm minimization (NNM), which precisely restores the rank of 

the matrix within specific constrained and theoretically guaranteed circumstances. In many 

cases, NNM fails to predict the rank of the matrix accurately [212]. These strategies are 

constrained by the estimate of the real rank of noise, and they do not fully use the low-rank 

characteristics in optimization. 

 

As a result, discrete wavelet packet transform (DWPT)-based SE techniques [157] have 

been developed, to overcome previously mentioned distortion problems due to the use of noisy 

phase, by directly processing signals in the temporal domain and achieving acceptable SE 

performance. According to a recent study, monaural mixed audio can be separated more 

effectively on a cochleagram than on a spectrogram [158]. Because the cochleagram is created 

from non-uniform time-frequency (T-F) transform that simulates the human ear, the T-F units 

in the sensitive low-frequency portions have greater resolution than those in the high-frequency 

regions. In reality, speech and noise respond differently on the cochleagram. As a result, using 

a sparse and low-rank decomposition model to improve speech through mask estimation on the 

cochleagram appears promising. The Frobenius norm measure is commonly used in the cost 

function since it has been examined in studies of sparse and low-rank models without additional 

constraints to regularize the decomposed components. In addition, the decomposed speech 

involved should be nonnegative. Based on these findings, we chose to employ a Non-negative 

RPCA (NRPCA) scheme with DWPT that improves RPCA-based SE in an unsupervised 

manner to avoid the aforementioned shortcomings.  

 

5.2 Introduction 

 

In the literature, different cost functions, including Euclidean distance (ED), Kullback-

Leibler divergence (KLD), and Itakura-Saito divergence (ISD), have been used as indicators of 

the quality of decomposition. Experimental evidence has shown that KLD works better than 

the squared ED or ISD for categorizing musical instruments [160]. As a result, the KLD 

measure has been used in this work to perform sparse and low-rank decomposition with  
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NRPCA (KLNRPCA) for SE [159]. However, the NNM-based NRPCA technique does 

not effectively utilize auditory perceptual features due to an improper calculation of matrix 

rank. Convex optimization models like weighted nuclear norm minimization (WNNM) and 

weighted Schatten p-norm minimization (WSNM), which overcome NNM limitations and 

obtain a better matrix rank approximation than NNM, have demonstrated their effectiveness in 

computer vision and machine learning domains. As a result, we introduced the SE framework 

in our earlier work [161,1*] by dividing a noisy spectrogram using weighted low-rank 

background noise and a sparse speech component, which yielded useful findings. Therefore, 

utilizing a weighted low-rank sparse decomposition methodology, discrete wavelet packet 

transform (DWPT), and the KL Divergence, under a variety of noise environments, we present 

in this study a novel approach for separating speech and noise cochleagram that enhances 

speech enhancement performance in various noise environments. Using the Noizeus data set, 

we evaluate and compare the effectiveness of DWPT-KL nonnegative RPCA (WKLNRPCA) 

with DWPT-KLWNNM (WKLWNNM) and DWPT-KLWSNM (WKLWSNM) for 

unsupervised speech enhancement. The outcomes demonstrate that in terms of speech quality 

and intelligibility, our approach greatly exceeds the conventional STFT-based SE approach. 

According to experimental results, the suggested approach achieves lower residual noise and 

less speech distortion in low-SNR settings than several of the most widely used SE approaches. 

 

 

When compared to baseline approaches, our investigations using the suggested model 

in low SNR conditions revealed promising results in terms of enhanced objective 

measurements, including SDR, PESQ, STOI, SIG, BAK, and OVL values. The findings 

demonstrate that for all types of noise levels, the proposed technique offers an output SDR that 

is much greater than the input SDR. With traffic and car noise and wind noise, respectively, the 

WKLWSNM model shows improvements in output SNR of 11.95 dB and 5.46 dB at -10dB 

input SNR. For similar scenarios, PESQ values of 2.36 and 2.14 were obtained. For input noise 

between -10 and 0 dB, it was noticed that the suggested WKLWSNM approach with a binary 

T-F mask improved STOI scores.  
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5.3 DISCRETE WAVELET PACKET TRANSFORM 

 

For DWPT/IDWPT, a series of clearly-defined low and high-pass filters, as well as a 

factor-2 down/up-sampling procedure, were used to provide distortion-free analysis/synthesis 

for an arbitrary signal. The structure of DWPT/IDWPT with a 2-level analysis/synthesis   (l = 

2) is shown in Figure 5.1. A full-band time signal m(n) is first divided into 𝑑0
1 and 𝑑1

1 sub-band 

signals, where d stands for the set of all level-l sub-band signals denoted as  𝑑𝑛
𝑙  , which provide 

information for the low and high frequencies, respectively, on the left side. Each of the two sub-

band signals is subjected to the decomposition procedure again to produce four sub-band 

signals. By framing the sequence, a signal space is produced for each sub-band signal. 

 

The DWPT process can be formulated as:        

            𝑑𝑛
𝑙 =𝐷𝑊𝑃𝑇𝑛

𝑙{m},n = 1, 2, 3... 2l                                                           …. (5.1) 

 

  where {𝑑𝑛
𝑙 }𝑛=1

2𝑙
 , denotes the nth sub-band signal from a level-l DWPT. 

 

                                |      Analysis      |           Synthesis    |             

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Structure of DWPT/IDWT two-level decompositions 
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The frequency responses of the low and high pass decomposition filters are denoted by 

h and g, respectively. The IDWPT reconstructs a full-band time signal by combining the sub-

band signals. As a result, IDWPT can be written as 𝑚̂= IDWPTl {d}.  The input signal will be 

the same as the reconstructed signal, namely 𝑚̂ = 𝐼𝐷𝑊𝑃𝑇𝑛
𝑙= m, assuming a well-defined filter 

set.   

 

5.3.1  Gammatone filter bank 

 

The proposed SE technique decomposes the input noisy speech signal into a T-F 

representation using a Gammatone filter bank [159], also referred to as cochlear filtering 

method. The filter bank's impulse response is provided as follows: 

 

        𝐺𝐹𝐵(𝜔, 𝑡) =  { 0       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑡𝑛−1 𝑒−2𝜋𝜇𝑡 cos(2𝜋𝜔𝑡),

   𝑡≥0                       ---(5.2)  

                                               

Where ‘n’ refers to the filter's order, μ stands for the rectangular bandwidth that increases 

as the centre frequency ω increases. The response is shifted backward by (k-1)/2 πμ to account 

for filter delay. The output of each filter channel is used to produce time frames with a 50% 

overlap between them. The T-F spectra of each filter output are combined to create the 

cochleagram. 

 

5.3.2 SE Using Weighted low-rank sparse models 

A SE technique for speech and noise spectrogram separation by applying weighted low 

rank and sparsity requirements, as RPCA and SS-GODEC explicitly account for deviations of 

the speech and noise time-frequency matrices from the idealised sparse and low-rank model. 

The effectiveness of enhancement using singular value decomposition, the ADMM, and the 

accelerated proximal gradient line search method is enhanced thanks to the WNNM's low 

rankness. Therefore, a WNNM-based RPCA improvement model is suggested here that 
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outperforms NNM-based techniques by taking advantage of the high correlation of speech 

signals. In order to efficiently carry out low-rank regularization, extensive studies resulted in 

the development of a new RPCA model, the weighted Schatten p-norm minimization (WSNM) 

model. 

 

 

5.3.2.1 SE Method Using NRPCA 

 

Considering that a noisy speech signal is composed of clean speech signal s(n) and an additive 

uncorrelated noise signal l(n), which is represented as follows: 

 

                   m(n) = l(n) +s(n)                                                                           … (5.3) 

 

Based on the sparse and low-rank hypothesis for speech and noises, it is possible to decompose 

the T-F representation of m(n), i.e., M ϵ Rkxn, into two terms, represented as follows 

 

                                     M=L0+S0                                                                                                     ….     (5.4) 

 

where S0 is a component for sparse speech and L0 is a component for low-rank noise [147,200]. 

The RPCA approach finds a low-rank version and the sparse version of a noisy speech data 

matrix using Eq(5.5) as follows 

 

                   arg min L, S (||L||* + λ ||S||1) s.t M=L+S                                          …  (5.5) 

 

Where ||.||1,||.ǁ∗ symbolize l1 matrix norm and nuclear norm, a positive constant λ  

regulates the relative weight between rank minimization and l0-norm respectively. To preserve 

the physical significance of the cochleagram, the decomposed terms must be nonnegative, 

hence the following nonnegative robust principal component analysis (NRPCA) model is 

proposed: 

 arg min L, S (||L||* + λ ||S||1)       
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                            s.t.    M= L + S, L ≥ 0, S ≥ 0                                               ….   (5.6) 

 

 

A Lagrange multiplier Y is used in the Lagrange method to create an unconstrained function. 

The Y value from the previous iteration is used to determine the optimal values of L and S. In 

order to reach the global optimum, the values of L, S, and Y are therefore updated in this 

manner. 

 

According to preliminary experiments, the NRPCA model in Eq. (5.5) introduces 

musical noise into the reconstructed speech signal due to non-negativity restriction. Therefore, 

the formant structure of the original speech cannot be effectively and robustly extracted. This 

changes the NRPCA method to use the GO-Dec approach [153]. The cochleagram of the noisy 

speech M is thus represented as the summation of L, S, and D, that is, M = L+ S + D, where L 

and S are low-rank and sparse elements and D is a noise component that perturbs the ideal low-

rank and sparse feature. The optimization of the objective function is therefore expressed as 

follows in Eq (5.7): 

 

 arg min L,S ||M − L –  S || F
 2   

                                   s.t rank(L) ≤ r   and card(S) ≤ c                               (5.7) 

 

Where r and c define the rank of L and cardinality of S, respectively. In order to achieve 

the predefined requirements for rank and cardinality of their support set, L and S must be chosen 

while minimizing the noise power defined as:  

 

                      ǁEǁ2   = ǁ M − L − Sǁ F
2      …                                                   (5.8) 

  is minimized.  

 

The aim of NNM decomposition in RPCA is to minimize ||L||*, so that the hidden low-

rank matrix L can be recovered from the corrupted observation matrix M. However, in many 

realistic situations, NNM is unable to estimate the rank of the matrix accurately since the rank 
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components are frequently over-shrunk. Furthermore, the technique's practical utility is also 

constrained by the fact that it gives uniform weights to all rank components or singular values, 

which leads to a biased estimation of low-rank and sparse elements. In response to singular 

values which have different meanings, the weighted nuclear norm minimization (WNNM) 

method was introduced. WNNM greatly enhances flexibility and generalizes NNM. So, in this 

research, we propose to investigate WNNM and assess its minimization approach. 

 

The original Low-Rank Matrix Approximation (LRMA) problem can be approximated 

more precisely using WSNM since it can accommodate a wide range of rank components. 

WNNM is a generalized variant known as WSNM. WSNM changes into WNNM when power 

p = 1.  A Weighted Schatten p-Norm exists for the matrix M ∈ Rm x n with power p. The p-norm 

low-ranking approximation is used by WSNM in place of the nuclear norm flow-ranking 

approximation. WSNM Low-rank approximation typically performs low-rank regularization 

efficiently wherein we use Augmented Lagrangian function, represented in Eq(5.9) 

 

     X(Lw,S,Y, μ) =  arg min L,S ||L|| p w, SP  +λ ||S||1+             

                                               < Y,M-L-S >  + μ/2 ||M-L-S||F
2                                    ….   (5.9) 

 

where Eq(5.9) expresses the weighted vector values as follows: 

                     ωi=C√(mxn)/(ϭi(M)+ϵ)                                                          ….   (5.10) 

 

   Where the vector wi = [w1, w2 ..., wn] and wi ≥ 0 is a non-negative weight given to σi 

(M). Based on prior knowledge and understanding of the issue, the rational weights criterion 

for weighting may be selected, significantly enhancing the capacity to represent the original 

data from the noisy input. Since they represent the energy of the main components of M, the 

large singular values of M are known to be highly significant than smaller ones in natural 

speech. The higher the individual values, the smaller they need to be shrunk during denoising. 

It implies that the weight assigned to σi(M), the ith singular value of M, should be inversely 

proportional to σi (M).   
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The experiments have shown that a generalized KL cost function performed best in 

speech and noise separation tasks. Therefore, a refined model with L0 and S0 constraints, the 

KL divergence (KLD) cost function has been introduced. Similar to the human auditory system 

indicated by the formula in Eq(5.11), the KL scale invariant metric considers both low and high 

values while performing calculations. 

 

            𝐾𝐿𝐷(𝑀||𝑌) = ∑ 𝑃𝑀𝑖𝑙𝑜𝑔
𝑃𝑀𝑖 

𝑃𝑌𝑖
  𝑁

𝑖=1 -  ∑ 𝑃𝑌𝑖𝑙𝑜𝑔
𝑃𝑀𝑖 

𝑃𝑌𝑖

𝑁
𝑖=1 ≈ 0     .. (5.11) 

 

 The cost function of KLD is to minimize the KL measure between Y and its sparse and 

low-rank sum M, where L and S are constraints that need to be nonnegative of  elements in the 

cochleagram.  Since the cochlear magnitude values of speech signals are nonnegative, the 

decomposed S component follows the non-negativity criterion. Negative components might 

cause additional unpleasant residual noise if the non-negativity criterion is not imposed. The 

temporal gradient operator (β) is employed to avoid negative components. As a result, the KL-

NRPCA model is formulated as: 

                         Arg min L,S KLD(ǁ M, S + Lǁ) + λǁSǁ1 + βǁLǁ∗                                                  (5.12) 

                                                                s, t L ≥ 0, S ≥ 0 

     where β is the optimization parameter. 

 

5.3.2.2 Optimization Algorithm using ADMM 

Further, by including the auxiliary variables M, L+, and S+ , KLWLRS model in Eq(5.12 ) can 

be represented as  

 

arg min L, S, L+, S+, M   KLD(ǁ M, Y ǁ) + λǁS+ǁ1 + βǁL+ǁp
w,∗                                         -------      (5.13) 

                 s, t     M=L+S, S+,=S, L+ = L, L+ ≥ 0, S+ ≥ 0 

The Augmented Lagrangian function for  Eq (51.3) is  

 

   XΩ =  Ω/2 ||M-L-S+ ΨM ||F
2  +  Ω /2 ||S - S++ Ψs ||F

2    

          + Ω/2 ||L - L+ + ΨL||F
2 +   λ ||S+||1+  β ||L+||pw,*           ------                                                    (5.14) 
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  Where the scaled dual variables are ΨM, Ψs, ΨL, and the scaling parameter is Ω. As the 

objective function in Eq(5.12) is separable,  ADMM algorithm can be used to solve it. By 

solving related issues within ADMM framework, all the variables in Eq(5.12) are updated 

separately and alternatively.  The gradient descent approach can be used to minimize XΩ for 

each of the two primal variables, two auxiliary variables, and three dual variables.  

. 

Contrary to Eq(5.13), it is necessary to address the sub-problem of updating M as 

indicated in Eq(5.15). 

            M =  arg min M ≥ 0   KLD(M,Y) +  Ω/2 ||M-L-S+ ΨM ||F
2                     (5.15) 

  The goal of WKLNRPCA method is to lower KL distance between Y and the sum of 

sparse and low-rank components (expressed by M in the equation above), with both components 

in the cochleagram being nonnegative. So, as a way to improve the performance, a novel SE 

algorithm is proposed by cascading stages of  DWPT, KLD and NRPCA leading to a novel SE 

Framework denoted by “WKLNRPCA”. The algorithm for WKLNRPCA is shown below   

 

   Algorithm 1 for SE using Wavelet-KLD-NRPCA 

Input: Noisy speech data matrix M - Sub-band wise 

1:  Initialize:  λ > 0, k = 0, 𝐿+
(0)

 = 𝑆+
(0)

 =0 ,  𝛺  = 1,          

     𝛹𝑀
(0)

= 𝛹𝐿
(0)

= 𝛹𝑆
(0)

= 0 , θ > 0, μ =1, η = 0.95 

2:   While k ≤  θ   do  

3:   arg 𝑚𝑖𝑛𝑋≥0 KLD(M,Y) + Ω/2
∥ 𝑀 − 𝐿(𝑘)-𝑆(𝑘)+𝛹𝑀

(𝑘)
∥𝐹

2  

4:     𝑆(𝑘+1)=(𝑀(𝑘+1) − 𝐿(𝑘) +  𝛹𝑀
(𝑘)

−  𝛹𝑆
(𝑘)

+ 𝑆+
𝑘) / 2 

5:     𝐿(𝑘+1)=(𝑀(𝑘+1) − 𝑆(𝑘+1) + 𝛹𝑀
(𝑘)

−  𝛹𝐿
(𝑘)

+  𝐿+
𝑘 ) / 2   

6:     𝑆+
(𝑘+1)

= 𝑆+  λ /𝛺
(𝑆(𝑘+1) + 𝛹𝑆

(𝑘)
) 

7:     𝑈∑ 𝑉  = 𝑠𝑣𝑑 (𝐿(𝑘+1) + 𝛹𝐿
(𝑘)

) 

8:     𝐿+
(𝑘+1)

: =𝑈𝑆+  β /𝛺
  ( ∑) 𝑉 

9:     𝛹𝑀
(𝑘+1)

= 𝛹𝑀
(𝑘)

+ μ  ( M - 𝐿(𝑘+1)-𝑆(𝑘+1))  

10 :  𝛹𝐿
(𝑘+1)

= 𝛹𝐿
(𝑘)

+ μ ( 𝐿(𝑘+1)- 𝐿+
(𝑘+1)

)  

11:    𝛹𝑆
(𝑘+1)

= 𝛹𝑆
(𝑘)

+ μ ( 𝑆(𝑘+1) −   𝑆+
(𝑘+1)

) 

12:   μ = η ∗  μ  , k= k+1 

13:  end While 

14: Output Matrix ( 𝐿̂ = 𝐿+
(𝑘)

,  𝑆̂ = 𝑆+
(𝑘)

) 
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Similarly, Cascading DWPT, KLD, and WNNM models lead to another novel SE 

Framework denoted as WKLWNNM. The algorithm for WKLWNNM is shown below      

 

 

 

5.4 DWPT- Weighted low-rank sparse model-based SE SYSTEM  

 

The proposed method uses Wavelet-based Weighted Low-Rank Sparse decomposition with 

KLD (WKLWLRSD) model-wise enhancement to each DWPT- sub-band time signal.  The 

block diagram of  WKLWLRSD model has decomposition, enhancement, and reconstruction  

 

  Algorithm 2 for SE using Wavelet-KLD-WNNM 

Input: Noisy speech data Matrix, Sub-band -wise 

1:  Initialize :  λ > 0, k = 0, 𝐿+
(0)

 = 𝑆+
(0)

 =0 ,M, Y0 = 0;  𝛺 = 1,          

     𝛹𝑀
(0)

= 𝛹𝐿
(0)

= 𝛹𝑆
(0)

= 0 , θ > 0, μ =1,η = 0.95, p=1 

2:   While  k ≤  θ   do  

3:    arg 𝑚𝑖𝑛𝑌≥0 KLD(M,Y) + Ω/2
∥ 𝑀 − 𝐿(𝑘)-𝑆(𝑘)+𝛹𝑀

(𝑘)
∥𝐹

2  

4:    𝑆(𝑘+1)=(𝑀(𝑘+1) − 𝐿(𝑘) +  𝛹𝑀
(𝑘)

−  𝛹𝑆
(𝑘)

+  𝑆+
𝑘) / 2 

5:    𝐿(𝑘+1)=(𝑀(𝑘+1) − 𝑆(𝑘+1) +  𝛹𝑀
(𝑘)

−  𝛹𝐿
(𝑘)

+  𝐿+
𝑘 ) / 2   

6:     𝑆+
(𝑘+1)

= 𝑆+  λ /𝛺
(𝑆(𝑘+1) + 𝛹𝑆

(𝑘)
) 

7:    for each frame mj in M do  

8:    Search for a similar frame-group Mj  

9:    Predict weight vector wi  

10:   𝑈∑ 𝑉  = 𝑠𝑣𝑑(𝐿𝑤
(𝑘+1)

+ 𝛹𝐿
(𝑘)

) 

11:   𝐿+
(𝑘+1)

: =𝑈𝑆+  β /𝛺
  ( ∑𝑤) 𝑉 

12:   𝛹𝑀
(𝑘+1)

= 𝛹𝑀
(𝑘)

+ μ  ( M - 𝐿(𝑘+1)- 𝑆(𝑘+1))  

13 :  𝛹𝐿
(𝑘+1)

= 𝛹𝐿
(𝑘)

+ μ ( 𝐿(𝑘+1)- 𝐿+
(𝑘+1)

)  

14:   𝛹𝑆
(𝑘+1)

= 𝛹𝑆
(𝑘)

+ μ ( 𝑆(𝑘+1) −   𝑆+
(𝑘+1)

) 

15:   μ = η ∗  μ  , k= k+1 

16:  end While 

17: Output Matrix ( 𝐿̂ = 𝐿+
(𝑘)

,  𝑆̂ = 𝑆+
(𝑘)

) 



 

117 

components, as shown in Fig. 5.2 (a), while the detailed sub-band-based WLRSD SE is shown 

in Fig. 5.2 (b). The overlap-add method is then employed to retrieve the gain function and 

enhance the associated sub-band signal for the virtual gain subspace. Finally, all enhanced sub-

band sequences are subjected to inverse DWPT.      

      

                                                       (a)        

Fig: 5.2 a) Block diagram of Overall methodology of proposed SE framework 

 

                                                            (b) 

Fig: 5.2  b) Block diagram of  DWPT-based SE Framework. 
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In the decomposition stage, the DWPT achieved in Eq. (5.1) was used to break a noise-

corrupted signal m(n) into 𝑑𝑁
𝑙 -sub-band signals in the decomposition stage. Then, using 

WKLWLRSD model-wise enhancement method, each of the sub-band signals was separately 

enhanced.  Finally, the enhanced signal 𝑚̂(n) is constructed by joining these updated sub-band 

signals using the IDWPT. The entire WKLWLRSD SE system, including the stages of 

decomposition, enhancement, and reconstruction, operate on the signals in  time domain only.  

 

 5.5 SIMULATIONS AND RESULTS 

 

This section presents the experiments and results for assessing the proposed noise reduction 

techniques’ feasibility and effectiveness. Additionally, they enable calculating the impact of the 

variables that were considered in Sections 5.3 and 5.4.  

 

The studies made use of the standard Noizeus corpus. The speech signals are available in Wav- 

file format with an 8 kHz sample rate. For this investigation, a total of 20 clear sentences were 

used. Clean sentences were mixed with five different SNR levels, such as   -10, -5, 0, 5, and 10 

dB, to produce the noisy speech. Waveforms with an 8 kHz sampling rate were also available 

for noise signals obtained from Noizeus corpus. For evaluation, five noise recordings were used, 

including a car driving in traffic, wind, a machine, a stream of bubbling water, and the cheering 

of a crowd of people. Simulated AWGN was also used with clean speech. As a result, there 

were 5 ∙ 20 ∙ 6 = 600 test signals generated, each lasting about 3 seconds. 

 

In order to illustrate the T-F representation of cochleagrams, Figure 5.3 shows the plots 

of all matrices that are related to decomposition. The cochleagram of the original clean speech 

is presented in Figure 5.1a. Figures 5.1b, 5.1c, and 5.1d display the cochleagrams of noisy 

speech, sparse and low-rank components respectively that decompose the input cochleogram 

by WKLWLRSD algorithm for 10dB of crowd noise case. 
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Fig. 5.3(a-d) Cochleagrams of a) original speech b)Noisy speech  c) Sparse component 

d) Low-rank component 

 

 

The regularization parameter selection process is an essential component of WLRSD 

approaches. A better general rule of thumb is suggested in the studies of [29] as  𝜆 =

(max (𝑒, 𝑓)−
1

2). For WKLWLRSD models, λ could be empirically tuned. We select  𝜆 =

𝜇(max(𝑚, 𝑛))−
1

2.  WKLWLRS problem formulation is comparable to that of PCP, which 

generalizes RPCA to have three decomposed terms. We intuitively assume that     λβ= c is  right, 

based on the choice of regularization settings in PCP. Through extensive experiments, we 

determine u and c. We select µ= 0.5 to achieve the desired balance between speech quality and 

noise suppression. We select c = 0.035 after fixing µ. We also observe that the Binary mask 

provides significantly better-increased speech quality. 
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5.6 Evaluation of the Wavelet-based Weighted Low Rank and 

sparse decomposition models for SE   

 

SE may also be impacted by the number of DWPT levels. To examine how the level of 

DWPT affects the outcome to enhance speech, we used several resolution levels (l = 2, 3, 4, 

and 5). As a result, we observed that when  l > 4, the enhancing influence is significantly 

reduced. This is feasible because the frequency range of the filter narrows as DWPT 

decomposition carries on, containing low speech information in the frequency band. As a result, 

the total enhancing effect is diminished because WLRSD models are unable to enhance the 

speech of each band. Additionally, if l < 3, DWPT will not be able to provide the signal with 

more information, lowering the impact of enhancement, particularly in the case of a low SNR. 

The amount of computation doubles and the speech quality is improved when l = 4, but the 

noise in speech is not decreased. Therefore, we selected l = 3 to enhance speech. 

 

 

For purposes of comparison, five baseline SE algorithms: KSVD, NMF, NRPCA, 

WAVELET-NRPCA(WNPCA), KL-NRPCA(KLNRP), and WAVELET-KL-

NRPCA(WKLNR) were utilized as competing algorithms. The histograms in Figs 5.4(a-c) 

present the performance of these approaches in terms of averaged scores of SDR, PESQ, and 

STOI for five types of noise under various SNR levels. The proposed WKLNR SE technique 

demonstrates that it outperforms the other five techniques. When compared to KSVD, NMF, 

and NRPCA average SDR improvements in speech quality were 4.12 %. When compared to 

NRPCA, WNPCA, and KLNRP, the proposed WKLNR method improves PESQ and STOI by 

10.6% and 2.7 %, respectively. 
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                                                           (c) 

 

Fig.5.4(a-c) Comparison of the proposed SE Techniques with classical methods in 

terms of Average SDR, PESQ, and STOI values. 
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Further, the histograms in figures (5.5-5.7) show the comparisons of three existing 

baseline SE techniques: NRPCA, WNNM, and WSNM with three possible alternate cascade 

combinations: Wavelet-KL-NRPCA(WKLNRPCA), Wavelet-KL-WNNM) WKLWNNM, 

Wavelet-KL-WSNM(WKLWSNM) SE methods for five types of noise under various SNR 

situations. The proposed WKLWSNM SE technique demonstrates that it outperforms the other 

five methods. When compared to NRPCA, WNNM, and WSNM, the proposed cascade 

formations: WAVELET-NRPCA, KL-RPCA, and WAVELET-KL-NRPCA methods improve 

SDR and STOI significantly.  

 

 

The suggested algorithm and the existing approaches were compared in terms of SDR 

in Figures 5.5(a-e), which was used to look at the reduction of distortion in enhanced speech. 

The results show that the suggested algorithm consistently produced the greatest SDR under all 

noisy environments and at all SNR levels. The high SDR in Figure 5.5(a-f) shows that the 

proposed technique is capable of reducing distortion in situations with high levels of noise (-10 

dB, -5 dB). The suggested approach performed significantly well in Traffic & car-noisy 

environments and scored higher than  competing methods in terms of SDR, although only at 5 

dB (SDR = 6.23dB) and 10 dB (SDR = 11.02dB) for machine and 10 dB (SDR = 10.71dB) for 

water noise, respectively. When compared to competing approaches, WKLWSNM and 

WKLWNNM performed better.  At all SNR levels and in every noisy condition, significant 

improvements have been seen, especially at low SNR levels noise (-10 dB, -5 dB). The Traffic 

& car noise level of -10 dB (∆SDR = 13.18dB) and water noise level of 10 dB (∆SDR = 0.17dB) 

have the highest and lowest SDR improvements, respectively. 
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                       (a)                                                            (b) 

 

                

                            (c)                                                                        (d)  
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                               (e)                                                        (f) 

Fig. 5.5(a-f) Comparison of the suggested SE algorithms against baseline methods in 

terms of SDR for a) Crowd   b)  Water   c) Wind  d) Machine    e) Traffic & Car    f)  AWGN 

noise 

 

 

A Comparision of the performance of the suggested algorithm and competing 

approaches using PESQ, which measures the overall quality of enhanced speech, is shown in 

Figure 5.6 (a-f). In all noisy environments, the proposed algorithm consistently produced the 

highest PESQ scores, primarily at low SNR levels (-10 dB and -5 dB). PESQ is improved at 

two different levels:  -10 dB (∆PESQ = 0.346) for Traffic & car noise and 10 dB (∆PESQ = 

0.083) for machine noise. However, less significant PESQ scores of 1.53 and 1.88 were noticed 

for machine noise at low SNR levels (-10 dB and -5 dB) respectively. The suggested method 

reported a less significant loss in speech quality than WKLNRPCA and WKLWNNM methods. 

At all SNR levels, WKLWSNM outperformed other competing techniques and in every noisy 

condition, an improvement was seen, notably at low SNR levels (-10dB and-5dB). 
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                (a)                                                                         (b)                

 

     

                                           (c)                                                   (d)                                  
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                        (e)                                                  (f) 

Fig. 5.6(a-f) Comparison of the suggested SE algorithms against baseline methods in 

terms of PESQ for a) Crowd   b)  Water   c) Wind  d) Machine    e) Traffic & Car    f)  

AWGN noise 

 

Figs. 5.7(a-f) displays the intelligibility prediction rates obtained using the STOI 

measure for processed speech using the suggested and alternate approaches. For the suggested 

method, the traffic & car and machine noise achieve the highest and lowest STOI outcomes, 

respectively. For SNR = 10 dB, all noise sources had good intelligibility scores of STOI > 86%. 

However, with the low SNR levels, significant discrepancies in prediction rates were observed. 

It is clear that the suggested algorithm performed better than alternatives at all SNR levels and 

in all noisy settings. The best overall prediction rate was obtained using the suggested 

algorithm, which was 88.4 %. Fig. 5.7(a-f) shows that the suggested algorithm produced the 

best average rates for five nonstationary noise and AWGN noise sources when compared to 

NRPCA, WNNM, WSNM, WKLNRPCA, WKLWNNM. For instance, at -10 dB, the suggested 

approach increases the predicted rate of Traffic & car noise on overall average from 54.4 % 

with NRPCA to 88.2 %. For Traffic & car noise at 10dB, for WKLNRPCA, and WKLWNNM 

methods, the overall STOI improves by 68.3 %, and 72.8 %, and for wind noise, by 66.5 %, 

and 70.2 %, respectively.     
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(a)                                            (b) 

           

(c)                                                          (d) 
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                               (e)                                                     (f) 

Fig. 5.7(a-f) Comparison of the suggested SE algorithms against baseline methods in 

terms of STOI score for a) Crowd   b)  Water   c) Wind  d) Machine    e) Traffic & Car    f)  

AWGN noise 

 

In order to investigate speech distortion and residual noise in enhanced speech, figures 

5.8(a-c) compares the proposed algorithm and the competing approaches in terms of average 

SIG, OVL, and BAK. The SIG calculates the distortion that results from processing noisy 

speech. Better performance is implied by a high value. Results in fig 5.8(a) show that, in 

comparison to competing methods, the proposed algorithm significantly reduces speech 

distortion in all noisy situations and at all SNR levels, except for -5dB (SIG = 2.76) crowd noise 

and   -10dB (SIG = 1.98) machine noise, respectively. Compared to the suggested technique, 

the NRPCA and WNNM methods achieved a more observable loss of speech contents. 

Although rigorous noise estimates in such systems can efficiently reduce background noise it 

also removes the crucial speech content. Consequently, this adds significant speech distortion. 

The BAK results are shown in figure 5.8(b). High BAK scores suggest that enhanced speech 

has low residual noise. In comparison to competing methods, the suggested algorithm 

effectively decreased background noise, resulting in low residual noise at all SNR levels and in 

all noise situations, except for -10dB (BAK = 1.35) crowd noise and -5dB (BAK = 1.43) 

machine noise. Low BAK values suggest significant residual noise in NRPCA-processed 

speech. Such methods provide disturbing residual noise as a result of too low noise estimation. 
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The OVL results of enhanced speech are seen in fig.5.8(c). At all SNR levels and in all noisy 

conditions, significant improvements have been made, especially at low SNR levels (-10dB and 

-5dB). 

                  

                                   (a)                                                                         (b)        

 

                                                           (c) 

Figure 5.8(a-c).  Average SIG-BAK-OVRL scores for proposed speech enhancement 

compared to the existing methods at different SNR input levels 
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5.7 Summary 

 

The effectiveness of standard RPCA-based methods has been shown to be favourable 

for SE in low SNR environments. However, the performance of these SE approaches is 

constrained by the use of overlap-add in  STFT process, noisy phase, the biased estimate of low 

rank in nuclear norm minimization, and Euclidian distance in the cost function, which may 

result in information loss in the reconstructed speech signal. To address these limitations, we 

propose to integrate the DWPT, gamma-tone filter bank, KLD, and WLRSD models in this 

work to develop an unsupervised SE framework.  DWPT/IDWPT permits the decomposition 

and reconstruction of noisy input speech, while WLRSD model can improve sub-band signals. 

To improve noisy speech, cochleagrams were employed rather than magnitude spectrograms.  

The DWPT-WLRSD model produces less distortion compared to STFT-based WLRSD 

(WNNM, WSNM) models which improve speech quality and intelligibility. The low-rank noise 

component and the sparse speech component were separated from the noisy speech 

cochleagram. The speech component is extracted using a binary mask. In low SNR conditions, 

low residual noise and speech distortion were detected. The estimate of the clean speech is 

possible by applying regularization constraints. For each noisy input, all regularization settings 

were updated and changed. The findings indicate that the proposed algorithm has great potential 

for enhancing speech quality and intelligibility in strong noisy environments without the need 

for a noise estimator. 

 



 
 

Chapter 6 

 

Validation of the Proposed Speech Enhancement 

system  

 

This chapter presents the validation results of proposed Speech enhancement 

techniques that are carried out by training Kaldi ASR to achieve low WER using different 

noises with SNRs ranging from -10dB to 10dB. 

 

6.1 Motivation 

 

In spite of a wide range of noise interferences that exist in the real world, human 

speech perception is robust. The effectiveness of ASR systems in recognizing words is 

close to 100% in conditions with no background noise. However, in the presence of 

strong background noise, the accuracy of single-channel ASR systems decreases 

significantly. One of the best ways to improve the robustness of a speech recognition 

system is to include a noise reduction (i.e SE) stage. Most single-channel speech 

enhancement (SE) approaches (denoising) have only provided marginal performance 

improvements over state-of-the-art ASR backends trained on multi-condition training 

data SE is a prominent technique for making the ASR more robust. Numerous attempts 

have been made to improve single-channel SE algorithms in terms of signal-based 

metrics, such as increased signal-to-noise ratio or decreased speech distortion.  

 

6.2 Introduction 

 

ASR is the process of translating a sequence of words spoken by a human into 

readable text using machines or software. ASR has progressed into a technology that is 

becoming increasingly prevalent in daily life and is emerging as an essential requirement 
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for many Human-Machine applications, including command and control applications, 

navigation, entertainment, etc. Modern ASR systems are getting close to performing at 

levels comparable to human recognition. However, due to acoustic interferences such as 

noise, it is still difficult to recognise speech via a distant microphone. Increased attention 

has been given to the issue of distant microphones. By using a multi-channel SE pre-

processing with an ASR backend trained on multi-conditioned data, ASR performance 

may be significantly enhanced when a microphone array is available. However, there are 

many of circumstances where there is just one microphone accessible. In such situations, 

a single microphone's performance lags substantially behind that achieved by a 

microphone array. Though novel SE techniques were proposed in this work, the 

effectiveness of these methods is to be validated through ASR application. Further study 

is therefore needed on the developed SE approaches as frontends for ASR.  

 

6.3 Overview of Speech Recognition system 

     The  automatic speech recognizer shown in figure 6.1 have a speech input, feature 

extraction, decoder, and word output. 

 

 

 

 

   

 

       Fig.6.1 Basic components of Automatic Speech recognition system 

 

 

Important components of speech recognition algorithms are acoustic modelling and 

language modelling. Acoustic models, dictionaries, and language models are used for 

decoding.  

 

Acoustic Model: An acoustic model contains statistical representations of all the different 

sounds that make up a word. Each of these statistical representations is given the name 

Speech 

Input Acoustic Model 
Acoustic Feature Extraction Phonetic word 

Word Error Rate 

Word selection 

Language Model Sentence Matching 
ASR 
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"phoneme." For speech recognition, the English language has about 40 different sounds 

that can be separated into 40 different phonemes. 

 

Language Model: Word sequences are matched to sounds in order to distinguish between 

words that sound similar. Even if the audio sample is not perfectly grammatically correct 

or has skipped words, it assumes it is semantically and grammatically sound. As a result, 

adding a language model to the decoding process can improve ASR precision. 

 

The acoustic models are trained using acoustic features from labelled data, such as the 

Wall Street Journal Corpus(WSJ), TIMIT, or any other transcribed speech corpus. The 

ASR employed in this work corresponds to kaldi recipe available as an open source for 

use by experts and researchers in the field of speech processing. The ultimate 

performance measure of SE algorithm for ASR will be always WER achieved over a 

particular dataset. To convert speech into text and increase transcription accuracy, a 

variety of algorithms and computational methods are used. 

 

 The top-level Kaldi's directory structure are : egs, src, tools, misc, and windows are top-

level directories. We use egs and src directories. egs contains training recipes for major 

speech corpora. There are training recipes for wsj, timit, rm, and others. Each directory 

has several versions (s3, s4, s5, etc.) The latest version, s5, is used for new development 

or training. src contains most of the training recipes' source code. 

 

Standard sub-directory structure for each training recipe directory. This is shown in 

egs/rm/s5. Top directory contains run.sh and two other scripts (cmd.sh and path.sh). conf, 

data, exp, local, steps, and utils are sub-directories (utilities). We'll mostly use data and 

exp. The data directory will eventually contain transcripts, dictionaries, etc. The exp 

directory will include the training, alignment, and acoustic model outputs.    

 

 

In the testing stage, the language model weight is set to the value that provides the lowest 

WER in the development set. 
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        WER =   (Substitutions+ Insertions+ Deletions) 

                         Number of words spoken 

 

 

Newly developed SE algorithms can be objectively compared by training Kaldi ASR to 

obtain low WER. 

The procedure adopted for training acoustic model is as follows: 

1. Get a speech transcript:  For a more precise alignment, utterance (sentence) 

start and end times are useful, but not essential. 

2. Transcription of Kaldi ASR :  Kaldi requires different forms for acoustic model 

training. Start and finish times of each utterance, speaker ID, and list of all words and 

phonemes in the transcript are needed. 

3. Obtaining acoustic features from audio:  Mel Frequency Cepstral Coefficients 

(MFCC) are the most popular features, however PLP and other features are also 

available. Acoustic models are based on these qualities. 

4.Train monophone models :  A monophone model lacks context for the previous 

or next phone. It is a basic block for triphone models, which incorporate contextual 

information. While monophone models describe a single phoneme's auditory properties, 

phonemes vary greatly depending on context. The triphone models show a phoneme 

variant alongside two others (left and right). 

5. Align audio with acoustic models: Acoustic training steps estimate the model's 

parameters, but the process can be enhanced by cycling through training and alignment 

phases. Viterbi training (related, but more computationally expensive procedures include 

the Forward-Backward algorithm and Expectation Maximization). By aligning the audio 

to the reference transcript with the latest acoustic model, additional training algorithms 

can refine the model's parameters. After each training step, audio and text will be 

realigned. 

 

   The figure 6.2(a) demonstrate the performance of kaldi ASR for  trained ground truth audio 

data from Noizeus corpus and the figure 6.2 (b) the tested output as a transcript. 

 

 

 

 



 

135 

 

Ground truth : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                          (a) 

  

                                                                           (a) 

Transcript: 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                    (b)  

   Figure 6.2 screen shots of  a) Trained text Ground truth audio data  b) Transcript output             

 

 

 

 

sp1_f.wav: He wrote down a long list of items 

sp1_m.wav: The birch canoe slid on the smooth planks 

sp2_f.wav: The drip of the rain made a pleasant sound 

sp2_m.wav: He knew the skill of the great young actress 

sp3_f.wav: Smoke poured out of every crack 

sp3_m.wav: Her purse was full of useless trash 

sp4_f.wav: Hats are worn to tea and not to dinner 

sp4_m.wav: Read verse out loud for pleasure 

sp5_f.wav: The clothes dried on a thin wooden rack 

sp5_m.wav: Wipe the grease off his dirty face 

 

sp1_f.wav: he wrote down a long list of items 

sp1_m.wav: the birds canoes slid on a smooth planks 

sp2_f.wav: the trap of the rain made a pleasant sound 

sp2_m.wav: he knew the skill of the great young actress 

sp3_f.wav: smoke poured out of every crack 

sp3_m.wav: her purse is full of useless trash 

sp4_f.wav: have a warrant to t and not to dinner 

sp4_m.wav: read reverse out loud for pleasure 

sp5_f.wav: the clothes dried on a thin would and rack 

sp5_m.wav: why degrees off his dirty face 
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6.4 Simulation results on ASR 

The experimental findings of our suggested approach are presented in this 

subsection, along with some discussions. The word error rate (WER) indicates that at 

varying input SNRs, the human ability to recognize speech contents remains resilient. 

However, in the presence of background noise, the accuracy of single-channel ASR 

systems decreases significantly. Most single-channel speech enhancement (SE) 

approaches (denoising) have only provided marginal performance improvements over 

state-of-the-art ASR backends trained on multi-condition training data. One of the best 

ways to improve the robustness of a speech recognition system is to include a noise 

reduction (SE) stage.  

 

Testing the performance of each SE algorithm throughout the complete spectrum 

of acoustic circumstances takes a long time. As a result, it is preferable to estimate WER 

scores using more easily computed metrics during the development of the SE algorithm, 

where the clean speech reference is available. Predicting the performance of the SE 

algorithm is beneficial to correlate the improvements in WER with improvements in 

bss_eval metrics.  

 

The second experiment is carried out to examine and contrast the SE algorithms 

for speech recognition with the RPCA models. This uses the Kaldi ASR repository to 

train and test WER on enhanced speech signals from the first experiment. We examined 

the Noizeus[145], Libri[217], TIMIT[218] databases and ASR backends to test the 

generalisation capability of proposed SE approaches.  

 

From the clean speech data available, Khaldi ASR was trained, and  WER was 

estimated as follows:  NOIZEUS database WER= 0.2058,    Libri speech database WER 

= 0.1, and TIMIT speech database  WER= 0.3046.    Figures 6.1(a-c) shows the 

performance comparison of baseline algorithms such as KSVD, NMF, and RPCA with 

initially proposed methods: WNNM and WSNM on Kaldi ASR using the above three 

databases. in terms of WER.  
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Figure 6.3(a-c) demonstrate  the performance of the initially proposed speech 

enhancement algorithm in terms of Word Error Rate (WER) over noisy and baseline 

algorithms using a) Noizeus  b)Libri   c) TIMIT Database 

 

   

(a) 

 

(b) 
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(c) 

Figure 6.3(a-c).Performance comparison of the initially proposed speech enhancement 

algorithm in terms of  WER over noisy and baseline algorithms using a) Noizeus  

b)Libri   c) TIMIT Database 

 

Among the speech processing schemes experimented, particularly proposed 

speech enhancement algorithms performed well in terms of the WER over noisy speech, 

depicted in Figures 6.3(a-c). The ASR results show that the performance of our proposed 

approach with the Libri database produced the lowest WER values. It is noticed that in 

low SNR conditions among the various noises Traffic & car, and wind noise cases shown 

a better performance in terms of lowest WER.  

 

Studies on proposed wavelet-based speech enhancement algorithms outperformed 

the methods proposed earlier. More testing is being done to confirm their efficacy in ASR 

systems. Figure 6.4(a-f) provides a thorough analysis of each noise as it relates to WER 

improvements over NRPCA technique. Significant improvements are demonstrated with 

the proposed approaches. The WER using NRPCA approach is the highest for the crowd 

and machine noise at -10dB. WKLWSNM techniques shown a significant progress (with 

lowest WER) at low SNR, traffic & car, and wind noise scenarios. The AWGN was used 

to capture ASR's best performance across all noise kinds and SNR ranges. 
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(a)   (b)                  

                      

                         ( c )                                                                 (d)                 
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                                   (e)                                                        (f) 

Figure 6.4(a-c).  Performance comparison of the proposed SE algorithms in terms of WER 

improvements with    a) Crowd  b) Water  c) Wind  d) machine e) Traffic & car  f) AWGN  

noises  over NRPCA algorithm 

 

6.5 OBSERVATIONS 

Based on the preceding chapter and the current studies, the following are the 

observations: 

 

1. PESQ and WER have partial correlation, which improves PESQ, decreases 

WER (except for some low SNR cases). Increasing speech quality doesn't 

decrease recognition accuracy. STOI measures recognition accuracy in noisy 

settings than PESQ. At low SNR WKLWSNM significantly improves STOI and 

recognition accuracy for AWGN, Traffic & car and Wind noises. The increase 

in STOI does not necessarily diminish WER, but the decrease in WER does. 

2.  The two SE approaches tested here don't show speech recognition gains in 

noisy environments. In our view, directly correcting speech features for a noisy 

recognition system reduces WERs far beyond SE approaches. 
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(a)                                                        (b)                                                      (c) 

Figure 6.5(a-c)  Comparison of suggested SE methods over baseline algorithms in 

terms of Word Error Rate (WER) using a) Libri  b) TIMIT  c) Noizeus data bases 

 

The generalization capability of the established SE methods was tested as shown 

in figures 6.5(a-c), utilizing Noizeus, Libri, and TIMIT speech corpora on the kaldi ASR 

backend (The performance of our proposed methodology with Libri database resulted in 

the lowest WER values, according to ASR results.Comparing the WSNM, WNNM, and 

NRPCA SE methods on both the training and test sets demonstrates inferior recognition 

performance (greater WERs) than proposed WKLWSNM, WKLWNNM, WKLNRPCA 

methods of SE at all low SNR(< 0dB). With the Libri speech corpus, WKLWSNM and 

WKLWNNM displayed 24.4% and 28.7% WERs at -10 dB SNR with traffic and car 

noise, respectively, which was better than the baseline results of 69.8% and 71.2% for 

WSNM and WNNM. 

In all noise situations, the trained ASR with libri speech corpus performed 

effectively in low SNR levels (< 0 dB) and significantly decreased WER when compared 

to baseline techniques. Overall, the results demonstrate that performance of our proposed 

approach was better than those of existing state of art methods. 
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Chapter 7 

Conclusions and Future Scope 

 

This chapter gives an insight into the thesis obtained from the contributions made 

towards the development of speech enhancement system under low SNR conditions 

using convex optimization techniques, overcoming the issues addressed in earlier 

chapters. The scope for future research is discussed with reference to some of the 

potential areas of advancements in the research field of speech enhancement. 

 

7.1 Conclusions 

This thesis offers five contributions, in which a Dictionary-Based speech 

enhancement methods was evaluated to test the use of sparsity property in clean and 

noisy speech signals for single channel speech enhancement (SE) using fixed dictionaries 

(like : DFT, DCT, CEPSTRAL), adaptive dictionaries(like: KSVD,NMF) and low-rank 

sparse decomposition approaches (like RPCA, SSGODEC). Compressive sensing (CS) 

recovers a sparse signal from random samples. CS recovery removes background noise 

and restores structured speech. The study compares fixed and adaptive dictionaries for 

CS based SE. It established that fixed dictionaries can't represent non-stationary signals 

sparsely while being simple and fast. Adaptive dictionaries enhance noisy speech better 

than fixed ones. Prior models are necessary to estimate speech and noise. The 

experimental results showed that Low-rank sparse decomposition techniques prevent 

musical noise by estimating the matrix rank using NNM. 

 

The second contribution presented in chapter 3, examined how STFT parameters affect 

matrix decomposition-based SE. The influence of transform windows is explored on a low-

rank or sparse spectrogram. The length N of the STFT influences T-F frequency 

resolution. The longer the N, the more are the frequency bins. The best STFT length is 

observed for M = 1536, while the lowest was for N = 512.  The RPCA-based SE's SDR 

performance was impacted by STFT parameters. SDR results rely on noise types, which 
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is unsolved. Wind, traffic & car noises are easily hidden than the other types. The values 

of  ml and ms  on speech signal analysis provide the best  low-rank, sparse model for 

speech and noise. The SE algorithm's performance could be evaluated for an infinite 

number of parameter combinations, and the results could 

be entirely independently evaluated. The present research on modifying STFT 

parameters are not exhaustive, and each parameter's value could be changed in a variety 

of ways.  

 

Low Rank sparse Decomposition splits the input noisy spectrum into low-rank 

noise and sparse speech components to estimate noise and speech when neither is 

provided beforehand. Inaccurate rank estimate creates tone-like components in LRSD. 

Weighted Low-rank and sparse decomposition models with a different objective function 

than RPCA can minimise musical noise and distortion. At -10dB, WSNM method 

enhanced Traffic & Car and Wind SDR by 8.14 and 6.17 dB. PESQ improved highest 

with -10 dB for traffic & car noise (∆PESQ=0.49) and least with 10 dB of wind and other 

noise. Figure 4.2 compares suggested and baseline SE SDR performance. In AWGN as 

a stationary noise situation was also covered. Adopting a binary T-F mask improved 

speech intelligibility in noisy circumstances. The recommended approach preserves 

speech content while achieving high SIG values at all SNR and noise levels. The strategy 

worked effectively at low SNR levels (-10 dB) and minimised residual noise compared 

to baseline techniques. 

 

RPCA-based techniques improved SE, but have drawbacks. The majority of 

algorithms maximise their Euclidean distance(ED) -based cost function. ED can produce 

substantial reconstruction problems since it over emphasises large values. Most of SE 

approaches improve STFT-based spectral magnitude while preserving input noise-

corrupted phase component unaltered. DWPT-based SE techniques directly process data 

in the temporal domain to correct distortion owing to noisy phase. Cochleagrams can 

better distinguish monaural mixed audio than spectrograms. Due to the cochleagram's 

non-uniform time-frequency (T-F) transform, low-frequency T-F units offer better 

resolution. Cochleogram responses differ for speech and noise. A sparse and low-rank 

decomposition model may help estimate cochleagram mask. The Frobenius norm 
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measure is used in cost functions for sparse and low-rank models without regularisation 

requirements. Decomposed speech must be positive. Based on these findings, we used 

NRPCA with DWPT to improve unsupervised RPCA-SE. 

 

A novel approach using a weighted low-rank sparse decomposition method, the 

discrete wavelet packet transform (DWPT), and the KL Divergence were developed, this 

being contribution 4 and presented in chapter 5. The said approach increases speech 

enhancement effectiveness in different noise environments by separating speech and 

noise cochleagram.  

 

NNM-based NRPCA uses auditory perceptual information incorrectly due to an 

improper matrix rank computation. The findings from chapter 4 show that accurate rank 

estimation is possible with WSNM method. Therefore, combining DWPT-KL with 

nonnegative RPCA (WKLNRPCA) improves speech quality and intelligibility over 

STFT-based SE. The strategy recommended worked well in Traffic & car-noisy settings 

and scored higher than competing methods in SDR. WKLWSNM provided the greatest 

PESQ scores in all noisy situations, especially at low SNR levels (10dB and -5dB). Figure 

5.6(a-f) compares the proposed method with other techniques that assess increased 

speech quality. 

 

The method recommended by our study predicted with 88.4% accuracy. All noise 

sources showed STOI > 86% at 10dB SNR. At -10dB the proposed strategy improves 

traffic and car noise from 54.4% to 88.2%. The proposed approach decreases speech 

distortion in all noisy scenarios and at all SNR levels, except for -5dB (SIG = 2.76) crowd 

noise and -10dB (BAK = 1.43) machine noise. High BAK values indicate reduced 

residual noise in improved speech. The WKLWSNM technique reduced background 

noise, resulting in low residual noise. 

 

As a part of fifth contribution (chapter 6), the validation results of the proposed 

Speech enhancement techniques that were carried out by training Kaldi ASR to achieve 

low WER using different noises with SNRs ranging from -10dB to 10dB presented. 

Compared to existing speech enhancement techniques, the recommended algorithms 
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performed better in terms of WER over noisy speech. The trained ASR utilizing the libri 

speech corpus worked well in low SNR (< 0 dB), improving WER by more than 85% 

compared to baseline techniques. 

 

7.2 Future Scope 

The proposed SE methods, however, are unable to completely remove 

background noise since the convex optimization techniques are inaccurate in estimating 

exact low rank. The problem of developing robust speech enhancement algorithms that 

can fully remove background noise yet maintaining good quality and intelligibility in 

highly nonstationary and adversely noisy situations has yet to be solved. For Superior 

performance, models to estimate exact low-rank and noise type are to be explored. 

 

It is quite remarkable how well the WSNM-RPCA-based unsupervised and 

untrained technique performs, especially when applied to challenging unstable noises 

like the sound of a bubbling stream of water or a crowd of people cheering. Even under 

extremely noisy settings and with low input SNR values, improvement is still possible. 

The use of larger test signal corpora and more complex objective speech quality metrics 

is therefore possible. Further research should be done to determine which noise types the 

SE approach performs best with and which noise kinds are too difficult. The development 

of real-time realizations of this algorithm may be motivated by the promising findings of 

WKLWSNM-based RPCA method for particular noise types. Real-time realizations of 

this algorithm may be useful for hands-free mobile communication in automobiles or 

hearing aids, for example. High BAK and SIG values, respectively, demonstrate that the 

suggested approach led to little speech distortion at low SNR levels and that little residual 

noise was detected in speech processed by the proposed algorithm. 
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